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Uni�cation-based attribute-value grammar formalisms such as Lexical- Functional Gram-
mar and Head-Driven Phrase Structure Grammar have proven to be highly successful for
practical large-scale grammar development. However, realistic applications of attribute-
value grammars for natural language parsing or generation require the use of sophisticated
statistical techniques for resolving ambiguities. This one-week course will provide an in-
troduction to the maximum entropy principle and the construction of maximum entropy
models for natural language processing. Through a combination of lectures and, as local
computing facilities permit, hands-on lab exercises, students will investigate the implemen-
tation of maximum entropy models for attribute-value grammars, including such topics as
ambiguity identi�cation, feature selection, and model training and evaluation.

This course will assume a basic knowledge of probability theory, and some experience
in grammar development or programming in a high level language would be helpful.
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Statistical Methods and Linguistics

Steven Abney

University of T�ubingen

In the space of the last ten years, statistical methods have gone from being
virtually unknown in computational linguistics to being a fundamental given. In
1996, no one can profess to be a computational linguist without a passing knowl-
edge of statistical methods. HMM's are as de rigeur as LR tables, and anyone
who cannot at least use the terminology persuasively risks being mistaken for
kitchen help at the ACL banquet.

More seriously, statistical techniques have brought signi�cant advances in
broad-coverage language processing. Statistical methods have made real progress
possible on a number of issues that had previously stymied attempts to liberate
systems from toy domains; issues that include disambiguation, error correction,
and the induction of the sheer volume of information requisite for handling unre-
stricted text. And the sense of progress has generated a great deal of enthusiasm
for statistical methods in computational linguistics.

However, this enthusiasm has not been catching in linguistics proper. It
is always dangerous to generalize about linguists, but I think it is fair to say
that most linguists are either unaware (and unconcerned) about trends in com-
putational linguistics, or hostile to current developments. The gulf in basic
assumptions is simply too wide, with the result that research on the other side
can only seem naive, ill-conceived, and a complete waste of time and money.

In part the di�erence is a di�erence of goals. A large part of computational
linguistics focuses on practical applications, and is little concerned with human
language processing. Nonetheless, at least some computational linguists aim to
advance our scienti�c understanding of the human language faculty by better
understanding the computational properties of language. One of the most inter-
esting and challenging questions about human language computation is just how
people are able to deal so e�ortlessly with the very issues that make processing
unrestricted text so di�cult. Statistical methods provide the most promising
current answers, and as a result the excitement about statistical methods is also
shared by those in the cognitive reaches of computational linguistics.

In this paper, I would like to communicate some of that excitement to fellow
linguists, or at least, perhaps, to make it comprehensible. There is no denying
that there is a culture clash between theoretical and computational linguis-
tics that serves to reinforce mutual prejudices. In charicature, computational
linguists believe that by throwing more cycles and more raw text into their
statistical black box, they can dispense with linguists altogether, along with
their fanciful Rube Goldberg theories about exotic linguistic phenomena. The

I would like to thank Tilman Hoehle, Graham Katz, Marc Light, and Wolfgang Sternefeld
for their comments on an earlier draft of this paper. All errors and outrageous opinions are
of course my own.
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linguist objects that, even if those black boxes make you oodles of money on
speech recognizers and machine-translation programs (which they don't), they
fail to advance our understanding. I will try to explain how statistical methods
just might contribute to understanding of the sort that linguists are after.

This paper, then, is essentially an apology, in the old sense of apology. I wish
to explain why we would do such a thing as to use statistical methods, and why
they are not really such a bad thing, maybe not even for linguistics proper.

1 Language Acquisition, Language Variation, and Language Change

I think the most compelling, though least well-developed, arguments for statisti-
cal methods in linguistics come from the areas of language acquisition, language
variation, and language change.

Language acquisition. Under standard assumptions about the grammar, we
would expect the course of language development to be characterized by abrupt
changes, each time the child learns or alters a rule or parameter of the grammar.
If, as seems to be the case, changes in child grammar are actually re
ected in
changes in relative frequencies of structures that extend over months or more,
it is hard to avoid the conclusion that the child has a probabilistic or weighted
grammar in some form. The form that would perhaps be least o�ensive to main-
stream sensibilities is a grammar in which the child \tries out" rules for a time.
During the trial period, both the new and old versions of a rule co-exist, and the
probability of using one or the other changes with time, until the probability of
using the old rule �nally drops to zero. At any given point, in this picture, a
child's grammar is a stochastic (i.e., probabilistic) grammar.

An aspect of this little illustration that bears emphasizing is that the proba-
bilities are added to a grammar of the usual sort. A large part of what is meant
by \statistical methods" in computational linguistics is the study of stochastic
grammars of this form: grammars obtained by adding probabilities in a fairly
transparent way to \algebraic" (i.e., non-probabilistic) grammars. Stochastic
grammars of this sort do not constitute a rejection of the underlying algebraic
grammars, but a supplementation. This is quite di�erent from some uses to
which statistical models (most prominently, neural networks) are put, in which
attempts are made to model some approximation of linguistic behavior with
an undi�erentiated network, with the result that it is di�cult or impossible to
relate the network's behavior to a linguistic understanding of the sort embodied
in an algebraic grammar. (It should, however, be pointed out that the problem
with such applications does not lie with neural nets, but with the unenlightening
way they are put to use.)

Language change. Similar comments apply, on a larger scale, to language change.
If the units of change are as algebraic grammars lead us to expect|rules or pa-
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rameters or the like|we would expect abrupt changes. We might expect some
poor bloke to go down to the local pub one evening, order \Ale!", and be served
an eel instead, because the Great Vowel Shift happened to him a day too early.1

In fact, linguistic changes that are attributed to rule changes or changes of pa-
rameter settings take place gradually, over considerable stretches of time, mea-
sured in decades or centuries. It is more realistic to assume that the language of
a speech community is a stochastic composite of the languages of the individual
speakers, described by a stochastic grammar. In the stochastic \community"
grammar, the probability of a given construction re
ects the relative proportion
of speakers who use the construction in question. Language change consists in
shifts in relative frequency of constructions (rules, parameter settings, etc.) in
the community. If we think of speech communities as populations of grammars
that vary within certain bounds, and if we think of language change as involv-
ing gradual shifts in the center of balance of the grammar population, then
statistical models are of immediate applicability [25].

In this picture, we might still continue to assume that an adult monolingual
speaker possesses a particular algebraic grammar, and that stochastic gram-
mars are only relevant for the description of communities of varying grammars.
However, we must at least make allowance for the fact that individuals rou-
tinely comprehend the language of their community, with all its variance. This
rather suggests that at least the grammar used in language comprehension is
stochastic. I return to this issue below.

Language variation. There are two senses of language variation I have in mind
here: dialectology, on the one hand, and typology, on the other. It is clear that
some languages consist of a collection of dialects that blend smoothly one into
the other, to the point that the dialects are more or less arbitrary points in a
continuum. For example, Tait describes Inuit as \a fairly unbroken chain of
dialects, with mutual intelligibility limited to proximity of contact, the furthest
extremes of the continuum being unintelligible to each other" [26, p.3]. To
describe the distribution of Latin American native languages, Kaufman de�nes
a language complex as \a geographically continuous zone that contains linguistic
diversity greater than that found wthin a single language : : :, but where internal
linguistic boundaries similar to those that separate clearly discrete languages are
lacking" [14, p.31]. The continuousness of changes with geographic distance is
consistent with the picture of a speech community with grammatical variance,
as sketched above. With geographic distance, the mix of frequency of usage
of various constructions changes, and a stochastic grammar of some sort is an
appropriate model [15].

Similar comments apply in the area of typology, with a twist. Many of the
universals of language that have been identi�ed are statistical rather than abso-

1I have read this anecdote somewhere before, but have been unable to �nd the citation.
My apologies to the unknown author.
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lute, including rough statements about the probability distribution of language
features (\head-initial and head-�nal languages are about equally frequent")
or conditional probability distributions (\postpositions in verb-initial languages
are more common than prepositions in verb-�nal languages") [11, 12]. There is
as yet no model of how this probability distribution comes about, that is, how
it arises from the statistical properties of language change. Which aspects of
the distribution are stable, and which would be di�erent if we took a sample
of the world's languages 10,000 years ago or 10,000 years hence? There is now
a vast body of mathematical work on stochastic processes and the dynamics of
complex systems (which includes, but is not exhausted by, work on neural nets),
much of which is of immediate relevance to these questions.

In short, it is plausible to think of all of these issues|language acquisition,
language change, and language variation|in terms of populations of grammars,
whether those populations consist of grammars of di�erent speakers or sets of
hypotheses a language learner entertains. When we examine populations of
grammars varying within bounds, it is natural to expect statistical models to
provide useful tools.

2 Adult Monolingual Speakers

But what about an adult monolingual speaker? Ever since Chomsky, linguistics
has been �rmly committed to the idealization to an adult monolingual speaker
in a homogeneous speech community. Do statistical models have anything to
say about language under that idealization?

In a narrow sense, I think the answer is probably not. Statistical methods
bear mostly on all the issues that are outside the scope of interest of current
mainstream linguistics. In a broader sense, though, I think that says more
about the narrowness of the current scope of interest than about the linguistic
importance of statistical methods. Statistical methods are of great linguistic
interest because the issues they bear on are linguistic issues, and essential to an
understanding of what human language is and what makes it tick. We must not
forget that the idealizations that Chomsky made were an expedient, a way of
managing the vastness of our ignorance. One aspect of language is its algebraic
properties, but that is only one aspect of language, and certainly not the only
important aspect. Also important are the statistical properties of language com-
munities. And stochastic models are also essential for understanding language
production and comprehension, particularly in the presence of variation and
noise. (I will focus here on comprehension, though considerations of language
production have also provided an important impetus for statistical methods in
computational linguistics [22, 23].)

To a signi�cant degree, I think linguistics has lost sight of its original goal,
and turned Chomsky's expedient into an end in itself. Current theoretical syn-
tax gives a systematic account of a very narrow class of data, judgments about
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the well-formedness of sentences for which the intended structure is speci�ed,
where the judgments are adjusted to eliminate gradations of goodness and other
complications. Linguistic data other than structure judgments are classi�ed
as \performance" data, and the adjustments that are performed on structure-
judgment data are deemed to be corrections for \performance e�ects". Perfor-
mance is considered the domain of psychologists, or at least, not of concern to
linguistics.

The term performance suggests that the things that the standard theory
abstracts away from or ignores are a natural class; they are data that bear
on language processing but not language structure. But in fact a good deal
that is labelled \performance" is not computational in any essential way. It is
more accurate to consider performance to be negatively de�ned: it is whatever
the grammar does not account for. It includes genuinely computational issues,
but a good deal more that is not. One issue I would like to discuss in some
detail is the issue of grammaticality and ambiguity judgments about sentences
as opposed to structures. These judgments are no more or less computational
than judgments about structures, but it is di�cult to give a good account of
them with grammars of the usual sort; they seem to call for stochastic, or at
least weighted, grammars.

2.1 Grammaticality and ambiguity

Consider the following:

(1) a. the a are of I

b. the cows are grazing in the meadow

c. John saw Mary

The question is the status of these examples with respect to grammaticality and
ambiguity. The judgments here, I think, are crystal clear: (1a) is word salad,
and (1b) and (c) are unambiguous sentences.

In point of fact, (1a) is a grammatical noun phrase, and (1b) and (c) are
at least two ways ambiguous, the non-obvious reading being as a noun phrase.
Consider: an are is a measure of area, as in a hectare is a hundred ares, and
letters of the alphabet may be used as nouns in English (\Written on the sheet

was a single lowercase a," \As described in section 2 paragraph b : : :"). Thus
(1a) has a structure in which are and I are head nouns, and a is a modi�er
of are. This analysis even becomes perfectly natural in the following scenario.
Imagine we are surveyors, and that we have mapped out a piece of land into
large segments, designated with capital letters, and subdivided into one-are sub-
segments, designated with lower-case letters. Then the a are of I is a perfectly
natural description for a particular parcel on our map.

As for (1b), are is again the head noun, cows is a premodi�er, and grazing

in the meadow is a postmodi�er. It might be objected that plural nouns cannot
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be nominal premodi�ers, but in fact they often are: consider the bonds mar-

ket, a securities exchange, he is vice president and media director, an in-home

health care services provider, Hartford's claims division, the �nancial-services

industry, its line of systems management software. (Several of these examples
are extracted from the Wall Street Journal.)

It may seem that examples (1a) and (b) are illustrative only of a trivial and
arti�cial problem that arises because of a rare usage of a common word. But
the problem is not trivial: without an account of `rare usage', we have no way
of distinguishing between genuine ambiguities and these spurious ambiguities.
Alternatively, one might object that if one does not know that are has a reading
as a noun, then are is actually unambiguous in one's idiolect, and (1a) is gen-
uinely ungrammatical. But in that case the question becomes why a hectare is

a hundred ares is not judged equally ungrammatical by speakers of the idiolect
in question.

Further, (1c) illustrates that the rare usage is not an essential feature of
examples (a) and (b). Saw has a reading as a noun, which may be less frequent
than the verb reading, but is hardly a rare usage. Proper nouns can modify
(Gatling gun) and be modi�ed by (Typhoid Mary) common nouns. Hence,
John saw Mary has a reading as a noun phrase, referring to the Mary who is
associated with a kind of saw called a John saw.

It may be objected that constructions like Gatling gun and Typhoid Mary

belong to the lexicon, not the grammar, but however that may be, they are
completely productive. I may not know whatCohen equations, the Russia house,

or Abney sentences are, but if not, then the denotata of Cohen's equations, the
Russian house, or those sentences of Abney's are surely equally unfamiliar.2

Likewise I may not know who pegleg Pete refers to, or riverboat Sally, but that
does not make the constructions any less grammatical or productive.

The problem is epidemic, and it snowballs as sentences grow longer. One
often hears in computational linguistics about completely unremarkable sen-
tences with hundreds of parses, and that is in fact no exaggeration. Nor is it
merely a consequence of having a poor grammar. If one examines the undesired
analyses, one generally �nds that they are extremely implausible, and often
do considerable violence to `soft' constraints like heaviness constraints or the
number and sequence of modi�ers, but no one piece of the structure is outright
ungrammatical.

To illustrate, consider this sentence, drawn more or less at random from a
book (Quine's Word and Object) drawn more or less at random from my shelf:

(2) In a general way such speculation is epistemologically relevant, as sug-
gesting how organisms maturing and evolving in the physical environ-

2There are also syntactic grounds for doubt about the assumption that noun-noun modi�-
cation belongs to the lexicon. Namely, adjectives can intervene between the modifying noun
and the head noun. (Examples are given later in this section.) If adjective modi�cation be-
longs to the syntax, and if there are no discontinuous words or movement of pieces of lexical
items, then at least some modi�cation of nouns by nouns must take place in the syntax.
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ment we know might conceivably end up discoursing of abstract objects
as we do. [28, p. 123]

One of the many spurious structures this sentence might receive is the following:

(3)

In a general way RC

such speculation is

AdjP

epistemologically relevant PP

as suggesting how

Absolute

organisms maturing and evolving ...

NP

we

VP

know

NP

might AP

conceivably end up

Ptcpl

discoursing of abstract

S

VP

objects as we do

PP

S

There are any number of criticisms one can direct at this structure, but I be-
lieve none of them are fatal. It might be objected that the PP-AdjP-Absolute
sequence of sentential premodi�ers is illegitimate, but each is individually �ne,
and there is no hard limit on stacking them. One can even come up with rela-
tively good examples with all three modi�ers, e.g.: [PP on the beach] [AdjP naked

as jaybirds] [Absolute waves lapping against the shore] the wild boys carried out

their bizarre rituals.

Another point of potential criticism is the question of licensing the elided
sentence after how. In fact its content could either be provided from preceding
context or from the rest of the sentence, as in though as yet unable to explain

how, astronomers now know that stars develop from specks of grit in giant oys-

ters.

Might is taken here as a noun, as in might and right. The AP conceivably

end up may be a bit mysterious: end up is here an adjectival, as in we turned

the box end up. Abstract is unusual as a mass noun, but can in fact be used as
one, as for example in the article consisted of three pages of abstract and only

two pages of actual text.
One might object that the NP headed by might is bad because of the mul-

tiple postmodi�ers, but in fact there is no absolute constraint against stacking
nominal postmodi�ers, and good examples can be constructed with the same
structure: marlinespikes, business end up, sprinkled with tabasco sauce, can be

a powerful deterrent against pigeons. Even the commas are not absolutely re-
quired. The strength of preference for them depends on how heavy the modi�ers
are: cf. strength judicially applied increases the e�ectiveness of diplomacy, a cup
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of peanuts unshelled in the stock adds character.3

In short, the structure (3) seems to be best characterized as grammatical,
though it violates any number of parsing preferences and is completely absurd.

One might think that one could eliminate ambiguities by turning some of the
dispreferences into absolute constraints. But attempting to eliminate unwanted
readings that way is like squeezing a balloon: every dispreference that is turned
into an absolute constraint to eliminate undesired structures has the unfortunate
side e�ect of eliminating the desired structure for some other sentence. No
matter how di�cult it is to think up a plausible example that violates the
constraint, some writer has probably already thought one up by accident, and we
will improperly reject his sentence as ungrammatical if we turn the dispreference
into an absolute constraint. To illustrate: if a noun is premodi�ed by both an
adjective and another noun, standard grammars require the adjective to come
�rst, inasmuch as the noun adjoins to N0 but the adjective adjoins to N. It is
not easy to think up good examples that violate this constraint. Perhaps the
reader would care to try before reading the examples in the footnote.4

Not only is my absurd analysis (3) arguably grammatical, there are many,
many equally absurd analyses to be found. For example, general could be a
noun (the army o�cer) instead of an adjective, or evolving in could be analyzed
as a particle verb, or the physical could be a noun phrase (a physical exam)|
not to mention various attachment ambiguities for coordination and modi�ers,
giving a multiplicative e�ect. The consequence is considerable ambiguity for a
sentence that is perceived to be completely unambiguous.

Now perhaps it seems I am being perverse, and I suppose I am. But it
is a perversity that is implicit in grammatical descriptions of the usual sort,
and it emerges unavoidably as soon as we systematically examine the structures
that the grammar assigns to sentences. Either the grammar assigns too many
structures to sentences like (2), or it incorrectly predicts that examples like three
pages of abstract or a cup of peanuts unshelled in the stock have no well-formed
structure.

To sum up, there is a problem with grammars of the usual sort: their predic-
tions about grammaticality and ambiguity are simply not in accord with human
perceptions. The problem of how to identify the correct structure from among
the in-principle possible structures provides one of the central motivations for
the use of weighted grammars in computational linguistics. A weight is as-
signed to each aspect of structure permitted by the grammar, and the weight of
a particular analysis is the combined weight of the structural features that make
it up. The analysis with the greatest weight is predicted to be the perceived
analysis for a given sentence.

3Cf. this passage from Tolkien: \Their clothes were mended as well as their bruises their
tempers and their hopes. Their bags were �lled with food and provisions light to carry but
strong to bring them over the mountain passes." [27, p.61]

4Maunder climatic cycles, ice-core climatalogical records, a Kleene-star transitive closure,

Precambrian era solar activity, highland igneous formations.
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Before describing in more detail how weighted grammars contribute to a
solution to the problem, though, let me address an even more urgent issue: is
this even a linguistic problem?

2.2 Is this linguistics?

Under usual assumptions, the fact that the grammar predicts grammaticality
and ambiguity where none is perceived is not a linguistic problem. The usual
opinion is that perception is a matter of performance, and that grammaticality
alone does not predict performance; we must also include non-linguistic factors
like plausibility and parsing preferences and maybe even probabilities.

Grammaticality and acceptability. The implication is that perceptions of gram-
maticality and ambiguity are not linguistic data, but performance data. This
stance is a bit odd|aren't grammaticality judgments perceptions? And what
do we mean by \performance data"? It would be one thing if we were talking
about data that clearly has to do with the course of linguistic computation, data
like response times and reading times, or regressive eye movement frequencies,
or even more outlandish things like PET scans or ERP traces. But human per-
ceptions (judgments, intuitions) about grammaticality and ambiguity are classic
linguistic data. What makes the judgments concerning examples (1a-c) perfor-
mance data? All linguistic data is the result of little informal psycholinguistic
experiments that linguists perform on themselves, and the experimental mate-
rials are questions of the form \Can you say this?" \Does this mean this?" \Is
this ambiguous?" \Are these synonymous?"

Part of the answer is that the judgments about examples (1a-c) are judg-
ments about sentences alone rather than about sentences with speci�ed struc-
tures. The usual sort of linguistic judgment is a judgment about the goodness of
a particular structure, and example sentences are only signi�cant as bearers of
the structure in question. If any choice of words and any choice of context can
be found that makes for a good sentence, the structure is deemed to be good.
The basic data are judgments about structured sentences in context|that is,
sentences plus a speci�cation of the intended structure and intended context|
but this basic data is used only grouped in sets of structured contextualized
sentences having the same (possibly partial) structure. Such a set is de�ned to
be good just in case any structured contextualized sentence it contains is judged
to be good. Hence a great deal of linguists' time is spent in trying to �nd some
choice of words and some context to get a clear positive judgment, in order to
show that a structure of interest is good.

As a result, there is actually no intent that the grammar predict|that is,
generate|individual structured sentence judgments. For a given structured
sentence, the grammar only predicts whether there is some sentence with the
same structure that is judged to be good.

For the examples (1), then, we should say that the structure
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[NP the [N a] [N are] [PP of [N I]]]

is indeed grammatical in the technical sense, since it is acceptable in at least
one context, and since every piece of the structure is attested in acceptable
sentences.

The grouping of data by structure is not the only way that standard gram-
mars fail to predict acceptability and ambiguity judgments. Judgments are
rather smoothly graded, but goodness according to the grammar is all or noth-
ing. Discrepancies between grammar and data are ignored if they involve sen-
tences containing center embedding, parsing preference violations, garden path
e�ects, or in general if their badness can be ascribed to \processing complexity".5

Grammar and computation. The di�erence between structure judgments and
string judgments is not that the former is \competence data" in some sense
and the latter is \performance data". Rather, the distinction rests on a work-
ing assumption about how the data are to be explained, namely, that the data
is a result of the interaction of grammatical constraints with computational
constraints. Certain aspects of the data are assumed to be re
ections of gram-
matical constraints, and everything else is ascribed to failures of the processor to
translate grammatical constraints transparently into behavior, whether because
of memory limits or heuristic parsing strategies or whatever obscure mechanisms
create gradedness of judgments. We are justi�ed in ignoring those aspects of
the data that we ascribe to the idiosyncracies of the processor.

But this distinction does not hold up under scrutiny. Dividing the human
language capacity into grammar and processor is only a manner of speaking, a
way of dividing things up for theoretical convenience. It is naive to expect the
logical grammar/processor division to correspond to any meaningful physiolog-
ical division|say, two physically separate neuronal assemblies, one functioning
as a store of grammar rules and the other as an active device that accesses the
grammar-rule store in the course of its operation. And even if we did believe in
a physiological division between grammar and processor, we have no evidence
at all to support that belief; it is not a distinction with any empirical content.

A couple of examples might clarify why I say that the grammar/processor
distinction is only for theoretical convenience. Grammars and syntactic struc-
tures are used to describe computer languages as well as human languages,
but typical compilers do not access grammar-rules or construct parse-trees. At

5In addition, there are properties of grammaticality judgments of a di�erent sort that
are not being modelled, properties that are poorly understood and somewhat worrisome.
Disagreements arise not infrequently among judges|it is more often the case than not that
I disagree with at least some of the judgments reported in syntax papers, and I think my
experience is not unusual. Judgments seem to change with changing theoretical assumptions:
a sentence that sounds \not too good" when one expects it to be bad may sound \not too
bad" if a change in the grammar changes one's expectations. And judgments change with
exposure. Some constructions that sound terrible on a �rst exposure improve considerably
with time.
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the level of description of the operation of the compiler, grammar-rules and
parse-trees exist only \virtually" as abstract descriptions of the course of the
computation being performed. What is separately characterized as, say, gram-
mar versus parsing strategy at the logical level is completely intermingled at
the level of compiler operation.

At the other extreme, the constraints that probably have the strongest
computational 
avor are the parsing strategies that are considered to underly
garden-path e�ects. But it is equally possible to characterize parsing prefer-
ences in grammatical terms. For example, the low attachment strategy can
be characterized by assigning a cost to structures of the form [

X
i+1 X

i
Y Z]

proportional to the depth of the subtree Y . The optimal structure is the one
with the least cost. Nothing depends on how trees are actually computed: the
characterization is only in terms of the shapes of trees.

If we wish to make a distinction between competence and computation, an
appropriate distinction is between what is computed and how it is computed.
By this measure, most \performance" issues are not computational issues at
all. Characterizing the perceptions of grammaticality and ambiguity described
in the previous section does not necessarily involve any assumptions about the
computations done during sentence perception. It only involves characterizing
the set of structures that are perceived as belonging to a given sentence. That
can be done, for example, by de�ning a weighted grammar that assigns costs
to trees, and specifying a constant C such that only structures whose cost is
within distance C of the best structure are predicted to be perceived. How the
set thus de�ned is actually computed during perception is left completely open.

We may think of competence versus performance in terms of knowledge
versus computation, but that is merely a manner of speaking. What is really at
issue is an idealization of linguistic data for the sake of simplicity.

The frictionless plane, autonomy and isolation. Appeal is often made to an anal-
ogy between competence and frictionless planes in mechanics. Syntacticians
focus on the data that they believe to contain the fewest complicating factors,
and \clean up" the data to remove what they believe to be remaining compli-
cations that obscure simple, general principles of language.

That is proper and laudable, but it is important not to lose sight of the
original problem, and not to mistake complexity for irrelevancy. The test of
whether the simple principles we think we have found actually have explanatory
power is how well they fare in making sense of the larger picture. There is
always the danger that the simple principles we arrive at are artifacts of our
data selection and data adjustment. For example, it is sometimes remarked how
marvelous it is that a biological system like language should be so discrete and
clean, but in fact there is abundant gradedness and variability in the original
data; the evidence for the discreteness and cleanness of language seems to be
mostly evidence we ourselves have planted.
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It has long been emphasized that syntax is autonomous. The doctrine is
older than Chomsky; for example, Tesni�ere writes \: : : la syntaxe. Il est au-
tonome" (emphasis in the original). To illustrate that structure cannot be
equated with meaning, he presents the sentence pair:

le signal vert indique le voie libre
le symbole veritable impose le vitesse lissant

The similarity to Chomsky's later but more famous pair

revolutionary new ideas appear infrequently
colorless green ideas sleep furiously

is striking.
But autonomy is not the same as isolation. Syntax is autonomous in the

sense that it cannot be reduced to semantics; well-formedness is not identical
to meaningfulness. But syntax in the sense of an algebraic grammar is only one
piece in an account of language, and it stands or falls on how well it �ts into
the larger picture.

The holy grail. The larger picture, and the ultimate goal of linguistics, is to
describe language in the sense of that which is produced in language produc-
tion, comprehended in language comprehension, acquired in language acquisi-
tion, and, in aggregate, that which varies in language variation and changes in
language change.

I have always taken the holy grail of generative linguistics to be to character-
ize a class of models, each of which represents a particular (potential or actual)
human language L, and characterizes a speaker of L by de�ning the class of
sentences a speaker of L produces, the structures that a speaker of L perceives
for sentences; in short, by predicting the linguistic data that characterizes a
speaker of L.

A \Turing test" for a generative model would be something like the following.
If we use the model to generate sentences at random, the sentences that are
produced are judged by humans to be clearly sentences of the language|to
\sound natural". And in the other direction, if humans judge a sentence (or non-
sentence) to have a particular structure, the model should also assign precisely
that structure to the sentence.

Natural languages are such that these tests cannot be passed by an un-
weighted grammar. An unweighted grammar distinguishes only between gram-
matical and ungrammatical structures, and that is not enough. \Sounding
natural" is a matter of degree. What we must mean by \randomly generat-
ing natural-sounding sentences" is that sentences are weighted by the degree
to which they sound natural, and we sample sentences with a probability that
accords with their weight. Moreover, the structure that people assign to a sen-
tence is the structure they judge to have been intended by the speaker, and that
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judgment is also a matter of degree. It is not enough for the grammar to de�ne
the set of structures that could possibly belong to the sentence; the grammar
should predict which structures humans actually perceive, and what the rela-
tive weights are in cases where humans are uncertain about which structure the
speaker intended.

The long and little of it is, weighted grammars (and other species of statisti-
cal methods) characterize language in such a way as to make sense of language
production, comprehension, acquisition, variation, and change. These are lin-
guistic, and not computational issues, a fact that is obscured by labelling every-
thing \performance" that is not accounted for by algebraic grammars. What is
really at stake with \competence" is a provisional simplifying assumption, or an
expression of interest in certain subproblems of linguistics. There is certainly
no indicting an expression of interest, but it is important not to lose sight of
the larger picture.

3 How Statistics Helps

Accepting that there are divergences between theory and data|for example,
the divergence between predicted and perceived ambiguity|and accepting that
this is a linguistic problem, and that it is symptomatic of the incompleteness of
standard grammars, how does adding weights or probabilities help make up the
di�erence?

Disambiguation. As already mentioned, the problem of identifying the correct
parse|the parse that humans perceive|among the possible parses is a central
application of stochastic grammars in computational linguistics. The problem of
de�ning which analysis is correct is not a computational problem, however; the
computational problem is describing an algorithm to compute the correct parse.
There are a variety of approaches to the problem of de�ning the correct parse.
A stochastic context-free grammar provides a simple illustration. Consider the
sentence John walks, and the grammar

(4) 1. S ! NP V .7
2. S ! NP .3
3. NP ! N .8
4. NP ! N N .2
5. N ! John .6
6. N ! walks .4
7. V ! walks 1.0

According to grammar (4), John walks has two analyses, one as a sentence and
one as a noun phrase. (The rule S ! NP represents an utterance consisting of a
single noun phrase.) The numbers in the rightmost column represent the weights
of rules. The weight of an analysis is the product of the weights of the rules used
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in its derivation. In the sentential analysis of John walks, the derivation consists
of rules 1, 3, 5, 7, so the weight is (:7)(:8)(:6)(1:0) = :336. In the noun-phrase
analysis, the rules 2, 4, 5, 6 are used, so the weight is (:3)(:2)(:6)(:4) = :0144.
The weight for the sentential analysis is much greater, predicting that it is the
one perceived. More re�ned predictions can be obtained by hypothesizing that
an utterance is perceived as ambiguous if the next-best case is not too much
worse than the best. If \not too much worse" is interpreted as a ratio of, say,
not more than 2:1, we predict that John walks is perceived as unambiguous, as
the ratio between the weights of the parses is 23:1.6

Degrees of grammaticality. Gradations of acceptability are not accommodated
in algebraic grammars: a structure is either grammatical or not. The idea of
degrees of grammaticality has been entertained from time to time, and some
classes of ungrammatical structures are informally considered to be \worse"
than others (most notably, ECP violations versus subjacency violations). But
such degrees of grammaticality as have been considered have not been accorded
a formal place in the theory. Empirically, acceptability judgments vary widely
across sentences with a given structure, depending on lexical choices and other
factors. Factors that cannot be reduced to a binary grammaticality distinction
are either poorly modelled or ignored in standard syntactic accounts.

Degrees of grammaticality arise as uncertainty in answering the question
\Can you say X?" or perhaps more accurately, \If you said X, would you feel
you had made an error?" As such, they re
ect degrees of error in speech produc-
tion. The null hypothesis is that the same measure of goodness is used in both
speech production and speech comprehension, though it is actually an open
question. At any rate, the measure of goodness that is important for speech
comprehension is not degree of grammaticality alone, but a global measure that
combines degrees of grammaticality with at least naturalness and structural
preference (i.e., \parsing strategies").

We must also distinguish degrees of grammaticality, and indeed, global good-
ness, from the probability of producing a sentence. Measures of goodness and
probability are mathematically similar enhancements to algebraic grammars,
but goodness alone does not determine probability. For example, for an in�nite
language, probability must ultimately decrease with length, though arbitrarily
long sentences may be perfectly good.

Perhaps one reason that degrees of grammaticality have not found a place in
standard theory is the question of where the numbers come from, if we permit
continuous degrees of grammaticality. The answer to where the numbers come
from is parameter estimation. Parameter estimation is well-understood for a

6The hypothesis that only the best structure (or possibly, structures) are perceptible is
somewhat similar to current approaches to syntax in which grammaticality is de�ned as op-
timal satisfaction of constraints or maximal economy of derivation. But I will not hazard a
guess here about whether that similarity is signi�cant or mere happenstance.
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number of models of interest, and can be seen psychologically as part of what
goes on during language acquisition.

Naturalness. It is a bit di�cult to say precisely what I mean by naturalness.
A large component is plausibility, but not plausibility in the sense of world
knowledge, but rather plausiblity in the sense of selectional preferences, that is,
semantic sortal preferences that predicates place on their arguments.

Another important component of naturalness is not semantic, though, but
simply \how you say it". This is what has been called collocational knowledge,
like the fact that one says strong tea and powerful car, but not vice versa [23],
or that you say thick accent in English, but starker Akzent (\strong accent") in
German.

Though it is di�cult to de�ne just what naturalness is, it is not di�cult
to recognize it. If one generates text at random from an explicit grammar
plus lexicon, the shortcomings of the grammar are immediately obvious in the
unnatural|even if not ungrammatical|sentences that are produced. It is also
clear that naturalness is not at all the same thing as meaningfulness. For exam-
ple, I think it is clear that di�erential structure is more natural than di�erential

child, even though I could not say what a di�erential structure might be. Or
consider the following examples, that were in fact generated at random from a
grammar:

(5) a. matter-like, complete, alleged strips
a stratigraphic, dubious scattering
a far alternative shallow model

b. indirect photographic-drill sources
earlier stratigraphically precise minimums
Europe's cyclic existence

All these examples are about on a par as concerns meaningfulness, but I think
the (b) examples are rather more natural than the (a) examples.

Collocations and selectional restrictions have been two important areas of
application of statistical methods in computational linguistics. Questions of
interest have been both how to include them in a global measure of goodness,
and how to induce them distributionally [19], both as a tool for investigations,
and as a model of human learning.

Structural preferences. Structural preferences, or parsing strategies, have al-
ready been mentioned. A \longest-match" preference is one example. The
example

(6) the emergency crews hate most is domestic violence
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is a garden-path because of a strong preference for the longest initial NP, the
emergency crews, rather than the correct alternative, the emergency. (The cor-
rect interpretation is: the emergency [that crews hate most ] is domestic vio-

lence.) The longest-match preference plays an important role in the disprefer-
ence for the structure (3) that we examined earlier.

As already mentioned, these preferences can be seen as structural prefer-
ences, rather than parsing preferences. They interact with the other factors we
have been examining in a global measure of goodness. For example, in (6), an
even longer match, the emergency crews hate, is actually possible, but it violates
the dispreference for having plural nouns as nominal modi�ers.

Error tolerance. A remarkable property of human language comprehension is
its error tolerance. Many sentences that an algebraic grammar would simply
classify as ungrammatical are actually perceived to have a particular structure.
A simple example is we sleeps, a sentence whose intended structure is obvious,
albeit ungrammatical. In fact, an erroneous structure may actually be preferred
to a grammatical analysis; consider

(7) Thanks for all you help.

which I believe is preferentially interpreted as an erroneous version of Thanks
for all your help. However, there is a perfectly grammatical analysis: thanks for
all those who you help.

We can make sense of this phenomenon by supposing that a range of error-
correction operations are available, though their application imposes a certain
cost. This cost is combined with the other factors we have discussed, to de-
termine a global goodness, and the best analysis is chosen. In (7), the cost of
error correction is apparently less than the cost of the alternative in unnatural-
ness or structural dispreference. Generally, error detection and correction are a
major selling point for statistical methods. They were primary motivations for
Shannon's noisy channel model [21], which provides the foundation for many
computational linguistic techniques.

Learning on the 
y. Not only is the language that one is exposed to full of
errors, it is produced by others whose grammars and lexica vary from one's
own. Frequently, sentences that one encounters can only be analysed by adding
new constructions or lexical entries. For example, when the average person
hears a hectare is a hundred ares, they deduce that are is a noun, and succeed
in parsing the sentence. But there are limits to learning on the 
y, just as there
are limits to error correction. Learning on the 
y does not help one parse the a
are of I.

Learning on the 
y can be treated much like error correction. The simplest
approach is to admit a space of learning operations|e.g., assigning a new part
of speech to a word, adding a new subcategorization frame to a verb, etc.|and
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assign a cost to applications of the learning operations. In this way it is concep-
tually straightforward to include learning on the 
y in a global optimization.

People are clearly capable of error correction and learning on the 
y; they
are highly desirable abilities given the noise and variance in the typical linguistic
environment. They greatly exacerbate the problem of picking out the intended
parse for a sentence, because they explode the candidate space even beyond the
already large set of candidates that the grammar provides. To explain how it is
nonetheless possible to identify the intended parse, there is no serious alternative
to the use of weighted grammars.

Lexical acquisition. A �nal factor that exacerbates the problem of identifying
the correct parse is the sheer richness of natural language grammars and lex-
ica. A goal of earlier linguistic work, and one that is still a central goal of the
linguistic work that goes on in computational linguistics, is to develop gram-
mars that assign a reasonable syntactic structure to every sentence of English,
or as nearly every sentence as possible. This is not a goal that is currently
much in fashion in theoretical linguistics. Especially in GB, the development of
large fragments has long since been abandoned in favor of the pursuit of deep
principles of grammar.

The scope of the problem of identifying the correct parse cannot be appreci-
ated by examining behavior on small fragments, however deeply analyzed. Large
fragments are not just small fragments several times over|there is a qualitative
change when one begins studying large fragments. As the range of constructions
that the grammar accommodates increases, the number of undesired parses for
sentences increases dramatically.

In-breadth studies also give a di�erent perspective on the problem of lan-
guage acquisition. When one attempts to give a systematic account of phrase
structure, it becomes clear just how many little facts there are that do not fall
out from grand principles, but just have to be learned. The simple, general prin-
ciples in these cases are not principles of syntax, but principles of acquisition.
Examples are the complex constraints on sequencing of prenominal elements
in English, or the syntax of date expressions (Monday June the 4th, Monday

June 4, *Monday June the 4, *June 4 Monday) or the syntax of proper names
(Greene County Sheri�'s Deputy Jim Thurmond), or the syntax of numeral
expressions.

The largest piece of what must be learned is the lexicon. If parameter-
setting views of syntax acquisition are correct, then learning the syntax (which
in this case does not include the low-level messy bits discussed in the previous
paragraph) is actually almost trivial. The really hard job is learning the lexicon.

Acquisition of the lexicon is a primary area of application for distributional
and statistical approaches to acquisition. Methods have been developed for the
acquisition of parts of speech [4, 20], terminological noun compounds [1], col-
locations [23], support verbs [10], subcategorization frames [2, 16], selectional
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restrictions [19], and low-level phrase structure rules [7, 24]. These distribu-
tional techniques do not so much compete with parameter setting as a model
of acquisition, as much as complement it, by addressing issues that parameter-
setting accounts pass over in silence. Distributional techniques are also not
adequate alone as models of human acquisition|whatever the outcome of the
syntactic versus semantic bootstrapping debate, children clearly do make use
of situations and meaning to learn language|but the e�ectiveness of distribu-
tional techniques indicates at least that they might account for a component of
human language learning.

4 Objections

There are a couple of general objections to statistical methods that may be
lurking in the backs of readers minds, that I would like to address. First is the
sentiment that, however relevant and e�ective statistical methods may be, they
are no more than an engineer's approximation, not part of a proper scienti�c
theory. Second is the nagging doubt: didn't Chomsky debunk all this ages ago?

4.1 Stochastic models are for engineers?

One might admit that one can account for parsing preferences by a probabilistic
model, but insist that a probabilistic model is at best an approximation, suitable
for engineering but not for science. On this view, we do not need to talk about
degrees of grammaticality, or preferences, or degrees of plausibility. Granted,
humans perceive only one of the many legal structures for a given sentence, but
the perception is completely deterministic. We need only give a proper account
of all the factors a�ecting the judgment.

Consider the example:

Yesterday three shots were �red at Humberto Calvados, personal
assistant to the famous tenor Enrique Felicidad, who was in Paris
attending to unspeci�ed personal matters.

Suppose for argument's sake that 60% of readers take the tenor to be in Paris,
and 40% take the assistant to be in Paris. Or more to the point, suppose a
particular informant, John Smith, chooses the low attachment 60% of the time
when encountering sentences with precisely this structure (in the absence of
an informative context), and low attachment 40% of the time. One could still
insist that no probabilistic decision is being made, but rather that there are
lexical and semantic di�erences that we have inappropriately con
ated across
sentences with `precisely this structure', and if we take account of these other
e�ects, we end up with a deterministic model after all. A probabilistic model
is only a stopgap in absence of an account of the missing factors: semantics,
pragmatics, what topics I've been talking to other people about lately, how tired
I am, whether I ate breakfast this morning.
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By this species of argument, stochastic models are practically always a stop-
gap approximation. Take stochastic queue theory, for example, by which one
can give a probabilistic model of how many trucks will be arriving at given de-
pots in a transportation system. One could argue that if we could just model
everything about the state of the trucks and the conditions of the roads, the
location of every nail that might cause a 
at and every drunk driver that might
cause an accident, then we could in principle predict deterministically how many
trucks will be arriving at any depot at any time, and there is no need of stochas-
tic queue theory. Stochastic queue theory is only an approximation in lieue of
information that it is impractical to collect.

But this argument is 
awed. If we have a complex deterministic system,
and if we have access to the initial conditions in complete detail, so that we
can compute the state of the system unerringly at every point in time, a sim-
pler stochastic description may still be more insightful. To use a dirty word,
some properties of the system are genuinely emergent, and a stochastic account
is not just an approximation, it provides more insight than identifying every
deterministic factor. Or to use a di�erent dirty word, it is a reductionist error
to reject a successful stochastic account and insist that only a more complex,
lower-level, deterministic model advances scienti�c understanding.

4.2 Chomsky v. Shannon

In one's introductory linguistics course, one learns that Chomsky disabused
the �eld once and for all of the notion that there was anything of interest to
statistical models of language. But one usually comes away a little fuzzy on the
question of what, precisely, he proved.

The arguments of Chomsky's that I know are from \Three Models for the
Description of Language" [5] and Syntactic Structures [6] (essentially the same
argument repeated in both places), and from the Handbook of Mathematical

Psychology, chapter 13 [17]. I think the �rst argument in Syntactic Structures

is the best known. It goes like this.

Neither (a) `colorless green ideas sleep furiously' nor (b) `furiously
sleep ideas green colorless', nor any of their parts, has ever occured
in the past linguistic experience of an English speaker. But (a) is
grammatical, while (b) is not.

This argument only goes through if we assume that if the frequency of a
sentence or `part' is zero in a training sample, its probability is zero. But in
fact, there is quite a literature on how to estimate the probabilities of events
that do not occur in the sample, and in particular how to distinguish real zeros
from zeros that just re
ect something that is missing by chance.

Chomsky also gives a more general argument:
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If we rank the sequences of a given length in order of statistical
approximation to English, we will �nd both grammatical and un-
grammatical sequences scattered throughout the list; there appears
to be no particular relation between order of approximation and
grammaticalness.

Because for any n, there are sentences with grammatical dependencies spanning
more than n words, so that no nth-order statistical approximation can sort out
the grammatical from the ungrammatical examples. In a word, you cannot
de�ne grammaticality in terms of probability.

It is clear from context that `statistical approximation to English' is a refer-
ence to nth-order Markov models, as discussed by Shannon. Chomsky is saying
that there is no way to choose n and � such that

for all sentences s, grammatical(s)$ Pn(s) > �

where Pn(s) is the probability of s according to the `best' nth-order approxima-
tion to English.

But Shannon himself was careful to call attention to precisely this point:
that for any n, there will be some dependencies a�ecting the well-formedness
of a sentence that an nth-order model does not capture. The point of Shan-
non's approximations is that, as n increases, the total mass of ungrammatical
sentences that are erroneously assigned nonzero probability decreases. That is,
we can in fact de�ne grammaticality in terms of probability, as follows:

grammatical(s)$ limn!1Pn(s) > 0

A third variant of the argument appears in the Handbook. There Chomsky
states that parameter estimation is impractical for an nth-order Markov model
where n is large enough \to give a reasonable �t to ordinary usage". He empha-
sizes that the problem is not just an inconvenience for statisticians, but renders
the model untenable as a model of human language acquisition: \we cannot
seriously propose that a child learns the values of 109 parameters in a childhood
lasting only 108 seconds."

This argument is also only partially valid. If it takes at least a second
to estimate each parameter, and parameters are estimated sequentially, the
argument is correct. But if parameters are estimated in parallel, say, by a high-
dimensional iterative or gradient-pursuit method, all bets are o�. Nonetheless, I
think even the most hardcore statistical types are willing to admit that Markov
models represent a brute force approach, and are not an adequate basis for
psychological models of language processing.

However, the inadequacy of Markov models is not that they are statisti-
cal, but that they are statistical versions of �nite-state automata! Each of
Chomsky's arguments turns on the fact that Markov models are �nite-state,
not on the fact that they are stochastic. None of his criticisms are applicable

20



to stochastic models generally. More sophisticated stochastic models do exist:
stochastic context-free grammars are well understood, and stochastic versions
of Tree-Adjoining Grammar [18], GB [8], and HPSG [3] have been proposed.

In fact, probabilities make Markov models more adequate than their non-
probabilistic counterparts, not less adequate. Markov models are surprisingly
e�ective, given their �nite-state substrate. For example, they are the workhorse
of speech recognition technology. Stochastic grammars can also be easier to
learn than their non-stochastic counterparts. For example, though Gold [9]
showed that the class of context-free grammars is not learnable, Horning [13]
showed that the class of stochastic context-free grammars is learnable.

In short, Chomsky's arguments do not bear at all on the probabilistic nature
of Markov models, only on the fact that they are �nite-state. His arguments are
not by any stretch of the imagination a sweeping condemnation of statistical
methods.

5 Conclusion

In closing, let me repeat the main line of argument as concisely as I can. Sta-
tistical methods|by which I mean primarily weighted grammars and distribu-
tional induction methods|are clearly relevant to language acquisition, language
change, language variation, language generation, and language comprehension.
Understanding language in this broad sense is the ultimate goal of linguistics.

The issues to which weighted grammars apply, particularly as concerns per-
ception of grammaticality and ambiguity, one may be tempted to dismiss as
performance issues. However, the set of issues labelled \performance" are not
essentially computational, as one is often led to believe. Rather, \competence"
represents a provisional narrowing and simpli�cation of data in order to un-
derstand the algebraic properties of language. \Performance" is a misleading
term for \everything else". Algebraic methods are inadequate for understanding
many important properties of human language, such as the measure of goodness
that permits one to identify the correct parse out of a large candidate set in the
face of considerable noise.

Many other properties of language, as well, that are mysterious given un-
weighted grammars, properties such as the gradualness of rule learning, the
gradualness of language change, dialect continua, and statistical universals,
make a great deal more sense if we assume weighted or stochastic grammars.
There is a huge body of mathematical techniques that computational linguists
have begun to tap, yielding tremendous progress on previously intransigent
problems. The focus in computational linguistics has admittedly been on tech-
nology. But the same techniques promise progress at long last on questions
about the nature of language that have been mysterious for so long. The time
is ripe to apply them.
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Stochastic Attribute-Value Grammars

Steven P. Abney�

AT&T Laboratories

Probabilistic analogues of regular and context-free grammars are well-known in compu-

tational linguistics, and currently the subject of intensive research. To date, however, no

satisfactory probabilistic analogue of attribute-value grammars has been proposed: previ-

ous attempts have failed to de�ne an adequate parameter-estimation algorithm.

In the present paper, I de�ne stochastic attribute-value grammars and give an algo-

rithm for computing the maximum-likelihood estimate of their parameters. The estimation

algorithm is adapted from (Della Pietra, Della Pietra, and La�erty, 1995). To estimate

model parameters, it is necessary to compute the expectations of certain functions under

random �elds. In the application discussed by Della Pietra, Della Pietra, and La�erty

(representing English orthographic constraints), Gibbs sampling can be used to estimate

the needed expectations. The fact that attribute-value grammars generate constrained lan-

guages makes Gibbs sampling inapplicable, but I show that sampling can be done using

the more general Metropolis-Hastings algorithm.

1. Introduction

Stochastic versions of regular grammars and context-free grammars have received a great

deal of attention in computational linguistics for the last several years, and basic tech-

niques of stochastic parsing and parameter estimation have been known for decades.

However, regular and context-free grammars are widely deemed linguistically inadequate;

standard grammars in computational linguistics are attribute-value (AV) grammars of

some variety. Before the advent of statistical methods, regular and context-free grammars

were considered too inexpressive for serious consideration, and even now the reliance on

stochastic versions of the less-expressive grammars is often seen as an expedient necessi-

tated by the lack of an adequate stochastic version of attribute-value grammars.

Proposals have been made for extending stochastic models developed for the regular
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and context-free cases to grammars with constraints.1 (Brew, 1995) sketches a probabilis-

tic version of Head-Driven Phrase Structure Grammar (HPSG). He proposes a stochastic

process for generating attribute-value structures, that is, directed acyclic graphs (dags).

A dag is generated starting from a single node labelled with the (unique) most general

type. Each type S has a set ofmaximal subtypes T1; : : : ; Tm. To expand a node labelled S,

one chooses a maximal subtype T stochastically. One then considers equating the current

node with other nodes of type T , making a stochastic yes/no decision for each. Equating

two nodes creates a re-entrancy. If the current node is equated with no other node, one

proceeds to expand it. Each maximal type introduces types U1; : : : ; Un, corresponding to

values of attributes; one creates a child node for each introduced type, and then expands

each child in turn. A limitation of this approach is that it permits one to specify only

the average rate of re-entrancies; it does not permit one to specify more complex context

dependencies.

(Eisele, 1994) takes a logic-programming approach to constraint grammars. He as-

signs probabilities to proof trees by attaching parameters to logic program clauses. He

presents the following logic program as an example:

1. p(X,Y,Z)  1 q(X,Y), r(Y,Z).

2. q(a,b)  0:4 .

3. q(X,c)  0:6 .

4. r(b,d)  0:5 .

5. r(X,e)  0:5 .

The probability of a proof tree is de�ned to be proportional to the product of the proba-

bilities of clauses used in the proof. Normalization is necessary, because some derivations

lead to invalid proof trees: for example, the derivation

1 I con�ne my discussion here to Brew and Eisele because they aim to describe parametric models of
probability distributions over the languages of constraint-based grammars, and to estimate the
parameters of those models. Other authors have assigned weights or preferences to constraint-based
grammars but not discussed parameter estimation. One approach of the latter sort that I �nd of
particular interest is that of Stefan Riezler (Riezler, 1996), who describes a weighted logic for
constraint-based grammars that characterizes the languages of the grammars as fuzzy sets. This
interpretation avoids the need for normalization that Brew and Eisele face, though parameter
estimation still remains to be addressed.
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p(X,Y,Z)
by 1 � q(X,Y) r(Y,Z)

by 3 � r(c,Z) : Y=c
by 4 � : Y=c b=c Z=d

is invalid because of the illegal assignment b = c.

Both Brew and Eisele associate weights with analogues of rewrite rules. In Brew's

case, we can view type expansion as a stochastic choice from a �nite set of rules of form

X ! �i, where X is the type to expand and each �i is a sequence of introduced child

types. A re-entrancy decision is a stochastic choice between two rules, X ! yes and

X ! no, where X is the type of the node being considered for re-entrancy. In Eisele's

case, expanding a goal term can be viewed as a stochastic choice among a �nite set of

rules X ! �i, where X is the predicate of the goal term and each �i is a program clause

whose head has predicate X. The parameters of the models are essentially weights on

such rules, representing the probability of choosing �i when making a choice of type X.

In these terms, Brew and Eisele propose estimating parameters as the empirical

relative frequency of the corresponding rules. That is, the weight of the rule X ! �i is

obtained by counting the number of timesX rewrites as �i in the training corpus, divided

by the total number of timesX is rewritten in the training corpus. For want of a standard

term, let us call these estimates Empirical Relative Frequency (ERF) estimates. To deal

with incomplete data, both Brew and Eisele appeal to the Expectation-Maximization

(EM) algorithm, applied however to ERF rather than maximum likelihood estimates.

Under certain independence conditions, ERF estimates are maximum likelihood esti-

mates. Unfortunately, these conditions are violated when there are context dependencies

of the sort found in attribute-value grammars, as will be shown below. As a consequence,

applying the ERF method to attribute-value grammars does not generally yield max-

imum likelihood estimates. This is true whether one uses EM or not|a method that

yields the \wrong" estimates on complete data does not improve when EM is used to

extend the method to incomplete data.
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Eisele identi�es an important symptom that something is amiss with ERF estimates:

the probability distribution over proof trees that one obtains does not agree with the

frequency of proof trees in the training corpus. Eisele recognizes that this problem arises

only where there are context dependencies.

Fortunately, solutions to the context-dependency problem have been described (and

indeed are currently enjoying a surge of interest) in statistics, machine learning, and

statistical pattern recognition, particularly image processing. The models of interest are

known as random �elds. Random �elds can be seen as a generalization of Markov chains

and stochastic branching processes. Markov chains are stochastic processes correspond-

ing to regular grammars and random branching processes are stochastic processes cor-

responding to context-free grammars. The evolution of a Markov chain describes a line,

in which each stochastic choice depends only on the state at the immediately preceding

time-point. The evolution of a random branching process describes a tree in which a �nite-

state process may spawn multiple child processes at the next time-step, but the number

of processes and their states depend only on the state of the unique parent process at the

preceding time-step. In particular, stochastic choices are independent of other choices at

the same time-step: each process evolves independently. If we permit re-entrancies, that

is, if we permit processes to re-merge, we generally introduce context-sensitivity. In order

to re-merge, processes must be \in synch," which is to say, they cannot evolve in complete

independence of one another. Random �elds are a particular class of multi-dimensional

random processes, that is, processes corresponding to probability distributions over an

arbitrary graph. The theory of random �elds can be traced back to (Gibbs, 1902); indeed,

the probability distributions involved are known as Gibbs distributions.

To my knowledge, the �rst application of random �elds to natural language was

(Mark et al., 1992). The problem of interest was how to combine a stochastic context-

free grammar with n-gram language models. In the resulting structures, the probability
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of choosing a particular word is constrained simultaneously by the syntactic tree in which

it appears and the choices of words at the n preceding positions. The context-sensitive

constraints introduced by the n-grammodel are re
ected in re-entrancies in the structure

of statistical dependencies, e.g.:

was

no response

VP

NP

S

there

NP

In this diagram, the choice of label on a node z with parent x and preceding word y is

dependent on the label of x and y, but conditionally independent of the label on any

other node.

(Della Pietra, Della Pietra, and La�erty, 1995, henceforth, DD&L) also apply random

�elds to natural language processing. The application they consider is the induction of

English orthographic constraints|inducing a grammar of possible English words. DD&L

describe an algorithm called Improved Iterative Scaling (IIS) for selecting informative

features of words to construct a random �eld, and for setting the parameters of the �eld

optimally for a given set of features, to model an empirical word distribution.

It is not immediately obvious how to use the IIS algorithm to equip attribute-value

grammars with probabilities. In brief, the di�culty is the following. The IIS algorithm

requires the computation of the expectations, under random �elds, of certain functions.

In general, computing these expectations involves summing over all con�gurations (all

possible character sequences, in the orthography application), which is not possible when

the con�guration space is large. Instead, DD&L use Gibbs sampling to estimate the

needed expectations.

Gibbs sampling is possible for the application that DD&L consider. A prerequisite

for Gibbs sampling is that the con�guration space be closed under relabelling of graph
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nodes. In the orthography application, the con�guration space is the set of possible

English words, represented as �nite linear graphs labelled with ASCII characters. Every

way of changing a label, that is, every substitution of one ASCII character for a di�erent

one, yields a possible English word.

By contrast, the set of graphs admitted by an attribute-value grammar G is highly

constrained. If one changes an arbitrary node label in a dag admitted by G, one does not

necessarily obtain a new dag admitted by G. Hence, Gibbs sampling is not applicable.

However, I will show that a more general sampling method, the Metropolis-Hastings

algorithm, can be used to compute the maximum-likelihood estimate of the parameters

of AV grammars.

2. Stochastic Context-Free Grammars

Let us begin by examining stochastic context-free grammars (SCFGs) and asking why

the natural extension of SCFG parameter estimation to attribute-value grammars fails.

A point of terminology: I will use the term grammar to refer to an unweighted grammar,

be it a context-free grammar or attribute-value grammar. A grammar equipped with

weights (and other periphenalia as necessary) I will refer to as a model. Occasionally I

will also use model to refer to the weights themselves, or the probability distribution they

de�ne.

Throughout we will use the following stochastic context-free grammar for illustrative

purposes. Let us call the underlying grammarG1 and the grammar equipped with weights

as shown, M1:
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1. S ! A A �1 = 1=2
2. S ! B �2 = 1=2

3. A ! a �3 = 2=3
4. A ! b �4 = 1=3

5. B ! a a �5 = 1=2
6. B ! b b �6 = 1=2

(1)

The probability of a given tree is computed as the product of probabilities of rules used

in it. For example:

S

A

a

A

a

β1

β3 β3

(2)

Let x be tree (2) and let q1 be the probability distribution over trees de�ned by model

M1. Then:

q1(x) = �1 � �3 � �3 = 1

2
� 2
3
� 2
3
=

2

9

In parsing, we use the probability distribution q1(x) de�ned by model M1 to dis-

ambiguate: the grammar assigns some set of trees fx1; : : : ; xng to a sentence �, and we

choose that tree xi that has greatest probability q1(xi). The issue of e�ciently comput-

ing the most-probable parse for a given sentence has been thoroughly addressed in the

literature. The standard parsing techniques can be readily adapted to the random-�eld

models to be discussed below, so I simply refer the reader to the literature. Instead,

I concentrate on parameter estimation, which for attribute-value grammars cannot be

accomplished by standard techniques.

By parameter estimation we mean determining values for the weights �. In order

for a stochastic grammar to be useful, we must be able to compute the correct weights,

where by correct weights we mean the weights that best account for a training corpus.
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The degree to which a given set of weights accounts for a training corpus is measured

by the similarity between the distribution q(x) determined by the weights � and the

distribution of trees x in the training corpus.

2.1 The Goodness of a Model

The distribution determined by the training corpus is known as the empirical distri-

bution. For example, suppose we have a training corpus containing twelve trees of the

following four types from L(G1):

S

A

a

A

a

S

A

b

A

b

S

a a

B

S

b b

B

4x 3x2x 3x = 12
p =~ 4/12 2/12 3/12 3/12

x1 x2 x3 x4

c =

(3)

where c(x) is the count of how often the tree (type) x appears in the corpus, and ~p(�) is

the empirical distribution, de�ned as:

~p(x) =
c(x)

N
N =

X
x

c(x)

In comparing a distribution q to the empirical distribution ~p, we shall actually mea-

sure dissimilarity rather than similarity. Our measure for dissimilarity of distributions is

the Kullback-Leibler (KL) divergence, de�ned as:

D(~pjjq) =
X
x

~p(x) ln
~p(x)

q(x)

The divergence between ~p and q at point x is the log of the ratio of ~p(x) to q(x). The

overall divergence between ~p and q is the average divergence, where the averaging is over

tree (tokens) in the corpus; i.e., point divergences ln ~p(x)=q(x) are weighted by ~p(x) and

summed.
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For example, let q1 be, as before, the distribution determined by model M1. The

following table shows q1, ~p, the ratio q1(x)=~p(x), and the weighted point divergence

~p(x) ln(~p(x)=q1(x)). The sum of the fourth column is the KL divergence D(~pjjq1) between

~p and q1. The third column contains q1(x)=~p(x) rather than ~p(x)=q1(x) so that one can

see at a glance whether q1(x) is too large (> 1) or too small (< 1).

q1 ~p q1=~p ~p ln(~p=q1)
x1 2/9 1/3 0.67 0.14
x2 1/18 1/6 0.33 0.18
x3 1/4 1/4 1.00 0.00
x4 1/4 1/4 1.00 0.00

0.32

(4)

The total divergence D(~pjjq1) = 0:32.

One set of weights is better than another if its divergence from the empirical distribu-

tion is less. For example, let us consider a di�erent set of weights for grammarG1. LetM 0

be G1 with weights (1=2; 1=2; 1=2;1=2; 1=2; 1=2), and let q0 be the probability distribution

determined by M 0. Then the computation of the KL divergence is as follows:

q0 ~p q0=~p ~p ln(~p=q0)
x1 1/8 1/3 0.38 0.33
x2 1/8 1/6 0.75 0.05
x3 1/4 1/4 1.00 0.00
x4 1/4 1/4 1.00 0.00

0.38

The �t for x2 improves, but that is more than o�set by a poorer �t for x1. The distribution

q1 is a better distribution than q0, in the sense that q1 is more similar (less dissimilar) to

the empirical distribution than q0 is.

One reason for adopting minimal KL divergence as a measure of goodness is that

minimizing KL divergence maximizes likelihood. The likelihood of distribution q is the

probability of the training corpus according to q:

L(q) =
Q

x in training q(x)

=
Q

x q(x)
c(x)

Since log is monotone increasing, maximizing likelihood is equivalent to maximizing log

likelihood:

9
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lnL(q) =
P

x c(x) ln q(x)
= N

P
x ~p(x) ln q(x)

The expression on the right hand side is -1/N times the cross entropy of q with respect

to ~p, hence maximizing log likelihood is equivalent to minimizing cross entropy. Finally,

D(~pjjq) is equal to the cross entropy of q less the entropy of ~p, and the entropy of ~p is

constant with respect to q; hence minimizing cross entropy (maximizing likelihood) is

equivalent to minimizing divergence.

2.2 The ERF Method

For stochastic context-free grammars, it can be shown that the ERF method yields the

best model for a given training corpus. First, let us introduce some terminology and

notation. With each rule i in a stochastic context-free grammar is associated a weight �i

and a function fi(x) that returns the number of times rule i is used in the derivation of

tree x. For example, consider tree (2), repeated here for convenience:

S

A

a

A

a

β1

β3 β3

Rule 1 is used once and rule 3 is used twice; accordingly f1(x) = 1, f3(x) = 2, and

fi(x) = 0 for i 2 f2; 4; 5; 6g.

We use the notation p[f ] to represent the expectation of f under probability dis-

tribution p; that is, p[f ] =
P

x p(x)f(x). The ERF method instructs us to choose the

weight �i for rule i proportional to its empirical expectation ~p[fi]. Algorithmically, we

compute the expectation of each rule's frequency, and normalize among rules with the

same lefthand side.
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To illustrate, let us consider corpus (3) again. The expectation of each rule frequency

fi is a sum of terms ~p(x)fi(x). These terms are shown for each tree, in the following table.

S
!
A
A

S
!
B

A
!
a

A
!
b

B
!
a
a

B
!
b
b

~p ~pf1 ~pf2 ~pf3 ~pf4 ~pf5 ~pf6
x1 [S [A a] [A a]] 1/3 1/3 2/3
x2 [S [A b] [A b]] 1/6 1/6 2/6
x3 [S [B a a]] 1/4 1/4 1/4
x4 [S [B b b]] 1/4 1/4 1/4

~p[f ] = 1/2 1/2 2/3 1/3 1/4 1/4
� = 1/2 1/2 2/3 1/3 1/2 1/2

For example, in tree x1, rule 1 is used once and rule 3 is used twice. The empirical

probability of x1 is 1/3, so x1's contribution to ~p[f1] is 1=3 � 1, and its contribution to

~p[f3] is 1=3 � 2. The weight �i is obtained from ~p[fi] by normalizing among rules with the

same lefthand side. For example, the expected rule frequencies ~p[f1] and ~p[f2] of rules

with lefthand side S already sum to 1, so they are adopted without change as �1 and �2.

On the other hand, the expected rule frequencies ~p[f5] and ~p[f6] for rules with lefthand

side B sum to 1/2, not 1, so they are doubled to yield weights �5 and �6. It should be

observed that the resulting weights are precisely the weights of model M1.

It can be proven that the ERF weights are the best weights for a given context-

free grammar, in the sense that they de�ne the distribution that is most similar to

the empirical distribution. That is, if � are the ERF weights (for a given grammar),

de�ning distribution q, and �0 de�ning q0 is any set of weights such that q 6= q0, then

D(~pjjq) < D(~pjjq0).

One might expect the best weights to yield D(~pjjq) = 0, but such is not the case.

We have just seen, for example, that the best weights for grammar G1 yield distribution

q1, yet D(~pjjq1) = 0:32 > 0. A closer inspection of the divergence calculation (4) reveals

that q1 is sometimes less than ~p, but never greater than ~p. Could we improve the �t

by increasing q1? For that matter, how can it be that q1 is never greater than ~p? As
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probability distributions, q1 and ~p should have the same total mass, namely, one. Where

is the missing mass for q1?

The answer is of course that q1 and ~p are probability distributions over L(G), but

not all of L(G) appears in the corpus. Two trees are missing, and they account for the

missing mass. These two trees are:

S

A

a

A

b

S

A

b

A

a (5)

Each of these trees has probability 0 according to ~p (hence they can be ignored in the

divergence calculation), but probability 1=9 according to q1.

Intuitively, the problem is this. The distribution q1 assigns too little weight to trees

x1 and x2, and too much weight to the \missing" trees (5); call them x5 and x6. Yet

exactly the same rules are used in x5 and x6 as are used in x1 and x2. Hence there

is no way to increase the weight for trees x1 and x2, improving their �t to ~p, without

simultaneously increasing the weight for x5 and x6, making their �t to ~p worse. The

distribution q1 is the best compromise possible.

To say it another way, our assumption that the corpus was generated by a context-

free grammarmeans that any context dependencies in the corpus must be accidental, the

result of sampling noise. There is indeed a dependency in corpus (3): in the trees where

there are two A's, the A's always rewrite the same way. If corpus (3) was generated by

a stochastic context-free grammar, then this dependency is accidental.

This does not mean that the context-free assumption is wrong. If we generate twelve

trees at random from q1, it would not be too surprising if we got corpus (3). More

extremely, if we generate a random corpus of size 1 from q1, it is quite impossible for

the resulting empirical distribution to match the distribution q1. But as the corpus size
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increases, the �t between ~p and q1 becomes ever better.

3. Attribute-Value Grammars

But what if the dependency in corpus (3) is not accidental? What if we wish to adopt

a grammar that imposes the constraint that both A's rewrite the same way? We can

impose such a constraint by means of an attribute-value grammar.

We may formalize an attribute-value grammar as a context-free grammar with at-

tribute labels and path equations. An example is the following grammar; let us call it

G2:

1. S ! 1:A 2:A <1 1> = <2 1>
2. S ! 1:B
3. A ! 1:a
4. A ! 1:b
5. B ! 1:a
6. B ! 1:b

(G2)

The following illustrates how a dag is generated from G2.

(a) (b) (c) (d)

1 3 3

S S S

S A

1 2

11

A A

1 2

11

A

a

A

1 2

11

A

a

We begin in (a) with a single node labelled with the start category of G2, namely, S. A

node x is expanded by choosing a rule that rewrites the category of x. In this case, we

choose rule 1 to expand the root node. Rule 1 instructs us to create two children, both

labelled A. The edge to the �rst child is labelled \1" and the edge to the second child

is labelled \2". The constraint \<1 1> = <2 1>" indicates that the \1" child of the

\1" child of x is identical to the \1" child of the \2" child of x. We create an unlabelled

node to represent this grandchild of x and direct appropriately labelled edges from the

children, yielding (b).

We proceed to expand the newly introduced nodes. We choose rule 3 to expand the
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�rst \A" node. In this case, a child with edge labelled \1" already exists, so we use it

rather than creating a new one. Rule 3 instructs us to label this child \a", yielding (c).

Now we expand the second \A" node. Again we choose rule 3. We are instructed to label

the \1" child \a", but it already has that label, so we do not need to do anything. Finally,

in (d), the only remaining node is the bottommost node, labelled \a". Since its label is

a terminal category, it does not need to be expanded, and we are done.

Let us back up to (c) again. Here we were free to choose rule 4 instead of rule 3

to expand the righthand \A" node. Rule 4 instructs us to label the \1" child \b", but

we cannot, inasmuch as it is already labelled \a". The derivation fails, and no dag is

generated.

The language L(G2) is the set of dags produced by successful derivations, namely:

x1 x2 x3 x4

S

A

a

A

S

A

b

A

S

a

B

S

b

B

(6)

(The edges of the dags should actually be labelled with 1's and 2's, but I have suppressed

the edge labels for the sake of perspicuity.)

3.1 AV Grammars and the ERF Method

Now we face the question of how to attach probabilities to grammar G2. The natural

extension of the method we used for context-free grammars is the following. Associate

a weight with each of the six rules of grammar G2. For example, let M2 be the model

consisting of G2 plus weights (�1; : : : ; �6) = (1=2; 1=2; 2=3; 1=3;1=2;1=2). Let �2(x) be

the weight that M2 assigns to dag x; it is de�ned to be the product of the weights of

the rules used to generate x. For example, the weight �2(x1) assigned to tree x1 of (6) is

2=9, computed as follows:
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S

A A

a

β1

β3 β3

x =1

Rule 1 is used once and rule 3 is used twice; hence �2(x1) = �1�3�3 = 1=2�2=3�2=3 = 2=9.

Observe that �2(x1) = �1�
2
3 , which is to say, �f1(x1)1 �

f3(x1)
3 . Moreover, since �0 = 1,

it does not hurt to include additional factors �
fi(x1)
i for those i where fi(x1) = 0. That is,

we can de�ne the dag weight � corresponding to rule weights � = (�1; : : : ; �n) generally

as:

�(x) =
nY
i=1

�
fi(x)
i

The next question is how to estimate weights. Let us consider what happens when

we use the ERF method. Let us assume a corpus distribution for the dags (6) analogous

to the distribution in (3):

x1 x2 x3 x4
~p = 1=3 1=6 1=4 1=4

(7)

Using the ERF method, we estimate rule weights as follows:

~p ~pf1 ~pf2 ~pf3 ~pf4 ~pf5 ~pf6
x1 1/3 1/3 2/3
x2 1/6 1/6 2/6
x3 1/4 1/4 1/4
x4 1/4 1/4 1/4
~p[f ] = 1/2 1/2 2/3 1/3 1/4 1/4
� = 1/2 1/2 2/3 1/3 1/2 1/2

(8)

This table is identical to the one given earlier in the context-free case. We arrive at the

same weights M2 we considered above, de�ning dag weights �2(x).

3.2 Why the ERF Method Fails

But at this point a problem arises: �2 is not a probability distribution. Unlike in the

context-free case, the four dags in (6) constitute the entirety of L(G). This time, there
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are no missing dags to account for the missing probability mass.

There is an obvious \�x" for this problem: we can simply normalize �2. We might

de�ne the distribution q for an AV grammar with weight function � as:

q(x) =
1

Z
�(x)

where Z is the normalizing constant:

Z =
X

x2L(G)
�(x)

In particular, for �2, we have Z = 2=9 + 1=18 + 1=4 + 1=4 = 7=9. Dividing �2 by 7/9

yields the ERF distribution:

x1 x2 x3 x4
q2(x) = 2=7 1=14 9=28 9=28

On the face of it, then, we can transplant the methods we used in the context-free case

to the AV case and nothing goes wrong. The only problem that arises (� not summing

to one) has an obvious �x (normalization).

However, something has actually gone very wrong. The ERF method yields the best

weights only under certain conditions that we inadvertently violated by changing L(G)

and re-apportioning probability via normalization. In point of fact, we can easily see that

the ERF weights (8) are not the best weights for our example grammar. Consider the

alternative model M� given in (9), de�ning probability distribution q�:

S ! A A S ! B A ! a A ! b B ! a B ! b
3+2

p
2

6+2
p
2

3
6+2

p
2

p
2

1+
p
2

1
1+

p
2

1
2

1
2

(9)

These weights are proper, in the sense that weights for rules with the same lefthand side

sum to one. The reader can verify that �� sums to Z = 3+
p
2

3 and that q� is:

x1 x2 x3 x4
q�(x) = 1=3 1=6 1=4 1=4
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That is, q� = ~p. Comparing q2 (the ERF distribution) and q� to ~p, we observe that

D(~pjjq2) = 0:07 but D(~pjjq�) = 0.

In short, in the AV case, the ERF weights do not yield the best weights. This means

that the ERF method does not converge to the correct weights as the corpus size in-

creases. If there are genuine dependencies in the grammar, the ERF method converges

systematically to the wrong weights. Fortunately, there are methods that do converge to

the right weights. These are methods that have been developed for random �elds.

4. Random Fields

A random �eld de�nes a probability distribution over a set of labelled graphs 
 called

con�gurations. In our case, the con�gurations are the dags generated by the grammar,

i.e., 
 = L(G). The weight assigned to a con�guration is the product of the weights

assigned to selected features of the con�guration. We use the notation:

�(x) =
Y
i

�
fi(x)
i

where �i is the weight for feature i and fi(�) is its frequency function, that is, fi(x) is the

number of times that feature i occurs in con�guration x. (For most purposes, a feature

can be identi�ed with its frequency function; I will not always make a careful distinction

between them.)

I use the term feature here as it is used in the machine learning and statistical

pattern recognition literature, not as in the constraint grammar literature, where feature

is synonymous with attribute. In my usage, dag edges are labelled with attributes, not

features. Features are rather like geographic features of dags: a feature is some larger or

smaller piece of structure that occurs|possibly at more than one place|in a dag.

The probability of a con�guration (that is, a dag) is proportional to its weight, and

is obtained by normalizing the weight distribution.

17
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q(x) = 1
Z
�(x) Z =

P
x2
 �(x)

If we identify the features of a con�guration with local trees|equivalently, with

applications of rewrite rules|the random �eld model is almost identical to the model

we considered in the previous section. There are two important di�erences. First, we no

longer require weights to sum to one for rules with the same lefthand side. Second, the

model does not require features to be identi�ed with rewrite rules. We use the grammar

to de�ne the set of con�gurations 
 = L(G), but in de�ning a probability distribution

over L(G), we can choose features of dags however we wish.

Let us consider an example. Let us continue to assume grammar G2 generating

language (6), and let us continue to assume the empirical distribution (7). But now rather

than taking rule applications to be features, let us adopt the following two features:

1. 2.

A

a

1 B

For purpose of illustration, take feature 1 to have weight �1 =
p
2 and feature 2 to have

weight �2 = 3=2. The functions f1 and f2 represent the frequencies of features 1 and 2,

respectively:

S

A

a

A1
1

S

A

b

A

S

a

B2

S

b

B2

f1 = 2 0 0 0
f2 = 0 0 1 1
� =

p
2 � p2 1 3/2 3/2 Z = 6

q = 1/3 1/6 1/4 1/4

We are able to exactly recreate the empirical distribution using fewer features than before.

Intuitively, we need only use as many features as are necessary to distinguish among trees

that have di�erent empirical probabilities.
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This added 
exibility is welcome, but it does make parameter estimation more in-

volved. Now we must not only choose values for weights, we must also choose the features

that weights are to be associated with. We would like to do both in a way that permits

us to �nd the best model, in the sense of the model that minimizes the Kullback-Leibler

distance with respect to the empirical distribution. The IIS algorithm (Della Pietra, Della

Pietra, and La�erty, 1995) provides a method to do precisely that.

5. Field Induction

In outline, the IIS algorithm is as follows:

1.Start (t = 0) with the null �eld, containing no features.

2.Feature Selection. Consider every feature that might be added to �eld Mt

and choose the best one.

3.Weight Adjustment. Readjust weights for all features. The result is �eld

Mt+1.

4.Iterate until the �eld cannot be improved.

For the sake of concreteness, let us take features to be labelled subdags. In step

2 of the algorithm we do not consider every conceivable labelled subdag, but only the

atomic (i.e., single-node) subdags and those complex subdags that can be constructed

by combining features already in the �eld or by combining a feature in the �eld with

some atomic feature. We also limit our attention to features that actually occur in the

training corpus.

In our running example, the atomic features are:

S A B a b

Features can be combined by adding connecting arcs. For example:
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+ =A a
A

a

S

A
S A+ =

S

A
+ =A

S

A A

5.1 The Null Field

Field induction begins with the null �eld. With the corpus we have been assuming, the

null �eld takes the following form.

S

A

a

A

S

A

b

A

S

a

B

S

b

B

�(x) = 1 1 1 1 Z = 4
q(x) = 1/4 1/4 1/4 1/4

No dag x has any features, so �(x) =
Q

i �
fi(x)
i is a product of zero terms, and hence has

value 1. As a result, q is the uniform distribution. The Kullback-Leibler divergence D(~pjjq)

is 0.03. The aim of feature selection is to choose a feature that reduces this divergence

as much as possible.

The astute reader will note that there is a problem with the null �eld if L(G) is

in�nite. Namely, it is not possible to have a uniform probability mass distribution over

an in�nite set. If each dag in an in�nite set of dags is assigned a constant nonzero

probability �, then the total probability is in�nite, no matter how small � is. There are

a couple of ways of dealing with the problem. The approach that DD&L adopt is to

assume a consistent prior distribution p(k) over graph sizes k, and a family of random

�elds qk representing the conditional probability q(xjk); the probability of a tree is then

p(k)q(xjk). All the random �elds have the same features and weights, di�ering only in

their normalizing constants.

I will take a somewhat di�erent approach here. As sketched at the beginning of section

3, we can generate dags from an AV grammar much as proposed by Brew and Eisele.

If we ignore failed derivations, the process of dag generation is completely analogous to

the process of tree generation from a stochastic CFG|indeed, in the limiting case in

which none of the rules contain constraints, the grammar is a CFG. To obtain an initial
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distribution, we associate a weight with each rule, the weights for rules with a common

lefthand side summing to one. The probability of a dag is proportional to the product of

weights of rules used to generate it. (Renormalization is necessary because of the failed

derivations.) We estimate weights using the ERF method: we estimate the weight of a

rule as the relative frequency of the rule in the training corpus, among rules with the

same lefthand side.

The resulting initial distribution (the ERF distribution) is not the maximum like-

lihood distribution, as we know. But it can be taken as a useful �rst approximation.

Intuitively, we begin with the ERF distribution and construct a random �eld to take ac-

count of context-dependencies that the ERF distribution fails to capture, incrementally

improving the �t to the empirical distribution.

In this framework, a model consists of: (1) An AV grammar G whose purpose is to

de�ne a set of dags L(G). (2) A set of initial weights � attached to the rules of G. The

weight of a dag is the product of weights of rules used in generating it. Discarding failed

derivations and renormalizing yields the initial distribution p0(x). (3) A set of features

f1; : : : ; fn with weights �1; : : : ; �n to de�ne the �eld distribution q(x) =
1
Z
p0(x)

Q
i �

fi(x)
i .

5.2 Feature Selection

At each iteration, we select a new feature f by considering all atomic features, and all

complex features that can be constructed from features already in the �eld. Holding the

weights constant for all old features in the �eld, we choose the best weight � for f (how

� is chosen will be discussed shortly), yielding a new distribution q�;f . The score for

feature f is the reduction it permits in D(~pjjqold), where qold is the old �eld. That is, the

score for f is D(~pjjqold) � D(~pjjq�;f). We compute the score for each candidate feature

and add to the �eld that feature with the highest score.

To illustrate, consider the two atomic features `a' and `B'. Given the null �eld as old
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�eld, the best weight for `a' is � = 7=5, and the best weight for `B' is � = 1. This yields

q and D(~pjjf) as follows:

S

A

a

A

S

A

b

A

S

a

B

S

b

B

~p 1/3 1/6 1/4 1/4

�a 7/5 1 7/5 1 Z = 24=5
qa 7/24 5/24 7/24 5/24

~p ln ~p
qa

0.04 �0:04 �0:04 0:05 D = 0:01

�B 1 1 1 1 Z = 4
qB 1/4 1/4 1/4 1/4

~p ln ~p
qB

0.10 �0:07 0 0 D = 0:03

The better feature is `a', and `a' would be added to the �eld if these were the only two

choices.

Intuitively, `a' is better than `B' because `a' permits us to distinguish the set fx1; x3g

from the set fx2; x4g; the empirical probability of the former is 1=3+1=4 = 7=12 whereas

the empirical probability of the latter is 5=12. Distinguishing these sets permits us to

model the empirical distribution better (since the old �eld assigns them equal probability,

counter to the empirical distribution). By contrast, the feature `B' distinguishes the set

fx1; x2g from fx3; x4g. The empirical probability of the former is 1=3 + 1=6 = 1=2 and

the empirical probability of the latter is also 1=2. The old �eld models these probabilities

exactly correctly, so making the distinction does not permit us to improve on the old

�eld. As a result, the best weight we can choose for `B' is 1, which is equivalent to not

having the feature `B' at all.

5.3 Selecting the Initial Weight

DD&L show that there is a unique weight �̂ that maximizes the score for a new feature

f (provided that the score for f is not constant for all weights). Writing q� for the

distribution that results from assigning weight � to feature f , �̂ is the solution to the

equation
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q�[f ] = ~p[f ] (10)

Intuitively, we choose the weight such that the expectation of f under the resulting new

�eld is equal to its empirical expectation.

Solving equation (10) for � is easy if L(G) is small enough to enumerate. Then the

sum over L(G) that is implicit in q�[f ] can be expanded out, and solving for � is simply

a matter of arithmetic. Things are a bit trickier if L(G) is too large to enumerate. DD&L

show that we can solve equation (10) if we can estimate qold[f = k] for k from 0 to the

maximum value of f in the training corpus. (See appendix 1 for details.)

We can estimate qold[f = k] by means of random sampling. The idea is actually

rather simple: to estimate how often the feature appears in \the average dag", we generate

a representative mini-corpus from the distribution qold and count. That is, we generate

dags at random in such a way that the relative frequency of dag x is qold(x) (in the

limit), and we count how often the feature of interest appears in dags in our generated

mini-corpus.

The application that DD&L consider is the induction of English orthographic con-

straints, that is, inducing a �eld that assigns high probability to \English-sounding"

words and low probability to non-English-sounding words. For this application, Gibbs

sampling is appropriate. Gibbs sampling does not work for the application to AV gram-

mars, however. Fortunately, there is an alternative random sampling method we can use:

Metropolis-Hastings sampling. We will discuss the issue in some detail shortly.

5.4 Readjusting Weights

When a new feature is added to the �eld, the best value for its initial weight is chosen,

but the weights for the old features are held constant. In general, however, adding the

new feature may make it necessary to readjust weights for all features. The second half
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of the IIS algorithm involves �nding the best weights for a given set of features.

The method is very similar to the method for selecting the initial weight for a new

feature. Let (�1; : : : ; �n) be the old weights for the features. We wish to compute \incre-

ments" (�1; : : : ; �n) to determine a new �eld with weights (�1�1; : : : ; �n�n). Consider the

equation

qold[�
f#
i fi] = ~p[fi] (11)

where f#(x) =
P

i fi(x) is the total number of features of dag x. The reason for the

factor �f#i is a bit involved. Very roughly, we would like to choose weights so that the

expectation of fi under the new �eld is equal to ~p[fi]. Now qnew(x) is:

qnew(x) = 1
Z
p0(x)

Q
j(�j�j)

fj (x)

= 1
Z�
qold(x)

Q
j �

fjx

j

where we factor Z as Z�Z� , for Z� the normalization constant in qold. Hence, qnew[fi] =

qold[
1
Z�
fi
Q

j �
fjx

j ]. Now there are two problems with this expression: it requires us to

compute Z� , which we are not able to do, and it requires us to determine weights �j for

all the features simultaneously, not just the weight �i for feature i. We might consider ap-

proximating qnew[fi] by ignoring the normalization factor and assuming that all features

have the same weight as feature i. Since
Q

j �
fj(x)
i = �

f#(x)
i , we arrive at the expression

on the lefthand side of equation (11).

One might expect the approximation just described to be rather poor, but it is proven

in (Della Pietra, Della Pietra, and La�erty, 1995) that solving equation (11) for �i (for

each i) and setting the new weight for feature i to �i�i is guaranteed to improve the

model. This is the real justi�cation for equation (11), and the reader is referred to (Della

Pietra, Della Pietra, and La�erty, 1995) for details.

Solving (11) yields improved weights, but it does not necessarily immediately yield

the globally best weights. We can obtain the globally best weights by iterating. Set
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�i  �i�i, for all i, and solve equation (11) again. Repeat until the weights no longer

change.

As with equation (10), solving equation (11) is straightforward if L(G) is small

enough to enumerate, but not if L(G) is large. In that case, we must use random sampling.

We generate a representative mini-corpus and estimate expectations by counting in the

mini-corpus. (See appendix 2.)

5.5 Random Sampling

We have seen that random sampling is necessary both to set the initial weight for features

under consideration and to adjust all weights after a new feature is adopted. Random

sampling involves creating a corpus that is representative of a given model distribution

q(x). To take a very simple example, a fair coin can be seen as a method for sampling

from the distribution q in which q(H) = 1=2, q(T ) = 1=2. Saying that a corpus is

representative is actually not a comment about the corpus itself but the method by

which it was generated: a corpus representative of distribution q is one generated by a

process that samples from q. Saying that a process M samples from q is to say that

the empirical distributions of corpora generated by M converge to q in the limit. For

example, if we 
ip a fair coin once, the resulting empirical distribution over (H;T ) is

either (1; 0) or (0; 1), not the fair-coin distribution (1=2; 1=2). But as we take larger and

larger corpora, the resulting empirical distributions converge to (1=2; 1=2).

An advantage of SCFGs that random �elds lack is the transparent relationship be-

tween an SCFG de�ning a distribution q and a sampler for q. We can sample from q by

performing stochastic derivations: each time we have a choice among rules expanding a

category X, we choose rule X ! �i with probability �i, where �i is the weight of rule

X ! �i.

Now we can sample from the initial distribution p0 by performing stochastic deriva-
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tions. At the beginning of section 3, we sketched how to generate dags from an AV

grammar G via nondeterministic derivations. We de�ned the initial distribution in terms

of weights � attached to the rules of G. We can convert the nondeterministic deriva-

tions discussed at the beginning of section 3 into stochastic derivations by choosing rule

X ! �i with probability �i when expanding a node labelled X. Some derivations fail,

but throwing away failed derivations has the e�ect of renormalizing the weight function,

so that we generate a dag x with probability p0(x), as desired.

The Metropolis-Hastings algorithm provides us with a means of converting the sam-

pler for the initial distribution p0(x) into a sampler for the �eld distribution q(x). Gener-

ally, let p(�) be a distribution for which we have a sampler. We wish to construct a sample

x1; : : : ; xN from a di�erent distribution q(�). Assume that items x1; : : : ; xn are already

in the sample, and we wish to choose xn+1. The sampler for p(�) proposes a new item

y. We do not simply add y to the sample|that would give us a sample from p(�)|but

rather we make a stochastic decision whether to accept the proposal y or reject it. If we

accept y, it is added to the sample (xn+1 = y), and if we reject y, then xn is repeated

(xn+1 = xn).

The acceptance decision is made as follows. If p(y) > q(y), then y is overrepresented

among the proposals. We can quantify the degree of overrepresentation as p(y)=q(y). The

idea is to reject y with a probability corresponding to its degree of overrepresentation.

However, we do not consider the absolute degree of overrepresentation, but rather the

degree of overrepresentation relative to xn. (If y and xn are equally overrepresented,

there is no reason to reject y in favor of xn.) That is, we consider the value

r =
p(y)=q(y)

p(xn)=q(xn)
=

p(y)q(xn)

p(xn)q(y)

If r � 1, then y is underrepresented relative to xn, and we accept y with probability one.

If r > 1, then we accept y with a probability that diminishes as r increases: speci�cally,
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with probability 1=r. In brief, the acceptance probability of y is A(yjxn) = min(1; 1=r).

It can be shown that proposing items with probability p(�) and accepting them with

probability A(�jxn) yields a sampler for q(�). (See e.g. (Winkler, 1995)).2

The acceptance probabilityA(yjxn) reduces in our case to a particularly simple form.

If r < 1 then A(yjx) = 1. Otherwise, writing �(x) for the \�eld weight"
Q

i �
fi(x)
i , we

have:

A(yjxn) = Z�1�(y)p0(y)p0(xn)
Z�1�(xn)p0(xn)p0(y)

= �(y)=�(xn)
(12)

6. Final Remarks

In summary, we cannot simply transplant CF methods to the AV grammar case. In par-

ticular, the ERF method yields correct weights only for SCFGs, not for AV grammars.

We can de�ne a probabilistic version of AV grammars with a correct weight-selection

method by going to random �elds. Feature selection and weight adjustment can be ac-

complished using the IIS algorithm. In feature selection, we need to use random sampling

to �nd the initial weight for a candidate feature, and in weight adjustment we need to

use random sampling to solve the weight equation. The random sampling method that

DD&L used is not appropriate for sets of dags, but we can solve that problem by using

the Metropolis-Hastings method instead.

2 The Metropolis-Hastings acceptance probability is usually given in the form

A(yjx) = min

�
1;

�(y)g(y; x)

�(x)g(x; y)

�

in which � is the distribution we wish to sample from (q, in our notation) and g(x; y) is the
proposal probability: the probability that the input sampler will propose y if the previous
con�guration was x. The case we consider is a special case in which the proposal probability is
independent of x: the proposal probability g(x; y) is, in our notation, p(y).
The original Metropolis algorithm is also a special case of the Metropolis-Hastings algorithm, in

which the proposal probability is symmetric, that is, g(x; y) = g(y; x). The acceptance function then
reduces to min(1; �(y)=�(x)), which is min(1; q(y)=q(x)) in our notation. I mention this only to
point out that it is a di�erent special case. Our proposal probability is not symmetric, but rather
independent of the previous con�guration, and though our acceptance function reduces to a form
(12) that is similar to the original Metropolis acceptance function, it is not the same: in general,
�(y)=�(x) 6= q(y)=q(x).
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Open questions remain. First, random sampling is notorious for being slow, and it

remains to be shown whether the approach proposed here will be practicable. I expect

practicability to be quite sensitive to the choice of grammar|the more the grammar's

distribution diverges from the initial context-free approximation, the more features will

be necessary to \correct" it, and the more random sampling will be called on.

A second issue is incomplete data. The approach described here assumes complete

data (a parsed training corpus). Fortunately, an extension of the method to handle in-

complete data (unparsed training corpora) is described in (Riezler, 1997), and I refer

readers to that paper.

As a closing note, it should be pointed out explicitly that the random �eld techniques

described here can be pro�tably applied to context-free grammars, as well. As Stanley

Peters nicely put it, there is a distinction between possibilistic and probabilistic context-

sensitivity. Even if the language described by the grammar of interest|that is, the set

of possible trees|is context-free, there may well be context-sensitive statistical depen-

dencies. Random �elds can be readily applied to capture such statistical dependencies

whether or not L(G) is context-sensitive.
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A. Initial Weight Estimation

In the feature selection step, we choose

an initial weight � for each candidate fea-

ture f so as to maximize the gain G =

D(~pjjqold) �D(~pjjqf;�) of adding f to the

�eld. It is actuallymore convenient to con-

sider log weights � = ln �. For a given fea-

ture f , the log weight �̂ that maximizes

gain is the solution to the equation:

q�[f ] = ~p[f ]

where q� is the distribution that results

from adding f to the �eld with log weight

�. This equation can be solved using New-

ton's method. De�ne

F (�) = ~p[f ]� q�[f ] (13)

To �nd the value of � for which F (�) = 0,

we begin at a convenient point �0 (the

\null" weight �0 = 0 recommends itself)

and iteratively compute:

�t+1 = �t � F (�t)

F 0(�t)
(14)

(Della Pietra, Della Pietra, and La�erty,

1995) show that F 0(�t) is equal to the

negative of the variance of f under the

new �eld, which I will write �V�[f ].

To compute the iteration (14) we need

to be able to compute F (�t) and F 0(�t).

For F (�t) we require ~p[f ] and q�[f ], and

F 0(�t) can be expressed as q�[f ]2�q�[f2].

~p[f ] is simply the average value of f in the

training corpus. The remaining terms are

all of the form q�[fr ]. We can re-express

this expectation in terms of the old �eld

qold:

q�[f
r] =

P
x f

r(x)q�(x)

=

P
x
fr(x)e�f(x)qold(x)P
x
e�f(x)qold(x)

=
qold[f

re�f ]

qold[e
�f ]

The expectations qold[fre�f ] can be ob-

tained by generating a random sample (z1; : : : ; zN )

of size N from qold and computing the av-

erage value of fre�f . That is, qold[fre�f ] �

(1=N )sr(�), where:

sr(�) =
P

k f
r(zk)e

�f(zk)

=
P

u countk[f(zk) = u]ure�u

This yields:
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q�[f
r ] =

sr(�)

s0(�)

and the Newton iteration (14) reduces to:

�t+1 = �t +
s20(�t)~p[f ]� s0(�t)s1(�t)

s0(�t)s2(�t)� s1(�t)2

To compare candidates, we also need

to know the gain D(~pjjqold)�D(~pjjq�̂) for

each candidate. This can be expressed as

follows (Della Pietra, Della Pietra, and

La�erty, 1995):

G(f; �̂) = ~p[f ] ln �̂� ln qold[e�̂f ]
� ~p[f ] ln �̂� ln s0(�̂) + lnN

Putting everything together, the al-

gorithm for feature selection has the fol-

lowing form. The array E[f ] is assumed

to have been initialized with the empiri-

cal expectations ~p[f ].

procedure SelectFeature () begin

Fill array C[f; u] = countk[f(zk) = u]

by sampling from old �eld

Ĝ 0, g  none

for each f in candidates do

� 0

until � is accurate enough do

s0  s1  s2  0

for u from 0 to umax do

x C[f; u]e�u

s0  s0 + x

s1  s0 + xu

s2  s0 + xu2

end

� �+
s20E[f ]�s0s1
s0s2�s21

end

G �E[f ]� ln s0 + lnN

if G > Ĝ then Ĝ G; g f; �̂ �

end

return g; �̂; Ĝ

end

B. Adjusting Field Weights

The procedure for adjusting �eld weights

has much the same structure as the proce-

dure for choosing initial weights. In terms

of log weights, we wish to compute incre-

ments (�1; : : : ; �n) such that the new �eld,

with log weights (�1 + �1; : : : ; �n + �n)

has a lower divergence than the old �eld

(�1; : : : ; �n). We choose each �i as the so-

lution to the equation:

~p[fi] = qold[fie
�if# ]
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Again, we use Newton's method. We wish

to �nd � such that Fi(�) = 0, where:

Fi(�) = ~p[fi]� qold[fie
�f# ]

As (Della Pietra, Della Pietra, and Laf-

ferty, 1995) show, the �rst derivative is:

F 0
i (�) = �qold[fif#e�f# ]

We see that the expectations we need to

compute by sampling from qold are of form

qold[fifr#e
�f# ].We generate a random sam-

ple (z1; : : : ; zN ) and de�ne:

sr(i; �) =
P

k fi(zk)f#(zk)
re�f#(zk)

=
P

m

P
u countk[fi(zk) = u ^ f#(zk) = m]umre�m

=
P

mmre�m
P

kjf#(zk)=m fi(zk)

As we generate the sample we update the

array C[i;m] =
P

kjf#(zk)=m fi(zk). We

estimate qold[fif
r
#e

�f# ] as the average value

of fif
r
#e

�f# in the sample, namely, (1=N )sr(i; �).

This permits us to compute Fi(�) and F
0
i (�).

The resulting Newton iteration is:

�t+1 = �t +
N ~p[fi]� s0(i; �t)

s1(i; �)

The estimation procedure is:

procedure AdjustWeights (�1; : : : ; �n) begin

until the �eld converges do

Fill array C[i;m]

by sampling from q�

for i from 1 to n

�  0

until � is su�ciently accurate do

s0  s1  0

for m from 0 to mmax do

x C[i;m]e�m

s0  s0 + x

s1  s1 + xm

end

�  � + NE[fi ]�s0
s1

end

�i  �i + �

end

end

return (�1; : : : ; �n)

end

31



A Maximum Entropy Approach

to Natural Language Processing

Adam L. Berger�

Stephen A. Della Pietray

Vincent J. Della Pietray

IBM T.J. Watson Research Center1

P.O. Box 704
Yorktown Heights, NY 10598

The concept of maximum entropy can be traced back along multiple threads to Biblical

times. Only recently, however, have computers become powerful enough to permit the

widescale application of this concept to real world problems in statistical estimation and

pattern recognition. In this paper we describe a method for statistical modeling based on

maximum entropy. We present a maximum-likelihood approach for automatically con-

structing maximum entropy models and describe how to implement this approach e�-

ciently, using as examples several problems in natural language processing.

1. Introduction

Statistical modeling addresses the problem of constructing a stochastic model to pre-
dict the behavior of a random process. In constructing this model, we typically have at
our disposal a sample of output from the process. Given this sample, representing an
incomplete state of knowledge about the process, the modeling problem is to parlay this
knowledge into a representation of the process. We can then use this representation to
make predictions of the future behavior of the process.

Baseball managers (who rank among the better paid statistical modelers) employ
batting averages, compiled from a history of at-bats, to gauge the likelihood that a player
will succeed in his next appearance at the plate. Thus informed, they manipulate their
lineups accordingly. Wall Street speculators (who rank among the best paid statistical
modelers) build models based on past stock price movements to predict tomorrow's 
uc-
tuations and alter their portfolios to capitalize on the predicted future. At the other end
of the pay scale reside natural language researchers, who design language and acoustic
models for use in speech recognition systems and related applications.

The past few decades have witnessed signi�cant progress toward increasing the pre-
dictive capacity of statistical models of natural language. In language modeling, for in-
stance, (Bahl et al 1989) have used decision tree models and (Della Pietra et al 1994)
have used automatically inferred link grammars to model long range correlations in lan-
guage. In parsing, (Black et al 1992) has described how to extract grammatical rules from

� Now at Columbia University computer science department
y Now at Renaissance Technologies, Stony Brook, NY
1 Research supported in part by ARPA under grant ONR N00014-91-C-0135

c
 1996 Association for Computational Linguistics
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annotated text automatically and incorporate these rules into statistical models of gram-
mar. In speech recognition, (Lucassen and Mercer 1984) have introduced a technique for
automatically discovering relevant features for the translation of word spelling to word
pronunciation.

These e�orts, while varied in speci�cs, all confront two essential tasks of statistical
modeling. The �rst task is to determine a set of statistics which capture the behavior of
a random process. Given a set of statistics, the second task is to corral these facts into
an accurate model of the process|a model capable of predicting the future output of the
process. The �rst task is one of feature selection; the second is one of model selection.
In the following pages we present a uni�ed approach to these two tasks based on the
maximum entropy philosophy.

Our discussion will proceed as follows. In Section 2 we give an overview of the max-
imum entropy philosophy and work through a motivating example. In Section 3 we
describe the mathematical structure of maximum entropy models and give an e�cient
algorithm for estimating the parameters of such models. In Section 4 we discuss feature
selection, and present an automatic method for discovering facts about a process from a
sample of output from the process. We then present a series of re�nements to the method
to make it practical to implement. Finally, in Section 5 we describe the application of
maximumentropy ideas to several tasks in stochastic language processing: bilingual sense
disambiguation, word reordering, and sentence segmentation.

2. A Maximum Entropy Overview

We introduce the concept of maximum entropy through a simple example. Suppose we
wish to model an expert translator's decisions concerning the proper French rendering of
the English word in. Our model p of the expert's decisions assigns to each French word
or phrase f an estimate, p(f), of the probability that the expert would choose f as a
translation of in. To guide us in developing p, we collect a large sample of instances of
the expert's decisions. Our goal is to extract a set of facts about the decision-making
process from the sample (the �rst task of modeling) that will aid us in constructing a
model of this process (the second task).

One obvious clue we might glean from the sample is the list of allowed translations.
For example, we might discover that the expert translator always chooses among the
following �ve French phrases: fdans, en, �a, au cours de, pendantg. With this information
in hand, we can impose our �rst constraint on our model p:

p(dans) + p(en) + p(�a) + p(au cours de) + p(pendant) = 1

This equation represents our �rst statistic of the process; we can now proceed to
search for a suitable model which obeys this equation. Of course, there are an in�nite
number of models p for which this identity holds. One model which satis�es the above
equation is p(dans) = 1; in other words, the model always predicts dans. Another model
which obeys this constraint predicts pendant with a probability of 1=2, and �a with a
probability of 1=2. But both of these models o�end our sensibilities: knowing only that
the expert always chose from among these �ve French phrases, how can we justify either
of these probability distributions? Each seems to be making rather bold assumptions,
with no empirical justi�cation. Put another way, these two models assume more than we
actually know about the expert's decision-making process. All we know is that the expert
chose exclusively from among these �ve French phrases; given this, the most intuitively
appealing model is the following:
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p(dans) = 1=5

p(en) = 1=5

p(�a) = 1=5

p(au cours de) = 1=5

p(pendant) = 1=5

This model, which allocates the total probability evenly among the �ve possible phrases,
is the most uniformmodel subject to our knowledge. It is not, however, the most uniform
overall; that model would grant an equal probability to every possible French phrase.

We might hope to glean more clues about the expert's decisions from our sample.
Suppose we notice that the expert chose either dans or en 30% of the time. We could
apply this knowledge to update our model of the translation process by requiring that p
satisfy two constraints:

p(dans) + p(en) = 3=10

p(dans) + p(en) + p(�a) + p(au cours de) + p(pendant) = 1

Once again there are many probability distributions consistent with these two con-
straints. In the absence of any other knowledge, a reasonable choice for p is again the most
uniform|that is, the distribution which allocates its probability as evenly as possible,
subject to the constraints:

p(dans) = 3=20

p(en) = 3=20

p(�a) = 7=30

p(au cours de) = 7=30

p(pendant) = 7=30

Say we inspect the data once more, and this time notice another interesting fact: in
half the cases, the expert chose either dans or �a. We can incorporate this information
into our model as a third constraint:

p(dans) + p(en) = 3=10

p(dans) + p(en) + p(�a) + p(au cours de) + p(pendant) = 1

p(dans) + p(�a) = 1=2

We can once again look for the most uniform p satisfying these constraints, but
now the choice is not as obvious. As we have added complexity, we have encountered
two di�culties at once. First, what exactly is meant by \uniform," and how can one
measure the uniformity of a model? Second, having determined a suitable answer to
these questions, how does one go about �nding the most uniform model subject to a set
of constraints like those we have described?

The maximumentropy method answers both these questions, as we will demonstrate
in the next few pages. Intuitively, the principle is simple: model all that is known and

3
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assume nothing about that which is unknown. In other words, given a collection of facts,
choose a model which is consistent with all the facts, but otherwise as uniform as possible.
This is precisely the approach we took in selecting our model p at each step in the above
example.

The maximum entropy concept has a long history. Adopting the least complex hy-
pothesis possible is embodied in Occam's Razor (\Nunquam ponenda est pluralitas sine
necesitate") and even appears earlier, in the Bible and the writings of Herotodus (Jaynes
1990). Laplace might justly be considered the father of maximum entropy, having enun-
ciated the underlying theme 200 years ago in his \Principle of Insu�cient Reason": when
one has no information to distinguish between the probability of two events, the best
strategy is to consider them equally likely (Guiasu and Shenitzer 1994). As E.T. Jaynes,
a more recent pioneer of maximum entropy, put it (Jaynes 1990):

...the fact that a certain probability distribution maximizes entropy sub-
ject to certain constraints representing our incomplete information, is
the fundamental property which justi�es use of that distribution for in-
ference; it agrees with everything that is known, but carefully avoids as-
suming anything that is not known. It is a transcription into mathemat-
ics of an ancient principle of wisdom...

3. Maximum Entropy Modeling

We consider a random process which produces an output value y, a member of a �nite
set Y. For the translation example just considered, the process generates a translation
of the word in, and the output y can be any word in the set fdans, en, �a, au cours de,
pendantg. In generating y, the process may be in
uenced by some contextual information
x, a member of a �nite set X . In the present example, this information could include the
words in the English sentence surrounding in.

Our task is to construct a stochastic model that accurately represents the behavior of
the random process. Such a model is a method of estimating the conditional probability
that, given a context x, the process will output y. We will denote by p(yjx) the probability
that the model assigns to y in context x. With a slight abuse of notation, we will also use
p(yjx) to denote the entire conditional probability distribution provided by the model,
with the interpretation that y and x are placeholders rather than speci�c instantiations.
The proper interpretation should be clear from the context. We will denote by P the set
of all conditional probability distributions. Thus a model p(yjx) is, by de�nition, just an
element of P.

3.1 Training Data

To study the process, we observe the behavior of the random process for some time,
collecting a large number of samples (x1; y1); (x2; y2); : : : ; (xN ; yN ). In the example we
have been considering, each sample would consist of a phrase x containing the words
surrounding in, together with the translation y of in which the process produced. For
now we can imagine that these training samples have been generated by a human expert
who was presented with a number of random phrases containing in and asked to choose
a good translation for each. When we discuss real-world applications in Section 5, we
will show how such samples can be automatically extracted from a bilingual corpus.

We can summarize the training sample in terms of its empirical probability distri-
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bution ~p, de�ned by

~p(x; y) �
1

N
� number of times that (x; y) occurs in the sample

Typically, a particular pair (x; y) will either not occur at all in the sample, or will occur
at most a few times.

3.2 Statistics, Features and Constraints

Our goal is to construct a statistical model of the process which generated the training
sample ~p(x; y). The building blocks of this model will be a set of statistics of the training
sample. In the current example we have employed several such statistics: the frequency
that in translated to either dans or en was 3=10; the frequency that it translated to either
dans or au cours de was 1=2; and so on. These particular statistics were independent of
the context, but we could also consider statistics which depend on the conditioning
information x. For instance, we might notice that, in the training sample, if April is the
word following in, then the translation of in is en with frequency 9=10.

To express the event that in translates as en when April is the following word, we
can introduce the indicator function

f(x; y) =

�
1 if y = en and April follows in
0 otherwise

The expected value of f with respect to the empirical distribution ~p(x; y) is exactly the
statistic we are interested in. We denote this expected value by

~p(f) �
X
x;y

~p(x; y)f(x; y) (1)

We can express any statistic of the sample as the expected value of an appropriate binary-
valued indicator function f . We call such function a feature function or feature for short.
(As with probability distributions, we will sometimes abuse notation and use f(x; y) to
denote both the value of f at a particular pair (x; y) as well as the entire function f .)

When we discover a statistic that we feel is useful, we can acknowledge its importance
by requiring that our model accord with it. We do this by constraining the expected value
that the model assigns to the corresponding feature function f . The expected value of f
with respect to the model p(yjx) is

p(f) �
X
x;y

~p(x)p(yjx)f(x; y) (2)

where ~p(x) is the empirical distribution of x in the training sample. We constrain this
expected value to be the same as the expected value of f in the training sample. That
is, we require

p(f) = ~p(f) (3)

Combining (1), (2) and (3) yields the more explicit equation

X
x;y

~p(x)p(yjx)f(x; y) =
X
x;y

~p(x; y)f(x; y)
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We call the requirement (3) a constraint equation or simply a constraint. By re-
stricting attention to those models p(yjx) for which (3) holds, we are eliminating from
consideration those models which do not agree with the training sample on how often
the output of the process should exhibit the feature f .

To sum up so far, we now have a means of representing statistical phenomena inherent
in a sample of data (namely, ~p(f)), and also a means of requiring that our model of the
process exhibit these phenomena (namely, p(f) = ~p(f)).

One �nal note about features and constraints bears repeating: though the words
\feature" and \constraint" are often used interchangeably in discussions of maximum
entropy, we will be vigilant to distinguish the two and urge the reader to do likewise:
a feature is a binary-valued function of (x; y); a constraint is an equation between the
expected value of the feature function in the model and its expected value in the training
data.

3.3 The Maximum Entropy Principle

Suppose that we are given n feature functions fi, which determine statistics we feel
are important in modeling the process. We would like our model to accord with these
statistics. That is, we would like p to lie in the subset C of P de�ned by

C � f p 2 P j p(fi) = ~p(fi) for i 2 f1; 2; : : : ; ngg (4)

Figure 1 provides a geometric interpretation of this setup. Here P is the space of all
(unconditional) probability distributions on 3 points, sometimes called a simplex. If we
impose no constraints (depicted in (a)), then all probability models are allowable. Im-
posing one linear constraint C1 restricts us to those p 2 P which lie on the region de�ned
by C1, as shown in (b). A second linear constraint could determine p exactly, if the two
constraints are satis�able; this is the case in (c), where the intersection of C1 and C2
is non-empty. Alternatively, a second linear constraint could be inconsistent with the
�rst|for instance, the �rst might require that the probability of the �rst point is 1=3
and the second that the probability of the third point is 3=4|this is shown in (d). In the
present setting, however, the linear constraints are extracted from the training sample
and cannot, by construction, be inconsistent. Furthermore, the linear constraints in our
applications will not even come close to determining p 2 P uniquely as they do in (c);
instead, the set C = C1 \ C2 \ : : :\ Cn of allowable models will be in�nite.

Among the models p 2 C, the maximum entropy philosophy dictates that we select
the distribution which is most uniform. But now we face a question left open in Section
2: what does \uniform" mean?

A mathematical measure of the uniformity of a conditional distribution p(yjx) is
provided by the conditional entropy2

H(p) � �
X
x;y

~p(x)p(yjx) log p(yjx) (5)

The entropy is bounded from below by zero, the entropy of a model with no uncertainty
at all, and from above by log jYj, the entropy of the uniform distribution over all possible

2 A more common notation for the conditional entropy is H(Y j X), where Y and X are random
variables with joint distribution ~p(x)p(yjx). To emphasize the dependence of the entropy on the
probability distribution p, we have adopted the alternate notation H(p).
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C

PP

P

C

P

1C 1C 1C 1

C1
1

C3C2

(a) (b)

(c) (d)

Figure 1
Four di�erent scenarios in constrained optimization. P represents the space of all probability
distributions. In (a), no constraints are applied, and all p 2 P are allowable. In (b), the
constraint C1 narrows the set of allowable models to those which lie on the line de�ned by the
linear constraint. In (c), two consistent constraints C1 and C2 de�ne a single model p 2 C1 \ C2.
In (d), the two constraints are inconsistent (i.e. C1 \ C3 = ;); no p 2 P can satisfy them both.
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jYj values of y. With this de�nition in hand, we are ready to present the principle of
maximum entropy.

To select a model from a set C of allowed probability distributions, choose
the model p? 2 C with maximum entropy H(p):

p? = argmax
p2C

H(p) (6)

It can be shown that p? is always well-de�ned; that is, there is always a unique model
p? with maximum entropy in any constrained set C.

3.4 Parametric Form

The maximum entropy principle presents us with a problem in constrained optimization:
�nd the p? 2 C which maximizes H(p). In simple cases, we can �nd the solution to
this problem analytically. This was true for the example presented in Section 2 when
we imposed the �rst two constraints on p. Unfortunately, the solution of the general
maximum entropy cannot be written explicitly, and we need a more indirect approach.
(The reader is invited to try to calculate the solution for the same example when the
third constraint is imposed.)

To address the general problem, we apply the method of Lagrange multipliers from
the theory of constrained optimization. The relevant steps are outlined here; the reader
is referred to (Della Pietra et al 1995) for a more thorough discussion of constrained
optimization as applied to maximum entropy.

� We will refer to the original constrained optimization problem,

�nd p? = argmax
p2C

H(p)

as the primal problem.

� For each feature fi we introduce a parameter �i (a Lagrange multiplier).
We de�ne the Lagrangian �(p; �) by

�(p; �) � H(p) +
X
i

�i (p(fi) � ~p(fi)) (7)

� Holding � �xed, we compute the unconstrained maximum of the
Lagrangian �(p; �) over all p 2 P. We denote by p� the p where �(p; �)
achieves its maximum and by 	(�) the value at this maximum:

p� � argmax
p2P

�(p; �) (8)

	(�) � �(p�; �) (9)

We call 	(�) the dual function. The functions p� and 	(�) may be
calculated explicitly using simple calculus. We �nd

p�(yjx) =
1

Z�(x)
exp

 X
i

�ifi(x; y)

!
(10)

	(�) = �
X
x

~p(x) logZ�(x) +
X
i

�i~p(fi) (11)
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where Z�(x) is a normalizing constant determined by the requirement thatP
y p�(yjx) = 1 for all x:

Z�(x) =
X
y

exp

 X
i

�ifi(x; y)

!
(12)

� Finally, we pose the unconstrained dual optimization problem

Find �? = argmax
�

	(�)

At �rst glance it is not clear what these machinations achieve. However, a fundamen-
tal principle in the theory of Lagrange multipliers, called generically the Kuhn-Tucker
theorem, asserts that under suitable assumptions, the primal and dual problems are, in
fact, closely related. This is the case in the present situation. Although a detailed account
of this relationship is beyond the scope of this paper, it is easy to state the �nal result:
Suppose that �? is the solution of the dual problem. Then p�? is the solution of the
primal problem; that is p�? = p?. In other words,

The maximum entropy model subject to the constraints C has the para-
metric form3 p�? of (10), where the parameter values �? can be deter-
mined by maximizing the dual function 	(�).

The most important practical consequence of this result is that any algorithm for
�nding the maximum �? of 	(�) can be used to �nd the maximum p? of H(p) for p 2 C.

3.5 Relation to Maximum Likelihood

The log-likelihood L~p(p) of the empirical distribution ~p as predicted by a model p is
de�ned by4

L~p(p) � log
Y
x;y

p(yjx)~p(x; y) =
X
x;y

~p(x; y) log p(yjx) (13)

It is easy to check that the dual function 	(�) of the previous section is, in fact, just the
log-likelihood for the exponential model p�; that is

	(�) = L~p(p�) (14)

With this interpretation, the result of the previous section can be rephrased as:

The model p? 2 C with maximumentropy is the model in the parametric
family p�(yjx) that maximizes the likelihood of the training sample ~p.

3 It might be that the dual function 	(�) does not achieve its maximum at any �nite �?. In this case,
the maximum entropy model will not have the form p� for any �. However, it will be the limit of
models of this form, as indicated by the following result whose proof we omit:

Suppose �n is any sequence such that 	(�n) converges to the maximum of 	(�). Then p�n
converges to p?.

4 We will henceforth abbreviate L~p(p) by L(p) when the empirical distribution ~p is clear from context.
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Primal Dual
problem argmaxp2CH(p) argmax�	(�)

description maximum entropy maximum likelihood
type of search constrained optimization unconstrained optimization
search domain p 2 C real-valued vectors f�1; �2 : : :g

solution p? �?

Kuhn-Tucker theorem: p? = p�?

Table 1
The duality of maximum entropy and maximum likelihood is an example of the more general
phenomenon of duality in constrained optimization.

This result provides an added justi�cation for the maximum entropy principle: if the
notion of selecting a model p? on the basis of maximum entropy isn't compelling enough,
it so happens that this same p? is also the model which, from among all models of the
same parametric form (10), can best account for the training sample.

Table 1 summarizes the primal-dual framework we have established.

3.6 Computing the Parameters

For all but the most simple problems, the �? that maximize 	(�) cannot be found analyt-
ically. Instead, we must resort to numerical methods. From the perspective of numerical
optimization, the function 	(�) is well behaved, since it is smooth and convex-\ in �.
Consequently, a variety of numerical methods can be used to calculate �?. One simple
method is coordinate-wise ascent, in which �? is computed by iteratively maximizing	(�)
one coordinate at a time. When applied to the maximumentropy problem, this technique
yields the popular Brown algorithm (Brown 1959). Other general purpose methods that
can be used to maximize 	(�) include gradient ascent and conjugate gradient.

An optimizationmethod speci�cally tailored to the maximumentropy problem is the
iterative scaling algorithm of Darroch and Ratcli� (Darroch and Ratli� 1972).We present
here a version of this algorithm speci�cally designed for the problem at hand; a proof of
the monotonicity and convergence of the algorithm is given in (Della Pietra et al 1995).
The algorithm is applicable whenever the feature functions fi(x; y) are non-negative:

fi(x; y) � 0 for all i, x, and y (15)

This is, of course, true for the binary-valued feature functions we are considering here.
The algorithm generalizes the Darroch-Ratcli� procedure, which requires, in addition to
the non-negativity, that the feature functions satisfy

P
i fi(x; y) = 1 for all x; y.

Algorithm 1 : Improved Iterative Scaling

Input: Feature functions f1; f2; : : :fn; empirical distribution ~p(x; y)
Output: Optimal parameter values �?i; optimal model p�?

1. Start with �i = 0 for all i 2 f1; 2; : : : ; ng

2. Do for each i 2 f1; 2; : : : ; ng:

a. Let ��i be the solution to

X
x;y

~p(x)p(yjx)fi(x; y)exp(��if#(x; y)) = ~p(fi) (16)

10
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where f#(x; y) �
nX
i=1

fi(x; y) (17)

b. Update the value of �i according to: �i  �i +��i

3. Go to step 2 if not all the �i have converged

The key step in the algorithm is step (2a), the computation of the increments ��i
that solve (16). If f#(x; y) is constant (f#(x; y) = M for all x; y, say) then ��i is given
explicitly as

��i =
1

M
log

~p(fi)

p�(fi)

If f#(x; y) is not constant, then ��i must be computed numerically. A simple and
e�ective way of doing this is by Newton's method. This method computes the solution
�? of an equation g(�?) = 0 iteratively by the recurrence

�n+1 = �n �
g(�n)

g0(�n)
(18)

with an appropriate choice for �0 and suitable attention paid to the domain of g.

4. Feature Selection

Earlier we divided the statistical modeling problem into two steps: �nding appropriate
facts about the data; the second is to incorporate these facts into the model. Up to this
point we have proceeded by assuming that the �rst task was somehow performed for us.
Even in the simple example of Section 2, we did not explicitly state how we selected those
particular constraints. That is, why is the fact that dans or �a was chosen by the expert
translator 50% of the time any more important than countless other facts contained in
the data? In fact, the principle of maximum entropy does not directly concern itself
with the issue of feature selection: it merely provides a recipe for combining constraints
into a model. But the feature selection problem is critical, since the universe of possible
constraints is typically in the thousands or even millions. In this section we introduce a
method for automatically selecting the features to be included in a maximum entropy
model, and then o�er a series of re�nements to ease the computational burden.

4.1 Motivation

We begin by specifying a large collection F of candidate features. We do not require
a priori that these features are actually relevant or useful. Instead, we let the pool be
as large as practically possible. Only a small subset of this collection of features will
eventually be employed in our �nal model.

If we had a training sample of in�nite size, we could determine the \true" expected
value for a candidate feature f 2 F simply by computing the fraction of events in the
sample for which f(x; y) = 1. In real-life applications, however, we are provided with
only a small sample of N events, which cannot be trusted to represent the process fully
and accurately. Speci�cally, we cannot expect that for every feature f 2 F , the estimate
of ~p(f) we derive from this sample will be close to its value in the limit as n grows large.
Employing a larger (or even just a di�erent) sample of data from the same process might
result in di�erent estimates of ~p(f) for many candidate features.

11
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In short, we would like to include in the model only a subset S of the full set of
candidate features F . We will call S the set of active features. The choice of S must
capture as much information about the random process as possible, yet only include
features whose expected values can be reliably estimated.

To �nd S, we adopt an incremental approach to feature selection, similar to the
strategy used for growing decision trees (Bahl et al 1989). The idea is to build up S by
successively adding features. The choice of feature to add at each step is determined by
the training data. Let us denote the set of models determined by the feature set S as
C(S). \Adding" a feature f is shorthand for requiring that the set of allowable models all
satisfy the equality ~p(f) = p(f). Only some members of C(S) will satisfy this equality;
the ones that do we denote by C(S [ f).

Thus, each time a candidate feature is adjoined to S, another linear constraint is
imposed on the space C(S) of models allowed by the features in S. As a result, C(S)
shrinks; the model p? in C with the greatest entropy re
ects ever-increasing knowledge and
thus, hopefully, becomes a more accurate representation of the process. This narrowing
of the space of permissible models was represented in �gure 1 by a series of intersecting
lines (hyperplanes, in general) in a probability simplex. Perhaps more intuitively, we
could represent it by a series of nested subsets of P, as in �gure 2.

C

C

C

1

2

3

P

(S )

(S )

(S )

Figure 2
A nested sequence of subsets C(S1) � C(S2) � C(S3) : : : of P corresponding to increasingly
large sets of features S1 � S2 � S3 : : :

4.2 Basic Feature Selection

The basic incremental growth procedure may be outlined as follows. Every stage of the
process is characterized by a set of active features S. These determine a space of models

C(S) � fp 2 P j p(f) = ~p(f) for all f 2 Sg (19)

The optimal model in this space, denoted by p
S
, is the model with the greatest entropy:

p
S
� argmax

p2C(S)
H(p) (20)

By adding feature f̂ to S, we obtain a new set of active features S [ f̂ . Following (19),
this set of features determines a set of models

C(S [ f̂ ) � fp 2 P j p(f) = ~p(f) for all f 2 S [ f̂g (21)

12
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The optimal model in this space of models is

p
S[f̂

� argmax
p2C(S[f̂ )

H(p) (22)

Adding the feature f̂ allows the model p
S[f̂

to better account for the training sample;
this results in a gain �L(S; f̂) in the log-likelihood of the training data

�L(S; f̂) � L(p
S[f̂

)� L(p
S
) (23)

At each stage of the model-construction process, our goal is to select the candidate feature
f̂ 2 F which maximizes the gain �L(S; f̂); that is, we select the candidate feature which,
when adjoined to the set of active features S, produces the greatest increase in likelihood
of the training sample. This strategy is implemented in

Algorithm 2: Basic Feature Selection

Input: Collection F of candidate features; empirical distribution ~p(x; y)
Output: Set S of active features; model p

S
incorporating these features

1. Start with S = ;; thus p
S
is uniform

2. Do for each candidate feature f 2 F :

Compute the model p
S[f

using Algorithm 1
Compute the gain in the log-likelihood from adding this feature
using (23)

3. Check the termination condition

4. Select the feature f̂ with maximal gain �L(S; f̂)

5. Adjoin f̂ to S

6. Compute p
S
using Algorithm 1

7. Go to step 2

One issue left unaddressed by this algorithm is the termination condition. Obviously,
we would like a condition which applies exactly when all the \useful" features have been
selected. One reasonable stopping criterion is to subject each proposed feature to cross-
validation on a held-out sample of data. If the feature does not lead to an increase in
likelihood of the held-out sample of data, the feature is discarded. We will have more to
say about the stopping criterion in Section 5.3.

4.3 Approximate Gains

Algorithm 2 is not a practical method for incremental feature selection. For each candi-
date feature f 2 F considered in step 2, we must compute the maximum entropy model
p
S[f

, a task that is computationally costly even with the e�cient iterative scaling algo-
rithm introduced earlier. We therefore introduce a modi�cation to the algorithm,making
it greedy but much more feasible. We replace the computation of the gain �L(S; f) of a
feature f with an approximation, which we will denote by ��L(S; f ).

Recall that a model p
S
has a set of parameters �, one for each feature in S. The model

p
S[f

contains this set of parameters, plus a single new parameter �, corresponding to f .5

5 Another way to think of this is that the models p
S[f

and p
S
have the same number of parameters,

but � = 0 for p
S
.

13
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Given this structure, we might hope that the optimal values for � do not change as the
feature f is adjoined to S. Were this the case, imposing an additional constraint would
require only optimizing the single parameter � to maximize the likelihood. Unfortunately,
when a new constraint is imposed, the optimal values of all parameters change.

However, to make the feature-ranking computation tractable, we make the approx-
imation that the addition of a feature f a�ects only �, leaving the �-values associated
with other features unchanged. That is, when determining the gain of f over the model
p
S
, we pretend that the best model containing features S [ f has the form

p�S;f =
1

Z�(x)
p
S
(yjx)e�f(x;y); for some real valued � (24)

where Z�(x) =
X
y

p
S
(yjx)e�f(x;y) (25)

The only parameter which distinguishes models of the form (24) is �. Among these
models, we are interested in the one which maximizes the approximate gain

GS;f (�) � L(p�S;f ) � L(p
S
)

= �
X
x

~p(x) logZ�(x) + �~p(f) (26)

We will denote the gain of this model by

��L(S; f ) � max
�

GS;f (�) (27)

and the optimal model by

�p
S[f
� argmax

p�S;f

GS;f (�) (28)

Despite the rather unwieldy notation, the idea is simple. Computing the approxi-
mate gain in likelihood from adding feature f to p

S
has been reduced to a simple one-

dimensional optimization problem over the single parameter �, which can be solved by
any popular line-search technique such as Newton's method. This yields a great savings
in computational complexity over computing the exact gain, an n-dimensional optimiza-
tion problem requiring more sophisticated methods such as conjugate gradient. But the
savings comes at a price: for any particular feature f , we are probably underestimating its
gain, and there is a reasonable chance that we will select a feature f whose approximate
gain ��L(S; f ) was highest and pass over the feature f̂ with maximal gain �L(S; f̂ ).

A graphical representation of this approximation is provided in �gure 3. Here the
log-likelihood is represented as an arbitrary convex function over two parameters: �
corresponds to the \old" parameter, and � to the \new" parameter. Holding � �xed
and adjusting � to maximize the log-likelihood involves a search over the darkened line,
rather than a search over the entire space of (�; �).

The actual algorithms, along with the appropriate mathematical framework, are
presented in the appendix.

5. Case Studies

In the next few pages we discuss several applications of maximum entropy modeling
within Candide, a fully automatic French-to-English machine translation system under
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(a)

α

λ

L(p)

α

λ

α

(b)
L(p)

Figure 3
The likelihood L(p) is a convex function of its parameters. If we start from a one-constraint
model whose optimal parameter value is � = �0 and consider the increase in L~p(p) from
adjoining a second constraint with the parameter �, the exact answer requires a search over
(�;�). We can simplify this task by holding � = �0 constant and performing a line search over
the possible values of the new parameter �. In (a), the darkened line represents the search
space we restrict attention to. In (b) we show the reduced problem: a line search over �.
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development at IBM. Over the past few years, we have used Candide as a test bed for
exploring the e�cacy of various techniques in modeling problems arising in machine
translation.

We begin in Section 5.1 with a review of the general theory of statistical translation,
describing in some detail the models employed in Candide. In Section 5.2 we describe
how we have applied maximum entropy modeling to predict the French translation of
an English word in context. In Section 5.3 we describe maximum entropy models that
predict di�erences between French word order and English word order. In Section 5.4 we
describe a maximum entropy model that predicts how to divide a French sentence into
short segments that can be translated sequentially.

5.1 Review of Statistical Translation

When presented with a French sentence F , Candide's task is to �nd the English sentence
Ê which is most likely given F :

Ê = argmax
E

p(EjF ) (29)

By Bayes' theorem, this is equivalent to �nding Ê such that

Ê = argmax
E

p(F jE)p(E) (30)

Candide estimates p(E)|the probability that a string E of English words is a well-
formed English sentence|using a parametric model of the English language, commonly
referred to as a language model. The system estimates p(F jE)|the probability that a
French sentence F is a translation of E|using a parametric model of the process of
English-to-French translation known as a translation model. These two models, plus a
search strategy for �nding the Ê which maximizes (30) for some F , comprise the engine
of the translation system.

We now brie
y describe the translation model for the probability P (F jE); a more
thorough account is provided in (Brown et al 1991). We imagine that an English sentence
E generates a French sentence F in two steps. First each word in E independently
generates zero or more French words. These words are then ordered to give a French
sentence F . We denote the ith word of E by ei and the jth word of F by yj . (We
employ yj rather than the more intuitive fj to avoid confusion with the feature function
notation.) We denote the number of words in the sentence E by jEj and the number
of words in the sentence F by jF j. The generative process yields not only the French
sentence F but also an association of the words of F with the words of E. We call this
association an alignment, and denote it by A. An alignment A is parametrized by a
sequence of jF j numbers aj, with 1 � ai � jEj. For every word position j in F , aj is
the word position in E of the English word that generates yj . Figure 4 depicts a typical
alignment.

The probability p(F jE) that F is the translation of E is expressed as the sum over
all possible alignments A between E and F of the probability of F and A given E:

p(F jE) =
X
A

p(F;AjE) (31)

The sum in equation (31) is computationally unwieldy; it involves a sum over all jEjjF j

possible alignments between the words in the two sentences. For this reason we sometimes
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The1 dog2 ate3 my4 homework5

Le1 chien2 a3 mang�e4 mes5 devoirs6

H
H

H
HH

H
H
H
HH

H
H
H
HH

Figure 4
Alignment of a French{English sentence pair. The subscripts give the position of each word in
its sentence. Here a1 = 1, a2 = 2, a3 = a4 = 3, a5 = 4, and a6 = 5.

make the simplifying assumption that there exists one extremely probable alignment Â,
called the \Viterbi alignment," for which

p(F jE) � p(F; ÂjE) (32)

Given some alignmentA (Viterbi or otherwise) between E and F , the probability p(F;AjE)
is given by

p(F;AjE) =

jEjY
i=1

p(n(ei)jei) �

jF jY
j=1

p(yj jeaj ) � d(AjE;F ) (33)

where n(ei) denotes the number of French words aligned with ei. In this expression

� p(nje) is the probability that the English word e generates n French words,

� p(yje) is the probability that the English word e generates the French word
y; and

� d(AjE;F ) is the probability of the particular order of French words.

We call the model described by equations (31) and (33) the basic translation model.
We take the probabilities p(nje) and p(yje) as the fundamental parameters of the

model, and parametrize the distortion probability in terms of simpler distributions.
(Brown et al 1991) describe a method of estimating these parameters to maximize the
likelihood of a large bilingual corpus of English and French sentences. Their method
is based on the Estimation-Maximization (EM) algorithm, a well-known iterative tech-
nique for maximum likelihood training of a model involving hidden statistics. For the
basic translation model, the hidden information is the alignment A between E and F .

We employed the EM algorithm to estimate the parameters of the basic translation
model so as to maximize the likelihood of a bilingual corpus obtained from the proceedings
of the Canadian parliament. For historical reasons, these proceedings are sometimes called
\Hansards." Our Hansard corpus contains 3:6 million English-French sentence pairs for
a total of a little under 100 million words in each language. Table 2 shows our parameter
estimates for the translation probabilities p(yjin). The basic translation model has worked
admirably: given only the bilingual corpus, with no additional knowledge of the languages
or any relation between them, it has uncovered some highly plausible translations.

Nevertheless, the basic translation model has one major shortcoming: it does not take
the English context into account. That is, the model does not account for surrounding
English words when predicting the appropriate French rendering of an English word. As
we pointed out in Section 3, this is not how successful translation works. The best French
translation of in is a function of the surrounding English words: if a month's time are
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Translation Probability
dans 0.3004
�a 0.2275
de 0.1428
en 0.1361
pour 0.0349

(OTHER) 0.0290
au cours de 0.0233

, 0.0154
sur 0.0123
par 0.0101

pendant 0.0044
Table 2
Most frequent French translations of in as estimated using EM-training. (OTHER) represents
a catch-all classi�er for any French phrase not listed, none of which had a probability
exceeding 0:0043.
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|||||||||||||||
Je dirais même que les chances sont sup�erieures �a 50%.

#
I would even say that the odds are superior to 50%.

Il semble que Bank of Boston ait pratiquement achev�e son r�eexamen de Shawmut.
#

He appears that Bank of Boston has almost completed its review of Shawmut.
|||||||||||||||

Figure 5
Typical errors encountered in using EM-based model of Brown et. al. in a French-to-English
translation system

the subsequent words, pendant might be more likely, but if the �scal year 1992 are what
follows, then dans is more likely. The basic model is blind to context, always assigning a
probability of 0:3004 to dans and 0:0044 to pendant.

This can yield errors when Candide is called upon to translate a French sentence.
Examples of two such errors are shown in Figure 5. In the �rst example, the system
has chosen an English sentence in which the French word sup�erieures has been rendered
as superior when greater or higher is a preferable translation. With no knowledge of
context, an expert translator is also quite likely to select superior as the English word
which generates sup�erieures. But if the expert were privy to the fact that 50% was among
the next few words, he might be more inclined to select greater or higher. Similarly, in
the second example, the incorrect rendering of Il as He might have been avoided had the
translation model used the fact that the word following it is appears.

5.2 Context-Dependent Word Models

In the hope of rectifying these errors, we consider the problem of context-sensitive mod-
eling of word translation. We envision, in practice, a separate maximum entropy model,
pe(yjx), for each English word e, where pe(yjx) represents the probability that an expert
translator would choose y as the French rendering of e, given the surrounding English
context x. This is just a slightly recast version of a longstanding problem in compu-
tational linguistics, namely sense disambiguation|the determination of a word's sense
from its context.

We begin with a training sample of English-French sentence pairs (E;F ) randomly
extracted from the Hansard corpus, such that E contains the English word in. For each
sentence pair, we use the basic translation model to compute the Viterbi alignment Â
between E and F . Using this alignment, we then construct an (x; y) training event. The
event consists of a context x containing the six words in E surrounding in and a future
y equal to the French word which is (according to the Viterbi alignment Â) aligned with
in. A few actual examples of such events for in are depicted in Table 3.

Next we de�ne the set of candidate features. For this application, we employ features
that are indicator functions of simply described sets. Speci�cally, we consider functions
f(x; y) which are one if y is some particular French word and the context x contains a
given English word, and are zero otherwise. We employ the following notation to represent
these features:
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translation e�3 e�2 e�1 e+1 e+2 e+3
dans the committee stated � a letter to
�a work was required � respect of the

au cours de � the �scal year
dans by the government � the same postal

�a of diphtheria reported � Canada , by
de not given notice � the ordinary way

Table 3
Several actual training events for the maximum entropy translation model for in, extracted
from the transcribed proceedings of the Canadian parliament.
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Number of
Template actual features f(x;y) = 1 if and only if : : :

1 jVF j y = 3

2 jVF j � jVE j y = 3 and 2 2 �

3 jVF j � jVE j y = 3 and 2 2 �

4 jVF j � jVE j y = 3 and 2 2 � � �

5 jVF j � jVE j y = 3 and 2 2 � � �

Table 4
Feature templates for word-translation modeling. jVEj is the size of the English vocabulary;
jVF j the size of the French vocabulary.

f1(x; y) =

8><
>: 1 y =en and April 2 �

0 otherwise

f2(x; y) =

8><
>: 1 y =pendant and weeks 2 � � �

0 otherwise

Here f1 = 1 when April follows in and en is the translation of in; f2 = 1 when weeks is
one of the three words following in and pendant is the translation.

The set of features under consideration is vast, but may be expressed in abbreviated
form in Table 4. In the table, the symbol 3 is a placeholder for a possible French word
and the symbol 2 is placeholder for a possible English word. The feature f1 mentioned
above is thus derived from template 2 with 3 =en and 2 =April; the feature f2 is derived
from template 5 with 3 =pendant and 2 =weeks. If there are jVE j total English words
and jVF j total French words, there are jVF j template-1 features, and jVE j� jVF j features of
templates 2,3,4 and 5.

Template 1 features give rise to constraints that enforce equality between the prob-
ability of any French translation y of in according to the model and the probability of
that translation in the empirical distribution. Examples of such constraints are

p(y = dans) = ~p(y = dans)

p(y = �a) = ~p(y = �a)

p(y = de) = ~p(y = de)

p(y = en) = ~p(y = en)

...

A maximum entropy model that uses only template 1 features predicts each French
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translation y with the probability ~p(y) determined by the empirical data. This is exactly
the distribution employed by the basic translation model.

Since template 1 features are independent of x, the maximum entropy model which
employs only constraints derived from template 1 features takes no account of contextual
information in assigning a probability to y. When we include constraints derived from
template 2 features, we take our �rst step towards a context-dependent model. Rather
than simply constraining the expected probability of a French word y to equal its em-
pirical probability, these constraints require that the expected joint probability of the
English word immediately following in and the French rendering of in be equal to its
empirical probability. An example of a template 2 constraint is

p(y = pendant; e+1 = several) = ~p(y = pendant; e+1 = several)

A maximumentropy model that incorporates this constraint will predict the translations
of in in a manner consistent with whether or not the following word is several. In par-
ticular, if in the empirical sample, the presence of several led to a greater probability for
pendant, this will be re
ected in a maximumentropy model incorporating this constraint.
We have thus taken our �rst step toward context-sensitive translation modeling.

Templates 3, 4 and 5 consider, each in a di�erent way, various parts of the context.
For instance, template 5 constraints allow us to model how an expert translator is biased
by the appearance of a word somewhere in the three words following the word he is
translating. If house appears within the next three words (e.g. the phrases in the house
and in the red house), then dans might be a more likely translation. On the other hand,
if year appears within the same window of words (as in in the year 1941 or in that fateful
year), then au cours de might be more likely. Together, the �ve constraint templates
allow the model to condition its assignment of probabilities on a window of six words
around e0, the word in question.

We constructed a maximum entropy model pin(yjx) by the iterative model-growing
method described in Section 4. The automatic feature selection algorithm �rst selected
a template 1 constraint for each of the translations of in seen in the sample (12 in all),
thus constraining the model's expected probability of each of these translations to their
empirical probabilities. The next few constraints selected by the algorithm are shown
in Table 5. The �rst column gives the identity of the feature whose expected value is
constrained; the second column gives ��L(S; f ), the approximate increase in the model's
log-likelihood on the data as a result of imposing this constraint; the third column gives
L(p), the log-likelihood after adjoining the feature and recomputing the model.

Let us consider the �fth row in the table. This constraint requires that the model's
expected probability of dans, if one of the three words to the right of in is the word
speech, is equal to that in the empirical sample. Before imposing this constraint on the
model during the iterative model-growing process, the log-likelihood of the current model
on the empirical sample was �2:8703 bits. The feature selection algorithm described in
Section 4 calculated that if this constraint were imposed on the model, the log-likelihood
would rise by approximately 0:019059 bits; since this value was higher than for any other
constraint considered, the constraint was selected. After applying iterative scaling to
recompute the parameters of the new model, the likelihood of the empirical sample rose
to �2:8525 bits, an increase of 0:0178 bits.

Table 6 lists the �rst few selected features for the model for translating the English
word run. The \Hansard 
avor"|the rather speci�c domain of parliamentary discourse
related to Canadian a�airs|is easy to detect in many of the features in this Table 5.

It is not hard to incorporate the maximum entropy word translation models into a
translation model p(F jE) for a French sentence given an English sentence. We merely

22



Berger, Della Pietra, Della Pietra A Maximum Entropy Approach to NLP

Feature f(x; y) ��L(S; f) L(p)

y=�a and Canada 2 � 0:0415 �2:9674

y=�a and House 2 � 0:0361 �2:9281

y=en and the 2 � 0:0221 �2:8944

y=pour and order 2 � 0:0224 �2:8703

y=dans and speech 2 � � � 0:0190 �2:8525

y=dans and area 2 � � � 0:0153 �2:8377

y=de and increase 2 � � � 0:0151 �2:8209

y=[verb marker] and my 2 � 0:0141 �2:8034

y=dans and case 2 � � � 0:0116 �2:7918

y=au cours de and year 2 � � � 0:0104 �2:7792

Table 5
Maximum entropy model to predict French translation of in. Features shown here were the
�rst non template 1 features selected. [verb marker] denotes a morphological marker inserted
to indicate the presence of a verb as the next word.
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Feature f(x; y) ��L(S; f) L(p)

y=�epuiser and out 2 � � � 0:0252 �4:8499

y=manquer and out 2 � � � 0:0221 �4:8201

y=�ecouler and time 2 � � � 0:0157 �4:7969

y=accumuler and up 2 � 0:0149 �4:7771

y=nous and we 2 � 0:0140 �4:7582

y=aller and counter 2 � � � 0:0131 �4:7445

y=candidat and for 2 � � � 0:0124 �4:7295

y=diriger and the 2 � � � 0:0123 �4:7146

Table 6
Maximum entropy model to predict French translation of to run: top-ranked features not from
template 1
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|||||||||||||||
Je dirais même que les chances sont sup�erieures �a 50%.

#
I would even say that the odds are greater than 50%.

Il semble que Bank of Boston ait pratiquement achev�e son r�eexamen de Shawmut.
#

It appears that Bank of Boston has almost completed its review of Shawmut .
|||||||||||||||

Figure 6
Improved French-to-English translations resulting from maximum entropy-based system

replace the simple context-independent models p(yje) used in the basic translation model
(33) with the more general context-dependent models pe(yjx):

p(F;AjE) =

jEjY
i=1

p(n(ei)jei) �

jF jY
j=1

peaj (yj jxaj ) � d(AjE;F )

where xaj denotes the context of the English word eaj .
Figure 6 illustrates how using this improved translation model in the Candide system

led to improved translations for the two sample sentences given earlier.

5.3 Segmentation

Though an ideal machine translation system could devour input sentences of unrestricted
length, a typical stochastic system must cut the French sentence into polite lengths before
digesting them. If the processing time is exponential in the length of the input passage
(as is the case with the Candide system), then not splitting the French sentence into
reasonably-sized segments would result in an exponential slowdown in translation.

Thus, a common task in machine translation is to �nd safe positions at which to
split input sentences in order to speed the translation process. \Safe" is a vague term;
one might, for instance, reasonably de�ne a safe segmentation as one which results in
coherent blocks of words. For our purposes, however, a safe segmentation is dependent on
the Viterbi alignment Â between the input French sentence F and its English translation
E.

We de�ne a rift as a position j in F such that for all k < j, ak � aj and for all k > j,
ak � aj. In other words, the words to the left of the French word yj are generated by
words to the left of the English word eaj , and the words to the right of yj are generated
by words to the right of eaj . In the alignment of �gure 4, for example, there are rifts at
positions j = 1; 2; 4; 5 in the French sentence. One visual method of determining whether
a rift occurs after the French word j is to try to trace a line from the last letter of yj
up to the last letter of eaj ; if the line can be drawn without intersecting any alignment
lines, position f is a rift.

Using our de�nition of rifts, we can rede�ne a \safe" segmentation as one in which the
segment boundaries are located only at rifts. Figure 7 illustrates an unsafe segmentation,
in which a segment boundary (denoted by the k symbol) lies between a and mang�e, where
there is no rift. Figure 8, on the other hand, illustrates a safe segmentation.

The reader will notice that a safe segmentation does not necessarily result in se-
mantically coherent segments: mes and devoirs are certainly part of one logical unit,
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The1 dog2 ate3 my4 homework5

Le1 chien2 a3 mang�e4 mes5 devoirs6

H
H

H
HH

H
H
H
HH

H
H
H
HH

k k

Figure 7
Example of an unsafe segmentation. A word in the translated sentence (e3) is aligned to words
(y3 and y4) in two di�erent segments of the input sentence.

yet are separated in this safe segmentation. Once such a safe segmentation has been
applied to the French sentence, we can make the assumption while searching for the
appropriate English translation that no word in the translated English sentence will
have to account for French words located in multiple segments. Disallowing intersegment
alignments dramatically reduces the scale of the computation involved in generating a
translation, particularly for large sentences. We can consider each segment sequentially
while generating the translation, working from left to right in the French sentence.

The1 dog2 ate3 my4 homework5

Le1 chien2 a3 mang�e4 mes5 devoirs6

H
H

H
HH

H
H
H
HH

H
H
H
HH

k k

Figure 8
Example of a safe segmentation

We now describe a maximum entropy model which assigns to each location in a
French sentence a score which is a measure of the safety in cutting the sentence at
that location. We begin as in the word translation problem, with a training sample of
English-French sentence pairs (E;F ) randomly extracted from the Hansard corpus. For
each sentence pair we use the basic translation model to compute the Viterbi alignment
Â between E and F . We also use a stochastic part of speech tagger as described in
(Merialdo 1990) to label each word in F with its part of speech. For each position j in F
we then construct a (x; y) training event. The value y is rift if a rift belongs at position
j and is no-rift otherwise. The context information x is reminiscent of that employed
in the word translation application described earlier. It includes a six-word window of
French words: three to the left of yj and three to the right of yj . It also includes the
part-of-speech tags for these words, and the classes of these words as derived from a
mutual-information clustering scheme described in (Brown et al 1990). The complete
(x; y) pair is illustrated in Figure 9.

In creating p(riftjx), we are (at least in principle) modeling the decisions of an
expert French segmenter. We have a sample of his work in the training sample ~p(x; y),

rift?

y

eai�3 : : : eai+3 tag(eai�3) : : : tag(eai+3)

x

class(eai�3) : : : class(eai+3)

Figure 9
(x;y) for sentence segmentation
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Figure 10
Change in log-likelihood during segmenting model-growing. (Overtraining begins to occur at
about 40 features)

and we measure the worth of a model by the log-likelihood L~p(p). During the iterative
model-growing procedure, the algorithm selects constraints on the basis of howmuch they
increase this objective function. As the algorithm proceeds, more and more constraints
are imposed on the model p, bringing it into ever-stricter compliance with the empirical
data ~p(x; y). This is useful to a point; insofar as the empirical data embodies the expert
knowledge of the French segmenter, we would like to incorporate this knowledge into
a model. But the data contains only so much expert knowledge; the algorithm should
terminate when it has extracted this knowledge. Otherwise, the model p(yjx) will begin
to �t itself to quirks in the empirical data.

A standard approach in statistical modeling to avoid the problem of over�tting the
training data is employ cross-validation techniques. Separate the training data ~p(x; y)
into a training portion, ~pr , and a heldout portion, ~ph. Use only ~pr in the model-growing
process; that is, select features based on how much they increase the likelihood L~pr (p).
As the algorithm progresses, L~pr (p) thus increases monotonically. As long as each new
constraint imposed allows p to better account for the random process which generated
both ~pr and ~ph, the quantity L~ph(p) also increases. At the point when over�tting begins,
however, the new constraints no longer help p model the random process, but instead
require p to model the noise in the sample ~pr itself. At this point, L~pr (p) continues to
rise, but L~ph (p) no longer does. It is at this point that the algorithm should terminate.

Figure 10 illustrates the change in log-likelihood of training data L~pr (p) and held-out
data L~ph(p). Had the algorithm terminated when the log-likelihood of the held-out data
stopped increasing, the �nal model p would contain slightly less than 40 features.

We have employed this segmenting model as a component in a French-English ma-
chine translation system in the following manner. The model assigns to each position in
the French sentence a score, p(rift j x), which is a measure of how appropriate a split
would be at that location. A dynamic programming algorithm then selects, given the
\appropriateness" score at each position and the requirement that no segment may con-
tain more than 10 words, an optimal (or, at least, reasonable) splitting of the sentence.
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Monsieur l'Orateur
,

j'aimerais poser une question au
Ministre des Transports.

|{
A quelle date le

nouveau r�eglement devrait il entrer en vigeur?
|{

Quels furent les crit�eres utilis�es
pour l'�evaluation
de ces biens.

|{
Nous

savons que si nous pouvions contrôler la folle avoine
dans l'ouest du Canada, en

un an nous
augmenterions notre rendement en
c�er�eales de 1 milliard de dollars.

Figure 11
Maximum entropy segmenter behavior on four sentences selected at random from the Hansard
data

Figure 11 shows the system's segmentation of four sentences selected at random from
the Hansard data. We remind the reader to keep in mind when evaluating Figure 11 that
the segmenter's task is not to produce logically coherent blocks of words, but to divide
the sentence into blocks which can be translated sequentially from left to right.

5.4 Word Reordering

Translating a French sentence into English involves not only selecting appropriate En-
glish renderings of the words in the French sentence, but also selecting an ordering for
the English words. This order is often very di�erent from the French word order. One
way Candide captures word-order di�erences in the two languages is to allow for align-
ments with crossing lines. In addition, Candide performs, during a pre-processing stage,
a reordering step which shu�es the words in the input French sentence into an order
more closely resembling English word order.

One component of this word reordering step deals with French phrases which have
the noun de noun form. For some noun de noun phrases, the best English transla-
tion is nearly word for word: con
it d'int�erêt, for example, is almost always rendered as
con
ict of interest. For other phrases, however, the best translation is obtained by inter-
changing the two nouns and dropping the de. The French phrase taux d'int�erêt, for exam-
ple, is best rendered as interest rate. Table 7 gives several examples of noun de noun

phrases together with their most appropriate English translations.
In this section we describe a maximumentropy model which, given a French noun de noun

phrase, estimates the probability that the best English translation involves an interchange
of the two nouns. We begin with a sample of English-French sentence pairs (E;F ) ran-
domly extracted from the Hansard corpus, such that F contains a de phrase. For each
sentence pair we use the basic translation model to compute the Viterbi alignment Â
between the words in E and F . Using Â we construct an (x; y) training event as fol-
lows. We let the context x be the pair of French nouns (nounL ;nounR). We let y be
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word-for-word phrases
somme d'argent sum of money

pays d'origin country of origin
question de privil�ege question of privilege

con
it d'int�erêt con
ict of interest

interchanged phrases
bureau de poste post o�ce

taux d'int�erêt interest rate
compagnie d'assurance insurance company

gardien de prison prison guard

Table 7
noun de noun phrases and their English equivalents
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Number of
Template actual features f(x;y) = 1 if and only if : : :

1 2jVF j y = 3 and nounL = 2
2 2jVF j y = 3 and nounR = 2
3 2jVF j

2
y = 3 and nounL = 21 and nounR = 22

Table 8
Template features for noun de noun model

no-interchange if the English translation is a word-for-word translation of the French
phrase and y = interchange if the order of the nouns in the English and French phrases
are interchanged.

We de�ne candidate features based upon the template features shown in Table 8. In
this table, the symbol3 is a placeholder for either interchange or no-interchange and
the symbols 21 and 22 are placeholders for possible French words. If there are jVF j total

French words, there are 2jVF j possible features of templates 1 and 2 and 2jVF j
2 features

of template 3.
Template 1 features consider only the left noun. We expect these features to be

relevant when the decision of whether to interchange the nouns is in
uenced by the
identity of the left noun. For example, including the template 1 feature

f(x; y) =

�
1 y=interchange and nounL= syst�eme
0 otherwise

gives the model sensitivity to the fact that the nouns in French noun de noun phrases
which begin with syst�eme (such as syst�eme de surveillance and syst�eme de quota) are
more likely to be interchanged in the English translation. Similarly, including the tem-
plate 1 feature

f(x; y) =

�
1 y=no-interchange and nounL= mois
0 otherwise

gives the model sensitivity to the fact that French noun de noun phrases which begin
with mois, such as mois de mai (month of May) are more likely to be translated word
for word.

Template 3 features are useful in dealing with translating noun de noun phrases in
which the interchange decision is in
uenced by both nouns. For example, noun de noun

phrases ending in int�erêt are sometimes translated word for word, as in con
it d'int�erêt
(con
ict of interest) and are sometimes interchanged, as in taux d'int�erêt (interest rate).

We used the feature-selection algorithm of section 4 to construct a maximumentropy
model from candidate features derived from templates 1,2 and 3. The model was grown
on 10,000 training events randomly selected from the Hansard corpus. The �nal model
contained 358 constraints.

To test the model, we constructed a noun de noun word-reordering module which
interchanges the order of the nouns if p(interchange j x) > 0:5 and keeps the order the
same otherwise. Table 9 compares performance on a suite of test data against a baseline
noun de noun reordering module which never the swaps the word order.

Table 12 shows some randomly-chosen noun de noun phrases extracted from this
test suite along with p(interchangejx), the probability which the model assigned to
inversion. On the right are phrases such as saison d'hiver for which the model strongly
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Test data Simple Model Maximum Entropy
Accuracy Model Accuracy

50,229 not interchanged 100% 93.5%
21,326 interchanged 0% 49.2%
71,555 total 70.2% 80.4%

Table 9
noun de noun model performance: simple approach vs. maximum entropy
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Figure 12
Predictions of the noun de noun interchange model on phrases selected from a corpus
unseen during the training process
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predicted an inversion. On the left are phrases which the model strongly prefers not
to interchange, such as somme d'argent, abus de privil�ege and chambre de commerce.
Perhaps most intriguing are those phrases which lie in the middle, such as taux d'in
ation,
which can translate either to in
ation rate or rate of in
ation.

6. Conclusion

We began by introducing the building blocks of maximumentropy modeling|real-valued
features and constraints built from these features. We then discussed the maximum en-
tropy principle. This principle instructs us to choose, among all the models consistent
with the constraints, the model with the greatest entropy. We observed that this model
was a member of an exponential familywith one adjustable parameter for each constraint.
The optimal values of these parameters are obtained by maximizing the likelihood of the
training data. Thus two di�erent philosophical approaches|maximumentropy and max-
imum likelihood|yield the same result: the model with the greatest entropy consistent
with the constraints is the same as the exponential model which best predicts the sample
of data.

We next discussed algorithms for constructing maximumentropy models, concentrat-
ing our attention on the two main problems facing would-be modelers: selecting a set of
features to include in a model, and computing the parameters of a model which contains
these features. The general feature-selection is too slow in practice, and we presented
several techniques for making the algorithm feasible.

In the second part of this paper we described several applications of our algorithms,
concerning modeling tasks arising in Candide, an automatic machine-translation system
under development at IBM. These applications demonstrate the e�cacy of maximum
entropy techniques for performing context-sensitive modeling.
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Appendix: E�cient Algorithms for Feature Selection

Computing the Approximate Gain of One Feature

This section picks up where section 4 left o�, describing in some detail a set of algorithms
which implement the feature selection process e�ciently.

We �rst describe an iterative algorithm for computing ��L(S; f ) � max�GS;f (�)
for a candidate feature f . The algorithm is based on the fact that the maximum of
GS;f (�) occurs (except in rare cases) at the unique value �? at which the derivative
G0

S;f (�?) is zero. To �nd this zero we apply Newton's iterative root-�nding method.
An important twist is that we do not use the updates obtained by applying Newton's
method directly in the variable �. This is because there is no guarantee that GS;f (�n)
increases monotonically for such updates. Instead, we use updates derived by applying
Newton's method in the variables e� or e��. A convexity argument shows that using these
updates the sequence of GS;f (�n) converges monotonically to the maximumapproximate
gain ��L(S; f ) � GS;f (�

?) and that �n increases monotonically to �?.
The value �? that maximizesGS;f (�) can be found by solving the equationG

0
S;f (�

?) = 0.
Moreover, if �n is any sequence for which G0

S;f (�n) converges monotonically to 0, then
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GS;f (�n) will increase monotonically. This is a consequence of the convexity of GS;f (�)
in �.

We can solve an equation g(�) = 0 by Newton's method, which produces a sequence
�n by the recurrence given in (18), repeated here for convenience:

�n+1 = �n �
g(�n)

g0(�n)
(34)

If we start with �0 su�ciently close to �?, then the sequence �n will converge to �?
and g(�n) will converge to zero. In general, though, the g(�n) will not be monotonic.
However, it can be shown that the sequence is monotonic in the following important
cases: if �0 � �? and g(�) is either decreasing and convex-[ or increasing and convex-\.

The function G0
S;f (�) is neither convex-\ or convex-[ as a function of �. However,

it can be shown (by taking derivatives) that G0
S;f (�) is decreasing and convex-[ in

e�, and is increasing and convex-\ in e��. Thus, if �? > 0 so that e0 < e�
?

, we can
apply Newton's method in e� to obtain a sequence of �n for which G0

S;f (�n) increases
monotonically to zero. Similarly, if �? < 0 so that e0 < e��

?

, we can apply Newton's
method in e�� to obtain a sequence �n for which G0

S;f (�n) decreases monotonically to
zero. In either case, GS;f (�n) increases monotonically to its maximumGS;f (�?).

The updates resulting from Newton's method applied in the variable er�, for r = 1
or r = �1 are easily computed:

�n+1 = �n +
1

r
log

�
1�

1

r

G0
S;f (�n)

G00
S;f (�n)

�
(35)

In order to solve the recurrence in (35), we need to compute G0
S;f and G00

S;f . The
zeroth, �rst and second derivatives of G are

GS;f (�) = �
X
x

~p(x) logZ�(x) + �~p(f) (36)

G0
S;f (�) = ~p(f) �

X
x

~p(x)p�S;f (f jx) (37)

G00
S;f (�) = �

X
x

~p(x)p�S;f ((f � p�S;f (f jx))
2jx) (38)

where p�S;f (hjx) �
X
y

p�S;f (yjx)h(x; y) (39)

With these in place, we are ready to enumerate
Algorithm 3: Computing the Gain of a Single Feature

Input: Empirical distribution ~p(x; y); initial model p
S
; candidate feature f

Output: Approximate gain ��L(S; f ) of feature f

1. Let

r =

�
1 if ~p(f) � pS(f)
�1 otherwise

(40)

2. Set �0 0
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3. Repeat the following until GS;f (�n) has converged:

Compute �n+1 from �n using (35)
Compute GS;f (�n+1) using (26)

4. Set ��L(S; f ) GS;f (�n)

Computing Approximate Gains in Parallel

For the purpose of incremental model growing as outlined in Algorithm 2, we need to
compute the maximum approximate gain ��L(S; f ) for each candidate feature f 2 F .
One obvious approach is to cycle through all candidate features and apply Algorithm 3
for each one sequentially. Since Algorithm 3 requires one pass through every event in the
training sample per iteration, this could entail millions of passes through the training
sample. Because a signi�cant cost often exists for reading the training data|if the data
cannot be stored in memory but must be accessed from disk, for example|an algorithm
which passes a minimal number of times through the data may be of some utility. We
now give a parallel algorithm speci�cally tailored to this scenario.

Algorithm 4: Computing Approximate Gains for A Collection of Features

Input: Collection F of candidate features; empirical distribution ~p(x; y);
initial model p

S
Output: Approximate gain ��L(S; f ) for each candidate feature f 2 F

1. For each f 2 F , calculate ~p(f), the expected value of f in the training data

2. For each x, determine the set F(x) � F of f that are active for x:

F(x) � ff 2 F j f(x; y)p
S
(yjx)~p(x) > 0 for some yg (41)

3. For each f , let

r(f) =

�
1 if ~p(f) � pS(f)
�1 otherwise

(42)

4. For each f 2 F , initialize �(f)  0

5. Repeat the following until �(f) converges for each f 2 F :

(a) For each f 2 F , set

G0(f)  ~p(f)

G00(f)  0

(b) For each x, do the following:

For each f 2 F(x), update G0(f) and G00(f) by

G0(f)  G0(f) � ~p(x)p�S;f (f jx) (43)

G00(f)  G00(f) � ~p(x)p�S;f ((f � p�S;f (f jx))
2jx)(44)

where p�S;f (f jx) �
P

y p
�
S;f (yjx)f(x; y)
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(c) For each f 2 F , update �(f) by

�(f) �(f) +
1

r(f)
log

�
1�

1

r(f)

G0(f)

G00(f)

�
(45)

6. For each f 2 F , substitute �(f) into (26) to determine ��L(S; f ).

Convergence for this algorithm is guaranteed just as it was for algorithm 3 { after
each iteration of step 5, the value of �(f) for each candidate feature f is closer to its
optimal value �?(f) and, more importantly, the gain GS;f is closer to the maximal gain
��L(S; f ).
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Abstract

Alpino is a wide-coverage computational analyzer of Dutch which aims at accurate, full,
parsing of unrestricted text. We describe the head-driven lexicalized grammar and the lex-
ical component, which has been derived from existing resources. The grammar produces
dependency structures, thus providing a reasonably abstract and theory-neutral level of lin-
guistic representation. An important aspect of wide-coverage parsing is robustness and
disambiguation. The dependency relations encoded in the dependency structures have been
used to develop and evaluate both hand-coded and statistical disambiguation methods.

1 Introduction

For English, tremendous progress has been made in the area of wide-coverage
parsing of unrestricted text. Many of the proposed systems are statistical parsers,
but systems based on a hand-written grammar exist as well. The aim of Alpino1 is
to provide computational analysis of Dutch with coverage and accuracy compara-
ble to state-of-the-art parsers for English.

The Alpino grammar (described in more detail below) is a lexicalized gram-
mar in the tradition of constructionalist Head-driven Phrase Structure Grammar
(Pollard and Sag 1994, Sag 1997). The grammar consists of hand-written, lin-
guistically motivated rules and lexical types. To evaluate the coverage and disam-
biguation component of the system, a testbench of syntactically annotated material
is absolutely crucial. Given the current lack of such material for Dutch, we have
started to annotate corpora with dependency structures. Dependency structures
provide a convenient level of representation for annotation, and a fairly neutral
representation for further processing. The annotation format is taken from the
projectCorpus Gesproken Nederlands(Corpus of Spoken Dutch) (Oostdijk 2000).
The construction of dependency structures in the grammar and our treebanking ef-
forts are described in section 4. Both the lexicalist nature of the Alpino grammar
and the use of dependency structures imply that lexical items must be associated
with detailed valency information. For the Alpino lexicon we have extracted this
information from the Celex and Parole lexical databases (section 3).

In section 5 we describe Alpino’s parsing architecture. Section 6 describes
a variety of disambiguation strategies which have been integrated in Alpino. In
addition, we report on a number of preliminary disambiguation experiments. We
conclude with some remarks on future work.
1Alpino is being developed as part of theNWO PIONIERprojectAlgorithms for Linguistic Processing,
www.let.rug.nl/˜vannoord/alp
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2 Grammar

The Alpino grammar is an extension of the successfulOVIS grammar (van Noord,
Bouma, Koeling and Nederhof 1999, Veldhuijzen van Zanten, Bouma, Sima’an,
van Noord and Bonnema 1999), a lexicalized grammar in the tradition of Head-
driven Phrase Structure Grammar (Pollard and Sag 1994). The grammar formal-
ism is carefully designed to allow linguistically sophisticated analyses as well as
efficient and robust processing.

In contrast to earlier work onHPSGgrammar rules in Alpino are relativey de-
tailed. However, as pointed out in Sag (1997), by organizing rules in an inheritance
hierarchy, the relevant linguistic generalizations can still be captured. The Alpino
grammar currently contains over 100 rules, defined in terms of a few general rule
structures and principles. The grammar covers the basic constructions of Dutch
(including main and subordinate clauses, (indirect) questions, imperatives, (free)
relative clauses, a wide range of verbal and nominal complementation and modifi-
cation patterns, and coordination) as well as a wide variety of more idiosyncratic
constructions (appositions, verb-particle constructions,PP’s including a particle,
NP’s modified by an adverb, punctuation, etc.). The lexicon contains definitions
for various nominal types (nouns with various complementation patterns, proper
names, pronouns, temporal nouns, deverbalized nouns), various complementizer,
determiner, and adverb types, adjectives, and 36 verbal subcategorization types.

The formalism supports the use of recursive constraints over feature-structures
(using delayed evaluation, van Noord and Bouma (1994)). This allowed us to in-
corporate an analysis of cross-serial dependencies based on argument-inheritance
(Bouma and van Noord 1998) and a trace-less account of extraction along the lines
of Bouma, Malouf and Sag (2001).

3 Lexical Resources

Accurate, wide-coverage parsing of unrestricted text requires a lexical component
with detailed subcategorization frames. For lexicalist grammar formalisms, the
availability of lexical resources which specify subcategorization frames is even
more crucial. In HPSG, for instance, phrase structure rules rely on the fact that
each head contains a specification of the elements it subcategorizes for. If such
specifications are missing, the grammar will wildly overgenerate.

We have used two existing lexical databases (Celex and Parole) to create a
wide-coverage lexicon with detailed subcategorization frames enriched with de-
pendency relations. Celex (Baayen, Piepenbrock and van Rijn 1993) is a large
lexical database for Dutch, with rich phonological and morphological information.
For use within the CGN project, this database has been extended with dependency
frames (Groot 2000). This version of the lexicon contains 11,800 verbal stems,
with a total of 21,800 dependency frames. By far the most frequent frames are
those for intransitive (4,100) and transitive (6,500) verbs. A fair number of frames
occurs more than 100 times, but 300 of the 650 different dependency frametypes
in the database occur only once.
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Dependency Frame Overlap Celex Parole Total
only only

[SU:NP][OBJ1:NP] 1810 1211 240 3261
[SU:NP] 257 1697 42 1996
[SU:NP][PC:PPhpformi] 337 541 273 1151
[SU:NP][OBJ1:NP][PC:PPhpformi] 129 375 308 812
[SU:NP][VC:Shsubordinatei] 103 136 103 342
[SUP:NPhheti][OBJ1:NP][SU:CP] 7 247 5 259
[SU:NP][OBJ2:NP][OBJ1:NP] 65 171 28 264
[SU:NP][SE:NP][PC:PPhpformi] 65 62 102 229
[SU:NP][SE:NP] 49 137 65 251
[SU:NP][VC:VP] 10 16 37 63

Table 1: Dependency Frames and the number of stems occurring with this frame in both
resources, in CGN/Celex only, in Parole only, and the total number of stems with this de-
pendency frame in the Alpino Lexicon.

The Dutch Parole lexicon2 comes with detailed subcategorization information,
including dependency relations. The Parole lexicon is smaller than Celex, with
3,200 verbal stems and a total of 5000 dependency frames. There are 320 different
dependency frame types, 190 of which occur only once.

Dependency frames for the Alpino lexicon have been constructed using the
dependency information provided by CGN/Celex, Parole, and by entering defini-
tions by hand. The latter has been done mostly for auxiliary and modal verbs:
a small class of high-frequent elements which are exceptional in a number of
ways. The CGN/Celex dictionary is very large. As the Celex database comes
with frequency information, we currently only include those lexical items whose
frequency is above a certain threshold. For verbal stems, this means that roughly
50% of the stems in Celex is included in the Alpino lexicon. All verbal stems from
the Parole lexicon with a dependency frame covered by the grammar are included.

Currently, for 28 different CGN/Celex dependency frames a definition in the
grammar has been provided. This covers over 80% of the verbal dependency
frames in the CGN/Celex database, 10,400 of which are sufficiently frequent to
be included in the Alpino lexicon. For 15 different dependency frames in the Pa-
role lexicon a definition in Alpino is present. Using these, we extract over 4,100
dependency frames (82% of the total number of dependency frames in the Parole
database). An overview of overlap and non-overlap for the most frequent frames
extractable from both sources is given in table 1. For transitive and intransitive
verbs, we see that over 85% of the stems in Parole are present in CGN/Celex as
well. For most other dependency frames, however, the overlap is generally much
smaller, and a significant portion of the stems present in Parole is not present in
2http://www.inl.nl/corp/parole.htm
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Celex. This suggests that, for more specific subcategorization frames, both re-
sources are only partially complete, and that not even the union of both provides
exhaustive coverage.3

4 Dependency Structures

Within theCGN-project (Oostdijk 2000), guidelines have been developed for syn-
tactic annotation of spoken Dutch (Moortgat, Schuurman and van der Wouden
2000), using dependency structures similar to those used for the German Negra
corpus (Skut, Krenn and Uszkoreit 1997).

Dependency structures make explicit the dependency relations between con-
stituents in a sentence. Each non-terminal node in a dependency structure consists
of a head-daughter and a list of non-head daughters, whose dependency relation
to the head is marked. A dependency structure for (1) is given in figure 1. Con-
trol relations are encoded by means of co-indexing (i.e. the subject ofhebbenis
the dependent with index1). Note that a dependency structure does not neces-
sarily reflect (surface) syntactic constituency. The dependenthaar nieuwe model
gisteren aangekondigd, for instance, does not correspond to a (surface) syntactic
constituent in (1).

(1) Mercedes
Mercedes

zou
should

haar
her

nieuwe
new

model
model

gisteren
yesterday

hebben
have

aangekondigd
announced

Mercedes should have announced her new model yesterday

The Alpino grammar produces dependency structures compatible with the
CGN-guidelines. We believe this is a useful output format for a number of reasons.
First of all, annotating a text with dependency structures is relatively straightfor-
ward and independent of the particular grammatical framework assumed. Thus, a
dependency treebank can be used to debug and test various versions of the Alpino
grammar. Second, as we adopt theCGN-guidelines, a considerable amount of an-
notated material will be available within the near future which can be used for
development and testing. Third, it has been suggested that dependency relations
provide a convenient level of representation for evaluation of computational gram-
mar based on radically different grammatical theories (Carroll, Briscoe and San-
filippo 1998). Finally, statistics for dependency relations between head words can
be used to develop accurate models for parse-selection (Collins 1999); preliminary
experiments are described in section 6.

Grammatical Construction of Dependency Structures. To produce depen-
dency structures with the Alpino grammar, a new level of representation has been
added to the grammar. The attributeDT dominates a dependency structure, with
attributes for the lexical head (HD) and the various dependents. The value of a
dependent attribute can be a dependency structure or a leaf node consisting of a
3The less frequent verb stems in Celex (currently not included in Alpino) are almost exclusively as-
signed the intransitive or transitive dependency frame.
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s

su
1

noun
mercedes

hd
verb
zou

vc
vp

su
1

hd
verb

hebben

vc
vp

su
1

obj1
np

det
det

haar

mod
adj

nieuwe

hd
noun
model

mod
adv

gisteren

hd
verb

aangekondigd

Figure 1: Dependency structure for example (1).
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Figure 2: Schematic lexical entry for transitive verbs taking a direct object (OBJ1), and for
transitive verbs taking an indirect object (OBJ2).
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POS-tag and word only.
The construction of dependency structures is driven by the lexicon. For each

subcategorization type recognized in the lexical hierarchy a mapping between ele-
ments on the list-valued feature which specifies basic subcategorization properties
(SUBCAT) and attributes ofDT is defined. Two examples are given in figure 2. The
leftmost feature structure exemplifies a finite, transitive verb. The value ofDT of
the nominativeNP on subcat is identical to the value of theSU dependent. Sim-
ilarly, the value ofDT of the accusativeNP on subcat is identical to the value of
theOBJ1 dependent. The rightmost feature structure exemplifies a finite, transitive
verb for which the object is assigned to theOBJ2 (secondary object) dependency
relation. In some cases, the addition of dependency structures leads to more fine-
grained distinctions. For instance,PP-arguments can be linked toPC(prepositional
complement) or LD (locative or directional complement), where the distinction be-
tween these two is primarily semantic in nature. Therefore, verbs taking a prepo-
sitional complement are assigned a subcategorization frame that differs from the
frame assigned to verbs taking such aLD complement.

In HEAD-COMPLEMENT structures, theDT attribute can simply be shared be-
tween head daughter and mother. InHEAD-MODIFIER structures, the dependency
structure of the modifier is added to the list-valuedMOD dependent of the head.

Dependency Treebanks. For development and evaluation purposes, we have
started to annotate various sample text fragments with dependency structures.

The annotation process typically starts by parsing a sentence with the Alpino
grammar. This produces a (often large) number of possible analyses. The an-
notator picks the analysis which best matches the correct analysis. To facilitate
selection of the best parse among a large number of possibilities, theHDRUG en-
vironment has been extended with a graphical tool based on the SRI TreeBanker
(Carter 1997) which displays all fragments of the input which are a source of am-
biguity. By disambiguating these items (usually a much smaller number than the
number of readings), the annotator can quickly pick the most accurate parse.

For example, the sentenceJan zag het meisje‘Jan saw the girl’ has (in prin-
ciple) two readings corresponding to the dependency structures in figure 3. The
readings of a sentence are represented as a set of sets of dependency paths, as in
figure 4. From these sets of paths, the parse selection tool computes a set ofmax-
imal discriminantswhich can be used to select among different analyses. In this
case, the path ‘s:hd = vzag’ is shared by all the analyses and so is not a useful
discriminant. On the other hand, the path ‘s:obj1:hd = nmeisje’ does distinguish
between the readings but it is not maximal, since it is subsumed by the path ‘s:obj1
= np het meisje’ which is shorter and makes exactly the same distinctions. The
maximal discriminants are presented to the annotator, who may mark any of them
as either good (the correct parse must include it) or bad (the correct parse may not
include it). In this simple example, marking any one of the maximal discriminants
as good or bad is sufficient to uniquely identify the correct parse. For more com-
plex sentences, several choices will have to be made to select a single best parse.
To help the annotator, when a discriminant is marked as bad or good, the following
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s

hd
verb
zag

su
noun
jan

obj1
np

det
det
het

hd
noun
meisje

s

hd
verb
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su
np

det
det
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hd
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obj1
noun
jan

Figure 3: Dependency structures for two readings ofJan zag het meisje.

s:hd = vzag s:hd = vzag
*s:su = npjan *s:su = nphet meisje
*s:obj1 = nphet meisje s:su:det = dethet
s:obj1:det = dethet s:su:hd = nmeisje
s:obj1:hd = nmeisje *s:obj1 = npjan

Figure 4: Dependency paths forJan zag het meisje(* indicates a maximal discriminant).

inference rules are applied to further narrow the possibilities (Carter 1997):

� If a discriminant is bad, any parse which includes it is bad.

� If a discriminant is good, any parse which does not include it is bad.

� If a discriminant is only included in bad parses, it must be bad.

� If a discriminant is included in all the undecided parses, it must be good.

This allows users to focus their attention on discriminants about which they have
clear intuitions. Their decisions about these discriminants combined with the rules
of inference can then be used to automatically make decisions about less obvious
discriminants.

If the parse selected by the annotator is fully correct, the dependency structure
for that parse is stored asXML in the treebank. If the best parse produced by
the grammar is not the correct parse as it should be included in the treebank, the
dependency structure for this parse is sent to the Thistle editor.4 The annotator can
now produce the correct parse manually.

We have started to annotate various smaller fragments using the annotation
tools described above. The largest fragments consist of two sets of sentences ex-
4LT Thistle (Calder 2000),www.ltg.ed.ac.uk/software/thistle/ , is an editor and display
engine for linguistic data-structures which supportsXML .
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tracted from the Eindhoven corpus (Uit den Boogaart 1975). TheCDBL10 tree-
bank currently consists of the first 519 sentences of ten words or less from section
CDBL (newspaper text). TheCDBL20 treebank consists of the first 252 sentences
with more than 10 but no more than 20 words.

Evaluation. Evaluation of coverage and accuracy of a computational grammar
usually is based on some metric which compares tree structures (such as recall and
precision of (labelled) brackets or bracketing inconsistencies (crossing brackets)
between test item and parser output). As is well-known, such metrics have
a number of drawbacks. Therefore, Carroll et al. (1998) propose to annotate
sentences with triples of the formhhead-word, dependency relation, dependent
head-wordi. For instance, for the example in (1) we might obtain:

hzou, su, mercedesi haangekondigd, obj1, modeli
hhebben, su, mercedesi hmodel, det, haari
haangekondigd, su, mercedesi hmodel, mod, nieuwei
haangekondigd, mod, gistereni

Dependency relations between head-words can be extracted easily from the
dependency structures in our treebank, as well as from the dependency structures
constructed by the parser. It is thus straightforward to compute precision, recall,
and f-score on the set of dependency triples.

5 Robust Parsing

The initial design and implementation of the Alpino parser is inherited from the
system described in van Noord (1997), van Noord et al. (1999) and van Noord
(2001). However, a number of improvements have been implemented which are
described below.

The construction of a dependency structure on the basis of some input proceeds
in a number of steps, described below. The first step consists of lexical analysis. In
the second step a parse forest is constructed. The third step consists of the selection
of the best parse from the parse forest.

Lexical Analysis. The lexicon associates a word or a sequence of words with
one or moretags. Such tags contain information such as part-of-speech, in-
flection as well as a subcategorization frame. For verbs, the lexicon typi-
cally hypothesizes many different tags, differing mainly in the subcategoriza-
tion frame. For sentence (1), the lexicon produces 83 tags. Some of those tags
are obviously wrong. For example, one of the tags for the wordhebben is
verb(hebben,pl,part sbar transitive(door)) . The tag indicates
a finite plural verb which requires a separable prefixdoor , and which subcatego-
rizes for anSBAR complement. Sincedoor does not occur anywhere in sentence
(1), this tag will not be useful for this sentence. A filter containing a number of
hand-written rules has been implemented which checks that such simple condi-
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tions hold. For sentence (1), the filter removes 56 tags. After the filter has applied,
feature structures are associated with each of these tags. Often, a single tag is
mapped to multiple feature structures. The remaining 27 filtered tags give rise to
89 feature structures.

An important aspect of lexical analysis is the treatment of unknown words. The
system applies a number of heuristics for unknown words. Currently, these heuris-
tics attempt to deal with numbers and number-like expressions, capitalized words,
words with missing diacritics, words with ‘too many’ diacritics, compounds, and
proper names.

If such heuristics still fail to provide an analysis, then the system guesses a tag
by inspecting the suffix of the word. A list of suffixes is maintained which predict
the tag of a given word. If this still does not provide an analysis, then it is assumed
that the word is a noun.

In addition to the treatment of unknown words, the robustness of the system is
enhanced by the possibility to skip tokens of the input. Currently this possibility is
employed only for certain punctuation marks. Even though punctuation is treated
both in the lexicon and the grammar, the syntax of punctuation is irregular enough
to warrant the possibility to ignore punctuation. For instance, quotation marks may
appear almost anywhere in the input. The corpus contains:

(2) De
The

z.g.
so-called

”
”

speelstraat
play-street

,
,
die
that

hier
here

en
and

daar
there

al
already

bestaat
exists

?
?

Apparently, the author intended to placespeelstraat within quotes, but the
second quote is not present. During lexical analysis, tags are optionally extended
to include neighbouring words which are classified as ‘skipable’.

Creating Parse Forests. The Alpino parser takes the result of lexical analysis
as its input, and produces aparse forest: a compact representation of all parse
trees. The Alpino parser is a left-corner parser with selective memoization and
goal-weaking. It is a variant of the parsers described in van Noord (1997). We gen-
eralized some of the techniques described there to take into account relational con-
straints, which are delayed until sufficiently instantiated (van Noord and Bouma
1994).

As described in van Noord et al. (1999) and van Noord (2001), the parser can
be instructed to find all occurrences of the start categoryanywhere in the input.
This feature is added to enhance robustness as well. In case the parser cannot find
an instance of the start category from the beginning of the sentence to the end,
then the parser produces parse trees for large chunks of the input. A best-first
search procedure then picks out the best sequence of such chunks. Depending on
the application, such chunks might be very useful. In the past, we successfully
employed this strategy in a spoken dialogue system (Veldhuijzen van Zanten et al.
1999).
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beam cdbl10 cdbl20
accuracy (%) speed (msec)accuracy (%) speed (msec)

1 79.99 190 73.63 740
2 80.66 270 74.59 1470
4 81.11 350 75.07 2350
8 81.22 530 75.35 3630

16 81.36 590 75.31 5460
32 81.36 790 74.98 7880
∞ 81.36 640 - -

Table 2: Effect of beam-size on accuracy and efficiency of parse selection

Unpacking and Parse Selection. The motivation to construct a parse forest is
efficiency: the number of parse trees for a given sentence can be enormous. In
addition to this, in most applications the objective will not be to obtainall parse
trees, but rather thebestparse tree. Thus, the final component of the parser consists
of a procedure to select these best parse trees from the parse forest.

In order to select the best parse tree from a parse forest, we assume a parse
evaluation function which assigns a score to each parse. In section 6 we describe
some initial experiments with a variety of parse evaluation functions. A naive
algorithm constructs all possible parse trees, assigns each one a score, and then
selects the best one. Since it is too inefficient to construct all parse trees, we have
implemented the algorithm which computes parse trees from the parse forest as
a best-first search. This requires that the parse evaluation function is extended
to partial parse trees. In order to be able toguaranteethat this search procedure
indeed finds the best parse tree, a certain monotonicity requirement should apply
to this evaluation function: if a (partial) trees is better thans0, then a treet which
containss should be better thant 0 which is just liket except it hass0 instead ofs.
However, instead of relying on such a requirement, we implemented a variant of
a best-first search algorithm in such a way that for each state in the search space,
we maintain theb best candidates, whereb is a small integer (thebeam). If the
beam is decreased, then we run a larger risc of missing the best parse (but the result
will typically still be a relatively ‘good’ parse); if the beam is increased, then the
amount of computation increases too. Currently, we find that a value ofb= 4 is a
good compromise between accuracy and efficiency. In table 2 the effect of various
values forb is presented for two development treebanks. The grammar assigns on
average about 33 parse trees per sentence for thecdbl10 corpus. This number
increases rapidly for longer sentences: for thecdbl20 corpus it is at least 340.5

5This is the average number after creating all parse trees for each sentence with a maximum of 1000
parse trees per sentence.
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6 Disambiguation

The best-first unpack strategy described in section 5 depends on a parse evaluation
function which assigns scores to (partial) parse trees. We have experimented with a
number of disambiguation techniques on thecdbl10 andcdbl20 development
treebanks described earlier.

Penalty rules. The simplest disambiguation method consists of hand-written
‘penalty’ rules which implement a variety of preferences. Each such penalty rule
describes a partial parse tree. For a given parse tree, the system computes how
often a sub-tree matches with a penalty rule, giving rise to the total penalty of that
parse. The following lists characterizes some of the penalty rules:

� complementation is preferred over modification

� subject topicalization is preferred over object topicalization

� long distance dependencies are dis-preferred

� certain rules are dis-preferred (e.g. rules which coordinate categories with-
out an explicit coordinator)

� certain lexical entries are dis-preferred (e.g. the preposition readings for
the wordsaan, bij, in, naar, op, uit, voor, tussen are
preferred over the adjectival, noun and/or verb readings).

� certain guesses for unknown words are preferred over others

As can be concluded from the preliminary results presented in table 3, it ap-
pears to be the case that about 60% of the disambiguation problem can be solved
using this very simple technique.

Dependency relations We also experimented with statistical models based on
dependency relations encoded in the dependency structure. The model assigns a
probality to a parse by considering each dependency relation. For this purpose,
dependency relationsd are 5-tuplesd = hwh; ph; r;wa; pai wherewh is the head
word, ph is the corresponding part-of-speech tag taken from a small set of part-of-
speechsfv;n;a;adv; p; : : :g, r is the name of the relation taken from a small set of
relation namesfsu,obj1,obj2,vc,mod,det; : : :g; wa is the argument word, andpa is
its part of speech.

The probability of a parsey given a sentencex might then be defined as:

p(yjx) =
1

Z(x) ∏
d2y

p(r;wa; pajwh; ph)

For disambiguation, the normalizing factorZ(x) is the same for every parse of a
given sentence and can be ignored.
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Due to the occurrence of reentrancies, dependency structures are generally not
trees but graphs. Therefore, the product above gives poor results because it will
have an unjustified bias against such reentrancies (a reentrancy gives rise to an
additional dependency relation). For this reason, we have chosen to score parse
trees by determining themeanvalue of� logp for each tuple; this improved results
considerably. The probability of a dependency is calculated as follows:

p(r;wa; pajwh; ph) = p(rjwh; ph)� p(pajwh; ph; r)� p(wajwh;wp; r; pa)

The three components are each calculated using a linear back-off strategy, where
the weights are determined by frequency and diversity (formula 2.66 of (Collins
1999)). The quantities we use for backing off are given in the following table:

back-off level p(rjwh; ph) p(pajwh; ph; r) p(wajwh;wp; r; pa)
1 p(rjph) p(pajph; r) p(wajwp; r; pa)
2 p(r) p(pajr) p(wajr; pa)
3 p(pa) p(wajpa)
4 p(wa)

Because the size of the treebanks we have currently available is much too small
to estimate these quantities accurately, we have chosen to do our estimation using
unsupervised learning. We have parsed a large corpus (‘de Volkskrant’ newspaper
text: first four months of 1997) using the penalty rules described in the previous
section as our disambiguator. This corpus contains about 350,000 sentences and
6,200,000 words. We only used those sentences that the system could analyse as
a single constituent, and within a reasonable amount of time. This meant that we
could use the results of about 225,000 sentences. We estimated the quantityp
using the best parse (according to the penalty rules) for each of these sentences.
Collecting the 225,000 dependency structures took about one month of CPU-time
(using the high-performance computing cluster of the University of Groningen).

As can be concluded from table 3, such a model performs much better than the
baseline. Moreover, a combined model in which we simply add the rule penalties
to the quantityp performs better than either model in isolation.

Log-linear models. While the model described in the previous section offers
good performance and conceptual simplicity, it is not without problems. In partic-
ular, the strategies for dealing with reentrancies in the dependency structures and
for combining scores derived from penalty rules and from dependency relation
statistics are ad hoc. Log-linear models, introduced to natural language processing
by Berger, Della Pietra and Della Pietra (1996) and Della Pietra, Della Pietra and
Lafferty (1997), and applied to stochastic constraint-based grammars by Abney
(1997) and Johnson, Geman, Canon, Chi and Riezler (1999), offer the potential to
solve both of these problems. Given a conditional log-linear model, the probability
of a sentencex having the parsey is:

p(yjx) =
1

Z(x)
exp

 
∑
i

λi fi(x;y)

!
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cdbl10 cdbl20
technique precision recall f-score precision recall f-score
baseline 62.3 63.3 62.8 58.5 59.6 59.0
log linear 76.0 76.6 76.3 66.3 67.6 66.0
penalties 78.6 79.3 78.9 73.1 73.3 73.2
dependency rel’s 78.9 79.7 79.3 69.7 71.1 70.4
heur. + dep-rel’s 80.9 81.7 81.3 74.6 75.4 75.0
maximum 89.1 90.0 89.6 83.2 84.1 83.7

Table 3: Preliminary results on thecdbl10 and cdbl20 development treebanks for a
number of disambiguation techniques. Thebaselinerow lists the percentages obtained if
we select for each sentence a random parse tree from the parse forest. Themaximumrow
lists the percentages obtained if we take for each sentence the best parse tree. These two
numbers thus indicate the lower and upper bounds for parse selection.

As before, the partition functionZ(x) will be the same for every parse of a given
sentence and can be ignored, so the score for a parse is simply the weighted sum
of the property functionsfi(x;y). What makes log-linear models particularly well
suited for this application is that the property functions may be sensitive to any
information which might be useful for disambiguation. Possible property func-
tions include syntactic heuristics, lexicalized and backed-off dependency relations,
structural configurations, and lexical semantic classes. Using log-linear models, all
of these disparate types of information may be combined into a single model for
disambiguation. Furthermore, since standard techniques for estimating the weights
λi from training data make no assumptions about the independence of properties,
one need not take special precautions when information sources overlap.

The drawback to using log-linear models is that accurate estimation of the pa-
rametersλi requires a large amount of annotated training data. Since such training
data is not yet available, we instead attempted unsupervized training from unanno-
tated data. We used the Alpino parser to find all parses of the 82,000 sentences with
ten or fewer words in the ‘de Volkskrant’ newpaper corpus. Using the resulting col-
lection of 2,200,000 unranked parses, we then applied Riezler et al.’s (2000) ‘Itera-
tive Maximization’ algorithm to estimate the parameters of a log-linear model with
dependency tuples as described in the previous section as property functions. The
results, given in table 3, show some promise, but the performance of the log-linear
model does not yet match that of the other disambiguation strategies. Current
work in this area is focused on expanding the set of properties and on using super-
vised training from what annotated data is available to bootstrap the unsupervised
training from large quantities of newspaper text.
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7 Conclusions

Alpino aims at providing a wide-coverage, accurate, computational grammar for
Dutch. The linguistic component of the system consists of a lexicalist feature-
based grammar for Dutch, a wide-coverage and detailed lexicon, and a method for
constructing dependency treebanks. The parser contains a lexical analysis module
and a method for reconstructing parses from a parse forest using beam search,
which allows the linguistic knowledge to be applied efficiently and robustly to
unrestricted text. Finally, we have presented preliminary experiments aimed at
providing accurate disambiguation.

In the near future, we hope to address a number of additional issues. The
valency information in the lexicon is in many ways incomplete. We hope to obtain
a more complete lexicon by acquiring dependency frames from corpora. Lexical
analysis currently uses hand-written filter rules to reduce the number of tags for
lexical items. An obvious alternative is to use a corpus-based part-of-speech tagger
to arrive at the relevant filters. Finally, the work on disambiguation can profit
from the availability of more annotated material. This suggests that our efforts at
creating a dependency treebank may lead to improved results in the future.
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Inducing Features of Random Fields
Stephen Della Pietra, Vincent Della Pietra, and John Lafferty,Member, IEEE

Abstract—We present a technique for constructing random fields from a
set of training samples. The learning paradigm builds increasingly complex
fields by allowing potential functions, or features, that are supported by
increasingly large subgraphs. Each feature has a weight that is trained
by minimizing the Kullback-Leibler divergence between the model and the
empirical distribution of the training data. A greedy algorithm determines
how features are incrementally added to the field and an iterative scaling
algorithm is used to estimate the optimal values of the weights.

The random field models and techniques introduced in this paper differ
from those common to much of the computer vision literature in that the
underlying random fields are non-Markovian and have a large number of
parameters that must be estimated. Relations to other learning approaches,
including decision trees, are given. As a demonstration of the method, we
describe its application to the problem of automatic word classification in
natural language processing.

Keywords— Random field, Kullback-Leibler divergence, iterative scal-
ing, maximum entropy, EM algorithm, statistical learning, clustering, word
morphology, natural language processing.

I. INTRODUCTION

I
N this paper we present a method for incrementally construct-
ing random fields. Our method builds increasingly complex

fields to approximate the empirical distribution of a set of train-
ing examples by allowing potential functions, or features, that
are supported by increasingly large subgraphs. Each feature is
assigned a weight, and the weights are trained to minimize the
Kullback-Leibler divergence between the field and the empiri-
cal distribution of the training data. Features are incrementally
added to the field using a top-down greedy algorithm, with the
intent of capturing the salient properties of the empirical sam-
ple while allowing generalization to new configurations. The
general problem that the methods we propose address is that of
discovering the structure inherent in a set of sample patterns. As
one of the fundamental aims of statistical inference and learn-
ing, this problem is central to a wide range of tasks including
classification, compression, and prediction.

To illustrate the nature of our approach, suppose we wish
to automatically characterize spellings of words according to a
statistical model; this is the application we develop in Section
5. A field with no features is simply a uniform distribution on
ASCII strings (where we take the distribution of stringlengthsas
given). The most conspicuous feature of English spellings is that
they are most commonly comprised of lower-case letters. The
induction algorithm makes this observation by first constructing
the field

p(!) =
1
Z
e
P

i
�[a�z] �[a�z](!i)

where� is an indicator function and the weight�[a�z] associated
with the feature that a character is lower-case is chosen to be
approximately 1:944. This means that a string with a lowercase
letter in some position is about 7� e1:944 times more likely than

Stephen and Vincent Della Pietra are with Renaissance Technologies, Stony
Brook, NY, 11790. E-mail: [sdella,vdella]@rentec.com

John Lafferty is with the Computer Science Department of the School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA,15213. E-mail:
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the same string without a lowercase letter in that position. The
following collection of strings was generated from the resulting
field by Gibbs sampling. (As for all of the examples that will be
shown, this sample was generated with annealing, to concentrate
the distribution on the more probable strings.)

m, r, xevo, ijjiir, b, to, jz, gsr, wq, vf, x, ga,
msmGh, pcp, d, oziVlal, hzagh, yzop, io, advzmxnv,
ijv_bolft, x, emx, kayerf, mlj, rawzyb, jp, ag,
ctdnnnbg, wgdw, t, kguv, cy, spxcq, uzflbbf,
dxtkkn, cxwx, jpd, ztzh, lv, zhpkvnu, lˆ, r, qee,
nynrx, atze4n, ik, se, w, lrh, hp+, yrqyka’h,
zcngotcnx, igcump, zjcjs, lqpWiqu, cefmfhc, o, lb,
fdcY, tzby, yopxmvk, by, fz,, t, govyccm,
ijyiduwfzo, 6xr, duh, ejv, pk, pjw, l, fl, w

The second most important feature,according to the algorithm, is
that two adjacent lower-case characters are extremely common.
The second-order field now becomes

p(!) =
1
Z
e

P
i�j

�[a�z][a�z]�[a�z][a�z] (!ij)+
P

i
�[a�z]�[a�z](!i)

where the weight�[a�z][a�z] associated with adjacent lower-case
letters is approximately 1:80.

The first 1000 features that the algorithm induces include the
stringss> , <re , ly> , anding> , where the character “<” de-
notes beginning-of-string and the character “>” denotes end-of-
string. In addition, the first 1000 features include the regular ex-
pressions[0-9][0-9] (with weight 9:15) and[a-z][A-Z]
(with weight�5:81) in addition to the first two features[a-z]
and[a-z][a-z] . A set of strings obtained by Gibbs sampling
from the resulting field is shown here:

was, reaser, in, there, to, will, ,, was, by,
homes, thing, be, reloverated, ther, which,
conists, at, fores, anditing, with, Mr., proveral,
the, ,, ***, on’t, prolling, prothere, ,, mento,
at, yaou, 1, chestraing, for, have, to, intrally,
of, qut, ., best, compers, ***, cluseliment, uster,
of, is, deveral, this, thise, of, offect, inatever,
thifer, constranded, stater, vill, in, thase, in,
youse, menttering, and, ., of, in, verate, of, to

These examples are discussed in detail in Section 5.
The induction algorithm that we present has two parts:fea-

ture selectionandparameter estimation. The greediness of the
algorithm arises in feature selection. In this step each feature in
a pool of candidate features is evaluated by estimating the reduc-
tion in the Kullback-Leibler divergence that would result from
adding the feature to the field. This reduction is approximated
as a function of a single parameter, and the largest value of this
function is called thegainof the candidate. This approximation
is one of the key elements of our approach, making it practical
to evaluate a large number of candidate features at each stage of
the induction algorithm. The candidate with the largest gain is
added to the field. In the parameter estimation step, the parame-
ters of the field are estimated using an iterative scaling algorithm.
The algorithm we use is a new statistical estimation algorithm
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that we callImproved Iterative Scaling. It is an improvement
of the Generalized Iterative Scaling algorithm of Darroch and
Ratcliff [12] in that it does not require that the features sum to
a constant. The improved algorithm is easier to implement than
the Darroch and Ratcliff algorithm, and can lead to an increase
in the rate of convergence by increasing the size of the step taken
toward the maximum at each iteration. In Section 4 we give a
simple, self-contained proof of the convergence of the improved
algorithm that does not make use of the Kuhn-Tucker theorem
or other machinery of constrained optimization. Moreover, our
proof does not rely on the convergence of alternating I-projection
as in Csisz´ar’s proof [10] of the Darroch-Ratcliff procedure.

Both the feature selection step and the parameter estimation
step require the solution of certain algebraic equations whose
coefficients are determined as expectation values with respect
to the field. In many applications these expectations cannot be
computed exactly because they involve a sum over an exponen-
tially large number of configurations. This is true of the appli-
cation that we develop in Section 5. In such cases it is possible
to approximate the equations that must be solved using Monte
Carlo techniques to compute expectations of random variables.
The application that we present uses Gibbs sampling to compute
expectations, and the resulting equations are then solved using
Newton’s method.

Our method can be viewed in terms of theprinciple of max-
imum entropy[19], which instructs us to assume an exponen-
tial form for our distributions, with the parameters viewed as
Lagrange multipliers. The techniques that we develop in this
paper apply to exponential models in general. We formulate
our approach in terms of random fields because this provides a
convenient framework within which to work, and because our
main application is naturally cast in these terms.

Our method differs from the most common applications of
statistical techniques in computer vision and natural language
processing. In contrast to many applications in computer vision,
which involve only a few free parameters, the typical applica-
tion of our method involves the estimation of thousands of free
parameters. In addition, our methods apply to general exponen-
tial models and random fields–there is no underlying Markov
assumption made. In contrast to the statistical techniques com-
mon to natural language processing, in typical applications of
our method there is no probabilistic finite-state or push-down
automaton on which the statistical model is built.

In the following section we describe the form of the random
field models considered in this paper and the general learning
algorithm. In Section 3 we discuss the feature selection step of
the algorithm and briefly address cases when the equations need
to be estimated using Monte Carlo methods. In Section 4 we
present the Improved Iterative Scaling algorithm for estimating
the parameters, and prove the convergence of this algorithm.
In Section 5 we present the application of inducing features of
spellings, and finally in Section 6 we discuss the relation between
our methods and other learning approaches, as well as possible
extensions of our method.

II. THE LEARNING PARADIGM

In this section we present the basic algorithm for building
up a random field from elementary features. The basic idea

is to incrementally construct an increasingly detailed field to
approximate a reference distribution ˜p. Typically the distribution
p̃ is obtained as the empirical distribution of a set of training
examples. After establishing our notation and defining the form
of the random field models we consider, we present the training
problem as a statement of two equivalent optimization problems.
We then discuss the notions of a candidate feature and the gain
of a candidate. Finally, we give a statement of the induction
algorithm.

A. Form of the random field models

Let G = (E; V ) be a finite graph with vertex setV and edge
setE, and letA be a finite alphabet. Theconfiguration space
Ω is the set of all labelings of the vertices inV by letters in
A. If C � V and! 2 Ω is a configuration, then!C denotes
the configuration restricted toC. A random fieldon G is a
probability distribution onΩ. The set of all random fields is
nothing more than the simplex∆ of all probability distributions
on Ω. If f : Ω ! R then thesupportof f , written supp(f),
is the smallest vertex subsetC � V having the property that
whenever!; !0 2 Ω with !C = !0C thenf(!) = f(!0).

We consider random fields that are given by Gibbs distribu-
tions of the form

p(!) =
1
Z
e
P

C
VC(!)

for ! 2 Ω, whereVC : Ω! R are functions with supp(VC) =
C. The field isMarkov if wheneverVC 6= 0 thenC is aclique,
or totally connected subset ofV . This property is expressed in
terms of conditional probabilities as

p(!u j!v; v 6= u) = p(!u j!v; (u; v) 2 E)

whereu andv are arbitrary vertices. We assume that eachC is
a path-connected subset ofV and that

VC(!) =
X

1�i�nC

�Ci f
C
i (!) = �C � fC (!)

where�Ci 2 R andfCi (!) 2 f0; 1g. We say that the values�Ci
are theparametersof the field and that the functionsfCi are the
featuresof the field. In the following, it will often be convenient
to use notation that disregards the dependence of the features
and parameters on a vertex subsetC, expressing the field in the
form

p(!) =
1
Z
e
P

i
�i fi(!) =

1
Z
e ��f(!) :

For every random field(E; V; f�i; fig) of the above form, there
is a field(E0; V; f�i; fig) that is Markovian, obtained by com-
pleting the edge setE to ensure that for eachi, the subgraph
generated by the vertex subsetC = supp(fi) is totally con-
nected.

If we impose the constraint�i = �j on two parameters�i and
�j , then we say that these parameters aretied. If �i and�j are
tied, then we can write

�ifi(!) + �jfj(!) = �g(!)

whereg = fi + fj is anon-binaryfeature. In general, we can
collapse any number of tied parameters onto a single parameter
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associated with a non-binary feature. Having tied parameters is
often natural for a particular problem, but the presence of non-
binary features generally makes the estimation of parameters
more difficult.

An automorphism� of a graph is a permutation of the vertices
that takes edges to edges:(u; v) 2 E if and only if(�u; �v) 2 E.
A random field(E; V; f�i; fig) is said to havehomogeneous
featuresif for each featurefi and automorphism� of the graph
G = (E; V ), there is a featurefj such thatfj(�!) = fi(!)
for ! 2 Ω. If in addition �j = �i, then the field is said to
be homogeneous. Roughly speaking, a homogeneous feature
contributes the same weight to the distribution no matter where
in the graph it appears. Homogeneous features arise naturally in
the application of Section 5.

The methods that we describe in this paper apply to expo-
nential models in general; that is, it is not essential that there is
an underlying graph structure. However, it will be convenient
to express our approach in terms of the random field models
described above.

B. Two optimization problems

Suppose that we are given an initial modelq0 2 ∆, a reference
distribution p̃, and a set of featuresf = (f0; f1; : : : ; fn). In
practice, it is often the case that ˜p is the empirical distribution of
a set of training samples!(1); !(2) : : :!(N), and is thus given
by

p̃(!) =
c(!)

N

wherec(!) =
P

1�i�N �(!; !(i)) is the number of times that
configuration! appears among the training samples.

We wish to construct a probability distributionq? 2 ∆ that
accounts for these data, in the sense that it approximates ˜p but
does not deviate too far fromq0. We measure distance between
probability distributionsp andq in ∆ using the Kullback-Leibler
divergence

D(p k q) =
X
!2Ω

p(!) log
p(!)

q(!)
: (1)

Throughout this paper we use the notation

p[g] =
X
!2Ω

g(!) p(!)

for the expectation of a functiong : Ω ! R with respect to
the probability distributionp. For a functionh : Ω ! R and a
distributionq, we use both the notationh �q andqh to denote the
generalized Gibbs distribution given by

qh(!) = (h �q)(!) =
1

Zq(h)
e h(!) q(!) :

Note thatZq(h) is not the usual partition function. It is a normal-
ization constant determined by the requirement that(h � q)(!)
sums to 1 over!, and can be written as an expectation:

Zq(h) = q[e h] :

There are two natural sets of probability distributions deter-
mined by the data ˜p, q0, andf . The first is the setP(f; p̃) of

all distributions that agree with ˜p as to the expected value of the
feature functionf :

P(f; p̃) = fp 2 ∆ : p[f ] = p̃[f ] g :

The second is the setQ(f; q0) of generalized Gibbs distributions
based onq0 with feature functionf :

Q(f; q0) = f(� � f) � q0 : � 2 Rn g :

We letQ̄(f; q0) denote the closure ofQ(f; q0) in ∆ (with respect
to the topology it inherits as a subset of Euclidean space).

There are two natural criteria for choosing an elementq? from
these sets:
� Maximum Likelihood Gibbs Distribution. Chooseq? to
be a distribution inQ̄(f; q0) with maximum likelihood with
respect to ˜p:

qML
? = arg min

q2Q̄(f;q0)

D(p̃ k q)

� Maximum Entropy Constrained Distribution. Chooseq?
to be a distribution inP(f; p̃) that has maximum entropy
relative toq0:

qME
? = arg min

p2P(f;p̃)
D(p k q0)

Although these criteria are different, they determine the same
distribution: q? = qML

? = qME
? . Moreover, this distribution is

the unique element of the intersectionP(f; p̃)\ Q̄(f; q0), as we
discuss in detail in Section 4.1 and Appendix A.

When p̃ is the empirical distribution of a set of training ex-
amples!(1); !(2) : : :!(N), minimizingD(p̃ k p) is equivalent to
maximizing the probability that the fieldp assigns to the training
data, given by

Y
1�i�N

p(!(i)) =
Y
!2Ω

p(!) c(!) / e�ND(p̃ kp) :

With sufficiently many parameters it is a simple matter to con-
struct a field for whichD(p̃ kp) is arbitrarily small. This is the
classic problem ofover training. The idea behind the method
proposed in this paper is to incrementally construct a field that
captures the salient properties of ˜p by incorporating an increas-
ingly detailed collection of features, allowing generalization to
new configurations; the resulting distributions arenotabsolutely
continuous with respect to the empirical distributionof the train-
ing sample. The maximum entropy framework for parameter
estimation tempers the over training problem; however, the ba-
sic problem remains, and is out of the scope of the present paper.
We now present the random field induction paradigm.

C. Inducing field interactions

We begin by supposing that we have a set ofatomicfeatures

Fatomic � fg : Ω �! f0; 1g; supp(g) = vg 2 V g

each of which is supported by a single vertex. We use atomic
features to incrementally build up more complicated features.
The following definition specifies how we shall allow a field to
be incrementally constructed, orinduced.
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Definition 1: Suppose that the fieldq is given byq = (� �
f) � q0. The featuresfi are called theactive features ofq. A
featureg is acandidatefor q if eitherg 2 Fatomic, or if g is of the
form g(!) = a(!)fi(!) for an atomic featurea and an active
featurefi with supp(g) 	 supp(fi) 2 E. The set of candidate
features ofq is denotedC(q).
In other words, candidate features are obtained by conjoining
atomic features with existing features. The condition on supports
ensures that each feature is supported by a path-connected subset
of G.

If g 2 C(q) is a candidate feature ofq, then we call the 1-
parameter family of random fieldsq�g = (�g) � q the induction
of q byg. We also define

Gq(�; g) = D(p̃ k q) �D(p̃ k q�g) : (2)

We think ofGq(�; g) as the improvement that featureg brings
to the model when it has weight�. As we show in the following
section,Gq(�; g) is \-convex in�. (We use the suggestive
notation\-convex and[-convex in place of the less mnemonic
concave and convex terminology.) We defineGq(g) to be the
greatest improvement that featureg can give to the model while
keeping all of the other features’ parameters fixed:

Gq(g) = sup
�

Gq(�; g) :

We refer toGq(g) as thegainof the candidateg.

D. Incremental construction of random fields

We can now describe our algorithm for incrementally con-
structing fields.

Field Induction Algorithm.

Initial Data:
A reference distributioñp and an initial modelq0.

Output:
A field q? with active featuresf0; : : : ; fN such thatq? =
arg min
q2Q̄(f;q0)

D(p̃ k q).

Algorithm:
(0) Setq(0) = q0.
(1) For each candidateg 2 C(q(n)) compute the gain
Gq(n) (g).

(2) Let fn = arg max
g2C(q(n) )

Gq(n) (g) be the feature with the

largest gain.
(3) Compute q? = arg min

q2Q̄(f;q0)
D(p̃ k q), where f =

(f0; f1; : : : ; fn).
(4) Setq(n+1) = q? andn n+ 1, and go to step (1).

This induction algorithm has two parts:feature selectionand
parameter estimation. Feature selection is carried out in steps (1)
and (2), where the featureyielding the largest gain is incorporated
into the model. Parameter estimation is carried out in step (3),
where the parameters are adjusted to best represent the reference
distribution. These two computations are discussed in more
detail in the following two sections.

III. FEATURE SELECTION

The feature selection step of our induction algorithm is based
upon an approximation. We approximate the improvement due
to adding a single candidate feature, measured by the reduction
in Kullback-Leibler divergence, by adjusting only the weight
of the candidate and keeping all of the other parameters of the
field fixed. In general this is only an estimate, since it may well
be that adding a feature will require significant adjustments to
all of the parameters in the new model. From a computational
perspective, approximating the improvement in this way can
enable the simultaneous evaluation of thousands of candidate
features, and makes the algorithm practical. In this section we
present explain the feature selection step in detail.

Proposition 1: Let Gq(�; g), defined in (2), be the approxi-
mate improvement obtained by adding featureg with parameter
� to the fieldq. Then if g is not constant,Gq(�; g) is strictly
\-convex in� and attains its maximum at the unique point ˆ�
satisfying

p̃[g] = q�̂g[g] : (3)

Proof: Using the definition (1) of the Kullback-Leibler di-
vergence we can write

Gq(�; g) =
X
!2Ω

p̃(!) log
Z�1
q (�g) e�g(!)q(!)

q(!)

=
X
!2Ω

p̃(!)
�
�g(!) � logq

�
e�g
��

= �p̃[ g ]� logq
�
e�g
�
:

Thus

@

@�
Gq(�; g) = p̃[g]�

q[ge�g]

q[e�g]

= p̃[g]� q�g[g] :

Moreover,

@2

@�2
Gq(�; g) =

q[ge�g]2

q[e�g]2
�
q[g2e�g ]

q[e�g]

= �q�g[
�
g � q�g[g]

�2
]

Hence, @
2

@�2Gq(�; g) � 0, so thatGq(�; g) is \-convex in�. If

g is not constant, then@
2

@�2Gq(�; g), which is minus the variance
of g with respect toq�g, is strictly negative, so thatGq(�; g) is
strictly convex.

Wheng is binary-valued, its gain can be expressed in a par-
ticularly nice form. This is stated in the following proposition,
whose proof is a simple calculation.

Proposition 2: Suppose that the candidateg is binary-valued.
ThenGq(�; g) is maximized at

�̂ = log

�
p̃[ g ](1� q[ g ])
q[ g ](1� p̃[ g ])

�

and at this value,

Gq(g) = Gq(�̂; g) = D(Bp kBq)
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whereBp andBq are Bernoulli random variables given by

Bp(1) = p̃[ g ] Bp(0) = 1� p̃[ g ]

Bq(1) = q[ g ] Bq(0) = 1� q[ g ] :
For features that are not binary-valued, but instead take values

in the non-negative integers, the parameter ˆ� that solves (3) and
thus maximizesGq(�; g) cannot, in general, be determined in
closed form. This is the case for tied binary features, and it
applies to the application we describe in Section 5. For these
cases it is convenient to rewrite (3) slightly. Let� = e� so that
@=@� = �@=@�. Let

gk =
X
!

q(!) �(k; g(!))

be the total probability assigned to the event that the featureg
takes the valuek. Then (3) becomes

�
@

@�
Gq(log�; g) = p̃[g]�

PN

k=0 k gk�
kPN

k=0 gk�
k

= 0 (4)

This equation lends itself well to numerical solution. The gen-
eral shape of the curve� 7! �@=@� Gq(log�; g) is shown in
Figure 1.

Fig. 1. Derivative of the gain

The limiting value of�@Gq(log�; g)=@� as� ! 1 is p̃[g]�
N . The solution to equation (4) can be found using Newton’s
method, which in practice converges rapidly for such functions.

When the configuration spaceΩ is large, so that the coeffi-
cientsgk cannot be calculated by summing over all configura-
tions, Monte Carlo techniques may be used to estimate them.
It is important to emphasize that thesameset of random con-
figurations can be used to estimate the coefficientsgk for each
candidateg simultaneously. Rather than discuss the details of
Monte Carlo techniques for this problem we refer to the exten-
sive literature on this topic. We have obtained good results using
the standard technique of Gibbs sampling [17] for the problem
we describe in Section 5.

IV. PARAMETER ESTIMATION

In this section we present an algorithm for selecting the pa-
rameters associated with the features of a random field. The
algorithm is a generalization of the Generalized Iterative Scal-
ing algorithm of Darroch and Ratcliff [12]. It reduces to the
Darroch-Ratcliff algorithm when the features sum to a constant;
however, the new algorithm does not make this restriction.

Throughout this section we hold the set of featuresf =
(f0; f1; : : : ; fn), the initial modelq0 and the reference distri-
bution p̃ fixed, and we simplify the notation accordingly. In

particular, we write
 � q instead of(
 � f) � q for 
 2 Rn. We
assume that ˜p(!) = 0 wheneverq0(!) = 0. This condition is
commonly written ˜p� q0, and it is equivalent toD(p̃k q0) <1.

A description of the algorithm requires an additional piece of
notation. Let

f#(!) =
nX
i=0

fi(!) :

If the features are binary, thenf#(!) is the total number of
features that are “on” for the configuration!.

Improved Iterative Scaling.

Initial Data:
A reference distributioñp and an initial modelq0, with
p̃� q0, and non-negative featuresf0; f1; : : : ; fn.

Output:
The distributionq? = arg min

q2Q̄(f;q0)

D(p̃ k q)

Algorithm:
(0) Setq(0) = q0.
(1) For eachi let 
(k)i 2 [�1;1) be the unique solution of

q(k)[ fi e


(k)
i

f# ] = p̃[ fi ] : (5)

(2) Setq(k+1) = 
(k) � q(k) andk  k + 1.
(3) If q(k) has converged, setq? = q(k) and terminate. Oth-
erwise go to step (1).

In other words, this algorithm constructs a distributionq? =

limm!1 
m �q0 where
m =
Pm

k=0 

(k) and
(k)i is determined

as the solution to the equation

X
!

q(k)(!) fi(!) e


(k)
i

f#(!) =
X
!

p̃(!) fi(!) :

When used in then-th iteration of the field induction algorithm,
where a candidate featureg = fn is added to the fieldq = qn, we
choose the initial distributionq0 to beq0 = q�̂g, where�̂ is the
parameter that maximizes the gain ofg. In practice, this provides
a good starting point from which to begin iterative scaling. In
fact, we can view this distribution as the result of applying one
iteration of an Iterative Proportional Fitting Procedure [5], [9]
to projectq�g onto the linear family of distributions withg-
marginals constrained to ˜p[g].

Our main result in this section is
Proposition 3: Supposeq(k) is the sequence in∆ determined

by the Improved Iterative Scaling algorithm. ThenD(p̃ k q(k))
decreases monotonically toD(p̃ k q?) andq(k) converges toq? =
arg min
q2Q̄

D(p̃ k q) = arg min
p2P

D(p k q0).

In the remainder of this section we present a self-contained
proof of the convergence of the algorithm. The key idea of
the proof is to express the incremental step of the algorithm in
terms of an auxiliary function which bounds from below the
log-likelihood objective function. This technique is the standard
means of analyzing the EM algorithm [13], but it has not previ-
ously been applied to iterative scaling. Our analysis of iterative
scaling is different and simpler than previous treatments. In
particular, in contrast to Csisz´ar’s proof of the Darroch-Ratcliff
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procedure [10], our proof does not rely upon the convergence of
alternating I-projection [9].

We begin by formulating the basic duality theorem which
states that the maximum likelihood problem for a Gibbs dis-
tribution and the maximum entropy problem subject to linear
constraints have the same solution. We then turn to the task of
computing this solution. After introducingauxiliary functions in
a general setting, we apply this method to prove convergence of
the Improved Iterative Scaling algorithm. We finish the section
by discussing Monte Carlo methods for estimating the equations
when the size of the configuration space prevents the explicit
calculation of feature expectations.

A. Duality

The duality between the maximum likelihood and maximum
entropy problems is expressed in the following Proposition.

Proposition 4: Suppose that ˜p � q0. Then there exists a
uniqueq? 2 ∆ satisfying

(1) q? 2 P \ Q̄
(2) D(p k q) = D(p k q?) + D(q? k q) for any p 2 P and
q 2 Q̄

(3) q? = arg min
q2Q̄

D(p̃ k q)

(4) q? = arg min
p2P

D(p k q0).

Moreover, any of these four properties determinesq? uniquely.
This result is well known, although perhaps not quite in this

packaging. In the language of constrained optimization, it ex-
presses the fact that the maximum likelihood problem for Gibbs
distributions is the convex dual to the maximum entropy prob-
lem for linear constraints. Property (2) is called thePythagorean
propertysince it resembles the Pythagorean theorem if we imag-
ine thatD(p k q) is the square of Euclidean distance and(p; q?; q)
are the vertices of a right triangle.

We include a proof of this result in Appendix A to make this
paper self-contained and also to carefully address the technical
issues arising from the fact thatQ is not closed. The proposition
would not be true if we replaced̄Q with Q; in fact, P \ Q
might be empty. Our proof is elementary and does not rely
on the Kuhn-Tucker theorem or other machinery of constrained
optimization.

B. Auxiliary functions

We now turn to the task of computingq?. Fix p̃ and let
L : ∆! R be the log-likelihood objective function

L(q) = �D(p̃ k q) :

Definition 2: A functionA : Rn � ∆ ! R is an auxiliary
function forL if

(1) For allq 2 ∆ and
 2 Rn

L(
 � q) � L(q) + A(
; q)

(2) A(
; q) is continuous inq 2 ∆ andC1 in 
 2 Rn with
A(0; q) = 0 and

d

dt
j t=0 A(t
; q) =

d

dt
j t=0 L((t
) � q) :

We can use an auxiliary functionA to construct an iterative
algorithm for maximizingL. We start withq(k) = q0 and
recursively defineq(k+1) by

q(k+1) = 
(k) � q(k) with 
(k) = arg max



A(
; q(k)) :

It is clear from property (1) of the definition thateach step of
this procedure increasesL. The following proposition implies
that in fact the sequenceq(k) will reach the maximum ofL.

Proposition 5: Supposeq(k) is any sequence in∆ with

q(0) = q0 and q(k+1) = 
(k) �q(k)

where
(k) 2 Rn satisfies

A(
(k); q(k)) = sup



A(
; q(k)) : (6)

Then L(q(k)) increases monotonically to max
q2Q̄

L(q) and q(k)

converges toq? = arg max
q2Q̄

L(q).

Equation (6) assumes that the supremum sup
 A(
; q
(k)) is

achieved at finite
. In Appendix B, under slightly stronger
assumptions, we present an extension that allows some compo-
nents of
(k) to take the value�1.

To use the proposition to construct a practical algorithm we
must determine an auxiliary functionA(
; q) for which 
(k)

satisfying the required condition can be determined efficiently.
In Section 4.3 we present a choice of auxiliary function which
yields the Improved Iterative Scaling updates.

To prove Proposition 5 we first prove three lemmas.
Lemma 1: If m 2 ∆ is a cluster point ofq(k), thenA(
;m) �

0 for all 
 2 Rn.

Proof: Let q(kl) be a sub-sequence converging tom. Then
for any


A(
; q(kl)) � A(
(kl); q(kl)) � L(q(kl+1)) � L(q(kl))

� L(q(kl+1))� L(q(kl)) :

The first inequality follows from property (6) of
(nk). The sec-
ond and third inequalities are a consequence of the monotonicity
of L(q(k)). The lemma follows by taking limits and using the
fact thatL andA are continuous.

Lemma 2: If m 2 ∆ is a cluster point ofq(k), then
d
dt
j t=0 L((t
) �m) = 0 for any
 2 Rn.

Proof: By the previous lemma,A(
;m) � 0 for all
. Since
A(0;m) = 0, this means that
 = 0 is a maximum ofA(
;m)
so that

0 =
d

dt
j t=0 A(t
;m) =

d

dt
j t=0 L((t
) �m) :

Lemma 3:Supposefq(k)g is any sequencewith only oneclus-
ter pointq�. Thenq(k) converges toq�.

Proof: Suppose not. Then there exists an open setB contain-
ing q� and a subsequenceq(nk) 62 B. Since∆ is compact,q(nk)

has a cluster pointq0� 62 B. This contradicts the assumption that
fq(k)g has a unique cluster point.
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Proof of Proposition 5: Suppose thatm is a cluster point of
q(k). Then it follows from Lemma 2 thatd

dt
j t=0 L((t
) �m) =

0, and som 2 P \ Q̄ by Lemma 2 of Appendix A. Butq? is the
only point inP \ Q̄ by Proposition 4. It follows from Lemma 3
thatq(k) converges toq?.

In Appendix B we prove an extension of Proposition 5 that
allows the components of
 to equal�1. For this extension,
we assume that all the components of the feature functionf are
non-negative:

fi(!) � 0 for all i and all!. (7)

This is not a practical restriction since we can replacefi by
fi �min! fi(!).

C. Improved Iterative Scaling

We now prove the monotonicity and convergence of the Im-
proved Iterative Scaling algorithm by applying Proposition 5 to
a particular choice of auxiliary function. We now assume that
each component of the feature functionf is non-negative.

Forq 2 ∆ and
 2 Rn, define

A(
; q) = 1+ 
 � p̃[f ]�
X
!

q(!)
X
i

f(i j!) e 
if#(!)

wheref(i j!) = fi(!)
f#(!)

. It is easy to check thatA extends to a
continuous function on(R [�1)n � ∆.

Lemma 4:A(
; q) is an extended auxiliary function forL(q).
The key ingredient in the proof of the lemma is the\-convexity
of the logarithm and the[-convexity of the exponential, as ex-
pressed in the inequalities

e
P

i
ti�i �

X
i

ti e
�i if ti � 0,

P
i ti = 1 (8)

logx � x� 1 for all x > 0: (9)

Proof of Lemma 4: BecauseA extends to a continuous func-
tion on (R [�1)n � ∆, it suffices to prove that it satisfies
properties (1) and (2) of Definition 2. To prove property (1) note
that

L(
 � q)� L(q) = 
 � p̃[f ]� log
X
!

q(!) e
�f(!) (10)

� 
 � p̃[f ] + 1�
X
!

q(!) e
�f(!) (11)

� 
 � p̃[f ] + 1�
X
!

q(!)
X
i

f(i j!) e
if#(!) (12)

= A(
; q) : (13)

Equality (10) is a simple calculation. Inequality (11) follows
from inequality (9). Inequality (12) follows from the definition
of f# and Jensen’s inequality (8). Property (2) of Definition 2 is
straightforward to verify.

Proposition 3 follows immediately from the above lemma and
the extended Proposition 5. Indeed, it is easy to check that
(k)

defined in Proposition 3 achieves the maximum ofA(
; q(k)),
so that it satisfies the condition of Proposition 5 in Appendix B.

D. Monte Carlo methods

The Improved Iterative Scaling algorithm described in the
previous section is well-suited to numerical techniques since all
of the features take non-negative values. Ineach iteration of this
algorithm it is necessary to solve a polynomial equation foreach
featurefi. That is, we can express equation 5 in the form

MX
m=0

a
(k)
m;i �

m
i = 0

whereM is the largest value off#(!) =
P

i fi(!) and

a
(k)
m;i =

8<
:
P

! q
(k)(!) fi(!) �(m; f#(!)) m > 0

�p̃[ fi ] m = 0
(14)

whereq(k) is the field for thek-th iteration and�i = e

(k)
i . This

equation has no solution precisely whena(k)m;i = 0 for m > 0.
Otherwise, it can be efficiently solved using Newton’s method
since all of the coefficientsa(k)m;i,m > 0, are non-negative. When
Monte Carlo methods are to be used because the configuration
spaceΩ is large, the coefficientsa(k)m;i can be simultaneously
estimated for alli andm by generating a single set of samples
from the distributionq(k).

V. APPLICATION: WORD MORPHOLOGY

Word clustering algorithms are useful for many natural lan-
guage processing tasks. One such algorithm [6], called mutual
information clustering, is based upon the construction of simple
bigram language models using the maximum likelihood crite-
rion. The algorithm gives a hierarchical binary classification of
words that has been used for a variety of purposes, including the
construction of decision tree language and parsing models, and
sense disambiguation for machine translation [7].

A fundamental shortcoming of the mutual information word
clustering algorithm given in [6] is that it takes as fundamental
the word spellings themselves. This increases the severity of
the problem of small counts that is present in virtually every
statistical learning algorithm. For example, the word “Hamil-
tonianism” appears only once in the 365,893,263-word corpus
used to collect bigrams for the clustering experiments described
in [6]. Clearly this is insufficient evidence on which to base a
statistical clustering decision. The basic motivation behind the
feature-based approach is that by querying features of spellings,
a clustering algorithm could notice that such a word begins with
a capital letter, ends in “ism” or contains “ian,” and profit from
how these features are used for other words in similar contexts.

In this section we describe how we applied the random field
induction algorithm to discover morphological features of words,
and we present sample results. This application demonstrates
how our technique gradually sharpens the probability mass from
the enormous set of all possible configurations, in this caseASCII

strings, onto a set of configurations that is increasingly similar to
those in the training sample. It achieves this by introducing both
“positive” features which many of the training samples exhibit,
as well as “negative” features which do not appear in the sample,
or appear only rarely. A description of how the resulting features
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were used to improve mutual information clustering is given in
[20], and is beyond the scope of the present paper; we refer the
reader to [6], [20] for a more detailed treatment of this topic.

In Section 5.1 we formulate the problem in terms of the no-
tation and results of Sections 2, 3, and 4. In Section 5.2 we
describe how the field induction algorithm is actually carried out
in this application. In Section 5.3 we explain the results of the
induction algorithm by presenting a series of examples.

A. Problem formulation

To discover features of spellings we take as configuration
space the set of all stringsΩ = A� in theASCII alphabetA. We
construct a probability distributionp(!) onΩ by first predicting
the lengthj! j, and then predicting the actual spelling; thus,
p(!) = pl(j! j)ps(! j j! j) wherepl is the length distribution
andps is the spelling distribution. We take the length distribution
as given. We model the spelling distributionps(� j l) over strings
of lengthl as a random field. LetΩl be the configuration space
of all ASCII strings of lengthl. ThenjΩl j = O(102l) since each
!i is anASCII character.

To reduce the number of parameters, we tie features, as de-
scribed in Section 2.1, so that a feature has the same weight
independent of where it appears in the string. Because of this it
is natural to view the graph underlyingΩl as a regularl-gon. The
group of automorphisms of this graph is the set of all rotations,
and the resulting field is homogeneous as defined in Section 2.

Not only is each fieldps homogeneous, but in addition, we tie
features across fields for different values ofl. Thus, the weight
�f of a feature is independent ofl. To introduce a dependence
on the length, as well as on whether or not a feature applies at
the beginning or end of a string, we adopt the following artificial
construction. We take as the graph ofΩl an (l + 1)-gon rather
than anl-gon, and label a distinguished vertex by the length,
keeping this label held fixed.

To complete the description of the fields that are induced, we
need to specify the set of atomic features. The atomic features
that we allow fall into three types. The first type is the class of
features of the form

fv;c(!) =
n

1 if !v = c
0 otherwise.

wherec is anyASCII character, andv denotes an arbitrary char-
acter position in the string. The second type of atomic features
involve the special vertex<l> that carries the length of the string.
These are the features

fv;l(!) =
n

1 if !v = <l>
0 otherwise

fv;<>(!) =
n

1 if !v = <l> for somel
0 otherwise

The atomic featurefv;<> introduces a dependence on whether a
string of characters lies at the beginning or end of the string, and
the atomic featuresfv;l introduce a dependence on the length of
the string. To tie together the length dependence for long strings,
we also introduce an atomic featurefv;7+ for strings of length 7
or greater.

The final type of atomic feature asks whether a character lies
in one of four sets,[a-z] , [A-Z] , [0-9] , [@-&] , denoting

arbitrary lowercase letters, uppercase letters, digits, and punctu-
ation. For example, the atomic feature

fv;[a-z] (!) =
n

1 if !v 2 [a-z]
0 otherwise

tests whether or not a character is lowercase.
To illustratethe notation that we use, let us suppose that the the

following features are active for a field: “ends inism ,” “a string
of at least 7 characters beginning with a capital letter” and “con-
tainsian .” Then the probability of the word “Hamiltonianism”
would be given as

pl(14) ps(Hamiltonianism j j! j = 14) =

pl(14)
1
Z14

e�7+<[A-Z] +�ian +�ism> :

Here the�’s are the parameters of the appropriate features, and
we use the characters< and> to denote the beginning and ending
of a string (more common regular expression notation would be
ˆ and$). The notation7+<[A-Z] thus means “a string of at
least 7 characters that begins with a capital letter,” corresponding
to the feature

fu;7+ fv;[A-Z] ;

whereu and v are adjacentpositions in the string, recalling
from Definition 2.1 that we require the support of a feature to be
a connected subgraph. Similarly,ism> means “ends in -ism”
and corresponds to the feature

fu;i fv;s fw;mfx;<>

whereu; v; w; x are adjacent positions in the string andian
means “contains ian,” corresponding to the feature

fu;i fv;a fw;n :

B. Description of the algorithm

We begin the random field induction algorithm with a model
that assigns uniformprobability to all strings. We then incremen-
tally add features to a random field model in order to minimize
the Kullback-Leibler divergence between the field and the un-
igram distribution of the vocabulary obtained from a training
corpus. The length distribution is taken according to the lengths
of words in the empirical distribution of the training data. The
improvement to the model made by a candidate feature is eval-
uated by the reduction in relative entropy, with respect to the
unigram distribution, that adding the new feature yields, keeping
the other parameters of the model fixed. Our learning algo-
rithm incrementally constructs a random field to describe those
features of spellings that are most informative.

At each stage in the induction algorithm, a set of candidate
features is constructed. Because the fields are homogeneous, the
set of candidate features can be viewed as follows. Each active
feature can be expressed in the form

fs(!) =
n

1 substrings appears in!
0 otherwise

wheres is a string in the extended alphabetA of ASCII characters
together with the macros[a-z] , [A-Z] , [0-9] , [@-&] , and
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the length labels<l> and <>. If ffsgs2S is the set of active
features, (includings = �, the empty string) using this repre-
sentation, then the set of candidate features is precisely the set
ffa�s; fs�aga2A;s2S , wherea�s denotes concatenation of strings.
As required by Definition 2,each such candidate increases the
support of an active feature by a single adjacent vertex.

Since the model assigns probability to arbitrary word strings,
the partition functionZl can be computed exactly for only the
smallest string lengthsl. We therefore compute feature expec-
tations using a random sampling algorithm. Specifically, we
use the Gibbs sampler to generate 10,000 spellings of random
lengths. When computing the gainGq(g) of a candidate fea-
ture, we use these spellings to estimate the probabilitygk that
the candidate featureg occursk times in a spelling (see equa-
tion (4)–for example, the featurefv;[a-z] occurs two times in
the stringThe), and then solve for the corresponding� using
Newton’s method foreachcandidate feature. It should be em-
phasized that only a single set of random spellings needs to be
generated; the same set can be used to estimategk for each
candidateg. After adding the best candidate to the field, all of
the feature weights are readjusted using the Improved Iterative
Scaling algorithm. To carry out this algorithm, random spellings
are again generated, this time incorporating the new feature,
yielding Monte Carlo estimates of the coefficientsa(k)m;i. Recall

thata(k)m;i is the expected number of times that featurei appears
(under the substring representation for homogeneous features)
in a string for which there is a total ofm active features (see
equation 14)). Given estimates for these coefficients, Newton’s
method is again used to solve equation (14), to complete a single
iteration of the iterative scaling algorithm. After convergence of
the Kullback-Leibler divergence, the inductive step is complete,
and a new set of candidate features is considered.

C. Sample results

We began with a uniform field, that is, a field with no features
at all. For this field, allASCII strings of a given length are equally
likely, and the lengths are drawn from a fixed distribution. Here
is a sample of strings drawn from this distribution:

˜, mo, !ZP*@, m/TLL, ks;cm 3, *LQdR, D, aW f,
5&TL|4, tc, ?!@, sNeiO+, wHo8zBr", pQlV, m, H!&,
h9, #Os, :, Ky gFM?, LW, ",8 g, 89Lj, -P, A, !, H, ‘,
Yˆ:Du:, 1xCl, 1!’J#F*u., w=idHnM), ˜, 2, 2leW2,
I,bw˜tk1, 3", ], ], b, +JEmj6, +E*, nqjqe"-7f, |al2,
T, ˜(sOc1+2ADe, &, np9oH, i;, $6, q gO+[, xEv, #U,
O)[83COF, =|B|7%cR, Mqq, ?!mv, n=7G, $i9GAJ D, 5,
,=, +u6@I9:, +, =D, 2E#vz@3-, ˜nu;.+s, 3xJ, GDWeqL,
R,3R, !7v, FX,@y, 4p cY2hU, ˜

It comes as no surprise that the first feature the induction al-
gorithm chooses is[a-z] ; it simply observes that characters
should be lowercase. The maximum likelihood (maximum en-
tropy) weight for this feature is� = e� � 6:99. This means
that a string with a lowercase letter in some position is about 7
times more likely than the same string without a lowercase letter
in that position.

When we now draw strings from the new distribution (using
annealing to concentrate the distribution on the more probable
strings), we obtain spellings that are primarily made up of low-
ercase letters, but that certainly do not resemble English words:

m, r, xevo, ijjiir, b, to, jz, gsr, wq, vf, x, ga,
msmGh, pcp, d, oziVlal, hzagh, yzop, io, advzmxnv,
ijv bolft, x, emx, kayerf, mlj, rawzyb, jp, ag,
ctdnnnbg, wgdw, t, kguv, cy, spxcq, uzflbbf,
dxtkkn, cxwx, jpd, ztzh, lv, zhpkvnu, l ,̂ r, qee,
nynrx, atze4n, ik, se, w, lrh, hp+, yrqyka’h,
zcngotcnx, igcump, zjcjs, lqpWiqu, cefmfhc, o, lb,
fdcY, tzby, yopxmvk, by, fz,, t, govyccm,
ijyiduwfzo, 6xr, duh, ejv, pk, pjw, l, fl, w

In the following table we show the first 10 features that the
algorithm induced, together with their associated parameters.
Several things areworth noticing. Thesecond featurechosen was
[a-z][a-z] , which denotes adjacent lowercase characters.
The third feature added was the lettere, which is the most
common letter. The weight for this feature is� = e� = 3:47.
The next feature introduces the first dependence on the length of
the string:[a-z]>1 denotes the feature “a one character word
ending with a lowercase letter.” Notice that this feature has a
small weight of 0.04, corresponding to our intuition that such
words are uncommon. Similarly, the featuresz , q, j , andx
are uncommon, and thus receive small weights. The appearance
of the feature* is explained by the fact that the vocabulary for
our corpus is restricted to the most frequent 100,000 spellings,
and all other words receive the “unknown word” spelling*** ,
which is rather frequent. (The “end-of-sentence” marker, which
makes its appearance later, is given the spelling| .)

feature [a-z] [a-z][a-z] e [a-z]>1 t
� 6.64 6.07 3.47 0.04 2.75

feature * z q j x
� 17.25 0.02 0.03 0.02 0.06

Shown below are spellings obtained by Gibbs sampling from the
resulting collection of fields.

frk, et, egeit, edet, eutdmeeet, ppge, A, dtgd,
falawe, etci, eese, ye, epemtbn, tegoeed, ee, *mp,
temou, enrteunt, ore, erveelew, heyu, rht, *,
lkaeu, lutoee, tee, mmo, eobwtit, weethtw, 7, ee,
teet, gre, /, *, eeeteetue, hgtte, om, he, *,
stmenu, ec, ter, eedgtue, iu, ec, reett, *,
ivtcmeee, vt, eets, tidpt, lttv, *, etttvti, ecte,
X, see, *, pi, rlet, tt, *, eot, leef, ke, *, *,
tet, iwteeiwbeie, yeee, et, etf, *, ov

After inducing 100 features, the model finally begins to be
concentrated on spellings that resemble actual words to some
extent, particularly for short strings. At this point the algorithm
has discovered, for example, thatthe is a very common 3-letter
word, that many words end ined , and that long words often end
in ion . A sample of 10 of the first 100 features induced, with
their appropriate weights is shown in the table below.

. ,>1 3<the tion 4<th y> ed> ion>7+ ent 7+<c
22.36 31.30 11.05 5.89 4.78 5.35 4.20 4.83 5.17 5.37

thed, and, thed, toftion, |, ieention, cention, |,
ceetion, ant, is, seieeet, cinention, and, .,
tloned, uointe, feredten, iined, sonention,
inathed, other, the, id, and, ,, of, is, of, of, ,,
lcers, ,, ceeecion, ,, roferented, |, ioner, ,, |,
the, the, the, centention, ionent, asers, ,,
ctention, |, of, thed, of, uentie, of, and, ttentt,
in, rerey, and, |, sotth, cheent, is, and, of,
thed, rontion, that, seoftr
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A sample of the first 1000 features induced is shown in the
table below, together with randomly generated spellings. No-
tice, for example, that the feature[0-9][0-9] appears with a
surprisingly high weight of 9382.93. This is due to the fact that
if a string contains one digit, then it’s very likely to contain two
digits. But since digits are relatively rare in general, the feature
[0-9] is assigned a small weight of 0.038. Also,according to
the model, a lowercase letter followed by an uppercase letter is
rare.

s> <re ght> 3<[A-Z] ly> al>7+ ing>
7.25 4.05 3.71 2.27 5.30 94.19 16.18

[a-z][A-Z] ’t> ed>7+ er>7+ ity ent>7+ [0-9][0-9]
0.003 138.56 12.58 8.11 4.34 6.12 9382.93

qu ex ae ment ies <wh ate
526.42 5.265 0.001 10.83 4.37 5.26 9.79

was, reaser, in, there, to, will, ,, was, by,
homes, thing, be, reloverated, ther, which,
conists, at, fores, anditing, with, Mr., proveral,
the, ,, ***, on’t, prolling, prothere, ,, mento,
at, yaou, 1, chestraing, for, have, to, intrally,
of, qut, ., best, compers, ***, cluseliment, uster,
of, is, deveral, this, thise, of, offect, inatever,
thifer, constranded, stater, vill, in, thase, in,
youse, menttering, and, ., of, in, verate, of, to

Finally, we visit the state of the model after inducing 1500
features to describe words. At this point the model is making
more refined judgements regarding what is to be considered a
word and what is not. The appearance of the features{}>
and \[@-&]{ , is explained by the fact that in preparing our
corpus, certain characters were assigned special “macro” strings.
For example, the punctuation characters$, _, %, and & are
represented in our corpus as\${} , \_{} , \%{} , and \&{} .
As the following sampled spellings demonstrate, the model has
at this point recognized the existence of macros, but has not yet
discerned their proper use.

7+<inte prov <der <wh 19 ons>7+ ugh ic>
4.23 5.08 0.03 2.05 2.59 4.49 5.84 7.76
sys ally 7+<con ide nal {}> qui \[@-&]{
4.78 6.10 5.25 4.39 2.91 120.56 18.18 913.22
iz IB <inc <im iong $ ive>7+ <un

10.73 10.85 4.91 5.01 0.001 16.49 2.83 9.08

the, you, to, by, conthing, the, ., not, have,
devened, been, of, |, F., ., in, have, -, ,,
intering, ***, ation, said, prouned, ***,
suparthere, in, mentter, prement, intever, you, .,
and, B., gover, producits, alase, not, conting,
comment, but, |, that, of, is, are, by, from, here,
incements, contive, ., evined, agents, and, be, ˙,
thent, distements, all, --, has, will, said,
resting, had, this, was, intevent, IBM, whree,
acalinate, herned, are, ***, O., |, 1980, but,
will, ***, is, ., to, becoment, ., with, recall,
has, |, nother, ments, was, the, to, of,
stounicallity, with, camanfined, in, this,
intations, it, conanament, out, they, you

While clearly the model still has much to learn, it has at this point
compiled a significant collection of morphological observations,
and has traveled a long way toward its goal of statistically char-
acterizing English spellings.

VI. EXTENSIONS AND RELATIONS TO OTHER APPROACHES

In this section we briefly discuss some relations between our
incremental feature induction algorithm for random fields and
other statistical learning paradigms. We also present some pos-
sible extensions and improvements of our method.

A. Conditional exponential models

Almost all of what we have presented here carries over to
the more general setting of conditional exponential models, in-
cluding the Improved Iterative Scaling algorithm. For general
conditionaldistributionsp(y jx) there may be no underlyingran-
dom field, but with features defined as binary functionsf(x; y),
the same general approach is applicable. The feature induction
method for conditional exponential models is demonstrated for
several problems in statistical machine translation in [3], where
it is presented in terms of the principle of maximum entropy.

B. Decision trees

Our feature induction paradigm also bears some resemblence
to various methods for growing classification and regression
trees. Like decision trees, our method builds a top-down classi-
fication that refines features. However, decision trees correspond
to constructing features that have disjoint support.

To explain, recall that a decision tree determines a partition�
of a context random variableX 2 X in order to predict the actual
class of the context, represented by a random variableY 2 Y.
Each leaf in the tree corresponds to a sequence of binary features

fl; fl"; fl""; : : : ; froot

wheren" denotes the parent of noden, each featurefn is a ques-
tion which splitsX , and where eachfn is the negation:fn of the
question asked at its sibling node. The distribution assigned to
a leafl is simply the empirical distribution onY determined by
the training samples(x; y) 2 X � Y for which�(x) = l. Each
leaf l is characterized by the conjunction of these features, and
different leaves correspond to conjunctionswith disjoint support.
In contrast, our feature induction algorithm generally results in
features that have overlapping support. The criterion of evaluat-
ing questions in terms of the amount by which they reduce the
conditional entropy ofY corresponds to our criterion of max-
imizing the reduction in Kullback-Leibler divergence,Gq(g),
over all candidate featuresg for a fieldq.

By modifying our induction algorithm in the following way,
we obtain an algorithm closely related to standard methods for
growing binary decision trees. Instead of considering the 1-
parameter family of fieldsq�;g to determine the best candidate
g = a^f , we consider the 2-parameter family of fields given by

q�;�0;f (y jx) =
1

Z�;�0;f (x)
e�a(x;y)^f(x;y)+�

0(:a)(x;y)^f(x;y) :

Since the featuresa^ f and(:a) ^ f have disjoint support, the
improvement obtained by adding both of them is given byGq(a^
f) + Gq((:a) ^ f). In general, the resulting distribution is not
absolutely continuous with respect to the empirical distribution.
If the random variableY can take onM valuesy1; : : : yM , then
thestandard decision treealgorithm is obtained if at then-th stage
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we add the 2M (disjoint) featuresfn(x) ^ �(yi; y), :fn(x) ^
�(yi; y), for i = 1; : : : ;M . Maximum likelihood training of the
parameters of these features recovers the empirical distribution
of the data at noden.

C. Extensions

As mentioned in Section 1, our approach differs from the
most common applications of statistical techniques in computer
vision, since a typical application of our method involves the
estimation of thousands of free parameters. Yet the induction
technique may not scale well to large 2-dimensional image prob-
lems. One potential difficulty is that the degree of the polyno-
mials in the Improved Iterative Scaling algorithm could be quite
large, and it could be difficult to obtain reliable estimates of
the coefficients since Monte Carlo sampling might not exhibit
sufficiently many instances of the desired features. The extent
to which this is a significant problem is primarily an empirical
issue, dependent on the particular domain to which the method
is applied.

The random field induction method presented in this paper
is not definitive; there are many possible variations on the ba-
sic theme, which is to incrementally construct an increasingly
detailed exponential model to approximate the reference distri-
butionp̃. Because the basic technique is based on a greedy algo-
rithm, there are of course many ways for improving the search
for a good set of features. The algorithm presented in Section 2
is in some respects the most simple possible within the general
framework. But it is also computationally intensive. A natu-
ral modification would be to add several of the top candidates
at each stage. While this should increase the overall speed of
the induction algorithm, it would also potentially result in more
redundancy among the features, since the top candidates could
be correlated. Another modification of the algorithm would be
to add only the best candidate at each step, but then to carry out
parameter estimation only after several new features had been
added to the field. It would also be natural to establish a more
Bayesian framework in which a prior distribution on features
and parameters is incorporated. This could enable a principled
approach for deciding when the feature induction is complete.
While there is a natural class of conjugate priors for the class of
exponential models that we use [14], the problem of incorporat-
ing prior knowledge about the set of candiate features is more
challenging.

APPENDIX

I. DUALITY

In this Appendix we prove Proposition 4 restated here.
Proposition 4: Suppose that ˜p � q0. Then there exists a

uniqueq? 2 ∆ satisfying

(1) q? 2 P \ Q̄
(2) D(p k q) = D(p k q?) + D(q? k q) for any p 2 P and
q 2 Q̄

(3) q? = arg min
q2Q̄

D(p̃ k q)

(4) q? = arg min
p2P

D(p k q0).

Moreover, any of these four properties determinesq? uniquely.

Our proof of the proposition will use a few lemmas. The first
two lemmas we state without proof.

Lemma 1:
(1) D(p k q) is a non-negative, extended real-valued func-
tion on∆� ∆.

(2) D(p k q) = 0 if and only ifp = q.
(3) D(p k q) is strictly convex inp andq separately.
(4) D(p k q) isC1 in q.

Lemma 2:
(1) The map(
; p) 7! 
 �p is smooth in(
; p) 2 Rn � ∆.
(2) The derivative ofD(p k� � q) with respect to� is

d

dt
j t=0 D(p k (t�) � q) = � � (p[f ]� q[f ]) :

Lemma 3: If p̃� q0 thenP \ Q̄ is nonempty.

Proof: Defineq? by property (3) of Proposition 4; that is,
q? = arg minq2Q̄D(p̃ k q). To see that this makes sense, note
that since ˜p � q0, D(p̃ k q) is not identically1 on Q̄. Also,
D(p k q) is continuous and strictly convex as a function ofq.
Thus, sinceQ̄ is closed,D(p̃ k q) attains its minimum at a unique
point q? 2 Q̄. We will show thatq? is also inP. SinceQ̄ is
closed under the action ofRn, � � q? is in Q̄ for any�. Thus
by the definition ofq?, � = 0 is a minimum of the function
� ! D(p̃ k� �q?). Taking derivatives with respect to� and
using Lemma A.2 we concludeq?[f ] = p̃[f ]. Thusq? 2 P.

Lemma 4: If q? 2 P \ Q̄ then for anyp 2 P andq 2 Q̄

D(p k q) = D(p k q?) +D(q? k q) :

Proof: A straightforward calculation shows that

D(p1 k q1) �D(p1 k q2) �D(p2 k q1) +D(p2 k q2)

= � � (p1[f ]� p2[f ])

for anyp1; p2; q1; q2 2 ∆ with q2 = � � q1. It follows from this
identity and the continuity ofD that

D(p1 k q1)�D(p1 k q2)�D(p2 k q1) +D(p2 k q2) = 0

if p1; p2 2 P and q1; q2 2 Q̄. The lemma follows by taking
p1 = q1 = q?.

Proof of Proposition 4: Chooseq? to be any point inP \ Q̄.
Such aq? exists by Lemma A.3. It satisfies property (1) by
definition, and it satisfies property (2) by Lemma A.4. As a
consequence of property (2), it also satisfies properties (3) and
(4). To check property (3), for instance, note that ifq is any point
in Q̄, thenD(p̃ k q) = D(p̃ k q?) +D(q? k q) � D(p̃ k q?).

It remains to prove that each of the four properties (1)–(4)
determinesq? uniquely. In other words, we need to show that
if m is any point in∆ satisfying any of the four properties
(1)–(4), thenm = q?. Suppose thatm satisfies property (1).
Then by property (2) forq? with p = q = m, D(m km) =
D(m k q?) + D(q? km). SinceD(m km) = 0, it follows that
D(m; q?) = 0 som = q?. If m satisfies property (2), then
the same argument withq? andm reversed again proves that
m = q?. Suppose thatm satisfies property (3). Then

D(p̃ k q?) � D(p̃ km) = D(p̃ k q?) +D(q? km)
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where the second equality follows from property (2) forq?. Thus
D(q? km) � 0 som = q?. If m satisfies property (4), then a
similar proof shows that once againm = q?.

II. DEALING WITH 1

In this Appendix we prove an extension of Proposition 5 that
allows the components of
 to equal�1. For this extension,
we assume that all of the components of the feature functionf
are non-negative:fi(!) � 0 for all i and all!. This can be
assumed with no loss of generality since we can replacefi by
fi �min! fi(!) if necessary.

LetR [�1 denote the partially extended real numbers with
the usual topology. The operations of addition and exponentia-
tion extend continuously toR [�1. Let S be the open subset
of (R [�1)n � ∆ defined by

S = f (
; q) : q(!)e
�f(!) > 0 for some! g

Observe thatRn � ∆ is a dense subset ofS. The map(
; q) 7!

 �p, which up to this point we defined only for finite
, extends
uniquely to a continuous map from all ofS to ∆. (The condition
on (
; q) 2 S ensures that the normalization in the definition of

 �p is well defined, even if
 is not finite.)

Definition 3: We call a functionA : S ! R [�1 an ex-
tended auxiliary functionfor L if when restricted toRn� ∆ it is
an ordinary auxiliary function in the sense of Definition 2, and
if, in addition, it satisfies property (1) of Definition 2 for any
(q; 
) 2 S, even if
 is not finite.

Note that if an ordinary auxiliary function extends to a contin-
uous function onS, then the extension is an extended auxiliary
function.

We have the following extension of Proposition 5:
Proposition 5: Suppose the feature functionf satisfies the

non-negativity condition 7 and supposeA is an extended auxil-
iary function forL. Then the conclusion of Proposition5 contin-
ues to hold if the condition on
(k) is replaced by:(
(k); q(k)) 2
S andA(
(k); q(k)) � A(
; q(k)) for any(
; q(k)) 2 S.

Proof: Lemma 1 is valid under the altered condition on

(k) sinceA(
; q) satisfies property (1) of Definition 2 for all
(
; q) 2 S. As a consequence, Lemma 2 also is valid, and the
proof of Proposition 5 goes through without change.
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Abstract

Log-linear models provide a statistically sound
framework for Stochastic \Uni�cation-Based"
Grammars (SUBGs) and stochastic versions of
other kinds of grammars. We describe two
computationally-tractable ways of estimating
the parameters of such grammars from a train-
ing corpus of syntactic analyses, and apply
these to estimate a stochastic version of Lexical-
Functional Grammar.

1 Introduction

Probabilistic methods have revolutionized com-
putational linguistics. They can provide a
systematic treatment of preferences in pars-
ing. Given a suitable estimation procedure,
stochastic models can be \tuned" to re
ect the
properties of a corpus. On the other hand,
\Uni�cation-Based" Grammars (UBGs) can ex-
press a variety of linguistically-important syn-
tactic and semantic constraints. However, de-
veloping Stochastic \Uni�cation-based" Gram-
mars (SUBGs) has not proved as straight-
forward as might be hoped.
The simple \relative frequency" estimator

for PCFGs yields the maximum likelihood pa-
rameter estimate, which is to say that it
minimizes the Kulback-Liebler divergence be-
tween the training and estimated distributions.
On the other hand, as Abney (1997) points
out, the context-sensitive dependencies that
\uni�cation-based" constraints introduce ren-
der the relative frequency estimator suboptimal:
in general it does not maximize the likelihood
and it is inconsistent.
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Abney (1997) proposes a Markov Random
Field or log linear model for SUBGs, and the
models described here are instances of Abney's
general framework. However, the Monte-Carlo
parameter estimation procedure that Abney
proposes seems to be computationally imprac-
tical for reasonable-sized grammars. Sections 3
and 4 describe two new estimation procedures
which are computationally tractable. Section 5
describes an experiment with a small LFG cor-
pus provided to us by Xerox Parc. The log
linear framework and the estimation procedures
are extremely general, and they apply directly
to stochastic versions of HPSG and other theo-
ries of grammar.

2 Features in SUBGs

We follow the statistical literature in using the
term feature to refer to the properties that pa-
rameters are associated with (we use the word
\attribute" to refer to the attributes or features
of a UBG's feature structure). Let 
 be the
set of all possible grammatical or well-formed
analyses. Each feature f maps a syntactic anal-
ysis ! 2 
 to a real value f(!). The form of
a syntactic analysis depends on the underlying
linguistic theory. For example, for a PCFG !
would be parse tree, for a LFG ! would be a
tuple consisting of (at least) a c-structure, an f-
structure and a mapping from c-structure nodes
to f-structure elements, and for a Chomskyian
transformational grammar ! would be a deriva-
tion.
Log-linear models are models in which the

log probability is a linear combination of fea-
ture values (plus a constant). PCFGs, Gibbs
distributions, Maximum-Entropy distributions
and Markov Random Fields are all examples of
log-linear models. A log-linear model associates
each feature fj with a real-valued parameter �j.



A log-linear model with m features is one in
which the likelihood P(!) of an analysis ! is:
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While the estimators described below make
no assumptions about the range of the fi, in
the models considered here the value of each
feature fi(!) is the number of times a particu-
lar structural arrangement or con�guration oc-
curs in the analysis !, so fi(!) ranges over the
natural numbers.
For example, the features of a PCFG are

indexed by productions, i.e., the value fi(!)
of feature fi is the number of times the
ith production is used in the derivation !.
This set of features induces a tree-structured
dependency graph on the productions which
is characteristic of Markov Branching Pro-
cesses (Pearl, 1988; Frey, 1998). This tree
structure has the important consequence that
simple \relative-frequencies" yield maximum-
likelihood estimates for the �i.
Extending a PCFG model by adding addi-

tional features not associated with productions
will in general add additional dependencies, de-
stroy the tree structure, and substantially com-
plicate maximum likelihood estimation.
This is the situation for a SUBG, even if the

features are production occurences. The uni-
�cation constraints create non-local dependen-
cies among the productions and the dependency
graph of a SUBG is usually not a tree. Conse-
quently, maximum likelihood estimation is no
longer a simple matter of computing relative
frequencies. But the resulting estimation proce-
dures (discussed in detail, shortly), albeit more
complicated, have the virtue of applying to es-
sentially arbitrary features|of the production
or non-production type. That is, since estima-
tors capable of �nding maximum-likelihood pa-
rameter estimates for production features in a
SUBG will also �nd maximum-likelihood esti-
mates for non-production features, there is no
motivation for restricting features to be of the
production type.
Linguistically there is no particular reason

for assuming that productions are the best fea-
tures to use in a stochastic language model.

For example, the adjunct attachment ambigu-
ity in (1) results in alternative syntactic struc-
tures which use the same productions the same
number of times in each derivation, so a model
with only production features would necessarily
assign them the same likelihood. Thus models
that use production features alone predict that
there should not be a systematic preference for
one of these analyses over the other, contrary to
standard psycholinguistic results.

1.a Bill thought Hillary [VP[VP left ] yesterday ]

1.b Bill [VP[VP thought Hillary left ] yesterday ]

There are many di�erent ways of choosing
features for a SUBG, and each of these choices
makes an empirical claim about possible distri-
butions of sentences. Specifying the features of
a SUBG is as much an empirical matter as spec-
ifying the grammar itself. For any given UBG
there are a large (usually in�nite) number of
SUBGs that can be constructed from it, di�er-
ing only in the features that each SUBG uses.
In addition to production features, the

stochastic LFG models evaluated below used
the following kinds of features, guided by the
principles proposed by Hobbs and Bear (1995).
Adjunct and argument features indicate adjunct
and argument attachment respectively, and per-
mit the model to capture a general argument
attachment preference. In addition, there are
specialized adjunct and argument features cor-
responding to each grammatical function used
in LFG (e.g., SUBJ, OBJ, COMP, XCOMP,
ADJUNCT, etc.). There are features indi-
cating both high and low attachment (deter-
mined by the complexity of the phrase being
attached to). Another feature indicates non-
right-branching nonterminal nodes. There is
a feature for non-parallel coordinate structures
(where parallelism is measured in constituent
structure terms). Each f-structure attribute-
atomic value pair which appears in any feature
structure is also used as a feature. We also use
a number of features identifying syntactic struc-
tures that seem particularly important in these
corpora, such as a feature identifying NPs that
are dates (it seems that date interpretations of
NPs are preferred). We would have liked to
have included features concerning speci�c lex-
ical items (to capture head-to-head dependen-
cies), but we felt that our corpora were so small



that the associated parameters could not be ac-
curately estimated.

3 A pseudo-likelihood estimator for
log linear models

Suppose e! = !1; : : : ; !n is a training cor-
pus of n syntactic analyses. Letting fj(e!) =P

i=1;:::;n fj(!i), the log likelihood of the corpuse! and its derivatives are:

log L�(e!) =
X

j=1;:::;m

�jfj(e!)� n logZ� (2)

@ log L�(e!)
@�j

= fj(e!)� nE�(fj) (3)

where E�(fj) is the expected value of fj under
the distribution determined by the parameters
�. The maximum-likelihood estimates are the �
which maximize log L�(e!). The chief di�culty
in �nding the maximum-likelihood estimates is
calculating E�(fj), which involves summing over
the space of well-formed syntactic structures 
.
There seems to be no analytic or e�cient nu-
merical way of doing this for a realistic SUBG.
Abney (1997) proposes a gradient ascent,

based upon a Monte Carlo procedure for esti-
mating E�(fj). The idea is to generate random
samples of feature structures from the distribu-

tion P
�̂
(!), where �̂ is the current parameter

estimate, and to use these to estimate E
�̂
(fj),

and hence the gradient of the likelihood. Sam-
ples are generated as follows: Given a SUBG,
Abney constructs a covering PCFG based upon
the SUBG and �̂, the current estimate of �. The
derivation trees of the PCFG can be mapped
onto a set containing all of the SUBG's syn-
tactic analyses. Monte Carlo samples from the
PCFG are comparatively easy to generate, and
sample syntactic analyses that do not map to
well-formed SUBG syntactic structures are then
simply discarded. This generates a stream of
syntactic structures, but not distributed accord-
ing to P

�̂
(!) (distributed instead according to

the restriction of the PCFG to the SUBG). Ab-
ney proposes using a Metropolis acceptance-
rejection method to adjust the distribution of
this stream of feature structures to achieve de-
tailed balance, which then produces a stream
of feature structures distributed according to
P
�̂
(!).
While this scheme is theoretically sound, it

would appear to be computationally impracti-

cal for realistic SUBGs. Every step of the pro-
posed procedure (corresponding to a single step
of gradient ascent) requires a very large number
of PCFG samples: samples must be found that
correspond to well-formed SUBGs; many such
samples are required to bring the Metropolis al-
gorithm to (near) equilibrium; many samples
are needed at equilibrium to properly estimate
E
�̂
(fj).
The idea of a gradient ascent of the likelihood

(2) is appealing|a simple calculation reveals
that the likelihood is concave and therefore free
of local maxima. But the gradient (in partic-
ular, E�(fj)) is intractable. This motivates an
alternative strategy involving a data-based esti-
mate of E�(fj):

E�(fj) = E�(E�(fj(!)jy(!))) (4)

�
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n

X
i=1;:::;n

E�(fj(!)jy(!) = yi)(5)

where y(!) is the yield belonging to the syn-
tactic analysis !, and yi = y(!i) is the yield
belonging to the i'th sample in the training cor-
pus.
The point is that E�(fj(!)jy(!) = yi) is gen-

erally computable. In fact, if 
(y) is the set of
well-formed syntactic structures that have yield
y (i.e., the set of possible parses of the string y),
then
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Hence the calculation of the conditional expec-
tations only involves summing over the possible
syntactic analyses or parses 
(yi) of the strings
in the training corpus. While it is possible to
construct UBGs for which the number of pos-
sible parses is unmanageably high, for many
grammars it is quite manageable to enumerate
the set of possible parses and thereby directly
evaluate E�(fj(!)jy(!) = yi).
Therefore, we propose replacing the gradient,

(3), by

fj(e!)� X
i=1;:::;n

E�(fj(!)jy(!) = yi) (6)

and performing a gradient ascent. Of course (6)
is no longer the gradient of the likelihood func-



tion, but fortunately it is (exactly) the gradient
of (the log of) another criterion:

PL�(e!) = Y
i=1;:::;n

P�(! = !ijy(!) = yi) (7)

Instead of maximizing the likelihood of the syn-
tactic analyses over the training corpus, we
maximize the conditional likelihood of these
analyses given the observed yields. In our exper-
iments, we have used a conjugate-gradient op-
timization program adapted from the one pre-
sented in Press et al. (1992).
Regardless of the pragmatic (computational)

motivation, one could perhaps argue that the
conditional probabilities P�(!jy) are as use-
ful (if not more useful) as the full probabili-
ties P�(!), at least in those cases for which
the ultimate goal is syntactic analysis. Berger
et al. (1996) and Jelinek (1997) make this same
point and arrive at the same estimator, albeit
through a maximum entropy argument.
The problem of estimating parameters for

log-linear models is not new. It is especially dif-
�cult in cases, such as ours, where a large sam-
ple space makes the direct computation of ex-
pectations infeasible. Many applications in spa-
tial statistics, involving Markov random �elds
(MRF), are of this nature as well. In his
seminal development of the MRF approach to
spatial statistics, Besag introduced a \pseudo-
likelihood" estimator to address these di�cul-
ties (Besag, 1974; Besag, 1975), and in fact our
proposal here is an instance of his method. In
general, the likelihood function is replaced by a
more manageable product of conditional likeli-
hoods (a pseudo-likelihood|hence the designa-
tion PL�), which is then optimized over the pa-
rameter vector, instead of the likelihood itself.
In many cases, as in our case here, this sub-
stitution side steps much of the computational
burden without sacri�cing consistency (more on
this shortly).
What are the asymptotics of optimizing a

pseudo-likelihood function? Look �rst at the
likelihood itself. For large n:

1
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Z
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where �o is the true (and unknown) parame-
ter vector. Up to a constant, (8) is the nega-
tive of the Kullback-Leibler divergence between
the true and estimated distributions of syntac-
tic analyses. As sample size grows, maximizing
likelihood amounts to minimizing divergence.
As for pseudo-likelihood:

1
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So that maximizing pseudo-likelihood (at large
samples) amounts to minimizing the average
(over yields) divergence between the true and
estimated conditional distributions of analyses
given yields.
Maximum likelihood estimation is consistent:

under broad conditions the sequence of dis-
tributions P

�̂n
, associated with the maximum

likelihood estimator for �o given the samples
!1; : : : !n, converges to P�o . Pseudo-likelihood
is also consistent, but in the present implemen-
tation it is consistent for the conditional dis-
tributions P�o(!jy(!)) and not necessarily for
the full distribution P�o (see Chi (1998)). It is
not hard to see that pseudo-likelihood will not
always correctly estimate P�o . Suppose there
is a feature fi which depends only on yields:
fi(!) = fi(y(!)). (Later we will refer to such
features as pseudo-constant.) In this case, the
derivative of PL�(e!) with respect to �i is zero;
PL�(e!) contains no information about �i. In
fact, in this case any value of �i gives the same
conditional distribution P�(!jy(!)); �i is irrele-
vant to the problem of choosing good parses.
Despite the assurance of consistency, pseudo-

likelihood estimation is prone to over �tting
when a large number of features is matched
against a modest-sized training corpus. One
particularly troublesome manifestation of over
�tting results from the existence of features
which, relative to the training set, we might
term \pseudo-maximal": Let us say that a
feature f is pseudo-maximal for a yield y i�



8!0 2 
(y) f(!) � f(!0) where ! is any cor-
rect parse of y, i.e., the feature's value on every
correct parse ! of y is greater than or equal
to its value on any other parse of y. Pseudo-
minimal features are de�ned similarly. It is easy
to see that if fj is pseudo-maximal on each sen-

tence of the training corpus then the param-
eter assignment �j = 1 maximizes the cor-
pus pseudo-likelihood. (Similarly, the assign-
ment �j = �1 maximizes pseudo-likelihood if
fj is pseudo-minimal over the training corpus).
Such in�nite parameter values indicate that the
model treats pseudo-maximal features categori-
cally; i.e., any parse with a non-maximal feature
value is assigned a zero conditional probability.
Of course, a feature which is pseudo-maximal

over the training corpus is not necessarily
pseudo-maximal for all yields. This is an in-
stance of over �tting, and it can be addressed,
as is customary, by adding a regularization term
that promotes small values of � to the objec-
tive function. A common choice is to add a
quadratic to the log-likelihood, which corre-
sponds to multiplying the likelihood itself by
a normal distribution. In our experiments, we
multiplied the pseudo-likelihood by a zero-mean
normal in �1; : : : �m, with diagonal covariance,
and with standard deviation �j for �j equal to
7 times the maximum value of fj found in any
parse in the training corpus. (We experimented
with other values for �j, but the choice seems to
have little e�ect). Thus instead of maximizing

the log pseudo-likelihood, we choose �̂ to maxi-
mize

log PL�(e!)� X
j=1;:::;m

�2j
2�2j

(9)

4 A maximum correct estimator for
log linear models

The pseudo-likelihood estimator described in
the last section �nds parameter values which
maximize the conditional probabilities of the
observed parses (syntactic analyses) given the
observed sentences (yields) in the training cor-
pus. One of the empirical evaluation measures
we use in the next section measures the num-
ber of correct parses selected from the set of
all possible parses. This suggests another pos-
sible objective function: choose �̂ to maximize
the number C�(e!) of times the maximum likeli-
hood parse (under �) is in fact the correct parse,

in the training corpus.
C�(e!) is a highly discontinuous function of �,

and most conventional optimization algorithms
perform poorly on it. We had the most suc-
cess with a slightly modi�ed version of the sim-
ulated annealing optimizer described in Press
et al. (1992). This procedure is much more com-
putationally intensive than the gradient-based
pseudo-likelihood procedure. Its computational
di�culty grows (and the quality of solutions de-
grade) rapidly with the number of features.

5 Empirical evaluation

Ron Kaplan and Hadar Shemtov at Xerox Parc
provided us with two LFG parsed corpora. The
Verbmobil corpus contains appointment plan-
ning dialogs, while the Homecentre corpus is
drawn from Xerox printer documentation. Ta-
ble 1 summarizes the basic properties of these
corpora. These corpora contain packed c/f-
structure representations (Maxwell III and Ka-
plan, 1995) of the grammatical parses of each
sentence with respect to Lexical-Functional
grammars. The corpora also indicate which of
these parses is in fact the correct parse (this
information was manually entered). Because
slightly di�erent grammars were used for each
corpus we chose not to combine the two corpora,
although we used the set of features described in
section 2 for both in the experiments described
below. Table 2 describes the properties of the
features used for each corpus.
In addition to the two estimators described

above we also present results from a baseline es-
timator in which all parses are treated as equally
likely (this corresponds to setting all the param-
eters �j to zero).
We evaluated our estimators using held-out

test corpus e!test. We used two evaluation
measures. In an actual parsing application a
SUBG might be used to identify the correct
parse from the set of grammatical parses, so
our �rst evaluation measure counts the number
C
�̂
(e!test) of sentences in the test corpus e!test

whose maximum likelihood parse under the es-
timated model �̂ is actually the correct parse.
If a sentence has l most likely parses (i.e., all
l parses have the same conditional probability)
and one of these parses is the correct parse, then
we score 1=l for this sentence.
The second evaluation measure is the pseudo-



Verbmobil corpus Homecentre corpus

Number of sentences 540 980
Number of ambiguous sentences 314 481
Number of parses of ambiguous sentences 3245 3169

Table 1: Properties of the two corpora used to evaluate the estimators.

Verbmobil corpus Homecentre corpus

Number of features 191 227
Number of rule features 59 57
Number of pseudo-constant features 19 41
Number of pseudo-maximal features 12 4
Number of pseudo-minimal features 8 5

Table 2: Properties of the features used in the stochastic LFG models. The numbers of pseudo-
maximal and pseudo-minimal features do not include pseudo-constant features.

likelihood itself, PL
�̂
(e!test). The pseudo-

likelihood of the test corpus is the likelihood of
the correct parses given their yields, so pseudo-
likelihood measures how much of the probabil-
ity mass the model puts onto the correct anal-
yses. This metric seems more relevant to ap-
plications where the system needs to estimate
how likely it is that the correct analysis lies in
a certain set of possible parses; e.g., ambiguity-
preserving translation and human-assisted dis-
ambiguation. To make the numbers more man-
ageable, we actually present the negative loga-
rithm of the pseudo-likelihood rather than the
pseudo-likelihood itself|so smaller is better.

Because of the small size of our corpora we
evaluated our estimators using a 10-way cross-
validation paradigm. We randomly assigned
sentences of each corpus into 10 approximately
equal-sized subcorpora, each of which was used
in turn as the test corpus. We evaluated on each
subcorpus the parameters that were estimated
from the 9 remaining subcorpora that served as
the training corpus for this run. The evalua-
tion scores from each subcorpus were summed
in order to provide the scores presented here.

Table 3 presents the results of the empiri-
cal evaluation. The superior performance of
both estimators on the Verbmobil corpus prob-
ably re
ects the fact that the non-rule fea-
tures were designed to match both the gram-
mar and content of that corpus. The pseudo-
likelihood estimator performed better than the
correct-parses estimator on both corpora un-

der both evaluation metrics. There seems to
be substantial over learning in all these mod-
els; we routinely improved performance by dis-
carding features. With a small number of
features the correct-parses estimator typically
scores better than the pseudo-likelihood estima-
tor on the correct-parses evaluation metric, but
the pseudo-likelihood estimator always scores
better on the pseudo-likelihood evaluation met-
ric.

6 Conclusion

This paper described a log-linear model for
SUBGs and evaluated two estimators for such
models. Because estimators that can estimate
rule features for SUBGs can also estimate other
kinds of features, there is no particular reason to
limit attention to rule features in a SUBG. In-
deed, the number and choice of features strongly
in
uences the performance of the model. The
estimated models are able to identify the cor-
rect parse from the set of all possible parses ap-
proximately 50% of the time.
We would have liked to introduce features

corresponding to dependencies between lexical
items. Log-linear models are well-suited for lex-
ical dependencies, but because of the large num-
ber of such dependencies substantially larger
corpora will probably be needed to estimate
such models.1

1Alternatively, it may be possible to use a simpler
non-SUBG model of lexical dependencies estimated from
a much larger corpus as the reference distribution with



Verbmobil corpus Homecentre corpus

C(e!test) � log PL(e!test) C(e!test) � log PL(e!test)
Baseline estimator 9.7% 533 15.2% 655
Pseudo-likelihood estimator 58.7% 396 58.8% 583
Correct-parses estimator 53.7% 469 53.2% 604

Table 3: An empirical evaluation of the estimators. C(e!test) is the number of maximum likelihood
parses of the test corpus that were the correct parses, and � log PL(e!test) is the negative logarithm
of the pseudo-likelihood of the test corpus.

However, there may be applications which
can bene�t from a model that performs even at
this level. For example, in a machine-assisted
translation system a model like ours could
be used to order possible translations so that
more likely alternatives are presented before less
likely ones. In the ambiguity-preserving trans-
lation framework, a model like this one could be
used to choose between sets of analyses whose
ambiguities cannot be preserved in translation.
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Abstract

We argue that some of the computational complexity
associated with estimation of stochastic attribute-
value grammars can be reduced by training upon an
informative subset of the full training set. Results
using the parsed Wall Street Journal corpus show
that in some circumstances, it is possible to obtain
better estimation results using an informative sam-
ple than when training upon all the available ma-
terial. Further experimentation demonstrates that
with unlexicalised models, a Gaussian prior can re-
duce over�tting. However, when models are lexi-
calised and contain overlapping features, over�tting
does not seem to be a problem, and a Gaussian prior
makes minimal di�erence to performance. Our ap-
proach is applicable for situations when there are
an infeasibly large number of parses in the training
set, or else for when recovery of these parses from
a packed representation is itself computationally ex-
pensive.

1 Introduction

Abney showed that attribute-value grammars can-
not be modelled adequately using statistical tech-
niques which assume that statistical dependencies
are accidental (Abney, 1997). Instead of using a
model class that assumed independence, Abney sug-
gested using Random Fields Models (RFMs) for
attribute-value grammars. RFMs deal with the
graphical structure of a parse. Because they do not
make independence assumptions about the stochas-
tic generation process that might have produced
some parse, they are able to model correctly depen-
dencies that exist within parses.
When estimating standardly-formulated RFMs, it

is necessary to sum over all parses licensed by the
grammar. For many broad coverage natural lan-
guage grammars, this might involve summing over
an exponential number of parses. This would make
the task computationally intractable. Abney, fol-
lowing the lead of La�erty et al, suggested a Monte

� Current address: osborne@cogsci.ed.ac.uk, University of
Edinburgh, Division of Informatics, 2 Buccleuch Place, EH8
9LW, Scotland.

Carlo simulation as a way of reducing the computa-
tional burden associated with RFM estimation (Laf-
ferty et al., 1997). However, Johnson et al consid-
ered the form of sampling used in this simulation
(Metropolis-Hastings) intractable (Johnson et al.,
1999). Instead, they proposed an alternative strat-
egy that rede�ned the estimation task. It was argued
that this rede�nition made estimation computation-
ally simple enough that a Monte Carlo simulation
was unnecessary. They presented results obtained
using a small unlexicalised model trained on a mod-
est corpus.
Unfortunately, Johnson et al assumed it was possi-

ble to retrieve all parses licensed by a grammar when
parsing a given training set. For us, this was not
the case. In our experiments with a manually writ-
ten broad coverage De�nite Clause Grammar (DCG)
(Briscoe and Carroll, 1996), we were only able to re-
cover all parses for Wall Street Journal sentences
that were at most 13 tokens long within acceptable
time and space bounds on computation. When we
used an incremental Minimum Description Length
(MDL) based learner to extend the coverage of our
manually written grammar (from roughly 60% to
around 90% of the parsed Wall Street Journal), the
situation became worse. Sentence ambiguity consid-
erably increased. We were then only able to recover
all parses for Wall Street Journal sentences that were
at most 6 tokens long (Osborne, 1999).
We can however, and usually in polynomial time,

recover up to 30 parses for sentences up to 30 tokens
long when we use a probabilistic unpacking mecha-
nism (Carroll and Briscoe, 1992). (Longer sentences
than 30 tokens can be parsed, but the number of
parses we can recover for them drops o� rapidly).1

However, 30 is far less than the maximum number

1We made an attempt to determine the maximum num-
ber of parses our grammar might assign to sentences. On
a 450MHz Ultra Sparc 80 with 2 Gb of real memory, with
a limit of at most 1000 parses per sentence, and allowing
no more than 100 CPU seconds per sentence, we found that
sentence ambiguity increased exponentially with respect to
sentence length. Sentences with 30 tokens had an estimated
average of 866 parses (standard deviation 290:4). Without
the limit of 1000 parses per sentence, it seems likely that this
average would increase.



of parses per sentence our grammar might assign to
Wall Street Journal sentences. Any training set we
have access to will therefore be necessarily limited
in size.
We therefore need an estimation strategy that

takes seriously the issue of extracting the best per-
formance from a limited size training set. A limited
size training set means one created by retrieving at
most n parses per sentence. Although we cannot re-
cover all possible parses, we do have a choice as to
which parses estimation should be based upon.
Our approach to the problem of making RFM es-

timation feasible for our highly ambiguous DCG is
to seek out an informative sample and train upon
that. We do not rede�ne the estimation task in a
non-standard way, nor do we use a Monte Carlo sim-
ulation.
We call a sample informative if it both leads to

the selection of a model that does not under�t or
over�t, and also is typical of future samples. Despite
one's intuitions, an informative sample might be a
proper subset of the full training set. This means
that estimation using the informative sample might
yield better results than estimation using all of the
training set.
The rest of this paper is as follows. Firstly we

introduce RFMs. Then we show how they may be
estimated and how an informative sample might be
identi�ed. Next, we give details of the attribute-
value grammar we use, and show how we go about
modelling it. We then present two sets of experi-
ments. The �rst set is small scale, and are designed
to show the existence of an informative sample. The
second set of experiments are larger in scale, and
build upon the computational savings we are able
to achieve using a probabilistic unpacking strategy.
They show how large models (two orders of magni-
tude larger than those reported by Johnson et al)
can be estimated using the parsed Wall Street Jour-
nal corpus. Over�tting is shown to take place. They
also show how this over�tting can be (partially) re-
duced by using a Gaussian prior. Finally, we end
with some comments on our work.

2 Random Field Models

Here we show how attribute-value grammars may be
modelled using RFMs. Although our commentary is
in terms of RFMs and grammars, it should be ob-
vious that RFM technology can be applied to other
estimation scenarios.
Let G be an attribute-value grammar, D the set

of sentences within the string-set de�ned by L(G)
and 
 the union of the set of parses assigned to
each sentence in D by the grammar G. A Random
Field Model, M , consist of two components: a set of
features, F and a set of weights, �.
Features are the basic building blocks of RFMs.

They enable the system designer to specify the key
aspects of what it takes to di�erentiate one parse
from another parse. Each feature is a function from
a parse to an integer. Here, the integer value as-
sociated with a feature is interpreted as the num-
ber of times a feature `matches' (is `active') with
a parse. Note features should not be confused with
features as found in feature-value bundles (these will
be called attributes instead). Features are usually
manually selected by the system designer.

The other component of a RFM, �, is a set of
weights. Informally, weights tell us how features are
to be used when modelling parses. For example, an
active feature with a large weight might indicate that
some parse had a high probability. Each weight �i is
associated with a feature fi. Weights are real-valued
numbers and are automatically determined by an es-
timation process (for example using Improved Itera-
tive Scaling (La�erty et al., 1997)). One of the nice
properties of RFMs is that the likelihood function
of a RFM is strictly concave. This means that there
are no local minima, and so we can be be sure that
scaling will result in estimation of a RFM that is
globally optimal.

The (unnormalised) total weight of a parse x,
 (x), is a function of the k features that are `active'
on a parse:

 (x) = exp(

kX

i=1

�ifi(x)) (1)

The probability of a parse, P (x j M), is simply
the result of normalising the total weight associated
with that parse:

P (x jM) =
1

Z
 (x) (2)

Z =
X

y2


 (y) (3)

The interpretation of this probability depends upon
the application of the RFM. Here, we use parse prob-
abilities to re
ect preferences for parses.

When using RFMs for parse selection, we sim-
ply select the parse that maximises  (x). In these
circumstances, there is no need to normalise (com-
pute Z). Also, when computing  (x) for competing
parses, there is no built-in bias towards shorter (or
longer) derivations, and so no need to normalise with
respect to derivation length.2

2The reason there is no need to normalise with respect to
derivation length is that features can have positive or nega-
tive weights. The weight of a parse will therefore not always
monotonically increase with respect to the number of active
features.



3 RFM Estimation and Selection of
the Informative Sample

We now sketch how RFMs may be estimated and
then outline how we seek out an informative sample.
We use Improved Iterative Scaling (IIS) to esti-

mate RFMs. In outline, the IIS algorithm is as fol-
lows:

1. Start with a reference distribution R, a set of
features F and a set of weights �. Let M be
the RFM de�ned using F and �.

2. Initialise all weights to zero. This makes the
initial model uniform.

3. Compute the expectation of each feature w.r.t
R.

4. For each feature fi

(a) Find a weight ��i that equates the expecta-
tion of fi w.r.t R and the expectation of fi
w.r.t M .

(b) Replace the old value of �i with ��i.

5. If the model has converged to R, output M .

6. Otherwise, go to step 4

The key step here is 4a, computing the expectations
of features w.r.t the RFM. This involves calculating
the probability of a parse, which, as we saw from
equation 2, requires a summation over all parses in

.
We seek out an informative sample 
t (
t � 
)

as follows:

1. Pick out from 
 a sample of size n.

2. Estimate a model using that sample and evalu-
ate it.

3. If the model just estimated shows signs of over-
�tting (with respect to an unseen held-out data
set), halt and output the model.

4. Otherwise, increase n and go back to step 1.

Our approach is motivated by the following (par-
tially related) observations:

� Because we use a non-parametric model class
and select an instance of it in terms of some
sample (section 5 gives details), a stochastic
complexity argument tells us that an overly sim-
ple model (resulting from a small sample) is
likely to under�t. Likewise, an overly complex
model (resulting from a large sample) is likely
to over�t. An informative sample will therefore
relate to a model that does not under or over�t.

� On average, an informative sample will be `typ-
ical' of future samples. For many real-life situ-
ations, this set is likely to be small relative to
the size of the full training set.

We incorporate the �rst observation through our
search mechanism. Because we start with small sam-
ples and gradually increase their size, we remain
within the domain of eÆciently recoverable samples.
The second observation is (largely) incorporated

in the way we pick samples. The experimental sec-
tion of this paper goes into the relevant details.
Note our approach is heuristic: we cannot a�ord

to evaluate all 2j
j possible training sets. The actual
size of the informative sample 
t will depend both
the upon the model class used and the maximum
sentence length we can deal with. We would ex-
pect richer, lexicalised models to exhibit over�tting
with smaller samples than would be the case with
unlexicalised models. We would expect the size of
an informative sample to increase as the maximum
sentence length increased.
There are similarities between our approach and

with estimation using MDL (Rissanen, 1989). How-
ever, our implementation does not explicitly attempt
to minimise code lengths. Also, there are similari-
ties with importance sampling approaches to RFM
estimation (such as (Chen and Rosenfeld, 1999a)).
However, such attempts do not minimise under or
over�tting.

4 The Grammar

The grammar we model with Random Fields, (called
the Tag Sequence Grammar (Briscoe and Carroll,
1996), or TSG for short) was developed with regard
to coverage, and when compiled consists of 455 Def-
inite Clause Grammar (DCG) rules. It does not
parse sequences of words directly, but instead as-
signs derivations to sequences of part-of-speech tags
(using the CLAWS2 tagset. The grammar is rela-
tively shallow, (for example, it does not fully anal-
yse unbounded dependencies) but it does make an
attempt to deal with common constructions, such as
dates or names, commonly found in corpora, but of
little theoretical interest. Furthermore, it integrates
into the syntax a text grammar, grouping utterances
into units that reduce the overall ambiguity.

5 Modelling the Grammar

Modelling the TSG with respect to the parsed Wall
Street Journal consists of two steps: creation of a
feature set and de�nition of the reference distribu-
tion.
Our feature set is created by parsing sentences in

the training set (
T ), and using each parse to in-
stantiate templates. Each template de�nes a family
of features. At present, the templates we use are
somewhat ad-hoc. However, they are motivated by
the observations that linguistically-stipulated units
(DCG rules) are informative, and that many DCG
applications in preferred parses can be predicted us-
ing lexical information.
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by N1/n:traÆc
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Figure 1: TSG Parse Fragment

The �rst template creates features that count
the number of times a DCG instantiationis present
within a parse.3 For example, suppose we parsed
the Wall Street Journal AP:

1 unimpeded by traÆc

A parse tree generated by TSG might be as shown
in �gure 1. Here, to save on space, we have labelled
each interior node in the parse tree with TSG rule
names, and not attribute-value bundles. Further-
more, we have annotated each node with the head
word of the phrase in question. Within our gram-
mar, heads are (usually) explicitly marked. This
means we do not have to make any guesses when
identifying the head of a local tree. With head in-
formation, we are able to lexicalise models. We have
suppressed tagging information.
For example, a feature de�ned using this template

might count the number of times the we saw:

AP/a1

A1/app1

in a parse. Such features record some of the context
of the rule application, in that rule applications that
di�er in terms of how attributes are bound will be
modelled by di�erent features.
Our second template creates features that are par-

tially lexicalised. For each local tree (of depth one)
that has a PP daughter, we create a feature that
counts the number of times that local tree, decorated
with the head-word of the PP, was seen in a parse.
An example of such a lexicalised feature would be:

A1/app1

PP/p1:by

3Note, all our features suppress any terminals that appear
in a local tree. Lexical information is included when we decide
to lexicalise features.

These features are designed to model PP attach-
ments that can be resolved using the head of the
PP.
The third and �nal template creates features that

are again partially lexicalised. This time, we create
local trees of depth one that are decorated with the
head word. For example, here is one such feature:

AP/a1:unimpeded

A1/app1

Note the second and third templates result in fea-
tures that overlap with features resulting from ap-
plications of the �rst template.
We create the reference distribution R (an associ-

ation of probabilities with TSG parses of sentences,
such that the probabilities re
ect parse preferences)
using the following process:

1. Extract some sample 
T (using the approach
mentioned in section 3).

2. For each sentence in the sample, for each parse
of that sentence, compute the `distance' be-
tween the TSG parse and the WSJ reference
parse. In our approach, distance is calculated
in terms of a weighted sum of crossing rates, re-
call and precision. Minimising it maximises our
de�nition of parse plausibility.4 However, there
is nothing inherently crucial about this decision.
Any other objective function (that can be rep-
resented as an exponential distribution) could
be used instead.

3. Normalise the distances, such that for some sen-
tence, the sum of the distances of all recov-
ered TSG parses for that sentence is a constant
across all sentences. Normalising in this man-
ner ensures that each sentence is equiprobable
(remember that RFM probabilities are in terms
of parse preferences, and not probability of oc-
currence in some corpus).

4. Map the normalised distances into probabili-
ties. If d(p) is the normalised distance of TSG
parse p, then associate with parse p the refer-
ence probability given by the maximum likeli-
hood estimator:

d(p)P
x2
t

d(x)
(4)

Our approach therefore gives partial credit (a non-
zero reference probability) to all parses in 
t. R is
therefore not as discontinuous as the equivalent dis-
tribution used by Johnson et al. We therefore do not
need to use simulated annealing or other numerically
intensive techniques to estimate models.

4Our distance metric is the same one used by Hektoen
(Hektoen, 1997)



6 Experiments

Here we present two sets of experiments. The �rst
set demonstrate the existence of an informative sam-
ple. It also shows some of the characteristics of three
sampling strategies. The second set of experiments
is larger in scale, and show RFMs (both lexicalised
and unlexicalised) estimated using sentences up to
30 tokens long. Also, the e�ects of a Gaussian prior
are demonstrated as a way of (partially) dealing with
over�tting.

6.1 Testing the Various Sampling
Strategies

In order to see how various sizes of sample related to
estimation accuracy and whether we could achieve
similar levels of performance without recovering all
possible parses, we ran the following experiments.
We used a model consisting of features that were

de�ned using all three templates. We also threw
away all features that occurred less than two times in
the training set. We randomly split the Wall Street
Journal into disjoint training, held-out and testing
sets. All sentences in the training and held-out sets
were at most 14 tokens long. Sentences in the test-
ing set were at most 30 tokens long. There were
6626 sentences in the training set, 98 sentences in
the held-out set and 441 sentences in the testing set.
Sentences in the held-out set had on average 12:6
parses, whilst sentences in the testing-set had on av-
erage 60:6 parses per sentence.
The held-out set was used to decide which model

performed best. Actual performance of the models
should be judged with respect to the testing set.
Evaluation was in terms of exact match: for each

sentence in the test set, we awarded ourselves a
point if the RFM ranked highest the same parse that
was ranked highest using the reference probabilities.
When evaluating with respect to the held-out set,
we recovered all parses for sentences in the held-out
set. When evaluating with respect to the testing-set,
we recovered at most 100 parses per sentence.
For each run, we ran IIS for the same number

of iterations (20). In each case, we evaluated the
RFM after each other iteration and recorded the best
classi�cation performance. This step was designed
to avoid over�tting distorting our results.
Figure 2 shows the results we obtained with pos-

sible ways of picking `typical' samples. The �rst
column shows the maximum number of parses per
sentences that we retrieved in each sample.
The second column shows the size of the sample

(in parses).
The other columns give classi�cation accuracy re-

sults (a percentage) with respect to the testing set.
In parentheses, we give performance with respect to
the held-out set.
The column marked Rand shows the performance

Max parses Size Rand SCFG Ref
1 6626 25.2 (51.7) 23.3 (50.0) 23.4 (50.0)
2 12331 37.9 (63.0) 40.4 (60.3) 40.4 (60.0)
3 17026 43.2 (65.5) 43.7 (63.8) 43.7 (63.8)
5 24878 43.7 (70.2) 45.8 (69.5) 45.8 (69.5)
10 39581 47.4 (72.0) 47.0 (70.0) 46.9 (70.0)
100 119694 45.0 (68.7) 45.0 (68.0) 45.0 (68.0)
1000 246686 44.4 (67.4) 43.0 (67.0) 43.0 (67.0)
1 267400 43.0 (66.0) 43.0 (66.0) 43.0 (66.0)

Figure 2: Results with various sampling strategies

of runs that used a sample that contained parses
which were randomly and uniformly selected out of
the set of all possible parses. The classi�cation ac-
curacy results for this sampler are averaged over 10
runs.
The column marked SCFG shows the results ob-

tained when using a sample that contained parses
that were retrieved using the probabilistic unpacking
strategy. This did not involve retrieving all possible
parses for each sentence in the training set. Since
there is no random component, the results are from a
single run. Here, parses were ranked using a stochas-
tic context free backbone approximation of TSG. Pa-
rameters were estimated using simple counting.
Finally, the column marked Ref shows the re-

sults obtained when using a sample that contained
the overall n-best parses per sentence, as de�ned in
terms of the reference distribution.
As a baseline, a model containing randomly as-

signed weights produced a classi�cation accuracy of
45% on the held-out sentences. These results were
averaged over 10 runs.
As can be seen, increasing the sample size pro-

duces better results (for each sampling strategy).
Around a sample size of 40k parses, over�tting starts
to manifest, and performance bottoms-out. One of
these is therefore our informative sample. Note that
the best sample (40k parses) is less than 20% of the
total possible training set.
The di�erence between the various samplers is

marginal, with a slight preference for Rand. How-
ever the fact that SCFG sampling seems to do almost
as well as Rand sampling, and furthermore does not
require unpacking all parses, makes it the sampling
strategy of choice.
SCFG sampling is biased in the sense that the

sample produced using it will tend to concentrate
around those parses that are all close to the best
parses. Rand sampling is unbiased, and, apart
from the practical problems of having to recover all
parses, might in some circumstances be better than
SCFG sampling. At the time of writing this paper,
it was unclear whether we could combine SCFG with
Rand sampling -sample parses from the full distribu-



tion without unpacking all parses. We suspect that
for probabilistic unpacking to be eÆcient, it must
rely upon some non-uniform distribution. Unpack-
ing randomly and uniformly would probably result
in a large loss in computational eÆciency.

6.2 Larger Scale Evaluation

Here we show results using a larger sample and test-
ing set. We also show the e�ects of lexicalisation,
over�tting, and over�tting avoidance using a Gaus-
sian prior. Strictly speaking this section could have
been omitted from the paper. However, if one views
estimation using an informative sample as over�t-
ting avoidance, then estimation using a Gaussian
prior can be seen as another, complementary take
on the problem.
The experimental setup was as follows. We ran-

domly split the Wall Street Journal corpus into a
training set and a testing set. Both sets contained
sentences that were at most 30 tokens long. When
creating the set of parses used to estimate RFMs, we
used the SCFG approach, and retained the top 25
parses per sentence. Within the training set (arising
from 16; 200 sentences), there were 405; 020 parses.
The testing set consisted of 466 sentences, with an
average of 60:6 parses per sentence.
When evaluating, we retrieved at most 100 parses

per sentence in the testing set and scored them using
our reference distribution. As before, we awarded
ourselves a point if the most probable testing parse
(in terms of the RMF) coincided with the most prob-
able parse (in terms of the reference distribution). In
all cases, we ran IIS for 100 iterations.
For the �rst experiment, we used just the �rst

template (features that related to DCG instantia-
tions) to create model 1; the second experiment used
the �rst and second templates (additional features
relating to PP attachment) to create model 2. The
�nal experiment used all three templates (additional
features that were head-lexicalised) to create model
3.
The three models contained 39; 230, 65; 568 and

278; 127 features respectively,
As a baseline, a model containing randomly as-

signed weights achieved a 22% classi�cation accu-
racy. These results were averaged over 10 runs. Fig-
ure 3 shows the classi�cation accuracy using models
1, 2 and 3.

As can be seen, the larger scale experimental
results were better than those achieved using the
smaller samples (mentioned in section 6.1). The rea-
son for this was because we used longer sentences.
The informative sample derivable from such a train-
ing set was likely to be larger (more representative of
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Figure 3: Classi�cation Accuracy for Three Models
Estimated using Basic IIS
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Figure 4: Classi�cation Accuracy for Three Models
Estimated using a Gaussian Prior and IIS

the population) than the informative sample deriv-
abled from a training set using shorter, less syntac-
tically complex sentences. With the unlexicalised
model, we see clear signs of over�tting. Model 2
over�ts even more so. For reasons that are unclear,
we see that the larger model 3 does not appear to
exhibit over�tting.
We next used the Gaussian Prior method of

Chen and Rosenfeld to reduce over�tting (Chen
and Rosenfeld, 1999b). This involved integrating
a Gaussian prior (with a zero mean) into IIS and
searching for the model that maximised the prod-
uct of the likelihood and prior probabilities. For the
experiments reported here, we used a single vari-
ance over the entire model (better results might be
achievable if multiple variances were used, perhaps
with one variance per template type). The actual
value of the variance was found by trial-and-error.
However, optimisation using a held-out set is easy
to achieve.



We repeated the large-scale experiment, but this
time using a Gaussian prior. Figure 4 shows the
classi�cation accuracy of the models when using a
Gaussian Prior.
When we used a Gaussian prior, we found that all

models showed signs of improvement (allbeit with
varying degrees): performance either increased, or
else did not decrease with respect to the number
of iterations. Still, model 2 continued to underper-
form. Model 3 seemed most resistent to the prior.
It therefore appears that a Gaussian prior is most
useful for unlexicalised models, and that for mod-
els built from complex, overlapping features, other
forms of smoothing must be used instead.

7 Comments

We argued that RFM estimation for broad-coverage
attribute-valued grammars could be made compu-
tationally tractable by training upon an informa-
tive sample. Our small-scale experiments suggested
that using those parses that could be eÆciently un-
packed (SCFG sampling) was almost as e�ective as
sampling from all possible parses (Rand sampling).
Also, we saw that models should not be both built
and also estimated using all possible parses. Better
results can be obtained when models are built and
trained using an informative sample.
Given the relationship between sample size and

model complexity, we see that when there is a dan-
ger of over�tting, one should build models on the ba-
sis of an informative set. However, this leaves open
the possibility of training such a model upon a su-
perset of the informative set. Although we have not
tested this scenario, we believe that this would lead
to better results than those achieved here.
The larger scale experiments showed that RFMs

can be estimated using relatively long sentences.
They also showed that a simple Gaussian prior could
reduce the e�ects of over�tting. However, they also
showed that excessive over�tting probably required
an alternative smoothing approach.
The smaller and larger experiments can be both

viewed as (complementary) ways of dealing with
over�tting. We conjecture that of the two ap-
proaches, the informative sample approach is prefer-
able as it deals with over�tting directly: over�tting
results from �tting to complex a model with too lit-
tle data.
Our ongoing research will concentrate upon

stronger ways of dealing with over�tting in lexi-
calised RFMs. One line we are pursuing is to com-
bine a compression-based prior with an exponential
model. This blends MDL with Maximum Entropy.
We are also looking at alternative template sets.

For example, we would probably bene�t from using
templates that capture more of the syntactic context
of a rule instantiation.
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Lectures on the Foundations of HPSG

Carl Pollard
Ohio State University

1 General character of HPSG

1.1 Similarities to Chomsky's EST/GB Framework

1.1.1 Same principal goal: To characterize human linguistic competence

i.e., to construct a scienti�c theory of the system of knowledge that is embodied in the human
mind/brain which makes language possible. This is distinct from constructing a psy-
cholinguistic theory (a theory of how the mind/brain uses that knowledge to produce and
interpret utterances). Knowledge of language is like a database or a system of knowledge represen-
tation; it is not a set of algorithms or procedures for processing language (though such processes
must have access to the system of linguistic knowledge: see below on \psycholinguistic responsi-
bility."). Part of the goal of characterizing competence is determining what all languages have in
common (so-called \Universal Grammar").1

1.1.2 Same empirical base: acceptability judgements of speakers

However, care is taken to consider judgements only relative to speci�ed classes of contexts. It is
important to control for di�ering abilities of native speakers to imagine contexts in which a given
string becomes acceptable.

1.1.3 Multiple representations

more or less analogous to \levels" of representation in EST/GB. But these are simultaneous (or
coexisting, or parallel) structures that are mutually constrained by the grammar; all are parts of a
single larger structures and none is sequentially derived from another.

1.1.4 Grammaticality is determined by the interaction between the lexicon and gen-
eral well-formedness principles

(roughly as in GB) rather than by large numbers of construction-speci�c rules (as in Chomsky's
\standard theory", classical Montague grammar, or GPSG).

1.1.5 Many EST/GB concepts have HPSG analogs.

Examples inlcude �-roles, indices, agreement features, and traces. But in HPSG these are all
carefully formalized so that empirically vulnerable predictions can be made.

1Transformational grammar has always made a point of being concerned with limiting the range of possible
variation across languages and explaining how language can be acquired. HPSG researchers consider these to be
interesting long-term goals, but don't think enough is known yet to warrant positing any empirical hypotheses.
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1.1.6 Likewise many EST/GB principles have rough HPSG analogs.

Examples include binding principles A, B, and C, and constraints on \extraction" (such as subja-
cency and ECP).

1.2 Sociological di�erences

1.2.1 No \fearless leader"

There is no Chomsky-like �gure who is always assumed to be basically on the right track no matter
what s/he proposes. HPSG research is normal science: the testing of hypotheses that appear
plausible given accepted assumptions. The goal is not to �ll in the details of a vague theory which
is assumed to be basically right, but to successively replace empirical hypotheses with ones that
make better predictions.

1.2.2 Receptivity to adjacent technology

HPSG was developed in an environment where some familiarity with such technical bodies of
knowledge as logic, set theory, algebra, graph theory and/or theoretical computer science could be
assumed. Practitioners are willing to acquire a wide range of technical tools, and apply them in
the interest of making their analyses and theories clearer and more precise. Consequently, they can
have more con�dence in their proposals.

1.3 Methodological di�erences

1.3.1 Freedom from typological bias

It is not assumed that all languages are basically like English. Languages are not assumed to vary
without limit, but the starting assumption is that we do not know what the range of variation is,
and we can take very little for granted when we begin to try to uncover the structure of a language.

1.3.2 Nonprimacy of syntax

HPSG is not syntactocentric. There is no assumption that syntax is somehow primary, and that
morphology is done \in the syntax" (cf. a�x hopping, head movement). Phonology and semantics
are not \interpretations" of syntactic structures as in transformational models from Syntactic Struc-
tures to the Minimalist Program. Instead, it is assumed that we need to understand several di�erent
systems of linguistic knowledge, including syntax, semantics, morphology, phonology/prosody, and
pragmatics/discourse. In HPSG theories, most grammatical principles don't involve just one of
these, but instead constrain the relationship between two or more.

1.3.3 Empirical adequacy

HPSG is done bottom-up or inductively, generalizing from speci�cs instead of starting with grand
generalities and looking for particulars that con�rm them. Thus it employs the fragment method-
ology: make a precise, falsi�able hypothesis that accounts for a wide range of facts (i.e. get the
details right for a subpart of the language), then revise the hypothsis to expand coverage. Pre-
cise, empirically vulnerable generalizations with broad, determinable consequences (which might
not follow from very deep principles) are valued over deep principles that are so vague that their
empirical consequences cannot be deduced.
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1.3.4 Psycholinguistic responsibility

Grammars, as models of competence, should nonetheless be capable in principle of being exploited
by plausible psycholinguistic models. Thus, they should not be based irreducibly on compu-
tations that a language user would be incapable of carrying out. And thus there is a somewhat
di�erent emphasis in the subject matter: instead of a (largely rhetorical) concern with how linguistic
knowledge is acquired, rather one is concerned with how it is organized so as to make language use
possible. The language user is viewed more as an information-processing agent than as language-
acquisition device. Ultimately, grammatical knowledge must be organized in such a way that it can
be employed e�ciently in a wide variety of tasks, including production, understanding, translation,
language games, making acceptability judgements, and more. But the linguistic framework itself
should be task-neutral.

1.3.5 Generativity

HPSG research takes it for granted (as Chomsky originally did) that the goal of a grammatical
theory of language X is minimally to tell what the well-formed structures of language X are (\de-
scriptive adequacy"). Thus, formal precision is necessary (the current Chomskyan view is that it is
\premature" and therefore undesirable). In an adequate formalization, according to Pullum (1989):

1. It must be made clear what mathematical structures are used to model di�erent kinds of
linguistic entities. (In HPSG, the mathematical structures are graphs of a certain kind called
feature structures.)

2. It must be determinate what the actual assertions of the theory are. They don't have to be
framed in formal logic or Prolog or Lisp or C++ though sometimes it is helpful to do this.
Careful English (or Korean, etc.) will do, as long as it is clear, speci�c, and unambiguous.

3. Given a grammar G and a mathematical object O used as a model of a candidate linguistic
entity (a representation), there has to be a way to tell whether or not O satis�es the constraints
imposed by G.

1.4 Architectural di�erences

There are large-scale di�erences in how theories are formulated or organized.

1.4.1 Structures employed as mathematical idealizations of linguistic entities

HPSG employs di�erent mathematical structures from EST/GB. The mathematical structures
of transformational theories are sequences of phrase-markers (trees, i.e., rooted, directed, graphs
satisfying the single mother condition, with nodes labelled by category symbols).
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In HPSG, the mathematical structures are feature structures: rooted, connected, directed
graphs, with each arc labelled by a feature name, and each node labelled by a species name (the
name of a kind of linguistic object).

� A rooted graph is one that has a distinguished node called the root.

� In a connected graph, every node is reachable from the root by a �nite sequence of edges.

� In a directed graph, the edges are directed (i.e. they are ordered pairs of nodes, not just
doubleton sets of nodes).

1.4.2 Grammars are formalized

Fully formalized, an HPSG grammar is formulated as a set of well-formedness constraints on feature
structures, of which each constraint is a (nonlogical) axiom in a certain kind of formal language
called a feature logic. (In these notes, we use a slight notational variant of King's (1989) SRL). The
familiar attribute-value matrices (AVMs) are an informal substitute for feature logic constraints.
Feature structures and feature logic satisfy the criteria of formal precision stated above in subsection
1.3.5. The constraints tell which feature structures are well-formed representations of linguistic
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entities. Technically, a grammar is a logical theory, and a well-formed structure is a model of the
theory.

The feature logic is itself unconstrained in terms of what constraints it can express. It is
like predicate calculus or LISP in this respect: the constraints don't come from limits on what
theories the logic can express; they are a theory that the logic expresses. Thus HPSG employs an
expressive formalism, not a constrained formalism.

1.4.3 Nonderivationality

HPSG is nonderivational. It employs parallel representations which are mutually con-
strained by the grammar. This is also true of other nontransformational frameworks, such as
LFG, APG, autolexical syntax, construction grammar, and Jackendo�'s (1996) programmatic Rep-
resentational Modularity framework.

HPSG employs no transformations or other destructive operations to sequentially derive one
structure (or representation) from another. Instead, the di�erent representations (or levels, in
Ladusaw's (1988) terminology) are just subparts (features, actually) of a single larger structure,
and they are related not by destructive operations, but rather by declarative (asserted) constraints
of the grammar. 2 (Thus, the substructure reached from the root by following the PHON path is a
rough correspondent of the GB level PF; and the one reached by the path SYNSEMjLOCjCAT in a
verb corresponds roughly to the DS of the sentence headed by that verb; the substructure reached
by the path SYNSEMjLOCj CONT corresponds roughly to the GB level LF. Understood this way,
HPSG has considerably more levels than GB.)

1.4.4 Structural uniformity

HPSG is \fractal" (structurally uniform as the parts get smaller). Every sign down to the word
level (not just the root clause) has features corresponding (inter alia) to phonetic, syntactic, and
semantic aspects of linguistic structures

1.4.5 No lexical insertion

Words are just the same kind of thing (namely, signs) as phrases; they are just small-scale con-
strained parallel structures. Thus, there is no distinction between terminal nodes and preterminals,
and no issue (as in recent Minimalist Program work) of whether lexical insertion is \early" or \late".
This is a consequence of the theory being nonderivational and fractal.

1.4.6 Locality

HPSG employs only local constraints. There are no global constraints constraining structures
relative to other structures. Well-formedness is determined completely with reference to a given
structure, and not via comparison with any other \competing" structure (as it might be in MP and
OT).

2
Irreducible use of transformations is hard to reconcile with psycholinguistic responsibility: to determine PF

from LF, an SS must �rst be determined, from which one could work back to a DS source, and ahead to derive
a PF. The �rst two steps require \inverting transformations," which is a computational nightmare. Similarly for
determining LF from PF. Although some GBists (e.g. Koster (1987), Brody (1995)) have argued that GB theory
could just as well be reformulated without transformations, Chomsky has never been sympathetic to this position,
and with the Minimalist Program, it is not really an option.
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1.5 Technical Di�erences

There are also smaller-scale di�erences in mechanisms employed by the framework. Some repre-
sentative examples:

� Tree-con�gurational notions like c-command and government have no role in HPSG, which
employs instead the traditional relation of obliqueness of grammatical relations, where
obliqueness increases from Subject to Primary Object to Secondary Object to Oblique PPs and
VP, AP, and S Complements. Thus, e.g. Principle A of the binding theory requires not that
an r-pronoun (anaphor) be coindexed with a c-commanding NP in some local domain, but
rather that it be coindexed with a less oblique argument of the same head (if there is one).

� Noncon�gurational de�nitions of grammatical relations. Grammatical relations are
de�ned noncon�gurationally, in terms of their relative order on the lists that are the values of
the VALENCE features. Thus, the subject is the unique item on the SUBJ list; the primary
object is the �rst item on the COMPS list, etc., rather than being sister-of-VP-and-daughter-
of-S, or daughter-of-VP-and-closest-sister-of-V, as in transformational theories from Aspects
through GB.

� Selection of subjects and speci�ers. Subjects and speci�ers (and their detailed properties,
such as number and de�niteness) can be selected (\subcategorized for") by lexical heads in
HPSG, just as complements are. Thus subjectless sentences are just as possible as intransitive
verbs, since a verb can select for \no subject".

� Semantic roles (\�-roles") are assigned to subjects directly, in the same way as to comple-
ments, not indirectly.

� Likewise, either subject or object can fail to be assigned a semantic role. Among
other things, this means that \raising-to-object" analyses are not ruled out. In GB, by
contrast, nonthematic objects are impossible.

� There is no requirement that every VP have a subject; thus, verbs that appear to take
in�nitive VP complements can be treated as actually doing so, with no need for a phono-
logically null subject (PRO or NP-trace). Control is treated as coindexing of the controller
phrase with the value of the SUBJ valence feature of the VP complement.

The following di�erences are directly related to the nonderivationality of HPSG.

� No NP-movement (and, more generally, no movement at all.)

Passive: Passive verbs are in the lexicon (perhaps mostly derived by lexical rule). They
project a phrase according to the same constraints as active verbs do.

Raising: Structure-sharing between the NP subject or object and the member of the
SUBJ valence feature list of the VP complement takes the place of NP-movement. Thus,
the analysis of raising structures di�ers from the analysis of equi-structures only in that 1)
raising predicates systematically have one semantic role fewer than equi predicates with the
same number of syntactic arguments, and 2) raising verb select (as subject or object) for the
same structure that the VP complement selects for its subject, while in the case of an equi
verb, the subject or object is only coindexed with the complement subject. Moreover, raising
to subject and raising to object are treated on a par.
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� No WH-movement: The value of the SLASH feature throughout the path from the verb
whose argument is \missing" to the �ller WH-element is structure-shared with (1) the LOCAL
value of the �ller element, and (2) the LOCAL value of the missing argument.

� No head movement:

Verb in
ection: �nite verbs are speci�ed in the lexicon to select subjects bearing speci�c
agreement features. Thus there is no movement between V and In
 (in fact there is no need
for a distinct In
 node).

Inversion: Inverted structures are \
at" structures, not derived from uninverted structures.
Thus there is no movement from In
 to Comp.

� More generally, there are no null functional heads (T, AgrO, AgrS, etc.). Instead the
corresponding work in HPSG is done by features.

� Likewise, there are no null complementizers.
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2 Foundations of the HPSG Formalism

2.1 Feature structures

Feature structures are mathematical objects|graphs of a certain kind|that are used as theoretical
models of structured entities of all sorts in the real world, not just linguistic entities. Thus, the
diagrams above represent a high front rounded object, a constituent structure diagram, and the
relation of breaking. (Note: these are for illustrative purposes only. They are not being posited as
serious linguistic analyses.)

3

2.2 Formal Machinery

Assume that there are given, disjoint, �nite sets F of feature names, and S of species names.

De�nition: A feature graph is an ordered triple G = < U , S, F >, where:

a. U is a set (called the nodes of G);

b. F is a function which associates with each feature name f a partial function F(f)
(also written fG) from U to U ; and

c. S is a function which associates with each species name s a subset of U ; S(s) is also
written sG).
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Mathematically, a feature graph is just a sorted unary partial algebra, where S interprets the sorts
(species names) and F interprets the operations (feature names).

There is also a more primitive notion of (directed) graph, where all we have is nodes and
(directed) edges (with no species or features). This is de�ned as follows:

De�nition: A (directed) graph is an ordered pair G = < U , ! >, where:

a. U is a set (called the nodes of G);

b. ! is a binary relation on U (i.e., a subset of U � U) called the edges of G. (We
write p ! q to mean < p, q > 2 !.)

Often in working with graphs we single out a node which serves as a sort of \home base". Techni-
cally:

De�nition: A pointed graph is an ordered triple G = < q0;U ;! >, where < U ;! >

is a graph (called the underlying graph of G) and q0 2 U ; q0 is called the point of G.

De�nition: Given a graph < U ;! > and two nodes p, q 2 U , we say q is accessible
from p just in case p !* q. (For any binary relation R, R* is the re
exive transitive
closure of R.)

Informally, q is accessible from p just in case there is a path (�nite sequence of edges) from p to q.)

De�nition: A pointed graph is called accessible (or an apg) i� every node is accessible
from the point. In this case, the point is called the root of the apg.

Thus, if G =< q0;U ;!> is an apg, then q0 is the root and every node in U is accessible from q0.
Trees are a familiar kind of apg. (An apg is a tree just in case each node is accessible from the root
via a unique path.)

Observation: Let G =< U , S, F > be a feature graph, and let !F � U � U be de�ned
as
S
ffG : f 2 Fg. Then < U ;!F> is a graph.

That is, given a feature graph, we can form the graph whose set of edges is the union of the
interpretations of the feature names. Intuitively, this amounts to throwing away all the labels on
the nodes and edges.

De�nition: A feature structure is a quadruple < q0;U ;S;F >, where < U ;S;F >

is a feature graph, and < q0;U ;!F> is an apg. We call q0 the root of the feature
structure.

Feature structures are what we will use as our mathematical idealizations of linguistic entities (i.e.
analyses of expressions).

2.3 Graph Notation

Nodes are represented by dots, and edges (or arcs) by arrows. Thus, in the graph � �! �, if the
left dot is p and the right dot is q, then p! q. For a feature graph, an arrow labelled with a feature
name f means that fG(p) = q, where p is represented by the dot from which the arrow originates
and q is represented by the dot the arrow points to. The root of a feature structure is indicated by
a short boldface arrow to a node: ! �.
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2.4 Feature structures generated by nodes in feature graphs

De�nition: Let G = < U ;S;F > be a feature graph and q 2 U a node. The feature
structure generated by q in G;Gq , is < q;Uq ;Sq ;Fq >, where:

a. Uq = fp 2 U j q !�
F pg;

b. for each s in S;Sq(s) = sG \ Uq ;

c. for each f in F ;Fq (f ) = f G \ (Uq � Uq).

Thus the feature structure generated by a node q in a feature graph G contains only the nodes of
G accessible from q; and the interpetations of species names and feature names are obtained by
restricting their interpretations in G in the obvious way.

2.5 Feature structure homomorphisms and isomorphisms

Let G = < q0;U ;S;F > and G0 = < q00;U
0;S0;F0 >.

De�nition: A homomorphism from G to G0 is a function � : U ! U 0 such that

a. �(q0) = q 00;

b. for all q 2 U and f 2 F , if fG is de�ned at q, then fG0 is de�ned at �(q), and
fG0(�(q)) = �(f G(q));

c. for all q 2 U and s 2 S, if q 2 sG , then �(q) 2 sG0 .

This is just like a homomorphism in algebra (thinking of the interpretations of the feature names
as the algebra operations), with the additional provisos that the species and the root must be
preserved.

De�nition: A homomorphism is called an isomorphism if it has an inverse which is
also a homomorphism. It follows that isomorphisms are both one-to-one and onto.

Thus isomorphic feature structures \look the same"; they just have di�erent nodes. It is easy
to see that, for any feature structure G = < q0;U ;S;F >, the identity function on U ; idU , is an
isomorphism from G to G. Also, if � is a homomorphism from G to G0 and �0 is a homomorphism
from G0 to G00, then �0 � � is a homomorphism from G to G00.

In HPSG, as explained below, a grammar is a kind of logical theory whose intended interpre-
tations are feature structures. Thus the grammar picks out a certain class of feature structures,
namely the ones that are models of the grammar. Now clearly, for any feature structure, there are
in�nitely many other feature structures (in fact, a proper class of them) isomorphic to it. However,
as linguists, when we are given a grammar, we don't really care about the whole class of models.
All we really care about is which feature structures are models up to isomorphism; e.g. the fact that
there is an in�nity of di�erent feature structure models of the sentence poor John ran away is not of
interest to us, since all these models are isomorphic. What we would really like is a way to pick out
from each isomorphism class of models a unique canonical representative. Then we could consider
the grammar to generate precisely the set of feature structures which are the canonical repre-
sentatives of the various isomorphism classes of models. This idea connects the model-theroetic
interpetation of grammars with the standard linguistic notion of (strong) generative capacity.

In fact, there is a rather simple mathematical technique for constructing such representative
feature structures; roughly speaking, the trick is to choose feature structures whose nodes are
equivalence classes of paths (strings of feature names). The precise construction, which is a slight
variant of Moshier's (1988) notion of an abstract feature structure, is described in Pollard 1998.
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2.6 Paths

A path is a member of F�, i.e., it is a �nite sequence (string) of feature names. As usual, the null
path (path of length zero) is denoted by �. Given a feature graph G =< U ;S;F >, the function
F : F ! [U * U ] can be extended to a function ~F : F� ! [U * U ] as follows: ~F is de�ned by
recursion on path lengths n such that:

a. if a path � is of length 0 (i.e., � = �) then ~F = idU ;

b. if � is of length n > 0 and � = f �0 where f 2 F and �0 is a path of length n-1, then

~F(�) = (~F(�0)) � (F (f )).

(That is, for a path of length n > 0, the function it denotes is the composition of two functions:
the one denoted by its �nal subpath of length n-1, and the one denoted by its initial feature.)

~F(�) is also written �G. Thus

�G = idU

and if � = f�0, then

�G = �0G � f G

Also, (f 1 � � � f n)G = (f n)G � � � � � (f 1)G .

2.7 King formulas

Given disjoint �nite sets F (feature names) and S (species names), the set K of King formulas
(cf. King (1989) is de�ned recursively as follows:

a. for each s in S, s 2 K;

b. > 2 K;

c. for each path � and each formula � 2 K; (� : �) 2 K

d. for �1 and �2 paths (�1
:
= �2) 2 K;

e. for �1 and �2 paths (�1 6
:
= �2) 2 K;

f. for � and  2 K; (� ^  ) 2 K;

g. for � and  2 K; (� _  ) 2 K;

h. for � and  2 K; (�!  ) 2 K;

i. for � and  2 K; (:�) 2 K;

j. nothing else is in K.

As described below, King formulas are used in HPSG both as descriptions of feature structures and
as constraints in grammars. To explain the di�erence, we begin by de�ning a satisfaction relation
j= between feature structures and King formulas, analogous to the relation between �rst-order
models and �rst-order formulas.
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2.8 Satisfaction

The satisfaction relation j= between a feature structure G = < q0;U ;S;F > and a King formula is
de�ned by structural recursion on formulas as follows:

a. G j= s i� q0 2 sG;

b. G j= > never;

c. G j= (� : �) i� �G is de�ned at q0 and G�G(q0 ) j= �;

d. G j= (�1
:
= �2) i� (�1)G and (�2)G are both de�ned at q0 and have the same values;

e. G j= (�1 6
:
= �2) i� (�1)G and (�2)G are both de�ned at q0 and have di�erent values;

f. G j= (� ^  ) i� G j= � and G j=  ;

g. G j= (� _  ) i� G j= � or G j=  ;

h. G j= (�!  ) i� G 6j= � or G j=  ;

i. G j= (:�) i� G 6j= �.

Note: if G and G0 are isomorphic feature structures, � is a King formula, and G j= �, then also
G0 j= �.

If G j= �, then we say G satis�es � or � describes G. A formula is called satis�able if some
feature structure satis�es it (or, equivalently, if it describes some feature structure). For a set of
formulas �, we say G j= � i� G j= � for every � 2 �.

2.9 Entailment and (semantic) equivalence

Let � be a set of formulas and � a formula. Then we say � entails �, written � j= �, provided
for all feature structures G, if G j= � then G j= �. If � contains only one formula �, we usually
write � j=  for � j=  . If � and  are two formulas such that � j=  and  j= �, then we say �
and  are (semantically) equivalent, written � �  . Equivalent formulas describe the same feature
structures.

2.10 Constraints and Grammars

Let � be a formula and G a feature structure (or more generally, a feature graph). Then we say G
models � (or, is a model of �) provided, for every node q of G;Gq j= �. For � a set of formulas
(e.g., a theory), we say G models � if G models � for every � 2 �. Note: if G models �, then
G j= �, but the converse is in general false.

It is important to understand the relation between a description and a constraint. A formula
is called a description when we are concerned only with which feature structures satisfy it. By
contrast, a formula is called a constraint when we are concerned with which feature structures
model it.

A grammar is just a set of formulas viewed as constraints. If G is a grammar and G a feature
structure which models G, we also say G generates G, or G is well-formed relative to G. 3 We
can now consider some examples of constraints typically employed in HPSG grammars.

3Strictly speaking, the grammar generates only the models which are canonical representatives of isomorphism
classes of models. See Pollard 1998.
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2.11 Species disjointness

It is standard to assume that, in order to be well-formed, a feature structure must be such that
each of its nodes belongs to only one species. We can enforce this condition by including in the
grammar, for each pair of distinct species names s and s0 the constraint :(s ^ s 0).

2.12 Closed World Assumption

Another standard assumption in HPSG is that there aren't any linguistic entities beyond the species
corresponding to the species names in S. This can be thought of as a version of the fragment
methodology. Another way to say this is that in order for a feature structure to be well-formed,
every one of its nodes must belong to at least one (and given species disjointness, therefore exactly
one) of the species. This can be expressed as the constraint:

n_
i=1

si (where S = fs1 ; � � � ; sng)

(Note: for �1; � � � ; �n formulas, the notation
n_
i=1

�i is a shorthand interpreted as follows:

for n=1,
n_
i=1

�i means �1

for n > 1, it means (
n�1_
i=1

�i) _ �n

Thus, e.g., if n = 3,
n_
i=1

�i is shorthand for ((�1 _�2)_�3). A similar convention applies for
n̂

i=1

�i.)

2.13 Feature Geometry Constraints

These are constraints which tell us what features di�erent species have, and what species the values
of those features belong to. In HPSG it is standardly assumed that for each feature, there is a set
of species such that that feature is de�ned for all nodes belonging to that species, but unde�ned
for all other nodes. Thus, for each feature f, there is a constraint of the form

((f
:
= f)$

m_
i=1

ti)

where each of the ti is a species. For example, in HPSG, words and phrases (but nothing else) have
the feature phonology. Thus HPSG grammars contain the constraint4

(( PHONOLOGY
:
= PHONOLOGY) $ (word _ phrase))

(Thus, anything that has a phonology attribute is either a word or a phrase, and every word or
phrase has a phonology attribute.)

Another type of feature geometry constraint tells, for a given species and a given feature de�ned
for that species, what species the value of that feature can be. Such constraints have the form

4As in propositional logic, \�$  " is shorthand for ((�!  ) ^( ! �)).
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(s! (f :
m_
i=1

ti))

For example, a German HPSG grammar might include the constraint

(noun! (CASE : (nom _ acc _ gen _ dat))).

2.14 Other constraints

Besides the feature geometry constraints, species disjointness, and the closed world assumption
(which are sometimes referred to collectively as ontological constraints), grammars must contain
further constraints which serve to determine (among those feature structures which satisfy the on-
tological constraints) which feature structures are well-formed. These constraints do the work done
in other frameworks by such devices as lexical entries, phrase-structure (or immediate-dominance)
rules, and principles of well-formedness (e.g., Subjacency, Binding Principle A, etc.). For example,
it is standardly assumed in HPSG that for all headed phrases, the \head features" are the same as
on the head daughter. This is formally expressed by the constraint

(headed-phrase ! (SYNSEMjLOCjCATjHEAD
:
=

HEAD-DTRjSYNSEMjXSLOCjCATjHEAD ))

In HPSG, the lexicon is also a constraint. It has the form

(word!
N_
i=1

�i)

where each of the �i is a lexical entry. That is, each lexical entry is a formula (or description)
which presents one of the (�nitely many) options for a feature structure of species word to be a
well-formed (structural representation of a) word. The lexicon, as a constraint, simply requires
that every word take one of these options.

Similarly, there is a constraint on phrases of the form

(phrase!
M_
i=1

�i)

where each of the �i is an immediate dominance schema (or phrase-type). That is, each of the
�i presents one of the (small number of) options for a feature structure of species phrase to be a
well-formed (structural representation of a) phrase. Thus the �i do the same kind of work in HPSG
as schematic immediate dominance rules (such as the rules of �X theory) do in GB theory.

2.15 Formal properties of King formulas and grammars

Here we assemble some basic facts about formal properties of King formulas and grammars. For
this discussion, assume we are given a set O of ontological constraints as discussed in 11-13 above.
A feature structure is called ontologically acceptable if it satis�es all the ontological constraints
(species disjointness, closed world, and feature geometry).

a. There is a proof theory for K which is sound and complete relative to ontological acceptability.
Among other things, this means that for any two formulas � and  , O ` (� !  ) i� every
ontologically acceptable feature structure that satis�es � also satis�es  .
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b. Given a formula �, it is decidable whether or not � is satis�ed by some ontologically acceptable
feature structure or other. Likewise (since negation is classical), it is decidable whether � is
valid relative to ontological acceptability (i.e., whether every ontologically acceptable feature
structure satis�es �).

c. Given a grammar G and a formula � it is in general undecidable whether G predicts a feature
structure which satis�es � (or equivalently, whether there is a feature structure which models
G and satis�es �).

d. Given a set of ontological constraints O and a formula �, there is a formula �0 which is (se-
mantically) equivalent to � relative to O (i.e., � and �0 are satis�ed by the same ontologically
acceptable feature structures) such that �0 is a disjunction of conjunctions of formulas of one
of the three forms (� : s), (�1

:
= �2), and (�1 6

:
= �2). Thus, when K is being used only for

description (as opposed to for constraints), no descriptive power is sacri�ced by abstaining
from the use of : and !.

2.16 Attribute-value matrices (AVMs)

King formulas are useful when great formal precision is needed (e.g., in proofs or in designing
computer implementations). But they are too long and too hard to understand quickly for everyday
linguistic analysis. For this reason, HPSG linguists usually use a di�erent kind of description,
attribute-value matrices (avms), in normal practice. The general format of an avm is as follows:

a. a tag (boxed numeral like 7 ) is an avm.

b. a species symbol (e.g., word) or a disjunction of species symbols (e.g., word _ phrase) is an
avm; this kind of avm is called a sort description. (Cf. section 19 below.)

c. a bracketed description, including the empty description `[]', is an avm.

This has the form
2
6664
path1 AVM1

...

pathn AVMn

3
7775

In any avm, any non-null combination of (a), (b), and (c) can be present. Thus, the following
possibilities are available:

a. just a tag: n ;

b. just a sort description: s, or s1 _ � � � _ sn;

c. just a bracketed description;

d. both (a) and (b), e.g., n s;

e. both (a) and (c), e.g.,
n

"
� � �

� � �

#
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f. both (b) and (c), e.g.,

2
664
s

� � �

� � �

3
775

g. all three, e.g.,

n

2
664
s

� � �

� � �

3
775

Note that tags go outside the left bracket, and sort speci�cations go inside the left bracket at the
top (or in some work, outside the left bracket at the bottom). Sort descriptions are equivalent to
the identical King formulas. The lines inside a bracketed description are interpreted as equivalent
to conjunction of King formulas. Co-occurrence of two or more instances of the same tag in an
avm is equivalent to path equalities (�1

:
= �2). For example, the King formula

((SUBJjHEAD:((CASE: nom) ^ (AGR ((PER: 3rd) ^ (NUM: sing))))) ^
(HEAD: (verb ^ (VFORM: �n) ^ (AUX: {))) ^

(SUBJjHEADjAGR
:
= HEADjAGR))

is equivalent to the avm 2
666666666666664

subjjhead

2
664
case nom

agr 1

"
per 3rd

num sing

#
3
775

head

2
66664
verb

vform �n

aux {

agr 1

3
77775

3
777777777777775

As a matter of style, when several paths share a pre�x, that pre�x is normally written only once
for all the paths. Thus, we write:

2
4head

"
vform �n

aux {

#3
5

rather than: 2
64head

h
vform �n

i
head

h
aux {

i
3
75

This example makes obvious the relative advantages and disadvantages of the two styles of
description. Either one is satis�ed by the following feature structure:
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PER

NUM
3rd

sing

fin 

●

●

●

SUBJ
HEAD

CASE

AUX

VFORM

AGR

nom

verb

●

●

●

●

●

HEAD

●

●

AGR

There is no standard equivalent of path inequalities for avms, but one obvious way to do it
is to list path inequalities as additional lines inside a bracketed description. Thus, e.g., the King
formula (SUBJjINDEX 6

:
= OBJjINDEX) would be expressed as the avm:h

subjjindex 6
:
= objjindex

i
A less obvious but more readable alternative is the following:2

664
subjjindex 1

objjindex 2

1 6
:
= 2

3
775

2.17 Subsumption and uni�cation of AVMs

Given two avms �1 and �2, we say that �1 subsumes �2 if the class of feature structures that �1
describes is at least as big as the class of feature structures that �2 describes. If �1 and �2 are King
formulas equivalent to �1 and �2 respectively, then �1 subsumes �2 i� �2 entails �1.

Again let �1 and �2 be two avms, with equivalent King formulas �1 and �2 respectively. An
avm �3 is called the uni�cation of �1 and �2 (or more correctly, a uni�cation of �1 and �2) if
�3 is equivalent to �1 ^ �2. Thus, �3 will describe those feature structures which both �1 and �2
describe (and no others).

2.18 Sorts and sort hierarchies

In writing HPSG grammars, certain disjunctions of species names are used repeatedly. For exam-
ple, in a German grammar, one might often have occasion to employ the disjunction (nom _ acc _
gen _ dat) (as in the constraint at the end of Sec. 13). Similarly, the disjunction (word _ phrase)
recurs frequently. Frequently used disjunctions are usually abbreviated with a single symbol, so
that (word _ phrase) is usually abbreviated sign and (nom _ acc _ gen _ dat) is usually abbreviated
case. Such abbreviations make grammars much easier to read and write (e.g., (( PHONOLOGY
:
= PHONOLOGY) $ (sign)), (noun ! (CASE: case)) ). Of course, such abbreviations are mean-
ingless unless they are made explicit. This is typically done by means of a diagram called a sort
hierarchy (where a sort is just a symbol that is either a species name or an abbreviation for a
disjunction of species names). Thus, the sort hierarchy

case

nom acc gen dat
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is equivalent to de�ning the symbol \case" as an abbreviation for \(nom _ acc _ gen _ dat)."
More generally, sorts can be used as abbreviations for disjunctions of sorts (each of which in turn
may be either a species name or an abbreviation). Thus, for example, the sort head may be used
to abbreviate the disjunction of the parts of speech noun, verb, adj, prep, det, conj, deg (for the
sake of this example, we assume that these are all the parts of speech). But among the parts of
speech we might want to group the �rst four together as substantive and the last three as functional.
(Typically we group species or sorts together when there is some feature they have in common,
or there is some constraint that applies to just them.) We can do this by positing the sort hierarchy

head

substantive functional

noun verb adj prep det deg conj

Given two sorts �1 and �2 we say �1 is a subsort of �2 if it is more speci�c than �2 in the sort
hierarchy. Thus, e.g., prep and functional are subsorts of head. Alternatively, if �1 is a subsort of
�2, we can also say �2 is a supersort of �1.

Note: for any sort hierarchy, it is always assumed that the subsorts are pairwise incompatible
(mutually exclusive). Thus, positing a hierarchy amounts logically to adding to the grammar a set
of constraints of the form:

((� $ (�1 _ � � � _ �n))

and

:(�i ^ �j) (for all i, j = 1, ... n, with i 6= j)

2.19 Feature declarations

Feature declarations, employed in conjunction with sort hierarchies, are a convenient notational
alternative to feature geometry constraints; feature declarations together with sort hierarchies are
the ususal way to express ontological constraints informally.

For example, the constraint (noun ! (CASE : (nom _ acc _ gen _ dat))) is expressed as the
feature declaration noun: [case case], where the sort hierarchy headed by case is de�ned as above.
To take a more complex example, the sort hierarchy with feature declarations:

sign:"phonology list

synsem synsem

#

word phrase:"head-dtr sign

non-head-dtrs list

#

is equivalent to the following set of feature geometry constraints (assuming that word, phrase, and
synsem, and list are species):

((word _ phrase) $ ((PHONOLOGY
:
= PHONOLOGY) ^ (SYNSEM

:
= SYNSEM)))

(phrase $ (DTRS
:
= DTRS))
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((word _ phrase) ! ((PHONOLOGY: list) ^ (SYNSEM: synsem)))

(phrase ! ((HEAD-DTR: word _ phrase) ^ (NON-HEAD-DTRS: list)))

2.20 Lists

In HPSG, lists are usually introduced in the following way. We assume species names elist (empty
list) and nelist (nonempty list), and feature names first and rest, subject to the following feature
geometry constraints:

(nelist $ ((FIRST
:
= FIRST) ^ (REST

:
= REST)))

(nelist ! (REST: (elist _ nelist)))

Informally, we can say the same thing with a sort hierarchy and feature declarations, as follows:

list

elist nelist
"
first: object

rest: list

#

where object is a sort that abbreviates the disjunction of all the species names. (Thus if all the
sorts are arranged in a single hierarchy, object is at the top.) The intuition is just that a list can be
either an empty list or a nonempty list, and in the latter case it has a first, which can be anything,
and a rest, which is a list.5 In avms, list descriptions are usually abbreviated by angle-bracket
notation. Thus, <a, b, c> abbreviates the avm:2

666666666666664

nelist

first a

rest

2
666666664

nelist

first b

rest

2
664
nelist

first c

rest elist

3
775

3
777777775

3
777777777777775

Also, in avms, elist is often written <>.
In practice, we usually want to work with lists all of whose members are of the same sort. In

order to do this, we would need to revise the sort hierachy to contain feature declarations along
the following lines, with a new species of nonempty list nelist[�] for each species (or sort) of thing
� that we need lists of, as follows:

5The LISP notions LIST, NIL, CONS, CAR, and CDR correspond to list, elist, nelist, first and rest, respectively.
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list

elist nelist

"
first: object

rest: list

#

nelist[synsem] . . ."
first: synsem

rest: elist _ nelist[synsem]

#

2.21 A new kind of formula: path relations

For each natural number n, we introduce a �nite set of n-ary relation names. If R is an n-ary
relation name and �1; � � � ; �n are paths, then R(�1; � � � ; �n) is a formula. Of course, to be useful,
we must be told what it means for a feature structure to satisfy a path relation formula. There are
a number of di�erent proposals about how to do this (e.g. Richter in preparation), not all of which
have the same consequences.

Append

Append is a ternary relation symbol. Path relation formulas employing Append are much-used
in HPSG since they are used to express that one list is the concatenation of two other lists.
More precisely, satisfaction for Append formulas is de�ned in such a way that, for any three paths
�1; �2; �3,

6

G j= Append(�1; �2; �3) i�

1. G j= ((�1 : list) ^ (�2 : list) ^ (�3 : list)) and

2. either

a. G j= ((�1 : elist) ^ (�2
:
= �3)) or

b. G j= (�1jfirst
:
= �3jfirst) and G j= Append(�1jrest, �2; �3jrest)

The two options are illustrated by the following two schematic graphs:

elist

list

π1

π2

π3

●

●

6The following biconditional statement does not actually de�ne what it means for a feature structure to satisfy
an Append-formula, but it places a very strong constraint on possible de�nitions.
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elist

list

π1

π3

●

●

●

●

●

●

●

●

●

●

●

●

π2

REST REST

RESTREST F
IR

S
T

F
IR

S
T

F
IR

S
T

F
IR

S
T

F
IR

S
T

F
IR

S
T

REST

REST

Append-SYNSEMs

The ternary relation symbol Append-synsems is employed in an important constraint called the
Valence Principle. Intuitively speaking, satisfaction for Append-synsems formulas is de�ned in such
a way that G j= Append-synsems(�1; �2; �3) if �1; �2 and �3 are all lists and �3 is the concatenation
of the list of synsem values of the �1 list with the �2 list. More precisely, it is de�ned in such a
way that the following biconditional holds:

G j= Append-synsems(�1; �2; �3) i�

1. G j= ((�1 : list) ^ (�2 : list) ^ (�3 : list)) and

2. either

a. G j= ((�1 : elist) ^ (�2
:
= �3)) or

b. G j= ((�1 : nelist) ^ (�1jfirstjsynsem= �3jfirst) ^Append-synsems(�1jrest, �2; �3jrest))

Schematically: 2
6664
�1 <

h
synsem 1

i
,
h
synsem 2

i
,
h
synsem 3

i
>

�2 4

�3 < 1 , 2 , 3 j 4 >

3
7775

The Valence Principle is the following constraint:

headed-phrase !
2
666666666666666666666666664

synsemjlocjcatjval

2
664
subj 4

comps 5

spr 6

3
775

head-dtrjsynsemjlocjcatjval

2
664
subj 7

comps 8

spr 9

3
775

subj-dtr 1

comp-dtrs 2

spr-dtr 3

Append-synsems( 1 , 4 , 7 )

Append-synsems( 2 , 5 , 8 )

Append-sc synsems( 3 , 6 , 9 )

3
777777777777777777777777775
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This says that, in a headed phrase, for each valence feature F, phrase, the F value of the head
deaughter is the concatenation of the list of synsem values of the F-daughters with the F-value of
the phrase itself.

An alternative \functional" notation for AVMs employing relations is illustrated in the following
expression of the Valence Principle"2

66666666666666666664

synsemjlocjcatjval

2
664
subj 4

comps 5

spr 6

3
775

head-dtrjsynsemjlocjcatjval

2
664
subj Append-synsems( 1 , 4 )

comps Append-synsems( 2 , 5 )

spr Append-synsems ( 3 , 6 )

3
775

subj-dtr 1

comp-dtrs 2

spr-dtr 3

3
77777777777777777775

This following (conventionalized) description of a sentence illustrates the e�ect of the Valence
Principle:
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2
666666664
synsem j loc jcat

2
66666664

head 3

valence

2
66664
subj

D E
comps

D E
spr

D E

3
77775

3
77777775

3
777777775

S H

2 NP [nom]
2
666666664
synsem j loc jcat

2
66666664

head 3

valence

2
66664
subj

D
2

E
comps

D E
spr

D E

3
77775

3
77777775

3
777777775

Kim

H C

2
666666664
synsem j loc jcat

2
66666664

head 3 verb

valence

2
66664
subj

D
2

E
comps

D
1

E
spr

D E

3
77775

3
77777775

3
777777775

1 NP[acc]

saw Sandy
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