
www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

COMPUTER ORGANIZATION
AND ARCHITECTURE
DESIGNING FOR PERFORMANCE

NINTH EDITION

William Stallings

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Credits: Figure 2.14: reprinted with permission from The Computer Language Company, Inc. Figure 17.10:
Buyya, Rajkumar, High-Performance Cluster Computing: Architectures and Systems, Vol I, 1st edition,
©1999. Reprinted and Electronically reproduced by permission of Pearson Education, Inc. Upper Saddle
River, New Jersey, Figure 17.11: Reprinted with permission from Ethernet Alliance.

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this
textbook appear on the appropriate page within text.

Copyright © 2013, 2010, 2006 by Pearson Education, Inc., publishing as Prentice Hall. All rights
reserved. Manufactured in the United States of America. This publication is protected by Copyright,
and permission should be obtained from the publisher prior to any prohibited reproduction, storage in
a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission(s) to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River,
New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data available upon request

10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-293633-X
ISBN 13: 978-0-13-293633-0

Editorial Director: Marcia Horton
Executive Editor: Tracy Dunkelberger
Associate Editor: Carole Snyder
Director of Marketing: Patrice Jones
Marketing Manager: Yez Alayan
Marketing Coordinator: Kathryn Ferranti
Marketing Assistant: Emma Snider
Director of Production: Vince O’Brien
Managing Editor: Jeff Holcomb
Production Project Manager: Kayla Smith-Tarbox
Production Editor: Pat Brown
Manufacturing Buyer: Pat Brown
Creative Director: Jayne Conte

Designer: Bruce Kenselaar
Manager, Visual Research: Karen Sanatar
Manager, Rights and Permissions: Mike Joyce
Text Permission Coordinator: Jen Roach
Cover Art: Charles Bowman/Robert Harding
Lead Media Project Manager: Daniel Sandin
Full-Service Project Management: Shiny Rajesh/
 Integra Software Services Pvt. Ltd.
Composition: Integra Software Services Pvt. Ltd.
Printer/Binder: Edward Brothers
Cover Printer: Lehigh-Phoenix Color/Hagerstown
Text Font: Times Ten-Roman

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

To Tricia (ATS),
my loving wife, the kindest

and gentlest person

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

v

Online Resources xi

Preface xiii

About the Author xxi

Chapter 0 Reader’s and Instructor’s Guide 1

 0.1 Outline of the Book 2
 0.2 A Roadmap for Readers and Instructors 2
 0.3 Why Study Computer Organization and Architecture? 3
 0.4 Internet and Web Resources 5

PART ONE OVERVIEW 6

Chapter 1 Introduction 6

 1.1 Organization and Architecture 7
 1.2 Structure and Function 8
 1.3 Key Terms and Review Questions 14

Chapter 2 Computer Evolution and Performance 15

 2.1 A Brief History of Computers 16
 2.2 Designing for Performance 37
 2.3 Multicore, MICs, and GPGPUs 43
 2.4 The Evolution of the Intel x86 Architecture 44
 2.5 Embedded Systems and the ARM 45
 2.6 Performance Assessment 49
 2.7 Recommended Reading 59
 2.8 Key Terms, Review Questions, and Problems 60

PART TWO THE COMPUTER SYSTEM 65

Chapter 3 A Top-Level View of Computer Function
and Interconnection 65

 3.1 Computer Components 66
 3.2 Computer Function 68
 3.3 Interconnection Structures 84
 3.4 Bus Interconnection 85
 3.5 Point-To-Point Interconnect 93
 3.6 PCI Express 98
 3.7 Recommended Reading 108
 3.8 Key Terms, Review Questions, and Problems 108

Chapter 4 Cache Memory 112

 4.1 Computer Memory System Overview 113
 4.2 Cache Memory Principles 120
 4.3 Elements of Cache Design 123

CONTENTS

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

vi CONTENTS

 4.4 Pentium 4 Cache Organization 141
 4.5 ARM Cache Organization 144
 4.6 Recommended Reading 146
 4.7 Key Terms, Review Questions, and Problems 147
 Appendix 4A Performance Characteristics of Two-Level Memories 152

Chapter 5 Internal Memory 159
 5.1 Semiconductor Main Memory 160
 5.2 Error Correction 170
 5.3 Advanced DRAM Organization 174
 5.4 Recommended Reading 180
 5.5 Key Terms, Review Questions, and Problems 181

Chapter 6 External Memory 185

 6.1 Magnetic Disk 186
 6.2 RAID 195
 6.3 Solid State Drives 205
 6.4 Optical Memory 210
 6.5 Magnetic Tape 215
 6.6 Recommended Reading 217
 6.7 Key Terms, Review Questions, and Problems 218

Chapter 7 Input/Output 221

 7.1 External Devices 223
 7.2 I/O Modules 226
 7.3 Programmed I/O 228
 7.4 Interrupt-Driven I/O 232
 7.5 Direct Memory Access 240
 7.6 I/O Channels and Processors 246
 7.7 The External Interface: Thunderbolt and Infiniband 248
 7.8 IBM zEnterprise 196 I/O Structure 256
 7.9 Recommended Reading 260
 7.10 Key Terms, Review Questions, and Problems 260

Chapter 8 Operating System Support 265

 8.1 Operating System Overview 266
 8.2 Scheduling 277
 8.3 Memory Management 283
 8.4 Pentium Memory Management 294
 8.5 ARM Memory Management 299
 8.6 Recommended Reading 304
 8.7 Key Terms, Review Questions, and Problems 304

PART THREE ARITHMETIC AND LOGIC 309

Chapter 9 Number Systems 309

 9.1 The Decimal System 310
 9.2 Positional Number Systems 311
 9.3 The Binary System 312
 9.4 Converting Between Binary and Decimal 312

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

CONTENTS vii

 9.5 Hexadecimal Notation 315
 9.6 Recommended Reading 317
 9.7 Key Terms and Problems 317

Chapter 10 Computer Arithmetic 319

 10.1 The Arithmetic and Logic Unit 320
 10.2 Integer Representation 321
 10.3 Integer Arithmetic 326
 10.4 Floating-Point Representation 341
 10.5 Floating-Point Arithmetic 349
 10.6 Recommended Reading 358
 10.7 Key Terms, Review Questions, and Problems 359

Chapter 11 Digital Logic 364

 11.1 Boolean Algebra 365
 11.2 Gates 368
 11.3 Combinational Circuits 370
 11.4 Sequential Circuits 388
 11.5 Programmable Logic Devices 397
 11.6 Recommended Reading 401
 11.7 Key Terms and Problems 401

PART FOUR THE CENTRAL PROCESSING UNIT 405

Chapter 12 Instruction Sets: Characteristics and Functions 405

 12.1 Machine Instruction Characteristics 406
 12.2 Types of Operands 413
 12.3 Intel x86 and ARM Data Types 415
 12.4 Types of Operations 418
 12.5 Intel x86 and ARM Operation Types 431
 12.6 Recommended Reading 441
 12.7 Key Terms, Review Questions, and Problems 441
 Appendix 12A Little-, Big-, and Bi-Endian 447

Chapter 13 Instruction Sets: Addressing Modes and Formats 451

 13.1 Addressing Modes 452
 13.2 x86 and ARM Addressing Modes 459
 13.3 Instruction Formats 464
 13.4 x86 and ARM Instruction Formats 473
 13.5 Assembly Language 477
 13.6 Recommended Reading 479
 13.7 Key Terms, Review Questions, and Problems 479

Chapter 14 Processor Structure and Function 483

 14.1 Processor Organization 484
 14.2 Register Organization 486
 14.3 Instruction Cycle 491
 14.4 Instruction Pipelining 495
 14.5 The x86 Processor Family 512

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

viii CONTENTS

 14.6 The ARM Processor 520
 14.7 Recommended Reading 526
 14.8 Key Terms, Review Questions, and Problems 527

Chapter 15 Reduced Instruction Set Computers 531

 15.1 Instruction Execution Characteristics 533
 15.2 The Use of a Large Register File 538
 15.3 Compiler-Based Register Optimization 543
 15.4 Reduced Instruction Set Architecture 545
 15.5 RISC Pipelining 551
 15.6 MIPS R4000 556
 15.7 SPARC 562
 15.8 RISC Versus CISC Controversy 568
 15.9 Recommended Reading 569
 15.10 Key Terms, Review Questions, and Problems 569

Chapter 16 Instruction-Level Parallelism and Superscalar Processors 573

 16.1 Overview 574
 16.2 Design Issues 579
 16.3 Pentium 4 589
 16.4 ARM Cortex-A8 595
 16.5 Recommended Reading 603
 16.6 Key Terms, Review Questions, and Problems 605

PART FIVE PARALLEL ORGANIZATION 611

Chapter 17 Parallel Processing 611

 17.1 Multiple Processor Organizations 613
 17.2 Symmetric Multiprocessors 615
 17.3 Cache Coherence and the MESI Protocol 619
 17.4 Multithreading and Chip Multiprocessors 626
 17.5 Clusters 633
 17.6 Nonuniform Memory Access 640
 17.7 Vector Computation 644
 17.8 Recommended Reading 656
 17.9 Key Terms, Review Questions, and Problems 657

Chapter 18 Multicore Computers 664

 18.1 Hardware Performance Issues 665
 18.2 Software Performance Issues 669
 18.3 Multicore Organization 674
 18.4 Intel x86 Multicore Organization 676
 18.5 ARM11 MPCore 679
 18.6 IBM zEnterprise 196 Mainframe 684
 18.7 Recommended Reading 687
 18.8 Key Terms, Review Questions, and Problems 687

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

CONTENTS ix

 Appendix A Projects for Teaching Computer Organization
and Architecture 691

 A.1 Interactive Simulations 692
 A.2 Research Projects 694
 A.3 Simulation Projects 694
 A.4 Assembly Language Projects 695
 A.5 Reading/Report Assignments 696
 A.6 Writing Assignments 696
 A.7 Test Bank 696

 Appendix B Assembly Language and Related Topics 697

 B.1 Assembly Language 698
 B.2 Assemblers 706
 B.3 Loading and Linking 710
 B.4 Recommended Reading 718
 B.5 Key Terms, Review Questions, and Problems 719

ONLINE CHAPTERS1

PART SIX THE CONTROL UNIT 19-1

Chapter 19 Control Unit Operation 19-1

 19.1 Micro-operations 19-3
 19.2 Control of the Processor 19-13
 19.3 Hardwired Implementation 19-30
 19.4 Recommended Reading 19-35
 19.5 Key Terms, Review Questions, and Problems 19-35

Chapter 20 Microprogrammed Control 20-1

 20.1 Basic Concepts 20-3
 20.2 Microinstruction Sequencing 20-16
 20.3 Microinstruction Execution 20-26
 20.4 TI 8800 20-45
 20.5 Recommended Reading 20-59
 20.6 Key Terms, Review Questions, and Problems 20-60

ONLINE APPENDICES

 Appendix C Hash Tables

 Appendix D Victim Cache Strategies
 D.1 Victim Cache
 D.2 Selective Victim Cache

1Online chapters, appendices, and other documents are Premium Content, available via the access card
at the front of this book.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

x CONTENTS

 Appendix E Interleaved Memory

 Appendix F The International Reference Alphabet

 Appendix G Virtual Memory Page Replacement Algorithms
 G.1 Optimal
 G.2 Least Recently Used
 G.3 First-In-First-Out
 G.4 Other Page Replacement Algorithms

 Appendix H Recursive Procedures
 H.1 Recursion
 H.2 Activation Tree Representation
 H.3 Stack Processing
 H.4 Recursion and Iteration

 Appendix I Additional Instruction Pipeline Topics
 I.1 Pipeline Reservation Tables
 I.2 Reorder Buffers
 I.3 Tomasulo’s Algorithm
 I.4 Scoreboarding

 Appendix J Linear Tape Open Technology
 J.1 LTO Generations
 J.2 LTO Format
 J.3 LTO Operation

 Appendix K DDR SRAM

 Appendix L Protocols and Protocol Architectures
 L.1 Introduction
 L.2 The TCP/IP Protocol Architecture
 L.3 The Role of an Internet Protocol
 L.4 IPv4
 L.5 IPv6
 L.6 The OSI Protocol Architecture

 Appendix M Scrambling

 Appendix N Timing Diagrams

 Appendix O Stacks
 O.1 Stack Structure
 O.2 Stack Implementation
 O.3 Expression Evaluation

Glossary 723

References 733

Index 745

xi

Site Location Description

Companion Website WilliamStallings.com/
ComputerOrganization

Student Resources link: Useful links
and documents for students.

Instructor Resources link: Useful links
and documents for instructors.

Premium Content Click on Premium Content link
at Companion Website or at
pearsonhighered.com/stallings and
enter the student access code found
on the card in the front of the book.

Online chapters, appendices, and other
documents that supplement the book.

Instructor Resource
Center (IRC)

Click on Pearson Resources for
Instructors link at Companion
Website or on Instructor Resource
link at pearsonhighered.com/stallings.

Solutions manual, projects manual,
slides, and other useful documents.

Computer Science
Student Resource Site

ComputerScienceStudent.com Useful links and documents for
computer science students.

ONLINE RESOURCES

This page intentionally left blank

xiii

WHAT’S NEW IN THE NINTH EDITION

In the four years since the eighth edition of this book was published, the field has seen con-
tinued innovations and improvements. In this new edition, I try to capture these changes
while maintaining a broad and comprehensive coverage of the entire field. To begin this
process of revision, the eighth edition of this book was extensively reviewed by a number
of professors who teach the subject and by professionals working in the field. The result is
that, in many places, the narrative has been clarified and tightened, and illustrations have
been improved.

Beyond these refinements to improve pedagogy and user-friendliness, there have been
substantive changes throughout the book. Roughly the same chapter organization has been
retained, but much of the material has been revised and new material has been added. The
most noteworthy changes are as follows:

• Point-to-point interconnect: The traditional bus architecture has increasingly been re-
placed with high-speed point-to-point interconnect schemes. A new section explores
this technology, using Intel’s QuickPath Interconnect (QPI) as an example.

• PCI Express: PCI Express (PCIe) has become a standard peripheral interconnect archi-
tecture, replacing PCI and other bus-based architectures. A new section covers PCIe.

• Solid state drive and flash memory: Solid state drives are increasingly displacing hard
disk drives over a range of computers. A new section covers SSDs and the underlying
flash memory technology.

• IEEE 754 Floating-Point Standard: The coverage of IEEE 754 has been updated to
reflect the 2008 standard.

• Contemporary mainframe organization: Chapters 7 and 18 include sections on the
zEnterprise 196, IBM’s latest mainframe computer offering (at the time of this writing),
introduced in 2010.

• I/O standards: The book has been updated to reflect the latest developments, including
Thunderbolt.

• Multicore architecture: The material on multicore architecture has been expanded sig-
nificantly.

• Student study aids: Each chapter now begins with a list of learning objectives.

PREFACE

xiv PREFACE

• Sample syllabus: The text contains more material than can be conveniently covered in
one semester. Accordingly, instructors are provided with several sample syllabi that
guide the use of the text within limited time (e.g., 16 weeks or 12 weeks). These samples
are based on real-world experience by professors with the eighth edition.

• Test bank: A set of review questions, including yes/no, multiple choice, and fill in the
blank is provided for each chapter.

With each new edition it is a struggle to maintain a reasonable page count while adding
new material. In part this objective is realized by eliminating obsolete material and tighten-
ing the narrative. For this edition, chapters and appendices that are of less general interest
have been moved online, as individual PDF files. This has allowed an expansion of material
 without the corresponding increase in size and price.

OBJECTIVES

This book is about the structure and function of computers. Its purpose is to present, as
clearly and completely as possible, the nature and characteristics of modern-day computer
systems.

This task is challenging for several reasons. First, there is a tremendous variety of prod-
ucts that can rightly claim the name of computer, from single-chip microprocessors costing
a few dollars to supercomputers costing tens of millions of dollars. Variety is exhibited not
only in cost but also in size, performance, and application. Second, the rapid pace of change
that has always characterized computer technology continues with no letup. These changes
cover all aspects of computer technology, from the underlying integrated circuit technology
used to construct computer components to the increasing use of parallel organization con-
cepts in combining those components.

In spite of the variety and pace of change in the computer field, certain fundamental
concepts apply consistently throughout. The application of these concepts depends on the
current state of the technology and the price/performance objectives of the designer. The
intent of this book is to provide a thorough discussion of the fundamentals of computer
organization and architecture and to relate these to contemporary design issues.

The subtitle suggests the theme and the approach taken in this book. It has always
been important to design computer systems to achieve high performance, but never has this
requirement been stronger or more difficult to satisfy than today. All of the basic perform-
ance characteristics of computer systems, including processor speed, memory speed, memory
capacity, and interconnection data rates, are increasing rapidly. Moreover, they are increas-
ing at different rates. This makes it difficult to design a balanced system that maximizes the
performance and utilization of all elements. Thus, computer design increasingly becomes a
game of changing the structure or function in one area to compensate for a performance
mismatch in another area. We will see this game played out in numerous design decisions
throughout the book.

A computer system, like any system, consists of an interrelated set of components.
The system is best characterized in terms of structure—the way in which components are
interconnected, and function—the operation of the individual components. Furthermore, a
computer’s organization is hierarchical. Each major component can be further described by
decomposing it into its major subcomponents and describing their structure and function.

PREFACE xv

For clarity and ease of understanding, this hierarchical organization is described in this book
from the top down:

• Computer system: Major components are processor, memory, I/O.

• Processor: Major components are control unit, registers, ALU, and instruction execu-
tion unit.

• Control unit: Provides control signals for the operation and coordination of all processor
components. Traditionally, a microprogramming implementation has been used, in
which major components are control memory, microinstruction sequencing logic, and
registers. More recently, microprogramming has been less prominent but remains an
important implementation technique.

The objective is to present the material in a fashion that keeps new material in a clear
context. This should minimize the chance that the reader will get lost and should provide
better motivation than a bottom-up approach.

Throughout the discussion, aspects of the system are viewed from the points of view
of both architecture (those attributes of a system visible to a machine language program-
mer) and organization (the operational units and their interconnections that realize the
architecture).

EXAMPLE SYSTEMS

This text is intended to acquaint the reader with the design principles and implementation
issues of contemporary operating systems. Accordingly, a purely conceptual or theoretical
treatment would be inadequate. To illustrate the concepts and to tie them to real-world design
choices that must be made, two processor families have been chosen as running examples:

• Intel x86 architecture: The x86 architecture is the most widely used for nonembedded
computer systems. The x86 is essentially a complex instruction set computer (CISC)
with some RISC features. Recent members of the x86 family make use of superscalar
and multicore design principles. The evolution of features in the x86 architecture pro-
vides a unique case study of the evolution of most of the design principles in computer
architecture.

• ARM: The ARM architecture is arguably the most widely used embedded processor,
used in cell phones, iPods, remote sensor equipment, and many other devices. The
ARM is essentially a reduced instruction set computer (RISC). Recent members of the
ARM family make use of superscalar and multicore design principles.

Many, but by no means all, of the examples in this book are drawn from these two computer
families. Numerous other systems, both contemporary and historical, provide examples of
important computer architecture design features.

PLAN OF THE TEXT

The book is organized into six parts (see Chapter 0 for an overview):

• Overview

• The computer system

xvi PREFACE

• Arithmetic and logic

• The central processing unit

• Parallel organization, including multicore

• The control unit

The book includes a number of pedagogic features, including the use of interactive
simulations and numerous figures and tables to clarify the discussion. Each chapter includes
a list of key words, review questions, homework problems, and suggestions for further read-
ing. The book also includes an extensive glossary, a list of frequently used acronyms, and a
bibliography.

INTENDED AUDIENCE

The book is intended for both an academic and a professional audience. As a textbook,
it is intended as a one- or two-semester undergraduate course for computer science, com-
puter engineering, and electrical engineering majors. It covers all the core topics in the
body of knowledge category, Architecture and Organization, in the IEEE/ACM Computer
Curriculum 2008: An Interim Revision to CS 2001. This book also covers the core area
CE-CAO Computer Architecture and Organization from the IEEE/ACM Computer
Engineering Curriculum Guidelines 2004.

For the professional interested in this field, the book serves as a basic reference vol-
ume and is suitable for self-study.

INSTRUCTOR SUPPORT MATERIALS

Support materials for instructors are available at the Instructor Resource Center (IRC) for
this textbook, which can be reached through the Publisher’s Website www.pearsonhighered
.com/stallings or by clicking on the link labeled “Pearson Resources for Instructors” at this
book’s Companion Website at WilliamStallings.com/ComputerOrganization. To gain access
to the IRC, please contact your local Pearson sales representative via pearsonhighered
.com/educator/replocator/requestSalesRep.page or call Pearson Faculty Services at
1-800-526-0485. The IRC provides the following materials:

• Projects manual: Project resources including documents and portable software, plus
suggested project assignments for all of the project categories listed subsequently in
this Preface.

• Solutions manual: Solutions to end-of-chapter Review Questions and Problems.

• PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.

• PDF files: Copies of all figures and tables from the book.

• Test bank: A chapter-by-chapter set of questions.

• Sample syllabuses: The text contains more material than can be conveniently covered
in one semester. Accordingly, instructors are provided with several sample syllabuses
that guide the use of the text within limited time. These samples are based on real-
world experience by professors with the first edition.

www.pearsonhighered.com/stallings
www.pearsonhighered.com/stallings

PREFACE xvii

The Companion Website, at WilliamStallings.com/ComputerOrganization (click on
Instructor Resources link) includes the following:

• Links to Websites for other courses being taught using this book.

• Sign-up information for an Internet mailing list for instructors using this book to
 exchange information, suggestions, and questions with each other and with the author.

STUDENT RESOURCES

For this new edition, a tremendous amount of original supporting material for students
has been made available online, at two Web locations. The Companion Website, at
WilliamStallings.com/ComputerOrganization (click on Student Resources link), includes a
list of relevant links organized by chapter and an errata sheet for the book.

Purchasing this textbook new grants the reader six months of access to the Premium
Content Site, which includes the following materials:

• Online chapters: To limit the size and cost of the book, two chapters of the book are
provided in PDF format. The chapters are listed in this book’s table of contents.

• Online appendices: There are numerous interesting topics that support material found
in the text but whose inclusion is not warranted in the printed text. A total of 13 appen-
dices cover these topics for the interested student. The appendices are listed in this
book’s table of contents.

• Homework problems and solutions: To aid the student in understanding the material, a
separate set of homework problems with solutions are available. Students can enhance
their understanding of the material by working out the solutions to these problems and
then checking their answers.

• Key papers: Several dozen papers from the professional literature, many hard to find,
are provided for further reading.

• Supporting documents: A variety of other useful documents are referenced in the text
and provided online.

Finally, I maintain the Computer Science Student Resource Site at WilliamStallings
.com/StudentSupport.html.

PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of a computer organization and architec-
ture course is a project or set of projects by which the student gets hands-on experience to
reinforce concepts from the text. This book provides an unparalleled degree of support for
including a projects component in the course. The instructor’s support materials available
through Prentice Hall not only includes guidance on how to assign and structure the projects
but also includes a set of user’s manuals for various project types plus specific assignments,
all written especially for this book. Instructors can assign work in the following areas:

• Interactive simulation assignments: Described subsequently.

xviii PREFACE

• Research projects: A series of research assignments that instruct the student to research
a particular topic on the Internet and write a report.

• Simulation projects: The IRC provides support for the use of the two simulation pack-
ages: SimpleScalar can be used to explore computer organization and architecture
design issues. SMPCache provides a powerful educational tool for examining cache
design issues for symmetric multiprocessors.

• Assembly language projects: A simplified assembly language, CodeBlue, is used and
assignments based on the popular Core Wars concept are provided.

• Reading/report assignments: A list of papers in the literature, one or more for each
chapter, that can be assigned for the student to read and then write a short report.

• Writing assignments: A list of writing assignments to facilitate learning the material.

• Test bank: Includes T/F, multiple choice, and fill-in-the-blanks questions and answers.

This diverse set of projects and other student exercises enables the instructor to use
the book as one component in a rich and varied learning experience and to tailor a course
plan to meet the specific needs of the instructor and students. See Appendix A in this book
for details.

INTERACTIVE SIMULATIONS

An important feature in this edition is the incorporation of interactive simulations. These
simulations provide a powerful tool for understanding the complex design features of a mod-
ern computer system. A total of 20 interactive simulations are used to illustrate key functions
and algorithms in computer organization and architecture design. At the relevant point in the
book, an icon indicates that a relevant interactive simulation is available online for student use.
Because the animations enable the user to set initial conditions, they can serve as the basis for
student assignments. The instructor’s supplement includes a set of assignments, one for each
of the animations. Each assignment includes several specific problems that can be assigned
to students. For access to the animations, click on the rotating globe at this book’s Website at
http://williamstallings.com/ComputerOrganization.

ACKNOWLEDGMENTS

This new edition has benefited from review by a number of people, who gave generously
of their time and expertise. The following professors and instructors reviewed all or a
large part of the manuscript: Branson Murrill (Virginia Commonwealth University), Pan
Deng (Florida International University), Bob Broeg (Western Oregon University), Curtis
Meadow (University of Maine, Orono), Charles Weems (University of Massachusetts), and
Mike Jochen (East Stroudsberg University).

Thanks also to the many people who provided detailed technical reviews of one or
more chapters: Kauser Johar, Todd Bezenek (Quantum), Moustafa Mohamed (University
of Colorado at Boulder), Dharmesh Parikh, Qigang Wang, Rajiv Dasmohapatra (WIPRO
Ltd), Anup Holey (University of Minnesota, Twin Cities), Alexandre Keunecke Ignacio de
Mendonca, Douglas Tiedt, Kursad Albayraktaroglu (Advanced Micro Device), Nilanjan
Goswami (University of Florida, Gainesville), Adnan Khaleel (Cray, Inc.), Geri Lamble,

http://williamstallings.com/ComputerOrganization

PREFACE xix

Liu Han, Mafijul Islam (Volvo Technology, Sweden), Roger Kahn, Brian Case, Mani
Srinivasan, Abhishek Deb, Sushil Menon (University of Pennsylvania), Jigar Savla (Georgia
Institute of Technology), Madhu Mutyam, Karl Stevens, Vineet Chadha (Intel Labs),
Xingxing Jin (University of Saskatchewan), Jan Hoogerbrugge (NXP Semiconductors),
Ninad Laxman Sawant, Aziz Eker (TOBB University of Economics and Technology,
Ankara, Turkey), Bhupati Shukla, Niket Choudhary (North Carolina State University), and
Oguz Ergin (TOBB University of Economics and Technology, Ankara, Turkey).

Professor Cindy Norris of Appalachian State University, Professor Bin Mu of the
University of New Brunswick, and Professor Kenrick Mock of the University of Alaska
kindly supplied homework problems.

Aswin Sreedhar of the University of Massachusetts developed the interactive simula-
tion assignments and also wrote the test bank.

Professor Miguel Angel Vega Rodriguez, Professor Dr. Juan Manuel Sánchez Pérez,
and Professor Dr. Juan Antonio Gómez Pulido, all of University of Extremadura, Spain,
prepared the SMPCache problems in the instructor’s manual and authored the SMPCache
User’s Guide.

Todd Bezenek of the University of Wisconsin and James Stine of Lehigh University
prepared the SimpleScalar problems in the instructor’s manual, and Todd also authored the
SimpleScalar User’s Guide.

Finally, I would like to thank the many people responsible for the publication of the
book, all of whom did their usual excellent job. This includes the staff at Pearson Education,
particularly my editor Tracy Dunkelberger, her assistant Carole Snyder, and production
managers Kayla Smith-Tarbox and Pat Brown. I also thank Shiny Rajesh and the produc-
tion staff at Integra for another excellent and rapid job. Thanks also to the marketing and
sales staffs at Pearson, without whose efforts this book would not be in your hands.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

This page intentionally left blank

xxi

Dr. William Stallings has made a unique contribution to understanding the broad sweep of
technical developments in computer security, computer networking and computer architec-
ture. He has authored 17 titles, and counting revised editions, a total of 42 books on various
aspects of these subjects. His writings have appeared in numerous ACM and IEEE publica-
tions, including the Proceedings of the IEEE and ACM Computing Reviews.

He has 10 times received the award for the best Computer Science textbook of the
year from the Text and Academic Authors Association.

In over 30 years in the field, he has been a technical contributor, technical manager,
and an executive with several high-technology firms. He has designed and implemented
both TCP/IP-based and OSI-based protocol suites on a variety of computers and operating
systems, ranging from microcomputers to mainframes. As a consultant, he has advised gov-
ernment agencies, computer and software vendors, and major users on the design, selection,
and use of networking software and products.

He created and maintains the Computer Science Student Resource Site at
WilliamStallings.com/StudentSupport.html. This site provides documents and links on a
variety of subjects of general interest to computer science students (and professionals). He
is a member of the editorial board of Cryptologia, a scholarly journal devoted to all aspects
of cryptology.

Dr. Stallings holds a PhD from M.I.T. in Computer Science and a B.S. from Notre
Dame in electrical engineering.

ABOUT THE AUTHOR

This page intentionally left blank

1

READER’S AND
INSTRUCTOR’S GUIDE

0.1 Outline of the Book

0.2 A Roadmap for Readers and Instructors

0.3 Why Study Computer Organization and Architecture?

0.4 Internet and Web Resources
Web Sites for This Book
Computer Science Student Resource Site
Other Web Sites

CHAPTER

2 CHAPTER 0 / READER’S AND INSTRUCTOR’S GUIDE

This book, with its accompanying Web sites, covers a lot of material. In this chapter,
we give the reader an overview.

 0.1 OUTLINE OF THE BOOK

The book is organized into five parts:

Part One Overview: Provides an overview of computer organization and archi-
tecture and looks at how computer design has evolved.

Part Two The Computer System: Examines the major components of a com-
puter and their interconnections, both with each other and the outside world.
This part also includes a detailed discussion of internal and external memory
and of input/output (I/O). Finally, the relationship between a computer’s archi-
tecture and the operating system running on that architecture is examined.

Part Three Arithmetic and Logic: This part begins with a chapter that reviews
number systems. Chapter 10 is an extended discussion of computer arithmetic.
Chapter 11 is a survey of digital logic.

Part Four The Central Processing Unit: Examines the internal architecture
and organization of the processor. This part looks at the instruction set archi-
tecture. The remainder of the part deals with the structure and function of the
processor, including a discussion of reduced instruction set computer (RISC)
and superscalar approaches.

Part Five Parallel Organization: Deals with parallel organization, including
symmetric multiprocessing, clusters, and multicore architecture.

Part Six The Control Unit: Discusses the internal structure of the processor’s
control unit and the use of microprogramming.

A number of online chapters and appendices at this book’s Web site cover
additional topics relevant to the book.

This text is intended to acquaint you with the design principles and implementation
issues of contemporary computer organization and architecture. Accordingly, a purely
conceptual or theoretical treatment would be inadequate. This book uses examples from
a number of different machines to clarify and reinforce the concepts being presented.
Many, but by no means all, of the examples are drawn from two computer families:
the Intel x86 family and the ARM family. These two systems together encompass
most of the current computer design trends. The Intel x86 architecture is essentially a
complex instruction set computer (CISC) with some RISC features, while the ARM is
 essentially a RISC. Both systems make use of superscalar design principles, and both
support multiple processor and multicore configurations.

 0.2 A ROADMAP FOR READERS AND INSTRUCTORS

This book follows a top–down approach to the presentation of the material. As
we discuss in more detail in Section 1.2, a computer system can be viewed as a
 hierarchical structure. At a top level, we are concerned with the major components

0.3 / WHY STUDY COMPUTER ORGANIZATION AND ARCHITECTURE? 3

of the computers: processor, I/O, memory, and peripheral devices. Part Two exam-
ines these components and looks in some detail at each component except the
 processor. This approach allows us to see the external functional requirements that
drive the processor design, setting the stage for Parts Three and Four. Part Three
looks at the arithmetic and logic component of the processor in detail. Then Part
Four examine the processor in great detail. Because we have the context provided
by Part Two, we are able, in Part Four, to see the design decisions that must be made
so that the processor supports the overall function of the computer system. Next, in
Part Five, we examine systems with multiple processors, including clusters, multi-
processor computers, and multicore computers. Finally, Part Six looks at the control
unit, which is at the heart of the processor. Again, the design of the control unit can
best be explained in the context of the function it performs within the context of the
processor.

 0.3 WHY STUDY COMPUTER ORGANIZATION
AND ARCHITECTURE?

The IEEE/ACM Computer Science Curriculum 2008, prepared by the Joint Task
Force on Computing Curricula of the IEEE (Institute of Electrical and Electronics
Engineers) Computer Society and ACM (Association for Computing Machinery),
lists computer architecture as one of the core subjects that should be in the curricu-
lum of all students in computer science and computer engineering. The report says
the following:

The computer lies at the heart of computing. Without it most of
the computing disciplines today would be a branch of theoreti-
cal mathematics. A professional in any field of computing should
not regard the computer as just a black box that executes pro-
grams by magic. All students of computing should acquire some
understanding and appreciation of a computer system’s functional
 components, their characteristics, their performance, and their
interactions. Students need to understand computer architecture
in order to make best use of the software tools and computer
languages they use to create programs. In this introduction the
term architecture is taken to include instruction set architecture
(the programmer’s abstraction of a computer), organization or
 microarchitecture (the internal implementation of a computer at
the register and functional unit level), and system architecture (the
organization of the computer at the cache and bus level). Students
should also understand the complex trade-offs between CPU
clock speed, cache size, bus organization, number of core proces-
sors, and so on. Computer architecture also underpins other areas
of the computing curriculum such as operating systems (input/
output, memory technology) and high-level languages (pointers,
parameter passing).

4 CHAPTER 0 / READER’S AND INSTRUCTOR’S GUIDE

Another publication of the task force, Computer Engineering 2004 Curriculum
Guidelines, emphasized the importance of Computer Architecture and Organization
as follows:

Computer architecture is a key component of computer engineering
and the practicing computer engineer should have a practical under-
standing of this topic. It is concerned with all aspects of the design
and organization of the central processing unit and the integration
of the CPU into the computer system itself. Architecture extends
upward into computer software because a processor’s architecture
must cooperate with the operating system and system software.
It is difficult to design an operating system well without knowledge
of the underlying architecture. Moreover, the computer designer
must have an understanding of software in order to implement the
optimum architecture.

The computer architecture curriculum has to achieve multiple
objectives. It must provide an overview of computer architecture
and teach students the operation of a typical computing machine.
It must cover basic principles, while acknowledging the complexity
of existing commercial systems. Ideally, it should reinforce topics that
are common to other areas of computer engineering; for example,
teaching register indirect addressing reinforces the concept of point-
ers in C. Finally, students must understand how various peripheral
devices interact with, and how they are interfaced to a CPU.

[CLEM00] gives the following examples as reasons for studying computer
architecture:

 1. Suppose a graduate enters the industry and is asked to select the most cost-
effective computer for use throughout a large organization. An understanding
of the implications of spending more for various alternatives, such as a larger
cache or a higher processor clock rate, is essential to making the decision.

 2. Many processors are not used in PCs or servers but in embedded systems.
A designer may program a processor in C that is embedded in some real-time
or larger system, such as an intelligent automobile electronics controller.
Debugging the system may require the use of a logic analyzer that displays
the relationship between interrupt requests from engine sensors and machine-
level code.

 3. Concepts used in computer architecture find application in other courses. In
particular, the way in which the computer provides architectural support for
programming languages and operating system facilities reinforces concepts
from those areas.

As can be seen by perusing the table of contents of this book, computer organ-
ization and architecture encompasses a broad range of design issues and concepts.
A good overall understanding of these concepts will be useful both in other areas of
study and in future work after graduation.

0.4 / INTERNET AND WEB RESOURCES 5

 0.4 INTERNET AND WEB RESOURCES

There are a number of resources available on the Internet and the Web that support
this book and help readers keep up with developments in this field.

Web Sites for This Book

Three Web sites provide additional resources for students and instructors.
We maintain a Companion Web site for this book at http://williamstallings.

com/ComputerOrganization. For students, this Web site includes a list of relevant
links, organized by chapter, and an errata list for the book. For instructors, this Web
site provides links to course pages by professors teaching from this book.

There is also an access-controlled Premium Content Web site that provides
a wealth of supporting material, including additional online chapters, additional
online appendices, a set of homework problems with solutions, copies of a number
of key papers in this field, and a number of other supporting documents. See the
card at the front of this book for access information.

Finally, additional material for instructors is available at the Instructor
Resource Center (IRC) for this book. See Preface for details and access information.

Computer Science Student Resource Site

I also maintain the Computer Science Student Resource Site, at
ComputerScienceStudent.com. The purpose of this site is to provide documents,
information, and links for computer science students and professionals. Links and
documents are organized into six categories:

 • Math: Includes a basic math refresher, a queuing analysis primer, a number
system primer, and links to numerous math sites.

 • How-to: Advice and guidance for solving homework problems, writing
 technical reports, and preparing technical presentations.

 • Research resources: Links to important collections of papers, technical
reports, and bibliographies.

 • Miscellaneous: A variety of other useful documents and links.

 • Computer science careers: Useful links and documents for those considering a
career in computer science.

 • Humor and other diversions: You have to take your mind off your work once
in a while.

Other Web Sites

Numerous Web sites provide information related to the topics of this book. The
Companion Web site provides links to these sites, organized by chapter.

http://williamstallings.com/ComputerOrganization
http://williamstallings.com/ComputerOrganization

INTRODUCTION
1.1 Organization and Architecture

1.2 Structure and Function
Function
Structure

1.3 Key Terms and Review Questions

PART ONE OVERVIEW

CHAPTER

6

1.1 / ORGANIZATION AND ARCHITECTURE 7

This book is about the structure and function of computers. Its purpose is to present,
as clearly and completely as possible, the nature and characteristics of modern-day
computers. This task is a challenging one for two reasons.

First, there is a tremendous variety of products, from single-chip microcomput-
ers costing a few dollars to supercomputers costing tens of millions of dollars, that
can rightly claim the name computer. Variety is exhibited not only in cost, but also in
size, performance, and application. Second, the rapid pace of change that has always
characterized computer technology continues with no letup. These changes cover all
aspects of computer technology, from the underlying integrated circuit technology
used to construct computer components to the increasing use of parallel organization
concepts in combining those components.

In spite of the variety and pace of change in the computer field, certain funda-
mental concepts apply consistently throughout. To be sure, the application of these
concepts depends on the current state of technology and the price/performance
objectives of the designer. The intent of this book is to provide a thorough discussion
of the fundamentals of computer organization and architecture and to relate these
to contemporary computer design issues. This chapter introduces the descriptive
approach to be taken.

 1.1 ORGANIZATION AND ARCHITECTURE

In describing computers, a distinction is often made between computer architecture
and computer organization. Although it is difficult to give precise definitions
for these terms, a consensus exists about the general areas covered by each
(e.g., see [VRAN80], [SIEW82], and [BELL78a]); an interesting alternative view
is presented in [REDD76].

Computer architecture refers to those attributes of a system visible to a
 programmer or, put another way, those attributes that have a direct impact on
the logical execution of a program. Computer organization refers to the opera-
tional units and their interconnections that realize the architectural specifications.
Examples of architectural attributes include the instruction set, the number of bits
used to represent various data types (e.g., numbers, characters), I/O mechanisms,
and techniques for addressing memory. Organizational attributes include those
hardware details transparent to the programmer, such as control signals; interfaces
between the computer and peripherals; and the memory technology used.

For example, it is an architectural design issue whether a computer will have
a multiply instruction. It is an organizational issue whether that instruction will
be implemented by a special multiply unit or by a mechanism that makes repeated
use of the add unit of the system. The organizational decision may be based on the
anticipated frequency of use of the multiply instruction, the relative speed of the two
approaches, and the cost and physical size of a special multiply unit.

Historically, and still today, the distinction between architecture and organi-
zation has been an important one. Many computer manufacturers offer a family of
computer models, all with the same architecture but with differences in organization.
Consequently, the different models in the family have different price and perform-
ance characteristics. Furthermore, a particular architecture may span many years and

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

8 CHAPTER 1 / INTRODUCTION

encompass a number of different computer models, its organization changing with
changing technology. A prominent example of both these phenomena is the IBM
System/370 architecture. This architecture was first introduced in 1970 and included
a number of models. The customer with modest requirements could buy a cheaper,
slower model and, if demand increased, later upgrade to a more expensive, faster
model without having to abandon software that had already been developed. Over
the years, IBM has introduced many new models with improved technology to replace
older models, offering the customer greater speed, lower cost, or both. These newer
models retained the same architecture so that the customer’s software investment was
protected. Remarkably, the System/370 architecture, with a few enhancements, has
survived to this day as the architecture of IBM’s mainframe product line.

In a class of computers called microcomputers, the relationship between archi-
tecture and organization is very close. Changes in technology not only influence
organization but also result in the introduction of more powerful and more complex
architectures. Generally, there is less of a requirement for generation-to-generation
compatibility for these smaller machines. Thus, there is more interplay between
organizational and architectural design decisions. An intriguing example of this is
the reduced instruction set computer (RISC), which we examine in Chapter 15.

This book examines both computer organization and computer architecture.
The emphasis is perhaps more on the side of organization. However, because a
computer organization must be designed to implement a particular architectural
specification, a thorough treatment of organization requires a detailed examination
of architecture as well.

 1.2 STRUCTURE AND FUNCTION

A computer is a complex system; contemporary computers contain millions of
 elementary electronic components. How, then, can one clearly describe them?
The key is to recognize the hierarchical nature of most complex systems, including
the computer [SIMO96]. A hierarchical system is a set of interrelated subsystems,
each of the latter, in turn, hierarchical in structure until we reach some lowest level
of elementary subsystem.

The hierarchical nature of complex systems is essential to both their design
and their description. The designer need only deal with a particular level of the
system at a time. At each level, the system consists of a set of components and
their interrelationships. The behavior at each level depends only on a simplified,
abstracted characterization of the system at the next lower level. At each level, the
designer is concerned with structure and function:

 • Structure: The way in which the components are interrelated.

 • Function: The operation of each individual component as part of the structure.

In terms of description, we have two choices: starting at the bottom and build-
ing up to a complete description, or beginning with a top view and decomposing the
system into its subparts. Evidence from a number of fields suggests that the top-down
approach is the clearest and most effective [WEIN75].

1.2 / STRUCTURE AND FUNCTION 9

The approach taken in this book follows from this viewpoint. The computer
system will be described from the top down. We begin with the major components
of a computer, describing their structure and function, and proceed to successively
lower layers of the hierarchy. The remainder of this section provides a very brief
overview of this plan of attack.

Function

Both the structure and functioning of a computer are, in essence, simple. Figure 1.1
depicts the basic functions that a computer can perform. In general terms, there are
only four:

 • Data processing

 • Data storage

 • Data movement

 • Control

Data
movement
apparatus

Operating environment
(source and destination of data)

Control
mechanism

Data
storage
facility

Data
processing

facility

Figure 1.1 A Functional View of the Computer

10 CHAPTER 1 / INTRODUCTION

The computer, of course, must be able to process data. The data may take a wide
variety of forms, and the range of processing requirements is broad. However, we
shall see that there are only a few fundamental methods or types of data processing.

It is also essential that a computer store data. Even if the computer is process-
ing data on the fly (i.e., data come in and get processed, and the results go out
immediately), the computer must temporarily store at least those pieces of data
that are being worked on at any given moment. Thus, there is at least a short-term
data storage function. Equally important, the computer performs a long-term data
storage function . Files of data are stored on the computer for subsequent retrieval
and update.

The computer must be able to move data between itself and the outside
world. The computer’s operating environment consists of devices that serve as
either sources or destinations of data. When data are received from or delivered to
a device that is directly connected to the computer, the process is known as input–
output (I/O), and the device is referred to as a peripheral. When data are moved
over longer distances, to or from a remote device, the process is known as data
communications.

Finally, there must be control of these three functions. Ultimately, this control
is exercised by the individual(s) who provides the computer with instructions. Within
the computer, a control unit manages the computer’s resources and orchestrates the
performance of its functional parts in response to those instructions.

At this general level of discussion, the number of possible operations that
can be performed is few. Figure 1.2 depicts the four possible types of operations.
The computer can function as a data movement device (Figure 1.2a), simply
transferring data from one peripheral or communication line to another. It can
also function as a data storage device (Figure 1.2b), with data transferred from
the external environment to computer storage (read) and vice versa (write). The
final two diagrams show operations involving data processing, on data either in
storage (Figure 1.2c) or en route between storage and the external environment
(Figure 1.2d).

The preceding discussion may seem absurdly generalized. It is certainly possi-
ble, even at a top level of computer structure, to differentiate a variety of functions,
but, to quote [SIEW82],

There is remarkably little shaping of computer structure to fit the
function to be performed. At the root of this lies the general-purpose
nature of computers, in which all the functional specialization occurs
at the time of programming and not at the time of design.

Structure

Figure 1.3 is the simplest possible depiction of a computer. The computer inter-
acts in some fashion with its external environment. In general, all of its linkages to
the external environment can be classified as peripheral devices or communication
lines. We will have something to say about both types of linkages.

1.2 / STRUCTURE AND FUNCTION 11

MovementMovement

Control

(a)

Storage Processing

Movement

Control

(d)

Storage Processing

Movement

Control

(c)

Storage Processing

(b)

Control

Storage Processing

Figure 1.2 Possible Computer Operations

12 CHAPTER 1 / INTRODUCTION

But of greater concern in this book is the internal structure of the computer
itself, which is shown in Figure 1.4. There are four main structural components:

 • Central processing unit (CPU): Controls the operation of the computer and
performs its data processing functions; often simply referred to as processor.

 • Main memory: Stores data.

 • I/O: Moves data between the computer and its external environment.

 • System interconnection: Some mechanism that provides for communication
among CPU, main memory, and I/O. A common example of system intercon-
nection is by means of a system bus, consisting of a number of conducting
wires to which all the other components attach.

There may be one or more of each of the aforementioned components.
Traditionally, there has been just a single processor. In recent years, there has been
increasing use of multiple processors in a single computer. Some design issues relat-
ing to multiple processors crop up and are discussed as the text proceeds; Part Five
focuses on such computers.

Each of these components will be examined in some detail in Part Two.
However, for our purposes, the most interesting and in some ways the most complex
component is the CPU. Its major structural components are as follows:

 • Control unit: Controls the operation of the CPU and hence the computer.

 • Arithmetic and logic unit (ALU): Performs the computer’s data processing
functions.

 • Registers: Provides storage internal to the CPU.

 • CPU interconnection: Some mechanism that provides for communication
among the control unit, ALU, and registers.

COMPUTER

• Storage
• Processing

Per
ip

her
als

Com
m

unication lines

Figure 1.3 The Computer

1.2 / STRUCTURE AND FUNCTION 13

Each of these components will be examined in some detail in Part Three, where
we will see that complexity is added by the use of parallel and pipelined organiza-
tional techniques. Finally, there are several approaches to the implementation of
the control unit; one common approach is a microprogrammed implementation. In
essence, a microprogrammed control unit operates by executing microinstructions
that define the functionality of the control unit. With this approach, the structure of
the control unit can be depicted, as in Figure 1.4. This structure will be examined in
Part Four.

Main
memory

I/O

CPU

COMPUTER

System
bus

ALU
Registers

Control
unit

CPU

Internal
bus

Control unit
registers and
decoders

CONTROL
UNIT

Sequencing
logic

Control
memory

Figure 1.4 The Computer: Top-Level Structure

14 CHAPTER 1 / INTRODUCTION

 1.3 KEY TERMS AND REVIEW QUESTIONS

Key Terms

arithmetic and logic unit
(ALU)

central processing unit (CPU)
computer architecture

computer organization
control unit
input–output (I/O)
main memory

processor
registers
system bus

Review Questions

 1.1 What, in general terms, is the distinction between computer organization and com-
puter architecture?

 1.2 What, in general terms, is the distinction between computer structure and computer
function?

 1.3 What are the four main functions of a computer?
 1.4 List and briefly define the main structural components of a computer.
 1.5 List and briefly define the main structural components of a processor.

15

CHAPTER

COMPUTER EVOLUTION
AND PERFORMANCE

2.1 A Brief History of Computers
The First Generation: Vacuum Tubes
The Second Generation: Transistors
The Third Generation: Integrated Circuits
Later Generations

2.2 Designing for Performance
Microprocessor Speed
Performance Balance
Improvements in Chip Organization and Architecture

2.3 Multicore, MICs, and GPGPUs

2.4 The Evolution of the Intel x86 Architecture

2.5 Embedded Systems and the ARM
Embedded Systems
ARM Evolution

2.6 Performance Assessment
Clock Speed and Instructions per Second
Benchmarks
Amdahl’s Law
Little’s Law

2.7 Recommended Reading

2.8 Key Terms, Review Questions, and Problems

16 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

We begin our study of computers with a brief history. This history is itself interest-
ing and also serves the purpose of providing an overview of computer structure
and function. Next, we address the issue of performance. A consideration of the
need for balanced utilization of computer resources provides a context that is useful
throughout the book. Finally, we look briefly at the evolution of the two systems
that serve as key examples throughout the book: the Intel x86 and ARM processor
families.

 2.1 A BRIEF HISTORY OF COMPUTERS1

The First Generation: Vacuum Tubes

ENIAC The ENIAC (Electronic Numerical Integrator And Computer), designed
and constructed at the University of Pennsylvania, was the world’s first general-
purpose electronic digital computer. The project was a response to U.S. needs
during World War II. The Army’s Ballistics Research Laboratory (BRL), an agency
responsible for developing range and trajectory tables for new weapons, was having
difficulty supplying these tables accurately and within a reasonable time frame.
Without these firing tables, the new weapons and artillery were useless to gunners.
The BRL employed more than 200 people who, using desktop calculators, solved
the necessary ballistics equations. Preparation of the tables for a single weapon
would take one person many hours, even days.

John Mauchly, a professor of electrical engineering at the University of
Pennsylvania, and John Eckert, one of his graduate students, proposed to build a
general-purpose computer using vacuum tubes for the BRL’s application. In 1943,
the Army accepted this proposal, and work began on the ENIAC. The resulting

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Present an overview of the evolution of computer technology from early
digital computers to the latest microprocessors.

� Understand the key performance issues that relate to computer design.
� Explain the reasons for the move to multicore organization, and understand

the trade-off between cache and processor resources on a single chip.
� Distinguish among multicore, MIC, and GPGPU organizations.
� Present an overview of the evolution of the x86 architecture.
� Define embedded systems and list some of the requirements and constraints

that various embedded systems must meet.
� Summarize some of the issues in computer performance assessment.

1This book’s Companion Web site contains several links to sites that provide photographs of many of the
devices and components discussed in this section.

2.1 / A BRIEF HISTORY OF COMPUTERS 17

machine was enormous, weighing 30 tons, occupying 1500 square feet of floor space,
and containing more than 18,000 vacuum tubes. When operating, it consumed
140 kilowatts of power. It was also substantially faster than any electromechanical
computer, capable of 5000 additions per second.

The ENIAC was a decimal rather than a binary machine. That is, numbers
were represented in decimal form, and arithmetic was performed in the decimal
system. Its memory consisted of 20 accumulators, each capable of holding a 10-digit
decimal number. A ring of 10 vacuum tubes represented each digit. At any time,
only one vacuum tube was in the ON state, representing one of the 10 digits. The
major drawback of the ENIAC was that it had to be programmed manually by
 setting switches and plugging and unplugging cables.

The ENIAC was completed in 1946, too late to be used in the war effort.
Instead, its first task was to perform a series of complex calculations that were used
to help determine the feasibility of the hydrogen bomb. The use of the ENIAC for
a purpose other than that for which it was built demonstrated its general- purpose
nature. The ENIAC continued to operate under BRL management until 1955,
when it was disassembled.

THE VON NEUMANN MACHINE The task of entering and altering programs for
the ENIAC was extremely tedious. But suppose a program could be represented in
a form suitable for storing in memory alongside the data. Then, a computer could
get its instructions by reading them from memory, and a program could be set or
altered by setting the values of a portion of memory.

This idea, known as the stored-program concept, is usually attributed to the
ENIAC designers, most notably the mathematician John von Neumann, who was
a consultant on the ENIAC project. Alan Turing developed the idea at about the
same time. The first publication of the idea was in a 1945 proposal by von Neumann
for a new computer, the EDVAC (Electronic Discrete Variable Computer).2

In 1946, von Neumann and his colleagues began the design of a new stored-
program computer, referred to as the IAS computer, at the Princeton Institute for
Advanced Studies. The IAS computer, although not completed until 1952, is the
prototype of all subsequent general-purpose computers.3

Figure 2.1 shows the general structure of the IAS computer (compare to mid-
dle portion of Figure 1.4). It consists of

 • A main memory, which stores both data and instructions4

 • An arithmetic and logic unit (ALU) capable of operating on binary data

 • A control unit, which interprets the instructions in memory and causes them
to be executed

 • Input/output (I/O) equipment operated by the control unit

2The 1945 report on EDVAC is in the Premium Content section of this book’s Web site.
3A 1954 report [GOLD54] describes the implemented IAS machine and lists the final instruction set. It is
provided in the Premium Content section of this book’s Web site.
4In this book, unless otherwise noted, the term instruction refers to a machine instruction that is directly
interpreted and executed by the processor, in contrast to an instruction in a high-level language, such as
Ada or C++, which must first be compiled into a series of machine instructions before being executed.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

18 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

This structure was outlined in von Neumann’s earlier proposal, which is worth
quoting in part at this point [VONN45]:

2.2 First: Since the device is primarily a computer, it will have
to perform the elementary operations of arithmetic most frequently.
These are addition, subtraction, multiplication, and division. It is
therefore reasonable that it should contain specialized organs for just
these operations.

It must be observed, however, that while this principle as such
is probably sound, the specific way in which it is realized requires
close scrutiny. At any rate a central arithmetical part of the device
will probably have to exist, and this constitutes the first specific
part: CA.

2.3 Second: The logical control of the device, that is, the
proper sequencing of its operations, can be most efficiently car-
ried out by a central control organ. If the device is to be elastic,
that is, as nearly as possible all purpose, then a distinction must
be made between the specific instructions given for and defining
a particular problem, and the general control organs that see to it
that these instructions—no matter what they are—are carried out.
The former must be stored in some way; the latter are represented
by definite operating parts of the device. By the central control we
mean this latter function only, and the organs that perform it form
the second specific part: CC.

2.4 Third: Any device that is to carry out long and complicated
sequences of operations (specifically of calculations) must have a
considerable memory…

Main
memory

(M)

Central processing unit (CPU)

Arithmetic-
logic

unit (CA)

Program
control

unit (CC)

I/O
Equip-
ment
(I, O)

Figure 2.1 Structure of the IAS Computer

2.1 / A BRIEF HISTORY OF COMPUTERS 19

The instructions which govern a complicated problem may
constitute considerable material, particularly so, if the code is
 circumstantial (which it is in most arrangements). This material
must be remembered.

At any rate, the total memory constitutes the third specific
part of the device: M.

2.6 The three specific parts CA, CC (together C), and M
 correspond to the associative neurons in the human nervous system.
It remains to discuss the equivalents of the sensory or afferent and
the motor or efferent neurons. These are the input and output
 organs of the device.

The device must be endowed with the ability to maintain
 input and output (sensory and motor) contact with some specific
medium of this type. The medium will be called the outside record-
ing medium of the device: R.

2.7 Fourth: The device must have organs to transfer . . .
 information from R into its specific parts C and M. These organs
form its input, the fourth specific part: I. It will be seen that it is
best to make all transfers from R (by I) into M and never directly
from C.

2.8 Fifth: The device must have organs to transfer . . . from its
specific parts C and M into R. These organs form its output, the
fifth specific part: O. It will be seen that it is again best to make all
transfers from M (by O) into R, and never directly from C.

With rare exceptions, all of today’s computers have this same general structure
and function and are thus referred to as von Neumann machines. Thus, it is worth-
while at this point to describe briefly the operation of the IAS computer [BURK46].
Following [HAYE98], the terminology and notation of von Neumann are changed
in the following to conform more closely to modern usage; the examples and illustra-
tions accompanying this discussion are based on that latter text.

The memory of the IAS consists of 1000 storage locations, called words, of
40 binary digits (bits) each.5 Both data and instructions are stored there. Numbers
are represented in binary form, and each instruction is a binary code. Figure 2.2
illustrates these formats. Each number is represented by a sign bit and a 39-bit
value. A word may also contain two 20-bit instructions, with each instruction
 consisting of an 8-bit operation code (opcode) specifying the operation to be
 performed and a 12-bit address designating one of the words in memory (num-
bered from 0 to 999).

The control unit operates the IAS by fetching instructions from memory and
executing them one at a time. To explain this, a more detailed structure diagram is

5There is no universal definition of the term word. In general, a word is an ordered set of bytes or bits
that is the normal unit in which information may be stored, transmitted, or operated on within a given
computer. Typically, if a processor has a fixed-length instruction set, then the instruction length equals
the word length.

20 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

needed, as indicated in Figure 2.3. This figure reveals that both the control unit and
the ALU contain storage locations, called registers, defined as follows:

 • Memory buffer register (MBR): Contains a word to be stored in memory or sent
to the I/O unit, or is used to receive a word from memory or from the I/O unit.

 • Memory address register (MAR): Specifies the address in memory of the word
to be written from or read into the MBR.

 • Instruction register (IR): Contains the 8-bit opcode instruction being executed.

 • Instruction buffer register (IBR): Employed to hold temporarily the right-
hand instruction from a word in memory.

 • Program counter (PC): Contains the address of the next instruction pair to be
fetched from memory.

 • Accumulator (AC) and multiplier quotient (MQ): Employed to hold tem-
porarily operands and results of ALU operations. For example, the result of
 multiplying two 40-bit numbers is an 80-bit number; the most significant 40 bits
are stored in the AC and the least significant in the MQ.

The IAS operates by repetitively performing an instruction cycle, as shown in
Figure 2.4. Each instruction cycle consists of two subcycles. During the fetch cycle,
the opcode of the next instruction is loaded into the IR and the address portion is
loaded into the MAR. This instruction may be taken from the IBR, or it can be
obtained from memory by loading a word into the MBR, and then down to the IBR,
IR, and MAR.

Why the indirection? These operations are controlled by electronic circuitry
and result in the use of data paths. To simplify the electronics, there is only one
 register that is used to specify the address in memory for a read or write and only
one register used for the source or destination.

(a) Number wordSign bit

0 39

(b) Instruction word

Opcode Address

Left instruction

0 8 20 28 39

1

Right instruction

Opcode Address

Figure 2.2 IAS Memory Formats

2.1 / A BRIEF HISTORY OF COMPUTERS 21

Once the opcode is in the IR, the execute cycle is performed. Control circuitry
interprets the opcode and executes the instruction by sending out the appropriate
control signals to cause data to be moved or an operation to be performed by the
ALU.

The IAS computer had a total of 21 instructions, which are listed in Table 2.1.
These can be grouped as follows:

 • Data transfer: Move data between memory and ALU registers or between
two ALU registers.

AC

IBR PC

IR

•
•
•

Control
circuits

Addresses

Control
signals

Instructions
and data

MAR

MBR

MQ

Arithmetic-logic
circuits

Arithmetic-logic unit (ALU)

Program control unit

Input–
output

equipment

Main
memory

M

Figure 2.3 Expanded Structure of IAS Computer

22 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

 • Unconditional branch: Normally, the control unit executes instructions in
sequence from memory. This sequence can be changed by a branch instruction,
which facilitates repetitive operations.

 • Conditional branch: The branch can be made dependent on a condition, thus
allowing decision points.

 • Arithmetic: Operations performed by the ALU.

 • Address modify: Permits addresses to be computed in the ALU and then
 inserted into instructions stored in memory. This allows a program consider-
able addressing flexibility.

Start

Is next
instruction

in IBR?
MAR PC

MBR M(MAR)

IR IBR (0:7)
MAR IBR (8:19)

IR MBR (20:27)
MAR MBR (28:39)

Left
instruction
required?

IBR MBR (20:39)
IR MBR (0:7)

MAR MBR (8:19)

PC PC + 1

Yes

Yes

Yes

No

No

M(X) = contents of memory location whose address is X
(i:j) = bits i through j

No memory
access

required

Decode instruction in IR

AC M(X) Go to M(X, 0:19) If AC > 0 then
go to M(X, 0:19)

AC AC + M(X)

Is AC > 0?

MBR M(MAR) MBR M(MAR)PC MAR

AC MBR AC AC + MBR

Fetch
cycle

Execution
cycle

Figure 2.4 Partial Flowchart of IAS Operation

2.1 / A BRIEF HISTORY OF COMPUTERS 23

Table 2.1 presents instructions in a symbolic, easy-to-read form. Actually,
each instruction must conform to the format of Figure 2.2b. The opcode portion
(first 8 bits) specifies which of the 21 instructions is to be executed. The address
portion (remaining 12 bits) specifies which of the 1000 memory locations is to be
involved in the execution of the instruction.

Figure 2.4 shows several examples of instruction execution by the control unit.
Note that each operation requires several steps. Some of these are quite elaborate.
The multiplication operation requires 39 suboperations, one for each bit position
except that of the sign bit.

COMMERCIAL COMPUTERS The 1950s saw the birth of the computer industry with
two companies, Sperry and IBM, dominating the marketplace.

Table 2.1 The IAS Instruction Set

Instruction
Type Opcode

Symbolic
Representation Description

Data transfer

00001010 LOAD MQ Transfer contents of register MQ to the accumulator AC

00001001 LOAD MQ,M(X) Transfer contents of memory location X to MQ

00100001 STOR M(X) Transfer contents of accumulator to memory location X

00000001 LOAD M(X) Transfer M(X) to the accumulator

00000010 LOAD – M(X) Transfer –M(X) to the accumulator

00000011 LOAD |M(X)| Transfer absolute value of M(X) to the accumulator

00000100 LOAD – |M(X)| Transfer –|M(X)| to the accumulator

Unconditional
branch

00001101 JUMP M(X,0:19) Take next instruction from left half of M(X)

00001110 JUMP M(X,20:39) Take next instruction from right half of M(X)

Conditional
branch

00001111 JUMP + M(X,0:19) If number in the accumulator is nonnegative, take next
instruction from left half of M(X)

00010000 JUMP + M(X,20:39) If number in the accumulator is nonnegative, take next
instruction from right half of M(X)

Arithmetic

00000101 ADD M(X) Add M(X) to AC; put the result in AC

00000111 ADD |M(X)| Add |M(X)| to AC; put the result in AC

00000110 SUB M(X) Subtract M(X) from AC; put the result in AC

00001000 SUB |M(X)| Subtract |M(X)| from AC; put the remainder in AC

00001011 MUL M(X) Multiply M(X) by MQ; put most significant bits of result
in AC, put least significant bits in MQ

00001100 DIV M(X) Divide AC by M(X); put the quotient in MQ and the
remainder in AC

00010100 LSH Multiply accumulator by 2; that is, shift left one bit position

00010101 RSH Divide accumulator by 2; that is, shift right one position

Address
modify

00010010 STOR M(X,8:19) Replace left address field at M(X) by 12 rightmost bits
of AC

00010011 STOR M(X,28:39) Replace right address field at M(X) by 12 rightmost bits
of AC

24 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

In 1947, Eckert and Mauchly formed the Eckert-Mauchly Computer
Corporation to manufacture computers commercially. Their first successful machine
was the UNIVAC I (Universal Automatic Computer), which was commissioned by
the Bureau of the Census for the 1950 calculations. The Eckert-Mauchly Computer
Corporation became part of the UNIVAC division of Sperry-Rand Corporation,
which went on to build a series of successor machines.

The UNIVAC I was the first successful commercial computer. It was intended
for both scientific and commercial applications. The first paper describing the
 system listed matrix algebraic computations, statistical problems, premium billings
for a life insurance company, and logistical problems as a sample of the tasks it could
perform.

The UNIVAC II, which had greater memory capacity and higher performance
than the UNIVAC I, was delivered in the late 1950s and illustrates several trends that
have remained characteristic of the computer industry. First, advances in technol-
ogy allow companies to continue to build larger, more powerful computers. Second,
each company tries to make its new machines backward compatible6 with the older
machines. This means that the programs written for the older machines can be
 executed on the new machine. This strategy is adopted in the hopes of retaining the
customer base; that is, when a customer decides to buy a newer machine, he or she is
likely to get it from the same company to avoid losing the investment in programs.

The UNIVAC division also began development of the 1100 series of comput-
ers, which was to be its major source of revenue. This series illustrates a distinction
that existed at one time. The first model, the UNIVAC 1103, and its successors
for many years were primarily intended for scientific applications, involving long
and complex calculations. Other companies concentrated on business applications,
which involved processing large amounts of text data. This split has largely disap-
peared, but it was evident for a number of years.

IBM, then the major manufacturer of punched-card processing equipment,
delivered its first electronic stored-program computer, the 701, in 1953. The 701 was
intended primarily for scientific applications [BASH81]. In 1955, IBM introduced
the companion 702 product, which had a number of hardware features that suited it
to business applications. These were the first of a long series of 700/7000 computers
that established IBM as the overwhelmingly dominant computer manufacturer.

The Second Generation: Transistors

The first major change in the electronic computer came with the replacement of
the vacuum tube by the transistor. The transistor is smaller, cheaper, and dissipates
less heat than a vacuum tube but can be used in the same way as a vacuum tube to
construct computers. Unlike the vacuum tube, which requires wires, metal plates, a
glass capsule, and a vacuum, the transistor is a solid-state device, made from silicon.

The transistor was invented at Bell Labs in 1947 and by the 1950s had
launched an electronic revolution. It was not until the late 1950s, however, that
fully transistorized computers were commercially available. IBM again was not the

6Also called downward compatible. The same concept, from the point of view of the older system, is
referred to as upward compatible, or forward compatible.

2.1 / A BRIEF HISTORY OF COMPUTERS 25

first company to deliver the new technology. NCR and, more successfully, RCA
were the front-runners with some small transistor machines. IBM followed shortly
with the 7000 series.

The use of the transistor defines the second generation of computers. It has
become widely accepted to classify computers into generations based on the funda-
mental hardware technology employed (Table 2.2). Each new generation is char-
acterized by greater processing performance, larger memory capacity, and smaller
size than the previous one.

But there are other changes as well. The second generation saw the intro-
duction of more complex arithmetic and logic units and control units, the use of
high-level programming languages, and the provision of system software with the
computer. In broad terms, system software provided the ability to load programs,
move data to peripherals, and libraries to perform common computations, similar
to what modern OSes like Windows and Linux do.

The second generation is noteworthy also for the appearance of the Digital
Equipment Corporation (DEC). DEC was founded in 1957 and, in that year, deliv-
ered its first computer, the PDP-1. This computer and this company began the mini-
computer phenomenon that would become so prominent in the third generation.

THE IBM 7094 From the introduction of the 700 series in 1952 to the introduction
of the last member of the 7000 series in 1964, this IBM product line underwent an
evolution that is typical of computer products. Successive members of the product
line show increased performance, increased capacity, and/or lower cost.

Table 2.3 illustrates this trend. The size of main memory, in multiples of 210
36-bit words, grew from 2K (1K = 210) to 32K words,7 while the time to access one
word of memory, the memory cycle time, fell from 30 μs to 1.4 μs. The number of
opcodes grew from a modest 24 to 185.

The final column indicates the relative execution speed of the central process-
ing unit (CPU). Speed improvements are achieved by improved electronics (e.g., a
transistor implementation is faster than a vacuum tube implementation) and more
complex circuitry. For example, the IBM 7094 includes an Instruction Backup

Table 2.2 Computer Generations

Generation
Approximate

Dates Technology
Typical Speed

(operations per second)

1 1946–1957 Vacuum tube 40,000

2 1958–1964 Transistor 200,000

3 1965–1971 Small- and medium-scale
integration

1,000,000

4 1972–1977 Large-scale integration 10,000,000

5 1978–1991 Very-large-scale integration 100,000,000

6 1991– Ultra-large-scale integration 1,000,000,000

7A discussion of the uses of numerical prefixes, such as kilo and giga, is contained in a supporting docu-
ment at the Computer Science Student Resource Site at ComputerScienceStudent.com.

26

Table 2.3 Example members of the IBM 700/7000 Series

Model
Number

First
Delivery

CPU
Tech-

nology

Memory
Tech-

nology

Cycle
Time
(μs)

Memory
Size (K)

Number
of

Opcodes

Number
of Index
Registers

Hardwired
Floating-

Point

I/O
Overlap

(Channels)

Instruc-
tion

Fetch
Overlap

Speed
(relative
to 701)

701 1952 Vacuum
tubes

Electrostatic
tubes

30 2–4 24 0 no no no 1

704 1955 Vacuum
tubes

Core 12 4–32 80 3 yes no no 2.5

709 1958 Vacuum
tubes

Core 12 32 140 3 yes yes no 4

7090 1960 Transistor Core 2.18 32 169 3 yes yes no 25

7094 I 1962 Transistor Core 2 32 185 7 yes (double
precision)

yes yes 30

7094 II 1964 Transistor Core 1.4 32 185 7 yes (double
precision)

yes yes 50

2.1 / A BRIEF HISTORY OF COMPUTERS 27

Register, used to buffer the next instruction. The control unit fetches two adjacent
words from memory for an instruction fetch. Except for the occurrence of a branch-
ing instruction, which is relatively infrequent (perhaps 10 to 15%), this means that
the control unit has to access memory for an instruction on only half the instruction
cycles. This prefetching significantly reduces the average instruction cycle time.

The remainder of the columns of Table 2.3 will become clear as the text
proceeds.

Figure 2.5 shows a large (many peripherals) configuration for an IBM 7094,
which is representative of second-generation computers [BELL71]. Several differ-
ences from the IAS computer are worth noting. The most important of these is the
use of data channels. A data channel is an independent I/O module with its own
processor and instruction set. In a computer system with such devices, the CPU
does not execute detailed I/O instructions. Such instructions are stored in a main
memory to be executed by a special-purpose processor in the data channel itself.
The CPU initiates an I/O transfer by sending a control signal to the data channel,
instructing it to execute a sequence of instructions in memory. The data channel
performs its task independently of the CPU and signals the CPU when the opera-
tion is complete. This arrangement relieves the CPU of a considerable processing
burden.

Another new feature is the multiplexor, which is the central termination
point for data channels, the CPU, and memory. The multiplexor schedules access
to the memory from the CPU and data channels, allowing these devices to act
independently.

CPU

Memory

Data
channel

Mag tape
units

Card
punch

Line
printer

Card
reader

Drum

Disk

Disk

Hyper
tapes

Teleprocessing
equipment

Data
channel

Data
channel

Data
channel

Multi
plexor

Figure 2.5 An IBM 7094 Configuration

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

28 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

The Third Generation: Integrated Circuits

A single, self-contained transistor is called a discrete component. Throughout the
1950s and early 1960s, electronic equipment was composed largely of discrete com-
ponents—transistors, resistors, capacitors, and so on. Discrete components were
manufactured separately, packaged in their own containers, and soldered or wired
together onto masonite-like circuit boards, which were then installed in computers,
oscilloscopes, and other electronic equipment. Whenever an electronic device called
for a transistor, a little tube of metal containing a pinhead-sized piece of silicon had
to be soldered to a circuit board. The entire manufacturing process, from transistor
to circuit board, was expensive and cumbersome.

These facts of life were beginning to create problems in the computer indus-
try. Early second-generation computers contained about 10,000 transistors. This
figure grew to the hundreds of thousands, making the manufacture of newer, more
powerful machines increasingly difficult.

In 1958 came the achievement that revolutionized electronics and started the
era of microelectronics: the invention of the integrated circuit. It is the integrated
circuit that defines the third generation of computers. In this section, we provide a
brief introduction to the technology of integrated circuits. Then we look at perhaps
the two most important members of the third generation, both of which were intro-
duced at the beginning of that era: the IBM System/360 and the DEC PDP-8.

MICROELECTRONICS Microelectronics means, literally, “small electronics.” Since
the beginnings of digital electronics and the computer industry, there has been a
persistent and consistent trend toward the reduction in size of digital electronic
circuits. Before examining the implications and benefits of this trend, we need to
say something about the nature of digital electronics. A more detailed discussion is
found in Chapter 11.

The basic elements of a digital computer, as we know, must perform storage,
movement, processing, and control functions. Only two fundamental types of com-
ponents are required (Figure 2.6): gates and memory cells. A gate is a device that
implements a simple Boolean or logical function, such as IF A AND B ARE TRUE
THEN C IS TRUE (AND gate). Such devices are called gates because they control
data flow in much the same way that canal gates control the flow of water. The
memory cell is a device that can store one bit of data; that is, the device can be in
one of two stable states at any time. By interconnecting large numbers of these

Boolean
logic

function
Input

Activate
signal

(a) Gate

Output
•
•
•

Binary
storage

cell
Input

Read

Write

(b) Memory cell

Output

Figure 2.6 Fundamental Computer Elements

2.1 / A BRIEF HISTORY OF COMPUTERS 29

8Note that the vertical axis uses a log scale. A basic review of log scales is in the math refresher document
at the Computer Science Student Resource Site at ComputerScienceStudent.com.

 fundamental devices, we can construct a computer. We can relate this to our four
basic functions as follows:

 • Data storage: Provided by memory cells.

 • Data processing: Provided by gates.

 • Data movement: The paths among components are used to move data from
memory to memory and from memory through gates to memory.

 • Control: The paths among components can carry control signals. For example,
a gate will have one or two data inputs plus a control signal input that activates
the gate. When the control signal is ON, the gate performs its function on the
data inputs and produces a data output. Similarly, the memory cell will store
the bit that is on its input lead when the WRITE control signal is ON and will
place the bit that is in the cell on its output lead when the READ control sig-
nal is ON.

Thus, a computer consists of gates, memory cells, and interconnections among these
elements. The gates and memory cells are, in turn, constructed of simple digital
electronic components.

The integrated circuit exploits the fact that such components as transistors,
resistors, and conductors can be fabricated from a semiconductor such as silicon.
It is merely an extension of the solid-state art to fabricate an entire circuit in a tiny
piece of silicon rather than assemble discrete components made from separate
pieces of silicon into the same circuit. Many transistors can be produced at the same
time on a single wafer of silicon. Equally important, these transistors can be con-
nected with a process of metallization to form circuits.

Figure 2.7 depicts the key concepts in an integrated circuit. A thin wafer of
silicon is divided into a matrix of small areas, each a few millimeters square. The
identical circuit pattern is fabricated in each area, and the wafer is broken up into
chips. Each chip consists of many gates and/or memory cells plus a number of input
and output attachment points. This chip is then packaged in housing that protects
it and provides pins for attachment to devices beyond the chip. A number of these
packages can then be interconnected on a printed circuit board to produce larger
and more complex circuits.

Initially, only a few gates or memory cells could be reliably manufactured
and packaged together. These early integrated circuits are referred to as small-
scale integration (SSI). As time went on, it became possible to pack more and more
 components on the same chip. This growth in density is illustrated in Figure 2.8; it is
one of the most remarkable technological trends ever recorded.8 This figure reflects
the famous Moore’s law, which was propounded by Gordon Moore, cofounder of
Intel, in 1965 [MOOR65]. Moore observed that the number of transistors that could
be put on a single chip was doubling every year and correctly predicted that this
pace would continue into the near future. To the surprise of many, including Moore,
the pace continued year after year and decade after decade. The pace slowed to a
doubling every 18 months in the 1970s but has sustained that rate ever since.

30 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

The consequences of Moore’s law are profound:

 1. The cost of a chip has remained virtually unchanged during this period of
rapid growth in density. This means that the cost of computer logic and mem-
ory circuitry has fallen at a dramatic rate.

 2. Because logic and memory elements are placed closer together on more
densely packed chips, the electrical path length is shortened, increasing
 operating speed.

 3. The computer becomes smaller, making it more convenient to place in a
 variety of environments.

 4. There is a reduction in power and cooling requirements.

 5. The interconnections on the integrated circuit are much more reliable than
solder connections. With more circuitry on each chip, there are fewer inter-
chip connections.

Wafer

Chip

Gate

Packaged
chip

Figure 2.7 Relationship among Wafer, Chip, and Gate

2.1 / A BRIEF HISTORY OF COMPUTERS 31

9The term mainframe is used for the larger, most powerful computers other than supercomputers. Typical
characteristics of a mainframe are that it supports a large database, has elaborate I/O hardware, and is
used in a central data processing facility.

IBM SYSTEM/360 By 1964, IBM had a firm grip on the computer market with
its 7000 series of machines. In that year, IBM announced the System/360, a new
family of computer products. Although the announcement itself was no surprise, it
contained some unpleasant news for current IBM customers: the 360 product line
was incompatible with older IBM machines. Thus, the transition to the 360 would be
difficult for the current customer base. This was a bold step by IBM, but one IBM felt
was necessary to break out of some of the constraints of the 7000 architecture and
to produce a system capable of evolving with the new integrated circuit technology
[PADE81, GIFF87]. The strategy paid off both financially and technically. The 360
was the success of the decade and cemented IBM as the overwhelmingly dominant
computer vendor, with a market share above 70%. And, with some modifications
and extensions, the architecture of the 360 remains to this day the architecture
of IBM’s mainframe9 computers. Examples using this architecture can be found
throughout this text.

The System/360 was the industry’s first planned family of computers. The
family covered a wide range of performance and cost. Table 2.4 indicates some of
the key characteristics of the various models in 1965 (each member of the family is
 distinguished by a model number). The models were compatible in the sense that
a program written for one model should be capable of being executed by another
model in the series, with only a difference in the time it takes to execute.

The concept of a family of compatible computers was both novel and
extremely successful. A customer with modest requirements and a budget to match
could start with the relatively inexpensive Model 30. Later, if the customer’s needs
grew, it was possible to upgrade to a faster machine with more memory without

1
1947

Firs
t w

or
kin

g

tra
ns

ist
or

M
oo

re’
s l

aw

pr
om

ulg
ate

d

In
ve

nti
on

 of

int
eg

rat
ed

 ci
rcu

it

50 55 60 65 70 75 80 85 90 95 2000 05 11

10
100
1000
10,000
100,000
10 m
100 m
1 bn
10 bn
100 bn

Figure 2.8 Growth in Transistor Count on Integrated Circuits

32 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

sacrificing the investment in already-developed software. The characteristics of a
family are as follows:

 • Similar or identical instruction set: In many cases, the exact same set of machine
instructions is supported on all members of the family. Thus, a program that
 executes on one machine will also execute on any other. In some cases, the
lower end of the family has an instruction set that is a subset of that of the top
end of the family. This means that programs can move up but not down.

 • Similar or identical operating system: The same basic operating system is
available for all family members. In some cases, additional features are added
to the higher-end members.

 • Increasing speed: The rate of instruction execution increases in going from
lower to higher family members.

 • Increasing number of I/O ports: The number of I/O ports increases in going
from lower to higher family members.

 • Increasing memory size: The size of main memory increases in going from
lower to higher family members.

 • Increasing cost: At a given point in time, the cost of a system increases in going
from lower to higher family members.

How could such a family concept be implemented? Differences were achieved
based on three factors: basic speed, size, and degree of simultaneity [STEV64]. For
example, greater speed in the execution of a given instruction could be gained by
the use of more complex circuitry in the ALU, allowing suboperations to be carried
out in parallel. Another way of increasing speed was to increase the width of the
data path between main memory and the CPU. On the Model 30, only 1 byte (8 bits)
could be fetched from main memory at a time, whereas 8 bytes could be fetched at
a time on the Model 75.

The System/360 not only dictated the future course of IBM but also had a
 profound impact on the entire industry. Many of its features have become standard
on other large computers.

DEC PDP-8 In the same year that IBM shipped its first System/360,
another momentous first shipment occurred: PDP-8 from Digital Equipment

Table 2.4 Key Characteristics of the System/360 Family

Characteristic
Model

30
Model

40
Model

50
Model

65
Model

75

Maximum memory size (bytes) 64K 256K 256K 512K 512K

Data rate from memory (Mbytes/s) 0.5 0.8 2.0 8.0 16.0

Processor cycle time (μs) 1.0 0.625 0.5 0.25 0.2

Relative speed 1 3.5 10 21 50

Maximum number of data channels 3 3 4 6 6

Maximum data rate on one channel
(Kbytes/s)

250 400 800 1250 1250

2.1 / A BRIEF HISTORY OF COMPUTERS 33

Corporation (DEC). At a time when the average computer required an air-
conditioned room, the PDP-8 (dubbed a minicomputer by the industry, after the
miniskirt of the day) was small enough that it could be placed on top of a lab
bench or be built into other equipment. It could not do everything the mainframe
could, but at $16,000, it was cheap enough for each lab technician to have one.
In contrast, the System/360 series of mainframe computers introduced just a few
months before cost hundreds of thousands of dollars.

The low cost and small size of the PDP-8 enabled another manufacturer to
purchase a PDP-8 and integrate it into a total system for resale. These other manu-
facturers came to be known as original equipment manufacturers (OEMs), and the
OEM market became and remains a major segment of the computer marketplace.

The PDP-8 was an immediate hit and made DEC’s fortune. This machine
and other members of the PDP-8 family that followed it (see Table 2.5) achieved
a production status formerly reserved for IBM computers, with about 50,000
machines sold over the next dozen years. As DEC’s official history puts it, the
PDP-8 “established the concept of minicomputers, leading the way to a multibillion
dollar industry.” It also established DEC as the number one minicomputer vendor,
and, by the time the PDP-8 had reached the end of its useful life, DEC was the
number two computer manufacturer, behind IBM.

In contrast to the central-switched architecture (Figure 2.5) used by IBM on
its 700/7000 and 360 systems, later models of the PDP-8 used a structure that is
now virtually universal for microcomputers: the bus structure. This is illustrated
in Figure 2.9. The PDP-8 bus, called the Omnibus, consists of 96 separate signal
paths, used to carry control, address, and data signals. Because all system compo-
nents share a common set of signal paths, their use can be controlled by the CPU.
This architecture is highly flexible, allowing modules to be plugged into the bus to
create various configurations.

Later Generations

Beyond the third generation there is less general agreement on defining genera-
tions of computers. Table 2.2 suggests that there have been a number of later gen-
erations, based on advances in integrated circuit technology. With the introduction
of large-scale integration (LSI), more than 1000 components can be placed on a
single integrated circuit chip. Very-large-scale integration (VLSI) achieved more
than 10,000 components per chip, while current ultra-large-scale integration (ULSI)
chips can contain more than one billion components.

With the rapid pace of technology, the high rate of introduction of new prod-
ucts, and the importance of software and communications as well as hardware, the
classification by generation becomes less clear and less meaningful. It could be said
that the commercial application of new developments resulted in a major change in
the early 1970s and that the results of these changes are still being worked out. In
this section, we mention two of the most important of these results.

SEMICONDUCTOR MEMORY The first application of integrated circuit technology
to computers was construction of the processor (the control unit and the arithmetic
and logic unit) out of integrated circuit chips. But it was also found that this same
technology could be used to construct memories.

34

Table 2.5 Evolution of the PDP-8

Model
First

Shipped

Cost of Processor + 4K
12-bit Words of

Memory ($1000s)

Data Rate
from Memory

(words/μs)
Volume

(cubic feet) Innovations and Improvements

PDP-8 4/65 16.2 1.26 8.0 Automatic wire-wrapping production

PDP-8/5 9/66 8.79 0.08 3.2 Serial instruction implementation

PDP-8/1 4/68 11.6 1.34 8.0 Medium-scale integrated circuits

PDP-8/L 11/68 7.0 1.26 2.0 Smaller cabinet

PDP-8/E 3/71 4.99 1.52 2.2 Omnibus

PDP-8/M 6/72 3.69 1.52 1.8 Half-size cabinet with fewer slots than 8/E

PDP-8/A 1/75 2.6 1.34 1.2 Semiconductor memory; floating-point processor

2.1 / A BRIEF HISTORY OF COMPUTERS 35

In the 1950s and 1960s, most computer memory was constructed from tiny
rings of ferromagnetic material, each about a sixteenth of an inch in diameter. These
rings were strung up on grids of fine wires suspended on small screens inside the
computer. Magnetized one way, a ring (called a core) represented a one; magnetized
the other way, it stood for a zero. Magnetic-core memory was rather fast; it took as
little as a millionth of a second to read a bit stored in memory. But it was expensive,
bulky, and used destructive readout: The simple act of reading a core erased the data
stored in it. It was therefore necessary to install circuits to restore the data as soon
as it had been extracted.

Then, in 1970, Fairchild produced the first relatively capacious semiconductor
memory. This chip, about the size of a single core, could hold 256 bits of memory. It
was nondestructive and much faster than core. It took only 70 billionths of a second
to read a bit. However, the cost per bit was higher than for that of core.

In 1974, a seminal event occurred: The price per bit of semiconductor memory
dropped below the price per bit of core memory. Following this, there has been a con-
tinuing and rapid decline in memory cost accompanied by a corresponding increase
in physical memory density. This has led the way to smaller, faster machines with
memory sizes of larger and more expensive machines from just a few years earlier.
Developments in memory technology, together with developments in processor tech-
nology to be discussed next, changed the nature of computers in less than a decade.
Although bulky, expensive computers remain a part of the landscape, the computer has
also been brought out to the “end user,” with office machines and personal computers.

Since 1970, semiconductor memory has been through 13 generations: 1K, 4K,
16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M, 1G, 4G, and, as of this writing, 16 Gbits
on a single chip (1K = 210, 1M = 220, 1G = 230). Each generation has provided four
times the storage density of the previous generation, accompanied by declining cost
per bit and declining access time.

MICROPROCESSORS Just as the density of elements on memory chips has continued
to rise, so has the density of elements on processor chips. As time went on, more
and more elements were placed on each chip, so that fewer and fewer chips were
needed to construct a single computer processor.

A breakthrough was achieved in 1971, when Intel developed its 4004. The
4004 was the first chip to contain all of the components of a CPU on a single chip:
The microprocessor was born.

The 4004 can add two 4-bit numbers and can multiply only by repeated addition.
By today’s standards, the 4004 is hopelessly primitive, but it marked the beginning of
a continuing evolution of microprocessor capability and power.

Console
controller

CPU

Omnibus

Main
memory

I/O
module

I/O
module

• • •

Figure 2.9 PDP-8 Bus Structure

36 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

This evolution can be seen most easily in the number of bits that the processor
deals with at a time. There is no clear-cut measure of this, but perhaps the best meas-
ure is the data bus width: the number of bits of data that can be brought into or sent
out of the processor at a time. Another measure is the number of bits in the accumu-
lator or in the set of general-purpose registers. Often, these measures coincide, but
not always. For example, a number of microprocessors were developed that operate
on 16-bit numbers in registers but can only read and write 8 bits at a time.

The next major step in the evolution of the microprocessor was the introduction
in 1972 of the Intel 8008. This was the first 8-bit microprocessor and was almost twice
as complex as the 4004.

Neither of these steps was to have the impact of the next major event: the intro-
duction in 1974 of the Intel 8080. This was the first general-purpose microprocessor.
Whereas the 4004 and the 8008 had been designed for specific applications, the 8080
was designed to be the CPU of a general-purpose microcomputer. Like the 8008, the
8080 is an 8-bit microprocessor. The 8080, however, is faster, has a richer instruction
set, and has a large addressing capability.

About the same time, 16-bit microprocessors began to be developed. However, it
was not until the end of the 1970s that powerful, general-purpose 16-bit microproces-
sors appeared. One of these was the 8086. The next step in this trend occurred in 1981,
when both Bell Labs and Hewlett-Packard developed 32-bit, single-chip microproces-
sors. Intel introduced its own 32-bit microprocessor, the 80386, in 1985 (Table 2.6).

Table 2.6 Evolution of Intel Microprocessors

 (a) 1970s Processors

 4004 8008 8080 8086 8088

Introduced 1971 1972 1974 1978 1979

Clock speeds 108 kHz 108 kHz 2 MHz 5 MHz, 8 MHz, 10 MHz 5 MHz, 8 MHz

Bus width 4 bits 8 bits 8 bits 16 bits 8 bits

Number of transistors 2300 3500 6000 29,000 29,000

Feature size (μm) 10 6 3 6

Addressable memory 640 Bytes 16 kB 64 kB 1 MB 1 MB

 (b) 1980s Processors

 80286 386TM DX 386TM SX 486TM DX CPU

Introduced 1982 1985 1988 1989

Clock speeds 6 MHz–12.5 MHz 16 MHz–33 MHz 16 MHz–33 MHz 25 MHz–50 MHz

Bus width 16 bits 32 bits 16 bits 32 bits

Number of transistors 134,000 275,000 275,000 1.2 million

Feature size (μm) 1.5 1 1 0.8–1

Addressable memory 16 MB 4 GB 16 MB 4 GB

Virtual memory 1 GB 64 TB 64 TB 64 TB

Cache — — — 8 kB

2.2 / DESIGNING FOR PERFORMANCE 37

Table 2.6 Continued

 2.2 DESIGNING FOR PERFORMANCE

Year by year, the cost of computer systems continues to drop dramatically, while
the performance and capacity of those systems continue to rise equally dramatically.
Today’s laptops have the computing power of an IBM mainframe from 10 or 15 years
ago. Thus, we have virtually “free” computer power. Processors are so inexpensive
that we now have microprocessors we throw away. The digital pregnancy test as an
example (used once and then thrown away). And this continuing technological revo-
lution has enabled the development of applications of astounding complexity and
power. For example, desktop applications that require the great power of today’s
microprocessor-based systems include

 • Image processing

 • Speech recognition

 • Videoconferencing

 • Multimedia authoring

 • Voice and video annotation of files

 • Simulation modeling

 (c) 1990s Processors

 486TM SX Pentium Pentium Pro Pentium II

Introduced 1991 1993 1995 1997

Clock speeds 16 MHz–33 MHz 60 MHz–166 MHz, 150 MHz–200 MHz 200 MHz–300 MHz

Bus width 32 bits 32 bits 64 bits 64 bits

Number of transistors 1.185 million 3.1 million 5.5 million 7.5 million

Feature size (μm) 1 0.8 0.6 0.35

Addressable memory 4 GB 4 GB 64 GB 64 GB

Virtual memory 64 TB 64 TB 64 TB 64 TB

Cache 8 kB 8 kB 512 kB L1 and
1 MB L2

512 kB L2

 (d) Recent Processors

 Pentium III Pentium 4 Core 2 Duo Core i7 EE 990

Introduced 1999 2000 2006 2011

Clock speeds 450–660 MHz 1.3–1.8 GHz 1.06–1.2 GHz 3.5 GHz

Bus width 64 bits 64 bits 64 bits 64 bits

Number of transistors 9.5 million 42 million 167 million 1170 million

Feature size (nm) 250 180 65 32

Addressable memory 64 GB 64 GB 64 GB 64 GB

Virtual memory 64 TB 64 TB 64 TB 64 TB

Cache 512 kB L2 256 kB L2 2 MB L2 1.5 MB L2/12 MB L3

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

38 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

Workstation systems now support highly sophisticated engineering and
 scientific applications, as well as simulation systems, and have the ability to support
image and video applications. In addition, businesses are relying on increasingly pow-
erful servers to handle transaction and database processing and to support massive
client/server networks that have replaced the huge mainframe computer centers of
yesteryear.

What is fascinating about all this from the perspective of computer organiza-
tion and architecture is that, on the one hand, the basic building blocks for today’s
computer miracles are virtually the same as those of the IAS computer from over
50 years ago, while on the other hand, the techniques for squeezing the last iota of
performance out of the materials at hand have become increasingly sophisticated.

This observation serves as a guiding principle for the presentation in this
book. As we progress through the various elements and components of a computer,
two objectives are pursued. First, the book explains the fundamental functionality
in each area under consideration, and second, the book explores those techniques
required to achieve maximum performance. In the remainder of this section, we
highlight some of the driving factors behind the need to design for performance.

Microprocessor Speed

What gives Intel x86 processors or IBM mainframe computers such mind-boggling
power is the relentless pursuit of speed by processor chip manufacturers. The evolu-
tion of these machines continues to bear out Moore’s law, mentioned previously. So
long as this law holds, chipmakers can unleash a new generation of chips every three
years—with four times as many transistors. In memory chips, this has quadrupled
the capacity of dynamic random-access memory (DRAM), still the basic technology
for computer main memory, every three years. In microprocessors, the addition of
new circuits, and the speed boost that comes from reducing the distances between
them, has improved performance four- or fivefold every three years or so since Intel
launched its x86 family in 1978.

But the raw speed of the microprocessor will not achieve its potential unless
it is fed a constant stream of work to do in the form of computer instructions.
Anything that gets in the way of that smooth flow undermines the power of the
processor. Accordingly, while the chipmakers have been busy learning how to fabri-
cate chips of greater and greater density, the processor designers must come up with
ever more elaborate techniques for feeding the monster. Among the techniques
built into contemporary processors are the following:

 • Pipelining: With pipelining, a processor can simultaneously work on multiple
instructions. The processor overlaps operations by moving data or instructions
into a conceptual pipe with all stages of the pipe processing simultaneously.
For example, while one instruction is being executed, the computer is decod-
ing the next instruction.

 • Branch prediction: The processor looks ahead in the instruction code fetched
from memory and predicts which branches, or groups of instructions, are likely
to be processed next. If the processor guesses right most of the time, it can
prefetch the correct instructions and buffer them so that the processor is kept
busy. The more sophisticated examples of this strategy predict not just the

2.2 / DESIGNING FOR PERFORMANCE 39

next branch but multiple branches ahead. Thus, branch prediction increases
the amount of work available for the processor to execute.

 • Data flow analysis: The processor analyzes which instructions are dependent
on each other’s results, or data, to create an optimized schedule of instructions.
In fact, instructions are scheduled to be executed when ready, independent of
the original program order. This prevents unnecessary delay.

 • Speculative execution: Using branch prediction and data flow analysis, some
processors speculatively execute instructions ahead of their actual appear-
ance in the program execution, holding the results in temporary locations.
This enables the processor to keep its execution engines as busy as possible by
 executing instructions that are likely to be needed.

These and other sophisticated techniques are made necessary by the sheer power
of the processor. They make it possible to exploit the raw speed of the processor.

Performance Balance

While processor power has raced ahead at breakneck speed, other critical compo-
nents of the computer have not kept up. The result is a need to look for performance
balance: an adjusting of the organization and architecture to compensate for the
mismatch among the capabilities of the various components.

Nowhere is the problem created by such mismatches more critical than in the
interface between processor and main memory. While processor speed has grown
rapidly, the speed with which data can be transferred between main memory and the
processor has lagged badly. The interface between processor and main memory is
the most crucial pathway in the entire computer because it is responsible for carry-
ing a constant flow of program instructions and data between memory chips and the
processor. If memory or the pathway fails to keep pace with the processor’s insistent
demands, the processor stalls in a wait state, and valuable processing time is lost.

A system architect can attack this problem in a number of ways, all of which
are reflected in contemporary computer designs. Consider the following examples:

 • Increase the number of bits that are retrieved at one time by making DRAMs
“wider” rather than “deeper” and by using wide bus data paths.

 • Change the DRAM interface to make it more efficient by including a cache10
or other buffering scheme on the DRAM chip.

 • Reduce the frequency of memory access by incorporating increasingly complex
and efficient cache structures between the processor and main memory. This
includes the incorporation of one or more caches on the processor chip as well
as on an off-chip cache close to the processor chip.

 • Increase the interconnect bandwidth between processors and memory by
 using higher-speed buses and a hierarchy of buses to buffer and structure data
flow.

10A cache is a relatively small fast memory interposed between a larger, slower memory and the logic that
accesses the larger memory. The cache holds recently accessed data and is designed to speed up subse-
quent access to the same data. Caches are discussed in Chapter 4.

40 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

Another area of design focus is the handling of I/O devices. As computers
become faster and more capable, more sophisticated applications are developed
that support the use of peripherals with intensive I/O demands. Figure 2.10 gives
some examples of typical peripheral devices in use on personal computers and
workstations. These devices create tremendous data throughput demands. While
the current generation of processors can handle the data pumped out by these
devices, there remains the problem of getting that data moved between proces-
sor and peripheral. Strategies here include caching and buffering schemes plus the
use of higher-speed interconnection buses and more elaborate structures of buses.
In addition, the use of multiple-processor configurations can aid in satisfying I/O
demands.

The key in all this is balance. Designers constantly strive to balance the
throughput and processing demands of the processor components, main memory,
I/O devices, and the interconnection structures. This design must constantly be
rethought to cope with two constantly evolving factors:

 • The rate at which performance is changing in the various technology areas
(processor, buses, memory, peripherals) differs greatly from one type of
 element to another.

 • New applications and new peripheral devices constantly change the nature of
the demand on the system in terms of typical instruction profile and the data
access patterns.

Keyboard

101 102 103 104 105

Data rate (bps)

106 107 108 109

Mouse

Modem

Ethernet

Hard disk

Graphics display

Gigabit Ethernet

Floppy disk

Laser printer

Scanner

Optical disk

Figure 2.10 Typical I/O Device Data Rates’

2.2 / DESIGNING FOR PERFORMANCE 41

Thus, computer design is a constantly evolving art form. This book attempts to
present the fundamentals on which this art form is based and to present a survey of
the current state of that art.

Improvements in Chip Organization and Architecture

As designers wrestle with the challenge of balancing processor performance with that
of main memory and other computer components, the need to increase processor
speed remains. There are three approaches to achieving increased processor speed:

 • Increase the hardware speed of the processor. This increase is fundamentally
due to shrinking the size of the logic gates on the processor chip, so that more
gates can be packed together more tightly and to increasing the clock rate.
With gates closer together, the propagation time for signals is significantly
reduced, enabling a speeding up of the processor. An increase in clock rate
means that individual operations are executed more rapidly.

 • Increase the size and speed of caches that are interposed between the proces-
sor and main memory. In particular, by dedicating a portion of the processor
chip itself to the cache, cache access times drop significantly.

 • Make changes to the processor organization and architecture that increase the
effective speed of instruction execution. Typically, this involves using parallel-
ism in one form or another.

Traditionally, the dominant factor in performance gains has been in increases
in clock speed due and logic density. However, as clock speed and logic density
increase, a number of obstacles become more significant [INTE04b]:

 • Power: As the density of logic and the clock speed on a chip increase, so does
the power density (Watts/cm2). The difficulty of dissipating the heat generated
on high-density, high-speed chips is becoming a serious design issue [GIBB04,
BORK03].

 • RC delay: The speed at which electrons can flow on a chip between transis-
tors is limited by the resistance and capacitance of the metal wires connecting
them; specifically, delay increases as the RC product increases. As components
on the chip decrease in size, the wire interconnects become thinner, increasing
resistance. Also, the wires are closer together, increasing capacitance.

 • Memory latency: Memory speeds lag processor speeds, as previously discussed.

Thus, there will be more emphasis on organization and architectural approaches
to improving performance. These techniques are discussed in later chapters of the book.

Beginning in the late 1980s, and continuing for about 15 years, two main
 strategies have been used to increase performance beyond what can be achieved
simply by increasing clock speed. First, there has been an increase in cache capacity.
There are now typically two or three levels of cache between the processor and
main memory. As chip density has increased, more of the cache memory has been
 incorporated on the chip, enabling faster cache access. For example, the original
Pentium chip devoted about 10% of on-chip area to a cache. Contemporary chips
devote over half of the chip area to caches.

42 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

11I am grateful to Professor Kathy Yelick of UC Berkeley, who provided this graph.

Second, the instruction execution logic within a processor has become increas-
ingly complex to enable parallel execution of instructions within the processor. Two
noteworthy design approaches have been pipelining and superscalar. A pipeline
works much as an assembly line in a manufacturing plant enabling different stages
of execution of different instructions to occur at the same time along the pipeline. A
superscalar approach in essence allows multiple pipelines within a single processor
so that instructions that do not depend on one another can be executed in parallel.

By the mid to late 90s, both of these approaches were reaching a point of
diminishing returns. The internal organization of contemporary processors is
exceedingly complex and is able to squeeze a great deal of parallelism out of the
instruction stream. It seems likely that further significant increases in this direction
will be relatively modest [GIBB04]. With three levels of cache on the processor
chip, each level providing substantial capacity, it also seems that the benefits from
the cache are reaching a limit.

However, simply relying on increasing clock rate for increased performance
runs into the power dissipation problem already referred to. The faster the clock
rate, the greater the amount of power to be dissipated, and some fundamental phys-
ical limits are being reached.

Figure 2.11 illustrates the concepts we have been discussing.11 The top line
shows that, as per Moore’s Law, the number of transistors on a single chip contin-
ues to grow exponentially.12 Meanwhile, the clock speed has leveled off, in order

12The observant reader will note that the transistor count values in this figure are significantly less than
those of Figure 2.8. That latter figure shows the transistor count for a form of main memory known as
DRAM (discussed in Chapter 5), which supports higher transistor density than processor chips.

0.1

1

10

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

Power (W)

Cores

102

103

104

105

106

107

Figure 2.11 Processor Trends

2.3 / MULTICORE, MICS, AND GPGPUS 43

to prevent a further rise in power. To continue to increase performance, designers
have had to find ways of exploiting the growing number of transistors other than
simply building a more complex processor. The response in recent years has been
the development of the multicore computer chip.

 2.3 MULTICORE, MICS, AND GPGPUS

With all of the difficulties cited in the preceding paragraphs in mind, designers
have turned to a fundamentally new approach to improving performance: placing
multiple processors on the same chip, with a large shared cache. The use of mul-
tiple processors on the same chip, also referred to as multiple cores, or multicore,
provides the potential to increase performance without increasing the clock rate.
Studies indicate that, within a processor, the increase in performance is roughly
 proportional to the square root of the increase in complexity [BORK03]. But if the
software can support the effective use of multiple processors, then doubling the
number of processors almost doubles performance. Thus, the strategy is to use two
simpler processors on the chip rather than one more complex processor.

In addition, with two processors, larger caches are justified. This is important
because the power consumption of memory logic on a chip is much less than that of
processing logic.

As the logic density on chips continues to rise, the trend to both more cores
and more cache on a single chip continues. Two-core chips were quickly followed
by four-core chips, then 8, then 16, and so on. As the caches became larger, it made
performance sense to create two and then three levels of cache on a chip, with the
first-level cache dedicated to an individual processor and levels two and three being
shared by all the processors.

Chip manufacturers are now in the process of making a huge leap forward
in the number of cores per chip, with more than 50 cores per chip. The leap in
 performance as well as the challenges in developing software to exploit such a large
number of cores have led to the introduction of a new term: many integrated core
(MIC).

The multicore and MIC strategy involves a homogeneous collection of
 general-purpose processors on a single chip. At the same time, chip manufacturers
are pursuing another design option: a chip with multiple general-purpose processors
plus graphics processing units (GPUs) and specialized cores for video process-
ing and other tasks. In broad terms, a GPU is a core designed to perform parallel
operations on graphics data. Traditionally found on a plug-in graphics card (display
adapter), it is used to encode and render 2D and 3D graphics as well as process
video.

Since GPUs perform parallel operations on multiple sets of data, they are
increasingly being used as vector processors for a variety of applications that
require repetitive computations. This blurs the line between the GPU and the
CPU [FATA08, PROP11]. When a broad range of applications are supported
by such a processor, the term general-purpose computing on GPUs (GPGPU)
is used.

We explore design characteristics of multicore computers in Chapter 18.

44 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

13Intel refers to this as the tick-tock model. Using this model, Intel has successfully delivered next-genera-
tion silicon technology as well as new processor microarchitecture on alternating years for the past several
years. See http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html

 2.4 THE EVOLUTION OF THE INTEL X86 ARCHITECTURE

Throughout this book, we rely on many concrete examples of computer design
and implementation to illustrate concepts and to illuminate trade-offs. Numerous
systems, both contemporary and historical, provide examples of important computer
architecture design features. But the book relies on examples from two processor
families: the Intel x86 and the ARM architecture. The current x86 offerings repre-
sent the results of decades of design effort on complex instruction set computers
(CISCs). The x86 incorporates the sophisticated design principles once found only on
mainframes and supercomputers and serves as an excellent example of CISC design.
An alternative approach to processor design in the reduced instruction set computer
(RISC). The ARM architecture is used in a wide variety of embedded systems and
is one of the most powerful and best-designed RISC-based systems on the market.

In this section and the next, we provide a brief overview of these two systems.
In terms of market share, Intel has ranked as the number one maker of micro-

processors for nonembedded systems for decades, a position it seems unlikely to
yield. The evolution of its flagship microprocessor product serves as a good indicator
of the evolution of computer technology in general.

Table 2.6 shows that evolution. Interestingly, as microprocessors have grown
faster and much more complex, Intel has actually picked up the pace. Intel used
to develop microprocessors one after another, every four years. But Intel hopes
to keep rivals at bay by trimming a year or two off this development time, and has
done so with the most recent x86 generations.13

It is worthwhile to list some of the highlights of the evolution of the Intel
product line:

 • 8080: The world’s first general-purpose microprocessor. This was an 8-bit
 machine, with an 8-bit data path to memory. The 8080 was used in the first
personal computer, the Altair.

 • 8086: A far more powerful, 16-bit machine. In addition to a wider data path
and larger registers, the 8086 sported an instruction cache, or queue, that
prefetches a few instructions before they are executed. A variant of this
 processor, the 8088, was used in IBM’s first personal computer, securing the
success of Intel. The 8086 is the first appearance of the x86 architecture.

 • 80286: This extension of the 8086 enabled addressing a 16-MByte memory
instead of just 1 MByte.

 • 80386: Intel’s first 32-bit machine, and a major overhaul of the product.
With a 32-bit architecture, the 80386 rivaled the complexity and power of
 minicomputers and mainframes introduced just a few years earlier. This was
the first Intel processor to support multitasking, meaning it could run multiple
programs at the same time.

 • 80486: The 80486 introduced the use of much more sophisticated and powerful
cache technology and sophisticated instruction pipelining. The 80486 also

http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html

2.5 / EMBEDDED SYSTEMS AND THE ARM 45

14With the Pentium 4, Intel switched from Roman numerals to Arabic numerals for model numbers.

offered a built-in math coprocessor, offloading complex math operations from
the main CPU.

 • Pentium: With the Pentium, Intel introduced the use of superscalar tech-
niques, which allow multiple instructions to execute in parallel.

 • Pentium Pro: The Pentium Pro continued the move into superscalar organiza-
tion begun with the Pentium, with aggressive use of register renaming, branch
prediction, data flow analysis, and speculative execution.

 • Pentium II: The Pentium II incorporated Intel MMX technology, which is
designed specifically to process video, audio, and graphics data efficiently.

 • Pentium III: The Pentium III incorporates additional floating-point instruc-
tions to support 3D graphics software.

 • Pentium 4: The Pentium 4 includes additional floating-point and other
enhancements for multimedia.14

 • Core: This is the first Intel x86 microprocessor with a dual core, referring to
the implementation of two processors on a single chip.

 • Core 2: The Core 2 extends the architecture to 64 bits. The Core 2 Quad pro-
vides four processors on a single chip. More recent Core offerings have up to
10 processors per chip.

Over 30 years after its introduction in 1978, the x86 architecture continues to
dominate the processor market outside of embedded systems. Although the organi-
zation and technology of the x86 machines have changed dramatically over the dec-
ades, the instruction set architecture has evolved to remain backward compatible
with earlier versions. Thus, any program written on an older version of the x86 archi-
tecture can execute on newer versions. All changes to the instruction set architecture
have involved additions to the instruction set, with no subtractions. The rate of
change has been the addition of roughly one instruction per month added to the
architecture over the 30 years [ANTH08], so that there are now over 500 instructions
in the instruction set.

The x86 provides an excellent illustration of the advances in computer
 hardware over the past 30 years. The 1978 8086 was introduced with a clock speed
of 5 MHz and had 29,000 transistors. A quad-core Intel Core 2 introduced in 2008
operates at 3 GHz, a speedup of a factor of 600, and has 820 million transistors,
about 28,000 times as many s the 8086. Yet the Core 2 is in only a slightly larger
package than the 8086 and has a comparable cost.

 2.5 EMBEDDED SYSTEMS AND THE ARM

The ARM architecture refers to a processor architecture that has evolved from
RISC design principles and is used in embedded systems. Chapter 15 examines
RISC design principles in detail. In this section, we give a brief overview of the con-
cept of embedded systems and then look at the evolution of the ARM.

46 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

Embedded Systems

The term embedded system refers to the use of electronics and software within a
product, as opposed to a general-purpose computer, such as a laptop or desktop
system. The following is a good general definition:15

Table 2.7 Examples of Embedded Systems and Their Markets

Market Embedded Device

Automotive
Ignition system
Engine control
Brake system

Consumer electronics

Digital and analog televisions
Set-top boxes (DVDs, VCRs, Cable boxes)
Personal digital assistants (PDAs)
Kitchen appliances (refrigerators, toasters, microwave ovens)
Automobiles
Toys/games
Telephones/cell phones/pagers
Cameras
Global positioning systems

Industrial control
Robotics and controls systems for manufacturing
Sensors

Medical

Infusion pumps
Dialysis machines
Prosthetic devices
Cardiac monitors

Office automation

Fax machine
Photocopier
Printers
Monitors
Scanners

15Michael Barr, Embedded Systems Glossary. Netrino Technical Library. http://www.netrino.com/
Embedded-Systems/Glossary

Embedded system. A combination of computer hardware and software, and perhaps
additional mechanical or other parts, designed to perform a dedicated function. In many
cases, embedded systems are part of a larger system or product, as in the case of an antilock
braking system in a car.

Embedded systems far outnumber general-purpose computer systems, encom-
passing a broad range of applications (Table 2.7). These systems have widely varying
requirements and constraints, such as the following [GRIM05]:

 • Small to large systems, implying very different cost constraints, thus different
needs for optimization and reuse

http://www.netrino.com/Embedded-Systems/Glossary
http://www.netrino.com/Embedded-Systems/Glossary

2.5 / EMBEDDED SYSTEMS AND THE ARM 47

 • Relaxed to very strict requirements and combinations of different quality
requirements, for example, with respect to safety, reliability, real-time, and
flexibility

 • Short to long life times

 • Different environmental conditions in terms of, for example, radiation, vibra-
tions, and humidity

 • Different application characteristics resulting in static versus dynamic loads,
slow to fast speed, compute versus interface intensive tasks, and/or combina-
tions thereof

 • Different models of computation ranging from discrete-event systems to those
involving continuous time dynamics (usually referred to as hybrid systems)

Often, embedded systems are tightly coupled to their environment. This
can give rise to real-time constraints imposed by the need to interact with the
 environment. Constraints, such as required speeds of motion, required precision of
 measurement, and required time durations, dictate the timing of software operations.
If multiple activities must be managed simultaneously, this imposes more complex
real-time constraints.

Figure 2.12, based on [KOOP96], shows in general terms an embedded system
organization. In addition to the processor and memory, there are a number of
 elements that differ from the typical desktop or laptop computer:

 • There may be a variety of interfaces that enable the system to measure,
 manipulate, and otherwise interact with the external environment.

 • The human interface may be as simple as a flashing light or as complicated as
real-time robotic vision.

Auxiliary
systems
(power,
cooling)

MemoryFPGA/
ASIC

Human
interface

Diagnostic
port

D/A
conversion

A/D
conversion

Electromechanical
backup and safety

Sensors Actuators

Processor

Software

External
environment

Figure 2.12 Possible Organization of an Embedded System

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

48 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

16The company dropped the designation Advanced RISC Machine in the late 1990s. It is now simply
known as the ARM architecture.

 • The diagnostic port may be used for diagnosing the system that is being
 controlled—not just for diagnosing the computer.

 • Special-purpose field programmable (FPGA), application specific (ASIC), or
even nondigital hardware may be used to increase performance or safety.

 • Software often has a fixed function and is specific to the application.

ARM Evolution

ARM is a family of RISC-based microprocessors and microcontrollers designed
by ARM Inc., Cambridge, England. The company doesn’t make processors but
instead designs microprocessor and multicore architectures and licenses them to
manufacturers. ARM chips are high-speed processors that are known for their
small die size and low power requirements. They are widely used in PDAs and
other handheld devices, including games and phones as well as a large variety
of consumer products. ARM chips are the processors in Apple’s popular iPod
and iPhone devices. ARM is probably the most widely used embedded processor
architecture and indeed the most widely used processor architecture of any kind
in the world.

The origins of ARM technology can be traced back to the British-based Acorn
Computers company. In the early 1980s, Acorn was awarded a contract by the
British Broadcasting Corporation (BBC) to develop a new microcomputer architec-
ture for the BBC Computer Literacy Project. The success of this contract enabled
Acorn to go on to develop the first commercial RISC processor, the Acorn RISC
Machine (ARM). The first version, ARM1, became operational in 1985 and was
used for internal research and development as well as being used as a coprocessor
in the BBC machine. Also in 1985, Acorn released the ARM2, which had greater
functionality and speed within the same physical space. Further improvements were
achieved with the release in 1989 of the ARM3.

Throughout this period, Acorn used the company VLSI Technology to do the
actual fabrication of the processor chips. VLSI was licensed to market the chip on
its own and had some success in getting other companies to use the ARM in their
products, particularly as an embedded processor.

The ARM design matched a growing commercial need for a high-performance,
low-power-consumption, small-size, and low-cost processor for embedded appli-
cations. But further development was beyond the scope of Acorn’s capabilities.
Accordingly, a new company was organized, with Acorn, VLSI, and Apple Computer
as founding partners, known as ARM Ltd. The Acorn RISC Machine became the
Advanced RISC Machine.16 The new company’s first offering, an improvement on
the ARM3, was designated ARM6. Subsequently, the company has introduced a
number of new families, with increasing functionality and performance. Table 2.8
shows some characteristics of the various ARM architecture families. The numbers
in this table are only approximate guides; actual values vary widely for different
implementations.

2.6 / PERFORMANCE ASSESSMENT 49

According to the ARM Web site arm.com, ARM processors are designed to
meet the needs of three system categories:

 • Embedded real-time systems: Systems for storage, automotive body and
power-train, industrial, and networking applications

 • Application platforms: Devices running open operating systems including
Linux, Palm OS, Symbian OS, and Windows CE in wireless, consumer enter-
tainment and digital imaging applications

 • Secure applications: Smart cards, SIM cards, and payment terminals

 2.6 PERFORMANCE ASSESSMENT

In evaluating processor hardware and setting requirements for new systems,
 performance is one of the key parameters to consider, along with cost, size, security,
reliability, and, in some cases, power consumption.

It is difficult to make meaningful performance comparisons among different
processors, even among processors in the same family. Raw speed is far less important
than how a processor performs when executing a given application. Unfortunately,
application performance depends not just on the raw speed of the processor but also
on the instruction set, choice of implementation language, efficiency of the compiler,
and skill of the programming done to implement the application.

Table 2.8 ARM Evolution

Family Notable Features Cache Typical MIPS @ MHz

ARM1 32-bit RISC None

ARM2 Multiply and swap instructions; Integrated
memory management unit, graphics and I/O
processor

None 7 MIPS @ 12 MHz

ARM3 First use of processor cache 4 kB unified 12 MIPS @ 25 MHz

ARM6 First to support 32-bit addresses; floating-point
unit

4 kB unified 28 MIPS @ 33 MHz

ARM7 Integrated SoC 8 kB unified 60 MIPS @ 60 MHz

ARM8 5-stage pipeline; static branch prediction 8 kB unified 84 MIPS @ 72 MHz

ARM9 16 kB/16 kB 300 MIPS @ 300 MHz

ARM9E Enhanced DSP instructions 16 kB/16 kB 220 MIPS @ 200 MHz

ARM10E 6-stage pipeline 32 kB/32 kB

ARM11 9-stage pipeline Variable 740 MIPS @ 665 MHz

Cortex 13-stage superscalar pipeline Variable 2000 MIPS @ 1 GHz

XScale Applications processor; 7-stage pipeline 32 kB/32 kB L1
512 kB L2

1000 MIPS @ 1.25 GHz

DSP = digital signal processor
SoC = system on a chip

50 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

We begin this section with a look at some traditional measures of processor
speed. Then we examine the most common approach to assessing processor and
computer system performance. We follow this with a discussion of how to average
results from multiple tests. Finally, we look at the insights produced by considering
Amdahl’s law.

Clock Speed and Instructions per Second

THE SYSTEM CLOCK Operations performed by a processor, such as fetching an
instruction, decoding the instruction, performing an arithmetic operation, and so
on, are governed by a system clock. Typically, all operations begin with the pulse of
the clock. Thus, at the most fundamental level, the speed of a processor is dictated
by the pulse frequency produced by the clock, measured in cycles per second, or
Hertz (Hz).

Typically, clock signals are generated by a quartz crystal, which generates a
constant signal wave while power is applied. This wave is converted into a digital
voltage pulse stream that is provided in a constant flow to the processor circuitry
(Figure 2.13). For example, a 1-GHz processor receives 1 billion pulses per second.
The rate of pulses is known as the clock rate, or clock speed. One increment, or
pulse, of the clock is referred to as a clock cycle, or a clock tick. The time between
pulses is the cycle time.

The clock rate is not arbitrary, but must be appropriate for the physical layout
of the processor. Actions in the processor require signals to be sent from one proc-
essor element to another. When a signal is placed on a line inside the processor, it
takes some finite amount of time for the voltage levels to settle down so that an
accurate value (1 or 0) is available. Furthermore, depending on the physical layout
of the processor circuits, some signals may change more rapidly than others. Thus,
operations must be synchronized and paced so that the proper electrical signal
(voltage) values are available for each operation.

From Computer Desktop Encyclopedia,
1998, The Computer Language Co.

Figure 2.13 System Clock

2.6 / PERFORMANCE ASSESSMENT 51

The execution of an instruction involves a number of discrete steps, such
as fetching the instruction from memory, decoding the various portions of the
 instruction, loading and storing data, and performing arithmetic and logical opera-
tions. Thus, most instructions on most processors require multiple clock cycles to
complete. Some instructions may take only a few cycles, while others require dozens.
In addition, when pipelining is used, multiple instructions are being executed simul-
taneously. Thus, a straight comparison of clock speeds on different processors does
not tell the whole story about performance.

INSTRUCTION EXECUTION RATE A processor is driven by a clock with a constant
frequency f or, equivalently, a constant cycle time t, where t = 1/f. Define the
instruction count, Ic, for a program as the number of machine instructions executed
for that program until it runs to completion or for some defined time interval. Note
that this is the number of instruction executions, not the number of instructions
in the object code of the program. An important parameter is the average cycles
per instruction (CPI) for a program. If all instructions required the same number
of clock cycles, then CPI would be a constant value for a processor. However, on
any give processor, the number of clock cycles required varies for different types of
instructions, such as load, store, branch, and so on. Let CPIi be the number of cycles
required for instruction type i and Ii be the number of executed instructions of type
i for a given program. Then we can calculate an overall CPI as follows:

 CPI = a
n
i = 1(CPIi * Ii)

Ic
 (2.1)

The processor time T needed to execute a given program can be expressed as

T = Ic * CPI * t

We can refine this formulation by recognizing that during the execution of
an instruction, part of the work is done by the processor, and part of the time a
word is being transferred to or from memory. In this latter case, the time to transfer
depends on the memory cycle time, which may be greater than the processor cycle
time. We can rewrite the preceding equation as

T = Ic * [p + (m * k)] * t

where p is the number of processor cycles needed to decode and execute the instruc-
tion, m is the number of memory references needed, and k is the ratio between
memory cycle time and processor cycle time. The five performance factors in the
 preceding equation (Ic, p, m, k, t) are influenced by four system attributes: the
design of the instruction set (known as instruction set architecture), compiler tech-
nology (how effective the compiler is in producing an efficient machine language
program from a high-level language program), processor implementation, and cache
and memory hierarchy. Table 2.9 is a matrix in which one dimension shows the five
performance factors and the other dimension shows the four system attributes. An
X in a cell indicates a system attribute that affects a performance factor.

A common measure of performance for a processor is the rate at which
instructions are executed, expressed as millions of instructions per second (MIPS),

52 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

referred to as the MIPS rate. We can express the MIPS rate in terms of the clock
rate and CPI as follows:

 MIPS rate =
Ic

T * 106 =
f

CPI * 106 (2.2)

For example, consider the execution of a program that results in the execu-
tion of 2 million instructions on a 400-MHz processor. The program consists of four
major types of instructions. The instruction mix and the CPI for each instruction
type are given below based on the result of a program trace experiment:

Table 2.9 Performance Factors and System Attributes

Ic p m k τ

Instruction set architecture X X

Compiler technology X X X

Processor implementation X X

Cache and memory hierarchy X X

Instruction Type CPI Instruction Mix (%)

Arithmetic and logic 1 60

Load/store with cache hit 2 18

Branch 4 12

Memory reference with cache miss 8 10

The average CPI when the program is executed on a uniprocessor with
the above trace results is CPI = 0.6 + (2 : 0.18) + (4 : 0.12) + (8 : 0.1) = 2.24.
The corresponding MIPS rate is (400 : 106)/(2.24 : 106) ≈ 178.

Another common performance measure deals only with floating-point
instructions. These are common in many scientific and game applications. Floating-
point performance is expressed as millions of floating-point operations per second
(MFLOPS), defined as follows:

MFLOPS rate =
Number of executed floating@point operations in a program

Execution time * 106

Benchmarks

Measures such as MIPS and MFLOPS have proven inadequate to evaluating the
performance of processors. Because of differences in instruction sets, the instruc-
tion execution rate is not a valid means of comparing the performance of different
architectures. For example, consider this high-level language statement:

 A = B + C /* assume all quantities in main memory */

2.6 / PERFORMANCE ASSESSMENT 53

With a traditional instruction set architecture, referred to as a complex instruc-
tion set computer (CISC), this instruction can be compiled into one processor
instruction:

add mem(B), mem(C), mem (A)

On a typical RISC machine, the compilation would look something like this:

load mem(B), reg(1);
load mem(C), reg(2);
add reg(1), reg(2), reg(3);
store reg(3), mem (A)

Because of the nature of the RISC architecture (discussed in Chapter 15),
both machines may execute the original high-level language instruction in about the
same time. If this example is representative of the two machines, then if the CISC
machine is rated at 1 MIPS, the RISC machine would be rated at 4 MIPS. But both
do the same amount of high-level language work in the same amount of time.

Further, the performance of a given processor on a given program may not be
useful in determining how that processor will perform on a very different type of
application. Accordingly, beginning in the late 1980s and early 1990s, industry and
academic interest shifted to measuring the performance of systems using a set of
benchmark programs. The same set of programs can be run on different machines
and the execution times compared.

[WEIC90] lists the following as desirable characteristics of a benchmark
 program:

 1. It is written in a high-level language, making it portable across different
 machines.

 2. It is representative of a particular kind of programming style, such as systems
programming, numerical programming, or commercial programming.

 3. It can be measured easily.

 4. It has wide distribution.

SPEC BENCHMARKS The common need in industry and academic and research
communities for generally accepted computer performance measurements has
led to the development of standardized benchmark suites. A benchmark suite is a
collection of programs, defined in a high-level language, that together attempt to
provide a representative test of a computer in a particular application or system
programming area. The best known such collection of benchmark suites is defined
and maintained by the System Performance Evaluation Corporation (SPEC),
an industry consortium. SPEC performance measurements are widely used for
comparison and research purposes.

The best known of the SPEC benchmark suites is SPEC CPU2006. This is the
industry standard suite for processor-intensive applications. That is, SPEC CPU2006 is
appropriate for measuring performance for applications that spend most of their time
doing computation rather than I/O. The CPU2006 suite is based on existing applica-
tions that have already been ported to a wide variety of platforms by SPEC industry

54 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

members. It consists of 17 floating-point programs written in C, C++, and Fortran; and
12 integer programs written in C and C++. The suite contains over 3 million lines of
code. This is the fifth generation of processor-intensive suites from SPEC, replacing
SPEC CPU2000, SPEC CPU95, SPEC CPU92, and SPEC CPU89 [HENN07].

Other SPEC suites include the following:

 • SPECjvm98: Intended to evaluate performance of the combined hardware
and software aspects of the Java Virtual Machine (JVM) client platform

 • SPECjbb2000 (Java Business Benchmark): A benchmark for evaluating
server-side Java-based electronic commerce applications

 • SPECweb99: Evaluates the performance of World Wide Web (WWW) servers

 • SPECmail2001: Designed to measure a system’s performance acting as a mail
server

AVERAGING RESULTS To obtain a reliable comparison of the performance of
various computers, it is preferable to run a number of different benchmark programs
on each machine and then average the results. For example, if there are m different
benchmark programs, then a simple arithmetic mean can be calculated as follows:

 RA =
1
m

 a
m

i = 1
Ri (2.3)

where Ri is the high-level language instruction execution rate for the ith benchmark
program.

An alternative is to take the harmonic mean:

 RH =
m

a
m

i = 1

1
Ri

 (2.4)

Ultimately, the user is concerned with the execution time of a system, not its
execution rate. If we take arithmetic mean of the instruction rates of various bench-
mark programs, we get a result that is proportional to the sum of the inverses of
execution times. But this is not inversely proportional to the sum of execution times.
In other words, the arithmetic mean of the instruction rate does not cleanly relate
to execution time. On the other hand, the harmonic mean instruction rate is the
inverse of the average execution time.

SPEC benchmarks do not concern themselves with instruction execution
rates. Rather, two fundamental metrics are of interest: a speed metric and a rate
metric. The speed metric measures the ability of a computer to complete a single
task. SPEC defines a base runtime for each benchmark program using a reference
machine. Results for a system under test are reported as the ratio of the reference
run time to the system run time. The ratio is calculated as follows:

 ri =
Trefi

Tsuti
 (2.5)

where Trefi is the execution time of benchmark program i on the reference system
and Tsuti is the execution time of benchmark program i on the system under test.

2.6 / PERFORMANCE ASSESSMENT 55

As an example of the calculation and reporting, consider the Sun Blade 6250,
which consists of two chips with four cores, or processors, per chip. One of the SPEC
CPU2006 integer benchmark is 464.h264ref. This is a reference implementation of
H.264/AVC (Advanced Video Coding), the latest state-of-the-art video compres-
sion standard. The Sun system executes this program in 934 seconds. The reference
 implementation requires 22,135 seconds. The ratio is calculated as: 22136/934 = 23.7.

Because the time for the system under test is in the denominator, the larger
the ratio, the higher the speed. An overall performance measure for the system
under test is calculated by averaging the values for the ratios for all 12 integer
benchmarks. SPEC specifies the use of a geometric mean, defined as follows:

 rG = aq
n

i = 1
rib

1>n
 (2.6)

where ri is the ratio for the ith benchmark program. For the Sun Blade 6250, the
SPEC integer speed ratios were reported as follows:

The speed metric is calculated by taking the twelfth root of the product of the
ratios:

Benchmark Ratio Benchmark Ratio

400.perlbench 17.5 458.sjeng 17.0

401.bzip2 14.0 462.libquantum 31.3

403.gcc 13.7 464.h264ref 23.7

429.mcf 17.6 471.omnetpp 9.23

445.gobmk 14.7 473.astar 10.9

456.hmmer 18.6 483.xalancbmk 14.7

(17.5 * 14 * 13.7 * 17.6 * 14.7 * 18.6 * 17 * 31.3 * 23.7 * 9.23 * 10.9 * 14.7)1/12 = 18.5

The rate metric measures the throughput or rate of a machine carrying out
a number of tasks. For the rate metrics, multiple copies of the benchmarks are
run simultaneously. Typically, the number of copies is the same as the number of
 processors on the machine. Again, a ratio is used to report results, although the
 calculation is more complex. The ratio is calculated as follows:

 ri =
N * Trefi

Tsuti
 (2.7)

where Trefi is the reference execution time for benchmark i, N is the number of cop-
ies of the program that are run simultaneously, and Tsuti is the elapsed time from
the start of the execution of the program on all N processors of the system under
test until the completion of all the copies of the program. Again, a geometric mean
is calculated to determine the overall performance measure.

SPEC chose to use a geometric mean because it is the most appropriate for
 normalized numbers, such as ratios. [FLEM86] demonstrates that the geometric
mean has the property of performance relationships consistently maintained regard-
less of the computer that is used as the basis for normalization.

56 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

Amdahl’s Law

When considering system performance, computer system designers look for
ways to improve performance by improvement in technology or change in
design. Examples include the use of parallel processors, the use of a memory
cache hierarchy, and speedup in memory access time and I/O transfer rate
due to technology improvements. In all of these cases, it is important to note
that a speedup in one aspect of the technology or design does not result in a
 corresponding improvement in performance. This limitation is succinctly
expressed by Amdahl’s law.

Amdahl’s law was first proposed by Gene Amdahl in [AMDA67] and deals
with the potential speedup of a program using multiple processors compared to a
single processor. Consider a program running on a single processor such that a frac-
tion (1 – f) of the execution time involves code that is inherently serial and a fraction
f that involves code that is infinitely parallelizable with no scheduling overhead.
Let T be the total execution time of the program using a single processor. Then the
speedup using a parallel processor with N processors that fully exploits the parallel
portion of the program is as follows:

 Speedup =
Time to execute program on a single processor

Time to execute program on N parallel processors

 =
T(1 - f) + Tf

T(1 - f) +
Tf

N

 =
1

(1 - f) +
f

N

This equation is illustrated in Figure 2.14. Two important conclusions can be
drawn:

 1. When f is small, the use of parallel processors has little effect.

 2. As N approaches infinity, speedup is bound by 1/(1 – f), so that there are
diminishing returns for using more processors.

These conclusions are too pessimistic, an assertion first put forward in
[GUST88]. For example, a server can maintain multiple threads or multiple tasks
to handle multiple clients and execute the threads or tasks in parallel up to the limit
of the number of processors. Many database applications involve computations on
 massive amounts of data that can be split up into multiple parallel tasks. Nevertheless,
Amdahl’s law illustrates the problems facing industry in the development of multi-
core machines with an ever-growing number of cores: The software that runs on such
machines must be adapted to a highly parallel execution environment to exploit the
power of parallel processing.

Amdahl’s law can be generalized to evaluate any design or technical improve-
ment in a computer system. Consider any enhancement to a feature of a system that
results in a speedup. The speedup can be expressed as

 Speedup =
Performance after enhancement

Performance before enhancement
 =

Execution time before enhancement
Execution time after enhancement

(2.8)

2.6 / PERFORMANCE ASSESSMENT 57

Suppose that a feature of the system is used during execution a fraction of the
time f, before enhancement, and that the speedup of that feature after enhancement
is SUf. Then the overall speedup of the system is

Speedup =
1

(1 - f) +
f

SUf

For example, suppose that a task makes extensive use of floating-point operations,
with 40% of the time is consumed by floating-point operations. With a new hardware
design, the floating-point module is speeded up by a factor of K. Then the overall
speedup is as follows:

Speedup =
1

0.6 +
0.4
K

Thus, independent of K, the maximum speedup is 1.67.

Little’s Law

A fundamental and simple relation with broad applications is Little’s Law
[LITT61, LITT11].17 We can apply it to almost any system that is statistically in
steady state, and in which there is no leakage. The general setup is that we have
a steady state system to which items arrive at an average rate of l items per unit

17The second reference is a retrospective article on his law that Little wrote 50 years after his original
paper. That must be unique in the history of the technical literature.

Number of Processors

Sp
ee

du
p

f = 0.95

f = 0.90

f = 0.75

f = 0.5

101 100 1000

5

10

15

20

Figure 2.14 Amdahl’s Law for Multiprocessors

58 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

time. The items stay in the system an average of W units of time. Finally, there is an
average of L units in the system at any one time. Little’s Law relates these three
variables as L = lW.

Using queuing theory terminology, Little’s Law applies to a queuing system.
The central element of the system is a server, which provides some service to items.
Items from some population of items arrive at the system to be served. If the server
is idle, an item is served immediately. Otherwise, an arriving item joins a waiting
line, or queue. There can be a single queue for a single server, a single queue for
multiple servers, or multiples queues, one for each of multiple servers. When a
server has completed serving an item, the item departs. If there are items waiting in
the queue, one is immediately dispatched to the server. The server in this model can
represent anything that performs some function or service for a collection of items.
Examples: A processor provides service to processes; a transmission line provides a
transmission service to packets or frames of data; and an I/O device provides a read
or write service for I/O requests.

To understand Little’s formula, consider the following argument, which
focuses on the experience of a single item. When the item arrives, it will find on
average w items waiting ahead of it. When the item leaves the queue behind it to
be serviced, it will leave behind on average the same number of items in the queue,
namely w. To see this, note that while the item is waiting, the line in front of it
shrinks until the item is at the front of the line; meanwhile, additional items arrive
and get in line behind this item. When the item leaves the queue to be serviced, the
number of items behind it, on average, is w, because w is defined as the average
number of items waiting. Further, the average time that the item was waiting for
service is Tw. Since items arrive at a rate of l, we can reason that in the time Tw, a
total of lTw items must have arrived. Thus, w = lTw.

To summarize, under steady state conditions, the average number of items in
a queuing system equals the average rate at which items arrive multiplied by the
average time that an item spends in the system. This relationship requires very few
assumptions. We do not need to know what the service time distribution is, what
the distribution of arrival times is, or the order or priority in which items are served.
Because of its simplicity and generality, Little’s Law is extremely useful and has
experienced somewhat of a revival due to the interest in performance problems
related to multicore computers.

A very simple example, from [LITT11], illustrates how Little’s Law might
be applied. Consider a multicore system, with each core supporting multiple
threads of execution. At some level, the cores share a common memory. The cores
share a common main memory and typically share a common cache memory as
well. In any case, when a thread is executing, it may arrive at a point at which it
must retrieve a piece of data from the common memory. The thread stops and
sends out a request for that data. All such stopped threads are in a queue. If
the system is being used as a server, an analyst can determine the demand on
the system in terms of the rate of user requests, and then translate that into the
rate of requests for data from the threads generated to respond to an individual
user request. For this purpose, each user request is broken down into subtasks
that are implemented as threads. We then have l = the average rate of total

2.7 / RECOMMENDED READING 59

18Known in the ARM community as the “ARM ARM.”

thread processing required after all members’ requests have been broken down
into whatever detailed subtasks are required. Define L as the average number of
stopped threads waiting during some relevant time. Then W = average response
time. This simple model can serve as a guide to designers as to whether user
requirements are being met and, if not, provide a quantitative measure of the
amount of improvement needed.

 2.7 RECOMMENDED READING

A description of the IBM 7000 series can be found in [BELL71]. There is good coverage of
the IBM 360 in [SIEW82] and of the PDP-8 and other DEC machines in [BELL78a]. These
three books also contain numerous detailed examples of other computers spanning the his-
tory of computers through the early 1980s. [BLAA97] includes an excellent set of case stud-
ies of historical machines. A good history of the microprocessor is [BETK97].

[OLUK96], [HAMM97], and [SAKA02] discuss the motivation for multiple processors
on a single chip.

[BREY09] provides a good survey of the Intel microprocessor line. The Intel
 documentation itself is also good [INTE11]. [SING11] is an interesting short history of
the x86.

The most thorough documentation available for the ARM architecture is
[SEAL00].18 [FURB00] is another excellent source of information. [SMIT08] is an inter-
esting comparison of the ARM and x86 approaches to embedding processors in mobile
wireless devices.

For interesting discussions of Moore’s law and its consequences, see [FULL11],
[HUTC96], [SCHA97], and [BOHR98].

[HENN06] provides a detailed description of each of the benchmarks in CPU2006.
[SMIT88] discusses the relative merits of arithmetic, harmonic, and geometric means.

BELL71 Bell, C., and Newell, A. Computer Structures: Readings and Examples. New
York: McGraw-Hill, 1971.

BELL78a Bell, C.; Mudge, J.; and McNamara, J. Computer Engineering: A DEC View
of Hardware Systems Design. Bedford, MA: Digital Press, 1978.

BETK97 Betker, M.; Fernando, J.; and Whalen, S. “The History of the Microproces-
sor.” Bell Labs Technical Journal, Autumn 1997.

BLAA97 Blaauw, G., and Brooks, F. Computer Architecture: Concepts and Evolution.
Reading, MA: Addison-Wesley, 1997.

BOHR98 Bohr, M. “Silicon Trends and Limits for Advanced Microprocessors.”
 Communications of the ACM, March 1998.

BREY09 Brey, B. The Intel Microprocessors: 8086/8066, 80186/80188, 80286, 80386,
80486, Pentium, Pentium Pro Processor, Pentium II, Pentium III, Pentium 4 and
Core2 with 64-bit Extensions. Upper Saddle River, NJ: Prentice Hall, 2009.

60 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

 2.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

FULL11 Fuller, S., and Millet, L., eds. The Future of Computing Performance: Game
Over or Next Level? Washington, DC: National Academies Press, 2011. www.nap.
edu

FURB00 Furber, S. ARM System-On-Chip Architecture. Reading, MA: Addison-
Wesley, 2000.

HAMM97 Hammond, L.; Nayfay, B.; and Olukotun, K. “A Single-Chip Multiprocessor.”
Computer, September 1997.

HENN06 Henning, J. “SPEC CPU2006 Benchmark Descriptions.” Computer Archi-
tecture News, September 2006.

HUTC96 Hutcheson, G., and Hutcheson, J. “Technology and Economics in the Semi-
conductor Industry.” Scientific American, January 1996.

INTE11 Intel Corp. Intel ® 64 and IA-32 Intel Architectures Software Developer’s
Manual (3 volumes). Denver, CO, 2011.

OLUK96 Olukotun, K., et al. “The Case for a Single-Chip Multiprocessor.” Proceed-
ings, Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems, 1996.

SAKA02 Sakai, S. “CMP on SoC: Architect’s View.” Proceedings of the 15th Interna-
tional Symposium on System Synthesis, 2002.

SCHA97 Schaller, R. “Moore’s Law: Past, Present, and Future.” IEEE Spectrum, June
1997.

SEAL00 Seal, D., ed. ARM Architecture Reference Manual. Reading, MA: Addison-
Wesley, 2000.

SIEW82 Siewiorek, D.; Bell, C.; and Newell, A. Computer Structures: Principles and
Examples. New York: McGraw-Hill, 1982.

SING11 Singh, G. “The IBM PC: The Silicon Story.” Computer, August 2011.
SMIT88 Smith, J. “Characterizing Computer Performance with a Single Number.”

Communications of the ACM, October 1988.
SMIT08 Smith, B. “ARM and Intel Battle over the Mobile Chip’s Future.” Computer,

May 2008.

accumulator (AC)
Amdahl’s law
arithmetic and logic unit

(ALU)
arithmetic mean
benchmark
chip
clock cycle
clock rate
clock speed

clock tick
control unit
cycle time
data channel
embedded system
execute cycle
fetch cycle
geometric mean
general-purpose computing

on GPUs (GPGPU)

graphics processing unit
(GPU)

harmonic mean
input-output (I/O)
instruction buffer register

(IBR)
instruction cycle
instruction register (IR)
instruction set
integrated circuit (IC)

www.nap.edu
www.nap.edu

2.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 61

Review Questions

 2.1 What is a stored program computer?
 2.2 What are the four main components of any general-purpose computer?
 2.3 At the integrated circuit level, what are the three principal constituents of a computer

system?
 2.4 Explain Moore’s law.
 2.5 List and explain the key characteristics of a computer family.
 2.6 What is the key distinguishing feature of a microprocessor?

Problems

 2.1 You are to write an IAS program to compute the results of the following equation.

Y = a
N

X = 1
X

 Assume that the result of the computation does not arithmetic overflow and that X, Y,
and N are positive integers with N � 1. Note: The IAS did not have assembly language
only machine language.
a. Use the equation Sum(Y)= N(N+1)/2 when writing the IAS program.
b. Do it the “hard way,” without using the equation from part (a).

 2.2 a. On the IAS, what would the machine code instruction look like to load the
 contents of memory address 2 to the accumulator?

b. How many trips to memory does the CPU need to make to complete this instruc-
tion during the instruction cycle?

 2.3 On the IAS, describe in English the process that the CPU must undertake to read a
value from memory and to write a value to memory in terms of what is put into the
MAR, MBR, address bus, data bus, and control bus.

 2.4 Given the memory contents of the IAS computer shown below,

Address Contents

08A 010FA210FB

08B 010FA0F08D

08C 020FA210FB

 show the assembly language code for the program, starting at address 08A. Explain
what this program does.

 2.5 In Figure 2.3, indicate the width, in bits, of each data path (e.g., between AC and
ALU).

main memory
many integrated core (MIC)
MIPS rate
memory address register

(MAR)
memory buffer register

(MBR)
microprocessor

multicore
multiplexor
opcode
original equipment

 manufacturer (OEM)
program counter (PC)
rate metric
ratio

SPEC
speed metric
stored-program concept
upward compatible
von Neumann machine
wafer
word

62 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

 2.6 In the IBM 360 Models 65 and 75, addresses are staggered in two separate main mem-
ory units (e.g., all even-numbered words in one unit and all odd-numbered words in
another). What might be the purpose of this technique?

 2.7 With reference to Table 2.4, we see that the relative performance of the IBM 360
Model 75 is 50 times that of the 360 Model 30, yet the instruction cycle time is only
5 times as fast. How do you account for this discrepancy?

 2.8 While browsing at Billy Bob’s computer store, you overhear a customer asking Billy
Bob what is the fastest computer in the store that he can buy. Billy Bob replies,
“You’re looking at our Macintoshes. The fastest Mac we have runs at a clock speed
of 1.2 GHz. If you really want the fastest machine, you should buy our 2.4-GHz
Intel Pentium IV instead.” Is Billy Bob correct? What would you say to help this
customer?

 2.9 The ENIAC was a decimal machine, where a register was represented by a ring of
10 vacuum tubes. At any time, only one vacuum tube was in the ON state, represent-
ing one of the 10 digits. Assuming that ENIAC had the capability to have multiple
vacuum tubes in the ON and OFF state simultaneously, why is this representation
“wasteful” and what range of integer values could we represent using the 10 vacuum
tubes?

 2.10 A benchmark program is run on a 40 MHz processor. The executed program consists
of 100,000 instruction executions, with the following instruction mix and clock cycle
count:

Instruction Type Instruction Count Cycles per Instruction

Integer arithmetic 45,000 1

Data transfer 32,000 2

Floating point 15,000 2

Control transfer 8000 2

 Determine the effective CPI, MIPS rate, and execution time for this program.
 2.11 Consider two different machines, with two different instruction sets, both of which

have a clock rate of 200 MHz. The following measurements are recorded on the two
machines running a given set of benchmark programs:

Instruction Type
Instruction Count

(millions) Cycles Per Instruction

Machine A
Arithmetic and logic
Load and store
Branch
Others

 8
 4
 2
 4

1
3
4
3

Machine A
Arithmetic and logic
Load and store
Branch
Others

10
 8
 2
 4

1
2
4
3

a. Determine the effective CPI, MIPS rate, and execution time for each machine.
b. Comment on the results.

 2.12 Early examples of CISC and RISC design are the VAX 11/780 and the IBM RS/6000,
respectively. Using a typical benchmark program, the following machine characteristics
result:

2.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 63

Processor
Clock Frequency

(MHz)
Performance

(MIPS)
CPU Time
(seconds)

VAX 11/780 5 1 12 x

IBM RS/6000 25 18 x

 The final column shows that the VAX required 12 times longer than the IBM measured
in CPU time.
a. What is the relative size of the instruction count of the machine code for this

benchmark program running on the two machines?
b. What are the CPI values for the two machines?

 2.13 Four benchmark programs are executed on three computers with the following
 results:

Computer A Computer B Computer C

Program 1 1 10 20

Program 2 1000 100 20

Program 3 500 1000 50

Program 4 100 800 100

 The table shows the execution time in seconds, with 100,000,000 instructions execut-
ed in each of the four programs. Calculate the MIPS values for each computer for
each program. Then calculate the arithmetic and harmonic means assuming equal
weights for the four programs, and rank the computers based on arithmetic mean and
 harmonic mean.

 2.14 The following table, based on data reported in the literature [HEAT84], shows
the execution times, in seconds, for five different benchmark programs on three
 machines.

Benchmark
Processor

R M Z

E 417 244 134

F 83 70 70

H 66 153 135

I 39,449 35,527 66,000

K 772 368 369

a. Compute the speed metric for each processor for each benchmark, normalized to
machine R. That is, the ratio values for R are all 1.0. Other ratios are calculated
using Equation (2.5) with R treated as the reference system. Then compute the
arithmetic mean value for each system using Equation (2.3). This is the approach
taken in [HEAT84].

b. Repeat part (a) using M as the reference machine. This calculation was not tried in
[HEAT84].

c. Which machine is the slowest based on each of the preceding two calculations?
d. Repeat the calculations of parts (a) and (b) using the geometric mean, defined in

Equation (2.6). Which machine is the slowest based on the two calculations?
 2.15 To clarify the results of the preceding problem, we look at a simpler example.

64 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

Benchmark
Processor

X Y Z

1 20 10 40

2 40 80 20

a. Compute the arithmetic mean value for each system using X as the reference
 machine and then using Y as the reference machine. Argue that intuitively the
three machines have roughly equivalent performance and that the arithmetic
mean gives misleading results.

b. Compute the geometric mean value for each system using X as the reference
 machine and then using Y as the reference machine. Argue that the results are
more realistic than with the arithmetic mean.

 2.16 Consider the example in Section 2.5 for the calculation of average CPI and MIPS rate,
which yielded the result of CPI = 2.24 and MIPS rate = 178. Now assume that the
program can be executed in eight parallel tasks or threads with roughly equal number
of instructions executed in each task. Execution is on an 8-core system with each
core (processor) having the same performance as the single processor originally used.
Coordination and synchronization between the parts adds an extra 25,000 instruction
executions to each task. Assume the same instruction mix as in the example for each
task, but increase the CPI for memory reference with cache miss to 12 cycles due to
contention for memory.
a. Determine the average CPI.
b. Determine the corresponding MIPS rate.
c. Calculate the speedup factor.
d. Compare the actual speedup factor with the theoretical speedup factor deter-

mined by Amdhal’s law.
 2.17 A processor accesses main memory with an average access time of T2. A smaller cache

memory is interposed between the processor and main memory. The cache has a
 significantly faster access time of T1 < T2. The cache holds, at any time, copies of some
main memory words and is designed so that the words more likely to be accessed
in the near future are in the cache. Assume that the probability that the next word
 accessed by the processor is in the cache is H, known as the hit ratio.
a. For any single memory access, what is the theoretical speedup of accessing the

word in the cache rather than in main memory?
b. Let T be the average access time. Express T as a function of T1, T2, and H. What is

the overall speedup as a function of H?
c. In practice, a system may be designed so that the processor must first access the

cache to determine if the word is in the cache and, if it is not, then access main
memory, so that on a miss (opposite of a hit), memory access time is T1 + T2.
 Express T as a function of T1, T2, and H. Now calculate the speedup and compare
to the result produced in part (b).

 2.18 The owner of a shop observes that on average 18 customers per hour arrive and there
are typically 8 customers in the shop. What is the average length of time each customer
spends in the shop?

65

A TOP-LEVEL VIEW OF COMPUTER
FUNCTION AND INTERCONNECTION

3.1 Computer Components

3.2 Computer Function
Instruction Fetch and Execute
Interrupts
I/O Function

3.3 Interconnection Structures

3.4 Bus Interconnection
Bus Structure
Multiple-Bus Hierarchies
Elements of Bus Design

3.5 Point-to-Point Interconnect
QPI Physical Layer
QPI Link Layer
QPI Routing Layer
QPI Protocol Layer

3.6 PCI Express
PCI Physical and Logical Architecture
PCIe Physical Layer
PCIe Transaction Layer
PCIe Data Link Layer

3.7 Recommended Reading

3.8 Key Terms, Review Questions, and Problems

CHAPTER

PART TWO THE COMPUTER
SYSTEM

66 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

At a top level, a computer consists of CPU (central processing unit), memory, and
I/O components, with one or more modules of each type. These components are
interconnected in some fashion to achieve the basic function of the computer, which
is to execute programs. Thus, at a top level, we can characterize a computer system
by describing (1) the external behavior of each component, that is, the data and
control signals that it exchanges with other components and (2) the interconnec-
tion structure and the controls required to manage the use of the interconnection
structure.

This top-level view of structure and function is important because of its
explanatory power in understanding the nature of a computer. Equally important is
its use to understand the increasingly complex issues of performance evaluation. A
grasp of the top-level structure and function offers insight into system bottlenecks,
alternate pathways, the magnitude of system failures if a component fails, and the
ease of adding performance enhancements. In many cases, requirements for greater
system power and fail-safe capabilities are being met by changing the design rather
than merely increasing the speed and reliability of individual components.

This chapter focuses on the basic structures used for computer component
interconnection. As background, the chapter begins with a brief examination of the
basic components and their interface requirements. Then a functional overview is
provided. We are then prepared to examine the use of buses to interconnect system
components.

 3.1 COMPUTER COMPONENTS

As discussed in Chapter 2, virtually all contemporary computer designs are based
on concepts developed by John von Neumann at the Institute for Advanced Studies,
Princeton. Such a design is referred to as the von Neumann architecture and is based
on three key concepts:

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Understand the basic elements of an instruction cycle and the role of
 interrupts.

� Describe the concept of interconnection within a computer system.

� Understand the difference between synchronous and asynchronous bus
 timing.

� Explain the need for multiple buses arranged in a hierarchy.

� Assess the relative advantages of point-to-point interconnection compared
to bus interconnection.

� Present an overview of QPI.

� Present an overview of PCIe.

3.1 / COMPUTER COMPONENTS 67

 • Data and instructions are stored in a single read–write memory.

 • The contents of this memory are addressable by location, without regard to
the type of data contained there.

 • Execution occurs in a sequential fashion (unless explicitly modified) from one
instruction to the next.

The reasoning behind these concepts was discussed in Chapter 2 but is worth
summarizing here. There is a small set of basic logic components that can be
 combined in various ways to store binary data and perform arithmetic and logical
operations on that data. If there is a particular computation to be performed, a
 configuration of logic components designed specifically for that computation could
be constructed. We can think of the process of connecting the various components
in the desired configuration as a form of programming. The resulting “program” is
in the form of hardware and is termed a hardwired program.

Now consider this alternative. Suppose we construct a general-purpose
 configuration of arithmetic and logic functions. This set of hardware will perform
various functions on data depending on control signals applied to the hardware.
In the original case of customized hardware, the system accepts data and produces
results (Figure 3.1a). With general-purpose hardware, the system accepts data and
control signals and produces results. Thus, instead of rewiring the hardware for each
new program, the programmer merely needs to supply a new set of control signals.

How shall control signals be supplied? The answer is simple but subtle. The
entire program is actually a sequence of steps. At each step, some arithmetic or

Sequence of
arithmetic
and logic
functions

Data Results

(a) Programming in hardware

Data Results

Instruction
codes

General-purpose
arithmetic
and logic
functions

Control
signals

(b) Programming in software

Instruction
interpreter

Figure 3.1 Hardware and Software Approaches

68 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

 logical operation is performed on some data. For each step, a new set of control
 signals is needed. Let us provide a unique code for each possible set of control
 signals, and let us add to the general-purpose hardware a segment that can accept a
code and generate control signals (Figure 3.1b).

Programming is now much easier. Instead of rewiring the hardware for each
new program, all we need to do is provide a new sequence of codes. Each code
is, in effect, an instruction, and part of the hardware interprets each instruction
and generates control signals. To distinguish this new method of programming, a
sequence of codes or instructions is called software.

Figure 3.1b indicates two major components of the system: an instruction
interpreter and a module of general-purpose arithmetic and logic functions. These
two constitute the CPU. Several other components are needed to yield a functioning
computer. Data and instructions must be put into the system. For this we need some
sort of input module. This module contains basic components for accepting data
and instructions in some form and converting them into an internal form of signals
usable by the system. A means of reporting results is needed, and this is in the form
of an output module. Taken together, these are referred to as I/O components.

One more component is needed. An input device will bring instructions and
data in sequentially. But a program is not invariably executed sequentially; it may
jump around (e.g., the IAS jump instruction). Similarly, operations on data may
require access to more than just one element at a time in a predetermined sequence.
Thus, there must be a place to store temporarily both instructions and data. That
module is called memory, or main memory, to distinguish it from external storage or
peripheral devices. Von Neumann pointed out that the same memory could be used
to store both instructions and data.

Figure 3.2 illustrates these top-level components and suggests the interactions
among them. The CPU exchanges data with memory. For this purpose, it typically
makes use of two internal (to the CPU) registers: a memory address register (MAR),
which specifies the address in memory for the next read or write, and a memory
buffer register (MBR), which contains the data to be written into memory or receives
the data read from memory. Similarly, an I/O address register (I/OAR) specifies a
particular I/O device. An I/O buffer (I/OBR) register is used for the exchange of
data between an I/O module and the CPU.

A memory module consists of a set of locations, defined by sequentially
 numbered addresses. Each location contains a binary number that can be interpreted
as either an instruction or data. An I/O module transfers data from external devices
to CPU and memory, and vice versa. It contains internal buffers for temporarily
holding these data until they can be sent on.

Having looked briefly at these major components, we now turn to an overview
of how these components function together to execute programs.

 3.2 COMPUTER FUNCTION

The basic function performed by a computer is execution of a program, which consists
of a set of instructions stored in memory. The processor does the actual work by
executing instructions specified in the program. This section provides an overview of

3.2 / COMPUTER FUNCTION 69

the key elements of program execution. In its simplest form, instruction processing
consists of two steps: The processor reads (fetches) instructions from memory one
at a time and executes each instruction. Program execution consists of repeating the
process of instruction fetch and instruction execution. The instruction execution may
involve several operations and depends on the nature of the instruction (see, for
example, the lower portion of Figure 2.4).

The processing required for a single instruction is called an instruction cycle.
Using the simplified two-step description given previously, the instruction cycle is
depicted in Figure 3.3. The two steps are referred to as the fetch cycle and the execute
cycle. Program execution halts only if the machine is turned off, some sort of unrecov-
erable error occurs, or a program instruction that halts the computer is encountered.

Instruction Fetch and Execute

At the beginning of each instruction cycle, the processor fetches an instruction
from memory. In a typical processor, a register called the program counter (PC)
holds the address of the instruction to be fetched next. Unless told otherwise, the

PC MAR

IR MBR

I/O AR

I/O BR

CPU Main memory

System
bus

I/O Module

Buffers

Instruction

0
1
2

n – 2
n – 1

Data

Data

Data

Data

Instruction

Instruction

PC = Program counter
IR = Instruction register
MAR = Memory address register
MBR = Memory buffer register
I/O AR = Input/output address register
I/O BR = Input/output buffer register

Execution
unit

Figure 3.2 Computer Components: Top-Level View

70 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

processor always increments the PC after each instruction fetch so that it will fetch
the next instruction in sequence (i.e., the instruction located at the next higher mem-
ory address). So, for example, consider a computer in which each instruction occu-
pies one 16-bit word of memory. Assume that the program counter is set to memory
location 300, where the location address refers to a 16-bit word. The processor will
next fetch the instruction at location 300. On succeeding instruction cycles, it will
fetch instructions from locations 301, 302, 303, and so on. This sequence may be
altered, as explained presently.

The fetched instruction is loaded into a register in the processor known as
the instruction register (IR). The instruction contains bits that specify the action
the processor is to take. The processor interprets the instruction and performs the
required action. In general, these actions fall into four categories:

 • Processor-memory: Data may be transferred from processor to memory or
from memory to processor.

 • Processor-I/O: Data may be transferred to or from a peripheral device by
transferring between the processor and an I/O module.

 • Data processing: The processor may perform some arithmetic or logic opera-
tion on data.

 • Control: An instruction may specify that the sequence of execution be altered.
For example, the processor may fetch an instruction from location 149, which
specifies that the next instruction be from location 182. The processor will
 remember this fact by setting the program counter to 182. Thus, on the next
fetch cycle, the instruction will be fetched from location 182 rather than 150.

An instruction’s execution may involve a combination of these actions.
Consider a simple example using a hypothetical machine that includes the

characteristics listed in Figure 3.4. The processor contains a single data register,
called an accumulator (AC). Both instructions and data are 16 bits long. Thus, it is
convenient to organize memory using 16-bit words. The instruction format provides
4 bits for the opcode, so that there can be as many as 24 = 16 different opcodes, and
up to 212 = 4096 (4K) words of memory can be directly addressed.

Figure 3.5 illustrates a partial program execution, showing the relevant
 portions of memory and processor registers.1 The program fragment shown adds
the contents of the memory word at address 940 to the contents of the memory

START HALTFetch next
instruction

Fetch cycle Execute cycle

Execute
instruction

Figure 3.3 Basic Instruction Cycle

1Hexadecimal notation is used, in which each digit represents 4 bits. This is the most convenient notation for
representing the contents of memory and registers when the word length is a multiple of 4. See Chapter 9 for
a basic refresher on number systems (decimal, binary, hexadecimal).

3.2 / COMPUTER FUNCTION 71

Program counter (PC) � Address of instruction
Instruction register (IR) � Instruction being executed
Accumulator (AC) � Temporary storage

0001 � Load AC from memory
0010 � Store AC to memory
0101 � Add to AC from memory

(a) Instruction format

Opcode Address

(b) Integer format

(c) Internal CPU registers

Magnitude

0 1543

10 15

(d) Partial list of opcodes

Figure 3.4 Characteristics of a Hypothetical Machine

2

PC300

CPU registersMemory

3 0 01 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR1 9 4 0

Step 1

•
•

•
•

•
•

•
•

•
•

•
•

PC300

CPU registersMemory

3 0 11 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR1 9 4 0

0 0 0 3

Step 2

PC300

CPU registersMemory

3 0 1
0 0 0 5

0 0 0 5

0 0 0 3

0 0 0 5

1 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR5 9 4 1

Step 3

PC300

CPU registersMemory

3 0 21 9 4 0
301 5 9 4 1
302 2 9 4 1

1

940 0 0 0 3
941 0 0 0 2

AC
IR5 9 4 1

Step 4

PC300

CPU registersMemory
3 01 9 4 0

301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR2 9 4 1

Step 5

PC300

CPU registersMemory
3 0 31 9 4 0

301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 5

AC
IR2 9 4 1

Step 6

3 � 2 � 5

Figure 3.5 Example of Program Execution (contents of memory and
registers in hexadecimal)

72 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

word at address 941 and stores the result in the latter location. Three instructions,
which can be described as three fetch and three execute cycles, are required:

 1. The PC contains 300, the address of the first instruction. This instruction (the
value 1940 in hexadecimal) is loaded into the instruction register IR, and
the PC is incremented. Note that this process involves the use of a memory
 address register and a memory buffer register. For simplicity, these interme-
diate registers are ignored.

 2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be
loaded. The remaining 12 bits (three hexadecimal digits) specify the address
(940) from which data are to be loaded.

 3. The next instruction (5941) is fetched from location 301, and the PC is
 incremented.

 4. The old contents of the AC and the contents of location 941 are added, and
the result is stored in the AC.

 5. The next instruction (2941) is fetched from location 302, and the PC is
 incremented.

 6. The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch cycle and an
execute cycle, are needed to add the contents of location 940 to the contents of 941.
With a more complex set of instructions, fewer cycles would be needed. Some older
processors, for example, included instructions that contain more than one memory
address. Thus, the execution cycle for a particular instruction on such processors could
involve more than one reference to memory. Also, instead of memory references, an
instruction may specify an I/O operation.

For example, the PDP-11 processor includes an instruction, expressed symboli-
cally as ADD B,A, that stores the sum of the contents of memory locations B and A
into memory location A. A single instruction cycle with the following steps occurs:

 • Fetch the ADD instruction.

 • Read the contents of memory location A into the processor.

 • Read the contents of memory location B into the processor. In order that the
contents of A are not lost, the processor must have at least two registers for
storing memory values, rather than a single accumulator.

 • Add the two values.

 • Write the result from the processor to memory location A.

Thus, the execution cycle for a particular instruction may involve more than one
reference to memory. Also, instead of memory references, an instruction may specify
an I/O operation. With these additional considerations in mind, Figure 3.6 provides
a more detailed look at the basic instruction cycle of Figure 3.3. The figure is in the
form of a state diagram. For any given instruction cycle, some states may be null and
others may be visited more than once. The states can be described as follows:

 • Instruction address calculation (iac): Determine the address of the next
 instruction to be executed. Usually, this involves adding a fixed number to

3.2 / COMPUTER FUNCTION 73

the address of the previous instruction. For example, if each instruction is 16
bits long and memory is organized into 16-bit words, then add 1 to the previ-
ous address. If, instead, memory is organized as individually addressable 8-bit
bytes, then add 2 to the previous address.

 • Instruction fetch (if): Read instruction from its memory location into the
processor.

 • Instruction operation decoding (iod): Analyze instruction to determine type
of operation to be performed and operand(s) to be used.

 • Operand address calculation (oac): If the operation involves reference to an
operand in memory or available via I/O, then determine the address of the
operand.

 • Operand fetch (of): Fetch the operand from memory or read it in from I/O.

 • Data operation (do): Perform the operation indicated in the instruction.

 • Operand store (os): Write the result into memory or out to I/O.

States in the upper part of Figure 3.6 involve an exchange between the
processor and either memory or an I/O module. States in the lower part of the
diagram involve only internal processor operations. The oac state appears twice,
because an instruction may involve a read, a write, or both. However, the action per-
formed during that state is fundamentally the same in both cases, and so only a single
state identifier is needed.

Also note that the diagram allows for multiple operands and multiple results,
because some instructions on some machines require this. For example, the PDP-11
instruction ADD A,B results in the following sequence of states: iac, if, iod, oac, of,
oac, of, do, oac, os.

Finally, on some machines, a single instruction can specify an operation to be per-
formed on a vector (one-dimensional array) of numbers or a string (one-dimensional

Instruction
address

calculation

Instruction
operation
decoding

Operand
address

calculation

Data
operation

Operand
address

calculation

Instruction
fetch

Instruction complete,
fetch next instruction

Multiple
operands

Return for string
or vector data

Operand
fetch

Operand
store

Multiple
results

Figure 3.6 Instruction Cycle State Diagram

74 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

array) of characters. As Figure 3.6 indicates, this would involve repetitive operand fetch
and/or store operations.

Interrupts

Virtually all computers provide a mechanism by which other modules (I/O, memory)
may interrupt the normal processing of the processor. Table 3.1 lists the most common
classes of interrupts. The specific nature of these interrupts is examined later in this
book, especially in Chapters 7 and 14. However, we need to introduce the concept
now to understand more clearly the nature of the instruction cycle and the implica-
tions of interrupts on the interconnection structure. The reader need not be concerned
at this stage about the details of the generation and processing of interrupts, but only
focus on the communication between modules that results from interrupts.

Interrupts are provided primarily as a way to improve processing efficiency.
For example, most external devices are much slower than the processor. Suppose
that the processor is transferring data to a printer using the instruction cycle scheme
of Figure 3.3. After each write operation, the processor must pause and remain
idle until the printer catches up. The length of this pause may be on the order of
many hundreds or even thousands of instruction cycles that do not involve memory.
Clearly, this is a very wasteful use of the processor.

Figure 3.7a illustrates this state of affairs. The user program performs a series
of WRITE calls interleaved with processing. Code segments 1, 2, and 3 refer to
sequences of instructions that do not involve I/O. The WRITE calls are to an I/O
program that is a system utility and that will perform the actual I/O operation. The
I/O program consists of three sections:

 • A sequence of instructions, labeled 4 in the figure, to prepare for the actual
I/O operation. This may include copying the data to be output into a special
buffer and preparing the parameters for a device command.

 • The actual I/O command. Without the use of interrupts, once this command is
issued, the program must wait for the I/O device to perform the requested function
(or periodically poll the device). The program might wait by simply repeatedly
performing a test operation to determine if the I/O operation is done.

 • A sequence of instructions, labeled 5 in the figure, to complete the operation.
This may include setting a flag indicating the success or failure of the operation.

Table 3.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero, attempt to
execute an illegal machine instruction, or reference outside a user’s
allowed memory space.

Timer Generated by a timer within the processor. This allows the operating
system to perform certain functions on a regular basis.

I/O Generated by an I/O controller, to signal normal completion of an
operation, request service from the processor, or to signal a variety of
error conditions.

Hardware Failure Generated by a failure such as power failure or memory parity error.

 75

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

END

1

2

3

2

3

4

5

(a) No interrupts

= interrupt occurs during course of execution of user program

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

Interrupt
Handler

END

1

2a

2b

3a

3b

4

5

(b) Interrupts; short I/O wait

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

Interrupt
Handler

END

1 4

5

(c) Interrupts; long I/O wait

Figure 3.7 Program Flow of Control without and with Interrupts

76 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

Because the I/O operation may take a relatively long time to complete, the I/O
program is hung up waiting for the operation to complete; hence, the user program
is stopped at the point of the WRITE call for some considerable period of time.

INTERRUPTS AND THE INSTRUCTION CYCLE With interrupts, the processor can
be engaged in executing other instructions while an I/O operation is in progress.
Consider the flow of control in Figure 3.7b. As before, the user program reaches a
point at which it makes a system call in the form of a WRITE call. The I/O program
that is invoked in this case consists only of the preparation code and the actual I/O
command. After these few instructions have been executed, control returns to the
user program. Meanwhile, the external device is busy accepting data from computer
memory and printing it. This I/O operation is conducted concurrently with the
execution of instructions in the user program.

When the external device becomes ready to be serviced—that is, when it is
ready to accept more data from the processor—the I/O module for that external
device sends an interrupt request signal to the processor. The processor responds by
suspending operation of the current program, branching off to a program to service
that particular I/O device, known as an interrupt handler, and resuming the original
execution after the device is serviced. The points at which such interrupts occur are
indicated by an asterisk in Figure 3.7b.

Let us try to clarify what is happening in Figure 3.7. We have a user program
that contains two WRITE commands. There is a segment of code at the beginning,
then one WRITE command, then a second segment of code, then a second WRITE
command, then a third and final segment of code. The WRITE command invokes the
I/O program provided by the OS. Similarly, the I/O program consists of a segment of
code, followed by an I/O command, followed by another segment of code. The I/O
command invokes a hardware I/O operation.

USER PROGRAM

8statement9
8statement9

Code segment 1 I/O PROGRAM . . .
8statement9 8statement9
 8statement9
WRITE

Code segment 4

 8statement9
8statement9
8statement9 Code segment 2 I/O command . . .
8statement9 8statement9
 8statement9

Code segment 5
WRITE
 8statement9
8statement9
8statement9

Code segment 3 . . .
8statement9

s
s
s

s
s

. . .

. . .

3.2 / COMPUTER FUNCTION 77

From the point of view of the user program, an interrupt is just that: an interruption
of the normal sequence of execution. When the interrupt processing is completed,
execution resumes (Figure 3.8). Thus, the user program does not have to contain any
special code to accommodate interrupts; the processor and the operating system are
responsible for suspending the user program and then resuming it at the same point.

To accommodate interrupts, an interrupt cycle is added to the instruction
cycle, as shown in Figure 3.9. In the interrupt cycle, the processor checks to see if
any interrupts have occurred, indicated by the presence of an interrupt signal. If no
interrupts are pending, the processor proceeds to the fetch cycle and fetches the
next instruction of the current program. If an interrupt is pending, the processor
does the following:

 • It suspends execution of the current program being executed and saves its
context. This means saving the address of the next instruction to be executed

1

2

i

i � 1

M

•
•
•

•
•
•

•
•
•

Interrupt
occurs here

User program Interrupt handler

Figure 3.8 Transfer of Control via Interrupts

Fetch cycle Execute cycle Interrupt cycle

Interrupts
disabled

Interrupts
enabled

START

HALT

Fetch next
instruction

Execute
instruction

Check for
interrupt;

process interrupt

Figure 3.9 Instruction Cycle with Interrupts

78 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

(current contents of the program counter) and any other data relevant to the
processor’s current activity.

 • It sets the program counter to the starting address of an interrupt handler routine.

The processor now proceeds to the fetch cycle and fetches the first instruction
in the interrupt handler program, which will service the interrupt. The interrupt
handler program is generally part of the operating system. Typically, this program
determines the nature of the interrupt and performs whatever actions are needed.
In the example we have been using, the handler determines which I/O module
 generated the interrupt and may branch to a program that will write more data out
to that I/O module. When the interrupt handler routine is completed, the processor
can resume execution of the user program at the point of interruption.

It is clear that there is some overhead involved in this process. Extra instructions
must be executed (in the interrupt handler) to determine the nature of the interrupt
and to decide on the appropriate action. Nevertheless, because of the relatively large
amount of time that would be wasted by simply waiting on an I/O operation, the
 processor can be employed much more efficiently with the use of interrupts.

To appreciate the gain in efficiency, consider Figure 3.10, which is a timing dia-
gram based on the flow of control in Figures 3.7a and 3.7b. In this figure, user pro-
gram code segments are shaded green, and I/O program code segments are shaded

4

1

5 5

2

5

3

4

Time

I/O operation;
processor waits

I/O operation
concurrent with
processor executing

I/O operation
concurrent with
processor executing

I/O operation;
processor waits

4

2a

1

2b

4

3a

5

3b

(a) Without interrupts

(b) With interrupts

Figure 3.10 Program Timing: Short I/O Wait

3.2 / COMPUTER FUNCTION 79

gray. Figure 3.10a shows the case in which interrupts are not used. The processor must
wait while an I/O operation is performed.

Figures 3.7b and 3.10b assume that the time required for the I/O operation is
 relatively short: less than the time to complete the execution of instructions between write
operations in the user program. In this case, the segment of code labeled code segment
2 is interrupted. A portion of the code (2a) executes (while the I/O operation is per-
formed) and then the interrupt occurs (upon the completion of the I/O operation). After
the interrupt is serviced, execution resumes with the remainder of code segment 2 (2b).

The more typical case, especially for a slow device such as a printer, is that the
I/O operation will take much more time than executing a sequence of user instruc-
tions. Figure 3.7c indicates this state of affairs. In this case, the user program reaches
the second WRITE call before the I/O operation spawned by the first call is com-
plete. The result is that the user program is hung up at that point. When the preced-
ing I/O operation is completed, this new WRITE call may be processed, and a new
I/O operation may be started. Figure 3.11 shows the timing for this situation with

4

1

5

2

5

3

4

Time

4

2

1

5

4

(a) Without interrupts

(b) With interrupts

3

5

I/O operation;
processor waits

I/O operation;
processor waits

I/O operation
concurrent with
processor executing;
then processor
waits

I/O operation
concurrent with
processor executing;
then processor
waits

Figure 3.11 Program Timing: Long I/O Wait

80 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

and without the use of interrupts. We can see that there is still a gain in efficiency
because part of the time during which the I/O operation is under way overlaps with
the execution of user instructions.

Figure 3.12 shows a revised instruction cycle state diagram that includes
 interrupt cycle processing.

MULTIPLE INTERRUPTS The discussion so far has focused only on the occurrence
of a single interrupt. Suppose, however, that multiple interrupts can occur.
For example, a program may be receiving data from a communications line and
printing results. The printer will generate an interrupt every time it completes a
print operation. The communication line controller will generate an interrupt every
time a unit of data arrives. The unit could either be a single character or a block,
depending on the nature of the communications discipline. In any case, it is possible
for a communications interrupt to occur while a printer interrupt is being processed.

Two approaches can be taken to dealing with multiple interrupts. The first is to
disable interrupts while an interrupt is being processed. A disabled interrupt simply
means that the processor can and will ignore that interrupt request signal. If an inter-
rupt occurs during this time, it generally remains pending and will be checked by
the processor after the processor has enabled interrupts. Thus, when a user program
is executing and an interrupt occurs, interrupts are disabled immediately. After the
interrupt handler routine completes, interrupts are enabled before resuming the
user program, and the processor checks to see if additional interrupts have occurred.
This approach is nice and simple, as interrupts are handled in strict sequential order
(Figure 3.13a).

The drawback to the preceding approach is that it does not take into account
relative priority or time-critical needs. For example, when input arrives from the
communications line, it may need to be absorbed rapidly to make room for more
input. If the first batch of input has not been processed before the second batch
arrives, data may be lost.

A second approach is to define priorities for interrupts and to allow an
interrupt of higher priority to cause a lower-priority interrupt handler to be itself
interrupted (Figure 3.13b). As an example of this second approach, consider a
system with three I/O devices: a printer, a disk, and a communications line, with
increasing priorities of 2, 4, and 5, respectively. Figure 3.14 illustrates a possible
sequence. A user program begins at t = 0. At t = 10, a printer interrupt occurs; user
information is placed on the system stack and execution continues at the printer
interrupt service routine (ISR). While this routine is still executing, at t = 15, a
communications interrupt occurs. Because the communications line has higher
priority than the printer, the interrupt is honored. The printer ISR is interrupted,
its state is pushed onto the stack, and execution continues at the communications
ISR. While this routine is executing, a disk interrupt occurs (t = 20). Because this
interrupt is of lower priority, it is simply held, and the communications ISR runs
to completion.

When the communications ISR is complete (t = 25), the previous processor
state is restored, which is the execution of the printer ISR. However, before even a
single instruction in that routine can be executed, the processor honors the higher-
priority disk interrupt and control transfers to the disk ISR. Only when that routine

 81

No
interrupt

Interrupt
check

Interrupt
Instruction

address
calculation

Instruction
operation
decoding

Operand
address

calculation

Data
operation

Operand
address

calculation

Instruction
fetch

Instruction complete,
fetch next instruction

Multiple
operands

Return for string
or vector data

Operand
fetch

Operand
store

Multiple
results

Figure 3.12 Instruction Cycle State Diagram, with Interrupts

82

User program
Interrupt
handler X

Interrupt
handler Y

(a) Sequential interrupt processing

(b) Nested interrupt processing

User program
Interrupt
handler X

Interrupt
handler Y

Figure 3.13 Transfer of Control with Multiple Interrupts

3.2 / COMPUTER FUNCTION 83

is complete (t = 35) is the printer ISR resumed. When that routine completes (t = 40),
control finally returns to the user program.

I/O Function

Thus far, we have discussed the operation of the computer as controlled by the
 processor, and we have looked primarily at the interaction of processor and
 memory. The discussion has only alluded to the role of the I/O component. This
role is discussed in detail in Chapter 7, but a brief summary is in order here.

An I/O module (e.g., a disk controller) can exchange data directly with the
processor. Just as the processor can initiate a read or write with memory, designating
the address of a specific location, the processor can also read data from or write data
to an I/O module. In this latter case, the processor identifies a specific device that is
 controlled by a particular I/O module. Thus, an instruction sequence similar in form to
that of Figure 3.5 could occur, with I/O instructions rather than memory-referencing
instructions.

In some cases, it is desirable to allow I/O exchanges to occur directly with
 memory. In such a case, the processor grants to an I/O module the authority to read
from or write to memory, so that the I/O-memory transfer can occur without tying up
the processor. During such a transfer, the I/O module issues read or write commands
to memory, relieving the processor of responsibility for the exchange. This operation
is known as direct memory access (DMA) and is examined in Chapter 7.

User program

Printer
interrupt

service routine

Communication
interrupt

service routine

Disk
interrupt

service routine

t � 0

t �
 10

t � 40

t �
 15

t � 25

t � 25

t � 35

Figure 3.14 Example Time Sequence of Multiple Interrupts

84 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

 3.3 INTERCONNECTION STRUCTURES

A computer consists of a set of components or modules of three basic types
 (processor, memory, I/O) that communicate with each other. In effect, a computer is
a network of basic modules. Thus, there must be paths for connecting the modules.

The collection of paths connecting the various modules is called the intercon-
nection structure. The design of this structure will depend on the exchanges that
must be made among modules.

Figure 3.15 suggests the types of exchanges that are needed by indicating the
major forms of input and output for each module type2:

 • Memory: Typically, a memory module will consist of N words of equal length.
Each word is assigned a unique numerical address (0, 1, …, N - 1). A word of
data can be read from or written into the memory. The nature of the operation

2The wide arrows represent multiple signal lines carrying multiple bits of information in parallel. Each
narrow arrow represents a single signal line.

Memory

N words
0
•
•
•

Data

I/O module

M ports

CPU

External
data

Interrupt
signals

Internal
data

Data

Address

Control
signals

Data

Address

Write

Read

External
data

Address

Internal
data

Write

Read

Data

Instructions

Interrupt
signals

N − 1

Figure 3.15 Computer Modules

3.4 / BUS INTERCONNECTION 85

is indicated by read and write control signals. The location for the operation is
specified by an address.

 • I/O module: From an internal (to the computer system) point of view, I/O
is functionally similar to memory. There are two operations, read and write.
Further, an I/O module may control more than one external device. We can
refer to each of the interfaces to an external device as a port and give each
a unique address (e.g., 0, 1, …, M - 1). In addition, there are external data
paths for the input and output of data with an external device. Finally, an I/O
 module may be able to send interrupt signals to the processor.

 • Processor: The processor reads in instructions and data, writes out data after
processing, and uses control signals to control the overall operation of the
 system. It also receives interrupt signals.

The preceding list defines the data to be exchanged. The interconnection
structure must support the following types of transfers:

 • Memory to processor: The processor reads an instruction or a unit of data
from memory.

 • Processor to memory: The processor writes a unit of data to memory.

 • I/O to processor: The processor reads data from an I/O device via an I/O
module.

 • Processor to I/O: The processor sends data to the I/O device.

 • I/O to or from memory: For these two cases, an I/O module is allowed to ex-
change data directly with memory, without going through the processor, using
direct memory access.

Over the years, a number of interconnection structures have been tried. By
far the most common are (1) the bus and various multiple-bus structures, and (2)
point-to-point interconnection structures with packetized data transfer. We devote
the remainder of this chapter for a discussion of these structures.

 3.4 BUS INTERCONNECTION

A bus is a communication pathway connecting two or more devices. A key charac-
teristic of a bus is that it is a shared transmission medium. Multiple devices connect
to the bus, and a signal transmitted by any one device is available for reception by
all other devices attached to the bus. If two devices transmit during the same time
period, their signals will overlap and become garbled. Thus, only one device at a
time can successfully transmit.

Typically, a bus consists of multiple communication pathways, or lines. Each
line is capable of transmitting signals representing binary 1 and binary 0. Over time,
a sequence of binary digits can be transmitted across a single line. Taken together,
 several lines of a bus can be used to transmit binary digits simultaneously (in parallel).
For example, an 8-bit unit of data can be transmitted over eight bus lines.

Computer systems contain a number of different buses that provide pathways
between components at various levels of the computer system hierarchy. A bus that

86 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

connects major computer components (processor, memory, I/O) is called a system
bus. The most common computer interconnection structures are based on the use of
one or more system buses.

Bus Structure

A system bus consists, typically, of from about fifty to hundreds of separate lines.
Each line is assigned a particular meaning or function. Although there are many
 different bus designs, on any bus the lines can be classified into three functional
groups (Figure 3.16): data, address, and control lines. In addition, there may be
power distribution lines that supply power to the attached modules.

The data lines provide a path for moving data among system modules. These
lines, collectively, are called the data bus. The data bus may consist of 32, 64, 128, or
even more separate lines, the number of lines being referred to as the width of the
data bus. Because each line can carry only 1 bit at a time, the number of lines deter-
mines how many bits can be transferred at a time. The width of the data bus is a key
factor in determining overall system performance. For example, if the data bus is
32 bits wide and each instruction is 64 bits long, then the processor must access the
memory module twice during each instruction cycle.

The address lines are used to designate the source or destination of the data on
the data bus. For example, if the processor wishes to read a word (8, 16, or 32 bits)
of data from memory, it puts the address of the desired word on the address lines.
Clearly, the width of the address bus determines the maximum possible memory
capacity of the system. Furthermore, the address lines are generally also used to
address I/O ports. Typically, the higher-order bits are used to select a particular
module on the bus, and the lower-order bits select a memory location or I/O port
within the module. For example, on an 8-bit address bus, address 01111111 and
below might reference locations in a memory module (module 0) with 128 words
of memory, and address 10000000 and above refer to devices attached to an I/O
module (module 1).

The control lines are used to control the access to and the use of the data and
address lines. Because the data and address lines are shared by all components,
there must be a means of controlling their use. Control signals transmit both com-
mand and timing information among system modules. Timing signals indicate the
validity of data and address information. Command signals specify operations to be
performed. Typical control lines include:

CPU Memory Memory• • • I/O

Bus

I/O

Control lines

Address lines

Data lines

• • •

Figure 3.16 Bus Interconnection Scheme

3.4 / BUS INTERCONNECTION 87

 • Memory write: causes data on the bus to be written into the addressed location

 • Memory read: causes data from the addressed location to be placed on the
bus

 • I/O write: causes data on the bus to be output to the addressed I/O port

 • I/O read: causes data from the addressed I/O port to be placed on the bus

 • Transfer ACK: indicates that data have been accepted from or placed on the
bus

 • Bus request: indicates that a module needs to gain control of the bus

 • Bus grant: indicates that a requesting module has been granted control of the
bus

 • Interrupt request: indicates that an interrupt is pending

 • Interrupt ACK: acknowledges that the pending interrupt has been recognized

 • Clock: is used to synchronize operations

 • Reset: initializes all modules.

The operation of the bus is as follows. If one module wishes to send data to
another, it must do two things: (1) obtain the use of the bus, and (2) transfer data
via the bus. If one module wishes to request data from another module, it must (1)
obtain the use of the bus, and (2) transfer a request to the other module over the
appropriate control and address lines. It must then wait for that second module to
send the data.

Multiple-Bus Hierarchies

If a great number of devices are connected to the bus, performance will suffer.
There are two main causes:

 1. In general, the more devices attached to the bus, the greater the bus length
and hence the greater the propagation delay. This delay determines the time
it takes for devices to coordinate the use of the bus. When control of the bus
passes from one device to another frequently, these propagation delays can
noticeably affect performance.

 2. The bus may become a bottleneck as the aggregate data transfer demand
approaches the capacity of the bus. This problem can be countered to some
extent by increasing the data rate that the bus can carry and by using wider
buses (e.g., increasing the data bus from 32 to 64 bits). However, because the
data rates generated by attached devices (e.g., graphics and video control-
lers, network interfaces) are growing rapidly, this is a race that a single bus is
 ultimately destined to lose.

Accordingly, most bus-based computer systems use multiple buses, generally
laid out in a hierarchy. A typical traditional structure is shown in Figure 3.17a. There
is a local bus that connects the processor to a cache memory and that may support
one or more local devices. The cache memory controller connects the cache not only
to this local bus, but to a system bus to which are attached all of the main memory
 modules. In contemporary systems, the cache is in the same chip as the processor, and

88 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

so an external bus or other interconnect scheme is not needed, although there may
also be an external cache. As will be discussed in Chapter 4, the use of a cache struc-
ture insulates the processor from a requirement to access main memory frequently.
Hence, main memory can be moved off of the local bus onto a system bus. In this way,
I/O transfers to and from the main memory across the system bus do not interfere
with the processor’s activity.

Cache

System bus

Processor

Main
memory

Local I/O
controller

Expansion
bus interface

Network

SCSI
Modem

Serial

(a) Traditional bus architecture

Expansion bus

Local bus

Expansion
bus interface

FAX

SCSI

Modem

Serial

(b) High-performance architecture

FireWire Graphic

Main
memory

Cache/
bridgeProcessor

Local bus

Video LAN

System bus

High-speed bus

Expansion bus

Figure 3.17 Example Bus Configurations

3.4 / BUS INTERCONNECTION 89

It is possible to connect I/O controllers directly onto the system bus. A more
efficient solution is to make use of one or more expansion buses for this purpose.
An expansion bus interface buffers data transfers between the system bus and the
I/O controllers on the expansion bus. This arrangement allows the system to support
a wide variety of I/O devices and at the same time insulate memory-to-processor
 traffic from I/O traffic.

Figure 3.17a shows some typical examples of I/O devices that might be attached
to the expansion bus. Network connections include local area networks (LANs)
such as a 10-Mbps Ethernet and connections to wide area networks (WANs) such as
a packet-switching network. SCSI (small computer system interface) is itself a type
of bus used to support local disk drives and other peripherals. A serial port could be
used to support a printer or scanner.

This traditional bus architecture is reasonably efficient but begins to break
down as higher and higher performance is seen in the I/O devices. In response to
these growing demands, a common approach taken by industry is to build a high-
speed bus that is closely integrated with the rest of the system, requiring only a
bridge between the processor’s bus and the high-speed bus. This arrangement is
sometimes known as a mezzanine architecture.

Figure 3.17b shows a typical realization of this approach. Again, there is a local
bus that connects the processor to a cache controller, which is in turn connected to
a system bus that supports main memory. The cache controller is integrated into a
bridge, or buffering device, that connects to the high-speed bus. This bus supports
connections to high-speed LANs, such as Fast Ethernet at 100 Mbps, video and
graphics workstation controllers, as well as interface controllers to local peripheral
buses, including SCSI and FireWire. The latter is a high-speed bus arrangement
specifically designed to support high-capacity I/O devices. Lower-speed devices are
still supported off an expansion bus, with an interface buffering traffic between the
expansion bus and the high-speed bus.

The advantage of this arrangement is that the high-speed bus brings high-
demand devices into closer integration with the processor and at the same time is
independent of the processor. Thus, differences in processor and high-speed bus
speeds and signal line definitions are tolerated. Changes in processor architecture
do not affect the high-speed bus, and vice versa.

Elements of Bus Design

Although a variety of different bus implementations exist, there are a few basic
parameters or design elements that serve to classify and differentiate buses. Table 3.2
lists key elements.

BUS TYPES Bus lines can be separated into two generic types: dedicated and
multiplexed. A dedicated bus line is permanently assigned either to one function or
to a physical subset of computer components.

An example of functional dedication is the use of separate dedicated address
and data lines, which is common on many buses. However, it is not essential. For
example, address and data information may be transmitted over the same set of
lines using an Address Valid control line. At the beginning of a data transfer, the
address is placed on the bus and the Address Valid line is activated. At this point,

90 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

each module has a specified period of time to copy the address and determine if
it is the addressed module. The address is then removed from the bus, and the
same bus connections are used for the subsequent read or write data transfer. This
method of using the same lines for multiple purposes is known as time multiplexing.

The advantage of time multiplexing is the use of fewer lines, which saves space
and, usually, cost. The disadvantage is that more complex circuitry is needed within
each module. Also, there is a potential reduction in performance because certain
events that share the same lines cannot take place in parallel.

Physical dedication refers to the use of multiple buses, each of which connects
only a subset of modules. A typical example is the use of an I/O bus to interconnect
all I/O modules; this bus is then connected to the main bus through some type of I/O
adapter module. The potential advantage of physical dedication is high throughput,
because there is less bus contention. A disadvantage is the increased size and cost of
the system.

METHOD OF ARBITRATION In all but the simplest systems, more than one module
may need control of the bus. For example, an I/O module may need to read or write
directly to memory, without sending the data to the processor. Because only one unit
at a time can successfully transmit over the bus, some method of arbitration is needed.
The various methods can be roughly classified as being either centralized arbitration
or distributed arbitration. In a centralized scheme, a single hardware device, referred
to as a bus controller or arbiter, is responsible for allocating time on the bus. The
device may be a separate module or part of the processor. In a distributed scheme,
there is no central controller. Rather, each module contains access control logic and
the modules act together to share the bus. With both methods of arbitration, the
purpose is to designate one device, either the processor or an I/O module, as master.
The master may then initiate a data transfer (e.g., read or write) with some other
device, which acts as slave for this particular exchange.

TIMING Timing refers to the way in which events are coordinated on the bus. Buses
use either synchronous timing or asynchronous timing.

With synchronous timing, the occurrence of events on the bus is determined
by a clock. The bus includes a clock line upon which a clock transmits a regular
sequence of alternating 1s and 0s of equal duration. A single 1–0 transmission is

Table 3.2 Elements of Bus Design

Type

Dedicated

Multiplexed

Method of Arbitration

Centralized

Distributed

Timing

Synchronous

Asynchronous

Bus Width

Address

Data

Data Transfer Type

Read

Write

Read-modify-write

Read-after-write

Block

3.4 / BUS INTERCONNECTION 91

referred to as a clock cycle or bus cycle and defines a time slot. All other devices on
the bus can read the clock line, and all events start at the beginning of a clock cycle.
Figure 3.18 shows a typical, but simplified, timing diagram for synchronous read
and write operations (see Appendix N for a description of timing diagrams). Other
bus signals may change at the leading edge of the clock signal (with a slight reaction
delay). Most events occupy a single clock cycle. In this simple example, the proces-
sor places a memory address on the address lines during the first clock cycle and
may assert various status lines. Once the address lines have stabilized, the processor
issues an address enable signal. For a read operation, the processor issues a read
command at the start of the second cycle. A memory module recognizes the address
and, after a delay of one cycle, places the data on the data lines. The processor reads
the data from the data lines and drops the read signal. For a write operation, the
processor puts the data on the data lines at the start of the second cycle and issues a
write command after the data lines have stabilized. The memory module copies the
information from the data lines during the third clock cycle.

Clock

Status
lines

Data
lines

Read
cycle

Address
lines

Address
enable

Read

Data
linesWrite

cycle

Write

Status signals

Stable addressStable address

Valid data out

Valid data in

T1 T2 T3

Figure 3.18 Timing of Synchronous Bus Operations

92 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

With asynchronous timing, the occurrence of one event on a bus follows
and depends on the occurrence of a previous event. In the simple read example of
Figure 3.19a, the processor places address and status signals on the bus. After paus-
ing for these signals to stabilize, it issues a read command, indicating the presence of
valid address and control signals. The appropriate memory decodes the address and
responds by placing the data on the data line. Once the data lines have stabilized,
the memory module asserts the acknowledged line to signal the processor that the
data are available. Once the master has read the data from the data lines, it deasserts
the read signal. This causes the memory module to drop the data and acknowl-
edge lines. Finally, once the acknowledge line is dropped, the master removes the
address information.

Status
lines

(a) System bus read cycle

(b) System bus write cycle

Address
lines

Read

Data
lines

Acknowledge

Status
lines

Address
lines

Write

Data
lines

Acknowledge

Status signals

Stable address

Status signals

Stable address

Valid data

Valid data

Figure 3.19 Timing of Asynchronous Bus Operations

3.5 / POINT-TO-POINT INTERCONNECT 93

Figure 3.19b shows a simple asynchronous write operation. In this case, the
master places the data on the data line at the same time that it puts signals on the
status and address lines. The memory module responds to the write command by
copying the data from the data lines and then asserting the acknowledge line. The
master then drops the write signal and the memory module drops the acknowl-
edge signal.

Synchronous timing is simpler to implement and test. However, it is less
 flexible than asynchronous timing. Because all devices on a synchronous bus are
tied to a fixed clock rate, the system cannot take advantage of advances in device
performance. With asynchronous timing, a mixture of slow and fast devices, using
older and newer technology, can share a bus.

 3.5 POINT-TO-POINT INTERCONNECT

The shared bus architecture was the standard approach to interconnection between
the processor and other components (memory, I/O, and so on) for decades. But
contemporary systems increasingly rely on point-to-point interconnection rather
than shared buses.

The principal reason driving the change from bus to point-to-point intercon-
nect was the electrical constraints encountered with increasing the frequency of wide
synchronous buses. At higher and higher data rates, it becomes increasingly difficult
to perform the synchronization and arbitration functions in a timely fashion. Further,
with the advent of multicore chips, with multiple processors and significant memory
on a single chip, it was found that the use of a conventional shared bus on the same
chip magnified the difficulties of increasing bus data rate and reducing bus latency
to keep up with the processors. Compared to the shared bus, the point-to-point
 interconnect has lower latency, higher data rate, and better scalability.

In this section, we look at an important and representative example of the
point-to-point interconnect approach: Intel’s QuickPath Interconnect (QPI), which
was introduced in 2008.

The following are significant characteristics of QPI and other point-to-point
interconnect schemes:

 • Multiple direct connections: Multiple components within the system enjoy
direct pairwise connections to other components. This eliminates the need for
arbitration found in shared transmission systems.

 • Layered protocol architecture: As found in network environments, such as
TCP/IP-based data networks, these processor-level interconnects use a layered
protocol architecture, rather than the simple use of control signals found in
shared bus arrangements.

 • Packetized data transfer: Data are not sent as a raw bit stream. Rather, data
are sent as a sequence of packets, each of which includes control headers and
error control codes.

Figure 3.20 illustrates a typical use of QPI on a multicore computer. The
QPI links (indicated by the green arrow pairs in the figure) form a switching fabric

94 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

that enables data to move throughout the network. Direct QPI connections can be
established between each pair of core processors. If core A in Figure 3.20 needs to
access the memory controller in core D, it sends its request through either cores B
or C, which must in turn forward that request on to the memory controller in core D.
Similarly, larger systems with eight or more processors can be built using processors
with three links and routing traffic through intermediate processors.

In addition, QPI is used to connect to an I/O module, called an I/O hub (IOH).
The IOH acts as a switch directing traffic to and from I/O devices. Typically in newer
systems, the link from the IOH to the I/O device controller uses an interconnect
 technology called PCI Express (PCIe), described later in this chapter. The IOH trans-
lates between the QPI protocols and formats and the PCIe protocols and formats. A
core also links to a main memory module (typically the memory uses dynamic access
random memory (DRAM) technology) using a dedicated memory bus.

QPI is defined as a four-layer protocol architecture,3 encompassing the
 following layers (Figure 3.21):

 • Physical: Consists of the actual wires carrying the signals, as well as circuitry
and logic to support ancillary features required in the transmission and receipt
of the 1s and 0s. The unit of transfer at the Physical layer is 20 bits, which is
called a Phit (physical unit).

Core
A

I/O Hub

I/O Hub

Core
B

Core
C

Core
D

D
R

A
M

I/
O

 d
ev

ic
e

I/
O

 d
ev

ic
e

D
R

A
M

D
R

A
M

D
R

A
M

I/
O

 d
ev

ic
e

I/
O

 d
ev

ic
e

QPI PCI Express Memory bus

Figure 3.20 Multicore Configuration Using QPI

3The reader unfamiliar with the concept of a protocol architecture will find a brief overview in Appendix L.

3.5 / POINT-TO-POINT INTERCONNECT 95

 • Link: Responsible for reliable transmission and flow control. The Link layer’s
unit of transfer is an 80-bit Flit (flow control unit).

 • Routing: Provides the framework for directing packets through the fabric.

 • Protocol: The high-level set of rules for exchanging packets of data between
devices. A packet is comprised of an integral number of Flits.

QPI Physical Layer

Figure 3.22 shows the physical architecture of a QPI port. The QPI port consists of
84 individual links grouped as follows. Each data path consists of a pair of wires that
transmits data one bit at a time; the pair is referred to as a lane. There are 20 data lanes

Link

Physical

Protocol
Packets

Flits

Phits

Routing

Link

Physical

Protocol

Routing

Figure 3.21 QPI Layers

Transmission Lanes

Intel QuickPath Interconnect Port

COMPONENT A

COMPONENT B

Fw
d

C
lk

Reception Lanes
R

cv
 C

lk

Reception Lanes

R
cv

 C
lk

Transmission Lanes

Fw
d

C
lk

Intel QuickPath Interconnect Port

Figure 3.22 Physical Interface of the Intel QPI Interconnect

96 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

in each direction (transmit and receive), plus a clock lane in each direction. Thus, QPI
is capable of transmitting 20 bits in parallel in each direction. The 20-bit unit is referred
to as a phit. Typical signaling speeds of the link in current products calls for operation
at 6.4 GT/s (transfers per second). At 20 bits per transfer, that adds up to 16 GB/s, and
since QPI links involve dedicated bidirectional pairs, the total capacity is 32 GB/s.

The lanes in each direction are grouped into four quadrants of 5 lanes each.
In some applications, the link can also operate at half or quarter widths in order to
reduce power consumption or work around failures.

The form of transmission on each lane is known as differential signaling, or
balanced transmission. With balanced transmission, signals are transmitted as a
 current that travels down one conductor and returns on the other. The binary value
depends on the voltage difference. Typically, one line has a positive voltage value
and the other line has zero voltage, and one line is associated with binary 1 and one
line is associated with binary 0. Specifically, the technique used by QPI is known as
low-voltage differential signaling (LVDS). In a typical implementation, the transmit-
ter injects a small current into one wire or the other, depending on the logic level to
be sent. The current passes through a resistor at the receiving end, and then returns
in the opposite direction along the other wire. The receiver senses the polarity of the
voltage across the resistor to determine the logic level.

Another function performed by the physical layer is that it manages the transla-
tion between 80-bit flits and 20-bit phits using a technique known as multilane distri-
bution. The flits can be considered as a bit stream that is distributed across the data
lanes in a round-robin fashion (first bit to first lane, second bit to second lane, etc.), as
illustrated in Figure 3.23. This approach enables QPI to achieve very high data rates
by implementing the physical link between two ports as multiple parallel channels.

QPI Link Layer

The QPI link layer performs two key functions: flow control and error control. These
functions are performed as part of the QPI link layer protocol, and operate on the

#2n+1 #2n #n+2 #n+1 #n #2 #1

bit stream of flits

#2n+1 #n+1 #1 QPI
lane 0

#2n+2 #n+2 #2 QPI
lane 1

#3n #2n #n QPI
lane 19

Figure 3.23 QPI Multilane Distribution

3.5 / POINT-TO-POINT INTERCONNECT 97

level of the flit (flow control unit). Each flit consists of a 72-bit message payload and
an 8-bit error control code called a cyclic redundancy check (CRC). We discuss error
control codes in Chapter 5.

A flit payload may consist of data or message information. The data flits trans-
fer the actual bits of data between cores or between a core and an IOH. The message
flits are used for such functions as flow control, error control, and cache coherence.
We discuss cache coherence in Chapters 5 and 17.

The flow control function is needed to ensure that a sending QPI entity does
not overwhelm a receiving QPI entity by sending data faster than the receiver can
process the data and clear buffers for more incoming data. To control the flow of
data, QPI makes use of a credit scheme. During initialization, a sender is given a set
number of credits to send flits to a receiver. Whenever a flit is sent to the receiver,
the sender decrements its credit counters by one credit. Whenever a buffer is freed
at the receiver, a credit is returned to the sender for that buffer. Thus, the receiver
controls that pace at which data is transmitted over a QPI link.

Occasionally, a bit transmitted at the physical layer is changed during trans-
mission, due to noise or some other phenomenon. The error control function at the
link layer detects and recovers from such bit errors, and so isolates higher layers
from experiencing bit errors. The procedure works as follows for a flow of data
from system A to system B:

 1. As mentioned, each 80-bit flit includes an 8-bit CRC field. The CRC is a func-
tion of the value of the remaining 72 bits. On transmission, A calculates a
CRC value for each flit and inserts that value into the flit.

 2. When a flit is received, B calculates a CRC value for the 72-bit payload and
compares this value with the value of the incoming CRC value in the flit. If the
two CRC values do not match, an error has been detected.

 3. When B detects an error, it sends a request to A to retransmit the flit that is
in error. However, because A may have had sufficient credit to send a stream
of flits, so that additional flits have been transmitted after the flit in error and
before A receives the request to retransmit. Therefore, the request is for A to
back up and retransmit the damaged flit plus all subsequent flits.

QPI Routing Layer

The Routing layer is used to determine the course that a packet will traverse across
the available system interconnects. Routing tables are defined by firmware and
describe the possible paths that a packet can follow. In small configurations, such as
a two-socket platform, the routing options are limited and the routing tables quite
simple. For larger systems, the routing table options are more complex, giving the
flexibility of routing and rerouting traffic depending on how (1) devices are popu-
lated in the platform, (2) system resources are partitioned, and (3) reliability events
result in mapping around a failing resource.

QPI Protocol Layer

In this layer, the packet is defined as the unit of transfer. The packet contents
definition is standardized with some flexibility allowed to meet differing market

98 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

segment requirements. One key function performed at this level is a cache coher-
ency protocol, which deals with making sure that main memory values held in
multiple caches are consistent. A typical data packet payload is a block of data
being sent to or from a cache.

 3.6 PCI EXPRESS

The peripheral component interconnect (PCI) is a popular high-bandwidth, processor-
independent bus that can function as a mezzanine or peripheral bus. Compared with
other common bus specifications, PCI delivers better system performance for high-
speed I/O subsystems (e.g., graphic display adapters, network interface controllers,
and disk controllers).

Intel began work on PCI in 1990 for its Pentium-based systems. Intel soon
released all the patents to the public domain and promoted the creation of an
industry association, the PCI Special Interest Group (SIG), to develop further and
maintain the compatibility of the PCI specifications. The result is that PCI has been
widely adopted and is finding increasing use in personal computer, workstation, and
server systems. Because the specification is in the public domain and is supported
by a broad cross section of the microprocessor and peripheral industry, PCI prod-
ucts built by different vendors are compatible.

As with the system bus discussed in the preceding sections, the bus-based PCI
scheme has not been able to keep pace with the data rate demands of attached
devices. Accordingly, a new version, known as PCI Express (PCIe) has been devel-
oped. PCIe, as with QPI, is a point-to-point interconnect scheme intended to replace
bus-based schemes such as PCI.

A key requirement for PCIe is high capacity to support the needs of higher data
rate I/O devices, such as Gigabit Ethernet. Another requirement deals with the need
to support time-dependent data streams. Applications such as video-on-demand and
audio redistribution are putting real-time constraints on servers too. Many communi-
cations applications and embedded PC control systems also process data in real-time.
Today’s platforms must also deal with multiple concurrent transfers at ever-increasing
data rates. It is no longer acceptable to treat all data as equal—it is more important,
for example, to process streaming data first since late real-time data is as useless as no
data. Data needs to be tagged so that an I/O system can prioritize its flow throughout
the platform.

PCI Physical and Logical Architecture

Figure 3.24 shows a typical configuration that supports the use of PCIe. A root
 complex device, also referred to as a chipset or a host bridge, connects the proces-
sor and memory subsystem to the PCI Express switch fabric comprising one or
more PCIe and PCIe switch devices. The root complex acts as a buffering device, to
deal with difference in data rates between I/O controllers and memory and proces-
sor components. The root complex also translates between PCIe transaction for-
mats and the processor and memory signal and control requirements. The chipset
will typically support multiple PCIe ports, some of which attach directly to a PCIe

3.6 / PCI EXPRESS 99

device and one or more that attach to a switch that manages multiple PCIe streams.
PCIe links from the chipset may attach to the following kinds of devices that imple-
ment PCIe:

 • Switch: The switch manages multiple PCIe streams.

 • PCIe endpoint: An I/O device or controller that implements PCIe, such as
a Gigabit Ethernet switch, a graphics or video controller, disk interface, or a
communications controller.

 • Legacy endpoint: Legacy endpoint category is intended for existing designs
that have been migrated to PCI Express, and it allows legacy behaviors such
as use of I/O space and locked transactions. PCI Express endpoints are not
permitted to require the use of I/O space at runtime and must not use locked
transactions. By distinguishing these categories, it is possible for a system
designer to restrict or eliminate legacy behaviors that have negative impacts
on system performance and robustness.

 • PCIe/PCI bridge: Allows older PCI devices to be connected to PCIe-based
systems.

As with QPI, PCIe interactions are defined using a protocol architecture. The
PCIe protocol architecture encompasses the following layers (Figure 3.25):

Chipset

Core Core

Gigabit
Ethernet

PCIe

PCIe

PCIe PCIe

PCIePCIe

PCIe

PCIe–PCI
Bridge

Memory

Memory

Legacy
endpoint

PCIe
endpoint

PCIe
endpoint

PCIe
endpoint

Switch

Figure 3.24 Typical Configuration Using PCIe

100 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

 • Physical: Consists of the actual wires carrying the signals, as well as circuitry
and logic to support ancillary features required in the transmission and receipt
of the 1s and 0s.

 • Data link: Is responsible for reliable transmission and flow control. Data
packets generated and consumed by the DLL are called Data Link Layer
Packets (DLLPs).

 • Transaction: Generates and consumes data packets used to implement load/
store data transfer mechanisms and also manages the flow control of those
packets between the two components on a link. Data packets generated and
consumed by the TL are called Transaction Layer Packets (TLPs).

Above the TL are software layers that generate read and write requests that
are transported by the transaction layer to the I/O devices using a packet-based
transaction protocol.

PCIe Physical Layer

Similar to QPI, PCIe is a point-to-point architecture. Each PCIe port consists of a
number of bidirectional lanes (note that in QPI, the lane refers to transfer in one
direction only). Transfer in each direction in a lane is by means of differential sig-
naling over a pair of wires. A PCI port can provide 1, 4, 6, 16, or 32 lanes. In what
follows, we refer to the PCIe 3.0 specification, introduced in late 2010.

As with QPI, PCIe uses a multilane distribution technique. Figure 3.26 shows
an example for a PCIe port consisting of four lanes. Data are distributed to the four
lanes 1 byte at a time using a simple round-robin scheme. At each physical lane,
data are buffered and processed 16 bytes (128 bits) at a time. Each block of 128 bits
is encoded into a unique 130-bit codeword for transmission; this is referred to as
128b/130b encoding. Thus, the effective data rate of an individual lane is reduced
by a factor of 128/130.

To understand the rationale for the 128b/130b encoding, note that unlike
QPI, PCIe does not use its clock line to synchronize the bit stream. That is, the
clock line is not used to determine the start and end point of each incoming bit; it
is used for other signaling purposes only. However, it is necessary for the receiver
to be synchronized with the transmitter, so that the receiver knows when each bit
begins and ends. If there is any drift between the clocks used for bit transmission

Data Link

Physical

Transaction layer
packets (TLPs)

Data link layer
packets (DLLPs)

Transaction

Data Link

Physical

Transaction

Figure 3.25 PCIe Protocol Layers

B1B2B3B4B5B6B7 B0

byte stream

PCIe
lane 0

B4 B0

B5 B1

B6 B2

B7 B3

128b/
130b

PCIe
lane 1

128b/
130b

PCIe
lane 2

128b/
130b

PCIe
lane 3

128b/
130b

Figure 3.26 PCIe Multilane Distribution

101

102 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

and reception of the transmitter and receiver, errors may occur. To compensate for
the possibility of drift, PCIe relies on the receiver synchronizing with the transmit-
ter based on the transmitted signal. As with QPI, PCIe uses differential signaling
over a pair of wires. Synchronization can be achieved by the receiver looking for
transitions in the data and synchronizing its clock to the transition. However, con-
sider that with a long string of 1s or 0s using differential signaling, the output is a
constant voltage over a long period of time. Under these circumstances, any drift
between the clocks of transmitter and receiver will result in loss of synchronization
between the two.

A common approach, and the one used in PCIe 3.0, to overcoming the prob-
lem of a long string of bits of one value is scrambling. Scrambling, which does
not increase the number of bits to be transmitted, is a mapping technique that
tends to make the data appear more random. The scrambling tends to spread
out the number of transitions so that they appear at the receiver more uniformly
spaced, which is good for synchronization. Also, other transmission properties,
such as spectral properties, are enhanced if the data are more nearly of a random
nature rather than constant or repetitive. For more discussion of scrambling, see
Appendix M.

Another technique that can aid in synchronization is encoding, in which addi-
tional bits are inserted into the bit stream to force transitions. For PCIe 3.0, each
group of 128 bits of input is mapped into a 130-bit block by adding a 2-bit block sync
header. The value of the header is 10 for a data block and 01 for what is called an
ordered set block, which refers to a link-level information block.

Figure 3.27 illustrates the use of scrambling and encoding. Data to be trans-
mitted are fed into a scrambler. The scrambled output is then fed into a 128b/130b
encoder, which buffers 128 bits and then maps the 128-bit block into a 130-bit block.
This block then passes through a parallel-to-serial converter and transmitted one bit
at a time using differential signaling.

At the receiver, a clock is synchronized to the incoming data to recover the
bit stream. This then passes through a serial-to-parallel converter to produce a
stream of 130-bit blocks. Each block is passed through a 128b/130b decoder to
recover the original scrambled bit pattern, which is then descrambled to produce
the original bit stream.

Using these techniques, a data rate of 16 GB/s can be achieved. One final
detail to mention. Each transmission of a block of data over a PCI link begins and
ends with an 8-bit framing sequence intended to give the receiver time to synchro-
nize with the incoming physical layer bit stream.

PCIe Transaction Layer

The transaction layer (TL) receives read and write requests from the software above
the TL and creates request packets for transmission to a destination via the link
layer. Most transactions use a split transaction technique, which works in the follow-
ing fashion. A request packet is sent out by a source PCIe device, which then waits
for a response, called a completion packet. The completion following a request is
initiated by the completer only when it has the data and/or status ready for delivery.
Each packet has a unique identifier that enables completion packets to be directed

3.6 / PCI EXPRESS 103

to the correct originator. With the split transaction technique, the completion is
separated in time from the request, in contrast to a typical bus operation in which
both sides of a transaction must be available to seize and use the bus. Between the
request and the completion, other PCIe traffic may use the link.

TL messages and some write transactions are posted transactions, meaning
that no response is expected.

The TL packet format supports 32-bit memory addressing and extended 64-bit
memory addressing. Packets also have attributes such as “no-snoop,” “relaxedorder-
ing,” and “priority,” which may be used to optimally route these packets through the
I/O subsystem.

ADDRESS SPACES AND TRANSACTION TYPES The TL supports four address spaces:

 • Memory: The memory space includes system main memory. It also includes
PCIe I/O devices. Certain ranges of memory addresses map into I/O devices.

 • I/O: This address space is used for legacy PCI devices, with reserved memory
address ranges used to address legacy I/O devices.

Scrambler
Differential

Receiver

Data recovery
circuit

Clock recovery
circuit

8b

130b

128b

130b
1b

1b

1b

128b/130b Encoding

Parallel to serial

(a) Transmitter

Serial to parallel

Transmitter Differential
Driver 128b/130b Decoding

Descrambler

(b) Receiver

8b

8b

D+ D–

D+ D–

Figure 3.27 PCIe Transmit and Receive Block Diagrams

104 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

 • Configuration: This address space enables the TL to read/write configuration
registers associated with I/O devices.

 • Message: This address space is for control signals related to interrupts, error
handling, and power management.

Table 3.3 shows the transaction types provided by the TL. For memory, I/O, and
configuration address spaces, there are read and write transactions. In the case of
memory transactions, there is also a read lock request function. Locked operations
occur as a result of device drivers requesting atomic access to registers on a PCIe
device. A device driver, for example, can atomically read, modify, and then write
to a device register. To accomplish this, the device driver causes the processor to
execute an instruction or set of instructions. The root complex converts these proc-
essor instructions into a sequence of PCIe transactions, which perform individual
read and write requests for the device driver. If these transactions must be executed
atomically, the root complex locks the PCIe link while executing the transactions.
This locking prevents transactions that are not part of the sequence from occur-
ring. This sequence of transactions is called a locked operation. The particular set

Table 3.3 PCIe TLP Transaction Types

Address Space TLP Type Purpose

Memory

Memory Read Request

Memory Read Lock
Request

Memory Write Request

Transfer data to or from a location in the
system memory map.

I/O
I/O Read Request

I/O Write Request

Transfer data to or from a location in the
system memory map for legacy devices.

Configuration

Config Type 0 Read
Request

Config Type 0 Write
Request

Config Type 1 Read
Request

Config Type 1 Write
Request

Transfer data to or from a location in the
configuration space of a PCIe device.

Message

Message Request

Message Request with
Data

Provides in-band messaging and
event reporting.

Memory, I/O,
Configuration

Completion

Completion with Data

Completion Locked

Completion Locked with
Data

Returned for certain requests.

3.6 / PCI EXPRESS 105

of processor instructions that can cause a locked operation to occur depends on the
system chip set and processor architecture.

To maintain compatibility with PCI, PCIe supports both Type 0 and Type 1 con-
figuration cycles. A Type 1 cycle propagates downstream until it reaches the bridge
interface hosting the bus (link) that the target device resides on. The configuration
transaction is converted on the destination link from Type 1 to Type 0 by the bridge.

Finally, completion messages are used with split transactions for memory, I/O,
and configuration transactions.

TLP PACKET ASSEMBLY PCIe transactions are conveyed using transaction
layer packets, which are illustrated in Figure 3.28a. A TLP originates in the

STP framing

Sequence number

ECRC

LCRC

(a) Transaction Layer Packet (b) Data Link Layer Packet

STP framing

A
pp

en
de

d
by

 P
hy

si
ca

l L
ay

er

A
pp

en
de

d
by

 D
at

a
L

in
k

L
ay

er

C
re

at
ed

 b
y

T
ra

ns
ac

tio
n

L
ay

er

C
re

at
ed

by
 D

L
L

1

2

12 or 16

0 to 4096

0 or 4

4

1

Number
of octets

Data

Header

Start

DLLP

End

1

4

1

CRC2

A
pp

en
de

d
by

 P
L

Figure 3.28 PCIe Protocol Data Unit Format

106 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

transaction layer of the sending device and terminates at the transaction layer of
the receiving device.

Upper layer software sends to the TL the information needed for the TL to
create the core of the TLP, which consists of the following fields:

 • Header: The Header describes the type of packet and includes information
needed by the receiver to process the packet, including any needed routing
information. The internal header format is discussed subsequently.

 • Data: A Data field of up to 4096 bytes may be included in the TLP. Some
TLPs do not contain a Data field.

 • ECRC: An optional end-to-end CRC field enables the destination TL layer to
check for errors in the Header and Data portions of the TLP.

An example of a TLP header format, used for a memory request transaction,
is shown in Figure 3.29. The fields shaded green indicate fields that are present in
all headers. In addition to fields reserved for future use (R), these fields include the
following:

 • Length: Length of the Data field in double words (DW), where one DW =
4 bytes.

 • Attributes: Consists of two bits. The relaxed ordering bit indicates whether
strict or relaxed ordering is used. With relaxed ordering, a transaction may
be completed prior to other transactions that were already enqueued. The no
snoop bit, when set, indicates that no cache coherency issues exist with respect
to this TLP.

 • EP: Poisoned data bit. If set, this bit indicates the data in this TLP should be con-
sidered invalid, although the transaction is being allowed to complete normally.

 • TE: TLP digest field present. If set, indicates that the ECRC field is present.

 • Traffic Class: A 3-bit traffic class can be assigned to a traffic flow to enable
PCIe to prioritize service.

 • Type, Format: These two fields, totaling 7 bits, specify transaction type,
header size, and whether a data field is present.

Type

Requestor ID Tag

Address [63:32]

Address [31:2]

R

R

Fmt Length

32 bits

16
 o

ct
et

s

Attr RRR
Traffic
Class

T
E

Last
DW BE

First
DW BE

E
P

Figure 3.29 TLP Memory Request Format

3.6 / PCI EXPRESS 107

 • First DW Byte Enables: These four bits indicate, respectively, whether the
corresponding byte in the first DW is valid.

 • Last DW Byte Enables: These four bits indicate, respectively, whether the
corresponding byte in the last DW is valid. This and the preceding field have
the effect of allowing smaller transfers that a full DW and offsetting the start
and end addresses from the DW boundary.

Figure 3.29 shows a TLP header for a memory request transaction. The
Requestor ID identifies the memory requestor, telling the completer where to send
its response. The Tag is a number assigned to this transaction by the requestor; the
completer must include this Tag in its response so that the requestor can match
request and response. The Address field indicates the starting memory address to
be read from.

PCIe Data Link Layer

The purpose of the PCIe data link layer is to ensure reliable delivery of packets
across the PCIe link. The DLL participates in the formation of TLPs and also trans-
mits DLLPs.

DATA LINK LAYER PACKETS Data link layer packets originate at the data link
layer of a transmitting device and terminate at the DLL of the device on the
other end of the link. Figure 3.29b shows the format of a DLLP. There are three
important groups of DLLPs used in managing a link: flow control packets, power
management packets, and TLP ACK and NAK packets. Power management
packets are used in managing power platform budgeting. Flow control packets
regulate the rate at which TLPs and DLLPs can be transmitted across a link. The
ACK and NAK packets are used in TLP processing, discussed in the following
paragraphs.

TRANSACTION LAYER PACKET PROCESSING The DLL adds two fields to the
core of the TLP created by the TL (Figure 3.29a): a 16-bit sequence number and a
32-bit link-layer CRC (LCRC). Whereas the core fields created at the TL are only
used at the destination TL, the two fields added by the DLL are processed at each
intermediate node on the way from source to destination.

When a TLP arrives at a device, the DLL strips off the sequence number and
LCRC fields and checks the LCRC. There are two possibilities:

 1. If no errors are detected, the core portion of the TLP is handed up to the local
transaction layer. If this receiving device is the intended destination, then the
TL processes the TLP. Otherwise, the TL determines a route for the TLP and
passes it back down to the DLL for transmission over the next link on the way
to the destination.

 2. If an error is detected, the DLL schedules an NAK DLL packet to return back
to the remote transmitter. The TLP is eliminated.

When the DLL transmits a TLP, it retains a copy of the TLP. If it receives
an NAK for the TLP with this sequence number, it retransmits the TLP. When it
receives an ACK, it discards the buffered TLP.

108 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

address bus
address lines
arbitration
asynchronous timing
balanced transmission
bus
bus width
centralized arbitration
control lines
data bus
data lines
differential signaling
disabled interrupt

distributed arbitration
error control function
execute cycle
fetch cycle
flit
flow control function
instruction cycle
interrupt
interrupt handler
interrupt service routine (ISR)
lane
memory address register

(MAR)

memory buffer register (MBR)
multilane distribution
Packets
PCI Express (PCIe)
peripheral component

interconnect (PCI)
phit
QuickPath Interconnect

(QPI)
root complex
synchronous timing
system bus

 3.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 3.7 RECOMMENDED READING

[SING10] provides a good overview of QPI. For a thorough discussion, see [MADD09].
[KOLB05] is a good overview of PCIe. The clearest book-length description of PCIe is
[WILE03].

KOLB05 Kolbehdari, M., et al. “The Emergence of PCI Express* in the Next Genera-
tion of Mobile Platforms.” Intel Technology Journal, February 2005.

MADD09 Maddox, R., et al. Weaving High Performance Multiprocessor Fabric: Archi-
tectural Insights to the Intel QuickPath Interconnect. Hillsboro, OR: Intel Press, 2009.

SING10 Singh, G., et al. “The Feeding of High-Performance Processor Cores—Quickpath
Interconnects and the New I/O Hubs.” Intel Technology Journal, September 2010.

WILE03 Wilen, A.; Schade, J.; and Thronburg, R. Introduction to PCI Express—A
Hardware and Software Developers Guide. Hillsboro, OR: Intel Press, 2003.

Review Questions
 3.1 What general categories of functions are specified by computer instructions?
 3.2 List and briefly define the possible states that define an instruction execution.
 3.3 List and briefly define two approaches to dealing with multiple interrupts.
 3.4 What types of transfers must a computer’s interconnection structure (e.g., bus) support?
 3.5 What is the benefit of using a multiple-bus architecture compared to a single-bus

 architecture?
 3.6 List and briefly define the QPI protocol layers.
 3.7 List and briefly define the PCIe protocol layers.

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 109

Problems

 3.1 The hypothetical machine of Figure 3.4 also has two I/O instructions:

0011 = Load AC from I/O

0111 = Store AC to I/O

In these cases, the 12-bit address identifies a particular I/O device. Show the program
execution (using the format of Figure 3.5) for the following program:
1. Load AC from device 5.
2. Add contents of memory location 940.
3. Store AC to device 6.

Assume that the next value retrieved from device 5 is 3 and that location 940 contains
a value of 2.

 3.2 The program execution of Figure 3.5 is described in the text using six steps. Expand
this description to show the use of the MAR and MBR.

 3.3 Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of
two fields: the first byte contains the opcode and the remainder the immediate oper-
and or an operand address.
a. What is the maximum directly addressable memory capacity (in bytes)?
b. Discuss the impact on the system speed if the microprocessor bus has

1. a 32-bit local address bus and a 16-bit local data bus, or
2. a 16-bit local address bus and a 16-bit local data bus.

c. How many bits are needed for the program counter and the instruction register?
 3.4 Consider a hypothetical microprocessor generating a 16-bit address (for example,

 assume that the program counter and the address registers are 16 bits wide) and hav-
ing a 16-bit data bus.
a. What is the maximum memory address space that the processor can access directly

if it is connected to a “16-bit memory”?
b. What is the maximum memory address space that the processor can access directly

if it is connected to an “8-bit memory”?
c. What architectural features will allow this microprocessor to access a separate

“I/O space”?
d. If an input and an output instruction can specify an 8-bit I/O port number, how

many 8-bit I/O ports can the microprocessor support? How many 16-bit I/O ports?
Explain.

 3.5 Consider a 32-bit microprocessor, with a 16-bit external data bus, driven by an 8-MHz
input clock. Assume that this microprocessor has a bus cycle whose minimum dura-
tion equals four input clock cycles. What is the maximum data transfer rate across
the bus that this microprocessor can sustain, in bytes/s? To increase its performance,
would it be better to make its external data bus 32 bits or to double the external clock
frequency supplied to the microprocessor? State any other assumptions you make,
and explain. Hint: Determine the number of bytes that can be transferred per bus
cycle.

 3.6 Consider a computer system that contains an I/O module controlling a simple key-
board/printer teletype. The following registers are contained in the processor and con-
nected directly to the system bus:

INPR: Input Register, 8 bits
OUTR: Output Register, 8 bits
FGI: Input Flag, 1 bit
FGO: Output Flag, 1 bit
IEN: Interrupt Enable, 1 bit

Keystroke input from the teletype and printer output to the teletype are controlled
by the I/O module. The teletype is able to encode an alphanumeric symbol to an 8-bit
word and decode an 8-bit word into an alphanumeric symbol.

110 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

a. Describe how the processor, using the first four registers listed in this problem, can
achieve I/O with the teletype.

b. Describe how the function can be performed more efficiently by also employing
IEN.

 3.7 Consider two microprocessors having 8- and 16-bit-wide external data buses, respec-
tively. The two processors are identical otherwise and their bus cycles take just as long.
a. Suppose all instructions and operands are two bytes long. By what factor do the

maximum data transfer rates differ?
b. Repeat assuming that half of the operands and instructions are one byte long.

 3.8 Figure 3.30 indicates a distributed arbitration scheme that can be used with an obso-
lete bus scheme known as Multibus I. Agents are daisy-chained physically in priority
order. The left-most agent in the diagram receives a constant bus priority in (BPRN)
signal indicating that no higher-priority agent desires the bus. If the agent does not
require the bus, it asserts its bus priority out (BPRO) line. At the beginning of a clock
cycle, any agent can request control of the bus by lowering its BPRO line. This lowers
the BPRN line of the next agent in the chain, which is in turn required to lower its
BPRO line. Thus, the signal is propagated the length of the chain. At the end of this
chain reaction, there should be only one agent whose BPRN is asserted and whose
BPRO is not. This agent has priority. If, at the beginning of a bus cycle, the bus is not
busy (BUSY inactive), the agent that has priority may seize control of the bus by
 asserting the BUSY line.

It takes a certain amount of time for the BPR signal to propagate from the highest-
priority agent to the lowest. Must this time be less than the clock cycle? Explain.

 3.9 The VAX SBI bus uses a distributed, synchronous arbitration scheme. Each SBI
device (i.e., processor, memory, I/O module) has a unique priority and is assigned a
unique transfer request (TR) line. The SBI has 16 such lines (TR0, TR1, …, TR15),
with TR0 having the highest priority. When a device wants to use the bus, it places a
reservation for a future time slot by asserting its TR line during the current time slot.
At the end of the current time slot, each device with a pending reservation examines
the TR lines; the highest-priority device with a reservation uses the next time slot.

A maximum of 17 devices can be attached to the bus. The device with priority
16 has no TR line. Why not?

 3.10 On the VAX SBI, the lowest-priority device usually has the lowest average wait time.
For this reason, the processor is usually given the lowest priority on the SBI. Why does
the priority 16 device usually have the lowest average wait time? Under what circum-
stances would this not be true?

 3.11 For a synchronous read operation (Figure 3.18), the memory module must place the
data on the bus sufficiently ahead of the falling edge of the Read signal to allow for

Bus
terminator

Bus
terminator

BPRN BPRO BPRN BPRO BPRN BPRO

(highest priority)

Master 1 Master 2 Master 3

(lowest priority)

Figure 3.30 Multibus I Distributed Arbitration

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 111

signal settling. Assume a microprocessor bus is clocked at 10 MHz and that the Read
signal begins to fall in the middle of the second half of T3.
a. Determine the length of the memory read instruction cycle.
b. When, at the latest, should memory data be placed on the bus? Allow 20 ns for the

settling of data lines.
 3.12 Consider a microprocessor that has a memory read timing as shown in Figure 3.18.

After some analysis, a designer determines that the memory falls short of providing
read data on time by about 180 ns.
a. How many wait states (clock cycles) need to be inserted for proper system opera-

tion if the bus clocking rate is 8 MHz?
b. To enforce the wait states, a Ready status line is employed. Once the processor

has issued a Read command, it must wait until the Ready line is asserted before
attempting to read data. At what time interval must we keep the Ready line low in
order to force the processor to insert the required number of wait states?

 3.13 A microprocessor has a memory write timing as shown in Figure 3.18. Its manufac-
turer specifies that the width of the Write signal can be determined by T – 50, where
T is the clock period in ns.
a. What width should we expect for the Write signal if bus clocking rate is 5 MHz?
b. The data sheet for the microprocessor specifies that the data remain valid for

20 ns after the falling edge of the Write signal. What is the total duration of valid
data presentation to memory?

c. How many wait states should we insert if memory requires valid data presentation
for at least 190 ns?

 3.14 A microprocessor has an increment memory direct instruction, which adds 1 to the
value in a memory location. The instruction has five stages: fetch opcode (four bus
clock cycles), fetch operand address (three cycles), fetch operand (three cycles), add 1
to operand (three cycles), and store operand (three cycles).
a. By what amount (in percent) will the duration of the instruction increase if we have

to insert two bus wait states in each memory read and memory write operation?
b. Repeat assuming that the increment operation takes 13 cycles instead of 3 cycles.

 3.15 The Intel 8088 microprocessor has a read bus timing similar to that of Figure 3.18,
but requires four processor clock cycles. The valid data is on the bus for an amount
of time that extends into the fourth processor clock cycle. Assume a processor clock
rate of 8 MHz.
a. What is the maximum data transfer rate?
b. Repeat but assume the need to insert one wait state per byte transferred.

 3.16 The Intel 8086 is a 16-bit processor similar in many ways to the 8-bit 8088. The 8086
uses a 16-bit bus that can transfer 2 bytes at a time, provided that the lower-order
byte has an even address. However, the 8086 allows both even- and odd-aligned word
operands. If an odd-aligned word is referenced, two memory cycles, each consisting of
four bus cycles, are required to transfer the word. Consider an instruction on the 8086
that involves two 16-bit operands. How long does it take to fetch the operands? Give
the range of possible answers. Assume a clocking rate of 4 MHz and no wait states.

 3.17 Consider a 32-bit microprocessor whose bus cycle is the same duration as that of a
16-bit microprocessor. Assume that, on average, 20% of the operands and instruc-
tions are 32 bits long, 40% are 16 bits long, and 40% are only 8 bits long. Calculate
the improvement achieved when fetching instructions and operands with the 32-bit
microprocessor.

 3.18 The microprocessor of Problem 3.14 initiates the fetch operand stage of the incre-
ment memory direct instruction at the same time that a keyboard actives an interrupt
request line. After how long does the processor enter the interrupt processing cycle?
Assume a bus clocking rate of 10 MHz.

112

CHAPTER

CACHE MEMORY
4.1 Computer Memory System Overview

Characteristics of Memory Systems
The Memory Hierarchy

4.2 Cache Memory Principles

4.3 Elements of Cache Design
Cache Addresses
Cache Size
Mapping Function
Replacement Algorithms
Write Policy
Line Size
Number of Caches

4.4 Pentium 4 Cache Organization

4.5 ARM Cache Organization

4.6 Recommended Reading

4.7 Key Terms, Review Questions, and Problems

Appendix 4A Performance Characteristics of Two-Level Memories
Locality
Operation of Two-Level Memory
Performance

4.1 / COMPUTER MEMORY SYSTEM OVERVIEW 113

Although seemingly simple in concept, computer memory exhibits perhaps the wid-
est range of type, technology, organization, performance, and cost of any feature
of a computer system. No single technology is optimal in satisfying the memory
requirements for a computer system. As a consequence, the typical computer
system is equipped with a hierarchy of memory subsystems, some internal to the
system (directly accessible by the processor) and some external (accessible by the
processor via an I/O module).

This chapter and the next focus on internal memory elements, while Chapter 6
is devoted to external memory. To begin, the first section examines key characteristics
of computer memories. The remainder of the chapter examines an essential element
of all modern computer systems: cache memory.

 4.1 COMPUTER MEMORY SYSTEM OVERVIEW

Characteristics of Memory Systems

The complex subject of computer memory is made more manageable if we classify
memory systems according to their key characteristics. The most important of these
are listed in Table 4.1.

The term location in Table 4.1 refers to whether memory is internal and exter-
nal to the computer. Internal memory is often equated with main memory. But there
are other forms of internal memory. The processor requires its own local memory, in
the form of registers (e.g., see Figure 2.3). Further, as we shall see, the control unit
portion of the processor may also require its own internal memory. We will defer
discussion of these latter two types of internal memory to later chapters. Cache is
another form of internal memory. External memory consists of peripheral storage
devices, such as disk and tape, that are accessible to the processor via I/O controllers.

An obvious characteristic of memory is its capacity. For internal memory, this is
typically expressed in terms of bytes (1 byte = 8 bits) or words. Common word lengths
are 8, 16, and 32 bits. External memory capacity is typically expressed in terms of bytes.

A related concept is the unit of transfer. For internal memory, the unit
of transfer is equal to the number of electrical lines into and out of the memory

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Present an overview of the main characteristics of computer memory systems
and the use of a memory hierarchy.

� Describe the basic concepts and intent of cache memory.

� Discuss the key elements of cache design.

� Distinguish among direct mapping, associative mapping, and set-associative
mapping.

� Explain the reasons for using multiple levels of cache.
� Understand the performance implications of multiple levels of memory.

114 CHAPTER 4 / CACHE MEMORY

 module. This may be equal to the word length, but is often larger, such as 64, 128, or
256 bits. To clarify this point, consider three related concepts for internal memory:

 • Word: The “natural” unit of organization of memory. The size of a word is typi-
cally equal to the number of bits used to represent an integer and to the instruc-
tion length. Unfortunately, there are many exceptions. For example, the CRAY
C90 (an older model CRAY supercomputer) has a 64-bit word length but uses
a 46-bit integer representation. The Intel x86 architecture has a wide variety of
instruction lengths, expressed as multiples of bytes, and a word size of 32 bits.

 • Addressable units: In some systems, the addressable unit is the word. However,
many systems allow addressing at the byte level. In any case, the relationship
between the length in bits A of an address and the number N of addressable
units is 2A = N.

 • Unit of transfer: For main memory, this is the number of bits read out of or
written into memory at a time. The unit of transfer need not equal a word or
an addressable unit. For external memory, data are often transferred in much
larger units than a word, and these are referred to as blocks.

Another distinction among memory types is the method of accessing units of
data. These include the following:

 • Sequential access: Memory is organized into units of data, called records.
Access must be made in a specific linear sequence. Stored addressing informa-
tion is used to separate records and assist in the retrieval process. A shared
read–write mechanism is used, and this must be moved from its current loca-
tion to the desired location, passing and rejecting each intermediate record.
Thus, the time to access an arbitrary record is highly variable. Tape units, dis-
cussed in Chapter 6, are sequential access.

Table 4.1 Key Characteristics of Computer Memory Systems

Location

Internal (e.g., processor registers, cache, main
memory)

External (e.g., optical disks, magnetic
disks, tapes)

Capacity

Number of words

Number of bytes

Unit of Transfer

Word

Block

Access Method

Sequential

Direct

Random

Associative

Performance

Access time

Cycle time

Transfer rate

Physical Type

Semiconductor

Magnetic

Optical

Magneto-optical

Physical Characteristics

Volatile/nonvolatile

Erasable/nonerasable

Organization

Memory modules

4.1 / COMPUTER MEMORY SYSTEM OVERVIEW 115

 • Direct access: As with sequential access, direct access involves a shared
read–write mechanism. However, individual blocks or records have a unique
address based on physical location. Access is accomplished by direct access
to reach a general vicinity plus sequential searching, counting, or waiting to
reach the final location. Again, access time is variable. Disk units, discussed in
Chapter 6, are direct access.

 • Random access: Each addressable location in memory has a unique, physically
wired-in addressing mechanism. The time to access a given location is inde-
pendent of the sequence of prior accesses and is constant. Thus, any location
can be selected at random and directly addressed and accessed. Main memory
and some cache systems are random access.

 • Associative: This is a random access type of memory that enables one to make
a comparison of desired bit locations within a word for a specified match, and
to do this for all words simultaneously. Thus, a word is retrieved based on a
portion of its contents rather than its address. As with ordinary random-access
memory, each location has its own addressing mechanism, and retrieval time
is constant independent of location or prior access patterns. Cache memories
may employ associative access.

From a user’s point of view, the two most important characteristics of memory
are capacity and performance. Three performance parameters are used:

 • Access time (latency): For random-access memory, this is the time it takes to
perform a read or write operation, that is, the time from the instant that an
address is presented to the memory to the instant that data have been stored
or made available for use. For non-random-access memory, access time is the
time it takes to position the read–write mechanism at the desired location.

 • Memory cycle time: This concept is primarily applied to random-access memory
and consists of the access time plus any additional time required before a second
access can commence. This additional time may be required for transients to die
out on signal lines or to regenerate data if they are read destructively. Note that
memory cycle time is concerned with the system bus, not the processor.

 • Transfer rate: This is the rate at which data can be transferred into or out of a
memory unit. For random-access memory, it is equal to 1/(cycle time).

For non-random-access memory, the following relationship holds:

 Tn = TA +
n
R

 (4.1)

where

Tn = Average time to read or write n bits

TA = Average access time

n = Number of bits

R = Transfer rate, in bits per second (bps)

A variety of physical types of memory have been employed. The most com-
mon today are semiconductor memory, magnetic surface memory, used for disk and
tape, and optical and magneto-optical.

116 CHAPTER 4 / CACHE MEMORY

Several physical characteristics of data storage are important. In a volatile
memory, information decays naturally or is lost when electrical power is switched
off. In a nonvolatile memory, information once recorded remains without deterio-
ration until deliberately changed; no electrical power is needed to retain informa-
tion. Magnetic-surface memories are nonvolatile. Semiconductor memory (memory
on integrated circuits) may be either volatile or nonvolatile. Nonerasable memory
cannot be altered, except by destroying the storage unit. Semiconductor memory of
this type is known as read-only memory (ROM). Of necessity, a practical noneras-
able memory must also be nonvolatile.

For random-access memory, the organization is a key design issue. In this con-
text, organization refers to the physical arrangement of bits to form words. The
obvious arrangement is not always used, as is explained in Chapter 5.

The Memory Hierarchy

The design constraints on a computer’s memory can be summed up by three ques-
tions: How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there,
applications will likely be developed to use it. The question of how fast is, in a sense,
easier to answer. To achieve greatest performance, the memory must be able to
keep up with the processor. That is, as the processor is executing instructions, we
would not want it to have to pause waiting for instructions or operands. The final
question must also be considered. For a practical system, the cost of memory must
be reasonable in relationship to other components.

As might be expected, there is a trade-off among the three key characteristics
of memory: capacity, access time, and cost. A variety of technologies are used to
implement memory systems, and across this spectrum of technologies, the following
relationships hold:

 • Faster access time, greater cost per bit

 • Greater capacity, smaller cost per bit

 • Greater capacity, slower access time

The dilemma facing the designer is clear. The designer would like to use mem-
ory technologies that provide for large-capacity memory, both because the capac-
ity is needed and because the cost per bit is low. However, to meet performance
requirements, the designer needs to use expensive, relatively lower-capacity memo-
ries with short access times.

The way out of this dilemma is not to rely on a single memory component or
technology, but to employ a memory hierarchy. A typical hierarchy is illustrated in
Figure 4.1. As one goes down the hierarchy, the following occur:

 a. Decreasing cost per bit

 b. Increasing capacity

 c. Increasing access time

 d. Decreasing frequency of access of the memory by the processor

Thus, smaller, more expensive, faster memories are supplemented by larger,
cheaper, slower memories. The key to the success of this organization is item (d):

4.1 / COMPUTER MEMORY SYSTEM OVERVIEW 117

decreasing frequency of access. We examine this concept in greater detail when we
discuss the cache, later in this chapter, and virtual memory in Chapter 8. A brief
explanation is provided at this point.

The use of two levels of memory to reduce average access time works in prin-
ciple, but only if conditions (a) through (d) apply. By employing a variety of tech-
nologies, a spectrum of memory systems exists that satisfies conditions (a) through
(c). Fortunately, condition (d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of
reference [DENN68]. During the course of execution of a program, memory refer-
ences by the processor, for both instructions and data, tend to cluster. Programs
typically contain a number of iterative loops and subroutines. Once a loop or sub-
routine is entered, there are repeated references to a small set of instructions.
Similarly, operations on tables and arrays involve access to a clustered set of data
words. Over a long period of time, the clusters in use change, but over a short period
of time, the processor is primarily working with fixed clusters of memory references.

Inboardmemory

Outboardstorage

Off-linestorage

Main

memory

Magnetic disk

CD-ROM

CD-RW

DVD-RW

DVD-RAM

Blu-Ray

Magnetic tape

Cache

Reg-

iste
rs

Figure 4.1 The Memory Hierarchy

118 CHAPTER 4 / CACHE MEMORY

Example 4.1 Suppose that the processor has access to two levels of memory. Level 1
contains 1000 words and has an access time of 0.01 μs; level 2 contains 100,000 words
and has an access time of 0.1 μs. Assume that if a word to be accessed is in level 1, then
the processor accesses it directly. If it is in level 2, then the word is first transferred to
level 1 and then accessed by the processor. For simplicity, we ignore the time required
for the processor to determine whether the word is in level 1 or level 2. Figure 4.2 shows
the general shape of the curve that covers this situation. The figure shows the average
access time to a two-level memory as a function of the hit ratio H, where H is defined as
the fraction of all memory accesses that are found in the faster memory (e.g., the cache),
T1 is the access time to level 1, and T2 is the access time to level 2.1 As can be seen, for
high percentages of level 1 access, the average total access time is much closer to that of
level 1 than that of level 2.

In our example, suppose 95% of the memory accesses are found in level 1. Then the
average time to access a word can be expressed as

(0.95)(0.01 ms) + (0.05)(0.01 ms + 0.1 ms) = 0.0095 + 0.0055 = 0.015 ms

The average access time is much closer to 0.01 μs than to 0.1 μs, as desired.

1If the accessed word is found in the faster memory, that is defined as a hit. A miss occurs if the accessed
word is not found in the faster memory.

0

T1

T1 � T2

T2

1

Fraction of accesses involving only level 1 (hit ratio)

A
ve

ra
ge

 a
cc

es
s

tim
e

Figure 4.2 Performance of Accesses Involving only
Level 1 (hit ratio)

Accordingly, it is possible to organize data across the hierarchy such that the
percentage of accesses to each successively lower level is substantially less than that
of the level above. Consider the two-level example already presented. Let level 2

4.1 / COMPUTER MEMORY SYSTEM OVERVIEW 119

memory contains all program instructions and data. The current clusters can be
temporarily placed in level 1. From time to time, one of the clusters in level 1 will
have to be swapped back to level 2 to make room for a new cluster coming in to
level 1. On average, however, most references will be to instructions and data con-
tained in level 1.

This principle can be applied across more than two levels of memory, as sug-
gested by the hierarchy shown in Figure 4.1. The fastest, smallest, and most expen-
sive type of memory consists of the registers internal to the processor. Typically, a
processor will contain a few dozen such registers, although some machines contain
hundreds of registers. Main memory is the principal internal memory system of
the computer. Each location in main memory has a unique address. Main memory
is usually extended with a higher-speed, smaller cache. The cache is not usually
visible to the programmer or, indeed, to the processor. It is a device for staging
the movement of data between main memory and processor registers to improve
performance.

The three forms of memory just described are, typically, volatile and employ
semiconductor technology. The use of three levels exploits the fact that semicon-
ductor memory comes in a variety of types, which differ in speed and cost. Data are
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable magnetic disk, tape,
and optical storage. External, nonvolatile memory is also referred to as secondary
memory or auxiliary memory. These are used to store program and data files and
are usually visible to the programmer only in terms of files and records, as opposed
to individual bytes or words. Disk is also used to provide an extension to main mem-
ory known as virtual memory, which is discussed in Chapter 8.

Other forms of memory may be included in the hierarchy. For example, large
IBM mainframes include a form of internal memory known as expanded storage.
This uses a semiconductor technology that is slower and less expensive than that
of main memory. Strictly speaking, this memory does not fit into the hierarchy but
is a side branch: Data can be moved between main memory and expanded storage
but not between expanded storage and external memory. Other forms of secondary
memory include optical and magneto-optical disks. Finally, additional levels can be
effectively added to the hierarchy in software. A portion of main memory can be
used as a buffer to hold data temporarily that is to be read out to disk. Such a tech-
nique, sometimes referred to as a disk cache,2 improves performance in two ways:

 • Disk writes are clustered. Instead of many small transfers of data, we have a
few large transfers of data. This improves disk performance and minimizes
processor involvement.

 • Some data destined for write-out may be referenced by a program before the
next dump to disk. In that case, the data are retrieved rapidly from the soft-
ware cache rather than slowly from the disk.
Appendix 4A examines the performance implications of multilevel memory

structures.

2Disk cache is generally a purely software technique and is not examined in this book. See [STAL12] for
a discussion.

120 CHAPTER 4 / CACHE MEMORY

 4.2 CACHE MEMORY PRINCIPLES

Cache memory is designed to combine the memory access time of expensive, high-
speed memory combined with the large memory size of less expensive, lower-speed
 memory. The concept is illustrated in Figure 4.3a. There is a relatively large and slow
main memory together with a smaller, faster cache memory. The cache contains a
copy of portions of main memory. When the processor attempts to read a word of
memory, a check is made to determine if the word is in the cache. If so, the word is
delivered to the processor. If not, a block of main memory, consisting of some fixed
number of words, is read into the cache and then the word is delivered to the pro-
cessor. Because of the phenomenon of locality of reference, when a block of data is
fetched into the cache to satisfy a single memory reference, it is likely that there will
be future references to that same memory location or to other words in the block.

Figure 4.3b depicts the use of multiple levels of cache. The L2 cache is slower
and typically larger than the L1 cache, and the L3 cache is slower and typically
larger than the L2 cache.

Figure 4.4 depicts the structure of a cache/main-memory system. Main mem-
ory consists of up to 2n addressable words, with each word having a unique n-bit
address. For mapping purposes, this memory is considered to consist of a number
of fixed-length blocks of K words each. That is, there are M = 2n/K blocks in main
memory. The cache consists of m blocks, called lines.3 Each line contains K words,

CPU

Word transfer

Fast

Fastest Fast
Less
fast

Slow

Block transfer

Cache Main memory

(a) Single cache

(b) Three-level cache organization

CPU Level 1
(L1) cache

Level 2
(L2) cache

Level 3
(L3) cache

Main
memory

Slow

Figure 4.3 Cache and Main Memory

3In referring to the basic unit of the cache, the term line is used, rather than the term block, for two rea-
sons: (1) to avoid confusion with a main memory block, which contains the same number of data words as
a cache line; and (2) because a cache line includes not only K words of data, just as a main memory block,
but also includes tag and control bits.

4.2 / CACHE MEMORY PRINCIPLES 121

Memory
address

0
1
2

0
1
2

C � 1

3

2n � 1

Word
length

Block length
(K words)

Block 0
(K words)

Block M–1

Line
number Tag Block

(b) Main memory

(a) Cache

•
•
•

•
•
•

Figure 4.4 Cache/Main Memory Structure

plus a tag of a few bits. Each line also includes control bits (not shown), such as a
bit to indicate whether the line has been modified since being loaded into the cache.
The length of a line, not including tag and control bits, is the line size. The line
size may be as small as 32 bits, with each “word” being a single byte; in this case
the line size is 4 bytes. The number of lines is considerably less than the number
of main memory blocks (m V M). At any time, some subset of the blocks of
memory resides in lines in the cache. If a word in a block of memory is read, that
block is transferred to one of the lines of the cache. Because there are more blocks
than lines, an individual line cannot be uniquely and permanently dedicated to a
particular block. Thus, each line includes a tag that identifies which particular block
is currently being stored. The tag is usually a portion of the main memory address,
as described later in this section.

Figure 4.5 illustrates the read operation. The processor generates the read
address (RA) of a word to be read. If the word is contained in the cache, it is deliv-
ered to the processor. Otherwise, the block containing that word is loaded into the
cache, and the word is delivered to the processor. Figure 4.5 shows these last two
operations occurring in parallel and reflects the organization shown in Figure 4.6,
which is typical of contemporary cache organizations. In this organization, the cache
connects to the processor via data, control, and address lines. The data and address
lines also attach to data and address buffers, which attach to a system bus from

122 CHAPTER 4 / CACHE MEMORY

which main memory is reached. When a cache hit occurs, the data and address buff-
ers are disabled and communication is only between processor and cache, with no
system bus traffic. When a cache miss occurs, the desired address is loaded onto the
system bus and the data are returned through the data buffer to both the cache and
the processor. In other organizations, the cache is physically interposed between
the processor and the main memory for all data, address, and control lines. In this
latter case, for a cache miss, the desired word is first read into the cache and then
transferred from cache to processor.

A discussion of the performance parameters related to cache use is contained
in Appendix 4A.

Receive address
RA from CPU

Is block
containing RA
in cache?

Fetch RA word
and deliver
to CPU

DONE

Access main
memory for block
containing RA

Allocate cache
line for main
memory block

Deliver RA word
to CPU

Load main
memory block
into cache line

START

No

Yes

Figure 4.5 Cache Read Operation

4.3 / ELEMENTS OF CACHE DESIGN 123

 4.3 ELEMENTS OF CACHE DESIGN

This section provides an overview of cache design parameters and reports some
typical results. We occasionally refer to the use of caches in high-performance com-
puting (HPC). HPC deals with supercomputers and their software, especially for
scientific applications that involve large amounts of data, vector and matrix com-
putation, and the use of parallel algorithms. Cache design for HPC is quite differ-
ent than for other hardware platforms and applications. Indeed, many researchers
have found that HPC applications perform poorly on computer architectures that
employ caches [BAIL93]. Other researchers have since shown that a cache hierar-
chy can be useful in improving performance if the application software is tuned to
exploit the cache [WANG99, PRES01].4

Although there are a large number of cache implementations, there are a few
basic design elements that serve to classify and differentiate cache architectures.
Table 4.2 lists key elements.

Cache Addresses

Almost all nonembedded processors, and many embedded processors, support vir-
tual memory, a concept discussed in Chapter 8. In essence, virtual memory is a facil-
ity that allows programs to address memory from a logical point of view, without

Processor Cache

Address

Address
buffer

Data
buffer

Control

Data

Control

Sy
st

em
 b

us

Figure 4.6 Typical Cache Organization

4For a general discussion of HPC, see [DOWD98].

124 CHAPTER 4 / CACHE MEMORY

Table 4.2 Elements of Cache Design

Cache Addresses

Logical

Physical

Cache Size

Mapping Function

Direct

Associative

Set associative

Replacement Algorithm

Least recently used (LRU)

First in first out (FIFO)

Least frequently used (LFU)

Random

Write Policy

Write through

Write back

Line Size

Number of Caches

Single or two level

Unified or split

Processor
Main

memoryCache

Logical address Physical address

Data

MMU

(a) Logical cache

Processor
Main

memoryCache

Logical address Physical address

Data

MMU

(b) Physical cache

Figure 4.7 Logical and Physical Caches

regard to the amount of main memory physically available. When virtual memory is
used, the address fields of machine instructions contain virtual addresses. For reads
to and writes from main memory, a hardware memory management unit (MMU)
translates each virtual address into a physical address in main memory.

4.3 / ELEMENTS OF CACHE DESIGN 125

When virtual addresses are used, the system designer may choose to place the
cache between the processor and the MMU or between the MMU and main mem-
ory (Figure 4.7). A logical cache, also known as a virtual cache, stores data using
virtual addresses. The processor accesses the cache directly, without going through
the MMU. A physical cache stores data using main memory physical addresses.

One obvious advantage of the logical cache is that cache access speed is faster
than for a physical cache, because the cache can respond before the MMU performs
an address translation. The disadvantage has to do with the fact that most virtual
memory systems supply each application with the same virtual memory address
space. That is, each application sees a virtual memory that starts at address 0. Thus,
the same virtual address in two different applications refers to two different physi-
cal addresses. The cache memory must therefore be completely flushed with each
application context switch, or extra bits must be added to each line of the cache to
identify which virtual address space this address refers to.

The subject of logical versus physical cache is a complex one, and beyond the
scope of this book. For a more in-depth discussion, see [CEKL97] and [JACO08].

Cache Size

The first item in Table 4.2, cache size, has already been discussed. We would like the
size of the cache to be small enough so that the overall average cost per bit is close
to that of main memory alone and large enough so that the overall average access
time is close to that of the cache alone. There are several other motivations for
minimizing cache size. The larger the cache, the larger the number of gates involved
in addressing the cache. The result is that large caches tend to be slightly slower
than small ones—even when built with the same integrated circuit technology and
put in the same place on chip and circuit board. The available chip and board area
also limits cache size. Because the performance of the cache is very sensitive to the
nature of the workload, it is impossible to arrive at a single “optimum” cache size.
Table 4.3 lists the cache sizes of some current and past processors.

Mapping Function

Because there are fewer cache lines than main memory blocks, an algorithm is
needed for mapping main memory blocks into cache lines. Further, a means is
needed for determining which main memory block currently occupies a cache line.
The choice of the mapping function dictates how the cache is organized. Three
techniques can be used: direct, associative, and set associative. We examine each
of these in turn. In each case, we look at the general structure and then a specific
example.

Example 4.2 For all three cases, the example includes the following elements:

 • The cache can hold 64 Kbytes.

 • Data are transferred between main memory and the cache in blocks of 4 bytes each.
This means that the cache is organized as 16K = 214 lines of 4 bytes each.

 • The main memory consists of 16 Mbytes, with each byte directly addressable by
a 24-bit address (224 = 16M). Thus, for mapping purposes, we can consider main
memory to consist of 4M blocks of 4 bytes each.

126 CHAPTER 4 / CACHE MEMORY

Table 4.3 Cache Sizes of Some Processors

Processor Type
Year of

Introduction L1 Cachea L2 Cache L3 Cache

IBM 360/85 Mainframe 1968 16–32 kB — —

PDP-11/70 Minicomputer 1975 1 kB — —

VAX 11/780 Minicomputer 1978 16 kB — —

IBM 3033 Mainframe 1978 64 kB — —

IBM 3090 Mainframe 1985 128–256 kB — —

Intel 80486 PC 1989 8 kB — —

Pentium PC 1993 8 kB/8 kB 256–512 kB —

PowerPC 601 PC 1993 32 kB — —

PowerPC 620 PC 1996 32 kB/32 kB — —

PowerPC G4 PC/server 1999 32 kB/32 kB 256 kB to 1 MB 2 MB

IBM S/390 G6 Mainframe 1999 256 kB 8 MB —

Pentium 4 PC/server 2000 8 kB/8 kB 256 kB —

IBM SP
High-end server/
supercomputer

2000 64 kB/32 kB 8 MB —

CRAY MTAb Supercomputer 2000 8 kB 2 MB —

Itanium PC/server 2001 16 kB/16 kB 96 kB 4 MB

Itanium 2 PC/server 2002 32 kB 256 kB 6 MB

IBM POWER5 High-end server 2003 64 kB 1.9 MB 36 MB

CRAY XD-1 Supercomputer 2004 64 kB/64 kB 1 MB —

IBM POWER6 PC/server 2007 64 kB/64 kB 4 MB 32 MB

IBM z10 Mainframe 2008 64 kB/128 kB 3 MB 24–48 MB

Intel Core i7
EE 990

Workstation/
server

2011
6 * 32 kB/

32 kB
1.5 MB 12 MB

IBM zEnterprise
196

Mainframe/
server

2011
24 * 64 kB/

128 kB
24 * 1.5 MB

24 MB L3
192 MB L4

Notes:
a Two values separated by a slash refer to instruction and data caches.
b Both caches are instruction only; no data caches.

DIRECT MAPPING The simplest technique, known as direct mapping, maps each
block of main memory into only one possible cache line. The mapping is expressed as

i = j modulo m

where

i = cache line number

j = main memory block number

m = number of lines in the cache

Figure 4.8a shows the mapping for the first m blocks of main memory. Each
block of main memory maps into one unique line of the cache. The next m blocks

4.3 / ELEMENTS OF CACHE DESIGN 127

of main memory map into the cache in the same fashion; that is, block Bm of main
memory maps into line L0 of cache, block Bm +1 maps into line L1, and so on.

The mapping function is easily implemented using the main memory address.
Figure 4.9 illustrates the general mechanism. For purposes of cache access, each
main memory address can be viewed as consisting of three fields. The least signifi-
cant w bits identify a unique word or byte within a block of main memory; in most
contemporary machines, the address is at the byte level. The remaining s bits specify
one of the 2s blocks of main memory. The cache logic interprets these s bits as a
tag of s - r bits (most significant portion) and a line field of r bits. This latter field
identifies one of the m = 2r lines of the cache. To summarize,

 • Address length = (s + w) bits

 • Number of addressable units = 2s+w words or bytes

 • Block size = line size = 2w words or bytes

 • Number of blocks in main memory =
2s+w

2w
= 2s

 • Number of lines in cache = m = 2r

 • Size of cache = 2r+w words or bytes

 • Size of tag = (s - r) bits

(a) Direct mapping

First m blocks of
main memory

(equal to size of cache)

b

L0

Lm–1

L0

Lm–1

Bm–1

B0

b = length of block in bits
t = length of tag in bits

Cache memory

m
 li

ne
s

b

bt

bt

(b) Associative mapping

One block of
main memory

Cache memory

Figure 4.8 Mapping from Main Memory to Cache: Direct and Associative

128 CHAPTER 4 / CACHE MEMORY

WordLineTag
W0
W1
W2
W3

Compare

1 if match
0 if no match

0 if match
1 if no match

W4j
W(4j+1)
W(4j+2)
W(4j+3)

Tag Data

Cache

L0

Li

Memory address

(Miss in cache)

(Hit in cache)

w

s – r

wr

s + w

Main memory

Bj

B0

s

w

Lm–1

s – r

Figure 4.9 Direct-Mapping Cache Organization

Example 4.2a Figure 4.10 shows our example system using direct mapping.5 In the
example, m = 16K = 214 and i = j modulo 214. The mapping becomes

Cache Line Starting Memory Address of Block

0 000000, 010000, …, FF0000

1 000004, 010004, …, FF0004

f f

214 - 1 00FFFC, 01FFFC, …, FFFFFC

Note that no two blocks that map into the same line number have the same tag num-
ber. Thus, blocks with starting addresses 000000, 010000, …, FF0000 have tag numbers 00,
01, …, FF, respectively.

Referring back to Figure 4.5, a read operation works as follows. The cache system is
presented with a 24-bit address. The 14-bit line number is used as an index into the cache
to access a particular line. If the 8-bit tag number matches the tag number currently stored
in that line, then the 2-bit word number is used to select one of the 4 bytes in that line.
Otherwise, the 22-bit tag-plus-line field is used to fetch a block from main memory. The
actual address that is used for the fetch is the 22-bit tag-plus-line concatenated with two
0 bits, so that 4 bytes are fetched starting on a block boundary.

5In this and subsequent figures, memory values are represented in hexadecimal notation. See Chapter 9
for a basic refresher on number systems (decimal, binary, hexadecimal).

4.3 / ELEMENTS OF CACHE DESIGN 129

The effect of this mapping is that blocks of main memory are assigned to lines
of the cache as follows:

Cache line Main memory blocks assigned

0 0, m, 2m, c , 2s - m

1 1, m + 1, 2m + 1, c, 2s - m + 1

f f

m - 1 m - 1, 2m - 1, 3m - 1, c, 2s - 1

Thus, the use of a portion of the address as a line number provides a unique
mapping of each block of main memory into the cache. When a block is actually

111111111111111111111100
111111111111111111111000

111111110000000000000000

000101101111111111111100

000101100011001110011100

111111110000000000000100

000101100000000000000100
000101100000000000000000

000000001111111111111100

000000000000000000000000
000000000000000000000100

000000001111111111111000

00
00

FF
FF

FF
FF

16

16

16
16

00
00

13579246

TagTag
(hex)

Main memory address (binary)

Tag Data

32 bits

16K line cache

8 bits

8 bits 2 bits

Tag

Main memory address =

Line Word

Line
number

Line + Word
Data

77777777
11235813

12345678

FEDCBA98 FEDCBA98

24682468
11223344

1357924600
16

FF
16

16

0000
0001

0CE7

3FFE
3FFF

11235813

FEDCBA98

11223344
12345678

14 bits

32 bits

16-Mbyte main memory

Note: Memory address values are
in binary representation;
other values are in hexadecimal

Figure 4.10 Direct Mapping Example

130 CHAPTER 4 / CACHE MEMORY

read into its assigned line, it is necessary to tag the data to distinguish it from other
blocks that can fit into that line. The most significant s - r bits serve this purpose.

The direct mapping technique is simple and inexpensive to implement. Its
main disadvantage is that there is a fixed cache location for any given block. Thus,
if a program happens to reference words repeatedly from two different blocks that
map into the same line, then the blocks will be continually swapped in the cache,
and the hit ratio will be low (a phenomenon known as thrashing).

Selective Victim Cache Simulator

One approach to lower the miss penalty is to remember what was discarded
in case it is needed again. Since the discarded data has already been fetched, it can
be used again at a small cost. Such recycling is possible using a victim cache. Victim
cache was originally proposed as an approach to reduce the conflict misses of direct
mapped caches without affecting its fast access time. Victim cache is a fully associative
cache, whose size is typically 4 to 16 cache lines, residing between a direct mapped L1
cache and the next level of memory. This concept is explored in Appendix D.

ASSOCIATIVE MAPPING Associative mapping overcomes the disadvantage of direct
mapping by permitting each main memory block to be loaded into any line of the
cache (Figure 4.8b). In this case, the cache control logic interprets a memory address
simply as a Tag and a Word field. The Tag field uniquely identifies a block of main
memory. To determine whether a block is in the cache, the cache control logic must
simultaneously examine every line’s tag for a match. Figure 4.11 illustrates the logic.

Tag Word
W0
W1
W2
W3

Compare

W4j
W(4j+1)
W(4j+2)
W(4j+3)

Tag Data

Cache
Memory address

(Miss in cache)

(Hit in cache)

w

w

s

s+w

Main memory

s

w

s
1 if match
0 if no match

0 if match
1 if no match

L0

Lj

B0

Bj

Lm–1

Figure 4.11 Fully Associative Cache Organization

4.3 / ELEMENTS OF CACHE DESIGN 131

Example 4.2b Figure 4.12 shows our example using associative mapping. A main mem-
ory address consists of a 22-bit tag and a 2-bit byte number. The 22-bit tag must be stored
with the 32-bit block of data for each line in the cache. Note that it is the leftmost (most
significant) 22 bits of the address that form the tag. Thus, the 24-bit hexadecimal address
16339C has the 22-bit tag 058CE7. This is easily seen in binary notation:

memory address 0001 0110 0011 0011 1001 1100 (binary)

1 6 3 3 9 C (hex)

tag (leftmost 22 bits) 00 0101 1000 1100 1110 0111 (binary)

0 5 8 C E 7 (hex)

111111111111111111111100
111111111111111111111000
111111111111111111110100

000101100011001110011000
000101100011001110011100
000101100011001110100000

000000000000000000000100
000000000000000000000000 13579246

FEDCBA98

Tag Data

32 bits

16K line cache

22 bits

Tag

Main memory address =

Word

Line
number

Data

24682468
11223344
33333333

112233443FFFFE
058CE7

000000
3FFFFF

0000
0001

3FFE
3FFF

FEDCBA98

13579246
3FFFFD 3FFD33333333

24682468

32 bits

16-Mbyte main memory

2 bits22 bits

000000
000001

Tag (hex)

058CE7
058CE8

058CE6

3FFFFE
3FFFFD

3FFFFF

Tag

Main memory address (binary)

Word

Note: Memory address values are
in binary representation;
other values are in hexadecimal

Figure 4.12 Associative Mapping Example

132 CHAPTER 4 / CACHE MEMORY

Note that no field in the address corresponds to the line number, so that the number
of lines in the cache is not determined by the address format. To summarize,

 • Address length = (s + w) bits

 • Number of addressable units = 2s+w words or bytes
 • Block size = line size = 2w words or bytes

 • Number of blocks in main memory =
2s+w

2w
 = 2s

 • Number of lines in cache = undetermined

 • Size of tag = s bits

With associative mapping, there is flexibility as to which block to replace when
a new block is read into the cache. Replacement algorithms, discussed later in this
section, are designed to maximize the hit ratio. The principal disadvantage of asso-
ciative mapping is the complex circuitry required to examine the tags of all cache
lines in parallel.

Cache Time Analysis Simulator

SET-ASSOCIATIVE MAPPING Set-associative mapping is a compromise that
exhibits the strengths of both the direct and associative approaches while reducing
their disadvantages.

In this case, the cache consists of a number sets, each of which consists of a
number of lines. The relationships are

 m = n * k

 i = j modulo n

where

i = cache set number
j = main memory block number

m = number of lines in the cache
v = number of sets
k = number of lines in each set

This is referred to as k-way set-associative mapping. With set-associative map-
ping, block Bj can be mapped into any of the lines of set j. Figure 4.13a illustrates
this mapping for the first n blocks of main memory. As with associative mapping,
each word maps into multiple cache lines. For set-associative mapping, each word
maps into all the cache lines in a specific set, so that main memory block B0 maps
into set 0, and so on. Thus, the set-associative cache can be physically implemented
as n associative caches. It is also possible to implement the set-associative cache as
k direct mapping caches, as shown in Figure 4.13b. Each direct-mapped cache is
referred to as a way, consisting of n lines. The first n lines of main memory are direct
mapped into the n lines of each way; the next group of n lines of main memory are
similarly mapped, and so on. The direct-mapped implementation is typically used

4.3 / ELEMENTS OF CACHE DESIGN 133

for small degrees of associativity (small values of k) while the associative-mapped
implementation is typically used for higher degrees of associativity [JACO08].

For set-associative mapping, the cache control logic interprets a memory
address as three fields: Tag, Set, and Word. The d set bits specify one of n = 2d sets.
The s bits of the Tag and Set fields specify one of the 2s blocks of main memory.
Figure 4.14 illustrates the cache control logic. With fully associative mapping, the
tag in a memory address is quite large and must be compared to the tag of every line
in the cache. With k-way set-associative mapping, the tag in a memory address is
much smaller and is only compared to the k tags within a single set. To summarize,

 • Address length = (s + w) bits

 • Number of addressable units = 2s+w words or bytes

First v blocks of
main memory

(equal to number of sets)

Cache memory—way 1 Cache memory—way k

One
set

(b) k direct–mapped caches
v

lin
es

Bv–1

B0 L0

L v–1

(a) v associative–mapped caches

First v blocks of
main memory

(equal to number of sets)

Cache memory– set 0

Cache memory–set v–1

k
lin

es

Bv–1

B0 L0

L k–1

Figure 4.13 Mapping from Main Memory to Cache: k-Way Set Associative

134 CHAPTER 4 / CACHE MEMORY

 • Block size = line size = 2w words or bytes

 • Number of blocks in main memory =
2s+w

2w
= 2s

 • Number of lines in set = k

 • Number of sets = n = 2d

 • Number of lines in cache = m = kn = k * 2d

 • Size of cache = k * 2d +w words or bytes

 • Size of tag = (s - d) bits

WordSetTag

Compare

Tag Data

Cache

F0

Memory address

(Hit in cache)

s – d

wds – d

s + w

Main memory

s + w

F1

Fk�1

Fk

Fk�i

F2k�1

Set 0

Set 1

B1

B0

Bj

1 if match
0 if no match

0 if match
1 if no match

(Miss in cache)

Figure 4.14 K-Way Set Associative Cache Organization

Example 4.2c Figure 4.15 shows our example using set-associative mapping with two
lines in each set, referred to as two-way set-associative. The 13-bit set number identi-
fies a unique set of two lines within the cache. It also gives the number of the block in
main memory, modulo 213. This determines the mapping of blocks into lines. Thus, blocks
000000, 008000, …, FF8000 of main memory map into cache set 0. Any of those blocks can
be loaded into either of the two lines in the set. Note that no two blocks that map into the
same cache set have the same tag number. For a read operation, the 13-bit set number is
used to determine which set of two lines is to be examined. Both lines in the set are exam-
ined for a match with the tag number of the address to be accessed.

135

000101100111111111111100

111111111111111111111000

111111111000000000000000

000101100011001110011100

000101100000000000000000

000000001111111111111000

000000000000000000000000 13579246000
000

000
000

Tag
(hex)

Tag Data

32 bits

16K line cache

9 bits

Tag

Main memory address =

Set Word

Tag Data
Set

number

Data

77777777
11235813

12345678

FEDCBA98 FEDCBA98

24682468
11223344

02C
02C

02C

02C

1FF
1FF

1FF
1FF

7777777713579246000
02C

1FF
02C

02C

0000
0001

0CE7

1FFE
1FFF

02C

246824681FF

11235813

11223344
12345678

32 bits

16–Mbyte main memory

32 bits9 bits

FEDCBA98

2 bits13 bits9 bits

111111111111111111111100

111111111000000000000100

000101100000000000000100

000000001111111111111100

000000000000000000000100

Tag

Main memory address (binary)

Set + Word

Note: Memory address values are
in binary representation;
other values are in hexadecimal

Figure 4.15 Two-Way Set-Associative Mapping Example

136 CHAPTER 4 / CACHE MEMORY

In the extreme case of n = m, k = 1, the set-associative technique reduces to
direct mapping, and for n = 1, k = m, it reduces to associative mapping. The use of
two lines per set (n = m/2, k = 2) is the most common set-associative organization.
It significantly improves the hit ratio over direct mapping. Four-way set associative
(n = m/4, k = 4) makes a modest additional improvement for a relatively small
additional cost [MAYB84, HILL89]. Further increases in the number of lines per
set have little effect.

Figure 4.16 shows the results of one simulation study of set-associative cache
performance as a function of cache size [GENU04]. The difference in performance
between direct and two-way set associative is significant up to at least a cache size of
64 kB. Note also that the difference between two-way and four-way at 4 kB is much
less than the difference in going from for 4 kB to 8 kB in cache size. The complexity
of the cache increases in proportion to the associativity, and in this case would not
be justifiable against increasing cache size to 8 or even 16 Kbytes. A final point to
note is that beyond about 32 kB, increase in cache size brings no significant increase
in performance.

The results of Figure 4.16 are based on simulating the execution of a GCC
compiler. Different applications may yield different results. For example, [CANT01]
reports on the results for cache performance using many of the CPU2000 SPEC
benchmarks. The results of [CANT01] in comparing hit ratio to cache size follow
the same pattern as Figure 4.16, but the specific values are somewhat different.

Cache Simulator
Multitask Cache Simulator

0.0
1k

H
it

 r
at

io

2k 4k 8k 16k

Cache size (bytes)

Direct
Two-way
Four-way
Eight-way
Sixteen-way

32k 64k 128k 256k 512k 1M

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.16 Varying Associativity over Cache Size

4.3 / ELEMENTS OF CACHE DESIGN 137

Replacement Algorithms

Once the cache has been filled, when a new block is brought into the cache, one
of the existing blocks must be replaced. For direct mapping, there is only one pos-
sible line for any particular block, and no choice is possible. For the associative
and set-associative techniques, a replacement algorithm is needed. To achieve high
speed, such an algorithm must be implemented in hardware. A number of algo-
rithms have been tried. We mention four of the most common. Probably the most
effective is least recently used (LRU): Replace that block in the set that has been in
the cache longest with no reference to it. For two-way set associative, this is easily
implemented. Each line includes a USE bit. When a line is referenced, its USE bit
is set to 1 and the USE bit of the other line in that set is set to 0. When a block is to
be read into the set, the line whose USE bit is 0 is used. Because we are assuming
that more recently used memory locations are more likely to be referenced, LRU
should give the best hit ratio. LRU is also relatively easy to implement for a fully
associative cache. The cache mechanism maintains a separate list of indexes to all
the lines in the cache. When a line is referenced, it moves to the front of the list.
For replacement, the line at the back of the list is used. Because of its simplicity of
implementation, LRU is the most popular replacement algorithm.

Another possibility is first-in-first-out (FIFO): Replace that block in the set
that has been in the cache longest. FIFO is easily implemented as a round-robin
or circular buffer technique. Still another possibility is least frequently used (LFU):
Replace that block in the set that has experienced the fewest references. LFU could
be implemented by associating a counter with each line. A technique not based on
usage (i.e., not LRU, LFU, FIFO, or some variant) is to pick a line at random from
among the candidate lines. Simulation studies have shown that random replacement
provides only slightly inferior performance to an algorithm based on usage [SMIT82].

Write Policy

When a block that is resident in the cache is to be replaced, there are two cases to
consider. If the old block in the cache has not been altered, then it may be overwrit-
ten with a new block without first writing out the old block. If at least one write
operation has been performed on a word in that line of the cache, then main mem-
ory must be updated by writing the line of cache out to the block of memory before
bringing in the new block. A variety of write policies, with performance and eco-
nomic trade-offs, is possible. There are two problems to contend with. First, more
than one device may have access to main memory. For example, an I/O module
may be able to read-write directly to memory. If a word has been altered only in the
cache, then the corresponding memory word is invalid. Further, if the I/O device
has altered main memory, then the cache word is invalid. A more complex problem
occurs when multiple processors are attached to the same bus and each processor
has its own local cache. Then, if a word is altered in one cache, it could conceivably
invalidate a word in other caches.

The simplest technique is called write through. Using this technique, all write
operations are made to main memory as well as to the cache, ensuring that main
memory is always valid. Any other processor–cache module can monitor traffic to
main memory to maintain consistency within its own cache. The main disadvantage

138 CHAPTER 4 / CACHE MEMORY

of this technique is that it generates substantial memory traffic and may create a bot-
tleneck. An alternative technique, known as write back, minimizes memory writes.
With write back, updates are made only in the cache. When an update occurs, a
dirty bit, or use bit, associated with the line is set. Then, when a block is replaced, it
is written back to main memory if and only if the dirty bit is set. The problem with
write back is that portions of main memory are invalid, and hence accesses by I/O
modules can be allowed only through the cache. This makes for complex circuitry
and a potential bottleneck. Experience has shown that the percentage of memory
references that are writes is on the order of 15% [SMIT82]. However, for HPC
applications, this number may approach 33% (vector-vector multiplication) and can
go as high as 50% (matrix transposition).

In a bus organization in which more than one device (typically a processor)
has a cache and main memory is shared, a new problem is introduced. If data in one
cache are altered, this invalidates not only the corresponding word in main memory,
but also that same word in other caches (if any other cache happens to have that
same word). Even if a write-through policy is used, the other caches may contain
invalid data. A system that prevents this problem is said to maintain cache coher-
ency. Possible approaches to cache coherency include the following:

 • Bus watching with write through: Each cache controller monitors the address
lines to detect write operations to memory by other bus masters. If another
master writes to a location in shared memory that also resides in the cache
memory, the cache controller invalidates that cache entry. This strategy de-
pends on the use of a write-through policy by all cache controllers.

 • Hardware transparency: Additional hardware is used to ensure that all updates
to main memory via cache are reflected in all caches. Thus, if one processor
modifies a word in its cache, this update is written to main memory. In addi-
tion, any matching words in other caches are similarly updated.

 • Noncacheable memory: Only a portion of main memory is shared by more
than one processor, and this is designated as noncacheable. In such a system,
all accesses to shared memory are cache misses, because the shared memory
is never copied into the cache. The noncacheable memory can be identified
using chip-select logic or high-address bits.

Example 4.3 Consider a cache with a line size of 32 bytes and a main memory that re-
quires 30 ns to transfer a 4-byte word. For any line that is written at least once before
being swapped out of the cache, what is the average number of times that the line must
be written before being swapped out for a write-back cache to be more efficient that a
write-through cache?

For the write-back case, each dirty line is written back once, at swap-out time, taking
8 * 30 = 240 ns. For the write-through case, each update of the line requires that one
word be written out to main memory, taking 30 ns. Therefore, if the average line that gets
written at least once gets written more than 8 times before swap out, then write back is
more efficient.

4.3 / ELEMENTS OF CACHE DESIGN 139

Cache coherency is an active field of research. This topic is explored further
in Part Five.

Line Size

Another design element is the line size. When a block of data is retrieved and placed
in the cache, not only the desired word but also some number of adjacent words are
retrieved. As the block size increases from very small to larger sizes, the hit ratio
will at first increase because of the principle of locality, which states that data in the
vicinity of a referenced word are likely to be referenced in the near future. As the
block size increases, more useful data are brought into the cache. The hit ratio will
begin to decrease, however, as the block becomes even bigger and the probability
of using the newly fetched information becomes less than the probability of reusing
the information that has to be replaced. Two specific effects come into play:

 • Larger blocks reduce the number of blocks that fit into a cache. Because each
block fetch overwrites older cache contents, a small number of blocks results
in data being overwritten shortly after they are fetched.

 • As a block becomes larger, each additional word is farther from the requested
word and therefore less likely to be needed in the near future.

The relationship between block size and hit ratio is complex, depending on
the locality characteristics of a particular program, and no definitive optimum value
has been found. A size of from 8 to 64 bytes seems reasonably close to optimum
[SMIT87, PRZY88, PRZY90, HAND98]. For HPC systems, 64- and 128-byte cache
line sizes are most frequently used.

Number of Caches

When caches were originally introduced, the typical system had a single cache. More
recently, the use of multiple caches has become the norm. Two aspects of this design
issue concern the number of levels of caches and the use of unified versus split caches.

MULTILEVEL CACHES As logic density has increased, it has become possible to
have a cache on the same chip as the processor: the on-chip cache. Compared with
a cache reachable via an external bus, the on-chip cache reduces the processor’s
external bus activity and therefore speeds up execution times and increases overall
system performance. When the requested instruction or data is found in the on-chip
cache, the bus access is eliminated. Because of the short data paths internal to
the processor, compared with bus lengths, on-chip cache accesses will complete
appreciably faster than would even zero-wait state bus cycles. Furthermore, during
this period the bus is free to support other transfers.

The inclusion of an on-chip cache leaves open the question of whether an
 off-chip, or external, cache is still desirable. Typically, the answer is yes, and most con-
temporary designs include both on-chip and external caches. The simplest such organi-
zation is known as a two-level cache, with the internal cache designated as level 1 (L1)
and the external cache designated as level 2 (L2). The reason for including an L2 cache
is the following: If there is no L2 cache and the processor makes an access request
for a memory location not in the L1 cache, then the processor must access DRAM or

140 CHAPTER 4 / CACHE MEMORY

ROM memory across the bus. Due to the typically slow bus speed and slow memory
access time, this results in poor performance. On the other hand, if an L2 SRAM (static
RAM) cache is used, then frequently the missing information can be quickly retrieved.
If the SRAM is fast enough to match the bus speed, then the data can be accessed
using a zero-wait state transaction, the fastest type of bus transfer.

Two features of contemporary cache design for multilevel caches are note-
worthy. First, for an off-chip L2 cache, many designs do not use the system bus as
the path for transfer between the L2 cache and the processor, but use a separate
data path, so as to reduce the burden on the system bus. Second, with the continued
shrinkage of processor components, a number of processors now incorporate the L2
cache on the processor chip, improving performance.

The potential savings due to the use of an L2 cache depends on the hit rates
in both the L1 and L2 caches. Several studies have shown that, in general, the use
of a second-level cache does improve performance (e.g., see [AZIM92], [NOVI93],
[HAND98]). However, the use of multilevel caches does complicate all of the design
issues related to caches, including size, replacement algorithm, and write policy; see
[HAND98] and [PEIR99] for discussions.

Figure 4.17 shows the results of one simulation study of two-level cache per-
formance as a function of cache size [GENU04]. The figure assumes that both
caches have the same line size and shows the total hit ratio. That is, a hit is counted
if the desired data appears in either the L1 or the L2 cache. The figure shows the
impact of L2 on total hits with respect to L1 size. L2 has little effect on the total
number of cache hits until it is at least double the L1 cache size. Note that the steep-
est part of the slope for an L1 cache of 8 Kbytes is for an L2 cache of 16 Kbytes.
Again for an L1 cache of 16 Kbytes, the steepest part of the curve is for an L2 cache
size of 32 Kbytes. Prior to that point, the L2 cache has little, if any, impact on total
cache performance. The need for the L2 cache to be larger than the L1 cache to

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1k 2k 4k 8k 16k 32k

L1 � 16k

64k 128k 256k 512k 1M 2M

H
it

ra
tio

L2 cache size (bytes)

L1 � 8k

Figure 4.17 Total Hit Ratio (L1 and L2) for 8-Kbyte and 16-Kbyte L1

4.4 / PENTIUM 4 CACHE ORGANIZATION 141

affect performance makes sense. If the L2 cache has the same line size and capacity
as the L1 cache, its contents will more or less mirror those of the L1 cache.

With the increasing availability of on-chip area available for cache, most con-
temporary microprocessors have moved the L2 cache onto the processor chip and
added an L3 cache. Originally, the L3 cache was accessible over the external bus.
More recently, most microprocessors have incorporated an on-chip L3 cache. In
either case, there appears to be a performance advantage to adding the third level
(e.g., see [GHAI98]). Further, large systems, such as the IBM mainframe zEnter-
prise systems, now incorporate 3 on-chip cache levels and a fourth level of cache
shared across multiple chips [CURR11].

UNIFIED VERSUS SPLIT CACHES When the on-chip cache first made an appearance,
many of the designs consisted of a single cache used to store references to both data
and instructions. More recently, it has become common to split the cache into two:
one dedicated to instructions and one dedicated to data. These two caches both exist
at the same level, typically as two L1 caches. When the processor attempts to fetch an
instruction from main memory, it first consults the instruction L1 cache, and when the
processor attempts to fetch data from main memory, it first consults the data L1 cache.

There are two potential advantages of a unified cache:

 • For a given cache size, a unified cache has a higher hit rate than split caches
because it balances the load between instruction and data fetches automati-
cally. That is, if an execution pattern involves many more instruction fetches
than data fetches, then the cache will tend to fill up with instructions, and if an
execution pattern involves relatively more data fetches, the opposite will occur.

 • Only one cache needs to be designed and implemented.

The trend is toward split caches at the L1 and unified caches for higher levels,
particularly for superscalar machines, which emphasize parallel instruction execu-
tion and the prefetching of predicted future instructions. The key advantage of the
split cache design is that it eliminates contention for the cache between the instruc-
tion fetch/decode unit and the execution unit. This is important in any design that
relies on the pipelining of instructions. Typically, the processor will fetch instructions
ahead of time and fill a buffer, or pipeline, with instructions to be executed. Suppose
now that we have a unified instruction/data cache. When the execution unit performs
a memory access to load and store data, the request is submitted to the unified cache.
If, at the same time, the instruction prefetcher issues a read request to the cache for
an instruction, that request will be temporarily blocked so that the cache can service
the execution unit first, enabling it to complete the currently executing instruction.
This cache contention can degrade performance by interfering with efficient use of
the instruction pipeline. The split cache structure overcomes this difficulty.

 4.4 PENTIUM 4 CACHE ORGANIZATION

The evolution of cache organization is seen clearly in the evolution of Intel micro-
processors (Table 4.4). The 80386 does not include an on-chip cache. The 80486
includes a single on-chip cache of 8 Kbytes, using a line size of 16 bytes and a

142 CHAPTER 4 / CACHE MEMORY

 four-way set-associative organization. All of the Pentium processors include two
on-chip L1 caches, one for data and one for instructions. For the Pentium 4, the
L1 data cache is 16 Kbytes, using a line size of 64 bytes and a four-way set-associa-
tive organization. The Pentium 4 instruction cache is described subsequently. The
Pentium II also includes an L2 cache that feeds both of the L1 caches. The L2 cache
is eight-way set associative with a size of 512 kB and a line size of 128 bytes. An L3
cache was added for the Pentium III and became on-chip with high-end versions of
the Pentium 4.

Figure 4.18 provides a simplified view of the Pentium 4 organization, high-
lighting the placement of the three caches. The processor core consists of four major
components:

 • Fetch/decode unit: Fetches program instructions in order from the L2 cache,
decodes these into a series of micro-operations, and stores the results in the L1
instruction cache.

 • Out-of-order execution logic: Schedules execution of the micro-operations
subject to data dependencies and resource availability; thus, micro-operations
may be scheduled for execution in a different order than they were fetched
from the instruction stream. As time permits, this unit schedules speculative
execution of micro-operations that may be required in the future.

Table 4.4 Intel Cache Evolution

Problem Solution
Processor on Which

Feature First Appears

External memory slower than the system
bus.

Add external cache using faster
memory technology.

386

Increased processor speed results in
external bus becoming a bottleneck for
cache access.

Move external cache on-chip,
operating at the same speed as the
processor.

486

Internal cache is rather small, due to
limited space on chip.

Add external L2 cache using faster
technology than main memory.

486

Contention occurs when both the
Instruction Prefetcher and the Execution
Unit simultaneously require access to
the cache. In that case, the Prefetcher is
stalled while the Execution Unit’s data
access takes place.

Create separate data and instruc-
tion caches.

Pentium

Increased processor speed results in
external bus becoming a bottleneck for
L2 cache access.

Create separate back-side bus that
runs at higher speed than the main
(front-side) external bus. The BSB
is dedicated to the L2 cache.

Pentium Pro

Move L2 cache on to the proces-
sor chip.

Pentium II

Some applications deal with massive
databases and must have rapid access
to large amounts of data. The on-chip
caches are too small.

Add external L3 cache. Pentium III

Move L3 cache on-chip. Pentium 4

143

Load
address

unit

Integer register file

L1 data cache (16 kB)

FP register file

Store
address

unit

Simple
integer
ALU

Instruction
fetch/decode

unit

Out-of-order
execution

logic

L2 cache
(512 kB)

L3 cache
(1 MB)

L1 instruction
cache (12K �ops)

Simple
integer
ALU

Complex
integer
ALU

FP/
MMX
unit

FP
move
unit

System bus

64
bits

256
bits

Figure 4.18 Pentium 4 Block Diagram

144 CHAPTER 4 / CACHE MEMORY

 • Execution units: These units executes micro-operations, fetching the required
data from the L1 data cache and temporarily storing results in registers.

 • Memory subsystem: This unit includes the L2 and L3 caches and the system
bus, which is used to access main memory when the L1 and L2 caches have a
cache miss and to access the system I/O resources.

Unlike the organization used in all previous Pentium models, and in most
other processors, the Pentium 4 instruction cache sits between the instruction
decode logic and the execution core. The reasoning behind this design decision is
as follows: As discussed more fully in Chapter 16, the Pentium process decodes, or
translates, Pentium machine instructions into simple RISC-like instructions called
micro-operations. The use of simple, fixed-length micro-operations enables the use
of superscalar pipelining and scheduling techniques that enhance performance.
However, the Pentium machine instructions are cumbersome to decode; they have a
variable number of bytes and many different options. It turns out that performance
is enhanced if this decoding is done independently of the scheduling and pipelining
logic. We return to this topic in Chapter 16.

The data cache employs a write-back policy: Data are written to main mem-
ory only when they are removed from the cache and there has been an update. The
Pentium 4 processor can be dynamically configured to support write-through caching.

The L1 data cache is controlled by two bits in one of the control registers,
labeled the CD (cache disable) and NW (not write-through) bits (Table 4.5). There
are also two Pentium 4 instructions that can be used to control the data cache: INVD
invalidates (flushes) the internal cache memory and signals the external cache (if
any) to invalidate. WBINVD writes back and invalidates internal cache and then
writes back and invalidates external cache.

Both the L2 and L3 caches are eight-way setassociative with a line size of
128 bytes.

 4.5 ARM CACHE ORGANIZATION

The ARM cache organization has evolved with the overall architecture of the ARM
family, reflecting the relentless pursuit of performance that is the driving force for
all microprocessor designers.

Table 4.6 shows this evolution. The ARM7 models used a unified L1 cache,
while all subsequent models use a split instruction/data cache. All of the ARM

Table 4.5 Pentium 4 Cache Operating Modes

Control Bits Operating Mode

CD NW Cache Fills Write Throughs Invalidates

0 0 Enabled Enabled Enabled

1 0 Disabled Enabled Enabled

1 1 Disabled Disabled Disabled

Note: CD = 0; NW = 1 is an invalid combination.

4.5 / ARM CACHE ORGANIZATION 145

designs use a set-associative cache, with the degree of associativity and the line size
varying. ARM cached cores with an MMU use a logical cache for processor families
ARM7 through ARM10, including the Intel StongARM and Intel Xscale proces-
sors. The ARM11 family uses a physical cache. The distinction between logical and
physical cache is discussed earlier in this chapter (Figure 4.7).

An interesting feature of the ARM architecture is the use of a small first-in-
first out (FIFO) write buffer to enhance memory write performance. The write
buffer is interposed between the cache and main memory and consists of a set of
addresses and a set of data words. The write buffer is small compared to the cache,
and may hold up to four independent addresses. Typically, the write buffer is ena-
bled for all of main memory, although it may be selectively disabled at the page
level. Figure 4.19, taken from [SLOS04], shows the relationship among the write
buffer, cache, and main memory.

Table 4.6 ARM Cache Features

Core
Cache
Type

Cache Size
(kB)

Cache Line
Size (words) Associativity Location

Write
Buffer Size

(words)

ARM720T Unified 8 4 4-way Logical 8

ARM920T Split 16/16 D/I 8 64-way Logical 16

ARM926EJ-S Split 4-128/4-128 D/I 8 4-way Logical 16

ARM1022E Split 16/16 D/I 8 64-way Logical 16

ARM1026EJ-S Split 4-128/4-128 D/I 8 4-way Logical 8

Intel
StrongARM

Split 16/16 D/I 4 32-way Logical 32

Intel Xscale Split 32/32 D/I 8 32-way Logical 32

ARM1136-JF-S Split 4-64/4-64 D/I 8 4-way Physical 32

Write
buffer

ARM core

Main
memory

Level 1
cache(s)

Level 2
cacheR15

R0

Address
translation

Virtual
address Physical address

Figure 4.19 ARM Cache and Write Buffer Organization

146 CHAPTER 4 / CACHE MEMORY

The write buffer operates as follows: When the processor performs a write to
a bufferable area, the data are placed in the write buffer at processor clock speed
and the processor continues execution. A write occurs when data in the cache are
written back to main memory. Thus, the data to be written are transferred from the
cache to the write buffer. The write buffer then performs the external write in paral-
lel. If, however, the write buffer is full (either because there are already the maxi-
mum number of words of data in the buffer or because there is no slot for the new
address) then the processor is stalled until there is sufficient space in the buffer. As
non-write operations proceed, the write buffer continues to write to main memory
until the buffer is completely empty.

Data written to the write buffer are not available for reading back into the
cache until the data have transferred from the write buffer to main memory. This
is the principal reason that the write buffer is quite small. Even so, unless there
is a high proportion of writes in an executing program, the write buffer improves
performance.

 4.6 RECOMMENDED READING

[JACO08] is an excellent, up-to-date treatment of cache design. Another thorough treat-
ment is [HAND98]. A classic paper that is still well worth reading is [SMIT82]; it surveys
the various elements of cache design and presents the results of an extensive set of analyses.
Another interesting classic is [WILK65], which is probably the first paper to introduce the
concept of the cache. [GOOD83] also provides a useful analysis of cache behavior. Another
worthwhile analysis is [BELL74]. [AGAR89] presents a detailed examination of a variety of
cache design issues related to multiprogramming and multiprocessing. [HIGB90] provides a
set of simple formulas that can be used to estimate cache performance as a function of vari-
ous cache parameters.

AGAR89 Agarwal, A. Analysis of Cache Performance for Operating Systems and
Multiprogramming. Boston: Kluwer Academic Publishers, 1989.

BELL74 Bell, J.; Casasent, D.; and Bell, C. “An Investigation into Alternative Cache
Organizations.” IEEE Transactions on Computers, April 1974.

GOOD83 Goodman, J. “Using Cache Memory to Reduce Processor-Memory Band-
width.” Proceedings, 10th Annual International Symposium on Computer Archi-
tecture, 1983. Reprinted in [HILL00].

HAND98 Handy, J. The Cache Memory Book. San Diego: Academic Press, 1998.
HIGB90 Higbie, L. “Quick and Easy Cache Performance Analysis.” Computer Archi-

tecture News, June 1990.
JACO08 Jacob, B.; Ng, S.; and Wang, D. Memory Systems: Cache, DRAM, Disk.

Boston: Morgan Kaufmann, 2008.
SMIT82 Smith, A. “Cache Memories.” ACM Computing Surveys, September 1982.
WILK65 Wilkes, M. “Slave Memories and Dynamic Storage Allocation,” IEEE

Transactions on Electronic Computers, April 1965. Reprinted in [HILL00].

4.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 147

 4.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

access time
associative mapping
secondary memory
cache hit
cache line
cache memory
cache miss
cache set
data cache
direct access
direct mapping
high-performance computing

(HPC)
hit

hit ratio
instruction cache
L1 cache
L2 cache
L3 cache
line
locality
logical cache
memory hierarchy
miss
multilevel cache
physical address
physical cache
random access

replacement algorithm
secondary memory
sequential access
set-associative mapping
spatial locality
split cache
tag
temporal locality
unified cache
virtual address
virtual cache
write back
write through

Review Questions
 4.1 What are the differences among sequential access, direct access, and random access?
 4.2 What is the general relationship among access time, memory cost, and capacity?
 4.3 How does the principle of locality relate to the use of multiple memory levels?
 4.4 What are the differences among direct mapping, associative mapping, and set-associa-

tive mapping?
 4.5 For a direct-mapped cache, a main memory address is viewed as consisting of three

fields. List and define the three fields.
 4.6 For an associative cache, a main memory address is viewed as consisting of two fields.

List and define the two fields.
 4.7 For a set-associative cache, a main memory address is viewed as consisting of three

fields. List and define the three fields.
 4.8 What is the distinction between spatial locality and temporal locality?
 4.9 In general, what are the strategies for exploiting spatial locality and temporal locality?

Problems
 4.1 A set-associative cache consists of 64 lines, or slots, divided into four-line sets. Main

memory contains 4K blocks of 128 words each. Show the format of main memory
addresses.

 4.2 A two-way set-associative cache has lines of 16 bytes and a total size of 8 Kbytes. The
64-Mbyte main memory is byte addressable. Show the format of main memory addresses.

 4.3 For the hexadecimal main memory addresses 111111, 666666, BBBBBB, show the
following information, in hexadecimal format:
a. Tag, Line, and Word values for a direct-mapped cache, using the format of

Figure 4.10
b. Tag and Word values for an associative cache, using the format of Figure 4.12
c. Tag, Set, and Word values for a two-way set-associative cache, using the format of

Figure 4.15

148 CHAPTER 4 / CACHE MEMORY

 4.4 List the following values:
a. For the direct cache example of Figure 4.10: address length, number of address-

able units, block size, number of blocks in main memory, number of lines in cache,
size of tag

b. For the associative cache example of Figure 4.12: address length, number of
addressable units, block size, number of blocks in main memory, number of lines
in cache, size of tag

c. For the two-way set-associative cache example of Figure 4.15: address length,
number of addressable units, block size, number of blocks in main memory, num-
ber of lines in set, number of sets, number of lines in cache, size of tag

 4.5 Consider a 32-bit microprocessor that has an on-chip 16-Kbyte four-way set-
associative cache. Assume that the cache has a line size of four 32-bit words. Draw a
block diagram of this cache showing its organization and how the different address
fields are used to determine a cache hit/miss. Where in the cache is the word from
memory location ABCDE8F8 mapped?

 4.6 Given the following specifications for an external cache memory: four-way set asso-
ciative; line size of two 16-bit words; able to accommodate a total of 4K 32-bit words
from main memory; used with a 16-bit processor that issues 24-bit addresses. Design
the cache structure with all pertinent information and show how it interprets the pro-
cessor’s addresses.

 4.7 The Intel 80486 has an on-chip, unified cache. It contains 8 Kbytes and has a four-
way set-associative organization and a block length of four 32-bit words. The cache is
organized into 128 sets. There is a single “line valid bit” and three bits, B0, B1, and B2
(the “LRU” bits), per line. On a cache miss, the 80486 reads a 16-byte line from main
memory in a bus memory read burst. Draw a simplified diagram of the cache and
show how the different fields of the address are interpreted.

 4.8 Consider a machine with a byte addressable main memory of 216 bytes and block size
of 8 bytes. Assume that a direct mapped cache consisting of 32 lines is used with this
machine.
a. How is a 16-bit memory address divided into tag, line number, and byte

number?
b. Into what line would bytes with each of the following addresses be stored?

0001 0001 0001 1011
1100 0011 0011 0100
1101 0000 0001 1101
1010 1010 1010 1010

c. Suppose the byte with address 0001 1010 0001 1010 is stored in the cache. What are
the addresses of the other bytes stored along with it?

d. How many total bytes of memory can be stored in the cache?
e. Why is the tag also stored in the cache?

 4.9 For its on-chip cache, the Intel 80486 uses a replacement algorithm referred to as
pseudo least recently used. Associated with each of the 128 sets of four lines (labeled
L0, L1, L2, L3) are three bits B0, B1, and B2. The replacement algorithm works as fol-
lows: When a line must be replaced, the cache will first determine whether the most
recent use was from L0 and L1 or L2 and L3. Then the cache will determine which
of the pair of blocks was least recently used and mark it for replacement. Figure 4.20
illustrates the logic.
a. Specify how the bits B0, B1, and B2 are set and then describe in words how they

are used in the replacement algorithm depicted in Figure 4.20.
b. Show that the 80486 algorithm approximates a true LRU algorithm. Hint: Con-

sider the case in which the most recent order of usage is L0, L2, L3, L1.
c. Demonstrate that a true LRU algorithm would require 6 bits per set.

4.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 149

 4.10 A set-associative cache has a block size of four 16-bit words and a set size of 2. The
cache can accommodate a total of 4096 words. The main memory size that is cacheable
is 64K * 32 bits. Design the cache structure and show how the processor’s addresses
are interpreted.

 4.11 Consider a memory system that uses a 32-bit address to address at the byte level, plus
a cache that uses a 64-byte line size.
a. Assume a direct mapped cache with a tag field in the address of 20 bits. Show

the address format and determine the following parameters: number of address-
able units, number of blocks in main memory, number of lines in cache, size
of tag.

b. Assume an associative cache. Show the address format and determine the follow-
ing parameters: number of addressable units, number of blocks in main memory,
number of lines in cache, size of tag.

c. Assume a four-way set-associative cache with a tag field in the address of 9 bits.
Show the address format and determine the following parameters: number of ad-
dressable units, number of blocks in main memory, number of lines in set, number
of sets in cache, number of lines in cache, size of tag.

 4.12 Consider a computer with the following characteristics: total of 1Mbyte of main
memory; word size of 1 byte; block size of 16 bytes; and cache size of 64 Kbytes.
a. For the main memory addresses of F0010, 01234, and CABBE, give the corre-

sponding tag, cache line address, and word offsets for a direct-mapped cache.
b. Give any two main memory addresses with different tags that map to the same

cache slot for a direct-mapped cache.
c. For the main memory addresses of F0010 and CABBE, give the corresponding tag

and offset values for a fully-associative cache.
d. For the main memory addresses of F0010 and CABBE, give the corresponding

tag, cache set, and offset values for a two-way set-associative cache.
 4.13 Describe a simple technique for implementing an LRU replacement algorithm in a

four-way set-associative cache.
 4.14 Consider again Example 4.3. How does the answer change if the main memory uses a

block transfer capability that has a first-word access time of 30 ns and an access time
of 5 ns for each word thereafter?

All four lines in
the set valid?

B0 � 0?

Yes

Yes No Yes No

Yes, L0 or L1
least recently used

No, L2 or L3
least recently used

No

B1 � 0?

Replace
L0

Replace
L1

Replace
L2

Replace
L3

B2 � 0?

Replace
nonvalid line

Figure 4.20 Intel 80486 On-Chip Cache Replacement Strategy

150 CHAPTER 4 / CACHE MEMORY

 4.15 Consider the following code:
for (i = 0; i 6 20; i+ +)

for (j = 0; j 6 10; j+ +)
a[i] = a[i]* j

a. Give one example of the spatial locality in the code.
b. Give one example of the temporal locality in the code.

 4.16 Generalize Equations (4.2) and (4.3), in Appendix 4A, to N-level memory hierarchies.
 4.17 A computer system contains a main memory of 32K 16-bit words. It also has a 4K-

word cache divided into four-line sets with 64 words per line. Assume that the cache
is initially empty. The processor fetches words from locations 0, 1, 2, . . . , 4351 in that
order. It then repeats this fetch sequence nine more times. The cache is 10 times faster
than main memory. Estimate the improvement resulting from the use of the cache.
Assume an LRU policy for block replacement.

 4.18 Consider a cache of 4 lines of 16 bytes each. Main memory is divided into blocks of
16 bytes each. That is, block 0 has bytes with addresses 0 through 15, and so on. Now
consider a program that accesses memory in the following sequence of addresses:
Once: 63 through 70
Loop ten times: 15 through 32; 80 through 95
a. Suppose the cache is organized as direct mapped. Memory blocks 0, 4, and so on

are assigned to line 1; blocks 1, 5, and so on to line 2; and so on. Compute the hit
ratio.

b. Suppose the cache is organized as two-way set associative, with two sets of two
lines each. Even-numbered blocks are assigned to set 0 and odd-numbered blocks
are assigned to set 1. Compute the hit ratio for the two-way set-associative cache
using the least recently used replacement scheme.

 4.19 Consider a memory system with the following parameters:
 Tc = 100 ns Cc = 10-4 +/bit

 Tm = 1200 ns Cm = 10-5 +/bit
a. What is the cost of 1 Mbyte of main memory?
b. What is the cost of 1 Mbyte of main memory using cache memory technology?
c. If the effective access time is 10% greater than the cache access time, what is the

hit ratio H?
 4.20 a. Consider an L1 cache with an access time of 1 ns and a hit ratio of H = 0.95. Sup-

pose that we can change the cache design (size of cache, cache organization) such
that we increase H to 0.97, but increase access time to 1.5 ns. What conditions must
be met for this change to result in improved performance?

b. Explain why this result makes intuitive sense.
 4.21 Consider a single-level cache with an access time of 2.5 ns, a line size of 64 bytes,

and a hit ratio of H = 0.95. Main memory uses a block transfer capability that has
a first-word (4 bytes) access time of 50 ns and an access time of 5 ns for each word
thereafter.
a. What is the access time when there is a cache miss? Assume that the cache waits

until the line has been fetched from main memory and then re-executes for a hit.
b. Suppose that increasing the line size to 128 bytes increases the H to 0.97. Does this

reduce the average memory access time?
 4.22 A computer has a cache, main memory, and a disk used for virtual memory. If a refer-

enced word is in the cache, 20 ns are required to access it. If it is in main memory but
not in the cache, 60 ns are needed to load it into the cache, and then the reference is
started again. If the word is not in main memory, 12 ms are required to fetch the word
from disk, followed by 60 ns to copy it to the cache, and then the reference is started
again. The cache hit ratio is 0.9 and the main memory hit ratio is 0.6. What is the aver-
age time in nanoseconds required to access a referenced word on this system?

4.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 151

 4.23 Consider a cache with a line size of 64 bytes. Assume that on average 30% of the lines
in the cache are dirty. A word consists of 8 bytes.
a. Assume there is a 3% miss rate (0.97 hit ratio). Compute the amount of main

memory traffic, in terms of bytes per instruction for both write-through and write-
back policies. Memory is read into cache one line at a time. However, for write
back, a single word can be written from cache to main memory.

b. Repeat part a for a 5% rate.
c. Repeat part a for a 7% rate.
d. What conclusion can you draw from these results?

 4.24 On the Motorola 68020 microprocessor, a cache access takes two clock cycles. Data
access from main memory over the bus to the processor takes three clock cycles in the
case of no wait state insertion; the data are delivered to the processor in parallel with
delivery to the cache.
a. Calculate the effective length of a memory cycle given a hit ratio of 0.9 and a

clocking rate of 16.67 MHz.
b. Repeat the calculations assuming insertion of two wait states of one cycle each per

memory cycle. What conclusion can you draw from the results?
 4.25 Assume a processor having a memory cycle time of 300 ns and an instruction process-

ing rate of 1 MIPS. On average, each instruction requires one bus memory cycle for
instruction fetch and one for the operand it involves.
a. Calculate the utilization of the bus by the processor.
b. Suppose the processor is equipped with an instruction cache and the associated hit

ratio is 0.5. Determine the impact on bus utilization.
 4.26 The performance of a single-level cache system for a read operation can be character-

ized by the following equation:

Ta = Tc + (1 - H)Tm

where Ta is the average access time, Tc is the cache access time, Tm is the memory
access time (memory to processor register), and H is the hit ratio. For simplicity, we
assume that the word in question is loaded into the cache in parallel with the load to
processor register. This is the same form as Equation (4.2).
a. Define Tb = time to transfer a line between cache and main memory, and W =

fraction of write references. Revise the preceding equation to account for writes
as well as reads, using a write-through policy.

b. Define Wb as the probability that a line in the cache has been altered. Provide an
equation for Ta for the write-back policy.

 4.27 For a system with two levels of cache, define Tc1
 = first-level cache access time; Tc2

 =
 second-level cache access time; Tm = memory access time; H1 = first-level cache hit
ratio; H2 = combined first/second level cache hit ratio. Provide an equation for Ta for
a read operation.

 4.28 Assume the following performance characteristics on a cache read miss: one clock
cycle to send an address to main memory and four clock cycles to access a 32-bit word
from main memory and transfer it to the processor and cache.
a. If the cache line size is one word, what is the miss penalty (i.e., additional time

required for a read in the event of a read miss)?
b. What is the miss penalty if the cache line size is four words and a multiple, non-

burst transfer is executed?
c. What is the miss penalty if the cache line size is four words and a transfer is

executed, with one clock cycle per word transfer?
 4.29 For the cache design of the preceding problem, suppose that increasing the line size

from one word to four words results in a decrease of the read miss rate from 3.2% to
1.1%. For both the nonburst transfer and the burst transfer case, what is the average
miss penalty, averaged over all reads, for the two different line sizes?

152 CHAPTER 4 / CACHE MEMORY

APPENDIX 4A PERFORMANCE CHARACTERISTICS
OF TWO-LEVEL MEMORIES

In this chapter, reference is made to a cache that acts as a buffer between main
memory and processor, creating a two-level internal memory. This two-level archi-
tecture exploits a property known as locality to provide improved performance over
a comparable one-level memory.

The main memory cache mechanism is part of the computer architecture,
implemented in hardware and typically invisible to the operating system. There are
two other instances of a two-level memory approach that also exploit locality and
that are, at least partially, implemented in the operating system: virtual memory
and the disk cache (Table 4.7). Virtual memory is explored in Chapter 8; disk cache
is beyond the scope of this book but is examined in [STAL12]. In this appendix,
we look at some of the performance characteristics of two-level memories that are
common to all three approaches.

Locality

The basis for the performance advantage of a two-level memory is a principle
known as locality of reference [DENN68]. This principle states that memory ref-
erences tend to cluster. Over a long period of time, the clusters in use change, but
over a short period of time, the processor is primarily working with fixed clusters of
memory references.

Intuitively, the principle of locality makes sense. Consider the following line
of reasoning:

 1. Except for branch and call instructions, which constitute only a small fraction
of all program instructions, program execution is sequential. Hence, in most
cases, the next instruction to be fetched immediately follows the last instruc-
tion fetched.

 2. It is rare to have a long uninterrupted sequence of procedure calls followed by
the corresponding sequence of returns. Rather, a program remains confined to a
rather narrow window of procedure-invocation depth. Thus, over a short period
of time references to instructions tend to be localized to a few procedures.

Table 4.7 Characteristics of Two-Level Memories

Main Memory
Cache

Virtual Memory
(paging) Disk Cache

Typical access time
ratios

5 : 1 (main memory
vs. cache)

106 : 1 (main memory vs.
disk)

106 : 1 (main memory
vs. disk)

Memory management
system

Implemented by
special hardware

Combination of hard-
ware and system software

System software

Typical block or page
size

4 to 128 bytes
(cache block)

64 to 4096 bytes (virtual
memory page)

64 to 4096 bytes
(disk block or pages)

Access of processor
to second level

Direct access Indirect access Indirect access

APPENDIX 4A 153

 3. Most iterative constructs consist of a relatively small number of instructions
repeated many times. For the duration of the iteration, computation is there-
fore confined to a small contiguous portion of a program.

 4. In many programs, much of the computation involves processing data struc-
tures, such as arrays or sequences of records. In many cases, successive refer-
ences to these data structures will be to closely located data items.

This line of reasoning has been confirmed in many studies. With reference
to point 1, a variety of studies have analyzed the behavior of high-level language
programs. Table 4.8 includes key results, measuring the appearance of various
statement types during execution, from the following studies. The earliest study of
programming language behavior, performed by Knuth [KNUT71], examined a col-
lection of FORTRAN programs used as student exercises. Tanenbaum [TANE78]
published measurements collected from over 300 procedures used in operating-
system programs and written in a language that supports structured programming
(SAL). Patterson and Sequein [PATT82a] analyzed a set of measurements taken
from compilers and programs for typesetting, computer-aided design (CAD), sort-
ing, and file comparison. The programming languages C and Pascal were studied.
Huck [HUCK83] analyzed four programs intended to represent a mix of general-
purpose scientific computing, including fast Fourier transform and the integration
of systems of differential equations. There is good agreement in the results of this
mixture of languages and applications that branching and call instructions represent
only a fraction of statements executed during the lifetime of a program. Thus, these
studies confirm assertion 1.

With respect to assertion 2, studies reported in [PATT85a] provide confirma-
tion. This is illustrated in Figure 4.21, which shows call-return behavior. Each call is
represented by the line moving down and to the right, and each return by the line
moving up and to the right. In the figure, a window with depth equal to 5 is defined.
Only a sequence of calls and returns with a net movement of 6 in either direction
causes the window to move. As can be seen, the executing program can remain
within a stationary window for long periods of time. A study by the same analysts of
C and Pascal programs showed that a window of depth 8 will need to shift only on
less than 1% of the calls or returns [TAMI83].

Table 4.8 Relative Dynamic Frequency of High-Level Language Operations

Study
Language
Workload

[HUCK83]
Pascal

Scientific

[KNUT71]
FORTRAN

Student

[PATT82a] [TANE78]
SAL

System
Pascal
System

C
System

Assign 74 67 45 38 42

Loop 4 3 5 3 4

Call 1 3 15 12 12

IF 20 11 29 43 36

GOTO 2 9 — 3 —

Other — 7 6 1 6

154 CHAPTER 4 / CACHE MEMORY

A distinction is made in the literature between spatial locality and temporal
locality. Spatial locality refers to the tendency of execution to involve a number of
memory locations that are clustered. This reflects the tendency of a processor to
access instructions sequentially. Spatial location also reflects the tendency of a pro-
gram to access data locations sequentially, such as when processing a table of data.
Temporal locality refers to the tendency for a processor to access memory locations
that have been used recently. For example, when an iteration loop is executed, the
processor executes the same set of instructions repeatedly.

Traditionally, temporal locality is exploited by keeping recently used instruc-
tion and data values in cache memory and by exploiting a cache hierarchy. Spatial
locality is generally exploited by using larger cache blocks and by incorporating
prefetching mechanisms (fetching items of anticipated use) into the cache control
logic. Recently, there has been considerable research on refining these techniques
to achieve greater performance, but the basic strategies remain the same.

Operation of Two-Level Memory

The locality property can be exploited in the formation of a two-level memory. The
upper-level memory (M1) is smaller, faster, and more expensive (per bit) than the
lower-level memory (M2). M1 is used as a temporary store for part of the contents
of the larger M2. When a memory reference is made, an attempt is made to access
the item in M1. If this succeeds, then a quick access is made. If not, then a block of
memory locations is copied from M2 to M1 and the access then takes place via M1.
Because of locality, once a block is brought into M1, there should be a number of
accesses to locations in that block, resulting in fast overall service.

To express the average time to access an item, we must consider not only the
speeds of the two levels of memory, but also the probability that a given reference
can be found in M1. We have

Ts = H * T1 + (1 - H) * (T1 + T2)

 = T1 + (1 - H) * T2 (4.2)

w � 5

t � 33

Time
(in units of calls/returns)

Nesting
depth

Return

Call

Figure 4.21 Example Call-Return Behavior of a Program

APPENDIX 4A 155

where

Ts = average (system) access time
T1 = access time of M1 (e.g., cache, disk cache)
T2 = access time of M2 (e.g., main memory, disk)
H = hit ratio (fraction of time reference is found in M1)

Figure 4.2 shows average access time as a function of hit ratio. As can be seen,
for a high percentage of hits, the average total access time is much closer to that of
M1 than M2.

Performance

Let us look at some of the parameters relevant to an assessment of a two-level
memory mechanism. First consider cost. We have

 Cs =
C1S1 + C2S2

S1 + S2
 (4.3)

where

Cs = average cost per bit for the combined two-level memory
C1 = average cost per bit of upper-level memory M1
C2 = average cost per bit of lower-level memory M2
S1 = size of M1
S2 = size of M2

We would like Cs � C2. Given that C1 W C2, this requires S1 6 S2.
Figure 4.22 shows the relationship.

Next, consider access time. For a two-level memory to provide a significant
performance improvement, we need to have Ts approximately equal to T1 (Ts � T1).
Given that T1 is much less than T2 (T1 V T2), a hit ratio of close to 1 is needed.

So we would like M1 to be small to hold down cost, and large to improve the
hit ratio and therefore the performance. Is there a size of M1 that satisfies both
requirements to a reasonable extent? We can answer this question with a series of
subquestions:

 • What value of hit ratio is needed so that Ts � T1?

 • What size of M1 will assure the needed hit ratio?

 • Does this size satisfy the cost requirement?

To get at this, consider the quantity T1/Ts, which is referred to as the access effi-
ciency. It is a measure of how close average access time (Ts) is to M1 access time
(T1). From Equation (4.2),

T1

Ts
=

1

1 + (1 - H)
T2

T1

 (4.4)

Figure 4.23 plots T1/Ts as a function of the hit ratio H, with the quantity T2/T1 as a
parameter. Typically, on-chip cache access time is about 25 to 50 times faster than
main memory access time (i.e., T2/T1 is 25 to 50), off-chip cache access time is about
5 to 15 times faster than main memory access time (i.e., T2/T1 is 5 to 15), and main

156 CHAPTER 4 / CACHE MEMORY

A
cc

es
s

ef
fi

ci
en

cy
 �

 T
1/

T
s

0.0 0.2 0.4 0.6 0.8 1.0

Hit ratio � H

1

0.1

0.01

0.001

r � 10

r � 1

r � 100

r � 1000

Figure 4.23 Access Efficiency as a Function of Hit Ratio (r = T2/T1)

2 3 4 5 6 7 8 9
100

Relative size of two levels (S2/S1)

R
el

at
iv

e
co

m
bi

ne
d

co
st

 (
C

s/
C

2)

(C1/C2) � 1000

(C1/C2) � 100

(C1/C2) � 10

2 3 4 5 6 7 8 9
1000

5 6 7 8 9
10

1000

100

10

1

8
7
6
5
4

3

2

8
7
6
5
4

3

2

8
7
6
5
4

3

2

Figure 4.22 Relationship of Average Memory Cost to Relative Memory Size for a Two-Level Memory

APPENDIX 4A 157

memory access time is about 1000 times faster than disk access time (T2/T1 = 1000).
Thus, a hit ratio in the range of near 0.9 would seem to be needed to satisfy the per-
formance requirement.

We can now phrase the question about relative memory size more exactly. Is a
hit ratio of, say, 0.8 or better reasonable for S1 V S2? This will depend on a number
of factors, including the nature of the software being executed and the details of the
design of the two-level memory. The main determinant is, of course, the degree of
locality. Figure 4.24 suggests the effect that locality has on the hit ratio. Clearly, if
M1 is the same size as M2, then the hit ratio will be 1.0: All of the items in M2 are
always stored also in M1. Now suppose that there is no locality; that is, references
are completely random. In that case the hit ratio should be a strictly linear func-
tion of the relative memory size. For example, if M1 is half the size of M2, then at
any time half of the items from M2 are also in M1 and the hit ratio will be 0.5. In
practice, however, there is some degree of locality in the references. The effects of
moderate and strong locality are indicated in the figure. Note that Figure 4.24 is not
derived from any specific data or model; the figure suggests the type of performance
that is seen with various degrees of locality.

So if there is strong locality, it is possible to achieve high values of hit ratio
even with relatively small upper-level memory size. For example, numerous studies
have shown that rather small cache sizes will yield a hit ratio above 0.75 regardless of
the size of main memory (e.g., [AGAR89], [PRZY88], [STRE83], and [SMIT82]). A
cache in the range of 1K to 128K words is generally adequate, whereas main mem-
ory is now typically in the gigabyte range. When we consider virtual memory and

No locality

Moderate
locality

Strong
locality

H
it

ra
tio

Relative memory size (S1/S2)

0.0
0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Figure 4.24 Hit Ratio as a Function of Relative Memory Size

158 CHAPTER 4 / CACHE MEMORY

disk cache, we will cite other studies that confirm the same phenomenon, namely
that a relatively small M1 yields a high value of hit ratio because of locality.

This brings us to the last question listed earlier: Does the relative size of the
two memories satisfy the cost requirement? The answer is clearly yes. If we need
only a relatively small upper-level memory to achieve good performance, then the
average cost per bit of the two levels of memory will approach that of the cheaper
lower-level memory.

Please note that with L2 cache, or even L2 and L3 caches, involved, analysis is
much more complex. See [PEIR99] and [HAND98] for discussions.

159

CHAPTER

INTERNAL MEMORY
 5.1 Semiconductor Main Memory

Organization
DRAM and SRAM
Types of ROM
Chip Logic
Chip Packaging
Module Organization
Interleaved Memory

 5.2 Error Correction

 5.3 Advanced DRAM Organization
Synchronous DRAM
Rambus DRAM
DDR SDRAM
Cache DRAM

 5.4 Recommended Reading

 5.5 Key Terms, Review Questions, and Problems

160 CHAPTER 5 / INTERNAL MEMORY

We begin this chapter with a survey of semiconductor main memory subsystems,
including ROM, DRAM, and SRAM memories. Then we look at error control
techniques used to enhance memory reliability. Following this, we look at more
advanced DRAM architectures.

 5.1 SEMICONDUCTOR MAIN MEMORY

In earlier computers, the most common form of random-access storage for com-
puter main memory employed an array of doughnut-shaped ferromagnetic loops
referred to as cores. Hence, main memory was often referred to as core, a term that
persists to this day. The advent of, and advantages of, microelectronics has long
since vanquished the magnetic core memory. Today, the use of semiconductor chips
for main memory is almost universal. Key aspects of this technology are explored
in this section.

Organization

The basic element of a semiconductor memory is the memory cell. Although a vari-
ety of electronic technologies are used, all semiconductor memory cells share cer-
tain properties:

 • They exhibit two stable (or semistable) states, which can be used to represent
binary 1 and 0.

 • They are capable of being written into (at least once), to set the state.

 • They are capable of being read to sense the state.

Figure 5.1 depicts the operation of a memory cell. Most commonly, the cell
has three functional terminals capable of carrying an electrical signal. The select
 terminal, as the name suggests, selects a memory cell for a read or write opera-
tion. The control terminal indicates read or write. For writing, the other terminal
 provides an electrical signal that sets the state of the cell to 1 or 0. For reading, that
terminal is used for output of the cell’s state. The details of the internal organiza-
tion, functioning, and timing of the memory cell depend on the specific integrated
circuit technology used and are beyond the scope of this book, except for a brief
summary. For our purposes, we will take it as given that individual cells can be
selected for reading and writing operations.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Present an overview of the principle types of semiconductor main memory.
� Understand the operation of a basic code that can detect and correct single-

bit errors in 8-bit words.
� Summarize the properties of contemporary advanced DRAM organizations.

5.1 / SEMICONDUCTOR MAIN MEMORY 161

DRAM and SRAM

All of the memory types that we will explore in this chapter are random access. That is,
individual words of memory are directly accessed through wired-in addressing logic.

Table 5.1 lists the major types of semiconductor memory. The most common
is referred to as random-access memory (RAM). This is, in fact, a misuse of the
term, because all of the types listed in the table are random access. One distin-
guishing characteristic of memory that is designated as RAM is that it is possible
both to read data from the memory and to write new data into the memory easily
and rapidly. Both the reading and writing are accomplished through the use of
electrical signals.

The other distinguishing characteristic of RAM is that it is volatile. A RAM
must be provided with a constant power supply. If the power is interrupted, then
the data are lost. Thus, RAM can be used only as temporary storage. The two tradi-
tional forms of RAM used in computers are DRAM and SRAM.

DYNAMIC RAM RAM technology is divided into two technologies: dynamic and
static. A dynamic RAM (DRAM) is made with cells that store data as charge on
capacitors. The presence or absence of charge in a capacitor is interpreted as a
binary 1 or 0. Because capacitors have a natural tendency to discharge, dynamic

Cell
Select Data in

Control

(a) Write

Cell
Select Sense

Control

(b) Read

Figure 5.1 Memory Cell Operation

Table 5.1 Semiconductor Memory Types

Memory Type Category Erasure
Write

Mechanism Volatility

Random-access memory
(RAM)

Read-write
memory

Electrically,
byte-level Electrically Volatile

Read-only memory (ROM)
Programmable ROM (PROM)

Read-only
memory

Not possible
Masks

Erasable PROM (EPROM)
UV light,
chip-level

Electrically Erasable PROM
(EEPROM)

Read-mostly
memory

Electrically,
byte-level Electrically

Nonvolatile

Flash memory
Electrically,
block-level

162 CHAPTER 5 / INTERNAL MEMORY

RAMs require periodic charge refreshing to maintain data storage. The term
dynamic refers to this tendency of the stored charge to leak away, even with power
continuously applied.

Figure 5.2a is a typical DRAM structure for an individual cell that stores 1 bit.
The address line is activated when the bit value from this cell is to be read or written.
The transistor acts as a switch that is closed (allowing current to flow) if a voltage is
applied to the address line and open (no current flows) if no voltage is present on
the address line.

For the write operation, a voltage signal is applied to the bit line; a high volt-
age represents 1, and a low voltage represents 0. A signal is then applied to the
address line, allowing a charge to be transferred to the capacitor.

For the read operation, when the address line is selected, the transistor turns
on and the charge stored on the capacitor is fed out onto a bit line and to a sense
amplifier. The sense amplifier compares the capacitor voltage to a reference value
and determines if the cell contains a logic 1 or a logic 0. The readout from the cell
discharges the capacitor, which must be restored to complete the operation.

Although the DRAM cell is used to store a single bit (0 or 1), it is essentially
an analog device. The capacitor can store any charge value within a range; a thresh-
old value determines whether the charge is interpreted as 1 or 0.

STATIC RAM In contrast, a static RAM (SRAM) is a digital device that uses the
same logic elements used in the processor. In a SRAM, binary values are stored
using traditional flip-flop logic-gate configurations (see Chapter 11 for a description
of flip-flops). A static RAM will hold its data as long as power is supplied to it.

Bit line
B

Address line

Ground

dc voltage

Address
line

(b) Static RAM (SRAM) cell(a) Dynamic RAM (DRAM) cell

Bit line
B

T5 T6

T3 T4

T1 T2

C1 C2

Bit line
B

Transistor

Ground

Storage
capacitor

Figure 5.2 Typical Memory Cell Structures

5.1 / SEMICONDUCTOR MAIN MEMORY 163

Figure 5.2b is a typical SRAM structure for an individual cell. Four transistors
(T1, T2, T3, T4) are cross connected in an arrangement that produces a stable logic
state. In logic state 1, point C1 is high and point C2 is low; in this state, T1 and T4 are off
and T2 and T3 are on.1 In logic state 0, point C1 is low and point C2 is high; in this state,
T1 and T4 are on and T2 and T3 are off. Both states are stable as long as the direct
 current (dc) voltage is applied. Unlike the DRAM, no refresh is needed to retain data.

As in the DRAM, the SRAM address line is used to open or close a switch.
The address line controls two transistors (T5 and T6). When a signal is applied to
this line, the two transistors are switched on, allowing a read or write operation. For
a write operation, the desired bit value is applied to line B, while its complement
is applied to line B. This forces the four transistors (T1, T2, T3, T4) into the proper
state. For a read operation, the bit value is read from line B.

SRAM VERSUS DRAM Both static and dynamic RAMs are volatile; that is,
power must be continuously supplied to the memory to preserve the bit values.
A dynamic memory cell is simpler and smaller than a static memory cell. Thus, a
DRAM is more dense (smaller cells = more cells per unit area) and less expensive
than a corresponding SRAM. On the other hand, a DRAM requires the supporting
refresh circuitry. For larger memories, the fixed cost of the refresh circuitry is more
than compensated for by the smaller variable cost of DRAM cells. Thus, DRAMs
tend to be favored for large memory requirements. A final point is that SRAMs are
somewhat faster than DRAMs. Because of these relative characteristics, SRAM is
used for cache memory (both on and off chip), and DRAM is used for main memory.

Types of ROM

As the name suggests, a read-only memory (ROM) contains a permanent pattern
of data that cannot be changed. A ROM is nonvolatile; that is, no power source is
required to maintain the bit values in memory. While it is possible to read a ROM,
it is not possible to write new data into it. An important application of ROMs is
microprogramming, discussed in Part Four. Other potential applications include

 • Library subroutines for frequently wanted functions

 • System programs

 • Function tables

For a modest-sized requirement, the advantage of ROM is that the data or program
is permanently in main memory and need never be loaded from a secondary storage
device.

A ROM is created like any other integrated circuit chip, with the data actually
wired into the chip as part of the fabrication process. This presents two problems:

 • The data insertion step includes a relatively large fixed cost, whether one or
thousands of copies of a particular ROM are fabricated.

 • There is no room for error. If one bit is wrong, the whole batch of ROMs must
be thrown out.

1The circles associated with T3 and T4 in Figure 5.2b indicate signal negation.

164 CHAPTER 5 / INTERNAL MEMORY

When only a small number of ROMs with a particular memory content is
needed, a less expensive alternative is the programmable ROM (PROM). Like the
ROM, the PROM is nonvolatile and may be written into only once. For the PROM,
the writing process is performed electrically and may be performed by a supplier
or customer at a time later than the original chip fabrication. Special equipment is
required for the writing or “programming” process. PROMs provide flexibility and
convenience. The ROM remains attractive for high-volume production runs.

Another variation on read-only memory is the read-mostly memory, which is
useful for applications in which read operations are far more frequent than write
operations but for which nonvolatile storage is required. There are three common
forms of read-mostly memory: EPROM, EEPROM, and flash memory.

The optically erasable programmable read-only memory (EPROM) is read
and written electrically, as with PROM. However, before a write operation, all the
storage cells must be erased to the same initial state by exposure of the packaged
chip to ultraviolet radiation. Erasure is performed by shining an intense ultraviolet
light through a window that is designed into the memory chip. This erasure proc-
ess can be performed repeatedly; each erasure can take as much as 20 minutes to
perform. Thus, the EPROM can be altered multiple times and, like the ROM and
PROM, holds its data virtually indefinitely. For comparable amounts of storage, the
EPROM is more expensive than PROM, but it has the advantage of the multiple
update capability.

A more attractive form of read-mostly memory is electrically erasable pro-
grammable read-only memory (EEPROM). This is a read-mostly memory that can
be written into at any time without erasing prior contents; only the byte or bytes
addressed are updated. The write operation takes considerably longer than the read
operation, on the order of several hundred microseconds per byte. The EEPROM
combines the advantage of nonvolatility with the flexibility of being updatable in
place, using ordinary bus control, address, and data lines. EEPROM is more expen-
sive than EPROM and also is less dense, supporting fewer bits per chip.

Another form of semiconductor memory is flash memory (so named because
of the speed with which it can be reprogrammed). First introduced in the mid-1980s,
flash memory is intermediate between EPROM and EEPROM in both cost and
functionality. Like EEPROM, flash memory uses an electrical erasing technology.
An entire flash memory can be erased in one or a few seconds, which is much faster
than EPROM. In addition, it is possible to erase just blocks of memory rather than
an entire chip. Flash memory gets its name because the microchip is organized so
that a section of memory cells are erased in a single action or “flash.” However,
flash memory does not provide byte-level erasure. Like EPROM, flash memory
uses only one transistor per bit, and so achieves the high density (compared with
EEPROM) of EPROM.

Chip Logic

As with other integrated circuit products, semiconductor memory comes in pack-
aged chips (Figure 2.7). Each chip contains an array of memory cells.

In the memory hierarchy as a whole, we saw that there are trade-offs among
speed, capacity, and cost. These trade-offs also exist when we consider the organization

5.1 / SEMICONDUCTOR MAIN MEMORY 165

of memory cells and functional logic on a chip. For semiconductor memories, one of the
key design issues is the number of bits of data that may be read/written at a time. At one
extreme is an organization in which the physical arrangement of cells in the array is the
same as the logical arrangement (as perceived by the processor) of words in memory.
The array is organized into W words of B bits each. For example, a 16-Mbit chip could
be organized as 1M 16-bit words. At the other extreme is the so-called 1-bit-per-chip
organization, in which data are read/written 1 bit at a time. We will illustrate memory
chip organization with a DRAM; ROM organization is similar, though simpler.

Figure 5.3 shows a typical organization of a 16-Mbit DRAM. In this case, 4 bits
are read or written at a time. Logically, the memory array is organized as four square
arrays of 2048 by 2048 elements. Various physical arrangements are possible. In any
case, the elements of the array are connected by both horizontal (row) and vertical
(column) lines. Each horizontal line connects to the Select terminal of each cell in its
row; each vertical line connects to the Data-In/Sense terminal of each cell in its column.

Address lines supply the address of the word to be selected. A total of log2 W
lines are needed. In our example, 11 address lines are needed to select one of 2048
rows. These 11 lines are fed into a row decoder, which has 11 lines of input and 2048
lines for output. The logic of the decoder activates a single one of the 2048 outputs
depending on the bit pattern on the 11 input lines (211 = 2048).

An additional 11 address lines select one of 2048 columns of 4 bits per column.
Four data lines are used for the input and output of 4 bits to and from a data buffer.
On input (write), the bit driver of each bit line is activated for a 1 or 0 according to
the value of the corresponding data line. On output (read), the value of each bit line
is passed through a sense amplifier and presented to the data lines. The row line
selects which row of cells is used for reading or writing.

Because only 4 bits are read/written to this DRAM, there must be multiple
DRAMs connected to the memory controller to read/write a word of data to the bus.

Note that there are only 11 address lines (A0–A10), half the number you
would expect for a 2048 * 2048 array. This is done to save on the number of pins.
The 22 required address lines are passed through select logic external to the chip
and multiplexed onto the 11 address lines. First, 11 address signals are passed to the
chip to define the row address of the array, and then the other 11 address signals are
presented for the column address. These signals are accompanied by row address
select (RAS) and column address select (CAS) signals to provide timing to the chip.

The write enable (WE) and output enable (OE) pins determine whether a
write or read operation is performed. Two other pins, not shown in Figure 5.3, are
ground (Vss) and a voltage source (Vcc).

As an aside, multiplexed addressing plus the use of square arrays result in a
quadrupling of memory size with each new generation of memory chips. One more
pin devoted to addressing doubles the number of rows and columns, and so the size
of the chip memory grows by a factor of 4.

Figure 5.3 also indicates the inclusion of refresh circuitry. All DRAMs require
a refresh operation. A simple technique for refreshing is, in effect, to disable the
DRAM chip while all data cells are refreshed. The refresh counter steps through all
of the row values. For each row, the output lines from the refresh counter are sup-
plied to the row decoder and the RAS line is activated. The data are read out and
written back into the same location. This causes each cell in the row to be refreshed.

Column decoder

Refresh circuitry

• • •

Memory array
(2048 � 2048 � 4)

Row
de-

coderA0
A1

A10

Row
address
buffer

Column
address
buffer

Timing and control

MUXRefresh
counter

Data input
buffer

Data output
buffer

D1
D2
D3
D4

•
•
•

•
•
•

RAS CAS WE OE

Figure 5.3 Typical 16 Megabit DRAM (4M * 4)

166

5.1 / SEMICONDUCTOR MAIN MEMORY 167

Chip Packaging

As was mentioned in Chapter 2, an integrated circuit is mounted on a package that
contains pins for connection to the outside world.

Figure 5.4a shows an example EPROM package, which is an 8-Mbit chip
organized as 1M * 8. In this case, the organization is treated as a one-word-per-chip
package. The package includes 32 pins, which is one of the standard chip package
sizes. The pins support the following signal lines:

 • The address of the word being accessed. For 1M words, a total of 20 (220 = 1M)
pins are needed (A0–A19).

 • The data to be read out, consisting of 8 lines (D0–D7).

 • The power supply to the chip (Vcc).

 • A ground pin (Vss).

 • A chip enable (CE) pin. Because there may be more than one memory chip,
each of which is connected to the same address bus, the CE pin is used to indi-
cate whether or not the address is valid for this chip. The CE pin is activated
by logic connected to the higher-order bits of the address bus (i.e., address bits
above A19). The use of this signal is illustrated presently.

 • A program voltage (Vpp) that is supplied during programming (write operations).

A typical DRAM pin configuration is shown in Figure 5.4b, for a 16-Mbit chip
organized as 4M * 4. There are several differences from a ROM chip. Because
a RAM can be updated, the data pins are input/output. The write enable (WE)
and output enable (OE) pins indicate whether this is a write or read operation.

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A19

A16

A15

A12

A7

A6

A5

A4

A3

A2

A1

A0

D0

D1

D2

Vss

Vcc

A18

A17

A14

A13

A8

A9

A11

Vpp

A10

CE

D7

D6

D5

D4

D3

32-Pin Dip

0.6"

Top View

24

23

22

21

20

19

18

17

16

15

14

13

1

2

3

4

5

6

7

8

9

10

11

12

Vcc

D0

D1

WE

RAS

NC

A10

A0

A1

A2

A3

Vcc

Vss

D3

D2

CAS

OE

A9

A8

A7

A6

A5

A4

Vss

(a) 8-Mbit EPROM (b) 16-Mbit DRAM

24-Pin Dip

0.6"

Top View

Figure 5.4 Typical Memory Package Pins and Signals

168 CHAPTER 5 / INTERNAL MEMORY

Because the DRAM is accessed by row and column, and the address is multi-
plexed, only 11 address pins are needed to specify the 4M row/column combinations
(211 * 211 = 222 = 4M). The functions of the row address select (RAS) and column
address select (CAS) pins were discussed previously. Finally, the no connect (NC)
pin is provided so that there are an even number of pins.

Module Organization

If a RAM chip contains only 1 bit per word, then clearly we will need at least a
 number of chips equal to the number of bits per word. As an example, Figure 5.5
shows how a memory module consisting of 256K 8-bit words could be organized. For
256K words, an 18-bit address is needed and is supplied to the module from some
external source (e.g., the address lines of a bus to which the module is attached).
The address is presented to 8 256K * 1-bit chips, each of which provides the input/
output of 1 bit.

512 words by
512 bits
Chip #1

Memory buffer
register (MBR)

Memory address
register (MBR)

Decode 1 of
512 bit-sense

D
ec

od
e

1
of

51
2

512 words by
512 bits
Chip #8

Decode 1 of
512 bit-sense

D
ec

od
e

1
of

51
2

1

9

9
2
3
4
5
6
7
8

•
•
•

•
•
•

•
•
•

Figure 5.5 256-KByte Memory Organization

5.1 / SEMICONDUCTOR MAIN MEMORY 169

1/
51

2

1/512

A1

1/
51

2

1/512

B1 C1 D1

1/
51

2

1/512

A8

1/512

1/512

B8 C8 D8

1
2

7
8

E

E

Bit 1
All chips 512 words by
512 bits. 2-terminal cells

E E E

A2

A7

E

Bit 8

E E E

2

9

9

B7

B2

C7 D7

Memory
buffer
register
(MBR)

Memory
address
register
(MAR)

Chip
group
enable

Select 1
of 4
groups

A
Group

B
C
D

Figure 5.6 1-Mbyte Memory Organization

This organization works as long as the size of memory equals the number of
bits per chip. In the case in which larger memory is required, an array of chips is
needed. Figure 5.6 shows the possible organization of a memory consisting of 1M
word by 8 bits per word. In this case, we have four columns of chips, each column
containing 256K words arranged as in Figure 5.5. For 1M word, 20 address lines are
needed. The 18 least significant bits are routed to all 32 modules. The high-order
2 bits are input to a group select logic module that sends a chip enable signal to one
of the four columns of modules.

Interleaved Memory Simulator

Interleaved Memory

Main memory is composed of a collection of DRAM memory chips. A number of
chips can be grouped together to form a memory bank. It is possible to organize
the memory banks in a way known as interleaved memory. Each bank is inde-
pendently able to service a memory read or write request, so that a system with
K banks can service K requests simultaneously, increasing memory read or write
rates by a factor of K. If consecutive words of memory are stored in different
banks, then the transfer of a block of memory is speeded up. Appendix E explores
the topic of interleaved memory.

170 CHAPTER 5 / INTERNAL MEMORY

 5.2 ERROR CORRECTION

A semiconductor memory system is subject to errors. These can be categorized as
hard failures and soft errors. A hard failure is a permanent physical defect so that
the memory cell or cells affected cannot reliably store data but become stuck at
0 or 1 or switch erratically between 0 and 1. Hard errors can be caused by harsh
environmental abuse, manufacturing defects, and wear. A soft error is a random,
nondestructive event that alters the contents of one or more memory cells with-
out damaging the memory. Soft errors can be caused by power supply problems
or alpha particles. These particles result from radioactive decay and are distress-
ingly common because radioactive nuclei are found in small quantities in nearly all
materials. Both hard and soft errors are clearly undesirable, and most modern main
memory systems include logic for both detecting and correcting errors.

Figure 5.7 illustrates in general terms how the process is carried out. When
data are to be written into memory, a calculation, depicted as a function f, is per-
formed on the data to produce a code. Both the code and the data are stored. Thus,
if an M-bit word of data is to be stored and the code is of length K bits, then the
actual size of the stored word is M + K bits.

When the previously stored word is read out, the code is used to detect and pos-
sibly correct errors. A new set of K code bits is generated from the M data bits and
compared with the fetched code bits. The comparison yields one of three results:

 • No errors are detected. The fetched data bits are sent out.

 • An error is detected, and it is possible to correct the error. The data bits plus
error correction bits are fed into a corrector, which produces a corrected set of
M bits to be sent out.

 • An error is detected, but it is not possible to correct it. This condition is reported.

Codes that operate in this fashion are referred to as error-correcting codes. A
code is characterized by the number of bit errors in a word that it can correct and detect.

f

f

Compare

Corrector

Memory

Data in

Data out

Error signal

M

K

M

M

K

K

Figure 5.7 Error-Correcting Code Function

5.2 / ERROR CORRECTION 171

The simplest of the error-correcting codes is the Hamming code devised by
Richard Hamming at Bell Laboratories. Figure 5.8 uses Venn diagrams to illus-
trate the use of this code on 4-bit words (M = 4). With three intersecting circles,
there are seven compartments. We assign the 4 data bits to the inner compartments
(Figure5.8a). The remaining compartments are filled with what are called parity
bits. Each parity bit is chosen so that the total number of 1s in its circle is even
(Figure5.8b). Thus, because circle A includes three data 1s, the parity bit in that
circle is set to 1. Now, if an error changes one of the data bits (Figure 5.8c), it is eas-
ily found. By checking the parity bits, discrepancies are found in circle A and circle
C but not in circle B. Only one of the seven compartments is in A and C but not B.
The error can therefore be corrected by changing that bit.

To clarify the concepts involved, we will develop a code that can detect and
correct single-bit errors in 8-bit words.

To start, let us determine how long the code must be. Referring to Figure 5.7,
the comparison logic receives as input two K-bit values. A bit-by-bit comparison is
done by taking the exclusive-OR of the two inputs. The result is called the syndrome
word. Thus, each bit of the syndrome is 0 or 1 according to if there is or is not a
match in that bit position for the two inputs.

The syndrome word is therefore K bits wide and has a range between 0 and
2K - 1. The value 0 indicates that no error was detected, leaving 2K - 1 values to
indicate, if there is an error, which bit was in error. Now, because an error could
occur on any of the M data bits or K check bits, we must have

2K - 1 Ú M + K

1

1
01

A(a)

1

1

0

0

01

1

1

1

0

0

01

0

(b)

1

1

0

0

01

0

(d)(c)

B

C

Figure 5.8 Hamming Error-Correcting Code

172 CHAPTER 5 / INTERNAL MEMORY

This inequality gives the number of bits needed to correct a single bit error in a word
containing M data bits. For example, for a word of 8 data bits (M = 8), we have

 • K = 3: 23 - 1 6 8 + 3

 • K = 4: 24 - 1 7 8 + 4

Thus, eight data bits require four check bits. The first three columns of Table 5.2
lists the number of check bits required for various data word lengths.

For convenience, we would like to generate a 4-bit syndrome for an 8-bit data
word with the following characteristics:

 • If the syndrome contains all 0s, no error has been detected.

 • If the syndrome contains one and only one bit set to 1, then an error has
occurred in one of the 4 check bits. No correction is needed.

 • If the syndrome contains more than one bit set to 1, then the numerical value
of the syndrome indicates the position of the data bit in error. This data bit is
inverted for correction.

To achieve these characteristics, the data and check bits are arranged into a
12-bit word as depicted in Figure 5.9. The bit positions are numbered from 1 to 12.
Those bit positions whose position numbers are powers of 2 are designated as check
bits. The check bits are calculated as follows, where the symbol { designates the
exclusive-OR operation:

C1 = D1 { D2 { D4 { D5 { D7

C2 = D1 { D3 { D4 { D6 { D7

C4 = D2 { D3 { D4 { D8

C8 = D5 { D6 { D7 { D8

Table 5.2 Increase in Word Length with Error Correction

Single-Error Correction
Single-Error Correction/
Double-Error Detection

Data Bits Check Bits % Increase Check Bits % Increase

 8 4 50 5 62.5

 16 5 31.25 6 37.5

 32 6 18.75 7 21.875

 64 7 10.94 8 12.5

128 8 6.25 9 7.03

256 9 3.52 10 3.91

Bit
position 12

1100

D8

Position
number
Data bit
Check bit

11

1011

D7

10

1010

D6

9

1001

D5

C8

8

1000

7

0111

D4

6

0110

D3

5

0101

D2

4

0100

3

0011

D1

2

0010

1

0001

C4 C2 C1

Figure 5.9 Layout of Data Bits and Check Bits

5.2 / ERROR CORRECTION 173

Each check bit operates on every data bit whose position number contains a 1
in the same bit position as the position number of that check bit. Thus, data bit posi-
tions 3, 5, 7, 9, and 11 (D1, D2, D4, D5, D7) all contain a 1 in the least significant bit
of their position number as does C1; bit positions 3, 6, 7, 10, and 11 all contain a 1 in
the second bit position, as does C2; and so on. Looked at another way, bit position n
is checked by those bits Ci such that g i = n. For example, position 7 is checked by
bits in position 4, 2, and 1; and 7 = 4 + 2 + 1.

Let us verify that this scheme works with an example. Assume that the 8-bit
input word is 00111001, with data bit D1 in the rightmost position. The calculations
are as follows:

C1 = 1 { 0 { 1 { 1 { 0 = 1
C2 = 1 { 0 { 1 { 1 { 0 = 1
C4 = 0 { 0 { 1 { 0 = 1
C8 = 1 { 1 { 0 { 0 = 0

Suppose now that data bit 3 sustains an error and is changed from 0 to 1. When the
check bits are recalculated, we have

C1 = 1 { 0 { 1 { 1 { 0 = 1
C2 = 1 { 1 { 1 { 1 { 0 = 0
C4 = 0 { 1 { 1 { 0 = 0
C8 = 1 { 1 { 0 { 0 = 0

When the new check bits are compared with the old check bits, the syndrome word
is formed:

C8 C4 C2 C1
0 1 1 1

{ 0 0 0 1
 0 1 1 0

The result is 0110, indicating that bit position 6, which contains data bit 3, is in error.
Figure 5.10 illustrates the preceding calculation. The data and check bits are

 positioned properly in the 12-bit word. Four of the data bits have a value 1 (shaded
in the table), and their bit position values are XORed to produce the Hamming
code 0111, which forms the four check digits. The entire block that is stored is

Bit
position 12

1100

D8

Position
number
Data bit
Check bit

11

1011

D7

10

1010

D6

9

1001

D5

C8

8

1000

7

0111

D4

6

0110

D3

5

0101

D2

4

0100

3

0011

D1

2

0010

1

0001

C4 C2 C1

Word
stored as 0

0

1100

Word
fetched as
Position
number
Check bit

0

0

1011

1

1

1010

1

1

1001

0

0

0

1000

1

1

0111

0

1

0110

0

0

0101

1

1

0100

1

1

0011

1

1

0010

1

1

0001

0 0 1

Figure 5.10 Check Bit Calculation

174 CHAPTER 5 / INTERNAL MEMORY

001101001111. Suppose now that data bit 3, in bit position 6, sustains an error and is
changed from 0 to 1. The resulting block is 001101101111, with a Hamming code of
0111. An XOR of the Hamming code and all of the bit position values for nonzero
data bits results in 0110. The nonzero result detects an error and indicates that the
error is in bit position 6.

The code just described is known as a single-error-correcting (SEC) code.
More commonly, semiconductor memory is equipped with a single-error-correcting,
double-error-detecting (SEC-DED) code. As Table 5.2 shows, such codes require
one additional bit compared with SEC codes.

Figure 5.11 illustrates how such a code works, again with a 4-bit data word.
The sequence shows that if two errors occur (Figure 5.11c), the checking procedure
goes astray (d) and worsens the problem by creating a third error (e). To overcome
the problem, an eighth bit is added that is set so that the total number of 1s in the
diagram is even. The extra parity bit catches the error (f).

An error-correcting code enhances the reliability of the memory at the cost of
added complexity. With a 1-bit-per-chip organization, an SEC-DED code is generally
considered adequate. For example, the IBM 30xx implementations used an 8-bit SEC-
DED code for each 64 bits of data in main memory. Thus, the size of main memory is
actually about 12% larger than is apparent to the user. The VAX computers used a 7-bit
SEC-DED for each 32 bits of memory, for a 22% overhead. A number of contempo-
rary DRAMs use 9 check bits for each 128 bits of data, for a 7% overhead [SHAR97].

 5.3 ADVANCED DRAM ORGANIZATION

As discussed in Chapter 2, one of the most critical system bottlenecks when using
high-performance processors is the interface to main internal memory. This inter-
face is the most important pathway in the entire computer system. The basic build-
ing block of main memory remains the DRAM chip, as it has for decades; until

0

1
01

(a)

0

0

0

0

11

1

(c)

1

0

0

0

0

11

1

(d)

1

0

0

0

1

11

1

(e)

1

0

0

0

1

11

1

(f)

1

0

1

0

0

10

1

(b)

1

Figure 5.11 Hamming SEC-DEC Code

5.3 / ADVANCED DRAM ORGANIZATION 175

recently, there had been no significant changes in DRAM architecture since the
early 1970s. The traditional DRAM chip is constrained both by its internal architec-
ture and by its interface to the processor’s memory bus.

We have seen that one attack on the performance problem of DRAM
main memory has been to insert one or more levels of high-speed SRAM cache
between the DRAM main memory and the processor. But SRAM is much costlier
than DRAM, and expanding cache size beyond a certain point yields diminishing
returns.

In recent years, a number of enhancements to the basic DRAM architecture
have been explored, and some of these are now on the market. The schemes that cur-
rently dominate the market are SDRAM, DDR-DRAM, and RDRAM. Table 5.3
provides a performance comparison. CDRAM has also received considerable atten-
tion. We examine each of these approaches in this section.

Synchronous DRAM

One of the most widely used forms of DRAM is the synchronous DRAM
(SDRAM) [VOGL94]. Unlike the traditional DRAM, which is asynchronous, the
SDRAM exchanges data with the processor synchronized to an external clock sig-
nal and running at the full speed of the processor/memory bus without imposing
wait states.

In a typical DRAM, the processor presents addresses and control levels to
the memory, indicating that a set of data at a particular location in memory should
be either read from or written into the DRAM. After a delay, the access time, the
DRAM either writes or reads the data. During the access-time delay, the DRAM
performs various internal functions, such as activating the high capacitance of the
row and column lines, sensing the data, and routing the data out through the out-
put buffers. The processor must simply wait through this delay, slowing system
performance.

With synchronous access, the DRAM moves data in and out under control of
the system clock. The processor or other master issues the instruction and address
information, which is latched by the DRAM. The DRAM then responds after a set
number of clock cycles. Meanwhile, the master can safely do other tasks while the
SDRAM is processing the request.

Figure 5.12 shows the internal logic of IBM’s 64-Mb SDRAM [IBM01], which
is typical of SDRAM organization, and Table 5.4 defines the various pin assign-
ments. The SDRAM employs a burst mode to eliminate the address setup time and
row and column line precharge time after the first access. In burst mode, a series of

Table 5.3 Performance Comparison of Some DRAM Alternatives

Clock Frequency
(MHz)

Transfer Rate
(GB/s) Access Time (ns) Pin Count

SDRAM 166 1.3 18 168

DDR 200 3.2 12.5 184

RDRAM 600 4.8 12 162

CLK

Sense amplifiers

Column decoder

Cell array
memory bank 0

(2 Mb � 8)
DRAM

R
ow

 d
ec

od
er

Sense amplifiers

Column decoder

Cell array
memory bank 1

(2 Mb � 8)
DRAM

R
ow

 d
ec

od
er

Sense amplifiers

Column decoder

Cell array
memory bank 2

(2 Mb � 8)
DRAM

R
ow

 d
ec

od
er

Sense amplifiers

Column decoder

Cell array
memory bank 3

(2 Mb � 8)
DRAM

R
ow

 d
ec

od
er

A0

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

DQM

D
at

a
co

nt
ro

l
ci

rc
ui

tr
yA

dd
re

ss
 b

uf
fe

rs
 (

14
)

C
om

m
an

d
de

co
de

r

C
on

tr
ol

si
gn

al
ge

ne
ra

to
r

CAC � Column address
 counter
MR � Mode register
RC � Refresh counter

CLK buffer

CKE buffer

D
at

a
I/

O
 b

uf
fe

rs

CKE

C
A

C

R
C

M
R

A1
A2
A3
A4
A5
A6
A7
A8
A9

A11

CS

RAS

CAS

WE

A12
A13
A10

Figure 5.12 Synchronous Dynamic RAM (SDRAM)

176

5.3 / ADVANCED DRAM ORGANIZATION 177

data bits can be clocked out rapidly after the first bit has been accessed. This mode
is useful when all the bits to be accessed are in sequence and in the same row of the
array as the initial access. In addition, the SDRAM has a multiple-bank internal
architecture that improves opportunities for on-chip parallelism.

The mode register and associated control logic is another key feature dif-
ferentiating SDRAMs from conventional DRAMs. It provides a mechanism to
 customize the SDRAM to suit specific system needs. The mode register specifies
the burst length, which is the number of separate units of data synchronously fed
onto the bus. The register also allows the programmer to adjust the latency between
receipt of a read request and the beginning of data transfer.

The SDRAM performs best when it is transferring large blocks of data seri-
ally, such as for applications like word processing, spreadsheets, and multimedia.

Figure 5.13 shows an example of SDRAM operation. In this case, the burst
length is 4 and the latency is 2. The burst read command is initiated by having CS
and CAS low while holding RAS and WE high at the rising edge of the clock. The
address inputs determine the starting column address for the burst, and the mode
register sets the type of burst (sequential or interleave) and the burst length (1, 2,
4, 8, full page). The delay from the start of the command to when the data from the
first cell appears on the outputs is equal to the value of the CAS latency that is set
in the mode register.

Table 5.4 SDRAM Pin Assignments

A0 to A13 Address inputs

CLK Clock input

CKE Clock enable

CS Chip select

RAS Row address strobe

CAS Column address strobe

WE Write enable

DQ0 to DQ7 Data input/output

DQM Data mask

T0

CLK

COMMAND

DQs

T1 T2 T3 T4 T5 T6 T7 T8

DOUT A0

NOP NOP NOP NOP NOP NOP NOP NOP

DOUT A1 DOUT A2 DOUT A3

READ A

Figure 5.13 SDRAM Read Timing (burst length = 4, CAS latency = 2)

178 CHAPTER 5 / INTERNAL MEMORY

There is now an enhanced version of SDRAM, known as double data rate
SDRAM (DDR-SDRAM) that overcomes the once-per-cycle limitation. DDR-
SDRAM can send data to the processor twice per clock cycle.

Rambus DRAM

RDRAM, developed by Rambus [FARM92, CRIS97], has been adopted by Intel
for its Pentium and Itanium processors. It has become the main competitor to
SDRAM. RDRAM chips are vertical packages, with all pins on one side. The chip
exchanges data with the processor over 28 wires no more than 12 centimeters long.
The bus can address up to 320 RDRAM chips and is rated at 1.6 GBps.

The special RDRAM bus delivers address and control information using
an asynchronous block-oriented protocol. After an initial 480 ns access time,
this produces the 1.6 GBps data rate. What makes this speed possible is the bus
itself, which defines impedances, clocking, and signals very precisely. Rather than
being controlled by the explicit RAS, CAS, R/W, and CE signals used in conven-
tional DRAMs, an RDRAM gets a memory request over the high-speed bus. This
request contains the desired address, the type of operation, and the number of
bytes in the operation.

Figure 5.14 illustrates the RDRAM layout. The configuration consists of
a controller and a number of RDRAM modules connected via a common bus.
The controller is at one end of the configuration, and the far end of the bus is
a parallel termination of the bus lines. The bus includes 18 data lines (16 actual
data, two parity) cycling at twice the clock rate; that is, 1 bit is sent at the lead-
ing and following edge of each clock signal. This results in a signal rate on each
data line of 800 Mbps. There is a separate set of 8 lines (RC) used for address
and control signals. There is also a clock signal that starts at the far end from
the controller propagates to the controller end and then loops back. A RDRAM
module sends data to the controller synchronously to the clock to master, and the
controller sends data to an RDRAM synchronously with the clock signal in the
opposite direction. The remaining bus lines include a reference voltage, ground,
and power source.

Controller

INIT
INITo

RDRAM 1 RDRAM 2 • • •

• • •

RDRAM n

Bus data [18:0]

RC [7:0]

RClk [2]

TClk [2]

Vref

Gnd (32/18)

Vd(4)

Vterm

Figure 5.14 RDRAM Structure

5.3 / ADVANCED DRAM ORGANIZATION 179

DDR SDRAM

SDRAM is limited by the fact that it can only send data to the processor once per
bus clock cycle. A new version of SDRAM, referred to as double-data-rate SDRAM
can send data twice per clock cycle, once on the rising edge of the clock pulse and
once on the falling edge.

DDR DRAM was developed by the JEDEC Solid State Technology
Association, the Electronic Industries Alliance’s semiconductor-engineering-stand-
ardization body. Numerous companies make DDR chips, which are widely used in
desktop computers and servers.

Figure 5.15 shows the basic timing for a DDR read. The data transfer is syn-
chronized to both the rising and falling edge of the clock. It is also synchronized to
a bidirectional data strobe (DQS) signal that is provided by the memory controller
during a read and by the DRAM during a write. In typical implementations the

Clock

Address

RAS

RAS = Row address select
CAS = Column address select
DQ = Data (in or out)
DQS = DQ select

CAS

DQS

DQ

Column
address

Row
address

Valid
data

Valid
data

Valid
data

Valid
data

Figure 5.15 DDR SDRAM Road Timing

180 CHAPTER 5 / INTERNAL MEMORY

DQS is ignored during the read. An explanation of the use of DQS on writes is
beyond our scope; see [JACO08] for details.

There have been two generations of improvement to the DDR technology.
DDR2 increases the data transfer rate by increasing the operational frequency
of the RAM chip and by increasing the prefetch buffer from 2 bits to 4 bits
per chip. The prefetch buffer is a memory cache located on the RAM chip. The
buffer enables theRAM chip to preposition bits to be placed on the data bus as
rapidly as possible. DDR3, introduced in 2007, increases the prefetch buffer size
to 8 bits.

Theoretically, a DDR module can transfer data at a clock rate in the range of
200 to 600 MHz; a DDR2 module transfers at a clock rate of 400 to 1066 MHz; and
a DDR3 module transfers at a clock rate of 800 to 1600 MHz. In practice, somewhat
smaller rates are achieved.

Appendix K provides more detail on DDR technology.

Cache DRAM

Cache DRAM (CDRAM), developed by Mitsubishi [HIDA90, ZHAN01], inte-
grates a small SRAM cache (16 Kb) onto a generic DRAM chip.

The SRAM on the CDRAM can be used in two ways. First, it can be used as a
true cache, consisting of a number of 64-bit lines. The cache mode of the CDRAM
is effective for ordinary random access to memory.

The SRAM on the CDRAM can also be used as a buffer to support the serial
access of a block of data. For example, to refresh a bit-mapped screen, the CDRAM
can prefetch the data from the DRAM into the SRAM buffer. Subsequent accesses
to the chip result in accesses solely to the SRAM.

 5.4 RECOMMENDED READING

[PRIN97] provides a comprehensive treatment of semiconductor memory technologies,
including SRAM, DRAM, and flash memories. [SHAR97] covers the same material, with
more emphasis on testing and reliability issues. [SHAR03] and [PRIN02] focus on advanced
DRAM and SRAM architectures. For an in-depth look at DRAM, see [JACO08] and
[KEET01]. [CUPP01] provides an interesting performance comparison of various DRAM
schemes. [BEZ03] is a comprehensive introduction to flash memory technology.

A good explanation of error-correcting codes is contained in [MCEL85]. For a deeper
study, worthwhile book-length treatments are [ADAM91] and [BLAH83]. A readable theo-
retical and mathematical treatment of error-correcting codes is [ASH90]. [SHAR97] contains
a good survey of codes used in contemporary main memories.

ADAM91 Adamek, J. Foundations of Coding. New York: Wiley, 1991.
ASH90 Ash, R. Information Theory. New York: Dover, 1990.
BEZ03 Bez, R.; et al. Introduction to Flash Memory. Proceedings of the IEEE,

April 2003.
BLAH83 Blahut, R. Theory and Practice of Error Control Codes. Reading, MA:

Addison-Wesley, 1983.

5.5 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 181

CUPP01 Cuppu, V., et al. “High Performance DRAMS in Workstation Environments.”
IEEE Transactions on Computers, November 2001.

JACO08 Jacob, B.; Ng, S.; and Wang, D. Memory Systems: Cache, DRAM, Disk.
Boston: Morgan Kaufmann, 2008.

KEET01 Keeth, B., and Baker, R. DRAM Circuit Design: A Tutorial. Piscataway, NJ:
IEEE Press, 2001.

MCEL85 McEliece, R. “The Reliability of Computer Memories.” Scientific American,
January 1985.

PRIN97 Prince, B. Semiconductor Memories. New York: Wiley, 1997.
PRIN02 Prince, B. Emerging Memories: Technologies and Trends. Norwell, MA:

Kluwer, 2002.
SHAR97 Sharma, A. Semiconductor Memories: Technology, Testing, and Reliability.

New York: IEEE Press, 1997.
SHAR03 Sharma, A. Advanced Semiconductor Memories: Architectures, Designs, and

Applications. New York: IEEE Press, 2003.

 5.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

cache DRAM (CDRAM)
dynamic RAM (DRAM)
electrically erasable

programmable ROM
(EEPROM)

erasable programmable
ROM (EPROM)

error correcting code
(ECC)

error correction
flash memory

Hamming code
hard failure
nonvolatile memory
programmable ROM

(PROM)
RamBus DRAM

(RDRAM)
read-mostly memory
read-only memory

(ROM)
semiconductor memory

single-error-correcting
(SEC) code

single-error-correcting,
double-error-detecting
(SEC-DED) code

soft error
static RAM (SRAM)
synchronous DRAM

(SDRAM)
syndrome
volatile memory

Review Questions
 5.1 What are the key properties of semiconductor memory?
 5.2 What are two interpretations of the term random-access memory?
 5.3 What is the difference between DRAM and SRAM in terms of application?
 5.4 What is the difference between DRAM and SRAM in terms of characteristics such as

speed, size, and cost?
 5.5 Explain why one type of RAM is considered to be analog and the other digital.
 5.6 What are some applications for ROM?
 5.7 What are the differences among EPROM, EEPROM, and flash memory?
 5.8 Explain the function of each pin in Figure 5.4b.

182 CHAPTER 5 / INTERNAL MEMORY

 5.9 What is a parity bit?
 5.10 How is the syndrome for the Hamming code interpreted?
 5.11 How does SDRAM differ from ordinary DRAM?

Problems
 5.1 Suggest reasons why RAMs traditionally have been organized as only 1 bit per chip

whereas ROMs are usually organized with multiple bits per chip.
 5.2 Consider a dynamic RAM that must be given a refresh cycle 64 times per ms. Each

refresh operation requires 150 ns; a memory cycle requires 250 ns. What percentage of
the memory’s total operating time must be given to refreshes?

 5.3 Figure 5.16 shows a simplified timing diagram for a DRAM read operation over a bus.
The access time is considered to last from t1 to t2. Then there is a recharge time, lasting
from t2 to t3, during which the DRAM chips will have to recharge before the proces-
sor can access them again.
a. Assume that the access time is 60 ns and the recharge time is 40 ns. What is the

memory cycle time? What is the maximum data rate this DRAM can sustain, as-
suming a 1-bit output?

b. Constructing a 32-bit wide memory system using these chips yields what data
transfer rate?

 5.4 Figure 5.6 indicates how to construct a module of chips that can store 1 MByte based
on a group of four 256-Kbyte chips. Let’s say this module of chips is packaged as a
single 1-Mbyte chip, where the word size is 1 byte. Give a high-level chip diagram of
how to construct an 8-Mbyte computer memory using eight 1-Mbyte chips. Be sure to
show the address lines in your diagram and what the address lines are used for.

 5.5 On a typical Intel 8086-based system, connected via system bus to DRAM memory,
for a read operation, RAS is activated by the trailing edge of the Address Enable
signal (Figure 3.19). However, due to propagation and other delays, RAS does not go
active until 50 ns after Address Enable returns to a low. Assume the latter occurs in
the middle of the second half of state T1 (somewhat earlier than in Figure 3.19). Data
are read by the processor at the end of T3. For timely presentation to the processor,
however, data must be provided 60 ns earlier by memory. This interval accounts for

Address
lines

t1 t2 t3

Data
lines

R/W

CAS

RAS

Row address

Data out valid

Column address

Figure 5.16 Simplified DRAM Read Timing

5.5 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 183

propagation delays along the data paths (from memory to processor) and processor
data hold time requirements. Assume a clocking rate of 10 MHz.
a. How fast (access time) should the DRAMs be if no wait states are to be inserted?
b. How many wait states do we have to insert per memory read operation if the

 access time of the DRAMs is 150 ns?
 5.6 The memory of a particular microcomputer is built from 64K * 1 DRAMs. Accord-

ing to the data sheet, the cell array of the DRAM is organized into 256 rows. Each
row must be refreshed at least once every 4 ms. Suppose we refresh the memory on a
strictly periodic basis.
a. What is the time period between successive refresh requests?
b. How long a refresh address counter do we need?

 5.7 Figure 5.17 shows one of the early SRAMs, the 16 * 4 Signetics 7489 chip, which
stores 16 4-bit words.

(b) Truth table

(c) Pulse train

Operating
Mode

Inputs Outputs

Write

H � high voltage level
L � low voltage level
X � don’t care

Read

Inhibit
writing

Store - disable
outputs

DnCS R/W

LL L

HL L

XL H

LH L

HH L

X

On

L

H

Data

H

L

HH H

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

D3

O3

O2

D2

GND

Vcc

A2

A1

A0

D0

O0

D1

O1

Signetics
7489

16 � 4
SRAM

CS

R/W

0 1 0 1 0 1 0 1 0 1 0 1 0 1

abcdefghijklmn

A0

A1

A2

A3

CS

R/W

D3

D2

D1

D0

A3

Figure 5.17 The Signetics 7489 SRAM

184 CHAPTER 5 / INTERNAL MEMORY

a. List the mode of operation of the chip for each CS input pulse shown in Figure 5.17c.
b. List the memory contents of word locations 0 through 6 after pulse n.
c. What is the state of the output data leads for the input pulses h through m?

 5.8 Design a 16-bit memory of total capacity 8192 bits using SRAM chips of size 64 * 1
bit. Give the array configuration of the chips on the memory board showing all re-
quired input and output signals for assigning this memory to the lowest address space.
The design should allow for both byte and 16-bit word accesses.

 5.9 A common unit of measure for failure rates of electronic components is the Failure
unIT (FIT), expressed as a rate of failures per billion device hours. Another well
known but less used measure is mean time between failures (MTBF), which is the
average time of operation of a particular component until it fails. Consider a 1 MB
memory of a 16-bit microprocessor with 256K * 1 DRAMs. Calculate its MTBF
 assuming 2000 FITS for each DRAM.

 5.10 For the Hamming code shown in Figure 5.10, show what happens when a check bit
rather than a data bit is in error?

 5.11 Suppose an 8-bit data word stored in memory is 11000010. Using the Hamming al-
gorithm, determine what check bits would be stored in memory with the data word.
Show how you got your answer.

 5.12 For the 8-bit word 00111001, the check bits stored with it would be 0111. Suppose
when the word is read from memory, the check bits are calculated to be 1101. What is
the data word that was read from memory?

 5.13 How many check bits are needed if the Hamming error correction code is used to
detect single bit errors in a 1024-bit data word?

 5.14 Develop an SEC code for a 16-bit data word. Generate the code for the data word
0101000000111001. Show that the code will correctly identify an error in data bit 5.

CHAPTER

EXTERNAL MEMORY
6.1 Magnetic Disk

Magnetic Read and Write Mechanisms
Data Organization and Formatting
Physical Characteristics
Disk Performance Parameters

6.2 RAID
RAID Level 0
RAID Level 1
RAID Level 2
RAID Level 3
RAID Level 4
RAID Level 5
RAID Level 6

6.3 Solid State Drives
Flash Memory
SSD Compared to HDD
SSD Organization
Practical Issues

6.4 Optical Memory
Compact Disk
Digital Versatile Disk
High-Definition Optical Disks

6.5 Magnetic Tape

6.6 Recommended Reading

6.7 Key Terms, Review Questions, and Problems

185

186 CHAPTER 6 / EXTERNAL MEMORY

This chapter examines a range of external memory devices and systems. We begin
with the most important device, the magnetic disk. Magnetic disks are the founda-
tion of external memory on virtually all computer systems. The next section exam-
ines the use of disk arrays to achieve greater performance, looking specifically at
the family of systems known as RAID (Redundant Array of Independent Disks).
An increasingly important component of many computer systems is the solid state
disk, which is discussed next. Then, external optical memory is examined. Finally,
magnetic tape is described.

 6.1 MAGNETIC DISK

A disk is a circular platter constructed of nonmagnetic material, called the substrate,
coated with a magnetizable material. Traditionally, the substrate has been an alu-
minum or aluminum alloy material. More recently, glass substrates have been intro-
duced. The glass substrate has a number of benefits, including the following:

 • Improvement in the uniformity of the magnetic film surface to increase disk
reliability

 • A significant reduction in overall surface defects to help reduce read-write errors

 • Ability to support lower fly heights (described subsequently)

 • Better stiffness to reduce disk dynamics

 • Greater ability to withstand shock and damage

Magnetic Read and Write Mechanisms

Data are recorded on and later retrieved from the disk via a conducting coil named
the head; in many systems, there are two heads, a read head and a write head. During
a read or write operation, the head is stationary while the platter rotates beneath it.

The write mechanism exploits the fact that electricity flowing through a coil
produces a magnetic field. Electric pulses are sent to the write head, and the result-
ing magnetic patterns are recorded on the surface below, with different patterns for
positive and negative currents. The write head itself is made of easily magnetizable

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Understand the key properties of magnetic disks.
� Understand the performance issues involved in magnetic disk access.
� Explain the concept of RAID and describe the various levels.
� Compare and contrast hard disk drives and solid disk drives.
� Describe in general terms the operation of flash memory.
� Understand the differences among the different optical disk storage media.
� Present an overview of magnetic tape storage technology.

6.1 / MAGNETIC DISK 187

material and is in the shape of a rectangular doughnut with a gap along one side and
a few turns of conducting wire along the opposite side (Figure 6.1). An electric cur-
rent in the wire induces a magnetic field across the gap, which in turn magnetizes a
small area of the recording medium. Reversing the direction of the current reverses
the direction of the magnetization on the recording medium.

The traditional read mechanism exploits the fact that a magnetic field moving
relative to a coil produces an electrical current in the coil. When the surface of the
disk passes under the head, it generates a current of the same polarity as the one
already recorded. The structure of the head for reading is in this case essentially
the same as for writing and therefore the same head can be used for both. Such
single heads are used in floppy disk systems and in older rigid disk systems.

Contemporary rigid disk systems use a different read mechanism, requiring
a separate read head, positioned for convenience close to the write head. The read
head consists of a partially shielded magnetoresistive (MR) sensor. The MR mate-
rial has an electrical resistance that depends on the direction of the magnetization of
the medium moving under it. By passing a current through the MR sensor, resistance
changes are detected as voltage signals. The MR design allows higher-frequency
operation, which equates to greater storage densities and operating speeds.

Data Organization and Formatting

The head is a relatively small device capable of reading from or writing to a portion
of the platter rotating beneath it. This gives rise to the organization of data on the
platter in a concentric set of rings, called tracks. Each track is the same width as the
head. There are thousands of tracks per surface.

Track width

Recording
medium

Inductive
write element

Shield

Magnetization

MR
sensor

Read
current

Write current

Figure 6.1 Inductive Write/Magnetoresistive Read Head

188 CHAPTER 6 / EXTERNAL MEMORY

Figure 6.2 depicts this data layout. Adjacent tracks are separated by gaps. This
prevents, or at least minimizes, errors due to misalignment of the head or simply
interference of magnetic fields.

Data are transferred to and from the disk in sectors (Figure 6.2). There are
typically hundreds of sectors per track, and these may be of either fixed or variable
length. In most contemporary systems, fixed-length sectors are used, with 512 bytes
being the nearly universal sector size. To avoid imposing unreasonable precision
requirements on the system, adjacent sectors are separated by intratrack (intersec-
tor) gaps.

A bit near the center of a rotating disk travels past a fixed point (such as a read–
write head) slower than a bit on the outside. Therefore, some way must be found
to compensate for the variation in speed so that the head can read all the bits at the
same rate. This can be done by increasing the spacing between bits of information
recorded in segments of the disk. The information can then be scanned at the same
rate by rotating the disk at a fixed speed, known as the constant angular velocity
(CAV). Figure 6.3a shows the layout of a disk using CAV. The disk is divided into
a number of pie-shaped sectors and into a series of concentric tracks. The advan-
tage of using CAV is that individual blocks of data can be directly addressed by
track and sector. To move the head from its current location to a specific address, it
only takes a short movement of the head to a specific track and a short wait for the
proper sector to spin under the head. The disadvantage of CAV is that the amount
of data that can be stored on the long outer tracks is the only same as what can be
stored on the short inner tracks.

Figure 6.2 Disk Data Layout

S6

S4
S5

S3
S2

S1
SN

• • •

S6
• • •

S5
S4

S3
S2

S1
SN

Intersector gap

Intertrack gap

Sectors Tracks

6.1 / MAGNETIC DISK 189

Because the density, in bits per linear inch, increases in moving from the out-
ermost track to the innermost track, disk storage capacity in a straightforward CAV
system is limited by the maximum recording density that can be achieved on the
innermost track. To increase density, modern hard disk systems use a technique
known as multiple zone recording, in which the surface is divided into a number
of concentric zones (16 is typical). Within a zone, the number of bits per track is
constant. Zones farther from the center contain more bits (more sectors) than zones
closer to the center. This allows for greater overall storage capacity at the expense
of somewhat more complex circuitry. As the disk head moves from one zone to
another, the length (along the track) of individual bits changes, causing a change
in the timing for reads and writes. Figure 6.3b suggests the nature of multiple zone
recording; in this illustration, each zone is only a single track wide.

Some means is needed to locate sector positions within a track. Clearly, there
must be some starting point on the track and a way of identifying the start and end
of each sector. These requirements are handled by means of control data recorded
on the disk. Thus, the disk is formatted with some extra data used only by the disk
drive and not accessible to the user.

An example of disk formatting is shown in Figure 6.4. In this case, each track
contains 30 fixed-length sectors of 600 bytes each. Each sector holds 512 bytes of

(a) Constant angular velocity (b) Multiple zoned recording

Figure 6.3 Comparison of Disk Layout Methods

Gap
1

17 7 41 515 20 17 7 41 515 20

1 2 1 1 2 1 512 2

17 7 41 515

600 bytes/sector

20

Physical sector 0
Sector

Bytes

Bytes

Index

Physical sector 1 Physical sector 29

ID
field

0

Gap
2

Data
field

0

Gap
3

Synch
byte

Track
#

Head
#

Sector
CRC

Synch
byte Data CRC

Gap
1

ID
field

1

Gap
2

Data
field

1

Gap
3

Gap
1

ID
field
29

Gap
2

Data
field
29

Gap
3

Figure 6.4 Winchester Disk Format (Seagate ST506)

190 CHAPTER 6 / EXTERNAL MEMORY

data plus control information useful to the disk controller. The ID field is a unique
identifier or address used to locate a particular sector. The SYNCH byte is a special
bit pattern that delimits the beginning of the field. The track number identifies a
track on a surface. The head number identifies a head, because this disk has mul-
tiple surfaces (explained presently). The ID and data fields each contain an error-
detecting code.

Physical Characteristics

Table 6.1 lists the major characteristics that differentiate among the various types
of magnetic disks. First, the head may either be fixed or movable with respect to
the radial direction of the platter. In a fixed-head disk, there is one read-write
head per track. All of the heads are mounted on a rigid arm that extends across
all tracks; such systems are rare today. In a movable-head disk, there is only one
read-write head. Again, the head is mounted on an arm. Because the head must
be able to be positioned above any track, the arm can be extended or retracted for
this purpose.

The disk itself is mounted in a disk drive, which consists of the arm, a spindle
that rotates the disk, and the electronics needed for input and output of binary data.
A nonremovable disk is permanently mounted in the disk drive; the hard disk in
a personal computer is a nonremovable disk. A removable disk can be removed
and replaced with another disk. The advantage of the latter type is that unlimited
amounts of data are available with a limited number of disk systems. Furthermore,
such a disk may be moved from one computer system to another. Floppy disks and
ZIP cartridge disks are examples of removable disks.

For most disks, the magnetizable coating is applied to both sides of the platter,
which is then referred to as double sided. Some less expensive disk systems use
single-sided disks.

Some disk drives accommodate multiple platters stacked vertically a fraction
of an inch apart. Multiple arms are provided (Figure 6.5). Multiple–platter disks
employ a movable head, with one read-write head per platter surface. All of the
heads are mechanically fixed so that all are at the same distance from the center of
the disk and move together. Thus, at any time, all of the heads are positioned over

Table 6.1 Physical Characteristics of Disk Systems

Head Motion

Fixed head (one per track)

Movable head (one per surface)

Platters

Single platter

Multiple platter

Disk Portability

Nonremovable disk

Removable disk

Head Mechanism

Contact (floppy)

Fixed gap

Aerodynamic gap (Winchester)

Sides

Single sided

Double sided

6.1 / MAGNETIC DISK 191

tracks that are of equal distance from the center of the disk. The set of all the tracks
in the same relative position on the platter is referred to as a cylinder. For example,
all of the shaded tracks in Figure 6.6 are part of one cylinder.

Finally, the head mechanism provides a classification of disks into three types.
Traditionally, the read-write head has been positioned a fixed distance above the
platter, allowing an air gap. At the other extreme is a head mechanism that actually
comes into physical contact with the medium during a read or write operation. This
mechanism is used with the floppy disk, which is a small, flexible platter and the
least expensive type of disk.

Surface 2
Surface 1

Surface 0

Surface 4
Surface 3

Surface 6
Surface 5

Surface 8
Surface 7

Platter

Spindle Boom

Read–write head (1 per surface) Direction of
arm motion

Surface 9

Figure 6.5 Components of a Disk Drive

Figure 6.6 Tracks and Cylinders

192 CHAPTER 6 / EXTERNAL MEMORY

To understand the third type of disk, we need to comment on the relationship
between data density and the size of the air gap. The head must generate or sense an
electromagnetic field of sufficient magnitude to write and read properly. The nar-
rower the head is, the closer it must be to the platter surface to function. A narrower
head means narrower tracks and therefore greater data density, which is desirable.
However, the closer the head is to the disk, the greater the risk of error from impu-
rities or imperfections. To push the technology further, the Winchester disk was
developed. Winchester heads are used in sealed drive assemblies that are almost
free of contaminants. They are designed to operate closer to the disk’s surface than
conventional rigid disk heads, thus allowing greater data density. The head is actu-
ally an aerodynamic foil that rests lightly on the platter’s surface when the disk is
motionless. The air pressure generated by a spinning disk is enough to make the foil
rise above the surface. The resulting noncontact system can be engineered to use
narrower heads that operate closer to the platter’s surface than conventional rigid
disk heads.

Table 6.2 gives disk parameters for typical contemporary high-performance
disks.

Disk Performance Parameters

The actual details of disk I/O operation depend on the computer system, the oper-
ating system, and the nature of the I/O channel and disk controller hardware. A
general timing diagram of disk I/O transfer is shown in Figure 6.7.

When the disk drive is operating, the disk is rotating at constant speed. To
read or write, the head must be positioned at the desired track and at the beginning
of the desired sector on that track. Track selection involves moving the head in a

Table 6.2 Typical Hard Disk Drive Parameters

Characteristics
Constellation

ES.2
Seagate

Barracuda XT Cheetah NS Momentus

Application Enterprise Desktop Network attached
storage, applica-
tion servers

Laptop

Capacity 3 TB 3 TB 400 GB 640 GB

Average seek time 8.5 ms read
9.5 ms write

N/A 3.9 ms read
4.2 ms write

13 ms

Spindle speed 7200 rpm 7200 rpm 10, 075 rpm 5400 rpm

Average latency 4.16 ms 4.16 ms 2.98 5.6 ms

Maximum sustained
transfer rate

155 MB/s 149 MB/s 97 MB/s 300 MB/s

Bytes per sector 512 512 512 4096

Tracks per cylinder
(number of platter
surfaces)

8 10 8 4

Cache 64 MB 64 MB 16 MB 8 MB

6.1 / MAGNETIC DISK 193

movable-head system or electronically selecting one head on a fixed-head system.
On a movable-head system, the time it takes to position the head at the track is
known as seek time. In either case, once the track is selected, the disk controller
waits until the appropriate sector rotates to line up with the head. The time it takes
for the beginning of the sector to reach the head is known as rotational delay, or
rotational latency. The sum of the seek time, if any, and the rotational delay equals
the access time, which is the time it takes to get into position to read or write. Once
the head is in position, the read or write operation is then performed as the sector
moves under the head; this is the data transfer portion of the operation; the time
required for the transfer is the transfer time.

In addition to the access time and transfer time, there are several queuing
delays normally associated with a disk I/O operation. When a process issues an
I/O request, it must first wait in a queue for the device to be available. At that
time, the device is assigned to the process. If the device shares a single I/O channel
or a set of I/O channels with other disk drives, then there may be an additional
wait for the channel to be available. At that point, the seek is performed to begin
disk access.

In some high-end systems for servers, a technique known as rotational posi-
tional sensing (RPS) is used. This works as follows: When the seek command
has been issued, the channel is released to handle other I/O operations. When
the seek is completed, the device determines when the data will rotate under
the head. As that sector approaches the head, the device tries to reestablish the
communication path back to the host. If either the control unit or the channel is
busy with another I/O, then the reconnection attempt fails and the device must
rotate one whole revolution before it can attempt to reconnect, which is called
an RPS miss. This is an extra delay element that must be added to the timeline of
Figure 6.7.

SEEK TIME Seek time is the time required to move the disk arm to the required
track. It turns out that this is a difficult quantity to pin down. The seek time consists
of two key components: the initial startup time, and the time taken to traverse the
tracks that have to be crossed once the access arm is up to speed. Unfortunately, the
traversal time is not a linear function of the number of tracks, but includes a settling
time (time after positioning the head over the target track until track identification
is confirmed).

Much improvement comes from smaller and lighter disk components. Some
years ago, a typical disk was 14 inches (36 cm) in diameter, whereas the most com-
mon size today is 3.5 inches (8.9 cm), reducing the distance that the arm has to
travel. A typical average seek time on contemporary hard disks is under 10 ms.

Wait for
device

Wait for
channel

Seek Rotational
delay

Data
transfer

Device busy

Figure 6.7 Timing of a Disk I/O Transfer

194 CHAPTER 6 / EXTERNAL MEMORY

ROTATIONAL DELAY Disks, other than floppy disks, rotate at speeds ranging from
3600 rpm (for handheld devices such as digital cameras) up to, as of this writing,
20,000 rpm; at this latter speed, there is one revolution per 3 ms. Thus, on the
average, the rotational delay will be 1.5 ms.

TRANSFER TIME The transfer time to or from the disk depends on the rotation
speed of the disk in the following fashion:

T =
b

rN
where

T = transfer time

b = number of bytes to be transferred

N = number of bytes on a track

r = rotation speed, in revolutions per second

Thus the total average access time can be expressed as

Ta = Ts +
1
2r

+
b

rN

where Ts is the average seek time. Note that on a zoned drive, the number of bytes
per track is variable, complicating the calculation.1

A TIMING COMPARISON With the foregoing parameters defined, let us look at
two different I/O operations that illustrate the danger of relying on average values.
Consider a disk with an advertised average seek time of 4 ms, rotation speed of
15,000 rpm, and 512-byte sectors with 500 sectors per track. Suppose that we wish
to read a file consisting of 2500 sectors for a total of 1.28 Mbytes. We would like to
estimate the total time for the transfer.

First, let us assume that the file is stored as compactly as possible on the disk.
That is, the file occupies all of the sectors on 5 adjacent tracks (5 tracks * 500 sectors/
track = 2500 sectors). This is known as sequential organization. Now, the time to
read the first track is as follows:

Average seek 4 ms

Average rotational delay 2 ms

Read 500 sectors 4 ms
 10 ms

Suppose that the remaining tracks can now be read with essentially no seek
time. That is, the I/O operation can keep up with the flow from the disk. Then, at
most, we need to deal with rotational delay for each succeeding track. Thus each
successive track is read in 2 + 4 = 6 ms. To read the entire file,

Total time = 10 + (4 * 6) = 34 ms = 0.034 seconds

1Compare the two preceding equations to Equation (4.1).

6.2 / RAID 195

Now let us calculate the time required to read the same data using random
access rather than sequential access; that is, accesses to the sectors are distributed
randomly over the disk. For each sector, we have

Average seek 4 ms

Rotational delay 2 ms

Read 1 sectors 0.008 ms

6.008 ms

Total time = 2500 * 6.008 = 15,020 ms = 15.02 seconds

It is clear that the order in which sectors are read from the disk has a tre-
mendous effect on I/O performance. In the case of file access in which multiple
sectors are read or written, we have some control over the way in which sectors
of data are deployed. However, even in the case of a file access, in a multipro-
gramming environment, there will be I/O requests competing for the same disk.
Thus, it is worthwhile to examine ways in which the performance of disk I/O
can be improved over that achieved with purely random access to the disk. This
leads to a consideration of disk scheduling algorithms, which is the province of
the operating system and beyond the scope of this book (see [STAL12] for a
discussion).

RAID Simulator

 6.2 RAID

As discussed earlier, the rate in improvement in secondary storage performance
has been considerably less than the rate for processors and main memory. This
mismatch has made the disk storage system perhaps the main focus of concern in
improving overall computer system performance.

As in other areas of computer performance, disk storage designers recognize
that if one component can only be pushed so far, additional gains in performance
are to be had by using multiple parallel components. In the case of disk storage, this
leads to the development of arrays of disks that operate independently and in par-
allel. With multiple disks, separate I/O requests can be handled in parallel, as long
as the data required reside on separate disks. Further, a single I/O request can be
executed in parallel if the block of data to be accessed is distributed across multiple
disks.

With the use of multiple disks, there is a wide variety of ways in which the
data can be organized and in which redundancy can be added to improve reli-
ability. This could make it difficult to develop database schemes that are usa-
ble on a number of platforms and operating systems. Fortunately, industry has
agreed on a standardized scheme for multiple-disk database design, known as

196 CHAPTER 6 / EXTERNAL MEMORY

RAID (Redundant Array of Independent Disks). The RAID scheme consists
of seven levels,2 zero through six. These levels do not imply a hierarchical rela-
tionship but designate different design architectures that share three common
characteristics:

 1. RAID is a set of physical disk drives viewed by the operating system as a sin-
gle logical drive.

 2. Data are distributed across the physical drives of an array in a scheme known
as striping, described subsequently.

 3. Redundant disk capacity is used to store parity information, which guarantees
data recoverability in case of a disk failure.

The details of the second and third characteristics differ for the different RAID
levels. RAID 0 and RAID 1 do not support the third characteristic.

The term RAID was originally coined in a paper by a group of researchers
at the University of California at Berkeley [PATT88].3 The paper outlined vari-
ous RAID configurations and applications and introduced the definitions of the
RAID levels that are still used. The RAID strategy employs multiple disk drives
and distributes data in such a way as to enable simultaneous access to data from
multiple drives, thereby improving I/O performance and allowing easier incremen-
tal increases in capacity.

The unique contribution of the RAID proposal is to address effectively the
need for redundancy. Although allowing multiple heads and actuators to operate
simultaneously achieves higher I/O and transfer rates, the use of multiple devices
increases the probability of failure. To compensate for this decreased reliability,
RAID makes use of stored parity information that enables the recovery of data lost
due to a disk failure.

We now examine each of the RAID levels. Table 6.3 provides a rough guide
to the seven levels. In the table, I/O performance is shown both in terms of data
transfer capacity, or ability to move data, and I/O request rate, or ability to sat-
isfy I/O requests, since these RAID levels inherently perform differently relative
to these two metrics. Each RAID level’s strong point is highlighted by darker
shading. Figure 6.8 illustrates the use of the seven RAID schemes to support a
data capacity requiring four disks with no redundancy. The figures highlight the
layout of user data and redundant data and indicates the relative storage require-
ments of the various levels. We refer to these figures throughout the following
discussion.

3In that paper, the acronym RAID stood for Redundant Array of Inexpensive Disks. The term inexpen-
sive was used to contrast the small relatively inexpensive disks in the RAID array to the alternative,
a single large expensive disk (SLED). The SLED is essentially a thing of the past, with similar disk
technology being used for both RAID and non-RAID configurations. Accordingly, the industry has
adopted the term independent to emphasize that the RAID array creates significant performance and
reliability gains.

2Additional levels have been defined by some researchers and some companies, but the seven levels
described in this section are the ones universally agreed on.

197

Table 6.3 RAID Levels

Category Level Description
Disks

Required Data Availability
Large I/O Data

Transfer Capacity
Small I/O

Request Rate

Striping 0 Nonredundant N Lower than single disk Very high
Very high for both read
and write

Mirroring 1 Mirrored 2N
Higher than RAID 2,
3, 4, or 5; lower than
RAID 6

Higher than single disk
for read; similar to single
disk for write

Up to twice that of a sin-
gle disk for read; similar
to single disk for write

Parallel access

2
Redundant via
Hamming code

N + m
Much higher than single
disk; comparable to
RAID 3, 4, or 5

Highest of all listed
alternatives

Approximately twice
that of a single disk

Independent
access

3 Bit-interleaved parity N + 1
Much higher than single
disk; comparable to
RAID 2, 4, or 5

Highest of all listed
alternatives

Approximately twice
that of a single disk

4 Block-interleaved parity N + 1
Much higher than single
disk; comparable to
RAID 2, 3, or 5

Similar to RAID 0 for
read; significantly lower
than single disk for write

Similar to RAID 0 for
read; significantly lower
than single disk for write

5
Block-interleaved
distributed parity

N + 1
Much higher than single
disk; comparable to
RAID 2, 3, or 4

Similar to RAID 0 for
read; lower than single
disk for write

Similar to RAID 0 for
read; generally lower
than single disk for write

6
Block-interleaved dual
distributed parity

N + 2
Highest of all listed
alternatives

Similar to RAID 0 for
read; lower than RAID 5
for write

Similar to RAID 0 for
read; significantly lower
than RAID 5 for write

Note: N = number of data disks; m proportional to log N

198 CHAPTER 6 / EXTERNAL MEMORY

RAID Level 0

RAID level 0 is not a true member of the RAID family because it does not include
redundancy to improve performance. However, there are a few applications, such
as some on supercomputers in which performance and capacity are primary con-
cerns and low cost is more important than improved reliability.

For RAID 0, the user and system data are distributed across all of the disks
in the array. This has a notable advantage over the use of a single large disk: If two
-different I/O requests are pending for two different blocks of data, then there is a
good chance that the requested blocks are on different disks. Thus, the two requests
can be issued in parallel, reducing the I/O queuing time.

But RAID 0, as with all of the RAID levels, goes further than simply distribut-
ing the data across a disk array: The data are striped across the available disks. This is
best understood by considering Figure 6.9. All of the user and system data are viewed
as being stored on a logical disk. The logical disk is divided into strips; these strips
may be physical blocks, sectors, or some other unit. The strips are mapped round
robin to consecutive physical disks in the RAID array. A set of logically consecu-
tive strips that maps exactly one strip to each array member is referred to as a stripe.
In an n-disk array, the first n logical strips are physically stored as the first strip on
each of the n disks, forming the first stripe; the second n strips are distributed as the

strip 12

(a) RAID 0 (Nonredundant)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

(b) RAID 1 (Mirrored)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

(c) RAID 2 (Redundancy through Hamming code)

b0 b1 b2 b3 f0(b) f1(b) f2(b)

strip 15

strip 11

strip 7

strip 3

Figure 6.8 RAID Levels

6.2 / RAID 199

second strips on each disk; and so on. The advantage of this layout is that if a single
I/O request consists of multiple logically contiguous strips, then up to n strips for
that request can be handled in parallel, greatly reducing the I/O transfer time.

Figure 6.9 indicates the use of array management software to map between
 logical and physical disk space. This software may execute either in the disk subsystem
or in a host computer.

block 12

(e) RAID 4 (Block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (Block-level distributed parity)

(d) RAID 3 (Bit-interleaved parity)

b0 b1 b2 b3 P(b)

P(0-3)

block 11

block 12

(g) RAID 6 (Dual redundancy)

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

Figure 6.8 RAID Levels (continued)

200 CHAPTER 6 / EXTERNAL MEMORY

RAID 0 FOR HIGH DATA TRANSFER CAPACITY The performance of any of the
RAID levels depends critically on the request patterns of the host system and on
the layout of the data. These issues can be most clearly addressed in RAID 0, where
the impact of redundancy does not interfere with the analysis. First, let us consider
the use of RAID 0 to achieve a high data transfer rate. For applications to experience
a high transfer rate, two requirements must be met. First, a high transfer capacity
must exist along the entire path between host memory and the individual disk drives.
This includes internal controller buses, host system I/O buses, I/O adapters, and host
memory buses.

The second requirement is that the application must make I/O requests that
drive the disk array efficiently. This requirement is met if the typical request is for
large amounts of logically contiguous data, compared to the size of a strip. In this
case, a single I/O request involves the parallel transfer of data from multiple disks,
increasing the effective transfer rate compared to a single-disk transfer.

RAID 0 FOR HIGH I/O REQUEST RATE In a transaction-oriented environment,
the user is typically more concerned with response time than with transfer rate. For
an individual I/O request for a small amount of data, the I/O time is dominated by the
motion of the disk heads (seek time) and the movement of the disk (rotational latency).

In a transaction environment, there may be hundreds of I/O requests per sec-
ond. A disk array can provide high I/O execution rates by balancing the I/O load
across multiple disks. Effective load balancing is achieved only if there are typically

strip 12

strip 8

strip 4

strip 0

Physical
disk 0

strip 3

strip 4

strip 5

strip 6

strip 7

strip 8

strip 9

strip 10

strip 11

strip 12

strip 13

strip 14

strip 15

strip 2

strip 1

strip 0

Logical disk
Physical

disk 1
Physical

disk 2
Physical

disk 3

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

Array
management

software

Figure 6.9 Data Mapping for a RAID Level 0 Array

6.2 / RAID 201

multiple I/O requests outstanding. This, in turn, implies that there are multiple inde-
pendent applications or a single transaction-oriented application that is capable of
multiple asynchronous I/O requests. The performance will also be influenced by the
strip size. If the strip size is relatively large, so that a single I/O request only involves
a single disk access, then multiple waiting I/O requests can be handled in parallel,
reducing the queuing time for each request.

RAID Level 1
RAID 1 differs from RAID levels 2 through 6 in the way in which redundancy is
achieved. In these other RAID schemes, some form of parity calculation is used to
introduce redundancy, whereas in RAID 1, redundancy is achieved by the simple
expedient of duplicating all the data. As Figure 6.8b shows, data striping is used, as
in RAID 0. But in this case, each logical strip is mapped to two separate physical
disks so that every disk in the array has a mirror disk that contains the same data.
RAID 1 can also be implemented without data striping, though this is less common.

There are a number of positive aspects to the RAID 1 organization:

 1. A read request can be serviced by either of the two disks that contains the re-
quested data, whichever one involves the minimum seek time plus rotational
latency.

 2. A write request requires that both corresponding strips be updated, but this
can be done in parallel. Thus, the write performance is dictated by the slower
of the two writes (i.e., the one that involves the larger seek time plus rotational
latency). However, there is no “write penalty” with RAID 1. RAID levels
2 through 6 involve the use of parity bits. Therefore, when a single strip is
updated, the array management software must first compute and update the
parity bits as well as updating the actual strip in question.

 3. Recovery from a failure is simple. When a drive fails, the data may still be
accessed from the second drive.

The principal disadvantage of RAID 1 is the cost; it requires twice the disk
space of the logical disk that it supports. Because of that, a RAID 1 configuration
is likely to be limited to drives that store system software and data and other highly
critical files. In these cases, RAID 1 provides real-time copy of all data so that in the
event of a disk failure, all of the critical data are still immediately available.

In a transaction-oriented environment, RAID 1 can achieve high I/O request
rates if the bulk of the requests are reads. In this situation, the performance of RAID 1
can approach double of that of RAID 0. However, if a substantial fraction of the I/O
requests are write requests, then there may be no significant performance gain over
RAID 0. RAID 1 may also provide improved performance over RAID 0 for data
transfer intensive applications with a high percentage of reads. Improvement occurs
if the application can split each read request so that both disk members participate.

RAID Level 2

RAID levels 2 and 3 make use of a parallel access technique. In a parallel access
array, all member disks participate in the execution of every I/O request. Typically,
the spindles of the individual drives are synchronized so that each disk head is in the
same position on each disk at any given time.

202 CHAPTER 6 / EXTERNAL MEMORY

As in the other RAID schemes, data striping is used. In the case of RAID 2
and 3, the strips are very small, often as small as a single byte or word. With RAID 2,
an error-correcting code is calculated across corresponding bits on each data disk,
and the bits of the code are stored in the corresponding bit positions on multiple
 parity disks. Typically, a Hamming code is used, which is able to correct single-bit
errors and detect double-bit errors.

Although RAID 2 requires fewer disks than RAID 1, it is still rather costly.
The number of redundant disks is proportional to the log of the number of data
disks. On a single read, all disks are simultaneously accessed. The requested data
and the associated error-correcting code are delivered to the array controller. If
there is a single-bit error, the controller can recognize and correct the error instantly,
so that the read access time is not slowed. On a single write, all data disks and parity
disks must be accessed for the write operation.

RAID 2 would only be an effective choice in an environment in which many
disk errors occur. Given the high reliability of individual disks and disk drives,
RAID 2 is overkill and is not implemented.

RAID Level 3

RAID 3 is organized in a similar fashion to RAID 2. The difference is that RAID
3 requires only a single redundant disk, no matter how large the disk array. RAID
3 employs parallel access, with data distributed in small strips. Instead of an error-
correcting code, a simple parity bit is computed for the set of individual bits in the
same position on all of the data disks.

REDUNDANCY In the event of a drive failure, the parity drive is accessed and data
is reconstructed from the remaining devices. Once the failed drive is replaced, the
missing data can be restored on the new drive and operation resumed.

Data reconstruction is simple. Consider an array of five drives in which X0
through X3 contain data and X4 is the parity disk. The parity for the ith bit is calcu-
lated as follows:

X4(i) = X3(i) { X2(i) { X1(i) { X0(i)

where { is exclusive-OR function.
Suppose that drive X1 has failed. If we add X4(i) { X1(i) to both sides of the

preceding equation, we get

X1(i) = X4(i) { X3(i) { X2(i) { X0(i)

Thus, the contents of each strip of data on X1 can be regenerated from the contents
of the corresponding strips on the remaining disks in the array. This principle is true
for RAID levels 3 through 6.

In the event of a disk failure, all of the data are still available in what is referred
to as reduced mode. In this mode, for reads, the missing data are regenerated on the
fly using the exclusive-OR calculation. When data are written to a reduced RAID 3
array, consistency of the parity must be maintained for later regeneration. Return to
full operation requires that the failed disk be replaced and the entire contents of the
failed disk be regenerated on the new disk.

6.2 / RAID 203

PERFORMANCE Because data are striped in very small strips, RAID 3 can achieve
very high data transfer rates. Any I/O request will involve the parallel transfer of
data from all of the data disks. For large transfers, the performance improvement is
especially noticeable. On the other hand, only one I/O request can be executed at a
time. Thus, in a transaction-oriented environment, performance suffers.

RAID Level 4

RAID levels 4 through 6 make use of an independent access technique. In an inde-
pendent access array, each member disk operates independently, so that separate
I/O requests can be satisfied in parallel. Because of this, independent access arrays
are more suitable for applications that require high I/O request rates and are rela-
tively less suited for applications that require high data transfer rates.

As in the other RAID schemes, data striping is used. In the case of RAID
4 through 6, the strips are relatively large. With RAID 4, a bit-by-bit parity strip
is calculated across corresponding strips on each data disk, and the parity bits are
stored in the corresponding strip on the parity disk.

RAID 4 involves a write penalty when an I/O write request of small size is per-
formed. Each time that a write occurs, the array management software must update
not only the user data but also the corresponding parity bits. Consider an array of
five drives in which X0 through X3 contain data and X4 is the parity disk. Suppose
that a write is performed that only involves a strip on disk X1. Initially, for each bit
i, we have the following relationship:

 X4(i) = X3(i) { X2(i) { X1(i) { X0(i) (6.1)

After the update, with potentially altered bits indicated by a prime symbol:

 X4=(i) = X3(i) { X2(i) { X1=(i)X0(i)

 = X3(i) { X2(i) { X1=(i) { X0(i) { X1(i) { X1(i)

 = X3(i) { X2(i) { X1(i) { X0(i) { X1(i) { X1(i)

 = X4(i) { X1(i) { X1=(i)

The preceding set of equations is derived as follows. The first line shows that
a change in X1 will also affect the parity disk X4. In the second line, we add the
terms { X1(i) { X1(i)]. Because the exclusive-OR of any quantity with itself is 0,
this does not affect the equation. However, it is a convenience that is used to create
the third line, by reordering. Finally, Equation (6.1) is used to replace the first four
terms by X4(i).

To calculate the new parity, the array management software must read the old
user strip and the old parity strip. Then it can update these two strips with the new
data and the newly calculated parity. Thus, each strip write involves two reads and
two writes.

In the case of a larger size I/O write that involves strips on all disk drives, parity
is easily computed by calculation using only the new data bits. Thus, the parity drive
can be updated in parallel with the data drives and there are no extra reads or writes.

In any case, every write operation must involve the parity disk, which there-
fore can become a bottleneck.

204 CHAPTER 6 / EXTERNAL MEMORY

RAID Level 5

RAID 5 is organized in a similar fashion to RAID 4. The difference is that RAID
5 distributes the parity strips across all disks. A typical allocation is a round-robin
scheme, as illustrated in Figure 6.8f. For an n-disk array, the parity strip is on a
 different disk for the first n stripes, and the pattern then repeats.

The distribution of parity strips across all drives avoids the potential I/O
bottle-neck found in RAID 4.

RAID Level 6

RAID 6 was introduced in a subsequent paper by the Berkeley researchers
[KATZ89]. In the RAID 6 scheme, two different parity calculations are carried out
and stored in separate blocks on different disks. Thus, a RAID 6 array whose user
data require N disks consists of N + 2 disks.

Figure 6.8g illustrates the scheme. P and Q are two different data check algo-
rithms. One of the two is the exclusive-OR calculation used in RAID 4 and 5. But
the other is an independent data check algorithm. This makes it possible to regener-
ate data even if two disks containing user data fail.

The advantage of RAID 6 is that it provides extremely high data availability.
Three disks would have to fail within the MTTR (mean time to repair) interval to
cause data to be lost. On the other hand, RAID 6 incurs a substantial write penalty,
because each write affects two parity blocks. Performance benchmarks [EISC07]
show a RAID 6 controller can suffer more than a 30% drop in overall write per-
formance compared with a RAID 5 implementation. RAID 5 and RAID 6 read
performance is comparable.

Table 6.4 is a comparative summary of the seven levels.

Table 6.4 RAID Comparison

Level Advantages Disadvantages Applications

0

I/O performance is greatly improved
by spreading the I/O load across
many channels and drives

No parity calculation overhead is
involved

Very simple design

Easy to implement

The failure of just one
drive will result in all
data in an array
being lost

Video production and
editing

Image Editing

Pre-press applications

Any application requiring
high bandwidth

1

100% redundancy of data means no
rebuild is necessary in case of a disk
failure, just a copy to the replacement
disk

Under certain circumstances, RAID
1 can sustain multiple simultaneous
drive failures

Simplest RAID storage subsystem
design

Highest disk overhead of
all RAID types
(100%)—inefficient

Accounting

Payroll

Financial

Any application requiring
very high availability

(Continued)

6.3 / SOLID STATE DRIVES 205

 6.3 SOLID STATE DRIVES

One of the most significant developments in computer architecture in recent years
is the increasing use of solid state drives (SSDs) to complement or even replace
hard disk drives (HDDs), both as internal and external secondary memory. The
term solid state refers to electronic circuitry built with semiconductors. A solid state
drive is a memory device made with solid state components that can be used as a
replacement to a hard disk drive. The SSDs now on the market and coming on line

Level Advantages Disadvantages Applications

2

Extremely high data transfer rates
possible

The higher the data transfer rate
required, the better the ratio of data
disks to ECC disks

Relatively simple controller design
compared to RAID levels 3, 4, & 5

Very high ratio of ECC
disks to data disks
with smaller word
sizes—inefficient

Entry level cost very
high—requires very high
transfer rate requirement
to justify

No commercial
implementations exist/
not commercially viable

3

Very high read data transfer rate

Very high write data transfer rate

Disk failure has an insignificant
impact on throughput

Low ratio of ECC (parity) disks to
data disks means high efficiency

Transaction rate equal to
that of a single disk drive
at best (if spindles are
synchronized)

Controller design is
fairly complex

Video production and live
streaming

Image editing

Video editing

Prepress applications

Any application requiring
high throughput

4

Very high Read data transaction rate

Low ratio of ECC (parity) disks to
data disks means high efficiency

Quite complex
controller design

Worst write transaction
rate and Write aggregate
transfer rate

Difficult and inefficient
data rebuild in the event
of disk failure

No commercial
implementations exist/
not commercially viable

5

Highest Read data transaction rate

Low ratio of ECC (parity) disks to
data disks means high efficiency

Good aggregate transfer rate

Most complex
controller design

Difficult to rebuild in
the event of a disk
failure (as compared
to RAID level 1)

File and application servers

Database servers

Web, e-mail, and
news servers

Intranet servers

Most versatile RAID level

6

Provides for an extremely high data
fault tolerance and can sustain mul-
tiple simultaneous drive failures

More complex
controller design

Controller overhead to
compute parity addresses
is extremely high

Perfect solution for mission
critical applications

Table 6.4 Continued

206 CHAPTER 6 / EXTERNAL MEMORY

use a type of semiconductor memory referred to as flash memory. In this section,
we first provide an introduction to flash memory, and then look at its use in SSDs.

Flash Memory

Flash memory is a type of semiconductor memory that has been around for a num-
ber of years and is used in many consumer electronic products, including smart
phones, GPS devices, MP3 players, digital cameras, and USB devices. In recent
years, the cost and performance of flash memory has evolved to the point where it is
feasible to use flash memory drives to replace HDDs.

Figure 6.10 illustrates the basic operation of a flash memory. For comparison,
Figure 6.10a depicts the operation of a transistor. Transistors exploit the properties
of semiconductors so that a small voltage applied to the gate can be used to control
the flow of a large current between the source and the drain.

In a flash memory cell, a second gate—called a floating gate, because it is insu-
lated by a thin oxide layer—is added to the transistor. Initially, the floating gate
does not interfere with the operation of the transistor (Figure 6.10b). In this state,
the cell is deemed to represent binary 1. Applying a large voltage across the oxide
layer causes electrons to tunnel through it and become trapped on the floating gate,
where they remain even if the power is disconnected (Figure 6.10c). In this state, the
cell is deemed to represent binary 0. The state of the cell can be read by using exter-
nal circuitry to test whether the transistor is working or not. Applying a large volt-
age in the opposite direction removes the electrons from the floating gate, returning
to a state of binary 0.

There are two distinctive types of flash memory, designated as NOR and
NAND. In NOR flash memory, the basic unit of access is a bit, and the logical
organization resembles a NOR logic device.4 For NAND flash memory, the basic
unit is 16 or 32 bits, and the logical organization resembles NAND devices.

NOR flash memory provides high-speed random access. It can read and
write data to specific locations, and can reference and retrieve a single byte. NOR

(a) Transistor structure

(b) Flash memory cell in one state (c) Flash memory cell in zero state

Control gate

N+
Drain

N+
Source

P-substrate

Control gate

N+
Drain

N+
Source

Floating gate

P-substrate

Control gate

N+
Drain

N+
Source

P-substrate

–

+

– – – – –

+ + + + +

Figure 6.10 Flash Memory Operation

4See Chapter 11 for a discussion of NOR and NAND gates.

6.3 / SOLID STATE DRIVES 207

flash memory is used to store cell phone operating system code and on Windows
 computers for the BIOS program that runs at startup. NAND reads and writes in
small blocks. It is used in USB flash drives, memory cards (in digital cameras, MP3
players, etc.), and in SSDs. NAND provides higher bit density than NOR and greater
write speed. NAND flash does not provide a random-access external address bus so
the data must be read on a blockwise basis (also known as page access), where each
block holds hundreds to thousands of bits.

SSD Compared to HDD

As the cost of flash-based SSDs has dropped and the performance and bit density
increased, SSDs have become increasingly competitive with HDDs. Table 6.5 shows
typical measures of comparison at the time of this writing.

SSDs have the following advantages over HDDs:

 • High-performance input/output operations per second (IOPS): Significantly
increases performance I/O subsystems.

 • Durability: Less susceptible to physical shock and vibration.

 • Longer lifespan: SSDs are not susceptible to mechanical wear.

 • Lower power consumption: SSDs use as little as 2.1 watts of power per drive,
considerably less than comparable-size HDDs.

 • Quieter and cooler running capabilities: Less floor space required, lower
energy costs, and a greener enterprise.

 • Lower access times and latency rates: Over 10 times faster than the spinning
disks in an HDD.

Currently, HDDs enjoy a cost per bit advantage and a capacity advantage, but
these differences are shrinking.

SSD Organization

Figure 6.11 illustrates a general view of the common architectural system component
associated with any SDD system. On the host system, to operating system invokes
file system software to access data on the disk. The file system, in turn, invokes I/O
driver software. The I/O driver software provides host access to the particular SSD
product. The interface component in Figure 6.11 refers to the physical and electrical
interface between the host processor and the SSD peripheral device. If the device is

Table 6.5 Comparison of Solid State Drives and Disk Drives

NAND Flash Drives Disk Drives

I/O per second (sustained) Read: 45,000
Write: 15,000

300

Throughput (MB/s) Read: 200+
Write: 100+

up to 80

Random access time (ms) 0.1 4–10

Storage capacity up to 256 GB up to 4 TB

208 CHAPTER 6 / EXTERNAL MEMORY

an internal hard drive, a common interface is PCIe. For external devices, one com-
mon interface is USB.

In addition to the interface to the host system, the SSD contains the following
components:

 • Controller: Provides SSD device level interfacing and firmware execution.
 • Addressing: Logic that performs the selection function across the flash

memory components.
 • Data buffer/cache: High speed RAM memory components used for speed

matching and to increased data throughput.

I/O driver software

File system software

Operating system
software

Host system

SSDInterface

Interface

Controller

Flash
memory

components

Flash
memory

components

Flash
memory

components

Flash
memory

components

Addressing

Data buffer/
cache

Error
correction

Figure 6.11 Solid State Drive Architecture

6.3 / SOLID STATE DRIVES 209

 • Error correction: Logic for error detection and correction.
 • Flash memory components: Individual NAND flash chips.

Practical Issues

There are two practical issues peculiar to SSDs that are not faced by HDDs. First,
SDD performance has a tendency to slow down as the device is used. To understand
the reason for this, you need to know that files are stored on disk as a set of pages,
typically 4 KB in length. These pages are not necessarily, and indeed not typically,
stored as a contiguous set of pages on the disk. The reason for this arrangement is
explained in our discussion of virtual memory in Chapter 8. However, flash memory
is accessed in blocks, with a typically block size of 512 KB, so that there are typically
128 pages per block. Now consider what must be done to write a page onto a flash
memory.

 1. The entire block must be read from the flash memory and placed in a RAM
buffer. Then the appropriate page in the RAM buffer is updated.

 2. Before the block can be written back to flash memory, the entire block of flash
memory must be erased—it is not possible to erase just one page of the flash
memory.

 3. The entire block from the buffer is now written back to the flash memory.

Now, when a flash drive is relatively empty and a new file is created, the
pages of that file are written on to the drive contiguously, so that one or only a few
blocks are affected. However, over time, because of the way virtual memory works,
files become fragmented, with pages scattered over multiple blocks. As the drive
become more occupied, there is more fragmentation, so the writing of a new file can
affect multiple blocks. Thus, the writing of multiple pages from one block becomes
slower, the more fully occupied the disk is. Manufacturers have developed a variety
of techniques to compensate for this property of flash memory, such as setting aside
a substantial portion of the SSD as extra space for write operations (called over-
provisioning), then to erase inactive pages during idle time used to defragment the
disk. Another technique is the TRIM command, which allows an operating system
to inform a solid state drive (SSD) which blocks of data are no longer considered in
use and can be wiped internally.5

A second practical issue with flash memory drives is that a flash memory
becomes unusable after a certain number of writes. As flash cells are stressed,
they lose their ability to record and retain values. A typical limit is 100,000 writes
[GSOE08]. Techniques for prolonging the life of an SSD drive include front-ending
the flash with a cache to delay and group write operations, using wear-leveling algo-
rithms that evenly distribute writes across block of cells, and sophisticated bad-block
management techniques. In addition, vendors are deploying SSDs in RAID con-
figurations to further reduce the probability of data loss. Most flash devices are also
capable of estimating their own remaining lifetimes so systems can anticipate failure
and take preemptive action.

5While TRIM is frequently spelled in capital letters, it is not an acronym; it is merely a command name.

210 CHAPTER 6 / EXTERNAL MEMORY

 6.4 OPTICAL MEMORY

In 1983, one of the most successful consumer products of all time was introduced:
the compact disk (CD) digital audio system. The CD is a nonerasable disk that can
store more than 60 minutes of audio information on one side. The huge commer-
cial success of the CD enabled the development of low-cost optical-disk storage
technology that has revolutionized computer data storage. A variety of optical-disk
systems have been introduced (Table 6.6). We briefly review each of these.

Compact Disk

CD-ROM Both the audio CD and the CD-ROM (compact disk read-only
memory) share a similar technology. The main difference is that CD-ROM players
are more rugged and have error correction devices to ensure that data are properly
transferred from disk to computer. Both types of disk are made the same way. The
disk is formed from a resin, such as polycarbonate. Digitally recorded information
(either music or computer data) is imprinted as a series of microscopic pits on the
surface of the polycarbonate. This is done, first of all, with a finely focused, high-
intensity laser to create a master disk. The master is used, in turn, to make a die to

Table 6.6 Optical Disk Products

CD
Compact Disk. A nonerasable disk that stores digitized audio information. The standard system uses
12-cm disks and can record more than 60 minutes of uninterrupted playing time.

CD-ROM
Compact Disk Read-Only Memory. A nonerasable disk used for storing computer data. The standard
system uses 12-cm disks and can hold more than 650 Mbytes.

CD-R
CD Recordable. Similar to a CD-ROM. The user can write to the disk only once.

CD-RW
CD Rewritable. Similar to a CD-ROM. The user can erase and rewrite to the disk multiple times.

DVD
Digital Versatile Disk. A technology for producing digitized, compressed representation of video infor-
mation, as well as large volumes of other digital data. Both 8 and 12 cm diameters are used, with a
double-sided capacity of up to 17 Gbytes. The basic DVD is read-only (DVD-ROM).

DVD-R
DVD Recordable. Similar to a DVD-ROM. The user can write to the disk only once. Only one-sided
disks can be used.

DVD-RW
DVD Rewritable. Similar to a DVD-ROM. The user can erase and rewrite to the disk multiple times.
Only one-sided disks can be used.

Blu-ray DVD
High-definition video disk. Provides considerably greater data storage density than DVD, using a 405-nm
(blue-violet) laser. A single layer on a single side can store 25 Gbytes.

6.4 / OPTICAL MEMORY 211

stamp out copies onto polycarbonate. The pitted surface is then coated with a highly
reflective surface, usually aluminum or gold. This shiny surface is protected against
dust and scratches by a top coat of clear acrylic. Finally, a label can be silkscreened
onto the acrylic.

Information is retrieved from a CD or CD-ROM by a low-powered laser
housed in an optical-disk player, or drive unit. The laser shines through the clear
polycarbonate while a motor spins the disk past it (Figure 6.12). The intensity of
the reflected light of the laser changes as it encounters a pit. Specifically, if the laser
beam falls on a pit, which has a somewhat rough surface, the light scatters and a low
intensity is reflected back to the source. The areas between pits are called lands.
A land is a smooth surface, which reflects back at higher intensity. The change
between pits and lands is detected by a photosensor and converted into a digital
signal. The sensor tests the surface at regular intervals. The beginning or end of
a pit represents a 1; when no change in elevation occurs between intervals, a 0 is
recorded.

Recall that on a magnetic disk, information is recorded in concentric tracks.
With the simplest constant angular velocity (CAV) system, the number of bits per
track is constant. An increase in density is achieved with multiple zoned recording,
in which the surface is divided into a number of zones, with zones farther from the
center containing more bits than zones closer to the center. Although this technique
increases capacity, it is still not optimal.

To achieve greater capacity, CDs and CD-ROMs do not organize information
on concentric tracks. Instead, the disk contains a single spiral track, beginning near
the center and spiraling out to the outer edge of the disk. Sectors near the outside
of the disk are the same length as those near the inside. Thus, information is packed
evenly across the disk in segments of the same size and these are scanned at the
same rate by rotating the disk at a variable speed. The pits are then read by the laser
at a constant linear velocity (CLV). The disk rotates more slowly for accesses near
the outer edge than for those near the center. Thus, the capacity of a track and the
rotational delay both increase for positions nearer the outer edge of the disk. The
data capacity for a CD-ROM is about 680 MB.

Polycarbonate
plastic

Protective
acrylic

Aluminum

Laser transmit/
receive

Pit
Land

Label

Figure 6.12 CD Operation

212 CHAPTER 6 / EXTERNAL MEMORY

Data on the CD-ROM are organized as a sequence of blocks. A typical block
format is shown in Figure 6.13. It consists of the following fields:

 • Sync: The sync field identifies the beginning of a block. It consists of a byte of
all 0s, 10 bytes of all 1s, and a byte of all 0s.

 • Header: The header contains the block address and the mode byte. Mode
0 specifies a blank data field; mode 1 specifies the use of an error-correcting
code and 2048 bytes of data; mode 2 specifies 2336 bytes of user data with no
error-correcting code.

 • Data: User data.

 • Auxiliary: Additional user data in mode 2. In mode 1, this is a 288-byte error-
correcting code.

With the use of CLV, random access becomes more difficult. Locating a spe-
cific address involves moving the head to the general area, adjusting the rotation
speed and reading the address, and then making minor adjustments to find and
access the specific sector.

CD-ROM is appropriate for the distribution of large amounts of data to a
large number of users. Because of the expense of the initial writing process, it is not
appropriate for individualized applications. Compared with traditional magnetic
disks, the CD-ROM has two advantages:

 • The optical disk together with the information stored on it can be mass repli-
cated inexpensively—unlike a magnetic disk. The database on a magnetic disk
has to be reproduced by copying one disk at a time using two disk drives.

 • The optical disk is removable, allowing the disk itself to be used for archi-
val storage. Most magnetic disks are nonremovable. The information on non-
removable magnetic disks must first be copied to another storage medium
 before the disk drive/disk can be used to store new information.
The disadvantages of CD-ROM are as follows:

 • It is read-only and cannot be updated.
 • It has an access time much longer than that of a magnetic disk drive, as much

as half a second.

CD RECORDABLE To accommodate applications in which only one or a small
number of copies of a set of data is needed, the write-once read-many CD, known

00 00 Data

12 bytes
SYNC

4 bytes
ID

2048 bytes
Data

288 bytes
L-ECC

Layered
ECCM

IN

SE
C

Se
ct

or

M
od

e

FF ... FF

2352 bytes

Figure 6.13 CD-ROM Block Format

6.4 / OPTICAL MEMORY 213

as the CD recordable (CD-R), has been developed. For CD-R, a disk is prepared
in such a way that it can be subsequently written once with a laser beam of
modest -intensity. Thus, with a some what more expensive disk controller than for
CD-ROM, the customer can write once as well as read the disk.

The CD-R medium is similar to but not identical to that of a CD or
CD-ROM. For CDs and CD-ROMs, information is recorded by the pitting of
the surface of the medium, which changes reflectivity. For a CD-R, the medium
includes a dye layer. The dye is used to change reflectivity and is activated
by a high-intensity laser. The resulting disk can be read on a CD-R drive or a
CD-ROM drive.

The CD-R optical disk is attractive for archival storage of documents and files.
It provides a permanent record of large volumes of user data.

CD REWRITABLE The CD-RW optical disk can be repeatedly written and
overwritten, as with a magnetic disk. Although a number of approaches have been
tried, the only pure optical approach that has proved attractive is called phase
change. The phase change disk uses a material that has two significantly different
reflectivities in two different phase states. There is an amorphous state, in which the
molecules exhibit a random orientation that reflects light poorly; and a crystalline
state, which has a smooth surface that reflects light well. A beam of laser light can
change the material from one phase to the other. The primary disadvantage of
phase change optical disks is that the material eventually and permanently loses
its desirable properties. Current materials can be used for between 500,000 and
1,000,000 erase cycles.

The CD-RW has the obvious advantage over CD-ROM and CD-R that it can
be rewritten and thus used as a true secondary storage. As such, it competes with
magnetic disk. A key advantage of the optical disk is that the engineering tolerances
for optical disks are much less severe than for high-capacity magnetic disks. Thus,
they exhibit higher reliability and longer life.

Digital Versatile Disk

With the capacious digital versatile disk (DVD), the electronics industry has at last
found an acceptable replacement for the analog VHS video tape. The DVD has
replaced the videotape used in video cassette recorders (VCRs) and, more impor-
tant for this discussion, replace the CD-ROM in personal computers and servers.
The DVD takes video into the digital age. It delivers movies with impressive picture
quality, and it can be randomly accessed like audio CDs, which DVD machines
can also play. Vast volumes of data can be crammed onto the disk, currently seven
times as much as a CD-ROM. With DVD’s huge storage capacity and vivid quality,
PC games have become more realistic and educational software incorporates more
video. Following in the wake of these developments has been a new crest of traf-
fic over the Internet and corporate intranets, as this material is incorporated into
Web sites.

The DVD’s greater capacity is due to three differences from CDs (Figure 6.14):

 1. Bits are packed more closely on a DVD. The spacing between loops of a spiral on a
CD is 1.6 μm and the minimum distance between pits along the spiral is 0.834 μm.

214 CHAPTER 6 / EXTERNAL MEMORY

The DVD uses a laser with shorter wavelength and achieves a loop spacing of
0.74 μm and a minimum distance between pits of 0.4 μm. The result of these
two improvements is about a seven-fold increase in capacity, to about 4.7 GB.

 2. The DVD employs a second layer of pits and lands on top of the first layer. A
dual-layer DVD has a semireflective layer on top of the reflective layer, and
by adjusting focus, the lasers in DVD drives can read each layer separately.
This technique almost doubles the capacity of the disk, to about 8.5 GB. The
lower reflectivity of the second layer limits its storage capacity so that a full
doubling is not achieved.

 3. The DVD-ROM can be two sided, whereas data are recorded on only one side
of a CD. This brings total capacity up to 17 GB.

As with the CD, DVDs come in writeable as well as read-only versions (Table 6.6).

High-Definition Optical Disks

High-definition optical disks are designed to store high-definition videos and to
provide significantly greater storage capacity compared to DVDs. The higher bit
density is achieved by using a laser with a shorter wavelength, in the blue-violet

1.2 mm
thick

1.2 mm
thick

Label

Protective layer
(acrylic)

Reflective layer
(aluminum)

Polycarbonate substrate
(plastic)

Polycarbonate substrate, side 2

Semireflective layer, side 2

Polycarbonate layer, side 2

Fully reflective layer, side 2

Fully reflective layer, side 1

Polycarbonate layer, side 1

Semireflective layer, side 1

Polycarbonate substrate, side 1

Laser focuses on polycarbonate
pits in front of reflective layer.

(a) CD-ROM–Capacity 682 MB

(b) DVD-ROM, double-sided, dual-layer–Capacity 17 GB

Laser focuses on pits in one layer
on one side at a time. Disk must
be flipped to read other side.

Figure 6.14 CD-ROM and DVD-ROM

6.5 / MAGNETIC TAPE 215

range. The data pits, which constitute the digital 1s and 0s, are smaller on the high-
definition optical disks compared to DVD because of the shorter laser wavelength.

Two competing disk formats and technologies initially competed for market
acceptance: HD DVD and Blu-ray DVD. The Blu-ray scheme ultimately achieved
market dominance. The HD DVD scheme can store 15 GB on a single layer on a
single side. Blu-ray positions the data layer on the disk closer to the laser (shown on
the right-hand side of each diagram in Figure 6.15). This enables a tighter focus and
less distortion and thus smaller pits and tracks. Blu-ray can store 25 GB on a single
layer. Three versions are available: read only (BD-ROM), recordable once (BD-R),
and rerecordable (BD-RE).

 6.5 MAGNETIC TAPE

Tape systems use the same reading and recording techniques as disk systems. The
medium is flexible polyester (similar to that used in some clothing) tape coated with
magnetizable material. The coating may consist of particles of pure metal in spe-
cial binders or vapor-plated metal films. The tape and the tape drive are analo-
gous to a home tape recorder system. Tape widths vary from 0.38 cm (0.15 inch) to
1.27 cm (0.5 inch). Tapes used to be packaged as open reels that have to be threaded
through a second spindle for use. Today, virtually all tapes are housed in cartridges.

Data on the tape are structured as a number of parallel tracks running length-
wise. Earlier tape systems typically used nine tracks. This made it possible to store

Beam spot Land
Data layer

Laser wavelength
= 780 nm

650 nm

405 nm

CD 2.11 μm

DVD

Blu-ray

1.2 μmPit

Track

0.6 μm

0.1 μm1.32 μm

0.58 μm

Figure 6.15 Optical Memory Characteristics

216 CHAPTER 6 / EXTERNAL MEMORY

data one byte at a time, with an additional parity bit as the ninth track. This was
followed by tape systems using 18 or 36 tracks, corresponding to a digital word or
double word. The recording of data in this form is referred to as parallel recording.
Most modern systems instead use serial recording, in which data are laid out as a
sequence of bits along each track, as is done with magnetic disks. As with the disk,
data are read and written in contiguous blocks, called physical records, on a tape.
Blocks on the tape are separated by gaps referred to as interrecord gaps. As with the
disk, the tape is formatted to assist in locating physical records.

The typical recording technique used in serial tapes is referred to as serpentine
recording. In this technique, when data are being recorded, the first set of bits is
recorded along the whole length of the tape. When the end of the tape is reached,
the heads are repositioned to record a new track, and the tape is again recorded on
its whole length, this time in the opposite direction. That process continues, back
and forth, until the tape is full (Figure 6.16a). To increase speed, the read-write
head is capable of reading and writing a number of adjacent tracks simultaneously
 (typically two to eight tracks). Data are still recorded serially along individual tracks,
but blocks in sequence are stored on adjacent tracks, as suggested by Figure 6.16b.

A tape drive is a sequential-access device. If the tape head is positioned at
record 1, then to read record N, it is necessary to read physical records 1 through

Bottom
edge of tape

Direction of
read–write

(a) Serpentine reading and writing

Track 0

Direction of
tape motion

(b) Block layout for system that reads–writes four tracks simultaneously

Track 0

Track 1

Track 2

Track 3

Track 1

Track 2

4 8 12 16 20

3 7 11 15 19

2 6 10 14 18

1 5 9 13 17

Figure 6.16 Typical Magnetic Tape Features

6.6 / RECOMMENDED READING 217

N - 1, one at a time. If the head is currently positioned beyond the desired record, it
is necessary to rewind the tape a certain distance and begin reading forward. Unlike
the disk, the tape is in motion only during a read or write operation.

In contrast to the tape, the disk drive is referred to as a direct-access device. A
disk drive need not read all the sectors on a disk sequentially to get to the desired
one. It must only wait for the intervening sectors within one track and can make suc-
cessive accesses to any track.

Magnetic tape was the first kind of secondary memory. It is still widely used as
the lowest-cost, slowest-speed member of the memory hierarchy.

The dominant tape technology today is a cartridge system known as linear
tape-open (LTO). LTO was developed in the late 1990s as an open-source alterna-
tive to the various proprietary systems on the market. Table 6.7 shows parameters
for the various LTO generations. See Appendix J for details.

 6.6 RECOMMENDED READING

[JACO08] provides good coverage of magnetic disks.
[GSOE08] is an introduction to solid state drives. For good technical descriptions of

flash memory, see [PAVA97] and [OKLO08].
An excellent survey of RAID technology, written by the inventors of the RAID con-

cept, is [CHEN94]. A good overview paper is [FRIE96]. A good performance comparison of
the RAID architectures is [CHEN96].

A good survey of optical recording and reading technology is [MANS97].
[OSUN11] provides a detailed treatment of LTO.

Table 6.7 LTO Tape Drives

LTO-1 LTO-2 LTO-3 LTO-4 LTO-5 LTO-6 LTO-7 LTO-8

Release date 2000 2003 2005 2007 2010 TBA TBA TBA

Compressed
capacity

200 GB 400 GB 800 GB 1600 GB 3.2 TB 8 TB 16 TB 32 TB

Compressed
transfer rate

40
MB/s

80
MB/s

160
MB/s

240
MB/s

280
MB/s

525
MB/s

788
MB/s

1.18
GB/s

Linear density
(bits/mm)

4880 7398 9638 13250 15142

Tape tracks 384 512 704 896 1280

Tape length (m) 609 609 680 820 846

Tape width (cm) 1.27 1.27 1.27 1.27 1.27

Write elements 8 8 16 16 16

WORM? No No Yes Yes Yes Yes Yes Yes

Encryption
Capable?

No No No Yes Yes Yes Yes Yes

Partitioning? No No No No Yes Yes Yes Yes

218 CHAPTER 6 / EXTERNAL MEMORY

 6.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

access time
Blu-ray
CD
CD-R
CD-ROM
CD-RW
constant angular velocity

(CAV)
constant linear velocity

(CLV)
cylinder
DVD
DVD-R
DVD-ROM

DVD-RW
fixed-head disk
flash memory
floppy disk
gap
hard disk drive (HDD)
head
land
magnetic disk
magnetic tape
magnetoresistive
movable-head disk
multiple zoned recording
nonremovable disk

optical memory
pit
platter
RAID
removable disk
rotational delay
sector
seek time
serpentine recording
solid state drive (SSD)
striped data
substrate
track
transfer time

Review Questions
 6.1 What are the advantages of using a glass substrate for a magnetic disk?
 6.2 How are data written onto a magnetic disk?
 6.3 How are data read from a magnetic disk?
 6.4 Explain the difference between a simple CAV system and a multiple zoned recording

system.
 6.5 Define the terms track, cylinder, and sector.
 6.6 What is the typical disk sector size?

CHEN94 Chen, P.; Lee, E.; Gibson, G.; Katz, R.; and Patterson, D. “RAID: High-
Performance, Reliable Secondary Storage.” ACM Computing Surveys, June 1994.

CHEN96 Chen, S., and Towsley, D. “A Performance Evaluation of RAID Architec-
tures.” IEEE Transactions on Computers, October 1996.

FRIE96 Friedman, M. “RAID Keeps Going and Going and…” IEEE Spectrum, April
1996.

HAUE08 Haeusser, B., et al. IBM System Storage Tape Library Guide for Open
Systems. IBM Redbook SG24-5946-05, October 2007. ibm.com/redbooks

JACO08 Jacob, B.; Ng, S.; and Wang, D. Memory Systems: Cache, DRAM, Disk.
Boston: Morgan Kaufmann, 2008.

MANS97 Mansuripur, M., and Sincerbox, G. “Principles and Techniques of Optical
Data Storage.” Proceedings of the IEEE, November 1997.

OKLO08 Oklobdzija, V., ed. Digital Design and Fabrication. Boca Raton, FL: CRC
Press, 2008.

OSUN11 Osuna, A., et al. IBM System Storage Tape Library Guide for Open Systems.
IBM Redbook SG24-5946-07, June 2011.

PAVA97 Pavan, P., et al. “Flash Memory Cells–An Overview.” Proceedings of the
IEEE, August 1997.

6.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 219

 6.7 Define the terms seek time, rotational delay, access time, and transfer time.
 6.8 What common characteristics are shared by all RAID levels?
 6.9 Briefly define the seven RAID levels.
 6.10 Explain the term striped data.
 6.11 How is redundancy achieved in a RAID system?
 6.12 In the context of RAID, what is the distinction between parallel access and indepen-

dent access?
 6.13 What is the difference between CAV and CLV?
 6.14 What differences between a CD and a DVD account for the larger capacity of the latter?
 6.15 Explain serpentine recording.

Problems
 6.1 Consider a disk with N tracks numbered from 0 to (N - 1) and assume that requested

sectors are distributed randomly and evenly over the disk. We want to calculate the
average number of tracks traversed by a seek.
a. First, calculate the probability of a seek of length j when the head is currently

positioned over track t. Hint: This is a matter of determining the total number of
combinations, recognizing that all track positions for the destination of the seek
are equally likely.

b. Next, calculate the probability of a seek of length K. Hint: this involves the sum-
ming over all possible combinations of movements of K tracks.

c. Calculate the average number of tracks traversed by a seek, using the formula for
expected value

E[x] = a
N- 1

i = 0
i * Pr[x = i]

Hint: Use the equalities: a
n

i = 1
i =

n(n + 1)

2
 ; a

n

i = 1
i2 =

n(n + 1)(2n + 1)

6
.

d. Show that for large values of N, the average number of tracks traversed by a seek
approaches N/3.

 6.2 Define the following for a disk system:
ts = seek time; average time to position head over track
r = rotation speed of the disk, in revolutions per second
n = number of bits per sector
N = capacity of a track, in bits
tA = time to access a sector

Develop a formula for tA as a function of the other parameters.
 6.3 Consider a magnetic disk drive with 8 surfaces, 512 tracks per surface, and 64 sectors

per track. Sector size is 1 kB. The average seek time is 8 ms, the track-to-track access
time is 1.5 ms, and the drive rotates at 3600 rpm. Successive tracks in a cylinder can be
read without head movement.
a. What is the disk capacity?
b. What is the average access time? Assume this file is stored in successive sectors

and tracks of successive cylinders, starting at sector 0, track 0, of cylinder i.
c. Estimate the time required to transfer a 5-MB file.
d. What is the burst transfer rate?

 6.4 Consider a single-platter disk with the following parameters: rotation speed: 7200 rpm;
number of tracks on one side of platter: 30,000; number of sectors per track: 600; seek
time: one ms for every hundred tracks traversed. Let the disk receive a request to
access a random sector on a random track and assume the disk head starts at track 0.
a. What is the average seek time?
b. What is the average rotational latency?

220 CHAPTER 6 / EXTERNAL MEMORY

c. What is the transfer time for a sector?
d. What is the total average time to satisfy a request?

 6.5 A distinction is made between physical records and logical records. A logical record
is a collection of related data elements treated as a conceptual unit, independent of
how or where the information is stored. A physical record is a contiguous area of stor-
age space that is defined by the characteristics of the storage device and operating
system. Assume a disk system in which each physical record contains thirty 120-byte
logical records. Calculate how much disk space (in sectors, tracks, and surfaces) will be
required to store 300,000 logical records if the disk is fixed-sector with 512 bytes/sec-
tor, with 96 sectors/track, 110 tracks per surface, and 8 usable surfaces. Ignore any file
header record(s) and track indexes, and assume that records cannot span two sectors.

 6.6 Consider a disk that rotates at 3600 rpm. The seek time to move the head between
adjacent tracks is 2 ms. There are 32 sectors per track, which are stored in linear order
from sector 0 through sector 31. The head sees the sectors in ascending order. Assume
the read/write head is positioned at the start of sector 1 on track 8. There is a main
memory buffer large enough to hold an entire track. Data is transferred between disk
locations by reading from the source track into the main memory buffer and then
writing the data from the buffer to the target track.
a. How long will it take to transfer sector 1 on track 8 to sector 1 on track 9?
b. How long will it take to transfer all the sectors of track 8 to the corresponding sec-

tors of track 9?
 6.7 It should be clear that disk striping can improve data transfer rate when the strip size

is small compared to the I/O request size. It should also be clear that RAID 0 provides
improved performance relative to a single large disk, because multiple I/O requests
can be handled in parallel. However, in this latter case, is disk striping necessary? That
is, does disk striping improve I/O request rate performance compared to a compa-
rable disk array without striping?

 6.8 Consider a 4-drive, 200GB-per-drive RAID array. What is the available data storage
capacity for each of the RAID levels 0, 1, 3, 4, 5, and 6?

 6.9 For a compact disk, audio is converted to digital with 16-bit samples, and is treated a
stream of 8-bit bytes for storage. One simple scheme for storing this data, called direct
recording, would be to represent a 1 by a land and a 0 by a pit. Instead, each byte is
expanded into a 14-bit binary number. It turns out that exactly 256 (28) of the total of
16,134 (214) 14-bit numbers have at least two 0s between every pair of 1s, and these are
the numbers selected for the expansion from 8 to 14 bits. The optical system detects
the presence of 1s by detecting a transition for pit to land or land to pit. It detects 0s
by measuring the distances between intensity changes. This scheme requires that there
are no 1s in succession; hence the use of the 8-to-14 code.

The advantage of this scheme is as follows. For a given laser beam diameter, there is a
minimum-pit size, regardless of how the bits are represented. With this scheme, this mini-
mum-pit size stores 3 bits, because at least two 0s follow every 1. With direct recording, the
same pit would be able to store only one bit. Considering both the number of bits stored
per pit and the 8-to-14 bit expansion, which scheme stores the most bits and by what factor?

 6.10 Design a backup strategy for a computer system. One option is to use plug-in external
disks, which cost $150 for each 500 GB drive. Another option is to buy a tape drive for
$2500, and 400 GB tapes for $50 apiece. (These were realistic prices in 2008.) A typical
backup strategy is to have two sets of backup media onsite, with backups alternately
written on them so in case the system fails while making a backup, the previous ver-
sion is still intact. There’s also a third set kept offsite, with the offsite set periodically
swapped with an on-site set.
a. Assume you have 1 TB (1000 GB) of data to back up. How much would a disk

backup system cost?
b. How much would a tape backup system cost for 1 TB?
c. How large would each backup have to be in order for a tape strategy to be less

expensive?
d. What kind of backup strategy favors tapes?

CHAPTER

INPUT/OUTPUT
7.1 External Devices

Keyboard/Monitor
Disk Drive

7.2 I/O Modules
Module Function
I/O Module Structure

7.3 Programmed I/O
Overview of Programmed I/O
I/O Commands
I/O Instructions

7.4 Interrupt-Driven I/O
Interrupt Processing
Design Issues
Intel 82C59A Interrupt Controller
The Intel 82C55A Programmable Peripheral Interface

7.5 Direct Memory Access
Drawbacks of Programmed and Interrupt-Driven I/O
DMA Function
Intel 8237A DMA Controller

7.6 I/O Channels and Processors
The Evolution of the I/O Function
Characteristics of I/O Channels

7.7 The External Interface: Thunderbolt and InfiniBand
Types of Interfaces
Point-to-Point and Multipoint Configurations
Thunderbolt
InfiniBand

7.8 IBM zEnterprise 196 I/O Structure

7.9 Recommended Reading

7.10 Key Terms, Review Questions, and Problems
221

222 CHAPTER 7 / INPUT/OUTPUT

I/O System Design Tool

In addition to the processor and a set of memory modules, the third key element
of a computer system is a set of I/O modules. Each module interfaces to the system
bus or central switch and controls one or more peripheral devices. An I/O module
is not simply a set of mechanical connectors that wire a device into the system bus.
Rather, the I/O module contains logic for performing a communication function
between the peripheral and the bus.

The reader may wonder why one does not connect peripherals directly to the
system bus. The reasons are as follows:

 • There are a wide variety of peripherals with various methods of operation. It
would be impractical to incorporate the necessary logic within the processor
to control a range of devices.

 • The data transfer rate of peripherals is often much slower than that of the
memory or processor. Thus, it is impractical to use the high-speed system bus
to communicate directly with a peripheral.

 • On the other hand, the data transfer rate of some peripherals is faster than
that of the memory or processor. Again, the mismatch would lead to ineffi-
ciencies if not managed properly.

 • Peripherals often use different data formats and word lengths than the
 computer to which they are attached.

Thus, an I/O module is required. This module has two major functions
(Figure 7.1):

 • Interface to the processor and memory via the system bus or central switch

 • Interface to one or more peripheral devices by tailored data links

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Explain the use of I/O modules as part of a computer organization.

� Understand the difference between programmed I/O and interrupt-driven
I/O and discuss their relative merits.

� Present an overview of the operation of direct memory access.

� Explain the function and use of I/O channels.

� Present an overview of Thunderbolt.

� Present an overview of InfiniBand.

7.1 / EXTERNAL DEVICES 223

We begin this chapter with a brief discussion of external devices, followed by
an overview of the structure and function of an I/O module. Then we look at the
various ways in which the I/O function can be performed in cooperation with the
processor and memory: the internal I/O interface. Finally, we examine the external
I/O interface, between the I/O module and the outside world.

 7.1 EXTERNAL DEVICES

I/O operations are accomplished through a wide assortment of external devices
that provide a means of exchanging data between the external environment
and the computer. An external device attaches to the computer by a link to
an I/O module (Figure 7.1). The link is used to exchange control, status, and
data between the I/O module and the external device. An external device con-
nected to an I/O module is often referred to as a peripheral device or, simply, a
peripheral.

We can broadly classify external devices into three categories:

 • Human readable: Suitable for communicating with the computer user

 • Machine readable: Suitable for communicating with equipment

 • Communication: Suitable for communicating with remote devices

I/O module

Links to
peripheral
devices

Address lines

System
busData lines

Control lines

Figure 7.1 Generic Model of an I/O Module

224 CHAPTER 7 / INPUT/OUTPUT

Examples of human-readable devices are video display terminals (VDTs) and
printers. Examples of machine-readable devices are magnetic disk and tape sys-
tems, and sensors and actuators, such as are used in a robotics application. Note
that we are viewing disk and tape systems as I/O devices in this chapter, whereas
in Chapter 6 we viewed them as memory devices. From a functional point of view,
these devices are part of the memory hierarchy, and their use is appropriately dis-
cussed in Chapter 6. From a structural point of view, these devices are controlled by
I/O modules and are hence to be considered in this chapter.

Communication devices allow a computer to exchange data with a remote
device, which may be a human-readable device, such as a terminal, a machine-
readable device, or even another computer.

In very general terms, the nature of an external device is indicated in
Figure 7.2. The interface to the I/O module is in the form of control, data, and status
signals. Control signals determine the function that the device will perform, such as
send data to the I/O module (INPUT or READ), accept data from the I/O module
(OUTPUT or WRITE), report status, or perform some control function particular
to the device (e.g., position a disk head). Data are in the form of a set of bits to
be sent to or received from the I/O module. Status signals indicate the state of the
device. Examples are READY/NOT-READY to show whether the device is ready
for data transfer.

Control logic associated with the device controls the device’s operation in
response to direction from the I/O module. The transducer converts data from elec-
trical to other forms of energy during output and from other forms to electrical dur-
ing input. Typically, a buffer is associated with the transducer to temporarily hold

Buffer

Transducer

Control
logic

Control
signals from
I/O module

Status
signals to
I/O module

Data bits
to and from
I/O module

Data (device-unique)
to and from
environment

Figure 7.2 Block Diagram of an External Device

7.1 / EXTERNAL DEVICES 225

data being transferred between the I/O module and the external environment; a
buffer size of 8 to 16 bits is common.

The interface between the I/O module and the external device will be
examined in Section 7.7. The interface between the external device and the envi-
ronment is beyond the scope of this book, but several brief examples are given
here.

Keyboard/Monitor

The most common means of computer/user interaction is a keyboard/monitor
arrangement. The user provides input through the keyboard. This input is then
transmitted to the computer and may also be displayed on the monitor. In addition,
the monitor displays data provided by the computer.

The basic unit of exchange is the character. Associated with each character
is a code, typically 7 or 8 bits in length. The most commonly used text code is the
International Reference Alphabet (IRA).1 Each character in this code is repre-
sented by a unique 7-bit binary code; thus, 128 different characters can be repre-
sented. Characters are of two types: printable and control. Printable characters are
the alphabetic, numeric, and special characters that can be printed on paper or dis-
played on a screen. Some of the control characters have to do with controlling the
printing or displaying of characters; an example is carriage return. Other control
characters are concerned with communications procedures. See Appendix F for
details.

For keyboard input, when the user depresses a key, this generates an
 electronic signal that is interpreted by the transducer in the keyboard and
 translated into the bit pattern of the corresponding IRA code. This bit pattern
is then transmitted to the I/O module in the computer. At the computer, the
text can be stored in the same IRA code. On output, IRA code characters are
transmitted to an external device from the I/O module. The transducer at the
device interprets this code and sends the required electronic signals to the out-
put device either to display the indicated character or perform the requested
control function.

Disk Drive

A disk drive contains electronics for exchanging data, control, and status signals
with an I/O module plus the electronics for controlling the disk read/write mecha-
nism. In a fixed-head disk, the transducer is capable of converting between the mag-
netic patterns on the moving disk surface and bits in the device’s buffer (Figure 7.2).
A moving-head disk must also be able to cause the disk arm to move radially in and
out across the disk’s surface.

1IRA is defined in ITU-T Recommendation T.50 and was formerly known as International Alphabet
Number 5 (IA5). The U.S. national version of IRA is referred to as the American Standard Code for
Information Interchange (ASCII).

226 CHAPTER 7 / INPUT/OUTPUT

 7.2 I/O MODULES

Module Function

The major functions or requirements for an I/O module fall into the following
 categories:

 • Control and timing

 • Processor communication

 • Device communication

 • Data buffering

 • Error detection

During any period of time, the processor may communicate with one or more
external devices in unpredictable patterns, depending on the program’s need for I/O.
The internal resources, such as main memory and the system bus, must be shared
among a number of activities, including data I/O. Thus, the I/O function includes a
control and timing requirement, to coordinate the flow of traffic between internal
resources and external devices. For example, the control of the transfer of data from
an external device to the processor might involve the following sequence of steps:

 1. The processor interrogates the I/O module to check the status of the attached
device.

 2. The I/O module returns the device status.

 3. If the device is operational and ready to transmit, the processor requests the
transfer of data, by means of a command to the I/O module.

 4. The I/O module obtains a unit of data (e.g., 8 or 16 bits) from the external device.

 5. The data are transferred from the I/O module to the processor.

If the system employs a bus, then each of the interactions between the proces-
sor and the I/O module involves one or more bus arbitrations.

The preceding simplified scenario also illustrates that the I/O module must
communicate with the processor and with the external device. Processor communi-
cation involves the following:

 • Command decoding: The I/O module accepts commands from the processor,
typically sent as signals on the control bus. For example, an I/O module for a
disk drive might accept the following commands: READ SECTOR, WRITE
SECTOR, SEEK track number, and SCAN record ID. The latter two com-
mands each include a parameter that is sent on the data bus.

 • Data: Data are exchanged between the processor and the I/O module over the
data bus.

 • Status reporting: Because peripherals are so slow, it is important to know the
status of the I/O module. For example, if an I/O module is asked to send data
to the processor (read), it may not be ready to do so because it is still working
on the previous I/O command. This fact can be reported with a status signal.

7.2 / I/O MODULES 227

Common status signals are BUSY and READY. There may also be signals to
report various error conditions.

 • Address recognition: Just as each word of memory has an address, so does
each I/O device. Thus, an I/O module must recognize one unique address for
each peripheral it controls.

On the other side, the I/O module must be able to perform device commu-
nication. This communication involves commands, status information, and data
(Figure 7.2).

An essential task of an I/O module is data buffering. The need for this func-
tion is apparent from Figure 2.11. Whereas the transfer rate into and out of main
memory or the processor is quite high, the rate is orders of magnitude lower for
many peripheral devices and covers a wide range. Data coming from main memory
are sent to an I/O module in a rapid burst. The data are buffered in the I/O module
and then sent to the peripheral device at its data rate. In the opposite direction, data
are buffered so as not to tie up the memory in a slow transfer operation. Thus, the
I/O module must be able to operate at both device and memory speeds. Similarly, if
the I/O device operates at a rate higher than the memory access rate, then the I/O
module performs the needed buffering operation.

Finally, an I/O module is often responsible for error detection and for subse-
quently reporting errors to the processor. One class of errors includes mechanical
and electrical malfunctions reported by the device (e.g., paper jam, bad disk track).
Another class consists of unintentional changes to the bit pattern as it is transmit-
ted from device to I/O module. Some form of error-detecting code is often used
to detect transmission errors. A simple example is the use of a parity bit on each
character of data. For example, the IRA character code occupies 7 bits of a byte.
The eighth bit is set so that the total number of 1s in the byte is even (even parity)
or odd (odd parity). When a byte is received, the I/O module checks the parity to
determine whether an error has occurred.

I/O Module Structure

I/O modules vary considerably in complexity and the number of external devices
that they control. We will attempt only a very general description here. (One specific
device, the Intel 82C55A, is described in Section 7.4.) Figure 7.3 provides a general
block diagram of an I/O module. The module connects to the rest of the computer
through a set of signal lines (e.g., system bus lines). Data transferred to and from the
module are buffered in one or more data registers. There may also be one or more
status registers that provide current status information. A status register may also
function as a control register, to accept detailed control information from the pro-
cessor. The logic within the module interacts with the processor via a set of control
lines. The processor uses the control lines to issue commands to the I/O module.
Some of the control lines may be used by the I/O module (e.g., for arbitration and
status signals). The module must also be able to recognize and generate addresses
associated with the devices it controls. Each I/O module has a unique address or, if
it controls more than one external device, a unique set of addresses. Finally, the I/O
module contains logic specific to the interface with each device that it controls.

228 CHAPTER 7 / INPUT/OUTPUT

An I/O module functions to allow the processor to view a wide range of devices
in a simple-minded way. There is a spectrum of capabilities that may be provided.
The I/O module may hide the details of timing, formats, and the electromechanics
of an external device so that the processor can function in terms of simple read and
write commands, and possibly open and close file commands. In its simplest form,
the I/O module may still leave much of the work of controlling a device (e.g., rewind
a tape) visible to the processor.

An I/O module that takes on most of the detailed processing burden, present-
ing a high-level interface to the processor, is usually referred to as an I/O channel or
I/O processor. An I/O module that is quite primitive and requires detailed control
is usually referred to as an I/O controller or device controller. I/O controllers are
commonly seen on microcomputers, whereas I/O channels are used on mainframes.

In what follows, we will use the generic term I/O module when no confusion
results and will use more specific terms where necessary.

 7.3 PROGRAMMED I/O

Three techniques are possible for I/O operations. With programmed I/O, data are
exchanged between the processor and the I/O module. The processor executes a pro-
gram that gives it direct control of the I/O operation, including sensing device sta-
tus, sending a read or write command, and transferring the data. When the processor
issues a command to the I/O module, it must wait until the I/O operation is com-
plete. If the processor is faster than the I/O module, this is wasteful of processor time.
With interrupt-driven I/O, the processor issues an I/O command, continues to execute

Status/control registers

Data registers

Interface to
system bus

I/O
logic

Control
lines

Address
lines

Data
lines

External
device

interface
logic

Data

Status

Control

External
device

interface
logic

•
•
•

Data

Status

Control

Interface to
external device

Figure 7.3 Block Diagram of an I/O Module

7.3 / PROGRAMMED I/O 229

other instructions, and is interrupted by the I/O module when the latter has completed
its work. With both programmed and interrupt I/O, the processor is responsible for
extracting data from main memory for output and storing data in main memory for
input. The alternative is known as direct memory access (DMA). In this mode, the I/O
module and main memory exchange data directly, without processor involvement.

Table 7.1 indicates the relationship among these three techniques. In this section,
we explore programmed I/O. Interrupt I/O and DMA are explored in the following
two sections, respectively.

Overview of Programmed I/O

When the processor is executing a program and encounters an instruction relat-
ing to I/O, it executes that instruction by issuing a command to the appropriate
I/O module. With programmed I/O, the I/O module will perform the requested
action and then set the appropriate bits in the I/O status register (Figure 7.3). The
I/O module takes no further action to alert the processor. In particular, it does not
interrupt the processor. Thus, it is the responsibility of the processor periodically to
check the status of the I/O module until it finds that the operation is complete.

To explain the programmed I/O technique, we view it first from the point of
view of the I/O commands issued by the processor to the I/O module, and then from
the point of view of the I/O instructions executed by the processor.

I/O Commands

To execute an I/O-related instruction, the processor issues an address, specifying the
particular I/O module and external device, and an I/O command. There are four types
of I/O commands that an I/O module may receive when it is addressed by a processor:

 • Control: Used to activate a peripheral and tell it what to do. For example, a
magnetic-tape unit may be instructed to rewind or to move forward one record.
These commands are tailored to the particular type of peripheral device.

 • Test: Used to test various status conditions associated with an I/O module and
its peripherals. The processor will want to know that the peripheral of inter-
est is powered on and available for use. It will also want to know if the most
recent I/O operation is completed and if any errors occurred.

 • Read: Causes the I/O module to obtain an item of data from the peripheral
and place it in an internal buffer (depicted as a data register in Figure 7.3). The
processor can then obtain the data item by requesting that the I/O module
place it on the data bus.

 • Write: Causes the I/O module to take an item of data (byte or word) from the
data bus and subsequently transmit that data item to the peripheral.

Table 7.1 I/O Techniques

No Interrupts Use of Interrupts

I/O-to-memory transfer through processor Programmed I/O Interrupt-driven I/O

Direct I/O-to-memory transfer Direct memory access (DMA)

230 CHAPTER 7 / INPUT/OUTPUT

Figure 7.4a gives an example of the use of programmed I/O to read in a block of
data from a peripheral device (e.g., a record from tape) into memory. Data are read
in one word (e.g., 16 bits) at a time. For each word that is read in, the processor must
remain in a status-checking cycle until it determines that the word is available in the
I/O module’s data register. This flowchart highlights the main disadvantage of this
technique: it is a time-consuming process that keeps the processor busy needlessly.

I/O Instructions

With programmed I/O, there is a close correspondence between the I/O-related
instructions that the processor fetches from memory and the I/O commands that the
processor issues to an I/O module to execute the instructions. That is, the instruc-
tions are easily mapped into I/O commands, and there is often a simple one-to-one
relationship. The form of the instruction depends on the way in which external
devices are addressed.

Typically, there will be many I/O devices connected through I/O modules to
the system. Each device is given a unique identifier or address. When the processor
issues an I/O command, the command contains the address of the desired device.
Thus, each I/O module must interpret the address lines to determine if the com-
mand is for itself.

Issue read
command to
I/O module

Read status
of I/O
module

Check
Status

Read word
from I/O
module

Write word
into memory

Done?

Next instruction

(a) Programmed I/O

Error
condition

Ready Ready

Yes Yes

No

Not
ready

Issue read
command to
I/O module

Do something
else

InterruptRead status
of I/O
module

Check
status

Read word
from I/O
module

Write word
into memory

Done?

Next instruction

(b) Interrupt-Driven I/O

Do something
else

Interrupt

Error
condition

No

Issue read
block command
to I/O module

Read status
of DMA
module

Next instruction

(c) Direct Memory Access

CPU DMA

DMA CPU

CPU I/O
CPU I/O

I/O CPU
I/O CPU

I/O CPU

CPU Memory

I/O CPU

CPU Memory

Figure 7.4 Three Techniques for Input of a Block of Data

7.3 / PROGRAMMED I/O 231

When the processor, main memory, and I/O share a common bus, two modes
of addressing are possible: memory mapped and isolated. With memory-mapped
I/O, there is a single address space for memory locations and I/O devices. The proc-
essor treats the status and data registers of I/O modules as memory locations and
uses the same machine instructions to access both memory and I/O devices. So, for
example, with 10 address lines, a combined total of 210 = 1024 memory locations
and I/O addresses can be supported, in any combination.

With memory-mapped I/O, a single read line and a single write line are needed
on the bus. Alternatively, the bus may be equipped with memory read and write
plus input and output command lines. Now, the command line specifies whether the
address refers to a memory location or an I/O device. The full range of addresses
may be available for both. Again, with 10 address lines, the system may now support
both 1024 memory locations and 1024 I/O addresses. Because the address space for
I/O is isolated from that for memory, this is referred to as isolated I/O.

Figure 7.5 contrasts these two programmed I/O techniques. Figure 7.5a shows
how the interface for a simple input device such as a terminal keyboard might appear
to a programmer using memory-mapped I/O. Assume a 10-bit address, with a 512-
bit memory (locations 0–511) and up to 512 I/O addresses (locations 512–1023).
Two addresses are dedicated to keyboard input from a particular terminal. Address
516 refers to the data register and address 517 refers to the status register, which
also functions as a control register for receiving processor commands. The program
shown will read 1 byte of data from the keyboard into an accumulator register in the
processor. Note that the processor loops until the data byte is available.

7 6 5

516 Keyboard input data register

4 3 2 1 0

7 6 5

517

(a) Memory-mapped I/O

Keyboard input status
and control register

1 � ready
0 � busy

4 3 2 1 0

Set to 1 to
start read

 ADDRESS INSTRUCTION OPERAND COMMENT
 200 Load AC "1" Load accumulator
 Store AC 517 Initiate keyboard read
 202 Load AC 517 Get status byte
 Branch if Sign � 0 202 Loop until ready
 Load AC 516 Load data byte

(b) Isolated I/O

 ADDRESS INSTRUCTION OPERAND COMMENT
 200 Load I/O 5 Initiate keyboard read
 201 Test I/O 5 Check for completion
 Branch Not Ready 201 Loop until complete
 In 5 Load data byte

Figure 7.5 Memory-Mapped and Isolated I/O

232 CHAPTER 7 / INPUT/OUTPUT

With isolated I/O (Figure 7.5b), the I/O ports are accessible only by special
I/O commands, which activate the I/O command lines on the bus.

For most types of processors, there is a relatively large set of different instruc-
tions for referencing memory. If isolated I/O is used, there are only a few I/O
instructions. Thus, an advantage of memory-mapped I/O is that this large repertoire
of instructions can be used, allowing more efficient programming. A disadvantage is
that valuable memory address space is used up. Both memory-mapped and isolated
I/O are in common use.

 7.4 INTERRUPT-DRIVEN I/O

The problem with programmed I/O is that the processor has to wait a long time
for the I/O module of concern to be ready for either reception or transmission of
data. The processor, while waiting, must repeatedly interrogate the status of the I/O
module. As a result, the level of the performance of the entire system is severely
degraded.

An alternative is for the processor to issue an I/O command to a module and
then go on to do some other useful work. The I/O module will then interrupt the
processor to request service when it is ready to exchange data with the proces-
sor. The processor then executes the data transfer, as before, and then resumes its
former processing.

Let us consider how this works, first from the point of view of the I/O module.
For input, the I/O module receives a READ command from the processor. The I/O
module then proceeds to read data in from an associated peripheral. Once the data
are in the module’s data register, the module signals an interrupt to the processor
over a control line. The module then waits until its data are requested by the proc-
essor. When the request is made, the module places its data on the data bus and is
then ready for another I/O operation.

From the processor’s point of view, the action for input is as follows. The proc-
essor issues a READ command. It then goes off and does something else (e.g., the
processor may be working on several different programs at the same time). At the
end of each instruction cycle, the processor checks for interrupts (Figure 3.9). When
the interrupt from the I/O module occurs, the processor saves the context (e.g., pro-
gram counter and processor registers) of the current program and processes the
interrupt. In this case, the processor reads the word of data from the I/O module
and stores it in memory. It then restores the context of the program it was working
on (or some other program) and resumes execution.

Figure 7.4b shows the use of interrupt I/O for reading in a block of data.
Compare this with Figure 7.4a. Interrupt I/O is more efficient than programmed I/O
because it eliminates needless waiting. However, interrupt I/O still consumes a lot of
processor time, because every word of data that goes from memory to I/O module
or from I/O module to memory must pass through the processor.

Interrupt Processing

Let us consider the role of the processor in interrupt-driven I/O in more detail.
The occurrence of an interrupt triggers a number of events, both in the processor

7.4 / INTERRUPT-DRIVEN I/O 233

 hardware and in software. Figure 7.6 shows a typical sequence. When an I/O device
completes an I/O operation, the following sequence of hardware events occurs:

 1. The device issues an interrupt signal to the processor.

 2. The processor finishes execution of the current instruction before responding
to the interrupt, as indicated in Figure 3.9.

 3. The processor tests for an interrupt, determines that there is one, and sends an
acknowledgment signal to the device that issued the interrupt. The acknowl-
edgment allows the device to remove its interrupt signal.

 4. The processor now needs to prepare to transfer control to the interrupt routine.
To begin, it needs to save information needed to resume the current program at
the point of interrupt. The minimum information required is (a) the status of the
processor, which is contained in a register called the program status word (PSW),
and (b) the location of the next instruction to be executed, which is contained in
the program counter. These can be pushed onto the system control stack.2

 5. The processor now loads the program counter with the entry location of the
interrupt-handling program that will respond to this interrupt. Depending on
the computer architecture and operating system design, there may be a single

Device controller or
other system hardware
issues an interrupt

Processor finishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Save remainder of
process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

Hardware Software

Figure 7.6 Simple Interrupt Processing

2See Appendix O for a discussion of stack operation.

234 CHAPTER 7 / INPUT/OUTPUT

program; one program for each type of interrupt; or one program for each
device and each type of interrupt. If there is more than one interrupt-handling
routine, the processor must determine which one to invoke. This information
may have been included in the original interrupt signal, or the processor may
have to issue a request to the device that issued the interrupt to get a response
that contains the needed information.

Once the program counter has been loaded, the processor proceeds to the
next instruction cycle, which begins with an instruction fetch. Because the instruc-
tion fetch is determined by the contents of the program counter, the result is that
control is transferred to the interrupt-handler program. The execution of this pro-
gram results in the following operations:

 6. At this point, the program counter and PSW relating to the interrupted
 program have been saved on the system stack. However, there is other infor-
mation that is considered part of the “state” of the executing program. In par-
ticular, the contents of the processor registers need to be saved, because these
registers may be used by the interrupt handler. So, all of these values, plus any
other state information, need to be saved. Typically, the interrupt handler will
begin by saving the contents of all registers on the stack. Figure 7.7a shows a
simple example. In this case, a user program is interrupted after the instruction
at location N. The contents of all of the registers plus the address of the next
instruction (N + 1) are pushed onto the stack. The stack pointer is updated to
point to the new top of stack, and the program counter is updated to point to
the beginning of the interrupt service routine.

 7. The interrupt handler next processes the interrupt. This includes an examina-
tion of status information relating to the I/O operation or other event that
caused an interrupt. It may also involve sending additional commands or
acknowledgments to the I/O device.

 8. When interrupt processing is complete, the saved register values are retrieved
from the stack and restored to the registers (e.g., see Figure 7.7b).

 9. The final act is to restore the PSW and program counter values from the stack.
As a result, the next instruction to be executed will be from the previously
interrupted program.

Note that it is important to save all the state information about the interrupted
program for later resumption. This is because the interrupt is not a routine called
from the program. Rather, the interrupt can occur at any time and therefore at any
point in the execution of a user program. Its occurrence is unpredictable. Indeed, as
we will see in the next chapter, the two programs may not have anything in common
and may belong to two different users.

Design Issues

Two design issues arise in implementing interrupt I/O. First, because there will
almost invariably be multiple I/O modules, how does the processor determine which
device issued the interrupt? And second, if multiple interrupts have occurred, how
does the processor decide which one to process?

7.4 / INTERRUPT-DRIVEN I/O 235

Let us consider device identification first. Four general categories of techniques
are in common use:

 • Multiple interrupt lines

 • Software poll

 • Daisy chain (hardware poll, vectored)

 • Bus arbitration (vectored)

The most straightforward approach to the problem is to provide multiple inter-
rupt lines between the processor and the I/O modules. However, it is impractical to
dedicate more than a few bus lines or processor pins to interrupt lines. Consequently,
even if multiple lines are used, it is likely that each line will have multiple I/O mod-
ules attached to it. Thus, one of the other three techniques must be used on each line.

Start

N � 1

Y � L

N

Y

Y

T

Return

User’s
program

Main
memory

Processor

General
registers

Program
counter

Stack
pointer

N � 1

T � M

T � M

T

Control
stack

Interrupt-
service
routine

User’s
program

Interrupt-
service
routine

(a) Interrupt occurs after instruction
at location N

(b) Return from interrupt

Start

N � 1

Y � L

N

Y

T

Return

Main
memory

Processor

General
registers

Program
counter

Stack
pointer

Y � L

T � M

T � M

T

Control
stack

N � 1

Figure 7.7 Changes in Memory and Registers for an Interrupt

236 CHAPTER 7 / INPUT/OUTPUT

One alternative is the software poll. When the processor detects an interrupt,
it branches to an interrupt-service routine whose job it is to poll each I/O module
to determine which module caused the interrupt. The poll could be in the form of a
separate command line (e.g., TESTI/O). In this case, the processor raises TESTI/O
and places the address of a particular I/O module on the address lines. The I/O mod-
ule responds positively if it sets the interrupt. Alternatively, each I/O module could
contain an addressable status register. The processor then reads the status register
of each I/O module to identify the interrupting module. Once the correct module is
identified, the processor branches to a device-service routine specific to that device.

The disadvantage of the software poll is that it is time consuming. A more efficient
technique is to use a daisy chain, which provides, in effect, a hardware poll. An example
of a daisy-chain configuration is shown in Figure 3.30. For interrupts, all I/O modules
share a common interrupt request line. The interrupt acknowledge line is daisy chained
through the modules. When the processor senses an interrupt, it sends out an interrupt
acknowledge. This signal propagates through a series of I/O modules until it gets to a
requesting module. The requesting module typically responds by placing a word on
the data lines. This word is referred to as a vector and is either the address of the I/O
module or some other unique identifier. In either case, the processor uses the vector as
a pointer to the appropriate device-service routine. This avoids the need to execute a
general interrupt-service routine first. This technique is called a vectored interrupt.

There is another technique that makes use of vectored interrupts, and that is
bus arbitration. With bus arbitration, an I/O module must first gain control of the
bus before it can raise the interrupt request line. Thus, only one module can raise the
line at a time. When the processor detects the interrupt, it responds on the interrupt
acknowledge line. The requesting module then places its vector on the data lines.

The aforementioned techniques serve to identify the requesting I/O module.
They also provide a way of assigning priorities when more than one device is request-
ing interrupt service. With multiple lines, the processor just picks the interrupt line
with the highest priority. With software polling, the order in which modules are
polled determines their priority. Similarly, the order of modules on a daisy chain
determines their priority. Finally, bus arbitration can employ a priority scheme, as
discussed in Section 3.4.

We now turn to two examples of interrupt structures.

Intel 82C59A Interrupt Controller

The Intel 80386 provides a single Interrupt Request (INTR) and a single Interrupt
Acknowledge (INTA) line. To allow the 80386 to handle a variety of devices and pri-
ority structures, it is usually configured with an external interrupt arbiter, the 82C59A.
External devices are connected to the 82C59A, which in turn connects to the 80386.

Figure 7.8 shows the use of the 82C59A to connect multiple I/O modules for the
80386. A single 82C59A can handle up to eight modules. If control for more than eight
modules is required, a cascade arrangement can be used to handle up to 64 modules.

The 82C59A’s sole responsibility is the management of interrupts. It accepts
interrupt requests from attached modules, determines which interrupt has the highest
priority, and then signals the processor by raising the INTR line. The processor
acknowledges via the INTA line. This prompts the 82C59A to place the appropriate

7.4 / INTERRUPT-DRIVEN I/O 237

vector information on the data bus. The processor can then proceed to process the
interrupt and to communicate directly with the I/O module to read or write data.

The 82C59A is programmable. The 80386 determines the priority scheme to
be used by setting a control word in the 82C59A. The following interrupt modes are
possible:

 • Fully nested: The interrupt requests are ordered in priority from 0 (IR0)
through 7 (IR7).

External device 00

Slave
82C59A
interrupt
controller

External device 07

IR0
IR1 INT
IR2
IR3
IR4
IR5
IR6
IR7

External device 01

External device 08

Slave
82C59A
interrupt
controller

External device 15

IR0
IR1 INT
IR2
IR3
IR4
IR5
IR6
IR7

Master
82C59A
interrupt
controller

IR0
IR1 INT
IR2
IR3
IR4
IR5
IR6
IR7

External device 09

80386
processor

INTR

External device 56

Slave
82C59A
interrupt
controller

External device 63

IR0
IR1 INT
IR2
IR3
IR4
IR5
IR6
IR7

External device 57

Figure 7.8 Use of the 82C59A Interrupt Controller

238 CHAPTER 7 / INPUT/OUTPUT

 • Rotating: In some applications a number of interrupting devices are of equal
priority. In this mode a device, after being serviced, receives the lowest prior-
ity in the group.

 • Special mask: This allows the processor to inhibit interrupts from certain devices.

The Intel 82C55A Programmable Peripheral Interface

As an example of an I/O module used for programmed I/O and interrupt-driven I/O,
we consider the Intel 82C55A Programmable Peripheral Interface. The 82C55A is
a single-chip, general-purpose I/O module designed for use with the Intel 80386
processor. Figure 7.9 shows a general block diagram plus the pin assignment for the
40-pin package in which it is housed.

The right side of the block diagram is the external interface of the 82C55A.
The 24 I/O lines are programmable by the 80386 by means of the control register.
The 80386 can set the value of the control register to specify a variety of operating
modes and configurations. The 24 lines are divided into three 8-bit groups (A, B, C).
Each group can function as an 8-bit I/O port. In addition, group C is subdivided into
4-bit groups (CA and CB), which may be used in conjunction with the A and B I/O
ports. Configured in this manner, group C lines carry control and status signals.

The left side of the block diagram is the internal interface to the 80386 bus. It
includes an 8-bit bidirectional data bus (D0 through D7), used to transfer data to
and from the I/O ports and to transfer control information to the control register.
The two address lines specify one of the three I/O ports or the control register.
A transfer takes place when the CHIP SELECT line is enabled together with either
the READ or WRITE line. The RESET line is used to initialize the module.

8

Data
buffer

Control
logic

Control
register

Data
buffers

�5 volts

A

CA

PA41PA3 40

CB

B

ground

8086
Data bus

8-bit
internal

bus

Power
supplies

A0Address
Lines A1

Read
Write
Reset
Chip
select

8

8

(a) Block diagram (b) Pin layout

8

4

4

8

PA52PA2 39
PA63PA1 38
PA74PA0 37
Write5Read 36
Reset6Chip select 35
D07Ground 34
D18A1 33
D29A0 32
D310PC7 31
D411PC6 30
D512PC5 29
D613PC4 28
D714PC3 27
V15PC2 26
PB716PC1 25
PB617PC0 24
PB518PB0 23
PB419PB1 22
PB320PB2 21

Figure 7.9 The Intel 82C55A Programmable Peripheral Interface

7.4 / INTERRUPT-DRIVEN I/O 239

The control register is loaded by the processor to control the mode of operation
and to define signals, if any. In Mode 0 operation, the three groups of eight exter-
nal lines function as three 8-bit I/O ports. Each port can be designated as input or
output. Otherwise, groups A and B function as I/O ports, and the lines of group C
serve as control lines for A and B. The control signals serve two principal purposes:
“handshaking” and interrupt request. Handshaking is a simple timing mechanism.
One control line is used by the sender as a DATA READY line, to indicate when
the data are present on the I/O data lines. Another line is used by the receiver as an
ACKNOWLEDGE, indicating that the data have been read and the data lines may
be cleared. Another line may be designated as an INTERRUPT REQUEST line and
tied back to the system bus.

Because the 82C55A is programmable via the control register, it can be used to
control a variety of simple peripheral devices. Figure 7.10 illustrates its use to control

A0
A1
A2
A3
A4
A5
A6
A7

C3

Interrupt
request

Interrupt
request

C0

INPUT
PORT

KEYBOARD

OUTPUT
PORT

82C55A

B0
B1
B2
B3
B4
B5
B6
B7

C1
C2
C6
C7

C4
C5

R0
R1
R2
R3
R4
R5
Shift
Control

Data ready
Acknowledge

DISPLAY

S0
S1
S2
S3
S4
S5
Backspace
Clear

Data ready
Acknowledge
Blanking
Clear line

Figure 7.10 Keyboard/Display Interface to 82C55A

240 CHAPTER 7 / INPUT/OUTPUT

a keyboard/display terminal. The keyboard provides 8 bits of input. Two of these
bits, SHIFT and CONTROL, have special meaning to the keyboard-handling pro-
gram executing in the processor. However, this interpretation is transparent to the
82C55A, which simply accepts the 8 bits of data and presents them on the system
data bus. Two handshaking control lines are provided for use with the keyboard.

The display is also linked by an 8-bit data port. Again, two of the bits have spe-
cial meanings that are transparent to the 82C55A. In addition to two handshaking
lines, two lines provide additional control functions.

 7.5 DIRECT MEMORY ACCESS

Drawbacks of Programmed and Interrupt-Driven I/O

Interrupt-driven I/O, though more efficient than simple programmed I/O, still
requires the active intervention of the processor to transfer data between memory
and an I/O module, and any data transfer must traverse a path through the proces-
sor. Thus, both these forms of I/O suffer from two inherent drawbacks:

 1. The I/O transfer rate is limited by the speed with which the processor can test
and service a device.

 2. The processor is tied up in managing an I/O transfer; a number of instructions
must be executed for each I/O transfer (e.g., Figure 7.5).

There is somewhat of a trade-off between these two drawbacks. Consider the
transfer of a block of data. Using simple programmed I/O, the processor is dedi-
cated to the task of I/O and can move data at a rather high rate, at the cost of doing
nothing else. Interrupt I/O frees up the processor to some extent at the expense of
the I/O transfer rate. Nevertheless, both methods have an adverse impact on both
processor activity and I/O transfer rate.

When large volumes of data are to be moved, a more efficient technique is
required: direct memory access (DMA).

DMA Function

DMA involves an additional module on the system bus. The DMA module
(Figure 7.11) is capable of mimicking the processor and, indeed, of taking over
control of the system from the processor. It needs to do this to transfer data to
and from memory over the system bus. For this purpose, the DMA module must
use the bus only when the processor does not need it, or it must force the proces-
sor to suspend operation temporarily. The latter technique is more common and is
referred to as cycle stealing, because the DMA module in effect steals a bus cycle.

When the processor wishes to read or write a block of data, it issues a
 command to the DMA module, by sending to the DMA module the following
information:

 • Whether a read or write is requested, using the read or write control line
 between the processor and the DMA module

 • The address of the I/O device involved, communicated on the data lines

7.5 / DIRECT MEMORY ACCESS 241

 • The starting location in memory to read from or write to, communicated on
the data lines and stored by the DMA module in its address register

 • The number of words to be read or written, again communicated via the data
lines and stored in the data count register

The processor then continues with other work. It has delegated this I/O opera-
tion to the DMA module. The DMA module transfers the entire block of data, one
word at a time, directly to or from memory, without going through the processor.
When the transfer is complete, the DMA module sends an interrupt signal to the
processor. Thus, the processor is involved only at the beginning and end of the
transfer (Figure 7.4c).

Figure 7.12 shows where in the instruction cycle the processor may be sus-
pended. In each case, the processor is suspended just before it needs to use the bus.
The DMA module then transfers one word and returns control to the processor.
Note that this is not an interrupt; the processor does not save a context and do
something else. Rather, the processor pauses for one bus cycle. The overall effect
is to cause the processor to execute more slowly. Nevertheless, for a multiple-word
I/O transfer, DMA is far more efficient than interrupt-driven or programmed I/O.

The DMA mechanism can be configured in a variety of ways. Some possibili-
ties are shown in Figure 7.13. In the first example, all modules share the same system
bus. The DMA module, acting as a surrogate processor, uses programmed I/O to
exchange data between memory and an I/O module through the DMA module. This
configuration, while it may be inexpensive, is clearly inefficient. As with processor-
controlled programmed I/O, each transfer of a word consumes two bus cycles.

The number of required bus cycles can be cut substantially by integrating the
DMA and I/O functions. As Figure 7.13b indicates, this means that there is a path

Address
register

Control
logic

Data
register

Data
count

Data lines

Address lines

Request to DMA
Acknowledge from DMA

Interrupt
Read

Write

Figure 7.11 Typical DMA Block Diagram

242 CHAPTER 7 / INPUT/OUTPUT

Processor DMA

(a) Single-bus, detached DMA

(b) Single-bus, integrated DMA-I/O

(c) I/O bus

I/O bus

System bus

I/O • • • I/O Memory

Processor DMA Memory

I/O I/O I/O

Processor DMA DMA

I/O

I/O I/O

Memory

Figure 7.13 Alternative DMA Configurations

Processor
cycle

Fetch
instruction

Processor
cycle

Decode
instruction

Processor
cycle

Instruction cycle

Time

DMA
breakpoints

Interrupt
breakpoint

Fetch
operand

Processor
cycle

Execute
instruction

Processor
cycle

Store
result

Processor
cycle

Process
interrupt

Figure 7.12 DMA and Interrupt Breakpoints during an Instruction Cycle

7.5 / DIRECT MEMORY ACCESS 243

between the DMA module and one or more I/O modules that does not include the
system bus. The DMA logic may actually be a part of an I/O module, or it may be a
separate module that controls one or more I/O modules. This concept can be taken
one step further by connecting I/O modules to the DMA module using an I/O bus
(Figure 7.13c). This reduces the number of I/O interfaces in the DMA module to one
and provides for an easily expandable configuration. In both of these cases (Figures
7.13b and c), the system bus that the DMA module shares with the processor and
memory is used by the DMA module only to exchange data with memory. The
exchange of data between the DMA and I/O modules takes place off the system bus.

Intel 8237A DMA Controller

The Intel 8237A DMA controller interfaces to the 80 x 86 family of processors and
to DRAM memory to provide a DMA capability. Figure 7.14 indicates the location
of the DMA module. When the DMA module needs to use the system buses (data,
address, and control) to transfer data, it sends a signal called HOLD to the proces-
sor. The processor responds with the HLDA (hold acknowledge) signal, indicating
that the DMA module can use the buses. For example, if the DMA module is to
transfer a block of data from memory to disk, it will do the following:

 1. The peripheral device (such as the disk controller) will request the service of
DMA by pulling DREQ (DMA request) high.

 2. The DMA will put a high on its HRQ (hold request), signaling the CPU
through its HOLD pin that it needs to use the buses.

CPU

DACK � DMA acknowledge
DREQ � DMA request
HLDA � HOLD acknowledge
HRQ � HOLD request

Data bus

DACK

DREQ

Address bus

Control bus (IOR, IOW, MEMR, MEMW)

8237 DMA
chip

Main
memory

Disk
controller

HRQ

HLDA

Figure 7.14 8237 DMA Usage of System Bus

244 CHAPTER 7 / INPUT/OUTPUT

 3. The CPU will finish the present bus cycle (not necessarily the present instruc-
tion) and respond to the DMA request by putting high on its HDLA (hold
acknowledge), thus telling the 8237 DMA that it can go ahead and use the
buses to perform its task. HOLD must remain active high as long as DMA is
performing its task.

 4. DMA will activate DACK (DMA acknowledge), which tells the peripheral
device that it will start to transfer the data.

 5. DMA starts to transfer the data from memory to peripheral by putting the
address of the first byte of the block on the address bus and activating MEMR,
thereby reading the byte from memory into the data bus; it then activates IOW
to write it to the peripheral. Then DMA decrements the counter and incre-
ments the address pointer and repeats this process until the count reaches zero
and the task is finished.

 6. After the DMA has finished its job it will deactivate HRQ, signaling the CPU
that it can regain control over its buses.

While the DMA is using the buses to transfer data, the processor is idle.
Similarly, when the processor is using the bus, the DMA is idle. The 8237 DMA
is known as a fly-by DMA controller. This means that the data being moved from
one location to another does not pass through the DMA chip and is not stored in
the DMA chip. Therefore, the DMA can only transfer data between an I/O port
and a memory address, but not between two I/O ports or two memory locations.
However, as explained subsequently, the DMA chip can perform a memory-to-
memory transfer via a register.

The 8237 contains four DMA channels that can be programmed independ-
ently, and any one of the channels may be active at any moment. These channels are
numbered 0, 1, 2, and 3.

The 8237 has a set of five control/command registers to program and control
DMA operation over one of its channels (Table 7.2):

 • Command: The processor loads this register to control the operation of the
DMA. D0 enables a memory-to-memory transfer, in which channel 0 is used
to transfer a byte into an 8237 temporary register and channel 1 is used to
transfer the byte from the register to memory. When memory-to-memory is
enabled, D1 can be used to disable increment/decrement on channel 0 so that
a fixed value can be written into a block of memory. D2 enables or disables
DMA.

 • Status: The processor reads this register to determine DMA status. Bits
D0–D3 are used to indicate if channels 0–3 have reached their TC (terminal
count). Bits D4–D7 are used by the processor to determine if any channel has
a DMA request pending.

 • Mode: The processor sets this register to determine the mode of operation
of the DMA. Bits D0 and D1 are used to select a channel. The other bits
select various operation modes for the selected channel. Bits D2 and D3
determine if the transfer is from an I/O device to memory (write) or from
memory to I/O (read), or a verify operation. If D4 is set, then the memory

Table 7.2 Intel 8237A Registers

Bit Command Status Mode Single Mask All Mask

D0 Memory-to-memory E/D Channel 0 has reached TC

Channel select Select channel mask bit

Clear/set channel 0 mask bit

D1 Channel 0 address
hold E/D

Channel 1 has reached TC Clear/set channel 1 mask bit

D2 Controller E/D Channel 2 has reached TC
Verify/write/ read transfer

Clear/set mask bit Clear/set channel 2 mask bit

D3 Normal/compressed timing Channel 3 has reached TC

Not used

Clear/set channel 3 mask bit

D4 Fixed/rotating priority Channel 0 request Auto-initialization E/D

Not used

D5 Late/extended write
selection

Channel 0 request Address increment/
decrement select

D6 DREQ sense active
high/low

Channel 0 request

D7 DACK sense active
high/low

Channel 0 request Demand/single/block/
cascade mode select

E/D � enable/disable
TC � terminal count

245

246 CHAPTER 7 / INPUT/OUTPUT

address register and the count register are reloaded with their original
values at the end of a DMA data transfer. Bits D6 and D7 determine the
way in which the 8237 is used. In single mode, a single byte of data is trans-
ferred. Block and demand modes are used for a block transfer, with the
demand mode allowing for premature ending of the transfer. Cascade
mode allows multiple 8237s to be cascaded to expand the number of chan-
nels to more than 4.

 • Single Mask: The processor sets this register. Bits D0 and D1 select the chan-
nel. Bit D2 clears or sets the mask bit for that channel. It is through this reg-
ister that the DREQ input of a specific channel can be masked (disabled) or
unmasked (enabled). While the command register can be used to disable the
whole DMA chip, the single mask register allows the programmer to disable
or enable a specific channel.

 • All Mask: This register is similar to the single mask register except that all four
channels can be masked or unmasked with one write operation.

In addition, the 8237A has eight data registers: one memory address register
and one count register for each channel. The processor sets these registers to indi-
cate the location of size of main memory to be affected by the transfers.

 7.6 I/O CHANNELS AND PROCESSORS

The Evolution of the I/O Function

As computer systems have evolved, there has been a pattern of increasing complex-
ity and sophistication of individual components. Nowhere is this more evident than
in the I/O function. We have already seen part of that evolution. The evolutionary
steps can be summarized as follows:

 1. The CPU directly controls a peripheral device. This is seen in simple micro-
processor-controlled devices.

 2. A controller or I/O module is added. The CPU uses programmed I/O without
interrupts. With this step, the CPU becomes somewhat divorced from the spe-
cific details of external device interfaces.

 3. The same configuration as in step 2 is used, but now interrupts are employed.
The CPU need not spend time waiting for an I/O operation to be performed,
thus increasing efficiency.

 4. The I/O module is given direct access to memory via DMA. It can now move
a block of data to or from memory without involving the CPU, except at the
beginning and end of the transfer.

 5. The I/O module is enhanced to become a processor in its own right, with a
specialized instruction set tailored for I/O. The CPU directs the I/O processor

7.6 / I/O CHANNELS AND PROCESSORS 247

to execute an I/O program in memory. The I/O processor fetches and executes
these instructions without CPU intervention. This allows the CPU to specify a
sequence of I/O activities and to be interrupted only when the entire sequence
has been performed.

 6. The I/O module has a local memory of its own and is, in fact, a computer
in its own right. With this architecture, a large set of I/O devices can be
 controlled, with minimal CPU involvement. A common use for such an
architecture has been to control communication with interactive terminals.
The I/O processor takes care of most of the tasks involved in controlling the
terminals.

As one proceeds along this evolutionary path, more and more of the I/O
function is performed without CPU involvement. The CPU is increasingly
relieved of I/O-related tasks, improving performance. With the last two steps
(5–6), a major change occurs with the introduction of the concept of an I/O mod-
ule capable of executing a program. For step 5, the I/O module is often referred
to as an I/O channel. For step 6, the term I/O processor is often used. However,
both terms are on occasion applied to both situations. In what follows, we will use
the term I/O channel.

Characteristics of I/O Channels

The I/O channel represents an extension of the DMA concept. An I/O
channel has the ability to execute I/O instructions, which gives it complete con-
trol over I/O operations. In a computer system with such devices, the CPU does
not execute I/O instructions. Such instructions are stored in main memory to
be executed by a special-purpose processor in the I/O channel itself. Thus, the
CPU initiates an I/O transfer by instructing the I/O channel to execute a pro-
gram in memory. The program will specify the device or devices, the area or
areas of memory for storage, priority, and actions to be taken for certain error
conditions. The I/O channel follows these instructions and controls the data
transfer.

Two types of I/O channels are common, as illustrated in Figure 7.15. A
 selector channel controls multiple high-speed devices and, at any one time, is
dedicated to the transfer of data with one of those devices. Thus, the I/O chan-
nel selects one device and effects the data transfer. Each device, or a small set of
devices, is handled by a controller, or I/O module, that is much like the I/O mod-
ules we have been discussing. Thus, the I/O channel serves in place of the CPU in
controlling these I/O controllers. A multiplexor channel can handle I/O with mul-
tiple devices at the same time. For low-speed devices, a byte multiplexor accepts or
transmits characters as fast as possible to multiple devices. For example, the result-
ant character stream from three devices with different rates and individual streams
A1A2A3A4 …, B1B2B3B4 …, and C1C2C3C4 … might be A1B1C1A2C2A3B2C3A4,
and so on. For high-speed devices, a block multiplexor interleaves blocks of data
from several devices.

248 CHAPTER 7 / INPUT/OUTPUT

 7.7 THE EXTERNAL INTERFACE: THUNDERBOLT
AND INFINIBAND

Types of Interfaces

The interface to a peripheral from an I/O module must be tailored to the nature
and operation of the peripheral. One major characteristic of the interface is whether
it is serial or parallel (Figure 7.16). In a parallel interface, there are multiple lines
connecting the I/O module and the peripheral, and multiple bits are transferred
simultaneously, just as all of the bits of a word are transferred simultaneously over
the data bus. In a serial interface, there is only one line used to transmit data, and
bits must be transmitted one at a time. A parallel interface has traditionally been

Selector
channel

Control signal
path to CPU

Data and
address channel
to main memory

I/O
controller

I/O
controller

I/O
controller

(a) Selector

(b) Multiplexor

I/O
controller • • •

• • •

Multiplexor
channel

Control signal
path to CPU

Data and
address channel
to main memory

I/O
controller

I/O
controller

Figure 7.15 I/O Channel Architecture

7.7 / THE EXTERNAL INTERFACE: THUNDERBOLT AND INFINIBAND 249

used for higher-speed peripherals, such as tape and disk, while the serial interface
has traditionally been used for printers and terminals. With a new generation of
high-speed serial interfaces, parallel interfaces are becoming much less common.

In either case, the I/O module must engage in a dialogue with the peripheral.
In general terms, the dialogue for a write operation is as follows:

 1. The I/O module sends a control signal requesting permission to send data.

 2. The peripheral acknowledges the request.

 3. The I/O module transfers data (one word or a block depending on the
peripheral).

 4. The peripheral acknowledges receipt of the data.

A read operation proceeds similarly.
Key to the operation of an I/O module is an internal buffer that can store data

being passed between the peripheral and the rest of the system. This buffer allows
the I/O module to compensate for the differences in speed between the system bus
and its external lines.

Point-to-Point and Multipoint Configurations

The connection between an I/O module in a computer system and external devices
can be either point-to-point or multipoint. A point-to-point interface provides a
dedicated line between the I/O module and the external device. On small systems
(PCs, workstations), typical point-to-point links include those to the keyboard,
printer, and external modem. A typical example of such an interface is the EIA-232
specification (see [STAL11] for a description).

Of increasing importance are multipoint external interfaces, used to sup-
port external mass storage devices (disk and tape drives) and multimedia devices

I/O module

Buffer
To system

bus

(a) Parallel I/O

To
peripheral

I/O module

Buffer
To system

bus

(b) Serial I/O

To
peripheral

Figure 7.16 Parallel and Serial I/O

250 CHAPTER 7 / INPUT/OUTPUT

(CD-ROMs, video, audio). These multipoint interfaces are in effect external buses,
and they exhibit the same type of logic as the buses discussed in Chapter 3. In this
section, we look at two key examples: Thunderbolt and InfiniBand.

Thunderbolt

The most recent, and fastest, peripheral connection technology to become available for
general-purpose use is Thunderbolt, developed by Intel with collaboration from Apple.
One Thunderbolt cable can manage the work previously required of multiple cables.
The technology combines data, video, audio, and power into a single high-speed con-
nection for peripherals such as hard drives, RAID (Redundant Array of Independent
Disks) arrays, video-capture boxes, and network interfaces. It provides up to 10 Gbps
throughput in each direction and up to 10 Watts of power to connected peripherals.

Although the technology and its associated specifications have stabilized, the
introduction of Thunderbolt-equipped devices into the marketplace has, as of this writ-
ing, only slowly begun to develop. This is because a Thunderbolt-compatible periph-
eral interface is considerably more complex than that of a simple USB device. The
first generation of Thunderbolt products are primarily aimed at the prosumer (pro-
fessional-consumer) market such as audiovisual editors who want to be able to move
large volumes of data quickly between storage devices and laptops. As the technology
becomes cheaper, Thunderbolt will find mass consumer uses, such as enabling very
high-speed data backups and editing high-definition photos. Thunderbolt is already a
standard feature of Apple’s MacBook Pro laptop and iMac desktop computers.

THUNDERBOLT CONFIGURATION Figure 7.17 shows a typical computer
configuration that makes use of Thunderbolt. From the point of view of I/O, the
central element in this configuration is the Thunderbolt controller, which is a
high-performance, cross-bar switch. Unlike bus-based I/O architectures, each
Thunderbolt port on a computer is capable of providing the full data transfer rate
of the link in both directions with no sharing of data transmission capacity between
ports or between upstream and downstream directions.

For communication internal to the computer, the Thunderbolt controller
includes one or more DisplayPort protocol adapter ports. DisplayPort is a digital dis-
play interface standard now widely adopted for computer monitors, laptop displays,
and other graphics and video interfaces. The controller also includes a PCI Express
switch with up to four PCI Express protocol adapter ports for internal communication.

The Thunderbolt controller provides access to external devices through one or
more Thunderbolt connectors. Each connector can provide one or two full-duplex
channels, with each channel providing up to 10 Gbps in each direction. The same
connector can be used for electrical or optical cables. The electrical cable can extend
up to 3 meters, while the optical cable can extend into the tens of meters.

Users can connect high-performance peripherals to their PC over a cable,
daisy chaining one after another, up to a total of 7 devices, 1 or 2 of which can be
high- resolution DisplayPort displays (depending on the controller configuration in
the host PC). Because Thunderbolt technology delivers two full-bandwidth chan-
nels, the user can realize high bandwidth not only on the first device attached but on
downstream devices as well.

7.7 / THE EXTERNAL INTERFACE: THUNDERBOLT AND INFINIBAND 251

THUNDERBOLT PROTOCOL ARCHITECTURE Figure 7.18 illustrates the
Thunderbolt protocol architecture. The cable and connector layer provides
transmission medium access. This layer specifies the physical and electrical
attributes of the connector port.

The Thunderbolt protocol physical layer is responsible for link maintenance
including hot-plug3 detection and data encoding to provide highly efficient data
transfer. The physical layer has been designed to introduce very minimal overhead
and provides full-duplex 10 Gbps of usable capacity to the upper layers.

The common transport layer is the key to the operation of Thunderbolt and
what makes it attractive as a high-speed peripheral I/O technology. Some of the
features include:

 • A high-performance, low-power, switching architecture.

 • A highly efficient, low-overhead packet format with flexible quality of service
(QoS) support that allows multiplexing of bursty PCI Express transactions

Processor

COMPUTER

Platform
controller
hub (PCH)

Thunderbolt
controller

Memory

TC

TC TC

Daisy
chain

Thunderbolt
connector

Thunderbolt
20 Gbps (max)

PCIe x4 DisplayPort

Graphics
Sub-

system

DisplayPort

Figure 7.17 Example Computer Configuration with Thunderbolt

3The term hot plug is defined as pulling out a component from a system and plugging in a new one while
the main power is still on. It allows an external drive, network adapter, or other peripheral to be plugged
in without having to power down the computer.

252 CHAPTER 7 / INPUT/OUTPUT

with DisplayPort communication on the same link. The transport layer has the
ability to flexibly allocate link bandwidth using priority and bandwidth reser-
vation mechanisms.

 • The use of small packet sizes to achieve low latency.

 • The use of credit-based flow control to achieve small buffer sizes.

 • A symmetric architecture that supports flexible topologies (star, tree, daisy
chaining, etc.) and enables peer-to-peer communication (via software)
between devices.

 • A novel time synchronization protocol that allows all the Thunderbolt prod-
ucts connected in a domain to synchronize their time within 8ns of each
other.

The application layer contains I/O protocols that are mapped onto the trans-
port layer. Initially, Thunderbolt provides full support for PCIe and DisplayPort
protocols. This function is provided by a protocol adapter, which is responsible for
efficient encapsulation of the mapped protocol information into transport layer
packets. Mapped protocol packets between a source device and a destination device
may be routed over a path that may cross multiple Thunderbolt controllers. At the
destination device, a protocol adapter re-creates the mapped protocol in a way that
is indistinguishable from what was received by the source device. The advantage of
doing protocol mapping in this way is that Thunderbolt technology–enabled prod-
uct devices appear as PCIe or DisplayPort devices to the operating system of the
host computer, thereby enabling the use of standard drivers that are available in
many operating systems today.

Common transport

P
C

Ie

D
is

pl
ay

po
rt

I/
O

 p
ro

to
co

l

Electrical/optical physical

Cable and connector

THUNDERBOLT TECHNOLOGY

APPLICATION-SPECIFIC
PROTOCOL STACKS

Figure 7.18 Thunderbolt Protocol Layers

7.7 / THE EXTERNAL INTERFACE: THUNDERBOLT AND INFINIBAND 253

InfiniBand

InfiniBand is a recent I/O specification aimed at the high-end server market.4 The
first version of the specification was released in early 2001 and has attracted numer-
ous vendors. The standard describes an architecture and specifications for data flow
among processors and intelligent I/O devices. InfiniBand has become a popular
interface for storage area networking and other large storage configurations. In
essence, InfiniBand enables servers, remote storage, and other network devices to
be attached in a central fabric of switches and links. The switch-based architecture
can connect up to 64,000 servers, storage systems, and networking devices.

INFINIBAND ARCHITECTURE Although PCI is a reliable interconnect method
and continues to provide increased speeds, up to 4 Gbps, it is a limited architecture
compared to InfiniBand. With InfiniBand, it is not necessary to have the basic I/O
interface hardware inside the server chassis. With InfiniBand, remote storage,
networking, and connections between servers are accomplished by attaching all
devices to a central fabric of switches and links. Removing I/O from the server
chassis allows greater server density and allows for a more flexible and scalable data
center, as independent nodes may be added as needed.

Unlike PCI, which measures distances from a CPU motherboard in centim-
eters, InfiniBand’s channel design enables I/O devices to be placed up to 17 meters
away from the server using copper, up to 300 m using multimode optical fiber, and
up to 10 km with single-mode optical fiber. Transmission rates has high as 30 Gbps
can be achieved.

Figure 7.19 illustrates the InfiniBand architecture. The key elements are as
follows:

 • Host channel adapter (HCA): Instead of a number of PCI slots, a typical
server needs a single interface to an HCA that links the server to an InfiniBand
switch. The HCA attaches to the server at a memory controller, which has
 access to the system bus and controls traffic between the processor and mem-
ory and between the HCA and memory. The HCA uses direct-memory access
(DMA) to read and write memory.

 • Target channel adapter (TCA): A TCA is used to connect storage systems,
routers, and other peripheral devices to an InfiniBand switch.

 • InfiniBand switch: A switch provides point-to-point physical connections to a
variety of devices and switches traffic from one link to another. Servers and
devices communicate through their adapters, via the switch. The switch’s
intelligence manages the linkage without interrupting the servers’ operation.

 • Links: The link between a switch and a channel adapter, or between two
switches.

 • Subnet: A subnet consists of one or more interconnected switches plus the links
that connect other devices to those switches. Figure 7.19 shows a subnet with

4InfiniBand is the result of the merger of two competing projects: Future I/O (backed by Cisco, HP, Com-
paq, and IBM) and Next Generation I/O (developed by Intel and backed by a number of other companies).

254 CHAPTER 7 / INPUT/OUTPUT

a single switch, but more complex subnets are required when a large number
of devices are to be interconnected. Subnets allow administrators to confine
broadcast and multicast transmissions within the subnet.

 • Router: Connects InfiniBand subnets, or connects an InfiniBand switch to
a network, such as a local area network, wide area network, or storage area
 network.

The channel adapters are intelligent devices that handle all I/O functions with-
out the need to interrupt the server’s processor. For example, there is a control
protocol by which a switch discovers all TCAs and HCAs in the fabric and assigns
logical addresses to each. This is done without processor involvement.

The InfiniBand switch temporarily opens up channels between the proces-
sor and devices with which it is communicating. The devices do not have to share a
channel’s capacity, as is the case with a bus-based design such as PCI, which requires
that devices arbitrate for access to the processor. Additional devices are added to
the configuration by hooking up each device’s TCA to the switch.

INFINIBAND OPERATION Each physical link between a switch and an attached
interface (HCA or TCA) can be support up to 16 logical channels, called virtual
lanes. One lane is reserved for fabric management and the other lanes for data
transport. Data are sent in the form of a stream of packets, with each packet
containing some portion of the total data to be transferred, plus addressing and
control information. Thus, a set of communications protocols are used to manage
the transfer of data. A virtual lane is temporarily dedicated to the transfer of data
from one end node to another over the InfiniBand fabric. The InfiniBand switch
maps traffic from an incoming lane to an outgoing lane to route the data between
the desired end points.

Router

CPU

HCA

CPU
System
memory

In
te

rn
al

 b
us

Host server

Memory
controller IB link

IB
 li

nk

InfiniBand
switch IB link

Target
device

IB link Router

IB
 li

nk

TCA

Target
device

T
C
A

Subnet

IB � InfiniBand
HCA � host channel adapter
TCA � target channel adapter

Figure 7.19 InfiniBand Switch Fabric

7.7 / THE EXTERNAL INTERFACE: THUNDERBOLT AND INFINIBAND 255

Figure 7.20 indicates the logical structure used to support exchanges over
InfiniBand. To account for the fact that some devices can send data faster than
another destination device can receive it, a pair of queues at both ends of each link
temporarily buffers excess outbound and inbound data. The queues can be located
in the channel adapter or in the attached device’s memory. A separate pair of queues
is used for each virtual lane. The host uses these queues in the following fashion.
The host places a transaction, called a work queue entry (WQE) into either the
send or receive queue of the queue pair. The two most important WQEs are SEND
and RECEIVE. For a SEND operation, the WQE specifies a block of data in the
device’s memory space for the hardware to send to the destination. A RECEIVE
WQE specifies where the hardware is to place data received from another device
when that consumer executes a SEND operation. The channel adapter processes
each posted WQE in the proper prioritized order and generates a completion queue
entry (CQE) to indicate the completion status.

Figure 7.20 also indicates that a layered protocol architecture is used, consist-
ing of four layers:

 • Physical: The physical-layer specification defines three link speeds (1X,
4X, and 12X) giving transmission rates of 2.5, 10, and 30 Gbps, respectively
(Table 7.3). The physical layer also defines the physical media, including cop-
per and optical fiber.

 • Link: This layer defines the basic packet structure used to exchange data,
including an addressing scheme that assigns a unique link address to every
device in a subnet. This level includes the logic for setting up virtual lanes and
for switching data through switches from source to destination within a subnet.
The packet structure includes an error-detection code to provide reliability.

Client process

Transport engine

Host
channel
adapter

Transport layer

Network layer

Link layer

Physical layer

Server process

Port

Physical link Physical link

Packet

CQEWQE

IB � InfiniBand
WQE � work queue element
CQE � completion queue entry
QP � queue pair

QP

Send Receive

Packet relay

Packet

Port Port

Transport engine

Target
channel
adapter

Port

Fabric

Packet

CQEWQE

QP

Transactions

(IB operations)

Send Receive

IB operations

(IB packets)

IB packets

Figure 7.20 InfiniBand Communication Protocol Stack

256 CHAPTER 7 / INPUT/OUTPUT

 • Network: The network layer routes packets between different InfiniBand
subnets.

 • Transport: The transport layer provides reliability mechanism for end-to-end
transfer of packets across one or more subnets.

 7.8 IBM zENTERPRISE 196 I/O STRUCTURE

The zEnterprise 196 is IBM’s latest mainframe computer offering (at the time of
this writing), introduced in 2010. The system is based on the use of the z196 chip,
which is a 5.2-GHz multicore chip with four cores. The z196 architecture can have a
maximum of 24 processor chips for a total of 96 cores. In this section, we look at the
I/O structure of the zEnterprise 196.

Channel Structure

The zEnterprise 196 has a dedicated I/O subsystem that manages all I/O operations,
completely off-loading this processing and memory burden from the main proces-
sors. Figure 7.21 shows the logical structure of the I/O subsystem. Of the 96 core pro-
cessors, up to 4 of these can be dedicated for I/O use, creating 4 channel subsystems
(CSS). Each CSS is made up of the following elements:

 • System assist processor (SAP): The SAP is a core processor configured for I/O
operation. Its role is to offload I/O operations and manage channels and the
I/O operations queues. It relieves the other processors of all I/O tasks, allow-
ing them to be dedicated to application logic.

 • Hardware system area (HSA): The HSA is a reserved part of the system mem-
ory containing the I/O configuration. It is used by SAPs. A fixed amount of
16 GB is reserved, which is not part of the customer-purchased memory. This
provides for greater configuration flexibility and higher availability by elimi-
nating planned and preplanned outages.

 • Logical partitions: A logical partition is a form of virtual machine, which is in
essence, a logical processor defined at the operating system level.5 Each CSS
supports up to 16 logical partitions.

Table 7.3 InfiniBand Links and Data Throughput Rates

Link

Signal rate
(unidirectional)

Usable capacity (80%
of signal rate)

Effective data throughput
(send + receive)

1-wide 2.5 Gbps 2 Gbps (250 MBps) (250 + 250) MBps

4-wide 10 Gbps 8 Gbps (1 GBps) (1 + 1) GBps

12-wide 30 Gbps 24 Gbps (3 GBps) (3 + 3) Gbps

5A virtual machine is an instance of an operating system along with one or more applications running in
an isolated memory partition within the computer. It enables different operating systems to run in the
same computer at the same time as well as prevents applications from interfering with each other. See
[STAL12] for a discussion of virtual machines.

7.8 / IBM zENTERPRISE 196 I/O STRUCTURE 257

 • Subchannels: A subchannel appear to a program as a logical device and con-
tain the information required to perform an I/O operation. One subchannel
exists for each I/O device addressable by the CSS. A subchannel is used by the
channel subsystem code running on a partition to pass an I/O request to the
channel subsystem. A subchannel is assigned for each device defined to the
logical partition. Up to 196k subchannels are supported per CSS.

 • Channel path: A channel path is a single interface between a channel subsys-
tem and one or more control units, via a channel. Commands and data are sent
across a channel path to perform I/O requests. Each CSS can have up to 256
channel paths.

 • Channel: Channels are small processors that communicate with the I/O con-
trol units (CUs). They manage the data transfer between memory and the
external devices.

This elaborate structure enables the mainframe to manage a massive number
of I/O devices and communication links. All I/O processing is offloaded from the
application and server processors, enhancing performance. The channel subsys-
tem processors are somewhat general in configuration, enabling them to manage
a wide variety of I/O duties and to keep up with evolving requirements. The chan-
nel processors are specifically programmed for the I/O control units to which they
interface.

Partition

15 partitions per channel subsystem

256 channels per channel subsystem

Subchannels

Channel Channel

Channel
Subsystem

Channel
Subsystem

Channel
subsystem

Channel
Subsystem
Channel

subsystem
4 channel

subsystems
Channel

subsystem
Channel

subsystem

Partition

Subchannels

Partition

Subchannels

Partition

Subchannels

60 partitions per system

1024 partitions per system

Channel Channel

Figure 7.21 IBM z196 I/O Channel Subsystem Structure

258 CHAPTER 7 / INPUT/OUTPUT

I/O System Organization

To explain the I/O system organization, we need to first briefly explain the physical
layout of the zEnterprise 196. Figure 7.22 is a front view of the water-cooled ver-
sion of the machine (there is an air-cooled version). The system has the following
characteristics:

 • Weight: 2185 kg (4817 lbs)

 • Width: 1.534 m (5 ft)

 • Depth: 1.375 m (4.5 ft)

 • Height: 2.012 m (6.6 ft)

Not exactly a laptop.
The system consists of two large bays, called frames, that house the various

components of the zEnterprise 196. The right hand A frame includes two large
cages, plus room for cabling and other components. The upper cage is a processor
cage, with four slots to house up to four processor books that are fully intercon-
nected. Each book contains a multichip module (MCM), memory cards, and I/O
cage connections. Each MCM is a board that houses six multicore chips and two
storage control chips.

The lower cage in the A frame is an I/O cage, which contains I/O hardware,
including multiplexors and channels. The I/O cage is a fixed unit installed by IBM to
the customer specifications at the factory.

Internal
batteries
(optional)

Power
supplies

I/O cage

Processor books,
memory, MBA and

HCA cards

2 × Water
cooling
units

InfiniBand I/O
interconnects

Support
elements

Ethernet cables for
internal system LAN
connecting flexible
service processor

(FSP) cage controller
cards

I/O drawers

Figure 7.22 IBM z196 I/O Frames — Front View

The left hand Z frame contains internal batteries and power supplies and
room for one or more support elements, which are used by a system manager for
platform management. The Z frame also contains slots for two or more I/O draw-
ers. An I/O drawer contains similar components to an I/O cage. The differences are
that the drawer is smaller and easily swapped in and out at the customer site to meet
changing requirements.

With this background, we now show a typical configuration of the zEnterprise
196 I/O system structure (Figure 7.23). The z196 processor book supports two inter-
nal (i.e., internal to the A and Z frames) I/O infrastructures: InfiniBand for I/O
cages and I/O drawers, and PCI Express (PCIe) for I/O drawers. These channel
controllers are referred to as fanouts.

The InfiniBand connections from the processor book to the I/O cages and I/O
drawers are via a Host Channel Adapter (HCA) fanout, which has InfiniBand links
to InfiniBand multiplexors in the I/O cage or drawer. The InfiniBand multiplexors
are used to interconnect servers, communications infrastructure equipment, storage,
and embedded systems. In addition to using InfiniBand to interconnect systems,
all of which use InfiniBand, the InfiniBand multiplexor supports other I/O tech-
nologies. ESCON (Enterprise Systems Connection) supports connectivity to disks,
tapes, and printer devices using a proprietary fiber-based technology. Ethernet con-
nections provide 1-Gbps and 10-Gbps connections to a variety of devices that sup-
port this popular local area network technology. One noteworthy use of Ethernet is

PCIe (8X) PCIe (8X)

BOOK

PCIe I/O Drawer
I/O Cage Domain

or I/O Drawer

HCA2 C (6X) HCA2 C (6X)

PCIe
switch

PCIe
switch

PCIe
switch

PCIe
switch

InfiniBand
multiplexor

InfiniB and
multiplexor

Channels Ports

1-Gbps
Ethernet controller

Fibre Channel
controller

ESCON10-Gbps
Ethernet controller

Figure 7.23 IBM z196 I/O System Structure

7.8 / IBM zENTERPRISE 196 I/O STRUCTURE 259

260 CHAPTER 7 / INPUT/OUTPUT

to construct large server farms, particularly to interconnect blade servers with each
other and with other mainframes.6

The PCIe connections from the processor book to the I/O drawers are via a
PCIe fanout to PCIe switches. The PCIe switches can connect to a number of I/O
device controllers. Typical examples for zEnterprise 196 are 1-Gbps and 10-Gbps
Ethernet and Fiber Channel.

Each book contains a combination of up to 8 InfiniBand HCA and PCIe
fanouts. Each fanout supports up to 32 connections, for a total maximum of 256
connections per processor book, each connection controlled by a channel processor.

 7.9 RECOMMENDED READING

A good discussion of Intel I/O modules and architecture, including the 82C59A, 82C55A, and
8237A, can be found in [BREY09] and [MAZI10].

InfiniBand is covered in great detail in [SHAN03] and [FUTR01]. [KAGA01] provides
a concise overview.

6A blade server is a server architecture that houses multiple server modules (blades) in a single chassis. It
is widely used in data centers to save space and improve system management. Either self-standing or rack
mounted, the chassis provides the power supply, and each blade has its own CPU, memory, and hard disk.

BREY09 Brey, B. The Intel Microprocessors: 8086/8066, 80186/80188, 80286,
80386, 80486, Pentium, Pentium Pro Processor, Pentium II, Pentium III,
Pentium 4 and Core2 with 64-bit Extensions. Upper Saddle River, NJ:
Prentice Hall, 2009.

FUTR01 Futral, W. InfiniBand Architecture: Development and Deployment.
Hillsboro, OR: Intel Press, 2001.

KAGA01 Kagan, M. “InfiniBand: Thinking Outside the Box Design.”
Communications System Design, September 2001. (www.csdmag.com)

MAZI10 Mazidi, M.; Mazidi, J.; and Causey, D. The x86 PC: Assembly Language,
Design and Interfacing. Upper Saddle River, NJ: Prentice Hall, 2010.

SHAN03 Shanley, T. InfinBand Network Architecture. Reading, MA: Addison-
Wesley, 2003.

 7.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

cycle stealing
direct memory access (DMA)
InfiniBand
interrupt
interrupt-driven I/O
I/O channel

I/O command
I/O module
I/O processor
isolated I/O
memory-mapped I/O
multiplexor channel

parallel I/O
peripheral device
programmed I/O
selector channel
serial I/O
Thunderbolt

www.csdmag.com

7.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 261

Review Questions
 7.1 List three broad classifications of external, or peripheral, devices.
 7.2 What is the International Reference Alphabet?
 7.3 What are the major functions of an I/O module?
 7.4 List and briefly define three techniques for performing I/O.
 7.5 What is the difference between memory-mapped I/O and isolated I/O?
 7.6 When a device interrupt occurs, how does the processor determine which device

 issued the interrupt?
 7.7 When a DMA module takes control of a bus, and while it retains control of the bus,

what does the processor do?

Problems
 7.1 On a typical microprocessor, a distinct I/O address is used to refer to the I/O data

registers and a distinct address for the control and status registers in an I/O controller
for a given device. Such registers are referred to as ports. In the Intel 8088, two I/O
instruction formats are used. In one format, the 8-bit opcode specifies an I/O opera-
tion; this is followed by an 8-bit port address. Other I/O opcodes imply that the port
address is in the 16-bit DX register. How many ports can the 8088 address in each I/O
addressing mode? .

 7.2 A similar instruction format is used in the Zilog Z8000 microprocessor family. In this
case, there is a direct port addressing capability, in which a 16-bit port address is part
of the instruction, and an indirect port addressing capability, in which the instruction
references one of the 16-bit general purpose registers, which contains the port ad-
dress. How many ports can the Z8000 address in each I/O addressing mode?

 7.3 The Z8000 also includes a block I/O transfer capability that, unlike DMA, is under the
direct control of the processor. The block transfer instructions specify a port address
register (Rp), a count register (Rc), and a destination register (Rd). Rd contains the
main memory address at which the first byte read from the input port is to be stored. Rc
is any of the 16-bit general purpose registers. How large a data block can be transferred?

 7.4 Consider a microprocessor that has a block I/O transfer instruction such as that found
on the Z8000. Following its first execution, such an instruction takes five clock cycles
to re-execute. However, if we employ a nonblocking I/O instruction, it takes a total
of 20 clock cycles for fetching and execution. Calculate the increase in speed with the
block I/O instruction when transferring blocks of 128 bytes.

 7.5 A system is based on an 8-bit microprocessor and has two I/O devices. The I/O con-
trollers for this system use separate control and status registers. Both devices handle
data on a 1-byte-at-a-time basis. The first device has two status lines and three control
lines. The second device has three status lines and four control lines.
a. How many 8-bit I/O control module registers do we need for status reading and

control of each device?
b. What is the total number of needed control module registers given that the first

device is an output-only device?
c. How many distinct addresses are needed to control the two devices?

 7.6 For programmed I/O, Figure 7.5 indicates that the processor is stuck in a wait loop
doing status checking of an I/O device. To increase efficiency, the I/O software could
be written so that the processor periodically checks the status of the device. If the
device is not ready, the processor can jump to other tasks. After some timed interval,
the processor comes back to check status again.
a. Consider the above scheme for outputting data one character at a time to a

printer that operates at 10 characters per second (cps). What will happen if its
status is scanned every 200 ms?

262 CHAPTER 7 / INPUT/OUTPUT

b. Next consider a keyboard with a single character buffer. On average, characters
are entered at a rate of 10 cps. However, the time interval between two consecu-
tive key depressions can be as short as 60 ms. At what frequency should the key-
board be scanned by the I/O program?

 7.7 A microprocessor scans the status of an output I/O device every 20 ms. This is
 accomplished by means of a timer alerting the processor every 20 ms. The interface of
the device includes two ports: one for status and one for data output. How long does
it take to scan and service the device given a clocking rate of 8 MHz? Assume for
simplicity that all pertinent instruction cycles take 12 clock cycles.

 7.8 In Section 7.3, one advantage and one disadvantage of memory-mapped I/O, compared
with isolated I/O, were listed. List two more advantages and two more disadvantages.

 7.9 A particular system is controlled by an operator through commands entered from a
keyboard. The average number of commands entered in an 8-hour interval is 60.
a. Suppose the processor scans the keyboard every 100 ms. How many times will the

keyboard be checked in an 8-hour period?
b. By what fraction would the number of processor visits to the keyboard be reduced

if interrupt-driven I/O were used?
 7.10 Consider a system employing interrupt-driven I/O for a particular device that trans-

fers data at an average of 8 KB/s on a continuous basis.
a. Assume that interrupt processing takes about 100 ms (i.e., the time to jump to

the interrupt service routine (ISR), execute it, and return to the main program).
 Determine what fraction of processor time is consumed by this I/O device if it
interrupts for every byte.

b. Now assume that the device has two 16-byte buffers and interrupts the proces-
sor when one of the buffers is full. Naturally, interrupt processing takes longer,
 because the ISR must transfer 16 bytes. While executing the ISR, the processor
takes about 8 ms for the transfer of each byte. Determine what fraction of proces-
sor time is consumed by this I/O device in this case.

c. Now assume that the processor is equipped with a block transfer I/O instruction
such as that found on the Z8000. This permits the associated ISR to transfer each
byte of a block in only 2 ms. Determine what fraction of processor time is con-
sumed by this I/O device in this case.

 7.11 In virtually all systems that include DMA modules, DMA access to main memory is
given higher priority than CPU access to main memory. Why?

 7.12 A DMA module is transferring characters to memory using cycle stealing, from a
device transmitting at 9600 bps. The processor is fetching instructions at the rate of
1 million instructions per second (1 MIPS). By how much will the processor be slowed
down due to the DMA activity?

 7.13 Consider a system in which bus cycles takes 500 ns. Transfer of bus control in either direc-
tion, from processor to I/O device or vice versa, takes 250 ns. One of the I/O devices has
a data transfer rate of 50 KB/s and employs DMA. Data are transferred 1 byte at a time.
a. Suppose we employ DMA in a burst mode. That is, the DMA interface gains bus

mastership prior to the start of a block transfer and maintains control of the bus
until the whole block is transferred. For how long would the device tie up the
bus when transferring a block of 128 bytes?

b. Repeat the calculation for cycle-stealing mode.
 7.14 Examination of the timing diagram of the 8237A indicates that once a block transfer

begins, it takes three bus clock cycles per DMA cycle. During the DMA cycle, the
8237A transfers one byte of information between memory and I/O device.
a. Suppose we clock the 8237A at a rate of 5 MHz. How long does it take to transfer

one byte?
b. What would be the maximum attainable data transfer rate?
c. Assume that the memory is not fast enough and we have to insert two wait states

per DMA cycle. What will be the actual data transfer rate?

7.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 263

 7.15 Assume that in the system of the preceding problem, a memory cycle takes 750 ns. To
what value could we reduce the clocking rate of the bus without effect on the attain-
able data transfer rate?

 7.16 A DMA controller serves four receive-only telecommunication links (one per DMA
channel) having a speed of 64 Kbps each.
a. Would you operate the controller in burst mode or in cycle-stealing mode?
b. What priority scheme would you employ for service of the DMA channels?

 7.17 A 32-bit computer has two selector channels and one multiplexor channel. Each selec-
tor channel supports two magnetic disk and two magnetic tape units. The multiplexor
channel has two line printers, two card readers, and 10 VDT terminals connected to it.
Assume the following transfer rates:

Disk drive 800 Kbytes/s
Magnetic tape drive 200 Kbytes/s
Line printer 6.6 Kbytes/s
Card reader 1.2 Kbytes/s
VDT 1 Kbyte/s

Estimate the maximum aggregate I/O transfer rate in this system.
 7.18 A computer consists of a processor and an I/O device D connected to main memory

M via a shared bus with a data bus width of one word. The processor can execute a
maximum of 106 instructions per second. An average instruction requires five
 machine cycles, three of which use the memory bus. A memory read or write
 operation uses one machine cycle. Suppose that the processor is continuously exe-
cuting “background” programs that require 95% of its instruction execution rate but
not any I/O instructions. Assume that one processor cycle equals one bus cycle. Now
suppose the I/O device is to be used to transfer very large blocks of data between
M and D.
a. If programmed I/O is used and each one-word I/O transfer requires the processor

to execute two instructions, estimate the maximum I/O data-transfer rate, in words
per second, possible through D.

b. Estimate the same rate if DMA is used.
 7.19 A data source produces 7-bit IRA characters, to each of which is appended a parity

bit. Derive an expression for the maximum effective data rate (rate of IRA data bits)
over an R-bps line for the following:
a. Asynchronous transmission, with a 1.5-unit stop bit
b. Bit-synchronous transmission, with a frame consisting of 48 control bits and 128

information bits
c. Same as (b), with a 1024-bit information field
d. Character-synchronous, with 9 control characters per frame and 16 information

characters
e. Same as (d), with 128 information characters

 7.20 The following problem is based on a suggested illustration of I/O mechanisms in
[ECKE90] (Figure 7.24):

Two women are on either side of a high fence. One of the women, named
 Apple-server, has a beautiful apple tree loaded with delicious apples growing on her
side of the fence; she is happy to supply apples to the other woman whenever needed.
The other woman, named Apple-eater, loves to eat apples but has none. In fact, she
must eat her apples at a fixed rate (an apple a day keeps the doctor away). If she eats
them faster than that rate, she will get sick. If she eats them slower, she will suffer mal-
nutrition. Neither woman can talk, and so the problem is to get apples from Apple-
server to Apple-eater at the correct rate.
a. Assume that there is an alarm clock sitting on top of the fence and that the clock

can have multiple alarm settings. How can the clock be used to solve the problem?
Draw a timing diagram to illustrate the solution.

264 CHAPTER 7 / INPUT/OUTPUT

b. Now assume that there is no alarm clock. Instead Apple-eater has a flag that
she can wave whenever she needs an apple. Suggest a new solution. Would it be
 helpful for Apple-server also to have a flag? If so, incorporate this into the solu-
tion. Discuss the drawbacks of this approach.

c. Now take away the flag and assume the existence of a long piece of string. Suggest
a solution that is superior to that of (b) using the string.

 7.21 Assume that one 16-bit and two 8-bit microprocessors are to be interfaced to a system
bus. The following details are given:
1. All microprocessors have the hardware features necessary for any type of data

transfer: programmed I/O, interrupt-driven I/O, and DMA.
2. All microprocessors have a 16-bit address bus.
3. Two memory boards, each of 64-Kbytes capacity, are interfaced with the bus. The

designer wishes to use a shared memory that is as large as possible.
4. The system bus supports a maximum of four interrupt lines and one DMA line.

Make any other assumptions necessary, and
a. Give the system bus specifications in terms of number and types of lines.
b. Describe a possible protocol for communicating on the bus (i.e., read-write, inter-

rupt, and DMA sequences).
c. Explain how the aforementioned devices are interfaced to the system bus.

Figure 7.24 An Apple Problem

CHAPTER

OPERATING SYSTEM SUPPORT
8.1 Operating System Overview

Operating System Objectives and Functions
Types of Operating Systems

8.2 Scheduling
Long-Term Scheduling
Medium-Term Scheduling
Short-Term Scheduling

8.3 Memory Management
Swapping
Partitioning
Paging
Virtual Memory
Translation Lookaside Buffer
Segmentation

8.4 Pentium Memory Management
Address Spaces
Segmentation
Paging

8.5 ARM Memory Management
Memory System Organization
Virtual Memory Address Translation
Memory-Management Formats
Access Control

8.6 Recommended Reading

8.7 Key Terms, Review Questions, and Problems

265

266 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Although the focus of this text is computer hardware, there is one area of software
that needs to be addressed: the computer’s OS. The OS is a program that manages
the computer’s resources, provides services for programmers, and schedules the
execution of other programs. Some understanding of operating systems is essential
to appreciate the mechanisms by which the CPU controls the computer system. In
particular, explanations of the effect of interrupts and of the management of the
memory hierarchy are best explained in this context.

The chapter begins with an overview and brief history of operating systems.
The bulk of the chapter looks at the two OS functions that are most relevant to
the study of computer organization and architecture: scheduling and memory
 management.

 8.1 OPERATING SYSTEM OVERVIEW

Operating System Objectives and Functions

An OS is a program that controls the execution of application programs and acts as
an interface between applications and the computer hardware. It can be thought of
as having two objectives:

 • Convenience: An OS makes a computer more convenient to use.

 • Efficiency: An OS allows the computer system resources to be used in an
efficient manner.

Let us examine these two aspects of an OS in turn.

THE OPERATING SYSTEM AS A USER/COMPUTER INTERFACE The hardware
and software used in providing applications to a user can be viewed in a layered
or hierarchical fashion, as depicted in Figure 8.1. The user of those applications,
the end user, generally is not concerned with the computer’s architecture. Thus
the end user views a computer system in terms of an application. That application
can be expressed in a programming language and is developed by an application
programmer. To develop an application program as a set of processor instructions

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Summarize, at a top level, the key functions of an operating system (OS).
� Discuss the evolution of operating systems for early simple batch systems to

modern complex systems.
� Explain the differences among long-, medium-, and short-term scheduling.
� Understand the reason for memory partitioning and explain the various

techniques that are used.
� Assess the relative advantages of paging and segmentation.
� Define virtual memory.

8.1 / OPERATING SYSTEM OVERVIEW 267

that is completely responsible for controlling the computer hardware would be
an overwhelmingly complex task. To ease this task, a set of systems programs is
provided. Some of these programs are referred to as utilities. These implement
frequently used functions that assist in program creation, the management of
files, and the control of I/O devices. A programmer makes use of these facilities
in developing an application, and the application, while it is running, invokes the
utilities to perform certain functions. The most important system program is the OS.
The OS masks the details of the hardware from the programmer and provides the
programmer with a convenient interface for using the system. It acts as mediator,
making it easier for the programmer and for application programs to access and use
those facilities and services.

Briefly, the OS typically provides services in the following areas:

 • Program creation: The OS provides a variety of facilities and services, such
as editors and debuggers, to assist the programmer in creating programs.
Typically, these services are in the form of utility programs that are not actu-
ally part of the OS but are accessible through the OS.

 • Program execution: A number of steps need to be performed to execute a
program. Instructions and data must be loaded into main memory, I/O devices
and files must be initialized, and other resources must be prepared. The OS
handles all of this for the user.

 • Access to I/O devices: Each I/O device requires its own specific set of instruc-
tions or control signals for operation. The OS takes care of the details so that
the programmer can think in terms of simple reads and writes.

 • Controlled access to files: In the case of files, control must include an under-
standing of not only the nature of the I/O device (disk drive, tape drive) but
also the file format on the storage medium. Again, the OS worries about the
details. Further, in the case of a system with multiple simultaneous users, the
OS can provide protection mechanisms to control access to the files.

I/O devices
and

networking

System interconnect
(bus)

Software

Application
programming interface

Instruction set
architecture

Hardware

Main
memory

Memory
translation

Execution hardware

Application programs

Application
binary interface

Operating system

Libraries/utilities

Figure 8.1 Computer Hardware and Software Structure

268 CHAPTER 8 / OPERATING SYSTEM SUPPORT

 • System access: In the case of a shared or public system, the OS controls access
to the system as a whole and to specific system resources. The access function
must provide protection of resources and data from unauthorized users and
must resolve conflicts for resource contention.

 • Error detection and response: A variety of errors can occur while a computer
system is running. These include internal and external hardware errors, such as
a memory error, or a device failure or malfunction; and various software errors,
such as arithmetic overflow, attempt to access forbidden memory location, and
inability of the OS to grant the request of an application. In each case, the OS must
make the response that clears the error condition with the least impact on running
applications. The response may range from ending the program that caused the
error, to retrying the operation, to simply reporting the error to the application.

 • Accounting: A good OS collects usage statistics for various resources and
monitor performance parameters such as response time. On any system, this
information is useful in anticipating the need for future enhancements and in
tuning the system to improve performance. On a multiuser system, the infor-
mation can be used for billing purposes.

Figure 8.1 also indicates three key interfaces in a typical computer system:

 • Instruction set architecture (ISA): The ISA defines the repertoire of machine
language instructions that a computer can follow. This interface is the bound-
ary between hardware and software. Note that both application programs
and utilities may access the ISA directly. For these programs, a subset of the
 instruction repertoire is available (user ISA). The OS has access to additional
machine language instructions that deal with managing system resources
(system ISA).

 • Application binary interface (ABI): The ABI defines a standard for binary
portability across programs. The ABI defines the system call interface to the
operating system and the hardware resources and services available in a sys-
tem through the user ISA.

 • Application programming interface (API): The API gives a program access
to the hardware resources and services available in a system through the user
ISA supplemented with high-level language (HLL) library calls. Any system
calls are usually performed through libraries. Using an API enables applica-
tion software to be ported easily, through recompilation, to other systems that
support the same API.

THE OPERATING SYSTEM AS RESOURCE MANAGER A computer is a set of
resources for the movement, storage, and processing of data and for the control of
these functions. The OS is responsible for managing these resources.

Can we say that the OS controls the movement, storage, and processing of
data? From one point of view, the answer is yes: By managing the computer’s
resources, the OS is in control of the computer’s basic functions. But this control is
exercised in a curious way. Normally, we think of a control mechanism as something
external to that which is controlled, or at least as something that is a distinct and
separate part of that which is controlled. (For example, a residential heating system

8.1 / OPERATING SYSTEM OVERVIEW 269

is controlled by a thermostat, which is completely distinct from the heat-generation
and heat-distribution apparatus.) This is not the case with the OS, which as a control
mechanism is unusual in two respects:

 • The OS functions in the same way as ordinary computer software; that is, it is
a program executed by the processor.

 • The OS frequently relinquishes control and must depend on the processor to
allow it to regain control.

Like other computer programs, the OS provides instructions for the proces-
sor. The key difference is in the intent of the program. The OS directs the processor
in the use of the other system resources and in the timing of its execution of other
programs. But in order for the processor to do any of these things, it must cease
executing the OS program and execute other programs. Thus, the OS relinquishes
control for the processor to do some “useful” work and then resumes control long
enough to prepare the processor to do the next piece of work. The mechanisms
involved in all this should become clear as the chapter proceeds.

Figure 8.2 suggests the main resources that are managed by the OS. A portion
of the OS is in main memory. This includes the kernel, or nucleus, which contains
the most frequently used functions in the OS and, at a given time, other portions of
the OS currently in use. The remainder of main memory contains user programs and
data. The allocation of this resource (main memory) is controlled jointly by the OS
and memory-management hardware in the processor, as we shall see. The OS decides
when an I/O device can be used by a program in execution, and controls access to and

•
•
•

•
•
•

• • •

Memory

Computer system
I/O devices

Operating
system

software

Programs
and data

Processor Processor

OS
Programs

Data

Storage

Printers,
keyboards,
digital camera,
etc.

I/O controller

I/O controller

I/O controller

Figure 8.2 The Operating System as Resource Manager

270 CHAPTER 8 / OPERATING SYSTEM SUPPORT

use of files. The processor itself is a resource, and the OS must determine how much
processor time is to be devoted to the execution of a particular user program. In the
case of a multiple-processor system, this decision must span all of the processors.

Types of Operating Systems

Certain key characteristics serve to differentiate various types of operating systems.
The characteristics fall along two independent dimensions. The first dimension
specifies whether the system is batch or interactive. In an interactive system, the
user/programmer interacts directly with the computer, usually through a keyboard/
display terminal, to request the execution of a job or to perform a transaction.
Furthermore, the user may, depending on the nature of the application, commu-
nicate with the computer during the execution of the job. A batch system is the
opposite of interactive. The user’s program is batched together with programs from
other users and submitted by a computer operator. After the program is completed,
results are printed out for the user. Pure batch systems are rare today. However,
it will be useful to the description of contemporary operating systems to examine
batch systems briefly.

An independent dimension specifies whether the system employs multipro-
gramming or not. With multiprogramming, the attempt is made to keep the proces-
sor as busy as possible, by having it work on more than one program at a time. Several
programs are loaded into memory, and the processor switches rapidly among them.
The alternative is a uniprogramming system that works only one program at a time.

EARLY SYSTEMS With the earliest computers, from the late 1940s to the mid-1950s,
the programmer interacted directly with the computer hardware; there was no
OS. These processors were run from a console, consisting of display lights, toggle
switches, some form of input device, and a printer. Programs in processor code were
loaded via the input device (e.g., a card reader). If an error halted the program,
the error condition was indicated by the lights. The programmer could proceed
to examine registers and main memory to determine the cause of the error. If the
program proceeded to a normal completion, the output appeared on the printer.

These early systems presented two main problems:

 • Scheduling: Most installations used a sign-up sheet to reserve processor time.
Typically, a user could sign up for a block of time in multiples of a half hour or
so. A user might sign up for an hour and finish in 45 minutes; this would result
in wasted computer idle time. On the other hand, the user might run into prob-
lems, not finish in the allotted time, and be forced to stop before resolving the
problem.

 • Setup time: A single program, called a job, could involve loading the com-
piler plus the high-level language program (source program) into memory,
saving the compiled program (object program), and then loading and linking
together the object program and common functions. Each of these steps could
involve mounting or dismounting tapes, or setting up card decks. If an error
occurred, the hapless user typically had to go back to the beginning of the
setup sequence. Thus a considerable amount of time was spent just in setting
up the program to run.

8.1 / OPERATING SYSTEM OVERVIEW 271

This mode of operation could be termed serial processing, reflecting the fact
that users have access to the computer in series. Over time, various system software
tools were developed to attempt to make serial processing more efficient. These
include libraries of common functions, linkers, loaders, debuggers, and I/O driver
routines that were available as common software for all users.

SIMPLE BATCH SYSTEMS Early processors were very expensive, and therefore it
was important to maximize processor utilization. The wasted time due to scheduling
and setup time was unacceptable.

To improve utilization, simple batch operating systems were developed. With
such a system, also called a monitor, the user no longer has direct access to the
processor. Rather, the user submits the job on cards or tape to a computer operator,
who batches the jobs together sequentially and places the entire batch on an input
device, for use by the monitor.

To understand how this scheme works, let us look at it from two points of
view: that of the monitor and that of the processor. From the point of view of the
monitor, the monitor controls the sequence of events. For this to be so, much of the
monitor must always be in main memory and available for execution (Figure 8.3).
That portion is referred to as the resident monitor. The rest of the monitor consists
of utilities and common functions that are loaded as subroutines to the user pro-
gram at the beginning of any job that requires them. The monitor reads in jobs one
at a time from the input device (typically a card reader or magnetic tape drive). As it
is read in, the current job is placed in the user program area, and control is passed to
this job. When the job is completed, it returns control to the monitor, which imme-
diately reads in the next job. The results of each job are printed out for delivery to
the user.

Interrupt
processing

Device
drivers

Job
sequencing

Control language
interpreter

User
program

area

Monitor

Boundary

Figure 8.3 Memory Layout for a
Resident Monitor

272 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Now consider this sequence from the point of view of the processor. At a cer-
tain point in time, the processor is executing instructions from the portion of main
memory containing the monitor. These instructions cause the next job to be read
in to another portion of main memory. Once a job has been read in, the processor
will encounter in the monitor a branch instruction that instructs the processor to
continue execution at the start of the user program. The processor will then execute
the instruction in the user’s program until it encounters an ending or error condi-
tion. Either event causes the processor to fetch its next instruction from the monitor
program. Thus the phrase “control is passed to a job” simply means that the proc-
essor is now fetching and executing instructions in a user program, and “control is
returned to the monitor” means that the processor is now fetching and executing
instructions from the monitor program.

It should be clear that the monitor handles the scheduling problem. A batch of
jobs is queued up, and jobs are executed as rapidly as possible, with no intervening
idle time.

How about the job setup time? The monitor handles this as well. With each
job, instructions are included in a job control language (JCL). This is a special type
of programming language used to provide instructions to the monitor. A simple
example is that of a user submitting a program written in FORTRAN plus some
data to be used by the program. Each FORTRAN instruction and each item of
data is on a separate punched card or a separate record on tape. In addition to
FORTRAN and data lines, the job includes job control instructions, which are
denoted by the beginning “$”. The overall format of the job looks like this:

$JOB

$FTN
f 6 FORTRAN instructions

$LOAD

$RUN
f 6 Data

$END

To execute this job, the monitor reads the $FTN line and loads the appropri-
ate compiler from its mass storage (usually tape). The compiler translates the user’s
program into object code, which is stored in memory or mass storage. If it is stored
in memory, the operation is referred to as “compile, load, and go.” If it is stored
on tape, then the $LOAD instruction is required. This instruction is read by the
monitor, which regains control after the compile operation. The monitor invokes
the loader, which loads the object program into memory in place of the compiler
and transfers control to it. In this manner, a large segment of main memory can
be shared among different subsystems, although only one such subsystem could be
resident and executing at a time.

We see that the monitor, or batch OS, is simply a computer program. It relies
on the ability of the processor to fetch instructions from various portions of main

8.1 / OPERATING SYSTEM OVERVIEW 273

memory in order to seize and relinquish control alternately. Certain other hardware
features are also desirable:

 • Memory protection: While the user program is executing, it must not alter the
memory area containing the monitor. If such an attempt is made, the proces-
sor hardware should detect an error and transfer control to the monitor. The
monitor would then abort the job, print out an error message, and load the
next job.

 • Timer: A timer is used to prevent a single job from monopolizing the system.
The timer is set at the beginning of each job. If the timer expires, an interrupt
occurs, and control returns to the monitor.

 • Privileged instructions: Certain instructions are designated privileged and can
be executed only by the monitor. If the processor encounters such an instruc-
tion while executing a user program, an error interrupt occurs. Among the
privileged instructions are I/O instructions, so that the monitor retains con-
trol of all I/O devices. This prevents, for example, a user program from acci-
dentally reading job control instructions from the next job. If a user program
wishes to perform I/O, it must request that the monitor perform the operation
for it. If a privileged instruction is encountered by the processor while it is
executing a user program, the processor hardware considers this an error and
transfers control to the monitor.

 • Interrupts: Early computer models did not have this capability. This feature
gives the OS more flexibility in relinquishing control to and regaining control
from user programs.

Processor time alternates between execution of user programs and execution
of the monitor. There have been two sacrifices: Some main memory is now given
over to the monitor and some processor time is consumed by the monitor. Both
of these are forms of overhead. Even with this overhead, the simple batch system
improves utilization of the computer.

MULTIPROGRAMMED BATCH SYSTEMS Even with the automatic job sequencing
provided by a simple batch OS, the processor is often idle. The problem is that
I/O devices are slow compared to the processor. Figure 8.4 details a representative
calculation. The calculation concerns a program that processes a file of records and
performs, on average, 100 processor instructions per record. In this example the
computer spends over 96% of its time waiting for I/O devices to finish transferring
data! Figure 8.5a illustrates this situation. The processor spends a certain amount of

Read one record from file 15 ms
Execute 100 instructions 1 ms
Write one record to file 15 ms
TOTAL 31 ms

Percent CPU utilization �
1

31
� 0.032 � 3.2%

Figure 8.4 System Utilization Example

274 CHAPTER 8 / OPERATING SYSTEM SUPPORT

time executing, until it reaches an I/O instruction. It must then wait until that I/O
instruction concludes before proceeding.

This inefficiency is not necessary. We know that there must be enough mem-
ory to hold the OS (resident monitor) and one user program. Suppose that there
is room for the OS and two user programs. Now, when one job needs to wait for
I/O, the processor can switch to the other job, which likely is not waiting for I/O
(Figure 8.5b). Furthermore, we might expand memory to hold three, four, or more
programs and switch among all of them (Figure 8.5c). This technique is known as mul-
tiprogramming, or multitasking.1 It is the central theme of modern operating systems.

1The term multitasking is sometimes reserved to mean multiple tasks within the same program that may
be handled concurrently by the OS, in contrast to multiprogramming, which would refer to multiple
processes from multiple programs. However, it is more common to equate the terms multitasking and
multiprogramming, as is done in most standards dictionaries (e.g., IEEE Std 100-1992, The New IEEE
Standard Dictionary of Electrical and Electronics Terms).

Run Wait WaitRun

Time

Run Wait WaitRun

Run
A

Run
A

Run WaitWait WaitRun

Run
B Wait Wait

Run
B

Run
A

Run
A

Run
B

Run
B

Run
C

Run
C

(a) Uniprogramming

Time

(b) Multiprogramming with two programs

Time

(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 8.5 Multiprogramming Example

8.1 / OPERATING SYSTEM OVERVIEW 275

Example 8.1 This example illustrates the benefit of multiprogramming. Consider a com-
puter with 250 Mbytes of available memory (not used by the OS), a disk, a terminal, and a
printer. Three programs, JOB1, JOB2, and JOB3, are submitted for execution at the same
time, with the attributes listed in Table 8.1. We assume minimal processor requirements
for JOB2 and JOB3 and continuous disk and printer use by JOB3. For a simple batch
environment, these jobs will be executed in sequence. Thus, JOB1 completes in 5 minutes.
JOB2 must wait until the 5 minutes is over and then completes 15 minutes after that. JOB3
 begins after 20 minutes and completes at 30 minutes from the time it was initially submit-
ted. The average resource utilization, throughput, and response times are shown in the uni-
programming column of Table 8.2. Device-by-device utilization is illustrated in Figure 8.6a.
It is evident that there is gross underutilization for all resources when averaged over the
required 30-minute time period.

Now suppose that the jobs are run concurrently under a multiprogramming OS.
 Because there is little resource contention between the jobs, all three can run in nearly
minimum time while coexisting with the others in the computer (assuming that JOB2 and
JOB3 are allotted enough processor time to keep their input and output operations active).
JOB1 will still require 5 minutes to complete but at the end of that time, JOB2 will be one-
third finished, and JOB3 will be half finished. All three jobs will have finished within 15
minutes. The improvement is evident when examining the multiprogramming column of
Table 8.2, obtained from the histogram shown in Figure 8.6b.

Table 8.1 Sample Program Execution Attributes

JOB1 JOB2 JOB3

Type of job Heavy compute Heavy I/O Heavy I/O

Duration (min) 5 15 10

Memory required (M) 50 100 80

Need disk? No No Yes

Need terminal? No Yes No

Need printer? No No Yes

Table 8.2 Effects of Multiprogramming on Resource Utilization

Uniprogramming Multiprogramming

Processor use (%) 20 40

Memory use (%) 33 67

Disk use (%) 33 67

Printer use (%) 33 67

Elapsed time (min) 30 15

Throughput rate (jobs/hr) 6 12

Mean response time (min) 18 10

As with a simple batch system, a multiprogramming batch system must rely
on certain computer hardware features. The most notable additional feature that
is useful for multiprogramming is the hardware that supports I/O interrupts and

276 CHAPTER 8 / OPERATING SYSTEM SUPPORT

DMA. With interrupt-driven I/O or DMA, the processor can issue an I/O command
for one job and proceed with the execution of another job while the I/O is carried
out by the device controller. When the I/O operation is complete, the processor is
interrupted and control is passed to an interrupt-handling program in the OS. The
OS will then pass control to another job.

Multiprogramming operating systems are fairly sophisticated compared to
single-program, or uniprogramming, systems. To have several jobs ready to run, the
jobs must be kept in main memory, requiring some form of memory management.
In addition, if several jobs are ready to run, the processor must decide which one
to run, which requires some algorithm for scheduling. These concepts are discussed
later in this chapter.

TIME-SHARING SYSTEMS With the use of multiprogramming, batch processing
can be quite efficient. However, for many jobs, it is desirable to provide a mode in
which the user interacts directly with the computer. Indeed, for some jobs, such as
transaction processing, an interactive mode is essential.

Today, the requirement for an interactive computing facility can be, and often
is, met by the use of a dedicated microcomputer. That option was not available in the
1960s, when most computers were big and costly. Instead, time sharing was developed.

Just as multiprogramming allows the processor to handle multiple batch jobs
at a time, multiprogramming can be used to handle multiple interactive jobs. In
this latter case, the technique is referred to as time sharing, because the proces-
sor’s time is shared among multiple users. In a time-sharing system, multiple users

0%

0 5 10 15 20 25 30

minutes

time

(a) Uniprogramming

JOB1 JOB2 JOB3Job history

Printer

Terminal

Disk

Memory

CPU

100%
0%

100%
0%

100%
0%

100%
0%

100%

0%

0 5 10 15
minutes

(b) Multiprogramming

JOB1
JOB2

JOB3

Job history

Printer

Terminal

Disk

Memory

CPU

100%
0%

100%
0%

100%
0%

100%
0%

100%

time

Figure 8.6 Utilization Histograms

8.2 / SCHEDULING 277

 simultaneously access the system through terminals, with the OS interleaving the
execution of each user program in a short burst or quantum of computation. Thus,
if there are n users actively requesting service at one time, each user will only see
on the average 1/n of the effective computer speed, not counting OS overhead.
However, given the relatively slow human reaction time, the response time on a
properly designed system should be comparable to that on a dedicated computer.

Both batch multiprogramming and time sharing use multiprogramming. The
key differences are listed in Table 8.3.

 8.2 SCHEDULING

The key to multiprogramming is scheduling. In fact, four types of scheduling are
typically involved (Table 8.4). We will explore these presently. But first, we intro-
duce the concept of process. This term was first used by the designers of the Multics
OS in the 1960s. It is a somewhat more general term than job. Many definitions
have been given for the term process, including

 • A program in execution

 • The “animated spirit” of a program

 • That entity to which a processor is assigned

This concept should become clearer as we proceed.

Long-Term Scheduling

The long-term scheduler determines which programs are admitted to the system for
processing. Thus, it controls the degree of multiprogramming (number of processes
in memory). Once admitted, a job or user program becomes a process and is
added to the queue for the short-term scheduler. In some systems, a newly created
process begins in a swapped-out condition, in which case it is added to a queue for
the medium-term scheduler.

Table 8.3 Batch Multiprogramming versus Time Sharing

Batch Multiprogramming Time Sharing

Principal objective Maximize processor use Minimize response time

Source of directives to
operating system

Job control language
commands provided with the job

Commands entered at the
terminal

Table 8.4 Types of Scheduling

Long-term scheduling The decision to add to the pool of processes to be executed

Medium-term scheduling The decision to add to the number of processes that are partially or
fully in main memory

Short-term scheduling The decision as to which available process will be executed by the
processor

I/O scheduling The decision as to which process’s pending I/O request shall be
handled by an available I/O device

278 CHAPTER 8 / OPERATING SYSTEM SUPPORT

In a batch system, or for the batch portion of a general-purpose OS, newly
submitted jobs are routed to disk and held in a batch queue. The long-term sched-
uler creates processes from the queue when it can. There are two decisions involved
here. First, the scheduler must decide that the OS can take on one or more addi-
tional processes. Second, the scheduler must decide which job or jobs to accept and
turn into processes. The criteria used may include priority, expected execution time,
and I/O requirements.

For interactive programs in a time-sharing system, a process request is gen-
erated when a user attempts to connect to the system. Time-sharing users are not
simply queued up and kept waiting until the system can accept them. Rather, the
OS will accept all authorized comers until the system is saturated, using some pre-
defined measure of saturation. At that point, a connection request is met with a
message indicating that the system is full and the user should try again later.

Medium-Term Scheduling

Medium-term scheduling is part of the swapping function, described in Section 8.3.
Typically, the swapping-in decision is based on the need to manage the degree of
multiprogramming. On a system that does not use virtual memory, memory man-
agement is also an issue. Thus, the swapping-in decision will consider the memory
requirements of the swapped-out processes.

Short-Term Scheduling

The long-term scheduler executes relatively infrequently and makes the coarse-
grained decision of whether or not to take on a new process, and which one to take.
The short-term scheduler, also known as the dispatcher, executes frequently and
makes the fine-grained decision of which job to execute next.

PROCESS STATES To understand the operation of the short-term scheduler, we
need to consider the concept of a process state. During the lifetime of a process,
its status will change a number of times. Its status at any point in time is referred to
as a state. The term state is used because it connotes that certain information exists
that defines the status at that point. At minimum, there are five defined states for a
process (Figure 8.7):

New Ready

Blocked

Running Exit
Admit

Dispatch

Timeout

Release

Event
wait

Event
occurs

Figure 8.7 Five-State Process Model

8.2 / SCHEDULING 279

 • New: A program is admitted by the high-level scheduler but is not yet ready
to execute. The OS will initialize the process, moving it to the ready state.

 • Ready: The process is ready to execute and is awaiting access to the processor.

 • Running: The process is being executed by the processor.

 • Waiting: The process is suspended from execution waiting for some system
resource, such as I/O.

 • Halted: The process has terminated and will be destroyed by the OS.

For each process in the system, the OS must maintain information indicat-
ing the state of the process and other information necessary for process execution.
For this purpose, each process is represented in the OS by a process control block
(Figure 8.8), which typically contains

 • Identifier: Each current process has a unique identifier.

 • State: The current state of the process (new, ready, and so on).

 • Priority: Relative priority level.

 • Program counter: The address of the next instruction in the program to be
executed.

 • Memory pointers: The starting and ending locations of the process in memory.

 • Context data: These are data that are present in registers in the processor
while the process is executing, and they will be discussed in Part Three. For
now, it is enough to say that these data represent the “context” of the process.
The context data plus the program counter are saved when the process leaves
the running state. They are retrieved by the processor when it resumes execu-
tion of the process.

Identifier

State

Priority

Program counter

Memory pointers

Context data

I/O status
information

Accounting
information

•
•
•

Figure 8.8 Process Control Block

280 CHAPTER 8 / OPERATING SYSTEM SUPPORT

 • I/O status information: Includes outstanding I/O requests, I/O devices (e.g., tape
drives) assigned to this process, a list of files assigned to the process, and so on.

 • Accounting information: May include the amount of processor time and clock
time used, time limits, account numbers, and so on.

When the scheduler accepts a new job or user request for execution, it creates
a blank process control block and places the associated process in the new state.
After the system has properly filled in the process control block, the process is
transferred to the ready state.

SCHEDULING TECHNIQUES To understand how the OS manages the scheduling of the
various jobs in memory, let us begin by considering the simple example in Figure 8.9.
The figure shows how main memory is partitioned at a given point in time. The
kernel of the OS is, of course, always resident. In addition, there are a number of
active processes, including A and B, each of which is allocated a portion of memory.

Operating system

Service handler
Scheduler

Interrupt handler

A
"Running"

B
"Ready"

Other partitions

(a) (b) (c)

Operating system

Service handler
Scheduler

Interrupt handler

A
"Waiting"

B
"Ready"

Other partitions

Operating system

Service handler
Scheduler

Interrupt handler

A
"Waiting"

B
"Running"

Other partitions

In
control

In
control

In
control

Figure 8.9 Scheduling Example

8.2 / SCHEDULING 281

We begin at a point in time when process A is running. The processor is exe-
cuting instructions from the program contained in A’s memory partition. At some
later point in time, the processor ceases to execute instructions in A and begins
executing instructions in the OS area. This will happen for one of three reasons:

 1. Process A issues a service call (e.g., an I/O request) to the OS. Execution of A
is suspended until this call is satisfied by the OS.

 2. Process A causes an interrupt. An interrupt is a hardware-generated signal to
the processor. When this signal is detected, the processor ceases to execute A
and transfers to the interrupt handler in the OS. A variety of events related
to A will cause an interrupt. One example is an error, such as attempting to
execute a privileged instruction. Another example is a timeout; to prevent any
one process from monopolizing the processor, each process is only granted the
processor for a short period at a time.

 3. Some event unrelated to process A that requires attention causes an interrupt.
An example is the completion of an I/O operation.

In any case, the result is the following. The processor saves the current context
data and the program counter for A in A’s process control block and then begins
executing in the OS. The OS may perform some work, such as initiating an I/O
operation. Then the short-term-scheduler portion of the OS decides which process
should be executed next. In this example, B is chosen. The OS instructs the proces-
sor to restore B’s context data and proceed with the execution of B where it left off.

This simple example highlights the basic functioning of the short-term sched-
uler. Figure 8.10 shows the major elements of the OS involved in the multiprogram-
ming and scheduling of processes. The OS receives control of the processor at the

Service
call

handler (code)

Service call
from process

Interrupt
from process

Pass control
to process

Interrupt
from I/O

Interrupt
handler (code)

Short-term
scheduler

(code)

Long-
term

queue

Short-
term

queue

I/O
queues

Operating system

Figure 8.10 Key Elements of an Operating System for Multiprogramming

282 CHAPTER 8 / OPERATING SYSTEM SUPPORT

interrupt handler if an interrupt occurs and at the service-call handler if a service
call occurs. Once the interrupt or service call is handled, the short-term scheduler is
invoked to select a process for execution.

To do its job, the OS maintains a number of queues. Each queue is simply a
waiting list of processes waiting for some resource. The long-term queue is a list of
jobs waiting to use the system. As conditions permit, the high-level scheduler will
allocate memory and create a process for one of the waiting items. The short-term
queue consists of all processes in the ready state. Any one of these processes could
use the processor next. It is up to the short-term scheduler to pick one. Generally,
this is done with a round-robin algorithm, giving each process some time in turn.
Priority levels may also be used. Finally, there is an I/O queue for each I/O device.
More than one process may request the use of the same I/O device. All processes
waiting to use each device are lined up in that device’s queue.

Figure 8.11 suggests how processes progress through the computer under the
control of the OS. Each process request (batch job, user-defined interactive job) is
placed in the long-term queue. As resources become available, a process request
becomes a process and is then placed in the ready state and put in the short-term
queue. The processor alternates between executing OS instructions and executing
user processes. While the OS is in control, it decides which process in the short-term
queue should be executed next. When the OS has finished its immediate tasks, it
turns the processor over to the chosen process.

As was mentioned earlier, a process being executed may be suspended for
a variety of reasons. If it is suspended because the process requests I/O, then it

End

Long-term
queue

Short-term
queue

Admit
Processor

I/O 1 Queue

I/O 1
Occurs

I/O 2
Occurs

I/O n
Occurs

I/O 2 Queue

I/O n Queue

Figure 8.11 Queuing Diagram Representation of Processor Scheduling

8.3 / MEMORY MANAGEMENT 283

is placed in the appropriate I/O queue. If it is suspended because of a timeout or
because the OS must attend to pressing business, then it is placed in the ready state
and put into the short-term queue.

Finally, we mention that the OS also manages the I/O queues. When an I/O
operation is completed, the OS removes the satisfied process from that I/O queue
and places it in the short-term queue. It then selects another waiting process (if any)
and signals for the I/O device to satisfy that process’s request.

 8.3 MEMORY MANAGEMENT

In a uniprogramming system, main memory is divided into two parts: one part for
the OS (resident monitor) and one part for the program currently being executed.
In a multiprogramming system, the “user” part of memory is subdivided to accom-
modate multiple processes. The task of subdivision is carried out dynamically by the
OS and is known as memory management.

Effective memory management is vital in a multiprogramming system. If only
a few processes are in memory, then for much of the time all of the processes will be
waiting for I/O and the processor will be idle. Thus, memory needs to be allocated
efficiently to pack as many processes into memory as possible.

Swapping

Referring back to Figure 8.11, we have discussed three types of queues: the long-
term queue of requests for new processes, the short-term queue of processes ready
to use the processor, and the various I/O queues of processes that are not ready to
use the processor. Recall that the reason for this elaborate machinery is that I/O
activities are much slower than computation and therefore the processor in a uni-
programming system is idle most of the time.

But the arrangement in Figure 8.11 does not entirely solve the problem. It is
true that, in this case, memory holds multiple processes and that the processor can
move to another process when one process is waiting. But the processor is so much
faster than I/O that it will be common for all the processes in memory to be waiting
on I/O. Thus, even with multiprogramming, a processor could be idle most of the
time.

What to do? Main memory could be expanded, and so be able to accommo-
date more processes. But there are two flaws in this approach. First, main memory
is expensive, even today. Second, the appetite of programs for memory has grown
as fast as the cost of memory has dropped. So larger memory results in larger proc-
esses, not more processes.

Another solution is swapping, depicted in Figure 8.12. We have a long-term
queue of process requests, typically stored on disk. These are brought in, one at a
time, as space becomes available. As processes are completed, they are moved out
of main memory. Now the situation will arise that none of the processes in memory
are in the ready state (e.g., all are waiting on an I/O operation). Rather than remain
idle, the processor swaps one of these processes back out to disk into an intermediate
queue. This is a queue of existing processes that have been temporarily kicked out

284 CHAPTER 8 / OPERATING SYSTEM SUPPORT

of memory. The OS then brings in another process from the intermediate queue, or
it honors a new process request from the long-term queue. Execution then contin-
ues with the newly arrived process.

Swapping, however, is an I/O operation, and therefore there is the potential
for making the problem worse, not better. But because disk I/O is generally the
fastest I/O on a system (e.g., compared with tape or printer I/O), swapping will usu-
ally enhance performance. A more sophisticated scheme, involving virtual memory,
improves performance over simple swapping. This will be discussed shortly. But
first, we must prepare the ground by explaining partitioning and paging.

Partitioning

The simplest scheme for partitioning available memory is to use fixed-size parti-
tions, as shown in Figure 8.13. Note that, although the partitions are of fixed size,
they need not be of equal size. When a process is brought into memory, it is placed
in the smallest available partition that will hold it.

Even with the use of unequal fixed-size partitions, there will be wasted memory.
In most cases, a process will not require exactly as much memory as provided by the

Operating
system

Operating
system

Disk storage

Long-term
queue

Long-term
queue

Intermediate
queue

Completed jobs
and user sessions

Completed jobs
and user sessions

(a) Simple job scheduling

(b) Swapping

Main
memory

Disk storage

Main
memory

Figure 8.12 The Use of Swapping

8.3 / MEMORY MANAGEMENT 285

partition. For example, a process that requires 3M bytes of memory would be placed
in the 4M partition of Figure 8.13b, wasting 1M that could be used by another process.

A more efficient approach is to use variable-size partitions. When a process is
brought into memory, it is allocated exactly as much memory as it requires and no more.

Operating system
8M

Operating system
8M

8M

2M

4M

6M

8M

8M

12M

16M

8M

8M

8M

8M

8M

8M

(a) Equal-size partitions (b) Unequal-size partitions

Figure 8.13 Example of Fixed Partitioning of a 64-Mbyte Memory

Example 8.2 An example, using 64 Mbytes of main memory, is shown in Figure 8.14.
Initially, main memory is empty, except for the OS (a). The first three processes are loaded
in, starting where the OS ends and occupying just enough space for each process (b, c, d).
This leaves a “hole” at the end of memory that is too small for a fourth process. At some
point, none of the processes in memory is ready. The OS swaps out process 2 (e), which
leaves sufficient room to load a new process, process 4 (f). Because process 4 is smaller
than process 2, another small hole is created. Later, a point is reached at which none of the
processes in main memory is ready, but process 2, in the Ready-Suspend state, is available.
Because there is insufficient room in memory for process 2, the OS swaps process 1 out (g)
and swaps process 2 back in (h).

286 CHAPTER 8 / OPERATING SYSTEM SUPPORT

As this example shows, this method starts out well, but eventually it leads to a
situation in which there are a lot of small holes in memory. As time goes on, mem-
ory becomes more and more fragmented, and memory utilization declines. One
technique for overcoming this problem is compaction: From time to time, the OS
shifts the processes in memory to place all the free memory together in one block.
This is a time-consuming procedure, wasteful of processor time.

Before we consider ways of dealing with the shortcomings of partitioning, we
must clear up one loose end. Consider Figure 8.14; it should be obvious that a proc-
ess is not likely to be loaded into the same place in main memory each time it is
swapped in. Furthermore, if compaction is used, a process may be shifted while in
main memory. A process in memory consists of instructions plus data. The instruc-
tions will contain addresses for memory locations of two types:

 • Addresses of data items

 • Addresses of instructions, used for branching instructions

(a)

Operating
system 8M

20M

36M

56M

(b)

Operating
system

Process 1 20M

14M

22M

(c)

Operating
system

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating
system

Process 1

Process 2

14M

Process 3

20M

14M

18M

4M

(e)

Operating
system

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating
system

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating
system

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating
system

Process 4

Process 3

Process 2

Figure 8.14 The Effect of Dynamic Partitioning

8.3 / MEMORY MANAGEMENT 287

But these addresses are not fixed. They will change each time a process is
swapped in. To solve this problem, a distinction is made between logical addresses
and physical addresses. A logical address is expressed as a location relative to the
beginning of the program. Instructions in the program contain only logical addresses.
A physical address is an actual location in main memory. When the processor exe-
cutes a process, it automatically converts from logical to physical address by adding
the current starting location of the process, called its base address, to each logical
address. This is another example of a processor hardware feature designed to meet
an OS requirement. The exact nature of this hardware feature depends on the mem-
ory management strategy in use. We will see several examples later in this chapter.

Paging

Both unequal fixed-size and variable-size partitions are inefficient in the use of
memory. Suppose, however, that memory is partitioned into equal fixed-size chunks
that are relatively small, and that each process is also divided into small fixed-size
chunks of some size. Then the chunks of a program, known as pages, could be
assigned to available chunks of memory, known as frames, or page frames. At most,
then, the wasted space in memory for that process is a fraction of the last page.

Figure 8.15 shows an example of the use of pages and frames. At a given point
in time, some of the frames in memory are in use and some are free. The list of free
frames is maintained by the OS. Process A, stored on disk, consists of four pages.

14

13

15

16
In
use

Main
memory

(a) Before (b) After

Process A

Free frame list
13
14
15
18
20

Free frame list
20

Process A
page table

18

13

14

15

Page 0
Page 1
Page 2
Page 3

In
use

In
use

17

18

19

20

14

13

15

16
In
use

In
use

Main
memory

Page 0
of A

Page 3
of A

Page 2
of A

Page 1
of A

In
use

17

18

19

20

Process A

Page 0
Page 1
Page 2
Page 3

Figure 8.15 Allocation of Free Frames

288 CHAPTER 8 / OPERATING SYSTEM SUPPORT

When it comes time to load this process, the OS finds four free frames and loads the
four pages of the process A into the four frames.

Now suppose, as in this example, that there are not sufficient unused con-
tiguous frames to hold the process. Does this prevent the OS from loading A?
The answer is no, because we can once again use the concept of logical address. A
simple base address will no longer suffice. Rather, the OS maintains a page table
for each process. The page table shows the frame location for each page of the
process. Within the program, each logical address consists of a page number and
a relative address within the page. Recall that in the case of simple partitioning, a
logical address is the location of a word relative to the beginning of the program;
the processor translates that into a physical address. With paging, the logical-
to-physical address translation is still done by processor hardware. The processor
must know how to access the page table of the current process. Presented with a
logical address (page number, relative address), the processor uses the page table
to produce a physical address (frame number, relative address). An example is
shown in Figure 8.16.

This approach solves the problems raised earlier. Main memory is divided
into many small equal-size frames. Each process is divided into frame-size pages:
smaller processes require fewer pages, larger processes require more. When a
process is brought in, its pages are loaded into available frames, and a page table
is set up.

30

18

13

14

15

1

Page
number

Relative address
within page

Logical
address

Physical
address

Main
memory

Process A
page table

30
Page 3

of A

Page 0
of A

Page 2
of A

Page 1
of A 13

14

15

16

17

18

13

Frame
number

Relative address
within frame

Figure 8.16 Logical and Physical Addresses

8.3 / MEMORY MANAGEMENT 289

Virtual Memory

DEMAND PAGING With the use of paging, truly effective multiprogramming
systems came into being. Furthermore, the simple tactic of breaking a process up
into pages led to the development of another important concept: virtual memory.

To understand virtual memory, we must add a refinement to the paging
scheme just discussed. That refinement is demand paging, which simply means that
each page of a process is brought in only when it is needed, that is, on demand.

Consider a large process, consisting of a long program plus a number of arrays
of data. Over any short period of time, execution may be confined to a small sec-
tion of the program (e.g., a subroutine), and perhaps only one or two arrays of data
are being used. This is the principle of locality, which we introduced in Appendix
4A. It would clearly be wasteful to load in dozens of pages for that process when
only a few pages will be used before the program is suspended. We can make bet-
ter use of memory by loading in just a few pages. Then, if the program branches
to an instruction on a page not in main memory, or if the program references data
on a page not in memory, a page fault is triggered. This tells the OS to bring in the
desired page.

Thus, at any one time, only a few pages of any given process are in memory,
and therefore more processes can be maintained in memory. Furthermore, time is
saved because unused pages are not swapped in and out of memory. However, the
OS must be clever about how it manages this scheme. When it brings one page in, it
must throw another page out; this is known as page replacement. If it throws out a
page just before it is about to be used, then it will just have to go get that page again
almost immediately. Too much of this leads to a condition known as thrashing: the
processor spends most of its time swapping pages rather than executing instructions.
The avoidance of thrashing was a major research area in the 1970s and led to a vari-
ety of complex but effective algorithms. In essence, the OS tries to guess, based on
recent history, which pages are least likely to be used in the near future.

Page Replacement Algorithm Simulators

A discussion of page replacement algorithms is beyond the scope of this chap-
ter. A potentially effective technique is least recently used (LRU), the same algo-
rithm discussed in Chapter 4 for cache replacement. In practice, LRU is difficult to
implement for a virtual memory paging scheme. Several alternative approaches that
seek to approximate the performance of LRU are in use; see Appendix F for details.

With demand paging, it is not necessary to load an entire process into main
memory. This fact has a remarkable consequence: It is possible for a process to be
larger than all of main memory. One of the most fundamental restrictions in pro-
gramming has been lifted. Without demand paging, a programmer must be acutely
aware of how much memory is available. If the program being written is too large,
the programmer must devise ways to structure the program into pieces that can

290 CHAPTER 8 / OPERATING SYSTEM SUPPORT

be loaded one at a time. With demand paging, that job is left to the OS and the
hardware. As far as the programmer is concerned, he or she is dealing with a huge
memory, the size associated with disk storage.

Because a process executes only in main memory, that memory is referred to
as real memory. But a programmer or user perceives a much larger memory—that
which is allocated on the disk. This latter is therefore referred to as virtual memory.
Virtual memory allows for very effective multiprogramming and relieves the user of
the unnecessarily tight constraints of main memory.

PAGE TABLE STRUCTURE The basic mechanism for reading a word from memory
involves the translation of a virtual, or logical, address, consisting of page number
and offset, into a physical address, consisting of frame number and offset, using a
page table. Because the page table is of variable length, depending on the size of the
process, we cannot expect to hold it in registers. Instead, it must be in main memory
to be accessed. Figure 8.16 suggests a hardware implementation of this scheme.
When a particular process is running, a register holds the starting address of the
page table for that process. The page number of a virtual address is used to index
that table and look up the corresponding frame number. This is combined with the
offset portion of the virtual address to produce the desired real address.

In most systems, there is one page table per process. But each process can
occupy huge amounts of virtual memory. For example, in the VAX architecture,
each process can have up to 231 = 2 Gbytes of virtual memory. Using 29 = 512@byte
pages, that means that as many as 222 page table entries are required per process.
Clearly, the amount of memory devoted to page tables alone could be unacceptably
high. To overcome this problem, most virtual memory schemes store page tables in
virtual memory rather than real memory. This means that page tables are subject to
paging just as other pages are. When a process is running, at least a part of its page
table must be in main memory, including the page table entry of the currently execut-
ing page. Some processors make use of a two-level scheme to organize large page
tables. In this scheme, there is a page directory, in which each entry points to a page
table. Thus, if the length of the page directory is X, and if the maximum length of a
page table is Y, then a process can consist of up to X * Y pages. Typically, the maxi-
mum length of a page table is restricted to be equal to one page. We will see an exam-
ple of this two-level approach when we consider the Pentium II later in this chapter.

An alternative approach to the use of one- or two-level page tables is the use
of an inverted page table structure (Figure 8.17). Variations on this approach are
used on the PowerPC, UltraSPARC, and the IA-64 architecture. An implementa-
tion of the Mach OS on the RT-PC also uses this technique.

In this approach, the page number portion of a virtual address is mapped into
a hash value using a simple hashing function.2 The hash value is a pointer to the
inverted page table, which contains the page table entries. There is one entry in the

2A hash function maps numbers in the range 0 through M into numbers in the range 0 through N, where
M 7 N. The output of the hash function is used as an index into the hash table. Since more than one input
maps into the same output, it is possible for an input item to map to a hash table entry that is already
 occupied. In that case, the new item must overflow into another hash table location. Typically, the new
item is placed in the first succeeding empty space, and a pointer from the original location is provided to
chain the entries together. See Appendix C for more information on hash functions.

8.3 / MEMORY MANAGEMENT 291

inverted page table for each real memory page frame rather than one per virtual
page. Thus a fixed proportion of real memory is required for the tables regardless of
the number of processes or virtual pages supported. Because more than one virtual
address may map into the same hash table entry, a chaining technique is used for
managing the overflow. The hashing technique results in chains that are typically
short—between one and two entries. The page table’s structure is called inverted
because it indexes page table entries by frame number rather than by virtual page
number.

Translation Lookaside Buffer

In principle, then, every virtual memory reference can cause two physical mem-
ory accesses: one to fetch the appropriate page table entry, and one to fetch the
desired data. Thus, a straightforward virtual memory scheme would have the effect
of doubling the memory access time. To overcome this problem, most virtual
memory schemes make use of a special cache for page table entries, usually called
a translation lookaside buffer (TLB). This cache functions in the same way as a
memory cache and contains those page table entries that have been most recently
used. Figure 8.18 is a flowchart that shows the use of the TLB. By the principle of
locality, most virtual memory references will be to locations in recently used pages.
Therefore, most references will involve page table entries in the cache. Studies of
the VAX TLB have shown that this scheme can significantly improve performance
[CLAR85, SATY81].

Page # Offset

Frame #

m bits

m bits

n bits

n bits

Virtual address

Hash
function

Page #
Process

ID

Control
bits

Chain

Inverted page table
(one entry for each

physical memory frame)

Real address

Offset

i

0

j

2m � 1

Figure 8.17 Inverted Page Table Structure

292 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Note that the virtual memory mechanism must interact with the cache system
(not the TLB cache, but the main memory cache). This is illustrated in Figure 8.19.
A virtual address will generally be in the form of a page number, offset. First, the
memory system consults the TLB to see if the matching page table entry is present.
If it is, the real (physical) address is generated by combining the frame number with
the offset. If not, the entry is accessed from a page table. Once the real address is
generated, which is in the form of a tag and a remainder, the cache is consulted to
see if the block containing that word is present (see Figure 4.5). If so, it is returned
to the processor. If not, the word is retrieved from main memory.

The reader should be able to appreciate the complexity of the processor hard-
ware involved in a single memory reference. The virtual address is translated into
a real address. This involves reference to a page table, which may be in the TLB, in

Start

CPU checks the TLB

Page table
entry in
TLB?

Access page table

Update TLB

Yes

Yes

Yes

No

No

No

CPU generates
physical address

OS instructs CPU
to read the page

from disk

CPU activates
I/O hardware

Page fault
handling routine

Return to
faulted instruction

Page tables
updated

Perform page
replacement

Page transferred
from disk to

main memory

Page
in main

memory?

Memory
full?

Figure 8.18 Operation of Paging and Translation Lookaside Buffer (TLB)

8.3 / MEMORY MANAGEMENT 293

main memory, or on disk. The referenced word may be in cache, in main memory,
or on disk. In the latter case, the page containing the word must be loaded into main
memory and its block loaded into the cache. In addition, the page table entry for
that page must be updated.

Segmentation

There is another way in which addressable memory can be subdivided, known as
segmentation. Whereas paging is invisible to the programmer and serves the purpose
of providing the programmer with a larger address space, segmentation is usually
visible to the programmer and is provided as a convenience for organizing programs
and data and as a means for associating privilege and protection attributes with
instructions and data.

Segmentation allows the programmer to view memory as consisting of mul-
tiple address spaces or segments. Segments are of variable, indeed dynamic, size.
Typically, the programmer or the OS will assign programs and data to different seg-
ments. There may be a number of program segments for various types of programs as
well as a number of data segments. Each segment may be assigned access and usage
rights. Memory references consist of a (segment number, offset) form of address.

This organization has a number of advantages to the programmer over a non-
segmented address space:

Page # Offset

Virtual address

TLB operation

Page table

Main
memory

TLB miss

Miss

Hit Value

TLB
hit

TLB

Tag Remainder

Real address

Cache operation

Cache
�

Value

Figure 8.19 Translation Lookaside Buffer and Cache Operation

294 CHAPTER 8 / OPERATING SYSTEM SUPPORT

 1. It simplifies the handling of growing data structures. If the programmer does
not know ahead of time how large a particular data structure will become, it
is not necessary to guess. The data structure can be assigned its own segment,
and the OS will expand or shrink the segment as needed.

 2. It allows programs to be altered and recompiled independently without
requiring that an entire set of programs be relinked and reloaded. Again, this
is accomplished using multiple segments.

 3. It lends itself to sharing among processes. A programmer can place a utility
program or a useful table of data in a segment that can be addressed by other
processes.

 4. It lends itself to protection. Because a segment can be constructed to contain a
well-defined set of programs or data, the programmer or a system administra-
tor can assign access privileges in a convenient fashion.

These advantages are not available with paging, which is invisible to the pro-
grammer. On the other hand, we have seen that paging provides for an efficient
form of memory management. To combine the advantages of both, some systems
are equipped with the hardware and OS software to provide both.

 8.4 PENTIUM MEMORY MANAGEMENT

Since the introduction of the 32-bit architecture, microprocessors have evolved
sophisticated memory management schemes that build on the lessons learned with
medium- and large-scale systems. In many cases, the microprocessor versions are
superior to their larger-system antecedents. Because the schemes were developed
by the microprocessor hardware vendor and may be employed with a variety of
operating systems, they tend to be quite general purpose. A representative example
is the scheme used on the Pentium II. The Pentium II memory management hard-
ware is essentially the same as that used in the Intel 80386 and 80486 processors,
with some refinements.

Address Spaces

The Pentium II includes hardware for both segmentation and paging. Both mech-
anisms can be disabled, allowing the user to choose from four distinct views of
memory:

 • Unsegmented unpaged memory: In this case, the virtual address is the same
as the physical address. This is useful, for example, in low-complexity, high-
performance controller applications.

 • Unsegmented paged memory: Here memory is viewed as a paged linear
address space. Protection and management of memory is done via paging.
This is favored by some operating systems (e.g., Berkeley UNIX).

 • Segmented unpaged memory: Here memory is viewed as a collection of logi-
cal address spaces. The advantage of this view over a paged approach is that it

8.4 / PENTIUM MEMORY MANAGEMENT 295

affords protection down to the level of a single byte, if necessary. Furthermore,
unlike paging, it guarantees that the translation table needed (the segment
table) is on-chip when the segment is in memory. Hence, segmented unpaged
memory results in predictable access times.

 • Segmented paged memory: Segmentation is used to define logical memory
partitions subject to access control, and paging is used to manage the allocation
of memory within the partitions. Operating systems such as UNIX System V
favor this view.

Segmentation

When segmentation is used, each virtual address (called a logical address in the
Pentium II documentation) consists of a 16-bit segment reference and a 32-bit
 offset. Two bits of the segment reference deal with the protection mechanism, leav-
ing 14 bits for specifying a particular segment. Thus, with unsegmented memory, the
user’s virtual memory is 232 = 4 Gbytes. With segmented memory, the total virtual
memory space as seen by a user is 246 = 64 terabytes (Tbytes). The physical address
space employs a 32-bit address for a maximum of 4 Gbytes.

The amount of virtual memory can actually be larger than the 64 Tbytes. This
is because the processor’s interpretation of a virtual address depends on which
process is currently active. Virtual address space is divided into two parts. One-half
of the virtual address space (8K segments * 4 Gbytes) is global, shared by all proc-
esses; the remainder is local and is distinct for each process.

Associated with each segment are two forms of protection: privilege level and
access attribute. There are four privilege levels, from most protected (level 0) to
least protected (level 3). The privilege level associated with a data segment is its
“classification”; the privilege level associated with a program segment is its “clear-
ance.” An executing program may only access data segments for which its clearance
level is lower than (more privileged) or equal to (same privilege) the privilege level
of the data segment.

The hardware does not dictate how these privilege levels are to be used; this
depends on the OS design and implementation. It was intended that privilege level 1
would be used for most of the OS, and level 0 would be used for that small por-
tion of the OS devoted to memory management, protection, and access control.
This leaves two levels for applications. In many systems, applications will reside at
level 3, with level 2 being unused. Specialized application subsystems that must be
protected because they implement their own security mechanisms are good candi-
dates for level 2. Some examples are database management systems, office automa-
tion systems, and software engineering environments.

In addition to regulating access to data segments, the privilege mechanism
limits the use of certain instructions. Some instructions, such as those dealing with
memory-management registers, can only be executed in level 0. I/O instructions can
only be executed up to a certain level that is designated by the OS; typically, this will
be level 1.

The access attribute of a data segment specifies whether read/write or read-
only accesses are permitted. For program segments, the access attribute specifies
read/execute or read-only access.

296 CHAPTER 8 / OPERATING SYSTEM SUPPORT

The address translation mechanism for segmentation involves mapping a vir-
tual address into what is referred to as a linear address (Figure 8.20b). A virtual
address consists of the 32-bit offset and a 16-bit segment selector (Figure 8.20a).
The segment selector consists of the following fields:

 • Table Indicator (TI): Indicates whether the global segment table or a local
segment table should be used for translation.

 • Segment Number: The number of the segment. This serves as an index into
the segment table.

 • Requested Privilege Level (RPL): The privilege level requested for this access.

Each entry in a segment table consists of 64 bits, as shown in Figure 8.20c. The
fields are defined in Table 8.5.

Paging

Segmentation is an optional feature and may be disabled. When segmentation is in
use, addresses used in programs are virtual addresses and are converted into linear
addresses, as just described. When segmentation is not in use, linear addresses are
used in programs. In either case, the following step is to convert that linear address
into a real 32-bit address.

To understand the structure of the linear address, you need to know that
the Pentium II paging mechanism is actually a two-level table lookup operation.
The first level is a page directory, which contains up to 1024 entries. This splits the
4-Gbyte linear memory space into 1024 page groups, each with its own page table,
and each 4 Mbytes in length. Each page table contains up to 1024 entries; each entry
corresponds to a single 4-Kbyte page. Memory management has the option of using
one page directory for all processes, one page directory for each process, or some
combination of the two. The page directory for the current task is always in main
memory. Page tables may be in virtual memory.

Figure 8.20 shows the formats of entries in page directories and page tables,
and the fields are defined in Table 8.5. Note that access control mechanisms can be
provided on a page or page group basis.

The Pentium II also makes use of a translation lookaside buffer. The buffer
can hold 32 page table entries. Each time that the page directory is changed, the
buffer is cleared.

Figure 8.21 illustrates the combination of segmentation and paging mecha-
nisms. For clarity, the translation lookaside buffer and memory cache mechanisms
are not shown.

Finally, the Pentium II includes a new extension not found on the 80386 or
80486, the provision for two page sizes. If the PSE (page size extension) bit in con-
trol register 4 is set to 1, then the paging unit permits the OS programmer to define
a page as either 4 Kbyte or 4 Mbyte in size.

When 4-Mbyte pages are used, there is only one level of table lookup for
pages. When the hardware accesses the page directory, the page directory entry
(Figure 8.20d) has the PS bit set to 1. In this case, bits 9 through 21 are ignored and
bits 22 through 31 define the base address for a 4-Mbyte page in memory. Thus,
there is a single page table.

8.4 / PENTIUM MEMORY MANAGEMENT 297

Index

(a) Segment selector

15 3

31 22 12 11 0

078111213141516192022232431

31 12 11 9 7 6 5 4 3 2 1 0

31 12 11 9 7 6 5 4 3 2 1 0

0

D

B
G

A
V
L

Directory

Base 31...24

AVL � Available for use by system software
Base � Segment base address
D/B � Default operation size
DPL � Descriptor privilege size

AVL � Available for systems programmer use
PS � Page size
A � Accessed

D � Dirty

PCD � Cache disable

PWT � Write through
US � User/supervisor
RW � Read-write
P � Present

Page frame address 31...12

Page frame address 31...12

G � Granularity

Limit � Segment limit
P � Segment present
Type � Segment type
S � Descriptor type

Base 15...0 Segment limit 15...0

� Reserved

Base 23...16TypeP SDPL

AVL
P

P
C
D

P
W
T

S
U
S

R
W

A P

DAVL
P
C
D

P
W
T

U
S

R
W

A P

Table

Segment
limit

19...16

Offset

21

2

T

TI � Table indicator
RPL � Requestor privilege level

I
RPL

1 0

(b) Linear address

(c) Segment descriptor (segment table entry)

(d) Page directory entry

(e) Page table entry

Figure 8.20 Pentium Memory-Management Formats

298 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Table 8.5 Pentium II Memory Management Parameters

Segment Descriptor (Segment Table Entry)

Base

Defines the starting address of the segment within the 4-Gbyte linear address space.

D/B bit

In a code segment, this is the D bit and indicates whether operands and addressing modes are 16 or 32 bits.

Descriptor Privilege Level (DPL)

Specifies the privilege level of the segment referred to by this segment descriptor.

Granularity bit (G)

Indicates whether the Limit field is to be interpreted in units by one byte or 4 Kbytes.

Limit

Defines the size of the segment. The processor interprets the limit field in one of two ways, depending on
the granularity bit: in units of one byte, up to a segment size limit of 1 Mbyte, or in units of 4 Kbytes, up to a
segment size limit of 4 Gbytes.

S bit

Determines whether a given segment is a system segment or a code or data segment.

Segment Present bit (P)

Used for nonpaged systems. It indicates whether the segment is present in main memory. For paged
systems, this bit is always set to 1.

Type

Distinguishes between various kinds of segments and indicates the access attributes.

Page Directory Entry and Page Table Entry

Accessed bit (A)

This bit is set to 1 by the processor in both levels of page tables when a read or write operation to the
corresponding page occurs.

Dirty bit (D)

This bit is set to 1 by the processor when a write operation to the corresponding page occurs.

Page Frame Address

Provides the physical address of the page in memory if the present bit is set. Since page frames are aligned
on 4K boundaries, the bottom 12 bits are 0, and only the top 20 bits are included in the entry. In a page direc-
tory, the address is that of a page table.

Page Cache Disable bit (PCD)

Indicates whether data from page may be cached.

Page Size bit (PS)

Indicates whether page size is 4 Kbyte or 4 Mbyte.

Page Write Through bit (PWT)

Indicates whether write-through or write-back caching policy will be used for data in the corresponding page.

Present bit (P)

Indicates whether the page table or page is in main memory.

Read/Write bit (RW)

For user-level pages, indicates whether the page is read-only access or read/write access for user-level programs.

User/Supervisor bit (US)

Indicates whether the page is available only to the operating system (supervisor level) or is available to
both operating system and applications (user level).

8.5 / ARM MEMORY MANAGEMENT 299

The use of 4-Mbyte pages reduces the memory-management storage
requirements for large main memories. With 4-Kbyte pages, a full 4-Gbyte
main memory requires about 4 Mbytes of memory just for the page tables. With
4-Mbyte pages, a single table, 4 Kbytes in length, is sufficient for page memory
management.

 8.5 ARM MEMORY MANAGEMENT

ARM provides a versatile virtual memory system architecture that can be tailored
to the needs of the embedded system designer.

Memory System Organization

Figure 8.22 provides an overview of the memory management hardware in the
ARM for virtual memory. The virtual memory translation hardware uses one or
two levels of tables for translation from virtual to physical addresses, as explained
subsequently. The translation lookaside buffer (TLB) is a cache of recent page table
entries. If an entry is available in the TLB, then the TLB directly sends a physical
address to main memory for a read or write operation. As explained in Chapter 4,
data is exchanged between the processor and main memory via the cache. If a logi-
cal cache organization is used (Figure 4.7a), then the ARM supplies that address
directly to the cache as well as supplying it to the TLB when a cache miss occurs. If
a physical cache organization is used (Figure 4.7b), then the TLB must supply the
physical address to the cache.

Segment Offset

Segment
table

�

Page
directory

OffsetPageDir

Page
table

�
Physical
address

Main memory
PagingSegmentation

Logical address

Linear address

Figure 8.21 Pentium Memory Address Translation Mechanisms

300 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Entries in the translation tables also include access control bits, which deter-
mine whether a given process may access a given portion of memory. If access is
denied, access control hardware supplies an abort signal to the ARM processor.

Virtual Memory Address Translation

The ARM supports memory access based on either sections or pages:

 • Supersections (optional): Consist of 16-MB blocks of main memory

 • Sections: Consist of 1-MB blocks of main memory

 • Large pages: Consist of 64-kB blocks of main memory

 • Small pages: Consist of 4-kB blocks of main memory

Sections and supersections are supported to allow mapping of a large region
of memory while using only a single entry in the TLB. Additional access control
mechanisms are extended within small pages to 1kB subpages, and within large
pages to 16kB subpages. The translation table held in main memory has two levels:

 • First-level table: Holds section and supersection translations, and pointers to
second-level tables

 • Second-level tables: Hold both large and small page translations

The memory-management unit (MMU) translates virtual addresses generated
by the processor into physical addresses to access main memory, and also derives
and checks the access permission. Translations occur as the result of a TLB miss,
and start with a first-level fetch. A section-mapped access only requires a first-level
fetch, whereas a page-mapped access also requires a second-level fetch.

Figure 8.23 shows the two-level address translation process for small pages.
There is a single level 1 (L1) page table with 4K 32-bit entries. Each L1 entry points
to a level 2 (L2) page table with 255 32-bit entries. Each of the L2 entry points to a

Access
control

hardware

Access bits,
domain

Access bits,
domain

Abort

Control
bits

Physical address

Physical
address

Physical
address

Virtual
address

Virtual address

ARM
core

TLB

Memory-management unit (MMU)

Cache
line fetch
hardware

Virtual
memory

translation
hardware

Main
memory

Cache
and

write
buffer

Figure 8.22 ARM Memory System Overview

8.5 / ARM MEMORY MANAGEMENT 301

4-kB page in main memory. The 32-bit virtual address is interpreted as follows: The
most significant 12 bits are an index into the L1 page table. The next 8 bits are an
index into the relevant L2 page table. The least significant 12 bits index a byte in the
relevant page in main memory.

A similar two-page lookup procedure is used for large pages. For sections and
supersection, only the L1 page table lookup is required.

Memory-Management Formats

To get a better understanding of the ARM memory management scheme, we con-
sider the key formats, as shown in Figure 8.24. The control bits shown in this figure
are defined in Table 8.6.

For the L1 table, each entry is a descriptor of how its associated 1-MB virtual
address range is mapped. Each entry has one of four alternative formats:

 • Bits [1:0] � 00: The associated virtual addresses are unmapped, and attempts
to access them generate a translation fault.

 • Bits [1:0] � 01: The entry gives the physical address of an L2 page table,
which specifies how the associated virtual address range is mapped.

Sm
al

l p
ag

e
(4

 k
B

)

Main memory

Virtual address

Level 1 (L1) page table

Level 2 (L2)
page table

L1 index

L2 PT base addr

Page
index

0

0

4095

0

255

01

page base addr 10

111931
L2

index

Figure 8.23 ARM Virtual Memory Address Translation for Small Pages

302 CHAPTER 8 / OPERATING SYSTEM SUPPORT

 • Bits [1:0] � 01 and bit 19 � 0: The entry is a section descriptor for its associ-
ated virtual addresses.

 • Bits [1:0] � 01 and bit 19 � 1: The entry is a supersection descriptor for its
 associated virtual addresses.

Entries with bits [1:0] = 11 are reserved.
For memory structured into pages, a two-level page table access is required.

Bits [31:10] of the L1 page entry contain a pointer to a L1 page table. For small

00IGNFault

10PCoarse page table base address

(a) Alternative first-level descriptor formats

(b) Alternative second-level descriptor formats

SBZDomain

010 S PAP
AP
X

AP
X

n
G

X
N

TEXSection base address C B
S
B
Z

Domain

011 S PAP

AP
X

AP
X

n
G

n
G

X
N

Base address
[39:36]

Base address
[35:32]

TEX
Supersection
base address

C B
S
B
Z

Page table

Section

Supersection

00

0123456789101112141531 16

012345891011121420 1924 2331

IGNFault

0192031

Level 1 table index Section indexSection

01920 111231

Level 1 table index Level 2 table index Page index
Small
page

Large page 10Large page base address

(c) Virtual memory address formats

SBZTEX

1S

n
G

S

X
N

X
N

Small page base address C B

C

AP

AP B

TEXSmall page

01920 1112151631

Level 1 table index
Level 2

table index
Page index

Large
page

01920232431

Level 1 table index Supersection indexSupersection

Figure 8.24 ARMv6 Memory-Management Formats

8.5 / ARM MEMORY MANAGEMENT 303

pages, the L2 entry contains a 20-bit pointer to the base address of a 4-kB page in
main memory.

For large pages, the structure is more complex. As with virtual addresses for
small pages, a virtual address for a large page structure includes a 12-bit index into
the level one table and an 8-bit index into the L2 table. For the 64-kB large pages,
the page index portion of the virtual address must be 16 bits. To accommodate all of
these bits in a 32-bit format, there is a 4-bit overlap between the page index field and
the L2 table index field. ARM accommodates this overlap by requiring that each
page table entry in a L2 page table that supports large pages be replicated 16 times.
In effect, the size of the L2 page table is reduced from 256 entries to 16 entries, if all
of the entries refer to large pages. However, a given L2 page can service a mixture
of large and small pages, hence the need for the replication for large page entries.

For memory structured into sections or supersections, a one-level page table
access is required. For sections, bits [31:20] of the L1 entry contain a 12-bit pointer
to the base of the 1-MB section in main memory.

For supersections, bits [31:24] of the L1 entry contain an 8-bit pointer to the
base of the 16-MB section in main memory. As with large pages, a page table entry
replication is required. In the case of supersections, the L1 table index portion of
the virtual address overlaps by 4 bits with the supersection index portion of the vir-
tual address Therefore, 16 identical L1 page table entries are required.

The range of physical address space can be expanded by up to eight additional
address bits (bits [23:20] and [8:5]). The number of additional bits is implementation
dependent. These additional bits can be interpreted as extending the size of physical

Table 8.6 ARM Memory-Management Parameters

Access Permission (AP), Access Permission Extension (APX)
These bits control access to the corresponding memory region. If an access is made to an area of memory

without the required permissions, a Permission Fault is raised.

Bufferable (B) bit
Determines, with the TEX bits, how the write buffer is used for cacheable memory.

Cacheable (C) bit
Determines whether this memory region can be mapped through the cache.

Domain
Collection of memory regions. Access control can be applied on the basis of domain.

not Global (nG)
Determines whether the translation should be marked as global (0), or process specific (1).

Shared (S)
Determines whether the translation is for not-shared (0), or shared (1) memory.

SBZ
Should be zero.

Type Extension (TEX)
These bits, together with the B and C bits, control accesses to the caches, how the write buffer is used, and

if the memory region is shareable and therefore must be kept coherent.

Execute Never (XN)
Determines whether the region is executable (0) or not executable (1).

304 CHAPTER 8 / OPERATING SYSTEM SUPPORT

memory by as much as a factor of 28 = 256. Thus, physical memory may in fact be as
much as 256 times as large as the memory space available to each individual process.

Access Control

The AP access control bits in each table entry control access to a region of mem-
ory by a given process. A region of memory can be designated as no access, read
only, or read-write. Further, the region can be designated as privileged access only,
reserved for use by the OS and not by applications.

ARM also employs the concept of a domain, which is a collection of sections
and/or pages that have particular access permissions. The ARM architecture sup-
ports 16 domains. The domain feature allows multiple processes to use the same
translation tables while maintaining some protection from each other.

Each page table entry and TLB entry contains a field that specifies which
domain the entry is in. A 2-bit field in the Domain Access Control Register controls
access to each domain. Each field allows the access to an entire domain to be ena-
bled and disabled very quickly, so that whole memory areas can be swapped in and
out of virtual memory very efficiently. Two kinds of domain access are supported:

 • Clients: Users of domains (execute programs and access data) that must
 observe the access permissions of the individual sections and/or pages that
make up that domain

 • Managers: Control the behavior of the domain (the current sections and pages
in the domain, and the domain access), and bypass the access permissions for
table entries in that domain

One program can be a client of some domains, and a manager of some other
domains, and have no access to the remaining domains. This allows very flexible
memory protection for programs that access different memory resources.

 8.6 RECOMMENDED READING

[STAL12] covers the topics of this chapter in detail.

batch system
demand paging
interactive operating system
interrupt

job control language (JCL)
kernel
logical address
long-term scheduling

medium-term scheduling
memory management
memory protection
multiprogramming

STAL12 Stallings, W. Operating Systems, Internals and Design Principles, Seventh
Edition. Upper Saddle River, NJ: Prentice Hall, 2012.

Systems and Applications: Includes an online newsletter and links to other sites

 8.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

8.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 305

Review Questions
 8.1 What is an operating system?
 8.2 List and briefly define the key services provided by an OS.
 8.3 List and briefly define the major types of OS scheduling.
 8.4 What is the difference between a process and a program?
 8.5 What is the purpose of swapping?
 8.6 If a process may be dynamically assigned to different locations in main memory, what

is the implication for the addressing mechanism?
 8.7 Is it necessary for all of the pages of a process to be in main memory while the process

is executing?
 8.8 Must the pages of a process in main memory be contiguous?
 8.9 Is it necessary for the pages of a process in main memory to be in sequential order?
 8.10 What is the purpose of a translation lookaside buffer?

Problems
 8.1 Suppose that we have a multiprogrammed computer in which each job has identical

characteristics. In one computation period, T, for a job, half the time is spent in I/O
and the other half in processor activity. Each job runs for a total of N periods. Assume
that a simple round-robin priority is used, and that I/O operations can overlap with
processor operation. Define the following quantities:
• Turnaround time = actual to complete a job
• Throughput = average number of jobs completed per time period T
• Processor utilization = percentage of time that the processor is active (not waiting)
Compute these quantities for one, two, and four simultaneous jobs, assuming that the
period T is distributed in each of the following ways:
a. I/O first half, processor second half
b. I/O first and fourth quarters, processor second and third quarters

 8.2 An I/O-bound program is one that, if run alone, would spend more time waiting for
I/O than using the processor. A processor-bound program is the opposite. Suppose a
short-term scheduling algorithm favors those programs that have used little processor
time in the recent past. Explain why this algorithm favors I/O-bound programs and
yet does not permanently deny processor time to processor-bound programs.

 8.3 A program computes the row sums

Ci = a
n

j = 1
aij

of an array A that is 100 by 100. Assume that the computer uses demand paging with a
page size of 1000 words, and that the amount of main memory allotted for data is five

multitasking
nucleus
operating system (OS)
paging
page table
partitioning
physical address
privileged instruction

process
process control block
process state
real memory
resident monitor
segmentation
short-term scheduling
swapping

thrashing
time-sharing system
translation lookaside buffer

(TLB)
utility
virtual memory

306 CHAPTER 8 / OPERATING SYSTEM SUPPORT

page frames. Is there any difference in the page fault rate if A were stored in virtual
memory by rows or columns? Explain.

 8.4 Consider a fixed partitioning scheme with equal-size partitions of 216 bytes and a total
main memory size of 224 bytes. A process table is maintained that includes a pointer
to a partition for each resident process. How many bits are required for the pointer?

 8.5 Consider a dynamic partitioning scheme. Show that, on average, the memory contains
half as many holes as segments.

 8.6 Suppose the page table for the process currently executing on the processor looks like
the following. All numbers are decimal, everything is numbered starting from zero,
and all addresses are memory byte addresses. The page size is 1024 bytes.

Virtual page
number

Valid bit

Reference bit

Modify bit

Page frame
number

0 1 1 0 4
1 1 1 1 7
2 0 0 0 —
3 1 0 0 2
4 0 0 0 —
5 1 0 1 0

a. Describe exactly how, in general, a virtual address generated by the CPU is trans-
lated into a physical main memory address.

b. What physical address, if any, would each of the following virtual addresses
correspond to? (Do not try to handle any page faults, if any.)
(i) 1052
(ii) 2221
(iii) 5499

 8.7 Give reasons that the page size in a virtual memory system should be neither very
small nor very large.

 8.8 A process references five pages, A, B, C, D, and E, in the following order:

A; B; C; D; A; B; E; A; B; C; D; E

Assume that the replacement algorithm is first-in-first-out and find the number of
page transfers during this sequence of references starting with an empty main memory
with three page frames. Repeat for four page frames.

 8.9 The following sequence of virtual page numbers is encountered in the course of
 execution on a computer with virtual memory:

3 4 2 6 4 7 1 3 2 6 3 5 1 2 3

Assume that a least recently used page replacement policy is adopted. Plot a graph of
page hit ratio (fraction of page references in which the page is in main memory) as a
function of main-memory page capacity n for 1 … n … 8. Assume that main memory
is initially empty.

 8.10 In the VAX computer, user page tables are located at virtual addresses in the system
space. What is the advantage of having user page tables in virtual rather than main
memory? What is the disadvantage?

 8.11 Suppose the program statement

for (i = 1; i 6 = n; i+ +)
a[i] = b[i] + c[i];

is executed in a memory with page size of 1000 words. Let n = 1000. Using a machine
that has a full range of register-to-register instructions and employs index registers,

8.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 307

write a hypothetical program to implement the foregoing statement. Then show the
sequence of page references during execution.

 8.12 The IBM System/370 architecture uses a two-level memory structure and refers to the
two levels as segments and pages, although the segmentation approach lacks many
of the features described earlier in this chapter. For the basic 370 architecture, the
page size may be either 2 Kbytes or 4 Kbytes, and the segment size is fixed at either
64 Kbytes or 1 Mbyte. For the 370/XA and 370/ESA architectures, the page size is
4 Kbytes and the segment size is 1 Mbyte. Which advantages of segmentation does this
scheme lack? What is the benefit of segmentation for the 370?

 8.13 Consider a computer system with both segmentation and paging. When a segment is
in memory, some words are wasted on the last page. In addition, for a segment size s
and a page size p, there are s/p page table entries. The smaller the page size, the less
waste in the last page of the segment, but the larger the page table. What page size
minimizes the total overhead?

 8.14 A computer has a cache, main memory, and a disk used for virtual memory. If a refer-
enced word is in the cache, 20 ns are required to access it. If it is in main memory but
not in the cache, 60 ns are needed to load it into the cache, and then the reference is
started again. If the word is not in main memory, 12 ms are required to fetch the word
from disk, followed by 60 ns to copy it to the cache, and then the reference is started
again. The cache hit ratio is 0.9 and the main-memory hit ratio is 0.6. What is the aver-
age time in ns required to access a referenced word on this system?

 8.15 Assume a task is divided into four equal-sized segments and that the system builds an
eight-entry page descriptor table for each segment. Thus, the system has a combina-
tion of segmentation and paging. Assume also that the page size is 2 Kbytes.
a. What is the maximum size of each segment?
b. What is the maximum logical address space for the task?
c. Assume that an element in physical location 00021ABC is accessed by this task.

What is the format of the logical address that the task generates for it? What is the
maximum physical address space for the system?

 8.16 Assume a microprocessor capable of accessing up to 232 bytes of physical main mem-
ory. It implements one segmented logical address space of maximum size 231 bytes.
Each instruction contains the whole two-part address. External memory management
units (MMUs) are used, whose management scheme assigns contiguous blocks of
physical memory of fixed size 222 bytes to segments. The starting physical address of a
segment is always divisible by 1024. Show the detailed interconnection of the external
mapping mechanism that converts logical addresses to physical addresses using the
appropriate number of MMUs, and show the detailed internal structure of an MMU
(assuming that each MMU contains a 128-entry directly mapped segment descriptor
cache) and how each MMU is selected.

 8.17 Consider a paged logical address space (composed of 32 pages of 2 Kbytes each)
mapped into a 1-Mbyte physical memory space.
a. What is the format of the processor’s logical address?
b. What is the length and width of the page table (disregarding the “access rights”

bits)?
c. What is the effect on the page table if the physical memory space is reduced by

half?
 8.18 In IBM’s mainframe operating system, OS/390, one of the major modules in the ker-

nel is the System Resource Manager (SRM). This module is responsible for the alloca-
tion of resources among address spaces (processes). The SRM gives OS/390 a degree
of sophistication unique among operating systems. No other mainframe OS, and cer-
tainly no other type of OS, can match the functions performed by SRM. The concept
of resource includes processor, real memory, and I/O channels. SRM accumulates sta-
tistics pertaining to utilization of processor, channel, and various key data structures.
Its purpose is to provide optimum performance based on performance monitoring
and analysis. The installation sets forth various performance objectives, and these

308 CHAPTER 8 / OPERATING SYSTEM SUPPORT

serve as guidance to the SRM, which dynamically modifies installation and job perfor-
mance characteristics based on system utilization. In turn, the SRM provides reports
that enable the trained operator to refine the configuration and parameter settings to
 improve user service.

This problem concerns one example of SRM activity. Real memory is divided
into equal-sized blocks called frames, of which there may be many thousands. Each
frame can hold a block of virtual memory referred to as a page. SRM receives control
 approximately 20 times per second and inspects each and every page frame. If the
page has not been referenced or changed, a counter is incremented by 1. Over time,
SRM averages these numbers to determine the average number of seconds that a
page frame in the system goes untouched. What might be the purpose of this and what
action might SRM take?

 8.19 For each of the ARM virtual address formats shown in Figure 8.24, show the physical
address format.

 8.20 Draw a figure similar to Figure 8.23 for ARM virtual memory translation when main
memory is divided into sections.

309

NUMBER SYSTEMS
9.1 The Decimal System

9.2 Positional Number Systems

9.3 The Binary System

9.4 Converting Between Binary and Decimal
Integers
Fractions

9.5 Hexadecimal Notation

9.6 Recommended Reading

9.7 Key Terms and Problems

CHAPTER

PART THREE ARITHMETIC
AND LOGIC

310 CHAPTER 9 / NUMBER SYSTEMS

 9.1 THE DECIMAL SYSTEM

In everyday life we use a system based on decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to
represent numbers, and refer to the system as the decimal system. Consider what
the number 83 means. It means eight tens plus three:

83 = (8 * 10) + 3

The number 4728 means four thousands, seven hundreds, two tens, plus eight:

4728 = (4 * 1000) + (7 * 100) + (2 * 10) + 8

The decimal system is said to have a base, or radix, of 10. This means that each digit
in the number is multiplied by 10 raised to a power corresponding to that digit’s
position:

 83 = (8 * 101) + (3 * 100)

 4728 = (4 * 103) + (7 * 102) + (2 * 101) + (8 * 100)

The same principle holds for decimal fractions, but negative powers of 10 are
used. Thus, the decimal fraction 0.256 stands for 2 tenths plus 5 hundredths plus
6 thousandths:

0.256 = (2 * 10-1) + (5 * 10-2) + (6 * 10-3)

A number with both an integer and fractional part has digits raised to both
positive and negative powers of 10:

442.256 = (4 * 102) + (4 + 101) + (2 * 100) + (2 * 10-1) + (5 * 10-2)

 + (6 * 10-3)

In any number, the leftmost digit is referred to as the most significant digit,
because it carries the highest value. The rightmost digit is called the least significant
digit. In the preceding decimal number, the 4 on the left is the most significant digit
and the 6 on the right is the least significant digit.

Table 9.1 shows the relationship between each digit position and the value
assigned to that position. Each position is weighted 10 times the value of the position
to the right and one-tenth the value of the position to the left. Thus, positions rep-
resent successive powers of 10. If we number the positions as indicated in Table 9.1,
then position i is weighted by the value 10i.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Understand the basic concepts and terminology of positional number systems.

� Explain the techniques for converting between digital and binary for both
integers and fractions.

� Explain the rationale for using hexadecimal notation.

9.2 / POSITIONAL NUMBER SYSTEMS 311

In general, for the decimal representation of X = {cd2d1d0.d-1d-2d-3c},
the value of X is

 X = a
i
1di * 10i2 (9.1)

One other observation is worth making. Consider the number 509 and ask
how many tens are in the number. Because there is a 0 in the tens position, you
might be tempted to say there are no tens. But there are in fact 50 tens. What the 0
in the tens position means is that there are no tens left over that cannot be lumped
into the hundreds, or thousands, and so on. Therefore, because each position holds
only the leftover numbers that cannot be lumped into higher positions, each digit
position needs to have a value of no greater than 9. Nine is the maximum value that
a position can hold before it flips over into the next higher position.

 9.2 POSITIONAL NUMBER SYSTEMS

In a positional number system, each number is represented by a string of digits in
which each digit position i has an associated weight ri, where r is the radix, or base,
of the number system. The general form of a number in such a system with radix r is

(ca3a2a1a0.a-1a-2a-3c)r

where the value of any digit ai is an integer in the range 0 … ai 6 r. The dot between
a0 and a-1 is called the radix point. The number is defined to have the value

c+ a3r
3 + a2r

2 + a1r
1 + a0r

0 + a-1r
-1 + a-2r

-2 + a-3r
-3 + c

 = a
i

(ai * bi) (9.2)

The decimal system, then, is a special case of a positional number system with
radix 10 and with digits in the range 0 through 9.

As an example of another positional system, consider the system with base 7.
Table 9.2 shows the weighting value for positions –1 through 4. In each position, the
digit value ranges from 0 through 6.

Table 9.1 Positional Interpretation of a Decimal Number

4 7 2 2 5 6

100s 10s 1s tenths hundredths thousandths

102 101 109 10−1 10−2 10−3

position 2 position 1 position 0 position –1 position –2 position –3

Table 9.2 Positional Interpretation of a Number in Base 7

Position 4 3 2 2 0 –1

Value in Exponential Form 74 73 72 71 70 7−1

Decimal Value 2401 343 49 7 1 1/7

312 CHAPTER 9 / NUMBER SYSTEMS

 9.3 THE BINARY SYSTEM

In the decimal system, 10 different digits are used to represent numbers with a base
of 10. In the binary system, we have only two digits, 1 and 0. Thus, numbers in the
binary system are represented to the base 2.

To avoid confusion, we will sometimes put a subscript on a number to indicate
its base. For example, 8310 and 472810 are numbers represented in decimal notation
or, more briefly, decimal numbers. The digits 1 and 0 in binary notation have the
same meaning as in decimal notation:

 02 = 010

 12 = 110

To represent larger numbers, as with decimal notation, each digit in a binary num-
ber has a value depending on its position:

 102 = (1 * 21) + (0 * 20) = 210

 112 = (1 * 21) + (1 * 20) = 310

 1002 = (1 * 22) + (0 * 21) + (0 * 20) = 410

and so on. Again, fractional values are represented with negative powers of the
radix:

1001.101 = 23 + 20 + 2-1 + 2-3 = 9.62510

In general, for the binary representation of Y = {cb2b1b0.b-1b-2b-3c}, the
value of Y is

Y = a
i
1bi * 2i2 (9.3)

 9.4 CONVERTING BETWEEN BINARY AND DECIMAL

It is a simple matter to convert a number from binary notation to decimal notation.
In fact, we showed several examples in the previous subsection. All that is required
is to multiply each binary digit by the appropriate power of 2 and add the results.

To convert from decimal to binary, the integer and fractional parts are han-
dled separately.

Integers

For the integer part, recall that in binary notation, an integer represented by

bm -1bm -2cb2b1b0 bi = 0 or 1

has the value

(bm -1 * 2m -1) + (bm -2 * 2m -2) +c+ (b1 * 21) + b0

9.4 / CONVERTING BETWEEN BINARY AND DECIMAL 313

Suppose it is required to convert a decimal integer N into binary form. If we
divide N by 2, in the decimal system, and obtain a quotient N1 and a remainder R0,
we may write

N = 2 * N1 + R0 R0 = 0 or 1

Next, we divide the quotient N1 by 2. Assume that the new quotient is N2 and the
new remainder R1. Then

N1 = 2 * N2 + R1 R1 = 0 or 1

so that

N = 2(2N2 + R1) + R0 = (N2 * 22) + (R1 * 21) + R0

If next

N2 = 2N3 + R2

we have

N = (N3 * 23) + (R2 * 22) + (R1 * 21) + R0

Because N 7 N1 7 N2c, continuing this sequence will eventually produce a quo-
tient Nm -1 = 1 (except for the decimal integers 0 and 1, whose binary equivalents
are 0 and 1, respectively) and a remainder Rm - 2, which is 0 or 1. Then

N = (1 * 2m -1) + (Rm -2 * 2m -2) + c + (R2 * 22) + (R1 * 21) + R0

which is the binary form of N. Hence, we convert from base 10 to base 2 by repeated
divisions by 2. The remainders and the final quotient, 1, give us, in order of increas-
ing significance, the binary digits of N. Figure 9.1 shows two examples.

Fractions

For the fractional part, recall that in binary notation, a number with a value between
0 and 1 is represented by

0.b-1b-2b-3 c bi = 0 or 1

and has the value

(b-1 * 2-1) + (b-2 * 2-2) + (b-3 * 2-3) c

This can be rewritten as

2-1 * (b-1 + 2-1 * (b-2 + 2-1 * (b-3 + c) c))

This expression suggests a technique for conversion. Suppose we want to con-
vert the number F (0 6 F 6 1) from decimal to binary notation. We know that F
can be expressed in the form

F = 2-1 * (b-1 + 2-1 * (b-2 + 2-1 * (b-3 + c) c))

If we multiply F by 2, we obtain,

2 * F = b-1 + 2-1 * (b-2 + 2-1 * (b-3 + c) c)

314 CHAPTER 9 / NUMBER SYSTEMS

From this equation, we see that the integer part of (2 * F), which must be
either 0 or 1 because 0 6 F 6 1, is simply b-1. So we can say (2 × F) = b-1 + F1,
where 0 6F1 < 1 and where

F1 = 2-1 * (b-2 + 2-1 * (b-3 + 2-1 * (b-4 + c) c))

To find b−2, we repeat the process. Therefore, the conversion algorithm involves
repeated multiplication by 2. At each step, the fractional part of the number from
the previous step is multiplied by 2. The digit to the left of the decimal point in the
product will be 0 or 1 and contributes to the binary representation, starting with the
most significant digit. The fractional part of the product is used as the multiplicand
in the next step. Figure 9.2 shows two examples.

This process is not necessarily exact; that is, a decimal fraction with a finite
number of digits may require a binary fraction with an infinite number of digits. In
such cases, the conversion algorithm is usually halted after a prespecified number of
steps, depending on the desired accuracy.

(a) 1110

Quotient
5= 1

Remainder
11
2

2= 15
2

1= 02
2

0= 1

10112 = 1110

1
2

(b) 2110

Quotient

5= 0

Remainder

10
2

2= 15
2

1= 02
2

0= 1

101012 = 2110

1
2

10= 121
2

Figure 9.1 Examples of Converting from Decimal
Notation to Binary Notation for Integers

9.5 / HEXADECIMAL NOTATION 315

 9.5 HEXADECIMAL NOTATION

Because of the inherent binary nature of digital computer components, all forms of
data within computers are represented by various binary codes. However, no matter
how convenient the binary system is for computers, it is exceedingly cumbersome
for human beings. Consequently, most computer professionals who must spend time
working with the actual raw data in the computer prefer a more compact notation.

What notation to use? One possibility is the decimal notation. This is certainly
more compact than binary notation, but it is awkward because of the tediousness of
converting between base 2 and base 10.

Instead, a notation known as hexadecimal has been adopted. Binary digits are
grouped into sets of four bits, called a nibble. Each possible combination of four
binary digits is given a symbol, as follows:

0000 = 0 0100 = 4 1000 = 8 1100 = C

0001 = 1 0101 = 5 1001 = 9 1101 = D

0010 = 2 0110 = 6 1010 = A 1110 = E

0011 = 3 0111 = 7 1011 = B 1111 = F

Product

0.81 2 = 1.62 1

Integer Part

0.62 2 = 1.24 1

0.24 2 = 0.48 0

0.48 2 = 0.96

0.96 2 = 1.92

0.92 2 = 1.84

0

1

1

0.1100112

(a) 0.8110 = 0.1100112 (approximately)

Product

0.25 2 = 0.5 0

Integer Part

0.5 2 = 1.0 1

0.012

(b) 0.2510 = 0.012 (exactly)

�

�

�

�

�

�

�

�

Figure 9.2 Examples of Converting from Decimal
Notation to Binary Notation for Fractions

316 CHAPTER 9 / NUMBER SYSTEMS

Because 16 symbols are used, the notation is called hexadecimal, and the 16 symbols
are the hexadecimal digits.

A sequence of hexadecimal digits can be thought of as representing an integer
in base 16 (Table 9.3). Thus,

 2C 16 = (216 * 161) + (C 16 * 160)

 = (210 * 161) + (1210 * 160) = 44

Thus, viewing hexadecimal numbers as numbers in the positional number sys-
tem with base 16, we have

 Z = a
i
1hi * 16i2 (9.4)

where 16 is the base and each hexadecimal digit hi is in the decimal range 0 … hi 6 15,
equivalent to the hexadecimal range 0 … hi … F.

Table 9.3 Decimal, Binary, and Hexadecimal

Decimal (base 10) Binary (base 2) Hexadecimal (base 16)

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

16 0001 0000 10

17 0001 0001 11

18 0001 0010 12

31 0001 1111 1F

100 0110 0100 64

255 1111 1111 FF

256 0001 0000 0000 100

9.7 / KEY TERMS AND PROBLEMS 317

Hexadecimal notation is not only used for representing integers but also used
as a concise notation for representing any sequence of binary digits, whether they
represent text, numbers, or some other type of data. The reasons for using hexa-
decimal notation are as follows:

 1. It is more compact than binary notation.

 2. In most computers, binary data occupy some multiple of 4 bits, and hence
some multiple of a single hexadecimal digit.

 3. It is extremely easy to convert between binary and hexadecimal notation.

As an example of the last point, consider the binary string 110111100001. This
is equivalent to

1101 1110 0001 = DE116

 D E 1
This process is performed so naturally that an experienced programmer can

mentally convert visual representations of binary data to their hexadecimal equiva-
lent without written effort.

 9.6 RECOMMENDED READING

[KNUT98] provides an excellent discussion of positional number systems. [GREG98] also
has a useful treatment of the subject.

GREG98 Gregg, J. Ones and Zeros: Understanding Boolean Algebra, Digital Circuits,
and the Logic of Sets. Piscataway, NJ: IEEE Press, 1998.

KNUT98 Knuth, D. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Reading, MA: Addison-Wesley, 1998.

base
binary
decimal
fraction

hexadecimal
integer
least significant digit
most significant digit

nibble
positional number system
radix
radix point

 9.7 KEY TERMS AND PROBLEMS

Key Terms

Problems

 9.1 Count from 1 to 2010 in the following bases:
a. 8 b. 6 c. 5 d. 3

 9.2 Order the numbers (1.1)2, (1.4)10, and (1.5)16 from smallest to largest.

318 CHAPTER 9 / NUMBER SYSTEMS

 9.3 Perform the indicated base conversions:
a. 548 to base 5
b. 3124 to base 7
c. 5206 to base 7
d. 122123 to base 9

 9.4 What generalizations can you draw about converting a number from one base to a
power of that base, e.g., from base 3 to base 9 (32) or from base 2 to base 4 (22) or base
8 (23)?

 9.5 Convert the following binary numbers to their decimal equivalents:
a. 001100 b. 000011 c. 011100 d. 111100 e. 101010

 9.6 Convert the following binary numbers to their decimal equivalents:
a. 11100.011 b. 110011.10011 c. 1010101010.1

 9.7 Convert the following decimal numbers to their binary equivalents:
a. 64 b. 100 c. 111 d. 145 e. 255

 9.8 Convert the following decimal numbers to their binary equivalents:
a. 34.75 b. 25.25 c. 27.1875

 9.9 Prove that every real number with a terminating binary representation (finite number
of digits to the right of the binary point) also has a terminating decimal representation
(finite number of digits to the right of the decimal point).

 9.10 Express the following octal numbers (number with radix 8) in hexadecimal notation:
a. 12 b. 5655 c. 2550276 d. 76545336 e. 3726755

 9.11 Convert the following hexadecimal numbers to their decimal equivalents:
a. C b. 9F c. D52 d. 67E e. ABCD

 9.12 Convert the following hexadecimal numbers to their decimal equivalents:
a. F.4 b. D3.E c. 1111.1 d. 888.8 e. EBA.C

 9.13 Convert the following decimal numbers to their hexadecimal equivalents:
a. 16 b. 80 c. 2560 d. 3000 e. 62,500

 9.14 Convert the following decimal numbers to their hexadecimal equivalents:
a. 204.125 b. 255.875 c. 631.25 d. 10000.00390625

 9.15 Convert the following hexadecimal numbers to their binary equivalents:
a. E b. 1C c. A64 d. 1F.C e. 239.4

 9.16 Convert the following binary numbers to their hexadecimal equivalents:
a. 1001.1111 b. 110101.011001 c. 10100111.111011

319

COMPUTER ARITHMETIC
10.1 The Arithmetic and Logic Unit

10.2 Integer Representation
Sign-Magnitude Representation
Twos Complement Representation
Range Extension
Fixed-Point Representation

10.3 Integer Arithmetic
Negation
Addition and Subtraction
Multiplication
Division

10.4 Floating-Point Representation
Principles
IEEE Standard for Binary Floating-Point Representation

10.5 Floating-Point Arithmetic
Addition and Subtraction
Multiplication and Division
Precision Considerations
IEEE Standard for Binary Floating-Point Arithmetic

10.6 Recommended Reading

10.7 Key Terms, Review Questions, and Problems

CHAPTER

320 CHAPTER 10 / COMPUTER ARITHMETIC

We begin our examination of the processor with an overview of the arithmetic and
logic unit (ALU). The chapter then focuses on the most complex aspect of the ALU,
computer arithmetic. The logic functions that are part of the ALU are described in
Chapter 12, and implementations of simple logic and arithmetic functions in digital
logic are described in Chapter 11.

Computer arithmetic is commonly performed on two very different types of
 numbers: integer and floating point. In both cases, the representation chosen is a crucial
design issue and is treated first, followed by a discussion of arithmetic operations.

This chapter includes a number of examples, each of which is highlighted in a
shaded box.

 10.1 THE ARITHMETIC AND LOGIC UNIT

The ALU is that part of the computer that actually performs arithmetic and logical
operations on data. All of the other elements of the computer system—control unit,
registers, memory, I/O—are there mainly to bring data into the ALU for it to pro-
cess and then to take the results back out. We have, in a sense, reached the core or
essence of a computer when we consider the ALU.

An ALU and, indeed, all electronic components in the computer are based on
the use of simple digital logic devices that can store binary digits and perform simple
Boolean logic operations.

Figure 10.1 indicates, in general terms, how the ALU is interconnected with
the rest of the processor. Operands for arithmetic and logic operations are pre-
sented to the ALU in registers, and the results of an operation are stored in regis-
ters. These registers are temporary storage locations within the processor that are
connected by signal paths to the ALU (e.g., see Figure 2.3). The ALU may also set
flags as the result of an operation. For example, an overflow flag is set to 1 if the
result of a computation exceeds the length of the register into which it is to be stored.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Understand the distinction between the way in which numbers are repre-
sented (the binary format) and the algorithms used for the basic arithmetic
operations.

� Explain twos complement representation.

� Present an overview of the techniques for doing basic arithmetic operation in
two complement notation.

� Understand the use of significand, base, and exponent in the representation
of floating-point numbers.

� Present an overview of the IEEE 754 standard for floating-point representa-
tion.

� Understand some of the key concepts related to floating-point arithmetic,
including guard bits, rounding, subnormal numbers, underflow and overflow.

10.2 / INTEGER REPRESENTATION 321

The flag values are also stored in registers within the processor. The processor
provides signals that control the operation of the ALU and the movement of the
data into and out of the ALU.

 10.2 INTEGER REPRESENTATION

In the binary number system,1 arbitrary numbers can be represented with just the
digits zero and one, the minus sign (for negative numbers), and the period, or radix
point (for numbers with a fractional component).

ALU

Control
Signals

Operand
Registers

Flags

Result
Registers

Figure 10.1 ALU Inputs and Outputs

1See Chapter 9 for a basic refresher on number systems (decimal, binary, hexadecimal).

An 8-bit word can represent the numbers from 0 to 255, such as

 00000000 = 0

 00000001 = 1

 00101001 = 41

 10000000 = 128

 11111111 = 255

-1101.01012 = -13.312510

For purposes of computer storage and processing, however, we do not have the ben-
efit of special symbols for the minus sign and radix point. Only binary digits (0 and 1)
may be used to represent numbers. If we are limited to nonnegative integers, the
representation is straightforward.

In general, if an n-bit sequence of binary digits an -1an -2 c a1a0 is interpreted
as an unsigned integer A, its value is

A = a
n -1

i = 0
2iai

322 CHAPTER 10 / COMPUTER ARITHMETIC

Sign-Magnitude Representation

There are several alternative conventions used to represent negative as well as posi-
tive integers, all of which involve treating the most significant (leftmost) bit in the
word as a sign bit. If the sign bit is 0, the number is positive; if the sign bit is 1, the
number is negative.

The simplest form of representation that employs a sign bit is the sign-
magnitude representation. In an n-bit word, the rightmost n - 1 bits hold the
 magnitude of the integer.

 + 010 = 00000000

 - 010 = 10000000 (sign magnitude)

 +18 = 00010010

 -18 = 10010010 (sign magnitude)

2In the literature, the terms two’s complement or 2’s complement are often used. Here we follow the
practice used in standards documents and omit the apostrophe (e.g., IEEE Std 100-1992, The New IEEE
Standard Dictionary of Electrical and Electronics Terms).

The general case can be expressed as follows:

Sign Magnitude A = d a
n -2

i = 0
2iai if an -1 = 0

- a
n -2

i = 0
2iai if an -1 = 1

 (10.1)

There are several drawbacks to sign-magnitude representation. One is that addi-
tion and subtraction require a consideration of both the signs of the numbers and their
relative magnitudes to carry out the required operation. This should become clear in the
discussion in Section 10.3. Another drawback is that there are two representations of 0:

This is inconvenient because it is slightly more difficult to test for 0 (an operation
performed frequently on computers) than if there were a single representation.

Because of these drawbacks, sign-magnitude representation is rarely used in
implementing the integer portion of the ALU. Instead, the most common scheme is
twos complement representation.2

Twos Complement Representation

Like sign magnitude, twos complement representation uses the most significant bit
as a sign bit, making it easy to test whether an integer is positive or negative. It
 differs from the use of the sign-magnitude representation in the way that the other
bits are interpreted. Table 10.1 highlights key characteristics of twos complement
representation and arithmetic, which are elaborated in this section and the next.

Most treatments of twos complement representation focus on the rules for
producing negative numbers, with no formal proof that the scheme is valid. Instead,

10.2 / INTEGER REPRESENTATION 323

our presentation of twos complement integers in this section and in Section 10.3 is
based on [DATT93], which suggests that twos complement representation is best
understood by defining it in terms of a weighted sum of bits, as we did previously
for unsigned and sign-magnitude representations. The advantage of this treatment
is that it does not leave any lingering doubt that the rules for arithmetic operations
in twos complement notation may not work for some special cases.

Consider an n-bit integer, A, in twos complement representation. If A is posi-
tive, then the sign bit, an -1, is zero. The remaining bits represent the magnitude of
the number in the same fashion as for sign magnitude:

A = a
n -2

i = 0
2iai for A Ú 0

The number zero is identified as positive and therefore has a 0 sign bit and a magni-
tude of all 0s. We can see that the range of positive integers that may be represented
is from 0 (all of the magnitude bits are 0) through 2n -1 - 1 (all of the magnitude
bits are 1). Any larger number would require more bits.

Now, for a negative number A (A 6 0), the sign bit, an -1, is one. The remain-
ing n - 1 bits can take on any one of 2n -1 values. Therefore, the range of negative
integers that can be represented is from -1 to -2n -1. We would like to assign the
bit values to negative integers in such a way that arithmetic can be handled in a
straightforward fashion, similar to unsigned integer arithmetic. In unsigned integer
representation, to compute the value of an integer from the bit representation, the
weight of the most significant bit is +2n -1. For a representation with a sign bit,
it turns out that the desired arithmetic properties are achieved, as we will see in
Section 10.3, if the weight of the most significant bit is -2n -1. This is the conven-
tion used in twos complement representation, yielding the following expression for
negative numbers:

Twos Complement A = -2n -1an -1 + a
n -2

i = 0
2iai (10.2)

Equation (10.2) defines the twos complement representation for both positive and
negative numbers. For an -1 = 0, the term -2n -1an -1 = 0 and the equation defines

Table 10.1 Characteristics of Twos Complement Representation and Arithmetic

Range -2n - 1 through 2n - 1 - 1

Number of Representations
of Zero

One

Negation
Take the Boolean complement of each bit of the corresponding
positive number, then add 1 to the resulting bit pattern viewed
as an unsigned integer.

Expansion of Bit Length Add additional bit positions to the left and fill in with the value
of the original sign bit.

Overflow Rule
If two numbers with the same sign (both positive or both
negative) are added, then overflow occurs if and only if the
result has the opposite sign.

Subtraction Rule To subtract B from A, take the twos complement of B and add
it to A.

324 CHAPTER 10 / COMPUTER ARITHMETIC

a nonnegative integer. When an -1 = 1, the term 2n -1 is subtracted from the summa-
tion term, yielding a negative integer.

Table 10.2 compares the sign-magnitude and twos complement representa-
tions for 4-bit integers. Although twos complement is an awkward representation
from the human point of view, we will see that it facilitates the most important arith-
metic operations, addition and subtraction. For this reason, it is almost universally
used as the processor representation for integers.

A useful illustration of the nature of twos complement representation is a
value box, in which the value on the far right in the box is 1 (20) and each succeeding
position to the left is double in value, until the leftmost position, which is negated.
As you can see in Figure 10.2a, the most negative twos complement number that
can be represented is -2n -1; if any of the bits other than the sign bit is one, it adds a
positive amount to the number. Also, it is clear that a negative number must have a
1 at its leftmost position and a positive number must have a 0 in that position. Thus,
the largest positive number is a 0 followed by all 1s, which equals 2n -1 - 1.

The rest of Figure 10.2 illustrates the use of the value box to convert from twos
complement to decimal and from decimal to twos complement.

Range Extension

It is sometimes desirable to take an n-bit integer and store it in m bits, where m 7 n.
This expansion of bit length is referred to as range extension, because the range
of numbers that can be expressed is extended by increasing the bit length.

Table 10.2 Alternative Representations for 4-Bit Integers

Decimal
Representation

Sign-Magnitude
Representation

Twos Complement
Representation

Biased
Representation

+8 — — 1111

+7 0111 0111 1110

+6 0110 0110 1101

+5 0101 0101 1100

+4 0100 0100 1011

+3 0011 0011 1010

+2 0010 0010 1001

+1 0001 0001 1000

+0 0000 0000 0111

-0 1000 — —

-1 1001 1111 0110

-2 1010 1110 0101

-3 1011 1101 0100

-4 1100 1100 0011

-5 1101 1011 0010

-6 1110 1010 0001

-7 1111 1001 0000

-8 — 1000 —

10.2 / INTEGER REPRESENTATION 325

In sign-magnitude notation, this is easily accomplished: simply move the sign bit
to the new leftmost position and fill in with zeros.

�128 64 32 16 8 4 2 1

(a) An eight-position twos complement value box

�128 64 32 16 8 4 2 1

�128 �2 �1 � �125

(b) Convert binary 10000011 to decimal

�128 64 32 16 8 4 2 1

 1 0 0 0 0 0 1 1

 1 0 0 0 1 0 0 0

�120 � �128 �8

(c) Convert decimal �120 to binary

Figure 10.2 Use of a Value Box for Conversion between
Twos Complement Binary and Decimal

 +18 = 00010010 (sign magnitude, 8 bits)

 +18 = 0000000000010010 (sign magnitude, 16 bits)

 -18 = 10010010 (sign magnitude, 8 bits)

 -18 = 1000000000010010 (sign magnitude, 16 bits)

 +18 = 00010010 (twos complement, 8 bits)

 +18 = 0000000000010010 (twos complement, 16 bits)

 -18 = 11101110 (twos complement, 8 bits)

 -32,658 = 1000000001101110 (twos complement, 16 bits)

The next to last line is easily seen using the value box of Figure 10.2. The last line
can be verified using Equation (10.2) or a 16-bit value box.

This procedure will not work for twos complement negative integers. Using the
same example,

Instead, the rule for twos complement integers is to move the sign bit to the
new leftmost position and fill in with copies of the sign bit. For positive numbers, fill
in with zeros, and for negative numbers, fill in with ones. This is called sign extension.

 -18 = 11101110 (twos complement, 8 bits)

 -18 = 1111111111101110 (twos complement, 16 bits)

326 CHAPTER 10 / COMPUTER ARITHMETIC

To see why this rule works, let us again consider an n-bit sequence of binary
digits an -1an -2 c a1a0 interpreted as a twos complement integer A, so that its
value is

A = -2n -1an -1 + a
n -2

i = 0
2iai

If A is a positive number, the rule clearly works. Now, if A is negative and we want
to construct an m-bit representation, with m 7 n. Then

A = -2m -1am -1 + a
m -2

i = 0
2iai

The two values must be equal:

 -2m -1 + a
m -2

i = 0
2iai = -2n -1 + a

n -2

i = 0
2iai

 -2m -1 + a
m -2

i = n -1
2iai = -2n -1

 -2n -1 + a
m -2

i = n -1
2iai = 2m -1

 1 + a
n -2

i = 0
2i + a

m -2

i = n -1
2iai = 1 + a

m -2

i = 0
2i

 a
m -2

i = n -1
2iai = a

m -2

i = n -1
2i

1 am -2 = c = an -2 = an -1 = 1

In going from the first to the second equation, we require that the least signifi-
cant n - 1 bits do not change between the two representations. Then we get to the
next to last equation, which is only true if all of the bits in positions n - 1 through
m - 2 are 1. Therefore, the sign-extension rule works. The reader may find the rule
easier to grasp after studying the discussion on twos complement negation at the
beginning of Section 10.3.

Fixed-Point Representation

Finally, we mention that the representations discussed in this section are sometimes
referred to as fixed point. This is because the radix point (binary point) is fixed and
assumed to be to the right of the rightmost digit. The programmer can use the same
representation for binary fractions by scaling the numbers so that the binary point is
implicitly positioned at some other location.

 10.3 INTEGER ARITHMETIC

This section examines common arithmetic functions on numbers in twos comple-
ment representation.

10.3 / INTEGER ARITHMETIC 327

Negation

In sign-magnitude representation, the rule for forming the negation of an integer is
simple: invert the sign bit. In twos complement notation, the negation of an integer
can be formed with the following rules:

 1. Take the Boolean complement of each bit of the integer (including the sign
bit). That is, set each 1 to 0 and each 0 to 1.

 2. Treating the result as an unsigned binary integer, add 1.

This two-step process is referred to as the twos complement operation, or the taking
of the twos complement of an integer.

 +18 = 00010010 (twos complement)

 bitwise complement = 11101101

+ 1

11101110 = -18

 -18 = 11101110 (twos complement)

 bitwise complement = 00010001

+ 1

00010010 = +18

As expected, the negative of the negative of that number is itself:

We can demonstrate the validity of the operation just described using the defi-
nition of the twos complement representation in Equation (10.2). Again, interpret
an n-bit sequence of binary digits an -1an -2 c a1a0 as a twos complement integer
A, so that its value is

A = -2n -1an -1 + a
n -2

i = 0
2iai

Now form the bitwise complement, an -1an -2 c a0, and, treating this as an unsigned
integer, add 1. Finally, interpret the resulting n-bit sequence of binary digits as a
twos complement integer B, so that its value is

B = -2n -1an -1 + 1 + a
n -2

i = 0
2iai

Now, we want A = -B, which means A + B = 0. This is easily shown to be true:

 A + B = -(an -1 + an -1)2n -1 + 1 + aa
n -2

i = 0
2i(ai + ai)b

 = -2n -1 + 1 + aa
n -2

i = 0
2ib

 = -2n -1 + 1 + (2n -1 - 1)

 = -2n -1 + 2n -1 = 0

328 CHAPTER 10 / COMPUTER ARITHMETIC

The preceding derivation assumes that we can first treat the bitwise complement of
A as an unsigned integer for the purpose of adding 1, and then treat the result as a
twos complement integer. There are two special cases to consider. First, consider
A = 0. In that case, for an 8-bit representation:

 0 = 00000000 (twos complement)

 bitwise complement = 11111111

+ 1

100000000 = 0

 -128 = 10000000 (twos complement)

 bitwise complement = 01111111

+ 1

10000000 = -128

There is a carry out of the most significant bit position, which is ignored. The result
is that the negation of 0 is 0, as it should be.

The second special case is more of a problem. If we take the negation of the bit
pattern of 1 followed by n - 1 zeros, we get back the same number. For example,
for 8-bit words,

Some such anomaly is unavoidable. The number of different bit patterns in an
n-bit word is 2n, which is an even number. We wish to represent positive and nega-
tive integers and 0. If an equal number of positive and negative integers are repre-
sented (sign magnitude), then there are two representations for 0. If there is only
one representation of 0 (twos complement), then there must be an unequal number
of negative and positive numbers represented. In the case of twos complement, for
an n-bit length, there is a representation for -2n -1 but not for +2n -1.

Addition and Subtraction

Addition in twos complement is illustrated in Figure 10.3. Addition proceeds as if
the two numbers were unsigned integers. The first four examples illustrate success-
ful operations. If the result of the operation is positive, we get a positive number
in twos complement form, which is the same as in unsigned-integer form. If the
result of the operation is negative, we get a negative number in twos complement
form. Note that, in some instances, there is a carry bit beyond the end of the word
 (indicated by shading), which is ignored.

On any addition, the result may be larger than can be held in the word size
being used. This condition is called overflow. When overflow occurs, the ALU must
signal this fact so that no attempt is made to use the result. To detect overflow, the
following rule is observed:

OVERFLOW RULE: If two numbers are added, and they are both positive or
both negative, then overflow occurs if and only if the result has the opposite sign.

10.3 / INTEGER ARITHMETIC 329

Figures 10.3e and f show examples of overflow. Note that overflow can occur
whether or not there is a carry.

Subtraction is easily handled with the following rule:

Figure 10.3 Addition of Numbers in Twos Complement
Representation

Figure 10.4 Subtraction of Numbers in Twos Complement
Representation (M - S)

SUBTRACTION RULE: To subtract one number (subtrahend) from another
(minuend), take the twos complement (negation) of the subtrahend and add it
to the minuend.

Thus, subtraction is achieved using addition, as illustrated in Figure 10.4. The
last two examples demonstrate that the overflow rule still applies.

330 CHAPTER 10 / COMPUTER ARITHMETIC

Some insight into twos complement addition and subtraction can be gained by
looking at a geometric depiction [BENH92], as shown in Figure 10.5. The circle in
the upper half of each part of the figure is formed by selecting the appropriate seg-
ment of the number line and joining the endpoints. Note that when the numbers are
laid out on a circle, the twos complement of any number is horizontally opposite that
number (indicated by dashed horizontal lines). Starting at any number on the circle,
we can add positive k (or subtract negative k) to that number by moving k positions
clockwise, and we can subtract positive k (or add negative k) from that number by
moving k positions counterclockwise. If an arithmetic operation results in traversal
of the point where the endpoints are joined, an incorrect answer is given (overflow).

0000

0 +1
+2

+3
+4

+5
+6

+7–8–7
–6

–5

–4

–3
–2

–1

0001

Addition
of positive
numbers

Subtraction
of positive
numbers

0010

0011

0100

0101

0110

01111000

(a) 4-bit numbers (b) n-bit numbers

1001

1010

1011

1100

1101

1110

1111

0–1–2–3–4–5–6–7–8–9 1 2 3 4 5 6 7 8 9

000…0

0

2n–2

–2n–1

–2n–2

–1

Addition
of positive
numbers

Subtraction
of positive
numbers

010…0

011…1100…0

110…0

111…1

–2n–1

–2n–1–1 2n–1
2n–1–1

2n–1–1

Figure 10.5 Geometric Depiction of Twos Complement Integers

All of the examples of Figures 10.3 and 10.4 are easily traced in the circle of Figure 10.5.

Figure 10.6 suggests the data paths and hardware elements needed to accom-
plish addition and subtraction. The central element is a binary adder, which is pre-
sented two numbers for addition and produces a sum and an overflow indication.
The binary adder treats the two numbers as unsigned integers. (A logic imple-
mentation of an adder is given in Chapter 11.) For addition, the two numbers are
 presented to the adder from two registers, designated in this case as A and B reg-
isters. The result may be stored in one of these registers or in a third. The overflow
indication is stored in a 1-bit overflow flag (0 = no overflow; 1 = overflow). For
 subtraction, the subtrahend (B register) is passed through a twos complementer
so that its twos complement is presented to the adder. Note that Figure 10.6 only

10.3 / INTEGER ARITHMETIC 331

shows the data paths. Control signals are needed to control whether or not the com-
plementer is used, depending on whether the operation is addition or subtraction.

Multiplication

Compared with addition and subtraction, multiplication is a complex operation,
whether performed in hardware or software. A wide variety of algorithms have been
used in various computers. The purpose of this subsection is to give the reader some
feel for the type of approach typically taken. We begin with the simpler problem of
multiplying two unsigned (nonnegative) integers, and then we look at one of the most
common techniques for multiplication of numbers in twos complement representation.

UNSIGNED INTEGERS Figure 10.7 illustrates the multiplication of unsigned
binary integers, as might be carried out using paper and pencil. Several important
observations can be made:

 1. Multiplication involves the generation of partial products, one for each digit in the
multiplier. These partial products are then summed to produce the final product.

 1011
 �1101
 1011
 0000
 1011
 1011
10001111

Multiplicand (11)
Multiplier (13)

Product (143)

Partial products

Figure 10.7 Multiplication of
Unsigned Binary Integers

AdderOF

OF � Overflow bit
SW � Switch (select addition or subtraction)

Complementer

A RegisterB Register

SW

Figure 10.6 Block Diagram of Hardware for Addition and
Subtraction

332 CHAPTER 10 / COMPUTER ARITHMETIC

 2. The partial products are easily defined. When the multiplier bit is 0, the partial
product is 0. When the multiplier is 1, the partial product is the multiplicand.

 3. The total product is produced by summing the partial products. For this oper-
ation, each successive partial product is shifted one position to the left relative
to the preceding partial product.

 4. The multiplication of two n-bit binary integers results in a product of up to 2n
bits in length (e.g., 11 * 11 = 1001).

Compared with the pencil-and-paper approach, there are several things we can
do to make computerized multiplication more efficient. First, we can perform a run-
ning addition on the partial products rather than waiting until the end. This eliminates
the need for storage of all the partial products; fewer registers are needed. Second,
we can save some time on the generation of partial products. For each 1 on the multi-
plier, an add and a shift operation are required; but for each 0, only a shift is required.

Figure 10.8a shows a possible implementation employing these measures. The
multiplier and multiplicand are loaded into two registers (Q and M). A third register,

Mn�1

Multiplicand

(a) Block diagram

(b) Example from Figure 10.7 (product in A, Q)

Add

Shift right

Multiplier

n-bit adder Shift and add
control logic

M0

An�1 A0 Qn�1 Q0C

C
0

0
0

0

0
0

1
0

A
0000

1011
0101

0010

1101
0110

0001
1000

Q
1101

1101
1110

1111

1111
1111

1111
1111

M
1011

1011
1011

1011

1011
1011

1011
1011

Initial values

Add
Shift

Shift

Add
Shift

Add
Shift

First
cycle

Second
cycle

Third
cycle

Fourth
cycle

Figure 10.8 Hardware Implementation of Unsigned Binary Multiplication

10.3 / INTEGER ARITHMETIC 333

the A register, is also needed and is initially set to 0. There is also a 1-bit C register,
initialized to 0, which holds a potential carry bit resulting from addition.

The operation of the multiplier is as follows. Control logic reads the bits of the
multiplier one at a time. If Q0 is 1, then the multiplicand is added to the A register
and the result is stored in the A register, with the C bit used for overflow. Then all
of the bits of the C, A, and Q registers are shifted to the right one bit, so that the C
bit goes into An -1, A0 goes into Qn -1 and Q0 is lost. If Q0 is 0, then no addition is
performed, just the shift. This process is repeated for each bit of the original multi-
plier. The resulting 2n-bit product is contained in the A and Q registers. A flowchart
of the operation is shown in Figure 10.9, and an example is given in Figure 10.8b.
Note that on the second cycle, when the multiplier bit is 0, there is no add operation.

TWOS COMPLEMENT MULTIPLICATION We have seen that addition and
subtraction can be performed on numbers in twos complement notation by treating
them as unsigned integers. Consider

1001
+0011

1100

If these numbers are considered to be unsigned integers, then we are adding
9 (1001) plus 3 (0011) to get 12 (1100). As twos complement integers, we are adding
-7 (1001) to 3 (0011) to get -4 (1100).

START

END
YesNo

No Yes

C, A 0
M Multiplicand
Q Multiplier
Count n

Shift right C, A, Q
Count Count – 1

C, A A � M

Q0 � 1?

Count � 0? Product
in A, Q

Figure 10.9 Flowchart for Unsigned Binary Multiplication

334 CHAPTER 10 / COMPUTER ARITHMETIC

Unfortunately, this simple scheme will not work for multiplication. To see
this, consider again Figure 10.7. We multiplied 11 (1011) by 13 (1101) to get 143
(10001111). If we interpret these as twos complement numbers, we have -5 (1011)
times -3 (1101) equals -113 (10001111). This example demonstrates that straight-
forward multiplication will not work if both the multiplicand and multiplier are
negative. In fact, it will not work if either the multiplicand or the multiplier is nega-
tive. To justify this statement, we need to go back to Figure 10.7 and explain what is
being done in terms of operations with powers of 2. Recall that any unsigned binary
number can be expressed as a sum of powers of 2. Thus,

 1101 = 1 * 23 + 1 * 22 + 0 * 21 + 1 * 20

 = 23 + 22 + 20

Further, the multiplication of a binary number by 2n is accomplished by
shifting that number to the left n bits. With this in mind, Figure 10.10 recasts
Figure 10.7 to make the generation of partial products by multiplication explicit.
The only difference in Figure 10.10 is that it recognizes that the partial products
should be viewed as 2n-bit numbers generated from the n-bit multiplicand.

Thus, as an unsigned integer, the 4-bit multiplicand 1011 is stored in an 8-bit
word as 00001011. Each partial product (other than that for 20) consists of this
number shifted to the left, with the unoccupied positions on the right filled with
zeros (e.g., a shift to the left of two places yields 00101100).

Now we can demonstrate that straightforward multiplication will not work if
the multiplicand is negative. The problem is that each contribution of the negative
multiplicand as a partial product must be a negative number on a 2n-bit field; the sign
bits of the partial products must line up. This is demonstrated in Figure 10.11, which
shows that multiplication of 1001 by 0011. If these are treated as unsigned integers,
the multiplication of 9 * 3 = 27 proceeds simply. However, if 1001 is interpreted

1011
� 1101

00001011 1011 � 1 � 20

00000000 1011 � 0 � 21

00101100 1011 � 1 � 22

01011000 1011 � 1 � 23

10001111

Figure 10.10 Multiplication of Two
Unsigned 4-Bit Integers Yielding an
8-Bit Result

 1001 (9)
� 0011 (3)

00001001 1001 � 20

00010010 1001 � 21

00011011 (27)

 1001 (–7)
� 0011 (3)

11111001 (–7) � 20 = (–7)

11110010 (–7) � 21 = (–14)
11101011 (–21)

(a) Unsigned integers (b) Twos complement integers

Figure 10.11 Comparison of Multiplication of Unsigned and Twos
Complement Integers

10.3 / INTEGER ARITHMETIC 335

as the twos complement value -7, then each partial product must be a negative
twos complement number of 2n (8) bits, as shown in Figure 10.11b. Note that this is
accomplished by padding out each partial product to the left with binary 1s.

If the multiplier is negative, straightforward multiplication also will not work.
The reason is that the bits of the multiplier no longer correspond to the shifts or
multiplications that must take place. For example, the 4-bit decimal number -3 is
written 1101 in twos complement. If we simply took partial products based on each
bit position, we would have the following correspondence:

1101 g -(1 * 23 + 1 * 22 + 0 * 21 + 1 * 20) = -(23 + 22 + 20)

In fact, what is desired is -(21 + 20). So this multiplier cannot be used directly in
the manner we have been describing.

There are a number of ways out of this dilemma. One would be to convert
both multiplier and multiplicand to positive numbers, perform the multiplication,
and then take the twos complement of the result if and only if the sign of the two
original numbers differed. Implementers have preferred to use techniques that
do not require this final transformation step. One of the most common of these is
Booth’s algorithm. This algorithm also has the benefit of speeding up the multipli-
cation process, relative to a more straightforward approach.

Booth’s algorithm is depicted in Figure 10.12 and can be described as follows.
As before, the multiplier and multiplicand are placed in the Q and M registers,

START

END
YesNo

� 10 � 01

� 11
� 00

A 0, Q�1 0
M Multiplicand
Q Multiplier
Count n

Arithmetic shift
Right: A, Q, Q�1

Count Count � 1

A A � MA A � M

Q0, Q�1

Count � 0?

Figure 10.12 Booth’s Algorithm for Twos
Complement Multiplication

336 CHAPTER 10 / COMPUTER ARITHMETIC

respectively. There is also a 1-bit register placed logically to the right of the least
significant bit (Q0) of the Q register and designated Q -1; its use is explained shortly.
The results of the multiplication will appear in the A and Q registers. A and Q -1
are initialized to 0. As before, control logic scans the bits of the multiplier one at a
time. Now, as each bit is examined, the bit to its right is also examined. If the two
bits are the same (1–1 or 0–0), then all of the bits of the A, Q, and Q -1 registers are
shifted to the right 1 bit. If the two bits differ, then the multiplicand is added to or
subtracted from the A register, depending on whether the two bits are 0–1 or 1–0.
Following the addition or subtraction, the right shift occurs. In either case, the right
shift is such that the leftmost bit of A, namely An -1, not only is shifted into An -2,
but also remains in An -1. This is required to preserve the sign of the number in A
and Q. It is known as an arithmetic shift, because it preserves the sign bit.

Figure 10.13 shows the sequence of events in Booth’s algorithm for the multi-
plication of 7 by 3. More compactly, the same operation is depicted in Figure 10.14a.
The rest of Figure 10.14 gives other examples of the algorithm. As can be seen, it
works with any combination of positive and negative numbers. Note also the effi-
ciency of the algorithm. Blocks of 1s or 0s are skipped over, with an average of only
one addition or subtraction per block.

Q–1
0

0
1

1

1
0

0

A
0000

1001
1100

1110

0101
0010

0001

Q
0011

0011
1001

0100

0100
1010

0101

M
0111

0111
0111

0111

0111
0111

0111

Initial values

A A – M
Shift

Shift

A A + M
Shift

Shift

First
cycle

Second
cycle

Third
cycle

Fourth
cycle

Figure 10.13 Example of Booth’s Algorithm (7 * 3)

 0111
� 0011 (0)

11111001 1–0
0000000 1–1
000111 0–1
00010101 (21)

 0111
� 1101 (0)

11111001 1–0
0000111 0–1
111001 1–0
11101011 (–21)

(a) (7) � (3) � (21) (b) (7) � (�3) � (�21)

 1001
� 0011 (0)

00000111 1–0
0000000 1–1
111001 0–1
11101011 (–21)

 1001
� 1101 (0)

00000111 1–0
1111001 0–1
000111 1–0
00010101 (21)

(c) (�7) � (3) � (�21) (d) (�7) � (�3) � (21)

Figure 10.14 Examples Using Booth’s Algorithm

10.3 / INTEGER ARITHMETIC 337

Why does Booth’s algorithm work? Consider first the case of a positive mul-
tiplier. In particular, consider a positive multiplier consisting of one block of 1s
 surrounded by 0s (e.g., 00011110). As we know, multiplication can be achieved by
adding appropriately shifted copies of the multiplicand:

 M * (00011110) = M * (24 + 23 + 22 + 21)

 = M * (16 + 8 + 4 + 2)

 = M * 30

 M * (00011110) = M * (25 - 21)

 = M * (32 - 2)

 = M * 30

 M * (01111010) = M * (26 + 25 + 24 + 23 + 21)

 = M * (27 - 23 + 22 - 21)

The number of such operations can be reduced to two if we observe that

 2n + 2n -1 + c + 2n -K = 2n +1 - 2n -K (10.3)

So the product can be generated by one addition and one subtraction of the multi-
plicand. This scheme extends to any number of blocks of 1s in a multiplier, including
the case in which a single 1 is treated as a block.

Booth’s algorithm conforms to this scheme by performing a subtraction when the
first 1 of the block is encountered (1–0) and an addition when the end of the block
is encountered (0–1).

To show that the same scheme works for a negative multiplier, we need to
observe the following. Let X be a negative number in twos complement notation:

Representation of X = {1xn -2xn -3 c x1x0}

Then the value of X can be expressed as follows:

X = -2n -1 + (xn -2 * 2n -2) + (xn -3 * 2n -3) + g + (x1 * 21) + (x0 * 20) (10.4)

The reader can verify this by applying the algorithm to the numbers in Table 10.2.
The leftmost bit of X is 1, because X is negative. Assume that the leftmost 0 is

in the k th position. Thus, X is of the form

 Representation of X = {111c 10xk -1xk -2 c x1x0} (10.5)

Then the value of X is

 X = -2n -1 + 2n -2 + g + 2k +1 + (xk -1 * 2k -1) + g + (x0 * 20) (10.6)

From Equation (10.3), we can say that

2n -2 + 2n -3 + g + 2k +1 = 2n -1 - 2k +1

338 CHAPTER 10 / COMPUTER ARITHMETIC

Rearranging

 -2n -1 + 2n -2 + 2n -3 + g + 2k +1 = -2k +1 (10.7)

Substituting Equation (10.7) into Equation (10.6), we have

 X = -2k +1 + (xk -1 * 2k -1) + g + (x0 * 20) (10.8)

At last we can return to Booth’s algorithm. Remembering the representation
of X [Equation (10.5)], it is clear that all of the bits from x0 up to the leftmost 0
are handled properly because they produce all of the terms in Equation (10.8) but
(-2k +1) and thus are in the proper form. As the algorithm scans over the leftmost
0 and encounters the next 1 (2k +1), a 1–0 transition occurs and a subtraction takes
place (-2k +1). This is the remaining term in Equation (10.8).

As an example, consider the multiplication of some multiplicand by (-6). In
twos complement representation, using an 8-bit word, (-6) is represented as
11111010. By Equation (10.4), we know that

-6 = -27 + 26 + 25 + 24 + 23 + 21

which the reader can easily verify. Thus,

M * (11111010) = M * (-27 + 26 + 25 + 24 + 23 + 21)

Using Equation (10.7),

M * (11111010) = M * (-23 + 21)

which the reader can verify is still M * (-6). Finally, following our earlier line
of reasoning,

M * (11111010) = M * (-23 + 22 - 21)

We can see that Booth’s algorithm conforms to this scheme. It performs a sub-
traction when the first 1 is encountered (10), an addition when (01) is encountered,
and finally another subtraction when the first 1 of the next block of 1s is encoun-
tered. Thus, Booth’s algorithm performs fewer additions and subtractions than a
more straightforward algorithm.

Division

Division is somewhat more complex than multiplication but is based on the same
general principles. As before, the basis for the algorithm is the paper-and-pencil
approach, and the operation involves repetitive shifting and addition or subtraction.

Figure 10.15 shows an example of the long division of unsigned binary inte-
gers. It is instructive to describe the process in detail. First, the bits of the dividend
are examined from left to right, until the set of bits examined represents a number
greater than or equal to the divisor; this is referred to as the divisor being able to
divide the number. Until this event occurs, 0s are placed in the quotient from left
to right. When the event occurs, a 1 is placed in the quotient and the divisor is sub-
tracted from the partial dividend. The result is referred to as a partial remainder.

10.3 / INTEGER ARITHMETIC 339

From this point on, the division follows a cyclic pattern. At each cycle, additional
bits from the dividend are appended to the partial remainder until the result is
greater than or equal to the divisor. As before, the divisor is subtracted from this
number to produce a new partial remainder. The process continues until all the bits
of the dividend are exhausted.

Figure 10.16 shows a machine algorithm that corresponds to the long division
process. The divisor is placed in the M register, the dividend in the Q register. At each

 00001101
1011 10010011
 1011
 001110
 1011
 001111
 1011
 100

Quotient
DividendDivisor

Remainder

Partial
remainders

Figure 10.15 Example of Division of Unsigned
Binary Integers

START

END
YesNo

No Yes

Quotient in Q
Remainder in A

A 0
M Divisor
Q Dividend
Count n

Shift left
A, Q

A A � M

Count Count � 1

Q0 1
Q0 0
A A � M

A � 0?

Count � 0?

Figure 10.16 Flowchart for Unsigned Binary Division

340 CHAPTER 10 / COMPUTER ARITHMETIC

step, the A and Q registers together are shifted to the left 1 bit. M is subtracted from
A to determine whether A divides the partial remainder.3 If it does, then Q0 gets a
1bit. Otherwise, Q0 gets a 0 bit and M must be added back to A to restore the previ-
ous value. The count is then decremented, and the process continues for n steps. At
the end, the quotient is in the Q register and the remainder is in the A register.

This process can, with some difficulty, be extended to negative numbers. We
give here one approach for twos complement numbers. An example of this approach
is shown in Figure 10.17.

The algorithm assumes that the divisor V and the dividend D are positive and
that |V| 6 |D|. If |V| = |D|, then the quotient Q = 1 and the remainder R = 0. If
|V| 7 |D|, then Q = 0 and R = D. The algorithm can be summarized as follows:

 1. Load the twos complement of the divisor into the M register; that is, the M
register contains the negative of the divisor. Load the dividend into the A, Q
registers. The dividend must be expressed as a 2n-bit positive number. Thus,
for example, the 4-bit 0111 becomes 00000111.

 2. Shift A, Q left 1 bit position.

 3. Perform A d A - M. This operation subtracts the divisor from the contents
of A.

 4. a. If the result is nonnegative (most significant bit of A = 0), then set Q0 d 1.

b. If the result is negative (most significant bit of A = 1), then set Q0 d 0 and
restore the previous value of A.

 5. Repeat steps 2 through 4 as many times as there are bit positions in Q.

 6. The remainder is in A and the quotient is in Q.

3This is subtraction of unsigned integers. A result that requires a borrow out of the most significant bit is
a negative result.

Figure 10.17 Example of Restoring Twos Complement Division (7/3)

10.4 / FLOATING-POINT REPRESENTATION 341

To deal with negative numbers, we recognize that the remainder is defined by

D = Q * V + R

That is, the remainder is the value of R needed for the preceding equation
to be valid. Consider the following examples of integer division with all possible
combinations of signs of D and V:

 D = 7 V = 3 1 Q = 2 R = 1

 D = 7 V = -3 1 Q = -2 R = 1

 D = -7 V = 3 1 Q = -2 R = -1

 D = -7 V = -3 1 Q = 2 R = -1

The reader will note from Figure 10.17 that (-7)>(3) and (7)>(-3) produce dif-
ferent remainders. We see that the magnitudes of Q and R are unaffected by the input
signs and that the signs of Q and R are easily derivable from the signs of D and V.
Specifically, sign(R) = sign(D) and sign(Q) = sign(D) * sign(V). Hence, one way
to do twos complement division is to convert the operands into unsigned values and,
at the end, to account for the signs by complementation where needed. This is the
method of choice for the restoring division algorithm [PARH10].

 10.4 FLOATING-POINT REPRESENTATION

Principles

With a fixed-point notation (e.g., twos complement) it is possible to represent a
range of positive and negative integers centered on or near 0. By assuming a fixed
binary or radix point, this format allows the representation of numbers with a frac-
tional component as well.

This approach has limitations. Very large numbers cannot be represented, nor
can very small fractions. Furthermore, the fractional part of the quotient in a divi-
sion of two large numbers could be lost.

For decimal numbers, we get around this limitation by using scientific
notation. Thus, 976,000,000,000,000 can be represented as 9.76 * 1014, and
0.0000000000000976 can be represented as 9.76 * 10-14. What we have done, in
effect, is dynamically to slide the decimal point to a convenient location and use the
exponent of 10 to keep track of that decimal point. This allows a range of very large
and very small numbers to be represented with only a few digits.

This same approach can be taken with binary numbers. We can represent a
number in the form

{S * B{E

This number can be stored in a binary word with three fields:

 • Sign: plus or minus

 • Significand S

 • Exponent E

342 CHAPTER 10 / COMPUTER ARITHMETIC

The base B is implicit and need not be stored because it is the same for all numbers.
Typically, it is assumed that the radix point is to the right of the leftmost, or most
significant, bit of the significand. That is, there is one bit to the left of the radix point.

The principles used in representing binary floating-point numbers are best
explained with an example. Figure 10.18a shows a typical 32-bit floating-point for-
mat. The leftmost bit stores the sign of the number (0 = positive, 1 = negative).
The exponent value is stored in the next 8 bits. The representation used is known as
a biased representation. A fixed value, called the bias, is subtracted from the field
to get the true exponent value. Typically, the bias equals (2k -1 - 1), where k is the
number of bits in the binary exponent. In this case, the 8-bit field yields the numbers
0 through 255. With a bias of 127 (27 - 1), the true exponent values are in the range
-127 to +128. In this example, the base is assumed to be 2.

Table 10.2 shows the biased representation for 4-bit integers. Note that when
the bits of a biased representation are treated as unsigned integers, the relative mag-
nitudes of the numbers do not change. For example, in both biased and unsigned
representations, the largest number is 1111 and the smallest number is 0000. This is
not true of sign-magnitude or twos complement representation. An advantage of
biased representation is that nonnegative floating-point numbers can be treated as
integers for comparison purposes.

The final portion of the word (23 bits in this case) is the significand.4

Any floating-point number can be expressed in many ways.

8 bits

Sign of
significand

Significand

23 bits

(a) Format

(b) Examples

 1.1010001 � 210100 = 0 10010011 10100010000000000000000 = 1.6328125 � 220

–1.1010001 � 210100 = 1 10010011 10100010000000000000000 = –1.6328125 � 220

 1.1010001 � 2–10100 = 0 01101011 10100010000000000000000 = 1.6328125 � 2–20

–1.1010001 � 2–10100 = 1 01101011 10100010000000000000000 = –1.6328125 � 2–20

Biased exponent

Figure 10.18 Typical 32-Bit Floating-Point Format

4The term mantissa, sometimes used instead of significand, is considered obsolete. Mantissa also means
“the fractional part of a logarithm,” so is best avoided in this context.

The following are equivalent, where the significand is expressed in binary form:

0.110 * 25

110 * 22

0.0110 * 26

To simplify operations on floating-point numbers, it is typically required that they
be normalized. A normal number is one in which the most significant digit of the

10.4 / FLOATING-POINT REPRESENTATION 343

significand is nonzero. For base 2 representation, a normal number is therefore one
in which the most significant bit of the significand is one. As was mentioned, the
typical convention is that there is one bit to the left of the radix point. Thus, a nor-
mal nonzero number is one in the form

{1.bbb c b * 2{E

where b is either binary digit (0 or 1). Because the most significant bit is always one,
it is unnecessary to store this bit; rather, it is implicit. Thus, the 23-bit field is used to
store a 24-bit significand with a value in the half open interval [1, 2). Given a num-
ber that is not normal, the number may be normalized by shifting the radix point to
the right of the leftmost 1 bit and adjusting the exponent accordingly.

Figure 10.18b gives some examples of numbers stored in this format. For each
example, on the left is the binary number; in the center is the corresponding bit pat-
tern; on the right is the decimal value. Note the following features:

 • The sign is stored in the first bit of the word.

 • The first bit of the true significand is always 1 and need not be stored in the
significand field.

 • The value 127 is added to the true exponent to be stored in the exponent field.

 • The base is 2.

For comparison, Figure 10.19 indicates the range of numbers that can be rep-
resented in a 32-bit word. Using twos complement integer representation, all of the
integers from -231 to 231 - 1 can be represented, for a total of 232 different num-
bers. With the example floating-point format of Figure 10.18, the following ranges
of numbers are possible:

 • Negative numbers between -(2 - 2-23) * 2128 and -2-127

 • Positive numbers between 2-127 and (2 - 2-23) * 2128

Expressible integers

Expressible negative
numbers

Negative
overflow

Positive
overflow

Negative
underflow

Zero

Positive
underflow

Expressible positive
numbers

(a) Twos complement integers

(b) Floating-point numbers

Number
line

Number
line

0

0

Figure 10.19 Expressible Numbers in Typical 32-Bit Formats

344 CHAPTER 10 / COMPUTER ARITHMETIC

Five regions on the number line are not included in these ranges:

 • Negative numbers less than -(2 - 2-23) * 2128, called negative overflow

 • Negative numbers greater than 2-127, called negative underflow

 • Zero

 • Positive numbers less than 2-127, called positive underflow

 • Positive numbers greater than (2 - 2-23) * 2128, called positive overflow

The representation as presented will not accommodate a value of 0.
However, as we shall see, actual floating-point representations include a spe-
cial bit pattern to designate zero. Overflow occurs when an arithmetic operation
results in an absolute value greater than can be expressed with an exponent of 128
(e.g., 2120 * 2100 = 2220). Underflow occurs when the fractional magnitude is too
small (e.g., 2-120 * 2-100 = 2-220). Underflow is a less serious problem because
the result can generally be satisfactorily approximated by 0.

It is important to note that we are not representing more individual values
with floating-point notation. The maximum number of different values that can be
represented with 32 bits is still 232. What we have done is to spread those numbers
out in two ranges, one positive and one negative. In practice, most floating-point
numbers that one would wish to represent are represented only approximately.
However, for moderate sized integers, the representation is exact.

Also, note that the numbers represented in floating-point notation are not
spaced evenly along the number line, as are fixed-point numbers. The possible val-
ues get closer together near the origin and farther apart as you move away, as shown
in Figure 10.20. This is one of the trade-offs of floating-point math: Many calcula-
tions produce results that are not exact and have to be rounded to the nearest value
that the notation can represent.

In the type of format depicted in Figure 10.18, there is a trade-off between
range and precision. The example shows 8 bits devoted to the exponent and 23 to
the significand. If we increase the number of bits in the exponent, we expand the
range of expressible numbers. But because only a fixed number of different val-
ues can be expressed, we have reduced the density of those numbers and therefore
the precision. The only way to increase both range and precision is to use more
bits. Thus, most computers offer, at least, single-precision numbers and double-
precision numbers. For example, a processor could support a single-precision
 format of 64 bits, and a double-precision format of 128 bits.

So there is a trade-off between the number of bits in the exponent and the
number of bits in the significand. But it is even more complicated than that. The
implied base of the exponent need not be 2. The IBM S/390 architecture, for exam-
ple, uses a base of 16 [ANDE67b]. The format consists of a 7-bit exponent and a
24-bit significand.

0�n n 2n 4n

Figure 10.20 Density of Floating-Point Numbers

10.4 / FLOATING-POINT REPRESENTATION 345

The advantage of using a larger exponent is that a greater range can be
achieved for the same number of exponent bits. But remember, we have not
increased the number of different values that can be represented. Thus, for a fixed
format, a larger exponent base gives a greater range at the expense of less precision.

IEEE Standard for Binary Floating-Point Representation

The most important floating-point representation is defined in IEEE Standard 754,
adopted in 1985 and revised in 2008. This standard was developed to facilitate the
portability of programs from one processor to another and to encourage the devel-
opment of sophisticated, numerically oriented programs. The standard has been
widely adopted and is used on virtually all contemporary processors and arithmetic
coprocessors. IEEE 754-2008 covers both binary and decimal floating-point repre-
sentations. In this chapter, we deal only with binary representations.

IEEE 754-2008 defines the following different types of floating-point formats:

 • Arithmetic format: All the mandatory operations defined by the standard are
supported by the format. The format may be used to represent floating-point
operands or results for the operations described in the standard.

 • Basic format: This format covers five floating-point representations, three
binary and two decimal, whose encodings are specified by the standard, and
which can be used for arithmetic. At least one of the basic formats is imple-
mented in any conforming implementation.

 • Interchange format: A fully specified, fixed-length binary encoding that allows
data interchange between different platforms and that can be used for storage.

The three basic binary formats have bit lengths of 32, 64, and 128 bits, with
exponents of 8, 11, and 15 bits, respectively (Figure 10.21). Table 10.3 summarizes
the characteristics of the three formats. The two basic decimal formats have bit
lengths of 64 and 128 bits. All of the basic formats are also arithmetic format types
(can be used for arithmetic operations) and interchange format types (platform
independent).

Several other formats are specified in the standard. The binary16 format is
only an interchange format and is intended for storage of values when higher pre-
cision is not required. The binary{k} format and the decimal{k} format are inter-
change formats with total length k bits and with defined lengths for the significand
and exponent. The format must be a multiple of 32 bits; thus formats are defined for
k = 160, 192, and so on. These two families of formats are also arithmetic formats.

In addition, the standard defines extended precision formats, which
extend a supported basic format by providing additional bits in the exponent
(extended range) and in the significand (extended precision). The exact format

In the IBM base-16 format,

0.11010001 * 210100 = 0.11010001 * 16101

and the exponent is stored to represent 5 rather than 20.

346 CHAPTER 10 / COMPUTER ARITHMETIC

is implementation dependent, but the standard places certain constraints on the
length of the exponent and significand. These formats are arithmetic format types
but not interchange format types. The extended formats are to be used for inter-
mediate calculations. With their greater precision, the extended formats lessen the

Table 10.3 IEEE 754 Format Parameters

Parameter
Format

Binary32 Binary64 Binary128

Storage width (bits) 32 64 128

Exponent width (bits) 8 11 15

Exponent bias 127 1023 16383

Maximum exponent 127 1023 16383

Minimum exponent -126 -1022 -16382

Approx normal number range
(base 10)

10-38, 10+38 10-308, 10+308 10-4932, 10+4932

Trailing significand width (bits)* 23 52 112

Number of exponents 254 2046 32766

Number of fractions 223 252 2112

Number of values 1.98 * 231 1.99 * 263 1.99 * 2128

Smallest positive normal number 2-126 2-1022 2-16362

Largest positive normal number 2128 - 2104 21024 - 2971 216384 - 216271

Smallest subnormal magnitude 2-149 2-1074 2-16494

Note: *not including implied bit and not including sign bit

Trailing significand field

(c) Binary128 format

Biased
exponent

Trailing significand field

(b) Binary64 format

8 bits

Sign
bit

Trailing
significand field

(a) Binary32 format

Biased
exponent

23 bits

11 bits 52 bits

15 bits 112 bits

Sign
bit

Biased
exponent

Sign
bit

Figure 10.21 IEEE 754 Formats

10.4 / FLOATING-POINT REPRESENTATION 347

chance of a final result that has been contaminated by excessive roundoff error;
with their greater range, they also lessen the chance of an intermediate overflow
aborting a computation whose final result would have been representable in a basic
format. An additional motivation for the extended format is that it affords some
of the benefits of a larger basic format without incurring the time penalty usually
associated with higher precision.

Finally, IEEE 754-2008 defines an extendable precision format as a format
with a precision and range that are defined under user control. Again, these formats
may be used for intermediate calculations, but the standard places no constraint or
format or length.

Table 10.4 shows the relationship between defined formats and format types.
Not all bit patterns in the IEEE formats are interpreted in the usual way;

instead, some bit patterns are used to represent special values. Table 10.5 indicates
the values assigned to various bit patterns. The exponent values of all zeros (0 bits)
and all ones (1 bits) define special values. The following classes of numbers are
 represented:

 • For exponent values in the range of 1 through 254 for 32-bit format, 1 through
2046 for 64-bit format, and 1 through 16382, normal nonzero floating-point
numbers are represented. The exponent is biased, so that the range of expo-
nents is -126 through +127 for 32-bit format, and so on. A normal number
requires a 1 bit to the left of the binary point; this bit is implied, giving an
effective 24-bit, 53-bit, or 113-bit significand. Because one of the bits is im-
plied, the corresponding field in the binary format is referred to as the trailing
 significand field.

 • An exponent of zero together with a fraction of zero represents positive or
negative zero, depending on the sign bit. As was mentioned, it is useful to have
an exact value of 0 represented.

Table 10.4 IEEE Formats

Format
Format Type

Arithmetic Format Basic Format Interchange Format

binary16 X

binary32 X X X

binary64 X X X

binary128 X X X

binary{k}
(k � n : 32 for n + 4)

X X

decimal64 X X X

decimal128 X X X

decimal{k}
(k � n : 32 for n + 4)

X X

extended precision X

extendable precision X

348 CHAPTER 10 / COMPUTER ARITHMETIC

(b) binary64 format

Sign Biased Exponent Fraction Value

positive zero 0 0 0 0
negative zero 1 0 0 -0
plus infinity 0 all 1s 0 �

minus infinity 1 all 1s 0 -�

quiet NaN 0 or 1 all 1s �0; first bit = 1 qNaN
signaling NaN 0 or 1 all 1s �0; first bit = 0 sNaN
positive normal nonzero 0 0 6 e 6 2047 f 2e - 1023(1.f)
negative normal nonzero 1 0 6 e 6 2047 f -2e - 1023(1.f)
positive subnormal 0 0 f � 0 2e - 1022(0.f)
negative subnormal 1 0 f � 0 -2e - 1022(0.f)

(c) binary128 format

Sign Biased Exponent Fraction Value

positive zero 0 0 0 0
negative zero 1 0 0 -0
plus infinity 0 all 1s 0 �

minus infinity 1 all 1s 0 -�

quiet NaN 0 or 1 all 1s �0; first bit = 1 qNaN
signaling NaN 0 or 1 all 1s �0; first bit = 0 sNaN
positive normal nonzero 0 all 1s f 2e - 16383(1.f)
negative normal nonzero 1 all 1s f -2e - 16383(1.f)
positive subnormal 0 0 f � 0 2e - 16383(0.f)
negative subnormal 1 0 f � 0 -2e - 16383(0.f)

Table 10.5 Interpretation of IEEE 754 Floating-Point Numbers

(a) binary32 format

Sign Biased Exponent Fraction Value

positive zero 0 0 0 0

negative zero 1 0 0 -0

plus infinity 0 all 1s 0 �

minus infinity 1 all 1s 0 -�

quiet NaN 0 or 1 all 1s �0; first bit = 1 qNaN

signaling NaN 0 or 1 all 1s �0; first bit = 0 sNaN

positive normal nonzero 0 0 6 e 6 255 f 2e - 127(1.f)

negative normal nonzero 1 0 6 e 6 255 f -2e - 127(1.f)

positive subnormal 0 0 f � 0 2e - 126(0.f)

negative subnormal 1 0 f � 0 -2e - 126(0.f)

10.5 / FLOATING-POINT ARITHMETIC 349

 • An exponent of all ones together with a fraction of zero represents positive
or negative infinity, depending on the sign bit. It is also useful to have a rep-
resentation of infinity. This leaves it up to the user to decide whether to treat
overflow as an error condition or to carry the value � and proceed with what-
ever program is being executed.

 • An exponent of zero together with a nonzero fraction represents a subnormal
number. In this case, the bit to the left of the binary point is zero and the true
exponent is -126 or -1022. The number is positive or negative depending on
the sign bit.

 • An exponent of all ones together with a nonzero fraction is given the value
NaN, which means Not a Number, and is used to signal various exception
conditions.

The significance of subnormal numbers and NaNs is discussed in Section 10.5.

Table 10.6 Floating-Point Numbers and Arithmetic Operations

Floating-Point Numbers Arithmetic Operations

X = XS * BXE

Y = YS * BYE

X + Y = (Xs * BXE - YE + Ys) * BYE
XE … YEX - Y = (Xs * BXE - YE - Ys) * BYE

X * Y = (Xs * Ys) * BXE + YE

X
Y

 = a
Xs

Ys
 b * BXE - YE

Examples:

X = 0.3 * 102 = 30

Y = 0.2 * 103 = 200

X + Y = (0.3 * 102 - 3 + 0.2) * 103 = 0.23 * 103 = 230

X - Y = (0.3 * 102 - 3 - 0.2) * 103 = (-0.17) * 103 = -170

X * Y = (0.3 * 0.2) * 102 + 3 = 0.06 * 105 = 6000

X , Y = (0.3 , 0.2) * 102 - 3 = 1.5 * 10-1 = 0.15

f

 10.5 FLOATING-POINT ARITHMETIC

Table 10.6 summarizes the basic operations for floating-point arithmetic. For addi-
tion and subtraction, it is necessary to ensure that both operands have the same
exponent value. This may require shifting the radix point on one of the operands to
achieve alignment. Multiplication and division are more straightforward.

A floating-point operation may produce one of these conditions:

 • Exponent overflow: A positive exponent exceeds the maximum possible ex-
ponent value. In some systems, this may be designated as + � or - � .

 • Exponent underflow: A negative exponent is less than the minimum possible
exponent value (e.g., -200 is less than -127). This means that the number is
too small to be represented, and it may be reported as 0.

350 CHAPTER 10 / COMPUTER ARITHMETIC

 • Significand underflow: In the process of aligning significands, digits may flow
off the right end of the significand. As we shall discuss, some form of rounding
is required.

 • Significand overflow: The addition of two significands of the same sign may
result in a carry out of the most significant bit. This can be fixed by realign-
ment, as we shall explain.

Addition and Subtraction

In floating-point arithmetic, addition and subtraction are more complex than mul-
tiplication and division. This is because of the need for alignment. There are four
basic phases of the algorithm for addition and subtraction:

 1. Check for zeros.

 2. Align the significands.

 3. Add or subtract the significands.

 4. Normalize the result.

A typical flowchart is shown in Figure 10.22. A step-by-step narrative high-
lights the main functions required for floating-point addition and subtraction. We
assume a format similar to those of Figure 10.21. For the addition or subtraction
operation, the two operands must be transferred to registers that will be used by the
ALU. If the floating-point format includes an implicit significand bit, that bit must
be made explicit for the operation.

Phase 1: Zero check. Because addition and subtraction are identical except
for a sign change, the process begins by changing the sign of the subtrahend if
it is a subtract operation. Next, if either operand is 0, the other is reported as
the result.

Phase 2: Significand alignment. The next phase is to manipulate the numbers
so that the two exponents are equal.

To see the need for aligning exponents, consider the following decimal addition:

(123 * 100) + (456 * 10-2)

Clearly, we cannot just add the significands. The digits must first be set into equiva-
lent positions, that is, the 4 of the second number must be aligned with the 3 of
the first. Under these conditions, the two exponents will be equal, which is the
mathematical condition under which two numbers in this form can be added. Thus,

(123 * 100) + (456 * 10-2) = (123 * 100) + (4.56 * 100) = 127.56 * 100

Alignment may be achieved by shifting either the smaller number to the
right (increasing its exponent) or shifting the larger number to the left. Because
either operation may result in the loss of digits, it is the smaller number that is
shifted; any digits that are lost are therefore of relatively small significance. The

SUBTRACT

RETURN

ADD

RETURN

Yes

No

No

No

No

No

No

Yes

Z Y

Z 0

X � 0?

Yes

Yes

Yes

Yes

Yes

Y � 0?

Increment
smaller

exponent

Shift
significand

right

Add
signed

significands

Shift
significand

right

Put other
number in Z

Round
result

Increment
exponent

Change
sign of Y

Report
underflow

Report
overflow

RETURN

RETURN

RETURN

RETURN

No

No

No

Yes

Yes
Exponents

equal?

Significand
� 0?

Exponent
overflow?

Shift
significand

left

Decrement
exponent

Exponent
underflow?

Results
normalized?

Significand
� 0?

Significand
overflow?Z X

Figure 10.22 Floating-Point Addition and Subtraction (Z d X { Y)

351

352 CHAPTER 10 / COMPUTER ARITHMETIC

alignment is achieved by repeatedly shifting the magnitude portion of the signif-
icand right 1 digit and incrementing the exponent until the two exponents are
equal. (Note that if the implied base is 16, a shift of 1 digit is a shift of 4 bits.) If this
process results in a 0 value for the significand, then the other number is reported
as the result. Thus, if two numbers have exponents that differ significantly, the
lesser number is lost.

Phase 3: Addition. Next, the two significands are added together, taking into
account their signs. Because the signs may differ, the result may be 0. There
is also the possibility of significand overflow by 1 digit. If so, the significand
of the result is shifted right and the exponent is incremented. An exponent
overflow could occur as a result; this would be reported and the operation
halted.

Phase 4: Normalization. The final phase normalizes the result. Normalization
consists of shifting significand digits left until the most significant digit (bit, or
4 bits for base-16 exponent) is nonzero. Each shift causes a decrement of the
exponent and thus could cause an exponent underflow. Finally, the result must
be rounded off and then reported. We defer a discussion of rounding until after
a discussion of multiplication and division.

Multiplication and Division

Floating-point multiplication and division are much simpler processes than addition
and subtraction, as the following discussion indicates.

We first consider multiplication, illustrated in Figure 10.23. First, if either
operand is 0, 0 is reported as the result. The next step is to add the exponents. If
the exponents are stored in biased form, the exponent sum would have doubled
the bias. Thus, the bias value must be subtracted from the sum. The result could
be either an exponent overflow or underflow, which would be reported, ending the
algorithm.

If the exponent of the product is within the proper range, the next step is to
multiply the significands, taking into account their signs. The multiplication is per-
formed in the same way as for integers. In this case, we are dealing with a sign-
magnitude representation, but the details are similar to those for twos complement
representation. The product will be double the length of the multiplier and multipli-
cand. The extra bits will be lost during rounding.

After the product is calculated, the result is then normalized and rounded,
as was done for addition and subtraction. Note that normalization could result in
exponent underflow.

Finally, let us consider the flowchart for division depicted in Figure 10.24.
Again, the first step is testing for 0. If the divisor is 0, an error report is issued,
or the result is set to infinity, depending on the implementation. A dividend of 0
results in 0. Next, the divisor exponent is subtracted from the dividend exponent.
This removes the bias, which must be added back in. Tests are then made for expo-
nent underflow or overflow.

The next step is to divide the significands. This is followed with the usual nor-
malization and rounding.

10.5 / FLOATING-POINT ARITHMETIC 353

Precision Considerations

GUARD BITS We mentioned that, prior to a floating-point operation, the exponent
and significand of each operand are loaded into ALU registers. In the case of the
significand, the length of the register is almost always greater than the length of the
significand plus an implied bit. The register contains additional bits, called guard
bits, which are used to pad out the right end of the significand with 0s.

The reason for the use of guard bits is illustrated in Figure 10.25. Consider num-
bers in the IEEE format, which has a 24-bit significand, including an implied 1
bit to the left of the binary point. Two numbers that are very close in value are
x = 1.00g00 * 21 and y = 1.11g11 * 20. If the smaller number is to be
subtracted from the larger, it must be shifted right 1 bit to align the exponents.
This is shown in Figure 10.25a. In the process, y loses 1 bit of significance; the

MULTIPLY

RETURN

RETURN

Yes

No

Z 0

X � 0?

Yes

Yes

Yes

Subtract bias

Add
exponents

Report
overflow

Multiply
significands

Y � 0?

Exponent
overflow?

Normalize

Round

Exponent
underflow?

No

No

No

Report
underflow

Figure 10.23 Floating-Point Multiplication (Z d X * Y)

354 CHAPTER 10 / COMPUTER ARITHMETIC

(a) Binary example, without guard bits (c) Hexadecimal example, without guard bits

(b) Binary example, with guard bits (d) Hexadecimal example, with guard bits

x = 1.000.....00 � 21

–y = 0.111.....11 � 21

z = 0.000.....01 � 21

= 1.000.....00 � 2–22

x = .100000 � 161

–y = .0FFFFF � 161

z = .000001 � 161

= .100000 � 16–4

x = .100000 00 � 161

–y = .0FFFFF F0 � 161

z = .000000 10 � 161

= .100000 00 � 16–5

x = 1.000.....00 0000 � 21

–y = 0.111.....11 1000 � 21

z = 0.000.....00 1000 � 21

= 1.000.....00 0000 � 2–23

Figure 10.25 The Use of Guard Bits

DIVIDE

RETURN

RETURN

Yes

No

Z 0

X � 0?

Yes

Yes

Yes

Add bias

Subtract
exponents

Report
overflow

Divide
significands

Y � 0?

Exponent
overflow?

Normalize

Round

Exponent
underflow?

No

No

No

Report
underflow

Z �

Figure 10.24 Floating-Point Division (Z d X/Y)

10.5 / FLOATING-POINT ARITHMETIC 355

ROUNDING Another detail that affects the precision of the result is the rounding
policy. The result of any operation on the significands is generally stored in a longer
register. When the result is put back into the floating-point format, the extra bits
must be eliminated in such a way as to produce a result that is close to the exact
result. This process is called rounding.

A number of techniques have been explored for performing rounding. In fact,
the IEEE standard lists four alternative approaches:

 • Round to nearest: The result is rounded to the nearest representable number.

 • Round toward �H : The result is rounded up toward plus infinity.

 • Round toward �H : The result is rounded down toward negative infinity.

 • Round toward 0: The result is rounded toward zero.

Let us consider each of these policies in turn. Round to nearest is the default
rounding mode listed in the standard and is defined as follows: The representable
value nearest to the infinitely precise result shall be delivered.

result is 2-22. The same operation is repeated in part (b) with the addition of
guard bits. Now the least significant bit is not lost due to alignment, and the result
is 2-23, a difference of a factor of 2 from the previous answer. When the radix is
16, the loss of precision can be greater. As Figures 10.25c and d show, the differ-
ence can be a factor of 16.

If the extra bits, beyond the 23 bits that can be stored, are 10010, then the extra
bits amount to more than one-half of the last representable bit position. In this
case, the correct answer is to add binary 1 to the last representable bit, rounding
up to the next representable number. Now consider that the extra bits are 01111.
In this case, the extra bits amount to less than one-half of the last representable
bit position. The correct answer is simply to drop the extra bits (truncate), which
has the effect of rounding down to the next representable number.

The standard also addresses the special case of extra bits of the form 10000.…
Here the result is exactly halfway between the two possible representable values.
One possible technique here would be to always truncate, as this would be the sim-
plest operation. However, the difficulty with this simple approach is that it intro-
duces a small but cumulative bias into a sequence of computations. What is required
is an unbiased method of rounding. One possible approach would be to round up or
down on the basis of a random number so that, on average, the result would be unbi-
ased. The argument against this approach is that it does not produce predictable,
deterministic results. The approach taken by the IEEE standard is to force the result
to be even: If the result of a computation is exactly midway between two represent-
able numbers, the value is rounded up if the last representable bit is currently 1 and
not rounded up if it is currently 0.

356 CHAPTER 10 / COMPUTER ARITHMETIC

The next two options, rounding to plus and minus infinity, are useful in imple-
menting a technique known as interval arithmetic. Interval arithmetic provides an
efficient method for monitoring and controlling errors in floating-point computa-
tions by producing two values for each result. The two values correspond to the
lower and upper endpoints of an interval that contains the true result. The width of
the interval, which is the difference between the upper and lower endpoints, indi-
cates the accuracy of the result. If the endpoints of an interval are not represent-
able, then the interval endpoints are rounded down and up, respectively. Although
the width of the interval may vary according to implementation, many algorithms
have been designed to produce narrow intervals. If the range between the upper
and lower bounds is sufficiently narrow, then a sufficiently accurate result has been
obtained. If not, at least we know this and can perform additional analysis.

The final technique specified in the standard is round toward zero. This is,
in fact, simple truncation: The extra bits are ignored. This is certainly the simplest
technique. However, the result is that the magnitude of the truncated value is always
less than or equal to the more precise original value, introducing a consistent bias
toward zero in the operation. This is a serious bias because it affects every operation
for which there are nonzero extra bits.

IEEE Standard for Binary Floating-Point Arithmetic

IEEE 754 goes beyond the simple definition of a format to lay down specific prac-
tices and procedures so that floating-point arithmetic produces uniform, predictable
results independent of the hardware platform. One aspect of this has already been
discussed, namely rounding. This subsection looks at three other topics: infinity,
NaNs, and subnormal numbers.

INFINITY Infinity arithmetic is treated as the limiting case of real arithmetic, with
the infinity values given the following interpretation:

- � 6 (every finite number) 6 + �

With the exception of the special cases discussed subsequently, any arithmetic
operation involving infinity yields the obvious result.

QUIET AND SIGNALING NANS A NaN is a symbolic entity encoded in floating-
point format, of which there are two types: signaling and quiet. A signaling NaN
signals an invalid operation exception whenever it appears as an operand. Signaling

For example:

 5 + (+ �) = + � 5 , (+ �) = +0

 5 - (+ �) = - � (+ �) + (+ �) = + �

 5 + (- �) = - � (- �) + (- �) = - �

 5 - (- �) = + � (- �) - (+ �) = - �

 5 * (+ �) = + � (+ �) - (- �) = + �

10.5 / FLOATING-POINT ARITHMETIC 357

NaNs afford values for uninitialized variables and arithmetic-like enhancements
that are not the subject of the standard. A quiet NaN propagates through almost
every arithmetic operation without signaling an exception. Table 10.7 indicates
operations that will produce a quiet NaN.

Note that both types of NaNs have the same general format (Table 10.4): an
exponent of all ones and a nonzero fraction. The actual bit pattern of the nonzero
fraction is implementation dependent; the fraction values can be used to distinguish
quiet NaNs from signaling NaNs and to specify particular exception conditions.

SUBNORMAL NUMBERS Subnormal numbers are included in IEEE 754 to handle
cases of exponent underflow. When the exponent of the result becomes too small
(a negative exponent with too large a magnitude), the result is subnormalized by
right shifting the fraction and incrementing the exponent for each shift until the
exponent is within a representable range.

Figure 10.26 illustrates the effect of including subnormal numbers. The repre-
sentable numbers can be grouped into intervals of the form [2n, 2n +1]. Within each

Table 10.7 Operations that Produce a Quiet NaN

Operation Quiet NaN Produced By

Any Any operation on a signaling NaN

Add or subtract

Magnitude subtraction of infinities:
(+ �) + (- �)
(- �) + (+ �)
(+ �) - (+ �)
(- �) - (- �)

Multiply 0 * �

Division
0
0

 or
�

�

Remainder x REM 0 or � REM y

Square root 1x, where x 6 0

2�126 2�125 2�124 2�123

2�126 2�125 2�124 2�123

Gap

(a) 32-Bit format without subnormal numbers

Uniform
spacing

(b) 32-Bit format with subnormal numbers

0

0

Figure 10.26 The Effect of IEEE 754 Subnormal Numbers

358 CHAPTER 10 / COMPUTER ARITHMETIC

such interval, the exponent portion of the number remains constant while the fraction
varies, producing a uniform spacing of representable numbers within the interval. As
we get closer to zero, each successive interval is half the width of the preceding inter-
val but contains the same number of representable numbers. Hence the density of
representable numbers increases as we approach zero. However, if only normal num-
bers are used, there is a gap between the smallest normal number and 0. In the case of
the 32-bit IEEE 754 format, there are 223 representable numbers in each interval, and
the smallest representable positive number is 2-126. With the addition of subnormal
numbers, an additional 223 - 1 numbers are uniformly added between 0 and 2-126.

The use of subnormal numbers is referred to as gradual underflow [COON81].
Without subnormal numbers, the gap between the smallest representable nonzero
number and zero is much wider than the gap between the smallest representable
nonzero number and the next larger number. Gradual underflow fills in that gap
and reduces the impact of exponent underflow to a level comparable with roundoff
among the normal numbers.

 10.6 RECOMMENDED READING

[ERCE04] and [PARH10] are excellent treatments of computer arithmetic, covering all of
the topics in this chapter in detail. [FLYN01] is a useful discussion that focuses on practical
design and implementation issues. For the serious student of computer arithmetic, a very use-
ful reference is the two-volume [SWAR90]. Volume I was originally published in 1980 and
provides key papers (some very difficult to obtain otherwise) on computer arithmetic funda-
mentals. Volume II contains more recent papers, covering theoretical, design, and implemen-
tation aspects of computer arithmetic.

For floating-point arithmetic, [GOLD91] is well named: “What Every Computer
Scientist Should Know About Floating-Point Arithmetic.” Another excellent treatment
of the topic is contained in [KNUT98], which also covers integer computer arithmetic.
The following more in-depth treatments are also worthwhile: [EVEN00a, OBER97a,
OBER97b, SODE96]. [KUCK77] is a good discussion of rounding methods in floating-
point arithmetic. [EVEN00b] examines rounding with respect to IEEE 754. For a thorough
treatment of floating-point arithmetic, standards, and implementation, the book to read is
[MULL10].

[SCHW99] describes the first IBM S/390 processor to integrate radix-16 and IEEE 754
floating-point arithmetic in the same floating-point unit.

William Kahan, the principal architect of the IEEE 754 standard, has written a series
of documents that provide a deeper understanding of the standard, including a detailed set
of lecture notes, a paper on the rationale for a floating-point standard, and a tutorial on
gradual underflow. All of these documents are available in the premium content section of
this book’s Web site.

ERCE04 Ercegovac, M., and Lang, T. Digital Arithmetic. San Francisco: Morgan
Kaufmann, 2004.

EVEN00a Even, G., and Paul, W. “On the Design of IEEE Compliant Floating-Point
Units.” IEEE Transactions on Computers, May 2000.

10.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 359

EVEN00b Even, G., and Seidel, P. “A Comparison of Three Rounding Algorithms for
IEEE Floating-Point Multiplication.” IEEE Transactions on Computers, July 2000.

FLYN01 Flynn, M., and Oberman, S. Advanced Computer Arithmetic Design. New
York: Wiley, 2001.

GOLD91 Goldberg, D. “What Every Computer Scientist Should Know About
Floating-Point Arithmetic.” ACM Computing Surveys, March 1991.

KNUT98 Knuth, D. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Reading, MA: Addison-Wesley, 1998.

KUCK77 Kuck, D.; Parker, D.; and Sameh, A. “An Analysis of Rounding Methods in
Floating-Point Arithmetic.” IEEE Transactions on Computers, July 1977.

MULL10 Muller, J., et al. Handbook of Floating-Point Arithmetic. Boston: Birkhauser,
2010.

OBER97a Oberman, S., and Flynn, M. “Design Issues in Division and Other Floating-
Point Operations.” IEEE Transactions on Computers, February 1997.

OBER97b Oberman, S., and Flynn, M. “Division Algorithms and Implementations.”
IEEE Transactions on Computers, August 1997.

PARH10 Parhami, B. Computer Arithmetic: Algorithms and Hardware Design.
Oxford: Oxford University Press, 2010.

SCHW99 Schwarz, E., and Krygowski, C. “The S/390 G5 Floating-Point Unit.” IBM
Journal of Research and Development, September/November 1999.

SODE96 Soderquist, P., and Leeser, M. “Area and Performance Tradeoffs in
 Floating-Point Divide and Square-Root Implementations.” ACM Computing
Surveys, September 1996.

SWAR90 Swartzlander, E., ed. Computer Arithmetic, Volumes I and II. Los Alamitos,
CA: IEEE Computer Society Press, 1990.

 10.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

arithmetic and logic unit
(ALU)

arithmetic shift
base
biased representation
dividend
divisor
exponent
exponent overflow
exponent underflow
fixed-point representation
floating-point

representation
guard bits

mantissa
minuend
multiplicand
multiplier
negative overflow
negative underflow
normal number
ones complement

representation
overflow
partial product
positive overflow
positive underflow
product

quotient
radix point
remainder
rounding
sign bit
significand
significand overflow
significand underflow
sign-magnitude

representation
subnormal number
subtrahend
twos complement

representation

360 CHAPTER 10 / COMPUTER ARITHMETIC

Review Questions
 10.1 Briefly explain the following representations: sign magnitude, twos complement,

biased.
 10.2 Explain how to determine if a number is negative in the following representations:

sign magnitude, twos complement, biased.
 10.3 What is the sign-extension rule for twos complement numbers?
 10.4 How can you form the negation of an integer in twos complement representation?
 10.5 In general terms, when does the twos complement operation on an n-bit integer pro-

duce the same integer?
 10.6 What is the difference between the twos complement representation of a number and

the twos complement of a number?
 10.7 If we treat 2 twos complement numbers as unsigned integers for purposes of addition,

the result is correct if interpreted as a twos complement number. This is not true for
multiplication. Why?

 10.8 What are the four essential elements of a number in floating-point notation?
 10.9 What is the benefit of using biased representation for the exponent portion of a floating-

point number?
 10.10 What are the differences among positive overflow, exponent overflow, and significand

overflow?
 10.11 What are the basic elements of floating-point addition and subtraction?
 10.12 Give a reason for the use of guard bits.
 10.13 List four alternative methods of rounding the result of a floating-point operation.

Problems
 10.1 Represent the following decimal numbers in both binary sign/magnitude and twos

complement using 16 bits: +512; -29.
 10.2 Represent the following twos complement values in decimal: 1101011; 0101101.
 10.3 Another representation of binary integers that is sometimes encountered is ones

complement. Positive integers are represented in the same way as sign magnitude.
A negative integer is represented by taking the Boolean complement of each bit of
the corresponding positive number.
a. Provide a definition of ones complement numbers using a weighted sum of bits,

similar to Equations (10.1) and (10.2).
b. What is the range of numbers that can be represented in ones complement?
c. Define an algorithm for performing addition in ones complement arithmetic.
Note: Ones complement arithmetic disappeared from hardware in the 1960s, but still
survives checksum calculations for the Internet Protocol (IP) and the Transmission
Control Protocol (TCP).

 10.4 Add columns to Table 10.1 for sign magnitude and ones complement.
 10.5 Consider the following operation on a binary word. Start with the least significant bit.

Copy all bits that are 0 until the first bit is reached and copy that bit, too. Then take
the complement of each bit thereafter. What is the result?

 10.6 In Section 10.3, the twos complement operation is defined as follows. To find the twos
complement of X, take the Boolean complement of each bit of X, and then add 1.
a. Show that the following is an equivalent definition. For an n-bit integer X, the twos

complement of X is formed by treating X as an unsigned integer and calculating
(2n - X).

b. Demonstrate that Figure 10.5 can be used to support graphically the claim in part
(a), by showing how a clockwise movement is used to achieve subtraction.

10.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 361

 10.7 The r’s complement of an n-digit number N in base r is defined as rn - N for N � 0
and 0 for N = 0. Find the tens complement of the decimal number 13,250.

 10.8 Calculate (72,530 - 13,250) using tens complement arithmetic. Assume rules similar
to those for twos complement arithmetic.

 10.9 Consider the twos complement addition of two n-bit numbers:
zn- 1zn- 2 gz0 = xn- 1xn- 2 gx0 + yn- 1yn- 2 gy0

Assume that bitwise addition is performed with a carry bit ci generated by the addi-
tion of xi, yi, and ci- 1. Let n be a binary variable indicating overflow when n = 1. Fill
in the values in the table.

Input

xn- 1 0 0 0 0 1 1 1 1

yn- 1 0 0 1 1 0 0 1 1

cn- 2 0 1 0 1 0 1 0 1

Output
zn- 1

n

 10.10 Assume numbers are represented in 8-bit twos complement representation. Show the
calculation of the following:
a. 6 + 13 b. -6 + 13 c. 6 - 13 d. -6 - 13

 10.11 Find the following differences using twos complement arithmetic:
a.

111000

-110011

b.

11001100
- 101110

c.

111100001111

-110011110011

d.

11000011
-11101000

 10.12 Is the following a valid alternative definition of overflow in twos complement arith-
metic?
If the exclusive-OR of the carry bits into and out of the leftmost column is 1, then
there is an overflow condition. Otherwise, there is not.

 10.13 Compare Figures 10.9 and 10.12. Why is the C bit not used in the latter?
 10.14 Given x = 0101 and y = 1010 in twos complement notation (i.e., x = 5, y = -6),

compute the product p = x * y with Booth’s algorithm.
 10.15 Use the Booth algorithm to multiply 23 (multiplicand) by 29 (multiplier), where each

number is represented using 6 bits.
 10.16 Prove that the multiplication of two n-digit numbers in base B gives a product of no

more than 2n digits.
 10.17 Verify the validity of the unsigned binary division algorithm of Figure 10.16 by show-

ing the steps involved in calculating the division depicted in Figure 10.15. Use a pre-
sentation similar to that of Figure 10.17.

 10.18 The twos complement integer division algorithm described in Section 10.3 is known as
the restoring method because the value in the A register must be restored following
unsuccessful subtraction. A slightly more complex approach, known as nonrestoring,
avoids the unnecessary subtraction and addition. Propose an algorithm for this latter
approach.

 10.19 Under computer integer arithmetic, the quotient J/K of two integers J and K is less
than or equal to the usual quotient. True or false?

 10.20 Divide -145 by 13 in binary twos complement notation, using 12-bit words. Use the
algorithm described in Section 10.3.

 10.21 a. Consider a fixed-point representation using decimal digits, in which the implied
radix point can be in any position (to the right of the least significant digit, to
the right of the most significant digit, and so on). How many decimal digits are
needed to represent the approximations of both Planck’s constant (6.63 * 10-27)

362 CHAPTER 10 / COMPUTER ARITHMETIC

and Avogadro’s number (6.02 * 1023)? The implied radix point must be in the
same position for both numbers.

b. Now consider a decimal floating-point format with the exponent stored in a biased
representation with a bias of 50. A normalized representation is assumed. How
many decimal digits are needed to represent these constants in this floating-point
format?

 10.22 Assume that the exponent e is constrained to lie in the range 0 … e … X, with a bias
of q, that the base is b, and that the significand is p digits in length.
a. What are the largest and smallest positive values that can be written?
b. What are the largest and smallest positive values that can be written as normalized

floating-point numbers?
 10.23 Express the following numbers in IEEE 32-bit floating-point format:

a. -5 b. -6 c. -1.5 d. 384 e. 1/16 f. -1/32
 10.24 The following numbers use the IEEE 32-bit floating-point format. What is the equiva-

lent decimal value?
a. 1 10000011 11000000000000000000000
b. 0 01111110 10100000000000000000000
c. 0 10000000 00000000000000000000000

 10.25 Consider a reduced 7-bit IEEE floating-point format, with 3 bits for the exponent and
3 bits for the significand. List all 127 values.

 10.26 Express the following numbers in IBM’s 32-bit floating-point format, which uses a
7-bit exponent with an implied base of 16 and an exponent bias of 64 (40 hexadeci-
mal). A normalized floating-point number requires that the leftmost hexadecimal
digit be nonzero; the implied radix point is to the left of that digit.

a. 1.0 c. 1/64 e. -15.0 g. 7.2 * 1075

b. 0.5 d. 0.0 f. 5.4 * 10-79 h. 65,535

 10.27 Let 5BCA0000 be a floating-point number in IBM format, expressed in hexadecimal.
What is the decimal value of the number?

 10.28 What would be the bias value for
a. A base-2 exponent (B = 2) in a 6-bit field?
b. A base-8 exponent (B = 8) in a 7-bit field?

 10.29 Draw a number line similar to that in Figure 10.19b for the floating-point format of
Figure 10.21b.

 10.30 Consider a floating-point format with 8 bits for the biased exponent and 23 bits for the
significand. Show the bit pattern for the following numbers in this format:
a. -720 b. 0.645

 10.31 The text mentions that a 32-bit format can represent a maximum of 232 different num-
bers. How many different numbers can be represented in the IEEE 32-bit format?
Explain.

 10.32 Any floating-point representation used in a computer can represent only certain real
numbers exactly; all others must be approximated. If A= is the stored value approxi-
mating the real value A, then the relative error, r, is expressed as

r =
A - A=

A
Represent the decimal quantity +0.4 in the following floating-point format: base = 2;
 exponent: biased, 4 bits; significand, 7 bits. What is the relative error?

 10.33 If A = 1.427, find the relative error if A is truncated to 1.42 and if it is rounded to 1.43.
 10.34 When people speak about inaccuracy in floating-point arithmetic, they often ascribe

errors to cancellation that occurs during the subtraction of nearly equal quantities.

10.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 363

But when X and Y are approximately equal, the difference X - Y is obtained exactly,
with no error. What do these people really mean?

 10.35 Numerical values A and B are stored in the computer as approximations A= and B =.
Neglecting any further truncation or roundoff errors, show that the relative error of
the product is approximately the sum of the relative errors in the factors.

 10.36 One of the most serious errors in computer calculations occurs when two nearly equal
numbers are subtracted. Consider A = 0.22288 and B = 0.22211. The computer
truncates all values to four decimal digits. Thus A= = 0.2228 and B = = 0.2221.
a. What are the relative errors for A= and B =?
b. What is the relative error for C = = A= - B =?

 10.37 To get some feel for the effects of denormalization and gradual underflow, consider
a decimal system that provides 6 decimal digits for the significand and for which the
smallest normalized number is 10-99. A normalized number has one nonzero decimal
digit to the left of the decimal point. Perform the following calculations and denor-
malize the results. Comment on the results.
a. (2.50000 * 10-60) * (3.50000 * 10-43)
b. (2.50000 * 10-60) * (3.50000 * 10-60)
c. (5.67834 * 10-97) - (5.67812 * 10-97)

 10.38 Show how the following floating-point additions are performed (where significands
are truncated to 4 decimal digits). Show the results in normalized form.
a. 5.566 * 102 + 7.777 * 102 b. 3.344 * 101 + 8.877 * 10-2

 10.39 Show how the following floating-point subtractions are performed (where signifi-
cands are truncated to 4 decimal digits). Show the results in normalized form.
a. 7.744 * 10-3 - 6.666 * 10-3 b. 8.844 * 10-3 - 2.233 * 10-1

 10.40 Show how the following floating-point calculations are performed (where significands
are truncated to 4 decimal digits). Show the results in normalized form.
a. (2.255 * 101) * (1.234 * 100) b. (8.833 * 102) , (5.555 * 104)

364

DIGITAL LOGIC
11.1 Boolean Algebra

11.2 Gates

11.3 Combinational Circuits
Implementation of Boolean Functions
Multiplexers
Decoders
Read-Only Memory
Adders

11.4 Sequential Circuits
Flip-Flops
Registers
Counters

11.5 Programmable Logic Devices
Programmable Logic Array
Field-Programmable Gate Array

11.6 Recommended Reading

11.7 Key Terms and Problems

CHAPTER

11.1 / BOOLEAN ALGEBRA 365

The operation of the digital computer is based on the storage and processing of binary
data. Throughout this book, we have assumed the existence of storage elements that
can exist in one of two stable states and of circuits than can operate on binary data
under the control of control signals to implement the various computer functions. In
this chapter, we suggest how these storage elements and circuits can be implemented
in digital logic, specifically with combinational and sequential circuits. The chapter
begins with a brief review of Boolean algebra, which is the mathematical foundation
of digital logic. Next, the concept of a gate is introduced. Finally, combinational and
sequential circuits, which are constructed from gates, are described.

 11.1 BOOLEAN ALGEBRA

The digital circuitry in digital computers and other digital systems is designed, and
its behavior is analyzed, with the use of a mathematical discipline known as Boolean
algebra. The name is in honor of an English mathematician George Boole, who
proposed the basic principles of this algebra in 1854 in his treatise, An Investigation
of the Laws of Thought on Which to Found the Mathematical Theories of Logic
and Probabilities. In 1938, Claude Shannon, a research assistant in the Electrical
Engineering Department at M.I.T., suggested that Boolean algebra could be used
to solve problems in relay-switching circuit design [SHAN38].1 Shannon’s tech-
niques were subsequently used in the analysis and design of electronic digital cir-
cuits. Boolean algebra turns out to be a convenient tool in two areas:

 • Analysis: It is an economical way of describing the function of digital
circuitry.

 • Design: Given a desired function, Boolean algebra can be applied to develop
a simplified implementation of that function.

As with any algebra, Boolean algebra makes use of variables and operations.
In this case, the variables and operations are logical variables and operations. Thus, a
variable may take on the value 1 (TRUE) or 0 (FALSE). The basic logical operations

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Understand the basic operations of Boolean algebra.
� Distinguish among the different types of flip-flops.
� Use a Karnaugh map to simplify a Boolean expression.
� Present an overview of programmable logic devices.

1The paper is available at this book’s Web site.

366 CHAPTER 11 / DIGITAL LOGIC

are AND, OR, and NOT, which are symbolically represented by dot, plus sign, and
overbar2:

A AND B = A # B

A OR B = A + B

NOT A = A

The operation AND yields true (binary value 1) if and only if both of its operands
are true. The operation OR yields true if either or both of its operands are true. The
unary operation NOT inverts the value of its operand. For example, consider the
equation

D = A + (B # C)

D is equal to 1 if A is 1 or if both B = 0 and C = 1. Otherwise D is equal to 0.
Several points concerning the notation are needed. In the absence of paren-

theses, the AND operation takes precedence over the OR operation. Also, when
no ambiguity will occur, the AND operation is represented by simple concatenation
instead of the dot operator. Thus,

A + B # C = A + (B # C) = A + BC

all mean: Take the AND of B and C; then take the OR of the result and A.
Table 11.1a defines the basic logical operations in a form known as a truth

table, which lists the value of an operation for every possible combination of values
of operands. The table also lists three other useful operators: XOR, NAND, and
NOR. The exclusive-or (XOR) of two logical operands is 1 if and only if exactly one
of the operands has the value 1. The NAND function is the complement (NOT) of
the AND function, and the NOR is the complement of OR:

2Logical NOT is often indicated by an apostrophe: NOT A = A=.

A NAND B = NOT (A AND B) = AB

A NOR B = NOT (A OR B) = A + B

As we shall see, these three new operations can be useful in implementing certain
digital circuits.

The logical operations, with the exception of NOT, can be generalized to more
than two variables, as shown in Table 11.1b.

Table 11.2 summarizes key identities of Boolean algebra. The equations have
been arranged in two columns to show the complementary, or dual, nature of the
AND and OR operations. There are two classes of identities: basic rules (or postu-
lates), which are stated without proof, and other identities that can be derived from
the basic postulates. The postulates define the way in which Boolean expressions
are interpreted. One of the two distributive laws is worth noting because it differs
from what we would find in ordinary algebra:

A + (B # C) = (A + B) # (A + C)

11.1 / BOOLEAN ALGEBRA 367

The two bottommost expressions are referred to as DeMorgan’s theorem. We can
restate them as follows:

A NOR B = A AND B

A NAND B = A OR B

The reader is invited to verify the expressions in Table 11.2 by substituting
actual values (1s and 0s) for the variables A, B, and C.

Table 11.2 Basic Identities of Boolean Algebra

Basic Postulates

A # B = B # A A + B = B + A Commutative Laws

A # (B + C) = (A # B) + (A # C) A + (B # C) = (A + B) # (A + C) Distributive Laws

1 # A = A 0 + A = A Identity Elements

A # A = 0 A + A = 1 Inverse Elements

Other Identities

0 # A = 0 1 + A = 1

A # A = A A + A = A

A # (B # C) = (A # B) # C A + (B + C) = (A + B) + C Associative Laws

A # B = A + B A + B = A # B DeMorgan’s Theorem

Table 11.1 Boolean Operators

(a) Boolean Operators of Two Input Variables

P

Q

NOT P
(P)

P AND Q
(P # Q)

P OR Q
(P � Q)

P NAND Q
(P # Q)

P NOR Q
(P � Q)

P XOR Q
(P { Q)

0 0 1 0 0 1 1 0

0 1 1 0 1 1 0 1

1 0 0 0 1 1 0 1

1 1 0 1 1 0 0 0

(b) Boolean Operators Extended to More than Two Inputs (A, B, . . .)

Operation Expression Output � 1 if

AND A # B # c All of the set {A, B, …} are 1.

OR A + B + c Any of the set {A, B, …} are 1.

NAND A # B # c Any of the set {A, B, …} are 0.

NOR A + B + c All of the set {A, B, …} are 0.

XOR A { B { c The set {A, B, …} contains an odd number of ones.

368 CHAPTER 11 / DIGITAL LOGIC

 11.2 GATES

The fundamental building block of all digital logic circuits is the gate. Logical func-
tions are implemented by the interconnection of gates.

A gate is an electronic circuit that produces an output signal that is a sim-
ple Boolean operation on its input signals. The basic gates used in digital logic are
AND, OR, NOT, NAND, NOR, and XOR. Figure 11.1 depicts these six gates. Each
gate is defined in three ways: graphic symbol, algebraic notation, and truth table.
The symbology used in this chapter is from the IEEE standard, IEEE Std 91. Note
that the inversion (NOT) operation is indicated by a circle.

Each gate shown in Figure 11.1 has one or two inputs and one output.
However, as indicated in Table 11.1b, all of the gates except NOT can have more
than two inputs. Thus, (X + Y + Z) can be implemented with a single OR gate
with three inputs. When one or more of the values at the input are changed, the
correct output signal appears almost instantaneously, delayed only by the propaga-
tion time of signals through the gate (known as the gate delay). The significance of
this delay is discussed in Section 11.3. In some cases, a gate is implemented with two
outputs, one output being the negation of the other output.

A B F
0 0 1
0 1 0
1 0 0
1 1 0

A B F
0 0 0
0 1 1
1 0 1
1 1 0

Graphical Symbol
Algebraic
Function Truth TableName

AND

OR

NOT

NAND

NOR

XOR

F � A • B
or

F � AB

F � A � B

A B F
0
0
1
1

0
0
0
1

0
1
0
1

A B F
0
0
1
1

0
1
1
1

0
1
0
1

A B F
0
0
1
1

1
1
1
0

0
1
0
1

A F
0
1

1
0

A

A

B

F � A
or

F � A	

F � AB

F � A � B

F � A � B

F

A

B
F

A

B
F

F

A

B
F

A

B
F

Figure 11.1 Basic Logic Gates

11.2 / GATES 369

Here we introduce a common term: we say that to assert a signal is to cause a
signal line to make a transition from its logically false (0) state to its logically true
(1) state. The true (1) state is either a high or low voltage state, depending on the
type of electronic circuitry.

Typically, not all gate types are used in implementation. Design and fabrication
are simpler if only one or two types of gates are used. Thus, it is important to identify
functionally complete sets of gates. This means that any Boolean function can be imple-
mented using only the gates in the set. The following are functionally complete sets:

 • AND, OR, NOT

 • AND, NOT

 • OR, NOT

 • NAND

 • NOR

It should be clear that AND, OR, and NOT gates constitute a functionally
complete set, because they represent the three operations of Boolean algebra. For
the AND and NOT gates to form a functionally complete set, there must be a way
to synthesize the OR operation from the AND and NOT operations. This can be
done by applying DeMorgan’s theorem:

A + B = A # B

A OR B = NOT ((NOT A) AND (NOT B))

Similarly, the OR and NOT operations are functionally complete because
they can be used to synthesize the AND operation.

Figure 11.2 shows how the AND, OR, and NOT functions can be implemented
solely with NAND gates, and Figure 11.3 shows the same thing for NOR gates.
For this reason, digital circuits can be, and frequently are, implemented solely with
NAND gates or solely with NOR gates.

A

A
A

B

A

B

A

B

A+B

A B
A B

Figure 11.2 Some Uses of NAND Gates

370 CHAPTER 11 / DIGITAL LOGIC

With gates, we have reached the most primitive circuit level of computer
hardware. An examination of the transistor combinations used to construct gates
departs from that realm and enters the realm of electrical engineering. For our pur-
poses, however, we are content to describe how gates can be used as building blocks
to implement the essential logical circuits of a digital computer.

 11.3 COMBINATIONAL CIRCUITS

A combinational circuit is an interconnected set of gates whose output at any time
is a function only of the input at that time. As with a single gate, the appearance of
the input is followed almost immediately by the appearance of the output, with only
gate delays.

In general terms, a combinational circuit consists of n binary inputs and m
binary outputs. As with a gate, a combinational circuit can be defined in three ways:

 • Truth table: For each of the 2n possible combinations of input signals, the
binary value of each of the m output signals is listed.

 • Graphical symbols: The interconnected layout of gates is depicted.

 • Boolean equations: Each output signal is expressed as a Boolean function of
its input signals.

Implementation of Boolean Functions

Any Boolean function can be implemented in electronic form as a network of gates.
For any given function, there are a number of alternative realizations. Consider the
Boolean function represented by the truth table in Table 11.3. We can express this func-
tion by simply itemizing the combinations of values of A, B, and C that cause F to be 1:

F + ABC + ABC + ABC (11.1)

A A

A

B

A

B

A (A+B)

B
A+B

A B

Figure 11.3 Some Uses of NOR Gates

11.3 / COMBINATIONAL CIRCUITS 371

There are three combinations of input values that cause F to be 1, and if any
one of these combinations occurs, the result is 1. This form of expression, for self-
evident reasons, is known as the sum of products (SOP) form. Figure 11.4 shows a
straightforward implementation with AND, OR, and NOT gates.

Another form can also be derived from the truth table. The SOP form
expresses that the output is 1 if any of the input combinations that produce 1 is true.
We can also say that the output is 1 if none of the input combinations that produce
0 is true. Thus,

F = 1A B C2 # 1A B C2 # 1A B C2 # 1A B C2 # 1A B C2
This can be rewritten using a generalization of DeMorgan’s theorem:

(X # Y # Z) = X + Y + Z

Table 11.3 A Boolean Function of Three Variables

A B C F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

A B C

F

Figure 11.4 Sum-of-Products Implementation of Table 11.3

372 CHAPTER 11 / DIGITAL LOGIC

Thus,

F = (A + B + C) # (A + B + C) # (A + B + C) # (A + B + C) # (A + B + C) (11.2)

= (A + B + C) # (A + B + C) # (A + B + C) # (A + B + C) # (A + B + C)

This is in the product of sums (POS) form, which is illustrated in Figure 11.5. For
clarity, NOT gates are not shown. Rather, it is assumed that each input signal and its
complement are available. This simplifies the logic diagram and makes the inputs to
the gates more readily apparent.

Thus, a Boolean function can be realized in either SOP or POS form. At this
point, it would seem that the choice would depend on whether the truth table con-
tains more 1s or 0s for the output function: The SOP has one term for each 1, and
the POS has one term for each 0. However, there are other considerations:

 • It is often possible to derive a simpler Boolean expression from the truth table
than either SOP or POS.

 • It may be preferable to implement the function with a single gate type (NAND
or NOR).

The significance of the first point is that, with a simpler Boolean expression,
fewer gates will be needed to implement the function. Three methods that can be
used to achieve simplification are

 • Algebraic simplification
 • Karnaugh maps
 • Quine–McCluskey tables

F

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C

Figure 11.5 Product-of-Sums
Implementation of Table 11.3

11.3 / COMBINATIONAL CIRCUITS 373

ALGEBRAIC SIMPLIFICATION Algebraic simplification involves the application of
the identities of Table 11.2 to reduce the Boolean expression to one with fewer
elements. For example, consider again Equation (11.1). Some thought should
convince the reader that an equivalent expression is

 F = AB + BC (11.3)

Or, even simpler,

F = B(A + C)

This expression can be implemented as shown in Figure 11.6. The simplification
of Equation (11.1) was done essentially by observation. For more complex expres-
sions, some more systematic approach is needed.

KARNAUGH MAPS For purposes of simplification, the Karnaugh map is a convenient
way of representing a Boolean function of a small number (up to four) of variables.
The map is an array of 2n squares, representing all possible combinations of values
of n binary variables. Figure 11.7a shows the map of four squares for a function of
two variables. It is essential for later purposes to list the combinations in the order
00, 01, 11, 10. Because the squares corresponding to the combinations are to be
used for recording information, the combinations are customarily written above the
squares. In the case of three variables, the representation is an arrangement of eight
squares (Figure 11.7b), with the values for one of the variables to the left and for the
other two variables above the squares. For four variables, 16 squares are needed,
with the arrangement indicated in Figure 11.7c.

The map can be used to represent any Boolean function in the following way.
Each square corresponds to a unique product in the sum-of-products form, with a
1 value corresponding to the variable and a 0 value corresponding to the NOT of
that variable. Thus, the product AB corresponds to the fourth square in Figure
11.7a. For each such product in the function, 1 is placed in the corresponding square.
Thus, for the two-variable example, the map corresponds to AB + AB. Given the
truth table of a Boolean function, it is an easy matter to construct the map: for each
combination of values of variables that produce a result of 1 in the truth table, fill
in the corresponding square of the map with 1. Figure 11.7b shows the result for
the truth table of Table 11.3. To convert from a Boolean expression to a map, it
is first necessary to put the expression into what is referred to as canonical form:
each term in the expression must contain each variable. So, for example, if we have
Equation (11.3), we must first expand it into the full form of Equation (11.1) and
then convert this to a map.

F
B

A

C

Figure 11.6 Simplified Implementation
of Table A.3

374 CHAPTER 11 / DIGITAL LOGIC

The labeling used in Figure 11.7d emphasizes the relationship between vari-
ables and the rows and columns of the map. Here the two rows embraced by the
symbol A are those in which the variable A has the value 1; the rows not embraced
by the symbol A are those in which A is 0; similarly for B, C, and D.

Once the map of a function is created, we can often write a simple algebraic
expression for it by noting the arrangement of the 1s on the map. The principle is as
follows. Any two squares that are adjacent differ in only one of the variables. If two
adjacent squares both have an entry of one, then the corresponding product terms
differ in only one variable. In such a case, the two terms can be merged by eliminat-
ing that variable. For example, in Figure 11.8a, the two adjacent squares correspond
to the two terms ABCD and ABCD. Thus, the function expressed is

ABCD + ABCD = ABD

This process can be extended in several ways. First, the concept of adjacency
can be extended to include wrapping around the edge of the map. Thus, the top
square of a column is adjacent to the bottom square, and the leftmost square of a row
is adjacent to the rightmost square. These conditions are illustrated in Figures 11.8b
and c. Second, we can group not just 2 squares but 2n adjacent squares (i.e., 2, 4,
8, etc.). The next three examples in Figure 11.8 show groupings of 4 squares. Note
that in this case, two of the variables can be eliminated. The last three examples
show groupings of 8 squares, which allow three variables to be eliminated.

We can summarize the rules for simplification as follows:

 1. Among the marked squares (squares with a 1), find those that belong to a
unique largest block of 1, 2, 4, or 8 and circle those blocks.

AB

1

00 01 11 10

00

00

01

11

10

01 11 10

00

0

1

01 11 10

1

(a) F � AB � AB

BC

1 1

1

(b) F � ABC � ABC � ABC

CD

AB

1

(c) F � ABCD � ABCD � ABCD

1

1

C

B

D

A

(d) Simplified labeling of map

A

Figure 11.7 The Use of Karnaugh Maps to Represent Boolean
Functions

11.3 / COMBINATIONAL CIRCUITS 375

 2. Select additional blocks of marked squares that are as large as possible and
as few in number as possible, but include every marked square at least once.
The results may not be unique in some cases. For example, if a marked square
combines with exactly two other squares, and there is no fourth marked square
to complete a larger group, then there is a choice to be made as two which of
the two groupings to choose. When you are circling groups, you are allowed to
use the same 1 value more than once.

 3. Continue to draw loops around single marked squares, or pairs of adjacent
marked squares, or groups of four, eight, and so on in such a way that every
marked square belongs to at least one loop; then use as few of these blocks as
possible to include all marked squares.

Figure 11.9a, based on Table 11.3, illustrates the simplification process. If any
isolated 1s remain after the groupings, then each of these is circled as a group of 1s.

(a) ABD (b) BCD (b) ABD

(d) AB (e) BC (f) BD

(g) A (h) D

1 1

00

00

01

01

11

11

10

10

AB

CD

1

1

00

00

01

01

11

11

10

10

AB

CD

1 1

00

00

01

01

11

11

10

10

AB

CD

1 1 1 1

00

00

01

01

11

11

10

10

AB

CD

1 1

1 1

00

00

01

01

11

11

10

10

AB

CD

1

1

1

1

00

00

01

01

11

11

10

10

AB

CD

1 1 1 1

1 1 1 1

00

00

01

01

11

11

10

10

AB

CD

1

1

1

1

1

1

1

1

00

00

01

01

11

11

10

10

AB

CD

1

1

1

1

1

1

1

1

00

00

01

01

11

11

10

10

AB

(i) C

CD

Figure 11.8 The Use of Karnaugh Maps

376 CHAPTER 11 / DIGITAL LOGIC

Finally, before going from the map to a simplified Boolean expression, any group of
1s that is completely overlapped by other groups can be eliminated. This is shown in
Figure 11.9b. In this case, the horizontal group is redundant and may be ignored in
creating the Boolean expression.

One additional feature of Karnaugh maps needs to be mentioned. In some
cases, certain combinations of values of variables never occur, and therefore the
corresponding output never occurs. These are referred to as “don’t care” condi-
tions. For each such condition, the letter “d” is entered into the corresponding
square of the map. In doing the grouping and simplification, each “d” can be treated
as a 1 or 0, whichever leads to the simplest expression.

An example, presented in [HAYE98], illustrates the points we have been dis-
cussing. We would like to develop the Boolean expressions for a circuit that adds
1 to a packed decimal digit. For packed decimal, each decimal digit is represented
by a 4-bit code, in the obvious way. Thus, 0 = 0000, 1 = 0001, c , 8 = 1000, and
9 = 1001. The remaining 4-bit values, from 1010 to 1111, are not used. This code is
also referred to as Binary Coded Decimal (BCD).

Table 11.4 shows the truth table for producing a 4-bit result that is one
more than a 4-bit BCD input. The addition is modulo 10. Thus, 9 + 1 = 0. Also,
note that six of the input codes produce “don’t care” results, because those are
not valid BCD inputs. Figure 11.10 shows the resulting Karnaugh maps for each
of the output variables. The d squares are used to achieve the best possible
groupings.

THE QUINE–MCCLUSKEY METHOD For more than four variables, the Karnaugh
map method becomes increasingly cumbersome. With five variables, two 16 * 16
maps are needed, with one map considered to be on top of the other in three
dimensions to achieve adjacency. Six variables require the use of four 16 * 16

(b) F � BCD � ACD

(a) F � AB � BC

1

1 1

1

00

00

01

01

11

11

10

10

AB

A

CD

1 1

1

00

0

1

01 11 10

BC

Figure 11.9 Overlapping Groups

11.3 / COMBINATIONAL CIRCUITS 377

tables in four dimensions! An alternative approach is a tabular technique, referred
to as the Quine–McCluskey method. The method is suitable for programming on a
computer to give an automatic tool for producing minimized Boolean expressions.

Table 11.4 Truth Table for the One-Digit Packed Decimal Incrementer

Input Output

Number A B C D Number W X Y Z

0 0 0 0 0 1 0 0 0 1

1 0 0 0 1 2 0 0 1 0

2 0 0 1 0 3 0 0 1 1

3 0 0 1 1 4 0 1 0 0

4 0 1 0 0 5 0 1 0 1

5 0 1 0 1 6 0 1 1 0

6 0 1 1 0 7 0 1 1 1

7 0 1 1 1 8 1 0 0 0

8 1 0 0 0 9 1 0 0 1

9 1 0 0 1 0 0 0 0 0

1 0 1 0 d d d d

1 0 1 1 d d d d

1 1 0 0 d d d d

1 1 0 1 d d d d

1 1 1 0 d d d d

1 1 1 1 d d d d

gDon’t
care

condition

00

00

01

11

10

01 11 10

CD

AB
1

1

d d d d

d d

(a) W � AD � ABCD

00

00

01

11

10

01 11 10

CD

AB

1

1 1 1

d d

d dd d

(b) X � BD � BC � BCD

00

00

01

11

10

01 11 10

CD

AB

1 1

1

d d d d

d d

(c) Y � ACD � ACD

00 01 11 10

CD

AB

(d) Z � D

d d d d

d d

00

01

11

10

1

1

1

1

1

Figure 11.10 Karnaugh Maps for the Incrementer

378 CHAPTER 11 / DIGITAL LOGIC

The method is best explained by means of an example. Consider the following
expression:

ABCD + ABCD + ABC D + ABCD + ABCD + ABCD + ABCD + A B CD

Let us assume that this expression was derived from a truth table. We would
like to produce a minimal expression suitable for implementation with gates.

The first step is to construct a table in which each row corresponds to one
of the product terms of the expression. The terms are grouped according to the
number of complemented variables. That is, we start with the term with no comple-
ments, if it exists, then all terms with one complement, and so on. Table 11.5 shows
the list for our example expression, with horizontal lines used to indicate the group-
ing. For clarity, each term is represented by a 1 for each uncomplemented variable
and a 0 for each complemented variable. Thus, we group terms according to the
number of 1s they contain. The index column is simply the decimal equivalent and
is useful in what follows.

The next step is to find all pairs of terms that differ in only one variable, that is,
all pairs of terms that are the same except that one variable is 0 in one of the terms
and 1 in the other. Because of the way in which we have grouped the terms, we can
do this by starting with the first group and comparing each term of the first group
with every term of the second group. Then compare each term of the second group
with all of the terms of the third group, and so on. Whenever a match is found, place
a check next to each term, combine the pair by eliminating the variable that differs
in the two terms, and add that to a new list. Thus, for example, the terms ABCD and
ABCD are combined to produce ABC. This process continues until the entire origi-
nal table has been examined. The result is a new table with the following entries:

A CD ABC ABD �

BCD� ACD

ABC BCD �

ABD�

Table 11.5 First Stage of Quine–McCluskey Method
(for F = ABCD + ABCD + ABC D + ABCD + ABCD + ABCD + ABCD + A B CD)

Product Term Index A B C D

A B CD 1 0 0 0 1 ✓

ABCD 5 0 1 0 1 ✓

ABCD 6 0 1 1 0 ✓

ABC D 12 1 1 0 0 ✓

ABCD 7 0 1 1 1 ✓

ABCD 11 1 0 1 1 ✓

ABCD 13 1 1 0 1 ✓

ABCD 15 1 1 1 1 ✓

11.3 / COMBINATIONAL CIRCUITS 379

The new table is organized into groups, as indicated, in the same fashion as the
first table. The second table is then processed in the same manner as the first. That is,
terms that differ in only one variable are checked and a new term produced for a third
table. In this example, the third table that is produced contains only one term: BD.

In general, the process would proceed through successive tables until a table
with no matches was produced. In this case, this has involved three tables.

Once the process just described is completed, we have eliminated many of
the possible terms of the expression. Those terms that have not been eliminated
are used to construct a matrix, as illustrated in Table 11.6. Each row of the matrix
corresponds to one of the terms that have not been eliminated (has no check) in
any of the tables used so far. Each column corresponds to one of the terms in the
original expression. An X is placed at each intersection of a row and a column such
that the row element is “compatible” with the column element. That is, the vari-
ables present in the row element have the same value as the variables present in the
column element. Next, circle each X that is alone in a column. Then place a square
around each X in any row in which there is a circled X. If every column now has
either a squared or a circled X, then we are done, and those row elements whose
Xs have been marked constitute the minimal expression. Thus, in our example, the
final expression is

ABC + ACD + ABC + A CD

In cases in which some columns have neither a circle nor a square, additional
processing is required. Essentially, we keep adding row elements until all columns
are covered.

Let us summarize the Quine–McCluskey method to try to justify intuitively
why it works. The first phase of the operation is reasonably straightforward. The
process eliminates unneeded variables in product terms. Thus, the expression
ABC + ABC is equivalent to AB, because

ABC + ABC = AB(C + C) = AB

After the elimination of variables, we are left with an expression that is clearly
equivalent to the original expression. However, there may be redundant terms
in this expression, just as we found redundant groupings in Karnaugh maps. The
matrix layout assures that each term in the original expression is covered and does
so in a way that minimizes the number of terms in the final expression.

Table 11.6 Last Stage of Quine–McCluskey Method
(for F = ABCD + ABCD + ABC D + ABCD + ABCD + ABCD + ABCD + A B CD)

ABCD ABCD ABC D ABCD ABCD ABCD ABCD A B CD

BD X X X X

A CD X ⊗

ABC X ⊗

ABC X ⊗

ACD X ⊗

380 CHAPTER 11 / DIGITAL LOGIC

NAND AND NOR IMPLEMENTATIONS Another consideration in the
implementation of Boolean functions concerns the types of gates used. It is sometimes
desirable to implement a Boolean function solely with NAND gates or solely with
NOR gates. Although this may not be the minimum-gate implementation, it has the
advantage of regularity, which can simplify the manufacturing process. Consider
again Equation (11.3):

F = B(A + C)

Because the complement of the complement of a value is just the original value,

F = B(A + C) = (AB + (BC)

Applying DeMorgan’s theorem,

F = (AB)•(BC)

which has three NAND forms, as illustrated in Figure 11.11.

Multiplexers

The multiplexer connects multiple inputs to a single output. At any time, one of the
inputs is selected to be passed to the output. A general block diagram representation
is shown in Figure 11.12. This represents a 4-to-1 multiplexer. There are four input
lines, labeled D0, D1, D2, and D3. One of these lines is selected to provide the

A

B

B

C

F

Figure 11.11 NAND Implementation of
Table 11.3

D0

D1

D2

S2 S1

D3

F
4-to-1
MUX

Figure 11.12 4-to-1 Multiplexer
Representation

11.3 / COMBINATIONAL CIRCUITS 381

 output signal F. To select one of the four possible inputs, a 2-bit selection code is
needed, and this is implemented as two select lines labeled S1 and S2.

An example 4-to-1 multiplexer is defined by the truth table in Table 11.7. This
is a simplified form of a truth table. Instead of showing all possible combinations of
input variables, it shows the output as data from line D0, D1, D2, or D3. Figure 11.13
shows an implementation using AND, OR, and NOT gates. S1 and S2 are connected
to the AND gates in such a way that, for any combination of S1 and S2, three of the
AND gates will output 0. The fourth AND gate will output the value of the selected
line, which is either 0 or 1. Thus, three of the inputs to the OR gate are always 0,
and the output of the OR gate will equal the value of the selected input gate. Using
this regular organization, it is easy to construct multiplexers of size 8-to-1, 16-to-1,
and so on.

Multiplexers are used in digital circuits to control signal and data routing. An
example is the loading of the program counter (PC). The value to be loaded into the
program counter may come from one of several different sources:

D0

D1

D2

D3

S1S2

F

Figure 11.13 Multiplexer Implementation

Table 11.7 4-to-1 Multiplexer Truth Table

S2 S1 F

0 0 D0

0 1 D1

1 0 D2

1 1 D3

382 CHAPTER 11 / DIGITAL LOGIC

 • A binary counter, if the PC is to be incremented for the next instruction

 • The instruction register, if a branch instruction using a direct address has just
been executed

 • The output of the ALU, if the branch instruction specifies the address using a
displacement mode

These various inputs could be connected to the input lines of a multiplexer, with the
PC connected to the output line. The select lines determine which value is loaded
into the PC. Because the PC contains multiple bits, multiple multiplexers are used,
one per bit. Figure 11.14 illustrates this for 16-bit addresses.

Decoders

A decoder is a combinational circuit with a number of output lines, only one of
which is asserted at any time. Which output line is asserted depends on the pattern
of input lines. In general, a decoder has n inputs and 2n outputs. Figure 11.15 shows
a decoder with three inputs and eight outputs.

Decoders find many uses in digital computers. One example is address
decoding. Suppose we wish to construct a 1K-byte memory using four 256 * 8-bit
RAM chips. We want a single unified address space, which can be broken down as
follows:

Address Chip

0000–00FF 0

0100–01FF 1

0200–02FF 2

0300–03FF 3

Each chip requires 8 address lines, and these are supplied by the lower-order
8 bits of the address. The higher-order 2 bits of the 10-bit address are used to select
one of the four RAM chips. For this purpose, a 2-to-4 decoder is used whose output
enables one of the four chips, as shown in Figure 11.16.

With an additional input line, a decoder can be used as a demultiplexer. The
demultiplexer performs the inverse function of a multiplexer; it connects a single
input to one of several outputs. This is shown in Figure 11.17. As before, n inputs are
decoded to produce a single one of 2n outputs. All of the 2n output lines are ANDed

S1

S2

C0 IR0

PC0

ALU0 C1 IR1 ALU1 C15 IR15 ALU15

4-to-1
MUX S1

S2

PC1

4-to-1
MUX S1

S2

PC15

4-to-1
MUX

Figure 11.14 Multiplexer Input to Program Counter

11.3 / COMBINATIONAL CIRCUITS 383

A
D

0
 000

D
1
 001

D
2
 010

D
3
 011

D
4
 100

D
5
 101

D
6
 110

D
7
 111

B

C

Figure 11.15 Decoder with 3 Inputs and 23 = 8 Outputs

256 � 8
RAM

256 � 8
RAM

256 � 8
RAM

256 � 8
RAM

Enable Enable Enable Enable

A0

A7

A8

A9

2-to-4
Decoder

Figure 11.16 Address Decoding

384 CHAPTER 11 / DIGITAL LOGIC

with a data input line. Thus, the n inputs act as an address to select a particular out-
put line, and the value on the data input line (0 or 1) is routed to that output line.

The configuration in Figure 11.17 can be viewed in another way. Change the
label on the new line from Data Input to Enable. This allows for the control of the
timing of the decoder. The decoded output appears only when the encoded input is
present and the enable line has a value of 1.

Read-Only Memory

Combinational circuits are often referred to as “memoryless” circuits, because their
output depends only on their current input and no history of prior inputs is retained.
However, there is one sort of memory that is implemented with combinational cir-
cuits, namely read-only memory (ROM).

Recall that a ROM is a memory unit that performs only the read operation.
This implies that the binary information stored in a ROM is permanent and was cre-
ated during the fabrication process. Thus, a given input to the ROM (address lines)
always produces the same output (data lines). Because the outputs are a function
only of the present inputs, the ROM is in fact a combinational circuit.

A ROM can be implemented with a decoder and a set of OR gates. As an
example, consider Table 11.8. This can be viewed as a truth table with four inputs
and four outputs. For each of the 16 possible input values, the corresponding set
of values of the outputs is shown. It can also be viewed as defining the contents
of a 64-bit ROM consisting of 16 words of 4 bits each. The four inputs specify an
address, and the four outputs specify the contents of the location specified by the
address. Figure 11.18 shows how this memory could be implemented using a 4-to-16
decoder and four OR gates. As with the PLA, a regular organization is used, and
the interconnections are made to reflect the desired result.

Adders

So far, we have seen how interconnected gates can be used to implement such
functions as the routing of signals, decoding, and ROM. One essential area not yet
addressed is that of arithmetic. In this brief overview, we will content ourselves with
looking at the addition function.

Binary addition differs from Boolean algebra in that the result includes a carry
term. Thus,

Data input

n-bit
destination

address 2n outputs
n-to-2n

decoder

Figure 11.17 Implementation of a Demultiplexer Using a Decoder

11.3 / COMBINATIONAL CIRCUITS 385

X1

X2

X3

X4

Four-input
sixteen-
output
decoder

0000
0001
0010
0011

0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Z1 Z2 Z3 Z4

Figure 11.18 A 64-Bit ROM

Table 11.8 Truth Table for a ROM

Input Output

X1 X2 X3 X4 Z1 Z2 Z3 Z4

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

386 CHAPTER 11 / DIGITAL LOGIC

0 0 1 1

+0 +1 +0 +1

0 1 1 10

However, addition can still be dealt with in Boolean terms. In Table 11.9a, we
show the logic for adding two input bits to produce a 1-bit sum and a carry bit.
This truth table could easily be implemented in digital logic. However, we are not
interested in performing addition on just a single pair of bits. Rather, we wish to
add two n-bit numbers. This can be done by putting together a set of adders so that
the carry from one adder is provided as input to the next. A 4-bit adder is depicted
in Figure 11.19.

For a multiple-bit adder to work, each of the single-bit adders must have three
inputs, including the carry from the next-lower-order adder. The revised truth table
appears in Table 11.9b. The two outputs can be expressed:

Sum = A BC + ABC + ABC + ABC

Carry = AB + AC + BC

Figure 11.20 is an implementation using AND, OR, and NOT gates.

A3

C3

S3

Cin

B3 A2

C2

S2

Cin

B2 A1

C1

S1

Cin

B1 A0

C0

S0

Cin 0

B0

Overflow
signal

Figure 11.19 4-Bit Adder

Table 11.9 Binary Addition Truth Tables

(a) Single-Bit Addition

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

(b) Addition with Carry Input

Cin A B Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

11.3 / COMBINATIONAL CIRCUITS 387

Thus we have the necessary logic to implement a multiple-bit adder such as
shown in Figure 11.21. Note that because the output from each adder depends on
the carry from the previous adder, there is an increasing delay from the least signifi-
cant to the most significant bit. Each single-bit adder experiences a certain amount
of gate delay, and this gate delay accumulates. For larger adders, the accumulated
delay can become unacceptably high.

If the carry values could be determined without having to ripple through all
the previous stages, then each single-bit adder could function independently, and
delay would not accumulate. This can be achieved with an approach known as carry
lookahead. Let us look again at the 4-bit adder to explain this approach.

We would like to come up with an expression that specifies the carry input to
any stage of the adder without reference to previous carry values. We have

C

A
B

C

A
B

C

A
B

C

A
B

B

A

C

A

C

B

Sum

Carry

Figure 11.20 Implementation of an Adder

A31

C23
Cout

B31

S31 S24

A24 B24

8-bit
adder

A23

C15

B23

S23 S16

A16 B16

8-bit
adder

A15

C7

B15

S15 S8

A8 B8

8-bit
adder

A7

Cin

B7

S7 S0

A0 B0

8-bit
adder

Figure 11.21 Construction of a 32-Bit Adder Using 8-Bit Adders

388 CHAPTER 11 / DIGITAL LOGIC

 C 0 = A0B0 (11.4)

C 1 = A1B1 + A1A0B0 + B1A0B0 (11.5)

Following the same procedure, we get

C 2 = A2B2 + A2A1B1 + A2A1A0B0 + A2B1A0B0 + B2A1B1

+ B2A1A0B0 + B2B1A0B0

This process can be repeated for arbitrarily long adders. Each carry term can be
expressed in SOP form as a function only of the original inputs, with no dependence
on the carries. Thus, only two levels of gate delay occur regardless of the length of
the adder.

For long numbers, this approach becomes excessively complicated. Evaluating
the expression for the most significant bit of an n-bit adder requires an OR gate
with 2n - 1 inputs and 2n - 1 AND gates with from 2 to n + 1 inputs. Accordingly,
full carry lookahead is typically done only 4 to 8 bits at a time. Figure 11.21 shows
how a 32-bit adder can be constructed out of four 8-bit adders. In this case, the carry
must ripple through the four 8-bit adders, but this will be substantially quicker than
a ripple through thirty-two 1-bit adders.

 11.4 SEQUENTIAL CIRCUITS

Combinational circuits implement the essential functions of a digital computer.
However, except for the special case of ROM, they provide no memory or state
information, elements also essential to the operation of a digital computer. For the
latter purposes, a more complex form of digital logic circuit is used: the sequential
circuit. The current output of a sequential circuit depends not only on the current
input, but also on the past history of inputs. Another and generally more useful way
to view it is that the current output of a sequential circuit depends on the current
input and the current state of that circuit.

In this section, we examine some simple but useful examples of sequential
circuits. As will be seen, the sequential circuit makes use of combinational circuits.

Flip-Flops

The simplest form of sequential circuit is the flip-flop. There are a variety of flip-
flops, all of which share two properties:

 • The flip-flop is a bistable device. It exists in one of two states and, in the
 absence of input, remains in that state. Thus, the flip-flop can function as a
1-bit memory.

 • The flip-flop has two outputs, which are always the complements of each
other. These are generally labeled Q and Q.

THE S–R LATCH Figure 11.22 shows a common configuration known as the S–R
flip-flop or S–R latch. The circuit has two inputs, S (Set) and R (Reset), and two outputs,
Q and Q, and consists of two NOR gates connected in a feedback arrangement.

11.4 / SEQUENTIAL CIRCUITS 389

First, let us show that the circuit is bistable. Assume that both S and R are 0
and that Q is 0. The inputs to the lower NOR gate are Q = 0 and S = 0. Thus, the
output Q = 1 means that the inputs to the upper NOR gate are Q = 1 and R = 0,
which has the output Q = 0. Thus, the state of the circuit is internally consistent
and remains stable as long as S = R = 0. A similar line of reasoning shows that the
state Q = 1, Q = 0 is also stable for R = S = 0.

Thus, this circuit can function as a 1-bit memory. We can view the output Q as
the “value” of the bit. The inputs S and R serve to write the values 1 and 0, respec-
tively, into memory. To see this, consider the state Q = 0, Q = 1, S = 0, R = 0.
Suppose that S changes to the value 1. Now the inputs to the lower NOR gate are
S = 1, Q = 0. After some time delay ^t, the output of the lower NOR gate will be
Q = 0 (see Figure 11.23). So, at this point in time, the inputs to the upper NOR gate
become R = 0, Q = 0. After another gate delay of ^t the output Q becomes 1. This
is again a stable state. The inputs to the lower gate are now S = 1, Q = 1, which
maintain the output Q = 0. As long as S = 1 and R = 0, the outputs will remain
Q = 1, Q = 0. Furthermore, if S returns to 0, the outputs will remain unchanged.

The R output performs the opposite function. When R goes to 1, it forces
Q = 0, Q = 1 regardless of the previous state of Q and Q. Again, a time delay of
2^t occurs before the final state is established (Figure 11.23).

The S–R latch can be defined with a table similar to a truth table, called a
characteristic table, which shows the next state or states of a sequential circuit as
a function of current states and inputs. In the case of the S–R latch, the state can
be defined by the value of Q. Table 11.10a shows the resulting characteristic table.
Observe that the inputs S = 1, R = 1 are not allowed, because these would pro-
duce an inconsistent output (both Q and Q equal 0). The table can be expressed
more compactly, as in Table 11.10b. An illustration of the behavior of the S–R latch
is shown in Table 11.10c.

S

Q

Q

R

Figure 11.22 The S–R Latch Implemented
with NOR Gates

CLOCKED S–R FLIP-FLOP The output of the S–R latch changes, after a brief
time delay, in response to a change in the input. This is referred to as asynchronous
operation. More typically, events in the digital computer are synchronized to a clock
pulse, so that changes occur only when a clock pulse occurs. Figure 11.24 shows this

390 CHAPTER 11 / DIGITAL LOGIC

1

0

S

R

Q

Q

1

0

1

0

1

0

2
t
t

2
t
t

t

Figure 11.23 NOR S–R Latch Timing Diagram

Table 11.10 The S–R Latch

(a) Characteristic Table

Current
Inputs

Current
State

Next
State

SR Qn Qn + 1

00 0 0

00 1 1

01 0 0

01 1 0

10 0 1

10 1 1

11 0 —

11 1 —

(b) Simplified Characteristic Table

S R Qn � 1

0 0 Qn

0 1 0

1 0 1

1 1 —

(c) Response to Series of Inputs

t 0 1 2 3 4 5 6 7 8 9

S 1 0 0 0 0 0 0 0 1 0

R 0 0 0 1 0 0 1 0 0 0

Qn�1 1 1 1 0 0 0 0 0 1 1

11.4 / SEQUENTIAL CIRCUITS 391

arrangement. This device is referred to as a clocked S–R flip-flop. Note that the
R and S inputs are passed to the NOR gates only during the clock pulse.

D FLIP-FLOP One problem with S–R flip-flop is that the condition R = 1, S = 1
must be avoided. One way to do this is to allow just a single input. The D flip-flop
accomplishes this. Figure 11.25 shows a gate implementation of the D flip-flop. By
using an inverter, the nonclock inputs to the two AND gates are guaranteed to be
the opposite of each other.

The D flip-flop is sometimes referred to as the data flip-flop because it is, in
effect, storage for one bit of data. The output of the D flip-flop is always equal to the
most recent value applied to the input. Hence, it remembers and produces the last
input. It is also referred to as the delay flip-flop, because it delays a 0 or 1 applied to
its input for a single clock pulse. We can capture the logic of the D flip-flop in the
following truth table:

D Qn� 1

0 0

1 1

J–K FLIP-FLOP Another useful flip-flop is the J–K flip-flop. Like the S–R flip-flop,
it has two inputs. However, in this case all possible combinations of input values are
valid. Figure 11.26 shows a gate implementation of the J–K flip-flop, and Figure 11.27
shows its characteristic table (along with those for the S–R and D flip-flops). Note
that the first three combinations are the same as for the S–R flip-flop. With no input
asserted, the output is stable. If only the J input is asserted, the result is a set function,

S

R

Q

Q

Clock

Figure 11.24 Clocked S–R Flip-Flop

D
Q

Q

Clock

Figure 11.25 D Flip-Flop

392 CHAPTER 11 / DIGITAL LOGIC

Name Graphical Symbol Truth Table

S–R

S Q

R Q

S R

0 0

0
1

1

Qn

Qn�1

1
0

–

0
1
1

J–K

J Q

K Q

J K

0 0

0
1

1

Qn

Qn

Qn�1

1
00

1
1

D

D Q

Q

D

0 0
1

Qn�1

1

Ck

Ck

Ck

Figure 11.27 Basic Flip-Flops

causing the output to be 1; if only the K input is asserted, the result is a reset function,
causing the output to be 0. When both J and K are 1, the function performed is
referred to as the toggle function: the output is reversed. Thus, if Q is 1 and 1 is applied
to J and K, then Q becomes 0. The reader should verify that the implementation of
Figure 11.26 produces this characteristic function.

J

K

Q

Q

Clock

Figure 11.26 J–K Flip-Flop

11.4 / SEQUENTIAL CIRCUITS 393

Registers

As an example of the use of flip-flops, let us first examine one of the essential ele-
ments of the CPU: the register. As we know, a register is a digital circuit used within
the CPU to store one or more bits of data. Two basic types of registers are com-
monly used: parallel registers and shift registers.

PARALLEL REGISTERS A parallel register consists of a set of 1-bit memories that
can be read or written simultaneously. It is used to store data. The registers that we
have discussed throughout this book are parallel registers.

The 8-bit register of Figure 11.28 illustrates the operation of a parallel register
using D flip-flops. A control signal, labeled load, controls writing into the register
from signal lines, D11 through D18. These lines might be the output of multiplexers,
so that data from a variety of sources can be loaded into the register.

SHIFT REGISTER A shift register accepts and/or transfers information serially.
Consider, for example, Figure 11.29, which shows a 5-bit shift register constructed
from clocked D flip-flops. Data are input only to the leftmost flip-flop. With each
clock pulse, data are shifted to the right one position, and the rightmost bit is
transferred out.

Shift registers can be used to interface to serial I/O devices. In addition, they
can be used within the ALU to perform logical shift and rotate functions. In this

D

D08

D18

Clk

Q D

Clk

Q D

Clk

Q D

Clk

Q D

Clk

Q D

Clk

Q D

Clk

Q D

Clk

Q

Clock
Load

D17 D16 D15 D14 D13 D12 D11

D07 D06 D05

Output lines

Data lines

D04 D03 D02 D01

Figure 11.28 8-Bit Parallel Register

D

Clk

Q D

Clk

Q D

Clk

Q D

Clk

Q D

Clk

Q

Clock

Serial in Serial out

Figure 11.29 5-Bit Shift Register

394 CHAPTER 11 / DIGITAL LOGIC

latter capacity, they need to be equipped with parallel read/write circuitry as well
as serial.

Counters

Another useful category of sequential circuit is the counter. A counter is a register
whose value is easily incremented by 1 modulo the capacity of the register; that is,
after the maximum value is achieved the next increment sets the counter value to 0.
Thus, a register made up of n flip-flops can count up to 2n - 1. An example of a
counter in the CPU is the program counter.

Counters can be designated as asynchronous or synchronous, depending on
the way in which they operate. Asynchronous counters are relatively slow because
the output of one flip-flop triggers a change in the status of the next flip-flop. In a
synchronous counter, all of the flip-flops change state at the same time. Because the
latter type is much faster, it is the kind used in CPUs. However, it is useful to begin
the discussion with a description of an asynchronous counter.

RIPPLE COUNTER An asynchronous counter is also referred to as a ripple counter,
because the change that occurs to increment the counter starts at one end and
“ripples” through to the other end. Figure 11.30 shows an implementation of a
4-bit counter using J–K flip-flops, together with a timing diagram that illustrates its
behavior. The timing diagram is idealized in that it does not show the propagation
delay that occurs as the signals move down the series of flip-flops. The output of
the leftmost flip-flop (Q0) is the least significant bit. The design could clearly be
extended to an arbitrary number of bits by cascading more flip-flops.

J Q

Q0

Q0

Q1

Q2

Q3

K Q

Ck

J Q

Q1

K Q

Ck

J Q

Q2

K Q

Ck

J Q

Q3

K Q

CkClock

Clock

High

(a) Sequential circuit

(b) Timing diagram

Figure 11.30 Ripple Counter

11.4 / SEQUENTIAL CIRCUITS 395

In the illustrated implementation, the counter is incremented with each clock
pulse. The J and K inputs to each flip-flop are held at a constant 1. This means that,
when there is a clock pulse, the output at Q will be inverted (1 to 0; 0 to 1). Note that
the change in state is shown as occurring with the falling edge of the clock pulse; this
is known as an edge-triggered flip-flop. Using flip-flops that respond to the transi-
tion in a clock pulse rather than the pulse itself provides better timing control in
complex circuits. If one looks at patterns of output for this counter, it can be seen
that it cycles through 0000, 0001, …, 1110, 1111, 0000, and so on.

SYNCHRONOUS COUNTERS The ripple counter has the disadvantage of the delay
involved in changing value, which is proportional to the length of the counter. To
overcome this disadvantage, CPUs make use of synchronous counters, in which
all of the flip-flops of the counter change at the same time. In this subsection, we
present a design for a 3-bit synchronous counter. In doing so, we illustrate some
basic concepts in the design of a synchronous circuit.

For a 3-bit counter, three flip-flops will be needed. Let us use J–K flip-flops.
Label the uncomplemented output of the three flip-flops A, B, and C, respectively,
with C representing the least significant bit. The first step is to construct a truth
table that relates the J–K inputs and outputs, to allow us to design the overall cir-
cuit. Such a truth table is shown in Figure 11.31a. The first three columns show the
possible combinations of outputs A, B, and C. They are listed in the order that they
will appear as the counter is incremented. Each row lists the current value of A, B,
C and the inputs to the three flip-flops that will be required to reach the next value
of A, B, C.

To understand the way in which the truth table of Figure 11.31a is constructed,
it may be helpful to recast the characteristic table for the J–K flip-flop. Recall that
this table was presented as follows:

J K Qn� 1

0 0 Qn
0 1 0
1 0 1
1 1 Qn� 1

In this form, the table shows the effect that the J and K inputs have on the output.
Now consider the following organization of the same information:

Qn J K Qn� 1

0 0 d 0
0 1 d 1
1 d 1 0
1 d 0 1

In this form, the table provides the value of the next output when the inputs and
the present output are known. This is exactly the information needed to design the
counter or, indeed, any sequential circuit. In this form, the table is referred to as an
excitation table.

396 CHAPTER 11 / DIGITAL LOGIC

(c) Logic diagram

High

Clock

Ja A

AKa

Jb B

BKb

C B

binary
output

AJc C

CKc

C B A Jc JbKc Ja KaKb

0 0 0 0 0d 1 dd

0 0 1 0 1d d 1d

0 1 0 0 dd 1 d0

0 1 1 1 dd d 11

1 0 0 d 00 1 dd

1 0 1 d 10 d 1d

1 1 0 d d0 1 d0

1 1 1 d d1 d 11

(a) Truth table

(b) Karnaugh maps

Jc � BA C

BA

d d d d

10

1

00 01 11 10

Kc � BA C

BA

d d d d

1

0

1

00 01 11 10

Jb � A C

BA

dd

1

1

d d

0

1

00 01 11 10

Kb � A C

BA

d d

d d

1

1

0

1

00 01 11 10

Ja � 1 C

BA

1dd

d

1

d 1

0

1 1

00 01 11 10

Ka � 1 C

BA

d11

1

d

1 d

0

1 d

00 01 11 10

Ck Ck Ck

Figure 11.31 Design of a Synchronous Counter

Let us return to Figure 11.31a. Consider the first row. We want the value of
A to remain 0, the value of B to remain 0, and the value of C to go from 0 to 1 with
the next application of a clock pulse. The excitation table shows that to maintain an
output of 0, we must have inputs of J = 0 and don’t care for K. To effect a transition
from 0 to 1, the inputs must be J = 1 and K = d. These values are shown in the first
row of the table. By similar reasoning, the remainder of the table can be filled in.

11.5 / PROGRAMMABLE LOGIC DEVICES 397

Having constructed the truth table of Figure 11.31a, we see that the table
shows the required values of all of the J and K inputs as functions of the current
values of A, B, and C. With the aid of Karnaugh maps, we can develop Boolean
expressions for these six functions. This is shown in part b of the figure. For example,
the Karnaugh map for the variable Ja (the J input to the flip-flop that produces the
A output) yields the expression Ja = BC. When all six expressions are derived, it is
a straightforward matter to design the actual circuit, as shown in part c of the figure.

 11.5 PROGRAMMABLE LOGIC DEVICES

Thus far, we have treated individual gates as building blocks, from which arbitrary
functions can be realized. The designer could pursue a strategy of minimizing the
number of gates to be used by manipulating the corresponding Boolean expressions.

As the level of integration provided by integrated circuits increases, other
considerations apply. Early integrated circuits, using small-scale integration (SSI),
provided from one to ten gates on a chip. Each gate is treated independently, in the
building-block approach described so far. To construct a logic function, a number of
these chips are laid out on a printed circuit board and the appropriate pin intercon-
nections are made.

Increasing levels of integration made it possible to put more gates on a chip and to
make gate interconnections on the chip as well. This yields the advantages of decreased
cost, decreased size, and increased speed (because on-chip delays are of shorter dura-
tion than off-chip delays). A design problem arises, however. For each particular logic
function or set of functions, the layout of gates and interconnections on the chip must
be designed. The cost and time involved in such custom chip design is high. Thus, it
becomes attractive to develop a general-purpose chip that can be readily adapted to
specific purposes. This is the intent of the programmable logic device (PLD).

There are a number of different types of PLDs in commercial use. Table 11.11
lists some of the key terms and defines some of the most important types. In this
section, we first look at one of the simplest such devices, the programmable logic
array (PLA) and then introduce perhaps the most important and widely used type
of PLD, the field-programmable gate array (FPGA).

Programmable Logic Array

The PLA is based on the fact that any Boolean function (truth table) can be
expressed in a sum-of-products (SOP) form, as we have seen. The PLA consists of
a regular arrangement of NOT, AND, and OR gates on a chip. Each chip input is
passed through a NOT gate so that each input and its complement are available to
each AND gate. The output of each AND gate is available to each OR gate, and the
output of each OR gate is a chip output. By making the appropriate connections,
arbitrary SOP expressions can be implemented.

Figure 11.32a shows a PLA with three inputs, eight gates, and two outputs. On
the left is a programmable AND array. The AND array is programmed by estab-
lishing a connection between any PLA input or its negation and any AND gate
input by connecting the corresponding lines at their point of intersection. On the

398 CHAPTER 11 / DIGITAL LOGIC

Table 11.11 PLD Terminology

Programmable Logic Device (PLD)

A general term that refers to any type of integrated circuit used for implementing digital hardware,
where the chip can be configured by the end user to realize different designs. Programming of such
a device often involves placing the chip into a special programming unit, but some chips can also be
configured “in-system.” Also referred to as a field-programmable device (FPD).

Programmable Logic Array (PLA)

A relatively small PLD that contains two levels of logic, an AND-plane and an OR-plane, where
both levels are programmable.

Programmable Array Logic (PAL)

A relatively small PLD that has a programmable AND-plane followed by a fixed OR-plane.

Simple PLD (SPLD)

A PLA or PAL.

Complex PLD (CPLD)

A more complex PLD that consists of an arrangement of multiple SPLD-like blocks on a single
chip.

Field-Programmable Gate Array (FPGA)

A PLD featuring a general structure that allows very high logic capacity. Whereas CPLDs fea-
ture logic resources with a wide number of inputs (AND planes), FPGAs offer more narrow logic
resources. FPGAs also offer a higher ratio of flip-flops to logic resources than do CPLDs.

Logic Block

A relatively small circuit block that is replicated in an array in an FPD. When a circuit is imple-
mented in an FPD, it is first decomposed into smaller subcircuits that can each be mapped into a
logic block. The term logic block is mostly used in the context of FPGAs, but it could also refer to a
block of circuitry in a CPLD.

right is a programmable OR array, which involves connecting AND gate outputs to
OR gate inputs. Most larger PLAs contain several hundred gates, 15 to 25 inputs,
and 5 to 15 outputs. The connections from the inputs to the AND gates, and from
the AND gates to the OR gates, are not specified until programming time.

PLAs are manufactured in two different ways to allow easy programming
(making of connections). In the first, every possible connection is made through a
fuse at every intersection point. The undesired connections can then be later removed
by blowing the fuses. This type of PLA is referred to as a field-programmable logic
array. Alternatively, the proper connections can be made during chip fabrication
by using an appropriate mask supplied for a particular interconnection pattern. In
either case, the PLA provides a flexible, inexpensive way of implementing digital
logic functions.

Figure 11.32b shows a programmed PLA that realizes two Boolean expressions.

Field-Programmable Gate Array

The PLA is an example of a simple PLD (SPLD). The difficulty with increasing
capacity of a strict SPLD architecture is that the structure of the programmable
logic-planes grows too quickly in size as the number of inputs is increased. The
only feasible way to provide large capacity devices based on SPLD architectures
is then to integrate multiple SPLDs onto a single chip and provide interconnect to
 programmably connect the SPLD blocks together. Many commercial PLD products

11.5 / PROGRAMMABLE LOGIC DEVICES 399

I1

O1 O2

I2 I3

“AND” array

“OR” array

(a) Layout for 3-input 2-output PLA

A B C

(b) Programmed PLA

ABC

ABC � AB AB � AC

AC

AB

Figure 11.32 An Example of a Programmable Logic Array

400 CHAPTER 11 / DIGITAL LOGIC

exist on the market today with this basic structure, and are collectively referred to
as Complex PLDs (CPLDs). The most important type of CPLD is the FPGA.

An FPGA consists of an array of uncommitted circuit elements, called logic
blocks, and interconnect resources. An illustration of a typical FPGA architecture is
shown in Figure 11.33. The key components of an FPGA are;

 • Logic block: The configurable logic blocks are where the computation of the
user’s circuit takes place.

 • I/O block: The I/O blocks connect I/O pins to the circuitry on the chip.

 • Interconnect: These are signal paths available for establishing connections
among I/O blocks and logic blocks.

The logic block can be either a combinational circuit or a sequential circuit. In
essence, the programming of a logic block is done by downloading the contents of
a truth table for a logic function. Figure 11.34 shows an example of a simple logic
block consisting of a D flip-flop, a 2-to-1 multiplexer, and a 16-bit lookup table. The
lookup table is a memory consisting of 16 1-bit elements, so that 4 input lines are
required to select one of the 16 bits. Larger logic blocks have larger lookup tables
and multiple interconnected lookup tables. The combinational logic realized by the
lookup table can be output directly or stored in the D flip-flop and output synchro-
nously. A separate one-bit memory controls the multiplexer to determine whether
the output comes directly from the lookup table or from the flip-flop.

By interconnecting numerous logic blocks, very complex logic functions can
be easily implemented.

Logic
block

I/O
block

Figure 11.33 Structure of an FPGA

11.7 / KEY TERMS AND PROBLEMS 401

 11.6 RECOMMENDED READING

[GREG98] is an easy-to-read introduction to the concepts of this chapter. [STON96] is an
excellent short introduction. A number of textbooks provide more in-depth treatment; these
include [MANO08] and [FARH04].

[BROW96] is a worthwhile tutorial on programmable logic devices. [LEON08] looks
at recent developments in FPGA devices, platforms, and applications.

D

A0

A1

A2

A3

Clock

2-to-1
MUX

Q

16
�

1
lo

ok
up

 ta
bl

e

Ck

Figure 11.34 A Simple FPGA Logic Block

BROW96 Brown, S., and Rose, S. “Architecture of FPGAs and CPLDs: A Tutorial.”
IEEE Design and Test of Computers, Vol. 13, No. 2, 1996.

FARH04 Farhat, H. Digital Design and Computer Organization. Boca Rato, FL CRC
Press, 2004.

GREG98 Gregg, J. Ones and Zeros: Understanding Boolean Algebra, Digital Circuits,
and the Logic of Sets. New York: Wiley, 1998.

LEON08 Leong, p. “Recent Trends in FPGA Architectures and Applications.”
 Proceedings, 4th IEEE International symposium on Electronic Design, Test, and
Applications, 2008.

MANO08 Mano, M., and Kime, C. Logic and Computer Design Fundamentals. Upper
Saddle River, NJ: Prentice Hall, 2008.

STON96 Stonham, T. Digital Logic Techniques. London: Chapman & Hall, 1996.

 11.7 KEY TERMS AND PROBLEMS

Key Terms

adder
AND gate
assert
Boolean algebra
clocked S–R flip-flop

combinational circuit
complex PLD (CPLD)
counter
decoder
D flip-flop

excitation table
field-programmable gate

array (FPGA)
flip-flop
gates

402 CHAPTER 11 / DIGITAL LOGIC

Problems
 11.1 Construct a truth table for the following Boolean expressions:

a. ABC + A B C
b. ABC + A B C + A B C
c. A(BC + BC)
d. (A + B)(A + C)(A + B)

 11.2 Simplify the following expressions according to the commutative law:
a. A # B + B # A + C # D # E + C # D # E + E # C # D
b. A # B + A # C + B # A
c. (L # M # N)(A # B)(C # D # E)(M # N # L)
d. F # (K + R) + S # V + W # X + V # S + X # W + (R + K) # F

 11.3 Apply DeMorgan’s theorem to the following equations:
a. F = V + A + L
b. F = A + B + C + D

 11.4 Simplify the following expressions:
a. A = S # T + V # W + R # S # T
b. A = T # U # V + X # Y + Y
c. A = F # (E + F + G)
d. A = (P # Q + R + S # T)T # S
e. A = D # D # E
f. A = Y # (W + X + Y + Z) # Z
g. A = (B # E + C + F) # C

 11.5 Construct the operation XOR from the basic Boolean operations AND, OR,
and NOT.

 11.6 Given a NOR gate and NOT gates, draw a logic diagram that will perform the three-
input AND function.

 11.7 Write the Boolean expression for a four-input NAND gate.
 11.8 A combinational circuit is used to control a seven-segment display of decimal digits,

as shown in Figure 11.35. The circuit has four inputs, which provide the four-bit code
used in packed decimal representation (010 = 0000,c , 910 = 1001). The seven out-
puts define which segments will be activated to display a given decimal digit. Note
that some combinations of inputs and outputs are not needed.
a. Develop a truth table for this circuit.
b. Express the truth table in SOP form.
c. Express the truth table in POS form.
d. Provide a simplified expression.

 11.9 Design an 8-to-1 multiplexer.

graphical symbol
J–K flip-flop
Karnaugh map
logic block
lookup table
multiplexer
NAND gate
NOR
OR gate
parallel register

product of sums (POS)
programmable array logic

(PAL)
programmable logic array

(PLA)
programmable logic device

(PLD)
Quine–McCluskey method
read-only memory (ROM)
register

ripple counter
sequential circuit
shift register
simple PLD (SPLD)
sum of products (SOP)
synchronous counter
S–R Latch
truth table
XOR gate

11.7 / KEY TERMS AND PROBLEMS 403

 11.10 Add an additional line to Figure 11.15 so that it functions as a demultiplexer.
 11.11 The Gray code is a binary code for integers. It differs from the ordinary binary rep-

resentation in that there is just a single bit change between the representations of
any two numbers. This is useful for applications such as counters or analog-to-digital
converters where a sequence of numbers is generated. Because only one bit changes
at a time, there is never any ambiguity due to slight timing differences. The first eight
elements of the code are

Binary Code Gray Code

000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

 Design a circuit that converts from binary to Gray code.
 11.12 Design a 5 * 32 decoder using four 3 * 8 decoders (with enable inputs) and one

2 * 4 decoder.
 11.13 Implement the full adder of Figure 11.20 with just five gates. (Hint: Some of the gates

are XOR gates.)
 11.14 Consider Figure 11.20. Assume that each gate produces a delay of 10 ns. Thus, the sum

output is valid after 30 ns and the carry output after 0 ns. What is the total add time
for a 32-bit adder
a. Implemented without carry lookahead, as in Figure 11.19?
b. Implemented with carry lookahead and using 8-bit adders, as in Figure 11.21?

 11.15 An alternative form of the S–R latch has the same structure as Figure 11.22 but uses
NAND gates instead of NOR gates.
a. Redo Table 11.10a and 11.10b for S–R latch implemented with NAND gates.
b. Complete the following table, similar to Table 11.10c

Combinational
circuit

x1

Z1

Z1

Z2 Z2
Z3

Z3

Z4
Z4

Z5

Z5Z6
Z6

Z7

Z7

x2

x3

x4

BCD
digit

(a)

(b)

Figure 11.35 Seven-Segment LED Display Example

404 CHAPTER 11 / DIGITAL LOGIC

 11.16 Consider the graphic symbol for the S–R flip-flop in Figure 11.27. Add additional lines
to depict a D flip-flop wired from the S–R flip-flop.

 11.17 Show the structure of a PLA with three inputs (C, B, A) and four outputs (O0, O1,
O2, O3) with the outputs defined as follows:

O0 = A BC + AB + ABC
O1 = A BC + ABC
O2 = C
O3 = AB + ABC

 11.18 An interesting application of a PLA is conversion from the old, obsolete punched
cards character codes to ASCII codes. The standard punched cards that were so popu-
lar with computers in the past had 12 rows and 80 columns where holes could be
punched. Each column corresponded to one character, so each character had a 12-bit
code. However, only 96 characters were actually used. Consider an application that
reads punched cards and converts the character codes to ASCII.
a. Describe a PLA implementation of this application.
b. Can this problem be solved with a ROM? Explain.

t 0 1 2 3 4 5 6 7 8 9

S 0 1 1 1 1 1 0 1 0 1

R 1 1 0 1 0 1 1 1 0 0

CHAPTER

INSTRUCTION SETS:
CHARACTERISTICS AND FUNCTIONS

12.1 Machine Instruction Characteristics
Elements of a Machine Instruction
Instruction Representation
Instruction Types
Number of Addresses
Instruction Set Design

12.2 Types of Operands
Numbers
Characters
Logical Data

12.3 Intel x86 and ARM Data Types
x86 Data Types
ARM Data Types

12.4 Types of Operations
Data Transfer
Arithmetic
Logical
Conversion
Input/Output
System Control
Transfer of Control

12.5 Intel x86 and ARM Operation Types
x86 Operation Types
ARM Operation Types

12.6 Recommended Reading

12.7 Key Terms, Review Questions, and Problems

Appendix 12A Little-, Big-, and Bi-Endian
405

PART FOUR THE CENTRAL
PROCESSING UNIT

406 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

Much of what is discussed in this book is not readily apparent to the user or
 programmer of a computer. If a programmer is using a high-level language, such
as Pascal or Ada, very little of the architecture of the underlying machine is visible.

One boundary where the computer designer and the computer programmer
can view the same machine is the machine instruction set. From the designer’s point
of view, the machine instruction set provides the functional requirements for the
processor: implementing the processor is a task that in large part involves imple-
menting the machine instruction set. The user who chooses to program in machine
language (actually, in assembly language; see Appendix B) becomes aware of the
register and memory structure, the types of data directly supported by the machine,
and the functioning of the ALU.

A description of a computer’s machine instruction set goes a long way toward
explaining the computer’s processor. Accordingly, we focus on machine instructions
in this chapter and the next.

 12.1 MACHINE INSTRUCTION CHARACTERISTICS

The operation of the processor is determined by the instructions it executes,
referred to as machine instructions or computer instructions. The collection of dif-
ferent instructions that the processor can execute is referred to as the processor’s
instruction set.

Elements of a Machine Instruction

Each instruction must contain the information required by the processor for execu-
tion. Figure 12.1, which repeats Figure 3.6, shows the steps involved in instruction
execution and, by implication, defines the elements of a machine instruction. These
elements are as follows:

 • Operation code: Specifies the operation to be performed (e.g., ADD, I/O).
The operation is specified by a binary code, known as the operation code, or
opcode.

 • Source operand reference: The operation may involve one or more source
operands, that is, operands that are inputs for the operation.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Present an overview of essential characteristics of machine instructions.
� Describe the types of operands used in typical machine instruction sets.
� Present an overview of x86 and ARM data types.
� Describe the types of operands supported by typical machine instruction sets.
� Present an overview of x86 and ARM operation types.
� Understand the differences among big endian, little endian, and bi-endian.

12.1 / MACHINE INSTRUCTION CHARACTERISTICS 407

 • Result operand reference: The operation may produce a result.

 • Next instruction reference: This tells the processor where to fetch the next
instruction after the execution of this instruction is complete.

The address of the next instruction to be fetched could be either a real address
or a virtual address, depending on the architecture. Generally, the distinction is
transparent to the instruction set architecture. In most cases, the next instruction to
be fetched immediately follows the current instruction. In those cases, there is no
explicit reference to the next instruction. When an explicit reference is needed, then
the main memory or virtual memory address must be supplied. The form in which
that address is supplied is discussed in Chapter 13.

Source and result operands can be in one of four areas:

 • Main or virtual memory: As with next instruction references, the main or vir-
tual memory address must be supplied.

 • Processor register: With rare exceptions, a processor contains one or more
registers that may be referenced by machine instructions. If only one register
exists, reference to it may be implicit. If more than one register exists, then
each register is assigned a unique name or number, and the instruction must
contain the number of the desired register.

 • Immediate: The value of the operand is contained in a field in the instruction
being executed.

 • I/O device: The instruction must specify the I/O module and device for the
operation. If memory-mapped I/O is used, this is just another main or virtual
memory address.

Instruction Representation

Within the computer, each instruction is represented by a sequence of bits. The
instruction is divided into fields, corresponding to the constituent elements of the

Instruction
address

calculation

Instruction
operation
decoding

Operand
address

calculation

Data
operation

Operand
address

calculation

Instruction
fetch

Instruction complete,
fetch next instruction

Multiple
operands

Return for string
or vector data

Operand
fetch

Operand
store

Multiple
results

Figure 12.1 Instruction Cycle State Diagram

408 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

instruction. A simple example of an instruction format is shown in Figure 12.2. As
another example, the IAS instruction format is shown in Figure 2.2. With most
instruction sets, more than one format is used. During instruction execution, an
instruction is read into an instruction register (IR) in the processor. The processor
must be able to extract the data from the various instruction fields to perform the
required operation.

It is difficult for both the programmer and the reader of textbooks to deal with
binary representations of machine instructions. Thus, it has become common prac-
tice to use a symbolic representation of machine instructions. An example of this
was used for the IAS instruction set, in Table 2.1.

Opcodes are represented by abbreviations, called mnemonics, that indicate
the operation. Common examples include

ADD Add

SUB Subtract

MUL Multiply

DIV Divide

LOAD Load data from memory

STOR Store data to memory

Operands are also represented symbolically. For example, the instruction

ADD R, Y

may mean add the value contained in data location Y to the contents of register R.
In this example, Y refers to the address of a location in memory, and R refers to a
particular register. Note that the operation is performed on the contents of a loca-
tion, not on its address.

Thus, it is possible to write a machine-language program in symbolic form.
Each symbolic opcode has a fixed binary representation, and the programmer speci-
fies the location of each symbolic operand. For example, the programmer might
begin with a list of definitions:

 X = 513

 Y = 514

and so on. A simple program would accept this symbolic input, convert opcodes and
operand references to binary form, and construct binary machine instructions.

Machine-language programmers are rare to the point of nonexistence. Most pro-
grams today are written in a high-level language or, failing that, assembly language,
which is discussed in Appendix B. However, symbolic machine language remains a
useful tool for describing machine instructions, and we will use it for that purpose.

Opcode

4 Bits 6 Bits 6 Bits

16 Bits

Operand reference Operand reference

Figure 12.2 A Simple Instruction Format

12.1 / MACHINE INSTRUCTION CHARACTERISTICS 409

Instruction Types

Consider a high-level language instruction that could be expressed in a language
such as BASIC or FORTRAN. For example,

X = X + Y

This statement instructs the computer to add the value stored in Y to the value
stored in X and put the result in X. How might this be accomplished with machine
instructions? Let us assume that the variables X and Y correspond to locations 513
and 514. If we assume a simple set of machine instructions, this operation could be
accomplished with three instructions:

 1. Load a register with the contents of memory location 513.

 2. Add the contents of memory location 514 to the register.

 3. Store the contents of the register in memory location 513.

As can be seen, the single BASIC instruction may require three machine
instructions. This is typical of the relationship between a high-level language and
a machine language. A high-level language expresses operations in a concise alge-
braic form, using variables. A machine language expresses operations in a basic
form involving the movement of data to or from registers.

With this simple example to guide us, let us consider the types of instructions
that must be included in a practical computer. A computer should have a set of
instructions that allows the user to formulate any data processing task. Another way
to view it is to consider the capabilities of a high-level programming language. Any
program written in a high-level language must be translated into machine language
to be executed. Thus, the set of machine instructions must be sufficient to express
any of the instructions from a high-level language. With this in mind we can catego-
rize instruction types as follows:

 • Data processing: Arithmetic and logic instructions

 • Data storage: Movement of data into or out of register and or memory
locations

 • Data movement: I/O instructions

 • Control: Test and branch instructions

Arithmetic instructions provide computational capabilities for processing
numeric data. Logic (Boolean) instructions operate on the bits of a word as bits
rather than as numbers; thus, they provide capabilities for processing any other type
of data the user may wish to employ. These operations are performed primarily on
data in processor registers. Therefore, there must be memory instructions for mov-
ing data between memory and the registers. I/O instructions are needed to transfer
programs and data into memory and the results of computations back out to the
user. Test instructions are used to test the value of a data word or the status of
a computation. Branch instructions are then used to branch to a different set of
instructions depending on the decision made.

We will examine the various types of instructions in greater detail later in this
chapter.

410 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

Number of Addresses

One of the traditional ways of describing processor architecture is in terms of the
number of addresses contained in each instruction. This dimension has become less
significant with the increasing complexity of processor design. Nevertheless, it is
useful at this point to draw and analyze this distinction.

What is the maximum number of addresses one might need in an instruc-
tion? Evidently, arithmetic and logic instructions will require the most operands.
Virtually all arithmetic and logic operations are either unary (one source operand)
or binary (two source operands). Thus, we would need a maximum of two addresses
to reference source operands. The result of an operation must be stored, suggesting
a third address, which defines a destination operand. Finally, after completion of an
instruction, the next instruction must be fetched, and its address is needed.

This line of reasoning suggests that an instruction could plausibly be required
to contain four address references: two source operands, one destination operand,
and the address of the next instruction. In most architectures, most instructions have
one, two, or three operand addresses, with the address of the next instruction being
implicit (obtained from the program counter). Most architectures also have a few
special-purpose instructions with more operands. For example, the load and store
multiple instructions of the ARM architecture, described in Chapter 13, designate
up to 17 register operands in a single instruction.

Figure 12.3 compares typical one-, two-, and three-address instructions that
could be used to compute Y = (A - B)>[C + (D * E)]. With three addresses,
each instruction specifies two source operand locations and a destination operand
location. Because we choose not to alter the value of any of the operand locations,
a temporary location, T, is used to store some intermediate results. Note that there
are four instructions and that the original expression had five operands.

Instruction Comment

SUB Y, A, B Y A � B
MPY T, D, E T D � E
ADD T, T, C T T � C
DIV Y, Y, T Y Y � T

(a) Three-address instructions

Instruction Comment

MOVE Y, A Y A
SUB Y, B Y Y � B
MOVE T, D T D
MPY T, E T T � E
ADD T, C T T � C
DIV Y, T Y Y � T

Instruction Comment

LOAD D AC D
MPY E AC AC � E
ADD C AC AC � C
STOR Y Y AC
LOAD A AC A
SUB B AC AC � B
DIV Y AC AC � Y
STOR Y Y AC

(b) Two-address instructions (c) One-address instructions

Figure 12.3 Programs to Execute Y =
A - B

C + (D * E)

12.1 / MACHINE INSTRUCTION CHARACTERISTICS 411

Three-address instruction formats are not common because they require a
relatively long instruction format to hold the three address references. With two-
address instructions, and for binary operations, one address must do double duty as
both an operand and a result. Thus, the instruction SUB Y, B carries out the calcu-
lation Y - B and stores the result in Y. The two-address format reduces the space
requirement but also introduces some awkwardness. To avoid altering the value of
an operand, a MOVE instruction is used to move one of the values to a result or
temporary location before performing the operation. Our sample program expands
to six instructions.

Simpler yet is the one-address instruction. For this to work, a second address
must be implicit. This was common in earlier machines, with the implied address
being a processor register known as the accumulator (AC). The accumulator con-
tains one of the operands and is used to store the result. In our example, eight
instructions are needed to accomplish the task.

It is, in fact, possible to make do with zero addresses for some instructions.
Zero-address instructions are applicable to a special memory organization called
a stack. A stack is a last-in-first-out set of locations. The stack is in a known loca-
tion and, often, at least the top two elements are in processor registers. Thus,
zero-address instructions would reference the top two stack elements. Stacks are
described in Appendix O. Their use is explored further later in this chapter and in
Chapter 13.

Table 12.1 summarizes the interpretations to be placed on instructions with
zero, one, two, or three addresses. In each case in the table, it is assumed that the
address of the next instruction is implicit, and that one operation with two source
operands and one result operand is to be performed.

The number of addresses per instruction is a basic design decision. Fewer
addresses per instruction result in instructions that are more primitive, requiring a
less complex processor. It also results in instructions of shorter length. On the other
hand, programs contain more total instructions, which in general results in longer
execution times and longer, more complex programs. Also, there is an important
threshold between one-address and multiple-address instructions. With one-address
instructions, the programmer generally has available only one general-purpose reg-
ister, the accumulator. With multiple-address instructions, it is common to have
multiple general-purpose registers. This allows some operations to be performed

Table 12.1 Utilization of Instruction Addresses (Nonbranching Instructions)

Number of Addresses Symbolic Representation Interpretation

3 OP A, B, C A d B OP C

2 OP A, B A d A OP B

1 OP A AC d AC OP A

0 OP T d (T - 1) OP T

AC = accumulator
T = top of stack
(T - 1) = second element of stack
A, B, C = memory or register locations

412 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

solely on registers. Because register references are faster than memory references,
this speeds up execution. For reasons of flexibility and ability to use multiple reg-
isters, most contemporary machines employ a mixture of two- and three-address
instructions.

The design trade-offs involved in choosing the number of addresses per instruc-
tion are complicated by other factors. There is the issue of whether an address refer-
ences a memory location or a register. Because there are fewer registers, fewer bits
are needed for a register reference. Also, as we shall see in Chapter 13, a machine
may offer a variety of addressing modes, and the specification of mode takes one or
more bits. The result is that most processor designs involve a variety of instruction
formats.

Instruction Set Design

One of the most interesting, and most analyzed, aspects of computer design is
instruction set design. The design of an instruction set is very complex because it
affects so many aspects of the computer system. The instruction set defines many
of the functions performed by the processor and thus has a significant effect on the
implementation of the processor. The instruction set is the programmer’s means of
controlling the processor. Thus, programmer requirements must be considered in
designing the instruction set.

It may surprise you to know that some of the most fundamental issues relat-
ing to the design of instruction sets remain in dispute. Indeed, in recent years, the
level of disagreement concerning these fundamentals has actually grown. The most
important of these fundamental design issues include the following:

 • Operation repertoire: How many and which operations to provide, and how
complex operations should be

 • Data types: The various types of data upon which operations are performed

 • Instruction format: Instruction length (in bits), number of addresses, size of
various fields, and so on

 • Registers: Number of processor registers that can be referenced by instruc-
tions, and their use

 • Addressing: The mode or modes by which the address of an operand is
specified

These issues are highly interrelated and must be considered together in design-
ing an instruction set. This book, of course, must consider them in some sequence,
but an attempt is made to show the interrelationships.

Because of the importance of this topic, much of Part Three is devoted to
instruction set design. Following this overview section, this chapter examines data
types and operation repertoire. Chapter 13 examines addressing modes (which
includes a consideration of registers) and instruction formats. Chapter 15 examines
the reduced instruction set computer (RISC). RISC architecture calls into ques-
tion many of the instruction set design decisions traditionally made in commercial
computers.

12.2 / TYPES OF OPERANDS 413

 12.2 TYPES OF OPERANDS

Machine instructions operate on data. The most important general categories of
data are

 • Addresses

 • Numbers

 • Characters

 • Logical data

We shall see, in discussing addressing modes in Chapter 13, that addresses
are, in fact, a form of data. In many cases, some calculation must be performed on
the operand reference in an instruction to determine the main or virtual memory
address. In this context, addresses can be considered to be unsigned integers.

Other common data types are numbers, characters, and logical data, and each
of these is briefly examined in this section. Beyond that, some machines define spe-
cialized data types or data structures. For example, there may be machine opera-
tions that operate directly on a list or a string of characters.

Numbers

All machine languages include numeric data types. Even in nonnumeric data pro-
cessing, there is a need for numbers to act as counters, field widths, and so forth.
An important distinction between numbers used in ordinary mathematics and num-
bers stored in a computer is that the latter are limited. This is true in two senses.
First, there is a limit to the magnitude of numbers representable on a machine and
second, in the case of floating-point numbers, a limit to their precision. Thus, the
programmer is faced with understanding the consequences of rounding, overflow,
and underflow.

Three types of numerical data are common in computers:

 • Binary integer or binary fixed point

 • Binary floating point

 • Decimal

We examined the first two in some detail in Chapter 10. It remains to say a few
words about decimal numbers.

Although all internal computer operations are binary in nature, the human
users of the system deal with decimal numbers. Thus, there is a necessity to convert
from decimal to binary on input and from binary to decimal on output. For applica-
tions in which there is a great deal of I/O and comparatively little, comparatively
simple computation, it is preferable to store and operate on the numbers in decimal
form. The most common representation for this purpose is packed decimal.1

1Textbooks often refer to this as binary coded decimal (BCD). Strictly speaking, BCD refers to the
 encoding of each decimal digit by a unique 4-bit sequence. Packed decimal refers to the storage of BCD-
encoded digits using one byte for each two digits.

414 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

With packed decimal, each decimal digit is represented by a 4-bit code, in the
obvious way, with two digits stored per byte. Thus, 0 = 000, 1 = 0001, c, 8 = 1000,
and 9 = 1001. Note that this is a rather inefficient code because only 10 of 16 pos-
sible 4-bit values are used. To form numbers, 4-bit codes are strung together, usu-
ally in multiples of 8 bits. Thus, the code for 246 is 0000 0010 0100 0110. This code
is clearly less compact than a straight binary representation, but it avoids the con-
version overhead. Negative numbers can be represented by including a 4-bit sign
digit at either the left or right end of a string of packed decimal digits. Standard sign
values are 1100 for positive (+) and 1101 for negative (-).

Many machines provide arithmetic instructions for performing operations
directly on packed decimal numbers. The algorithms are quite similar to those
described in Section 9.3 but must take into account the decimal carry operation.

Characters

A common form of data is text or character strings. While textual data are most
convenient for human beings, they cannot, in character form, be easily stored or
transmitted by data processing and communications systems. Such systems are
designed for binary data. Thus, a number of codes have been devised by which char-
acters are represented by a sequence of bits. Perhaps the earliest common example
of this is the Morse code. Today, the most commonly used character code in the
International Reference Alphabet (IRA), referred to in the United States as the
American Standard Code for Information Interchange (ASCII; see Appendix F).
Each character in this code is represented by a unique 7-bit pattern; thus, 128 dif-
ferent characters can be represented. This is a larger number than is necessary to
represent printable characters, and some of the patterns represent control char-
acters. Some of these control characters have to do with controlling the printing
of characters on a page. Others are concerned with communications procedures.
 IRA-encoded characters are almost always stored and transmitted using 8 bits per
character. The eighth bit may be set to 0 or used as a parity bit for error detection.
In the latter case, the bit is set such that the total number of binary 1s in each octet
is always odd (odd parity) or always even (even parity).

Note in Table F.1 (Appendix F) that for the IRA bit pattern 011XXXX, the
digits 0 through 9 are represented by their binary equivalents, 0000 through 1001, in
the rightmost 4 bits. This is the same code as packed decimal. This facilitates con-
version between 7-bit IRA and 4-bit packed decimal representation.

Another code used to encode characters is the Extended Binary Coded
Decimal Interchange Code (EBCDIC). EBCDIC is used on IBM mainframes. It
is an 8-bit code. As with IRA, EBCDIC is compatible with packed decimal. In
the case of EBCDIC, the codes 11110000 through 11111001 represent the digits
0 through 9.

Logical Data

Normally, each word or other addressable unit (byte, halfword, and so on) is treated
as a single unit of data. It is sometimes useful, however, to consider an n-bit unit as
consisting of n 1-bit items of data, each item having the value 0 or 1. When data are
viewed this way, they are considered to be logical data.

12.3 / INTEL x86 AND ARM DATA TYPES 415

There are two advantages to the bit-oriented view. First, we may sometimes wish
to store an array of Boolean or binary data items, in which each item can take on only
the values 1 (true) and 0 (false). With logical data, memory can be used most efficiently
for this storage. Second, there are occasions when we wish to manipulate the bits of a
data item. For example, if floating-point operations are implemented in software, we
need to be able to shift significant bits in some operations. Another example: To con-
vert from IRA to packed decimal, we need to extract the rightmost 4 bits of each byte.

Note that, in the preceding examples, the same data are treated sometimes as
logical and other times as numerical or text. The “type” of a unit of data is deter-
mined by the operation being performed on it. While this is not normally the case in
high-level languages, it is almost always the case with machine language.

 12.3 INTEL x86 AND ARM DATA TYPES

x86 Data Types

The x86 can deal with data types of 8 (byte), 16 (word), 32 (doubleword), 64 (quad-
word), and 128 (double quadword) bits in length. To allow maximum flexibility in
data structures and efficient memory utilization, words need not be aligned at even-
numbered addresses; doublewords need not be aligned at addresses evenly divisible
by 4; and quadwords need not be aligned at addresses evenly divisible by 8; and
so on. However, when data are accessed across a 32-bit bus, data transfers take
place in units of doublewords, beginning at addresses divisible by 4. The processor
converts the request for misaligned values into a sequence of requests for the bus
transfer. As with all of the Intel 80x86 machines, the x86 uses the little-endian style;
that is, the least significant byte is stored in the lowest address (see Appendix 12A
for a discussion of endianness).

The byte, word, doubleword, quadword, and double quadword are referred to
as general data types. In addition, the x86 supports an impressive array of specific
data types that are recognized and operated on by particular instructions. Table 12.2
summarizes these types.

Figure 12.4 illustrates the x86 numerical data types. The signed integers are in
twos complement representation and may be 16, 32, or 64 bits long. The floating-
point type actually refers to a set of types that are used by the floating-point unit
and operated on by floating-point instructions. The three floating-point representa-
tions conform to the IEEE 754 standard.

The packed SIMD (single-instruction-multiple-data) data types were intro-
duced to the x86 architecture as part of the extensions of the instruction set to
optimize performance of multimedia applications. These extensions include MMX
(multimedia extensions) and SSE (streaming SIMD extensions). The basic concept
is that multiple operands are packed into a single referenced memory item and that
these multiple operands are operated on in parallel. The data types are as follows:

 • Packed byte and packed byte integer: Bytes packed into a 64-bit quadword or
128-bit double quadword, interpreted as a bit field or as an integer

 • Packed word and packed word integer: 16-bit words packed into a 64-bit quad-
word or 128-bit double quadword, interpreted as a bit field or as an integer

416 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

 • Packed doubleword and packed doubleword integer: 32-bit doublewords
packed into a 64-bit quadword or 128-bit double quadword, interpreted as a
bit field or as an integer

 • Packed quadword and packed qaudword integer: Two 64-bit quadwords
packed into a 128-bit double quadword, interpreted as a bit field or as an integer

 • Packed single-precision floating-point and packed double-precision floating-
point: Four 32-bit floating-point or two 64-bit floating-point values packed
into a 128-bit double quadword

ARM Data Types

ARM processors support data types of 8 (byte), 16 (halfword), and 32 (word) bits
in length. Normally, halfword access should be halfword aligned and word accesses
should be word aligned. For nonaligned access attempts, the architecture supports
three alternatives.

 • Default case:

– The address is treated as truncated, with address bits[1:0] treated as zero
for word accesses, and address bit[0] treated as zero for halfword accesses.

Table 12.2 x86 Data Types

Data Type Description

General Byte, word (16 bits), doubleword (32 bits), quadword (64 bits), and
double quadword (128 bits) locations with arbitrary binary contents.

Integer A signed binary value contained in a byte, word, or doubleword, using
twos complement representation.

Ordinal An unsigned integer contained in a byte, word, or doubleword.

Unpacked binary coded
decimal (BCD)

A representation of a BCD digit in the range 0 through 9, with one
digit in each byte.

Packed BCD Packed byte representation of two BCD digits; value in the range 0 to 99.

Near pointer A 16-bit, 32-bit, or 64-bit effective address that represents the offset
within a segment. Used for all pointers in a nonsegmented memory and
for references within a segment in a segmented memory.

Far pointer A logical address consisting of a 16-bit segment selector and an offset
of 16, 32, or 64 bits. Far pointers are used for memory references in a
segmented memory model where the identity of a segment being
accessed must be specified explicitly.

Bit field A contiguous sequence of bits in which the position of each bit is
considered as an independent unit. A bit string can begin at any bit
position of any byte and can contain up to 32 bits.

Bit string A contiguous sequence of bits, containing from zero to 232 - 1 bits.

Byte string A contiguous sequence of bytes, words, or doublewords, containing from
zero to 232 - 1 bytes.

Floating point See Figure 12.4.

Packed SIMD (single
instruction, multiple data)

Packed 64-bit and 128-bit data types

12.3 / INTEL x86 AND ARM DATA TYPES 417

– Load single word ARM instructions are architecturally defined to rotate right
the word-aligned data transferred by a non word-aligned address one, two, or
three bytes depending on the value of the two least significant address bits.

 • Alignment checking: When the appropriate control bit is set, a data abort sig-
nal indicates an alignment fault for attempting unaligned access.

 • Unaligned access: When this option is enabled, the processor uses one or more
memory accesses to generate the required transfer of adjacent bytes transpar-
ently to the programmer.

For all three data types (byte, halfword, and word) an unsigned interpretation
is supported, in which the value represents an unsigned, nonnegative integer. All
three data types can also be used for twos complement signed integers.

The majority of ARM processor implementations do not provide floating-
point hardware, which saves power and area. If floating-point arithmetic is required
in such processors, it must be implemented in software. ARM does support an
optional floating-point coprocessor that supports the single- and double-precision
floating point data types defined in IEEE 754.

Sign bit

Sign bit

Sign bit

Integer bit

Exponent Significand

Exp Significand

Exp Significand

Twos complement

Twos complement

Twos comp

Twos comp

Byte unsigned integer

Word unsigned integer

Doubleword unsigned integer

Quadword unsigned integer

Byte signed integer

Word unsigned integer

Doubleword unsigned integer

Quadword unsigned integer

Single precision
floating point

Double precision
Floating point

Double extended precision
floating point

07

7

015

15

031

31

31

063

63

63

6379

0

0

0

0

0

051

0

Figure 12.4 x86 Numeric Data Formats

418 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

ENDIAN SUPPORT A state bit (E-bit) in the system control register is set and cleared
under program control using the SETEND instruction. The E-bit defines which
endian to load and store data. Figure 12.5 illustrates the functionality associated
with the E-bit for a word load or store operation. This mechanism enables efficient
dynamic data load/store for system designers who know they need to access data
structures in the opposite endianness to their OS/environment. Note that the address
of each data byte is fixed in memory. However, the byte lane in a register is different.

 12.4 TYPES OF OPERATIONS

The number of different opcodes varies widely from machine to machine. However,
the same general types of operations are found on all machines. A useful and typical
categorization is the following:

 • Data transfer

 • Arithmetic

 • Logical

 • Conversion

 • I/O

 • System control

 • Transfer of control

Table 12.3 (based on [HAYE98]) lists common instruction types in each cat-
egory. This section provides a brief survey of these various types of operations,
together with a brief discussion of the actions taken by the processor to execute a
particular type of operation (summarized in Table 12.4). The latter topic is examined
in more detail in Chapter 14.

Byte 3

Data bytes
in memory

(ascending address values
from byte 0 to byte 3)

ARM register

Program status register E-bit = 0 Program status register E-bit = 1

ARM register

Byte 2

Byte 1

Byte 0

031 031

Byte 1Byte 2Byte 3 Byte 0 Byte 1 Byte 2 Byte 3

Byte 0

Figure 12.5 ARM Endian Support—Word Load/Store with E-Bit

12.4 / TYPES OF OPERATIONS 419

(continued)

Table 12.3 Common Instruction Set Operations

Type Operation Name Description

Data transfer

Move (transfer) Transfer word or block from source to destination

Store Transfer word from processor to memory

Load (fetch) Transfer word from memory to processor

Exchange Swap contents of source and destination

Clear (reset) Transfer word of 0s to destination

Set Transfer word of 1s to destination

Push Transfer word from source to top of stack

Pop Transfer word from top of stack to destination

Arithmetic

Add Compute sum of two operands

Subtract Compute difference of two operands

Multiply Compute product of two operands

Divide Compute quotient of two operands

Absolute Replace operand by its absolute value

Negate Change sign of operand

Increment Add 1 to operand

Decrement Subtract 1 from operand

Logical

AND Perform logical AND

OR Perform logical OR

NOT (complement) Perform logical NOT

Exclusive-OR Perform logical XOR

Test Test specified condition; set flag(s) based on outcome

Compare Make logical or arithmetic comparison of two or more
operands; set flag(s) based on outcome

Set Control Variables Class of instructions to set controls for protection
purposes, interrupt handling, timer control, etc.

Shift Left (right) shift operand, introducing constants at end

Rotate Left (right) shift operand, with wraparound end

Transfer of control

Jump (branch) Unconditional transfer; load PC with specified address

Jump Conditional Test specified condition; either load PC with specified
address or do nothing, based on condition

Jump to Subroutine Place current program control information in known
location; jump to specified address

Return Replace contents of PC and other register from known location

Execute Fetch operand from specified location and execute as
instruction; do not modify PC

Skip Increment PC to skip next instruction

Skip Conditional Test specified condition; either skip or do nothing based
on condition

Halt Stop program execution

Wait (hold) Stop program execution; test specified condition repeatedly;
resume execution when condition is satisfied

No operation No operation is performed, but program execution is continued

420 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

Data Transfer

The most fundamental type of machine instruction is the data transfer instruction.
The data transfer instruction must specify several things. First, the location of the
source and destination operands must be specified. Each location could be memory,
a register, or the top of the stack. Second, the length of data to be transferred must
be indicated. Third, as with all instructions with operands, the mode of addressing
for each operand must be specified. This latter point is discussed in Chapter 13.

The choice of data transfer instructions to include in an instruction set exem-
plifies the kinds of trade-offs the designer must make. For example, the general
location (memory or register) of an operand can be indicated in either the specifica-
tion of the opcode or the operand. Table 12.5 shows examples of the most common
IBM EAS/390 data transfer instructions. Note that there are variants to indicate

Type Operation Name Description

Input/output

Input (read) Transfer data from specified I/O port or device to destination
(e.g., main memory or processor register)

Output (write) Transfer data from specified source to I/O port or device

Start I/O Transfer instructions to I/O processor to initiate I/O operation

Test I/O Transfer status information from I/O system to specified
destination

Conversion

Translate Translate values in a section of memory based on a table
of correspondences

Convert Convert the contents of a word from one form to another
(e.g., packed decimal to binary)

Table 12.4 Processor Actions for Various Types of Operations

Data transfer

Transfer data from one location to another

If memory is involved:
 Determine memory address
 Perform virtual-to-actual-memory address transformation
 Check cache
 Initiate memory read/write

Arithmetic

May involve data transfer, before and/or after

Perform function in ALU

Set condition codes and flags

Logical Same as arithmetic

Conversion
Similar to arithmetic and logical. May involve special logic to perform
conversion

Transfer of control
Update program counter. For subroutine call/return, manage parameter
passing and linkage

I/O
Issue command to I/O module

If memory-mapped I/O, determine memory-mapped address

Table 12.3 Continued

12.4 / TYPES OF OPERATIONS 421

the amount of data to be transferred (8, 16, 32, or 64 bits). Also, there are different
instructions for register to register, register to memory, memory to register, and
memory to memory transfers. In contrast, the VAX has a move (MOV) instruction
with variants for different amounts of data to be moved, but it specifies whether an
operand is register or memory as part of the operand. The VAX approach is some-
what easier for the programmer, who has fewer mnemonics to deal with. However,
it is also somewhat less compact than the IBM EAS/390 approach because the loca-
tion (register versus memory) of each operand must be specified separately in the
instruction. We will return to this distinction when we discuss instruction formats in
Chapter 13.

In terms of processor action, data transfer operations are perhaps the simplest
type. If both source and destination are registers, then the processor simply causes
data to be transferred from one register to another; this is an operation internal to
the processor. If one or both operands are in memory, then the processor must per-
form some or all of the following actions:

 1. Calculate the memory address, based on the address mode (discussed in
Chapter 13).

 2. If the address refers to virtual memory, translate from virtual to real memory
address.

 3. Determine whether the addressed item is in cache.

 4. If not, issue a command to the memory module.

Table 12.5 Examples of IBM EAS/390 Data Transfer Operations

Operation
Mnemonic Name

Number of Bits
Transferred Description

L Load 32 Transfer from memory to register

LH Load Halfword 16 Transfer from memory to register

LR Load 32 Transfer from register to register

LER Load (short) 32 Transfer from floating-point register to
floating-point register

LE Load (short) 32 Transfer from memory to floating-point
register

LDR Load (long) 64 Transfer from floating-point register to
floating-point register

LD Load (long) 64 Transfer from memory to floating-point
register

ST Store 32 Transfer from register to memory

STH Store Halfword 16 Transfer from register to memory

STC Store Character 8 Transfer from register to memory

STE Store (short) 32 Transfer from floating-point register to
memory

STD Store (long) 64 Transfer from floating-point register to
memory

422 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

Arithmetic

Most machines provide the basic arithmetic operations of add, subtract, multi-
ply, and divide. These are invariably provided for signed integer (fixed-point)
numbers. Often they are also provided for floating-point and packed decimal
numbers.

Other possible operations include a variety of single-operand instructions; for
example,

 • Absolute: Take the absolute value of the operand.

 • Negate: Negate the operand.

 • Increment: Add 1 to the operand.

 • Decrement: Subtract 1 from the operand.

The execution of an arithmetic instruction may involve data transfer opera-
tions to position operands for input to the ALU, and to deliver the output of the
ALU. Figure 3.5 illustrates the movements involved in both data transfer and arith-
metic operations. In addition, of course, the ALU portion of the processor performs
the desired operation.

Logical

Most machines also provide a variety of operations for manipulating individual bits
of a word or other addressable units, often referred to as “bit twiddling.” They are
based upon Boolean operations (see Chapter 11).

Some of the basic logical operations that can be performed on Boolean or
binary data are shown in Table 12.6. The NOT operation inverts a bit. AND, OR,
and Exclusive-OR (XOR) are the most common logical functions with two oper-
ands. EQUAL is a useful binary test.

These logical operations can be applied bitwise to n-bit logical data units.
Thus, if two registers contain the data

 (R1) = 10100101

 (R2) = 00001111

then

(R1) AND (R2) = 00000101

Table 12.6 Basic Logical Operations

P Q NOT P P AND Q P OR Q P XOR Q P � Q

0 0 1 0 0 0 1

0 1 1 0 1 1 0

1 0 0 0 1 1 0

1 1 0 1 1 0 1

12.4 / TYPES OF OPERATIONS 423

where the notation (X) means the contents of location X. Thus, the AND operation
can be used as a mask that selects certain bits in a word and zeros out the remaining
bits. As another example, if two registers contain

 (R1) = 10100101

 (R2) = 11111111

then

(R1) XOR (R2) = 01011010

With one word set to all 1s, the XOR operation inverts all of the bits in the other
word (ones complement).

In addition to bitwise logical operations, most machines provide a variety of
shifting and rotating functions. The most basic operations are illustrated in Figure 12.6.
With a logical shift, the bits of a word are shifted left or right. On one end, the bit
shifted out is lost. On the other end, a 0 is shifted in. Logical shifts are useful pri-
marily for isolating fields within a word. The 0s that are shifted into a word displace
unwanted information that is shifted off the other end.

• • •

(a) Logical right shift

0

0

• • •

(e) Right rotate

• • •

(c) Arithmetic right shift

S

• • •

(b) Logical left shift

• • •

(f) Left rotate

0

• • •

(d) Arithmetic left shift

S

Figure 12.6 Shift and Rotate Operations

424 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

As an example, suppose we wish to transmit characters of data to an I/O
device 1 character at a time. If each memory word is 16 bits in length and contains
two characters, we must unpack the characters before they can be sent. To send the
two characters in a word,

 1. Load the word into a register.

 2. Shift to the right eight times. This shifts the remaining character to the right
half of the register.

 3. Perform I/O. The I/O module reads the lower-order 8 bits from the data bus.

The preceding steps result in sending the left-hand character. To send the right-
hand character,

 1. Load the word again into the register.

 2. AND with 0000000011111111. This masks out the character on the left.

 3. Perform I/O.

The arithmetic shift operation treats the data as a signed integer and does
not shift the sign bit. On a right arithmetic shift, the sign bit is replicated into the
bit position to its right. On a left arithmetic shift, a logical left shift is performed on
all bits but the sign bit, which is retained. These operations can speed up certain
arithmetic operations. With numbers in twos complement notation, a right arithme-
tic shift corresponds to a division by 2, with truncation for odd numbers. Both an
arithmetic left shift and a logical left shift correspond to a multiplication by 2 when
there is no overflow. If overflow occurs, arithmetic and logical left shift operations
produce different results, but the arithmetic left shift retains the sign of the number.
Because of the potential for overflow, many processors do not include this instruc-
tion, including PowerPC and Itanium. Others, such as the IBM EAS/390, do offer
the instruction. Curiously, the x86 architecture includes an arithmetic left shift but
defines it to be identical to a logical left shift.

Rotate, or cyclic shift, operations preserve all of the bits being operated on.
One use of a rotate is to bring each bit successively into the leftmost bit, where it can
be identified by testing the sign of the data (treated as a number).

As with arithmetic operations, logical operations involve ALU activity and
may involve data transfer operations. Table 12.7 gives examples of all of the shift
and rotate operations discussed in this subsection.

Table 12.7 Examples of Shift and Rotate Operations

Input Operation Result

10100110 Logical right shift (3 bits) 00010100

10100110 Logical left shift (3 bits) 00110000

10100110 Arithmetic right shift (3 bits) 11110100

10100110 Arithmetic left shift (3 bits) 10110000

10100110 Right rotate (3 bits) 11010100

10100110 Left rotate (3 bits) 00110101

12.4 / TYPES OF OPERATIONS 425

Conversion

Conversion instructions are those that change the format or operate on the format of
data. An example is converting from decimal to binary. An example of a more com-
plex editing instruction is the EAS/390 Translate (TR) instruction. This instruction
can be used to convert from one 8-bit code to another, and it takes three operands:

TR R1 (L), R2

The operand R2 contains the address of the start of a table of 8-bit codes. The
L bytes starting at the address specified in R1 are translated, each byte being
replaced by the contents of a table entry indexed by that byte. For example, to
translate from EBCDIC to IRA, we first create a 256-byte table in storage loca-
tions, say, 1000-10FF hexadecimal. The table contains the characters of the IRA
code in the sequence of the binary representation of the EBCDIC code; that is, the
IRA code is placed in the table at the relative location equal to the binary value of
the EBCDIC code of the same character. Thus, locations 10F0 through 10F9 will
contain the values 30 through 39, because F0 is the EBCDIC code for the digit 0,
and 30 is the IRA code for the digit 0, and so on through digit 9. Now suppose we
have the EBCDIC for the digits 1984 starting at location 2100 and we wish to trans-
late to IRA. Assume the following:

 • Locations 2100–2103 contain F1 F9 F8 F4.

 • R1 contains 2100.

 • R2 contains 1000.

Then, if we execute

TR R1 (4), R2

locations 2100–2103 will contain 31 39 38 34.

Input/Output

Input/output instructions were discussed in some detail in Chapter 7. As we saw,
there are a variety of approaches taken, including isolated programmed I/O,
 memory-mapped programmed I/O, DMA, and the use of an I/O processor. Many
implementations provide only a few I/O instructions, with the specific actions speci-
fied by parameters, codes, or command words.

System Control

System control instructions are those that can be executed only while the processor
is in a certain privileged state or is executing a program in a special privileged area
of memory. Typically, these instructions are reserved for the use of the operating
system.

Some examples of system control operations are as follows. A system con-
trol instruction may read or alter a control register; we discuss control registers in
Chapter 14. Another example is an instruction to read or modify a storage protec-
tion key, such as is used in the EAS/390 memory system. Another example is access
to process control blocks in a multiprogramming system.

426 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

Transfer of Control

For all of the operation types discussed so far, the next instruction to be performed
is the one that immediately follows, in memory, the current instruction. However, a
significant fraction of the instructions in any program have as their function chang-
ing the sequence of instruction execution. For these instructions, the operation per-
formed by the processor is to update the program counter to contain the address of
some instruction in memory.

There are a number of reasons why transfer-of-control operations are
required. Among the most important are the following:

 1. In the practical use of computers, it is essential to be able to execute each
instruction more than once and perhaps many thousands of times. It may
 require thousands or perhaps millions of instructions to implement an applica-
tion. This would be unthinkable if each instruction had to be written out sepa-
rately. If a table or a list of items is to be processed, a program loop is needed.
One sequence of instructions is executed repeatedly to process all the data.

 2. Virtually all programs involve some decision making. We would like the com-
puter to do one thing if one condition holds, and another thing if another condition
holds. For example, a sequence of instructions computes the square root of a num-
ber. At the start of the sequence, the sign of the number is tested. If the number
is negative, the computation is not performed, but an error condition is reported.

 3. To compose correctly a large or even medium-size computer program is an
exceedingly difficult task. It helps if there are mechanisms for breaking the
task up into smaller pieces that can be worked on one at a time.

We now turn to a discussion of the most common transfer-of-control opera-
tions found in instruction sets: branch, skip, and procedure call.

BRANCH INSTRUCTIONS A branch instruction, also called a jump instruction,
has as one of its operands the address of the next instruction to be executed. Most
often, the instruction is a conditional branch instruction. That is, the branch is made
(update program counter to equal address specified in operand) only if a certain
condition is met. Otherwise, the next instruction in sequence is executed (increment
program counter as usual). A branch instruction in which the branch is always taken
is an unconditional branch.

There are two common ways of generating the condition to be tested in a con-
ditional branch instruction. First, most machines provide a 1-bit or multiple-bit con-
dition code that is set as the result of some operations. This code can be thought
of as a short user-visible register. As an example, an arithmetic operation (ADD,
SUBTRACT, and so on) could set a 2-bit condition code with one of the following
four values: 0, positive, negative, overflow. On such a machine, there could be four
different conditional branch instructions:

BRP X Branch to location X if result is positive.

BRN X Branch to location X if result is negative.

BRZ X Branch to location X if result is zero.

BRO X Branch to location X if overflow occurs.

12.4 / TYPES OF OPERATIONS 427

In all of these cases, the result referred to is the result of the most recent
 operation that set the condition code.

Another approach that can be used with a three-address instruction format is
to perform a comparison and specify a branch in the same instruction. For example,

BRE R1, R2, X Branch to X if contents of R1 = contents of R2.

Figure 12.7 shows examples of these operations. Note that a branch can be
either forward (an instruction with a higher address) or backward (lower address).
The example shows how an unconditional and a conditional branch can be used to
create a repeating loop of instructions. The instructions in locations 202 through 210
will be executed repeatedly until the result of subtracting Y from X is 0.

SKIP INSTRUCTIONS Another form of transfer-of-control instruction is the skip
instruction. The skip instruction includes an implied address. Typically, the skip
implies that one instruction be skipped; thus, the implied address equals the address
of the next instruction plus one instruction length.

Because the skip instruction does not require a destination address field, it is
free to do other things. A typical example is the increment-and-skip-if-zero (ISZ)
instruction. Consider the following program fragment:

301
~

~

~

309 ISZ R1
310 BR 301
311

In this fragment, the two transfer-of-control instructions are used to implement
an iterative loop. R1 is set with the negative of the number of iterations to be
performed. At the end of the loop, R1 is incremented. If it is not 0, the program
branches back to the beginning of the loop. Otherwise, the branch is skipped, and
the program continues with the next instruction after the end of the loop.

Memory
address

Unconditional
branch

Instruction

200

SUB X,Y
BRZ 211

BR 202

Conditional
branch

Conditional
branch

BRE R1, R2, 235

201
202
203

210
211

225

235

Figure 12.7 Branch Instructions

428 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

PROCEDURE CALL INSTRUCTIONS Perhaps the most important innovation in the
development of programming languages is the procedure. A procedure is a self-
contained computer program that is incorporated into a larger program. At any
point in the program the procedure may be invoked, or called. The processor is
instructed to go and execute the entire procedure and then return to the point from
which the call took place.

The two principal reasons for the use of procedures are economy and modu-
larity. A procedure allows the same piece of code to be used many times. This is
important for economy in programming effort and for making the most efficient use
of storage space in the system (the program must be stored). Procedures also allow
large programming tasks to be subdivided into smaller units. This use of modularity
greatly eases the programming task.

The procedure mechanism involves two basic instructions: a call instruction
that branches from the present location to the procedure, and a return instruction
that returns from the procedure to the place from which it was called. Both of these
are forms of branching instructions.

Figure 12.8a illustrates the use of procedures to construct a program. In this
example, there is a main program starting at location 4000. This program includes
a call to procedure PROC1, starting at location 4500. When this call instruction is
encountered, the processor suspends execution of the main program and begins exe-
cution of PROC1 by fetching the next instruction from location 4500. Within PROC1,
there are two calls to PROC2 at location 4800. In each case, the execution of PROC1

CALL Proc1

Main memory

Main
program

Procedure
Proc1

Procedure
Proc2

Addresses

4000

4100
4101

4500

4800

4600
4601

4650
4651

CALL Proc2

CALL Proc2

RETURN

RETURN

(a) Calls and returns (b) Execution sequence

Figure 12.8 Nested Procedures

12.4 / TYPES OF OPERATIONS 429

is suspended and PROC2 is executed. The RETURN statement causes the proces-
sor to go back to the calling program and continue execution at the instruction after
the corresponding CALL instruction. This behavior is illustrated in Figure 12.8b.

Three points are worth noting:

 1. A procedure can be called from more than one location.

 2. A procedure call can appear in a procedure. This allows the nesting of proce-
dures to an arbitrary depth.

 3. Each procedure call is matched by a return in the called program.

Because we would like to be able to call a procedure from a variety of points,
the processor must somehow save the return address so that the return can take
place appropriately. There are three common places for storing the return address:

 • Register

 • Start of called procedure

 • Top of stack

Consider a machine-language instruction CALL X, which stands for call proce-
dure at location X. If the register approach is used, CALL X causes the following
actions:

RN v PC +

PC v X

where RN is a register that is always used for this purpose, PC is the program coun-
ter, and
 is the instruction length. The called procedure can now save the contents
of RN to be used for the later return.

A second possibility is to store the return address at the start of the procedure.
In this case, CALL X causes

X v PC +

PC v X + 1

This is quite handy. The return address has been stored safely away.
Both of the preceding approaches work and have been used. The only limita-

tion of these approaches is that they complicate the use of reentrant procedures.
A reentrant procedure is one in which it is possible to have several calls open to it at
the same time. A recursive procedure (one that calls itself) is an example of the use
of this feature (see Appendix H). If parameters are passed via registers or memory
for a reentrant procedure, some code must be responsible for saving the parameters
so that the registers or memory space are available for other procedure calls.

A more general and powerful approach is to use a stack (see Appendix O
for a discussion of stacks). When the processor executes a call, it places the return
address on the stack. When it executes a return, it uses the address on the stack.
Figure 12.9 illustrates the use of the stack.

In addition to providing a return address, it is also often necessary to pass
parameters with a procedure call. These can be passed in registers. Another pos-
sibility is to store the parameters in memory just after the CALL instruction. In this
case, the return must be to the location following the parameters. Again, both of

430 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

these approaches have drawbacks. If registers are used, the called program and the
calling program must be written to assure that the registers are used properly. The
storing of parameters in memory makes it difficult to exchange a variable number of
parameters. Both approaches prevent the use of reentrant procedures.

A more flexible approach to parameter passing is the stack. When the proc-
essor executes a call, it not only stacks the return address, it stacks parameters to
be passed to the called procedure. The called procedure can access the parameters
from the stack. Upon return, return parameters can also be placed on the stack. The
entire set of parameters, including return address, that is stored for a procedure
invocation is referred to as a stack frame.

An example is provided in Figure 12.10. The example refers to procedure P
in which the local variables x1 and x2 are declared, and procedure Q, which P can
call and in which the local variables y1 and y2 are declared. In this figure, the return

Return point

Old frame pointer

Stack
pointer

x1

x2

P:

Frame
pointer

Return point

Old frame pointer

Return point

Stack
pointer

y2

y1

x2

x1

P:

Q:

Frame
pointer

Old frame pointer

(a) P is active (b) P has called Q

Figure 12.10 Stack Frame Growth Using Sample Procedures P and Q

(a) Initial stack
contents

•
4101

(b) After
CALL Proc1

•
4101

4601

(c) Initial
CALL Proc2

•
4101

(d) After
RETURN

•
4101

4651

(e) After
CALL Proc2

•
4101

(f) After
RETURN

•

(g) After
RETURN

•

Figure 12.9 Use of Stack to Implement Nested Subroutines of Figure 12.8

12.5 / INTEL x86 AND ARM OPERATION TYPES 431

point for each procedure is the first item stored in the corresponding stack frame.
Next is stored a pointer to the beginning of the previous frame. This is needed if the
number or length of parameters to be stacked is variable.

 12.5 INTEL x86 AND ARM OPERATION TYPES

x86 Operation Types

The x86 provides a complex array of operation types, including a number of special-
ized instructions. The intent was to provide tools for the compiler writer to produce
optimized machine language translation of high-level language programs. Table 12.8
lists the types and gives examples of each. Most of these are the conventional
instructions found in most machine instruction sets, but several types of instructions
are tailored to the x86 architecture and are of particular interest. Appendix A of

Table 12.8 x86 Operation Types (with Examples of Typical Operations)

Instruction Description

Data Movement

MOV Move operand, between registers or between register and memory.

PUSH Push operand onto stack.

PUSHA Push all registers on stack.

MOVSX Move byte, word, dword, sign extended. Moves a byte to a word or a word to a
 doubleword with twos-complement sign extension.

LEA Load effective address. Loads the offset of the source operand, rather than its value to
the destination operand.

XLAT Table lookup translation. Replaces a byte in AL with a byte from a user-coded transla-
tion table. When XLAT is executed, AL should have an unsigned index to the table.
XLAT changes the contents of AL from the table index to the table entry.

IN, OUT Input, output operand from I/O space.

Arithmetic

ADD Add operands.

SUB Subtract operands.

MUL Unsigned integer multiplication, with byte, word, or double word operands, and word,
doubleword, or quadword result.

IDIV Signed divide.

Logical

AND AND operands.

BTS Bit test and set. Operates on a bit field operand. The instruction copies the current
value of a bit to flag CF and sets the original bit to 1.

BSF Bit scan forward. Scans a word or doubleword for a 1-bit and stores the number of the
first 1-bit into a register.

SHL/SHR Shift logical left or right.

SAL/SAR Shift arithmetic left or right.

(continued)

432 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

Instruction Description

ROL/ROR Rotate left or right.

SETcc Sets a byte to zero or one depending on any of the 16 conditions defined by status
flags.

Control Transfer

JMP Unconditional jump.

CALL Transfer control to another location. Before transfer, the address of the instruction
 following the CALL is placed on the stack.

JE/JZ Jump if equal/zero.

LOOPE/LOOPZ Loops if equal/zero. This is a conditional jump using a value stored in register ECX.
The instruction first decrements ECX before testing ECX for the branch condition.

INT/INTO Interrupt/Interrupt if overflow. Transfer control to an interrupt service routine.

String Operations

MOVS Move byte, word, dword string. The instruction operates on one element of a string,
indexed by registers ESI and EDI. After each string operation, the registers are auto-
matically incremented or decremented to point to the next element of the string.

LODS Load byte, word, dword of string.

High-Level Language Support

ENTER Creates a stack frame that can be used to implement the rules of a block-structured
high-level language.

LEAVE Reverses the action of the previous ENTER.

BOUND Check array bounds. Verifies that the value in operand 1 is within lower and upper lim-
its. The limits are in two adjacent memory locations referenced by operand 2. An inter-
rupt occurs if the value is out of bounds. This instruction is used to check an array index.

Flag Control

STC Set Carry flag.

LAHF Load AH register from flags. Copies SF, ZF, AF, PF, and CF bits into A register.

Segment Register

LDS Load pointer into DS and another register.

System Control

HLT Halt.

LOCK Asserts a hold on shared memory so that the Pentium has exclusive use of it during the
instruction that immediately follows the LOCK.

ESC Processor extension escape. An escape code that indicates the succeeding instructions
are to be executed by a numeric coprocessor that supports high-precision integer and
floating-point calculations.

WAIT Wait until BUSY# negated. Suspends Pentium program execution until the processor
detects that the BUSY pin is inactive, indicating that the numeric coprocessor has
finished execution.

Protection

SGDT Store global descriptor table.

LSL Load segment limit. Loads a user-specified register with a segment limit.

VERR/VERW Verify segment for reading/writing.

Table 12.8 Continued

12.5 / INTEL x86 AND ARM OPERATION TYPES 433

[CART06] lists the x86 instructions, together with the operands for each and the
effect of the instruction on the condition codes. Appendix B of the NASM assembly
language manual provides a more detailed description of each x86 instruction. Both
documents are available at this book’s Web site.

CALL/RETURN INSTRUCTIONS The x86 provides four instructions to support
procedure call/return: CALL, ENTER, LEAVE, RETURN. It will be instructive to
look at the support provided by these instructions. Recall from Figure 12.10 that a
common means of implementing the procedure call/return mechanism is via the use
of stack frames. When a new procedure is called, the following must be performed
upon entry to the new procedure:

 • Push the return point on the stack.

 • Push the current frame pointer on the stack.

 • Copy the stack pointer as the new value of the frame pointer.

 • Adjust the stack pointer to allocate a frame.

The CALL instruction pushes the current instruction pointer value onto the stack
and causes a jump to the entry point of the procedure by placing the address of the
entry point in the instruction pointer. In the 8088 and 8086 machines, the typical
procedure began with the sequence

PUSH EBP

MOV EBP, ESP

SUB ESP, space_for_locals

where EBP is the frame pointer and ESP is the stack pointer. In the 80286 and later
machines, the ENTER instruction performs all the aforementioned operations in a
single instruction.

The ENTER instruction was added to the instruction set to provide direct sup-
port for the compiler. The instruction also includes a feature for support of what are
called nested procedures in languages such as Pascal, COBOL, and Ada (not found
in C or FORTRAN). It turns out that there are better ways of handling nested
procedure calls for these languages. Furthermore, although the ENTER instruc-
tion saves a few bytes of memory compared with the PUSH, MOV, SUB sequence
(4 bytes versus 6 bytes), it actually takes longer to execute (10 clock cycles versus
6 clock cycles). Thus, although it may have seemed a good idea to the instruction
set designers to add this feature, it complicates the implementation of the processor
while providing little or no benefit. We will see that, in contrast, a RISC approach

Instruction Description

Cache Management

INVD Flushes the internal cache memory.

WBINVD Flushes the internal cache memory after writing dirty lines to memory.

INVLPG Invalidates a translation lookaside buffer (TLB) entry.

434 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

to processor design would avoid complex instructions such as ENTER and might
produce a more efficient implementation with a sequence of simpler instructions.

MEMORY MANAGEMENT Another set of specialized instructions deals with memory
segmentation. These are privileged instructions that can only be executed from the
operating system. They allow local and global segment tables (called descriptor tables)
to be loaded and read, and for the privilege level of a segment to be checked and altered.

The special instructions for dealing with the on-chip cache were discussed in
Chapter 4.

STATUS FLAGS AND CONDITION CODES Status flags are bits in special registers
that may be set by certain operations and used in conditional branch instructions. The
term condition code refers to the settings of one or more status flags. In the x86 and
many other architectures, status flags are set by arithmetic and compare operations.
The compare operation in most languages subtracts two operands, as does a subtract
operation. The difference is that a compare operation only sets status flags, whereas a
subtract operation also stores the result of the subtraction in the destination operand.
Some architectures also set status flags for data transfer instructions.

Table 12.9 lists the status flags used on the x86. Each flag, or combinations of
these flags, can be tested for a conditional jump. Table 12.10 shows the condition
codes (combinations of status flag values) for which conditional jump opcodes have
been defined.

Several interesting observations can be made about this list. First, we may
wish to test two operands to determine if one number is bigger than another. But
this will depend on whether the numbers are signed or unsigned. For example, the
8-bit number 11111111 is bigger than 00000000 if the two numbers are interpreted
as unsigned integers (255 7 0) but is less if they are considered as 8-bit twos com-
plement numbers (-1 6 0). Many assembly languages therefore introduce two sets
of terms to distinguish the two cases: If we are comparing two numbers as signed
integers, we use the terms less than and greater than; if we are comparing them as
unsigned integers, we use the terms below and above.

A second observation concerns the complexity of comparing signed integers.
A signed result is greater than or equal to zero if (1) the sign bit is zero and there is
no overflow (S = 0 AND O = 0), or (2) the sign bit is one and there is an overflow.

Table 12.9 x86 Status Flags

Status Bit Name Description

C Carry Indicates carrying or borrowing out of the left-most bit position following an
arithmetic operation. Also modified by some of the shift and rotate operations.

P Parity Parity of the least-significant byte of the result of an arithmetic or logic
operation. 1 indicates even parity; 0 indicates odd parity.

A Auxiliary Carry Represents carrying or borrowing between half-bytes of an 8-bit arithmetic
or logic operation. Used in binary-coded decimal arithmetic.

Z Zero Indicates that the result of an arithmetic or logic operation is 0.

S Sign Indicates the sign of the result of an arithmetic or logic operation.

O Overflow Indicates an arithmetic overflow after an addition or subtraction for twos
complement arithmetic.

12.5 / INTEL x86 AND ARM OPERATION TYPES 435

A study of Figure 10.4 should convince you that the conditions tested for the vari-
ous signed operations are appropriate.

X86 SIMD INSTRUCTIONS In 1996, Intel introduced MMX technology into its
Pentium product line. MMX is set of highly optimized instructions for multimedia tasks.
There are 57 new instructions that treat data in a SIMD (single-instruction, multiple-
data) fashion, which makes it possible to perform the same operation, such as addition
or multiplication, on multiple data elements at once. Each instruction typically takes a
single clock cycle to execute. For the proper application, these fast parallel operations
can yield a speedup of two to eight times over comparable algorithms that do not use
the MMX instructions [ATKI96]. With the introduction of 64-bit x86 architecture,
Intel has expanded this extension to include double quadword (128 bits) operands and
floating-point operations. In this subsection, we describe the MMX features.

The focus of MMX is multimedia programming. Video and audio data are typ-
ically composed of large arrays of small data types, such as 8 or 16 bits, whereas con-
ventional instructions are tailored to operate on 32- or 64-bit data. Here are some
examples: In graphics and video, a single scene consists of an array of pixels,2 and

Table 12.10 x86 Condition Codes for Conditional Jump and SETcc Instructions

Symbol Condition Tested Comment

A, NBE C = 0 AND Z = 0 Above; Not below or equal (greater than, unsigned)

AE, NB, NC C = 0 Above or equal; Not below (greater than or equal,
unsigned); Not carry

B, NAE, C C = 1 Below; Not above or equal (less than, unsigned);
Carry set

BE, NA C = 1 OR Z = 1 Below or equal; Not above (less than or equal, unsigned)

E, Z Z = 1 Equal; Zero (signed or unsigned)

G, NLE [(S = 1 AND O = 1) OR (S = 0
and O = 0)] AND [Z = 0]

Greater than; Not less than or equal (signed)

GE, NL (S = 1 AND O = 1) OR (S = 0
AND O = 0)

Greater than or equal; Not less than (signed)

L, NGE (S = 1 AND O = 0) OR (S = 0
AND O = 1)

Less than; Not greater than or equal (signed)

LE, NG (S = 1 AND O = 0) OR (S = 0
AND O = 1) OR (Z = 1)

Less than or equal; Not greater than (signed)

NE, NZ Z = 0 Not equal; Not zero (signed or unsigned)

NO O = 0 No overflow

NS S = 0 Not sign (not negative)

NP, PO P = 0 Not parity; Parity odd

O O = 1 Overflow

P P = 1 Parity; Parity even

S S = 1 Sign (negative)

2A pixel, or picture element, is the smallest element of a digital image that can be assigned a gray level.
Equivalently, a pixel is an individual dot in a dot-matrix representation of a picture.

436 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

there are 8 bits for each pixel or 8 bits for each pixel color component (red, green,
blue). Typical audio samples are quantized using 16 bits. For some 3D graphics
algorithms, 32 bits are common for basic data types. To provide for parallel opera-
tion on these data lengths, three new data types are defined in MMX. Each data
type is 64 bits in length and consists of multiple smaller data fields, each of which
holds a fixed-point integer. The types are as follows:

 • Packed byte: Eight bytes packed into one 64-bit quantity

 • Packed word: Four 16-bit words packed into 64 bits

 • Packed doubleword: Two 32-bit doublewords packed into 64 bits

Table 12.11 lists the MMX instruction set. Most of the instructions involve
parallel operation on bytes, words, or doublewords. For example, the PSLLW
instruction performs a left logical shift separately on each of the four words in the
packed word operand; the PADDB instruction takes packed byte operands as input
and performs parallel additions on each byte position independently to produce a
packed byte output.

One unusual feature of the new instruction set is the introduction of satura-
tion arithmetic for byte and 16-bit word operands. With ordinary unsigned arith-
metic, when an operation overflows (i.e., a carry out of the most significant bit), the
extra bit is truncated. This is referred to as wraparound, because the effect of the
truncation can be, for example, to produce an addition result that is smaller than the
two input operands. Consider the addition of the two words, in hexadecimal, F000h
and 3000h. The sum would be expressed as

F000h = 1111 0000 0000 0000

+3000h =
0011 0000 0000 0000

10010 0000 0000 0000
 = 2000h

If the two numbers represented image intensity, then the result of the addition is
to make the combination of two dark shades turn out to be lighter. This is typi-
cally not what is intended. With saturation arithmetic, if addition results in over-
flow or subtraction results in underflow, the result is set to the largest or smallest
value representable. For the preceding example, with saturation arithmetic, we
have

F000h = 1111 0000 0000 0000

+3000h =
0011 0000 0000 0000

10010 0000 0000 0000

1111 1111 1111 1111 = FFFFh

To provide a feel for the use of MMX instructions, we look at an example,
taken from [PELE97]. A common video application is the fade-out, fade-in effect,
in which one scene gradually dissolves into another. Two images are combined with
a weighted average:

Result_pixel = A_pixel * fade + B_pixel * (1 - fade)

12.5 / INTEL x86 AND ARM OPERATION TYPES 437

Table 12.11 MMX Instruction Set

Category Instruction Description

Arithmetic

PADD [B, W, D] Parallel add of packed eight bytes, four 16-bit words, or
two 32-bit doublewords, with wraparound.

PADDS [B, W] Add with saturation.

PADDUS [B, W] Add unsigned with saturation.

PSUB [B, W, D] Subtract with wraparound.

PSUBS [B, W] Subtract with saturation.

PSUBUS [B, W] Subtract unsigned with saturation.

PMULHW Parallel multiply of four signed 16-bit words, with high-
order 16 bits of 32-bit result chosen.

PMULLW Parallel multiply of four signed 16-bit words, with low-
order 16 bits of 32-bit result chosen.

PMADDWD Parallel multiply of four signed 16-bit words; add together
adjacent pairs of 32-bit results.

Comparison

PCMPEQ [B, W, D] Parallel compare for equality; result is mask of 1s if true
or 0s if false.

PCMPGT [B, W, D] Parallel compare for greater than; result is mask of 1s if
true or 0s if false.

Conversion

PACKUSWB Pack words into bytes with unsigned saturation.

PACKSS [WB, DW] Pack words into bytes, or doublewords into words, with
signed saturation.

PUNPCKH [BW, WD, DQ] Parallel unpack (interleaved merge) high-order bytes,
words, or doublewords from MMX register.

PUNPCKL [BW, WD, DQ] Parallel unpack (interleaved merge) low-order bytes,
words, or doublewords from MMX register.

Logical

PAND 64-bit bitwise logical AND

PNDN 64-bit bitwise logical AND NOT

POR 64-bit bitwise logical OR

PXOR 64-bit bitwise logical XOR

Shift

PSLL [W, D, Q] Parallel logical left shift of packed words, doublewords,
or quadword by amount specified in MMX register or
immediate value.

PSRL [W, D, Q] Parallel logical right shift of packed words, doublewords,
or quadword.

PSRA [W, D] Parallel arithmetic right shift of packed words, double-
words, or quadword.

Data transfer MOV [D, Q] Move doubleword or quadword to/from MMX register.

State mgt EMMS Empty MMX state (empty FP registers tag bits).

Note: If an instruction supports multiple data types [byte (B), word (W), doubleword (D), quadword (Q)], the data
types are indicated in brackets.

This calculation is performed on each pixel position in A and B. If a series
of video frames is produced while gradually changing the fade value from 1 to 0
(scaled appropriately for an 8-bit integer), the result is to fade from image A to
image B.

438 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

Figure 12.11 shows the sequence of steps required for one set of pixels. The
8-bit pixel components are converted to 16-bit elements to accommodate the
MMX 16-bit multiply capability. If these images use 640 * 480 resolution, and
the dissolve technique uses all 255 possible values of the fade value, then the total
number of instructions executed using MMX is 535 million. The same calculation,
performed without the MMX instructions, requires 1.4 billion instruction execu-
tions [INTE98].

R
G

B
Alpha

Image A
R

G
B

Alpha

Image A

Ar3 Ar2 Ar1 Ar0

r3 r2 r1 r0

Ar3 Ar2 Ar1

Subtract

Ar0

r3 r2 r1 r0

fade

� � � �

fade fade fade

fade�r3 fade�r2 fade�r1 fade�r0

Br3 Br2 Br1 Br0

Br3 Br2 Br1 Br0

newr3 newr2 newr1 newr0

Br3 Br2 Br1 Br01. Unpack byte R pixel
 components from
 images A and B

2. Subtract image B from image A

3. Multiply result by fade value

4. Add image B pixels

5. Pack new composite pixels
 back to bytes

MMX code sequence performing this operation:

� � � �

pxor mm7, mm7 ;zero out mm7
movq mm3, fad_val ;load fade value replicated 4 times
movd mm0, imageA ;load 4 red pixel components from image A
movd mm1, imageB ;load 4 red pixel components from image B
punpckblw mm0, mm7 ;unpack 4 pixels to 16 bits
punpckblw mm1, mm7 ;unpack 4 pixels to 16 bits
psubw mm0, mm1 ;subtract image B from image A
pmulhw mm0, mm3 ;multiply the subtract result by fade values
padddw mm0, mm1 ;add result to image B
packuswb mm0, mm7 ;pack 16-bit results back to bytes

Figure 12.11 Image Compositing on Color Plane Representation

12.5 / INTEL x86 AND ARM OPERATION TYPES 439

ARM Operation Types

The ARM architecture provides a large collection of operation types. The following
are the principal categories:

 • Load and store instructions: In the ARM architecture, only load and store
instructions access memory locations; arithmetic and logical instructions are
performed only on registers and immediate values encoded in the instruction.
This limitation is characteristic of RISC design and it is explored further in
Chapter 15. The ARM architecture supports two broad types of instruction
that load or store the value of a single register, or a pair of registers, from or to
memory: (1) load or store a 32-bit word or an 8-bit unsigned byte, and (2) load
or store a 16-bit unsigned halfword, and load and sign extend a 16-bit halfword
or an 8-bit byte.

 • Branch instructions: ARM supports a branch instruction that allows a condi-
tional branch forwards or backwards up to 32 MB. As the program counter
is one of the general-purpose registers (R15), a branch or jump can also be
generated by writing a value to R15. A subroutine call can be performed by
a variant of the standard branch instruction. As well as allowing a branch
forward or backward up to 32 MB, the Branch with Link (BL) instruction
preserves the address of the instruction after the branch (the return address)
in the LR (R14). Branches are determined by a 4-bit condition field in the
instruction.

 • Data-processing instructions: This category includes logical instructions
(AND, OR, XOR), add and subtract instructions, and test and compare
instructions.

 • Multiply instructions: The integer multiply instructions operate on word or
halfword operands and can produce normal or long results. For example,
there is a multiply instruction that takes two 32-bit operands and produces a
64-bit result.

 • Parallel addition and subtraction instructions: In addition to the normal data
processing and multiply instructions, there are a set of parallel addition and
subtraction instructions, in which portions of two operands are operated on
in parallel. For example, ADD16 adds the top halfwords of two registers to
form the top halfword of the result and adds the bottom halfwords of the
same two registers to form the bottom halfword of the result. These instruc-
tions are useful in image processing applications, similar to the x86 MMX
instructions.

 • Extend instructions: There are several instructions for unpacking data by sign
or zero extending bytes to halfwords or words, and halfwords to words.

 • Status register access instructions: ARM provides the ability to read and also
to write portions of the status register.

CONDITION CODES The ARM architecture defines four condition flags that
are stored in the program status register: N, Z, C, and V (Negative, Zero, Carry
and oVerflow), with meanings essentially the same as the S, Z, C, and V flags

440 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

in the x86 architecture. These four flags constitute a condition code in ARM.
Table 12.12 shows the combination of conditions for which conditional execution
is defined.

There are two unusual aspects to the use of condition codes in ARM:

 1. All instructions, not just branch instructions, include a condition code field,
which means that virtually all instructions may be conditionally executed. Any
combination of flag settings except 1110 or 1111 in an instruction’s condition
code field signifies that the instruction will be executed only if the condition
is met.

 2. All data processing instructions (arithmetic, logical) include an S bit that signi-
fies whether the instruction updates the condition flags.

The use of conditional execution and conditional setting of the condition flags
helps in the design of shorter programs that use less memory. On the other hand,
all instructions include 4 bits for the condition code, so there is a trade-off in that
fewer bits in the 32-bit instruction are available for opcode and operands. Because
the ARM is a RISC design that relies heavily on register addressing, this seems to
be a reasonable trade-off.

Table 12.12 ARM Conditions for Conditional Instruction Execution

Code Symbol Condition Tested Comment

0000 EQ Z = 1 Equal

0001 NE Z = 0 Not equal

0010 CS/HS C = 1 Carry set/unsigned higher or same

0011 CC/LO C = 0 Carry clear/unsigned lower

0100 MI N = 1 Minus/negative

0101 PL N = 0 Plus/positive or zero

0110 VS V = 1 Overflow

0111 VC V = 0 No overflow

1000 HI C = 1 AND Z = 0 Unsigned higher

1001 LS C = 0 OR Z = 1 Unsigned lower or same

1010 GE N = V
[(N = 1 AND V = 1)
OR (N = 0 AND V = 0)]

Signed greater than or equal

1011 LT N � V
[(N = 1 AND V = 0)
OR (N = 0 AND V = 1)]

Signed less than

1100 GT (Z = 0) AND (N = V) Signed greater than

1101 LE (Z = 1) OR (N � V) Signed less than or equal

1110 AL — Always (unconditional)

1111 — — This instruction can only be executed
unconditionally

12.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 441

 12.6 RECOMMENDED READING

The x86 instruction set is well covered by [BREY09]. The ARM instruction set is covered
in [SLOS04] and [KNAG04]. [INTE04c] describes software considerations related to micro-
processor Endian architecture and discusses guidelines for developing Endian-neutral code
(paper available in the premium content section for this book).

BREY09 Brey, B. The Intel Microprocessors: 8086/8066, 80186/80188, 80286, 80386,
80486, Pentium, Pentium Pro Processor, Pentium II, Pentium III, Pentium 4 and
Core2 with 64-bit Extensions. Upper Saddle River, NJ: Prentice Hall, 2009.

INTE04c Intel Corp. Endianness White Paper. November 15, 2004.
KNAG04 Knaggs, P., and Welsh, S. ARM: Assembly Language Programming. Bourne-

mouth University, School of Design, Engineering, and Computing, August 31,
2004. www.freetechbooks.com/arm-assembly-language-programming-t729.html

SLOS04 Sloss, A.; Symes, D.; and Wright, C. ARM System Developer’s Guide. San
Francisco: Morgan Kaufmann, 2004.

Review Questions
 12.1 What are the typical elements of a machine instruction?
 12.2 What types of locations can hold source and destination operands?
 12.3 If an instruction contains four addresses, what might be the purpose of each address?
 12.4 List and briefly explain five important instruction set design issues.
 12.5 What types of operands are typical in machine instruction sets?
 12.6 What is the relationship between the IRA character code and the packed decimal

representation?
 12.7 What is the difference between an arithmetic shift and a logical shift?
 12.8 Why are transfer of control instructions needed?

accumulator
address
arithmetic shift
bi-endian
big endian
branch
conditional branch
instruction set

jump
little endian
logical shift
machine instruction
operand
operation
packed decimal
pop

procedure call
procedure return
push
reentrant procedure
reverse Polish notation
rotate
skip
stack

 12.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

www.freetechbooks.com/arm-assembly-language-programming-t729.html

442 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

 12.9 List and briefly explain two common ways of generating the condition to be tested in
a conditional branch instruction.

 12.10 What is meant by the term nesting of procedures?
 12.11 List three possible places for storing the return address for a procedure return.
 12.12 What is a reentrant procedure?
 12.13 What is reverse Polish notation?
 12.14 What is the difference between big endian and little endian?

Problems
 12.1 Show in hex notation:

a. The packed decimal format for 23
b. The ASCII characters 23

 12.2 For each of the following packed decimal numbers, show the decimal value:
a. 0111 0011 0000 1001
b. 0101 1000 0010
c. 0100 1010 0110

 12.3 A given microprocessor has words of 1 byte. What is the smallest and largest integer
that can be represented in the following representations:
a. Unsigned
b. Sign-magnitude
c. Ones complement
d. Twos complement
e. Unsigned packed decimal
f. Signed packed decimal

 12.4 Many processors provide logic for performing arithmetic on packed decimal numbers.
Although the rules for decimal arithmetic are similar to those for binary operations,
the decimal results may require some corrections to the individual digits if binary
logic is used.

Consider the decimal addition of two unsigned numbers. If each number consists
of N digits, then there are 4N bits in each number. The two numbers are to be added
using a binary adder. Suggest a simple rule for correcting the result. Perform addition
in this fashion on the numbers 1698 and 1786.

 12.5 The tens complement of the decimal number X is defined to be 10N - X, where N
is the number of decimal digits in the number. Describe the use of ten’s complement
representation to perform decimal subtraction. Illustrate the procedure by subtract-
ing (0326)10 from (0736)10.

 12.6 Compare zero-, one-, two-, and three-address machines by writing programs to compute
X = (A + B * C)>(D - E * F)

 for each of the four machines. The instructions available for use are as follows:

0 Address 1 Address 2 Address 3 Address

PUSH M LOAD M MOVE (X d Y) MOVE (X d Y)

POP M STORE M ADD (X d X + Y) ADD (X d Y + Z)

ADD ADD M SUB (X d X - Y) SUB (X d Y - Z)

SUB SUB M MUL (X d X * Y) MUL (X d Y * Z)

MUL MUL M DIV (X d X/Y) DIV (X d Y/Z)

DIV DIV M

12.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 443

 12.7 Consider a hypothetical computer with an instruction set of only two n-bit instruc-
tions. The first bit specifies the opcode, and the remaining bits specify one of the 2n- 1
n-bit words of main memory. The two instructions are as follows:

SUBS X Subtract the contents of location X from the accumulator, and store the
result in location X and the accumulator.

JUMP X Place address X in the program counter.

A word in main memory may contain either an instruction or a binary number in
twos complement notation. Demonstrate that this instruction repertoire is reasonably
complete by specifying how the following operations can be programmed:
a. Data transfer: Location X to accumulator, accumulator to location X
b. Addition: Add contents of location X to accumulator
c. Conditional branch
d. Logical OR
e. I/O Operations

 12.8 Many instruction sets contain the instruction NOOP, meaning no operation, which has
no effect on the processor state other than incrementing the program counter. Suggest
some uses of this instruction.

 12.9 In Section 12.4, it was stated that both an arithmetic left shift and a logical left shift
correspond to a multiplication by 2 when there is no overflow, and if overflow occurs,
arithmetic and logical left shift operations produce different results, but the arithmetic
left shift retains the sign of the number. Demonstrate that these statements are true
for 5-bit twos complement integers.

 12.10 In what way are numbers rounded using arithmetic right shift (e.g., round toward + � ,
round toward -� , toward zero, away from 0)?

 12.11 Suppose a stack is to be used by the processor to manage procedure calls and returns.
Can the program counter be eliminated by using the top of the stack as a program
counter?

 12.12 The x86 architecture includes an instruction called Decimal Adjust after Addition
(DAA). DAA performs the following sequence of instructions:

if ((AL AND 0FH) >9) OR (AF = 1) then

AL d AL + 6;

AF d 1;

else

AF d 0;

endif;

if (AL > 9FH) OR (CF = 1) then

AL d AL + 60H;

CF d 1;

else

CF d 0;

endif.

“H” indicates hexadecimal. AL is an 8-bit register that holds the result of addition of
two unsigned 8-bit integers. AF is a flag set if there is a carry from bit 3 to bit 4 in the
result of an addition. CF is a flag set if there is a carry from bit 7 to bit 8. Explain the
function performed by the DAA instruction.

 12.13 The x86 Compare instruction (CMP) subtracts the source operand from the destina-
tion operand; it updates the status flags (C, P, A, Z, S, O) but does not alter either of
the operands. The CMP instruction can be used to determine if the destination oper-
and is greater than, equal to, or less than the source operand.

444 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

a. Suppose the two operands are treated as unsigned integers. Show which status
flags are relevant to determine the relative size of the two integer and what values
of the flags correspond to greater than, equal to, or less than.

b. Suppose the two operands are treated as twos complement signed integers.
Show which status flags are relevant to determine the relative size of the
two integer and what values of the flags correspond to greater than, equal to,
or less than.

c. The CMP instruction may be followed by a conditional Jump (Jcc) or Set Con-
dition (SETcc) instruction, where cc refers to one of the 16 conditions listed
in Table 12.12. Demonstrate that the conditions tested for a signed number
comparison are correct.

 12.14 Suppose we wished to apply the x86 CMP instruction to 32-bit operands that con-
tained numbers in a floating-point format. For correct results, what requirements have
to be met in the following areas?
a. The relative position of the significand, sign, and exponent fields.
b. The representation of the value zero.
c. The representation of the exponent.
d. Does the IEEE format meet these requirements? Explain.

 12.15 Many microprocessor instruction sets include an instruction that tests a condition
and sets a destination operand if the condition is true. Examples include the SETcc
on the x86, the Scc on the Motorola MC68000, and the Scond on the National
NS32000.
a. There are a few differences among these instructions:

• SETcc and Scc operate only on a byte, whereas Scond operates on byte, word,
and doubleword operands.

• SETcc and Scond set the operand to integer one if true and to zero if false. Scc
sets the byte to all binary ones if true and all zeros if false.

What are the relative advantages and disadvantages of these differences?
b. None of these instructions set any of the condition code flags, and thus an explicit

test of the result of the instruction is required to determine its value. Discuss
whether condition codes should be set as a result of this instruction.

c. A simple IF statement such as IF a 7 b THEN can be implemented using a
numerical representation method, that is, making the Boolean value manifest,
as opposed to a flow of control method, which represents the value of a Boolean
expression by a point reached in the program. A compiler might implement IF
a 7 ssb THEN with the following x86 code:

SUB CX, CX ;set register CX to 0
MOV AX, B ;move contents of location B to register AX
CMP AX, A ;compare contents of register AX and location A
JLE TEST ;jump if A … B
INC CX ;add 1 to contents of register CX

TEST JCXZ OUT ;jump if contents of CX equal 0
THEN OUT

The result of (A 7 B) is a Boolean value held in a register and available later on,
outside the context of the flow of code just shown. It is convenient to use register
CX for this, because many of the branch and loop opcodes have a built-in test
for CX.

Show an alternative implementation using the SETcc instruction that saves
memory and execution time. (Hint: No additional new x86 instructions are needed,
other than the SETcc.)

d. Now consider the high-level language statement:
A: = (B 7 C) OR (D = F)

A compiler might generate the following code:

MOV EAX, B ;move contents of location B to register EAX
CMP EAX, C ;compare contents of register EAX and location C
MOV BL, 0 ;0 represents false
JLE N1 ;jump if (B … C)
MOV BL, 1 ;1 represents false

N1 MOV EAX, D
CMP EAX, F
MOV BH, 0
JNE N2
MOV BH, 1

N2 OR BL, BH

Show an alternative implementation using the SETcc instruction that saves memory
and execution time.

 12.16 Suppose that two registers contain the following hexadecimal values: AB0890C2,
4598EE50. What is the result of adding them using MMX instructions:
a. for packed byte
b. for packed word
Assume saturation arithmetic is not used.

 12.17 Appendix O points out that there are no stack-oriented instructions in an instruction set
if the stack is to be used only by the processor for such purposes as procedure handling.
How can the processor use a stack for any purpose without stack-oriented instructions?

 12.18 Convert the following formulas from reverse Polish to infix:
a. AB + C + D *
b. AB/CD/ +
c. ABCDE + * * /
d. ABCDE + F/ + G - H/ * +

 12.19 Convert the following formulas from infix to reverse Polish:
a. A + B + C + D + E
b. (A + B) * (C + D) + E
c. (A * B) + (C * D) + E
d. (A - B) * (((C - D * E)/F)/G) * H

 12.20 Convert the expression A + B - C to postfix notation using Dijkstra’s algorithm.
Show the steps involved. Is the result equivalent to (A + B) - C or A + (B - C)?
Does it matter?

 12.21 Using the algorithm for converting infix to postfix defined in Appendix O, show the
steps involved in converting the expression of Figure O.3 into postfix. Use a presenta-
tion similar to Figure O.5.

 12.22 Show the calculation of the expression in Figure O.5, using a presentation similar to
Figure O.4.

 12.23 Redraw the little-endian layout in Figure 12.13 so that the bytes appear as numbered
in the big-endian layout. That is, show memory in 64-bit rows, with the bytes listed left
to right, top to bottom.

 12.24 For the following data structures, draw the big-endian and little-endian layouts, using
the format of Figure 12.13, and comment on the results.

a. struct {
 double i; //0x1112131415161718
 } s1;
b. struct {
 int i; //0x11121314
 int j; //0x15161718
 } s2;

12.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 445

446 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

c. struct {
 short i; //0x1112
 short j; //0x1314
 short k; //0x1516
 short l; //0x1718
 } s3;

 12.25 The IBM Power architecture specification does not dictate how a processor should im-
plement little-endian mode. It specifies only the view of memory a processor must have
when operating in little-endian mode. When converting a data structure from big endian
to little endian, processors are free to implement a true byte-swapping mechanism or to
use some sort of an address modification mechanism. Current Power processors are all
default big-endian machines and use address modification to treat data as little-endian.

Consider the structure s defined in Figure 12.13. The layout in the lower-right
portion of the figure shows the structure s as seen by the processor. In fact, if structures
is compiled in little-endian mode, its layout in memory is shown in Figure 12.12. Explain
the mapping that is involved, describe an easy way to implement the mapping, and dis-
cuss the effectiveness of this approach.

 12.26 Write a small program to determine the endianness of machine and report the results.
Run the program on a computer available to you and turn in the output.

 12.27 The MIPS processor can be set to operate in either big-endian or little-endian mode.
Consider the Load Byte Unsigned (LBU) instruction, which loads a byte from memory
into the low-order 8 bits of a register and fills the high-order 24 bits of the register
with zeros. The description of LBU is given in the MIPS reference manual using a
register-transfer language as

mem d LoadMemory(…)

byte d VirtualAddress1..0
if CONDITION then

 GPR[rt] d 024}mem31 – 8 * byte .. 24 – 8 * byte

else

 GPR[rt] d 024}mem7 + 8 * byte .. 8 * byte

endif

where byte refers to the two low-order bits of the effective address and mem refers
to the value loaded from memory. In the manual, instead of the word CONDITION,
one of the following two words is used: BigEndian, LittleEndian. Which word is used?

 12.28 Most, but not all, processors use big- or little-endian bit ordering within a byte that is
consistent with big- or little-endian ordering of bytes within a multibyte scalar. Let us

21 22 23 24

08 09 0A 0B

25 26 27 28

0C 0D 0E 0F

00 01 02 03

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

Little-endian address mapping

11 12 13 14

04 05 06 07

61 62 63 64

24 25 26 27

31 32 33 34'D' 'C' 'B' 'A'

51 52 'F' 'E''G'

Byte
address

00

08

10

18

20 20 21 22 23

Figure 12.12 Power Architecture
Little-Endian Structure s in Memory

consider the Motorola 68030, which uses big-endian byte ordering. The documentation of
the 68030 concerning formats is confusing. The user’s manual explains that the bit order-
ing of bit fields is the opposite of bit ordering of integers. Most bit field operations operate
with one endian ordering, but a few bit field operations require the opposite ordering. The
following description from the user’s manual describes most of the bit field operations:

A bit operand is specified by a base address that selects one byte in memory
(the base byte), and a bit number that selects the one bit in this byte. The
most significant bit is bit seven. A bit field operand is specified by: (1) a base
 address that selects one byte in memory; (2) a bit field offset that indicates
the leftmost (base) bit of the bit field in relation to the most significant bit of
the base byte; and (3) a bit field width that determines how many bits to the
right of the base byte are in the bit field. The most significant bit of the base
byte is bit field offset 0, the least significant bit of the base byte is bit field
offset 7.

Do these instructions use big-endian or little-endian bit ordering?

 APPENDIX 12A LITTLE-, BIG-, AND BI-ENDIAN

An annoying and curious phenomenon relates to how the bytes within a word and
the bits within a byte are both referenced and represented. We look first at the prob-
lem of byte ordering and then consider that of bits.

Byte Ordering

The concept of endianness was first discussed in the literature by Cohen [COHE81].
With respect to bytes, endianness has to do with the byte ordering of multibyte sca-
lar values. The issue is best introduced with an example. Suppose we have the 32-bit
hexadecimal value 12345678 and that it is stored in a 32-bit word in byte-addressable
memory at byte location 184. The value consists of 4 bytes, with the least significant
byte containing the value 78 and the most significant byte containing the value 12.
There are two obvious ways to store this value:

Address Value Address Value

184 12 184 78

185 34 185 56

186 56 186 34

187 78 187 12

The mapping on the left stores the most significant byte in the lowest numerical byte
address; this is known as big endian and is equivalent to the left-to-right order of writing
in Western culture languages. The mapping on the right stores the least significant byte
in the lowest numerical byte address; this is known as little endian and is reminiscent of
the right-to-left order of arithmetic operations in arithmetic units.3 For a given multibyte
scalar value, big endian and little endian are byte-reversed mappings of each other.

3The terms big endian and little endian come from Part I, Chapter 4 of Jonathan Swift’s Gulliver’s Travels.
They refer to a religious war between two groups, one that breaks eggs at the big end and the other that
breaks eggs at the little end.

APPENDIX 12A LITTLE-, BIG-, AND BI-ENDIAN 447

448 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

The concept of endianness arises when it is necessary to treat a multiple-byte
entity as a single data item with a single address, even though it is composed of
smaller addressable units. Some machines, such as the Intel 80x86, x86, VAX, and
Alpha, are little-endian machines, whereas others, such as the IBM System 370/390,
the Motorola 680x0, Sun SPARC, and most RISC machines, are big endian. This
presents problems when data are transferred from a machine of one endian type to
the other and when a programmer attempts to manipulate individual bytes or bits
within a multibyte scalar.

The property of endianness does not extend beyond an individual data unit.
In any machine, aggregates such as files, data structures, and arrays are composed
of multiple data units, each with endianness. Thus, conversion of a block of memory
from one style of endianness to the other requires knowledge of the data structure.

Figure 12.13 illustrates how endianness determines addressing and byte
order. The C structure at the top contains a number of data types. The memory
layout in the lower left results from compilation of that structure for a big-endian
machine, and that in the lower right for a little-endian machine. In each case, mem-
ory is depicted as a series of 64-bit rows. For the big-endian case, memory typically
is viewed left to right, top to bottom, whereas for the little-endian case, memory
typically is viewed as right to left, top to bottom. Note that these layouts are arbi-
trary. Either scheme could use either left to right or right to left within a row; this
is a matter of depiction, not memory assignment. In fact, in looking at programmer
manuals for a variety of machines, a bewildering collection of depictions is to be
found, even within the same manual.

struct{
 int a; //0x1112_1314 word
 int pad; //
 double b; //0x2122_2324_2526_2728 doubleword
 char* c; //0x3132_3334 word
 char d[7]; //'A'.'B','C','D','E','F','G' byte array
 short e; //0x5152 halfword
 int f; //0x6162_6364 word
} s;

21 22 23 24

08 09 0A 0B

25 26 27 28

0C 0D 0E 0F

11 12 13 14

00 01 02 03

31 32 33 34

10 11 12 13

'A' 'B' 'C' 'D'

14 15 16 17

'E' 'F' 'G'

18 19 1A 1B

51 52

1C 1D 1E 1F

61 62 63 64

20 21 22 23

Big-endian address mapping

21 22 23 24

0F 0E 0D 0C

25 26 27 28

0B 0A 09 08

07 06 05 04

17 16 15 14 13 12 11 10

1F 1E 1D 1C 1B 1A 19 18

Little-endian address mapping

04 05 06 07

11 12 13 14

03 02 01 00

61 62 63 64

23 22 21 20

31 32 33 34'D' 'C' 'B' 'A'

51 52 'F' 'E''G'

Byte
address

00

08

10

18

20

Byte
address

00

08

10

18

20

Figure 12.13 Example C Data Structure and Its Endian Maps

APPENDIX 12A LITTLE-, BIG-, AND BI-ENDIAN 449

We can make several observations about this data structure:

 • Each data item has the same address in both schemes. For example, the
 address of the doubleword with hexadecimal value 2122232425262728 is 08.

 • Within any given multibyte scalar value, the ordering of bytes in the little-
endian structure is the reverse of that for the big-endian structure.

 • Endianness does not affect the ordering of data items within a structure. Thus,
the four-character word c exhibits byte reversal, but the seven-character byte
array d does not. Hence, the address of each individual element of d is the
same in both structures.

The effect of endianness is perhaps more clearly demonstrated when we view
memory as a vertical array of bytes, as shown in Figure 12.14.

11
12
13
14

21
22
23
24
25
26
27
28
31
32
33
34
'A'
'B'
'C'
'D'
'E'
'F'
'G'

51
52

61
62
63
64

00

08

10

18

20

04

0C

14

1C

14
13
12
11

28
27
26
25
24
23
22
21
34
33
32
31
'A'
'B'
'C'
'D'
'E'
'F'
'G'

52
51

64
63
62
61

00

08

10

18

20

04

0C

14

1C

(a) Big endian (b) Little endian

Figure 12.14 Another View of
Figure 12.13

450 CHAPTER 12 / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

There is no general consensus as to which is the superior style of endianness.4
The following points favor the big-endian style:

 • Character-string sorting: A big-endian processor is faster in comparing integer-
aligned character strings; the integer ALU can compare multiple bytes in parallel.

 • Decimal/IRA dumps: All values can be printed left to right without causing
confusion.

 • Consistent order: Big-endian processors store their integers and character
strings in the same order (most significant byte comes first).

The following points favor the little-endian style:

 • A big-endian processor has to perform addition when it converts a 32-bit inte-
ger address to a 16-bit integer address, to use the least significant bytes.

 • It is easier to perform higher-precision arithmetic with the little-endian style;
you don’t have to find the least-significant byte and move backward.

The differences are minor and the choice of endian style is often more a mat-
ter of accommodating previous machines than anything else.

The PowerPC is a bi-endian processor that supports both big-endian and
little-endian modes. The bi-endian architecture enables software developers to
choose either mode when migrating operating systems and applications from other
machines. The operating system establishes the endian mode in which processes
execute. Once a mode is selected, all subsequent memory loads and stores are deter-
mined by the memory-addressing model of that mode. To support this hardware
feature, 2 bits are maintained in the machine state register (MSR) maintained by
the operating system as part of the process state. One bit specifies the endian mode
in which the kernel runs; the other specifies the processor’s current operating mode.
Thus, mode can be changed on a per-process basis.

Bit Ordering

In ordering the bits within a byte, we are immediately faced with two questions:

 1. Do you count the first bit as bit zero or as bit one?

 2. Do you assign the lowest bit number to the byte’s least significant bit (little
endian) or to the bytes most significant bit (big endian)?

These questions are not answered in the same way on all machines. Indeed, on
some machines, the answers are different in different circumstances. Furthermore,
the choice of big- or little-endian bit ordering within a byte is not always consistent
with big- or little-endian ordering of bytes within a multibyte scalar. The program-
mer needs to be concerned with these issues when manipulating individual bits.

Another area of concern is when data are transmitted over a bit-serial line.
When an individual byte is transmitted, does the system transmit the most signifi-
cant bit first or the least significant bit first? The designer must make certain that
incoming bits are handled properly. For a discussion of this issue, see [JAME90].

4The prophet revered by both groups in the Endian Wars of Gulliver’s Travels had this to say. “All true
Believers shall break their Eggs at the convenient End.” Not much help!

451

INSTRUCTION SETS: ADDRESSING
MODES AND FORMATS

13.1 Addressing Modes
Immediate Addressing
Direct Addressing
Indirect Addressing
Register Addressing
Register Indirect Addressing
Displacement Addressing
Stack Addressing

13.2 x86 and ARM Addressing Modes
x86 Addressing Modes
ARM Addressing Modes

13.3 Instruction Formats
Instruction Length
Allocation of Bits
Variable-Length Instructions

13.4 x86 and ARM Instruction Formats
x86 Instruction Formats
ARM Instruction Formats

13.5 Assembly Language

13.6 Recommended Reading

13.7 Key Terms, Review Questions, and Problems

CHAPTER

452 CHAPTER 13 / INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

In Chapter 12, we focused on what an instruction set does. Specifically, we examined
the types of operands and operations that may be specified by machine instructions.
This chapter turns to the question of how to specify the operands and operations of
instructions. Two issues arise. First, how is the address of an operand specified, and
second, how are the bits of an instruction organized to define the operand addresses
and operation of that instruction?

 13.1 ADDRESSING MODES

The address field or fields in a typical instruction format are relatively small. We
would like to be able to reference a large range of locations in main memory or, for
some systems, virtual memory. To achieve this objective, a variety of addressing
techniques has been employed. They all involve some trade-off between address
range and/or addressing flexibility, on the one hand, and the number of memory
references in the instruction and/or the complexity of address calculation, on the
other. In this section, we examine the most common addressing techniques, or
modes:

 • Immediate

 • Direct

 • Indirect

 • Register

 • Register indirect

 • Displacement

 • Stack

These modes are illustrated in Figure 13.1. In this section, we use the following
notation:

A = contents of an address field in the instruction

R = contents of an address field in the instruction that refers to a register

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Describe the various types of addressing modes common in instruction sets.

� Present an overview of x86 and ARM addressing modes.

� Summarize the issues and trade-offs involved in designing an instruction
format.

� Present an overview of x86 and ARM instruction formats.

� Understand the distinction between machine language and assembly
 language.

13.1 / ADDRESSING MODES 453

EA = actual (effective) address of the location containing the referenced
operand

(X) = contents of memory location X or register X

Table 13.1 indicates the address calculation performed for each addressing
mode.

(b) Direct

Memory

Instruction
A

Operand

(a) Immediate

Instruction
Operand

Registers

(d) Register

Instruction
R

(c) Indirect

Memory

Instruction
A

Registers

(f) Displacement

Memory

Instruction
AR

Registers

(e) Register indirect

Memory

Instruction
R

Top of stack
register

(g) Stack

Implicit

Instruction

Operand

Operand

Operand

�

Figure 13.1 Addressing Modes

454 CHAPTER 13 / INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

Before beginning this discussion, two comments need to be made. First, virtu-
ally all computer architectures provide more than one of these addressing modes.
The question arises as to how the processor can determine which address mode
is being used in a particular instruction. Several approaches are taken. Often, dif-
ferent opcodes will use different addressing modes. Also, one or more bits in the
instruction format can be used as a mode field. The value of the mode field deter-
mines which addressing mode is to be used.

The second comment concerns the interpretation of the effective address
(EA). In a system without virtual memory, the effective address will be either a main
memory address or a register. In a virtual memory system, the effective address is a
virtual address or a register. The actual mapping to a physical address is a function
of the memory management unit (MMU) and is invisible to the programmer.

Immediate Addressing

The simplest form of addressing is immediate addressing, in which the operand
value is present in the instruction

Operand = A

This mode can be used to define and use constants or set initial values of variables.
Typically, the number will be stored in twos complement form; the leftmost bit of
the operand field is used as a sign bit. When the operand is loaded into a data reg-
ister, the sign bit is extended to the left to the full data word size. In some cases, the
immediate binary value is interpreted as an unsigned nonnegative integer.

The advantage of immediate addressing is that no memory reference other
than the instruction fetch is required to obtain the operand, thus saving one mem-
ory or cache cycle in the instruction cycle. The disadvantage is that the size of the
number is restricted to the size of the address field, which, in most instruction sets,
is small compared with the word length.

Direct Addressing

A very simple form of addressing is direct addressing, in which the address field
contains the effective address of the operand:

EA = A

Table 13.1 Basic Addressing Modes

Mode Algorithm Principal Advantage Principal Disadvantage

Immediate Operand = A No memory reference Limited operand magnitude

Direct EA = A Simple Limited address space

Indirect EA = (A) Large address space Multiple memory references

Register EA = R No memory reference Limited address space

Register indirect EA = (R) Large address space Extra memory reference

Displacement EA = A + (R) Flexibility Complexity

Stack EA = top of stack No memory reference Limited applicability

13.1 / ADDRESSING MODES 455

The technique was common in earlier generations of computers but is not com-
mon on contemporary architectures. It requires only one memory reference and
no special calculation. The obvious limitation is that it provides only a limited
address space.

Indirect Addressing

With direct addressing, the length of the address field is usually less than the word
length, thus limiting the address range. One solution is to have the address field refer
to the address of a word in memory, which in turn contains a full-length address of
the operand. This is known as indirect addressing:

EA = (A)

As defined earlier, the parentheses are to be interpreted as meaning contents of.
The obvious advantage of this approach is that for a word length of N, an address space
of 2N is now available. The disadvantage is that instruction execution requires two mem-
ory references to fetch the operand: one to get its address and a second to get its value.

Although the number of words that can be addressed is now equal to 2N, the
number of different effective addresses that may be referenced at any one time is
limited to 2K, where K is the length of the address field. Typically, this is not a bur-
densome restriction, and it can be an asset. In a virtual memory environment, all
the effective address locations can be confined to page 0 of any process. Because
the address field of an instruction is small, it will naturally produce low-numbered
direct addresses, which would appear in page 0. (The only restriction is that the
page size must be greater than or equal to 2K.) When a process is active, there will
be repeated references to page 0, causing it to remain in real memory. Thus, an indi-
rect memory reference will involve, at most, one page fault rather than two.

A rarely used variant of indirect addressing is multilevel or cascaded indirect
addressing:

EA = (c(A)c)

In this case, one bit of a full-word address is an indirect flag (I). If the I bit is 0,
then the word contains the EA. If the I bit is 1, then another level of indirection is
invoked. There does not appear to be any particular advantage to this approach,
and its disadvantage is that three or more memory references could be required to
fetch an operand.

Register Addressing

Register addressing is similar to direct addressing. The only difference is that the
address field refers to a register rather than a main memory address:

EA = R

To clarify, if the contents of a register address field in an instruction is 5,
then register R5 is the intended address, and the operand value is contained in R5.
Typically, an address field that references registers will have from 3 to 5 bits, so that
a total of from 8 to 32 general-purpose registers can be referenced.

456 CHAPTER 13 / INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

The advantages of register addressing are that (1) only a small address field
is needed in the instruction, and (2) no time-consuming memory references are
required. As was discussed in Chapter 4, the memory access time for a register
internal to the processor is much less than that for a main memory address. The
disadvantage of register addressing is that the address space is very limited.

If register addressing is heavily used in an instruction set, this implies that the
processor registers will be heavily used. Because of the severely limited number of
registers (compared with main memory locations), their use in this fashion makes
sense only if they are employed efficiently. If every operand is brought into a regis-
ter from main memory, operated on once, and then returned to main memory, then
a wasteful intermediate step has been added. If, instead, the operand in a register
remains in use for multiple operations, then a real savings is achieved. An example
is the intermediate result in a calculation. In particular, suppose that the algorithm
for twos complement multiplication were to be implemented in software. The loca-
tion labeled A in the flowchart (Figure 10.12) is referenced many times and should
be implemented in a register rather than a main memory location.

It is up to the programmer or compiler to decide which values should remain
in registers and which should be stored in main memory. Most modern processors
employ multiple general-purpose registers, placing a burden for efficient execution
on the assembly-language programmer (e.g., compiler writer).

Register Indirect Addressing

Just as register addressing is analogous to direct addressing, register indirect
addressing is analogous to indirect addressing. In both cases, the only difference is
whether the address field refers to a memory location or a register. Thus, for regis-
ter indirect address,

EA = (R)

The advantages and limitations of register indirect addressing are basically the same
as for indirect addressing. In both cases, the address space limitation (limited range
of addresses) of the address field is overcome by having that field refer to a word-
length location containing an address. In addition, register indirect addressing uses
one less memory reference than indirect addressing.

Displacement Addressing

A very powerful mode of addressing combines the capabilities of direct addressing
and register indirect addressing. It is known by a variety of names depending on
the context of its use, but the basic mechanism is the same. We will refer to this as
displacement addressing:

EA = A + (R)

Displacement addressing requires that the instruction have two address fields,
at least one of which is explicit. The value contained in one address field
(value = A) is used directly. The other address field, or an implicit reference
based on opcode, refers to a register whose contents are added to A to produce
the effective address.

13.1 / ADDRESSING MODES 457

We will describe three of the most common uses of displacement addressing:

 • Relative addressing

 • Base-register addressing

 • Indexing

RELATIVE ADDRESSING For relative addressing, also called PC-relative addressing,
the implicitly referenced register is the program counter (PC). That is, the next
instruction address is added to the address field to produce the EA. Typically, the
address field is treated as a twos complement number for this operation. Thus, the
effective address is a displacement relative to the address of the instruction.

Relative addressing exploits the concept of locality that was discussed in Chapters
4 and 8. If most memory references are relatively near to the instruction being exe-
cuted, then the use of relative addressing saves address bits in the instruction.

BASE-REGISTER ADDRESSING For base-register addressing, the interpretation is
the following: The referenced register contains a main memory address, and the
address field contains a displacement (usually an unsigned integer representation)
from that address. The register reference may be explicit or implicit.

Base-register addressing also exploits the locality of memory references. It is a
convenient means of implementing segmentation, which was discussed in Chapter 8.
In some implementations, a single segment-base register is employed and is used
implicitly. In others, the programmer may choose a register to hold the base address
of a segment, and the instruction must reference it explicitly. In this latter case, if
the length of the address field is K and the number of possible registers is N, then
one instruction can reference any one of N areas of 2K words.

INDEXING For indexing, the interpretation is typically the following: The address
field references a main memory address, and the referenced register contains a
positive displacement from that address. Note that this usage is just the opposite
of the interpretation for base-register addressing. Of course, it is more than just
a matter of user interpretation. Because the address field is considered to be a
memory address in indexing, it generally contains more bits than an address field
in a comparable base-register instruction. Also, we shall see that there are some
refinements to indexing that would not be as useful in the base-register context.
Nevertheless, the method of calculating the EA is the same for both base-register
addressing and indexing, and in both cases the register reference is sometimes
explicit and sometimes implicit (for different processor types).

An important use of indexing is to provide an efficient mechanism for per-
forming iterative operations. Consider, for example, a list of numbers stored start-
ing at location A. Suppose that we would like to add 1 to each element on the list.
We need to fetch each value, add 1 to it, and store it back. The sequence of effective
addresses that we need is A, A + 1, A + 2, . . . , up to the last location on the list.
With indexing, this is easily done. The value A is stored in the instruction’s address
field, and the chosen register, called an index register, is initialized to 0. After each
operation, the index register is incremented by 1.

Because index registers are commonly used for such iterative tasks, it is
 typical that there is a need to increment or decrement the index register after

458 CHAPTER 13 / INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

each reference to it. Because this is such a common operation, some systems
will automatically do this as part of the same instruction cycle. This is known as
autoindexing. If certain registers are devoted exclusively to indexing, then autoin-
dexing can be invoked implicitly and automatically. If general-purpose registers
are used, the autoindex operation may need to be signaled by a bit in the instruc-
tion. Autoindexing using increment can be depicted as follows.

EA = A + (R)

(R) d (R) + 1

In some machines, both indirect addressing and indexing are provided, and it
is possible to employ both in the same instruction. There are two possibilities: the
indexing is performed either before or after the indirection.

If indexing is performed after the indirection, it is termed postindexing:

EA = (A) + (R)

First, the contents of the address field are used to access a memory location contain-
ing a direct address. This address is then indexed by the register value. This tech-
nique is useful for accessing one of a number of blocks of data of a fixed format. For
example, it was described in Chapter 8 that the operating system needs to employ
a process control block for each process. The operations performed are the same
regardless of which block is being manipulated. Thus, the addresses in the instruc-
tions that reference the block could point to a location (value = A) containing a
variable pointer to the start of a process control block. The index register contains
the displacement within the block.

With preindexing, the indexing is performed before the indirection:

EA = (A + (R))

An address is calculated as with simple indexing. In this case, however, the calcu-
lated address contains not the operand, but the address of the operand. An example
of the use of this technique is to construct a multiway branch table. At a particular
point in a program, there may be a branch to one of a number of locations depend-
ing on conditions. A table of addresses can be set up starting at location A. By
indexing into this table, the required location can be found.

Typically, an instruction set will not include both preindexing and postindexing.

Stack Addressing

The final addressing mode that we consider is stack addressing. As defined in
Appendix O, a stack is a linear array of locations. It is sometimes referred to as a
pushdown list or last-in-first-out queue. The stack is a reserved block of locations.
Items are appended to the top of the stack so that, at any given time, the block is
partially filled. Associated with the stack is a pointer whose value is the address of
the top of the stack. Alternatively, the top two elements of the stack may be in pro-
cessor registers, in which case the stack pointer references the third element of the
stack. The stack pointer is maintained in a register. Thus, references to stack loca-
tions in memory are in fact register indirect addresses.

13.2 / x86 AND ARM ADDRESSING MODES 459

The stack mode of addressing is a form of implied addressing. The machine
instructions need not include a memory reference but implicitly operate on the top
of the stack.

 13.2 x86 AND ARM ADDRESSING MODES

x86 Addressing Modes

Recall from Figure 8.21 that the x86 address translation mechanism produces an
address, called a virtual or effective address, that is an offset into a segment. The
sum of the starting address of the segment and the effective address produces a
linear address. If paging is being used, this linear address must pass through a page-
translation mechanism to produce a physical address. In what follows, we ignore
this last step because it is transparent to the instruction set and to the programmer.

The x86 is equipped with a variety of addressing modes intended to allow the
efficient execution of high-level languages. Figure 13.2 indicates the logic involved.
The segment register determines the segment that is the subject of the reference.
There are six segment registers; the one being used for a particular reference
depends on the context of execution and the instruction. Each segment register

Access rights

Limit

Base Address

SS

Access rights

Limit

Base Address

GS

Access rights

Limit

Base Address

FS

Access rights

Limit

Base Address

ES

Access rights

Limit

Base Address

DS

Access rights

Limit

Base Address

CS

Selector
Selector

Selector
Selector

Selector
Selector

SS
GS

FS
ES

DS
CS

Segment registers

Descriptor registers

Base register

Index register

Scale
1, 2, 4, or 8

Displacement
(in instruction;
0, 8, or 32 bits)

L
im

it

�

�

�

Effective
address

Linear
address

Segment
base

address

Figure 13.2 x86 Addressing Mode Calculation

460 CHAPTER 13 / INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

holds an index into the segment descriptor table (Figure 8.20), which holds the
starting address of the corresponding segments. Associated with each user-visible
segment register is a segment descriptor register (not programmer visible), which
records the access rights for the segment as well as the starting address and limit
(length) of the segment. In addition, there are two registers that may be used in
constructing an address: the base register and the index register.

Table 13.2 lists the x86 addressing modes. Let us consider each of these in turn.
For the immediate mode, the operand is included in the instruction. The

 operand can be a byte, word, or doubleword of data.
For register operand mode, the operand is located in a register. For general

instructions, such as data transfer, arithmetic, and logical instructions, the operand
can be one of the 32-bit general registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP,
EBP), one of the 16-bit general registers (AX, BX, CX, DX, SI, DI, SP, BP), or one of
the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL, DL). There are also some
instructions that reference the segment selector registers (CS, DS, ES, SS, FS, GS).

The remaining addressing modes reference locations in memory. The memory
location must be specified in terms of the segment containing the location and the off-
set from the beginning of the segment. In some cases, a segment is specified explicitly;
in others, the segment is specified by simple rules that assign a segment by default.

In the displacement mode, the operand’s offset (the effective address
of Figure13.2) is contained as part of the instruction as an 8-, 16-, or 32-bit dis-
placement. With segmentation, all addresses in instructions refer merely to an
 offset in a segment. The displacement addressing mode is found on few machines
because, as mentioned earlier, it leads to long instructions. In the case of the x86,

Table 13.2 x86 Addressing Modes

Mode Algorithm

Immediate Operand = A

Register Operand LA = R

Displacement LA = (SR) + A

Base LA = (SR) + (B)

Base with Displacement LA = (SR) + (B) + A

Scaled Index with Displacement LA = (SR) + (I) * S + A

Base with Index and Displacement LA = (SR) + (B) + (I) + A

Base with Scaled Index and Displacement LA = (SR) + (I) * S + (B) + A

Relative LA = (PC) + A

LA = linear address
(X) = contents of X
SR = segment register
PC = program counter
A = contents of an address field in the instruction
R = register
B = base register
I = index register
S = scaling factor

13.2 / x86 AND ARM ADDRESSING MODES 461

the displacement value can be as long as 32 bits, making for a 6-byte instruction.
Displacement addressing can be useful for referencing global variables.

The remaining addressing modes are indirect, in the sense that the address
portion of the instruction tells the processor where to look to find the address. The
base mode specifies that one of the 8-, 16-, or 32-bit registers contains the effective
address. This is equivalent to what we have referred to as register indirect addressing.

In the base with displacement mode, the instruction includes a displacement
to be added to a base register, which may be any of the general-purpose registers.
Examples of uses of this mode are as follows:

 • Used by a compiler to point to the start of a local variable area. For example,
the base register could point to the beginning of a stack frame, which contains
the local variables for the corresponding procedure.

 • Used to index into an array when the element size is not 1, 2, 4, or 8 bytes and
which therefore cannot be indexed using an index register. In this case, the
displacement points to the beginning of the array, and the base register holds
the results of a calculation to determine the offset to a specific element within
the array.

 • Used to access a field of a record. The base register points to the beginning of
the record, while the displacement is an offset to the field.

In the scaled index with displacement mode, the instruction includes a dis-
placement to be added to a register, in this case called an index register. The index
register may be any of the general-purpose registers except the one called ESP,
which is generally used for stack processing. In calculating the effective address, the
contents of the index register are multiplied by a scaling factor of 1, 2, 4, or 8, and
then added to a displacement. This mode is very convenient for indexing arrays. A
scaling factor of 2 can be used for an array of 16-bit integers. A scaling factor of 4
can be used for 32-bit integers or floating-point numbers. Finally, a scaling factor of
8 can be used for an array of double-precision floating-point numbers.

The base with index and displacement mode sums the contents of the base
register, the index register, and a displacement to form the effective address. Again,
the base register can be any general-purpose register and the index register can
be any general-purpose register except ESP. As an example, this addressing mode
could be used for accessing a local array on a stack frame. This mode can also be
used to support a two-dimensional array; in this case, the displacement points to the
beginning of the array, and each register handles one dimension of the array.

The based scaled index with displacement mode sums the contents of the index
register multiplied by a scaling factor, the contents of the base register, and the displace-
ment. This is useful if an array is stored in a stack frame; in this case, the array elements
would be 2, 4, or 8 bytes each in length. This mode also provides efficient indexing of a
two-dimensional array when the array elements are 2, 4, or 8 bytes in length.

Finally, relative addressing can be used in transfer-of-control instructions. A dis-
placement is added to the value of the program counter, which points to the next instruc-
tion. In this case, the displacement is treated as a signed byte, word, or doubleword
value, and that value either increases or decreases the address in the program counter.

462 CHAPTER 13 / INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

ARM Addressing Modes

Typically, a RISC machine, unlike a CISC machine, uses a simple and relatively
straightforward set of addressing modes. The ARM architecture departs somewhat
from this tradition by providing a relatively rich set of addressing modes. These
modes are most conveniently classified with respect to the type of instruction.1

LOAD/STORE ADDRESSING Load and store instructions are the only instructions
that reference memory. This is always done indirectly through a base register plus
offset. There are three alternatives with respect to indexing (Figure 13.3):

 • Offset: For this addressing method, indexing is not used. An offset value is
added to or subtracted from the value in the base register to form the memory
address. As an example Figure 13.3a illustrates this method with the assembly
language instruction STRB r0, [r1, #12]. This is the store byte instruc-
tion. In this case the base address is in register r1 and the displacement is an
immediate value of decimal 12. The resulting address (base plus offset) is the
location where the least significant byte from r0 is to be stored.

 • Preindex: The memory address is formed in the same way as for offset address-
ing. The memory address is also written back to the base register. In other
words, the base register value is incremented or decremented by the offset
value. Figure 13.3b illustrates this method with the assembly language instruc-
tion STRB r0, [r1, #12]!. The exclamation point signifies preindexing.

 • Postindex: The memory address is the base register value. An offset is added
to or subtracted from the base register value and the result is written back to
the base register. Figure 13.3c illustrates this method with the assembly lan-
guage instruction STRB r0, [r1], #12.

Note that what ARM refers to as a base register acts as an index register for
preindex and postindex addressing. The offset value can either be an immediate
value stored in the instruction or it can be in another register. If the offset value
is in a register, another useful feature is available: scaled register addressing. The
value in the offset register is scaled by one of the shift operators: Logical Shift Left,
Logical Shift Right, Arithmetic Shift Right, Rotate Right, or Rotate Right Extended
(which includes the carry bit in the rotation). The amount of the shift is specified as
an immediate value in the instruction.

DATA PROCESSING INSTRUCTION ADDRESSING Data processing instructions use
either register addressing or a mixture of register and immediate addressing. For
register addressing, the value in one of the register operands may be scaled using
one of the five shift operators defined in the preceding paragraph.

BRANCH INSTRUCTIONS The only form of addressing for branch instructions is
immediate addressing. The branch instruction contains a 24-bit value. For address
calculation, this value is shifted left 2 bits, so that the address is on a word boundary.
Thus the effective address range is {32 MB from the program counter.

1As with our discussion of x86 addressing, we ignore the translation from virtual to physical address in
the following discussion.

13.2 / x86 AND ARM ADDRESSING MODES 463

LOAD/STORE MULTIPLE ADDRESSING Load Multiple instructions load a subset
(possibly all) of the general-purpose registers from memory. Store Multiple
instructions store a subset (possibly all) of the general-purpose registers to
memory. The list of registers for the load or store is specified in a 16-bit field in the
instruction with each bit corresponding to one of the 16 registers. Load and Store
Multiple addressing modes produce a sequential range of memory addresses. The
lowest-numbered register is stored at the lowest memory address and the highest-
numbered register at the highest memory address. Four addressing modes are used

0x200 0x200

0x20C0x20C 0xC

r1

r1
Original

base register

(b) Preindex

(c) Postindex

Destination
register
for STR

Updated
base register

0x5

0x5 r0

Offset

STRB r0, [r1, #12]!

0x200 0x200

0x20C0x20C 0xC

r1

r1
Original

base register

Destination
register
for STR

Updated
base register

0x5

0x5

r0

Offset

STRB r0, [r1], #12

0x200 0x200

0x20C0xC

r1
Original

base register

(a) Offset

Destination
register
for STR

0x5

0x5
r0

Offset

STRB r0, [r1, #12]

Figure 13.3 ARM Indexing Methods

464 CHAPTER 13 / INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

(Figure 13.4): increment after, increment before, decrement after, and decrement
before. A base register specifies a main memory address where register values
are stored in or loaded from in ascending (increment) or descending (decrement)
word locations. Incrementing or decrementing starts either before or after the first
memory access.

These instructions are useful for block loads or stores, stack operations, and
procedure exit sequences.

 13.3 INSTRUCTION FORMATS

An instruction format defines the layout of the bits of an instruction, in terms of
its constituent fields. An instruction format must include an opcode and, implicitly
or explicitly, zero or more operands. Each explicit operand is referenced using one
of the addressing modes described in Section 13.1. The format must, implicitly or
explicitly, indicate the addressing mode for each operand. For most instruction sets,
more than one instruction format is used.

The design of an instruction format is a complex art, and an amazing variety of
designs have been implemented. We examine the key design issues, looking briefly
at some designs to illustrate points, and then we examine the x86 and ARM solu-
tions in detail.

Instruction Length

The most basic design issue to be faced is the instruction format length. This deci-
sion affects, and is affected by, memory size, memory organization, bus structure,
processor complexity, and processor speed. This decision determines the richness
and flexibility of the machine as seen by the assembly-language programmer.

The most obvious trade-off here is between the desire for a powerful instruc-
tion repertoire and a need to save space. Programmers want more opcodes, more
operands, more addressing modes, and greater address range. More opcodes and
more operands make life easier for the programmer, because shorter programs can

0x20C

0x210

0x214

0x20C(r0)

(r1)

(r4)

(r0)

(r1)

(r4)

(r0)

(r1)

(r4)

(r0)

(r1)

(r4) 0x208

0x204

0x200

0x218

r10

Base register

Increment
after (IA)

Increment
before (IB)

Decrement
after (DA)

Decrement
before (DB)

LDMxx r10, {r0, r1, r4}
STMxx r10, {r0, r1, r4}

Figure 13.4 ARM Load/Store Multiple Addressing

13.3 / INSTRUCTION FORMATS 465

be written to accomplish given tasks. Similarly, more addressing modes give the pro-
grammer greater flexibility in implementing certain functions, such as table manipu-
lations and multiple-way branching. And, of course, with the increase in main mem-
ory size and the increasing use of virtual memory, programmers want to be able to
address larger memory ranges. All of these things (opcodes, operands, addressing
modes, address range) require bits and push in the direction of longer instruction
lengths. But longer instruction length may be wasteful. A 64-bit instruction occupies
twice the space of a 32-bit instruction but is probably less than twice as useful.

Beyond this basic trade-off, there are other considerations. Either the instruc-
tion length should be equal to the memory-transfer length (in a bus system, data-
bus length) or one should be a multiple of the other. Otherwise, we will not get
an integral number of instructions during a fetch cycle. A related consideration
is the memory transfer rate. This rate has not kept up with increases in processor
speed. Accordingly, memory can become a bottleneck if the processor can execute
instructions faster than it can fetch them. One solution to this problem is to use
cache memory (see Section 4.3); another is to use shorter instructions. Thus, 16-bit
instructions can be fetched at twice the rate of 32-bit instructions but probably can
be executed less than twice as rapidly.

A seemingly mundane but nevertheless important feature is that the instruc-
tion length should be a multiple of the character length, which is usually 8 bits, and
of the length of fixed-point numbers. To see this, we need to make use of that unfor-
tunately ill-defined word, word [FRAI83]. The word length of memory is, in some
sense, the “natural” unit of organization. The size of a word usually determines the
size of fixed-point numbers (usually the two are equal). Word size is also typically
equal to, or at least integrally related to, the memory transfer size. Because a com-
mon form of data is character data, we would like a word to store an integral number
of characters. Otherwise, there are wasted bits in each word when storing multiple
characters, or a character will have to straddle a word boundary. The importance
of this point is such that IBM, when it introduced the System/360 and wanted to
employ 8-bit characters, made the wrenching decision to move from the 36-bit archi-
tecture of the scientific members of the 700/7000 series to a 32-bit architecture.

Allocation of Bits

We’ve looked at some of the factors that go into deciding the length of the instruc-
tion format. An equally difficult issue is how to allocate the bits in that format. The
trade-offs here are complex.

For a given instruction length, there is clearly a trade-off between the number
of opcodes and the power of the addressing capability. More opcodes obviously
mean more bits in the opcode field. For an instruction format of a given length,
this reduces the number of bits available for addressing. There is one interesting
refinement to this trade-off, and that is the use of variable-length opcodes. In this
approach, there is a minimum opcode length but, for some opcodes, additional
operations may be specified by using additional bits in the instruction. For a fixed-
length instruction, this leaves fewer bits for addressing. Thus, this feature is used
for those instructions that require fewer operands and/or less powerful addressing.

466 CHAPTER 13 / INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

The following interrelated factors go into determining the use of the address-
ing bits.

 • Number of addressing modes: Sometimes an addressing mode can be indi-
cated implicitly. For example, certain opcodes might always call for indexing.
In other cases, the addressing modes must be explicit, and one or more mode
bits will be needed.

 • Number of operands: We have seen that fewer addresses can make for longer,
more awkward programs (e.g., Figure 10.3). Typical instruction formats on
today’s machines include two operands. Each operand address in the instruc-
tion might require its own mode indicator, or the use of a mode indicator
could be limited to just one of the address fields.

 • Register versus memory: A machine must have registers so that data can be
brought into the processor for processing. With a single user-visible register
(usually called the accumulator), one operand address is implicit and con-
sumes no instruction bits. However, single-register programming is awkward
and requires many instructions. Even with multiple registers, only a few bits
are needed to specify the register. The more that registers can be used for
operand references, the fewer bits are needed. A number of studies indicate
that a total of 8 to 32 user-visible registers is desirable [LUND77, HUCK83].
Most contemporary architectures have at least 32 registers.

 • Number of register sets: Most contemporary machines have one set of general-
purpose registers, with typically 32 or more registers in the set. These registers
can be used to store data and can be used to store addresses for displacement
addressing. Some architectures, including that of the x86, have a collection of
two or more specialized sets (such as data and displacement). One advantage
of this latter approach is that, for a fixed number of registers, a functional split
requires fewer bits to be used in the instruction. For example, with two sets
of eight registers, only 3 bits are required to identify a register; the opcode or
mode register will determine which set of registers is being referenced.

 • Address range: For addresses that reference memory, the range of addresses
that can be referenced is related to the number of address bits. Because this
imposes a severe limitation, direct addressing is rarely used. With displace-
ment addressing, the range is opened up to the length of the address register.
Even so, it is still convenient to allow rather large displacements from the reg-
ister address, which requires a relatively large number of address bits in the
instruction.

 • Address granularity: For addresses that reference memory rather than reg-
isters, another factor is the granularity of addressing. In a system with 16- or
32-bit words, an address can reference a word or a byte at the designer’s
choice. Byte addressing is convenient for character manipulation but requires,
for a fixed-size memory, more address bits.

Thus, the designer is faced with a host of factors to consider and balance.
How critical the various choices are is not clear. As an example, we cite one study
[CRAG79] that compared various instruction format approaches, including the use

13.3 / INSTRUCTION FORMATS 467

of a stack, general-purpose registers, an accumulator, and only memory-to-register
approaches. Using a consistent set of assumptions, no significant difference in code
space or execution time was observed.

Let us briefly look at how two historical machine designs balance these vari-
ous factors.

PDP-8 One of the simplest instruction designs for a general-purpose computer
was for the PDP-8 [BELL78b]. The PDP-8 uses 12-bit instructions and operates on
12-bit words. There is a single general-purpose register, the accumulator.

Despite the limitations of this design, the addressing is quite flexible. Each
memory reference consists of 7 bits plus two 1-bit modifiers. The memory is divided
into fixed-length pages of 27 = 128 words each. Address calculation is based on
references to page 0 or the current page (page containing this instruction) as deter-
mined by the page bit. The second modifier bit indicates whether direct or indirect
addressing is to be used. These two modes can be used in combination, so that an
indirect address is a 12-bit address contained in a word of page 0 or the current
page. In addition, 8 dedicated words on page 0 are autoindex “registers.” When an
indirect reference is made to one of these locations, preindexing occurs.

Figure 13.5 shows the PDP-8 instruction format. There are a 3-bit opcode and
three types of instructions. For opcodes 0 through 5, the format is a single-address
memory reference instruction including a page bit and an indirect bit. Thus, there
are only six basic operations. To enlarge the group of operations, opcode 7 defines

Memory reference instructions
Opcode D/I Z/C Displacement

0 2 3 4 5 11

Input/output instructions

1 1 0 Device Opcode
0 2 3 8 9 11

Register reference instructions
Group 1 microinstructions
1 1 1 0 CLA CLL CMA CML RAR RAL BSW IAC
0 1 2 3

Group 2 microinstructions
1 1 1 0
0 1 2 3

Group 3 microinstructions
1 1 1 0
0 1 2 3

4 5 6 7 8 9 10 11

CLA SMA SZA SNL RSS OSR HLT 0
4 5 6 7 8 9 10 11

CLA MQA 0 MQL 0 0 0 1
4 5 6 7 8 9 10 11

D/I � Direct/Indirect address
Z/C � Page 0 or Current page
CLA � Clear Accumulator
CLL � Clear Link
CMA � CoMplement Accumulator
CML � CoMplement Link
RAR � Rotate Accumulator Right
RAL � Rotate Accumulator Left
BSW � Byte SWap

IAC � Increment ACcumulator
SMA � Skip on Minus Accumulator
SZA � Skip on Zero Accumulator
SNL � Skip on Nonzero Link
RSS � Reverse Skip Sense
OSR � Or with Switch Register
HLT � HaLT
MQA� Multiplier Quotient into Accumulator
MQL � Multiplier Quotient Load

Figure 13.5 PDP-8 Instruction Formats

468 CHAPTER 13 / INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

a register reference or microinstruction. In this format, the remaining bits are used
to encode additional operations. In general, each bit defines a specific operation
(e.g., clear accumulator), and these bits can be combined in a single instruction. The
microinstruction strategy was used as far back as the PDP-1 by DEC and is, in a
sense, a forerunner of today’s microprogrammed machines, to be discussed in Part
Four. Opcode 6 is the I/O operation; 6 bits are used to select one of 64 devices, and
3 bits specify a particular I/O command.

The PDP-8 instruction format is remarkably efficient. It supports indirect
addressing, displacement addressing, and indexing. With the use of the opcode
extension, it supports a total of approximately 35 instructions. Given the constraints
of a 12-bit instruction length, the designers could hardly have done better.

PDP-10 A sharp contrast to the instruction set of the PDP-8 is that of the PDP-10.
The PDP-10 was designed to be a large-scale time-shared system, with an emphasis
on making the system easy to program, even if additional hardware expense was
involved.

Among the design principles employed in designing the instruction set were
the following [BELL78c]:

 • Orthogonality: Orthogonality is a principle by which two variables are inde-
pendent of each other. In the context of an instruction set, the term indicates
that other elements of an instruction are independent of (not determined by)
the opcode. The PDP-10 designers use the term to describe the fact that an
address is always computed in the same way, independent of the opcode. This
is in contrast to many machines, where the address mode sometimes depends
implicitly on the operator being used.

 • Completeness: Each arithmetic data type (integer, fixed-point, floating-point)
should have a complete and identical set of operations.

 • Direct addressing: Base plus displacement addressing, which places a mem-
ory organization burden on the programmer, was avoided in favor of direct
 addressing.

Each of these principles advances the main goal of ease of programming.
The PDP-10 has a 36-bit word length and a 36-bit instruction length. The fixed

instruction format is shown in Figure 13.6. The opcode occupies 9 bits, allowing
up to 512 operations. In fact, a total of 365 different instructions are defined. Most
instructions have two addresses, one of which is one of 16 general-purpose registers.
Thus, this operand reference occupies 4 bits. The other operand reference starts
with an 18-bit memory address field. This can be used as an immediate operand or
a memory address. In the latter usage, both indexing and indirect addressing are
allowed. The same general-purpose registers are also used as index registers.

Index
register Memory address

0 8 9 12 14 17 18 35
I � indirect bit

Opcode Register I

Figure 13.6 PDP-10 Instruction Format

13.3 / INSTRUCTION FORMATS 469

A 36-bit instruction length is true luxury. There is no need to do clever things
to get more opcodes; a 9-bit opcode field is more than adequate. Addressing is also
straightforward. An 18-bit address field makes direct addressing desirable. For
memory sizes greater than 218, indirection is provided. For the ease of the program-
mer, indexing is provided for table manipulation and iterative programs. Also, with
an 18-bit operand field, immediate addressing becomes attractive.

The PDP-10 instruction set design does accomplish the objectives listed ear-
lier [LUND77]. It eases the task of the programmer or compiler at the expense of
an inefficient utilization of space. This was a conscious choice made by the designers
and therefore cannot be faulted as poor design.

Variable-Length Instructions

The examples we have looked at so far have used a single fixed instruction length,
and we have implicitly discussed trade-offs in that context. But the designer may
choose instead to provide a variety of instruction formats of different lengths. This
tactic makes it easy to provide a large repertoire of opcodes, with different opcode
lengths. Addressing can be more flexible, with various combinations of register and
memory references plus addressing modes. With variable-length instructions, these
many variations can be provided efficiently and compactly.

The principal price to pay for variable-length instructions is an increase in the
complexity of the processor. Falling hardware prices, the use of microprogramming
(discussed in Part Four), and a general increase in understanding the principles of
processor design have all contributed to making this a small price to pay. However,
we will see that RISC and superscalar machines can exploit the use of fixed-length
instructions to provide improved performance.

The use of variable-length instructions does not remove the desirability of
making all of the instruction lengths integrally related to the word length. Because
the processor does not know the length of the next instruction to be fetched, a
typical strategy is to fetch a number of bytes or words equal to at least the longest
possible instruction. This means that sometimes multiple instructions are fetched.
However, as we shall see in Chapter 14, this is a good strategy to follow in any case.

PDP-11 The PDP-11 was designed to provide a powerful and flexible instruction
set within the constraints of a 16-bit minicomputer [BELL70].

The PDP-11 employs a set of eight 16-bit general-purpose registers. Two of
these registers have additional significance: one is used as a stack pointer for spe-
cial-purpose stack operations, and one is used as the program counter, which con-
tains the address of the next instruction.

Figure 13.7 shows the PDP-11 instruction formats. Thirteen different formats
are used, encompassing zero-, one-, and two-address instruction types. The opcode
can vary from 4 to 16 bits in length. Register references are 6 bits in length. Three
bits identify the register, and the remaining 3 bits identify the addressing mode. The
PDP-11 is endowed with a rich set of addressing modes. One advantage of linking
the addressing mode to the operand rather than the opcode, as is sometimes done,
is that any addressing mode can be used with any opcode. As was mentioned, this
independence is referred to as orthogonality.

470

Opcode Opcode Offset1 2 3

4 5 6

7

10

11

12

13

Numbers below fields indicate bit length
Source and destination each contain a 3-bit addressing mode field and a 3-bit register number
FP indicates one of four floating-point registers
R indicates one of the general-purpose registers
CC is the condition code field

8 9

RSource SourceDestinationOpcode

4

Opcode

8

Opcode

10

Opcode

12

CC

4

FP

2

Destination

6

Destination

6

Opcode

13

Opcode

16

Opcode

4

Source

6

Destination

6

Memory address

16

R

3

Opcode

7

Source

6

Source

6

Destination

6

Destination

6

Memory address

16

Memory address

16

Memory address

16

Memory address 1

16

Memory address 2

16

R

3

Opcode

8

FP

2

Opcode

10

Opcode

4

Source

6

7 8 836 66

Figure 13.7 Instruction Formats for the PDP-11

13.3 / INSTRUCTION FORMATS 471

PDP-11 instructions are usually one word (16 bits) long. For some instructions,
one or two memory addresses are appended, so that 32-bit and 48-bit instructions
are part of the repertoire. This provides for further flexibility in addressing.

The PDP-11 instruction set and addressing capability are complex. This
increases both hardware cost and programming complexity. The advantage is that
more efficient or compact programs can be developed.

VAX Most architectures provide a relatively small number of fixed instruction
formats. This can cause two problems for the programmer. First, addressing mode
and opcode are not orthogonal. For example, for a given operation, one operand
must come from a register and another from memory, or both from registers, and so
on. Second, only a limited number of operands can be accommodated: typically up
to two or three. Because some operations inherently require more operands, various
strategies must be used to achieve the desired result using two or more instructions.

To avoid these problems, two criteria were used in designing the VAX instruc-
tion format [STRE78]:

 1. All instructions should have the “natural” number of operands.

 2. All operands should have the same generality in specification.

The result is a highly variable instruction format. An instruction consists of a 1- or
2-byte opcode followed by from zero to six operand specifiers, depending on the
opcode. The minimal instruction length is 1 byte, and instructions up to 37 bytes can
be constructed. Figure 13.8 gives a few examples.

The VAX instruction begins with a 1-byte opcode. This suffices to handle
most VAX instructions. However, as there are over 300 different instructions, 8 bits
are not enough. The hexadecimal codes FD and FF indicate an extended opcode,
with the actual opcode being specified in the second byte.

The remainder of the instruction consists of up to six operand specifiers. An
operand specifier is, at minimum, a 1-byte format in which the leftmost 4 bits are
the address mode specifier. The only exception to this rule is the literal mode,
which is signaled by the pattern 00 in the leftmost 2 bits, leaving space for a 6-bit
literal. Because of this exception, a total of 12 different addressing modes can be
specified.

An operand specifier often consists of just one byte, with the rightmost 4
bits specifying one of 16 general-purpose registers. The length of the operand
specifier can be extended in one of two ways. First, a constant value of one or
more bytes may immediately follow the first byte of the operand specifier. An
example of this is the displacement mode, in which an 8-, 16-, or 32-bit displace-
ment is used. Second, an index mode of addressing may be used. In this case, the
first byte of the operand specifier consists of the 4-bit addressing mode code of
0100 and a 4-bit index register identifier. The remainder of the operand specifier
consists of the base address specifier, which may itself be one or more bytes in
length.

The reader may be wondering, as the author did, what kind of instruction requires
six operands. Surprisingly, the VAX has a number of such instructions. Consider

ADDP6 OP1, OP2, OP3, OP4, OP5, OP6

472 CHAPTER 13 / INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

This instruction adds two packed decimal numbers. OP1 and OP2 specify the length
and starting address of one decimal string; OP3 and OP4 specify a second string.
These two strings are added and the result is stored in the decimal string whose
length and starting location are specified by OP5 and OP6.

The VAX instruction set provides for a wide variety of operations and address-
ing modes. This gives a programmer, such as a compiler writer, a very powerful
and flexible tool for developing programs. In theory, this should lead to efficient
machine-language compilations of high-level language programs and, in general, to
effective and efficient use of processor resources. The penalty to be paid for these
benefits is the increased complexity of the processor compared with a processor
with a simpler instruction set and format.

We return to these matters in Chapter 15, where we examine the case for very
simple instruction sets.

Opcode for RSB

Hexadecimal
Format

Assembler Notation
and Description

Explanation

0

8 bits

5

D 4
5 9

B 0
C 4
6 4
0 1
A B
1 9

C 1
0 5
5 0
4 2
D F

RSB
Return from subroutine

Opcode for CLRL

Register R9

CLRL R9

Clear register R9

Opcode for MOVW
Word displacement mode,
Register R4

Byte displacement mode,
Register R11
25 in hexadecimal

356 in hexadecimal

MOVW 356(R4), 25(R11)

Move a word from address
that is 356 plus contents
of R4 to address that is
25 plus contents of R11

Opcode for ADDL3

Short literal 5

Register mode R0

Index prefix R2
Indirect word relative
(displacement from PC)

ADDL3 #5, R0, @A[R2]

Add 5 to a 32-bit integer in
R0 and store the result in
location whose address is
sum of A and 4 times the
contents of R2

Amount of displacement from
PC relative to location A

Figure 13.8 Example of VAX Instructions

13.4 / x86 AND ARM INSTRUCTION FORMATS 473

 13.4 x86 AND ARM INSTRUCTION FORMATS

x86 Instruction Formats

The x86 is equipped with a variety of instruction formats. Of the elements described
in this subsection, only the opcode field is always present. Figure 13.9 illustrates the
general instruction format. Instructions are made up of from zero to four optional
instruction prefixes, a 1- or 2-byte opcode, an optional address specifier (which con-
sists of the ModR/M byte and the Scale Index Base byte) an optional displacement,
and an optional immediate field.

Let us first consider the prefix bytes:

 • Instruction prefixes: The instruction prefix, if present, consists of the LOCK
prefix or one of the repeat prefixes. The LOCK prefix is used to ensure
 exclusive use of shared memory in multiprocessor environments. The repeat
prefixes specify repeated operation of a string, which enables the x86 to pro-
cess strings much faster than with a regular software loop. There are five dif-
ferent repeat prefixes: REP, REPE, REPZ, REPNE, and REPNZ. When the
absolute REP prefix is present, the operation specified in the instruction is
executed repeatedly on successive elements of the string; the number of repeti-
tions is specified in register CX. The conditional REP prefix causes the instruc-
tion to repeat until the count in CX goes to zero or until the condition is met.

 • Segment override: Explicitly specifies which segment register an instruction
should use, overriding the default segment-register selection generated by the
x86 for that instruction.

Mod

bytes0 or 1

0, 1, 2, 3, or 4 bytes 0, 1, 2, or 4 0, 1, 2, or 41, 2, or 3 0 or 1 0 or 1

0 or 1 0 or 1 0 or 1

Instruction prefixes Opcode

01234567 01234567

ModR/M SIB Displacement Immediate

Instruction
prefix

Segment
override

Operand
size

override

Address
size

override

Reg/Opcode R/M Scale Index Base

Figure 13.9 x86 Instruction Format

474 CHAPTER 13 / INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

 • Operand size: An instruction has a default operand size of 16 or 32 bits, and
the operand prefix switches between 32-bit and 16-bit operands.

 • Address size: The processor can address memory using either 16- or 32-bit
addresses. The address size determines the displacement size in instructions
and the size of address offsets generated during effective address calculation.
One of these sizes is designated as default, and the address size prefix switches
between 32-bit and 16-bit address generation.

The instruction itself includes the following fields:

 • Opcode: The opcode field is 1, 2, or 3 bytes in length. The opcode may also
include bits that specify if data is byte- or full-size (16 or 32 bits depending on
context), direction of data operation (to or from memory), and whether an im-
mediate data field must be sign extended.

 • ModR/M: This byte, and the next, provide addressing information. The
ModR/M byte specifies whether an operand is in a register or in memory; if
it is in memory, then fields within the byte specify the addressing mode to be
used. The ModR/M byte consists of three fields: The Mod field (2 bits) com-
bines with the R/M field to form 32 possible values: 8 registers and 24 index-
ing modes; the Reg/Opcode field (3 bits) specifies either a register number or
three more bits of opcode information; the r/m field (3 bits) can specify a reg-
ister as the location of an operand, or it can form part of the addressing-mode
encoding in combination with the Mod field.

 • SIB: Certain encoding of the ModR/M byte specifies the inclusion of the SIB
byte to specify fully the addressing mode. The SIB byte consists of three fields:
The Scale field (2 bits) specifies the scale factor for scaled indexing; the Index
field (3 bits) specifies the index register; the Base field (3 bits) specifies the
base register.

 • Displacement: When the addressing-mode specifier indicates that a displace-
ment is used, an 8-, 16-, or 32-bit signed integer displacement field is added.

 • Immediate: Provides the value of an 8-, 16-, or 32-bit operand.

Several comparisons may be useful here. In the x86 format, the addressing mode
is provided as part of the opcode sequence rather than with each operand. Because
only one operand can have address-mode information, only one memory operand
can be referenced in an instruction. In contrast, the VAX carries the address-mode
information with each operand, allowing memory-to-memory operations. The x86
instructions are therefore more compact. However, if a memory- to-memory opera-
tion is required, the VAX can accomplish this in a single instruction.

The x86 format allows the use of not only 1-byte, but also 2-byte and 4-byte
offsets for indexing. Although the use of the larger index offsets results in longer
instructions, this feature provides needed flexibility. For example, it is useful in
addressing large arrays or large stack frames. In contrast, the IBM S/370 instruc-
tion format allows offsets no greater than 4 Kbytes (12 bits of offset information),
and the offset must be positive. When a location is not in reach of this offset, the
compiler must generate extra code to generate the needed address. This problem is

13.4 / x86 AND ARM INSTRUCTION FORMATS 475

especially apparent in dealing with stack frames that have local variables occupying
in excess of 4 Kbytes. As [DEWA90] puts it, “generating code for the 370 is so
 painful as a result of that restriction that there have even been compilers for the 370
that simply chose to limit the size of the stack frame to 4 Kbytes.”

As can be seen, the encoding of the x86 instruction set is very complex. This
has to do partly with the need to be backward compatible with the 8086 machine
and partly with a desire on the part of the designers to provide every possible assist-
ance to the compiler writer in producing efficient code. It is a matter of some debate
whether an instruction set as complex as this is preferable to the opposite extreme
of the RISC instruction sets.

ARM Instruction Formats

All instructions in the ARM architecture are 32 bits long and follow a regular for-
mat (Figure 13.10). The first four bits of an instruction are the condition code.
As discussed in Chapter 12, virtually all ARM instructions can be conditionally
 executed. The next three bits specify the general type of instruction. For most instruc-
tions other than branch instructions, the next five bits constitute an opcode and/or
modifier bits for the operation. The remaining 20 bits are for operand addressing. The
regular structure of the instruction formats eases the job of the instruction decode units.

0 0 0S Rn RmRd Shift amount Shift

0Shift amount Shift

0Cond Opcode
Data processing
immediate shift

0 1 S Rn Rd Rotate Immediate0Cond Opcode
Data processing

immediate

1 0 LWBUP Rn Rd Immediate0Cond
Load/store

immediate offset

1 1 LWBUP Rn Rd0Cond
Load/store

register offset

0 0 10S Rn Rm

Rm

Register list0 0 LWSUP Rn1Cond
Load/store

multiple

24-Bit offset0 1 L1Cond
Branch/branch

with link

S = For data processing instructions, signifies that the instruction
 updates the condition codes
S = For load/store multiple instructions, signifies whether instruction
 execution is restricted to supervisor mode
P, U, W = Bits that distinguish among
 different types of addressing_mode
B = Distinguishes between an unsigned
 byte (B==1) and a word (B==0) access
L = For load/store instructions, distinguishes
 between a Load (L==1) and a Store (L==0)
L = For branch instructions, determines whether a
 return address is stored in the link register

Rd Rs Shift0Cond Opcode
Data processing

register shift

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

Figure 13.10 ARM Instruction Formats

476 CHAPTER 13 / INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

IMMEDIATE CONSTANTS To achieve a greater range of immediate values, the
data processing immediate format specifies both an immediate value and a rotate
value. The 8-bit immediate value is expanded to 32 bits and then rotated right by a
number of bits equal to twice the 4-bit rotate value. Several examples are shown in
Figure 13.11.

THUMB INSTRUCTION SET The Thumb instruction set is a re-encoded subset of
the ARM instruction set. Thumb is designed to increase the performance of ARM
implementations that use a 16-bit or narrower memory data bus and to allow better
code density than provided by the ARM instruction set. The Thumb instruction set
contains a subset of the ARM 32-bit instruction set recoded into 16-bit instructions.
The savings is achieved in the following way:

 1. Thumb instructions are unconditional, so the condition code field is not used.
Also, all Thumb arithmetic and logic instructions update the condition flags,
so that the update-flag bit is not needed. Savings: 5 bits.

 2. Thumb has only a subset of the operations in the full instruction set and uses
only a 2-bit opcode field, plus a 3-bit type field. Savings: 2 bits.

 3. The remaining savings of 9 bits comes from reductions in the operand specifi-
cations. For example, Thumb instructions reference only registers r0 through
r7, so only 3 bits are required for register references, rather than 4 bits.
Immediate values do not include a 4-bit rotate field.

The ARM processor can execute a program consisting of a mixture of Thumb
instructions and 32-bit ARM instructions. A bit in the processor control register
determines which type of instruction is currently being executed. Figure 13.12 shows
an example. The figure shows both the general format and a specific instance of an
instruction in both 16-bit and 32-bit formats.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000

ror #0—range 0 through 0x000000FF—step 0x00000001

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

0 0

ror #8—range 0 through 0xFF000000—step 0x01000000

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000

ror #30—range 0 through 0x000003FC—step 0x00000004

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

Figure 13.11 Examples of Use of ARM Immediate Constants

13.5 / ASSEMBLY LANGUAGE 477

 13.5 ASSEMBLY LANGUAGE

A processor can understand and execute machine instructions. Such instructions are
simply binary numbers stored in the computer. If a programmer wished to program
directly in machine language, then it would be necessary to enter the program as
binary data.

Consider the simple BASIC statement

N = I + J + K

Suppose we wished to program this statement in machine language and to initialize
I, J, and K to 2, 3, and 4, respectively. This is shown in Figure 13.13a. The program
starts in location 101 (hexadecimal). Memory is reserved for the four variables start-
ing at location 201. The program consists of four instructions:

 1. Load the contents of location 201 into the AC.

 2. Add the contents of location 202 to the AC.

 3. Add the contents of location 203 to the AC.

 4. Store the contents of the AC in location 204.

This is clearly a tedious and very error-prone process.
A slight improvement is to write the program in hexadecimal rather than

binary notation (Figure 10.11b). We could write the program as a series of lines.
Each line contains the address of a memory location and the hexadecimal code of
the binary value to be stored in that location. Then we need a program that will
accept this input, translate each line into a binary number, and store it in the speci-
fied location.

For more improvement, we can make use of the symbolic name or mnemonic
of each instruction. This results in the symbolic program shown in Figure 10.11c.
Each line of input still represents one memory location. Each line consists of three

0 1 1 0 00 0 10 00 10 1 10 11 11 0 0 0 0 0 010 0 0 1 1

ADD r3, #19

ADDS r3, r3, #19

Data processing
immediate format

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

0 1 1 00 1 10 0 0 1 00 1 10

Add/subtract/compare/move
immediate format

Always
condition
code

Update
condition
flags

Zero
rotation

0 1 Rd/RnOpcode Immediate0

012345678910111214 1315

0 1 S Rn Rd Rotate Immediate0Cond Opcode

Figure 13.12 Expanding a Thumb ADD Instruction into its ARM Equivalent

478 CHAPTER 13 / INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

fields, separated by spaces. The first field contains the address of a location. For an
instruction, the second field contains the three-letter symbol for the opcode. If it is
a memory-referencing instruction, then a third field contains the address. To store
arbitrary data in a location, we invent a pseudoinstruction with the symbol DAT.
This is merely an indication that the third field on the line contains a hexadecimal
number to be stored in the location specified in the first field.

For this type of input we need a slightly more complex program. The program
accepts each line of input, generates a binary number based on the second and third
(if present) fields, and stores it in the location specified by the first field.

The use of a symbolic program makes life much easier but is still awkward.
In particular, we must give an absolute address for each word. This means that the
program and data can be loaded into only one place in memory, and we must know
that place ahead of time. Worse, suppose we wish to change the program some day
by adding or deleting a line. This will change the addresses of all subsequent words.

A much better system, and one commonly used, is to use symbolic addresses.
This is illustrated in Figure 10.11d. Each line still consists of three fields. The first
field is still for the address, but a symbol is used instead of an absolute numerical
address. Some lines have no address, implying that the address of that line is one
more than the address of the previous line. For memory-reference instructions, the
third field also contains a symbolic address.

With this last refinement, we have an assembly language. Programs written in
assembly language (assembly programs) are translated into machine language by an
assembler. This program must not only do the symbolic translation discussed earlier
but also assign some form of memory addresses to symbolic addresses.

Address Contents

101 0010 0010 101 2201 101 2201
102 0001 0010 102 1202 102 1202
103 0001 0010 103 1203 103 1203
104 0011 0010 104 3204 104 3204

201 0000 0000 201 0002 201 0002
202 0000 0000 202 0003 202 0003
203 0000 0000 203 0004 203 0004
204 0000 0000 204 0000 204 0000

(a) Binary program (b) Hexadecimal program

Address Instruction Label Operation Operand
101 LDA 201 FORMUL LDA I
102 ADD 202 ADD J
103 ADD 203 ADD K
104 STA 204 STA N

201 DAT 2 I DATA 2
202 DAT 3 J DATA 3
203 DAT 4 K DATA 4
204 DAT 0 N DATA 0

(c) Symbolic program (d) Assembly program

ContentsAddress

Figure 13.13 Computation of the Formula N = I + J + K

13.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 479

Review Questions

 13.1 Briefly define immediate addressing.
 13.2 Briefly define direct addressing.
 13.3 Briefly define indirect addressing.
 13.4 Briefly define register addressing.
 13.5 Briefly define register indirect addressing.
 13.6 Briefly define displacement addressing.
 13.7 Briefly define relative addressing.
 13.8 What is the advantage of autoindexing?
 13.9 What is the difference between postindexing and preindexing?
 13.10 What facts go into determining the use of the addressing bits of an instruction?
 13.11 What are the advantages and disadvantages of using a variable-length instruction

 format?

BLAA97 Blaauw, G., and Brooks, F. Computer Architecture: Concepts and Evolution.
Reading, MA: Addison-Wesley, 1997.

FLYN85 Flynn, M.; Johnson, J.; and Wakefield, S. “On Instruction Sets and Their
 Formats.” IEEE Transactions on Computers, March 1985.

The development of assembly language was a major milestone in the evolu-
tion of computer technology. It was the first step to the high-level languages in use
today. Although few programmers use assembly language, virtually all machines
provide one. They are used, if at all, for systems programs such as compilers and
I/O routines.

Appendix B provides a more detailed examination of assembly language.

 13.6 RECOMMENDED READING

The references cited in Chapter 12 are equally applicable to the material of this chapter.
[BLAA97] contains a detailed discussion of instruction formats and addressing modes. In
addition, the reader may wish to consult [FLYN85] for a discussion and analysis of instruc-
tion set design issues, particularly those relating to formats.

autoindexing
base-register addressing
direct addressing
displacement addressing
effective address

immediate addressing
indexing
indirect addressing
instruction format
postindexing

preindexing
register addressing
register indirect addressing
relative addressing
word

 13.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

480 CHAPTER 13 / INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

Problems

 13.1 Given the following memory values and a one-address machine with an accumulator,
what values do the following instructions load into the accumulator?

• Word 20 contains 40.
• Word 30 contains 50.
• Word 40 contains 60.
• Word 50 contains 70.

a. LOAD IMMEDIATE 20
b. LOAD DIRECT 20
c. LOAD INDIRECT 20
d. LOAD IMMEDIATE 30
e. LOAD DIRECT 30
f. LOAD INDIRECT 30

 13.2 Let the address stored in the program counter be designated by the symbol X1. The
instruction stored in X1 has an address part (operand reference) X2. The operand
needed to execute the instruction is stored in the memory word with address X3. An
index register contains the value X4. What is the relationship between these various
quantities if the addressing mode of the instruction is (a) direct; (b) indirect; (c) PC
relative; (d) indexed?

 13.3 An address field in an instruction contains decimal value 14. Where is the correspond-
ing operand located for
a. immediate addressing?
b. direct addressing?
c. indirect addressing?
d. register addressing?
e. register indirect addressing?

 13.4 Consider a 16-bit processor in which the following appears in main memory, starting
at location 200:

200 Load to AC Mode

201 500

202 Next instruction

The first part of the first word indicates that this instruction loads a value into an ac-
cumulator. The Mode field specifies an addressing mode and, if appropriate, indicates
a source register; assume that when used, the source register is R1, which has a value
of 400. There is also a base register that contains the value 100. The value of 500 in
location 201 may be part of the address calculation. Assume that location 399 contains
the value 999, location 400 contains the value 1000, and so on. Determine the effective
address and the operand to be loaded for the following address modes:

a. Direct
b. Immediate
c. Indirect

d. PC relative
e. Displacement
f. Register

g. Register indirect
h. Autoindexing with increment, using R1

 13.5 A PC-relative mode branch instruction is 3 bytes long. The address of the instruction,
in decimal, is 256028. Determine the branch target address if the signed displacement
in the instruction is -31.

 13.6 A PC-relative mode branch instruction is stored in memory at address 62010. The
branch is made to location 53010. The address field in the instruction is 10 bits long.
What is the binary value in the instruction?

13.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 481

 13.7 How many times does the processor need to refer to memory when it fetches and
executes an indirect-address-mode instruction if the instruction is (a) a computation
requiring a single operand; (b) a branch?

 13.8 The IBM 370 does not provide indirect addressing. Assume that the address of an
operand is in main memory. How would you access the operand?

 13.9 In [COOK82], the author proposes that the PC-relative addressing modes be elimi-
nated in favor of other modes, such as the use of a stack. What is the disadvantage of
this proposal?

 13.10 The x86 includes the following instruction:

IMUL op1, op2, immediate

This instruction multiplies op2, which may be either register or memory, by the imme-
diate operand value, and places the result in op1, which must be a register. There is no
other three-operand instruction of this sort in the instruction set. What is the possible
use of such an instruction? (Hint: Consider indexing.)

 13.11 Consider a processor that includes a base with indexing addressing mode. Suppose an
instruction is encountered that employs this addressing mode and specifies a displace-
ment of 1970, in decimal. Currently the base and index register contain the decimal
numbers 48,022 and 8, respectively. What is the address of the operand?

 13.12 Define: EA = (X)+ is the effective address equal to the contents of location X, with X
incremented by one word length after the effective address is calculated; EA = -(X)
is the effective address equal to the contents of location X, with X decremented by
one word length before the effective address is calculated; EA = (X)- is the effec-
tive address equal to the contents of location X, with X decremented by one word
length after the effective address is calculated. Consider the following instructions,
each in the format (Operation Source Operand, Destination Operand), with the result
of the operation placed in the destination operand.
a. OP X, (X)
b. OP (X), (X)+
c. OP (X)+ , (X)
d. OP - (X), (X)
e. OP - (X), (X)+
f. OP (X)+ , (X)+
g. OP (X)- , (X)
Using X as the stack pointer, which of these instructions can pop the top two elements
from the stack, perform the designated operation (e.g., ADD source to destination
and store in destination), and push the result back on the stack? For each such instruc-
tion, does the stack grow toward memory location 0 or in the opposite direction?

 13.13 Assume a stack-oriented processor that includes the stack operations PUSH and POP.
Arithmetic operations automatically involve the top one or two stack elements. Begin
with an empty stack. What stack elements remain after the following instructions are
executed?
PUSH 4
PUSH 7
PUSH 8
ADD
PUSH 10
SUB
MUL

 13.14 Justify the assertion that a 32-bit instruction is probably much less than twice as useful
as a 16-bit instruction.

 13.15 Why was IBM’s decision to move from 36 bits to 32 bits per word wrenching, and to
whom?

482 CHAPTER 13 / INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

 13.16 Assume an instruction set that uses a fixed 16-bit instruction length. Operand speci-
fiers are 6 bits in length. There are K two-operand instructions and L zero-operand
instructions. What is the maximum number of one-operand instructions that can be
supported?

 13.17 Design a variable-length opcode to allow all of the following to be encoded in a 36-bit
instruction:
• instructions with two 15-bit addresses and one 3-bit register number
• instructions with one 15-bit address and one 3-bit register number
• instructions with no addresses or registers

 13.18 Consider the results of Problem 10.6. Assume that M is a 16-bit memory address and
that X, Y, and Z are either 16-bit addresses or 4-bit register numbers. The one-address
machine uses an accumulator, and the two- and three-address machines have 16 regis-
ters and instructions operating on all combinations of memory locations and registers.
Assuming 8-bit opcodes and instruction lengths that are multiples of 4 bits, how many
bits does each machine need to compute X?

 13.19 Is there any possible justification for an instruction with two opcodes?
 13.20 The 16-bit Zilog Z8001 has the following general instruction format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mode Opcode w/b Operand 2 Operand 1

The mode field specifies how to locate the operands from the operand fields. The w/b
field is used in certain instructions to specify whether the operands are bytes or 16-bit
words. The operand 1 field may (depending on the mode field contents) specify one
of 16 general-purpose registers. The operand 2 field may specify any general-purpose
registers except register 0. When the operand 2 field is all zeros, each of the original
opcodes takes on a new meaning.
a. How many opcodes are provided on the Z8001?
b. Suggest an efficient way to provide more opcodes and indicate the trade-off

 involved.

483

PROCESSOR STRUCTURE
AND FUNCTION

14.1 Processor Organization

14.2 Register Organization
User-Visible Registers
Control and Status Registers
Example Microprocessor Register Organizations

14.3 Instruction Cycle
The Indirect Cycle
Data Flow

14.4 Instruction Pipelining
Pipelining Strategy
Pipeline Performance
Pipeline Hazards
Dealing with Branches
Intel 80486 Pipelining

14.5 The x86 Processor Family
Register Organization
Interrupt Processing

14.6 The Arm Processor
Processor Organization
Processor Modes
Register Organization
Interrupt Processing

14.7 Recommended Reading

14.8 Key Terms, Review Questions, and Problems

CHAPTER

484 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

This chapter discusses aspects of the processor not yet covered in Part Three and
sets the stage for the discussion of RISC and superscalar architecture in Chapters
15 and 16.

We begin with a summary of processor organization. Registers, which form
the internal memory of the processor, are then analyzed. We are then in a position
to return to the discussion (begun in Section 3.2) of the instruction cycle. A descrip-
tion of the instruction cycle and a common technique known as instruction pipelin-
ing complete our description. The chapter concludes with an examination of some
aspects of the x86 and ARM organizations.

 14.1 PROCESSOR ORGANIZATION

To understand the organization of the processor, let us consider the requirements
placed on the processor, the things that it must do:

 • Fetch instruction: The processor reads an instruction from memory (register,
cache, main memory).

 • Interpret instruction: The instruction is decoded to determine what action is
required.

 • Fetch data: The execution of an instruction may require reading data from
memory or an I/O module.

 • Process data: The execution of an instruction may require performing some
arithmetic or logical operation on data.

 • Write data: The results of an execution may require writing data to memory or
an I/O module.

To do these things, it should be clear that the processor needs to store some
data temporarily. It must remember the location of the last instruction so that it can
know where to get the next instruction. It needs to store instructions and data tem-
porarily while an instruction is being executed. In other words, the processor needs
a small internal memory.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Distinguish between user-visible and control/status registers, and discuss the
purposes of registers in each category.

� Summarize the instruction cycle.

� Discuss the principle behind instruction pipelining and how it works
in practice.

� Compare and contrast the various forms of pipeline hazards.

� Present an overview of the x86 processor structure.

� Present an overview of the ARM processor structure.

14.1 / PROCESSOR ORGANIZATION 485

Figure 14.1 is a simplified view of a processor, indicating its connection to the
rest of the system via the system bus. A similar interface would be needed for any
of the interconnection structures described in Chapter 3. The reader will recall that
the major components of the processor are an arithmetic and logic unit (ALU) and
a control unit (CU). The ALU does the actual computation or processing of data.
The control unit controls the movement of data and instructions into and out of the
processor and controls the operation of the ALU. In addition, the figure shows a
minimal internal memory, consisting of a set of storage locations, called registers.

Figure 14.2 is a slightly more detailed view of the processor. The data trans-
fer and logic control paths are indicated, including an element labeled internal

Control
bus

Data
bus

Address
bus

System
bus

ALU

Registers

Control
unit

Figure 14.1 The CPU with the System Bus

•
•
•

Control
unit

Registers

Arithmetic
and

Boolean
logic

Complementer

In
te

rn
al

 C
P

U
 b

usShifter

Status flags

Arithmetic and logic unit

Control
paths

Figure 14.2 Internal Structure of the CPU

486 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

 processor bus. This element is needed to transfer data between the various registers
and the ALU because the ALU in fact operates only on data in the internal proc-
essor memory. The figure also shows typical basic elements of the ALU. Note the
similarity between the internal structure of the computer as a whole and the internal
structure of the processor. In both cases, there is a small collection of major ele-
ments (computer: processor, I/O, memory; processor: control unit, ALU, registers)
connected by data paths.

 14.2 REGISTER ORGANIZATION

As we discussed in Chapter 4, a computer system employs a memory hierarchy. At
higher levels of the hierarchy, memory is faster, smaller, and more expensive (per
bit). Within the processor, there is a set of registers that function as a level of mem-
ory above main memory and cache in the hierarchy. The registers in the processor
perform two roles:

 • User-visible registers: Enable the machine- or assembly language programmer
to minimize main memory references by optimizing use of registers.

 • Control and status registers: Used by the control unit to control the operation
of the processor and by privileged, operating system programs to control the
execution of programs.

There is not a clean separation of registers into these two categories. For
example, on some machines the program counter is user visible (e.g., x86), but on
many it is not. For purposes of the following discussion, however, we will use these
categories.

User-Visible Registers

A user-visible register is one that may be referenced by means of the machine
language that the processor executes. We can characterize these in the following
categories:

 • General purpose

 • Data

 • Address

 • Condition codes

General-purpose registers can be assigned to a variety of functions by the pro-
grammer. Sometimes their use within the instruction set is orthogonal to the opera-
tion. That is, any general-purpose register can contain the operand for any opcode.
This provides true general-purpose register use. Often, however, there are restric-
tions. For example, there may be dedicated registers for floating-point and stack
operations.

In some cases, general-purpose registers can be used for addressing functions
(e.g., register indirect, displacement). In other cases, there is a partial or clean sep-
aration between data registers and address registers. Data registers may be used
only to hold data and cannot be employed in the calculation of an operand address.

14.2 / REGISTER ORGANIZATION 487

Address registers may themselves be somewhat general purpose, or they may be
devoted to a particular addressing mode. Examples include the following:

 • Segment pointers: In a machine with segmented addressing (see Section 8.3),
a segment register holds the address of the base of the segment. There may be
multiple registers: for example, one for the operating system and one for the
current process.

 • Index registers: These are used for indexed addressing and may be autoin-
dexed.

 • Stack pointer: If there is user-visible stack addressing, then typically there is a
dedicated register that points to the top of the stack. This allows implicit ad-
dressing; that is, push, pop, and other stack instructions need not contain an
explicit stack operand.

There are several design issues to be addressed here. An important issue is
whether to use completely general-purpose registers or to specialize their use. We
have already touched on this issue in the preceding chapter because it affects instruc-
tion set design. With the use of specialized registers, it can generally be implicit in
the opcode which type of register a certain operand specifier refers to. The operand
specifier must only identify one of a set of specialized registers rather than one out
of all the registers, thus saving bits. On the other hand, this specialization limits the
programmer’s flexibility.

Another design issue is the number of registers, either general purpose or data
plus address, to be provided. Again, this affects instruction set design because more
registers require more operand specifier bits. As we previously discussed, somewhere
between 8 and 32 registers appears optimum [LUND77]. Fewer registers result in more
memory references; more registers do not noticeably reduce memory references (e.g.,
see [WILL90]). However, a new approach, which finds advantage in the use of hun-
dreds of registers, is exhibited in some RISC systems and is discussed in Chapter 15.

Finally, there is the issue of register length. Registers that must hold addresses
obviously must be at least long enough to hold the largest address. Data registers
should be able to hold values of most data types. Some machines allow two contigu-
ous registers to be used as one for holding double-length values.

A final category of registers, which is at least partially visible to the user, holds
condition codes (also referred to as flags). Condition codes are bits set by the proc-
essor hardware as the result of operations. For example, an arithmetic operation
may produce a positive, negative, zero, or overflow result. In addition to the result
itself being stored in a register or memory, a condition code is also set. The code
may subsequently be tested as part of a conditional branch operation.

Condition code bits are collected into one or more registers. Usually, they
form part of a control register. Generally, machine instructions allow these bits to
be read by implicit reference, but the programmer cannot alter them.

Many processors, including those based on the IA-64 architecture and the
MIPS processors, do not use condition codes at all. Rather, conditional branch
instructions specify a comparison to be made and act on the result of the compari-
son, without storing a condition code. Table 14.1, based on [DERO87], lists key
advantages and disadvantages of condition codes.

488 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

In some machines, a subroutine call will result in the automatic saving of all
user-visible registers, to be restored on return. The processor performs the saving
and restoring as part of the execution of call and return instructions. This allows
each subroutine to use the user-visible registers independently. On other machines,
it is the responsibility of the programmer to save the contents of the relevant user-
visible registers prior to a subroutine call, by including instructions for this purpose
in the program.

Control and Status Registers

There are a variety of processor registers that are employed to control the operation
of the processor. Most of these, on most machines, are not visible to the user. Some
of them may be visible to machine instructions executed in a control or operating
system mode.

Of course, different machines will have different register organizations and
use different terminology. We list here a reasonably complete list of register types,
with a brief description.

Four registers are essential to instruction execution:

 • Program counter (PC): Contains the address of an instruction to be fetched.

 • Instruction register (IR): Contains the instruction most recently fetched.

 • Memory address register (MAR): Contains the address of a location in
memory.

 • Memory buffer register (MBR): Contains a word of data to be written to
memory or the word most recently read.

Not all processors have internal registers designated as MAR and MBR, but
some equivalent buffering mechanism is needed whereby the bits to be transferred

Table 14.1 Condition Codes

Advantages Disadvantages

1. Because condition codes are set by normal
arithmetic and data movement instructions, they
should reduce the number of COMPARE and
TEST instructions needed.

2. Conditional instructions, such as BRANCH are
simplified relative to composite instructions, such
as TEST AND BRANCH.

3. Condition codes facilitate multiway branches. For
example, a TEST instruction can be
followed by two branches, one on less than
or equal to zero and one on greater
than zero.

4. Condition codes can be saved on the stack
during subroutine calls along with other register
information.

 1. Condition codes add complexity, both to the
hardware and software. Condition code bits are
often modified in different ways by different
instructions, making life more difficult for both
the microprogrammer and compiler writer.

 2. Condition codes are irregular; they are typically
not part of the main data path, so they require
extra hardware connections.

 3. Often condition code machines must add special
non-condition-code instructions for special situa-
tions anyway, such as bit checking, loop control,
and atomic semaphore operations.

 4. In a pipelined implementation, condition
codes require special synchronization to
avoid conflicts.

14.2 / REGISTER ORGANIZATION 489

to the system bus are staged and the bits to be read from the data bus are temporar-
ily stored.

Typically, the processor updates the PC after each instruction fetch so
that the PC always points to the next instruction to be executed. A branch or
skip instruction will also modify the contents of the PC. The fetched instruc-
tion is loaded into an IR, where the opcode and operand specifiers are
analyzed. Data are exchanged with memory using the MAR and MBR. In a bus-
organized system, the MAR connects directly to the address bus, and the MBR
connects directly to the data bus. User-visible registers, in turn, exchange data
with the MBR.

The four registers just mentioned are used for the movement of data between
the processor and memory. Within the processor, data must be presented to the
ALU for processing. The ALU may have direct access to the MBR and user-visible
registers. Alternatively, there may be additional buffering registers at the boundary
to the ALU; these registers serve as input and output registers for the ALU and
exchange data with the MBR and user-visible registers.

Many processor designs include a register or set of registers, often known as
the program status word (PSW), that contain status information. The PSW typi-
cally contains condition codes plus other status information. Common fields or flags
include the following:

 • Sign: Contains the sign bit of the result of the last arithmetic operation.

 • Zero: Set when the result is 0.

 • Carry: Set if an operation resulted in a carry (addition) into or borrow (sub-
traction) out of a high-order bit. Used for multiword arithmetic operations.

 • Equal: Set if a logical compare result is equality.

 • Overflow: Used to indicate arithmetic overflow.

 • Interrupt Enable/Disable: Used to enable or disable interrupts.

 • Supervisor: Indicates whether the processor is executing in supervisor or user
mode. Certain privileged instructions can be executed only in supervisor mode,
and certain areas of memory can be accessed only in supervisor mode.

A number of other registers related to status and control might be found in a
particular processor design. There may be a pointer to a block of memory contain-
ing additional status information (e.g., process control blocks). In machines using
vectored interrupts, an interrupt vector register may be provided. If a stack is used
to implement certain functions (e.g., subroutine call), then a system stack pointer is
needed. A page table pointer is used with a virtual memory system. Finally, regis-
ters may be used in the control of I/O operations.

A number of factors go into the design of the control and status register organ-
ization. One key issue is operating system support. Certain types of control infor-
mation are of specific utility to the operating system. If the processor designer has
a functional understanding of the operating system to be used, then the register
organization can to some extent be tailored to the operating system.

Another key design decision is the allocation of control information between
registers and memory. It is common to dedicate the first (lowest) few hundred or

490 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

thousand words of memory for control purposes. The designer must decide how
much control information should be in registers and how much in memory. The
usual trade-off of cost versus speed arises.

Example Microprocessor Register Organizations

It is instructive to examine and compare the register organization of comparable
systems. In this section, we look at two 16-bit microprocessors that were designed
at about the same time: the Motorola MC68000 [STRI79] and the Intel 8086
[MORS78]. Figures 14.3a and b depict the register organization of each; purely
internal registers, such as a memory address register, are not shown.

The MC68000 partitions its 32-bit registers into eight data registers and nine
address registers. The eight data registers are used primarily for data manipulation
and are also used in addressing as index registers. The width of the registers allows
8-, 16-, and 32-bit data operations, determined by opcode. The address registers
contain 32-bit (no segmentation) addresses; two of these registers are also used as
stack pointers, one for users and one for the operating system, depending on the
current execution mode. Both registers are numbered 7, because only one can be
used at a time. The MC68000 also includes a 32-bit program counter and a 16-bit
status register.

The Motorola team wanted a very regular instruction set, with no special-
purpose registers. A concern for code efficiency led them to divide the registers into

AXEAX
BXEBX
CXECX
DXEDX

SPESP
BPEBP
SIESI
DI

Program status

General registers

EDI

AX
BX
CX
DX

SP
BP
SI
DI

CS
DS
SS
ES

FLAGS register
Instruction pointer

(a) MC68000

Status register

Program counter

Program status

Address registers

Data registers

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6
A7´

(b) 8086

Instr ptr

Flags

Extrat

Stack

Data

Code

Dest index

Source index

Base ptr

Stack ptr

Data

Count

Base

Accumulator

Program status

Segment

Pointers and index

General registers

(c) 80386—Pentium 4

Figure 14.3 Example Microprocessor Register Organizations

14.3 / INSTRUCTION CYCLE 491

two functional components, saving one bit on each register specifier. This seems a
reasonable compromise between complete generality and code compaction.

The Intel 8086 takes a different approach to register organization. Every
register is special purpose, although some registers are also usable as general
purpose. The 8086 contains four 16-bit data registers that are addressable on a
byte or 16-bit basis, and four 16-bit pointer and index registers. The data registers
can be used as general purpose in some instructions. In others, the registers are
used implicitly. For example, a multiply instruction always uses the accumulator.
The four pointer registers are also used implicitly in a number of operations;
each contains a segment offset. There are also four 16-bit segment registers.
Three of the four segment registers are used in a dedicated, implicit fashion, to
point to the segment of the current instruction (useful for branch instructions), a
segment containing data, and a segment containing a stack, respectively. These
dedicated and implicit uses provide for compact encoding at the cost of reduced
flexibility. The 8086 also includes an instruction pointer and a set of 1-bit status
and control flags.

The point of this comparison should be clear. There is no universally accepted
philosophy concerning the best way to organize processor registers [TOON81]. As
with overall instruction set design and so many other processor design issues, it is
still a matter of judgment and taste.

A second instructive point concerning register organization design is illus-
trated in Figure 14.3c. This figure shows the user-visible register organization for
the Intel 80386 [ELAY85], which is a 32-bit microprocessor designed as an exten-
sion of the 8086.1 The 80386 uses 32-bit registers. However, to provide upward
compatibility for programs written on the earlier machine, the 80386 retains the
original register organization embedded in the new organization. Given this design
constraint, the architects of the 32-bit processors had limited flexibility in designing
the register organization.

 14.3 INSTRUCTION CYCLE

In Section 3.2, we described the processor’s instruction cycle (Figure 3.9). To recall,
an instruction cycle includes the following stages:

 • Fetch: Read the next instruction from memory into the processor.

 • Execute: Interpret the opcode and perform the indicated operation.

 • Interrupt: If interrupts are enabled and an interrupt has occurred, save the
current process state and service the interrupt.

We are now in a position to elaborate somewhat on the instruction cycle. First,
we must introduce one additional stage, known as the indirect cycle.

1Because the MC68000 already uses 32-bit registers, the MC68020 [MACD84], which is a full 32-bit
architecture, uses the same register organization.

492 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

The Indirect Cycle

We have seen, in Chapter 13, that the execution of an instruction may involve one
or more operands in memory, each of which requires a memory access. Further, if
indirect addressing is used, then additional memory accesses are required.

We can think of the fetching of indirect addresses as one more instruc-
tion stages. The result is shown in Figure 14.4. The main line of activity con-
sists of alternating instruction fetch and instruction execution activities. After
an instruction is fetched, it is examined to determine if any indirect addressing
is involved. If so, the required operands are fetched using indirect addressing.
Following execution, an interrupt may be processed before the next instruction
fetch.

Another way to view this process is shown in Figure 14.5, which is a revised
version of Figure 3.12. This illustrates more correctly the nature of the instruction
cycle. Once an instruction is fetched, its operand specifiers must be identified. Each
input operand in memory is then fetched, and this process may require indirect
addressing. Register-based operands need not be fetched. Once the opcode is exe-
cuted, a similar process may be needed to store the result in main memory.

Data Flow

The exact sequence of events during an instruction cycle depends on the design
of the processor. We can, however, indicate in general terms what must happen.
Let us assume that a processor that employs a memory address register (MAR),
a memory buffer register (MBR), a program counter (PC), and an instruction
register (IR).

During the fetch cycle, an instruction is read from memory. Figure 14.6 shows
the flow of data during this cycle. The PC contains the address of the next instruc-
tion to be fetched. This address is moved to the MAR and placed on the address
bus. The control unit requests a memory read, and the result is placed on the data
bus and copied into the MBR and then moved to the IR. Meanwhile, the PC is
incremented by 1, preparatory for the next fetch.

Fetch

Execute

Interrupt Indirect

Figure 14.4 The Instruction Cycle

493

Instruction
address

calculation

Instruction
operation
decoding

Operand
address

calculation

Data
operation

Operand
address

calculation

Instruction
fetch

Instruction complete,
fetcth next instruction

Multiple
operands

Return for string
or vector data

No
interrupt

Operand
fetch

Indirection

Operand
store

Interrupt
check Interrupt

Multiple
results

Indirection

Figure 14.5 Instruction Cycle State Diagram

494 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

Once the fetch cycle is over, the control unit examines the contents of the IR
to determine if it contains an operand specifier using indirect addressing. If so, an
indirect cycle is performed. As shown in Figure 14.7, this is a simple cycle. The right-
most N bits of the MBR, which contain the address reference, are transferred to the
MAR. Then the control unit requests a memory read, to get the desired address of
the operand into the MBR.

The fetch and indirect cycles are simple and predictable. The execute cycle
takes many forms; the form depends on which of the various machine instructions
is in the IR. This cycle may involve transferring data among registers, read or write
from memory or I/O, and/or the invocation of the ALU.

Like the fetch and indirect cycles, the interrupt cycle is simple and predictable
(Figure 14.8). The current contents of the PC must be saved so that the processor
can resume normal activity after the interrupt. Thus, the contents of the PC are

Address
bus

Data
bus

Control
bus

PC

CPU

MAR

Control
unit

Memory

MBR

MBR � Memory buffer register
MAR � Memory address register
IR � Instruction register
PC � Program counter

IR

Figure 14.6 Data Flow, Fetch Cycle

Address
bus

Data
bus

Control
bus

CPU

MAR

Control
unit

Memory

MBR

Figure 14.7 Data Flow, Indirect Cycle

14.4 / INSTRUCTION PIPELINING 495

transferred to the MBR to be written into memory. The special memory location
reserved for this purpose is loaded into the MAR from the control unit. It might,
for example, be a stack pointer. The PC is loaded with the address of the interrupt
routine. As a result, the next instruction cycle will begin by fetching the appropriate
instruction.

 14.4 INSTRUCTION PIPELINING

As computer systems evolve, greater performance can be achieved by taking advan-
tage of improvements in technology, such as faster circuitry. In addition, organiza-
tional enhancements to the processor can improve performance. We have already
seen some examples of this, such as the use of multiple registers rather than a single
accumulator, and the use of a cache memory. Another organizational approach,
which is quite common, is instruction pipelining.

Pipelining Strategy

Instruction pipelining is similar to the use of an assembly line in a manufacturing
plant. An assembly line takes advantage of the fact that a product goes through
various stages of production. By laying the production process out in an assembly
line, products at various stages can be worked on simultaneously. This process is
also referred to as pipelining, because, as in a pipeline, new inputs are accepted at
one end before previously accepted inputs appear as outputs at the other end.

To apply this concept to instruction execution, we must recognize that, in fact,
an instruction has a number of stages. Figures 14.5, for example, breaks the instruc-
tion cycle up into 10 tasks, which occur in sequence. Clearly, there should be some
opportunity for pipelining.

As a simple approach, consider subdividing instruction processing into two
stages: fetch instruction and execute instruction. There are times during the execu-
tion of an instruction when main memory is not being accessed. This time could
be used to fetch the next instruction in parallel with the execution of the current

Address
bus

Data
bus

Control
bus

PC

CPU

Memory

MBR

MAR

Control
Unit

Figure 14.8 Data Flow, Interrupt Cycle

496 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

one. Figure 14.9a depicts this approach. The pipeline has two independent stages.
The first stage fetches an instruction and buffers it. When the second stage is free,
the first stage passes it the buffered instruction. While the second stage is executing
the instruction, the first stage takes advantage of any unused memory cycles to fetch
and buffer the next instruction. This is called instruction prefetch or fetch overlap.
Note that this approach, which involves instruction buffering, requires more regis-
ters. In general, pipelining requires registers to store data between stages.

It should be clear that this process will speed up instruction execution. If
the fetch and execute stages were of equal duration, the instruction cycle time would
be halved. However, if we look more closely at this pipeline (Figure 14.9b), we will
see that this doubling of execution rate is unlikely for two reasons:

 1. The execution time will generally be longer than the fetch time. Execution will
involve reading and storing operands and the performance of some operation.
Thus, the fetch stage may have to wait for some time before it can empty its
buffer.

 2. A conditional branch instruction makes the address of the next instruction to
be fetched unknown. Thus, the fetch stage must wait until it receives the next
instruction address from the execute stage. The execute stage may then have
to wait while the next instruction is fetched.

Guessing can reduce the time loss from the second reason. A simple rule is the
following: When a conditional branch instruction is passed on from the fetch to
the execute stage, the fetch stage fetches the next instruction in memory after the
branch instruction. Then, if the branch is not taken, no time is lost. If the branch is
taken, the fetched instruction must be discarded and a new instruction fetched.

While these factors reduce the potential effectiveness of the two-stage pipe-
line, some speedup occurs. To gain further speedup, the pipeline must have more
stages. Let us consider the following decomposition of the instruction processing.

Fetch
Instruction Instruction

(a) Simplified view

Result
Execute

Fetch
Instruction

Discard

Instruction

New addressWait Wait

(b) Expanded view

Result
Execute

Figure 14.9 Two-Stage Instruction Pipeline

14.4 / INSTRUCTION PIPELINING 497

 • Fetch instruction (FI): Read the next expected instruction into a buffer.

 • Decode instruction (DI): Determine the opcode and the operand specifiers.

 • Calculate operands (CO): Calculate the effective address of each source oper-
and. This may involve displacement, register indirect, indirect, or other forms
of address calculation.

 • Fetch operands (FO): Fetch each operand from memory. Operands in regis-
ters need not be fetched.

 • Execute instruction (EI): Perform the indicated operation and store the result,
if any, in the specified destination operand location.

 • Write operand (WO): Store the result in memory.

With this decomposition, the various stages will be of more nearly equal dura-
tion. For the sake of illustration, let us assume equal duration. Using this assump-
tion, Figure 14.10 shows that a six-stage pipeline can reduce the execution time for
9 instructions from 54 time units to 14 time units.

Several comments are in order: The diagram assumes that each instruction
goes through all six stages of the pipeline. This will not always be the case. For
example, a load instruction does not need the WO stage. However, to simplify the
pipeline hardware, the timing is set up assuming that each instruction requires all
six stages. Also, the diagram assumes that all of the stages can be performed in par-
allel. In particular, it is assumed that there are no memory conflicts. For example,
the FI, FO, and WO stages involve a memory access. The diagram implies that all
these accesses can occur simultaneously. Most memory systems will not permit that.
However, the desired value may be in cache, or the FO or WO stage may be null.
Thus, much of the time, memory conflicts will not slow down the pipeline.

1

Instruction 1

Time

FI

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Instruction 9

2 3 4 5 6 7 8 9 10 11 12 13 14

DI CO FO EI WO

WOFI DI CO FO EI

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

Figure 14.10 Timing Diagram for Instruction Pipeline Operation

498 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

Several other factors serve to limit the performance enhancement. If the six
stages are not of equal duration, there will be some waiting involved at various pipe-
line stages, as discussed before for the two-stage pipeline. Another difficulty is the
conditional branch instruction, which can invalidate several instruction fetches. A
similar unpredictable event is an interrupt. Figure 14.11 illustrates the effects of the
conditional branch, using the same program as Figure 14.10. Assume that instruc-
tion 3 is a conditional branch to instruction 15. Until the instruction is executed,
there is no way of knowing which instruction will come next. The pipeline, in this
example, simply loads the next instruction in sequence (instruction 4) and proceeds.
In Figure 14.10, the branch is not taken, and we get the full performance benefit of
the enhancement. In Figure 14.11, the branch is taken. This is not determined until
the end of time unit 7. At this point, the pipeline must be cleared of instructions that
are not useful. During time unit 8, instruction 15 enters the pipeline. No instructions
complete during time units 9 through 12; this is the performance penalty incurred
because we could not anticipate the branch. Figure 14.12 indicates the logic needed
for pipelining to account for branches and interrupts.

Other problems arise that did not appear in our simple two-stage organiza-
tion. The CO stage may depend on the contents of a register that could be altered
by a previous instruction that is still in the pipeline. Other such register and mem-
ory conflicts could occur. The system must contain logic to account for this type of
conflict.

To clarify pipeline operation, it might be useful to look at an alternative depic-
tion. Figures 14.10 and 14.11 show the progression of time horizontally across the
figures, with each row showing the progress of an individual instruction. Figure 14.13
shows same sequence of events, with time progressing vertically down the figure,

1

Instruction 1

Time

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 15

Instruction 16

2 3 4 5 6 7 8 9 10

Branch penalty

11 12 13 14

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO

FI DI CO

FI DI

FI

FI DI CO FO EI WO

FI DI CO FO EI WO

Figure 14.11 The Effect of a Conditional Branch on Instruction Pipeline Operation

14.4 / INSTRUCTION PIPELINING 499

and each row showing the state of the pipeline at a given point in time. In Figure
14.13a (which corresponds to Figure 14.10), the pipeline is full at time 6, with 6 dif-
ferent instructions in various stages of execution, and remains full through time 9;
we assume that instruction I9 is the last instruction to be executed. In Figure 14.13b,
(which corresponds to Figure 14.11), the pipeline is full at times 6 and 7. At time 7,
instruction 3 is in the execute stage and executes a branch to instruction 15. At this
point, instructions I4 through I7 are flushed from the pipeline, so that at time 8, only
two instructions are in the pipeline, I3 and I15.

From the preceding discussion, it might appear that the greater the number of
stages in the pipeline, the faster the execution rate. Some of the IBM S/360 designers

NoYes

Yes

No

FI

DI

CO

FO

EI

WO

Calculate
operands

Fetch
instruction

Decode
instruction

Uncon-
ditional
branch?

Branch
or

interrupt?

Write
operands

Fetch
operands

Execute
instruction

Update
PC

Empty
pipe

Figure 14.12 Six-Stage CPU Instruction Pipeline

500 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

pointed out two factors that frustrate this seemingly simple pattern for high-perform-
ance design [ANDE67a], and they remain elements that designer must still consider:

 1. At each stage of the pipeline, there is some overhead involved in moving data
from buffer to buffer and in performing various preparation and delivery
functions. This overhead can appreciably lengthen the total execution time of
a single instruction. This is significant when sequential instructions are logi-
cally dependent, either through heavy use of branching or through memory
access dependencies.

 2. The amount of control logic required to handle memory and register depen-
dencies and to optimize the use of the pipeline increases enormously with the
number of stages. This can lead to a situation where the logic controlling the
gating between stages is more complex than the stages being controlled.

Another consideration is latching delay: It takes time for pipeline buffers to
operate and this adds to instruction cycle time.

Instruction pipelining is a powerful technique for enhancing performance but
requires careful design to achieve optimum results with reasonable complexity.

Pipeline Performance

In this subsection, we develop some simple measures of pipeline performance and
relative speedup (based on a discussion in [HWAN93]). The cycle time t of an
instruction pipeline is the time needed to advance a set of instructions one stage

I16

I16

I16

I16

I16

I16

FI DI CO FO EI WO

I11

I2 I12

I3 I2 I13

I4 I3 I2 I14

I5 I4 I3 I2 I1

I6 I5 I4 I3 I2 I1

I7 I6 I5 I4 I3 I2

I8 I7 I6 I5 I4 I3

I9 I8 I7 I6 I5 I4

I9 I8 I7 I6 I5

I9 I8 I7 I6

I9 I8 I7

I9 I8

I9

5

6

7

8

9

10

11

12

13

14

(a) No branches

FI DI CO FO EI WO

I11

I2 I12

I3 I2 I13

I4 I3 I2 I14

I5 I4 I3 I2 I1

I6 I5 I4 I3 I2 I1

I7 I6 I5 I4 I3 I2

I15

I15

I15

I15

I15

I15

I3

5

6

7

8

9

10

11

12

13

14

(b) With conditional branch

T
im

e

Figure 14.13 An Alternative Pipeline Depiction

14.4 / INSTRUCTION PIPELINING 501

through the pipeline; each column in Figures 14.10 and 14.11 represents one cycle
time. The cycle time can be determined as

t = max
i

[ti] + d = tm + d 1 … i … k

where

ti = time delay of the circuitry in the ith stage of the pipeline

tm = maximum stage delay (delay through stage which experiences the largest
delay)

k = number of stages in the instruction pipeline

d = time delay of a latch, needed to advance signals and data from one stage
to the next

In general, the time delay d is equivalent to a clock pulse and tm W d. Now
suppose that n instructions are processed, with no branches. Let Tk, n be the total
time required for a pipeline with k stages to execute n instructions. Then

 Tk,n = [k + (n - 1)]t (14.1)

A total of k cycles are required to complete the execution of the first instruc-
tion, and the remaining n - 1 instructions require n - 1 cycles.2 This equation is
easily verified from Figures 14.10. The ninth instruction completes at time cycle 14:

14 = [6 + (9 - 1)]

Now consider a processor with equivalent functions but no pipeline, and
assume that the instruction cycle time is kt. The speedup factor for the instruction
pipeline compared to execution without the pipeline is defined as

 Sk =
T1, n

Tk, n
=

nkt
[k + (n - 1)]t

=
nk

k + (n - 1)
 (14.2)

Figure 14.14a plots the speedup factor as a function of the number of instruc-
tions that are executed without a branch. As might be expected, at the limit (n S �),
we have a k-fold speedup. Figure 14.14b shows the speedup factor as a function of
the number of stages in the instruction pipeline.3 In this case, the speedup factor
approaches the number of instructions that can be fed into the pipeline without
branches. Thus, the larger the number of pipeline stages, the greater the potential
for speedup. However, as a practical matter, the potential gains of additional pipe-
line stages are countered by increases in cost, delays between stages, and the fact
that branches will be encountered requiring the flushing of the pipeline.

Pipeline Hazards

In the previous subsection, we mentioned some of the situations that can result in
less than optimal pipeline performance. In this subsection, we examine this issue in

2We are being a bit sloppy here. The cycle time will only equal the maximum value of t when all the stages
are full. At the beginning, the cycle time may be less for the first one or few cycles.
3Note that the x-axis is logarithmic in Figure 14.14a and linear in Figure 14.14b.

502 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

a more systematic way. Chapter 16 revisits this issue, in more detail, after we have
introduced the complexities found in superscalar pipeline organizations.

A pipeline hazard occurs when the pipeline, or some portion of the pipeline,
must stall because conditions do not permit continued execution. Such a pipe-
line stall is also referred to as a pipeline bubble. There are three types of hazards:
resource, data, and control.

RESOURCE HAZARDS A resource hazard occurs when two (or more) instructions
that are already in the pipeline need the same resource. The result is that the
instructions must be executed in serial rather than parallel for a portion of the
pipeline. A resource hazard is sometime referred to as a structural hazard.

Let us consider a simple example of a resource hazard. Assume a simplified
five-stage pipeline, in which each stage takes one clock cycle. Figure 14.15a shows
the ideal case, in which a new instruction enters the pipeline each clock cycle. Now
assume that main memory has a single port and that all instruction fetches and data
reads and writes must be performed one at a time. Further, ignore the cache. In this

1

0

2

4

6

8

10

12

0 5 10 15 20

0

2

4

6

8

10

12

14

2 4 8

Number of instructions (log scale)

Sp
ee

du
p

fa
ct

or
Sp

ee
du

p
fa

ct
or

Number of stages

16

k � 6 stages

n � 10 instructions

n � 20 instructions

n � 30 instructions

k � 9 stages

k � 12 stages

32 64 128

(a)

(b)

Figure 14.14 Speedup Factors with Instruction Pipelining

14.4 / INSTRUCTION PIPELINING 503

case, an operand read to or write from memory cannot be performed in parallel
with an instruction fetch. This is illustrated in Figure 14.15b, which assumes that the
source operand for instruction I1 is in memory, rather than a register. Therefore,
the fetch instruction stage of the pipeline must idle for one cycle before beginning
the instruction fetch for instruction I3. The figure assumes that all other operands
are in registers.

Another example of a resource conflict is a situation in which multiple instruc-
tions are ready to enter the execute instruction phase and there is a single ALU.
One solutions to such resource hazards is to increase available resources, such as
having multiple ports into main memory and multiple ALU units.

Reservation Table Analyzer

One approach to analyzing resource conflicts and aiding in the design of
pipelines is the reservation table. We examine reservation tables in Appendix I.

DATA HAZARDS A data hazard occurs when there is a conflict in the access of
an operand location. In general terms, we can state the hazard in this form: Two
instructions in a program are to be executed in sequence and both access a particular
memory or register operand. If the two instructions are executed in strict sequence,

1

I1

Clock cycle

(a) Five-stage pipeline, ideal case

In
st

ru
ct

io
n

FI

I2

I3

I4

2 3 4 5 6 7 8 9

DI FO EI WO

FI DI FO EI WO

FI DI FO EI WO

FI DI FO EI WO

1

I1

Clock cycle

(b) I1 source operand in memory

In
st

ru
ct

io
n

FI

I2

I3

I4

2 3 4 5 6 7 8 9

DI FO EI WO

FI DI FO EI WO

FIIdle DI FO EI WO

FI DI FO EI WO

Figure 14.15 Example of Resource Hazard

504 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

no problem occurs. However, if the instructions are executed in a pipeline, then
it is possible for the operand value to be updated in such a way as to produce a
different result than would occur with strict sequential execution. In other words,
the program produces an incorrect result because of the use of pipelining.

As an example, consider the following x86 machine instruction sequence:

ADD EAX, EBX /* EAX = EAX + EBX

SUB ECX, EAX /* ECX = ECX - EAX

The first instruction adds the contents of the 32-bit registers EAX and EBX
and stores the result in EAX. The second instruction subtracts the contents of EAX
from ECX and stores the result in ECX. Figure 14.16 shows the pipeline behavior.
The ADD instruction does not update register EAX until the end of stage 5, which
occurs at clock cycle 5. But the SUB instruction needs that value at the beginning of
its stage 2, which occurs at clock cycle 4. To maintain correct operation, the pipeline
must stall for two clocks cycles. Thus, in the absence of special hardware and spe-
cific avoidance algorithms, such a data hazard results in inefficient pipeline usage.

There are three types of data hazards;

 • Read after write (RAW), or true dependency: An instruction modifies a reg-
ister or memory location and a succeeding instruction reads the data in that
memory or register location. A hazard occurs if the read takes place before
the write operation is complete.

 • Write after read (WAR), or antidependency: An instruction reads a register or
memory location and a succeeding instruction writes to the location. A hazard
occurs if the write operation completes before the read operation takes place.

 • Write after write (WAW), or output dependency: Two instructions both write
to the same location. A hazard occurs if the write operations take place in the
reverse order of the intended sequence.

The example of Figure 14.16 is a RAW hazard. The other two hazards are best
discussed in the context of superscalar organization, discussed in Chapter 16.

CONTROL HAZARDS A control hazard, also known as a branch hazard, occurs
when the pipeline makes the wrong decision on a branch prediction and therefore
brings instructions into the pipeline that must subsequently be discarded. We discuss
approaches to dealing with control hazards next.

1

ADD EAX, EBX

Clock cycle

FI

SUB ECX, EAX

I3

I4

2 3 4 5 6 7 8 9 10

DI FO EI WO

FI DI Idle FO EI WO

FI DI FO EI WO

FI DI FO EI WO

Figure 14.16 Example of Data Hazard

14.4 / INSTRUCTION PIPELINING 505

Dealing with Branches

One of the major problems in designing an instruction pipeline is assuring
a steady flow of instructions to the initial stages of the pipeline. The primary
impediment, as we have seen, is the conditional branch instruction. Until the
instruction is actually executed, it is impossible to determine whether the branch
will be taken or not.

A variety of approaches have been taken for dealing with conditional branches:

 • Multiple streams

 • Prefetch branch target

 • Loop buffer

 • Branch prediction

 • Delayed branch

MULTIPLE STREAMS A simple pipeline suffers a penalty for a branch instruction
because it must choose one of two instructions to fetch next and may make the wrong
choice. A brute-force approach is to replicate the initial portions of the pipeline and
allow the pipeline to fetch both instructions, making use of two streams. There are
two problems with this approach:

 • With multiple pipelines there are contention delays for access to the registers
and to memory.

 • Additional branch instructions may enter the pipeline (either stream) before
the original branch decision is resolved. Each such instruction needs an addi-
tional stream.

Despite these drawbacks, this strategy can improve performance. Examples of
machines with two or more pipeline streams are the IBM 370/168 and the IBM 3033.

PREFETCH BRANCH TARGET When a conditional branch is recognized, the target
of the branch is prefetched, in addition to the instruction following the branch. This
target is then saved until the branch instruction is executed. If the branch is taken,
the target has already been prefetched.

The IBM 360/91 uses this approach.

LOOP BUFFER A loop buffer is a small, very-high-speed memory maintained by the
instruction fetch stage of the pipeline and containing the n most recently fetched
instructions, in sequence. If a branch is to be taken, the hardware first checks
whether the branch target is within the buffer. If so, the next instruction is fetched
from the buffer. The loop buffer has three benefits:

 1. With the use of prefetching, the loop buffer will contain some instruction
 sequentially ahead of the current instruction fetch address. Thus, instructions
fetched in sequence will be available without the usual memory access time.

 2. If a branch occurs to a target just a few locations ahead of the address of
the branch instruction, the target will already be in the buffer. This is use-
ful for the rather common occurrence of IF–THEN and IF–THEN–ELSE
sequences.

506 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

 3. This strategy is particularly well suited to dealing with loops, or iterations;
hence the name loop buffer. If the loop buffer is large enough to contain all
the instructions in a loop, then those instructions need to be fetched from
memory only once, for the first iteration. For subsequent iterations, all the
needed instructions are already in the buffer.

The loop buffer is similar in principle to a cache dedicated to instructions.
The differences are that the loop buffer only retains instructions in sequence and is
much smaller in size and hence lower in cost.

Figure 14.17 gives an example of a loop buffer. If the buffer contains 256 bytes,
and byte addressing is used, then the least significant 8 bits are used to index the
buffer. The remaining most significant bits are checked to determine if the branch
target lies within the environment captured by the buffer.

Among the machines using a loop buffer are some of the CDC machines (Star-
100, 6600, 7600) and the CRAY-1. A specialized form of loop buffer is available on
the Motorola 68010, for executing a three-instruction loop involving the DBcc (dec-
rement and branch on condition) instruction (see Problem 14.14). A three-word
buffer is maintained, and the processor executes these instructions repeatedly until
the loop condition is satisfied.

Branch Prediction Simulator
Branch Target Buffer

BRANCH PREDICTION Various techniques can be used to predict whether a branch
will be taken. Among the more common are the following:

 • Predict never taken

 • Predict always taken

 • Predict by opcode

 • Taken/not taken switch

 • Branch history table

Loop buffer
(256 bytes)

Branch address

8
Instruction to be

decoded in case of hit

Most significant address bits
compared to determine a hit

Figure 14.17 Loop Buffer

14.4 / INSTRUCTION PIPELINING 507

The first three approaches are static: they do not depend on the execution his-
tory up to the time of the conditional branch instruction. The latter two approaches
are dynamic: They depend on the execution history.

The first two approaches are the simplest. These either always assume that
the branch will not be taken and continue to fetch instructions in sequence, or they
always assume that the branch will be taken and always fetch from the branch tar-
get. The predict-never-taken approach is the most popular of all the branch predic-
tion methods.

Studies analyzing program behavior have shown that conditional branches are
taken more than 50% of the time [LILJ88], and so if the cost of prefetching from
either path is the same, then always prefetching from the branch target address
should give better performance than always prefetching from the sequential path.
However, in a paged machine, prefetching the branch target is more likely to cause
a page fault than prefetching the next instruction in sequence, and so this per-
formance penalty should be taken into account. An avoidance mechanism may be
employed to reduce this penalty.

The final static approach makes the decision based on the opcode of the
branch instruction. The processor assumes that the branch will be taken for certain
branch opcodes and not for others. [LILJ88] reports success rates of greater than
75% with this strategy.

Dynamic branch strategies attempt to improve the accuracy of prediction by
recording the history of conditional branch instructions in a program. For example,
one or more bits can be associated with each conditional branch instruction that
reflect the recent history of the instruction. These bits are referred to as a taken/
not taken switch that directs the processor to make a particular decision the next
time the instruction is encountered. Typically, these history bits are not associated
with the instruction in main memory. Rather, they are kept in temporary high-
speed storage. One possibility is to associate these bits with any conditional branch
instruction that is in a cache. When the instruction is replaced in the cache, its his-
tory is lost. Another possibility is to maintain a small table for recently executed
branch instructions with one or more history bits in each entry. The processor could
access the table associatively, like a cache, or by using the low-order bits of the
branch instruction’s address.

With a single bit, all that can be recorded is whether the last execution of this
instruction resulted in a branch or not. A shortcoming of using a single bit appears
in the case of a conditional branch instruction that is almost always taken, such as a
loop instruction. With only one bit of history, an error in prediction will occur twice
for each use of the loop: once on entering the loop, and once on exiting.

If two bits are used, they can be used to record the result of the last two
instances of the execution of the associated instruction, or to record a state in
some other fashion. Figure 14.18 shows a typical approach (see Problem 14.13 for
other possibilities). Assume that the algorithm starts at the upper-left-hand corner
of the flowchart. As long as each succeeding conditional branch instruction that
is encountered is taken, the decision process predicts that the next branch will be
taken. If a single prediction is wrong, the algorithm continues to predict that the
next branch is taken. Only if two successive branches are not taken does the algo-
rithm shift to the right-hand side of the flowchart. Subsequently, the algorithm

508 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

will predict that branches are not taken until two branches in a row are taken.
Thus, the algorithm requires two consecutive wrong predictions to change the pre-
diction decision.

The decision process can be represented more compactly by a finite-state
machine, shown in Figure 14.19. The finite-state machine representation is com-
monly used in the literature.

The use of history bits, as just described, has one drawback: If the decision
is made to take the branch, the target instruction cannot be fetched until the tar-
get address, which is an operand in the conditional branch instruction, is decoded.
Greater efficiency could be achieved if the instruction fetch could be initiated as
soon as the branch decision is made. For this purpose, more information must be
saved, in what is known as a branch target buffer, or a branch history table.

The branch history table is a small cache memory associated with the instruc-
tion fetch stage of the pipeline. Each entry in the table consists of three elements:
the address of a branch instruction, some number of history bits that record the
state of use of that instruction, and information about the target instruction. In
most proposals and implementations, this third field contains the address of the
target instruction. Another possibility is for the third field to actually contain the
target instruction. The trade-off is clear: Storing the target address yields a smaller

Yes

Yes

Predict taken

Read next
conditional

branch instr

Branch
taken?

Predict taken

Read next
conditional

branch instr

Branch
taken?

No Yes

Yes

Predict not taken

Read next
conditional

branch instr

Branch
taken?

Predict not taken

Read next
conditional

branch instr

Branch
taken?

No

NoNo

Figure 14.18 Branch Prediction Flowchart

14.4 / INSTRUCTION PIPELINING 509

table but a greater instruction fetch time compared with storing the target instruc-
tion [RECH98].

Figure 14.20 contrasts this scheme with a predict-never-taken strategy. With
the former strategy, the instruction fetch stage always fetches the next sequential
address. If a branch is taken, some logic in the processor detects this and instructs
that the next instruction be fetched from the target address (in addition to flushing
the pipeline). The branch history table is treated as a cache. Each prefetch triggers a
lookup in the branch history table. If no match is found, the next sequential address
is used for the fetch. If a match is found, a prediction is made based on the state of
the instruction: Either the next sequential address or the branch target address is
fed to the select logic.

When the branch instruction is executed, the execute stage signals the branch
history table logic with the result. The state of the instruction is updated to reflect
a correct or incorrect prediction. If the prediction is incorrect, the select logic is
redirected to the correct address for the next fetch. When a conditional branch
instruction is encountered that is not in the table, it is added to the table and one
of the existing entries is discarded, using one of the cache replacement algorithms
discussed in Chapter 4.

A refinement of the branch history approach is referred to as two-level or cor-
relation-based branch history [YEH91]. This approach is based on the assumption
that whereas in loop-closing branches, the past history of a particular branch instruc-
tion is a good predictor of future behavior, with more complex control-flow struc-
tures, the direction of a branch is frequently correlated with the direction of related
branches. An example is an if-then-else or case structure. There are a number of
strategies possible. Typically, recent global branch history (i.e., the history of the
most recent branches not just of this branch instruction) is used in addition to the
history of the current branch instruction. The general structure is defined as an
(m, n) correlator, which uses the behavior of the last m branches to choose from
2m n-bit branch predictors for the current branch instruction. In other words, an

Not taken
Not taken

N
ot

 t
ak

en

Taken

Ta
ke

n

Not taken

Taken

Taken Predict
taken

Predict
taken

Predict
not taken

Predict
not taken

Figure 14.19 Branch Prediction State Diagram

510 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

n-bit history is kept for a give branch for each possible combination of branches
taken by the most recent m branches.

DELAYED BRANCH It is possible to improve pipeline performance by automatically
rearranging instructions within a program, so that branch instructions occur later
than actually desired. This intriguing approach is examined in Chapter 15.

Intel 80486 Pipelining

An instructive example of an instruction pipeline is that of the Intel 80486. The
80486 implements a five-stage pipeline:

Branch miss
handling

Se
le

ct

E

Branch miss
handling

E

Memory

Se
le

ct

Memory

IPFAR

IPFAR � instruction
prefix address register

Lookup

Update
state

Add new
entry

Redirect

Branch
instruction

address
Target
address State

•
•
•

•
•
•

•
•
•

Next sequential
address

Next sequential
address

(a) Predict never taken strategy

(b) Branch history table strategy

Figure 14.20 Dealing with Branches

14.4 / INSTRUCTION PIPELINING 511

 • Fetch: Instructions are fetched from the cache or from external memory
and placed into one of the two 16-byte prefetch buffers. The objective of
the fetch stage is to fill the prefetch buffers with new data as soon as the old
data have been consumed by the instruction decoder. Because instructions
are of variable length (from 1 to 11 bytes not counting prefixes), the status of
the prefetcher relative to the other pipeline stages varies from instruction to
 instruction. On average, about five instructions are fetched with each 16-byte
load [CRAW90]. The fetch stage operates independently of the other stages
to keep the prefetch buffers full.

 • Decode stage 1: All opcode and addressing-mode information is decoded in
the D1 stage. The required information, as well as instruction-length informa-
tion, is included in at most the first 3 bytes of the instruction. Hence, 3 bytes
are passed to the D1 stage from the prefetch buffers. The D1 decoder can then
direct the D2 stage to capture the rest of the instruction (displacement and
immediate data), which is not involved in the D1 decoding.

 • Decode stage 2: The D2 stage expands each opcode into control signals for
the ALU. It also controls the computation of the more complex addressing
modes.

 • Execute: This stage includes ALU operations, cache access, and register
update.

 • Write back: This stage, if needed, updates registers and status flags modified
during the preceding execute stage. If the current instruction updates memory,
the computed value is sent to the cache and to the bus-interface write buffers
at the same time.

With the use of two decode stages, the pipeline can sustain a throughput
of close to one instruction per clock cycle. Complex instructions and conditional
branches can slow down this rate.

Figure 14.21 shows examples of the operation of the pipeline. Figure 14.21a
shows that there is no delay introduced into the pipeline when a memory access is
required. However, as Figure 14.21b shows, there can be a delay for values used
to compute memory addresses. That is, if a value is loaded from memory into a
register and that register is then used as a base register in the next instruction, the
processor will stall for one cycle. In this example, the processor accesses the cache
in the EX stage of the first instruction and stores the value retrieved in the register
during the WB stage. However, the next instruction needs this register in its D2
stage. When the D2 stage lines up with the WB stage of the previous instruction,
bypass signal paths allow the D2 stage to have access to the same data being used by
the WB stage for writing, saving one pipeline stage.

Figure 14.21c illustrates the timing of a branch instruction, assuming that the
branch is taken. The compare instruction updates condition codes in the WB stage,
and bypass paths make this available to the EX stage of the jump instruction at the
same time. In parallel, the processor runs a speculative fetch cycle to the target of
the jump during the EX stage of the jump instruction. If the processor determines
a false branch condition, it discards this prefetch and continues execution with the
next sequential instruction (already fetched and decoded).

512 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

 14.5 THE x86 PROCESSOR FAMILY

The x86 organization has evolved dramatically over the years. In this section we
examine some of the details of the most recent processor organizations, concen-
trating on common elements in single processors. Chapter 16 looks at superscalar
aspects of the x86, and Chapter 18 examines the multicore organization. An over-
view of the Pentium 4 processor organization is depicted in Figure 4.18.

Register Organization

The register organization includes the following types of registers (Table 14.2):

 • General: There are eight 32-bit general-purpose registers (see Figure 14.3c).
These may be used for all types of x86 instructions; they can also hold operands
for address calculations. In addition, some of these registers also serve special
purposes. For example, string instructions use the contents of the ECX, ESI, and
EDI registers as operands without having to reference these registers explicitly
in the instruction. As a result, a number of instructions can be encoded more
compactly. In 64-bit mode, there are 16 64-bit general-purpose registers.

 • Segment: The six 16-bit segment registers contain segment selectors, which
index into segment tables, as discussed in Chapter 8. The code segment (CS)
register references the segment containing the instruction being executed. The
stack segment (SS) register references the segment containing a user-visible
stack. The remaining segment registers (DS, ES, FS, GS) enable the user to
reference up to four separate data segments at a time.

 • Flags: The 32-bit EFLAGS register contains condition codes and various
mode bits. In 64-bit mode, this register is extended to 64 bits and referred

Fetch D1 D2 EX WB

Fetch D1 D2 EX WB

Fetch D1 D2 EX WB MOV Mem2, Reg1

(a) No data load delay in the pipeline

MOV Reg1, Reg2

MOV Reg1, Mem1

Fetch D1 D2 EX WB

Fetch D1 D2 EX

Fetch D1 D2 EX Target

(c) Branch instruction timing

Jcc Target

CMP Reg1, Imm

Fetch D1 D2 EX WB

Fetch D1 D2 EX

(b) Pointer load delay

MOV Reg2, (Reg1)

MOV Reg1, Mem1

Figure 14.21 80486 Instruction Pipeline Examples

14.5 / THE x86 PROCESSOR FAMILY 513

to as RFLAGS. In the current architecture definition, the upper 32 bits of
RFLAGS are unused.

 • Instruction pointer: Contains the address of the current instruction.

There are also registers specifically devoted to the floating-point unit:

 • Numeric: Each register holds an extended-precision 80-bit floating-point
number. There are eight registers that function as a stack, with push and pop
operations available in the instruction set.

 • Control: The 16-bit control register contains bits that control the operation of
the floating-point unit, including the type of rounding control; single, double,
or extended precision; and bits to enable or disable various exception condi-
tions.

 • Status: The 16-bit status register contains bits that reflect the current state
of the floating-point unit, including a 3-bit pointer to the top of the stack;
condition codes reporting the outcome of the last operation; and exception
flags.

 • Tag word: This 16-bit register contains a 2-bit tag for each floating-point numeric
register, which indicates the nature of the contents of the corresponding register.

Table 14.2 x86 Processor Registers

(a) Integer Unit in 32-bit Mode

Type Number Length (bits) Purpose

General 8 32 General-purpose user registers

Segment 6 16 Contain segment selectors

EFLAGS 1 32 Status and control bits

Instruction Pointer 1 32 Instruction pointer

(b) Integer Unit in 64-bit Mode

Type Number Length (bits) Purpose

General 16 32 General-purpose user registers

Segment 6 16 Contain segment selectors

RFLAGS 1 64 Status and control bits

Instruction Pointer 1 64 Instruction pointer

(c) Floating-Point Unit

Type Number Length (bits) Purpose

Numeric 8 80 Hold floating-point numbers

Control 1 16 Control bits

Status 1 16 Status bits

Tag Word 1 16 Specifies contents of numeric registers

Instruction Pointer 1 48 Points to instruction interrupted by exception

Data Pointer 1 48 Points to operand interrupted by exception

514 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

The four possible values are valid, zero, special (NaN, infinity, denormalized),
and empty. These tags enable programs to check the contents of a numeric
 register without performing complex decoding of the actual data in the register.
For example, when a context switch is made, the processor need not save any
floating-point registers that are empty.

The use of most of the aforementioned registers is easily understood. Let us
elaborate briefly on several of the registers.

EFLAGS REGISTER The EFLAGS register (Figure 14.22) indicates the condition
of the processor and helps to control its operation. It includes the six condition
codes defined in Table 12.9 (carry, parity, auxiliary, zero, sign, overflow), which
report the results of an integer operation. In addition, there are bits in the register
that may be referred to as control bits:

 • Trap flag (TF): When set, causes an interrupt after the execution of each
 instruction. This is used for debugging.

 • Interrupt enable flag (IF): When set, the processor will recognize external
interrupts.

 • Direction flag (DF): Determines whether string processing instructions incre-
ment or decrement the 16-bit half-registers SI and DI (for 16-bit operations)
or the 32-bit registers ESI and EDI (for 32-bit operations).

 • I/O privilege flag (IOPL): When set, causes the processor to generate an
exception on all accesses to I/O devices during protected-mode operation.

 • Resume flag (RF): Allows the programmer to disable debug exceptions so
that the instruction can be restarted after a debug exception without immedi-
ately causing another debug exception.

 • Alignment check (AC): Activates if a word or doubleword is addressed on a
nonword or nondoubleword boundary.

 • Identification flag (ID): If this bit can be set and cleared, then this processor
supports the processorID instruction. This instruction provides information
about the vendor, family, and model.

V
I
P

V
I
F

I
D

A
C

V
M

R
F

N
T

IO
PL

O
F

D
F

I
F

T
F

S
F

Z
F

A
F

P
F

C
F

31 21 1516 0

ID � Identification flag
VIP � Virtual interrupt pending
VIF � Virtual interrupt flag
AC � Alignment check
VM � Virtual 8086 mode
RF � Resume flag
NT � Nested task flag
IOPL � I/O privilege level
OF � Overflow flag

DF � Direction flag
IF � Interrupt enable flag
TF � Trap flag
SF � Sign flag
ZF � Zero flag
AF � Auxiliary carry flag
PF � Parity flag
CF � Carry flag

Figure 14.22 Pentium II EFLAGS Register

In addition, there are 4 bits that relate to operating mode. The Nested Task
(NT) flag indicates that the current task is nested within another task in protected-
mode operation. The Virtual Mode (VM) bit allows the programmer to enable or
disable virtual 8086 mode, which determines whether the processor runs as an 8086
machine. The Virtual Interrupt Flag (VIF) and Virtual Interrupt Pending (VIP) flag
are used in a multitasking environment.

CONTROL REGISTERS The x86 employs four control registers (register CR1 is unused)
to control various aspects of processor operation (Figure 14.23). All of the registers
except CR0 are either 32 bits or 64 bits long, depending on whether the implementation
supports the x86 64-bit architecture. The CR0 register contains system control flags,

OSXSAVE = XSAVE enable bit
SMXE = Enable safer mode extensions
VMXE = Enable virtual machine extensions
OSXMMEXCPT = Support unmasked SIMD FP exceptions
OSFXSR = Support FXSAVE, FXSTOR
PCE = Performance counter enable
PGE = Page global enable
MCE = Machine check enable
PAE = Physical address extension
PSE = Page size extensions
DE = Debug extensions
TSD = Time stamp disable
PVI = Protected mode virtual interrupt
VME = Virtual 8086 mode extensions

Shaded area indicates reserved bits.

PCD = Page-level cache disable
PWT = Page-level writes transparent
PG = Paging
CD = Cache disable
NW = Not write through
AM = Alignment mask
WP = Write protect
NE = Numeric error
ET = Extension type
TS = Task switched
EM = Emulation
MP = Monitor coprocessor
PE = Protection enable

S
M
X
E

V
M
X
E

OSXSAVE OSFXSR

CR4
V
M
E

P
V
I

T
S
D

D
E

P
S
E

P
A
E

M
C
E

P
G
E

P
C
E

CR3
(PDBR)

CR2

CR1

Page-directory base

Page-fault linear address

P
C
D

P
W
T

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931
(63)

OSXMMEXCPT

CR0T
S

E
M

M
P

P
E

E
T

N
E

A
M

N
W

C
D

P
G

W
P

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

Figure 14.23 x86 Control Registers

14.5 / THE x86 PROCESSOR FAMILY 515

516 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

which control modes or indicate states that apply generally to the processor rather than
to the execution of an individual task. The flags are as follows:

 • Protection Enable (PE): Enable/disable protected mode of operation.

 • Monitor Coprocessor (MP): Only of interest when running programs from
earlier machines on the x86; it relates to the presence of an arithmetic
coprocessor.

 • Emulation (EM): Set when the processor does not have a floating-point unit,
and causes an interrupt when an attempt is made to execute floating-point
instructions.

 • Task Switched (TS): Indicates that the processor has switched tasks.

 • Extension Type (ET): Not used on the Pentium and later machines; used to
indicate support of math coprocessor instructions on earlier machines.

 • Numeric Error (NE): Enables the standard mechanism for reporting floating-
point errors on external bus lines.

 • Write Protect (WP): When this bit is clear, read-only user-level pages can be
written by a supervisor process. This feature is useful for supporting process
creation in some operating systems.

 • Alignment Mask (AM): Enables/disables alignment checking.

 • Not Write Through (NW): Selects mode of operation of the data cache. When
this bit is set, the data cache is inhibited from cache write-through operations.

 • Cache Disable (CD): Enables/disables the internal cache fill mechanism.

 • Paging (PG): Enables/disables paging.

When paging is enabled, the CR2 and CR3 registers are valid. The CR2 regis-
ter holds the 32-bit linear address of the last page accessed before a page fault inter-
rupt. The leftmost 20 bits of CR3 hold the 20 most significant bits of the base address
of the page directory; the remainder of the address contains zeros. Two bits of CR3
are used to drive pins that control the operation of an external cache. The page-
level cache disable (PCD) enables or disables the external cache, and the page-level
writes transparent (PWT) bit controls write through in the external cache.

Nine additional control bits are defined in CR4:

 • Virtual-8086 Mode Extension (VME): Enables support for the virtual inter-
rupt flag in virtual-8086 mode.

 • Protected-mode Virtual Interrupts (PVI): Enables support for the virtual
interrupt flag in protected mode.

 • Time Stamp Disable (TSD): Disables the read from time stamp counter
(RDTSC) instruction, which is used for debugging purposes.

 • Debugging Extensions (DE): Enables I/O breakpoints; this allows the proces-
sor to interrupt on I/O reads and writes.

 • Page Size Extensions (PSE): Enables large page sizes (2 or 4-MByte pages)
when set; restricts pages to 4 KBytes when clear.

 • Physical Address Extension (PAE): Enables address lines A35 through A32
whenever a special new addressing mode, controlled by the PSE, is enabled.

 • Machine Check Enable (MCE): Enables the machine check interrupt, which
occurs when a data parity error occurs during a read bus cycle or when a bus
cycle is not successfully completed.

 • Page Global Enable (PGE): Enables the use of global pages. When PGE = 1
and a task switch is performed, all of the TLB entries are flushed with the excep-
tion of those marked global.

 • Performance Counter Enable (PCE): Enables the execution of the RDPMC
(read performance counter) instruction at any privilege level. Two perform-
ance counters are used to measure the duration of a specific event type and
the number of occurrences of a specific event type.

MMX REGISTERS Recall from Section 10.3 that the x86 MMX capability makes
use of several 64-bit data types. The MMX instructions make use of 3-bit register
address fields, so that eight MMX registers are supported. In fact, the processor does
not include specific MMX registers. Rather, the processor uses an aliasing technique
(Figure 14.24). The existing floating-point registers are used to store MMX values.
Specifically, the low-order 64 bits (mantissa) of each floating-point register are used
to form the eight MMX registers. Thus, the older 32-bit x86 architecture is easily
extended to support the MMX capability. Some key characteristics of the MMX use
of these registers are as follows:

 • Recall that the floating-point registers are treated as a stack for floating-point
operations. For MMX operations, these same registers are accessed directly.

 • The first time that an MMX instruction is executed after any floating-point
operations, the FP tag word is marked valid. This reflects the change from
stack operation to direct register addressing.

079 63

63 0

MM0

00

00

00

00

00

00

00

00

MMX registers

Floating-point registers
Floating-point

tag

MM1

MM2

MM3

MM4

MM5

MM6

MM7

Figure 14.24 Mapping of MMX Registers to
Floating-Point Registers

14.5 / THE x86 PROCESSOR FAMILY 517

518 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

 • The EMMS (Empty MMX State) instruction sets bits of the FP tag word to
indicate that all registers are empty. It is important that the programmer insert
this instruction at the end of an MMX code block so that subsequent floating-
point operations function properly.

 • When a value is written to an MMX register, bits [79:64] of the corresponding
FP register (sign and exponent bits) are set to all ones. This sets the value in
the FP register to NaN (not a number) or infinity when viewed as a floating-
point value. This ensures that an MMX data value will not look like a valid
floating-point value.

Interrupt Processing

Interrupt processing within a processor is a facility provided to support the operat-
ing system. It allows an application program to be suspended, in order that a variety
of interrupt conditions can be serviced and later resumed.

INTERRUPTS AND EXCEPTIONS Two classes of events cause the x86 to suspend
execution of the current instruction stream and respond to the event: interrupts and
exceptions. In both cases, the processor saves the context of the current process and
transfers to a predefined routine to service the condition. An interrupt is generated by
a signal from hardware, and it may occur at random times during the execution of a
program. An exception is generated from software, and it is provoked by the execution
of an instruction. There are two sources of interrupts and two sources of exceptions:

 1. Interrupts

 • Maskable interrupts: Received on the processor’s INTR pin. The processor
does not recognize a maskable interrupt unless the interrupt enable flag
(IF) is set.

 • Nonmaskable interrupts: Received on the processor’s NMI pin. Recognition
of such interrupts cannot be prevented.

 2. Exceptions

 • Processor-detected exceptions: Results when the processor encounters an
error while attempting to execute an instruction.

 • Programmed exceptions: These are instructions that generate an exception
(e.g., INTO, INT3, INT, and BOUND).

INTERRUPT VECTOR TABLE Interrupt processing on the x86 uses the interrupt
vector table. Every type of interrupt is assigned a number, and this number is used
to index into the interrupt vector table. This table contains 256 32-bit interrupt
vectors, which is the address (segment and offset) of the interrupt service routine
for that interrupt number.

Table 14.3 shows the assignment of numbers in the interrupt vector table;
shaded entries represent interrupts, while nonshaded entries are exceptions. The
NMI hardware interrupt is type 2. INTR hardware interrupts are assigned numbers in
the range of 32 to 255; when an INTR interrupt is generated, it must be accompanied
on the bus with the interrupt vector number for this interrupt. The remaining vector
numbers are used for exceptions.

If more than one exception or interrupt is pending, the processor services
them in a predictable order. The location of vector numbers within the table does
not reflect priority. Instead, priority among exceptions and interrupts is organized
into five classes. In descending order of priority, these are

 • Class 1: Traps on the previous instruction (vector number 1)

 • Class 2: External interrupts (2, 32–255)

 • Class 3: Faults from fetching next instruction (3, 14)

 • Class 4: Faults from decoding the next instruction (6, 7)

 • Class 5: Faults on executing an instruction (0, 4, 5, 8, 10–14, 16, 17)

Table 14.3 x86 Exception and Interrupt Vector Table

Vector Number Description

0 Divide error; division overflow or division by zero

1 Debug exception; includes various faults and traps related to debugging

2 NMI pin interrupt; signal on NMI pin

3 Breakpoint; caused by INT 3 instruction, which is a 1-byte instruction useful for
debugging

4 INTO-detected overflow; occurs when the processor executes INTO with the OF
flag set

5 BOUND range exceeded; the BOUND instruction compares a register with
boundaries stored in memory and generates an interrupt if the contents of the
register is out of bounds.

6 Undefined opcode

7 Device not available; attempt to use ESC or WAIT instruction fails due to lack of
external device

8 Double fault; two interrupts occur during the same instruction and cannot be handled
serially

9 Reserved

10 Invalid task state segment; segment describing a requested task is not initialized or
not valid

11 Segment not present; required segment not present

12 Stack fault; limit of stack segment exceeded or stack segment not present

13 General protection; protection violation that does not cause another exception
(e.g., writing to a read-only segment)

14 Page fault

15 Reserved

16 Floating-point error; generated by a floating-point arithmetic instruction

17 Alignment check; access to a word stored at an odd byte address or a doubleword
stored at an address not a multiple of 4

18 Machine check; model specific

19–31 Reserved

32–255 User interrupt vectors; provided when INTR signal is activated

Unshaded: exceptions
Shaded: interrupts

14.5 / THE x86 PROCESSOR FAMILY 519

520 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

INTERRUPT HANDLING Just as with a transfer of execution using a CALL
instruction, a transfer to an interrupt-handling routine uses the system stack to store
the processor state. When an interrupt occurs and is recognized by the processor, a
sequence of events takes place:

 1. If the transfer involves a change of privilege level, then the current stack
segment register and the current extended stack pointer (ESP) register are
pushed onto the stack.

 2. The current value of the EFLAGS register is pushed onto the stack.
 3. Both the interrupt (IF) and trap (TF) flags are cleared. This disables INTR

interrupts and the trap or single-step feature.
 4. The current code segment (CS) pointer and the current instruction pointer (IP

or EIP) are pushed onto the stack.
 5. If the interrupt is accompanied by an error code, then the error code is pushed

onto the stack.
 6. The interrupt vector contents are fetched and loaded into the CS and IP or

EIP registers. Execution continues from the interrupt service routine.

To return from an interrupt, the interrupt service routine executes an IRET
instruction. This causes all of the values saved on the stack to be restored; execution
resumes from the point of the interrupt.

 14.6 THE ARM PROCESSOR

In this section, we look at some of the key elements of the ARM architecture and
organization. We defer a discussion of more complex aspects of organization and
pipelining until Chapter 16. For the discussion in this section and in Chapter 16, it is
useful to keep in mind key characteristics of the ARM architecture. ARM is primar-
ily a RISC system with the following notable attributes:

 • A moderate array of uniform registers, more than are found on some CISC
systems but fewer than are found on many RISC systems.

 • A load/store model of data processing, in which operations only perform on
operands in registers and not directly in memory. All data must be loaded into
registers before an operation can be performed; the result can then be used for
further processing or stored into memory.

 • A uniform fixed-length instruction of 32 bits for the standard set and 16 bits
for the Thumb instruction set.

 • To make each data processing instruction more flexible, either a shift or rota-
tion can preprocess one of the source registers. To efficiently support this fea-
ture, there are separate arithmetic logic unit (ALU) and shifter units.

 • A small number of addressing modes with all load/store addressees deter-
mined from registers and instruction fields. Indirect or indexed addressing
involving values in memory are not used.

 • Auto-increment and auto-decrement addressing modes are used to improve
the operation of program loops.

14.6 / THE ARM PROCESSOR 521

 • Conditional execution of instructions minimizes the need for conditional
branch instructions, thereby improving pipeline efficiency, because pipeline
flushing is reduced.

Processor Organization

The ARM processor organization varies substantially from one implementation to
the next, particularly when based on different versions of the ARM architecture.
However, it is useful for the discussion in this section to present a simplified, generic
ARM organization, which is illustrated in Figure 14.25. In this figure, the arrows indi-
cate the flow of data. Each box represents a functional hardware unit or a storage unit.

Data are exchanged with the processor from external memory through a
data bus. The value transferred is either a data item, as a result of a load or store
instruction, or an instruction fetch. Fetched instructions pass through an instruc-
tion decoder before execution, under control of a control unit. The latter includes

Memory address register

Incrementer

Barrel
shifter

Multiply/
accumulate

ALU

R15 (PC)

Rn Rm

Rd

Acc

Sign
extend

User Register File (R0 - R15)

External memory (cache, main memory)

Memory buffer register

Instruction register

Control
unit

Instruction
decoder

CPSR

Figure 14.25 Simplified ARM Organization

522 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

 pipeline logic and provides control signals (not shown) to all the hardware ele-
ments of the processor. Data items are placed in the register file, consisting of a set
of 32-bit registers. Byte or halfword items treated as twos-complement numbers are
sign-extended to 32 bits.

ARM data processing instructions typically have two source registers, Rn and
Rm, and a single result or destination register, Rd. The source register values feed
into the ALU or a separate multiply unit that makes use of an additional register to
accumulate partial results. The ARM processor also includes a hardware unit that
can shift or rotate the Rm value before it enters the ALU. This shift or rotate occurs
within the cycle time of the instruction and increases the power and flexibility of
many data processing operations.

The results of an operation are fed back to the destination register. Load/store
instructions may also use the output of the arithmetic units to generate the memory
address for a load or store.

Processor Modes

It is quite common for a processor to support only a small number of processor
modes. For example, many operating systems make use of just two modes: a user
mode and a kernel mode, with the latter mode used to execute privileged system
software. In contrast, the ARM architecture provides a flexible foundation for
operating systems to enforce a variety of protection policies.

The ARM architecture supports seven execution modes. Most application
programs execute in user mode. While the processor is in user mode, the program
being executed is unable to access protected system resources or to change mode,
other than by causing an exception to occur.

The remaining six execution modes are referred to as privileged modes. These
modes are used to run system software. There are two principal advantages to
defining so many different privileged modes: (1) The OS can tailor the use of system
software to a variety of circumstances, and (2) certain registers are dedicated for use
for each of the privileged modes, allows swifter changes in context.

The exception modes have full access to system resources and can change
modes freely. Five of these modes are known as exception modes. These are entered
when specific exceptions occur. Each of these modes has some dedicated registers
that substitute for some of the user mode registers, and which are used to avoid
corrupting User mode state information when the exception occurs. The exception
modes are as follows:

 • Supervisor mode: Usually what the OS runs in. It is entered when the proces-
sor encounters a software interrupt instruction. Software interrupts are a stan-
dard way to invoke operating system services on ARM.

 • Abort mode: Entered in response to memory faults.

 • Undefined mode: Entered when the processor attempts to execute an instruction
that is supported neither by the main integer core nor by one of the coprocessors.

 • Fast interrupt mode: Entered whenever the processor receives an interrupt
signal from the designated fast interrupt source. A fast interrupt cannot be
interrupted, but a fast interrupt may interrupt a normal interrupt.

14.6 / THE ARM PROCESSOR 523

 • Interrupt mode: Entered whenever the processor receives an interrupt signal
from any other interrupt source (other than fast interrupt). An interrupt may
only be interrupted by a fast interrupt.

The remaining privileged mode is the System mode. This mode is not entered
by any exception and uses the same registers available in User mode. The System
mode is used for running certain privileged operating system tasks. System mode
tasks may be interrupted by any of the five exception categories.

Register Organization

Figure 14.26 depicts the user-visible registers for the ARM. The ARM processor
has a total of 37 32-bit registers, classified as follows:

 • Thirty-one registers referred to in the ARM manual as general-purpose registers.
In fact, some of these, such as the program counters, have special purposes.

 • Six program status registers.

Registers are arranged in partially overlapping banks, with the current proc-
essor mode determining which bank is available. At any time, sixteen numbered
registers and one or two program status registers are visible, for a total of 17 or 18
software-visible registers. Figure 14.26 is interpreted as follows:

 • Registers R0 through R7, register R15 (the program counter) and the current
program status register (CPSR) are visible in and shared by all modes.

 • Registers R8 through R12 are shared by all modes except fast interrupt, which
has its own dedicated registers R8_fiq through R12_fiq.

 • All the exception modes have their own versions of registers R13 and R14.

 • All the exception modes have a dedicated saved program status register (SPSR)

GENERAL-PURPOSE REGISTERS Register R13 is normally used as a stack pointer
and is also known as the SP. Because each exception mode has a separate R13, each
exception mode can have its own dedicated program stack. R14 is known as the link
register (LR) and is used to hold subroutine return addresses and exception mode
returns. Register R15 is the program counter (PC).

PROGRAM STATUS REGISTERS The CPSR is accessible in all processor modes.
Each exception mode also has a dedicated SPSR that is used to preserve the value
of the CPSR when the associated exception occurs.

The 16 most significant bits of the CPSR contain user flags visible in User
mode, and which can be used to affect the operation of a program (Figure 14.27).
These are as follows:

 • Condition code flags: The N, Z, C, and V flags, which are discussed in Chapter 12.

 • Q flag: used to indicate whether overflow and/or saturation has occurred in
some SIMD-oriented instructions.

 • J bit: indicates the use of special 8-bit instructions, known as Jazelle instruc-
tions, which are beyond the scope of our discussion.

 • GE[3:0] bits: SIMD instructions use bits [19:16] as Greater than or Equal
(GE) flags for individual bytes or halfwords of the result.

524 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

Modes

Privileged modes

Exception modes

User System Supervisor Abort Undefined Interrupt Fast interrupt

R0 R0 R0 R0 R0 R0 R0

R1 R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7 R7

R8 R8 R8 R8 R8 R8 R8_fiq

R9 R9 R9 R9 R9 R9 R9_fiq

R10 R10 R10 R10 R10 R10 R10_fiq

R11 R11 R11 R11 R11 R11 R11_fiq

R12 R12 R12 R12 R12 R12 R12_fiq

R13(SP) R13(SP) R13_svc R13_abt R13_und R13_irq R13_fiq

R14(LR) R14(LR) R14_svc R14_abt R14_und R14_irq R14_fiq

R15(PC) R15(PC) R15(PC) R15(PC) R15(PC) R15(PC) R15(PC)

CPSR CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_svc SPSR_abt SPSR_und SPSR_irq SPSR_fiq

Shading indicates that the normal register used by User or System mode has been replaced by an alternative register
specific to the exception mode.
SP = stack pointer CPSR = current program status register
LR = link register SPSR = saved program status register
PC = program counter

Figure 14.26 ARM Register Organization

The 16 least significant bits of the CPSR contain system control flags that can
only be altered when the processor is in a privileged mode. The fields are as follows:

 • E bit: Controls load and store endianness for data; ignored for instruction fetches.

 • Interrupt disable bits: The A bit disables imprecise data aborts when set; the I bit
disables IRQ interrupts when set; and the F bit disables FIQ interrupts when set.

 • T bit: Indicates whether instructions should be interpreted as normal ARM
instructions or Thumb instructions.

 • Mode bits: Indicates the processor mode.

14.6 / THE ARM PROCESSOR 525

Interrupt Processing

As with any processor, the ARM includes a facility that enables the processor to inter-
rupt the currently executing program to deal with exception conditions. Exceptions
are generated by internal and external sources to cause the processor to handle an
event. The processor state just before handling the exception is normally preserved so
that the original program can be resumed when the exception routine has completed.
More than one exception can arise at the same time. The ARM architecture supports
seven types of exception. Table 14.4 lists the types of exception and the processor
mode that is used to process each type. When an exception occurs, execution is forced

Table 14.4 ARM Interrupt Vector

Exception type Mode
Normal entry

address Description

Reset Supervisor 0x00000000 Occurs when the system is initialized.

Data abort Abort 0x00000010 Occurs when an invalid memory address
has been accessed, such as if there is no
physical memory for an address or the
correct access permission is lacking.

FIQ (fast interrupt) FIQ 0x0000001C Occurs when an external device asserts the
FIQ pin on the processor. An interrupt
cannot be interrupted except by an FIQ.
FIQ is designed to support a data transfer
or channel process, and has sufficient pri-
vate registers to remove the need for reg-
ister saving in such applications, therefore
minimizing the overhead of context switch-
ing. A fast interrupt cannot be interrupted.

IRQ (interrupt) IRQ 0x00000018 Occurs when an external device asserts the
IRQ pin on the processor. An interrupt
cannot be interrupted except by an FIQ.

Prefetch abort Abort 0x0000000C Occurs when an attempt to fetch an
instruction results in a memory fault. The
exception is raised when the instruction
enters the execute stage of the pipeline.

Undefined instructions Undefined 0x00000004 Occurs when an instruction not in the
instruction set reaches the execute stage of
the pipeline.

Software interrupt Supervisor 0x00000008 Generally used to allow user mode pro-
grams to call the OS. The user program
executes a SWI instruction with an argu-
ment that identifies the function the user
wishes to perform.

Res J Reserved

System control flagsUser flags

GE[3:0] Reserved E A I F T M[4:0]QVCZN

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

Figure 14.27 Format of ARM CPSR and SPSR

526 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

from a fixed memory address corresponding to the type of exception. These fixed
addresses are called the exception vectors.

If more than one interrupt is outstanding, they are handled in priority order.
Table 14.4 lists the exceptions in priority order, highest to lowest.

When an exception occurs, the processor halts execution after the current instruc-
tion. The state of the processor is preserved in the SPSR that corresponds to the type
of exception, so that the original program can be resumed when the exception routine
has completed. The address of the instruction the processor was just about to execute
is placed in the link register of the appropriate processor mode. To return after han-
dling the exception, the SPSR is moved into the CPSR and R14 is moved into the PC.

 14.7 RECOMMENDED READING

[PATT01] and [MOSH01] provide excellent coverage of the pipelining issues discussed in
this chapter. [HENN91] contains a detailed discussions of pipelining. [SOHI90] provides an
excellent, detailed discussion of the hardware design issues involved in an instruction pipe-
line. [RAMA77] is a classic paper on the subject still well worth reading.

[EVER01] examines the evolution of branch prediction strategies. [CRAG92] is a
detailed study of branch prediction in instruction pipelines. [DUBE91] and [LILJ88] exam-
ine various branch prediction strategies that can be used to enhance the performance of
instruction pipelining. [KAEL91] examines the difficulty introduced into branch prediction
by instructions whose target address is variable.

[BREY09] provides good coverage of interrupt processing on the x86. [FOG08b] pro-
vides a detailed discussion of pipeline architecture for the x86 family.

BREY09 Brey, B. The Intel Microprocessors: 8086/8066, 80186/80188, 80286, 80386,
80486, Pentium, Pentium Pro Processor, Pentium II, Pentium III, Pentium 4 and
Core2 with 64-bit Extensions. Upper Saddle River, NJ: Prentice Hall, 2009.

CRAG92 Cragon, H. Branch Strategy Taxonomy and Performance Models. Los Alamitos,
CA: IEEE Computer Society Press, 1992.

DUBE91 Dubey, P., and Flynn, M. “Branch Strategies: Modeling and Optimization.”
IEEE Transactions on Computers, October 1991.

EVER01 Evers, M., and Yeh, T. “Understanding Branches and Designing Branch
Predictors for High-Performance Microprocessors.” Proceedings of the IEEE,
November 2001.

FOG08b Fog, A. The Microarchitecture of Intel and AMD CPUs. Copenhagen Univer-
sity College of Engineering, 2008. www.agner.org/optimize/

HENN91 Hennessy, J., and Jouppi, N. “Computer Technology and Architecture: An
Evolving Interaction.” Computer, September 1991.

KAEL91 Kaeli, D., and Emma, P. “Branch History Table Prediction of Moving Target
Branches Due to Subroutine Returns.” Proceedings, 18th Annual International
Symposium on Computer Architecture, May 1991.

LILJ88 Lilja, D. “Reducing the Branch Penalty in Pipelined Processors.” Computer,
July 1988.

MOSH01 Moshovos, A., and Sohi, G. “Microarchitectural Innovations: Boosting Mi-
croprocessor Performance Beyond Semiconductor Technology Scaling.” Proceed-
ings of the IEEE, November 2001.

www.agner.org/optimize/

14.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 527

PATT01 Patt, Y. “Requirements, Bottlenecks, and Good Fortune: Agents for Micro-
processor Evolution.” Proceedings of the IEEE, November 2001.

RAMA77 Ramamoorthy, C. “Pipeline Architecture.” Computing Surveys, March 1977.
SOHI90 Sohi, G. “Instruction Issue Logic for High-Performance Interruptable, Multiple

Functional Unit, Pipelined Computers.” IEEE Transactions on Computers,
March 1990.

 14.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

branch prediction
condition code
delayed branch

flag
instruction cycle
instruction pipeline

instruction prefetch
program status word (PSW)

Review Questions
 14.1 What general roles are performed by processor registers?
 14.2 What categories of data are commonly supported by user-visible registers?
 14.3 What is the function of condition codes?
 14.4 What is a program status word?
 14.5 Why is a two-stage instruction pipeline unlikely to cut the instruction cycle time in

half, compared with the use of no pipeline?
 14.6 List and briefly explain various ways in which an instruction pipeline can deal with

conditional branch instructions.
 14.7 How are history bits used for branch prediction?

Problems
 14.1 a. If the last operation performed on a computer with an 8-bit word was an addition

in which the two operands were 00000010 and 00000011, what would be the value
of the following flags?

 • Carry
 • Zero
 • Overflow
 • Sign
 • Even Parity
 • Half-Carry
b. Repeat for the addition of -1 (twos complement) and +1.

 14.2 Repeat Problem 14.1 for the operation A - B, where A contains 11110000 and B con-
tains 0010100.

 14.3 A microprocessor is clocked at a rate of 5 GHz.
a. How long is a clock cycle?
b. What is the duration of a particular type of machine instruction consisting of three

clock cycles?

528 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

 14.4 A microprocessor provides an instruction capable of moving a string of bytes from
one area of memory to another. The fetching and initial decoding of the instruction
takes 10 clock cycles. Thereafter, it takes 15 clock cycles to transfer each byte. The
microprocessor is clocked at a rate of 10 GHz.
a. Determine the length of the instruction cycle for the case of a string of 64 bytes.
b. What is the worst-case delay for acknowledging an interrupt if the instruction is

noninterruptible?
c. Repeat part (b) assuming the instruction can be interrupted at the beginning of

each byte transfer.
 14.5 The Intel 8088 consists of a bus interface unit (BIU) and an execution unit (EU),

which form a 2-stage pipeline. The BIU fetches instructions into a 4-byte instruction
queue. The BIU also participates in address calculations, fetches operands, and writes
results in memory as requested by the EU. If no such requests are outstanding and
the bus is free, the BIU fills any vacancies in the instruction queue. When the EU
completes execution of an instruction, it passes any results to the BIU (destined for
memory or I/O) and proceeds to the next instruction.
a. Suppose the tasks performed by the BIU and EU take about equal time. By what

factor does pipelining improve the performance of the 8088? Ignore the effect of
branch instructions.

b. Repeat the calculation assuming that the EU takes twice as long as the BIU.
 14.6 Assume an 8088 is executing a program in which the probability of a program jump is

0.1. For simplicity, assume that all instructions are 2 bytes long.
a. What fraction of instruction fetch bus cycles is wasted?
b. Repeat if the instruction queue is 8 bytes long.

 14.7 Consider the timing diagram of Figures 14.10. Assume that there is only a two-stage
pipeline (fetch, execute). Redraw the diagram to show how many time units are now
needed for four instructions.

 14.8 Assume a pipeline with four stages: fetch instruction (FI), decode instruction and cal-
culate addresses (DA), fetch operand (FO), and execute (EX). Draw a diagram simi-
lar to Figure 14.10 for a sequence of 7 instructions, in which the third instruction is a
branch that is taken and in which there are no data dependencies.

 14.9 A pipelined processor has a clock rate of 2.5 GHz and executes a program with 1.5 million
instructions. The pipeline has five stages, and instructions are issued at a rate of one per
clock cycle. Ignore penalties due to branch instructions and out-of-sequence executions.
a. What is the speedup of this processor for this program compared to a nonpipe-

lined processor, making the same assumptions used in Section 14.4?
b. What is throughput (in MIPS) of the pipelined processor?

 14.10 A nonpipelined processor has a clock rate of 2.5 GHz and an average CPI (cycles
per instruction) of 4. An upgrade to the processor introduces a five-stage pipeline.
However, due to internal pipeline delays, such as latch delay, the clock rate of the new
processor has to be reduced to 2 GHz.
a. What is the speedup achieved for a typical program?
b. What is the MIPS rate for each processor?

 14.11 Consider an instruction sequence of length n that is streaming through the instruction
pipeline. Let p be the probability of encountering a conditional or unconditional branch
instruction, and let q be the probability that execution of a branch instruction I causes a
jump to a nonconsecutive address. Assume that each such jump requires the pipeline to
be cleared, destroying all ongoing instruction processing, when I emerges from the last
stage. Revise Equations (14.1) and (14.2) to take these probabilities into account.

 14.12 One limitation of the multiple-stream approach to dealing with branches in a pipeline
is that additional branches will be encountered before the first branch is resolved.
Suggest two additional limitations or drawbacks.

 14.13 Consider the state diagrams of Figure 14.28.
a. Describe the behavior of each.
b. Compare these with the branch prediction state diagram in Section 14.4. Discuss

the relative merits of each of the three approaches to branch prediction.

14.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 529

 14.14 The Motorola 680x0 machines include the instruction Decrement and Branch
 According to Condition, which has the following form:

DBcc Dn, displacement

where cc is one of the testable conditions, Dn is a general-purpose register, and dis-
placement specifies the target address relative to the current address. The instruction
can be defined as follows:

if (cc = False)
then begin

Dn := (Dn) - 1;
if Dn � -1 then PC := (PC) + displacement end

else PC := (PC) + 2;
When the instruction is executed, the condition is first tested to determine whether
the termination condition for the loop is satisfied. If so, no operation is performed and
execution continues at the next instruction in sequence. If the condition is false, the
specified data register is decremented and checked to see if it is less than zero. If it is
less than zero, the loop is terminated and execution continues at the next instruction
in sequence. Otherwise, the program branches to the specified location. Now consider
the following assembly-language program fragment:

AGAIN CMPM.L (A0)+ , (A1)+
 DBNE D1, AGAIN
 NOP

Two strings addressed by A0 and A1 are compared for equality; the string pointers
are incremented with each reference. D1 initially contains the number of longwords
(4 bytes) to be compared.
a. The initial contents of the registers are A0 = $00004000, A1 = $00005000 and

D1 = $000000FF (the $ indicates hexadecimal notation). Memory between $4000
and $6000 is loaded with words $AAAA. If the foregoing program is run, specify

Not taken

Not taken

N
ot

 t
ak

en

Tak
en

Ta
ke

n

Not
 ta

ken

Taken

Taken

Predict
taken

Predict
taken

Predict
not taken

Predict
taken

Not taken

Not taken

Tak
en

Not
 ta

ken

Taken

Not taken

Taken

Taken

Predict
taken

Predict
taken

Predict
not taken

Predict
not taken

Figure 14.28 Two Branch Prediction State Diagrams

530 CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

the number of times the DBNE loop is executed and the contents of the three
registers when the NOP instruction is reached.

b. Repeat (a), but now assume that memory between $4000 and $4FEE is loaded
with $0000 and between $5000 and $6000 is loaded with $AAA.

 14.15 Redraw Figures 14.19c, assuming that the conditional branch is not taken.
 14.16 Table 14.5 summarizes statistics from [MACD84] concerning branch behavior for

various classes of applications. With the exception of type 1 branch behavior, there is
no noticeable difference among the application classes. Determine the fraction of all
branches that go to the branch target address for the scientific environment. Repeat
for commercial and systems environments.

 14.17 Pipelining can be applied within the ALU to speed up floating-point operations. Con-
sider the case of floating-point addition and subtraction. In simplified terms, the pipe-
line could have four stages: (1) Compare the exponents; (2) Choose the exponent and
align the significands; (3) Add or subtract significands; (4) Normalize the results. The
pipeline can be considered to have two parallel threads, one handling exponents and
one handling significands, and could start out like this:

R

a

Exponents

b

R

A

Significands

B

In this figure, the boxes labeled R refer to a set of registers used to hold temporary
 results. Complete the block diagram that shows at a top level the structure of the
 pipeline.

Table 14.5 Branch Behavior in Sample Applications

Occurrence of branch classes:

Type 1: Branch 72.5%

Type 2: Loop control 9.8%

Type 3: Procedure call, return 17.7%

Type 1 branch: where it goes Scientific Commercial Systems

Unconditional—100% go to target 20% 40% 35%

Conditional—went to target 43.2% 24.3% 32.5%

Conditional—did not go to target (inline) 36.8% 35.7% 32.5%

Type 2 branch (all environments)

That go to target 91%

That go inline 9%

Type 3 branch

100% go to target

531

REDUCED INSTRUCTION
SET COMPUTERS

15.1 Instruction Execution Characteristics
Operations
Operands
Procedure Calls
Implications

15.2 The Use of a Large Register File
Register Windows
Global Variables
Large Register File versus Cache

15.3 Compiler-Based Register Optimization

15.4 Reduced Instruction Set Architecture
Why CISC
Characteristics of Reduced Instruction Set Architectures
CISC versus RISC Characteristics

15.5 RISC Pipelining
Pipelining with Regular Instructions
Optimization of Pipelining

15.6 MIPS R4000
Instruction Set
Instruction Pipeline

15.7 SPARC
SPARC Register Set
Instruction Set
Instruction Format

15.8 RISC versus CISC Controversy

15.9 Recommended Reading

15.10 Key Terms, Review Questions, and Problems

CHAPTER

532 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

Since the development of the stored-program computer around 1950, there have
been remarkably few true innovations in the areas of computer organization and
architecture. The following are some of the major advances since the birth of the
computer:

 • The family concept: Introduced by IBM with its System/360 in 1964, followed
shortly thereafter by DEC, with its PDP-8. The family concept decouples the
 architecture of a machine from its implementation. A set of computers is offered,
with different price/performance characteristics, that presents the same architec-
ture to the user. The differences in price and performance are due to different
implementations of the same architecture.

 • Microprogrammed control unit: Suggested by Wilkes in 1951 and introduced
by IBM on the S/360 line in 1964. Microprogramming eases the task of design-
ing and implementing the control unit and provides support for the family
concept.

 • Cache memory: First introduced commercially on IBM S/360 Model 85 in
1968. The insertion of this element into the memory hierarchy dramatically
improves performance.

 • Pipelining: A means of introducing parallelism into the essentially sequential
nature of a machine-instruction program. Examples are instruction pipelining
and vector processing.

 • Multiple processors: This category covers a number of different organizations
and objectives.

 • Reduced instruction set computer (RISC) architecture: This is the focus of
this chapter.

When it appeared, RISC architecture was a dramatic departure from the
historical trend in processor architecture. An analysis of the RISC architecture
brings into focus many of the important issues in computer organization and
architecture.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Provide an overview research results on instruction execution characteristics
that motivated the development of the RISC approach.

� Summarize the key characteristics of RISC machines.
� Understand the design and performance implications of using a large register

file.
� Understand the use of compiler-based register optimization to improve

performance.
� Discuss the implication of a RISC architecture for pipeline design and

performance.
� List and explain key approaches to pipeline optimization on a RISC machine.

15.1 / INSTRUCTION EXECUTION CHARACTERISTICS 533

Although RISC architectures have been defined and designed in a variety of
ways by different groups, the key elements shared by most designs are these:

 • A large number of general-purpose registers, and/or the use of compiler
technology to optimize register usage

 • A limited and simple instruction set

 • An emphasis on optimizing the instruction pipeline

Table 15.1 compares several RISC and non-RISC systems.
We begin this chapter with a brief survey of some results on instruction sets,

and then examine each of the three topics just listed. This is followed by a descrip-
tion of two of the best-documented RISC designs.

 15.1 INSTRUCTION EXECUTION CHARACTERISTICS

One of the most visible forms of evolution associated with computers is that of pro-
gramming languages. As the cost of hardware has dropped, the relative cost of soft-
ware has risen. Along with that, a chronic shortage of programmers has driven up
software costs in absolute terms. Thus, the major cost in the life cycle of a system is
software, not hardware. Adding to the cost, and to the inconvenience, is the element
of unreliability: it is common for programs, both system and application, to continue
to exhibit new bugs after years of operation.

The response from researchers and industry has been to develop ever more
powerful and complex high-level programming languages. These high-level lan-
guages (HLLs): (1) allow the programmer to express algorithms more concisely,
(2) allow the compiler to take care of details that are not important in the program-
mer’s expression of algorithms, and (3) often support naturally the use of structured
programming and/or object-oriented design.

Alas, this solution gave rise to a perceived problem, known as the semantic
gap, the difference between the operations provided in HLLs and those provided
in computer architecture. Symptoms of this gap are alleged to include execution
inefficiency, excessive machine program size, and compiler complexity. Designers
responded with architectures intended to close this gap. Key features include large
instruction sets, dozens of addressing modes, and various HLL statements imple-
mented in hardware. An example of the latter is the CASE machine instruction on
the VAX. Such complex instruction sets are intended to

 • Ease the task of the compiler writer.

 • Improve execution efficiency, because complex sequences of operations can
be implemented in microcode.

 • Provide support for even more complex and sophisticated HLLs.

Meanwhile, a number of studies have been done over the years to determine
the characteristics and patterns of execution of machine instructions generated
from HLL programs. The results of these studies inspired some researchers to look
for a different approach: namely, to make the architecture that supports the HLL
simpler, rather than more complex.

Table 15.1 Characteristics of Some CISCs, RISCs, and Superscalar Processors

Complex Instruction Set
(CISC) Computer

Reduced Instruction Set
(RISC) Computer Superscalar

Characteristic IBM
370/168

VAX
11/780

Intel
80486

SPARC MIPS
R4000

PowerPC Ultra
SPARC

MIPS
R10000

Year developed 1973 1978 1989 1987 1991 1993 1996 1996

Number of instructions 208 303 235 69 94 225 — —

Instruction size (bytes) 2–6 2–57 1–11 4 4 4 4 4

Addressing modes 4 22 11 1 1 2 1 1

Number of general-purpose
registers

16 16 8 40–520 32 32 40–520 32

Control memory
size (Kbits)

420 480 246 — — — — —

Cache size (Kbytes) 64 64 8 32 128 16–32 32 64

534

15.1 / INSTRUCTION EXECUTION CHARACTERISTICS 535

To understand the line of reasoning of the RISC advocates, we begin with a
brief review of instruction execution characteristics. The aspects of computation of
interest are as follows:

 • Operations performed: These determine the functions to be performed by the
processor and its interaction with memory.

 • Operands used: The types of operands and the frequency of their use deter-
mine the memory organization for storing them and the addressing modes for
accessing them.

 • Execution sequencing: This determines the control and pipeline organization.

In the remainder of this section, we summarize the results of a number of
studies of high-level-language programs. All of the results are based on dynamic
measurements. That is, measurements are collected by executing the program and
counting the number of times some feature has appeared or a particular property
has held true. In contrast, static measurements merely perform these counts on the
source text of a program. They give no useful information on performance, because
they are not weighted relative to the number of times each statement is executed.

Operations

A variety of studies have been made to analyze the behavior of HLL programs.
Table 4.8, discussed in Chapter 4, includes key results from a number of studies.
There is quite good agreement in the results of this mixture of languages and appli-
cations. Assignment statements predominate, suggesting that the simple movement
of data is of high importance. There is also a preponderance of conditional state-
ments (IF, LOOP). These statements are implemented in machine language with
some sort of compare and branch instruction. This suggests that the sequence con-
trol mechanism of the instruction set is important.

These results are instructive to the machine instruction set designer, indicat-
ing which types of statements occur most often and therefore should be supported
in an “optimal” fashion. However, these results do not reveal which statements use
the most time in the execution of a typical program. That is, we want to answer the
question: Given a compiled machine-language program, which statements in the
source language cause the execution of the most machine-language instructions and
what is the execution time of these instructions?

To get at this underlying phenomenon, the Patterson programs [PATT82a],
described in Appendix 4A, were compiled on the VAX, PDP-11, and Motorola
68000 to determine the average number of machine instructions and memory refer-
ences per statement type. The second and third columns in Table 15.2 show the rela-
tive frequency of occurrence of various HLL statements in a variety of programs;
the data were obtained by observing the occurrences in running programs rather
than just the number of times that statements occur in the source code. Hence
these metrics capture dynamic behavior. To obtain the data in columns four and
five (machine-instruction weighted), each value in the second and third columns is
multiplied by the number of machine instructions produced by the compiler. These
results are then normalized so that columns four and five show the relative fre-
quency of occurrence, weighted by the number of machine instructions per HLL

536 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

Table 15.2 Weighted Relative Dynamic Frequency of HLL Operations [PATT82a]

Dynamic Occurrence
Machine-Instruction

Weighted
Memory-Reference

Weighted

Pascal C Pascal C Pascal C

ASSIGN 45% 38% 13% 13% 14% 15%

LOOP 5% 3% 42% 32% 33% 26%

CALL 15% 12% 31% 33% 44% 45%

IF 29% 43% 11% 21% 7% 13%

GOTO — 3% — — — —

OTHER 6% 1% 3% 1% 2% 1%

statement. Similarly, the sixth and seventh columns are obtained by multiplying the
frequency of occurrence of each statement type by the relative number of memory
references caused by each statement. The data in columns four through seven pro-
vide surrogate measures of the actual time spent executing the various statement
types. The results suggest that the procedure call/return is the most time-consuming
operation in typical HLL programs.

The reader should be clear on the significance of Table 15.2. This table indi-
cates the relative performance impact of various statement types in an HLL, when
that HLL is compiled for a typical contemporary instruction set architecture. Some
other architecture could conceivably produce different results. However, this study
produces results that are representative for contemporary complex instruction set
computer (CISC) architectures. Thus, they can provide guidance to those looking
for more efficient ways to support HLLs.

Operands

Much less work has been done on the occurrence of types of operands, despite the
importance of this topic. There are several aspects that are significant.

The Patterson study already referenced [PATT82a] also looked at the dynamic
frequency of occurrence of classes of variables (Table 15.3). The results, consistent
between Pascal and C programs, show that most references are to simple scalar
variables. Further, more than 80% of the scalars were local (to the procedure) vari-
ables. In addition, each reference to an array or a structure requires a reference to
an index or pointer, which again is usually a local scalar. Thus, there is a preponder-
ance of references to scalars, and these are highly localized.

The Patterson study examined the dynamic behavior of HLL programs,
independent of the underlying architecture. As discussed before, it is necessary

Table 15.3 Dynamic Percentage of Operands

Pascal C Average

Integer Constant 16% 23% 20%

Scalar Variable 58% 53% 55%

Array/Structure 26% 24% 25%

15.1 / INSTRUCTION EXECUTION CHARACTERISTICS 537

to deal with actual architectures to examine program behavior more deeply. One
study, [LUND77], examined DEC-10 instructions dynamically and found that
each instruction on the average references 0.5 operand in memory and 1.4 reg-
isters. Similar results are reported in [HUCK83] for C, Pascal, and FORTRAN
programs on S/370, PDP-11, and VAX. Of course, these figures depend highly
on both the architecture and the compiler, but they do illustrate the frequency of
operand accessing.

These latter studies suggest the importance of an architecture that lends itself
to fast operand accessing, because this operation is performed so frequently. The
Patterson study suggests that a prime candidate for optimization is the mechanism
for storing and accessing local scalar variables.

Procedure Calls

We have seen that procedure calls and returns are an important aspect of HLL
 programs. The evidence (Table 15.2) suggests that these are the most time- consuming
operations in compiled HLL programs. Thus, it will be profitable to consider ways of
implementing these operations efficiently. Two aspects are significant: the number
of parameters and variables that a procedure deals with, and the depth of nesting.

Tanenbaum’s study [TANE78] found that 98% of dynamically called proce-
dures were passed fewer than six arguments and that 92% of them used fewer than
six local scalar variables. Similar results were reported by the Berkeley RISC team
[KATE83], as shown in Table 15.4. These results show that the number of words
required per procedure activation is not large. The studies reported earlier indi-
cated that a high proportion of operand references is to local scalar variables. These
studies show that those references are in fact confined to relatively few variables.

The same Berkeley group also looked at the pattern of procedure calls and returns
in HLL programs. They found that it is rare to have a long uninterrupted sequence of
procedure calls followed by the corresponding sequence of returns. Rather, they found
that a program remains confined to a rather narrow window of procedure-invocation
depth. This is illustrated in Figure 4.21, which was discussed in Chapter 4. These results
reinforce the conclusion that operand references are highly localized.

Implications

A number of groups have looked at results such as those just reported and have
concluded that the attempt to make the instruction set architecture close to HLLs

Table 15.4 Procedure Arguments and Local Scalar Variables

Percentage of Executed
Procedure Calls With

Compiler, Interpreter,
and Typesetter

Small Nonnumeric
Programs

73 arguments 0–7% 0–5%

75 arguments 0–3% 0%

78 words of arguments and
local scalars

1–20% 0–6%

712 words of arguments and
local scalars

1–6% 0–3%

538 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

is not the most effective design strategy. Rather, the HLLs can best be supported
by optimizing performance of the most time-consuming features of typical HLL
programs.

Generalizing from the work of a number of researchers, three elements emerge
that, by and large, characterize RISC architectures. First, use a large number of
registers or use a compiler to optimize register usage. This is intended to optimize
operand referencing. The studies just discussed show that there are several refer-
ences per HLL statement and that there is a high proportion of move (assignment)
statements. This, coupled with the locality and predominance of scalar references,
suggests that performance can be improved by reducing memory references at the
expense of more register references. Because of the locality of these references, an
expanded register set seems practical.

Second, careful attention needs to be paid to the design of instruction pipe-
lines. Because of the high proportion of conditional branch and procedure call
instructions, a straightforward instruction pipeline will be inefficient. This manifests
itself as a high proportion of instructions that are prefetched but never executed.

Finally, an instruction set consisting of high-performance primitives is
indicated. Instructions should have predictable costs (measured in execution
time and code size, and increasingly, in energy dissipation) and be consistent
with a high-performance implementation (which harmonizes with predictable
execution-time cost).

 15.2 THE USE OF A LARGE REGISTER FILE

The results summarized in Section 15.1 point out the desirability of quick access to
operands. We have seen that there is a large proportion of assignment statements
in HLL programs, and many of these are of the simple form A d B. Also, there is
a significant number of operand accesses per HLL statement. If we couple these
results with the fact that most accesses are to local scalars, heavy reliance on register
storage is suggested.

The reason that register storage is indicated is that it is the fastest avail-
able storage device, faster than both main memory and cache. The register file is
physically small, on the same chip as the ALU and control unit, and employs much
shorter addresses than addresses for cache and memory. Thus, a strategy is needed
that will allow the most frequently accessed operands to be kept in registers and to
minimize register-memory operations.

Two basic approaches are possible, one based on software and the other on
hardware. The software approach is to rely on the compiler to maximize register
usage. The compiler will attempt to assign registers to those variables that will be
used the most in a given time period. This approach requires the use of sophisti-
cated program-analysis algorithms. The hardware approach is simply to use more
registers so that more variables can be held in registers for longer periods of time.

In this section, we will discuss the hardware approach. This approach has been
pioneered by the Berkeley RISC group [PATT82a]; was used in the first commer-
cial RISC product, the Pyramid [RAGA83]; and is currently used in the popular
SPARC architecture.

15.2 / THE USE OF A LARGE REGISTER FILE 539

Register Windows

On the face of it, the use of a large set of registers should decrease the need to
access memory. The design task is to organize the registers in such a fashion that
this goal is realized.

Because most operand references are to local scalars, the obvious approach
is to store these in registers, with perhaps a few registers reserved for global vari-
ables. The problem is that the definition of local changes with each procedure call
and return, operations that occur frequently. On every call, local variables must
be saved from the registers into memory, so that the registers can be reused by the
called procedure. Furthermore, parameters must be passed. On return, the vari-
ables of the calling procedure must be restored (loaded back into registers) and
results must be passed back to the calling procedure.

The solution is based on two other results reported in Section 15.1. First, a typi-
cal procedure employs only a few passed parameters and local variables (Table 15.4).
Second, the depth of procedure activation fluctuates within a relatively narrow range
(Figure 4.21). To exploit these properties, multiple small sets of registers are used,
each assigned to a different procedure. A procedure call automatically switches the
processor to use a different fixed-size window of registers, rather than saving regis-
ters in memory. Windows for adjacent procedures are overlapped to allow param-
eter passing.

The concept is illustrated in Figure 15.1. At any time, only one window of
registers is visible and is addressable as if it were the only set of registers (e.g.,
addresses 0 through N - 1). The window is divided into three fixed-size areas.
Parameter registers hold parameters passed down from the procedure that called
the current procedure and hold results to be passed back up. Local registers are
used for local variables, as assigned by the compiler. Temporary registers are used
to exchange parameters and results with the next lower level (procedure called by
current procedure). The temporary registers at one level are physically the same
as the parameter registers at the next lower level. This overlap permits parameters
to be passed without the actual movement of data. Keep in mind that, except for
the overlap, the registers at two different levels are physically distinct. That is, the
parameter and local registers at level J are disjoint from the local and temporary
registers at level J + 1.

To handle any possible pattern of calls and returns, the number of register
windows would have to be unbounded. Instead, the register windows can be used
to hold the few most recent procedure activations. Older activations must be saved

Parameter
registers

Local
registers

Temporary
registers Level J

Parameter
registers

Call/return

Local
registers

Temporary
registers Level J � 1

Figure 15.1 Overlapping Register Windows

540 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

in memory and later restored when the nesting depth decreases. Thus, the actual
organization of the register file is as a circular buffer of overlapping windows. Two
notable examples of this approach are Sun’s SPARC architecture, described in
Section 15.7, and the IA-64 architecture used in Intel’s Itanium processor.

The circular organization is shown in Figure 15.2, which depicts a circular
buffer of six windows. The buffer is filled to a depth of 4 (A called B; B called C;
C called D) with procedure D active. The current-window pointer (CWP) points
to the window of the currently active procedure. Register references by a machine
instruction are offset by this pointer to determine the actual physical register. The
saved-window pointer (SWP) identifies the window most recently saved in memory.
If procedure D now calls procedure E, arguments for E are placed in D’s temporary
registers (the overlap between w3 and w4) and the CWP is advanced by one window.

If procedure E then makes a call to procedure F, the call cannot be made with
the current status of the buffer. This is because F’s window overlaps A’s window. If
F begins to load its temporary registers, preparatory to a call, it will overwrite the
parameter registers of A (A.in). Thus, when CWP is incremented (modulo 6) so
that it becomes equal to SWP, an interrupt occurs, and A’s window is saved. Only
the first two portions (A.in and A.loc) need be saved. Then, the SWP is incremented

Current
window
pointer

Saved
window
pointer

SaveRestore

A.param

w0 w1

w2

w3w4

w5

A.temp =
B.param

B.temp =
C.param

C.temp =
D.param

A.loc
B.loc

C.loc

D.loc(E)

(F)

Call

Return

Figure 15.2 Circular-Buffer Organization of Overlapped Windows

15.2 / THE USE OF A LARGE REGISTER FILE 541

and the call to F proceeds. A similar interrupt can occur on returns. For example,
subsequent to the activation of F, when B returns to A, CWP is decremented and
becomes equal to SWP. This causes an interrupt that results in the restoration of
A’s window.

From the preceding, it can be seen that an N-window register file can hold
only N - 1 procedure activations. The value of N need not be large. As was men-
tioned in Appendix 4A, one study [TAMI83] found that, with 8 windows, a save or
restore is needed on only 1% of the calls or returns. The Berkeley RISC computers
use 8 windows of 16 registers each. The Pyramid computer employs 16 windows of
32 registers each.

Global Variables

The window scheme just described provides an efficient organization for storing
local scalar variables in registers. However, this scheme does not address the need
to store global variables, those accessed by more than one procedure. Two options
suggest themselves. First, variables declared as global in an HLL can be assigned
memory locations by the compiler, and all machine instructions that reference these
variables will use memory-reference operands. This is straightforward, from both
the hardware and software (compiler) points of view. However, for frequently
accessed global variables, this scheme is inefficient.

An alternative is to incorporate a set of global registers in the processor. These
registers would be fixed in number and available to all procedures. A unified num-
bering scheme can be used to simplify the instruction format. For example, refer-
ences to registers 0 through 7 could refer to unique global registers, and references
to registers 8 through 31 could be offset to refer to physical registers in the current
window. There is an increased hardware burden to accommodate the split in regis-
ter addressing. In addition, the linker must decide which global variables should be
assigned to registers.

Large Register File versus Cache

The register file, organized into windows, acts as a small, fast buffer for holding a
subset of all variables that are likely to be used the most heavily. From this point
of view, the register file acts much like a cache memory, although a much faster
memory. The question therefore arises as to whether it would be simpler and better
to use a cache and a small traditional register file.

Table 15.5 compares characteristics of the two approaches. The window-based
register file holds all the local scalar variables (except in the rare case of window
overflow) of the most recent N - 1 procedure activations. The cache holds a selec-
tion of recently used scalar variables. The register file should save time, because all
local scalar variables are retained. On the other hand, the cache may make more effi-
cient use of space, because it is reacting to the situation dynamically. Furthermore,
caches generally treat all memory references alike, including instructions and other
types of data. Thus, savings in these other areas are possible with a cache and not a
register file.

542 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

A register file may make inefficient use of space, because not all procedures
will need the full window space allotted to them. On the other hand, the cache
suffers from another sort of inefficiency: Data are read into the cache in blocks.
Whereas the register file contains only those variables in use, the cache reads in a
block of data, some or much of which will not be used.

The cache is capable of handling global as well as local variables. There are
usually many global scalars, but only a few of them are heavily used [KATE83].
A cache will dynamically discover these variables and hold them. If the window-
based register file is supplemented with global registers, it too can hold some
 global scalars. However, when program modules are separately compiled, it is
impossible for the compiler to assign global values to registers; the linker must
perform this task.

With the register file, the movement of data between registers and memory
is determined by the procedure nesting depth. Because this depth usually fluctu-
ates within a narrow range, the use of memory is relatively infrequent. Most cache
memories are set associative with a small set size. Thus, there is the danger that
other data or instructions will compete for cache residency.

Based on the discussion so far, the choice between a large window-based reg-
ister file and a cache is not clear-cut. There is one characteristic, however, in which
the register approach is clearly superior and which suggests that a cache-based sys-
tem will be noticeably slower. This distinction shows up in the amount of addressing
overhead experienced by the two approaches.

Figure 15.3 illustrates the difference. To reference a local scalar in a window-
based register file, a “virtual” register number and a window number are used.
These can pass through a relatively simple decoder to select one of the physical reg-
isters. To reference a memory location in cache, a full-width memory address must
be generated. The complexity of this operation depends on the addressing mode. In
a set associative cache, a portion of the address is used to read a number of words
and tags equal to the set size. Another portion of the address is compared with the
tags, and one of the words that were read is selected. It should be clear that even if
the cache is as fast as the register file, the access time will be considerably longer.
Thus, from the point of view of performance, the window-based register file is supe-
rior for local scalars. Further performance improvement could be achieved by the
addition of a cache for instructions only.

Table 15.5 Characteristics of Large-Register-File and Cache Organizations

Large Register File Cache

All local scalars Recently-used local scalars

Individual variables Blocks of memory

Compiler-assigned global variables Recently-used global variables

Save/Restore based on procedure
nesting depth

Save/Restore based on cache
replacement algorithm

Register addressing Memory addressing

Multiple operands addressed and
accessed in one cycle

One operand addressed and
accessed per cycle

15.3 / COMPILER-BASED REGISTER OPTIMIZATION 543

 15.3 COMPILER-BASED REGISTER OPTIMIZATION

Let us assume now that only a small number (e.g., 16–32) of registers is available
on the target RISC machine. In this case, optimized register usage is the responsi-
bility of the compiler. A program written in a high-level language has, of course,
no explicit references to registers (the C-language keyword register notwithstand-
ing). Rather, program quantities are referred to symbolically. The objective of the
compiler is to keep the operands for as many computations as possible in registers
rather than main memory, and to minimize load-and-store operations.

In general, the approach taken is as follows. Each program quantity that is
a candidate for residing in a register is assigned to a symbolic or virtual register.
The compiler then maps the unlimited number of symbolic registers into a fixed
number of real registers. Symbolic registers whose usage does not overlap can share
the same real register. If, in a particular portion of the program, there are more
quantities to deal with than real registers, then some of the quantities are assigned
to memory locations. Load-and-store instructions are used to position quantities in
registers temporarily for computational operations.

Data

Decoder

Instruction

Registers

(a) Windows-based register file

(b) Cache

R

W#

Instruction

A

Tags Data

Data

SelectCompare

Figure 15.3 Referencing a Scalar

544 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

The essence of the optimization task is to decide which quantities are to be
assigned to registers at any given point in the program. The technique most com-
monly used in RISC compilers is known as graph coloring, which is a technique bor-
rowed from the discipline of topology [CHAI82, CHOW86, COUT86, CHOW90].

The graph coloring problem is this. Given a graph consisting of nodes and
edges, assign colors to nodes such that adjacent nodes have different colors, and
do this in such a way as to minimize the number of different colors. This problem
is adapted to the compiler problem in the following way. First, the program is ana-
lyzed to build a register interference graph. The nodes of the graph are the symbolic
registers. If two symbolic registers are “live” during the same program fragment,
then they are joined by an edge to depict interference. An attempt is then made to
color the graph with n colors, where n is the number of registers. Nodes that share
the same color can be assigned to the same register. If this process does not fully
succeed, then those nodes that cannot be colored must be placed in memory, and
loads and stores must be used to make space for the affected quantities when they
are needed.

Figure 15.4 is a simple example of the process. Assume a program with six
symbolic registers to be compiled into three actual registers. Figure 15.4a shows the
time sequence of active use of each symbolic register. The dashed horizontal lines
indicate successive instruction executions. Figure 15.4b shows the register inter-
ference graph (shading and cross-hatching are used instead of colors). A possible
coloring with three colors is indicated. Because symbolic registers A and D do not
interfere, the compile can assign both of these to physical register R1. Similarly,
symbolic registers C and E can be assigned to register R3. One symbolic register, F,
is left uncolored and must be dealt with using loads and stores.

In general, there is a trade-off between the use of a large set of registers and
compiler-based register optimization. For example, [BRAD91a] reports on a study

A

R1 R2 R3

(a) Time sequence of active use of registers (b) Register interference graph

B
B

C
Symbolic registers

Actual registers

T
im

e

D E

E

F

C
F

A

D

D
E

Figure 15.4 Graph Coloring Approach

15.4 / REDUCED INSTRUCTION SET ARCHITECTURE 545

that modeled a RISC architecture with features similar to the Motorola 88000 and
the MIPS R2000. The researchers varied the number of registers from 16 to 128,
and they considered both the use of all general-purpose registers and registers split
between integer and floating-point use. Their study showed that with even simple
register optimization, there is little benefit to the use of more than 64 registers. With
reasonably sophisticated register optimization techniques, there is only marginal
performance improvement with more than 32 registers. Finally, they noted that
with a small number of registers (e.g., 16), a machine with a shared register organi-
zation executes faster than one with a split organization. Similar conclusions can be
drawn from [HUGU91], which reports on a study that is primarily concerned with
optimizing the use of a small number of registers rather than comparing the use of
large register sets with optimization efforts.

 15.4 REDUCED INSTRUCTION SET ARCHITECTURE

In this section, we look at some of the general characteristics of and the motivation
for a reduced instruction set architecture. Specific examples will be seen later in
this chapter. We begin with a discussion of motivations for contemporary complex
instruction set architectures.

Why CISC

We have noted the trend to richer instruction sets, which include a larger number
of instructions and more complex instructions. Two principal reasons have moti-
vated this trend: a desire to simplify compilers and a desire to improve performance.
Underlying both of these reasons was the shift to HLLs on the part of programmers;
architects attempted to design machines that provided better support for HLLs.

It is not the intent of this chapter to say that the CISC designers took the
wrong direction. Indeed, because technology continues to evolve and because archi-
tectures exist along a spectrum rather than in two neat categories, a black-and-white
assessment is unlikely ever to emerge. Thus, the comments that follow are simply
meant to point out some of the potential pitfalls in the CISC approach and to pro-
vide some understanding of the motivation of the RISC adherents.

The first of the reasons cited, compiler simplification, seems obvious, but it
is not. The task of the compiler writer is to build a compiler that generates good
(fast, small, fast and small) sequences of machine instructions for HLL programs
(i.e., the compiler views individual HLL statements in the context of surrounding
HLL statements). If there are machine instructions that resemble HLL statements,
this task is simplified. This reasoning has been disputed by the RISC researchers
([HENN82], [RADI83], [PATT82b]). They have found that complex machine
instructions are often hard to exploit because the compiler must find those cases
that exactly fit the construct. The task of optimizing the generated code to mini-
mize code size, reduce instruction execution count, and enhance pipelining is much
more difficult with a complex instruction set. As evidence of this, studies cited
earlier in this chapter indicate that most of the instructions in a compiled program
are the relatively simple ones.

546 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

The other major reason cited is the expectation that a CISC will yield smaller,
faster programs. Let us examine both aspects of this assertion: that programs will be
smaller and that they will execute faster.

There are two advantages to smaller programs. First, because the program
takes up less memory, there is a savings in that resource. With memory today being
so inexpensive, this potential advantage is no longer compelling. More important,
smaller programs should improve performance, and this will happen in three ways.
First, fewer instructions means fewer instruction bytes to be fetched. Second, in a
paging environment, smaller programs occupy fewer pages, reducing page faults.
Third, more instructions fit in cache(s).

The problem with this line of reasoning is that it is far from certain that a CISC
program will be smaller than a corresponding RISC program. In many cases, the
CISC program, expressed in symbolic machine language, may be shorter (i.e., fewer
instructions), but the number of bits of memory occupied may not be noticeably
smaller. Table 15.6 shows results from three studies that compared the size of com-
piled C programs on a variety of machines, including RISC I, which has a reduced
instruction set architecture. Note that there is little or no savings using a CISC over
a RISC. It is also interesting to note that the VAX, which has a much more complex
instruction set than the PDP-11, achieves very little savings over the latter. These
results were confirmed by IBM researchers [RADI83], who found that the IBM 801
(a RISC) produced code that was 0.9 times the size of code on an IBM S/370. The
study used a set of PL/I programs.

There are several reasons for these rather surprising results. We have already
noted that compilers on CISCs tend to favor simpler instructions, so that the con-
ciseness of the complex instructions seldom comes into play. Also, because there
are more instructions on a CISC, longer opcodes are required, producing longer
instructions. Finally, RISCs tend to emphasize register rather than memory refer-
ences, and the former require fewer bits. An example of this last effect is discussed
presently.

So the expectation that a CISC will produce smaller programs, with the attend-
ant advantages, may not be realized. The second motivating factor for increasingly
complex instruction sets was that instruction execution would be faster. It seems
to make sense that a complex HLL operation will execute more quickly as a single
machine instruction rather than as a series of more primitive instructions. However,
because of the bias toward the use of those simpler instructions, this may not be so.

Table 15.6 Code Size Relative to RISC I

[PATT82a]
11 C Programs

[KATE83]
12 C Programs

[HEAT84]
5 C Programs

RISC I 1.0 1.0 1.0

VAX-11/780 0.8 0.67

M68000 0.9 0.9

Z8002 1.2 1.12

PDP-11/70 0.9 0.71

15.4 / REDUCED INSTRUCTION SET ARCHITECTURE 547

The entire control unit must be made more complex, and/or the microprogram con-
trol store must be made larger, to accommodate a richer instruction set. Either factor
increases the execution time of the simple instructions.

In fact, some researchers have found that the speedup in the execution of com-
plex functions is due not so much to the power of the complex machine instructions
as to their residence in high-speed control store [RADI83]. In effect, the control
store acts as an instruction cache. Thus, the hardware architect is in the position of
trying to determine which subroutines or functions will be used most frequently and
assigning those to the control store by implementing them in microcode. The results
have been less than encouraging. On S/390 systems, instructions such as Translate
and Extended-Precision-Floating-Point-Divide reside in high-speed storage, while
the sequence involved in setting up procedure calls or initiating an interrupt handler
are in slower main memory.

Thus, it is far from clear that a trend to increasingly complex instruction sets is
appropriate. This has led a number of groups to pursue the opposite path.

Characteristics of Reduced Instruction Set Architectures

Although a variety of different approaches to reduced instruction set architecture
have been taken, certain characteristics are common to all of them:

 • One instruction per cycle

 • Register-to-register operations

 • Simple addressing modes

 • Simple instruction formats

Here, we provide a brief discussion of these characteristics. Specific examples are
explored later in this chapter.

The first characteristic listed is that there is one machine instruction per
machine cycle. A machine cycle is defined to be the time it takes to fetch two oper-
ands from registers, perform an ALU operation, and store the result in a register.
Thus, RISC machine instructions should be no more complicated than, and execute
about as fast as, microinstructions on CISC machines (discussed in Part Four). With
simple, one-cycle instructions, there is little or no need for microcode; the machine
instructions can be hardwired. Such instructions should execute faster than compa-
rable machine instructions on other machines, because it is not necessary to access a
microprogram control store during instruction execution.

A second characteristic is that most operations should be register to register,
with only simple LOAD and STORE operations accessing memory. This design
feature simplifies the instruction set and therefore the control unit. For example, a
RISC instruction set may include only one or two ADD instructions (e.g., integer
add, add with carry); the VAX has 25 different ADD instructions. Another benefit
is that such an architecture encourages the optimization of register use, so that fre-
quently accessed operands remain in high-speed storage.

This emphasis on register-to-register operations is notable for RISC designs.
Contemporary CISC machines provide such instructions but also include memory-
to-memory and mixed register/memory operations. Attempts to compare these

548 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

approaches were made in the 1970s, before the appearance of RISCs. Figure 15.5a
illustrates the approach taken. Hypothetical architectures were evaluated on pro-
gram size and the number of bits of memory traffic. Results such as this one led
one researcher to suggest that future architectures should contain no registers at
all [MYER78]. One wonders what he would have thought, at the time, of the RISC
machine once produced by Pyramid, which contained no less than 528 registers!

What was missing from those studies was a recognition of the frequent access
to a small number of local scalars and that, with a large bank of registers or an opti-
mizing compiler, most operands could be kept in registers for long periods of time.
Thus, Figure 15.5b may be a fairer comparison.

A third characteristic is the use of simple addressing modes. Almost all RISC
instructions use simple register addressing. Several additional modes, such as dis-
placement and PC-relative, may be included. Other, more complex modes can be
synthesized in software from the simple ones. Again, this design feature simplifies
the instruction set and the control unit.

A final common characteristic is the use of simple instruction formats.
Generally, only one or a few formats are used. Instruction length is fixed and
aligned on word boundaries. Field locations, especially the opcode, are fixed. This
design feature has a number of benefits. With fixed fields, opcode decoding and
register operand accessing can occur simultaneously. Simplified formats simplify
the control unit. Instruction fetching is optimized because word-length units are
fetched. Alignment on a word boundary also means that a single instruction does
not cross page boundaries.

Taken together, these characteristics can be assessed to determine the poten-
tial performance benefits of the RISC approach. A certain amount of “circumstantial

Add

8

B

16

C

16

A

16

Add

8

B

16

C

16

A

16

Add A C B

Sub B D D

Memory to memory
I � 56, D � 96, M � 152

Memory to memory
I � 168, D � 288, M � 456

I � number of bytes occupied by executed instructions
D � number of bytes occupied by data
M � total memory traffic � I � D

Register to memory
I � 60, D � 0, M � 60

Register to memory
I � 104, D � 96, M � 200

Load

Load

Add

Add

Add

Store

RB

RB

RB

RB

RC

RC

RC

RC

B

B

A

R
A

RA

RA

Sub RD RBRD

R
A

8 4

48 4 4

16

(a) A B � C

(b) A B � C; B A � C; D D � B

Figure 15.5 Two Comparisons of Register-to-Register and Memory-to-Memory Approaches

15.4 / REDUCED INSTRUCTION SET ARCHITECTURE 549

evidence” can be presented. First, more effective optimizing compilers can be devel-
oped. With more-primitive instructions, there are more opportunities for mov-
ing functions out of loops, reorganizing code for efficiency, maximizing register
 utilization, and so forth. It is even possible to compute parts of complex instructions
at compile time. For example, the S/390 Move Characters (MVC) instruction moves a
string of characters from one location to another. Each time it is executed, the move
will depend on the length of the string, whether and in which direction the locations
overlap, and what the alignment characteristics are. In most cases, these will all be
known at compile time. Thus, the compiler could produce an optimized sequence of
primitive instructions for this function.

A second point, already noted, is that most instructions generated by a com-
piler are relatively simple anyway. It would seem reasonable that a control unit built
specifically for those instructions and using little or no microcode could execute
them faster than a comparable CISC.

A third point relates to the use of instruction pipelining. RISC researchers feel
that the instruction pipelining technique can be applied much more effectively with
a reduced instruction set. We examine this point in some detail presently.

A final, and somewhat less significant, point is that RISC processors are more
responsive to interrupts because interrupts are checked between rather elemen-
tary operations. Architectures with complex instructions either restrict interrupts to
instruction boundaries or must define specific interruptible points and implement
mechanisms for restarting an instruction.

The case for improved performance for a reduced instruction set architecture
is strong, but one could perhaps still make an argument for CISC. A number of
studies have been done but not on machines of comparable technology and power.
Further, most studies have not attempted to separate the effects of a reduced
instruction set and the effects of a large register file. The “circumstantial evidence,”
however, is suggestive.

CISC versus RISC Characteristics

After the initial enthusiasm for RISC machines, there has been a growing realiza-
tion that (1) RISC designs may benefit from the inclusion of some CISC features
and that (2) CISC designs may benefit from the inclusion of some RISC features.
The result is that the more recent RISC designs, notably the PowerPC, are no lon-
ger “pure” RISC and the more recent CISC designs, notably the Pentium II and
later Pentium models, do incorporate some RISC characteristics.

An interesting comparison in [MASH95] provides some insight into this issue.
Table 15.7 lists a number of processors and compares them across a number of char-
acteristics. For purposes of this comparison, the following are considered typical of
a classic RISC:

 1. A single instruction size.

 2. That size is typically 4 bytes.

 3. A small number of data addressing modes, typically less than five. This
parameter is difficult to pin down. In the table, register and literal modes
are not counted and different formats with different offset sizes are counted
separately.

Table 15.7 Characteristics of Some Processors

Processor

Number of
instruction

sizes

Max
instruction

size
in bytes

Number of
addressing

modes
Indirect

addressing

Load/store
combined

with
arithmetic

Max
number of
memory
operands

Unaligned
addressing

allowed

Max
number
of MMU

uses

Number of
bits for
integer
register
specifier

Number
of bits for

FP register
specifier

AMD29000 1 4 1 no no 1 no 1 8 3a

MIPS R2000 1 4 1 no no 1 no 1 5 4

SPARC 1 4 2 no no 1 no 1 5 4

MC88000 1 4 3 no no 1 no 1 5 4

HP PA 1 4 10a no no 1 no 1 5 4

IBM RT/PC 2a 4 1 no no 1 no 1 4a 3a

IBM RS/6000 1 4 4 no no 1 yes 1 5 5

Intel i860 1 4 4 no no 1 no 1 5 4

IBM 3090 4 8 2b nob yes 2 yes 4 4 2

Intel 80486 12 12 15 nob yes 2 yes 4 3 3

NSC 32016 21 21 23 yes yes 2 yes 4 3 3

MC68040 11 22 44 yes yes 2 yes 8 4 3

VAX 56 56 22 yes yes 6 yes 24 4 0

Clipper 4a 8a 9a no no 1 0 2 4a 3a

Intel 80960 2a 8a 9a no no 1 yesa — 5 3a

Notes: aRISC that does not conform to this characteristic.
bCISC that does not conform to this characteristic.

550

15.5 / RISC PIPELINING 551

 4. No indirect addressing that requires you to make one memory access to get
the address of another operand in memory.

 5. No operations that combine load/store with arithmetic (e.g., add from memory,
add to memory).

 6. No more than one memory-addressed operand per instruction.

 7. Does not support arbitrary alignment of data for load/store operations.

 8. Maximum number of uses of the memory management unit (MMU) for a data
address in an instruction.

 9. Number of bits for integer register specifier equal to five or more. This means
that at least 32 integer registers can be explicitly referenced at a time.

 10. Number of bits for floating-point register specifier equal to four or more. This
means that at least 16 floating-point registers can be explicitly referenced at
a time.

Items 1 through 3 are an indication of instruction decode complexity. Items 4
through 8 suggest the ease or difficulty of pipelining, especially in the presence of
virtual memory requirements. Items 9 and 10 are related to the ability to take good
advantage of compilers.

In the table, the first eight processors are clearly RISC architectures, the next
five are clearly CISC, and the last two are processors often thought of as RISC that
in fact have many CISC characteristics.

 15.5 RISC PIPELINING

Pipelining with Regular Instructions

As we discussed in Section 12.4, instruction pipelining is often used to enhance per-
formance. Let us reconsider this in the context of a RISC architecture. Most instruc-
tions are register to register, and an instruction cycle has the following two stages:

 • I: Instruction fetch.

 • E: Execute. Performs an ALU operation with register input and output.

For load and store operations, three stages are required:

 • I: Instruction fetch.

 • E: Execute. Calculates memory address.

 • D: Memory. Register-to-memory or memory-to-register operation.

Figure 15.6a depicts the timing of a sequence of instructions using no pipelin-
ing. Clearly, this is a wasteful process. Even very simple pipelining can substan-
tially improve performance. Figure 15.6b shows a two-stage pipelining scheme, in
which the I and E stages of two different instructions are performed simultane-
ously. The two stages of the pipeline are an instruction fetch stage, and an exe-
cute/memory stage that executes the instruction, including register-to-memory and
memory-to-register operations. Thus we see that the instruction fetch stage of the

552 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

second instruction can be performed in parallel with the first part of the execute/
memory stage. However, the execute/memory stage of the second instruction must
be delayed until the first instruction clears the second stage of the pipeline. This
scheme can yield up to twice the execution rate of a serial scheme. Two problems
prevent the maximum speedup from being achieved. First, we assume that a single-
port memory is used and that only one memory access is possible per stage. This
requires the insertion of a wait state in some instructions. Second, a branch instruc-
tion interrupts the sequential flow of execution. To accommodate this with mini-
mum circuitry, a NOOP instruction can be inserted into the instruction stream by
the compiler or assembler.

Pipelining can be improved further by permitting two memory accesses per
stage. This yields the sequence shown in Figure 15.6c. Now, up to three instructions
can be overlapped, and the improvement is as much as a factor of 3. Again, branch
instructions cause the speedup to fall short of the maximum possible. Also, note
that data dependencies have an effect. If an instruction needs an operand that is
altered by the preceding instruction, a delay is required. Again, this can be accom-
plished by a NOOP.

The pipelining discussed so far works best if the three stages are of approxi-
mately equal duration. Because the E stage usually involves an ALU operation, it
may be longer. In this case, we can divide into two substages:

 • E1: Register file read

 • E2: ALU operation and register write

Because of the simplicity and regularity of a RISC instruction set, the design
of the phasing into three or four stages is easily accomplished. Figure 15.6d shows
the result with a four-stage pipeline. Up to four instructions at a time can be under
way, and the maximum potential speedup is a factor of 4. Note again the use of
NOOPs to account for data and branch delays.

I E1 E2 D
I E1 E2

I E1 E2

I E1 E2

I E1 E2

D

I E1 E2

I E1 E2

I E1 E2

I E1 E2

D

NOOP
NOOP

Branch X

I E D

I E

I E

D

I E
I E

I E

D

NOOP
Branch X

NOOP
NOOP

(d) Four-stage pipelined timing

(b) Two-stage pipelined timing

I E D
I E

I E
D

I E
I E

D
Branch X

(a) Sequential execution

I E D
I E

I E
I E

D

I E
I E

I E

D

NOOP

Branch X
NOOP

(c) Three-stage pipelined timing

Load rA M
Load rB M
Add rC rA � rB
Store M rC

Load rA M
Load rB M
Add rC rA � rB
Store M rC

Load rA M
Load rB M

Add rC rA � rB
Store M rC

Load rA M
Load rB M

Add rC rA � rB
Store M rC

Figure 15.6 The Effects of Pipelining

15.5 / RISC PIPELINING 553

Optimization of Pipelining

Because of the simple and regular nature of RISC instructions, it is easier for a
hardware designer to implement a simple, fast pipeline. There are few variations
in instruction execution duration, and the pipeline can be tailored to reflect this.
However, we have seen that data and branch dependencies reduce the overall
 execution rate.

DELAYED BRANCH To compensate for these dependencies, code reorganization
techniques have been developed. First, let us consider branching instructions.
Delayed branch, a way of increasing the efficiency of the pipeline, makes use of a
branch that does not take effect until after execution of the following instruction
(hence the term delayed). The instruction location immediately following the
branch is referred to as the delay slot. This strange procedure is illustrated in
Table 15.8. In the column labeled “normal branch,” we see a normal symbolic
instruction machine-language program. After 102 is executed, the next instruction
to be executed is 105. To regularize the pipeline, a NOOP is inserted after this
branch. However, increased performance is achieved if the instructions at 101 and
102 are interchanged.

Figure 15.7 shows the result. Figure 15.7a shows the traditional approach to
pipelining, of the type discussed in Chapter 14 (e.g., see Figures 14.11 and 14.12).
The JUMP instruction is fetched at time 3. At time 4, the JUMP instruction is exe-
cuted at the same time that instruction 103 (ADD instruction) is fetched. Because a
JUMP occurs, which updates the program counter, the pipeline must be cleared of
instruction 103; at time 5, instruction 105, which is the target of the JUMP, is loaded.
Figure 15.7b shows the same pipeline handled by a typical RISC organization. The
timing is the same. However, because of the insertion of the NOOP instruction, we
do not need special circuitry to clear the pipeline; the NOOP simply executes with
no effect. Figure 15.7c shows the use of the delayed branch. The JUMP instruction
is fetched at time 2, before the ADD instruction, which is fetched at time 3. Note,
however, that the ADD instruction is fetched before the execution of the JUMP
instruction has a chance to alter the program counter. Therefore, during time 4,
the ADD instruction is executed at the same time that instruction 105 is fetched.

Table 15.8 Normal and Delayed Branch

Address Normal Branch Delayed Branch
Optimized

Delayed Branch

100 LOAD X, rA LOAD X, rA LOAD X, rA

101 ADD 1, rA ADD 1, rA JUMP 105

102 JUMP 105 JUMP 106 ADD 1, rA

103 ADD rA, rB NOOP ADD rA, rB

104 SUB rC, rB ADD rA, rB SUB rC, rB

105 STORE rA, Z SUB rC, rB STORE rA, Z

106 STORE rA, Z

554 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

(a) Traditional pipeline

100 LOAD X, rA

Time

101 ADD 1, rA

102 JUMP 105

103 ADD rA, rB

105 STORE rA, Z

(b) RISC pipeline with inserted NOOP

100 LOAD X, rA

1

101 ADD 1, rA

102 JUMP 106

103 NOOP

106 STORE rA, Z

(c) Reversed instructions

100 LOAD X, Ar

101 JUMP 105

102 ADD 1, rA

105 STORE rA, Z

2 3 4 5 6 7

I E

I E

I E

I E

D

I E D

I E

I E

I E

I E

D

I E

I E

I E

I E

D

D

I E D

Figure 15.7 Use of the Delayed Branch

Thus, the original semantics of the program are retained but one less clock cycle is
required for execution.

This interchange of instructions will work successfully for unconditional
branches, calls, and returns. For conditional branches, this procedure cannot be
blindly applied. If the condition that is tested for the branch can be altered by
the immediately preceding instruction, then the compiler must refrain from doing
the interchange and instead insert a NOOP. Otherwise, the compiler can seek to
insert a useful instruction after the branch. The experience with both the Berkeley
RISC and IBM 801 systems is that the majority of conditional branch instructions
can be optimized in this fashion ([PATT82a], [RADI83]).

DELAYED LOAD A similar sort of tactic, called the delayed load, can be used on
LOAD instructions. On LOAD instructions, the register that is to be the target of
the load is locked by the processor. The processor then continues execution of the
instruction stream until it reaches an instruction requiring that register, at which
point it idles until the load is complete. If the compiler can rearrange instructions

15.5 / RISC PIPELINING 555

so that useful work can be done while the load is in the pipeline, efficiency is
increased.

Loop Unrolling Simulator

LOOP UNROLLING Another compiler technique to improve instruction parallelism
is loop unrolling [BACO94]. Unrolling replicates the body of a loop some number
of times called the unrolling factor (u) and iterates by step u instead of step 1.

Unrolling can improve the performance by

 • reducing loop overhead

 • increasing instruction parallelism by improving pipeline performance

 • improving register, data cache, or TLB locality

Figure 15.8 illustrates all three of these improvements in an example. Loop
overhead is cut in half because two iterations are performed before the test and
branch at the end of the loop. Instruction parallelism is increased because the sec-
ond assignment can be performed while the results of the first are being stored and
the loop variables are being updated. If array elements are assigned to registers, reg-
ister locality will improve because a[i] and a[i + 1] are used twice in the loop body,
reducing the number of loads per iteration from three to two.

Figure 15.8 Loop Unrolling

do i=2, n−1
 a[i] = a[i] + a[i−1] * a[i+1]
end do

(a) Original loop

do i=2, n−2, 2
 a[i] = a[i] + a[i−1] * a[i+1]
 a[i+1] = a[i+1] + a[i] * a[i+2]
end do

if (mod(n−2, 2) = i) then
 a[n−1] = a[n−1] + a[n−2] * a[n]
end if

(b) Loop unrolled twice

556 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

As a final note, we should point out that the design of the instruction pipeline
should not be carried out in isolation from other optimization techniques applied to
the system. For example, [BRAD91b] shows that the scheduling of instructions for
the pipeline and the dynamic allocation of registers should be considered together
to achieve the greatest efficiency.

 15.6 MIPS R4000

One of the first commercially available RISC chip sets was developed by MIPS
Technology Inc. The system was inspired by an experimental system, also using
the name MIPS, developed at Stanford [HENN84]. In this section we look at the
MIPS R4000. It has substantially the same architecture and instruction set of the
earlier MIPS designs: the R2000 and R3000. The most significant difference is that
the R4000 uses 64 rather than 32 bits for all internal and external data paths and for
addresses, registers, and the ALU.

The use of 64 bits has a number of advantages over a 32-bit architecture. It
allows a bigger address space—large enough for an operating system to map more
than a terabyte of files directly into virtual memory for easy access. With 1-terabyte
and larger disk drives now common, the 4-gigabyte address space of a 32-bit machine
becomes limiting. Also, the 64-bit capacity allows the R4000 to process data such
as IEEE double-precision floating-point numbers and character strings, up to eight
characters in a single action.

The R4000 processor chip is partitioned into two sections, one containing the
CPU and the other containing a coprocessor for memory management. The proc-
essor has a very simple architecture. The intent was to design a system in which
the instruction execution logic was as simple as possible, leaving space available for
logic to enhance performance (e.g., the entire memory-management unit).

The processor supports thirty-two 64-bit registers. It also provides for up to
128 Kbytes of high-speed cache, half each for instructions and data. The relatively
large cache (the IBM 3090 provides 128 to 256 Kbytes of cache) enables the system
to keep large sets of program code and data local to the processor, off-loading the
main memory bus and avoiding the need for a large register file with the accompa-
nying windowing logic.

Instruction Set

Table 15.9 lists the basic instruction set for all MIPS R series processors. All
processor instructions are encoded in a single 32-bit word format. All data oper-
ations are register to register; the only memory references are pure load/store
operations.

The R4000 makes no use of condition codes. If an instruction generates a
 condition, the corresponding flags are stored in a general-purpose register. This
avoids the need for special logic to deal with condition codes as they affect the
pipelining mechanism and the reordering of instructions by the compiler. Instead,
the mechanisms already implemented to deal with register-value dependencies
are employed. Further, conditions mapped onto the register files are subject

15.6 / MIPS R4000 557

Table 15.9 MIPS R-Series Instruction Set

OP Description

Load/Store Instructions

LB Load Byte

LBU Load Byte Unsigned

LH Load Halfword

LHU Load Halfword Unsigned

LW Load Word

LWL Load Word Left

LWR Load Word Right

SB Store Byte

SH Store Halfword

SW Store Word

SWL Store Word Left

SWR Store Word Right

Arithmetic Instructions
(ALU Immediate)

ADDI Add Immediate

ADDIU Add Immediate Unsigned

SLTI Set on Less Than Immediate

SLTIU Set on Less Than Immediate
Unsigned

ANDI AND Immediate

ORI OR Immediate

XORI Exclusive-OR Immediate

LUI Load Upper Immediate

Arithmetic Instructions
(3-operand, R-type)

ADD Add

ADDU Add Unsigned

SUB Subtract

SUBU Subtract Unsigned

SLT Set on Less Than

SLTU Set on Less Than Unsigned

AND AND

OR OR

XOR Exclusive-OR

NOR NOR

Shift Instructions

SLL Shift Left Logical

SRL Shift Right Logical

SRA Shift Right Arithmetic

SLLV Shift Left Logical Variable

OP Description

SRLV Shift Right Logical Variable

SRAV Shift Right Arithmetic Variable

Multiply/Divide Instructions

MULT Multiply

MULTU Multiply Unsigned

DIV Divide

DIVU Divide Unsigned

MFHI Move From HI

MTHI Move To HI

MFLO Move From LO

MTLO Move To LO

Jump and Branch Instructions

J Jump

JAL Jump and Link

JR Jump to Register

JALR Jump and Link Register

BEQ Branch on Equal

BNE Branch on Not Equal

BLEZ Branch on Less Than or Equal to
Zero

BGTZ Branch on Greater Than Zero

BLTZ Branch on Less Than Zero

BGEZ Branch on Greater Than or Equal
to Zero

BLTZAL Branch on Less Than Zero
And Link

BGEZAL Branch on Greater Than or Equal to
Zero And Link

Coprocessor Instructions

LWCz Load Word to Coprocessor

SWCz Store Word to Coprocessor

MTCz Move To Coprocessor

MFCz Move From Coprocessor

CTCz Move Control To Coprocessor

CFCz Move Control From Coprocessor

COPz Coprocessor Operation

BCzT Branch on Coprocessor z True

BCzF Branch on Coprocessor z False

Special Instructions

SYSCALL System Call

BREAK Break

558 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

to the same compile-time optimizations in allocation and reuse as other values
stored in registers.

As with most RISC-based machines, the MIPS uses a single 32-bit instruction
length. This single instruction length simplifies instruction fetch and decode, and
it also simplifies the interaction of instruction fetch with the virtual memory man-
agement unit (i.e., instructions do not cross word or page boundaries). The three
instruction formats (Figure 15.9) share common formatting of opcodes and register
references, simplifying instruction decode. The effect of more complex instructions
can be synthesized at compile time.

Only the simplest and most frequently used memory-addressing mode is
implemented in hardware. All memory references consist of a 16-bit offset from a
32-bit register. For example, the “load word” instruction is of the form

lw r2, 128(r3) / * load word at address 128 offset from
register 3 into register 2

Each of the 32 general-purpose registers can be used as the base register. One reg-
ister, r0, always contains 0.

The compiler makes use of multiple machine instructions to synthesize
typical addressing modes in conventional machines. Here is an example from
[CHOW87], which uses the instruction lui (load upper immediate). This instruc-
tion loads the upper half of a register with a 16-bit immediate value, setting the
lower half to zero. Consider an assembly-language instruction that uses a 32-bit
immediate argument

lw r2, #imm(r4) /* load word at address using a 32-bit
immediate offset #imm

 /* offset from register 4 into register 2

Operation

Operation Operation code
rs Source register specifier
rt Source/destination register specifier
Immediate Immediate, branch, or address displacement
Target Jump target address
rd Destination register specifier
Shift Shift amount
Function ALU/shift function specifier

I-type
(immediate)

rs

6 5 5 16

rt Immediate

OperationJ-type
(jump)

6 26

Target

OperationR-type
(register)

rs

6 5 5 5

rt rd

5 6

Shift Function

Figure 15.9 MIPS Instruction Formats

15.6 / MIPS R4000 559

This instruction can be compiled into the following MIPS instructions

lui r1, #imm-hi /* where #imm-hi is the high-order
16 bits of #imm

addu r1, r1, r4 /* add unsigned #imm-hi to r4 and
put in r1

lw r2, #imm-lo(r1) /* where #imm-lo is the low-order
16 bits of #imm

Instruction Pipeline

With its simplified instruction architecture, the MIPS can achieve very efficient
pipelining. It is instructive to look at the evolution of the MIPS pipeline, as it illus-
trates the evolution of RISC pipelining in general.

The initial experimental RISC systems and the first generation of commercial
RISC processors achieve execution speeds that approach one instruction per system
clock cycle. To improve on this performance, two classes of processors have evolved
to offer execution of multiple instructions per clock cycle: superscalar and super-
pipelined architectures. In essence, a superscalar architecture replicates each of the
pipeline stages so that two or more instructions at the same stage of the pipeline can
be processed simultaneously. A superpipelined architecture is one that makes use
of more, and more fine-grained, pipeline stages. With more stages, more instruc-
tions can be in the pipeline at the same time, increasing parallelism.

Both approaches have limitations. With superscalar pipelining, dependencies
between instructions in different pipelines can slow down the system. Also, over-
head logic is required to coordinate these dependencies. With superpipelining, there
is overhead associated with transferring instructions from one stage to the next.

Chapter 16 is devoted to a study of superscalar architecture. The MIPS R4000
is a good example of a RISC-based superpipeline architecture.

MIPS R3000 Five-Stage Pipeline Simulator

Figure 15.10a shows the instruction pipeline of the R3000. In the R3000,
the pipeline advances once per clock cycle. The MIPS compiler is able to reorder
instructions to fill delay slots with code 70 to 90% of the time. All instructions follow
the same sequence of five pipeline stages:

 • Instruction fetch

 • Source operand fetch from register file

 • ALU operation or data operand address generation

 • Data memory reference

 • Write back into register file

As illustrated in Figure 15.10a, there is not only parallelism due to pipelining
but also parallelism within the execution of a single instruction. The 60-ns clock cycle

560 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

is divided into two 30-ns stages. The external instruction and data access operations
to the cache each require 60 ns, as do the major internal operations (OP, DA, IA).
Instruction decode is a simpler operation, requiring only a single 30-ns stage, over-
lapped with register fetch in the same instruction. Calculation of an address for a
branch instruction also overlaps instruction decode and register fetch, so that a branch
at instruction i can address the ICACHE access of instruction i + 2. Similarly, a load
at instruction i fetches data that are immediately used by the OP of instruction i + 1,
while an ALU/shift result gets passed directly into instruction i + 1 with no delay.
This tight coupling between instructions makes for a highly efficient pipeline.

In detail, then, each clock cycle is divided into separate stages, denoted as f1
and f2. The functions performed in each stage are summarized in Table 15.10.

The R4000 incorporates a number of technical advances over the R3000. The
use of more advanced technology allows the clock cycle time to be cut in half, to 30 ns,
and for the access time to the register file to be cut in half. In addition, there is greater
density on the chip, which enables the instruction and data caches to be incorporated
on the chip. Before looking at the final R4000 pipeline, let us consider how the R3000
pipeline can be modified to improve performance using R4000 technology.

Figure 15.10b shows a first step. Remember that the cycles in this figure are
half as long as those in Figure 15.10a. Because they are on the same chip, the instruc-
tion and data cache stages take only half as long; so they still occupy only one clock
cycle. Again, because of the speedup of the register file access, register read and
write still occupy only half of a clock cycle.

Clock Cycle

Cycle

IF

IF � Instruction fetch
RD � Read
MEM � Memory access
WB � Write back to register file
I-Cache � Instruction cache access
RF � Fetch operand from register
D-Cache � Data cache access
ITLB � Instruction address translation
IDEC � Instruction decode
IA � Compute instruction address
DA � Calculate data virtual address
DTLB � Data address translation
TC � Data cache tag check

I-Cache

(a) Detailed R3000 pipeline

(b) Modified R3000 pipeline with reduced latencies

RF

IDEC DA DTLBITLB

ITLB

Cycle

I-Cache ALU DTLB D-Cache

Cycle Cycle Cycle Cycle

RF WB

Cycle

(c) Optimized R3000 pipeline with parallel TLB and cache accesses

ITLB

Cycle

ALU D-Cache TC

Cycle Cycle Cycle

RF WB

IA

D-Cache WBALU OP

RD ALU MEM WB

�1 �2 �1 �2 �1 �2 �1 �2 �1 �2

Figure 15.10 Enhancing the R3000 Pipeline

15.6 / MIPS R4000 561

Because the R4000 caches are on-chip, the virtual-to-physical address trans-
lation can delay the cache access. This delay is reduced by implementing virtually
indexed caches and going to a parallel cache access and address translation. Figure
15.10c shows the optimized R3000 pipeline with this improvement. Because of the
compression of events, the data cache tag check is performed separately on the next
cycle after cache access. This check determines whether the data item is in the cache.

In a superpipelined system, existing hardware is used several times per cycle by
inserting pipeline registers to split up each pipe stage. Essentially, each superpipe-
line stage operates at a multiple of the base clock frequency, the multiple depending
on the degree of superpipelining. The R4000 technology has the speed and density
to permit superpipelining of degree 2. Figure 15.11a shows the optimized R3000
pipeline using this superpipelining. Note that this is essentially the same dynamic
structure as Figure 15.10c.

Further improvements can be made. For the R4000, a much larger and spe-
cialized adder was designed. This makes it possible to execute ALU operations at
twice the rate. Other improvements allow the execution of loads and stores at twice
the rate. The resulting pipeline is shown in Figure 15.11b.

The R4000 has eight pipeline stages, meaning that as many as eight instruc-
tions can be in the pipeline at the same time. The pipeline advances at the rate of
two stages per clock cycle. The eight pipeline stages are as follows:

 • Instruction fetch first half: Virtual address is presented to the instruction cache
and the translation lookaside buffer.

 • Instruction fetch second half: Instruction cache outputs the instruction and the
TLB generates the physical address.

Table 15.10 R3000 Pipeline Stages

Pipeline
Stage Phase Function

IF f1 Using the TLB, translate an instruction virtual address to a physical address
(after a branching decision).

IF f2 Send the physical address to the instruction address.

RD f1 Return instruction from instruction cache.

Compare tags and validity of fetched instruction.

RD f2 Decode instruction.

Read register file.

If branch, calculate branch target address.

ALU f1 + f2 If register-to-register operation, the arithmetic or logical operation is performed.

ALU f1 If a branch, decide whether the branch is to be taken or not.

If a memory reference (load or store), calculate data virtual address.

ALU f2 If a memory reference, translate data virtual address to physical using TLB.

MEM f1 If a memory reference, send physical address to data cache.

MEM f2 If a memory reference, return data from data cache, and check tags.

WB f1 Write to register file.

562 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

 • Register file: Three activities occur in parallel:

 — Instruction is decoded and check made for interlock conditions (i.e., this
instruction depends on the result of a preceding instruction).

 — Instruction cache tag check is made.

 — Operands are fetched from the register file.

 • Instruction execute: One of three activities can occur:

 — If the instruction is a register-to-register operation, the ALU performs the
arithmetic or logical operation.

 —If the instruction is a load or store, the data virtual address is calculated.

 — If the instruction is a branch, the branch target virtual address is calculated
and branch conditions are checked.

 • Data cache first: Virtual address is presented to the data cache and TLB.

 • Data cache second: The TLB generates the physical address, and the data
cache outputs the data.

 • Tag check: Cache tag checks are performed for loads and stores.

 • Write back: Instruction result is written back to register file.

 15.7 SPARC

SPARC (Scalable Processor Architecture) refers to an architecture defined by Sun
Microsystems. Sun developed its own SPARC implementation but also licenses the
architecture to other vendors to produce SPARC-compatible machines. The SPARC

Clock Cycle

IC1

IF = Instruction fetch first half
IS = Instruction fetch second half
RF = Fetch operands from register
EX = Instruction execute
IC = Instruction cache

DC = Data cache
DF = Data cache first half
DS = Data cache second half
TC = Tag check
WB = Write back to register file

(a) Superpipelined implementation of the optimized R3000 pipeline

RF ALU DC2 TC2IC2 ALU DC1 TC1 WB

IC1 RF ALU DC2 TC2IC2 ALU DC1 TC1 WB

φ2

Clock Cycle

IF

(b) R4000 pipeline

RF DF TCIS EX DS WB

IF RF DF TCIS EX DS WB

φ1 φ2 φ1 φ1 φ1φ2 φ2 φ2

Figure 15.11 Theoretical R3000 and Actual R4000 Superpipelines

15.7 / SPARC 563

architecture is inspired by the Berkeley RISC I machine, and its instruction set and
register organization is based closely on the Berkeley RISC model.

SPARC Register Set

As with the Berkeley RISC, the SPARC makes use of register windows. Each win-
dow gives addressability to 24 registers, and the total number of windows is imple-
mentation dependent and ranges from 2 to 32 windows. Figure 15.12 illustrates an
implementation that supports 8 windows, using a total of 136 physical registers; as
the discussion in Section 15.2 indicates, this seems a reasonable number of win-
dows. Physical registers 0 through 7 are global registers shared by all procedures.
Each procedure sees logical registers 0 through 31. Logical registers 24 through 31,
referred to as ins, are shared with the calling (parent) procedure; and logical regis-
ters 8 through 15, referred to as outs, are shared with any called (child) procedure.
These two portions overlap with other windows. Logical registers 16 through 23,

Physical
registers

135
•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

128

Ins

Logical registers
Procedure A Procedure B Procedure C

127

120

Locals

119

112

Outs/Ins

111

104

Locals

103

96

Outs/Ins

95

88

Locals

87

80

Outs

•

•

•

7

0

Globals

•
•
•

•
•
•

•
•
•

•
•
•

Ins

Locals

Outs •
•
•

•
•
•

•
•
•

Ins

Locals

Outs •
•
•

•
•
•

•
•
•

Ins

Locals

R31C

R24C

R23C

R16C

R15C

R8C

R31B

R24B

R23B

R16B

R15B

R8B

R31A

R24A

R23A

R16A

R15A

R8A

Outs

•

•

•

R7

R0

Globals •
•
•

•

•

•

R7

R0

Globals •
•
•

•

•

•

R7

R0

Globals

Figure 15.12 SPARC Register Window Layout with Three Procedures

564 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

referred to as locals, are not shared and do not overlap with other windows. Again,
as the discussion of Section 12.1 indicates, the availability of 8 registers for param-
eter passing should be adequate in most cases (e.g., see Table 15.4).

Figure 15.13 is another view of the register overlap. The calling procedure
places any parameters to be passed in its outs registers; the called procedure treats
these same physical registers as it ins registers. The processor maintains a current
window pointer (CWP), located in the processor status register (PSR), that points to
the window of the currently executing procedure. The window invalid mask (WIM),
also in the PSR, indicates which windows are invalid.

With the SPARC register architecture, it is usually not necessary to save and
restore registers for a procedure call. The compiler is simplified because the compiler
need be concerned only with allocating the local registers for a procedure in an effi-
cient manner and need not be concerned with register allocation between procedures.

Instruction Set

Table 15.11 lists the instructions for the SPARC architecture. Most of the instruc-
tions reference only register operands. Register-to-register instructions have three
operands and can be expressed in the form

Rd S RS1 op S2

w4
locals

w2
locals

w0
locals

w6
locals

w6
ins

w6
outs

w0
outs

w2
outs

w4
outs

w4
ins

w5
locals

w5
outs

w5
ins

w77
locals

CWP

WIM

w7
ins

w1
locals

w1
outs

w7
outs

w1
ins

w3
locals

w3
outs

w3
ins

w2
ins

w0
ins

Figure 15.13 Eight Register Windows Forming a Circular Stack in
SPARC

15.7 / SPARC 565

where Rd and RS1 are register references; S2 can refer either to a register or to a
13-bit immediate operand. Register zero (R0) is hardwired with the value 0. This
form is well suited to typical programs, which have a high proportion of local scalars
and constants.

The available ALU operations can be grouped as follows:

 • Integer addition (with or without carry)

 • Integer subtraction (with or without carry)

 • Bitwise Boolean AND, OR, XOR and their negations

 • Shift left logical, right logical, or right arithmetic

Table 15.11 SPARC Instruction Set

OP Description OP Description

Load/Store Instructions Arithmetic Instructions

LDSB Load signed byte ADD Add

LDSH Load signed halfword ADDCC Add, set icc

LDUB Load unsigned byte ADDX Add with carry

LDUH Load unsigned halfword ADDXCC Add with carry, set icc

LD Load word SUB Subtract

LDD Load doubleword SUBCC Subtract, set icc

STB Store byte SUBX Subtract with carry

STH Store halfword SUBXCC Subtract with carry, set icc

STD Store word MULSCC Multiply step, set icc

STDD Store doubleword Jump/Branch Instructions

Shift Instructions BCC Branch on condition

SLL Shift left logical FBCC Branch on floating-point condition

SRL Shift right logical CBCC Branch on coprocessor condition

SRA Shift right arithmetic CALL Call procedure

Boolean Instructions JMPL Jump and link

AND AND TCC Trap on condition

ANDCC AND, set icc SAVE Advance register window

ANDN NAND RESTORE Move windows backward

ANDNCC NAND, set icc RETT Return from trap

OR OR Miscellaneous Instructions

ORCC OR, set icc SETHI Set high 22 bits

ORN NOR UNIMP Unimplemented instruction (trap)

ORNCC NOR, set icc RD Read a special register

XOR XOR WR Write a special register

XORCC XOR, set icc IFLUSH Instruction cache flush

XNOR Exclusive NOR

XNORCC Exclusive NOR, set icc

566 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

All of these instructions, except the shifts, can optionally set the four condi-
tion codes (ZERO, NEGATIVE, OVERFLOW, CARRY). Signed integers are
represented in 32-bit twos complement form.

Only simple load and store instructions reference memory. There are separate
load and store instructions for word (32 bits), doubleword, halfword, and byte. For
the latter two cases, there are instructions for loading these quantities as signed or
unsigned numbers. Signed numbers are sign extended to fill out the 32-bit destina-
tion register. Unsigned numbers are padded with zeros.

The only available addressing mode, other than register, is a displacement
mode. That is, the effective address (EA) of an operand consists of a displacement
from an address contained in a register:

EA = (RS1) + S2

or EA = (RS1) + (RS2)

depending on whether the second operand is immediate or a register refer-
ence. To perform a load or store, an extra stage is added to the instruction cycle.
During the second stage, the memory address is calculated using the ALU; the load
or store occurs in a third stage. This single addressing mode is quite versatile and
can be used to synthesize other addressing modes, as indicated in Table 15.12.

It is instructive to compare the SPARC addressing capability with that of the
MIPS. The MIPS makes use of a 16-bit offset, compared with a 13-bit offset on the
SPARC. On the other hand, the MIPS does not permit an address to be constructed
from the contents of two registers.

Instruction Format

As with the MIPS R4000, SPARC uses a simple set of 32-bit instruction formats
(Figure 15.14). All instructions begin with a 2-bit opcode. For most instructions,
this is extended with additional opcode bits elsewhere in the format. For the Call
instruction, a 30-bit immediate operand is extended with two zero bits to the right to
form a 32-bit PC-relative address in twos complement form. Instructions are aligned
on a 32-bit boundary so that this form of addressing suffices.

The Branch instruction includes a 4-bit condition field that corresponds to
the four standard condition code bits, so that any combination of conditions can be
tested. The 22-bit PC-relative address is extended with two zero bits on the right to
form a 24-bit twos complement relative address. An unusual feature of the Branch
instruction is the annul bit. When the annul bit is not set, the instruction after the

Table 15.12 Synthesizing Other Addressing Modes with SPARC Addressing Modes

Instruction Type Addressing Mode Algorithm SPARC Equivalent

Register-to-register Immediate operand = A S2

Load, store Direct EA = A R0 + S2

Register-to-register Register EA = R RS1, RS2

Load, store Register Indirect EA = (R) RS1 + 0

Load, store Displacement EA = (R) + A RS1 + S2

Note: S2 = either a register operand or a 13-bit immediate operand.

15.7 / SPARC 567

branch is always executed, regardless of whether the branch is taken. This is the
typical delayed branch operation found on many RISC machines and described in
Section 15.5 (see Figure 15.7). However, when the annul bit is set, the instruction fol-
lowing the branch is executed only if the branch is taken. The processor suppresses
the effect of that instruction even though it is already in the pipeline. This annul bit is
useful because it makes it easier for the compiler to fill the delay slot following a con-
ditional branch. The instruction that is the target of the branch can always be put in
the delay slot, because if the branch is not taken, the instruction can be annulled. The
reason this technique is desirable is that conditional branches are generally taken
more than half the time.

The SETHI instruction is a special instruction used to form a 32-bit constant. This
feature is needed to form large data constants; for example, it can be used to form a
large offset for a load or store instruction. The SETHI instruction sets the 22 high-order
bits of a register with its 22-bit immediate operand, and zeros out the low-order 10 bits.
An immediate constant of up to 13 bits can be specified in one of the general formats,
and such an instruction could be used to fill in the remaining 10 bits of the register. A
load or store instruction can also be used to achieve a direct addressing mode. To load
a value from location K in memory, we could use the following SPARC instructions:

sethi %hi(K), %r8 ;load high-order 22 bits of address of location
 ;K into register r8
ld [%r8 + %lo(K)], %r8 ;load contents of location K into r8

OpCall format PC-relative displacement

2 30

Branch
format

Op a Cond Op2 PC-relative displacement

OpSETHI
format

Floating-
point

format

2

Dest

5

Op2

3

Immediate constant

22

2 1 4 3 22

2 5 6 95 5

Op Dest Op3 FP-opSrc-1 Src-2

General
formats

2 5 6

Op Dest Op3

8

Ignored

5 1

Src-1

5

Src-20

Op Dest Op3 Immediate constantSrc-1 1

Figure 15.14 SPARC Instruction Formats

568 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

The macros %hi and %lo are used to define immediate operands consisting of the
appropriate address bits of a location. This use of SETHI is similar to the use of the
lui instruction on the MIPS.

The floating-point format is used for floating-point operations. Two source
and one destination registers are designated.

Finally, all other operations, including loads, stores, arithmetic, and logical
operations use one of the last two formats shown in Figure 15.14. One of the formats
makes use of two source registers and a destination register, while the other uses one
source register, one 13-bit immediate operand, and one destination register.

 15.8 RISC VERSUS CISC CONTROVERSY

For many years, the general trend in computer architecture and organization has
been toward increasing processor complexity: more instructions, more addressing
modes, more specialized registers, and so on. The RISC movement represents a fun-
damental break with the philosophy behind that trend. Naturally, the appearance
of RISC systems, and the publication of papers by its proponents extolling RISC
virtues, led to a reaction from those involved in the design of CISC architectures.

The work that has been done on assessing merits of the RISC approach can be
grouped into two categories:

 • Quantitative: Attempts to compare program size and execution speed of pro-
grams on RISC and CISC machines that use comparable technology

 • Qualitative: Examines issues such as high-level language support and opti-
mum use of VLSI real estate

Most of the work on quantitative assessment has been done by those working
on RISC systems [PATT82b, HEAT84, PATT84], and it has been, by and large,
favorable to the RISC approach. Others have examined the issue and come away
unconvinced [COLW85a, FLYN87, DAVI87]. There are several problems with
attempting such comparisons [SERL86]:

 • There is no pair of RISC and CISC machines that are comparable in life-cycle
cost, level of technology, gate complexity, sophistication of compiler, operat-
ing system support, and so on.

 • No definitive test set of programs exists. Performance varies with the program.

 • It is difficult to sort out hardware effects from effects due to skill in compiler
writing.

 • Most of the comparative analysis on RISC has been done on “toy” machines
rather than commercial products. Furthermore, most commercially available
machines advertised as RISC possess a mixture of RISC and CISC character-
istics. Thus, a fair comparison with a commercial, “pure-play” CISC machine
(e.g., VAX, Pentium) is difficult.

The qualitative assessment is, almost by definition, subjective. Several research-
ers have turned their attention to such an assessment [COLW85a, WALL85], but the
results are, at best, ambiguous, and certainly subject to rebuttal [PATT85b] and, of
course, counterrebuttal [COLW85b].

15.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 569

In more recent years, the RISC versus CISC controversy has died down to
a great extent. This is because there has been a gradual convergence of the tech-
nologies. As chip densities and raw hardware speeds increase, RISC systems have
become more complex. At the same time, in an effort to squeeze out maximum per-
formance, CISC designs have focused on issues traditionally associated with RISC,
such as an increased number of general-purpose registers and increased emphasis
on instruction pipeline design.

 15.9 RECOMMENDED READING

Two classic overview papers on RISC are [PATT85a] and [HENN84]. Another survey
article is [STAL88]. Accounts of two pioneering RISC efforts are provided by [RADI83]
and [PATT82a].

[KANE92] covers the commercial MIPS machine in detail. [MIRA92] provides a good
overview of the MIPS R4000. [BASH91] discusses the evolution from the R3000 pipeline to
the R4000 superpipeline. The SPARC is covered in some detail in [DEWA90].

BASH91 Bashteen, A.; Lui, I.; and Mullan, J. “A Superpipeline Approach to the MIPS
Architecture.” Proceedings, COMPCON Spring ’91, February 1991.

DEWA90 Dewar, R., and Smosna, M. Microprocessors: A Programmer’s View. New
York: McGraw-Hill, 1990.

HENN84 Hennessy, J. “VLSI Processor Architecture.” IEEE Transactions on Computers,
December 1984.

KANE92 Kane, G., and Heinrich, J. MIPS RISC Architecture. Englewood Cliffs, NJ:
Prentice Hall, 1992.

MIRA92 Mirapuri, S.; Woodacre, M.; and Vasseghi, N. “The MIPS R4000 Processor.”
IEEE Micro, April 1992.

PATT82a Patterson, D., and Sequin, C. “A VLSI RISC.” Computer, September 1982.
PATT85a Patterson, D. “Reduced Instruction Set Computers.” Communications of

the ACM, January 1985.
RADI83 Radin, G. “The 801 Minicomputer.” IBM Journal of Research and Development,

May 1983.
STAL88 Stallings, W. “Reduced Instruction Set Computer Architecture.” Proceedings

of the IEEE, January 1988.

 15.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

complex instruction set
computer (CISC)

delayed branch
delayed load

high-level language (HLL)
reduced instruction set

computer (RISC)
register file

register window
SPARC

570 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

Review Questions

 15.1 What are some typical distinguishing characteristics of RISC organization?
 15.2 Briefly explain the two basic approaches used to minimize register-memory opera-

tions on RISC machines.
 15.3 If a circular register buffer is used to handle local variables for nested procedures,

describe two approaches for handling global variables.
 15.4 What are some typical characteristics of a RISC instruction set architecture?
 15.5 What is a delayed branch?

Problems

 15.1 Considering the call-return pattern in Figure 4.21, how many overflows and under-
flows (each of which causes a register save/restore) will occur with a window size of
a. 5?
b. 8?
c. 16?

 15.2 In the discussion of Figure 15.2, it was stated that only the first two portions of a
 window are saved or restored. Why is it not necessary to save the temporary registers?

 15.3 We wish to determine the execution time for a given program using the various pipe-
lining schemes discussed in Section 15.5. Let

N = number of executed instructions
D = number of memory accesses
J = number of jump instructions

For the simple sequential scheme (Figure 15.6a), the execution time is 2N + D stages.
Derive formulas for two-stage, three-stage, and four-stage pipelining.

 15.4 Reorganize the code sequence in Figure 15.6d to reduce the number of NOOPs.
 15.5 Consider the following code fragment in a high-level language:

for I in 1…100 loop
 S d S + Q(I). VAL
end loop;

Assume that Q is an array of 32-byte records and the VAL field is in the first 4 bytes of
each record. Using x86 code, we can compile this program fragment as follows:

 MOV ECX,1 ;use register ECX to hold I
LP: IMUL EAX, ECX, 32 ;get offset in EAX
 MOV EBX, Q[EAX] ;load VAL field
 ADD S, EBX ;add to S
 INC ECX ;increment I
 CMP ECX, 101 :compare to 101
 JNE LP ;loop until I = 100

This program makes use of the IMUL instruction, which multiplies the second operand
by the immediate value in the third operand and places the result in the first operand
(see Problem 10.13). A RISC advocate would like to demonstrate that a clever compiler
can eliminate unnecessarily complex instructions such as IMUL. Provide the demon-
stration by rewriting the above x86 program without using the IMUL instruction.

 15.6 Consider the following loop:

S := 0;
for K := 1 to 100 do
 S := S - K;

15.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 571

A straightforward translation of this into a generic assembly language would look
something like this:

 LD R1, 0 ;keep value of S in R1
 LD R2,1 ;keep value of K in R2
LP SUB R1, R1, R2 ;S := S - K
 BEQ R2, 100, EXIT ;done if K = 100
 ADD R2, R2, 1 ;else increment K
 JMP LP ;back to start of loop

A compiler for a RISC machine will introduce delay slots into this code so that the
processor can employ the delayed branch mechanism. The JMP instruction is easy to
deal with, because this instruction is always followed by the SUB instruction; there-
fore, we can simply place a copy of the SUB instruction in the delay slot after the
JMP. The BEQ presents a difficulty. We can’t leave the code as is, because the ADD
instruction would then be executed one too many times. Therefore, a NOP instruction
is needed. Show the resulting code.

 15.7 A RISC machine’s compiler may do both a mapping of symbolic registers to actual
registers and a rearrangement of instructions for pipeline efficiency. An interesting
question arises as to the order in which these two operations should be done. Consider
the following program fragment:

LD SR1, A ;load A into symbolic register 1
LD SR2, B ;load B into symbolic register 2
ADD SR3, SR1, SR2 ;add contents of SR1 and SR2 and store in SR3
LD SR4, C
LD SR5, D
ADD SR6, SR4, SR5

a. First do the register mapping and then any possible instruction reordering. How
many machine registers are used? Has there been any pipeline improvement?

b. Starting with the original program, now do instruction reordering and then any
possible mapping. How many machine registers are used? Has there been any
pipeline improvement?

 15.8 Add entries for the following processors to Table 15.7:
a. Pentium II
b. ARM

 15.9 In many cases, common machine instructions that are not listed as part of the MIPS
instruction set can be synthesized with a single MIPS instruction. Show this for the
following:
a. Register-to-register move
b. Increment, decrement
c. Complement
d. Negate
e. Clear

 15.10 A SPARC implementation has K register windows. What is the number N of physical
registers?

 15.11 SPARC is lacking a number of instructions commonly found on CISC machines.
Some of these are easily simulated using either register R0, which is always set to 0,
or a constant operand. These simulated instructions are called pseudoinstructions and
are recognized by the SPARC assembler. Show how to simulate the following pseu-
doinstructions, each with a single SPARC instruction. In all of these, src and dst refer
to registers. (Hint: A store to R0 has no effect.)
a. MOV src, dst
b. COMPARE src1, src2
c. TEST src1

d. NOT dst
e. NEG dst
f. INC dst

g. DEC dst
h. CLR dst
i. NOP

572 CHAPTER 15 / REDUCED INSTRUCTION SET COMPUTERS

 15.12 Consider the following code fragment:

if K > 10
 L := K + 1
else
 L := K - 1;

A straightforward translation of this statement into SPARC assembler could take the
following form:

 sethi %hi(K), %r8 ;load high-order 22 bits of address of location
 ;K into register r8
 ld [%r8 + %lo(K)], %r8 ;load contents of location K into r8
 cmp %r8, 10 ;compare contents of r8 with 10
 ble L1 ;branch if (r8) … 10
 nop
 sethi %hi(K), %r9
 ld [%r9 + %lo(K)], %r9 ;load contents of location K into r9
 inc %r9 ;add 1 to (r9)
 sethi %hi(L), %r10
 st %r9, [%r10 + %lo(L)] ;store (r9) into location L
 b L2
 nop
L1: sethi %hi(K), %r11
 ld [%r11 + %lo(K)], %r12 ;load contents of location K into r12
 dec %r12 ;subtract 1 from (r12)
 sethi %hi(L), %r13
 st %r12, [%r13 + %lo(L)] ;store (r12) into location L
L2:

The code contains a nop after each branch instruction to permit delayed branch
operation.
a. Standard compiler optimizations that have nothing to do with RISC machines are

generally effective in being able to perform two transformations on the foregoing
code. Notice that two of the loads are unnecessary and that the two stores can be
merged if the store is moved to a different place in the code. Show the program
after making these two changes.

b. It is now possible to perform some optimizations peculiar to SPARC. The nop
after the ble can be replaced by moving another instruction into that delay slot
and setting the annul bit on the ble instruction (expressed as ble,a L1). Show the
program after this change.

c. There are now two unnecessary instructions. Remove these and show the resulting
program.

573

INSTRUCTION-LEVEL PARALLELISM
AND SUPERSCALAR PROCESSORS

16.1 Overview
Superscalar versus Superpipelined
Constraints

16.2 Design Issues
Instruction-Level Parallelism and Machine Parallelism
Instruction Issue Policy
Register Renaming
Machine Parallelism
Branch Prediction
Superscalar Execution
Superscalar Implementation

16.3 Pentium 4
Front End
Out-of-Order Execution Logic
Integer and Floating-Point Execution Units

16.4 ARM Cortex-A8
Instruction Fetch Unit
Instruction Decode Unit
Integer Execute Unit
SIMD and Floating-Point Pipeline

16.5 Recommended Reading

16.6 Key Terms, Review Questions, and Problems

CHAPTER

574 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

A superscalar implementation of a processor architecture is one in which common
instructions—integer and floating-point arithmetic, loads, stores, and conditional
branches—can be initiated simultaneously and executed independently. Such imple-
mentations raise a number of complex design issues related to the instruction pipeline.

Superscalar design arrived on the scene hard on the heels of RISC architec-
ture. Although the simplified instruction set architecture of a RISC machine lends
itself readily to superscalar techniques, the superscalar approach can be used on
either a RISC or CISC architecture.

Whereas the gestation period for the arrival of commercial RISC machines
from the beginning of true RISC research with the IBM 801 and the Berkeley
RISC I was seven or eight years, the first superscalar machines became commer-
cially available within just a year or two of the coining of the term superscalar. The
superscalar approach has now become the standard method for implementing high-
performance microprocessors.

In this chapter, we begin with an overview of the superscalar approach, con-
trasting it with superpipelining. Next, we present the key design issues associated
with superscalar implementation. Then we look at several important examples of
superscalar architecture.

 16.1 OVERVIEW

The term superscalar, first coined in 1987 [AGER87], refers to a machine that is
designed to improve the performance of the execution of scalar instructions. In most
applications, the bulk of the operations are on scalar quantities. Accordingly, the
superscalar approach represents the next step in the evolution of high-performance
general-purpose processors.

The essence of the superscalar approach is the ability to execute instructions
independently and concurrently in different pipelines. The concept can be further
exploited by allowing instructions to be executed in an order different from the
program order. Figure 16.1 compares, in general terms, the scalar and superscalar
approaches. In a traditional scalar organization, there is a single pipelined func-
tional unit for integer operations and one for floating-point operations. Parallelism is
achieved by enabling multiple instructions to be at different stages of the pipeline at

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Explain the difference between superscalar and superpipelined approaches.
� Define instruction-level parallelism.
� Discuss dependencies and resource conflicts as limitations to instruction-

level parallelism
� Present an overview of the design issues involved in instruction-level

 parallelism.
� Compare and contrast techniques of improving pipeline performance in

RISC machines and superscalar machines.

16.1 / OVERVIEW 575

one time. In the superscalar organization, there are multiple functional units, each of
which is implemented as a pipeline. Each individual functional unit provides a degree
of parallelism by virtue of its pipelined structure. The use of multiple functional units
enables the processor to execute streams of instructions in parallel, one stream for
each pipeline. It is the responsibility of the hardware, in conjunction with the com-
piler, to assure that the parallel execution does not violate the intent of the program.

Many researchers have investigated superscalar-like processors, and their
research indicates that some degree of performance improvement is possible.
Table 16.1 presents the reported performance advantages. The differences in the

Integer register file

Pipelined integer
functional unit

Memory

Floating-point
register file

(a) Scalar organization

Pipelined floating-
point functional unit

Integer register file

Pipelined integer
functional units

Memory

Floating-point
register file

(b) Superscalar organization

Pipelined floating-
point functional units

Figure 16.1 Superscalar Organization Compared to Ordinary Scalar Organization

Table 16.1 Reported Speedups
of Superscalar-Like Machines

Reference Speedup

[TJAD70] 1.8

[KUCK77] 8

[WEIS84] 1.58

[ACOS86] 2.7

[SOHI90] 1.8

[SMIT89] 2.3

[JOUP89b] 2.2

[LEE91] 7

576 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

results arise from differences both in the hardware of the simulated machine and in
the applications being simulated.

Superscalar versus Superpipelined

An alternative approach to achieving greater performance is referred to as super-
pipelining, a term first coined in 1988 [JOUP88]. Superpipelining exploits the fact
that many pipeline stages perform tasks that require less than half a clock cycle. Thus,
a doubled internal clock speed allows the performance of two tasks in one external
clock cycle. We have seen one example of this approach with the MIPS R4000.

Figure 16.2 compares the two approaches. The upper part of the diagram illus-
trates an ordinary pipeline, used as a base for comparison. The base pipeline issues

Ifetch

0 1 2 3 4 5

Su
cc

es
si

ve
 in

st
ru

ct
io

ns

6 7 8

Time in base cycles

9

Key:

Decode

Execute

Write

Superpipelined

Superscalar

Simple 4-stage
pipeline

Figure 16.2 Comparison of Superscalar and Superpipeline Approaches

16.1 / OVERVIEW 577

one instruction per clock cycle and can perform one pipeline stage per clock cycle.
The pipeline has four stages: instruction fetch, operation decode, operation execu-
tion, and result write back. The execution stage is crosshatched for clarity. Note that
although several instructions are executing concurrently, only one instruction is in
its execution stage at any one time.

The next part of the diagram shows a superpipelined implementation that is
capable of performing two pipeline stages per clock cycle. An alternative way of
looking at this is that the functions performed in each stage can be split into two
nonoverlapping parts and each can execute in half a clock cycle. A superpipeline
implementation that behaves in this fashion is said to be of degree 2. Finally, the
lowest part of the diagram shows a superscalar implementation capable of execut-
ing two instances of each stage in parallel. Higher-degree superpipeline and super-
scalar implementations are of course possible.

Both the superpipeline and the superscalar implementations depicted in
Figure 16.2 have the same number of instructions executing at the same time in the
steady state. The superpipelined processor falls behind the superscalar processor at
the start of the program and at each branch target.

Constraints

The superscalar approach depends on the ability to execute multiple instructions
in parallel. The term instruction-level parallelism refers to the degree to which, on
average, the instructions of a program can be executed in parallel. A combination
of compiler-based optimization and hardware techniques can be used to maximize
instruction-level parallelism. Before examining the design techniques used in super-
scalar machines to increase instruction-level parallelism, we need to look at the fun-
damental limitations to parallelism with which the system must cope. [JOHN91]
lists five limitations:

 • True data dependency

 • Procedural dependency

 • Resource conflicts

 • Output dependency

 • Antidependency

We examine the first three of these limitations in the remainder of this section. A
discussion of the last two must await some of the developments in the next section.

TRUE DATA DEPENDENCY Consider the following sequence:1

ADD EAX, ECX ;load register EAX with the con-
;tents of ECX plus the contents
;of EAX

MOV EBX, EAX ;load EBX with the contents of EAX

The second instruction can be fetched and decoded but cannot execute until the
first instruction executes. The reason is that the second instruction needs data

1For the Intel x86 assembly language, a semicolon starts a comment field.

578 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

produced by the first instruction. This situation is referred to as a true data depen-
dency (also called flow dependency or read after write [RAW] dependency).

Figure 16.3 illustrates this dependency in a superscalar machine of degree 2. With
no dependency, two instructions can be fetched and executed in parallel. If there is a
data dependency between the first and second instructions, then the second instruc-
tion is delayed as many clock cycles as required to remove the dependency. In general,
any instruction must be delayed until all of its input values have been produced.

In a simple pipeline, such as illustrated in the upper part of Figure 16.2, the
aforementioned sequence of instructions would cause no delay. However, consider
the following, in which one of the loads is from memory rather than from a register:

MOV EAX, eff ; load register EAX with the con-
tents of effective memory add-
ress eff

MOV EBX, EAX ;load EBX with the contents of EAX

i0

i1

i0

i1

i0

i1/branch

i2

i3

i4

i5

i0

i1

Ifetch

0 1 2 3 4 5 6 7 8

Time in base cycles

9

Key:

Decode

Execute

Write

No dependency

Data dependency
(i1 uses data computed by i0)

Procedural dependency

Resource conflict
(i0 and i1 use the same
functional unit)

Figure 16.3 Effect of Dependencies

16.2 / DESIGN ISSUES 579

A typical RISC processor takes two or more cycles to perform a load from
memory when the load is a cache hit. It can take tens or even hundreds of cycles for
a cache miss on all cache levels, because of the delay of an off-chip memory access.
One way to compensate for this delay is for the compiler to reorder instructions so
that one or more subsequent instructions that do not depend on the memory load
can begin flowing through the pipeline. This scheme is less effective in the case of
a superscalar pipeline: The independent instructions executed during the load are
likely to be executed on the first cycle of the load, leaving the processor with noth-
ing to do until the load completes.

PROCEDURAL DEPENDENCIES As was discussed in Chapter 14, the presence
of branches in an instruction sequence complicates the pipeline operation. The
instructions following a branch (taken or not taken) have a procedural dependency
on the branch and cannot be executed until the branch is executed. Figure 16.3
illustrates the effect of a branch on a superscalar pipeline of degree 2.

As we have seen, this type of procedural dependency also affects a scalar pipe-
line. The consequence for a superscalar pipeline is more severe, because a greater
magnitude of opportunity is lost with each delay.

If variable-length instructions are used, then another sort of procedural
dependency arises. Because the length of any particular instruction is not known, it
must be at least partially decoded before the following instruction can be fetched.
This prevents the simultaneous fetching required in a superscalar pipeline. This
is one of the reasons that superscalar techniques are more readily applicable to a
RISC or RISC-like architecture, with its fixed instruction length.

RESOURCE CONFLICT A resource conflict is a competition of two or more
instructions for the same resource at the same time. Examples of resources include
memories, caches, buses, register-file ports, and functional units (e.g., ALU adder).

In terms of the pipeline, a resource conflict exhibits similar behavior to a data
dependency (Figure 16.3). There are some differences, however. For one thing, re-
source conflicts can be overcome by duplication of resources, whereas a true data
dependency cannot be eliminated. Also, when an operation takes a long time to com-
plete, resource conflicts can be minimized by pipelining the appropriate functional unit.

 16.2 DESIGN ISSUES

Instruction-Level Parallelism and Machine Parallelism

[JOUP89a] makes an important distinction between the two related concepts of
instruction-level parallelism and machine parallelism. Instruction-level parallelism
exists when instructions in a sequence are independent and thus can be executed in
parallel by overlapping.

As an example of the concept of instruction-level parallelism, consider the fol-
lowing two code fragments [JOUP89b]:

Load R1 d R2 Add R3 d R3, “1”
Add R3 d R3, “1” Add R4 d R3, R2
Add R4 d R4, R2 Store [R4] d R0

580 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

The three instructions on the left are independent, and in theory all three could
be executed in parallel. In contrast, the three instructions on the right cannot be
executed in parallel because the second instruction uses the result of the first, and
the third instruction uses the result of the second.

The degree of instruction-level parallelism is determined by the frequency of
true data dependencies and procedural dependencies in the code. These factors,
in turn, are dependent on the instruction set architecture and on the application.
Instruction-level parallelism is also determined by what [JOUP89a] refers to as
operation latency: the time until the result of an instruction is available for use as an
operand in a subsequent instruction. The latency determines how much of a delay a
data or procedural dependency will cause.

Machine parallelism is a measure of the ability of the processor to take
advantage of instruction-level parallelism. Machine parallelism is determined by
the number of instructions that can be fetched and executed at the same time (the
number of parallel pipelines) and by the speed and sophistication of the mecha-
nisms that the processor uses to find independent instructions.

Both instruction-level and machine parallelism are important factors in
enhancing performance. A program may not have enough instruction-level parallel-
ism to take full advantage of machine parallelism. The use of a fixed-length instruc-
tion set architecture, as in a RISC, enhances instruction-level parallelism. On the
other hand, limited machine parallelism will limit performance no matter what the
nature of the program.

Instruction Issue Policy

As was mentioned, machine parallelism is not simply a matter of having multi-
ple instances of each pipeline stage. The processor must also be able to identify
instruction-level parallelism and orchestrate the fetching, decoding, and execution
of instructions in parallel. [JOHN91] uses the term instruction issue to refer to the
process of initiating instruction execution in the processor’s functional units and the
term instruction issue policy to refer to the protocol used to issue instructions. In
general, we can say that instruction issue occurs when instruction moves from the
decode stage of the pipeline to the first execute stage of the pipeline.

In essence, the processor is trying to look ahead of the current point of execu-
tion to locate instructions that can be brought into the pipeline and executed. Three
types of orderings are important in this regard:

 • The order in which instructions are fetched

 • The order in which instructions are executed

 • The order in which instructions update the contents of register and memory
locations

The more sophisticated the processor, the less it is bound by a strict relation-
ship between these orderings. To optimize utilization of the various pipeline ele-
ments, the processor will need to alter one or more of these orderings with respect
to the ordering to be found in a strict sequential execution. The one constraint on
the processor is that the result must be correct. Thus, the processor must accommo-
date the various dependencies and conflicts discussed earlier.

16.2 / DESIGN ISSUES 581

In general terms, we can group superscalar instruction issue policies into the
following categories:

 • In-order issue with in-order completion
 • In-order issue with out-of-order completion
 • Out-of-order issue with out-of-order completion

IN-ORDER ISSUE WITH IN-ORDER COMPLETION The simplest instruction issue
policy is to issue instructions in the exact order that would be achieved by sequential
execution (in-order issue) and to write results in that same order (in-order completion).
Not even scalar pipelines follow such a simple-minded policy. However, it is useful to
consider this policy as a baseline for comparing more sophisticated approaches.

Figure 16.4a gives an example of this policy. We assume a superscalar pipeline
capable of fetching and decoding two instructions at a time, having three separate
functional units (e.g., two integer arithmetic and one floating-point arithmetic), and
having two instances of the write-back pipeline stage. The example assumes the fol-
lowing constraints on a six-instruction code fragment:

 • I1 requires two cycles to execute.
 • I3 and I4 conflict for the same functional unit.
 • I5 depends on the value produced by I4.
 • I5 and I6 conflict for a functional unit.

Instructions are fetched two at a time and passed to the decode unit. Because
instructions are fetched in pairs, the next two instructions must wait until the pair of
decode pipeline stages has cleared. To guarantee in-order completion, when there
is a conflict for a functional unit or when a functional unit requires more than one
cycle to generate a result, the issuing of instructions temporarily stalls.

In this example, the elapsed time from decoding the first instruction to writing
the last results is eight cycles.

IN-ORDER ISSUE WITH OUT-OF-ORDER COMPLETION Out-of-order completion
is used in scalar RISC processors to improve the performance of instructions that
require multiple cycles. Figure 16.4b illustrates its use on a superscalar processor.
Instruction I2 is allowed to run to completion prior to I1. This allows I3 to be
completed earlier, with the net result of a savings of one cycle.

With out-of-order completion, any number of instructions may be in the exe-
cution stage at any one time, up to the maximum degree of machine parallelism
across all functional units. Instruction issuing is stalled by a resource conflict, a data
dependency, or a procedural dependency.

In addition to the aforementioned limitations, a new dependency, which we
referred to earlier as an output dependency (also called write after write [WAW]
dependency), arises. The following code fragment illustrates this dependency
(op represents any operation):

I1: R3 d R3 op R5
I2: R4 d R3 + 1
I3: R3 d R5 + 1
I4: R7 d R3 op R4

582 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

Instruction I2 cannot execute before instruction I1, because it needs the
result in register R3 produced in I1; this is an example of a true data dependency,
as described in Section 16.1. Similarly, I4 must wait for I3, because it uses a result
produced by I3. What about the relationship between I1 and I3? There is no data
dependency here, as we have defined it. However, if I3 executes to completion prior
to I1, then the wrong value of the contents of R3 will be fetched for the execution
of I4. Consequently, I3 must complete after I1 to produce the correct output values.
To ensure this, the issuing of the third instruction must be stalled if its result might
later be overwritten by an older instruction that takes longer to complete.

I1
I3
I3

I5

I2
I4
I4
I4
I6
I6

I1
I1

I2

I5
I6

I3
I4

Decode

I1
I3

I5

I2
I4
I4
I6
I6

Decode

I1
I3
I5

I1
I1

I2
I3

I2
I4
I6

Decode Window

I2I1

WriteExecute

I1
I1

I2

I5
I6

I3
I4

Execute

I4I3

I6I5

Cycle
1
2
3
4
5
6
7
8

I3I1

Write

I5
I4

I2

I6

I3I1

I5

I2

Cycle
1
2
3
4
5
6
7

Write Cycle
1
2
3
4
5
6

I1, I2
I3, I4

I4, I5, I6
I5

I6
I5

I4

Execute

(a) In-order issue and in-order completion

(b) In-order issue and out-of-order completion

I6I4

(c) Out-of-order issue and out-of-order completion

Figure 16.4 Superscalar Instruction Issue and Completion Policies

16.2 / DESIGN ISSUES 583

Out-of-order completion requires more complex instruction issue logic than
in-order completion. In addition, it is more difficult to deal with instruction inter-
rupts and exceptions. When an interrupt occurs, instruction execution at the current
point is suspended, to be resumed later. The processor must assure that the resump-
tion takes into account that, at the time of interruption, instructions ahead of the
instruction that caused the interrupt may already have completed.

OUT-OF-ORDER ISSUE WITH OUT-OF-ORDER COMPLETION With in-order
issue, the processor will only decode instructions up to the point of a dependency
or conflict. No additional instructions are decoded until the conflict is resolved.
As a result, the processor cannot look ahead of the point of conflict to subsequent
instructions that may be independent of those already in the pipeline and that may
be usefully introduced into the pipeline.

To allow out-of-order issue, it is necessary to decouple the decode and exe-
cute stages of the pipeline. This is done with a buffer referred to as an instruction
 window. With this organization, after a processor has finished decoding an instruc-
tion, it is placed in the instruction window. As long as this buffer is not full, the proc-
essor can continue to fetch and decode new instructions. When a functional unit
becomes available in the execute stage, an instruction from the instruction window
may be issued to the execute stage. Any instruction may be issued, provided that
(1) it needs the particular functional unit that is available, and (2) no conflicts or
dependencies block this instruction. Figure 16.5 suggests this organization.

The result of this organization is that the processor has a lookahead capability,
allowing it to identify independent instructions that can be brought into the execute
stage. Instructions are issued from the instruction window with little regard for their
original program order. As before, the only constraint is that the program execution
behaves correctly.

Figures 16.4c illustrates this policy. During each of the first three cycles, two
instructions are fetched into the decode stage. During each cycle, subject to the
constraint of the buffer size, two instructions move from the decode stage to the
instruction window. In this example, it is possible to issue instruction I6 ahead of
I5 (recall that I5 depends on I4, but I6 does not). Thus, one cycle is saved in both
the execute and write-back stages, and the end-to-end savings, compared with
Figure 16.4b, is one cycle.

Fe
tc

h

Is
su

e

R
eg

is
te

r
re

ad

E
xe

cu
te

W
ri

te
 b

ac
k

D
ec

od
e

R
en

am
e

D
is

pa
tc

h

C
om

m
it

Buffer of instructions

In-order front end
Out-of-order execution

Figure 16.5 Organization for Out-of-Order Issue with Out-of-
Order Completion

584 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

The instruction window is depicted in Figure 16.4c to illustrate its role.
However, this window is not an additional pipeline stage. An instruction being in
the window simply implies that the processor has sufficient information about that
instruction to decide when it can be issued.

The out-of-order issue, out-of-order completion policy is subject to the same
constraints described earlier. An instruction cannot be issued if it violates a depend-
ency or conflict. The difference is that more instructions are available for issuing,
reducing the probability that a pipeline stage will have to stall. In addition, a new
dependency, which we referred to earlier as an antidependency (also called write
after read [WAR] dependency), arises. The code fragment considered earlier illus-
trates this dependency:

I1: R3 d R3 op R5
I2: R4 d R3 + 1
I3: R3 d R5 + 1
I4: R7 d R3 op R4

Instruction I3 cannot complete execution before instruction I2 begins execu-
tion and has fetched its operands. This is so because I3 updates register R3, which is
a source operand for I2. The term antidependency is used because the constraint is
similar to that of a true data dependency, but reversed: Instead of the first instruc-
tion producing a value that the second instruction uses, the second instruction
destroys a value that the first instruction uses.

Reorder Buffer Simulator
Tomasulo’s Algorithm Simulator

Alternative Simulation of Tomasulo’s Algorithm

One common technique that is used to support out-of-order completion is the
reorder buffer. The reorder buffer is temporary storage for results completed out of
order that are then committed to the register file in program order. A related con-
cept is Tomasulo’s algorithm. Appendix I examines these concepts.

Register Renaming

When out-of-order instruction issuing and/or out-of-order instruction completion
are allowed, we have seen that this gives rise to the possibility of WAW dependen-
cies and WAR dependencies. These dependencies differ from RAW data depen-
dencies and resource conflicts, which reflect the flow of data through a program and
the sequence of execution. WAW dependencies and WAR dependencies, on the
other hand, arise because the values in registers may no longer reflect the sequence
of values dictated by the program flow.

When instructions are issued in sequence and complete in sequence, it is pos-
sible to specify the contents of each register at each point in the execution. When
out-of-order techniques are used, the values in registers cannot be fully known at
each point in time just from a consideration of the sequence of instructions dictated

16.2 / DESIGN ISSUES 585

by the program. In effect, values are in conflict for the use of registers, and the proc-
essor must resolve those conflicts by occasionally stalling a pipeline stage.

Antidependencies and output dependencies are both examples of storage con-
flicts. Multiple instructions are competing for the use of the same register locations,
generating pipeline constraints that retard performance. The problem is made more
acute when register optimization techniques are used (as discussed in Chapter 15),
because these compiler techniques attempt to maximize the use of registers, hence
maximizing the number of storage conflicts.

One method for coping with these types of storage conflicts is based on a tradi-
tional resource-conflict solution: duplication of resources. In this context, the tech-
nique is referred to as register renaming. In essence, registers are allocated dynami-
cally by the processor hardware, and they are associated with the values needed
by instructions at various points in time. When a new register value is created (i.e.,
when an instruction executes that has a register as a destination operand), a new
register is allocated for that value. Subsequent instructions that access that value
as a source operand in that register must go through a renaming process: the regis-
ter references in those instructions must be revised to refer to the register contain-
ing the needed value. Thus, the same original register reference in several different
instructions may refer to different actual registers, if different values are intended.

Let us consider how register renaming could be used on the code fragment we
have been examining:

I1: R3b d R3a op R5a
I2: R4b d R3b + 1
I3: R3c d R5a + 1
I4: R7b d R3c op R4b

The register reference without the subscript refers to the logical register refer-
ence found in the instruction. The register reference with the subscript refers to a
hardware register allocated to hold a new value. When a new allocation is made for
a particular logical register, subsequent instruction references to that logical register
as a source operand are made to refer to the most recently allocated hardware reg-
ister (recent in terms of the program sequence of instructions).

In this example, the creation of register R3c in instruction I3 avoids the WAR
dependency on the second instruction and the WAW on the first instruction, and
it does not interfere with the correct value being accessed by I4. The result is that
I3 can be issued immediately; without renaming, I3 cannot be issued until the first
instruction is complete and the second instruction is issued.

Scoreboarding Simulator

An alternative to register renaming is a scoreboarding. In essence, scoreboard-
ing is a bookkeeping technique that allows instructions to execute whenever they
are not dependent on previous instructions and no structural hazards are present.
See Appendix I for a discussion.

586 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

Machine Parallelism

In the preceding discussion, we have looked at three hardware techniques that can
be used in a superscalar processor to enhance performance: duplication of resources,
out-of-order issue, and renaming. One study that illuminates the relationship among
these techniques was reported in [SMIT89]. The study made use of a simulation that
modeled a machine with the characteristics of the MIPS R2000, augmented with var-
ious superscalar features. A number of different program sequences were simulated.

Figure 16.6 shows the results. In each of the graphs, the vertical axis corre-
sponds to the mean speedup of the superscalar machine over the scalar machine.
The horizontal axis shows the results for four alternative processor organizations.
The base machine does not duplicate any of the functional units, but it can issue
instructions out of order. The second configuration duplicates the load/store func-
tional unit that accesses a data cache. The third configuration duplicates the ALU,
and the fourth configuration duplicates both load/store and ALU. In each graph,
results are shown for instruction window sizes of 8, 16, and 32 instructions, which dic-
tates the amount of lookahead the processor can do. The difference between the two
graphs is that, in the second, register renaming is allowed. This is equivalent to say-
ing that the first graph reflects a machine that is limited by all dependencies, whereas
the second graph corresponds to a machine that is limited only by true dependencies.

The two graphs, combined, yield some important conclusions. The first is that
it is probably not worthwhile to add functional units without register renaming.

base �ld/st �alu �both

Speedup
Without renaming

base �ld/st �alu �both

Speedup
With renaming

8 16 32
Window size

(construction)

0

1

2

3

4

0

1

2

3

4

Figure 16.6 Speedups of Various Machine Organizations without Procedural Dependencies

16.2 / DESIGN ISSUES 587

There is some slight improvement in performance, but at the cost of increased hard-
ware complexity. With register renaming, which eliminates antidependencies and
output dependencies, noticeable gains are achieved by adding more functional units.
Note, however, that there is a significant difference in the amount of gain achievable
between using an instruction window of 8 versus a larger instruction window. This
indicates that if the instruction window is too small, data dependencies will prevent
effective utilization of the extra functional units; the processor must be able to look
quite far ahead to find independent instructions to utilize the hardware more fully.

Pipeline with Static vs. Dynamic Scheduling—Simulator

Branch Prediction

Any high-performance pipelined machine must address the issue of dealing with
branches. For example, the Intel 80486 addressed the problem by fetching both the
next sequential instruction after a branch and speculatively fetching the branch tar-
get instruction. However, because there are two pipeline stages between prefetch
and execution, this strategy incurs a two-cycle delay when the branch gets taken.

With the advent of RISC machines, the delayed branch strategy was explored.
This allows the processor to calculate the result of conditional branch instructions
before any unusable instructions have been prefetched. With this method, the proc-
essor always executes the single instruction that immediately follows the branch.
This keeps the pipeline full while the processor fetches a new instruction stream.

With the development of superscalar machines, the delayed branch strategy
has less appeal. The reason is that multiple instructions need to execute in the delay
slot, raising several problems relating to instruction dependencies. Thus, supersca-
lar machines have returned to pre-RISC techniques of branch prediction. Some,
like the PowerPC 601, use a simple static branch prediction technique. More sophis-
ticated processors, such as the PowerPC 620 and the Pentium 4, use dynamic branch
prediction based on branch history analysis.

Superscalar Execution

We are now in a position to provide an overview of superscalar execution of pro-
grams; this is illustrated in Figure 16.7. The program to be executed consists of a
linear sequence of instructions. This is the static program as written by the pro-
grammer or generated by the compiler. The instruction fetch stage, which includes
branch prediction, is used to form a dynamic stream of instructions. This stream is
examined for dependencies, and the processor may remove artificial dependencies.
The processor then dispatches the instructions into a window of execution. In this
window, instructions no longer form a sequential stream but are structured accord-
ing to their true data dependencies. The processor executes each instruction in an
order determined by the true data dependencies and hardware resource availabil-
ity. Finally, instructions are conceptually put back into sequential order and their
results are recorded.

588 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

The final step mentioned in the preceding paragraph is referred to as commit-
ting, or retiring, the instruction. This step is needed for the following reason. Because
of the use of parallel, multiple pipelines, instructions may complete in an order dif-
ferent from that shown in the static program. Further, the use of branch prediction
and speculative execution means that some instructions may complete execution and
then must be abandoned because the branch they represent is not taken. Therefore,
permanent storage and program-visible registers cannot be updated immediately
when instructions complete execution. Results must be held in some sort of tempo-
rary storage that is usable by dependent instructions and then made permanent when
it is determined that the sequential model would have executed the instruction.

Superscalar Implementation

Based on our discussion so far, we can make some general comments about the pro-
cessor hardware required for the superscalar approach. [SMIT95] lists the following
key elements:

 • Instruction fetch strategies that simultaneously fetch multiple instructions,
often by predicting the outcomes of, and fetching beyond, conditional branch
instructions. These functions require the use of multiple pipeline fetch and
decode stages, and branch prediction logic.

 • Logic for determining true dependencies involving register values, and mech-
anisms for communicating these values to where they are needed during
execution.

 • Mechanisms for initiating, or issuing, multiple instructions in parallel.

 • Resources for parallel execution of multiple instructions, including multiple
pipelined functional units and memory hierarchies capable of simultaneously
servicing multiple memory references.

 • Mechanisms for committing the process state in correct order.

Static
program

Instruction fetch
and branch
prediction

Instruction
dispatch

Window of
execution

Instruction
issue

Instruction
execution

Instruction
reorder and

commit

Figure 16.7 Conceptual Depiction of Superscalar Processing

16.3 / PENTIUM 4 589

 16.3 PENTIUM 4

Although the concept of superscalar design is generally associated with the RISC
architecture, the same superscalar principles can be applied to a CISC machine.
Perhaps the most notable example of this is the Pentium. The evolution of supersca-
lar concepts in the Intel line is interesting to note. The 386 is a traditional CISC non-
pipelined machine. The 486 introduced the first pipelined x86 processor, reducing
the average latency of integer operations from between two and four cycles to one
cycle, but still limited to executing a single instruction each cycle, with no supersca-
lar elements. The original Pentium had a modest superscalar component, consisting
of the use of two separate integer execution units. The Pentium Pro introduced a
full-blown superscalar design with out-of-order execution. Subsequent x86 models
have refined and enhanced the superscalar design.

A general block diagram of the Pentium 4 was shown in Figure 4.18. Figure 16.8
depicts the same structure in a way more suitable for the pipeline discussion in this
section. The operation of the Pentium 4 can be summarized as follows:

 1. The processor fetches instructions from memory in the order of the static
program.

 2. Each instruction is translated into one or more fixed-length RISC instructions,
known as micro-operations, or micro-ops.

L2 Cache and control

3.
2

G
B

/s
 S

ys
te

m
 in

te
rf

ac
e

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
eg

is
te

r
fi

le
In

te
ge

r
re

gi
st

er
 fi

le

�code
ROM

FMul
Fadd
MMX

FP move
FP store

BTB

ALU

ALU

ALU

ALU

Store
AGU
Load
AGU

L
1

D
-C

ac
he

 a
nd

 D
-T

L
B

AGU � address generation unit
BTB � branch target buffer
D-TLB � data translation lookaside buffer
I-TLB � instruction translation lookaside buffer

Figure 16.8 Pentium 4 Block Diagram

590 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

 3. The processor executes the micro-ops on a superscalar pipeline organization,
so that the micro-ops may be executed out of order.

 4. The processor commits the results of each micro-op execution to the proces-
sor’s register set in the order of the original program flow.

In effect, the Pentium 4 architecture implements a CISC instruction set architec-
ture on a RISC microarchitecture. The inner RISC micro-ops pass through a pipeline
with at least 20 stages (Figure 16.9); in some cases, the micro-op requires multiple exe-
cution stages, resulting in an even longer pipeline. This contrasts with the five-stage
pipeline (Figure 14.21) used on the earlier Intel x86 processors and on the Pentium.

We now trace the operation of the Pentium 4 pipeline, using Figure 16.10 to
illustrate its operation.

Front End

GENERATION OF MICRO-OPS The Pentium 4 organization includes an in-order
front end (Figure 16.10a) that can be considered outside the scope of the pipeline
depicted in Figure 16.9. This front end feeds into an L1 instruction cache, called
the trace cache, which is where the pipeline proper begins. Usually, the processor
operates from the trace cache; when a trace cache miss occurs, the in-order front
end feeds new instructions into the trace cache.

With the aid of the branch target buffer and the instruction lookaside buffer
(BTB & I-TLB), the fetch/decode unit fetches x86 machine instructions from the L2
cache 64 bytes at a time. As a default, instructions are fetched sequentially, so that
each L2 cache line fetch includes the next instruction to be fetched. Branch predic-
tion via the BTB & I-TLB unit may alter this sequential fetch operation. The ITLB
translates the linear instruction pointer address given it into physical addresses
needed to access the L2 cache. Static branch prediction in the front-end BTB is used
to determine which instructions to fetch next.

Once instructions are fetched, the fetch/decode unit scans the bytes to deter-
mine instruction boundaries; this is a necessary operation because of the variable
length of x86 instructions. The decoder translates each machine instruction into
from one to four micro-ops, each of which is a 118-bit RISC instruction. Note for
comparison that most pure RISC machines have an instruction length of just 32
bits. The longer micro-op length is required to accommodate the more complex
x86 instructions. Nevertheless, the micro-ops are easier to manage than the original
instructions from which they derive.

The generated micro-ops are stored in the trace cache.

1 2 3 4 5

Drive

6

Alloc

7 8 9

Que

10

Sch

11

Sch

12

Sch

13

Disp

14

Disp

15

RF

16

RF

17

Ex

18

Flgs

19

Br Ck

20

DriveTC Nxt IP TC Fetch Rename

TC Next IP � trace cache next instruction pointer
TC Fetch � trace cache fetch
Alloc � allocate

Rename � register renaming
Que � micro-op queuing
Sch � micro-op scheduling
Disp � Dispatch

RF � register file
Ex � execute
Flgs � flags
Br Ck � branch check

Figure 16.9 Pentium 4 Pipeline

16.3 / PENTIUM 4 591

TRACE CACHE NEXT INSTRUCTION POINTER The first two pipeline stages
(Figure 16.10b) deal with the selection of instructions in the trace cache and involve
a separate branch prediction mechanism from that described in the previous
section. The Pentium 4 uses a dynamic branch prediction strategy based on the

L2 Cache and control

(a) Generation of micro-ops

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1

D
-C

ac
he

 a
nd

 D
-T

L
B

L2 Cache and control

(c) Trace cache fetch

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1

D
-C

ac
he

 a
nd

 D
-T

L
B

L2 Cache and control

(b) Trace cache next instruction pointer

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1

D
-C

ac
he

 a
nd

 D
-T

L
B

L2 Cache and control

(d) Drive

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1

D
-C

ac
he

 a
nd

 D
-T

L
B

L2 Cache and control

(e) Allocate; register renaming

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1

D
-C

ac
he

 a
nd

 D
-T

L
B

L2 Cache and control

(f) Micro-op queuing

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1

D
-C

ac
he

 a
nd

 D
-T

L
B

Figure 16.10 Pentium Pipeline Operation

592 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

history of recent executions of branch instructions. A branch target buffer (BTB) is
maintained that caches information about recently encountered branch instructions.
Whenever a branch instruction is encountered in the instruction stream, the BTB
is checked. If an entry already exists in the BTB, then the instruction unit is guided

Figure 16.10 Pentium Pipeline Operation (continued)

L2 Cache and control

(g) Micro-op scheduling

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1

D
-C

ac
he

 a
nd

 D
-T

L
B

L2 Cache and control

(h) Dispatch

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1

D
-C

ac
he

 a
nd

 D
-T

L
B

L2 Cache and control

(i) Register file

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1

D
-C

ac
he

 a
nd

 D
-T

L
B

L2 Cache and control

(j) Execute; flags

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1

D
-C

ac
he

 a
nd

 D
-T

L
B

L2 Cache and control

(k) Branch check

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1

D
-C

ac
he

 a
nd

 D
-T

L
B

L2 Cache and control

(l) Branch check result

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1

D
-C

ac
he

 a
nd

 D
-T

L
B

16.3 / PENTIUM 4 593

by the history information for that entry in determining whether to predict that
the branch is taken. If a branch is predicted, then the branch destination address
associated with this entry is used for prefetching the branch target instruction.

Once the instruction is executed, the history portion of the appropriate entry
is updated to reflect the result of the branch instruction. If this instruction is not
represented in the BTB, then the address of this instruction is loaded into an entry
in the BTB; if necessary, an older entry is deleted.

The description of the preceding two paragraphs fits, in general terms, the
branch prediction strategy used on the original Pentium model, as well as the
later Pentium models, including Pentium 4. However, in the case of the Pentium,
a relatively simple 2-bit history scheme is used. The later Pentium models have
much longer pipelines (20 stages for the Pentium 4 compared with 5 stages for
the Pentium) and therefore the penalty for misprediction is greater. Accordingly,
the later Pentium models use a more elaborate branch prediction scheme with more
history bits to reduce the misprediction rate.

The Pentium 4 BTB is organized as a four-way set-associative cache with
512 lines. Each entry uses the address of the branch as a tag. The entry also includes
the branch destination address for the last time this branch was taken and a 4-bit
history field. Thus use of four history bits contrasts with the 2 bits used in the origi-
nal Pentium and used in most superscalar processors. With 4 bits, the Pentium
4 mechanism can take into account a longer history in predicting branches. The
algorithm that is used is referred to as Yeh’s algorithm [YEH91]. The developers of
this algorithm have demonstrated that it provides a significant reduction in mispre-
diction compared to algorithms that use only 2 bits of history [EVER98].

Conditional branches that do not have a history in the BTB are predicted
using a static prediction algorithm, according to the following rules:

 • For branch addresses that are not IP relative, predict taken if the branch is a
return and not taken otherwise.

 • For IP-relative backward conditional branches, predict taken. This rule
reflects the typical behavior of loops.

 • For IP-relative forward conditional branches, predict not taken.

TRACE CACHE FETCH The trace cache (Figure 16.10c) takes the already-decoded
micro-ops from the instruction decoder and assembles them in to program-ordered
sequences of micro-ops called traces. Micro-ops are fetched sequentially from the
trace cache, subject to the branch prediction logic.

A few instructions require more than four micro-ops. These instructions are
transferred to microcode ROM, which contains the series of micro-ops (five or
more) associated with a complex machine instruction. For example, a string instruc-
tion may translate into a very large (even hundreds), repetitive sequence of micro-
ops. Thus, the microcode ROM is a microprogrammed control unit in the sense
discussed in Part Four. After the microcode ROM finishes sequencing micro-ops
for the current Pentium instruction, fetching resumes from the trace cache.

DRIVE The fifth stage (Figure 16.10d) of the Pentium 4 pipeline delivers decoded
instructions from the trace cache to the rename/allocator module.

594 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

Out-of-Order Execution Logic

This part of the processor reorders micro-ops to allow them to execute as quickly as
their input operands are ready.

ALLOCATE The allocate stage (Figure 16.10e) allocates resources required for
execution. It performs the following functions:

 • If a needed resource, such as a register, is unavailable for one of the three
micro-ops arriving at the allocator during a clock cycle, the allocator stalls
the pipeline.

 • The allocator allocates a reorder buffer (ROB) entry, which tracks the com-
pletion status of one of the 126 micro-ops that could be in process at any time.2

 • The allocator allocates one of the 128 integer or floating-point register entries
for the result data value of the micro-op, and possibly a load or store buffer
used to track one of the 48 loads or 24 stores in the machine pipeline.

 • The allocator allocates an entry in one of the two micro-op queues in front of
the instruction schedulers.

The ROB is a circular buffer that can hold up to 126 micro-ops and also con-
tains the 128 hardware registers. Each buffer entry consists of the following fields:

 • State: Indicates whether this micro-op is scheduled for execution, has been dis-
patched for execution, or has completed execution and is ready for retirement.

 • Memory Address: The address of the Pentium instruction that generated the
micro-op.

 • Micro-op: The actual operation.

 • Alias Register: If the micro-op references one of the 16 architectural registers,
this entry redirects that reference to one of the 128 hardware registers.

Micro-ops enter the ROB in order. Micro-ops are then dispatched from the
ROB to the Dispatch/Execute unit out of order. The criterion for dispatch is that
the appropriate execution unit and all necessary data items required for this micro-
op are available. Finally, micro-ops are retired from the ROB in order. To accom-
plish in-order retirement, micro-ops are retired oldest first after each micro-op has
been designated as ready for retirement.

REGISTER RENAMING The rename stage (Figure 16.10e) remaps references to the
16 architectural registers (8 floating-point registers, plus EAX, EBX, ECX, EDX,
ESI, EDI, EBP, and ESP) into a set of 128 physical registers. The stage removes
false dependencies caused by a limited number of architectural registers while
preserving the true data dependencies (reads after writes).

MICRO-OP QUEUING After resource allocation and register renaming, micro-ops
are placed in one of two micro-op queues (Figure 16.10f), where they are held until
there is room in the schedulers. One of the two queues is for memory operations

2See Appendix I for a discussion of reorder buffers.

16.4 / ARM CORTEX-A8 595

(loads and stores) and the other for micro-ops that do not involve memory
references. Each queue obeys a FIFO (first-in-first-out) discipline, but no order
is maintained between queues. That is, a micro-op may be read out of one queue
out of order with respect to micro-ops in the other queue. This provides greater
flexibility to the schedulers.

MICRO-OP SCHEDULING AND DISPATCHING The schedulers (Figure 16.10g)
are responsible for retrieving micro-ops from the micro-op queues and dispatching
these for execution. Each scheduler looks for micro-ops in whose status indicates
that the micro-op has all of its operands. If the execution unit needed by that
micro-op is available, then the scheduler fetches the micro-op and dispatches
it to the appropriate execution unit (Figure 16.10h). Up to six micro-ops can be
dispatched in one cycle. If more than one micro-op is available for a given execution
unit, then the scheduler dispatches them in sequence from the queue. This is a sort
of FIFO discipline that favors in-order execution, but by this time the instruction
stream has been so rearranged by dependencies and branches that it is substantially
out of order.

Four ports attach the schedulers to the execution units. Port 0 is used for both
integer and floating-point instructions, with the exception of simple integer opera-
tions and the handling of branch mispredictions, which are allocated to Port 1. In
addition, MMX execution units are allocated between these two ports. The remain-
ing ports are for memory loads and stores.

Integer and Floating-Point Execution Units

The integer and floating-point register files are the source for pending operations
by the execution units (Figure 16.10i). The execution units retrieve values from the
register files as well as from the L1 data cache (Figure 16.10j). A separate pipeline
stage is used to compute flags (e.g., zero, negative); these are typically the input to
a branch instruction.

A subsequent pipeline stage performs branch checking (Figure 16.10k). This
function compares the actual branch result with the prediction. If a branch predic-
tion turns out to have been wrong, then there are micro-operations in various stages
of processing that must be removed from the pipeline. The proper branch destina-
tion is then provided to the Branch Predictor during a drive stage (Figure 16.10l),
which restarts the whole pipeline from the new target address.

 16.4 ARM CORTEX-A8

Recent implementations of the ARM architecture have seen the introduction of
superscalar techniques in the instruction pipeline. In this section, we focus on the
ARM Cortex-A8, which provides a good example of a RISC-based superscalar
design.

The Cortex-A8 is in the ARM family of processors that ARM refers to as
application processors. An ARM application processor is an embedded processor
running complex operating systems for wireless, consumer and imaging applications.

596 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

The Cortex-A8 targets a wide variety of mobile and consumer applications includ-
ing mobile phones, set-top boxes, gaming consoles and automotive navigation/
entertainment systems.

Figure 16.11 shows a logical view of the Cortex-A8 architecture, emphasizing
the flow of instructions among functional units. The main instruction flow is
through three functional units that implement a dual, in-order-issue, 13-stage pipe-
line. The Cortex designers decided to stay with in-order issue to keep additional
power required to a minimum. Out-of-order issue and retire can require extensive
amounts of logic consuming extra power.

Prefetch
and

branch
prediction

Decode &
sequencer

Dependency
check and

issue

L1
cache

interface

TLB

L1
cache

interface

TLB

Instruction fetch Instruction decode

13-stage integer pipeline

10-stage SIMD pipeline

2 stages

3 stages 1 stage 6 stages

5 stages 6 stages

Instruction execute and Load/Store

Instruction register writeback

NEON register writeback

Replay

Branch mispredict

NEON
instruction

decode

Load and store
data queue

NEON unit

N
E

O
N

 r
eg

is
te

r
fi

le

A
rc

hi
te

ct
ur

al
re

gi
st

er
 f

ile

Load/store permute pipe

IEEE floating-point engine

non-IEEE FP MUL pipe

non-IEEE FP ADD pipe

Load/store
pipe 0 or 1

ALU pipe 1

MUL pipe 0

ALU pipe

Integer shift pipe

Integer MUL pipe

Integer ALU pipe

Arbitration
L2 cache

pipeline control

Write
buffer

Bus
interface

unit (BIU)

Fill and eviction
queue

Instruction, data, NEON and preload
engine buffers

L2
cache

L2 cache
data RAM

L2 cache
tag RAM

I-side
L1

RAM

D-side
L1

RAM

Figure 16.11 Architectural Block Diagram of ARM Cortex-A8

16.4 / ARM CORTEX-A8 597

Figure 16.12 shows the details of the main Cortex-A8 pipeline. There is a
separate unit for SIMD (single-instruction-multiple-data) unit that implements a
10-stage pipeline.

Instruction Fetch Unit

The instruction fetch unit predicts the instruction stream, fetches instructions from
the L1 instruction cache, and places the fetched instructions into a buffer for con-
sumption by the decode pipeline. The instruction fetch unit also includes the L1
instruction cache. Because there can be several unresolved branches in the pipe-
line, instruction fetches are speculative, meaning there is no guarantee that they are

AGU

F0 F1 F2 D0

E0 E1 E2 E3 E4 E5

D1 D2 D3 D4
Branch

mispredict

Branch
mispredict

Decode
/seq

Dec
queue
read/
write

Score
board

+
issue
logic

Final
decode

Decode

Pending and
replay queue

(a) Instruction fetch pipeline (b) Instruction decode pipeline

(c) Instruction execute and load/store pipeline

Early
decode

Early
decode

Shift ALU/
multiply
pipe 0MUL

1

ALU

MUL
2

RAM
+

TLB

BTB
GHB
RS

12-
entry
fetch
queue

Replay

Replay

SAT

MUL
3

BP

ACC

WB

WB

Shift

INST 0

INST 1
ALU
pipe 1ALU SAT BP WB

AGU
Load/store
pipe 0 or 1WB

A
rc

hi
te

ct
ur

al
 r

eg
is

te
r

fi
le

RAM
+

TLB

L2
update

Format
forward

Figure 16.12 ARM Cortex-A8 Integer Pipeline

598 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

 executed. A branch or exceptional instruction in the code stream can cause a pipe-
line flush, discarding the currently fetched instructions. The instruction fetch unit
can fetch up to four instructions per cycle, and goes through the following stages:

F0 The address generation unit (AGU) generates a new virtual address.
Normally, this address is the next address sequentially from the preceding
fetch address. The address can also be a branch target address provided by a
branch prediction for a previous instruction. F0 is not counted as part of the
13-stage pipeline, because ARM processors have traditionally defined instruc-
tion cache access as the first stage.

F1 The calculated address is used to fetch instructions from the L1 instruction
cache. In parallel, the fetch address is used to access the branch prediction arrays
to determine if the next fetch address should be based on a branch prediction.

F3 Instruction data are placed into the instruction queue. If an instruction
results in branch prediction, the new target address is sent to the address gen-
eration unit.

To minimize the branch penalties typically associated with a deeper pipeline,
the Cortex-A8 processor implements a two-level global history branch predictor,
consisting of the branch target buffer (BTB) and the global history buffer (GHB).
These data structures are accessed in parallel with instruction fetches. The BTB
indicates whether or not the current fetch address will return a branch instruction
and its branch target address. It contains 512 entries. On a hit in the BTB a branch
is predicted and the GHB is accessed. The GHB consists of 4096 2-bit counters that
encode the strength and direction information of branches. The GHB is indexed
by 10-bit history of the direction of the last ten branches encountered and 4 bits of
the PC. In addition to the dynamic branch predictor, a return stack is used to pre-
dict subroutine return addresses. The return stack has eight 32-bit entries that store
the link register value in r14 and the ARM or Thumb state of the calling function.
When a return-type instruction is predicted taken, the return stack provides the last
pushed address and state.

The instruction fetch unit can fetch and queue up to 12 instructions. It issues
instructions to the decode unit two at a time. The queue enables the instruction
fetch unit to prefetch ahead of the rest of the integer pipeline and build up a backlog
of instructions ready for decoding.

Instruction Decode Unit

The instruction decode unit decodes and sequences all ARM and Thumb instruc-
tions. It has a dual pipeline structure, called pipe0 and pipe1, so that two instructions
can progress through the unit at a time. When two instructions are issued from
the instruction decode pipeline, pipe0 will always contain the older instruction in
program order. This means that if the instruction in pipe0 cannot issue, then the
instruction in pipe1 will not issue. All issued instructions progress in order down
the execution pipeline with results written back into the register file at the end of
the execution pipeline. This in-order instruction issue and retire prevents WAR
hazards and keeps tracking of WAW hazards and recovery from flush conditions

16.4 / ARM CORTEX-A8 599

straightforward. Thus, the main concern of the instruction decode pipeline is the
prevention of RAW hazards.

Each instruction goes through five stages of processing.

D0 Thumb instructions are decompressed into 32-bit ARM instructions.
A preliminary decode function is performed.

D1 The instruction decode function is completed.

D2 This stage writes instructions into and read instructions from the pending/
replay queue structure.

D3 This stage contains the instruction scheduling logic. A scoreboard predicts
register availability using static scheduling techniques.3 Hazard checking is
also done at this stage.

D4 Performs the final decode for all the control signals required by the inte-
ger execute and load/store units.

In the first two stages, the instruction type, the source and destination oper-
ands, and resource requirements for the instruction are determined. A few less
commonly used instructions are referred to as multicycle instructions. The D1 stage
breaks these instructions down into multiple instruction opcodes that are sequenced
individually through the execution pipeline.

The pending queue serves two purposes. First, it prevents a stall signal from
D3 from rippling any further up the pipeline. Second, by buffering instructions,
there should always be two instructions available for the dual pipeline. In the case
where only one instruction is issued, the pending queue enables two instructions to
proceed down the pipeline together, even if they were originally sent from the fetch
unit in different cycles.

The replay operation is designed to deal with the effects of the memory system
on instruction timing. Instructions are statically scheduled in the D3 stage based
on a prediction of when the source operand will be available. Any stall from the
memory system can result in the minimum of an 8-cycle delay. This 8-cycle delay
minimum is balanced with the minimum number of possible cycles to receive data
from the L2 cache in the case of an L1 load miss. Table 16.2 gives the most common
cases that can result in an instruction replay because of a memory system stall.

To deal with these stalls, a recovery mechanism is used to flush all subsequent
instructions in the execution pipeline and reissue (replay) them. To support replay,
instructions are copied into the replay queue before they are issued and removed
as they write back their results and retire. If a replay signal is issued instructions are
retrieved from the replay queue and reenter the pipeline.

The decode unit issues two instructions in parallel to the execution unit, unless it
encounters an issue restriction. Table 16.3 shows the most common restriction cases.

Integer Execute Unit

The instruction execute unit consists of two symmetric arithmetic logic unit (ALU)
pipelines, an address generator for load and store instructions, and the multiply

3See Appendix I for a discussion of scoreboarding.

600 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

pipeline. The execute pipelines also perform register write back. The instruction
execute unit:

 • Executes all integer ALU and multiply operations, including flag generation
 • Generates the virtual addresses for loads and stores and the base write-back

value, when required

 • Supplies formatted data for stores and forwards data and flags

 • Processes branches and other changes of instruction stream and evaluates in-
struction condition codes

For ALU instructions, either pipeline can be used, consisting of the following
stages:

E0 Access register file. Up to six registers can be read from the register file for
two instructions.

E1 The barrel shifter (see Figure 14.25) performs its function, if needed.

E2 The ALU unit (see Figure 14.25) performs its function.

E3 If needed, this stage completes saturation arithmetic used by some ARM
data processing instructions.

Table 16.2 Cortex-A8 Memory System Effects on Instruction Timings

Replay Event Delay Description

Load data miss 8 cycles 1. A load instruction misses in the L1 data cache.

 2. A request is then made to the L2 data cache.

 3. If a miss also occurs in the L2 data cache, then a second
replay occurs. The number of stall cycles depends on
the external system memory timing. The minimum time
required to receive the critical word for an L2 cache
miss is approximately 25 cycles, but can be much longer
because of L3 memory latencies.

Data TLB miss 24 cycles 1. A table walk because of a miss in the L1 TLB causes a
24-cycle delay, assuming the translation table entries are
found in the L2 cache.

 2. If the translation table entries are not present in the
L2 cache, the number of stall cycles depends on the
external system memory timing.

Store buffer full 8 cycles plus latency
to drain fill buffer

 1. A store instruction miss does not result in any stalls
unless the store buffer is full.

 2. In the case of a full store buffer, the delay is at least
eight cycles. The delay can be more if it takes longer to
drain some entries from the store buffer.

Unaligned load or
store request

8 cycles 1. If a load instruction address is unaligned and the full
access is not contained within a 128-bit boundary, there
is a 8-cycle penalty.

 2. If a store instruction address is unaligned and the full
access is not contained within a 64-bit boundary, there is
a 8-cycle penalty.

16.4 / ARM CORTEX-A8 601

E4 Any change in control flow, including branch misprediction, exceptions,
and memory system replays are prioritized and processed.

E5 Results of ARM instructions are written back into the register file.

Instructions that invoke the multiply unit (see Figure 14.25) are routed to
pipe0; the multiply operation is performed in stages E1 through E3, and the multi-
ply accumulate operation in stage E4.

The load/store pipeline runs parallel to the integer pipeline. The stages are as
follows:

E1 The memory address is generated from the base and index register.

E2 The address is applied to the cache arrays.

E3 In the case of a load, data are returned and formatted for forwarding to the
ALU or MUL unit. In the case of a store, the data are formatted and ready to
be written into the cache.

E4 Performs updates to the L2 cache, if required.

E5 Results of ARM instructions are written back into the register file.

Table 16.3 Cortex-A8 Dual-Issue Restrictions

Restriction
Type Description Example Cycle Restriction

Load/store
resource
hazard

There is only one LS pipeline.
Only one LS instruction can
be issued per cycle. It can be
in pipeline 0 or pipeline 1

LDR r5, [r6]
STR r7, [r8]
MOV r9, r10

1
2
2

Wait for LS unit
Dual issue possible

Multiply
resource
hazard

There is only one multiply
pipeline, and it is only avail-
able in pipeline 0.

ADD r1, r2, r3
MUL r4, r5, r6
MUL r7, r8, r9

1
2
3

Wait for pipeline 0
Wait for multiply unit

Branch
resource
hazard

There can be only one branch
per cycle. It can be in pipeline
0 or pipeline 1. A branch is
any instruction that changes
the PC.

BX r1
BEQ 0x1000
ADD r1, r2, r3

1
2
2

Wait for branch Dual issue
possible

Data output
hazard

Instructions with the same
destination cannot be issued
in the same cycle. This can
happen with conditional code.

MOVEQ r1, r2
MOVNE r1, r3
LDR r5, [r6]

1
2
2

Wait because of output
dependency
Dual issue possible

Data source
hazard

Instructions cannot be issued
if their data is not available.
See the scheduling tables
for source requirements and
stages results.

ADD r1, r2, r3
ADD r4, r1, r6
LDR r7, [r4]

1
2
4

Wait for r1
Wait two cycles for r4

Multi-cycle
instructions

Multi-cycle instructions must
issue in pipeline 0 and can
only dual issue in their last
iteration.

MOV r1, r2
LDM r3, {r4-r7}
LDM (cycle 2)
LDM (cycle 3)

ADD r8, r9, r10

1
2
3
4

4

Wait for pipeline 0, transfer r4
Transfer r5, r6
Transfer r7
Dual issue possible on last
 transfer

602 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

Table 16.4 Cortex-A8 Example Dual Issue Instruction Sequence for Integer Pipeline

Cycle Program Counter Instruction Timing Description

1 0x00000ed0 BX r14 Dual issue pipeline 0

1 0x00000ee4 CMP r0,#0 Dual issue in pipeline 1

2 0x00000ee8 MOV r3,#3 Dual issue pipeline 0

2 0x00000eec MOV r0,#0 Dual issue in pipeline 1

3 0x00000ef0 STREQ r3,[r1,#0] Dual issue in pipeline 0, r3 not needed
until E3

3 0x00000ef4 CMP r2,#4 Dual issue in pipeline 1

4 0x00000ef8 LDRLS pc,[pc,r2,LSL #2] Single issue pipeline 0, +1 cycle for load
to pc, no extra cycle for shift since LSL #2

5 0x00000f2c MOV r0,#1 Dual issue with 2nd iteration of load in
pipeline 1

6 0x00000f30 B {pc} + 8 #0xf38 dual issue pipeline 0

6 0x00000f38 STR r0,[r1,#0] Dual issue pipeline 1

7 0x00000f3c: LDR pc,[r13],#4 Single issue pipeline 0, +1 cycle for load
to pc

8 0x0000017c ADD r2,r4,#0xc Dual issue with 2nd iteration of load in
pipeline 1

9 0x00000180 LDR r0,[r6,#4] Dual issue pipeline 0

9 0x00000184 MOV r1,#0xa Dual issue pipeline 1

12 0x00000188 LDR r0,[r0,#0] Single issue pipeline 0: r0 produced in E3,
required in E1, so +2 cycle stall

13 0x0000018c STR r0,[r4,#0] Single issue pipeline 0 due to LS resource
hazard, no extra delay for r0 since pro-
duced in E3 and consumed in E3

14 0x00000190 LDR r0,[r4,#0xc] Single issue pipeline 0 due to LS resource
hazard

15 0x00000194 LDMFD r13!,{r4-r6,r14} Load multiple: loads r4 in 1st cycle, r5
and r6 in 2nd cycle, r14 in 3rd cycle, 3
cycles total

17 0x00000198 B {pc}+0xda8 #0xf40 dual issue in pipeline 1 with 3rd
cycle of LDM

18 0x00000f40 ADD r0,r0,#2 ARM Single issue in pipeline 0

19 0x00000f44 ADD r0,r1,r0 ARM Single issue in pipeline 0, no dual issue
due to hazard on r0 produced in E2 and
required in E2

Table 16.4 shows a sample code segment and indicates how the processor
might schedule it.

SIMD and Floating-Point Pipeline

All SIMD and floating-point instructions pass through the integer pipeline and are
processed in a separate 10-stage pipeline (Figure 16.13). This unit, referred to as the

16.5 / RECOMMENDED READING 603

NEON unit, handles packed SIMD instructions, and provides two types of floating-
point support. If implemented, a vector floating-point (VFP) coprocessor performs
floating-point operations in compliance with IEEE 754. If the coprocessor is not
present, then separate multiply and add pipelines implement the floating-point
operations

 16.5 RECOMMENDED READING

Two good book-length treatments of superscalar design are [SHEN05] and [OMON99].
Worthwhile survey articles on the subject are [SMIT95] and [SIMA97]. [JOUP89a] exam-
ines instruction-level parallelism, looks at various techniques for maximizing parallelism,
and compares superscalar and superpipelined approaches using simulation. Recent papers
that provide good coverage of superscalar design issues include [SIMA04], [PATT01], and
[MOSH01].

[POPE91] provides a detailed look at a proposed superscalar machine. It also provides
an excellent tutorial on the design issues related to out-of-order instruction policies. Another
look at a proposed system is found in [KUGA91]; this article raises and considers most of the
important design issues for superscalar implementation. [LEE91] examines software tech-
niques that can be used to enhance superscalar performance. [WALL91] is an interesting
study of the extent to which instruction-level parallelism can be exploited in a superscalar
processor.

Integer
ALU,
MAC,

SHIFT
pipes

Non-IEEE
FMUL pipe

Non-IEEE
FADD pipe

Load/store
and

permute

Load and store
with alignment

Instruction decode

NEON register writeback

IEEE
single/double

precision VFP

WB

WB

WB

Shift 3

ABS

Shift 2

ALU

Shift 1

FMT

WB

WB

FMUL
2

FADD
2

FMUL
1

FMUL
4

FMUL
3

FADD
1

FADD
4

FADD
3

FDUP

FFMT

WB
Store
Align

PERM
2

8-entry
store
queue

PERM
1

Load
Align

Mux
with
NRF

Mux L1/
MCR

WBVFP

ACC
2

ACC
1

MUL
2

MUL
1

DUP

REg
read

+
M3

fwding
muxes

Score-
board

+
Issue
logic

Dec
queue

+
Rd/Wr
check

16-entry
Inst

queue
+

Inst
Dec

8-Entry
store
queue

Figure 16.13 ARM Cortex-A8 NEON and Floating-Point Pipeline

604 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

Volume I of [INTE04a] provides general description of the Pentium 4 pipeline; more
detail is provided in [INTE01a] and [INTE01b]. Another detailed treatment is [FOG08b].

[JOHN08] and [ARM08a] provide thorough coverage of the ARM Cortex-A8 pipe-
line. [RICH07] is a good overview.

ARM08a ARM Limited. Cortex-A8 Technical Reference Manual. ARM DDI 0344E,
2008. www.arm.com

FOG08b Fog, A. The Microarchitecture of Intel and AMD CPUs. Copenhagen
 University College of Engineering, 2008. http://www.agner.org/optimize/

HINT01 Hinton, G., et al. “The Microarchitecture of the Pentium 4 Processor.” Intel
Technology Journal, Q1 2001. http://developer.intel.com/technology/itj/

INTE01a Intel Corp. Intel Pentium 4 Processor Optimization Reference Manual. Docu-
ment 248966-04 2001. http://developer.intel.com/design/Pentium4/documentation.
htm

INTE01b Intel Corp. Desktop Performance and Optimization for Intel Pentium 4
Processor. Document 248966-04 2001. http://developer.intel.com/design/
Pentium4/documentation.htm

INTE04a Intel Corp. IA-32 Intel Architecture Software Developer’s Manual (4 vol-
umes). Document 253665 through 253668. 2004. http://developer.intel.com/design/
Pentium4/documentation.htm

JOHN08 John, E., and Rubio, J. Unique Chips and Systems. Boca Raton, FL: CRC
Press, 2008.

JOUP89a Jouppi, N., and Wall, D. “Available Instruction-Level Parallelism for
Superscalar and Superpipelined Machines.” Proceedings, Third International
Conference on Architectural Support for Programming Languages and Operating
Systems, April 1989.

KUGA91 Kuga, M.; Murakami, K.; and Tomita, S. “DSNS (Dynamically-hazard
resolved, Statically-code-scheduled, Nonuniform Superscalar): Yet Another
Superscalar Processor Architecture.” Computer Architecture News, June 1991.

LEE91 Lee, R.; Kwok, A.; and Briggs, F. “The Floating Point Performance of a Super-
scalar SPARC Processor.” Proceedings, Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, April 1991.

MOSH01 Moshovos, A., and Sohi, G. “Microarchitectural Innovations: Boosting
Microprocessor Performance Beyond Semiconductor Technology Scaling.”
Proceedings of the IEEE, November 2001.

OMON99 Omondi, A. The Microarchitecture of Pipelined and Superscalar Computers.
Boston: Kluwer, 1999.

PATT01 Patt, Y. “Requirements, Bottlenecks, and Good Fortune: Agents for Micro-
processor Evolution.” Proceedings of the IEEE, November 2001.

POPE91 Popescu, V., et al. “The Metaflow Architecture.” IEEE Micro, June 1991.
RICH07 Riches, S., et al. “A Fully Automated High Performance Implementation of

ARM Cortex-A8.” IQ Online, Vol. 6, No. 3, 2007. www.arm.com/iqonline
SHEN05 Shen, J., and Lipasti, M. Modern Processor Design: Fundamentals of Super-

scalar Processors. New York: McGraw-Hill, 2005.
SIMA97 Sima, D. “Superscalar Instruction Issue.” IEEE Micro, September/October 1997.
SIMA04 Sima, D. “Decisive Aspects in the Evolution of Microprocessors.” Proceed-

ings of the IEEE, December 2004.

www.arm.com
http://developer.intel.com/technology/itj/
http://www.agner.org/optimize/
http://developer.intel.com/design/Pentium4/documentation.htm
http://developer.intel.com/design/Pentium4/documentation.htm
http://developer.intel.com/design/Pentium4/documentation.htm
http://developer.intel.com/design/Pentium4/documentation.htm
www.arm.com/iqonline
http://developer.intel.com/design/Pentium4/documentation.htm
http://developer.intel.com/design/Pentium4/documentation.htm

16.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 605

 16.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

SMIT95 Smith, J., and Sohi, G. “The Microarchitecture of Superscalar Processors.”
Proceedings of the IEEE, December 1995.

WALL91 Wall, D. “Limits of Instruction-Level Parallelism.” Proceedings, Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems, April 1991.

antidependency
branch prediction
commit
flow dependency
in-order completion
in-order issue
instruction issue
instruction-level parallelism
instruction window

machine parallelism
micro-operations
micro-ops
out-of-order

completion
out-of-order issue
output dependency
procedural dependency
read-write dependency

register renaming
resource conflict
retire
superpipelined
superscalar
true data dependency
write-read dependency
write-write

dependency

Review Questions
 16.1 What is the essential characteristic of the superscalar approach to processor design?
 16.2 What is the difference between the superscalar and superpipelined approaches?
 16.3 What is instruction-level parallelism?
 16.4 Briefly define the following terms:

• True data dependency
• Procedural dependency
• Resource conflicts
• Output dependency
• Antidependency

 16.5 What is the distinction between instruction-level parallelism and machine parallelism?
 16.6 List and briefly define three types of superscalar instruction issue policies.
 16.7 What is the purpose of an instruction window?
 16.8 What is register renaming and what is its purpose?
 16.9 What are the key elements of a superscalar processor organization?

Problems
 16.1 When out-of-order completion is used in a superscalar processor, resumption of ex-

ecution after interrupt processing is complicated, because the exceptional condition
may have been detected as an instruction that produced its result out of order. The
program cannot be restarted at the instruction following the exceptional instruction,
because subsequent instructions have already completed, and doing so would cause
these instructions to be executed twice. Suggest a mechanism or mechanisms for deal-
ing with this situation.

606 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

 16.2 Consider the following sequence of instructions, where the syntax consists of an
opcode followed by the destination register followed by one or two source registers:

 0 ADD R3, R1, R2
 1 LOAD R6, [R3]
 2 AND R7, R5, 3
 3 ADD R1, R6, R7
 4 SRL R7, R0, 8
 5 OR R2, R4, R7
 6 SUB R5, R3, R4
 7 ADD R0, R1, 10
 8 LOAD R6, [R5]
 9 SUB R2, R1, R6
10 AND R3, R7, 15

Assume the use of a four-stage pipeline: fetch, decode/issue, execute, write back. As-
sume that all pipeline stages take one clock cycle except for the execute stage. For
simple integer arithmetic and logical instructions, the execute stage takes one cycle,
but for a LOAD from memory, five cycles are consumed in the execute stage.

If we have a simple scalar pipeline but allow out-of-order execution, we can con-
struct the following table for the execution of the first seven instructions:

Instruction Fetch Decode Execute Write Back

0 0 1 2 3

1 1 2 4 9

2 2 3 5 6

3 3 4 10 11

4 4 5 6 7

5 5 6 8 10

6 6 7 9 12

The entries under the four pipeline stages indicate the clock cycle at which each instruc-
tion begins each phase. In this program, the second ADD instruction (instruction 3)
 depends on the LOAD instruction (instruction 1) for one of its operands, r6. Because the
LOAD instruction takes five clock cycles, and the issue logic encounters the dependent
ADD instruction after two clocks, the issue logic must delay the ADD instruction for
three clock cycles. With an out-of-order capability, the processor can stall instruction
3 at clock cycle 4, and then move on to issue the following three independent instruc-
tions, which enter execution at clocks 6, 8, and 9. The LOAD finishes execution at clock
9, and so the dependent ADD can be launched into execution on clock 10.
a. Complete the preceding table.
b. Redo the table assuming no out-of-order capability. What is the savings using the

capability?
c. Redo the table assuming a superscalar implementation that can handle two

instructions at a time at each stage.
 16.3 Consider the following assembly language program:

I1: Move R3, R7 /R3 d (R7)/
I2: Load R8, (R3) /R8 d Memory (R3)/
I3: Add R3, R3, 4 /R3 d (R3) + 4/
I4: Load R9, (R3) /R9 d Memory (R3)/
I5: BLE R8, R9, L3 /Branch if (R9) > (R8)/

This program includes WAW, RAW, and WAR dependencies. Show these.

16.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 607

 16.4 a. Identify the RAW, WAR, and WAW dependencies in the following instruction
sequence:

I1: R1 = 100
I2: R1 = R2 + R4
I3: R2 = r4 – 25
I4: R4 = R1 + R3
I5: R1 = R1 + 30

b. Rename the registers from part (a) to prevent dependency problems. Identify ref-
erences to initial register values using the subscript “a” to the register reference.

 16.5 Consider the “in-order-issue/in-order-completion” execution sequence shown in
Figure 16.14.
a. Identify the most likely reason why I2 could not enter the execute stage until the

fourth cycle. Will “in-order issue/out-of-order completion” or “out-of-order issue/
out-of-order completion” fix this? If so, which?

b. Identify the reason why I6 could not enter the write stage until the nineth cycle.
Will “in-order issue/out-of-order completion” or “out-of-order issue/out-of-order
completion” fix this? If so, which?

 16.6 Figure 16.15 shows an example of a superscalar processor organization. The proces-
sor can issue two instructions per cycle if there is no resource conflict and no data
dependence problem. There are essentially two pipelines, with four processing stages
(fetch, decode, execute, and store). Each pipeline has its own fetch decode and store
unit. Four functional units (multiplier, adder, logic unit, and load unit) are avail-
able for use in the execute stage and are shared by the two pipelines on a dynamic
basis. The two store units can be dynamically used by the two pipelines, depending
on availability at a particular cycle. There is a lookahead window with its own fetch
and decoding logic. This window is used for instruction lookahead for out-of-order
instruction issue.

Consider the following program to be executed on this processor:

I1: Load R1, A /R1 d Memory (A)/
I2: Add R2, R1 /R2 d (R2) + R(1)/
I3: Add R3, R4 /R3 d (R3) + R(4)/
I4: Mul R4, R5 /R4 d (R4) + R(5)/
I5: Comp R6 /R6 d (R6)/
I6: Mul R6, R7 /R6 d (R6) × R(7)/

a. What dependencies exist in the program?
b. Show the pipeline activity for this program on the processor of Figure 16.15 using

in-order issue with in-order completion policies and using a presentation similar
to Figure 16.2.

Decode

I1 I2

I2

I2

I4I3

I6I5

I5 I6

Write Cycle

1

2

3

4

5

6

7

8

9

I2I1

I5

I3 I4

I6

Execute

I1

I1

I3

I3

I2

I4

I5

I5 I6

Figure 16.14 An In-Order Issue, In-Order-Completion Execution
Sequence

608 CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

c. Repeat for in-order issue with out-of-order completion.
d. Repeat for out-of-order issue with out-of-order completion.

 16.7 Figure 16.16 is from a paper on superscalar design. Explain the three parts of the fig-
ure, and define w, x, y, and z.

 16.8 Yeh’s dynamic branch prediction algorithm, used on the Pentium 4, is a two-level
branch prediction algorithm. The first level is the history of the last n branches. The
second level is the branch behavior of the last s occurrences of that unique pattern
of the last n branches. For each conditional branch instruction in a program, there is
an entry in a Branch History Table (BHT). Each entry consists of n bits correspond-
ing to the last n executions of the branch instruction, with a 1 if the branch was taken

f1

Fetch
stage

Decode
stage

Execute stage Store
(write
back)

d1

m1

a1

Adder

Multiplier

Logic

Load

m2 m3

a2

e1

e2

f2 d2

f3

Lookahead window

d3

s1

s2

Figure 16.15 A Dual-Pipeline Superscalar Processor

From w

To x

To y

To z

From w

(a)

(b)

To x, y, z

From w

(c)

To z

To y

To x

Figure 16.16 Figure for Problem 16.7

16.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 609

and a 0 if the branch was not. Each BHT entry indexes into a Pattern Table (PT) that
has 2n entries, one for each possible pattern of n bits. Each PT entry consists of s bits
that are used in branch prediction, as was described in Chapter 14 (e.g., Figure 14.19).
When a conditional branch is encountered during instruction fetch and decode, the
address of the instruction is used to retrieve the appropriate BHT entry, which shows
the recent history of the instruction. Then, the BHT entry is used to retrieve the
appropriate PT entry for branch prediction. After the branch is executed, the BHT
entry is updated, and then the appropriate PT entry is updated.
a. In testing the performance of this scheme, Yeh tried five different predic-

tion schemes, illustrated in Figure 16.17. Identify which three of these schemes
 correspond to those shown in Figures 14.19 and 14.28. Describe the remaining two
schemes.

b. With this algorithm, the prediction is not based on just the recent history of this par-
ticular branch instruction. Rather, it is based on the recent history of all patterns of
branches that match the n-bit pattern in the BHT entry for this instruction. Suggest
a rationale for such a strategy.

(a)

1/T
T

T

N

N

0/N

(b)

3/T
T

T

N

N

1/T

2/T

T

T

N

N

0/N

(c)

3/T
T

T

1/N

2/T

T
N

N

N

0/N

T

N

(d)

3/T
T

T

1/N

T

2/T

N

N

0/N

(e)

3/T
T

1/N

2/T

T
N

N

N

0/N

T

N

T

N

T

N

Figure 16.17 Figure for Problem 16.8

This page intentionally left blank

611

PARALLEL PROCESSING
17.1 Multiple Processor Organizations

Types of Parallel Processor Systems
Parallel Organizations

17.2 Symmetric Multiprocessors
Organization
Multiprocessor Operating System Design Considerations

17.3 Cache Coherence and the MESI Protocol
Software Solutions
Hardware Solutions
The MESI Protocol

17.4 Multithreading and Chip Multiprocessors
Implicit and Explicit Multithreading
Approaches to Explicit Multithreading
Example Systems

17.5 Clusters
Cluster Configurations
Operating System Design Issues
Cluster Computer Architecture
Blade Servers
Clusters Compared to SMP

17.6 Nonuniform Memory Access
Motivation
Organization
NUMA Pros and Cons

17.7 Vector Computation
Approaches to Vector Computation
IBM 3090 Vector Facility

17.8 Recommended Reading

17.9 Key Terms, Review Questions, and Problems

CHAPTER

PART FIVE PARALLEL
ORGANIZATION

612 CHAPTER 17 / PARALLEL PROCESSING

Traditionally, the computer has been viewed as a sequential machine. Most computer
programming languages require the programmer to specify algorithms as sequences
of instructions. Processors execute programs by executing machine instructions in
a sequence and one at a time. Each instruction is executed in a sequence of opera-
tions (fetch instruction, fetch operands, perform operation, store results).

This view of the computer has never been entirely true. At the micro-operation
level, multiple control signals are generated at the same time. Instruction pipelining,
at least to the extent of overlapping fetch and execute operations, has been around
for a long time. Both of these are examples of performing functions in parallel. This
approach is taken further with superscalar organization, which exploits instruction-
level parallelism. With a superscalar machine, there are multiple execution units
within a single processor, and these may execute multiple instructions from the
same program in parallel.

As computer technology has evolved, and as the cost of computer hardware
has dropped, computer designers have sought more and more opportunities for par-
allelism, usually to enhance performance and, in some cases, to increase availability.
After an overview, this chapter looks at some of the most prominent approaches
to parallel organization. First, we examine symmetric multiprocessors (SMPs), one
of the earliest and still the most common example of parallel organization. In an
SMP organization, multiple processors share a common memory. This organization
raises the issue of cache coherence, to which a separate section is devoted. Next,
the chapter examines multithreaded processors and chip multiprocessors. Then
we describe clusters, which consist of multiple independent computers organized
in a cooperative fashion. Clusters have become increasingly common to support
workloads that are beyond the capacity of a single SMP. Another approach to the
use of multiple processors that we examine is that of nonuniform memory access
(NUMA) machines. The NUMA approach is relatively new and not yet proven in
the marketplace, but is often considered as an alternative to the SMP or cluster
approach. Finally, this chapter looks at hardware organizational approaches to vec-
tor computation. These approaches optimize the ALU for processing vectors or
arrays of floating-point numbers. They are common on the class of systems known
as supercomputers.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Summarize the types of parallel processor organizations.
� Present an overview of design features of symmetric multiprocessors.
� Understand the issue of cache coherence in a multiple processor system.
� Explain the key features of the MESI protocol.
� Explain the difference between implicit and explicit multithreading.
� Summarize key design issues for clusters.
� Explain the concept of nonuniform memory access.
� Present an overview of vector computation.

17.1 / MULTIPLE PROCESSOR ORGANIZATIONS 613

 17.1 MULTIPLE PROCESSOR ORGANIZATIONS

Types of Parallel Processor Systems

A taxonomy first introduced by Flynn [FLYN72] is still the most common way of
categorizing systems with parallel processing capability. Flynn proposed the follow-
ing categories of computer systems:

 • Single instruction, single data (SISD) stream: A single processor executes
a single instruction stream to operate on data stored in a single memory.
Uniprocessors fall into this category.

 • Single instruction, multiple data (SIMD) stream: A single machine instruc-
tion controls the simultaneous execution of a number of processing elements
on a lockstep basis. Each processing element has an associated data memory,
so that instructions are executed on different sets of data by different proces-
sors. Vector and array processors fall into this category, and are discussed in
Section 18.7.

 • Multiple instruction, single data (MISD) stream: A sequence of data is trans-
mitted to a set of processors, each of which executes a different instruction
sequence. This structure is not commercially implemented.

 • Multiple instruction, multiple data (MIMD) stream: A set of processors si-
multaneously execute different instruction sequences on different data sets.
SMPs, clusters, and NUMA systems fit into this category.

With the MIMD organization, the processors are general purpose; each is able to
process all of the instructions necessary to perform the appropriate data transforma-
tion. MIMDs can be further subdivided by the means in which the processors commu-
nicate (Figure 17.1). If the processors share a common memory, then each processor
accesses programs and data stored in the shared memory, and processors communi-
cate with each other via that memory. The most common form of such system is known
as a symmetric multiprocessor (SMP), which we examine in Section 17.2. In an SMP,
multiple processors share a single memory or pool of memory by means of a shared
bus or other interconnection mechanism; a distinguishing feature is that the memory
access time to any region of memory is approximately the same for each processor.
A more recent development is the nonuniform memory access (NUMA) organiza-
tion, which is described in Section 17.5. As the name suggests, the memory access time
to different regions of memory may differ for a NUMA processor.

A collection of independent uniprocessors or SMPs may be interconnected to
form a cluster. Communication among the computers is either via fixed paths or via
some network facility.

Parallel Organizations

Figure 17.2 illustrates the general organization of the taxonomy of Figure 17.1.
Figure 17.2a shows the structure of an SISD. There is some sort of control unit (CU)
that provides an instruction stream (IS) to a processing unit (PU). The processing
unit operates on a single data stream (DS) from a memory unit (MU). With an

614

LMn
DS

LM1

LM2

DS

DS

IS

IS

IS

CU

PUn LMn
DS

PU1 LM1

PU2 LM2

DS

DS

•
•
•

IS

(b) SIMD (with distributed memory)

CU
IS

(a) SISD

PU MU
DS

CU1

CU2

CUn PUn

IS

IS

IS DS

(c) MIMD (with shared memory)

PU1

PU2

DS

DS

•
•
• CU1

CU2

CUn PUn

PU1

PU2

•
•
• In

te
rc

on
ne

ct
io

n
ne

tw
or

k

Sh
ar

ed
m

em
or

y

(d) MIMD (with distributed memory)

CU � Control unit
IS � Instruction stream
PU � Processing unit
DS � Data stream
MU � Memory unit
LM � Local memory

SISD � Single instruction,
 � single data stream
SIMD � Single instruction,
 multiple data stream
MIMD � Multiple instruction,
 multiple data stream

Figure 17.2 Alternative Computer Organizations

Processor organizations

Single instruction,
single data stream

(SISD)

Single instruction,
multiple data stream

(SIMD)

Multiple instruction,
single data stream

(MISD)

Multiple instruction,
multiple data stream

(MIMD)

Vector
processor

Clusters

Uniprocessor

Array
processor

Symmetric
multiprocessor

(SMP)

Nonuniform
memory
access

(NUMA)

Shared memory
(tightly coupled)

Distributed memory
(loosely coupled)

Figure 17.1 A Taxonomy of Parallel Processor Architectures

17.2 / SYMMETRIC MULTIPROCESSORS 615

SIMD, there is still a single control unit, now feeding a single instruction stream to
multiple PUs. Each PU may have its own dedicated memory (illustrated in Figure
17.2b), or there may be a shared memory. Finally, with the MIMD, there are mul-
tiple control units, each feeding a separate instruction stream to its own PU. The
MIMD may be a shared-memory multiprocessor (Figure 17.2c) or a distributed-
memory multicomputer (Figure 17.2d).

The design issues relating to SMPs, clusters, and NUMAs are complex, involv-
ing issues relating to physical organization, interconnection structures, interproces-
sor communication, operating system design, and application software techniques.
Our concern here is primarily with organization, although we touch briefly on oper-
ating system design issues.

 17.2 SYMMETRIC MULTIPROCESSORS

Until fairly recently, virtually all single-user personal computers and most worksta-
tions contained a single general-purpose microprocessor. As demands for perfor-
mance increase and as the cost of microprocessors continues to drop, vendors have
introduced systems with an SMP organization. The term SMP refers to a computer
hardware architecture and also to the operating system behavior that reflects that
architecture. An SMP can be defined as a standalone computer system with the fol-
lowing characteristics:

 1. There are two or more similar processors of comparable capability.

 2. These processors share the same main memory and I/O facilities and are inter-
connected by a bus or other internal connection scheme, such that memory
access time is approximately the same for each processor.

 3. All processors share access to I/O devices, either through the same channels
or through different channels that provide paths to the same device.

 4. All processors can perform the same functions (hence the term symmetric).

 5. The system is controlled by an integrated operating system that provides inter-
action between processors and their programs at the job, task, file, and data
element levels.

Points 1 to 4 should be self-explanatory. Point 5 illustrates one of the contrasts
with a loosely coupled multiprocessing system, such as a cluster. In the latter, the
physical unit of interaction is usually a message or complete file. In an SMP, indi-
vidual data elements can constitute the level of interaction, and there can be a high
degree of cooperation between processes.

The operating system of an SMP schedules processes or threads across all of
the processors. An SMP organization has a number of potential advantages over a
uniprocessor organization, including the following:

 • Performance: If the work to be done by a computer can be organized so that
some portions of the work can be done in parallel, then a system with multiple
processors will yield greater performance than one with a single processor of
the same type (Figure 17.3).

616 CHAPTER 17 / PARALLEL PROCESSING

 • Availability: In a symmetric multiprocessor, because all processors can
perform the same functions, the failure of a single processor does not
halt the machine. Instead, the system can continue to function at reduced
performance.

 • Incremental growth: A user can enhance the performance of a system by add-
ing an additional processor.

 • Scaling: Vendors can offer a range of products with different price and perform-
ance characteristics based on the number of processors configured in the system.

It is important to note that these are potential, rather than guaranteed, benefits.
The operating system must provide tools and functions to exploit the parallelism in
an SMP system.

An attractive feature of an SMP is that the existence of multiple processors is
transparent to the user. The operating system takes care of scheduling of threads or
processes on individual processors and of synchronization among processors.

Organization

Figure 17.4 depicts in general terms the organization of a multiprocessor system.
There are two or more processors. Each processor is self-contained, including a
control unit, ALU, registers, and, typically, one or more levels of cache. Each pro-
cessor has access to a shared main memory and the I/O devices through some form
of interconnection mechanism. The processors can communicate with each other
through memory (messages and status information left in common data areas). It
may also be possible for processors to exchange signals directly. The memory is

Process 1

Process 2

Process 3

(a) Interleaving (multiprogramming, one processor)

Process 1

Process 2

Process 3

(b) Interleaving and overlapping (multiprocessing, two processors)

Blocked Running

Time

Figure 17.3 Multiprogramming and Multiprocessing

17.2 / SYMMETRIC MULTIPROCESSORS 617

often organized so that multiple simultaneous accesses to separate blocks of mem-
ory are possible. In some configurations, each processor may also have its own pri-
vate main memory and I/O channels in addition to the shared resources.

The most common organization for personal computers, workstations, and
servers is the time-shared bus. The time-shared bus is the simplest mechanism for
constructing a multiprocessor system (Figure 17.5). The structure and interfaces are
basically the same as for a single-processor system that uses a bus interconnection.
The bus consists of control, address, and data lines. To facilitate DMA transfers
from I/O subsystems to processors, the following features are provided:

 • Addressing: It must be possible to distinguish modules on the bus to deter-
mine the source and destination of data.

 • Arbitration: Any I/O module can temporarily function as “master.” A mecha-
nism is provided to arbitrate competing requests for bus control, using some
sort of priority scheme.

 • Time-sharing: When one module is controlling the bus, other modules are
locked out and must, if necessary, suspend operation until bus access is achieved.

These uniprocessor features are directly usable in an SMP organization. In
this latter case, there are now multiple processors as well as multiple I/O processors
all attempting to gain access to one or more memory modules via the bus.

Processor

Main memory

• • •

•
 •

•

Interconnection
network

Processor Processor

I/O

I/O

I/O

Figure 17.4 Generic Block Diagram of a Tightly Coupled Multiprocessor

618 CHAPTER 17 / PARALLEL PROCESSING

The bus organization has several attractive features:

 • Simplicity: This is the simplest approach to multiprocessor organization. The
physical interface and the addressing, arbitration, and time-sharing logic of
each processor remain the same as in a single-processor system.

 • Flexibility: It is generally easy to expand the system by attaching more proces-
sors to the bus.

 • Reliability: The bus is essentially a passive medium, and the failure of any
 attached device should not cause failure of the whole system.

The main drawback to the bus organization is performance. All memory ref-
erences pass through the common bus. Thus, the bus cycle time limits the speed
of the system. To improve performance, it is desirable to equip each processor
with a cache memory. This should reduce the number of bus accesses dramatically.
Typically, workstation and PC SMPs have two levels of cache, with the L1 cache
internal (same chip as the processor) and the L2 cache either internal or external.
Some processors now employ a L3 cache as well.

The use of caches introduces some new design considerations. Because each
local cache contains an image of a portion of memory, if a word is altered in one

L1 cache

Processor

Main
memory I/O

subsystem

Shared bus

I/O
adapter

Processor Processor
• • •

L1 cache L1 cache

L2 cache L2 cache L2 cache

I/O
adapter

I/O
adapter

Figure 17.5 Symmetric Multiprocessor Organization

17.3 / CACHE COHERENCE AND THE MESI PROTOCOL 619

cache, it could conceivably invalidate a word in another cache. To prevent this, the
other processors must be alerted that an update has taken place. This problem is
known as the cache coherence problem and is typically addressed in hardware rather
than by the operating system. We address this issue in Section 17.4.

Multiprocessor Operating System Design Considerations

An SMP operating system manages processor and other computer resources so that
the user perceives a single operating system controlling system resources. In fact,
such a configuration should appear as a single-processor multiprogramming system.
In both the SMP and uniprocessor cases, multiple jobs or processes may be active at
one time, and it is the responsibility of the operating system to schedule their execu-
tion and to allocate resources. A user may construct applications that use multiple
processes or multiple threads within processes without regard to whether a single
processor or multiple processors will be available. Thus, a multiprocessor operating
system must provide all the functionality of a multiprogramming system plus addi-
tional features to accommodate multiple processors. Among the key design issues:

 • Simultaneous concurrent processes: OS routines need to be reentrant to allow
several processors to execute the same IS code simultaneously. With mul-
tiple processors executing the same or different parts of the OS, OS tables
and management structures must be managed properly to avoid deadlock or
 invalid operations.

 • Scheduling: Any processor may perform scheduling, so conflicts must be
avoided. The scheduler must assign ready processes to available processors.

 • Synchronization: With multiple active processes having potential access to
shared address spaces or shared I/O resources, care must be taken to provide
effective synchronization. Synchronization is a facility that enforces mutual
exclusion and event ordering.

 • Memory management: Memory management on a multiprocessor must
deal with all of the issues found on uniprocessor machines, as is discussed in
Chapter 8. In addition, the operating system needs to exploit the available
hardware parallelism, such as multiported memories, to achieve the best per-
formance. The paging mechanisms on different processors must be coordi-
nated to enforce consistency when several processors share a page or segment
and to decide on page replacement.

 • Reliability and fault tolerance: The operating system should provide graceful
degradation in the face of processor failure. The scheduler and other portions
of the operating system must recognize the loss of a processor and restructure
management tables accordingly.

 17.3 CACHE COHERENCE AND THE MESI PROTOCOL

In contemporary multiprocessor systems, it is customary to have one or two levels
of cache associated with each processor. This organization is essential to achieve
reasonable performance. It does, however, create a problem known as the cache

620 CHAPTER 17 / PARALLEL PROCESSING

 coherence problem. The essence of the problem is this: Multiple copies of the same
data can exist in different caches simultaneously, and if processors are allowed
to update their own copies freely, an inconsistent view of memory can result. In
Chapter 4 we defined two common write policies:

 • Write back: Write operations are usually made only to the cache. Main mem-
ory is only updated when the corresponding cache line is flushed from the
cache.

 • Write through: All write operations are made to main memory as well as to
the cache, ensuring that main memory is always valid.

It is clear that a write-back policy can result in inconsistency. If two caches
contain the same line, and the line is updated in one cache, the other cache will
unknowingly have an invalid value. Subsequent reads to that invalid line produce
invalid results. Even with the write-through policy, inconsistency can occur unless
other caches monitor the memory traffic or receive some direct notification of the
update.

In this section, we will briefly survey various approaches to the cache coher-
ence problem and then focus on the approach that is most widely used: the MESI
(modified/exclusive/shared/invalid) protocol. A version of this protocol is used on
both the Pentium 4 and PowerPC implementations.

For any cache coherence protocol, the objective is to let recently used local
variables get into the appropriate cache and stay there through numerous reads and
write, while using the protocol to maintain consistency of shared variables that might
be in multiple caches at the same time. Cache coherence approaches have generally
been divided into software and hardware approaches. Some implementations adopt
a strategy that involves both software and hardware elements. Nevertheless, the
classification into software and hardware approaches is still instructive and is com-
monly used in surveying cache coherence strategies.

Software Solutions

Software cache coherence schemes attempt to avoid the need for additional hard-
ware circuitry and logic by relying on the compiler and operating system to deal with
the problem. Software approaches are attractive because the overhead of detecting
potential problems is transferred from run time to compile time, and the design
complexity is transferred from hardware to software. On the other hand, compile-
time software approaches generally must make conservative decisions, leading to
inefficient cache utilization.

Compiler-based coherence mechanisms perform an analysis on the code to
determine which data items may become unsafe for caching, and they mark those
items accordingly. The operating system or hardware then prevents noncacheable
items from being cached.

The simplest approach is to prevent any shared data variables from being
cached. This is too conservative, because a shared data structure may be exclusively
used during some periods and may be effectively read-only during other periods. It
is only during periods when at least one process may update the variable and at least
one other process may access the variable that cache coherence is an issue.

17.3 / CACHE COHERENCE AND THE MESI PROTOCOL 621

More efficient approaches analyze the code to determine safe periods for
shared variables. The compiler then inserts instructions into the generated code
to enforce cache coherence during the critical periods. A number of techniques
have been developed for performing the analysis and for enforcing the results; see
[LILJ93] and [STEN90] for surveys.

Hardware Solutions

Hardware-based solutions are generally referred to as cache coherence protocols.
These solutions provide dynamic recognition at run time of potential inconsistency
conditions. Because the problem is only dealt with when it actually arises, there
is more effective use of caches, leading to improved performance over a software
approach. In addition, these approaches are transparent to the programmer and the
compiler, reducing the software development burden.

Hardware schemes differ in a number of particulars, including where the state
information about data lines is held, how that information is organized, where coher-
ence is enforced, and the enforcement mechanisms. In general, hardware schemes
can be divided into two categories: directory protocols and snoopy protocols.

DIRECTORY PROTOCOLS Directory protocols collect and maintain information
about where copies of lines reside. Typically, there is a centralized controller that is
part of the main memory controller, and a directory that is stored in main memory.
The directory contains global state information about the contents of the various
local caches. When an individual cache controller makes a request, the centralized
controller checks and issues necessary commands for data transfer between
memory and caches or between caches. It is also responsible for keeping the state
information up to date; therefore, every local action that can affect the global state
of a line must be reported to the central controller.

Typically, the controller maintains information about which processors have
a copy of which lines. Before a processor can write to a local copy of a line, it
must request exclusive access to the line from the controller. Before granting this
exclusive access, the controller sends a message to all processors with a cached
copy of this line, forcing each processor to invalidate its copy. After receiving
acknowledgments back from each such processor, the controller grants exclusive
access to the requesting processor. When another processor tries to read a line
that is exclusively granted to another processor, it will send a miss notification
to the controller. The controller then issues a command to the processor hold-
ing that line that requires the processor to do a write back to main memory. The
line may now be shared for reading by the original processor and the requesting
processor.

Directory schemes suffer from the drawbacks of a central bottleneck and the
overhead of communication between the various cache controllers and the central
controller. However, they are effective in large-scale systems that involve multiple
buses or some other complex interconnection scheme.

SNOOPY PROTOCOLS Snoopy protocols distribute the responsibility for
maintaining cache coherence among all of the cache controllers in a multiprocessor.
A cache must recognize when a line that it holds is shared with other caches.

622 CHAPTER 17 / PARALLEL PROCESSING

When an update action is performed on a shared cache line, it must be announced
to all other caches by a broadcast mechanism. Each cache controller is able to
“snoop” on the network to observe these broadcasted notifications, and react
accordingly.

Snoopy protocols are ideally suited to a bus-based multiprocessor, because
the shared bus provides a simple means for broadcasting and snooping. However,
because one of the objectives of the use of local caches is to avoid bus accesses, care
must be taken that the increased bus traffic required for broadcasting and snooping
does not cancel out the gains from the use of local caches.

Two basic approaches to the snoopy protocol have been explored: write inval-
idate and write update (or write broadcast). With a write-invalidate protocol, there
can be multiple readers but only one writer at a time. Initially, a line may be shared
among several caches for reading purposes. When one of the caches wants to per-
form a write to the line, it first issues a notice that invalidates that line in the other
caches, making the line exclusive to the writing cache. Once the line is exclusive, the
owning processor can make cheap local writes until some other processor requires
the same line.

With a write-update protocol, there can be multiple writers as well as multiple
readers. When a processor wishes to update a shared line, the word to be updated is
distributed to all others, and caches containing that line can update it.

Neither of these two approaches is superior to the other under all circum-
stances. Performance depends on the number of local caches and the pattern of
memory reads and writes. Some systems implement adaptive protocols that employ
both write-invalidate and write-update mechanisms.

The write-invalidate approach is the most widely used in commercial multi-
processor systems, such as the Pentium 4 and PowerPC. It marks the state of every
cache line (using two extra bits in the cache tag) as modified, exclusive, shared, or
invalid. For this reason, the write-invalidate protocol is called MESI. In the remain-
der of this section, we will look at its use among local caches across a multiproces-
sor. For simplicity in the presentation, we do not examine the mechanisms involved
in coordinating among both level 1 and level 2 locally as well as at the same time
coordinating across the distributed multiprocessor. This would not add any new
principles but would greatly complicate the discussion.

The MESI Protocol

To provide cache consistency on an SMP, the data cache often supports a protocol
known as MESI. For MESI, the data cache includes two status bits per tag, so that
each line can be in one of four states:

 • Modified: The line in the cache has been modified (different from main
 memory) and is available only in this cache.

 • Exclusive: The line in the cache is the same as that in main memory and is not
present in any other cache.

 • Shared: The line in the cache is the same as that in main memory and may be
present in another cache.

 • Invalid: The line in the cache does not contain valid data.

17.3 / CACHE COHERENCE AND THE MESI PROTOCOL 623

Table 17.1 summarizes the meaning of the four states. Figure 17.6 displays a
state diagram for the MESI protocol. Keep in mind that each line of the cache has
its own state bits and therefore its own realization of the state diagram. Figure 17.6a
shows the transitions that occur due to actions initiated by the processor attached
to this cache. Figure 17.6b shows the transitions that occur due to events that are
snooped on the common bus. This presentation of separate state diagrams for proces-
sor-initiated and bus-initiated actions helps to clarify the logic of the MESI protocol.

Table 17.1 MESI Cache Line States

M
Modified

E
Exclusive

S
Shared

I
Invalid

This cache line valid? Yes Yes Yes No

The memory copy is … out of date valid valid —

Copies exist in other caches? No No Maybe Maybe

A write to this line … does not go to bus does not go to bus goes to bus and
updates cache

goes directly
to bus

Dirty line copyback

Invalidate transaction

Read-with-intent-to-modify

Cache line fill

RH Read hit
RMS Read miss, shared
RME Read miss, exclusive
WH Write hit
WM Write miss
SHR Snoop hit on read
SHW Snoop hit on write or

read-with-intent-to-modify

Invalid Shared

Modified

(a) Line in cache at initiating processor

RH

WH

RH

RH

Exclusive

RMS

WH

SHW

SHW

RM
E

SHR

Invalid Shared

Modified

(b) Line in snooping cache

Exclusive

SH
R

SH
W

W
M

SHR

W
H

Figure 17.6 MESI State Transition Diagram

624 CHAPTER 17 / PARALLEL PROCESSING

At any time a cache line is in a single state. If the next event is from the attached
processor, then the transition is dictated by Figure 17.6a and if the next event is
from the bus, the transition is dictated by Figure 17.6b. Let us look at these transi-
tions in more detail.

READ MISS When a read miss occurs in the local cache, the processor initiates a
memory read to read the line of main memory containing the missing address. The
processor inserts a signal on the bus that alerts all other processor/cache units to
snoop the transaction. There are a number of possible outcomes:

 • If one other cache has a clean (unmodified since read from memory) copy of
the line in the exclusive state, it returns a signal indicating that it shares this
line. The responding processor then transitions the state of its copy from ex-
clusive to shared, and the initiating processor reads the line from main mem-
ory and transitions the line in its cache from invalid to shared.

 • If one or more caches have a clean copy of the line in the shared state, each of
them signals that it shares the line. The initiating processor reads the line and
transitions the line in its cache from invalid to shared.

 • If one other cache has a modified copy of the line, then that cache blocks the
memory read and provides the line to the requesting cache over the shared
bus. The responding cache then changes its line from modified to shared.1 The
line sent to the requesting cache is also received and processed by the memory
controller, which stores the block in memory.

 • If no other cache has a copy of the line (clean or modified), then no signals are
returned. The initiating processor reads the line and transitions the line in its
cache from invalid to exclusive.

READ HIT When a read hit occurs on a line currently in the local cache, the
processor simply reads the required item. There is no state change: The state
remains modified, shared, or exclusive.

WRITE MISS When a write miss occurs in the local cache, the processor initiates a
memory read to read the line of main memory containing the missing address. For
this purpose, the processor issues a signal on the bus that means read-with-intent-
to-modify (RWITM). When the line is loaded, it is immediately marked modified.
With respect to other caches, two possible scenarios precede the loading of the line
of data.

First, some other cache may have a modified copy of this line (state = modify).
In this case, the alerted processor signals the initiating processor that another proc-
essor has a modified copy of the line. The initiating processor surrenders the bus
and waits. The other processor gains access to the bus, writes the modified cache

1In some implementations, the cache with the modified line signals the initiating processor to retry. Mean-
while, the processor with the modified copy seizes the bus, writes the modified line back to main memory,
and transitions the line in its cache from modified to shared. Subsequently, the requesting processor tries
again and finds that one or more processors have a clean copy of the line in the shared state, as described
in the preceding point.

17.3 / CACHE COHERENCE AND THE MESI PROTOCOL 625

line back to main memory, and transitions the state of the cache line to invalid
(because the initiating processor is going to modify this line). Subsequently, the
initiating processor will again issue a signal to the bus of RWITM and then read
the line from main memory, modify the line in the cache, and mark the line in the
modified state.

The second scenario is that no other cache has a modified copy of the requested
line. In this case, no signal is returned, and the initiating processor proceeds to read
in the line and modify it. Meanwhile, if one or more caches have a clean copy of the
line in the shared state, each cache invalidates its copy of the line, and if one cache
has a clean copy of the line in the exclusive state, it invalidates its copy of the line.

WRITE HIT When a write hit occurs on a line currently in the local cache, the effect
depends on the current state of that line in the local cache:

 • Shared: Before performing the update, the processor must gain exclusive own-
ership of the line. The processor signals its intent on the bus. Each processor
that has a shared copy of the line in its cache transitions the sector from shared
to invalid. The initiating processor then performs the update and transitions
its copy of the line from shared to modified.

 • Exclusive: The processor already has exclusive control of this line, and so it
simply performs the update and transitions its copy of the line from exclusive
to modified.

 • Modified: The processor already has exclusive control of this line and has the
line marked as modified, and so it simply performs the update.

L1-L2 CACHE CONSISTENCY We have so far described cache coherency protocols
in terms of the cooperate activity among caches connected to the same bus or
other SMP interconnection facility. Typically, these caches are L2 caches, and each
processor also has an L1 cache that does not connect directly to the bus and that
therefore cannot engage in a snoopy protocol. Thus, some scheme is needed to
maintain data integrity across both levels of cache and across all caches in the SMP
configuration.

The strategy is to extend the MESI protocol (or any cache coherence proto-
col) to the L1 caches. Thus, each line in the L1 cache includes bits to indicate the
state. In essence, the objective is the following: for any line that is present in both an
L2 cache and its corresponding L1 cache, the L1 line state should track the state of
the L2 line. A simple means of doing this is to adopt the write-through policy in the
L1 cache; in this case the write through is to the L2 cache and not to the memory.
The L1 write-through policy forces any modification to an L1 line out to the L2
cache and therefore makes it visible to other L2 caches. The use of the L1 write-
through policy requires that the L1 content must be a subset of the L2 content. This
in turn suggests that the associativity of the L2 cache should be equal to or greater
than that of the L1 associativity. The L1 write-through policy is used in the IBM
S/390 SMP.

If the L1 cache has a write-back policy, the relationship between the two caches
is more complex. There are several approaches to maintaining coherence. For
example, the approach used on the Pentium II is described in detail in [SHAN05].

626 CHAPTER 17 / PARALLEL PROCESSING

 17.4 MULTITHREADING AND CHIP MULTIPROCESSORS

The most important measure of performance for a processor is the rate at which it
executes instructions. This can be expressed as

MIPS rate = f * IPC

where f is the processor clock frequency, in MHz, and IPC (instructions per cycle)
is the average number of instructions executed per cycle. Accordingly, designers
have pursued the goal of increased performance on two fronts: increasing clock fre-
quency and increasing the number of instructions executed or, more properly, the
number of instructions that complete during a processor cycle. As we have seen in
earlier chapters, designers have increased IPC by using an instruction pipeline and
then by using multiple parallel instruction pipelines in a superscalar architecture.
With pipelined and multiple-pipeline designs, the principal problem is to maximize
the utilization of each pipeline stage. To improve throughput, designers have cre-
ated ever more complex mechanisms, such as executing some instructions in a dif-
ferent order from the way they occur in the instruction stream and beginning execu-
tion of instructions that may never be needed. But as was discussed in Section 2.2,
this approach may be reaching a limit due to complexity and power consumption
concerns.

An alternative approach, which allows for a high degree of instruction-level
parallelism without increasing circuit complexity or power consumption, is called
multithreading. In essence, the instruction stream is divided into several smaller
streams, known as threads, such that the threads can be executed in parallel.

The variety of specific multithreading designs, realized in both commercial
systems and experimental systems, is vast. In this section, we give a brief survey of
the major concepts.

Implicit and Explicit Multithreading

The concept of thread used in discussing multithreaded processors may or may not
be the same as the concept of software threads in a multiprogrammed operating
system. It will be useful to define terms briefly:

 • Process: An instance of a program running on a computer. A process embod-
ies two key characteristics:

— Resource ownership: A process includes a virtual address space to hold the
process image; the process image is the collection of program, data, stack,
and attributes that define the process. From time to time, a process may
be allocated control or ownership of resources, such as main memory, I/O
channels, I/O devices, and files.

— Scheduling/execution: The execution of a process follows an execution
path (trace) through one or more programs. This execution may be inter-
leaved with that of other processes. Thus, a process has an execution state
(Running, Ready, etc.) and a dispatching priority and is the entity that is
scheduled and dispatched by the operating system.

17.4 / MULTITHREADING AND CHIP MULTIPROCESSORS 627

 • Process switch: An operation that switches the processor from one process to
another, by saving all the process control data, registers, and other information
for the first and replacing them with the process information for the second.2

 • Thread: A dispatchable unit of work within a process. It includes a processor
context (which includes the program counter and stack pointer) and its own data
area for a stack (to enable subroutine branching). A thread executes sequen-
tially and is interruptible so that the processor can turn to another thread.

 • Thread switch: The act of switching processor control from one thread to an-
other within the same process. Typically, this type of switch is much less costly
than a process switch.

Thus, a thread is concerned with scheduling and execution, whereas a process
is concerned with both scheduling/execution and resource ownership. The multi-
ple threads within a process share the same resources. This is why a thread switch
is much less time consuming than a process switch. Traditional operating systems,
such as earlier versions of UNIX, did not support threads. Most modern operating
systems, such as Linux, other versions of UNIX, and Windows, do support thread.
A distinction is made between user-level threads, which are visible to the applica-
tion program, and kernel-level threads, which are visible only to the operating sys-
tem. Both of these may be referred to as explicit threads, defined in software.

All of the commercial processors and most of the experimental processors so
far have used explicit multithreading. These systems concurrently execute instruc-
tions from different explicit threads, either by interleaving instructions from dif-
ferent threads on shared pipelines or by parallel execution on parallel pipelines.
Implicit multithreading refers to the concurrent execution of multiple threads
extracted from a single sequential program. These implicit threads may be defined
either statically by the compiler or dynamically by the hardware. In the remainder
of this section we consider explicit multithreading.

Approaches to Explicit Multithreading

At minimum, a multithreaded processor must provide a separate program counter
for each thread of execution to be executed concurrently. The designs differ in the
amount and type of additional hardware used to support concurrent thread execu-
tion. In general, instruction fetching takes place on a thread basis. The processor
treats each thread separately and may use a number of techniques for optimizing
single-thread execution, including branch prediction, register renaming, and super-
scalar techniques. What is achieved is thread-level parallelism, which may provide
for greatly improved performance when married to instruction-level parallelism.

Broadly speaking, there are four principal approaches to multithreading:

 • Interleaved multithreading: This is also known as fine-grained multithreading.
The processor deals with two or more thread contexts at a time, switching
from one thread to another at each clock cycle. If a thread is blocked because

2The term context switch is often found in OS literature and textbooks. Unfortunately, although most of
the literature uses this term to mean what is here called a process switch, other sources use it to mean a
thread switch. To avoid ambiguity, the term is not used in this book.

628 CHAPTER 17 / PARALLEL PROCESSING

of data dependencies or memory latencies, that thread is skipped and a ready
thread is executed.

 • Blocked multithreading: This is also known as coarse-grained multithreading.
The instructions of a thread are executed successively until an event occurs
that may cause delay, such as a cache miss. This event induces a switch to
another thread. This approach is effective on an in-order processor that would
stall the pipeline for a delay event such as a cache miss.

 • Simultaneous multithreading (SMT): Instructions are simultaneously issued
from multiple threads to the execution units of a superscalar processor. This
combines the wide superscalar instruction issue capability with the use of mul-
tiple thread contexts.

 • Chip multiprocessing: In this case, the entire processor is replicated on a sin-
gle chip and each processor handles separate threads. The advantage of this
approach is that the available logic area on a chip is used effectively without
depending on ever-increasing complexity in pipeline design. This is referred to
as multicore; we examine this topic separately in Chapter 18.

For the first two approaches, instructions from different threads are not
executed simultaneously. Instead, the processor is able to rapidly switch from one
thread to another, using a different set of registers and other context information.
This results in a better utilization of the processor’s execution resources and avoids
a large penalty due to cache misses and other latency events. The SMT approach
involves true simultaneous execution of instructions from different threads, using
replicated execution resources. Chip multiprocessing also enables simultaneous
execution of instructions from different threads.

Figure 17.7, based on one in [UNGE02], illustrates some of the possible pipe-
line architectures that involve multithreading and contrasts these with approaches
that do not use multithreading. Each horizontal row represents the potential issue
slot or slots for a single execution cycle; that is, the width of each row corresponds to
the maximum number of instructions that can be issued in a single clock cycle.3 The
vertical dimension represents the time sequence of clock cycles. An empty (shaded)
slot represents an unused execution slot in one pipeline. A no-op is indicated by N.

The first three illustrations in Figure 17.7 show different approaches with a
scalar (i.e., single-issue) processor:

 • Single-threaded scalar: This is the simple pipeline found in traditional RISC
and CISC machines, with no multithreading.

 • Interleaved multithreaded scalar: This is the easiest multithreading approach
to implement. By switching from one thread to another at each clock cycle,
the pipeline stages can be kept fully occupied, or close to fully occupied. The
hardware must be capable of switching from one thread context to another
between cycles.

3Issue slots are the position from which instructions can be issued in a given clock cycle. Recall from
Chapter 16 that instruction issue is the process of initiating instruction execution in the processor’s func-
tional units. This occurs when an instruction moves from the decode stage of the pipeline to the first
execute stage of the pipeline.

17.4 / MULTITHREADING AND CHIP MULTIPROCESSORS 629

 • Blocked multithreaded scalar: In this case, a single thread is executed until a
latency event occurs that would stop the pipeline, at which time the processor
switches to another thread.

Figure 17.7c shows a situation in which the time to perform a thread switch is
one cycle, whereas Figure 17.7b shows that thread switching occurs in zero cycles.

A

A

A

A

A

A

A

A

A

T
hr

ea
d

sw
it

ch
es

A

B
C
D
A
B

B C D

T
hr

ea
d

sw
it

ch
es

A

D

B

D

A
B

D
A

A
B
C
D
A
B

B C D

T
hr

ea
d

sw
it

ch
es

A

D

B

D

A
B

D
A

A N
N
NN

NN
NNN

N

N
B
C
D
A
B

B C D

T
hr

ea
d

sw
it

ch
es

A

NB

A

B
N N N

A NN

B
B
C

B C D A

A

D

A

A
D

D
D

A AA
D
D
B
C
A

B

B

B

B
A

A
A

B C
A D
A C

B
A
A A BD D
A
A
D

B C D A

B
B

B
BA

A

A
A

A

A A

D

D D

D
C

C

C
C
C C

B C D

T
hr

ea
d

sw
it

ch
es

A

B

A
A

B

Issue bandwidth

Latency
cycle

C
yc

le
s

(a) Single-threaded
scalar

(g) VLIW (h) Interleaved
multithreading

VLIW

(i) Blocked
multithreading

VLIW

(j) Simultaneous
multithreading

(SMT)

(k) Chip multiprocessor
(multicore)

(b) Interleaved
multithreading

scalar

(c) Blocked
multithreading

scalar

(d) Superscalar

(e) Interleaved
multithreading

superscalar

(f) Blocked
multithreading

superscalar

Issu
e slo

t

A
A

B
B
C

B C D

A

T
hr

ea
d

sw
it

ch
es

A

A
A

B
B

B C D

A

A

A

A

A

A A

A A A A

A

A
N

A

A

N
N

A

A

N
N

N

A

AA NN

N N N
AD AA

B DB DDD

B

B B
B

D

D

D
D

Figure 17.7 Approaches to Executing Multiple Threads

630 CHAPTER 17 / PARALLEL PROCESSING

In the case of interleaved multithreading, it is assumed that there are no control or
data dependencies between threads, which simplifies the pipeline design and there-
fore should allow a thread switch with no delay. However, depending on the specific
design and implementation, block multithreading may require a clock cycle to per-
form a thread switch, as illustrated in Figure 17.7. This is true if a fetched instruction
triggers the thread switch and must be discarded from the pipeline [UNGE03].

Although interleaved multithreading appears to offer better processor utiliza-
tion than blocked multithreading, it does so at the sacrifice of single-thread per-
formance. The multiple threads compete for cache resources, which raises the prob-
ability of a cache miss for a given thread.

More opportunities for parallel execution are available if the processor can
issue multiple instructions per cycle. Figures 17.7d through 17.7i illustrate a number
of variations among processors that have hardware for issuing four instructions per
cycle. In all these cases, only instructions from a single thread are issued in a single
cycle. The following alternatives are illustrated:

 • Superscalar: This is the basic superscalar approach with no multithreading.
Until relatively recently, this was the most powerful approach to providing
parallelism within a processor. Note that during some cycles, not all of the
available issue slots are used. During these cycles, less than the maximum
number of instructions is issued; this is referred to as horizontal loss. During
other instruction cycles, no issue slots are used; these are cycles when no in-
structions can be issued; this is referred to as vertical loss.

 • Interleaved multithreading superscalar: During each cycle, as many instruc-
tions as possible are issued from a single thread. With this technique, poten-
tial delays due to thread switches are eliminated, as previously discussed.
However, the number of instructions issued in any given cycle is still limited
by dependencies that exist within any given thread.

 • Blocked multithreaded superscalar: Again, instructions from only one thread
may be issued during any cycle, and blocked multithreading is used.

 • Very long instruction word (VLIW): A VLIW architecture, such as IA-64,
places multiple instructions in a single word. Typically, a VLIW is constructed
by the compiler, which places operations that may be executed in parallel in the
same word. In a simple VLIW machine (Figure 17.7g), if it is not possible to com-
pletely fill the word with instructions to be issued in parallel, no-ops are used.

 • Interleaved multithreading VLIW: This approach should provide similar
efficiencies to those provided by interleaved multithreading on a superscalar
architecture.

 • Blocked multithreaded VLIW: This approach should provide similar efficien-
cies to those provided by blocked multithreading on a superscalar architecture.

The final two approaches illustrated in Figure 17.7 enable the parallel, simul-
taneous execution of multiple threads:

 • Simultaneous multithreading: Figure 17.7j shows a system capable of issuing
8 instructions at a time. If one thread has a high degree of instruction-level
parallelism, it may on some cycles be able fill all of the horizontal slots. On

17.4 / MULTITHREADING AND CHIP MULTIPROCESSORS 631

other cycles, instructions from two or more threads may be issued. If sufficient
threads are active, it should usually be possible to issue the maximum number
of instructions on each cycle, providing a high level of efficiency.

 • Chip multiprocessor (multicore): Figure 17.7k shows a chip containing four
processors, each of which has a two-issue superscalar processor. Each proc-
essor is assigned a thread, from which it can issue up to two instructions per
cycle. We discuss multicore computers in Chapter 18.

Comparing Figures 17.7j and 17.7k, we see that a chip multiprocessor with
the same instruction issue capability as an SMT cannot achieve the same degree of
instruction-level parallelism. This is because the chip multiprocessor is not able to
hide latencies by issuing instructions from other threads. On the other hand, the chip
multiprocessor should outperform a superscalar processor with the same instruction
issue capability, because the horizontal losses will be greater for the superscalar
processor. In addition, it is possible to use multithreading within each of the proces-
sors on a chip multiprocessor, and this is done on some contemporary machines.

Example Systems

PENTIUM 4 More recent models of the Pentium 4 use a multithreading technique
that the Intel literature refers to as hyperthreading [MARR02]. In essence, the
Pentium 4 approach is to use SMT with support for two threads. Thus, the single
multithreaded processor is logically two processors.

IBM POWER5 The IBM Power5 chip, which is used in high-end PowerPC products,
combines chip multiprocessing with SMT [KALL04]. The chip has two separate
processors, each of which is a multithreaded processor capable of supporting two
threads concurrently using SMT. Interestingly, the designers simulated various
alternatives and found that having two two-way SMT processors on a single chip
provided superior performance to a single four-way SMT processor. The simulations
showed that additional multithreading beyond the support for two threads might
decrease performance because of cache thrashing, as data from one thread displaces
data needed by another thread.

Figure 17.8 shows the IBM Power5’s instruction flow diagram. Only a few of
the elements in the processor need to be replicated, with separate elements dedi-
cated to separate threads. Two program counters are used. The processor alternates
fetching instructions, up to eight at a time, between the two threads. All the instruc-
tions are stored in a common instruction cache and share an instruction transla-
tion facility, which does a partial instruction decode. When a conditional branch is
encountered, the branch prediction facility predicts the direction of the branch and,
if possible, calculates the target address. For predicting the target of a subroutine
return, the processor uses a return stack, one for each thread.

Instructions then move into two separate instruction buffers. Then, on the
basis of thread priority, a group of instructions is selected and decoded in paral-
lel. Next, instructions flow through a register-renaming facility in program order.
Logical registers are mapped to physical registers. The Power5 has 120 physical
 general-purpose registers and 120 physical floating-point registers. The instructions
are then moved into issue queues. From the issue queues, instructions are issued

632

BXU � Branch execution unit and
CRL � Condition register logical execution unit
FPU � Floating-point execution unit
FXU � Fixed-point execution unit
LSU � Load/store unit

Program
counter

Alternate

Thread
priority

Dynamic
instruction
selection

Branch
history
tables

Return
stack

Shared by two threads Thread 0 resource Thread 1 resource

Target
cache

Shared-
register
mappers

Shared
issue

queues

Shared
execution

units

Read shared-
register files

Write shared-
register files

Data
translation

Data
cache

Branch prediction

Instruction
cache

Instruction
translation

Instruction
buffer 0

Instruction
buffer 1

Group formation
instruction decode

dispatch

LSU0

FXU0

FPU0

FPU1

BXU

CRL

LSU1

FXU1 Group
completion

Store
queue

Data
translation

Data
cache

L2
cache

•
•
•

•
•
•

•
•
•

•
•
•

Figure 17.8 Power5 Instruction Data Flow

17.5 / CLUSTERS 633

using symmetric multithreading. That is, the processor has a superscalar architec-
ture and can issue instructions from one or both threads in parallel. At the end of
the pipeline, separate thread resources are needed to commit the instructions.

 17.5 CLUSTERS

An important and relatively recent development computer system design is clus-
tering. Clustering is an alternative to symmetric multiprocessing as an approach to
providing high performance and high availability and is particularly attractive for
server applications. We can define a cluster as a group of interconnected, whole
computers working together as a unified computing resource that can create the
illusion of being one machine. The term whole computer means a system that can
run on its own, apart from the cluster; in the literature, each computer in a cluster is
typically referred to as a node.

[BREW97] lists four benefits that can be achieved with clustering. These can
also be thought of as objectives or design requirements:

 • Absolute scalability: It is possible to create large clusters that far surpass the
power of even the largest standalone machines. A cluster can have tens, hun-
dreds, or even thousands of machines, each of which is a multiprocessor.

 • Incremental scalability: A cluster is configured in such a way that it is possible
to add new systems to the cluster in small increments. Thus, a user can start
out with a modest system and expand it as needs grow, without having to go
through a major upgrade in which an existing small system is replaced with a
larger system.

 • High availability: Because each node in a cluster is a standalone computer,
the failure of one node does not mean loss of service. In many products, fault
tolerance is handled automatically in software.

 • Superior price/performance: By using commodity building blocks, it is pos-
sible to put together a cluster with equal or greater computing power than a
single large machine, at much lower cost.

Cluster Configurations

In the literature, clusters are classified in a number of different ways. Perhaps the
simplest classification is based on whether the computers in a cluster share access to
the same disks. Figure 17.9a shows a two-node cluster in which the only interconnec-
tion is by means of a high-speed link that can be used for message exchange to coor-
dinate cluster activity. The link can be a LAN that is shared with other computers
that are not part of the cluster or the link can be a dedicated interconnection facility.
In the latter case, one or more of the computers in the cluster will have a link to a
LAN or WAN so that there is a connection between the server cluster and remote
client systems. Note that in the figure, each computer is depicted as being a multi-
processor. This is not necessary but does enhance both performance and availability.

In the simple classification depicted in Figure 17.9, the other alternative is
a shared-disk cluster. In this case, there generally is still a message link between

634 CHAPTER 17 / PARALLEL PROCESSING

nodes. In addition, there is a disk subsystem that is directly linked to multiple com-
puters within the cluster. In this figure, the common disk subsystem is a RAID sys-
tem. The use of RAID or some similar redundant disk technology is common in
clusters so that the high availability achieved by the presence of multiple computers
is not compromised by a shared disk that is a single point of failure.

A clearer picture of the range of cluster options can be gained by looking at
functional alternatives. Table 17.2 provides a useful classification along functional
lines, which we now discuss.

A common, older method, known as passive standby, is simply to have one
computer handle all of the processing load while the other computer remains inac-
tive, standing by to take over in the event of a failure of the primary. To coordi-
nate the machines, the active, or primary, system periodically sends a “heartbeat”
message to the standby machine. Should these messages stop arriving, the standby
assumes that the primary server has failed and puts itself into operation. This
approach increases availability but does not improve performance. Further, if the
only information that is exchanged between the two systems is a heartbeat message,

P P

High-speed message link

High-speed message link

M I/O I/O

P P

I/OI/O M

(a) Standby server with no shared disk

P P

RAID

M I/O I/O

P P

I/OI/O M

(b) Shared Disk

I/O I/O

Figure 17.9 Cluster Configurations

17.5 / CLUSTERS 635

and if the two systems do not share common disks, then the standby provides a
functional backup but has no access to the databases managed by the primary.

The passive standby is generally not referred to as a cluster. The term cluster is
reserved for multiple interconnected computers that are all actively doing process-
ing while maintaining the image of a single system to the outside world. The term
active secondary is often used in referring to this configuration. Three classifications
of clustering can be identified: separate servers, shared nothing, and shared memory.

In one approach to clustering, each computer is a separate server with its own
disks and there are no disks shared between systems (Figure 17.9a). This arrange-
ment provides high performance as well as high availability. In this case, some type
of management or scheduling software is needed to assign incoming client requests
to servers so that the load is balanced and high utilization is achieved. It is desirable
to have a failover capability, which means that if a computer fails while executing an
application, another computer in the cluster can pick up and complete the applica-
tion. For this to happen, data must constantly be copied among systems so that each
system has access to the current data of the other systems. The overhead of this data
exchange ensures high availability at the cost of a performance penalty.

To reduce the communications overhead, most clusters now consist of servers
connected to common disks (Figure 17.9b). In one variation on this approach, called
shared nothing, the common disks are partitioned into volumes, and each volume is
owned by a single computer. If that computer fails, the cluster must be reconfigured
so that some other computer has ownership of the volumes of the failed computer.

Table 17.2 Clustering Methods: Benefits and Limitations

Clustering Method Description Benefits Limitations

Passive Standby A secondary server takes
over in case of primary
server failure.

Easy to implement. High cost because the
secondary server is
unavailable for other
processing tasks.

Active Secondary: The secondary server is
also used for processing
tasks.

Reduced cost because
secondary servers can be
used for processing.

Increased complexity.

 Separate Servers Separate servers have
their own disks. Data is
continuously copied from
primary to secondary
server.

High availability. High network and server
overhead due to copying
operations.

 Servers Connected
to Disks

Servers are cabled to
the same disks, but each
server owns its disks. If
one server fails, its disks
are taken over by the
other server.

Reduced network and
server overhead due to
elimination of copying
operations.

Usually requires disk
mirroring or RAID
technology to
compensate for risk
of disk failure.

 Servers Share
Disks

Multiple servers simulta-
neously share access to
disks.

Low network and server
overhead. Reduced risk
of downtime caused by
disk failure.

Requires lock manager
software. Usually used
with disk mirroring or
RAID technology.

636 CHAPTER 17 / PARALLEL PROCESSING

It is also possible to have multiple computers share the same disks at the same
time (called the shared disk approach), so that each computer has access to all of the
volumes on all of the disks. This approach requires the use of some type of locking
facility to ensure that data can only be accessed by one computer at a time.

Operating System Design Issues

Full exploitation of a cluster hardware configuration requires some enhancements
to a single-system operating system.

FAILURE MANAGEMENT How failures are managed by a cluster depends on the
clustering method used (Table 17.2). In general, two approaches can be taken to
dealing with failures: highly available clusters and fault-tolerant clusters. A highly
available cluster offers a high probability that all resources will be in service. If a failure
occurs, such as a system goes down or a disk volume is lost, then the queries in progress
are lost. Any lost query, if retried, will be serviced by a different computer in the
cluster. However, the cluster operating system makes no guarantee about the state of
partially executed transactions. This would need to be handled at the application level.

A fault-tolerant cluster ensures that all resources are always available. This
is achieved by the use of redundant shared disks and mechanisms for backing out
uncommitted transactions and committing completed transactions.

The function of switching applications and data resources over from a failed
system to an alternative system in the cluster is referred to as failover. A related
function is the restoration of applications and data resources to the original system
once it has been fixed; this is referred to as failback. Failback can be automated, but
this is desirable only if the problem is truly fixed and unlikely to recur. If not, auto-
matic failback can cause subsequently failed resources to bounce back and forth
between computers, resulting in performance and recovery problems.

LOAD BALANCING A cluster requires an effective capability for balancing the
load among available computers. This includes the requirement that the cluster
be incrementally scalable. When a new computer is added to the cluster, the
load-balancing facility should automatically include this computer in scheduling
applications. Middleware mechanisms need to recognize that services can appear
on different members of the cluster and may migrate from one member to another.

PARALLELIZING COMPUTATION In some cases, effective use of a cluster requires
executing software from a single application in parallel. [KAPP00] lists three general
approaches to the problem:

 • Parallelizing compiler: A parallelizing compiler determines, at compile time,
which parts of an application can be executed in parallel. These are then split
off to be assigned to different computers in the cluster. Performance depends
on the nature of the problem and how well the compiler is designed. In gen-
eral, such compilers are difficult to develop.

 • Parallelized application: In this approach, the programmer writes the applica-
tion from the outset to run on a cluster, and uses message passing to move data,
as required, between cluster nodes. This places a high burden on the program-
mer but may be the best approach for exploiting clusters for some applications.

17.5 / CLUSTERS 637

 • Parametric computing: This approach can be used if the essence of the ap-
plication is an algorithm or program that must be executed a large number
of times, each time with a different set of starting conditions or parameters.
A good example is a simulation model, which will run a large number of dif-
ferent scenarios and then develop statistical summaries of the results. For this
approach to be effective, parametric processing tools are needed to organize,
run, and manage the jobs in an effective manner.

Cluster Computer Architecture

Figure 17.10 shows a typical cluster architecture. The individual computers are con-
nected by some high-speed LAN or switch hardware. Each computer is capable of
operating independently. In addition, a middleware layer of software is installed
in each computer to enable cluster operation. The cluster middleware provides a
unified system image to the user, known as a single-system image. The middleware
is also responsible for providing high availability, by means of load balancing and
responding to failures in individual components. [HWAN99] lists the following as
desirable cluster middleware services and functions:

 • Single entry point: A user logs onto the cluster rather than to an individual
computer.

 • Single file hierarchy: The user sees a single hierarchy of file directories under
the same root directory.

 • Single control point: There is a default workstation used for cluster manage-
ment and control.

 • Single virtual networking: Any node can access any other point in the cluster,
even though the actual cluster configuration may consist of multiple intercon-
nected networks. There is a single virtual network operation.

 • Single memory space: Distributed shared memory enables programs to share
variables.

 • Single job-management system: Under a cluster job scheduler, a user can sub-
mit a job without specifying the host computer to execute the job.

 • Single user interface: A common graphic interface supports all users, regard-
less of the workstation from which they enter the cluster.

 • Single I/O space: Any node can remotely access any I/O peripheral or disk
device without knowledge of its physical location.

 • Single process space: A uniform process-identification scheme is used. A
process on any node can create or communicate with any other process on a
remote node.

 • Checkpointing: This function periodically saves the process state and interme-
diate computing results, to allow rollback recovery after a failure.

 • Process migration: This function enables load balancing.

The last four items on the preceding list enhance the availability of the cluster.
The remaining items are concerned with providing a single system image.

638

Net. interface HW

Comm SW

PC/workstation

Net. interface HW

PC/workstation

Net. interface HW

PC/workstation

Net. interface HW

PC/workstation

Net. interface HW

PC/workstation

Cluster middleware
(Single system image and availability infrastructure)

Sequential applications

High-speed network/switch

Parallel applications

Parallel programming environment

Comm SW Comm SW Comm SW Comm SW

Figure 17.10 Cluster Computer Architecture [BUYY99a]

17.5 / CLUSTERS 639

Returning to Figure 17.10, a cluster will also include software tools for ena-
bling the efficient execution of programs that are capable of parallel execution.

Blade Servers

A common implementation of the cluster approach is the blade server. A blade
server is a server architecture that houses multiple server modules (“blades”) in
a single chassis. It is widely used in data centers to save space and improve system
management. Either self-standing or rack mounted, the chassis provides the power
supply, and each blade has its own processor, memory, and hard disk.

An example of the application is shown in Figure 17.11, taken from [NOWE07].
The trend at large data centers, with substantial banks of blade servers, is the deploy-
ment of 10-Gbps ports on individual servers to handle the massive multimedia traf-
fic provided by these servers. Such arrangements are stressing the on-site Ethernet
switches needed to interconnect large numbers of servers. A 100-Gbps rate provides
the bandwidth required to handle the increased traffic load. The 100-Gbps Ethernet
switches are deployed in switch uplinks inside the data center as well as providing
interbuilding, intercampus, wide area connections for enterprise networks.

Clusters Compared to SMP

Both clusters and symmetric multiprocessors provide a configuration with multiple
processors to support high-demand applications. Both solutions are commercially
available, although SMP schemes have been around far longer.

The main strength of the SMP approach is that an SMP is easier to manage
and configure than a cluster. The SMP is much closer to the original single-processor

N � 100 Gbps

N � 100 Gbps

10 Gbps
&

40 Gbps

Blade computer

Ethernet
switch

Figure 17.11 Example 100-Gbps Ethernet Configuration
for Massive Blade Server Site

640 CHAPTER 17 / PARALLEL PROCESSING

model for which nearly all applications are written. The principal change required
in going from a uniprocessor to an SMP is to the scheduler function. Another ben-
efit of the SMP is that it usually takes up less physical space and draws less power
than a comparable cluster. A final important benefit is that the SMP products are
well established and stable.

Over the long run, however, the advantages of the cluster approach are likely
to result in clusters dominating the high-performance server market. Clusters are
far superior to SMPs in terms of incremental and absolute scalability. Clusters are
also superior in terms of availability, because all components of the system can
readily be made highly redundant.

 17.6 NONUNIFORM MEMORY ACCESS

In terms of commercial products, the two common approaches to providing a
 multiple-processor system to support applications are SMPs and clusters. For some
years, another approach, known as nonuniform memory access (NUMA), has been
the subject of research and commercial NUMA products are now available.

Before proceeding, we should define some terms often found in the NUMA
literature.

 • Uniform memory access (UMA): All processors have access to all parts of
main memory using loads and stores. The memory access time of a processor
to all regions of memory is the same. The access times experienced by differ-
ent processors are the same. The SMP organization discussed in Sections 17.2
and 17.3 is UMA.

 • Nonuniform memory access (NUMA): All processors have access to all parts
of main memory using loads and stores. The memory access time of a proces-
sor differs depending on which region of main memory is accessed. The last
statement is true for all processors; however, for different processors, which
memory regions are slower and which are faster differ.

 • Cache-coherent NUMA (CC-NUMA): A NUMA system in which cache
 coherence is maintained among the caches of the various processors.

A NUMA system without cache coherence is more or less equivalent to a cluster.
The commercial products that have received much attention recently are CC-NUMA
systems, which are quite distinct from both SMPs and clusters. Usually, but unfortu-
nately not always, such systems are in fact referred to in the commercial literature as
CC-NUMA systems. This section is concerned only with CC-NUMA systems.

Motivation

With an SMP system, there is a practical limit to the number of processors that
can be used. An effective cache scheme reduces the bus traffic between any one
processor and main memory. As the number of processors increases, this bus traf-
fic also increases. Also, the bus is used to exchange cache-coherence signals, further
adding to the burden. At some point, the bus becomes a performance bottleneck.
Performance degradation seems to limit the number of processors in an SMP

17.6 / NONUNIFORM MEMORY ACCESS 641

configuration to somewhere between 16 and 64 processors. For example, Silicon
Graphics’ Power Challenge SMP is limited to 64 R10000 processors in a single sys-
tem; beyond this number performance degrades substantially.

The processor limit in an SMP is one of the driving motivations behind the
development of cluster systems. However, with a cluster, each node has its own
private main memory; applications do not see a large global memory. In effect,
coherency is maintained in software rather than hardware. This memory granular-
ity affects performance and, to achieve maximum performance, software must be
tailored to this environment. One approach to achieving large-scale multiprocess-
ing while retaining the flavor of SMP is NUMA. For example, the Silicon Graphics
Origin NUMA system is designed to support up to 1024 MIPS R10000 processors
[WHIT97] and the Sequent NUMA-Q system is designed to support up to 252
Pentium II processors [LOVE96].

The objective with NUMA is to maintain a transparent system wide mem-
ory while permitting multiple multiprocessor nodes, each with its own bus or other
internal interconnect system.

Organization

Figure 17.12 depicts a typical CC-NUMA organization. There are multiple indepen-
dent nodes, each of which is, in effect, an SMP organization. Thus, each node con-
tains multiple processors, each with its own L1 and L2 caches, plus main memory.
The node is the basic building block of the overall CC-NUMA organization. For
example, each Silicon Graphics Origin node includes two MIPS R10000 processors;
each Sequent NUMA-Q node includes four Pentium II processors. The nodes are
interconnected by means of some communications facility, which could be a switch-
ing mechanism, a ring, or some other networking facility.

Each node in the CC-NUMA system includes some main memory. From the
point of view of the processors, however, there is only a single addressable memory,
with each location having a unique system wide address. When a processor initiates
a memory access, if the requested memory location is not in that processor’s cache,
then the L2 cache initiates a fetch operation. If the desired line is in the local portion
of the main memory, the line is fetched across the local bus. If the desired line is in
a remote portion of the main memory, then an automatic request is sent out to fetch
that line across the interconnection network, deliver it to the local bus, and then
deliver it to the requesting cache on that bus. All of this activity is automatic and
transparent to the processor and its cache.

In this configuration, cache coherence is a central concern. Although imple-
mentations differ as to details, in general terms we can say that each node must
maintain some sort of directory that gives it an indication of the location of vari-
ous portions of memory and also cache status information. To see how this scheme
works, we give an example taken from [PFIS98]. Suppose that processor 3 on node
2 (P2-3) requests a memory location 798, which is in the memory of node 1. The fol-
lowing sequence occurs:

 1. P2-3 issues a read request on the snoopy bus of node 2 for location 798.

 2. The directory on node 2 sees the request and recognizes that the location is in
node 1.

642 CHAPTER 17 / PARALLEL PROCESSING

 3. Node 2’s directory sends a request to node 1, which is picked up by node 1’s
directory.

 4. Node 1’s directory, acting as a surrogate of P2-3, requests the contents of 798,
as if it were a processor.

 5. Node 1’s main memory responds by putting the requested data on the bus.

 6. Node 1’s directory picks up the data from the bus.

 7. The value is transferred back to node 2’s directory.

 8. Node 2’s directory places the data back on node 2’s bus, acting as a surrogate
for the memory that originally held it.

 9. The value is picked up and placed in P2-3’s cache and delivered to P2-3.

L1 Cache

Processor
1-1

Main
Memory 1

Processor
1-m
L1 Cache

L2 Cache L2 Cache Directory

I/O

I/O

L1 Cache

Processor
N-1

Main
memory N

Processor
N-m
L1 Cache

L2 Cache L2 Cache

Directory

L1 Cache

Processor
2-1

Main
Memory 2

Processor
2-m

L1 Cache

L2 Cache L2 Cache Directory

I/O

Interconnect
Network

Figure 17.12 CC-NUMA Organization

17.6 / NONUNIFORM MEMORY ACCESS 643

The preceding sequence explains how data are read from a remote memory
using hardware mechanisms that make the transaction transparent to the processor.
On top of these mechanisms, some form of cache coherence protocol is needed.
Various systems differ on exactly how this is done. We make only a few general
remarks here. First, as part of the preceding sequence, node 1’s directory keeps a
record that some remote cache has a copy of the line containing location 798. Then,
there needs to be a cooperative protocol to take care of modifications. For exam-
ple, if a modification is done in a cache, this fact can be broadcast to other nodes.
Each node’s directory that receives such a broadcast can then determine if any local
cache has that line and, if so, cause it to be purged. If the actual memory location is
at the node receiving the broadcast notification, then that node’s directory needs to
maintain an entry indicating that that line of memory is invalid and remains so until
a write back occurs. If another processor (local or remote) requests the invalid line,
then the local directory must force a write back to update memory before providing
the data.

NUMA Pros and Cons

The main advantage of a CC-NUMA system is that it can deliver effective perfor-
mance at higher levels of parallelism than SMP, without requiring major software
changes. With multiple NUMA nodes, the bus traffic on any individual node is lim-
ited to a demand that the bus can handle. However, if many of the memory accesses
are to remote nodes, performance begins to break down. There is reason to believe
that this performance breakdown can be avoided. First, the use of L1 and L2 caches
is designed to minimize all memory accesses, including remote ones. If much of the
software has good temporal locality, then remote memory accesses should not be
excessive. Second, if the software has good spatial locality, and if virtual memory is
in use, then the data needed for an application will reside on a limited number of
frequently used pages that can be initially loaded into the memory local to the run-
ning application. The Sequent designers report that such spatial locality does appear
in representative applications [LOVE96]. Finally, the virtual memory scheme can
be enhanced by including in the operating system a page migration mechanism that
will move a virtual memory page to a node that is frequently using it; the Silicon
Graphics designers report success with this approach [WHIT97].

Even if the performance breakdown due to remote access is addressed,
there are two other disadvantages for the CC-NUMA approach [PFIS98]. First,
a CC-NUMA does not transparently look like an SMP; software changes will
be required to move an operating system and applications from an SMP to a
CC-NUMA system. These include page allocation, already mentioned, process allo-
cation, and load balancing by the operating system. A second concern is that of
availability. This is a rather complex issue and depends on the exact implementation
of the CC-NUMA system; the interested reader is referred to [PFIS98].

Vector Processor Simulator

644 CHAPTER 17 / PARALLEL PROCESSING

 17.7 VECTOR COMPUTATION

Although the performance of mainframe general-purpose computers continues to
improve relentlessly, there continue to be applications that are beyond the reach of
the contemporary mainframe. There is a need for computers to solve mathematical
problems of physical processes, such as occur in disciplines including aerodynamics,
seismology, meteorology, and atomic, nuclear, and plasma physics.

Typically, these problems are characterized by the need for high precision
and a program that repetitively performs floating-point arithmetic operations on
large arrays of numbers. Most of these problems fall into the category known as
 continuous-field simulation. In essence, a physical situation can be described by a
surface or region in three dimensions (e.g., the flow of air adjacent to the surface
of a rocket). This surface is approximated by a grid of points. A set of differential
equations defines the physical behavior of the surface at each point. The equations
are represented as an array of values and coefficients, and the solution involves
repeated arithmetic operations on the arrays of data.

Supercomputers were developed to handle these types of problems. These
machines are typically capable of billions of floating-point operations per second. In
contrast to mainframes, which are designed for multiprogramming and intensive I/O,
the supercomputer is optimized for the type of numerical calculation just described.

The supercomputer has limited use and, because of its price tag, a limited
market. Comparatively few of these machines are operational, mostly at research
centers and some government agencies with scientific or engineering functions. As
with other areas of computer technology, there is a constant demand to increase the
performance of the supercomputer. Thus, the technology and performance of the
supercomputer continues to evolve.

There is another type of system that has been designed to address the need for
vector computation, referred to as the array processor. Although a supercomputer
is optimized for vector computation, it is a general-purpose computer, capable of
handling scalar processing and general data processing tasks. Array processors do
not include scalar processing; they are configured as peripheral devices by both
mainframe and minicomputer users to run the vectorized portions of programs.

Approaches to Vector Computation

The key to the design of a supercomputer or array processor is to recognize that the
main task is to perform arithmetic operations on arrays or vectors of floating-point
numbers. In a general-purpose computer, this will require iteration through each
element of the array. For example, consider two vectors (one-dimensional arrays)
of numbers, A and B. We would like to add these and place the result in C. In the
example of Figure 17.13, this requires six separate additions. How could we speed
up this computation? The answer is to introduce some form of parallelism.

Several approaches have been taken to achieving parallelism in vector computa-
tion. We illustrate this with an example. Consider the vector multiplication C = A * B,
where A, B, and C are N * N matrices. The formula for each element of C is

ci, j = a
N

k = 1
ai,k * bk, j

17.7 / VECTOR COMPUTATION 645

where A, B, and C have elements ai,j, bi,j, and ci,j respectively. Figure 17.14a shows
a FORTRAN program for this computation that can be run on an ordinary scalar
processor.

One approach to improving performance can be referred to as vector process-
ing. This assumes that it is possible to operate on a one-dimensional vector of data.
Figure 17.14b is a FORTRAN program with a new form of instruction that allows

1.5
7.1
6.9

100.5
0

59.7

A

2.0
39.7

1000.003
11

21.1
19.7

B

3.5
46.8

1006.093
111.5
21.1
79.4

C

� �

� �

Figure 17.13 Example of Vector Addition

DO 100 I � 1, N

DO 100 J � 1, N

C(I, J) � 0.0

DO 100 K � 1, N

C(I, J) � C(I, J) � A(I, K) � B(K, J)

100 CONTINUE

100 CONTINUE

CONTINUE

(a) Scalar processing

DO 100 I � 1, N
C(I, J) � 0.0 (J � 1, N)
DO 100 K � 1, N
C(I, J) � C(I, J) � A(I, K) � B(K, J) (J � 1, N)

(b) Vector processing

DO 50 J � 1, N � 1
FORK 100

50 CONTINUE
J � N

100 DO 200 I � 1, N
C(I, J) � 0.0
DO 200 K � 1, N
C(I, J) � C(I, J) � A(I, K) � B(K, J)

200

(c) Parallel processing

JOIN N

Figure 17.14 Matrix Multiplication (C = A * B)

646 CHAPTER 17 / PARALLEL PROCESSING

vector computation to be specified. The notation (J = 1, N) indicates that opera-
tions on all indices J in the given interval are to be carried out as a single operation.
How this can be achieved is addressed shortly.

The program in Figure 17.14b indicates that all the elements of the ith row are
to be computed in parallel. Each element in the row is a summation, and the sum-
mations (across K) are done serially rather than in parallel. Even so, only N2 vector
multiplications are required for this algorithm as compared with N3 scalar multipli-
cations for the scalar algorithm.

Another approach, parallel processing, is illustrated in Figure 17.14c. This
approach assumes that we have N independent processors that can function in par-
allel. To utilize processors effectively, we must somehow parcel out the computation
to the various processors. Two primitives are used. The primitive FORK n causes an
independent process to be started at location n. In the meantime, the original proc-
ess continues execution at the instruction immediately following the FORK. Every
execution of a FORK spawns a new process. The JOIN instruction is essentially the
inverse of the FORK. The statement JOIN N causes N independent processes to
be merged into one that continues execution at the instruction following the JOIN.
The operating system must coordinate this merger, and so the execution does not
continue until all N processes have reached the JOIN instruction.

The program in Figure 17.15c is written to mimic the behavior of the vector-
processing program. In the parallel processing program, each column of C is com-
puted by a separate process. Thus, the elements in a given row of C are computed
in parallel.

The preceding discussion describes approaches to vector computation in logi-
cal or architectural terms. Let us turn now to a consideration of types of processor
organization that can be used to implement these approaches. A wide variety of
organizations have been and are being pursued. Three main categories stand out:

 • Pipelined ALU

 • Parallel ALUs

 • Parallel processors

Figure 17.15 illustrates the first two of these approaches. We have already dis-
cussed pipelining in Chapter 14. Here the concept is extended to the operation of the
ALU. Because floating-point operations are rather complex, there is opportunity
for decomposing a floating-point operation into stages, so that different stages can
operate on different sets of data concurrently. This is illustrated in Figure 17.16a.
Floating-point addition is broken up into four stages (see Figure 10.22): compare,
shift, add, and normalize. A vector of numbers is presented sequentially to the first
stage. As the processing proceeds, four different sets of numbers will be operated
on concurrently in the pipeline.

It should be clear that this organization is suitable for vector processing. To
see this, consider the instruction pipelining described in Chapter 14. The processor
goes through a repetitive cycle of fetching and processing instructions. In the absence
of branches, the processor is continuously fetching instructions from sequential
locations. Consequently, the pipeline is kept full and a savings in time is achieved.
Similarly, a pipelined ALU will save time only if it is fed a stream of data from

17.7 / VECTOR COMPUTATION 647

sequential locations. A single, isolated floating-point operation is not speeded up by
a pipeline. The speedup is achieved when a vector of operands is presented to the
ALU. The control unit cycles the data through the ALU until the entire vector is
processed.

The pipeline operation can be further enhanced if the vector elements are
available in registers rather than from main memory. This is in fact suggested by
Figure 17.15a. The elements of each vector operand are loaded as a block into a
vector register, which is simply a large bank of identical registers. The result is also
placed in a vector register. Thus, most operations involve only the use of registers,
and only load and store operations and the beginning and end of a vector operation
require access to memory.

The mechanism illustrated in Figure 17.16 could be referred to as pipelining
within an operation. That is, we have a single arithmetic operation (e.g., C = A + B)
that is to be applied to vector operands, and pipelining allows multiple vector ele-
ments to be processed in parallel. This mechanism can be augmented with pipelin-
ing across operations. In this latter case, there is a sequence of arithmetic vector
operations, and instruction pipelining is used to speed up processing. One approach

Memory

Input
registers Pipelined ALU

(a) Pipelined ALU

Output
register

Memory

Input
registers

(b) Parallel ALUs

Output
register

ALU

ALU

ALU

Figure 17.15 Approaches to Vector Computation

648 CHAPTER 17 / PARALLEL PROCESSING

to this, referred to as chaining, is found on the Cray supercomputers. The basic rule
for chaining is this: A vector operation may start as soon as the first element of the
operand vector(s) is available and the functional unit (e.g., add, subtract, multiply,
divide) is free. Essentially, chaining causes results issuing from one functional unit
to be fed immediately into another functional unit and so on. If vector registers are
used, intermediate results do not have to be stored into memory and can be used
even before the vector operation that created them runs to completion.

For example, when computing C = (s * A) + B, where A, B, and C are vec-
tors and s is a scalar, the Cray may execute three instructions at once. Elements
fetched for a load immediately enter a pipelined multiplier, the products are sent to
a pipelined adder, and the sums are placed in a vector register as soon as the adder
completes them:

 1. Vector load A S Vector Register (VR1)

 2. Vector load B S VR2

Compare
exponent

Shift
significand

Add
significands Normalize

NASC

A NS

(a) Pipelined ALU

(b) Four parallel ALUs

C
xi

x1, y1 z1

x2, y2 z2

x3, y3 z3

x4, y4 z4

x5, y5 z5

yi

xi
yi

zi

NASC
xi
yi

zi

zi

NASC
xi�1
yi�1

zi�1

NASC
xi�2
yi�2

zi�2

NASC
xi�3
yi�3

zi�3C S A N

x1, y1 z1C S A N
x2, y2 z2C S A N
x3, y3 z3C S A N
x4, y4 z4C S A N

x5, y5 z5C S A N
x6, y6 z6C S A N
x7, y7 z7C S A N
x8, y8 z8C S A N

x9, y9 z9C S A N
x10, y10 z10C S A N
x11, y11 z11C S A N
x12, y12 z12C S A N

C S A N
C S A N

C S A N
C S A N

Figure 17.16 Pipelined Processing of Floating-Point Operations

17.7 / VECTOR COMPUTATION 649

 3. Vector multiply s * VR1 S VR3

 4. Vector add VR3 + VR2 S VR4

 5. Vector store VR4 S C

Instructions 2 and 3 can be chained (pipelined) because they involve different mem-
ory locations and registers. Instruction 4 needs the results of instructions 2 and 3,
but it can be chained with them as well. As soon as the first elements of vector reg-
isters 2 and 3 are available, the operation in instruction 4 can begin.

Another way to achieve vector processing is by the use of multiple ALUs in a
single processor, under the control of a single control unit. In this case, the control
unit routes data to ALUs so that they can function in parallel. It is also possible to
use pipelining on each of the parallel ALUs. This is illustrated in Figure 17.16b. The
example shows a case in which four ALUs operate in parallel.

As with pipelined organization, a parallel ALU organization is suitable for
vector processing. The control unit routes vector elements to ALUs in a round-
robin fashion until all elements are processed. This type of organization is more
complex than a single-ALU CPI.

Finally, vector processing can be achieved by using multiple parallel proces-
sors. In this case, it is necessary to break the task up into multiple processes to be
executed in parallel. This organization is effective only if the software and hardware
for effective coordination of parallel processors is available.

We can expand our taxonomy of Section 17.1 to reflect these new structures,
as shown in Figure 17.17. Computer organizations can be distinguished by the pres-
ence of one or more control units. Multiple control units imply multiple processors.
Following our previous discussion, if the multiple processors can function coopera-
tively on a given task, they are termed parallel processors.

The reader should be aware of some unfortunate terminology likely to be
encountered in the literature. The term vector processor is often equated with a
pipelined ALU organization, although a parallel ALU organization is also designed
for vector processing, and, as we have discussed, a parallel processor organization
may also be designed for vector processing. Array processing is sometimes used to
refer to a parallel ALU, although, again, any of the three organizations is optimized
for the processing of arrays. To make matters worse, array processor usually refers
to an auxiliary processor attached to a general-purpose processor and used to per-
form vector computation. An array processor may use either the pipelined or paral-
lel ALU approach.

At present, the pipelined ALU organization dominates the marketplace.
Pipelined systems are less complex than the other two approaches. Their control

Single control unit Multiple control unit

Uniprocessor Pipelined ALU Parallel ALUs Multiprocessor Parallel processors

Figure 17.17 A Taxonomy of Computer Organizations

650 CHAPTER 17 / PARALLEL PROCESSING

unit and operating system design are well developed to achieve efficient resource
allocation and high performance. The remainder of this section is devoted to a more
detailed examination of this approach, using a specific example.

IBM 3090 Vector Facility

A good example of a pipelined ALU organization for vector processing is the vector
facility developed for the IBM 370 architecture and implemented on the high-end
3090 series [PADE88, TUCK87]. This facility is an optional add-on to the basic
system but is highly integrated with it. It resembles vector facilities found on super-
computers, such as the Cray family.

The IBM facility makes use of a number of vector registers. Each register is
actually a bank of scalar registers. To compute the vector sum C = A + B, the vec-
tors A and B are loaded into two vector registers. The data from these registers are
passed through the ALU as fast as possible, and the results are stored in a third vec-
tor register. The computation overlap, and the loading of the input data into the reg-
isters in a block, results in a significant speeding up over an ordinary ALU operation.

ORGANIZATION The IBM vector architecture, and similar pipelined vector ALUs,
provides increased performance over loops of scalar arithmetic instructions in three
ways:

 • The fixed and predetermined structure of vector data permits housekeep-
ing instructions inside the loop to be replaced by faster internal (hardware or
 microcoded) machine operations.

 • Data-access and arithmetic operations on several successive vector elements
can proceed concurrently by overlapping such operations in a pipelined design
or by performing multiple-element operations in parallel.

 • The use of vector registers for intermediate results avoids additional storage
reference.

Figure 17.18 shows the general organization of the vector facility. Although the
vector facility is seen to be a physically separate add-on to the processor, its archi-
tecture is an extension of the System/370 architecture and is compatible with it. The
vector facility is integrated into the System/370 architecture in the following ways:

 • Existing System/370 instructions are used for all scalar operations.

 • Arithmetic operations on individual vector elements produce exactly the
same result as do corresponding System/370 scalar instructions. For example,
one design decision concerned the definition of the result in a floating-point
DIVIDE operation. Should the result be exact, as it is for scalar floating-point
division, or should an approximation be allowed that would permit higher-
speed implementation but could sometimes introduce an error in one or more
low-order bit positions? The decision was made to uphold complete compati-
bility with the System/370 architecture at the expense of a minor performance
degradation.

 • Vector instructions are interruptible, and their execution can be resumed from
the point of interruption after appropriate action has been taken, in a manner
compatible with the System/370 program-interruption scheme.

17.7 / VECTOR COMPUTATION 651

 • Arithmetic exceptions are the same as, or extensions of, exceptions for the
scalar arithmetic instructions of the System/370, and similar fix-up routines
can be used. To accommodate this, a vector interruption index is employed
that indicates the location in a vector register that is affected by an exception
(e.g., overflow). Thus, when execution of the vector instruction resumes, the
proper place in a vector register is accessed.

 • Vector data reside in virtual storage, with page faults being handled in a stand-
ard manner.

This level of integration provides a number of benefits. Existing operating
systems can support the vector facility with minor extensions. Existing application
programs, language compilers, and other software can be run unchanged. Software
that could take advantage of the vector facility can be modified as desired.

REGISTERS A key issue in the design of a vector facility is whether operands are
located in registers or memory. The IBM organization is referred to as register
to register, because the vector operands, both input and output, can be staged
in vector registers. This approach is also used on the Cray supercomputer. An
alternative approach, used on Control Data machines, is to obtain operands directly
from memory. The main disadvantage of the use of vector registers is that the
programmer or compiler must take them into account for good performance. For
example, suppose that the length of the vector registers is K and the length of the
vectors to be processed is N 7 K. In this case, a vector loop must be performed, in
which the operation is performed on K elements at a time and the loop is repeated
N/K times. The main advantage of the vector register approach is that the operation
is decoupled from slower main memory and instead takes place primarily with
registers.

Main memory

Cache

Instruction
decoder

Vector elements

Vector instructions

Scalar values

Scalar
processor

Scalar
processor

3090
CPU

Optional

Vector
processor

Vector
processor

Figure 17.18 IBM 3090 with Vector Facility

652 CHAPTER 17 / PARALLEL PROCESSING

The speedup that can be achieved using registers is demonstrated in
Figure 17.19. The FORTRAN routine multiplies vector A by vector B to produce
vector C, where each vector has a real part (AR, BR, CR) and an imaginary part (AI,
BI, CI). The 3090 can perform one main-storage access per processor, or clock, cycle
(either read or write); has registers that can sustain two accesses for reading and one
for writing per cycle; and produces one result per cycle in its arithmetic unit. Let us
assume the use of instructions that can specify two source operands and a result.4
Part (a) of the figure shows that, with memory-to-memory instructions, each itera-
tion of the computation requires a total of 18 cycles. With a pure register-to-register

4For the 370/390 architecture, the only three-operand instructions (register and storage instructions, RS)
specify two operands in registers and one in memory. In part (a) of the example, we assume the existence
of three-operand instructions in which all operands are in main memory. This is done for purposes of
comparison and, in fact, such an instruction format could have been chosen for the vector architecture.

FORTRAN ROUTINE:

DO 100 J � 1, 50
CR(J) � AR(J) * BR(J) � AI(J) * BI(J)

100 CI(J) � AR(J) * BI(J) � AI(J) * BR(J)

Operation Cycles Cycles

AR(J) * BR(J) T1(J)
AI(J) * BI(J) T2(J)
T1(J) � T2(J) CR(J)
AR(J) * BI(J) T3(J)
AI(J) * BR(J) T4(J)
T3(J) � T4(J) CI(J)

3
3
3
3
3
3

TOTAL 18

(a) Storage to storage

Operation Cycles

AR(J) V1(J)
V1(J) * BR(J) V2(J)
AI(J) V3(J)
V3(J) * BI(J) V4(J)
V2(J) � V4(J) V5(J)
V5(J) CR(J)
V1(J) * BI(J) V6(J)
V4(J) * BR(J) V7(J)
V6(J) � V7(J) V8(J)
V8(J) CI(J)

1
1
1
1
1
1
1
1
1
1

TOTAL 10

(c) Storage to register

Vi � Vector registers
AR, BR, AI, BI � Operands in memory
Ti � Temporary locations in memory

Operation

AR(J) V1(J)
BR(J) V2(J)
V1(J) * V2(J) V3(J)
AI(J) V4(J)
BI(J) V5(J)
V4(J) * V5(J) V6(J)
V3(J) � V6(J) V7(J)
V7(J) CR(J)
V1(J) * V5(J) V8(J)
V4(J) * V2(J) V9(J)
V8(J) � V9(J) V0(J)
V0(J) CI(J)

1
1
1
1
1
1
1
1
1
1
1
1

TOTAL 12

(b) Register to register

Operation Cycles

AR(J) V1(J)
V1(J) * BR(J) V2(J)
AI(J) V3(J)
V2(J) � V3(J) * BI(J) V2(J)
V2(J) CR(J)
V1(J) * BI(J) V4(J)
V4(J) � V3(J) * BR(J) V5(J)
V5(J) CI(J)

1
1
1
1
1
1
1
1

TOTAL 8

(d) Compound instruction

Figure 17.19 Alternative Programs for Vector Calculation

17.7 / VECTOR COMPUTATION 653

architecture (part (b)), this time is reduced to 12 cycles. Of course, with register-
to-register operation, the vector quantities must be loaded into the vector registers
prior to computation and stored in memory afterward. For large vectors, this fixed
penalty is relatively small. Figure 17.19c shows that the ability to specify both stor-
age and register operands in one instruction further reduces the time to 10 cycles per
iteration. This latter type of instruction is included in the vector architecture.5

Figure 17.20 illustrates the registers that are part of the IBM 3090 vector facil-
ity. There are sixteen 32-bit vector registers. The vector registers can also be cou-
pled to form eight 64-bit vector registers. Any register element can hold an integer
or floating-point value. Thus, the vector registers may be used for 32-bit and 64-bit
integer values, and 32-bit and 64-bit floating-point values.

5Compound instructions, discussed subsequently, afford a further reduction.

14 (0) 15 (0)

12 (0) 13 (0)

10 (0) 11 (0)

8 (0) 9 (0)

6 (0) 7 (0)

4 (0) 5 (0)

2 (0) 3 (0)

0 (0) 1 (0)

0 (1) 1 (1)

0 (2) 1 (2)

0 (127)

32 bits

Vector-status register

Vector-activity count

0

12
8

bi
ts

1

2

Z � 1

12
8

el
em

en
ts

64 bits

Vector
registers

Vector
mask

register

Figure 17.20 Registers for the IBM 3090 Vector Facility

654 CHAPTER 17 / PARALLEL PROCESSING

The architecture specifies that each register contains from 8 to 512 scalar
elements. The choice of actual length involves a design trade-off. The time to do a
vector operation consists essentially of the overhead for pipeline startup and reg-
ister filling plus one cycle per vector element. Thus, the use of a large number of
register elements reduces the relative startup time for a computation. However,
this efficiency must be balanced against the added time required for saving and
restoring vector registers on a process switch and the practical cost and space
 limits. These considerations led to the use of 128 elements per register in later 3090
implementations.

Three additional registers are needed by the vector facility. The vector-mask
register contains mask bits that may be used to select which elements in the vector
registers are to be processed for a particular operation. The vector-status register
contains control fields, such as the vector count, that determine how many elements
in the vector registers are to be processed. The vector-activity count keeps track of
the time spent executing vector instructions.

COMPOUND INSTRUCTIONS As was discussed previously, instruction execution
can be overlapped using chaining to improve performance. The designers of the
IBM vector facility chose not to include this capability for several reasons. The
System/370 architecture would have to be extended to handle complex interruptions
(including their effect on virtual memory management), and corresponding changes
would be needed in the software. A more basic issue was the cost of including the
additional controls and register access paths in the vector facility for generalized
chaining.

Instead, three operations are provided that combine into one instruction
(one opcode) the most common sequences in vector computation, namely multi-
plication followed by addition, subtraction, or summation. The storage-to-register
MULTIPLY-AND-ADD instruction, for example, fetches a vector from storage,
multiplies it by a vector from a register, and adds the product to a third vector
in a register. By use of the compound instructions MULTIPLY-AND-ADD and
MULTIPLY-AND-SUBTRACT in the example of Figure 17.19, the total time for
the iteration is reduced from 10 to 8 cycles.

Unlike chaining, compound instructions do not require the use of additional
registers for temporary storage of intermediate results, and they require one less
register access. For example, consider the following chain:

 A S VR1

 VR1 + VR2 S VR1

In this case, two stores to the vector register VR1 are required. In the IBM archi-
tecture there is a storage-to-register ADD instruction. With this instruction, only
the sum is placed in VR1. The compound instruction also avoids the need to reflect
in the machine-state description the concurrent execution of a number of instruc-
tions, which simplifies status saving and restoring by the operating system and the
handling of interrupts.

THE INSTRUCTION SET Table 17.3 summarizes the arithmetic and logical operations
that are defined for the vector architecture. In addition, there are memory-to-register

 655

Table 17.3 IBM 3090 Vector Facility: Arithmetic and Logical Instructions

Data Types

Floating-Point

Operation Long Short Binary or Logical Operand Locations

Add FL FS BI V + V S V V + S S V Q + V S V Q + S S V

Subtract FL FS BI V - V S V V - S S V V - V S V Q - S S V

Multiply FL FS BI V * V S V V * V S V Q * V S V Q * S S V

Divide FL FS — V>V S V V>S S V Q>V S V Q>S S V

Compare FL FS BI V # V S V V # S S V Q # V S V Q # S S V

Multiply and Add FL FS — V + V * S S V V + Q * V S V V + Q * S S V

Multiply and Subtract FL FS — V - V * S S V V - Q * V S V V - Q * S S V

Multiply and Accumulate FL FS — P + # V S V P + # S S V

Complement FL FS BI -V S V

Positive Absolute FL FS BI |V| S V

Negative Absolute FL FS BI - |V| S V

Maximum FL FS — Q # V S Q

Maximum Absolute FL FS — Q # V S Q

Minimum FL FS — Q # V S Q

Shift Left Logical — — LO # V S Q

Shift Right Logical — — LO # V S Q

And — — LO V & V S V V & S S V Q & V S V Q & S S V

OR — — LO V/V S V V/S S V Q/V S V Q/S S V

Exclusive-OR — — LO V { V S V V { S S V Q { V S V Q { S S V

Explanation Data types Operand locations
 FL Long floating point V Vector register
 FS Short floating point S Storager
 BI Binary integer Q Scalar (general or floating-point register)
 LO Logical P Partial sums in vector register
 . Special operation

656 CHAPTER 17 / PARALLEL PROCESSING

load and register-to-memory store instructions. Note that many of the instructions
use a three-operand format. Also, many instructions have a number of variants,
depending on the location of the operands. A source operand may be a vector
register (V), storage (S), or a scalar register (Q). The target is always a vector
register, except for comparison, the result of which goes into the vector-mask
register. With all these variants, the total number of opcodes (distinct instructions)
is 171. This rather large number, however, is not as expensive to implement as might
be imagined. Once the machine provides the arithmetic units and the data paths
to feed operands from storage, scalar registers, and vector registers to the vector
pipelines, the major hardware cost has been incurred. The architecture can, with
little difference in cost, provide a rich set of variants on the use of those registers
and pipelines.

Most of the instructions in Table 17.3 are self-explanatory. The two sum-
mation instructions warrant further explanation. The accumulate operation adds
together the elements of a single vector (ACCUMULATE) or the elements of the
product of two vectors (MULTIPLY-AND-ACCUMULATE). These instructions
present an interesting design problem. We would like to perform this operation as
rapidly as possible, taking full advantage of the ALU pipeline. The difficulty is that
the sum of two numbers put into the pipeline is not available until several cycles
later. Thus, the third element in the vector cannot be added to the sum of the first
two elements until those two elements have gone through the entire pipeline. To
overcome this problem, the elements of the vector are added in such a way as to
produce four partial sums. In particular, elements 0, 4, 8, 12, . . . , 124 are added
in that order to produce partial sum 0; elements 1, 5, 9, 13, . . . , 125 to partial sum
1; elements 2, 6, 10, 14, . . . , 126 to partial sum 2; and elements 3, 7, 11, 15, . . . , 127
to partial sum 4. Each of these partial sums can proceed through the pipeline at top
speed, because the delay in the pipeline is roughly four cycles. A separate vector
register is used to hold the partial sums. When all elements of the original vector
have been processed, the four partial sums are added together to produce the final
result. The performance of this second phase is not critical, because only four vector
elements are involved.

 17.8 RECOMMENDED READING

[MILE00] is an overview of cache coherence algorithms and techniques for multiproces-
sors, with an emphasis on performance issues. Another survey of the issues relating to cache
coherence in multiprocessors is [LILJ93]. [TOMA93] contains reprints of many of the key
papers on the subject.

[UNGE02] is an excellent survey of the concepts of multithreaded processors and chip
multiprocessors. [UNGE03] is a lengthy survey of both proposed and current multithreaded
processors that use explicit multithreading.

A thorough treatment of clusters can be found in [BUYY99a] and [BUYY99b].
[WEYG01] is a less technical survey of clusters, with good commentary on various commer-
cial products. [DESA05] describes IBM’s blade server architecture.

Good discussions of vector computation can be found in [STON93] and [HWAN93].

17.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 657

 17.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

BUYY99a Buyya, R. High-Performance Cluster Computing: Architectures and
 Systems. Upper Saddle River, NJ: Prentice Hall, 1999.

BUYY99b Buyya, R. High-Performance Cluster Computing: Programming and
 Applications. Upper Saddle River, NJ: Prentice Hall, 1999.

DESA05 Desai, D., et al. “BladeCenter System Overview.” IBM Journal of Research
and Development, November 2005.

LILJ93 Lilja, D. “Cache Coherence in Large-Scale Shared-Memory Multiprocessors:
Issues and Comparisons.” ACM Computing Surveys, September 1993.

MILE00 Milenkovic, A. “Achieving High Performance in Bus-Based Shared-Memory
Multiprocessors.” IEEE Concurrency, July-September 2000.

TOMA93 Tomasevic, M., and Milutinovic, V. The Cache Coherence Problem in
Shared-Memory Multiprocessors: Hardware Solutions. Los Alamitos, CA: IEEE
Computer Society Press, 1993.

UNGE02 Ungerer, T.; Rubic, B.; and Silc, J. “Multithreaded Processors.” The Compu-
ter Journal, No. 3, 2002.

UNGE03 Ungerer, T.; Rubic, B.; and Silc, J. “A Survey of Processors with Explicit
Multithreading.” ACM Computing Surveys, March, 2003.

WEYG01 Weygant, P. Clusters for High Availability. Upper Saddle River, NJ:
 Prentice Hall, 2001.

active standby
cache coherence
cluster
directory protocol
failback
failover

MESI protocol
multiprocessor
nonuniform memory access

(NUMA)
passive standby
snoopy protocol

symmetric multiprocessor
(SMP)

uniform memory access
(UMA)

uniprocessor
vector facility

Review Questions
 17.1 List and briefly define three types of computer system organization.
 17.2 What are the chief characteristics of an SMP?
 17.3 What are some of the potential advantages of an SMP compared with a uniprocessor?
 17.4 What are some of the key OS design issues for an SMP?
 17.5 What is the difference between software and hardware cache coherent schemes?
 17.6 What is the meaning of each of the four states in the MESI protocol?
 17.7 What are some of the key benefits of clustering?
 17.8 What is the difference between failover and failback?
 17.9 What are the differences among UMA, NUMA, and CC-NUMA?

658 CHAPTER 17 / PARALLEL PROCESSING

Problems
 17.1 Let a be the percentage of program code that can be executed simultaneously by n

processors in a computer system. Assume that the remaining code must be executed
sequentially by a single processor. Each processor has an execution rate of x MIPS.
a. Derive an expression for the effective MIPS rate when using the system for exclu-

sive execution of this program, in terms of n, a, and x.
b. If n = 16 and x = 4 MIPS, determine the value of a that will yield a system per-

formance of 40 MIPS.
 17.2 A multiprocessor with eight processors has 20 attached tape drives. There are a large

number of jobs submitted to the system that each require a maximum of four tape
drives to complete execution. Assume that each job starts running with only three
tape drives for a long period before requiring the fourth tape drive for a short period
toward the end of its operation. Also assume an endless supply of such jobs.
a. Assume the scheduler in the OS will not start a job unless there are four tape

drives available. When a job is started, four drives are assigned immediately and
are not released until the job finishes. What is the maximum number of jobs that
can be in progress at once? What are the maximum and minimum number of tape
drives that may be left idle as a result of this policy?

b. Suggest an alternative policy to improve tape drive utilization and at the same
time avoid system deadlock. What is the maximum number of jobs that can be in
progress at once? What are the bounds on the number of idling tape drives?

 17.3 Can you foresee any problem with the write-once cache approach on bus-based mul-
tiprocessors? If so, suggest a solution.

 17.4 Consider a situation in which two processors in an SMP configuration, over time, re-
quire access to the same line of data from main memory. Both processors have a cache
and use the MESI protocol. Initially, both caches have an invalid copy of the line.
Figure 17.21 depicts the consequence of a read of line x by Processor P1. If this is the
start of a sequence of accesses, draw the subsequent figures for the following sequence:
1. P2 reads x.
2. P1 writes to x (for clarity, label the line in P1’s cache x=).

x

x

Main
memory

Cache

Processor
1

Cache

Snoop

Memory
access

Processor
2

I E I

Figure 17.21 MESI Example: Processor 1 Reads Line x

17.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 659

3. P1 writes to x (label the line in P1’s cache x).
4. P2 reads x.

 17.5 Figure 17.22 shows the state diagrams of two possible cache coherence protocols.
Deduce and explain each protocol, and compare each to MESI.

 17.6 Consider an SMP with both L1 and L2 caches using the MESI protocol. As explained
in Section 17.3, one of four states is associated with each line in the L2 cache. Are all
four states also needed for each line in the L1 cache? If so, why? If not, explain which
state or states can be eliminated.

 17.7 An earlier version of the IBM mainframe, the S/390 G4, used three levels of cache.
As with the z990, only the first level was on the processor chip [called the processor
unit (PU)]. The L2 cache was also similar to the z990. An L3 cache was on a separate
chip that acted as a memory controller, and was interposed between the L2 caches
and the memory cards. Table 17.4 shows the performance of a three-level cache ar-
rangement for the IBM S/390. The purpose of this problem is to determine whether
the inclusion of the third level of cache seems worthwhile. Determine the access
penalty (average number of PU cycles) for a system with only an L1 cache, and nor-
malize that value to 1.0. Then determine the normalized access penalty when both
an L1 and L2 cache are used, and the access penalty when all three caches are used.
Note the amount of improvement in each case and state your opinion on the value
of the L3 cache.

 17.8 a. Consider a uniprocessor with separate data and instruction caches, with hit ratios
of Hd and Hi, respectively. Access time from processor to cache is c clock cycles,
and transfer time for a block between memory and cache is b clock cycles. Let fi

Table 17.4 Typical Cache Hit Rate on S/390 SMP Configuration [MAK97]

Memory Subsystem
Access Penalty

(PU cycles) Cache Size Hit Rate (%)

L1 cache 1 32 KB 89

L2 cache 5 256 KB 5

L3 cache 14 2 MB 3

Memory 32 8 GB 3

Invalid Valid

R(i)R(i)

R(j)

R(j)

W(i)

W(i)

W(j)

W(j)Z(j) Z(i)

Invalid

Exclusive

Shared

R(i)

R(i)

R(i)

R(j)

R(j)

R(j)

Z(j)

W(i)

W(i)

W(i)

W(j)

W(j)

W(j)

Z(j)

W(i) � Write to line by processor i
R(i) � Read line by processor i
Z(i) � Displace line by cache i
W(j) � Write to line by processor j (j fi i)
R(j) � Read line by processor j (j fi i)
Z(j) � Displace line by cache j (j fi i)

Note: State diagrams are for a
given line in cache i

Z(j)

Z(i)

Z(i)

Figure 17.22 Two Cache Coherence Protocols

660 CHAPTER 17 / PARALLEL PROCESSING

be the fraction of memory accesses that are for instructions, and fd is the fraction
of dirty lines in the data cache among lines replaced. Assume a write-back policy
and determine the effective memory access time in terms of the parameters just
defined.

b. Now assume a bus-based SMP in which each processor has the characteristics of
part (a). Every processor must handle cache invalidation in addition to memory
reads and writes. This affects effective memory access time. Let finv be the fraction
of data references that cause invalidation signals to be sent to other data caches.
The processor sending the signal requires t clock cycles to complete the invalida-
tion operation. Other processors are not involved in the invalidation operation.
Determine the effective memory access time.

17.9 What organizational alternative is suggested by each of the illustrations in
Figure 17.23?

 17.10 In Figure 17.7, some of the diagrams show horizontal rows that are partially filled. In
other cases, there are rows that are completely blank. These represent two different
types of loss of efficiency. Explain.

 17.11 Consider the pipeline depiction in Figure 14.13b, which is redrawn in Figure 17.24a,
with the fetch and decode stages ignored, to represent the execution of thread A.
Figure 17.24b illustrates the execution of a separate thread B. In both cases, a simple
pipelined processor is used.
a. Show an instruction issue diagram, similar to Figure 17.7a, for each of the two

threads.
b. Assume that the two threads are to be executed in parallel on a chip multiproces-

sor, with each of the two processors on the chip using a simple pipeline. Show an
instruction issue diagram similar to Figure 17.7k. Also show a pipeline execution
diagram in the style of Figure 17.24.

c. Assume a two-issue superscalar architecture. Repeat part (b) for an interleaved
multithreading superscalar implementation, assuming no data dependencies.
Note: There is no unique answer; you need to make assumptions about latency
and priority.

d. Repeat part (c) for a blocked multithreading superscalar implementation.
e. Repeat for a four-issue SMT architecture.

 17.12 The following code segment needs to be executed 64 times for the evaluation of the
vector arithmetic expression: D(I) = A(I) + B(I) * C(I) for 0 … I … 63.

Load R1, B(I) >R1 d Memory (a + I)>
Load R2, C(I) >R2 d Memory (b + I)>

(a) (b) (c) (d)

Figure 17.23 Diagram for Problem 18.9

17.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 661

Multiply R1, R2 >R1 d (R1) * (R2)>
Load R3, A(I) >R3 d Memory (g + I)>
Add R3, R1 >R3 d (R3) + (R1)>
Store D1, R3 >Memory (u + I) d (R3)>

where R1, R2, and R3 are processor registers, and a, b, g, u are the starting main mem-
ory addresses of arrays B(I), C(I), A(I), and D(I), respectively. Assume four clock
cycles for each Load or Store, two cycles for the Add, and eight cycles for the Multi-
plier on either a uniprocessor or a single processor in an SIMD machine.
a. Calculate the total number of processor cycles needed to execute this code seg-

ment repeatedly 64 times on a SISD uniprocessor computer sequentially, ignoring
all other time delays.

b. Consider the use of an SIMD computer with 64 processing elements to execute
the vector operations in six synchronized vector instructions over 64-compo-
nent vector data and both driven by the same-speed clock. Calculate the total
execution time on the SIMD machine, ignoring instruction broadcast and other
delays.

c. What is the speedup gain of the SIMD computer over the SISD computer?
 17.13 Produce a vectorized version of the following program:

 DO 20 I = 1, N
 B(I, 1) = 0
 DO 10 J = 1, M
 A(I) = A(I) + B(I, J) * C(I, J)
10 CONTINUE
 D(I) = E(I) + A(I)
20 CONTINUE

 17.14 An application program is executed on a nine-computer cluster. A benchmark pro-
gram took time T on this cluster. Further, it was found that 25% of T was time in

B7

B7

B7

1

2

3

4

5

6

7

8

9

10

11

12

(a)

CO FO EI WO

1

2

B1

3

B2 B1

4

B3 B2 B1

B4 B3 B2 B1

B5

B5

B5

B5

B4

B4

B4

B3 B2

B6B7

B6

B6

B6

B3

A16

A16

A16

A16

CO FO EI WO

A1

A2 A1

A3 A2 A1

A4 A3 A2 A1

A5 A4 A3 A2

A15

A15

A15

A15

A3

5

6

7

8

9

10

11

12

(b)

C
yc

le

Figure 17.24 Two Threads of Execution

662 CHAPTER 17 / PARALLEL PROCESSING

which the application was running simultaneously on all nine computers. The remain-
ing time, the application had to run on a single computer.
a. Calculate the effective speedup under the aforementioned condition as compared

to executing the program on a single computer. Also calculate a, the percentage of
code that has been parallelized (programmed or compiled so as to use the cluster
mode) in the preceding program.

b. Suppose that we are able to effectively use 17 computers rather than 9 comput-
ers on the parallelized portion of the code. Calculate the effective speedup that is
achieved.

 17.15 The following FORTRAN program is to be executed on a computer, and a parallel
version is to be executed on a 32-computer cluster.

L1: DO 10 I = 1, 1024
L2: SUM(I) = 0
L3: DO 20 J = 1, I
L4: 20 SUM(I) = SUM(I) + I
L5: 10 CONTINUE

Suppose lines 2 and 4 each take two machine cycle times, including all proces-
sor and memory-access activities. Ignore the overhead caused by the software
loop control statements (lines 1, 3, 5) and all other system overhead and resource
conflicts.
a. What is the total execution time (in machine cycle times) of the program on a

single computer?
b. Divide the I-loop iterations among the 32 computers as follows: Computer 1 ex-

ecutes the first 32 iterations (I = 1 to 32), processor 2 executes the next 32 itera-
tions, and so on. What are the execution time and speedup factor compared with
part (a)? (Note that the computational workload, dictated by the J-loop, is unbal-
anced among the computers.)

c. Explain how to modify the parallelizing to facilitate a balanced parallel execution
of all the computational workload over 32 computers. By a balanced load is meant
an equal number of additions assigned to each computer with respect to both
loops.

d. What is the minimum execution time resulting from the parallel execution on
32 computers? What is the resulting speedup over a single computer?

 17.16 Consider the following two versions of a program to add two vectors:

L1: DO 10 I = 1, N DOALL K = 1, M
L2: A(I) = B(I) + C(I) DO 10 I = L(K - 1) + 1, KL
L3: 10 CONTINUE A(I) = B(I) + C(I)
L4: SUM = 0 10 CONTINUE
L5: DO 20 J = 1, N SUM(K) = 0
L6: SUM = SUM + A(J) DO 20 J = 1, L
L7: 20 CONTINUE SUM(K) = SUM(K) + A(L(K - 1) + J)

 20 CONTINUE
ENDALL

a. The program on the left executes on a uniprocessor. Suppose each line of code
L2, L4, and L6 takes one processor clock cycle to execute. For simplicity, ignore
the time required for the other lines of code. Initially all arrays are already loaded
in main memory and the short program fragment is in the instruction cache. How
many clock cycles are required to execute this program?

17.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 663

b. The program on the right is written to execute on a multiprocessor with M proces-
sors. We partition the looping operations into M sections with L = N>M elements
per section. DOALL declares that all M sections are executed in parallel. The
result of this program is to produce M partial sums. Assume that k clock cycles are
needed for each interprocessor communication operation via the shared memory
and that therefore the addition of each partial sum requires k cycles. An l-level
binary adder tree can merge all the partial sums, where l = log2M. How many
cycles are needed to produce the final sum?

c. Suppose N = 220 elements in the array and M = 256. What is the speedup
achieved by using the multiprocessor? Assume k = 200. What percentage is this
of the theoretical speedup of a factor of 256?

664

MULTICORE COMPUTERS
18.1 Hardware Performance Issues

Increase in Parallelism and Complexity
Power Consumption

18.2 Software Performance Issues
Software on Multicore
Application Example: Valve Game Software

18.3 Multicore Organization

18.4 Intel x86 Multicore Organization
Intel Core Duo
Intel Core i7-990X

18.5 ARM11 MPCore
Interrupt Handling
Cache Coherency

18.6 IBM zEnterprise 196 Mainframe

18.7 Recommended Reading

18.8 Key Terms, Review Questions, and Problems

CHAPTER

18.1 / HARDWARE PERFORMANCE ISSUES 665

A multicore computer, also known as a chip multiprocessor, combines two or more
processors (called cores) on a single piece of silicon (called a die). Typically, each
core consists of all of the components of an independent processor, such as registers,
ALU, pipeline hardware, and control unit, plus L1 instruction and data caches. In
addition to the multiple cores, contemporary multicore chips also include L2 cache
and, increasingly, L3 cache.

This chapter provides an overview of multicore systems. We begin with a look
at the hardware performance factors that led to the development of multicore com-
puters and the software challenges of exploiting the power of a multicore system.
Next, we look at multicore organization. Finally, we examine three examples of
multicore products, covering personal computer and workstation systems (Intel),
embedded systems (ARM), and mainframes (IBM).

 18.1 HARDWARE PERFORMANCE ISSUES

As we discuss in Chapter 2, microprocessor systems have experienced a steady,
exponential increase in execution performance for decades. Figure 2.12 shows that
this increase is due partly to refinements in the organization of the processor on the
chip, and partly to the increase in the clock frequency.

Increase in Parallelism and Complexity

The organizational changes in processor design have primarily been focused on
increasing instruction-level parallelism, so that more work could be done in each
clock cycle. These changes include, in chronological order (Figure 18.1):

 • Pipelining: Individual instructions are executed through a pipeline of stages
so that while one instruction is executing in one stage of the pipeline, another
instruction is executing in another stage of the pipeline.

 • Superscalar: Multiple pipelines are constructed by replicating execution
resources. This enables parallel execution of instructions in parallel pipelines,
so long as hazards are avoided.

 • Simultaneous multithreading (SMT): Register banks are replicated so that
multiple threads can share the use of pipeline resources.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Understand the hardware performance issues that have driven the move to
multicore computers.

� Understand the software performance issues posed by the use of
multithreaded multicore computers.

� Have an appreciation of the use of multicore organization on embedded
systems, PCs and servers, and mainframes.

666 CHAPTER 18 / MULTICORE COMPUTERS

For each of these innovations, designers have over the years attempted to
increase the performance of the system by adding complexity. In the case of pipelin-
ing, simple three-stage pipelines were replaced by pipelines with five stages, and
then many more stages, with some implementations having over a dozen stages.
There is a practical limit to how far this trend can be taken, because with more
stages, there is the need for more logic, more interconnections, and more control
signals. With superscalar organization, increased performance can be achieved by
increasing the number of parallel pipelines. Again, there are diminishing returns as
the number of pipelines increases. More logic is required to manage hazards and
to stage instruction resources. Eventually, a single thread of execution reaches the
point where hazards and resource dependencies prevent the full use of the multiple

Instruction fetch unit

Issue logic

Program counter
Execution units and queues

L1 instruction cache

L2 cache

(a) Superscalar

L1 data cache

Single-thread register file

Instruction fetch unit

Issue logic

Execution units and queues

L1 instruction cache

L2 cache

(b) Simultaneous multithreading

L1 data cache

P
C

 1

P
C

 n

R
eg

is
te

r
1

R
eg

is
te

rs
 n

L
1-

I
L

1-
D

L2 cache

P
ro

ce
ss

or
 1

(s
up

er
sc

al
ar

 o
r

SM
T

)

(c) Multicore

L
1-

I
L

1-
D

P
ro

ce
ss

or
 2

(s
up

er
sc

al
ar

 o
r

SM
T

)

L
1-

I
L

1-
D

P
ro

ce
ss

or
 3

(s
up

er
sc

al
ar

 o
r

SM
T

)

L
1-

I
L

1-
D

P
ro

ce
ss

or
 n

(s
up

er
sc

al
ar

 o
r

SM
T

)

Figure 18.1 Alternative Chip Organizations

18.1 / HARDWARE PERFORMANCE ISSUES 667

pipelines available. This same point of diminishing returns is reached with SMT,
as the complexity of managing multiple threads over a set of pipelines limits the
number of threads and number of pipelines that can be effectively utilized.

Figure 18.2, from [OLUK05], is instructive in this context. The upper graph shows
the exponential increase in Intel processor performance over the years.1 The lower
graph is calculated by combining Intel’s published SPEC CPU figures and processor
clock frequencies to give a measure of the extent to which performance improvement
is due to increased exploitation of instruction-level parallelism. There is a flat region in
the late 1980s before parallelism was exploited extensively. This is followed by a steep
rise as designers were able to increasingly exploit pipelining, superscalar techniques,
and SMT. But, beginning about 2000, a new flat region of the curve appears, as the
limits of effective exploitation of instruction-level parallelism are reached.

1The data are based on published SPEC CPU figures from Intel, normalized across varying suites.

0.1
1985 1987 1989 1991 1993 1995 1997 1999 2001 2003

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003

1

10

100

1000

10,000

R
el

at
iv

e
pe

rf
or

m
an

ce
R

el
at

iv
e

pe
rf

or
m

an
ce

/c
yc

le

Figure 18.2 Some Intel Hardware Trends

668 CHAPTER 18 / MULTICORE COMPUTERS

There is a related set of problems dealing with the design and fabrication of the
computer chip. The increase in complexity to deal with all of the logical issues related
to very long pipelines, multiple superscalar pipelines, and multiple SMT register banks
means that increasing amounts of the chip area are occupied with coordinating and
signal transfer logic. This increases the difficulty of designing, fabricating, and debug-
ging the chips. The increasingly difficult engineering challenge related to processor
logic is one of the reasons that an increasing fraction of the processor chip is devoted
to the simpler memory logic. Power issues, discussed next, provide another reason.

Power Consumption

To maintain the trend of higher performance as the number of transistors per chip
rise, designers have resorted to more elaborate processor designs (pipelining, super-
scalar, SMT) and to high clock frequencies. Unfortunately, power requirements
have grown exponentially as chip density and clock frequency have risen. This is
shown in the Figure 18.3, which repeats Figure 2.11.

One way to control power density is to use more of the chip area for cache
memory. Memory transistors are smaller and have a power density an order of mag-
nitude lower than that of logic (see Figure 18.4). Further, as chip transistor density
has increased, the percentage of chip area devoted to memory has grown, and is
now well over half the chip area.

By 2015, we can expect to see microprocessor chips with about 100 billion
transistors on a 300 mm2 die. Assuming about 50–60% of the chip area is devoted
to memory, the chip will support cache memory of about 100 MB and leave over 1
billion transistors available for logic.

How to use all those logic transistors is a key design issue. As discussed earlier
in this section, there are limits to the effective use of such techniques as superscalar

0.1

1

10

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

Power (W)

Cores

102

103

104

105

106

107

Figure 18.3 Processor Trends

18.2 / SOFTWARE PERFORMANCE ISSUES 669

and SMT. In general terms, the experience of recent decades has been encapsulated
in a rule of thumb known as Pollack’s rule [POLL99], which states that performance
increase is roughly proportional to square root of increase in complexity. In other
words, if you double the logic in a processor core, then it delivers only 40% more
performance. In principle, the use of multiple cores has the potential to provide
near-linear performance improvement with the increase in the number of cores.

Power considerations provide another motive for moving toward a multicore
organization. Because the chip has such a huge amount of cache memory, it becomes
unlikely that any one thread of execution can effectively use all that memory. Even
with SMT, you are multithreading in a relatively limited fashion and cannot therefore
fully exploit a gigantic cache, whereas a number of relatively independent threads or
processes has a greater opportunity to take full advantage of the cache memory.

 18.2 SOFTWARE PERFORMANCE ISSUES

A detailed examination of the software performance issues related to multicore
organization is beyond our scope. In this section, we first provide an overview of
these issues, and then look at an example of an application designed to exploit mul-
ticore capabilities.

Software on Multicore

The potential performance benefits of a multicore organization depend on the
ability to effectively exploit the parallel resources available to the application. Let
us focus first on a single application running on a multicore system. Recall from
Chapter 2 that Amdahl’s law states that:

 Speed up =
time to execute program on a single processor

time to execute program on N parallel processors

 =
1

(1 - f) +
f

N

 (18.1)

Feature size (μm)

Logic

Memory

Power density
(watts/cm2)

0.25
1

10

100

0.18 0.13 0.10

Figure 18.4 Power and Memory Considerations

670 CHAPTER 18 / MULTICORE COMPUTERS

The law assumes a program in which a fraction (1 – f) of the execution time involves
code that is inherently serial and a fraction f that involves code that is infinitely par-
allelizable with no scheduling overhead.

This law appears to make the prospect of a multicore organization attractive.
But as Figure 18.5a shows, even a small amount of serial code has a noticeable impact.
If only 10% of the code is inherently serial (f = 0.9), running the program on a multi-
core system with 8 processors yields a performance gain of only a factor of 4.7. In addi-
tion, software typically incurs overhead as a result of communication and distribution
of work among multiple processors and as a result of cache coherence overhead. This
results in a curve where performance peaks and then begins to degrade because of the

R
el

at
iv

e
sp

ee
du

p
R

el
at

iv
e

sp
ee

du
p

0

2

4

6

8

21
Number of processors

(a) Speedup with 0%, 2%, 5%, and 10% sequential portions

3 4 5 6

0%

2%

5%

10%

10%
5%

15%
20%

7 8

0

0.5

1.0

1.5

2.0

2.5

21
Number of processors

(b) Speedup with overheads

3 4 5 6 7 8

Figure 18.5 Performance Effect of Multiple Cores

18.2 / SOFTWARE PERFORMANCE ISSUES 671

increased burden of the overhead of using multiple processors (e.g., coordination and
OS management). Figure 18.5b, from [MCDO05], is a representative example.

However, software engineers have been addressing this problem and there are
numerous applications in which it is possible to effectively exploit a multicore sys-
tem. [MCDO05] analyzes the effectiveness of multicore systems on a set of database
applications, in which great attention was paid to reducing the serial fraction within
hardware architectures, operating systems, middleware, and the database applica-
tion software. Figure 18.6 shows the result. As this example shows, database man-
agement systems and database applications are one area in which multicore systems
can be used effectively. Many kinds of servers can also effectively use the parallel
multicore organization, because servers typically handle numerous relatively inde-
pendent transactions in parallel.

In addition to general-purpose server software, a number of classes of applica-
tions benefit directly from the ability to scale throughput with the number of cores.
[MCDO06] lists the following examples:

 • Multithreaded native applications: Multithreaded applications are charac-
terized by having a small number of highly threaded processes. Examples
of threaded applications include Lotus Domino or Siebel CRM (Customer
Relationship Manager).

 • Multiprocess applications: Multiprocess applications are characterized by the
presence of many single-threaded processes. Examples of multi-process appli-
cations include the Oracle database, SAP, and PeopleSoft.

 • Java applications: Java applications embrace threading in a fundamen-
tal way. Not only does the Java language greatly facilitate multithreaded
applications, but the Java Virtual Machine is a multithreaded process that

0
0

16

32

48

64

16 32
Number of CPUs

Sc
al

in
g

48 64

Per
fec

t s
ca

lin
g

Oracle DSS 4-way join
TMC data mining
DB2 DSS scan & aggs

Oracle ad hoc insurance OLTP

Figure 18.6 Scaling of Database Workloads on Multiple-Processor Hardware

672 CHAPTER 18 / MULTICORE COMPUTERS

provides scheduling and memory management for Java applications. Java
applications that can benefit directly from multicore resources include
application servers such as Sun’s Java Application Server, BEA’s Weblogic,
IBM’s Websphere, and the open-source Tomcat application server. All
applications that use a Java 2 Platform, Enterprise Edition (J2EE platform)
application server can immediately benefit from multicore technology.

 • Multi-instance applications: Even if an individual application does not scale
to take advantage of a large number of threads, it is still possible to gain from
multicore architecture by running multiple instances of the application in par-
allel. If multiple application instances require some degree of isolation, virtu-
alization technology (for the hardware of the operating system) can be used to
provide each of them with its own separate and secure environment.

Application Example: Valve Game Software

Valve is an entertainment and technology company that has developed a number
of popular games, as well as the Source engine, one of the most widely played game
engines available. Source is an animation engine used by Valve for its games and
licensed for other game developers.

In recent years, Valve has reprogrammed the Source engine software to use
multithreading to exploit the power of multicore processor chips from Intel and
AMD [REIM06]. The revised Source engine code provides more powerful support
for Valve games such as Half Life 2.

From Valve’s perspective, threading granularity options are defined as follows
[HARR06]:

 • Coarse threading: Individual modules, called systems, are assigned to individ-
ual processors. In the Source engine case, this would mean putting rendering
on one processor, AI (artificial intelligence) on another, physics on another,
and so on. This is straightforward. In essence, each major module is single
threaded and the principal coordination involves synchronizing all the threads
with a timeline thread.

 • Fine-grained threading: Many similar or identical tasks are spread across mul-
tiple processors. For example, a loop that iterates over an array of data can be
split up into a number of smaller parallel loops in individual threads that can
be scheduled in parallel.

 • Hybrid threading: This involves the selective use of fine-grain threading for
some systems and single threading for other systems.

Valve found that through coarse threading, it could achieve up to twice the
performance across two processors compared to executing on a single processor.
But this performance gain could only be achieved with contrived cases. For real-
world gameplay, the improvement was on the order of a factor of 1.2. Valve also
found that effective use of fine-grain threading was difficult. The time per work unit
can be variable, and managing the timeline of outcomes and consequences involved
complex programming.

Valve found that a hybrid threading approach was the most promising and
would scale the best as multicore systems with eight or sixteen processors became

18.2 / SOFTWARE PERFORMANCE ISSUES 673

available. Valve identified systems that operate very effectively when assigned to
a single processor permanently. An example is sound mixing, which has little user
interaction, is not constrained by the frame configuration of windows, and works on
its own set of data. Other modules, such as scene rendering, can be organized into a
number of threads so that the module can execute on a single processor but achieve
greater performance as it is spread out over more and more processors.

Figure 18.7 illustrates the thread structure for the rendering module. In this
hierarchical structure, higher-level threads spawn lower-level threads as needed.
The rendering module relies on a critical part of the Source engine, the world list,
which is a database representation of the visual elements in the game’s world. The
first task is to determine what are the areas of the world that need to be rendered.
The next task is to determine what objects are in the scene as viewed from multi-
ple angles. Then comes the processor-intensive work. The rendering module has
to work out the rendering of each object from multiple points of view, such as the
player’s view, the view of TV monitors, and the point of view of reflections in water.

Some of the key elements of the threading strategy for the rendering module
are listed in [LEON07] and include the following:

 • Construct scene-rendering lists for multiple scenes in parallel (e.g., the world
and its reflection in water).

 • Overlap graphics simulation.

Render

Skybox Main view

Scene list

For each object

Particles

Sim and draw

Bone setup

Draw

Character

Etc.

Monitor Etc.

Figure 18.7 Hybrid Threading for Rendering Module

674 CHAPTER 18 / MULTICORE COMPUTERS

 • Compute character bone transformations for all characters in all scenes in
parallel.

 • Allow multiple threads to draw in parallel.

The designers found that simply locking key databases, such as the world list,
for a thread was too inefficient. Over 95% of the time, a thread is trying to read
from a data set, and only 5% of the time at most is spent in writing to a data set.
Thus, a concurrency mechanism known as the single-writer-multiple-readers model
works effectively.

 18.3 MULTICORE ORGANIZATION

At a top level of description, the main variables in a multicore organization are as
follows:

 • The number of core processors on the chip

 • The number of levels of cache memory

 • The amount of cache memory that is shared

Figure 18.8 shows four general organizations for multicore systems. Figure
18.8a is an organization found in some of the earlier multicore computer chips and
is still seen in embedded chips. In this organization, the only on-chip cache is L1
cache, with each core having its own dedicated L1 cache. Almost invariably, the L1
cache is divided into instruction and data caches. An example of this organization is
the ARM11 MPCore.

The organization of Figure 18.8b is also one in which there is no on-chip cache
sharing. In this, there is enough area available on the chip to allow for L2 cache.
An example of this organization is the AMD Opteron. Figure 18.8c shows a similar
allocation of chip space to memory, but with the use of a shared L2 cache. The Intel
Core Duo has this organization. Finally, as the amount of cache memory available
on the chip continues to grow, performance considerations dictate splitting off a
separate, shared L3 cache, with dedicated L1 and L2 caches for each core processor.
The Intel Core i7 is an example of this organization.

The use of a shared L2 cache on the chip has several advantages over exclusive
reliance on dedicated caches:

 1. Constructive interference can reduce overall miss rates. That is, if a thread on
one core accesses a main memory location, this brings the frame containing
the referenced location into the shared cache. If a thread on another core soon
thereafter accesses the same memory block, the memory locations will already
be available in the shared on-chip cache.

 2. A related advantage is that data shared by multiple cores is not replicated at
the shared cache level.

 3. With proper frame replacement algorithms, the amount of shared cache allo-
cated to each core is dynamic, so that threads that have a less locality can
employ more cache.

18.3 / MULTICORE ORGANIZATION 675

 4. Interprocessor communication is easy to implement, via shared memory locations.

 5. The use of a shared L2 cache confines the cache coherency problem to the L1
cache level, which may provide some additional performance advantage.

A potential advantage to having only dedicated L2 caches on the chip is that
each core enjoys more rapid access to its private L2 cache. This is advantageous for
threads that exhibit strong locality.

As both the amount of memory available and the number of cores grow, the
use of a shared L3 cache combined with either a shared L2 cache or dedicated per-
core L2 caches seems likely to provide better performance than simply a massive
shared L2 cache.

Another organizational design decision in a multicore system is whether the
individual cores will be superscalar or will implement simultaneous multithreading
(SMT). For example, the Intel Core Duo uses superscalar cores, whereas the Intel
Core i7 uses SMT cores. SMT has the effect of scaling up the number of hardware-
level threads that the multicore system supports. Thus, a multicore system with four
cores and SMT that supports four simultaneous threads in each core appears the
same to the application level as a multicore system with 16 cores. As software is
developed to more fully exploit parallel resources, an SMT approach appears to be
more attractive than a superscalar approach.

CPU Core 1

L1-D

L2 cache L2 cache

L1-I

CPU Core n

L1-D L1-I

Main memory

(b) Dedicated L2 cache

I/O

CPU Core 1

L1-D

L2 cache

L3 cache

L2 cache

L1-I

CPU Core n

L1-D L1-I

Main memory

(d) Shared L3 cache

I/O

CPU Core 1

L1-D

L2 cache

L1-I

CPU Core n

L1-D L1-I

Main memory

(c) Shared L2 cache

I/O

CPU Core 1

L1-D L1-I

CPU Core n

L1-D L1-I

L2 cache

Main memory

(a) Dedicated L1 cache

I/O

Figure 18.8 Multicore Organization Alternatives

676 CHAPTER 18 / MULTICORE COMPUTERS

 18.4 INTEL x86 MULTICORE ORGANIZATION

Intel has introduced a number of multicore products in recent years. In this section,
we look at two examples: the Intel Core Duo and the Intel Core i7-990X.

Intel Core Duo

The Intel Core Duo, introduced in 2006, implements two x86 superscalar processors
with a shared L2 cache (Figure 18.8c).

The general structure of the Intel Core Duo is shown in Figure 18.9. Let us
consider the key elements starting from the top of the figure. As is common in mul-
ticore systems, each core has its own dedicated L1 cache. In this case, each core has
a 32-kB instruction cache and a 32-kB data cache.

Each core has an independent thermal control unit. With the high transistor
density of today’s chips, thermal management is a fundamental capability, espe-
cially for laptop and mobile systems. The Core Duo thermal control unit is designed
to manage chip heat dissipation to maximize processor performance within thermal
constraints. Thermal management also improves ergonomics with a cooler system
and lower fan acoustic noise. In essence, the thermal management unit monitors
digital sensors for high-accuracy die temperature measurements. Each core can
be defined as an independent thermal zone. The maximum temperature for each

Thermal control Thermal control

APIC APIC

32
-k

B
 L

1
C

ac
he

s

32
-k

B
 L

1
C

ac
he

s

E
xe

cu
ti

on
re

so
ur

ce
s

E
xe

cu
ti

on
re

so
ur

ce
s

A
rc

h.
 s

ta
te

A
rc

h.
 s

ta
te

Power management logic

2 MB L2 shared cache

Bus interface

Front-side bus

Figure 18.9 Intel Core Duo Block Diagram

18.4 / INTEL x86 MULTICORE ORGANIZATION 677

thermal zone is reported separately via dedicated registers that can be polled by
software. If the temperature in a core exceeds a threshold, the thermal control unit
reduces the clock rate for that core to reduce heat generation.

The next key element of the Core Duo organization is the Advanced
Programmable Interrupt Controller (APIC). The APIC performs a number of
functions, including the following:

 1. The APIC can provide interprocessor interrupts, which allow any process to
interrupt any other processor or set of processors. In the case of the Core Duo,
a thread in one core can generate an interrupt, which is accepted by the local
APIC, routed to the APIC of the other core, and communicated as an inter-
rupt to the other core.

 2. The APIC accepts I/O interrupts and routes these to the appropriate core.

 3. Each APIC includes a timer, which can be set by the OS to generate an inter-
rupt to the local core.

The power management logic is responsible for reducing power consumption
when possible, thus increasing battery life for mobile platforms, such as laptops. In
essence, the power management logic monitors thermal conditions and CPU activ-
ity and adjusts voltage levels and power consumption appropriately. It includes an
advanced power-gating capability that allows for an ultra fine-grained logic con-
trol that turns on individual processor logic subsystems only if and when they are
needed.

The Core Duo chip includes a shared 2-MB L2 cache. The cache logic allows
for a dynamic allocation of cache space based on current core needs, so that one
core can be assigned up to 100% of the L2 cache. The L2 cache includes logic to
support the MESI cache coherence protocol for the attached L1 caches. The key
point to consider is when a cache write is done at the L1 level. A cache line gets the
M state when a processor writes to it; if the line is not in E or M-state prior to writ-
ing it, the cache sends a Read-For-Ownership (RFO) request that ensures that the
line exists in the L1 cache and is in the I state in the other L1 cache. The Intel Core
Duo extends this protocol to take into account the case when there are multiple
Core Duo chips organized as a symmetric multiprocessor (SMP) system. The L2
cache controller allow the system to distinguish between a situation in which data
are shared by the two local cores, but not with the rest of the world, and a situation
in which the data are shared by one or more caches on the die as well as by an agent
on the external bus (can be another processor). When a core issues an RFO, if the
line is shared only by the other cache within the local die, we can resolve the RFO
internally very fast, without going to the external bus at all. Only if the line is shared
with another agent on the external bus do we need to issue the RFO externally.

The bus interface connects to the external bus, known as the Front Side Bus,
which connects to main memory, I/O controllers, and other processor chips.

Intel Core i7-990X

The Intel Core i7-990X, introduced in November of 2008, implements four x86
SMT processors, each with a dedicated L2 cache, and with a shared L3 cache
(Figure 18.8d).

678 CHAPTER 18 / MULTICORE COMPUTERS

The general structure of the Intel Core i7-990X is shown in Figure 18.10. Each
core has its own dedicated L2 cache and the four cores share a 12-MB L3 cache.
One mechanism Intel uses to make its caches more effective is prefetching, in which
the hardware examines memory access patterns and attempts to fill the caches spec-
ulatively with data that’s likely to be requested soon. It is interesting to compare the
performance of this three-level on chip cache organization with a comparable two-
level organization from Intel. Table 18.1 shows the cache access latency, in terms of
clock cycles for two Intel multicore systems running at the same clock frequency.
The Core 2 Quad has a shared L2 cache, similar to the Core Duo. The Core i7
improves on L2 cache performance with the use of the dedicated L2 caches, and
provides a relatively high-speed access to the L3 cache.

The Core i7-990X chip supports two forms of external communications to
other chips. The DDR3 memory controller brings the memory controller for the
DDR main memory2 onto the chip. The interface supports three channels that
are 8 bytes wide for a total bus width of 192 bits, for an aggregate data rate of
up to 32 GB/s. With the memory controller on the chip, the Front Side Bus is
eliminated.

Core 0

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

256 kB
L2 Cache

Core 1

256 kB
L2 Cache

Core 2

256 kB
L2 Cache

Core 3

256 kB
L2 Cache

Core 4

256 kB
L2 Cache

Core 5

256 kB
L2 Cache

12 MB
L3 Cache

DDR3 Memory
Controllers

QuickPath
Interconnect

3 � 8B @ 1.33 GT/s 4 � 20B @ 6.4 GT/s

Figure 18.10 Intel Core i7-990X Block Diagram

Table 18.1 Cache Latency (in clock cycles)

CPU Clock Frequency L1 Cache L2 Cache L3 Cache

Core 2 Quad 2.66 GHz 3 cycles 15 cycles —

Core i7 2.66 GHz 4 cycles 11 cycles 39 cycles

2The DDR synchronous RAM memory is discussed in Chapter 5.

18.5 / ARM11 MPCORE 679

The QuickPath Interconnect (QPI) is a cache-coherent, point-to-point link
based electrical interconnect specification for Intel processors and chipsets. It
 enables high-speed communications among connected processor chips. The QPI
link operates at 6.4 GT/s (transfers per second). At 16 bits per transfer, that adds
up to 12.8 GB/s, and since QPI links involve dedicated bidirectional pairs, the total
bandwidth is 25.6 GB/s. Section 3.5 covers QPI in some detail.

 18.5 ARM11 MPCORE

The ARM11 MPCore is a multicore product based on the ARM11 processor fam-
ily. The ARM11 MPCore can be configured with up to four processors, each with
its own L1 instruction and data caches, per chip. Table 18.2 lists the configurable
options for the system, including the default values.

Figure 18.11 presents a block diagram of the ARM11 MPCore. The key ele-
ments of the system are as follows:

 • Distributed interrupt controller (DIC): Handles interrupt detection and inter-
rupt prioritization. The DIC distributes interrupts to individual processors.

 • Timer: Each CPU has its own private timer that can generate interrupts.

 • Watchdog: Issues warning alerts in the event of software failures. If the watch-
dog is enabled, it is set to a predetermined value and counts down to 0. It is
periodically reset. If the watchdog value reaches zero, an alert is issued.

 • CPU interface: Handles interrupt acknowledgment, interrupt masking, and
interrupt completion acknowledgement.

 • CPU: A single ARM11 processor. Individual CPUs are referred to as MP11
CPUs.

 • Vector floating-point (VFP) unit: A coprocessor that implements floating-
point operations in hardware.

 • L1 cache: Each CPU has its own dedicated L1 data cache and L1 instruction
cache.

 • Snoop control unit (SCU): Responsible for maintaining coherency among L1
data caches.

Table 18.2 ARM11 MPCore Configurable Options

Feature Range of Options Default Value

Processors 1 to 4 4

Instruction cache size per processor 16 kB, 32 kB, or 64 kB 32 kB

Data cache size per processor 16 kB, 32 kB, or 64 kB 32 kB

Master ports 1 or 2 2

Width of interrupt bus 0 to 224 by increments of 32 pins 32 pins

Vector floating point (VFP)
coprocessor per processor

Included or not Included

680 CHAPTER 18 / MULTICORE COMPUTERS

Interrupt Handling

The Distributed Interrupt Controller (DIC) collates interrupts from a large number
of sources. It provides

 • Masking of interrupts

 • Prioritization of the interrupts

 • Distribution of the interrupts to the target MP11 CPUs

 • Tracking the status of interrupts

 • Generation of interrupts by software

The DIC is a single functional unit that is placed in the system alongside
MP11 CPUs. This enables the number of interrupts supported in the system to

Snoop control unit (SCU)

L1 cache

CPU/VFP

Timer CPU
inter-
faceWdog

L1 cache

CPU/VFP

L1 cache

CPU/VFP

L1 cache

CPU/VFP

Timer CPU
inter-
faceWdog

Timer CPU
inter-
faceWdog

Timer CPU
inter-
faceWdog

Distributed
interrupt
controller

Configurable
number of
hardware
interrupt lines

Instruction
and data

64-bit bus

Coherency
control bits

Instruction
and data

64-bit bus

Read/write
64-bit bus

IRQ IRQ IRQ IRQ

Per CPU private
fast interrupt
(FIQ) lines

Optional 2nd R/W
64-bit bus

Coherency
control bits

Instruction
and data

64-bit bus

Coherency
control bits

Instruction
and data

64-bit bus

Coherency
control bits

Figure 18.11 ARM11 MPCore Processor Block Diagram

18.5 / ARM11 MPCORE 681

be independent of the MP11 CPU design. The DIC is memory mapped; that
is, control registers for the DIC are defined relative to a main memory base
address. The DIC is accessed by the MP11 CPUs using a private interface through
the SCU.

The DIC is designed to satisfy two functional requirements:

 • Provide a means of routing an interrupt request to a single CPU or multiple
CPUs, as required.

 • Provide a means of interprocessor communication so that a thread on one
CPU can cause activity by a thread on another CPU.

As an example that makes use of both requirements, consider a multithreaded
application that has threads running on multiple processors. Suppose the applica-
tion allocates some virtual memory. To maintain consistency, the operating system
must update memory translation tables on all processors. The OS could update the
tables on the processor where the virtual memory allocation took place, and then
issue an interrupt to all the other processors running this application. The other
processors could then use this interrupt’s ID to determine that they need to update
their memory translation tables.

The DIC can route an interrupt to one or more CPUs in the following three ways:

 • An interrupt can be directed to a specific processor only.

 • An interrupt can be directed to a defined group of processors. The MPCore
views the first processor to accept the interrupt, typically the least loaded, as
being best positioned to handle the interrupt.

 • An interrupt can be directed to all processors.

From the point of view of software running on a particular CPU, the OS can
generate an interrupt to all but self, to self, or to specific other CPUs. For commu-
nication between threads running on different CPUs, the interrupt mechanism is
typically combined with shared memory for message passing. Thus, when a thread
is interrupted by an interprocessor communication interrupt, it reads from the
appropriate block of shared memory to retrieve a message from the thread that
triggered the interrupt. A total of 16 interrupt IDs per CPU are available for inter-
processor communication.

From the point of view of an MP11 CPU, an interrupt can be

 • Inactive: An Inactive interrupt is one that is nonasserted, or which in a multi-
processing environment has been completely processed by that CPU but can
still be either Pending or Active in some of the CPUs to which it is targeted,
and so might not have been cleared at the interrupt source.

 • Pending: A Pending interrupt is one that has been asserted, and for which
processing has not started on that CPU.

 • Active: An Active interrupt is one that has been started on that CPU, but
processing is not complete. An Active interrupt can be pre-empted when a
new interrupt of higher priority interrupts MP11 CPU interrupt processing.

682 CHAPTER 18 / MULTICORE COMPUTERS

Interrupts come from the following sources:

 • Interprocessor interrupts (IPIs): Each CPU has private interrupts, ID0-ID15,
that can only be triggered by software. The priority of an IPI depends on the
receiving CPU, not the sending CPU.

 • Private timer and/or watchdog interrupts: These use interrupt IDs 29 and 30.

 • Legacy FIQ line: In legacy IRQ mode, the legacy FIQ pin, on a per CPU basis,
bypasses the Interrupt Distributor logic and directly drives interrupt requests
into the CPU.

 • Hardware interrupts: Hardware interrupts are triggered by programmable
events on associated interrupt input lines. CPUs can support up to 224 inter-
rupt input lines. Hardware interrupts start at ID32.

Figure 18.12 is a block diagram of the DIC. The DIC is configurable to sup-
port between 0 and 255 hardware interrupt inputs. The DIC maintains a list of inter-
rupts, showing their priority and status. The Interrupt Distributor transmits to each
CPU Interface the highest Pending interrupt for that interface. It receives back the

Interrupt
interface

Priority

Decoder

Interrupt list

Status

Private bus
read/write

Core acknowledge and
End of interrupt (EOI) information
from CPU interface

Prioritization
and selection

IRQ request
to each CPU

interface

MP11 CPU 0

Top priority interrupts

PriorityInterrupt number

MP11 CPU 1

PriorityInterrupt number

MP11 CPU 2

PriorityInterrupt number

MP11 CPU 3

PriorityInterrupt number

Figure 18.12 Interrupt Distributor Block Diagram

18.5 / ARM11 MPCORE 683

information that the interrupt has been acknowledged, and can then change the
status of the corresponding interrupt. The CPU Interface also transmits End of
Interrupt Information (EOI), which enables the Interrupt Distributor to update the
status of this interrupt from Active to Inactive.

Cache Coherency

The MPCore’s Snoop Control Unit (SCU) is designed to resolve most of the tra-
ditional bottlenecks related to access to shared data and the scalability limitation
introduced by coherence traffic.

The L1 cache coherency scheme is based on the MESI protocol described in
Chapter 17. The SCU monitors operations with shared data to optimize MESI state
migration. The SCU introduces three types of optimization: direct data interven-
tion, duplicated tag RAMs, and migratory lines.

Direct data intervention (DDI) enables copying clean data from one CPU L1
data cache to another CPU L1 data cache without accessing external memory. This
reduces read after read activity from the Level 1 cache to the Level 2 cache. Thus, a
local L1 cache miss is resolved in a remote L1 cache rather than from access to the
shared L2 cache.

Recall that main memory location of each line within a cache is identified by
a tag for that line. The tags can be implemented as a separate block of RAM of
the same length as the number of lines in the cache. In the SCU, duplicated tag
RAMs are duplicated versions of L1 tag RAMs used by the SCU to check for data
availability before sending coherency commands to the relevant CPUs. Coherency
commands are sent only to CPUs that must update their coherent data cache. This
reduces the power consumption and performance impact from snooping into and
manipulating each processor’s cache on each memory update. Having tag data
available locally lets the SCU limit cache manipulations to processors that have
cache lines in common.

The migratory lines feature enables moving dirty data from one CPU to
another without writing to L2 and reading the data back in from external memory.
The operation can be described as follows. In a typical MESI protocol, one proces-
sor has a modified line and another processor attempts to read that line, the follow-
ing actions occur:

 1. The line contents are transferred from the modified line to the processor that
initiated the read.

 2. The line contents are written back to main memory.

 3. The line is put in the shared state in both caches.

The MPCore SCU handles this situation differently. The SCU monitors the sys-
tem for a migratory line. If one processor has a modified line, and another processor
reads then writes to it, the SCU assumes such a location will experience this same oper-
ation in the future. As this operation starts again, the SCU will automatically move the
cache line directly to an invalid state rather than expending energy moving it first into
the shared state. This optimization also causes the processor to transfer the cache line
directly to the other processor without intervening external memory operations.

684 CHAPTER 18 / MULTICORE COMPUTERS

 18.6 IBM ZENTERPRISE 196 MAINFRAME

In this section, we look at a mainframe computer organization that uses multicore
processor chips. The example we use is the IBM zEnterprise 196 mainframe com-
puter [CURR11, WHIT11], which began shipping in late 2010. Section 7.8 provides
a general overview of the z196, together with a discussion of its I/O structure.

Organization

The principal building block of the mainframe is the multichip module (MCM), a
glass ceramic module that houses 8 chips. The key components of the configuration
are shown in Figure 18.13:

 • Processor unit (PU): There are six 5.2-GHz processor PU chips, each contain-
ing four processor cores plus three levels of cache. The PUs have external

PU1
(4 cores)

PU2
(4 cores)

HCA2MCU2 HCA1MCU1 HCA0 MCU0

PU0
(4 cores)

SC1

MCM

FBC1 SC0

PU4
(4 cores)

PU3
(4 cores)

PU5
(4 cores)

HCA3MCU3 HCA4MCU4 HCA5 MCU5

FBC2

FBC = fabric book connectivity
HCA = host channel adapter
MCM = multichip module

MCU = memory control unit
PU = processor unit
SC = storage control

FBC0
FBC1
FBC2

FBC0

Figure 18.13 IBM z196 Processor Node Structure

18.6 / IBM ZENTERPRISE 196 MAINFRAME 685

connections to main memory via memory control units and to I/O via host
channel adapters. Thus, each MCM includes 24 core processors.

 • Storage control (SC): The two SC chips contain an additional level of cache
plus interconnection logic for connecting to three other MCMs.

The microprocessor core features a wide superscalar, out-of-order pipe-
line that can decode three z/Architecture CISC instructions per clock cycle and
execute up to five operations per cycle. The instruction execution path is pre-
dicted by branch direction and target prediction logic. Each core has six execu-
tion units: two integer units, one floating-point unit, two load/store units, and
one decimal unit.

Cache Structure

The z196 incorporates a four-level cache structure, which IBM states is the indus-
try’s first four-level cache. We look at each level in turn (Figure 18.14).

Each core has a dedicated 192-kB level 1 cache, divided into a 128-kB data
cache and a 64-kB instruction cache. The L1 cache is designed as a store-through
cache to L2, that is, altered data are also stored to the next level of memory. These
caches are 8-way set associative.

Each core also has a dedicated 1.5-MB level 2 cache, which is also a store-
through to L3. The L2 cache is 12-way set associative.

Each 4-core processor unit chip includes a 24-MB level 3 cache shared by all
four processors. Because L1 and L2 caches are store-through, the L3 cache must
process every store generated by the four cores on its chip. This feature maintains
data availability during a core failure. The L3 cache is 12-way set associative. The
z196 implements embedded DRAM (eDRAM) as L3 cache memory on the chip.

D

Core

L2
1.5 MB

L3
24 MB

L4
96 MB

PU0

SC0 SC1

Core Core Core
L1:

64-kB I-cache, 128 kB D-cacheI D I D I D I D

Core

PU5

Core Core Core

I D I D I D I

L4
96 MB

MCM

L2
1.5 MB

L2
1.5 MB

L2
1.5 MB

L2
1.5 MB

L2
1.5 MB

L2
1.5 MB

L2
1.5 MB

L3
24 MB

Figure 18.14 IBM z196 Cache Hierarchy

686 CHAPTER 18 / MULTICORE COMPUTERS

While this eDRAM memory is slower than static RAM (SRAM) normally used
to implement cache memory, you can put a lot of it onto a given area. For many
workloads, having more memory closer to the chip is more important than having
fast memory.

Finally, all 6 PUs on an MCM share a 192-MB level 4 cache, which is split
into one 96-MB cache on each SC. The principal motivation for incorporating a
level 4 cache is that the very high clock speed of the core processors results in a
significant mismatch with main memory speed. The fourth cache layer is needed to
keep the cores running efficiently. The large shared L3 and L4 caches are suited to
transaction-processing workloads exhibiting a high degree of data sharing and task
swapping. The L4 cache is 24-way set associative. The SC chip, which houses the
L4 cache, also acts as an L4 cache cross-point switch for L4-to-L4 traffic to up to
three remote books3 by three bidirectional data buses. L4 is the coherence manager,
meaning that all memory fetches must be in the L4 cache before that data can be
used by the processor.

All four caches use a line size of 256 bytes.
The z196 is an interesting study in design trade-offs and the difficulty in

exploiting the increasingly powerful processors available with current technology.
The large L4 cache is intended to drive the need for access to main memory down to
the bare minimum. However, the distance to the off-chip L4 cache costs a number
of instruction cycles. Thus, the on-chip area devoted to cache is as large as possible,
even to the point of having fewer cores than possible on the chip. The L1 caches are
small, to minimize distance from the processor and ensure that access can occur in
one cycle. The L2 cache is dedicated to a single core, in an attempt to maximize the
amount of access that can occur without resort to a shared cache. The L3 cache is
shared by all four processors on a chip and is as large as possible, to minimize the
need to go to the L4 cache.

Because all of the books of the zEnterprise 196 share the workload, the four
L4 caches on the four books form a single pool of L4 cache memory. Thus, access
to L4 means not only going off-chip but perhaps off-book, further increasing access
delay. This means relatively large distances exist between the higher-level caches in
the processors and the L4 cache content.

To overcome the delays that are inherent to the book design and to save
cycles to access the off-book L4 content, the designers try to keep instructions
and data as close to the processors as possible by directing as much work of a
given logical partition workload on the processors located in the same book as the
L4 cache. This is achieved by having the system resource manager/scheduler and
the z/OS dispatcher work together to keep as much work as possible within the
boundaries of as few processors and L4 cache space (which is best within a book
boundary) as can be achieved without affecting throughput and response times.
Preventing the resource manager/scheduler and the dispatcher from scheduling
and dispatching a workload on any processor available, and keeping the workload
in as small a portion, contributes to overcoming latency in a high-frequency proc-
essor design such as the z196.

3Recall from Chapter 7 that a z196 book consists of an MCM, memory cards, and I/O cage connections.

18.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 687

 18.7 RECOMMENDED READING

Two books that provide good coverage of the issues in this chapter are [OLUK07] and
[BAER10]. [GOCH06] and [MEND06] describe the Intel Core Duo. [FOG08b] provides a
detailed description of the Core Duo pipeline architecture.

[ARM08b] provides thorough coverage of the ARM Cortex-A8 pipeline. [HIRA07]
and [GOOD05] are good overview articles.

ARM08b ARM Limited. ARM11 MPCore Processor Technical Reference Manual.
ARM DDI 0360E, 2008. www.arm.com

BAER10 Baer, J. Microprocessor Architecture: From Simple Pipelines to Chip
Multiprocessors. New York: Cambridge University Press, 2010.

FOG08b Fog, A. The Microarchitecture of Intel and AMD CPUs. Copenhagen
University College of Engineering, 2008. http://www.agner.org/optimize/

GOCH06 Gochman, S., et al. “Introduction to Intel Core Duo Processor Architecture.”
Intel Technology Journal, May 2006.

GOOD05 Goodacre, J., and Sloss, A. “Parallelism and the ARM Instruction Set Archi-
tecture.” Computer, July 2005.

HIRA07 Hirata, K., and Goodacre, J. “ARM MPCore: The Streamlined and Scal-
able ARM11 processor core.” Proceedings, 2007 Conference on Asia South Pacific
Design Automation, 2007.

MEND06 Mendelson, A., et al. “CMP Implementation in Systems Based on the Intel
Core Duo Processor.” Intel Technology Journal, May 2006.

OLUK07 Olukotun, K.; Hammond, L.; and Laudon, J. Chip Multiprocessor Architec-
ture: Techniques to Improve Throughput and Latency. San Rafael, CA: Morgan &
Claypool, 2007.

 18.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Amdahl’s law
chip multiprocessor

multicore
simultaneous multithreading (SMT)

superscalar

Review Questions
 18.1 Summarize the differences among simple instruction pipelining, superscalar, and si-

multaneous multithreading.
 18.2 Give several reasons for the choice by designers to move to a multicore organization

rather than increase parallelism within a single processor.
 18.3 Why is there a trend toward giving an increasing fraction of chip area to cache memory?
 18.4 List some examples of applications that benefit directly from the ability to scale

throughput with the number of cores.

www.arm.com
http://www.agner.org/optimize/

688 CHAPTER 18 / MULTICORE COMPUTERS

 18.5 At a top level, what are the main design variables in a multicore organization?
 18.6 List some advantages of a shared L2 cache among cores compared to separate dedi-

cated L2 caches for each core.

Problems
 18.1 Consider the following problem. A designer has a chip available and must decide what

fraction of the chip will be devoted to cache memory (L1, L2, L3). The remainder of
the chip can be devoted to a single complex superscalar and/or SMT core or multiple
somewhat simpler cores. Define the following parameters:

 n = maximum number of cores that can be contained on the chip
k = actual number of cores implemented (1 … k … n, where r = n/k is an integer)
perf (r) = sequential performance gain by using the resources equivalent to r cores to
form a single processor, where perf(1) = 1.
f = fraction of software that is parallelizable across multiple cores.

Thus, if we construct a chip with n cores, we expect each core to provide sequential
performance of 1 and for the n cores to be able to exploit parallelism up to a degree
of n parallel threads. Similarly, if the chip has k cores, then each core should exhibit a
performance of perf(r) and the chip is able to exploit parallelism up to a degree of k
parallel threads. We can modify Amdhal’s law (Equation 18.1) to reflect this situation
as follows:

Speedup =
1

1 - f

perf(r)
 +

f * r

perf(r) * n

a. Justify this modification of Amdahl’s law.
b. Using Pollack’s rule, we set perf(r) = 1r. Let n = 16. We want to plot speedup as

a function of r for f = 0.5; f = 0.9; f = 0.975; f = 0.99; f = 0.999. The results are
available in a document at this book’s Premium Content site (multicore-perfor-
mance.pdf). What conclusions can you draw?

c. Repeat part (b) for n = 256.
 18.2 The technical reference manual for the ARM11 MPCore says that the Distributed

Interrupt Controller is memory mapped. That is, the core processors use memory
mapped I/O to communicate with the DIC. Recall from Chapter 7 that with memory-
mapped I/O, there is a single address space for memory locations and I/O devices. The
processor treats the status and data registers of I/O modules as memory locations and
uses the same machine instructions to access both memory and I/O devices. Based on
this information, what path through the block diagram of Figure 18.11 is used for the
core processors to communicate with the DIC?

 18.3 In this question we analyze the performance of the following C program on a multi-
threaded architecture. You should assume that arrays A, B, and C do not overlap in
memory.

for (i=0; i<328; i++) {

 A[i] = A[i]*B[i];

 C[i] = C[i]+A[i];

 }

Our machine is a single-issue, in-order processor. It switches to a different thread
every cycle using fixed round robin scheduling. Each of the N threads executes one
instruction every N cycles. We allocate the code to the threads such that every thread
executes every Nth iteration of the original C code.

18.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 689

Integer instructions take 1 cycle to execute, floating-point instructions take
4 cycles and memory instructions take 3 cycles. All execution units are fully pipe-
lined. If an instruction cannot issue because its data is not yet available, it inserts a
bubble into the pipeline, and retries after I cycles.

Below is our program in assembly code for this machine for a single thread
executing the entire loop.

loop: ld f1, 0 (r1) ;f1 = A[i]

 ld f2, 0 (r2) ;f2 = B[i]

 fmul f4, f2, f1 ;f4 = f1*f2

 st f4 0(r1) ;A[i] = f4

 ld f3, 0(r3) ;f3 = C[i]

 fadd f5, f4, f3 ;f5 = f4 + f3

 st f5 0(r3) ;C[i] = f5

 add r1, r1, 4 ;i++

 add r2, r2, 4

 add r3, r3, 4

 add r4, r4, −1

 bnez r4, loop ;loop

a. We allocate the assembly code of the loop to N threads such that every thread
executes every Nth iteration of the original loop. Write the assembly code that one
of the N threads would execute on this multithreaded machine.

b. What is the minimum number of threads this machine needs to remain fully uti-
lized issuing an instruction every cycle for our program?

c. Could we reach peak performance running this program using fewer threads by
rearranging the instructions? Explain briefly.

d. What will be the peak performance in flops/cycle for this program?

This page intentionally left blank

691

APPENDIX A

PROJECTS FOR TEACHING COMPUTER
ORGANIZATION AND ARCHITECTURE

A.1 Interactive Simulations

A.2 Research Projects

A.3 Simulation Projects
SimpleScalar
SMPCache

A.4 Assembly Language Projects

A.5 Reading/Report Assignments

A.6 Writing Assignments

A.7 Test Bank

692 APPENDIX A / PROJECTS FOR TEACHING COMPUTER ORGANIZATION

Many instructors believe that research or implementation projects are crucial to
the clear understanding of the concepts of computer organization and architecture.
Without projects, it may be difficult for students to grasp some of the basic concepts
and interactions among components. Projects reinforce the concepts introduced in
the book, give students a greater appreciation of the inner workings of processors
and computer systems, and can motivate students and give them confidence that
they have mastered the material.

In this text, I have tried to present the concepts of computer organization and
architecture as clearly as possible and have provided numerous homework problems
to reinforce those concepts. Many instructors will wish to supplement this material
with projects. This appendix provides some guidance in that regard and describes
support material available in the Instructor’s Resource Center (IRC) for this book,
accessible by instructors online from Prentice Hall. The support material covers six
types of projects and other student exercises:

 • Interactive simulations

 • Research projects
 • Simulation projects
 • Assembly language projects
 • Reading/report assignments
 • Writing assignments
 • Test bank

 A.1 INTERACTIVE SIMULATIONS

Interactive simulations provide a powerful tool for understanding the complex
design features of a modern computer system. Today’s students want to be able to
visualize the various complex computer systems mechanisms on their own computer
screen. A total of 20 simulations are used to illustrate key functions and algorithms
in computer organization and architecture design. Table A.1 lists the simulations by
chapter. At the relevant point in the book, an icon indicates that a relevant interac-
tive simulation is available online for student use.

Because the simulations enable the user to set initial conditions, they can serve
as the basis for student assignments. The IRC for this book includes a set of assign-
ments, one set for each of the interactive simulations. Each assignment includes a
several specific problems that can be assigned to students.

The interactive simulations were developed under the direction of Professor
Israel Koren, at the University of Massachusetts Department of Electrical and
Computer Engineering. Aswin Sreedhar of the University of Massachusetts
developed the interactive simulation assignments. For access to the animations,
click on the rotating globe at this book’s web site at http://williamstallings.com/
ComputerOrganization.

http://williamstallings.com/ComputerOrganization
http://williamstallings.com/ComputerOrganization

A.1 / INTERACTIVE SIMULATIONS 693

Table A.1 Computer Organization and Architecture—Interactive Simulations by Chapter

Chapter 4—Cache Memory

Cache Simulator Emulates small-sized caches based on a user-input cache
model and displays the cache contents at the end of the simu-
lation cycle based on an input sequence which is entered by
the user, or randomly generated if so selected.

Cache Time Analysis Demonstrates Average Memory Access Time analysis for the
cache parameters you specify.

Multitask Cache Demonstrator Models cache on a system that supports multitasking.

Selective Victim Cache Simulator Compares three different cache policies.

Chapter 5—Internal Memory

Interleaved Memory Simulator Demonstrates the effect of interleaving memory.

Chapter 6—External Memory

RAID Determine storage efficiency and reliability.

Chapter 7—Input/Output

I/O System Design Tool Evaluates comparative cost and performance of different I/O
systems.

Chapter 8—OS Support

Page Replacement Algorithms Compares LRU, FIFO, and Optimal.

More Page Replacement Algorithms Compares a number of policies.

Chapter 14—CPU Structure and Function

Reservation Table Analyzer Evaluates reservation tables. which are a way of representing
the task flow pattern of a pipelined system.

Branch Prediction Demonstrates three different branch prediction schemes.

Branch Target Buffer Combined branch predictor/branch target buffer simulator.

Chapter 15—Reduced Instruction Set Computers

MIPS 5-Stage Pipeline Simulates the pipeline.

Loop Unrolling Simulates the loop unrolling software technique for
exploiting instruction-level parallelism.

Chapter 16—Instruction-Level Parallelism and Superscalar Processors

Pipeline with Static vs. Dynamic Scheduling A more complex simulation of the MIPS pipeline.

Reorder Buffer Simulator Simulates instruction reordering in a RISC pipeline.

Scoreboarding Technique for Dynamic
Scheduling

Simulation of an instruction scheduling technique used in a
number of processors.

Tomasulo’s Algorithm Simulation of another instruction scheduling technique.

Alternative Simulation of Tomasulo’s
Algorithm

Another simulation of Tomasulo’s algorithm.

Chapter 17—Parallel Processing

Vector Processor Simulation Demonstrates execution of vector processing instructions.

694 APPENDIX A / PROJECTS FOR TEACHING COMPUTER ORGANIZATION

 A.2 RESEARCH PROJECTS

An effective way of reinforcing basic concepts from the course and for teaching stu-
dents research skills is to assign a research project. Such a project could involve a
literature search as well as a Web search of vendor products, research lab activities,
and standardization efforts. Projects could be assigned to teams or, for smaller proj-
ects, to individuals. In any case, it is best to require some sort of project proposal early
in the term, giving the instructor time to evaluate the proposal for appropriate topic
and appropriate level of effort. Student handouts for research projects should include

 • A format for the proposal

 • A format for the final report

 • A schedule with intermediate and final deadlines

 • A list of possible project topics

The students can select one of the listed topics or devise their own comparable
project. The IRC includes a suggested format for the proposal and final report as
well as a list of possible research topics.

 A.3 SIMULATION PROJECTS

An excellent way to obtain a grasp of the internal operation of a processor and to
study and appreciate some of the design trade-offs and performance implications is
by simulating key elements of the processor. Two useful tools that are useful for this
purpose are SimpleScalar and SMPCache.

Compared with actual hardware implementation, simulation provides two
advantages for both research and educational use:

 • With simulation, it is easy to modify various elements of an organization, to
vary the performance characteristics of various components, and then to ana-
lyze the effects of such modifications.

 • Simulation provides for detailed performance statistics collection, which can
be used to understand performance trade-offs.

SimpleScalar

SimpleScalar [BURG97, MANJ01a, MANJ01b] is a set of tools that can be used to sim-
ulate real programs on a range of modern processors and systems. The tool set includes
compiler, assembler, linker, and simulation and visualization tools. SimpleScalar pro-
vides processor simulators that range from an extremely fast functional simulator to a
detailed out-of-order issue, superscalar processor simulator that supports nonblocking
caches and speculative execution. The instruction set architecture and organizational
parameters may be modified to create a variety of experiments.

The IRC for this book includes a concise introduction to SimpleScalar for
students, with instructions on how to load and get started with SimpleScalar. The
manual also includes some suggested project assignments.

A.4 / ASSEMBLY LANGUAGE PROJECTS 695

SimpleScalar is a portable software package the runs on most UNIX plat-
forms. The SimpleScalar software can be downloaded from the SimpleScalar Web
site. It is available at no cost for noncommercial use.

SMPCache

SMPCache is a trace-driven simulator for the analysis and teaching of cache
 memory systems on symmetric multiprocessors [RODR01]. The simulation is based
on a model built according to the architectural basic principles of these systems.
The simulator has a full graphic and friendly interface. Some of the parameters that
they can be studied with the simulator are: program locality; influence of the num-
ber of processors, cache coherence protocols, schemes for bus arbitration, mapping,
replacement policies, cache size (blocks in cache), number of cache sets (for set
associative caches), number of words by block (memory block size).

The IRC for this book includes a concise introduction to SMPCache for stu-
dents, with instructions on how to load and get started with SMPCache. The manual
also includes some suggested project assignments.

SMPCache is a portable software package the runs on PC systems with
Windows. The SMPCache software can be downloaded from the SMPCache Web
site. It is available at no cost for noncommercial use.

 A.4 ASSEMBLY LANGUAGE PROJECTS

Assembly language programming is often used to teach students low-level hard-
ware components and computer architecture basics. CodeBlue is a simplified assem-
bly language program developed at the U. S. Air Force Academy. The goal of the
work was to develop and teach assembly language concepts using a visual simulator
that students can learn in a single class. The developers also wanted students to find
the language motivational and fun to use. The CodeBlue language is much simpler
than most simplified architecture instruction sets such as the SC123. Still it allows
students to develop interesting assembly level programs that compete in tourna-
ments, similar to the far more complex SPIMbot simulator. Most important, through
CodeBlue programming, students learn fundamental computer architecture con-
cepts such as instructions and data co-residence in memory, control structure imple-
mentation, and addressing modes.

To provide a basis for projects, the developers have built a visual develop-
ment environment that allows students to create a program, see its representation in
memory, step through the program’s execution, and simulate a battle of competing
programs in a visual memory environment.

Projects can be built around the concept of a Core War tournament. Core
War is a programming game introduced to the public in the early 1980s, which was
popular for a period of 15 years or so. Core War has four main components: a mem-
ory array of 8000 addresses, a simplified assembly language Redcode, an execu-
tive program called MARS (an acronym for Memory Array Redcode Simulator)
and the set of contending battle programs. Two battle programs are entered into
the memory array at randomly chosen positions; neither program knows where the

696 APPENDIX A / PROJECTS FOR TEACHING COMPUTER ORGANIZATION

other one is. MARS executes the programs in a simple version of time-sharing. The
two programs take turns: a single instruction of the first program is executed, then
a single instruction of the second, and so on. What a battle program does during the
execution cycles allotted to it is entirely up to the programmer. The aim is to destroy
the other program by ruining its instructions. The CodeBlue environment substi-
tutes CodeBlue for Redcode and provides its own interactive execution interface.

The IRC includes the CodeBlue environment, a user’s manual for students,
other supporting material, and suggested assignments.

 A.5 READING/REPORT ASSIGNMENTS

Another excellent way to reinforce concepts from the course and to give students
research experience is to assign papers from the literature to be read and analyzed.
The IRC includes a suggested list of papers to be assigned, organized by chapter.
The Premium Content Web site provides a copy of each of the papers. The IRC also
includes a suggested assignment wording.

 A.6 WRITING ASSIGNMENTS

Writing assignments can have a powerful multiplier effect in the learning process
in a technical discipline such as computer organization and architecture. Adherents
of the Writing Across the Curriculum (WAC) movement (http://wac.colostate.edu/)
report substantial benefits of writing assignments in facilitating learning. Writing
assignments lead to more detailed and complete thinking about a particular topic. In
addition, writing assignments help to overcome the tendency of students to pursue
a subject with a minimum of personal engagement, just learning facts and problem-
solving techniques without obtaining a deep understanding of the subject matter.

The IRC contains a number of suggested writing assignments, organized by
chapter. Instructors may ultimately find that this is the most important part of their
approach to teaching the material. I would greatly appreciate any feedback on this
area and any suggestions for additional writing assignments.

 A.7 TEST BANK

A test bank for the book is available at the IRC site for this book. For each chapter,
the test bank includes true/false, multiple choice, and fill-in-the-blank questions. The
test bank is an effective way to assess student comprehension of the material.

http://wac.colostate.edu/

697

APPENDIX B

ASSEMBLY LANGUAGE AND RELATED TOPICS
B.1 Assembly Language

Assembly Language Elements
Type of Assembly Language Statements
Example: Greatest Common Divisor Program

B.2 Assemblers
Two-Pass Assembler
One-Pass Assembler
Example: Prime Number Program

B.3 Loading and Linking
Relocation
Loading
Linking

B.4 Recommended Reading

B.5 Key Terms, Review Questions, and Problems

698 APPENDIX B / ASSEMBLY LANGUAGE AND RELATED TOPICS

The topic of assembly language was briefly introduced in Chapter 13. This appendix
provides more detail and also covers a number of related topics. There are a number
of reasons why it is worthwhile to study assembly language programming (as com-
pared with programming in a higher-level language), including the following:

 1. It clarifies the execution of instructions.

 2. It shows how data is represented in memory.

 3. It shows how a program interacts with the operating system, processor, and
the I/O system.

 4. It clarifies how a program accesses external devices.

 5. Understanding assembly language programmers makes students better high-
level language (HLL) programmers, by giving them a better idea of the target
language that the HLL must be translated into.

We begin this chapter with a study of the basic elements of an assembly lan-
guage, using the x86 architecture for our examples.1 Next, we look at the operation
of the assembler. This is followed by a discussion of linkers and loaders.

Table B.1 defines some of the key terms used in this appendix.

 B.1 ASSEMBLY LANGUAGE

Assembly language is a programming language that is one step away from
machine language. Typically, each assembly language instruction is translated into
one machine instruction by the assembler. Assembly language is hardware depen-
dent, with a different assembly language for each type of processor. In particu-
lar, assembly language instructions can make reference to specific registers in the
processor, include all of the opcodes of the processor, and reflect the bit length
of the various registers of the processor and operands of the machine language.
An assembly language programmer must therefore understand the computer’s
architecture.

1There are a number of assemblers for the x86 architecture. Our examples use NASM (Netwide Assem-
bler), an open source assembler. A copy of the NASM manual is at this book’s Premium Content site.

Programmers rarely use assembly language for applications or even systems
programs. HLLs provide an expressive power and conciseness that greatly eases the
programmer’s tasks. The disadvantages of using an assembly language rather than
an HLL include the following [FOG08a]:

 1. Development time. Writing code in assembly language takes much longer
than writing in a high-level language.

 2. Reliability and security. It is easy to make errors in assembly code. The assem-
bler is not checking if the calling conventions and register save conventions are
obeyed. Nobody is checking for you if the number of PUSH and POP instruc-
tions is the same in all possible branches and paths. There are so many possibili-
ties for hidden errors in assembly code that it affects the reliability and security of
the project unless you have a very systematic approach to testing and verifying.

B.1 / ASSEMBLY LANGUAGE 699

Table B.1 Key Terms for this Appendix

Assembler

A program that translates assembly language into machine code.

Assembly Language

A symbolic representation of the machine language of a specific processor, augmented by additional
types of statements that facilitate program writing and that provide instructions to the assembler.

Compiler

A program that converts another program from some source language (or programming language)
to machine language (object code). Some compilers output assembly language which is then con-
verted to machine language by a separate assembler. A compiler is distinguished from an assembler
by the fact that each input statement does not, in general, correspond to a single machine instruc-
tion or fixed sequence of instructions. A compiler may support such features as automatic allocation
of variables, arbitrary arithmetic expressions, control structures such as FOR and WHILE loops,
variable scope, input/output operations, higher-order functions and portability of source code.

Executable Code

The machine code generated by a source code language processor such as an assembler or compiler.
This is software in a form that can be run in the computer.

Instruction Set

The collection of all possible instructions for a particular computer; that is, the collection of
machine language instructions that a particular processor understands.

Linker

A utility program that combines one or more files containing object code from separately compiled
program modules into a single file containing loadable or executable code.

Loader

A program routine that copies an executable program into memory for execution.

Machine Language, or Machine Code

The binary representation of a computer program which is actually read and interpreted by the
computer. A program in machine code consists of a sequence of machine instructions (possibly
interspersed with data). Instructions are binary strings which may be either all the same size
(e.g., one 32-bit word for many modern RISC microprocessors) or of different sizes.

Object Code

The machine language representation of programming source code. Object code is created by a
compiler or assembler and is then turned into executable code by the linker.

 3. Debugging and verifying. Assembly code is more difficult to debug and verify
because there are more possibilities for errors than in high-level code.

 4. Maintainability. Assembly code is more difficult to modify and maintain
because the language allows unstructured spaghetti code and all kinds of
tricks that are difficult for others to understand. Thorough documentation and
a consistent programming style are needed.

 5. Portability. Assembly code is platform-specific. Porting to a different platform
is difficult.

700 APPENDIX B / ASSEMBLY LANGUAGE AND RELATED TOPICS

 6. System code can use intrinsic functions instead of assembly. The best modern
C+ + compilers have intrinsic functions for accessing system control registers
and other system instructions. Assembly code is no longer needed for device
drivers and other system code when intrinsic functions are available.

 7. Application code can use intrinsic functions or vector classes instead of
 assembly. The best modern C+ + compilers have intrinsic functions for vector
operations and other special instructions that previously required assembly
programming.

 8. Compilers have been improved a lot in recent years. The best compilers are
now quite good. It takes a lot of expertise and experience to optimize better
than the best C+ + compiler.

Yet there are still some advantages to the occasional use of assembly language,
including the following [FOG08a]:

 1. Debugging and verifying. Looking at compiler-generated assembly code or
the disassembly window in a debugger is useful for finding errors and for
checking how well a compiler optimizes a particular piece of code.

 2. Making compilers. Understanding assembly coding techniques is necessary
for making compilers, debuggers and other development tools.

 3. Embedded systems. Small embedded systems have fewer resources than PCs
and mainframes. Assembly programming can be necessary for optimizing
code for speed or size in small embedded systems.

 4. Hardware drivers and system code. Accessing hardware, system control regis-
ters, and so on may sometimes be difficult or impossible with high level code.

 5. Accessing instructions that are not accessible from high-level language.
Certain assembly instructions have no high-level language equivalent.

 6. Self-modifying code. Self-modifying code is generally not profitable because it
interferes with efficient code caching. It may, however, be advantageous, for
example, to include a small compiler in math programs where a user-defined
function has to be calculated many times.

 7. Optimizing code for size. Storage space and memory is so cheap nowadays
that it is not worth the effort to use assembly language for reducing code size.
However, cache size is still such a critical resource that it may be useful in
some cases to optimize a critical piece of code for size in order to make it fit
into the code cache.

 8. Optimizing code for speed. Modern C+ + compilers generally optimize code
quite well in most cases. But there are still cases where compilers perform
poorly and where dramatic increases in speed can be achieved by careful
assembly programming.

 9. Function libraries. The total benefit of optimizing code is higher in function
libraries that are used by many programmers.

 10. Making function libraries compatible with multiple compilers and operating
systems. It is possible to make library functions with multiple entries that are
compatible with different compilers and different operating systems. This
requires assembly programming.

B.1 / ASSEMBLY LANGUAGE 701

The terms assembly language and machine language are sometimes, errone-
ously, used synonymously. Machine language consists of instructions directly execut-
able by the processor. Each machine language instruction is a binary string containing
an opcode, operand references, and perhaps other bits related to execution, such as
flags. For convenience, instead of writing an instruction as a bit string, it can be writ-
ten symbolically, with names for opcodes and registers. An assembly language makes
much greater use of symbolic names, including assigning names to specific main
memory locations and specific instruction locations. Assembly language also includes
statements that are not directly executable but serve as instructions to the assembler
that produces machine code from an assembly language program.

Assembly Language Elements

A statement in a typical assembly language has the form shown in Figure B.1. It
consists of four elements: label, mnemonic, operand, and comment.

LABEL If a label is present, the assembler defines the label as equivalent to the
address into which the first byte of the object code generated for that instruction
will be loaded. The programmer may subsequently use the label as an address or as
data in another instruction’s address field. The assembler replaces the label with the
assigned value when creating an object program. Labels are most frequently used in
branch instructions.

As an example, here is a program fragment:

L2: SUB EAX, EDX ;subtract contents of register EDX from
 ;contents of EAX and store result in EAX
 JG L2 ;jump to L2 if result of subtraction is
 ;positive

The program will continue to loop back to location L2 until the result is zero
or negative. Thus, when the jg instruction is executed, if the result is positive, the
processor places the address equivalent to the label L2 in the program counter.

Reasons for using a label include the following;

 1. A label makes a program location easier to find and remember.

 2. The label can easily be moved to correct a program. The assembler will auto-
matically change the address in all instructions that use the label when the
program is reassembled.

 3. The programmer does not have to calculate relative or absolute memory
addresses, but just uses labels as needed.

Label Mnemonic Operand(s) ;comment

Optional Opcode name
or

directive name
or

macro name

Zero or more Optional

Figure B.1 Assembly-Language Statement Structure

702 APPENDIX B / ASSEMBLY LANGUAGE AND RELATED TOPICS

MNEMONIC The mnemonic is the name of the operation or function of the
assembly language statement. As discussed subsequently, a statement can
correspond to a machine instruction, an assembler directive, or a macro. In the
case of a machine instruction, a mnemonic is the symbolic name associated with a
particular opcode.

Table 12.8 lists the mnemonic, or instruction name, of many of the x86 instruc-
tions. Appendix A of [CART06] lists the x86 instructions, together with the oper-
ands for each and the effect of the instruction on the condition codes. Appendix B
of the NASM manual provides a more detailed description of each x86 instruction.
Both documents are available at this book’s Premium Content site.

OPERAND(S) An assembly language statement includes zero or more operands.
Each operand identifies an immediate value, a register value, or a memory location.
Typically, the assembly language provides conventions for distinguishing among the
three types of operand references, as well as conventions for indicating addressing
mode.

For the x86 architecture, an assembly language statement may refer to a reg-
ister operand by name. Figure B.2 illustrates the general-purpose x86 registers,
with their symbolic name and their bit encoding. The assembler will translate the
symbolic name into the binary identifier for the register.

0

AXAH AL

BH BL

CH CL

DH DL

BX

CX

DX

EAX (000)

EBX (011)

ECX (001)

EDX (010)

16-bit 32-bit

ESI (110)

EDI (111)

EBP (101)

ESP (100)

31
General-purpose registers

Segment registers
0

CS

DS

SS

ES

FS

GS

15

Figure B.2 Intel x86 Program Execution Registers

B.1 / ASSEMBLY LANGUAGE 703

As discussed in Section 11.2, the x86 architecture has a rich set of addressing
modes, each of which must be expressed symbolically in the assembly language.
Here we cite a few of the common examples. For register addressing, the name
of the register is used in the instruction. For example, MOV ECX, EBX copies the
contents of register EBX into register ECX. Immediate addressing indicates that
the value is encoded in the instruction. For example, MOV EAX, 100H copies the
hexadecimal value 100 into register EAX. The immediate value can be expressed
as a binary number with the suffix B or a decimal number with no suffix. Thus,
equivalent statements to the preceding one are MOV EAX, 100000000B and
MOV EAX, 256. Direct addressing refers to a memory location and is expressed
as a displacement from the DS segment register. This is best explained by example.
Assume that the 16-bit data segment register DS contains the value 1000H. Then
the following sequence occurs:

MOV AX, 1234H
MOV [3518H], AX

First the 16-bit register AX is initialized to 1234H. Then, in line two, the
 contents of AX are moved to the logical address DS:3518H. This address is formed
by shifting the contents of DS left 4 bits and adding 3518H to form the 32-bit logical
address 13518H.

COMMENT All assembly languages allow the placement of comments in the
program. A comment can either occur at the right-hand end of an assembly
statement or can occupy an entire text line. In either case, the comment begins with
a special character that signals to the assembler that the rest of the line is a comment
and is to be ignored by the assembler. Typically, assembly languages for the x86
architecture use a semicolon (;) for the special character.

Type of Assembly Language Statements

Assembly language statements are one of four types: instruction, directive, macro
definition, and comment. A comment statement is simply a statement that consists
entirely of a comment. The remaining types are briefly described in this section.

INSTRUCTIONS The bulk of the noncomment statements in an assembly language
program are symbolic representations of machine language instructions. Almost
invariably, there is a one-to-one relationship between an assembly language
instruction and a machine instruction. The assembler resolves any symbolic
references and translates the assembly language instruction into the binary string
that comprises the machine instruction.

DIRECTIVES Directives, also called pseudo-instructions, are assembly language
statements that are not directly translated into machine language instructions.
Instead, directives are instruction to the assembler to perform specified actions
doing the assembly process. Examples include the following:

 • Define constants

 • Designate areas of memory for data storage

 • Initialize areas of memory

704 APPENDIX B / ASSEMBLY LANGUAGE AND RELATED TOPICS

L2 DB “A” ;byte initialized to ASCII code for A (65)
 MOV AL, [L1] ;copy byte at L1 into AL
 MOV EAX, L1 ;store address of byte at L1 in EAX
 MOV [L1], AH ;copy contents of AH into byte at L1

Table B.2 Some NASM Assembly-Language Directives

(a) Letters for RESx and Dx Directives

Unit Letter

byte B

word (2 bytes) W

double word (4 bytes) D

quad word (8 bytes) Q

ten bytes T

If a plain label is used, it is interpreted as the address (or offset) of the data. If
the label is placed inside square brackets, it is interpreted as the data at the address.

MACRO DEFINITIONS A macro definition is similar to a subroutine in several ways.
A subroutine is a section of a program that is written once, and can be used multiple
times by calling the subroutine from any point in the program. When a program is
compiled or assembled, the subroutine is loaded only once. A call to the subroutine
transfers control to the subroutine and a return instruction in the subroutine returns

(b) Directives

Name Description Example

DB, DW,
DD, DQ,
DT

Initialize locations L6 DD 1A92H
;doubleword at L6 initialized to 1A92H

RESB,
RESW,
RESD,
RESQ,
REST

Reserve
uninitialized
locations

BUFFER RESB 64
;reserve 64 bytes starting at BUFFER

INCBIN Include binary file
in output

INCBIN “file.dat” ; include this file

EQU Define a symbol to a
given constant value

MSGLEN EQU 25
;the constant MSGLEN equals decimal 25

TIMES Repeat instruction
multiple times

ZEROBUF TIMES 64 DB 0
;initialize 64-byte buffer to all zeros

 • Place tables or other fixed data in memory

 • Allow references to other programs

Table B.2 lists some of the NASM directives. As an example, consider the
 following sequence of statements:

B.1 / ASSEMBLY LANGUAGE 705

control to the point of the call. Similarly, a macro definition is a section of code that
the programmer writes once, and then can use many times. The main difference is
that when the assembler encounters a macro call, it replaces the macro call with
the macro itself. This process is called macro expansion. So, if a macro is defined
in an assembly language program and invoked 10 times, then 10 instances of the
macro will appear in the assembled code. In essence, subroutines are handled by
the hardware at run time, whereas macros are handled by the assembler at assembly
time. Macros provide the same advantage as subroutines in terms of modular
programming, but without the runtime overhead of a subroutine call and return.
The tradeoff is that the macro approach uses more space in the object code.

In NASM and many other assemblers, a distinction is made between a single-
line macro and a multi-line macro. In NASM, single-line macros are defined using
the %DEFINE directive. Here is an example in which multiple single-line macros
are expanded. First, we define two macros:

%DEFINE B(X) = 2*X
%DEFINE A(X) = 1 + B(X)

At some point in the assembly language program, the following statement
appears:

MOV AX, A(8)

The assembler expands this statement to:

MOV AX, 1+2*8

which assembles to a machine instruction to move the immediate value 17 to
register AX.

Multiline macros are defined using the mnemonic &MACRO. Here is an
example of a multiline macro definition:

%MACRO PROLOGUE 1
 PUSH EBP ;push contents of EBP onto stack

 ;pointed to by ESP and

 ;decrement contents of ESP by 4

 MOV EBP, ESP ;copy contents of ESP to EBP

 SUB ESP, %1 ;subtract first parameter value from ESP

The number 1 after the macro name in the %MACRO line defines the number of
parameters the macro expects to receive. The use of %1 inside the macro definition
refers to the first parameter to the macro call.

The macro call

MYFUNC: PROLOGUE 12

expands to the following lines of code:

MYFUNC: PUSH EBP
 MOV EBP, ESP
 SUB ESP, 12

706 APPENDIX B / ASSEMBLY LANGUAGE AND RELATED TOPICS

Example: Greatest Common Divisor Program

As an example of the use of assembly language, we look at a program to compute
the greatest common divisor of two integers. We define the greatest common divisor
of the integers a and b as follows:

gcd(a,b) = max[k,such that k divides a and k divides b]

where we say that k divides a if there is no remainder. Euclid’s algorithm for the
greatest common divisor is based on the following theorem. For any nonnegative
integers a and b,

gcd(a, b) = gcd(b, a mod b)

Here is a C language program that implements Euclid’s algorithm:

unsigned int gcd (unsigned int a, unsigned int b)

{
 if (a == 0 && b == 0)
 b = 1;
 else if (b == 0)
 b = a;
 else if (a != 0)
 while (a != b)
 if (a <b)
 b -= a;
 else
 a -= b;
 return b;

}

Figure B.3 shows two assembly language versions of the preceding program.
The program on the left was done by a C compiler; the program on the right was
programmed by hand. The latter program uses a number of programmer’s tricks to
produce a tighter, more efficient implementation.

 B.2 ASSEMBLERS

The assembler is a software utility that takes an assembly program as input and
produces object code as output. The object code is a binary file. The assembler views
this file as a block of memory starting at relative location 0.

There are two general approaches to assemblers: the two-pass assembler and
the one-pass assembler.

Two-Pass Assembler

We look first at the two-pass assembler, which is more common and somewhat easier
to understand. The assembler makes two passes through the source code (Figure B.4):

B.2 / ASSEMBLERS 707

FIRST PASS In the first pass, the assembler is only concerned with label definitions.
The first pass is used to construct a symbol table that contains a list of all labels
and their associated location counter (LC) values. The first byte of the object code
will have the LC value of 0. The first pass examines each assembly statement.
Although the assembler is not yet ready to translate instructions, it must examine
each instruction sufficiently to determine the length of the corresponding machine
instruction and therefore how much to increment the LC. This may require not only
examining the opcode but also looking at the operands and the addressing modes.

Directives such as DQ and REST (see Table B.2) cause the location counter
to be adjusted according to how much storage is specified.

When assembler encounters a statement with a label, it places the label into
the symbol table, along with the current LC value. The assembler continues until it
has read all of the assembly language statements.

SECOND PASS The second pass reads the program again from the beginning. Each
instruction is translated into the appropriate binary machine code. Translation
includes the following operations:

 1. Translate the mnemonic into a binary opcode.
 2. Use the opcode to determine the format of the instruction and the location

and length of the various fields in the instruction.

 3. Translate each operand name into the appropriate register or memory code.

Figure B.3 Assembly Programs for Greatest Common Divisor

gcd: mov ebx,eax

 mov eax,edx

 test ebx,ebx

 jne L1

 test edx,edx

 jne L1

 mov eax,1

 ret

L1: test eax,eax

 jne L2

 mov eax,ebx

 ret

L2: test ebx,ebx

 je L5

L3: cmp ebx,eax

 je L5

 jae L4

 sub eax,ebx

 jmp L3

L4: sub ebx,eax

 jmp L3

L5: ret

gcd: neg eax

 je L3

L1: neg eax

 xchg eax,edx

L2: sub eax,edx

 jg L2

 jne L1

L3: add eax,edx

 jne L4

 inc eax

L4: ret

 (a) Compiled program (b) Written directly in assembly language

708 APPENDIX B / ASSEMBLY LANGUAGE AND RELATED TOPICS

 4. Translate each immediate value into a binary string.

 5. Translate any references to labels into the appropriate LC value using the
symbol table.

 6. Set any other bits in the instruction that are needed, including addressing
mode indicators, condition code bits, and so on.

A simple example, using the ARM assembly language, is shown in Figure B.5.
The ARM assembly language instruction ADDS r3, r3, #19 is translated in to the
binary machine instruction 1110 0010 0101 0011 0011 0000 0001 0011.

Pass 1

Pass 2

Read line
from source

file

eof?

label
defined?

Determine
size of

instruction

LC = LC + size

Write source line
& other info on
intermediate file

Close source
file and rewind

intermediate file

Store name and
value in symbol table

1

Yes

Yes

No

No

1

Pass 2

Stopeof?

Assemble
instruction

Read next line from
intermediate file

Write object instruction
into object file

Write source & object
lines into listing file

Yes

No

2

2

Figure B.4 Flowchart of Two-Pass Assembler

B.2 / ASSEMBLERS 709

ZEROTH PASS Most assembly language includes the ability to define macros. When
macros are present there is an additional pass that the assembler must make before
the first pass. Typically, the assembly language requires that all macro definitions
must appear at the beginning of the program.

The assembler begins this “zeroth pass” by reading all macro definitions.
Once all the macros are recognized, the assembler goes through the source code
and expands the macros with their associated parameters whenever a macro call is
encountered. The macro processing pass generates a new version of the source code
with all of the macro expansions in place and all of the macro definitions removed.

One-Pass Assembler

It is possible to implement an assembler that makes only a single pass through the
source code (not counting the macro processing pass). The main difficulty in trying
to assemble a program in one pass involves forward references to labels. Instruction
operands may be symbols that have not yet been defined in the source program.
Therefore, the assembler does not know what relative address to insert in the trans-
lated instruction.

In essence, the process of resolving forward references works as follows.
When the assembler encounters an instruction operand that is a symbol that is not
yet defined, the assembler does the following:

 1. It leaves the instruction operand field empty (all zeros) in the assembled bi-
nary instruction.

 2. The symbol used as an operand is entered in the symbol table. The table entry
is flagged to indicate that the symbol is undefined.

 3. The address of the operand field in the instruction that refers to the undefined
symbol is added to a list of forward references associated with the symbol
table entry.

When the symbol definition is encountered so that a LC value can be asso-
ciated with it, the assembler inserts the LC value in the appropriate entry in the
symbol table. If there is a forward reference list associated with the symbol, then the
assembler inserts the proper address into any instruction previously generated that
is on the forward reference list.

Example: Prime Number Program

We now look at an example that includes directives. This example looks at a program
that finds prime numbers. Recall that prime numbers are evenly divisible by only 1

0 1 1 0 00 0 10 00 10 1 10 11 11 0 0 0 0 0 010 0 0 1 1ADDS r3, r3, #19

Data processing
immediate format

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

Always
condition
code

Update
condition
flags

Zero
rotation

instr
format S Rn Rd rotate immediatecond opcode

Figure B.5 Translating an ARM Assembly Instruction into a Binary Machine Instruction

710 APPENDIX B / ASSEMBLY LANGUAGE AND RELATED TOPICS

unsigned guess; /* current guess for prime */

unsigned factor; /* possible factor of guess */

unsigned limit; /* find primes up to this value */

printf (“Find primes up to : ”);

scanf(“%u”, &limit);

printf (“2\n”); /* treat first two primes as */

printf (“3\n”); /* special case */

guess = 5; /* initial guess */

while (guess < = limit) { /* look for a factor of guess */

factor = 3;

while (factor * factor < guess && guess% factor != 0)

factor + = 2;

if (guess % factor != 0)

printf (“%d\n”, guess);

guess += 2; /* only look at odd numbers */

}

Figure B.6 C Program for Testing Primality

and themselves. There is no formula for doing this. The basic method this program uses
is to find the factors of all odd numbers below a given limit. If no factor can be found
for an odd number, it is prime. Figure B.6 shows the basic algorithm written in C.
Figure B.7 shows the same algorithm written in NASM assembly language.

 B.3 LOADING AND LINKING

The first step in the creation of an active process is to load a program into main
memory and create a process image (Figure B.8). Figure B.9 depicts a scenario typi-
cal for most systems. The application consists of a number of compiled or assembled
modules in object-code form. These are linked to resolve any references between
modules. At the same time, references to library routines are resolved. The library
routines themselves may be incorporated into the program or referenced as shared
code that must be supplied by the operating system at run time. In this section, we
summarize the key features of linkers and loaders. First, we discuss the concept of
relocation. Then, for clarity in the presentation, we describe the loading task when
a single program module is involved; no linking is required. We can then look at the
linking and loading functions as a whole.

Relocation

In a multiprogramming system, the available main memory is generally shared
among a number of processes. Typically, it is not possible for the programmer to
know in advance which other programs will be resident in main memory at the
time of execution of his or her program. In addition, we would like to be able to
swap active processes in and out of main memory to maximize processor utiliza-
tion by providing a large pool of ready processes to execute. Once a program has
been swapped out to disk, it would be quite limiting to declare that when it is next

B.3 / LOADING AND LINKING 711

%include “asm_io.inc”
segment .data
Message db “Find primes up to: ”, 0

segment .bss
Limit resd 1 ; find primes up to this limit
Guess resd 1 ; the current guess for prime

segment .text
 global _asm_main
_asm_main:
 enter 0,0 ; setup routine
 pusha

 mov eax, Message
 call print_string
 call read_int ; scanf(“%u”, & limit);
 mov [Limit], eax
 mov eax, 2 ; printf(“2\n”);
 call print_int
 call print_nl
 mov eax, 3 ; printf(“3\n”);
 call print_int
 call print_nl

 mov dword [Guess], 5 ; Guess = 5;
while_limit: ; while (Guess <= Limit)
 mov eax, [Guess]
 cmp eax, [Limit]
 jnbe end_while_limit ; use jnbe since numbers are unsigned

 mov ebx, 3 ; ebx is factor = 3;
while_factor:
 mov eax,ebx
 mul eax ; edx:eax = eax*eax
 jo end_while_factor ; if answer won’t fit in eax alone
 cmp eax, [Guess]
 jnb end_while_factor ; if !(factor*factor < guess)
 mov eax,[Guess]
 mov edx,0
 div ebx ; edx = edx:eax% ebx
 cmp edx, 0
 je end_while_factor ; if !(guess% factor != 0)

 add ebx,2; factor += 2;
 jmp while_factor
end_while_factor:
 je end_if ; if !(guess% factor != 0)
 mov eax,[Guess] ; printf(“%u\n”)
 call print_int
 call print_nl
end_if:
 add dword [Guess], 2 ; guess += 2
 jmp while_limit
end_while_limit:

 popa
 mov eax, 0 ; return back to C
 leave
 ret

Figure B.7 Assembly Program for Testing Primality

712 APPENDIX B / ASSEMBLY LANGUAGE AND RELATED TOPICS

Process control block

Program

Data

Stack

Process image in
main memory

Program

Data

Object code

Figure B.8 The Loading Function

Main memory

Loader

Run-time
linker/
loader

x

Load
module

Linker

Module 2

Module 1

Module n

Static
library

Dynamic
library

Dynamic
library

Figure B.9 A Linking and Loading Scenario

swapped back in, it must be placed in the same main memory region as before.
Instead, we may need to relocate the process to a different area of memory.

Thus, we cannot know ahead of time where a program will be placed, and we
must allow that the program may be moved about in main memory due to swapping.

B.3 / LOADING AND LINKING 713

These facts raise some technical concerns related to addressing, as illustrated
in Figure B.10. The figure depicts a process image. For simplicity, let us assume
that the process image occupies a contiguous region of main memory. Clearly,
the operating system will need to know the location of process control informa-
tion and of the execution stack, as well as the entry point to begin execution of
the program for this process. Because the operating system is managing memory
and is responsible for bringing this process into main memory, these addresses
are easy to come by. In addition, however, the processor must deal with memory
references within the program. Branch instructions contain an address to refer-
ence the instruction to be executed next. Data reference instructions contain the
address of the byte or word of data referenced. Somehow, the processor hardware
and operating system software must be able to translate the memory references
found in the code of the program into actual physical memory addresses, reflect-
ing the current location of the program in main memory.

Loading

In Figure B.9, the loader places the load module in main memory starting at loca-
tion x. In loading the program, the addressing requirement illustrated in Figure B.10
must be satisfied. In general, three approaches can be taken:

 • Absolute loading

 • Relocatable loading

 • Dynamic run-time loading

ABSOLUTE LOADING An absolute loader requires that a given load module
always be loaded into the same location in main memory. Thus, in the load module

Process control block

Program

Data

Stack

Current top
of stack

Entry point
to program

Process control
information

Increasing
address
values

Branch
instruction

Reference
to data

Figure B.10 Addressing Requirements for a Process

714 APPENDIX B / ASSEMBLY LANGUAGE AND RELATED TOPICS

presented to the loader, all address references must be to specific, or absolute, main
memory addresses. For example, if x in Figure B.9 is location 1024, then the first
word in a load module destined for that region of memory has address 1024.

The assignment of specific address values to memory references within a pro-
gram can be done either by the programmer or at compile or assembly time (Table
B.3a). There are several disadvantages to the former approach. First, every pro-
grammer would have to know the intended assignment strategy for placing mod-
ules into main memory. Second, if any modifications are made to the program that
involve insertions or deletions in the body of the module, then all of the addresses
will have to be altered. Accordingly, it is preferable to allow memory references
within programs to be expressed symbolically and then resolve those symbolic ref-
erences at the time of compilation or assembly. This is illustrated in Figure B.11.
Every reference to an instruction or item of data is initially represented by a sym-
bol. In preparing the module for input to an absolute loader, the assembler or com-
piler will convert all of these references to specific addresses (in this example, for a
module to be loaded starting at location 1024), as shown in Figure B.11b.

Table B.3 Address Binding

(a) Loader

Binding Time Function

Programming time All actual physical addresses are directly specified by the programmer in the
program itself.

Compile or assembly time The program contains symbolic address references, and these are converted to
actual physical addresses by the compiler or assembler.

Load time The compiler or assembler produces relative addresses. The loader translates
these to absolute addresses at the time of program loading.

Run time The loaded program retains relative addresses. These are converted dynami-
cally to absolute addresses by processor hardware.

(b) Linker

Linkage Time Function

Programming time No external program or data references are allowed. The programmer
must place into the program the source code for all subprograms that are
referenced.

Compile or assembly time The assembler must fetch the source code of every subroutine that is
referenced and assemble them as a unit.

Load module creation All object modules have been assembled using relative addresses. These
modules are linked together and all references are restated relative to the
origin of the final load module.

Load time External references are not resolved until the load module is to be loaded into
main memory. At that time, referenced dynamic link modules are appended
to the load module, and the entire package is loaded into main or virtual
memory.

Run time External references are not resolved until the external call is executed by the
processor. At that time, the process is interrupted and the desired module is
linked to the calling program.

B.3 / LOADING AND LINKING 715

RELOCATABLE LOADING The disadvantage of binding memory references to
specific addresses prior to loading is that the resulting load module can only be
placed in one region of main memory. However, when many programs share main
memory, it may not be desirable to decide ahead of time into which region of
memory a particular module should be loaded. It is better to make that decision
at load time. Thus we need a load module that can be located anywhere in main
memory.

To satisfy this new requirement, the assembler or compiler produces not
actual main memory addresses (absolute addresses) but addresses that are relative
to some known point, such as the start of the program. This technique is illustrated
in Figure B.11c. The start of the load module is assigned the relative address 0, and
all other memory references within the module are expressed relative to the begin-
ning of the module.

With all memory references expressed in relative format, it becomes a simple
task for the loader to place the module in the desired location. If the module is to be
loaded beginning at location x, then the loader must simply add x to each memory
reference as it loads the module into memory. To assist in this task, the load module
must include information that tells the loader where the address references are and
how they are to be interpreted (usually relative to the program origin, but also pos-
sibly relative to some other point in the program, such as the current location). This
set of information is prepared by the compiler or assembler and is usually referred
to as the relocation dictionary.

Symbolic
addresses

JUMP X

X

Y

PROGRAM

DATA

(a) Object module

LOAD Y

Absolute
addresses

JUMP 1424

1424

1024 0

2224

PROGRAM

DATA

(b) Absolute load module

LOAD 2224

Relative
addresses

JUMP 400

400

1200

PROGRAM

DATA

(c) Relative load module

LOAD 1200

x

Main memory
addresses

JUMP 400

400 + x

1200 + x

PROGRAM

DATA

(d) Relative load module
loaded into main memory

starting at location x

LOAD 1200

Figure B.11 Absolute and Relocatable Load Modules

716 APPENDIX B / ASSEMBLY LANGUAGE AND RELATED TOPICS

DYNAMIC RUN-TIME LOADING Relocatable loaders are common and provide
obvious benefits relative to absolute loaders. However, in a multiprogramming
environment, even one that does not depend on virtual memory, the relocatable
loading scheme is inadequate. We have referred to the need to swap process images
in and out of main memory to maximize the utilization of the processor. To maximize
main memory utilization, we would like to be able to swap the process image back into
different locations at different times. Thus, a program, once loaded, may be swapped
out to disk and then swapped back in at a different location. This would be impossible
if memory references had been bound to absolute addresses at the initial load time.

The alternative is to defer the calculation of an absolute address until it is
actually needed at run time. For this purpose, the load module is loaded into main
memory with all memory references in relative form (Figure B.11c). It is not until
an instruction is actually executed that the absolute address is calculated. To assure
that this function does not degrade performance, it must be done by special proces-
sor hardware rather than software. This hardware is described in Chapter 8.

Dynamic address calculation provides complete flexibility. A program can be
loaded into any region of main memory. Subsequently, the execution of the pro-
gram can be interrupted and the program can be swapped out of main memory, to
be later swapped back in at a different location.

Linking

The function of a linker is to take as input a collection of object modules and pro-
duce a load module, consisting of an integrated set of program and data modules, to
be passed to the loader. In each object module, there may be address references to
locations in other modules. Each such reference can only be expressed symbolically
in an unlinked object module. The linker creates a single load module that is the
contiguous joining of all of the object modules. Each intramodule reference must be
changed from a symbolic address to a reference to a location within the overall load
module. For example, module A in Figure B.12a contains a procedure invocation
of module B. When these modules are combined in the load module, this symbolic
reference to module B is changed to a specific reference to the location of the entry
point of B within the load module.

LINKAGE EDITOR The nature of this address linkage will depend on the type
of load module to be created and when the linkage occurs (Table B.3b). If, as is
usually the case, a relocatable load module is desired, then linkage is usually done
in the following fashion. Each compiled or assembled object module is created with
references relative to the beginning of the object module. All of these modules are
put together into a single relocatable load module with all references relative to the
origin of the load module. This module can be used as input for relocatable loading
or dynamic run-time loading.

A linker that produces a relocatable load module is often referred to as a link-
age editor. Figure B.12 illustrates the linkage editor function.

DYNAMIC LINKER As with loading, it is possible to defer some linkage functions.
The term dynamic linking is used to refer to the practice of deferring the linkage of
some external modules until after the load module has been created. Thus, the load

B.3 / LOADING AND LINKING 717

module contains unresolved references to other programs. These references can be
resolved either at load time or run time.

For load-time dynamic linking (involving upper dynamic library in Figure
B.9), the following steps occur. The load module (application module) to be loaded
is read into memory. Any reference to an external module (target module) causes
the loader to find the target module, load it, and alter the reference to a relative
address in memory from the beginning of the application module. There are several
advantages to this approach over what might be called static linking:

 • It becomes easier to incorporate changed or upgraded versions of the target
module, which may be an operating system utility or some other general-
purpose routine. With static linking, a change to such a supporting module
would require the relinking of the entire application module. Not only is this
inefficient, but it may be impossible in some circumstances. For example, in
the personal computer field, most commercial software is released in load
module form; source and object versions are not released.

 • Having target code in a dynamic link file paves the way for automatic code
sharing. The operating system can recognize that more than one application
is using the same target code because it loaded and linked that code. It can
use that information to load a single copy of the target code and link it to
both applications, rather than having to load one copy for each application.

0

Relative
addresses

JSR "L"

Return

Return

Return

L – 1
L

L + M – 1

L + M

L + M + N – 1

Module A

Module B

(b) Load module

JSR "L + M"

Module C

CALL B;
External
reference to
module B

Length L

Return

Module A

(a) Object modules

CALL C;

Length M

Module B

Return

Length N

Return

Module C

Figure B.12 The Linking Function

718 APPENDIX B / ASSEMBLY LANGUAGE AND RELATED TOPICS

 • It becomes easier for independent software developers to extend the function-
ality of a widely used operating system such as Linux. A developer can come
up with a new function that may be useful to a variety of applications and
package it as a dynamic link module.

With run-time dynamic linking (involving lower dynamic library in Figure B.9),
some of the linking is postponed until execution time. External references to target
modules remain in the loaded program. When a call is made to the absent module,
the operating system locates the module, loads it, and links it to the calling module.
Such modules are typically shareable. In the Windows environment, these are call
dynamic-link libraries (DLLs) Thus, if one process is already making use of a dynam-
ically linked shared module, then that module is in main memory and a new process
can simply link to the already-loaded module.

The use of DLLs can lead to a problem commonly referred to as DLL hell.
DLL occurs if two or more processes are sharing a DLL module but expect differ-
ent versions of the module. For example, an application or system function might be
re-installed and bring in with it an older version of a DLL file.

We have seen that dynamic loading allows an entire load module to be moved
around; however, the structure of the module is static, being unchanged through-
out the execution of the process and from one execution to the next. However, in
some cases, it is not possible to determine prior to execution which object modules
will be required. This situation is typified by transaction-processing applications,
such as an airline reservation system or a banking application. The nature of the
transaction dictates which program modules are required, and they are loaded as
appropriate and linked with the main program. The advantage of the use of such
a dynamic linker is that it is not necessary to allocate memory for program units
unless those units are referenced. This capability is used in support of segmenta-
tion systems.

One additional refinement is possible: An application need not know the
names of all the modules or entry points that may be called. For example, a charting
program may be written to work with a variety of plotters, each of which is driven
by a different driver package. The application can learn the name of the plotter that
is currently installed on the system from another process or by looking it up in a
configuration file. This allows the user of the application to install a new plotter that
did not exist at the time the application was written.

 B.4 RECOMMENDED READING

[SALO93] covers the design and implementation of assemblers and loaders.
The topics of linking and loading are covered in many books on program develop-

ment, computer architecture, and operating systems. A particularly detailed treatment is
[BECK97]. [CLAR98] also contains a good discussion. A thorough practical discussion of
this topic, with numerous OS examples, is [LEVI00].

[BART03] is an excellent treatment for learning assembly language for x86 processors;
suitable for self-study. [CART06] covers assembly language for x86 machines. For the seri-
ous x86 programmer, [FOG08a] is highly useful. [KNAG04] is a thorough treatment of ARM
assembly language.

B.5 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 719

BART03 Bartlett, J. Programming from the Ground Up. 2003. Available at this book’s
Premium Content site.

BECK97 Beck, L. System Software. Reading, MA: Addison-Wesley, 1997.
CART06 Carter, P. PC Assembly Language. July 23, 2006. Available at this book’s

Web site.
CLAR98 Clarke, D., and Merusi, D. System Software Programming: The Way Things

Work. Upper Saddle River, NJ: Prentice Hall, 1998.
FOG08a Fog, A. Optimizing Subroutines in Assembly Language: An Optimization

Guide for x86 Platforms. Copenhagen University College of Engineering, 2008.
http:// www.agner.org/optimize/

KNAG04 Knaggs, P., and Welsh, S. ARM: Assembly Language Programming. Bourne-
mouth University School of Design, Engineering & Computing. August 31, 2004.
Available at this book’s Premium Content site.

LEVI00 Levine, J. Linkers and Loaders. San Francisco: Morgan Kaufmann, 2000.
SALO93 Salomon, D. Assemblers and Loaders. Ellis Horwood Ltd, 1993. Available at

this book’s Premium Content site.

 B.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

assembler
assembly language
comment
directive
dynamic linker
instruction

label
linkage editor
linking
load-time dynamic linking
loading
macro

mnemonic
one-pass assembler
operand
relocation
run-time dynamic linking
two-pass assembler

Review Questions
 B.1 List some reasons why it is worthwhile to study assembly language programming.
 B.2 What is an assembly language?
 B.3 List some disadvantages of assembly language compared to high-level languages.
 B.4 List some advantages of assembly language compared to high-level languages.
 B.5 What are the typical elements of an assembly language statement.
 B.6 List and briefly define four different kinds of assembly language statements.
 B.7 What is the difference between a one-pass assembler and a two-pass assembler?

Problems
 B.1 Core War is a programming game introduced to the public in the early 1980s

[DEWD84], which was popular for a period of 15 years or so. Core War has four main
components: a memory array of 8000 addresses, a simplified assembly language Red-
code, an executive program called MARS (an acronym for Memory Array Redcode

http://www.agner.org/optimize/

720 APPENDIX B / ASSEMBLY LANGUAGE AND RELATED TOPICS

Simulator) and the set of contending battle programs. Two battle programs are entered
into the memory array at randomly chosen positions; neither program knows where
the other one is. MARS executes the programs in a simple version of time-sharing.
The two programs take turns: a single instruction of the first program is executed, then
a single instruction of the second, and so on. What a battle program does during the
execution cycles allotted to it is entirely up to the programmer. The aim is to destroy
the other program by ruining its instructions. In this problem and the next several, we
use an even simpler language, called CodeBlue, to explore some Core War concepts.

CodeBlue contains only five assembly language statements and uses three ad-
dressing modes (Table B.4). Addresses wrap around, so that for the last location in
memory, the relative address of +1 refers to the first location in memory. For example,
ADD #4, 6 adds 4 to the contents of relative location 6 and stores the results in loca-
tion 6; JUMP @5 transfers execution to the memory address contained in the location
five slots past the location of the current JUMP instruction.

Table B.4 CodeBlue Assembly Language

(a) Instruction Set

Format Meaning

DATA <value> <value> set at current location

COPY A, B copies source A to destination B

ADD A, B adds A to B, putting result in B

JUMP A transfer execution to A

JUMPZ A, B if B = 0, transfer to A

(b) Addressing Modes

Mode Format Meaning

Literal # followed by value This is an immediate mode, the operand value is in the
instruction.

Relative Value The value represents an offset from the current location,
which contains the operand.

Indirect @ followed by value The value represents an offset from the current location; the
offset location contains the relative address of the location
that contains the operand.

a. The program Imp is the single instruction COPY 0, 1. What does it do?
b. The program Dwarf is the following sequence of instructions:

ADD #4, 3

COPY 2, @2

JUMP –2

DATA 0

 What does it do?
c. Rewrite Dwarf using symbols, so that it looks more like a typical assembly lan-

guage program.
 B.2 What happens if we pit Imp against Dwarf?
 B.3 Write a “carpet bombing” program in CodeBlue that zeros out all of memory (with

the possible exception of the program locations).
 B.4 How would the following program fare against Imp?

B.5 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 721

Loop COPY #0, -1
 JUMP -1

 Hint: Remember that instruction execution alternates between the two opposing
programs.

 B.5 a. What is the value of the C status flag after the following sequence:

mov al, 3

add al, 4

b. What is the value of the C status flag after the following sequence:

mov al, 3

sub al, 4

 B.6 Consider the following NAMS instruction:

cmp vleft, vright

 For signed integers, there are three status flags that are relevant. If vleft = vright, then
ZF is set. If vleft > vright, ZF is unset (set to 0) and SF = OF. If vleft < vright, ZF is
unset and SF � OF. Why does SF = OF if vleft > vright?

 B.7 Consider the following NASM code fragment:

mov al, 0

cmp al, al

je next

 Write an equivalent program consisting of a single instruction.

 B.8 Consider the following C program:

/* a simple C program to average 3 integers */

main ()

{ int avg;

 int i1 = 20;

 int i2 = 13;

 int i3 = 82;

 avg = (i1 + i2 + i3)/3;

}

 Write an NASM version of this program.

 B.9 Consider the following C code fragment:

 if (EAX == 0) EBX = 1;

 else EBX = 2;

 Write an equivalent NASM code fragment.

 B.10 The initialize data directives can be used to initialize multiple locations. For example,

 db 0x55,0x56,0x57

 reserves three bytes and initializes their values.

 NASM supports the special token $ to allow calculations to involve the current
 assembly position. That is, $ evaluates to the assembly position at the beginning of
the line containing the expression. With the preceding two facts in mind, consider the
 following sequence of directives:

722 APPENDIX B / ASSEMBLY LANGUAGE AND RELATED TOPICS

message db ‘hello, world’

msglen equ $-message

 What value is assigned to the symbol msglen?

 B.11 Assume the three symbolic variables V1, V2, V3 contain integer values. Write an
NASM code fragment that moves the smallest value into integer ax. Use only the
instructions mov, cmp, and jbe.

 B.12 Describe the effect of this instruction: cmp eax, 1
 Assume that the immediately preceding instruction updated the contents of eax.
 B.13 The xchg instruction can be used to exchange the contents of two registers. Suppose

that the x86 instruction set did not support this instruction.
a. Implement xchg ax, bx using only push and pop instructions.
b. Implement xchg ax, bx using only the xor instruction (do not involve other

registers).
 B.14 In the following program, assume that a, b, x, y are symbols for main memory loca-

tions. What does the program do? You can answer the question by writing the equiva-
lent logic in C.

 mov eax,a

 mov ebx,b

 xor eax,x

 xor ebx,y

 or eax,ebx

 jnz L2

L1: ;sequence of instructionsc
 jmp L3

L2: ;another sequence of instructionsc
L3:

 B.15 Section B.1 includes a C program that calculates the greatest common divisor of two
integers.
a. Describe the algorithm in words and show how the program does implement the

Euclid algorithm approach to calculating the greatest common divisor.
b. Add comments to the assembly program of Figure B.3a to clarify that it imple-

ments the same logic as the C program.
c. Repeat part (b) for the program of Figure B.3b.

 B.16 a. A 2-pass assembler can handle future symbols and an instruction can therefore
use a future symbol as an operand. This is not always true for directives. The EQU
directive, for example, cannot use a future symbol. The directive “A EQU B+1” is
easy to execute if B is previously defined, but impossible if B is a future symbol.
What’s the reason for this?

b. Suggest a way for the assembler to eliminate this limitation such that any source
line could use future symbols.

 B.17 Consider a symbol directive MAX of the following form:
 symbol MAX list of expressions
 The label is mandatory and is assigned the value of the largest expression in the

 operand field. Example:

MSGLEN MAX A, B, C ;where A, B, C are defined symbols

 How is MAX executed by the Assembler and in what pass?

723

GLOSSARY

absolute address An address in a computer language that identifies a storage location or a device
without the use of any intermediate reference.

accumulator The name of the CPU register in a single-address instruction format. The accumulator,
or AC, is implicitly one of the two operands for the instruction.

address bus That portion of a system bus used for the transfer of an address. Typically, the address
identifies a main memory location or an I/O device.

address space The range of addresses (memory, I/O) that can be referenced.

arithmetic and logic unit (ALU) A part of a computer that performs arithmetic operations, logic
operations, and related operations.

ASCII American Standard Code for Information Interchange. ASCII is a 7-bit code used to repre-
sent numeric, alphabetic, and special printable characters. It also includes codes for control characters,
which are not printed or displayed but specify some control function.

assembly language A computer-oriented language whose instructions are usually in one-to-one
correspondence with computer instructions and that may provide facilities such as the use of macro-
instructions. Synonymous with computer-dependent language.

associative memory A memory whose storage locations are identified by their contents, or by a part
of their contents, rather than by their names or positions.

asynchronous timing A technique in which the occurrence of one event on a bus follows and depends
on the occurrence of a previous event.

autoindexing A form of indexed addressing in which the index register is automatically incremented
or decremented with each memory reference.

base In the numeration system commonly used in scientific papers, the number that is raised to the
power denoted by the exponent and then multiplied by the mantissa to determine the real number
represented (e.g., the number 10 in the expression 2.7= 102 = 270).

base address A numeric value that is used as a reference in the calculation of addresses in the execu-
tion of a computer program.

binary operator An operator that represents an operation on two and only two operands.

bit In the pure binary numeration system, either of the digits 0 and 1.

block multiplexor channel A multiplexer channel that interleaves blocks of data. See also byte multi-
plexor channel. Contrast with selector channel.

branch prediction A mechanism used by the processor to predict the outcome of a program branch
prior to its execution.

buffer Storage used to compensate for a difference in rate of flow of data, or time of occurrence of
events, when transferring data from one device to another.

724 GLOSSARY

bus A shared communications path consisting of one or a collection of lines. In some computer sys-
tems, CPU, memory, and I/O components are connected by a common bus. Since the lines are shared
by all components, only one component at a time can successfully transmit.

bus arbitration The process of determining which competing bus master will be permitted access to
the bus.

bus master A device attached to a bus that is capable of initiating and controlling communication on
the bus.

byte A sequence of eight bits. Also referred to as an octet.

byte multiplexor channel A multiplexer channel that interleaves bytes of data. See also block multi-
plexor channel. Contrast with selector channel.

cache A relatively small fast memory interposed between a larger, slower memory and the logic that
accesses the larger memory. The cache holds recently accessed data, and is designed to speed up subse-
quent access to the same data.

cache coherence protocol A mechanism to maintain data validity among multiple caches so that
every data access will always acquire the most recent version of the contents of a main memory
word.

cache line A block of data associated with a cache tag and the unit of transfer between cache and
memory.

cache memory A special buffer storage, smaller and faster than main storage, that is used to hold a
copy of instructions and data in main storage that are likely to be needed next by the processor and that
have been obtained automatically from main storage.

CD-ROM Compact Disk Read-Only Memory. A nonerasable disk used for storing computer data.
The standard system uses 12-cm disks and can hold more than 550 Mbytes.

central processing unit (CPU) That portion of a computer that fetches and executes instructions. It
consists of an Arithmetic and Logic Unit (ALU), a control unit, and registers. Often simply referred to
as a processor.

cluster A group of interconnected, whole computers working together as a unified computing
resource that can create the illusion of being one machine. The term whole computer means a system
that can run on its own, apart from the cluster.

combinational circuit A logic device whose output values, at any given instant, depend only upon the
input values at that time. A combinational circuit is a special case of a sequential circuit that does not
have a storage capability. Synonymous with combinatorial circuit.

compact disk (CD) A nonerasable disk that stores digitized audio information.

computer architecture Those attributes of a system visible to a programmer or, put another way,
those attributes that have a direct impact on the logical execution of a program. Examples of archi-
tectural attributes include the instruction set, the number of bits used to represent various data types
(e.g., numbers, characters), I/O mechanisms, and techniques for addressing memory.

computer instruction An instruction that can be recognized by the processing unit of the computer
for which it is designed. Synonymous with machine instruction.

GLOSSARY 725

computer instruction set A complete set of the operators of the instructions of a computer together
with a description of the types of meanings that can be attributed to their operands. Synonymous with
machine instruction set.

computer organization Refers to the operational units and their interconnections that realize the
architectural specifications. Organizational attributes include those hardware details transparent to
the programmer, such as control signals; interfaces between the computer and peripherals; and the
memory technology used.

conditional jump A jump that takes place only when the instruction that specifies it is executed and
specified conditions are satisfied. Contrast with unconditional jump.

condition code A code that reflects the result of a previous operation (e.g., arithmetic). A CPU may
include one or more condition codes, which may be stored separately within the CPU or as part of a
larger control register. Also known as a flag.

control bus That portion of a system bus used for the transfer of control signals.

control registers CPU registers employed to control CPU operation. Most of these registers are not
user visible.

control storage A portion of storage that contains microcode.

control unit That part of the CPU that controls CPU operations, including ALU operations, the
movement of data within the CPU, and the exchange of data and control signals across external inter-
faces (e.g., the system bus).

daisy chain A method of device interconnection for determining interrupt priority by connecting the
interrupt sources serially.

data bus That portion of a system bus used for the transfer of data.

data communication Data transfer between devices. The term generally excludes I/O.

decoder A device that has a number of input lines of which any number may carry signals and a
number of output lines of which not more than one may carry a signal, there being a one-to-one cor-
respondence between the outputs and the combinations of input signals.

demand paging The transfer of a page from auxiliary storage to real storage at the moment of need.

direct access The capability to obtain data from a storage device or to enter data into a storage device
in a sequence independent of their relative position, by means of addresses that indicate the physical
location of the data.

direct address An address that designates the storage location of an item of data to be treated as
operand. Synonymous with one-level address.

direct memory access (DMA) A form of I/O in which a special module, called a DMA module, controls
the exchange of data between main memory and an I/O module. The CPU sends a request for the transfer
of a block of data to the DMA module and is interrupted only after the entire block has been transferred.

disabled interrupt A condition, usually created by the CPU, during which the CPU will ignore inter-
rupt request signals of a specified class.

diskette A flexible magnetic disk enclosed in a protective container. Synonymous with flexible disk.

726 GLOSSARY

disk pack An assembly of magnetic disks that can be removed as a whole from a disk drive, together
with a container from which the assembly must be separated when operating.

disk stripping A type of disk array mapping in which logically contiguous blocks of data, or strips,
are mapped round-robin to consecutive array members. A set of logically consecutive strips that maps
exactly one strip to each array member is referred to as a stripe.

dynamic RAM A RAM whose cells are implemented using capacitors. A dynamic RAM will gradu-
ally lose its data unless it is periodically refreshed.

emulation The imitation of all or part of one system by another, primarily by hardware, so that the
imitating system accepts the same data, executes the same programs, and achieves the same results as
the imitated system.

enabled interrupt A condition, usually created by the CPU, during which the CPU will respond to
interrupt request signals of a specified class.

erasable optical disk A disk that uses optical technology but that can be easily erased and rewritten.
Both 3.25-inch and 5.25-inch disks are in use. A typical capacity is 650 Mbytes.

error-correcting code A code in which each character or signal conforms to specific rules of construc-
tion so that deviations from these rules indicate the presence of an error and in which some or all of the
detected errors can be corrected automatically.

error-detecting code A code in which each character or signal conforms to specific rules of construc-
tion so that deviations from these rules indicate the presence of an error.

execute cycle That portion of the instruction cycle during which the CPU performs the operation
specified by the instruction opcode.

fetch cycle That portion of the instruction cycle during which the CPU fetches from memory the
instruction to be executed.

firmware Microcode stored in read-only memory.

fixed-point representation system A radix numeration system in which the radix point is implicitly
fixed in the series of digit places by some convention upon which agreement has been reached.

flip-flop A circuit or device containing active elements, capable of assuming either one of two stable
states at a given time. Synonymous with bistable circuit, toggle.

floating-point representation system A numeration system in which a real number is represented by a
pair of distinct numerals, the real number being the product of the fixed-point part, one of the numerals,
and a value obtained by raising the implicit floating-point base to a power denoted by the exponent in
the floating-point representation, indicated by the second numeral.

G Prefix meaning 230.

gate An electronic circuit that produces an output signal that is a simple Boolean operation on its
input signals.

general-purpose register A register, usually explicitly addressable, within a set of registers, that can be
used for different purposes, for example, as an accumulator, as an index register, or as a special handler
of data.

GLOSSARY 727

global variable A variable defined in one portion of a computer program and used in at least one
other portion of that computer program.

high-performance computing (HPC) A research area dealing with supercomputers and the software
that runs on supercomputers. The emphasis is on scientific applications, which may involve heavy use
of vector and matrix computation, and parallel algorithms.

immediate address The contents of an address part that contains the value of an operand rather than
an address. Synonymous with zero-level address.

indexed address An address that is modified by the content of an index register prior to or during the
execution of a computer instruction.

indexing A technique of address modification by means of index registers.

index register A register whose contents can be used to modify an operand address during the execu-
tion of computer instructions; it can also be used as a counter. An index register may be used to control
the execution of a loop, to control the use of an array, as a switch, for table lookup, or as a pointer.

indirect address An address of a storage location that contains an address.

indirect cycle That portion of the instruction cycle during which the CPU performs a memory access
to convert an indirect address into a direct address.

input-output (I/O) Pertaining to either input or output, or both. Refers to the movement of data
 between a computer and a directly attached peripheral.

instruction address register A special-purpose register used to hold the address of the next instruction
to be executed.

instruction cycle The processing performed by a CPU to execute a single instruction.

instruction format The layout of a computer instruction as a sequence of bits. The format divides
the instruction into fields, corresponding to the constituent elements of the instruction (e.g., opcode,
operands).

instruction issue The process of initiating instruction execution in the processor’s functional units.
This occurs when an instruction moves from the decode stage of the pipeline to the first execute stage
of the pipeline

instruction register A register that is used to hold an instruction for interpretation.

integrated circuit (IC) A tiny piece of solid material, such as silicon, upon which is etched or imprinted
a collection of electronic components and their interconnections.

interrupt A suspension of a process, such as the execution of a computer program, caused by an event
external to that process, and performed in such a way that the process can be resumed. Synonymous
with interruption.

interrupt cycle That portion of the instruction cycle during which the CPU checks for interrupts. If an
enabled interrupt is pending, the CPU saves the current program state and resumes processing at an
interrupt-handler routine.

interrupt-driven I/O A form of I/O. The CPU issues an I/O command, continues to execute subse-
quent instructions, and is interrupted by the I/O module when the latter has completed its work.

728 GLOSSARY

I/O channel A relatively complex I/O module that relieves the CPU of the details of I/O operations.
An I/O channel will execute a sequence of I/O commands from main memory without the need for
CPU involvement.

I/O controller A relatively simple I/O module that requires detailed control from the CPU or an I/O
channel. Synonymous with device controller.

I/O module One of the major component types of a computer. It is responsible for the control of one
or more external devices (peripherals) and for the exchange of data between those devices and main
memory and/or CPU registers.

I/O processor An I/O module with its own processor, capable of executing its own specialized I/O
instructions or, in some cases, general-purpose machine instructions.

isolated I/O A method of addressing I/O modules and external devices. The I/O address space is
treated separately from main memory address space. Specific I/O machine instructions must be used.
Compare memory-mapped I/O.

k Prefix meaning 210 = 1024. Thus, 2 kb = 2048 bits.

local variable A variable that is defined and used only in one specified portion of a computer program.

locality of reference The tendency of a processor to access the same set of memory locations repeti-
tively over a short period of time.

M Prefix meaning 220 = 1,048,576. Thus, 2 Mb = 2,097,152 bits.

magnetic disk A flat circular plate with a magnetizable surface layer, on one or both sides of which
data can be stored.

magnetic tape A tape with a magnetizable surface layer on which data can be stored by magnetic
recording.

mainframe A term originally referring to the cabinet containing the central processor unit or “main
frame” of a large batch machine. After the emergence of smaller minicomputer designs in the early
1970s, the traditional larger machines were described as mainframe computers, mainframes. Typical
characteristics of a mainframe are that it supports a large database, has elaborate I/O hardware, and is
used in a central data processing facility.

main memory Program-addressable storage from which instructions and other data can be loaded
directly into registers for subsequent execution or processing.

memory address register (MAR) A register, in a processing unit, that contains the address of the
storage location being accessed.

memory buffer register (MBR) A register that contains data read from memory or data to be written
to memory.

memory cycle time The inverse of the rate at which memory can be accessed. It is the minimum
time between the response to one access request (read or write) and the response to the next access
request.

memory-mapped I/O A method of addressing I/O modules and external devices. A single address
space is used for both main memory and I/O addresses, and the same machine instructions are used
both for memory read/write and for I/O.

GLOSSARY 729

microcomputer A computer system whose processing unit is a microprocessor. A basic microcomputer
includes a microprocessor, storage, and an input/output facility, which may or may not be on one chip.

microinstruction An instruction that controls data flow and sequencing in a processor at a more fun-
damental level than machine instructions. Individual machine instructions and perhaps other functions
may be implemented by microprograms.

micro-operation An elementary CPU operation, performed during one clock pulse.

microprocessor A processor whose elements have been miniaturized into one or a few integrated
circuits.

microprogram A sequence of microinstructions that are in special storage where they can be dynami-
cally accessed to perform various functions.

microprogrammed CPU A CPU whose control unit is implemented using microprogramming.

microprogramming language An instruction set used to specify microprograms.

multiplexer A combinational circuit that connects multiple inputs to a single output. At any time, only
one of the inputs is selected to be passed to the output.

multiplexor channel A channel designed to operate with a number of I/O devices simultaneously.
Several I/O devices can transfer records at the same time by interleaving items of data. See also byte
multiplexor channel, block multiplexor channel.

multiprocessor A computer that has two or more processors that have common access to a main
storage.

multiprogramming A mode of operation that provides for the interleaved execution of two or more
computer programs by a single processor.

multitasking A mode of operation that provides for the concurrent performance or interleaved ex-
ecution of two or more computer tasks. The same as multiprogramming, using different terminology.

nonuniform memory access (NUMA) multiprocessor A shared-memory multiprocessor in which
the access time from a given processor to a word in memory varies with the location of the memory
word.

nonvolatile memory Memory whose contents are stable and do not require a constant power source.

nucleus That portion of an operating system that contains its basic and most frequently used func-
tions. Often, the nucleus remains resident in main memory.

ones complement representation Used to represent binary integers. A positive integer is represented
as in sign magnitude. A negative integer is represented by reversing each bit in the representation of a
positive integer of the same magnitude.

opcode Abbreviated form for operation code.

operand An entity on which an operation is performed.

operating system Software that controls the execution of programs and that provides services such as
resource allocation, scheduling, input/output control, and data management.

operation code A code used to represent the operations of a computer. Usually abbreviated to opcode.

730 GLOSSARY

orthogonality A principle by which two variables or dimensions are independent of one another.
In the context of an instruction set, the term is generally used to indicate that other elements of an
instruction (address mode, number of operands, length of operand) are independent of (not deter-
mined by) opcode.

page In a virtual storage system, a fixed-length block that has a virtual address and that is transferred
as a unit between real storage and auxiliary storage.

page fault Occurs when the page containing a referenced word is not in main memory. This causes an
interrupt and requires the operating system to bring in the needed page.

page frame An area of main storage used to hold a page.

parity Bit A binary digit appended to a group of binary digits to make the sum of all the digits either
always odd (odd parity) or always even (even parity).

peripheral equipment In a computer system, with respect to a particular processing unit, any equip-
ment that provides the processing unit with outside communication. Synonymous with peripheral device.

pipeline A processor organization in which the processor consists of a number of stages, allowing
multiple instructions to be executed concurrently.

predicated execution A mechanism that supports the conditional execution of individual instructions.
This makes it possible to execute speculatively both branches of a branch instruction and retain the
results of the branch that is ultimately taken.

process A program in execution. A process is controlled and scheduled by the operating system.

process control block The manifestation of a process in an operating system. It is a data structure
containing information about the characteristics and state of the process.

processor In a computer, a functional unit that interprets and executes instructions. A processor con-
sists of at least an instruction control unit and an arithmetic unit.

processor cycle time The time required for the shortest well-defined CPU micro-operation. It is the
basic unit of time for measuring all CPU actions. Synonymous with machine cycle time.

program counter Instruction address register.

programmable logic array (PLA) An array of gates whose interconnections can be programmed to
perform a specific logical function.

programmable read-only memory (PROM) Semiconductor memory whose contents may be set only
once. The writing process is performed electrically and may be performed by the user at a time later
than original chip fabrication.

programmed I/O A form of I/O in which the CPU issues an I/O command to an I/O module and must
then wait for the operation to be complete before proceeding.

program status word (PSW) An area in storage used to indicate the order in which instructions are
executed, and to hold and indicate the status of the computer system. Synonymous with processor
status word.

random-access memory (RAM) Memory in which each addressable location has a unique addressing
mechanism. The time to access a given location is independent of the sequence of prior access.

GLOSSARY 731

read-only memory (ROM) Semiconductor memory whose contents cannot be altered, except by
 destroying the storage unit. Nonerasable memory.

redundant array of independent disks (RAID) A disk array in which part of the physical storage
capacity is used to store redundant information about user data stored on the remainder of the stor-
age capacity. The redundant information enables regeneration of user data in the event that one of the
 array’s member disks or the access path to it fails.

registers High-speed memory internal to the CPU. Some registers are user visible; that is, available to
the programmer via the machine instruction set. Other registers are used only by the CPU, for control
purposes.

scalar A quantity characterized by a single value.

secondary memory Memory located outside the computer system itself; that is, it cannot be processed
directly by the processor. It must first be copied into main memory. Examples include disk and tape.

selector channel An I/O channel designed to operate with only one I/O device at a time. Once the I/O
device is selected, a complete record is transferred one byte at a time. Contrast with block multiplexor
channel, multiplexor channel.

semiconductor A solid crystalline substance, such as silicon or germanium, whose electrical con-
ductivity is intermediate between insulators and good conductors. Used to fabricate transistors and
solid-state components.

sequential circuit A digital logic circuit whose output depends on the current input plus the state of
the circuit. Sequential circuits thus possess the attribute of memory.

sign–magnitude representation Used to represent binary integers. In an N-bit word, the leftmost bit is
the sign (0 = positive, 1 = negative) and the remaining N - 1 bits comprise the magnitude of the number.

solid-state component A component whose operation depends on the control of electric or magnetic
phenomena in solids (e.g., transistor crystal diode, ferrite core).

speculative execution The execution of instructions along one path of a branch. If it later turns out
that this branch was not taken, then the results of the speculative execution are discarded.

stack An ordered list in which items are appended to and deleted from the same end of the list,
known as the top. That is, the next item appended to the list is put on the top, and the next item to be
removed from the list is the item that has been in the list the shortest time. This method is characterized
as last-in-first-out.

static RAM A RAM whose cells are implemented using flip-flops. A static RAM will hold its data as
long as power is supplied to it; no periodic refresh is required.

superpipelined processor A processor design in which the instruction pipeline consists of many very
small stages, so that more than one pipeline stage can be executed during one clock cycle and so that a
large number of instructions may be in the pipeline at the same time.

superscalar processor A processor design that includes multiple-instruction pipelines, so that more
than one instruction can be executing in the same pipeline stage simultaneously.

symmetric multiprocessing (SMP) A form of multiprocessing that allows the operating system to
execute on any available processor or on several available processors simultaneously.

732 GLOSSARY

synchronous timing A technique in which the occurrence of events on a bus is determined by a clock.
The clock defines equal-width time slots, and events begin only at the beginning of a time slot.

system bus A bus used to interconnect major computer components (CPU, memory, I/O).

truth table A table that describes a logic function by listing all possible combinations of input values
and indicating, for each combination, the output value.

twos complement representation Used to represent binary integers. A positive integer is represented
as in sign magnitude. A negative number is represented by taking the Boolean complement of each bit
of the corresponding positive number, then adding 1 to the resulting bit pattern viewed as an unsigned
integer.

unary operator An operator that represents an operation on one and only one operand.

unconditional jump A jump that takes place whenever the instruction that specified it is executed.

uniprocessing Sequential execution of instructions by a processing unit, or independent use of a pro-
cessing unit in a multiprocessing system.

user-visible registers CPU registers that may be referenced by the programmer. The instruction-set
format allows one or more registers to be specified as operands or addresses of operands.

vector A quantity usually characterized by an ordered set of scalars.

very long instruction word (VLIW) Refers to the use of instructions that contain multiple operations.
In effect, multiple instructions are contained in a single word. Typically, a VLIW is constructed by the
compiler, which places operations that may be executed in parallel in the same word.

virtual storage The storage space that may be regarded as addressable main storage by the user of a
computer system in which virtual addresses are mapped into real addresses. The size of virtual storage
is limited by the addressing scheme of the computer system and by the amount of auxiliary storage
available, and not by the actual number of main storage locations.

volatile memory A memory in which a constant electrical power source is required to maintain the
contents of memory. If the power is switched off, the stored information is lost.

word An ordered set of bytes or bits that is the normal unit in which information may be stored, trans-
mitted, or operated on within a given computer. Typically, if a processor has a fixed-length instruction
set, then the instruction length equals the word length.

733

REFERENCES

ABBREVIATIONS

ACM Association for Computing Machinery
IBM International Business Machines Corporation
IEEE Institute of Electrical and Electronics Engineers

ACOS86 Acosta, R.; Kjelstrup, J.; and Torng, H. “An Instruction Issuing Approach to Enhancing
Performance in Multiple Functional Unit Processors.” IEEE Transactions on Computers,
September 1986.

ADAM91 Adamek, J. Foundations of Coding. New York: Wiley, 1991.
AGAR89 Agarwal, A. Analysis of Cache Performance for Operating Systems and Multiprogram-

ming. Boston: Kluwer Academic Publishers, 1989.
AGER87 Agerwala, T., and Cocke, J. High Performance Reduced Instruction Set Processors. Techni-

cal Report RC12434 (#55845). Yorktown, NY: IBM Thomas J. Watson Research Center,
January 1987.

AMDA67 Amdahl, G. “Validity of the Single-Processor Approach to Achieving Large-Scale
 Computing Capability.” Proceedings, of the AFIPS Conference, 1967.

ANDE67a Anderson, D.; Sparacio, F.; and Tomasulo, F. “The IBM System/360 Model 91: Machine
Philosophy and Instruction Handling.” IBM Journal of Research and Development,
January 1967.

ANDE67b Anderson, S., et al. “The IBM System/360 Model 91: Floating-Point Execution Unit.”
IBM Journal of Research and Development, January 1967. Reprinted in [SWAR90,
 Volume 1].

ANTH08 Anthes, G. “What’s Next for the x86?” ComputerWorld, June 16, 2008.
ARM08a ARM Limited. Cortex-A8 Technical Reference Manual. ARM DDI 0344E, 2008, www.

arm.com
ARM08b ARM Limited. ARM11 MPCore Processor Technical Reference Manual. ARM DDI

0360E, 2008, www.arm.com
ASH90 Ash, R. Information Theory. New York: Dover, 1990.
ATKI96 Atkins, M. “PC Software Performance Tuning.” IEEE Computer, August 1996.
AZIM92 Azimi, M.; Prasad, B.; and Bhat, K. “Two Level Cache Architectures.” Proceedings

COMPCON ’92, February 1992.
BACO94 Bacon, F.; Graham, S.; and Sharp, O. “Compiler Transformations for High-Performance

Computing.” ACM Computing Surveys, December 1994.
BAER10 Baer, J. Microprocessor Architecture: From Simple Pipelines to Chip Multiprocessors.

New York: Cambridge University Press, 2010.
BAIL93 Bailey, D. “RISC Microprocessors and Scientific Computing.” Proceedings, Supercom-

puting ’93, 1993.
BASH81 Bashe, C.; Bucholtz, W.; Hawkins, G.; Ingram, J.; and Rochester, N. “The Architecture of

IBM’s Early Computers.” IBM Journal of Research and Development, September 1981.
BASH91 Bashteen, A.; Lui, I.; and Mullan, J. “A Superpipeline Approach to the MIPS Archi-

tecture.” Proceedings, COMPCON Spring ’91, February 1991.
BELL70 Bell, C.; Cady, R.; McFarland, H.; Delagi, B.; O’Loughlin, J.; and Noonan, R. “A New

Architecture for Minicomputers—The DEC PDP-11.” Proceedings, Spring Joint Com-
puter Conference, 1970.

BELL71 Bell, C., and Newell, A. Computer Structures: Readings and Examples. New York:
 McGraw-Hill, 1971.

www.arm.com
www.arm.com
www.arm.com

734 REFERENCES

BELL74 Bell, J.; Casasent, D.; and Bell, C. “An Investigation into Alternative Cache Organiza-
tions.” IEEE Transactions on Computers, April 1974.

BELL78a Bell, C.; Mudge, J.; and McNamara, J. Computer Engineering: A DEC View of Hardware
Systems Design. Bedford, MA: Digital Press, 1978.

BELL78b Bell, C.; Newell, A.; and Siewiorek, D. “Structural Levels of the PDP-8.” In
[BELL78a].

BELL78c Bell, C.; Kotok, A.; Hastings, T.; and Hill, R. “The Evolution of the DEC System-10.”
Communications of the ACM, January 1978.

BENH92 Benham, J. “A Geometric Approach to Presenting Computer Representations of Inte-
gers.” SIGCSE Bulletin, December 1992.

BETK97 Betker, M.; Fernando, J.; and Whalen, S. “The History of the Microprocessor.” Bell Labs
Technical Journal, Autumn 1997.

BEZ03 Bez, R., et al. “Introduction to Flash Memory.” Proceedings of the IEEE, April 2003.
BLAA97 Blaauw, G., and Brooks, F. Computer Architecture: Concepts and Evolution. Reading,

MA: Addison-Wesley, 1997.
BLAH83 Blahut, R. Theory and Practice of Error Control Codes. Reading, MA: Addison-Wesley,

1983.
BOHR98 Bohr, M. “Silicon Trends and Limits for Advanced Microprocessors.” Communications

of the ACM, March 1998.
BORK03 Borkar, S. “Getting Gigascale Chips: Challenges and Opportunities in Continuing

Moore’s Law.” ACM Queue, October 2003.
BORK07 Borkar, S. “Thousand Core Chips—A Technology Perspective.” Proceedings, ACM/

IEEE Design Automation Conference, 2007.
BRAD91a Bradlee, D.; Eggers, S.; and Henry, R. “The Effect on RISC Performance of Register

Set Size and Structure Versus Code Generation Strategy.” Proceedings, 18th Annual
International Symposium on Computer Architecture, May 1991.

BRAD91b Bradlee, D.; Eggers, S.; and Henry, R. “Integrating Register Allocation and Instruction
Scheduling for RISCs.” Proceedings, Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, April 1991.

BREW97 Brewer, E. “Clustering: Multiply and Conquer.” Data Communications, July 1997.
BREY09 Brey, B. The Intel Microprocessors: 8086/8066, 80186/80188, 80286, 80386, 80486, Pentium,

Pentium Pro Processor, Pentium II, Pentium III, Pentium 4 and Core2 with 64-bit Exten-
sions. Upper Saddle River, NJ: Prentice Hall, 2009.

BROW96 Brown, S., and Rose, S. “Architecture of FPGAs and CPLDs: A Tutorial.” IEEE Design
and Test of Computers, Vol. 13, No. 2, 1996.

BURK46 Burks, A.; Goldstine, H.; and von Neumann, J. Preliminary Discussion of the Logical
Design of an Electronic Computer Instrument. Report prepared for U.S. Army Ordnance
Department, 1946, reprinted in [BELL71].

BUYY99a Buyya, R. High Performance Cluster Computing: Architectures and Systems. Upper
Saddle River, NJ: Prentice Hall, 1999.

BUYY99b Buyya, R. High Performance Cluster Computing: Programming and Applications.
 Upper Saddle River, NJ: Prentice Hall, 1999.

CANT01 Cantin, J., and Hill, H. “Cache Performance for Selected SPEC CPU2000 Benchmarks.”
Computer Architecture News, September 2001.

CART06 Carter, P. PC Assembly Language, July 23, 2006. Available at this book’s Web site.
CEKL97 Cekleov, M., and Dubois, M. “Virtual-Address Caches, Part 1: Problems and Solutions

in Uniprocessors.” IEEE Micro, September/October 1997.
CHAI82 Chaitin, G. “Register Allocation and Spilling via Graph Coloring.” Proceedings, SIG-

PLAN Symposium on Compiler Construction, June 1982.
CHEN94 Chen, P.; Lee, E.; Gibson, G.; Katz, R.; and Patterson, D. “RAID: High-Performance,

Reliable Secondary Storage.” ACM Computing Surveys, June 1994.

REFERENCES 735

CHEN96 Chen, S., and Towsley, D. “A Performance Evaluation of RAID Architectures.” IEEE
Transactions on Computers, October 1996.

CHOW86 Chow, F.; Himmelstein, M.; Killian, E.; and Weber, L. “Engineering a RISC Compiler
System.” Proceedings, COMPCON Spring ’86, March 1986.

CHOW87 Chow, F.; Correll, S.; Himmelstein, M.; Killian, E.; and Weber, L. “How Many Addressing
Modes Are Enough?” Proceedings, Second International Conference on Architectural
Support for Programming Languages and Operating Systems, October 1987.

CHOW90 Chow, F., and Hennessy, J. “The Priority-Based Coloring Approach to Register Alloca-
tion.” ACM Transactions on Programming Languages, October 1990.

CLAR85 Clark, D., and Emer, J. “Performance of the VAX-11/780 Translation Buffer: Simulation
and Measurement.” ACM Transactions on Computer Systems, February 1985.

CLEM00 Clemenwts, A. “The Undergraduate Curriculum in Computer Architecture.” IEEE
 Micro, May/June 2000.

COHE81 Cohen, D. “On Holy Wars and a Plea for Peace.” Computer, October 1981.
COLW85a Colwell, R.; Hitchcock, C.; Jensen, E.; Brinkley-Sprunt, H.; and Kollar, C. “Computers,

Complexity, and Controversy.” Computer, September 1985.
COLW85b Colwell, R.; Hitchcock, C.; Jensen, E.; and Sprunt, H. “More Controversy About

 ‘Computers, Complexity, and Controversy.’” Computer, December 1985.
COOK82 Cook, R., and Dande, N. “An Experiment to Improve Operand Addressing.” Proceed-

ings, Symposium on Architecture Support for Programming Languages and Operating
Systems, March 1982.

COON81 Coonen J. “Underflow and Denormalized Numbers.” IEEE Computer, March 1981.
COUT86 Coutant, D.; Hammond, C.; and Kelley, J. “Compilers for the New Generation of

Hewlett-Packard Computers.” Proceedings, COMPCON Spring ’86, March 1986.
CRAG79 Cragon, H. “An Evaluation of Code Space Requirements and Performance of Various

Architectures.” Computer Architecture News, February 1979.
CRAG92 Cragon, H. Branch Strategy Taxonomy and Performance Models. Los Alamitos, CA:

IEEE Computer Society Press, 1992.
CRAW90 Crawford, J. “The i486 CPU: Executing Instructions in One Clock Cycle.” IEEE Micro,

February 1990.
CRIS97 Crisp, R. “Direct RAMBUS Technology: The New Main Memory Standard.” IEEE

 Micro, November/December 1997.
CUPP01 Cuppu, V., et al. “High Performance DRAMS in Workstation Environments.” IEEE

Transactions on Computers, November 2001.
CURR11 Curran, B., et al. “The zEnterprise 196 System and Microprocessor.” IEEE Micro,

March/April 2011.
DATT93 Dattatreya, G. “A Systematic Approach to Teaching Binary Arithmetic in a First

Course.” IEEE Transactions on Education, February 1993.
DAVI87 Davidson, J., and Vaughan, R. “The Effect of Instruction Set Complexity on Program

Size and Memory Performance.” Proceedings, Second International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, October 1987.

DENN68 Denning, P. “The Working Set Model for Program Behavior.” Communications of the
ACM, May 1968.

DERO87 DeRosa, J., and Levy, H. “An Evaluation of Branch Architectures.” Proceedings, Four-
teenth Annual International Symposium on Computer Architecture, 1987.

DESA05 Desai, D., et al. “BladeCenter System Overview.” IBM Journal of Research and Devel-
opment, November 2005.

DEWA90 Dewar, R., and Smosna, M. Microprocessors: A Programmer’s View. New York:
 McGraw-Hill, 1990.

DOWD98 Dowd, K., and Severance, C. High Performance Computing. Sebastopol, CA: O’Reilly,
1998.

736 REFERENCES

DUBE91 Dubey, P., and Flynn, M. “Branch Strategies: Modeling and Optimization.” IEEE Trans-
actions on Computers, October 1991.

ECKE90 Eckert, R. “Communication Between Computers and Peripheral Devices—An Analogy.”
ACM SIGCSE Bulletin, September 1990.

EISC07 Eischen, C. “RAID 6 Covers More Bases.” Network World, April 9, 2007.
ELAY85 El-Ayat, K., and Agarwal, R. “The Intel 80386—Architecture and Implementation.”

IEEE Micro, December 1985.
ERCE04 Ercegovac, M., and Lang, T. Digital Arithmetic. San Francisco: Morgan Kaufmann, 2004.
EVEN00a Even, G., and Paul, W. “On the Design of IEEE Compliant Floating-Point Units.” IEEE

Transactions on Computers, May 2000.
EVEN00b Even, G., and Seidel, P. “A Comparison of Three Rounding Algorithms for IEEE

Floating-Point Multiplication.” IEEE Transactions on Computers, July 2000.
EVER98 Evers, M., et al. “An Analysis of Correlation and Predictability: What Makes Two-

Level Branch Predictors Work.” Proceedings, 25th Annual International Symposium on
 Microarchitecture, July 1998.

EVER01 Evers, M., and Yeh, T. “Understanding Branches and Designing Branch Predictors for
High-Performance Microprocessors.” Proceedings of the IEEE, November 2001.

FARH04 Farhat, H. Digital Design and Computer Organization. Boca Raton, FL: CRC Press,
2004.

FARM92 Farmwald, M., and Mooring, D. “A Fast Path to One Memory.” IEEE Spectrum, October
1992.

FATA08 Fatahalian, K., and Houston, M. “A Closer Look at GPUs.” Communications of the
ACM, October 2008.

FLEM86 Fleming, P., and Wallace, J. “How Not to Lie with Statistics: The Correct Way to
 Summarize Benchmark Results.” Communications of the ACM, March 1986.

FLYN72 Flynn, M. “Some Computer Organizations and Their Effectiveness.” IEEE Transactions
on Computers, September 1972.

FLYN85 Flynn, M.; Johnson, J.; and Wakefield, S. “On Instruction Sets and Their Formats.” IEEE
Transactions on Computers, March 1985.

FLYN87 Flynn, M.; Mitchell, C.; and Mulder, J. “And Now a Case for More Complex Instruction
Sets.” Computer, September 1987.

FLYN01 Flynn, M., and Oberman, S. Advanced Computer Arithmetic Design. New York: Wiley,
2001.

FOG08a Fog, A. Optimizing Subroutines in Assembly Language: An Optimization Guide for
x86 Platforms. Copenhagen University College of Engineering, 2008, http://www.agner
.org/optimize/

FOG08b Fog, A. The Microarchitecture of Intel and AMD CPUs. Copenhagen University College
of Engineering, 2008, http://www.agner.org/optimize/

FRAI83 Frailey, D. “Word Length of a Computer Architecture: Definitions and Applications.”
Computer Architecture News, June 1983.

FRIE96 Friedman, M. “RAID Keeps Going and Going and…” IEEE Spectrum, April 1996.
FULL11 Fuller, S., and Millet, L., eds. The Future of Computing Performance: Game Over or Next

Level? Washington, DC: National Academies Press, 2011, www.nap.edu
FURB00 Furber, S. ARM System-on-Chip Architecture. Reading, MA: Addison-Wesley, 2000.
FUTR01 Futral, W. InfiniBand Architecture: Development and Deployment. Hillsboro, OR: Intel

Press, 2001.
GENU04 Genu, P. A Cache Primer. Application Note AN2663. Freescale Semiconductor, Inc.,

2004 (available in Premium Content Document section).
GHAI98 Ghai, S.; Joyner, J.; and John, L. Investigating the Effectiveness of a Third Level Cache.

Technical Report TR-980501-01, Laboratory for Computer Architecture, University of
Texas at Austin, 1998, http://lca.ece.utexas.edu/pubs-by-type.html

http://www.agner.org/optimize/
http://www.agner.org/optimize/
http://www.agner.org/optimize/
www.nap.edu
http://lca.ece.utexas.edu/pubs-by-type.html

REFERENCES 737

GIBB04 Gibbs, W. “A Split at the Core.” Scientific American, November 2004.
GIFF87 Gifford, D., and Spector, A. “Case Study: IBM’s System/360-370 Architecture.”

 Communications of the ACM, April 1987.
GOCH06 Gochman, S., et al. “Introduction to Intel Core Duo Processor Architecture.” Intel Tech-

nology Journal, May 2006.
GOLD54 Goldstine, H.; Pomerene, J.; and Smith, C. Final Progress Report on the Physical Real-

ization of an Electronic Computing Instrument. Princeton: The Institute for Advanced
Study Electronic Computer Project, 1954.

GOLD91 Goldberg, D. “What Every Computer Scientist Should Know About Floating-Point
Arithmetic.” ACM Computing Surveys, March 1991.

GOOD83 Goodman, J. “Using Cache Memory to Reduce Processor-Memory Bandwidth.”
 Proceedings, 10th Annual International Symposium on Computer Architecture, 1983.
Reprinted in [HILL00].

GOOD05 Goodacre, J., and Sloss, A. “Parallelism and the ARM Instruction Set Architecture.”
Computer, July 2005.

GREG98 Gregg, J. Ones and Zeros: Understanding Boolean Algebra, Digital Circuits, and the
Logic of Sets. New York: Wiley, 1998.

GRIM05 Grimheden, M., and Torngren, M. “What Is Embedded Systems and How Should It
Be Taught?—Results from a Didactic Analysis.” ACM Transactions on Embedded
 Computing Systems, August 2005.

GSOE08 Gsoedl, J. “Solid State: New Frontier in Storage.” Storage, July 2008.
GUST88 Gustafson, J. “Reevaluating Amdahl’s Law.” Communications of the ACM, May

1988.
HAMM97 Hammond, L.; Nayfay, B.; and Olukotun, K. “A Single-Chip Multiprocessor.” Computer,

September 1997.
HAND98 Handy, J. The Cache Memory Book. San Diego: Academic Press, 1998.
HARR06 Harris, W. “Multi-Core in the Source Engine.” bit-tech.net technical paper, November 2,

2006, bit-tech.net/gaming/2006/11/02/Multi_core_in_the_Source_Engin/1
HAYE98 Hayes, J. Computer Architecture and Organization. New York: McGraw-Hill, 1998.
HEAT84 Heath, J. “Re-Evaluation of RISC 1.” Computer Architecture News, March 1984.
HENN82 Hennessy, J., et al. “Hardware/Software Tradeoffs for Increased Performance.” Proceed-

ings, Symposium on Architectural Support for Programming Languages and Operating
Systems, March 1982.

HENN84 Hennessy, J. “VLSI Processor Architecture.” IEEE Transactions on Computers, December
1984.

HENN91 Hennessy, J., and Jouppi, N. “Computer Technology and Architecture: An Evolving
 Interaction.” Computer, September 1991.

HENN06 Henning, J. “SPEC CPU2006 Benchmark Descriptions.” Computer Architecture News,
September 2006.

HENN07 Henning, J. “SPEC CPU Suite Growth: An Historical Perspective.” Computer Architec-
ture News, March 2007.

HIDA90 Hidaka, H.; Matsuda, Y.; Asakura, M.; and Kazuyasu, F. “The Cache DRAM Architec-
ture: A DRAM with an on-Chip Cache Memory.” IEEE Micro, April 1990.

HIGB90 Higbie, L. “Quick and Easy Cache Performance Analysis.” Computer Architecture
News, June 1990.

HILL89 Hill, M. “Evaluating Associativity in CPU Caches.” IEEE Transactions on Computers,
December 1989.

HILL00 Hill, M.; Jouppi, N.; and Sohi, G. Readings in Computer Architecture. San Francisco:
Morgan Kaufmann, 2000.

HINT01 Hinton, G., et al. “The Microarchitecture of the Pentium 4 Processor.” Intel Technology
Journal, Q1, 2001, http://developer.intel.com/technology/itj/

http://developer.intel.com/technology/itj/

738 REFERENCES

HIRA07 Hirata, K., and Goodacre, J. “ARM MPCore: The Streamlined and Scalable ARM11
Processor Core.” Proceedings, 2007 Conference on Asia South Pacific Design Automa-
tion, 2007.

HUCK83 Huck, T. Comparative Analysis of Computer Architectures. Stanford University Techni-
cal Report No. 83-243, May 1983.

HUGU91 Huguet, M., and Lang, T. “Architectural Support for Reduced Register Saving/Restoring
in Single-Window Register Files.” ACM Transactions on Computer Systems, February
1991.

HUTC96 Hutcheson, G., and Hutcheson, J. “Technology and Economics in the Semiconductor
Industry.” Scientific American, January 1996.

HWAN93 Hwang, K. Advanced Computer Architecture. New York: McGraw-Hill, 1993.
HWAN99 Hwang, K, et al. “Designing SSI Clusters with Hierarchical Checkpointing and Single

I/O Space.” IEEE Concurrency, January–March 1999.
IBM01 International Business Machines, Inc. 64 Mb Synchronous DRAM. IBM Data Sheet

364164, January 2001.
INTE98 Intel Corp. Pentium Pro and Pentium II Processors and Related Products. Aurora, CO,

1998.
INTE01a Intel Corp. Intel Pentium 4 Processor Optimization Reference Manual. Document

248966-04, 2001, http://developer.intel.com/design/Pentium4/documentation.htm
INTE01b Intel Corp. Desktop Performance and Optimization for Intel Pentium 4 Processor. Docu-

ment 248966-04, 2001, http://developer.intel.com/design/Pentium4/documentation.htm
INTE04a Intel Corp. IA-32 Intel Architecture Software Developer’s Manual (4 volumes).

Document 253665 through 253668. 2004, http://developer.intel.com/design/Pentium4/
documentation.htm

INTE04b Intel Research and Development. Architecting the Era of Tera. Intel White Paper,
February 2004, http://www.intel.com/labs/teraera/index.htm

INTE04c Intel Corp. Endianness White Paper, November 15, 2004.
INTE11 Intel Corp. Intel® 64 and IA-32 Intel Architectures Software Developer’s Manual

(3 volumes). Denver, CO, 2011.
JACO08 Jacob, B.; Ng, S.; and Wang, D. Memory Systems: Cache, DRAM, Disk. Boston: Morgan

Kaufmann, 2008.
JAME90 James, D. “Multiplexed Buses: The Endian Wars Continue.” IEEE Micro, June 1990.
JOHN91 Johnson, M. Superscalar Microprocessor Design. Englewood Cliffs, NJ: Prentice Hall,

1991.
JOHN08 John, E., and Rubio, J. Unique Chips and Systems. Boca Raton, FL: CRC Press, 2008.
JOUP88 Jouppi, N. “Superscalar versus Superpipelined Machines.” Computer Architecture News,

June 1988.
JOUP89a Jouppi, N., and Wall, D. “Available Instruction-Level Parallelism for Superscalar and

Superpipelined Machines.” Proceedings, Third International Conference on Architec-
tural Support for Programming Languages and Operating Systems, April 1989.

JOUP89b Jouppi, N. “The Nonuniform Distribution of Instruction-Level and Machine Parallelism
and Its Effect on Performance.” IEEE Transactions on Computers, December 1989.

KAEL91 Kaeli, D., and Emma, P. “Branch History Table Prediction of Moving Target Branches
Due to Subroutine Returns.” Proceedings, 18th Annual International Symposium on
Computer Architecture, May 1991.

KAGA01 Kagan, M. “InfiniBand: Thinking Outside the Box Design.” Communications System
Design, September 2001, www.csdmag.com

KALL04 Kalla, R.; Sinharoy, B.; and Tendler, J. “IBM Power5 Chip: A Dual-Core Multithreaded
Processor.” IEEE Micro, March–April 2004.

KANE92 Kane, G., and Heinrich, J. MIPS RISC Architecture. Englewood Cliffs, NJ: Prentice Hall,
1992.

http://www.intel.com/labs/teraera/index.htm
www.csdmag.com
http://developer.intel.com/design/Pentium4/documentation.htm
http://developer.intel.com/design/Pentium4/documentation.htm
http://developer.intel.com/design/Pentium4/documentation.htm
http://developer.intel.com/design/Pentium4/documentation.htm

REFERENCES 739

KAPP00 Kapp, C. “Managing Cluster Computers.” Dr. Dobb’s Journal, July 2000.
KATE83 Katevenis, M. Reduced Instruction Set Computer Architectures for VLSI. PhD disser-

tation, Computer Science Department, University of California at Berkeley, October
1983. Reprinted by MIT Press, Cambridge, MA, 1985.

KATZ89 Katz, R.; Gibson, G.; and Patterson, D. “Disk System Architecture for High Perfor-
mance Computing.” Proceedings of the IEEE, December 1989.

KEET01 Keeth, B., and Baker, R. DRAM Circuit Design: A Tutorial. Piscataway, NJ: IEEE Press,
2001.

KNAG04 Knaggs, P., and Welsh, S. ARM: Assembly Language Programming. Bournemouth
 University, School of Design, Engineering, and Computing, August 31, 2004, www.
freetechbooks.com/arm-assembly-language-programming-t729.html

KNUT71 Knuth, D. “An Empirical Study of FORTRAN Programs.” Software Practice and Expe-
rience, Vol. 1, 1971.

KNUT98 Knuth, D. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.
Reading, MA: Addison-Wesley, 1998.

KOLB05 Kolbehdari, M., et al. “The Emergence of PCI Express* in the Next Generation of
 Mobile Platforms.” Intel Technology Journal, February 2005.

KOOP96 Koopman, P. “Embedded System Design Issues (the Rest of the Story). Proceedings,
1996 International Conference on Computer Design, 1996.

KUCK77 Kuck, D.; Parker, D.; and Sameh, A. “An Analysis of Rounding Methods in Floating-
Point Arithmetic.” IEEE Transactions on Computers, July 1977.

KUGA91 Kuga, M.; Murakami, K.; and Tomita, S. “DSNS (Dynamically-hazard resolved,
Statically-code-scheduled, Nonuniform Superscalar): Yet Another Superscalar Proces-
sor Architecture.” Computer Architecture News, June 1991.

LEE91 Lee, R.; Kwok, A.; and Briggs, F. “The Floating Point Performance of a Superscalar
SPARC Processor.” Proceedings, Fourth International Conference on Architectural
 Support for Programming Languages and Operating Systems, April 1991.

LEON07 Leonard, T. “Dragged Kicking and Screaming: Source Multicore.” Proceedings, Game
Developers Conference 2007, March 2007.

LEON08 Leong, P. “Recent Trends in FPGA Architectures and Applications.” Proceedings, 4th
IEEE International symposium on Electronic Design, Test, and Applications, 2008.

LILJ88 Lilja, D. “Reducing the Branch Penalty in Pipelined Processors.” Computer, July 1988.
LILJ93 Lilja, D. “Cache Coherence in Large-Scale Shared-Memory Multiprocessors: Issues and

Comparisons.” ACM Computing Surveys, September 1993.
LITT61 Little, J. “A Proof for the Queuing Formula: L = lW.” Operations Research, May–June,

1961.
LITT11 Little, J. “Little’s Law as Viewed on Its 50th Anniversary.” Operations Research,

May–June, 2011.
LOVE96 Lovett, T., and Clapp, R. “Implementation and Performance of a CC-NUMA System.”

Proceedings, 23rd Annual International Symposium on Computer Architecture, May
1996.

LUND77 Lunde, A. “Empirical Evaluation of Some Features of Instruction Set Processor Archi-
tectures.” Communications of the ACM, March 1977.

MACD84 MacDougall, M. “Instruction-level Program and Process Modeling.” IEEE Computer,
July 1984.

MADD09 Maddox, R., et al. Weaving High Performance Multiprocessor Fabric: Architectural
 Insights to the Intel QuickPath Interconnect. Hillsboro, OR: Intel Press, 2009.

MAK04 Mak, P., et al. “Processor Subsystem Interconnect for a Large Symmetric Multiprocess-
ing System.” IBM Journal of Research and Development, May/July 2004.

MAK97 Mak, P., et al. “Shared-Cache Clusters in a System with a Fully Shared Memory.” IBM
Journal of Research and Development, July/September 1997.

www.freetechbooks.com/arm-assembly-language-programming-t729.html
www.freetechbooks.com/arm-assembly-language-programming-t729.html

740 REFERENCES

MANO08 Mano, M., and Kime, C. Logic and Computer Design Fundamentals. Upper Saddle River,
NJ: Prentice Hall, 2008.

MANS97 Mansuripur, M., and Sincerbox, G. “Principles and Techniques of Optical Data Storage.”
Proceedings of the IEEE, November 1997.

MARR02 Marr, D., et al. “Hyper-Threading Technology Architecture and Microarchitecture.”
Intel Technology Journal, First Quarter, 2002.

MASH95 Mashey, J. “CISC vs. RISC (or what is RISC really).” USENET comp.arch newsgroup,
article 46782, February 1995.

MAYB84 Mayberry, W., and Efland, G. “Cache Boosts Multiprocessor Performance.” Computer
Design, November 1984.

MAZI10 Mazidi, M.; Mazidi, J.; and Causey, D. The x86 PC: Assembly Language, Design and
Interfacing. Upper Saddle River, NJ: Prentice Hall, 2010.

MCDO05 McDougall, R. “Extreme Software Scaling.” ACM Queue, September 2005.
MCDO06 McDougall, R., and Laudon, J. “Multi-Core Microprocessors Are Here.” ;login, October

2006.
MCEL85 McEliece, R. “The Reliability of Computer Memories.” Scientific American, January

1985.
MEND06 Mendelson, A., et al. “CMP Implementation in Systems Based on the Intel Core Duo

Processor.” Intel Technology Journal, May 2006.
MILE00 Milenkovic, A. “Achieving High Performance in Bus-Based Shared-Memory Multipro-

cessors.” IEEE Concurrency, July–September 2000.
MIRA92 Mirapuri, S.; Woodacre, M.; and Vasseghi, N. “The MIPS R4000 Processor.” IEEE

Micro, April 1992.
MOOR65 Moore, G. “Cramming More Components Onto Integrated Circuits.” Electronics Maga-

zine, April 19, 1965.
MORS78 Morse, S.; Pohlman, W.; and Ravenel, B. “The Intel 8086 Microprocessor: A 16-bit Evo-

lution of the 8080.” Computer, June 1978.
MOSH01 Moshovos, A., and Sohi, G. “Microarchitectural Innovations: Boosting Microprocessor

Performance Beyond Semiconductor Technology Scaling.” Proceedings of the IEEE,
November 2001.

MULL10 Muller, J., et al. Handbook of Floating-Point Arithmetic. Boston: Birkhauser, 2010.
MYER78 Myers, G. “The Evaluation of Expressions in a Storage-to-Storage Architecture.”

Computer Architecture News, June 1978.
NOVI93 Novitsky, J.; Azimi, M.; and Ghaznavi, R. “Optimizing Systems Performance Based on

Pentium Processors.” Proceedings COMPCON ’92, February 1993.
NOWE07 Nowell, M.; Vusirikala, V.; and Hays, R. “Overview of Requirements and Applications

for 40 Gigabit and 100 Gigabit Ethernet.” Ethernet Alliance White Paper, August 2007.
OBER97a Oberman, S., and Flynn, M. “Design Issues in Division and Other Floating-Point

Operations.” IEEE Transactions on Computers, February 1997.
OBER97b Oberman, S., and Flynn, M. “Division Algorithms and Implementations.” IEEE Trans-

actions on Computers, August 1997.
OKLO08 Oklobdzija, V., ed. Digital Design and Fabrication. Boca Raton, FL: CRC Press, 2008.
OLUK96 Olukotun, K., et al. “The Case for a Single-Chip Multiprocessor.” Proceedings, Seventh

International Conference on Architectural Support for Programming Languages and
Operating Systems, 1996.

OLUK05 Olukotun, K., and Hammond, L. “The Future of Microprocessors.” ACM Queue,
September 2005.

OLUK07 Olukotun, K.; Hammond, L.; and Laudon, J. Chip Multiprocessor Architecture: Tech-
niques to Improve Throughput and Latency. San Rafael, CA: Morgan & Claypool, 2007.

OMON99 Omondi, A. The Microarchitecture of Pipelined and Superscalar Computers. Boston:
Kluwer, 1999.

REFERENCES 741

OSUN11 Osuna, A., et al. IBM System Storage Tape Library Guide for Open Systems. IBM
Redbook SG24-5946-07, June 2011.

PADE81 Padegs, A. “System/360 and Beyond.” IBM Journal of Research and Development,
September 1981.

PADE88 Padegs, A.; Moore, B.; Smith, R.; and Buchholz, W. “The IBM System/370 Vector
Architecture: Design Considerations.” IEEE Transactions on Communications, May
1988.

PARH10 Parhami, B. Computer Arithmetic: Algorithms and Hardware Design. Oxford: Oxford
University Press, 2010.

PATT82a Patterson, D., and Sequin, C. “A VLSI RISC.” Computer, September 1982.
PATT82b Patterson, D., and Piepho, R. “Assessing RISCs in High-Level Language Support.”

IEEE Micro, November 1982.
PATT84 Patterson, D. “RISC Watch.” Computer Architecture News, March 1984.
PATT85a Patterson, D. “Reduced Instruction Set Computers.” Communications of the ACM,

January 1985.
PATT85b Patterson, D., and Hennessy, J. “Response to ‘Computers, Complexity, and Controversy.’ ”

Computer, November 1985.
PATT88 Patterson, D.; Gibson, G.; and Katz, R. “A Case for Redundant Arrays of Inexpensive

Disks (RAID).” Proceedings, ACM SIGMOD Conference of Management of Data,
June 1988.

PATT01 Patt, Y. “Requirements, Bottlenecks, and Good Fortune: Agents for Microprocessor
Evolution.” Proceedings of the IEEE, November 2001.

PAVA97 Pavan, P., et al. “Flash Memory Cells—An Overview.” Proceedings of the IEEE,
August 1997.

PEIR99 Peir, J.; Hsu, W.; and Smith, A. “Functional Implementation Techniques for CPU Cache
Memories.” IEEE Transactions on Computers, February 1999.

PELE97 Peleg, A.; Wilkie, S.; and Weiser, U. “Intel MMX for Multimedia PCs.” Communications
of the ACM, January 1997.

PFIS98 Pfister, G. In Search of Clusters. Upper Saddle River, NJ: Prentice Hall, 1998.
POLL99 Pollack, F. “New Microarchitecture Challenges in the Coming Generations of CMOS

Process Technologies (keynote address).” Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture, 1999.

POPE91 Popescu, V., et al. “The Metaflow Architecture.” IEEE Micro, June 1991.
PRES01 Pressel, D. “Fundamental Limitations on the Use of Prefetching and Stream Buffers for

Scientific Applications.” Proceedings, ACM Symposium on Applied Computing, March
2001.

PRIN97 Prince, B. Semiconductor Memories. New York: Wiley, 1997.
PRIN02 Prince, B. Emerging Memories: Technologies and Trends. Norwell, MA: Kluwer, 2002.
PROP11 Prophet, G. “Use GPUs to Boost Acceleration.” IDN, December 2, 2011.
PRZY88 Przybylski, S.; Horowitz, M.; and Hennessy, J. “Performance Trade-Offs in Cache

 Design.” Proceedings, Fifteenth Annual International Symposium on Computer Archi-
tecture, June 1988.

PRZY90 Przybylski, S. “The Performance Impact of Block Size and Fetch Strategies.” Proceed-
ings, 17th Annual International Symposium on Computer Architecture, May 1990.

RADI83 Radin, G. “The 801 Minicomputer.” IBM Journal of Research and Development,
May 1983.

RAGA83 Ragan-Kelley, R., and Clark, R. “Applying RISC Theory to a Large Computer.”
Computer Design, November 1983.

RAMA77 Ramamoorthy, C. “Pipeline Architecture.” Computing Surveys, March 1977.
RECH98 Reches, S., and Weiss, S. “Implementation and Analysis of Path History in Dynamic

Branch Prediction Schemes.” IEEE Transactions on Computers, August 1998.

742 REFERENCES

REDD76 Reddi, S., and Feustel, E. “A Conceptual Framework for Computer Architecture.”
Computing Surveys, June 1976.

REIM06 Reimer, J. “Valve Goes Multicore.” ars technica, November 5, 2006, arstechnica.com/
articles/paedia/cpu/valve-multicore.ars

RICH07 Riches, S., et al. “A Fully Automated High Performance Implementation of ARM
Cortex-A8.” IQ Online, Vol. 6, No. 3, 2007, www.arm.com/iqonline

SAKA02 Sakai, S. “CMP on SoC: Architect’s View.” Proceedings, 15th International Symposium
on System Synthesis, 2002.

SATY81 Satyanarayanan, M., and Bhandarkar, D. “Design Trade-Offs in VAX-11 Translation
Buffer Organization.” Computer, December 1981.

SCHA97 Schaller, R. “Moore’s Law: Past, Present, and Future.” IEEE Spectrum, June 1997.
SCHW99 Schwarz, E., and Krygowski, C. “The S/390 G5 Floating-Point Unit.” IBM Journal of

Research and Development, September/November 1999.
SEAL00 Seal, D., ed. ARM Architecture Reference Manual. Reading, MA: Addison-Wesley, 2000.
SERL86 Serlin, O. “MIPS, Dhrystones, and Other Tales.” Datamation, June 1, 1986.
SHAN38 Shannon, C. “Symbolic Analysis of Relay and Switching Circuits.” AIEE Transactions,

Vol. 57, 1938.
SHAN03 Shanley, T. InfinBand Network Architecture. Reading, MA: Addison-Wesley, 2003.
SHAN05 Shanley, T. Unabridged Pentium 4. The: IA32 Processor Genealogy. Reading, MA: Addi-

son-Wesley, 2005.
SHAR97 Sharma, A. Semiconductor Memories: Technology, Testing, and Reliability. New York:

IEEE Press, 1997.
SHAR03 Sharma, A. Advanced Semiconductor Memories: Architectures, Designs, and Applica-

tions. New York: IEEE Press, 2003.
SHEN05 Shen, J., and Lipasti, M. Modern Processor Design: Fundamentals of Superscalar

Processors. New York: McGraw-Hill, 2005.
SIEG04 Siegel, T.; Pfeffer, E.; and Magee, A. “The IBM z990 Microprocessor.” IBM Journal of

Research and Development, May/July 2004.
SIEW82 Siewiorek, D.; Bell, C.; and Newell, A. Computer Structures: Principles and Examples.

New York: McGraw-Hill, 1982.
SIMA97 Sima, D. “Superscalar Instruction Issue.” IEEE Micro, September/October 1997.
SIMA04 Sima, D. “Decisive Aspects in the Evolution of Microprocessors.” Proceedings of the

IEEE, December 2004.
SIMO96 Simon, H. The Sciences of the Artificial. Cambridge, MA: MIT Press, 1996.
SING10 Singh, G., et al. “The Feeding of High-Performance Processor Cores—Quickpath Inter-

connects and the New I/O Hubs.” Intel Technology Journal, September 2010.
SING11 Singh, G. “The IBM PC: The Silicon Story.” Computer, August 2011.
SLOS04 Sloss, A.; Symes, D.; and Wright, C. ARM System Developer’s Guide. San Francisco:

Morgan Kaufmann, 2004.
SMIT82 Smith, A. “Cache Memories.” ACM Computing Surveys, September 1982.
SMIT87 Smith, A. “Line (Block) Size Choice for CPU Cache Memories.” IEEE Transactions on

Communications, September 1987.
SMIT88 Smith, J. “Characterizing Computer Performance with a Single Number.” Communica-

tions of the ACM, October 1988.
SMIT89 Smith, M.; Johnson, M.; and Horowitz, M. “Limits on Multiple Instruction Issue.”

Proceedings, Third International Conference on Architectural Support for Programming
Languages and Operating Systems, April 1989.

SMIT95 Smith, J., and Sohi, G. “The Microarchitecture of Superscalar Processors.” Proceedings
of the IEEE, December 1995.

SMIT08 Smith, B. “ARM and Intel Battle over the Mobile Chip’s Future.” Computer, May
2008.

www.arm.com/iqonline

REFERENCES 743

SODE96 Soderquist, P., and Leeser, M. “Area and Performance Tradeoffs in Floating-Point Divide
and Square-Root Implementations.” ACM Computing Surveys, September 1996.

SOHI90 Sohi, G. “Instruction Issue Logic for High-Performance Interruptable, Multiple Func-
tional Unit, Pipelined Computers.” IEEE Transactions on Computers, March 1990.

STAL88 Stallings, W. “Reduced Instruction Set Computer Architecture.” Proceedings of the
IEEE, January 1988.

STAL11 Stallings, W. Data and Computer Communications, Ninth Edition. Upper Saddle River,
NJ: Prentice Hall, 2011.

STAL12 Stallings, W. Operating Systems, Internals and Design Principles, Seventh Edition. Upper
Saddle River, NJ: Prentice Hall, 2012.

STEN90 Stenstrom, P. “A Survey of Cache Coherence Schemes of Multiprocessors.” Computer,
June 1990.

STEV64 Stevens, W. “The Structure of System/360, Part II: System Implementation.” IBM Sys-
tems Journal, Vol. 3, No. 2, 1964. Reprinted in [SIEW82].

STON93 Stone, H. High-Performance Computer Architecture. Reading, MA: Addison-Wesley,
1993.

STON96 Stonham, T. Digital Logic Techniques. London: Chapman & Hall, 1996.
STRE78 Strecker, W. “VAX-11/780: A Virtual Address Extension to the DEC PDP-11 Family.”

Proceedings, National Computer Conference, 1978.
STRE83 Strecker, W. “Transient Behavior of Cache Memories.” ACM Transactions on Computer

Systems, November 1983.
STRI79 Stritter, E., and Gunter, T. “A Microprocessor Architecture for a Changing World:

The Motorola 68000.” Computer, February 1979.
SWAR90 Swartzlander, E., ed. Computer Arithmetic, Volumes I and II. Los Alamitos, CA: IEEE

Computer Society Press, 1990.
TAMI83 Tamir, Y., and Sequin, C. “Strategies for Managing the Register File in RISC.” IEEE

Transactions on Computers, November 1983.
TANE78 Tanenbaum, A. “Implications of Structured Programming for Machine Architecture.”

Communications of the ACM, March 1978.
TJAD70 Tjaden, G., and Flynn, M. “Detection and Parallel Execution of Independent Instruc-

tions.” IEEE Transactions on Computers, October 1970.
TOMA93 Tomasevic, M., and Milutinovic, V. The Cache Coherence Problem in Shared-Memory

Multiprocessors: Hardware Solutions. Los Alamitos, CA: IEEE Computer Society Press,
1993.

TOON81 Toong, H., and Gupta, A. “An Architectural Comparison of Contemporary 16-Bit
 Microprocessors.” IEEE Micro, May 1981.

TUCK87 Tucker, S. “The IBM 3090 System Design with Emphasis on the Vector Facility.” Pro-
ceedings, COMPCON Spring ’87, February 1987.

UNGE02 Ungerer, T.; Rubic, B.; and Silc, J. “Multithreaded Processors.” The Computer Journal,
No. 3, 2002.

UNGE03 Ungerer, T.; Rubic, B.; and Silc, J. “A Survey of Processors with Explicit Multithreading.”
ACM Computing Surveys, March 2003.

VOGL94 Vogley, B. “800 Megabyte Per Second Systems Via Use of Synchronous DRAM.”
Proceedings, COMPCON ’94, March 1994.

VONN45 Von Neumann, J. First Draft of a Report on the EDVAC. Moore School, University of
Pennsylvania, 1945. Reprinted in IEEE Annals on the History of Computing, No. 4, 1993.

VRAN80 Vranesic, Z., and Thurber, K. “Teaching Computer Structures.” Computer, June 1980.
WALL85 Wallich, P. “Toward Simpler, Faster Computers.” IEEE Spectrum, August 1985.
WALL91 Wall, D. “Limits of Instruction-Level Parallelism.” Proceedings, Fourth International

Conference on Architectural Support for Programming Languages and Operating
 Systems, April 1991.

744 REFERENCES

WANG99 Wang, G., and Tafti, D. “Performance Enhancement on Microprocessors with Hierarchi-
cal Memory Systems for Solving Large Sparse Linear Systems.” International Journal of
Supercomputing Applications, Vol. 13, 1999.

WEIC90 Weicker, R. “An Overview of Common Benchmarks.” Computer, December 1990.
WEIN75 Weinberg, G. An Introduction to General Systems Thinking. New York: Wiley, 1975.
WEIS84 Weiss, S., and Smith, J. “Instruction Issue Logic in Pipelined Supercomputers.” IEEE

Transactions on Computers, November 1984.
WEYG01 Weygant, P. Clusters for High Availability. Upper Saddle River, NJ: Prentice Hall, 2001.
WHIT97 Whitney, S., et al. “The SGI Origin Software Environment and Application Perfor-

mance.” Proceedings, COMPCON Spring ’97, February 1997.
WHIT11 White, B., et al. IBM zEnterprise 196 Technical Guide. IBM Redbook SG24-5946-07,

June 2011.
WILE03 Wilen, A.; Schade, J.; and Thronburg, R. Introduction to PCI Express—A Hardware and

Software Developers Guide. Hillsboro, OR: Intel Press, 2003.
WILK65 Wilkes, M. “Slave Memories and Dynamic Storage Allocation.” IEEE Transactions on

Electronic Computers, April 1965. Reprinted in [HILL00].
WILL90 Williams, F., and Steven, G. “Address and Data Register Separation on the M68000

Family.” Computer Architecture News, June 1990.
YEH91 Yeh, T., and Patt, N. “Two-Level Adapting Training Branch Prediction.” Proceedings,

24th Annual International Symposium on Microarchitecture, 1991.
ZHAN01 Zhang, Z.; Zhu, Z.; and Zhang, X. “Cached DRAM for ILP Processor Memory Access

Latency Reduction.” IEEE Micro, July–August 2001.

745

INDEX

A
Absolute address, 478, 715
Access control, 304
Access time (latency), 115, 193–194
Accumulator (AC), 20, 71, 411
Active secondary clustering method, 635–636
Active standby, 635
Adders, 384–388
Addition, 328–331, 350–353

floating-point numbers, 349–353
twos complement integers, 328–331

Addressable units, 114
Address bus, 86
Addresses, 123–124, 286–288, 294–295,

300–301, 410–412
accumulator (AC), 411

Address generation sequencing, 598
Address lines, 86
Address modify instructions, 22–23
Address registers, 487
Address space, 294–295
ARM translation, 300–301

base, 287
cache memory, 123–124
fields, 296
I/O memory management, 286–287, 294–295,

300–301
logical, 287, 288
machine instructions, 407–412
number of, 407–412
page tables for, 288, 300–301
partitioning, 286–287
Pentium II translation mechanisms, 294–299
physical, 287, 288
relative, 288
spaces, 294–295
virtual memory and, 297, 300–301

Addressing modes, 452–464, 547–548
Advanced RISC Machine (ARM), 462–464

CPU instruction sets, 451–464
direct, 453–455
displacement, 453–454, 456–458
immediate, 453–454
indirect, 453–454
Intel x86, 459–461
register, 453–456
register indirect, 453–454, 456
RISC simplicity, 547–548
stack, 453–454, 458–459

Advanced programmable interrupt controller
(APIC), 677

Advanced RISC Machine (ARM), 2, 45–49,
144–146, 299–304, 416–417, 439–440,
462–464, 475–477, 520–526, 595–603,
679–683

access control, 304
addressing mode, 462–464
ARM11 MPCore, 679–683
cache memory, 144–146
condition codes, 439–440
Cortex-A8 processor, 595–603
CPU instruction sets, 416–417, 439–440,

462–464, 475–477
current program status registers (CPSR),

523–525
data types, 416–417
embedded systems and, 45–48
evolution of, 47–49
formats for memory management, 301–304
I/O memory management, 299–304
instruction format, 475–477
instruction-level parallelism and, 595–603
interrupt processing, 525–526
machine instructions, 416–417, 439–440
memory management unit (MMU) for,

300–301
memory system organization, 299–300
modes, 522–523
multicore computers, 679–683
operations (opcode), 439–440
page tables for, 300–301
parameters for memory management, 303
processor organization, 520–526
register organization, 523–525
superscalar processor design, 595–603
translation lookaside buffer (TLB), 299–300
virtual memory address translation, 300–301

Allocation, Pentium 4 processor, 594
Amdahl’s law, 56–57, 669
American Standard Code for Information

Interchange (ASCII), 225
AND gate, 381
Antidependency, 584–585
Arbiter (bus controller), 90
Arbitration, 90

interconnection method of, 90
Arithmetic and logic unit (ALU), 12, 17,

309–317, 319–358, 654–656
addition, 328–331, 349–353
computer functions, 12, 320–321
development of, 17
division, 338–341, 353–356

746 INDEX

Arithmetic and logic unit (ALU) (continued)
fixed-point notation, 326–341
floating-point notation, 341–349
IBM 3090 vector facility, 654–656
integers, 322–341
multiplication, 331–338, 353–356
precision considerations, 354–356
in second generation, 25
semiconductor memory, 33
subtraction, 328–331, 350–353
twos complement notation, 323–325, 326–341

Arithmetic instructions, 22–23, 409
Arithmetic mean, 54
Arithmetic operations (opcode), 418, 422
Arithmetic shift, 336, 424
Array processor, 644, 649
Assemblers, 706–710
Assembly language, 477–478, 695, 698–706
Asserting, signal, 369
Associative mapping, 130–132
Associative memory, 115
Asynchronous timing, 92–93
Autoindexing, 458

B
Backward compatibility, 24
Balanced transmission, 96
Base, 342
Base address, 287
Base-register addressing, 457–458
Base representation, 673
Batch operating system (OS), 270, 271–276

job control language (JCL), 272
monitor (simple), 271–273
multiprogramming, 273–276

Batch system, 270
Benchmark programs, 53–55
Biased representation, 342
Big endian ordering, 447–450
Binary operator. See Binary system
Binary system, 312
Bit, 35–37
Bit allocation, 465–469
Bit-interleaved parity disk performance

(RAID level 3), 197–199, 202–203
Bit length conversion, 325–327
Bit ordering, endian, 450
Blade servers, 639
Block multiplexor, 247
Blocked multithreading, 628–630
Block-level distributed parity disk performance

(RAID level 5), 197–199, 204
Block-level parity disk performance

(RAID level 4), 197–199, 203–204
Blu-ray DVD, 210, 215
Boolean algebra, 365–367

Boolean (logic) instructions, 409
Booth’s algorithm, 336–338
Branch target buffer (BTB), 592–593, 598
Branches, 22–23, 409, 426–427, 462, 498–499,

504–510, 552–554, 587
conditional instructions, 22–23, 426–427,

498–499
control hazard, 504
delayed, 510, 552–554
instructions, 409, 426–427, 462
loop buffer for, 504–505
multiple streams for, 504
pipelining and, 498–499, 504–510,

552–554
prediction, 505–510, 587
prefetch target, 504
RISC instructions, 552–554
superscalar processors, 587
unconditional instructions, 22–23, 426–427

Buffers, 69
Bus arbitration technique, I/O, 236
Bus interconnection, 12, 85–93

address lines, 86
control lines, 86
data lines, 85–86
design elements, 89–93
method of arbitration, 90
multiple hierarchies, 87–89
structure, 86–87
timing, 90–93
width of data bus, 86

Bus master, 138
Bus watching approach, 138
Bus width, 36
Byte, 106
Byte multiplexor, 247
Byte ordering, endian, 447–450

C
Cache, 39
Cache coherence, 619–625, 683

directory protocols, 621
hardware solutions, 621–622
MESI (modified, exclusive, shared,

or in valid) protocol, 622–625
multicore computers, 683
parallel processing and, 619–625
problem of, 619
read hit/miss, 624
snoopy protocols, 621–622
software solutions, 620–621
two-level cache consistency, 625
write hit/miss, 625

Cache-coherent nonuniform memory access
(CC-NUMA), 640

INDEX 747

Cache DRAM (CDRAM), 180
Cache hit, 122
Cache line, 120
Cache memory, 112–158, 532, 541–543, 625,

679, 683
addresses, 123–125
ARM organization, 144–146, 679, 683
design elements, 123–141
development of, 532
disk performance, 152
hierarchy level, 116–117
high-level language (HLL)

operations, 153–154
high-performance computing (HPC), 123–124
lines, 120–121, 139
locality of reference, 152–154
main (physical) performance, 123–125, 152
management unit (MMU), 123–125
mapping functions, 126–136
multicore computers, 679, 683
multilevel, 139–141
Pentium 4 organization, 141–144
register file size increase compared to,

541–543
replacement algorithms, 137
size, 125, 139
SMP shared, 625
snoop control unit (SCU), 679, 683
split, 141
structure, 120–123
tags, 121
two-level, 152–158, 625
unified, 141
virtual (logical) performance, 123–125, 152
write policy, 137–139

Cache miss, 122
Cache set, 132
Call/return instructions, 433
CD-ROM, 210
CD-RW, 210
Central processing unit (CPU), 12, 25–27, 68,

405–626
addressing modes, 451–464
arithmetic and logic unit (ALU), 12, 405,

319–404
complex instruction set computer (CISC),

534, 536, 568–569
component functions of, 68–69
data types, 415–418
development of, 25–27
endian orders, 447–450
instruction formats, 464–472
instruction-level parallelism, 573–609
instruction sets, 405–450
machine instruction, 405–415, 533–538, 547
operands, 406–407, 413–415, 536–537

operations (opcode), 406, 418–431, 535–536
processor structure and function, 12,

483–530
reduced instruction set computers (RISC),

531–572
registers, 12, 486–491, 512–520, 523–526
stacks, 441–395
superscalar processors, 534, 573–609

Centralized arbitration, 90
Chaining, 648
Character data operands, 414–415
Chip multiprocessing, 628–633.

See also Multicore computers
IBM Power5, 631–633
multithreading and, 628–633
Pentium 4 processor, 631

Chip multiprocessor, 665
Chips, 33–35, 41–43, 164–169

computer processing and, 41–43
development of, 33–35
DRAM for, 174–180
enable (CE) pin, 167–168
EPROM package, 167–168
interleaved (memory bank) memory, 169
internal memory and, 164–169
logic, 164–166
main memory cells, 164–169
organization, 41–43, 168–169
packaging, 167–168

Clock (bus) cycle, 50–51, 90–91
Clocked S–R flip-flop, 389–391
Clock speed, 50–52
Clock tick, 50
Clusters, 633–640

active secondary, 635
blade servers, 639
computer architecture, 637–639
configurations, 633–636
design requirements, 633
OS system design, 636–637
passive standby, 634–635
shared disk approach, 635–636
shared nothing approach, 635
SMP compared to, 639–640

Combinational circuits, 370–388
adders, 384–388
algebraic simplification, 373
Boolean function in, 370–372
decoders, 382–384
Karnaugh map, 373–376
multiplexers, 380–382
NAND implementation, 380
NOR implementation, 380
overview, 370
Quine–McCluskey method, 376–379
read-only memory (ROM), 384

748 INDEX

data, 10
design, 37–43
evolution of, 15–37, 43–49
function, 8–13
instructions, 17
integrated circuits, 28–33
Intel x86 system, 2, 44–45
introduction to, 6–14
microprocessors, 35–37
organization, 1–14
performance, 37–59
reader’s and instructor’s guide, 2–5
reasons for study of, 3–4
semiconductors, 33–35
structure, 8, 10–13
transistors, 24–27
vacuum tubes, 16–24
Web site resources, 5

Condition codes, 426–427, 434, 439–440,
487–488

Advanced RISC Machine (ARM), 439–440
branch instructions and, 426–427
Intel x86 system, 434
program status register, 523
registers for, 487–488

Conditional branch instructions, 22–23, 426–427,
498–499

Conditional jump, 434
Constant angular velocity (CAV), 188, 211
Constant linear velocity (CLV), 211
Continuous-field simulation, 644
Control, 224–225, 420, 426–431, 532

branch instructions, 426–427
bus, 226
I/O modules, 224–225
logic, 224
memory, 534
microinstructions, 468, 547
operations (opcode), 420, 426–431
procedure call instructions, 427–431
registers, 515–517
skip instructions, 427
stack implementation, 430–431
storage, 11
system operations, 420, 426
transfer of, 420, 426–431

Control registers, 486, 487–490, 515–517
Control hazards, pipelining, 504
Control lines, 86
Control signals, 224

input/output (I/O), 224
Control unit (CU), 12, 532

branch instruction, 22
IBM 7094, 27
in IAS computer, 17–18
instruction execution, 23

Commands, 229–230
programmed I/O, 229–230

Comment, assembly language, 703
Commercial computers, 23–24
Committing (retiring)

instructions, 588
Compact disk (CD), 210, 210–214

constant linear velocity (CLV), 211
digital versatile disk (DVD)

compared to, 213–214
read-only (CD-ROM), 210–212
recordable (CD-R), 210, 212–213
rewritable (CD-RW), 210, 213

Compaction, I/O memory, 286
Compiler-based register

optimization, 543–545
Complex instruction set computer (CISC), 2,

534, 536, 545–551, 568–569
high-level language (HLL) and, 536, 545–547
reduced instruction set computer (RISC)

architecture compared to, 549–551, 568–569
superscalar and RISC systems compared

to, 534
Complex PLD (CPLD), 400
Compound instructions, IBM 3090 vector

 facility, 650
Computer architecture, 7
Computer arithmetic. See Arithmetic and logic

unit (ALU)
Computer instruction, 406
Computer organization, 7
Computer performance, 37–59

Advanced RISC Machine (ARM), 45–49
Amdahl’s law, 56–57
benchmark programs, 52–55
chip organization, 41–43
clock speed, 50–52
designing for, 38–43
embedded systems, 45–49
Intel x86 system, 44–45
logic-memory balance, 39–41
microprocessor speed, 38–39

Computer systems, 8–13, 65–308
cache memory, 65, 112–158
external memory, 185–220
functions, 8–13, 66–85
input/output (I/O), 68, 221–264
interconnections, 12, 85–107
internal memory, 159–184
operating system (OS) support, 265–308
peripheral component (PCI), 98–107
top-level structure, 13–14, 65–111

Computers, 1–62
Advanced RISC Machine (ARM), 2, 46–49
architecture, 1–13
components, 10–12

INDEX 749

Data registers, 386
Data transfer, 89–90, 93, 420

bus interconnection, 85–86
operations (opcode), 420, 434
peripheral component, 98
interconnection (PCI), 93

Database scaling, 671–673
Decimal system, 310–311
Decode instruction unit, Cortex-A8

processor, 583–584
Decoder, 382–384, 590
Delayed branch, pipelining, 510, 553–554
Delayed load, pipelining, 554
Demand paging, 289–290
Denormalized numbers, IEEE standards, 735
Device communication, I/O modules, 226
D flip–flop, 391
Differential signaling, 96
Digital Equipment Corporation (DEC), PDP

series computers, 25, 32–34, 467–468
Digital logic

Boolean algebra, 365–367
combinational circuits, 370–388
Gates, 368–370

Digital versatile disk (DVD), 210, 213–214
Dijkstra’s algorithm, 445–446
Direct access, 115
Direct address, 454–455
Direct addressing mode, 567–568
Directives, 703–704
Direct mapping, 126–130
Direct memory access (DMA), 85, 240–244

configurations, 242–243
cycle stealing, 242–242
direct memory access (DMA), 85, 240–244
function, 222, 240–241
Intel 8237A controller, 243–246
interconnection structure and, 84
registers, 244–245

Directory protocols, 621–622
Dirty (use) bit, 138
Disabled interrupt, 80
Discrete components, 28–29
Disk cache memory, 152
Disk drive, I/O, 225
Diskette, 214
Disk pack, 190–192
Disks. See Magnetic disks; Optical memory

systems
Disk stripping, 204
Dispatcher, 278
Displacement addressing mode, 460
Distributed arbitration, 90
Distributed interrupt controller (DIC),

680–681
Dividend, 338–339

microprogrammed, 532
processor control, 12
in second generation, 25
semiconductor memory, 33
sequencing, 570, 596–602

Controllers, 90–91, 228, 236–238, 243–246
bus arbiter, 90–91
channels and, 247
input/output (I/O), 228, 236–238, 243–246
Intel 8237A DMA, 243–246
Intel 82C59A interrupt, 236–238

Conversion operations (opcode), 420, 425
Core, magnetization and, 35
Cortex-A8 processor, 595–603

architecture, 595–597
decode instruction unit, 598–599
fetch instruction unit, 597–598
floating-point pipeline, 602–603
instruction-level parallelism and, 595–603
integer execute unit, 599–602
single-instruction multiple-data (SIMD)

instructions, 602–603
superscalar design, 595–603

Counters, 394–397
Current program status registers (CPSR),

ARM, 523–525
Cycle stealing, 240
Cycle time, pipelining, 500–501

instruction execution rate, 51
Cycles per instruction (CPI), 51–52
Cylinders, magnetic disks, 191

D
Daisy chain technique, I/O, 236
Data, 9–12, 23, 27, 29, 224, 330–331, 412–413

ARM types, 416–417
channels, 27
control, 10
input/output (I/O), 224
Intel x86 types, 415–416
machine instruction types, 320–321, 406–409
movement of, 10–11
operands, 490–393
processing, 9
storage, 9–10
transfer instructions, 21, 23

Data buffering, I/O modules, 226
Data exchanges, 85–86
Data cache, 144
Data communication, 10
Data flow, instruction cycles, 492–493
Data formatting, magnetic disks, 186–188
Data hazards, pipelining, 503
Data (bus) lines, 85–86
Data processing instruction addressing,

ARM, 411

750 INDEX

Exceptions, interrupts and, 518, 525–526
Execute cycle, 21, 69–74, 494

computer instructions, 20, 69–74
micro-operations (micro-ops), 589–590
processor instruction, 491, 494

Execution, 51–52, 233–234, 475, 484–488, 492,
495–502, 525, 594–596, 606

control unit (CU), 485, 613–619
encoding, 556–557
I/O techniques, 229, 231
IBM 3033 processor, 505
instruction rate, 54
microinstructions, 547
multithreading, 672
out-of-order, 581–584, 594–596
process, 279–280
RISC machine instructions, 543–547
superscalar programs, 587–589
taxonomy of, 613–614

Exponent overflow, 349
Exponent underflow, 349
Exponent value, 347, 349
External memory, 64, 113–114

direct-access devices, 217
magnetic disks, 186–195
magnetic tape, 215–217
optical systems, 220
Redundant Array of Independent Disks

(RAID), 186, 196–201
sequential-access devices, 216

F
Failback, 636
Failover, 636
Failure management, clusters, 636
Family concept, 532
Fetch cycle, 20, 69–72, 492, 494, 511

computer instructions, 20, 69–74
micro-operations (micro-ops), 589–590
processor instructions, 444

Fetch instruction unit, Cortex-A8 processor, 598
Fetch overlap, pipelining, 496
Field-programmable gate array (FPGA),

398–400
FireWire serial bus, 250–254

configurations, 250–252
cycle master, 254
link layer, 251–254
physical layer, 251–252
transaction layer, 248–252

Firmware, 97, 208
First-in first-out (FIFO) algorithm, 137
Fixed-head disk, 190–191
Fixed-point notation. See Integers
Fixed-point representation, 326.

See also Integers

Division, 338–339, 352–353
floating–point numbers, 342–344
partial remainder, 338–339
twos complement restoring

algorithm, 340–341
Divisor, 338
Double-data-rate DRAM (DDRDRAM),

180–181
Double-sided disk, 210
Drive, Pentium 4 processor, 512
Dual redundancy disk performance (RAID

level 6), 192–193
DVD, 210
DVD-R, 210
DVD-ROM, 210
DVD-RW, 210
Dynamic linker, 716–718
Dynamic RAM, 161
Dynamic random-access memory (DRAM), 38,

161–163, 165–167, 174–175
cache (CDRAM), 175
chip logic, 164–166
double-data-rate (DDR DRAM), 179–180
high-performance processors, 174–180
internal main memory, 161–163
Rambus (RDRAM), 175
synchronous (SDRAM), 175–176

E
Effective address, 454
EFLAGS register, Intel x86

processors, 512–513
Electrically erasable programmable read-only

memory (EEPROM), 161, 164
Electronic Numerical Integrator and Computer

(ENIAC), 16–17
Embedded systems, 46–48
Emulation (EM), 516
Enabled interrupt, 80
Endian byte orders, 447Erasable programmable

read-only memory (EPROM), 161, 164,
167–168

chip packaging, 167–168
internal main memory, 161, 164

Error control function, 97
Error correction, 170–174

code functions, 170
Hamming code, 171
hard failure, 170
internal memory, 170–174
parity bits, 171
semiconductor memory, 170–174
single error-correcting (SEC) code, 174
soft error, 170
syndrome words, 171–172

Error detection, I/O modules, 226

INDEX 751

G
Gaps, magnetic disks, 186
Gates, 368–370
General-purpose computing on GPUs

(GPGPU), 43
General-purpose registers, 439, 470, 486
Geometric mean, 55
Global history buffer (GHB), 598
Global variable storage, registers, 461, 541
G Prefix, 35
Gradual underflow, 358
Grant (GNT) signal, PCI, 102–104
Graphical symbol, 370
Graphics processing units (GPUs), 43
Guard bits, 338–339

H
Hamming code, 170
Hard disk, 191
Hard disk drives (HDDs), 205
Hard failure, 169–170
Hardware, 620–621, 665–670

cache coherence solutions, 619–640
multicore computers performance, 664–669
parallelism increase, 664–668
power consumption, 668–671

Hardware transparency approach, 137
Hardwired programs, 67
Harmonic mean, 54
Hash functions, 290–291
Heads, magnetic disks, 186–187, 189–190
Hexadecimal, 315–317
High-definition optical disks (HD DVD), 214–215
High-level language (HLL), 153, 533–534

operands, 535–536
operations, 534–535
performance characteristics, 151–152
procedure calls, 536–537
reduced instruction set computers

(RISC), 412
semantic gap and, 533–534

High-performance computing (HPC), 123
Hit ratio, 118
Host channel adapter (HCA), 253

I
IAS computer, 17–22
IBM. See International Business

Machines (IBM)
IEEE. See Institute of Electrical and Electronics

Engineers (IEEE)
IEEE (Standards) 754-2008

floating-point formulas, 345–349
Immediate addressing mode, 454
Immediate constants,ARM, 476–477
Indexing, 457–458

Fixed-size partitions, 284–285
Flag, register organization, 512–513
Flash memory, 161, 164
Flip-flops, 388
Flit, 95
Floating-point formulas, IEEE (Standards)

754-2008, 354–359
Floating-point notation, 341–349, 595, 602–603

addition, 349–350
arithmetic and logic unit (ALU) data,

320–322
arithmetic, 349–357
biased representation, 343
Cortex-A8 processor pipelining, 598
denormalized numbers, 514
division, 352–353
exponent value, 342, 347
guard bits, 353–355
IEEE standards for, 322, 355–356
infinity interpretation, 356
multiplication, 352–355
NaNs, 356
normalized numbers, 343–344
overflow, 345, 348
Pentium 4 execution unit, 595
precision considerations, 353–355
principles, 343–346
representation, 343–348
rounding, 354–355
significand, 349, 359
subtraction, 349–353
underflow, 344, 349, 356

Floating-point representation, 345–349.
See also IEEE (Standards) 754-2008

Floppy (contact) magnetic disks, 190, 192
Flow control function, 97
Flow dependency, 578
Fraction, 313–315
Frames, I/O memory, 287–288
Front end, Pentium 4 processor, 590–593
Fully nested interrupt mode, 237
Functions, 8–13, 18–19, 27, 65–85, 108–112,

226–238, 246–247
components and, 24, 66–84
computer operation and, 10–13
execute cycle, 21, 69–74
fetch cycle, 21, 69–74
hardwired programs, 67
I/O channels, 247–248
I/O modules, 82–83, 226–227, 246–247
IAS computer operation, 20–23
input/output (I/O), 84–85, 226–227, 246–247
instruction cycle, 20–23, 69–73, 76–80
interrupts, 74–83
software components, 67–68
von Neuman architecture and, 66–68

752 INDEX

Immediate address, 454
Index register, 457
Indexed address, 487
Indexing, 457–458
Indirect address, 455
Indirect cycle, 492
In-order completion, 581
In-order issue, 581–583
Input-output control (I/O)

IAS Computer structure, 21
Institute of Electrical and Electronics Engineers

(IEEE), 3–4, 345–347, 356–358
denormalized number standards, 357
floating-point notation standards, 356–358,

354–357
infinity interpretation, 348
Joint Task Force publications, 3–4
NaN standards, 356
rounding approaches, 354–355

Instruction address register, 72–73
Instruction buffer register (IBR), 21
Instruction cache, Pentium 4, 142
Instruction cycle, 20–23, 69–82, 491–485

Direct memory access (DMA) code (ICC),
253–254

computer functions, 68–82
data flow, 492–495
execute cycle, 21, 69–77, 494
fetch cycle, 20, 69–72, 465, 492
IAS computer, 21–22
indirect cycle, 491, 494
I/O modules, 83
interrupt cycle, 77, 494
interrupts and, 74–83
micro-operations (micro-ops), 589–590
multiple interrupts, 80
processor, 491–494
state diagrams, 73, 80, 493

Instruction execution rate, 51–52
Instruction formats, 408, 464–472, 548–549, 558,

566–567
Advanced RISC Machine (ARM), 475–477
assembly language, 477–479
bit allocation, 515
Intel x86, 473–475
length, 464–465
MIPS R4000 microprocessor, 559
PDP-8 design, 467–468
PDP-11 design, 469–470
PDP-10 design, 468–469
reduced instruction set computers (RISC),

548–549, 558, 566–568
Scalable Processor Architecture (SPARC),

567–568
variable-length, 469–476
VAX design, 471–472

Indirect addressing mode, 455–456
Indirect instruction cycle, 492
InfiniBand, 253–256
Infinity, IEEE interpretation, 356
Infix notation, 445
Input/Output (I/O), 13, 14, 64, 69, 84–85,

222–260, 420, 425
address register (I/OAR), 68
buffer register (I/OBR), 68
channels, 228, 247–248
component functions, 28
computer systems, 64, 68, 221–262
controllers, 236–238, 243–246, 228
data movement and, 10
direct memory access (DMA), 85, 222, 240–246
disk drive, 225
execution techniques, 222, 228–230
FireWire serial bus, 250–254
function, 246–247
high data-transfer capacity, 200
high request rate, 200
InfiniBand, 256–256
Intel 82C55A programmable

peripheral interface, 238–240
Intel 82C59A interrupt controller, 236–238
Intel 8237A DMA controller, 243–246
interconnection structure, 84–85
interfaces, 222, 238–240, 248–257
interrupt-driven, 222, 232–240
keyboard/monitor arrangement, 225
modules, 83–84, 222–223, 226–228, 246–247
multipoint interfaces, 250
operations (opcode), 420, 434
peripheral (external) devices, 223–225
peripheral data devices, 10
point-to-point interfaces, 249
programmed, 222, 228–232, 238–240
RAID 0 performance for, 200–201

Interactive simulations, 692
I/O channels, 228, 247–248
I/O command, 228–229
I/O controller, 228
I/O modules, 83–84, 222–223, 226–228, 246–247

computer functions and, 83
control and timing, 226
requirements, 226
data buffering, 227
device communication, 227
error detection, 227
evolution of, 246–247
function, 83–84, 226–227
input/output interfaces and, 222–223
interconnection structure, 84–85
processor communication, 93, 226–261
structure, 227–228

I/O processor, 247

INDEX 753

subtraction, 328–331
twos complement, 322–324, 326
unsigned multiplication, 332

Integrated circuit (IC), 28–33
Integrated circuits, development of, 28–34
Intel Pentium 4 processor, 589–595

machine parallelism and, 579–580, 586–587
output dependency, 581–583
procedural dependency, 579
register renaming, 584–585, 594
resource conflict, 579
superscalar processors and, 573, 676
true data (flow) dependency, 577–578

Intel x86 system, 2, 44–45, 236–240, 415,
434–444, 459–464

addressing mode, 464–465
cache memory, 141–144
call/return instructions, 433
chip multiprocessing, 702
condition codes, 433
control register, 515–517
Core Duo, 674–676
Core i7, 674–676
CPU instruction sets, 499
data types, 415–418
direct memory access (DMA) and, 240, 253
EFLAGS register, 512, 514
82C55A programmable peripheral interface,

238–243
82C59A interrupt controller, 236–238
8237A DMA controller, 243–246
8086 microprocessor registers, 490–491
80486 information pipelining, 510–512
80386 microprocessor registers, 489–490
evolution of, 44–46
I/O memory management, 294–27
instruction format, 473–475
instruction-level parallelism and, 590–516
interrupt-driven I/O and, 232–236
interrupt processing, 518–520
machine instructions, 351–352, 349–356
memory management instructions, 434
MMX (mutimedia task) instructions, 435–439
MMX registers, 517–518
multicore computer organization, 676–677
operations (opcode), 434–435
Pentium 4 processor, 141–144, 589–590
Pentium II processor, 290–294
processor organization, 512
programmable I/O and, 238–240
register organization, 488–489
single-instruction multiple-data (SIMD)

instructions, 435
status flags, 434
superscalar processor design, 577

Interactive operating system (OS), 304

Instruction issue, 580
Instruction-level parallelism, 304, 572–573

Advanced RISC Machine (ARM) Cortex-A8
processor, 595–603

antidependency, 583–584
branch prediction, 587
degree of instruction execution and, 577–578
execution of superscalar programs, 587–588
implementation of superscalar programs, 588
instruction issue policy, 580–584

Instruction pipeline, 500–501
Instruction prefetch (fetch overlap), 496, 496
Instruction register (IR), 20, 70, 488
Instructions, Assembly Language

Statements, 703
Instruction sets, 52, 347–348, 556–557, 563–575

addressing modes, 451–479
Advanced RISC Machine (ARM), 416–417,

339–341, 462–463, 475–477
architecture, 52
assembly language, 477–479
central processing unit (CPU) functions,

405–449
data types, 415–418
design, 412–413
endian byte orders, 447–449
IBM 3090 vector facility ALU, 650, 653
instruction formats, 464–472
Intel x86, 415–417, 425–433, 459–461, 473–475
machine instructions, 405–450
MIPS R4000 microprocessor, 556–557
operands, 406–407, 372–374
operations (opcode), 406, 418–431
reduced instruction set computers (RISC),

556–558, 564–566
Scalable Processor Architecture (SPARC),

554–556
stacks, 447–448

Instruction window, 583
Instructions. See Machine instructions;

Micro-operations (micro-ops)
Integers, 321–341, 595, 599–603

addition, 328–332
arithmetic and logic unit (ALU) data,

320–341
arithmetic, 326–331
converting between bit lengths, 324–326
Cortex-A8 processor execute unit, 599–602
division, 338–339
fixed-point, 326
multiplication, 331–338
negation, 327–328
overflow, 328–329
Pentium 4 processor execution unit, 590
representation, 321–326
sign magnitude, 322

754 INDEX

International Reference Alphabet (IRA), 225
Interrecord gaps, 216
Interrupt, 74–83. See also Interrupt-driven I/O

in bus structure, 87
in control and status registers, 489
handling, 76, 680–683
in instruction cycle, 491
processing, 518–520, 525–526
in simple batch systems, 273

Interrupt cycle, 77, 80, 494–495
computer instructions, 76–78, 80
micro-operations (micro-ops), 612
processor instructions, 444

Interrupt-driven I/O, 228–226, 232–240
bus arbitration technique, 236
daisy chain technique, 236
design and implementation of,

234–236
drawbacks of, 240
execution, 233–234

Intel 82C55A programmable
peripheral interface, 238–240

Intel 82C59A interrupt controller, 236–238
multiple interrupt lines, 235
interrupt processing, 232–234
programmed I/O and, 228–230, 238–240
software poll technique, 235, 236

Interrupt service routine (ISR), 80, 83
Interrupts, 74–85, 232–238, 273, 281, 518–521,

525–526, 677, 679–683
advanced programmable interrupt controller

(APIC), 677
Advanced RISC Machine (ARM) processing,

525–526
ARM11 MPCore, 679–683
disabled, 80
distributed interrupt controller (DIC),

679–681
exceptions and, 518, 525–526
fully nested mode, 237
handling, 76, 521, 680–683
instruction cycle and, 74–85
Intel 82C59A modes, 236–238
Intel x86 processing, 518–521, 677
multicore computers, 677, 679–683
multiple, 80–85, 234–236
operating system (OS) hardware, 273
processing, 232–234
program flow of control and, 74–76
request signal, 76
rotating mode, 238
scheduling process, 281
special mask mode, 238
vector tables, 518–520, 525
vectored, 236

Isolated I/O, 231

Interconnections, 12–13, 66, 93–98
bus, 12, 85–94
computer structure and, 14
data exchanges, 83–84
I/O modules, 82–83
memory modules, 82
peripheral component (PCI), 98–107
processor signals, 83
switched, SMP, 516

Interfaces, 222–223, 238–240, 248–257
external I/O, 248–257
FireWire serial bus, 250–254
InfiniBand, 254–257
input/output (I/O), 222–223, 238–240,

248–257
I/O modules, 222–223
Intel 82C55A programmable peripheral,

238–240
multipoint, 249–250
parallel I/O, 248–249
point-to-point, 249
serial I/O, 248–245

Interleaved memory, 169
Interleaved multithreading, 627–630
Intermediate queues, 283–284
Internal memory, 159–184

chips, 165–169
dynamic random-access memory (DRAM),

160–162, 166–168, 175–181
electrically erasable programmable read-only

memory (EEPROM), 162, 164
erasable programmable read-only memory

(EPROM), 162, 164, 168–169
error correction, 170–174
flash memory, 161, 164
high-level performance, 173–179
interleaved, 169
main (cell), 160–169
programmable read-only memory (PROM),

161, 164
random-access memory (RAM), 161–162
read-only memory (ROM), 161, 163–164
semiconductors, 160–184
static random-access memory (SRAM), 163

International Business Machines (IBM), 25–28,
31–33, 625, 631, 650–657, 684–685

address generation sequencing, 598
ALU instruction set, 600
compound instruction execution, 653
Power5 chip multiprocessing, 631–633
register-to-register organization, 651
700/7000 series computers, 25–26
360 series computer, 33
3033 processor microinstructions, 505
3090 vector facility, 650
z990 SMP mainframes, 659

INDEX 755

M
Machine cycles, 547–549
Machine instructions, 406–412, 533–538, 547

addresses, 410–412
Advanced RISC Machine (ARM), 416–418,

439–440
arithmetic, 410
branch, 409, 426–427
data types, 409, 414–418
elements of, 406–407
high-level languages (HLL) and, 533–535
instruction set design, 412
Intel x86, 415–416, 431–438
logic (Boolean), 409
memory, 409
operands, 406–411, 415, 536–537
operations (opcode), 406–409, 418–431,

535–536
procedure calls, 428–431, 433, 537
reduced instruction set computers (RISC),

533–538, 547–548
RISC execution, 533–538
symbolic representation, 407–408
test, 409

Machine parallelism, 579–580, 586–587
Macro definitions, 704–706
Magnetic disks, 186–195

constant angular velocity (CAV), 188–189
cylinders, 191
data formatting, 187–190
floppy (contact), 190, 194
heads, 186–187, 189–190
multiple platters, 190
multiple zone recording, 189
parameters, 192–195
read mechanisms, 186–187
rotational delay (latency), 192–193
rotational positional sensing (RPS), 192
seek time, 193
sequential organization, 194
single and double sides, 190
tracks, 187, 191–192
transfer time, 194
Winchester format, 189, 192
write mechanisms, 186–187

Magnetic tape, 215–217
Magnetoresistive sensor, 187
Mainframe computers, 31
Main memory, 12, 68, 124–125, 152, 160–169,

267–268
cache (physical), 124–125, 152
computer component of, 12, 68
internal (cell), 160–169
kernel (nucleus), 269
OS resource management, 268–270

Mantissa, 342

J
J–K flip-flop, 391–392
Job, operating system (OS), 270
Job control language (JCL), 272
Jump instruction, 426

K
Kernel (nucleus), 269
Keyboard arrangement, I/O, 225
K Prefix, 35
Karnaugh map, 373–376

L
Label, 701–702
Lands, compact disks, 211
Lane, 100
Large-scale integration (LSI), 33
Last-in-first-out (LIFO) queue, 458
L1 cache, 120
L2 cache, 120
L3 cache, 120
Leading edge, 91
Least-frequently used (LFU)

algorithm, 137
Least-recently used (LRU)

algorithm, 137, 289
Least significant digit, 310
Linear tape-open (LTO) system, 217
Lines, cache memory, 120–121, 139
Linkage editor, 716
Linking, 716
Link layer, 255
Links, InfiniBand, 253
Little endian ordering, 415, 447–450
Load balancing, clusters, 636
Loading, 710, 713–716
Load/store addressing,ARM, 462
Load/store multiple addressing, ARM,

463–464
Load-time dynamic linking, 717
Locality of reference, 117, 152–154
Local variable, 430–431
Logical address, 287
Logical cache, 125
Logic block, 400–401
Logic (Boolean) instructions, 409
Logic-memory performance balance, 39–41
Logical address, 287, 288
Logical data operands, 414–415
Logical operations (opcode), 419,

422–424
Logical shift, 423–424
Long-term scheduling, 277–278
Lookup table, 400
Loop buffer, pipelining, 505–506
Loop unrolling, pipelining, 555–556

756 INDEX

MESI (modified, exclusive, shared, or invalid)
protocol, 622–625

Microcomputer, 8
Microelectronics, development of, 28–30
Microinstruction bus (MIB), 468
Micro-operations (micro-ops), 144, 589–590, 593

allocation, 594
execute cycle, 69
fetch cycle, 69–74
front end generation of, 590
instruction cycle, 69–74
interrupt cycle, 74–83
queuing, 590
scheduling and dispatching, 595
superscalar processors, 574–577

Microprocessors, 35–37, 38–39, 490–491
development of, 35–37
Intel 80386 registers, 490–491
Intel 8086 registers, 490–491
Motorola MC68000 registers, 490
register organizations, 490–491
speed (performance of), 39–41

Microprogrammed control units, 532
Microprogramming language, 469, 612
Migratory lines, 683
Millions of floating-point operations per second

(MFLOPS) rate, 52
Millions of instructions per second (MIPS) rate,

51–52
Minuend, 329
MIPS rate, 51–52
MIPS R4000 microprocessor, 556–562

instruction format, 566–568
instruction set, 564–566
pipelining instructions, 559–562

Mirrored disk performance
(RAID level 1), 197–198

Miss, 118
MMX (mutimedia task), Intel x86 processors,

435–439, 517–518
instructions, 435–438
registers, 517–518

Mnemonics, 408, 702
Monitor (simple batch OS), 271–273
Monitor arrangement, I/O, 225
Most significant digit, 310
Moore’s law, 29–31
Motorola MC68000 microprocessor

registers, 490
Movable-head disk, 190
M Prefix, 35
Multicore computers, 631, 664–689. See also

zEnterprise 196, I/O structure
ARM11 MPCore, 679–683
chip multiprocessors as, 626–633
database application, 671–674

Many integrated core (MIC), 43
Mapping functions, 125–136

associative, 130–132
cache memory, 125–136
direct, 126–130
set-associative, 132–136

Medium-term scheduling, 278
Memory address register (MAR), 20, 68,

72, 488
Memory bank, 169
Memory buffer register (MBR), 20, 68, 72, 488
Memory cycle time, 25, 115
Memory hierarchy, 116
Memory instructions, 409
Memory management, 283–304, 434

access control, 304
addresses, 286–287, 296, 300–302
Advanced RISC Machine (ARM), 301–304
compaction, 286
formats, 296, 301–304
input/output (I/O), 276, 301–304
Intel x86 machine instructions, 415
multiprogramming and, 276, 283
operating systems (OS), 267, 276, 283–304
paging, 287–288, 296–299
parameters, 298, 303
partitioning, 284–287
segmentation, 293–294, 295–296
swapping, 283–284
translation lookaside buffer (TLB), 291–293,

299–300
virtual memory, 289–290, 300–301

Memory management unit (MMU), 124,
300–301

Memory-mapped I/O, 231–232
Memory modules, 87
Memory protection, OS, 273
Memory systems, 112–217

access, 118
addressable units, 114
cache, 112–158
capacity, 114
external, 185–217
hierarchy, 116–119
hit, 118
internal, 159–184
locality of reference, 117, 152–154
location, 113
miss, 118
organization, 116
performance, 115–116, 118, 152–158
physical characteristics of, 116
secondary (auxiliary), 119
two-level, 152–158
unit of transfer, 114
word, 114

INDEX 757

Negation, integers, 327–328
Negative overflow, 344
Negative underflow, 344
Network layer, 256
Nibble, 315
Noncacheable memory approach, 138–139
Nonredundant disk performance (RAID

level 0), 197–198
Nonremovable disk, 190
Nonuniform memory access (NUMA), 613,

639–643
advantages and disadvantages of, 643
cache-coherent (CC-NUMA), 640
motivation, 640–641
organizations, 641–643
parallel processor architecture, 646–649
uniform memory access (UMA), 640

Nonvolatile memory, 119
NOR gate, 370
Normalized numbers, 342–343
Nucleus. See Kernel (nucleus)
Number system

binary system, 312
binary vs decimal, 312–313
decimal system, 310–311
fractions, 313–315
hexadecimal notation, 315–317
positional number system, 311

Numerical data operands, 413

O
Offset addressing, ARM, 462
One-pass assembler, 709
Ones complement representation, 347
Opcode. See Operations (opcode)
Operands, 406–407, 413–415, 536–537

characters, 414–415
high-level language (HLL), 536–537
logical data, 415
machine instructions, 406–407
numbers, 413–414
packed decimal representation, 414
reduced instruction set computers (RISC),

536–537
Operating system (OS), 265–304

Advanced RISC Machine (ARM) memory
management, 299–304

batch, 270, 272–276
computer system support, 265–304
evolution of, 270–271
functions, 266–276
Intel Pentium II memory

management, 294–299
interactive, 270
interrupts, 273
memory management, 266, 276, 283–304

hardware performance, 665–669
Intel Core Duo, 676–677
Intel Core i7, 677–679
Intel x86 organization, 676–679
organization, 674–675
overview, 665
parallelism increase, 665–668
power consumption, 668–669
software performance, 669–674
speedup time increase, 670
threading, 671–672

Multicore processors, 43
Multicore strategy, 43
Multilane distribution, 96
Multilevel cache memory, 139–141
Multiple zoned recording, 189
Multiple instruction, multiple data (MIMD)

stream, 613
Multiple instruction, single data (MISD)

stream, 613
Multiple interrupt lines, I/O, 235
Multiple parallel processing, 649–650
Multiple platters, magnetic disks, 190
Multiple streams, pipelining, 505
Multiplexer, 380–382
Multiplexor, 27
Multiplexor channel, 247
Multiple zone recording, 189
Multiplicand, 332
Multiplication, 331–338, 352

Booth’s algorithm, 335–337
floating-point numbers, 349–352
twos complement, 333–338
unsigned integers, 328–330

Multiplier quotient (MQ), 20
Multipoint interfaces, 250
Multiprocessor OS design, SMP considerations

for, 619
Multiprogramming operating system (OS), 270,

273–276, 283
batches, 273–276
memory management and, 276
uniprogramming compared to, 270, 276

Multitasking, operating systems (OS), 274
Multithreading, 626–633

chip multiprocessing, 628, 631–633
explicit, 627–631
implicit, 626–627
parallel processing, 626–633, 636–637
process, 626–627
switches, 627
thread, 627

N
NAND gate, 369
NaNs, IEEE standards, 356

758 INDEX

page tables, 288, 290–291
Pentium II processor, 296–299
virtual memory, 289–291

Parallel I/O interfaces, 248–249
Parallel organization, 611–756

cache coherence, 612, 620–621
chip multiprocessing, 612, 628–631
clusters, 612, 633–640
multicore computers, 664–687
multiple processor organizations, 613–614
multithreading, 612, 626–633
nonuniform memory access (NUMA),

612, 614, 640–643
parallel processing, 613–656
symmetric multiprocessors (SMP), 612,

614–619, 694
vector computation, 644–656

Parallel recording, 216
Parallel register, 393
Parallelism, 693, 573–603, 636, 665–668

cluster applications, 636
instruction issue policy, 580–584
instruction-level, 573–603
limitations, 577–579, 581–584
machine, 579–580, 586–587
multicore computer increase, 665–669

Parameters, magnetic disks, 192–195
Parametric computing, 637
Parity bits, 171
Partial product, 332
Partial remainder, 338–339
Partitioning, I/O memory management, 284–287
Passive standby clustering method, 634–635
PCI. See Peripheral component

interconnection (PCI)
PCI Express (PCIe)

overview, 98
physical architecture, 98–100
physical layers, 100–102
transaction layer, 102–107
data link layer, 107–108

PDP-8 Bus Structure, main memory, 35
PDP-8 instruction format design, 467–468
PDP-11 instruction format design, 469–470
PDP-10 instruction format design, 468–469
Pentium 4 processor, 141–144, 589–595, 631

allocation, 594
chip multiprocessing, 631
drive, 591, 593
floating-point execution unit, 595
front end, 590–593
instruction-level parallelism and, 589–595
integer execution unit, 595
micro-operations (micro-ops), 589–591, 594–595
organization, 141–144
out-of-order execution logic, 594–595

Operating system (OS) (continued)
memory protection, 273
multiprogramming, 270, 273–275
objectives, 266–267
privileged instructions, 273
resource management, 268–270, 275–276
scheduling, 266, 270, 277–283
setup time, 270–271
time-sharing, 276–177
uniprogramming, 270
user/computer interfacing, 266–267
utilities, 266–267

Operations (opcode), 19, 23, 406, 418–431,
535–536

Advanced RISC Machine (ARM), 439–440
arithmetic, 418, 422
computer instructions, 19, 23
conversion, 420, 425–426
data transfer, 418, 320–322
high-level language (HLL), 535–536
input/output (I/O), 420, 425
Intel x86, 431–440
logical, 419, 422–424
machine instructions, 406, 418–440
reduced instruction set computers (RISC),

535–536
system control, 420, 425
transfer of control, 420, 425–430

Optical memory systems, 210–215
Blu-ray DVD, 210, 215
compact disk (CD), 210, 210–214
digital versatile disk (DVD), 210, 213–214
high-definition optical disks (HD DVD),

 214–215
types of, 210

OR gate, 368
Original equipment manufacturers (OEM), 33
Orthogonality, 468, 469
Out-of-order execution, 581–584, 594–595
Out-of-order issue, 583–584
Output dependency, parallelism, 581–583
Overflow, 328–329, 344, 349

P
Packed decimal representation, 413–415
Packets, data, 95
Page fault, 289
Page frame, 287
Pages, 287
Page tables, 288, 290–291, 300–301
Pages, I/O memory, 287–288
Paging, 287–291, 296–299

demand, 289–290
frame allocation, 287–288
I/O memory management, 287–291, 296–299
page replacement, 289–290

INDEX 759

superscalar approach compared to, 576–577
vector computations and, 646–649

Pits, compact disks, 210
Platters, 186, 190–191
Point-to-point interconnect, 95–98.

See also Quick Path Interconnect (QPI)
Point-to-point interfaces, 249
Pollack’s rule, 669
POP stack operation, 419
Positional number system, 311
Positive overflow, 344
Positive underflow, 344
Postindexing, 458, 462
Power consumption, 668–669
Power density, 41
Power management logic, 677
Preindexing, 458, 462
Privileged instructions, 273
Procedural dependency, parallelism, 579
Procedure calls, 428–431, 433, 537

control transfer instructions, 427–431
high-level language (HLL), 537–538
Intel x86 call/return instructions, 433
reduced instruction set computers (RISC), 537
stack implementation of, 429–430

Procedure return, 433
Process, 277–283, 626–627

concept of, 277
control block, 279
data, 10
execution, 280–283, 626
interrupt, 281
multithreading, 626–627
resource ownership, 626
scheduling, 277–283, 626
states, 278–280
switch, 627

Processors, 12–13, 85, 226–227, 484–526
Advanced RISC Machine (ARM)

organization, 520–526
arithmetic and logic unit (ALU), 12, 484–485
communication, 85, 226–227
control unit (CU), 12
cycle time, 51
I/O modules, 85, 226–227
instruction cycle, 491–495
Intel x86 organization, 512–520
interrupt processing, 518–520, 525–526
modes, ARM, 522–523
pipelining instructions, 495–512
registers, 12, 486–491, 512–518, 523–525
requirements of, 484–486
signals, 85
structure and function, 483–527
system interconnection (bus), 12–13, 85,

485–486

register renaming, 594
superscalar design, 589–595
trace cache fetch, 591, 593
trace cache next instruction pointer, 591–593

Pentium II processor, 294–299
address spaces, 294–295
formats for memory management, 297
I/O memory management, 294–299
paging, 298–299
parameters for memory management, 298
segmentation, 295–296
virtual address fields, 296

Peripheral component interconnection (PCI),
98–107

arbitration, 108
bus interconnection structure, 98–101
configuration, 98–99
data transfers, 100
request (REQ) signal, 103
signal lines, 98
special interest group (SIG), 98

Peripheral (external) devices, I/O, 223–225
Phase change, 213
Phit (physical unit), 94
Physical address, 287, 288
Physical cache, 125
Physical dedication, 90
Physical layer, 251–252, 255
Pipelining, 495–511, 532, 551–556, 559–562,

576–577, 602–603, 646–649
branch prediction, 506–509
branches and, 505–510
bubble, 502
Cortex-A8 processor, 602–603
cycle time, 500
delayed branch, 510, 553–555
delayed load, 554
development of, 532
floating-point instructions, 602–603,

647–650
hazards, 501–504
instruction prefetch (fetch overlap), 496, 505
Intel 80486 processor, 510–511
loop buffer, 505–506
loop unrolling, 555–556
MIPS R4000 microprocessor, 559–562
multiple streams, 505
optimization, 553–556
performance, 500–501
processor instructions, 495–512
RISC instructions, 551–556, 559–562
single-instruction multiple-data (SIMD)

instructions, 602–603
speedup factor, 501–502
strategy, 495–500
superpipelined approach, 576–577

760 INDEX

Reading/report assignments, 696
Read-mostly memory, 164
Read-only memory (ROM), 161, 163–164
Read-with-intent-to-modify (RWITM),

624–625
Read-write dependency, 594
Recommended reading, 718
Recordable (CD-R), 210
Reduced instruction set computers (RISC), 2,

531–569
addressing mode simplicity, 548–549
architecture, 545–551
CISC and superscalar systems

compared to, 534
compiler-based register optimization, 543–545
complex instruction set computer (CISC)

architecture compared to, 549–551, 568–569
development of, 533
high-level language (HLL) and, 533–538
instruction execution, 533–538
instruction formats, 548–549, 558, 566–567
instruction sets, 556–559, 564–566
machine cycle instructions, 547
MIPS R4000 microprocessor, 556–562
operands, 536–537
operations, 535–536
pipelining instructions, 551–556, 559–562
procedure calls, 537–538
register-to-register characteristics, 547–548
registers, 538–545, 563–564
Scalable Processor Architecture (SPARC),

562–568
Redundant Array of Independent Disks

(RAID), 186, 195–205
bit-interleaved parity (level 3), 197, 202–203
block-level distributed parity (level 5),

197, 204
block-level parity (level 4), 197, 203
characteristics of, 196
dual redundancy (level 6), 197, 204–205
Hamming code, redundant via (level 2),

197, 202
levels, 196–198, 204–205
mirrored (level 1), 197, 201–202
nonredundant (level 0), 197–198
redundancy, 3, 202–203
striping (level 0), 197–201

Redundant disk performance via Hamming
code (RAID level 2), 197, 202

Reentrant procedure, 429
Register addressing, 455–456
Register file, instruction pipe line, 562
Register indirect addressing, 456
Register renaming, 584–585, 594
Register-to-register organization, 547–548,

651–627

Product of sums (POS), 372
Program counter (PC), 20, 69–70, 488
Program status word (PSW), 489
Programmable array logic (PAL), 398
Programmable logic array (PLA), 397–401
Programmable logic devices (PLD), 397–401

Programmable logic devices, 397–401
Sequential circuits, 388–397
field-programmable gate array, 398–401
programmable logic array, 397–398
types of, 397

Programmable read-only memory (PROM),
161, 164

Programmed I/O, 222, 228–232, 238–240
commands, 229–230
drawbacks of, 240
execution, 228–232
instructions, 232–234
Intel 82C55A programmable

peripheral interface, 238–240
interrupt-driven I/O and, 228–232, 238–240
isolated, 231
memory-mapped, 231

PUSH stack operation, 431

Q
Queues, 282–284, 594

I/O, 282–283
intermediate, 283–284
long- and short-term, 282
memory management swapping, 283–284
micro-operations (micro-ops), 595
processor scheduling, 282–283

Quick Path Interconnect (QPI), 679
characteristics, 93–94
link layers, 96–97
physical layers, 95–96
protocol architecture, 94–95
protocol layers, 97–98
routing layers, 97

Quiet NaN, 357
Quine-McCluskey method, 376–380
Quotient, 313

R
Radix point, 321
RAID. See Redundant Array

of Independent Disks (RAID)
Rambus DRAM (RDRAM), 178
Random access, 115
Random-access memory (RAM), 161–162
Rate metric measures, 55–56
Ratio, averaging results, 54–55
Read hit/miss, 624
Read mechanisms, magnetic disks, 186–187
Real memory, 290

INDEX 761

RISC. See Reduced instruction set computers
(RISC)

Root complex, 98
Rotate (cyclic shift) operation, 424
Rotating interrupt mode, 238
Rotational delay (latency), magnetic disks, 193
Rotational positional sensing (RPS), 193
Rounding, IEEE standards, 355–356
Router, InfiniBand, 253
Run-time dynamic linking, 718

S
Saturation arithmetic, 436
Scalable Processor Architecture (SPARC),

562–568
instruction format, 566–567
instruction set, 564–566
register set, 563–564

Scalar values, 447
Scheduling, 266, 270–271, 277–283, 595, 626

efficiency of, 270–271
interrupt process, 281
long-term, 277–278
medium-term, 278
micro-operations (micro-ops), 595
multithreading, 626
operating system (OS) function, 266, 270,

277–283
process, 277–280, 626
queues, 282–283
short-term, 278–283
state of a process, 278–280
techniques, 280–283

Secondary (auxiliary) memory, 119
Sectors, magnetic disks, 188
Seek time, magnetic disks, 193–194
Segmentation, Pentium II processor, 293–296
Selector channel, 247–248
Semantic gap, 533–534
Semiconductors, 33–35, 160–169.

See also Internal memory
Semiconductor memory, 160–169
Semiconductor technology, 119
Sequential circuits, 388–397

clocked S–R flip-flop, 389–391
counters, 394–397
D flip-flop, 391–393
flip-flops, 388
registers, 393–394
S–R latch, 388–389

Sequencing, 271, 535, 593
Sequential access, 114
Sequential organization, magnetic disks,

194–195
Serial I/O interfaces, 248–249
Serial recording, 216

Registers, 12, 19–20, 452–456, 485–491, 512–518,
523–525, 538–545, 563–564, 651–654

address, 487
addressing mode, 452–454
Advanced RISC Machine (ARM) organiza-

tion, 523–525
cache memory compared to, 541–543
compiler-based optimization, 543–545
condition codes (flags), 487–488
control, 486, 487–488, 515–517
current program status (CPSR), 523–524
data, 486
EFLAGS, 512–514
general-purpose, 486, 523
global variable storage, 541
IAS computer memory and, 19–20
IBM 3090 vector facility, 651–654
indirect addressing mode, 453–454, 456
instruction (IR), 20, 489
instruction buffer (IBR), 20, 489
Intel 80386 microprocessor, 490–491
Intel 8086 microprocessor, 490–491
Intel x86 organization, 512–518
larger file approaches, 538–543
memory address (MAR), 20, 488
memory buffer (MBR), 20, 488
microprocessor organizations, 490–491
MMX, 517–518
Motorola MC68000

microprocessor, 490–491
program counter (PC), 20, 488
program status word (PSW), 489
reduced instruction set computers (RISC),

538–545, 563–564
registers, 12, 485–491
Scalable Processor Architecture (SPARC),

562–564
status, 486, 488–490
user-visible, 486–488
windows, 539–541, 563–564

Register window, 539–541
Relative address, 288, 457, 461
Relocation, 710–713
Remainder, 313
Removable disk, 190
Replacement algorithms, cache memory, 137
Request (REQ) signal, PCI, 243
Research projects, 692
Resident monitor, 271
Resistive-capacitive (RC) delay, 41
Resource conflict, parallelism, 579
Resource hazards, pipelining, 502–503
Resource management, OS, 268–270, 275–276
Resource ownership process, 626
Retire, ARM Cortex-A8, 596
Ripple counters, 394–395

762 INDEX

Speed metric measures, 54
Speedup factor, 501–502
Split cache memory, 141
S–R Latch, 388–389
Stacks, 411, 429–430, 458–459

addressing mode, 453, 458–459
frames, 430
pointer (SP), 523
procedure call implementation, 429–430
zero-address instructions, 411

State diagrams, instruction cycles, 73, 81, 493
State of a process, 278–280
Static random-access memory (SRAM), 163
Status flags, 434
Status registers, 486, 488–490
Status signals, I/O, 224
Stored-program concept, 17
Striped data, 198
Striped disk performance (RAID level 0),

197–201
Subnets, InfiniBand, 253
Subnormal number, 357–358
Substrate, 186
Subtraction, 328–331, 349–352

floating-point numbers, 349–352
twos complement integers, 328–331

Subtrahend, 329
Sum of products (SOP), 371
Superpipelined approach, 576–577
Superpipelined processor, 576–577
Superscalar processors, 534, 573–603

Advanced RISC Machine (ARM) Cortex-A8,
595–603

branch prediction, 587
CISC and RISC systems compared to, 534
committing (retiring) instructions, 588
design issues, 579–588
development of, 574
execution of programs, 587–588
implementation of programs, 588
in-order completion, 581
instruction issue policy, 580–584
instruction-level parallelism and, 573–603
Intel Pentium 4, 589–603
out-of-order completion, 581–583
parallelism limitations, 577–579, 581–583
register renaming, 584–585
superpipelined approach compared to,

576–577
Swapping, I/O memory management, 283–284
Switch, 253, 627
Symmetric multiprocessors (SMP), 613, 614,

615–619
clusters compared to, 615–616
organization, 616–619
parallel processor architecture, 619

Serpentine recording, 216–217
Server clustering approaches, 635
Set-associative mapping, 132–136
Setup time, operating system (OS) efficiency,

270–271
Shift register, 393–394
Short-term scheduling, 278–283
Sign bit, 322
Significand overflow, 350
Significand underflow, 350
Sign-magnitude representation, 322
Signal lines, PCI, 84
Signaling NaN, 356
Significand, 342, 350
Simple PLD, 398
Simulation projects, 694
Simultaneous multithreading (SMT), 628–631
Single error-correcting (SEC) code, 174
Single-error-correcting, double-error-detecting

(SEC-DED) code, 174
Single-instruction multiple-data (SIMD),

435–438, 602, 613–615
Intel x86 instructions, 434–438
pipelining instructions, 602–603
stream, 613–615

Single instruction, single data (SISD) stream,
613–615

Single large expensive disk (SLEP), 196
Single-sided disk, 190
Single-system image, 637
Skip instructions, 427
Small Computer System Interface (SCSI), 89
Small-scale integration (SSI), 397
SMP. See Symmetric multiprocessors (SMP)
Snoop control unit (SCU), 679, 683–684
Snoopy protocols, cache coherence, 621
Soft error, 170
Software, 25, 67–68, 620–621, 669–674

cache coherence solutions, 620–621
database scaling applications, 670–671
development of, 25
multicore computer performance, 669–674
system components, 67–68
Valve game threading, 672–673

Software poll technique, I/O, 236
Solid-state component, 24
Solid state drives (SSDs), 24

flash memory, 206–207
HDD compared, 207
organization of , 207–209
overview, 205–206
practical issues, 209

Spatial locality, 154
Special interest group (SIG), PCI, 98
Special mask interrupt mode, 238
Speculative execution, 39

INDEX 763

Two-pass assembler, 706, 708
Twos complement, 322–324, 326–341

arithmetic, 326–331
division restoring algorithm, 339–341
geometric depiction of, 330
multiplication, 333–338
operation, 327
representation, 322–323

U
Ultra-large-scale integration (ULSI), 33
Unary operator, 410
Unconditional branch instructions, 22–23, 427
Unconditional jump, 432
Underflow, 344, 349, 357
Unified cache memory, 141
Uniform memory access (UMA), 640
Uniprocessors, 613, 615
Uniprogramming, operating systems (OS),

270, 274
Unit of transfer, 113–114
Universal Automatic Computer (UNIVAC), 24
Upward compatible, 24
User/computer interfacing, OS, 266–267
User-visible registers, 486–488
Utilities, OS, 267–268
Utility program, 267

V
Vacuum tubes, development of, 16–37
Valve game threading, 672–673
Variable-length instruction formats, 469–472
Variable-sized partitions, 285–286
VAX instruction format design, 471–472
Vector, 236
Vector computation, 644–656

ALU instruction set, 654–656
chaining, 648–649
compound instructions, 654
IBM 3090 vector facility, 650–656
multiple parallel processing, 649–650
parallel processing, 646–647
pipelining approaches, 646–647
register-to-register organization, 651–654
vector processing, 644–650

Vector facility, IBM 3090, 650–651
Vector floating-point (VFP) unit, 603
Very-large-scale integration (VLSI), 33
Very long instruction word (VLIW)
Virtual address fields, 296
Virtual cache memory, 124–125, 152
Virtual lanes, InfiniBand, 254–255
Virtual memory, 289–291, 300–301

ARM address translation, 300–301
demand paging, 289–290
I/O memory management, 289–291, 300–301

system characteristics, 615–617
two-level shared caches, 622

Synchronous counter, 395–397
Synchronous DRAM (SDRAM), 175–178
Synchronous timing, 92–93
Syndrome words, 171–172
System bus, 12, 85–86
System control operations, 425
System interconnection (bus), 12–13, 85,

485–486
System Performance Evaluation Corporation

(SPEC), 53–55

T
Tags, cache memory, 121
Target channel adapter (TCA), 253
Temporal locality, 154
Test bank, 696
Test instructions, 409
Thermal control units, 676–677
Thrashing, 130, 289
Thread, 627
Threading, multicore computers, 672–673
Thumb instruction set, ARM, 476–477
Thunderbolt, 250
Time multiplexing, 90
Time-sharing operating systems (OS), 276–277
Timing, 90–93, 226

asynchronous, 92–93
bus interconnection, 90–93
I/O modules, 226
synchronous, 90–91

Top-level computer structure, 13–14, 66
execute cycle, 21, 69–74
fetch cycle, 20, 69–74
functions, 8–14, 65–83
instruction cycle, 20–24, 69–74, 76–83
interconnections, 12–13, 84–107
timing diagrams, 394

Trace cache fetch, Pentium 4 processor, 591, 593
Trace cache net instruction pointer, Pentium 4

processor, 591–593
Tracks, magnetic disks, 186, 190–191
Transaction layer, 102
Transducer, I/O, 224
Transfer of control operations, 420, 426–431
Transfer rate, 115–116
Transfer time, magnetic disks, 193–194
Transistors, development of, 24–33
Translation lookaside buffer (TLB), 291–293,

299–300
Transport layer, 256
True data (flow) dependency, parallelism,

577–579
Truth table, 366
Two-level cache memory, 152–158

764 INDEX

Write after read (WAR) dependency, 578–579
Write after write (WAW) dependency, 581–583
Write back technique, 138, 620
Write hit/miss, 625
Write mechanisms, magnetic disks, 186–187
Write policy, cache memory, 137–139
Write through technique, 137–138, 620
Writing assignments, 696

X
X86 and ARM data types, 431
XOR gate, 366

Z
zEnterprise196, I/O structure

cache structure, 685–686
channel structure, 256–257
system organization, 258–260, 684–685

Virtual memory (continued)
inverted page table structure, 290–291
page replacement, 289–290
Pentium II address fields, 296

Virtual storage, 651
Volatile memory, 116
Von Neuman machine, 17–24, 66–68

W
Wafer, silicon, 29, 30
Watchdog, 679
Web site resources, 5–6, 358
Winchester disk format, 189
Windows, register file size increase using,

539–541, 563–564
Words, 19, 113, 465

addressing modes, 447
in page table structure, 290

	Cover
	Title Page
	Copyright Page
	ACKNOWLEDGMENTS
	Contents
	Online Resources
	Preface
	About the Author
	Chapter 0 Reader’s and Instructor’s Guide
	0.1 Outline of the Book
	0.2 A Roadmap for Readers and Instructors
	0.3 Why Study Computer Organization and Architecture?
	0.4 Internet and Web Resources

	PART ONE: OVERVIEW
	Chapter 1 Introduction
	1.1 Organization and Architecture
	1.2 Structure and Function
	1.3 Key Terms and Review Questions

	Chapter 2 Computer Evolution and Performance
	2.1 A Brief History of Computers
	2.2 Designing for Performance
	2.3 Multicore, MICs, and GPGPUs
	2.4 The Evolution of the Intel x86 Architecture
	2.5 Embedded Systems and the ARM
	2.6 Performance Assessment
	2.7 Recommended Reading
	2.8 Key Terms, Review Questions, and Problems

	PART TWO: THE COMPUTER SYSTEM
	Chapter 3 A Top-Level View of Computer Function and Interconnection
	3.1 Computer Components
	3.2 Computer Function
	3.3 Interconnection Structures
	3.4 Bus Interconnection
	3.5 Point-To-Point Interconnect
	3.6 PCI Express
	3.7 Recommended Reading
	3.8 Key Terms, Review Questions, and Problems

	Chapter 4 Cache Memory
	4.1 Computer Memory System Overview
	4.2 Cache Memory Principles
	4.3 Elements of Cache Design
	4.4 Pentium 4 Cache Organization
	4.5 ARM Cache Organization
	4.6 Recommended Reading
	4.7 Key Terms, Review Questions, and Problems
	Appendix 4A: Performance Characteristics of Two-Level Memories

	Chapter 5 Internal Memory
	5.1 Semiconductor Main Memory
	5.2 Error Correction
	5.3 Advanced DRAM Organization
	5.4 Recommended Reading
	5.5 Key Terms, Review Questions, and Problems

	Chapter 6 External Memory
	6.1 Magnetic Disk
	6.2 RAID
	6.3 Solid State Drives
	6.4 Optical Memory
	6.5 Magnetic Tape
	6.6 Recommended Reading
	6.7 Key Terms, Review Questions, and Problems

	Chapter 7 Input/Output
	7.1 External Devices
	7.2 I/O Modules
	7.3 Programmed I/O
	7.4 Interrupt-Driven I/O
	7.5 Direct Memory Access
	7.6 I/O Channels and Processors
	7.7 The External Interface: Thunderbolt and Infiniband
	7.8 IBM zEnterprise 196 I/O Structure
	7.9 Recommended Reading
	7.10 Key Terms, Review Questions, and Problems

	Chapter 8 Operating System Support
	8.1 Operating System Overview
	8.2 Scheduling
	8.3 Memory Management
	8.4 Pentium Memory Management
	8.5 ARM Memory Management
	8.6 Recommended Reading
	8.7 Key Terms, Review Questions, and Problems

	PART THREE: ARITHMETIC AND LOGIC
	Chapter 9 Number Systems
	9.1 The Decimal System
	9.2 Positional Number Systems
	9.3 The Binary System
	9.4 Converting Between Binary and Decimal
	9.5 Hexadecimal Notation
	9.6 Recommended Reading
	9.7 Key Terms and Problems

	Chapter 10 Computer Arithmetic
	10.1 The Arithmetic and Logic Unit
	10.2 Integer Representation
	10.3 Integer Arithmetic
	10.4 Floating-Point Representation
	10.5 Floating-Point Arithmetic
	10.6 Recommended Reading
	10.7 Key Terms, Review Questions, and Problems

	Chapter 11 Digital Logic
	11.1 Boolean Algebra
	11.2 Gates
	11.3 Combinational Circuits
	11.4 Sequential Circuits
	11.5 Programmable Logic Devices
	11.6 Recommended Reading
	11.7 Key Terms and Problems

	PART FOUR: THE CENTRAL PROCESSING UNIT
	Chapter 12 Instruction Sets: Characteristics and Functions
	12.1 Machine Instruction Characteristics
	12.2 Types of Operands
	12.3 Intel x86 and ARM Data Types
	12.4 Types of Operations
	12.5 Intel x86 and ARM Operation Types
	12.6 Recommended Reading
	12.7 Key Terms, Review Questions, and Problems
	Appendix 12A: Little-, Big-, and Bi-Endian

	Chapter 13 Instruction Sets: Addressing Modes and Formats
	13.1 Addressing Modes
	13.2 x86 and ARM Addressing Modes
	13.3 Instruction Formats
	13.4 x86 and ARM Instruction Formats
	13.5 Assembly Language
	13.6 Recommended Reading
	13.7 Key Terms, Review Questions, and Problems

	Chapter 14 Processor Structure and Function
	14.1 Processor Organization
	14.2 Register Organization
	14.3 Instruction Cycle
	14.4 Instruction Pipelining
	14.5 The x86 Processor Family
	14.6 The ARM Processor
	14.7 Recommended Reading
	14.8 Key Terms, Review Questions, and Problems

	Chapter 15 Reduced Instruction Set Computers
	15.1 Instruction Execution Characteristics
	15.2 The Use of a Large Register File
	15.3 Compiler-Based Register Optimization
	15.4 Reduced Instruction Set Architecture
	15.5 RISC Pipelining
	15.6 MIPS R4000
	15.7 SPARC
	15.8 RISC Versus CISC Controversy
	15.9 Recommended Reading
	15.10 Key Terms, Review Questions, and Problems

	Chapter 16 Instruction-Level Parallelism and Superscalar Processors
	16.1 Overview
	16.2 Design Issues
	16.3 Pentium 4
	16.4 ARM Cortex-A8
	16.5 Recommended Reading
	16.6 Key Terms, Review Questions, and Problems

	PART FIVE: PARALLEL ORGANIZATION
	Chapter 17 Parallel Processing
	17.1 Multiple Processor Organizations
	17.2 Symmetric Multiprocessors
	17.3 Cache Coherence and the MESI Protocol
	17.4 Multithreading and Chip Multiprocessors
	17.5 Clusters
	17.6 Nonuniform Memory Access
	17.7 Vector Computation
	17.8 Recommended Reading
	17.9 Key Terms, Review Questions, and Problems

	Chapter 18 Multicore Computers
	18.1 Hardware Performance Issues
	18.2 Software Performance Issues
	18.3 Multicore Organization
	18.4 Intel x86 Multicore Organization
	18.5 ARM11 MPCore
	18.6 IBM zEnterprise 196 Mainframe
	18.7 Recommended Reading
	18.8 Key Terms, Review Questions, and Problems

	Appendix A: Projects for Teaching Computer Organization and Architecture
	A.1 Interactive Simulations
	A.2 Research Projects
	A.3 Simulation Projects
	A.4 Assembly Language Projects
	A.5 Reading/Report Assignments
	A.6 Writing Assignments
	A.7 Test Bank

	Appendix B: Assembly Language and Related Topics
	B.1 Assembly Language
	B.2 Assemblers
	B.3 Loading and Linking
	B.4 Recommended Reading
	B.5 Key Terms, Review Questions, and Problems

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

