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Abstract

In this paper we develop a general framework to analyze stochastic dynamic problems

with unbounded utility functions and correlated and unbounded shocks. We obtain new

results of the existence and uniqueness of solutions to the Bellman equation through a

general fixed point theorem that generalizes known results for Banach contractions and

local contractions. We study an endogenous growth model as well as the Lucas asset

pricing model in an exchange economy, significantly expanding their range of applicability.

Keywords— Stochastic dynamic programming, contraction mapping, Bellman equation, value

function, endogenous growth, asset pricing model

1 Introduction

Stochastic dynamic programming incorporates uncertain events into a suitable framework to help the

decision-maker to design an optimal plan of action. A fruitful approach for showing the existence of

optimal stationary plans is to prove that the dynamic programming equation admits a unique solution

—the value function— in a suitable space of functions. See Blackwell (1965), Maitra (1968), Furukawa

(1972), Bertsekas and Shreve (1978), Stokey and Lucas with Prescott (1989) or Hernández-Lerma and Lasserre

(1999), where this problem is analyzed in detail. There is a huge literature that applies stochastic dy-

namic programming to economics. Brock and Mirman (1972), Mirman and Zilcha (1975), Donaldson and Mehra

(1983), Danthine and Donaldson (1981), Majumdar, Mitra and Nyarko (1989), Hopenhayn and Prescott

(1992) or Mitra (1998) are only a few of the many relevant papers that have contributed to developing

this field of research. Olson and Roy (2006) makes a review of the contributions to the stochastic

optimal growth model.
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However, only partial results have been developed so far about the existence and uniqueness

of solutions to the dynamic programming equation with arbitrary utility functions and arbitrary

shock spaces. A satisfactory theory of stochastic dynamic programming should include these cases.

Rincón-Zapatero and Rodŕıguez-Palmero (2003, 2009) developed a method to deal with unbounded

utility functions in deterministic problems, the so–called local contraction approach, based on an ex-

tension of the Banach contraction principle for function spaces whose topology is defined by a countable

family of seminorms.1 The application of the method to the stochastic case is not straightforward if

one wants to dispense with artificial bounds on the exogenous shocks. Usually, the stochastic dynamic

programming theory imposes those bounds in the form of a compact shock space. This is for analytical

convenience only.2

There are at least two problems when dealing both with unbounded utility functions and with

an unbounded shock space. One of them is technical, related to the integrability of the functions

involved and thus, to the correctness in the definition of the Bellman operator. A second prob-

lem concerns the choice of a suitable family of seminorms (or pseudodistances) that preserves the

monotonicity of the Bellman operator. The local contraction approach in the deterministic Bellman

equation constructs a family of compact sets in the endogenous state space to define the seminorms,

see Rincón-Zapatero and Rodŕıguez-Palmero (2003). When trying to imitate this in the stochastic

Bellman equation for the exogenous state space of shocks, one faces the difficulty that the Bellman

equation requires the computation of a conditional expectation. This is an averaging of a random

variable on the whole exogenous space, breaking down the monotonicity properties of the Bellman

operator. To overcome the difficulties, we work with an extended concept of contraction parameter(s)

in the local contraction definition, to consider an operator that works on the whole family of semi-

norms. Thus, in this framework, in addition to the selfmap for which we are interested in finding fixed

points, there is a companion operator that, acting on the seminorms, plays the role of the contraction

parameter of the former selfmap. See Definition 2.1 below. We state a fixed point theorem, Theorem

2.5, that applies to this more general framework and we show how it covers previous fixed point results,

including the classical Banach ContractionTheorem — and henceforth, the weighted norm approach

in Boyd III (1990), or Becker and Boyd III (1997) — as well as those based on local contractions, see

e.g., Rincón-Zapatero and Rodŕıguez-Palmero (2003) and Martins da Rocha and Vailakis (2010). This

idea is not new. Kozlov, Thim and Turesson (2010) developed a fixed point theorem in locally convex

1Hadz̆ić and Stanković (1969) is one of the first papers dealing with this extension.

Rincón-Zapatero and Rodŕıguez-Palmero (2003), independently, introduced different hypotheses and ap-

plied the results to the deterministic Bellman equation. Recent contributions of the local contraction concept

to dynamic programming are Martins da Rocha and Vailakis (2010), Matkowski and Nowak (2011) and

Balbus, Reffett and Wozny (2018).
2In general, this assumption is incompatible with modelling the Markov chain as a first order stochastic

difference equation, even if the underlying i.i.d. shocks takes only finitely many values. Think, for instance,

of the simple random walk. It takes every integer number with positive probability. Thus, its range can only

be limited by imposing exogenous constraints, alien to the economic model, a limitation which will modify the

“natural” solution and may distort its real implications.
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spaces whose topology is given by a family of seminorms. However, the results obtained depend on

the companion contraction parameter operator being linear. The proof in Kozlov, Thim and Turesson

(2010), of the existence and uniqueness of fixed points, heavily exploits the linearity of the companion

operator. This precludes the application of the results of this paper to the dynamic programming

equation, as it genuinely demands a nonlinear companion contraction parameter operator, due to the

presence of a maximization operation3 On the other hand, we simplify somewhat the hypotheses made

on the companion operator and extend the result to the consideration of arbitrary pseudodistances

—and hence the topological space is not a locally convex space anymore—, which could be useful for

analyzing the unbounded from below case, and more importantly, we show how the dynamic program-

ming equation fits well into this framework, attaining, to our knowledge, new existence and uniqueness

results.

The present paper devotes a good deal of efforts to isolating a suitable space of functions and a

suitable family of seminorms where the approach explained above is successful. We find a suitable

framework, where the averaging needed to compute the conditional expectation does not break down

the monotonicity of the Bellman operator. The seminorms that we define combine the usual supremum

norm in the endogenous variables, with an L1 norm in the exogenous variables, and construct a

complete space of functions for dealing with the Bellman operator — a Carathéodory function space

—.

The paper is organized as follows. Section 2 develops a fixed point theorem for operators acting

on topological spaces whose topology is given by a family of pseudodistances that makes it Hausdorff

and sequentially complete. The operators enjoy a contraction property, materialized in an associated

operator acting on the family of pseudodistances, which plays the role of the contraction parameter

in Banach’s Contraction Theorem. Thus, the result generalizes Banach’s Contraction Theorem and

shows that the local contraction approach used in previous papers is a particular case of this more

general framework. Section 3 applies the theorem to the stochastic dynamic programming equation

for models with shocks driven by an exogenous Markov chain and with an unbounded shock space.

We carefully choose the set of functions where the Bellman operator is defined and we provide a way

to methodically construct the objects needed to apply the fixed point theorem developed in Section

2. We also show that the solution of the Bellman equation is the value function. In Section 4, we

study a model of endogenous growth —which encompasses the one sector optimal growth model—,

and the Lucas asset pricing model in an exchange economy, in all cases allowing for correlated and

unbounded shocks. Section 5 establishes the conclusions of the paper, and give some tips for further

research. Appendix A contains the proofs that are not in the main text, with the exception of the

proofs regarding the completeness of the function space and seminorms we consider to analyze the

dynamic programming equation, which are developed in Appendix B. Appendix C discusses the issue

of continuity of the Markov operator appearing in the dynamic programming equation, giving sufficient

conditions to establish continuity, and providing an example of non–continuity.

3It is for this reason that we have to develop our own fixed point theorem, departing from the approach

of Kozlov, Thim and Turesson (2010), as we cannot make use of an equality as its formula (4). Instead, we

provide an alternative condition, summarized in our assumption (VI) below.
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2 Local Contractions

Let (E,D) be a topological space, where E is a set whose topology is generated by a saturated family

of pseudometrics D = {da}a∈A, with A an arbitrary index set. Since the family D is saturated, the

topology it generates is Hausdorff4. We suppose that (E,D) is sequentially complete: if {xn} is a

sequence in E which is Cauchy with respect to all da ∈ D, that is, if da(xn, xm) → 0 as n,m → ∞,

then there is x ∈ E such that da(xn, x) → 0 as n→ ∞ for all a ∈ A.

Given a sequentially complete subset F ⊆ E, we study the existence and uniqueness of a fixed

point of a mapping T : F → E.

Let RA be the set of functions d : A→ R+ and let RA+ be the non–negative cone of RA. On this set

we consider the order it generates, that is, for two elements d, d′ ∈ R
A
+, we say that d ≤ d′ if and only if

d(a) ≤ d′(a) for all a ∈ A. The family D can be embedded into R
A
+, since that, for x, y ∈ E given, the

mapping a 7→ da(x, y) defines a function in R
A
+, that we denote dx,y(a) := da(x, y). In general, for a

given subset F ⊆ E, we let D(F ) be the set of functions in R
A
+ which are generated by pairs x, y ∈ F ,

that is

D(F ) := {d : A→ R+ : d = dx,y for some x, y ∈ F}.

Definition 2.1. Let F ⊆ E. The mapping T : F → E is an L-local contraction on F with contraction

operator parameter L (COP, for short), if there are a set C ⊆ R
A
+ such that D(F ) ⊆ C, and an

operator L : C → R
A
+, such that

da(Tx, T y) ≤ (Ldx,y)(a),

for all x, y ∈ F and for all a ∈ A.

Note that the inequality above can be rewritten dTx,Ty ≤ Ldx,y, that is, as an order relation in

the space R
A
+. The definition of L–contractions for mappings T : F −→ E, not imposing T : F −→ F ,

will facilitate the definition of the COP parameter L of the Bellman operator in Section 3. Of course,

the property T : F −→ F is fundamental for Theorem 3.5 below, and will checked carefully in Section

3.

The following two examples show that the operator L is a generalization of the concept of contrac-

tion parameter of a (local) contraction mapping.

Example 2.2 (Banach contractions). In the classical Banach’s Theorem, E is dotted with a complete

metric d, so the index set A is a singleton, D = {d}, and T is a contraction of constant parameter β,

with 0 < β < 1: d(Tx, T y) ≤ βd(x, y), for any x, y ∈ E. The COP is L = βI, where I is the identity

map in R+.

4A pseudometric d : E × E → R+ is a function satisfying d(x, y) ≥ 0, d(x, x) = 0, d(x, y) = d(y, x)

and d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ E, but d(x, y) = 0 does not imply x = y. The family D of

pseudometrics is saturated if da(x, y) = 0 for all a ∈ A, implies x = y. Sometimes, the pseudometrics are

defined through seminorms pa, a ∈ A, by da(x, y) = pa(x−y), where now E is a real vector space. A seminorm

is a function p : E → R+ that satisfies all the axioms to be a norm, except that p(x) = 0 does not imply that

x is the null vector of E. If the family of seminorms is saturated, then the topology defined by the family is

Hausdorff and the space and E is a locally convex space. See Willard (1970) for further details.
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A generalization of the Banach contraction concept is provided in Wong (1968), where it is con-

sidered T : E −→ E for which there is a function L : R+ −→ R+ satisfying

d(Tx, T y) ≤ L(d(x, y)), (2.1)

for all x, y ∈ E. Note that our definition is an extension of this concept to topological spaces whose

topology is given by a family of semidistances.

Example 2.3 (k–local contractions). Suppose that A = N is countable. In Rincón-Zapatero and Rodŕıguez-Palmero

(2003, 2007), we introduced the concept of k–local contraction in the study of the deterministic Bell-

man and Koopmans equations, respectively. A k–local contraction on F , k = 0, 1, 2, . . ., is a mapping

T : F ⊆ E −→ E satisfying

dj(Tx, T y) ≤ βjdj+k(x, y)

for some fixed sequence of numbers {βj}j∈N with 0 < βj < 1, and for all x, y ∈ F . If we let s = R
N be

the set of real sequences and s+ be the subset of s of nonnegative sequences, then the COP associated

with T is the linear operator L : s+ −→ s+ acting on sequences given by

L(d1, d2, . . . , dj , . . .) = (β1d1+k, β2d2+k, . . . , βjdj+k, . . .),

where k ≥ 0 is fixed.

Suppose that A = N is uncountable and let a mapping α : A −→ E such that for any a ∈ A,

da ≤ dα(a). Martins da Rocha and Vailakis (2010) worked with the following generalization of the

countable class above: T : E −→ E is an α-local contraction if there exists a function β : A −→ [0, 1)

such that

da(Tx, T y) ≤ β(a)dα(a)(x, y).

The COP L acts as follows: given a function d : A −→ R+, the image function is (Ld)(a) =

β(a)d(α(a)), that is, a translation in the independent variable by α, and a multiplication by β. It

turns out that L is also a linear mapping, as in the countable case above.

In what follows, we use the standard notation for successive iterations of the operators T and L.

For instance, L0 is the identity operator on C, L1 = L, and for t ≥ 2, Lt = L ◦Lt−1. We impose to C,

L and T the assumptions (I) to (VI) listed below. The assumptions (I) to (V) concern the behavior of

L on the set C. Assumption (VI) links directly the operators T and L.

(I) D(F ) ⊆ C. For all d, d′ ∈ C, the sum d + d′ ∈ C, and any bounded subset of C is countably

chain complete5 Moreover, if d′ ∈ C, d ∈ R
A
+ and d ≤ d′, then d ∈ C.

(II) L0 = 0.

(III) L is monotone: for all d, d′ ∈ C with d ≤ d′, Ld ≤ Ld′.

5A subset S ⊆ C is bounded with respect to the order inherited from R
A if there is d′ ∈ C such that d ≤ d′ for

all d ∈ S. The bounded subset S is countably chain complete if for any countably chain d1 ≤ d2 ≤ · · · dt ≤ · · ·

in S, supt∈N
dt ∈ S.
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(IV) L is subadditive: for any d, d′ ∈ C

L(d+ d′) ≤ Ld+ Ld′.

(V) L is upper semicontinuous sup-preserving6: for any bounded countably chain in C, d1 ≤ d2 ≤

· · · ≤ dt ≤ · · · ,

L sup
t
dt ≤ sup

t
Ldt.

(VI) There are x0 ∈ F and r : 0 ∈ C with da(x0, T x0) ≤ r0(a) and

R0(a) :=

∞∑

t=0

Ltr0(a) <∞,

for all a ∈ A.

Since Ltr0 ∈ C, for all t = 0, 1, . . ., and the countable chain {r0, r0 + Lr0, . . . , r0 + Lr0 + · · · +

Ltr0, · · · } is bounded in C by (VI), R0 is in C by assumption (I).

For F ⊆ E, x0 ∈ F , and m ∈ R
A
+, let the set

VF (x0,m) = {x ∈ F : da(x0, x) ≤ m(a), ∀a ∈ A}.

When E is a metric space, that is, when A is a singleton, the pseudometric is a metric, and VF (x0,m)

is simply the intersection with F of the closed ball centered at x0 and radius m.

Lemma 2.4. Let T : F −→ F be an L-local contraction on F ⊆ E and let x0 ∈ F be such that

(I)–(VI) hold true for a suitable r0 ∈ C. Let R0 be defined as in (VI). Then

(a) T : VF (x0, R0) −→ VF (x0, R0).

(b) For any a ∈ A, limt→∞(LtR0)(a) = 0.

The following result is a fixed point theorem for L-local contractions.

Theorem 2.5. Let (E,D) be a Hausdorff and sequentially complete topological space. Let T : F → F

be an L-local contraction on the sequentially complete subset F ⊆ E and let x0 ∈ F be such that

(I)–(VI) hold true. Then there is a unique fixed point x∗ ∈ VF (x0, R0) of T , which is the limit of any

iterating sequence yt+1 = Tyt, t = 0, 1, 2, . . ., where y0 = x ∈ VF (x0, R0) is arbitrary.

Proof. Consider first the iterating sequence xt+1 = Txt, t = 0, 1, 2, . . . (that is, the initial seed is x0).

By Lemma 2.4, xt is in VF (x0, R0) for any t = 0, 1, 2, . . .. Since T is an L-local contraction

da(xt, xt+1) = da(Txt−1, T xt) ≤ Ldxt−1,xt(a)

and by induction da(xt, xt+1) ≤ (Ltdx0,Tx0)(a). Let r > s ≥ 1. Then by the triangle inequality

extended to finite sums

da(xs, xr+1) ≤
r∑

t=s

da(xt, xt+1) ≤
r∑

t=s

Ltdx0,Tx0(a) ≤ R0(a) <∞, (2.2)

6For instance, the sup-preserving property, L(supt dt) = supt Ldt, plays a prominent role in the Fixed Point

Theorem of Kantorovich-Tarski. In our context, it can be weakened to a kind of upper semicontinuity.
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for all a ∈ A. By the Cauchy criterion for series, da(xs, xr+1) tends to 0 as r, s → ∞. Since a is arbi-

trary, the sequence {xt}
∞
t=0 is Cauchy, hence it converges to some x∗ ∈ F , as F is sequentially complete.

In fact, x∗ ∈ VF (x0, R0). To see this, note that for all a ∈ A, the mapping x 7→ da(x0, x) is triv-

ially sequentially continuous in the topology generated by D, hence da(x0, x
∗) = da(x0, limt→∞ xt) =

limt→∞ da(x0, xt) ≤ R0(a) for any a ∈ A. Next, we prove that x∗ is a fixed point of T . By estimate

(2.2), letting r → ∞, da(xs, x
∗) ≤

∑∞
t=s L

tdx0,Tx0(a) = supN
∑N
t=s L

tdx0,Tx0(a). Hence

Ldxs,x
∗

(a) ≤ L
(
sup
N

N∑

t=s

Ltdx0,Tx0

)
(a)

≤ sup
N
L
( N∑

t=s

Ltdx0,Tx0

)
(a)

≤ sup
N

N∑

t=s

Lt+1dx0,Tx0(a),

which tends to 0 as s → ∞, since R0 is finite. Hence Ldxs,x
∗

→ 0 as s → ∞, for all a ∈ A. The first

line above is due to the monotonicity of L, the second line since L is upper sup-preserving, and the

third one, since L is subadditive. Now, given that

da(x
∗, T x∗) ≤ da(xs+1, x

∗) + da(xs+1, T x
∗) ≤ da(xs+1, x

∗) + Ldxs,x
∗

(a)

and that both summands tend to 0 as s → ∞, we conclude that x∗ = Tx∗. To prove uniqueness,

we argue by contradiction, supposing the existence of another fixed point x∗∗ ∈ VF (x0, R0). Then

da(x
∗, x∗∗) ≤ 2R0(a) for all a ∈ A, and hence

da(x
∗, x∗∗) = da(T

tx∗, T tx∗∗) ≤ Ltdx
∗,x∗∗

(a) ≤ 2LtR0(a),

since L is both monotone and subadditive7. Taking the limit as t→ ∞ and using Lemma 2.4, x∗ = x∗∗

is proven. Finally, let x ∈ VF (x0, R0) and let the iterating sequence yt+1 = Tyt, for n = 0, 1, 2, . . . ,,

with y0 = x. Observe that

da(xt, yt) ≤ Ltdx0,x(a) ≤ 2LtR0(a) → 0 as n→ ∞,

by Lemma 2.4, so da(yt, x
∗) ≤ da(xt, yt) + da(xt, x

∗) tends to 0 as t→ ∞.

The next corollary provides conditions for the uniqueness of the fixed point in F and not only

in VF (x0, R0). When T is indeed an L-local contraction on the whole E, this result provides global

uniqueness of the fixed point on E.

Theorem 2.6. Let (E,D) be a Hausdorff, sequentially complete space. Let T : F → F be an L-local

contraction on the sequentially complete subset F ⊆ E and let x0 ∈ F be such that (I)–(VI) hold true.

Suppose that, for any x ∈ F , it is possible to choose r0 ∈ C satisfying (VI), such that x ∈ VF (x0, R0).

Then there is a unique fixed point of T in F and convergence to the fixed point of successive iterations

of T is attained from any x ∈ F .

7It is easy to prove that Lt is monotone and subadditive for any t.

7



Proof. By Theorem 2.5, T admits a unique fixed point x∗ in VF (x0, R0), whereR0 =
∑∞

t=0 L
tr0, for any

r0 ∈ C for which R0 is a convergent series. Suppose, by contradiction, that T admits another fixed point

x∗∗ 6= x∗ in F . By assumption, there is r′0 ∈ C such that x∗∗ ∈ VF (x0, R
′
0), where R

′
0 =

∑∞
t=0 L

tr′0 is

finite. Hence, x∗ = x∗∗. The convergence of iterating sequences is also an immediate consequence of

Theorem 2.5.

Next we establish a useful sufficient condition for (VI). Note that the Bellman operator satisfies

the extra condition imposed on L.

Proposition 2.7. Let (E,D) be a Hausdorff and sequentially complete topological space. Let T :

F −→ F be an L–local contraction on F ⊆ E, with COP L satisfying (I) to (V) and L(αd) ≤ αLd,

for all d ∈ C, for all α ∈ [0, 1]. Let x0 ∈ F , for which there is t0 ∈ {0, 1, 2, . . .}, s ∈ C, and θ ∈ [0, 1)

such that

Lt0d0 ≤ s and Ls ≤ θs, (2.3)

where d0(a) = da(x0, T x0). Then (VI) holds with r0 = d0.

Proof. Note that
∑
t=t0

Ltd0 ≤ s+ Ls+L2s+ · · · ≤ (1 + θ+ θ2 + · · · )s = 1
1−θs. Hence,

∑∞
t=0 L

td0 =
∑t0−1
t=0 Ltd0 +

∑∞
t=t0

Ltd0 ≤
∑t0−1

t=0 Ltd0 +
1

1−θ s is finite for all a ∈ A.

3 Stochastic Dynamic Programming and Bellman Equation

Consider a dynamic programming model (X,Z,Γ, Q, U, β), where X × Z is the set of possible states

of the system, Γ is a correspondence that assigns a nonempty set Γ(x, z) of feasible actions to each

state (x, z) and Q is the transition function, which associates a conditional probability distribution

Q(z, ·) on Z to each z ∈ Z. Hence, the law of motion is assumed to be a first-order Markov process,

which could be degenerated, giving rise to a deterministic model. We will use indistinctly the notation

Qz(·) = Q(z, ·); the function U is the one–period return function, defined on the graph of Γ, Ω =

{(x, y, z) : (x, y) ∈ X × Z, y ∈ Γ(x, z)}, and β is a discount factor.

Starting at some state (x0, z0), the agent chooses an action x1 ∈ Γ(x0, z0), obtaining a return

of U(x0, x1, z0) and the system moves to the next state (x1, z1), which is drawn according to the

probability distribution Q(·|z0). Iteration of this process yields a random sequence (x0, z0, x1, z1, . . .)

and a total discounted return
∑∞

t=0 β
tU(xt, xt+1, zt). A history of length t is zt = (z0, z1, . . . , zt). Let

Zt be the set of all histories of length t. A (feasible) plan π is a constant value π0 ∈ X and a sequence

of measurable functions πt : Z
t −→ X , such that πt(z

t) ∈ Γ(πt−1(z
t−1), zt), for all t = 1, 2, . . .. Denote

by Π(x0, z0) the set of all feasible plans starting at the state (x0, z0). Any feasible plan π ∈ Π(x0, z0),

along with the transition function Q, defines a distribution P
π,(x0,z0) on all possible futures of the

system {(xt, zt)}
∞
t=1, as well as the expected total discounted utility

u(π, x0, z0) = E
π,(x0,z0)

(
∞∑

t=0

βtU(xt, xt+1, zt)

)
.

8



The expectation E
π,(x0,z0) is taken with respect to the distribution P

π,(x0,z0). The problem is then

to find a plan π ∈ Π(x0, z0) such that u(π, (x0, z0)) ≥ u(π̂, (x0, z0)) for all π̂ ∈ Π(x0, z0), for all

(x0, z0) ∈ X × Z. The value function of the problem is v(x0, z0) = supπ∈Π(x0,z0) u(π, (x0, z0)).

Consider the functional equation corresponding to the above dynamic programming problem as

stated in Stokey and Lucas with Prescott (1989). For x ∈ X , z ∈ Z

v(x, z) = max
y∈Γ(x,z)

{
U(x, y, z) + β

∫

Z

v(y, z′)Q(z, dz′)

}
. (3.1)

A solution of the Bellman equation satisfying additional assumptions is the value function of the

infinite programming problem. This is the content of Theorem 3.5 below, whose proof needs the notion

of the probability measure µt defined on the sequence space of shocks (Zt,Zt) for finite t = 1, 2, . . .,

where

(Zt,Zt) = (Z × · · · × Z,Z × · · · × Z) (t times).

For any rectangle B = A1 × · · · ×At ∈ Zt, µt is defined by

µt(z0, B) =

∫

A1

. . .

∫

At−1

∫

At

Qzt−1(dzt)Qzt−2(dzt−1) · · ·Qz0(dz1),

and by the Hahn Extension Theorems, µt(z0, ·) has a unique extension to a probability measure on all

of Zt. We omit the details, that can be found in Stokey and Lucas with Prescott (1989), Section 8.2,

whose presentation we follow closely.

Defining the Bellman operator in a suitable function space E, such that for f ∈ E

(Tf)(x, z) = max
y∈Γ(x,z)

{
U(x, y, z) + β

∫

Z

f(y, z′)Q(z, dz′)

}
,

the Bellman functional equation (3.1) is a fixed point problem for T . This fixed point problem is com-

pletely understood for the case where U is bounded. There are now also different approaches for some

special cases for unbounded U . It is worth mentioning the constant returns to scale model and the log-

arithmic and the quadratic parametric examples analyzed in Stokey and Lucas with Prescott (1989),

pp. 270–280, and the weighted norm approach in Boyd III (1990) and Hernández-Lerma and Lasserre

(1999). One feature of all these approaches is that they consider a bounded (or compact) space of

shocks, an assumption that we want to dispense with.8 Allow for a non–compact shock space is impor-

tant for a qualitative analysis of models, see for instance Binder and Pesaran (1999) and Stachurski

(2002), and more recently, Ma and Stachurski (2017).

We now impose the standing hypotheses. Most are taken from Stokey and Lucas with Prescott

(1989), but there are essential differences, as we admit an unbounded utility U and an unbounded

shock space Z.

8The weighted norm approach presents some limitations, which are explained, for instance, in Remark 9 of

Matkowski and Nowak (2011). This paper constitutes a first attempt to translate the approach initiated by

Rincón-Zapatero and Rodŕıguez-Palmero (2003) for deterministic programs to the stochastic case. However,

the results obtained do not cover a general model where shocks are driven by an exogenous transition probabil-

ity. In fact, in the class of dynamic programming models described here and in Stokey and Lucas with Prescott

(1989), assumption (A4) on the generation of shocks {zt}
∞
t=0 imposed in Matkowski and Nowak (2011), basi-

cally implies that the space of shocks Z is compact, or that the underlying probability has compact support.
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(B1) X ⊆ R
l, Z ⊆ R

k are Borel sets, with Borel σ-algebra X and Z, respectively. The set X is

endowed with the Euclidean topology.

(B2) 0 < β < 1.

(B3) Q : Z ×Z → [0, 1] satisfies

(a) for each z ∈ Z, Q(z, ·) is a probability measure on (Z,Z); and

(b) for each B ∈ Z, Q(·, B) is a Borel measurable function.

(B4) The correspondence Γ : X × Z −→ X is nonempty, compact-valued and continuous.

(B5) U : Ω −→ R is a Carathéodory function, that is, it satisfies

(a) for each (x, y) ∈ D := {(x, y) ∈ X × Y : ∃z ∈ Z, y ∈ Γ(x, z)}, the function of z,

U(x, y, ·) : Z −→ R is Borel measurable;

(b) for each z ∈ Z, the function of (x, y), U(·, ·, z) : D −→ R is continuous.

The reason for working with Carathéodory functions instead of continuous functions in the three

variables (x, y, z) is twofold. On the one hand, the Markov operator

(Mf)(x, z) :=

∫

Z

f(x, z′)Q(z, dz′), (3.2)

does not preserve continuity of f , if f is continuous but not bounded, as the simple example in

Appendix C shows.

On the other hand, the Bellman operator is well defined for the class of Carathéodory functions

in the unbounded case, while working with the supremum norm is not possible. A direct attack

of the Bellman equation in the space of (x, z)–continuous functions does not work for unbounded

functions and/or unbounded shock space: known theorems on local contractions—with a countable or

uncountable index set —are not suitable, due to the averaging operation involved in the computation

of conditional expectations. For this reason we are going to use L1-type seminorms, whose precise

definition is given below.

We now describe the function space, which details are given in Appendix B. For each z ∈ Z, let

L1(Z,Z, Qz) be the space of Borel measurable functions9 g : Z −→ R such that
∫
Z |g(z′)|Qz(dz

′) <∞.

In what follows, we let K be the family of all compact subsets of X .

Consider the space E := L1(Z;C(X)), formed by Carathéodory functions f : X × Z −→ R such

that the function z′ 7→ maxx∈K |fx(z
′)| is in L1(Z,Z, Qz), for all compact sets K ∈ K, and all z ∈ Z.

See Appendix B for the definitions and the notation, where it is also proved the following fundamental

result.

Lemma 3.1. E = L1(Z;C(X)) is a complete locally convex space with the topology generated by the

family of seminorms P := {pK,z}K∈K,z∈Z, given by

pK,z(f) :=

∫

Z

max
x∈K

|f(x, z′)|Qz(dz
′). (3.3)

9It is well known that L1(Z,Z, Qz) consists of equivalence classes rather than functions, identifying functions

that are equal Qz–almost everywhere.
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In particular, the lemma states that E is sequentially complete. In the notation of Section 2, the

index set of the family of seminorms is A = K × Z.

Given a solution f ∈ L1(Z;C(X)) of (3.1), define the policy correspondence Gf : X ×Z → 2X by

Gf (x, z) = {y ∈ Γ(x, z) : f(x, z) = U(x, y, z) + βMf(y, z)}. (3.4)

This is the optimal policy correspondence, denoted simply by Γ∗, when f is the value function, v.

Remember from Section 2, that for a subset F ⊆ E, the set D(F ) is in this context

D(F ) = {p : K × Z → R+ : p(K, z) = pK,z(f) for some f ∈ F}.

Notation 3.2. Along the paper, we will use the notation

ψ(x, z) = max
y∈Γ(x,z)

U(x, y, z) = T 0(x, z)

while, for p : K × Z 7−→ R+, the function p[Γ] : X × Z 7−→ R+ is defined by p[Γ](x, z) = p(Γ(x, z), z),

that is, it is the function of (x, z) obtained through p, when the compact sets K equal Γ(x, z), for

x ∈ X, z ∈ Z.

The next result shows that T is an L-local contraction, and gives the expression of L: Given

p : K×Z 7→ R+ for which p[Γ] ∈ L1(Z;C(X)), the operator L computes the seminorm of the function

p[Γ], that is, (Lp)(K, z) = βpK,z(p[Γ]). Note that L is nonlinear. The expanded definition of the

operator L is the expression (3.5) below.

Proposition 3.3. Let the Bellman operator T : F −→ E, where F ⊆ L1(Z;C(X)), such that for all

p ∈ D(F ), p[Γ] ∈ L1(Z;C(X)). Then, T is an L-local contraction on F with COP L : D(F ) −→ R
K×Z
+

given by

(Lp)(K, z) = β

∫

Z

max
x∈K

p(Γ(x, z′), z′)Qz(dz
′), (3.5)

for all K ∈ K and z ∈ Z.

Proof. Following Blackwell (1965), we exploit the fact that T is monotone, in conjunction with the

properties of the seminorms pK,z. Let f, g ∈ E and let x ∈ X , K ∈ K and z ∈ Z. Let y ∈ Γ(x, z)

and z′ ∈ Z arbitrary. Then f(y, z′) ≤ g(y, z′) + |f(y, z′) − g(y, z′)| implies f(y, z′) ≤ g(y, z′) +

maxy∈Γ(x,z) |f(y, z
′)− g(y, z′)| and then, by monotonicity and linearity of the integral,
∫

Z

f(y, z′)Qz(dz
′) ≤

∫

Z

g(y, z′)Qz(dz
′)

+

∫

Z

max
y∈Γ(x,z)

|f(y, z′)− g(y, z′)|Qz(dz
′).

We are allowed to take the integral by Lemma A.1. The inequality is maintained after multiplying by

β and adding U(x, y, z) to both sides. Then, by taking the maximum in y ∈ Γ(x, z) to both sides, we

have

(Tf)(x, z) ≤ (Tg)(x, z) + β max
y∈Γ(x,z)

∫

Z

max
y∈Γ(x,z)

|f(y, z′)− g(y, z′)|Qz(dz
′)

= (Tg)(x, z) + β

∫

Z

max
y∈Γ(x,z)

|f(y, z′)− g(y, z′)|Qz(dz
′)

= (Tg)(x, z) + βpΓ(x,z),z(f − g).
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Exchanging the roles of f and g, we have

|(Tf)(x, z)− (Tg)(x, z)| ≤ βpΓ(x,z),z(f − g).

It is convenient to write this inequality with the dummy variable z′ instead of z. Now, taking the

maximum in x ∈ K and averaging with respect to the measure Qz, we obtain
∫

Z

max
x∈K

|(Tf)(x, z′)− (Tg)(x, z′)|Qz(dz
′) ≤ β

∫

Z

max
x∈K

pf−g(Γ(x, z′), z′)Qz(dz
′).

This inequality can be rewritten pK,z(Tf −Tg) ≤ (Lpf−g)(K, z), for all K ∈ K, z ∈ Z, where L is the

operator defined in (3.5).

One of the difficulties in applying contraction techniques to the dynamic programming equation,

when the return function and/or the space of shocks is unbounded, is the selection of a suitable space

of functions where the Bellman operator is a selfmap. Assumption (B6) below provides a scheme to

construct such a space along the lines of assumption (VI) in Section 2. This is in the same spirit of

Assumption 9.3 in Stokey and Lucas with Prescott (1989), pp. 248-249. Our assumption is not about

bounding the one-shot utility function U along any policy path by a function that depends only on

time and the initial state, but about bounding its expected value with respect to the initial state. This

is an important difference, as it allows us to deal with an unbounded space of shocks.

(B6) There is a collection of nonnegative functions {lt}
∞
t=0 ∈ L1(Z;C(X)), such that for all x ∈ X ,

for all z ∈ Z

l0(x, z) ≥ |ψ(x, z)|;

lt+1(x, z) ≥ β

∫

Z

maxy∈Γ(x,z) lt(y, z
′)Qz(dz

′), for all t = 0, 1, . . .,

and the series w :=
∑∞

t=0 lt is unconditionally convergent, that is,

R(K, z) :=

∞∑

t=0

pK,z(lt) <∞,

for all K ∈ K, for all z ∈ Z.

Now we consider a suitable set C where L is defined.

C =
{
p : K × Z 7−→ R+ : p(K, z) ≤ cR0(K, z) for some c > 0,

and p[Γ] ∈ L1(Z,C(X))
}
.

(3.6)

As it is proved in Lemma A.4, C is not trivial, as it contains the images of V (0, R0) by the family of

seminorms P .

Theorem 3.5 below is a fixed point theorem for the Bellman operator with unbounded utility and

unbounded space of shocks. We state a previous lemma.

Lemma 3.4. Let assumptions (B1) to (B6) hold. Then T and L with C defined in (3.6), satisfy (I)

to (VI).
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Theorem 3.5. Let assumptions (B1) to (B6) hold. The following is true.

(a) The Bellman equation admits a unique solution v∗ in V (0, R0).

(b) If the correspondence Gv∗ defined in (3.4) admits a measurable selection, then v∗ coincides with the

value function, v = v∗, and for all v0 ∈ V (0, R0), T
nv0 → v as n→ ∞, that is, pK,z(T

nv0−v) → 0,

for all K ∈ K and z ∈ Z. Moreover, for all z ∈ Z, the optimal policy correspondence Γ∗(·, z) :

X → X is non-empty, compact valued and upper hemicontinuous.

Proof. (a) T is an L–contraction by Proposition 3.3 and all the assumptions of Theorem 2.5 hold true

by Lemma 3.4. Hence T admits a unique fixed point v∗ is V (0, R0) and the rest of conclusions of

Theorem 3.5 hold true.

(b) To see that v∗ is the value function of the problem, we invoke Theorem 9.2 in Stokey and Lucas with Prescott

(1989). Recall that, for any function F that is µt(z0, ·)-integrable, its conditional expectation can be

expressed as

Ez0(F ) :=

∫

Zt

F (zt)µt(z0, dz
t)

=

∫

Zt−1

[∫

Z

F (zt−1, zt)Qzt−1(dzt)

]
µt−1(z0, dz

t−1)

=

∫

Z

[∫

Zt−1

F (z1, z
t
2)µ

t−1(z1, dz
t
2)

]
Qz0(dz1).

The assumptions of Theorem 9.2 in Stokey and Lucas with Prescott (1989) are: (i) Γ is non-empty

valued, with a measurable graph and admits a measurable selection; (ii) for each (x0, z0) and each

feasible plan π from (x0, z0), U(πt−1(z
t−1), πt(z

t), zt) is µ
t(z0, ·)-integrable, t = 1, 2, . . ., and the limit

U(x0, π0, z0) + lim
n→∞

n∑

t=1

∫

Zt

βtU(πt−1(z
t−1), πt(z

t), zt)µ
t(z0, dz

t) (3.7)

exists; and (iii) limt→∞

∫
Zt β

tv∗(πt−1(z
t−1), zt)µ

t(z0, dz
t) = 0.

(i) is implied by (B5) and (ii) is implied by (B6), since |U(πt−1(z
t−1), πt(z

t), zt)| is clearly mea-

surable, given that U is a Carathéodory function. Moreover, since l0 in (B6) is in Ca(X × Z), we can

apply Fubini’s Theorem so that l0(π1(z
1), z2) is µ

2(z0, ·)-integrable and

∫

Z2

l0(π1(z
1), z2)µ

2(z0, dz
2) =

∫

Z1

(∫

Z

l0(π1(z
1), z2)Qz1(dz2)

)
µ1(z0, dz

1)

≤

∫

Z1

1

β
l1(π0(z0), z1)µ

1(z0, dz
1)

≤
1

β2
l2(x0, z0).

Both inequalities are due to assumption (B6). By induction, we get that l(πt−1(z
t−1), zt) is µ

t(z0, ·)–

integrable and ∫

Zt

l0(πt−1(z
t−1), zt)µ

t(z0, dz
t) ≤

1

βt
lt(x0, z0).
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Since |U(πt−1(z
t−1), πt(z

t), zt)| ≤ l0(πt−1(z
t−1), zt), the first part of (ii) is proved. Indeed, this esti-

mate provides the bound

|U(x0, π0(z0), z0)|+

n∑

t=1

∫

Zt

βt|U(πt−1(z
t−1), πt(z

t), zt)|µ
t(z0, dz

t)

≤ |U(x0, π0(z0), z0)|+

n∑

t=1

lt(x0, z0) ≤ w0(x0, z0),

hence the second part of (ii) also holds, that is, the limit (3.7) is finite. Moreover, since the above

inequality holds for any π ∈ Π(x0, z0), it shows that the n–th iteration of T on the null function as

the initial seed satisfies |T n0(x0, z0)| ≤ w0(x0, z0). Hence, since
∫
Z |T n0(x0, z1) − v∗(x0, z1)|Qz0(dz1)

tends to 0 as n→ ∞, by part (a) above, we obtain the bound

∫

Z

|v∗(x0, z1)|Qz0(dz1) ≤

∫

Z

w0(x0, z1)Qz0(dz1). (3.8)

This inequality will be used to show (iii). First, we claim that for any t, for any π ∈ Π(x0, z0),

∫

Zt

βtw0(πt−1(z
t−1), zt)µ

t(z0, dz
t) ≤

∞∑

s=t

ls(x0, z0).

To prove it, we employ mathematical induction. Let t = 1. Then, by assumption (B6)

∫

Z

βw0(π0(z0), z1)µ
1(z0, dz

1) =

∫

Z

β

∞∑

t=0

lt(π0(z0), z1)Qz0(dz1)

=

∞∑

t=0

β

∫

Z

lt(π0(z0), z1)Qz0(dz1)

≤

∞∑

t=0

lt+1(x0, z0).

The exchange of the integral and infinite sum is possible by the Monotone Convergence Theorem.

Suppose that the property is true for t and let us prove it for t+ 1. Then it will hold for any t. Note
∫

Zt+1

βt+1w0(πt(z
t), zt+1)µ

t+1(z0, dz
t+1)

=

∫

Z

(
β

∫

Zt

βtw0(πt−1(z
t−1), zt)µ

t(z0, dz
t)

)
Qz0(dz1)

≤

∫

Z

β

∞∑

s=t

ls(π0(z0), z1)Qz0(dz1)

≤

∞∑

s=t+1

ls(x0, z0),

again by the Monotone Convergence Theorem, and where we have used Fubini’s Theorem and the

induction hypothesis. This and (3.8) imply (iii), since the series w0 converges. Thus, v∗ is the value

function. The claims about Γ∗ are immediate from the Theorem of the Maximum of Bergé.

The following result provides a sufficient condition for (B6).
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Proposition 3.6. Let assumptions (B1) to (B5) to hold. Suppose that there is l0 ∈ L1(Z;C(X)) with

|ψ| ≤ l0, α ≥ 0 such that αβ < 1, and

∫

Z

max
y∈Γ(x,z)

l0(y, z
′)Qz(dz

′) ≤ αl0(x, z),

for all x ∈ X, z ∈ Z. Then (B6) holds, with R0(K, z) =
1

1−αβ pK,z(l0).

Proof. Choose lt = (αβ)tl0, for t = 0, 1, . . .. Then

β

∫

Z

max
y∈Γ(x,z)

lt(y, z
′)Qz(dz

′) = β(αβ)t
∫

Z

max
y∈Γ(x,z)

l0(y, z
′)Qz(dz

′)

≤ (αβ)t+1l0(x, z) = lt+1(x0, z0).

Hence, w(x0, z0) =
1

1−αβ l0(x0, z0) and R0(K, z) =
1

1−αβ pK,z(l0), for K ∈ K and z ∈ Z.

4 Applications

4.1 Endogenous growth

Endogenous growth models have become fundamental to understand economic growth. From the huge

literature studying this field, few contributions consider an unbounded shock space. Some exceptions

are Stachurski (2002) and Kamihigashi (2007), but with uncorrelated shocks. I consider here the

stochastic endogenous growth model studied in Jones, Manuelli, Siu and Stacchetti (2005), which is

described as follows. The preferences of the agent over random consumptions sequences are given by

max E

∞∑

t=0

βt
c1−σt υ(ℓt)

1− σ
, (4.1)

subject to

ct + kt+1 + ht+1 ≤ ztAk
α
t (ntht)

1−α + (1− δk)kt + (1− δh)ht, (4.2)

ℓt + nt ≤ 1, (4.3)

ct, kt, ht, ℓt, nt ≥ 0 (4.4)

for all t = 0, 1, . . ., with k0 and h0 given. Here, {zt} is a Markov stochastic process with transition

probability Qz(·) and Z = [1,∞); ct is consumption; ℓt is leisure; nt is hours spent working; kt and

ht are the stock of physical and human capital, respectively; δk and δh are the depreciation rates on

physical and human capital, respectively; and υ is a continuous function on (0, 1], strictly increasing.

The usual non-negativity constraints on consumption, investment, leisure and hours worked apply.

The feasible correspondence is thus

Γ(k, h, z) =
{
(k′, h′, c, n, ℓ) : (4.2)–(4.4) hold with x′ = xt+1, x = xt

for x = k, h, c, n, ℓ, z
}
,
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and the utility function is U(c, ℓ) = c1−συ(ℓ)
1−σ . Regarding the function υ, we consider υ(ℓ) = ℓψ(1−σ).

The endogenous state space is X = R+ × R+ and the family of compact sets K is formed by compact

sets in the product space R+ × R+. The Markov chain is given by the log–log process

ln zt+1 = ρ ln zt + lnwt+1, (4.5)

with ρ ≥ 0 and where the w’s are i.i.d., with support inW ⊆ [1,∞). Let µ be the distribution measure10

of the w’s. Note that ρ = 0 corresponds to shocks zt that are i.i.d.. Jones, Manuelli, Siu and Stacchetti

(2005) suppose that zt = exp
(
ζt −

σ2
ǫ

2(1−ρ2)

)
, where ζt+1 = ρζt + ǫt+1 and the ǫ’s are i.i.d., normal

with mean 0 and variance σ2
ǫ . This corresponds to (4.5) with11 wt+1 = exp

(
ǫt+1 −

σ2
ǫ

2(1+ρ)

)
. We do

not need to restrict ǫ to be normally distributed. To shorten notation, let us define δ = min{δk, δh},

γ = Aαα(1 − α)1−α + (1 − δ), and g(k, h) = Akα(nh)1−α + (1 − δ)(k + h). Also, let Θ = E(w
1−σ
1−ρ ) =∫

W
w

1−σ
1−ρ µ(dw).

Theorem 4.1. Consider the endogenous growth model described in (4.1)–(4.5) with 0 ≤ σ < 1 and

0 ≤ ρ < 1. If

βγ1−σΘ < 1, (4.6)

then the associated Bellman equation admits a unique solution, v∗, in the set V (0, R0), where, for

K ∈ K and z ∈ Z

R0(K, z) =

(
Θ

1− βγ1−σΘ

)
z

ρ(1−σ)
1−ρ max

(k,h)∈K
g(k, h)1−σ.

Moreover, v∗ is the value function v and pK,z(T
nv0 − v) converges to 0 as n → ∞, for all K ∈ K,

z ∈ Z and all initial guess v0 ∈ V (0, R0).

Proof. We check all the hypotheses of Theorem 3.5. It is clear that (B1)–(B5) are fulfilled. Regarding

(B6), we will use Proposition 3.6 for a suitable function l0. Since 0 ≤ σ < 1, both U and υ are bounded

from below by zero, and υ is bounded above by 1. Since z ≥ 1 and by the definition of δ, we have

zAkα(nh)1−α + (1 − δk)k + (1− δh)h ≤ zg(h, k). Then

ψ(k, h, z) ≤
1

1− σ
z1−σg(k, h)1−σ ≤

1

1− σ
z

1−σ
1−ρ g(k, h)1−σ = l0(k, h, z).

Let us prove that β
∫
Z l̂0(k, h, z, z

′)Qz(dz
′) ≤ αl0(k, h, z), for all (k, h) ∈ K, for all z ∈ Z, and for all

K ∈ K, where α = γ1−σΘ. Here, to simplify notation in what follows, we have defined

l̂0(k, h, z, z
′) = max

(k′,h′,c,n,ℓ)∈Γ(k,h,z)
l0(k, h, z).

10With correlated shocks, the method developed in Matkowski and Nowak (2011) would require µ(z′ ∈

Zj+1|Zj = z) = 1 for a suitable increasing family {Zj}
∞
j=1 of compact sets that fills Z. We do not impose this

strong constraint on µ. In fact, (4.5) do nos satisfy it if W is unbounded and µ has not compact support.
11Since, from (4.5), zt+1 = z

ρ
twt+1, it is clear that, to keep z ≥ 1, it is necessary (and sufficient) to have

w ≥ 1. Thus, the assumption that the random variable ǫ is normally distributed with mean 0 should be

modified to fulfill the requirement that the random variable w has support W in [1,∞). The assumption

z ≥ 1 is usually imposed in growth models with a multiplicative structure, see Stokey and Lucas with Prescott

(1989).
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First, we determine a bound for l̂0. To this end, consider the Lagrange problem

max g(k′, h′)1−σ,

s. t.: k′ + h′ ≤ zg(k, h),

k′, h′ ≥ 0,

(4.7)

and notice that its feasible set is larger than Γ(k, h, z). The constraint is binding at the optimal solution,

which is k′ = αzg(k, h), h′ = (1 − α)zg(k, h). Substituting this into the objective function of (4.7),

we find its optimal value, γ1−σz1−σg(k, h)1−σ. Thus, l̂0(k, h, z, z
′) ≤ 1

1−σ (z
′)

1−σ
1−ρ γ1−σz1−σg(k, h)1−σ.

Second, we use the conditional expectation
∫
Z(z
′)

1−σ
1−ρQz(dz

′) = zρ
1−σ
1−ρ Θ to estimate

∫

Z

l̂0(k, h, z
′)Qz(dz

′) ≤ γ1−σz1−σzρ
1−σ
1−ρ Θg(k, h)1−σ

= γ1−σΘl0(k, h, z).

Since βγ1−σΘ < 1, Proposition 3.6 applies. The expression for R0 requires a simple computation.

4.2 Asset Prices in an Exchange Economy

Lucas (1978) studied the determination of equilibrium asset prices in a pure exchange economy in

a framework that has become classical in the economics and financial literature. Boundedness of

the utility function, as well as compactness of the space of shocks, are important hypotheses in the

development of this model. In this section, we show that these hypotheses can be dispensed with by

using the results of Theorem 3.5. In this way, we significantly extend the model’s range of applicability.

We closely follow Stokey and Lucas with Prescott (1989) in the exposition of the problem. The

preferences of the representative consumer over random consumption sequences are

E

∞∑

t=0

βtu(ct), (4.8)

where u : R+ −→ R+ is continuous, not necessarily bounded, with12 u(0) = 0 and where β ∈ (0, 1).

There are i = 1, . . . , k productive assets taking values on a set Z ⊆ R
k
+, not necessarily compact,

with Borel sets Z. The components zi of the vector z = (z1, . . . , zk)
⊤ in Z represents the dividend

paid by one unit of asset i. In the description of the model, all vectors are considered column vectors,

and the symbol ⊤ denotes transposition. We assume that the dividends follow a Markov process,

with stationary transition function Q on (Z,Z). Assets are traded on a competitive stock market

at an equilibrium price given by a stationary continuous price function p : Z −→ R
k
+, where p(z) =

(p1(z), . . . , pk(z))
⊤ is the vector of asset prices if the current state of the economy is z (the notation

for prices should not be confused with the notation for seminorms, which always carry a subindex).

The goal is to characterize equilibrium asset prices. Let x = (x1, . . . , xk)
⊤ ∈ R

k
+ be the vector of the

consumer’s asset holdings. Given the price function p, the initial state of the economy z0 and initial

12If u does not satisfy u ≥ 0 and u(0) = 0, but is bounded from below, it may be modified to u(c)− u(0) to

fulfill our hypotheses.
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asset holdings x0, the consumer chooses a sequence of plans for consumption and end-of-period asset

holdings that maximizes discounted expected utility (4.8) subject to

ct + x⊤t+1p(zt) ≤ x⊤t (zt + p(zt)) for all zt, for all t, (4.9)

ct, xt+1 ≥ 0 for all zt, for all t. (4.10)

The consumer holds exactly one unit of each asset in equilibrium, hence we can restrict the state space

to X = [0, x]k, with x > 1, with its Borel subsets X . The correspondence Γ : X × Z −→ 2X is

Γ(x, z) = {y ∈ X : y⊤p(z) ≤ x⊤(z + p(z))}.

Assuming that p is continuous, Γ is nonempty, compact valued and continuous. Given the price p, the

dynamic programming equation is

v(x, z) = max
y∈Γ(x,z)

{
u(x⊤z + (x− y)⊤p(z)) + β

∫

Z

v(y, z′)Qz(dz
′)
}
. (4.11)

We will look for solutions to this functional equation in the class L1(Z;C(X)). Since the state space

is compact, and the utility function u is bounded from below, we take the trivial family of compact

sets K = {X} in this model, and not the whole family of compact subsets of X .

We impose the following assumptions.

u is nondecreasing and concave; (4.12)

pi(z) ≤ a⊤i z + bi for some vectors ai ≥ 0 and scalars bi > 0, (4.13)

i = 1, . . . , k.

Hence, we look for equilibrium prices in the class of functions that are bounded by an affine function.

Other possibilities could obviously be explored. We state two results about the existence of equilibrium

in a Lucas asset pricing model satisfying (4.12) and (4.13) under two different regimes for the Markov

chain.

(M1) The Markov chain is given by zt+1 = Bzt +wt, where B a matrix of order k with non–negative

entries and norm13 ‖B‖ < 1, and where {wt}
∞
t=1 are i.i.d. random vectors with support in a

Borel subset W ⊆ R
k
+ with finite expectation, 0 ≤ Ew <∞.

(M2) The Markov chain is given by zi,t+1 = zρii,twi,t+1, for all t = 0, 1, 2, . . ., where 0 ≤ ρi ≤ 1 for

all i = 1, . . . , k, and where {wt}
∞
t=1 are i.i.d. random vectors14 with support in a Borel subset

W ⊆ [1,∞)k such that

ρi ≤ 1 for all i = 1, . . . , k and, if ρi = 1, then Ewi < 1/β. (4.14)

13The norm of a matrix B is defined by ‖B‖ = sup
{

‖Bx‖
‖x‖

: x ∈ R
l with x 6= 0

}

. The condition ‖B‖ < 1 is

equivalent to saying that the spectral radius of B—the maximum of the module of the eigenvalues of B—is

less than one.
14Hence, we are now considering a linear log–log system of uncoupled equations for the evolution of dividends.
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In the proof that follows, as well as in the rest of the paper, we use the same notation for inequalities

between scalars and inequalities between vectors, which have to be understood in a pointwise manner.

Theorem 4.2. Consider the Lucas Asset Pricing model described above in (4.8)-(4.10), for which

(4.12) and (4.13) hold and the Markov chain satisfies either (M1) or (M2). Then there is a unique

solution of (4.11) in V (0, R0) for a suitable R0, which is the value function v of the problem, and the

conclusions of Theorem 3.5 hold.

Proof. Let A be the matrix whose columns are the vectors a1, . . . , ak in (4.13), and let b = (b1, . . . , bk)
⊤,

hence we can write 0 ≤ p(z) ≤ Az + b. Let us construct a family of functions {lt}
∞
t=0 satisfying

assumption (B6). Obviously

x⊤(z + p(z)) ≤ x⊤z(Ik +A) + x⊤b,

where Ik is the indentity matrix. Since u is increasing and concave, for a supergradient u of u at

x⊤b > 0, we have

ψ(x, z) = u(x⊤(z + p(z)) ≤ u(x⊤b) + u x⊤(Ik +A)z.

We define l0(z) = u(x⊤b)+u x⊤(Ik+A)z and, recursively, lt+1(z) = β
∫
Z lt(z

′)Q(z, dz′), for t = 0, 1, . . ..

Suppose first that Q satisfies (M1). In this case, Ezz
′ = Bz + Ew, hence

l1(z) = β

∫

Z

l0(z
′)Q(z, dz′)

= βu(x⊤b) + βu x⊤(Ik +A)Ezz
′

= β(u(x⊤b) + u x⊤(Ik +A)(Bz + Ew).

We will prove by induction that

lt(z) = βtu(x⊤b) + βtu x⊤(Ik +A)
(
Btz + (Bt−1 + · · ·+ Ik)Ew

)
,

for all t = 1, 2, . . .. For t = 1 it has been just proved. Suppose it is true for t. Then

lt+1 = βt+1u(x⊤b) + βt+1u x⊤(Ik +A)
(
BtEzz

′ + (Bt−1 + · · ·+ Ik)Ew
)

= βt+1u(x⊤b)

+ βt+1u x⊤(Ik +A)
(
Bt(Bz + Ew) + (Bt−1 + · · ·+ Ik)Ew

)
,

and we are done. On the other hand, (Bt−1 + · · ·+ Ik)Ew ≤ (Ik −B)−1Ew, since B has nonnegative

entries, ‖B‖ < 1 and Ew > 0. Hence, the series w0(z) =
∑∞
t=0 lt(z) is unconditionally convergent,

since it is bounded by the function of L1(Z) defined by

w0(z) :=
1

1− β
(u(x⊤b) + βu x⊤(Ik +A)

(
(Ik − βB)−1z + (Ik −B)−1Ew

)
,

where we have used
∑∞

t=0(βB)t = (Ik − βB)−1. Hence (B6) holds with R0(z) =
∑∞

t=0 pz(lt).

If Q satisfies (M2), then Ezz
′ = (zρ11 Ew1, . . . , z

ρk
k Ewk)

⊤. Define, as above, l0(z) = u(x · b) + u x ·

z(Ik + A) and let lt+1(z) = β
∫
Z
lt(z
′)Q(z, dz′), for t = 0, 1, . . .. Then it is easy to prove by induction

that

lt(z) = βtu(x⊤b) + βtu x⊤(Ik +A)
(
z
ρt1
1 Πt−1s=0E

(
w
ρs1
1

)
, . . . , z

ρtk
k Πt−1s=0E

(
w
ρsk
k

))⊤
.
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By Jensen’s inequality, E
(
w
ρsi
i

)
≤ (Ewi)

ρsi and thus

lt(z) ≤ βtu(x⊤b) + βtu x⊤(Ik +A)
(
z
ρt1
1 (Ew1)

1/(1−ρ1) , . . . , z
ρtk
k (Ewk)

1/(1−ρk)
)⊤

.

In the case that ρi < 1 for all i = 1, . . . , k, the series w0(z) =
∑∞

t=0 lt(z) is clearly (unconditionally)

convergent since β < 1 and ρi < 1 for all i = 1, . . . , k. The ratio test can be used to prove this claim.

In the case in which ρj = 1 for some j, then the bound above no longer applies, as a term zj(Ewj)
t

appears in position j of the vector
(
z
ρt1
1 Πt−1s=0Ew

ρs1
1 , . . . , z

ρtk
k Πt−1s=0Ew

ρsk
k

)⊤
. However, the assumption

βEwj < 1 assures convergence of the series w0(z) =
∑∞

t=0 lt(z).

Hence, in both cases considered, (M1) and (M2), the condition (4.14) guarantees that (B6) holds

with R0(z) =
∑∞
t=0 pz(lt). Thus, Theorem 3.5 applies.

To complete the circle, we have to prove that our conjecture (4.13) about the equilibrium price

holds. Following Lucas (1978) or Stokey and Lucas with Prescott (1989), we now assume the further

conditions:

u(0) = 0, u is continuously differentiable, with u′(c) > 0 for all c ≥ 0, (4.15)

and strictly concave;

we also impose

there are constants γ, δ ≥ 0 such that cu′(c) ≤ γc+ δ, for all c ≥ 0; (4.16)

there exists a > 0 such that u′(1⊤z) ≥ a for all z ∈ Z, where 1 = (1, . . . , 1)⊤. (4.17)

A function like u(c) = c1−σ/(1 − σ) + c, with 0 ≤ σ < 1, satisfies (4.15)-(4.17). Also, if Z is

bounded, then (4.15) implies (4.17).

Finding an equilibrium price function p(z) = (p1(z), . . . , pk(z))
⊤ is equivalent to finding functions

φ1(z), . . . , φk(z) that satisfy the k independent functional equations

φi(z) = hi(z) + β

∫

Z

φi(z
′)Q(z, dz′), i = 1, . . . , k, (4.18)

where hi(z) = β
∫
Z z
′
iu
′(1⊤z′)Q(z, dz′), for all i = 1, . . . , k. Lucas (1978) shows that a solution to

(4.18) provides an equilibrium price p given by

pi(z) =
φi(z)

u′(1⊤z)
, for i = 1, . . . , k. (4.19)

Let, as in Lucas (1978), the operator Ti be

Tif(z) = hi(z) + β

∫

Z

f(z′)Q(z, dz′), for all f ∈ L1(Z,Z, Qz), i = 1, . . . , k.

Note that, in this context, the seminorms are simply defined by pz(f) =
∫
Z |f(z′)|Qz(dz

′)|. It is pretty

clear that the COP associated to Ti is given by

Lp(z) = β

∫

Z

p(z′)Qz(dz
′),

where p belongs to a suitable set C as defined in (3.6).
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Theorem 4.3. Consider the Lucas Asset Pricing model described above in (4.8)-(4.10), for which

(4.15)–(4.17) hold and the Markov chain satisfies either (M1) or (M2). Then there is an equilibrium

price p satisfying (4.13).

Proof. Note that z ≥ 0 and (4.16) imply

ziu
′(1⊤z) ≤ (1⊤z)u′(1⊤z) ≤ γ(1⊤z) + δ. (4.20)

Suppose that Q satisfies (M1). Then

hi(z) ≤ β
(
γ
(
1⊤Ezz

′
)
+ δ
)
≤ β

(
γ
(
1⊤(Bz + Ew)

)
+ δ
)
.

This implies that the operator Ti is a self–map in L1(Z), for all i = 1, . . . , k. We want to apply

Theorem 3.5 to each of the operators Ti, where the COP associated to Ti is given just above the

theorem. Let l0(z) = hi(z) and define

lt(z) = βt
(
γ
(
1⊤(Btz + Ew)

)
+ δ
)
,

for t = 1, 2, . . .. It is immediate to check that lt+1 ≥ β
∫
Z lt(z

′)Q(z, dz′) and that the series w0(z) =∑∞
t=0 lt(z) is (unconditionally) convergent, since β‖B‖ < 1. The sum of this series is w0(z) = γ1⊤(Ik−

βB)−1z + 1
1−β (γ1

⊤Ew + δ). Hence, (B6) holds. Moreover, following analogous reasonings as in the

proof of part (b) of Theorem 3.5, the fixed point of Ti, φi, satisfies φi ≤ w0, and thus, by (4.17)

pi(z) =
φi(z)

u′(1⊤z)
≤

1

a
γ1⊤(Ik − βB)−1z +

1

a(1− β)
(γ1⊤Ew + δ),

for all i = 1, . . . , k, where the right hand side is an affine function of z. Then, p = (p1, . . . , pk)
⊤ satisfies

(4.13) with

a⊤i =
1

a
γ1⊤(Ik − βB)−1, bi =

1

a(1− β)
(γ1⊤Ew + δ), for all i = 1, . . . , k.

Suppose that Q satisfies (M2). Now Ezz
′ = (zρ11 Ew1, . . . , z

ρk
k Ewk)

⊤. From (4.20), we have

hi(z) ≤ β(γ(1⊤(zρ11 Ew1, . . . , z
ρk
k Ewk)) + δ).

Let l0(z) = hi(z) and lt+1(z) = β
∫
Z
lt(z
′)Q(z, dz′), for t = 0, 1, . . .. When 0 ≤ ρi < 1 for all

i = 1, . . . , k, using similar arguments as in the proof of Theorem 4.2, we have

lt(z) ≤ βtγ1⊤
(
z
ρt1
1 (Ew1)

1/(1−ρ1), . . . , z
ρtk
k (Ewk)

1/(1−ρk)
)
+ βtδ

≤ βt(γµ1⊤z + δ),

where µ := max
{
z1(Ew1)

1/(1−ρ1), . . . , zk(Ewk)
1/(1−ρk)

}
. Hence, the infinite series w0(z) =

∑∞
t=0 lt(z) =

γµ1⊤z+δ
1−β is (unconditionally) convergent, (B6) holds and the fixed point of Ti, φi, satisfies φi ≤ w0.

It is clear then that the price p = (p1, . . . , pk)
⊤ defined in (4.19) satisfies (4.13) with ai =

γµ
a(1−β) and

bi =
δ

a(1−β) , for all i = 1, . . . , k. In the case in which some ρj = 1, the coordinate j on the vector(
z
ρt1
1 Πt−1s=0E(w

ρs1
1 ), . . . , z

ρtk
k Πt−1s=0E(w

ρsk
k )
)
is equal to zjEwj , and then βEwj < 1 is required to have con-

vergence of the series
∑∞
t=0 lt(z), which is then bounded by an affine expression in z; hence, as in the

previous case, (4.13) holds.
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5 Conclusions

In this paper, we develop a general framework to analyze stochastic dynamic problems with unbounded

utility functions and unbounded shock space. We obtain new results concerning the existence and

uniqueness of solutions to the Bellman equation through a fixed point theorem that generalizes the

results known for Banach contractions and local contractions. This generalization is possible by con-

sidering seminorms that give a different treatment to the endogenous state variable and the exogenous

one. While a supremum norm on arbitrary compact sets is considered in the former variable, an L1

type norm is in the latter variable. Putting together this definition with the aforementioned general-

ization of the local contraction concept, we are able to maintain the monotonicity (in a mild sense) of

the Bellman operator, thus proving that it is essentially a contractive operator. The usefulness of the

approach and the applicability of the results are clearly revealed in the analysis of two fundamental

models of economic analysis: an endogenous growth model with a multiplicative structure in the shocks

and the Lucas model of an exchange economy. The combination of unbounded rewards and unbounded

shocks makes it hard to prove the existence of a unique fixed point of the Bellman equation. In this

sense, another benefit of the paper is to provide a secure method to check the hypotheses needed to

apply the approach, based on assumption (B6), and one that can be used straightforwardly to analyze

other models. A challenging problem is to extend the theorems to deal with the unbounded from

below case in a more satisfactory way, as done in Rincón-Zapatero and Rodŕıguez-Palmero (2003) or

Martins da Rocha and Vailakis (2010) for the deterministic case, by introducing a suitable family of

pseudodistances.
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A Proofs of auxiliary results

Proof of Lemma 2.4. Due to the subhomogeneity of L for finite sums, L(r0 + Lr0 + · · ·+ LT r0) ≤

Lr0+· · ·+LT+1r0 ≤ R0, for all finite T . Letting T → ∞, we obtain r0+LR0 ≤ R0. Let x ∈ VF (x0, R0),

so da(x0, x) ≤ R0(a) for all a ∈ A. By the triangle inequality and since T is an L–local contraction

da(x0, T x) ≤ da(x0, T x0) + da(Tx0, T x)

≤ d0(a) + (Lda)(x0, x)

≤ d0(a) + (LR0)(a)

≤ R0(a).

This proves (a). To show (b), note that, by the same arguments used to prove (a), for LtR0 ≤

Ltr0 +Lt+1r0 + · · · , for all t = 0, 1, . . .. Then LtR0(a) is bounded by the remainder of the convergent

series R0(a), thus it converges to 0 as t→ ∞, for all a ∈ A. Q.E.D.

Given f ∈ Ca(X × Z), we denote

f̂(x, z) := max
y∈Γ(x,z)

f(y, z), |̂f |(x, z) := max
y∈Γ(x,z)

|f(y, z)|.

We will make use of the following lemma in the main text and along this appendix.

Lemma A.1. (1) For all f ∈ Ca(X × Z), both f̂ , |̂f | ∈ Ca(X × Z).

(2) For all f ∈ L1(Z;C(X)), both f̂ , |̂f | ∈ L1(Z,Z, Qz), for all z ∈ Z.

Proof. (1) Given the assumption made about the continuity of Γ, by the Bergé Theorem of the Maxi-

mum, the map x 7→ f̂(x, z) is continuous, for any z ∈ Z fixed, and by the Measurable Theorem of the

Maximum, z 7→ f̂(x, z) is Borel measurable; thus, f̂ is a Carathéodory function on X ×Z. Obviously,

the same is true for |̂f |.

(2) Since pK,z(f) < ∞ for all K ∈ K and all z ∈ Z, and Γ(x, z) is a compact set for any x ∈ X ,

z ∈ Z, then
∫
Z |̂f |(y, z′)Qz(dz

′) = pΓ(x,z),z(f) <∞. Obviously, the same is true for f̂ .

Proof of Lemma 3.4. We organize the proof in several previous lemmas.

Lemma A.2. Let assumptions (B1) to (B6) to hold. Then

1.
∑∞

t=0 L
tpl0 <∞;

2. R0[Γ] ∈ L1(Z;C(X)) and pl0 + LR0 ≤ R0.

Proof. Given x ∈ X and z ∈ Z, βplt [Γ](x, z) = β
∫
Z maxy∈Γ(x,z) lt(y, z

′)Qz(dz
′) ≤ lt+1(x, z), hence

plt [Γ] ∈ L1(Z,C(X)) and then Lplt(K, z) = βpK,z(p
lt [Γ]) ≤ pK,z(lt+1), for all t = 0, 1, . . .. Thus,

Ltpl0 ≤ Lt−1pl1 ≤ · · · ≤ plt . By (B6), the series
∑∞

t=0 p
lt(K, z) converges for all K ∈ K and z ∈ Z,

thus
∑∞

t=0 L
tpl0 converges. To conclude the proof, by the triangle inequality

pK,z(p
l0 [Γ] + · · ·+ plt [Γ]) ≤ pK,z(p

l0 [Γ]) + · · ·+ pK,z(p
l0 [Γ])

≤ (pK,z(l1) + · · ·+ pK,z(lt+1).

Letting t→ ∞ and adding pK,z(ψ) to both sides of the above inequality, we have pK,z(ψ)+pK,z(R0[Γ]) ≤

R0(K, z), showing at the same time that R0[Γ] ∈ L1(Z;C(X)).

23



Lemma A.3. Let assumptions (B1) to (B6) to hold. Then f ∈ V (0, R0) implies Tf ∈ L1(Z;C(X)).

Proof. Let f ∈ L1(Z;C(X)). We use the notation fx and fz, whose meaning is explained in Appendix

B. The function fx is Borel measurable for all x ∈ X and Qz–integrable for any z ∈ Z. Thus, fx can be

written as the difference of two positive, Qz–integrable functions, fx = f+
x −f−x , where f+

x = max(fx, 0)

and f−x = max(−fx, 0). Applying Theorem 8.1 in Stokey and Lucas with Prescott (1989), both Mf+
x

and Mf−x are Borel measurable. Since (Mf)x =M(fx) =M(f+
x )−M(f−x ), (Mf)x is measurable for

any x ∈ X . To see that (Mf)z is continuous, consider a sequence {xn} in X that converges to x ∈ X .

Then the sequence and its limit form the compact set K = {xn}∪{x}. Let fn := fxn
, for n ≥ 1. For all

z′ ∈ Z, fn(z
′) → fx(z

′) as n → ∞, since f is continuous in x. Moreover, |fz
′

| ≤ supx∈K |fz
′

(x)|, and

z′ 7→ supx∈K |fz
′

(x)| is Qz–integrable by definition of L1(Z;C(X)), thus by the Lebesgue dominated

convergence theorem

(Mf)(xn, z) =

∫

Z

fn(z
′)Qz(dz

′) →

∫

Z

fx(z
′)Qz(dz

′) = (Mf)(x, z),

thus (Mf)z is continuous. Hence, Mf is a Carathéodory function and thus U(x, y, z) + βMf(y, z) is

continuous in (x, y) for all z, and it is Borel measurable in z for all (x, y). By the Bergé Maximum

Theorem, the function Tf is thus continuous in x for all z, and by the Measurable Maximum Theorem,

it is Borel measurable for any x. In short, the function

(x, z) 7→ Tf(x, z) = max
y∈Γ(x,z)

(U(x, y, z) + βMf(y, z)),

is a Carathéodory function. Moreover, if f ∈ F and x ∈ X , z ∈ Z

|Tf(x, z)| ≤ | max
y∈Γ(x,z)

U(x, y, z)|+ β max
y∈Γ(x,z)

∫

Z

max
y∈Γ(x,z)

|f(y, z′)|Qz(dz
′)

≤ l0(x, z) + β

∫

Z

max
y∈Γ(x,z)

w(y, z′)Qz(dz
′)

≤ l0(x, z) + βpΓ(x,z),z(f).

Since Γ(x, z) ∈ K, for f ∈ V (0, R0), we have pΓ(x,z),z(f) ≤ R0[Γ](x, z). By Lemma A.2, pK,z(l0) +

βpK,z(R0[Γ]) ≤ R0(K, z). Hence pK,z(Tf) ≤ R0(K, z). This proves that Tf ∈ V (0, R0), and hence

that Tf ∈ L1(Z,C(X)).

Lemma A.4. Let assumptions (B1) to (B6) to hold. Then D(V (0, R0)) ⊆ C.

Proof. Since f ∈ V (0, R0), p
f ≤ R0, hence we can take c = 1. Also, pf ∈ Ca(X × Z), since

pf [Γ](x, z) =
∫
Z
maxy∈Γ(x,z) |f(y, z

′)|Qz(dz
′) is continuous in x and Borel measurable in z, by Lemma

A.1. Moreover, pf [Γ] ≤ R0[Γ] implies pK,z(p
f [Γ]) ≤ pK,z(R0[Γ]) ≤

1
βR0(K, z), by Lemma A.2. Hence,

pf [Γ] ∈ L1(Z,C(X)).

Now, we are in position to prove Lemma 3.4. First, let us see that L : C −→ C. Let p ∈ C; by the

definition of the operator L and Lemma A.2

Lp(K, z) = βpK,z(p[Γ]) ≤ βpK,z(cR0[Γ]) ≤ cR1(K, z) ≤ cR0(K, z),
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and so, Lp[Γ] ≤ cR0[Γ] and Lp[Γ] ∈ L1(Z,C(X)). Second, we prove that the assumptions (I) to (VI)

are fulfilled. Regarding (I), note that p + q ∈ C if p, q ∈ C, trivially, as well it is also immediate

that if p′ ∈ C and p ≤ p′, then p ∈ C. On the other hand, if a countable chain of partial sums

p0, p0+p1, p0+p1+p2, . . . , is bounded by an element P in C, then the infinite sum, p :=
∑∞

n=0 pn, is well

defined and p ≤ P ≤ cR0 for some constant c. Moreover, since p[Γ] ≤ cR0[Γ] and R0[Γ] ∈ L1(Z;C(X))

by Lemma A.2, the Monotone Convergence Theorem implies that p[Γ](x, ·) is Qz–integrable for all

z ∈ Z and all x ∈ X . On the other hand, each function pi[Γ](·, z) is continuous in x, for all i = 1, 2, . . ..

By the Wierstrass M test, the function p[Γ](·, z) is also continuous in x for all z ∈ Z. These two

observations imply that p[Γ] ∈ L1(Z;C(X)). (II) is trivial; (III) holds, since the integral is monotone,

and regarding (IV), it holds true, since for all p, q ∈ C, pK,z(p[Γ] + q[Γ]) ≤ pK,z(p[Γ]) + pK,z(q[Γ]) by

definition of the seminorms pK,z, hence

L(p+ q)(K, z) = pK,z(p[Γ] + q[Γ])

≤ pK,z(p[Γ]) + pK,z(q[Γ])

= Lp(K, z) + Lq(K, z).

L is clearly sup-preserving in C by the Monotone Convergence Theorem, hence (V) also holds. Finally,

(VI) is implied by Lemma A.2 and Lemma A.3.

B Function space

We describe in this section the function space used in Section 3 and we prove Lemma 3.1.

Let the measurable space (Z,Z), where Z is the space of shocks and Z is the σ–algebra of Borel

of Z. Remember that Q is a transition function Q : Z ×Z → [0, 1] satisfying

1. for each z ∈ Z, Q(z, ·) is a probability measure on (Z,Z); and

2. for each A ∈ Z, Q(·, A) is a Borel measurable function.

To simplify notation, let Qz = Q(z, ·). For each z ∈ Z, let L1(Z,Z, Qz) be the space of Borel

measurable and Qz–integrable functions g : Z −→ R. Let the L1 norm with respect to the fixed

probability measure Qz

‖g‖z =

∫

Z

|g(z′)|Qz(dz
′),

where the notation ‖ · ‖z means that integration is with respect to the probability measure Qz. In

what follows we will omit the σ–algebra Z from the notation.

A function f : X × Z −→ R is a Carathéodory function on X × Z if it satisfies

1. for each x ∈ X , the function fx := f(x, ·) : Z −→ R is Borel measurable;

2. for each z ∈ Z, the function fz := f(·, z) : X −→ R is continuous.

Under our assumptions, a Carathéodory function is jointly measurable inX×Z, see Aliprantis, and Burkinshaw

(1990), Lemma 4.50. Also, a function that is Carathéodory on X × Z is obviously Carathéodory on

A× Z for all A ⊆ X . Let us denote by Ca(A× Z) the set of all Carathéodory functions on A× Z.
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Let K denote the family of compact subsetsK ⊆ X . Given z ∈ Z, consider the probability measure

Qz(·). For a Carathéodory function f on X × Z, let

pK,z(f) =

∫

Z

max
x∈K

|f(x, z′)|Qz(dz
′).

Note that this integral is well defined, as for a Carathéodory function f and compact set K ⊆ X , z′ 7→

maxx∈K |fx(z
′)| is Borel measurable by the Measurable MaximumTheorem, see Aliprantis, and Burkinshaw

(1990). Consider the space of Carathéodory functions f on X × Z for which pK,z(f) is finite

E := {f ∈ Ca(X × Z) : pK,z(f) <∞ for all K ∈ K, z ∈ Z}.

It is clear that pK,z is a seminorm on E (but not a norm, obviously). Given K ∈ K and z ∈ Z, let

EK,z := {f ∈ Ca(K × Z) : pK,z(f) <∞}.

Lemma B.1. For each K ∈ K and z ∈ Z, (EK,z , pK,z) is a Banach space.

Proof. It is clear that EK,z is a vector space and that pK,z is a norm Note that pK,z(f) = 0 implies∫
Z |f(x, z′)|Qz(dz

′) = 0 for all x ∈ K, hence f(x, z′) = 0 for all x ∈ K, Qz–a.s.. Hence f = 0.

Let {fn} be a Cauchy sequence. Then pK,z(fn − fm) → 0 as n,m → ∞. There is n(1) such that

pK,z(fn(1) − fn) < 2−1 for all n ≥ n(1). Now choose n(2) > n(1) such that pK,z(fn(2) − fn(1)) < 2−2

for all n ≥ n(2) and so on. Thus, we obtain a subsequence n(j) such that pK,z(fn(j+1) − fn(j)) < 2−j

for j = 1, 2, . . .. Let, to simplify notation, f j := fn(j) and let gj(z
′) := supx∈K |f j+1(x, z

′)− f j(x, z
′)|.

Note that, for all N = 1, 2, . . .

N∑

j=1

∫

Z

gj(z
′)µz(dz

′) < 2−1 + · · ·+ 2−N < 1,

hence GN =
∑N

j=1 gj is a monotone sequence of positive and integrable functions. By the Monotone

Convergence Theorem, the function G(z′) = limN→∞GN (z′) is integrable, and thus finite Qz–a.e., see

Dieudonné (1974), (13.6.4). From this it follows that the series
∑∞
j=1 gj(z

′) converges Qz–a.e. Since

∞∑

j=1

|f j+1(x, z
′)− f j(x, z

′)| ≤

N∑

j=1

gj(z
′), (B.1)

the series on the left hand side also converges for any x ∈ K, Qz–a.e. Consider the series

f1(x, z
′) +

∞∑

j=1

(
f j+1(x, z

′)− f j(x, z
′)
)
. (B.2)

It converges Qz–a.e., and if f(x, z′) is its sum, note that by (B.1) and the Weierstrass M–test, the

convergence is uniform in the compact set K. Since every f j is a Carathéodory function, the limit

f(x, z′) is continuous in x. Moreover, the limit is measurable in z′ and
∫
Z maxx∈K |f(x, z′)|Qz(dz

′) ≤∫
Z
maxx∈K

(
|f1(x, z

′)|+G(x, z′)
)
Qz(dz

′) < ∞, hence f ∈ EK,z . Let us see that the convergence of

{fn} to f is in the norm pK,z. To show this, note that the convergence of the series (B.2) is uniform

in x ∈ K, hence

max
x∈K

|f j(x, z
′)− f(x, z′)|
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tends to 0 as j → ∞ and thus, pK,z(fn(j) − f) → 0 as j → ∞. However, pK,z(fn − fm) → 0 as

n,m→ ∞, hence

lim
n,j→∞

pK,z(fn − f) ≤ lim
n,j→∞

pK,z(fn − fn(j)) + lim
n,j→∞

pK,z(fn(j) − f) = 0.

Thus, limn→∞ pK,z(fn − f) = 0.

Let H be the family of all finite subsets H of Z and let, for H ∈ H,

pK,H(f) = sup
z∈H

pK,z.

Note that pK,H is a norm on

EK,H := {f ∈ Ca(K × Z) : pK,H(f) <∞},

and that, by Lemma B.1, (EK,H , pK,H) is a Banach space, since the norms pK,H and pK,z are equivalent,

for any z ∈ H , and generate the same topology, see Dieudonné (1974), (12.14.7). The importance of

choosing this family of seminorms instead of the original one is that PH is a directed family by inclusion.

That is, if we define H ≤ H ′ if H ⊆ H ′, then for any H,H ′ ∈ H, there exists H ′′ ∈ H such that

pK,H′′ ≥ max{pK,H , pK,H′}.

An element in EK,H can be written f +MK,H in equivalence class notation where

MK,H = {f ∈ EK,H : fx = 0 Qz–a.e., for all x ∈ K, for all z ∈ H}.

Consider the sets

EK,H := {f ∈ Ca(K × Z) : pK,H(f) <∞},

and the set of Carathéodory functions that are integrable with respect to all z ∈ Z,

EK := {f ∈ Ca(K × Z) : pK,H(f) <∞ for all H ∈ H}.

Note that EK,H is the quotient space EK,H/MK,H . Let us define MK =
⋂
H∈HMK,H and consider

the quotient space EK := EK/MK , formed by equivalence classes of functions in EK with respect to

the relation MK . That is, two functions of EK are in the same equivalence class if and only if, for any

x ∈ K, fx(z
′) = gx(z

′) Qz–a.e., for all z ∈ Z.

Lemma B.2.

EK =
⋂

H∈H

EK,H .

Proof. Let f +MK ∈ EK . Then f +MK ⊆ f +MK,H and pK,H(f +MK) = pK,H(f +MK,H) < ∞

for all H ∈ H, hence f +MK ∈ EK,H for all H ∈ H. Reciprocally, if g is a representative element of

an equivalence class in
⋂
H∈HEK,H , then there is f ∈ EK,H such that g = f +MK,H for all H . Hence

g − f ∈MK,H for all H , and thus f − g ∈MK , or g = f +MK , and hence g ∈ EK .

We consider on EK the topology τH generated by the family of seminorms PH = (pK,H)H∈H. We

show in the next result that (EK ,PH) is the projective limit of the family of Banach spaces (EK,H)H∈H,

lim←EK,H , and thus it is a complete locally convex topological space.
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Lemma B.3. For each K ∈ K, (EK ,PH) is a Hausdorff complete locally convex space.

Proof. Let τH be the projective topology onEK with respect to the family of Banach spaces (EK,H , pK,H)H∈H.

The family H is directed by inclusion. Given H,H ′ ∈ H with H ≤ H ′, let the linear mapping

qHH′ : EK,H′ → EK,H be given by qHH′ (f+MH′) = f+MH′ . This is well defined, since EK,H′ ⊆ EK,H

and MH′ ⊆ MH , for H ≤ H ′. Clearly, each qHH′ is continuous. Then, by Example 2.2.7 in

Bogachev and Smolyanov (2017), the projective limit lim←EK,H coincides with F :=
⋂
H∈HEK,H .

But EK = F by Lemma B.2. To see that τH is Hausdorff (or separated), we have to prove that for

all nonzero element g ∈ lim←EK,H , there is H ∈ H and a neighborhood of the zero equivalence class,

UK,H ⊆ EK,H , such that g +MK,H /∈ UK,H , see Schaefer (1971) (II.5.1). Since g is nonzero, we have

that g+MK,H is nonzero for all H ∈ H, hence there is H ∈ H such that pK,H(g+MK,H) = pK,H(g) =

δ > 0. Then, letting UK,H = {f +MK,H ∈ EK,H : pK,H(f +MK,H) < δ/2}, we are done.

To conclude the proof, note that the projective limit of Banach spaces is a complete locally convex

space, see Schaefer (1971) (II.5.3).

Proof of Lemma 3.1 As in the the previous lemma, we work with the directed family of semi-

norms PH . As discussed above, it generates the same topology as P . Let P =
∏
K∈KEK , endowed

with the Tychonoff product topology. By Lemma B.3, each EK is a complete locally convex space,

thus P is also a complete locally convex space. Moreover, P is obviously Hausdorff, since the family

of seminorms is separating. Let us see that there is a linear homomorphism between E and P , so the

lemma follows. Let φ : E −→ P be defined by φ(f) = (fK)K∈K, where fK ∈ EK is the restriction

of f to K × Z (we dismiss now the equivalence class notation used in the proof of Lemma B.3, as

there is no possible confusion here, as the equivalence relation is M , defined prior to Lemma B.3). It

is clear that φ is linear and one-to-one, since f 6= 0 implies that there is K ∈ K such that fK 6= 0.

It is also suprajective, since, under our hypotheses on X , Z and Q, every function fK in EK can be

extended to a Carathéodory function fK : X × Z −→ R, see Kucia (1998), Corollary 3. Consider the

function f(x, z) = fK(x, z) if x ∈ K. This definition is consistent, since for another compact set K ′,

if x ∈ K ∩K ′, then fK(x, z) = fK∩K′(x, z) = fK
′

(x, z). Moreover, f is a Carathéodory function: for

each z ∈ Z, the restriction of f to a compact set K is continuous; hence, since X is locally compact,

f is continuous; see Willard (1970), Lemma 43.10. Also, it is trivial that f is Borel measurable with

respect to z. Hence, for any (fK)K∈K ∈ P , we have proved the existence of a function f in E for

which φ(f) = (fK)K∈K, and hence φ is suprajective. It remains to show that φ is continuous and that

it is open. Let πK : P → EK be the projection of E onto EK , defined as follows: if f ∈ E, then

πK(f) = fK . The mappings πK are continuous by definition of the Tychonoff topology. Note that

πK ◦φ = πK , hence by Schaefer (1971) (II.5.2), φ is continuous. Moreover, from the previous identity,

πK ◦ φ−1 = πK , hence by the same argument as above, φ−1 is continuous.

C Continuity of the Markov operator

In this section we investigate the continuity of the fixed point of the Bellman operator in the variables

(x, z). Our exploration is not the most general possible. We restrict ourselves to a case which is common

28



in many models in economics. General results about the continuity of the Markov operator M can be

consulted in Serfozo (1982) and Hernández-Lerma and Lasserre (2000). We state the following simple

result.

Lemma C.1. Let f ∈ L1(Z;C(X)). Suppose that there is a σ-finite measure λ on Z such that Qz

is absolutely continuous with respect to λ, for all z ∈ Z, with density (or Radon-Nicodym derivative)

ϕ(z, z′), continuous with respect to z and such that, for all compact set K1 in X and K2 in Z, there

exists a function h ∈ L1(Z) such that |f(x, z′)ϕ(z, z′)| ≤ h(z′) for almost all z′ ∈ Z and all x ∈ K1,

z ∈ K2. Then Mf is continuous in (x, z).

Proof. The assumptions on Q imply

Mf(x, z) =

∫

Z

f(x, z′)Qz(dz
′) =

∫

Z

f(x, z′)ϕ(z, z′)λ(dz′).

Theorem 20.3 in Aliprantis, and Burkinshaw (1990) applies to f(x, z′)ϕ(z, z′), henceMf is continuous.

The issue of continuity of the value function in the unbounded case (and unbounded space of

shocks) is not an easy one. The translation of Lemma 12.14 in Stokey and Lucas with Prescott (1989)

to this case is not straightforward, even if the Markov chain is strong Feller continuous. Recall that

Q has the weak (strong) Feller property if M maps bounded continuous functions (resp. bounded

measurable functions) on Z into bounded continuous functions.

To see the kind of problems that may emerge for unbounded functions, consider the following

example. Let Z = [0,∞) and let the transition function Q : Z × Z −→ R be defined as follows:

Q(0, B) = δ0(B), where δ0 is the Dirac measure at the point 0, that is, δ0(B) = 1 if 0 ∈ B and

δ0(B) = 0 otherwise. For 0 < z < 1, Q(z,B) =
∫
B
dFz(z

′), where

Fz(z
′) =





0, if z′ = 0;

z′z2 + 1− z, if 0 < z′ ≤ 1
z ;

1, if z′ > 1
z .

,

Finally, for z ≥ 1, Q(z,B) = λ(B ∩ [0, 1]), where λ denotes the Lebesgue measure of R.

Note that, for 0 < z < 1, Fz is a distribution function: it is nondecreasing, continuous except at

0, where the right sided limit exists, 0 ≤ Fz ≤ 1, and

∫
dF (z′) = (z′z2 + 1− z − 0)|z′=0 +

∫ 1
z

0

z2dz′ = 1− z + z = 1.

Moreover, it is clear that Q(·, B) is Borel measurable. Thus, Q is a transition function. Let f(y, z) =

f(z) be independent of y and continuous in z. Then Mf is well defined in this particular example and
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depends only on z, with (Mf)(0) =
∫
f(z′)Q(0, dz′) = f(0). For 0 < z < 1 we have

(Mf)(z) =

∫
f(z′)Q(z, dz′)

=

∫
f(z′)dFz(z

′)

= f(0)(z′z2 + 1− z − 0)|z′=0 +

∫ 1
z

0

f(z′)z2dz′

= f(0)(1− z) + z2
∫ 1

z

0

f(z′)dz′.

Note that as f is continuous, the integral above exists, for any 0 < z < 1 and Mf is continuous for

0 < z < 1. For z ≥ 1, Mf is constant and given by

(Mf)(z) =

∫
f(z′)Q(z, dz′) =

∫

[0,1]

f(z′)dz′.

Now, if f is measurable and bounded, there is k > 0 such that |f | ≤ k, hence −kz2z−1 ≤
∫ 1

z

0 f(z′)dz′ ≤

kz2z−1, so
∫ 1

z

0
f(z′)dz′ tends to 0 as z → 0+, and then (Mf)(z) tends to f(0) = (Mf)(0). Also,

(Mf)(z) tends to
∫
[0,1] f(z

′)dz′ = (Mf)(1) as z → 1−. Thus Mf is continuous. Thereby, Q is strong

Feller continuous. However, considering the unbounded function g(z′) = z′, we obtainMg(0) = g(0) =

0 and Mg(z) = 1
2 for z > 0, thus Mg is discontinuous at 0.

It is not difficult to find non–trivial continuous functions U for which the dynamic programming

equation with transition probability Q admits discontinuous solutions. For instance, let u(z, c) =

(1+ z)c be an utility function that depends on consumption c and shock z, and let Γ(m) = [0,m+ y],

where m ≥ 0, y > 0 is a constant,X = R+, Z = [0,∞], and let a discount factor β such that 3
2β < 1.

The dynamic programming equation is

v(m, z) = max
m′∈[0,m+y]

{
(1 + z)(m+ y −m′) + β

∫

[1,∞)

v(m′, z′)Qz(dz
′)
}
,

Notice that this specification corresponds to a pure currency economy model with linear utility, where

agents’ preferences are subject to random shocks. These random shocks are assumed to be governed

by the Markov chain Q described above. See Stokey and Lucas with Prescott (1989) for further details

about this model. We are simply interested in showing that the value function is not jointly continuous

in (m, z). It is easily checked that

v(m, z) =

{
m+ y + y β

1−β , if z = 0;

(1 + z)(m+ y) + 3
2y

β
1−β , if z > 0,

is a solution in the class Ca(R+ × R+), which is not continuous in z.
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