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xiii

WHAT’S NEW IN THE NINTH EDITION

In the four years since the eighth edition of this book was published, the field has seen con-
tinued innovations and improvements. In this new edition, I try to capture these changes 
while maintaining a broad and comprehensive coverage of the entire field. To begin this 
process of revision, the eighth edition of this book was extensively reviewed by a number 
of professors who teach the subject and by professionals working in the field. The result is 
that, in many places, the narrative has been clarified and tightened, and illustrations have 
been improved.

Beyond these refinements to improve pedagogy and user-friendliness, there have been 
substantive changes throughout the book. Roughly the same chapter organization has been 
retained, but much of the material has been revised and new material has been added. The 
most noteworthy changes are as follows:

•  Point-to-point interconnect: The traditional bus architecture has increasingly been re-
placed with high-speed point-to-point interconnect schemes. A new section explores 
this technology, using Intel’s QuickPath Interconnect (QPI) as an example.

•  PCI Express: PCI Express (PCIe) has become a standard peripheral interconnect archi-
tecture, replacing PCI and other bus-based architectures. A new section covers PCIe.

•  Solid state drive and flash memory: Solid state drives are increasingly displacing hard 
disk drives over a range of computers. A new section covers SSDs and the underlying 
flash memory technology.

•  IEEE 754 Floating-Point Standard: The coverage of IEEE 754 has been updated to 
reflect the 2008 standard.

•  Contemporary mainframe organization: Chapters 7 and 18 include sections on the 
zEnterprise 196, IBM’s latest mainframe computer offering (at the time of this writing), 
introduced in 2010.

•  I/O standards: The book has been updated to reflect the latest developments, including 
Thunderbolt.

•  Multicore architecture: The material on multicore architecture has been expanded sig-
nificantly.

•  Student study aids: Each chapter now begins with a list of learning objectives.

PREFACE
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•  Sample syllabus: The text contains more material than can be conveniently covered in 
one semester. Accordingly, instructors are provided with several sample syllabi that 
guide the use of the text within limited time (e.g., 16 weeks or 12 weeks). These samples 
are based on real-world experience by professors with the eighth edition.

•  Test bank: A set of review questions, including yes/no, multiple choice, and fill in the 
blank is provided for each chapter.

With each new edition it is a struggle to maintain a reasonable page count while adding 
new material. In part this objective is realized by eliminating obsolete material and tighten-
ing the narrative. For this edition, chapters and appendices that are of less general interest 
have been moved online, as individual PDF files. This has allowed an expansion of material 
 without the corresponding increase in size and price.

OBJECTIVES

This book is about the structure and function of computers. Its purpose is to present, as 
clearly and completely as possible, the nature and characteristics of modern-day computer 
systems.

This task is challenging for several reasons. First, there is a tremendous variety of prod-
ucts that can rightly claim the name of computer, from single-chip microprocessors costing 
a few dollars to supercomputers costing tens of millions of dollars. Variety is exhibited not 
only in cost but also in size, performance, and application. Second, the rapid pace of change 
that has always characterized computer technology continues with no letup. These changes 
cover all aspects of computer technology, from the underlying integrated circuit technology 
used to construct computer components to the increasing use of parallel organization con-
cepts in combining those components.

In spite of the variety and pace of change in the computer field, certain fundamental 
concepts apply consistently throughout. The application of these concepts depends on the 
current state of the technology and the price/performance objectives of the designer. The 
intent of this book is to provide a thorough discussion of the fundamentals of computer 
organization and architecture and to relate these to contemporary design issues.

The subtitle suggests the theme and the approach taken in this book. It has always 
been important to design computer systems to achieve high performance, but never has this 
requirement been stronger or more difficult to satisfy than today. All of the basic perform-
ance characteristics of computer systems, including processor speed, memory speed, memory 
capacity, and interconnection data rates, are increasing rapidly. Moreover, they are increas-
ing at different rates. This makes it difficult to design a balanced system that maximizes the 
performance and utilization of all elements. Thus, computer design increasingly becomes a 
game of changing the structure or function in one area to compensate for a performance 
mismatch in another area. We will see this game played out in numerous design decisions 
throughout the book.

A computer system, like any system, consists of an interrelated set of components. 
The system is best characterized in terms of structure—the way in which components are 
interconnected, and function—the operation of the individual components. Furthermore, a 
computer’s organization is hierarchical. Each major component can be further described by 
decomposing it into its major subcomponents and describing their structure and function. 
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For clarity and ease of understanding, this hierarchical organization is described in this book 
from the top down:

•  Computer system: Major components are processor, memory, I/O.

•  Processor: Major components are control unit, registers, ALU, and instruction execu-
tion unit.

•  Control unit: Provides control signals for the operation and coordination of all processor
components. Traditionally, a microprogramming implementation has been used, in 
which major components are control memory, microinstruction sequencing logic, and 
registers. More recently, microprogramming has been less prominent but remains an 
important implementation technique.

The objective is to present the material in a fashion that keeps new material in a clear 
context. This should minimize the chance that the reader will get lost and should provide 
better motivation than a bottom-up approach.

Throughout the discussion, aspects of the system are viewed from the points of view 
of both architecture (those attributes of a system visible to a machine language program-
mer) and organization (the operational units and their interconnections that realize the 
architecture).

EXAMPLE SYSTEMS

This text is intended to acquaint the reader with the design principles and implementation 
issues of contemporary operating systems. Accordingly, a purely conceptual or theoretical 
treatment would be inadequate. To illustrate the concepts and to tie them to real-world design 
choices that must be made, two processor families have been chosen as running examples:

•  Intel x86 architecture: The x86 architecture is the most widely used for nonembedded 
computer systems. The x86 is essentially a complex instruction set computer (CISC) 
with some RISC features. Recent members of the x86 family make use of superscalar 
and multicore design principles. The evolution of features in the x86 architecture pro-
vides a unique case study of the evolution of most of the design principles in computer 
architecture.

•  ARM: The ARM architecture is arguably the most widely used embedded processor, 
used in cell phones, iPods, remote sensor equipment, and many other devices. The 
ARM is essentially a reduced instruction set computer (RISC). Recent members of the 
ARM family make use of superscalar and multicore design principles.

Many, but by no means all, of the examples in this book are drawn from these two computer 
families. Numerous other systems, both contemporary and historical, provide examples of 
important computer architecture design features.

PLAN OF THE TEXT

The book is organized into six parts (see Chapter 0 for an overview):

• Overview

• The computer system



xvi  PREFACE

• Arithmetic and logic

• The central processing unit

• Parallel organization, including multicore

• The control unit

The book includes a number of pedagogic features, including the use of interactive 
simulations and numerous figures and tables to clarify the discussion. Each chapter includes 
a list of key words, review questions, homework problems, and suggestions for further read-
ing. The book also includes an extensive glossary, a list of frequently used acronyms, and a 
bibliography.

INTENDED AUDIENCE

The book is intended for both an academic and a professional audience. As a textbook, 
it is intended as a one- or two-semester undergraduate course for computer science, com-
puter engineering, and electrical engineering majors. It covers all the core topics in the 
body of knowledge category, Architecture and Organization, in the IEEE/ACM Computer 
Curriculum 2008: An Interim Revision to CS 2001. This book also covers the core area 
CE-CAO Computer Architecture and Organization from the IEEE/ACM Computer 
Engineering Curriculum Guidelines 2004.

For the professional interested in this field, the book serves as a basic reference vol-
ume and is suitable for self-study.

INSTRUCTOR SUPPORT MATERIALS

Support materials for instructors are available at the Instructor Resource Center (IRC) for 
this textbook, which can be reached through the Publisher’s Website www.pearsonhighered 
.com/stallings or by clicking on the link labeled “Pearson Resources for Instructors” at this 
book’s Companion Website at WilliamStallings.com/ComputerOrganization. To gain access 
to the IRC, please contact your local Pearson sales representative via pearsonhighered 
.com/educator/replocator/requestSalesRep.page or call Pearson Faculty Services at  
1-800-526-0485. The IRC provides the following materials:

•  Projects manual: Project resources including documents and portable software, plus 
suggested project assignments for all of the project categories listed subsequently in 
this Preface.

•  Solutions manual: Solutions to end-of-chapter Review Questions and Problems.

•  PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.

•  PDF files: Copies of all figures and tables from the book.

•  Test bank: A chapter-by-chapter set of questions.

•  Sample syllabuses: The text contains more material than can be conveniently covered 
in one semester. Accordingly, instructors are provided with several sample syllabuses 
that guide the use of the text within limited time. These samples are based on real-
world experience by professors with the first edition.

www.pearsonhighered.com/stallings
www.pearsonhighered.com/stallings
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The Companion Website, at WilliamStallings.com/ComputerOrganization (click on 
Instructor Resources link) includes the following:

• Links to Websites for other courses being taught using this book.

• Sign-up information for an Internet mailing list for instructors using this book to 
 exchange information, suggestions, and questions with each other and with the author.

STUDENT RESOURCES

For this new edition, a tremendous amount of original supporting material for students 
has been made available online, at two Web locations. The Companion Website, at 
WilliamStallings.com/ComputerOrganization (click on Student Resources link), includes a 
list of relevant links organized by chapter and an errata sheet for the book.

Purchasing this textbook new grants the reader six months of access to the Premium 
Content Site, which includes the following materials:

•  Online chapters: To limit the size and cost of the book, two chapters of the book are 
provided in PDF format. The chapters are listed in this book’s table of contents.

•  Online appendices: There are numerous interesting topics that support material found 
in the text but whose inclusion is not warranted in the printed text. A total of 13 appen-
dices cover these topics for the interested student. The appendices are listed in this 
book’s table of contents.

•  Homework problems and solutions: To aid the student in understanding the material, a 
separate set of homework problems with solutions are available. Students can enhance 
their understanding of the material by working out the solutions to these problems and 
then checking their answers.

•  Key papers: Several dozen papers from the professional literature, many hard to find, 
are provided for further reading.

•  Supporting documents: A variety of other useful documents are referenced in the text 
and provided online.

Finally, I maintain the Computer Science Student Resource Site at WilliamStallings
.com/StudentSupport.html.

PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of a computer organization and architec-
ture course is a project or set of projects by which the student gets hands-on experience to 
reinforce concepts from the text. This book provides an unparalleled degree of support for 
including a projects component in the course. The instructor’s support materials available 
through Prentice Hall not only includes guidance on how to assign and structure the projects 
but also includes a set of user’s manuals for various project types plus specific assignments, 
all written especially for this book. Instructors can assign work in the following areas:

• Interactive simulation assignments:  Described subsequently.
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• Research projects:  A series of research assignments that instruct the student to research 
a particular topic on the Internet and write a report.

• Simulation projects:  The IRC provides support for the use of the two simulation pack-
ages: SimpleScalar can be used to explore computer organization and architecture 
design issues. SMPCache provides a powerful educational tool for examining cache 
design issues for symmetric multiprocessors.

• Assembly language projects:  A simplified assembly language, CodeBlue, is used and 
assignments based on the popular Core Wars concept are provided.

• Reading/report assignments: A list of papers in the literature, one or more for each 
chapter, that can be assigned for the student to read and then write a short report.

• Writing assignments:  A list of writing assignments to facilitate learning the material.

• Test bank:  Includes T/F, multiple choice, and fill-in-the-blanks questions and answers.

This diverse set of projects and other student exercises enables the instructor to use 
the book as one component in a rich and varied learning experience and to tailor a course 
plan to meet the specific needs of the instructor and students. See Appendix A in this book 
for details.

INTERACTIVE SIMULATIONS

An important feature in this edition is the incorporation of interactive simulations. These 
simulations provide a powerful tool for understanding the complex design features of a mod-
ern computer system. A total of 20 interactive simulations are used to illustrate key functions 
and algorithms in computer organization and architecture design. At the relevant point in the 
book, an icon indicates that a relevant interactive simulation is available online for student use. 
Because the animations enable the user to set initial conditions, they can serve as the basis for 
student assignments. The instructor’s supplement includes a set of assignments, one for each 
of the animations. Each assignment includes several specific problems that can be assigned 
to  students. For access to the animations, click on the rotating globe at this book’s Website at 
http://williamstallings.com/ComputerOrganization.
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This book, with its accompanying Web sites, covers a lot of material. In this chapter, 
we give the reader an overview.

 0.1 OUTLINE OF THE BOOK

The book is organized into five parts:

Part One Overview: Provides an overview of computer organization and archi-
tecture and looks at how computer design has evolved.

Part Two The Computer System: Examines the major components of a com-
puter and their interconnections, both with each other and the outside world. 
This part also includes a detailed discussion of internal and external memory 
and of input/output (I/O). Finally, the relationship between a computer’s archi-
tecture and the operating system running on that architecture is examined.

Part Three Arithmetic and Logic: This part begins with a chapter that reviews 
number systems. Chapter 10 is an extended discussion of computer arithmetic. 
Chapter 11 is a survey of digital logic.

Part Four The Central Processing Unit: Examines the internal architecture 
and organization of the processor. This part looks at the instruction set archi-
tecture. The remainder of the part deals with the structure and function of the 
processor, including a discussion of reduced instruction set computer (RISC) 
and superscalar approaches.

Part Five Parallel Organization: Deals with parallel organization, including 
symmetric multiprocessing, clusters, and multicore architecture.

Part Six The Control Unit: Discusses the internal structure of the processor’s 
control unit and the use of microprogramming.

A number of online chapters and appendices at this book’s Web site cover 
additional topics relevant to the book.

This text is intended to acquaint you with the design principles and  implementation 
issues of contemporary computer organization and architecture. Accordingly, a purely 
conceptual or theoretical treatment would be inadequate. This book uses examples from 
a number of different machines to clarify and reinforce the concepts being  presented. 
Many, but by no means all, of the examples are drawn from two  computer families: 
the Intel x86 family and the ARM family. These two systems together  encompass 
most of the current computer design trends. The Intel x86  architecture is essentially a 
complex instruction set computer (CISC) with some RISC features, while the ARM is 
 essentially a RISC. Both systems make use of  superscalar design principles, and both 
support multiple processor and multicore  configurations.

 0.2 A ROADMAP FOR READERS AND INSTRUCTORS

This book follows a top–down approach to the presentation of the material. As 
we discuss in more detail in Section 1.2, a computer system can be viewed as a 
 hierarchical structure. At a top level, we are concerned with the major  components 
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of the  computers: processor, I/O, memory, and peripheral devices. Part Two exam-
ines these components and looks in some detail at each component except the 
 processor. This approach allows us to see the external functional requirements that 
drive the processor design, setting the stage for Parts Three and Four. Part Three 
looks at the arithmetic and logic component of the processor in detail. Then Part 
Four examine the processor in great detail. Because we have the context provided 
by Part Two, we are able, in Part Four, to see the design decisions that must be made 
so that the processor supports the overall function of the computer system. Next, in 
Part Five, we examine systems with multiple processors, including clusters, multi-
processor computers, and multicore computers. Finally, Part Six looks at the control 
unit, which is at the heart of the processor. Again, the design of the control unit can 
best be explained in the context of the function it performs within the context of the 
processor.

 0.3 WHY STUDY COMPUTER ORGANIZATION 
AND ARCHITECTURE?

The IEEE/ACM Computer Science Curriculum 2008, prepared by the Joint Task 
Force on Computing Curricula of the IEEE (Institute of Electrical and Electronics 
Engineers) Computer Society and ACM (Association for Computing Machinery), 
lists computer architecture as one of the core subjects that should be in the curricu-
lum of all students in computer science and computer engineering. The report says 
the following:

The computer lies at the heart of computing. Without it most of 
the computing disciplines today would be a branch of theoreti-
cal  mathematics. A professional in any field of computing should 
not regard the computer as just a black box that executes pro-
grams by magic. All students of computing should acquire some 
understanding and appreciation of a computer system’s functional 
 components, their characteristics, their performance, and their 
interactions.  Students need to understand computer architecture 
in order to make best use of the software tools and computer 
languages they use to create programs. In this introduction the 
term architecture is taken to  include instruction set architecture 
(the programmer’s abstraction of a computer), organization or 
 microarchitecture (the internal implementation of a computer at 
the register and functional unit level), and system architecture (the 
organization of the  computer at the cache and bus level). Students 
should also understand the complex trade-offs between CPU 
clock speed, cache size, bus organization, number of core proces-
sors, and so on. Computer architecture also underpins other  areas 
of the computing curriculum such as operating systems  (input/
output, memory technology) and high-level languages (pointers, 
parameter passing).
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Another publication of the task force, Computer Engineering 2004 Curriculum 
Guidelines, emphasized the importance of Computer Architecture and Organization 
as follows:

Computer architecture is a key component of computer engineering 
and the practicing computer engineer should have a practical under-
standing of this topic. It is concerned with all aspects of the design 
and organization of the central processing unit and the  integration 
of the CPU into the computer system itself. Architecture extends 
upward into computer software because a processor’s architecture 
must cooperate with the operating system and system software. 
It is difficult to design an operating system well without knowledge 
of the underlying architecture. Moreover, the computer designer 
must have an understanding of software in order to implement the 
optimum architecture.

The computer architecture curriculum has to achieve  multiple 
objectives. It must provide an overview of computer architecture 
and teach students the operation of a typical computing machine. 
It must cover basic principles, while acknowledging the  complexity 
of existing commercial systems. Ideally, it should reinforce topics that 
are common to other areas of computer engineering; for  example, 
teaching register indirect addressing reinforces the concept of point-
ers in C. Finally, students must understand how  various peripheral 
devices interact with, and how they are interfaced to a CPU.

[CLEM00] gives the following examples as reasons for studying computer 
architecture:

 1. Suppose a graduate enters the industry and is asked to select the most cost-
effective computer for use throughout a large organization. An understanding 
of the implications of spending more for various alternatives, such as a larger 
cache or a higher processor clock rate, is essential to making the decision.

 2. Many processors are not used in PCs or servers but in embedded systems. 
A designer may program a processor in C that is embedded in some  real-time 
or larger system, such as an intelligent automobile electronics controller. 
Debugging the system may require the use of a logic analyzer that displays 
the relationship between interrupt requests from engine sensors and machine-
level code.

 3. Concepts used in computer architecture find application in other courses. In 
particular, the way in which the computer provides architectural support for 
programming languages and operating system facilities reinforces concepts 
from those areas.

As can be seen by perusing the table of contents of this book, computer organ-
ization and architecture encompasses a broad range of design issues and concepts. 
A good overall understanding of these concepts will be useful both in other areas of 
study and in future work after graduation.
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 0.4 INTERNET AND WEB RESOURCES

There are a number of resources available on the Internet and the Web that support 
this book and help readers keep up with developments in this field.

Web Sites for This Book

Three Web sites provide additional resources for students and instructors.
We maintain a Companion Web site for this book at http://williamstallings.

com/ComputerOrganization. For students, this Web site includes a list of relevant 
links, organized by chapter, and an errata list for the book. For instructors, this Web 
site provides links to course pages by professors teaching from this book.

There is also an access-controlled Premium Content Web site that provides 
a wealth of supporting material, including additional online chapters, additional 
online appendices, a set of homework problems with solutions, copies of a number 
of key papers in this field, and a number of other supporting documents. See the 
card at the front of this book for access information.

Finally, additional material for instructors is available at the Instructor 
Resource Center (IRC) for this book. See Preface for details and access information.

Computer Science Student Resource Site

I also maintain the Computer Science Student Resource Site, at 
ComputerScienceStudent.com. The purpose of this site is to provide documents, 
information, and links for computer science students and professionals. Links and 
documents are organized into six categories:

 • Math: Includes a basic math refresher, a queuing analysis primer, a number 
system primer, and links to numerous math sites.

 • How-to: Advice and guidance for solving homework problems, writing 
 technical reports, and preparing technical presentations.

 • Research resources: Links to important collections of papers, technical 
reports, and bibliographies.

 • Miscellaneous: A variety of other useful documents and links.

 • Computer science careers: Useful links and documents for those considering a 
career in computer science.

 • Humor and other diversions: You have to take your mind off your work once 
in a while.

Other Web Sites

Numerous Web sites provide information related to the topics of this book. The 
Companion Web site provides links to these sites, organized by chapter.

http://williamstallings.com/ComputerOrganization
http://williamstallings.com/ComputerOrganization
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This book is about the structure and function of computers. Its purpose is to present, 
as clearly and completely as possible, the nature and characteristics of modern-day 
computers. This task is a challenging one for two reasons.

First, there is a tremendous variety of products, from single-chip microcomput-
ers costing a few dollars to supercomputers costing tens of millions of dollars, that 
can rightly claim the name computer. Variety is exhibited not only in cost, but also in 
size, performance, and application. Second, the rapid pace of change that has always 
characterized computer technology continues with no letup. These changes cover all 
aspects of computer technology, from the underlying integrated circuit technology 
used to construct computer components to the increasing use of parallel organization 
concepts in combining those components.

In spite of the variety and pace of change in the computer field, certain funda-
mental concepts apply consistently throughout. To be sure, the application of these 
concepts depends on the current state of technology and the price/performance 
objectives of the designer. The intent of this book is to provide a thorough discussion 
of the fundamentals of computer organization and architecture and to relate these 
to  contemporary computer design issues. This chapter introduces the descriptive 
approach to be taken.

 1.1 ORGANIZATION AND ARCHITECTURE

In describing computers, a distinction is often made between computer  architecture 
and computer organization. Although it is difficult to give precise definitions 
for  these terms, a consensus exists about the general areas covered by each 
(e.g., see [VRAN80], [SIEW82], and [BELL78a]); an interesting alternative view 
is presented in [REDD76].

Computer architecture refers to those attributes of a system visible to a 
 programmer or, put another way, those attributes that have a direct impact on 
the logical execution of a program. Computer organization refers to the opera-
tional units and their interconnections that realize the architectural specifications. 
Examples of architectural attributes include the instruction set, the number of bits 
used to represent various data types (e.g., numbers, characters), I/O mechanisms, 
and techniques for addressing memory. Organizational attributes include those 
hardware details transparent to the programmer, such as control signals; interfaces 
between the  computer and peripherals; and the memory technology used.

For example, it is an architectural design issue whether a computer will have 
a multiply instruction. It is an organizational issue whether that instruction will 
be implemented by a special multiply unit or by a mechanism that makes repeated 
use of the add unit of the system. The organizational decision may be based on the 
anticipated frequency of use of the multiply instruction, the relative speed of the two 
approaches, and the cost and physical size of a special multiply unit.

Historically, and still today, the distinction between architecture and organi-
zation has been an important one. Many computer manufacturers offer a family of 
computer models, all with the same architecture but with differences in organization. 
Consequently, the different models in the family have different price and perform-
ance characteristics. Furthermore, a particular architecture may span many years and 
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encompass a number of different computer models, its organization changing with 
changing technology. A prominent example of both these phenomena is the IBM 
System/370 architecture. This architecture was first introduced in 1970 and included 
a number of models. The customer with modest requirements could buy a cheaper, 
slower model and, if demand increased, later upgrade to a more expensive, faster 
model without having to abandon software that had already been developed. Over 
the years, IBM has introduced many new models with improved technology to replace 
older models, offering the customer greater speed, lower cost, or both. These newer 
models retained the same architecture so that the customer’s software investment was 
protected. Remarkably, the System/370 architecture, with a few enhancements, has 
survived to this day as the architecture of IBM’s mainframe product line.

In a class of computers called microcomputers, the relationship between archi-
tecture and organization is very close. Changes in technology not only influence 
organization but also result in the introduction of more powerful and more complex 
architectures. Generally, there is less of a requirement for generation-to-generation 
compatibility for these smaller machines. Thus, there is more interplay between 
organizational and architectural design decisions. An intriguing example of this is 
the reduced instruction set computer (RISC), which we examine in Chapter 15.

This book examines both computer organization and computer architecture. 
The emphasis is perhaps more on the side of organization. However, because a 
computer organization must be designed to implement a particular architectural 
specification, a thorough treatment of organization requires a detailed examination 
of architecture as well.

 1.2 STRUCTURE AND FUNCTION

A computer is a complex system; contemporary computers contain millions of 
 elementary electronic components. How, then, can one clearly describe them? 
The key is to recognize the hierarchical nature of most complex systems, including 
the computer [SIMO96]. A hierarchical system is a set of interrelated subsystems, 
each of the latter, in turn, hierarchical in structure until we reach some lowest level 
of elementary subsystem.

The hierarchical nature of complex systems is essential to both their design 
and their description. The designer need only deal with a particular level of the 
system at a time. At each level, the system consists of a set of components and 
their interrelationships. The behavior at each level depends only on a simplified, 
abstracted characterization of the system at the next lower level. At each level, the 
designer is concerned with structure and function:

 • Structure: The way in which the components are interrelated.

 • Function: The operation of each individual component as part of the structure.

In terms of description, we have two choices: starting at the bottom and build-
ing up to a complete description, or beginning with a top view and decomposing the 
system into its subparts. Evidence from a number of fields suggests that the top-down 
approach is the clearest and most effective [WEIN75].
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The approach taken in this book follows from this viewpoint. The computer 
system will be described from the top down. We begin with the major components 
of a computer, describing their structure and function, and proceed to successively 
lower layers of the hierarchy. The remainder of this section provides a very brief 
overview of this plan of attack.

Function

Both the structure and functioning of a computer are, in essence, simple. Figure 1.1 
depicts the basic functions that a computer can perform. In general terms, there are 
only four:

 • Data processing

 • Data storage

 • Data movement

 • Control

Data
movement
apparatus

Operating environment
(source and destination of data)

Control
mechanism

Data
storage
facility

Data
processing

facility

Figure 1.1 A Functional View of the Computer
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The computer, of course, must be able to process data. The data may take a wide 
variety of forms, and the range of processing requirements is broad. However, we 
shall see that there are only a few fundamental methods or types of data processing.

It is also essential that a computer store data. Even if the computer is process-
ing data on the fly (i.e., data come in and get processed, and the results go out 
immediately), the computer must temporarily store at least those pieces of data 
that are being worked on at any given moment. Thus, there is at least a short-term 
data storage  function. Equally important, the computer performs a long-term data 
storage function . Files of data are stored on the computer for subsequent retrieval 
and update.

The computer must be able to move data between itself and the outside 
world. The computer’s operating environment consists of devices that serve as 
either sources or destinations of data. When data are received from or delivered to 
a device that is directly connected to the computer, the process is known as input–
output (I/O), and the device is referred to as a peripheral. When data are moved 
over longer distances, to or from a remote device, the process is known as data 
communications.

Finally, there must be control of these three functions. Ultimately, this control 
is exercised by the individual(s) who provides the computer with instructions. Within 
the computer, a control unit manages the computer’s resources and orchestrates the 
performance of its functional parts in response to those instructions.

At this general level of discussion, the number of possible operations that 
can be performed is few. Figure 1.2 depicts the four possible types of operations. 
The computer can function as a data movement device (Figure 1.2a), simply 
transferring data from one peripheral or communication line to another. It can 
also function as a data storage device (Figure 1.2b), with data transferred from 
the external environment to computer storage (read) and vice versa (write). The 
final two diagrams show operations involving data processing, on data either in 
storage (Figure 1.2c) or en route between storage and the external environment 
(Figure 1.2d).

The preceding discussion may seem absurdly generalized. It is certainly possi-
ble, even at a top level of computer structure, to differentiate a variety of functions, 
but, to quote [SIEW82],

There is remarkably little shaping of computer structure to fit the 
function to be performed. At the root of this lies the general-purpose 
nature of computers, in which all the functional specialization occurs 
at the time of programming and not at the time of design.

Structure

Figure 1.3 is the simplest possible depiction of a computer. The computer inter-
acts in some fashion with its external environment. In general, all of its linkages to 
the external environment can be classified as peripheral devices or communication 
lines. We will have something to say about both types of linkages.



1.2 / STRUCTURE AND FUNCTION  11

MovementMovement

Control

(a)

Storage Processing

Movement

Control

(d)

Storage Processing

Movement

Control

(c)

Storage Processing

(b)

Control

Storage Processing

Figure 1.2 Possible Computer Operations
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But of greater concern in this book is the internal structure of the computer 
itself, which is shown in Figure 1.4. There are four main structural components:

 • Central processing unit (CPU): Controls the operation of the computer and 
performs its data processing functions; often simply referred to as  processor.

 • Main memory: Stores data.

 • I/O: Moves data between the computer and its external environment.

 • System interconnection: Some mechanism that provides for communication 
among CPU, main memory, and I/O. A common example of system intercon-
nection is by means of a system bus, consisting of a number of conducting 
wires to which all the other components attach.

There may be one or more of each of the aforementioned components. 
Traditionally, there has been just a single processor. In recent years, there has been 
increasing use of multiple processors in a single computer. Some design issues relat-
ing to multiple processors crop up and are discussed as the text proceeds; Part Five 
focuses on such computers.

Each of these components will be examined in some detail in Part Two. 
However, for our purposes, the most interesting and in some ways the most  complex 
component is the CPU. Its major structural components are as follows:

 • Control unit: Controls the operation of the CPU and hence the computer.

 • Arithmetic and logic unit (ALU): Performs the computer’s data processing 
functions.

 • Registers: Provides storage internal to the CPU.

 • CPU interconnection: Some mechanism that provides for communication 
among the control unit, ALU, and registers.

COMPUTER

• Storage
• Processing

Per
ip

her
als

Com
m

unication lines

Figure 1.3 The Computer
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Each of these components will be examined in some detail in Part Three, where 
we will see that complexity is added by the use of parallel and pipelined organiza-
tional techniques. Finally, there are several approaches to the implementation of 
the control unit; one common approach is a microprogrammed implementation. In 
essence, a microprogrammed control unit operates by executing microinstructions 
that define the functionality of the control unit. With this approach, the structure of 
the control unit can be depicted, as in Figure 1.4. This structure will be examined in 
Part Four.

Main
memory

I/O

CPU

COMPUTER

System
bus

ALU
Registers

Control
unit

CPU

Internal
bus

Control unit
registers and
decoders

CONTROL
UNIT

Sequencing
logic

Control
memory

Figure 1.4 The Computer: Top-Level Structure
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 1.3 KEY TERMS AND REVIEW QUESTIONS

Key Terms

arithmetic and logic unit 
(ALU)

central processing unit (CPU)
computer architecture

computer organization
control unit
input–output (I/O)
main memory

processor
registers
system bus

Review Questions

 1.1 What, in general terms, is the distinction between computer organization and com-
puter architecture?

 1.2 What, in general terms, is the distinction between computer structure and computer 
function?

 1.3 What are the four main functions of a computer?
 1.4 List and briefly define the main structural components of a computer.
 1.5 List and briefly define the main structural components of a processor.
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We begin our study of computers with a brief history. This history is itself interest-
ing and also serves the purpose of providing an overview of computer structure 
and function. Next, we address the issue of performance. A consideration of the 
need for balanced utilization of computer resources provides a context that is useful 
throughout the book. Finally, we look briefly at the evolution of the two systems 
that serve as key examples throughout the book: the Intel x86 and ARM processor 
families.

 2.1 A BRIEF HISTORY OF COMPUTERS1

The First Generation: Vacuum Tubes

ENIAC The ENIAC (Electronic Numerical Integrator And Computer), designed 
and constructed at the University of Pennsylvania, was the world’s first general-
purpose electronic digital computer. The project was a response to U.S. needs 
during World War II. The Army’s Ballistics Research Laboratory (BRL), an agency 
responsible for developing range and trajectory tables for new weapons, was having 
difficulty supplying these tables accurately and within a reasonable time frame. 
Without these firing tables, the new weapons and artillery were useless to gunners. 
The BRL employed more than 200 people who, using desktop calculators, solved 
the necessary ballistics equations. Preparation of the tables for a single weapon 
would take one person many hours, even days.

John Mauchly, a professor of electrical engineering at the University of 
Pennsylvania, and John Eckert, one of his graduate students, proposed to build a 
general-purpose computer using vacuum tubes for the BRL’s application. In 1943, 
the Army accepted this proposal, and work began on the ENIAC. The resulting 

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Present an overview of the evolution of computer technology from early 
digital computers to the latest microprocessors.

� Understand the key performance issues that relate to computer design.
� Explain the reasons for the move to multicore organization, and understand 

the trade-off between cache and processor resources on a single chip.
� Distinguish among multicore, MIC, and GPGPU organizations.
� Present an overview of the evolution of the x86 architecture.
� Define embedded systems and list some of the requirements and constraints 

that various embedded systems must meet.
� Summarize some of the issues in computer performance assessment.

1This book’s Companion Web site contains several links to sites that provide photographs of many of the 
devices and components discussed in this section.
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machine was enormous, weighing 30 tons, occupying 1500 square feet of floor space, 
and containing more than 18,000 vacuum tubes. When operating, it consumed 
140 kilowatts of power. It was also substantially faster than any electromechanical 
computer, capable of 5000 additions per second.

The ENIAC was a decimal rather than a binary machine. That is, numbers 
were represented in decimal form, and arithmetic was performed in the decimal 
system. Its memory consisted of 20 accumulators, each capable of holding a 10-digit 
decimal number. A ring of 10 vacuum tubes represented each digit. At any time, 
only one vacuum tube was in the ON state, representing one of the 10 digits. The 
major drawback of the ENIAC was that it had to be programmed manually by 
 setting switches and plugging and unplugging cables.

The ENIAC was completed in 1946, too late to be used in the war effort. 
Instead, its first task was to perform a series of complex calculations that were used 
to help determine the feasibility of the hydrogen bomb. The use of the ENIAC for 
a purpose other than that for which it was built demonstrated its general- purpose 
nature. The ENIAC continued to operate under BRL management until 1955, 
when it was disassembled.

THE VON NEUMANN MACHINE The task of entering and altering programs for 
the ENIAC was extremely tedious. But suppose a program could be represented in 
a form suitable for storing in memory alongside the data. Then, a computer could 
get its instructions by reading them from memory, and a program could be set or 
altered by setting the values of a portion of memory.

This idea, known as the stored-program concept, is usually attributed to the 
ENIAC designers, most notably the mathematician John von Neumann, who was 
a consultant on the ENIAC project. Alan Turing developed the idea at about the 
same time. The first publication of the idea was in a 1945 proposal by von Neumann 
for a new computer, the EDVAC (Electronic Discrete Variable Computer).2

In 1946, von Neumann and his colleagues began the design of a new stored-
program computer, referred to as the IAS computer, at the Princeton Institute for 
Advanced Studies. The IAS computer, although not completed until 1952, is the 
prototype of all subsequent general-purpose computers.3

Figure 2.1 shows the general structure of the IAS computer (compare to mid-
dle portion of Figure 1.4). It consists of

 • A main memory, which stores both data and instructions4

 • An arithmetic and logic unit (ALU) capable of operating on binary data

 • A control unit, which interprets the instructions in memory and causes them 
to be executed

 • Input/output (I/O) equipment operated by the control unit

2The 1945 report on EDVAC is in the Premium Content section of this book’s Web site.
3A 1954 report [GOLD54] describes the implemented IAS machine and lists the final instruction set. It is 
provided in the Premium Content section of this book’s Web site.
4In this book, unless otherwise noted, the term instruction refers to a machine instruction that is directly 
interpreted and executed by the processor, in contrast to an instruction in a high-level language, such as 
Ada or C++, which must first be compiled into a series of machine instructions before being executed.
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This structure was outlined in von Neumann’s earlier proposal, which is worth 
quoting in part at this point [VONN45]:

2.2 First: Since the device is primarily a computer, it will have 
to perform the elementary operations of arithmetic most frequently. 
These are addition, subtraction, multiplication, and division. It is 
therefore reasonable that it should contain specialized organs for just 
these operations.

It must be observed, however, that while this principle as such 
is probably sound, the specific way in which it is realized  requires 
close scrutiny. At any rate a central arithmetical part of the device 
will probably have to exist, and this constitutes the first specific 
part: CA.

2.3 Second: The logical control of the device, that is, the 
proper sequencing of its operations, can be most efficiently car-
ried out by a central control organ. If the device is to be elastic, 
that is, as nearly as possible all purpose, then a distinction must 
be made  between the specific instructions given for and defining 
a particular problem, and the general control organs that see to it 
that these  instructions—no matter what they are—are carried out. 
The former must be stored in some way; the latter are represented 
by definite operating parts of the device. By the central control we 
mean this latter function only, and the organs that perform it form 
the second specific part: CC.

2.4 Third: Any device that is to carry out long and complicated 
sequences of operations (specifically of calculations) must have a 
considerable memory…

Main
memory

(M)

Central processing unit (CPU)

Arithmetic-
logic

unit (CA)

Program
control

unit (CC)

I/O
Equip-
ment
(I, O)

Figure 2.1 Structure of the IAS Computer
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The instructions which govern a complicated problem may 
constitute considerable material, particularly so, if the code is 
 circumstantial (which it is in most arrangements). This material 
must be remembered.

At any rate, the total memory constitutes the third specific 
part of the device: M.

2.6 The three specific parts CA, CC (together C), and M 
 correspond to the associative neurons in the human nervous  system. 
It remains to discuss the equivalents of the sensory or  afferent and 
the motor or efferent neurons. These are the input and output 
 organs of the device.

The device must be endowed with the ability to maintain 
 input and output (sensory and motor) contact with some specific 
medium of this type. The medium will be called the outside record-
ing medium of the device: R.

2.7 Fourth: The device must have organs to transfer . . . 
 information from R into its specific parts C and M. These organs 
form its input, the fourth specific part: I. It will be seen that it is 
best to make all transfers from R (by I) into M and never directly 
from C.

2.8 Fifth: The device must have organs to transfer . . . from its 
specific parts C and M into R. These organs form its output, the 
fifth specific part: O. It will be seen that it is again best to make all 
transfers from M (by O) into R, and never directly from C.

With rare exceptions, all of today’s computers have this same general structure 
and function and are thus referred to as von Neumann machines. Thus, it is worth-
while at this point to describe briefly the operation of the IAS computer [BURK46]. 
Following [HAYE98], the terminology and notation of von Neumann are changed 
in the following to conform more closely to modern usage; the examples and illustra-
tions accompanying this discussion are based on that latter text.

The memory of the IAS consists of 1000 storage locations, called words, of 
40 binary digits (bits) each.5 Both data and instructions are stored there. Numbers 
are represented in binary form, and each instruction is a binary code. Figure 2.2 
illustrates these formats. Each number is represented by a sign bit and a 39-bit 
value. A word may also contain two 20-bit instructions, with each instruction 
 consisting of an 8-bit operation code (opcode) specifying the operation to be 
 performed and a 12-bit address designating one of the words in memory (num-
bered from 0 to 999).

The control unit operates the IAS by fetching instructions from memory and 
executing them one at a time. To explain this, a more detailed structure diagram is 

5There is no universal definition of the term word. In general, a word is an ordered set of bytes or bits 
that is the normal unit in which information may be stored, transmitted, or operated on within a given 
computer. Typically, if a processor has a fixed-length instruction set, then the instruction length equals 
the word length.
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needed, as indicated in Figure 2.3. This figure reveals that both the control unit and 
the ALU contain storage locations, called registers, defined as follows:

 • Memory buffer register (MBR): Contains a word to be stored in memory or sent 
to the I/O unit, or is used to receive a word from memory or from the I/O unit.

 • Memory address register (MAR): Specifies the address in memory of the word 
to be written from or read into the MBR.

 • Instruction register (IR): Contains the 8-bit opcode instruction being executed.

 • Instruction buffer register (IBR): Employed to hold temporarily the right-
hand instruction from a word in memory.

 • Program counter (PC): Contains the address of the next instruction pair to be 
fetched from memory.

 • Accumulator (AC) and multiplier quotient (MQ): Employed to hold tem-
porarily operands and results of ALU operations. For example, the result of 
 multiplying two 40-bit numbers is an 80-bit number; the most significant 40 bits 
are stored in the AC and the least significant in the MQ.

The IAS operates by repetitively performing an instruction cycle, as shown in 
Figure 2.4. Each instruction cycle consists of two subcycles. During the fetch cycle, 
the opcode of the next instruction is loaded into the IR and the address portion is 
loaded into the MAR. This instruction may be taken from the IBR, or it can be 
obtained from memory by loading a word into the MBR, and then down to the IBR, 
IR, and MAR.

Why the indirection? These operations are controlled by electronic circuitry 
and result in the use of data paths. To simplify the electronics, there is only one 
 register that is used to specify the address in memory for a read or write and only 
one register used for the source or destination.

(a) Number wordSign bit

0 39

(b) Instruction word

Opcode Address

Left instruction

0 8 20 28 39

1

Right instruction

Opcode Address

Figure 2.2 IAS Memory Formats
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Once the opcode is in the IR, the execute cycle is performed. Control circuitry 
interprets the opcode and executes the instruction by sending out the appropriate 
control signals to cause data to be moved or an operation to be performed by the 
ALU.

The IAS computer had a total of 21 instructions, which are listed in Table 2.1. 
These can be grouped as follows:

 • Data transfer: Move data between memory and ALU registers or between 
two ALU registers.

AC

IBR PC

IR

•
•
•
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Arithmetic-logic
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Input–
output

equipment

Main
memory

M

Figure 2.3 Expanded Structure of IAS Computer
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 • Unconditional branch: Normally, the control unit executes instructions in 
sequence from memory. This sequence can be changed by a branch instruction, 
which facilitates repetitive operations.

 • Conditional branch: The branch can be made dependent on a condition, thus 
allowing decision points.

 • Arithmetic: Operations performed by the ALU.

 • Address modify: Permits addresses to be computed in the ALU and then 
 inserted into instructions stored in memory. This allows a program consider-
able addressing flexibility.
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2.1 / A BRIEF HISTORY OF COMPUTERS  23

Table 2.1 presents instructions in a symbolic, easy-to-read form. Actually, 
each instruction must conform to the format of Figure 2.2b. The opcode portion 
(first 8 bits) specifies which of the 21 instructions is to be executed. The address 
portion (remaining 12 bits) specifies which of the 1000 memory locations is to be 
involved in the execution of the instruction.

Figure 2.4 shows several examples of instruction execution by the control unit. 
Note that each operation requires several steps. Some of these are quite elaborate. 
The multiplication operation requires 39 suboperations, one for each bit position 
except that of the sign bit.

COMMERCIAL COMPUTERS The 1950s saw the birth of the computer industry with 
two companies, Sperry and IBM, dominating the marketplace.

Table 2.1 The IAS Instruction Set

Instruction 
Type Opcode

Symbolic 
Representation Description

Data transfer

00001010 LOAD MQ Transfer contents of register MQ to the accumulator AC

00001001 LOAD MQ,M(X) Transfer contents of memory location X to MQ

00100001 STOR M(X) Transfer contents of accumulator to memory location X

00000001 LOAD M(X) Transfer M(X) to the accumulator

00000010 LOAD – M(X) Transfer –M(X) to the accumulator

00000011 LOAD |M(X)| Transfer absolute value of M(X) to the accumulator

00000100 LOAD – |M(X)| Transfer –|M(X)| to the accumulator

Unconditional 
branch

00001101 JUMP M(X,0:19) Take next instruction from left half of M(X)

00001110 JUMP M(X,20:39) Take next instruction from right half of M(X)

Conditional 
branch

00001111 JUMP + M(X,0:19) If number in the accumulator is nonnegative, take next 
instruction from left half of M(X)

00010000 JUMP + M(X,20:39) If number in the accumulator is nonnegative, take next 
instruction from right half of M(X)

Arithmetic

00000101 ADD M(X) Add M(X) to AC; put the result in AC

00000111 ADD |M(X)| Add |M(X)| to AC; put the result in AC

00000110 SUB M(X) Subtract M(X) from AC; put the result in AC

00001000 SUB |M(X)| Subtract |M(X)| from AC; put the remainder in AC

00001011 MUL M(X) Multiply M(X) by MQ; put most significant bits of result 
in AC, put least significant bits in MQ

00001100 DIV M(X) Divide AC by M(X); put the quotient in MQ and the 
remainder in AC

00010100 LSH Multiply accumulator by 2; that is, shift left one bit position

00010101 RSH Divide accumulator by 2; that is, shift right one position

Address 
modify

00010010 STOR M(X,8:19) Replace left address field at M(X) by 12 rightmost bits 
of AC

00010011 STOR M(X,28:39) Replace right address field at M(X) by 12 rightmost bits 
of AC
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In 1947, Eckert and Mauchly formed the Eckert-Mauchly Computer 
Corporation to manufacture computers commercially. Their first successful machine 
was the UNIVAC I (Universal Automatic Computer), which was commissioned by 
the Bureau of the Census for the 1950 calculations. The Eckert-Mauchly Computer 
Corporation became part of the UNIVAC division of Sperry-Rand Corporation, 
which went on to build a series of successor machines.

The UNIVAC I was the first successful commercial computer. It was intended 
for both scientific and commercial applications. The first paper describing the 
 system listed matrix algebraic computations, statistical problems, premium billings 
for a life insurance company, and logistical problems as a sample of the tasks it could 
perform.

The UNIVAC II, which had greater memory capacity and higher performance 
than the UNIVAC I, was delivered in the late 1950s and illustrates several trends that 
have remained characteristic of the computer industry. First, advances in technol-
ogy allow companies to continue to build larger, more powerful computers. Second, 
each company tries to make its new machines backward compatible6 with the older 
machines. This means that the programs written for the older machines can be 
 executed on the new machine. This strategy is adopted in the hopes of retaining the 
customer base; that is, when a customer decides to buy a newer machine, he or she is 
likely to get it from the same company to avoid losing the investment in programs.

The UNIVAC division also began development of the 1100 series of comput-
ers, which was to be its major source of revenue. This series illustrates a distinction 
that existed at one time. The first model, the UNIVAC 1103, and its successors 
for many years were primarily intended for scientific applications, involving long 
and complex calculations. Other companies concentrated on business applications, 
which involved processing large amounts of text data. This split has largely disap-
peared, but it was evident for a number of years.

IBM, then the major manufacturer of punched-card processing equipment, 
delivered its first electronic stored-program computer, the 701, in 1953. The 701 was 
intended primarily for scientific applications [BASH81]. In 1955, IBM introduced 
the companion 702 product, which had a number of hardware features that suited it 
to business applications. These were the first of a long series of 700/7000 computers 
that established IBM as the overwhelmingly dominant computer manufacturer.

The Second Generation: Transistors

The first major change in the electronic computer came with the replacement of 
the vacuum tube by the transistor. The transistor is smaller, cheaper, and dissipates 
less heat than a vacuum tube but can be used in the same way as a vacuum tube to 
construct computers. Unlike the vacuum tube, which requires wires, metal plates, a 
glass capsule, and a vacuum, the transistor is a solid-state device, made from silicon.

The transistor was invented at Bell Labs in 1947 and by the 1950s had 
launched an electronic revolution. It was not until the late 1950s, however, that 
fully transistorized computers were commercially available. IBM again was not the 

6Also called downward compatible. The same concept, from the point of view of the older system, is 
referred to as upward compatible, or forward compatible.
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first company to deliver the new technology. NCR and, more successfully, RCA 
were the front-runners with some small transistor machines. IBM followed shortly 
with the 7000 series.

The use of the transistor defines the second generation of computers. It has 
become widely accepted to classify computers into generations based on the funda-
mental hardware technology employed (Table 2.2). Each new generation is char-
acterized by greater processing performance, larger memory capacity, and smaller 
size than the previous one.

But there are other changes as well. The second generation saw the intro-
duction of more complex arithmetic and logic units and control units, the use of 
high-level programming languages, and the provision of system software with the 
computer. In broad terms, system software provided the ability to load programs, 
move data to peripherals, and libraries to perform common computations, similar 
to what modern OSes like Windows and Linux do.

The second generation is noteworthy also for the appearance of the Digital 
Equipment Corporation (DEC). DEC was founded in 1957 and, in that year, deliv-
ered its first computer, the PDP-1. This computer and this company began the mini-
computer phenomenon that would become so prominent in the third generation.

THE IBM 7094 From the introduction of the 700 series in 1952 to the introduction 
of the last member of the 7000 series in 1964, this IBM product line underwent an 
evolution that is typical of computer products. Successive members of the product 
line show increased performance, increased capacity, and/or lower cost.

Table 2.3 illustrates this trend. The size of main memory, in multiples of 210 
36-bit words, grew from 2K (1K = 210) to 32K words,7 while the time to access one 
word of memory, the memory cycle time, fell from 30 μs to 1.4 μs. The number of 
opcodes grew from a modest 24 to 185.

The final column indicates the relative execution speed of the central process-
ing unit (CPU). Speed improvements are achieved by improved electronics (e.g., a 
transistor implementation is faster than a vacuum tube implementation) and more 
complex circuitry. For example, the IBM 7094 includes an Instruction Backup 

Table 2.2 Computer Generations

Generation
Approximate  

Dates Technology
Typical Speed  

(operations per second)

1 1946–1957 Vacuum tube 40,000

2 1958–1964 Transistor 200,000

3 1965–1971 Small- and medium-scale 
integration

1,000,000

4 1972–1977 Large-scale integration 10,000,000

5 1978–1991 Very-large-scale integration 100,000,000

6   1991– Ultra-large-scale integration 1,000,000,000

7A discussion of the uses of numerical prefixes, such as kilo and giga, is contained in a supporting docu-
ment at the Computer Science Student Resource Site at ComputerScienceStudent.com.
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Table 2.3 Example members of the IBM 700/7000 Series

Model 
Number

First 
Delivery

CPU 
Tech-

nology

Memory 
Tech-

nology

Cycle 
Time 
(μs)

Memory 
Size (K)

Number  
of 

Opcodes

Number 
of Index 
Registers

Hardwired 
Floating-

Point

I/O  
Overlap 

(Channels)

Instruc-
tion  

Fetch 
Overlap

Speed 
(relative 
to 701)

701 1952 Vacuum 
tubes

Electrostatic 
tubes

30 2–4  24 0 no no no  1

704 1955 Vacuum 
tubes

Core 12 4–32  80 3 yes no no  2.5

709 1958 Vacuum 
tubes

Core 12 32 140 3 yes yes no  4

7090 1960 Transistor Core  2.18 32 169 3 yes yes no 25

7094 I 1962 Transistor Core  2 32 185 7 yes (double 
precision)

yes yes 30

7094 II 1964 Transistor Core  1.4 32 185 7 yes (double 
precision)

yes yes 50
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Register, used to buffer the next instruction. The control unit fetches two adjacent 
words from memory for an instruction fetch. Except for the occurrence of a branch-
ing instruction, which is relatively infrequent (perhaps 10 to 15%), this means that 
the control unit has to access memory for an instruction on only half the instruction 
cycles. This prefetching significantly reduces the average instruction cycle time.

The remainder of the columns of Table 2.3 will become clear as the text 
proceeds.

Figure 2.5 shows a large (many peripherals) configuration for an IBM 7094, 
which is representative of second-generation computers [BELL71]. Several differ-
ences from the IAS computer are worth noting. The most important of these is the 
use of data channels. A data channel is an independent I/O module with its own 
processor and instruction set. In a computer system with such devices, the CPU 
does not execute detailed I/O instructions. Such instructions are stored in a main 
memory to be executed by a special-purpose processor in the data channel itself. 
The CPU initiates an I/O transfer by sending a control signal to the data channel, 
instructing it to execute a sequence of instructions in memory. The data channel 
performs its task independently of the CPU and signals the CPU when the opera-
tion is complete. This arrangement relieves the CPU of a considerable processing 
burden.

Another new feature is the multiplexor, which is the central termination 
point for data channels, the CPU, and memory. The multiplexor schedules access 
to the memory from the CPU and data channels, allowing these devices to act 
independently.
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Figure 2.5 An IBM 7094 Configuration
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The Third Generation: Integrated Circuits

A single, self-contained transistor is called a discrete component. Throughout the 
1950s and early 1960s, electronic equipment was composed largely of discrete com-
ponents—transistors, resistors, capacitors, and so on. Discrete components were 
manufactured separately, packaged in their own containers, and soldered or wired 
together onto masonite-like circuit boards, which were then installed in computers, 
oscilloscopes, and other electronic equipment. Whenever an electronic device called 
for a transistor, a little tube of metal containing a pinhead-sized piece of  silicon had 
to be soldered to a circuit board. The entire manufacturing process, from transistor 
to circuit board, was expensive and cumbersome.

These facts of life were beginning to create problems in the computer indus-
try. Early second-generation computers contained about 10,000 transistors. This 
figure grew to the hundreds of thousands, making the manufacture of newer, more 
powerful machines increasingly difficult.

In 1958 came the achievement that revolutionized electronics and started the 
era of microelectronics: the invention of the integrated circuit. It is the integrated 
circuit that defines the third generation of computers. In this section, we provide a 
brief introduction to the technology of integrated circuits. Then we look at perhaps 
the two most important members of the third generation, both of which were intro-
duced at the beginning of that era: the IBM System/360 and the DEC PDP-8.

MICROELECTRONICS Microelectronics means, literally, “small electronics.” Since 
the beginnings of digital electronics and the computer industry, there has been a 
persistent and consistent trend toward the reduction in size of digital electronic 
circuits. Before examining the implications and benefits of this trend, we need to 
say something about the nature of digital electronics. A more detailed discussion is 
found in Chapter 11.

The basic elements of a digital computer, as we know, must perform storage, 
movement, processing, and control functions. Only two fundamental types of com-
ponents are required (Figure 2.6): gates and memory cells. A gate is a device that 
implements a simple Boolean or logical function, such as IF A AND B ARE TRUE 
THEN C IS TRUE (AND gate). Such devices are called gates because they control 
data flow in much the same way that canal gates control the flow of water. The 
memory cell is a device that can store one bit of data; that is, the device can be in 
one of two stable states at any time. By interconnecting large numbers of these 
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Figure 2.6 Fundamental Computer Elements
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8Note that the vertical axis uses a log scale. A basic review of log scales is in the math refresher document 
at the Computer Science Student Resource Site at ComputerScienceStudent.com.

 fundamental devices, we can construct a computer. We can relate this to our four 
basic functions as follows:

 • Data storage: Provided by memory cells.

 • Data processing: Provided by gates.

 • Data movement: The paths among components are used to move data from 
memory to memory and from memory through gates to memory.

 • Control: The paths among components can carry control signals. For example, 
a gate will have one or two data inputs plus a control signal input that activates 
the gate. When the control signal is ON, the gate performs its function on the 
data inputs and produces a data output. Similarly, the memory cell will store 
the bit that is on its input lead when the WRITE control signal is ON and will 
place the bit that is in the cell on its output lead when the READ control sig-
nal is ON.

Thus, a computer consists of gates, memory cells, and interconnections among these 
elements. The gates and memory cells are, in turn, constructed of simple digital 
electronic components.

The integrated circuit exploits the fact that such components as transistors, 
resistors, and conductors can be fabricated from a semiconductor such as silicon. 
It is merely an extension of the solid-state art to fabricate an entire circuit in a tiny 
piece of silicon rather than assemble discrete components made from separate 
pieces of silicon into the same circuit. Many transistors can be produced at the same 
time on a single wafer of silicon. Equally important, these transistors can be con-
nected with a process of metallization to form circuits.

Figure 2.7 depicts the key concepts in an integrated circuit. A thin wafer of 
silicon is divided into a matrix of small areas, each a few millimeters square. The 
identical circuit pattern is fabricated in each area, and the wafer is broken up into 
chips. Each chip consists of many gates and/or memory cells plus a number of input 
and output attachment points. This chip is then packaged in housing that protects 
it and provides pins for attachment to devices beyond the chip. A number of these 
packages can then be interconnected on a printed circuit board to produce larger 
and more complex circuits.

Initially, only a few gates or memory cells could be reliably manufactured 
and packaged together. These early integrated circuits are referred to as small-
scale  integration (SSI). As time went on, it became possible to pack more and more 
 components on the same chip. This growth in density is illustrated in Figure 2.8; it is 
one of the most remarkable technological trends ever recorded.8 This figure reflects 
the famous Moore’s law, which was propounded by Gordon Moore, cofounder of 
Intel, in 1965 [MOOR65]. Moore observed that the number of transistors that could 
be put on a single chip was doubling every year and correctly predicted that this 
pace would continue into the near future. To the surprise of many, including Moore, 
the pace continued year after year and decade after decade. The pace slowed to a 
doubling every 18 months in the 1970s but has sustained that rate ever since.
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The consequences of Moore’s law are profound:

 1. The cost of a chip has remained virtually unchanged during this period of 
rapid growth in density. This means that the cost of computer logic and mem-
ory  circuitry has fallen at a dramatic rate.

 2. Because logic and memory elements are placed closer together on more 
densely packed chips, the electrical path length is shortened, increasing 
 operating speed.

 3. The computer becomes smaller, making it more convenient to place in a 
 variety of environments.

 4. There is a reduction in power and cooling requirements.

 5. The interconnections on the integrated circuit are much more reliable than 
solder connections. With more circuitry on each chip, there are fewer inter-
chip connections.

Wafer

Chip

Gate

Packaged
chip

Figure 2.7 Relationship among Wafer, Chip, and Gate
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9The term mainframe is used for the larger, most powerful computers other than supercomputers. Typical 
characteristics of a mainframe are that it supports a large database, has elaborate I/O hardware, and is 
used in a central data processing facility.

IBM SYSTEM/360 By 1964, IBM had a firm grip on the computer market with 
its 7000 series of machines. In that year, IBM announced the System/360, a new 
family of computer products. Although the announcement itself was no surprise, it 
contained some unpleasant news for current IBM customers: the 360 product line 
was incompatible with older IBM machines. Thus, the transition to the 360 would be 
difficult for the current customer base. This was a bold step by IBM, but one IBM felt 
was necessary to break out of some of the constraints of the 7000 architecture and 
to produce a system capable of evolving with the new integrated circuit technology 
[PADE81, GIFF87]. The strategy paid off both financially and technically. The 360 
was the success of the decade and cemented IBM as the overwhelmingly dominant 
computer vendor, with a market share above 70%. And, with some modifications 
and extensions, the architecture of the 360 remains to this day the architecture 
of IBM’s mainframe9 computers. Examples using this architecture can be found 
throughout this text.

The System/360 was the industry’s first planned family of computers. The 
family covered a wide range of performance and cost. Table 2.4 indicates some of 
the key characteristics of the various models in 1965 (each member of the family is 
 distinguished by a model number). The models were compatible in the sense that 
a program written for one model should be capable of being executed by another 
model in the series, with only a difference in the time it takes to execute.

The concept of a family of compatible computers was both novel and 
extremely successful. A customer with modest requirements and a budget to match 
could start with the relatively inexpensive Model 30. Later, if the customer’s needs 
grew, it was possible to upgrade to a faster machine with more memory without 

1
1947

Firs
t w

or
kin

g

tra
ns

ist
or

M
oo

re’
s l

aw

pr
om

ulg
ate

d

In
ve

nti
on

 of

int
eg

rat
ed

 ci
rcu

it

50 55 60 65 70 75 80 85 90 95 2000 05 11

10
100
1000
10,000
100,000
10 m
100 m
1 bn
10 bn
100 bn

Figure 2.8 Growth in Transistor Count on Integrated Circuits



32  CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE 

sacrificing the investment in already-developed software. The characteristics of a 
family are as follows:

 • Similar or identical instruction set: In many cases, the exact same set of  machine 
instructions is supported on all members of the family. Thus, a program that 
 executes on one machine will also execute on any other. In some cases, the 
lower end of the family has an instruction set that is a subset of that of the top 
end of the family. This means that programs can move up but not down.

 • Similar or identical operating system: The same basic operating system is 
available for all family members. In some cases, additional features are added 
to the higher-end members.

 • Increasing speed: The rate of instruction execution increases in going from 
lower to higher family members.

 • Increasing number of I/O ports: The number of I/O ports increases in going 
from lower to higher family members.

 • Increasing memory size: The size of main memory increases in going from 
lower to higher family members.

 • Increasing cost: At a given point in time, the cost of a system increases in going 
from lower to higher family members.

How could such a family concept be implemented? Differences were achieved 
based on three factors: basic speed, size, and degree of simultaneity [STEV64]. For 
example, greater speed in the execution of a given instruction could be gained by 
the use of more complex circuitry in the ALU, allowing suboperations to be  carried 
out in parallel. Another way of increasing speed was to increase the width of the 
data path between main memory and the CPU. On the Model 30, only 1 byte (8 bits) 
could be fetched from main memory at a time, whereas 8 bytes could be fetched at 
a time on the Model 75.

The System/360 not only dictated the future course of IBM but also had a 
 profound impact on the entire industry. Many of its features have become standard 
on other large computers.

DEC PDP-8 In the same year that IBM shipped its first System/360, 
another momentous first shipment occurred: PDP-8 from Digital Equipment 

Table 2.4 Key Characteristics of the System/360 Family

Characteristic
Model 

30
Model 

40
Model 

50
Model 

65
Model 

75

Maximum memory size (bytes) 64K 256K 256K 512K 512K

Data rate from memory (Mbytes/s) 0.5 0.8 2.0 8.0 16.0

Processor cycle time (μs) 1.0 0.625 0.5 0.25 0.2

Relative speed 1 3.5 10 21 50

Maximum number of data channels 3 3 4 6 6

Maximum data rate on one channel 
(Kbytes/s)

250 400 800 1250 1250
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Corporation (DEC). At a time when the average computer required an air-
conditioned room, the PDP-8 (dubbed a minicomputer by the industry, after the 
miniskirt of the day) was small enough that it could be placed on top of a lab 
bench or be built into other equipment. It could not do everything the mainframe 
could, but at $16,000, it was cheap enough for each lab technician to have one. 
In contrast, the System/360 series of mainframe computers introduced just a few 
months before cost hundreds of thousands of dollars.

The low cost and small size of the PDP-8 enabled another manufacturer to 
purchase a PDP-8 and integrate it into a total system for resale. These other manu-
facturers came to be known as original equipment manufacturers (OEMs), and the 
OEM market became and remains a major segment of the computer marketplace.

The PDP-8 was an immediate hit and made DEC’s fortune. This machine 
and other members of the PDP-8 family that followed it (see Table 2.5) achieved 
a  production status formerly reserved for IBM computers, with about 50,000 
machines sold over the next dozen years. As DEC’s official history puts it, the 
PDP-8  “established the concept of minicomputers, leading the way to a multibillion 
dollar industry.” It also established DEC as the number one minicomputer vendor, 
and, by the time the PDP-8 had reached the end of its useful life, DEC was the 
number two computer manufacturer, behind IBM.

In contrast to the central-switched architecture (Figure 2.5) used by IBM on 
its 700/7000 and 360 systems, later models of the PDP-8 used a structure that is 
now virtually universal for microcomputers: the bus structure. This is illustrated 
in Figure 2.9. The PDP-8 bus, called the Omnibus, consists of 96 separate signal 
paths, used to carry control, address, and data signals. Because all system compo-
nents share a common set of signal paths, their use can be controlled by the CPU. 
This architecture is highly flexible, allowing modules to be plugged into the bus to 
create various configurations.

Later Generations

Beyond the third generation there is less general agreement on defining genera-
tions of computers. Table 2.2 suggests that there have been a number of later gen-
erations, based on advances in integrated circuit technology. With the introduction 
of large-scale integration (LSI), more than 1000 components can be placed on a 
single integrated circuit chip. Very-large-scale integration (VLSI) achieved more 
than 10,000 components per chip, while current ultra-large-scale integration (ULSI) 
chips can contain more than one billion components.

With the rapid pace of technology, the high rate of introduction of new prod-
ucts, and the importance of software and communications as well as hardware, the 
classification by generation becomes less clear and less meaningful. It could be said 
that the commercial application of new developments resulted in a major change in 
the early 1970s and that the results of these changes are still being worked out. In 
this section, we mention two of the most important of these results.

SEMICONDUCTOR MEMORY The first application of integrated circuit technology 
to computers was construction of the processor (the control unit and the arithmetic 
and logic unit) out of integrated circuit chips. But it was also found that this same 
technology could be used to construct memories.
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Table 2.5 Evolution of the PDP-8

Model
First 

Shipped

Cost of Processor + 4K 
12-bit Words of  

Memory ($1000s)

Data Rate 
from Memory 

(words/μs)
Volume 

(cubic feet) Innovations and Improvements

PDP-8  4/65 16.2 1.26 8.0 Automatic wire-wrapping production

PDP-8/5  9/66 8.79 0.08 3.2 Serial instruction implementation

PDP-8/1  4/68 11.6 1.34 8.0 Medium-scale integrated circuits

PDP-8/L 11/68 7.0 1.26 2.0 Smaller cabinet

PDP-8/E  3/71 4.99 1.52 2.2 Omnibus

PDP-8/M  6/72 3.69 1.52 1.8 Half-size cabinet with fewer slots than 8/E

PDP-8/A  1/75 2.6 1.34 1.2 Semiconductor memory; floating-point processor
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In the 1950s and 1960s, most computer memory was constructed from tiny 
rings of ferromagnetic material, each about a sixteenth of an inch in diameter. These 
rings were strung up on grids of fine wires suspended on small screens inside the 
computer. Magnetized one way, a ring (called a core) represented a one;  magnetized 
the other way, it stood for a zero. Magnetic-core memory was rather fast; it took as 
little as a millionth of a second to read a bit stored in memory. But it was expensive, 
bulky, and used destructive readout: The simple act of reading a core erased the data 
stored in it. It was therefore necessary to install circuits to restore the data as soon 
as it had been extracted.

Then, in 1970, Fairchild produced the first relatively capacious semiconductor 
memory. This chip, about the size of a single core, could hold 256 bits of memory. It 
was nondestructive and much faster than core. It took only 70 billionths of a second 
to read a bit. However, the cost per bit was higher than for that of core.

In 1974, a seminal event occurred: The price per bit of semiconductor memory 
dropped below the price per bit of core memory. Following this, there has been a con-
tinuing and rapid decline in memory cost accompanied by a corresponding increase 
in physical memory density. This has led the way to smaller, faster machines with 
memory sizes of larger and more expensive machines from just a few years earlier. 
Developments in memory technology, together with developments in processor tech-
nology to be discussed next, changed the nature of computers in less than a decade. 
Although bulky, expensive computers remain a part of the landscape, the computer has 
also been brought out to the “end user,” with office machines and personal computers.

Since 1970, semiconductor memory has been through 13 generations: 1K, 4K, 
16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M, 1G, 4G, and, as of this writing, 16 Gbits 
on a single chip (1K = 210, 1M = 220, 1G = 230). Each generation has provided four 
times the storage density of the previous generation, accompanied by declining cost 
per bit and declining access time.

MICROPROCESSORS Just as the density of elements on memory chips has continued 
to rise, so has the density of elements on processor chips. As time went on, more 
and more elements were placed on each chip, so that fewer and fewer chips were 
needed to construct a single computer processor.

A breakthrough was achieved in 1971, when Intel developed its 4004. The 
4004 was the first chip to contain all of the components of a CPU on a single chip: 
The microprocessor was born.

The 4004 can add two 4-bit numbers and can multiply only by repeated addition. 
By today’s standards, the 4004 is hopelessly primitive, but it marked the beginning of 
a continuing evolution of microprocessor capability and power.

Console
controller

CPU

Omnibus
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memory

I/O
module

I/O
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Figure 2.9 PDP-8 Bus Structure
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This evolution can be seen most easily in the number of bits that the processor 
deals with at a time. There is no clear-cut measure of this, but perhaps the best meas-
ure is the data bus width: the number of bits of data that can be brought into or sent 
out of the processor at a time. Another measure is the number of bits in the accumu-
lator or in the set of general-purpose registers. Often, these measures coincide, but 
not always. For example, a number of microprocessors were developed that operate 
on 16-bit numbers in registers but can only read and write 8 bits at a time.

The next major step in the evolution of the microprocessor was the introduction 
in 1972 of the Intel 8008. This was the first 8-bit microprocessor and was almost twice 
as complex as the 4004.

Neither of these steps was to have the impact of the next major event: the intro-
duction in 1974 of the Intel 8080. This was the first general-purpose microprocessor. 
Whereas the 4004 and the 8008 had been designed for specific applications, the 8080 
was designed to be the CPU of a general-purpose microcomputer. Like the 8008, the 
8080 is an 8-bit microprocessor. The 8080, however, is faster, has a richer instruction 
set, and has a large addressing capability.

About the same time, 16-bit microprocessors began to be developed. However, it 
was not until the end of the 1970s that powerful, general-purpose 16-bit microproces-
sors appeared. One of these was the 8086. The next step in this trend occurred in 1981, 
when both Bell Labs and Hewlett-Packard developed 32-bit,  single-chip microproces-
sors. Intel introduced its own 32-bit microprocessor, the 80386, in 1985 (Table 2.6).

Table 2.6 Evolution of Intel Microprocessors

 (a) 1970s Processors

 4004 8008 8080 8086 8088

Introduced 1971 1972 1974 1978 1979

Clock speeds 108 kHz 108 kHz 2 MHz 5 MHz, 8 MHz, 10 MHz 5 MHz, 8 MHz

Bus width 4 bits 8 bits 8 bits 16 bits 8 bits

Number of transistors 2300 3500 6000 29,000 29,000

Feature size (μm) 10 6 3 6

Addressable memory 640 Bytes 16 kB 64 kB 1 MB 1 MB

 (b) 1980s Processors

 80286 386TM DX 386TM SX 486TM DX CPU

Introduced 1982 1985 1988 1989

Clock speeds 6 MHz–12.5 MHz 16 MHz–33 MHz 16 MHz–33 MHz 25 MHz–50 MHz

Bus width 16 bits 32 bits 16 bits 32 bits

Number of transistors 134,000 275,000 275,000 1.2 million

Feature size (μm) 1.5 1 1 0.8–1

Addressable memory 16 MB 4 GB 16 MB 4 GB

Virtual memory 1 GB 64 TB 64 TB 64 TB

Cache — — — 8 kB
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Table 2.6 Continued

 2.2 DESIGNING FOR PERFORMANCE

Year by year, the cost of computer systems continues to drop dramatically, while 
the performance and capacity of those systems continue to rise equally dramatically. 
Today’s laptops have the computing power of an IBM mainframe from 10 or 15 years 
ago. Thus, we have virtually “free” computer power. Processors are so  inexpensive 
that we now have microprocessors we throw away. The digital pregnancy test as an 
example (used once and then thrown away). And this continuing technological revo-
lution has enabled the development of applications of astounding complexity and 
power. For example, desktop applications that require the great power of today’s 
microprocessor-based systems include

 • Image processing

 • Speech recognition

 • Videoconferencing

 • Multimedia authoring

 • Voice and video annotation of files

 • Simulation modeling

 (c) 1990s Processors

 486TM SX Pentium Pentium Pro Pentium II

Introduced 1991 1993 1995 1997

Clock speeds 16 MHz–33 MHz 60 MHz–166 MHz, 150 MHz–200 MHz 200 MHz–300 MHz

Bus width 32 bits 32 bits 64 bits 64 bits

Number of transistors 1.185 million 3.1 million 5.5 million 7.5 million

Feature size (μm) 1 0.8 0.6 0.35

Addressable memory 4 GB 4 GB 64 GB 64 GB

Virtual memory 64 TB 64 TB 64 TB 64 TB

Cache 8 kB 8 kB 512 kB L1 and  
1 MB L2

512 kB L2

 (d) Recent Processors

 Pentium III Pentium 4 Core 2 Duo Core i7 EE 990

Introduced 1999 2000 2006 2011

Clock speeds 450–660 MHz 1.3–1.8 GHz 1.06–1.2 GHz 3.5 GHz

Bus width 64 bits 64 bits 64 bits 64 bits

Number of transistors 9.5 million 42 million 167 million 1170 million

Feature size (nm) 250 180 65 32

Addressable memory 64 GB 64 GB 64 GB 64 GB

Virtual memory 64 TB 64 TB 64 TB 64 TB

Cache 512 kB L2 256 kB L2 2 MB L2 1.5 MB L2/12 MB L3

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org
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Workstation systems now support highly sophisticated engineering and 
 scientific applications, as well as simulation systems, and have the ability to support 
image and video applications. In addition, businesses are relying on increasingly pow-
erful servers to handle transaction and database processing and to support  massive 
client/server networks that have replaced the huge mainframe computer centers of 
yesteryear.

What is fascinating about all this from the perspective of computer organiza-
tion and architecture is that, on the one hand, the basic building blocks for today’s 
computer miracles are virtually the same as those of the IAS computer from over 
50 years ago, while on the other hand, the techniques for squeezing the last iota of 
performance out of the materials at hand have become increasingly sophisticated.

This observation serves as a guiding principle for the presentation in this 
book. As we progress through the various elements and components of a computer, 
two objectives are pursued. First, the book explains the fundamental functionality 
in each area under consideration, and second, the book explores those techniques 
required to achieve maximum performance. In the remainder of this section, we 
highlight some of the driving factors behind the need to design for performance.

Microprocessor Speed

What gives Intel x86 processors or IBM mainframe computers such mind-boggling 
power is the relentless pursuit of speed by processor chip manufacturers. The evolu-
tion of these machines continues to bear out Moore’s law, mentioned previously. So 
long as this law holds, chipmakers can unleash a new generation of chips every three 
years—with four times as many transistors. In memory chips, this has quadrupled 
the capacity of dynamic random-access memory (DRAM), still the basic technology 
for computer main memory, every three years. In microprocessors, the addition of 
new circuits, and the speed boost that comes from reducing the distances between 
them, has improved performance four- or fivefold every three years or so since Intel 
launched its x86 family in 1978.

But the raw speed of the microprocessor will not achieve its potential unless 
it is fed a constant stream of work to do in the form of computer instructions. 
Anything that gets in the way of that smooth flow undermines the power of the 
processor. Accordingly, while the chipmakers have been busy learning how to fabri-
cate chips of greater and greater density, the processor designers must come up with 
ever more elaborate techniques for feeding the monster. Among the techniques 
built into contemporary processors are the following:

 • Pipelining: With pipelining, a processor can simultaneously work on multiple 
instructions. The processor overlaps operations by moving data or instructions 
into a conceptual pipe with all stages of the pipe processing simultaneously. 
For example, while one instruction is being executed, the computer is decod-
ing the next instruction.

 • Branch prediction: The processor looks ahead in the instruction code fetched 
from memory and predicts which branches, or groups of instructions, are likely 
to be processed next. If the processor guesses right most of the time, it can 
prefetch the correct instructions and buffer them so that the processor is kept 
busy. The more sophisticated examples of this strategy predict not just the 
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next branch but multiple branches ahead. Thus, branch prediction increases 
the amount of work available for the processor to execute.

 • Data flow analysis: The processor analyzes which instructions are dependent 
on each other’s results, or data, to create an optimized schedule of instructions. 
In fact, instructions are scheduled to be executed when ready, independent of 
the original program order. This prevents unnecessary delay.

 • Speculative execution: Using branch prediction and data flow analysis, some 
processors speculatively execute instructions ahead of their actual appear-
ance in the program execution, holding the results in temporary locations. 
This  enables the processor to keep its execution engines as busy as possible by 
 executing instructions that are likely to be needed.

These and other sophisticated techniques are made necessary by the sheer power 
of the processor. They make it possible to exploit the raw speed of the processor.

Performance Balance

While processor power has raced ahead at breakneck speed, other critical compo-
nents of the computer have not kept up. The result is a need to look for performance 
balance: an adjusting of the organization and architecture to compensate for the 
mismatch among the capabilities of the various components.

Nowhere is the problem created by such mismatches more critical than in the 
interface between processor and main memory. While processor speed has grown 
rapidly, the speed with which data can be transferred between main memory and the 
processor has lagged badly. The interface between processor and main memory is 
the most crucial pathway in the entire computer because it is responsible for carry-
ing a constant flow of program instructions and data between memory chips and the 
processor. If memory or the pathway fails to keep pace with the processor’s insistent 
demands, the processor stalls in a wait state, and valuable processing time is lost.

A system architect can attack this problem in a number of ways, all of which 
are reflected in contemporary computer designs. Consider the following examples:

 • Increase the number of bits that are retrieved at one time by making DRAMs 
“wider” rather than “deeper” and by using wide bus data paths.

 • Change the DRAM interface to make it more efficient by including a cache10 
or other buffering scheme on the DRAM chip.

 • Reduce the frequency of memory access by incorporating increasingly  complex 
and efficient cache structures between the processor and main memory. This 
includes the incorporation of one or more caches on the processor chip as well 
as on an off-chip cache close to the processor chip.

 • Increase the interconnect bandwidth between processors and memory by  
 using higher-speed buses and a hierarchy of buses to buffer and structure data 
flow.

10A cache is a relatively small fast memory interposed between a larger, slower memory and the logic that 
accesses the larger memory. The cache holds recently accessed data and is designed to speed up subse-
quent access to the same data. Caches are discussed in Chapter 4.
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Another area of design focus is the handling of I/O devices. As computers 
become faster and more capable, more sophisticated applications are developed 
that support the use of peripherals with intensive I/O demands. Figure 2.10 gives 
some examples of typical peripheral devices in use on personal computers and 
workstations. These devices create tremendous data throughput demands. While 
the current generation of processors can handle the data pumped out by these 
devices, there remains the problem of getting that data moved between proces-
sor and peripheral. Strategies here include caching and buffering schemes plus the 
use of higher-speed interconnection buses and more elaborate structures of buses. 
In addition, the use of multiple-processor configurations can aid in satisfying I/O 
demands.

The key in all this is balance. Designers constantly strive to balance the 
throughput and processing demands of the processor components, main memory, 
I/O devices, and the interconnection structures. This design must constantly be 
rethought to cope with two constantly evolving factors:

 • The rate at which performance is changing in the various technology areas 
(processor, buses, memory, peripherals) differs greatly from one type of 
 element to another.

 • New applications and new peripheral devices constantly change the nature of 
the demand on the system in terms of typical instruction profile and the data 
access patterns.
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Thus, computer design is a constantly evolving art form. This book attempts to 
present the fundamentals on which this art form is based and to present a survey of 
the current state of that art.

Improvements in Chip Organization and Architecture

As designers wrestle with the challenge of balancing processor performance with that 
of main memory and other computer components, the need to increase processor 
speed remains. There are three approaches to achieving increased processor speed:

 • Increase the hardware speed of the processor. This increase is fundamentally 
due to shrinking the size of the logic gates on the processor chip, so that more 
gates can be packed together more tightly and to increasing the clock rate. 
With gates closer together, the propagation time for signals is significantly 
reduced, enabling a speeding up of the processor. An increase in clock rate 
means that individual operations are executed more rapidly.

 • Increase the size and speed of caches that are interposed between the proces-
sor and main memory. In particular, by dedicating a portion of the processor 
chip itself to the cache, cache access times drop significantly.

 • Make changes to the processor organization and architecture that increase the 
effective speed of instruction execution. Typically, this involves using parallel-
ism in one form or another.

Traditionally, the dominant factor in performance gains has been in increases 
in clock speed due and logic density. However, as clock speed and logic density 
increase, a number of obstacles become more significant [INTE04b]:

 • Power: As the density of logic and the clock speed on a chip increase, so does 
the power density (Watts/cm2). The difficulty of dissipating the heat generated 
on high-density, high-speed chips is becoming a serious design issue [GIBB04, 
BORK03].

 • RC delay: The speed at which electrons can flow on a chip between transis-
tors is limited by the resistance and capacitance of the metal wires connecting 
them; specifically, delay increases as the RC product increases. As components 
on the chip decrease in size, the wire interconnects become thinner, increasing 
resistance. Also, the wires are closer together, increasing capacitance.

 • Memory latency: Memory speeds lag processor speeds, as previously discussed.

Thus, there will be more emphasis on organization and architectural approaches 
to improving performance. These techniques are discussed in later chapters of the book.

Beginning in the late 1980s, and continuing for about 15 years, two main 
 strategies have been used to increase performance beyond what can be achieved 
simply by increasing clock speed. First, there has been an increase in cache  capacity. 
There are now typically two or three levels of cache between the processor and 
main  memory. As chip density has increased, more of the cache memory has been 
 incorporated on the chip, enabling faster cache access. For example, the original 
Pentium chip devoted about 10% of on-chip area to a cache. Contemporary chips 
devote over half of the chip area to caches.
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11I am grateful to Professor Kathy Yelick of UC Berkeley, who provided this graph.

Second, the instruction execution logic within a processor has become increas-
ingly complex to enable parallel execution of instructions within the processor. Two 
noteworthy design approaches have been pipelining and superscalar. A pipeline 
works much as an assembly line in a manufacturing plant enabling different stages 
of execution of different instructions to occur at the same time along the pipeline. A 
superscalar approach in essence allows multiple pipelines within a single processor 
so that instructions that do not depend on one another can be executed in parallel.

By the mid to late 90s, both of these approaches were reaching a point of 
diminishing returns. The internal organization of contemporary processors is 
exceedingly complex and is able to squeeze a great deal of parallelism out of the 
instruction stream. It seems likely that further significant increases in this direction 
will be relatively modest [GIBB04]. With three levels of cache on the processor 
chip, each level providing substantial capacity, it also seems that the benefits from 
the cache are reaching a limit.

However, simply relying on increasing clock rate for increased performance 
runs into the power dissipation problem already referred to. The faster the clock 
rate, the greater the amount of power to be dissipated, and some fundamental phys-
ical limits are being reached.

Figure 2.11 illustrates the concepts we have been discussing.11 The top line 
shows that, as per Moore’s Law, the number of transistors on a single chip contin-
ues to grow exponentially.12 Meanwhile, the clock speed has leveled off, in order 

12The observant reader will note that the transistor count values in this figure are significantly less than 
those of Figure 2.8. That latter figure shows the transistor count for a form of main memory known as 
DRAM (discussed in Chapter 5), which supports higher transistor density than processor chips.
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to prevent a further rise in power. To continue to increase performance, designers 
have had to find ways of exploiting the growing number of transistors other than 
simply building a more complex processor. The response in recent years has been 
the development of the multicore computer chip.

 2.3 MULTICORE, MICS, AND GPGPUS

With all of the difficulties cited in the preceding paragraphs in mind, designers 
have turned to a fundamentally new approach to improving performance: placing 
multiple processors on the same chip, with a large shared cache. The use of mul-
tiple  processors on the same chip, also referred to as multiple cores, or multicore, 
provides the potential to increase performance without increasing the clock rate. 
Studies indicate that, within a processor, the increase in performance is roughly 
 proportional to the square root of the increase in complexity [BORK03]. But if the 
software can support the effective use of multiple processors, then doubling the 
number of processors almost doubles performance. Thus, the strategy is to use two 
simpler processors on the chip rather than one more complex processor.

In addition, with two processors, larger caches are justified. This is important 
because the power consumption of memory logic on a chip is much less than that of 
processing logic.

As the logic density on chips continues to rise, the trend to both more cores 
and more cache on a single chip continues. Two-core chips were quickly followed 
by four-core chips, then 8, then 16, and so on. As the caches became larger, it made 
performance sense to create two and then three levels of cache on a chip, with the 
first-level cache dedicated to an individual processor and levels two and three being 
shared by all the processors.

Chip manufacturers are now in the process of making a huge leap forward 
in the number of cores per chip, with more than 50 cores per chip. The leap in 
 performance as well as the challenges in developing software to exploit such a large 
number of cores have led to the introduction of a new term: many integrated core 
(MIC).

The multicore and MIC strategy involves a homogeneous collection of 
 general-purpose processors on a single chip. At the same time, chip manufacturers 
are pursuing another design option: a chip with multiple general-purpose  processors 
plus graphics processing units (GPUs) and specialized cores for video process-
ing and other tasks. In broad terms, a GPU is a core designed to perform parallel 
operations on graphics data. Traditionally found on a plug-in graphics card (display 
adapter), it is used to encode and render 2D and 3D graphics as well as process 
video.

Since GPUs perform parallel operations on multiple sets of data, they are 
increasingly being used as vector processors for a variety of applications that 
require repetitive computations. This blurs the line between the GPU and the 
CPU [FATA08, PROP11]. When a broad range of applications are supported 
by such a processor, the term general-purpose computing on GPUs (GPGPU) 
is used.

We explore design characteristics of multicore computers in Chapter 18.
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13Intel refers to this as the tick-tock model. Using this model, Intel has successfully delivered next-genera-
tion silicon technology as well as new processor microarchitecture on alternating years for the past several 
years. See http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html

 2.4 THE EVOLUTION OF THE INTEL X86 ARCHITECTURE

Throughout this book, we rely on many concrete examples of computer design 
and implementation to illustrate concepts and to illuminate trade-offs. Numerous 
systems, both contemporary and historical, provide examples of important computer 
architecture design features. But the book relies on examples from two processor 
families: the Intel x86 and the ARM architecture. The current x86 offerings repre-
sent the results of decades of design effort on complex instruction set computers 
(CISCs). The x86 incorporates the sophisticated design principles once found only on 
mainframes and supercomputers and serves as an excellent example of CISC design. 
An alternative approach to processor design in the reduced instruction set computer 
(RISC). The ARM architecture is used in a wide variety of embedded systems and 
is one of the most powerful and best-designed RISC-based systems on the market.

In this section and the next, we provide a brief overview of these two systems.
In terms of market share, Intel has ranked as the number one maker of micro-

processors for nonembedded systems for decades, a position it seems unlikely to 
yield. The evolution of its flagship microprocessor product serves as a good indicator 
of the evolution of computer technology in general.

Table 2.6 shows that evolution. Interestingly, as microprocessors have grown 
faster and much more complex, Intel has actually picked up the pace. Intel used 
to develop microprocessors one after another, every four years. But Intel hopes 
to keep rivals at bay by trimming a year or two off this development time, and has 
done so with the most recent x86 generations.13

It is worthwhile to list some of the highlights of the evolution of the Intel 
product line:

 • 8080: The world’s first general-purpose microprocessor. This was an 8-bit 
 machine, with an 8-bit data path to memory. The 8080 was used in the first 
personal computer, the Altair.

 • 8086: A far more powerful, 16-bit machine. In addition to a wider data path 
and larger registers, the 8086 sported an instruction cache, or queue, that 
prefetches a few instructions before they are executed. A variant of this 
 processor, the 8088, was used in IBM’s first personal computer, securing the 
success of Intel. The 8086 is the first appearance of the x86 architecture.

 • 80286: This extension of the 8086 enabled addressing a 16-MByte memory 
instead of just 1 MByte.

 • 80386: Intel’s first 32-bit machine, and a major overhaul of the product. 
With a 32-bit architecture, the 80386 rivaled the complexity and power of 
 minicomputers and mainframes introduced just a few years earlier. This was 
the first Intel processor to support multitasking, meaning it could run multiple 
programs at the same time.

 • 80486: The 80486 introduced the use of much more sophisticated and  powerful 
cache technology and sophisticated instruction pipelining. The 80486 also 

http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html
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14With the Pentium 4, Intel switched from Roman numerals to Arabic numerals for model numbers.

offered a built-in math coprocessor, offloading complex math operations from 
the main CPU.

 • Pentium: With the Pentium, Intel introduced the use of superscalar tech-
niques, which allow multiple instructions to execute in parallel.

 • Pentium Pro: The Pentium Pro continued the move into superscalar organiza-
tion begun with the Pentium, with aggressive use of register renaming, branch 
prediction, data flow analysis, and speculative execution.

 • Pentium II: The Pentium II incorporated Intel MMX technology, which is 
designed specifically to process video, audio, and graphics data efficiently.

 • Pentium III: The Pentium III incorporates additional floating-point instruc-
tions to support 3D graphics software.

 • Pentium 4: The Pentium 4 includes additional floating-point and other 
enhancements for multimedia.14

 • Core: This is the first Intel x86 microprocessor with a dual core, referring to 
the implementation of two processors on a single chip.

 • Core 2: The Core 2 extends the architecture to 64 bits. The Core 2 Quad pro-
vides four processors on a single chip. More recent Core offerings have up to 
10 processors per chip.

Over 30 years after its introduction in 1978, the x86 architecture continues to 
dominate the processor market outside of embedded systems. Although the organi-
zation and technology of the x86 machines have changed dramatically over the dec-
ades, the instruction set architecture has evolved to remain backward compatible 
with earlier versions. Thus, any program written on an older version of the x86 archi-
tecture can execute on newer versions. All changes to the instruction set  architecture 
have involved additions to the instruction set, with no subtractions. The rate of 
change has been the addition of roughly one instruction per month added to the 
architecture over the 30 years [ANTH08], so that there are now over 500 instructions 
in the instruction set.

The x86 provides an excellent illustration of the advances in computer 
 hardware over the past 30 years. The 1978 8086 was introduced with a clock speed 
of 5 MHz and had 29,000 transistors. A quad-core Intel Core 2 introduced in 2008 
operates at 3 GHz, a speedup of a factor of 600, and has 820 million transistors, 
about 28,000 times as many s the 8086. Yet the Core 2 is in only a slightly larger 
package than the 8086 and has a comparable cost.

 2.5 EMBEDDED SYSTEMS AND THE ARM

The ARM architecture refers to a processor architecture that has evolved from 
RISC design principles and is used in embedded systems. Chapter 15 examines 
RISC design principles in detail. In this section, we give a brief overview of the con-
cept of embedded systems and then look at the evolution of the ARM.
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Embedded Systems

The term embedded system refers to the use of electronics and software within a 
product, as opposed to a general-purpose computer, such as a laptop or desktop 
system. The following is a good general definition:15

Table 2.7 Examples of Embedded Systems and Their Markets

Market Embedded Device

Automotive
Ignition system
Engine control
Brake system

Consumer electronics

Digital and analog televisions
Set-top boxes (DVDs, VCRs, Cable boxes)
Personal digital assistants (PDAs)
Kitchen appliances (refrigerators, toasters, microwave ovens)
Automobiles
Toys/games
Telephones/cell phones/pagers
Cameras
Global positioning systems

Industrial control
Robotics and controls systems for manufacturing
Sensors

Medical

Infusion pumps
Dialysis machines
Prosthetic devices
Cardiac monitors

Office automation

Fax machine
Photocopier
Printers
Monitors
Scanners

15Michael Barr, Embedded Systems Glossary. Netrino Technical Library. http://www.netrino.com/
Embedded-Systems/Glossary

Embedded system. A combination of computer hardware and software, and  perhaps 
additional mechanical or other parts, designed to perform a dedicated function. In many 
cases, embedded systems are part of a larger system or product, as in the case of an  antilock 
braking system in a car.

Embedded systems far outnumber general-purpose computer systems, encom-
passing a broad range of applications (Table 2.7). These systems have widely varying 
requirements and constraints, such as the following [GRIM05]:

 • Small to large systems, implying very different cost constraints, thus different 
needs for optimization and reuse

http://www.netrino.com/Embedded-Systems/Glossary
http://www.netrino.com/Embedded-Systems/Glossary
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 • Relaxed to very strict requirements and combinations of different quality 
requirements, for example, with respect to safety, reliability, real-time, and 
flexibility

 • Short to long life times

 • Different environmental conditions in terms of, for example, radiation, vibra-
tions, and humidity

 • Different application characteristics resulting in static versus dynamic loads, 
slow to fast speed, compute versus interface intensive tasks, and/or combina-
tions thereof

 • Different models of computation ranging from discrete-event systems to those 
involving continuous time dynamics (usually referred to as hybrid systems)

Often, embedded systems are tightly coupled to their environment. This 
can give rise to real-time constraints imposed by the need to interact with the 
 environment. Constraints, such as required speeds of motion, required precision of 
 measurement, and required time durations, dictate the timing of software  operations. 
If multiple activities must be managed simultaneously, this imposes more complex 
real-time constraints.

Figure 2.12, based on [KOOP96], shows in general terms an embedded  system 
organization. In addition to the processor and memory, there are a number of 
 elements that differ from the typical desktop or laptop computer:

 • There may be a variety of interfaces that enable the system to measure, 
 manipulate, and otherwise interact with the external environment.

 • The human interface may be as simple as a flashing light or as complicated as 
real-time robotic vision.

Auxiliary
systems
(power,
cooling)

MemoryFPGA/
ASIC

Human
interface

Diagnostic
port

D/A
conversion

A/D
conversion

Electromechanical
backup and safety

Sensors Actuators

Processor

Software

External
environment

Figure 2.12 Possible Organization of an Embedded System
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16The company dropped the designation Advanced RISC Machine in the late 1990s. It is now simply 
known as the ARM architecture.

 • The diagnostic port may be used for diagnosing the system that is being 
 controlled—not just for diagnosing the computer.

 • Special-purpose field programmable (FPGA), application specific (ASIC), or 
even nondigital hardware may be used to increase performance or safety.

 • Software often has a fixed function and is specific to the application.

ARM Evolution

ARM is a family of RISC-based microprocessors and microcontrollers designed 
by ARM Inc., Cambridge, England. The company doesn’t make processors but 
instead designs microprocessor and multicore architectures and licenses them to 
manufacturers. ARM chips are high-speed processors that are known for their 
small die size and low power requirements. They are widely used in PDAs and 
other handheld devices, including games and phones as well as a large variety 
of consumer products. ARM chips are the processors in Apple’s popular iPod 
and iPhone devices. ARM is probably the most widely used embedded processor 
architecture and indeed the most widely used processor architecture of any kind 
in the world.

The origins of ARM technology can be traced back to the British-based Acorn 
Computers company. In the early 1980s, Acorn was awarded a contract by the 
British Broadcasting Corporation (BBC) to develop a new microcomputer architec-
ture for the BBC Computer Literacy Project. The success of this contract enabled 
Acorn to go on to develop the first commercial RISC processor, the Acorn RISC 
Machine (ARM). The first version, ARM1, became operational in 1985 and was 
used for internal research and development as well as being used as a coprocessor 
in the BBC machine. Also in 1985, Acorn released the ARM2, which had greater 
functionality and speed within the same physical space. Further improvements were 
achieved with the release in 1989 of the ARM3.

Throughout this period, Acorn used the company VLSI Technology to do the 
actual fabrication of the processor chips. VLSI was licensed to market the chip on 
its own and had some success in getting other companies to use the ARM in their 
products, particularly as an embedded processor.

The ARM design matched a growing commercial need for a high-performance, 
low-power-consumption, small-size, and low-cost processor for embedded appli-
cations. But further development was beyond the scope of Acorn’s capabilities. 
Accordingly, a new company was organized, with Acorn, VLSI, and Apple Computer 
as founding partners, known as ARM Ltd. The Acorn RISC Machine became the 
Advanced RISC Machine.16 The new company’s first offering, an improvement on 
the ARM3, was designated ARM6. Subsequently, the company has introduced a 
number of new families, with increasing functionality and  performance. Table 2.8 
shows some characteristics of the various ARM architecture families. The numbers 
in this table are only approximate guides; actual values vary widely for different 
implementations.
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According to the ARM Web site arm.com, ARM processors are designed to 
meet the needs of three system categories:

 • Embedded real-time systems: Systems for storage, automotive body and 
power-train, industrial, and networking applications

 • Application platforms: Devices running open operating systems including 
Linux, Palm OS, Symbian OS, and Windows CE in wireless, consumer enter-
tainment and digital imaging applications

 • Secure applications: Smart cards, SIM cards, and payment terminals

 2.6 PERFORMANCE ASSESSMENT

In evaluating processor hardware and setting requirements for new systems, 
 performance is one of the key parameters to consider, along with cost, size, security, 
reliability, and, in some cases, power consumption.

It is difficult to make meaningful performance comparisons among different 
processors, even among processors in the same family. Raw speed is far less important 
than how a processor performs when executing a given application. Unfortunately, 
application performance depends not just on the raw speed of the processor but also 
on the instruction set, choice of implementation language, efficiency of the compiler, 
and skill of the programming done to implement the application.

Table 2.8 ARM Evolution

Family Notable Features Cache Typical MIPS @ MHz

ARM1 32-bit RISC None

ARM2 Multiply and swap instructions; Integrated 
memory management unit, graphics and I/O 
processor

None 7 MIPS @ 12 MHz

ARM3 First use of processor cache 4 kB unified 12 MIPS @ 25 MHz

ARM6 First to support 32-bit addresses; floating-point 
unit

4 kB unified 28 MIPS @ 33 MHz

ARM7 Integrated SoC 8 kB unified 60 MIPS @ 60 MHz

ARM8 5-stage pipeline; static branch prediction 8 kB unified 84 MIPS @ 72 MHz

ARM9 16 kB/16 kB 300 MIPS @ 300 MHz

ARM9E Enhanced DSP instructions 16 kB/16 kB 220 MIPS @ 200 MHz

ARM10E 6-stage pipeline 32 kB/32 kB

ARM11 9-stage pipeline Variable 740 MIPS @ 665 MHz

Cortex 13-stage superscalar pipeline Variable 2000 MIPS @ 1 GHz

XScale Applications processor; 7-stage pipeline 32 kB/32 kB L1
512 kB L2

1000 MIPS @ 1.25 GHz

DSP = digital signal processor
SoC = system on a chip
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We begin this section with a look at some traditional measures of processor 
speed. Then we examine the most common approach to assessing processor and 
computer system performance. We follow this with a discussion of how to average 
results from multiple tests. Finally, we look at the insights produced by considering 
Amdahl’s law.

Clock Speed and Instructions per Second

THE SYSTEM CLOCK Operations performed by a processor, such as fetching an 
instruction, decoding the instruction, performing an arithmetic operation, and so 
on, are governed by a system clock. Typically, all operations begin with the pulse of 
the clock. Thus, at the most fundamental level, the speed of a processor is dictated 
by the pulse frequency produced by the clock, measured in cycles per second, or 
Hertz (Hz).

Typically, clock signals are generated by a quartz crystal, which generates a 
constant signal wave while power is applied. This wave is converted into a digital 
voltage pulse stream that is provided in a constant flow to the processor circuitry 
(Figure 2.13). For example, a 1-GHz processor receives 1 billion pulses per second. 
The rate of pulses is known as the clock rate, or clock speed. One increment, or 
pulse, of the clock is referred to as a clock cycle, or a clock tick. The time between 
pulses is the cycle time.

The clock rate is not arbitrary, but must be appropriate for the physical  layout 
of the processor. Actions in the processor require signals to be sent from one proc-
essor element to another. When a signal is placed on a line inside the processor, it 
takes some finite amount of time for the voltage levels to settle down so that an 
accurate value (1 or 0) is available. Furthermore, depending on the physical  layout 
of the processor circuits, some signals may change more rapidly than others. Thus, 
operations must be synchronized and paced so that the proper electrical signal 
(voltage) values are available for each operation.

From Computer Desktop Encyclopedia,
1998, The Computer Language Co.

Figure 2.13 System Clock
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The execution of an instruction involves a number of discrete steps, such 
as fetching the instruction from memory, decoding the various portions of the 
 instruction, loading and storing data, and performing arithmetic and logical opera-
tions. Thus, most instructions on most processors require multiple clock cycles to 
complete. Some instructions may take only a few cycles, while others require dozens. 
In  addition, when pipelining is used, multiple instructions are being executed simul-
taneously. Thus, a straight comparison of clock speeds on different processors does 
not tell the whole story about performance.

INSTRUCTION EXECUTION RATE A processor is driven by a clock with a constant 
frequency f or, equivalently, a constant cycle time t, where t = 1/f. Define the 
instruction count, Ic, for a program as the number of machine instructions executed 
for that program until it runs to completion or for some defined time interval. Note 
that this is the number of instruction executions, not the number of instructions 
in the object code of the program. An important parameter is the average cycles 
per instruction (CPI) for a program. If all instructions required the same number 
of clock cycles, then CPI would be a constant value for a processor. However, on 
any give processor, the number of clock cycles required varies for different types of 
instructions, such as load, store, branch, and so on. Let CPIi be the number of cycles 
required for instruction type i and Ii be the number of executed instructions of type 
i for a given program. Then we can calculate an overall CPI as follows:

 CPI =  a
n
i = 1(CPIi * Ii)

Ic
 (2.1)

The processor time T needed to execute a given program can be expressed as

T = Ic * CPI * t

We can refine this formulation by recognizing that during the execution of 
an instruction, part of the work is done by the processor, and part of the time a 
word is being transferred to or from memory. In this latter case, the time to transfer 
depends on the memory cycle time, which may be greater than the processor cycle 
time. We can rewrite the preceding equation as

T = Ic * [p + (m * k)] * t

where p is the number of processor cycles needed to decode and execute the instruc-
tion, m is the number of memory references needed, and k is the ratio between 
memory cycle time and processor cycle time. The five performance factors in the 
 preceding equation (Ic, p, m, k, t) are influenced by four system attributes: the 
design of the instruction set (known as instruction set architecture),  compiler tech-
nology (how effective the compiler is in producing an efficient machine  language 
program from a high-level language program), processor  implementation, and cache 
and memory hierarchy. Table 2.9 is a matrix in which one dimension shows the five 
performance factors and the other dimension shows the four system attributes. An 
X in a cell indicates a system attribute that affects a performance factor.

A common measure of performance for a processor is the rate at which 
instructions are executed, expressed as millions of instructions per second (MIPS), 
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referred to as the MIPS rate. We can express the MIPS rate in terms of the clock 
rate and CPI as follows:

 MIPS rate =  
Ic

T * 106 =  
f

CPI * 106 (2.2)

For example, consider the execution of a program that results in the execu-
tion of 2 million instructions on a 400-MHz processor. The program consists of four 
major types of instructions. The instruction mix and the CPI for each instruction 
type are given below based on the result of a program trace experiment:

Table 2.9 Performance Factors and System Attributes

Ic p m k τ

Instruction set architecture X X

Compiler technology X X X

Processor implementation X X

Cache and memory hierarchy X X

Instruction Type CPI Instruction Mix (%)

Arithmetic and logic 1 60

Load/store with cache hit 2 18

Branch 4 12

Memory reference with cache miss 8 10

The average CPI when the program is executed on a uniprocessor with 
the above trace results is CPI = 0.6 + (2 : 0.18) + (4 : 0.12) + (8 : 0.1) = 2.24. 
The corresponding MIPS rate is (400 : 106)/(2.24 : 106) ≈ 178.

Another common performance measure deals only with floating-point 
instructions. These are common in many scientific and game applications. Floating-
point performance is expressed as millions of floating-point operations per second 
(MFLOPS), defined as follows:

MFLOPS rate =  
Number of executed floating@point operations in a program

Execution time * 106

Benchmarks

Measures such as MIPS and MFLOPS have proven inadequate to evaluating the 
performance of processors. Because of differences in instruction sets, the instruc-
tion execution rate is not a valid means of comparing the performance of different 
architectures. For example, consider this high-level language statement:

 A = B + C    /* assume all quantities in main memory */
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With a traditional instruction set architecture, referred to as a complex instruc-
tion set computer (CISC), this instruction can be compiled into one processor 
instruction:

add  mem(B), mem(C), mem (A)

On a typical RISC machine, the compilation would look something like this:

load mem(B), reg(1);
load mem(C), reg(2);
add reg(1), reg(2), reg(3);
store reg(3), mem (A)

Because of the nature of the RISC architecture (discussed in Chapter 15), 
both machines may execute the original high-level language instruction in about the 
same time. If this example is representative of the two machines, then if the CISC 
machine is rated at 1 MIPS, the RISC machine would be rated at 4 MIPS. But both 
do the same amount of high-level language work in the same amount of time.

Further, the performance of a given processor on a given program may not be 
useful in determining how that processor will perform on a very different type of 
application. Accordingly, beginning in the late 1980s and early 1990s, industry and 
academic interest shifted to measuring the performance of systems using a set of 
benchmark programs. The same set of programs can be run on different machines 
and the execution times compared.

[WEIC90] lists the following as desirable characteristics of a benchmark 
 program:

 1. It is written in a high-level language, making it portable across different 
 machines.

 2. It is representative of a particular kind of programming style, such as systems 
programming, numerical programming, or commercial programming.

 3. It can be measured easily.

 4. It has wide distribution.

SPEC BENCHMARKS The common need in industry and academic and research 
communities for generally accepted computer performance measurements has 
led to the development of standardized benchmark suites. A benchmark suite is a 
collection of programs, defined in a high-level language, that together attempt to 
provide a representative test of a computer in a particular application or system 
programming area. The best known such collection of benchmark suites is defined 
and maintained by the System Performance Evaluation Corporation (SPEC), 
an industry consortium. SPEC performance measurements are widely used for 
comparison and research purposes.

The best known of the SPEC benchmark suites is SPEC CPU2006. This is the 
industry standard suite for processor-intensive applications. That is, SPEC CPU2006 is 
appropriate for measuring performance for applications that spend most of their time 
doing computation rather than I/O. The CPU2006 suite is based on existing applica-
tions that have already been ported to a wide variety of platforms by SPEC industry 
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members. It consists of 17 floating-point programs written in C, C++, and Fortran; and 
12 integer programs written in C and C++. The suite contains over 3 million lines of 
code. This is the fifth generation of processor-intensive suites from SPEC, replacing 
SPEC CPU2000, SPEC CPU95, SPEC CPU92, and SPEC CPU89 [HENN07].

Other SPEC suites include the following:

 • SPECjvm98: Intended to evaluate performance of the combined hardware 
and software aspects of the Java Virtual Machine (JVM) client platform

 • SPECjbb2000 (Java Business Benchmark): A benchmark for evaluating 
server-side Java-based electronic commerce applications

 • SPECweb99: Evaluates the performance of World Wide Web (WWW) servers

 • SPECmail2001: Designed to measure a system’s performance acting as a mail 
server

AVERAGING RESULTS To obtain a reliable comparison of the performance of 
various computers, it is preferable to run a number of different benchmark programs 
on each machine and then average the results. For example, if there are m different 
benchmark programs, then a simple arithmetic mean can be calculated as follows:

 RA =  
1
m

 a
m

i = 1
Ri (2.3)

where Ri is the high-level language instruction execution rate for the ith benchmark 
program.

An alternative is to take the harmonic mean:

 RH =  
m

a
m

i = 1
 

1
Ri

 (2.4)

Ultimately, the user is concerned with the execution time of a system, not its 
execution rate. If we take arithmetic mean of the instruction rates of various bench-
mark programs, we get a result that is proportional to the sum of the inverses of 
execution times. But this is not inversely proportional to the sum of execution times. 
In other words, the arithmetic mean of the instruction rate does not cleanly relate 
to execution time. On the other hand, the harmonic mean instruction rate is the 
inverse of the average execution time.

SPEC benchmarks do not concern themselves with instruction execution 
rates. Rather, two fundamental metrics are of interest: a speed metric and a rate 
metric. The speed metric measures the ability of a computer to complete a single 
task. SPEC defines a base runtime for each benchmark program using a reference 
machine. Results for a system under test are reported as the ratio of the reference 
run time to the system run time. The ratio is calculated as follows:

 ri =  
Trefi

Tsuti
 (2.5)

where Trefi is the execution time of benchmark program i on the reference system 
and Tsuti is the execution time of benchmark program i on the system under test.
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As an example of the calculation and reporting, consider the Sun Blade 6250, 
which consists of two chips with four cores, or processors, per chip. One of the SPEC 
CPU2006 integer benchmark is 464.h264ref. This is a reference implementation of 
H.264/AVC (Advanced Video Coding), the latest state-of-the-art video compres-
sion standard. The Sun system executes this program in 934 seconds. The reference 
 implementation requires 22,135 seconds. The ratio is calculated as: 22136/934 = 23.7.

Because the time for the system under test is in the denominator, the larger 
the ratio, the higher the speed. An overall performance measure for the system 
under test is calculated by averaging the values for the ratios for all 12 integer 
benchmarks. SPEC specifies the use of a geometric mean, defined as follows:

 rG = aq
n

i = 1
rib

1>n
 (2.6)

where ri is the ratio for the ith benchmark program. For the Sun Blade 6250, the 
SPEC integer speed ratios were reported as follows:

The speed metric is calculated by taking the twelfth root of the product of the 
ratios:

Benchmark Ratio Benchmark Ratio

400.perlbench 17.5 458.sjeng 17.0

401.bzip2 14.0 462.libquantum 31.3

403.gcc 13.7 464.h264ref 23.7

429.mcf 17.6 471.omnetpp 9.23

445.gobmk 14.7 473.astar 10.9

456.hmmer 18.6 483.xalancbmk 14.7

(17.5 * 14 * 13.7 * 17.6 * 14.7 * 18.6 * 17 * 31.3 * 23.7 * 9.23 * 10.9 * 14.7)1/12 = 18.5

The rate metric measures the throughput or rate of a machine carrying out 
a number of tasks. For the rate metrics, multiple copies of the benchmarks are 
run simultaneously. Typically, the number of copies is the same as the number of 
 processors on the machine. Again, a ratio is used to report results, although the 
 calculation is more complex. The ratio is calculated as follows:

 ri =  
N * Trefi

Tsuti
 (2.7)

where Trefi is the reference execution time for benchmark i, N is the number of cop-
ies of the program that are run simultaneously, and Tsuti is the elapsed time from 
the start of the execution of the program on all N processors of the system under 
test until the completion of all the copies of the program. Again, a geometric mean 
is calculated to determine the overall performance measure.

SPEC chose to use a geometric mean because it is the most appropriate for 
 normalized numbers, such as ratios. [FLEM86] demonstrates that the geometric 
mean has the property of performance relationships consistently maintained regard-
less of the computer that is used as the basis for normalization.
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Amdahl’s Law

When considering system performance, computer system designers look for 
ways to improve performance by improvement in technology or change in 
design. Examples include the use of parallel processors, the use of a  memory 
cache  hierarchy, and speedup in memory access time and I/O transfer rate 
due to  technology improvements. In all of these cases, it is important to note 
that a speedup in one aspect of the technology or design does not result in a 
 corresponding improvement in performance. This limitation is succinctly 
expressed by Amdahl’s law.

Amdahl’s law was first proposed by Gene Amdahl in [AMDA67] and deals 
with the potential speedup of a program using multiple processors compared to a 
single processor. Consider a program running on a single processor such that a frac-
tion (1 – f) of the execution time involves code that is inherently serial and a fraction 
f that involves code that is infinitely parallelizable with no scheduling overhead. 
Let T be the total execution time of the program using a single processor. Then the 
speedup using a parallel processor with N processors that fully exploits the parallel 
portion of the program is as follows:

 Speedup =  
Time to execute program on a single processor

Time to execute program on N parallel processors
   

 =  
T(1 - f) + Tf

T(1 - f) +  
Tf

N

 =  
1

(1 - f) +  
f

N

This equation is illustrated in Figure 2.14. Two important conclusions can be 
drawn:

 1. When f is small, the use of parallel processors has little effect.

 2. As N approaches infinity, speedup is bound by 1/(1 – f), so that there are 
diminishing returns for using more processors.

These conclusions are too pessimistic, an assertion first put forward in 
[GUST88]. For example, a server can maintain multiple threads or multiple tasks 
to handle multiple clients and execute the threads or tasks in parallel up to the limit 
of the number of processors. Many database applications involve computations on 
 massive amounts of data that can be split up into multiple parallel tasks. Nevertheless, 
Amdahl’s law illustrates the problems facing industry in the development of multi-
core machines with an ever-growing number of cores: The software that runs on such 
machines must be adapted to a highly parallel execution environment to exploit the 
power of parallel processing.

Amdahl’s law can be generalized to evaluate any design or technical improve-
ment in a computer system. Consider any enhancement to a feature of a system that 
results in a speedup. The speedup can be expressed as

   Speedup =  
Performance after enhancement

Performance before enhancement
 =  

Execution time before enhancement
Execution time after enhancement

 

(2.8)
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Suppose that a feature of the system is used during execution a fraction of the 
time f, before enhancement, and that the speedup of that feature after enhancement 
is SUf. Then the overall speedup of the system is

Speedup =  
1

(1 - f ) +  
f

SUf

For example, suppose that a task makes extensive use of floating-point operations, 
with 40% of the time is consumed by floating-point operations. With a new hardware 
design, the floating-point module is speeded up by a factor of K. Then the overall 
speedup is as follows:

Speedup =  
1

0.6 +  
0.4
K

Thus, independent of K, the maximum speedup is 1.67.

Little’s Law

A fundamental and simple relation with broad applications is Little’s Law 
[LITT61, LITT11].17 We can apply it to almost any system that is statistically in 
steady state, and in which there is no leakage. The general setup is that we have 
a steady state  system to which items arrive at an average rate of l items per unit 

17The second reference is a retrospective article on his law that Little wrote 50 years after his original 
paper. That must be unique in the history of the technical literature.
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time. The items stay in the system an average of W units of time. Finally, there is an 
average of L units in the system at any one time. Little’s Law relates these three 
variables as L = lW.

Using queuing theory terminology, Little’s Law applies to a queuing system. 
The central element of the system is a server, which provides some service to items. 
Items from some population of items arrive at the system to be served. If the server 
is idle, an item is served immediately. Otherwise, an arriving item joins a waiting 
line, or queue. There can be a single queue for a single server, a single queue for 
multiple servers, or multiples queues, one for each of multiple servers. When a 
server has completed serving an item, the item departs. If there are items waiting in 
the queue, one is immediately dispatched to the server. The server in this model can 
represent anything that performs some function or service for a collection of items. 
Examples: A processor provides service to processes; a transmission line provides a 
transmission service to packets or frames of data; and an I/O device provides a read 
or write service for I/O requests.

To understand Little’s formula, consider the following argument, which 
focuses on the experience of a single item. When the item arrives, it will find on 
average w items waiting ahead of it. When the item leaves the queue behind it to 
be serviced, it will leave behind on average the same number of items in the queue, 
namely w. To see this, note that while the item is waiting, the line in front of it 
shrinks until the item is at the front of the line; meanwhile, additional items arrive 
and get in line behind this item. When the item leaves the queue to be serviced, the 
number of items behind it, on average, is w, because w is defined as the average 
number of items waiting. Further, the average time that the item was waiting for 
service is Tw. Since items arrive at a rate of l, we can reason that in the time Tw, a 
total of lTw items must have arrived. Thus, w = lTw.

To summarize, under steady state conditions, the average number of items in 
a queuing system equals the average rate at which items arrive multiplied by the 
average time that an item spends in the system. This relationship requires very few 
assumptions. We do not need to know what the service time distribution is, what 
the distribution of arrival times is, or the order or priority in which items are served. 
Because of its simplicity and generality, Little’s Law is extremely useful and has 
experienced somewhat of a revival due to the interest in performance problems 
related to multicore computers.

A very simple example, from [LITT11], illustrates how Little’s Law might 
be applied. Consider a multicore system, with each core supporting multiple 
threads of execution. At some level, the cores share a common memory. The cores 
share a common main memory and typically share a common cache memory as 
well. In any case, when a thread is executing, it may arrive at a point at which it 
must retrieve a piece of data from the common memory. The thread stops and 
sends out a request for that data. All such stopped threads are in a queue. If 
the system is being used as a server, an analyst can determine the demand on 
the system in terms of the rate of user requests, and then translate that into the 
rate of requests for data from the threads generated to respond to an individual 
user request. For this purpose, each user request is broken down into subtasks 
that are implemented as threads. We then have l = the average rate of total 
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18Known in the ARM community as the “ARM ARM.”

thread processing required after all  members’ requests have been broken down 
into whatever detailed subtasks are required. Define L as the average number of 
stopped threads waiting during some relevant time. Then W = average response 
time. This simple model can serve as a guide to designers as to whether user 
requirements are being met and, if not, provide a quantitative measure of the 
amount of improvement needed.

 2.7 RECOMMENDED READING

A description of the IBM 7000 series can be found in [BELL71]. There is good  coverage of 
the IBM 360 in [SIEW82] and of the PDP-8 and other DEC machines in [BELL78a]. These 
three books also contain numerous detailed examples of other computers spanning the his-
tory of computers through the early 1980s. [BLAA97] includes an excellent set of case stud-
ies of historical machines. A good history of the microprocessor is [BETK97].

[OLUK96], [HAMM97], and [SAKA02] discuss the motivation for multiple processors 
on a single chip.

[BREY09] provides a good survey of the Intel microprocessor line. The Intel 
 documentation itself is also good [INTE11]. [SING11] is an interesting short history of 
the x86.

The most thorough documentation available for the ARM architecture is 
[SEAL00].18 [FURB00] is another excellent source of information. [SMIT08] is an inter-
esting comparison of the ARM and x86 approaches to embedding processors in mobile 
wireless devices.

For interesting discussions of Moore’s law and its consequences, see [FULL11], 
[HUTC96], [SCHA97], and [BOHR98].

[HENN06] provides a detailed description of each of the benchmarks in CPU2006. 
[SMIT88] discusses the relative merits of arithmetic, harmonic, and  geometric means.

BELL71 Bell, C., and Newell, A. Computer Structures: Readings and Examples. New 
York: McGraw-Hill, 1971.

BELL78a Bell, C.; Mudge, J.; and McNamara, J. Computer Engineering: A DEC View 
of Hardware Systems Design. Bedford, MA: Digital Press, 1978.

BETK97 Betker, M.; Fernando, J.; and Whalen, S. “The History of the Microproces-
sor.” Bell Labs Technical Journal, Autumn 1997.

BLAA97 Blaauw, G., and Brooks, F. Computer Architecture: Concepts and Evolution. 
Reading, MA: Addison-Wesley, 1997.

BOHR98 Bohr, M. “Silicon Trends and Limits for Advanced Microprocessors.” 
 Communications of the ACM, March 1998.

BREY09 Brey, B. The Intel Microprocessors: 8086/8066, 80186/80188, 80286, 80386, 
80486, Pentium, Pentium Pro Processor, Pentium II, Pentium III, Pentium 4 and 
Core2 with 64-bit Extensions. Upper Saddle River, NJ: Prentice Hall, 2009.
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Review Questions

 2.1 What is a stored program computer?
 2.2 What are the four main components of any general-purpose computer?
 2.3 At the integrated circuit level, what are the three principal constituents of a computer 

system?
 2.4 Explain Moore’s law.
 2.5 List and explain the key characteristics of a computer family.
 2.6 What is the key distinguishing feature of a microprocessor?

Problems

 2.1 You are to write an IAS program to compute the results of the following equation.

Y = a
N

X = 1
X

  Assume that the result of the computation does not arithmetic overflow and that X, Y, 
and N are positive integers with N � 1. Note: The IAS did not have assembly language 
only machine language.
a. Use the equation Sum(Y)= N(N+1)/2 when writing the IAS program.
b. Do it the “hard way,” without using the equation from part (a).

 2.2 a.  On the IAS, what would the machine code instruction look like to load the 
 contents of memory address 2 to the accumulator?

b. How many trips to memory does the CPU need to make to complete this instruc-
tion during the instruction cycle?

 2.3 On the IAS, describe in English the process that the CPU must undertake to read a 
value from memory and to write a value to memory in terms of what is put into the 
MAR, MBR, address bus, data bus, and control bus.

 2.4 Given the memory contents of the IAS computer shown below,

Address Contents

08A 010FA210FB

08B 010FA0F08D

08C 020FA210FB

  show the assembly language code for the program, starting at address 08A. Explain 
what this program does.

 2.5 In Figure 2.3, indicate the width, in bits, of each data path (e.g., between AC and 
ALU).

main memory
many integrated core (MIC)
MIPS rate
memory address register 

(MAR)
memory buffer register 

(MBR)
microprocessor

multicore
multiplexor
opcode
original equipment 

 manufacturer (OEM)
program counter (PC)
rate metric
ratio

SPEC
speed metric
stored-program concept
upward compatible
von Neumann machine
wafer
word
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 2.6 In the IBM 360 Models 65 and 75, addresses are staggered in two separate main mem-
ory units (e.g., all even-numbered words in one unit and all odd-numbered words in 
another). What might be the purpose of this technique?

 2.7 With reference to Table 2.4, we see that the relative performance of the IBM 360 
Model 75 is 50 times that of the 360 Model 30, yet the instruction cycle time is only 
5 times as fast. How do you account for this discrepancy?

 2.8 While browsing at Billy Bob’s computer store, you overhear a customer asking Billy 
Bob what is the fastest computer in the store that he can buy. Billy Bob replies, 
“You’re looking at our Macintoshes. The fastest Mac we have runs at a clock speed 
of 1.2 GHz. If you really want the fastest machine, you should buy our 2.4-GHz 
Intel Pentium IV instead.” Is Billy Bob correct? What would you say to help this 
customer?

 2.9 The ENIAC was a decimal machine, where a register was represented by a ring of 
10 vacuum tubes. At any time, only one vacuum tube was in the ON state, represent-
ing one of the 10 digits. Assuming that ENIAC had the capability to have multiple 
vacuum tubes in the ON and OFF state simultaneously, why is this representation 
“wasteful” and what range of integer values could we represent using the 10 vacuum 
tubes?

 2.10 A benchmark program is run on a 40 MHz processor. The executed program consists 
of 100,000 instruction executions, with the following instruction mix and clock cycle 
count:

Instruction Type Instruction Count Cycles per Instruction

Integer arithmetic 45,000 1

Data transfer 32,000 2

Floating point 15,000 2

Control transfer   8000 2

  Determine the effective CPI, MIPS rate, and execution time for this program.
 2.11 Consider two different machines, with two different instruction sets, both of which 

have a clock rate of 200 MHz. The following measurements are recorded on the two 
machines running a given set of benchmark programs:

Instruction Type
Instruction Count 

(millions) Cycles Per Instruction

Machine A
Arithmetic and logic
Load and store
Branch
Others

 
 8
 4
 2
 4

 
1
3
4
3

Machine A
Arithmetic and logic
Load and store
Branch
Others

 
10
 8
 2
 4

 
1
2
4
3

a. Determine the effective CPI, MIPS rate, and execution time for each machine.
b. Comment on the results.

 2.12 Early examples of CISC and RISC design are the VAX 11/780 and the IBM RS/6000, 
respectively. Using a typical benchmark program, the following machine characteristics 
result:
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Processor
Clock Frequency 

(MHz)
Performance 

(MIPS)
CPU Time  
(seconds)

VAX 11/780  5  1 12 x

IBM RS/6000 25 18   x

  The final column shows that the VAX required 12 times longer than the IBM  measured 
in CPU time.
a. What is the relative size of the instruction count of the machine code for this 

benchmark program running on the two machines?
b. What are the CPI values for the two machines?

 2.13 Four benchmark programs are executed on three computers with the following 
 results:

Computer A Computer B Computer C

Program 1   1  10  20

Program 2 1000  100  20

Program 3  500 1000  50

Program 4  100  800 100

  The table shows the execution time in seconds, with 100,000,000 instructions execut-
ed in each of the four programs. Calculate the MIPS values for each computer for 
each program. Then calculate the arithmetic and harmonic means assuming equal 
weights for the four programs, and rank the computers based on arithmetic mean and 
 harmonic mean.

 2.14 The following table, based on data reported in the literature [HEAT84], shows 
the execution times, in seconds, for five different benchmark programs on three 
 machines.

Benchmark
Processor

R M Z

E 417 244 134

F 83 70 70

H 66 153 135

I 39,449 35,527 66,000

K 772 368 369

a. Compute the speed metric for each processor for each benchmark, normalized to 
machine R. That is, the ratio values for R are all 1.0. Other ratios are calculated 
using Equation (2.5) with R treated as the reference system. Then compute the 
arithmetic mean value for each system using Equation (2.3). This is the approach 
taken in [HEAT84].

b. Repeat part (a) using M as the reference machine. This calculation was not tried in 
[HEAT84].

c. Which machine is the slowest based on each of the preceding two calculations?
d. Repeat the calculations of parts (a) and (b) using the geometric mean, defined in 

Equation (2.6). Which machine is the slowest based on the two calculations?
 2.15 To clarify the results of the preceding problem, we look at a simpler example.
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Benchmark
Processor

X Y Z

1 20 10 40

2 40 80 20

a. Compute the arithmetic mean value for each system using X as the reference 
 machine and then using Y as the reference machine. Argue that intuitively the 
three machines have roughly equivalent performance and that the arithmetic 
mean gives misleading results.

b. Compute the geometric mean value for each system using X as the reference 
 machine and then using Y as the reference machine. Argue that the results are 
more realistic than with the arithmetic mean.

 2.16 Consider the example in Section 2.5 for the calculation of average CPI and MIPS rate, 
which yielded the result of CPI = 2.24 and MIPS rate = 178. Now assume that the 
program can be executed in eight parallel tasks or threads with roughly equal  number 
of instructions executed in each task. Execution is on an 8-core system with each 
core (processor) having the same performance as the single processor originally used. 
Coordination and synchronization between the parts adds an extra 25,000 instruction 
executions to each task. Assume the same instruction mix as in the example for each 
task, but increase the CPI for memory reference with cache miss to 12 cycles due to 
contention for memory.
a. Determine the average CPI.
b. Determine the corresponding MIPS rate.
c. Calculate the speedup factor.
d. Compare the actual speedup factor with the theoretical speedup factor deter-

mined by Amdhal’s law.
 2.17 A processor accesses main memory with an average access time of T2. A smaller cache 

memory is interposed between the processor and main memory. The cache has a 
 significantly faster access time of T1 < T2. The cache holds, at any time, copies of some 
main memory words and is designed so that the words more likely to be  accessed 
in the near future are in the cache. Assume that the probability that the next word 
 accessed by the processor is in the cache is H, known as the hit ratio.
a. For any single memory access, what is the theoretical speedup of accessing the 

word in the cache rather than in main memory?
b. Let T be the average access time. Express T as a function of T1, T2, and H. What is 

the overall speedup as a function of H?
c. In practice, a system may be designed so that the processor must first access the 

cache to determine if the word is in the cache and, if it is not, then access main 
memory, so that on a miss (opposite of a hit), memory access time is T1 + T2. 
 Express T as a function of T1, T2, and H. Now calculate the speedup and compare 
to the result produced in part (b).

 2.18 The owner of a shop observes that on average 18 customers per hour arrive and there 
are typically 8 customers in the shop. What is the average length of time each customer 
spends in the shop?
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At a top level, a computer consists of CPU (central processing unit), memory, and 
I/O components, with one or more modules of each type. These components are 
interconnected in some fashion to achieve the basic function of the computer, which 
is to execute programs. Thus, at a top level, we can characterize a computer system 
by describing (1) the external behavior of each component, that is, the data and 
control signals that it exchanges with other components and (2) the interconnec-
tion structure and the controls required to manage the use of the interconnection 
structure.

This top-level view of structure and function is important because of its 
explanatory power in understanding the nature of a computer. Equally important is 
its use to understand the increasingly complex issues of performance evaluation. A 
grasp of the top-level structure and function offers insight into system bottlenecks, 
alternate pathways, the magnitude of system failures if a component fails, and the 
ease of adding performance enhancements. In many cases, requirements for greater 
system power and fail-safe capabilities are being met by changing the design rather 
than merely increasing the speed and reliability of individual components.

This chapter focuses on the basic structures used for computer component 
interconnection. As background, the chapter begins with a brief examination of the 
basic components and their interface requirements. Then a functional overview is 
provided. We are then prepared to examine the use of buses to interconnect system 
components.

 3.1 COMPUTER COMPONENTS

As discussed in Chapter 2, virtually all contemporary computer designs are based 
on concepts developed by John von Neumann at the Institute for Advanced Studies, 
Princeton. Such a design is referred to as the von Neumann architecture and is based 
on three key concepts:

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Understand the basic elements of an instruction cycle and the role of 
 interrupts.

� Describe the concept of interconnection within a computer system.

� Understand the difference between synchronous and asynchronous bus 
 timing.

� Explain the need for multiple buses arranged in a hierarchy.

� Assess the relative advantages of point-to-point interconnection compared 
to bus interconnection.

� Present an overview of QPI.

� Present an overview of PCIe.
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 • Data and instructions are stored in a single read–write memory.

 • The contents of this memory are addressable by location, without regard to 
the type of data contained there.

 • Execution occurs in a sequential fashion (unless explicitly modified) from one 
instruction to the next.

The reasoning behind these concepts was discussed in Chapter 2 but is worth 
summarizing here. There is a small set of basic logic components that can be 
 combined in various ways to store binary data and perform arithmetic and  logical 
operations on that data. If there is a particular computation to be performed, a 
 configuration of logic components designed specifically for that computation could 
be constructed. We can think of the process of connecting the various components 
in the desired configuration as a form of programming. The resulting “program” is 
in the form of hardware and is termed a hardwired program.

Now consider this alternative. Suppose we construct a general-purpose 
 configuration of arithmetic and logic functions. This set of hardware will perform 
various functions on data depending on control signals applied to the hardware. 
In the original case of customized hardware, the system accepts data and produces 
results (Figure 3.1a). With general-purpose hardware, the system accepts data and 
control signals and produces results. Thus, instead of rewiring the hardware for each 
new program, the programmer merely needs to supply a new set of control signals.

How shall control signals be supplied? The answer is simple but subtle. The 
entire program is actually a sequence of steps. At each step, some arithmetic or 

Sequence of
arithmetic
and logic
functions

Data Results

(a) Programming in hardware

Data Results

Instruction
codes

General-purpose
arithmetic
and logic
functions

Control
signals

(b) Programming in software

Instruction
interpreter

Figure 3.1 Hardware and Software Approaches
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 logical operation is performed on some data. For each step, a new set of control 
 signals is needed. Let us provide a unique code for each possible set of control 
 signals, and let us add to the general-purpose hardware a segment that can accept a 
code and generate control signals (Figure 3.1b).

Programming is now much easier. Instead of rewiring the hardware for each 
new program, all we need to do is provide a new sequence of codes. Each code 
is, in effect, an instruction, and part of the hardware interprets each instruction 
and  generates control signals. To distinguish this new method of programming, a 
sequence of codes or instructions is called software.

Figure 3.1b indicates two major components of the system: an instruction 
interpreter and a module of general-purpose arithmetic and logic functions. These 
two constitute the CPU. Several other components are needed to yield a functioning 
computer. Data and instructions must be put into the system. For this we need some 
sort of input module. This module contains basic components for accepting data 
and instructions in some form and converting them into an internal form of signals 
usable by the system. A means of reporting results is needed, and this is in the form 
of an output module. Taken together, these are referred to as I/O components.

One more component is needed. An input device will bring instructions and 
data in sequentially. But a program is not invariably executed sequentially; it may 
jump around (e.g., the IAS jump instruction). Similarly, operations on data may 
require access to more than just one element at a time in a predetermined sequence. 
Thus, there must be a place to store temporarily both instructions and data. That 
module is called memory, or main memory, to distinguish it from external storage or 
peripheral devices. Von Neumann pointed out that the same memory could be used 
to store both instructions and data.

Figure 3.2 illustrates these top-level components and suggests the interactions 
among them. The CPU exchanges data with memory. For this purpose, it typically 
makes use of two internal (to the CPU) registers: a memory address register (MAR), 
which specifies the address in memory for the next read or write, and a memory 
buffer register (MBR), which contains the data to be written into memory or receives 
the data read from memory. Similarly, an I/O address register (I/OAR) specifies a 
particular I/O device. An I/O buffer (I/OBR) register is used for the exchange of 
data between an I/O module and the CPU.

A memory module consists of a set of locations, defined by sequentially 
 numbered addresses. Each location contains a binary number that can be interpreted 
as either an instruction or data. An I/O module transfers data from external devices 
to CPU and memory, and vice versa. It contains internal buffers for temporarily 
holding these data until they can be sent on.

Having looked briefly at these major components, we now turn to an overview 
of how these components function together to execute programs.

 3.2 COMPUTER FUNCTION

The basic function performed by a computer is execution of a program, which  consists 
of a set of instructions stored in memory. The processor does the actual work by 
executing instructions specified in the program. This section provides an overview of 
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the key elements of program execution. In its simplest form, instruction  processing 
consists of two steps: The processor reads (fetches) instructions from memory one 
at a time and executes each instruction. Program execution consists of repeating the 
process of instruction fetch and instruction execution. The instruction execution may 
involve several operations and depends on the nature of the instruction (see, for 
example, the lower portion of Figure 2.4).

The processing required for a single instruction is called an instruction cycle. 
Using the simplified two-step description given previously, the instruction cycle is 
depicted in Figure 3.3. The two steps are referred to as the fetch cycle and the execute 
cycle. Program execution halts only if the machine is turned off, some sort of unrecov-
erable error occurs, or a program instruction that halts the computer is encountered.

Instruction Fetch and Execute

At the beginning of each instruction cycle, the processor fetches an instruction  
from memory. In a typical processor, a register called the program counter (PC) 
holds the address of the instruction to be fetched next. Unless told otherwise, the 

PC MAR

IR MBR

I/O AR

I/O BR

CPU Main memory

System
bus

I/O Module

Buffers

Instruction

0
1
2

n – 2
n – 1

Data

Data

Data

Data

Instruction

Instruction

PC = Program counter
IR = Instruction register
MAR = Memory address register
MBR = Memory buffer register
I/O AR = Input/output address register
I/O BR = Input/output buffer register

Execution
unit

Figure 3.2 Computer Components: Top-Level View
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processor always increments the PC after each instruction fetch so that it will fetch 
the next instruction in sequence (i.e., the instruction located at the next higher mem-
ory address). So, for example, consider a computer in which each instruction occu-
pies one 16-bit word of memory. Assume that the program counter is set to memory 
location 300, where the location address refers to a 16-bit word. The processor will 
next fetch the instruction at location 300. On succeeding instruction cycles, it will 
fetch instructions from locations 301, 302, 303, and so on. This sequence may be 
altered, as explained presently.

The fetched instruction is loaded into a register in the processor known as 
the instruction register (IR). The instruction contains bits that specify the action 
the processor is to take. The processor interprets the instruction and performs the 
required action. In general, these actions fall into four categories:

 • Processor-memory:  Data may be transferred from processor to memory or 
from memory to processor.

 • Processor-I/O:  Data may be transferred to or from a peripheral device by 
transferring between the processor and an I/O module.

 • Data processing:  The processor may perform some arithmetic or logic opera-
tion on data.

 • Control:  An instruction may specify that the sequence of execution be altered. 
For example, the processor may fetch an instruction from location 149, which 
specifies that the next instruction be from location 182. The processor will 
 remember this fact by setting the program counter to 182. Thus, on the next 
fetch cycle, the instruction will be fetched from location 182 rather than 150.

An instruction’s execution may involve a combination of these actions.
Consider a simple example using a hypothetical machine that includes the 

characteristics listed in Figure 3.4. The processor contains a single data register, 
called an accumulator (AC). Both instructions and data are 16 bits long. Thus, it is 
convenient to organize memory using 16-bit words. The instruction format provides 
4 bits for the opcode, so that there can be as many as 24 =  16 different opcodes, and 
up to 212 =  4096 (4K) words of memory can be directly addressed.

Figure 3.5 illustrates a partial program execution, showing the relevant 
 portions of memory and processor registers.1 The program fragment shown adds 
the contents of the memory word at address 940 to the contents of the memory 

START HALTFetch next
instruction

Fetch cycle Execute cycle

Execute
instruction

Figure 3.3 Basic Instruction Cycle

1Hexadecimal notation is used, in which each digit represents 4 bits. This is the most convenient notation for 
representing the contents of memory and registers when the word length is a multiple of 4. See Chapter 9 for 
a basic refresher on number systems (decimal, binary, hexadecimal).
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Program counter (PC) � Address of instruction
Instruction register (IR) � Instruction being executed
Accumulator (AC) � Temporary storage

0001 � Load  AC from memory
0010 � Store AC to memory
0101 � Add to AC from memory

(a) Instruction format

Opcode Address

(b) Integer format

(c) Internal CPU registers

Magnitude

0 1543

10 15

(d) Partial list of opcodes

Figure 3.4 Characteristics of a Hypothetical Machine

2

PC300

CPU registersMemory

3 0 01 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR1 9 4 0

Step 1

•
•

•
•

•
•

•
•

•
•

•
•

PC300

CPU registersMemory

3 0 11 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR1 9 4 0

0 0 0 3

Step 2

PC300

CPU registersMemory

3 0 1
0 0 0 5

0 0 0 5

0 0 0 3

0 0 0 5

1 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR5 9 4 1

Step 3

PC300

CPU registersMemory

3 0 21 9 4 0
301 5 9 4 1
302 2 9 4 1

1

940 0 0 0 3
941 0 0 0 2

AC
IR5 9 4 1

Step 4

PC300

CPU registersMemory
3 01 9 4 0

301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR2 9 4 1

Step 5

PC300

CPU registersMemory
3 0 31 9 4 0

301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 5

AC
IR2 9 4 1

Step 6

3 � 2 � 5

Figure 3.5 Example of Program Execution (contents of memory and 
registers in hexadecimal)



72  CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

word at address 941 and stores the result in the latter location. Three instructions, 
which can be described as three fetch and three execute cycles, are required:

 1. The PC contains 300, the address of the first instruction. This instruction (the 
value 1940 in hexadecimal) is loaded into the instruction register IR, and 
the PC is incremented. Note that this process involves the use of a memory 
 address register and a memory buffer register. For simplicity, these interme-
diate registers are ignored.

 2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be 
loaded. The remaining 12 bits (three hexadecimal digits) specify the address 
(940) from which data are to be loaded.

 3. The next instruction (5941) is fetched from location 301, and the PC is 
 incremented.

 4. The old contents of the AC and the contents of location 941 are added, and 
the result is stored in the AC.

 5. The next instruction (2941) is fetched from location 302, and the PC is 
 incremented.

 6. The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch cycle and an 
execute cycle, are needed to add the contents of location 940 to the contents of 941. 
With a more complex set of instructions, fewer cycles would be needed. Some older 
processors, for example, included instructions that contain more than one memory 
address. Thus, the execution cycle for a particular instruction on such processors could 
involve more than one reference to memory. Also, instead of memory references, an 
instruction may specify an I/O operation.

For example, the PDP-11 processor includes an instruction, expressed symboli-
cally as ADD B,A, that stores the sum of the contents of memory locations B and A 
into memory location A. A single instruction cycle with the following steps occurs:

 • Fetch the ADD instruction.

 • Read the contents of memory location A into the processor.

 • Read the contents of memory location B into the processor. In order that the 
contents of A are not lost, the processor must have at least two registers for 
storing memory values, rather than a single accumulator.

 • Add the two values.

 • Write the result from the processor to memory location A.

Thus, the execution cycle for a particular instruction may involve more than one 
reference to memory. Also, instead of memory references, an instruction may specify 
an I/O operation. With these additional considerations in mind, Figure 3.6 provides 
a more detailed look at the basic instruction cycle of Figure 3.3. The figure is in the 
form of a state diagram. For any given instruction cycle, some states may be null and 
others may be visited more than once. The states can be described as follows:

 • Instruction address calculation (iac): Determine the address of the next 
 instruction to be executed. Usually, this involves adding a fixed number to 
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the address of the previous instruction. For example, if each instruction is 16 
bits long and memory is organized into 16-bit words, then add 1 to the previ-
ous  address. If, instead, memory is organized as individually addressable 8-bit 
bytes, then add 2 to the previous address.

 • Instruction fetch (if):  Read instruction from its memory location into the 
processor.

 • Instruction operation decoding (iod):  Analyze instruction to determine type 
of operation to be performed and operand(s) to be used.

 • Operand address calculation (oac):  If the operation involves reference to an 
operand in memory or available via I/O, then determine the address of the 
operand.

 • Operand fetch (of):  Fetch the operand from memory or read it in from I/O.

 • Data operation (do):  Perform the operation indicated in the instruction.

 • Operand store (os):  Write the result into memory or out to I/O.

States in the upper part of Figure 3.6 involve an exchange between the  
processor and either memory or an I/O module. States in the lower part of the 
diagram involve only internal processor operations. The oac state appears twice, 
because an instruction may involve a read, a write, or both. However, the action per-
formed during that state is fundamentally the same in both cases, and so only a single 
state identifier is needed.

Also note that the diagram allows for multiple operands and multiple results, 
because some instructions on some machines require this. For example, the PDP-11 
instruction ADD A,B results in the following sequence of states: iac, if, iod, oac, of, 
oac, of, do, oac, os.

Finally, on some machines, a single instruction can specify an operation to be per-
formed on a vector (one-dimensional array) of numbers or a string (one-dimensional 
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array) of characters. As Figure 3.6 indicates, this would involve repetitive operand fetch 
and/or store operations.

Interrupts

Virtually all computers provide a mechanism by which other modules (I/O,  memory) 
may interrupt the normal processing of the processor. Table 3.1 lists the most  common 
classes of interrupts. The specific nature of these interrupts is  examined later in this 
book, especially in Chapters 7 and 14. However, we need to introduce the concept 
now to understand more clearly the nature of the instruction cycle and the implica-
tions of interrupts on the interconnection structure. The reader need not be concerned 
at this stage about the details of the generation and processing of interrupts, but only 
focus on the communication between modules that results from interrupts.

Interrupts are provided primarily as a way to improve processing efficiency. 
For example, most external devices are much slower than the processor. Suppose 
that the processor is transferring data to a printer using the instruction cycle scheme 
of Figure 3.3. After each write operation, the processor must pause and remain 
idle until the printer catches up. The length of this pause may be on the order of 
many hundreds or even thousands of instruction cycles that do not involve memory. 
Clearly, this is a very wasteful use of the processor.

Figure 3.7a illustrates this state of affairs. The user program performs a series 
of WRITE calls interleaved with processing. Code segments 1, 2, and 3 refer to 
sequences of instructions that do not involve I/O. The WRITE calls are to an I/O 
program that is a system utility and that will perform the actual I/O operation. The 
I/O program consists of three sections:

 • A sequence of instructions, labeled 4 in the figure, to prepare for the actual 
I/O operation. This may include copying the data to be output into a special 
buffer and preparing the parameters for a device command.

 • The actual I/O command. Without the use of interrupts, once this command is 
issued, the program must wait for the I/O device to perform the requested  function 
(or periodically poll the device). The program might wait by simply repeatedly 
performing a test operation to determine if the I/O operation is done.

 • A sequence of instructions, labeled 5 in the figure, to complete the operation. 
This may include setting a flag indicating the success or failure of the operation.

Table 3.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction 
execution, such as arithmetic overflow, division by zero, attempt to 
execute an illegal machine instruction, or reference outside a user’s 
allowed memory space.

Timer Generated by a timer within the processor. This allows the operating 
system to perform certain functions on a regular basis.

I/O Generated by an I/O controller, to signal normal completion of an 
operation, request service from the processor, or to signal a variety of 
error conditions.

Hardware Failure Generated by a failure such as power failure or memory parity error.
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Because the I/O operation may take a relatively long time to complete, the I/O 
program is hung up waiting for the operation to complete; hence, the user program 
is stopped at the point of the WRITE call for some considerable period of time.

INTERRUPTS AND THE INSTRUCTION CYCLE  With interrupts, the processor can 
be engaged in executing other instructions while an I/O operation is in progress. 
Consider the flow of control in Figure 3.7b. As before, the user program reaches a 
point at which it makes a system call in the form of a WRITE call. The I/O program 
that is invoked in this case consists only of the preparation code and the actual I/O 
command. After these few instructions have been executed, control returns to the 
user program. Meanwhile, the external device is busy accepting data from computer 
memory and printing it. This I/O operation is conducted concurrently with the 
execution of instructions in the user program.

When the external device becomes ready to be serviced—that is, when it is 
ready to accept more data from the processor—the I/O module for that external 
device sends an interrupt request signal to the processor. The processor responds by 
suspending operation of the current program, branching off to a program to service 
that particular I/O device, known as an interrupt handler, and resuming the original 
execution after the device is serviced. The points at which such interrupts occur are 
indicated by an asterisk in Figure 3.7b.

Let us try to clarify what is happening in Figure 3.7. We have a user program 
that contains two WRITE commands. There is a segment of code at the beginning, 
then one WRITE command, then a second segment of code, then a second WRITE 
command, then a third and final segment of code. The WRITE command invokes the 
I/O program provided by the OS. Similarly, the I/O program consists of a  segment of 
code, followed by an I/O command, followed by another segment of code. The I/O 
command invokes a hardware I/O operation.
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From the point of view of the user program, an interrupt is just that: an  interruption 
of the normal sequence of execution. When the interrupt processing is completed, 
execution resumes (Figure 3.8). Thus, the user program does not have to contain any 
special code to accommodate interrupts; the processor and the operating system are 
responsible for suspending the user program and then resuming it at the same point.

To accommodate interrupts, an interrupt cycle is added to the instruction 
cycle, as shown in Figure 3.9. In the interrupt cycle, the processor checks to see if 
any interrupts have occurred, indicated by the presence of an interrupt signal. If no 
interrupts are pending, the processor proceeds to the fetch cycle and fetches the 
next instruction of the current program. If an interrupt is pending, the processor 
does the following:

 • It suspends execution of the current program being executed and saves its 
context. This means saving the address of the next instruction to be executed 
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(current contents of the program counter) and any other data relevant to the 
processor’s current activity.

 • It sets the program counter to the starting address of an interrupt handler  routine.

The processor now proceeds to the fetch cycle and fetches the first instruction 
in the interrupt handler program, which will service the interrupt. The interrupt 
handler program is generally part of the operating system. Typically, this program 
determines the nature of the interrupt and performs whatever actions are needed. 
In the example we have been using, the handler determines which I/O module 
 generated the interrupt and may branch to a program that will write more data out 
to that I/O module. When the interrupt handler routine is completed, the processor 
can resume execution of the user program at the point of interruption.

It is clear that there is some overhead involved in this process. Extra instructions 
must be executed (in the interrupt handler) to determine the nature of the  interrupt 
and to decide on the appropriate action. Nevertheless, because of the relatively large 
amount of time that would be wasted by simply waiting on an I/O operation, the 
 processor can be employed much more efficiently with the use of interrupts.

To appreciate the gain in efficiency, consider Figure 3.10, which is a timing dia-
gram based on the flow of control in Figures 3.7a and 3.7b. In this figure, user pro-
gram code segments are shaded green, and I/O program code segments are shaded 
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gray. Figure 3.10a shows the case in which interrupts are not used. The processor must 
wait while an I/O operation is performed.

Figures 3.7b and 3.10b assume that the time required for the I/O operation is 
 relatively short: less than the time to complete the execution of instructions between write 
operations in the user program. In this case, the segment of code labeled code  segment 
2 is interrupted. A portion of the code (2a) executes (while the I/O operation is per-
formed) and then the interrupt occurs (upon the completion of the I/O operation). After 
the interrupt is serviced, execution resumes with the remainder of code segment 2 (2b).

The more typical case, especially for a slow device such as a printer, is that the 
I/O operation will take much more time than executing a sequence of user instruc-
tions. Figure 3.7c indicates this state of affairs. In this case, the user program reaches 
the second WRITE call before the I/O operation spawned by the first call is com-
plete. The result is that the user program is hung up at that point. When the preced-
ing I/O operation is completed, this new WRITE call may be processed, and a new 
I/O operation may be started. Figure 3.11 shows the timing for this situation with 
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and without the use of interrupts. We can see that there is still a gain in efficiency 
because part of the time during which the I/O operation is under way overlaps with 
the execution of user instructions.

Figure 3.12 shows a revised instruction cycle state diagram that includes 
 interrupt cycle processing.

MULTIPLE INTERRUPTS The discussion so far has focused only on the occurrence 
of a single interrupt. Suppose, however, that multiple interrupts can occur. 
For example, a program may be receiving data from a communications line and 
printing results. The printer will generate an interrupt every time it completes a 
print operation. The communication line controller will generate an interrupt every 
time a unit of data arrives. The unit could either be a single character or a block, 
depending on the nature of the communications discipline. In any case, it is possible 
for a communications interrupt to occur while a printer interrupt is being processed.

Two approaches can be taken to dealing with multiple interrupts. The first is to 
disable interrupts while an interrupt is being processed. A disabled interrupt  simply 
means that the processor can and will ignore that interrupt request signal. If an inter-
rupt occurs during this time, it generally remains pending and will be checked by 
the processor after the processor has enabled interrupts. Thus, when a user  program 
is executing and an interrupt occurs, interrupts are disabled immediately. After the 
interrupt handler routine completes, interrupts are enabled before resuming the 
user program, and the processor checks to see if additional interrupts have occurred. 
This approach is nice and simple, as interrupts are handled in strict sequential order 
(Figure 3.13a).

The drawback to the preceding approach is that it does not take into account 
relative priority or time-critical needs. For example, when input arrives from the 
communications line, it may need to be absorbed rapidly to make room for more 
input. If the first batch of input has not been processed before the second batch 
arrives, data may be lost.

A second approach is to define priorities for interrupts and to allow an 
interrupt of higher priority to cause a lower-priority interrupt handler to be itself 
interrupted (Figure 3.13b). As an example of this second approach, consider a 
system with three I/O devices: a printer, a disk, and a communications line, with 
increasing priorities of 2, 4, and 5, respectively. Figure 3.14 illustrates a possible 
sequence. A user program begins at t = 0. At t = 10, a printer interrupt occurs; user 
information is placed on the system stack and execution continues at the printer 
interrupt service routine (ISR). While this routine is still executing, at t = 15, a 
communications interrupt occurs. Because the communications line has higher 
priority than the printer, the interrupt is honored. The printer ISR is interrupted, 
its state is pushed onto the stack, and  execution continues at the communications 
ISR. While this routine is executing, a disk interrupt occurs (t = 20). Because this 
interrupt is of lower priority, it is simply held, and the communications ISR runs 
to completion.

When the communications ISR is complete (t = 25), the previous processor 
state is restored, which is the execution of the printer ISR. However, before even a 
single instruction in that routine can be executed, the processor honors the higher-
priority disk interrupt and control transfers to the disk ISR. Only when that routine 
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is  complete (t = 35) is the printer ISR resumed. When that routine completes (t = 40), 
control finally returns to the user program.

I/O Function

Thus far, we have discussed the operation of the computer as controlled by the 
 processor, and we have looked primarily at the interaction of processor and 
 memory. The discussion has only alluded to the role of the I/O component. This 
role is discussed in detail in Chapter 7, but a brief summary is in order here.

An I/O module (e.g., a disk controller) can exchange data directly with the 
processor. Just as the processor can initiate a read or write with memory, designating 
the address of a specific location, the processor can also read data from or write data 
to an I/O module. In this latter case, the processor identifies a specific device that is 
 controlled by a particular I/O module. Thus, an instruction sequence similar in form to 
that of Figure 3.5 could occur, with I/O instructions rather than memory-referencing 
instructions.

In some cases, it is desirable to allow I/O exchanges to occur directly with 
 memory. In such a case, the processor grants to an I/O module the authority to read 
from or write to memory, so that the I/O-memory transfer can occur without tying up 
the processor. During such a transfer, the I/O module issues read or write commands 
to memory, relieving the processor of responsibility for the exchange. This operation 
is known as direct memory access (DMA) and is examined in Chapter 7.
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 3.3 INTERCONNECTION STRUCTURES

A computer consists of a set of components or modules of three basic types 
 (processor, memory, I/O) that communicate with each other. In effect, a computer is 
a  network of basic modules. Thus, there must be paths for connecting the modules.

The collection of paths connecting the various modules is called the intercon-
nection structure. The design of this structure will depend on the exchanges that 
must be made among modules.

Figure 3.15 suggests the types of exchanges that are needed by indicating the 
major forms of input and output for each module type2:

 • Memory:  Typically, a memory module will consist of N words of equal length. 
Each word is assigned a unique numerical address (0, 1, …, N - 1). A word of 
data can be read from or written into the memory. The nature of the operation 

2The wide arrows represent multiple signal lines carrying multiple bits of information in parallel. Each 
narrow arrow represents a single signal line.
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is indicated by read and write control signals. The location for the operation is 
specified by an address.

 • I/O module:  From an internal (to the computer system) point of view, I/O 
is functionally similar to memory. There are two operations, read and write. 
Further, an I/O module may control more than one external device. We can 
refer to each of the interfaces to an external device as a port and give each 
a unique address (e.g., 0, 1, …, M - 1). In addition, there are external data 
paths for the input and output of data with an external device. Finally, an I/O 
 module may be able to send interrupt signals to the processor.

 • Processor:  The processor reads in instructions and data, writes out data  after 
processing, and uses control signals to control the overall operation of the 
 system. It also receives interrupt signals.

The preceding list defines the data to be exchanged. The interconnection 
structure must support the following types of transfers:

 • Memory to processor:  The processor reads an instruction or a unit of data 
from memory.

 • Processor to memory:  The processor writes a unit of data to memory.

 • I/O to processor:  The processor reads data from an I/O device via an I/O 
module.

 • Processor to I/O:  The processor sends data to the I/O device.

 • I/O to or from memory:  For these two cases, an I/O module is allowed to ex-
change data directly with memory, without going through the processor, using 
direct memory access.

Over the years, a number of interconnection structures have been tried. By 
far the most common are (1) the bus and various multiple-bus structures, and (2) 
point-to-point interconnection structures with packetized data transfer. We devote 
the remainder of this chapter for a discussion of these structures.

 3.4 BUS INTERCONNECTION

A bus is a communication pathway connecting two or more devices. A key charac-
teristic of a bus is that it is a shared transmission medium. Multiple devices connect 
to the bus, and a signal transmitted by any one device is available for reception by 
all other devices attached to the bus. If two devices transmit during the same time 
period, their signals will overlap and become garbled. Thus, only one device at a 
time can successfully transmit.

Typically, a bus consists of multiple communication pathways, or lines. Each 
line is capable of transmitting signals representing binary 1 and binary 0. Over time, 
a sequence of binary digits can be transmitted across a single line. Taken together, 
 several lines of a bus can be used to transmit binary digits simultaneously (in parallel). 
For example, an 8-bit unit of data can be transmitted over eight bus lines.

Computer systems contain a number of different buses that provide pathways 
between components at various levels of the computer system hierarchy. A bus that 
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connects major computer components (processor, memory, I/O) is called a system 
bus. The most common computer interconnection structures are based on the use of 
one or more system buses.

Bus Structure

A system bus consists, typically, of from about fifty to hundreds of separate lines. 
Each line is assigned a particular meaning or function. Although there are many 
 different bus designs, on any bus the lines can be classified into three functional 
groups (Figure 3.16): data, address, and control lines. In addition, there may be 
power distribution lines that supply power to the attached modules.

The data lines provide a path for moving data among system modules. These 
lines, collectively, are called the data bus. The data bus may consist of 32, 64, 128, or 
even more separate lines, the number of lines being referred to as the width of the 
data bus. Because each line can carry only 1 bit at a time, the number of lines deter-
mines how many bits can be transferred at a time. The width of the data bus is a key 
factor in determining overall system performance. For example, if the data bus is 
32 bits wide and each instruction is 64 bits long, then the processor must access the 
memory module twice during each instruction cycle.

The address lines are used to designate the source or destination of the data on 
the data bus. For example, if the processor wishes to read a word (8, 16, or 32 bits) 
of data from memory, it puts the address of the desired word on the address lines. 
Clearly, the width of the address bus determines the maximum possible  memory 
capacity of the system. Furthermore, the address lines are generally also used to 
address I/O ports. Typically, the higher-order bits are used to select a particular 
module on the bus, and the lower-order bits select a memory location or I/O port 
within the module. For example, on an 8-bit address bus, address 01111111 and 
below might reference locations in a memory module (module 0) with 128 words 
of memory, and address 10000000 and above refer to devices attached to an I/O 
module (module 1).

The control lines are used to control the access to and the use of the data and 
address lines. Because the data and address lines are shared by all components, 
there must be a means of controlling their use. Control signals transmit both com-
mand and timing information among system modules. Timing signals indicate the 
validity of data and address information. Command signals specify operations to be 
performed. Typical control lines include:

CPU Memory Memory• • • I/O

Bus

I/O

Control lines

Address lines

Data lines

• • •

Figure 3.16 Bus Interconnection Scheme
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 • Memory write:  causes data on the bus to be written into the addressed location

 • Memory read:  causes data from the addressed location to be placed on the 
bus

 • I/O write:  causes data on the bus to be output to the addressed I/O port

 • I/O read:  causes data from the addressed I/O port to be placed on the bus

 • Transfer ACK:  indicates that data have been accepted from or placed on the 
bus

 • Bus request:  indicates that a module needs to gain control of the bus

 • Bus grant:  indicates that a requesting module has been granted control of the 
bus

 • Interrupt request:  indicates that an interrupt is pending

 • Interrupt ACK:  acknowledges that the pending interrupt has been recognized

 • Clock:  is used to synchronize operations

 • Reset:  initializes all modules.

The operation of the bus is as follows. If one module wishes to send data to 
another, it must do two things: (1) obtain the use of the bus, and (2) transfer data 
via the bus. If one module wishes to request data from another module, it must (1) 
obtain the use of the bus, and (2) transfer a request to the other module over the 
appropriate control and address lines. It must then wait for that second module to 
send the data.

Multiple-Bus Hierarchies

If a great number of devices are connected to the bus, performance will suffer. 
There are two main causes:

 1. In general, the more devices attached to the bus, the greater the bus length 
and hence the greater the propagation delay. This delay determines the time 
it takes for devices to coordinate the use of the bus. When control of the bus 
passes from one device to another frequently, these propagation delays can 
noticeably affect performance.

 2. The bus may become a bottleneck as the aggregate data transfer demand 
approaches the capacity of the bus. This problem can be countered to some 
extent by increasing the data rate that the bus can carry and by using wider 
buses (e.g., increasing the data bus from 32 to 64 bits). However, because the 
data rates generated by attached devices (e.g., graphics and video control-
lers, network interfaces) are growing rapidly, this is a race that a single bus is 
 ultimately destined to lose.

Accordingly, most bus-based computer systems use multiple buses, generally 
laid out in a hierarchy. A typical traditional structure is shown in Figure 3.17a. There 
is a local bus that connects the processor to a cache memory and that may support 
one or more local devices. The cache memory controller connects the cache not only 
to this local bus, but to a system bus to which are attached all of the main memory 
 modules. In contemporary systems, the cache is in the same chip as the processor, and 
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so an external bus or other interconnect scheme is not needed, although there may 
also be an external cache. As will be discussed in Chapter 4, the use of a cache struc-
ture insulates the processor from a requirement to access main memory  frequently. 
Hence, main memory can be moved off of the local bus onto a system bus. In this way, 
I/O transfers to and from the main memory across the system bus do not  interfere 
with the processor’s activity.
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It is possible to connect I/O controllers directly onto the system bus. A more 
efficient solution is to make use of one or more expansion buses for this purpose. 
An expansion bus interface buffers data transfers between the system bus and the 
I/O controllers on the expansion bus. This arrangement allows the system to  support 
a wide variety of I/O devices and at the same time insulate memory-to-processor 
 traffic from I/O traffic.

Figure 3.17a shows some typical examples of I/O devices that might be attached 
to the expansion bus. Network connections include local area networks (LANs) 
such as a 10-Mbps Ethernet and connections to wide area networks (WANs) such as 
a packet-switching network. SCSI (small computer system interface) is itself a type 
of bus used to support local disk drives and other peripherals. A serial port could be 
used to support a printer or scanner.

This traditional bus architecture is reasonably efficient but begins to break 
down as higher and higher performance is seen in the I/O devices. In response to 
these growing demands, a common approach taken by industry is to build a high-
speed bus that is closely integrated with the rest of the system, requiring only a 
bridge between the processor’s bus and the high-speed bus. This arrangement is 
sometimes known as a mezzanine architecture.

Figure 3.17b shows a typical realization of this approach. Again, there is a local 
bus that connects the processor to a cache controller, which is in turn connected to 
a system bus that supports main memory. The cache controller is integrated into a 
bridge, or buffering device, that connects to the high-speed bus. This bus supports 
connections to high-speed LANs, such as Fast Ethernet at 100 Mbps, video and 
graphics workstation controllers, as well as interface controllers to local peripheral 
buses, including SCSI and FireWire. The latter is a high-speed bus arrangement 
specifically designed to support high-capacity I/O devices. Lower-speed devices are 
still supported off an expansion bus, with an interface buffering traffic between the 
expansion bus and the high-speed bus.

The advantage of this arrangement is that the high-speed bus brings high-
demand devices into closer integration with the processor and at the same time is 
independent of the processor. Thus, differences in processor and high-speed bus 
speeds and signal line definitions are tolerated. Changes in processor architecture 
do not affect the high-speed bus, and vice versa.

Elements of Bus Design

Although a variety of different bus implementations exist, there are a few basic 
parameters or design elements that serve to classify and differentiate buses. Table 3.2 
lists key elements.

BUS TYPES Bus lines can be separated into two generic types: dedicated and 
multiplexed. A dedicated bus line is permanently assigned either to one function or 
to a physical subset of computer components.

An example of functional dedication is the use of separate dedicated address 
and data lines, which is common on many buses. However, it is not essential. For 
example, address and data information may be transmitted over the same set of 
lines using an Address Valid control line. At the beginning of a data transfer, the 
address is placed on the bus and the Address Valid line is activated. At this point, 
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each module has a specified period of time to copy the address and determine if 
it is the addressed module. The address is then removed from the bus, and the 
same bus connections are used for the subsequent read or write data transfer. This 
method of using the same lines for multiple purposes is known as time multiplexing.

The advantage of time multiplexing is the use of fewer lines, which saves space 
and, usually, cost. The disadvantage is that more complex circuitry is needed within 
each module. Also, there is a potential reduction in performance because certain 
events that share the same lines cannot take place in parallel.

Physical dedication refers to the use of multiple buses, each of which connects 
only a subset of modules. A typical example is the use of an I/O bus to interconnect 
all I/O modules; this bus is then connected to the main bus through some type of I/O 
adapter module. The potential advantage of physical dedication is high throughput, 
because there is less bus contention. A disadvantage is the increased size and cost of 
the system.

METHOD OF ARBITRATION In all but the simplest systems, more than one module 
may need control of the bus. For example, an I/O module may need to read or write 
directly to memory, without sending the data to the processor. Because only one unit 
at a time can successfully transmit over the bus, some method of arbitration is needed. 
The various methods can be roughly classified as being either centralized arbitration 
or distributed arbitration. In a centralized scheme, a single hardware device, referred 
to as a bus controller or arbiter, is responsible for allocating time on the bus. The 
device may be a separate module or part of the processor. In a distributed scheme, 
there is no central controller. Rather, each module contains access control logic and 
the modules act together to share the bus. With both methods of arbitration, the 
purpose is to designate one device, either the processor or an I/O module, as master. 
The master may then initiate a data transfer (e.g., read or write) with some other 
device, which acts as slave for this particular exchange.

TIMING Timing refers to the way in which events are coordinated on the bus. Buses 
use either synchronous timing or asynchronous timing.

With synchronous timing, the occurrence of events on the bus is determined 
by a clock. The bus includes a clock line upon which a clock transmits a regular 
sequence of alternating 1s and 0s of equal duration. A single 1–0 transmission is 
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referred to as a clock cycle or bus cycle and defines a time slot. All other devices on 
the bus can read the clock line, and all events start at the beginning of a clock cycle. 
Figure 3.18 shows a typical, but simplified, timing diagram for synchronous read 
and write operations (see Appendix N for a description of timing diagrams). Other 
bus signals may change at the leading edge of the clock signal (with a slight reaction 
delay). Most events occupy a single clock cycle. In this simple example, the proces-
sor places a memory address on the address lines during the first clock cycle and 
may assert various status lines. Once the address lines have stabilized, the processor 
issues an address enable signal. For a read operation, the processor issues a read 
command at the start of the second cycle. A memory module recognizes the address 
and, after a delay of one cycle, places the data on the data lines. The processor reads 
the data from the data lines and drops the read signal. For a write operation, the 
processor puts the data on the data lines at the start of the second cycle and issues a 
write command after the data lines have stabilized. The memory module copies the 
information from the data lines during the third clock cycle.
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With asynchronous timing, the occurrence of one event on a bus follows 
and depends on the occurrence of a previous event. In the simple read example of 
Figure 3.19a, the processor places address and status signals on the bus. After paus-
ing for these signals to stabilize, it issues a read command, indicating the  presence of 
valid address and control signals. The appropriate memory decodes the address and 
responds by placing the data on the data line. Once the data lines have  stabilized, 
the memory module asserts the acknowledged line to signal the processor that the 
data are available. Once the master has read the data from the data lines, it  deasserts 
the read signal. This causes the memory module to drop the data and acknowl-
edge lines. Finally, once the acknowledge line is dropped, the master removes the 
address information.
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Figure 3.19b shows a simple asynchronous write operation. In this case, the 
master places the data on the data line at the same time that it puts signals on the 
status and address lines. The memory module responds to the write command by 
copying the data from the data lines and then asserting the acknowledge line. The 
master then drops the write signal and the memory module drops the acknowl-
edge signal.

Synchronous timing is simpler to implement and test. However, it is less 
 flexible than asynchronous timing. Because all devices on a synchronous bus are 
tied to a fixed clock rate, the system cannot take advantage of advances in device 
performance. With asynchronous timing, a mixture of slow and fast devices, using 
older and newer technology, can share a bus.

 3.5 POINT-TO-POINT INTERCONNECT

The shared bus architecture was the standard approach to interconnection between 
the processor and other components (memory, I/O, and so on) for decades. But 
contemporary systems increasingly rely on point-to-point interconnection rather 
than shared buses.

The principal reason driving the change from bus to point-to-point intercon-
nect was the electrical constraints encountered with increasing the frequency of wide 
synchronous buses. At higher and higher data rates, it becomes increasingly difficult 
to perform the synchronization and arbitration functions in a timely fashion. Further, 
with the advent of multicore chips, with multiple processors and significant memory 
on a single chip, it was found that the use of a conventional shared bus on the same 
chip magnified the difficulties of increasing bus data rate and reducing bus latency 
to keep up with the processors. Compared to the shared bus, the point-to-point 
 interconnect has lower latency, higher data rate, and better scalability.

In this section, we look at an important and representative example of the 
point-to-point interconnect approach: Intel’s QuickPath Interconnect (QPI), which 
was introduced in 2008.

The following are significant characteristics of QPI and other point-to-point 
interconnect schemes:

 • Multiple direct connections:  Multiple components within the system enjoy 
direct pairwise connections to other components. This eliminates the need for 
arbitration found in shared transmission systems.

 • Layered protocol architecture:  As found in network environments, such as 
TCP/IP-based data networks, these processor-level interconnects use a layered 
protocol architecture, rather than the simple use of control signals found in 
shared bus arrangements.

 • Packetized data transfer:  Data are not sent as a raw bit stream. Rather, data 
are sent as a sequence of packets, each of which includes control headers and 
error control codes.

Figure 3.20 illustrates a typical use of QPI on a multicore computer. The 
QPI links (indicated by the green arrow pairs in the figure) form a switching fabric 
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that enables data to move throughout the network. Direct QPI connections can be 
established between each pair of core processors. If core A in Figure 3.20 needs to 
access the memory controller in core D, it sends its request through either cores B 
or C, which must in turn forward that request on to the memory controller in core D. 
Similarly, larger systems with eight or more processors can be built using processors 
with three links and routing traffic through intermediate processors.

In addition, QPI is used to connect to an I/O module, called an I/O hub (IOH). 
The IOH acts as a switch directing traffic to and from I/O devices. Typically in newer 
systems, the link from the IOH to the I/O device controller uses an interconnect 
 technology called PCI Express (PCIe), described later in this chapter. The IOH trans-
lates between the QPI protocols and formats and the PCIe protocols and formats. A 
core also links to a main memory module (typically the memory uses dynamic access 
random memory (DRAM) technology) using a dedicated memory bus.

QPI is defined as a four-layer protocol architecture,3 encompassing the 
 following layers (Figure 3.21):

 • Physical:  Consists of the actual wires carrying the signals, as well as circuitry 
and logic to support ancillary features required in the transmission and receipt 
of the 1s and 0s. The unit of transfer at the Physical layer is 20 bits, which is 
called a Phit (physical unit).
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3The reader unfamiliar with the concept of a protocol architecture will find a brief overview in Appendix L.
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 • Link:  Responsible for reliable transmission and flow control. The Link layer’s 
unit of transfer is an 80-bit Flit (flow control unit).

 • Routing:  Provides the framework for directing packets through the fabric.

 • Protocol:  The high-level set of rules for exchanging packets of data between 
devices. A packet is comprised of an integral number of Flits.

QPI Physical Layer

Figure 3.22 shows the physical architecture of a QPI port. The QPI port consists of 
84 individual links grouped as follows. Each data path consists of a pair of wires that 
transmits data one bit at a time; the pair is referred to as a lane. There are 20 data lanes 
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in each direction (transmit and receive), plus a clock lane in each direction. Thus, QPI 
is capable of transmitting 20 bits in parallel in each direction. The 20-bit unit is referred 
to as a phit. Typical signaling speeds of the link in current products calls for operation 
at 6.4 GT/s (transfers per second). At 20 bits per transfer, that adds up to 16 GB/s, and 
since QPI links involve dedicated bidirectional pairs, the total capacity is 32 GB/s.

The lanes in each direction are grouped into four quadrants of 5 lanes each. 
In some applications, the link can also operate at half or quarter widths in order to 
reduce power consumption or work around failures.

The form of transmission on each lane is known as differential signaling, or 
balanced transmission. With balanced transmission, signals are transmitted as a 
 current that travels down one conductor and returns on the other. The binary value 
depends on the voltage difference. Typically, one line has a positive voltage value 
and the other line has zero voltage, and one line is associated with binary 1 and one 
line is associated with binary 0. Specifically, the technique used by QPI is known as 
low-voltage differential signaling (LVDS). In a typical implementation, the transmit-
ter injects a small current into one wire or the other, depending on the logic level to 
be sent. The current passes through a resistor at the receiving end, and then returns 
in the opposite direction along the other wire. The receiver senses the polarity of the 
voltage across the resistor to determine the logic level.

Another function performed by the physical layer is that it manages the transla-
tion between 80-bit flits and 20-bit phits using a technique known as multilane distri-
bution. The flits can be considered as a bit stream that is distributed across the data 
lanes in a round-robin fashion (first bit to first lane, second bit to second lane, etc.), as 
illustrated in Figure 3.23. This approach enables QPI to achieve very high data rates 
by implementing the physical link between two ports as multiple parallel channels.

QPI Link Layer

The QPI link layer performs two key functions: flow control and error control. These 
functions are performed as part of the QPI link layer protocol, and operate on the 

#2n+1 #2n #n+2 #n+1 #n #2 #1

bit stream of flits

#2n+1 #n+1 #1 QPI
lane 0

#2n+2 #n+2 #2 QPI
lane 1

#3n #2n #n QPI
lane 19

Figure 3.23 QPI Multilane Distribution
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level of the flit (flow control unit). Each flit consists of a 72-bit message  payload and 
an 8-bit error control code called a cyclic redundancy check (CRC). We discuss error 
control codes in Chapter 5.

A flit payload may consist of data or message information. The data flits trans-
fer the actual bits of data between cores or between a core and an IOH. The message 
flits are used for such functions as flow control, error control, and cache coherence. 
We discuss cache coherence in Chapters 5 and 17.

The flow control function is needed to ensure that a sending QPI entity does 
not overwhelm a receiving QPI entity by sending data faster than the receiver can 
process the data and clear buffers for more incoming data. To control the flow of 
data, QPI makes use of a credit scheme. During initialization, a sender is given a set 
number of credits to send flits to a receiver. Whenever a flit is sent to the receiver, 
the sender decrements its credit counters by one credit. Whenever a buffer is freed 
at the receiver, a credit is returned to the sender for that buffer. Thus, the receiver 
controls that pace at which data is transmitted over a QPI link.

Occasionally, a bit transmitted at the physical layer is changed during trans-
mission, due to noise or some other phenomenon. The error control function at the 
link layer detects and recovers from such bit errors, and so isolates higher layers 
from experiencing bit errors. The procedure works as follows for a flow of data 
from system A to system B:

 1. As mentioned, each 80-bit flit includes an 8-bit CRC field. The CRC is a func-
tion of the value of the remaining 72 bits. On transmission, A calculates a 
CRC value for each flit and inserts that value into the flit.

 2. When a flit is received, B calculates a CRC value for the 72-bit payload and 
compares this value with the value of the incoming CRC value in the flit. If the 
two CRC values do not match, an error has been detected.

 3. When B detects an error, it sends a request to A to retransmit the flit that is 
in error. However, because A may have had sufficient credit to send a stream 
of flits, so that additional flits have been transmitted after the flit in error and 
before A receives the request to retransmit. Therefore, the request is for A to 
back up and retransmit the damaged flit plus all subsequent flits.

QPI Routing Layer

The Routing layer is used to determine the course that a packet will traverse across 
the available system interconnects. Routing tables are defined by firmware and 
describe the possible paths that a packet can follow. In small configurations, such as 
a two-socket platform, the routing options are limited and the routing tables quite 
simple. For larger systems, the routing table options are more complex, giving the 
flexibility of routing and rerouting traffic depending on how (1) devices are popu-
lated in the platform, (2) system resources are partitioned, and (3) reliability events 
result in mapping around a failing resource.

QPI Protocol Layer

In this layer, the packet is defined as the unit of transfer. The packet contents 
definition is standardized with some flexibility allowed to meet differing market 
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segment requirements. One key function performed at this level is a cache coher-
ency protocol, which deals with making sure that main memory values held in 
multiple caches are consistent. A typical data packet payload is a block of data 
being sent to or from a cache.

 3.6 PCI EXPRESS

The peripheral component interconnect (PCI) is a popular high-bandwidth, processor-
independent bus that can function as a mezzanine or peripheral bus. Compared with 
other common bus specifications, PCI delivers better system performance for high-
speed I/O subsystems (e.g., graphic display adapters, network interface controllers, 
and disk controllers).

Intel began work on PCI in 1990 for its Pentium-based systems. Intel soon 
released all the patents to the public domain and promoted the creation of an 
industry association, the PCI Special Interest Group (SIG), to develop further and 
maintain the compatibility of the PCI specifications. The result is that PCI has been 
widely adopted and is finding increasing use in personal computer, workstation, and 
server systems. Because the specification is in the public domain and is supported 
by a broad cross section of the microprocessor and peripheral industry, PCI prod-
ucts built by different vendors are compatible.

As with the system bus discussed in the preceding sections, the bus-based PCI 
scheme has not been able to keep pace with the data rate demands of attached 
devices. Accordingly, a new version, known as PCI Express (PCIe) has been devel-
oped. PCIe, as with QPI, is a point-to-point interconnect scheme intended to replace 
bus-based schemes such as PCI.

A key requirement for PCIe is high capacity to support the needs of higher data 
rate I/O devices, such as Gigabit Ethernet. Another requirement deals with the need 
to support time-dependent data streams. Applications such as video-on-demand and 
audio redistribution are putting real-time constraints on servers too. Many communi-
cations applications and embedded PC control systems also process data in  real-time. 
Today’s platforms must also deal with multiple concurrent transfers at ever-increasing 
data rates. It is no longer acceptable to treat all data as equal—it is more important, 
for example, to process streaming data first since late real-time data is as useless as no 
data. Data needs to be tagged so that an I/O system can prioritize its flow throughout 
the platform.

PCI Physical and Logical Architecture

Figure 3.24 shows a typical configuration that supports the use of PCIe. A root 
 complex device, also referred to as a chipset or a host bridge, connects the proces-
sor and memory subsystem to the PCI Express switch fabric comprising one or 
more PCIe and PCIe switch devices. The root complex acts as a buffering device, to 
deal with difference in data rates between I/O controllers and memory and proces-
sor components. The root complex also translates between PCIe transaction for-
mats and the processor and memory signal and control requirements. The chipset 
will typically support multiple PCIe ports, some of which attach directly to a PCIe 
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device and one or more that attach to a switch that manages multiple PCIe streams. 
PCIe links from the chipset may attach to the following kinds of devices that imple-
ment PCIe:

 • Switch:  The switch manages multiple PCIe streams.

 • PCIe endpoint:  An I/O device or controller that implements PCIe, such as 
a Gigabit Ethernet switch, a graphics or video controller, disk interface, or a 
communications controller.

 • Legacy endpoint:  Legacy endpoint category is intended for existing designs 
that have been migrated to PCI Express, and it allows legacy behaviors such 
as use of I/O space and locked transactions. PCI Express endpoints are not 
permitted to require the use of I/O space at runtime and must not use locked 
transactions. By distinguishing these categories, it is possible for a system 
designer to restrict or eliminate legacy behaviors that have negative impacts 
on system performance and robustness.

 • PCIe/PCI bridge:  Allows older PCI devices to be connected to PCIe-based 
systems.

As with QPI, PCIe interactions are defined using a protocol architecture. The 
PCIe protocol architecture encompasses the following layers (Figure 3.25):
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 • Physical:  Consists of the actual wires carrying the signals, as well as circuitry 
and logic to support ancillary features required in the transmission and receipt 
of the 1s and 0s.

 • Data link:  Is responsible for reliable transmission and flow control. Data 
packets generated and consumed by the DLL are called Data Link Layer 
Packets (DLLPs).

 • Transaction:  Generates and consumes data packets used to implement load/
store data transfer mechanisms and also manages the flow control of those 
packets between the two components on a link. Data packets generated and 
consumed by the TL are called Transaction Layer Packets (TLPs).

Above the TL are software layers that generate read and write requests that 
are transported by the transaction layer to the I/O devices using a packet-based 
transaction protocol.

PCIe Physical Layer

Similar to QPI, PCIe is a point-to-point architecture. Each PCIe port consists of a 
number of bidirectional lanes (note that in QPI, the lane refers to transfer in one 
direction only). Transfer in each direction in a lane is by means of differential sig-
naling over a pair of wires. A PCI port can provide 1, 4, 6, 16, or 32 lanes. In what 
follows, we refer to the PCIe 3.0 specification, introduced in late 2010.

As with QPI, PCIe uses a multilane distribution technique. Figure 3.26 shows 
an example for a PCIe port consisting of four lanes. Data are distributed to the four 
lanes 1 byte at a time using a simple round-robin scheme. At each physical lane, 
data are buffered and processed 16 bytes (128 bits) at a time. Each block of 128 bits 
is encoded into a unique 130-bit codeword for transmission; this is referred to as 
128b/130b encoding. Thus, the effective data rate of an individual lane is reduced 
by a factor of 128/130.

To understand the rationale for the 128b/130b encoding, note that unlike 
QPI, PCIe does not use its clock line to synchronize the bit stream. That is, the 
clock line is not used to determine the start and end point of each incoming bit; it 
is used for other signaling purposes only. However, it is necessary for the receiver 
to be synchronized with the transmitter, so that the receiver knows when each bit 
begins and ends. If there is any drift between the clocks used for bit transmission 
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and reception of the transmitter and receiver, errors may occur. To compensate for 
the possibility of drift, PCIe relies on the receiver synchronizing with the transmit-
ter based on the transmitted signal. As with QPI, PCIe uses differential signaling 
over a pair of wires. Synchronization can be achieved by the receiver looking for 
transitions in the data and synchronizing its clock to the transition. However, con-
sider that with a long string of 1s or 0s using differential signaling, the output is a 
constant voltage over a long period of time. Under these circumstances, any drift 
between the clocks of transmitter and receiver will result in loss of synchronization 
between the two.

A common approach, and the one used in PCIe 3.0, to overcoming the prob-
lem of a long string of bits of one value is scrambling. Scrambling, which does 
not increase the number of bits to be transmitted, is a mapping technique that 
tends to make the data appear more random. The scrambling tends to spread 
out the number of transitions so that they appear at the receiver more uniformly 
spaced, which is good for synchronization. Also, other transmission properties, 
such as spectral properties, are enhanced if the data are more nearly of a random 
nature rather than constant or repetitive. For more discussion of scrambling, see 
Appendix M.

Another technique that can aid in synchronization is encoding, in which addi-
tional bits are inserted into the bit stream to force transitions. For PCIe 3.0, each 
group of 128 bits of input is mapped into a 130-bit block by adding a 2-bit block sync 
header. The value of the header is 10 for a data block and 01 for what is called an 
ordered set block, which refers to a link-level information block.

Figure 3.27 illustrates the use of scrambling and encoding. Data to be trans-
mitted are fed into a scrambler. The scrambled output is then fed into a 128b/130b 
encoder, which buffers 128 bits and then maps the 128-bit block into a 130-bit block. 
This block then passes through a parallel-to-serial converter and transmitted one bit 
at a time using differential signaling.

At the receiver, a clock is synchronized to the incoming data to recover the 
bit stream. This then passes through a serial-to-parallel converter to produce a 
stream of 130-bit blocks. Each block is passed through a 128b/130b decoder to 
recover the original scrambled bit pattern, which is then descrambled to produce 
the original bit stream.

Using these techniques, a data rate of 16 GB/s can be achieved. One final 
detail to mention. Each transmission of a block of data over a PCI link begins and 
ends with an 8-bit framing sequence intended to give the receiver time to synchro-
nize with the incoming physical layer bit stream.

PCIe Transaction Layer

The transaction layer (TL) receives read and write requests from the software above 
the TL and creates request packets for transmission to a destination via the link 
layer. Most transactions use a split transaction technique, which works in the follow-
ing fashion. A request packet is sent out by a source PCIe device, which then waits 
for a response, called a completion packet. The completion following a request is 
initiated by the completer only when it has the data and/or status ready for delivery. 
Each packet has a unique identifier that enables completion packets to be directed 



3.6 / PCI EXPRESS  103

to the correct originator. With the split transaction technique, the completion is 
separated in time from the request, in contrast to a typical bus operation in which 
both sides of a transaction must be available to seize and use the bus. Between the 
request and the completion, other PCIe traffic may use the link.

TL messages and some write transactions are posted transactions, meaning 
that no response is expected.

The TL packet format supports 32-bit memory addressing and extended 64-bit 
memory addressing. Packets also have attributes such as “no-snoop,” “relaxedorder-
ing,” and “priority,” which may be used to optimally route these packets through the 
I/O subsystem.

ADDRESS SPACES AND TRANSACTION TYPES The TL supports four address spaces:

 • Memory:  The memory space includes system main memory. It also includes 
PCIe I/O devices. Certain ranges of memory addresses map into I/O devices.

 • I/O:  This address space is used for legacy PCI devices, with reserved memory 
address ranges used to address legacy I/O devices.

Scrambler
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Receiver

Data recovery
circuit

Clock recovery
circuit

8b

130b

128b

130b
1b

1b

1b

128b/130b Encoding

Parallel to serial

(a) Transmitter

Serial to parallel

Transmitter Differential
Driver 128b/130b Decoding

Descrambler

(b) Receiver

8b

8b

D+ D–

D+ D–

Figure 3.27 PCIe Transmit and Receive Block Diagrams
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 • Configuration:  This address space enables the TL to read/write configuration 
registers associated with I/O devices.

 • Message:  This address space is for control signals related to interrupts, error 
handling, and power management.

Table 3.3 shows the transaction types provided by the TL. For memory, I/O, and 
configuration address spaces, there are read and write transactions. In the case of 
memory transactions, there is also a read lock request function. Locked operations 
occur as a result of device drivers requesting atomic access to registers on a PCIe 
device. A device driver, for example, can atomically read, modify, and then write 
to a device register. To accomplish this, the device driver causes the processor to 
execute an instruction or set of instructions. The root complex converts these proc-
essor instructions into a sequence of PCIe transactions, which perform individual 
read and write requests for the device driver. If these transactions must be executed 
atomically, the root complex locks the PCIe link while executing the transactions. 
This locking prevents transactions that are not part of the sequence from occur-
ring. This sequence of transactions is called a locked operation. The particular set 

Table 3.3 PCIe TLP Transaction Types

Address Space TLP Type Purpose

Memory

Memory Read Request

Memory Read Lock  
Request

Memory Write Request

Transfer data to or from a location in the 
system memory map.

I/O
I/O Read Request

I/O Write Request

Transfer data to or from a location in the  
system memory map for legacy devices.

Configuration

Config Type 0 Read  
Request

Config Type 0 Write  
Request

Config Type 1 Read  
Request

Config Type 1 Write  
Request

Transfer data to or from a location in the  
configuration space of a PCIe device.

Message

Message Request

Message Request with  
Data

Provides in-band messaging and  
event reporting.

Memory, I/O, 
Configuration

Completion

Completion with Data

Completion Locked

Completion Locked with  
Data

Returned for certain requests.
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of processor instructions that can cause a locked operation to occur depends on the 
system chip set and processor architecture.

To maintain compatibility with PCI, PCIe supports both Type 0 and Type 1 con-
figuration cycles. A Type 1 cycle propagates downstream until it reaches the bridge 
interface hosting the bus (link) that the target device resides on. The configuration 
transaction is converted on the destination link from Type 1 to Type 0 by the bridge.

Finally, completion messages are used with split transactions for memory, I/O, 
and configuration transactions.

TLP PACKET ASSEMBLY PCIe transactions are conveyed using transaction 
layer packets, which are illustrated in Figure 3.28a. A TLP originates in the 
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transaction layer of the sending device and terminates at the transaction layer of 
the receiving device.

Upper layer software sends to the TL the information needed for the TL to 
create the core of the TLP, which consists of the following fields:

 • Header:  The Header describes the type of packet and includes information 
needed by the receiver to process the packet, including any needed routing 
information. The internal header format is discussed subsequently.

 • Data:  A Data field of up to 4096 bytes may be included in the TLP. Some 
TLPs do not contain a Data field.

 • ECRC:  An optional end-to-end CRC field enables the destination TL layer to 
check for errors in the Header and Data portions of the TLP.

An example of a TLP header format, used for a memory request transaction, 
is shown in Figure 3.29. The fields shaded green indicate fields that are present in 
all headers. In addition to fields reserved for future use (R), these fields include the 
following:

 • Length:  Length of the Data field in double words (DW), where one DW = 
4 bytes.

 • Attributes:  Consists of two bits. The relaxed ordering bit indicates whether 
strict or relaxed ordering is used. With relaxed ordering, a transaction may 
be completed prior to other transactions that were already enqueued. The no 
snoop bit, when set, indicates that no cache coherency issues exist with respect 
to this TLP.

 • EP:  Poisoned data bit. If set, this bit indicates the data in this TLP should be con-
sidered invalid, although the transaction is being allowed to complete normally.

 • TE:  TLP digest field present. If set, indicates that the ECRC field is present.

 • Traffic Class:  A 3-bit traffic class can be assigned to a traffic flow to enable 
PCIe to prioritize service.

 • Type, Format:  These two fields, totaling 7 bits, specify transaction type, 
header size, and whether a data field is present.

Type

Requestor ID Tag

Address [63:32]

Address [31:2]

R

R

Fmt Length

32 bits

16
 o

ct
et

s

Attr RRR
Traffic
Class

T
E

Last
DW BE

First
DW BE

E
P

Figure 3.29 TLP Memory Request Format
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 • First DW Byte Enables:  These four bits indicate, respectively, whether the 
corresponding byte in the first DW is valid.

 • Last DW Byte Enables:  These four bits indicate, respectively, whether the 
corresponding byte in the last DW is valid. This and the preceding field have 
the effect of allowing smaller transfers that a full DW and offsetting the start 
and end addresses from the DW boundary.

Figure 3.29 shows a TLP header for a memory request transaction. The 
Requestor ID identifies the memory requestor, telling the completer where to send 
its response. The Tag is a number assigned to this transaction by the requestor; the 
completer must include this Tag in its response so that the requestor can match 
request and response. The Address field indicates the starting memory address to 
be read from.

PCIe Data Link Layer

The purpose of the PCIe data link layer is to ensure reliable delivery of packets 
across the PCIe link. The DLL participates in the formation of TLPs and also trans-
mits DLLPs.

DATA LINK LAYER PACKETS Data link layer packets originate at the data link 
layer of a transmitting device and terminate at the DLL of the device on the 
other end of the link. Figure 3.29b shows the format of a DLLP. There are three 
important groups of DLLPs used in managing a link: flow control packets, power 
management packets, and TLP ACK and NAK packets. Power management 
packets are used in managing power platform budgeting. Flow control packets 
regulate the rate at which TLPs and DLLPs can be transmitted across a link. The 
ACK and NAK packets are used in TLP processing, discussed in the following 
paragraphs.

TRANSACTION LAYER PACKET PROCESSING The DLL adds two fields to the 
core of the TLP created by the TL (Figure 3.29a): a 16-bit sequence number and a 
32-bit link-layer CRC (LCRC). Whereas the core fields created at the TL are only 
used at the destination TL, the two fields added by the DLL are processed at each 
intermediate node on the way from source to destination.

When a TLP arrives at a device, the DLL strips off the sequence number and 
LCRC fields and checks the LCRC. There are two possibilities:

 1. If no errors are detected, the core portion of the TLP is handed up to the local 
transaction layer. If this receiving device is the intended destination, then the 
TL processes the TLP. Otherwise, the TL determines a route for the TLP and 
passes it back down to the DLL for transmission over the next link on the way 
to the destination.

 2. If an error is detected, the DLL schedules an NAK DLL packet to return back 
to the remote transmitter. The TLP is eliminated.

When the DLL transmits a TLP, it retains a copy of the TLP. If it receives 
an NAK for the TLP with this sequence number, it retransmits the TLP. When it 
receives an ACK, it discards the buffered TLP.
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address bus
address lines
arbitration
asynchronous timing
balanced transmission
bus
bus width
centralized arbitration
control lines
data bus
data lines
differential signaling
disabled interrupt

distributed arbitration
error control function
execute cycle
fetch cycle
flit
flow control function
instruction cycle
interrupt
interrupt handler
interrupt service routine (ISR)
lane
memory address register 

(MAR)

memory buffer register (MBR)
multilane distribution
Packets
PCI Express (PCIe)
peripheral component  

interconnect (PCI)
phit
QuickPath Interconnect 

(QPI)
root complex
synchronous timing
system bus

 3.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

 3.7 RECOMMENDED READING

[SING10] provides a good overview of QPI. For a thorough discussion, see [MADD09]. 
[KOLB05] is a good overview of PCIe. The clearest book-length description of PCIe is 
[WILE03].

KOLB05 Kolbehdari, M., et al. “The Emergence of PCI Express* in the Next Genera-
tion of Mobile Platforms.” Intel Technology Journal, February 2005.

MADD09 Maddox, R., et al. Weaving High Performance Multiprocessor Fabric: Archi-
tectural Insights to the Intel QuickPath Interconnect. Hillsboro, OR: Intel Press, 2009.

SING10 Singh, G., et al. “The Feeding of High-Performance Processor Cores—Quickpath 
Interconnects and the New I/O Hubs.” Intel Technology Journal, September 2010.

WILE03 Wilen, A.; Schade, J.; and Thronburg, R. Introduction to PCI Express—A 
Hardware and Software Developers Guide. Hillsboro, OR: Intel Press, 2003.

Review Questions
 3.1 What general categories of functions are specified by computer instructions?
 3.2 List and briefly define the possible states that define an instruction execution.
 3.3 List and briefly define two approaches to dealing with multiple interrupts.
 3.4 What types of transfers must a computer’s interconnection structure (e.g., bus) support?
 3.5 What is the benefit of using a multiple-bus architecture compared to a single-bus 

 architecture?
 3.6 List and briefly define the QPI protocol layers.
 3.7 List and briefly define the PCIe protocol layers.
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Problems

 3.1 The hypothetical machine of Figure 3.4 also has two I/O instructions:

0011 = Load AC from I/O

0111 = Store AC to I/O

In these cases, the 12-bit address identifies a particular I/O device. Show the program 
execution (using the format of Figure 3.5) for the following program:
1. Load AC from device 5.
2. Add contents of memory location 940.
3. Store AC to device 6.

Assume that the next value retrieved from device 5 is 3 and that location 940 contains 
a value of 2.

 3.2 The program execution of Figure 3.5 is described in the text using six steps. Expand 
this description to show the use of the MAR and MBR.

 3.3 Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of 
two fields: the first byte contains the opcode and the remainder the immediate oper-
and or an operand address.
a. What is the maximum directly addressable memory capacity (in bytes)?
b. Discuss the impact on the system speed if the microprocessor bus has

1. a 32-bit local address bus and a 16-bit local data bus, or
2. a 16-bit local address bus and a 16-bit local data bus.

c. How many bits are needed for the program counter and the instruction register?
 3.4 Consider a hypothetical microprocessor generating a 16-bit address (for example, 

 assume that the program counter and the address registers are 16 bits wide) and hav-
ing a 16-bit data bus.
a. What is the maximum memory address space that the processor can access  directly 

if it is connected to a “16-bit memory”?
b. What is the maximum memory address space that the processor can access  directly 

if it is connected to an “8-bit memory”?
c. What architectural features will allow this microprocessor to access a separate 

“I/O space”?
d. If an input and an output instruction can specify an 8-bit I/O port number, how 

many 8-bit I/O ports can the microprocessor support? How many 16-bit I/O ports? 
Explain.

 3.5 Consider a 32-bit microprocessor, with a 16-bit external data bus, driven by an 8-MHz 
input clock. Assume that this microprocessor has a bus cycle whose minimum dura-
tion equals four input clock cycles. What is the maximum data transfer rate across 
the bus that this microprocessor can sustain, in bytes/s? To increase its performance, 
would it be better to make its external data bus 32 bits or to double the external clock 
frequency supplied to the microprocessor? State any other assumptions you make, 
and explain. Hint: Determine the number of bytes that can be transferred per bus 
cycle.

 3.6 Consider a computer system that contains an I/O module controlling a simple key-
board/printer teletype. The following registers are contained in the processor and con-
nected directly to the system bus:

INPR: Input Register, 8 bits
OUTR: Output Register, 8 bits
FGI: Input Flag, 1 bit
FGO: Output Flag, 1 bit
IEN: Interrupt Enable, 1 bit

Keystroke input from the teletype and printer output to the teletype are controlled 
by the I/O module. The teletype is able to encode an alphanumeric symbol to an 8-bit 
word and decode an 8-bit word into an alphanumeric symbol.
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a. Describe how the processor, using the first four registers listed in this problem, can 
achieve I/O with the teletype.

b. Describe how the function can be performed more efficiently by also employing 
IEN.

 3.7 Consider two microprocessors having 8- and 16-bit-wide external data buses, respec-
tively. The two processors are identical otherwise and their bus cycles take just as long.
a. Suppose all instructions and operands are two bytes long. By what factor do the 

maximum data transfer rates differ?
b. Repeat assuming that half of the operands and instructions are one byte long.

 3.8 Figure 3.30 indicates a distributed arbitration scheme that can be used with an obso-
lete bus scheme known as Multibus I. Agents are daisy-chained physically in priority 
order. The left-most agent in the diagram receives a constant bus priority in (BPRN) 
signal indicating that no higher-priority agent desires the bus. If the agent does not 
require the bus, it asserts its bus priority out (BPRO) line. At the beginning of a clock 
cycle, any agent can request control of the bus by lowering its BPRO line. This lowers 
the BPRN line of the next agent in the chain, which is in turn required to lower its 
BPRO line. Thus, the signal is propagated the length of the chain. At the end of this 
chain reaction, there should be only one agent whose BPRN is asserted and whose 
BPRO is not. This agent has priority. If, at the beginning of a bus cycle, the bus is not 
busy (BUSY inactive), the agent that has priority may seize control of the bus by 
 asserting the BUSY line.

It takes a certain amount of time for the BPR signal to propagate from the highest-
priority agent to the lowest. Must this time be less than the clock cycle? Explain.

 3.9 The VAX SBI bus uses a distributed, synchronous arbitration scheme. Each SBI 
device (i.e., processor, memory, I/O module) has a unique priority and is assigned a 
unique transfer request (TR) line. The SBI has 16 such lines (TR0, TR1, …, TR15), 
with TR0 having the highest priority. When a device wants to use the bus, it places a 
reservation for a future time slot by asserting its TR line during the current time slot. 
At the end of the current time slot, each device with a pending reservation examines 
the TR lines; the highest-priority device with a reservation uses the next time slot.

A maximum of 17 devices can be attached to the bus. The device with priority 
16 has no TR line. Why not?

 3.10 On the VAX SBI, the lowest-priority device usually has the lowest average wait time. 
For this reason, the processor is usually given the lowest priority on the SBI. Why does 
the priority 16 device usually have the lowest average wait time? Under what circum-
stances would this not be true?

 3.11 For a synchronous read operation (Figure 3.18), the memory module must place the 
data on the bus sufficiently ahead of the falling edge of the Read signal to allow for 

Bus
terminator

Bus
terminator

BPRN BPRO BPRN BPRO BPRN BPRO

(highest priority)

Master 1 Master 2 Master 3

(lowest priority)

Figure 3.30 Multibus I Distributed Arbitration
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signal settling. Assume a microprocessor bus is clocked at 10 MHz and that the Read 
signal begins to fall in the middle of the second half of T3.
a. Determine the length of the memory read instruction cycle.
b. When, at the latest, should memory data be placed on the bus? Allow 20 ns for the 

settling of data lines.
 3.12 Consider a microprocessor that has a memory read timing as shown in Figure 3.18. 

After some analysis, a designer determines that the memory falls short of providing 
read data on time by about 180 ns.
a. How many wait states (clock cycles) need to be inserted for proper system opera-

tion if the bus clocking rate is 8 MHz?
b. To enforce the wait states, a Ready status line is employed. Once the processor 

has issued a Read command, it must wait until the Ready line is asserted before 
attempting to read data. At what time interval must we keep the Ready line low in 
order to force the processor to insert the required number of wait states?

 3.13 A microprocessor has a memory write timing as shown in Figure 3.18. Its manufac-
turer specifies that the width of the Write signal can be determined by T – 50, where 
T is the clock period in ns.
a. What width should we expect for the Write signal if bus clocking rate is 5 MHz?
b. The data sheet for the microprocessor specifies that the data remain valid for 

20 ns after the falling edge of the Write signal. What is the total duration of valid 
data presentation to memory?

c. How many wait states should we insert if memory requires valid data presentation 
for at least 190 ns?

 3.14 A microprocessor has an increment memory direct instruction, which adds 1 to the 
value in a memory location. The instruction has five stages: fetch opcode (four bus 
clock cycles), fetch operand address (three cycles), fetch operand (three cycles), add 1 
to operand (three cycles), and store operand (three cycles).
a. By what amount (in percent) will the duration of the instruction increase if we have 

to insert two bus wait states in each memory read and memory write operation?
b. Repeat assuming that the increment operation takes 13 cycles instead of 3 cycles.

 3.15 The Intel 8088 microprocessor has a read bus timing similar to that of Figure 3.18, 
but requires four processor clock cycles. The valid data is on the bus for an amount 
of time that extends into the fourth processor clock cycle. Assume a processor clock 
rate of 8 MHz.
a. What is the maximum data transfer rate?
b. Repeat but assume the need to insert one wait state per byte transferred.

 3.16 The Intel 8086 is a 16-bit processor similar in many ways to the 8-bit 8088. The 8086 
uses a 16-bit bus that can transfer 2 bytes at a time, provided that the lower-order 
byte has an even address. However, the 8086 allows both even- and odd-aligned word 
operands. If an odd-aligned word is referenced, two memory cycles, each consisting of 
four bus cycles, are required to transfer the word. Consider an instruction on the 8086 
that involves two 16-bit operands. How long does it take to fetch the operands? Give 
the range of possible answers. Assume a clocking rate of 4 MHz and no wait states.

 3.17 Consider a 32-bit microprocessor whose bus cycle is the same duration as that of a 
16-bit microprocessor. Assume that, on average, 20% of the operands and instruc-
tions are 32 bits long, 40% are 16 bits long, and 40% are only 8 bits long. Calculate 
the improvement achieved when fetching instructions and operands with the 32-bit 
microprocessor.

 3.18 The microprocessor of Problem 3.14 initiates the fetch operand stage of the incre-
ment memory direct instruction at the same time that a keyboard actives an interrupt 
request line. After how long does the processor enter the interrupt processing cycle? 
Assume a bus clocking rate of 10 MHz.
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Although seemingly simple in concept, computer memory exhibits perhaps the wid-
est range of type, technology, organization, performance, and cost of any feature 
of a computer system. No single technology is optimal in satisfying the memory 
requirements for a computer system. As a consequence, the typical computer 
system is equipped with a hierarchy of memory subsystems, some internal to the 
system (directly accessible by the processor) and some external (accessible by the 
processor via an I/O module).

This chapter and the next focus on internal memory elements, while Chapter 6 
is devoted to external memory. To begin, the first section examines key characteristics 
of computer memories. The remainder of the chapter examines an essential  element 
of all modern computer systems: cache memory.

 4.1 COMPUTER MEMORY SYSTEM OVERVIEW

Characteristics of Memory Systems

The complex subject of computer memory is made more manageable if we classify 
memory systems according to their key characteristics. The most important of these 
are listed in Table 4.1.

The term location in Table 4.1 refers to whether memory is internal and exter-
nal to the computer. Internal memory is often equated with main memory. But there 
are other forms of internal memory. The processor requires its own local memory, in 
the form of registers (e.g., see Figure 2.3). Further, as we shall see, the control unit 
portion of the processor may also require its own internal memory. We will defer 
discussion of these latter two types of internal memory to later chapters. Cache is 
another form of internal memory. External memory consists of peripheral storage 
devices, such as disk and tape, that are accessible to the processor via I/O controllers.

An obvious characteristic of memory is its capacity. For internal memory, this is 
typically expressed in terms of bytes (1 byte = 8 bits) or words. Common word lengths 
are 8, 16, and 32 bits. External memory capacity is typically expressed in terms of bytes.

A related concept is the unit of transfer. For internal memory, the unit 
of transfer is equal to the number of electrical lines into and out of the memory 

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Present an overview of the main characteristics of computer memory systems 
and the use of a memory hierarchy.

� Describe the basic concepts and intent of cache memory.

� Discuss the key elements of cache design.

� Distinguish among direct mapping, associative mapping, and set-associative 
mapping.

� Explain the reasons for using multiple levels of cache.
� Understand the performance implications of multiple levels of memory.
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 module. This may be equal to the word length, but is often larger, such as 64, 128, or 
256 bits. To clarify this point, consider three related concepts for internal memory:

 • Word: The “natural” unit of organization of memory. The size of a word is typi-
cally equal to the number of bits used to represent an integer and to the instruc-
tion length. Unfortunately, there are many exceptions. For example, the CRAY 
C90 (an older model CRAY supercomputer) has a 64-bit word length but uses 
a 46-bit integer representation. The Intel x86 architecture has a wide variety of 
instruction lengths, expressed as multiples of bytes, and a word size of 32 bits.

 • Addressable units: In some systems, the addressable unit is the word. However, 
many systems allow addressing at the byte level. In any case, the relationship 
between the length in bits A of an address and the number N of addressable 
units is 2A = N.

 • Unit of transfer: For main memory, this is the number of bits read out of or 
written into memory at a time. The unit of transfer need not equal a word or 
an addressable unit. For external memory, data are often transferred in much 
larger units than a word, and these are referred to as blocks.

Another distinction among memory types is the method of accessing units of 
data. These include the following:

 • Sequential access: Memory is organized into units of data, called records. 
Access must be made in a specific linear sequence. Stored addressing informa-
tion is used to separate records and assist in the retrieval process. A shared 
read–write mechanism is used, and this must be moved from its current loca-
tion to the desired location, passing and rejecting each intermediate record. 
Thus, the time to access an arbitrary record is highly variable. Tape units, dis-
cussed in Chapter 6, are sequential access.

Table 4.1 Key Characteristics of Computer Memory Systems

Location

Internal (e.g., processor registers, cache, main
memory)

External (e.g., optical disks, magnetic
disks, tapes)

Capacity

Number of words

Number of bytes

Unit of Transfer

Word

Block

Access Method

Sequential

Direct

Random

Associative

Performance

Access time

Cycle time

Transfer rate

Physical Type

Semiconductor

Magnetic

Optical

Magneto-optical

Physical Characteristics

Volatile/nonvolatile

Erasable/nonerasable

Organization

Memory modules
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 • Direct access: As with sequential access, direct access involves a shared 
read–write mechanism. However, individual blocks or records have a unique 
address based on physical location. Access is accomplished by direct access 
to reach a general vicinity plus sequential searching, counting, or waiting to 
reach the final location. Again, access time is variable. Disk units, discussed in 
Chapter 6, are direct access.

 • Random access: Each addressable location in memory has a unique, physically 
wired-in addressing mechanism. The time to access a given location is inde-
pendent of the sequence of prior accesses and is constant. Thus, any location 
can be selected at random and directly addressed and accessed. Main memory 
and some cache systems are random access.

 • Associative: This is a random access type of memory that enables one to make 
a comparison of desired bit locations within a word for a specified match, and 
to do this for all words simultaneously. Thus, a word is retrieved based on a 
portion of its contents rather than its address. As with ordinary random-access 
memory, each location has its own addressing mechanism, and retrieval time 
is constant independent of location or prior access patterns. Cache memories 
may employ associative access.

From a user’s point of view, the two most important characteristics of memory 
are capacity and performance. Three performance parameters are used:

 • Access time (latency): For random-access memory, this is the time it takes to 
perform a read or write operation, that is, the time from the instant that an 
address is presented to the memory to the instant that data have been stored 
or made available for use. For non-random-access memory, access time is the 
time it takes to position the read–write mechanism at the desired location.

 • Memory cycle time: This concept is primarily applied to random-access memory 
and consists of the access time plus any additional time required before a second 
access can commence. This additional time may be required for transients to die 
out on signal lines or to regenerate data if they are read destructively. Note that 
memory cycle time is concerned with the system bus, not the processor.

 • Transfer rate: This is the rate at which data can be transferred into or out of a 
memory unit. For random-access memory, it is equal to 1/(cycle time).

For non-random-access memory, the following relationship holds:

 Tn = TA +  
n
R

 (4.1)

where

Tn = Average time to read or write n bits

TA = Average access time

n = Number of bits

R = Transfer rate, in bits per second (bps)

A variety of physical types of memory have been employed. The most com-
mon today are semiconductor memory, magnetic surface memory, used for disk and 
tape, and optical and magneto-optical.
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Several physical characteristics of data storage are important. In a volatile 
memory, information decays naturally or is lost when electrical power is switched 
off. In a nonvolatile memory, information once recorded remains without deterio-
ration until deliberately changed; no electrical power is needed to retain informa-
tion. Magnetic-surface memories are nonvolatile. Semiconductor memory (memory 
on integrated circuits) may be either volatile or nonvolatile. Nonerasable memory 
cannot be altered, except by destroying the storage unit. Semiconductor memory of 
this type is known as read-only memory (ROM). Of necessity, a practical noneras-
able memory must also be nonvolatile.

For random-access memory, the organization is a key design issue. In this con-
text, organization refers to the physical arrangement of bits to form words. The 
obvious arrangement is not always used, as is explained in Chapter 5.

The Memory Hierarchy

The design constraints on a computer’s memory can be summed up by three ques-
tions: How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there, 
applications will likely be developed to use it. The question of how fast is, in a sense, 
easier to answer. To achieve greatest performance, the memory must be able to 
keep up with the processor. That is, as the processor is executing instructions, we 
would not want it to have to pause waiting for instructions or operands. The final 
question must also be considered. For a practical system, the cost of memory must 
be reasonable in relationship to other components.

As might be expected, there is a trade-off among the three key characteristics 
of memory: capacity, access time, and cost. A variety of technologies are used to 
implement memory systems, and across this spectrum of technologies, the following 
relationships hold:

 • Faster access time, greater cost per bit

 • Greater capacity, smaller cost per bit

 • Greater capacity, slower access time

The dilemma facing the designer is clear. The designer would like to use mem-
ory technologies that provide for large-capacity memory, both because the capac-
ity is needed and because the cost per bit is low. However, to meet performance 
requirements, the designer needs to use expensive, relatively lower-capacity memo-
ries with short access times.

The way out of this dilemma is not to rely on a single memory component or 
technology, but to employ a memory hierarchy. A typical hierarchy is illustrated in 
Figure 4.1. As one goes down the hierarchy, the following occur:

 a. Decreasing cost per bit

 b. Increasing capacity

 c. Increasing access time

 d. Decreasing frequency of access of the memory by the processor

Thus, smaller, more expensive, faster memories are supplemented by larger, 
cheaper, slower memories. The key to the success of this organization is item (d): 
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decreasing frequency of access. We examine this concept in greater detail when we 
discuss the cache, later in this chapter, and virtual memory in Chapter 8. A brief 
explanation is provided at this point.

The use of two levels of memory to reduce average access time works in prin-
ciple, but only if conditions (a) through (d) apply. By employing a variety of tech-
nologies, a spectrum of memory systems exists that satisfies conditions (a) through 
(c). Fortunately, condition (d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of 
reference [DENN68]. During the course of execution of a program, memory refer-
ences by the processor, for both instructions and data, tend to cluster. Programs 
typically contain a number of iterative loops and subroutines. Once a loop or sub-
routine is entered, there are repeated references to a small set of instructions. 
Similarly, operations on tables and arrays involve access to a clustered set of data 
words. Over a long period of time, the clusters in use change, but over a short period 
of time, the processor is primarily working with fixed clusters of memory references.

Inboardmemory

Outboardstorage

Off-linestorage
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memory

Magnetic disk

CD-ROM

CD-RW

DVD-RW
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Blu-Ray

Magnetic tape
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Figure 4.1 The Memory Hierarchy
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Example 4.1 Suppose that the processor has access to two levels of memory. Level 1 
contains 1000 words and has an access time of 0.01 μs; level 2 contains 100,000 words 
and has an access time of 0.1 μs. Assume that if a word to be accessed is in level 1, then 
the processor accesses it directly. If it is in level 2, then the word is first transferred to 
level 1 and then accessed by the processor. For simplicity, we ignore the time required 
for the processor to determine whether the word is in level 1 or level 2. Figure 4.2 shows 
the general shape of the curve that covers this situation. The figure shows the average 
access time to a two-level memory as a function of the hit ratio H, where H is defined as 
the fraction of all memory accesses that are found in the faster memory (e.g., the cache), 
T1 is the access time to level 1, and T2 is the access time to level 2.1 As can be seen, for 
high percentages of level 1 access, the average total access time is much closer to that of 
level 1 than that of level 2.

In our example, suppose 95% of the memory accesses are found in level 1. Then the 
average time to access a word can be expressed as

(0.95)(0.01 ms) + (0.05)(0.01 ms + 0.1 ms) = 0.0095 + 0.0055 = 0.015 ms

The average access time is much closer to 0.01 μs than to 0.1 μs, as desired.

1If the accessed word is found in the faster memory, that is defined as a hit. A miss occurs if the accessed 
word is not found in the faster memory.
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Figure 4.2 Performance of Accesses Involving only 
Level 1 (hit ratio)

Accordingly, it is possible to organize data across the hierarchy such that the 
percentage of accesses to each successively lower level is substantially less than that 
of the level above. Consider the two-level example already presented. Let level 2 
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memory contains all program instructions and data. The current clusters can be 
temporarily placed in level 1. From time to time, one of the clusters in level 1 will 
have to be swapped back to level 2 to make room for a new cluster coming in to 
level 1. On average, however, most references will be to instructions and data con-
tained in level 1.

This principle can be applied across more than two levels of memory, as sug-
gested by the hierarchy shown in Figure 4.1. The fastest, smallest, and most expen-
sive type of memory consists of the registers internal to the processor. Typically, a 
processor will contain a few dozen such registers, although some machines contain 
hundreds of registers. Main memory is the principal internal memory system of 
the computer. Each location in main memory has a unique address. Main memory 
is usually extended with a higher-speed, smaller cache. The cache is not usually 
visible to the programmer or, indeed, to the processor. It is a device for staging 
the movement of data between main memory and processor registers to improve 
performance.

The three forms of memory just described are, typically, volatile and employ 
semiconductor technology. The use of three levels exploits the fact that semicon-
ductor memory comes in a variety of types, which differ in speed and cost. Data are 
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable magnetic disk, tape, 
and optical storage. External, nonvolatile memory is also referred to as secondary 
memory or auxiliary memory. These are used to store program and data files and 
are usually visible to the programmer only in terms of files and records, as opposed 
to individual bytes or words. Disk is also used to provide an extension to main mem-
ory known as virtual memory, which is discussed in Chapter 8.

Other forms of memory may be included in the hierarchy. For example, large 
IBM mainframes include a form of internal memory known as expanded storage. 
This uses a semiconductor technology that is slower and less expensive than that 
of main memory. Strictly speaking, this memory does not fit into the hierarchy but 
is a side branch: Data can be moved between main memory and expanded storage 
but not between expanded storage and external memory. Other forms of secondary 
memory include optical and magneto-optical disks. Finally, additional levels can be 
effectively added to the hierarchy in software. A portion of main memory can be 
used as a buffer to hold data temporarily that is to be read out to disk. Such a tech-
nique, sometimes referred to as a disk cache,2 improves performance in two ways:

 • Disk writes are clustered. Instead of many small transfers of data, we have a 
few large transfers of data. This improves disk performance and minimizes 
processor involvement.

 • Some data destined for write-out may be referenced by a program before the 
next dump to disk. In that case, the data are retrieved rapidly from the soft-
ware cache rather than slowly from the disk.
Appendix 4A examines the performance implications of multilevel memory 

structures.

2Disk cache is generally a purely software technique and is not examined in this book. See [STAL12] for 
a discussion.
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 4.2 CACHE MEMORY PRINCIPLES

Cache memory is designed to combine the memory access time of expensive, high-
speed memory combined with the large memory size of less expensive, lower-speed 
 memory. The concept is illustrated in Figure 4.3a. There is a relatively large and slow 
main memory together with a smaller, faster cache memory. The cache contains a 
copy of portions of main memory. When the processor attempts to read a word of 
memory, a check is made to determine if the word is in the cache. If so, the word is 
delivered to the processor. If not, a block of main memory, consisting of some fixed 
number of words, is read into the cache and then the word is delivered to the pro-
cessor. Because of the phenomenon of locality of reference, when a block of data is 
fetched into the cache to satisfy a single memory reference, it is likely that there will 
be future references to that same memory location or to other words in the block.

Figure 4.3b depicts the use of multiple levels of cache. The L2 cache is slower 
and typically larger than the L1 cache, and the L3 cache is slower and typically 
larger than the L2 cache.

Figure 4.4 depicts the structure of a cache/main-memory system. Main mem-
ory consists of up to 2n addressable words, with each word having a unique n-bit 
address. For mapping purposes, this memory is considered to consist of a number 
of fixed-length blocks of K words each. That is, there are M = 2n/K blocks in main 
memory. The cache consists of m blocks, called lines.3 Each line contains K words, 

CPU

Word transfer

Fast

Fastest Fast
Less
fast

Slow

Block transfer

Cache Main memory

(a) Single cache

(b) Three-level cache organization

CPU Level 1
(L1) cache

Level 2
(L2) cache

Level 3
(L3) cache

Main
memory

Slow

Figure 4.3 Cache and Main Memory

3In referring to the basic unit of the cache, the term line is used, rather than the term block, for two rea-
sons: (1) to avoid confusion with a main memory block, which contains the same number of data words as 
a cache line; and (2) because a cache line includes not only K words of data, just as a main memory block, 
but also includes tag and control bits.
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Figure 4.4 Cache/Main Memory Structure

plus a tag of a few bits. Each line also includes control bits (not shown), such as a 
bit to indicate whether the line has been modified since being loaded into the cache. 
The length of a line, not including tag and control bits, is the line size. The line 
size may be as small as 32 bits, with each “word” being a single byte; in this case 
the line size is 4 bytes. The number of lines is considerably less than the number 
of main memory blocks (m V M). At any time, some subset of the blocks of 
memory resides in lines in the cache. If a word in a block of memory is read, that 
block is transferred to one of the lines of the cache. Because there are more blocks 
than lines, an individual line cannot be uniquely and permanently dedicated to a 
particular block. Thus, each line includes a tag that identifies which particular block 
is currently being stored. The tag is usually a portion of the main memory address, 
as described later in this section.

Figure 4.5 illustrates the read operation. The processor generates the read 
address (RA) of a word to be read. If the word is contained in the cache, it is deliv-
ered to the processor. Otherwise, the block containing that word is loaded into the 
cache, and the word is delivered to the processor. Figure 4.5 shows these last two 
operations occurring in parallel and reflects the organization shown in Figure 4.6, 
which is typical of contemporary cache organizations. In this organization, the cache 
connects to the processor via data, control, and address lines. The data and address 
lines also attach to data and address buffers, which attach to a system bus from 
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which main memory is reached. When a cache hit occurs, the data and address buff-
ers are disabled and communication is only between processor and cache, with no 
system bus traffic. When a cache miss occurs, the desired address is loaded onto the 
system bus and the data are returned through the data buffer to both the cache and 
the processor. In other organizations, the cache is physically interposed between 
the processor and the main memory for all data, address, and control lines. In this 
latter case, for a cache miss, the desired word is first read into the cache and then 
transferred from cache to processor.

A discussion of the performance parameters related to cache use is contained 
in Appendix 4A.

Receive address
RA from CPU

Is block
containing RA
in cache?

Fetch RA word
and deliver
to CPU

DONE

Access main
memory for block
containing RA

Allocate cache
line for main
memory block

Deliver RA word
to CPU

Load main
memory block
into cache line

START

No

Yes

Figure 4.5 Cache Read Operation
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 4.3 ELEMENTS OF CACHE DESIGN

This section provides an overview of cache design parameters and reports some 
typical results. We occasionally refer to the use of caches in high-performance com-
puting (HPC). HPC deals with supercomputers and their software, especially for 
scientific applications that involve large amounts of data, vector and matrix com-
putation, and the use of parallel algorithms. Cache design for HPC is quite differ-
ent than for other hardware platforms and applications. Indeed, many researchers 
have found that HPC applications perform poorly on computer architectures that 
employ caches [BAIL93]. Other researchers have since shown that a cache hierar-
chy can be useful in improving performance if the application software is tuned to 
exploit the cache [WANG99, PRES01].4

Although there are a large number of cache implementations, there are a few 
basic design elements that serve to classify and differentiate cache architectures. 
Table 4.2 lists key elements.

Cache Addresses

Almost all nonembedded processors, and many embedded processors, support vir-
tual memory, a concept discussed in Chapter 8. In essence, virtual memory is a facil-
ity that allows programs to address memory from a logical point of view, without 
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Figure 4.6 Typical Cache Organization

4For a general discussion of HPC, see [DOWD98].
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Table 4.2 Elements of Cache Design

Cache Addresses

Logical

Physical

Cache Size

Mapping Function

Direct

Associative

Set associative

Replacement Algorithm

Least recently used (LRU)

First in first out (FIFO)

Least frequently used (LFU)

Random

Write Policy

Write through

Write back

Line Size

Number of Caches

Single or two level

Unified or split

Processor
Main

memoryCache

Logical address Physical address

Data

MMU

(a) Logical cache

Processor
Main

memoryCache

Logical address Physical address

Data

MMU

(b) Physical cache

Figure 4.7 Logical and Physical Caches

regard to the amount of main memory physically available. When virtual memory is 
used, the address fields of machine instructions contain virtual addresses. For reads 
to and writes from main memory, a hardware memory management unit (MMU) 
translates each virtual address into a physical address in main memory.
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When virtual addresses are used, the system designer may choose to place the 
cache between the processor and the MMU or between the MMU and main mem-
ory (Figure 4.7). A logical cache, also known as a virtual cache, stores data using 
virtual addresses. The processor accesses the cache directly, without going through 
the MMU. A physical cache stores data using main memory physical addresses.

One obvious advantage of the logical cache is that cache access speed is faster 
than for a physical cache, because the cache can respond before the MMU performs 
an address translation. The disadvantage has to do with the fact that most virtual 
memory systems supply each application with the same virtual memory address 
space. That is, each application sees a virtual memory that starts at address 0. Thus, 
the same virtual address in two different applications refers to two different physi-
cal addresses. The cache memory must therefore be completely flushed with each 
application context switch, or extra bits must be added to each line of the cache to 
identify which virtual address space this address refers to.

The subject of logical versus physical cache is a complex one, and beyond the 
scope of this book. For a more in-depth discussion, see [CEKL97] and [JACO08].

Cache Size

The first item in Table 4.2, cache size, has already been discussed. We would like the 
size of the cache to be small enough so that the overall average cost per bit is close 
to that of main memory alone and large enough so that the overall average access 
time is close to that of the cache alone. There are several other motivations for 
minimizing cache size. The larger the cache, the larger the number of gates involved 
in addressing the cache. The result is that large caches tend to be slightly slower 
than small ones—even when built with the same integrated circuit technology and 
put in the same place on chip and circuit board. The available chip and board area 
also limits cache size. Because the performance of the cache is very sensitive to the 
nature of the workload, it is impossible to arrive at a single “optimum” cache size. 
Table 4.3 lists the cache sizes of some current and past processors.

Mapping Function

Because there are fewer cache lines than main memory blocks, an algorithm is 
needed for mapping main memory blocks into cache lines. Further, a means is 
needed for determining which main memory block currently occupies a cache line. 
The choice of the mapping function dictates how the cache is organized. Three 
techniques can be used: direct, associative, and set associative. We examine each 
of these in turn. In each case, we look at the general structure and then a specific 
example.

Example 4.2 For all three cases, the example includes the following elements:

 • The cache can hold 64 Kbytes.

 • Data are transferred between main memory and the cache in blocks of 4 bytes each. 
This means that the cache is organized as 16K = 214 lines of 4 bytes each.

 • The main memory consists of 16 Mbytes, with each byte directly addressable by 
a 24-bit address (224 = 16M). Thus, for mapping purposes, we can consider main 
memory to consist of 4M blocks of 4 bytes each.
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Table 4.3 Cache Sizes of Some Processors

Processor Type
Year of 

Introduction L1 Cachea L2 Cache L3 Cache

IBM 360/85 Mainframe 1968 16–32 kB — —

PDP-11/70 Minicomputer 1975 1 kB — —

VAX 11/780 Minicomputer 1978 16 kB — —

IBM 3033 Mainframe 1978 64 kB — —

IBM 3090 Mainframe 1985 128–256 kB — —

Intel 80486 PC 1989 8 kB — —

Pentium PC 1993 8 kB/8 kB 256–512 kB —

PowerPC 601 PC 1993 32 kB — —

PowerPC 620 PC 1996 32 kB/32 kB — —

PowerPC G4 PC/server 1999 32 kB/32 kB 256 kB to 1 MB 2 MB

IBM S/390 G6 Mainframe 1999 256 kB 8 MB —

Pentium 4 PC/server 2000 8 kB/8 kB 256 kB —

IBM SP
High-end server/
supercomputer

2000 64 kB/32 kB 8 MB —

CRAY MTAb Supercomputer 2000 8 kB 2 MB —

Itanium PC/server 2001 16 kB/16 kB 96 kB 4 MB

Itanium 2 PC/server 2002 32 kB 256 kB 6 MB

IBM POWER5 High-end server 2003 64 kB 1.9 MB 36 MB

CRAY XD-1 Supercomputer 2004 64 kB/64 kB 1 MB —

IBM POWER6 PC/server 2007 64 kB/64 kB 4 MB 32 MB

IBM z10 Mainframe 2008 64 kB/128 kB 3 MB 24–48 MB

Intel Core i7  
EE 990

Workstation/
server

2011
6 * 32 kB/

32 kB
1.5 MB 12 MB

IBM zEnterprise 
196

Mainframe/
server

2011
24 * 64 kB/

128 kB
24 * 1.5 MB

24 MB L3 
192 MB L4

Notes:
a Two values separated by a slash refer to instruction and data caches.
b Both caches are instruction only; no data caches.

DIRECT MAPPING The simplest technique, known as direct mapping, maps each 
block of main memory into only one possible cache line. The mapping is expressed as

i = j modulo m

where

i = cache line number

j = main memory block number

m = number of lines in the cache

Figure 4.8a shows the mapping for the first m blocks of main memory. Each 
block of main memory maps into one unique line of the cache. The next m blocks 
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of main memory map into the cache in the same fashion; that is, block Bm of main 
memory maps into line L0 of cache, block Bm +1 maps into line L1, and so on.

The mapping function is easily implemented using the main memory address. 
Figure 4.9 illustrates the general mechanism. For purposes of cache access, each 
main memory address can be viewed as consisting of three fields. The least signifi-
cant w bits identify a unique word or byte within a block of main memory; in most 
contemporary machines, the address is at the byte level. The remaining s bits specify 
one of the 2s blocks of main memory. The cache logic interprets these s bits as a 
tag of s - r bits (most significant portion) and a line field of r bits. This latter field 
identifies one of the m = 2r lines of the cache. To summarize,

 • Address length = (s + w) bits

 • Number of addressable units = 2s+w words or bytes

 • Block size = line size = 2w words or bytes

 • Number of blocks in main memory =
2s+w

2w
= 2s

 • Number of lines in cache = m = 2r

 • Size of cache = 2r+w words or bytes

 • Size of tag = (s - r) bits

(a) Direct mapping

First m blocks of
main memory

(equal to size of cache)

b

L0

Lm–1

L0

Lm–1

Bm–1

B0

b = length of block in bits
t = length of tag in bits

Cache memory

m
 li

ne
s

b

bt

bt

(b) Associative mapping

One block of
main memory

Cache memory

Figure 4.8 Mapping from Main Memory to Cache: Direct and Associative
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WordLineTag
W0
W1
W2
W3

Compare

1 if match
0 if no match

0 if match
1 if no match

W4j
W(4j+1)
W(4j+2)
W(4j+3)

Tag Data

Cache

L0

Li

Memory address

(Miss in cache)

(Hit in cache)

w

s – r

wr

s + w

Main memory

Bj

B0

s

w

Lm–1

s – r

Figure 4.9 Direct-Mapping Cache Organization

Example 4.2a Figure 4.10 shows our example system using direct mapping.5 In the 
example, m = 16K = 214 and i = j modulo 214. The mapping becomes

Cache Line Starting Memory Address of Block

0 000000, 010000, …, FF0000

1 000004, 010004, …, FF0004

f f

214 - 1 00FFFC, 01FFFC, …, FFFFFC

Note that no two blocks that map into the same line number have the same tag num-
ber. Thus, blocks with starting addresses 000000, 010000, …, FF0000 have tag numbers 00, 
01, …, FF, respectively.

Referring back to Figure 4.5, a read operation works as follows. The cache system is 
presented with a 24-bit address. The 14-bit line number is used as an index into the cache 
to access a particular line. If the 8-bit tag number matches the tag number currently stored 
in that line, then the 2-bit word number is used to select one of the 4 bytes in that line. 
Otherwise, the 22-bit tag-plus-line field is used to fetch a block from main memory. The 
actual address that is used for the fetch is the 22-bit tag-plus-line concatenated with two 
0 bits, so that 4 bytes are fetched starting on a block boundary.

5In this and subsequent figures, memory values are represented in hexadecimal notation. See Chapter 9 
for a basic refresher on number systems (decimal, binary, hexadecimal).
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The effect of this mapping is that blocks of main memory are assigned to lines 
of the cache as follows:

Cache line Main memory blocks assigned

0 0, m, 2m, c , 2s - m

1 1, m + 1, 2m + 1, c, 2s - m + 1

f f

m - 1 m - 1, 2m - 1, 3m - 1, c, 2s - 1

Thus, the use of a portion of the address as a line number provides a unique 
mapping of each block of main memory into the cache. When a block is actually 

111111111111111111111100
111111111111111111111000

111111110000000000000000

000101101111111111111100

000101100011001110011100

111111110000000000000100

000101100000000000000100
000101100000000000000000

000000001111111111111100

000000000000000000000000
000000000000000000000100

000000001111111111111000

00
00

FF
FF

FF
FF

16

16

16
16

00
00

13579246

TagTag
(hex)

Main memory address (binary)

Tag Data

32 bits

16K line cache

8 bits

8 bits 2 bits

Tag

Main memory address =

Line Word

Line
number

Line + Word
Data

77777777
11235813

12345678

FEDCBA98 FEDCBA98

24682468
11223344

1357924600
16

FF
16

16

0000
0001

0CE7

3FFE
3FFF

11235813

FEDCBA98

11223344
12345678

14 bits

32 bits

16-Mbyte main memory

Note: Memory address values are
in binary representation;
other values are in hexadecimal

Figure 4.10 Direct Mapping Example
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read into its assigned line, it is necessary to tag the data to distinguish it from other 
blocks that can fit into that line. The most significant s - r bits serve this purpose.

The direct mapping technique is simple and inexpensive to implement. Its 
main disadvantage is that there is a fixed cache location for any given block. Thus, 
if a program happens to reference words repeatedly from two different blocks that 
map into the same line, then the blocks will be continually swapped in the cache, 
and the hit ratio will be low (a phenomenon known as thrashing).

Selective Victim Cache Simulator

One approach to lower the miss penalty is to remember what was discarded 
in case it is needed again. Since the discarded data has already been fetched, it can 
be used again at a small cost. Such recycling is possible using a victim cache. Victim 
cache was originally proposed as an approach to reduce the conflict misses of direct 
mapped caches without affecting its fast access time. Victim cache is a fully associative 
cache, whose size is typically 4 to 16 cache lines, residing between a direct mapped L1 
cache and the next level of memory. This concept is explored in Appendix D.

ASSOCIATIVE MAPPING Associative mapping overcomes the disadvantage of direct 
mapping by permitting each main memory block to be loaded into any line of the 
cache (Figure 4.8b). In this case, the cache control logic interprets a memory address 
simply as a Tag and a Word field. The Tag field uniquely identifies a block of main 
memory. To determine whether a block is in the cache, the cache control logic must 
simultaneously examine every line’s tag for a match. Figure 4.11 illustrates the logic. 

Tag Word
W0
W1
W2
W3

Compare

W4j
W(4j+1)
W(4j+2)
W(4j+3)

Tag Data

Cache
Memory address

(Miss in cache)

(Hit in cache)

w

w

s

s+w

Main memory

s

w

s
1 if match
0 if no match

0 if match
1 if no match

L0

Lj

B0

Bj

Lm–1

Figure 4.11 Fully Associative Cache Organization
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Example 4.2b Figure 4.12 shows our example using associative mapping. A main mem-
ory address consists of a 22-bit tag and a 2-bit byte number. The 22-bit tag must be stored 
with the 32-bit block of data for each line in the cache. Note that it is the leftmost (most 
significant) 22 bits of the address that form the tag. Thus, the 24-bit hexadecimal address 
16339C has the 22-bit tag 058CE7. This is easily seen in binary notation:

memory address 0001 0110 0011 0011 1001 1100 (binary)

1 6 3 3 9 C (hex)

tag (leftmost 22 bits) 00 0101 1000 1100 1110 0111 (binary)

0 5 8 C E 7 (hex)

111111111111111111111100
111111111111111111111000
111111111111111111110100

000101100011001110011000
000101100011001110011100
000101100011001110100000

000000000000000000000100
000000000000000000000000 13579246

FEDCBA98

Tag Data

32 bits

16K line cache

22 bits

Tag

Main memory address =

Word

Line
number

Data

24682468
11223344
33333333

112233443FFFFE
058CE7

000000
3FFFFF

0000
0001

3FFE
3FFF

FEDCBA98

13579246
3FFFFD 3FFD33333333

24682468

32 bits

16-Mbyte main memory

2 bits22 bits

000000
000001

Tag (hex)

058CE7
058CE8

058CE6

3FFFFE
3FFFFD

3FFFFF

Tag

Main memory address (binary)

Word

Note: Memory address values are
in binary representation;
other values are in hexadecimal

Figure 4.12 Associative Mapping Example
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Note that no field in the address corresponds to the line number, so that the number 
of lines in the cache is not determined by the address format. To summarize,

 • Address length = (s + w) bits

 • Number of addressable units = 2s+w words or bytes
 • Block size = line size = 2w words or bytes

 • Number of blocks in main memory =  
2s+w

2w
 = 2s

 • Number of lines in cache = undetermined

 • Size of tag = s bits

With associative mapping, there is flexibility as to which block to replace when 
a new block is read into the cache. Replacement algorithms, discussed later in this 
section, are designed to maximize the hit ratio. The principal disadvantage of asso-
ciative mapping is the complex circuitry required to examine the tags of all cache 
lines in parallel.

Cache Time Analysis Simulator

SET-ASSOCIATIVE MAPPING Set-associative mapping is a compromise that 
exhibits the strengths of both the direct and associative approaches while reducing 
their disadvantages.

In this case, the cache consists of a number sets, each of which consists of a 
number of lines. The relationships are

 m = n * k

 i = j modulo n

where

i = cache set number
j = main memory block number

m = number of lines in the cache
v = number of sets
k = number of lines in each set

This is referred to as k-way set-associative mapping. With set-associative map-
ping, block Bj can be mapped into any of the lines of set j. Figure 4.13a illustrates 
this mapping for the first n blocks of main memory. As with associative mapping, 
each word maps into multiple cache lines. For set-associative mapping, each word 
maps into all the cache lines in a specific set, so that main memory block B0 maps 
into set 0, and so on. Thus, the set-associative cache can be physically implemented 
as n associative caches. It is also possible to implement the set-associative cache as 
k direct mapping caches, as shown in Figure 4.13b. Each direct-mapped cache is 
referred to as a way, consisting of n lines. The first n lines of main memory are direct 
mapped into the n lines of each way; the next group of n lines of main memory are 
similarly mapped, and so on. The direct-mapped implementation is typically used 
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for small degrees of associativity (small values of k) while the associative-mapped 
implementation is typically used for higher degrees of associativity [JACO08].

For set-associative mapping, the cache control logic interprets a memory 
address as three fields: Tag, Set, and Word. The d set bits specify one of n = 2d sets. 
The s bits of the Tag and Set fields specify one of the 2s blocks of main memory. 
Figure 4.14 illustrates the cache control logic. With fully associative mapping, the 
tag in a memory address is quite large and must be compared to the tag of every line 
in the cache. With k-way set-associative mapping, the tag in a memory address is 
much smaller and is only compared to the k tags within a single set. To summarize,

 • Address length = (s + w) bits

 • Number of addressable units = 2s+w words or bytes

First v blocks of
main memory

(equal to number of sets)

Cache memory—way 1 Cache memory—way k

One
set

(b) k direct–mapped caches
v 

lin
es

Bv–1

B0 L0

L v–1

(a) v associative–mapped caches

First v blocks of
main memory

(equal to number of sets)

Cache memory– set 0

Cache memory–set v–1

k 
lin

es

Bv–1

B0 L0

L k–1

Figure 4.13 Mapping from Main Memory to Cache: k-Way Set Associative
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 • Block size = line size = 2w words or bytes

 • Number of blocks in main memory =  
2s+w

2w
= 2s

 • Number of lines in set = k

 • Number of sets = n = 2d

 • Number of lines in cache = m = kn = k * 2d

 • Size of cache = k * 2d +w words or bytes

 • Size of tag = (s - d) bits

WordSetTag

Compare

Tag Data

Cache

F0

Memory address

(Hit in cache)

s – d

wds – d

s + w

Main memory

s + w

F1

Fk�1

Fk

Fk�i

F2k�1

Set 0

Set 1

B1

B0

Bj

1 if match
0 if no match

0 if match
1 if no match

(Miss in cache)

Figure 4.14 K-Way Set Associative Cache Organization

Example 4.2c Figure 4.15 shows our example using set-associative mapping with two 
lines in each set, referred to as two-way set-associative. The 13-bit set number identi-
fies a unique set of two lines within the cache. It also gives the number of the block in 
main memory, modulo 213. This determines the mapping of blocks into lines. Thus, blocks 
000000, 008000, …, FF8000 of main memory map into cache set 0. Any of those blocks can 
be loaded into either of the two lines in the set. Note that no two blocks that map into the 
same cache set have the same tag number. For a read operation, the 13-bit set number is 
used to determine which set of two lines is to be examined. Both lines in the set are exam-
ined for a match with the tag number of the address to be accessed.
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000101100111111111111100

111111111111111111111000

111111111000000000000000

000101100011001110011100

000101100000000000000000

000000001111111111111000

000000000000000000000000 13579246000
000

000
000

Tag
(hex)

Tag Data

32 bits

16K line cache

9 bits

Tag

Main memory address =

Set Word

Tag Data
Set

number

Data

77777777
11235813

12345678

FEDCBA98 FEDCBA98

24682468
11223344

02C
02C

02C

02C

1FF
1FF

1FF
1FF

7777777713579246000
02C

1FF
02C

02C

0000
0001

0CE7

1FFE
1FFF

02C

246824681FF

11235813

11223344
12345678

32 bits

16–Mbyte main memory

32 bits9 bits

FEDCBA98

2 bits13 bits9 bits

111111111111111111111100

111111111000000000000100

000101100000000000000100

000000001111111111111100

000000000000000000000100

Tag

Main memory address (binary)

Set + Word

Note: Memory address values are
in binary representation;
other values are in hexadecimal

Figure 4.15 Two-Way Set-Associative Mapping Example
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In the extreme case of n = m, k = 1, the set-associative technique reduces to 
direct mapping, and for n = 1, k = m, it reduces to associative mapping. The use of 
two lines per set (n = m/2, k = 2) is the most common set-associative organization. 
It significantly improves the hit ratio over direct mapping. Four-way set associative 
(n = m/4, k = 4) makes a modest additional improvement for a relatively small 
additional cost [MAYB84, HILL89]. Further increases in the number of lines per 
set have little effect.

Figure 4.16 shows the results of one simulation study of set-associative cache 
performance as a function of cache size [GENU04]. The difference in performance 
between direct and two-way set associative is significant up to at least a cache size of 
64 kB. Note also that the difference between two-way and four-way at 4 kB is much 
less than the difference in going from for 4 kB to 8 kB in cache size. The complexity 
of the cache increases in proportion to the associativity, and in this case would not 
be justifiable against increasing cache size to 8 or even 16 Kbytes. A final point to 
note is that beyond about 32 kB, increase in cache size brings no significant increase 
in performance.

The results of Figure 4.16 are based on simulating the execution of a GCC 
compiler. Different applications may yield different results. For example, [CANT01] 
reports on the results for cache performance using many of the CPU2000 SPEC 
benchmarks. The results of [CANT01] in comparing hit ratio to cache size follow 
the same pattern as Figure 4.16, but the specific values are somewhat different.
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Figure 4.16 Varying Associativity over Cache Size



4.3 / ELEMENTS OF CACHE DESIGN  137

Replacement Algorithms

Once the cache has been filled, when a new block is brought into the cache, one 
of the existing blocks must be replaced. For direct mapping, there is only one pos-
sible line for any particular block, and no choice is possible. For the associative 
and set-associative techniques, a replacement algorithm is needed. To achieve high 
speed, such an algorithm must be implemented in hardware. A number of algo-
rithms have been tried. We mention four of the most common. Probably the most 
effective is least recently used (LRU): Replace that block in the set that has been in 
the cache longest with no reference to it. For two-way set associative, this is easily 
implemented. Each line includes a USE bit. When a line is referenced, its USE bit 
is set to 1 and the USE bit of the other line in that set is set to 0. When a block is to 
be read into the set, the line whose USE bit is 0 is used. Because we are assuming 
that more recently used memory locations are more likely to be referenced, LRU 
should give the best hit ratio. LRU is also relatively easy to implement for a fully 
associative cache. The cache mechanism maintains a separate list of indexes to all 
the lines in the cache. When a line is referenced, it moves to the front of the list. 
For replacement, the line at the back of the list is used. Because of its simplicity of 
implementation, LRU is the most popular replacement algorithm.

Another possibility is first-in-first-out (FIFO): Replace that block in the set 
that has been in the cache longest. FIFO is easily implemented as a round-robin 
or circular buffer technique. Still another possibility is least frequently used (LFU): 
Replace that block in the set that has experienced the fewest references. LFU could 
be implemented by associating a counter with each line. A technique not based on 
usage (i.e., not LRU, LFU, FIFO, or some variant) is to pick a line at random from 
among the candidate lines. Simulation studies have shown that random replacement 
provides only slightly inferior performance to an algorithm based on usage [SMIT82].

Write Policy

When a block that is resident in the cache is to be replaced, there are two cases to 
consider. If the old block in the cache has not been altered, then it may be overwrit-
ten with a new block without first writing out the old block. If at least one write 
operation has been performed on a word in that line of the cache, then main mem-
ory must be updated by writing the line of cache out to the block of memory before 
bringing in the new block. A variety of write policies, with performance and eco-
nomic trade-offs, is possible. There are two problems to contend with. First, more 
than one device may have access to main memory. For example, an I/O module 
may be able to read-write directly to memory. If a word has been altered only in the 
cache, then the corresponding memory word is invalid. Further, if the I/O device 
has altered main memory, then the cache word is invalid. A more complex problem 
occurs when multiple processors are attached to the same bus and each processor 
has its own local cache. Then, if a word is altered in one cache, it could conceivably 
invalidate a word in other caches.

The simplest technique is called write through. Using this technique, all write 
operations are made to main memory as well as to the cache, ensuring that main 
memory is always valid. Any other processor–cache module can monitor traffic to 
main memory to maintain consistency within its own cache. The main disadvantage 
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of this technique is that it generates substantial memory traffic and may create a bot-
tleneck. An alternative technique, known as write back, minimizes memory writes. 
With write back, updates are made only in the cache. When an update occurs, a 
dirty bit, or use bit, associated with the line is set. Then, when a block is replaced, it 
is written back to main memory if and only if the dirty bit is set. The problem with 
write back is that portions of main memory are invalid, and hence accesses by I/O 
modules can be allowed only through the cache. This makes for complex circuitry 
and a potential bottleneck. Experience has shown that the percentage of memory 
references that are writes is on the order of 15% [SMIT82]. However, for HPC 
applications, this number may approach 33% (vector-vector multiplication) and can 
go as high as 50% (matrix transposition).

In a bus organization in which more than one device (typically a processor) 
has a cache and main memory is shared, a new problem is introduced. If data in one 
cache are altered, this invalidates not only the corresponding word in main memory, 
but also that same word in other caches (if any other cache happens to have that 
same word). Even if a write-through policy is used, the other caches may contain 
invalid data. A system that prevents this problem is said to maintain cache coher-
ency. Possible approaches to cache coherency include the following:

 • Bus watching with write through: Each cache controller monitors the address 
lines to detect write operations to memory by other bus masters. If another 
master writes to a location in shared memory that also resides in the cache 
memory, the cache controller invalidates that cache entry. This strategy de-
pends on the use of a write-through policy by all cache controllers.

 • Hardware transparency: Additional hardware is used to ensure that all updates 
to main memory via cache are reflected in all caches. Thus, if one processor 
modifies a word in its cache, this update is written to main memory. In addi-
tion, any matching words in other caches are similarly updated.

 • Noncacheable memory: Only a portion of main memory is shared by more 
than one processor, and this is designated as noncacheable. In such a system, 
all accesses to shared memory are cache misses, because the shared memory 
is never copied into the cache. The noncacheable memory can be identified 
using chip-select logic or high-address bits.

Example 4.3 Consider a cache with a line size of 32 bytes and a main memory that re-
quires 30 ns to transfer a 4-byte word. For any line that is written at least once before 
being swapped out of the cache, what is the average number of times that the line must 
be written before being swapped out for a write-back cache to be more efficient that a 
write-through cache?

For the write-back case, each dirty line is written back once, at swap-out time, taking 
8 * 30 = 240 ns. For the write-through case, each update of the line requires that one 
word be written out to main memory, taking 30 ns. Therefore, if the average line that gets 
written at least once gets written more than 8 times before swap out, then write back is 
more efficient.
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Cache coherency is an active field of research. This topic is explored further 
in Part Five.

Line Size

Another design element is the line size. When a block of data is retrieved and placed 
in the cache, not only the desired word but also some number of adjacent words are 
retrieved. As the block size increases from very small to larger sizes, the hit ratio 
will at first increase because of the principle of locality, which states that data in the 
vicinity of a referenced word are likely to be referenced in the near future. As the 
block size increases, more useful data are brought into the cache. The hit ratio will 
begin to decrease, however, as the block becomes even bigger and the probability 
of using the newly fetched information becomes less than the probability of reusing 
the information that has to be replaced. Two specific effects come into play:

 • Larger blocks reduce the number of blocks that fit into a cache. Because each 
block fetch overwrites older cache contents, a small number of blocks results 
in data being overwritten shortly after they are fetched.

 • As a block becomes larger, each additional word is farther from the requested 
word and therefore less likely to be needed in the near future.

The relationship between block size and hit ratio is complex, depending on 
the locality characteristics of a particular program, and no definitive optimum value 
has been found. A size of from 8 to 64 bytes seems reasonably close to optimum 
[SMIT87, PRZY88, PRZY90, HAND98]. For HPC systems, 64- and 128-byte cache 
line sizes are most frequently used.

Number of Caches

When caches were originally introduced, the typical system had a single cache. More 
recently, the use of multiple caches has become the norm. Two aspects of this design 
issue concern the number of levels of caches and the use of unified versus split caches.

MULTILEVEL CACHES As logic density has increased, it has become possible to 
have a cache on the same chip as the processor: the on-chip cache. Compared with 
a cache reachable via an external bus, the on-chip cache reduces the processor’s 
external bus activity and therefore speeds up execution times and increases overall 
system performance. When the requested instruction or data is found in the on-chip 
cache, the bus access is eliminated. Because of the short data paths internal to 
the processor, compared with bus lengths, on-chip cache accesses will complete 
appreciably faster than would even zero-wait state bus cycles. Furthermore, during 
this period the bus is free to support other transfers.

The inclusion of an on-chip cache leaves open the question of whether an 
 off-chip, or external, cache is still desirable. Typically, the answer is yes, and most con-
temporary designs include both on-chip and external caches. The simplest such organi-
zation is known as a two-level cache, with the internal cache designated as level 1 (L1) 
and the external cache designated as level 2 (L2). The reason for including an L2 cache 
is the following: If there is no L2 cache and the processor makes an access request 
for a memory location not in the L1 cache, then the processor must access DRAM or 
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ROM memory across the bus. Due to the typically slow bus speed and slow  memory 
access time, this results in poor performance. On the other hand, if an L2 SRAM (static 
RAM) cache is used, then frequently the missing information can be quickly retrieved. 
If the SRAM is fast enough to match the bus speed, then the data can be accessed 
using a zero-wait state transaction, the fastest type of bus transfer.

Two features of contemporary cache design for multilevel caches are note-
worthy. First, for an off-chip L2 cache, many designs do not use the system bus as 
the path for transfer between the L2 cache and the processor, but use a separate 
data path, so as to reduce the burden on the system bus. Second, with the continued 
shrinkage of processor components, a number of processors now incorporate the L2 
cache on the processor chip, improving performance.

The potential savings due to the use of an L2 cache depends on the hit rates 
in both the L1 and L2 caches. Several studies have shown that, in general, the use 
of a second-level cache does improve performance (e.g., see [AZIM92], [NOVI93], 
[HAND98]). However, the use of multilevel caches does complicate all of the design 
issues related to caches, including size, replacement algorithm, and write policy; see 
[HAND98] and [PEIR99] for discussions.

Figure 4.17 shows the results of one simulation study of two-level cache per-
formance as a function of cache size [GENU04]. The figure assumes that both 
caches have the same line size and shows the total hit ratio. That is, a hit is counted 
if the desired data appears in either the L1 or the L2 cache. The figure shows the 
impact of L2 on total hits with respect to L1 size. L2 has little effect on the total 
number of cache hits until it is at least double the L1 cache size. Note that the steep-
est part of the slope for an L1 cache of 8 Kbytes is for an L2 cache of 16 Kbytes. 
Again for an L1 cache of 16 Kbytes, the steepest part of the curve is for an L2 cache 
size of 32 Kbytes. Prior to that point, the L2 cache has little, if any, impact on total 
cache performance. The need for the L2 cache to be larger than the L1 cache to 
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affect performance makes sense. If the L2 cache has the same line size and capacity 
as the L1 cache, its contents will more or less mirror those of the L1 cache.

With the increasing availability of on-chip area available for cache, most con-
temporary microprocessors have moved the L2 cache onto the processor chip and 
added an L3 cache. Originally, the L3 cache was accessible over the external bus. 
More recently, most microprocessors have incorporated an on-chip L3 cache. In 
either case, there appears to be a performance advantage to adding the third level 
(e.g., see [GHAI98]). Further, large systems, such as the IBM mainframe zEnter-
prise systems, now incorporate 3 on-chip cache levels and a fourth level of cache 
shared across multiple chips [CURR11].

UNIFIED VERSUS SPLIT CACHES When the on-chip cache first made an appearance, 
many of the designs consisted of a single cache used to store references to both data 
and instructions. More recently, it has become common to split the cache into two: 
one dedicated to instructions and one dedicated to data. These two caches both exist 
at the same level, typically as two L1 caches. When the processor attempts to fetch an 
instruction from main memory, it first consults the instruction L1 cache, and when the 
processor attempts to fetch data from main memory, it first consults the data L1 cache.

There are two potential advantages of a unified cache:

 • For a given cache size, a unified cache has a higher hit rate than split caches 
because it balances the load between instruction and data fetches automati-
cally. That is, if an execution pattern involves many more instruction fetches 
than data fetches, then the cache will tend to fill up with instructions, and if an 
execution pattern involves relatively more data fetches, the opposite will occur.

 • Only one cache needs to be designed and implemented.

The trend is toward split caches at the L1 and unified caches for higher levels, 
particularly for superscalar machines, which emphasize parallel instruction execu-
tion and the prefetching of predicted future instructions. The key advantage of the 
split cache design is that it eliminates contention for the cache between the instruc-
tion fetch/decode unit and the execution unit. This is important in any design that 
relies on the pipelining of instructions. Typically, the processor will fetch instructions 
ahead of time and fill a buffer, or pipeline, with instructions to be executed. Suppose 
now that we have a unified instruction/data cache. When the execution unit performs 
a memory access to load and store data, the request is submitted to the unified cache. 
If, at the same time, the instruction prefetcher issues a read request to the cache for 
an instruction, that request will be temporarily blocked so that the cache can service 
the execution unit first, enabling it to complete the currently executing instruction. 
This cache contention can degrade performance by interfering with efficient use of 
the instruction pipeline. The split cache structure overcomes this difficulty.

 4.4 PENTIUM 4 CACHE ORGANIZATION

The evolution of cache organization is seen clearly in the evolution of Intel micro-
processors (Table 4.4). The 80386 does not include an on-chip cache. The 80486 
includes a single on-chip cache of 8 Kbytes, using a line size of 16 bytes and a 
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 four-way set-associative organization. All of the Pentium processors include two 
on-chip L1 caches, one for data and one for instructions. For the Pentium 4, the 
L1 data cache is 16 Kbytes, using a line size of 64 bytes and a four-way set-associa-
tive organization. The Pentium 4 instruction cache is described subsequently. The 
Pentium II also includes an L2 cache that feeds both of the L1 caches. The L2 cache 
is eight-way set associative with a size of 512 kB and a line size of 128 bytes. An L3 
cache was added for the Pentium III and became on-chip with high-end versions of 
the Pentium 4.

Figure 4.18 provides a simplified view of the Pentium 4 organization, high-
lighting the placement of the three caches. The processor core consists of four major 
components:

 • Fetch/decode unit: Fetches program instructions in order from the L2 cache, 
decodes these into a series of micro-operations, and stores the results in the L1 
instruction cache.

 • Out-of-order execution logic: Schedules execution of the micro-operations 
subject to data dependencies and resource availability; thus, micro-operations 
may be scheduled for execution in a different order than they were fetched 
from the instruction stream. As time permits, this unit schedules speculative 
execution of micro-operations that may be required in the future.

Table 4.4 Intel Cache Evolution

Problem Solution
Processor on Which 

Feature First Appears

External memory slower than the system 
bus.

Add external cache using faster 
memory technology.

386

Increased processor speed results in 
external bus becoming a bottleneck for 
cache access.

Move external cache on-chip, 
operating at the same speed as the 
processor.

486

Internal cache is rather small, due to  
limited space on chip.

Add external L2 cache using faster 
technology than main memory.

486

Contention occurs when both the 
Instruction Prefetcher and the Execution 
Unit simultaneously require access to 
the cache. In that case, the Prefetcher is 
stalled while the Execution Unit’s data 
access takes place.

Create separate data and instruc-
tion caches.

Pentium

Increased processor speed results in 
external bus becoming a bottleneck for 
L2 cache access.

Create separate back-side bus that 
runs at higher speed than the main 
(front-side) external bus. The BSB 
is dedicated to the L2 cache.

Pentium Pro

Move L2 cache on to the proces-
sor chip.

Pentium II

Some applications deal with massive 
databases and must have rapid access 
to large amounts of data. The on-chip 
caches are too small.

Add external L3 cache. Pentium III

Move L3 cache on-chip. Pentium 4
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 • Execution units: These units executes micro-operations, fetching the required 
data from the L1 data cache and temporarily storing results in registers.

 • Memory subsystem: This unit includes the L2 and L3 caches and the system 
bus, which is used to access main memory when the L1 and L2 caches have a 
cache miss and to access the system I/O resources.

Unlike the organization used in all previous Pentium models, and in most 
other processors, the Pentium 4 instruction cache sits between the instruction 
decode logic and the execution core. The reasoning behind this design decision is 
as follows: As discussed more fully in Chapter 16, the Pentium process decodes, or 
translates, Pentium machine instructions into simple RISC-like instructions called 
micro-operations. The use of simple, fixed-length micro-operations enables the use 
of superscalar pipelining and scheduling techniques that enhance performance. 
However, the Pentium machine instructions are cumbersome to decode; they have a 
variable number of bytes and many different options. It turns out that performance 
is enhanced if this decoding is done independently of the scheduling and pipelining 
logic. We return to this topic in Chapter 16.

The data cache employs a write-back policy: Data are written to main mem-
ory only when they are removed from the cache and there has been an update. The 
Pentium 4 processor can be dynamically configured to support write-through caching.

The L1 data cache is controlled by two bits in one of the control registers, 
labeled the CD (cache disable) and NW (not write-through) bits (Table 4.5). There 
are also two Pentium 4 instructions that can be used to control the data cache: INVD 
invalidates (flushes) the internal cache memory and signals the external cache (if 
any) to invalidate. WBINVD writes back and invalidates internal cache and then 
writes back and invalidates external cache.

Both the L2 and L3 caches are eight-way setassociative with a line size of 
128 bytes.

 4.5 ARM CACHE ORGANIZATION

The ARM cache organization has evolved with the overall architecture of the ARM 
family, reflecting the relentless pursuit of performance that is the driving force for 
all microprocessor designers.

Table 4.6 shows this evolution. The ARM7 models used a unified L1 cache, 
while all subsequent models use a split instruction/data cache. All of the ARM 

Table 4.5 Pentium 4 Cache Operating Modes

Control Bits Operating Mode

CD NW Cache Fills Write Throughs Invalidates

0 0 Enabled Enabled Enabled

1 0 Disabled Enabled Enabled

1 1 Disabled Disabled Disabled

Note: CD = 0; NW = 1 is an invalid combination.
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designs use a set-associative cache, with the degree of associativity and the line size 
varying. ARM cached cores with an MMU use a logical cache for processor families 
ARM7 through ARM10, including the Intel StongARM and Intel Xscale proces-
sors. The ARM11 family uses a physical cache. The distinction between logical and 
physical cache is discussed earlier in this chapter (Figure 4.7).

An interesting feature of the ARM architecture is the use of a small first-in-
first out (FIFO) write buffer to enhance memory write performance. The write 
buffer is interposed between the cache and main memory and consists of a set of 
addresses and a set of data words. The write buffer is small compared to the cache, 
and may hold up to four independent addresses. Typically, the write buffer is ena-
bled for all of main memory, although it may be selectively disabled at the page 
level. Figure 4.19, taken from [SLOS04], shows the relationship among the write 
buffer, cache, and main memory.

Table 4.6 ARM Cache Features

Core
Cache 
Type

Cache Size 
(kB)

Cache Line 
Size (words) Associativity Location

Write 
Buffer Size 

(words)

ARM720T Unified 8 4 4-way Logical  8

ARM920T Split 16/16 D/I 8 64-way Logical 16

ARM926EJ-S Split 4-128/4-128 D/I 8 4-way Logical 16

ARM1022E Split 16/16 D/I 8 64-way Logical 16

ARM1026EJ-S Split 4-128/4-128 D/I 8 4-way Logical  8

Intel 
StrongARM

Split 16/16 D/I 4 32-way Logical 32

Intel Xscale Split 32/32 D/I 8 32-way Logical 32

ARM1136-JF-S Split 4-64/4-64 D/I 8 4-way Physical 32

Write
buffer

ARM core

Main
memory

Level 1
cache(s)

Level 2
cacheR15

R0

Address
translation

Virtual
address Physical address

Figure 4.19 ARM Cache and Write Buffer Organization
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The write buffer operates as follows: When the processor performs a write to 
a bufferable area, the data are placed in the write buffer at processor clock speed 
and the processor continues execution. A write occurs when data in the cache are 
written back to main memory. Thus, the data to be written are transferred from the 
cache to the write buffer. The write buffer then performs the external write in paral-
lel. If, however, the write buffer is full (either because there are already the maxi-
mum number of words of data in the buffer or because there is no slot for the new 
address) then the processor is stalled until there is sufficient space in the buffer. As 
non-write operations proceed, the write buffer continues to write to main memory 
until the buffer is completely empty.

Data written to the write buffer are not available for reading back into the 
cache until the data have transferred from the write buffer to main memory. This 
is the principal reason that the write buffer is quite small. Even so, unless there 
is a high proportion of writes in an executing program, the write buffer improves 
performance.

 4.6 RECOMMENDED READING

[JACO08] is an excellent, up-to-date treatment of cache design. Another thorough treat-
ment is [HAND98]. A classic paper that is still well worth reading is [SMIT82]; it surveys 
the various elements of cache design and presents the results of an extensive set of analyses. 
Another interesting classic is [WILK65], which is probably the first paper to introduce the 
concept of the cache. [GOOD83] also provides a useful analysis of cache behavior. Another 
worthwhile analysis is [BELL74]. [AGAR89] presents a detailed examination of a variety of 
cache design issues related to multiprogramming and multiprocessing. [HIGB90] provides a 
set of simple formulas that can be used to estimate cache performance as a function of vari-
ous cache parameters.

AGAR89 Agarwal, A. Analysis of Cache Performance for Operating Systems and 
Multiprogramming. Boston: Kluwer Academic Publishers, 1989.

BELL74 Bell, J.; Casasent, D.; and Bell, C. “An Investigation into Alternative Cache 
Organizations.” IEEE Transactions on Computers, April 1974.

GOOD83 Goodman, J. “Using Cache Memory to Reduce Processor-Memory Band-
width.” Proceedings, 10th Annual International Symposium on Computer Archi-
tecture, 1983. Reprinted in [HILL00].

HAND98 Handy, J. The Cache Memory Book. San Diego: Academic Press, 1998.
HIGB90 Higbie, L. “Quick and Easy Cache Performance Analysis.” Computer Archi-

tecture News, June 1990.
JACO08 Jacob, B.; Ng, S.; and Wang, D. Memory Systems: Cache, DRAM, Disk. 

Boston: Morgan Kaufmann, 2008.
SMIT82 Smith, A. “Cache Memories.” ACM Computing Surveys, September 1982.
WILK65 Wilkes, M. “Slave Memories and Dynamic Storage Allocation,” IEEE 

Transactions on Electronic Computers, April 1965. Reprinted in [HILL00].
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 4.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

access time
associative mapping
secondary memory
cache hit
cache line
cache memory
cache miss
cache set
data cache
direct access
direct mapping
high-performance computing 

(HPC)
hit

hit ratio
instruction cache
L1 cache
L2 cache
L3 cache
line
locality
logical cache
memory hierarchy
miss
multilevel cache
physical address
physical cache
random access

replacement algorithm
secondary memory
sequential access
set-associative mapping
spatial locality
split cache
tag
temporal locality
unified cache
virtual address
virtual cache
write back
write through

Review Questions
 4.1 What are the differences among sequential access, direct access, and random access?
 4.2 What is the general relationship among access time, memory cost, and capacity?
 4.3 How does the principle of locality relate to the use of multiple memory levels?
 4.4 What are the differences among direct mapping, associative mapping, and set-associa-

tive mapping?
 4.5 For a direct-mapped cache, a main memory address is viewed as consisting of three 

fields. List and define the three fields.
 4.6 For an associative cache, a main memory address is viewed as consisting of two fields. 

List and define the two fields.
 4.7 For a set-associative cache, a main memory address is viewed as consisting of three 

fields. List and define the three fields.
 4.8 What is the distinction between spatial locality and temporal locality?
 4.9 In general, what are the strategies for exploiting spatial locality and temporal locality?

Problems
 4.1 A set-associative cache consists of 64 lines, or slots, divided into four-line sets. Main 

memory contains 4K blocks of 128 words each. Show the format of main memory  
addresses.

 4.2 A two-way set-associative cache has lines of 16 bytes and a total size of 8 Kbytes. The 
64-Mbyte main memory is byte addressable. Show the format of main memory addresses.

 4.3 For the hexadecimal main memory addresses 111111, 666666, BBBBBB, show the 
following information, in hexadecimal format:
a. Tag, Line, and Word values for a direct-mapped cache, using the format of 

Figure 4.10
b. Tag and Word values for an associative cache, using the format of Figure 4.12
c. Tag, Set, and Word values for a two-way set-associative cache, using the format of 

Figure 4.15
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 4.4 List the following values:
a. For the direct cache example of Figure 4.10: address length, number of address-

able units, block size, number of blocks in main memory, number of lines in cache, 
size of tag

b. For the associative cache example of Figure 4.12: address length, number of 
addressable units, block size, number of blocks in main memory, number of lines 
in cache, size of tag

c. For the two-way set-associative cache example of Figure 4.15: address length, 
number of addressable units, block size, number of blocks in main memory, num-
ber of lines in set, number of sets, number of lines in cache, size of tag

 4.5 Consider a 32-bit microprocessor that has an on-chip 16-Kbyte four-way set-
associative cache. Assume that the cache has a line size of four 32-bit words. Draw a 
block diagram of this cache showing its organization and how the different address 
fields are used to determine a cache hit/miss. Where in the cache is the word from 
memory location ABCDE8F8 mapped?

 4.6 Given the following specifications for an external cache memory: four-way set asso-
ciative; line size of two 16-bit words; able to accommodate a total of 4K 32-bit words 
from main memory; used with a 16-bit processor that issues 24-bit addresses. Design 
the cache structure with all pertinent information and show how it interprets the pro-
cessor’s addresses.

 4.7 The Intel 80486 has an on-chip, unified cache. It contains 8 Kbytes and has a four-
way set-associative organization and a block length of four 32-bit words. The cache is 
organized into 128 sets. There is a single “line valid bit” and three bits, B0, B1, and B2 
(the “LRU” bits), per line. On a cache miss, the 80486 reads a 16-byte line from main 
memory in a bus memory read burst. Draw a simplified diagram of the cache and 
show how the different fields of the address are interpreted.

 4.8 Consider a machine with a byte addressable main memory of 216 bytes and block size 
of 8 bytes. Assume that a direct mapped cache consisting of 32 lines is used with this 
machine.
a. How is a 16-bit memory address divided into tag, line number, and byte 

number?
b. Into what line would bytes with each of the following addresses be stored?

0001 0001 0001 1011
1100 0011 0011 0100
1101 0000 0001 1101
1010 1010 1010 1010

c. Suppose the byte with address 0001 1010 0001 1010 is stored in the cache. What are 
the addresses of the other bytes stored along with it?

d. How many total bytes of memory can be stored in the cache?
e. Why is the tag also stored in the cache?

 4.9 For its on-chip cache, the Intel 80486 uses a replacement algorithm referred to as 
pseudo least recently used. Associated with each of the 128 sets of four lines (labeled 
L0, L1, L2, L3) are three bits B0, B1, and B2. The replacement algorithm works as fol-
lows: When a line must be replaced, the cache will first determine whether the most 
recent use was from L0 and L1 or L2 and L3. Then the cache will determine which 
of the pair of blocks was least recently used and mark it for replacement. Figure 4.20 
illustrates the logic.
a. Specify how the bits B0, B1, and B2 are set and then describe in words how they 

are used in the replacement algorithm depicted in Figure 4.20.
b. Show that the 80486 algorithm approximates a true LRU algorithm. Hint: Con-

sider the case in which the most recent order of usage is L0, L2, L3, L1.
c. Demonstrate that a true LRU algorithm would require 6 bits per set.
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 4.10 A set-associative cache has a block size of four 16-bit words and a set size of 2. The 
cache can accommodate a total of 4096 words. The main memory size that is cacheable 
is 64K * 32 bits. Design the cache structure and show how the processor’s addresses 
are interpreted.

 4.11 Consider a memory system that uses a 32-bit address to address at the byte level, plus 
a cache that uses a 64-byte line size.
a. Assume a direct mapped cache with a tag field in the address of 20 bits. Show 

the address format and determine the following parameters: number of address-
able units, number of blocks in main memory, number of lines in cache, size  
of tag.

b. Assume an associative cache. Show the address format and determine the follow-
ing parameters: number of addressable units, number of blocks in main memory, 
number of lines in cache, size of tag.

c. Assume a four-way set-associative cache with a tag field in the address of 9 bits. 
Show the address format and determine the following parameters: number of ad-
dressable units, number of blocks in main memory, number of lines in set, number 
of sets in cache, number of lines in cache, size of tag.

 4.12 Consider a computer with the following characteristics: total of 1Mbyte of main 
memory; word size of 1 byte; block size of 16 bytes; and cache size of 64 Kbytes.
a. For the main memory addresses of F0010, 01234, and CABBE, give the corre-

sponding tag, cache line address, and word offsets for a direct-mapped cache.
b. Give any two main memory addresses with different tags that map to the same 

cache slot for a direct-mapped cache.
c. For the main memory addresses of F0010 and CABBE, give the corresponding tag 

and offset values for a fully-associative cache.
d. For the main memory addresses of F0010 and CABBE, give the corresponding 

tag, cache set, and offset values for a two-way set-associative cache.
 4.13 Describe a simple technique for implementing an LRU replacement algorithm in a 

four-way set-associative cache.
 4.14 Consider again Example 4.3. How does the answer change if the main memory uses a 

block transfer capability that has a first-word access time of 30 ns and an access time 
of 5 ns for each word thereafter?

All four lines in
the set valid?

B0 � 0?

Yes

Yes No Yes No

Yes, L0 or L1
least recently used

No, L2 or L3
least recently used

No

B1 � 0?

Replace
L0

Replace
L1

Replace
L2

Replace
L3

B2 � 0?

Replace
nonvalid line

Figure 4.20 Intel 80486 On-Chip Cache Replacement Strategy
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 4.15 Consider the following code:
for (i = 0; i 6 20; i+ +)

for (j = 0; j 6 10; j+ +)
a[i] = a[i]* j

a. Give one example of the spatial locality in the code.
b. Give one example of the temporal locality in the code.

 4.16 Generalize Equations (4.2) and (4.3), in Appendix 4A, to N-level memory hierarchies.
 4.17 A computer system contains a main memory of 32K 16-bit words. It also has a 4K-

word cache divided into four-line sets with 64 words per line. Assume that the cache 
is initially empty. The processor fetches words from locations 0, 1, 2, . . . , 4351 in that 
order. It then repeats this fetch sequence nine more times. The cache is 10 times faster 
than main memory. Estimate the improvement resulting from the use of the cache. 
Assume an LRU policy for block replacement.

 4.18 Consider a cache of 4 lines of 16 bytes each. Main memory is divided into blocks of 
16 bytes each. That is, block 0 has bytes with addresses 0 through 15, and so on. Now 
consider a program that accesses memory in the following sequence of addresses:
Once: 63 through 70
Loop ten times: 15 through 32; 80 through 95
a. Suppose the cache is organized as direct mapped. Memory blocks 0, 4, and so on 

are assigned to line 1; blocks 1, 5, and so on to line 2; and so on. Compute the hit 
ratio.

b. Suppose the cache is organized as two-way set associative, with two sets of two 
lines each. Even-numbered blocks are assigned to set 0 and odd-numbered blocks 
are assigned to set 1. Compute the hit ratio for the two-way set-associative cache 
using the least recently used replacement scheme.

 4.19 Consider a memory system with the following parameters:
 Tc = 100 ns  Cc = 10-4 +/bit

 Tm = 1200 ns  Cm = 10-5 +/bit
a. What is the cost of 1 Mbyte of main memory?
b. What is the cost of 1 Mbyte of main memory using cache memory technology?
c. If the effective access time is 10% greater than the cache access time, what is the 

hit ratio H?
 4.20 a.   Consider an L1 cache with an access time of 1 ns and a hit ratio of H = 0.95. Sup-

pose that we can change the cache design (size of cache, cache organization) such 
that we increase H to 0.97, but increase access time to 1.5 ns. What conditions must 
be met for this change to result in improved performance?

b. Explain why this result makes intuitive sense.
 4.21 Consider a single-level cache with an access time of 2.5 ns, a line size of 64 bytes, 

and a hit ratio of H = 0.95. Main memory uses a block transfer capability that has 
a first-word (4 bytes) access time of 50 ns and an access time of 5 ns for each word 
thereafter.
a. What is the access time when there is a cache miss? Assume that the cache waits 

until the line has been fetched from main memory and then re-executes for a hit.
b. Suppose that increasing the line size to 128 bytes increases the H to 0.97. Does this 

reduce the average memory access time?
 4.22 A computer has a cache, main memory, and a disk used for virtual memory. If a refer-

enced word is in the cache, 20 ns are required to access it. If it is in main memory but 
not in the cache, 60 ns are needed to load it into the cache, and then the reference is 
started again. If the word is not in main memory, 12 ms are required to fetch the word 
from disk, followed by 60 ns to copy it to the cache, and then the reference is started 
again. The cache hit ratio is 0.9 and the main memory hit ratio is 0.6. What is the aver-
age time in nanoseconds required to access a referenced word on this system?
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 4.23 Consider a cache with a line size of 64 bytes. Assume that on average 30% of the lines 
in the cache are dirty. A word consists of 8 bytes.
a. Assume there is a 3% miss rate (0.97 hit ratio). Compute the amount of main 

memory traffic, in terms of bytes per instruction for both write-through and write-
back policies. Memory is read into cache one line at a time. However, for write 
back, a single word can be written from cache to main memory.

b. Repeat part a for a 5% rate.
c. Repeat part a for a 7% rate.
d. What conclusion can you draw from these results?

 4.24 On the Motorola 68020 microprocessor, a cache access takes two clock cycles. Data 
access from main memory over the bus to the processor takes three clock cycles in the 
case of no wait state insertion; the data are delivered to the processor in parallel with 
delivery to the cache.
a. Calculate the effective length of a memory cycle given a hit ratio of 0.9 and a 

clocking rate of 16.67 MHz.
b. Repeat the calculations assuming insertion of two wait states of one cycle each per 

memory cycle. What conclusion can you draw from the results?
 4.25 Assume a processor having a memory cycle time of 300 ns and an instruction process-

ing rate of 1 MIPS. On average, each instruction requires one bus memory cycle for 
instruction fetch and one for the operand it involves.
a. Calculate the utilization of the bus by the processor.
b. Suppose the processor is equipped with an instruction cache and the associated hit 

ratio is 0.5. Determine the impact on bus utilization.
 4.26 The performance of a single-level cache system for a read operation can be character-

ized by the following equation:

Ta = Tc + (1 - H)Tm

where Ta is the average access time, Tc is the cache access time, Tm is the memory 
access time (memory to processor register), and H is the hit ratio. For simplicity, we 
assume that the word in question is loaded into the cache in parallel with the load to 
processor register. This is the same form as Equation (4.2).
a. Define Tb = time to transfer a line between cache and main memory, and W = 

fraction of write references. Revise the preceding equation to account for writes 
as well as reads, using a write-through policy.

b. Define Wb as the probability that a line in the cache has been altered. Provide an 
equation for Ta for the write-back policy.

 4.27 For a system with two levels of cache, define Tc1
 = first-level cache access time; Tc2

 =
 second-level cache access time; Tm = memory access time; H1 = first-level cache hit 
ratio; H2 = combined first/second level cache hit ratio. Provide an equation for Ta for 
a read operation.

 4.28 Assume the following performance characteristics on a cache read miss: one clock 
cycle to send an address to main memory and four clock cycles to access a 32-bit word 
from main memory and transfer it to the processor and cache.
a. If the cache line size is one word, what is the miss penalty (i.e., additional time 

required for a read in the event of a read miss)?
b. What is the miss penalty if the cache line size is four words and a multiple, non-

burst transfer is executed?
c. What is the miss penalty if the cache line size is four words and a transfer is 

executed, with one clock cycle per word transfer?
 4.29 For the cache design of the preceding problem, suppose that increasing the line size 

from one word to four words results in a decrease of the read miss rate from 3.2% to 
1.1%. For both the nonburst transfer and the burst transfer case, what is the average 
miss penalty, averaged over all reads, for the two different line sizes?
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APPENDIX 4A  PERFORMANCE CHARACTERISTICS  
OF TWO-LEVEL MEMORIES

In this chapter, reference is made to a cache that acts as a buffer between main 
memory and processor, creating a two-level internal memory. This two-level archi-
tecture exploits a property known as locality to provide improved performance over 
a comparable one-level memory.

The main memory cache mechanism is part of the computer architecture, 
implemented in hardware and typically invisible to the operating system. There are 
two other instances of a two-level memory approach that also exploit locality and 
that are, at least partially, implemented in the operating system: virtual memory 
and the disk cache (Table 4.7). Virtual memory is explored in Chapter 8; disk cache 
is beyond the scope of this book but is examined in [STAL12]. In this appendix, 
we look at some of the performance characteristics of two-level memories that are 
common to all three approaches.

Locality

The basis for the performance advantage of a two-level memory is a principle 
known as locality of reference [DENN68]. This principle states that memory ref-
erences tend to cluster. Over a long period of time, the clusters in use change, but 
over a short period of time, the processor is primarily working with fixed clusters of 
memory references.

Intuitively, the principle of locality makes sense. Consider the following line 
of reasoning:

 1. Except for branch and call instructions, which constitute only a small fraction 
of all program instructions, program execution is sequential. Hence, in most 
cases, the next instruction to be fetched immediately follows the last instruc-
tion fetched.

 2. It is rare to have a long uninterrupted sequence of procedure calls followed by 
the corresponding sequence of returns. Rather, a program remains confined to a 
rather narrow window of procedure-invocation depth. Thus, over a short period 
of time references to instructions tend to be localized to a few procedures.

Table 4.7 Characteristics of Two-Level Memories

Main Memory 
Cache

Virtual Memory  
(paging) Disk Cache

Typical access time 
ratios

5 : 1 (main memory 
vs. cache)

106 : 1 (main memory vs. 
disk)

106 : 1 (main memory 
vs. disk)

Memory management 
system

Implemented by  
special hardware

Combination of hard-
ware and system software

System software

Typical block or page 
size

4 to 128 bytes  
(cache block)

64 to 4096 bytes (virtual 
memory page)

64 to 4096 bytes  
(disk block or pages)

Access of processor 
to second level

Direct access Indirect access Indirect access
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 3. Most iterative constructs consist of a relatively small number of instructions 
repeated many times. For the duration of the iteration, computation is there-
fore confined to a small contiguous portion of a program.

 4. In many programs, much of the computation involves processing data struc-
tures, such as arrays or sequences of records. In many cases, successive refer-
ences to these data structures will be to closely located data items.

This line of reasoning has been confirmed in many studies. With reference 
to point 1, a variety of studies have analyzed the behavior of high-level language 
programs. Table 4.8 includes key results, measuring the appearance of various 
statement types during execution, from the following studies. The earliest study of 
programming language behavior, performed by Knuth [KNUT71], examined a col-
lection of FORTRAN programs used as student exercises. Tanenbaum [TANE78] 
published measurements collected from over 300 procedures used in operating-
system programs and written in a language that supports structured programming 
(SAL). Patterson and Sequein [PATT82a] analyzed a set of measurements taken 
from compilers and programs for typesetting, computer-aided design (CAD), sort-
ing, and file comparison. The programming languages C and Pascal were studied. 
Huck [HUCK83] analyzed four programs intended to represent a mix of general-
purpose scientific computing, including fast Fourier transform and the integration 
of systems of differential equations. There is good agreement in the results of this 
mixture of languages and applications that branching and call instructions represent 
only a fraction of statements executed during the lifetime of a program. Thus, these 
studies confirm assertion 1.

With respect to assertion 2, studies reported in [PATT85a] provide confirma-
tion. This is illustrated in Figure 4.21, which shows call-return behavior. Each call is 
represented by the line moving down and to the right, and each return by the line 
moving up and to the right. In the figure, a window with depth equal to 5 is defined. 
Only a sequence of calls and returns with a net movement of 6 in either direction 
causes the window to move. As can be seen, the executing program can remain 
within a stationary window for long periods of time. A study by the same analysts of 
C and Pascal programs showed that a window of depth 8 will need to shift only on 
less than 1% of the calls or returns [TAMI83].

Table 4.8 Relative Dynamic Frequency of High-Level Language Operations

Study
Language
Workload

[HUCK83]
Pascal

Scientific

[KNUT71]
FORTRAN

Student

[PATT82a] [TANE78]
SAL

System
Pascal
System

C
System

Assign 74 67 45 38 42

Loop  4  3  5  3  4

Call  1  3 15 12 12

IF 20 11 29 43 36

GOTO  2  9 —  3 —

Other —  7  6  1  6
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A distinction is made in the literature between spatial locality and temporal 
locality. Spatial locality refers to the tendency of execution to involve a number of 
memory locations that are clustered. This reflects the tendency of a processor to 
access instructions sequentially. Spatial location also reflects the tendency of a pro-
gram to access data locations sequentially, such as when processing a table of data. 
Temporal locality refers to the tendency for a processor to access memory locations 
that have been used recently. For example, when an iteration loop is executed, the 
processor executes the same set of instructions repeatedly.

Traditionally, temporal locality is exploited by keeping recently used instruc-
tion and data values in cache memory and by exploiting a cache hierarchy. Spatial 
locality is generally exploited by using larger cache blocks and by incorporating 
prefetching mechanisms (fetching items of anticipated use) into the cache control 
logic. Recently, there has been considerable research on refining these techniques 
to achieve greater performance, but the basic strategies remain the same.

Operation of Two-Level Memory

The locality property can be exploited in the formation of a two-level memory. The 
upper-level memory (M1) is smaller, faster, and more expensive (per bit) than the 
lower-level memory (M2). M1 is used as a temporary store for part of the contents 
of the larger M2. When a memory reference is made, an attempt is made to access 
the item in M1. If this succeeds, then a quick access is made. If not, then a block of 
memory locations is copied from M2 to M1 and the access then takes place via M1. 
Because of locality, once a block is brought into M1, there should be a number of 
accesses to locations in that block, resulting in fast overall service.

To express the average time to access an item, we must consider not only the 
speeds of the two levels of memory, but also the probability that a given reference 
can be found in M1. We have

Ts = H * T1 + (1 - H) * (T1 + T2)

 = T1 + (1 - H) * T2 (4.2)

w � 5

t � 33

Time
(in units of calls/returns)

Nesting
depth

Return

Call

Figure 4.21 Example Call-Return Behavior of a Program
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where

Ts = average (system) access time
T1 = access time of M1 (e.g., cache, disk cache)
T2 = access time of M2 (e.g., main memory, disk)
H = hit ratio (fraction of time reference is found in M1)

Figure 4.2 shows average access time as a function of hit ratio. As can be seen, 
for a high percentage of hits, the average total access time is much closer to that of 
M1 than M2.

Performance

Let us look at some of the parameters relevant to an assessment of a two-level 
memory mechanism. First consider cost. We have

 Cs =
C1S1 + C2S2

S1 + S2
 (4.3)

where

Cs = average cost per bit for the combined two-level memory
C1 = average cost per bit of upper-level memory M1
C2 = average cost per bit of lower-level memory M2
S1 = size of M1
S2 = size of M2

We would like Cs � C2. Given that C1 W C2, this requires S1 6 S2. 
Figure 4.22 shows the relationship.

Next, consider access time. For a two-level memory to provide a significant 
performance improvement, we need to have Ts approximately equal to T1 (Ts � T1). 
Given that T1 is much less than T2 (T1 V T2), a hit ratio of close to 1 is needed.

So we would like M1 to be small to hold down cost, and large to improve the 
hit ratio and therefore the performance. Is there a size of M1 that satisfies both 
requirements to a reasonable extent? We can answer this question with a series of 
subquestions:

 • What value of hit ratio is needed so that Ts � T1?

 • What size of M1 will assure the needed hit ratio?

 • Does this size satisfy the cost requirement?

To get at this, consider the quantity T1/Ts, which is referred to as the access effi-
ciency. It is a measure of how close average access time (Ts) is to M1 access time 
(T1). From Equation (4.2),

 
T1

Ts
=

1

1 + (1 - H) 
T2

T1

 (4.4)

Figure 4.23 plots T1/Ts as a function of the hit ratio H, with the quantity T2/T1 as a 
parameter. Typically, on-chip cache access time is about 25 to 50 times faster than 
main memory access time (i.e., T2/T1 is 25 to 50), off-chip cache access time is about 
5 to 15 times faster than main memory access time (i.e., T2/T1 is 5 to 15), and main 
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memory access time is about 1000 times faster than disk access time (T2/T1 = 1000). 
Thus, a hit ratio in the range of near 0.9 would seem to be needed to satisfy the per-
formance requirement.

We can now phrase the question about relative memory size more exactly. Is a 
hit ratio of, say, 0.8 or better reasonable for S1 V S2? This will depend on a number 
of factors, including the nature of the software being executed and the details of the 
design of the two-level memory. The main determinant is, of course, the degree of 
locality. Figure 4.24 suggests the effect that locality has on the hit ratio. Clearly, if 
M1 is the same size as M2, then the hit ratio will be 1.0: All of the items in M2 are 
always stored also in M1. Now suppose that there is no locality; that is, references 
are completely random. In that case the hit ratio should be a strictly linear func-
tion of the relative memory size. For example, if M1 is half the size of M2, then at 
any time half of the items from M2 are also in M1 and the hit ratio will be 0.5. In 
practice, however, there is some degree of locality in the references. The effects of 
moderate and strong locality are indicated in the figure. Note that Figure 4.24 is not 
derived from any specific data or model; the figure suggests the type of performance 
that is seen with various degrees of locality.

So if there is strong locality, it is possible to achieve high values of hit ratio 
even with relatively small upper-level memory size. For example, numerous studies 
have shown that rather small cache sizes will yield a hit ratio above 0.75 regardless of 
the size of main memory (e.g., [AGAR89], [PRZY88], [STRE83], and [SMIT82]). A 
cache in the range of 1K to 128K words is generally adequate, whereas main mem-
ory is now typically in the gigabyte range. When we consider virtual  memory and 
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disk cache, we will cite other studies that confirm the same phenomenon, namely 
that a relatively small M1 yields a high value of hit ratio because of locality.

This brings us to the last question listed earlier: Does the relative size of the 
two memories satisfy the cost requirement? The answer is clearly yes. If we need 
only a relatively small upper-level memory to achieve good performance, then the 
average cost per bit of the two levels of memory will approach that of the cheaper 
lower-level memory.

Please note that with L2 cache, or even L2 and L3 caches, involved, analysis is 
much more complex. See [PEIR99] and [HAND98] for discussions.
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We begin this chapter with a survey of semiconductor main memory subsystems, 
including ROM, DRAM, and SRAM memories. Then we look at error control 
techniques used to enhance memory reliability. Following this, we look at more 
advanced DRAM architectures.

 5.1 SEMICONDUCTOR MAIN MEMORY

In earlier computers, the most common form of random-access storage for com-
puter main memory employed an array of doughnut-shaped ferromagnetic loops 
referred to as cores. Hence, main memory was often referred to as core, a term that 
persists to this day. The advent of, and advantages of, microelectronics has long 
since vanquished the magnetic core memory. Today, the use of semiconductor chips 
for main memory is almost universal. Key aspects of this technology are explored 
in this section.

Organization

The basic element of a semiconductor memory is the memory cell. Although a vari-
ety of electronic technologies are used, all semiconductor memory cells share cer-
tain properties:

 • They exhibit two stable (or semistable) states, which can be used to represent 
binary 1 and 0.

 • They are capable of being written into (at least once), to set the state.

 • They are capable of being read to sense the state.

Figure 5.1 depicts the operation of a memory cell. Most commonly, the cell 
has three functional terminals capable of carrying an electrical signal. The select 
 terminal, as the name suggests, selects a memory cell for a read or write opera-
tion. The control terminal indicates read or write. For writing, the other terminal 
 provides an electrical signal that sets the state of the cell to 1 or 0. For reading, that 
terminal is used for output of the cell’s state. The details of the internal organiza-
tion, functioning, and timing of the memory cell depend on the specific integrated 
circuit technology used and are beyond the scope of this book, except for a brief 
summary. For our purposes, we will take it as given that individual cells can be 
selected for reading and writing operations.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Present an overview of the principle types of semiconductor main memory.
� Understand the operation of a basic code that can detect and correct single-

bit errors in 8-bit words.
� Summarize the properties of contemporary advanced DRAM organizations.
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DRAM and SRAM

All of the memory types that we will explore in this chapter are random access. That is, 
individual words of memory are directly accessed through wired-in addressing logic.

Table 5.1 lists the major types of semiconductor memory. The most common 
is referred to as random-access memory (RAM). This is, in fact, a misuse of the 
term, because all of the types listed in the table are random access. One distin-
guishing characteristic of memory that is designated as RAM is that it is possible 
both to read data from the memory and to write new data into the memory easily 
and rapidly. Both the reading and writing are accomplished through the use of 
electrical signals.

The other distinguishing characteristic of RAM is that it is volatile. A RAM 
must be provided with a constant power supply. If the power is interrupted, then 
the data are lost. Thus, RAM can be used only as temporary storage. The two tradi-
tional forms of RAM used in computers are DRAM and SRAM.

DYNAMIC RAM RAM technology is divided into two technologies: dynamic and 
static. A dynamic RAM (DRAM) is made with cells that store data as charge on 
capacitors. The presence or absence of charge in a capacitor is interpreted as a 
binary 1 or 0. Because capacitors have a natural tendency to discharge, dynamic 

Cell
Select Data in

Control

(a) Write

Cell
Select Sense

Control

(b) Read

Figure 5.1 Memory Cell Operation

Table 5.1 Semiconductor Memory Types

Memory Type Category Erasure
Write 

Mechanism Volatility

Random-access memory  
(RAM)

Read-write 
memory

Electrically, 
byte-level Electrically Volatile

Read-only memory (ROM)
Programmable ROM (PROM)

Read-only 
memory

Not possible
Masks

Erasable PROM (EPROM)
UV light, 
chip-level

Electrically Erasable PROM 
(EEPROM)

Read-mostly 
memory

Electrically, 
byte-level Electrically

Nonvolatile

Flash memory
Electrically, 
block-level
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RAMs require periodic charge refreshing to maintain data storage. The term 
dynamic refers to this tendency of the stored charge to leak away, even with power 
continuously applied.

Figure 5.2a is a typical DRAM structure for an individual cell that stores 1 bit. 
The address line is activated when the bit value from this cell is to be read or written. 
The transistor acts as a switch that is closed (allowing current to flow) if a voltage is 
applied to the address line and open (no current flows) if no voltage is present on 
the address line.

For the write operation, a voltage signal is applied to the bit line; a high volt-
age represents 1, and a low voltage represents 0. A signal is then applied to the 
address line, allowing a charge to be transferred to the capacitor.

For the read operation, when the address line is selected, the transistor turns 
on and the charge stored on the capacitor is fed out onto a bit line and to a sense 
amplifier. The sense amplifier compares the capacitor voltage to a reference value 
and determines if the cell contains a logic 1 or a logic 0. The readout from the cell 
discharges the capacitor, which must be restored to complete the operation.

Although the DRAM cell is used to store a single bit (0 or 1), it is essentially 
an analog device. The capacitor can store any charge value within a range; a thresh-
old value determines whether the charge is interpreted as 1 or 0.

STATIC RAM In contrast, a static RAM (SRAM) is a digital device that uses the 
same logic elements used in the processor. In a SRAM, binary values are stored 
using traditional flip-flop logic-gate configurations (see Chapter 11 for a description 
of flip-flops). A static RAM will hold its data as long as power is supplied to it.

Bit line
B

Address line

Ground

dc voltage

Address
line

(b) Static RAM (SRAM) cell(a) Dynamic RAM (DRAM) cell

Bit line
B

T5 T6

T3 T4

T1 T2

C1 C2

Bit line
B

Transistor

Ground

Storage
capacitor

Figure 5.2 Typical Memory Cell Structures
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Figure 5.2b is a typical SRAM structure for an individual cell. Four transistors 
(T1, T2, T3, T4) are cross connected in an arrangement that produces a stable logic 
state. In logic state 1, point C1 is high and point C2 is low; in this state, T1 and T4 are off 
and T2 and T3 are on.1 In logic state 0, point C1 is low and point C2 is high; in this state, 
T1 and T4 are on and T2 and T3 are off. Both states are stable as long as the direct 
 current (dc) voltage is applied. Unlike the DRAM, no refresh is needed to retain data.

As in the DRAM, the SRAM address line is used to open or close a switch. 
The address line controls two transistors (T5 and T6). When a signal is applied to 
this line, the two transistors are switched on, allowing a read or write operation. For 
a write operation, the desired bit value is applied to line B, while its complement 
is applied to line B. This forces the four transistors (T1, T2, T3, T4) into the proper 
state. For a read operation, the bit value is read from line B.

SRAM VERSUS DRAM Both static and dynamic RAMs are volatile; that is, 
power must be continuously supplied to the memory to preserve the bit values. 
A dynamic memory cell is simpler and smaller than a static memory cell. Thus, a 
DRAM is more dense (smaller cells = more cells per unit area) and less expensive 
than a corresponding SRAM. On the other hand, a DRAM requires the supporting 
refresh circuitry. For larger memories, the fixed cost of the refresh circuitry is more 
than compensated for by the smaller variable cost of DRAM cells. Thus, DRAMs 
tend to be favored for large memory requirements. A final point is that SRAMs are 
somewhat faster than DRAMs. Because of these relative characteristics, SRAM is 
used for cache memory (both on and off chip), and DRAM is used for main memory.

Types of ROM

As the name suggests, a read-only memory (ROM) contains a permanent pattern 
of data that cannot be changed. A ROM is nonvolatile; that is, no power source is 
required to maintain the bit values in memory. While it is possible to read a ROM, 
it is not possible to write new data into it. An important application of ROMs is 
microprogramming, discussed in Part Four. Other potential applications include

 • Library subroutines for frequently wanted functions

 • System programs

 • Function tables

For a modest-sized requirement, the advantage of ROM is that the data or program 
is permanently in main memory and need never be loaded from a secondary storage 
device.

A ROM is created like any other integrated circuit chip, with the data actually 
wired into the chip as part of the fabrication process. This presents two problems:

 • The data insertion step includes a relatively large fixed cost, whether one or 
thousands of copies of a particular ROM are fabricated.

 • There is no room for error. If one bit is wrong, the whole batch of ROMs must 
be thrown out.

1The circles associated with T3 and T4 in Figure 5.2b indicate signal negation.
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When only a small number of ROMs with a particular memory content is 
needed, a less expensive alternative is the programmable ROM (PROM). Like the 
ROM, the PROM is nonvolatile and may be written into only once. For the PROM, 
the writing process is performed electrically and may be performed by a supplier 
or customer at a time later than the original chip fabrication. Special equipment is 
required for the writing or “programming” process. PROMs provide flexibility and 
convenience. The ROM remains attractive for high-volume production runs.

Another variation on read-only memory is the read-mostly memory, which is 
useful for applications in which read operations are far more frequent than write 
operations but for which nonvolatile storage is required. There are three common 
forms of read-mostly memory: EPROM, EEPROM, and flash memory.

The optically erasable programmable read-only memory (EPROM) is read 
and written electrically, as with PROM. However, before a write operation, all the 
storage cells must be erased to the same initial state by exposure of the packaged 
chip to ultraviolet radiation. Erasure is performed by shining an intense ultraviolet 
light through a window that is designed into the memory chip. This erasure proc-
ess can be performed repeatedly; each erasure can take as much as 20 minutes to 
perform. Thus, the EPROM can be altered multiple times and, like the ROM and 
PROM, holds its data virtually indefinitely. For comparable amounts of storage, the 
EPROM is more expensive than PROM, but it has the advantage of the multiple 
update capability.

A more attractive form of read-mostly memory is electrically erasable pro-
grammable read-only memory (EEPROM). This is a read-mostly memory that can 
be written into at any time without erasing prior contents; only the byte or bytes 
addressed are updated. The write operation takes considerably longer than the read 
operation, on the order of several hundred microseconds per byte. The EEPROM 
combines the advantage of nonvolatility with the flexibility of being updatable in 
place, using ordinary bus control, address, and data lines. EEPROM is more expen-
sive than EPROM and also is less dense, supporting fewer bits per chip.

Another form of semiconductor memory is flash memory (so named because 
of the speed with which it can be reprogrammed). First introduced in the mid-1980s, 
flash memory is intermediate between EPROM and EEPROM in both cost and 
functionality. Like EEPROM, flash memory uses an electrical erasing technology. 
An entire flash memory can be erased in one or a few seconds, which is much faster 
than EPROM. In addition, it is possible to erase just blocks of memory rather than 
an entire chip. Flash memory gets its name because the microchip is organized so 
that a section of memory cells are erased in a single action or “flash.” However, 
flash memory does not provide byte-level erasure. Like EPROM, flash memory 
uses only one transistor per bit, and so achieves the high density (compared with 
EEPROM) of EPROM.

Chip Logic

As with other integrated circuit products, semiconductor memory comes in pack-
aged chips (Figure 2.7). Each chip contains an array of memory cells.

In the memory hierarchy as a whole, we saw that there are trade-offs among 
speed, capacity, and cost. These trade-offs also exist when we consider the organization 
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of memory cells and functional logic on a chip. For semiconductor memories, one of the 
key design issues is the number of bits of data that may be read/written at a time. At one 
extreme is an organization in which the physical arrangement of cells in the array is the 
same as the logical arrangement (as perceived by the processor) of words in memory. 
The array is organized into W words of B bits each. For example, a 16-Mbit chip could 
be organized as 1M 16-bit words. At the other extreme is the so-called 1-bit-per-chip 
organization, in which data are read/written 1 bit at a time. We will illustrate memory 
chip organization with a DRAM; ROM organization is similar, though simpler.

Figure 5.3 shows a typical organization of a 16-Mbit DRAM. In this case, 4 bits 
are read or written at a time. Logically, the memory array is organized as four square 
arrays of 2048 by 2048 elements. Various physical arrangements are possible. In any 
case, the elements of the array are connected by both horizontal (row) and vertical 
(column) lines. Each horizontal line connects to the Select terminal of each cell in its 
row; each vertical line connects to the Data-In/Sense terminal of each cell in its column.

Address lines supply the address of the word to be selected. A total of log2 W 
lines are needed. In our example, 11 address lines are needed to select one of 2048 
rows. These 11 lines are fed into a row decoder, which has 11 lines of input and 2048 
lines for output. The logic of the decoder activates a single one of the 2048 outputs 
depending on the bit pattern on the 11 input lines (211 = 2048).

An additional 11 address lines select one of 2048 columns of 4 bits per column. 
Four data lines are used for the input and output of 4 bits to and from a data buffer. 
On input (write), the bit driver of each bit line is activated for a 1 or 0 according to 
the value of the corresponding data line. On output (read), the value of each bit line 
is passed through a sense amplifier and presented to the data lines. The row line 
selects which row of cells is used for reading or writing.

Because only 4 bits are read/written to this DRAM, there must be multiple 
DRAMs connected to the memory controller to read/write a word of data to the bus.

Note that there are only 11 address lines (A0–A10), half the number you 
would expect for a 2048 * 2048 array. This is done to save on the number of pins. 
The 22 required address lines are passed through select logic external to the chip 
and multiplexed onto the 11 address lines. First, 11 address signals are passed to the 
chip to define the row address of the array, and then the other 11 address signals are 
presented for the column address. These signals are accompanied by row address 
select (RAS) and column address select (CAS) signals to provide timing to the chip.

The write enable (WE) and output enable (OE) pins determine whether a 
write or read operation is performed. Two other pins, not shown in Figure 5.3, are 
ground (Vss) and a voltage source (Vcc).

As an aside, multiplexed addressing plus the use of square arrays result in a 
quadrupling of memory size with each new generation of memory chips. One more 
pin devoted to addressing doubles the number of rows and columns, and so the size 
of the chip memory grows by a factor of 4.

Figure 5.3 also indicates the inclusion of refresh circuitry. All DRAMs require 
a refresh operation. A simple technique for refreshing is, in effect, to disable the 
DRAM chip while all data cells are refreshed. The refresh counter steps through all 
of the row values. For each row, the output lines from the refresh counter are sup-
plied to the row decoder and the RAS line is activated. The data are read out and 
written back into the same location. This causes each cell in the row to be refreshed.
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Chip Packaging

As was mentioned in Chapter 2, an integrated circuit is mounted on a package that 
contains pins for connection to the outside world.

Figure 5.4a shows an example EPROM package, which is an 8-Mbit chip 
organized as 1M * 8. In this case, the organization is treated as a one-word-per-chip 
package. The package includes 32 pins, which is one of the standard chip package 
sizes. The pins support the following signal lines:

 • The address of the word being accessed. For 1M words, a total of 20 (220 =  1M) 
pins are needed (A0–A19).

 • The data to be read out, consisting of 8 lines (D0–D7).

 • The power supply to the chip (Vcc).

 • A ground pin (Vss).

 • A chip enable (CE) pin. Because there may be more than one memory chip, 
each of which is connected to the same address bus, the CE pin is used to indi-
cate whether or not the address is valid for this chip. The CE pin is activated 
by logic connected to the higher-order bits of the address bus (i.e., address bits 
above A19). The use of this signal is illustrated presently.

 • A program voltage (Vpp) that is supplied during programming (write operations).

A typical DRAM pin configuration is shown in Figure 5.4b, for a 16-Mbit chip 
organized as 4M * 4. There are several differences from a ROM chip. Because 
a RAM can be updated, the data pins are input/output. The write enable (WE) 
and output enable (OE) pins indicate whether this is a write or read operation. 
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Because the DRAM is accessed by row and column, and the address is multi-
plexed, only 11 address pins are needed to specify the 4M row/column combinations 
(211 * 211 = 222 = 4M). The functions of the row address select (RAS) and  column 
address select (CAS) pins were discussed previously. Finally, the no connect (NC) 
pin is provided so that there are an even number of pins.

Module Organization

If a RAM chip contains only 1 bit per word, then clearly we will need at least a 
 number of chips equal to the number of bits per word. As an example, Figure 5.5 
shows how a memory module consisting of 256K 8-bit words could be organized. For 
256K words, an 18-bit address is needed and is supplied to the module from some 
external source (e.g., the address lines of a bus to which the module is attached). 
The address is presented to 8 256K * 1-bit chips, each of which provides the input/
output of 1 bit.
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This organization works as long as the size of memory equals the number of 
bits per chip. In the case in which larger memory is required, an array of chips is 
needed. Figure 5.6 shows the possible organization of a memory consisting of 1M 
word by 8 bits per word. In this case, we have four columns of chips, each column 
containing 256K words arranged as in Figure 5.5. For 1M word, 20 address lines are 
needed. The 18 least significant bits are routed to all 32 modules. The high-order 
2 bits are input to a group select logic module that sends a chip enable signal to one 
of the four columns of modules.

Interleaved Memory Simulator

Interleaved Memory

Main memory is composed of a collection of DRAM memory chips. A number of 
chips can be grouped together to form a memory bank. It is possible to organize 
the memory banks in a way known as interleaved memory. Each bank is inde-
pendently able to service a memory read or write request, so that a system with 
K banks can service K requests simultaneously, increasing memory read or write 
rates by a factor of K. If consecutive words of memory are stored in different 
banks, then the transfer of a block of memory is speeded up. Appendix E explores 
the topic of interleaved memory.
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 5.2 ERROR CORRECTION

A semiconductor memory system is subject to errors. These can be categorized as 
hard failures and soft errors. A hard failure is a permanent physical defect so that 
the memory cell or cells affected cannot reliably store data but become stuck at 
0 or 1 or switch erratically between 0 and 1. Hard errors can be caused by harsh 
environmental abuse, manufacturing defects, and wear. A soft error is a random, 
nondestructive event that alters the contents of one or more memory cells with-
out damaging the memory. Soft errors can be caused by power supply problems 
or alpha particles. These particles result from radioactive decay and are distress-
ingly common because radioactive nuclei are found in small quantities in nearly all 
materials. Both hard and soft errors are clearly undesirable, and most modern main 
memory systems include logic for both detecting and correcting errors.

Figure 5.7 illustrates in general terms how the process is carried out. When 
data are to be written into memory, a calculation, depicted as a function f, is per-
formed on the data to produce a code. Both the code and the data are stored. Thus, 
if an M-bit word of data is to be stored and the code is of length K bits, then the 
actual size of the stored word is M + K bits.

When the previously stored word is read out, the code is used to detect and pos-
sibly correct errors. A new set of K code bits is generated from the M data bits and 
compared with the fetched code bits. The comparison yields one of three results:

 • No errors are detected. The fetched data bits are sent out.

 • An error is detected, and it is possible to correct the error. The data bits plus 
error correction bits are fed into a corrector, which produces a corrected set of 
M bits to be sent out.

 • An error is detected, but it is not possible to correct it. This condition is reported.

Codes that operate in this fashion are referred to as error-correcting codes. A 
code is characterized by the number of bit errors in a word that it can correct and detect.

f

f

Compare

Corrector

Memory

Data in

Data out

Error signal

M

K

M

M

K

K

Figure 5.7 Error-Correcting Code Function
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The simplest of the error-correcting codes is the Hamming code devised by 
Richard Hamming at Bell Laboratories. Figure 5.8 uses Venn diagrams to illus-
trate the use of this code on 4-bit words (M = 4). With three intersecting circles, 
there are seven compartments. We assign the 4 data bits to the inner compartments 
(Figure5.8a). The remaining compartments are filled with what are called parity 
bits. Each parity bit is chosen so that the total number of 1s in its circle is even 
(Figure5.8b). Thus, because circle A includes three data 1s, the parity bit in that 
circle is set to 1. Now, if an error changes one of the data bits (Figure 5.8c), it is eas-
ily found. By checking the parity bits, discrepancies are found in circle A and circle 
C but not in circle B. Only one of the seven compartments is in A and C but not B. 
The error can therefore be corrected by changing that bit.

To clarify the concepts involved, we will develop a code that can detect and 
correct single-bit errors in 8-bit words.

To start, let us determine how long the code must be. Referring to Figure 5.7, 
the comparison logic receives as input two K-bit values. A bit-by-bit comparison is 
done by taking the exclusive-OR of the two inputs. The result is called the  syndrome 
word. Thus, each bit of the syndrome is 0 or 1 according to if there is or is not a 
match in that bit position for the two inputs.

The syndrome word is therefore K bits wide and has a range between 0 and 
2K - 1. The value 0 indicates that no error was detected, leaving 2K - 1 values to 
indicate, if there is an error, which bit was in error. Now, because an error could 
occur on any of the M data bits or K check bits, we must have

2K - 1 Ú M + K

1
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Figure 5.8 Hamming Error-Correcting Code
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This inequality gives the number of bits needed to correct a single bit error in a word 
containing M data bits. For example, for a word of 8 data bits (M = 8), we have

 • K = 3: 23 - 1 6 8 + 3

 • K = 4: 24 - 1 7 8 + 4

Thus, eight data bits require four check bits. The first three columns of Table 5.2 
lists the number of check bits required for various data word lengths.

For convenience, we would like to generate a 4-bit syndrome for an 8-bit data 
word with the following characteristics:

 • If the syndrome contains all 0s, no error has been detected.

 • If the syndrome contains one and only one bit set to 1, then an error has 
occurred in one of the 4 check bits. No correction is needed.

 • If the syndrome contains more than one bit set to 1, then the numerical value 
of the syndrome indicates the position of the data bit in error. This data bit is 
inverted for correction.

To achieve these characteristics, the data and check bits are arranged into a 
12-bit word as depicted in Figure 5.9. The bit positions are numbered from 1 to 12. 
Those bit positions whose position numbers are powers of 2 are designated as check 
bits. The check bits are calculated as follows, where the symbol {  designates the 
exclusive-OR operation:

C1 = D1 {  D2 {           D4 {  D5 {    D7

C2 = D1 {    D3 { D4 {    D6 {  D7

C4 =    D2 { D3 { D4 {           D8

C8 =            D5 {  D6 {  D7 {  D8

Table 5.2 Increase in Word Length with Error Correction

Single-Error Correction
Single-Error Correction/ 
Double-Error Detection

Data Bits Check Bits % Increase Check Bits % Increase

  8 4 50  5 62.5

 16 5 31.25  6 37.5

 32 6 18.75  7 21.875

 64 7 10.94  8 12.5

128 8  6.25  9 7.03

256 9  3.52 10 3.91

Bit 
position 12
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Position
number
Data bit
Check bit

11
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10
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9

1001
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8

1000

7

0111

D4

6

0110

D3

5

0101

D2

4

0100

3

0011

D1

2

0010

1

0001

C4 C2 C1

Figure 5.9 Layout of Data Bits and Check Bits
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Each check bit operates on every data bit whose position number contains a 1 
in the same bit position as the position number of that check bit. Thus, data bit posi-
tions 3, 5, 7, 9, and 11 (D1, D2, D4, D5, D7) all contain a 1 in the least significant bit 
of their position number as does C1; bit positions 3, 6, 7, 10, and 11 all contain a 1 in 
the second bit position, as does C2; and so on. Looked at another way, bit position n 
is checked by those bits Ci such that g i = n. For example, position 7 is checked by 
bits in position 4, 2, and 1; and 7 = 4 + 2 + 1.

Let us verify that this scheme works with an example. Assume that the 8-bit 
input word is 00111001, with data bit D1 in the rightmost position. The calculations 
are as follows:

C1 = 1 { 0 { 1 { 1 { 0 = 1
C2 = 1 { 0 { 1 { 1 { 0 = 1
C4 = 0 { 0 { 1 { 0 = 1
C8 = 1 { 1 { 0 { 0 = 0

Suppose now that data bit 3 sustains an error and is changed from 0 to 1. When the 
check bits are recalculated, we have

C1 = 1 { 0 { 1 { 1 { 0 = 1
C2 = 1 { 1 { 1 { 1 { 0 = 0
C4 = 0 { 1 { 1 { 0 = 0
C8 = 1 { 1 { 0 { 0 = 0

When the new check bits are compared with the old check bits, the syndrome word 
is formed:

C8 C4 C2 C1
0    1    1    1

{   0    0       0       1       
     0       1       1       0       

The result is 0110, indicating that bit position 6, which contains data bit 3, is in error.
Figure 5.10 illustrates the preceding calculation. The data and check bits are 

 positioned properly in the 12-bit word. Four of the data bits have a value 1 (shaded 
in the table), and their bit position values are XORed to produce the Hamming 
code 0111, which forms the four check digits. The entire block that is stored is 
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001101001111. Suppose now that data bit 3, in bit position 6, sustains an error and is 
changed from 0 to 1. The resulting block is 001101101111, with a Hamming code of 
0111. An XOR of the Hamming code and all of the bit position values for nonzero 
data bits results in 0110. The nonzero result detects an error and indicates that the 
error is in bit position 6.

The code just described is known as a single-error-correcting (SEC) code. 
More commonly, semiconductor memory is equipped with a single-error-correcting, 
double-error-detecting (SEC-DED) code. As Table 5.2 shows, such codes require 
one additional bit compared with SEC codes.

Figure 5.11 illustrates how such a code works, again with a 4-bit data word. 
The sequence shows that if two errors occur (Figure 5.11c), the checking procedure 
goes astray (d) and worsens the problem by creating a third error (e). To overcome 
the problem, an eighth bit is added that is set so that the total number of 1s in the 
diagram is even. The extra parity bit catches the error (f).

An error-correcting code enhances the reliability of the memory at the cost of 
added complexity. With a 1-bit-per-chip organization, an SEC-DED code is generally 
considered adequate. For example, the IBM 30xx implementations used an 8-bit SEC-
DED code for each 64 bits of data in main memory. Thus, the size of main memory is 
actually about 12% larger than is apparent to the user. The VAX computers used a 7-bit 
SEC-DED for each 32 bits of memory, for a 22% overhead. A number of contempo-
rary DRAMs use 9 check bits for each 128 bits of data, for a 7% overhead [SHAR97].

 5.3 ADVANCED DRAM ORGANIZATION

As discussed in Chapter 2, one of the most critical system bottlenecks when using 
high-performance processors is the interface to main internal memory. This inter-
face is the most important pathway in the entire computer system. The basic build-
ing block of main memory remains the DRAM chip, as it has for decades; until 
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recently, there had been no significant changes in DRAM architecture since the 
early 1970s. The traditional DRAM chip is constrained both by its internal architec-
ture and by its interface to the processor’s memory bus.

We have seen that one attack on the performance problem of DRAM 
main memory has been to insert one or more levels of high-speed SRAM cache 
between the DRAM main memory and the processor. But SRAM is much costlier 
than DRAM, and expanding cache size beyond a certain point yields diminishing 
returns.

In recent years, a number of enhancements to the basic DRAM architecture 
have been explored, and some of these are now on the market. The schemes that cur-
rently dominate the market are SDRAM, DDR-DRAM, and RDRAM. Table 5.3 
provides a performance comparison. CDRAM has also received considerable atten-
tion. We examine each of these approaches in this section.

Synchronous DRAM

One of the most widely used forms of DRAM is the synchronous DRAM 
(SDRAM) [VOGL94]. Unlike the traditional DRAM, which is asynchronous, the 
SDRAM exchanges data with the processor synchronized to an external clock sig-
nal and running at the full speed of the processor/memory bus without imposing 
wait states.

In a typical DRAM, the processor presents addresses and control levels to 
the memory, indicating that a set of data at a particular location in memory should 
be either read from or written into the DRAM. After a delay, the access time, the 
DRAM either writes or reads the data. During the access-time delay, the DRAM 
performs various internal functions, such as activating the high capacitance of the 
row and column lines, sensing the data, and routing the data out through the out-
put buffers. The processor must simply wait through this delay, slowing system 
performance.

With synchronous access, the DRAM moves data in and out under control of 
the system clock. The processor or other master issues the instruction and address 
information, which is latched by the DRAM. The DRAM then responds after a set 
number of clock cycles. Meanwhile, the master can safely do other tasks while the 
SDRAM is processing the request.

Figure 5.12 shows the internal logic of IBM’s 64-Mb SDRAM [IBM01], which 
is typical of SDRAM organization, and Table 5.4 defines the various pin assign-
ments. The SDRAM employs a burst mode to eliminate the address setup time and 
row and column line precharge time after the first access. In burst mode, a series of 

Table 5.3 Performance Comparison of Some DRAM Alternatives

Clock Frequency 
(MHz)

Transfer Rate 
(GB/s) Access Time (ns) Pin Count

SDRAM 166 1.3 18 168

DDR 200 3.2 12.5 184

RDRAM 600 4.8 12 162
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data bits can be clocked out rapidly after the first bit has been accessed. This mode 
is useful when all the bits to be accessed are in sequence and in the same row of the 
array as the initial access. In addition, the SDRAM has a multiple-bank internal 
architecture that improves opportunities for on-chip parallelism.

The mode register and associated control logic is another key feature dif-
ferentiating SDRAMs from conventional DRAMs. It provides a mechanism to 
 customize the SDRAM to suit specific system needs. The mode register specifies 
the burst length, which is the number of separate units of data synchronously fed 
onto the bus. The register also allows the programmer to adjust the latency between 
receipt of a read request and the beginning of data transfer.

The SDRAM performs best when it is transferring large blocks of data seri-
ally, such as for applications like word processing, spreadsheets, and multimedia.

Figure 5.13 shows an example of SDRAM operation. In this case, the burst 
length is 4 and the latency is 2. The burst read command is initiated by having CS 
and CAS low while holding RAS and WE high at the rising edge of the clock. The 
address inputs determine the starting column address for the burst, and the mode 
register sets the type of burst (sequential or interleave) and the burst length (1, 2, 
4, 8, full page). The delay from the start of the command to when the data from the 
first cell appears on the outputs is equal to the value of the CAS latency that is set 
in the mode register.

Table 5.4 SDRAM Pin Assignments

A0 to A13 Address inputs

CLK Clock input

CKE Clock enable

CS Chip select

RAS Row address strobe

CAS Column address strobe

WE Write enable

DQ0 to DQ7 Data input/output

DQM Data mask

T0

CLK

COMMAND

DQs

T1 T2 T3 T4 T5 T6 T7 T8

DOUT A0

NOP NOP NOP NOP NOP NOP NOP NOP

DOUT A1 DOUT A2 DOUT A3

READ A

Figure 5.13 SDRAM Read Timing (burst length =  4, CAS latency = 2)
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There is now an enhanced version of SDRAM, known as double data rate 
SDRAM (DDR-SDRAM) that overcomes the once-per-cycle limitation. DDR-
SDRAM can send data to the processor twice per clock cycle.

Rambus DRAM

RDRAM, developed by Rambus [FARM92, CRIS97], has been adopted by Intel 
for its Pentium and Itanium processors. It has become the main competitor to 
SDRAM. RDRAM chips are vertical packages, with all pins on one side. The chip 
exchanges data with the processor over 28 wires no more than 12 centimeters long. 
The bus can address up to 320 RDRAM chips and is rated at 1.6 GBps.

The special RDRAM bus delivers address and control information using 
an asynchronous block-oriented protocol. After an initial 480 ns access time, 
this produces the 1.6 GBps data rate. What makes this speed possible is the bus 
itself, which defines impedances, clocking, and signals very precisely. Rather than 
being controlled by the explicit RAS, CAS, R/W, and CE signals used in conven-
tional DRAMs, an RDRAM gets a memory request over the high-speed bus. This 
request contains the desired address, the type of operation, and the number of 
bytes in the operation.

Figure 5.14 illustrates the RDRAM layout. The configuration consists of 
a controller and a number of RDRAM modules connected via a common bus. 
The controller is at one end of the configuration, and the far end of the bus is 
a parallel termination of the bus lines. The bus includes 18 data lines (16 actual 
data, two parity) cycling at twice the clock rate; that is, 1 bit is sent at the lead-
ing and following edge of each clock signal. This results in a signal rate on each 
data line of 800 Mbps. There is a separate set of 8 lines (RC) used for address 
and control signals. There is also a clock signal that starts at the far end from 
the controller propagates to the controller end and then loops back. A RDRAM 
module sends data to the controller synchronously to the clock to master, and the 
controller sends data to an RDRAM synchronously with the clock signal in the 
opposite direction. The remaining bus lines include a reference voltage, ground, 
and power source.

Controller

INIT
INITo

RDRAM 1 RDRAM 2 • • •

• • •

RDRAM n

Bus data [18:0]

RC [7:0]

RClk [2]

TClk [2]

Vref

Gnd (32/18)

Vd(4)

Vterm

Figure 5.14 RDRAM Structure
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DDR SDRAM

SDRAM is limited by the fact that it can only send data to the processor once per 
bus clock cycle. A new version of SDRAM, referred to as double-data-rate SDRAM 
can send data twice per clock cycle, once on the rising edge of the clock pulse and 
once on the falling edge.

DDR DRAM was developed by the JEDEC Solid State Technology 
Association, the Electronic Industries Alliance’s semiconductor-engineering-stand-
ardization body. Numerous companies make DDR chips, which are widely used in 
desktop computers and servers.

Figure 5.15 shows the basic timing for a DDR read. The data transfer is syn-
chronized to both the rising and falling edge of the clock. It is also synchronized to 
a bidirectional data strobe (DQS) signal that is provided by the memory controller 
during a read and by the DRAM during a write. In typical implementations the 
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DQS = DQ select
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DQS

DQ
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Valid
data
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data
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Figure 5.15 DDR SDRAM Road Timing
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DQS is ignored during the read. An explanation of the use of DQS on writes is 
beyond our scope; see [JACO08] for details.

There have been two generations of improvement to the DDR technology. 
DDR2 increases the data transfer rate by increasing the operational frequency 
of the RAM chip and by increasing the prefetch buffer from 2 bits to 4 bits 
per chip. The prefetch buffer is a memory cache located on the RAM chip. The 
buffer enables theRAM chip to preposition bits to be placed on the data bus as 
rapidly as possible. DDR3, introduced in 2007, increases the prefetch buffer size 
to 8 bits.

Theoretically, a DDR module can transfer data at a clock rate in the range of 
200 to 600 MHz; a DDR2 module transfers at a clock rate of 400 to 1066 MHz; and 
a DDR3 module transfers at a clock rate of 800 to 1600 MHz. In practice, somewhat 
smaller rates are achieved.

Appendix K provides more detail on DDR technology.

Cache DRAM

Cache DRAM (CDRAM), developed by Mitsubishi [HIDA90, ZHAN01], inte-
grates a small SRAM cache (16 Kb) onto a generic DRAM chip.

The SRAM on the CDRAM can be used in two ways. First, it can be used as a 
true cache, consisting of a number of 64-bit lines. The cache mode of the CDRAM 
is effective for ordinary random access to memory.

The SRAM on the CDRAM can also be used as a buffer to support the serial 
access of a block of data. For example, to refresh a bit-mapped screen, the CDRAM 
can prefetch the data from the DRAM into the SRAM buffer. Subsequent accesses 
to the chip result in accesses solely to the SRAM.

 5.4 RECOMMENDED READING

[PRIN97] provides a comprehensive treatment of semiconductor memory technologies, 
including SRAM, DRAM, and flash memories. [SHAR97] covers the same material, with 
more emphasis on testing and reliability issues. [SHAR03] and [PRIN02] focus on advanced 
DRAM and SRAM architectures. For an in-depth look at DRAM, see [JACO08] and 
[KEET01]. [CUPP01] provides an interesting performance comparison of various DRAM 
schemes. [BEZ03] is a comprehensive introduction to flash memory technology.

A good explanation of error-correcting codes is contained in [MCEL85]. For a deeper 
study, worthwhile book-length treatments are [ADAM91] and [BLAH83]. A readable theo-
retical and mathematical treatment of error-correcting codes is [ASH90]. [SHAR97] contains 
a good survey of codes used in contemporary main memories.
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 5.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

cache DRAM (CDRAM)
dynamic RAM (DRAM)
electrically erasable  

programmable ROM 
(EEPROM)

erasable programmable  
ROM (EPROM)

error correcting code  
(ECC)

error correction
flash memory

Hamming code
hard failure
nonvolatile memory
programmable ROM 

(PROM)
RamBus DRAM  

(RDRAM)
read-mostly memory
read-only memory  

(ROM)
semiconductor memory

single-error-correcting  
(SEC) code

single-error-correcting,  
double-error-detecting 
(SEC-DED) code

soft error
static RAM (SRAM)
synchronous DRAM 

(SDRAM)
syndrome
volatile memory

Review Questions
 5.1 What are the key properties of semiconductor memory?
 5.2 What are two interpretations of the term random-access memory?
 5.3 What is the difference between DRAM and SRAM in terms of application?
 5.4 What is the difference between DRAM and SRAM in terms of characteristics such as 

speed, size, and cost?
 5.5 Explain why one type of RAM is considered to be analog and the other digital.
 5.6 What are some applications for ROM?
 5.7 What are the differences among EPROM, EEPROM, and flash memory?
 5.8 Explain the function of each pin in Figure 5.4b.
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 5.9 What is a parity bit?
 5.10 How is the syndrome for the Hamming code interpreted?
 5.11 How does SDRAM differ from ordinary DRAM?

Problems
 5.1 Suggest reasons why RAMs traditionally have been organized as only 1 bit per chip 

whereas ROMs are usually organized with multiple bits per chip.
 5.2 Consider a dynamic RAM that must be given a refresh cycle 64 times per ms. Each 

refresh operation requires 150 ns; a memory cycle requires 250 ns. What percentage of 
the memory’s total operating time must be given to refreshes?

 5.3 Figure 5.16 shows a simplified timing diagram for a DRAM read operation over a bus. 
The access time is considered to last from t1 to t2. Then there is a recharge time, lasting 
from t2 to t3, during which the DRAM chips will have to recharge before the proces-
sor can access them again.
a. Assume that the access time is 60 ns and the recharge time is 40 ns. What is the 

memory cycle time? What is the maximum data rate this DRAM can sustain, as-
suming a 1-bit output?

b. Constructing a 32-bit wide memory system using these chips yields what data 
transfer rate?

 5.4 Figure 5.6 indicates how to construct a module of chips that can store 1 MByte based 
on a group of four 256-Kbyte chips. Let’s say this module of chips is packaged as a 
single 1-Mbyte chip, where the word size is 1 byte. Give a high-level chip diagram of 
how to construct an 8-Mbyte computer memory using eight 1-Mbyte chips. Be sure to 
show the address lines in your diagram and what the address lines are used for.

 5.5 On a typical Intel 8086-based system, connected via system bus to DRAM memory, 
for a read operation, RAS is activated by the trailing edge of the Address Enable 
signal (Figure 3.19). However, due to propagation and other delays, RAS does not go 
active until 50 ns after Address Enable returns to a low. Assume the latter occurs in 
the middle of the second half of state T1 (somewhat earlier than in Figure 3.19). Data 
are read by the processor at the end of T3. For timely presentation to the processor, 
however, data must be provided 60 ns earlier by memory. This interval accounts for 

Address
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Data
lines

R/W

CAS

RAS

Row address

Data out valid

Column address

Figure 5.16 Simplified DRAM Read Timing
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propagation delays along the data paths (from memory to processor) and processor 
data hold time requirements. Assume a clocking rate of 10 MHz.
a. How fast (access time) should the DRAMs be if no wait states are to be inserted?
b. How many wait states do we have to insert per memory read operation if the 

 access time of the DRAMs is 150 ns?
 5.6 The memory of a particular microcomputer is built from 64K * 1 DRAMs. Accord-

ing to the data sheet, the cell array of the DRAM is organized into 256 rows. Each 
row must be refreshed at least once every 4 ms. Suppose we refresh the memory on a 
strictly periodic basis.
a. What is the time period between successive refresh requests?
b. How long a refresh address counter do we need?

 5.7 Figure 5.17 shows one of the early SRAMs, the 16 * 4 Signetics 7489 chip, which 
stores 16 4-bit words.

(b) Truth table

(c) Pulse train

Operating
Mode

Inputs Outputs

Write

H � high voltage level
L � low voltage level
X � don’t care

Read

Inhibit
writing

Store - disable
outputs

DnCS R/W

LL L

HL L

XL H

LH L

HH L

X

On

L

H

Data

H

L

HH H

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

D3

O3

O2

D2

GND

Vcc

A2

A1

A0

D0

O0

D1

O1

Signetics
7489

16 � 4
SRAM

CS

R/W

0 1 0 1 0 1 0 1 0 1 0 1 0 1

abcdefghijklmn

A0

A1

A2

A3

CS

R/W

D3

D2

D1

D0

A3

Figure 5.17 The Signetics 7489 SRAM
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a. List the mode of operation of the chip for each CS input pulse shown in Figure 5.17c.
b. List the memory contents of word locations 0 through 6 after pulse n.
c. What is the state of the output data leads for the input pulses h through m?

 5.8 Design a 16-bit memory of total capacity 8192 bits using SRAM chips of size 64 * 1 
bit. Give the array configuration of the chips on the memory board showing all re-
quired input and output signals for assigning this memory to the lowest address space. 
The design should allow for both byte and 16-bit word accesses.

 5.9 A common unit of measure for failure rates of electronic components is the Failure 
unIT (FIT), expressed as a rate of failures per billion device hours. Another well 
known but less used measure is mean time between failures (MTBF), which is the 
average time of operation of a particular component until it fails. Consider a 1 MB 
memory of a 16-bit microprocessor with 256K * 1 DRAMs. Calculate its MTBF 
 assuming 2000 FITS for each DRAM.

 5.10 For the Hamming code shown in Figure 5.10, show what happens when a check bit 
rather than a data bit is in error?

 5.11 Suppose an 8-bit data word stored in memory is 11000010. Using the Hamming al-
gorithm, determine what check bits would be stored in memory with the data word. 
Show how you got your answer.

 5.12 For the 8-bit word 00111001, the check bits stored with it would be 0111. Suppose 
when the word is read from memory, the check bits are calculated to be 1101. What is 
the data word that was read from memory?

 5.13 How many check bits are needed if the Hamming error correction code is used to 
detect single bit errors in a 1024-bit data word?

 5.14 Develop an SEC code for a 16-bit data word. Generate the code for the data word 
0101000000111001. Show that the code will correctly identify an error in data bit 5.
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This chapter examines a range of external memory devices and systems. We begin 
with the most important device, the magnetic disk. Magnetic disks are the founda-
tion of external memory on virtually all computer systems. The next section exam-
ines the use of disk arrays to achieve greater performance, looking specifically at 
the family of systems known as RAID (Redundant Array of Independent Disks). 
An increasingly important component of many computer systems is the solid state 
disk, which is discussed next. Then, external optical memory is examined. Finally, 
magnetic tape is described.

 6.1 MAGNETIC DISK

A disk is a circular platter constructed of nonmagnetic material, called the substrate, 
coated with a magnetizable material. Traditionally, the substrate has been an alu-
minum or aluminum alloy material. More recently, glass substrates have been intro-
duced. The glass substrate has a number of benefits, including the following:

 • Improvement in the uniformity of the magnetic film surface to increase disk 
reliability

 • A significant reduction in overall surface defects to help reduce read-write errors

 • Ability to support lower fly heights (described subsequently)

 • Better stiffness to reduce disk dynamics

 • Greater ability to withstand shock and damage

Magnetic Read and Write Mechanisms

Data are recorded on and later retrieved from the disk via a conducting coil named 
the head; in many systems, there are two heads, a read head and a write head. During 
a read or write operation, the head is stationary while the platter rotates beneath it.

The write mechanism exploits the fact that electricity flowing through a coil 
produces a magnetic field. Electric pulses are sent to the write head, and the result-
ing magnetic patterns are recorded on the surface below, with different patterns for 
positive and negative currents. The write head itself is made of easily magnetizable 

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Understand the key properties of magnetic disks.
� Understand the performance issues involved in magnetic disk access.
� Explain the concept of RAID and describe the various levels.
� Compare and contrast hard disk drives and solid disk drives.
� Describe in general terms the operation of flash memory.
� Understand the differences among the different optical disk storage media.
� Present an overview of magnetic tape storage technology.
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material and is in the shape of a rectangular doughnut with a gap along one side and 
a few turns of conducting wire along the opposite side (Figure 6.1). An electric cur-
rent in the wire induces a magnetic field across the gap, which in turn magnetizes a 
small area of the recording medium. Reversing the direction of the current reverses 
the direction of the magnetization on the recording medium.

The traditional read mechanism exploits the fact that a magnetic field moving 
relative to a coil produces an electrical current in the coil. When the surface of the 
disk passes under the head, it generates a current of the same polarity as the one 
already recorded. The structure of the head for reading is in this case essentially 
the same as for writing and therefore the same head can be used for both. Such 
single heads are used in floppy disk systems and in older rigid disk systems.

Contemporary rigid disk systems use a different read mechanism, requiring 
a separate read head, positioned for convenience close to the write head. The read 
head consists of a partially shielded magnetoresistive (MR) sensor. The MR mate-
rial has an electrical resistance that depends on the direction of the magnetization of 
the medium moving under it. By passing a current through the MR sensor, resistance 
changes are detected as voltage signals. The MR design allows higher-frequency 
operation, which equates to greater storage densities and operating speeds.

Data Organization and Formatting

The head is a relatively small device capable of reading from or writing to a portion 
of the platter rotating beneath it. This gives rise to the organization of data on the 
platter in a concentric set of rings, called tracks. Each track is the same width as the 
head. There are thousands of tracks per surface.

Track width

Recording
medium

Inductive
write element

Shield

Magnetization

MR
sensor

Read
current

Write current

Figure 6.1 Inductive Write/Magnetoresistive Read Head
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Figure 6.2 depicts this data layout. Adjacent tracks are separated by gaps. This 
prevents, or at least minimizes, errors due to misalignment of the head or simply 
interference of magnetic fields.

Data are transferred to and from the disk in sectors (Figure 6.2). There are 
typically hundreds of sectors per track, and these may be of either fixed or variable 
length. In most contemporary systems, fixed-length sectors are used, with 512 bytes 
being the nearly universal sector size. To avoid imposing unreasonable precision 
requirements on the system, adjacent sectors are separated by intratrack (intersec-
tor) gaps.

A bit near the center of a rotating disk travels past a fixed point (such as a read–
write head) slower than a bit on the outside. Therefore, some way must be found 
to compensate for the variation in speed so that the head can read all the bits at the 
same rate. This can be done by increasing the spacing between bits of information 
recorded in segments of the disk. The information can then be scanned at the same 
rate by rotating the disk at a fixed speed, known as the constant angular velocity 
(CAV). Figure 6.3a shows the layout of a disk using CAV. The disk is divided into 
a number of pie-shaped sectors and into a series of concentric tracks. The advan-
tage of using CAV is that individual blocks of data can be directly addressed by 
track and sector. To move the head from its current location to a specific address, it 
only takes a short movement of the head to a specific track and a short wait for the 
proper sector to spin under the head. The disadvantage of CAV is that the amount 
of data that can be stored on the long outer tracks is the only same as what can be 
stored on the short inner tracks.

Figure 6.2 Disk Data Layout
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Because the density, in bits per linear inch, increases in moving from the out-
ermost track to the innermost track, disk storage capacity in a straightforward CAV 
system is limited by the maximum recording density that can be achieved on the 
innermost track. To increase density, modern hard disk systems use a technique 
known as multiple zone recording, in which the surface is divided into a number 
of concentric zones (16 is typical). Within a zone, the number of bits per track is 
constant. Zones farther from the center contain more bits (more sectors) than zones 
closer to the center. This allows for greater overall storage capacity at the expense 
of somewhat more complex circuitry. As the disk head moves from one zone to 
another, the length (along the track) of individual bits changes, causing a change 
in the timing for reads and writes. Figure 6.3b suggests the nature of multiple zone 
recording; in this illustration, each zone is only a single track wide.

Some means is needed to locate sector positions within a track. Clearly, there 
must be some starting point on the track and a way of identifying the start and end 
of each sector. These requirements are handled by means of control data recorded 
on the disk. Thus, the disk is formatted with some extra data used only by the disk 
drive and not accessible to the user.

An example of disk formatting is shown in Figure 6.4. In this case, each track 
contains 30 fixed-length sectors of 600 bytes each. Each sector holds 512 bytes of 

(a) Constant angular velocity (b) Multiple zoned recording

Figure 6.3 Comparison of Disk Layout Methods
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data plus control information useful to the disk controller. The ID field is a unique 
identifier or address used to locate a particular sector. The SYNCH byte is a special 
bit pattern that delimits the beginning of the field. The track number identifies a 
track on a surface. The head number identifies a head, because this disk has mul-
tiple surfaces (explained presently). The ID and data fields each contain an error-
detecting code.

Physical Characteristics

Table 6.1 lists the major characteristics that differentiate among the various types 
of magnetic disks. First, the head may either be fixed or movable with respect to 
the radial direction of the platter. In a fixed-head disk, there is one read-write 
head per track. All of the heads are mounted on a rigid arm that extends across 
all tracks; such systems are rare today. In a movable-head disk, there is only one 
read-write head. Again, the head is mounted on an arm. Because the head must 
be able to be positioned above any track, the arm can be extended or retracted for 
this purpose.

The disk itself is mounted in a disk drive, which consists of the arm, a spindle 
that rotates the disk, and the electronics needed for input and output of binary data. 
A nonremovable disk is permanently mounted in the disk drive; the hard disk in 
a personal computer is a nonremovable disk. A removable disk can be removed 
and replaced with another disk. The advantage of the latter type is that unlimited 
amounts of data are available with a limited number of disk systems. Furthermore, 
such a disk may be moved from one computer system to another. Floppy disks and 
ZIP cartridge disks are examples of removable disks.

For most disks, the magnetizable coating is applied to both sides of the platter, 
which is then referred to as double sided. Some less expensive disk systems use 
single-sided disks.

Some disk drives accommodate multiple platters stacked vertically a fraction 
of an inch apart. Multiple arms are provided (Figure 6.5). Multiple–platter disks 
employ a movable head, with one read-write head per platter surface. All of the 
heads are mechanically fixed so that all are at the same distance from the center of 
the disk and move together. Thus, at any time, all of the heads are positioned over 

Table 6.1 Physical Characteristics of Disk Systems

Head Motion

Fixed head (one per track)

Movable head (one per surface)

Platters

Single platter

Multiple platter

Disk Portability

Nonremovable disk

Removable disk

Head Mechanism

Contact (floppy)

Fixed gap

Aerodynamic gap (Winchester)

Sides

Single sided

Double sided
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tracks that are of equal distance from the center of the disk. The set of all the tracks 
in the same relative position on the platter is referred to as a cylinder. For example, 
all of the shaded tracks in Figure 6.6 are part of one cylinder.

Finally, the head mechanism provides a classification of disks into three types. 
Traditionally, the read-write head has been positioned a fixed distance above the 
platter, allowing an air gap. At the other extreme is a head mechanism that actually 
comes into physical contact with the medium during a read or write operation. This 
mechanism is used with the floppy disk, which is a small, flexible platter and the 
least expensive type of disk.

Surface 2
Surface 1

Surface 0

Surface 4
Surface 3

Surface 6
Surface 5

Surface 8
Surface 7

Platter

Spindle Boom

Read–write head (1 per surface) Direction of
arm motion

Surface 9

Figure 6.5 Components of a Disk Drive

Figure 6.6 Tracks and Cylinders
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To understand the third type of disk, we need to comment on the relationship 
between data density and the size of the air gap. The head must generate or sense an 
electromagnetic field of sufficient magnitude to write and read properly. The nar-
rower the head is, the closer it must be to the platter surface to function. A narrower 
head means narrower tracks and therefore greater data density, which is desirable. 
However, the closer the head is to the disk, the greater the risk of error from impu-
rities or imperfections. To push the technology further, the Winchester disk was 
developed. Winchester heads are used in sealed drive assemblies that are almost 
free of contaminants. They are designed to operate closer to the disk’s surface than 
conventional rigid disk heads, thus allowing greater data density. The head is actu-
ally an aerodynamic foil that rests lightly on the platter’s surface when the disk is 
motionless. The air pressure generated by a spinning disk is enough to make the foil 
rise above the surface. The resulting noncontact system can be engineered to use 
narrower heads that operate closer to the platter’s surface than conventional rigid 
disk heads.

Table 6.2 gives disk parameters for typical contemporary high-performance 
disks.

Disk Performance Parameters

The actual details of disk I/O operation depend on the computer system, the oper-
ating system, and the nature of the I/O channel and disk controller hardware. A 
general timing diagram of disk I/O transfer is shown in Figure 6.7.

When the disk drive is operating, the disk is rotating at constant speed. To 
read or write, the head must be positioned at the desired track and at the beginning 
of the desired sector on that track. Track selection involves moving the head in a 

Table 6.2 Typical Hard Disk Drive Parameters

Characteristics
Constellation 

ES.2
Seagate 

Barracuda XT Cheetah NS Momentus

Application Enterprise Desktop Network attached 
storage, applica-
tion servers

Laptop

Capacity 3 TB 3 TB 400 GB 640 GB

Average seek time 8.5 ms read
9.5 ms write

N/A 3.9 ms read
4.2 ms write

13 ms

Spindle speed 7200 rpm 7200 rpm 10, 075 rpm 5400 rpm

Average latency 4.16 ms 4.16 ms 2.98 5.6 ms

Maximum sustained 
transfer rate

155 MB/s 149 MB/s 97 MB/s 300 MB/s

Bytes per sector 512 512 512 4096

Tracks per cylinder 
(number of platter 
surfaces)

8 10 8 4

Cache 64 MB 64 MB 16 MB 8 MB
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movable-head system or electronically selecting one head on a fixed-head system. 
On a movable-head system, the time it takes to position the head at the track is 
known as seek time. In either case, once the track is selected, the disk controller 
waits until the appropriate sector rotates to line up with the head. The time it takes 
for the beginning of the sector to reach the head is known as rotational delay, or 
rotational latency. The sum of the seek time, if any, and the rotational delay equals 
the access time, which is the time it takes to get into position to read or write. Once 
the head is in position, the read or write operation is then performed as the sector 
moves under the head; this is the data transfer portion of the operation; the time 
required for the transfer is the transfer time.

In addition to the access time and transfer time, there are several queuing 
delays normally associated with a disk I/O operation. When a process issues an 
I/O request, it must first wait in a queue for the device to be available. At that 
time, the device is assigned to the process. If the device shares a single I/O channel 
or a set of I/O channels with other disk drives, then there may be an additional 
wait for the channel to be available. At that point, the seek is performed to begin 
disk access.

In some high-end systems for servers, a technique known as rotational posi-
tional sensing (RPS) is used. This works as follows: When the seek command 
has been issued, the channel is released to handle other I/O operations. When 
the seek is completed, the device determines when the data will rotate under 
the head. As that sector approaches the head, the device tries to reestablish the 
communication path back to the host. If either the control unit or the channel is 
busy with another I/O, then the reconnection attempt fails and the device must 
rotate one whole revolution before it can attempt to reconnect, which is called 
an RPS miss. This is an extra delay element that must be added to the timeline of 
Figure 6.7.

SEEK TIME Seek time is the time required to move the disk arm to the required 
track. It turns out that this is a difficult quantity to pin down. The seek time consists 
of two key components: the initial startup time, and the time taken to traverse the 
tracks that have to be crossed once the access arm is up to speed. Unfortunately, the 
traversal time is not a linear function of the number of tracks, but includes a settling 
time (time after positioning the head over the target track until track identification 
is confirmed).

Much improvement comes from smaller and lighter disk components. Some 
years ago, a typical disk was 14 inches (36 cm) in diameter, whereas the most com-
mon size today is 3.5 inches (8.9 cm), reducing the distance that the arm has to 
travel. A typical average seek time on contemporary hard disks is under 10 ms.

Wait for
device

Wait for
channel

Seek Rotational
delay

Data
transfer

Device busy

Figure 6.7 Timing of a Disk I/O Transfer
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ROTATIONAL DELAY Disks, other than floppy disks, rotate at speeds ranging from 
3600 rpm (for handheld devices such as digital cameras) up to, as of this writing, 
20,000 rpm; at this latter speed, there is one revolution per 3 ms. Thus, on the 
average, the rotational delay will be 1.5 ms.

TRANSFER TIME The transfer time to or from the disk depends on the rotation 
speed of the disk in the following fashion:

T =
b

rN
where

T = transfer time

b = number of bytes to be transferred

N = number of bytes on a track

r = rotation speed, in revolutions per second

Thus the total average access time can be expressed as

Ta = Ts +
1
2r

+
b

rN

where Ts is the average seek time. Note that on a zoned drive, the number of bytes 
per track is variable, complicating the calculation.1

A TIMING COMPARISON With the foregoing parameters defined, let us look at 
two different I/O operations that illustrate the danger of relying on average values. 
Consider a disk with an advertised average seek time of 4 ms, rotation speed of 
15,000 rpm, and 512-byte sectors with 500 sectors per track. Suppose that we wish 
to read a file consisting of 2500 sectors for a total of 1.28 Mbytes. We would like to 
estimate the total time for the transfer.

First, let us assume that the file is stored as compactly as possible on the disk. 
That is, the file occupies all of the sectors on 5 adjacent tracks (5 tracks * 500 sectors/
track = 2500 sectors). This is known as sequential organization. Now, the time to 
read the first track is as follows:

Average seek      4 ms

Average rotational delay 2 ms

Read 500 sectors      4 ms
 10 ms

Suppose that the remaining tracks can now be read with essentially no seek 
time. That is, the I/O operation can keep up with the flow from the disk. Then, at 
most, we need to deal with rotational delay for each succeeding track. Thus each 
successive track is read in 2 + 4 = 6 ms. To read the entire file,

Total time = 10 + (4 * 6) = 34 ms = 0.034 seconds

1Compare the two preceding equations to Equation (4.1).



6.2 / RAID  195

Now let us calculate the time required to read the same data using random 
access rather than sequential access; that is, accesses to the sectors are distributed 
randomly over the disk. For each sector, we have

Average seek     4    ms

Rotational delay  2    ms

Read 1 sectors    0.008 ms

6.008 ms

Total time = 2500 * 6.008 = 15,020 ms = 15.02 seconds

It is clear that the order in which sectors are read from the disk has a tre-
mendous effect on I/O performance. In the case of file access in which multiple 
sectors are read or written, we have some control over the way in which sectors 
of data are deployed. However, even in the case of a file access, in a multipro-
gramming environment, there will be I/O requests competing for the same disk. 
Thus, it is worthwhile to examine ways in which the performance of disk I/O 
can be improved over that achieved with purely random access to the disk. This 
leads to a consideration of disk scheduling algorithms, which is the province of 
the operating system and beyond the scope of this book (see [STAL12] for a 
discussion).

RAID Simulator

 6.2 RAID

As discussed earlier, the rate in improvement in secondary storage performance 
has been considerably less than the rate for processors and main memory. This 
mismatch has made the disk storage system perhaps the main focus of concern in 
improving overall computer system performance.

As in other areas of computer performance, disk storage designers recognize 
that if one component can only be pushed so far, additional gains in performance 
are to be had by using multiple parallel components. In the case of disk storage, this 
leads to the development of arrays of disks that operate independently and in par-
allel. With multiple disks, separate I/O requests can be handled in parallel, as long 
as the data required reside on separate disks. Further, a single I/O request can be 
executed in parallel if the block of data to be accessed is distributed across multiple 
disks.

With the use of multiple disks, there is a wide variety of ways in which the 
data can be organized and in which redundancy can be added to improve reli-
ability. This could make it difficult to develop database schemes that are usa-
ble on a number of platforms and operating systems. Fortunately, industry has 
agreed on a standardized scheme for multiple-disk database design, known as 
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RAID (Redundant Array of Independent Disks). The RAID scheme consists 
of seven levels,2 zero through six. These levels do not imply a hierarchical rela-
tionship but designate different design architectures that share three common 
characteristics:

 1. RAID is a set of physical disk drives viewed by the operating system as a sin-
gle logical drive.

 2. Data are distributed across the physical drives of an array in a scheme known 
as striping, described subsequently.

 3. Redundant disk capacity is used to store parity information, which guarantees 
data recoverability in case of a disk failure.

The details of the second and third characteristics differ for the different RAID 
levels. RAID 0 and RAID 1 do not support the third characteristic.

The term RAID was originally coined in a paper by a group of researchers 
at the University of California at Berkeley [PATT88].3 The paper outlined vari-
ous RAID configurations and applications and introduced the definitions of the 
RAID levels that are still used. The RAID strategy employs multiple disk drives 
and distributes data in such a way as to enable simultaneous access to data from 
multiple drives, thereby improving I/O performance and allowing easier incremen-
tal increases in capacity.

The unique contribution of the RAID proposal is to address effectively the 
need for redundancy. Although allowing multiple heads and actuators to operate 
simultaneously achieves higher I/O and transfer rates, the use of multiple devices 
increases the probability of failure. To compensate for this decreased reliability, 
RAID makes use of stored parity information that enables the recovery of data lost 
due to a disk failure.

We now examine each of the RAID levels. Table 6.3 provides a rough guide 
to the seven levels. In the table, I/O performance is shown both in terms of data 
transfer capacity, or ability to move data, and I/O request rate, or ability to sat-
isfy I/O requests, since these RAID levels inherently perform differently relative 
to these two metrics. Each RAID level’s strong point is highlighted by darker 
shading. Figure 6.8 illustrates the use of the seven RAID schemes to support a 
data capacity requiring four disks with no redundancy. The figures highlight the 
layout of user data and redundant data and indicates the relative storage require-
ments of the various levels. We refer to these figures throughout the following 
discussion.

3In that paper, the acronym RAID stood for Redundant Array of Inexpensive Disks. The term inexpen-
sive was used to contrast the small relatively inexpensive disks in the RAID array to the alternative, 
a single large expensive disk (SLED). The SLED is essentially a thing of the past, with similar disk 
technology being used for both RAID and non-RAID configurations. Accordingly, the industry has 
adopted the term independent to emphasize that the RAID array creates significant performance and 
reliability gains.

2Additional levels have been defined by some researchers and some companies, but the seven levels 
described in this section are the ones universally agreed on.



197

Table 6.3 RAID Levels

Category Level Description
Disks 

Required Data Availability
Large I/O Data 

Transfer Capacity
Small I/O 

Request Rate

Striping 0 Nonredundant N Lower than single disk Very high
Very high for both read 
and write

Mirroring 1 Mirrored 2N
Higher than RAID 2, 
3, 4, or 5; lower than 
RAID 6

Higher than single disk 
for read; similar to single 
disk for write

Up to twice that of a sin-
gle disk for read; similar 
to single disk for write

Parallel access

2
Redundant via 
Hamming code

N + m
Much higher than single 
disk; comparable to 
RAID 3, 4, or 5

Highest of all listed 
alternatives

Approximately twice 
that of a single disk

Independent 
access

3 Bit-interleaved parity N + 1
Much higher than single 
disk; comparable to 
RAID 2, 4, or 5

Highest of all listed 
alternatives

Approximately twice 
that of a single disk

4 Block-interleaved parity N + 1
Much higher than single 
disk; comparable to 
RAID 2, 3, or 5

Similar to RAID 0 for 
read; significantly lower 
than single disk for write

Similar to RAID 0 for 
read; significantly lower 
than single disk for write

5
Block-interleaved 
distributed parity

N + 1
Much higher than single 
disk; comparable to 
RAID 2, 3, or 4

Similar to RAID 0 for 
read; lower than single 
disk for write

Similar to RAID 0 for 
read; generally lower 
than single disk for write

6
Block-interleaved dual 
distributed parity

N + 2
Highest of all listed 
alternatives

Similar to RAID 0 for 
read; lower than RAID 5 
for write

Similar to RAID 0 for 
read; significantly lower 
than RAID 5 for write

Note: N = number of data disks; m proportional to log N
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RAID Level 0

RAID level 0 is not a true member of the RAID family because it does not include 
redundancy to improve performance. However, there are a few applications, such 
as some on supercomputers in which performance and capacity are primary con-
cerns and low cost is more important than improved reliability.

For RAID 0, the user and system data are distributed across all of the disks 
in the array. This has a notable advantage over the use of a single large disk: If two 
-different I/O requests are pending for two different blocks of data, then there is a 
good chance that the requested blocks are on different disks. Thus, the two requests 
can be issued in parallel, reducing the I/O queuing time.

But RAID 0, as with all of the RAID levels, goes further than simply distribut-
ing the data across a disk array: The data are striped across the available disks. This is 
best understood by considering Figure 6.9. All of the user and system data are viewed 
as being stored on a logical disk. The logical disk is divided into strips; these strips 
may be physical blocks, sectors, or some other unit. The strips are mapped round 
robin to consecutive physical disks in the RAID array. A set of logically consecu-
tive strips that maps exactly one strip to each array member is referred to as a stripe. 
In an n-disk array, the first n logical strips are physically stored as the first strip on 
each of the n disks, forming the first stripe; the second n strips are distributed as the
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second strips on each disk; and so on. The advantage of this layout is that if a single 
I/O request consists of multiple logically contiguous strips, then up to n strips for 
that request can be handled in parallel, greatly reducing the I/O transfer time.

Figure 6.9 indicates the use of array management software to map between 
 logical and physical disk space. This software may execute either in the disk subsystem 
or in a host computer.
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RAID 0 FOR HIGH DATA TRANSFER CAPACITY The performance of any of the 
RAID levels depends critically on the request patterns of the host system and on 
the layout of the data. These issues can be most clearly addressed in RAID 0, where  
the impact of redundancy does not interfere with the analysis. First, let us consider 
the use of RAID 0 to achieve a high data transfer rate. For applications to experience 
a high transfer rate, two requirements must be met. First, a high transfer capacity 
must exist along the entire path between host memory and the individual disk drives. 
This includes internal controller buses, host system I/O buses, I/O adapters, and host 
memory buses.

The second requirement is that the application must make I/O requests that 
drive the disk array efficiently. This requirement is met if the typical request is for 
large amounts of logically contiguous data, compared to the size of a strip. In this 
case, a single I/O request involves the parallel transfer of data from multiple disks, 
increasing the effective transfer rate compared to a single-disk transfer.

RAID 0 FOR HIGH I/O REQUEST RATE In a transaction-oriented environment, 
the user is typically more concerned with response time than with transfer rate. For 
an individual I/O request for a small amount of data, the I/O time is dominated by the 
motion of the disk heads (seek time) and the movement of the disk (rotational latency).

In a transaction environment, there may be hundreds of I/O requests per sec-
ond. A disk array can provide high I/O execution rates by balancing the I/O load 
across multiple disks. Effective load balancing is achieved only if there are  typically 
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multiple I/O requests outstanding. This, in turn, implies that there are multiple inde-
pendent applications or a single transaction-oriented application that is capable of 
multiple asynchronous I/O requests. The performance will also be influenced by the 
strip size. If the strip size is relatively large, so that a single I/O request only involves 
a single disk access, then multiple waiting I/O requests can be handled in parallel, 
reducing the queuing time for each request.

RAID Level 1
RAID 1 differs from RAID levels 2 through 6 in the way in which redundancy is 
achieved. In these other RAID schemes, some form of parity calculation is used to 
introduce redundancy, whereas in RAID 1, redundancy is achieved by the simple 
expedient of duplicating all the data. As Figure 6.8b shows, data striping is used, as 
in RAID 0. But in this case, each logical strip is mapped to two separate physical 
disks so that every disk in the array has a mirror disk that contains the same data. 
RAID 1 can also be implemented without data striping, though this is less common.

There are a number of positive aspects to the RAID 1 organization:

 1. A read request can be serviced by either of the two disks that contains the re-
quested data, whichever one involves the minimum seek time plus rotational 
latency.

 2. A write request requires that both corresponding strips be updated, but this 
can be done in parallel. Thus, the write performance is dictated by the slower 
of the two writes (i.e., the one that involves the larger seek time plus rotational 
latency). However, there is no “write penalty” with RAID 1. RAID levels 
2 through 6 involve the use of parity bits. Therefore, when a single strip is 
updated, the array management software must first compute and update the 
parity bits as well as updating the actual strip in question.

 3. Recovery from a failure is simple. When a drive fails, the data may still be 
accessed from the second drive.

The principal disadvantage of RAID 1 is the cost; it requires twice the disk 
space of the logical disk that it supports. Because of that, a RAID 1 configuration 
is likely to be limited to drives that store system software and data and other highly 
critical files. In these cases, RAID 1 provides real-time copy of all data so that in the 
event of a disk failure, all of the critical data are still immediately available.

In a transaction-oriented environment, RAID 1 can achieve high I/O request 
rates if the bulk of the requests are reads. In this situation, the performance of RAID 1 
can approach double of that of RAID 0. However, if a substantial fraction of the I/O 
requests are write requests, then there may be no significant performance gain over 
RAID 0. RAID 1 may also provide improved performance over RAID 0 for data 
transfer intensive applications with a high percentage of reads. Improvement occurs 
if the application can split each read request so that both disk members participate.

RAID Level 2

RAID levels 2 and 3 make use of a parallel access technique. In a parallel access 
array, all member disks participate in the execution of every I/O request. Typically, 
the spindles of the individual drives are synchronized so that each disk head is in the 
same position on each disk at any given time.
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As in the other RAID schemes, data striping is used. In the case of RAID 2 
and 3, the strips are very small, often as small as a single byte or word. With RAID 2, 
an error-correcting code is calculated across corresponding bits on each data disk, 
and the bits of the code are stored in the corresponding bit positions on multiple 
 parity disks. Typically, a Hamming code is used, which is able to correct single-bit 
errors and detect double-bit errors.

Although RAID 2 requires fewer disks than RAID 1, it is still rather costly. 
The number of redundant disks is proportional to the log of the number of data 
disks. On a single read, all disks are simultaneously accessed. The requested data 
and the associated error-correcting code are delivered to the array controller. If 
there is a single-bit error, the controller can recognize and correct the error instantly, 
so that the read access time is not slowed. On a single write, all data disks and parity 
disks must be accessed for the write operation.

RAID 2 would only be an effective choice in an environment in which many 
disk errors occur. Given the high reliability of individual disks and disk drives, 
RAID 2 is overkill and is not implemented.

RAID Level 3

RAID 3 is organized in a similar fashion to RAID 2. The difference is that RAID 
3 requires only a single redundant disk, no matter how large the disk array. RAID 
3 employs parallel access, with data distributed in small strips. Instead of an error-
correcting code, a simple parity bit is computed for the set of individual bits in the 
same position on all of the data disks.

REDUNDANCY In the event of a drive failure, the parity drive is accessed and data 
is reconstructed from the remaining devices. Once the failed drive is replaced, the 
missing data can be restored on the new drive and operation resumed.

Data reconstruction is simple. Consider an array of five drives in which X0 
through X3 contain data and X4 is the parity disk. The parity for the ith bit is calcu-
lated as follows:

X4(i) = X3(i) { X2(i) { X1(i) { X0(i)

where { is exclusive-OR function.
Suppose that drive X1 has failed. If we add X4(i) { X1(i) to both sides of the 

preceding equation, we get

X1(i) = X4(i) { X3(i) { X2(i) { X0(i)

Thus, the contents of each strip of data on X1 can be regenerated from the contents 
of the corresponding strips on the remaining disks in the array. This principle is true 
for RAID levels 3 through 6.

In the event of a disk failure, all of the data are still available in what is referred 
to as reduced mode. In this mode, for reads, the missing data are regenerated on the 
fly using the exclusive-OR calculation. When data are written to a reduced RAID 3 
array, consistency of the parity must be maintained for later regeneration. Return to 
full operation requires that the failed disk be replaced and the entire contents of the 
failed disk be regenerated on the new disk.
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PERFORMANCE Because data are striped in very small strips, RAID 3 can achieve 
very high data transfer rates. Any I/O request will involve the parallel transfer of 
data from all of the data disks. For large transfers, the performance improvement is 
especially noticeable. On the other hand, only one I/O request can be executed at a 
time. Thus, in a transaction-oriented environment, performance suffers.

RAID Level 4

RAID levels 4 through 6 make use of an independent access technique. In an inde-
pendent access array, each member disk operates independently, so that separate 
I/O requests can be satisfied in parallel. Because of this, independent access arrays 
are more suitable for applications that require high I/O request rates and are rela-
tively less suited for applications that require high data transfer rates.

As in the other RAID schemes, data striping is used. In the case of RAID 
4 through 6, the strips are relatively large. With RAID 4, a bit-by-bit parity strip 
is calculated across corresponding strips on each data disk, and the parity bits are 
stored in the corresponding strip on the parity disk.

RAID 4 involves a write penalty when an I/O write request of small size is per-
formed. Each time that a write occurs, the array management software must update 
not only the user data but also the corresponding parity bits. Consider an array of 
five drives in which X0 through X3 contain data and X4 is the parity disk. Suppose 
that a write is performed that only involves a strip on disk X1. Initially, for each bit 
i, we have the following relationship:

 X4(i) = X3(i) { X2(i) { X1(i) { X0(i) (6.1)

After the update, with potentially altered bits indicated by a prime symbol:

 X4=(i) = X3(i) { X2(i) { X1=(i)X0(i)

 = X3(i) { X2(i) { X1=(i) { X0(i) { X1(i) { X1(i)

 = X3(i) { X2(i) { X1(i) { X0(i) { X1(i) { X1(i)

 = X4(i) { X1(i) { X1=(i)

The preceding set of equations is derived as follows. The first line shows that 
a change in X1 will also affect the parity disk X4. In the second line, we add the 
terms { X1(i) { X1(i)]. Because the exclusive-OR of any quantity with itself is 0, 
this does not affect the equation. However, it is a convenience that is used to create 
the third line, by reordering. Finally, Equation (6.1) is used to replace the first four 
terms by X4(i).

To calculate the new parity, the array management software must read the old 
user strip and the old parity strip. Then it can update these two strips with the new 
data and the newly calculated parity. Thus, each strip write involves two reads and 
two writes.

In the case of a larger size I/O write that involves strips on all disk drives, parity 
is easily computed by calculation using only the new data bits. Thus, the parity drive 
can be updated in parallel with the data drives and there are no extra reads or writes.

In any case, every write operation must involve the parity disk, which there-
fore can become a bottleneck.
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RAID Level 5

RAID 5 is organized in a similar fashion to RAID 4. The difference is that RAID 
5 distributes the parity strips across all disks. A typical allocation is a round-robin 
scheme, as illustrated in Figure 6.8f. For an n-disk array, the parity strip is on a 
 different disk for the first n stripes, and the pattern then repeats.

The distribution of parity strips across all drives avoids the potential I/O 
bottle-neck found in RAID 4.

RAID Level 6

RAID 6 was introduced in a subsequent paper by the Berkeley researchers 
[KATZ89]. In the RAID 6 scheme, two different parity calculations are carried out 
and stored in separate blocks on different disks. Thus, a RAID 6 array whose user 
data require N disks consists of N + 2 disks.

Figure 6.8g illustrates the scheme. P and Q are two different data check algo-
rithms. One of the two is the exclusive-OR calculation used in RAID 4 and 5. But 
the other is an independent data check algorithm. This makes it possible to regener-
ate data even if two disks containing user data fail.

The advantage of RAID 6 is that it provides extremely high data availability. 
Three disks would have to fail within the MTTR (mean time to repair) interval to 
cause data to be lost. On the other hand, RAID 6 incurs a substantial write penalty, 
because each write affects two parity blocks. Performance benchmarks [EISC07] 
show a RAID 6 controller can suffer more than a 30% drop in overall write per-
formance compared with a RAID 5 implementation. RAID 5 and RAID 6 read 
performance is comparable.

Table 6.4 is a comparative summary of the seven levels.

Table 6.4 RAID Comparison

Level Advantages Disadvantages Applications

0

I/O performance is greatly improved 
by spreading the I/O load across 
many channels and drives

No parity calculation overhead is 
involved

Very simple design

Easy to implement

The failure of just one 
drive will result in all 
data in an array 
being lost

Video production and  
editing

Image Editing

Pre-press applications

Any application requiring 
high bandwidth

1

100% redundancy of data means no 
rebuild is necessary in case of a disk 
failure, just a copy to the replacement 
disk

Under certain circumstances, RAID 
1 can sustain multiple simultaneous 
drive failures

Simplest RAID storage subsystem 
design

Highest disk overhead of 
all RAID types 
(100%)—inefficient

Accounting

Payroll

Financial

Any application requiring 
very high availability

(Continued)
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 6.3 SOLID STATE DRIVES

One of the most significant developments in computer architecture in recent years 
is the increasing use of solid state drives (SSDs) to complement or even replace 
hard disk drives (HDDs), both as internal and external secondary memory. The 
term solid state refers to electronic circuitry built with semiconductors. A solid state 
drive is a memory device made with solid state components that can be used as a 
replacement to a hard disk drive. The SSDs now on the market and coming on line 

Level Advantages Disadvantages Applications

2

Extremely high data transfer rates 
possible

The higher the data transfer rate 
required, the better the ratio of data 
disks to ECC disks

Relatively simple controller design 
compared to RAID levels 3, 4, & 5

Very high ratio of ECC 
disks to data disks  
with smaller word 
sizes—inefficient

Entry level cost very 
high—requires very high 
transfer rate requirement 
to justify

No commercial  
implementations exist/ 
not commercially viable

3

Very high read data transfer rate

Very high write data transfer rate

Disk failure has an insignificant 
impact on throughput

Low ratio of ECC (parity) disks to 
data disks means high efficiency

Transaction rate equal to 
that of a single disk drive 
at best (if spindles are 
synchronized)

Controller design is 
fairly complex

Video production and live 
streaming

Image editing

Video editing

Prepress applications

Any application requiring 
high throughput

4

Very high Read data transaction rate

Low ratio of ECC (parity) disks to 
data disks means high efficiency

Quite complex  
controller design

Worst write transaction 
rate and Write aggregate 
transfer rate

Difficult and inefficient 
data rebuild in the event 
of disk failure

No commercial  
implementations exist/ 
not commercially viable

5

Highest Read data transaction rate

Low ratio of ECC (parity) disks to 
data disks means high efficiency

Good aggregate transfer rate

Most complex  
controller design

Difficult to rebuild in  
the event of a disk  
failure (as compared  
to RAID level 1)

File and application servers

Database servers

Web, e-mail, and  
news servers

Intranet servers

Most versatile RAID level

6

Provides for an extremely high data 
fault tolerance and can sustain mul-
tiple simultaneous drive failures

More complex  
controller design

Controller overhead to 
compute parity addresses 
is extremely high

Perfect solution for mission 
critical applications

Table 6.4 Continued
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use a type of semiconductor memory referred to as flash memory. In this section, 
we first provide an introduction to flash memory, and then look at its use in SSDs.

Flash Memory

Flash memory is a type of semiconductor memory that has been around for a num-
ber of years and is used in many consumer electronic products, including smart 
phones, GPS devices, MP3 players, digital cameras, and USB devices. In recent 
years, the cost and performance of flash memory has evolved to the point where it is 
feasible to use flash memory drives to replace HDDs.

Figure 6.10 illustrates the basic operation of a flash memory. For comparison, 
Figure 6.10a depicts the operation of a transistor. Transistors exploit the properties 
of semiconductors so that a small voltage applied to the gate can be used to control 
the flow of a large current between the source and the drain.

In a flash memory cell, a second gate—called a floating gate, because it is insu-
lated by a thin oxide layer—is added to the transistor. Initially, the floating gate 
does not interfere with the operation of the transistor (Figure 6.10b). In this state, 
the cell is deemed to represent binary 1. Applying a large voltage across the oxide 
layer causes electrons to tunnel through it and become trapped on the floating gate, 
where they remain even if the power is disconnected (Figure 6.10c). In this state, the 
cell is deemed to represent binary 0. The state of the cell can be read by using exter-
nal circuitry to test whether the transistor is working or not. Applying a large volt-
age in the opposite direction removes the electrons from the floating gate, returning 
to a state of binary 0.

There are two distinctive types of flash memory, designated as NOR and 
NAND. In NOR flash memory, the basic unit of access is a bit, and the logical 
organization resembles a NOR logic device.4 For NAND flash memory, the basic 
unit is 16 or 32 bits, and the logical organization resembles NAND devices.

NOR flash memory provides high-speed random access. It can read and 
write data to specific locations, and can reference and retrieve a single byte. NOR 

(a) Transistor structure

(b) Flash memory cell in one state (c) Flash memory cell in zero state
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Figure 6.10 Flash Memory Operation

4See Chapter 11 for a discussion of NOR and NAND gates.
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flash memory is used to store cell phone operating system code and on Windows 
 computers for the BIOS program that runs at startup. NAND reads and writes in 
small blocks. It is used in USB flash drives, memory cards (in digital cameras, MP3 
players, etc.), and in SSDs. NAND provides higher bit density than NOR and greater 
write speed. NAND flash does not provide a random-access external address bus so 
the data must be read on a blockwise basis (also known as page access), where each 
block holds hundreds to thousands of bits.

SSD Compared to HDD

As the cost of flash-based SSDs has dropped and the performance and bit density 
increased, SSDs have become increasingly competitive with HDDs. Table 6.5 shows 
typical measures of comparison at the time of this writing.

SSDs have the following advantages over HDDs:

 • High-performance input/output operations per second (IOPS): Significantly 
increases performance I/O subsystems.

 • Durability: Less susceptible to physical shock and vibration.

 • Longer lifespan: SSDs are not susceptible to mechanical wear.

 • Lower power consumption: SSDs use as little as 2.1 watts of power per drive, 
considerably less than comparable-size HDDs.

 • Quieter and cooler running capabilities: Less floor space required, lower 
energy costs, and a greener enterprise.

 • Lower access times and latency rates: Over 10 times faster than the spinning 
disks in an HDD.

Currently, HDDs enjoy a cost per bit advantage and a capacity advantage, but 
these differences are shrinking.

SSD Organization

Figure 6.11 illustrates a general view of the common architectural system component 
associated with any SDD system. On the host system, to operating system invokes 
file system software to access data on the disk. The file system, in turn, invokes I/O 
driver software. The I/O driver software provides host access to the particular SSD 
product. The interface component in Figure 6.11 refers to the physical and electrical 
interface between the host processor and the SSD peripheral device. If the device is 

Table 6.5 Comparison of Solid State Drives and Disk Drives

NAND Flash Drives Disk Drives

I/O per second (sustained) Read: 45,000
Write: 15,000

300

Throughput (MB/s) Read: 200+
Write: 100+

up to 80

Random access time (ms) 0.1 4–10

Storage capacity up to 256 GB up to 4 TB
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an internal hard drive, a common interface is PCIe. For external devices, one com-
mon interface is USB.

In addition to the interface to the host system, the SSD contains the following 
components:

 • Controller:  Provides SSD device level interfacing and firmware execution.
 • Addressing:  Logic that performs the selection function across the flash

memory components.
 • Data buffer/cache:  High speed RAM memory components used for speed 

matching and to increased data throughput.

I/O driver software

File system software

Operating system
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Host system

SSDInterface

Interface

Controller

Flash
memory

components

Flash
memory

components

Flash
memory
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Flash
memory
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Figure 6.11 Solid State Drive Architecture
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 • Error correction:  Logic for error detection and correction.
 • Flash memory components:  Individual NAND flash chips.

Practical Issues

There are two practical issues peculiar to SSDs that are not faced by HDDs. First, 
SDD performance has a tendency to slow down as the device is used. To understand 
the reason for this, you need to know that files are stored on disk as a set of pages, 
typically 4 KB in length. These pages are not necessarily, and indeed not typically, 
stored as a contiguous set of pages on the disk. The reason for this arrangement is 
explained in our discussion of virtual memory in Chapter 8. However, flash memory 
is accessed in blocks, with a typically block size of 512 KB, so that there are typically 
128 pages per block. Now consider what must be done to write a page onto a flash 
memory.

 1. The entire block must be read from the flash memory and placed in a RAM 
buffer. Then the appropriate page in the RAM buffer is updated.

 2. Before the block can be written back to flash memory, the entire block of flash 
memory must be erased—it is not possible to erase just one page of the flash 
memory.

 3. The entire block from the buffer is now written back to the flash memory.

Now, when a flash drive is relatively empty and a new file is created, the 
pages of that file are written on to the drive contiguously, so that one or only a few 
blocks are affected. However, over time, because of the way virtual memory works, 
files become fragmented, with pages scattered over multiple blocks. As the drive 
become more occupied, there is more fragmentation, so the writing of a new file can 
affect multiple blocks. Thus, the writing of multiple pages from one block becomes 
slower, the more fully occupied the disk is. Manufacturers have developed a variety 
of techniques to compensate for this property of flash memory, such as setting aside 
a substantial portion of the SSD as extra space for write operations (called over-
provisioning), then to erase inactive pages during idle time used to defragment the 
disk. Another technique is the TRIM command, which allows an operating system 
to inform a solid state drive (SSD) which blocks of data are no longer considered in 
use and can be wiped internally.5

A second practical issue with flash memory drives is that a flash memory 
becomes unusable after a certain number of writes. As flash cells are stressed, 
they lose their ability to record and retain values. A typical limit is 100,000 writes 
[GSOE08]. Techniques for prolonging the life of an SSD drive include front-ending 
the flash with a cache to delay and group write operations, using wear-leveling algo-
rithms that evenly distribute writes across block of cells, and sophisticated bad-block 
management techniques. In addition, vendors are deploying SSDs in RAID con-
figurations to further reduce the probability of data loss. Most flash devices are also 
capable of estimating their own remaining lifetimes so systems can anticipate failure 
and take preemptive action.

5While TRIM is frequently spelled in capital letters, it is not an acronym; it is merely a command name.
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 6.4 OPTICAL MEMORY

In 1983, one of the most successful consumer products of all time was introduced: 
the compact disk (CD) digital audio system. The CD is a nonerasable disk that can 
store more than 60 minutes of audio information on one side. The huge commer-
cial success of the CD enabled the development of low-cost optical-disk storage 
technology that has revolutionized computer data storage. A variety of optical-disk 
systems have been introduced (Table 6.6). We briefly review each of these.

Compact Disk

CD-ROM Both the audio CD and the CD-ROM (compact disk read-only 
memory) share a similar technology. The main difference is that CD-ROM players 
are more rugged and have error correction devices to ensure that data are properly 
transferred from disk to computer. Both types of disk are made the same way. The 
disk is formed from a resin, such as polycarbonate. Digitally recorded information 
(either music or computer data) is imprinted as a series of microscopic pits on the 
surface of the polycarbonate. This is done, first of all, with a finely focused, high-
intensity laser to create a master disk. The master is used, in turn, to make a die to 

Table 6.6 Optical Disk Products

CD
Compact Disk. A nonerasable disk that stores digitized audio information. The standard system uses 
12-cm disks and can record more than 60 minutes of uninterrupted playing time.

CD-ROM
Compact Disk Read-Only Memory. A nonerasable disk used for storing computer data. The standard 
system uses 12-cm disks and can hold more than 650 Mbytes.

CD-R
CD Recordable. Similar to a CD-ROM. The user can write to the disk only once.

CD-RW
CD Rewritable. Similar to a CD-ROM. The user can erase and rewrite to the disk multiple times.

DVD
Digital Versatile Disk. A technology for producing digitized, compressed representation of video infor-
mation, as well as large volumes of other digital data. Both 8 and 12 cm diameters are used, with a  
double-sided capacity of up to 17 Gbytes. The basic DVD is read-only (DVD-ROM).

DVD-R
DVD Recordable. Similar to a DVD-ROM. The user can write to the disk only once. Only one-sided 
disks can be used.

DVD-RW
DVD Rewritable. Similar to a DVD-ROM. The user can erase and rewrite to the disk multiple times. 
Only one-sided disks can be used.

Blu-ray DVD
High-definition video disk. Provides considerably greater data storage density than DVD, using a 405-nm 
(blue-violet) laser. A single layer on a single side can store 25 Gbytes.
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stamp out copies onto polycarbonate. The pitted surface is then coated with a highly 
reflective surface, usually aluminum or gold. This shiny surface is protected against 
dust and scratches by a top coat of clear acrylic. Finally, a label can be silkscreened 
onto the acrylic.

Information is retrieved from a CD or CD-ROM by a low-powered laser 
housed in an optical-disk player, or drive unit. The laser shines through the clear 
polycarbonate while a motor spins the disk past it (Figure 6.12). The intensity of 
the reflected light of the laser changes as it encounters a pit. Specifically, if the laser 
beam falls on a pit, which has a somewhat rough surface, the light scatters and a low 
intensity is reflected back to the source. The areas between pits are called lands. 
A land is a smooth surface, which reflects back at higher intensity. The change 
between pits and lands is detected by a photosensor and converted into a digital 
signal. The sensor tests the surface at regular intervals. The beginning or end of 
a pit represents a 1; when no change in elevation occurs between intervals, a 0 is 
recorded.

Recall that on a magnetic disk, information is recorded in concentric tracks. 
With the simplest constant angular velocity (CAV) system, the number of bits per 
track is constant. An increase in density is achieved with multiple zoned recording, 
in which the surface is divided into a number of zones, with zones farther from the 
center containing more bits than zones closer to the center. Although this technique 
increases capacity, it is still not optimal.

To achieve greater capacity, CDs and CD-ROMs do not organize information 
on concentric tracks. Instead, the disk contains a single spiral track, beginning near 
the center and spiraling out to the outer edge of the disk. Sectors near the outside 
of the disk are the same length as those near the inside. Thus, information is packed 
evenly across the disk in segments of the same size and these are scanned at the 
same rate by rotating the disk at a variable speed. The pits are then read by the laser 
at a constant linear velocity (CLV). The disk rotates more slowly for accesses near 
the outer edge than for those near the center. Thus, the capacity of a track and the 
rotational delay both increase for positions nearer the outer edge of the disk. The 
data capacity for a CD-ROM is about 680 MB.

Polycarbonate
plastic

Protective
acrylic

Aluminum

Laser transmit/
receive

Pit
Land

Label

Figure 6.12 CD Operation
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Data on the CD-ROM are organized as a sequence of blocks. A typical block 
format is shown in Figure 6.13. It consists of the following fields:

 • Sync:  The sync field identifies the beginning of a block. It consists of a byte of 
all 0s, 10 bytes of all 1s, and a byte of all 0s.

 • Header:  The header contains the block address and the mode byte. Mode 
0 specifies a blank data field; mode 1 specifies the use of an error-correcting 
code and 2048 bytes of data; mode 2 specifies 2336 bytes of user data with no 
error-correcting code.

 • Data:  User data.

 • Auxiliary:  Additional user data in mode 2. In mode 1, this is a 288-byte error-
correcting code.

With the use of CLV, random access becomes more difficult. Locating a spe-
cific address involves moving the head to the general area, adjusting the rotation 
speed and reading the address, and then making minor adjustments to find and 
access the specific sector.

CD-ROM is appropriate for the distribution of large amounts of data to a 
large number of users. Because of the expense of the initial writing process, it is not 
appropriate for individualized applications. Compared with traditional magnetic 
disks, the CD-ROM has two advantages:

 • The optical disk together with the information stored on it can be mass repli-
cated inexpensively—unlike a magnetic disk. The database on a magnetic disk 
has to be reproduced by copying one disk at a time using two disk drives.

 • The optical disk is removable, allowing the disk itself to be used for archi-
val storage. Most magnetic disks are nonremovable. The information on non-
removable magnetic disks must first be copied to another storage medium 
 before the disk drive/disk can be used to store new information.
The disadvantages of CD-ROM are as follows:

 • It is read-only and cannot be updated.
 • It has an access time much longer than that of a magnetic disk drive, as much 

as half a second.

CD RECORDABLE  To accommodate applications in which only one or a small 
number of copies of a set of data is needed, the write-once read-many CD, known 
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Figure 6.13 CD-ROM Block Format
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as the CD recordable (CD-R), has been developed. For CD-R, a disk is prepared 
in such a way that it can be subsequently written once with a laser beam of 
modest -intensity. Thus, with a some what more expensive disk controller than for 
CD-ROM, the customer can write once as well as read the disk.

The CD-R medium is similar to but not identical to that of a CD or 
CD-ROM. For CDs and CD-ROMs, information is recorded by the pitting of 
the surface of the medium, which changes reflectivity. For a CD-R, the medium 
includes a dye layer. The dye is used to change reflectivity and is activated 
by a high-intensity laser. The resulting disk can be read on a CD-R drive or a 
CD-ROM drive.

The CD-R optical disk is attractive for archival storage of documents and files. 
It provides a permanent record of large volumes of user data.

CD REWRITABLE The CD-RW optical disk can be repeatedly written and 
overwritten, as with a magnetic disk. Although a number of approaches have been 
tried, the only pure optical approach that has proved attractive is called phase 
change. The phase change disk uses a material that has two significantly different 
reflectivities in two different phase states. There is an amorphous state, in which the 
molecules exhibit a random orientation that reflects light poorly; and a crystalline 
state, which has a smooth surface that reflects light well. A beam of laser light can 
change the material from one phase to the other. The primary disadvantage of 
phase change optical disks is that the material eventually and permanently loses 
its desirable properties. Current materials can be used for between 500,000 and 
1,000,000 erase cycles.

The CD-RW has the obvious advantage over CD-ROM and CD-R that it can 
be rewritten and thus used as a true secondary storage. As such, it competes with 
magnetic disk. A key advantage of the optical disk is that the engineering tolerances 
for optical disks are much less severe than for high-capacity magnetic disks. Thus, 
they exhibit higher reliability and longer life.

Digital Versatile Disk

With the capacious digital versatile disk (DVD), the electronics industry has at last 
found an acceptable replacement for the analog VHS video tape. The DVD has 
replaced the videotape used in video cassette recorders (VCRs) and, more impor-
tant for this discussion, replace the CD-ROM in personal computers and servers. 
The DVD takes video into the digital age. It delivers movies with impressive picture 
quality, and it can be randomly accessed like audio CDs, which DVD machines 
can also play. Vast volumes of data can be crammed onto the disk, currently seven 
times as much as a CD-ROM. With DVD’s huge storage capacity and vivid quality, 
PC games have become more realistic and educational software incorporates more 
video. Following in the wake of these developments has been a new crest of traf-
fic over the Internet and corporate intranets, as this material is incorporated into 
Web sites.

The DVD’s greater capacity is due to three differences from CDs (Figure 6.14):

 1. Bits are packed more closely on a DVD. The spacing between loops of a spiral on a 
CD is 1.6 μm and the minimum distance between pits along the spiral is 0.834 μm. 
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The DVD uses a laser with shorter wavelength and achieves a loop spacing of 
0.74 μm and a minimum distance between pits of 0.4 μm. The result of these 
two improvements is about a seven-fold increase in capacity, to about 4.7 GB.

 2. The DVD employs a second layer of pits and lands on top of the first layer. A 
dual-layer DVD has a semireflective layer on top of the reflective layer, and 
by adjusting focus, the lasers in DVD drives can read each layer separately. 
This technique almost doubles the capacity of the disk, to about 8.5 GB. The 
lower reflectivity of the second layer limits its storage capacity so that a full 
doubling is not achieved.

 3. The DVD-ROM can be two sided, whereas data are recorded on only one side 
of a CD. This brings total capacity up to 17 GB.

As with the CD, DVDs come in writeable as well as read-only versions (Table 6.6).

High-Definition Optical Disks

High-definition optical disks are designed to store high-definition videos and to 
provide significantly greater storage capacity compared to DVDs. The higher bit 
density is achieved by using a laser with a shorter wavelength, in the blue-violet 
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be flipped to read other side.

Figure 6.14 CD-ROM and DVD-ROM
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range. The data pits, which constitute the digital 1s and 0s, are smaller on the high-
definition optical disks compared to DVD because of the shorter laser wavelength.

Two competing disk formats and technologies initially competed for market 
acceptance: HD DVD and Blu-ray DVD. The Blu-ray scheme ultimately achieved 
market dominance. The HD DVD scheme can store 15 GB on a single layer on a 
single side. Blu-ray positions the data layer on the disk closer to the laser (shown on 
the right-hand side of each diagram in Figure 6.15). This enables a tighter focus and 
less distortion and thus smaller pits and tracks. Blu-ray can store 25 GB on a single 
layer. Three versions are available: read only (BD-ROM), recordable once (BD-R), 
and rerecordable (BD-RE).

 6.5 MAGNETIC TAPE

Tape systems use the same reading and recording techniques as disk systems. The 
medium is flexible polyester (similar to that used in some clothing) tape coated with 
magnetizable material. The coating may consist of particles of pure metal in spe-
cial binders or vapor-plated metal films. The tape and the tape drive are analo-
gous to a home tape recorder system. Tape widths vary from 0.38 cm (0.15 inch) to 
1.27 cm (0.5 inch). Tapes used to be packaged as open reels that have to be threaded 
through a second spindle for use. Today, virtually all tapes are housed in cartridges.

Data on the tape are structured as a number of parallel tracks running length-
wise. Earlier tape systems typically used nine tracks. This made it possible to store 
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Figure 6.15 Optical Memory Characteristics
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data one byte at a time, with an additional parity bit as the ninth track. This was 
followed by tape systems using 18 or 36 tracks, corresponding to a digital word or 
double word. The recording of data in this form is referred to as parallel recording. 
Most modern systems instead use serial recording, in which data are laid out as a 
sequence of bits along each track, as is done with magnetic disks. As with the disk, 
data are read and written in contiguous blocks, called physical records, on a tape. 
Blocks on the tape are separated by gaps referred to as interrecord gaps. As with the 
disk, the tape is formatted to assist in locating physical records.

The typical recording technique used in serial tapes is referred to as serpentine 
recording. In this technique, when data are being recorded, the first set of bits is 
recorded along the whole length of the tape. When the end of the tape is reached, 
the heads are repositioned to record a new track, and the tape is again recorded on 
its whole length, this time in the opposite direction. That process continues, back 
and forth, until the tape is full (Figure 6.16a). To increase speed, the read-write 
head is capable of reading and writing a number of adjacent tracks simultaneously 
 (typically two to eight tracks). Data are still recorded serially along individual tracks, 
but blocks in sequence are stored on adjacent tracks, as suggested by Figure 6.16b.

A tape drive is a sequential-access device. If the tape head is positioned at 
record 1, then to read record N, it is necessary to read physical records 1 through 
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Figure 6.16 Typical Magnetic Tape Features
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N - 1, one at a time. If the head is currently positioned beyond the desired record, it 
is necessary to rewind the tape a certain distance and begin reading forward. Unlike 
the disk, the tape is in motion only during a read or write operation.

In contrast to the tape, the disk drive is referred to as a direct-access device. A 
disk drive need not read all the sectors on a disk sequentially to get to the desired 
one. It must only wait for the intervening sectors within one track and can make suc-
cessive accesses to any track.

Magnetic tape was the first kind of secondary memory. It is still widely used as 
the lowest-cost, slowest-speed member of the memory hierarchy.

The dominant tape technology today is a cartridge system known as linear 
tape-open (LTO). LTO was developed in the late 1990s as an open-source alterna-
tive to the various proprietary systems on the market. Table 6.7 shows parameters 
for the various LTO generations. See Appendix J for details.

 6.6 RECOMMENDED READING

[JACO08] provides good coverage of magnetic disks.
[GSOE08] is an introduction to solid state drives. For good technical descriptions of 

flash memory, see [PAVA97] and [OKLO08].
An excellent survey of RAID technology, written by the inventors of the RAID con-

cept, is [CHEN94]. A good overview paper is [FRIE96]. A good performance comparison of 
the RAID architectures is [CHEN96].

A good survey of optical recording and reading technology is [MANS97].
[OSUN11] provides a detailed treatment of LTO.

Table 6.7 LTO Tape Drives

LTO-1 LTO-2 LTO-3 LTO-4 LTO-5 LTO-6 LTO-7 LTO-8

Release date 2000 2003 2005 2007 2010 TBA TBA TBA

Compressed  
capacity

200 GB 400 GB 800 GB 1600 GB 3.2 TB 8 TB 16 TB 32 TB

Compressed  
transfer rate

40  
MB/s

80  
MB/s

160 
MB/s

240 
MB/s

280 
MB/s

525 
MB/s

788 
MB/s

1.18 
GB/s

Linear density  
(bits/mm)

4880 7398 9638 13250 15142

Tape tracks 384 512 704 896 1280

Tape length (m) 609 609 680 820 846

Tape width (cm) 1.27 1.27 1.27 1.27 1.27

Write elements 8 8 16 16 16

WORM? No No Yes Yes Yes Yes Yes Yes

Encryption 
Capable?

No No No Yes Yes Yes Yes Yes

Partitioning? No No No No Yes Yes Yes Yes
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 6.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

access time
Blu-ray
CD
CD-R
CD-ROM
CD-RW
constant angular velocity 

(CAV)
constant linear velocity 

(CLV)
cylinder
DVD
DVD-R
DVD-ROM

DVD-RW
fixed-head disk
flash memory
floppy disk
gap
hard disk drive (HDD)
head
land
magnetic disk
magnetic tape
magnetoresistive
movable-head disk
multiple zoned recording
nonremovable disk

optical memory
pit
platter
RAID
removable disk
rotational delay
sector
seek time
serpentine recording
solid state drive (SSD)
striped data
substrate
track
transfer time

Review Questions
 6.1 What are the advantages of using a glass substrate for a magnetic disk?
 6.2 How are data written onto a magnetic disk?
 6.3 How are data read from a magnetic disk?
 6.4 Explain the difference between a simple CAV system and a multiple zoned recording 

system.
 6.5 Define the terms track, cylinder, and sector.
 6.6 What is the typical disk sector size?

CHEN94 Chen, P.; Lee, E.; Gibson, G.; Katz, R.; and Patterson, D. “RAID: High-
Performance, Reliable Secondary Storage.” ACM Computing Surveys, June 1994.

CHEN96 Chen, S., and Towsley, D. “A Performance Evaluation of RAID Architec-
tures.” IEEE Transactions on Computers, October 1996.

FRIE96 Friedman, M. “RAID Keeps Going and Going and…” IEEE Spectrum, April 
1996.

HAUE08 Haeusser, B., et al. IBM System Storage Tape Library Guide for Open
Systems. IBM Redbook SG24-5946-05, October 2007. ibm.com/redbooks

JACO08 Jacob, B.; Ng, S.; and Wang, D. Memory Systems: Cache, DRAM, Disk. 
Boston: Morgan Kaufmann, 2008.

MANS97 Mansuripur, M., and Sincerbox, G. “Principles and Techniques of Optical 
Data Storage.” Proceedings of the IEEE, November 1997.

OKLO08 Oklobdzija, V., ed. Digital Design and Fabrication. Boca Raton, FL: CRC 
Press, 2008.

OSUN11 Osuna, A., et al. IBM System Storage Tape Library Guide for Open Systems. 
IBM Redbook SG24-5946-07, June 2011.

PAVA97 Pavan, P., et al. “Flash Memory Cells–An Overview.” Proceedings of the 
IEEE, August 1997.
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 6.7 Define the terms seek time, rotational delay, access time, and transfer time.
 6.8 What common characteristics are shared by all RAID levels?
 6.9 Briefly define the seven RAID levels.
 6.10 Explain the term striped data.
 6.11 How is redundancy achieved in a RAID system?
 6.12 In the context of RAID, what is the distinction between parallel access and indepen-

dent access?
 6.13 What is the difference between CAV and CLV?
 6.14 What differences between a CD and a DVD account for the larger capacity of the latter?
 6.15 Explain serpentine recording.

Problems
 6.1 Consider a disk with N tracks numbered from 0 to (N - 1) and assume that requested 

sectors are distributed randomly and evenly over the disk. We want to calculate the 
average number of tracks traversed by a seek.
a. First, calculate the probability of a seek of length j when the head is currently 

positioned over track t. Hint: This is a matter of determining the total number of 
combinations, recognizing that all track positions for the destination of the seek 
are equally likely.

b. Next, calculate the probability of a seek of length K. Hint: this involves the sum-
ming over all possible combinations of movements of K tracks.

c. Calculate the average number of tracks traversed by a seek, using the formula for 
expected value

E[x] = a
N- 1

i = 0
i * Pr[x = i]

Hint: Use the equalities: a
n

i = 1
i =

n(n + 1)

2
 ; a

n

i = 1
i2 =

n(n + 1)(2n + 1)

6
.

d. Show that for large values of N, the average number of tracks traversed by a seek 
approaches N/3.

 6.2 Define the following for a disk system:
ts = seek time; average time to position head over track
r = rotation speed of the disk, in revolutions per second
n = number of bits per sector
N = capacity of a track, in bits
tA = time to access a sector

Develop a formula for tA as a function of the other parameters.
 6.3 Consider a magnetic disk drive with 8 surfaces, 512 tracks per surface, and 64 sectors 

per track. Sector size is 1 kB. The average seek time is 8 ms, the track-to-track access 
time is 1.5 ms, and the drive rotates at 3600 rpm. Successive tracks in a cylinder can be 
read without head movement.
a. What is the disk capacity?
b. What is the average access time? Assume this file is stored in successive sectors 

and tracks of successive cylinders, starting at sector 0, track 0, of cylinder i.
c. Estimate the time required to transfer a 5-MB file.
d. What is the burst transfer rate?

 6.4 Consider a single-platter disk with the following parameters: rotation speed: 7200 rpm; 
number of tracks on one side of platter: 30,000; number of sectors per track: 600; seek 
time: one ms for every hundred tracks traversed. Let the disk receive a request to  
access a random sector on a random track and assume the disk head starts at track 0.
a. What is the average seek time?
b. What is the average rotational latency?
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c. What is the transfer time for a sector?
d. What is the total average time to satisfy a request?

 6.5 A distinction is made between physical records and logical records. A logical record 
is a collection of related data elements treated as a conceptual unit, independent of 
how or where the information is stored. A physical record is a contiguous area of stor-
age space that is defined by the characteristics of the storage device and operating 
system. Assume a disk system in which each physical record contains thirty 120-byte 
logical records. Calculate how much disk space (in sectors, tracks, and surfaces) will be 
required to store 300,000 logical records if the disk is fixed-sector with 512 bytes/sec-
tor, with 96 sectors/track, 110 tracks per surface, and 8 usable surfaces. Ignore any file 
header record(s) and track indexes, and assume that records cannot span two sectors.

 6.6 Consider a disk that rotates at 3600 rpm. The seek time to move the head between 
adjacent tracks is 2 ms. There are 32 sectors per track, which are stored in linear order 
from sector 0 through sector 31. The head sees the sectors in ascending order. Assume 
the read/write head is positioned at the start of sector 1 on track 8. There is a main 
memory buffer large enough to hold an entire track. Data is transferred between disk 
locations by reading from the source track into the main memory buffer and then 
writing the data from the buffer to the target track.
a. How long will it take to transfer sector 1 on track 8 to sector 1 on track 9?
b. How long will it take to transfer all the sectors of track 8 to the corresponding sec-

tors of track 9?
 6.7 It should be clear that disk striping can improve data transfer rate when the strip size 

is small compared to the I/O request size. It should also be clear that RAID 0 provides 
improved performance relative to a single large disk, because multiple I/O requests 
can be handled in parallel. However, in this latter case, is disk striping necessary? That 
is, does disk striping improve I/O request rate performance compared to a compa-
rable disk array without striping?

 6.8 Consider a 4-drive, 200GB-per-drive RAID array. What is the available data storage 
capacity for each of the RAID levels 0, 1, 3, 4, 5, and 6?

 6.9 For a compact disk, audio is converted to digital with 16-bit samples, and is treated a 
stream of 8-bit bytes for storage. One simple scheme for storing this data, called direct 
recording, would be to represent a 1 by a land and a 0 by a pit. Instead, each byte is 
expanded into a 14-bit binary number. It turns out that exactly 256 (28) of the total of 
16,134 (214) 14-bit numbers have at least two 0s between every pair of 1s, and these are 
the numbers selected for the expansion from 8 to 14 bits. The optical system detects 
the presence of 1s by detecting a transition for pit to land or land to pit. It detects 0s 
by measuring the distances between intensity changes. This scheme requires that there 
are no 1s in succession; hence the use of the 8-to-14 code.

The advantage of this scheme is as follows. For a given laser beam diameter, there is a 
minimum-pit size, regardless of how the bits are represented. With this scheme, this mini-
mum-pit size stores 3 bits, because at least two 0s follow every 1. With direct recording, the 
same pit would be able to store only one bit. Considering both the number of bits stored 
per pit and the 8-to-14 bit expansion, which scheme stores the most bits and by what factor?

 6.10 Design a backup strategy for a computer system. One option is to use plug-in external 
disks, which cost $150 for each 500 GB drive. Another option is to buy a tape drive for 
$2500, and 400 GB tapes for $50 apiece. (These were realistic prices in 2008.) A typical 
backup strategy is to have two sets of backup media onsite, with backups alternately 
written on them so in case the system fails while making a backup, the previous ver-
sion is still intact. There’s also a third set kept offsite, with the offsite set periodically 
swapped with an on-site set.
a. Assume you have 1 TB (1000 GB) of data to back up. How much would a disk 

backup system cost?
b. How much would a tape backup system cost for 1 TB?
c. How large would each backup have to be in order for a tape strategy to be less 

expensive?
d. What kind of backup strategy favors tapes?
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I/O System Design Tool

In addition to the processor and a set of memory modules, the third key element 
of a computer system is a set of I/O modules. Each module interfaces to the system 
bus or central switch and controls one or more peripheral devices. An I/O module 
is not simply a set of mechanical connectors that wire a device into the system bus. 
Rather, the I/O module contains logic for performing a communication function 
between the peripheral and the bus.

The reader may wonder why one does not connect peripherals directly to the 
system bus. The reasons are as follows:

 • There are a wide variety of peripherals with various methods of operation. It 
would be impractical to incorporate the necessary logic within the processor 
to control a range of devices.

 • The data transfer rate of peripherals is often much slower than that of the 
memory or processor. Thus, it is impractical to use the high-speed system bus 
to communicate directly with a peripheral.

 • On the other hand, the data transfer rate of some peripherals is faster than 
that of the memory or processor. Again, the mismatch would lead to ineffi-
ciencies if not managed properly.

 • Peripherals often use different data formats and word lengths than the 
 computer to which they are attached.

Thus, an I/O module is required. This module has two major functions 
(Figure 7.1):

 • Interface to the processor and memory via the system bus or central switch

 • Interface to one or more peripheral devices by tailored data links

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Explain the use of I/O modules as part of a computer organization.

� Understand the difference between programmed I/O and interrupt-driven 
I/O and discuss their relative merits.

� Present an overview of the operation of direct memory access.

� Explain the function and use of I/O channels.

� Present an overview of Thunderbolt.

� Present an overview of InfiniBand.
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We begin this chapter with a brief discussion of external devices, followed by 
an overview of the structure and function of an I/O module. Then we look at the 
various ways in which the I/O function can be performed in cooperation with the 
processor and memory: the internal I/O interface. Finally, we examine the external 
I/O interface, between the I/O module and the outside world.

 7.1 EXTERNAL DEVICES

I/O operations are accomplished through a wide assortment of external devices 
that provide a means of exchanging data between the external environment 
and the computer. An external device attaches to the computer by a link to  
an I/O module (Figure 7.1). The link is used to exchange control, status, and  
data between the I/O module and the external device. An external device con-
nected to an I/O module is often referred to as a peripheral device or, simply, a 
peripheral.

We can broadly classify external devices into three categories:

 • Human readable: Suitable for communicating with the computer user

 • Machine readable: Suitable for communicating with equipment

 • Communication: Suitable for communicating with remote devices

I/O module

Links to
peripheral
devices

Address lines

System
busData lines

Control lines

Figure 7.1 Generic Model of an I/O Module
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Examples of human-readable devices are video display terminals (VDTs) and 
printers. Examples of machine-readable devices are magnetic disk and tape sys-
tems, and sensors and actuators, such as are used in a robotics application. Note 
that we are viewing disk and tape systems as I/O devices in this chapter, whereas 
in Chapter 6 we viewed them as memory devices. From a functional point of view, 
these devices are part of the memory hierarchy, and their use is appropriately dis-
cussed in Chapter 6. From a structural point of view, these devices are controlled by 
I/O modules and are hence to be considered in this chapter.

Communication devices allow a computer to exchange data with a remote 
device, which may be a human-readable device, such as a terminal, a machine-
readable device, or even another computer.

In very general terms, the nature of an external device is indicated in  
Figure 7.2. The interface to the I/O module is in the form of control, data, and status 
signals. Control signals determine the function that the device will perform, such as 
send data to the I/O module (INPUT or READ), accept data from the I/O module 
(OUTPUT or WRITE), report status, or perform some control function particular 
to the device (e.g., position a disk head). Data are in the form of a set of bits to 
be sent to or received from the I/O module. Status signals indicate the state of the 
device. Examples are READY/NOT-READY to show whether the device is ready 
for data transfer.

Control logic associated with the device controls the device’s operation in 
response to direction from the I/O module. The transducer converts data from elec-
trical to other forms of energy during output and from other forms to electrical dur-
ing input. Typically, a buffer is associated with the transducer to temporarily hold 

Buffer

Transducer

Control
logic

Control
signals from
I/O module

Status
signals to
I/O module

Data bits
to and from
I/O module

Data (device-unique)
to and from
environment

Figure 7.2 Block Diagram of an External Device
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data being transferred between the I/O module and the external environment; a 
buffer size of 8 to 16 bits is common.

The interface between the I/O module and the external device will be 
examined in Section 7.7. The interface between the external device and the envi-
ronment is beyond the scope of this book, but several brief examples are given 
here.

Keyboard/Monitor

The most common means of computer/user interaction is a keyboard/monitor 
arrangement. The user provides input through the keyboard. This input is then 
transmitted to the computer and may also be displayed on the monitor. In addition, 
the monitor displays data provided by the computer.

The basic unit of exchange is the character. Associated with each character 
is a code, typically 7 or 8 bits in length. The most commonly used text code is the 
International Reference Alphabet (IRA).1 Each character in this code is repre-
sented by a unique 7-bit binary code; thus, 128 different characters can be repre-
sented. Characters are of two types: printable and control. Printable characters are 
the alphabetic, numeric, and special characters that can be printed on paper or dis-
played on a screen. Some of the control characters have to do with controlling the 
printing or displaying of characters; an example is carriage return. Other control 
characters are concerned with communications procedures. See Appendix F for 
details.

For keyboard input, when the user depresses a key, this generates an 
 electronic signal that is interpreted by the transducer in the keyboard and 
 translated into the bit pattern of the corresponding IRA code. This bit pattern 
is then transmitted to the I/O module in the computer. At the computer, the 
text can be stored in the same IRA code. On output, IRA code characters are 
transmitted to an external device from the I/O module. The transducer at the 
device interprets this code and sends the required electronic signals to the out-
put device either to display the indicated character or perform the requested 
control function.

Disk Drive

A disk drive contains electronics for exchanging data, control, and status signals 
with an I/O module plus the electronics for controlling the disk read/write mecha-
nism. In a fixed-head disk, the transducer is capable of converting between the mag-
netic patterns on the moving disk surface and bits in the device’s buffer (Figure 7.2). 
A moving-head disk must also be able to cause the disk arm to move radially in and 
out across the disk’s surface.

1IRA is defined in ITU-T Recommendation T.50 and was formerly known as International Alphabet 
Number 5 (IA5). The U.S. national version of IRA is referred to as the American Standard Code for 
Information Interchange (ASCII).
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 7.2 I/O MODULES

Module Function

The major functions or requirements for an I/O module fall into the following 
 categories:

 • Control and timing

 • Processor communication

 • Device communication

 • Data buffering

 • Error detection

During any period of time, the processor may communicate with one or more 
external devices in unpredictable patterns, depending on the program’s need for I/O. 
The internal resources, such as main memory and the system bus, must be shared 
among a number of activities, including data I/O. Thus, the I/O function includes a 
control and timing requirement, to coordinate the flow of traffic between internal 
resources and external devices. For example, the control of the transfer of data from 
an external device to the processor might involve the following sequence of steps:

 1. The processor interrogates the I/O module to check the status of the attached 
device.

 2. The I/O module returns the device status.

 3. If the device is operational and ready to transmit, the processor requests the 
transfer of data, by means of a command to the I/O module.

 4. The I/O module obtains a unit of data (e.g., 8 or 16 bits) from the external device.

 5. The data are transferred from the I/O module to the processor.

If the system employs a bus, then each of the interactions between the proces-
sor and the I/O module involves one or more bus arbitrations.

The preceding simplified scenario also illustrates that the I/O module must 
communicate with the processor and with the external device. Processor communi-
cation involves the following:

 • Command decoding: The I/O module accepts commands from the processor, 
typically sent as signals on the control bus. For example, an I/O module for a 
disk drive might accept the following commands: READ SECTOR, WRITE 
SECTOR, SEEK track number, and SCAN record ID. The latter two com-
mands each include a parameter that is sent on the data bus.

 • Data: Data are exchanged between the processor and the I/O module over the 
data bus.

 • Status reporting: Because peripherals are so slow, it is important to know the 
status of the I/O module. For example, if an I/O module is asked to send data 
to the processor (read), it may not be ready to do so because it is still working 
on the previous I/O command. This fact can be reported with a status signal. 
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Common status signals are BUSY and READY. There may also be signals to 
report various error conditions.

 • Address recognition: Just as each word of memory has an address, so does 
each I/O device. Thus, an I/O module must recognize one unique address for 
each peripheral it controls.

On the other side, the I/O module must be able to perform device commu-
nication. This communication involves commands, status information, and data 
(Figure 7.2).

An essential task of an I/O module is data buffering. The need for this func-
tion is apparent from Figure 2.11. Whereas the transfer rate into and out of main 
memory or the processor is quite high, the rate is orders of magnitude lower for 
many peripheral devices and covers a wide range. Data coming from main memory 
are sent to an I/O module in a rapid burst. The data are buffered in the I/O module 
and then sent to the peripheral device at its data rate. In the opposite direction, data 
are buffered so as not to tie up the memory in a slow transfer operation. Thus, the 
I/O module must be able to operate at both device and memory speeds. Similarly, if 
the I/O device operates at a rate higher than the memory access rate, then the I/O 
module performs the needed buffering operation.

Finally, an I/O module is often responsible for error detection and for subse-
quently reporting errors to the processor. One class of errors includes mechanical 
and electrical malfunctions reported by the device (e.g., paper jam, bad disk track). 
Another class consists of unintentional changes to the bit pattern as it is transmit-
ted from device to I/O module. Some form of error-detecting code is often used 
to detect transmission errors. A simple example is the use of a parity bit on each 
character of data. For example, the IRA character code occupies 7 bits of a byte. 
The eighth bit is set so that the total number of 1s in the byte is even (even parity) 
or odd (odd parity). When a byte is received, the I/O module checks the parity to 
determine whether an error has occurred.

I/O Module Structure

I/O modules vary considerably in complexity and the number of external devices 
that they control. We will attempt only a very general description here. (One specific 
device, the Intel 82C55A, is described in Section 7.4.) Figure 7.3 provides a general 
block diagram of an I/O module. The module connects to the rest of the computer 
through a set of signal lines (e.g., system bus lines). Data transferred to and from the 
module are buffered in one or more data registers. There may also be one or more 
status registers that provide current status information. A status register may also 
function as a control register, to accept detailed control information from the pro-
cessor. The logic within the module interacts with the processor via a set of control 
lines. The processor uses the control lines to issue commands to the I/O module. 
Some of the control lines may be used by the I/O module (e.g., for arbitration and 
status signals). The module must also be able to recognize and generate addresses 
associated with the devices it controls. Each I/O module has a unique address or, if 
it controls more than one external device, a unique set of addresses. Finally, the I/O 
module contains logic specific to the interface with each device that it controls.
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An I/O module functions to allow the processor to view a wide range of devices 
in a simple-minded way. There is a spectrum of capabilities that may be provided. 
The I/O module may hide the details of timing, formats, and the electromechanics 
of an external device so that the processor can function in terms of simple read and 
write commands, and possibly open and close file commands. In its simplest form, 
the I/O module may still leave much of the work of controlling a device (e.g., rewind 
a tape) visible to the processor.

An I/O module that takes on most of the detailed processing burden, present-
ing a high-level interface to the processor, is usually referred to as an I/O channel or 
I/O processor. An I/O module that is quite primitive and requires detailed control 
is usually referred to as an I/O controller or device controller. I/O controllers are 
commonly seen on microcomputers, whereas I/O channels are used on mainframes.

In what follows, we will use the generic term I/O module when no confusion 
results and will use more specific terms where necessary.

 7.3 PROGRAMMED I/O

Three techniques are possible for I/O operations. With programmed I/O, data are 
exchanged between the processor and the I/O module. The processor executes a pro-
gram that gives it direct control of the I/O operation, including sensing device sta-
tus, sending a read or write command, and transferring the data. When the processor 
issues a command to the I/O module, it must wait until the I/O operation is com-
plete. If the processor is faster than the I/O module, this is wasteful of processor time. 
With interrupt-driven I/O, the processor issues an I/O command, continues to execute 
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other instructions, and is interrupted by the I/O module when the latter has completed 
its work. With both programmed and interrupt I/O, the processor is responsible for 
extracting data from main memory for output and storing data in main memory for 
input. The alternative is known as direct memory access (DMA). In this mode, the I/O 
module and main memory exchange data directly, without processor involvement.

Table 7.1 indicates the relationship among these three techniques. In this section, 
we explore programmed I/O. Interrupt I/O and DMA are explored in the following 
two sections, respectively.

Overview of Programmed I/O

When the processor is executing a program and encounters an instruction relat-
ing to I/O, it executes that instruction by issuing a command to the appropriate 
I/O  module. With programmed I/O, the I/O module will perform the requested 
action and then set the appropriate bits in the I/O status register (Figure 7.3). The 
I/O module takes no further action to alert the processor. In particular, it does not 
interrupt the processor. Thus, it is the responsibility of the processor periodically to 
check the status of the I/O module until it finds that the operation is complete.

To explain the programmed I/O technique, we view it first from the point of 
view of the I/O commands issued by the processor to the I/O module, and then from 
the point of view of the I/O instructions executed by the processor.

I/O Commands

To execute an I/O-related instruction, the processor issues an address, specifying the 
particular I/O module and external device, and an I/O command. There are four types 
of I/O commands that an I/O module may receive when it is addressed by a processor:

 • Control: Used to activate a peripheral and tell it what to do. For example, a 
magnetic-tape unit may be instructed to rewind or to move forward one record. 
These commands are tailored to the particular type of peripheral device.

 • Test: Used to test various status conditions associated with an I/O module and 
its peripherals. The processor will want to know that the peripheral of inter-
est is powered on and available for use. It will also want to know if the most 
recent I/O operation is completed and if any errors occurred.

 • Read: Causes the I/O module to obtain an item of data from the peripheral 
and place it in an internal buffer (depicted as a data register in Figure 7.3). The 
processor can then obtain the data item by requesting that the I/O module 
place it on the data bus.

 • Write: Causes the I/O module to take an item of data (byte or word) from the 
data bus and subsequently transmit that data item to the peripheral.

Table 7.1 I/O Techniques

No Interrupts Use of Interrupts

I/O-to-memory transfer through processor Programmed I/O Interrupt-driven I/O

Direct I/O-to-memory transfer Direct memory access (DMA)
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Figure 7.4a gives an example of the use of programmed I/O to read in a block of 
data from a peripheral device (e.g., a record from tape) into memory. Data are read 
in one word (e.g., 16 bits) at a time. For each word that is read in, the processor must 
remain in a status-checking cycle until it determines that the word is available in the 
I/O module’s data register. This flowchart highlights the main disadvantage of this 
technique: it is a time-consuming process that keeps the processor busy needlessly.

I/O Instructions

With programmed I/O, there is a close correspondence between the I/O-related 
instructions that the processor fetches from memory and the I/O commands that the 
processor issues to an I/O module to execute the instructions. That is, the instruc-
tions are easily mapped into I/O commands, and there is often a simple  one-to-one 
relationship. The form of the instruction depends on the way in which external 
devices are addressed.

Typically, there will be many I/O devices connected through I/O modules to 
the system. Each device is given a unique identifier or address. When the processor 
issues an I/O command, the command contains the address of the desired device. 
Thus, each I/O module must interpret the address lines to determine if the com-
mand is for itself.
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When the processor, main memory, and I/O share a common bus, two modes 
of addressing are possible: memory mapped and isolated. With memory-mapped 
I/O, there is a single address space for memory locations and I/O devices. The proc-
essor treats the status and data registers of I/O modules as memory locations and 
uses the same machine instructions to access both memory and I/O devices. So, for 
example, with 10 address lines, a combined total of 210 = 1024 memory locations 
and I/O addresses can be supported, in any combination.

With memory-mapped I/O, a single read line and a single write line are needed 
on the bus. Alternatively, the bus may be equipped with memory read and write 
plus input and output command lines. Now, the command line specifies whether the 
address refers to a memory location or an I/O device. The full range of addresses 
may be available for both. Again, with 10 address lines, the system may now support 
both 1024 memory locations and 1024 I/O addresses. Because the address space for 
I/O is isolated from that for memory, this is referred to as isolated I/O.

Figure 7.5 contrasts these two programmed I/O techniques. Figure 7.5a shows 
how the interface for a simple input device such as a terminal keyboard might appear 
to a programmer using memory-mapped I/O. Assume a 10-bit address, with a 512-
bit memory (locations 0–511) and up to 512 I/O addresses (locations 512–1023). 
Two addresses are dedicated to keyboard input from a particular terminal. Address 
516 refers to the data register and address 517 refers to the status register, which 
also functions as a control register for receiving processor commands. The program 
shown will read 1 byte of data from the keyboard into an accumulator register in the 
processor. Note that the processor loops until the data byte is available.

7 6 5

516 Keyboard input data register

4 3 2 1 0

7 6 5

517

(a) Memory-mapped I/O

Keyboard input status
and control register

1 � ready
0 � busy

4 3 2 1 0

Set to 1 to
start read

 ADDRESS INSTRUCTION OPERAND COMMENT
 200 Load AC "1" Load accumulator
  Store AC 517 Initiate keyboard read
 202 Load AC 517 Get status byte
  Branch if Sign � 0 202 Loop until ready
  Load AC 516 Load data byte

(b) Isolated I/O

 ADDRESS INSTRUCTION OPERAND COMMENT
 200 Load I/O 5 Initiate keyboard read
 201 Test I/O 5 Check for completion
  Branch Not Ready 201 Loop until complete
  In 5 Load data byte

Figure 7.5 Memory-Mapped and Isolated I/O
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With isolated I/O (Figure 7.5b), the I/O ports are accessible only by special 
I/O commands, which activate the I/O command lines on the bus.

For most types of processors, there is a relatively large set of different instruc-
tions for referencing memory. If isolated I/O is used, there are only a few I/O 
instructions. Thus, an advantage of memory-mapped I/O is that this large repertoire 
of instructions can be used, allowing more efficient programming. A disadvantage is 
that valuable memory address space is used up. Both memory-mapped and isolated 
I/O are in common use.

 7.4 INTERRUPT-DRIVEN I/O

The problem with programmed I/O is that the processor has to wait a long time 
for the I/O module of concern to be ready for either reception or transmission of 
data. The processor, while waiting, must repeatedly interrogate the status of the I/O 
module. As a result, the level of the performance of the entire system is severely 
degraded.

An alternative is for the processor to issue an I/O command to a module and 
then go on to do some other useful work. The I/O module will then interrupt the 
processor to request service when it is ready to exchange data with the proces-
sor. The processor then executes the data transfer, as before, and then resumes its 
former processing.

Let us consider how this works, first from the point of view of the I/O module. 
For input, the I/O module receives a READ command from the processor. The I/O 
module then proceeds to read data in from an associated peripheral. Once the data 
are in the module’s data register, the module signals an interrupt to the processor 
over a control line. The module then waits until its data are requested by the proc-
essor. When the request is made, the module places its data on the data bus and is 
then ready for another I/O operation.

From the processor’s point of view, the action for input is as follows. The proc-
essor issues a READ command. It then goes off and does something else (e.g., the 
processor may be working on several different programs at the same time). At the 
end of each instruction cycle, the processor checks for interrupts (Figure 3.9). When 
the interrupt from the I/O module occurs, the processor saves the context (e.g., pro-
gram counter and processor registers) of the current program and processes the 
interrupt. In this case, the processor reads the word of data from the I/O module 
and stores it in memory. It then restores the context of the program it was working 
on (or some other program) and resumes execution.

Figure 7.4b shows the use of interrupt I/O for reading in a block of data. 
Compare this with Figure 7.4a. Interrupt I/O is more efficient than programmed I/O 
because it eliminates needless waiting. However, interrupt I/O still consumes a lot of 
processor time, because every word of data that goes from memory to I/O module 
or from I/O module to memory must pass through the processor.

Interrupt Processing

Let us consider the role of the processor in interrupt-driven I/O in more detail. 
The occurrence of an interrupt triggers a number of events, both in the processor 
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 hardware and in software. Figure 7.6 shows a typical sequence. When an I/O device 
completes an I/O operation, the following sequence of hardware events occurs:

 1. The device issues an interrupt signal to the processor.

 2. The processor finishes execution of the current instruction before responding 
to the interrupt, as indicated in Figure 3.9.

 3. The processor tests for an interrupt, determines that there is one, and sends an 
acknowledgment signal to the device that issued the interrupt. The acknowl-
edgment allows the device to remove its interrupt signal.

 4. The processor now needs to prepare to transfer control to the interrupt routine. 
To begin, it needs to save information needed to resume the current program at 
the point of interrupt. The minimum information required is (a) the status of the 
processor, which is contained in a register called the program status word (PSW), 
and (b) the location of the next instruction to be executed, which is contained in 
the program counter. These can be pushed onto the system control stack.2

 5. The processor now loads the program counter with the entry location of the 
interrupt-handling program that will respond to this interrupt. Depending on 
the computer architecture and operating system design, there may be a single 
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Figure 7.6 Simple Interrupt Processing

2See Appendix O for a discussion of stack operation.



234  CHAPTER 7 / INPUT/OUTPUT

program; one program for each type of interrupt; or one program for each 
device and each type of interrupt. If there is more than one interrupt-handling 
routine, the processor must determine which one to invoke. This information 
may have been included in the original interrupt signal, or the processor may 
have to issue a request to the device that issued the interrupt to get a response 
that contains the needed information.

Once the program counter has been loaded, the processor proceeds to the 
next instruction cycle, which begins with an instruction fetch. Because the instruc-
tion fetch is determined by the contents of the program counter, the result is that 
control is transferred to the interrupt-handler program. The execution of this pro-
gram results in the following operations:

 6. At this point, the program counter and PSW relating to the interrupted 
 program have been saved on the system stack. However, there is other infor-
mation that is considered part of the “state” of the executing program. In par-
ticular, the contents of the processor registers need to be saved, because these 
registers may be used by the interrupt handler. So, all of these values, plus any 
other state information, need to be saved. Typically, the interrupt handler will 
begin by saving the contents of all registers on the stack. Figure 7.7a shows a 
simple example. In this case, a user program is interrupted after the instruction 
at location N. The contents of all of the registers plus the address of the next 
instruction (N + 1) are pushed onto the stack. The stack pointer is updated to 
point to the new top of stack, and the program counter is updated to point to 
the beginning of the interrupt service routine.

 7. The interrupt handler next processes the interrupt. This includes an examina-
tion of status information relating to the I/O operation or other event that 
caused an interrupt. It may also involve sending additional commands or 
acknowledgments to the I/O device.

 8. When interrupt processing is complete, the saved register values are retrieved 
from the stack and restored to the registers (e.g., see Figure 7.7b).

 9. The final act is to restore the PSW and program counter values from the stack. 
As a result, the next instruction to be executed will be from the previously 
interrupted program.

Note that it is important to save all the state information about the interrupted 
program for later resumption. This is because the interrupt is not a routine called 
from the program. Rather, the interrupt can occur at any time and therefore at any 
point in the execution of a user program. Its occurrence is unpredictable. Indeed, as 
we will see in the next chapter, the two programs may not have anything in common 
and may belong to two different users.

Design Issues

Two design issues arise in implementing interrupt I/O. First, because there will 
almost invariably be multiple I/O modules, how does the processor determine which 
device issued the interrupt? And second, if multiple interrupts have occurred, how 
does the processor decide which one to process?
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Let us consider device identification first. Four general categories of  techniques 
are in common use:

 • Multiple interrupt lines

 • Software poll

 • Daisy chain (hardware poll, vectored)

 • Bus arbitration (vectored)

The most straightforward approach to the problem is to provide multiple inter-
rupt lines between the processor and the I/O modules. However, it is impractical to 
dedicate more than a few bus lines or processor pins to interrupt lines. Consequently, 
even if multiple lines are used, it is likely that each line will have multiple I/O mod-
ules attached to it. Thus, one of the other three techniques must be used on each line.
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One alternative is the software poll. When the processor detects an interrupt, 
it branches to an interrupt-service routine whose job it is to poll each I/O module 
to determine which module caused the interrupt. The poll could be in the form of a 
separate command line (e.g., TESTI/O). In this case, the processor raises TESTI/O 
and places the address of a particular I/O module on the address lines. The I/O mod-
ule responds positively if it sets the interrupt. Alternatively, each I/O module could 
contain an addressable status register. The processor then reads the status register 
of each I/O module to identify the interrupting module. Once the correct module is 
identified, the processor branches to a device-service routine specific to that device.

The disadvantage of the software poll is that it is time consuming. A more efficient 
technique is to use a daisy chain, which provides, in effect, a hardware poll. An example 
of a daisy-chain configuration is shown in Figure 3.30. For interrupts, all I/O modules 
share a common interrupt request line. The interrupt acknowledge line is daisy chained 
through the modules. When the processor senses an interrupt, it sends out an interrupt 
acknowledge. This signal propagates through a series of I/O modules until it gets to a 
requesting module. The requesting module typically responds by placing a word on 
the data lines. This word is referred to as a vector and is either the address of the I/O 
module or some other unique identifier. In either case, the processor uses the vector as 
a pointer to the appropriate device-service routine. This avoids the need to execute a 
general interrupt-service routine first. This technique is called a vectored interrupt.

There is another technique that makes use of vectored interrupts, and that is 
bus arbitration. With bus arbitration, an I/O module must first gain control of the 
bus before it can raise the interrupt request line. Thus, only one module can raise the 
line at a time. When the processor detects the interrupt, it responds on the interrupt 
acknowledge line. The requesting module then places its vector on the data lines.

The aforementioned techniques serve to identify the requesting I/O  module. 
They also provide a way of assigning priorities when more than one device is request-
ing interrupt service. With multiple lines, the processor just picks the interrupt line 
with the highest priority. With software polling, the order in which modules are 
polled determines their priority. Similarly, the order of modules on a daisy chain 
determines their priority. Finally, bus arbitration can employ a priority scheme, as 
discussed in Section 3.4.

We now turn to two examples of interrupt structures.

Intel 82C59A Interrupt Controller

The Intel 80386 provides a single Interrupt Request (INTR) and a single Interrupt 
Acknowledge (INTA) line. To allow the 80386 to handle a variety of devices and pri-
ority structures, it is usually configured with an external interrupt arbiter, the 82C59A. 
External devices are connected to the 82C59A, which in turn connects to the 80386.

Figure 7.8 shows the use of the 82C59A to connect multiple I/O modules for the 
80386. A single 82C59A can handle up to eight modules. If control for more than eight 
modules is required, a cascade arrangement can be used to handle up to 64 modules.

The 82C59A’s sole responsibility is the management of interrupts. It accepts 
interrupt requests from attached modules, determines which interrupt has the highest  
priority, and then signals the processor by raising the INTR line. The processor 
acknowledges via the INTA line. This prompts the 82C59A to place the appropriate 
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vector information on the data bus. The processor can then proceed to process the 
interrupt and to communicate directly with the I/O module to read or write data.

The 82C59A is programmable. The 80386 determines the priority scheme to 
be used by setting a control word in the 82C59A. The following interrupt modes are 
possible:

 • Fully nested: The interrupt requests are ordered in priority from 0 (IR0) 
through 7 (IR7).
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Figure 7.8 Use of the 82C59A Interrupt Controller
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 • Rotating: In some applications a number of interrupting devices are of equal 
priority. In this mode a device, after being serviced, receives the lowest prior-
ity in the group.

 • Special mask: This allows the processor to inhibit interrupts from certain devices.

The Intel 82C55A Programmable Peripheral Interface

As an example of an I/O module used for programmed I/O and interrupt-driven I/O, 
we consider the Intel 82C55A Programmable Peripheral Interface. The 82C55A is 
a single-chip, general-purpose I/O module designed for use with the Intel 80386 
processor. Figure 7.9 shows a general block diagram plus the pin assignment for the 
40-pin package in which it is housed.

The right side of the block diagram is the external interface of the 82C55A. 
The 24 I/O lines are programmable by the 80386 by means of the control register. 
The 80386 can set the value of the control register to specify a variety of operating 
modes and configurations. The 24 lines are divided into three 8-bit groups (A, B, C).  
Each group can function as an 8-bit I/O port. In addition, group C is subdivided into 
4-bit groups (CA and CB), which may be used in conjunction with the A and B I/O 
ports. Configured in this manner, group C lines carry control and status signals.

The left side of the block diagram is the internal interface to the 80386 bus. It 
includes an 8-bit bidirectional data bus (D0 through D7), used to transfer data to 
and from the I/O ports and to transfer control information to the control register. 
The two address lines specify one of the three I/O ports or the control register.  
A transfer takes place when the CHIP SELECT line is enabled together with either 
the READ or WRITE line. The RESET line is used to initialize the module.
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Figure 7.9 The Intel 82C55A Programmable Peripheral Interface
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The control register is loaded by the processor to control the mode of operation 
and to define signals, if any. In Mode 0 operation, the three groups of eight exter-
nal lines function as three 8-bit I/O ports. Each port can be designated as input or 
output. Otherwise, groups A and B function as I/O ports, and the lines of group C 
serve as control lines for A and B. The control signals serve two principal purposes: 
“handshaking” and interrupt request. Handshaking is a simple timing mechanism. 
One control line is used by the sender as a DATA READY line, to indicate when 
the data are present on the I/O data lines. Another line is used by the receiver as an 
ACKNOWLEDGE, indicating that the data have been read and the data lines may 
be cleared. Another line may be designated as an INTERRUPT REQUEST line and 
tied back to the system bus.

Because the 82C55A is programmable via the control register, it can be used to 
control a variety of simple peripheral devices. Figure 7.10 illustrates its use to control 
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a keyboard/display terminal. The keyboard provides 8 bits of input. Two of these 
bits, SHIFT and CONTROL, have special meaning to the keyboard-handling pro-
gram executing in the processor. However, this interpretation is transparent to the 
82C55A, which simply accepts the 8 bits of data and presents them on the system 
data bus. Two handshaking control lines are provided for use with the keyboard.

The display is also linked by an 8-bit data port. Again, two of the bits have spe-
cial meanings that are transparent to the 82C55A. In addition to two handshaking 
lines, two lines provide additional control functions.

 7.5 DIRECT MEMORY ACCESS

Drawbacks of Programmed and Interrupt-Driven I/O

Interrupt-driven I/O, though more efficient than simple programmed I/O, still 
requires the active intervention of the processor to transfer data between memory 
and an I/O module, and any data transfer must traverse a path through the proces-
sor. Thus, both these forms of I/O suffer from two inherent drawbacks:

 1. The I/O transfer rate is limited by the speed with which the processor can test 
and service a device.

 2. The processor is tied up in managing an I/O transfer; a number of instructions 
must be executed for each I/O transfer (e.g., Figure 7.5).

There is somewhat of a trade-off between these two drawbacks. Consider the 
transfer of a block of data. Using simple programmed I/O, the processor is dedi-
cated to the task of I/O and can move data at a rather high rate, at the cost of doing 
nothing else. Interrupt I/O frees up the processor to some extent at the expense of 
the I/O transfer rate. Nevertheless, both methods have an adverse impact on both 
processor activity and I/O transfer rate.

When large volumes of data are to be moved, a more efficient technique is 
required: direct memory access (DMA).

DMA Function

DMA involves an additional module on the system bus. The DMA module 
(Figure 7.11) is capable of mimicking the processor and, indeed, of taking over 
control of the system from the processor. It needs to do this to transfer data to 
and from memory over the system bus. For this purpose, the DMA module must 
use the bus only when the processor does not need it, or it must force the proces-
sor to suspend operation temporarily. The latter technique is more common and is 
referred to as cycle stealing, because the DMA module in effect steals a bus cycle.

When the processor wishes to read or write a block of data, it issues a 
 command to the DMA module, by sending to the DMA module the following 
information:

 • Whether a read or write is requested, using the read or write control line 
 between the processor and the DMA module

 • The address of the I/O device involved, communicated on the data lines
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 • The starting location in memory to read from or write to, communicated on 
the data lines and stored by the DMA module in its address register

 • The number of words to be read or written, again communicated via the data 
lines and stored in the data count register

The processor then continues with other work. It has delegated this I/O opera-
tion to the DMA module. The DMA module transfers the entire block of data, one 
word at a time, directly to or from memory, without going through the processor.  
When the transfer is complete, the DMA module sends an interrupt signal to the 
processor. Thus, the processor is involved only at the beginning and end of the 
transfer (Figure 7.4c).

Figure 7.12 shows where in the instruction cycle the processor may be sus-
pended. In each case, the processor is suspended just before it needs to use the bus. 
The DMA module then transfers one word and returns control to the processor. 
Note that this is not an interrupt; the processor does not save a context and do 
something else. Rather, the processor pauses for one bus cycle. The overall effect 
is to cause the processor to execute more slowly. Nevertheless, for a multiple-word 
I/O transfer, DMA is far more efficient than interrupt-driven or programmed I/O.

The DMA mechanism can be configured in a variety of ways. Some possibili-
ties are shown in Figure 7.13. In the first example, all modules share the same system 
bus. The DMA module, acting as a surrogate processor, uses programmed I/O to 
exchange data between memory and an I/O module through the DMA module. This 
configuration, while it may be inexpensive, is clearly inefficient. As with processor-
controlled programmed I/O, each transfer of a word consumes two bus cycles.

The number of required bus cycles can be cut substantially by integrating the 
DMA and I/O functions. As Figure 7.13b indicates, this means that there is a path 
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between the DMA module and one or more I/O modules that does not include the 
system bus. The DMA logic may actually be a part of an I/O module, or it may be a 
separate module that controls one or more I/O modules. This concept can be taken 
one step further by connecting I/O modules to the DMA module using an I/O bus 
(Figure 7.13c). This reduces the number of I/O interfaces in the DMA module to one 
and provides for an easily expandable configuration. In both of these cases (Figures 
7.13b and c), the system bus that the DMA module shares with the processor and 
memory is used by the DMA module only to exchange data with memory. The 
exchange of data between the DMA and I/O modules takes place off the  system bus.

Intel 8237A DMA Controller

The Intel 8237A DMA controller interfaces to the 80 x 86 family of processors and 
to DRAM memory to provide a DMA capability. Figure 7.14 indicates the location 
of the DMA module. When the DMA module needs to use the system buses (data, 
address, and control) to transfer data, it sends a signal called HOLD to the proces-
sor. The processor responds with the HLDA (hold acknowledge) signal, indicating 
that the DMA module can use the buses. For example, if the DMA module is to 
transfer a block of data from memory to disk, it will do the following:

 1. The peripheral device (such as the disk controller) will request the service of 
DMA by pulling DREQ (DMA request) high.

 2. The DMA will put a high on its HRQ (hold request), signaling the CPU 
through its HOLD pin that it needs to use the buses.

CPU

DACK � DMA acknowledge
DREQ � DMA request
HLDA � HOLD acknowledge
HRQ � HOLD request

Data bus

DACK

DREQ

Address bus

Control bus (IOR, IOW, MEMR, MEMW)
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Main
memory

Disk
controller
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HLDA

Figure 7.14 8237 DMA Usage of System Bus
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 3. The CPU will finish the present bus cycle (not necessarily the present instruc-
tion) and respond to the DMA request by putting high on its HDLA (hold 
acknowledge), thus telling the 8237 DMA that it can go ahead and use the 
buses to perform its task. HOLD must remain active high as long as DMA is 
performing its task.

 4. DMA will activate DACK (DMA acknowledge), which tells the peripheral 
device that it will start to transfer the data.

 5. DMA starts to transfer the data from memory to peripheral by putting the 
address of the first byte of the block on the address bus and activating MEMR, 
thereby reading the byte from memory into the data bus; it then activates IOW 
to write it to the peripheral. Then DMA decrements the counter and incre-
ments the address pointer and repeats this process until the count reaches zero 
and the task is finished.

 6. After the DMA has finished its job it will deactivate HRQ, signaling the CPU 
that it can regain control over its buses.

While the DMA is using the buses to transfer data, the processor is idle. 
Similarly, when the processor is using the bus, the DMA is idle. The 8237 DMA 
is known as a fly-by DMA controller. This means that the data being moved from 
one location to another does not pass through the DMA chip and is not stored in 
the DMA chip. Therefore, the DMA can only transfer data between an I/O port 
and a memory address, but not between two I/O ports or two memory locations. 
However, as explained subsequently, the DMA chip can perform a memory-to-
memory transfer via a register.

The 8237 contains four DMA channels that can be programmed independ-
ently, and any one of the channels may be active at any moment. These channels are 
numbered 0, 1, 2, and 3.

The 8237 has a set of five control/command registers to program and control 
DMA operation over one of its channels (Table 7.2):

 • Command: The processor loads this register to control the operation of the 
DMA. D0 enables a memory-to-memory transfer, in which channel 0 is used 
to transfer a byte into an 8237 temporary register and channel 1 is used to 
transfer the byte from the register to memory. When memory-to-memory is 
enabled, D1 can be used to disable increment/decrement on channel 0 so that 
a fixed value can be written into a block of memory. D2 enables or disables 
DMA.

 • Status: The processor reads this register to determine DMA status. Bits 
D0–D3 are used to indicate if channels 0–3 have reached their TC (terminal 
count). Bits D4–D7 are used by the processor to determine if any channel has 
a DMA request pending.

 • Mode: The processor sets this register to determine the mode of operation 
of the DMA. Bits D0 and D1 are used to select a channel. The other bits 
select various operation modes for the selected channel. Bits D2 and D3 
determine if the transfer is from an I/O device to memory (write) or from 
memory to I/O (read), or a verify operation. If D4 is set, then the  memory 



Table 7.2 Intel 8237A Registers

Bit Command Status Mode Single Mask All Mask

D0 Memory-to-memory E/D Channel 0 has reached TC

Channel select Select channel mask bit

Clear/set channel 0 mask bit

D1 Channel 0 address  
hold E/D

Channel 1 has reached TC Clear/set channel 1 mask bit

D2 Controller E/D Channel 2 has reached TC
Verify/write/ read transfer

Clear/set mask bit Clear/set channel 2 mask bit

D3 Normal/compressed timing Channel 3 has reached TC

Not used

Clear/set channel 3 mask bit

D4 Fixed/rotating priority Channel 0 request Auto-initialization E/D

Not used

D5 Late/extended write  
selection

Channel 0 request Address increment/ 
decrement select

D6 DREQ sense active  
high/low

Channel 0 request

D7 DACK sense active  
high/low

Channel 0 request Demand/single/block/ 
cascade mode select

E/D � enable/disable
TC � terminal count

245
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address register and the count register are reloaded with their  original  
values at the end of a DMA data transfer. Bits D6 and D7 determine the 
way in which the 8237 is used. In single mode, a single byte of data is trans-
ferred. Block and demand modes are used for a block transfer, with the 
demand mode allowing for  premature ending of the transfer. Cascade 
mode allows multiple 8237s to be cascaded to expand the number of chan-
nels to more than 4.

 • Single Mask: The processor sets this register. Bits D0 and D1 select the chan-
nel. Bit D2 clears or sets the mask bit for that channel. It is through this reg-
ister that the DREQ input of a specific channel can be masked (disabled) or 
unmasked (enabled). While the command register can be used to disable the 
whole DMA chip, the single mask register allows the programmer to disable 
or enable a specific channel.

 • All Mask: This register is similar to the single mask register except that all four 
channels can be masked or unmasked with one write operation.

In addition, the 8237A has eight data registers: one memory address register 
and one count register for each channel. The processor sets these registers to indi-
cate the location of size of main memory to be affected by the transfers.

 7.6 I/O CHANNELS AND PROCESSORS

The Evolution of the I/O Function

As computer systems have evolved, there has been a pattern of increasing complex-
ity and sophistication of individual components. Nowhere is this more evident than 
in the I/O function. We have already seen part of that evolution. The evolutionary 
steps can be summarized as follows:

 1. The CPU directly controls a peripheral device. This is seen in simple micro-
processor-controlled devices.

 2. A controller or I/O module is added. The CPU uses programmed I/O without 
interrupts. With this step, the CPU becomes somewhat divorced from the spe-
cific details of external device interfaces.

 3. The same configuration as in step 2 is used, but now interrupts are employed. 
The CPU need not spend time waiting for an I/O operation to be performed, 
thus increasing efficiency.

 4. The I/O module is given direct access to memory via DMA. It can now move 
a block of data to or from memory without involving the CPU, except at the 
beginning and end of the transfer.

 5. The I/O module is enhanced to become a processor in its own right, with a 
specialized instruction set tailored for I/O. The CPU directs the I/O processor 
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to execute an I/O program in memory. The I/O processor fetches and executes 
these instructions without CPU intervention. This allows the CPU to specify a 
sequence of I/O activities and to be interrupted only when the entire sequence 
has been performed.

 6. The I/O module has a local memory of its own and is, in fact, a computer 
in its own right. With this architecture, a large set of I/O devices can be 
 controlled, with minimal CPU involvement. A common use for such an 
architecture has been to control communication with interactive terminals. 
The I/O processor takes care of most of the tasks involved in controlling the 
terminals.

As one proceeds along this evolutionary path, more and more of the I/O 
function is performed without CPU involvement. The CPU is increasingly 
relieved of I/O-related tasks, improving performance. With the last two steps 
(5–6), a major change occurs with the introduction of the concept of an I/O mod-
ule capable of executing a program. For step 5, the I/O module is often referred 
to as an I/O channel. For step 6, the term I/O processor is often used. However, 
both terms are on occasion applied to both situations. In what follows, we will use 
the term I/O channel.

Characteristics of I/O Channels

The I/O channel represents an extension of the DMA concept. An I/O  
channel has the ability to execute I/O instructions, which gives it complete con-
trol over I/O operations. In a computer system with such devices, the CPU does 
not execute I/O instructions. Such instructions are stored in main memory to 
be executed by a special-purpose processor in the I/O channel itself. Thus, the 
CPU initiates an I/O transfer by instructing the I/O channel to execute a pro-
gram in memory. The program will specify the device or devices, the area or 
areas of memory for storage, priority, and actions to be taken for certain error 
conditions. The I/O channel follows these instructions and controls the data 
transfer.

Two types of I/O channels are common, as illustrated in Figure 7.15. A 
 selector channel controls multiple high-speed devices and, at any one time, is 
dedicated to the transfer of data with one of those devices. Thus, the I/O chan-
nel selects one device and effects the data transfer. Each device, or a small set of 
devices, is handled by a controller, or I/O module, that is much like the I/O mod-
ules we have been discussing. Thus, the I/O channel serves in place of the CPU in 
controlling these I/O controllers. A multiplexor channel can handle I/O with mul-
tiple devices at the same time. For low-speed devices, a byte multiplexor accepts or 
transmits characters as fast as possible to multiple devices. For example, the result-
ant character stream from three devices with different rates and individual streams 
A1A2A3A4 …, B1B2B3B4 …, and C1C2C3C4 … might be A1B1C1A2C2A3B2C3A4, 
and so on. For high-speed devices, a block multiplexor interleaves blocks of data 
from several devices.
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 7.7 THE EXTERNAL INTERFACE: THUNDERBOLT 
AND INFINIBAND

Types of Interfaces

The interface to a peripheral from an I/O module must be tailored to the nature 
and operation of the peripheral. One major characteristic of the interface is whether 
it is serial or parallel (Figure 7.16). In a parallel interface, there are multiple lines 
connecting the I/O module and the peripheral, and multiple bits are transferred 
simultaneously, just as all of the bits of a word are transferred simultaneously over 
the data bus. In a serial interface, there is only one line used to transmit data, and 
bits must be transmitted one at a time. A parallel interface has traditionally been 
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used for higher-speed peripherals, such as tape and disk, while the serial interface 
has traditionally been used for printers and terminals. With a new generation of 
high-speed serial interfaces, parallel interfaces are becoming much less common.

In either case, the I/O module must engage in a dialogue with the peripheral. 
In general terms, the dialogue for a write operation is as follows:

 1. The I/O module sends a control signal requesting permission to send data.

 2. The peripheral acknowledges the request.

 3. The I/O module transfers data (one word or a block depending on the 
peripheral).

 4. The peripheral acknowledges receipt of the data.

A read operation proceeds similarly.
Key to the operation of an I/O module is an internal buffer that can store data 

being passed between the peripheral and the rest of the system. This buffer allows 
the I/O module to compensate for the differences in speed between the system bus 
and its external lines.

Point-to-Point and Multipoint Configurations

The connection between an I/O module in a computer system and external devices 
can be either point-to-point or multipoint. A point-to-point interface provides a 
dedicated line between the I/O module and the external device. On small systems 
(PCs, workstations), typical point-to-point links include those to the keyboard, 
printer, and external modem. A typical example of such an interface is the EIA-232 
specification (see [STAL11] for a description).

Of increasing importance are multipoint external interfaces, used to sup-
port external mass storage devices (disk and tape drives) and multimedia devices 
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(CD-ROMs, video, audio). These multipoint interfaces are in effect external buses, 
and they exhibit the same type of logic as the buses discussed in Chapter 3. In this 
section, we look at two key examples: Thunderbolt and InfiniBand.

Thunderbolt

The most recent, and fastest, peripheral connection technology to become available for 
general-purpose use is Thunderbolt, developed by Intel with collaboration from Apple. 
One Thunderbolt cable can manage the work previously required of multiple cables. 
The technology combines data, video, audio, and power into a single high-speed con-
nection for peripherals such as hard drives, RAID (Redundant Array of Independent 
Disks) arrays, video-capture boxes, and network interfaces. It provides up to 10 Gbps 
throughput in each direction and up to 10 Watts of power to connected peripherals.

Although the technology and its associated specifications have stabilized, the 
introduction of Thunderbolt-equipped devices into the marketplace has, as of this writ-
ing, only slowly begun to develop. This is because a Thunderbolt-compatible periph-
eral interface is considerably more complex than that of a simple USB device. The 
first generation of Thunderbolt products are primarily aimed at the prosumer (pro-
fessional-consumer) market such as audiovisual editors who want to be able to move 
large volumes of data quickly between storage devices and laptops. As the technology 
becomes cheaper, Thunderbolt will find mass consumer uses, such as enabling very 
high-speed data backups and editing high-definition photos. Thunderbolt is already a 
standard feature of Apple’s MacBook Pro laptop and iMac desktop computers.

THUNDERBOLT CONFIGURATION Figure 7.17 shows a typical computer 
configuration that makes use of Thunderbolt. From the point of view of I/O, the 
central element in this configuration is the Thunderbolt controller, which is a 
high-performance, cross-bar switch. Unlike bus-based I/O architectures, each 
Thunderbolt port on a computer is capable of providing the full data transfer rate 
of the link in both directions with no sharing of data transmission capacity between 
ports or between upstream and downstream directions.

For communication internal to the computer, the Thunderbolt controller 
includes one or more DisplayPort protocol adapter ports. DisplayPort is a digital dis-
play interface standard now widely adopted for computer monitors, laptop displays, 
and other graphics and video interfaces. The controller also includes a PCI Express 
switch with up to four PCI Express protocol adapter ports for internal communication.

The Thunderbolt controller provides access to external devices through one or 
more Thunderbolt connectors. Each connector can provide one or two  full-duplex 
channels, with each channel providing up to 10 Gbps in each direction. The same 
connector can be used for electrical or optical cables. The electrical cable can extend 
up to 3 meters, while the optical cable can extend into the tens of meters.

Users can connect high-performance peripherals to their PC over a cable, 
daisy chaining one after another, up to a total of 7 devices, 1 or 2 of which can be 
high- resolution DisplayPort displays (depending on the controller configuration in 
the host PC). Because Thunderbolt technology delivers two full-bandwidth chan-
nels, the user can realize high bandwidth not only on the first device attached but on 
downstream devices as well.
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THUNDERBOLT PROTOCOL ARCHITECTURE Figure 7.18 illustrates the 
Thunderbolt protocol architecture. The cable and connector layer provides 
transmission medium access. This layer specifies the physical and electrical 
attributes of the connector port.

The Thunderbolt protocol physical layer is responsible for link maintenance 
including hot-plug3 detection and data encoding to provide highly efficient data 
transfer. The physical layer has been designed to introduce very minimal overhead 
and provides full-duplex 10 Gbps of usable capacity to the upper layers.

The common transport layer is the key to the operation of Thunderbolt and 
what makes it attractive as a high-speed peripheral I/O technology. Some of the 
features include:

 • A high-performance, low-power, switching architecture.

 • A highly efficient, low-overhead packet format with flexible quality of service 
(QoS) support that allows multiplexing of bursty PCI Express transactions 
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3The term hot plug is defined as pulling out a component from a system and plugging in a new one while 
the main power is still on. It allows an external drive, network adapter, or other peripheral to be plugged 
in without having to power down the computer.
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with DisplayPort communication on the same link. The transport layer has the 
ability to flexibly allocate link bandwidth using priority and bandwidth reser-
vation mechanisms.

 • The use of small packet sizes to achieve low latency.

 • The use of credit-based flow control to achieve small buffer sizes.

 • A symmetric architecture that supports flexible topologies (star, tree, daisy 
chaining, etc.) and enables peer-to-peer communication (via software) 
between devices.

 • A novel time synchronization protocol that allows all the Thunderbolt prod-
ucts connected in a domain to synchronize their time within 8ns of each 
other.

The application layer contains I/O protocols that are mapped onto the trans-
port layer. Initially, Thunderbolt provides full support for PCIe and DisplayPort 
protocols. This function is provided by a protocol adapter, which is responsible for 
efficient encapsulation of the mapped protocol information into transport layer 
packets. Mapped protocol packets between a source device and a destination device 
may be routed over a path that may cross multiple Thunderbolt controllers. At the 
destination device, a protocol adapter re-creates the mapped protocol in a way that 
is indistinguishable from what was received by the source device. The advantage of 
doing protocol mapping in this way is that Thunderbolt technology–enabled prod-
uct devices appear as PCIe or DisplayPort devices to the operating system of the 
host computer, thereby enabling the use of standard drivers that are available in 
many operating systems today.
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InfiniBand

InfiniBand is a recent I/O specification aimed at the high-end server market.4 The 
first version of the specification was released in early 2001 and has attracted numer-
ous vendors. The standard describes an architecture and specifications for data flow 
among processors and intelligent I/O devices. InfiniBand has become a popular 
interface for storage area networking and other large storage configurations. In 
essence, InfiniBand enables servers, remote storage, and other network devices to 
be attached in a central fabric of switches and links. The switch-based architecture 
can connect up to 64,000 servers, storage systems, and networking devices.

INFINIBAND ARCHITECTURE Although PCI is a reliable interconnect method 
and continues to provide increased speeds, up to 4 Gbps, it is a limited architecture 
compared to InfiniBand. With InfiniBand, it is not necessary to have the basic I/O 
interface hardware inside the server chassis. With InfiniBand, remote storage, 
networking, and connections between servers are accomplished by attaching all 
devices to a central fabric of switches and links. Removing I/O from the server 
chassis allows greater server density and allows for a more flexible and scalable data 
center, as independent nodes may be added as needed.

Unlike PCI, which measures distances from a CPU motherboard in centim-
eters, InfiniBand’s channel design enables I/O devices to be placed up to 17 meters 
away from the server using copper, up to 300 m using multimode optical fiber, and 
up to 10 km with single-mode optical fiber. Transmission rates has high as 30 Gbps 
can be achieved.

Figure 7.19 illustrates the InfiniBand architecture. The key elements are as 
follows:

 • Host channel adapter (HCA): Instead of a number of PCI slots, a typical 
server needs a single interface to an HCA that links the server to an InfiniBand 
switch. The HCA attaches to the server at a memory controller, which has 
 access to the system bus and controls traffic between the processor and mem-
ory and between the HCA and memory. The HCA uses direct-memory access 
(DMA) to read and write memory.

 • Target channel adapter (TCA): A TCA is used to connect storage systems, 
routers, and other peripheral devices to an InfiniBand switch.

 • InfiniBand switch: A switch provides point-to-point physical connections to a 
variety of devices and switches traffic from one link to another. Servers and 
devices communicate through their adapters, via the switch. The switch’s 
intelligence manages the linkage without interrupting the servers’ operation.

 • Links: The link between a switch and a channel adapter, or between two 
switches.

 • Subnet: A subnet consists of one or more interconnected switches plus the links 
that connect other devices to those switches. Figure 7.19 shows a subnet with 

4InfiniBand is the result of the merger of two competing projects: Future I/O (backed by Cisco, HP, Com-
paq, and IBM) and Next Generation I/O (developed by Intel and backed by a number of other companies).
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a single switch, but more complex subnets are required when a large number 
of devices are to be interconnected. Subnets allow administrators to confine 
broadcast and multicast transmissions within the subnet.

 • Router: Connects InfiniBand subnets, or connects an InfiniBand switch to 
a network, such as a local area network, wide area network, or storage area 
 network.

The channel adapters are intelligent devices that handle all I/O functions with-
out the need to interrupt the server’s processor. For example, there is a control 
protocol by which a switch discovers all TCAs and HCAs in the fabric and assigns 
logical addresses to each. This is done without processor involvement.

The InfiniBand switch temporarily opens up channels between the proces-
sor and devices with which it is communicating. The devices do not have to share a 
channel’s capacity, as is the case with a bus-based design such as PCI, which requires 
that devices arbitrate for access to the processor. Additional devices are added to 
the configuration by hooking up each device’s TCA to the switch.

INFINIBAND OPERATION Each physical link between a switch and an attached 
interface (HCA or TCA) can be support up to 16 logical channels, called virtual 
lanes. One lane is reserved for fabric management and the other lanes for data 
transport. Data are sent in the form of a stream of packets, with each packet 
containing some portion of the total data to be transferred, plus addressing and 
control information. Thus, a set of communications protocols are used to manage 
the transfer of data. A virtual lane is temporarily dedicated to the transfer of data 
from one end node to another over the InfiniBand fabric. The InfiniBand switch 
maps traffic from an incoming lane to an outgoing lane to route the data between 
the desired end points.
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Figure 7.20 indicates the logical structure used to support exchanges over 
InfiniBand. To account for the fact that some devices can send data faster than 
another destination device can receive it, a pair of queues at both ends of each link 
temporarily buffers excess outbound and inbound data. The queues can be located 
in the channel adapter or in the attached device’s memory. A separate pair of queues 
is used for each virtual lane. The host uses these queues in the following fashion. 
The host places a transaction, called a work queue entry (WQE) into either the 
send or receive queue of the queue pair. The two most important WQEs are SEND 
and RECEIVE. For a SEND operation, the WQE specifies a block of data in the 
device’s memory space for the hardware to send to the destination. A RECEIVE 
WQE specifies where the hardware is to place data received from another device 
when that consumer executes a SEND operation. The channel adapter processes 
each posted WQE in the proper prioritized order and generates a completion queue 
entry (CQE) to indicate the completion status.

Figure 7.20 also indicates that a layered protocol architecture is used, consist-
ing of four layers:

 • Physical: The physical-layer specification defines three link speeds (1X, 
4X, and 12X) giving transmission rates of 2.5, 10, and 30 Gbps, respectively 
(Table 7.3). The physical layer also defines the physical media, including cop-
per and optical fiber.

 • Link:  This layer defines the basic packet structure used to exchange data, 
including an addressing scheme that assigns a unique link address to every 
device in a subnet. This level includes the logic for setting up virtual lanes and 
for switching data through switches from source to destination within a subnet. 
The packet structure includes an error-detection code to provide reliability.
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 • Network:  The network layer routes packets between different InfiniBand 
subnets.

 • Transport:  The transport layer provides reliability mechanism for end-to-end 
transfer of packets across one or more subnets.

 7.8 IBM zENTERPRISE 196 I/O STRUCTURE

The zEnterprise 196 is IBM’s latest mainframe computer offering (at the time of 
this writing), introduced in 2010. The system is based on the use of the z196 chip, 
which is a 5.2-GHz multicore chip with four cores. The z196 architecture can have a 
maximum of 24 processor chips for a total of 96 cores. In this section, we look at the 
I/O structure of the zEnterprise 196.

Channel Structure

The zEnterprise 196 has a dedicated I/O subsystem that manages all I/O operations, 
completely off-loading this processing and memory burden from the main proces-
sors. Figure 7.21 shows the logical structure of the I/O subsystem. Of the 96 core pro-
cessors, up to 4 of these can be dedicated for I/O use, creating 4 channel subsystems 
(CSS). Each CSS is made up of the following elements:

 • System assist processor (SAP): The SAP is a core processor configured for I/O 
operation. Its role is to offload I/O operations and manage channels and the 
I/O operations queues. It relieves the other processors of all I/O tasks, allow-
ing them to be dedicated to application logic.

 • Hardware system area (HSA): The HSA is a reserved part of the system mem-
ory containing the I/O configuration. It is used by SAPs. A fixed amount of 
16 GB is reserved, which is not part of the customer-purchased memory. This 
provides for greater configuration flexibility and higher availability by elimi-
nating planned and preplanned outages.

 • Logical partitions: A logical partition is a form of virtual machine, which is in 
essence, a logical processor defined at the operating system level.5 Each CSS 
supports up to 16 logical partitions.

Table 7.3 InfiniBand Links and Data Throughput Rates

 
Link

Signal rate  
(unidirectional)

Usable capacity (80%  
of signal rate)

Effective data throughput  
(send + receive)

1-wide 2.5 Gbps 2 Gbps (250 MBps) (250 + 250) MBps

4-wide 10 Gbps 8 Gbps (1 GBps) (1 + 1) GBps

12-wide 30 Gbps 24 Gbps (3 GBps) (3 + 3) Gbps

5A virtual machine is an instance of an operating system along with one or more applications running in 
an isolated memory partition within the computer. It enables different operating systems to run in the 
same computer at the same time as well as prevents applications from interfering with each other. See 
[STAL12] for a discussion of virtual machines.
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 • Subchannels: A subchannel appear to a program as a logical device and con-
tain the information required to perform an I/O operation. One subchannel 
exists for each I/O device addressable by the CSS. A subchannel is used by the 
channel subsystem code running on a partition to pass an I/O request to the 
channel subsystem. A subchannel is assigned for each device defined to the 
logical partition. Up to 196k subchannels are supported per CSS.

 • Channel path: A channel path is a single interface between a channel subsys-
tem and one or more control units, via a channel. Commands and data are sent 
across a channel path to perform I/O requests. Each CSS can have up to 256 
channel paths.

 • Channel: Channels are small processors that communicate with the I/O con-
trol units (CUs). They manage the data transfer between memory and the 
external devices.

This elaborate structure enables the mainframe to manage a massive number 
of I/O devices and communication links. All I/O processing is offloaded from the 
application and server processors, enhancing performance. The channel subsys-
tem processors are somewhat general in configuration, enabling them to manage 
a wide variety of I/O duties and to keep up with evolving requirements. The chan-
nel processors are specifically programmed for the I/O control units to which they 
interface.
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I/O System Organization

To explain the I/O system organization, we need to first briefly explain the physical 
layout of the zEnterprise 196. Figure 7.22 is a front view of the water-cooled ver-
sion of the machine (there is an air-cooled version). The system has the following 
characteristics:

 • Weight: 2185 kg (4817 lbs)

 • Width: 1.534 m (5 ft)

 • Depth: 1.375 m (4.5 ft)

 • Height: 2.012 m (6.6 ft)

Not exactly a laptop.
The system consists of two large bays, called frames, that house the various 

components of the zEnterprise 196. The right hand A frame includes two large 
cages, plus room for cabling and other components. The upper cage is a processor 
cage, with four slots to house up to four processor books that are fully intercon-
nected. Each book contains a multichip module (MCM), memory cards, and I/O 
cage connections. Each MCM is a board that houses six multicore chips and two 
storage control chips.

The lower cage in the A frame is an I/O cage, which contains I/O hardware, 
including multiplexors and channels. The I/O cage is a fixed unit installed by IBM to 
the customer specifications at the factory.
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Figure 7.22 IBM z196 I/O Frames — Front View



The left hand Z frame contains internal batteries and power supplies and 
room for one or more support elements, which are used by a system manager for 
platform management. The Z frame also contains slots for two or more I/O draw-
ers. An I/O drawer contains similar components to an I/O cage. The differences are 
that the drawer is smaller and easily swapped in and out at the customer site to meet 
changing requirements.

With this background, we now show a typical configuration of the zEnterprise 
196 I/O system structure (Figure 7.23). The z196 processor book supports two inter-
nal (i.e., internal to the A and Z frames) I/O infrastructures: InfiniBand for I/O 
cages and I/O drawers, and PCI Express (PCIe) for I/O drawers. These channel 
controllers are referred to as fanouts.

The InfiniBand connections from the processor book to the I/O cages and I/O 
drawers are via a Host Channel Adapter (HCA) fanout, which has InfiniBand links 
to InfiniBand multiplexors in the I/O cage or drawer. The InfiniBand multiplexors 
are used to interconnect servers, communications infrastructure equipment, storage, 
and embedded systems. In addition to using InfiniBand to interconnect systems, 
all of which use InfiniBand, the InfiniBand multiplexor supports other I/O tech-
nologies. ESCON (Enterprise Systems Connection) supports connectivity to disks, 
tapes, and printer devices using a proprietary fiber-based technology. Ethernet con-
nections provide 1-Gbps and 10-Gbps connections to a variety of devices that sup-
port this popular local area network technology. One noteworthy use of Ethernet is 
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to construct large server farms, particularly to interconnect blade servers with each 
other and with other mainframes.6

The PCIe connections from the processor book to the I/O drawers are via a 
PCIe fanout to PCIe switches. The PCIe switches can connect to a number of I/O 
device controllers. Typical examples for zEnterprise 196 are 1-Gbps and 10-Gbps 
Ethernet and Fiber Channel.

Each book contains a combination of up to 8 InfiniBand HCA and PCIe 
fanouts. Each fanout supports up to 32 connections, for a total maximum of 256 
connections per processor book, each connection controlled by a channel processor.

 7.9 RECOMMENDED READING

A good discussion of Intel I/O modules and architecture, including the 82C59A, 82C55A, and 
8237A, can be found in [BREY09] and [MAZI10].

InfiniBand is covered in great detail in [SHAN03] and [FUTR01]. [KAGA01] provides 
a concise overview.

6A blade server is a server architecture that houses multiple server modules (blades) in a single chassis. It 
is widely used in data centers to save space and improve system management. Either self-standing or rack 
mounted, the chassis provides the power supply, and each blade has its own CPU, memory, and hard disk.

BREY09 Brey, B. The Intel Microprocessors: 8086/8066, 80186/80188, 80286, 
80386, 80486, Pentium, Pentium Pro Processor, Pentium II, Pentium III, 
Pentium 4 and Core2 with 64-bit Extensions. Upper Saddle River, NJ: 
Prentice Hall, 2009.

FUTR01 Futral, W. InfiniBand Architecture: Development and Deployment. 
Hillsboro, OR: Intel Press, 2001.

KAGA01 Kagan, M. “InfiniBand: Thinking Outside the Box Design.” 
Communications System Design, September 2001. (www.csdmag.com)

MAZI10 Mazidi, M.; Mazidi, J.; and Causey, D. The x86 PC: Assembly Language, 
Design and Interfacing. Upper Saddle River, NJ: Prentice Hall, 2010.

SHAN03 Shanley, T. InfinBand Network Architecture. Reading, MA: Addison-
Wesley, 2003.
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Review Questions
 7.1 List three broad classifications of external, or peripheral, devices.
 7.2 What is the International Reference Alphabet?
 7.3 What are the major functions of an I/O module?
 7.4 List and briefly define three techniques for performing I/O.
 7.5 What is the difference between memory-mapped I/O and isolated I/O?
 7.6 When a device interrupt occurs, how does the processor determine which device 

 issued the interrupt?
 7.7 When a DMA module takes control of a bus, and while it retains control of the bus, 

what does the processor do?

Problems
 7.1 On a typical microprocessor, a distinct I/O address is used to refer to the I/O data 

registers and a distinct address for the control and status registers in an I/O controller 
for a given device. Such registers are referred to as ports. In the Intel 8088, two I/O 
instruction formats are used. In one format, the 8-bit opcode specifies an I/O opera-
tion; this is followed by an 8-bit port address. Other I/O opcodes imply that the port 
address is in the 16-bit DX register. How many ports can the 8088 address in each I/O 
addressing mode? .

 7.2 A similar instruction format is used in the Zilog Z8000 microprocessor family. In this 
case, there is a direct port addressing capability, in which a 16-bit port address is part 
of the instruction, and an indirect port addressing capability, in which the instruction 
references one of the 16-bit general purpose registers, which contains the port ad-
dress. How many ports can the Z8000 address in each I/O addressing mode?

 7.3 The Z8000 also includes a block I/O transfer capability that, unlike DMA, is under the 
direct control of the processor. The block transfer instructions specify a port address 
register (Rp), a count register (Rc), and a destination register (Rd). Rd contains the 
main memory address at which the first byte read from the input port is to be stored. Rc 
is any of the 16-bit general purpose registers. How large a data block can be transferred?

 7.4 Consider a microprocessor that has a block I/O transfer instruction such as that found 
on the Z8000. Following its first execution, such an instruction takes five clock cycles 
to re-execute. However, if we employ a nonblocking I/O instruction, it takes a total 
of 20 clock cycles for fetching and execution. Calculate the increase in speed with the 
block I/O instruction when transferring blocks of 128 bytes.

 7.5 A system is based on an 8-bit microprocessor and has two I/O devices. The I/O con-
trollers for this system use separate control and status registers. Both devices handle 
data on a 1-byte-at-a-time basis. The first device has two status lines and three control 
lines. The second device has three status lines and four control lines.
a. How many 8-bit I/O control module registers do we need for status reading and 

control of each device?
b. What is the total number of needed control module registers given that the first 

device is an output-only device?
c. How many distinct addresses are needed to control the two devices?

 7.6 For programmed I/O, Figure 7.5 indicates that the processor is stuck in a wait loop 
doing status checking of an I/O device. To increase efficiency, the I/O software could 
be written so that the processor periodically checks the status of the device. If the 
device is not ready, the processor can jump to other tasks. After some timed interval, 
the processor comes back to check status again.
a. Consider the above scheme for outputting data one character at a time to a 

printer that operates at 10 characters per second (cps). What will happen if its 
status is scanned every 200 ms?
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b. Next consider a keyboard with a single character buffer. On average, characters 
are entered at a rate of 10 cps. However, the time interval between two consecu-
tive key depressions can be as short as 60 ms. At what frequency should the key-
board be scanned by the I/O program?

 7.7 A microprocessor scans the status of an output I/O device every 20 ms. This is 
 accomplished by means of a timer alerting the processor every 20 ms. The interface of 
the device includes two ports: one for status and one for data output. How long does 
it take to scan and service the device given a clocking rate of 8 MHz? Assume for 
simplicity that all pertinent instruction cycles take 12 clock cycles.

 7.8 In Section 7.3, one advantage and one disadvantage of memory-mapped I/O, compared 
with isolated I/O, were listed. List two more advantages and two more disadvantages.

 7.9 A particular system is controlled by an operator through commands entered from a 
keyboard. The average number of commands entered in an 8-hour interval is 60.
a. Suppose the processor scans the keyboard every 100 ms. How many times will the 

keyboard be checked in an 8-hour period?
b. By what fraction would the number of processor visits to the keyboard be reduced 

if interrupt-driven I/O were used?
 7.10 Consider a system employing interrupt-driven I/O for a particular device that trans-

fers data at an average of 8 KB/s on a continuous basis.
a. Assume that interrupt processing takes about 100 ms (i.e., the time to jump to 

the interrupt service routine (ISR), execute it, and return to the main program). 
 Determine what fraction of processor time is consumed by this I/O device if it 
interrupts for every byte.

b. Now assume that the device has two 16-byte buffers and interrupts the proces-
sor when one of the buffers is full. Naturally, interrupt processing takes longer, 
 because the ISR must transfer 16 bytes. While executing the ISR, the processor 
takes about 8 ms for the transfer of each byte. Determine what fraction of proces-
sor time is consumed by this I/O device in this case.

c. Now assume that the processor is equipped with a block transfer I/O instruction 
such as that found on the Z8000. This permits the associated ISR to transfer each 
byte of a block in only 2 ms. Determine what fraction of processor time is con-
sumed by this I/O device in this case.

 7.11 In virtually all systems that include DMA modules, DMA access to main memory is 
given higher priority than CPU access to main memory. Why?

 7.12 A DMA module is transferring characters to memory using cycle stealing, from a 
device transmitting at 9600 bps. The processor is fetching instructions at the rate of  
1 million instructions per second (1 MIPS). By how much will the processor be slowed 
down due to the DMA activity?

 7.13 Consider a system in which bus cycles takes 500 ns. Transfer of bus control in either direc-
tion, from processor to I/O device or vice versa, takes 250 ns. One of the I/O  devices has 
a data transfer rate of 50 KB/s and employs DMA. Data are transferred 1 byte at a time.
a. Suppose we employ DMA in a burst mode. That is, the DMA interface gains bus 

mastership prior to the start of a block transfer and maintains control of the bus 
until the whole block is transferred. For how long would the device tie up the 
bus when transferring a block of 128 bytes?

b. Repeat the calculation for cycle-stealing mode.
 7.14 Examination of the timing diagram of the 8237A indicates that once a block transfer 

begins, it takes three bus clock cycles per DMA cycle. During the DMA cycle, the 
8237A transfers one byte of information between memory and I/O device.
a. Suppose we clock the 8237A at a rate of 5 MHz. How long does it take to transfer 

one byte?
b. What would be the maximum attainable data transfer rate?
c. Assume that the memory is not fast enough and we have to insert two wait states 

per DMA cycle. What will be the actual data transfer rate?
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 7.15 Assume that in the system of the preceding problem, a memory cycle takes 750 ns. To 
what value could we reduce the clocking rate of the bus without effect on the attain-
able data transfer rate?

 7.16 A DMA controller serves four receive-only telecommunication links (one per DMA 
channel) having a speed of 64 Kbps each.
a. Would you operate the controller in burst mode or in cycle-stealing mode?
b. What priority scheme would you employ for service of the DMA channels?

 7.17 A 32-bit computer has two selector channels and one multiplexor channel. Each selec-
tor channel supports two magnetic disk and two magnetic tape units. The multiplexor 
channel has two line printers, two card readers, and 10 VDT terminals connected to it. 
Assume the following transfer rates:

Disk drive 800 Kbytes/s
Magnetic tape drive 200 Kbytes/s
Line printer 6.6 Kbytes/s
Card reader 1.2 Kbytes/s
VDT 1 Kbyte/s

Estimate the maximum aggregate I/O transfer rate in this system.
 7.18 A computer consists of a processor and an I/O device D connected to main memory 

M via a shared bus with a data bus width of one word. The processor can execute a  
maximum of 106 instructions per second. An average instruction requires five 
 machine cycles, three of which use the memory bus. A memory read or write 
 operation uses one machine cycle. Suppose that the processor is continuously exe-
cuting “background” programs that require 95% of its instruction execution rate but 
not any I/O instructions. Assume that one processor cycle equals one bus cycle. Now 
suppose the I/O device is to be used to transfer very large blocks of data  between 
M and D.
a. If programmed I/O is used and each one-word I/O transfer requires the processor 

to execute two instructions, estimate the maximum I/O data-transfer rate, in words 
per second, possible through D.

b. Estimate the same rate if DMA is used.
 7.19 A data source produces 7-bit IRA characters, to each of which is appended a parity 

bit. Derive an expression for the maximum effective data rate (rate of IRA data bits) 
over an R-bps line for the following:
a. Asynchronous transmission, with a 1.5-unit stop bit
b. Bit-synchronous transmission, with a frame consisting of 48 control bits and 128 

information bits
c. Same as (b), with a 1024-bit information field
d. Character-synchronous, with 9 control characters per frame and 16 information 

characters
e. Same as (d), with 128 information characters

 7.20 The following problem is based on a suggested illustration of I/O mechanisms in 
[ECKE90] (Figure 7.24):

Two women are on either side of a high fence. One of the women, named 
 Apple-server, has a beautiful apple tree loaded with delicious apples growing on her 
side of the fence; she is happy to supply apples to the other woman whenever needed. 
The other woman, named Apple-eater, loves to eat apples but has none. In fact, she 
must eat her apples at a fixed rate (an apple a day keeps the doctor away). If she eats 
them faster than that rate, she will get sick. If she eats them slower, she will suffer mal-
nutrition. Neither woman can talk, and so the problem is to get apples from Apple-
server to Apple-eater at the correct rate.
a. Assume that there is an alarm clock sitting on top of the fence and that the clock 

can have multiple alarm settings. How can the clock be used to solve the problem? 
Draw a timing diagram to illustrate the solution.
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b. Now assume that there is no alarm clock. Instead Apple-eater has a flag that 
she can wave whenever she needs an apple. Suggest a new solution. Would it be 
 helpful for Apple-server also to have a flag? If so, incorporate this into the solu-
tion. Discuss the drawbacks of this approach.

c. Now take away the flag and assume the existence of a long piece of string. Suggest 
a solution that is superior to that of (b) using the string.

 7.21 Assume that one 16-bit and two 8-bit microprocessors are to be interfaced to a system 
bus. The following details are given:
1. All microprocessors have the hardware features necessary for any type of data 

transfer: programmed I/O, interrupt-driven I/O, and DMA.
2. All microprocessors have a 16-bit address bus.
3. Two memory boards, each of 64-Kbytes capacity, are interfaced with the bus. The 

designer wishes to use a shared memory that is as large as possible.
4. The system bus supports a maximum of four interrupt lines and one DMA line.

Make any other assumptions necessary, and
a. Give the system bus specifications in terms of number and types of lines.
b. Describe a possible protocol for communicating on the bus (i.e., read-write, inter-

rupt, and DMA sequences).
c. Explain how the aforementioned devices are interfaced to the system bus.

Figure 7.24 An Apple Problem
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Although the focus of this text is computer hardware, there is one area of software 
that needs to be addressed: the computer’s OS. The OS is a program that manages 
the computer’s resources, provides services for programmers, and schedules the 
execution of other programs. Some understanding of operating systems is essential 
to appreciate the mechanisms by which the CPU controls the computer system. In 
particular, explanations of the effect of interrupts and of the management of the 
memory hierarchy are best explained in this context.

The chapter begins with an overview and brief history of operating systems. 
The bulk of the chapter looks at the two OS functions that are most relevant to 
the study of computer organization and architecture: scheduling and memory 
 management.

 8.1 OPERATING SYSTEM OVERVIEW

Operating System Objectives and Functions

An OS is a program that controls the execution of application programs and acts as 
an interface between applications and the computer hardware. It can be thought of 
as having two objectives:

 • Convenience:  An OS makes a computer more convenient to use.

 • Efficiency:  An OS allows the computer system resources to be used in an
efficient manner.

Let us examine these two aspects of an OS in turn.

THE OPERATING SYSTEM AS A USER/COMPUTER INTERFACE The hardware 
and software used in providing applications to a user can be viewed in a layered 
or hierarchical fashion, as depicted in Figure 8.1. The user of those applications, 
the end user, generally is not concerned with the computer’s architecture. Thus 
the end user views a computer system in terms of an application. That application 
can be expressed in a programming language and is developed by an application 
programmer. To develop an application program as a set of processor instructions 

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Summarize, at a top level, the key functions of an operating system (OS).
� Discuss the evolution of operating systems for early simple batch systems to 

modern complex systems.
� Explain the differences among long-, medium-, and short-term scheduling.
� Understand the reason for memory partitioning and explain the various 

techniques that are used.
� Assess the relative advantages of paging and segmentation.
� Define virtual memory.
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that is completely responsible for controlling the computer hardware would be 
an overwhelmingly complex task. To ease this task, a set of systems programs is 
provided. Some of these programs are referred to as utilities. These implement 
frequently used functions that assist in program creation, the management of 
files, and the control of I/O devices. A programmer makes use of these facilities 
in developing an application, and the application, while it is running, invokes the 
utilities to perform certain functions. The most important system program is the OS. 
The OS masks the details of the hardware from the programmer and provides the 
programmer with a convenient interface for using the system. It acts as mediator, 
making it easier for the programmer and for application programs to access and use 
those facilities and services.

Briefly, the OS typically provides services in the following areas:

 • Program creation:  The OS provides a variety of facilities and services, such 
as editors and debuggers, to assist the programmer in creating programs. 
Typically, these services are in the form of utility programs that are not actu-
ally part of the OS but are accessible through the OS.

 • Program execution:  A number of steps need to be performed to execute a 
program. Instructions and data must be loaded into main memory, I/O devices 
and files must be initialized, and other resources must be prepared. The OS 
handles all of this for the user.

 • Access to I/O devices:  Each I/O device requires its own specific set of instruc-
tions or control signals for operation. The OS takes care of the details so that 
the programmer can think in terms of simple reads and writes.

 • Controlled access to files:  In the case of files, control must include an under-
standing of not only the nature of the I/O device (disk drive, tape drive) but 
also the file format on the storage medium. Again, the OS worries about the 
details. Further, in the case of a system with multiple simultaneous users, the 
OS can provide protection mechanisms to control access to the files.
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Figure 8.1 Computer Hardware and Software Structure
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 • System access:  In the case of a shared or public system, the OS controls access 
to the system as a whole and to specific system resources. The access function 
must provide protection of resources and data from unauthorized users and 
must resolve conflicts for resource contention.

 • Error detection and response:  A variety of errors can occur while a computer 
system is running. These include internal and external hardware errors, such as 
a memory error, or a device failure or malfunction; and various software errors, 
such as arithmetic overflow, attempt to access forbidden memory location, and 
inability of the OS to grant the request of an application. In each case, the OS must 
make the response that clears the error condition with the least impact on running 
applications. The response may range from ending the program that caused the 
error, to retrying the operation, to simply reporting the error to the application.

 • Accounting:  A good OS collects usage statistics for various resources and 
monitor performance parameters such as response time. On any system, this 
information is useful in anticipating the need for future enhancements and in 
tuning the system to improve performance. On a multiuser system, the infor-
mation can be used for billing purposes.

Figure 8.1 also indicates three key interfaces in a typical computer system:

 • Instruction set architecture (ISA): The ISA defines the repertoire of machine 
language instructions that a computer can follow. This interface is the bound-
ary between hardware and software. Note that both application programs 
and utilities may access the ISA directly. For these programs, a subset of the 
 instruction repertoire is available (user ISA). The OS has access to additional 
machine language instructions that deal with managing system resources 
(system ISA).

 • Application binary interface (ABI): The ABI defines a standard for binary 
portability across programs. The ABI defines the system call interface to the 
operating system and the hardware resources and services available in a sys-
tem through the user ISA.

 • Application programming interface (API): The API gives a program access 
to the hardware resources and services available in a system through the user 
ISA supplemented with high-level language (HLL) library calls. Any system 
calls are usually performed through libraries. Using an API enables applica-
tion software to be ported easily, through recompilation, to other systems that 
support the same API.

THE OPERATING SYSTEM AS RESOURCE MANAGER A computer is a set of 
resources for the movement, storage, and processing of data and for the control of 
these functions. The OS is responsible for managing these resources.

Can we say that the OS controls the movement, storage, and processing of 
data? From one point of view, the answer is yes: By managing the computer’s 
resources, the OS is in control of the computer’s basic functions. But this control is 
exercised in a curious way. Normally, we think of a control mechanism as something 
external to that which is controlled, or at least as something that is a distinct and 
separate part of that which is controlled. (For example, a residential heating system 
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is controlled by a thermostat, which is completely distinct from the heat-generation 
and heat-distribution apparatus.) This is not the case with the OS, which as a control 
mechanism is unusual in two respects:

 • The OS functions in the same way as ordinary computer software; that is, it is 
a program executed by the processor.

 • The OS frequently relinquishes control and must depend on the processor to 
allow it to regain control.

Like other computer programs, the OS provides instructions for the proces-
sor. The key difference is in the intent of the program. The OS directs the processor 
in the use of the other system resources and in the timing of its execution of other 
programs. But in order for the processor to do any of these things, it must cease 
executing the OS program and execute other programs. Thus, the OS relinquishes 
control for the processor to do some “useful” work and then resumes control long 
enough to prepare the processor to do the next piece of work. The mechanisms 
involved in all this should become clear as the chapter proceeds.

Figure 8.2 suggests the main resources that are managed by the OS. A portion 
of the OS is in main memory. This includes the kernel, or nucleus, which contains 
the most frequently used functions in the OS and, at a given time, other portions of 
the OS currently in use. The remainder of main memory contains user programs and 
data. The allocation of this resource (main memory) is controlled jointly by the OS 
and memory-management hardware in the processor, as we shall see. The OS decides 
when an I/O device can be used by a program in execution, and controls access to and 
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use of files. The processor itself is a resource, and the OS must determine how much 
processor time is to be devoted to the execution of a particular user program. In the 
case of a multiple-processor system, this decision must span all of the processors.

Types of Operating Systems

Certain key characteristics serve to differentiate various types of operating  systems. 
The characteristics fall along two independent dimensions. The first dimension 
specifies whether the system is batch or interactive. In an interactive system, the 
user/programmer interacts directly with the computer, usually through a keyboard/
display terminal, to request the execution of a job or to perform a transaction. 
Furthermore, the user may, depending on the nature of the application, commu-
nicate with the computer during the execution of the job. A batch system is the 
opposite of interactive. The user’s program is batched together with programs from 
other users and submitted by a computer operator. After the program is completed, 
results are printed out for the user. Pure batch systems are rare today. However, 
it will be useful to the description of contemporary operating systems to examine 
batch systems briefly.

An independent dimension specifies whether the system employs multipro-
gramming or not. With multiprogramming, the attempt is made to keep the proces-
sor as busy as possible, by having it work on more than one program at a time. Several 
programs are loaded into memory, and the processor switches rapidly among them. 
The alternative is a uniprogramming system that works only one program at a time.

EARLY SYSTEMS With the earliest computers, from the late 1940s to the mid-1950s, 
the programmer interacted directly with the computer hardware; there was no 
OS. These processors were run from a console, consisting of display lights, toggle 
switches, some form of input device, and a printer. Programs in processor code were 
loaded via the input device (e.g., a card reader). If an error halted the program, 
the error condition was indicated by the lights. The programmer could proceed 
to examine registers and main memory to determine the cause of the error. If the 
program proceeded to a normal completion, the output appeared on the printer.

These early systems presented two main problems:

 • Scheduling:  Most installations used a sign-up sheet to reserve processor time. 
Typically, a user could sign up for a block of time in multiples of a half hour or 
so. A user might sign up for an hour and finish in 45 minutes; this would result  
in wasted computer idle time. On the other hand, the user might run into prob-
lems, not finish in the allotted time, and be forced to stop before  resolving the 
problem.

 • Setup time:  A single program, called a job, could involve loading the com-
piler plus the high-level language program (source program) into memory, 
saving the compiled program (object program), and then loading and linking 
together the object program and common functions. Each of these steps could 
involve mounting or dismounting tapes, or setting up card decks. If an error 
occurred, the hapless user typically had to go back to the beginning of the 
setup sequence. Thus a considerable amount of time was spent just in setting 
up the program to run.
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This mode of operation could be termed serial processing, reflecting the fact 
that users have access to the computer in series. Over time, various system software 
tools were developed to attempt to make serial processing more efficient. These 
include libraries of common functions, linkers, loaders, debuggers, and I/O driver 
routines that were available as common software for all users.

SIMPLE BATCH SYSTEMS Early processors were very expensive, and therefore it 
was important to maximize processor utilization. The wasted time due to scheduling 
and setup time was unacceptable.

To improve utilization, simple batch operating systems were developed. With 
such a system, also called a monitor, the user no longer has direct access to the 
processor. Rather, the user submits the job on cards or tape to a computer operator, 
who batches the jobs together sequentially and places the entire batch on an input 
device, for use by the monitor.

To understand how this scheme works, let us look at it from two points of 
view: that of the monitor and that of the processor. From the point of view of the 
monitor, the monitor controls the sequence of events. For this to be so, much of the 
monitor must always be in main memory and available for execution (Figure 8.3). 
That portion is referred to as the resident monitor. The rest of the monitor consists 
of utilities and common functions that are loaded as subroutines to the user pro-
gram at the beginning of any job that requires them. The monitor reads in jobs one 
at a time from the input device (typically a card reader or magnetic tape drive). As it 
is read in, the current job is placed in the user program area, and control is passed to 
this job. When the job is completed, it returns control to the monitor, which imme-
diately reads in the next job. The results of each job are printed out for delivery to 
the user.
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Now consider this sequence from the point of view of the processor. At a cer-
tain point in time, the processor is executing instructions from the portion of main 
memory containing the monitor. These instructions cause the next job to be read 
in to another portion of main memory. Once a job has been read in, the processor 
will encounter in the monitor a branch instruction that instructs the processor to 
continue execution at the start of the user program. The processor will then execute 
the instruction in the user’s program until it encounters an ending or error condi-
tion. Either event causes the processor to fetch its next instruction from the monitor 
program. Thus the phrase “control is passed to a job” simply means that the proc-
essor is now fetching and executing instructions in a user program, and “control is 
returned to the monitor” means that the processor is now fetching and executing 
instructions from the monitor program.

It should be clear that the monitor handles the scheduling problem. A batch of 
jobs is queued up, and jobs are executed as rapidly as possible, with no intervening 
idle time.

How about the job setup time? The monitor handles this as well. With each 
job, instructions are included in a job control language (JCL). This is a special type 
of programming language used to provide instructions to the monitor. A simple 
example is that of a user submitting a program written in FORTRAN plus some 
data to be used by the program. Each FORTRAN instruction and each item of 
data is on a separate punched card or a separate record on tape. In addition to 
FORTRAN and data lines, the job includes job control instructions, which are 
denoted by the beginning “$”. The overall format of the job looks like this:

$JOB

$FTN
f    6  FORTRAN instructions

$LOAD

$RUN
f    6  Data

$END

To execute this job, the monitor reads the $FTN line and loads the appropri-
ate compiler from its mass storage (usually tape). The compiler translates the user’s 
program into object code, which is stored in memory or mass storage. If it is stored 
in memory, the operation is referred to as “compile, load, and go.” If it is stored 
on tape, then the $LOAD instruction is required. This instruction is read by the 
monitor, which regains control after the compile operation. The monitor invokes 
the loader, which loads the object program into memory in place of the compiler 
and transfers control to it. In this manner, a large segment of main memory can 
be shared among different subsystems, although only one such subsystem could be 
resident and executing at a time.

We see that the monitor, or batch OS, is simply a computer program. It relies 
on the ability of the processor to fetch instructions from various portions of main 
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memory in order to seize and relinquish control alternately. Certain other hardware 
features are also desirable:

 • Memory protection: While the user program is executing, it must not alter the 
memory area containing the monitor. If such an attempt is made, the proces-
sor hardware should detect an error and transfer control to the monitor. The 
monitor would then abort the job, print out an error message, and load the 
next job.

 • Timer:  A timer is used to prevent a single job from monopolizing the system. 
The timer is set at the beginning of each job. If the timer expires, an interrupt 
occurs, and control returns to the monitor.

 • Privileged instructions: Certain instructions are designated privileged and can 
be executed only by the monitor. If the processor encounters such an instruc-
tion while executing a user program, an error interrupt occurs. Among the 
privileged instructions are I/O instructions, so that the monitor retains con-
trol of all I/O devices. This prevents, for example, a user program from acci-
dentally reading job control instructions from the next job. If a user program 
wishes to perform I/O, it must request that the monitor perform the operation 
for it. If a privileged instruction is encountered by the processor while it is 
executing a user program, the processor hardware considers this an error and 
transfers control to the monitor.

 • Interrupts:  Early computer models did not have this capability. This feature 
gives the OS more flexibility in relinquishing control to and regaining control 
from user programs.

Processor time alternates between execution of user programs and execution 
of the monitor. There have been two sacrifices: Some main memory is now given 
over to the monitor and some processor time is consumed by the monitor. Both 
of these are forms of overhead. Even with this overhead, the simple batch system 
improves utilization of the computer.

MULTIPROGRAMMED BATCH SYSTEMS Even with the automatic job sequencing 
provided by a simple batch OS, the processor is often idle. The problem is that 
I/O devices are slow compared to the processor. Figure 8.4 details a representative 
calculation. The calculation concerns a program that processes a file of records and 
performs, on average, 100 processor instructions per record. In this example the 
computer spends over 96% of its time waiting for I/O devices to finish transferring 
data! Figure 8.5a illustrates this situation. The processor spends a certain amount of 

Read one record from file 15 ms
Execute 100 instructions 1 ms
Write one record to file 15 ms
TOTAL 31 ms

Percent CPU utilization �
1

31
� 0.032 � 3.2%

Figure 8.4 System Utilization Example
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time executing, until it reaches an I/O instruction. It must then wait until that I/O 
instruction concludes before proceeding.

This inefficiency is not necessary. We know that there must be enough mem-
ory to hold the OS (resident monitor) and one user program. Suppose that there 
is room for the OS and two user programs. Now, when one job needs to wait for 
I/O, the processor can switch to the other job, which likely is not waiting for I/O 
(Figure 8.5b). Furthermore, we might expand memory to hold three, four, or more 
programs and switch among all of them (Figure 8.5c). This technique is known as mul-
tiprogramming, or multitasking.1 It is the central theme of modern operating systems.

1The term multitasking is sometimes reserved to mean multiple tasks within the same program that may 
be handled concurrently by the OS, in contrast to multiprogramming, which would refer to multiple 
processes from multiple programs. However, it is more common to equate the terms multitasking and 
multiprogramming, as is done in most standards dictionaries (e.g., IEEE Std 100-1992, The New IEEE 
Standard Dictionary of Electrical and Electronics Terms).
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Example 8.1 This example illustrates the benefit of multiprogramming. Consider a com-
puter with 250 Mbytes of available memory (not used by the OS), a disk, a terminal, and a 
printer. Three programs, JOB1, JOB2, and JOB3, are submitted for execution at the same 
time, with the attributes listed in Table 8.1. We assume minimal processor requirements 
for JOB2 and JOB3 and continuous disk and printer use by JOB3. For a simple batch 
environment, these jobs will be executed in sequence. Thus, JOB1 completes in 5 minutes. 
JOB2 must wait until the 5 minutes is over and then completes 15 minutes after that. JOB3 
 begins after 20 minutes and completes at 30 minutes from the time it was initially submit-
ted. The average resource utilization, throughput, and response times are shown in the uni-
programming column of Table 8.2. Device-by-device utilization is illustrated in Figure 8.6a. 
It is evident that there is gross underutilization for all resources when averaged over the 
required 30-minute time period.

Now suppose that the jobs are run concurrently under a multiprogramming OS. 
 Because there is little resource contention between the jobs, all three can run in nearly 
minimum time while coexisting with the others in the computer (assuming that JOB2 and 
JOB3 are allotted enough processor time to keep their input and output operations active). 
JOB1 will still require 5 minutes to complete but at the end of that time, JOB2 will be one-
third finished, and JOB3 will be half finished. All three jobs will have finished within 15 
minutes. The improvement is evident when examining the multiprogramming column of 
Table 8.2, obtained from the histogram shown in Figure 8.6b.

Table 8.1 Sample Program Execution Attributes

JOB1 JOB2 JOB3

Type of job Heavy compute Heavy I/O Heavy I/O

Duration (min) 5 15 10 

Memory required (M) 50 100 80 

Need disk? No No Yes

Need terminal? No Yes No

Need printer? No No Yes

Table 8.2 Effects of Multiprogramming on Resource Utilization

Uniprogramming Multiprogramming

Processor use (%) 20 40

Memory use (%) 33 67

Disk use (%) 33 67

Printer use (%) 33 67

Elapsed time (min) 30 15

Throughput rate (jobs/hr)  6 12

Mean response time (min) 18 10

As with a simple batch system, a multiprogramming batch system must rely 
on certain computer hardware features. The most notable additional feature that 
is useful for multiprogramming is the hardware that supports I/O interrupts and 



276  CHAPTER 8 / OPERATING SYSTEM SUPPORT

DMA. With interrupt-driven I/O or DMA, the processor can issue an I/O command 
for one job and proceed with the execution of another job while the I/O is carried 
out by the device controller. When the I/O operation is complete, the processor is 
interrupted and control is passed to an interrupt-handling program in the OS. The 
OS will then pass control to another job.

Multiprogramming operating systems are fairly sophisticated compared to 
single-program, or uniprogramming, systems. To have several jobs ready to run, the 
jobs must be kept in main memory, requiring some form of memory management. 
In addition, if several jobs are ready to run, the processor must decide which one 
to run, which requires some algorithm for scheduling. These concepts are discussed 
later in this chapter.

TIME-SHARING SYSTEMS With the use of multiprogramming, batch processing 
can be quite efficient. However, for many jobs, it is desirable to provide a mode in 
which the user interacts directly with the computer. Indeed, for some jobs, such as 
transaction processing, an interactive mode is essential.

Today, the requirement for an interactive computing facility can be, and often 
is, met by the use of a dedicated microcomputer. That option was not available in the 
1960s, when most computers were big and costly. Instead, time sharing was developed.

Just as multiprogramming allows the processor to handle multiple batch jobs 
at a time, multiprogramming can be used to handle multiple interactive jobs. In 
this latter case, the technique is referred to as time sharing, because the proces-
sor’s time is shared among multiple users. In a time-sharing system, multiple users 
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 simultaneously access the system through terminals, with the OS interleaving the 
execution of each user program in a short burst or quantum of computation. Thus, 
if there are n users actively requesting service at one time, each user will only see 
on the average 1/n of the effective computer speed, not counting OS overhead. 
However, given the relatively slow human reaction time, the response time on a 
properly designed system should be comparable to that on a dedicated computer.

Both batch multiprogramming and time sharing use multiprogramming. The 
key differences are listed in Table 8.3.

 8.2 SCHEDULING

The key to multiprogramming is scheduling. In fact, four types of scheduling are 
typically involved (Table 8.4). We will explore these presently. But first, we intro-
duce the concept of process. This term was first used by the designers of the Multics 
OS in the 1960s. It is a somewhat more general term than job. Many definitions 
have been given for the term process, including

 • A program in execution

 • The “animated spirit” of a program

 • That entity to which a processor is assigned

This concept should become clearer as we proceed.

Long-Term Scheduling

The long-term scheduler determines which programs are admitted to the system for 
processing. Thus, it controls the degree of multiprogramming (number of processes 
in memory). Once admitted, a job or user program becomes a process and is 
added to the queue for the short-term scheduler. In some systems, a newly created 
process begins in a swapped-out condition, in which case it is added to a queue for 
the medium-term scheduler.

Table 8.3 Batch Multiprogramming versus Time Sharing

Batch Multiprogramming Time Sharing

Principal objective Maximize processor use Minimize response time

Source of directives to 
operating system

Job control language 
commands provided with the job

Commands entered at the 
terminal

Table 8.4 Types of Scheduling

Long-term scheduling The decision to add to the pool of processes to be executed

Medium-term scheduling The decision to add to the number of processes that are partially or 
fully in main memory

Short-term scheduling The decision as to which available process will be executed by the 
processor

I/O scheduling The decision as to which process’s pending I/O request shall be 
handled by an available I/O device
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In a batch system, or for the batch portion of a general-purpose OS, newly 
submitted jobs are routed to disk and held in a batch queue. The long-term sched-
uler creates processes from the queue when it can. There are two decisions involved 
here. First, the scheduler must decide that the OS can take on one or more addi-
tional processes. Second, the scheduler must decide which job or jobs to accept and 
turn into processes. The criteria used may include priority, expected execution time, 
and I/O requirements.

For interactive programs in a time-sharing system, a process request is gen-
erated when a user attempts to connect to the system. Time-sharing users are not 
simply queued up and kept waiting until the system can accept them. Rather, the 
OS will accept all authorized comers until the system is saturated, using some pre-
defined measure of saturation. At that point, a connection request is met with a 
message indicating that the system is full and the user should try again later.

Medium-Term Scheduling

Medium-term scheduling is part of the swapping function, described in Section 8.3. 
Typically, the swapping-in decision is based on the need to manage the degree of 
multiprogramming. On a system that does not use virtual memory, memory man-
agement is also an issue. Thus, the swapping-in decision will consider the memory 
requirements of the swapped-out processes.

Short-Term Scheduling

The long-term scheduler executes relatively infrequently and makes the coarse-
grained decision of whether or not to take on a new process, and which one to take. 
The short-term scheduler, also known as the dispatcher, executes frequently and 
makes the fine-grained decision of which job to execute next.

PROCESS STATES To understand the operation of the short-term scheduler, we 
need to consider the concept of a process state. During the lifetime of a process, 
its status will change a number of times. Its status at any point in time is referred to 
as a state. The term state is used because it connotes that certain information exists 
that defines the status at that point. At minimum, there are five defined states for a 
process (Figure 8.7):
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Figure 8.7 Five-State Process Model
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 • New:  A program is admitted by the high-level scheduler but is not yet ready 
to execute. The OS will initialize the process, moving it to the ready state.

 • Ready:  The process is ready to execute and is awaiting access to the processor.

 • Running:  The process is being executed by the processor.

 • Waiting:  The process is suspended from execution waiting for some system 
resource, such as I/O.

 • Halted:  The process has terminated and will be destroyed by the OS.

For each process in the system, the OS must maintain information indicat-
ing the state of the process and other information necessary for process execution. 
For this purpose, each process is represented in the OS by a process control block 
(Figure 8.8), which typically contains

 • Identifier:  Each current process has a unique identifier.

 • State:  The current state of the process (new, ready, and so on).

 • Priority:  Relative priority level.

 • Program counter:  The address of the next instruction in the program to be 
executed.

 • Memory pointers:  The starting and ending locations of the process in memory.

 • Context data:  These are data that are present in registers in the processor 
while the process is executing, and they will be discussed in Part Three. For 
now, it is enough to say that these data represent the “context” of the process. 
The context data plus the program counter are saved when the process leaves 
the running state. They are retrieved by the processor when it resumes execu-
tion of the process.

Identifier

State

Priority

Program counter

Memory pointers

Context data

I/O status
information

Accounting
information

•
•
•

Figure 8.8 Process Control Block
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 • I/O status information:  Includes outstanding I/O requests, I/O devices (e.g., tape 
drives) assigned to this process, a list of files assigned to the process, and so on.

 • Accounting information:  May include the amount of processor time and clock 
time used, time limits, account numbers, and so on.

When the scheduler accepts a new job or user request for execution, it creates 
a blank process control block and places the associated process in the new state. 
After the system has properly filled in the process control block, the process is 
transferred to the ready state.

SCHEDULING TECHNIQUES To understand how the OS manages the scheduling of the 
various jobs in memory, let us begin by considering the simple example in Figure 8.9. 
The figure shows how main memory is partitioned at a given point in time. The 
kernel of the OS is, of course, always resident. In addition, there are a number of 
active processes, including A and B, each of which is allocated a portion of memory.
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Figure 8.9 Scheduling Example
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We begin at a point in time when process A is running. The processor is exe-
cuting instructions from the program contained in A’s memory partition. At some 
later point in time, the processor ceases to execute instructions in A and begins 
executing instructions in the OS area. This will happen for one of three reasons:

 1. Process A issues a service call (e.g., an I/O request) to the OS. Execution of A 
is suspended until this call is satisfied by the OS.

 2. Process A causes an interrupt. An interrupt is a hardware-generated signal to 
the processor. When this signal is detected, the processor ceases to execute A 
and transfers to the interrupt handler in the OS. A variety of events related 
to A will cause an interrupt. One example is an error, such as attempting to 
execute a privileged instruction. Another example is a timeout; to prevent any 
one process from monopolizing the processor, each process is only granted the 
processor for a short period at a time.

 3. Some event unrelated to process A that requires attention causes an interrupt. 
An example is the completion of an I/O operation.

In any case, the result is the following. The processor saves the current context 
data and the program counter for A in A’s process control block and then begins 
executing in the OS. The OS may perform some work, such as initiating an I/O 
operation. Then the short-term-scheduler portion of the OS decides which process 
should be executed next. In this example, B is chosen. The OS instructs the proces-
sor to restore B’s context data and proceed with the execution of B where it left off.

This simple example highlights the basic functioning of the short-term sched-
uler. Figure 8.10 shows the major elements of the OS involved in the multiprogram-
ming and scheduling of processes. The OS receives control of the processor at the 
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interrupt handler if an interrupt occurs and at the service-call handler if a service 
call occurs. Once the interrupt or service call is handled, the short-term scheduler is 
invoked to select a process for execution.

To do its job, the OS maintains a number of queues. Each queue is simply a 
waiting list of processes waiting for some resource. The long-term queue is a list of 
jobs waiting to use the system. As conditions permit, the high-level scheduler will 
allocate memory and create a process for one of the waiting items. The short-term 
queue consists of all processes in the ready state. Any one of these processes could 
use the processor next. It is up to the short-term scheduler to pick one. Generally, 
this is done with a round-robin algorithm, giving each process some time in turn. 
Priority levels may also be used. Finally, there is an I/O queue for each I/O device. 
More than one process may request the use of the same I/O device. All processes 
waiting to use each device are lined up in that device’s queue.

Figure 8.11 suggests how processes progress through the computer under the 
control of the OS. Each process request (batch job, user-defined interactive job) is 
placed in the long-term queue. As resources become available, a process request 
becomes a process and is then placed in the ready state and put in the short-term 
queue. The processor alternates between executing OS instructions and executing 
user processes. While the OS is in control, it decides which process in the short-term 
queue should be executed next. When the OS has finished its immediate tasks, it 
turns the processor over to the chosen process.

As was mentioned earlier, a process being executed may be suspended for 
a variety of reasons. If it is suspended because the process requests I/O, then it 
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is placed in the appropriate I/O queue. If it is suspended because of a timeout or 
because the OS must attend to pressing business, then it is placed in the ready state 
and put into the short-term queue.

Finally, we mention that the OS also manages the I/O queues. When an I/O 
operation is completed, the OS removes the satisfied process from that I/O queue 
and places it in the short-term queue. It then selects another waiting process (if any) 
and signals for the I/O device to satisfy that process’s request.

 8.3 MEMORY MANAGEMENT

In a uniprogramming system, main memory is divided into two parts: one part for 
the OS (resident monitor) and one part for the program currently being executed. 
In a multiprogramming system, the “user” part of memory is subdivided to accom-
modate multiple processes. The task of subdivision is carried out dynamically by the 
OS and is known as memory management.

Effective memory management is vital in a multiprogramming system. If only 
a few processes are in memory, then for much of the time all of the processes will be 
waiting for I/O and the processor will be idle. Thus, memory needs to be allocated 
efficiently to pack as many processes into memory as possible.

Swapping

Referring back to Figure 8.11, we have discussed three types of queues: the long-
term queue of requests for new processes, the short-term queue of processes ready 
to use the processor, and the various I/O queues of processes that are not ready to 
use the processor. Recall that the reason for this elaborate machinery is that I/O 
activities are much slower than computation and therefore the processor in a uni-
programming system is idle most of the time.

But the arrangement in Figure 8.11 does not entirely solve the problem. It is 
true that, in this case, memory holds multiple processes and that the processor can 
move to another process when one process is waiting. But the processor is so much 
faster than I/O that it will be common for all the processes in memory to be waiting 
on I/O. Thus, even with multiprogramming, a processor could be idle most of the 
time.

What to do? Main memory could be expanded, and so be able to accommo-
date more processes. But there are two flaws in this approach. First, main memory 
is expensive, even today. Second, the appetite of programs for memory has grown 
as fast as the cost of memory has dropped. So larger memory results in larger proc-
esses, not more processes.

Another solution is swapping, depicted in Figure 8.12. We have a long-term 
queue of process requests, typically stored on disk. These are brought in, one at a 
time, as space becomes available. As processes are completed, they are moved out 
of main memory. Now the situation will arise that none of the processes in memory 
are in the ready state (e.g., all are waiting on an I/O operation). Rather than remain 
idle, the processor swaps one of these processes back out to disk into an intermediate 
queue. This is a queue of existing processes that have been temporarily kicked out 
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of memory. The OS then brings in another process from the intermediate queue, or 
it honors a new process request from the long-term queue. Execution then contin-
ues with the newly arrived process.

Swapping, however, is an I/O operation, and therefore there is the potential 
for making the problem worse, not better. But because disk I/O is generally the 
fastest I/O on a system (e.g., compared with tape or printer I/O), swapping will usu-
ally enhance performance. A more sophisticated scheme, involving virtual memory, 
improves performance over simple swapping. This will be discussed shortly. But 
first, we must prepare the ground by explaining partitioning and paging.

Partitioning

The simplest scheme for partitioning available memory is to use fixed-size parti-
tions, as shown in Figure 8.13. Note that, although the partitions are of fixed size, 
they need not be of equal size. When a process is brought into memory, it is placed 
in the smallest available partition that will hold it.

Even with the use of unequal fixed-size partitions, there will be wasted memory. 
In most cases, a process will not require exactly as much memory as provided by the 
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partition. For example, a process that requires 3M bytes of memory would be placed 
in the 4M partition of Figure 8.13b, wasting 1M that could be used by another process.

A more efficient approach is to use variable-size partitions. When a process is 
brought into memory, it is allocated exactly as much memory as it requires and no more.

Operating system
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Operating system
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12M

16M
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8M
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(a) Equal-size partitions (b) Unequal-size partitions

Figure 8.13 Example of Fixed Partitioning of a 64-Mbyte Memory

Example 8.2 An example, using 64 Mbytes of main memory, is shown in Figure 8.14. 
Initially, main memory is empty, except for the OS (a). The first three processes are loaded 
in, starting where the OS ends and occupying just enough space for each process (b, c, d). 
This leaves a “hole” at the end of memory that is too small for a fourth process. At some 
point, none of the processes in memory is ready. The OS swaps out process 2 (e), which 
leaves sufficient room to load a new process, process 4 (f). Because process 4 is smaller 
than process 2, another small hole is created. Later, a point is reached at which none of the 
processes in main memory is ready, but process 2, in the Ready-Suspend state, is available. 
Because there is insufficient room in memory for process 2, the OS swaps process 1 out (g) 
and swaps process 2 back in (h).
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As this example shows, this method starts out well, but eventually it leads to a 
situation in which there are a lot of small holes in memory. As time goes on, mem-
ory becomes more and more fragmented, and memory utilization declines. One 
technique for overcoming this problem is compaction: From time to time, the OS 
shifts the processes in memory to place all the free memory together in one block. 
This is a time-consuming procedure, wasteful of processor time.

Before we consider ways of dealing with the shortcomings of partitioning, we 
must clear up one loose end. Consider Figure 8.14; it should be obvious that a proc-
ess is not likely to be loaded into the same place in main memory each time it is 
swapped in. Furthermore, if compaction is used, a process may be shifted while in 
main memory. A process in memory consists of instructions plus data. The instruc-
tions will contain addresses for memory locations of two types:

 • Addresses of data items

 • Addresses of instructions, used for branching instructions
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But these addresses are not fixed. They will change each time a process is 
swapped in. To solve this problem, a distinction is made between logical addresses 
and physical addresses. A logical address is expressed as a location relative to the 
beginning of the program. Instructions in the program contain only logical addresses. 
A physical address is an actual location in main memory. When the processor exe-
cutes a process, it automatically converts from logical to physical address by adding 
the current starting location of the process, called its base address, to each logical 
address. This is another example of a processor hardware feature designed to meet 
an OS requirement. The exact nature of this hardware feature depends on the mem-
ory management strategy in use. We will see several examples later in this chapter.

Paging

Both unequal fixed-size and variable-size partitions are inefficient in the use of 
memory. Suppose, however, that memory is partitioned into equal fixed-size chunks 
that are relatively small, and that each process is also divided into small fixed-size 
chunks of some size. Then the chunks of a program, known as pages, could be 
assigned to available chunks of memory, known as frames, or page frames. At most, 
then, the wasted space in memory for that process is a fraction of the last page.

Figure 8.15 shows an example of the use of pages and frames. At a given point 
in time, some of the frames in memory are in use and some are free. The list of free 
frames is maintained by the OS. Process A, stored on disk, consists of four pages. 
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When it comes time to load this process, the OS finds four free frames and loads the 
four pages of the process A into the four frames.

Now suppose, as in this example, that there are not sufficient unused con-
tiguous frames to hold the process. Does this prevent the OS from loading A? 
The answer is no, because we can once again use the concept of logical address. A 
simple base address will no longer suffice. Rather, the OS maintains a page table 
for each process. The page table shows the frame location for each page of the 
process. Within the program, each logical address consists of a page number and 
a relative address within the page. Recall that in the case of simple partitioning, a 
logical address is the location of a word relative to the beginning of the program; 
the processor translates that into a physical address. With paging, the logical- 
to-physical address translation is still done by processor hardware. The processor 
must know how to access the page table of the current process. Presented with a 
logical address (page number, relative address), the processor uses the page table 
to produce a physical address (frame number, relative address). An example is 
shown in Figure 8.16.

This approach solves the problems raised earlier. Main memory is divided 
into many small equal-size frames. Each process is divided into frame-size pages: 
smaller processes require fewer pages, larger processes require more. When a 
process is brought in, its pages are loaded into available frames, and a page table 
is set up.
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Virtual Memory

DEMAND PAGING With the use of paging, truly effective multiprogramming 
systems came into being. Furthermore, the simple tactic of breaking a process up 
into pages led to the development of another important concept: virtual memory.

To understand virtual memory, we must add a refinement to the paging 
scheme just discussed. That refinement is demand paging, which simply means that 
each page of a process is brought in only when it is needed, that is, on demand.

Consider a large process, consisting of a long program plus a number of arrays 
of data. Over any short period of time, execution may be confined to a small sec-
tion of the program (e.g., a subroutine), and perhaps only one or two arrays of data 
are being used. This is the principle of locality, which we introduced in Appendix 
4A. It would clearly be wasteful to load in dozens of pages for that process when 
only a few pages will be used before the program is suspended. We can make bet-
ter use of memory by loading in just a few pages. Then, if the program branches 
to an instruction on a page not in main memory, or if the program references data 
on a page not in memory, a page fault is triggered. This tells the OS to bring in the 
desired page.

Thus, at any one time, only a few pages of any given process are in memory, 
and therefore more processes can be maintained in memory. Furthermore, time is 
saved because unused pages are not swapped in and out of memory. However, the 
OS must be clever about how it manages this scheme. When it brings one page in, it 
must throw another page out; this is known as page replacement. If it throws out a 
page just before it is about to be used, then it will just have to go get that page again 
almost immediately. Too much of this leads to a condition known as thrashing: the 
processor spends most of its time swapping pages rather than executing instructions. 
The avoidance of thrashing was a major research area in the 1970s and led to a vari-
ety of complex but effective algorithms. In essence, the OS tries to guess, based on 
recent history, which pages are least likely to be used in the near future.

Page Replacement Algorithm Simulators

A discussion of page replacement algorithms is beyond the scope of this chap-
ter. A potentially effective technique is least recently used (LRU), the same algo-
rithm discussed in Chapter 4 for cache replacement. In practice, LRU is difficult to 
implement for a virtual memory paging scheme. Several alternative approaches that 
seek to approximate the performance of LRU are in use; see Appendix F for details.

With demand paging, it is not necessary to load an entire process into main 
memory. This fact has a remarkable consequence: It is possible for a process to be 
larger than all of main memory. One of the most fundamental restrictions in pro-
gramming has been lifted. Without demand paging, a programmer must be acutely 
aware of how much memory is available. If the program being written is too large, 
the programmer must devise ways to structure the program into pieces that can 
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be loaded one at a time. With demand paging, that job is left to the OS and the 
hardware. As far as the programmer is concerned, he or she is dealing with a huge 
memory, the size associated with disk storage.

Because a process executes only in main memory, that memory is referred to 
as real memory. But a programmer or user perceives a much larger memory—that 
which is allocated on the disk. This latter is therefore referred to as virtual memory. 
Virtual memory allows for very effective multiprogramming and relieves the user of 
the unnecessarily tight constraints of main memory.

PAGE TABLE STRUCTURE The basic mechanism for reading a word from memory 
involves the translation of a virtual, or logical, address, consisting of page number 
and offset, into a physical address, consisting of frame number and offset, using a 
page table. Because the page table is of variable length, depending on the size of the 
process, we cannot expect to hold it in registers. Instead, it must be in main memory 
to be accessed. Figure 8.16 suggests a hardware implementation of this scheme. 
When a particular process is running, a register holds the starting address of the 
page table for that process. The page number of a virtual address is used to index 
that table and look up the corresponding frame number. This is combined with the 
offset portion of the virtual address to produce the desired real address.

In most systems, there is one page table per process. But each process can 
occupy huge amounts of virtual memory. For example, in the VAX architecture, 
each process can have up to 231 = 2 Gbytes of virtual memory. Using 29 = 512@byte 
pages, that means that as many as 222 page table entries are required per process. 
Clearly, the amount of memory devoted to page tables alone could be unacceptably 
high. To overcome this problem, most virtual memory schemes store page tables in 
virtual memory rather than real memory. This means that page tables are subject to 
paging just as other pages are. When a process is running, at least a part of its page 
table must be in main memory, including the page table entry of the currently execut-
ing page. Some processors make use of a two-level scheme to organize large page 
tables. In this scheme, there is a page directory, in which each entry points to a page 
table. Thus, if the length of the page directory is X, and if the maximum length of a 
page table is Y, then a process can consist of up to X * Y pages. Typically, the maxi-
mum length of a page table is restricted to be equal to one page. We will see an exam-
ple of this two-level approach when we consider the Pentium II later in this chapter.

An alternative approach to the use of one- or two-level page tables is the use 
of an inverted page table structure (Figure 8.17). Variations on this approach are 
used on the PowerPC, UltraSPARC, and the IA-64 architecture. An implementa-
tion of the Mach OS on the RT-PC also uses this technique.

In this approach, the page number portion of a virtual address is mapped into 
a hash value using a simple hashing function.2 The hash value is a pointer to the 
inverted page table, which contains the page table entries. There is one entry in the 

2A hash function maps numbers in the range 0 through M into numbers in the range 0 through N, where 
M 7 N. The output of the hash function is used as an index into the hash table. Since more than one input 
maps into the same output, it is possible for an input item to map to a hash table entry that is already 
 occupied. In that case, the new item must overflow into another hash table location. Typically, the new 
item is placed in the first succeeding empty space, and a pointer from the original location is provided to 
chain the entries together. See Appendix C for more information on hash functions.
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inverted page table for each real memory page frame rather than one per virtual 
page. Thus a fixed proportion of real memory is required for the tables regardless of 
the number of processes or virtual pages supported. Because more than one virtual 
address may map into the same hash table entry, a chaining technique is used for 
managing the overflow. The hashing technique results in chains that are typically 
short—between one and two entries. The page table’s structure is called inverted 
because it indexes page table entries by frame number rather than by virtual page 
number.

Translation Lookaside Buffer

In principle, then, every virtual memory reference can cause two physical mem-
ory accesses: one to fetch the appropriate page table entry, and one to fetch the 
desired data. Thus, a straightforward virtual memory scheme would have the effect 
of doubling the memory access time. To overcome this problem, most virtual 
memory schemes make use of a special cache for page table entries, usually called 
a translation lookaside buffer (TLB). This cache functions in the same way as a 
memory cache and contains those page table entries that have been most recently 
used. Figure 8.18 is a flowchart that shows the use of the TLB. By the principle of 
locality, most virtual memory references will be to locations in recently used pages. 
Therefore, most references will involve page table entries in the cache. Studies of 
the VAX TLB have shown that this scheme can significantly improve performance 
[CLAR85, SATY81].
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Note that the virtual memory mechanism must interact with the cache system 
(not the TLB cache, but the main memory cache). This is illustrated in Figure 8.19. 
A virtual address will generally be in the form of a page number, offset. First, the 
memory system consults the TLB to see if the matching page table entry is present. 
If it is, the real (physical) address is generated by combining the frame number with 
the offset. If not, the entry is accessed from a page table. Once the real address is 
generated, which is in the form of a tag and a remainder, the cache is consulted to 
see if the block containing that word is present (see Figure 4.5). If so, it is returned 
to the processor. If not, the word is retrieved from main memory.

The reader should be able to appreciate the complexity of the processor hard-
ware involved in a single memory reference. The virtual address is translated into 
a real address. This involves reference to a page table, which may be in the TLB, in 
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main memory, or on disk. The referenced word may be in cache, in main memory, 
or on disk. In the latter case, the page containing the word must be loaded into main 
memory and its block loaded into the cache. In addition, the page table entry for 
that page must be updated.

Segmentation

There is another way in which addressable memory can be subdivided, known as 
segmentation. Whereas paging is invisible to the programmer and serves the purpose 
of providing the programmer with a larger address space, segmentation is usually 
visible to the programmer and is provided as a convenience for organizing programs 
and data and as a means for associating privilege and protection attributes with 
instructions and data.

Segmentation allows the programmer to view memory as consisting of mul-
tiple address spaces or segments. Segments are of variable, indeed dynamic, size. 
Typically, the programmer or the OS will assign programs and data to different seg-
ments. There may be a number of program segments for various types of programs as 
well as a number of data segments. Each segment may be assigned access and usage 
rights. Memory references consist of a (segment number, offset) form of address.

This organization has a number of advantages to the programmer over a non-
segmented address space:
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 1. It simplifies the handling of growing data structures. If the programmer does 
not know ahead of time how large a particular data structure will become, it 
is not necessary to guess. The data structure can be assigned its own segment, 
and the OS will expand or shrink the segment as needed.

 2. It allows programs to be altered and recompiled independently without 
requiring that an entire set of programs be relinked and reloaded. Again, this 
is accomplished using multiple segments.

 3. It lends itself to sharing among processes. A programmer can place a utility 
program or a useful table of data in a segment that can be addressed by other 
processes.

 4. It lends itself to protection. Because a segment can be constructed to contain a 
well-defined set of programs or data, the programmer or a system administra-
tor can assign access privileges in a convenient fashion.

These advantages are not available with paging, which is invisible to the pro-
grammer. On the other hand, we have seen that paging provides for an efficient 
form of memory management. To combine the advantages of both, some systems 
are equipped with the hardware and OS software to provide both.

 8.4 PENTIUM MEMORY MANAGEMENT

Since the introduction of the 32-bit architecture, microprocessors have evolved 
sophisticated memory management schemes that build on the lessons learned with 
medium- and large-scale systems. In many cases, the microprocessor versions are 
superior to their larger-system antecedents. Because the schemes were developed 
by the microprocessor hardware vendor and may be employed with a variety of 
operating systems, they tend to be quite general purpose. A representative example 
is the scheme used on the Pentium II. The Pentium II memory management hard-
ware is essentially the same as that used in the Intel 80386 and 80486 processors, 
with some refinements.

Address Spaces

The Pentium II includes hardware for both segmentation and paging. Both mech-
anisms can be disabled, allowing the user to choose from four distinct views of 
memory:

 • Unsegmented unpaged memory:  In this case, the virtual address is the same 
as the physical address. This is useful, for example, in low-complexity, high-
performance controller applications.

 • Unsegmented paged memory:  Here memory is viewed as a paged linear 
address space. Protection and management of memory is done via paging. 
This is favored by some operating systems (e.g., Berkeley UNIX).

 • Segmented unpaged memory:  Here memory is viewed as a collection of logi-
cal address spaces. The advantage of this view over a paged approach is that it 
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affords protection down to the level of a single byte, if necessary. Furthermore, 
unlike paging, it guarantees that the translation table needed (the segment 
table) is on-chip when the segment is in memory. Hence, segmented unpaged 
memory results in predictable access times.

 • Segmented paged memory:  Segmentation is used to define logical memory 
partitions subject to access control, and paging is used to manage the allocation 
of memory within the partitions. Operating systems such as UNIX System V  
favor this view.

Segmentation

When segmentation is used, each virtual address (called a logical address in the 
Pentium II documentation) consists of a 16-bit segment reference and a 32-bit 
 offset. Two bits of the segment reference deal with the protection mechanism, leav-
ing 14 bits for specifying a particular segment. Thus, with unsegmented memory, the 
user’s virtual memory is 232 = 4 Gbytes. With segmented memory, the total virtual 
memory space as seen by a user is 246 = 64 terabytes (Tbytes). The physical address 
space employs a 32-bit address for a maximum of 4 Gbytes.

The amount of virtual memory can actually be larger than the 64 Tbytes. This 
is because the processor’s interpretation of a virtual address depends on which 
process is currently active. Virtual address space is divided into two parts. One-half 
of the virtual address space (8K segments * 4 Gbytes) is global, shared by all proc-
esses; the remainder is local and is distinct for each process.

Associated with each segment are two forms of protection: privilege level and 
access attribute. There are four privilege levels, from most protected (level 0) to 
least protected (level 3). The privilege level associated with a data segment is its 
“classification”; the privilege level associated with a program segment is its “clear-
ance.” An executing program may only access data segments for which its clearance 
level is lower than (more privileged) or equal to (same privilege) the privilege level 
of the data segment.

The hardware does not dictate how these privilege levels are to be used; this 
depends on the OS design and implementation. It was intended that privilege level 1  
would be used for most of the OS, and level 0 would be used for that small por-
tion of the OS devoted to memory management, protection, and access control. 
This leaves two levels for applications. In many systems, applications will reside at 
level 3, with level 2 being unused. Specialized application subsystems that must be 
protected because they implement their own security mechanisms are good candi-
dates for level 2. Some examples are database management systems, office automa-
tion systems, and software engineering environments.

In addition to regulating access to data segments, the privilege mechanism 
limits the use of certain instructions. Some instructions, such as those dealing with 
memory-management registers, can only be executed in level 0. I/O instructions can 
only be executed up to a certain level that is designated by the OS; typically, this will 
be level 1.

The access attribute of a data segment specifies whether read/write or read-
only accesses are permitted. For program segments, the access attribute specifies 
read/execute or read-only access.
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The address translation mechanism for segmentation involves mapping a vir-
tual address into what is referred to as a linear address (Figure 8.20b). A virtual 
address consists of the 32-bit offset and a 16-bit segment selector (Figure 8.20a). 
The segment selector consists of the following fields:

 • Table Indicator (TI):  Indicates whether the global segment table or a local 
segment table should be used for translation.

 • Segment Number:  The number of the segment. This serves as an index into 
the segment table.

 • Requested Privilege Level (RPL):  The privilege level requested for this access.

Each entry in a segment table consists of 64 bits, as shown in Figure 8.20c. The 
fields are defined in Table 8.5.

Paging

Segmentation is an optional feature and may be disabled. When segmentation is in 
use, addresses used in programs are virtual addresses and are converted into linear 
addresses, as just described. When segmentation is not in use, linear addresses are 
used in programs. In either case, the following step is to convert that linear address 
into a real 32-bit address.

To understand the structure of the linear address, you need to know that 
the Pentium II paging mechanism is actually a two-level table lookup operation. 
The first level is a page directory, which contains up to 1024 entries. This splits the 
4-Gbyte linear memory space into 1024 page groups, each with its own page table, 
and each 4 Mbytes in length. Each page table contains up to 1024 entries; each entry 
corresponds to a single 4-Kbyte page. Memory management has the option of using 
one page directory for all processes, one page directory for each process, or some 
combination of the two. The page directory for the current task is always in main 
memory. Page tables may be in virtual memory.

Figure 8.20 shows the formats of entries in page directories and page tables, 
and the fields are defined in Table 8.5. Note that access control mechanisms can be 
provided on a page or page group basis.

The Pentium II also makes use of a translation lookaside buffer. The buffer 
can hold 32 page table entries. Each time that the page directory is changed, the 
buffer is cleared.

Figure 8.21 illustrates the combination of segmentation and paging mecha-
nisms. For clarity, the translation lookaside buffer and memory cache mechanisms 
are not shown.

Finally, the Pentium II includes a new extension not found on the 80386 or 
80486, the provision for two page sizes. If the PSE (page size extension) bit in con-
trol register 4 is set to 1, then the paging unit permits the OS programmer to define 
a page as either 4 Kbyte or 4 Mbyte in size.

When 4-Mbyte pages are used, there is only one level of table lookup for 
pages. When the hardware accesses the page directory, the page directory entry 
(Figure 8.20d) has the PS bit set to 1. In this case, bits 9 through 21 are ignored and 
bits 22 through 31 define the base address for a 4-Mbyte page in memory. Thus, 
there is a single page table.
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Table 8.5 Pentium II Memory Management Parameters

Segment Descriptor (Segment Table Entry)

Base

Defines the starting address of the segment within the 4-Gbyte linear address space.

D/B bit

In a code segment, this is the D bit and indicates whether operands and addressing modes are 16 or 32 bits.

Descriptor Privilege Level (DPL)

Specifies the privilege level of the segment referred to by this segment descriptor.

Granularity bit (G)

Indicates whether the Limit field is to be interpreted in units by one byte or 4 Kbytes.

Limit

Defines the size of the segment. The processor interprets the limit field in one of two ways, depending on 
the granularity bit: in units of one byte, up to a segment size limit of 1 Mbyte, or in units of 4 Kbytes, up to a 
segment size limit of 4 Gbytes.

S bit

Determines whether a given segment is a system segment or a code or data segment.

Segment Present bit (P)

Used for nonpaged systems. It indicates whether the segment is present in main memory. For paged  
systems, this bit is always set to 1.

Type

Distinguishes between various kinds of segments and indicates the access attributes.

Page Directory Entry and Page Table Entry

Accessed bit (A)

This bit is set to 1 by the processor in both levels of page tables when a read or write operation to the  
corresponding page occurs.

Dirty bit (D)

This bit is set to 1 by the processor when a write operation to the corresponding page occurs.

Page Frame Address

Provides the physical address of the page in memory if the present bit is set. Since page frames are aligned 
on 4K boundaries, the bottom 12 bits are 0, and only the top 20 bits are included in the entry. In a page direc-
tory, the address is that of a page table.

Page Cache Disable bit (PCD)

Indicates whether data from page may be cached.

Page Size bit (PS)

Indicates whether page size is 4 Kbyte or 4 Mbyte.

Page Write Through bit (PWT)

Indicates whether write-through or write-back caching policy will be used for data in the corresponding page.

Present bit (P)

Indicates whether the page table or page is in main memory.

Read/Write bit (RW)

For user-level pages, indicates whether the page is read-only access or read/write access for user-level programs.

User/Supervisor bit (US)

Indicates whether the page is available only to the operating system (supervisor level) or is available to 
both operating system and applications (user level).
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The use of 4-Mbyte pages reduces the memory-management storage 
requirements for large main memories. With 4-Kbyte pages, a full 4-Gbyte 
main memory requires about 4 Mbytes of memory just for the page tables. With 
4-Mbyte pages, a single table, 4 Kbytes in length, is sufficient for page memory 
management.

 8.5 ARM MEMORY MANAGEMENT

ARM provides a versatile virtual memory system architecture that can be tailored 
to the needs of the embedded system designer.

Memory System Organization

Figure 8.22 provides an overview of the memory management hardware in the 
ARM for virtual memory. The virtual memory translation hardware uses one or 
two levels of tables for translation from virtual to physical addresses, as explained 
subsequently. The translation lookaside buffer (TLB) is a cache of recent page table 
entries. If an entry is available in the TLB, then the TLB directly sends a physical 
address to main memory for a read or write operation. As explained in Chapter 4, 
data is exchanged between the processor and main memory via the cache. If a logi-
cal cache organization is used (Figure 4.7a), then the ARM supplies that address 
directly to the cache as well as supplying it to the TLB when a cache miss occurs. If 
a physical cache organization is used (Figure 4.7b), then the TLB must supply the 
physical address to the cache.
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Figure 8.21 Pentium Memory Address Translation Mechanisms
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Entries in the translation tables also include access control bits, which deter-
mine whether a given process may access a given portion of memory. If access is 
denied, access control hardware supplies an abort signal to the ARM processor.

Virtual Memory Address Translation

The ARM supports memory access based on either sections or pages:

 • Supersections (optional):  Consist of 16-MB blocks of main memory

 • Sections:  Consist of 1-MB blocks of main memory

 • Large pages:  Consist of 64-kB blocks of main memory

 • Small pages:  Consist of 4-kB blocks of main memory

Sections and supersections are supported to allow mapping of a large region 
of memory while using only a single entry in the TLB. Additional access control 
mechanisms are extended within small pages to 1kB subpages, and within large 
pages to 16kB subpages. The translation table held in main memory has two levels:

 • First-level table:  Holds section and supersection translations, and pointers to 
second-level tables

 • Second-level tables:  Hold both large and small page translations

The memory-management unit (MMU) translates virtual addresses generated 
by the processor into physical addresses to access main memory, and also derives 
and checks the access permission. Translations occur as the result of a TLB miss, 
and start with a first-level fetch. A section-mapped access only requires a first-level 
fetch, whereas a page-mapped access also requires a second-level fetch.

Figure 8.23 shows the two-level address translation process for small pages. 
There is a single level 1 (L1) page table with 4K 32-bit entries. Each L1 entry points 
to a level 2 (L2) page table with 255 32-bit entries. Each of the L2 entry points to a 
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4-kB page in main memory. The 32-bit virtual address is interpreted as follows: The 
most significant 12 bits are an index into the L1 page table. The next 8 bits are an 
index into the relevant L2 page table. The least significant 12 bits index a byte in the 
relevant page in main memory.

A similar two-page lookup procedure is used for large pages. For sections and 
supersection, only the L1 page table lookup is required.

Memory-Management Formats

To get a better understanding of the ARM memory management scheme, we con-
sider the key formats, as shown in Figure 8.24. The control bits shown in this figure 
are defined in Table 8.6.

For the L1 table, each entry is a descriptor of how its associated 1-MB virtual 
address range is mapped. Each entry has one of four alternative formats:

 • Bits [1:0] � 00:  The associated virtual addresses are unmapped, and attempts 
to access them generate a translation fault.

 • Bits [1:0] � 01:  The entry gives the physical address of an L2 page table, 
which specifies how the associated virtual address range is mapped.
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 • Bits [1:0] � 01 and bit 19 � 0:  The entry is a section descriptor for its associ-
ated virtual addresses.

 • Bits [1:0] � 01 and bit 19 � 1:  The entry is a supersection descriptor for its 
 associated virtual addresses.

Entries with bits [1:0] = 11 are reserved.
For memory structured into pages, a two-level page table access is required. 

Bits [31:10] of the L1 page entry contain a pointer to a L1 page table. For small 
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pages, the L2 entry contains a 20-bit pointer to the base address of a 4-kB page in 
main memory.

For large pages, the structure is more complex. As with virtual addresses for 
small pages, a virtual address for a large page structure includes a 12-bit index into 
the level one table and an 8-bit index into the L2 table. For the 64-kB large pages, 
the page index portion of the virtual address must be 16 bits. To accommodate all of 
these bits in a 32-bit format, there is a 4-bit overlap between the page index field and 
the L2 table index field. ARM accommodates this overlap by requiring that each 
page table entry in a L2 page table that supports large pages be replicated 16 times. 
In effect, the size of the L2 page table is reduced from 256 entries to 16 entries, if all 
of the entries refer to large pages. However, a given L2 page can service a mixture 
of large and small pages, hence the need for the replication for large page entries.

For memory structured into sections or supersections, a one-level page table 
access is required. For sections, bits [31:20] of the L1 entry contain a 12-bit pointer 
to the base of the 1-MB section in main memory.

For supersections, bits [31:24] of the L1 entry contain an 8-bit pointer to the 
base of the 16-MB section in main memory. As with large pages, a page table entry 
replication is required. In the case of supersections, the L1 table index portion of 
the virtual address overlaps by 4 bits with the supersection index portion of the vir-
tual address Therefore, 16 identical L1 page table entries are required.

The range of physical address space can be expanded by up to eight additional 
address bits (bits [23:20] and [8:5]). The number of additional bits is implementation 
dependent. These additional bits can be interpreted as extending the size of physical 

Table 8.6 ARM Memory-Management Parameters

Access Permission (AP), Access Permission Extension (APX)
These bits control access to the corresponding memory region. If an access is made to an area of memory 

without the required permissions, a Permission Fault is raised.

Bufferable (B) bit
Determines, with the TEX bits, how the write buffer is used for cacheable memory.

Cacheable (C) bit
Determines whether this memory region can be mapped through the cache.

Domain
Collection of memory regions. Access control can be applied on the basis of domain.

not Global (nG)
Determines whether the translation should be marked as global (0), or process specific (1).

Shared (S)
Determines whether the translation is for not-shared (0), or shared (1) memory.

SBZ
Should be zero.

Type Extension (TEX)
These bits, together with the B and C bits, control accesses to the caches, how the write buffer is used, and 

if the memory region is shareable and therefore must be kept coherent.

Execute Never (XN)
Determines whether the region is executable (0) or not executable (1).
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memory by as much as a factor of 28 = 256. Thus, physical memory may in fact be as 
much as 256 times as large as the memory space available to each individual process.

Access Control

The AP access control bits in each table entry control access to a region of mem-
ory by a given process. A region of memory can be designated as no access, read 
only, or read-write. Further, the region can be designated as privileged access only, 
reserved for use by the OS and not by applications.

ARM also employs the concept of a domain, which is a collection of sections 
and/or pages that have particular access permissions. The ARM architecture sup-
ports 16 domains. The domain feature allows multiple processes to use the same 
translation tables while maintaining some protection from each other.

Each page table entry and TLB entry contains a field that specifies which 
domain the entry is in. A 2-bit field in the Domain Access Control Register controls 
access to each domain. Each field allows the access to an entire domain to be ena-
bled and disabled very quickly, so that whole memory areas can be swapped in and 
out of virtual memory very efficiently. Two kinds of domain access are supported:

 • Clients:  Users of domains (execute programs and access data) that must 
 observe the access permissions of the individual sections and/or pages that 
make up that domain

 • Managers:  Control the behavior of the domain (the current sections and pages 
in the domain, and the domain access), and bypass the access permissions for 
table entries in that domain

One program can be a client of some domains, and a manager of some other 
domains, and have no access to the remaining domains. This allows very flexible 
memory protection for programs that access different memory resources.

 8.6 RECOMMENDED READING

[STAL12] covers the topics of this chapter in detail.

batch system
demand paging
interactive operating system
interrupt

job control language (JCL)
kernel
logical address
long-term scheduling

medium-term scheduling
memory management
memory protection
multiprogramming

STAL12 Stallings, W. Operating Systems, Internals and Design Principles, Seventh 
Edition. Upper Saddle River, NJ: Prentice Hall, 2012.

Systems and Applications: Includes an online newsletter and links to other sites

 8.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
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Review Questions
 8.1 What is an operating system?
 8.2 List and briefly define the key services provided by an OS.
 8.3 List and briefly define the major types of OS scheduling.
 8.4 What is the difference between a process and a program?
 8.5 What is the purpose of swapping?
 8.6 If a process may be dynamically assigned to different locations in main memory, what 

is the implication for the addressing mechanism?
 8.7 Is it necessary for all of the pages of a process to be in main memory while the process 

is executing?
 8.8 Must the pages of a process in main memory be contiguous?
 8.9 Is it necessary for the pages of a process in main memory to be in sequential order?
 8.10 What is the purpose of a translation lookaside buffer?

Problems
 8.1 Suppose that we have a multiprogrammed computer in which each job has identical 

characteristics. In one computation period, T, for a job, half the time is spent in I/O 
and the other half in processor activity. Each job runs for a total of N periods. Assume 
that a simple round-robin priority is used, and that I/O operations can overlap with 
processor operation. Define the following quantities:
• Turnaround time = actual to complete a job
• Throughput = average number of jobs completed per time period T
• Processor utilization = percentage of time that the processor is active (not waiting)
Compute these quantities for one, two, and four simultaneous jobs, assuming that the 
period T is distributed in each of the following ways:
a. I/O first half, processor second half
b. I/O first and fourth quarters, processor second and third quarters

 8.2 An I/O-bound program is one that, if run alone, would spend more time waiting for 
I/O than using the processor. A processor-bound program is the opposite. Suppose a 
short-term scheduling algorithm favors those programs that have used little processor 
time in the recent past. Explain why this algorithm favors I/O-bound programs and 
yet does not permanently deny processor time to processor-bound programs.

 8.3 A program computes the row sums

Ci = a
n

j = 1
aij

of an array A that is 100 by 100. Assume that the computer uses demand paging with a 
page size of 1000 words, and that the amount of main memory allotted for data is five 

multitasking
nucleus
operating system (OS)
paging
page table
partitioning
physical address
privileged instruction

process
process control block
process state
real memory
resident monitor
segmentation
short-term scheduling
swapping

thrashing
time-sharing system
translation lookaside buffer 

(TLB)
utility
virtual memory



306  CHAPTER 8 / OPERATING SYSTEM SUPPORT

page frames. Is there any difference in the page fault rate if A were stored in virtual 
memory by rows or columns? Explain.

 8.4 Consider a fixed partitioning scheme with equal-size partitions of 216 bytes and a total 
main memory size of 224 bytes. A process table is maintained that includes a pointer 
to a partition for each resident process. How many bits are required for the pointer?

 8.5 Consider a dynamic partitioning scheme. Show that, on average, the memory contains 
half as many holes as segments.

 8.6 Suppose the page table for the process currently executing on the processor looks like 
the following. All numbers are decimal, everything is numbered starting from zero, 
and all addresses are memory byte addresses. The page size is 1024 bytes.

Virtual page  
number

 
Valid bit

 
Reference bit

 
Modify bit

Page frame  
number

0 1 1 0 4
1 1 1 1 7
2 0 0 0 —
3 1 0 0 2
4 0 0 0 —
5 1 0 1 0

a. Describe exactly how, in general, a virtual address generated by the CPU is trans-
lated into a physical main memory address.

b. What physical address, if any, would each of the following virtual addresses 
correspond to? (Do not try to handle any page faults, if any.)
(i)  1052
(ii)  2221
(iii) 5499

 8.7 Give reasons that the page size in a virtual memory system should be neither very 
small nor very large.

 8.8 A process references five pages, A, B, C, D, and E, in the following order:

A; B; C; D; A; B; E; A; B; C; D; E

Assume that the replacement algorithm is first-in-first-out and find the number of 
page transfers during this sequence of references starting with an empty main  memory 
with three page frames. Repeat for four page frames.

 8.9 The following sequence of virtual page numbers is encountered in the course of 
 execution on a computer with virtual memory:

3 4 2 6 4 7 1 3 2 6 3 5 1 2 3

Assume that a least recently used page replacement policy is adopted. Plot a graph of 
page hit ratio (fraction of page references in which the page is in main memory) as a 
function of main-memory page capacity n for 1 … n … 8. Assume that main memory 
is initially empty.

 8.10 In the VAX computer, user page tables are located at virtual addresses in the system 
space. What is the advantage of having user page tables in virtual rather than main 
memory? What is the disadvantage?

 8.11 Suppose the program statement

for (i = 1; i 6 =  n; i+ +)
a[i] = b[i] + c[i];

is executed in a memory with page size of 1000 words. Let n = 1000. Using a machine 
that has a full range of register-to-register instructions and employs index registers, 
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write a hypothetical program to implement the foregoing statement. Then show the 
sequence of page references during execution.

 8.12 The IBM System/370 architecture uses a two-level memory structure and refers to the 
two levels as segments and pages, although the segmentation approach lacks many 
of the features described earlier in this chapter. For the basic 370 architecture, the 
page size may be either 2 Kbytes or 4 Kbytes, and the segment size is fixed at either 
64 Kbytes or 1 Mbyte. For the 370/XA and 370/ESA architectures, the page size is 
4 Kbytes and the segment size is 1 Mbyte. Which advantages of segmentation does this 
scheme lack? What is the benefit of segmentation for the 370?

 8.13 Consider a computer system with both segmentation and paging. When a segment is 
in memory, some words are wasted on the last page. In addition, for a segment size s 
and a page size p, there are s/p page table entries. The smaller the page size, the less 
waste in the last page of the segment, but the larger the page table. What page size 
minimizes the total overhead?

 8.14 A computer has a cache, main memory, and a disk used for virtual memory. If a refer-
enced word is in the cache, 20 ns are required to access it. If it is in main memory but 
not in the cache, 60 ns are needed to load it into the cache, and then the reference is 
started again. If the word is not in main memory, 12 ms are required to fetch the word 
from disk, followed by 60 ns to copy it to the cache, and then the reference is started 
again. The cache hit ratio is 0.9 and the main-memory hit ratio is 0.6. What is the aver-
age time in ns required to access a referenced word on this system?

 8.15 Assume a task is divided into four equal-sized segments and that the system builds an 
eight-entry page descriptor table for each segment. Thus, the system has a combina-
tion of segmentation and paging. Assume also that the page size is 2 Kbytes.
a. What is the maximum size of each segment?
b. What is the maximum logical address space for the task?
c. Assume that an element in physical location 00021ABC is accessed by this task. 

What is the format of the logical address that the task generates for it? What is the 
maximum physical address space for the system?

 8.16 Assume a microprocessor capable of accessing up to 232 bytes of physical main mem-
ory. It implements one segmented logical address space of maximum size 231 bytes. 
Each instruction contains the whole two-part address. External memory management 
units (MMUs) are used, whose management scheme assigns contiguous blocks of 
physical memory of fixed size 222 bytes to segments. The starting physical address of a 
segment is always divisible by 1024. Show the detailed interconnection of the external 
mapping mechanism that converts logical addresses to physical addresses using the 
appropriate number of MMUs, and show the detailed internal structure of an MMU 
(assuming that each MMU contains a 128-entry directly mapped segment descriptor 
cache) and how each MMU is selected.

 8.17 Consider a paged logical address space (composed of 32 pages of 2 Kbytes each) 
mapped into a 1-Mbyte physical memory space.
a. What is the format of the processor’s logical address?
b. What is the length and width of the page table (disregarding the “access rights” 

bits)?
c. What is the effect on the page table if the physical memory space is reduced by 

half?
 8.18 In IBM’s mainframe operating system, OS/390, one of the major modules in the ker-

nel is the System Resource Manager (SRM). This module is responsible for the alloca-
tion of resources among address spaces (processes). The SRM gives OS/390 a degree 
of sophistication unique among operating systems. No other mainframe OS, and cer-
tainly no other type of OS, can match the functions performed by SRM. The concept 
of resource includes processor, real memory, and I/O channels. SRM accumulates sta-
tistics pertaining to utilization of processor, channel, and various key data structures. 
Its purpose is to provide optimum performance based on performance monitoring 
and analysis. The installation sets forth various performance objectives, and these 
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serve as guidance to the SRM, which dynamically modifies installation and job perfor-
mance characteristics based on system utilization. In turn, the SRM provides reports 
that enable the trained operator to refine the configuration and parameter settings to 
 improve user service.

This problem concerns one example of SRM activity. Real memory is divided 
into equal-sized blocks called frames, of which there may be many thousands. Each 
frame can hold a block of virtual memory referred to as a page. SRM receives control 
 approximately 20 times per second and inspects each and every page frame. If the 
page has not been referenced or changed, a counter is incremented by 1. Over time, 
SRM averages these numbers to determine the average number of seconds that a 
page frame in the system goes untouched. What might be the purpose of this and what 
action might SRM take?

 8.19 For each of the ARM virtual address formats shown in Figure 8.24, show the physical 
address format.

 8.20 Draw a figure similar to Figure 8.23 for ARM virtual memory translation when main 
memory is divided into sections.
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 9.1 THE DECIMAL SYSTEM

In everyday life we use a system based on decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to 
represent numbers, and refer to the system as the decimal system. Consider what 
the number 83 means. It means eight tens plus three:

83 = (8 * 10) + 3

The number 4728 means four thousands, seven hundreds, two tens, plus eight:

4728 = (4 * 1000) + (7 * 100) + (2 * 10) + 8

The decimal system is said to have a base, or radix, of 10. This means that each digit 
in the number is multiplied by 10 raised to a power corresponding to that digit’s 
position:

 83 = (8 * 101) + (3 * 100)

 4728 = (4 * 103) + (7 * 102) + (2 * 101) + (8 * 100)

The same principle holds for decimal fractions, but negative powers of 10 are 
used. Thus, the decimal fraction 0.256 stands for 2 tenths plus 5 hundredths plus  
6 thousandths:

0.256 = (2 * 10-1) + (5 * 10-2) + (6 * 10-3)

A number with both an integer and fractional part has digits raised to both 
positive and negative powers of 10:

442.256 = (4 * 102) + (4 + 101) + (2 * 100) + (2 * 10-1) + (5 * 10-2)

 + (6 * 10-3)

In any number, the leftmost digit is referred to as the most significant digit, 
because it carries the highest value. The rightmost digit is called the least significant 
digit. In the preceding decimal number, the 4 on the left is the most significant digit 
and the 6 on the right is the least significant digit.

Table 9.1 shows the relationship between each digit position and the value 
assigned to that position. Each position is weighted 10 times the value of the position 
to the right and one-tenth the value of the position to the left. Thus, positions rep-
resent successive powers of 10. If we number the positions as indicated in Table 9.1, 
then position i is weighted by the value 10i.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Understand the basic concepts and terminology of positional number systems.

� Explain the techniques for converting between digital and binary for both 
integers and fractions.

� Explain the rationale for using hexadecimal notation.
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In general, for the decimal representation of X = {cd2d1d0.d-1d-2d-3c}, 
the value of X is

 X = a
i
1di * 10i2 (9.1)

One other observation is worth making. Consider the number 509 and ask 
how many tens are in the number. Because there is a 0 in the tens position, you 
might be tempted to say there are no tens. But there are in fact 50 tens. What the 0 
in the tens position means is that there are no tens left over that cannot be lumped 
into the hundreds, or thousands, and so on. Therefore, because each position holds 
only the leftover numbers that cannot be lumped into higher positions, each digit 
position needs to have a value of no greater than 9. Nine is the maximum value that 
a position can hold before it flips over into the next higher position.

 9.2 POSITIONAL NUMBER SYSTEMS

In a positional number system, each number is represented by a string of digits in 
which each digit position i has an associated weight ri, where r is the radix, or base, 
of the number system. The general form of a number in such a system with radix r is

(ca3a2a1a0.a-1a-2a-3c)r

where the value of any digit ai is an integer in the range 0 … ai 6 r. The dot between 
a0 and a-1 is called the radix point. The number is defined to have the value

c+  a3r
3 + a2r

2 + a1r
1 + a0r

0 + a-1r
-1 + a-2r

-2 + a-3r
-3 + c

 = a
i

(ai * bi) (9.2)

The decimal system, then, is a special case of a positional number system with 
radix 10 and with digits in the range 0 through 9.

As an example of another positional system, consider the system with base 7. 
Table 9.2 shows the weighting value for positions –1 through 4. In each position, the 
digit value ranges from 0 through 6.

Table 9.1 Positional Interpretation of a Decimal Number

4 7 2 2 5 6

100s 10s 1s tenths hundredths thousandths

102 101 109 10−1 10−2 10−3

position 2 position 1 position 0 position –1 position –2 position –3

Table 9.2 Positional Interpretation of a Number in Base 7

Position 4 3 2 2 0 –1

Value in Exponential Form 74 73 72 71 70 7−1

Decimal Value 2401 343 49 7 1 1/7
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 9.3 THE BINARY SYSTEM

In the decimal system, 10 different digits are used to represent numbers with a base 
of 10. In the binary system, we have only two digits, 1 and 0. Thus, numbers in the 
binary system are represented to the base 2.

To avoid confusion, we will sometimes put a subscript on a number to indicate 
its base. For example, 8310 and 472810 are numbers represented in decimal notation 
or, more briefly, decimal numbers. The digits 1 and 0 in binary notation have the 
same meaning as in decimal notation:

 02 = 010

 12 = 110

To represent larger numbers, as with decimal notation, each digit in a binary num-
ber has a value depending on its position:

 102 = (1 * 21) + (0 * 20) = 210

 112 = (1 * 21) + (1 * 20) = 310

 1002 = (1 * 22) + (0 * 21) + (0 * 20) = 410

and so on. Again, fractional values are represented with negative powers of the 
radix:

1001.101 = 23 + 20 + 2-1 + 2-3 = 9.62510

In general, for the binary representation of Y = {cb2b1b0.b-1b-2b-3c}, the 
value of Y is

Y = a
i
1bi * 2i2 (9.3)

 9.4 CONVERTING BETWEEN BINARY AND DECIMAL

It is a simple matter to convert a number from binary notation to decimal notation. 
In fact, we showed several examples in the previous subsection. All that is required 
is to multiply each binary digit by the appropriate power of 2 and add the results.

To convert from decimal to binary, the integer and fractional parts are han-
dled separately.

Integers

For the integer part, recall that in binary notation, an integer represented by

bm -1bm -2cb2b1b0     bi = 0 or 1

has the value

(bm -1 * 2m -1) + (bm -2 * 2m -2) +c+  (b1 * 21) + b0
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Suppose it is required to convert a decimal integer N into binary form. If we 
divide N by 2, in the decimal system, and obtain a quotient N1 and a remainder R0, 
we may write

N = 2 * N1 + R0  R0 = 0  or  1

Next, we divide the quotient N1 by 2. Assume that the new quotient is N2 and the 
new remainder R1. Then

N1 = 2 * N2 + R1  R1 = 0 or 1

so that

N = 2(2N2 + R1) + R0 = (N2 * 22) + (R1 * 21) + R0

If next

N2 = 2N3 + R2

we have

N = (N3 * 23) + (R2 * 22) + (R1 * 21) + R0

Because N 7 N1 7 N2c, continuing this sequence will eventually produce a quo-
tient Nm -1 = 1 (except for the decimal integers 0 and 1, whose binary equivalents 
are 0 and 1, respectively) and a remainder Rm - 2, which is 0 or 1. Then

N = (1 * 2m -1) + (Rm -2 * 2m -2) + c + (R2 * 22) + (R1 * 21) + R0

which is the binary form of N. Hence, we convert from base 10 to base 2 by repeated 
divisions by 2. The remainders and the final quotient, 1, give us, in order of increas-
ing significance, the binary digits of N. Figure 9.1 shows two examples.

Fractions

For the fractional part, recall that in binary notation, a number with a value between 
0 and 1 is represented by

0.b-1b-2b-3 c      bi = 0 or 1

and has the value

(b-1 * 2-1) + (b-2 * 2-2) + (b-3 * 2-3) c

This can be rewritten as

2-1 * (b-1 + 2-1 * (b-2 + 2-1 * (b-3 + c ) c ))

This expression suggests a technique for conversion. Suppose we want to con-
vert the number F (0 6 F 6 1) from decimal to binary notation. We know that F 
can be expressed in the form

F = 2-1 * (b-1 + 2-1 * (b-2 + 2-1 * (b-3 + c ) c ))

If we multiply F by 2, we obtain,

2 * F = b-1 + 2-1 * (b-2 + 2-1 * (b-3 + c ) c )
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From this equation, we see that the integer part of (2 * F), which must be 
either 0 or 1 because 0 6 F 6 1, is simply b-1. So we can say (2 × F) = b-1 + F1, 
where 0 6F1 < 1 and where

F1 = 2-1 * (b-2 + 2-1 * (b-3 + 2-1 * (b-4 + c ) c ))

To find b−2, we repeat the process. Therefore, the conversion algorithm involves 
repeated multiplication by 2. At each step, the fractional part of the number from 
the previous step is multiplied by 2. The digit to the left of the decimal point in the 
product will be 0 or 1 and contributes to the binary representation, starting with the 
most significant digit. The fractional part of the product is used as the multiplicand 
in the next step. Figure 9.2 shows two examples.

This process is not necessarily exact; that is, a decimal fraction with a finite 
number of digits may require a binary fraction with an infinite number of digits. In 
such cases, the conversion algorithm is usually halted after a prespecified number of 
steps, depending on the desired accuracy.

(a) 1110

Quotient
5= 1

Remainder
11
2

2= 15
2

1= 02
2

0= 1

10112 = 1110

1
2

(b) 2110

Quotient

5= 0

Remainder

10
2

2= 15
2

1= 02
2

0= 1

101012 = 2110

1
2

10= 121
2

Figure 9.1 Examples of Converting from Decimal 
Notation to Binary Notation for Integers
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 9.5 HEXADECIMAL NOTATION

Because of the inherent binary nature of digital computer components, all forms of 
data within computers are represented by various binary codes. However, no matter 
how convenient the binary system is for computers, it is exceedingly cumbersome 
for human beings. Consequently, most computer professionals who must spend time 
working with the actual raw data in the computer prefer a more compact notation.

What notation to use? One possibility is the decimal notation. This is certainly 
more compact than binary notation, but it is awkward because of the tediousness of 
converting between base 2 and base 10.

Instead, a notation known as hexadecimal has been adopted. Binary digits are 
grouped into sets of four bits, called a nibble. Each possible combination of four 
binary digits is given a symbol, as follows:

0000 = 0 0100 = 4 1000 = 8 1100 = C

0001 = 1 0101 = 5 1001 = 9 1101 = D

0010 = 2 0110 = 6 1010 = A 1110 = E

0011 = 3 0111 = 7 1011 = B 1111 = F

Product

0.81  2 = 1.62 1

Integer Part

0.62  2 = 1.24 1

0.24   2 = 0.48 0

0.48  2 = 0.96

0.96   2 = 1.92

0.92   2 = 1.84

0

1

1

0.1100112

(a) 0.8110 = 0.1100112 (approximately)

Product

0.25    2 = 0.5 0

Integer Part

0.5     2 = 1.0 1

0.012

(b) 0.2510 = 0.012 (exactly)

�

�

�

�

�

�

�

�

Figure 9.2 Examples of Converting from Decimal 
Notation to Binary Notation for Fractions
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Because 16 symbols are used, the notation is called hexadecimal, and the 16 symbols 
are the hexadecimal digits.

A sequence of hexadecimal digits can be thought of as representing an integer 
in base 16 (Table 9.3). Thus,

 2C 16 = (216 * 161) + (C 16 * 160)

 = (210 * 161) + (1210 * 160) = 44

Thus, viewing hexadecimal numbers as numbers in the positional number sys-
tem with base 16, we have

 Z = a
i
1hi * 16i2 (9.4)

where 16 is the base and each hexadecimal digit hi is in the decimal range 0 … hi 6 15,
equivalent to the hexadecimal range 0 … hi … F.

Table 9.3 Decimal, Binary, and Hexadecimal

Decimal (base 10) Binary (base 2) Hexadecimal (base 16)

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

16 0001 0000 10

17 0001 0001 11

18 0001 0010 12

31 0001 1111 1F

100 0110 0100 64

255 1111 1111 FF

256 0001 0000 0000 100
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Hexadecimal notation is not only used for representing integers but also used 
as a concise notation for representing any sequence of binary digits, whether they 
represent text, numbers, or some other type of data. The reasons for using hexa-
decimal notation are as follows:

 1. It is more compact than binary notation.

 2. In most computers, binary data occupy some multiple of 4 bits, and hence 
some multiple of a single hexadecimal digit.

 3. It is extremely easy to convert between binary and hexadecimal notation.

As an example of the last point, consider the binary string 110111100001. This 
is equivalent to

1101 1110 0001 = DE116

   D    E     1
This process is performed so naturally that an experienced programmer can 

mentally convert visual representations of binary data to their hexadecimal equiva-
lent without written effort.

 9.6 RECOMMENDED READING

[KNUT98] provides an excellent discussion of positional number systems. [GREG98] also 
has a useful treatment of the subject.

GREG98 Gregg, J. Ones and Zeros: Understanding Boolean Algebra, Digital Circuits, 
and the Logic of Sets. Piscataway, NJ: IEEE Press, 1998.

KNUT98 Knuth, D. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Reading, MA: Addison-Wesley, 1998.

base
binary
decimal
fraction

hexadecimal
integer
least significant digit
most significant digit

nibble
positional number system
radix
radix point

 9.7 KEY TERMS AND PROBLEMS

Key Terms

Problems

 9.1 Count from 1 to 2010 in the following bases:
a.    8 b.    6 c.    5 d.    3

 9.2 Order the numbers (1.1)2, (1.4)10, and (1.5)16 from smallest to largest.
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 9.3 Perform the indicated base conversions:
a. 548 to base 5
b. 3124 to base 7
c. 5206 to base 7
d. 122123 to base 9

 9.4 What generalizations can you draw about converting a number from one base to a 
power of that base, e.g., from base 3 to base 9 (32) or from base 2 to base 4 (22) or base 
8 (23)?

 9.5 Convert the following binary numbers to their decimal equivalents:
a. 001100 b.    000011 c.    011100 d.    111100 e.    101010

 9.6 Convert the following binary numbers to their decimal equivalents:
a.    11100.011 b.    110011.10011 c.    1010101010.1

 9.7 Convert the following decimal numbers to their binary equivalents:
a.    64 b.    100 c.    111 d.    145 e.    255

 9.8 Convert the following decimal numbers to their binary equivalents:
a. 34.75 b.    25.25 c.    27.1875

 9.9 Prove that every real number with a terminating binary representation (finite number 
of digits to the right of the binary point) also has a terminating decimal representation 
(finite number of digits to the right of the decimal point).

 9.10 Express the following octal numbers (number with radix 8) in hexadecimal notation:
a. 12 b.    5655 c.    2550276 d.    76545336 e.    3726755

 9.11 Convert the following hexadecimal numbers to their decimal equivalents:
a. C b.  9F c.   D52 d.   67E e.   ABCD

 9.12 Convert the following hexadecimal numbers to their decimal equivalents:
a. F.4 b.  D3.E c.   1111.1 d.  888.8 e.  EBA.C

 9.13 Convert the following decimal numbers to their hexadecimal equivalents:
a. 16 b.  80 c.   2560 d.  3000 e.   62,500

 9.14 Convert the following decimal numbers to their hexadecimal equivalents:
a.  204.125 b.  255.875 c.   631.25 d.  10000.00390625

 9.15 Convert the following hexadecimal numbers to their binary equivalents:
a.  E b.  1C c.  A64 d.  1F.C e.  239.4

 9.16 Convert the following binary numbers to their hexadecimal equivalents:
a.  1001.1111 b.  110101.011001 c.  10100111.111011
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We begin our examination of the processor with an overview of the arithmetic and 
logic unit (ALU). The chapter then focuses on the most complex aspect of the ALU, 
computer arithmetic. The logic functions that are part of the ALU are described in 
Chapter 12, and implementations of simple logic and arithmetic functions in digital 
logic are described in Chapter 11.

Computer arithmetic is commonly performed on two very different types of 
 numbers: integer and floating point. In both cases, the representation chosen is a  crucial 
design issue and is treated first, followed by a discussion of arithmetic operations.

This chapter includes a number of examples, each of which is highlighted in a 
shaded box.

 10.1 THE ARITHMETIC AND LOGIC UNIT

The ALU is that part of the computer that actually performs arithmetic and  logical 
operations on data. All of the other elements of the computer system—control unit, 
registers, memory, I/O—are there mainly to bring data into the ALU for it to pro-
cess and then to take the results back out. We have, in a sense, reached the core or 
essence of a computer when we consider the ALU.

An ALU and, indeed, all electronic components in the computer are based on 
the use of simple digital logic devices that can store binary digits and perform simple 
Boolean logic operations.

Figure 10.1 indicates, in general terms, how the ALU is interconnected with 
the rest of the processor. Operands for arithmetic and logic operations are pre-
sented to the ALU in registers, and the results of an operation are stored in regis-
ters. These registers are temporary storage locations within the processor that are 
connected by signal paths to the ALU (e.g., see Figure 2.3). The ALU may also set 
flags as the result of an operation. For example, an overflow flag is set to 1 if the 
result of a computation exceeds the length of the register into which it is to be stored. 

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Understand the distinction between the way in which numbers are repre-
sented (the binary format) and the algorithms used for the basic arithmetic 
operations.

� Explain twos complement representation.

� Present an overview of the techniques for doing basic arithmetic operation in 
two complement notation.

� Understand the use of significand, base, and exponent in the representation 
of floating-point numbers.

� Present an overview of the IEEE 754 standard for floating-point representa-
tion.

� Understand some of the key concepts related to floating-point arithmetic, 
including guard bits, rounding, subnormal numbers, underflow and overflow.
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The flag values are also stored in registers within the processor. The processor  
provides signals that control the operation of the ALU and the movement of the 
data into and out of the ALU.

 10.2 INTEGER REPRESENTATION

In the binary number system,1 arbitrary numbers can be represented with just the 
digits zero and one, the minus sign (for negative numbers), and the period, or radix 
point (for numbers with a fractional component).

ALU

Control
Signals

Operand
Registers

Flags

Result
Registers

Figure 10.1 ALU Inputs and Outputs

1See Chapter 9 for a basic refresher on number systems (decimal, binary, hexadecimal).

An 8-bit word can represent the numbers from 0 to 255, such as

 00000000 =   0

 00000001 =   1

 00101001 =  41

 10000000 = 128

 11111111 = 255

-1101.01012 = -13.312510

For purposes of computer storage and processing, however, we do not have the ben-
efit of special symbols for the minus sign and radix point. Only binary digits (0 and 1)  
may be used to represent numbers. If we are limited to nonnegative integers, the 
representation is straightforward.

In general, if an n-bit sequence of binary digits an -1an -2 c a1a0 is interpreted 
as an unsigned integer A, its value is

A = a
n -1

i = 0
2iai
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Sign-Magnitude Representation

There are several alternative conventions used to represent negative as well as posi-
tive integers, all of which involve treating the most significant (leftmost) bit in the 
word as a sign bit. If the sign bit is 0, the number is positive; if the sign bit is 1, the 
number is negative.

The simplest form of representation that employs a sign bit is the sign- 
magnitude representation. In an n-bit word, the rightmost n - 1 bits hold the 
 magnitude of the integer.

 + 010  = 00000000

 - 010  = 10000000  (sign magnitude)

 +18  = 00010010

 -18  = 10010010  (sign magnitude)

2In the literature, the terms two’s complement or 2’s complement are often used. Here we follow the 
practice used in standards documents and omit the apostrophe (e.g., IEEE Std 100-1992, The New IEEE 
Standard Dictionary of Electrical and Electronics Terms).

The general case can be expressed as follows:

Sign Magnitude A = d a
n -2

i = 0
2iai if an -1 = 0

- a
n -2

i = 0
2iai if an -1 = 1

 (10.1)

There are several drawbacks to sign-magnitude representation. One is that addi-
tion and subtraction require a consideration of both the signs of the numbers and their 
relative magnitudes to carry out the required operation. This should become clear in the 
discussion in Section 10.3. Another drawback is that there are two representations of 0:

This is inconvenient because it is slightly more difficult to test for 0 (an operation 
performed frequently on computers) than if there were a single representation.

Because of these drawbacks, sign-magnitude representation is rarely used in 
implementing the integer portion of the ALU. Instead, the most common scheme is 
twos complement representation.2

Twos Complement Representation

Like sign magnitude, twos complement representation uses the most significant bit 
as a sign bit, making it easy to test whether an integer is positive or negative. It 
 differs from the use of the sign-magnitude representation in the way that the other 
bits are interpreted. Table 10.1 highlights key characteristics of twos complement 
representation and arithmetic, which are elaborated in this section and the next.

Most treatments of twos complement representation focus on the rules for 
producing negative numbers, with no formal proof that the scheme is valid. Instead, 
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our presentation of twos complement integers in this section and in Section 10.3 is 
based on [DATT93], which suggests that twos complement representation is best 
understood by defining it in terms of a weighted sum of bits, as we did previously 
for unsigned and sign-magnitude representations. The advantage of this treatment 
is that it does not leave any lingering doubt that the rules for arithmetic operations 
in twos complement notation may not work for some special cases.

Consider an n-bit integer, A, in twos complement representation. If A is posi-
tive, then the sign bit, an -1, is zero. The remaining bits represent the magnitude of 
the number in the same fashion as for sign magnitude:

A = a
n -2

i = 0
2iai  for A Ú 0

The number zero is identified as positive and therefore has a 0 sign bit and a magni-
tude of all 0s. We can see that the range of positive integers that may be represented 
is from 0 (all of the magnitude bits are 0) through 2n -1 - 1 (all of the magnitude 
bits are 1). Any larger number would require more bits.

Now, for a negative number A (A 6 0), the sign bit, an -1, is one. The remain-
ing n - 1 bits can take on any one of 2n -1 values. Therefore, the range of negative 
integers that can be represented is from -1 to -2n -1. We would like to assign the 
bit values to negative integers in such a way that arithmetic can be handled in a 
straightforward fashion, similar to unsigned integer arithmetic. In unsigned integer 
representation, to compute the value of an integer from the bit representation, the 
weight of the most significant bit is +2n -1. For a representation with a sign bit, 
it turns out that the desired arithmetic properties are achieved, as we will see in 
Section 10.3, if the weight of the most significant bit is -2n -1. This is the conven-
tion used in twos complement representation, yielding the following expression for 
negative numbers:

Twos Complement  A = -2n -1an -1 + a
n -2

i = 0
2iai (10.2)

Equation (10.2) defines the twos complement representation for both positive and 
negative numbers. For an -1 = 0, the term -2n -1an -1 = 0 and the equation defines 

Table 10.1 Characteristics of Twos Complement Representation and Arithmetic

Range -2n - 1 through 2n - 1 - 1

Number of Representations 
of Zero

One

Negation
Take the Boolean complement of each bit of the corresponding 
positive number, then add 1 to the resulting bit pattern viewed  
as an unsigned integer.

Expansion of Bit Length Add additional bit positions to the left and fill in with the value 
of the original sign bit.

Overflow Rule
If two numbers with the same sign (both positive or both  
negative) are added, then overflow occurs if and only if the  
result has the opposite sign.

Subtraction Rule To subtract B from A, take the twos complement of B and add 
it to A.
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a nonnegative integer. When an -1 = 1, the term 2n -1 is subtracted from the summa-
tion term, yielding a negative integer.

Table 10.2 compares the sign-magnitude and twos complement representa-
tions for 4-bit integers. Although twos complement is an awkward representation 
from the human point of view, we will see that it facilitates the most important arith-
metic operations, addition and subtraction. For this reason, it is almost universally 
used as the processor representation for integers.

A useful illustration of the nature of twos complement representation is a 
value box, in which the value on the far right in the box is 1 (20) and each succeeding 
position to the left is double in value, until the leftmost position, which is negated. 
As you can see in Figure 10.2a, the most negative twos complement number that 
can be represented is -2n -1; if any of the bits other than the sign bit is one, it adds a 
positive amount to the number. Also, it is clear that a negative number must have a 
1 at its leftmost position and a positive number must have a 0 in that position. Thus, 
the largest positive number is a 0 followed by all 1s, which equals 2n -1 - 1.

The rest of Figure 10.2 illustrates the use of the value box to convert from twos 
complement to decimal and from decimal to twos complement.

Range Extension

It is sometimes desirable to take an n-bit integer and store it in m bits, where m 7 n.
This expansion of bit length is referred to as range extension, because the range 
of numbers that can be expressed is extended by increasing the bit length.  

Table 10.2 Alternative Representations for 4-Bit Integers

Decimal 
Representation

Sign-Magnitude 
Representation

Twos Complement 
Representation

Biased 
Representation

+8 — — 1111

+7 0111 0111 1110

+6 0110 0110 1101

+5 0101 0101 1100

+4 0100 0100 1011

+3 0011 0011 1010

+2 0010 0010 1001

+1 0001 0001 1000

+0 0000 0000 0111

-0 1000 — —

-1 1001 1111 0110

-2 1010 1110 0101

-3 1011 1101 0100

-4 1100 1100 0011

-5 1101 1011 0010

-6 1110 1010 0001

-7 1111 1001 0000

-8 — 1000 —



10.2 / INTEGER REPRESENTATION  325

In sign-magnitude notation, this is easily accomplished: simply move the sign bit 
to the new leftmost position and fill in with zeros.

�128 64 32 16 8 4 2 1

(a) An eight-position twos complement value box

�128 64 32 16 8 4 2 1

�128      �2 �1 � �125

(b) Convert binary 10000011 to decimal

�128 64 32 16 8 4 2 1

    1 0 0 0 0 0 1 1

    1 0 0 0 1 0 0 0

�120 � �128              �8

(c) Convert decimal �120 to binary

Figure 10.2 Use of a Value Box for Conversion between 
Twos Complement Binary and Decimal

 +18 =  00010010  (sign magnitude, 8 bits)

 +18 =  0000000000010010  (sign magnitude, 16 bits)

 -18 =  10010010  (sign magnitude, 8 bits)

 -18 =  1000000000010010  (sign magnitude, 16 bits)

 +18 =  00010010  (twos complement, 8 bits)

 +18 =  0000000000010010  (twos complement, 16 bits)

 -18 =  11101110  (twos complement, 8 bits)

 -32,658 =  1000000001101110  (twos complement, 16 bits)

The next to last line is easily seen using the value box of Figure 10.2. The last line 
can be verified using Equation (10.2) or a 16-bit value box.

This procedure will not work for twos complement negative integers. Using the 
same example,

Instead, the rule for twos complement integers is to move the sign bit to the 
new leftmost position and fill in with copies of the sign bit. For positive numbers, fill 
in with zeros, and for negative numbers, fill in with ones. This is called sign extension.

 -18 =  11101110  (twos complement, 8 bits)

 -18 =  1111111111101110  (twos complement, 16 bits)
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To see why this rule works, let us again consider an n-bit sequence of binary 
digits an -1an -2 c a1a0 interpreted as a twos complement integer A, so that its 
value is

A = -2n -1an -1 + a
n -2

i = 0
2iai

If A is a positive number, the rule clearly works. Now, if A is negative and we want 
to construct an m-bit representation, with m 7 n. Then

A = -2m -1am -1 + a
m -2

i = 0
2iai

The two values must be equal:

 -2m -1 + a
m -2

i = 0
2iai = -2n -1 + a

n -2

i = 0
2iai

 -2m -1 + a
m -2

i = n -1
2iai = -2n -1

 -2n -1 + a
m -2

i = n -1
2iai = 2m -1

 1 + a
n -2

i = 0
2i + a

m -2

i = n -1
2iai = 1 + a

m -2

i = 0
2i

 a
m -2

i = n -1
2iai = a

m -2

i = n -1
2i

1 am -2 = c = an -2 = an -1 = 1

In going from the first to the second equation, we require that the least signifi-
cant n - 1 bits do not change between the two representations. Then we get to the 
next to last equation, which is only true if all of the bits in positions n - 1 through 
m - 2 are 1. Therefore, the sign-extension rule works. The reader may find the rule 
easier to grasp after studying the discussion on twos complement negation at the 
beginning of Section 10.3.

Fixed-Point Representation

Finally, we mention that the representations discussed in this section are sometimes 
referred to as fixed point. This is because the radix point (binary point) is fixed and 
assumed to be to the right of the rightmost digit. The programmer can use the same 
representation for binary fractions by scaling the numbers so that the binary point is 
implicitly positioned at some other location.

 10.3 INTEGER ARITHMETIC

This section examines common arithmetic functions on numbers in twos comple-
ment representation.
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Negation

In sign-magnitude representation, the rule for forming the negation of an integer is 
simple: invert the sign bit. In twos complement notation, the negation of an integer 
can be formed with the following rules:

 1. Take the Boolean complement of each bit of the integer (including the sign 
bit). That is, set each 1 to 0 and each 0 to 1.

 2. Treating the result as an unsigned binary integer, add 1.

This two-step process is referred to as the twos complement operation, or the taking 
of the twos complement of an integer.

 +18 =  00010010 (twos complement)

 bitwise complement =  11101101

+ 1

11101110 = -18

 -18 =  11101110 (twos complement)

 bitwise complement =  00010001

+ 1

00010010 = +18

As expected, the negative of the negative of that number is itself:

We can demonstrate the validity of the operation just described using the defi-
nition of the twos complement representation in Equation (10.2). Again, interpret 
an n-bit sequence of binary digits an -1an -2 c a1a0 as a twos complement integer 
A, so that its value is

A = -2n -1an -1 + a
n -2

i = 0
2iai

Now form the bitwise complement, an -1an -2 c a0, and, treating this as an unsigned 
integer, add 1. Finally, interpret the resulting n-bit sequence of binary digits as a 
twos complement integer B, so that its value is

B = -2n -1an -1 + 1 + a
n -2

i = 0
2iai

Now, we want A = -B, which means A + B = 0. This is easily shown to be true:

 A + B = -(an -1 + an -1)2n -1 + 1 + aa
n -2

i = 0
2i(ai + ai)b

 = -2n -1 + 1 + aa
n -2

i = 0
2ib

 = -2n -1 + 1 + (2n -1 - 1)

 = -2n -1 + 2n -1 = 0
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The preceding derivation assumes that we can first treat the bitwise complement of 
A as an unsigned integer for the purpose of adding 1, and then treat the result as a 
twos complement integer. There are two special cases to consider. First, consider 
A = 0. In that case, for an 8-bit representation:

 0 =  00000000 (twos complement)

 bitwise complement =  11111111

+ 1

100000000 = 0

 -128 =  10000000 (twos complement)

 bitwise complement =  01111111

+ 1

10000000 = -128

There is a carry out of the most significant bit position, which is ignored. The result 
is that the negation of 0 is 0, as it should be.

The second special case is more of a problem. If we take the negation of the bit 
pattern of 1 followed by n - 1 zeros, we get back the same number. For example, 
for 8-bit words,

Some such anomaly is unavoidable. The number of different bit patterns in an 
n-bit word is 2n, which is an even number. We wish to represent positive and nega-
tive integers and 0. If an equal number of positive and negative integers are repre-
sented (sign magnitude), then there are two representations for 0. If there is only 
one representation of 0 (twos complement), then there must be an unequal number 
of negative and positive numbers represented. In the case of twos complement, for 
an n-bit length, there is a representation for -2n -1 but not for +2n -1.

Addition and Subtraction

Addition in twos complement is illustrated in Figure 10.3. Addition proceeds as if 
the two numbers were unsigned integers. The first four examples illustrate success-
ful operations. If the result of the operation is positive, we get a positive number 
in twos complement form, which is the same as in unsigned-integer form. If the 
result of the operation is negative, we get a negative number in twos complement 
form. Note that, in some instances, there is a carry bit beyond the end of the word 
 (indicated by shading), which is ignored.

On any addition, the result may be larger than can be held in the word size 
being used. This condition is called overflow. When overflow occurs, the ALU must 
signal this fact so that no attempt is made to use the result. To detect overflow, the 
following rule is observed:

OVERFLOW RULE: If two numbers are added, and they are both positive or 
both negative, then overflow occurs if and only if the result has the opposite sign.
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Figures 10.3e and f show examples of overflow. Note that overflow can occur 
whether or not there is a carry.

Subtraction is easily handled with the following rule:

Figure 10.3 Addition of Numbers in Twos Complement 
Representation

Figure 10.4 Subtraction of Numbers in Twos Complement 
Representation (M - S)

SUBTRACTION RULE: To subtract one number (subtrahend) from another 
(minuend), take the twos complement (negation) of the subtrahend and add it 
to the minuend.

Thus, subtraction is achieved using addition, as illustrated in Figure 10.4. The 
last two examples demonstrate that the overflow rule still applies.
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Some insight into twos complement addition and subtraction can be gained by 
looking at a geometric depiction [BENH92], as shown in Figure 10.5. The circle in 
the upper half of each part of the figure is formed by selecting the appropriate seg-
ment of the number line and joining the endpoints. Note that when the numbers are 
laid out on a circle, the twos complement of any number is horizontally opposite that 
number (indicated by dashed horizontal lines). Starting at any number on the circle, 
we can add positive k (or subtract negative k) to that number by moving k positions 
clockwise, and we can subtract positive k (or add negative k) from that number by 
moving k positions counterclockwise. If an arithmetic operation results in traversal 
of the point where the endpoints are joined, an incorrect answer is given (overflow).

0000

0 +1
+2

+3
+4

+5
+6

+7–8–7
–6

–5

–4

–3
–2

–1

0001

Addition
of positive
numbers

Subtraction
of positive
numbers

0010

0011

0100

0101

0110

01111000

(a) 4-bit numbers (b) n-bit numbers

1001

1010

1011

1100

1101

1110

1111

0–1–2–3–4–5–6–7–8–9 1 2 3 4 5 6 7 8 9

000…0

0

2n–2

–2n–1

–2n–2

–1

Addition
of positive
numbers

Subtraction
of positive
numbers

010…0

011…1100…0

110…0

111…1

–2n–1

–2n–1–1 2n–1
2n–1–1

2n–1–1

Figure 10.5 Geometric Depiction of Twos Complement Integers

All of the examples of Figures 10.3 and 10.4 are easily traced in the circle of Figure 10.5.

Figure 10.6 suggests the data paths and hardware elements needed to accom-
plish addition and subtraction. The central element is a binary adder, which is pre-
sented two numbers for addition and produces a sum and an overflow indication. 
The binary adder treats the two numbers as unsigned integers. (A logic imple-
mentation of an adder is given in Chapter 11.) For addition, the two numbers are 
 presented to the adder from two registers, designated in this case as A and B reg-
isters. The result may be stored in one of these registers or in a third. The overflow 
indication is stored in a 1-bit overflow flag (0 = no overflow; 1 = overflow). For 
 subtraction, the subtrahend (B register) is passed through a twos complementer 
so that its twos complement is presented to the adder. Note that Figure 10.6 only 
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shows the data paths. Control signals are needed to control whether or not the com-
plementer is used, depending on whether the operation is addition or subtraction.

Multiplication

Compared with addition and subtraction, multiplication is a complex operation, 
whether performed in hardware or software. A wide variety of algorithms have been 
used in various computers. The purpose of this subsection is to give the reader some 
feel for the type of approach typically taken. We begin with the simpler problem of 
multiplying two unsigned (nonnegative) integers, and then we look at one of the most 
common techniques for multiplication of numbers in twos complement representation.

UNSIGNED INTEGERS Figure 10.7 illustrates the multiplication of unsigned 
binary integers, as might be carried out using paper and pencil. Several important 
observations can be made:

 1. Multiplication involves the generation of partial products, one for each digit in the 
multiplier. These partial products are then summed to produce the final product.

    1011
   �1101
    1011
   0000
  1011
 1011
10001111

Multiplicand (11)
Multiplier (13)

Product (143)

Partial products

Figure 10.7 Multiplication of 
Unsigned Binary Integers

AdderOF

OF � Overflow bit
SW � Switch (select addition or subtraction)

Complementer

A RegisterB Register

SW

Figure 10.6 Block Diagram of Hardware for Addition and 
Subtraction
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 2. The partial products are easily defined. When the multiplier bit is 0, the partial 
product is 0. When the multiplier is 1, the partial product is the multiplicand.

 3. The total product is produced by summing the partial products. For this oper-
ation, each successive partial product is shifted one position to the left relative 
to the preceding partial product.

 4. The multiplication of two n-bit binary integers results in a product of up to 2n 
bits in length (e.g., 11 * 11 = 1001).

Compared with the pencil-and-paper approach, there are several things we can 
do to make computerized multiplication more efficient. First, we can perform a run-
ning addition on the partial products rather than waiting until the end. This eliminates 
the need for storage of all the partial products; fewer registers are needed. Second, 
we can save some time on the generation of partial products. For each 1 on the multi-
plier, an add and a shift operation are required; but for each 0, only a shift is required.

Figure 10.8a shows a possible implementation employing these measures. The 
multiplier and multiplicand are loaded into two registers (Q and M). A third register, 

Mn�1

Multiplicand

(a) Block diagram

(b) Example from Figure 10.7 (product in A, Q)

Add

Shift right

Multiplier

n-bit adder Shift and add
control logic

M0

An�1 A0 Qn�1 Q0C

C
0

0
0

0

0
0

1
0

A
0000

1011
0101

0010

1101
0110

0001
1000

Q
1101

1101
1110

1111

1111
1111

1111
1111

M
1011

1011
1011

1011

1011
1011

1011
1011

Initial values

Add
Shift

Shift

Add
Shift

Add
Shift

First
cycle

Second
cycle

Third
cycle

Fourth
cycle

Figure 10.8 Hardware Implementation of Unsigned Binary Multiplication
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the A register, is also needed and is initially set to 0. There is also a 1-bit C register, 
initialized to 0, which holds a potential carry bit resulting from addition.

The operation of the multiplier is as follows. Control logic reads the bits of the 
multiplier one at a time. If Q0 is 1, then the multiplicand is added to the A register 
and the result is stored in the A register, with the C bit used for overflow. Then all 
of the bits of the C, A, and Q registers are shifted to the right one bit, so that the C 
bit goes into An -1, A0 goes into Qn -1 and Q0 is lost. If Q0 is 0, then no addition is 
performed, just the shift. This process is repeated for each bit of the original multi-
plier. The resulting 2n-bit product is contained in the A and Q registers. A flowchart 
of the operation is shown in Figure 10.9, and an example is given in Figure 10.8b. 
Note that on the second cycle, when the multiplier bit is 0, there is no add operation.

TWOS COMPLEMENT MULTIPLICATION We have seen that addition and 
subtraction can be performed on numbers in twos complement notation by treating 
them as unsigned integers. Consider

1001
+0011

1100

If these numbers are considered to be unsigned integers, then we are adding 
9 (1001) plus 3 (0011) to get 12 (1100). As twos complement integers, we are adding 
-7 (1001) to 3 (0011) to get -4 (1100).

START

END
YesNo

No Yes

C, A      0
M      Multiplicand
Q      Multiplier
Count      n

Shift right C, A, Q
Count      Count – 1

C, A      A � M

Q0 � 1?

Count � 0? Product
in A, Q

Figure 10.9 Flowchart for Unsigned Binary Multiplication
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Unfortunately, this simple scheme will not work for multiplication. To see 
this, consider again Figure 10.7. We multiplied 11 (1011) by 13 (1101) to get 143 
(10001111). If we interpret these as twos complement numbers, we have -5 (1011) 
times -3 (1101) equals -113 (10001111). This example demonstrates that straight-
forward multiplication will not work if both the multiplicand and multiplier are 
negative. In fact, it will not work if either the multiplicand or the multiplier is nega-
tive. To justify this statement, we need to go back to Figure 10.7 and explain what is 
being done in terms of operations with powers of 2. Recall that any unsigned binary 
number can be expressed as a sum of powers of 2. Thus,

 1101 = 1 * 23 + 1 * 22 + 0 * 21 + 1 * 20

 = 23 + 22 + 20

Further, the multiplication of a binary number by 2n is accomplished by
shifting that number to the left n bits. With this in mind, Figure 10.10 recasts
Figure 10.7 to make the generation of partial products by multiplication explicit. 
The only difference in Figure 10.10 is that it recognizes that the partial products 
should be viewed as 2n-bit numbers generated from the n-bit multiplicand.

Thus, as an unsigned integer, the 4-bit multiplicand 1011 is stored in an 8-bit 
word as 00001011. Each partial product (other than that for 20) consists of this 
number shifted to the left, with the unoccupied positions on the right filled with 
zeros (e.g., a shift to the left of two places yields 00101100).

Now we can demonstrate that straightforward multiplication will not work if 
the multiplicand is negative. The problem is that each contribution of the negative 
multiplicand as a partial product must be a negative number on a 2n-bit field; the sign 
bits of the partial products must line up. This is demonstrated in Figure 10.11, which 
shows that multiplication of 1001 by 0011. If these are treated as unsigned integers, 
the multiplication of 9 * 3 = 27 proceeds simply. However, if 1001 is interpreted 

1011
� 1101

00001011 1011 � 1 � 20

00000000 1011 � 0 � 21

00101100 1011 � 1 � 22

01011000 1011 � 1 � 23

10001111

Figure 10.10 Multiplication of Two 
Unsigned 4-Bit Integers Yielding an 
8-Bit Result

    1001 (9)
� 0011 (3)

00001001 1001 � 20

00010010 1001 � 21

00011011 (27)

    1001 (–7)
� 0011 (3)

11111001 (–7) � 20 = (–7)

11110010 (–7) � 21 = (–14)
11101011 (–21)

(a) Unsigned integers (b) Twos complement integers

Figure 10.11 Comparison of Multiplication of Unsigned and Twos 
Complement Integers
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as the twos complement value -7, then each partial product must be a negative 
twos complement number of 2n (8) bits, as shown in Figure 10.11b. Note that this is 
accomplished by padding out each partial product to the left with binary 1s.

If the multiplier is negative, straightforward multiplication also will not work. 
The reason is that the bits of the multiplier no longer correspond to the shifts or 
multiplications that must take place. For example, the 4-bit decimal number -3 is 
written 1101 in twos complement. If we simply took partial products based on each 
bit position, we would have the following correspondence:

1101 g -(1 * 23 + 1 * 22 + 0 * 21 + 1 * 20) = -(23 + 22 + 20)

In fact, what is desired is -(21 + 20). So this multiplier cannot be used directly in 
the manner we have been describing.

There are a number of ways out of this dilemma. One would be to convert 
both multiplier and multiplicand to positive numbers, perform the multiplication, 
and then take the twos complement of the result if and only if the sign of the two 
original numbers differed. Implementers have preferred to use techniques that 
do not require this final transformation step. One of the most common of these is 
Booth’s algorithm. This algorithm also has the benefit of speeding up the multipli-
cation process, relative to a more straightforward approach.

Booth’s algorithm is depicted in Figure 10.12 and can be described as follows. 
As before, the multiplier and multiplicand are placed in the Q and M registers, 

START

END
YesNo

� 10 � 01

� 11
� 00

A      0, Q�1      0
M      Multiplicand
Q      Multiplier
Count      n

Arithmetic shift
Right: A, Q, Q�1

Count      Count � 1

A      A � MA      A � M

Q0, Q�1

Count � 0?

Figure 10.12 Booth’s Algorithm for Twos 
Complement Multiplication
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respectively. There is also a 1-bit register placed logically to the right of the least 
significant bit (Q0) of the Q register and designated Q -1; its use is explained shortly. 
The results of the multiplication will appear in the A and Q registers. A and Q -1 
are initialized to 0. As before, control logic scans the bits of the multiplier one at a 
time. Now, as each bit is examined, the bit to its right is also examined. If the two 
bits are the same (1–1 or 0–0), then all of the bits of the A, Q, and Q -1 registers are 
shifted to the right 1 bit. If the two bits differ, then the multiplicand is added to or 
subtracted from the A register, depending on whether the two bits are 0–1 or 1–0. 
Following the addition or subtraction, the right shift occurs. In either case, the right 
shift is such that the leftmost bit of A, namely An -1, not only is shifted into An -2, 
but also remains in An -1. This is required to preserve the sign of the number in A 
and Q. It is known as an arithmetic shift, because it preserves the sign bit.

Figure 10.13 shows the sequence of events in Booth’s algorithm for the multi-
plication of 7 by 3. More compactly, the same operation is depicted in Figure 10.14a. 
The rest of Figure 10.14 gives other examples of the algorithm. As can be seen, it 
works with any combination of positive and negative numbers. Note also the effi-
ciency of the algorithm. Blocks of 1s or 0s are skipped over, with an average of only 
one addition or subtraction per block.
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1001
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A    A – M
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Figure 10.13 Example of Booth’s Algorithm (7 * 3)

    0111
� 0011 (0)

11111001 1–0
0000000 1–1
000111  0–1
00010101 (21)

    0111
� 1101 (0)

11111001 1–0
0000111 0–1
111001  1–0
11101011 (–21)

(a) (7) � (3) � (21) (b) (7) � (�3) � (�21)

    1001
� 0011 (0)

00000111 1–0
0000000 1–1
111001  0–1
11101011 (–21)

    1001
� 1101 (0)

00000111 1–0
1111001 0–1
000111  1–0
00010101 (21)

(c) (�7) � (3) � (�21) (d) (�7) � (�3) � (21)

Figure 10.14 Examples Using Booth’s Algorithm
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Why does Booth’s algorithm work? Consider first the case of a positive mul-
tiplier. In particular, consider a positive multiplier consisting of one block of 1s 
 surrounded by 0s (e.g., 00011110). As we know, multiplication can be achieved by 
adding appropriately shifted copies of the multiplicand:

 M * (00011110) = M * (24 + 23 + 22 + 21)

 = M * (16 + 8 + 4 + 2)

 = M * 30

 M * (00011110) = M * (25 - 21)

 = M * (32 - 2)

 = M * 30

 M * (01111010) = M * (26 + 25 + 24 + 23 + 21)

 = M * (27 - 23 + 22 - 21)

The number of such operations can be reduced to two if we observe that

 2n + 2n -1 + c + 2n -K = 2n +1 - 2n -K (10.3)

So the product can be generated by one addition and one subtraction of the multi-
plicand. This scheme extends to any number of blocks of 1s in a multiplier, including 
the case in which a single 1 is treated as a block.

Booth’s algorithm conforms to this scheme by performing a subtraction when the 
first 1 of the block is encountered (1–0) and an addition when the end of the block 
is encountered (0–1).

To show that the same scheme works for a negative multiplier, we need to 
observe the following. Let X be a negative number in twos complement notation:

Representation of X = {1xn -2xn -3 c x1x0}

Then the value of X can be expressed as follows:

X = -2n -1 + (xn -2 * 2n -2) + (xn -3 * 2n -3) + g + (x1 * 21) + (x0 * 20) (10.4)

The reader can verify this by applying the algorithm to the numbers in Table 10.2.
The leftmost bit of X is 1, because X is negative. Assume that the leftmost 0 is 

in the k th position. Thus, X is of the form

 Representation of X = {111c 10xk -1xk -2 c x1x0} (10.5)

Then the value of X is

 X = -2n -1 + 2n -2 + g + 2k +1 + (xk -1 * 2k -1) + g + (x0 * 20) (10.6)

From Equation (10.3), we can say that

2n -2 + 2n -3 + g + 2k +1 = 2n -1 - 2k +1
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Rearranging

 -2n -1 + 2n -2 + 2n -3 + g + 2k +1 = -2k +1 (10.7)

Substituting Equation (10.7) into Equation (10.6), we have

 X = -2k +1 + (xk -1 * 2k -1) + g + (x0 * 20) (10.8)

At last we can return to Booth’s algorithm. Remembering the representation 
of X [Equation (10.5)], it is clear that all of the bits from x0 up to the leftmost 0 
are handled properly because they produce all of the terms in Equation (10.8) but 
(-2k +1) and thus are in the proper form. As the algorithm scans over the leftmost 
0 and encounters the next 1 (2k +1), a 1–0 transition occurs and a subtraction takes 
place (-2k +1). This is the remaining term in Equation (10.8).

As an example, consider the multiplication of some multiplicand by (-6). In
twos complement representation, using an 8-bit word, (-6) is represented as 
11111010. By Equation (10.4), we know that

-6 = -27 + 26 + 25 + 24 + 23 + 21

which the reader can easily verify. Thus,

M * (11111010) = M * (-27 + 26 + 25 + 24 + 23 + 21)

Using Equation (10.7),

M * (11111010) = M * (-23 + 21)

which the reader can verify is still M * (-6). Finally, following our earlier line 
of reasoning,

M * (11111010) = M * (-23 + 22 - 21)

We can see that Booth’s algorithm conforms to this scheme. It performs a sub-
traction when the first 1 is encountered (10), an addition when (01) is encountered, 
and finally another subtraction when the first 1 of the next block of 1s is encoun-
tered. Thus, Booth’s algorithm performs fewer additions and subtractions than a 
more straightforward algorithm.

Division

Division is somewhat more complex than multiplication but is based on the same 
general principles. As before, the basis for the algorithm is the paper-and-pencil 
approach, and the operation involves repetitive shifting and addition or subtraction.

Figure 10.15 shows an example of the long division of unsigned binary inte-
gers. It is instructive to describe the process in detail. First, the bits of the dividend 
are examined from left to right, until the set of bits examined represents a number 
greater than or equal to the divisor; this is referred to as the divisor being able to 
divide the number. Until this event occurs, 0s are placed in the quotient from left 
to right. When the event occurs, a 1 is placed in the quotient and the divisor is sub-
tracted from the partial dividend. The result is referred to as a partial remainder. 
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From this point on, the division follows a cyclic pattern. At each cycle, additional 
bits from the dividend are appended to the partial remainder until the result is 
greater than or equal to the divisor. As before, the divisor is subtracted from this 
number to produce a new partial remainder. The process continues until all the bits 
of the dividend are exhausted.

Figure 10.16 shows a machine algorithm that corresponds to the long division 
process. The divisor is placed in the M register, the dividend in the Q register. At each 

     00001101
1011 10010011
      1011
     001110
       1011
       001111
         1011
          100

Quotient
DividendDivisor

Remainder

Partial
remainders

Figure 10.15 Example of Division of Unsigned 
Binary Integers
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Figure 10.16 Flowchart for Unsigned Binary Division



340  CHAPTER 10 / COMPUTER ARITHMETIC

step, the A and Q registers together are shifted to the left 1 bit. M is subtracted from 
A to determine whether A divides the partial remainder.3 If it does, then Q0 gets a 
1bit. Otherwise, Q0 gets a 0 bit and M must be added back to A to restore the previ-
ous value. The count is then decremented, and the process continues for n steps. At 
the end, the quotient is in the Q register and the remainder is in the A register.

This process can, with some difficulty, be extended to negative numbers. We 
give here one approach for twos complement numbers. An example of this approach 
is shown in Figure 10.17.

The algorithm assumes that the divisor V and the dividend D are positive and 
that |V| 6 |D|. If |V| = |D|, then the quotient Q = 1 and the remainder R = 0. If 
|V| 7 |D|, then Q = 0 and R = D. The algorithm can be summarized as follows:

 1. Load the twos complement of the divisor into the M register; that is, the M 
register contains the negative of the divisor. Load the dividend into the A, Q 
registers. The dividend must be expressed as a 2n-bit positive number. Thus, 
for example, the 4-bit 0111 becomes 00000111.

 2. Shift A, Q left 1 bit position.

 3. Perform A d A - M. This operation subtracts the divisor from the contents 
of A.

 4. a.  If the result is nonnegative (most significant bit of A = 0), then set Q0 d 1.

b. If the result is negative (most significant bit of A = 1), then set Q0 d 0 and 
restore the previous value of A.

 5. Repeat steps 2 through 4 as many times as there are bit positions in Q.

 6. The remainder is in A and the quotient is in Q.

3This is subtraction of unsigned integers. A result that requires a borrow out of the most significant bit is 
a negative result.

Figure 10.17 Example of Restoring Twos Complement Division (7/3)
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To deal with negative numbers, we recognize that the remainder is defined by

D = Q * V + R

That is, the remainder is the value of R needed for the preceding equation 
to be valid. Consider the following examples of integer division with all possible 
combinations of signs of D and V:

 D = 7  V = 3  1  Q = 2  R = 1

 D = 7  V = -3  1  Q = -2  R = 1

 D = -7  V = 3  1  Q = -2  R = -1

 D = -7  V = -3  1  Q = 2  R = -1

The reader will note from Figure 10.17 that (-7)>(3) and (7)>(-3) produce dif-
ferent remainders. We see that the magnitudes of Q and R are unaffected by the input 
signs and that the signs of Q and R are easily derivable from the signs of D and V. 
Specifically, sign(R) = sign(D) and sign(Q) = sign(D) * sign(V). Hence, one way 
to do twos complement division is to convert the operands into unsigned values and, 
at the end, to account for the signs by complementation where needed. This is the 
method of choice for the restoring division algorithm [PARH10].

 10.4 FLOATING-POINT REPRESENTATION

Principles

With a fixed-point notation (e.g., twos complement) it is possible to represent a 
range of positive and negative integers centered on or near 0. By assuming a fixed 
binary or radix point, this format allows the representation of numbers with a frac-
tional component as well.

This approach has limitations. Very large numbers cannot be represented, nor 
can very small fractions. Furthermore, the fractional part of the quotient in a divi-
sion of two large numbers could be lost.

For decimal numbers, we get around this limitation by using scientific 
notation. Thus, 976,000,000,000,000 can be represented as 9.76 * 1014, and 
0.0000000000000976 can be represented as 9.76 * 10-14. What we have done, in 
effect, is dynamically to slide the decimal point to a convenient location and use the 
exponent of 10 to keep track of that decimal point. This allows a range of very large 
and very small numbers to be represented with only a few digits.

This same approach can be taken with binary numbers. We can represent a 
number in the form

{S * B{E

This number can be stored in a binary word with three fields:

 • Sign: plus or minus

 • Significand S

 • Exponent E
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The base B is implicit and need not be stored because it is the same for all numbers. 
Typically, it is assumed that the radix point is to the right of the leftmost, or most 
significant, bit of the significand. That is, there is one bit to the left of the radix point.

The principles used in representing binary floating-point numbers are best 
explained with an example. Figure 10.18a shows a typical 32-bit floating-point for-
mat. The leftmost bit stores the sign of the number (0 = positive, 1 = negative). 
The exponent value is stored in the next 8 bits. The representation used is known as 
a biased representation. A fixed value, called the bias, is subtracted from the field 
to get the true exponent value. Typically, the bias equals (2k -1 - 1), where k is the 
number of bits in the binary exponent. In this case, the 8-bit field yields the numbers 
0 through 255. With a bias of 127 (27 - 1), the true exponent values are in the range 
-127 to +128. In this example, the base is assumed to be 2.

Table 10.2 shows the biased representation for 4-bit integers. Note that when 
the bits of a biased representation are treated as unsigned integers, the relative mag-
nitudes of the numbers do not change. For example, in both biased and unsigned 
representations, the largest number is 1111 and the smallest number is 0000. This is 
not true of sign-magnitude or twos complement representation. An advantage of 
biased representation is that nonnegative floating-point numbers can be treated as 
integers for comparison purposes.

The final portion of the word (23 bits in this case) is the significand.4

Any floating-point number can be expressed in many ways.

8 bits

Sign of
significand

Significand

23 bits

(a) Format

(b) Examples

 1.1010001 � 210100  = 0 10010011 10100010000000000000000 =  1.6328125 � 220

–1.1010001 � 210100  = 1 10010011 10100010000000000000000 = –1.6328125 � 220

 1.1010001 � 2–10100 = 0 01101011 10100010000000000000000 =  1.6328125 � 2–20

–1.1010001 � 2–10100 = 1 01101011 10100010000000000000000 = –1.6328125 � 2–20

Biased exponent

Figure 10.18 Typical 32-Bit Floating-Point Format

4The term mantissa, sometimes used instead of significand, is considered obsolete. Mantissa also means 
“the fractional part of a logarithm,” so is best avoided in this context.

The following are equivalent, where the significand is expressed in binary form:

0.110 * 25

110 * 22

0.0110 * 26

To simplify operations on floating-point numbers, it is typically required that they 
be normalized. A normal number is one in which the most significant digit of the 
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significand is nonzero. For base 2 representation, a normal number is therefore one 
in which the most significant bit of the significand is one. As was mentioned, the 
typical convention is that there is one bit to the left of the radix point. Thus, a nor-
mal nonzero number is one in the form

{1.bbb c b * 2{E

where b is either binary digit (0 or 1). Because the most significant bit is always one, 
it is unnecessary to store this bit; rather, it is implicit. Thus, the 23-bit field is used to 
store a 24-bit significand with a value in the half open interval [1, 2). Given a num-
ber that is not normal, the number may be normalized by shifting the radix point to 
the right of the leftmost 1 bit and adjusting the exponent accordingly.

Figure 10.18b gives some examples of numbers stored in this format. For each 
example, on the left is the binary number; in the center is the corresponding bit pat-
tern; on the right is the decimal value. Note the following features:

 • The sign is stored in the first bit of the word.

 • The first bit of the true significand is always 1 and need not be stored in the 
significand field.

 • The value 127 is added to the true exponent to be stored in the exponent field.

 • The base is 2.

For comparison, Figure 10.19 indicates the range of numbers that can be rep-
resented in a 32-bit word. Using twos complement integer representation, all of the 
integers from -231 to 231 - 1 can be represented, for a total of 232 different num-
bers. With the example floating-point format of Figure 10.18, the following ranges 
of numbers are possible:

 • Negative numbers between -(2 - 2-23) * 2128 and -2-127

 • Positive numbers between 2-127 and (2 - 2-23) * 2128

Expressible integers

Expressible negative
numbers

Negative
overflow

Positive
overflow

Negative
underflow

Zero

Positive
underflow

Expressible positive
numbers

(a) Twos complement integers

(b) Floating-point numbers

Number
line

Number
line

0

0

Figure 10.19 Expressible Numbers in Typical 32-Bit Formats
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Five regions on the number line are not included in these ranges:

 • Negative numbers less than -(2 - 2-23) * 2128, called negative overflow

 • Negative numbers greater than 2-127, called negative underflow

 • Zero

 • Positive numbers less than 2-127, called positive underflow

 • Positive numbers greater than (2 - 2-23) * 2128, called positive overflow

The representation as presented will not accommodate a value of 0. 
However, as we shall see, actual floating-point representations include a spe-
cial bit pattern to designate zero. Overflow occurs when an arithmetic operation 
results in an absolute value greater than can be expressed with an exponent of 128 
(e.g., 2120 * 2100 = 2220). Underflow occurs when the fractional magnitude is too 
small (e.g., 2-120 * 2-100 = 2-220). Underflow is a less serious problem because 
the result can generally be satisfactorily approximated by 0.

It is important to note that we are not representing more individual values 
with floating-point notation. The maximum number of different values that can be 
represented with 32 bits is still 232. What we have done is to spread those numbers 
out in two ranges, one positive and one negative. In practice, most floating-point 
numbers that one would wish to represent are represented only approximately. 
However, for moderate sized integers, the representation is exact.

Also, note that the numbers represented in floating-point notation are not 
spaced evenly along the number line, as are fixed-point numbers. The possible val-
ues get closer together near the origin and farther apart as you move away, as shown 
in Figure 10.20. This is one of the trade-offs of floating-point math: Many calcula-
tions produce results that are not exact and have to be rounded to the nearest value 
that the notation can represent.

In the type of format depicted in Figure 10.18, there is a trade-off between 
range and precision. The example shows 8 bits devoted to the exponent and 23 to 
the significand. If we increase the number of bits in the exponent, we expand the 
range of expressible numbers. But because only a fixed number of different val-
ues can be expressed, we have reduced the density of those numbers and therefore 
the precision. The only way to increase both range and precision is to use more 
bits. Thus, most computers offer, at least, single-precision numbers and double- 
precision numbers. For example, a processor could support a single-precision 
 format of 64 bits, and a double-precision format of 128 bits.

So there is a trade-off between the number of bits in the exponent and the 
number of bits in the significand. But it is even more complicated than that. The 
implied base of the exponent need not be 2. The IBM S/390 architecture, for exam-
ple, uses a base of 16 [ANDE67b]. The format consists of a 7-bit exponent and a 
24-bit significand.

0�n n 2n 4n

Figure 10.20 Density of Floating-Point Numbers
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The advantage of using a larger exponent is that a greater range can be 
achieved for the same number of exponent bits. But remember, we have not 
increased the number of different values that can be represented. Thus, for a fixed 
format, a larger exponent base gives a greater range at the expense of less precision.

IEEE Standard for Binary Floating-Point Representation

The most important floating-point representation is defined in IEEE Standard 754, 
adopted in 1985 and revised in 2008. This standard was developed to facilitate the 
portability of programs from one processor to another and to encourage the devel-
opment of sophisticated, numerically oriented programs. The standard has been 
widely adopted and is used on virtually all contemporary processors and arithmetic 
coprocessors. IEEE 754-2008 covers both binary and decimal floating-point repre-
sentations. In this chapter, we deal only with binary representations.

IEEE 754-2008 defines the following different types of floating-point formats:

 • Arithmetic format: All the mandatory operations defined by the standard are 
supported by the format. The format may be used to represent floating-point 
operands or results for the operations described in the standard.

 • Basic format: This format covers five floating-point representations, three 
binary and two decimal, whose encodings are specified by the standard, and 
which can be used for arithmetic. At least one of the basic formats is imple-
mented in any conforming implementation.

 • Interchange format: A fully specified, fixed-length binary encoding that allows 
data interchange between different platforms and that can be used for storage.

The three basic binary formats have bit lengths of 32, 64, and 128 bits, with 
exponents of 8, 11, and 15 bits, respectively (Figure 10.21). Table 10.3 summarizes 
the characteristics of the three formats. The two basic decimal formats have bit 
lengths of 64 and 128 bits. All of the basic formats are also arithmetic format types 
(can be used for arithmetic operations) and interchange format types (platform 
independent).

Several other formats are specified in the standard. The binary16 format is 
only an interchange format and is intended for storage of values when higher pre-
cision is not required. The binary{k} format and the decimal{k} format are inter-
change formats with total length k bits and with defined lengths for the significand 
and exponent. The format must be a multiple of 32 bits; thus formats are defined for 
k = 160, 192, and so on. These two families of formats are also arithmetic formats.

In addition, the standard defines extended precision formats, which 
extend a supported basic format by providing additional bits in the exponent 
(extended range) and in the significand (extended precision). The exact format 

In the IBM base-16 format,

0.11010001 * 210100 = 0.11010001 * 16101

and the exponent is stored to represent 5 rather than 20.
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is  implementation dependent, but the standard places certain constraints on the 
length of the exponent and significand. These formats are arithmetic format types 
but not interchange format types. The extended formats are to be used for inter-
mediate calculations. With their greater precision, the extended formats lessen the 

Table 10.3 IEEE 754 Format Parameters

Parameter
Format

Binary32 Binary64 Binary128

Storage width (bits) 32 64 128

Exponent width (bits) 8 11 15

Exponent bias 127 1023 16383

Maximum exponent 127 1023 16383

Minimum exponent -126 -1022 -16382

Approx normal number range 
(base 10)

10-38, 10+38 10-308, 10+308 10-4932, 10+4932

Trailing significand width (bits)* 23 52 112

Number of exponents 254 2046 32766

Number of fractions 223 252 2112

Number of values 1.98 * 231 1.99 * 263 1.99 * 2128

Smallest positive normal number 2-126 2-1022 2-16362

Largest positive normal number 2128 - 2104 21024 - 2971 216384 - 216271

Smallest subnormal magnitude 2-149 2-1074 2-16494

Note: *not including implied bit and not including sign bit

Trailing significand field

(c) Binary128 format

Biased
exponent

Trailing significand field

(b) Binary64 format

8 bits

Sign
bit

Trailing
significand field

(a) Binary32 format

Biased
exponent

23 bits

11 bits 52 bits

15 bits 112 bits

Sign
bit

Biased
exponent

Sign
bit

Figure 10.21 IEEE 754 Formats
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chance of a final result that has been contaminated by excessive roundoff error; 
with their greater range, they also lessen the chance of an intermediate overflow 
aborting a computation whose final result would have been representable in a basic 
format. An additional motivation for the extended format is that it affords some 
of the benefits of a larger basic format without incurring the time penalty usually 
associated with higher precision.

Finally, IEEE 754-2008 defines an extendable precision format as a format 
with a precision and range that are defined under user control. Again, these formats 
may be used for intermediate calculations, but the standard places no constraint or 
format or length.

Table 10.4 shows the relationship between defined formats and format types.
Not all bit patterns in the IEEE formats are interpreted in the usual way; 

instead, some bit patterns are used to represent special values. Table 10.5 indicates 
the values assigned to various bit patterns. The exponent values of all zeros (0 bits) 
and all ones (1 bits) define special values. The following classes of numbers are 
 represented:

 • For exponent values in the range of 1 through 254 for 32-bit format, 1 through 
2046 for 64-bit format, and 1 through 16382, normal nonzero floating-point 
numbers are represented. The exponent is biased, so that the range of expo-
nents is -126 through +127 for 32-bit format, and so on. A normal number 
requires a 1 bit to the left of the binary point; this bit is implied, giving an 
effective 24-bit, 53-bit, or 113-bit significand. Because one of the bits is im-
plied, the corresponding field in the binary format is referred to as the trailing 
 significand field.

 • An exponent of zero together with a fraction of zero represents positive or 
negative zero, depending on the sign bit. As was mentioned, it is useful to have 
an exact value of 0 represented.

Table 10.4 IEEE Formats

Format
Format Type

Arithmetic Format Basic Format Interchange Format

binary16 X

binary32 X X X

binary64 X X X

binary128 X X X

binary{k} 
(k � n : 32 for n + 4)

X X

decimal64 X X X

decimal128 X X X

decimal{k} 
(k � n : 32 for n + 4)

X X

extended precision X

extendable precision X
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(b) binary64 format

Sign Biased Exponent Fraction Value

positive zero 0 0 0 0
negative zero 1 0 0 -0
plus infinity 0 all 1s 0 �

minus infinity 1 all 1s 0 -�

quiet NaN 0 or 1 all 1s �0; first bit = 1 qNaN
signaling NaN 0 or 1 all 1s �0; first bit = 0 sNaN
positive normal nonzero 0 0 6 e 6 2047 f 2e - 1023(1.f)
negative normal nonzero 1 0 6 e 6 2047 f -2e - 1023(1.f)
positive subnormal 0 0 f � 0 2e - 1022(0.f)
negative subnormal 1 0 f � 0 -2e - 1022(0.f)

(c) binary128 format

Sign Biased Exponent Fraction Value

positive zero 0 0 0 0
negative zero 1 0 0 -0
plus infinity 0 all 1s 0 �

minus infinity 1 all 1s 0 -�

quiet NaN 0 or 1 all 1s �0; first bit = 1 qNaN
signaling NaN 0 or 1 all 1s �0; first bit = 0 sNaN
positive normal nonzero 0 all 1s f 2e - 16383(1.f)
negative normal nonzero 1 all 1s f -2e - 16383(1.f)
positive subnormal 0 0 f � 0 2e - 16383(0.f)
negative subnormal 1 0 f � 0 -2e - 16383(0.f)

Table 10.5 Interpretation of IEEE 754 Floating-Point Numbers

(a) binary32 format

Sign Biased Exponent Fraction Value

positive zero 0 0 0 0

negative zero 1 0 0 -0

plus infinity 0 all 1s 0 �

minus infinity 1 all 1s 0 -�

quiet NaN 0 or 1 all 1s �0; first bit = 1 qNaN

signaling NaN 0 or 1 all 1s �0; first bit = 0 sNaN

positive normal nonzero 0 0 6 e 6 255 f 2e - 127(1.f)

negative normal nonzero 1 0 6 e 6 255 f -2e - 127(1.f)

positive subnormal 0 0 f � 0 2e - 126(0.f)

negative subnormal 1 0 f � 0 -2e - 126(0.f)
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 • An exponent of all ones together with a fraction of zero represents positive 
or negative infinity, depending on the sign bit. It is also useful to have a rep-
resentation of infinity. This leaves it up to the user to decide whether to treat 
overflow as an error condition or to carry the value �  and proceed with what-
ever program is being executed.

 • An exponent of zero together with a nonzero fraction represents a subnormal 
number. In this case, the bit to the left of the binary point is zero and the true 
exponent is -126 or -1022. The number is positive or negative depending on 
the sign bit.

 • An exponent of all ones together with a nonzero fraction is given the value 
NaN, which means Not a Number, and is used to signal various exception 
conditions.

The significance of subnormal numbers and NaNs is discussed in Section 10.5.

Table 10.6 Floating-Point Numbers and Arithmetic Operations

Floating-Point Numbers Arithmetic Operations

X = XS * BXE

Y = YS * BYE

X + Y = (Xs * BXE - YE + Ys) * BYE 
XE … YEX - Y = (Xs * BXE - YE - Ys) * BYE

X * Y = (Xs * Ys) * BXE + YE

X
Y

 = a  
Xs

Ys
 b * BXE - YE

Examples:

X = 0.3 * 102 = 30

Y = 0.2 * 103 = 200

X + Y = (0.3 * 102 - 3 + 0.2) * 103 = 0.23 * 103 = 230

X - Y = (0.3 * 102 - 3 - 0.2) * 103 = (-0.17) * 103 = -170

X * Y = (0.3 * 0.2) * 102 + 3 = 0.06 * 105 = 6000

X , Y = (0.3 , 0.2) * 102 - 3 = 1.5 * 10-1 = 0.15

f

 10.5 FLOATING-POINT ARITHMETIC

Table 10.6 summarizes the basic operations for floating-point arithmetic. For addi-
tion and subtraction, it is necessary to ensure that both operands have the same 
exponent value. This may require shifting the radix point on one of the operands to 
achieve alignment. Multiplication and division are more straightforward.

A floating-point operation may produce one of these conditions:

 • Exponent overflow: A positive exponent exceeds the maximum possible ex-
ponent value. In some systems, this may be designated as + �  or - � .

 • Exponent underflow: A negative exponent is less than the minimum possible 
exponent value (e.g., -200 is less than -127). This means that the number is 
too small to be represented, and it may be reported as 0.
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 • Significand underflow: In the process of aligning significands, digits may flow 
off the right end of the significand. As we shall discuss, some form of rounding 
is required.

 • Significand overflow: The addition of two significands of the same sign may 
result in a carry out of the most significant bit. This can be fixed by realign-
ment, as we shall explain.

Addition and Subtraction

In floating-point arithmetic, addition and subtraction are more complex than mul-
tiplication and division. This is because of the need for alignment. There are four 
basic phases of the algorithm for addition and subtraction:

 1. Check for zeros.

 2. Align the significands.

 3. Add or subtract the significands.

 4. Normalize the result.

A typical flowchart is shown in Figure 10.22. A step-by-step narrative high-
lights the main functions required for floating-point addition and subtraction. We 
assume a format similar to those of Figure 10.21. For the addition or subtraction 
operation, the two operands must be transferred to registers that will be used by the 
ALU. If the floating-point format includes an implicit significand bit, that bit must 
be made explicit for the operation.

Phase 1: Zero check. Because addition and subtraction are identical except 
for a sign change, the process begins by changing the sign of the subtrahend if 
it is a subtract operation. Next, if either operand is 0, the other is reported as 
the result.

Phase 2: Significand alignment. The next phase is to manipulate the numbers 
so that the two exponents are equal.

To see the need for aligning exponents, consider the following decimal addition:

(123 * 100) + (456 * 10-2)

Clearly, we cannot just add the significands. The digits must first be set into equiva-
lent positions, that is, the 4 of the second number must be aligned with the 3 of 
the first. Under these conditions, the two exponents will be equal, which is the 
mathematical condition under which two numbers in this form can be added. Thus,

(123 * 100) + (456 * 10-2) = (123 * 100) + (4.56 * 100) = 127.56 * 100

Alignment may be achieved by shifting either the smaller number to the 
right (increasing its exponent) or shifting the larger number to the left. Because 
either operation may result in the loss of digits, it is the smaller number that is 
shifted; any digits that are lost are therefore of relatively small significance. The 
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alignment is achieved by repeatedly shifting the magnitude portion of the signif-
icand right 1 digit and incrementing the exponent until the two exponents are 
equal. (Note that if the implied base is 16, a shift of 1 digit is a shift of 4 bits.) If this 
process results in a 0 value for the significand, then the other number is reported 
as the result. Thus, if two numbers have exponents that differ significantly, the 
lesser number is lost.

Phase 3: Addition. Next, the two significands are added together, taking into 
account their signs. Because the signs may differ, the result may be 0. There 
is also the possibility of significand overflow by 1 digit. If so, the significand 
of the result is shifted right and the exponent is incremented. An exponent 
overflow could occur as a result; this would be reported and the operation 
halted.

Phase 4: Normalization. The final phase normalizes the result. Normalization 
consists of shifting significand digits left until the most significant digit (bit, or 
4 bits for base-16 exponent) is nonzero. Each shift causes a decrement of the 
exponent and thus could cause an exponent underflow. Finally, the result must 
be rounded off and then reported. We defer a discussion of rounding until after 
a discussion of multiplication and division.

Multiplication and Division

Floating-point multiplication and division are much simpler processes than addition 
and subtraction, as the following discussion indicates.

We first consider multiplication, illustrated in Figure 10.23. First, if either 
operand is 0, 0 is reported as the result. The next step is to add the exponents. If 
the exponents are stored in biased form, the exponent sum would have doubled 
the bias. Thus, the bias value must be subtracted from the sum. The result could 
be either an exponent overflow or underflow, which would be reported, ending the 
algorithm.

If the exponent of the product is within the proper range, the next step is to 
multiply the significands, taking into account their signs. The multiplication is per-
formed in the same way as for integers. In this case, we are dealing with a sign-
magnitude representation, but the details are similar to those for twos complement 
representation. The product will be double the length of the multiplier and multipli-
cand. The extra bits will be lost during rounding.

After the product is calculated, the result is then normalized and rounded, 
as was done for addition and subtraction. Note that normalization could result in 
exponent underflow.

Finally, let us consider the flowchart for division depicted in Figure 10.24. 
Again, the first step is testing for 0. If the divisor is 0, an error report is issued, 
or the result is set to infinity, depending on the implementation. A dividend of 0 
results in 0. Next, the divisor exponent is subtracted from the dividend exponent. 
This removes the bias, which must be added back in. Tests are then made for expo-
nent underflow or overflow.

The next step is to divide the significands. This is followed with the usual nor-
malization and rounding.
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Precision Considerations

GUARD BITS  We mentioned that, prior to a floating-point operation, the exponent 
and significand of each operand are loaded into ALU registers. In the case of the 
significand, the length of the register is almost always greater than the length of the 
significand plus an implied bit. The register contains additional bits, called guard 
bits, which are used to pad out the right end of the significand with 0s.

The reason for the use of guard bits is illustrated in Figure 10.25. Consider num-
bers in the IEEE format, which has a 24-bit significand, including an implied 1 
bit to the left of the binary point. Two numbers that are very close in value are 
x = 1.00g00 * 21 and y = 1.11g11 * 20. If the smaller number is to be 
subtracted from the larger, it must be shifted right 1 bit to align the exponents. 
This is shown in Figure 10.25a. In the process, y loses 1 bit of significance; the 
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(a) Binary example, without guard bits (c) Hexadecimal example, without guard bits

(b) Binary example, with guard bits (d) Hexadecimal example, with guard bits

x = 1.000.....00 � 21

–y = 0.111.....11 � 21

z = 0.000.....01 � 21

= 1.000.....00 � 2–22

x = .100000 � 161

–y = .0FFFFF � 161

z = .000001 � 161

= .100000 � 16–4

x = .100000 00 � 161

–y = .0FFFFF F0 � 161

z = .000000 10 � 161

= .100000 00 � 16–5

x = 1.000.....00 0000 � 21

–y = 0.111.....11 1000 � 21

z = 0.000.....00 1000 � 21

= 1.000.....00 0000 � 2–23

Figure 10.25 The Use of Guard Bits
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ROUNDING Another detail that affects the precision of the result is the rounding 
policy. The result of any operation on the significands is generally stored in a longer 
register. When the result is put back into the floating-point format, the extra bits 
must be eliminated in such a way as to produce a result that is close to the exact 
result. This process is called rounding.

A number of techniques have been explored for performing rounding. In fact, 
the IEEE standard lists four alternative approaches:

 • Round to nearest: The result is rounded to the nearest representable number.

 • Round toward �H : The result is rounded up toward plus infinity.

 • Round toward �H : The result is rounded down toward negative infinity.

 • Round toward 0: The result is rounded toward zero.

Let us consider each of these policies in turn. Round to nearest is the default 
rounding mode listed in the standard and is defined as follows: The representable 
value nearest to the infinitely precise result shall be delivered.

result is 2-22. The same operation is repeated in part (b) with the addition of 
guard bits. Now the least significant bit is not lost due to alignment, and the result 
is 2-23, a difference of a factor of 2 from the previous answer. When the radix is 
16, the loss of precision can be greater. As Figures 10.25c and d show, the differ-
ence can be a factor of 16.

If the extra bits, beyond the 23 bits that can be stored, are 10010, then the extra 
bits amount to more than one-half of the last representable bit position. In this 
case, the correct answer is to add binary 1 to the last representable bit, rounding 
up to the next representable number. Now consider that the extra bits are 01111. 
In this case, the extra bits amount to less than one-half of the last representable 
bit position. The correct answer is simply to drop the extra bits (truncate), which 
has the effect of rounding down to the next representable number.

The standard also addresses the special case of extra bits of the form 10000.…
Here the result is exactly halfway between the two possible representable values. 
One possible technique here would be to always truncate, as this would be the sim-
plest operation. However, the difficulty with this simple approach is that it intro-
duces a small but cumulative bias into a sequence of computations. What is required 
is an unbiased method of rounding. One possible approach would be to round up or 
down on the basis of a random number so that, on average, the result would be unbi-
ased. The argument against this approach is that it does not produce predictable, 
deterministic results. The approach taken by the IEEE standard is to force the result 
to be even: If the result of a computation is exactly midway between two represent-
able numbers, the value is rounded up if the last representable bit is currently 1 and 
not rounded up if it is currently 0.
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The next two options, rounding to plus and minus infinity, are useful in imple-
menting a technique known as interval arithmetic. Interval arithmetic provides an 
efficient method for monitoring and controlling errors in floating-point computa-
tions by producing two values for each result. The two values correspond to the 
lower and upper endpoints of an interval that contains the true result. The width of 
the interval, which is the difference between the upper and lower endpoints, indi-
cates the accuracy of the result. If the endpoints of an interval are not represent-
able, then the interval endpoints are rounded down and up, respectively. Although 
the width of the interval may vary according to implementation, many algorithms 
have been designed to produce narrow intervals. If the range between the upper 
and lower bounds is sufficiently narrow, then a sufficiently accurate result has been 
obtained. If not, at least we know this and can perform additional analysis.

The final technique specified in the standard is round toward zero. This is, 
in fact, simple truncation: The extra bits are ignored. This is certainly the simplest 
technique. However, the result is that the magnitude of the truncated value is always 
less than or equal to the more precise original value, introducing a consistent bias 
toward zero in the operation. This is a serious bias because it affects every operation 
for which there are nonzero extra bits.

IEEE Standard for Binary Floating-Point Arithmetic

IEEE 754 goes beyond the simple definition of a format to lay down specific prac-
tices and procedures so that floating-point arithmetic produces uniform, predictable 
results independent of the hardware platform. One aspect of this has already been 
discussed, namely rounding. This subsection looks at three other topics: infinity, 
NaNs, and subnormal numbers.

INFINITY Infinity arithmetic is treated as the limiting case of real arithmetic, with 
the infinity values given the following interpretation:

- � 6 (every finite number) 6 + �

With the exception of the special cases discussed subsequently, any arithmetic 
operation involving infinity yields the obvious result.

QUIET AND SIGNALING NANS A NaN is a symbolic entity encoded in floating-
point format, of which there are two types: signaling and quiet. A signaling NaN 
signals an invalid operation exception whenever it appears as an operand. Signaling 

For example:

 5 + (+ �) = + �   5 , (+ �)  = +0

 5 - (+ �) = - �  (+ �) + (+ �) = + �

 5 + (- �) = - �  (- �) + (- �) = - �

 5 - (- �) = + �  (- �) - (+ �) = - �

 5 * (+ �) = + �  (+ �) - (- �) = + �
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NaNs afford values for uninitialized variables and arithmetic-like enhancements 
that are not the subject of the standard. A quiet NaN propagates through almost 
every arithmetic operation without signaling an exception. Table 10.7 indicates 
operations that will produce a quiet NaN.

Note that both types of NaNs have the same general format (Table 10.4): an 
exponent of all ones and a nonzero fraction. The actual bit pattern of the nonzero 
fraction is implementation dependent; the fraction values can be used to distinguish 
quiet NaNs from signaling NaNs and to specify particular exception conditions.

SUBNORMAL NUMBERS Subnormal numbers are included in IEEE 754 to handle 
cases of exponent underflow. When the exponent of the result becomes too small  
(a negative exponent with too large a magnitude), the result is subnormalized by 
right shifting the fraction and incrementing the exponent for each shift until the 
exponent is within a representable range.

Figure 10.26 illustrates the effect of including subnormal numbers. The repre-
sentable numbers can be grouped into intervals of the form [2n, 2n +1]. Within each 

Table 10.7 Operations that Produce a Quiet NaN

Operation Quiet NaN Produced By

Any Any operation on a signaling NaN

Add or subtract

Magnitude subtraction of infinities: 
(+ �) + (- �)
(- �) + (+ �)
(+ �) - (+ �)
(- �) - (- �)

Multiply 0 * �

Division
0
0

  or  
�

�

Remainder x REM 0 or �  REM y

Square root 1x, where x 6 0

2�126 2�125 2�124 2�123

2�126 2�125 2�124 2�123

Gap

(a) 32-Bit format without subnormal numbers

Uniform
spacing

(b) 32-Bit format with subnormal numbers

0

0

Figure 10.26 The Effect of IEEE 754 Subnormal Numbers
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such interval, the exponent portion of the number remains constant while the fraction 
varies, producing a uniform spacing of representable numbers within the interval. As 
we get closer to zero, each successive interval is half the width of the preceding inter-
val but contains the same number of representable numbers. Hence the density of 
representable numbers increases as we approach zero. However, if only normal num-
bers are used, there is a gap between the smallest normal number and 0. In the case of 
the 32-bit IEEE 754 format, there are 223 representable numbers in each interval, and 
the smallest representable positive number is 2-126. With the addition of subnormal 
numbers, an additional 223 - 1 numbers are uniformly added between 0 and 2-126.

The use of subnormal numbers is referred to as gradual underflow [COON81]. 
Without subnormal numbers, the gap between the smallest representable nonzero 
number and zero is much wider than the gap between the smallest representable 
nonzero number and the next larger number. Gradual underflow fills in that gap 
and reduces the impact of exponent underflow to a level comparable with roundoff 
among the normal numbers.

 10.6 RECOMMENDED READING

[ERCE04] and [PARH10] are excellent treatments of computer arithmetic, covering all of 
the topics in this chapter in detail. [FLYN01] is a useful discussion that focuses on practical 
design and implementation issues. For the serious student of computer arithmetic, a very use-
ful reference is the two-volume [SWAR90]. Volume I was originally published in 1980 and 
provides key papers (some very difficult to obtain otherwise) on computer arithmetic funda-
mentals. Volume II contains more recent papers, covering theoretical, design, and implemen-
tation aspects of computer arithmetic.

For floating-point arithmetic, [GOLD91] is well named: “What Every Computer 
Scientist Should Know About Floating-Point Arithmetic.” Another excellent treatment 
of the topic is contained in [KNUT98], which also covers integer computer arithmetic. 
The following more in-depth treatments are also worthwhile: [EVEN00a, OBER97a, 
OBER97b, SODE96]. [KUCK77] is a good discussion of rounding methods in floating-
point arithmetic. [EVEN00b] examines rounding with respect to IEEE 754. For a thorough 
treatment of floating-point arithmetic, standards, and implementation, the book to read is 
[MULL10].

[SCHW99] describes the first IBM S/390 processor to integrate radix-16 and IEEE 754 
floating-point arithmetic in the same floating-point unit.

William Kahan, the principal architect of the IEEE 754 standard, has written a series 
of documents that provide a deeper understanding of the standard, including a detailed set 
of lecture notes, a paper on the rationale for a floating-point standard, and a tutorial on 
gradual underflow. All of these documents are available in the premium content section of 
this book’s Web site.
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 10.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

arithmetic and logic unit 
(ALU)

arithmetic shift
base
biased representation
dividend
divisor
exponent
exponent overflow
exponent underflow
fixed-point representation
floating-point  

representation
guard bits

mantissa
minuend
multiplicand
multiplier
negative overflow
negative underflow
normal number
ones complement  

representation
overflow
partial product
positive overflow
positive underflow
product

quotient
radix point
remainder
rounding
sign bit
significand
significand overflow
significand underflow
sign-magnitude  

representation
subnormal number
subtrahend
twos complement  

representation
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Review Questions
 10.1 Briefly explain the following representations: sign magnitude, twos complement, 

biased.
 10.2 Explain how to determine if a number is negative in the following representations: 

sign magnitude, twos complement, biased.
 10.3 What is the sign-extension rule for twos complement numbers?
 10.4 How can you form the negation of an integer in twos complement representation?
 10.5 In general terms, when does the twos complement operation on an n-bit integer pro-

duce the same integer?
 10.6 What is the difference between the twos complement representation of a number and 

the twos complement of a number?
 10.7 If we treat 2 twos complement numbers as unsigned integers for purposes of addition, 

the result is correct if interpreted as a twos complement number. This is not true for 
multiplication. Why?

 10.8 What are the four essential elements of a number in floating-point notation?
 10.9 What is the benefit of using biased representation for the exponent portion of a floating-

point number?
 10.10 What are the differences among positive overflow, exponent overflow, and significand 

overflow?
 10.11 What are the basic elements of floating-point addition and subtraction?
 10.12 Give a reason for the use of guard bits.
 10.13 List four alternative methods of rounding the result of a floating-point operation.

Problems
 10.1 Represent the following decimal numbers in both binary sign/magnitude and twos 

complement using 16 bits: +512; -29.
 10.2 Represent the following twos complement values in decimal: 1101011; 0101101.
 10.3 Another representation of binary integers that is sometimes encountered is ones 

complement. Positive integers are represented in the same way as sign magnitude. 
A negative integer is represented by taking the Boolean complement of each bit of 
the corresponding positive number.
a. Provide a definition of ones complement numbers using a weighted sum of bits, 

similar to Equations (10.1) and (10.2).
b. What is the range of numbers that can be represented in ones complement?
c. Define an algorithm for performing addition in ones complement arithmetic.
Note: Ones complement arithmetic disappeared from hardware in the 1960s, but still 
survives checksum calculations for the Internet Protocol (IP) and the Transmission 
Control Protocol (TCP).

 10.4 Add columns to Table 10.1 for sign magnitude and ones complement.
 10.5 Consider the following operation on a binary word. Start with the least significant bit. 

Copy all bits that are 0 until the first bit is reached and copy that bit, too. Then take 
the complement of each bit thereafter. What is the result?

 10.6 In Section 10.3, the twos complement operation is defined as follows. To find the twos 
complement of X, take the Boolean complement of each bit of X, and then add 1.
a. Show that the following is an equivalent definition. For an n-bit integer X, the twos 

complement of X is formed by treating X as an unsigned integer and calculating 
(2n - X).

b. Demonstrate that Figure 10.5 can be used to support graphically the claim in part 
(a), by showing how a clockwise movement is used to achieve subtraction.
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 10.7 The r’s complement of an n-digit number N in base r is defined as rn - N for N � 0 
and 0 for N = 0. Find the tens complement of the decimal number 13,250.

 10.8 Calculate (72,530 - 13,250) using tens complement arithmetic. Assume rules similar 
to those for twos complement arithmetic.

 10.9 Consider the twos complement addition of two n-bit numbers:
zn- 1zn- 2 gz0 = xn- 1xn- 2 gx0 + yn- 1yn- 2 gy0

Assume that bitwise addition is performed with a carry bit ci generated by the addi-
tion of xi, yi, and ci- 1. Let n be a binary variable indicating overflow when n = 1. Fill 
in the values in the table.

Input

xn- 1 0 0 0 0 1 1 1 1

yn- 1 0 0 1 1 0 0 1 1

cn- 2 0 1 0 1 0 1 0 1

Output
zn- 1

n

 10.10 Assume numbers are represented in 8-bit twos complement representation. Show the 
calculation of the following:
a. 6 + 13     b. -6 + 13    c. 6 - 13    d. -6 - 13

 10.11 Find the following differences using twos complement arithmetic:
a.

 
111000

-110011
   

b.
 

11001100
- 101110

   
c.

 
111100001111

-110011110011
   

d.
 

11000011
-11101000

 10.12 Is the following a valid alternative definition of overflow in twos complement arith-
metic?
If the exclusive-OR of the carry bits into and out of the leftmost column is 1, then 
there is an overflow condition. Otherwise, there is not.

 10.13 Compare Figures 10.9 and 10.12. Why is the C bit not used in the latter?
 10.14 Given x = 0101 and y = 1010 in twos complement notation (i.e., x = 5, y = -6), 

compute the product p = x * y with Booth’s algorithm.
 10.15 Use the Booth algorithm to multiply 23 (multiplicand) by 29 (multiplier), where each 

number is represented using 6 bits.
 10.16 Prove that the multiplication of two n-digit numbers in base B gives a product of no 

more than 2n digits.
 10.17 Verify the validity of the unsigned binary division algorithm of Figure 10.16 by show-

ing the steps involved in calculating the division depicted in Figure 10.15. Use a pre-
sentation similar to that of Figure 10.17.

 10.18 The twos complement integer division algorithm described in Section 10.3 is known as 
the restoring method because the value in the A register must be restored following 
unsuccessful subtraction. A slightly more complex approach, known as nonrestoring, 
avoids the unnecessary subtraction and addition. Propose an algorithm for this latter 
approach.

 10.19 Under computer integer arithmetic, the quotient J/K of two integers J and K is less 
than or equal to the usual quotient. True or false?

 10.20 Divide -145 by 13 in binary twos complement notation, using 12-bit words. Use the 
algorithm described in Section 10.3.

 10.21 a.   Consider a fixed-point representation using decimal digits, in which the implied 
radix point can be in any position (to the right of the least significant digit, to 
the right of the most significant digit, and so on). How many decimal digits are 
needed to represent the approximations of both Planck’s constant (6.63 * 10-27) 
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and Avogadro’s number (6.02 * 1023)? The implied radix point must be in the 
same position for both numbers.

b. Now consider a decimal floating-point format with the exponent stored in a biased 
representation with a bias of 50. A normalized representation is assumed. How 
many decimal digits are needed to represent these constants in this floating-point 
format?

 10.22 Assume that the exponent e is constrained to lie in the range 0 … e … X, with a bias 
of q, that the base is b, and that the significand is p digits in length.
a. What are the largest and smallest positive values that can be written?
b. What are the largest and smallest positive values that can be written as normalized 

floating-point numbers?
 10.23 Express the following numbers in IEEE 32-bit floating-point format:

a. -5   b. -6   c. -1.5   d. 384   e. 1/16   f. -1/32
 10.24 The following numbers use the IEEE 32-bit floating-point format. What is the equiva-

lent decimal value?
a. 1 10000011 11000000000000000000000
b. 0 01111110 10100000000000000000000
c. 0 10000000 00000000000000000000000

 10.25 Consider a reduced 7-bit IEEE floating-point format, with 3 bits for the exponent and 
3 bits for the significand. List all 127 values.

 10.26 Express the following numbers in IBM’s 32-bit floating-point format, which uses a 
7-bit exponent with an implied base of 16 and an exponent bias of 64 (40 hexadeci-
mal). A normalized floating-point number requires that the leftmost hexadecimal 
digit be nonzero; the implied radix point is to the left of that digit.

a. 1.0 c. 1/64 e. -15.0 g. 7.2 * 1075

b. 0.5 d. 0.0 f. 5.4 * 10-79 h. 65,535

 10.27 Let 5BCA0000 be a floating-point number in IBM format, expressed in hexadecimal. 
What is the decimal value of the number?

 10.28 What would be the bias value for
a. A base-2 exponent (B = 2) in a 6-bit field?
b. A base-8 exponent (B = 8) in a 7-bit field?

 10.29 Draw a number line similar to that in Figure 10.19b for the floating-point format of 
Figure 10.21b.

 10.30 Consider a floating-point format with 8 bits for the biased exponent and 23 bits for the 
significand. Show the bit pattern for the following numbers in this format:
a. -720   b. 0.645

 10.31 The text mentions that a 32-bit format can represent a maximum of 232 different num-
bers. How many different numbers can be represented in the IEEE 32-bit format? 
Explain.

 10.32 Any floating-point representation used in a computer can represent only certain real 
numbers exactly; all others must be approximated. If A=  is the stored value approxi-
mating the real value A, then the relative error, r, is expressed as

r =  
A - A=

A
Represent the decimal quantity +0.4 in the following floating-point format: base = 2;
 exponent: biased, 4 bits; significand, 7 bits. What is the relative error?

 10.33 If A = 1.427, find the relative error if A is truncated to 1.42 and if it is rounded to 1.43.
 10.34 When people speak about inaccuracy in floating-point arithmetic, they often ascribe 

errors to cancellation that occurs during the subtraction of nearly equal quantities. 
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But when X and Y are approximately equal, the difference X - Y  is obtained exactly, 
with no error. What do these people really mean?

 10.35 Numerical values A and B are stored in the computer as approximations A= and B =. 
Neglecting any further truncation or roundoff errors, show that the relative error of 
the product is approximately the sum of the relative errors in the factors.

 10.36 One of the most serious errors in computer calculations occurs when two nearly equal 
numbers are subtracted. Consider A = 0.22288 and B = 0.22211. The computer 
truncates all values to four decimal digits. Thus A= = 0.2228 and B = = 0.2221.
a. What are the relative errors for A= and B =?
b. What is the relative error for C = = A= - B =?

 10.37 To get some feel for the effects of denormalization and gradual underflow, consider 
a decimal system that provides 6 decimal digits for the significand and for which the 
smallest normalized number is 10-99. A normalized number has one nonzero decimal 
digit to the left of the decimal point. Perform the following calculations and denor-
malize the results. Comment on the results.
a. (2.50000 * 10-60) * (3.50000 * 10-43)
b. (2.50000 * 10-60) * (3.50000 * 10-60)
c. (5.67834 * 10-97) - (5.67812 * 10-97)

 10.38 Show how the following floating-point additions are performed (where significands 
are truncated to 4 decimal digits). Show the results in normalized form.
a. 5.566 * 102 + 7.777 * 102    b. 3.344 * 101 + 8.877 * 10-2

 10.39 Show how the following floating-point subtractions are performed (where signifi-
cands are truncated to 4 decimal digits). Show the results in normalized form.
a. 7.744 * 10-3 - 6.666 * 10-3    b. 8.844 * 10-3 - 2.233 * 10-1

 10.40 Show how the following floating-point calculations are performed (where significands 
are truncated to 4 decimal digits). Show the results in normalized form.
a. (2.255 * 101) * (1.234 * 100)   b. (8.833 * 102) , (5.555 * 104)
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The operation of the digital computer is based on the storage and processing of binary 
data. Throughout this book, we have assumed the existence of storage elements that 
can exist in one of two stable states and of circuits than can operate on binary data 
under the control of control signals to implement the various computer functions. In 
this chapter, we suggest how these storage elements and circuits can be implemented 
in digital logic, specifically with combinational and sequential circuits. The chapter 
begins with a brief review of Boolean algebra, which is the mathematical foundation 
of digital logic. Next, the concept of a gate is introduced. Finally, combinational and 
sequential circuits, which are constructed from gates, are described.

 11.1 BOOLEAN ALGEBRA

The digital circuitry in digital computers and other digital systems is designed, and 
its behavior is analyzed, with the use of a mathematical discipline known as Boolean 
algebra. The name is in honor of an English mathematician George Boole, who 
proposed the basic principles of this algebra in 1854 in his treatise, An Investigation 
of the Laws of Thought on Which to Found the Mathematical Theories of Logic 
and Probabilities. In 1938, Claude Shannon, a research assistant in the Electrical 
Engineering Department at M.I.T., suggested that Boolean algebra could be used 
to solve problems in relay-switching circuit design [SHAN38].1 Shannon’s tech-
niques were subsequently used in the analysis and design of electronic digital cir-
cuits. Boolean algebra turns out to be a convenient tool in two areas:

 • Analysis: It is an economical way of describing the function of digital  
circuitry.

 • Design: Given a desired function, Boolean algebra can be applied to develop 
a simplified implementation of that function.

As with any algebra, Boolean algebra makes use of variables and operations. 
In this case, the variables and operations are logical variables and operations. Thus, a 
variable may take on the value 1 (TRUE) or 0 (FALSE). The basic logical operations 

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Understand the basic operations of Boolean algebra.
� Distinguish among the different types of flip-flops.
� Use a Karnaugh map to simplify a Boolean expression.
� Present an overview of programmable logic devices.

1The paper is available at this book’s Web site.
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are AND, OR, and NOT, which are symbolically represented by dot, plus sign, and 
overbar2:

A AND B = A # B

A OR B = A + B

NOT A = A

The operation AND yields true (binary value 1) if and only if both of its operands 
are true. The operation OR yields true if either or both of its operands are true. The 
unary operation NOT inverts the value of its operand. For example, consider the 
equation

D = A + (B # C)

D is equal to 1 if A is 1 or if both B = 0 and C = 1. Otherwise D is equal to 0.
Several points concerning the notation are needed. In the absence of paren-

theses, the AND operation takes precedence over the OR operation. Also, when 
no ambiguity will occur, the AND operation is represented by simple concatenation 
instead of the dot operator. Thus,

A + B # C = A + (B # C) = A + BC

all mean: Take the AND of B and C; then take the OR of the result and A.
Table 11.1a defines the basic logical operations in a form known as a truth 

table, which lists the value of an operation for every possible combination of values 
of operands. The table also lists three other useful operators: XOR, NAND, and 
NOR. The exclusive-or (XOR) of two logical operands is 1 if and only if exactly one 
of the operands has the value 1. The NAND function is the complement (NOT) of 
the AND function, and the NOR is the complement of OR:

2Logical NOT is often indicated by an apostrophe: NOT A = A=.

A NAND B = NOT (A AND B) = AB

A NOR B = NOT (A OR B) = A + B

As we shall see, these three new operations can be useful in implementing certain 
digital circuits.

The logical operations, with the exception of NOT, can be generalized to more 
than two variables, as shown in Table 11.1b.

Table 11.2 summarizes key identities of Boolean algebra. The equations have 
been arranged in two columns to show the complementary, or dual, nature of the 
AND and OR operations. There are two classes of identities: basic rules (or postu-
lates), which are stated without proof, and other identities that can be derived from 
the basic postulates. The postulates define the way in which Boolean expressions 
are interpreted. One of the two distributive laws is worth noting because it differs 
from what we would find in ordinary algebra:

A + (B # C) = (A + B) # (A + C)
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The two bottommost expressions are referred to as DeMorgan’s theorem. We can 
restate them as follows:

A NOR B = A AND B

A NAND B = A OR B

The reader is invited to verify the expressions in Table 11.2 by substituting 
actual values (1s and 0s) for the variables A, B, and C.

Table 11.2 Basic Identities of Boolean Algebra

Basic Postulates

A # B = B # A A + B = B + A Commutative Laws

A # (B + C) = (A # B) + (A # C) A + (B # C) = (A + B) # (A + C) Distributive Laws

1 # A = A 0 + A = A Identity Elements

A # A = 0 A + A = 1 Inverse Elements

Other Identities

0 # A = 0 1 + A = 1

A # A = A A + A = A

A # (B # C) = (A # B) # C A + (B + C) = (A + B) + C Associative Laws

A # B = A + B A + B = A # B DeMorgan’s Theorem

Table 11.1 Boolean Operators

(a) Boolean Operators of Two Input Variables

 
P

 
Q

NOT P 
(P)

P AND Q 
(P # Q)

P OR Q 
(P � Q)

P NAND Q 
(P # Q)

P NOR Q 
(P � Q)

P XOR Q 
(P { Q)

0 0 1 0 0 1 1 0

0 1 1 0 1 1 0 1

1 0 0 0 1 1 0 1

1 1 0 1 1 0 0 0

(b) Boolean Operators Extended to More than Two Inputs (A, B, . . .)

Operation Expression Output � 1 if

AND A # B # c All of the set {A, B, …} are 1.

OR A + B + c Any of the set {A, B, …} are 1.

NAND A # B # c Any of the set {A, B, …} are 0.

NOR A + B + c All of the set {A, B, …} are 0.

XOR A { B { c The set {A, B, …} contains an odd number of ones.
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 11.2 GATES

The fundamental building block of all digital logic circuits is the gate. Logical func-
tions are implemented by the interconnection of gates.

A gate is an electronic circuit that produces an output signal that is a sim-
ple Boolean operation on its input signals. The basic gates used in digital logic are 
AND, OR, NOT, NAND, NOR, and XOR. Figure 11.1 depicts these six gates. Each 
gate is defined in three ways: graphic symbol, algebraic notation, and truth table. 
The symbology used in this chapter is from the IEEE standard, IEEE Std 91. Note 
that the inversion (NOT) operation is indicated by a circle.

Each gate shown in Figure 11.1 has one or two inputs and one output. 
However, as indicated in Table 11.1b, all of the gates except NOT can have more 
than two inputs. Thus, (X + Y + Z) can be implemented with a single OR gate 
with three inputs. When one or more of the values at the input are changed, the 
correct output signal appears almost instantaneously, delayed only by the propaga-
tion time of signals through the gate (known as the gate delay). The significance of 
this delay is discussed in Section 11.3. In some cases, a gate is implemented with two 
outputs, one output being the negation of the other output.

A B F
0 0 1
0 1 0
1 0 0
1 1 0

A B F
0 0 0
0 1 1
1 0 1
1 1 0

Graphical Symbol
Algebraic
Function Truth TableName

AND

OR

NOT

NAND

NOR

XOR

F � A • B
or

F � AB

F � A � B

A B F
0
0
1
1

0
0
0
1

0
1
0
1

A B F
0
0
1
1

0
1
1
1

0
1
0
1

A B F
0
0
1
1

1
1
1
0

0
1
0
1

A F
0
1

1
0

A

A

B

F � A
or

F � A	

F � AB

F � A � B

F � A � B

F

A

B
F

A

B
F

F

A

B
F

A

B
F

Figure 11.1 Basic Logic Gates
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Here we introduce a common term: we say that to assert a signal is to cause a 
signal line to make a transition from its logically false (0) state to its logically true 
(1) state. The true (1) state is either a high or low voltage state, depending on the 
type of electronic circuitry.

Typically, not all gate types are used in implementation. Design and fabrication 
are simpler if only one or two types of gates are used. Thus, it is important to identify 
functionally complete sets of gates. This means that any Boolean function can be imple-
mented using only the gates in the set. The following are functionally complete sets:

 • AND, OR, NOT

 • AND, NOT

 • OR, NOT

 • NAND

 • NOR

It should be clear that AND, OR, and NOT gates constitute a functionally 
complete set, because they represent the three operations of Boolean algebra. For 
the AND and NOT gates to form a functionally complete set, there must be a way 
to synthesize the OR operation from the AND and NOT operations. This can be 
done by applying DeMorgan’s theorem:

A + B = A # B

A OR B = NOT ((NOT A) AND (NOT B))

Similarly, the OR and NOT operations are functionally complete because 
they can be used to synthesize the AND operation.

Figure 11.2 shows how the AND, OR, and NOT functions can be implemented 
solely with NAND gates, and Figure 11.3 shows the same thing for NOR gates. 
For this reason, digital circuits can be, and frequently are, implemented solely with 
NAND gates or solely with NOR gates.

A

A
A

B

A

B

A

B

A+B

A  B
A  B

Figure 11.2 Some Uses of NAND Gates
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With gates, we have reached the most primitive circuit level of computer 
hardware. An examination of the transistor combinations used to construct gates 
departs from that realm and enters the realm of electrical engineering. For our pur-
poses, however, we are content to describe how gates can be used as building blocks 
to implement the essential logical circuits of a digital computer.

 11.3 COMBINATIONAL CIRCUITS

A combinational circuit is an interconnected set of gates whose output at any time 
is a function only of the input at that time. As with a single gate, the appearance of 
the input is followed almost immediately by the appearance of the output, with only 
gate delays.

In general terms, a combinational circuit consists of n binary inputs and m 
binary outputs. As with a gate, a combinational circuit can be defined in three ways:

 • Truth table: For each of the 2n possible combinations of input signals, the 
binary value of each of the m output signals is listed.

 • Graphical symbols: The interconnected layout of gates is depicted.

 • Boolean equations: Each output signal is expressed as a Boolean function of 
its input signals.

Implementation of Boolean Functions

Any Boolean function can be implemented in electronic form as a network of gates. 
For any given function, there are a number of alternative realizations. Consider the 
Boolean function represented by the truth table in Table 11.3. We can express this func-
tion by simply itemizing the combinations of values of A, B, and C that cause F to be 1:

F + ABC + ABC + ABC (11.1)

A A

A

B

A

B

A (A+B)

B
A+B

A  B

Figure 11.3 Some Uses of NOR Gates
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There are three combinations of input values that cause F to be 1, and if any 
one of these combinations occurs, the result is 1. This form of expression, for self-
evident reasons, is known as the sum of products (SOP) form. Figure 11.4 shows a 
straightforward implementation with AND, OR, and NOT gates.

Another form can also be derived from the truth table. The SOP form 
expresses that the output is 1 if any of the input combinations that produce 1 is true. 
We can also say that the output is 1 if none of the input combinations that produce 
0 is true. Thus,

F = 1A B C2 # 1A B C2 # 1A B C2 # 1A B C2 # 1A B C2
This can be rewritten using a generalization of DeMorgan’s theorem:

(X # Y # Z) = X + Y + Z

Table 11.3 A Boolean Function of Three Variables

A B C F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

A B C

F

Figure 11.4 Sum-of-Products Implementation of Table 11.3
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Thus,

F = (A + B + C) # (A + B + C) # (A + B + C) # (A + B + C) # (A + B + C) (11.2)

= (A + B + C) # (A + B + C) # (A + B + C) # (A + B + C) # (A + B + C)

This is in the product of sums (POS) form, which is illustrated in Figure 11.5. For 
clarity, NOT gates are not shown. Rather, it is assumed that each input signal and its 
complement are available. This simplifies the logic diagram and makes the inputs to 
the gates more readily apparent.

Thus, a Boolean function can be realized in either SOP or POS form. At this 
point, it would seem that the choice would depend on whether the truth table con-
tains more 1s or 0s for the output function: The SOP has one term for each 1, and 
the POS has one term for each 0. However, there are other considerations:

 • It is often possible to derive a simpler Boolean expression from the truth table 
than either SOP or POS.

 • It may be preferable to implement the function with a single gate type (NAND 
or NOR).

The significance of the first point is that, with a simpler Boolean expression, 
fewer gates will be needed to implement the function. Three methods that can be 
used to achieve simplification are

 • Algebraic simplification
 • Karnaugh maps
 • Quine–McCluskey tables

F

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C

Figure 11.5 Product-of-Sums 
Implementation of Table 11.3
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ALGEBRAIC SIMPLIFICATION Algebraic simplification involves the application of 
the identities of Table 11.2 to reduce the Boolean expression to one with fewer 
elements. For example, consider again Equation (11.1). Some thought should 
convince the reader that an equivalent expression is

 F = AB + BC (11.3)

Or, even simpler,

F = B(A + C)

This expression can be implemented as shown in Figure 11.6. The simplification 
of Equation (11.1) was done essentially by observation. For more complex expres-
sions, some more systematic approach is needed.

KARNAUGH MAPS For purposes of simplification, the Karnaugh map is a convenient 
way of representing a Boolean function of a small number (up to four) of variables. 
The map is an array of 2n squares, representing all possible combinations of values 
of n binary variables. Figure 11.7a shows the map of four squares for a function of 
two variables. It is essential for later purposes to list the combinations in the order 
00, 01, 11, 10. Because the squares corresponding to the combinations are to be 
used for recording information, the combinations are customarily written above the 
squares. In the case of three variables, the representation is an arrangement of eight 
squares (Figure 11.7b), with the values for one of the variables to the left and for the 
other two variables above the squares. For four variables, 16 squares are needed, 
with the arrangement indicated in Figure 11.7c.

The map can be used to represent any Boolean function in the following way. 
Each square corresponds to a unique product in the sum-of-products form, with a  
1 value corresponding to the variable and a 0 value corresponding to the NOT of 
that variable. Thus, the product AB corresponds to the fourth square in Figure 
11.7a. For each such product in the function, 1 is placed in the corresponding square. 
Thus, for the two-variable example, the map corresponds to AB + AB. Given the 
truth table of a Boolean function, it is an easy matter to construct the map: for each 
combination of values of variables that produce a result of 1 in the truth table, fill 
in the corresponding square of the map with 1. Figure 11.7b shows the result for 
the truth table of Table 11.3. To convert from a Boolean expression to a map, it 
is first necessary to put the expression into what is referred to as canonical form: 
each term in the expression must contain each variable. So, for example, if we have 
Equation (11.3), we must first expand it into the full form of Equation (11.1) and 
then convert this to a map.

F
B

A

C

Figure 11.6 Simplified Implementation 
of Table A.3
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The labeling used in Figure 11.7d emphasizes the relationship between vari-
ables and the rows and columns of the map. Here the two rows embraced by the 
symbol A are those in which the variable A has the value 1; the rows not embraced 
by the symbol A are those in which A is 0; similarly for B, C, and D.

Once the map of a function is created, we can often write a simple algebraic 
expression for it by noting the arrangement of the 1s on the map. The principle is as 
follows. Any two squares that are adjacent differ in only one of the variables. If two 
adjacent squares both have an entry of one, then the corresponding product terms 
differ in only one variable. In such a case, the two terms can be merged by eliminat-
ing that variable. For example, in Figure 11.8a, the two adjacent squares correspond 
to the two terms ABCD and ABCD. Thus, the function expressed is

ABCD + ABCD = ABD

This process can be extended in several ways. First, the concept of adjacency 
can be extended to include wrapping around the edge of the map. Thus, the top 
square of a column is adjacent to the bottom square, and the leftmost square of a row 
is adjacent to the rightmost square. These conditions are illustrated in Figures 11.8b 
and c. Second, we can group not just 2 squares but 2n adjacent squares (i.e., 2, 4, 
8, etc.). The next three examples in Figure 11.8 show groupings of 4 squares. Note 
that in this case, two of the variables can be eliminated. The last three examples 
show groupings of 8 squares, which allow three variables to be eliminated.

We can summarize the rules for simplification as follows:

 1. Among the marked squares (squares with a 1), find those that belong to a 
unique largest block of 1, 2, 4, or 8 and circle those blocks.

AB

1

00 01 11 10

00

00

01

11

10

01 11 10

00

0

1 

01 11 10

1

(a) F � AB � AB

BC

1 1

1

(b) F � ABC � ABC � ABC

CD

AB

1

(c) F � ABCD � ABCD � ABCD

1

1

C

B

D

A

(d) Simplified labeling of map

A

Figure 11.7 The Use of Karnaugh Maps to Represent Boolean 
Functions
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 2. Select additional blocks of marked squares that are as large as possible and 
as few in number as possible, but include every marked square at least once. 
The results may not be unique in some cases. For example, if a marked square 
combines with exactly two other squares, and there is no fourth marked square 
to complete a larger group, then there is a choice to be made as two which of 
the two groupings to choose. When you are circling groups, you are allowed to 
use the same 1 value more than once.

 3. Continue to draw loops around single marked squares, or pairs of adjacent 
marked squares, or groups of four, eight, and so on in such a way that every 
marked square belongs to at least one loop; then use as few of these blocks as 
possible to include all marked squares.

Figure 11.9a, based on Table 11.3, illustrates the simplification process. If any 
isolated 1s remain after the groupings, then each of these is circled as a group of 1s. 
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Figure 11.8 The Use of Karnaugh Maps



376  CHAPTER 11 / DIGITAL LOGIC

Finally, before going from the map to a simplified Boolean expression, any group of 
1s that is completely overlapped by other groups can be eliminated. This is shown in 
Figure 11.9b. In this case, the horizontal group is redundant and may be ignored in 
creating the Boolean expression.

One additional feature of Karnaugh maps needs to be mentioned. In some 
cases, certain combinations of values of variables never occur, and therefore the 
corresponding output never occurs. These are referred to as “don’t care” condi-
tions. For each such condition, the letter “d” is entered into the corresponding 
square of the map. In doing the grouping and simplification, each “d” can be treated 
as a 1 or 0, whichever leads to the simplest expression.

An example, presented in [HAYE98], illustrates the points we have been dis-
cussing. We would like to develop the Boolean expressions for a circuit that adds 
1 to a packed decimal digit. For packed decimal, each decimal digit is represented 
by a 4-bit code, in the obvious way. Thus, 0 = 0000, 1 = 0001, c , 8 = 1000, and 
9 = 1001. The remaining 4-bit values, from 1010 to 1111, are not used. This code is 
also referred to as Binary Coded Decimal (BCD).

Table 11.4 shows the truth table for producing a 4-bit result that is one 
more than a 4-bit BCD input. The addition is modulo 10. Thus, 9 + 1 = 0. Also, 
note that six of the input codes produce “don’t care” results, because those are 
not valid BCD inputs. Figure 11.10 shows the resulting Karnaugh maps for each 
of the output variables. The d squares are used to achieve the best possible 
groupings.

THE QUINE–MCCLUSKEY METHOD For more than four variables, the Karnaugh 
map method becomes increasingly cumbersome. With five variables, two 16 * 16 
maps are needed, with one map considered to be on top of the other in three 
dimensions to achieve adjacency. Six variables require the use of four 16 * 16 

(b) F � BCD � ACD

(a) F � AB � BC

1

1 1

1

00

00

01

01

11

11

10

10
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A

CD

1 1

1

00

0

1

01 11 10

BC

Figure 11.9 Overlapping Groups
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tables in four dimensions! An alternative approach is a tabular technique, referred 
to as the Quine–McCluskey method. The method is suitable for programming on a 
computer to give an automatic tool for producing minimized Boolean expressions.

Table 11.4 Truth Table for the One-Digit Packed Decimal Incrementer

Input Output

Number A B C D Number W X Y Z

0 0 0 0 0 1 0 0 0 1

1 0 0 0 1 2 0 0 1 0

2 0 0 1 0 3 0 0 1 1

3 0 0 1 1 4 0 1 0 0

4 0 1 0 0 5 0 1 0 1

5 0 1 0 1 6 0 1 1 0

6 0 1 1 0 7 0 1 1 1

7 0 1 1 1 8 1 0 0 0

8 1 0 0 0 9 1 0 0 1

9 1 0 0 1 0 0 0 0 0

1 0 1 0 d d d d

1 0 1 1 d d d d

1 1 0 0 d d d d

1 1 0 1 d d d d

1 1 1 0 d d d d

1 1 1 1 d d d d

gDon’t 
care 

condition

00

00

01

11

10

01 11 10

CD

AB
1

1

d d d d

d d

(a) W � AD � ABCD

00

00

01

11

10

01 11 10

CD

AB

1

1 1 1

d d

d dd d

(b) X � BD � BC � BCD
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01 11 10

CD

AB
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1
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d d

(c) Y � ACD � ACD

00 01 11 10

CD

AB

(d) Z � D
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d d

00
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11

10

1

1

1

1
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Figure 11.10 Karnaugh Maps for the Incrementer
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The method is best explained by means of an example. Consider the following 
expression:

ABCD + ABCD + ABC D + ABCD + ABCD + ABCD + ABCD + A B CD

Let us assume that this expression was derived from a truth table. We would 
like to produce a minimal expression suitable for implementation with gates.

The first step is to construct a table in which each row corresponds to one 
of the product terms of the expression. The terms are grouped according to the 
number of complemented variables. That is, we start with the term with no comple-
ments, if it exists, then all terms with one complement, and so on. Table 11.5 shows 
the list for our example expression, with horizontal lines used to indicate the group-
ing. For clarity, each term is represented by a 1 for each uncomplemented variable 
and a 0 for each complemented variable. Thus, we group terms according to the 
number of 1s they contain. The index column is simply the decimal equivalent and 
is useful in what follows.

The next step is to find all pairs of terms that differ in only one variable, that is, 
all pairs of terms that are the same except that one variable is 0 in one of the terms 
and 1 in the other. Because of the way in which we have grouped the terms, we can 
do this by starting with the first group and comparing each term of the first group 
with every term of the second group. Then compare each term of the second group 
with all of the terms of the third group, and so on. Whenever a match is found, place 
a check next to each term, combine the pair by eliminating the variable that differs 
in the two terms, and add that to a new list. Thus, for example, the terms ABCD and 
ABCD are combined to produce ABC. This process continues until the entire origi-
nal table has been examined. The result is a new table with the following entries:

A CD ABC ABD �

BCD� ACD

ABC BCD �

ABD�

Table 11.5 First Stage of Quine–McCluskey Method 
(for F = ABCD + ABCD + ABC D + ABCD + ABCD + ABCD + ABCD + A B CD)

Product Term Index A B C D

A B CD 1 0 0 0 1 ✓

ABCD 5 0 1 0 1 ✓

ABCD 6 0 1 1 0 ✓

ABC D 12 1 1 0 0 ✓

ABCD 7 0 1 1 1 ✓

ABCD 11 1 0 1 1 ✓

ABCD 13 1 1 0 1 ✓

ABCD 15 1 1 1 1 ✓
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The new table is organized into groups, as indicated, in the same fashion as the 
first table. The second table is then processed in the same manner as the first. That is, 
terms that differ in only one variable are checked and a new term produced for a third 
table. In this example, the third table that is produced contains only one term: BD.

In general, the process would proceed through successive tables until a table 
with no matches was produced. In this case, this has involved three tables.

Once the process just described is completed, we have eliminated many of 
the possible terms of the expression. Those terms that have not been eliminated 
are used to construct a matrix, as illustrated in Table 11.6. Each row of the matrix 
corresponds to one of the terms that have not been eliminated (has no check) in 
any of the tables used so far. Each column corresponds to one of the terms in the 
original expression. An X is placed at each intersection of a row and a column such 
that the row element is “compatible” with the column element. That is, the vari-
ables present in the row element have the same value as the variables present in the 
column element. Next, circle each X that is alone in a column. Then place a square 
around each X in any row in which there is a circled X. If every column now has 
either a squared or a circled X, then we are done, and those row elements whose 
Xs have been marked constitute the minimal expression. Thus, in our example, the 
final expression is

ABC + ACD + ABC + A CD

In cases in which some columns have neither a circle nor a square, additional 
processing is required. Essentially, we keep adding row elements until all columns 
are covered.

Let us summarize the Quine–McCluskey method to try to justify intuitively 
why it works. The first phase of the operation is reasonably straightforward. The 
process eliminates unneeded variables in product terms. Thus, the expression 
ABC + ABC is equivalent to AB, because

ABC + ABC = AB(C + C) = AB

After the elimination of variables, we are left with an expression that is clearly 
equivalent to the original expression. However, there may be redundant terms 
in this expression, just as we found redundant groupings in Karnaugh maps. The 
matrix layout assures that each term in the original expression is covered and does 
so in a way that minimizes the number of terms in the final expression.

Table 11.6 Last Stage of Quine–McCluskey Method 
(for F = ABCD + ABCD + ABC D + ABCD + ABCD + ABCD + ABCD + A B CD)

ABCD ABCD ABC  D ABCD ABCD ABCD ABCD A  B CD

BD X X X X

A CD X ⊗

ABC X ⊗

ABC X ⊗

ACD X ⊗
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NAND AND NOR IMPLEMENTATIONS Another consideration in the 
implementation of Boolean functions concerns the types of gates used. It is sometimes 
desirable to implement a Boolean function solely with NAND gates or solely with 
NOR gates. Although this may not be the minimum-gate implementation, it has the 
advantage of regularity, which can simplify the manufacturing process. Consider 
again Equation (11.3):

F = B(A + C)

Because the complement of the complement of a value is just the original value,

F = B(A + C) = (AB + (BC)

Applying DeMorgan’s theorem,

F = (AB)•(BC)

which has three NAND forms, as illustrated in Figure 11.11.

Multiplexers

The multiplexer connects multiple inputs to a single output. At any time, one of the 
inputs is selected to be passed to the output. A general block diagram  representation 
is shown in Figure 11.12. This represents a 4-to-1 multiplexer. There are four input 
lines, labeled D0, D1, D2, and D3. One of these lines is selected to provide the 

A

B

B

C

F

Figure 11.11 NAND Implementation of 
Table 11.3

D0

D1

D2

S2 S1

D3

F
4-to-1
MUX

Figure 11.12 4-to-1 Multiplexer 
Representation
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 output signal F. To select one of the four possible inputs, a 2-bit selection code is 
needed, and this is implemented as two select lines labeled S1 and S2.

An example 4-to-1 multiplexer is defined by the truth table in Table 11.7. This 
is a simplified form of a truth table. Instead of showing all possible combinations of 
input variables, it shows the output as data from line D0, D1, D2, or D3. Figure 11.13 
shows an implementation using AND, OR, and NOT gates. S1 and S2 are connected 
to the AND gates in such a way that, for any combination of S1 and S2, three of the 
AND gates will output 0. The fourth AND gate will output the value of the selected 
line, which is either 0 or 1. Thus, three of the inputs to the OR gate are always 0, 
and the output of the OR gate will equal the value of the selected input gate. Using  
this regular organization, it is easy to construct multiplexers of size 8-to-1, 16-to-1, 
and so on.

Multiplexers are used in digital circuits to control signal and data routing. An 
example is the loading of the program counter (PC). The value to be loaded into the 
program counter may come from one of several different sources:

D0

D1

D2

D3

S1S2

F

Figure 11.13 Multiplexer Implementation

Table 11.7 4-to-1 Multiplexer Truth Table

S2 S1 F

0 0 D0

0 1 D1

1 0 D2

1 1 D3
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 • A binary counter, if the PC is to be incremented for the next instruction

 • The instruction register, if a branch instruction using a direct address has just 
been executed

 • The output of the ALU, if the branch instruction specifies the address using a 
displacement mode

These various inputs could be connected to the input lines of a multiplexer, with the 
PC connected to the output line. The select lines determine which value is loaded 
into the PC. Because the PC contains multiple bits, multiple multiplexers are used, 
one per bit. Figure 11.14 illustrates this for 16-bit addresses.

Decoders

A decoder is a combinational circuit with a number of output lines, only one of 
which is asserted at any time. Which output line is asserted depends on the pattern 
of input lines. In general, a decoder has n inputs and 2n outputs. Figure 11.15 shows 
a decoder with three inputs and eight outputs.

Decoders find many uses in digital computers. One example is address 
decoding. Suppose we wish to construct a 1K-byte memory using four 256 * 8-bit 
RAM chips. We want a single unified address space, which can be broken down as 
follows:

Address Chip

0000–00FF 0

0100–01FF 1

0200–02FF 2

0300–03FF 3

Each chip requires 8 address lines, and these are supplied by the lower-order 
8 bits of the address. The higher-order 2 bits of the 10-bit address are used to select 
one of the four RAM chips. For this purpose, a 2-to-4 decoder is used whose output 
enables one of the four chips, as shown in Figure 11.16.

With an additional input line, a decoder can be used as a demultiplexer. The 
demultiplexer performs the inverse function of a multiplexer; it connects a single 
input to one of several outputs. This is shown in Figure 11.17. As before, n inputs are 
decoded to produce a single one of 2n outputs. All of the 2n output lines are ANDed 

S1

S2

C0 IR0

PC0

ALU0 C1 IR1 ALU1 C15 IR15 ALU15

4-to-1
MUX S1

S2

PC1

4-to-1
MUX S1

S2

PC15

4-to-1
MUX

Figure 11.14 Multiplexer Input to Program Counter
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Figure 11.15 Decoder with 3 Inputs and 23 = 8 Outputs
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Figure 11.16 Address Decoding



384  CHAPTER 11 / DIGITAL LOGIC

with a data input line. Thus, the n inputs act as an address to select a  particular out-
put line, and the value on the data input line (0 or 1) is routed to that output line.

The configuration in Figure 11.17 can be viewed in another way. Change the 
label on the new line from Data Input to Enable. This allows for the control of the 
timing of the decoder. The decoded output appears only when the encoded input is 
present and the enable line has a value of 1.

Read-Only Memory

Combinational circuits are often referred to as “memoryless” circuits, because their 
output depends only on their current input and no history of prior inputs is retained. 
However, there is one sort of memory that is implemented with combinational cir-
cuits, namely read-only memory (ROM).

Recall that a ROM is a memory unit that performs only the read operation. 
This implies that the binary information stored in a ROM is permanent and was cre-
ated during the fabrication process. Thus, a given input to the ROM (address lines) 
always produces the same output (data lines). Because the outputs are a function 
only of the present inputs, the ROM is in fact a combinational circuit.

A ROM can be implemented with a decoder and a set of OR gates. As an 
example, consider Table 11.8. This can be viewed as a truth table with four inputs 
and four outputs. For each of the 16 possible input values, the corresponding set 
of values of the outputs is shown. It can also be viewed as defining the contents 
of a 64-bit ROM consisting of 16 words of 4 bits each. The four inputs specify an 
address, and the four outputs specify the contents of the location specified by the 
address. Figure 11.18 shows how this memory could be implemented using a 4-to-16 
decoder and four OR gates. As with the PLA, a regular organization is used, and 
the interconnections are made to reflect the desired result.

Adders

So far, we have seen how interconnected gates can be used to implement such 
functions as the routing of signals, decoding, and ROM. One essential area not yet 
addressed is that of arithmetic. In this brief overview, we will content ourselves with 
looking at the addition function.

Binary addition differs from Boolean algebra in that the result includes a carry 
term. Thus,

Data input

n-bit
destination

address 2n outputs
n-to-2n

decoder

Figure 11.17 Implementation of a Demultiplexer Using a Decoder
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X1

X2

X3

X4

Four-input
sixteen-
output
decoder

0000
0001
0010
0011

0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Z1 Z2 Z3 Z4

Figure 11.18 A 64-Bit ROM

Table 11.8 Truth Table for a ROM

Input Output

X1 X2 X3 X4 Z1 Z2 Z3 Z4

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0
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0 0 1 1

+0 +1 +0 +1

0 1 1 10

However, addition can still be dealt with in Boolean terms. In Table 11.9a, we 
show the logic for adding two input bits to produce a 1-bit sum and a carry bit. 
This truth table could easily be implemented in digital logic. However, we are not 
interested in performing addition on just a single pair of bits. Rather, we wish to 
add two n-bit numbers. This can be done by putting together a set of adders so that 
the carry from one adder is provided as input to the next. A 4-bit adder is depicted 
in Figure 11.19.

For a multiple-bit adder to work, each of the single-bit adders must have three 
inputs, including the carry from the next-lower-order adder. The revised truth table 
appears in Table 11.9b. The two outputs can be expressed:

Sum = A BC + ABC + ABC + ABC

Carry = AB + AC + BC

Figure 11.20 is an implementation using AND, OR, and NOT gates.

A3

C3

S3

Cin

B3 A2

C2

S2

Cin

B2 A1

C1

S1

Cin

B1 A0

C0

S0

Cin 0

B0

Overflow
signal

Figure 11.19 4-Bit Adder

Table 11.9 Binary Addition Truth Tables

(a) Single-Bit Addition

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

(b) Addition with Carry Input

Cin A B Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
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Thus we have the necessary logic to implement a multiple-bit adder such as 
shown in Figure 11.21. Note that because the output from each adder depends on 
the carry from the previous adder, there is an increasing delay from the least signifi-
cant to the most significant bit. Each single-bit adder experiences a certain amount 
of gate delay, and this gate delay accumulates. For larger adders, the accumulated 
delay can become unacceptably high.

If the carry values could be determined without having to ripple through all 
the previous stages, then each single-bit adder could function independently, and 
delay would not accumulate. This can be achieved with an approach known as carry 
lookahead. Let us look again at the 4-bit adder to explain this approach.

We would like to come up with an expression that specifies the carry input to 
any stage of the adder without reference to previous carry values. We have

C

A
B

C

A
B

C

A
B

C

A
B

B
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C

A

C

B

Sum

Carry

Figure 11.20 Implementation of an Adder
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Figure 11.21 Construction of a 32-Bit Adder Using 8-Bit Adders
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 C 0 = A0B0 (11.4)

C 1 =  A1B1 +  A1A0B0 +  B1A0B0 (11.5)

Following the same procedure, we get

C 2 = A2B2 + A2A1B1 + A2A1A0B0 + A2B1A0B0 + B2A1B1

+ B2A1A0B0 + B2B1A0B0

This process can be repeated for arbitrarily long adders. Each carry term can be 
expressed in SOP form as a function only of the original inputs, with no dependence 
on the carries. Thus, only two levels of gate delay occur regardless of the length of 
the adder.

For long numbers, this approach becomes excessively complicated. Evaluating 
the expression for the most significant bit of an n-bit adder requires an OR gate 
with 2n - 1 inputs and 2n - 1 AND gates with from 2 to n + 1 inputs. Accordingly, 
full carry lookahead is typically done only 4 to 8 bits at a time. Figure 11.21 shows 
how a 32-bit adder can be constructed out of four 8-bit adders. In this case, the carry 
must ripple through the four 8-bit adders, but this will be substantially quicker than 
a ripple through thirty-two 1-bit adders.

 11.4 SEQUENTIAL CIRCUITS

Combinational circuits implement the essential functions of a digital computer. 
However, except for the special case of ROM, they provide no memory or state 
information, elements also essential to the operation of a digital computer. For the 
latter purposes, a more complex form of digital logic circuit is used: the sequential 
circuit. The current output of a sequential circuit depends not only on the current 
input, but also on the past history of inputs. Another and generally more useful way 
to view it is that the current output of a sequential circuit depends on the current 
input and the current state of that circuit.

In this section, we examine some simple but useful examples of sequential 
circuits. As will be seen, the sequential circuit makes use of combinational circuits.

Flip-Flops

The simplest form of sequential circuit is the flip-flop. There are a variety of flip-
flops, all of which share two properties:

 • The flip-flop is a bistable device. It exists in one of two states and, in the 
 absence of input, remains in that state. Thus, the flip-flop can function as a 
1-bit memory.

 • The flip-flop has two outputs, which are always the complements of each 
other. These are generally labeled Q and Q.

THE S–R LATCH Figure 11.22 shows a common configuration known as the S–R 
flip-flop or S–R latch. The circuit has two inputs, S (Set) and R (Reset), and two outputs, 
Q and Q, and consists of two NOR gates connected in a feedback arrangement.
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First, let us show that the circuit is bistable. Assume that both S and R are 0 
and that Q is 0. The inputs to the lower NOR gate are Q = 0 and S = 0. Thus, the 
output Q = 1 means that the inputs to the upper NOR gate are Q = 1 and R = 0, 
which has the output Q = 0. Thus, the state of the circuit is internally consistent 
and remains stable as long as S = R = 0. A similar line of reasoning shows that the 
state Q = 1, Q = 0 is also stable for R = S = 0.

Thus, this circuit can function as a 1-bit memory. We can view the output Q as 
the “value” of the bit. The inputs S and R serve to write the values 1 and 0, respec-
tively, into memory. To see this, consider the state Q = 0, Q = 1, S = 0, R = 0. 
Suppose that S changes to the value 1. Now the inputs to the lower NOR gate are 
S = 1, Q = 0. After some time delay ^t, the output of the lower NOR gate will be 
Q = 0 (see Figure 11.23). So, at this point in time, the inputs to the upper NOR gate 
become R = 0, Q = 0. After another gate delay of ^t the output Q becomes 1. This 
is again a stable state. The inputs to the lower gate are now S = 1, Q = 1, which 
maintain the output Q = 0. As long as S = 1 and R = 0, the outputs will remain 
Q = 1, Q = 0. Furthermore, if S returns to 0, the outputs will remain unchanged.

The R output performs the opposite function. When R goes to 1, it forces 
Q = 0, Q = 1 regardless of the previous state of Q and Q. Again, a time delay of 
2^t occurs before the final state is established (Figure 11.23).

The S–R latch can be defined with a table similar to a truth table, called a 
characteristic table, which shows the next state or states of a sequential circuit as 
a function of current states and inputs. In the case of the S–R latch, the state can 
be defined by the value of Q. Table 11.10a shows the resulting characteristic table. 
Observe that the inputs S = 1, R = 1 are not allowed, because these would pro-
duce an inconsistent output (both Q and Q equal 0). The table can be expressed 
more compactly, as in Table 11.10b. An illustration of the behavior of the S–R latch 
is shown in Table 11.10c.

S

Q

Q

R

Figure 11.22 The S–R Latch Implemented 
with NOR Gates

CLOCKED S–R FLIP-FLOP The output of the S–R latch changes, after a brief 
time delay, in response to a change in the input. This is referred to as asynchronous 
operation. More typically, events in the digital computer are synchronized to a clock 
pulse, so that changes occur only when a clock pulse occurs. Figure 11.24 shows this 
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Figure 11.23 NOR S–R Latch Timing Diagram

Table 11.10 The S–R Latch

(a) Characteristic Table

Current  
Inputs

Current  
State

Next  
State

SR Qn Qn + 1

00 0 0

00 1 1

01 0 0

01 1 0

10 0 1

10 1 1

11 0 —

11 1 —

(b) Simplified Characteristic Table

S R Qn � 1

0 0 Qn

0 1 0

1 0 1

1 1 —

(c) Response to Series of Inputs

t 0 1 2 3 4 5 6 7 8 9

S 1 0 0 0 0 0 0 0 1 0

R 0 0 0 1 0 0 1 0 0 0

Qn�1 1 1 1 0 0 0 0 0 1 1
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arrangement. This device is referred to as a clocked S–R flip-flop. Note that the 
R and S inputs are passed to the NOR gates only during the clock pulse.

D FLIP-FLOP One problem with S–R flip-flop is that the condition R = 1, S = 1 
must be avoided. One way to do this is to allow just a single input. The D flip-flop 
accomplishes this. Figure 11.25 shows a gate implementation of the D flip-flop. By 
using an inverter, the nonclock inputs to the two AND gates are guaranteed to be 
the opposite of each other.

The D flip-flop is sometimes referred to as the data flip-flop because it is, in 
effect, storage for one bit of data. The output of the D flip-flop is always equal to the 
most recent value applied to the input. Hence, it remembers and produces the last 
input. It is also referred to as the delay flip-flop, because it delays a 0 or 1 applied to 
its input for a single clock pulse. We can capture the logic of the D flip-flop in the 
following truth table:

D Qn� 1

0 0

1 1

J–K FLIP-FLOP Another useful flip-flop is the J–K flip-flop. Like the S–R flip-flop, 
it has two inputs. However, in this case all possible combinations of input values are 
valid. Figure 11.26 shows a gate implementation of the J–K flip-flop, and Figure 11.27 
shows its characteristic table (along with those for the S–R and D flip-flops). Note 
that the first three combinations are the same as for the S–R flip-flop. With no input 
asserted, the output is stable. If only the J input is asserted, the result is a set function, 
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Figure 11.24 Clocked S–R Flip-Flop
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Clock

Figure 11.25 D Flip-Flop
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Name Graphical Symbol  Truth Table

S–R

S Q

R Q

S R

0 0

0
1

1

Qn

Qn�1

1
0

–

0
1
1

J–K

J Q

K Q

J K

0 0

0
1

1

Qn

Qn

Qn�1

1
00

1
1

D

D Q

Q

D

0 0
1

Qn�1

1

Ck

Ck

Ck

Figure 11.27 Basic Flip-Flops

causing the output to be 1; if only the K input is asserted, the result is a reset function, 
causing the output to be 0. When both J and K are 1, the function performed is 
referred to as the toggle function: the output is reversed. Thus, if Q is 1 and 1 is applied 
to J and K, then Q becomes 0. The reader should verify that the implementation of  
Figure 11.26 produces this characteristic function.
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Figure 11.26 J–K Flip-Flop
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Registers

As an example of the use of flip-flops, let us first examine one of the essential ele-
ments of the CPU: the register. As we know, a register is a digital circuit used within 
the CPU to store one or more bits of data. Two basic types of registers are com-
monly used: parallel registers and shift registers.

PARALLEL REGISTERS A parallel register consists of a set of 1-bit memories that 
can be read or written simultaneously. It is used to store data. The registers that we 
have discussed throughout this book are parallel registers.

The 8-bit register of Figure 11.28 illustrates the operation of a parallel register 
using D flip-flops. A control signal, labeled load, controls writing into the register 
from signal lines, D11 through D18. These lines might be the output of multiplexers, 
so that data from a variety of sources can be loaded into the register.

SHIFT REGISTER A shift register accepts and/or transfers information serially. 
Consider, for example, Figure 11.29, which shows a 5-bit shift register constructed 
from clocked D flip-flops. Data are input only to the leftmost flip-flop. With each 
clock pulse, data are shifted to the right one position, and the rightmost bit is 
transferred out.

Shift registers can be used to interface to serial I/O devices. In addition, they 
can be used within the ALU to perform logical shift and rotate functions. In this 
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latter capacity, they need to be equipped with parallel read/write circuitry as well 
as serial.

Counters

Another useful category of sequential circuit is the counter. A counter is a register 
whose value is easily incremented by 1 modulo the capacity of the register; that is, 
after the maximum value is achieved the next increment sets the counter value to 0. 
Thus, a register made up of n flip-flops can count up to 2n - 1. An example of a 
counter in the CPU is the program counter.

Counters can be designated as asynchronous or synchronous, depending on 
the way in which they operate. Asynchronous counters are relatively slow because 
the output of one flip-flop triggers a change in the status of the next flip-flop. In a 
synchronous counter, all of the flip-flops change state at the same time. Because the 
latter type is much faster, it is the kind used in CPUs. However, it is useful to begin 
the discussion with a description of an asynchronous counter.

RIPPLE COUNTER An asynchronous counter is also referred to as a ripple counter, 
because the change that occurs to increment the counter starts at one end and 
“ripples” through to the other end. Figure 11.30 shows an implementation of a 
4-bit counter using J–K flip-flops, together with a timing diagram that illustrates its 
behavior. The timing diagram is idealized in that it does not show the propagation 
delay that occurs as the signals move down the series of flip-flops. The output of 
the leftmost flip-flop (Q0) is the least significant bit. The design could clearly be 
extended to an arbitrary number of bits by cascading more flip-flops.
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(a) Sequential circuit

(b) Timing diagram

Figure 11.30 Ripple Counter
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In the illustrated implementation, the counter is incremented with each clock 
pulse. The J and K inputs to each flip-flop are held at a constant 1. This means that, 
when there is a clock pulse, the output at Q will be inverted (1 to 0; 0 to 1). Note that 
the change in state is shown as occurring with the falling edge of the clock pulse; this 
is known as an edge-triggered flip-flop. Using flip-flops that respond to the transi-
tion in a clock pulse rather than the pulse itself provides better timing control in 
complex circuits. If one looks at patterns of output for this counter, it can be seen 
that it cycles through 0000, 0001, …, 1110, 1111, 0000, and so on.

SYNCHRONOUS COUNTERS The ripple counter has the disadvantage of the delay 
involved in changing value, which is proportional to the length of the counter. To 
overcome this disadvantage, CPUs make use of synchronous counters, in which 
all of the flip-flops of the counter change at the same time. In this subsection, we 
present a design for a 3-bit synchronous counter. In doing so, we illustrate some 
basic concepts in the design of a synchronous circuit.

For a 3-bit counter, three flip-flops will be needed. Let us use J–K flip-flops. 
Label the uncomplemented output of the three flip-flops A, B, and C, respectively, 
with C representing the least significant bit. The first step is to construct a truth 
table that relates the J–K inputs and outputs, to allow us to design the overall cir-
cuit. Such a truth table is shown in Figure 11.31a. The first three columns show the 
possible combinations of outputs A, B, and C. They are listed in the order that they 
will appear as the counter is incremented. Each row lists the current value of A, B, 
C and the inputs to the three flip-flops that will be required to reach the next value 
of A, B, C.

To understand the way in which the truth table of Figure 11.31a is constructed, 
it may be helpful to recast the characteristic table for the J–K flip-flop. Recall that 
this table was presented as follows:

J K Qn� 1

0 0 Qn
0 1 0
1 0 1
1 1 Qn� 1

In this form, the table shows the effect that the J and K inputs have on the output. 
Now consider the following organization of the same information:

Qn J K Qn� 1

0 0 d 0
0 1 d 1
1 d 1 0
1 d 0 1

In this form, the table provides the value of the next output when the inputs and 
the present output are known. This is exactly the information needed to design the 
counter or, indeed, any sequential circuit. In this form, the table is referred to as an 
excitation table.
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(c) Logic diagram 
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Figure 11.31 Design of a Synchronous Counter

Let us return to Figure 11.31a. Consider the first row. We want the value of 
A to remain 0, the value of B to remain 0, and the value of C to go from 0 to 1 with 
the next application of a clock pulse. The excitation table shows that to maintain an 
output of 0, we must have inputs of J = 0 and don’t care for K. To effect a transition 
from 0 to 1, the inputs must be J = 1 and K = d. These values are shown in the first 
row of the table. By similar reasoning, the remainder of the table can be filled in.
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Having constructed the truth table of Figure 11.31a, we see that the table 
shows the required values of all of the J and K inputs as functions of the current 
values of A, B, and C. With the aid of Karnaugh maps, we can develop Boolean 
expressions for these six functions. This is shown in part b of the figure. For example, 
the Karnaugh map for the variable Ja (the J input to the flip-flop that produces the 
A output) yields the expression Ja = BC. When all six expressions are derived, it is 
a straightforward matter to design the actual circuit, as shown in part c of the figure.

 11.5 PROGRAMMABLE LOGIC DEVICES

Thus far, we have treated individual gates as building blocks, from which arbitrary 
functions can be realized. The designer could pursue a strategy of minimizing the 
number of gates to be used by manipulating the corresponding Boolean expressions.

As the level of integration provided by integrated circuits increases, other 
considerations apply. Early integrated circuits, using small-scale integration (SSI), 
provided from one to ten gates on a chip. Each gate is treated independently, in the 
building-block approach described so far. To construct a logic function, a number of 
these chips are laid out on a printed circuit board and the appropriate pin intercon-
nections are made.

Increasing levels of integration made it possible to put more gates on a chip and to 
make gate interconnections on the chip as well. This yields the advantages of decreased 
cost, decreased size, and increased speed (because on-chip delays are of shorter dura-
tion than off-chip delays). A design problem arises, however. For each particular logic 
function or set of functions, the layout of gates and interconnections on the chip must 
be designed. The cost and time involved in such custom chip design is high. Thus, it 
becomes attractive to develop a general-purpose chip that can be readily adapted to 
specific purposes. This is the intent of the programmable logic device (PLD).

There are a number of different types of PLDs in commercial use. Table 11.11 
lists some of the key terms and defines some of the most important types. In this 
section, we first look at one of the simplest such devices, the programmable logic 
array (PLA) and then introduce perhaps the most important and widely used type 
of PLD, the field-programmable gate array (FPGA).

Programmable Logic Array

The PLA is based on the fact that any Boolean function (truth table) can be 
expressed in a sum-of-products (SOP) form, as we have seen. The PLA consists of 
a regular arrangement of NOT, AND, and OR gates on a chip. Each chip input is 
passed through a NOT gate so that each input and its complement are available to 
each AND gate. The output of each AND gate is available to each OR gate, and the 
output of each OR gate is a chip output. By making the appropriate connections, 
arbitrary SOP expressions can be implemented.

Figure 11.32a shows a PLA with three inputs, eight gates, and two outputs. On 
the left is a programmable AND array. The AND array is programmed by estab-
lishing a connection between any PLA input or its negation and any AND gate 
input by connecting the corresponding lines at their point of intersection. On the 
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Table 11.11 PLD Terminology

Programmable Logic Device (PLD)

A general term that refers to any type of integrated circuit used for implementing digital hardware, 
where the chip can be configured by the end user to realize different designs. Programming of such 
a device often involves placing the chip into a special programming unit, but some chips can also be 
configured “in-system.” Also referred to as a field-programmable device (FPD).

Programmable Logic Array (PLA)

A relatively small PLD that contains two levels of logic, an AND-plane and an OR-plane, where 
both levels are programmable.

Programmable Array Logic (PAL)

A relatively small PLD that has a programmable AND-plane followed by a fixed OR-plane.

Simple PLD (SPLD)

A PLA or PAL.

Complex PLD (CPLD)

A more complex PLD that consists of an arrangement of multiple SPLD-like blocks on a single 
chip.

Field-Programmable Gate Array (FPGA)

A PLD featuring a general structure that allows very high logic capacity. Whereas CPLDs fea-
ture logic resources with a wide number of inputs (AND planes), FPGAs offer more narrow logic 
resources. FPGAs also offer a higher ratio of flip-flops to logic resources than do CPLDs.

Logic Block

A relatively small circuit block that is replicated in an array in an FPD. When a circuit is imple-
mented in an FPD, it is first decomposed into smaller subcircuits that can each be mapped into a 
logic block. The term logic block is mostly used in the context of FPGAs, but it could also refer to a 
block of circuitry in a CPLD.

right is a programmable OR array, which involves connecting AND gate outputs to 
OR gate inputs. Most larger PLAs contain several hundred gates, 15 to 25 inputs, 
and 5 to 15 outputs. The connections from the inputs to the AND gates, and from 
the AND gates to the OR gates, are not specified until programming time.

PLAs are manufactured in two different ways to allow easy programming 
(making of connections). In the first, every possible connection is made through a 
fuse at every intersection point. The undesired connections can then be later removed 
by blowing the fuses. This type of PLA is referred to as a field-programmable logic 
array. Alternatively, the proper connections can be made during chip fabrication 
by using an appropriate mask supplied for a particular interconnection pattern. In 
either case, the PLA provides a flexible, inexpensive way of implementing digital 
logic functions.

Figure 11.32b shows a programmed PLA that realizes two Boolean expressions.

Field-Programmable Gate Array

The PLA is an example of a simple PLD (SPLD). The difficulty with increasing 
capacity of a strict SPLD architecture is that the structure of the programmable 
logic-planes grows too quickly in size as the number of inputs is increased. The 
only feasible way to provide large capacity devices based on SPLD architectures 
is then to integrate multiple SPLDs onto a single chip and provide interconnect to 
 programmably connect the SPLD blocks together. Many commercial PLD products 
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Figure 11.32 An Example of a Programmable Logic Array
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exist on the market today with this basic structure, and are collectively referred to 
as Complex PLDs (CPLDs). The most important type of CPLD is the FPGA.

An FPGA consists of an array of uncommitted circuit elements, called logic 
blocks, and interconnect resources. An illustration of a typical FPGA architecture is 
shown in Figure 11.33. The key components of an FPGA are;

 • Logic block: The configurable logic blocks are where the computation of the 
user’s circuit takes place.

 • I/O block: The I/O blocks connect I/O pins to the circuitry on the chip.

 • Interconnect: These are signal paths available for establishing connections 
among I/O blocks and logic blocks.

The logic block can be either a combinational circuit or a sequential circuit. In 
essence, the programming of a logic block is done by downloading the contents of 
a truth table for a logic function. Figure 11.34 shows an example of a simple logic 
block consisting of a D flip-flop, a 2-to-1 multiplexer, and a 16-bit lookup table. The 
lookup table is a memory consisting of 16 1-bit elements, so that 4 input lines are 
required to select one of the 16 bits. Larger logic blocks have larger lookup tables 
and multiple interconnected lookup tables. The combinational logic realized by the 
lookup table can be output directly or stored in the D flip-flop and output synchro-
nously. A separate one-bit memory controls the multiplexer to determine whether 
the output comes directly from the lookup table or from the flip-flop.

By interconnecting numerous logic blocks, very complex logic functions can 
be easily implemented.

Logic
block

I/O
block

Figure 11.33 Structure of an FPGA
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 11.6 RECOMMENDED READING

[GREG98] is an easy-to-read introduction to the concepts of this chapter. [STON96] is an 
excellent short introduction. A number of textbooks provide more in-depth treatment; these 
include [MANO08] and [FARH04].

[BROW96] is a worthwhile tutorial on programmable logic devices. [LEON08] looks 
at recent developments in FPGA devices, platforms, and applications.
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Figure 11.34 A Simple FPGA Logic Block
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Press, 2004.
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Key Terms

adder
AND gate
assert
Boolean algebra
clocked S–R flip-flop

combinational circuit
complex PLD (CPLD)
counter
decoder
D flip-flop

excitation table
field-programmable gate  

array (FPGA)
flip-flop
gates
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Problems
 11.1 Construct a truth table for the following Boolean expressions:

a. ABC + A B C
b. ABC + A B C + A B C
c. A(BC + BC)
d. (A + B)(A + C)(A + B)

 11.2 Simplify the following expressions according to the commutative law:
a. A # B + B # A + C # D # E + C # D # E + E # C # D
b. A # B + A # C + B # A
c. (L # M # N)(A # B)(C # D # E)(M # N # L)
d. F # (K + R) + S # V + W # X + V # S + X # W + (R + K) # F

 11.3 Apply DeMorgan’s theorem to the following equations:
a. F = V + A + L
b. F = A + B + C + D

 11.4 Simplify the following expressions:
a. A = S # T + V # W + R # S # T
b. A = T # U # V + X # Y + Y
c. A = F # (E + F + G)
d. A = (P # Q + R + S # T)T # S
e. A = D # D # E
f. A = Y # (W + X + Y + Z) # Z
g. A = (B # E + C + F) # C

 11.5 Construct the operation XOR from the basic Boolean operations AND, OR, 
and NOT.

 11.6 Given a NOR gate and NOT gates, draw a logic diagram that will perform the three-
input AND function.

 11.7 Write the Boolean expression for a four-input NAND gate.
 11.8 A combinational circuit is used to control a seven-segment display of decimal digits, 

as shown in Figure 11.35. The circuit has four inputs, which provide the four-bit code 
used in packed decimal representation (010 = 0000,c , 910 = 1001). The seven out-
puts define which segments will be activated to display a given decimal digit. Note 
that some combinations of inputs and outputs are not needed.
a. Develop a truth table for this circuit.
b. Express the truth table in SOP form.
c. Express the truth table in POS form.
d. Provide a simplified expression.

 11.9 Design an 8-to-1 multiplexer.

graphical symbol
J–K flip-flop
Karnaugh map
logic block
lookup table
multiplexer
NAND gate
NOR
OR gate
parallel register

product of sums (POS)
programmable array logic 

(PAL)
programmable logic array 

(PLA)
programmable logic device 

(PLD)
Quine–McCluskey method
read-only memory (ROM)
register

ripple counter
sequential circuit
shift register
simple PLD (SPLD)
sum of products (SOP)
synchronous counter
S–R Latch
truth table
XOR gate
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 11.10 Add an additional line to Figure 11.15 so that it functions as a demultiplexer.
 11.11 The Gray code is a binary code for integers. It differs from the ordinary binary rep-

resentation in that there is just a single bit change between the representations of 
any two numbers. This is useful for applications such as counters or analog-to-digital 
converters where a sequence of numbers is generated. Because only one bit changes 
at a time, there is never any ambiguity due to slight timing differences. The first eight 
elements of the code are

Binary Code Gray Code

000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

  Design a circuit that converts from binary to Gray code.
 11.12 Design a 5 * 32 decoder using four 3 * 8 decoders (with enable inputs) and one 

2 * 4 decoder.
 11.13 Implement the full adder of Figure 11.20 with just five gates. (Hint: Some of the gates 

are XOR gates.)
 11.14 Consider Figure 11.20. Assume that each gate produces a delay of 10 ns. Thus, the sum 

output is valid after 30 ns and the carry output after 0 ns. What is the total add time 
for a 32-bit adder
a. Implemented without carry lookahead, as in Figure 11.19?
b. Implemented with carry lookahead and using 8-bit adders, as in Figure 11.21?

 11.15 An alternative form of the S–R latch has the same structure as Figure 11.22 but uses 
NAND gates instead of NOR gates.
a. Redo Table 11.10a and 11.10b for S–R latch implemented with NAND gates.
b. Complete the following table, similar to Table 11.10c

Combinational
circuit
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Z2 Z2
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(b)

Figure 11.35 Seven-Segment LED Display Example
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 11.16 Consider the graphic symbol for the S–R flip-flop in Figure 11.27. Add additional lines 
to depict a D flip-flop wired from the S–R flip-flop.

 11.17 Show the structure of a PLA with three inputs (C, B, A) and four outputs (O0, O1, 
O2, O3) with the outputs defined as follows:

O0 = A BC + AB + ABC
O1 = A BC + ABC
O2 = C
O3 = AB + ABC

 11.18 An interesting application of a PLA is conversion from the old, obsolete punched 
cards character codes to ASCII codes. The standard punched cards that were so popu-
lar with computers in the past had 12 rows and 80 columns where holes could be 
punched. Each column corresponded to one character, so each character had a 12-bit 
code. However, only 96 characters were actually used. Consider an application that 
reads punched cards and converts the character codes to ASCII.
a. Describe a PLA implementation of this application.
b. Can this problem be solved with a ROM? Explain.

t 0 1 2 3 4 5 6 7 8 9

S 0 1 1 1 1 1 0 1 0 1

R 1 1 0 1 0 1 1 1 0 0
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Much of what is discussed in this book is not readily apparent to the user or 
 programmer of a computer. If a programmer is using a high-level language, such 
as Pascal or Ada, very little of the architecture of the underlying machine is visible.

One boundary where the computer designer and the computer programmer 
can view the same machine is the machine instruction set. From the designer’s point 
of view, the machine instruction set provides the functional requirements for the 
processor: implementing the processor is a task that in large part involves imple-
menting the machine instruction set. The user who chooses to program in machine 
language (actually, in assembly language; see Appendix B) becomes aware of the 
register and memory structure, the types of data directly supported by the machine, 
and the functioning of the ALU.

A description of a computer’s machine instruction set goes a long way toward 
explaining the computer’s processor. Accordingly, we focus on machine instructions 
in this chapter and the next.

 12.1 MACHINE INSTRUCTION CHARACTERISTICS

The operation of the processor is determined by the instructions it executes, 
referred to as machine instructions or computer instructions. The collection of dif-
ferent instructions that the processor can execute is referred to as the processor’s 
instruction set.

Elements of a Machine Instruction

Each instruction must contain the information required by the processor for execu-
tion. Figure 12.1, which repeats Figure 3.6, shows the steps involved in instruction 
execution and, by implication, defines the elements of a machine instruction. These 
elements are as follows:

 • Operation code: Specifies the operation to be performed (e.g., ADD, I/O). 
The operation is specified by a binary code, known as the operation code, or 
opcode.

 • Source operand reference: The operation may involve one or more source 
operands, that is, operands that are inputs for the operation.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Present an overview of essential characteristics of machine instructions.
� Describe the types of operands used in typical machine instruction sets.
� Present an overview of x86 and ARM data types.
� Describe the types of operands supported by typical machine instruction sets.
� Present an overview of x86 and ARM operation types.
� Understand the differences among big endian, little endian, and bi-endian.
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 • Result operand reference: The operation may produce a result.

 • Next instruction reference: This tells the processor where to fetch the next 
instruction after the execution of this instruction is complete.

The address of the next instruction to be fetched could be either a real address 
or a virtual address, depending on the architecture. Generally, the distinction is 
transparent to the instruction set architecture. In most cases, the next instruction to 
be fetched immediately follows the current instruction. In those cases, there is no 
explicit reference to the next instruction. When an explicit reference is needed, then 
the main memory or virtual memory address must be supplied. The form in which 
that address is supplied is discussed in Chapter 13.

Source and result operands can be in one of four areas:

 • Main or virtual memory: As with next instruction references, the main or vir-
tual memory address must be supplied.

 • Processor register: With rare exceptions, a processor contains one or more 
registers that may be referenced by machine instructions. If only one register 
exists, reference to it may be implicit. If more than one register exists, then 
each register is assigned a unique name or number, and the instruction must 
contain the number of the desired register.

 • Immediate: The value of the operand is contained in a field in the instruction 
being executed.

 • I/O device: The instruction must specify the I/O module and device for the 
operation. If memory-mapped I/O is used, this is just another main or virtual 
memory address.

Instruction Representation

Within the computer, each instruction is represented by a sequence of bits. The 
instruction is divided into fields, corresponding to the constituent elements of the 
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Figure 12.1 Instruction Cycle State Diagram
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instruction. A simple example of an instruction format is shown in Figure 12.2. As 
another example, the IAS instruction format is shown in Figure 2.2. With most 
instruction sets, more than one format is used. During instruction execution, an 
instruction is read into an instruction register (IR) in the processor. The processor 
must be able to extract the data from the various instruction fields to perform the 
required operation.

It is difficult for both the programmer and the reader of textbooks to deal with 
binary representations of machine instructions. Thus, it has become common prac-
tice to use a symbolic representation of machine instructions. An example of this 
was used for the IAS instruction set, in Table 2.1.

Opcodes are represented by abbreviations, called mnemonics, that indicate 
the operation. Common examples include

ADD Add

SUB Subtract

MUL Multiply

DIV Divide

LOAD Load data from memory

STOR Store data to memory

Operands are also represented symbolically. For example, the instruction

ADD R, Y

may mean add the value contained in data location Y to the contents of register R. 
In this example, Y refers to the address of a location in memory, and R refers to a 
particular register. Note that the operation is performed on the contents of a loca-
tion, not on its address.

Thus, it is possible to write a machine-language program in symbolic form. 
Each symbolic opcode has a fixed binary representation, and the programmer speci-
fies the location of each symbolic operand. For example, the programmer might 
begin with a list of definitions:

 X = 513

 Y = 514

and so on. A simple program would accept this symbolic input, convert opcodes and 
operand references to binary form, and construct binary machine instructions.

Machine-language programmers are rare to the point of nonexistence. Most pro-
grams today are written in a high-level language or, failing that, assembly language, 
which is discussed in Appendix B. However, symbolic machine language remains a 
useful tool for describing machine instructions, and we will use it for that purpose.

Opcode

4 Bits 6 Bits 6 Bits

16 Bits

Operand reference Operand reference

Figure 12.2 A Simple Instruction Format
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Instruction Types

Consider a high-level language instruction that could be expressed in a language 
such as BASIC or FORTRAN. For example,

X = X + Y

This statement instructs the computer to add the value stored in Y to the value 
stored in X and put the result in X. How might this be accomplished with machine 
instructions? Let us assume that the variables X and Y correspond to locations 513 
and 514. If we assume a simple set of machine instructions, this operation could be 
accomplished with three instructions:

 1. Load a register with the contents of memory location 513.

 2. Add the contents of memory location 514 to the register.

 3. Store the contents of the register in memory location 513.

As can be seen, the single BASIC instruction may require three machine 
instructions. This is typical of the relationship between a high-level language and 
a machine language. A high-level language expresses operations in a concise alge-
braic form, using variables. A machine language expresses operations in a basic 
form involving the movement of data to or from registers.

With this simple example to guide us, let us consider the types of instructions 
that must be included in a practical computer. A computer should have a set of 
instructions that allows the user to formulate any data processing task. Another way 
to view it is to consider the capabilities of a high-level programming language. Any 
program written in a high-level language must be translated into machine language 
to be executed. Thus, the set of machine instructions must be sufficient to express 
any of the instructions from a high-level language. With this in mind we can catego-
rize instruction types as follows:

 • Data processing: Arithmetic and logic instructions

 • Data storage: Movement of data into or out of register and or memory 
locations

 • Data movement: I/O instructions

 • Control: Test and branch instructions

Arithmetic instructions provide computational capabilities for processing 
numeric data. Logic (Boolean) instructions operate on the bits of a word as bits 
rather than as numbers; thus, they provide capabilities for processing any other type 
of data the user may wish to employ. These operations are performed primarily on 
data in processor registers. Therefore, there must be memory instructions for mov-
ing data between memory and the registers. I/O instructions are needed to transfer 
programs and data into memory and the results of computations back out to the 
user. Test instructions are used to test the value of a data word or the status of 
a computation. Branch instructions are then used to branch to a different set of 
instructions depending on the decision made.

We will examine the various types of instructions in greater detail later in this 
chapter.
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Number of Addresses

One of the traditional ways of describing processor architecture is in terms of the 
number of addresses contained in each instruction. This dimension has become less 
significant with the increasing complexity of processor design. Nevertheless, it is 
useful at this point to draw and analyze this distinction.

What is the maximum number of addresses one might need in an instruc-
tion? Evidently, arithmetic and logic instructions will require the most operands. 
Virtually all arithmetic and logic operations are either unary (one source operand) 
or binary (two source operands). Thus, we would need a maximum of two addresses 
to reference source operands. The result of an operation must be stored, suggesting 
a third address, which defines a destination operand. Finally, after completion of an 
instruction, the next instruction must be fetched, and its address is needed.

This line of reasoning suggests that an instruction could plausibly be required 
to contain four address references: two source operands, one destination operand, 
and the address of the next instruction. In most architectures, most instructions have 
one, two, or three operand addresses, with the address of the next instruction being 
implicit (obtained from the program counter). Most architectures also have a few 
special-purpose instructions with more operands. For example, the load and store 
multiple instructions of the ARM architecture, described in Chapter 13, designate 
up to 17 register operands in a single instruction.

Figure 12.3 compares typical one-, two-, and three-address instructions that 
could be used to compute Y = (A - B)>[C + (D * E)]. With three addresses, 
each instruction specifies two source operand locations and a destination operand 
location. Because we choose not to alter the value of any of the operand locations, 
a temporary location, T, is used to store some intermediate results. Note that there 
are four instructions and that the original expression had five operands.

Instruction Comment

SUB Y, A, B Y  A � B 
MPY T, D, E T  D � E 
ADD T, T, C T  T � C
DIV Y, Y, T Y  Y � T

(a) Three-address instructions

Instruction Comment

MOVE Y, A Y  A
SUB Y, B Y  Y � B 
MOVE T, D T  D
MPY T, E T  T � E 
ADD T, C T  T � C
DIV Y, T Y  Y � T

Instruction Comment

LOAD D AC  D
MPY E AC  AC � E 
ADD C AC  AC � C
STOR Y Y  AC
LOAD A AC  A
SUB B AC  AC � B 
DIV Y AC  AC � Y
STOR Y Y  AC

(b) Two-address instructions (c) One-address instructions

Figure 12.3 Programs to Execute Y =  
A - B

C + (D * E)
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Three-address instruction formats are not common because they require a 
relatively long instruction format to hold the three address references. With two-
address instructions, and for binary operations, one address must do double duty as 
both an operand and a result. Thus, the instruction SUB Y, B carries out the calcu-
lation Y - B and stores the result in Y. The two-address format reduces the space 
requirement but also introduces some awkwardness. To avoid altering the value of 
an operand, a MOVE instruction is used to move one of the values to a result or 
temporary location before performing the operation. Our sample program expands 
to six instructions.

Simpler yet is the one-address instruction. For this to work, a second address 
must be implicit. This was common in earlier machines, with the implied address 
being a processor register known as the accumulator (AC). The accumulator con-
tains one of the operands and is used to store the result. In our example, eight 
instructions are needed to accomplish the task.

It is, in fact, possible to make do with zero addresses for some instructions. 
Zero-address instructions are applicable to a special memory organization called 
a stack. A stack is a last-in-first-out set of locations. The stack is in a known loca-
tion and, often, at least the top two elements are in processor registers. Thus, 
zero-address instructions would reference the top two stack elements. Stacks are 
described in Appendix O. Their use is explored further later in this chapter and in 
Chapter 13.

Table 12.1 summarizes the interpretations to be placed on instructions with 
zero, one, two, or three addresses. In each case in the table, it is assumed that the 
address of the next instruction is implicit, and that one operation with two source 
operands and one result operand is to be performed.

The number of addresses per instruction is a basic design decision. Fewer 
addresses per instruction result in instructions that are more primitive, requiring a 
less complex processor. It also results in instructions of shorter length. On the other 
hand, programs contain more total instructions, which in general results in longer 
execution times and longer, more complex programs. Also, there is an important 
threshold between one-address and multiple-address instructions. With one-address 
instructions, the programmer generally has available only one general-purpose reg-
ister, the accumulator. With multiple-address instructions, it is common to have 
multiple general-purpose registers. This allows some operations to be performed 

Table 12.1 Utilization of Instruction Addresses (Nonbranching Instructions)

Number of Addresses Symbolic Representation Interpretation

3 OP A, B, C A d B OP C

2 OP A, B A d A OP B

1 OP A AC d AC OP A

0 OP T d (T - 1) OP  T

AC = accumulator
T = top of stack
(T - 1) = second element of stack
A, B, C = memory or register locations
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solely on registers. Because register references are faster than memory references, 
this speeds up execution. For reasons of flexibility and ability to use multiple reg-
isters, most contemporary machines employ a mixture of two- and three-address 
instructions.

The design trade-offs involved in choosing the number of addresses per instruc-
tion are complicated by other factors. There is the issue of whether an address refer-
ences a memory location or a register. Because there are fewer registers, fewer bits 
are needed for a register reference. Also, as we shall see in Chapter 13, a machine 
may offer a variety of addressing modes, and the specification of mode takes one or 
more bits. The result is that most processor designs involve a variety of instruction 
formats.

Instruction Set Design

One of the most interesting, and most analyzed, aspects of computer design is 
instruction set design. The design of an instruction set is very complex because it 
affects so many aspects of the computer system. The instruction set defines many 
of the functions performed by the processor and thus has a significant effect on the 
implementation of the processor. The instruction set is the programmer’s means of 
controlling the processor. Thus, programmer requirements must be considered in 
designing the instruction set.

It may surprise you to know that some of the most fundamental issues relat-
ing to the design of instruction sets remain in dispute. Indeed, in recent years, the 
level of disagreement concerning these fundamentals has actually grown. The most 
important of these fundamental design issues include the following:

 • Operation repertoire: How many and which operations to provide, and how 
complex operations should be

 • Data types: The various types of data upon which operations are performed

 • Instruction format: Instruction length (in bits), number of addresses, size of 
various fields, and so on

 • Registers: Number of processor registers that can be referenced by instruc-
tions, and their use

 • Addressing: The mode or modes by which the address of an operand is 
specified

These issues are highly interrelated and must be considered together in design-
ing an instruction set. This book, of course, must consider them in some sequence, 
but an attempt is made to show the interrelationships.

Because of the importance of this topic, much of Part Three is devoted to 
instruction set design. Following this overview section, this chapter examines data 
types and operation repertoire. Chapter 13 examines addressing modes (which 
includes a consideration of registers) and instruction formats. Chapter 15 examines 
the reduced instruction set computer (RISC). RISC architecture calls into ques-
tion many of the instruction set design decisions traditionally made in commercial 
computers.
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 12.2 TYPES OF OPERANDS

Machine instructions operate on data. The most important general categories of 
data are

 • Addresses

 • Numbers

 • Characters

 • Logical data

We shall see, in discussing addressing modes in Chapter 13, that addresses 
are, in fact, a form of data. In many cases, some calculation must be performed on 
the operand reference in an instruction to determine the main or virtual memory 
address. In this context, addresses can be considered to be unsigned integers.

Other common data types are numbers, characters, and logical data, and each 
of these is briefly examined in this section. Beyond that, some machines define spe-
cialized data types or data structures. For example, there may be machine opera-
tions that operate directly on a list or a string of characters.

Numbers

All machine languages include numeric data types. Even in nonnumeric data pro-
cessing, there is a need for numbers to act as counters, field widths, and so forth. 
An important distinction between numbers used in ordinary mathematics and num-
bers stored in a computer is that the latter are limited. This is true in two senses. 
First, there is a limit to the magnitude of numbers representable on a machine and 
second, in the case of floating-point numbers, a limit to their precision. Thus, the 
programmer is faced with understanding the consequences of rounding, overflow, 
and underflow.

Three types of numerical data are common in computers:

 • Binary integer or binary fixed point

 • Binary floating point

 • Decimal

We examined the first two in some detail in Chapter 10. It remains to say a few 
words about decimal numbers.

Although all internal computer operations are binary in nature, the human 
users of the system deal with decimal numbers. Thus, there is a necessity to convert 
from decimal to binary on input and from binary to decimal on output. For applica-
tions in which there is a great deal of I/O and comparatively little, comparatively 
simple computation, it is preferable to store and operate on the numbers in decimal 
form. The most common representation for this purpose is packed decimal.1

1Textbooks often refer to this as binary coded decimal (BCD). Strictly speaking, BCD refers to the 
 encoding of each decimal digit by a unique 4-bit sequence. Packed decimal refers to the storage of BCD-
encoded digits using one byte for each two digits.
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With packed decimal, each decimal digit is represented by a 4-bit code, in the 
obvious way, with two digits stored per byte. Thus, 0 = 000, 1 = 0001, c, 8 = 1000, 
and 9 = 1001. Note that this is a rather inefficient code because only 10 of 16 pos-
sible 4-bit values are used. To form numbers, 4-bit codes are strung together, usu-
ally in multiples of 8 bits. Thus, the code for 246 is 0000 0010 0100 0110. This code 
is clearly less compact than a straight binary representation, but it avoids the con-
version overhead. Negative numbers can be represented by including a 4-bit sign 
digit at either the left or right end of a string of packed decimal digits. Standard sign 
values are 1100 for positive (+) and 1101 for negative (-).

Many machines provide arithmetic instructions for performing operations 
directly on packed decimal numbers. The algorithms are quite similar to those 
described in Section 9.3 but must take into account the decimal carry operation.

Characters

A common form of data is text or character strings. While textual data are most 
convenient for human beings, they cannot, in character form, be easily stored or 
transmitted by data processing and communications systems. Such systems are 
designed for binary data. Thus, a number of codes have been devised by which char-
acters are represented by a sequence of bits. Perhaps the earliest common example 
of this is the Morse code. Today, the most commonly used character code in the 
International Reference Alphabet (IRA), referred to in the United States as the 
American Standard Code for Information Interchange (ASCII; see Appendix F). 
Each character in this code is represented by a unique 7-bit pattern; thus, 128 dif-
ferent characters can be represented. This is a larger number than is necessary to 
represent printable characters, and some of the patterns represent control char-
acters. Some of these control characters have to do with controlling the printing 
of characters on a page. Others are concerned with communications procedures. 
 IRA-encoded characters are almost always stored and transmitted using 8 bits per 
character. The eighth bit may be set to 0 or used as a parity bit for error detection. 
In the latter case, the bit is set such that the total number of binary 1s in each octet 
is always odd (odd parity) or always even (even parity).

Note in Table F.1 (Appendix F) that for the IRA bit pattern 011XXXX, the 
digits 0 through 9 are represented by their binary equivalents, 0000 through 1001, in 
the rightmost 4 bits. This is the same code as packed decimal. This facilitates con-
version between 7-bit IRA and 4-bit packed decimal representation.

Another code used to encode characters is the Extended Binary Coded 
Decimal Interchange Code (EBCDIC). EBCDIC is used on IBM mainframes. It 
is an 8-bit code. As with IRA, EBCDIC is compatible with packed decimal. In 
the case of EBCDIC, the codes 11110000 through 11111001 represent the digits  
0 through 9.

Logical Data

Normally, each word or other addressable unit (byte, halfword, and so on) is treated 
as a single unit of data. It is sometimes useful, however, to consider an n-bit unit as 
consisting of n 1-bit items of data, each item having the value 0 or 1. When data are 
viewed this way, they are considered to be logical data.
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There are two advantages to the bit-oriented view. First, we may sometimes wish 
to store an array of Boolean or binary data items, in which each item can take on only 
the values 1 (true) and 0 (false). With logical data, memory can be used most efficiently 
for this storage. Second, there are occasions when we wish to manipulate the bits of a 
data item. For example, if floating-point operations are implemented in software, we 
need to be able to shift significant bits in some operations. Another example: To con-
vert from IRA to packed decimal, we need to extract the rightmost 4 bits of each byte.

Note that, in the preceding examples, the same data are treated sometimes as 
logical and other times as numerical or text. The “type” of a unit of data is deter-
mined by the operation being performed on it. While this is not normally the case in 
high-level languages, it is almost always the case with machine language.

 12.3 INTEL x86 AND ARM DATA TYPES

x86 Data Types

The x86 can deal with data types of 8 (byte), 16 (word), 32 (doubleword), 64 (quad-
word), and 128 (double quadword) bits in length. To allow maximum flexibility in 
data structures and efficient memory utilization, words need not be aligned at even-
numbered addresses; doublewords need not be aligned at addresses evenly divisible 
by 4; and quadwords need not be aligned at addresses evenly divisible by 8; and 
so on. However, when data are accessed across a 32-bit bus, data transfers take 
place in units of doublewords, beginning at addresses divisible by 4. The processor 
converts the request for misaligned values into a sequence of requests for the bus 
transfer. As with all of the Intel 80x86 machines, the x86 uses the little-endian style; 
that is, the least significant byte is stored in the lowest address (see Appendix 12A 
for a discussion of endianness).

The byte, word, doubleword, quadword, and double quadword are referred to 
as general data types. In addition, the x86 supports an impressive array of specific 
data types that are recognized and operated on by particular instructions. Table 12.2 
summarizes these types.

Figure 12.4 illustrates the x86 numerical data types. The signed integers are in 
twos complement representation and may be 16, 32, or 64 bits long. The floating-
point type actually refers to a set of types that are used by the floating-point unit 
and operated on by floating-point instructions. The three floating-point representa-
tions conform to the IEEE 754 standard.

The packed SIMD (single-instruction-multiple-data) data types were intro-
duced to the x86 architecture as part of the extensions of the instruction set to 
optimize performance of multimedia applications. These extensions include MMX 
(multimedia extensions) and SSE (streaming SIMD extensions). The basic concept 
is that multiple operands are packed into a single referenced memory item and that 
these multiple operands are operated on in parallel. The data types are as follows:

 • Packed byte and packed byte integer: Bytes packed into a 64-bit quadword or 
128-bit double quadword, interpreted as a bit field or as an integer

 • Packed word and packed word integer: 16-bit words packed into a 64-bit quad-
word or 128-bit double quadword, interpreted as a bit field or as an integer
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 • Packed doubleword and packed doubleword integer: 32-bit doublewords 
packed into a 64-bit quadword or 128-bit double quadword, interpreted as a 
bit field or as an integer

 • Packed quadword and packed qaudword integer: Two 64-bit quadwords
packed into a 128-bit double quadword, interpreted as a bit field or as an integer

 • Packed single-precision floating-point and packed double-precision floating-
point: Four 32-bit floating-point or two 64-bit floating-point values packed 
into a 128-bit double quadword

ARM Data Types

ARM processors support data types of 8 (byte), 16 (halfword), and 32 (word) bits 
in length. Normally, halfword access should be halfword aligned and word accesses 
should be word aligned. For nonaligned access attempts, the architecture supports 
three alternatives.

 • Default case:

–   The address is treated as truncated, with address bits[1:0] treated as zero 
for word accesses, and address bit[0] treated as zero for halfword accesses.

Table 12.2 x86 Data Types

Data Type Description

General Byte, word (16 bits), doubleword (32 bits), quadword (64 bits), and 
double quadword (128 bits) locations with arbitrary binary contents.

Integer A signed binary value contained in a byte, word, or doubleword, using 
twos complement representation.

Ordinal An unsigned integer contained in a byte, word, or doubleword.

Unpacked binary coded 
decimal (BCD)

A representation of a BCD digit in the range 0 through 9, with one 
digit in each byte.

Packed BCD Packed byte representation of two BCD digits; value in the range 0 to 99.

Near pointer A 16-bit, 32-bit, or 64-bit effective address that represents the offset 
within a segment. Used for all pointers in a nonsegmented memory and 
for references within a segment in a segmented memory.

Far pointer A logical address consisting of a 16-bit segment selector and an offset 
of 16, 32, or 64 bits. Far pointers are used for memory references in a 
segmented memory model where the identity of a segment being 
accessed must be specified explicitly.

Bit field A contiguous sequence of bits in which the position of each bit is  
considered as an independent unit. A bit string can begin at any bit  
position of any byte and can contain up to 32 bits.

Bit string A contiguous sequence of bits, containing from zero to 232 - 1 bits.

Byte string A contiguous sequence of bytes, words, or doublewords, containing from 
zero to 232 - 1 bytes.

Floating point See Figure 12.4.

Packed SIMD (single 
instruction, multiple data)

Packed 64-bit and 128-bit data types
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–   Load single word ARM instructions are architecturally defined to rotate right 
the word-aligned data transferred by a non word-aligned address one, two, or 
three bytes depending on the value of the two least significant address bits.

 • Alignment checking: When the appropriate control bit is set, a data abort sig-
nal indicates an alignment fault for attempting unaligned access.

 • Unaligned access: When this option is enabled, the processor uses one or more 
memory accesses to generate the required transfer of adjacent bytes transpar-
ently to the programmer.

For all three data types (byte, halfword, and word) an unsigned interpretation 
is supported, in which the value represents an unsigned, nonnegative integer. All 
three data types can also be used for twos complement signed integers.

The majority of ARM processor implementations do not provide floating-
point hardware, which saves power and area. If floating-point arithmetic is required 
in such processors, it must be implemented in software. ARM does support an 
optional floating-point coprocessor that supports the single- and double-precision 
floating point data types defined in IEEE 754.

Sign bit

Sign bit

Sign bit

Integer bit

Exponent Significand

Exp Significand

Exp Significand

Twos complement

Twos complement

Twos comp

Twos comp

Byte unsigned integer

Word unsigned integer

Doubleword unsigned integer

Quadword unsigned integer

Byte signed integer

Word unsigned integer

Doubleword unsigned integer

Quadword unsigned integer

Single precision
floating point

Double precision
Floating point

Double extended precision
floating point

07

7

015

15

031

31

31

063

63

63

6379

0

0

0

0

0

051

0

Figure 12.4 x86 Numeric Data Formats
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ENDIAN SUPPORT A state bit (E-bit) in the system control register is set and cleared 
under program control using the SETEND instruction. The E-bit defines which 
endian to load and store data. Figure 12.5 illustrates the functionality associated 
with the E-bit for a word load or store operation. This mechanism enables efficient 
dynamic data load/store for system designers who know they need to access data 
structures in the opposite endianness to their OS/environment. Note that the address 
of each data byte is fixed in memory. However, the byte lane in a register is different.

 12.4 TYPES OF OPERATIONS

The number of different opcodes varies widely from machine to machine. However, 
the same general types of operations are found on all machines. A useful and typical 
categorization is the following:

 • Data transfer

 • Arithmetic

 • Logical

 • Conversion

 • I/O

 • System control

 • Transfer of control

Table 12.3 (based on [HAYE98]) lists common instruction types in each cat-
egory. This section provides a brief survey of these various types of operations, 
together with a brief discussion of the actions taken by the processor to execute a 
particular type of operation (summarized in Table 12.4). The latter topic is  examined 
in more detail in Chapter 14.

Byte 3

Data bytes
in memory

(ascending address values
from byte 0 to byte 3)

ARM register

Program status register E-bit = 0 Program status register E-bit = 1

ARM register

Byte 2

Byte 1

Byte 0

031 031

Byte 1Byte 2Byte 3 Byte 0 Byte 1 Byte 2 Byte 3

Byte 0

Figure 12.5 ARM Endian Support—Word Load/Store with E-Bit
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(continued)

Table 12.3 Common Instruction Set Operations

Type Operation Name Description

Data transfer

Move (transfer) Transfer word or block from source to destination

Store Transfer word from processor to memory

Load (fetch) Transfer word from memory to processor

Exchange Swap contents of source and destination

Clear (reset) Transfer word of 0s to destination

Set Transfer word of 1s to destination

Push Transfer word from source to top of stack

Pop Transfer word from top of stack to destination

Arithmetic

Add Compute sum of two operands

Subtract Compute difference of two operands

Multiply Compute product of two operands

Divide Compute quotient of two operands

Absolute Replace operand by its absolute value

Negate Change sign of operand

Increment Add 1 to operand

Decrement Subtract 1 from operand

Logical

AND Perform logical AND

OR Perform logical OR

NOT (complement) Perform logical NOT

Exclusive-OR Perform logical XOR

Test Test specified condition; set flag(s) based on outcome

Compare Make logical or arithmetic comparison of two or more 
operands; set flag(s) based on outcome

Set Control Variables Class of instructions to set controls for protection 
purposes, interrupt handling, timer control, etc.

Shift Left (right) shift operand, introducing constants at end

Rotate Left (right) shift operand, with wraparound end

Transfer of control

Jump (branch) Unconditional transfer; load PC with specified address

Jump Conditional Test specified condition; either load PC with specified 
address or do nothing, based on condition

Jump to Subroutine Place current program control information in known 
location; jump to specified address

Return Replace contents of PC and other register from known location

Execute Fetch operand from specified location and execute as 
instruction; do not modify PC

Skip Increment PC to skip next instruction

Skip Conditional Test specified condition; either skip or do nothing based  
on condition

Halt Stop program execution

Wait (hold) Stop program execution; test specified condition repeatedly; 
resume execution when condition is satisfied

No operation No operation is performed, but program execution is continued
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Data Transfer

The most fundamental type of machine instruction is the data transfer instruction. 
The data transfer instruction must specify several things. First, the location of the 
source and destination operands must be specified. Each location could be memory, 
a register, or the top of the stack. Second, the length of data to be transferred must 
be indicated. Third, as with all instructions with operands, the mode of addressing 
for each operand must be specified. This latter point is discussed in Chapter 13.

The choice of data transfer instructions to include in an instruction set exem-
plifies the kinds of trade-offs the designer must make. For example, the general 
location (memory or register) of an operand can be indicated in either the specifica-
tion of the opcode or the operand. Table 12.5 shows examples of the most common 
IBM EAS/390 data transfer instructions. Note that there are variants to indicate 

Type Operation Name Description

Input/output

Input (read) Transfer data from specified I/O port or device to destination 
(e.g., main memory or processor register)

Output (write) Transfer data from specified source to I/O port or device

Start I/O Transfer instructions to I/O processor to initiate I/O operation

Test I/O Transfer status information from I/O system to specified 
destination

Conversion

Translate Translate values in a section of memory based on a table  
of correspondences

Convert Convert the contents of a word from one form to another 
(e.g., packed decimal to binary)

Table 12.4 Processor Actions for Various Types of Operations

Data transfer

Transfer data from one location to another

If memory is involved:
  Determine memory address
  Perform virtual-to-actual-memory address transformation
  Check cache
  Initiate memory read/write

Arithmetic

May involve data transfer, before and/or after

Perform function in ALU

Set condition codes and flags

Logical Same as arithmetic

Conversion
Similar to arithmetic and logical. May involve special logic to perform 
conversion

Transfer of control
Update program counter. For subroutine call/return, manage parameter 
passing and linkage

I/O
Issue command to I/O module

If memory-mapped I/O, determine memory-mapped address

Table 12.3 Continued
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the amount of data to be transferred (8, 16, 32, or 64 bits). Also, there are different 
instructions for register to register, register to memory, memory to register, and 
memory to memory transfers. In contrast, the VAX has a move (MOV) instruction 
with variants for different amounts of data to be moved, but it specifies whether an 
operand is register or memory as part of the operand. The VAX approach is some-
what easier for the programmer, who has fewer mnemonics to deal with. However, 
it is also somewhat less compact than the IBM EAS/390 approach because the loca-
tion (register versus memory) of each operand must be specified separately in the 
instruction. We will return to this distinction when we discuss instruction formats in 
Chapter 13.

In terms of processor action, data transfer operations are perhaps the simplest 
type. If both source and destination are registers, then the processor simply causes 
data to be transferred from one register to another; this is an operation internal to 
the processor. If one or both operands are in memory, then the processor must per-
form some or all of the following actions:

 1. Calculate the memory address, based on the address mode (discussed in 
Chapter 13).

 2. If the address refers to virtual memory, translate from virtual to real memory 
address.

 3. Determine whether the addressed item is in cache.

 4. If not, issue a command to the memory module.

Table 12.5 Examples of IBM EAS/390 Data Transfer Operations

Operation 
Mnemonic Name

Number of Bits 
Transferred Description

L Load 32 Transfer from memory to register

LH Load Halfword 16 Transfer from memory to register

LR Load 32 Transfer from register to register

LER Load (short) 32 Transfer from floating-point register to 
floating-point register

LE Load (short) 32 Transfer from memory to floating-point 
register

LDR Load (long) 64 Transfer from floating-point register to 
floating-point register

LD Load (long) 64 Transfer from memory to floating-point 
register

ST Store 32 Transfer from register to memory

STH Store Halfword 16 Transfer from register to memory

STC Store Character 8 Transfer from register to memory

STE Store (short) 32 Transfer from floating-point register to 
memory

STD Store (long) 64 Transfer from floating-point register to 
memory
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Arithmetic

Most machines provide the basic arithmetic operations of add, subtract, multi-
ply, and divide. These are invariably provided for signed integer (fixed-point) 
numbers. Often they are also provided for floating-point and packed decimal 
numbers.

Other possible operations include a variety of single-operand instructions; for 
example,

 • Absolute: Take the absolute value of the operand.

 • Negate: Negate the operand.

 • Increment: Add 1 to the operand.

 • Decrement: Subtract 1 from the operand.

The execution of an arithmetic instruction may involve data transfer opera-
tions to position operands for input to the ALU, and to deliver the output of the 
ALU. Figure 3.5 illustrates the movements involved in both data transfer and arith-
metic operations. In addition, of course, the ALU portion of the processor performs 
the desired operation.

Logical

Most machines also provide a variety of operations for manipulating individual bits 
of a word or other addressable units, often referred to as “bit twiddling.” They are 
based upon Boolean operations (see Chapter 11).

Some of the basic logical operations that can be performed on Boolean or 
binary data are shown in Table 12.6. The NOT operation inverts a bit. AND, OR, 
and Exclusive-OR (XOR) are the most common logical functions with two oper-
ands. EQUAL is a useful binary test.

These logical operations can be applied bitwise to n-bit logical data units. 
Thus, if two registers contain the data

 (R1) = 10100101

 (R2) = 00001111

then

(R1) AND (R2) = 00000101

Table 12.6 Basic Logical Operations

P Q NOT P P AND Q P OR Q P XOR Q P � Q

0 0 1 0 0 0 1

0 1 1 0 1 1 0

1 0 0 0 1 1 0

1 1 0 1 1 0 1
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where the notation (X) means the contents of location X. Thus, the AND operation 
can be used as a mask that selects certain bits in a word and zeros out the remaining 
bits. As another example, if two registers contain

 (R1) = 10100101

 (R2) = 11111111

then

(R1) XOR (R2) = 01011010

With one word set to all 1s, the XOR operation inverts all of the bits in the other 
word (ones complement).

In addition to bitwise logical operations, most machines provide a variety of 
shifting and rotating functions. The most basic operations are illustrated in Figure 12.6. 
With a logical shift, the bits of a word are shifted left or right. On one end, the bit 
shifted out is lost. On the other end, a 0 is shifted in. Logical shifts are useful pri-
marily for isolating fields within a word. The 0s that are shifted into a word displace 
unwanted information that is shifted off the other end.

•   •   •

(a) Logical right shift

0

0

•   •   •

(e) Right rotate

•   •   •

(c) Arithmetic right shift

S

•   •   •

(b) Logical left shift

•   •   •

(f) Left rotate

0

•   •   •

(d) Arithmetic left shift

S

Figure 12.6 Shift and Rotate Operations
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As an example, suppose we wish to transmit characters of data to an I/O 
device 1 character at a time. If each memory word is 16 bits in length and contains 
two characters, we must unpack the characters before they can be sent. To send the 
two characters in a word,

 1. Load the word into a register.

 2. Shift to the right eight times. This shifts the remaining character to the right 
half of the register.

 3. Perform I/O. The I/O module reads the lower-order 8 bits from the data bus.

The preceding steps result in sending the left-hand character. To send the right-
hand character,

 1. Load the word again into the register.

 2. AND with 0000000011111111. This masks out the character on the left.

 3. Perform I/O.

The arithmetic shift operation treats the data as a signed integer and does 
not shift the sign bit. On a right arithmetic shift, the sign bit is replicated into the 
bit position to its right. On a left arithmetic shift, a logical left shift is performed on 
all bits but the sign bit, which is retained. These operations can speed up certain 
arithmetic operations. With numbers in twos complement notation, a right arithme-
tic shift corresponds to a division by 2, with truncation for odd numbers. Both an 
arithmetic left shift and a logical left shift correspond to a multiplication by 2 when 
there is no overflow. If overflow occurs, arithmetic and logical left shift operations 
produce different results, but the arithmetic left shift retains the sign of the number. 
Because of the potential for overflow, many processors do not include this instruc-
tion, including PowerPC and Itanium. Others, such as the IBM EAS/390, do offer 
the instruction. Curiously, the x86 architecture includes an arithmetic left shift but 
defines it to be identical to a logical left shift.

Rotate, or cyclic shift, operations preserve all of the bits being operated on. 
One use of a rotate is to bring each bit successively into the leftmost bit, where it can 
be identified by testing the sign of the data (treated as a number).

As with arithmetic operations, logical operations involve ALU activity and 
may involve data transfer operations. Table 12.7 gives examples of all of the shift 
and rotate operations discussed in this subsection.

Table 12.7 Examples of Shift and Rotate Operations

Input Operation Result

10100110 Logical right shift (3 bits) 00010100

10100110 Logical left shift (3 bits) 00110000

10100110 Arithmetic right shift (3 bits) 11110100

10100110 Arithmetic left shift (3 bits) 10110000

10100110 Right rotate (3 bits) 11010100

10100110 Left rotate (3 bits) 00110101
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Conversion

Conversion instructions are those that change the format or operate on the format of 
data. An example is converting from decimal to binary. An example of a more com-
plex editing instruction is the EAS/390 Translate (TR) instruction. This instruction 
can be used to convert from one 8-bit code to another, and it takes three operands:

TR R1 (L), R2

The operand R2 contains the address of the start of a table of 8-bit codes. The  
L bytes starting at the address specified in R1 are translated, each byte being 
replaced by the contents of a table entry indexed by that byte. For example, to 
translate from EBCDIC to IRA, we first create a 256-byte table in storage loca-
tions, say, 1000-10FF hexadecimal. The table contains the characters of the IRA 
code in the sequence of the binary representation of the EBCDIC code; that is, the 
IRA code is placed in the table at the relative location equal to the binary value of 
the EBCDIC code of the same character. Thus, locations 10F0 through 10F9 will 
contain the values 30 through 39, because F0 is the EBCDIC code for the digit 0, 
and 30 is the IRA code for the digit 0, and so on through digit 9. Now suppose we 
have the EBCDIC for the digits 1984 starting at location 2100 and we wish to trans-
late to IRA. Assume the following:

 • Locations 2100–2103 contain F1 F9 F8 F4.

 • R1 contains 2100.

 • R2 contains 1000.

Then, if we execute

TR R1 (4), R2

locations 2100–2103 will contain 31 39 38 34.

Input/Output

Input/output instructions were discussed in some detail in Chapter 7. As we saw, 
there are a variety of approaches taken, including isolated programmed I/O, 
 memory-mapped programmed I/O, DMA, and the use of an I/O processor. Many 
implementations provide only a few I/O instructions, with the specific actions speci-
fied by parameters, codes, or command words.

System Control

System control instructions are those that can be executed only while the processor 
is in a certain privileged state or is executing a program in a special privileged area 
of memory. Typically, these instructions are reserved for the use of the operating 
system.

Some examples of system control operations are as follows. A system con-
trol instruction may read or alter a control register; we discuss control registers in 
Chapter 14. Another example is an instruction to read or modify a storage protec-
tion key, such as is used in the EAS/390 memory system. Another example is access 
to process control blocks in a multiprogramming system.
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Transfer of Control

For all of the operation types discussed so far, the next instruction to be performed 
is the one that immediately follows, in memory, the current instruction. However, a 
significant fraction of the instructions in any program have as their function chang-
ing the sequence of instruction execution. For these instructions, the operation per-
formed by the processor is to update the program counter to contain the address of 
some instruction in memory.

There are a number of reasons why transfer-of-control operations are 
required. Among the most important are the following:

 1. In the practical use of computers, it is essential to be able to execute each 
instruction more than once and perhaps many thousands of times. It may 
 require thousands or perhaps millions of instructions to implement an applica-
tion. This would be unthinkable if each instruction had to be written out sepa-
rately. If a table or a list of items is to be processed, a program loop is needed. 
One sequence of instructions is executed repeatedly to process all the data.

 2. Virtually all programs involve some decision making. We would like the com-
puter to do one thing if one condition holds, and another thing if another condition 
holds. For example, a sequence of instructions computes the square root of a num-
ber. At the start of the sequence, the sign of the number is tested. If the number 
is negative, the computation is not performed, but an error condition is reported.

 3. To compose correctly a large or even medium-size computer program is an 
exceedingly difficult task. It helps if there are mechanisms for breaking the 
task up into smaller pieces that can be worked on one at a time.

We now turn to a discussion of the most common transfer-of-control opera-
tions found in instruction sets: branch, skip, and procedure call.

BRANCH INSTRUCTIONS A branch instruction, also called a jump instruction, 
has as one of its operands the address of the next instruction to be executed. Most 
often, the instruction is a conditional branch instruction. That is, the branch is made 
(update program counter to equal address specified in operand) only if a certain 
condition is met. Otherwise, the next instruction in sequence is executed (increment 
program counter as usual). A branch instruction in which the branch is always taken 
is an unconditional branch.

There are two common ways of generating the condition to be tested in a con-
ditional branch instruction. First, most machines provide a 1-bit or multiple-bit con-
dition code that is set as the result of some operations. This code can be thought 
of as a short user-visible register. As an example, an arithmetic operation (ADD, 
SUBTRACT, and so on) could set a 2-bit condition code with one of the following 
four values: 0, positive, negative, overflow. On such a machine, there could be four 
different conditional branch instructions:

BRP X Branch to location X if result is positive.

BRN X Branch to location X if result is negative.

BRZ X Branch to location X if result is zero.

BRO X Branch to location X if overflow occurs.
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In all of these cases, the result referred to is the result of the most recent 
 operation that set the condition code.

Another approach that can be used with a three-address instruction format is 
to perform a comparison and specify a branch in the same instruction. For example,

BRE R1, R2, X Branch to X if contents of R1 = contents of R2.

Figure 12.7 shows examples of these operations. Note that a branch can be 
either forward (an instruction with a higher address) or backward (lower address). 
The example shows how an unconditional and a conditional branch can be used to 
create a repeating loop of instructions. The instructions in locations 202 through 210 
will be executed repeatedly until the result of subtracting Y from X is 0.

SKIP INSTRUCTIONS Another form of transfer-of-control instruction is the skip 
instruction. The skip instruction includes an implied address. Typically, the skip 
implies that one instruction be skipped; thus, the implied address equals the address 
of the next instruction plus one instruction length.

Because the skip instruction does not require a destination address field, it is 
free to do other things. A typical example is the increment-and-skip-if-zero (ISZ) 
instruction. Consider the following program fragment:

301
~

~

~

309 ISZ R1
310 BR 301
311

In this fragment, the two transfer-of-control instructions are used to implement 
an iterative loop. R1 is set with the negative of the number of iterations to be 
performed. At the end of the loop, R1 is incremented. If it is not 0, the program 
branches back to the beginning of the loop. Otherwise, the branch is skipped, and 
the program continues with the next instruction after the end of the loop.

Memory
address

Unconditional
branch

Instruction

200

SUB X,Y
BRZ 211

BR 202

Conditional
branch

Conditional
branch

BRE R1, R2, 235

201
202
203

210
211

225

235

Figure 12.7 Branch Instructions
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PROCEDURE CALL INSTRUCTIONS Perhaps the most important innovation in the 
development of programming languages is the procedure. A procedure is a self-
contained computer program that is incorporated into a larger program. At any 
point in the program the procedure may be invoked, or called. The processor is 
instructed to go and execute the entire procedure and then return to the point from 
which the call took place.

The two principal reasons for the use of procedures are economy and modu-
larity. A procedure allows the same piece of code to be used many times. This is 
important for economy in programming effort and for making the most efficient use 
of storage space in the system (the program must be stored). Procedures also allow 
large programming tasks to be subdivided into smaller units. This use of modularity 
greatly eases the programming task.

The procedure mechanism involves two basic instructions: a call instruction 
that branches from the present location to the procedure, and a return instruction 
that returns from the procedure to the place from which it was called. Both of these 
are forms of branching instructions.

Figure 12.8a illustrates the use of procedures to construct a program. In this 
example, there is a main program starting at location 4000. This program includes 
a call to procedure PROC1, starting at location 4500. When this call instruction is 
encountered, the processor suspends execution of the main program and begins exe-
cution of PROC1 by fetching the next instruction from location 4500. Within PROC1, 
there are two calls to PROC2 at location 4800. In each case, the execution of PROC1 

CALL Proc1

Main memory

Main
program

Procedure
Proc1

Procedure
Proc2

Addresses

4000

4100
4101

4500

4800

4600
4601

4650
4651

CALL Proc2

CALL Proc2

RETURN

RETURN

(a) Calls and returns (b) Execution sequence

Figure 12.8 Nested Procedures
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is suspended and PROC2 is executed. The RETURN statement causes the proces-
sor to go back to the calling program and continue execution at the instruction after 
the corresponding CALL instruction. This behavior is illustrated in Figure 12.8b.

Three points are worth noting:

 1. A procedure can be called from more than one location.

 2. A procedure call can appear in a procedure. This allows the nesting of proce-
dures to an arbitrary depth.

 3. Each procedure call is matched by a return in the called program.

Because we would like to be able to call a procedure from a variety of points, 
the processor must somehow save the return address so that the return can take 
place appropriately. There are three common places for storing the return address:

 • Register

 • Start of called procedure

 • Top of stack

Consider a machine-language instruction CALL X, which stands for call proce-
dure at location X. If the register approach is used, CALL X causes the following 
actions:

RN v PC + 


PC v X

where RN is a register that is always used for this purpose, PC is the program coun-
ter, and 
 is the instruction length. The called procedure can now save the contents 
of RN to be used for the later return.

A second possibility is to store the return address at the start of the procedure. 
In this case, CALL X causes

X v PC + 


PC v X + 1

This is quite handy. The return address has been stored safely away.
Both of the preceding approaches work and have been used. The only limita-

tion of these approaches is that they complicate the use of reentrant procedures. 
A reentrant procedure is one in which it is possible to have several calls open to it at 
the same time. A recursive procedure (one that calls itself) is an example of the use 
of this feature (see Appendix H). If parameters are passed via registers or memory 
for a reentrant procedure, some code must be responsible for saving the parameters 
so that the registers or memory space are available for other procedure calls.

A more general and powerful approach is to use a stack (see Appendix O 
for a discussion of stacks). When the processor executes a call, it places the return 
address on the stack. When it executes a return, it uses the address on the stack. 
Figure 12.9 illustrates the use of the stack.

In addition to providing a return address, it is also often necessary to pass 
parameters with a procedure call. These can be passed in registers. Another pos-
sibility is to store the parameters in memory just after the CALL instruction. In this 
case, the return must be to the location following the parameters. Again, both of 
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these approaches have drawbacks. If registers are used, the called program and the 
calling program must be written to assure that the registers are used properly. The 
storing of parameters in memory makes it difficult to exchange a variable number of 
parameters. Both approaches prevent the use of reentrant procedures.

A more flexible approach to parameter passing is the stack. When the proc-
essor executes a call, it not only stacks the return address, it stacks parameters to 
be passed to the called procedure. The called procedure can access the parameters 
from the stack. Upon return, return parameters can also be placed on the stack. The 
entire set of parameters, including return address, that is stored for a procedure 
invocation is referred to as a stack frame.

An example is provided in Figure 12.10. The example refers to procedure P 
in which the local variables x1 and x2 are declared, and procedure Q, which P can 
call and in which the local variables y1 and y2 are declared. In this figure, the return 
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Old frame pointer

Stack
pointer

x1
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Return point

Old frame pointer

Return point

Stack
pointer

y2
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(a) P is active (b) P has called Q

Figure 12.10 Stack Frame Growth Using Sample Procedures P and Q
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Figure 12.9 Use of Stack to Implement Nested Subroutines of Figure 12.8
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point for each procedure is the first item stored in the corresponding stack frame. 
Next is stored a pointer to the beginning of the previous frame. This is needed if the 
number or length of parameters to be stacked is variable.

 12.5 INTEL x86 AND ARM OPERATION TYPES

x86 Operation Types

The x86 provides a complex array of operation types, including a number of special-
ized instructions. The intent was to provide tools for the compiler writer to produce 
optimized machine language translation of high-level language programs. Table 12.8 
lists the types and gives examples of each. Most of these are the conventional 
instructions found in most machine instruction sets, but several types of instructions 
are tailored to the x86 architecture and are of particular interest. Appendix A of 

Table 12.8 x86 Operation Types (with Examples of Typical Operations)

Instruction Description

Data Movement

MOV Move operand, between registers or between register and memory.

PUSH Push operand onto stack.

PUSHA Push all registers on stack.

MOVSX Move byte, word, dword, sign extended. Moves a byte to a word or a word to a 
 doubleword with twos-complement sign extension.

LEA Load effective address. Loads the offset of the source operand, rather than its value to 
the destination operand.

XLAT Table lookup translation. Replaces a byte in AL with a byte from a user-coded transla-
tion table. When XLAT is executed, AL should have an unsigned index to the table. 
XLAT changes the contents of AL from the table index to the table entry.

IN, OUT Input, output operand from I/O space.

Arithmetic

ADD Add operands.

SUB Subtract operands.

MUL Unsigned integer multiplication, with byte, word, or double word operands, and word, 
doubleword, or quadword result.

IDIV Signed divide.

Logical

AND AND operands.

BTS Bit test and set. Operates on a bit field operand. The instruction copies the current 
value of a bit to flag CF and sets the original bit to 1.

BSF Bit scan forward. Scans a word or doubleword for a 1-bit and stores the number of the 
first 1-bit into a register.

SHL/SHR Shift logical left or right.

SAL/SAR Shift arithmetic left or right.

(continued)
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Instruction Description

ROL/ROR Rotate left or right.

SETcc Sets a byte to zero or one depending on any of the 16 conditions defined by status 
flags.

Control Transfer

JMP Unconditional jump.

CALL Transfer control to another location. Before transfer, the address of the instruction 
 following the CALL is placed on the stack.

JE/JZ Jump if equal/zero.

LOOPE/LOOPZ Loops if equal/zero. This is a conditional jump using a value stored in register ECX.
The instruction first decrements ECX before testing ECX for the branch condition.

INT/INTO Interrupt/Interrupt if overflow. Transfer control to an interrupt service routine.

String Operations

MOVS Move byte, word, dword string. The instruction operates on one element of a string, 
indexed by registers ESI and EDI. After each string operation, the registers are auto-
matically incremented or decremented to point to the next element of the string.

LODS Load byte, word, dword of string.

High-Level Language Support

ENTER Creates a stack frame that can be used to implement the rules of a block-structured 
high-level language.

LEAVE Reverses the action of the previous ENTER.

BOUND Check array bounds. Verifies that the value in operand 1 is within lower and upper lim-
its. The limits are in two adjacent memory locations referenced by operand 2. An inter-
rupt occurs if the value is out of bounds. This instruction is used to check an array index.

Flag Control

STC Set Carry flag.

LAHF Load AH register from flags. Copies SF, ZF, AF, PF, and CF bits into A register.

Segment Register

LDS Load pointer into DS and another register.

System Control

HLT Halt.

LOCK Asserts a hold on shared memory so that the Pentium has exclusive use of it during the 
instruction that immediately follows the LOCK.

ESC Processor extension escape. An escape code that indicates the succeeding instructions 
are to be executed by a numeric coprocessor that supports high-precision integer and 
floating-point calculations.

WAIT Wait until BUSY# negated. Suspends Pentium program execution until the processor 
detects that the BUSY pin is inactive, indicating that the numeric coprocessor has  
finished execution.

Protection

SGDT Store global descriptor table.

LSL Load segment limit. Loads a user-specified register with a segment limit.

VERR/VERW Verify segment for reading/writing.

Table 12.8 Continued
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[CART06] lists the x86 instructions, together with the operands for each and the 
effect of the instruction on the condition codes. Appendix B of the NASM assembly 
language manual provides a more detailed description of each x86 instruction. Both 
documents are available at this book’s Web site.

CALL/RETURN INSTRUCTIONS The x86 provides four instructions to support 
procedure call/return: CALL, ENTER, LEAVE, RETURN. It will be instructive to 
look at the support provided by these instructions. Recall from Figure 12.10 that a 
common means of implementing the procedure call/return mechanism is via the use 
of stack frames. When a new procedure is called, the following must be performed 
upon entry to the new procedure:

 • Push the return point on the stack.

 • Push the current frame pointer on the stack.

 • Copy the stack pointer as the new value of the frame pointer.

 • Adjust the stack pointer to allocate a frame.

The CALL instruction pushes the current instruction pointer value onto the stack 
and causes a jump to the entry point of the procedure by placing the address of the 
entry point in the instruction pointer. In the 8088 and 8086 machines, the typical 
procedure began with the sequence

PUSH EBP

MOV EBP, ESP

SUB ESP, space_for_locals

where EBP is the frame pointer and ESP is the stack pointer. In the 80286 and later 
machines, the ENTER instruction performs all the aforementioned operations in a 
single instruction.

The ENTER instruction was added to the instruction set to provide direct sup-
port for the compiler. The instruction also includes a feature for support of what are 
called nested procedures in languages such as Pascal, COBOL, and Ada (not found 
in C or FORTRAN). It turns out that there are better ways of handling nested 
procedure calls for these languages. Furthermore, although the ENTER instruc-
tion saves a few bytes of memory compared with the PUSH, MOV, SUB sequence 
(4 bytes versus 6 bytes), it actually takes longer to execute (10 clock cycles versus 
6 clock cycles). Thus, although it may have seemed a good idea to the instruction 
set designers to add this feature, it complicates the implementation of the processor 
while providing little or no benefit. We will see that, in contrast, a RISC approach 

Instruction Description

Cache Management

INVD Flushes the internal cache memory.

WBINVD Flushes the internal cache memory after writing dirty lines to memory.

INVLPG Invalidates a translation lookaside buffer (TLB) entry.
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to processor design would avoid complex instructions such as ENTER and might 
produce a more efficient implementation with a sequence of simpler instructions.

MEMORY MANAGEMENT Another set of specialized instructions deals with memory 
segmentation. These are privileged instructions that can only be executed from the 
operating system. They allow local and global segment tables (called descriptor tables) 
to be loaded and read, and for the privilege level of a segment to be checked and altered.

The special instructions for dealing with the on-chip cache were discussed in 
Chapter 4.

STATUS FLAGS AND CONDITION CODES Status flags are bits in special registers 
that may be set by certain operations and used in conditional branch instructions. The 
term condition code refers to the settings of one or more status flags. In the x86 and 
many other architectures, status flags are set by arithmetic and compare operations. 
The compare operation in most languages subtracts two operands, as does a subtract 
operation. The difference is that a compare operation only sets status flags, whereas a 
subtract operation also stores the result of the subtraction in the destination operand. 
Some architectures also set status flags for data transfer instructions.

Table 12.9 lists the status flags used on the x86. Each flag, or combinations of 
these flags, can be tested for a conditional jump. Table 12.10 shows the condition 
codes (combinations of status flag values) for which conditional jump opcodes have 
been defined.

Several interesting observations can be made about this list. First, we may 
wish to test two operands to determine if one number is bigger than another. But 
this will depend on whether the numbers are signed or unsigned. For example, the 
8-bit number 11111111 is bigger than 00000000 if the two numbers are interpreted 
as unsigned integers (255 7 0) but is less if they are considered as 8-bit twos com-
plement numbers (-1 6 0). Many assembly languages therefore introduce two sets 
of terms to distinguish the two cases: If we are comparing two numbers as signed 
integers, we use the terms less than and greater than; if we are comparing them as 
unsigned integers, we use the terms below and above.

A second observation concerns the complexity of comparing signed integers. 
A signed result is greater than or equal to zero if (1) the sign bit is zero and there is 
no overflow (S = 0 AND O = 0), or (2) the sign bit is one and there is an overflow. 

Table 12.9 x86 Status Flags

Status Bit Name Description

C Carry Indicates carrying or borrowing out of the left-most bit position following an 
arithmetic operation. Also modified by some of the shift and rotate operations.

P Parity Parity of the least-significant byte of the result of an arithmetic or logic 
operation. 1 indicates even parity; 0 indicates odd parity.

A Auxiliary Carry Represents carrying or borrowing between half-bytes of an 8-bit arithmetic 
or logic operation. Used in binary-coded decimal arithmetic.

Z Zero Indicates that the result of an arithmetic or logic operation is 0.

S Sign Indicates the sign of the result of an arithmetic or logic operation.

O Overflow Indicates an arithmetic overflow after an addition or subtraction for twos 
complement arithmetic.
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A study of Figure 10.4 should convince you that the conditions tested for the vari-
ous signed operations are appropriate.

X86 SIMD INSTRUCTIONS In 1996, Intel introduced MMX technology into its 
Pentium product line. MMX is set of highly optimized instructions for multimedia tasks. 
There are 57 new instructions that treat data in a SIMD (single-instruction, multiple-
data) fashion, which makes it possible to perform the same operation, such as addition 
or multiplication, on multiple data elements at once. Each instruction typically takes a 
single clock cycle to execute. For the proper application, these fast parallel operations 
can yield a speedup of two to eight times over comparable algorithms that do not use 
the MMX instructions [ATKI96]. With the introduction of 64-bit x86 architecture, 
Intel has expanded this extension to include double quadword (128 bits) operands and 
floating-point operations. In this subsection, we describe the MMX features.

The focus of MMX is multimedia programming. Video and audio data are typ-
ically composed of large arrays of small data types, such as 8 or 16 bits, whereas con-
ventional instructions are tailored to operate on 32- or 64-bit data. Here are some 
examples: In graphics and video, a single scene consists of an array of  pixels,2 and 

Table 12.10 x86 Condition Codes for Conditional Jump and SETcc Instructions

Symbol Condition Tested Comment

A, NBE C = 0 AND Z = 0 Above; Not below or equal (greater than, unsigned)

AE, NB, NC C = 0 Above or equal; Not below (greater than or equal, 
unsigned); Not carry

B, NAE, C C = 1 Below; Not above or equal (less than, unsigned);  
Carry set

BE, NA C = 1 OR Z = 1 Below or equal; Not above (less than or equal, unsigned)

E, Z Z = 1 Equal; Zero (signed or unsigned)

G, NLE [(S = 1 AND O = 1) OR (S = 0 
and O = 0)] AND [Z = 0]

Greater than; Not less than or equal (signed)

GE, NL (S = 1 AND O = 1) OR (S = 0 
AND O = 0)

Greater than or equal; Not less than (signed)

L, NGE (S = 1 AND O = 0) OR (S = 0 
AND O = 1)

Less than; Not greater than or equal (signed)

LE, NG (S = 1 AND O = 0) OR (S = 0 
AND O = 1) OR (Z = 1)

Less than or equal; Not greater than (signed)

NE, NZ Z = 0 Not equal; Not zero (signed or unsigned)

NO O = 0 No overflow

NS S = 0 Not sign (not negative)

NP, PO P = 0 Not parity; Parity odd

O O = 1 Overflow

P P = 1 Parity; Parity even

S S = 1 Sign (negative)

2A pixel, or picture element, is the smallest element of a digital image that can be assigned a gray level. 
Equivalently, a pixel is an individual dot in a dot-matrix representation of a picture.
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there are 8 bits for each pixel or 8 bits for each pixel color component (red, green, 
blue). Typical audio samples are quantized using 16 bits. For some 3D  graphics 
algorithms, 32 bits are common for basic data types. To provide for parallel opera-
tion on these data lengths, three new data types are defined in MMX. Each data 
type is 64 bits in length and consists of multiple smaller data fields, each of which 
holds a fixed-point integer. The types are as follows:

 • Packed byte: Eight bytes packed into one 64-bit quantity

 • Packed word: Four 16-bit words packed into 64 bits

 • Packed doubleword: Two 32-bit doublewords packed into 64 bits

Table 12.11 lists the MMX instruction set. Most of the instructions involve 
parallel operation on bytes, words, or doublewords. For example, the PSLLW 
instruction performs a left logical shift separately on each of the four words in the 
packed word operand; the PADDB instruction takes packed byte operands as input 
and performs parallel additions on each byte position independently to produce a 
packed byte output.

One unusual feature of the new instruction set is the introduction of satura-
tion arithmetic for byte and 16-bit word operands. With ordinary unsigned arith-
metic, when an operation overflows (i.e., a carry out of the most significant bit), the 
extra bit is truncated. This is referred to as wraparound, because the effect of the 
truncation can be, for example, to produce an addition result that is smaller than the 
two input operands. Consider the addition of the two words, in hexadecimal, F000h 
and 3000h. The sum would be expressed as

F000h = 1111 0000 0000 0000

+3000h =
0011 0000 0000 0000

10010 0000 0000 0000
 = 2000h

If the two numbers represented image intensity, then the result of the addition is 
to make the combination of two dark shades turn out to be lighter. This is typi-
cally not what is intended. With saturation arithmetic, if addition results in over-
flow or subtraction results in underflow, the result is set to the largest or smallest 
value representable. For the preceding example, with saturation arithmetic, we 
have

F000h = 1111 0000 0000 0000

+3000h =  
0011 0000 0000 0000

10010 0000 0000 0000

1111 1111 1111 1111 = FFFFh

To provide a feel for the use of MMX instructions, we look at an example, 
taken from [PELE97]. A common video application is the fade-out, fade-in effect, 
in which one scene gradually dissolves into another. Two images are combined with 
a weighted average:

Result_pixel = A_pixel * fade + B_pixel * (1 - fade)
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Table 12.11 MMX Instruction Set

Category Instruction Description

Arithmetic

PADD [B, W, D] Parallel add of packed eight bytes, four 16-bit words, or 
two 32-bit doublewords, with wraparound.

PADDS [B, W] Add with saturation.

PADDUS [B, W] Add unsigned with saturation.

PSUB [B, W, D] Subtract with wraparound.

PSUBS [B, W] Subtract with saturation.

PSUBUS [B, W] Subtract unsigned with saturation.

PMULHW Parallel multiply of four signed 16-bit words, with high-
order 16 bits of 32-bit result chosen.

PMULLW Parallel multiply of four signed 16-bit words, with low-
order 16 bits of 32-bit result chosen.

PMADDWD Parallel multiply of four signed 16-bit words; add together 
adjacent pairs of 32-bit results.

Comparison

PCMPEQ [B, W, D] Parallel compare for equality; result is mask of 1s if true  
or 0s if false.

PCMPGT [B, W, D] Parallel compare for greater than; result is mask of 1s if 
true or 0s if false.

Conversion

PACKUSWB Pack words into bytes with unsigned saturation.

PACKSS [WB, DW] Pack words into bytes, or doublewords into words, with 
signed saturation.

PUNPCKH [BW, WD, DQ] Parallel unpack (interleaved merge) high-order bytes, 
words, or doublewords from MMX register.

PUNPCKL [BW, WD, DQ] Parallel unpack (interleaved merge) low-order bytes, 
words, or doublewords from MMX register.

Logical

PAND 64-bit bitwise logical AND

PNDN 64-bit bitwise logical AND NOT

POR 64-bit bitwise logical OR

PXOR 64-bit bitwise logical XOR

Shift

PSLL [W, D, Q] Parallel logical left shift of packed words, doublewords,  
or quadword by amount specified in MMX register or 
immediate value.

PSRL [W, D, Q] Parallel logical right shift of packed words, doublewords,  
or quadword.

PSRA [W, D] Parallel arithmetic right shift of packed words, double-
words, or quadword.

Data transfer MOV [D, Q] Move doubleword or quadword to/from MMX register.

State mgt EMMS Empty MMX state (empty FP registers tag bits).

Note: If an instruction supports multiple data types [byte (B), word (W), doubleword (D), quadword (Q)], the data 
types are indicated in brackets.

This calculation is performed on each pixel position in A and B. If a series 
of video frames is produced while gradually changing the fade value from 1 to 0 
(scaled appropriately for an 8-bit integer), the result is to fade from image A to 
image B.
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Figure 12.11 shows the sequence of steps required for one set of pixels. The 
8-bit pixel components are converted to 16-bit elements to accommodate the 
MMX 16-bit multiply capability. If these images use 640 * 480 resolution, and 
the dissolve technique uses all 255 possible values of the fade value, then the total 
number of instructions executed using MMX is 535 million. The same calculation, 
performed without the MMX instructions, requires 1.4 billion instruction execu-
tions [INTE98].
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4. Add image B pixels

5. Pack new composite pixels
    back to bytes

MMX code sequence performing this operation:
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pxor   mm7, mm7   ;zero out mm7
movq   mm3, fad_val   ;load fade value replicated 4 times
movd   mm0, imageA   ;load 4 red pixel components from image A
movd   mm1, imageB   ;load 4 red pixel components from image B
punpckblw   mm0, mm7   ;unpack 4 pixels to 16 bits
punpckblw  mm1, mm7   ;unpack 4 pixels to 16 bits
psubw   mm0, mm1   ;subtract image B from image A
pmulhw   mm0, mm3   ;multiply the subtract result by fade values
padddw   mm0, mm1   ;add result to image B
packuswb   mm0, mm7   ;pack 16-bit results back to bytes

Figure 12.11 Image Compositing on Color Plane Representation
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ARM Operation Types

The ARM architecture provides a large collection of operation types. The following 
are the principal categories:

 • Load and store instructions: In the ARM architecture, only load and store 
instructions access memory locations; arithmetic and logical instructions are 
performed only on registers and immediate values encoded in the instruction. 
This limitation is characteristic of RISC design and it is explored further in 
Chapter 15. The ARM architecture supports two broad types of instruction 
that load or store the value of a single register, or a pair of registers, from or to 
memory: (1) load or store a 32-bit word or an 8-bit unsigned byte, and (2) load 
or store a 16-bit unsigned halfword, and load and sign extend a 16-bit halfword 
or an 8-bit byte.

 • Branch instructions: ARM supports a branch instruction that allows a condi-
tional branch forwards or backwards up to 32 MB. As the program counter 
is one of the general-purpose registers (R15), a branch or jump can also be 
generated by writing a value to R15. A subroutine call can be performed by 
a variant of the standard branch instruction. As well as allowing a branch 
forward or backward up to 32 MB, the Branch with Link (BL) instruction 
preserves the address of the instruction after the branch (the return address) 
in the LR (R14). Branches are determined by a 4-bit condition field in the 
instruction.

 • Data-processing instructions: This category includes logical instructions 
(AND, OR, XOR), add and subtract instructions, and test and compare 
instructions.

 • Multiply instructions: The integer multiply instructions operate on word or 
halfword operands and can produce normal or long results. For example, 
there is a multiply instruction that takes two 32-bit operands and produces a 
64-bit result.

 • Parallel addition and subtraction instructions: In addition to the normal data 
processing and multiply instructions, there are a set of parallel addition and 
subtraction instructions, in which portions of two operands are operated on 
in parallel. For example, ADD16 adds the top halfwords of two registers to 
form the top halfword of the result and adds the bottom halfwords of the 
same two registers to form the bottom halfword of the result. These instruc-
tions are useful in image processing applications, similar to the x86 MMX 
instructions.

 • Extend instructions: There are several instructions for unpacking data by sign 
or zero extending bytes to halfwords or words, and halfwords to words.

 • Status register access instructions: ARM provides the ability to read and also 
to write portions of the status register.

CONDITION CODES The ARM architecture defines four condition flags that 
are stored in the program status register: N, Z, C, and V (Negative, Zero, Carry 
and oVerflow), with meanings essentially the same as the S, Z, C, and V flags 
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in the x86 architecture. These four flags constitute a condition code in ARM. 
Table 12.12 shows the combination of conditions for which conditional execution 
is defined.

There are two unusual aspects to the use of condition codes in ARM:

 1. All instructions, not just branch instructions, include a condition code field, 
which means that virtually all instructions may be conditionally executed. Any 
combination of flag settings except 1110 or 1111 in an instruction’s condition 
code field signifies that the instruction will be executed only if the condition  
is met.

 2. All data processing instructions (arithmetic, logical) include an S bit that signi-
fies whether the instruction updates the condition flags.

The use of conditional execution and conditional setting of the condition flags 
helps in the design of shorter programs that use less memory. On the other hand, 
all instructions include 4 bits for the condition code, so there is a trade-off in that 
fewer bits in the 32-bit instruction are available for opcode and operands. Because 
the ARM is a RISC design that relies heavily on register addressing, this seems to 
be a reasonable trade-off.

Table 12.12 ARM Conditions for Conditional Instruction Execution

Code Symbol Condition Tested Comment

0000 EQ Z = 1 Equal

0001 NE Z = 0 Not equal

0010 CS/HS C = 1 Carry set/unsigned higher or same

0011 CC/LO C = 0 Carry clear/unsigned lower

0100 MI N = 1 Minus/negative

0101 PL N = 0 Plus/positive or zero

0110 VS V = 1 Overflow

0111 VC V = 0 No overflow

1000 HI C = 1 AND Z = 0 Unsigned higher

1001 LS C = 0 OR Z = 1 Unsigned lower or same

1010 GE N = V 
[(N = 1 AND V = 1) 
OR (N = 0 AND V = 0)]

Signed greater than or equal

1011 LT N � V 
[(N = 1 AND V = 0) 
OR (N = 0 AND V = 1)]

Signed less than

1100 GT (Z = 0) AND (N = V) Signed greater than

1101 LE (Z = 1) OR (N � V) Signed less than or equal

1110 AL — Always (unconditional)

1111 — — This instruction can only be executed 
unconditionally
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 12.6 RECOMMENDED READING

The x86 instruction set is well covered by [BREY09]. The ARM instruction set is covered 
in [SLOS04] and [KNAG04]. [INTE04c] describes software considerations related to micro-
processor Endian architecture and discusses guidelines for developing Endian-neutral code 
(paper available in the premium content section for this book).

BREY09 Brey, B. The Intel Microprocessors: 8086/8066, 80186/80188, 80286, 80386, 
80486, Pentium, Pentium Pro Processor, Pentium II, Pentium III, Pentium 4 and 
Core2 with 64-bit Extensions. Upper Saddle River, NJ: Prentice Hall, 2009.

INTE04c Intel Corp. Endianness White Paper. November 15, 2004.
KNAG04 Knaggs, P., and Welsh, S. ARM: Assembly Language Programming. Bourne-

mouth University, School of Design, Engineering, and Computing, August 31, 
2004. www.freetechbooks.com/arm-assembly-language-programming-t729.html

SLOS04 Sloss, A.; Symes, D.; and Wright, C. ARM System Developer’s Guide. San 
Francisco: Morgan Kaufmann, 2004.

Review Questions
 12.1 What are the typical elements of a machine instruction?
 12.2 What types of locations can hold source and destination operands?
 12.3 If an instruction contains four addresses, what might be the purpose of each address?
 12.4 List and briefly explain five important instruction set design issues.
 12.5 What types of operands are typical in machine instruction sets?
 12.6 What is the relationship between the IRA character code and the packed decimal 

representation?
 12.7 What is the difference between an arithmetic shift and a logical shift?
 12.8 Why are transfer of control instructions needed?

accumulator
address
arithmetic shift
bi-endian
big endian
branch
conditional branch
instruction set

jump
little endian
logical shift
machine instruction
operand
operation
packed decimal
pop

procedure call
procedure return
push
reentrant procedure
reverse Polish notation
rotate
skip
stack

 12.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

www.freetechbooks.com/arm-assembly-language-programming-t729.html
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 12.9 List and briefly explain two common ways of generating the condition to be tested in 
a conditional branch instruction.

 12.10 What is meant by the term nesting of procedures?
 12.11 List three possible places for storing the return address for a procedure return.
 12.12 What is a reentrant procedure?
 12.13 What is reverse Polish notation?
 12.14 What is the difference between big endian and little endian?

Problems
 12.1 Show in hex notation:

a. The packed decimal format for 23
b. The ASCII characters 23

 12.2 For each of the following packed decimal numbers, show the decimal value:
a. 0111 0011 0000 1001
b. 0101 1000 0010
c. 0100 1010 0110

 12.3 A given microprocessor has words of 1 byte. What is the smallest and largest integer 
that can be represented in the following representations:
a. Unsigned
b. Sign-magnitude
c. Ones complement
d. Twos complement
e. Unsigned packed decimal
f. Signed packed decimal

 12.4 Many processors provide logic for performing arithmetic on packed decimal numbers. 
Although the rules for decimal arithmetic are similar to those for binary operations, 
the decimal results may require some corrections to the individual digits if binary 
logic is used.

Consider the decimal addition of two unsigned numbers. If each number consists 
of N digits, then there are 4N bits in each number. The two numbers are to be added 
using a binary adder. Suggest a simple rule for correcting the result. Perform addition 
in this fashion on the numbers 1698 and 1786.

 12.5 The tens complement of the decimal number X is defined to be 10N - X, where N 
is the number of decimal digits in the number. Describe the use of ten’s complement 
representation to perform decimal subtraction. Illustrate the procedure by subtract-
ing (0326)10 from (0736)10.

 12.6 Compare zero-, one-, two-, and three-address machines by writing programs to  compute
X = (A + B * C)>(D - E * F)

  for each of the four machines. The instructions available for use are as follows:

0 Address 1 Address 2 Address 3 Address

PUSH M LOAD M MOVE (X d Y) MOVE (X d Y)

POP M STORE M ADD (X d X + Y) ADD (X d Y + Z)

ADD ADD M SUB (X d X - Y) SUB (X d Y - Z)

SUB SUB M MUL (X d X * Y) MUL (X d Y * Z)

MUL MUL M DIV (X d X/Y) DIV (X d Y/Z)

DIV DIV M



12.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS  443

 12.7 Consider a hypothetical computer with an instruction set of only two n-bit instruc-
tions. The first bit specifies the opcode, and the remaining bits specify one of the 2n- 1 
n-bit words of main memory. The two instructions are as follows:

SUBS X  Subtract the contents of location X from the accumulator, and store the 
result in location X and the accumulator.

JUMP X Place address X in the program counter.

A word in main memory may contain either an instruction or a binary number in 
twos complement notation. Demonstrate that this instruction repertoire is reasonably 
complete by specifying how the following operations can be programmed:
a. Data transfer: Location X to accumulator, accumulator to location X
b. Addition: Add contents of location X to accumulator
c. Conditional branch
d. Logical OR
e. I/O Operations

 12.8 Many instruction sets contain the instruction NOOP, meaning no operation, which has 
no effect on the processor state other than incrementing the program counter. Suggest 
some uses of this instruction.

 12.9 In Section 12.4, it was stated that both an arithmetic left shift and a logical left shift 
correspond to a multiplication by 2 when there is no overflow, and if overflow occurs, 
arithmetic and logical left shift operations produce different results, but the arithmetic 
left shift retains the sign of the number. Demonstrate that these statements are true 
for 5-bit twos complement integers.

 12.10 In what way are numbers rounded using arithmetic right shift (e.g., round toward + � , 
round toward -� , toward zero, away from 0)?

 12.11 Suppose a stack is to be used by the processor to manage procedure calls and returns. 
Can the program counter be eliminated by using the top of the stack as a program 
counter?

 12.12 The x86 architecture includes an instruction called Decimal Adjust after Addition 
(DAA). DAA performs the following sequence of instructions:

if ((AL AND 0FH) >9) OR (AF = 1) then

AL d AL + 6;

AF d 1;

else

AF d 0;

endif;

if  (AL > 9FH) OR (CF = 1) then

AL d AL + 60H;

CF d 1;

else

CF d 0;

endif.

“H” indicates hexadecimal. AL is an 8-bit register that holds the result of addition of 
two unsigned 8-bit integers. AF is a flag set if there is a carry from bit 3 to bit 4 in the 
result of an addition. CF is a flag set if there is a carry from bit 7 to bit 8. Explain the 
function performed by the DAA instruction.

 12.13 The x86 Compare instruction (CMP) subtracts the source operand from the destina-
tion operand; it updates the status flags (C, P, A, Z, S, O) but does not alter either of 
the operands. The CMP instruction can be used to determine if the destination oper-
and is greater than, equal to, or less than the source operand.
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a. Suppose the two operands are treated as unsigned integers. Show which status 
flags are relevant to determine the relative size of the two integer and what values 
of the flags correspond to greater than, equal to, or less than.

b. Suppose the two operands are treated as twos complement signed integers. 
Show which status flags are relevant to determine the relative size of the 
two integer and what values of the flags correspond to greater than, equal to, 
or less than.

c. The CMP instruction may be followed by a conditional Jump (Jcc) or Set Con-
dition (SETcc) instruction, where cc refers to one of the 16 conditions listed 
in Table 12.12. Demonstrate that the conditions tested for a signed number 
comparison are correct.

 12.14 Suppose we wished to apply the x86 CMP instruction to 32-bit operands that con-
tained numbers in a floating-point format. For correct results, what requirements have 
to be met in the following areas?
a. The relative position of the significand, sign, and exponent fields.
b. The representation of the value zero.
c. The representation of the exponent.
d. Does the IEEE format meet these requirements? Explain.

 12.15 Many microprocessor instruction sets include an instruction that tests a condition 
and sets a destination operand if the condition is true. Examples include the SETcc 
on the x86, the Scc on the Motorola MC68000, and the Scond on the National 
NS32000.
a. There are a few differences among these instructions:

•  SETcc and Scc operate only on a byte, whereas Scond operates on byte, word, 
and doubleword operands.

•  SETcc and Scond set the operand to integer one if true and to zero if false. Scc 
sets the byte to all binary ones if true and all zeros if false.

What are the relative advantages and disadvantages of these differences?
b. None of these instructions set any of the condition code flags, and thus an  explicit 

test of the result of the instruction is required to determine its value. Discuss 
whether condition codes should be set as a result of this instruction.

c. A simple IF statement such as IF a 7 b THEN can be implemented using a 
numerical representation method, that is, making the Boolean value manifest, 
as opposed to a flow of control method, which represents the value of a Boolean 
expression by a point reached in the program. A compiler might implement IF 
a 7 ssb THEN with the following x86 code:

SUB CX, CX ;set register CX to 0
MOV AX, B ;move contents of location B to register AX
CMP AX, A ;compare contents of register AX and location A
JLE TEST ;jump if A … B
INC CX ;add 1 to contents of register CX

TEST JCXZ OUT ;jump if contents of CX equal 0
THEN OUT

The result of (A 7 B) is a Boolean value held in a register and available later on, 
outside the context of the flow of code just shown. It is convenient to use register 
CX for this, because many of the branch and loop opcodes have a built-in test 
for CX.

Show an alternative implementation using the SETcc instruction that saves 
memory and execution time. (Hint: No additional new x86 instructions are needed, 
other than the SETcc.)

d. Now consider the high-level language statement:
A: = (B 7 C) OR (D = F)



A compiler might generate the following code:

MOV EAX, B ;move contents of location B to register EAX
CMP EAX, C ;compare contents of register EAX and location C
MOV BL, 0 ;0 represents false
JLE N1 ;jump if (B … C)
MOV BL, 1 ;1 represents false

N1 MOV EAX, D
CMP EAX, F
MOV BH, 0
JNE N2
MOV BH, 1

N2 OR BL, BH

Show an alternative implementation using the SETcc instruction that saves memory 
and execution time.

 12.16 Suppose that two registers contain the following hexadecimal values: AB0890C2, 
4598EE50. What is the result of adding them using MMX instructions:
a. for packed byte
b. for packed word
Assume saturation arithmetic is not used.

 12.17 Appendix O points out that there are no stack-oriented instructions in an instruction set 
if the stack is to be used only by the processor for such purposes as procedure handling. 
How can the processor use a stack for any purpose without stack-oriented instructions?

 12.18 Convert the following formulas from reverse Polish to infix:
a. AB + C + D *
b. AB/CD/ +
c. ABCDE + * * /
d. ABCDE + F/ + G - H/ * +

 12.19 Convert the following formulas from infix to reverse Polish:
a. A + B + C + D + E
b. (A + B) * (C + D) + E
c. (A * B) + (C * D) + E
d. (A - B) * (((C - D * E)/F)/G) * H

 12.20 Convert the expression A + B - C to postfix notation using Dijkstra’s algorithm. 
Show the steps involved. Is the result equivalent to (A + B) - C or A + (B - C)? 
Does it matter?

 12.21 Using the algorithm for converting infix to postfix defined in Appendix O, show the 
steps involved in converting the expression of Figure O.3 into postfix. Use a presenta-
tion similar to Figure O.5.

 12.22 Show the calculation of the expression in Figure O.5, using a presentation similar to 
Figure O.4.

 12.23 Redraw the little-endian layout in Figure 12.13 so that the bytes appear as numbered 
in the big-endian layout. That is, show memory in 64-bit rows, with the bytes listed left 
to right, top to bottom.

 12.24 For the following data structures, draw the big-endian and little-endian layouts, using 
the format of Figure 12.13, and comment on the results.

a. struct {
    double i;  //0x1112131415161718
   } s1;
b. struct {
    int i;    //0x11121314
    int j;      //0x15161718
   } s2;
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c. struct {
     short i; //0x1112
     short j; //0x1314
     short k; //0x1516
     short l; //0x1718
  } s3;

 12.25 The IBM Power architecture specification does not dictate how a processor should im-
plement little-endian mode. It specifies only the view of memory a processor must have 
when operating in little-endian mode. When converting a data structure from big endian 
to little endian, processors are free to implement a true byte-swapping mechanism or to 
use some sort of an address modification mechanism. Current Power processors are all 
default big-endian machines and use address modification to treat data as little-endian.

Consider the structure s defined in Figure 12.13. The layout in the lower-right 
portion of the figure shows the structure s as seen by the processor. In fact, if structures 
is compiled in little-endian mode, its layout in memory is shown in Figure 12.12. Explain 
the mapping that is involved, describe an easy way to implement the mapping, and dis-
cuss the effectiveness of this approach.

 12.26 Write a small program to determine the endianness of machine and report the results. 
Run the program on a computer available to you and turn in the output.

 12.27 The MIPS processor can be set to operate in either big-endian or little-endian mode. 
Consider the Load Byte Unsigned (LBU) instruction, which loads a byte from memory 
into the low-order 8 bits of a register and fills the high-order 24 bits of the register  
with zeros. The description of LBU is given in the MIPS reference manual using a 
register-transfer language as

mem d LoadMemory(…)

byte d VirtualAddress1..0
if CONDITION then

 GPR[rt] d 024}mem31 – 8 * byte .. 24 – 8 * byte

else

 GPR[rt] d 024}mem7 + 8 * byte .. 8 * byte

endif

where byte refers to the two low-order bits of the effective address and mem refers 
to the value loaded from memory. In the manual, instead of the word CONDITION, 
one of the following two words is used: BigEndian, LittleEndian. Which word is used?

 12.28 Most, but not all, processors use big- or little-endian bit ordering within a byte that is 
consistent with big- or little-endian ordering of bytes within a multibyte scalar. Let us 
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consider the Motorola 68030, which uses big-endian byte ordering. The documentation of 
the 68030 concerning formats is confusing. The user’s manual explains that the bit order-
ing of bit fields is the opposite of bit ordering of integers. Most bit field operations operate 
with one endian ordering, but a few bit field operations require the opposite ordering. The 
following description from the user’s manual describes most of the bit field operations:

A bit operand is specified by a base address that selects one byte in memory 
(the base byte), and a bit number that selects the one bit in this byte. The 
most significant bit is bit seven. A bit field operand is specified by: (1) a base 
 address that selects one byte in memory; (2) a bit field offset that indicates 
the leftmost (base) bit of the bit field in relation to the most significant bit of 
the base byte; and (3) a bit field width that determines how many bits to the 
right of the base byte are in the bit field. The most significant bit of the base 
byte is bit field offset 0, the least significant bit of the base byte is bit field 
offset 7.

Do these instructions use big-endian or little-endian bit ordering?

 APPENDIX 12A LITTLE-, BIG-, AND BI-ENDIAN

An annoying and curious phenomenon relates to how the bytes within a word and 
the bits within a byte are both referenced and represented. We look first at the prob-
lem of byte ordering and then consider that of bits.

Byte Ordering

The concept of endianness was first discussed in the literature by Cohen [COHE81]. 
With respect to bytes, endianness has to do with the byte ordering of multibyte sca-
lar values. The issue is best introduced with an example. Suppose we have the 32-bit 
hexadecimal value 12345678 and that it is stored in a 32-bit word in byte-addressable 
memory at byte location 184. The value consists of 4 bytes, with the least significant 
byte containing the value 78 and the most significant byte containing the value 12.  
There are two obvious ways to store this value:

Address Value Address Value

184 12 184 78

185 34 185 56

186 56 186 34

187 78 187 12

The mapping on the left stores the most significant byte in the lowest numerical byte 
address; this is known as big endian and is equivalent to the left-to-right order of writing 
in Western culture languages. The mapping on the right stores the least significant byte 
in the lowest numerical byte address; this is known as little endian and is reminiscent of 
the right-to-left order of arithmetic operations in arithmetic units.3 For a given multibyte 
scalar value, big endian and little endian are byte-reversed mappings of each other.

3The terms big endian and little endian come from Part I, Chapter 4 of Jonathan Swift’s Gulliver’s Travels. 
They refer to a religious war between two groups, one that breaks eggs at the big end and the other that 
breaks eggs at the little end.
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The concept of endianness arises when it is necessary to treat a multiple-byte 
entity as a single data item with a single address, even though it is composed of 
smaller addressable units. Some machines, such as the Intel 80x86, x86, VAX, and 
Alpha, are little-endian machines, whereas others, such as the IBM System 370/390, 
the Motorola 680x0, Sun SPARC, and most RISC machines, are big endian. This 
presents problems when data are transferred from a machine of one endian type to 
the other and when a programmer attempts to manipulate individual bytes or bits 
within a multibyte scalar.

The property of endianness does not extend beyond an individual data unit. 
In any machine, aggregates such as files, data structures, and arrays are composed 
of multiple data units, each with endianness. Thus, conversion of a block of memory 
from one style of endianness to the other requires knowledge of the data structure.

Figure 12.13 illustrates how endianness determines addressing and byte 
order. The C structure at the top contains a number of data types. The memory 
layout in the lower left results from compilation of that structure for a big-endian 
machine, and that in the lower right for a little-endian machine. In each case, mem-
ory is depicted as a series of 64-bit rows. For the big-endian case, memory typically 
is viewed left to right, top to bottom, whereas for the little-endian case, memory 
typically is viewed as right to left, top to bottom. Note that these layouts are arbi-
trary. Either scheme could use either left to right or right to left within a row; this 
is a matter of depiction, not memory assignment. In fact, in looking at programmer 
manuals for a variety of machines, a bewildering collection of depictions is to be 
found, even within the same manual.

struct{
 int a; //0x1112_1314 word
 int pad; //
 double b; //0x2122_2324_2526_2728 doubleword
 char* c; //0x3132_3334 word
 char d[7]; //'A'.'B','C','D','E','F','G' byte array
 short e; //0x5152 halfword
 int f; //0x6162_6364 word
} s;
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We can make several observations about this data structure:

 • Each data item has the same address in both schemes. For example, the 
 address of the doubleword with hexadecimal value 2122232425262728 is 08.

 • Within any given multibyte scalar value, the ordering of bytes in the little-
endian structure is the reverse of that for the big-endian structure.

 • Endianness does not affect the ordering of data items within a structure. Thus, 
the four-character word c exhibits byte reversal, but the seven-character byte 
array d does not. Hence, the address of each individual element of d is the 
same in both structures.

The effect of endianness is perhaps more clearly demonstrated when we view 
memory as a vertical array of bytes, as shown in Figure 12.14.
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There is no general consensus as to which is the superior style of endianness.4 
The following points favor the big-endian style:

 • Character-string sorting: A big-endian processor is faster in comparing integer-
aligned character strings; the integer ALU can compare multiple bytes in parallel.

 • Decimal/IRA dumps: All values can be printed left to right without causing 
confusion.

 • Consistent order: Big-endian processors store their integers and character 
strings in the same order (most significant byte comes first).

The following points favor the little-endian style:

 • A big-endian processor has to perform addition when it converts a 32-bit inte-
ger address to a 16-bit integer address, to use the least significant bytes.

 • It is easier to perform higher-precision arithmetic with the little-endian style; 
you don’t have to find the least-significant byte and move backward.

The differences are minor and the choice of endian style is often more a mat-
ter of accommodating previous machines than anything else.

The PowerPC is a bi-endian processor that supports both big-endian and 
little-endian modes. The bi-endian architecture enables software developers to 
choose either mode when migrating operating systems and applications from other 
machines. The operating system establishes the endian mode in which processes 
execute. Once a mode is selected, all subsequent memory loads and stores are deter-
mined by the memory-addressing model of that mode. To support this hardware 
feature, 2 bits are maintained in the machine state register (MSR) maintained by 
the operating system as part of the process state. One bit specifies the endian mode 
in which the kernel runs; the other specifies the processor’s current operating mode. 
Thus, mode can be changed on a per-process basis.

Bit Ordering

In ordering the bits within a byte, we are immediately faced with two questions:

 1. Do you count the first bit as bit zero or as bit one?

 2. Do you assign the lowest bit number to the byte’s least significant bit (little 
endian) or to the bytes most significant bit (big endian)?

These questions are not answered in the same way on all machines. Indeed, on 
some machines, the answers are different in different circumstances. Furthermore, 
the choice of big- or little-endian bit ordering within a byte is not always consistent 
with big- or little-endian ordering of bytes within a multibyte scalar. The program-
mer needs to be concerned with these issues when manipulating individual bits.

Another area of concern is when data are transmitted over a bit-serial line. 
When an individual byte is transmitted, does the system transmit the most signifi-
cant bit first or the least significant bit first? The designer must make certain that 
incoming bits are handled properly. For a discussion of this issue, see [JAME90].

4The prophet revered by both groups in the Endian Wars of Gulliver’s Travels had this to say. “All true 
Believers shall break their Eggs at the convenient End.” Not much help!
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In Chapter 12, we focused on what an instruction set does. Specifically, we examined 
the types of operands and operations that may be specified by machine instructions. 
This chapter turns to the question of how to specify the operands and operations of 
instructions. Two issues arise. First, how is the address of an operand specified, and 
second, how are the bits of an instruction organized to define the operand addresses 
and operation of that instruction?

 13.1 ADDRESSING MODES

The address field or fields in a typical instruction format are relatively small. We 
would like to be able to reference a large range of locations in main memory or, for 
some systems, virtual memory. To achieve this objective, a variety of addressing 
techniques has been employed. They all involve some trade-off between address 
range and/or addressing flexibility, on the one hand, and the number of memory 
references in the instruction and/or the complexity of address calculation, on the 
other. In this section, we examine the most common addressing techniques, or 
modes:

 • Immediate

 • Direct

 • Indirect

 • Register

 • Register indirect

 • Displacement

 • Stack

These modes are illustrated in Figure 13.1. In this section, we use the following 
notation:

A = contents of an address field in the instruction

R = contents of an address field in the instruction that refers to a register

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Describe the various types of addressing modes common in instruction sets.

� Present an overview of x86 and ARM addressing modes.

� Summarize the issues and trade-offs involved in designing an instruction 
format.

� Present an overview of x86 and ARM instruction formats.

� Understand the distinction between machine language and assembly 
 language.
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EA = actual (effective) address of the location containing the referenced 
operand

(X) = contents of memory location X or register X

Table 13.1 indicates the address calculation performed for each addressing 
mode.
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Before beginning this discussion, two comments need to be made. First, virtu-
ally all computer architectures provide more than one of these addressing modes. 
The question arises as to how the processor can determine which address mode 
is being used in a particular instruction. Several approaches are taken. Often, dif-
ferent opcodes will use different addressing modes. Also, one or more bits in the 
instruction format can be used as a mode field. The value of the mode field deter-
mines which addressing mode is to be used.

The second comment concerns the interpretation of the effective address 
(EA). In a system without virtual memory, the effective address will be either a main 
memory address or a register. In a virtual memory system, the effective address is a 
virtual address or a register. The actual mapping to a physical address is a function 
of the memory management unit (MMU) and is invisible to the programmer.

Immediate Addressing

The simplest form of addressing is immediate addressing, in which the operand 
value is present in the instruction

Operand = A

This mode can be used to define and use constants or set initial values of variables. 
Typically, the number will be stored in twos complement form; the leftmost bit of 
the operand field is used as a sign bit. When the operand is loaded into a data reg-
ister, the sign bit is extended to the left to the full data word size. In some cases, the 
immediate binary value is interpreted as an unsigned nonnegative integer.

The advantage of immediate addressing is that no memory reference other 
than the instruction fetch is required to obtain the operand, thus saving one mem-
ory or cache cycle in the instruction cycle. The disadvantage is that the size of the 
number is restricted to the size of the address field, which, in most instruction sets, 
is small compared with the word length.

Direct Addressing

A very simple form of addressing is direct addressing, in which the address field 
contains the effective address of the operand:

EA = A

Table 13.1 Basic Addressing Modes

Mode Algorithm Principal Advantage Principal Disadvantage

Immediate Operand = A No memory reference Limited operand magnitude

Direct EA = A Simple Limited address space

Indirect EA = (A) Large address space Multiple memory references

Register EA = R No memory reference Limited address space

Register indirect EA = (R) Large address space Extra memory reference

Displacement EA = A + (R) Flexibility Complexity

Stack EA = top of stack No memory reference Limited applicability
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The technique was common in earlier generations of computers but is not com-
mon on contemporary architectures. It requires only one memory reference and 
no special calculation. The obvious limitation is that it provides only a limited 
address space.

Indirect Addressing

With direct addressing, the length of the address field is usually less than the word 
length, thus limiting the address range. One solution is to have the address field refer 
to the address of a word in memory, which in turn contains a full-length address of 
the operand. This is known as indirect addressing:

EA = (A)

As defined earlier, the parentheses are to be interpreted as meaning contents of. 
The obvious advantage of this approach is that for a word length of N, an address space 
of 2N is now available. The disadvantage is that instruction execution requires two mem-
ory references to fetch the operand: one to get its address and a second to get its value.

Although the number of words that can be addressed is now equal to 2N, the 
number of different effective addresses that may be referenced at any one time is 
limited to 2K, where K is the length of the address field. Typically, this is not a bur-
densome restriction, and it can be an asset. In a virtual memory environment, all 
the effective address locations can be confined to page 0 of any process. Because 
the address field of an instruction is small, it will naturally produce low-numbered 
direct addresses, which would appear in page 0. (The only restriction is that the 
page size must be greater than or equal to 2K.) When a process is active, there will 
be repeated references to page 0, causing it to remain in real memory. Thus, an indi-
rect memory reference will involve, at most, one page fault rather than two.

A rarely used variant of indirect addressing is multilevel or cascaded indirect 
addressing:

EA = (c(A)c)

In this case, one bit of a full-word address is an indirect flag (I). If the I bit is 0, 
then the word contains the EA. If the I bit is 1, then another level of indirection is 
invoked. There does not appear to be any particular advantage to this approach, 
and its disadvantage is that three or more memory references could be required to 
fetch an operand.

Register Addressing

Register addressing is similar to direct addressing. The only difference is that the 
address field refers to a register rather than a main memory address:

EA = R

To clarify, if the contents of a register address field in an instruction is 5, 
then register R5 is the intended address, and the operand value is contained in R5. 
Typically, an address field that references registers will have from 3 to 5 bits, so that 
a total of from 8 to 32 general-purpose registers can be referenced.
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The advantages of register addressing are that (1) only a small address field 
is needed in the instruction, and (2) no time-consuming memory references are 
required. As was discussed in Chapter 4, the memory access time for a register 
internal to the processor is much less than that for a main memory address. The 
disadvantage of register addressing is that the address space is very limited.

If register addressing is heavily used in an instruction set, this implies that the 
processor registers will be heavily used. Because of the severely limited number of 
registers (compared with main memory locations), their use in this fashion makes 
sense only if they are employed efficiently. If every operand is brought into a regis-
ter from main memory, operated on once, and then returned to main memory, then 
a wasteful intermediate step has been added. If, instead, the operand in a register 
remains in use for multiple operations, then a real savings is achieved. An example 
is the intermediate result in a calculation. In particular, suppose that the algorithm 
for twos complement multiplication were to be implemented in software. The loca-
tion labeled A in the flowchart (Figure 10.12) is referenced many times and should 
be implemented in a register rather than a main memory location.

It is up to the programmer or compiler to decide which values should remain 
in registers and which should be stored in main memory. Most modern processors 
employ multiple general-purpose registers, placing a burden for efficient execution 
on the assembly-language programmer (e.g., compiler writer).

Register Indirect Addressing

Just as register addressing is analogous to direct addressing, register indirect 
addressing is analogous to indirect addressing. In both cases, the only difference is 
whether the address field refers to a memory location or a register. Thus, for regis-
ter indirect address,

EA = (R)

The advantages and limitations of register indirect addressing are basically the same 
as for indirect addressing. In both cases, the address space limitation (limited range 
of addresses) of the address field is overcome by having that field refer to a word-
length location containing an address. In addition, register indirect addressing uses 
one less memory reference than indirect addressing.

Displacement Addressing

A very powerful mode of addressing combines the capabilities of direct addressing 
and register indirect addressing. It is known by a variety of names depending on 
the context of its use, but the basic mechanism is the same. We will refer to this as 
displacement addressing:

EA = A + (R)

Displacement addressing requires that the instruction have two address fields, 
at least one of which is explicit. The value contained in one address field 
(value = A) is used directly. The other address field, or an implicit reference 
based on opcode, refers to a register whose contents are added to A to produce 
the effective address.
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We will describe three of the most common uses of displacement addressing:

 • Relative addressing

 • Base-register addressing

 • Indexing

RELATIVE ADDRESSING For relative addressing, also called PC-relative addressing, 
the implicitly referenced register is the program counter (PC). That is, the next 
instruction address is added to the address field to produce the EA. Typically, the 
address field is treated as a twos complement number for this operation. Thus, the 
effective address is a displacement relative to the address of the instruction.

Relative addressing exploits the concept of locality that was discussed in Chapters 
4 and 8. If most memory references are relatively near to the instruction being exe-
cuted, then the use of relative addressing saves address bits in the instruction.

BASE-REGISTER ADDRESSING For base-register addressing, the interpretation is 
the following: The referenced register contains a main memory address, and the 
address field contains a displacement (usually an unsigned integer representation) 
from that address. The register reference may be explicit or implicit.

Base-register addressing also exploits the locality of memory references. It is a 
convenient means of implementing segmentation, which was discussed in Chapter 8.  
In some implementations, a single segment-base register is employed and is used 
implicitly. In others, the programmer may choose a register to hold the base address 
of a segment, and the instruction must reference it explicitly. In this latter case, if 
the length of the address field is K and the number of possible registers is N, then 
one instruction can reference any one of N areas of 2K words.

INDEXING For indexing, the interpretation is typically the following: The address 
field references a main memory address, and the referenced register contains a 
positive displacement from that address. Note that this usage is just the opposite 
of the interpretation for base-register addressing. Of course, it is more than just 
a matter of user interpretation. Because the address field is considered to be a 
memory address in indexing, it generally contains more bits than an address field 
in a comparable base-register instruction. Also, we shall see that there are some 
refinements to indexing that would not be as useful in the base-register context. 
Nevertheless, the method of calculating the EA is the same for both base-register 
addressing and indexing, and in both cases the register reference is sometimes 
explicit and sometimes implicit (for different processor types).

An important use of indexing is to provide an efficient mechanism for per-
forming iterative operations. Consider, for example, a list of numbers stored start-
ing at location A. Suppose that we would like to add 1 to each element on the list. 
We need to fetch each value, add 1 to it, and store it back. The sequence of effective 
addresses that we need is A, A + 1, A + 2, . . . , up to the last location on the list. 
With indexing, this is easily done. The value A is stored in the instruction’s address 
field, and the chosen register, called an index register, is initialized to 0. After each 
operation, the index register is incremented by 1.

Because index registers are commonly used for such iterative tasks, it is 
 typical that there is a need to increment or decrement the index register after 
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each  reference to it. Because this is such a common operation, some systems 
will automatically do this as part of the same instruction cycle. This is known as 
autoindexing. If certain registers are devoted exclusively to indexing, then autoin-
dexing can be invoked implicitly and automatically. If general-purpose registers 
are used, the autoindex operation may need to be signaled by a bit in the instruc-
tion. Autoindexing using increment can be depicted as follows.

EA = A + (R)

(R) d (R) + 1

In some machines, both indirect addressing and indexing are provided, and it 
is possible to employ both in the same instruction. There are two possibilities: the 
indexing is performed either before or after the indirection.

If indexing is performed after the indirection, it is termed postindexing:

EA = (A) + (R)

First, the contents of the address field are used to access a memory location contain-
ing a direct address. This address is then indexed by the register value. This tech-
nique is useful for accessing one of a number of blocks of data of a fixed format. For 
example, it was described in Chapter 8 that the operating system needs to employ 
a process control block for each process. The operations performed are the same 
regardless of which block is being manipulated. Thus, the addresses in the instruc-
tions that reference the block could point to a location (value = A) containing a 
variable pointer to the start of a process control block. The index register contains 
the displacement within the block.

With preindexing, the indexing is performed before the indirection:

EA = (A + (R))

An address is calculated as with simple indexing. In this case, however, the calcu-
lated address contains not the operand, but the address of the operand. An example 
of the use of this technique is to construct a multiway branch table. At a particular 
point in a program, there may be a branch to one of a number of locations depend-
ing on conditions. A table of addresses can be set up starting at location A. By 
indexing into this table, the required location can be found.

Typically, an instruction set will not include both preindexing and postindexing.

Stack Addressing

The final addressing mode that we consider is stack addressing. As defined in 
Appendix O, a stack is a linear array of locations. It is sometimes referred to as a 
pushdown list or last-in-first-out queue. The stack is a reserved block of locations. 
Items are appended to the top of the stack so that, at any given time, the block is 
partially filled. Associated with the stack is a pointer whose value is the address of 
the top of the stack. Alternatively, the top two elements of the stack may be in pro-
cessor registers, in which case the stack pointer references the third element of the 
stack. The stack pointer is maintained in a register. Thus, references to stack loca-
tions in memory are in fact register indirect addresses.
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The stack mode of addressing is a form of implied addressing. The machine 
instructions need not include a memory reference but implicitly operate on the top 
of the stack.

 13.2 x86 AND ARM ADDRESSING MODES

x86 Addressing Modes

Recall from Figure 8.21 that the x86 address translation mechanism produces an 
address, called a virtual or effective address, that is an offset into a segment. The 
sum of the starting address of the segment and the effective address produces a 
linear address. If paging is being used, this linear address must pass through a page-
translation mechanism to produce a physical address. In what follows, we ignore 
this last step because it is transparent to the instruction set and to the programmer.

The x86 is equipped with a variety of addressing modes intended to allow the 
efficient execution of high-level languages. Figure 13.2 indicates the logic involved. 
The segment register determines the segment that is the subject of the reference. 
There are six segment registers; the one being used for a particular reference 
depends on the context of execution and the instruction. Each segment  register 
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holds an index into the segment descriptor table (Figure 8.20), which holds the 
starting address of the corresponding segments. Associated with each user-visible 
segment register is a segment descriptor register (not programmer visible), which 
records the access rights for the segment as well as the starting address and limit 
(length) of the segment. In addition, there are two registers that may be used in 
constructing an address: the base register and the index register.

Table 13.2 lists the x86 addressing modes. Let us consider each of these in turn.
For the immediate mode, the operand is included in the instruction. The 

 operand can be a byte, word, or doubleword of data.
For register operand mode, the operand is located in a register. For general 

instructions, such as data transfer, arithmetic, and logical instructions, the operand 
can be one of the 32-bit general registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, 
EBP), one of the 16-bit general registers (AX, BX, CX, DX, SI, DI, SP, BP), or one of 
the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL, DL). There are also some 
instructions that reference the segment selector registers (CS, DS, ES, SS, FS, GS).

The remaining addressing modes reference locations in memory. The memory 
location must be specified in terms of the segment containing the location and the off-
set from the beginning of the segment. In some cases, a segment is specified explicitly; 
in others, the segment is specified by simple rules that assign a segment by default.

In the displacement mode, the operand’s offset (the effective address 
of Figure13.2) is contained as part of the instruction as an 8-, 16-, or 32-bit dis-
placement. With segmentation, all addresses in instructions refer merely to an 
 offset in a segment. The displacement addressing mode is found on few machines 
because, as mentioned earlier, it leads to long instructions. In the case of the x86, 

Table 13.2 x86 Addressing Modes

Mode Algorithm

Immediate Operand = A

Register Operand LA = R

Displacement LA = (SR) + A

Base LA = (SR) + (B)

Base with Displacement LA = (SR) + (B) + A

Scaled Index with Displacement LA = (SR) + (I) * S + A

Base with Index and Displacement LA = (SR) + (B) + (I) + A

Base with Scaled Index and Displacement LA = (SR) + (I) * S + (B) + A

Relative LA = (PC) + A

LA = linear address
(X) = contents of X
SR = segment register
PC = program counter
A = contents of an address field in the instruction
R  = register
B = base register
I = index register
S = scaling factor



13.2 / x86 AND ARM ADDRESSING MODES  461

the  displacement value can be as long as 32 bits, making for a 6-byte instruction. 
Displacement addressing can be useful for referencing global variables.

The remaining addressing modes are indirect, in the sense that the address 
portion of the instruction tells the processor where to look to find the address. The 
base mode specifies that one of the 8-, 16-, or 32-bit registers contains the effective 
address. This is equivalent to what we have referred to as register indirect addressing.

In the base with displacement mode, the instruction includes a displacement 
to be added to a base register, which may be any of the general-purpose registers. 
Examples of uses of this mode are as follows:

 • Used by a compiler to point to the start of a local variable area. For example, 
the base register could point to the beginning of a stack frame, which contains 
the local variables for the corresponding procedure.

 • Used to index into an array when the element size is not 1, 2, 4, or 8 bytes and 
which therefore cannot be indexed using an index register. In this case, the 
displacement points to the beginning of the array, and the base register holds 
the results of a calculation to determine the offset to a specific element within 
the array.

 • Used to access a field of a record. The base register points to the beginning of 
the record, while the displacement is an offset to the field.

In the scaled index with displacement mode, the instruction includes a dis-
placement to be added to a register, in this case called an index register. The index 
register may be any of the general-purpose registers except the one called ESP, 
which is generally used for stack processing. In calculating the effective address, the 
contents of the index register are multiplied by a scaling factor of 1, 2, 4, or 8, and 
then added to a displacement. This mode is very convenient for indexing arrays. A 
scaling factor of 2 can be used for an array of 16-bit integers. A scaling factor of 4 
can be used for 32-bit integers or floating-point numbers. Finally, a scaling factor of 
8 can be used for an array of double-precision floating-point numbers.

The base with index and displacement mode sums the contents of the base 
register, the index register, and a displacement to form the effective address. Again, 
the base register can be any general-purpose register and the index register can 
be any general-purpose register except ESP. As an example, this addressing mode 
could be used for accessing a local array on a stack frame. This mode can also be 
used to support a two-dimensional array; in this case, the displacement points to the 
beginning of the array, and each register handles one dimension of the array.

The based scaled index with displacement mode sums the contents of the index 
register multiplied by a scaling factor, the contents of the base register, and the displace-
ment. This is useful if an array is stored in a stack frame; in this case, the array elements 
would be 2, 4, or 8 bytes each in length. This mode also provides efficient indexing of a 
two-dimensional array when the array elements are 2, 4, or 8 bytes in length.

Finally, relative addressing can be used in transfer-of-control instructions. A dis-
placement is added to the value of the program counter, which points to the next instruc-
tion. In this case, the displacement is treated as a signed byte, word, or  doubleword 
value, and that value either increases or decreases the address in the program counter.



462  CHAPTER 13 / INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

ARM Addressing Modes

Typically, a RISC machine, unlike a CISC machine, uses a simple and relatively 
straightforward set of addressing modes. The ARM architecture departs somewhat 
from this tradition by providing a relatively rich set of addressing modes. These 
modes are most conveniently classified with respect to the type of instruction.1

LOAD/STORE ADDRESSING Load and store instructions are the only instructions 
that reference memory. This is always done indirectly through a base register plus 
offset. There are three alternatives with respect to indexing (Figure 13.3):

 • Offset: For this addressing method, indexing is not used. An offset value is 
added to or subtracted from the value in the base register to form the memory 
address. As an example Figure 13.3a illustrates this method with the assembly 
language instruction STRB r0, [r1, #12]. This is the store byte instruc-
tion. In this case the base address is in register r1 and the displacement is an 
immediate value of decimal 12. The resulting address (base plus offset) is the 
location where the least significant byte from r0 is to be stored.

 • Preindex: The memory address is formed in the same way as for offset address-
ing. The memory address is also written back to the base register. In other 
words, the base register value is incremented or decremented by the offset 
value. Figure 13.3b illustrates this method with the assembly language instruc-
tion STRB r0, [r1, #12]!. The exclamation point signifies preindexing.

 • Postindex: The memory address is the base register value. An offset is added 
to or subtracted from the base register value and the result is written back to 
the base register. Figure 13.3c illustrates this method with the assembly lan-
guage instruction STRB r0, [r1], #12.

Note that what ARM refers to as a base register acts as an index register for 
preindex and postindex addressing. The offset value can either be an immediate 
value stored in the instruction or it can be in another register. If the offset value 
is in a register, another useful feature is available: scaled register addressing. The 
value in the offset register is scaled by one of the shift operators: Logical Shift Left, 
Logical Shift Right, Arithmetic Shift Right, Rotate Right, or Rotate Right Extended 
(which includes the carry bit in the rotation). The amount of the shift is specified as 
an immediate value in the instruction.

DATA PROCESSING INSTRUCTION ADDRESSING Data processing instructions use 
either register addressing or a mixture of register and immediate addressing. For 
register addressing, the value in one of the register operands may be scaled using 
one of the five shift operators defined in the preceding paragraph.

BRANCH INSTRUCTIONS The only form of addressing for branch instructions is 
immediate addressing. The branch instruction contains a 24-bit value. For address 
calculation, this value is shifted left 2 bits, so that the address is on a word boundary. 
Thus the effective address range is {32 MB from the program counter.

1As with our discussion of x86 addressing, we ignore the translation from virtual to physical address in 
the following discussion.
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LOAD/STORE MULTIPLE ADDRESSING Load Multiple instructions load a subset 
(possibly all) of the general-purpose registers from memory. Store Multiple 
instructions store a subset (possibly all) of the general-purpose registers to 
memory. The list of registers for the load or store is specified in a 16-bit field in the 
instruction with each bit corresponding to one of the 16 registers. Load and Store 
Multiple addressing modes produce a sequential range of memory addresses. The 
lowest-numbered register is stored at the lowest memory address and the highest-
numbered register at the highest memory address. Four addressing modes are used  
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(Figure 13.4): increment after, increment before, decrement after, and decrement 
before. A base register specifies a main memory address where register values 
are stored in or loaded from in ascending (increment) or descending (decrement) 
word locations. Incrementing or decrementing starts either before or after the first 
memory access.

These instructions are useful for block loads or stores, stack operations, and 
procedure exit sequences.

 13.3 INSTRUCTION FORMATS

An instruction format defines the layout of the bits of an instruction, in terms of 
its constituent fields. An instruction format must include an opcode and, implicitly 
or explicitly, zero or more operands. Each explicit operand is referenced using one 
of the addressing modes described in Section 13.1. The format must, implicitly or 
explicitly, indicate the addressing mode for each operand. For most instruction sets, 
more than one instruction format is used.

The design of an instruction format is a complex art, and an amazing variety of 
designs have been implemented. We examine the key design issues, looking briefly 
at some designs to illustrate points, and then we examine the x86 and ARM solu-
tions in detail.

Instruction Length

The most basic design issue to be faced is the instruction format length. This deci-
sion affects, and is affected by, memory size, memory organization, bus structure, 
processor complexity, and processor speed. This decision determines the richness 
and flexibility of the machine as seen by the assembly-language programmer.

The most obvious trade-off here is between the desire for a powerful instruc-
tion repertoire and a need to save space. Programmers want more opcodes, more 
operands, more addressing modes, and greater address range. More opcodes and 
more operands make life easier for the programmer, because shorter programs can 

0x20C

0x210

0x214

0x20C(r0)

(r1)

(r4)

(r0)

(r1)

(r4)

(r0)

(r1)

(r4)

(r0)

(r1)

(r4) 0x208

0x204

0x200

0x218

r10

Base register

Increment
after (IA)

Increment
before (IB)

Decrement
after (DA)

Decrement
before (DB)

LDMxx r10, {r0, r1, r4}
STMxx r10, {r0, r1, r4}

Figure 13.4 ARM Load/Store Multiple Addressing



13.3 / INSTRUCTION FORMATS  465

be written to accomplish given tasks. Similarly, more addressing modes give the pro-
grammer greater flexibility in implementing certain functions, such as table manipu-
lations and multiple-way branching. And, of course, with the increase in main mem-
ory size and the increasing use of virtual memory, programmers want to be able to 
address larger memory ranges. All of these things (opcodes, operands, addressing 
modes, address range) require bits and push in the direction of longer instruction 
lengths. But longer instruction length may be wasteful. A 64-bit instruction occupies 
twice the space of a 32-bit instruction but is probably less than twice as useful.

Beyond this basic trade-off, there are other considerations. Either the instruc-
tion length should be equal to the memory-transfer length (in a bus system, data-
bus length) or one should be a multiple of the other. Otherwise, we will not get 
an integral number of instructions during a fetch cycle. A related consideration 
is the memory transfer rate. This rate has not kept up with increases in processor 
speed. Accordingly, memory can become a bottleneck if the processor can execute 
instructions faster than it can fetch them. One solution to this problem is to use 
cache memory (see Section 4.3); another is to use shorter instructions. Thus, 16-bit 
instructions can be fetched at twice the rate of 32-bit instructions but probably can 
be executed less than twice as rapidly.

A seemingly mundane but nevertheless important feature is that the instruc-
tion length should be a multiple of the character length, which is usually 8 bits, and 
of the length of fixed-point numbers. To see this, we need to make use of that unfor-
tunately ill-defined word, word [FRAI83]. The word length of memory is, in some 
sense, the “natural” unit of organization. The size of a word usually determines the 
size of fixed-point numbers (usually the two are equal). Word size is also typically 
equal to, or at least integrally related to, the memory transfer size. Because a com-
mon form of data is character data, we would like a word to store an integral number 
of characters. Otherwise, there are wasted bits in each word when storing multiple 
characters, or a character will have to straddle a word boundary. The importance 
of this point is such that IBM, when it introduced the System/360 and wanted to 
employ 8-bit characters, made the wrenching decision to move from the 36-bit archi-
tecture of the scientific members of the 700/7000 series to a 32-bit architecture.

Allocation of Bits

We’ve looked at some of the factors that go into deciding the length of the instruc-
tion format. An equally difficult issue is how to allocate the bits in that format. The 
trade-offs here are complex.

For a given instruction length, there is clearly a trade-off between the number 
of opcodes and the power of the addressing capability. More opcodes obviously 
mean more bits in the opcode field. For an instruction format of a given length, 
this reduces the number of bits available for addressing. There is one interesting 
refinement to this trade-off, and that is the use of variable-length opcodes. In this 
approach, there is a minimum opcode length but, for some opcodes, additional 
operations may be specified by using additional bits in the instruction. For a fixed-
length instruction, this leaves fewer bits for addressing. Thus, this feature is used 
for those instructions that require fewer operands and/or less powerful addressing.
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The following interrelated factors go into determining the use of the address-
ing bits.

 • Number of addressing modes: Sometimes an addressing mode can be indi-
cated implicitly. For example, certain opcodes might always call for indexing. 
In other cases, the addressing modes must be explicit, and one or more mode 
bits will be needed.

 • Number of operands: We have seen that fewer addresses can make for longer, 
more awkward programs (e.g., Figure 10.3). Typical instruction formats on 
today’s machines include two operands. Each operand address in the instruc-
tion might require its own mode indicator, or the use of a mode indicator 
could be limited to just one of the address fields.

 • Register versus memory: A machine must have registers so that data can be 
brought into the processor for processing. With a single user-visible register 
(usually called the accumulator), one operand address is implicit and con-
sumes no instruction bits. However, single-register programming is awkward 
and requires many instructions. Even with multiple registers, only a few bits 
are needed to specify the register. The more that registers can be used for 
operand references, the fewer bits are needed. A number of studies indicate 
that a total of 8 to 32 user-visible registers is desirable [LUND77, HUCK83]. 
Most contemporary architectures have at least 32 registers.

 • Number of register sets: Most contemporary machines have one set of general-
purpose registers, with typically 32 or more registers in the set. These registers 
can be used to store data and can be used to store addresses for displacement 
addressing. Some architectures, including that of the x86, have a collection of 
two or more specialized sets (such as data and displacement). One advantage 
of this latter approach is that, for a fixed number of registers, a functional split 
requires fewer bits to be used in the instruction. For example, with two sets 
of eight registers, only 3 bits are required to identify a register; the opcode or 
mode register will determine which set of registers is being referenced.

 • Address range: For addresses that reference memory, the range of addresses 
that can be referenced is related to the number of address bits. Because this 
imposes a severe limitation, direct addressing is rarely used. With displace-
ment addressing, the range is opened up to the length of the address register. 
Even so, it is still convenient to allow rather large displacements from the reg-
ister address, which requires a relatively large number of address bits in the 
instruction.

 • Address granularity: For addresses that reference memory rather than reg-
isters, another factor is the granularity of addressing. In a system with 16- or  
32-bit words, an address can reference a word or a byte at the designer’s 
choice. Byte addressing is convenient for character manipulation but requires, 
for a fixed-size memory, more address bits.

Thus, the designer is faced with a host of factors to consider and balance. 
How critical the various choices are is not clear. As an example, we cite one study 
[CRAG79] that compared various instruction format approaches, including the use 
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of a stack, general-purpose registers, an accumulator, and only memory-to-register 
approaches. Using a consistent set of assumptions, no significant difference in code 
space or execution time was observed.

Let us briefly look at how two historical machine designs balance these vari-
ous factors.

PDP-8 One of the simplest instruction designs for a general-purpose computer 
was for the PDP-8 [BELL78b]. The PDP-8 uses 12-bit instructions and operates on 
12-bit words. There is a single general-purpose register, the accumulator.

Despite the limitations of this design, the addressing is quite flexible. Each 
memory reference consists of 7 bits plus two 1-bit modifiers. The memory is divided 
into fixed-length pages of 27 = 128 words each. Address calculation is based on 
references to page 0 or the current page (page containing this instruction) as deter-
mined by the page bit. The second modifier bit indicates whether direct or indirect 
addressing is to be used. These two modes can be used in combination, so that an 
indirect address is a 12-bit address contained in a word of page 0 or the current 
page. In addition, 8 dedicated words on page 0 are autoindex “registers.” When an 
indirect reference is made to one of these locations, preindexing occurs.

Figure 13.5 shows the PDP-8 instruction format. There are a 3-bit opcode and 
three types of instructions. For opcodes 0 through 5, the format is a single-address 
memory reference instruction including a page bit and an indirect bit. Thus, there 
are only six basic operations. To enlarge the group of operations, opcode 7 defines 

Memory reference instructions
Opcode D/I Z/C Displacement

0 2 3 4 5 11

Input/output instructions

1 1 0 Device Opcode
0 2 3 8 9 11

Register reference instructions
Group 1 microinstructions
1 1 1 0 CLA CLL CMA CML RAR RAL BSW IAC
0 1 2 3

Group 2 microinstructions
1 1 1 0
0 1 2 3

Group 3 microinstructions
1 1 1 0
0 1 2 3

4 5 6 7 8 9 10 11

CLA SMA SZA SNL RSS OSR HLT 0
4 5 6 7 8 9 10 11

CLA MQA 0 MQL 0 0 0 1
4 5 6 7 8 9 10 11

D/I    � Direct/Indirect address
Z/C    � Page 0 or Current page
CLA  � Clear Accumulator
CLL  � Clear Link
CMA � CoMplement Accumulator
CML � CoMplement Link
RAR � Rotate Accumulator Right
RAL  � Rotate Accumulator Left
BSW � Byte SWap

IAC   � Increment ACcumulator
SMA � Skip on Minus Accumulator
SZA  � Skip on Zero Accumulator
SNL � Skip on Nonzero Link
RSS  �  Reverse Skip Sense
OSR  � Or with Switch Register
HLT  � HaLT
MQA� Multiplier Quotient into Accumulator
MQL � Multiplier Quotient Load

Figure 13.5 PDP-8 Instruction Formats
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a register reference or microinstruction. In this format, the remaining bits are used 
to encode additional operations. In general, each bit defines a specific operation 
(e.g., clear accumulator), and these bits can be combined in a single instruction. The 
microinstruction strategy was used as far back as the PDP-1 by DEC and is, in a 
sense, a forerunner of today’s microprogrammed machines, to be discussed in Part 
Four. Opcode 6 is the I/O operation; 6 bits are used to select one of 64 devices, and 
3 bits specify a particular I/O command.

The PDP-8 instruction format is remarkably efficient. It supports indirect 
addressing, displacement addressing, and indexing. With the use of the opcode 
extension, it supports a total of approximately 35 instructions. Given the constraints 
of a 12-bit instruction length, the designers could hardly have done better.

PDP-10 A sharp contrast to the instruction set of the PDP-8 is that of the PDP-10. 
The PDP-10 was designed to be a large-scale time-shared system, with an emphasis 
on making the system easy to program, even if additional hardware expense was 
involved.

Among the design principles employed in designing the instruction set were 
the following [BELL78c]:

 • Orthogonality: Orthogonality is a principle by which two variables are inde-
pendent of each other. In the context of an instruction set, the term indicates 
that other elements of an instruction are independent of (not determined by) 
the opcode. The PDP-10 designers use the term to describe the fact that an 
address is always computed in the same way, independent of the opcode. This 
is in contrast to many machines, where the address mode sometimes depends 
implicitly on the operator being used.

 • Completeness: Each arithmetic data type (integer, fixed-point, floating-point) 
should have a complete and identical set of operations.

 • Direct addressing: Base plus displacement addressing, which places a mem-
ory organization burden on the programmer, was avoided in favor of direct 
 addressing.

Each of these principles advances the main goal of ease of programming.
The PDP-10 has a 36-bit word length and a 36-bit instruction length. The fixed 

instruction format is shown in Figure 13.6. The opcode occupies 9 bits, allowing 
up to 512 operations. In fact, a total of 365 different instructions are defined. Most 
instructions have two addresses, one of which is one of 16 general-purpose registers. 
Thus, this operand reference occupies 4 bits. The other operand reference starts 
with an 18-bit memory address field. This can be used as an immediate operand or 
a memory address. In the latter usage, both indexing and indirect addressing are 
allowed. The same general-purpose registers are also used as index registers.

Index
register Memory address

0 8 9 12 14 17 18 35
I � indirect bit

Opcode Register I

Figure 13.6 PDP-10 Instruction Format
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A 36-bit instruction length is true luxury. There is no need to do clever things 
to get more opcodes; a 9-bit opcode field is more than adequate. Addressing is also 
straightforward. An 18-bit address field makes direct addressing desirable. For 
memory sizes greater than 218, indirection is provided. For the ease of the program-
mer, indexing is provided for table manipulation and iterative programs. Also, with 
an 18-bit operand field, immediate addressing becomes attractive.

The PDP-10 instruction set design does accomplish the objectives listed ear-
lier [LUND77]. It eases the task of the programmer or compiler at the expense of 
an inefficient utilization of space. This was a conscious choice made by the designers 
and therefore cannot be faulted as poor design.

Variable-Length Instructions

The examples we have looked at so far have used a single fixed instruction length, 
and we have implicitly discussed trade-offs in that context. But the designer may 
choose instead to provide a variety of instruction formats of different lengths. This 
tactic makes it easy to provide a large repertoire of opcodes, with different opcode 
lengths. Addressing can be more flexible, with various combinations of register and 
memory references plus addressing modes. With variable-length instructions, these 
many variations can be provided efficiently and compactly.

The principal price to pay for variable-length instructions is an increase in the 
complexity of the processor. Falling hardware prices, the use of microprogramming 
(discussed in Part Four), and a general increase in understanding the principles of 
processor design have all contributed to making this a small price to pay. However, 
we will see that RISC and superscalar machines can exploit the use of fixed-length 
instructions to provide improved performance.

The use of variable-length instructions does not remove the desirability of 
making all of the instruction lengths integrally related to the word length. Because 
the processor does not know the length of the next instruction to be fetched, a 
typical strategy is to fetch a number of bytes or words equal to at least the longest 
possible instruction. This means that sometimes multiple instructions are fetched. 
However, as we shall see in Chapter 14, this is a good strategy to follow in any case.

PDP-11 The PDP-11 was designed to provide a powerful and flexible instruction 
set within the constraints of a 16-bit minicomputer [BELL70].

The PDP-11 employs a set of eight 16-bit general-purpose registers. Two of 
these registers have additional significance: one is used as a stack pointer for spe-
cial-purpose stack operations, and one is used as the program counter, which con-
tains the address of the next instruction.

Figure 13.7 shows the PDP-11 instruction formats. Thirteen different formats 
are used, encompassing zero-, one-, and two-address instruction types. The opcode 
can vary from 4 to 16 bits in length. Register references are 6 bits in length. Three 
bits identify the register, and the remaining 3 bits identify the addressing mode. The 
PDP-11 is endowed with a rich set of addressing modes. One advantage of linking 
the addressing mode to the operand rather than the opcode, as is sometimes done, 
is that any addressing mode can be used with any opcode. As was mentioned, this 
independence is referred to as orthogonality.
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Figure 13.7 Instruction Formats for the PDP-11
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PDP-11 instructions are usually one word (16 bits) long. For some  instructions, 
one or two memory addresses are appended, so that 32-bit and 48-bit instructions 
are part of the repertoire. This provides for further flexibility in addressing.

The PDP-11 instruction set and addressing capability are complex. This 
increases both hardware cost and programming complexity. The advantage is that 
more efficient or compact programs can be developed.

VAX Most architectures provide a relatively small number of fixed instruction 
formats. This can cause two problems for the programmer. First, addressing mode 
and opcode are not orthogonal. For example, for a given operation, one operand 
must come from a register and another from memory, or both from registers, and so 
on. Second, only a limited number of operands can be accommodated: typically up 
to two or three. Because some operations inherently require more operands, various 
strategies must be used to achieve the desired result using two or more instructions.

To avoid these problems, two criteria were used in designing the VAX instruc-
tion format [STRE78]:

 1. All instructions should have the “natural” number of operands.

 2. All operands should have the same generality in specification.

The result is a highly variable instruction format. An instruction consists of a 1- or 
2-byte opcode followed by from zero to six operand specifiers, depending on the 
opcode. The minimal instruction length is 1 byte, and instructions up to 37 bytes can 
be constructed. Figure 13.8 gives a few examples.

The VAX instruction begins with a 1-byte opcode. This suffices to handle 
most VAX instructions. However, as there are over 300 different instructions, 8 bits 
are not enough. The hexadecimal codes FD and FF indicate an extended opcode, 
with the actual opcode being specified in the second byte.

The remainder of the instruction consists of up to six operand specifiers. An 
operand specifier is, at minimum, a 1-byte format in which the leftmost 4 bits are 
the address mode specifier. The only exception to this rule is the literal mode, 
which is signaled by the pattern 00 in the leftmost 2 bits, leaving space for a 6-bit 
literal. Because of this exception, a total of 12 different addressing modes can be 
specified.

An operand specifier often consists of just one byte, with the rightmost 4 
bits specifying one of 16 general-purpose registers. The length of the operand 
specifier can be extended in one of two ways. First, a constant value of one or 
more bytes may immediately follow the first byte of the operand specifier. An 
example of this is the displacement mode, in which an 8-, 16-, or 32-bit displace-
ment is used. Second, an index mode of addressing may be used. In this case, the 
first byte of the operand specifier consists of the 4-bit addressing mode code of 
0100 and a 4-bit index register identifier. The remainder of the operand specifier 
consists of the base address specifier, which may itself be one or more bytes in 
length.

The reader may be wondering, as the author did, what kind of instruction requires 
six operands. Surprisingly, the VAX has a number of such instructions. Consider

ADDP6 OP1, OP2, OP3, OP4, OP5, OP6
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This instruction adds two packed decimal numbers. OP1 and OP2 specify the length 
and starting address of one decimal string; OP3 and OP4 specify a second string. 
These two strings are added and the result is stored in the decimal string whose 
length and starting location are specified by OP5 and OP6.

The VAX instruction set provides for a wide variety of operations and address-
ing modes. This gives a programmer, such as a compiler writer, a very powerful 
and flexible tool for developing programs. In theory, this should lead to efficient 
machine-language compilations of high-level language programs and, in general, to 
effective and efficient use of processor resources. The penalty to be paid for these 
benefits is the increased complexity of the processor compared with a processor 
with a simpler instruction set and format.

We return to these matters in Chapter 15, where we examine the case for very 
simple instruction sets.

Opcode for RSB

Hexadecimal
Format

Assembler Notation
and Description

Explanation

0

8 bits

5

D 4
5 9

B 0
C 4
6 4
0 1
A B
1 9

C 1
0 5
5 0
4 2
D F

RSB
Return from subroutine

Opcode for CLRL

Register R9

CLRL R9

Clear register R9

Opcode for MOVW
Word displacement mode,
Register R4

Byte displacement mode,
Register R11
25 in hexadecimal

356 in hexadecimal

MOVW 356(R4), 25(R11)

Move a word from address
that is 356 plus contents
of R4 to address that is
25 plus contents of R11

Opcode for ADDL3

Short literal 5

Register mode R0

Index prefix R2
Indirect word relative
(displacement from PC)

ADDL3 #5, R0, @A[R2]

Add 5 to a 32-bit integer in
R0 and store the result in
location whose address is
sum of A and 4 times the
contents of R2

Amount of displacement from
PC relative to location A

Figure 13.8 Example of VAX Instructions
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 13.4 x86 AND ARM INSTRUCTION FORMATS

x86 Instruction Formats

The x86 is equipped with a variety of instruction formats. Of the elements described 
in this subsection, only the opcode field is always present. Figure 13.9 illustrates the 
general instruction format. Instructions are made up of from zero to four optional 
instruction prefixes, a 1- or 2-byte opcode, an optional address specifier (which con-
sists of the ModR/M byte and the Scale Index Base byte) an optional displacement, 
and an optional immediate field.

Let us first consider the prefix bytes:

 • Instruction prefixes: The instruction prefix, if present, consists of the LOCK 
prefix or one of the repeat prefixes. The LOCK prefix is used to ensure 
 exclusive use of shared memory in multiprocessor environments. The  repeat 
prefixes specify repeated operation of a string, which enables the x86 to pro-
cess strings much faster than with a regular software loop. There are five dif-
ferent repeat prefixes: REP, REPE, REPZ, REPNE, and REPNZ. When the 
absolute REP prefix is present, the operation specified in the instruction is 
executed repeatedly on successive elements of the string; the number of repeti-
tions is specified in register CX. The conditional REP prefix causes the instruc-
tion to repeat until the count in CX goes to zero or until the  condition is met.

 • Segment override: Explicitly specifies which segment register an instruction 
should use, overriding the default segment-register selection generated by the 
x86 for that instruction.

Mod

bytes0 or 1

0, 1, 2, 3, or 4 bytes 0, 1, 2, or 4 0, 1, 2, or 41, 2, or 3 0 or 1 0 or 1

0 or 1 0 or 1 0 or 1

Instruction prefixes Opcode

01234567 01234567

ModR/M SIB Displacement Immediate

Instruction
prefix

Segment
override

Operand
size

override

Address
size

override

Reg/Opcode R/M Scale Index Base

Figure 13.9 x86 Instruction Format
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 • Operand size: An instruction has a default operand size of 16 or 32 bits, and 
the operand prefix switches between 32-bit and 16-bit operands.

 • Address size: The processor can address memory using either 16- or 32-bit 
addresses. The address size determines the displacement size in instructions 
and the size of address offsets generated during effective address calculation. 
One of these sizes is designated as default, and the address size prefix switches 
between 32-bit and 16-bit address generation.

The instruction itself includes the following fields:

 • Opcode: The opcode field is 1, 2, or 3 bytes in length. The opcode may also 
include bits that specify if data is byte- or full-size (16 or 32 bits depending on 
context), direction of data operation (to or from memory), and whether an im-
mediate data field must be sign extended.

 • ModR/M: This byte, and the next, provide addressing information. The 
ModR/M byte specifies whether an operand is in a register or in memory; if 
it is in memory, then fields within the byte specify the addressing mode to be 
used. The ModR/M byte consists of three fields: The Mod field (2 bits) com-
bines with the R/M field to form 32 possible values: 8 registers and 24 index-
ing modes; the Reg/Opcode field (3 bits) specifies either a register number or 
three more bits of opcode information; the r/m field (3 bits) can specify a reg-
ister as the location of an operand, or it can form part of the addressing-mode 
encoding in combination with the Mod field.

 • SIB: Certain encoding of the ModR/M byte specifies the inclusion of the SIB 
byte to specify fully the addressing mode. The SIB byte consists of three fields: 
The Scale field (2 bits) specifies the scale factor for scaled indexing; the Index 
field (3 bits) specifies the index register; the Base field (3 bits) specifies the 
base register.

 • Displacement: When the addressing-mode specifier indicates that a displace-
ment is used, an 8-, 16-, or 32-bit signed integer displacement field is added.

 • Immediate: Provides the value of an 8-, 16-, or 32-bit operand.

Several comparisons may be useful here. In the x86 format, the addressing mode 
is provided as part of the opcode sequence rather than with each operand. Because 
only one operand can have address-mode information, only one memory operand 
can be referenced in an instruction. In contrast, the VAX carries the address-mode 
information with each operand, allowing memory-to-memory operations. The x86 
instructions are therefore more compact. However, if a memory- to-memory opera-
tion is required, the VAX can accomplish this in a single instruction.

The x86 format allows the use of not only 1-byte, but also 2-byte and 4-byte 
offsets for indexing. Although the use of the larger index offsets results in longer 
instructions, this feature provides needed flexibility. For example, it is useful in 
addressing large arrays or large stack frames. In contrast, the IBM S/370 instruc-
tion format allows offsets no greater than 4 Kbytes (12 bits of offset information), 
and the offset must be positive. When a location is not in reach of this offset, the 
compiler must generate extra code to generate the needed address. This problem is 
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especially apparent in dealing with stack frames that have local variables  occupying 
in excess of 4 Kbytes. As [DEWA90] puts it, “generating code for the 370 is so 
 painful as a result of that restriction that there have even been compilers for the 370 
that simply chose to limit the size of the stack frame to 4 Kbytes.”

As can be seen, the encoding of the x86 instruction set is very complex. This 
has to do partly with the need to be backward compatible with the 8086 machine 
and partly with a desire on the part of the designers to provide every possible assist-
ance to the compiler writer in producing efficient code. It is a matter of some debate 
whether an instruction set as complex as this is preferable to the opposite extreme 
of the RISC instruction sets.

ARM Instruction Formats

All instructions in the ARM architecture are 32 bits long and follow a regular for-
mat (Figure 13.10). The first four bits of an instruction are the condition code. 
As  discussed in Chapter 12, virtually all ARM instructions can be conditionally 
 executed. The next three bits specify the general type of instruction. For most instruc-
tions other than branch instructions, the next five bits constitute an opcode and/or  
modifier bits for the operation. The remaining 20 bits are for operand addressing. The 
regular structure of the instruction formats eases the job of the instruction decode units.

0 0 0S Rn RmRd Shift amount Shift

0Shift amount Shift

0Cond Opcode
Data processing
immediate shift

0 1 S Rn Rd Rotate Immediate0Cond Opcode
Data processing

immediate

1 0 LWBUP Rn Rd Immediate0Cond
Load/store

immediate offset

1 1 LWBUP Rn Rd0Cond
Load/store

register offset

0 0 10S Rn Rm

Rm

Register list0 0 LWSUP Rn1Cond
Load/store

multiple

24-Bit offset0 1 L1Cond
Branch/branch

with link

S = For data processing instructions, signifies that the instruction
       updates the condition codes
S = For load/store multiple instructions, signifies whether instruction 
      execution is restricted to supervisor mode
P, U, W = Bits that distinguish among
      different types of addressing_mode
B = Distinguishes between an unsigned
       byte (B==1) and a word (B==0) access
L = For load/store instructions, distinguishes
      between a Load (L==1) and a Store (L==0)
L = For branch instructions, determines whether a
      return address is stored in the link register 

Rd Rs Shift0Cond Opcode
Data processing

register shift

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

Figure 13.10 ARM Instruction Formats
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IMMEDIATE CONSTANTS To achieve a greater range of immediate values, the 
data processing immediate format specifies both an immediate value and a rotate 
value. The 8-bit immediate value is expanded to 32 bits and then rotated right by a 
number of bits equal to twice the 4-bit rotate value. Several examples are shown in 
Figure 13.11.

THUMB INSTRUCTION SET The Thumb instruction set is a re-encoded subset of 
the ARM instruction set. Thumb is designed to increase the performance of ARM 
implementations that use a 16-bit or narrower memory data bus and to allow better 
code density than provided by the ARM instruction set. The Thumb instruction set 
contains a subset of the ARM 32-bit instruction set recoded into 16-bit instructions. 
The savings is achieved in the following way:

 1. Thumb instructions are unconditional, so the condition code field is not used. 
Also, all Thumb arithmetic and logic instructions update the condition flags, 
so that the update-flag bit is not needed. Savings: 5 bits.

 2. Thumb has only a subset of the operations in the full instruction set and uses 
only a 2-bit opcode field, plus a 3-bit type field. Savings: 2 bits.

 3. The remaining savings of 9 bits comes from reductions in the operand specifi-
cations. For example, Thumb instructions reference only registers r0 through 
r7, so only 3 bits are required for register references, rather than 4 bits. 
Immediate values do not include a 4-bit rotate field.

The ARM processor can execute a program consisting of a mixture of Thumb 
instructions and 32-bit ARM instructions. A bit in the processor control register 
determines which type of instruction is currently being executed. Figure 13.12 shows 
an example. The figure shows both the general format and a specific instance of an 
instruction in both 16-bit and 32-bit formats.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000

ror #0—range 0 through 0x000000FF—step 0x00000001 

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ror #8—range 0 through 0xFF000000—step 0x01000000 

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000

ror #30—range 0 through 0x000003FC—step 0x00000004 

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

Figure 13.11 Examples of Use of ARM Immediate Constants
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 13.5 ASSEMBLY LANGUAGE

A processor can understand and execute machine instructions. Such instructions are 
simply binary numbers stored in the computer. If a programmer wished to program 
directly in machine language, then it would be necessary to enter the program as 
binary data.

Consider the simple BASIC statement

N = I + J + K

Suppose we wished to program this statement in machine language and to initialize 
I, J, and K to 2, 3, and 4, respectively. This is shown in Figure 13.13a. The program 
starts in location 101 (hexadecimal). Memory is reserved for the four variables start-
ing at location 201. The program consists of four instructions:

 1. Load the contents of location 201 into the AC.

 2. Add the contents of location 202 to the AC.

 3. Add the contents of location 203 to the AC.

 4. Store the contents of the AC in location 204.

This is clearly a tedious and very error-prone process.
A slight improvement is to write the program in hexadecimal rather than 

binary notation (Figure 10.11b). We could write the program as a series of lines. 
Each line contains the address of a memory location and the hexadecimal code of 
the binary value to be stored in that location. Then we need a program that will 
accept this input, translate each line into a binary number, and store it in the speci-
fied location.

For more improvement, we can make use of the symbolic name or mnemonic 
of each instruction. This results in the symbolic program shown in Figure 10.11c. 
Each line of input still represents one memory location. Each line consists of three 

0 1 1 0 00 0 10 00 10 1 10 11 11 0 0 0 0 0 010 0 0 1 1

ADD r3, #19

ADDS r3, r3, #19

Data processing
immediate format

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

0 1 1 00 1 10 0 0 1 00 1 10

Add/subtract/compare/move
immediate format

Always
condition
code

Update
condition
flags

Zero
rotation

0 1 Rd/RnOpcode Immediate0

012345678910111214 1315

0 1 S Rn Rd Rotate Immediate0Cond Opcode

Figure 13.12 Expanding a Thumb ADD Instruction into its ARM Equivalent
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fields, separated by spaces. The first field contains the address of a location. For an 
instruction, the second field contains the three-letter symbol for the opcode. If it is 
a memory-referencing instruction, then a third field contains the address. To store 
arbitrary data in a location, we invent a pseudoinstruction with the symbol DAT. 
This is merely an indication that the third field on the line contains a hexadecimal 
number to be stored in the location specified in the first field.

For this type of input we need a slightly more complex program. The program 
accepts each line of input, generates a binary number based on the second and third 
(if present) fields, and stores it in the location specified by the first field.

The use of a symbolic program makes life much easier but is still awkward. 
In particular, we must give an absolute address for each word. This means that the 
program and data can be loaded into only one place in memory, and we must know 
that place ahead of time. Worse, suppose we wish to change the program some day 
by adding or deleting a line. This will change the addresses of all subsequent words.

A much better system, and one commonly used, is to use symbolic addresses. 
This is illustrated in Figure 10.11d. Each line still consists of three fields. The first 
field is still for the address, but a symbol is used instead of an absolute numerical 
address. Some lines have no address, implying that the address of that line is one 
more than the address of the previous line. For memory-reference instructions, the 
third field also contains a symbolic address.

With this last refinement, we have an assembly language. Programs written in 
assembly language (assembly programs) are translated into machine language by an 
assembler. This program must not only do the symbolic translation discussed earlier 
but also assign some form of memory addresses to symbolic addresses.

Address Contents

101 0010 0010 101 2201 101 2201
102 0001 0010 102 1202 102 1202
103 0001 0010 103 1203 103 1203
104 0011 0010 104 3204 104 3204

201 0000 0000 201 0002 201 0002
202 0000 0000 202 0003 202 0003
203 0000 0000 203 0004 203 0004
204 0000 0000 204 0000 204 0000

(a) Binary program (b) Hexadecimal program

Address Instruction Label Operation Operand
101 LDA 201 FORMUL LDA I
102 ADD 202 ADD J
103 ADD 203 ADD K
104 STA 204 STA N

201 DAT 2 I DATA 2
202 DAT 3 J DATA 3
203 DAT 4 K DATA 4
204 DAT 0 N DATA 0

(c) Symbolic  program (d) Assembly program

ContentsAddress

Figure 13.13 Computation of the Formula N = I + J + K
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Review Questions

 13.1 Briefly define immediate addressing.
 13.2 Briefly define direct addressing.
 13.3 Briefly define indirect addressing.
 13.4 Briefly define register addressing.
 13.5 Briefly define register indirect addressing.
 13.6 Briefly define displacement addressing.
 13.7 Briefly define relative addressing.
 13.8 What is the advantage of autoindexing?
 13.9 What is the difference between postindexing and preindexing?
 13.10 What facts go into determining the use of the addressing bits of an instruction?
 13.11 What are the advantages and disadvantages of using a variable-length instruction 

 format?

BLAA97 Blaauw, G., and Brooks, F. Computer Architecture: Concepts and Evolution. 
Reading, MA: Addison-Wesley, 1997.

FLYN85 Flynn, M.; Johnson, J.; and Wakefield, S. “On Instruction Sets and Their 
 Formats.” IEEE Transactions on Computers, March 1985.

The development of assembly language was a major milestone in the evolu-
tion of computer technology. It was the first step to the high-level languages in use 
today. Although few programmers use assembly language, virtually all machines 
provide one. They are used, if at all, for systems programs such as compilers and  
I/O routines.

Appendix B provides a more detailed examination of assembly language.

 13.6 RECOMMENDED READING

The references cited in Chapter 12 are equally applicable to the material of this chapter. 
[BLAA97] contains a detailed discussion of instruction formats and addressing modes. In 
addition, the reader may wish to consult [FLYN85] for a discussion and analysis of instruc-
tion set design issues, particularly those relating to formats.

autoindexing
base-register addressing
direct addressing
displacement addressing
effective address

immediate addressing
indexing
indirect addressing
instruction format
postindexing

preindexing
register addressing
register indirect addressing
relative addressing
word

 13.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
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Problems

 13.1 Given the following memory values and a one-address machine with an accumulator, 
what values do the following instructions load into the accumulator?

• Word 20 contains 40.
• Word 30 contains 50.
• Word 40 contains 60.
• Word 50 contains 70.

a. LOAD IMMEDIATE 20
b. LOAD DIRECT 20
c. LOAD INDIRECT 20
d. LOAD IMMEDIATE 30
e. LOAD DIRECT 30
f. LOAD INDIRECT 30

 13.2 Let the address stored in the program counter be designated by the symbol X1. The 
instruction stored in X1 has an address part (operand reference) X2. The operand 
needed to execute the instruction is stored in the memory word with address X3. An 
index register contains the value X4. What is the relationship between these various 
quantities if the addressing mode of the instruction is (a) direct; (b) indirect; (c) PC 
relative; (d) indexed?

 13.3 An address field in an instruction contains decimal value 14. Where is the correspond-
ing operand located for
a. immediate addressing?
b. direct addressing?
c. indirect addressing?
d. register addressing?
e. register indirect addressing?

 13.4 Consider a 16-bit processor in which the following appears in main memory, starting 
at location 200:

200 Load to AC Mode

201 500

202 Next instruction

The first part of the first word indicates that this instruction loads a value into an ac-
cumulator. The Mode field specifies an addressing mode and, if appropriate, indicates 
a source register; assume that when used, the source register is R1, which has a value 
of 400. There is also a base register that contains the value 100. The value of 500 in 
location 201 may be part of the address calculation. Assume that location 399 contains 
the value 999, location 400 contains the value 1000, and so on. Determine the effective 
address and the operand to be loaded for the following address modes:

a. Direct
b. Immediate
c. Indirect

d. PC relative
e. Displacement
f. Register

g. Register indirect
h. Autoindexing with increment, using R1

 13.5 A PC-relative mode branch instruction is 3 bytes long. The address of the instruction, 
in decimal, is 256028. Determine the branch target address if the signed displacement 
in the instruction is -31.

 13.6 A PC-relative mode branch instruction is stored in memory at address 62010. The 
branch is made to location 53010. The address field in the instruction is 10 bits long. 
What is the binary value in the instruction?
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 13.7 How many times does the processor need to refer to memory when it fetches and 
executes an indirect-address-mode instruction if the instruction is (a) a computation 
requiring a single operand; (b) a branch?

 13.8 The IBM 370 does not provide indirect addressing. Assume that the address of an 
operand is in main memory. How would you access the operand?

 13.9 In [COOK82], the author proposes that the PC-relative addressing modes be elimi-
nated in favor of other modes, such as the use of a stack. What is the disadvantage of 
this proposal?

 13.10 The x86 includes the following instruction:

IMUL op1, op2, immediate

This instruction multiplies op2, which may be either register or memory, by the imme-
diate operand value, and places the result in op1, which must be a register. There is no 
other three-operand instruction of this sort in the instruction set. What is the possible 
use of such an instruction? (Hint: Consider indexing.)

 13.11 Consider a processor that includes a base with indexing addressing mode. Suppose an 
instruction is encountered that employs this addressing mode and specifies a displace-
ment of 1970, in decimal. Currently the base and index register contain the decimal 
numbers 48,022 and 8, respectively. What is the address of the operand?

 13.12 Define: EA = (X)+  is the effective address equal to the contents of location X, with X 
incremented by one word length after the effective address is calculated; EA = -(X) 
is the effective address equal to the contents of location X, with X decremented by 
one word length before the effective address is calculated; EA = (X)-  is the effec-
tive address equal to the contents of location X, with X decremented by one word 
length after the effective address is calculated. Consider the following instructions, 
each in the format (Operation Source Operand, Destination Operand), with the result 
of the operation placed in the destination operand.
a. OP X, (X)
b. OP (X), (X)+
c. OP (X)+ , (X)
d. OP - (X), (X)
e. OP - (X), (X)+
f. OP (X)+ , (X)+
g. OP (X)- , (X)
Using X as the stack pointer, which of these instructions can pop the top two elements 
from the stack, perform the designated operation (e.g., ADD source to destination 
and store in destination), and push the result back on the stack? For each such instruc-
tion, does the stack grow toward memory location 0 or in the opposite direction?

 13.13 Assume a stack-oriented processor that includes the stack operations PUSH and POP. 
Arithmetic operations automatically involve the top one or two stack elements. Begin 
with an empty stack. What stack elements remain after the following instructions are 
executed?
PUSH 4
PUSH 7
PUSH 8
ADD
PUSH 10
SUB
MUL

 13.14 Justify the assertion that a 32-bit instruction is probably much less than twice as useful 
as a 16-bit instruction.

 13.15 Why was IBM’s decision to move from 36 bits to 32 bits per word wrenching, and to 
whom?
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 13.16 Assume an instruction set that uses a fixed 16-bit instruction length. Operand speci-
fiers are 6 bits in length. There are K two-operand instructions and L zero-operand 
instructions. What is the maximum number of one-operand instructions that can be 
supported?

 13.17 Design a variable-length opcode to allow all of the following to be encoded in a 36-bit 
instruction:
• instructions with two 15-bit addresses and one 3-bit register number
• instructions with one 15-bit address and one 3-bit register number
• instructions with no addresses or registers

 13.18 Consider the results of Problem 10.6. Assume that M is a 16-bit memory address and 
that X, Y, and Z are either 16-bit addresses or 4-bit register numbers. The one-address 
machine uses an accumulator, and the two- and three-address machines have 16 regis-
ters and instructions operating on all combinations of memory locations and registers. 
Assuming 8-bit opcodes and instruction lengths that are multiples of 4 bits, how many 
bits does each machine need to compute X?

 13.19 Is there any possible justification for an instruction with two opcodes?
 13.20 The 16-bit Zilog Z8001 has the following general instruction format:
15   14   13   12   11   10   9   8   7   6   5   4   3   2   1   0

Mode Opcode w/b Operand 2 Operand 1

The mode field specifies how to locate the operands from the operand fields. The w/b 
field is used in certain instructions to specify whether the operands are bytes or 16-bit 
words. The operand 1 field may (depending on the mode field contents) specify one 
of 16 general-purpose registers. The operand 2 field may specify any general-purpose 
registers except register 0. When the operand 2 field is all zeros, each of the original 
opcodes takes on a new meaning.
a. How many opcodes are provided on the Z8001?
b. Suggest an efficient way to provide more opcodes and indicate the trade-off 

 involved.
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This chapter discusses aspects of the processor not yet covered in Part Three and 
sets the stage for the discussion of RISC and superscalar architecture in Chapters 
15 and 16.

We begin with a summary of processor organization. Registers, which form 
the internal memory of the processor, are then analyzed. We are then in a position 
to return to the discussion (begun in Section 3.2) of the instruction cycle. A descrip-
tion of the instruction cycle and a common technique known as instruction pipelin-
ing complete our description. The chapter concludes with an examination of some 
aspects of the x86 and ARM organizations.

 14.1 PROCESSOR ORGANIZATION

To understand the organization of the processor, let us consider the requirements 
placed on the processor, the things that it must do:

 • Fetch instruction: The processor reads an instruction from memory (register, 
cache, main memory).

 • Interpret instruction: The instruction is decoded to determine what action is 
required.

 • Fetch data: The execution of an instruction may require reading data from 
memory or an I/O module.

 • Process data: The execution of an instruction may require performing some 
arithmetic or logical operation on data.

 • Write data: The results of an execution may require writing data to memory or 
an I/O module.

To do these things, it should be clear that the processor needs to store some 
data temporarily. It must remember the location of the last instruction so that it can 
know where to get the next instruction. It needs to store instructions and data tem-
porarily while an instruction is being executed. In other words, the processor needs 
a small internal memory.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Distinguish between user-visible and control/status registers, and discuss the 
purposes of registers in each category.

� Summarize the instruction cycle.

� Discuss the principle behind instruction pipelining and how it works 
in practice.

� Compare and contrast the various forms of pipeline hazards.

� Present an overview of the x86 processor structure.

� Present an overview of the ARM processor structure.
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Figure 14.1 is a simplified view of a processor, indicating its connection to the 
rest of the system via the system bus. A similar interface would be needed for any 
of the interconnection structures described in Chapter 3. The reader will recall that 
the major components of the processor are an arithmetic and logic unit (ALU) and 
a control unit (CU). The ALU does the actual computation or processing of data. 
The control unit controls the movement of data and instructions into and out of the 
processor and controls the operation of the ALU. In addition, the figure shows a 
minimal internal memory, consisting of a set of storage locations, called registers.

Figure 14.2 is a slightly more detailed view of the processor. The data trans-
fer and logic control paths are indicated, including an element labeled internal 
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 processor bus. This element is needed to transfer data between the various registers 
and the ALU because the ALU in fact operates only on data in the internal proc-
essor memory. The figure also shows typical basic elements of the ALU. Note the 
similarity between the internal structure of the computer as a whole and the internal 
structure of the processor. In both cases, there is a small collection of major ele-
ments (computer: processor, I/O, memory; processor: control unit, ALU, registers) 
connected by data paths.

 14.2 REGISTER ORGANIZATION

As we discussed in Chapter 4, a computer system employs a memory hierarchy. At 
higher levels of the hierarchy, memory is faster, smaller, and more expensive (per 
bit). Within the processor, there is a set of registers that function as a level of mem-
ory above main memory and cache in the hierarchy. The registers in the processor 
perform two roles:

 • User-visible registers: Enable the machine- or assembly language programmer 
to minimize main memory references by optimizing use of registers.

 • Control and status registers: Used by the control unit to control the operation 
of the processor and by privileged, operating system programs to control the 
execution of programs.

There is not a clean separation of registers into these two categories. For 
example, on some machines the program counter is user visible (e.g., x86), but on 
many it is not. For purposes of the following discussion, however, we will use these 
categories.

User-Visible Registers

A user-visible register is one that may be referenced by means of the machine 
language that the processor executes. We can characterize these in the following 
categories:

 • General purpose

 • Data

 • Address

 • Condition codes

General-purpose registers can be assigned to a variety of functions by the pro-
grammer. Sometimes their use within the instruction set is orthogonal to the opera-
tion. That is, any general-purpose register can contain the operand for any opcode. 
This provides true general-purpose register use. Often, however, there are restric-
tions. For example, there may be dedicated registers for floating-point and stack 
operations.

In some cases, general-purpose registers can be used for addressing functions 
(e.g., register indirect, displacement). In other cases, there is a partial or clean sep-
aration between data registers and address registers. Data registers may be used 
only to hold data and cannot be employed in the calculation of an operand address. 
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Address registers may themselves be somewhat general purpose, or they may be 
devoted to a particular addressing mode. Examples include the following:

 • Segment pointers: In a machine with segmented addressing (see Section 8.3), 
a segment register holds the address of the base of the segment. There may be 
multiple registers: for example, one for the operating system and one for the 
current process.

 • Index registers: These are used for indexed addressing and may be autoin-
dexed.

 • Stack pointer: If there is user-visible stack addressing, then typically there is a 
dedicated register that points to the top of the stack. This allows implicit ad-
dressing; that is, push, pop, and other stack instructions need not contain an 
explicit stack operand.

There are several design issues to be addressed here. An important issue is 
whether to use completely general-purpose registers or to specialize their use. We 
have already touched on this issue in the preceding chapter because it affects instruc-
tion set design. With the use of specialized registers, it can generally be implicit in 
the opcode which type of register a certain operand specifier refers to. The operand 
specifier must only identify one of a set of specialized registers rather than one out 
of all the registers, thus saving bits. On the other hand, this specialization limits the 
programmer’s flexibility.

Another design issue is the number of registers, either general purpose or data 
plus address, to be provided. Again, this affects instruction set design because more 
registers require more operand specifier bits. As we previously discussed, somewhere 
between 8 and 32 registers appears optimum [LUND77]. Fewer registers result in more 
memory references; more registers do not noticeably reduce memory references (e.g., 
see [WILL90]). However, a new approach, which finds advantage in the use of hun-
dreds of registers, is exhibited in some RISC systems and is discussed in Chapter 15.

Finally, there is the issue of register length. Registers that must hold addresses 
obviously must be at least long enough to hold the largest address. Data registers 
should be able to hold values of most data types. Some machines allow two contigu-
ous registers to be used as one for holding double-length values.

A final category of registers, which is at least partially visible to the user, holds 
condition codes (also referred to as flags). Condition codes are bits set by the proc-
essor hardware as the result of operations. For example, an arithmetic operation 
may produce a positive, negative, zero, or overflow result. In addition to the result 
itself being stored in a register or memory, a condition code is also set. The code 
may subsequently be tested as part of a conditional branch operation.

Condition code bits are collected into one or more registers. Usually, they 
form part of a control register. Generally, machine instructions allow these bits to 
be read by implicit reference, but the programmer cannot alter them.

Many processors, including those based on the IA-64 architecture and the 
MIPS processors, do not use condition codes at all. Rather, conditional branch 
instructions specify a comparison to be made and act on the result of the compari-
son, without storing a condition code. Table 14.1, based on [DERO87], lists key 
advantages and disadvantages of condition codes.
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In some machines, a subroutine call will result in the automatic saving of all 
user-visible registers, to be restored on return. The processor performs the saving 
and restoring as part of the execution of call and return instructions. This allows 
each subroutine to use the user-visible registers independently. On other machines, 
it is the responsibility of the programmer to save the contents of the relevant user-
visible registers prior to a subroutine call, by including instructions for this purpose 
in the program.

Control and Status Registers

There are a variety of processor registers that are employed to control the operation 
of the processor. Most of these, on most machines, are not visible to the user. Some 
of them may be visible to machine instructions executed in a control or operating 
system mode.

Of course, different machines will have different register organizations and 
use different terminology. We list here a reasonably complete list of register types, 
with a brief description.

Four registers are essential to instruction execution:

 • Program counter (PC): Contains the address of an instruction to be fetched.

 • Instruction register (IR): Contains the instruction most recently fetched.

 • Memory address register (MAR): Contains the address of a location in 
memory.

 • Memory buffer register (MBR): Contains a word of data to be written to 
memory or the word most recently read.

Not all processors have internal registers designated as MAR and MBR, but 
some equivalent buffering mechanism is needed whereby the bits to be transferred 

Table 14.1 Condition Codes

Advantages Disadvantages

1.  Because condition codes are set by normal 
arithmetic and data movement instructions, they 
should reduce the number of COMPARE and 
TEST instructions needed.

2.  Conditional instructions, such as BRANCH are 
simplified relative to composite instructions, such 
as TEST AND BRANCH.

3.  Condition codes facilitate multiway branches. For 
example, a TEST instruction can be  
followed by two branches, one on less than  
or equal to zero and one on greater  
than zero.

4.  Condition codes can be saved on the stack 
during subroutine calls along with other register 
information.

 1.  Condition codes add complexity, both to the 
hardware and software. Condition code bits are 
often modified in different ways by different 
instructions, making life more difficult for both 
the microprogrammer and compiler writer.

 2.  Condition codes are irregular; they are typically 
not part of the main data path, so they require 
extra hardware connections.

 3.  Often condition code machines must add special 
non-condition-code instructions for special situa-
tions anyway, such as bit checking, loop control, 
and atomic semaphore operations.

 4.  In a pipelined implementation, condition 
codes require special synchronization to  
avoid conflicts.
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to the system bus are staged and the bits to be read from the data bus are temporar-
ily stored.

Typically, the processor updates the PC after each instruction fetch so 
that the PC always points to the next instruction to be executed. A branch or 
skip instruction will also modify the contents of the PC. The fetched instruc-
tion is loaded into an IR, where the opcode and operand specifiers are  
analyzed. Data are exchanged with memory using the MAR and MBR. In a bus-
organized system, the MAR connects directly to the address bus, and the MBR  
connects directly to the data bus. User-visible registers, in turn, exchange data 
with the MBR.

The four registers just mentioned are used for the movement of data between 
the processor and memory. Within the processor, data must be presented to the 
ALU for processing. The ALU may have direct access to the MBR and user-visible 
registers. Alternatively, there may be additional buffering registers at the boundary 
to the ALU; these registers serve as input and output registers for the ALU and 
exchange data with the MBR and user-visible registers.

Many processor designs include a register or set of registers, often known as 
the program status word (PSW), that contain status information. The PSW typi-
cally contains condition codes plus other status information. Common fields or flags 
include the following:

 • Sign: Contains the sign bit of the result of the last arithmetic operation.

 • Zero: Set when the result is 0.

 • Carry: Set if an operation resulted in a carry (addition) into or borrow (sub-
traction) out of a high-order bit. Used for multiword arithmetic operations.

 • Equal: Set if a logical compare result is equality.

 • Overflow: Used to indicate arithmetic overflow.

 • Interrupt Enable/Disable: Used to enable or disable interrupts.

 • Supervisor: Indicates whether the processor is executing in supervisor or user 
mode. Certain privileged instructions can be executed only in supervisor mode, 
and certain areas of memory can be accessed only in supervisor mode.

A number of other registers related to status and control might be found in a 
particular processor design. There may be a pointer to a block of memory contain-
ing additional status information (e.g., process control blocks). In machines using 
vectored interrupts, an interrupt vector register may be provided. If a stack is used 
to implement certain functions (e.g., subroutine call), then a system stack pointer is 
needed. A page table pointer is used with a virtual memory system. Finally, regis-
ters may be used in the control of I/O operations.

A number of factors go into the design of the control and status register organ-
ization. One key issue is operating system support. Certain types of control infor-
mation are of specific utility to the operating system. If the processor designer has 
a functional understanding of the operating system to be used, then the register 
organization can to some extent be tailored to the operating system.

Another key design decision is the allocation of control information between 
registers and memory. It is common to dedicate the first (lowest) few hundred or 
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thousand words of memory for control purposes. The designer must decide how 
much control information should be in registers and how much in memory. The 
usual trade-off of cost versus speed arises.

Example Microprocessor Register Organizations

It is instructive to examine and compare the register organization of comparable 
systems. In this section, we look at two 16-bit microprocessors that were designed 
at about the same time: the Motorola MC68000 [STRI79] and the Intel 8086 
[MORS78]. Figures 14.3a and b depict the register organization of each; purely 
internal registers, such as a memory address register, are not shown.

The MC68000 partitions its 32-bit registers into eight data registers and nine 
address registers. The eight data registers are used primarily for data manipulation 
and are also used in addressing as index registers. The width of the registers allows 
8-, 16-, and 32-bit data operations, determined by opcode. The address registers 
contain 32-bit (no segmentation) addresses; two of these registers are also used as 
stack pointers, one for users and one for the operating system, depending on the 
current execution mode. Both registers are numbered 7, because only one can be 
used at a time. The MC68000 also includes a 32-bit program counter and a 16-bit 
status register.

The Motorola team wanted a very regular instruction set, with no special- 
purpose registers. A concern for code efficiency led them to divide the registers into 
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two functional components, saving one bit on each register specifier. This seems a 
reasonable compromise between complete generality and code compaction.

The Intel 8086 takes a different approach to register organization. Every 
register is special purpose, although some registers are also usable as general 
purpose. The 8086 contains four 16-bit data registers that are addressable on a 
byte or 16-bit basis, and four 16-bit pointer and index registers. The data  registers 
can be used as general purpose in some instructions. In others, the registers are 
used implicitly. For example, a multiply instruction always uses the accumulator. 
The four pointer registers are also used implicitly in a number of operations; 
each contains a segment offset. There are also four 16-bit segment registers. 
Three of the four segment registers are used in a dedicated, implicit fashion, to 
point to the segment of the current instruction (useful for branch instructions), a 
segment containing data, and a segment containing a stack, respectively. These 
dedicated and implicit uses provide for compact encoding at the cost of reduced 
flexibility. The 8086 also includes an instruction pointer and a set of 1-bit status 
and control flags.

The point of this comparison should be clear. There is no universally accepted 
philosophy concerning the best way to organize processor registers [TOON81]. As 
with overall instruction set design and so many other processor design issues, it is 
still a matter of judgment and taste.

A second instructive point concerning register organization design is illus-
trated in Figure 14.3c. This figure shows the user-visible register organization for 
the Intel 80386 [ELAY85], which is a 32-bit microprocessor designed as an exten-
sion of the 8086.1 The 80386 uses 32-bit registers. However, to provide upward 
compatibility for programs written on the earlier machine, the 80386 retains the 
original register organization embedded in the new organization. Given this design 
constraint, the architects of the 32-bit processors had limited flexibility in designing 
the register organization.

 14.3 INSTRUCTION CYCLE

In Section 3.2, we described the processor’s instruction cycle (Figure 3.9). To recall, 
an instruction cycle includes the following stages:

 • Fetch: Read the next instruction from memory into the processor.

 • Execute: Interpret the opcode and perform the indicated operation.

 • Interrupt: If interrupts are enabled and an interrupt has occurred, save the 
current process state and service the interrupt.

We are now in a position to elaborate somewhat on the instruction cycle. First, 
we must introduce one additional stage, known as the indirect cycle.

1Because the MC68000 already uses 32-bit registers, the MC68020 [MACD84], which is a full 32-bit 
architecture, uses the same register organization.
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The Indirect Cycle

We have seen, in Chapter 13, that the execution of an instruction may involve one 
or more operands in memory, each of which requires a memory access. Further, if 
indirect addressing is used, then additional memory accesses are required.

We can think of the fetching of indirect addresses as one more instruc-
tion stages. The result is shown in Figure 14.4. The main line of activity con-
sists of alternating instruction fetch and instruction execution activities. After 
an instruction is fetched, it is examined to determine if any indirect addressing 
is involved. If so, the required operands are fetched using indirect addressing. 
Following execution, an interrupt may be processed before the next instruction 
fetch.

Another way to view this process is shown in Figure 14.5, which is a revised 
version of Figure 3.12. This illustrates more correctly the nature of the instruction 
cycle. Once an instruction is fetched, its operand specifiers must be identified. Each 
input operand in memory is then fetched, and this process may require indirect 
addressing. Register-based operands need not be fetched. Once the opcode is exe-
cuted, a similar process may be needed to store the result in main memory.

Data Flow

The exact sequence of events during an instruction cycle depends on the design 
of the processor. We can, however, indicate in general terms what must happen. 
Let us assume that a processor that employs a memory address register (MAR), 
a memory buffer register (MBR), a program counter (PC), and an instruction 
register (IR).

During the fetch cycle, an instruction is read from memory. Figure 14.6 shows 
the flow of data during this cycle. The PC contains the address of the next instruc-
tion to be fetched. This address is moved to the MAR and placed on the address 
bus. The control unit requests a memory read, and the result is placed on the data 
bus and copied into the MBR and then moved to the IR. Meanwhile, the PC is 
incremented by 1, preparatory for the next fetch.

Fetch

Execute

Interrupt Indirect

Figure 14.4 The Instruction Cycle
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Once the fetch cycle is over, the control unit examines the contents of the IR 
to determine if it contains an operand specifier using indirect addressing. If so, an 
indirect cycle is performed. As shown in Figure 14.7, this is a simple cycle. The right-
most N bits of the MBR, which contain the address reference, are transferred to the 
MAR. Then the control unit requests a memory read, to get the desired address of 
the operand into the MBR.

The fetch and indirect cycles are simple and predictable. The execute cycle 
takes many forms; the form depends on which of the various machine instructions 
is in the IR. This cycle may involve transferring data among registers, read or write 
from memory or I/O, and/or the invocation of the ALU.

Like the fetch and indirect cycles, the interrupt cycle is simple and predictable 
(Figure 14.8). The current contents of the PC must be saved so that the processor 
can resume normal activity after the interrupt. Thus, the contents of the PC are 
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transferred to the MBR to be written into memory. The special memory location 
reserved for this purpose is loaded into the MAR from the control unit. It might, 
for example, be a stack pointer. The PC is loaded with the address of the interrupt 
routine. As a result, the next instruction cycle will begin by fetching the appropriate 
instruction.

 14.4 INSTRUCTION PIPELINING

As computer systems evolve, greater performance can be achieved by taking advan-
tage of improvements in technology, such as faster circuitry. In addition, organiza-
tional enhancements to the processor can improve performance. We have already 
seen some examples of this, such as the use of multiple registers rather than a single 
accumulator, and the use of a cache memory. Another organizational approach, 
which is quite common, is instruction pipelining.

Pipelining Strategy

Instruction pipelining is similar to the use of an assembly line in a manufacturing 
plant. An assembly line takes advantage of the fact that a product goes through 
various stages of production. By laying the production process out in an assembly 
line, products at various stages can be worked on simultaneously. This process is 
also referred to as pipelining, because, as in a pipeline, new inputs are accepted at 
one end before previously accepted inputs appear as outputs at the other end.

To apply this concept to instruction execution, we must recognize that, in fact, 
an instruction has a number of stages. Figures 14.5, for example, breaks the instruc-
tion cycle up into 10 tasks, which occur in sequence. Clearly, there should be some 
opportunity for pipelining.

As a simple approach, consider subdividing instruction processing into two 
stages: fetch instruction and execute instruction. There are times during the execu-
tion of an instruction when main memory is not being accessed. This time could 
be used to fetch the next instruction in parallel with the execution of the current 
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one. Figure 14.9a depicts this approach. The pipeline has two independent stages. 
The first stage fetches an instruction and buffers it. When the second stage is free, 
the first stage passes it the buffered instruction. While the second stage is executing 
the instruction, the first stage takes advantage of any unused memory cycles to fetch 
and buffer the next instruction. This is called instruction prefetch or fetch overlap. 
Note that this approach, which involves instruction buffering, requires more regis-
ters. In general, pipelining requires registers to store data between stages.

It should be clear that this process will speed up instruction execution. If 
the fetch and execute stages were of equal duration, the instruction cycle time would 
be halved. However, if we look more closely at this pipeline (Figure 14.9b), we will 
see that this doubling of execution rate is unlikely for two reasons:

 1. The execution time will generally be longer than the fetch time. Execution will 
involve reading and storing operands and the performance of some operation. 
Thus, the fetch stage may have to wait for some time before it can empty its 
buffer.

 2. A conditional branch instruction makes the address of the next instruction to 
be fetched unknown. Thus, the fetch stage must wait until it receives the next 
instruction address from the execute stage. The execute stage may then have 
to wait while the next instruction is fetched.

Guessing can reduce the time loss from the second reason. A simple rule is the 
following: When a conditional branch instruction is passed on from the fetch to 
the execute stage, the fetch stage fetches the next instruction in memory after the 
branch instruction. Then, if the branch is not taken, no time is lost. If the branch is 
taken, the fetched instruction must be discarded and a new instruction fetched.

While these factors reduce the potential effectiveness of the two-stage pipe-
line, some speedup occurs. To gain further speedup, the pipeline must have more 
stages. Let us consider the following decomposition of the instruction processing.

Fetch
Instruction Instruction
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Instruction
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Figure 14.9 Two-Stage Instruction Pipeline
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 • Fetch instruction (FI): Read the next expected instruction into a buffer.

 • Decode instruction (DI): Determine the opcode and the operand specifiers.

 • Calculate operands (CO): Calculate the effective address of each source oper-
and. This may involve displacement, register indirect, indirect, or other forms 
of address calculation.

 • Fetch operands (FO): Fetch each operand from memory. Operands in regis-
ters need not be fetched.

 • Execute instruction (EI): Perform the indicated operation and store the result, 
if any, in the specified destination operand location.

 • Write operand (WO): Store the result in memory.

With this decomposition, the various stages will be of more nearly equal dura-
tion. For the sake of illustration, let us assume equal duration. Using this assump-
tion, Figure 14.10 shows that a six-stage pipeline can reduce the execution time for 
9 instructions from 54 time units to 14 time units.

Several comments are in order: The diagram assumes that each instruction 
goes through all six stages of the pipeline. This will not always be the case. For 
example, a load instruction does not need the WO stage. However, to simplify the 
pipeline hardware, the timing is set up assuming that each instruction requires all 
six stages. Also, the diagram assumes that all of the stages can be performed in par-
allel. In particular, it is assumed that there are no memory conflicts. For example, 
the FI, FO, and WO stages involve a memory access. The diagram implies that all 
these accesses can occur simultaneously. Most memory systems will not permit that. 
However, the desired value may be in cache, or the FO or WO stage may be null. 
Thus, much of the time, memory conflicts will not slow down the pipeline.
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Several other factors serve to limit the performance enhancement. If the six 
stages are not of equal duration, there will be some waiting involved at various pipe-
line stages, as discussed before for the two-stage pipeline. Another difficulty is the 
conditional branch instruction, which can invalidate several instruction fetches. A 
similar unpredictable event is an interrupt. Figure 14.11 illustrates the effects of the 
conditional branch, using the same program as Figure 14.10. Assume that instruc-
tion 3 is a conditional branch to instruction 15. Until the instruction is executed, 
there is no way of knowing which instruction will come next. The pipeline, in this 
example, simply loads the next instruction in sequence (instruction 4) and proceeds. 
In Figure 14.10, the branch is not taken, and we get the full performance benefit of 
the enhancement. In Figure 14.11, the branch is taken. This is not determined until 
the end of time unit 7. At this point, the pipeline must be cleared of instructions that 
are not useful. During time unit 8, instruction 15 enters the pipeline. No instructions 
complete during time units 9 through 12; this is the performance penalty incurred 
because we could not anticipate the branch. Figure 14.12 indicates the logic needed 
for pipelining to account for branches and interrupts.

Other problems arise that did not appear in our simple two-stage organiza-
tion. The CO stage may depend on the contents of a register that could be altered 
by a previous instruction that is still in the pipeline. Other such register and mem-
ory conflicts could occur. The system must contain logic to account for this type of 
conflict.

To clarify pipeline operation, it might be useful to look at an alternative depic-
tion. Figures 14.10 and 14.11 show the progression of time horizontally across the 
figures, with each row showing the progress of an individual instruction. Figure 14.13 
shows same sequence of events, with time progressing vertically down the figure, 
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and each row showing the state of the pipeline at a given point in time. In Figure 
14.13a (which corresponds to Figure 14.10), the pipeline is full at time 6, with 6 dif-
ferent instructions in various stages of execution, and remains full through time 9; 
we assume that instruction I9 is the last instruction to be executed. In Figure 14.13b, 
(which corresponds to Figure 14.11), the pipeline is full at times 6 and 7. At time 7, 
instruction 3 is in the execute stage and executes a branch to instruction 15. At this 
point, instructions I4 through I7 are flushed from the pipeline, so that at time 8, only 
two instructions are in the pipeline, I3 and I15.

From the preceding discussion, it might appear that the greater the number of 
stages in the pipeline, the faster the execution rate. Some of the IBM S/360  designers 
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pointed out two factors that frustrate this seemingly simple pattern for high-perform-
ance design [ANDE67a], and they remain elements that designer must still consider:

 1. At each stage of the pipeline, there is some overhead involved in moving data 
from buffer to buffer and in performing various preparation and delivery 
functions. This overhead can appreciably lengthen the total execution time of 
a single instruction. This is significant when sequential instructions are logi-
cally dependent, either through heavy use of branching or through memory 
access dependencies.

 2. The amount of control logic required to handle memory and register depen-
dencies and to optimize the use of the pipeline increases enormously with the 
number of stages. This can lead to a situation where the logic controlling the 
gating between stages is more complex than the stages being controlled.

Another consideration is latching delay: It takes time for pipeline buffers to 
operate and this adds to instruction cycle time.

Instruction pipelining is a powerful technique for enhancing performance but 
requires careful design to achieve optimum results with reasonable complexity.

Pipeline Performance

In this subsection, we develop some simple measures of pipeline performance and 
relative speedup (based on a discussion in [HWAN93]). The cycle time t of an 
instruction pipeline is the time needed to advance a set of instructions one stage 
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through the pipeline; each column in Figures 14.10 and 14.11 represents one cycle 
time. The cycle time can be determined as

t = max
i

[ti] + d = tm + d 1 … i … k

where

ti  =  time delay of the circuitry in the ith stage of the pipeline

tm  =   maximum stage delay (delay through stage which experiences the largest 
delay)

k =  number of stages in the instruction pipeline

d =   time delay of a latch, needed to advance signals and data from one stage 
to the next

In general, the time delay d is equivalent to a clock pulse and tm W d. Now 
suppose that n instructions are processed, with no branches. Let Tk, n be the total 
time required for a pipeline with k stages to execute n instructions. Then

 Tk,n = [k + (n - 1)]t (14.1)

A total of k cycles are required to complete the execution of the first instruc-
tion, and the remaining n - 1 instructions require n - 1 cycles.2 This equation is 
easily verified from Figures 14.10. The ninth instruction completes at time cycle 14:

14 = [6 + (9 - 1)]

Now consider a processor with equivalent functions but no pipeline, and 
assume that the instruction cycle time is kt. The speedup factor for the instruction 
pipeline compared to execution without the pipeline is defined as

 Sk =
T1, n

Tk, n
=

nkt
[k + (n - 1)]t

=
nk

k + (n - 1)
 (14.2)

Figure 14.14a plots the speedup factor as a function of the number of instruc-
tions that are executed without a branch. As might be expected, at the limit (n S �), 
we have a k-fold speedup. Figure 14.14b shows the speedup factor as a function of 
the number of stages in the instruction pipeline.3 In this case, the speedup factor 
approaches the number of instructions that can be fed into the pipeline without 
branches. Thus, the larger the number of pipeline stages, the greater the potential 
for speedup. However, as a practical matter, the potential gains of additional pipe-
line stages are countered by increases in cost, delays between stages, and the fact 
that branches will be encountered requiring the flushing of the pipeline.

Pipeline Hazards

In the previous subsection, we mentioned some of the situations that can result in 
less than optimal pipeline performance. In this subsection, we examine this issue in 

2We are being a bit sloppy here. The cycle time will only equal the maximum value of t when all the stages 
are full. At the beginning, the cycle time may be less for the first one or few cycles.
3Note that the x-axis is logarithmic in Figure 14.14a and linear in Figure 14.14b.
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a more systematic way. Chapter 16 revisits this issue, in more detail, after we have 
introduced the complexities found in superscalar pipeline organizations.

A pipeline hazard occurs when the pipeline, or some portion of the pipeline, 
must stall because conditions do not permit continued execution. Such a pipe-
line stall is also referred to as a pipeline bubble. There are three types of hazards: 
resource, data, and control.

RESOURCE HAZARDS A resource hazard occurs when two (or more) instructions 
that are already in the pipeline need the same resource. The result is that the 
instructions must be executed in serial rather than parallel for a portion of the 
pipeline. A resource hazard is sometime referred to as a structural hazard.

Let us consider a simple example of a resource hazard. Assume a simplified 
five-stage pipeline, in which each stage takes one clock cycle. Figure 14.15a shows 
the ideal case, in which a new instruction enters the pipeline each clock cycle. Now 
assume that main memory has a single port and that all instruction fetches and data 
reads and writes must be performed one at a time. Further, ignore the cache. In this 
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case, an operand read to or write from memory cannot be performed in parallel 
with an instruction fetch. This is illustrated in Figure 14.15b, which assumes that the 
source operand for instruction I1 is in memory, rather than a register. Therefore, 
the fetch instruction stage of the pipeline must idle for one cycle before beginning 
the instruction fetch for instruction I3. The figure assumes that all other operands 
are in registers.

Another example of a resource conflict is a situation in which multiple instruc-
tions are ready to enter the execute instruction phase and there is a single ALU. 
One solutions to such resource hazards is to increase available resources, such as 
having multiple ports into main memory and multiple ALU units.

Reservation Table Analyzer

One approach to analyzing resource conflicts and aiding in the design of 
pipelines is the reservation table. We examine reservation tables in Appendix I.

DATA HAZARDS A data hazard occurs when there is a conflict in the access of 
an operand location. In general terms, we can state the hazard in this form: Two 
instructions in a program are to be executed in sequence and both access a particular 
memory or register operand. If the two instructions are executed in strict sequence, 
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no problem occurs. However, if the instructions are executed in a pipeline, then 
it is possible for the operand value to be updated in such a way as to produce a 
different result than would occur with strict sequential execution. In other words, 
the program produces an incorrect result because of the use of pipelining.

As an example, consider the following x86 machine instruction sequence:

ADD EAX,  EBX /* EAX = EAX + EBX

SUB ECX,  EAX /* ECX = ECX - EAX

The first instruction adds the contents of the 32-bit registers EAX and EBX 
and stores the result in EAX. The second instruction subtracts the contents of EAX 
from ECX and stores the result in ECX. Figure 14.16 shows the pipeline behavior. 
The ADD instruction does not update register EAX until the end of stage 5, which 
occurs at clock cycle 5. But the SUB instruction needs that value at the beginning of 
its stage 2, which occurs at clock cycle 4. To maintain correct operation, the pipeline 
must stall for two clocks cycles. Thus, in the absence of special hardware and spe-
cific avoidance algorithms, such a data hazard results in inefficient pipeline usage.

There are three types of data hazards;

 • Read after write (RAW), or true dependency: An instruction modifies a reg-
ister or memory location and a succeeding instruction reads the data in that 
memory or register location. A hazard occurs if the read takes place before 
the write operation is complete.

 • Write after read (WAR), or antidependency: An instruction reads a register or 
memory location and a succeeding instruction writes to the location. A hazard 
occurs if the write operation completes before the read operation takes place.

 • Write after write (WAW), or output dependency: Two instructions both write 
to the same location. A hazard occurs if the write operations take place in the 
reverse order of the intended sequence.

The example of Figure 14.16 is a RAW hazard. The other two hazards are best 
discussed in the context of superscalar organization, discussed in Chapter 16.

CONTROL HAZARDS A control hazard, also known as a branch hazard, occurs 
when the pipeline makes the wrong decision on a branch prediction and therefore 
brings instructions into the pipeline that must subsequently be discarded. We discuss 
approaches to dealing with control hazards next.
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Dealing with Branches

One of the major problems in designing an instruction pipeline is assuring 
a steady flow of instructions to the initial stages of the pipeline. The primary 
impediment, as we have seen, is the conditional branch instruction. Until the 
instruction is actually executed, it is impossible to determine whether the branch 
will be taken or not.

A variety of approaches have been taken for dealing with conditional branches:

 • Multiple streams

 • Prefetch branch target

 • Loop buffer

 • Branch prediction

 • Delayed branch

MULTIPLE STREAMS A simple pipeline suffers a penalty for a branch instruction 
because it must choose one of two instructions to fetch next and may make the wrong 
choice. A brute-force approach is to replicate the initial portions of the pipeline and 
allow the pipeline to fetch both instructions, making use of two streams. There are 
two problems with this approach:

 • With multiple pipelines there are contention delays for access to the registers 
and to memory.

 • Additional branch instructions may enter the pipeline (either stream) before 
the original branch decision is resolved. Each such instruction needs an addi-
tional stream.

Despite these drawbacks, this strategy can improve performance. Examples of 
machines with two or more pipeline streams are the IBM 370/168 and the IBM 3033.

PREFETCH BRANCH TARGET When a conditional branch is recognized, the target 
of the branch is prefetched, in addition to the instruction following the branch. This 
target is then saved until the branch instruction is executed. If the branch is taken, 
the target has already been prefetched.

The IBM 360/91 uses this approach.

LOOP BUFFER A loop buffer is a small, very-high-speed memory maintained by the 
instruction fetch stage of the pipeline and containing the n most recently fetched 
instructions, in sequence. If a branch is to be taken, the hardware first checks 
whether the branch target is within the buffer. If so, the next instruction is fetched 
from the buffer. The loop buffer has three benefits:

 1. With the use of prefetching, the loop buffer will contain some instruction 
 sequentially ahead of the current instruction fetch address. Thus, instructions 
fetched in sequence will be available without the usual memory access time.

 2. If a branch occurs to a target just a few locations ahead of the address of 
the branch instruction, the target will already be in the buffer. This is use-
ful for the rather common occurrence of IF–THEN and IF–THEN–ELSE 
sequences.
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 3. This strategy is particularly well suited to dealing with loops, or iterations; 
hence the name loop buffer. If the loop buffer is large enough to contain all 
the instructions in a loop, then those instructions need to be fetched from 
memory only once, for the first iteration. For subsequent iterations, all the 
needed instructions are already in the buffer.

The loop buffer is similar in principle to a cache dedicated to instructions. 
The differences are that the loop buffer only retains instructions in sequence and is 
much smaller in size and hence lower in cost.

Figure 14.17 gives an example of a loop buffer. If the buffer contains 256 bytes, 
and byte addressing is used, then the least significant 8 bits are used to index the 
buffer. The remaining most significant bits are checked to determine if the branch 
target lies within the environment captured by the buffer.

Among the machines using a loop buffer are some of the CDC machines (Star-
100, 6600, 7600) and the CRAY-1. A specialized form of loop buffer is available on 
the Motorola 68010, for executing a three-instruction loop involving the DBcc (dec-
rement and branch on condition) instruction (see Problem 14.14). A three-word 
buffer is maintained, and the processor executes these instructions repeatedly until 
the loop condition is satisfied.

Branch Prediction Simulator
Branch Target Buffer

BRANCH PREDICTION Various techniques can be used to predict whether a branch 
will be taken. Among the more common are the following:

 • Predict never taken

 • Predict always taken

 • Predict by opcode

 • Taken/not taken switch

 • Branch history table

Loop buffer
(256 bytes)

Branch address

8
Instruction to be

decoded in case of hit

Most significant address bits
compared to determine a hit

Figure 14.17 Loop Buffer



14.4 / INSTRUCTION PIPELINING  507

The first three approaches are static: they do not depend on the execution his-
tory up to the time of the conditional branch instruction. The latter two approaches 
are dynamic: They depend on the execution history.

The first two approaches are the simplest. These either always assume that 
the branch will not be taken and continue to fetch instructions in sequence, or they 
always assume that the branch will be taken and always fetch from the branch tar-
get. The predict-never-taken approach is the most popular of all the branch predic-
tion methods.

Studies analyzing program behavior have shown that conditional branches are 
taken more than 50% of the time [LILJ88], and so if the cost of prefetching from 
either path is the same, then always prefetching from the branch target address 
should give better performance than always prefetching from the sequential path. 
However, in a paged machine, prefetching the branch target is more likely to cause 
a page fault than prefetching the next instruction in sequence, and so this per-
formance penalty should be taken into account. An avoidance mechanism may be 
employed to reduce this penalty.

The final static approach makes the decision based on the opcode of the 
branch instruction. The processor assumes that the branch will be taken for certain 
branch opcodes and not for others. [LILJ88] reports success rates of greater than 
75% with this strategy.

Dynamic branch strategies attempt to improve the accuracy of prediction by 
recording the history of conditional branch instructions in a program. For example, 
one or more bits can be associated with each conditional branch instruction that 
reflect the recent history of the instruction. These bits are referred to as a taken/
not taken switch that directs the processor to make a particular decision the next 
time the instruction is encountered. Typically, these history bits are not associated 
with the instruction in main memory. Rather, they are kept in temporary high-
speed storage. One possibility is to associate these bits with any conditional branch 
instruction that is in a cache. When the instruction is replaced in the cache, its his-
tory is lost. Another possibility is to maintain a small table for recently executed 
branch instructions with one or more history bits in each entry. The processor could 
access the table associatively, like a cache, or by using the low-order bits of the 
branch instruction’s address.

With a single bit, all that can be recorded is whether the last execution of this 
instruction resulted in a branch or not. A shortcoming of using a single bit appears 
in the case of a conditional branch instruction that is almost always taken, such as a 
loop instruction. With only one bit of history, an error in prediction will occur twice 
for each use of the loop: once on entering the loop, and once on exiting.

If two bits are used, they can be used to record the result of the last two 
instances of the execution of the associated instruction, or to record a state in 
some other fashion. Figure 14.18 shows a typical approach (see Problem 14.13 for 
other possibilities). Assume that the algorithm starts at the upper-left-hand corner 
of the flowchart. As long as each succeeding conditional branch instruction that 
is encountered is taken, the decision process predicts that the next branch will be 
taken. If a single prediction is wrong, the algorithm continues to predict that the 
next branch is taken. Only if two successive branches are not taken does the algo-
rithm shift to the right-hand side of the flowchart. Subsequently, the algorithm 
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will predict that branches are not taken until two branches in a row are taken. 
Thus, the algorithm requires two consecutive wrong predictions to change the pre-
diction decision.

The decision process can be represented more compactly by a finite-state 
machine, shown in Figure 14.19. The finite-state machine representation is com-
monly used in the literature.

The use of history bits, as just described, has one drawback: If the decision 
is made to take the branch, the target instruction cannot be fetched until the tar-
get address, which is an operand in the conditional branch instruction, is decoded. 
Greater efficiency could be achieved if the instruction fetch could be initiated as 
soon as the branch decision is made. For this purpose, more information must be 
saved, in what is known as a branch target buffer, or a branch history table.

The branch history table is a small cache memory associated with the instruc-
tion fetch stage of the pipeline. Each entry in the table consists of three elements: 
the address of a branch instruction, some number of history bits that record the 
state of use of that instruction, and information about the target instruction. In 
most proposals and implementations, this third field contains the address of the 
target instruction. Another possibility is for the third field to actually contain the 
target instruction. The trade-off is clear: Storing the target address yields a smaller 
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table but a greater instruction fetch time compared with storing the target instruc-
tion [RECH98].

Figure 14.20 contrasts this scheme with a predict-never-taken strategy. With 
the former strategy, the instruction fetch stage always fetches the next sequential 
address. If a branch is taken, some logic in the processor detects this and instructs 
that the next instruction be fetched from the target address (in addition to flushing 
the pipeline). The branch history table is treated as a cache. Each prefetch triggers a 
lookup in the branch history table. If no match is found, the next sequential address 
is used for the fetch. If a match is found, a prediction is made based on the state of 
the instruction: Either the next sequential address or the branch target address is 
fed to the select logic.

When the branch instruction is executed, the execute stage signals the branch 
history table logic with the result. The state of the instruction is updated to reflect 
a correct or incorrect prediction. If the prediction is incorrect, the select logic is 
redirected to the correct address for the next fetch. When a conditional branch 
instruction is encountered that is not in the table, it is added to the table and one 
of the existing entries is discarded, using one of the cache replacement algorithms 
discussed in Chapter 4.

A refinement of the branch history approach is referred to as two-level or cor-
relation-based branch history [YEH91]. This approach is based on the assumption 
that whereas in loop-closing branches, the past history of a particular branch instruc-
tion is a good predictor of future behavior, with more complex control-flow struc-
tures, the direction of a branch is frequently correlated with the direction of related 
branches. An example is an if-then-else or case structure. There are a number of 
strategies possible. Typically, recent global branch history (i.e., the history of the 
most recent branches not just of this branch instruction) is used in addition to the 
history of the current branch instruction. The general structure is defined as an 
(m, n) correlator, which uses the behavior of the last m branches to choose from 
2m n-bit branch predictors for the current branch instruction. In other words, an 
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n-bit history is kept for a give branch for each possible combination of branches 
taken by the most recent m branches.

DELAYED BRANCH It is possible to improve pipeline performance by automatically 
rearranging instructions within a program, so that branch instructions occur later 
than actually desired. This intriguing approach is examined in Chapter 15.

Intel 80486 Pipelining

An instructive example of an instruction pipeline is that of the Intel 80486. The 
80486 implements a five-stage pipeline:
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 • Fetch: Instructions are fetched from the cache or from external memory 
and placed into one of the two 16-byte prefetch buffers. The objective of 
the fetch stage is to fill the prefetch buffers with new data as soon as the old 
data have been consumed by the instruction decoder. Because instructions 
are of variable length (from 1 to 11 bytes not counting prefixes), the status of 
the prefetcher relative to the other pipeline stages varies from instruction to 
 instruction. On average, about five instructions are fetched with each 16-byte 
load [CRAW90]. The fetch stage operates independently of the other stages 
to keep the prefetch buffers full.

 • Decode stage 1: All opcode and addressing-mode information is decoded in 
the D1 stage. The required information, as well as instruction-length informa-
tion, is included in at most the first 3 bytes of the instruction. Hence, 3 bytes 
are passed to the D1 stage from the prefetch buffers. The D1 decoder can then 
direct the D2 stage to capture the rest of the instruction (displacement and 
immediate data), which is not involved in the D1 decoding.

 • Decode stage 2: The D2 stage expands each opcode into control signals for 
the ALU. It also controls the computation of the more complex addressing 
modes.

 • Execute: This stage includes ALU operations, cache access, and register 
update.

 • Write back: This stage, if needed, updates registers and status flags modified 
during the preceding execute stage. If the current instruction updates memory, 
the computed value is sent to the cache and to the bus-interface write buffers 
at the same time.

With the use of two decode stages, the pipeline can sustain a throughput 
of close to one instruction per clock cycle. Complex instructions and conditional 
branches can slow down this rate.

Figure 14.21 shows examples of the operation of the pipeline. Figure 14.21a 
shows that there is no delay introduced into the pipeline when a memory access is 
required. However, as Figure 14.21b shows, there can be a delay for values used 
to compute memory addresses. That is, if a value is loaded from memory into a 
register and that register is then used as a base register in the next instruction, the 
processor will stall for one cycle. In this example, the processor accesses the cache 
in the EX stage of the first instruction and stores the value retrieved in the register 
during the WB stage. However, the next instruction needs this register in its D2 
stage. When the D2 stage lines up with the WB stage of the previous instruction, 
bypass signal paths allow the D2 stage to have access to the same data being used by 
the WB stage for writing, saving one pipeline stage.

Figure 14.21c illustrates the timing of a branch instruction, assuming that the 
branch is taken. The compare instruction updates condition codes in the WB stage, 
and bypass paths make this available to the EX stage of the jump instruction at the 
same time. In parallel, the processor runs a speculative fetch cycle to the target of 
the jump during the EX stage of the jump instruction. If the processor determines 
a false branch condition, it discards this prefetch and continues execution with the 
next sequential instruction (already fetched and decoded).
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 14.5 THE x86 PROCESSOR FAMILY

The x86 organization has evolved dramatically over the years. In this section we 
examine some of the details of the most recent processor organizations, concen-
trating on common elements in single processors. Chapter 16 looks at superscalar 
aspects of the x86, and Chapter 18 examines the multicore organization. An over-
view of the Pentium 4 processor organization is depicted in Figure 4.18.

Register Organization

The register organization includes the following types of registers (Table 14.2):

 • General: There are eight 32-bit general-purpose registers (see Figure 14.3c). 
These may be used for all types of x86 instructions; they can also hold operands 
for address calculations. In addition, some of these registers also serve special 
purposes. For example, string instructions use the contents of the ECX, ESI, and 
EDI registers as operands without having to reference these registers  explicitly 
in the instruction. As a result, a number of instructions can be encoded more 
compactly. In 64-bit mode, there are 16 64-bit general-purpose registers.

 • Segment: The six 16-bit segment registers contain segment selectors, which 
index into segment tables, as discussed in Chapter 8. The code segment (CS) 
register references the segment containing the instruction being executed. The 
stack segment (SS) register references the segment containing a user-visible 
stack. The remaining segment registers (DS, ES, FS, GS) enable the user to 
reference up to four separate data segments at a time.

 • Flags: The 32-bit EFLAGS register contains condition codes and various 
mode bits. In 64-bit mode, this register is extended to 64 bits and referred 
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to as RFLAGS. In the current architecture definition, the upper 32 bits of 
RFLAGS are unused.

 • Instruction pointer: Contains the address of the current instruction.

There are also registers specifically devoted to the floating-point unit:

 • Numeric: Each register holds an extended-precision 80-bit floating-point 
number. There are eight registers that function as a stack, with push and pop 
operations available in the instruction set.

 • Control: The 16-bit control register contains bits that control the operation of 
the floating-point unit, including the type of rounding control; single, double, 
or extended precision; and bits to enable or disable various exception condi-
tions.

 • Status: The 16-bit status register contains bits that reflect the current state 
of the floating-point unit, including a 3-bit pointer to the top of the stack; 
condition codes reporting the outcome of the last operation; and exception 
flags.

 • Tag word: This 16-bit register contains a 2-bit tag for each floating-point  numeric 
register, which indicates the nature of the contents of the corresponding  register. 

Table 14.2 x86 Processor Registers

(a) Integer Unit in 32-bit Mode

Type Number Length (bits) Purpose

General 8 32 General-purpose user registers

Segment 6 16 Contain segment selectors

EFLAGS 1 32 Status and control bits

Instruction Pointer 1 32 Instruction pointer

(b) Integer Unit in 64-bit Mode

Type Number Length (bits) Purpose

General 16 32 General-purpose user registers

Segment  6 16 Contain segment selectors

RFLAGS  1 64 Status and control bits

Instruction Pointer  1 64 Instruction pointer

(c) Floating-Point Unit

Type Number Length (bits) Purpose

Numeric 8 80 Hold floating-point numbers

Control 1 16 Control bits

Status 1 16 Status bits

Tag Word 1 16 Specifies contents of numeric registers

Instruction Pointer 1 48 Points to instruction interrupted by exception

Data Pointer 1 48 Points to operand interrupted by exception
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The four possible values are valid, zero, special (NaN, infinity, denormalized), 
and empty. These tags enable programs to check the contents of a numeric 
 register without performing complex decoding of the actual data in the register. 
For example, when a context switch is made, the processor need not save any 
floating-point registers that are empty.

The use of most of the aforementioned registers is easily understood. Let us 
elaborate briefly on several of the registers.

EFLAGS REGISTER The EFLAGS register (Figure 14.22) indicates the condition 
of the processor and helps to control its operation. It includes the six condition 
codes defined in Table 12.9 (carry, parity, auxiliary, zero, sign, overflow), which 
report the results of an integer operation. In addition, there are bits in the register 
that may be referred to as control bits:

 • Trap flag (TF): When set, causes an interrupt after the execution of each 
 instruction. This is used for debugging.

 • Interrupt enable flag (IF): When set, the processor will recognize external 
interrupts.

 • Direction flag (DF): Determines whether string processing instructions incre-
ment or decrement the 16-bit half-registers SI and DI (for 16-bit operations) 
or the 32-bit registers ESI and EDI (for 32-bit operations).

 • I/O privilege flag (IOPL): When set, causes the processor to generate an 
exception on all accesses to I/O devices during protected-mode operation.

 • Resume flag (RF): Allows the programmer to disable debug exceptions so 
that the instruction can be restarted after a debug exception without immedi-
ately causing another debug exception.

 • Alignment check (AC): Activates if a word or doubleword is addressed on a 
nonword or nondoubleword boundary.

 • Identification flag (ID): If this bit can be set and cleared, then this processor 
supports the processorID instruction. This instruction provides information 
about the vendor, family, and model.

V
I
P

V
I
F

I
D

A
C

V
M

R
F

N
T

IO
PL

O
F

D
F

I
F

T
F

S
F

Z
F

A
F

P
F

C
F

31 21 1516 0

ID � Identification flag
VIP � Virtual interrupt pending
VIF � Virtual interrupt flag
AC � Alignment check
VM � Virtual 8086 mode
RF � Resume flag
NT � Nested task flag
IOPL � I/O privilege level
OF � Overflow flag

DF � Direction flag
IF � Interrupt enable flag
TF � Trap flag
SF � Sign flag
ZF � Zero flag
AF � Auxiliary carry flag
PF � Parity flag
CF � Carry flag

Figure 14.22 Pentium II EFLAGS Register



In addition, there are 4 bits that relate to operating mode. The Nested Task 
(NT) flag indicates that the current task is nested within another task in protected-
mode operation. The Virtual Mode (VM) bit allows the programmer to enable or 
disable virtual 8086 mode, which determines whether the processor runs as an 8086 
machine. The Virtual Interrupt Flag (VIF) and Virtual Interrupt Pending (VIP) flag 
are used in a multitasking environment.

CONTROL REGISTERS  The x86 employs four control registers (register CR1 is unused) 
to control various aspects of processor operation (Figure 14.23). All of the registers 
except CR0 are either 32 bits or 64 bits long, depending on whether the implementation 
supports the x86 64-bit architecture. The CR0 register contains system control flags, 

OSXSAVE = XSAVE enable bit
SMXE = Enable safer mode extensions
VMXE = Enable virtual machine extensions
OSXMMEXCPT = Support unmasked SIMD FP exceptions
OSFXSR = Support FXSAVE, FXSTOR
PCE = Performance counter enable
PGE = Page global enable
MCE = Machine check enable
PAE = Physical address extension
PSE = Page size extensions
DE = Debug extensions
TSD = Time stamp disable
PVI = Protected mode virtual interrupt
VME = Virtual 8086 mode extensions

Shaded area indicates reserved bits.

PCD   =  Page-level cache disable
PWT = Page-level writes transparent
PG = Paging
CD = Cache disable
NW = Not write through
AM = Alignment mask
WP = Write protect
NE = Numeric error
ET = Extension type
TS = Task switched
EM = Emulation
MP = Monitor coprocessor
PE = Protection enable
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Figure 14.23 x86 Control Registers
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which control modes or indicate states that apply generally to the processor rather than 
to the execution of an individual task. The flags are as follows:

 • Protection Enable (PE): Enable/disable protected mode of operation.

 • Monitor Coprocessor (MP): Only of interest when running programs from 
earlier machines on the x86; it relates to the presence of an arithmetic 
coprocessor.

 • Emulation (EM): Set when the processor does not have a floating-point unit, 
and causes an interrupt when an attempt is made to execute floating-point 
instructions.

 • Task Switched (TS): Indicates that the processor has switched tasks.

 • Extension Type (ET): Not used on the Pentium and later machines; used to 
indicate support of math coprocessor instructions on earlier machines.

 • Numeric Error (NE): Enables the standard mechanism for reporting floating-
point errors on external bus lines.

 • Write Protect (WP): When this bit is clear, read-only user-level pages can be 
written by a supervisor process. This feature is useful for supporting process 
creation in some operating systems.

 • Alignment Mask (AM): Enables/disables alignment checking.

 • Not Write Through (NW): Selects mode of operation of the data cache. When 
this bit is set, the data cache is inhibited from cache write-through operations.

 • Cache Disable (CD): Enables/disables the internal cache fill mechanism.

 • Paging (PG): Enables/disables paging.

When paging is enabled, the CR2 and CR3 registers are valid. The CR2 regis-
ter holds the 32-bit linear address of the last page accessed before a page fault inter-
rupt. The leftmost 20 bits of CR3 hold the 20 most significant bits of the base address 
of the page directory; the remainder of the address contains zeros. Two bits of CR3 
are used to drive pins that control the operation of an external cache. The page-
level cache disable (PCD) enables or disables the external cache, and the page-level 
writes transparent (PWT) bit controls write through in the external cache.

Nine additional control bits are defined in CR4:

 • Virtual-8086 Mode Extension (VME): Enables support for the virtual inter-
rupt flag in virtual-8086 mode.

 • Protected-mode Virtual Interrupts (PVI): Enables support for the virtual 
interrupt flag in protected mode.

 • Time Stamp Disable (TSD): Disables the read from time stamp counter 
(RDTSC) instruction, which is used for debugging purposes.

 • Debugging Extensions (DE): Enables I/O breakpoints; this allows the proces-
sor to interrupt on I/O reads and writes.

 • Page Size Extensions (PSE): Enables large page sizes (2 or 4-MByte pages) 
when set; restricts pages to 4 KBytes when clear.

 • Physical Address Extension (PAE): Enables address lines A35 through A32 
whenever a special new addressing mode, controlled by the PSE, is enabled.



 • Machine Check Enable (MCE): Enables the machine check interrupt, which 
occurs when a data parity error occurs during a read bus cycle or when a bus 
cycle is not successfully completed.

 • Page Global Enable (PGE): Enables the use of global pages. When PGE = 1 
and a task switch is performed, all of the TLB entries are flushed with the excep-
tion of those marked global.

 • Performance Counter Enable (PCE): Enables the execution of the RDPMC 
(read performance counter) instruction at any privilege level. Two perform-
ance counters are used to measure the duration of a specific event type and 
the number of occurrences of a specific event type.

MMX REGISTERS Recall from Section 10.3 that the x86 MMX capability makes 
use of several 64-bit data types. The MMX instructions make use of 3-bit register 
address fields, so that eight MMX registers are supported. In fact, the processor does 
not include specific MMX registers. Rather, the processor uses an aliasing technique 
(Figure 14.24). The existing floating-point registers are used to store MMX values. 
Specifically, the low-order 64 bits (mantissa) of each floating-point register are used 
to form the eight MMX registers. Thus, the older 32-bit x86 architecture is easily 
extended to support the MMX capability. Some key characteristics of the MMX use 
of these registers are as follows:

 • Recall that the floating-point registers are treated as a stack for floating-point 
operations. For MMX operations, these same registers are accessed directly.

 • The first time that an MMX instruction is executed after any floating-point 
operations, the FP tag word is marked valid. This reflects the change from 
stack operation to direct register addressing.
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 • The EMMS (Empty MMX State) instruction sets bits of the FP tag word to 
indicate that all registers are empty. It is important that the programmer insert 
this instruction at the end of an MMX code block so that subsequent floating-
point operations function properly.

 • When a value is written to an MMX register, bits [79:64] of the corresponding 
FP register (sign and exponent bits) are set to all ones. This sets the value in 
the FP register to NaN (not a number) or infinity when viewed as a floating-
point value. This ensures that an MMX data value will not look like a valid 
floating-point value.

Interrupt Processing

Interrupt processing within a processor is a facility provided to support the operat-
ing system. It allows an application program to be suspended, in order that a variety 
of interrupt conditions can be serviced and later resumed.

INTERRUPTS AND EXCEPTIONS Two classes of events cause the x86 to suspend 
execution of the current instruction stream and respond to the event: interrupts and 
exceptions. In both cases, the processor saves the context of the current process and 
transfers to a predefined routine to service the condition. An interrupt is generated by 
a signal from hardware, and it may occur at random times during the execution of a 
program. An exception is generated from software, and it is provoked by the execution 
of an instruction. There are two sources of interrupts and two sources of exceptions:

 1. Interrupts

 • Maskable interrupts: Received on the processor’s INTR pin. The processor 
does not recognize a maskable interrupt unless the interrupt enable flag 
(IF) is set.

 • Nonmaskable interrupts: Received on the processor’s NMI pin. Recognition 
of such interrupts cannot be prevented.

 2. Exceptions

 • Processor-detected exceptions: Results when the processor encounters an 
error while attempting to execute an instruction.

 • Programmed exceptions: These are instructions that generate an exception 
(e.g., INTO, INT3, INT, and BOUND).

INTERRUPT VECTOR TABLE Interrupt processing on the x86 uses the interrupt 
vector table. Every type of interrupt is assigned a number, and this number is used 
to index into the interrupt vector table. This table contains 256 32-bit interrupt 
vectors, which is the address (segment and offset) of the interrupt service routine 
for that interrupt number.

Table 14.3 shows the assignment of numbers in the interrupt vector table; 
shaded entries represent interrupts, while nonshaded entries are exceptions. The 
NMI hardware interrupt is type 2. INTR hardware interrupts are assigned numbers in 
the range of 32 to 255; when an INTR interrupt is generated, it must be accompanied 
on the bus with the interrupt vector number for this interrupt. The remaining vector 
numbers are used for exceptions.



If more than one exception or interrupt is pending, the processor services 
them in a predictable order. The location of vector numbers within the table does 
not reflect priority. Instead, priority among exceptions and interrupts is organized 
into five classes. In descending order of priority, these are

 • Class 1: Traps on the previous instruction (vector number 1)

 • Class 2: External interrupts (2, 32–255)

 • Class 3: Faults from fetching next instruction (3, 14)

 • Class 4: Faults from decoding the next instruction (6, 7)

 • Class 5: Faults on executing an instruction (0, 4, 5, 8, 10–14, 16, 17)

Table 14.3 x86 Exception and Interrupt Vector Table

Vector Number Description

0 Divide error; division overflow or division by zero

1 Debug exception; includes various faults and traps related to debugging

2 NMI pin interrupt; signal on NMI pin

3 Breakpoint; caused by INT 3 instruction, which is a 1-byte instruction useful for  
debugging

4 INTO-detected overflow; occurs when the processor executes INTO with the OF  
flag set

5 BOUND range exceeded; the BOUND instruction compares a register with  
boundaries stored in memory and generates an interrupt if the contents of the  
register is out of bounds.

6 Undefined opcode

7 Device not available; attempt to use ESC or WAIT instruction fails due to lack of  
external device

8 Double fault; two interrupts occur during the same instruction and cannot be handled 
serially

9 Reserved

10 Invalid task state segment; segment describing a requested task is not initialized or  
not valid

11 Segment not present; required segment not present

12 Stack fault; limit of stack segment exceeded or stack segment not present

13 General protection; protection violation that does not cause another exception  
(e.g., writing to a read-only segment)

14 Page fault

15 Reserved

16 Floating-point error; generated by a floating-point arithmetic instruction

17 Alignment check; access to a word stored at an odd byte address or a doubleword  
stored at an address not a multiple of 4

18 Machine check; model specific

19–31 Reserved

32–255 User interrupt vectors; provided when INTR signal is activated

Unshaded: exceptions
Shaded: interrupts

14.5 / THE x86 PROCESSOR FAMILY  519



520  CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION 

INTERRUPT HANDLING Just as with a transfer of execution using a CALL 
instruction, a transfer to an interrupt-handling routine uses the system stack to store 
the processor state. When an interrupt occurs and is recognized by the processor, a 
sequence of events takes place:

 1. If the transfer involves a change of privilege level, then the current stack 
segment register and the current extended stack pointer (ESP) register are 
pushed onto the stack.

 2. The current value of the EFLAGS register is pushed onto the stack.
 3. Both the interrupt (IF) and trap (TF) flags are cleared. This disables INTR 

interrupts and the trap or single-step feature.
 4. The current code segment (CS) pointer and the current instruction pointer (IP 

or EIP) are pushed onto the stack.
 5. If the interrupt is accompanied by an error code, then the error code is pushed 

onto the stack.
 6. The interrupt vector contents are fetched and loaded into the CS and IP or 

EIP registers. Execution continues from the interrupt service routine.

To return from an interrupt, the interrupt service routine executes an IRET 
instruction. This causes all of the values saved on the stack to be restored; execution 
resumes from the point of the interrupt.

 14.6 THE ARM PROCESSOR

In this section, we look at some of the key elements of the ARM architecture and 
organization. We defer a discussion of more complex aspects of organization and 
pipelining until Chapter 16. For the discussion in this section and in Chapter 16, it is 
useful to keep in mind key characteristics of the ARM architecture. ARM is primar-
ily a RISC system with the following notable attributes:

 • A moderate array of uniform registers, more than are found on some CISC 
systems but fewer than are found on many RISC systems.

 • A load/store model of data processing, in which operations only perform on 
operands in registers and not directly in memory. All data must be loaded into 
registers before an operation can be performed; the result can then be used for 
further processing or stored into memory.

 • A uniform fixed-length instruction of 32 bits for the standard set and 16 bits 
for the Thumb instruction set.

 • To make each data processing instruction more flexible, either a shift or rota-
tion can preprocess one of the source registers. To efficiently support this fea-
ture, there are separate arithmetic logic unit (ALU) and shifter units.

 • A small number of addressing modes with all load/store addressees deter-
mined from registers and instruction fields. Indirect or indexed addressing 
involving values in memory are not used.

 • Auto-increment and auto-decrement addressing modes are used to improve 
the operation of program loops.
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 • Conditional execution of instructions minimizes the need for conditional 
branch instructions, thereby improving pipeline efficiency, because pipeline 
flushing is reduced.

Processor Organization

The ARM processor organization varies substantially from one implementation to 
the next, particularly when based on different versions of the ARM architecture. 
However, it is useful for the discussion in this section to present a simplified, generic 
ARM organization, which is illustrated in Figure 14.25. In this figure, the arrows indi-
cate the flow of data. Each box represents a functional hardware unit or a storage unit.

Data are exchanged with the processor from external memory through a 
data bus. The value transferred is either a data item, as a result of a load or store 
instruction, or an instruction fetch. Fetched instructions pass through an instruc-
tion decoder before execution, under control of a control unit. The latter includes 
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Figure 14.25 Simplified ARM Organization
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 pipeline logic and provides control signals (not shown) to all the hardware ele-
ments of the processor. Data items are placed in the register file, consisting of a set 
of 32-bit registers. Byte or halfword items treated as twos-complement numbers are 
sign-extended to 32 bits.

ARM data processing instructions typically have two source registers, Rn and 
Rm, and a single result or destination register, Rd. The source register values feed 
into the ALU or a separate multiply unit that makes use of an additional register to 
accumulate partial results. The ARM processor also includes a hardware unit that 
can shift or rotate the Rm value before it enters the ALU. This shift or rotate occurs 
within the cycle time of the instruction and increases the power and flexibility of 
many data processing operations.

The results of an operation are fed back to the destination register. Load/store 
instructions may also use the output of the arithmetic units to generate the memory 
address for a load or store.

Processor Modes

It is quite common for a processor to support only a small number of processor 
modes. For example, many operating systems make use of just two modes: a user 
mode and a kernel mode, with the latter mode used to execute privileged system 
software. In contrast, the ARM architecture provides a flexible foundation for 
operating systems to enforce a variety of protection policies.

The ARM architecture supports seven execution modes. Most application 
programs execute in user mode. While the processor is in user mode, the program 
being executed is unable to access protected system resources or to change mode, 
other than by causing an exception to occur.

The remaining six execution modes are referred to as privileged modes. These 
modes are used to run system software. There are two principal advantages to 
defining so many different privileged modes: (1) The OS can tailor the use of system 
software to a variety of circumstances, and (2) certain registers are dedicated for use 
for each of the privileged modes, allows swifter changes in context.

The exception modes have full access to system resources and can change 
modes freely. Five of these modes are known as exception modes. These are entered 
when specific exceptions occur. Each of these modes has some dedicated registers 
that substitute for some of the user mode registers, and which are used to avoid 
corrupting User mode state information when the exception occurs. The exception 
modes are as follows:

 • Supervisor mode: Usually what the OS runs in. It is entered when the proces-
sor encounters a software interrupt instruction. Software interrupts are a stan-
dard way to invoke operating system services on ARM.

 • Abort mode: Entered in response to memory faults.

 • Undefined mode: Entered when the processor attempts to execute an instruction 
that is supported neither by the main integer core nor by one of the coprocessors.

 • Fast interrupt mode: Entered whenever the processor receives an interrupt 
signal from the designated fast interrupt source. A fast interrupt cannot be 
interrupted, but a fast interrupt may interrupt a normal interrupt.
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 • Interrupt mode: Entered whenever the processor receives an interrupt signal 
from any other interrupt source (other than fast interrupt). An interrupt may 
only be interrupted by a fast interrupt.

The remaining privileged mode is the System mode. This mode is not entered 
by any exception and uses the same registers available in User mode. The System 
mode is used for running certain privileged operating system tasks. System mode 
tasks may be interrupted by any of the five exception categories.

Register Organization

Figure 14.26 depicts the user-visible registers for the ARM. The ARM processor 
has a total of 37 32-bit registers, classified as follows:

 • Thirty-one registers referred to in the ARM manual as general-purpose registers. 
In fact, some of these, such as the program counters, have special purposes.

 • Six program status registers.

Registers are arranged in partially overlapping banks, with the current proc-
essor mode determining which bank is available. At any time, sixteen numbered 
registers and one or two program status registers are visible, for a total of 17 or 18 
software-visible registers. Figure 14.26 is interpreted as follows:

 • Registers R0 through R7, register R15 (the program counter) and the current 
program status register (CPSR) are visible in and shared by all modes.

 • Registers R8 through R12 are shared by all modes except fast interrupt, which 
has its own dedicated registers R8_fiq through R12_fiq.

 • All the exception modes have their own versions of registers R13 and R14.

 • All the exception modes have a dedicated saved program status register (SPSR)

GENERAL-PURPOSE REGISTERS Register R13 is normally used as a stack pointer 
and is also known as the SP. Because each exception mode has a separate R13, each 
exception mode can have its own dedicated program stack. R14 is known as the link 
register (LR) and is used to hold subroutine return addresses and exception mode 
returns. Register R15 is the program counter (PC).

PROGRAM STATUS REGISTERS The CPSR is accessible in all processor modes. 
Each exception mode also has a dedicated SPSR that is used to preserve the value 
of the CPSR when the associated exception occurs.

The 16 most significant bits of the CPSR contain user flags visible in User 
mode, and which can be used to affect the operation of a program (Figure 14.27). 
These are as follows:

 • Condition code flags: The N, Z, C, and V flags, which are discussed in Chapter 12.

 • Q flag: used to indicate whether overflow and/or saturation has occurred in 
some SIMD-oriented instructions.

 • J bit: indicates the use of special 8-bit instructions, known as Jazelle instruc-
tions, which are beyond the scope of our discussion.

 • GE[3:0] bits: SIMD instructions use bits [19:16] as Greater than or Equal 
(GE) flags for individual bytes or halfwords of the result.
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Modes

Privileged modes

Exception modes

User System Supervisor Abort Undefined Interrupt Fast interrupt

R0 R0 R0 R0 R0 R0 R0

R1 R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7 R7

R8 R8 R8 R8 R8 R8 R8_fiq

R9 R9 R9 R9 R9 R9 R9_fiq

R10 R10 R10 R10 R10 R10 R10_fiq

R11 R11 R11 R11 R11 R11 R11_fiq

R12 R12 R12 R12 R12 R12 R12_fiq

R13(SP) R13(SP) R13_svc R13_abt R13_und R13_irq R13_fiq

R14(LR) R14(LR) R14_svc R14_abt R14_und R14_irq R14_fiq

R15(PC) R15(PC) R15(PC) R15(PC) R15(PC) R15(PC) R15(PC)

CPSR CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_svc SPSR_abt SPSR_und SPSR_irq SPSR_fiq

Shading indicates that the normal register used by User or System mode has been replaced by an alternative register 
specific to the exception mode.
SP = stack pointer    CPSR = current program status register
LR = link register     SPSR = saved program status register
PC = program counter

Figure 14.26 ARM Register Organization

The 16 least significant bits of the CPSR contain system control flags that can 
only be altered when the processor is in a privileged mode. The fields are as follows:

 • E bit: Controls load and store endianness for data; ignored for instruction fetches.

 • Interrupt disable bits: The A bit disables imprecise data aborts when set; the I bit 
disables IRQ interrupts when set; and the F bit disables FIQ interrupts when set.

 • T bit: Indicates whether instructions should be interpreted as normal ARM 
instructions or Thumb instructions.

 • Mode bits: Indicates the processor mode.
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Interrupt Processing

As with any processor, the ARM includes a facility that enables the processor to inter-
rupt the currently executing program to deal with exception conditions. Exceptions 
are generated by internal and external sources to cause the processor to handle an 
event. The processor state just before handling the exception is normally preserved so 
that the original program can be resumed when the exception routine has completed. 
More than one exception can arise at the same time. The ARM architecture supports 
seven types of exception. Table 14.4 lists the types of exception and the processor 
mode that is used to process each type. When an exception occurs, execution is forced 

Table 14.4 ARM Interrupt Vector

Exception type Mode
Normal entry 

address Description

Reset Supervisor 0x00000000 Occurs when the system is initialized.

Data abort Abort 0x00000010 Occurs when an invalid memory address 
has been accessed, such as if there is no 
physical memory for an address or the  
correct access permission is lacking.

FIQ (fast interrupt) FIQ 0x0000001C Occurs when an external device asserts the 
FIQ pin on the processor. An interrupt 
cannot be interrupted except by an FIQ. 
FIQ is designed to support a data transfer 
or channel process, and has sufficient pri-
vate registers to remove the need for reg-
ister saving in such applications, therefore 
minimizing the overhead of context switch-
ing. A fast interrupt cannot be interrupted.

IRQ (interrupt) IRQ 0x00000018 Occurs when an external device asserts the 
IRQ pin on the processor. An interrupt 
cannot be interrupted except by an FIQ.

Prefetch abort Abort 0x0000000C Occurs when an attempt to fetch an 
instruction results in a memory fault. The 
exception is raised when the instruction 
enters the execute stage of the pipeline.

Undefined instructions Undefined 0x00000004 Occurs when an instruction not in the 
instruction set reaches the execute stage of 
the pipeline.

Software interrupt Supervisor 0x00000008 Generally used to allow user mode pro-
grams to call the OS. The user program 
executes a SWI instruction with an argu-
ment that identifies the function the user 
wishes to perform.

Res J Reserved

System control flagsUser flags

GE[3:0] Reserved E A I F T M[4:0]QVCZN

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

Figure 14.27 Format of ARM CPSR and SPSR
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from a fixed memory address corresponding to the type of exception. These fixed 
addresses are called the exception vectors.

If more than one interrupt is outstanding, they are handled in priority order. 
Table 14.4 lists the exceptions in priority order, highest to lowest.

When an exception occurs, the processor halts execution after the current instruc-
tion. The state of the processor is preserved in the SPSR that corresponds to the type 
of exception, so that the original program can be resumed when the exception routine 
has completed. The address of the instruction the processor was just about to execute 
is placed in the link register of the appropriate processor mode. To return after han-
dling the exception, the SPSR is moved into the CPSR and R14 is moved into the PC.

 14.7 RECOMMENDED READING

[PATT01] and [MOSH01] provide excellent coverage of the pipelining issues discussed in 
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[EVER01] examines the evolution of branch prediction strategies. [CRAG92] is a 
detailed study of branch prediction in instruction pipelines. [DUBE91] and [LILJ88] exam-
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 14.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

branch prediction
condition code
delayed branch

flag
instruction cycle
instruction pipeline

instruction prefetch
program status word (PSW)

Review Questions
 14.1 What general roles are performed by processor registers?
 14.2 What categories of data are commonly supported by user-visible registers?
 14.3 What is the function of condition codes?
 14.4 What is a program status word?
 14.5 Why is a two-stage instruction pipeline unlikely to cut the instruction cycle time in 

half, compared with the use of no pipeline?
 14.6 List and briefly explain various ways in which an instruction pipeline can deal with 

conditional branch instructions.
 14.7 How are history bits used for branch prediction?

Problems
 14.1 a.   If the last operation performed on a computer with an 8-bit word was an addition 

in which the two operands were 00000010 and 00000011, what would be the value 
of the following flags?

 • Carry
 • Zero
 • Overflow
 • Sign
 • Even Parity
 • Half-Carry
b. Repeat for the addition of -1 (twos complement) and +1.

 14.2 Repeat Problem 14.1 for the operation A - B, where A contains 11110000 and B con-
tains 0010100.

 14.3 A microprocessor is clocked at a rate of 5 GHz.
a. How long is a clock cycle?
b. What is the duration of a particular type of machine instruction consisting of three 

clock cycles?
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 14.4 A microprocessor provides an instruction capable of moving a string of bytes from 
one area of memory to another. The fetching and initial decoding of the instruction 
takes 10 clock cycles. Thereafter, it takes 15 clock cycles to transfer each byte. The 
microprocessor is clocked at a rate of 10 GHz.
a. Determine the length of the instruction cycle for the case of a string of 64 bytes.
b. What is the worst-case delay for acknowledging an interrupt if the instruction is 

noninterruptible?
c. Repeat part (b) assuming the instruction can be interrupted at the beginning of 

each byte transfer.
 14.5 The Intel 8088 consists of a bus interface unit (BIU) and an execution unit (EU), 

which form a 2-stage pipeline. The BIU fetches instructions into a 4-byte instruction 
queue. The BIU also participates in address calculations, fetches operands, and writes 
results in memory as requested by the EU. If no such requests are outstanding and 
the bus is free, the BIU fills any vacancies in the instruction queue. When the EU 
completes execution of an instruction, it passes any results to the BIU (destined for 
memory or I/O) and proceeds to the next instruction.
a. Suppose the tasks performed by the BIU and EU take about equal time. By what 

factor does pipelining improve the performance of the 8088? Ignore the effect of 
branch instructions.

b. Repeat the calculation assuming that the EU takes twice as long as the BIU.
 14.6 Assume an 8088 is executing a program in which the probability of a program jump is 

0.1. For simplicity, assume that all instructions are 2 bytes long.
a. What fraction of instruction fetch bus cycles is wasted?
b. Repeat if the instruction queue is 8 bytes long.

 14.7 Consider the timing diagram of Figures 14.10. Assume that there is only a two-stage 
pipeline (fetch, execute). Redraw the diagram to show how many time units are now 
needed for four instructions.

 14.8 Assume a pipeline with four stages: fetch instruction (FI), decode instruction and cal-
culate addresses (DA), fetch operand (FO), and execute (EX). Draw a diagram simi-
lar to Figure 14.10 for a sequence of 7 instructions, in which the third instruction is a 
branch that is taken and in which there are no data dependencies.

 14.9 A pipelined processor has a clock rate of 2.5 GHz and executes a program with 1.5 million 
instructions. The pipeline has five stages, and instructions are issued at a rate of one per 
clock cycle. Ignore penalties due to branch instructions and out-of-sequence executions.
a. What is the speedup of this processor for this program compared to a nonpipe-

lined processor, making the same assumptions used in Section 14.4?
b. What is throughput (in MIPS) of the pipelined processor?

 14.10 A nonpipelined processor has a clock rate of 2.5 GHz and an average CPI (cycles 
per instruction) of 4. An upgrade to the processor introduces a five-stage pipeline. 
However, due to internal pipeline delays, such as latch delay, the clock rate of the new 
processor has to be reduced to 2 GHz.
a. What is the speedup achieved for a typical program?
b. What is the MIPS rate for each processor?

 14.11 Consider an instruction sequence of length n that is streaming through the instruction 
pipeline. Let p be the probability of encountering a conditional or unconditional branch 
instruction, and let q be the probability that execution of a branch instruction I causes a 
jump to a nonconsecutive address. Assume that each such jump requires the pipeline to 
be cleared, destroying all ongoing instruction processing, when I emerges from the last 
stage. Revise Equations (14.1) and (14.2) to take these probabilities into account.

 14.12 One limitation of the multiple-stream approach to dealing with branches in a pipeline 
is that additional branches will be encountered before the first branch is resolved. 
Suggest two additional limitations or drawbacks.

 14.13 Consider the state diagrams of Figure 14.28.
a. Describe the behavior of each.
b. Compare these with the branch prediction state diagram in Section 14.4. Discuss 

the relative merits of each of the three approaches to branch prediction.
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 14.14 The Motorola 680x0 machines include the instruction Decrement and Branch 
 According to Condition, which has the following form:

DBcc Dn, displacement

where cc is one of the testable conditions, Dn is a general-purpose register, and dis-
placement specifies the target address relative to the current address. The instruction 
can be defined as follows:

if (cc = False)
then begin

Dn :=  (Dn) - 1;
if Dn � -1 then PC :=  (PC) + displacement end

else PC :=  (PC) + 2;
When the instruction is executed, the condition is first tested to determine whether 
the termination condition for the loop is satisfied. If so, no operation is performed and 
execution continues at the next instruction in sequence. If the condition is false, the 
specified data register is decremented and checked to see if it is less than zero. If it is 
less than zero, the loop is terminated and execution continues at the next instruction 
in sequence. Otherwise, the program branches to the specified location. Now consider 
the following assembly-language program fragment:

AGAIN   CMPM.L   (A0)+ , (A1)+
        DBNE    D1, AGAIN
        NOP

Two strings addressed by A0 and A1 are compared for equality; the string pointers 
are incremented with each reference. D1 initially contains the number of longwords 
(4 bytes) to be compared.
a. The initial contents of the registers are A0 = $00004000, A1 = $00005000 and 

D1 = $000000FF (the $ indicates hexadecimal notation). Memory between $4000 
and $6000 is loaded with words $AAAA. If the foregoing program is run, specify 
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the number of times the DBNE loop is executed and the contents of the three 
registers when the NOP instruction is reached.

b. Repeat (a), but now assume that memory between $4000 and $4FEE is loaded 
with $0000 and between $5000 and $6000 is loaded with $AAA.

 14.15 Redraw Figures 14.19c, assuming that the conditional branch is not taken.
 14.16 Table 14.5 summarizes statistics from [MACD84] concerning branch behavior for 

various classes of applications. With the exception of type 1 branch behavior, there is 
no noticeable difference among the application classes. Determine the fraction of all 
branches that go to the branch target address for the scientific environment. Repeat 
for commercial and systems environments.

 14.17 Pipelining can be applied within the ALU to speed up floating-point operations. Con-
sider the case of floating-point addition and subtraction. In simplified terms, the pipe-
line could have four stages: (1) Compare the exponents; (2) Choose the exponent and 
align the significands; (3) Add or subtract significands; (4) Normalize the results. The 
pipeline can be considered to have two parallel threads, one handling exponents and 
one handling significands, and could start out like this:

R

a

Exponents

b

R

A

Significands

B

In this figure, the boxes labeled R refer to a set of registers used to hold temporary 
 results. Complete the block diagram that shows at a top level the structure of the 
 pipeline.

Table 14.5 Branch Behavior in Sample Applications

Occurrence of branch classes:

Type 1: Branch 72.5%

Type 2: Loop control 9.8%

Type 3: Procedure call, return 17.7%

Type 1 branch: where it goes Scientific Commercial Systems

Unconditional—100% go to target 20% 40% 35%

Conditional—went to target 43.2% 24.3% 32.5%

Conditional—did not go to target (inline) 36.8% 35.7% 32.5%

Type 2 branch (all environments)

That go to target 91%

That go inline 9%

Type 3 branch

100% go to target
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Since the development of the stored-program computer around 1950, there have 
been remarkably few true innovations in the areas of computer organization and 
architecture. The following are some of the major advances since the birth of the 
computer:

 • The family concept: Introduced by IBM with its System/360 in 1964, followed 
shortly thereafter by DEC, with its PDP-8. The family concept decouples the 
 architecture of a machine from its implementation. A set of computers is  offered, 
with different price/performance characteristics, that presents the same architec-
ture to the user. The differences in price and performance are due to different 
implementations of the same architecture.

 • Microprogrammed control unit: Suggested by Wilkes in 1951 and introduced 
by IBM on the S/360 line in 1964. Microprogramming eases the task of design-
ing and implementing the control unit and provides support for the family 
concept.

 • Cache memory: First introduced commercially on IBM S/360 Model 85 in 
1968. The insertion of this element into the memory hierarchy dramatically 
improves performance.

 • Pipelining: A means of introducing parallelism into the essentially sequential 
nature of a machine-instruction program. Examples are instruction pipelining 
and vector processing.

 • Multiple processors: This category covers a number of different organizations 
and objectives.

 • Reduced instruction set computer (RISC) architecture: This is the focus of 
this chapter.

When it appeared, RISC architecture was a dramatic departure from the 
historical trend in processor architecture. An analysis of the RISC architecture 
brings into focus many of the important issues in computer organization and 
architecture.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Provide an overview research results on instruction execution characteristics 
that motivated the development of the RISC approach.

� Summarize the key characteristics of RISC machines.
� Understand the design and performance implications of using a large register 

file.
� Understand the use of compiler-based register optimization to improve

performance.
� Discuss the implication of a RISC architecture for pipeline design and

performance.
� List and explain key approaches to pipeline optimization on a RISC machine.
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Although RISC architectures have been defined and designed in a variety of 
ways by different groups, the key elements shared by most designs are these:

 • A large number of general-purpose registers, and/or the use of compiler 
technology to optimize register usage

 • A limited and simple instruction set

 • An emphasis on optimizing the instruction pipeline

Table 15.1 compares several RISC and non-RISC systems.
We begin this chapter with a brief survey of some results on instruction sets, 

and then examine each of the three topics just listed. This is followed by a descrip-
tion of two of the best-documented RISC designs.

 15.1 INSTRUCTION EXECUTION CHARACTERISTICS

One of the most visible forms of evolution associated with computers is that of pro-
gramming languages. As the cost of hardware has dropped, the relative cost of soft-
ware has risen. Along with that, a chronic shortage of programmers has driven up 
software costs in absolute terms. Thus, the major cost in the life cycle of a system is 
software, not hardware. Adding to the cost, and to the inconvenience, is the element 
of unreliability: it is common for programs, both system and application, to continue 
to exhibit new bugs after years of operation.

The response from researchers and industry has been to develop ever more 
powerful and complex high-level programming languages. These high-level lan-
guages (HLLs): (1) allow the programmer to express algorithms more concisely, 
(2) allow the compiler to take care of details that are not important in the program-
mer’s expression of algorithms, and (3) often support naturally the use of structured 
programming and/or object-oriented design.

Alas, this solution gave rise to a perceived problem, known as the semantic 
gap, the difference between the operations provided in HLLs and those provided 
in computer architecture. Symptoms of this gap are alleged to include execution 
inefficiency, excessive machine program size, and compiler complexity. Designers 
responded with architectures intended to close this gap. Key features include large 
instruction sets, dozens of addressing modes, and various HLL statements imple-
mented in hardware. An example of the latter is the CASE machine instruction on 
the VAX. Such complex instruction sets are intended to

 • Ease the task of the compiler writer.

 • Improve execution efficiency, because complex sequences of operations can 
be implemented in microcode.

 • Provide support for even more complex and sophisticated HLLs.

Meanwhile, a number of studies have been done over the years to determine 
the characteristics and patterns of execution of machine instructions generated 
from HLL programs. The results of these studies inspired some researchers to look 
for a different approach: namely, to make the architecture that supports the HLL 
simpler, rather than more complex.



Table 15.1 Characteristics of Some CISCs, RISCs, and Superscalar Processors

Complex Instruction Set 
(CISC) Computer

Reduced Instruction Set 
(RISC) Computer Superscalar

Characteristic IBM
370/168

VAX
11/780

Intel
80486

SPARC MIPS
R4000

PowerPC Ultra
SPARC

MIPS
R10000

Year developed 1973 1978 1989 1987 1991 1993 1996 1996

Number of instructions 208 303 235 69 94 225 — —

Instruction size (bytes) 2–6 2–57 1–11 4 4 4 4 4

Addressing modes 4 22 11 1 1 2 1 1

Number of general-purpose 
registers

16 16 8 40–520 32 32 40–520 32

Control memory
size (Kbits)

420 480 246  — — — — —

Cache size (Kbytes) 64 64 8 32 128 16–32 32 64

534
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To understand the line of reasoning of the RISC advocates, we begin with a 
brief review of instruction execution characteristics. The aspects of computation of 
interest are as follows:

 • Operations performed: These determine the functions to be performed by the 
processor and its interaction with memory.

 • Operands used: The types of operands and the frequency of their use deter-
mine the memory organization for storing them and the addressing modes for 
accessing them.

 • Execution sequencing: This determines the control and pipeline organization.

In the remainder of this section, we summarize the results of a number of 
studies of high-level-language programs. All of the results are based on dynamic 
measurements. That is, measurements are collected by executing the program and 
counting the number of times some feature has appeared or a particular property 
has held true. In contrast, static measurements merely perform these counts on the 
source text of a program. They give no useful information on performance, because 
they are not weighted relative to the number of times each statement is executed.

Operations

A variety of studies have been made to analyze the behavior of HLL programs. 
Table 4.8, discussed in Chapter 4, includes key results from a number of studies. 
There is quite good agreement in the results of this mixture of languages and appli-
cations. Assignment statements predominate, suggesting that the simple movement 
of data is of high importance. There is also a preponderance of conditional state-
ments (IF, LOOP). These statements are implemented in machine language with 
some sort of compare and branch instruction. This suggests that the sequence con-
trol mechanism of the instruction set is important.

These results are instructive to the machine instruction set designer, indicat-
ing which types of statements occur most often and therefore should be supported 
in an “optimal” fashion. However, these results do not reveal which statements use 
the most time in the execution of a typical program. That is, we want to answer the 
question: Given a compiled machine-language program, which statements in the 
source language cause the execution of the most machine-language instructions and 
what is the execution time of these instructions?

To get at this underlying phenomenon, the Patterson programs [PATT82a], 
described in Appendix 4A, were compiled on the VAX, PDP-11, and Motorola 
68000 to determine the average number of machine instructions and memory refer-
ences per statement type. The second and third columns in Table 15.2 show the rela-
tive frequency of occurrence of various HLL statements in a variety of programs; 
the data were obtained by observing the occurrences in running programs rather 
than just the number of times that statements occur in the source code. Hence 
these metrics capture dynamic behavior. To obtain the data in columns four and 
five (machine-instruction weighted), each value in the second and third columns is 
multiplied by the number of machine instructions produced by the compiler. These 
results are then normalized so that columns four and five show the relative fre-
quency of occurrence, weighted by the number of machine instructions per HLL 
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Table 15.2 Weighted Relative Dynamic Frequency of HLL Operations [PATT82a]

Dynamic Occurrence
Machine-Instruction 

Weighted
Memory-Reference 

Weighted

Pascal C Pascal C Pascal C

ASSIGN 45% 38% 13% 13% 14% 15%

LOOP 5% 3% 42% 32% 33% 26%

CALL 15% 12% 31% 33% 44% 45%

IF 29% 43% 11% 21% 7% 13%

GOTO — 3% — — — —

OTHER 6% 1% 3% 1% 2% 1%

statement. Similarly, the sixth and seventh columns are obtained by multiplying the 
frequency of occurrence of each statement type by the relative number of memory 
references caused by each statement. The data in columns four through seven pro-
vide surrogate measures of the actual time spent executing the various statement 
types. The results suggest that the procedure call/return is the most time-consuming 
operation in typical HLL programs.

The reader should be clear on the significance of Table 15.2. This table indi-
cates the relative performance impact of various statement types in an HLL, when 
that HLL is compiled for a typical contemporary instruction set architecture. Some 
other architecture could conceivably produce different results. However, this study 
produces results that are representative for contemporary complex instruction set 
computer (CISC) architectures. Thus, they can provide guidance to those looking 
for more efficient ways to support HLLs.

Operands

Much less work has been done on the occurrence of types of operands, despite the 
importance of this topic. There are several aspects that are significant.

The Patterson study already referenced [PATT82a] also looked at the dynamic 
frequency of occurrence of classes of variables (Table 15.3). The results, consistent 
between Pascal and C programs, show that most references are to simple scalar 
variables. Further, more than 80% of the scalars were local (to the procedure) vari-
ables. In addition, each reference to an array or a structure requires a reference to 
an index or pointer, which again is usually a local scalar. Thus, there is a preponder-
ance of references to scalars, and these are highly localized.

The Patterson study examined the dynamic behavior of HLL programs, 
independent of the underlying architecture. As discussed before, it is necessary 

Table 15.3 Dynamic Percentage of Operands

Pascal C Average

Integer Constant 16% 23% 20%

Scalar Variable 58% 53% 55%

Array/Structure 26% 24% 25%
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to deal with actual architectures to examine program behavior more deeply. One 
study, [LUND77], examined DEC-10 instructions dynamically and found that 
each instruction on the average references 0.5 operand in memory and 1.4 reg-
isters. Similar results are reported in [HUCK83] for C, Pascal, and FORTRAN 
programs on S/370, PDP-11, and VAX. Of course, these figures depend highly 
on both the architecture and the compiler, but they do illustrate the frequency of 
operand accessing.

These latter studies suggest the importance of an architecture that lends itself 
to fast operand accessing, because this operation is performed so frequently. The 
Patterson study suggests that a prime candidate for optimization is the mechanism 
for storing and accessing local scalar variables.

Procedure Calls

We have seen that procedure calls and returns are an important aspect of HLL 
 programs. The evidence (Table 15.2) suggests that these are the most time- consuming 
operations in compiled HLL programs. Thus, it will be profitable to consider ways of 
implementing these operations efficiently. Two aspects are  significant: the number 
of parameters and variables that a procedure deals with, and the depth of nesting.

Tanenbaum’s study [TANE78] found that 98% of dynamically called proce-
dures were passed fewer than six arguments and that 92% of them used fewer than 
six local scalar variables. Similar results were reported by the Berkeley RISC team 
[KATE83], as shown in Table 15.4. These results show that the number of words 
required per procedure activation is not large. The studies reported earlier indi-
cated that a high proportion of operand references is to local scalar variables. These 
studies show that those references are in fact confined to relatively few variables.

The same Berkeley group also looked at the pattern of procedure calls and returns 
in HLL programs. They found that it is rare to have a long uninterrupted sequence of 
procedure calls followed by the corresponding sequence of returns. Rather, they found 
that a program remains confined to a rather narrow window of procedure-invocation 
depth. This is illustrated in Figure 4.21, which was discussed in Chapter 4. These results 
reinforce the conclusion that operand references are highly localized.

Implications

A number of groups have looked at results such as those just reported and have 
concluded that the attempt to make the instruction set architecture close to HLLs 

Table 15.4 Procedure Arguments and Local Scalar Variables

Percentage of Executed 
Procedure Calls With

Compiler, Interpreter,  
and Typesetter

Small Nonnumeric 
Programs

73 arguments 0–7% 0–5%

75 arguments 0–3% 0%

78 words of arguments and 
local scalars

1–20% 0–6%

712 words of arguments and 
local scalars

1–6% 0–3%
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is not the most effective design strategy. Rather, the HLLs can best be supported 
by optimizing performance of the most time-consuming features of typical HLL 
programs.

Generalizing from the work of a number of researchers, three elements emerge 
that, by and large, characterize RISC architectures. First, use a large number of 
registers or use a compiler to optimize register usage. This is intended to optimize 
operand referencing. The studies just discussed show that there are several refer-
ences per HLL statement and that there is a high proportion of move (assignment) 
statements. This, coupled with the locality and predominance of scalar references, 
suggests that performance can be improved by reducing memory references at the 
expense of more register references. Because of the locality of these references, an 
expanded register set seems practical.

Second, careful attention needs to be paid to the design of instruction pipe-
lines. Because of the high proportion of conditional branch and procedure call 
instructions, a straightforward instruction pipeline will be inefficient. This manifests 
itself as a high proportion of instructions that are prefetched but never executed.

Finally, an instruction set consisting of high-performance primitives is 
indicated. Instructions should have predictable costs (measured in execution 
time and code size, and increasingly, in energy dissipation) and be consistent 
with a high-performance implementation (which harmonizes with predictable 
execution-time cost).

 15.2 THE USE OF A LARGE REGISTER FILE

The results summarized in Section 15.1 point out the desirability of quick access to 
operands. We have seen that there is a large proportion of assignment statements 
in HLL programs, and many of these are of the simple form A d B. Also, there is 
a significant number of operand accesses per HLL statement. If we couple these 
results with the fact that most accesses are to local scalars, heavy reliance on register 
storage is suggested.

The reason that register storage is indicated is that it is the fastest avail-
able storage device, faster than both main memory and cache. The register file is 
physically small, on the same chip as the ALU and control unit, and employs much 
shorter addresses than addresses for cache and memory. Thus, a strategy is needed 
that will allow the most frequently accessed operands to be kept in registers and to 
minimize register-memory operations.

Two basic approaches are possible, one based on software and the other on 
hardware. The software approach is to rely on the compiler to maximize register 
usage. The compiler will attempt to assign registers to those variables that will be 
used the most in a given time period. This approach requires the use of sophisti-
cated program-analysis algorithms. The hardware approach is simply to use more 
registers so that more variables can be held in registers for longer periods of time.

In this section, we will discuss the hardware approach. This approach has been 
pioneered by the Berkeley RISC group [PATT82a]; was used in the first commer-
cial RISC product, the Pyramid [RAGA83]; and is currently used in the popular 
SPARC architecture.
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Register Windows

On the face of it, the use of a large set of registers should decrease the need to 
access memory. The design task is to organize the registers in such a fashion that 
this goal is realized.

Because most operand references are to local scalars, the obvious approach 
is to store these in registers, with perhaps a few registers reserved for global vari-
ables. The problem is that the definition of local changes with each procedure call 
and return, operations that occur frequently. On every call, local variables must 
be saved from the registers into memory, so that the registers can be reused by the 
called procedure. Furthermore, parameters must be passed. On return, the vari-
ables of the calling procedure must be restored (loaded back into registers) and 
results must be passed back to the calling procedure.

The solution is based on two other results reported in Section 15.1. First, a typi-
cal procedure employs only a few passed parameters and local variables (Table 15.4). 
Second, the depth of procedure activation fluctuates within a relatively narrow range 
(Figure 4.21). To exploit these properties, multiple small sets of registers are used, 
each assigned to a different procedure. A procedure call automatically switches the 
processor to use a different fixed-size window of registers, rather than saving regis-
ters in memory. Windows for adjacent procedures are overlapped to allow param-
eter passing.

The concept is illustrated in Figure 15.1. At any time, only one window of 
registers is visible and is addressable as if it were the only set of registers (e.g., 
addresses 0 through N - 1). The window is divided into three fixed-size areas. 
Parameter registers hold parameters passed down from the procedure that called 
the current procedure and hold results to be passed back up. Local registers are 
used for local variables, as assigned by the compiler. Temporary registers are used 
to exchange parameters and results with the next lower level (procedure called by 
current procedure). The temporary registers at one level are physically the same 
as the parameter registers at the next lower level. This overlap permits parameters 
to be passed without the actual movement of data. Keep in mind that, except for 
the overlap, the registers at two different levels are physically distinct. That is, the 
parameter and local registers at level J are disjoint from the local and temporary 
registers at level J + 1.

To handle any possible pattern of calls and returns, the number of register 
windows would have to be unbounded. Instead, the register windows can be used 
to hold the few most recent procedure activations. Older activations must be saved 
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Figure 15.1 Overlapping Register Windows
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in memory and later restored when the nesting depth decreases. Thus, the actual 
organization of the register file is as a circular buffer of overlapping windows. Two 
notable examples of this approach are Sun’s SPARC architecture, described in 
Section 15.7, and the IA-64 architecture used in Intel’s Itanium processor.

The circular organization is shown in Figure 15.2, which depicts a circular 
buffer of six windows. The buffer is filled to a depth of 4 (A called B; B called C; 
C called D) with procedure D active. The current-window pointer (CWP) points 
to the window of the currently active procedure. Register references by a machine 
instruction are offset by this pointer to determine the actual physical register. The 
saved-window pointer (SWP) identifies the window most recently saved in memory. 
If procedure D now calls procedure E, arguments for E are placed in D’s temporary 
registers (the overlap between w3 and w4) and the CWP is advanced by one window.

If procedure E then makes a call to procedure F, the call cannot be made with 
the current status of the buffer. This is because F’s window overlaps A’s window. If 
F begins to load its temporary registers, preparatory to a call, it will overwrite the 
parameter registers of A (A.in). Thus, when CWP is incremented (modulo 6) so 
that it becomes equal to SWP, an interrupt occurs, and A’s window is saved. Only 
the first two portions (A.in and A.loc) need be saved. Then, the SWP is incremented 
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and the call to F proceeds. A similar interrupt can occur on returns. For example, 
subsequent to the activation of F, when B returns to A, CWP is decremented and 
becomes equal to SWP. This causes an interrupt that results in the restoration of 
A’s window.

From the preceding, it can be seen that an N-window register file can hold 
only N - 1 procedure activations. The value of N need not be large. As was men-
tioned in Appendix 4A, one study [TAMI83] found that, with 8 windows, a save or 
restore is needed on only 1% of the calls or returns. The Berkeley RISC computers 
use 8 windows of 16 registers each. The Pyramid computer employs 16 windows of 
32 registers each.

Global Variables

The window scheme just described provides an efficient organization for storing 
local scalar variables in registers. However, this scheme does not address the need 
to store global variables, those accessed by more than one procedure. Two options 
suggest themselves. First, variables declared as global in an HLL can be assigned 
memory locations by the compiler, and all machine instructions that reference these 
variables will use memory-reference operands. This is straightforward, from both 
the hardware and software (compiler) points of view. However, for frequently 
accessed global variables, this scheme is inefficient.

An alternative is to incorporate a set of global registers in the processor. These 
registers would be fixed in number and available to all procedures. A unified num-
bering scheme can be used to simplify the instruction format. For example, refer-
ences to registers 0 through 7 could refer to unique global registers, and references 
to registers 8 through 31 could be offset to refer to physical registers in the current 
window. There is an increased hardware burden to accommodate the split in regis-
ter addressing. In addition, the linker must decide which global variables should be 
assigned to registers.

Large Register File versus Cache

The register file, organized into windows, acts as a small, fast buffer for holding a 
subset of all variables that are likely to be used the most heavily. From this point 
of view, the register file acts much like a cache memory, although a much faster 
memory. The question therefore arises as to whether it would be simpler and better 
to use a cache and a small traditional register file.

Table 15.5 compares characteristics of the two approaches. The window-based 
register file holds all the local scalar variables (except in the rare case of window 
overflow) of the most recent N - 1 procedure activations. The cache holds a selec-
tion of recently used scalar variables. The register file should save time, because all 
local scalar variables are retained. On the other hand, the cache may make more effi-
cient use of space, because it is reacting to the situation dynamically. Furthermore, 
caches generally treat all memory references alike, including instructions and other 
types of data. Thus, savings in these other areas are possible with a cache and not a 
register file.
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A register file may make inefficient use of space, because not all procedures 
will need the full window space allotted to them. On the other hand, the cache 
suffers from another sort of inefficiency: Data are read into the cache in blocks. 
Whereas the register file contains only those variables in use, the cache reads in a 
block of data, some or much of which will not be used.

The cache is capable of handling global as well as local variables. There are 
usually many global scalars, but only a few of them are heavily used [KATE83]. 
A cache will dynamically discover these variables and hold them. If the window-
based register file is supplemented with global registers, it too can hold some 
 global scalars. However, when program modules are separately compiled, it is 
impossible for the compiler to assign global values to registers; the linker must 
perform this task.

With the register file, the movement of data between registers and memory 
is determined by the procedure nesting depth. Because this depth usually fluctu-
ates within a narrow range, the use of memory is relatively infrequent. Most cache 
memories are set associative with a small set size. Thus, there is the danger that 
other data or instructions will compete for cache residency.

Based on the discussion so far, the choice between a large window-based reg-
ister file and a cache is not clear-cut. There is one characteristic, however, in which 
the register approach is clearly superior and which suggests that a cache-based sys-
tem will be noticeably slower. This distinction shows up in the amount of addressing 
overhead experienced by the two approaches.

Figure 15.3 illustrates the difference. To reference a local scalar in a window-
based register file, a “virtual” register number and a window number are used. 
These can pass through a relatively simple decoder to select one of the physical reg-
isters. To reference a memory location in cache, a full-width memory address must 
be generated. The complexity of this operation depends on the addressing mode. In 
a set associative cache, a portion of the address is used to read a number of words 
and tags equal to the set size. Another portion of the address is compared with the 
tags, and one of the words that were read is selected. It should be clear that even if 
the cache is as fast as the register file, the access time will be considerably longer. 
Thus, from the point of view of performance, the window-based register file is supe-
rior for local scalars. Further performance improvement could be achieved by the 
addition of a cache for instructions only.

Table 15.5 Characteristics of Large-Register-File and Cache Organizations

Large Register File Cache

All local scalars Recently-used local scalars

Individual variables Blocks of memory

Compiler-assigned global variables Recently-used global variables

Save/Restore based on procedure 
nesting depth

Save/Restore based on cache 
replacement algorithm

Register addressing Memory addressing

Multiple operands addressed and 
accessed in one cycle

One operand addressed and 
accessed per cycle 
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 15.3 COMPILER-BASED REGISTER OPTIMIZATION

Let us assume now that only a small number (e.g., 16–32) of registers is available 
on the target RISC machine. In this case, optimized register usage is the responsi-
bility of the compiler. A program written in a high-level language has, of course, 
no explicit references to registers (the C-language keyword register notwithstand-
ing). Rather, program quantities are referred to symbolically. The objective of the 
compiler is to keep the operands for as many computations as possible in registers 
rather than main memory, and to minimize load-and-store operations.

In general, the approach taken is as follows. Each program quantity that is 
a candidate for residing in a register is assigned to a symbolic or virtual register. 
The compiler then maps the unlimited number of symbolic registers into a fixed 
number of real registers. Symbolic registers whose usage does not overlap can share 
the same real register. If, in a particular portion of the program, there are more 
quantities to deal with than real registers, then some of the quantities are assigned 
to memory locations. Load-and-store instructions are used to position quantities in 
registers temporarily for computational operations.

Data
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Instruction

Registers
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The essence of the optimization task is to decide which quantities are to be 
assigned to registers at any given point in the program. The technique most com-
monly used in RISC compilers is known as graph coloring, which is a technique bor-
rowed from the discipline of topology [CHAI82, CHOW86, COUT86, CHOW90].

The graph coloring problem is this. Given a graph consisting of nodes and 
edges, assign colors to nodes such that adjacent nodes have different colors, and 
do this in such a way as to minimize the number of different colors. This problem 
is adapted to the compiler problem in the following way. First, the program is ana-
lyzed to build a register interference graph. The nodes of the graph are the symbolic 
registers. If two symbolic registers are “live” during the same program fragment, 
then they are joined by an edge to depict interference. An attempt is then made to 
color the graph with n colors, where n is the number of registers. Nodes that share 
the same color can be assigned to the same register. If this process does not fully 
succeed, then those nodes that cannot be colored must be placed in memory, and 
loads and stores must be used to make space for the affected quantities when they 
are needed.

Figure 15.4 is a simple example of the process. Assume a program with six 
symbolic registers to be compiled into three actual registers. Figure 15.4a shows the 
time sequence of active use of each symbolic register. The dashed horizontal lines 
indicate successive instruction executions. Figure 15.4b shows the register inter-
ference graph (shading and cross-hatching are used instead of colors). A possible 
coloring with three colors is indicated. Because symbolic registers A and D do not 
interfere, the compile can assign both of these to physical register R1. Similarly, 
symbolic registers C and E can be assigned to register R3. One symbolic register, F, 
is left uncolored and must be dealt with using loads and stores.

In general, there is a trade-off between the use of a large set of registers and 
compiler-based register optimization. For example, [BRAD91a] reports on a study 
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that modeled a RISC architecture with features similar to the Motorola 88000 and 
the MIPS R2000. The researchers varied the number of registers from 16 to 128, 
and they considered both the use of all general-purpose registers and registers split 
between integer and floating-point use. Their study showed that with even simple 
register optimization, there is little benefit to the use of more than 64 registers. With 
reasonably sophisticated register optimization techniques, there is only marginal 
performance improvement with more than 32 registers. Finally, they noted that 
with a small number of registers (e.g., 16), a machine with a shared register organi-
zation executes faster than one with a split organization. Similar conclusions can be 
drawn from [HUGU91], which reports on a study that is primarily concerned with 
optimizing the use of a small number of registers rather than comparing the use of 
large register sets with optimization efforts.

 15.4 REDUCED INSTRUCTION SET ARCHITECTURE

In this section, we look at some of the general characteristics of and the motivation 
for a reduced instruction set architecture. Specific examples will be seen later in 
this chapter. We begin with a discussion of motivations for contemporary complex 
instruction set architectures.

Why CISC

We have noted the trend to richer instruction sets, which include a larger number 
of instructions and more complex instructions. Two principal reasons have moti-
vated this trend: a desire to simplify compilers and a desire to improve performance. 
Underlying both of these reasons was the shift to HLLs on the part of programmers; 
architects attempted to design machines that provided better support for HLLs.

It is not the intent of this chapter to say that the CISC designers took the 
wrong direction. Indeed, because technology continues to evolve and because archi-
tectures exist along a spectrum rather than in two neat categories, a black-and-white 
assessment is unlikely ever to emerge. Thus, the comments that follow are simply 
meant to point out some of the potential pitfalls in the CISC approach and to pro-
vide some understanding of the motivation of the RISC adherents.

The first of the reasons cited, compiler simplification, seems obvious, but it 
is not. The task of the compiler writer is to build a compiler that generates good 
(fast, small, fast and small) sequences of machine instructions for HLL programs 
(i.e., the compiler views individual HLL statements in the context of surrounding 
HLL statements). If there are machine instructions that resemble HLL statements, 
this task is simplified. This reasoning has been disputed by the RISC researchers 
([HENN82], [RADI83], [PATT82b]). They have found that complex machine 
instructions are often hard to exploit because the compiler must find those cases 
that exactly fit the construct. The task of optimizing the generated code to mini-
mize code size, reduce instruction execution count, and enhance pipelining is much 
more difficult with a complex instruction set. As evidence of this, studies cited 
earlier in this chapter indicate that most of the instructions in a compiled program 
are the relatively simple ones.
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The other major reason cited is the expectation that a CISC will yield smaller, 
faster programs. Let us examine both aspects of this assertion: that programs will be 
smaller and that they will execute faster.

There are two advantages to smaller programs. First, because the program 
takes up less memory, there is a savings in that resource. With memory today being 
so inexpensive, this potential advantage is no longer compelling. More important, 
smaller programs should improve performance, and this will happen in three ways. 
First, fewer instructions means fewer instruction bytes to be fetched. Second, in a 
paging environment, smaller programs occupy fewer pages, reducing page faults. 
Third, more instructions fit in cache(s).

The problem with this line of reasoning is that it is far from certain that a CISC 
program will be smaller than a corresponding RISC program. In many cases, the 
CISC program, expressed in symbolic machine language, may be shorter (i.e., fewer 
instructions), but the number of bits of memory occupied may not be noticeably 
smaller. Table 15.6 shows results from three studies that compared the size of com-
piled C programs on a variety of machines, including RISC I, which has a reduced 
instruction set architecture. Note that there is little or no savings using a CISC over 
a RISC. It is also interesting to note that the VAX, which has a much more complex 
instruction set than the PDP-11, achieves very little savings over the latter. These 
results were confirmed by IBM researchers [RADI83], who found that the IBM 801 
(a RISC) produced code that was 0.9 times the size of code on an IBM S/370. The 
study used a set of PL/I programs.

There are several reasons for these rather surprising results. We have already 
noted that compilers on CISCs tend to favor simpler instructions, so that the con-
ciseness of the complex instructions seldom comes into play. Also, because there 
are more instructions on a CISC, longer opcodes are required, producing longer 
instructions. Finally, RISCs tend to emphasize register rather than memory refer-
ences, and the former require fewer bits. An example of this last effect is discussed 
presently.

So the expectation that a CISC will produce smaller programs, with the attend-
ant advantages, may not be realized. The second motivating factor for increasingly 
complex instruction sets was that instruction execution would be faster. It seems 
to make sense that a complex HLL operation will execute more quickly as a single 
machine instruction rather than as a series of more primitive instructions. However, 
because of the bias toward the use of those simpler instructions, this may not be so. 

Table 15.6 Code Size Relative to RISC I

[PATT82a] 
11 C Programs

[KATE83] 
12 C Programs

[HEAT84] 
5 C Programs

RISC I 1.0 1.0 1.0

VAX-11/780 0.8 0.67

M68000 0.9 0.9

Z8002 1.2 1.12

PDP-11/70 0.9 0.71
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The entire control unit must be made more complex, and/or the microprogram con-
trol store must be made larger, to accommodate a richer instruction set. Either factor 
increases the execution time of the simple instructions.

In fact, some researchers have found that the speedup in the execution of com-
plex functions is due not so much to the power of the complex machine instructions 
as to their residence in high-speed control store [RADI83]. In effect, the control 
store acts as an instruction cache. Thus, the hardware architect is in the position of 
trying to determine which subroutines or functions will be used most frequently and 
assigning those to the control store by implementing them in microcode. The results 
have been less than encouraging. On S/390 systems, instructions such as Translate 
and Extended-Precision-Floating-Point-Divide reside in high-speed storage, while 
the sequence involved in setting up procedure calls or initiating an interrupt handler 
are in slower main memory.

Thus, it is far from clear that a trend to increasingly complex instruction sets is 
appropriate. This has led a number of groups to pursue the opposite path.

Characteristics of Reduced Instruction Set Architectures

Although a variety of different approaches to reduced instruction set architecture 
have been taken, certain characteristics are common to all of them:

 • One instruction per cycle

 • Register-to-register operations

 • Simple addressing modes

 • Simple instruction formats

Here, we provide a brief discussion of these characteristics. Specific examples are 
explored later in this chapter.

The first characteristic listed is that there is one machine instruction per 
machine cycle. A machine cycle is defined to be the time it takes to fetch two oper-
ands from registers, perform an ALU operation, and store the result in a register. 
Thus, RISC machine instructions should be no more complicated than, and execute 
about as fast as, microinstructions on CISC machines (discussed in Part Four). With 
simple, one-cycle instructions, there is little or no need for microcode; the machine 
instructions can be hardwired. Such instructions should execute faster than compa-
rable machine instructions on other machines, because it is not necessary to access a 
microprogram control store during instruction execution.

A second characteristic is that most operations should be register to register, 
with only simple LOAD and STORE operations accessing memory. This design 
feature simplifies the instruction set and therefore the control unit. For example, a 
RISC instruction set may include only one or two ADD instructions (e.g., integer 
add, add with carry); the VAX has 25 different ADD instructions. Another benefit 
is that such an architecture encourages the optimization of register use, so that fre-
quently accessed operands remain in high-speed storage.

This emphasis on register-to-register operations is notable for RISC designs. 
Contemporary CISC machines provide such instructions but also include memory-
to-memory and mixed register/memory operations. Attempts to compare these 
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approaches were made in the 1970s, before the appearance of RISCs. Figure 15.5a 
illustrates the approach taken. Hypothetical architectures were evaluated on pro-
gram size and the number of bits of memory traffic. Results such as this one led 
one researcher to suggest that future architectures should contain no registers at 
all [MYER78]. One wonders what he would have thought, at the time, of the RISC 
machine once produced by Pyramid, which contained no less than 528 registers!

What was missing from those studies was a recognition of the frequent access 
to a small number of local scalars and that, with a large bank of registers or an opti-
mizing compiler, most operands could be kept in registers for long periods of time. 
Thus, Figure 15.5b may be a fairer comparison.

A third characteristic is the use of simple addressing modes. Almost all RISC 
instructions use simple register addressing. Several additional modes, such as dis-
placement and PC-relative, may be included. Other, more complex modes can be 
synthesized in software from the simple ones. Again, this design feature simplifies 
the instruction set and the control unit.

A final common characteristic is the use of simple instruction formats. 
Generally, only one or a few formats are used. Instruction length is fixed and 
aligned on word boundaries. Field locations, especially the opcode, are fixed. This 
design feature has a number of benefits. With fixed fields, opcode decoding and 
register operand accessing can occur simultaneously. Simplified formats simplify 
the control unit. Instruction fetching is optimized because word-length units are 
fetched. Alignment on a word boundary also means that a single instruction does 
not cross page boundaries.

Taken together, these characteristics can be assessed to determine the poten-
tial performance benefits of the RISC approach. A certain amount of “circumstantial   
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evidence” can be presented. First, more effective optimizing compilers can be devel-
oped. With more-primitive instructions, there are more opportunities for mov-
ing functions out of loops, reorganizing code for efficiency, maximizing register 
 utilization, and so forth. It is even possible to compute parts of complex instructions 
at compile time. For example, the S/390 Move Characters (MVC) instruction moves a 
string of characters from one location to another. Each time it is executed, the move 
will depend on the length of the string, whether and in which direction the locations 
overlap, and what the alignment characteristics are. In most cases, these will all be 
known at compile time. Thus, the compiler could produce an optimized sequence of 
primitive instructions for this function.

A second point, already noted, is that most instructions generated by a com-
piler are relatively simple anyway. It would seem reasonable that a control unit built 
specifically for those instructions and using little or no microcode could execute 
them faster than a comparable CISC.

A third point relates to the use of instruction pipelining. RISC researchers feel 
that the instruction pipelining technique can be applied much more effectively with 
a reduced instruction set. We examine this point in some detail presently.

A final, and somewhat less significant, point is that RISC processors are more 
responsive to interrupts because interrupts are checked between rather elemen-
tary operations. Architectures with complex instructions either restrict interrupts to 
instruction boundaries or must define specific interruptible points and implement 
mechanisms for restarting an instruction.

The case for improved performance for a reduced instruction set architecture 
is strong, but one could perhaps still make an argument for CISC. A number of 
studies have been done but not on machines of comparable technology and power. 
Further, most studies have not attempted to separate the effects of a reduced 
instruction set and the effects of a large register file. The “circumstantial evidence,” 
however, is suggestive.

CISC versus RISC Characteristics

After the initial enthusiasm for RISC machines, there has been a growing realiza-
tion that (1) RISC designs may benefit from the inclusion of some CISC features 
and that (2) CISC designs may benefit from the inclusion of some RISC features. 
The result is that the more recent RISC designs, notably the PowerPC, are no lon-
ger “pure” RISC and the more recent CISC designs, notably the Pentium II and 
later Pentium models, do incorporate some RISC characteristics.

An interesting comparison in [MASH95] provides some insight into this issue. 
Table 15.7 lists a number of processors and compares them across a number of char-
acteristics. For purposes of this comparison, the following are considered typical of 
a classic RISC:

 1. A single instruction size.

 2. That size is typically 4 bytes.

 3. A small number of data addressing modes, typically less than five. This 
parameter is difficult to pin down. In the table, register and literal modes 
are not counted and different formats with different offset sizes are counted 
separately.



Table 15.7 Characteristics of Some Processors

Processor

Number of 
instruction 

sizes

Max 
instruction 

size 
in bytes

Number of 
addressing 

modes
Indirect 

addressing

Load/store 
combined 

with 
arithmetic

Max 
number of 
memory 
operands

Unaligned 
addressing 

allowed

Max 
number 
of MMU 

uses

Number of 
bits for 
integer 
register 
specifier

Number 
of bits for 

FP register 
specifier

AMD29000 1 4 1 no no 1 no 1 8 3a

MIPS R2000 1 4 1 no no 1 no 1 5 4

SPARC 1 4 2 no no 1 no 1 5 4

MC88000 1 4 3 no no 1 no 1 5 4

HP PA 1 4 10a no no 1 no 1 5 4

IBM RT/PC 2a 4 1 no no 1 no 1 4a 3a

IBM RS/6000 1 4 4 no no 1 yes 1 5 5

Intel i860 1 4 4 no no 1 no 1 5 4

IBM 3090 4 8 2b nob yes 2 yes 4 4 2

Intel 80486 12 12 15 nob yes 2 yes 4 3 3

NSC 32016 21 21 23 yes yes 2 yes 4 3 3

MC68040 11 22 44 yes yes 2 yes 8 4 3

VAX 56 56 22 yes yes 6 yes 24 4 0

Clipper 4a 8a 9a no no 1 0 2 4a 3a

Intel 80960 2a 8a 9a no no 1 yesa — 5 3a

Notes: aRISC that does not conform to this characteristic.
bCISC that does not conform to this characteristic.
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 4. No indirect addressing that requires you to make one memory access to get 
the address of another operand in memory.

 5. No operations that combine load/store with arithmetic (e.g., add from memory, 
add to memory).

 6. No more than one memory-addressed operand per instruction.

 7. Does not support arbitrary alignment of data for load/store operations.

 8. Maximum number of uses of the memory management unit (MMU) for a data 
address in an instruction.

 9. Number of bits for integer register specifier equal to five or more. This means 
that at least 32 integer registers can be explicitly referenced at a time.

 10. Number of bits for floating-point register specifier equal to four or more. This 
means that at least 16 floating-point registers can be explicitly referenced at 
a time.

Items 1 through 3 are an indication of instruction decode complexity. Items 4 
through 8 suggest the ease or difficulty of pipelining, especially in the presence of 
virtual memory requirements. Items 9 and 10 are related to the ability to take good 
advantage of compilers.

In the table, the first eight processors are clearly RISC architectures, the next 
five are clearly CISC, and the last two are processors often thought of as RISC that 
in fact have many CISC characteristics.

 15.5 RISC PIPELINING

Pipelining with Regular Instructions

As we discussed in Section 12.4, instruction pipelining is often used to enhance per-
formance. Let us reconsider this in the context of a RISC architecture. Most instruc-
tions are register to register, and an instruction cycle has the following two stages:

 • I: Instruction fetch.

 • E: Execute. Performs an ALU operation with register input and output.

For load and store operations, three stages are required:

 • I: Instruction fetch.

 • E: Execute. Calculates memory address.

 • D: Memory. Register-to-memory or memory-to-register operation.

Figure 15.6a depicts the timing of a sequence of instructions using no pipelin-
ing. Clearly, this is a wasteful process. Even very simple pipelining can substan-
tially improve performance. Figure 15.6b shows a two-stage pipelining scheme, in 
which the I and E stages of two different instructions are performed simultane-
ously. The two stages of the pipeline are an instruction fetch stage, and an exe-
cute/memory stage that executes the instruction, including register-to-memory and 
memory-to-register operations. Thus we see that the instruction fetch stage of the 
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second instruction can be performed in parallel with the first part of the execute/
memory stage. However, the execute/memory stage of the second instruction must 
be delayed until the first instruction clears the second stage of the pipeline. This 
scheme can yield up to twice the execution rate of a serial scheme. Two problems 
prevent the maximum speedup from being achieved. First, we assume that a single-
port memory is used and that only one memory access is possible per stage. This 
requires the insertion of a wait state in some instructions. Second, a branch instruc-
tion interrupts the sequential flow of execution. To accommodate this with mini-
mum circuitry, a NOOP instruction can be inserted into the instruction stream by 
the compiler or assembler.

Pipelining can be improved further by permitting two memory accesses per 
stage. This yields the sequence shown in Figure 15.6c. Now, up to three instructions 
can be overlapped, and the improvement is as much as a factor of 3. Again, branch 
instructions cause the speedup to fall short of the maximum possible. Also, note 
that data dependencies have an effect. If an instruction needs an operand that is 
altered by the preceding instruction, a delay is required. Again, this can be accom-
plished by a NOOP.

The pipelining discussed so far works best if the three stages are of approxi-
mately equal duration. Because the E stage usually involves an ALU operation, it 
may be longer. In this case, we can divide into two substages:

 • E1: Register file read

 • E2: ALU operation and register write

Because of the simplicity and regularity of a RISC instruction set, the design 
of the phasing into three or four stages is easily accomplished. Figure 15.6d shows 
the result with a four-stage pipeline. Up to four instructions at a time can be under 
way, and the maximum potential speedup is a factor of 4. Note again the use of 
NOOPs to account for data and branch delays.
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I E1 E2

I E1 E2

I E1 E2

D 

I E1 E2

I E1 E2

I E1 E2

I E1 E2

D 

NOOP
NOOP

Branch X

I E D 

I E 

I E 

D 

I E 
I E 

I E 

D 

NOOP
Branch X

NOOP
NOOP

(d) Four-stage pipelined timing
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Load rA      M
Load rB      M
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Load rA      M
Load rB      M

Add rC      rA � rB
Store M      rC

Figure 15.6 The Effects of Pipelining
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Optimization of Pipelining

Because of the simple and regular nature of RISC instructions, it is easier for a 
hardware designer to implement a simple, fast pipeline. There are few variations 
in instruction execution duration, and the pipeline can be tailored to reflect this. 
However, we have seen that data and branch dependencies reduce the overall 
 execution rate.

DELAYED BRANCH To compensate for these dependencies, code reorganization 
techniques have been developed. First, let us consider branching instructions. 
Delayed branch, a way of increasing the efficiency of the pipeline, makes use of a 
branch that does not take effect until after execution of the following instruction 
(hence the term delayed). The instruction location immediately following the 
branch is referred to as the delay slot. This strange procedure is illustrated in 
Table 15.8. In the column labeled “normal branch,” we see a normal symbolic 
instruction machine-language program. After 102 is executed, the next instruction 
to be executed is 105. To regularize the pipeline, a NOOP is inserted after this 
branch. However, increased performance is achieved if the instructions at 101 and 
102 are interchanged.

Figure 15.7 shows the result. Figure 15.7a shows the traditional approach to 
pipelining, of the type discussed in Chapter 14 (e.g., see Figures 14.11 and 14.12). 
The JUMP instruction is fetched at time 3. At time 4, the JUMP instruction is exe-
cuted at the same time that instruction 103 (ADD instruction) is fetched. Because a 
JUMP occurs, which updates the program counter, the pipeline must be cleared of 
instruction 103; at time 5, instruction 105, which is the target of the JUMP, is loaded. 
Figure 15.7b shows the same pipeline handled by a typical RISC organization. The 
timing is the same. However, because of the insertion of the NOOP instruction, we 
do not need special circuitry to clear the pipeline; the NOOP simply executes with 
no effect. Figure 15.7c shows the use of the delayed branch. The JUMP instruction 
is fetched at time 2, before the ADD instruction, which is fetched at time 3. Note, 
however, that the ADD instruction is fetched before the execution of the JUMP 
instruction has a chance to alter the program counter. Therefore, during time 4, 
the ADD instruction is executed at the same time that instruction 105 is fetched. 

Table 15.8 Normal and Delayed Branch

Address Normal Branch Delayed Branch
Optimized 

Delayed Branch

100 LOAD X, rA LOAD X, rA LOAD X, rA

101 ADD 1, rA ADD 1, rA JUMP 105

102 JUMP 105 JUMP 106 ADD 1, rA

103 ADD rA, rB NOOP ADD rA, rB

104 SUB rC, rB ADD rA, rB SUB rC, rB

105 STORE rA, Z SUB rC, rB STORE rA, Z

106 STORE rA, Z
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(a) Traditional pipeline

100 LOAD X, rA

Time

101 ADD 1, rA

102 JUMP 105

103 ADD rA, rB

105 STORE rA, Z

(b) RISC pipeline with inserted NOOP

100 LOAD X, rA

1

101 ADD 1, rA

102 JUMP 106

103 NOOP

106 STORE rA, Z

(c) Reversed instructions

100 LOAD X, Ar

101 JUMP 105

102 ADD 1, rA

105 STORE rA, Z
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Figure 15.7 Use of the Delayed Branch

Thus, the original semantics of the program are retained but one less clock cycle is 
required for execution.

This interchange of instructions will work successfully for unconditional 
branches, calls, and returns. For conditional branches, this procedure cannot be 
blindly applied. If the condition that is tested for the branch can be altered by 
the immediately preceding instruction, then the compiler must refrain from doing 
the interchange and instead insert a NOOP. Otherwise, the compiler can seek to 
insert a useful instruction after the branch. The experience with both the Berkeley 
RISC and IBM 801 systems is that the majority of conditional branch instructions 
can be optimized in this fashion ([PATT82a], [RADI83]).

DELAYED LOAD A similar sort of tactic, called the delayed load, can be used on 
LOAD instructions. On LOAD instructions, the register that is to be the target of 
the load is locked by the processor. The processor then continues execution of the 
instruction stream until it reaches an instruction requiring that register, at which 
point it idles until the load is complete. If the compiler can rearrange instructions 
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so that useful work can be done while the load is in the pipeline, efficiency is 
increased.

Loop Unrolling Simulator

LOOP UNROLLING Another compiler technique to improve instruction parallelism 
is loop unrolling [BACO94]. Unrolling replicates the body of a loop some number 
of times called the unrolling factor (u) and iterates by step u instead of step 1.

Unrolling can improve the performance by

 • reducing loop overhead

 • increasing instruction parallelism by improving pipeline performance

 • improving register, data cache, or TLB locality

Figure 15.8 illustrates all three of these improvements in an example. Loop 
overhead is cut in half because two iterations are performed before the test and 
branch at the end of the loop. Instruction parallelism is increased because the sec-
ond assignment can be performed while the results of the first are being stored and 
the loop variables are being updated. If array elements are assigned to registers, reg-
ister locality will improve because a[i] and a[i + 1] are used twice in the loop body, 
reducing the number of loads per iteration from three to two.

Figure 15.8 Loop Unrolling

do i=2, n−1
 a[i] = a[i] + a[i−1] * a[i+1]
end do

(a) Original loop

do i=2, n−2, 2
 a[i] = a[i] + a[i−1] * a[i+1]
 a[i+1] = a[i+1] + a[i] * a[i+2]
end do

if (mod(n−2, 2) = i) then
 a[n−1] = a[n−1] + a[n−2] * a[n]
end if

(b) Loop unrolled twice
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As a final note, we should point out that the design of the instruction pipeline 
should not be carried out in isolation from other optimization techniques applied to 
the system. For example, [BRAD91b] shows that the scheduling of instructions for 
the pipeline and the dynamic allocation of registers should be considered together 
to achieve the greatest efficiency.

 15.6 MIPS R4000

One of the first commercially available RISC chip sets was developed by MIPS 
Technology Inc. The system was inspired by an experimental system, also using 
the name MIPS, developed at Stanford [HENN84]. In this section we look at the 
MIPS R4000. It has substantially the same architecture and instruction set of the 
earlier MIPS designs: the R2000 and R3000. The most significant difference is that 
the R4000 uses 64 rather than 32 bits for all internal and external data paths and for 
addresses, registers, and the ALU.

The use of 64 bits has a number of advantages over a 32-bit architecture. It 
allows a bigger address space—large enough for an operating system to map more 
than a terabyte of files directly into virtual memory for easy access. With 1-terabyte 
and larger disk drives now common, the 4-gigabyte address space of a 32-bit machine 
becomes limiting. Also, the 64-bit capacity allows the R4000 to process data such 
as IEEE double-precision floating-point numbers and character strings, up to eight 
characters in a single action.

The R4000 processor chip is partitioned into two sections, one containing the 
CPU and the other containing a coprocessor for memory management. The proc-
essor has a very simple architecture. The intent was to design a system in which 
the instruction execution logic was as simple as possible, leaving space available for 
logic to enhance performance (e.g., the entire memory-management unit).

The processor supports thirty-two 64-bit registers. It also provides for up to 
128 Kbytes of high-speed cache, half each for instructions and data. The relatively 
large cache (the IBM 3090 provides 128 to 256 Kbytes of cache) enables the system 
to keep large sets of program code and data local to the processor, off-loading the 
main memory bus and avoiding the need for a large register file with the accompa-
nying windowing logic.

Instruction Set

Table 15.9 lists the basic instruction set for all MIPS R series processors. All 
processor instructions are encoded in a single 32-bit word format. All data oper-
ations are register to register; the only memory references are pure load/store 
operations.

The R4000 makes no use of condition codes. If an instruction generates a 
 condition, the corresponding flags are stored in a general-purpose register. This 
avoids the need for special logic to deal with condition codes as they affect the 
pipelining mechanism and the reordering of instructions by the compiler. Instead, 
the mechanisms already implemented to deal with register-value dependencies 
are employed. Further, conditions mapped onto the register files are subject 
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Table 15.9 MIPS R-Series Instruction Set

OP Description

Load/Store Instructions

LB Load Byte

LBU Load Byte Unsigned

LH Load Halfword

LHU Load Halfword Unsigned

LW Load Word

LWL Load Word Left

LWR Load Word Right

SB Store Byte

SH Store Halfword

SW Store Word

SWL Store Word Left

SWR Store Word Right

Arithmetic Instructions 
(ALU Immediate)

ADDI Add Immediate

ADDIU Add Immediate Unsigned

SLTI Set on Less Than Immediate

SLTIU Set on Less Than Immediate  
Unsigned

ANDI AND Immediate

ORI OR Immediate

XORI Exclusive-OR Immediate

LUI Load Upper Immediate

Arithmetic Instructions 
(3-operand, R-type)

ADD Add

ADDU Add Unsigned

SUB Subtract

SUBU Subtract Unsigned

SLT Set on Less Than

SLTU Set on Less Than Unsigned

AND AND

OR OR

XOR Exclusive-OR

NOR NOR

Shift Instructions

SLL Shift Left Logical

SRL Shift Right Logical

SRA Shift Right Arithmetic

SLLV Shift Left Logical Variable

OP Description

SRLV Shift Right Logical Variable

SRAV Shift Right Arithmetic Variable

Multiply/Divide Instructions

MULT Multiply

MULTU Multiply Unsigned

DIV Divide

DIVU Divide Unsigned

MFHI Move From HI

MTHI Move To HI

MFLO Move From LO

MTLO Move To LO

Jump and Branch Instructions

J Jump

JAL Jump and Link

JR Jump to Register

JALR Jump and Link Register

BEQ Branch on Equal

BNE Branch on Not Equal

BLEZ Branch on Less Than or Equal to 
Zero

BGTZ Branch on Greater Than Zero

BLTZ Branch on Less Than Zero

BGEZ Branch on Greater Than or Equal 
to Zero

BLTZAL Branch on Less Than Zero  
And Link

BGEZAL Branch on Greater Than or Equal to 
Zero And Link

Coprocessor Instructions

LWCz Load Word to Coprocessor

SWCz Store Word to Coprocessor

MTCz Move To Coprocessor

MFCz Move From Coprocessor

CTCz Move Control To Coprocessor

CFCz Move Control From Coprocessor

COPz Coprocessor Operation

BCzT Branch on Coprocessor z True

BCzF Branch on Coprocessor z False

Special Instructions

SYSCALL System Call

BREAK Break
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to the same compile-time optimizations in allocation and reuse as other values 
stored in registers.

As with most RISC-based machines, the MIPS uses a single 32-bit instruction 
length. This single instruction length simplifies instruction fetch and decode, and 
it also simplifies the interaction of instruction fetch with the virtual memory man-
agement unit (i.e., instructions do not cross word or page boundaries). The three 
instruction formats (Figure 15.9) share common formatting of opcodes and register 
references, simplifying instruction decode. The effect of more complex instructions 
can be synthesized at compile time.

Only the simplest and most frequently used memory-addressing mode is 
implemented in hardware. All memory references consist of a 16-bit offset from a 
32-bit register. For example, the “load word” instruction is of the form

lw r2, 128(r3) / * load word at address 128 offset from 
register 3 into register 2

Each of the 32 general-purpose registers can be used as the base register. One reg-
ister, r0, always contains 0.

The compiler makes use of multiple machine instructions to synthesize 
typical addressing modes in conventional machines. Here is an example from 
[CHOW87], which uses the instruction lui (load upper immediate). This instruc-
tion loads the upper half of a register with a 16-bit immediate value, setting the 
lower half to zero. Consider an assembly-language instruction that uses a 32-bit 
immediate argument

lw r2, #imm(r4)  /* load word at address using a 32-bit 
immediate offset #imm

 /* offset from register 4 into register 2

Operation

Operation Operation code
rs Source register specifier
rt Source/destination register specifier
Immediate Immediate, branch, or address displacement
Target Jump target address
rd Destination register specifier
Shift Shift amount
Function ALU/shift function specifier

I-type
(immediate)

rs

6 5 5 16

rt Immediate

OperationJ-type
(jump)

6 26

Target

OperationR-type
(register)

rs

6 5 5 5

rt rd

5 6

Shift Function

Figure 15.9 MIPS Instruction Formats
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This instruction can be compiled into the following MIPS instructions

lui r1, #imm-hi    /* where #imm-hi is the high-order 
16 bits of #imm

addu r1, r1, r4    /* add unsigned #imm-hi to r4 and 
put in r1

lw r2, #imm-lo(r1)  /* where #imm-lo is the low-order 
16 bits of #imm

Instruction Pipeline

With its simplified instruction architecture, the MIPS can achieve very efficient 
pipelining. It is instructive to look at the evolution of the MIPS pipeline, as it illus-
trates the evolution of RISC pipelining in general.

The initial experimental RISC systems and the first generation of commercial 
RISC processors achieve execution speeds that approach one instruction per system 
clock cycle. To improve on this performance, two classes of processors have evolved 
to offer execution of multiple instructions per clock cycle: superscalar and super-
pipelined architectures. In essence, a superscalar architecture replicates each of the 
pipeline stages so that two or more instructions at the same stage of the pipeline can 
be processed simultaneously. A superpipelined architecture is one that makes use 
of more, and more fine-grained, pipeline stages. With more stages, more instruc-
tions can be in the pipeline at the same time, increasing parallelism.

Both approaches have limitations. With superscalar pipelining, dependencies 
between instructions in different pipelines can slow down the system. Also, over-
head logic is required to coordinate these dependencies. With superpipelining, there 
is overhead associated with transferring instructions from one stage to the next.

Chapter 16 is devoted to a study of superscalar architecture. The MIPS R4000 
is a good example of a RISC-based superpipeline architecture.

MIPS R3000 Five-Stage Pipeline Simulator

Figure 15.10a shows the instruction pipeline of the R3000. In the R3000, 
the pipeline advances once per clock cycle. The MIPS compiler is able to reorder 
instructions to fill delay slots with code 70 to 90% of the time. All instructions  follow 
the same sequence of five pipeline stages:

 • Instruction fetch

 • Source operand fetch from register file

 • ALU operation or data operand address generation

 • Data memory reference

 • Write back into register file

As illustrated in Figure 15.10a, there is not only parallelism due to pipelining 
but also parallelism within the execution of a single instruction. The 60-ns clock cycle 
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is divided into two 30-ns stages. The external instruction and data access operations 
to the cache each require 60 ns, as do the major internal operations (OP, DA, IA). 
Instruction decode is a simpler operation, requiring only a single 30-ns stage, over-
lapped with register fetch in the same instruction. Calculation of an address for a 
branch instruction also overlaps instruction decode and register fetch, so that a branch 
at instruction i can address the ICACHE access of instruction i + 2. Similarly, a load 
at instruction i fetches data that are immediately used by the OP of instruction i + 1, 
while an ALU/shift result gets passed directly into instruction i + 1 with no delay. 
This tight coupling between instructions makes for a highly efficient pipeline.

In detail, then, each clock cycle is divided into separate stages, denoted as f1 
and f2. The functions performed in each stage are summarized in Table 15.10.

The R4000 incorporates a number of technical advances over the R3000. The 
use of more advanced technology allows the clock cycle time to be cut in half, to 30 ns, 
and for the access time to the register file to be cut in half. In addition, there is greater 
density on the chip, which enables the instruction and data caches to be incorporated 
on the chip. Before looking at the final R4000 pipeline, let us consider how the R3000 
pipeline can be modified to improve performance using R4000 technology.

Figure 15.10b shows a first step. Remember that the cycles in this figure are 
half as long as those in Figure 15.10a. Because they are on the same chip, the instruc-
tion and data cache stages take only half as long; so they still occupy only one clock 
cycle. Again, because of the speedup of the register file access, register read and 
write still occupy only half of a clock cycle.

Clock Cycle

Cycle

IF

IF �  Instruction fetch
RD �  Read
MEM �  Memory access
WB �  Write back to register file
I-Cache �  Instruction cache access
RF �  Fetch operand from register
D-Cache �  Data cache access
ITLB �  Instruction address translation
IDEC �  Instruction decode
IA �  Compute instruction address
DA �  Calculate data virtual address
DTLB �  Data address translation
TC �  Data cache tag check

I-Cache

(a) Detailed R3000 pipeline

(b) Modified R3000 pipeline with reduced latencies

RF

IDEC DA DTLBITLB

ITLB

Cycle

I-Cache ALU DTLB D-Cache

Cycle Cycle Cycle Cycle

RF WB

Cycle

(c) Optimized R3000 pipeline with parallel TLB and cache accesses

ITLB

Cycle

ALU D-Cache TC

Cycle Cycle Cycle

RF WB

IA

D-Cache WBALU OP

RD ALU MEM WB

�1 �2 �1 �2 �1 �2 �1 �2 �1 �2

Figure 15.10 Enhancing the R3000 Pipeline
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Because the R4000 caches are on-chip, the virtual-to-physical address trans-
lation can delay the cache access. This delay is reduced by implementing virtually 
indexed caches and going to a parallel cache access and address translation. Figure 
15.10c shows the optimized R3000 pipeline with this improvement. Because of the 
compression of events, the data cache tag check is performed separately on the next 
cycle after cache access. This check determines whether the data item is in the cache.

In a superpipelined system, existing hardware is used several times per cycle by 
inserting pipeline registers to split up each pipe stage. Essentially, each superpipe-
line stage operates at a multiple of the base clock frequency, the multiple depending 
on the degree of superpipelining. The R4000 technology has the speed and density 
to permit superpipelining of degree 2. Figure 15.11a shows the optimized R3000 
pipeline using this superpipelining. Note that this is essentially the same dynamic 
structure as Figure 15.10c.

Further improvements can be made. For the R4000, a much larger and spe-
cialized adder was designed. This makes it possible to execute ALU operations at 
twice the rate. Other improvements allow the execution of loads and stores at twice 
the rate. The resulting pipeline is shown in Figure 15.11b.

The R4000 has eight pipeline stages, meaning that as many as eight instruc-
tions can be in the pipeline at the same time. The pipeline advances at the rate of 
two stages per clock cycle. The eight pipeline stages are as follows:

 • Instruction fetch first half: Virtual address is presented to the instruction cache 
and the translation lookaside buffer.

 • Instruction fetch second half: Instruction cache outputs the instruction and the 
TLB generates the physical address.

Table 15.10 R3000 Pipeline Stages

Pipeline 
Stage Phase Function

IF f1 Using the TLB, translate an instruction virtual address to a physical address 
(after a branching decision).

IF f2 Send the physical address to the instruction address.

RD f1 Return instruction from instruction cache.

Compare tags and validity of fetched instruction.

RD f2 Decode instruction.

Read register file.

If branch, calculate branch target address.

ALU f1 + f2 If register-to-register operation, the arithmetic or logical operation is performed.

ALU f1 If a branch, decide whether the branch is to be taken or not.

If a memory reference (load or store), calculate data virtual address.

ALU f2 If a memory reference, translate data virtual address to physical using TLB.

MEM f1 If a memory reference, send physical address to data cache.

MEM f2 If a memory reference, return data from data cache, and check tags.

WB f1 Write to register file.
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 • Register file: Three activities occur in parallel:

 —  Instruction is decoded and check made for interlock conditions (i.e., this 
instruction depends on the result of a preceding instruction).

 — Instruction cache tag check is made.

 — Operands are fetched from the register file.

 • Instruction execute: One of three activities can occur:

 — If the instruction is a register-to-register operation, the ALU performs the 
arithmetic or logical operation.

 —If the instruction is a load or store, the data virtual address is calculated.

 — If the instruction is a branch, the branch target virtual address is calculated 
and branch conditions are checked.

 • Data cache first: Virtual address is presented to the data cache and TLB.

 • Data cache second: The TLB generates the physical address, and the data 
cache outputs the data.

 • Tag check: Cache tag checks are performed for loads and stores.

 • Write back: Instruction result is written back to register file.

 15.7 SPARC

SPARC (Scalable Processor Architecture) refers to an architecture defined by Sun 
Microsystems. Sun developed its own SPARC implementation but also licenses the 
architecture to other vendors to produce SPARC-compatible machines. The SPARC 

Clock Cycle

IC1

IF =  Instruction fetch first half
IS =  Instruction fetch second half
RF =  Fetch operands from register
EX =  Instruction execute
IC =  Instruction cache

DC =  Data cache
DF =  Data cache first half
DS =  Data cache second half
TC =  Tag check
WB  = Write back to register file

(a) Superpipelined implementation of the optimized R3000 pipeline

RF ALU DC2 TC2IC2 ALU DC1 TC1 WB

IC1 RF ALU DC2 TC2IC2 ALU DC1 TC1 WB

φ2

Clock Cycle

IF

(b) R4000 pipeline

RF DF TCIS EX DS WB

IF RF DF TCIS EX DS WB

φ1 φ2 φ1 φ1 φ1φ2 φ2 φ2

Figure 15.11 Theoretical R3000 and Actual R4000 Superpipelines
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architecture is inspired by the Berkeley RISC I machine, and its instruction set and 
register organization is based closely on the Berkeley RISC model.

SPARC Register Set

As with the Berkeley RISC, the SPARC makes use of register windows. Each win-
dow gives addressability to 24 registers, and the total number of windows is imple-
mentation dependent and ranges from 2 to 32 windows. Figure 15.12 illustrates an 
implementation that supports 8 windows, using a total of 136 physical registers; as 
the discussion in Section 15.2 indicates, this seems a reasonable number of win-
dows. Physical registers 0 through 7 are global registers shared by all procedures. 
Each procedure sees logical registers 0 through 31. Logical registers 24 through 31, 
referred to as ins, are shared with the calling (parent) procedure; and logical regis-
ters 8 through 15, referred to as outs, are shared with any called (child) procedure. 
These two portions overlap with other windows. Logical registers 16 through 23, 
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Figure 15.12 SPARC Register Window Layout with Three Procedures
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referred to as locals, are not shared and do not overlap with other windows. Again, 
as the discussion of Section 12.1 indicates, the availability of 8 registers for param-
eter passing should be adequate in most cases (e.g., see Table 15.4).

Figure 15.13 is another view of the register overlap. The calling procedure 
places any parameters to be passed in its outs registers; the called procedure treats 
these same physical registers as it ins registers. The processor maintains a current 
window pointer (CWP), located in the processor status register (PSR), that points to 
the window of the currently executing procedure. The window invalid mask (WIM), 
also in the PSR, indicates which windows are invalid.

With the SPARC register architecture, it is usually not necessary to save and 
restore registers for a procedure call. The compiler is simplified because the compiler 
need be concerned only with allocating the local registers for a procedure in an effi-
cient manner and need not be concerned with register allocation between procedures.

Instruction Set

Table 15.11 lists the instructions for the SPARC architecture. Most of the instruc-
tions reference only register operands. Register-to-register instructions have three 
operands and can be expressed in the form

Rd S RS1 op S2

w4
locals

w2
locals

w0
locals

w6
locals

w6
ins

w6
outs

w0
outs

w2
outs

w4
outs

w4
ins

w5
locals

w5
outs

w5
ins

w77
locals

CWP

WIM

w7
ins

w1
locals

w1
outs

w7
outs

w1
ins

w3
locals

w3
outs

w3
ins

w2
ins

w0
ins

Figure 15.13 Eight Register Windows Forming a Circular Stack in 
SPARC
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where Rd and RS1 are register references; S2 can refer either to a register or to a 
13-bit immediate operand. Register zero (R0) is hardwired with the value 0. This 
form is well suited to typical programs, which have a high proportion of local scalars 
and constants.

The available ALU operations can be grouped as follows:

 • Integer addition (with or without carry)

 • Integer subtraction (with or without carry)

 • Bitwise Boolean AND, OR, XOR and their negations

 • Shift left logical, right logical, or right arithmetic

Table 15.11 SPARC Instruction Set

OP Description OP Description

Load/Store Instructions Arithmetic Instructions

LDSB Load signed byte ADD Add

LDSH Load signed halfword ADDCC Add, set icc

LDUB Load unsigned byte ADDX Add with carry

LDUH Load unsigned halfword ADDXCC Add with carry, set icc

LD Load word SUB Subtract

LDD Load doubleword SUBCC Subtract, set icc

STB Store byte SUBX Subtract with carry

STH Store halfword SUBXCC Subtract with carry, set icc

STD Store word MULSCC Multiply step, set icc

STDD Store doubleword Jump/Branch Instructions

Shift Instructions BCC Branch on condition

SLL Shift left logical FBCC Branch on floating-point condition

SRL Shift right logical CBCC Branch on coprocessor condition

SRA Shift right arithmetic CALL Call procedure

Boolean Instructions JMPL Jump and link

AND AND TCC Trap on condition

ANDCC AND, set icc SAVE Advance register window

ANDN NAND RESTORE Move windows backward

ANDNCC NAND, set icc RETT Return from trap

OR OR Miscellaneous Instructions

ORCC OR, set icc SETHI Set high 22 bits

ORN NOR UNIMP Unimplemented instruction (trap)

ORNCC NOR, set icc RD Read a special register

XOR XOR WR Write a special register

XORCC XOR, set icc IFLUSH Instruction cache flush

XNOR Exclusive NOR

XNORCC Exclusive NOR, set icc
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All of these instructions, except the shifts, can optionally set the four condi-
tion codes (ZERO, NEGATIVE, OVERFLOW, CARRY). Signed integers are 
represented in 32-bit twos complement form.

Only simple load and store instructions reference memory. There are separate 
load and store instructions for word (32 bits), doubleword, halfword, and byte. For 
the latter two cases, there are instructions for loading these quantities as signed or 
unsigned numbers. Signed numbers are sign extended to fill out the 32-bit destina-
tion register. Unsigned numbers are padded with zeros.

The only available addressing mode, other than register, is a displacement 
mode. That is, the effective address (EA) of an operand consists of a displacement 
from an address contained in a register:

EA = (RS1) + S2

or EA = (RS1) + (RS2)

depending on whether the second operand is immediate or a register refer-
ence. To perform a load or store, an extra stage is added to the instruction cycle. 
During the second stage, the memory address is calculated using the ALU; the load 
or store occurs in a third stage. This single addressing mode is quite versatile and 
can be used to synthesize other addressing modes, as indicated in Table 15.12.

It is instructive to compare the SPARC addressing capability with that of the 
MIPS. The MIPS makes use of a 16-bit offset, compared with a 13-bit offset on the 
SPARC. On the other hand, the MIPS does not permit an address to be constructed 
from the contents of two registers.

Instruction Format

As with the MIPS R4000, SPARC uses a simple set of 32-bit instruction formats 
(Figure 15.14). All instructions begin with a 2-bit opcode. For most instructions, 
this is extended with additional opcode bits elsewhere in the format. For the Call 
instruction, a 30-bit immediate operand is extended with two zero bits to the right to 
form a 32-bit PC-relative address in twos complement form. Instructions are aligned 
on a 32-bit boundary so that this form of addressing suffices.

The Branch instruction includes a 4-bit condition field that corresponds to 
the four standard condition code bits, so that any combination of conditions can be 
tested. The 22-bit PC-relative address is extended with two zero bits on the right to 
form a 24-bit twos complement relative address. An unusual feature of the Branch 
instruction is the annul bit. When the annul bit is not set, the instruction after the 

Table 15.12 Synthesizing Other Addressing Modes with SPARC Addressing Modes

Instruction Type Addressing Mode Algorithm SPARC Equivalent

Register-to-register Immediate operand = A S2

Load, store Direct EA = A R0 + S2

Register-to-register Register EA = R RS1, RS2

Load, store Register Indirect EA = (R) RS1 + 0

Load, store Displacement EA = (R) + A RS1 + S2

Note: S2 = either a register operand or a 13-bit immediate operand.
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branch is always executed, regardless of whether the branch is taken. This is the 
typical delayed branch operation found on many RISC machines and described in 
Section 15.5 (see Figure 15.7). However, when the annul bit is set, the instruction fol-
lowing the branch is executed only if the branch is taken. The processor suppresses 
the effect of that instruction even though it is already in the pipeline. This annul bit is 
useful because it makes it easier for the compiler to fill the delay slot following a con-
ditional branch. The instruction that is the target of the branch can always be put in 
the delay slot, because if the branch is not taken, the instruction can be annulled. The 
reason this technique is desirable is that conditional branches are generally taken 
more than half the time.

The SETHI instruction is a special instruction used to form a 32-bit constant. This 
feature is needed to form large data constants; for example, it can be used to form a 
large offset for a load or store instruction. The SETHI instruction sets the 22 high-order 
bits of a register with its 22-bit immediate operand, and zeros out the low-order 10 bits. 
An immediate constant of up to 13 bits can be specified in one of the general formats, 
and such an instruction could be used to fill in the remaining 10 bits of the register. A 
load or store instruction can also be used to achieve a direct addressing mode. To load 
a value from location K in memory, we could use the following SPARC instructions:

sethi %hi(K), %r8     ;load high-order 22 bits of address of location
 ;K into register r8
ld   [%r8 + %lo(K)], %r8 ;load contents of location K into r8

OpCall format PC-relative displacement

2 30

Branch
format

Op a Cond Op2 PC-relative displacement

OpSETHI
format

Floating-
point

format

2

Dest

5

Op2

3

Immediate constant

22

2 1 4 3 22

2 5 6 95 5

Op Dest Op3 FP-opSrc-1 Src-2

General
formats

2 5 6

Op Dest Op3

8

Ignored

5 1

Src-1

5

Src-20

Op Dest Op3 Immediate constantSrc-1 1

Figure 15.14 SPARC Instruction Formats
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The macros %hi and %lo are used to define immediate operands consisting of the 
appropriate address bits of a location. This use of SETHI is similar to the use of the 
lui instruction on the MIPS.

The floating-point format is used for floating-point operations. Two source 
and one destination registers are designated.

Finally, all other operations, including loads, stores, arithmetic, and logical 
operations use one of the last two formats shown in Figure 15.14. One of the formats 
makes use of two source registers and a destination register, while the other uses one 
source register, one 13-bit immediate operand, and one destination register.

 15.8 RISC VERSUS CISC CONTROVERSY

For many years, the general trend in computer architecture and organization has 
been toward increasing processor complexity: more instructions, more addressing 
modes, more specialized registers, and so on. The RISC movement represents a fun-
damental break with the philosophy behind that trend. Naturally, the appearance 
of RISC systems, and the publication of papers by its proponents extolling RISC 
virtues, led to a reaction from those involved in the design of CISC architectures.

The work that has been done on assessing merits of the RISC approach can be 
grouped into two categories:

 • Quantitative: Attempts to compare program size and execution speed of pro-
grams on RISC and CISC machines that use comparable technology

 • Qualitative: Examines issues such as high-level language support and opti-
mum use of VLSI real estate

Most of the work on quantitative assessment has been done by those working 
on RISC systems [PATT82b, HEAT84, PATT84], and it has been, by and large, 
favorable to the RISC approach. Others have examined the issue and come away 
unconvinced [COLW85a, FLYN87, DAVI87]. There are several problems with 
attempting such comparisons [SERL86]:

 • There is no pair of RISC and CISC machines that are comparable in life-cycle 
cost, level of technology, gate complexity, sophistication of compiler, operat-
ing system support, and so on.

 • No definitive test set of programs exists. Performance varies with the program.

 • It is difficult to sort out hardware effects from effects due to skill in compiler 
writing.

 • Most of the comparative analysis on RISC has been done on “toy” machines 
rather than commercial products. Furthermore, most commercially available 
machines advertised as RISC possess a mixture of RISC and CISC character-
istics. Thus, a fair comparison with a commercial, “pure-play” CISC machine 
(e.g., VAX, Pentium) is difficult.

The qualitative assessment is, almost by definition, subjective. Several research-
ers have turned their attention to such an assessment [COLW85a, WALL85], but the 
results are, at best, ambiguous, and certainly subject to rebuttal [PATT85b] and, of 
course, counterrebuttal [COLW85b].
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In more recent years, the RISC versus CISC controversy has died down to 
a great extent. This is because there has been a gradual convergence of the tech-
nologies. As chip densities and raw hardware speeds increase, RISC systems have 
become more complex. At the same time, in an effort to squeeze out maximum per-
formance, CISC designs have focused on issues traditionally associated with RISC, 
such as an increased number of general-purpose registers and increased emphasis 
on instruction pipeline design.

 15.9 RECOMMENDED READING

Two classic overview papers on RISC are [PATT85a] and [HENN84]. Another survey 
article is [STAL88]. Accounts of two pioneering RISC efforts are provided by [RADI83] 
and [PATT82a].

[KANE92] covers the commercial MIPS machine in detail. [MIRA92] provides a good 
overview of the MIPS R4000. [BASH91] discusses the evolution from the R3000 pipeline to 
the R4000 superpipeline. The SPARC is covered in some detail in [DEWA90].
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Review Questions

 15.1 What are some typical distinguishing characteristics of RISC organization?
 15.2 Briefly explain the two basic approaches used to minimize register-memory opera-

tions on RISC machines.
 15.3 If a circular register buffer is used to handle local variables for nested procedures, 

describe two approaches for handling global variables.
 15.4 What are some typical characteristics of a RISC instruction set architecture?
 15.5 What is a delayed branch?

Problems

 15.1 Considering the call-return pattern in Figure 4.21, how many overflows and under-
flows (each of which causes a register save/restore) will occur with a window size of
a. 5?
b. 8?
c. 16?

 15.2 In the discussion of Figure 15.2, it was stated that only the first two portions of a 
 window are saved or restored. Why is it not necessary to save the temporary registers?

 15.3 We wish to determine the execution time for a given program using the various pipe-
lining schemes discussed in Section 15.5. Let

N = number of executed instructions
D = number of memory accesses
J = number of jump instructions

For the simple sequential scheme (Figure 15.6a), the execution time is 2N + D stages. 
Derive formulas for two-stage, three-stage, and four-stage pipelining.

 15.4 Reorganize the code sequence in Figure 15.6d to reduce the number of NOOPs.
 15.5 Consider the following code fragment in a high-level language:

for I in 1…100 loop
   S d S + Q(I). VAL
end loop;

Assume that Q is an array of 32-byte records and the VAL field is in the first 4 bytes of 
each record. Using x86 code, we can compile this program fragment as follows:

 MOV ECX,1 ;use register ECX to hold I
LP: IMUL EAX, ECX, 32 ;get offset in EAX
 MOV EBX, Q[EAX] ;load VAL field
 ADD S, EBX ;add to S
 INC ECX ;increment I
 CMP ECX, 101 :compare to 101
 JNE LP ;loop until I = 100

This program makes use of the IMUL instruction, which multiplies the second operand 
by the immediate value in the third operand and places the result in the first operand 
(see Problem 10.13). A RISC advocate would like to demonstrate that a clever compiler 
can eliminate unnecessarily complex instructions such as IMUL. Provide the demon-
stration by rewriting the above x86 program without using the IMUL instruction.

 15.6 Consider the following loop:

S := 0;
for K := 1 to 100 do
           S := S - K;
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A straightforward translation of this into a generic assembly language would look 
something like this:

 LD R1, 0 ;keep value of S in R1
 LD R2,1 ;keep value of K in R2
LP SUB R1, R1, R2 ;S := S - K
 BEQ R2, 100, EXIT ;done if K = 100
 ADD R2, R2, 1 ;else increment K
 JMP LP ;back to start of loop

A compiler for a RISC machine will introduce delay slots into this code so that the 
processor can employ the delayed branch mechanism. The JMP instruction is easy to 
deal with, because this instruction is always followed by the SUB instruction; there-
fore, we can simply place a copy of the SUB instruction in the delay slot after the 
JMP. The BEQ presents a difficulty. We can’t leave the code as is, because the ADD 
instruction would then be executed one too many times. Therefore, a NOP instruction 
is needed. Show the resulting code.

 15.7 A RISC machine’s compiler may do both a mapping of symbolic registers to actual 
registers and a rearrangement of instructions for pipeline efficiency. An interesting 
question arises as to the order in which these two operations should be done. Consider 
the following program fragment:

LD SR1, A ;load A into symbolic register 1
LD SR2, B ;load B into symbolic register 2
ADD SR3, SR1, SR2 ;add contents of SR1 and SR2 and store in SR3
LD SR4, C
LD SR5, D
ADD SR6, SR4, SR5

a. First do the register mapping and then any possible instruction reordering. How 
many machine registers are used? Has there been any pipeline improvement?

b. Starting with the original program, now do instruction reordering and then any 
possible mapping. How many machine registers are used? Has there been any 
pipeline improvement?

 15.8 Add entries for the following processors to Table 15.7:
a. Pentium II
b. ARM

 15.9 In many cases, common machine instructions that are not listed as part of the MIPS 
instruction set can be synthesized with a single MIPS instruction. Show this for the 
following:
a. Register-to-register move
b. Increment, decrement
c. Complement
d. Negate
e. Clear

 15.10 A SPARC implementation has K register windows. What is the number N of physical 
registers?

 15.11 SPARC is lacking a number of instructions commonly found on CISC machines. 
Some of these are easily simulated using either register R0, which is always set to 0, 
or a constant operand. These simulated instructions are called pseudoinstructions and 
are recognized by the SPARC assembler. Show how to simulate the following pseu-
doinstructions, each with a single SPARC instruction. In all of these, src and dst refer 
to registers. (Hint: A store to R0 has no effect.)
a. MOV src, dst
b. COMPARE src1, src2
c.  TEST src1

d. NOT dst
e. NEG dst
f. INC dst

g. DEC dst
h. CLR dst
i.  NOP
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 15.12 Consider the following code fragment:

if K > 10
  L := K + 1
else
  L := K - 1;

A straightforward translation of this statement into SPARC assembler could take the 
following form:

 sethi %hi(K), %r8 ;load high-order 22 bits of address of location
   ;K into register r8
 ld [%r8 + %lo(K)], %r8 ;load contents of location K into r8
 cmp %r8, 10 ;compare contents of r8 with 10
 ble L1 ;branch if (r8) …  10
 nop
 sethi %hi(K), %r9
 ld [%r9 + %lo(K)], %r9 ;load contents of location K into r9
 inc %r9 ;add 1 to (r9)
 sethi %hi(L), %r10
 st %r9, [%r10 + %lo(L)] ;store (r9) into location L
 b L2
 nop
L1: sethi %hi(K), %r11
 ld [%r11 + %lo(K)], %r12 ;load contents of location K into r12
 dec %r12 ;subtract 1 from (r12)
 sethi %hi(L), %r13
 st %r12, [%r13 + %lo(L)] ;store (r12) into location L
L2:

The code contains a nop after each branch instruction to permit delayed branch 
operation.
a. Standard compiler optimizations that have nothing to do with RISC machines are 

generally effective in being able to perform two transformations on the foregoing 
code. Notice that two of the loads are unnecessary and that the two stores can be 
merged if the store is moved to a different place in the code. Show the program 
after making these two changes.

b. It is now possible to perform some optimizations peculiar to SPARC. The nop 
after the ble can be replaced by moving another instruction into that delay slot 
and setting the annul bit on the ble instruction (expressed as ble,a L1). Show the 
program after this change.

c. There are now two unnecessary instructions. Remove these and show the resulting 
program.
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A superscalar implementation of a processor architecture is one in which common 
instructions—integer and floating-point arithmetic, loads, stores, and conditional 
branches—can be initiated simultaneously and executed independently. Such imple-
mentations raise a number of complex design issues related to the instruction pipeline.

Superscalar design arrived on the scene hard on the heels of RISC architec-
ture. Although the simplified instruction set architecture of a RISC machine lends 
itself readily to superscalar techniques, the superscalar approach can be used on 
either a RISC or CISC architecture.

Whereas the gestation period for the arrival of commercial RISC machines 
from the beginning of true RISC research with the IBM 801 and the Berkeley 
RISC I was seven or eight years, the first superscalar machines became commer-
cially available within just a year or two of the coining of the term superscalar. The 
superscalar approach has now become the standard method for implementing high-
performance microprocessors.

In this chapter, we begin with an overview of the superscalar approach, con-
trasting it with superpipelining. Next, we present the key design issues associated 
with superscalar implementation. Then we look at several important examples of 
superscalar architecture.

 16.1 OVERVIEW

The term superscalar, first coined in 1987 [AGER87], refers to a machine that is 
designed to improve the performance of the execution of scalar instructions. In most 
applications, the bulk of the operations are on scalar quantities. Accordingly, the 
superscalar approach represents the next step in the evolution of high-performance 
general-purpose processors.

The essence of the superscalar approach is the ability to execute instructions 
independently and concurrently in different pipelines. The concept can be further 
exploited by allowing instructions to be executed in an order different from the 
program order. Figure 16.1 compares, in general terms, the scalar and superscalar 
approaches. In a traditional scalar organization, there is a single pipelined func-
tional unit for integer operations and one for floating-point operations. Parallelism is 
achieved by enabling multiple instructions to be at different stages of the pipeline at 

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Explain the difference between superscalar and superpipelined approaches.
� Define instruction-level parallelism.
� Discuss dependencies and resource conflicts as limitations to instruction-

level parallelism
� Present an overview of the design issues involved in instruction-level 

 parallelism.
� Compare and contrast techniques of improving pipeline performance in 

RISC machines and superscalar machines.
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one time. In the superscalar organization, there are multiple functional units, each of 
which is implemented as a pipeline. Each individual functional unit provides a degree 
of parallelism by virtue of its pipelined structure. The use of multiple functional units 
enables the processor to execute streams of instructions in parallel, one stream for 
each pipeline. It is the responsibility of the hardware, in conjunction with the com-
piler, to assure that the parallel execution does not violate the intent of the program.

Many researchers have investigated superscalar-like processors, and their 
research indicates that some degree of performance improvement is possible. 
Table 16.1 presents the reported performance advantages. The differences in the 
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Pipelined floating-
point functional unit

Integer register file

Pipelined integer
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Figure 16.1 Superscalar Organization Compared to Ordinary Scalar Organization

Table 16.1 Reported Speedups 
of Superscalar-Like Machines

Reference Speedup

[TJAD70] 1.8

[KUCK77] 8

[WEIS84] 1.58

[ACOS86] 2.7

[SOHI90] 1.8

[SMIT89] 2.3

[JOUP89b] 2.2

[LEE91] 7
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results arise from differences both in the hardware of the simulated machine and in 
the applications being simulated.

Superscalar versus Superpipelined

An alternative approach to achieving greater performance is referred to as super-
pipelining, a term first coined in 1988 [JOUP88]. Superpipelining exploits the fact 
that many pipeline stages perform tasks that require less than half a clock cycle. Thus, 
a doubled internal clock speed allows the performance of two tasks in one external 
clock cycle. We have seen one example of this approach with the MIPS R4000.

Figure 16.2 compares the two approaches. The upper part of the diagram illus-
trates an ordinary pipeline, used as a base for comparison. The base pipeline issues 
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one instruction per clock cycle and can perform one pipeline stage per clock cycle. 
The pipeline has four stages: instruction fetch, operation decode, operation execu-
tion, and result write back. The execution stage is crosshatched for clarity. Note that 
although several instructions are executing concurrently, only one instruction is in 
its execution stage at any one time.

The next part of the diagram shows a superpipelined implementation that is 
capable of performing two pipeline stages per clock cycle. An alternative way of 
looking at this is that the functions performed in each stage can be split into two 
nonoverlapping parts and each can execute in half a clock cycle. A superpipeline 
implementation that behaves in this fashion is said to be of degree 2. Finally, the 
lowest part of the diagram shows a superscalar implementation capable of execut-
ing two instances of each stage in parallel. Higher-degree superpipeline and super-
scalar implementations are of course possible.

Both the superpipeline and the superscalar implementations depicted in 
Figure 16.2 have the same number of instructions executing at the same time in the 
steady state. The superpipelined processor falls behind the superscalar processor at 
the start of the program and at each branch target.

Constraints

The superscalar approach depends on the ability to execute multiple instructions 
in parallel. The term instruction-level parallelism refers to the degree to which, on 
average, the instructions of a program can be executed in parallel. A combination 
of compiler-based optimization and hardware techniques can be used to maximize 
instruction-level parallelism. Before examining the design techniques used in super-
scalar machines to increase instruction-level parallelism, we need to look at the fun-
damental limitations to parallelism with which the system must cope. [JOHN91] 
lists five limitations:

 • True data dependency

 • Procedural dependency

 • Resource conflicts

 • Output dependency

 • Antidependency

We examine the first three of these limitations in the remainder of this section. A 
discussion of the last two must await some of the developments in the next section.

TRUE DATA DEPENDENCY Consider the following sequence:1

ADD EAX, ECX  ;load register EAX with the con- 
;tents of ECX plus the contents 
;of EAX

MOV EBX, EAX ;load EBX with the contents of EAX

The second instruction can be fetched and decoded but cannot execute until the 
first instruction executes. The reason is that the second instruction needs data  

1For the Intel x86 assembly language, a semicolon starts a comment field.
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produced by the first instruction. This situation is referred to as a true data depen-
dency (also called flow dependency or read after write [RAW] dependency).

Figure 16.3 illustrates this dependency in a superscalar machine of degree 2. With 
no dependency, two instructions can be fetched and executed in parallel. If there is a 
data dependency between the first and second instructions, then the second instruc-
tion is delayed as many clock cycles as required to remove the dependency. In general, 
any instruction must be delayed until all of its input values have been produced.

In a simple pipeline, such as illustrated in the upper part of Figure 16.2, the 
aforementioned sequence of instructions would cause no delay. However, consider 
the following, in which one of the loads is from memory rather than from a register:

MOV EAX, eff ; load register EAX with the con-
tents of effective memory add-
ress eff

MOV EBX, EAX ;load EBX with the contents of EAX
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Figure 16.3 Effect of Dependencies
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A typical RISC processor takes two or more cycles to perform a load from 
memory when the load is a cache hit. It can take tens or even hundreds of cycles for 
a cache miss on all cache levels, because of the delay of an off-chip memory access. 
One way to compensate for this delay is for the compiler to reorder instructions so 
that one or more subsequent instructions that do not depend on the memory load 
can begin flowing through the pipeline. This scheme is less effective in the case of 
a superscalar pipeline: The independent instructions executed during the load are 
likely to be executed on the first cycle of the load, leaving the processor with noth-
ing to do until the load completes.

PROCEDURAL DEPENDENCIES As was discussed in Chapter 14, the presence 
of branches in an instruction sequence complicates the pipeline operation. The 
instructions following a branch (taken or not taken) have a procedural dependency 
on the branch and cannot be executed until the branch is executed. Figure 16.3 
illustrates the effect of a branch on a superscalar pipeline of degree 2.

As we have seen, this type of procedural dependency also affects a scalar pipe-
line. The consequence for a superscalar pipeline is more severe, because a greater 
magnitude of opportunity is lost with each delay.

If variable-length instructions are used, then another sort of procedural 
dependency arises. Because the length of any particular instruction is not known, it 
must be at least partially decoded before the following instruction can be fetched. 
This prevents the simultaneous fetching required in a superscalar pipeline. This 
is one of the reasons that superscalar techniques are more readily applicable to a 
RISC or RISC-like architecture, with its fixed instruction length.

RESOURCE CONFLICT A resource conflict is a competition of two or more 
instructions for the same resource at the same time. Examples of resources include 
memories, caches, buses, register-file ports, and functional units (e.g., ALU adder).

In terms of the pipeline, a resource conflict exhibits similar behavior to a data 
dependency (Figure 16.3). There are some differences, however. For one thing, re-
source conflicts can be overcome by duplication of resources, whereas a true data 
dependency cannot be eliminated. Also, when an operation takes a long time to com-
plete, resource conflicts can be minimized by pipelining the appropriate functional unit.

 16.2 DESIGN ISSUES

Instruction-Level Parallelism and Machine Parallelism

[JOUP89a] makes an important distinction between the two related concepts of 
instruction-level parallelism and machine parallelism. Instruction-level parallelism 
exists when instructions in a sequence are independent and thus can be executed in 
parallel by overlapping.

As an example of the concept of instruction-level parallelism, consider the fol-
lowing two code fragments [JOUP89b]:

Load R1 d  R2 Add R3 d  R3, “1”
Add R3 d  R3, “1” Add R4 d  R3, R2
Add R4 d  R4, R2 Store [R4] d  R0
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The three instructions on the left are independent, and in theory all three could 
be executed in parallel. In contrast, the three instructions on the right cannot be 
executed in parallel because the second instruction uses the result of the first, and 
the third instruction uses the result of the second.

The degree of instruction-level parallelism is determined by the frequency of 
true data dependencies and procedural dependencies in the code. These factors, 
in turn, are dependent on the instruction set architecture and on the application. 
Instruction-level parallelism is also determined by what [JOUP89a] refers to as 
operation latency: the time until the result of an instruction is available for use as an 
operand in a subsequent instruction. The latency determines how much of a delay a 
data or procedural dependency will cause.

Machine parallelism is a measure of the ability of the processor to take 
advantage of instruction-level parallelism. Machine parallelism is determined by 
the number of instructions that can be fetched and executed at the same time (the 
number of parallel pipelines) and by the speed and sophistication of the mecha-
nisms that the processor uses to find independent instructions.

Both instruction-level and machine parallelism are important factors in 
enhancing performance. A program may not have enough instruction-level parallel-
ism to take full advantage of machine parallelism. The use of a fixed-length instruc-
tion set architecture, as in a RISC, enhances instruction-level parallelism. On the 
other hand, limited machine parallelism will limit performance no matter what the 
nature of the program.

Instruction Issue Policy

As was mentioned, machine parallelism is not simply a matter of having multi-
ple instances of each pipeline stage. The processor must also be able to identify 
instruction-level parallelism and orchestrate the fetching, decoding, and execution 
of instructions in parallel. [JOHN91] uses the term instruction issue to refer to the 
process of initiating instruction execution in the processor’s functional units and the 
term instruction issue policy to refer to the protocol used to issue instructions. In 
general, we can say that instruction issue occurs when instruction moves from the 
decode stage of the pipeline to the first execute stage of the pipeline.

In essence, the processor is trying to look ahead of the current point of execu-
tion to locate instructions that can be brought into the pipeline and executed. Three 
types of orderings are important in this regard:

 • The order in which instructions are fetched

 • The order in which instructions are executed

 • The order in which instructions update the contents of register and memory 
locations

The more sophisticated the processor, the less it is bound by a strict relation-
ship between these orderings. To optimize utilization of the various pipeline ele-
ments, the processor will need to alter one or more of these orderings with respect 
to the ordering to be found in a strict sequential execution. The one constraint on 
the processor is that the result must be correct. Thus, the processor must accommo-
date the various dependencies and conflicts discussed earlier.
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In general terms, we can group superscalar instruction issue policies into the 
following categories:

 • In-order issue with in-order completion
 • In-order issue with out-of-order completion
 • Out-of-order issue with out-of-order completion

IN-ORDER ISSUE WITH IN-ORDER COMPLETION The simplest instruction issue 
policy is to issue instructions in the exact order that would be achieved by sequential 
execution (in-order issue) and to write results in that same order (in-order completion). 
Not even scalar pipelines follow such a simple-minded policy. However, it is useful to 
consider this policy as a baseline for comparing more sophisticated approaches.

Figure 16.4a gives an example of this policy. We assume a superscalar pipeline 
capable of fetching and decoding two instructions at a time, having three separate 
functional units (e.g., two integer arithmetic and one floating-point arithmetic), and 
having two instances of the write-back pipeline stage. The example assumes the fol-
lowing constraints on a six-instruction code fragment:

 • I1 requires two cycles to execute.
 • I3 and I4 conflict for the same functional unit.
 • I5 depends on the value produced by I4.
 • I5 and I6 conflict for a functional unit.

Instructions are fetched two at a time and passed to the decode unit. Because 
instructions are fetched in pairs, the next two instructions must wait until the pair of 
decode pipeline stages has cleared. To guarantee in-order completion, when there 
is a conflict for a functional unit or when a functional unit requires more than one 
cycle to generate a result, the issuing of instructions temporarily stalls.

In this example, the elapsed time from decoding the first instruction to writing 
the last results is eight cycles.

IN-ORDER ISSUE WITH OUT-OF-ORDER COMPLETION Out-of-order completion 
is used in scalar RISC processors to improve the performance of instructions that 
require multiple cycles. Figure 16.4b illustrates its use on a superscalar processor. 
Instruction I2 is allowed to run to completion prior to I1. This allows I3 to be 
completed earlier, with the net result of a savings of one cycle.

With out-of-order completion, any number of instructions may be in the exe-
cution stage at any one time, up to the maximum degree of machine parallelism 
across all functional units. Instruction issuing is stalled by a resource conflict, a data 
dependency, or a procedural dependency.

In addition to the aforementioned limitations, a new dependency, which we 
referred to earlier as an output dependency (also called write after write [WAW] 
dependency), arises. The following code fragment illustrates this dependency 
(op represents any operation):

I1: R3 d  R3 op R5
I2: R4 d  R3 + 1
I3: R3 d  R5 + 1
I4: R7 d  R3 op R4
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Instruction I2 cannot execute before instruction I1, because it needs the 
result in register R3 produced in I1; this is an example of a true data dependency, 
as described in Section 16.1. Similarly, I4 must wait for I3, because it uses a result 
produced by I3. What about the relationship between I1 and I3? There is no data 
dependency here, as we have defined it. However, if I3 executes to completion prior 
to I1, then the wrong value of the contents of R3 will be fetched for the execution 
of I4. Consequently, I3 must complete after I1 to produce the correct output values. 
To ensure this, the issuing of the third instruction must be stalled if its result might 
later be overwritten by an older instruction that takes longer to complete.
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Figure 16.4 Superscalar Instruction Issue and Completion Policies
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Out-of-order completion requires more complex instruction issue logic than 
in-order completion. In addition, it is more difficult to deal with instruction inter-
rupts and exceptions. When an interrupt occurs, instruction execution at the current 
point is suspended, to be resumed later. The processor must assure that the resump-
tion takes into account that, at the time of interruption, instructions ahead of the 
instruction that caused the interrupt may already have completed.

OUT-OF-ORDER ISSUE WITH OUT-OF-ORDER COMPLETION With in-order 
issue, the processor will only decode instructions up to the point of a dependency 
or conflict. No additional instructions are decoded until the conflict is resolved. 
As a result, the processor cannot look ahead of the point of conflict to subsequent 
instructions that may be independent of those already in the pipeline and that may 
be usefully introduced into the pipeline.

To allow out-of-order issue, it is necessary to decouple the decode and exe-
cute stages of the pipeline. This is done with a buffer referred to as an instruction 
 window. With this organization, after a processor has finished decoding an instruc-
tion, it is placed in the instruction window. As long as this buffer is not full, the proc-
essor can continue to fetch and decode new instructions. When a functional unit 
becomes available in the execute stage, an instruction from the instruction window 
may be issued to the execute stage. Any instruction may be issued, provided that 
(1) it needs the particular functional unit that is available, and (2) no conflicts or 
dependencies block this instruction. Figure 16.5 suggests this organization.

The result of this organization is that the processor has a lookahead capability, 
allowing it to identify independent instructions that can be brought into the execute 
stage. Instructions are issued from the instruction window with little regard for their 
original program order. As before, the only constraint is that the program execution 
behaves correctly.

Figures 16.4c illustrates this policy. During each of the first three cycles, two 
instructions are fetched into the decode stage. During each cycle, subject to the 
constraint of the buffer size, two instructions move from the decode stage to the 
instruction window. In this example, it is possible to issue instruction I6 ahead of 
I5 (recall that I5 depends on I4, but I6 does not). Thus, one cycle is saved in both 
the execute and write-back stages, and the end-to-end savings, compared with 
Figure 16.4b, is one cycle.
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The instruction window is depicted in Figure 16.4c to illustrate its role. 
However, this window is not an additional pipeline stage. An instruction being in 
the window simply implies that the processor has sufficient information about that 
instruction to decide when it can be issued.

The out-of-order issue, out-of-order completion policy is subject to the same 
constraints described earlier. An instruction cannot be issued if it violates a depend-
ency or conflict. The difference is that more instructions are available for issuing, 
reducing the probability that a pipeline stage will have to stall. In addition, a new 
dependency, which we referred to earlier as an antidependency (also called write 
after read [WAR] dependency), arises. The code fragment considered earlier illus-
trates this dependency:

I1: R3 d  R3 op R5
I2: R4 d  R3 + 1
I3: R3 d  R5 + 1
I4: R7 d  R3 op R4

Instruction I3 cannot complete execution before instruction I2 begins execu-
tion and has fetched its operands. This is so because I3 updates register R3, which is 
a source operand for I2. The term antidependency is used because the constraint is 
similar to that of a true data dependency, but reversed: Instead of the first instruc-
tion producing a value that the second instruction uses, the second instruction 
destroys a value that the first instruction uses.

Reorder Buffer Simulator
Tomasulo’s Algorithm Simulator

Alternative Simulation of Tomasulo’s Algorithm

One common technique that is used to support out-of-order completion is the 
reorder buffer. The reorder buffer is temporary storage for results completed out of 
order that are then committed to the register file in program order. A related con-
cept is Tomasulo’s algorithm. Appendix I examines these concepts.

Register Renaming

When out-of-order instruction issuing and/or out-of-order instruction completion 
are allowed, we have seen that this gives rise to the possibility of WAW dependen-
cies and WAR dependencies. These dependencies differ from RAW data depen-
dencies and resource conflicts, which reflect the flow of data through a program and 
the sequence of execution. WAW dependencies and WAR dependencies, on the 
other hand, arise because the values in registers may no longer reflect the sequence 
of values dictated by the program flow.

When instructions are issued in sequence and complete in sequence, it is pos-
sible to specify the contents of each register at each point in the execution. When 
out-of-order techniques are used, the values in registers cannot be fully known at 
each point in time just from a consideration of the sequence of instructions dictated 
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by the program. In effect, values are in conflict for the use of registers, and the proc-
essor must resolve those conflicts by occasionally stalling a pipeline stage.

Antidependencies and output dependencies are both examples of storage con-
flicts. Multiple instructions are competing for the use of the same register locations, 
generating pipeline constraints that retard performance. The problem is made more 
acute when register optimization techniques are used (as discussed in Chapter 15), 
because these compiler techniques attempt to maximize the use of registers, hence 
maximizing the number of storage conflicts.

One method for coping with these types of storage conflicts is based on a tradi-
tional resource-conflict solution: duplication of resources. In this context, the tech-
nique is referred to as register renaming. In essence, registers are allocated dynami-
cally by the processor hardware, and they are associated with the values needed 
by instructions at various points in time. When a new register value is created (i.e., 
when an instruction executes that has a register as a destination operand), a new 
register is allocated for that value. Subsequent instructions that access that value 
as a source operand in that register must go through a renaming process: the regis-
ter references in those instructions must be revised to refer to the register contain-
ing the needed value. Thus, the same original register reference in several different 
instructions may refer to different actual registers, if different values are intended.

Let us consider how register renaming could be used on the code fragment we 
have been examining:

I1: R3b d  R3a op R5a
I2: R4b d  R3b + 1
I3: R3c d  R5a + 1
I4: R7b d  R3c op R4b

The register reference without the subscript refers to the logical register refer-
ence found in the instruction. The register reference with the subscript refers to a 
hardware register allocated to hold a new value. When a new allocation is made for 
a particular logical register, subsequent instruction references to that logical register 
as a source operand are made to refer to the most recently allocated hardware reg-
ister (recent in terms of the program sequence of instructions).

In this example, the creation of register R3c in instruction I3 avoids the WAR 
dependency on the second instruction and the WAW on the first instruction, and 
it does not interfere with the correct value being accessed by I4. The result is that 
I3 can be issued immediately; without renaming, I3 cannot be issued until the first 
instruction is complete and the second instruction is issued.

Scoreboarding Simulator

An alternative to register renaming is a scoreboarding. In essence, scoreboard-
ing is a bookkeeping technique that allows instructions to execute whenever they 
are not dependent on previous instructions and no structural hazards are present. 
See Appendix I for a discussion.
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Machine Parallelism

In the preceding discussion, we have looked at three hardware techniques that can 
be used in a superscalar processor to enhance performance: duplication of resources, 
out-of-order issue, and renaming. One study that illuminates the relationship among 
these techniques was reported in [SMIT89]. The study made use of a simulation that 
modeled a machine with the characteristics of the MIPS R2000, augmented with var-
ious superscalar features. A number of different program sequences were simulated.

Figure 16.6 shows the results. In each of the graphs, the vertical axis corre-
sponds to the mean speedup of the superscalar machine over the scalar machine. 
The horizontal axis shows the results for four alternative processor organizations. 
The base machine does not duplicate any of the functional units, but it can issue 
instructions out of order. The second configuration duplicates the load/store func-
tional unit that accesses a data cache. The third configuration duplicates the ALU, 
and the fourth configuration duplicates both load/store and ALU. In each graph, 
results are shown for instruction window sizes of 8, 16, and 32 instructions, which dic-
tates the amount of lookahead the processor can do. The difference between the two 
graphs is that, in the second, register renaming is allowed. This is equivalent to say-
ing that the first graph reflects a machine that is limited by all dependencies, whereas 
the second graph corresponds to a machine that is limited only by true dependencies.

The two graphs, combined, yield some important conclusions. The first is that 
it is probably not worthwhile to add functional units without register renaming. 
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Figure 16.6 Speedups of Various Machine Organizations without Procedural Dependencies
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There is some slight improvement in performance, but at the cost of increased hard-
ware complexity. With register renaming, which eliminates antidependencies and 
output dependencies, noticeable gains are achieved by adding more functional units. 
Note, however, that there is a significant difference in the amount of gain achievable 
between using an instruction window of 8 versus a larger instruction window. This 
indicates that if the instruction window is too small, data dependencies will prevent 
effective utilization of the extra functional units; the processor must be able to look 
quite far ahead to find independent instructions to utilize the hardware more fully.

Pipeline with Static vs. Dynamic Scheduling—Simulator

Branch Prediction

Any high-performance pipelined machine must address the issue of dealing with 
branches. For example, the Intel 80486 addressed the problem by fetching both the 
next sequential instruction after a branch and speculatively fetching the branch tar-
get instruction. However, because there are two pipeline stages between prefetch 
and execution, this strategy incurs a two-cycle delay when the branch gets taken.

With the advent of RISC machines, the delayed branch strategy was explored. 
This allows the processor to calculate the result of conditional branch instructions 
before any unusable instructions have been prefetched. With this method, the proc-
essor always executes the single instruction that immediately follows the branch. 
This keeps the pipeline full while the processor fetches a new instruction stream.

With the development of superscalar machines, the delayed branch strategy 
has less appeal. The reason is that multiple instructions need to execute in the delay 
slot, raising several problems relating to instruction dependencies. Thus, supersca-
lar machines have returned to pre-RISC techniques of branch prediction. Some, 
like the PowerPC 601, use a simple static branch prediction technique. More sophis-
ticated processors, such as the PowerPC 620 and the Pentium 4, use dynamic branch 
prediction based on branch history analysis.

Superscalar Execution

We are now in a position to provide an overview of superscalar execution of pro-
grams; this is illustrated in Figure 16.7. The program to be executed consists of a 
linear sequence of instructions. This is the static program as written by the pro-
grammer or generated by the compiler. The instruction fetch stage, which includes 
branch prediction, is used to form a dynamic stream of instructions. This stream is 
examined for dependencies, and the processor may remove artificial dependencies. 
The processor then dispatches the instructions into a window of execution. In this 
window, instructions no longer form a sequential stream but are structured accord-
ing to their true data dependencies. The processor executes each instruction in an 
order determined by the true data dependencies and hardware resource availabil-
ity. Finally, instructions are conceptually put back into sequential order and their 
results are recorded.
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The final step mentioned in the preceding paragraph is referred to as commit-
ting, or retiring, the instruction. This step is needed for the following reason. Because 
of the use of parallel, multiple pipelines, instructions may complete in an order dif-
ferent from that shown in the static program. Further, the use of branch prediction 
and speculative execution means that some instructions may complete execution and 
then must be abandoned because the branch they represent is not taken. Therefore, 
permanent storage and program-visible registers cannot be updated immediately 
when instructions complete execution. Results must be held in some sort of tempo-
rary storage that is usable by dependent instructions and then made permanent when 
it is determined that the sequential model would have executed the instruction.

Superscalar Implementation

Based on our discussion so far, we can make some general comments about the pro-
cessor hardware required for the superscalar approach. [SMIT95] lists the following 
key elements:

 • Instruction fetch strategies that simultaneously fetch multiple instructions, 
often by predicting the outcomes of, and fetching beyond, conditional branch 
instructions. These functions require the use of multiple pipeline fetch and 
decode stages, and branch prediction logic.

 • Logic for determining true dependencies involving register values, and mech-
anisms for communicating these values to where they are needed during 
execution.

 • Mechanisms for initiating, or issuing, multiple instructions in parallel.

 • Resources for parallel execution of multiple instructions, including multiple 
pipelined functional units and memory hierarchies capable of simultaneously 
servicing multiple memory references.

 • Mechanisms for committing the process state in correct order.
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Instruction
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Instruction
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Instruction
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reorder and
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Figure 16.7 Conceptual Depiction of Superscalar Processing
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 16.3 PENTIUM 4

Although the concept of superscalar design is generally associated with the RISC 
architecture, the same superscalar principles can be applied to a CISC machine. 
Perhaps the most notable example of this is the Pentium. The evolution of supersca-
lar concepts in the Intel line is interesting to note. The 386 is a traditional CISC non-
pipelined machine. The 486 introduced the first pipelined x86 processor, reducing 
the average latency of integer operations from between two and four cycles to one 
cycle, but still limited to executing a single instruction each cycle, with no supersca-
lar elements. The original Pentium had a modest superscalar component, consisting 
of the use of two separate integer execution units. The Pentium Pro introduced a 
full-blown superscalar design with out-of-order execution. Subsequent x86 models 
have refined and enhanced the superscalar design.

A general block diagram of the Pentium 4 was shown in Figure 4.18. Figure 16.8 
depicts the same structure in a way more suitable for the pipeline discussion in this 
section. The operation of the Pentium 4 can be summarized as follows:

 1. The processor fetches instructions from memory in the order of the static 
program.

 2. Each instruction is translated into one or more fixed-length RISC instructions, 
known as micro-operations, or micro-ops.
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 3. The processor executes the micro-ops on a superscalar pipeline organization, 
so that the micro-ops may be executed out of order.

 4. The processor commits the results of each micro-op execution to the proces-
sor’s register set in the order of the original program flow.

In effect, the Pentium 4 architecture implements a CISC instruction set architec-
ture on a RISC microarchitecture. The inner RISC micro-ops pass through a pipeline 
with at least 20 stages (Figure 16.9); in some cases, the micro-op requires multiple exe-
cution stages, resulting in an even longer pipeline. This contrasts with the five-stage 
pipeline (Figure 14.21) used on the earlier Intel x86 processors and on the Pentium.

We now trace the operation of the Pentium 4 pipeline, using Figure 16.10 to 
illustrate its operation.

Front End

GENERATION OF MICRO-OPS The Pentium 4 organization includes an in-order 
front end (Figure 16.10a) that can be considered outside the scope of the pipeline 
depicted in Figure 16.9. This front end feeds into an L1 instruction cache, called 
the trace cache, which is where the pipeline proper begins. Usually, the processor 
operates from the trace cache; when a trace cache miss occurs, the in-order front 
end feeds new instructions into the trace cache.

With the aid of the branch target buffer and the instruction lookaside buffer 
(BTB & I-TLB), the fetch/decode unit fetches x86 machine instructions from the L2 
cache 64 bytes at a time. As a default, instructions are fetched sequentially, so that 
each L2 cache line fetch includes the next instruction to be fetched. Branch predic-
tion via the BTB & I-TLB unit may alter this sequential fetch operation. The ITLB 
translates the linear instruction pointer address given it into physical addresses 
needed to access the L2 cache. Static branch prediction in the front-end BTB is used 
to determine which instructions to fetch next.

Once instructions are fetched, the fetch/decode unit scans the bytes to deter-
mine instruction boundaries; this is a necessary operation because of the variable 
length of x86 instructions. The decoder translates each machine instruction into 
from one to four micro-ops, each of which is a 118-bit RISC instruction. Note for 
comparison that most pure RISC machines have an instruction length of just 32 
bits. The longer micro-op length is required to accommodate the more complex 
x86 instructions. Nevertheless, the micro-ops are easier to manage than the original 
instructions from which they derive.

The generated micro-ops are stored in the trace cache.
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Figure 16.9 Pentium 4 Pipeline
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TRACE CACHE NEXT INSTRUCTION POINTER The first two pipeline stages 
(Figure 16.10b) deal with the selection of instructions in the trace cache and involve 
a separate branch prediction mechanism from that described in the previous 
section. The Pentium 4 uses a dynamic branch prediction strategy based on the 

L2 Cache and control

(a) Generation of micro-ops

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r 

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1 

D
-C

ac
he

 a
nd

 D
-T

L
B

L2 Cache and control

(c) Trace cache fetch

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r 

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1 

D
-C

ac
he

 a
nd

 D
-T

L
B

L2 Cache and control

(b) Trace cache next instruction pointer

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r 

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1 

D
-C

ac
he

 a
nd

 D
-T

L
B

L2 Cache and control

(d) Drive

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r 

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1 

D
-C

ac
he

 a
nd

 D
-T

L
B

L2 Cache and control

(e) Allocate; register renaming

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r 

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1 

D
-C

ac
he

 a
nd

 D
-T

L
B

L2 Cache and control

(f) Micro-op queuing

B
T

B
 &

 I
-T

L
B

F
et

ch
/d

ec
od

e

R
en

am
e/

al
lo

c

�
op

 Q
ue

ue
s

T
ra

ce
 c

ac
he

Sc
he

du
le

rs

F
P

 R
F

In
te

ge
r 

R
F

ROM Fop

Fms

BTB

ALU

ALU

ALU

ALU

AGU

AGU

L
1 

D
-C

ac
he

 a
nd

 D
-T

L
B

Figure 16.10 Pentium Pipeline Operation
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history of recent executions of branch instructions. A branch target buffer (BTB) is 
maintained that caches information about recently encountered branch instructions. 
Whenever a branch instruction is encountered in the instruction stream, the BTB 
is checked. If an entry already exists in the BTB, then the instruction unit is guided 

Figure 16.10 Pentium Pipeline Operation (continued)
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by the history information for that entry in determining whether to predict that 
the branch is taken. If a branch is predicted, then the branch destination address 
associated with this entry is used for prefetching the branch target instruction.

Once the instruction is executed, the history portion of the appropriate entry 
is updated to reflect the result of the branch instruction. If this instruction is not 
represented in the BTB, then the address of this instruction is loaded into an entry 
in the BTB; if necessary, an older entry is deleted.

The description of the preceding two paragraphs fits, in general terms, the 
branch prediction strategy used on the original Pentium model, as well as the 
later Pentium models, including Pentium 4. However, in the case of the Pentium, 
a relatively simple 2-bit history scheme is used. The later Pentium models have 
much longer pipelines (20 stages for the Pentium 4 compared with 5 stages for 
the Pentium) and therefore the penalty for misprediction is greater. Accordingly,  
the later Pentium models use a more elaborate branch prediction scheme with more 
history bits to reduce the misprediction rate.

The Pentium 4 BTB is organized as a four-way set-associative cache with 
512 lines. Each entry uses the address of the branch as a tag. The entry also includes 
the branch destination address for the last time this branch was taken and a 4-bit  
history field. Thus use of four history bits contrasts with the 2 bits used in the origi-
nal Pentium and used in most superscalar processors. With 4 bits, the Pentium 
4 mechanism can take into account a longer history in predicting branches. The 
algorithm that is used is referred to as Yeh’s algorithm [YEH91]. The developers of 
this algorithm have demonstrated that it provides a significant reduction in mispre-
diction compared to algorithms that use only 2 bits of history [EVER98].

Conditional branches that do not have a history in the BTB are predicted 
using a static prediction algorithm, according to the following rules:

 • For branch addresses that are not IP relative, predict taken if the branch is a 
return and not taken otherwise.

 • For IP-relative backward conditional branches, predict taken. This rule 
reflects the typical behavior of loops.

 • For IP-relative forward conditional branches, predict not taken.

TRACE CACHE FETCH The trace cache (Figure 16.10c) takes the already-decoded 
micro-ops from the instruction decoder and assembles them in to program-ordered 
sequences of micro-ops called traces. Micro-ops are fetched sequentially from the 
trace cache, subject to the branch prediction logic.

A few instructions require more than four micro-ops. These instructions are 
transferred to microcode ROM, which contains the series of micro-ops (five or 
more) associated with a complex machine instruction. For example, a string instruc-
tion may translate into a very large (even hundreds), repetitive sequence of micro-
ops. Thus, the microcode ROM is a microprogrammed control unit in the sense 
discussed in Part Four. After the microcode ROM finishes sequencing micro-ops 
for the current Pentium instruction, fetching resumes from the trace cache.

DRIVE The fifth stage (Figure 16.10d) of the Pentium 4 pipeline delivers decoded 
instructions from the trace cache to the rename/allocator module.
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Out-of-Order Execution Logic

This part of the processor reorders micro-ops to allow them to execute as quickly as 
their input operands are ready.

ALLOCATE The allocate stage (Figure 16.10e) allocates resources required for 
execution. It performs the following functions:

 • If a needed resource, such as a register, is unavailable for one of the three 
micro-ops arriving at the allocator during a clock cycle, the allocator stalls 
the pipeline.

 • The allocator allocates a reorder buffer (ROB) entry, which tracks the com-
pletion status of one of the 126 micro-ops that could be in process at any time.2

 • The allocator allocates one of the 128 integer or floating-point register entries 
for the result data value of the micro-op, and possibly a load or store buffer 
used to track one of the 48 loads or 24 stores in the machine pipeline.

 • The allocator allocates an entry in one of the two micro-op queues in front of 
the instruction schedulers.

The ROB is a circular buffer that can hold up to 126 micro-ops and also con-
tains the 128 hardware registers. Each buffer entry consists of the following fields:

 • State: Indicates whether this micro-op is scheduled for execution, has been dis-
patched for execution, or has completed execution and is ready for retirement.

 • Memory Address: The address of the Pentium instruction that generated the 
micro-op.

 • Micro-op: The actual operation.

 • Alias Register: If the micro-op references one of the 16 architectural registers, 
this entry redirects that reference to one of the 128 hardware registers.

Micro-ops enter the ROB in order. Micro-ops are then dispatched from the 
ROB to the Dispatch/Execute unit out of order. The criterion for dispatch is that 
the appropriate execution unit and all necessary data items required for this micro-
op are available. Finally, micro-ops are retired from the ROB in order. To accom-
plish in-order retirement, micro-ops are retired oldest first after each micro-op has 
been designated as ready for retirement.

REGISTER RENAMING The rename stage (Figure 16.10e) remaps references to the 
16 architectural registers (8 floating-point registers, plus EAX, EBX, ECX, EDX, 
ESI, EDI, EBP, and ESP) into a set of 128 physical registers. The stage removes 
false dependencies caused by a limited number of architectural registers while 
preserving the true data dependencies (reads after writes).

MICRO-OP QUEUING After resource allocation and register renaming, micro-ops 
are placed in one of two micro-op queues (Figure 16.10f), where they are held until 
there is room in the schedulers. One of the two queues is for memory operations 

2See Appendix I for a discussion of reorder buffers.
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(loads and stores) and the other for micro-ops that do not involve memory 
references. Each queue obeys a FIFO (first-in-first-out) discipline, but no order 
is maintained between queues. That is, a micro-op may be read out of one queue 
out of order with respect to micro-ops in the other queue. This provides greater 
flexibility to the schedulers.

MICRO-OP SCHEDULING AND DISPATCHING The schedulers (Figure 16.10g) 
are responsible for retrieving micro-ops from the micro-op queues and dispatching 
these for execution. Each scheduler looks for micro-ops in whose status indicates 
that the micro-op has all of its operands. If the execution unit needed by that 
micro-op is available, then the scheduler fetches the micro-op and dispatches 
it to the appropriate execution unit (Figure 16.10h). Up to six micro-ops can be 
dispatched in one cycle. If more than one micro-op is available for a given execution 
unit, then the scheduler dispatches them in sequence from the queue. This is a sort 
of FIFO discipline that favors in-order execution, but by this time the instruction 
stream has been so rearranged by dependencies and branches that it is substantially 
out of order.

Four ports attach the schedulers to the execution units. Port 0 is used for both 
integer and floating-point instructions, with the exception of simple integer opera-
tions and the handling of branch mispredictions, which are allocated to Port 1. In 
addition, MMX execution units are allocated between these two ports. The remain-
ing ports are for memory loads and stores.

Integer and Floating-Point Execution Units

The integer and floating-point register files are the source for pending operations 
by the execution units (Figure 16.10i). The execution units retrieve values from the 
register files as well as from the L1 data cache (Figure 16.10j). A separate pipeline 
stage is used to compute flags (e.g., zero, negative); these are typically the input to 
a branch instruction.

A subsequent pipeline stage performs branch checking (Figure 16.10k). This 
function compares the actual branch result with the prediction. If a branch predic-
tion turns out to have been wrong, then there are micro-operations in various stages 
of processing that must be removed from the pipeline. The proper branch destina-
tion is then provided to the Branch Predictor during a drive stage (Figure 16.10l), 
which restarts the whole pipeline from the new target address.

 16.4 ARM CORTEX-A8

Recent implementations of the ARM architecture have seen the introduction of 
superscalar techniques in the instruction pipeline. In this section, we focus on the 
ARM Cortex-A8, which provides a good example of a RISC-based superscalar 
design.

The Cortex-A8 is in the ARM family of processors that ARM refers to as 
application processors. An ARM application processor is an embedded processor 
running complex operating systems for wireless, consumer and imaging  applications. 
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The Cortex-A8 targets a wide variety of mobile and consumer applications includ-
ing mobile phones, set-top boxes, gaming consoles and automotive navigation/
entertainment systems.

Figure 16.11 shows a logical view of the Cortex-A8 architecture, emphasizing  
the flow of instructions among functional units. The main instruction flow is 
through three functional units that implement a dual, in-order-issue, 13-stage pipe-
line. The Cortex designers decided to stay with in-order issue to keep additional 
power required to a minimum. Out-of-order issue and retire can require extensive 
amounts of logic consuming extra power.
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Figure 16.12 shows the details of the main Cortex-A8 pipeline. There is a 
separate unit for SIMD (single-instruction-multiple-data) unit that implements a 
10-stage pipeline.

Instruction Fetch Unit

The instruction fetch unit predicts the instruction stream, fetches instructions from 
the L1 instruction cache, and places the fetched instructions into a buffer for con-
sumption by the decode pipeline. The instruction fetch unit also includes the L1 
instruction cache. Because there can be several unresolved branches in the pipe-
line, instruction fetches are speculative, meaning there is no guarantee that they are 
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 executed. A branch or exceptional instruction in the code stream can cause a pipe-
line flush, discarding the currently fetched instructions. The instruction fetch unit 
can fetch up to four instructions per cycle, and goes through the following stages:

F0 The address generation unit (AGU) generates a new virtual address. 
Normally, this address is the next address sequentially from the preceding 
fetch address. The address can also be a branch target address provided by a 
branch prediction for a previous instruction. F0 is not counted as part of the 
13-stage pipeline, because ARM processors have traditionally defined instruc-
tion cache access as the first stage.

F1 The calculated address is used to fetch instructions from the L1 instruction 
cache. In parallel, the fetch address is used to access the branch prediction arrays 
to determine if the next fetch address should be based on a branch prediction.

F3 Instruction data are placed into the instruction queue. If an instruction  
results in branch prediction, the new target address is sent to the address gen-
eration unit.

To minimize the branch penalties typically associated with a deeper pipeline, 
the Cortex-A8 processor implements a two-level global history branch predictor, 
consisting of the branch target buffer (BTB) and the global history buffer (GHB). 
These data structures are accessed in parallel with instruction fetches. The BTB 
indicates whether or not the current fetch address will return a branch instruction 
and its branch target address. It contains 512 entries. On a hit in the BTB a branch 
is predicted and the GHB is accessed. The GHB consists of 4096 2-bit counters that 
encode the strength and direction information of branches. The GHB is indexed 
by 10-bit history of the direction of the last ten branches encountered and 4 bits of 
the PC. In addition to the dynamic branch predictor, a return stack is used to pre-
dict subroutine return addresses. The return stack has eight 32-bit entries that store 
the link register value in r14 and the ARM or Thumb state of the calling function. 
When a return-type instruction is predicted taken, the return stack provides the last 
pushed address and state.

The instruction fetch unit can fetch and queue up to 12 instructions. It issues 
instructions to the decode unit two at a time. The queue enables the instruction 
fetch unit to prefetch ahead of the rest of the integer pipeline and build up a backlog 
of instructions ready for decoding.

Instruction Decode Unit

The instruction decode unit decodes and sequences all ARM and Thumb instruc-
tions. It has a dual pipeline structure, called pipe0 and pipe1, so that two instructions 
can progress through the unit at a time. When two instructions are issued from 
the instruction decode pipeline, pipe0 will always contain the older instruction in 
program order. This means that if the instruction in pipe0 cannot issue, then the 
instruction in pipe1 will not issue. All issued instructions progress in order down 
the execution pipeline with results written back into the register file at the end of 
the execution pipeline. This in-order instruction issue and retire prevents WAR 
hazards and keeps tracking of WAW hazards and recovery from flush conditions 
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straightforward. Thus, the main concern of the instruction decode pipeline is the 
prevention of RAW hazards.

Each instruction goes through five stages of processing.

D0 Thumb instructions are decompressed into 32-bit ARM instructions. 
A preliminary decode function is performed.

D1 The instruction decode function is completed.

D2 This stage writes instructions into and read instructions from the pending/
replay queue structure.

D3 This stage contains the instruction scheduling logic. A scoreboard predicts 
register availability using static scheduling techniques.3 Hazard checking is 
also done at this stage.

D4 Performs the final decode for all the control signals required by the inte-
ger execute and load/store units.

In the first two stages, the instruction type, the source and destination oper-
ands, and resource requirements for the instruction are determined. A few less 
commonly used instructions are referred to as multicycle instructions. The D1 stage 
breaks these instructions down into multiple instruction opcodes that are sequenced 
individually through the execution pipeline.

The pending queue serves two purposes. First, it prevents a stall signal from 
D3 from rippling any further up the pipeline. Second, by buffering instructions, 
there should always be two instructions available for the dual pipeline. In the case 
where only one instruction is issued, the pending queue enables two instructions to 
proceed down the pipeline together, even if they were originally sent from the fetch 
unit in different cycles.

The replay operation is designed to deal with the effects of the memory system 
on instruction timing. Instructions are statically scheduled in the D3 stage based 
on a prediction of when the source operand will be available. Any stall from the 
memory system can result in the minimum of an 8-cycle delay. This 8-cycle delay 
minimum is balanced with the minimum number of possible cycles to receive data 
from the L2 cache in the case of an L1 load miss. Table 16.2 gives the most common 
cases that can result in an instruction replay because of a memory system stall.

To deal with these stalls, a recovery mechanism is used to flush all subsequent 
instructions in the execution pipeline and reissue (replay) them. To support replay, 
instructions are copied into the replay queue before they are issued and removed 
as they write back their results and retire. If a replay signal is issued instructions are 
retrieved from the replay queue and reenter the pipeline.

The decode unit issues two instructions in parallel to the execution unit, unless it 
encounters an issue restriction. Table 16.3 shows the most common restriction cases.

Integer Execute Unit

The instruction execute unit consists of two symmetric arithmetic logic unit (ALU) 
pipelines, an address generator for load and store instructions, and the multiply 

3See Appendix I for a discussion of scoreboarding.
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pipeline. The execute pipelines also perform register write back. The instruction 
execute unit:

 • Executes all integer ALU and multiply operations, including flag generation
 • Generates the virtual addresses for loads and stores and the base write-back 

value, when required

 • Supplies formatted data for stores and forwards data and flags

 • Processes branches and other changes of instruction stream and evaluates in-
struction condition codes

For ALU instructions, either pipeline can be used, consisting of the following 
stages:

E0 Access register file. Up to six registers can be read from the register file for 
two instructions.

E1 The barrel shifter (see Figure 14.25) performs its function, if needed.

E2 The ALU unit (see Figure 14.25) performs its function.

E3 If needed, this stage completes saturation arithmetic used by some ARM 
data processing instructions.

Table 16.2 Cortex-A8 Memory System Effects on Instruction Timings

Replay Event Delay Description

Load data miss 8 cycles  1. A load instruction misses in the L1 data cache.

 2. A request is then made to the L2 data cache.

 3. If a miss also occurs in the L2 data cache, then a second 
replay occurs. The number of stall cycles depends on 
the external system memory timing. The minimum time 
required to receive the critical word for an L2 cache 
miss is approximately 25 cycles, but can be much longer 
because of L3 memory latencies.

Data TLB miss 24 cycles  1. A table walk because of a miss in the L1 TLB causes a 
24-cycle delay, assuming the translation table entries are 
found in the L2 cache.

 2. If the translation table entries are not present in the 
L2 cache, the number of stall cycles depends on the 
external system memory timing.

Store buffer full 8 cycles plus latency  
to drain fill buffer

 1. A store instruction miss does not result in any stalls 
unless the store buffer is full.

 2. In the case of a full store buffer, the delay is at least 
eight cycles. The delay can be more if it takes longer to 
drain some entries from the store buffer.

Unaligned load or 
store request

8 cycles  1. If a load instruction address is unaligned and the full 
access is not contained within a 128-bit boundary, there 
is a 8-cycle penalty.

 2. If a store instruction address is unaligned and the full 
access is not contained within a 64-bit boundary, there is 
a 8-cycle penalty.
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E4 Any change in control flow, including branch misprediction, exceptions, 
and memory system replays are prioritized and processed.

E5 Results of ARM instructions are written back into the register file.

Instructions that invoke the multiply unit (see Figure 14.25) are routed to 
pipe0; the multiply operation is performed in stages E1 through E3, and the multi-
ply accumulate operation in stage E4.

The load/store pipeline runs parallel to the integer pipeline. The stages are as 
follows:

E1 The memory address is generated from the base and index register.

E2 The address is applied to the cache arrays.

E3 In the case of a load, data are returned and formatted for forwarding to the 
ALU or MUL unit. In the case of a store, the data are formatted and ready to 
be written into the cache.

E4 Performs updates to the L2 cache, if required.

E5 Results of ARM instructions are written back into the register file.

Table 16.3 Cortex-A8 Dual-Issue Restrictions

Restriction 
Type Description Example Cycle Restriction

Load/store 
resource  
hazard

There is only one LS pipeline. 
Only one LS instruction can 
be issued per cycle. It can be 
in pipeline 0 or pipeline 1

LDR r5, [r6]
STR r7, [r8]
MOV r9, r10

1
2
2

 
Wait for LS unit
Dual issue possible

Multiply 
resource  
hazard

There is only one multiply 
pipeline, and it is only avail-
able in pipeline 0.

ADD r1, r2, r3
MUL r4, r5, r6
MUL r7, r8, r9

1
2
3

 
Wait for pipeline 0
Wait for multiply unit

Branch 
resource  
hazard

There can be only one branch 
per cycle. It can be in pipeline 
0 or pipeline 1. A branch is 
any instruction that changes 
the PC.

BX r1
BEQ 0x1000
ADD r1, r2, r3

1
2
2

 
Wait for branch Dual issue 
possible

Data output 
hazard

Instructions with the same 
destination cannot be issued 
in the same cycle. This can 
happen with conditional code.

MOVEQ r1, r2
MOVNE r1, r3
LDR r5, [r6]

1
2
2

 
Wait because of output 
dependency
Dual issue possible

Data source 
hazard

Instructions cannot be issued 
if their data is not available. 
See the scheduling tables 
for source requirements and 
stages results.

ADD r1, r2, r3
ADD r4, r1, r6
LDR r7, [r4]

1
2
4

 
Wait for r1
Wait two cycles for r4

Multi-cycle 
instructions

Multi-cycle instructions must 
issue in pipeline 0 and can 
only dual issue in their last 
iteration.

MOV r1, r2
LDM r3, {r4-r7}
LDM (cycle 2)
LDM (cycle 3)
 
ADD r8, r9, r10

1
2
3
4
 
4

Wait for pipeline 0, transfer r4
Transfer r5, r6
Transfer r7
Dual issue possible on last  
  transfer
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Table 16.4 Cortex-A8 Example Dual Issue Instruction Sequence for Integer Pipeline

Cycle Program Counter Instruction Timing Description

1 0x00000ed0 BX r14 Dual issue pipeline 0

1 0x00000ee4 CMP r0,#0 Dual issue in pipeline 1

2 0x00000ee8 MOV r3,#3 Dual issue pipeline 0

2 0x00000eec MOV r0,#0 Dual issue in pipeline 1

3 0x00000ef0 STREQ r3,[r1,#0] Dual issue in pipeline 0, r3 not needed 
until E3

3 0x00000ef4 CMP r2,#4 Dual issue in pipeline 1

4 0x00000ef8 LDRLS pc,[pc,r2,LSL #2] Single issue pipeline 0, +1 cycle for load 
to pc, no extra cycle for shift since LSL #2

5 0x00000f2c MOV r0,#1 Dual issue with 2nd iteration of load in 
pipeline 1

6 0x00000f30 B {pc} +  8 #0xf38 dual issue pipeline 0

6 0x00000f38 STR r0,[r1,#0] Dual issue pipeline 1

7 0x00000f3c: LDR pc,[r13],#4 Single issue pipeline 0, +1 cycle for load 
to pc

8 0x0000017c ADD r2,r4,#0xc Dual issue with 2nd iteration of load in 
pipeline 1

9 0x00000180 LDR r0,[r6,#4] Dual issue pipeline 0

9 0x00000184 MOV r1,#0xa Dual issue pipeline 1

12 0x00000188 LDR r0,[r0,#0] Single issue pipeline 0: r0 produced in E3, 
required in E1, so +2 cycle stall

13 0x0000018c STR r0,[r4,#0] Single issue pipeline 0 due to LS resource 
hazard, no extra delay for r0 since pro-
duced in E3 and consumed in E3

14 0x00000190 LDR r0,[r4,#0xc] Single issue pipeline 0 due to LS resource 
hazard

15 0x00000194 LDMFD r13!,{r4-r6,r14} Load multiple: loads r4 in 1st cycle, r5 
and r6 in 2nd cycle, r14 in 3rd cycle, 3 
cycles total

17 0x00000198 B {pc}+0xda8 #0xf40 dual issue in pipeline 1 with 3rd 
cycle of LDM

18 0x00000f40 ADD r0,r0,#2 ARM Single issue in pipeline 0

19 0x00000f44 ADD r0,r1,r0 ARM Single issue in pipeline 0, no dual issue 
due to hazard on r0 produced in E2 and 
required in E2

Table 16.4 shows a sample code segment and indicates how the processor 
might schedule it.

SIMD and Floating-Point Pipeline

All SIMD and floating-point instructions pass through the integer pipeline and are 
processed in a separate 10-stage pipeline (Figure 16.13). This unit, referred to as the 
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NEON unit, handles packed SIMD instructions, and provides two types of floating-
point support. If implemented, a vector floating-point (VFP) coprocessor performs 
floating-point operations in compliance with IEEE 754. If the coprocessor is not 
present, then separate multiply and add pipelines implement the floating-point 
operations

 16.5 RECOMMENDED READING

Two good book-length treatments of superscalar design are [SHEN05] and [OMON99]. 
Worthwhile survey articles on the subject are [SMIT95] and [SIMA97]. [JOUP89a] exam-
ines instruction-level parallelism, looks at various techniques for maximizing parallelism, 
and compares superscalar and superpipelined approaches using simulation. Recent papers 
that provide good coverage of superscalar design issues include [SIMA04], [PATT01], and 
[MOSH01].

[POPE91] provides a detailed look at a proposed superscalar machine. It also provides 
an excellent tutorial on the design issues related to out-of-order instruction policies. Another 
look at a proposed system is found in [KUGA91]; this article raises and considers most of the 
important design issues for superscalar implementation. [LEE91] examines software tech-
niques that can be used to enhance superscalar performance. [WALL91] is an interesting 
study of the extent to which instruction-level parallelism can be exploited in a superscalar 
processor.
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Volume I of [INTE04a] provides general description of the Pentium 4 pipeline; more 
detail is provided in [INTE01a] and [INTE01b]. Another detailed treatment is [FOG08b].

[JOHN08] and [ARM08a] provide thorough coverage of the ARM Cortex-A8 pipe-
line. [RICH07] is a good overview.

ARM08a ARM Limited. Cortex-A8 Technical Reference Manual. ARM DDI 0344E, 
2008. www.arm.com

FOG08b Fog, A. The Microarchitecture of Intel and AMD CPUs. Copenhagen 
 University College of Engineering, 2008. http://www.agner.org/optimize/

HINT01 Hinton, G., et al. “The Microarchitecture of the Pentium 4 Processor.” Intel 
Technology Journal, Q1 2001. http://developer.intel.com/technology/itj/

INTE01a Intel Corp. Intel Pentium 4 Processor Optimization Reference Manual. Docu-
ment 248966-04 2001. http://developer.intel.com/design/Pentium4/documentation. 
htm

INTE01b Intel Corp. Desktop Performance and Optimization for Intel Pentium 4
Processor. Document 248966-04 2001. http://developer.intel.com/design/
Pentium4/documentation.htm

INTE04a Intel Corp. IA-32 Intel Architecture Software Developer’s Manual (4 vol-
umes). Document 253665 through 253668. 2004. http://developer.intel.com/design/
Pentium4/documentation.htm

JOHN08 John, E., and Rubio, J. Unique Chips and Systems. Boca Raton, FL: CRC 
Press, 2008.

JOUP89a Jouppi, N., and Wall, D. “Available Instruction-Level Parallelism for 
Superscalar and Superpipelined Machines.” Proceedings, Third International 
Conference on Architectural Support for Programming Languages and Operating 
Systems, April 1989.
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 16.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

SMIT95 Smith, J., and Sohi, G. “The Microarchitecture of Superscalar Processors.” 
Proceedings of the IEEE, December 1995.

WALL91 Wall, D. “Limits of Instruction-Level Parallelism.” Proceedings, Fourth 
International Conference on Architectural Support for Programming Languages 
and Operating Systems, April 1991.

antidependency
branch prediction
commit
flow dependency
in-order completion
in-order issue
instruction issue
instruction-level parallelism
instruction window

machine parallelism
micro-operations
micro-ops
out-of-order

completion
out-of-order issue
output dependency
procedural dependency
read-write dependency

register renaming
resource conflict
retire
superpipelined
superscalar
true data dependency
write-read dependency
write-write

dependency

Review Questions
 16.1 What is the essential characteristic of the superscalar approach to processor design?
 16.2 What is the difference between the superscalar and superpipelined approaches?
 16.3 What is instruction-level parallelism?
 16.4 Briefly define the following terms:

• True data dependency
• Procedural dependency
• Resource conflicts
• Output dependency
• Antidependency

 16.5 What is the distinction between instruction-level parallelism and machine parallelism?
 16.6 List and briefly define three types of superscalar instruction issue policies.
 16.7 What is the purpose of an instruction window?
 16.8 What is register renaming and what is its purpose?
 16.9 What are the key elements of a superscalar processor organization?

Problems
 16.1 When out-of-order completion is used in a superscalar processor, resumption of ex-

ecution after interrupt processing is complicated, because the exceptional condition 
may have been detected as an instruction that produced its result out of order. The 
program cannot be restarted at the instruction following the exceptional instruction, 
because subsequent instructions have already completed, and doing so would cause 
these instructions to be executed twice. Suggest a mechanism or mechanisms for deal-
ing with this situation.
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 16.2 Consider the following sequence of instructions, where the syntax consists of an 
opcode followed by the destination register followed by one or two source registers:

 0  ADD R3, R1, R2
 1  LOAD R6, [R3]
 2  AND R7, R5, 3
 3  ADD R1, R6, R7
 4  SRL R7, R0, 8
 5  OR R2, R4, R7
 6  SUB R5, R3, R4
 7  ADD R0, R1, 10
 8  LOAD R6, [R5]
 9  SUB R2, R1, R6
10  AND R3, R7, 15

Assume the use of a four-stage pipeline: fetch, decode/issue, execute, write back. As-
sume that all pipeline stages take one clock cycle except for the execute stage. For 
simple integer arithmetic and logical instructions, the execute stage takes one cycle, 
but for a LOAD from memory, five cycles are consumed in the execute stage.

If we have a simple scalar pipeline but allow out-of-order execution, we can con-
struct the following table for the execution of the first seven instructions:

Instruction Fetch Decode Execute Write Back

0 0 1 2 3

1 1 2 4 9

2 2 3 5 6

3 3 4 10 11

4 4 5 6 7

5 5 6 8 10

6 6 7 9 12

The entries under the four pipeline stages indicate the clock cycle at which each instruc-
tion begins each phase. In this program, the second ADD instruction (instruction 3) 
 depends on the LOAD instruction (instruction 1) for one of its operands, r6. Because the 
LOAD instruction takes five clock cycles, and the issue logic encounters the  dependent 
ADD instruction after two clocks, the issue logic must delay the ADD instruction for 
three clock cycles. With an out-of-order capability, the processor can stall instruction 
3 at clock cycle 4, and then move on to issue the following three independent instruc-
tions, which enter execution at clocks 6, 8, and 9. The LOAD finishes execution at clock 
9, and so the dependent ADD can be launched into execution on clock 10.
a. Complete the preceding table.
b. Redo the table assuming no out-of-order capability. What is the savings using the 

capability?
c. Redo the table assuming a superscalar implementation that can handle two 

instructions at a time at each stage.
 16.3 Consider the following assembly language program:

I1: Move R3, R7 /R3 d  (R7)/
I2: Load R8, (R3) /R8 d  Memory (R3)/
I3: Add R3, R3, 4 /R3 d  (R3) + 4/
I4: Load R9, (R3) /R9 d  Memory (R3)/
I5: BLE R8, R9, L3 /Branch if (R9) > (R8)/

This program includes WAW, RAW, and WAR dependencies. Show these.
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 16.4 a.   Identify the RAW, WAR, and WAW dependencies in the following instruction 
sequence:

I1: R1 = 100
I2: R1 = R2 + R4
I3: R2 = r4 – 25
I4: R4 = R1 + R3
I5: R1 = R1 + 30

b. Rename the registers from part (a) to prevent dependency problems. Identify ref-
erences to initial register values using the subscript “a” to the register reference.

 16.5 Consider the “in-order-issue/in-order-completion” execution sequence shown in 
Figure 16.14.
a. Identify the most likely reason why I2 could not enter the execute stage until the 

fourth cycle. Will “in-order issue/out-of-order completion” or “out-of-order issue/
out-of-order completion” fix this? If so, which?

b. Identify the reason why I6 could not enter the write stage until the nineth cycle. 
Will “in-order issue/out-of-order completion” or “out-of-order issue/out-of-order 
completion” fix this? If so, which?

 16.6 Figure 16.15 shows an example of a superscalar processor organization. The proces-
sor can issue two instructions per cycle if there is no resource conflict and no data 
dependence problem. There are essentially two pipelines, with four processing stages 
(fetch, decode, execute, and store). Each pipeline has its own fetch decode and store 
unit. Four functional units (multiplier, adder, logic unit, and load unit) are avail-
able for use in the execute stage and are shared by the two pipelines on a dynamic 
basis. The two store units can be dynamically used by the two pipelines, depending 
on availability at a particular cycle. There is a lookahead window with its own fetch 
and decoding logic. This window is used for instruction lookahead for out-of-order  
instruction issue.

Consider the following program to be executed on this processor:

I1: Load R1, A /R1 d  Memory (A)/
I2: Add R2, R1 /R2 d  (R2) + R(1)/
I3: Add R3, R4 /R3 d  (R3) + R(4)/
I4: Mul R4, R5 /R4 d  (R4) + R(5)/
I5: Comp R6 /R6 d  (R6)/
I6: Mul R6, R7 /R6 d  (R6) × R(7)/

a. What dependencies exist in the program?
b. Show the pipeline activity for this program on the processor of Figure 16.15 using 

in-order issue with in-order completion policies and using a presentation similar 
to Figure 16.2.
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c. Repeat for in-order issue with out-of-order completion.
d. Repeat for out-of-order issue with out-of-order completion.

 16.7 Figure 16.16 is from a paper on superscalar design. Explain the three parts of the fig-
ure, and define w, x, y, and z.

 16.8 Yeh’s dynamic branch prediction algorithm, used on the Pentium 4, is a two-level 
branch prediction algorithm. The first level is the history of the last n branches. The 
second level is the branch behavior of the last s occurrences of that unique pattern 
of the last n branches. For each conditional branch instruction in a program, there is 
an entry in a Branch History Table (BHT). Each entry consists of n bits correspond-
ing to the last n executions of the branch instruction, with a 1 if the branch was taken 
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and a 0 if the branch was not. Each BHT entry indexes into a Pattern Table (PT) that 
has 2n entries, one for each possible pattern of n bits. Each PT entry consists of s bits 
that are used in branch prediction, as was described in Chapter 14 (e.g., Figure 14.19). 
When a conditional branch is encountered during instruction fetch and decode, the 
address of the instruction is used to retrieve the appropriate BHT entry, which shows 
the recent history of the instruction. Then, the BHT entry is used to retrieve the  
appropriate PT entry for branch prediction. After the branch is executed, the BHT 
entry is updated, and then the appropriate PT entry is updated.
a. In testing the performance of this scheme, Yeh tried five different predic-

tion schemes, illustrated in Figure 16.17. Identify which three of these schemes 
 correspond to those shown in Figures 14.19 and 14.28. Describe the remaining two 
schemes.

b. With this algorithm, the prediction is not based on just the recent history of this par-
ticular branch instruction. Rather, it is based on the recent history of all  patterns of 
branches that match the n-bit pattern in the BHT entry for this instruction. Suggest 
a rationale for such a strategy.
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Traditionally, the computer has been viewed as a sequential machine. Most computer 
programming languages require the programmer to specify algorithms as sequences 
of instructions. Processors execute programs by executing machine instructions in 
a sequence and one at a time. Each instruction is executed in a sequence of opera-
tions (fetch instruction, fetch operands, perform operation, store results).

This view of the computer has never been entirely true. At the micro-operation 
level, multiple control signals are generated at the same time. Instruction pipelining, 
at least to the extent of overlapping fetch and execute operations, has been around 
for a long time. Both of these are examples of performing functions in parallel. This 
approach is taken further with superscalar organization, which exploits instruction-
level parallelism. With a superscalar machine, there are multiple execution units 
within a single processor, and these may execute multiple instructions from the 
same program in parallel.

As computer technology has evolved, and as the cost of computer hardware 
has dropped, computer designers have sought more and more opportunities for par-
allelism, usually to enhance performance and, in some cases, to increase availability. 
After an overview, this chapter looks at some of the most prominent approaches 
to parallel organization. First, we examine symmetric multiprocessors (SMPs), one 
of the earliest and still the most common example of parallel organization. In an 
SMP organization, multiple processors share a common memory. This organization 
raises the issue of cache coherence, to which a separate section is devoted. Next, 
the chapter examines multithreaded processors and chip multiprocessors. Then 
we describe clusters, which consist of multiple independent computers organized 
in a cooperative fashion. Clusters have become increasingly common to support 
workloads that are beyond the capacity of a single SMP. Another approach to the 
use of multiple processors that we examine is that of nonuniform memory access 
(NUMA) machines. The NUMA approach is relatively new and not yet proven in 
the marketplace, but is often considered as an alternative to the SMP or cluster 
approach. Finally, this chapter looks at hardware organizational approaches to vec-
tor computation. These approaches optimize the ALU for processing vectors or 
arrays of floating-point numbers. They are common on the class of systems known 
as supercomputers.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Summarize the types of parallel processor organizations.
� Present an overview of design features of symmetric multiprocessors.
� Understand the issue of cache coherence in a multiple processor system.
� Explain the key features of the MESI protocol.
� Explain the difference between implicit and explicit multithreading.
� Summarize key design issues for clusters.
� Explain the concept of nonuniform memory access.
� Present an overview of vector computation.
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 17.1 MULTIPLE PROCESSOR ORGANIZATIONS

Types of Parallel Processor Systems

A taxonomy first introduced by Flynn [FLYN72] is still the most common way of 
categorizing systems with parallel processing capability. Flynn proposed the follow-
ing categories of computer systems:

 • Single instruction, single data (SISD) stream: A single processor executes 
a single instruction stream to operate on data stored in a single memory. 
Uniprocessors fall into this category.

 • Single instruction, multiple data (SIMD) stream: A single machine instruc-
tion controls the simultaneous execution of a number of processing elements 
on a lockstep basis. Each processing element has an associated data memory, 
so that instructions are executed on different sets of data by different proces-
sors. Vector and array processors fall into this category, and are discussed in 
Section 18.7.

 • Multiple instruction, single data (MISD) stream: A sequence of data is trans-
mitted to a set of processors, each of which executes a different instruction 
sequence. This structure is not commercially implemented.

 • Multiple instruction, multiple data (MIMD) stream: A set of processors si-
multaneously execute different instruction sequences on different data sets. 
SMPs, clusters, and NUMA systems fit into this category.

With the MIMD organization, the processors are general purpose; each is able to 
process all of the instructions necessary to perform the appropriate data transforma-
tion. MIMDs can be further subdivided by the means in which the processors commu-
nicate (Figure 17.1). If the processors share a common memory, then each processor 
accesses programs and data stored in the shared memory, and processors communi-
cate with each other via that memory. The most common form of such system is known 
as a symmetric multiprocessor (SMP), which we examine in Section 17.2. In an SMP, 
multiple processors share a single memory or pool of memory by means of a shared 
bus or other interconnection mechanism; a distinguishing feature is that the memory 
access time to any region of memory is approximately the same for each processor.  
A more recent development is the nonuniform memory access (NUMA) organiza-
tion, which is described in Section 17.5. As the name suggests, the memory access time 
to different regions of memory may differ for a NUMA processor.

A collection of independent uniprocessors or SMPs may be interconnected to 
form a cluster. Communication among the computers is either via fixed paths or via 
some network facility.

Parallel Organizations

Figure 17.2 illustrates the general organization of the taxonomy of Figure 17.1. 
Figure 17.2a shows the structure of an SISD. There is some sort of control unit (CU) 
that provides an instruction stream (IS) to a processing unit (PU). The processing 
unit operates on a single data stream (DS) from a memory unit (MU). With an 
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SIMD, there is still a single control unit, now feeding a single instruction stream to 
multiple PUs. Each PU may have its own dedicated memory (illustrated in Figure 
17.2b), or there may be a shared memory. Finally, with the MIMD, there are mul-
tiple control units, each feeding a separate instruction stream to its own PU. The 
MIMD may be a shared-memory multiprocessor (Figure 17.2c) or a distributed-
memory multicomputer (Figure 17.2d).

The design issues relating to SMPs, clusters, and NUMAs are complex, involv-
ing issues relating to physical organization, interconnection structures, interproces-
sor communication, operating system design, and application software techniques. 
Our concern here is primarily with organization, although we touch briefly on oper-
ating system design issues.

 17.2 SYMMETRIC MULTIPROCESSORS

Until fairly recently, virtually all single-user personal computers and most worksta-
tions contained a single general-purpose microprocessor. As demands for perfor-
mance increase and as the cost of microprocessors continues to drop, vendors have 
introduced systems with an SMP organization. The term SMP refers to a computer 
hardware architecture and also to the operating system behavior that reflects that 
architecture. An SMP can be defined as a standalone computer system with the fol-
lowing characteristics:

 1. There are two or more similar processors of comparable capability.

 2. These processors share the same main memory and I/O facilities and are inter-
connected by a bus or other internal connection scheme, such that memory 
access time is approximately the same for each processor.

 3. All processors share access to I/O devices, either through the same channels 
or through different channels that provide paths to the same device.

 4. All processors can perform the same functions (hence the term symmetric).

 5. The system is controlled by an integrated operating system that provides inter-
action between processors and their programs at the job, task, file, and data 
element levels.

Points 1 to 4 should be self-explanatory. Point 5 illustrates one of the contrasts 
with a loosely coupled multiprocessing system, such as a cluster. In the latter, the 
physical unit of interaction is usually a message or complete file. In an SMP, indi-
vidual data elements can constitute the level of interaction, and there can be a high 
degree of cooperation between processes.

The operating system of an SMP schedules processes or threads across all of 
the processors. An SMP organization has a number of potential advantages over a 
uniprocessor organization, including the following:

 • Performance: If the work to be done by a computer can be organized so that 
some portions of the work can be done in parallel, then a system with multiple 
processors will yield greater performance than one with a single processor of 
the same type (Figure 17.3).
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 • Availability: In a symmetric multiprocessor, because all processors can 
perform the same functions, the failure of a single processor does not 
halt the machine. Instead, the system can continue to function at reduced  
performance.

 • Incremental growth: A user can enhance the performance of a system by add-
ing an additional processor.

 • Scaling: Vendors can offer a range of products with different price and perform-
ance characteristics based on the number of processors configured in the system.

It is important to note that these are potential, rather than guaranteed, benefits. 
The operating system must provide tools and functions to exploit the parallelism in 
an SMP system.

An attractive feature of an SMP is that the existence of multiple processors is 
transparent to the user. The operating system takes care of scheduling of threads or 
processes on individual processors and of synchronization among processors.

Organization

Figure 17.4 depicts in general terms the organization of a multiprocessor system. 
There are two or more processors. Each processor is self-contained, including a 
control unit, ALU, registers, and, typically, one or more levels of cache. Each pro-
cessor has access to a shared main memory and the I/O devices through some form 
of interconnection mechanism. The processors can communicate with each other 
through memory (messages and status information left in common data areas). It 
may also be possible for processors to exchange signals directly. The memory is 
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Figure 17.3 Multiprogramming and Multiprocessing
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often organized so that multiple simultaneous accesses to separate blocks of mem-
ory are possible. In some configurations, each processor may also have its own pri-
vate main memory and I/O channels in addition to the shared resources.

The most common organization for personal computers, workstations, and 
servers is the time-shared bus. The time-shared bus is the simplest mechanism for 
constructing a multiprocessor system (Figure 17.5). The structure and interfaces are 
basically the same as for a single-processor system that uses a bus interconnection. 
The bus consists of control, address, and data lines. To facilitate DMA transfers 
from I/O subsystems to processors, the following features are provided:

 • Addressing: It must be possible to distinguish modules on the bus to deter-
mine the source and destination of data.

 • Arbitration: Any I/O module can temporarily function as “master.” A mecha-
nism is provided to arbitrate competing requests for bus control, using some 
sort of priority scheme.

 • Time-sharing: When one module is controlling the bus, other modules are 
locked out and must, if necessary, suspend operation until bus access is achieved.

These uniprocessor features are directly usable in an SMP organization. In 
this latter case, there are now multiple processors as well as multiple I/O processors 
all attempting to gain access to one or more memory modules via the bus.

Processor

Main memory

•   •   •

• 
  •

   
•

Interconnection
network

Processor Processor

I/O

I/O

I/O

Figure 17.4 Generic Block Diagram of a Tightly Coupled Multiprocessor
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The bus organization has several attractive features:

 • Simplicity: This is the simplest approach to multiprocessor organization. The 
physical interface and the addressing, arbitration, and time-sharing logic of 
each processor remain the same as in a single-processor system.

 • Flexibility: It is generally easy to expand the system by attaching more proces-
sors to the bus.

 • Reliability: The bus is essentially a passive medium, and the failure of any 
 attached device should not cause failure of the whole system.

The main drawback to the bus organization is performance. All memory ref-
erences pass through the common bus. Thus, the bus cycle time limits the speed 
of the system. To improve performance, it is desirable to equip each processor 
with a cache memory. This should reduce the number of bus accesses dramatically. 
Typically, workstation and PC SMPs have two levels of cache, with the L1 cache 
internal (same chip as the processor) and the L2 cache either internal or external. 
Some processors now employ a L3 cache as well.

The use of caches introduces some new design considerations. Because each 
local cache contains an image of a portion of memory, if a word is altered in one 
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cache, it could conceivably invalidate a word in another cache. To prevent this, the 
other processors must be alerted that an update has taken place. This problem is 
known as the cache coherence problem and is typically addressed in hardware rather 
than by the operating system. We address this issue in Section 17.4.

Multiprocessor Operating System Design Considerations

An SMP operating system manages processor and other computer resources so that 
the user perceives a single operating system controlling system resources. In fact, 
such a configuration should appear as a single-processor multiprogramming system. 
In both the SMP and uniprocessor cases, multiple jobs or processes may be active at 
one time, and it is the responsibility of the operating system to schedule their execu-
tion and to allocate resources. A user may construct applications that use multiple 
processes or multiple threads within processes without regard to whether a single 
processor or multiple processors will be available. Thus, a multiprocessor operating 
system must provide all the functionality of a multiprogramming system plus addi-
tional features to accommodate multiple processors. Among the key design issues:

 • Simultaneous concurrent processes: OS routines need to be reentrant to  allow 
several processors to execute the same IS code simultaneously. With mul-
tiple processors executing the same or different parts of the OS, OS tables 
and management structures must be managed properly to avoid deadlock or 
 invalid operations.

 • Scheduling: Any processor may perform scheduling, so conflicts must be 
avoided. The scheduler must assign ready processes to available processors.

 • Synchronization: With multiple active processes having potential access to 
shared address spaces or shared I/O resources, care must be taken to provide 
effective synchronization. Synchronization is a facility that enforces mutual 
exclusion and event ordering.

 • Memory management: Memory management on a multiprocessor must 
deal with all of the issues found on uniprocessor machines, as is discussed in 
Chapter 8. In addition, the operating system needs to exploit the available 
hardware parallelism, such as multiported memories, to achieve the best per-
formance. The paging mechanisms on different processors must be coordi-
nated to enforce consistency when several processors share a page or segment 
and to decide on page replacement.

 • Reliability and fault tolerance: The operating system should provide graceful 
degradation in the face of processor failure. The scheduler and other portions 
of the operating system must recognize the loss of a processor and restructure 
management tables accordingly.

 17.3 CACHE COHERENCE AND THE MESI PROTOCOL

In contemporary multiprocessor systems, it is customary to have one or two levels 
of cache associated with each processor. This organization is essential to achieve 
reasonable performance. It does, however, create a problem known as the cache 
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 coherence problem. The essence of the problem is this: Multiple copies of the same 
data can exist in different caches simultaneously, and if processors are allowed 
to update their own copies freely, an inconsistent view of memory can result. In 
Chapter 4 we defined two common write policies:

 • Write back: Write operations are usually made only to the cache. Main mem-
ory is only updated when the corresponding cache line is flushed from the 
cache.

 • Write through: All write operations are made to main memory as well as to 
the cache, ensuring that main memory is always valid.

It is clear that a write-back policy can result in inconsistency. If two caches 
contain the same line, and the line is updated in one cache, the other cache will 
unknowingly have an invalid value. Subsequent reads to that invalid line produce 
invalid results. Even with the write-through policy, inconsistency can occur unless 
other caches monitor the memory traffic or receive some direct notification of the 
update.

In this section, we will briefly survey various approaches to the cache coher-
ence problem and then focus on the approach that is most widely used: the MESI 
(modified/exclusive/shared/invalid) protocol. A version of this protocol is used on 
both the Pentium 4 and PowerPC implementations.

For any cache coherence protocol, the objective is to let recently used local 
variables get into the appropriate cache and stay there through numerous reads and 
write, while using the protocol to maintain consistency of shared variables that might 
be in multiple caches at the same time. Cache coherence approaches have generally 
been divided into software and hardware approaches. Some implementations adopt 
a strategy that involves both software and hardware elements. Nevertheless, the 
classification into software and hardware approaches is still instructive and is com-
monly used in surveying cache coherence strategies.

Software Solutions

Software cache coherence schemes attempt to avoid the need for additional hard-
ware circuitry and logic by relying on the compiler and operating system to deal with 
the problem. Software approaches are attractive because the overhead of detecting 
potential problems is transferred from run time to compile time, and the design 
complexity is transferred from hardware to software. On the other hand, compile-
time software approaches generally must make conservative decisions, leading to 
inefficient cache utilization.

Compiler-based coherence mechanisms perform an analysis on the code to 
determine which data items may become unsafe for caching, and they mark those 
items accordingly. The operating system or hardware then prevents noncacheable 
items from being cached.

The simplest approach is to prevent any shared data variables from being 
cached. This is too conservative, because a shared data structure may be exclusively 
used during some periods and may be effectively read-only during other periods. It 
is only during periods when at least one process may update the variable and at least 
one other process may access the variable that cache coherence is an issue.



17.3 / CACHE COHERENCE AND THE MESI PROTOCOL  621

More efficient approaches analyze the code to determine safe periods for 
shared variables. The compiler then inserts instructions into the generated code 
to enforce cache coherence during the critical periods. A number of techniques 
have been developed for performing the analysis and for enforcing the results; see 
[LILJ93] and [STEN90] for surveys.

Hardware Solutions

Hardware-based solutions are generally referred to as cache coherence protocols. 
These solutions provide dynamic recognition at run time of potential inconsistency 
conditions. Because the problem is only dealt with when it actually arises, there 
is more effective use of caches, leading to improved performance over a software 
approach. In addition, these approaches are transparent to the programmer and the 
compiler, reducing the software development burden.

Hardware schemes differ in a number of particulars, including where the state 
information about data lines is held, how that information is organized, where coher-
ence is enforced, and the enforcement mechanisms. In general, hardware schemes 
can be divided into two categories: directory protocols and snoopy protocols.

DIRECTORY PROTOCOLS Directory protocols collect and maintain information 
about where copies of lines reside. Typically, there is a centralized controller that is 
part of the main memory controller, and a directory that is stored in main memory. 
The directory contains global state information about the contents of the various 
local caches. When an individual cache controller makes a request, the centralized 
controller checks and issues necessary commands for data transfer between 
memory and caches or between caches. It is also responsible for keeping the state 
information up to date; therefore, every local action that can affect the global state 
of a line must be reported to the central controller.

Typically, the controller maintains information about which processors have 
a copy of which lines. Before a processor can write to a local copy of a line, it 
must request exclusive access to the line from the controller. Before granting this 
exclusive access, the controller sends a message to all processors with a cached 
copy of this line, forcing each processor to invalidate its copy. After receiving 
acknowledgments back from each such processor, the controller grants exclusive 
access to the requesting processor. When another processor tries to read a line 
that is exclusively granted to another processor, it will send a miss notification 
to the controller. The controller then issues a command to the processor hold-
ing that line that requires the processor to do a write back to main memory. The 
line may now be shared for reading by the original processor and the requesting 
processor.

Directory schemes suffer from the drawbacks of a central bottleneck and the 
overhead of communication between the various cache controllers and the central 
controller. However, they are effective in large-scale systems that involve multiple 
buses or some other complex interconnection scheme.

SNOOPY PROTOCOLS Snoopy protocols distribute the responsibility for 
maintaining cache coherence among all of the cache controllers in a multiprocessor. 
A cache must recognize when a line that it holds is shared with other caches. 
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When an update action is performed on a shared cache line, it must be announced 
to all other caches by a broadcast mechanism. Each cache controller is able to 
“snoop” on the network to observe these broadcasted notifications, and react 
accordingly.

Snoopy protocols are ideally suited to a bus-based multiprocessor, because 
the shared bus provides a simple means for broadcasting and snooping. However, 
because one of the objectives of the use of local caches is to avoid bus accesses, care 
must be taken that the increased bus traffic required for broadcasting and snooping 
does not cancel out the gains from the use of local caches.

Two basic approaches to the snoopy protocol have been explored: write inval-
idate and write update (or write broadcast). With a write-invalidate protocol, there 
can be multiple readers but only one writer at a time. Initially, a line may be shared 
among several caches for reading purposes. When one of the caches wants to per-
form a write to the line, it first issues a notice that invalidates that line in the other 
caches, making the line exclusive to the writing cache. Once the line is exclusive, the 
owning processor can make cheap local writes until some other processor requires 
the same line.

With a write-update protocol, there can be multiple writers as well as multiple 
readers. When a processor wishes to update a shared line, the word to be updated is 
distributed to all others, and caches containing that line can update it.

Neither of these two approaches is superior to the other under all circum-
stances. Performance depends on the number of local caches and the pattern of 
memory reads and writes. Some systems implement adaptive protocols that employ 
both write-invalidate and write-update mechanisms.

The write-invalidate approach is the most widely used in commercial multi-
processor systems, such as the Pentium 4 and PowerPC. It marks the state of every 
cache line (using two extra bits in the cache tag) as modified, exclusive, shared, or 
invalid. For this reason, the write-invalidate protocol is called MESI. In the remain-
der of this section, we will look at its use among local caches across a multiproces-
sor. For simplicity in the presentation, we do not examine the mechanisms involved 
in coordinating among both level 1 and level 2 locally as well as at the same time 
coordinating across the distributed multiprocessor. This would not add any new 
principles but would greatly complicate the discussion.

The MESI Protocol

To provide cache consistency on an SMP, the data cache often supports a protocol 
known as MESI. For MESI, the data cache includes two status bits per tag, so that 
each line can be in one of four states:

 • Modified: The line in the cache has been modified (different from main 
 memory) and is available only in this cache.

 • Exclusive: The line in the cache is the same as that in main memory and is not 
present in any other cache.

 • Shared: The line in the cache is the same as that in main memory and may be 
present in another cache.

 • Invalid: The line in the cache does not contain valid data.
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Table 17.1 summarizes the meaning of the four states. Figure 17.6 displays a 
state diagram for the MESI protocol. Keep in mind that each line of the cache has 
its own state bits and therefore its own realization of the state diagram. Figure 17.6a 
shows the transitions that occur due to actions initiated by the processor attached 
to this cache. Figure 17.6b shows the transitions that occur due to events that are 
snooped on the common bus. This presentation of separate state diagrams for proces-
sor-initiated and bus-initiated actions helps to clarify the logic of the MESI protocol. 

Table 17.1 MESI Cache Line States

M  
Modified

E  
Exclusive

S  
Shared

I  
Invalid
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At any time a cache line is in a single state. If the next event is from the attached 
processor, then the transition is dictated by Figure 17.6a and if the next event is 
from the bus, the transition is dictated by Figure 17.6b. Let us look at these transi-
tions in more detail.

READ MISS When a read miss occurs in the local cache, the processor initiates a 
memory read to read the line of main memory containing the missing address. The 
processor inserts a signal on the bus that alerts all other processor/cache units to 
snoop the transaction. There are a number of possible outcomes:

 • If one other cache has a clean (unmodified since read from memory) copy of 
the line in the exclusive state, it returns a signal indicating that it shares this 
line. The responding processor then transitions the state of its copy from ex-
clusive to shared, and the initiating processor reads the line from main mem-
ory and transitions the line in its cache from invalid to shared.

 • If one or more caches have a clean copy of the line in the shared state, each of 
them signals that it shares the line. The initiating processor reads the line and 
transitions the line in its cache from invalid to shared.

 • If one other cache has a modified copy of the line, then that cache blocks the 
memory read and provides the line to the requesting cache over the shared 
bus. The responding cache then changes its line from modified to shared.1 The 
line sent to the requesting cache is also received and processed by the memory 
controller, which stores the block in memory.

 • If no other cache has a copy of the line (clean or modified), then no signals are 
returned. The initiating processor reads the line and transitions the line in its 
cache from invalid to exclusive.

READ HIT When a read hit occurs on a line currently in the local cache, the 
processor simply reads the required item. There is no state change: The state 
remains modified, shared, or exclusive.

WRITE MISS When a write miss occurs in the local cache, the processor initiates a 
memory read to read the line of main memory containing the missing address. For 
this purpose, the processor issues a signal on the bus that means read-with-intent-
to-modify (RWITM). When the line is loaded, it is immediately marked modified. 
With respect to other caches, two possible scenarios precede the loading of the line 
of data.

First, some other cache may have a modified copy of this line (state = modify). 
In this case, the alerted processor signals the initiating processor that another proc-
essor has a modified copy of the line. The initiating processor surrenders the bus 
and waits. The other processor gains access to the bus, writes the modified cache 

1In some implementations, the cache with the modified line signals the initiating processor to retry. Mean-
while, the processor with the modified copy seizes the bus, writes the modified line back to main memory, 
and transitions the line in its cache from modified to shared. Subsequently, the requesting processor tries 
again and finds that one or more processors have a clean copy of the line in the shared state, as described 
in the preceding point.



17.3 / CACHE COHERENCE AND THE MESI PROTOCOL  625

line back to main memory, and transitions the state of the cache line to invalid 
(because the initiating processor is going to modify this line). Subsequently, the 
initiating processor will again issue a signal to the bus of RWITM and then read 
the line from main memory, modify the line in the cache, and mark the line in the 
modified state.

The second scenario is that no other cache has a modified copy of the requested 
line. In this case, no signal is returned, and the initiating processor proceeds to read 
in the line and modify it. Meanwhile, if one or more caches have a clean copy of the 
line in the shared state, each cache invalidates its copy of the line, and if one cache 
has a clean copy of the line in the exclusive state, it invalidates its copy of the line.

WRITE HIT When a write hit occurs on a line currently in the local cache, the effect 
depends on the current state of that line in the local cache:

 • Shared: Before performing the update, the processor must gain exclusive own-
ership of the line. The processor signals its intent on the bus. Each processor 
that has a shared copy of the line in its cache transitions the sector from shared 
to invalid. The initiating processor then performs the update and transitions 
its copy of the line from shared to modified.

 • Exclusive: The processor already has exclusive control of this line, and so it 
simply performs the update and transitions its copy of the line from exclusive 
to modified.

 • Modified: The processor already has exclusive control of this line and has the 
line marked as modified, and so it simply performs the update.

L1-L2 CACHE CONSISTENCY We have so far described cache coherency protocols 
in terms of the cooperate activity among caches connected to the same bus or 
other SMP interconnection facility. Typically, these caches are L2 caches, and each 
processor also has an L1 cache that does not connect directly to the bus and that 
therefore cannot engage in a snoopy protocol. Thus, some scheme is needed to 
maintain data integrity across both levels of cache and across all caches in the SMP 
configuration.

The strategy is to extend the MESI protocol (or any cache coherence proto-
col) to the L1 caches. Thus, each line in the L1 cache includes bits to indicate the 
state. In essence, the objective is the following: for any line that is present in both an 
L2 cache and its corresponding L1 cache, the L1 line state should track the state of 
the L2 line. A simple means of doing this is to adopt the write-through policy in the 
L1 cache; in this case the write through is to the L2 cache and not to the memory. 
The L1 write-through policy forces any modification to an L1 line out to the L2 
cache and therefore makes it visible to other L2 caches. The use of the L1 write-
through policy requires that the L1 content must be a subset of the L2 content. This 
in turn suggests that the associativity of the L2 cache should be equal to or greater 
than that of the L1 associativity. The L1 write-through policy is used in the IBM 
S/390 SMP.

If the L1 cache has a write-back policy, the relationship between the two caches 
is more complex. There are several approaches to maintaining coherence. For 
example, the approach used on the Pentium II is described in detail in [SHAN05].



626  CHAPTER 17 / PARALLEL PROCESSING

 17.4 MULTITHREADING AND CHIP MULTIPROCESSORS

The most important measure of performance for a processor is the rate at which it 
executes instructions. This can be expressed as

MIPS rate = f * IPC

where f is the processor clock frequency, in MHz, and IPC (instructions per cycle) 
is the average number of instructions executed per cycle. Accordingly, designers 
have pursued the goal of increased performance on two fronts: increasing clock fre-
quency and increasing the number of instructions executed or, more properly, the 
number of instructions that complete during a processor cycle. As we have seen in 
earlier chapters, designers have increased IPC by using an instruction pipeline and 
then by using multiple parallel instruction pipelines in a superscalar architecture. 
With pipelined and multiple-pipeline designs, the principal problem is to maximize 
the utilization of each pipeline stage. To improve throughput, designers have cre-
ated ever more complex mechanisms, such as executing some instructions in a dif-
ferent order from the way they occur in the instruction stream and beginning execu-
tion of instructions that may never be needed. But as was discussed in Section 2.2, 
this approach may be reaching a limit due to complexity and power consumption 
concerns.

An alternative approach, which allows for a high degree of instruction-level 
parallelism without increasing circuit complexity or power consumption, is called 
multithreading. In essence, the instruction stream is divided into several smaller 
streams, known as threads, such that the threads can be executed in parallel.

The variety of specific multithreading designs, realized in both commercial 
systems and experimental systems, is vast. In this section, we give a brief survey of 
the major concepts.

Implicit and Explicit Multithreading

The concept of thread used in discussing multithreaded processors may or may not 
be the same as the concept of software threads in a multiprogrammed operating 
system. It will be useful to define terms briefly:

 • Process: An instance of a program running on a computer. A process embod-
ies two key characteristics:

— Resource ownership: A process includes a virtual address space to hold the 
process image; the process image is the collection of program, data, stack, 
and attributes that define the process. From time to time, a process may 
be allocated control or ownership of resources, such as main memory, I/O 
channels, I/O devices, and files.

— Scheduling/execution: The execution of a process follows an execution 
path (trace) through one or more programs. This execution may be inter-
leaved with that of other processes. Thus, a process has an execution state 
(Running, Ready, etc.) and a dispatching priority and is the entity that is 
scheduled and dispatched by the operating system.
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 • Process switch: An operation that switches the processor from one process to 
another, by saving all the process control data, registers, and other information 
for the first and replacing them with the process information for the second.2

 • Thread: A dispatchable unit of work within a process. It includes a processor 
context (which includes the program counter and stack pointer) and its own data 
area for a stack (to enable subroutine branching). A thread executes sequen-
tially and is interruptible so that the processor can turn to another thread.

 • Thread switch: The act of switching processor control from one thread to an-
other within the same process. Typically, this type of switch is much less costly 
than a process switch.

Thus, a thread is concerned with scheduling and execution, whereas a process 
is concerned with both scheduling/execution and resource ownership. The multi-
ple threads within a process share the same resources. This is why a thread switch 
is much less time consuming than a process switch. Traditional operating systems, 
such as earlier versions of UNIX, did not support threads. Most modern operating 
systems, such as Linux, other versions of UNIX, and Windows, do support thread. 
A distinction is made between user-level threads, which are visible to the applica-
tion program, and kernel-level threads, which are visible only to the operating sys-
tem. Both of these may be referred to as explicit threads, defined in software.

All of the commercial processors and most of the experimental processors so 
far have used explicit multithreading. These systems concurrently execute instruc-
tions from different explicit threads, either by interleaving instructions from dif-
ferent threads on shared pipelines or by parallel execution on parallel pipelines. 
Implicit multithreading refers to the concurrent execution of multiple threads 
extracted from a single sequential program. These implicit threads may be defined 
either statically by the compiler or dynamically by the hardware. In the remainder 
of this section we consider explicit multithreading.

Approaches to Explicit Multithreading

At minimum, a multithreaded processor must provide a separate program counter 
for each thread of execution to be executed concurrently. The designs differ in the 
amount and type of additional hardware used to support concurrent thread execu-
tion. In general, instruction fetching takes place on a thread basis. The processor 
treats each thread separately and may use a number of techniques for optimizing 
single-thread execution, including branch prediction, register renaming, and super-
scalar techniques. What is achieved is thread-level parallelism, which may provide 
for greatly improved performance when married to instruction-level parallelism.

Broadly speaking, there are four principal approaches to multithreading:

 • Interleaved multithreading: This is also known as fine-grained multithreading. 
The processor deals with two or more thread contexts at a time, switching 
from one thread to another at each clock cycle. If a thread is blocked because 

2The term context switch is often found in OS literature and textbooks. Unfortunately, although most of 
the literature uses this term to mean what is here called a process switch, other sources use it to mean a 
thread switch. To avoid ambiguity, the term is not used in this book.
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of data dependencies or memory latencies, that thread is skipped and a ready 
thread is executed.

 • Blocked multithreading: This is also known as coarse-grained multithreading. 
The instructions of a thread are executed successively until an event occurs 
that may cause delay, such as a cache miss. This event induces a switch to 
another thread. This approach is effective on an in-order processor that would 
stall the pipeline for a delay event such as a cache miss.

 • Simultaneous multithreading (SMT): Instructions are simultaneously issued 
from multiple threads to the execution units of a superscalar processor. This 
combines the wide superscalar instruction issue capability with the use of mul-
tiple thread contexts.

 • Chip multiprocessing: In this case, the entire processor is replicated on a sin-
gle chip and each processor handles separate threads. The advantage of this 
approach is that the available logic area on a chip is used effectively without 
depending on ever-increasing complexity in pipeline design. This is referred to 
as multicore; we examine this topic separately in Chapter 18.

For the first two approaches, instructions from different threads are not 
executed simultaneously. Instead, the processor is able to rapidly switch from one 
thread to another, using a different set of registers and other context information. 
This results in a better utilization of the processor’s execution resources and avoids 
a large penalty due to cache misses and other latency events. The SMT approach 
involves true simultaneous execution of instructions from different threads, using 
replicated execution resources. Chip multiprocessing also enables simultaneous 
execution of instructions from different threads.

Figure 17.7, based on one in [UNGE02], illustrates some of the possible pipe-
line architectures that involve multithreading and contrasts these with approaches 
that do not use multithreading. Each horizontal row represents the potential issue 
slot or slots for a single execution cycle; that is, the width of each row corresponds to 
the maximum number of instructions that can be issued in a single clock cycle.3 The 
vertical dimension represents the time sequence of clock cycles. An empty (shaded) 
slot represents an unused execution slot in one pipeline. A no-op is indicated by N.

The first three illustrations in Figure 17.7 show different approaches with a 
scalar (i.e., single-issue) processor:

 • Single-threaded scalar: This is the simple pipeline found in traditional RISC 
and CISC machines, with no multithreading.

 • Interleaved multithreaded scalar: This is the easiest multithreading approach 
to implement. By switching from one thread to another at each clock cycle, 
the pipeline stages can be kept fully occupied, or close to fully occupied. The 
hardware must be capable of switching from one thread context to another 
between cycles.

3Issue slots are the position from which instructions can be issued in a given clock cycle. Recall from 
Chapter 16 that instruction issue is the process of initiating instruction execution in the processor’s func-
tional units. This occurs when an instruction moves from the decode stage of the pipeline to the first 
execute stage of the pipeline.
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 • Blocked multithreaded scalar: In this case, a single thread is executed until a 
latency event occurs that would stop the pipeline, at which time the processor 
switches to another thread.

Figure 17.7c shows a situation in which the time to perform a thread switch is 
one cycle, whereas Figure 17.7b shows that thread switching occurs in zero cycles. 
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In the case of interleaved multithreading, it is assumed that there are no control or 
data dependencies between threads, which simplifies the pipeline design and there-
fore should allow a thread switch with no delay. However, depending on the specific 
design and implementation, block multithreading may require a clock cycle to per-
form a thread switch, as illustrated in Figure 17.7. This is true if a fetched instruction 
triggers the thread switch and must be discarded from the pipeline [UNGE03].

Although interleaved multithreading appears to offer better processor utiliza-
tion than blocked multithreading, it does so at the sacrifice of single-thread per-
formance. The multiple threads compete for cache resources, which raises the prob-
ability of a cache miss for a given thread.

More opportunities for parallel execution are available if the processor can 
issue multiple instructions per cycle. Figures 17.7d through 17.7i illustrate a number 
of variations among processors that have hardware for issuing four instructions per 
cycle. In all these cases, only instructions from a single thread are issued in a single 
cycle. The following alternatives are illustrated:

 • Superscalar: This is the basic superscalar approach with no multithreading. 
Until relatively recently, this was the most powerful approach to providing 
parallelism within a processor. Note that during some cycles, not all of the 
available issue slots are used. During these cycles, less than the maximum 
number of instructions is issued; this is referred to as horizontal loss. During 
other instruction cycles, no issue slots are used; these are cycles when no in-
structions can be issued; this is referred to as vertical loss.

 • Interleaved multithreading superscalar: During each cycle, as many instruc-
tions as possible are issued from a single thread. With this technique, poten-
tial delays due to thread switches are eliminated, as previously discussed. 
However, the number of instructions issued in any given cycle is still limited 
by dependencies that exist within any given thread.

 • Blocked multithreaded superscalar: Again, instructions from only one thread 
may be issued during any cycle, and blocked multithreading is used.

 • Very long instruction word (VLIW): A VLIW architecture, such as IA-64, 
places multiple instructions in a single word. Typically, a VLIW is constructed 
by the compiler, which places operations that may be executed in parallel in the 
same word. In a simple VLIW machine (Figure 17.7g), if it is not possible to com-
pletely fill the word with instructions to be issued in parallel, no-ops are used.

 • Interleaved multithreading VLIW: This approach should provide similar 
efficiencies to those provided by interleaved multithreading on a superscalar 
architecture.

 • Blocked multithreaded VLIW: This approach should provide similar efficien-
cies to those provided by blocked multithreading on a superscalar architecture.

The final two approaches illustrated in Figure 17.7 enable the parallel, simul-
taneous execution of multiple threads:

 • Simultaneous multithreading: Figure 17.7j shows a system capable of issuing 
8 instructions at a time. If one thread has a high degree of instruction-level 
parallelism, it may on some cycles be able fill all of the horizontal slots. On 
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other cycles, instructions from two or more threads may be issued. If sufficient 
threads are active, it should usually be possible to issue the maximum number 
of instructions on each cycle, providing a high level of efficiency.

 • Chip multiprocessor (multicore): Figure 17.7k shows a chip containing four 
processors, each of which has a two-issue superscalar processor. Each proc-
essor is assigned a thread, from which it can issue up to two instructions per 
cycle. We discuss multicore computers in Chapter 18.

Comparing Figures 17.7j and 17.7k, we see that a chip multiprocessor with 
the same instruction issue capability as an SMT cannot achieve the same degree of 
instruction-level parallelism. This is because the chip multiprocessor is not able to 
hide latencies by issuing instructions from other threads. On the other hand, the chip 
multiprocessor should outperform a superscalar processor with the same instruction 
issue capability, because the horizontal losses will be greater for the superscalar 
processor. In addition, it is possible to use multithreading within each of the proces-
sors on a chip multiprocessor, and this is done on some contemporary machines.

Example Systems

PENTIUM 4 More recent models of the Pentium 4 use a multithreading technique 
that the Intel literature refers to as hyperthreading [MARR02]. In essence, the 
Pentium 4 approach is to use SMT with support for two threads. Thus, the single 
multithreaded processor is logically two processors.

IBM POWER5 The IBM Power5 chip, which is used in high-end PowerPC products, 
combines chip multiprocessing with SMT [KALL04]. The chip has two separate 
processors, each of which is a multithreaded processor capable of supporting two 
threads concurrently using SMT. Interestingly, the designers simulated various 
alternatives and found that having two two-way SMT processors on a single chip 
provided superior performance to a single four-way SMT processor. The simulations 
showed that additional multithreading beyond the support for two threads might 
decrease performance because of cache thrashing, as data from one thread displaces 
data needed by another thread.

Figure 17.8 shows the IBM Power5’s instruction flow diagram. Only a few of 
the elements in the processor need to be replicated, with separate elements dedi-
cated to separate threads. Two program counters are used. The processor alternates 
fetching instructions, up to eight at a time, between the two threads. All the instruc-
tions are stored in a common instruction cache and share an instruction transla-
tion facility, which does a partial instruction decode. When a conditional branch is 
encountered, the branch prediction facility predicts the direction of the branch and, 
if possible, calculates the target address. For predicting the target of a subroutine 
return, the processor uses a return stack, one for each thread.

Instructions then move into two separate instruction buffers. Then, on the 
basis of thread priority, a group of instructions is selected and decoded in paral-
lel. Next, instructions flow through a register-renaming facility in program order. 
Logical registers are mapped to physical registers. The Power5 has 120 physical 
 general-purpose registers and 120 physical floating-point registers. The instructions 
are then moved into issue queues. From the issue queues, instructions are issued 
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using symmetric multithreading. That is, the processor has a superscalar architec-
ture and can issue instructions from one or both threads in parallel. At the end of 
the pipeline, separate thread resources are needed to commit the instructions.

 17.5 CLUSTERS

An important and relatively recent development computer system design is clus-
tering. Clustering is an alternative to symmetric multiprocessing as an approach to 
providing high performance and high availability and is particularly attractive for 
server applications. We can define a cluster as a group of interconnected, whole 
computers working together as a unified computing resource that can create the 
illusion of being one machine. The term whole computer means a system that can 
run on its own, apart from the cluster; in the literature, each computer in a cluster is 
typically referred to as a node.

[BREW97] lists four benefits that can be achieved with clustering. These can 
also be thought of as objectives or design requirements:

 • Absolute scalability: It is possible to create large clusters that far surpass the 
power of even the largest standalone machines. A cluster can have tens, hun-
dreds, or even thousands of machines, each of which is a multiprocessor.

 • Incremental scalability: A cluster is configured in such a way that it is possible 
to add new systems to the cluster in small increments. Thus, a user can start 
out with a modest system and expand it as needs grow, without having to go 
through a major upgrade in which an existing small system is replaced with a 
larger system.

 • High availability: Because each node in a cluster is a standalone computer, 
the failure of one node does not mean loss of service. In many products, fault 
tolerance is handled automatically in software.

 • Superior price/performance: By using commodity building blocks, it is pos-
sible to put together a cluster with equal or greater computing power than a 
single large machine, at much lower cost.

Cluster Configurations

In the literature, clusters are classified in a number of different ways. Perhaps the 
simplest classification is based on whether the computers in a cluster share access to 
the same disks. Figure 17.9a shows a two-node cluster in which the only interconnec-
tion is by means of a high-speed link that can be used for message exchange to coor-
dinate cluster activity. The link can be a LAN that is shared with other computers 
that are not part of the cluster or the link can be a dedicated interconnection facility. 
In the latter case, one or more of the computers in the cluster will have a link to a 
LAN or WAN so that there is a connection between the server cluster and remote 
client systems. Note that in the figure, each computer is depicted as being a multi-
processor. This is not necessary but does enhance both performance and availability.

In the simple classification depicted in Figure 17.9, the other alternative is 
a shared-disk cluster. In this case, there generally is still a message link between 
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nodes. In addition, there is a disk subsystem that is directly linked to multiple com-
puters within the cluster. In this figure, the common disk subsystem is a RAID sys-
tem. The use of RAID or some similar redundant disk technology is common in 
clusters so that the high availability achieved by the presence of multiple computers 
is not compromised by a shared disk that is a single point of failure.

A clearer picture of the range of cluster options can be gained by looking at 
functional alternatives. Table 17.2 provides a useful classification along functional 
lines, which we now discuss.

A common, older method, known as passive standby, is simply to have one 
computer handle all of the processing load while the other computer remains inac-
tive, standing by to take over in the event of a failure of the primary. To coordi-
nate the machines, the active, or primary, system periodically sends a “heartbeat” 
message to the standby machine. Should these messages stop arriving, the standby 
assumes that the primary server has failed and puts itself into operation. This 
approach increases availability but does not improve performance. Further, if the 
only information that is exchanged between the two systems is a heartbeat message, 
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and if the two systems do not share common disks, then the standby provides a 
functional backup but has no access to the databases managed by the primary.

The passive standby is generally not referred to as a cluster. The term cluster is 
reserved for multiple interconnected computers that are all actively doing process-
ing while maintaining the image of a single system to the outside world. The term 
active secondary is often used in referring to this configuration. Three classifications 
of clustering can be identified: separate servers, shared nothing, and shared memory.

In one approach to clustering, each computer is a separate server with its own 
disks and there are no disks shared between systems (Figure 17.9a). This arrange-
ment provides high performance as well as high availability. In this case, some type 
of management or scheduling software is needed to assign incoming client requests 
to servers so that the load is balanced and high utilization is achieved. It is desirable 
to have a failover capability, which means that if a computer fails while executing an 
application, another computer in the cluster can pick up and complete the applica-
tion. For this to happen, data must constantly be copied among systems so that each 
system has access to the current data of the other systems. The overhead of this data 
exchange ensures high availability at the cost of a performance penalty.

To reduce the communications overhead, most clusters now consist of servers 
connected to common disks (Figure 17.9b). In one variation on this approach, called 
shared nothing, the common disks are partitioned into volumes, and each volume is 
owned by a single computer. If that computer fails, the cluster must be reconfigured 
so that some other computer has ownership of the volumes of the failed computer.

Table 17.2 Clustering Methods: Benefits and Limitations

Clustering Method Description Benefits Limitations

Passive Standby A secondary server takes 
over in case of primary 
server failure.

Easy to implement. High cost because the 
secondary server is 
unavailable for other 
processing tasks.

Active Secondary: The secondary server is 
also used for processing 
tasks.

Reduced cost because 
secondary servers can be 
used for processing.

Increased complexity.

 Separate Servers Separate servers have 
their own disks. Data is 
continuously copied from 
primary to secondary 
server.

High availability. High network and server 
overhead due to copying 
operations.

  Servers Connected  
to Disks

Servers are cabled to 
the same disks, but each 
server owns its disks. If 
one server fails, its disks 
are taken over by the 
other server.

Reduced network and 
server overhead due to 
elimination of copying 
operations.

Usually requires disk 
mirroring or RAID 
technology to  
compensate for risk  
of disk failure.

  Servers Share  
Disks

Multiple servers simulta-
neously share access to 
disks.

Low network and server 
overhead. Reduced risk 
of downtime caused by 
disk failure.

Requires lock manager 
software. Usually used 
with disk mirroring or 
RAID technology.
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It is also possible to have multiple computers share the same disks at the same 
time (called the shared disk approach), so that each computer has access to all of the 
volumes on all of the disks. This approach requires the use of some type of locking 
facility to ensure that data can only be accessed by one computer at a time.

Operating System Design Issues

Full exploitation of a cluster hardware configuration requires some enhancements 
to a single-system operating system.

FAILURE MANAGEMENT How failures are managed by a cluster depends on the 
clustering method used (Table 17.2). In general, two approaches can be taken to 
dealing with failures: highly available clusters and fault-tolerant clusters. A highly 
available cluster offers a high probability that all resources will be in service. If a failure 
occurs, such as a system goes down or a disk volume is lost, then the queries in progress 
are lost. Any lost query, if retried, will be serviced by a different computer in the 
cluster. However, the cluster operating system makes no guarantee about the state of 
partially executed transactions. This would need to be handled at the application level.

A fault-tolerant cluster ensures that all resources are always available. This 
is achieved by the use of redundant shared disks and mechanisms for backing out 
uncommitted transactions and committing completed transactions.

The function of switching applications and data resources over from a failed 
system to an alternative system in the cluster is referred to as failover. A related 
function is the restoration of applications and data resources to the original system 
once it has been fixed; this is referred to as failback. Failback can be automated, but 
this is desirable only if the problem is truly fixed and unlikely to recur. If not, auto-
matic failback can cause subsequently failed resources to bounce back and forth 
between computers, resulting in performance and recovery problems.

LOAD BALANCING A cluster requires an effective capability for balancing the 
load among available computers. This includes the requirement that the cluster 
be incrementally scalable. When a new computer is added to the cluster, the 
load-balancing facility should automatically include this computer in scheduling 
applications. Middleware mechanisms need to recognize that services can appear 
on different members of the cluster and may migrate from one member to another.

PARALLELIZING COMPUTATION In some cases, effective use of a cluster requires 
executing software from a single application in parallel. [KAPP00] lists three general 
approaches to the problem:

 • Parallelizing compiler: A parallelizing compiler determines, at compile time, 
which parts of an application can be executed in parallel. These are then split 
off to be assigned to different computers in the cluster. Performance depends 
on the nature of the problem and how well the compiler is designed. In gen-
eral, such compilers are difficult to develop.

 • Parallelized application: In this approach, the programmer writes the applica-
tion from the outset to run on a cluster, and uses message passing to move data, 
as required, between cluster nodes. This places a high burden on the program-
mer but may be the best approach for exploiting clusters for some applications.
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 • Parametric computing: This approach can be used if the essence of the ap-
plication is an algorithm or program that must be executed a large number 
of times, each time with a different set of starting conditions or parameters. 
A good example is a simulation model, which will run a large number of dif-
ferent scenarios and then develop statistical summaries of the results. For this 
approach to be effective, parametric processing tools are needed to organize, 
run, and manage the jobs in an effective manner.

Cluster Computer Architecture

Figure 17.10 shows a typical cluster architecture. The individual computers are con-
nected by some high-speed LAN or switch hardware. Each computer is capable of 
operating independently. In addition, a middleware layer of software is installed 
in each computer to enable cluster operation. The cluster middleware provides a 
unified system image to the user, known as a single-system image. The middleware 
is also responsible for providing high availability, by means of load balancing and 
responding to failures in individual components. [HWAN99] lists the following as 
desirable cluster middleware services and functions:

 • Single entry point: A user logs onto the cluster rather than to an individual 
computer.

 • Single file hierarchy: The user sees a single hierarchy of file directories under 
the same root directory.

 • Single control point: There is a default workstation used for cluster manage-
ment and control.

 • Single virtual networking: Any node can access any other point in the cluster, 
even though the actual cluster configuration may consist of multiple intercon-
nected networks. There is a single virtual network operation.

 • Single memory space: Distributed shared memory enables programs to share 
variables.

 • Single job-management system: Under a cluster job scheduler, a user can sub-
mit a job without specifying the host computer to execute the job.

 • Single user interface: A common graphic interface supports all users, regard-
less of the workstation from which they enter the cluster.

 • Single I/O space: Any node can remotely access any I/O peripheral or disk 
device without knowledge of its physical location.

 • Single process space: A uniform process-identification scheme is used. A 
process on any node can create or communicate with any other process on a 
remote node.

 • Checkpointing: This function periodically saves the process state and interme-
diate computing results, to allow rollback recovery after a failure.

 • Process migration: This function enables load balancing.

The last four items on the preceding list enhance the availability of the cluster. 
The remaining items are concerned with providing a single system image.
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Returning to Figure 17.10, a cluster will also include software tools for ena-
bling the efficient execution of programs that are capable of parallel execution.

Blade Servers

A common implementation of the cluster approach is the blade server. A blade 
server is a server architecture that houses multiple server modules (“blades”) in 
a single chassis. It is widely used in data centers to save space and improve system 
management. Either self-standing or rack mounted, the chassis provides the power 
supply, and each blade has its own processor, memory, and hard disk.

An example of the application is shown in Figure 17.11, taken from [NOWE07]. 
The trend at large data centers, with substantial banks of blade servers, is the deploy-
ment of 10-Gbps ports on individual servers to handle the massive multimedia traf-
fic provided by these servers. Such arrangements are stressing the on-site Ethernet 
switches needed to interconnect large numbers of servers. A 100-Gbps rate provides 
the bandwidth required to handle the increased traffic load. The 100-Gbps Ethernet 
switches are deployed in switch uplinks inside the data center as well as providing 
interbuilding, intercampus, wide area connections for enterprise networks.

Clusters Compared to SMP

Both clusters and symmetric multiprocessors provide a configuration with multiple 
processors to support high-demand applications. Both solutions are commercially 
available, although SMP schemes have been around far longer.

The main strength of the SMP approach is that an SMP is easier to manage 
and configure than a cluster. The SMP is much closer to the original single-processor 

N � 100 Gbps

N � 100 Gbps

10 Gbps
&

40 Gbps

Blade computer

Ethernet
switch

Figure 17.11 Example 100-Gbps Ethernet Configuration 
for Massive Blade Server Site
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model for which nearly all applications are written. The principal change required 
in going from a uniprocessor to an SMP is to the scheduler function. Another ben-
efit of the SMP is that it usually takes up less physical space and draws less power 
than a comparable cluster. A final important benefit is that the SMP products are 
well established and stable.

Over the long run, however, the advantages of the cluster approach are likely 
to result in clusters dominating the high-performance server market. Clusters are 
far superior to SMPs in terms of incremental and absolute scalability. Clusters are 
also superior in terms of availability, because all components of the system can 
readily be made highly redundant.

 17.6 NONUNIFORM MEMORY ACCESS

In terms of commercial products, the two common approaches to providing a 
 multiple-processor system to support applications are SMPs and clusters. For some 
years, another approach, known as nonuniform memory access (NUMA), has been 
the subject of research and commercial NUMA products are now available.

Before proceeding, we should define some terms often found in the NUMA 
literature.

 • Uniform memory access (UMA): All processors have access to all parts of 
main memory using loads and stores. The memory access time of a processor 
to all regions of memory is the same. The access times experienced by differ-
ent processors are the same. The SMP organization discussed in Sections 17.2 
and 17.3 is UMA.

 • Nonuniform memory access (NUMA): All processors have access to all parts 
of main memory using loads and stores. The memory access time of a proces-
sor differs depending on which region of main memory is accessed. The last 
statement is true for all processors; however, for different processors, which 
memory regions are slower and which are faster differ.

 • Cache-coherent NUMA (CC-NUMA): A NUMA system in which cache 
 coherence is maintained among the caches of the various processors.

A NUMA system without cache coherence is more or less equivalent to a cluster. 
The commercial products that have received much attention recently are CC-NUMA 
systems, which are quite distinct from both SMPs and clusters. Usually, but unfortu-
nately not always, such systems are in fact referred to in the commercial literature as 
CC-NUMA systems. This section is concerned only with CC-NUMA systems.

Motivation

With an SMP system, there is a practical limit to the number of processors that 
can be used. An effective cache scheme reduces the bus traffic between any one 
processor and main memory. As the number of processors increases, this bus traf-
fic also increases. Also, the bus is used to exchange cache-coherence signals, further 
adding to the burden. At some point, the bus becomes a performance bottleneck. 
Performance degradation seems to limit the number of processors in an SMP 
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configuration to somewhere between 16 and 64 processors. For example, Silicon 
Graphics’ Power Challenge SMP is limited to 64 R10000 processors in a single sys-
tem; beyond this number performance degrades substantially.

The processor limit in an SMP is one of the driving motivations behind the 
development of cluster systems. However, with a cluster, each node has its own 
private main memory; applications do not see a large global memory. In effect, 
coherency is maintained in software rather than hardware. This memory granular-
ity affects performance and, to achieve maximum performance, software must be 
tailored to this environment. One approach to achieving large-scale multiprocess-
ing while retaining the flavor of SMP is NUMA. For example, the Silicon Graphics 
Origin NUMA system is designed to support up to 1024 MIPS R10000 processors 
[WHIT97] and the Sequent NUMA-Q system is designed to support up to 252 
Pentium II processors [LOVE96].

The objective with NUMA is to maintain a transparent system wide mem-
ory while permitting multiple multiprocessor nodes, each with its own bus or other 
internal interconnect system.

Organization

Figure 17.12 depicts a typical CC-NUMA organization. There are multiple indepen-
dent nodes, each of which is, in effect, an SMP organization. Thus, each node con-
tains multiple processors, each with its own L1 and L2 caches, plus main memory. 
The node is the basic building block of the overall CC-NUMA organization. For 
example, each Silicon Graphics Origin node includes two MIPS R10000 processors; 
each Sequent NUMA-Q node includes four Pentium II processors. The nodes are 
interconnected by means of some communications facility, which could be a switch-
ing mechanism, a ring, or some other networking facility.

Each node in the CC-NUMA system includes some main memory. From the 
point of view of the processors, however, there is only a single addressable memory, 
with each location having a unique system wide address. When a processor initiates 
a memory access, if the requested memory location is not in that processor’s cache, 
then the L2 cache initiates a fetch operation. If the desired line is in the local portion 
of the main memory, the line is fetched across the local bus. If the desired line is in 
a remote portion of the main memory, then an automatic request is sent out to fetch 
that line across the interconnection network, deliver it to the local bus, and then 
deliver it to the requesting cache on that bus. All of this activity is automatic and 
transparent to the processor and its cache.

In this configuration, cache coherence is a central concern. Although imple-
mentations differ as to details, in general terms we can say that each node must 
maintain some sort of directory that gives it an indication of the location of vari-
ous portions of memory and also cache status information. To see how this scheme 
works, we give an example taken from [PFIS98]. Suppose that processor 3 on node 
2 (P2-3) requests a memory location 798, which is in the memory of node 1. The fol-
lowing sequence occurs:

 1. P2-3 issues a read request on the snoopy bus of node 2 for location 798.

 2. The directory on node 2 sees the request and recognizes that the location is in 
node 1.
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 3. Node 2’s directory sends a request to node 1, which is picked up by node 1’s 
directory.

 4. Node 1’s directory, acting as a surrogate of P2-3, requests the contents of 798, 
as if it were a processor.

 5. Node 1’s main memory responds by putting the requested data on the bus.

 6. Node 1’s directory picks up the data from the bus.

 7. The value is transferred back to node 2’s directory.

 8. Node 2’s directory places the data back on node 2’s bus, acting as a surrogate 
for the memory that originally held it.

 9. The value is picked up and placed in P2-3’s cache and delivered to P2-3.
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Figure 17.12 CC-NUMA Organization
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The preceding sequence explains how data are read from a remote memory 
using hardware mechanisms that make the transaction transparent to the processor. 
On top of these mechanisms, some form of cache coherence protocol is needed. 
Various systems differ on exactly how this is done. We make only a few general 
remarks here. First, as part of the preceding sequence, node 1’s directory keeps a 
record that some remote cache has a copy of the line containing location 798. Then, 
there needs to be a cooperative protocol to take care of modifications. For exam-
ple, if a modification is done in a cache, this fact can be broadcast to other nodes. 
Each node’s directory that receives such a broadcast can then determine if any local 
cache has that line and, if so, cause it to be purged. If the actual memory location is 
at the node receiving the broadcast notification, then that node’s directory needs to 
maintain an entry indicating that that line of memory is invalid and remains so until 
a write back occurs. If another processor (local or remote) requests the invalid line, 
then the local directory must force a write back to update memory before providing 
the data.

NUMA Pros and Cons

The main advantage of a CC-NUMA system is that it can deliver effective perfor-
mance at higher levels of parallelism than SMP, without requiring major software 
changes. With multiple NUMA nodes, the bus traffic on any individual node is lim-
ited to a demand that the bus can handle. However, if many of the memory accesses 
are to remote nodes, performance begins to break down. There is reason to believe 
that this performance breakdown can be avoided. First, the use of L1 and L2 caches 
is designed to minimize all memory accesses, including remote ones. If much of the 
software has good temporal locality, then remote memory accesses should not be 
excessive. Second, if the software has good spatial locality, and if virtual memory is 
in use, then the data needed for an application will reside on a limited number of 
frequently used pages that can be initially loaded into the memory local to the run-
ning application. The Sequent designers report that such spatial locality does appear 
in representative applications [LOVE96]. Finally, the virtual memory scheme can 
be enhanced by including in the operating system a page migration mechanism that 
will move a virtual memory page to a node that is frequently using it; the Silicon 
Graphics designers report success with this approach [WHIT97].

Even if the performance breakdown due to remote access is addressed, 
there are two other disadvantages for the CC-NUMA approach [PFIS98]. First, 
a CC-NUMA does not transparently look like an SMP; software changes will 
be required to move an operating system and applications from an SMP to a 
CC-NUMA system. These include page allocation, already mentioned, process allo-
cation, and load balancing by the operating system. A second concern is that of 
availability. This is a rather complex issue and depends on the exact implementation 
of the CC-NUMA system; the interested reader is referred to [PFIS98].

Vector Processor Simulator
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 17.7 VECTOR COMPUTATION

Although the performance of mainframe general-purpose computers continues to 
improve relentlessly, there continue to be applications that are beyond the reach of 
the contemporary mainframe. There is a need for computers to solve mathematical 
problems of physical processes, such as occur in disciplines including aerodynamics, 
seismology, meteorology, and atomic, nuclear, and plasma physics.

Typically, these problems are characterized by the need for high precision 
and a program that repetitively performs floating-point arithmetic operations on 
large arrays of numbers. Most of these problems fall into the category known as 
 continuous-field simulation. In essence, a physical situation can be described by a 
surface or region in three dimensions (e.g., the flow of air adjacent to the surface 
of a rocket). This surface is approximated by a grid of points. A set of differential 
equations defines the physical behavior of the surface at each point. The equations 
are represented as an array of values and coefficients, and the solution involves 
repeated arithmetic operations on the arrays of data.

Supercomputers were developed to handle these types of problems. These 
machines are typically capable of billions of floating-point operations per second. In 
contrast to mainframes, which are designed for multiprogramming and intensive I/O, 
the supercomputer is optimized for the type of numerical calculation just described.

The supercomputer has limited use and, because of its price tag, a limited 
market. Comparatively few of these machines are operational, mostly at research 
centers and some government agencies with scientific or engineering functions. As 
with other areas of computer technology, there is a constant demand to increase the 
performance of the supercomputer. Thus, the technology and performance of the 
supercomputer continues to evolve.

There is another type of system that has been designed to address the need for 
vector computation, referred to as the array processor. Although a supercomputer 
is optimized for vector computation, it is a general-purpose computer, capable of 
handling scalar processing and general data processing tasks. Array processors do 
not include scalar processing; they are configured as peripheral devices by both 
mainframe and minicomputer users to run the vectorized portions of programs.

Approaches to Vector Computation

The key to the design of a supercomputer or array processor is to recognize that the 
main task is to perform arithmetic operations on arrays or vectors of floating-point 
numbers. In a general-purpose computer, this will require iteration through each 
element of the array. For example, consider two vectors (one-dimensional arrays) 
of numbers, A and B. We would like to add these and place the result in C. In the 
example of Figure 17.13, this requires six separate additions. How could we speed 
up this computation? The answer is to introduce some form of parallelism.

Several approaches have been taken to achieving parallelism in vector computa-
tion. We illustrate this with an example. Consider the vector multiplication C = A * B,
where A, B, and C are N * N matrices. The formula for each element of C is

ci, j = a
N

k = 1
ai,k * bk, j
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where A, B, and C have elements ai,j, bi,j, and ci,j respectively. Figure 17.14a shows 
a FORTRAN program for this computation that can be run on an ordinary scalar 
processor.

One approach to improving performance can be referred to as vector process-
ing. This assumes that it is possible to operate on a one-dimensional vector of data. 
Figure 17.14b is a FORTRAN program with a new form of instruction that allows 
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Figure 17.13 Example of Vector Addition

DO 100 I � 1, N

DO 100 J � 1, N

C(I, J) � 0.0

DO 100 K � 1, N

C(I, J) � C(I, J) � A(I, K) � B(K, J)

100 CONTINUE

100 CONTINUE

CONTINUE 

(a) Scalar processing

DO 100 I � 1, N
C(I, J) � 0.0 (J � 1, N)
DO 100 K � 1, N
C(I, J) � C(I, J) � A(I, K) � B(K, J) (J � 1, N)

(b) Vector processing

DO 50 J � 1, N � 1
FORK 100

50 CONTINUE
J � N

100 DO 200 I � 1, N
C(I, J) � 0.0
DO 200 K � 1, N
C(I, J) � C(I, J) � A(I, K) � B(K, J)

200

(c) Parallel processing 

JOIN N

Figure 17.14 Matrix Multiplication (C = A * B)
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vector computation to be specified. The notation (J = 1, N) indicates that opera-
tions on all indices J in the given interval are to be carried out as a single operation. 
How this can be achieved is addressed shortly.

The program in Figure 17.14b indicates that all the elements of the ith row are 
to be computed in parallel. Each element in the row is a summation, and the sum-
mations (across K) are done serially rather than in parallel. Even so, only N2 vector 
multiplications are required for this algorithm as compared with N3 scalar multipli-
cations for the scalar algorithm.

Another approach, parallel processing, is illustrated in Figure 17.14c. This 
approach assumes that we have N independent processors that can function in par-
allel. To utilize processors effectively, we must somehow parcel out the computation 
to the various processors. Two primitives are used. The primitive FORK n causes an 
independent process to be started at location n. In the meantime, the original proc-
ess continues execution at the instruction immediately following the FORK. Every 
execution of a FORK spawns a new process. The JOIN instruction is essentially the 
inverse of the FORK. The statement JOIN N causes N independent processes to 
be merged into one that continues execution at the instruction following the JOIN. 
The operating system must coordinate this merger, and so the execution does not 
continue until all N processes have reached the JOIN instruction.

The program in Figure 17.15c is written to mimic the behavior of the vector-
processing program. In the parallel processing program, each column of C is com-
puted by a separate process. Thus, the elements in a given row of C are computed 
in parallel.

The preceding discussion describes approaches to vector computation in logi-
cal or architectural terms. Let us turn now to a consideration of types of processor 
organization that can be used to implement these approaches. A wide variety of 
organizations have been and are being pursued. Three main categories stand out:

 • Pipelined ALU

 • Parallel ALUs

 • Parallel processors

Figure 17.15 illustrates the first two of these approaches. We have already dis-
cussed pipelining in Chapter 14. Here the concept is extended to the operation of the 
ALU. Because floating-point operations are rather complex, there is opportunity 
for decomposing a floating-point operation into stages, so that different stages can 
operate on different sets of data concurrently. This is illustrated in Figure 17.16a. 
Floating-point addition is broken up into four stages (see Figure 10.22): compare, 
shift, add, and normalize. A vector of numbers is presented sequentially to the first 
stage. As the processing proceeds, four different sets of numbers will be operated 
on concurrently in the pipeline.

It should be clear that this organization is suitable for vector processing. To 
see this, consider the instruction pipelining described in Chapter 14. The processor 
goes through a repetitive cycle of fetching and processing instructions. In the absence 
of branches, the processor is continuously fetching instructions from sequential 
locations. Consequently, the pipeline is kept full and a savings in time is achieved. 
Similarly, a pipelined ALU will save time only if it is fed a stream of data from 
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sequential  locations. A single, isolated floating-point operation is not speeded up by 
a pipeline. The speedup is achieved when a vector of operands is presented to the 
ALU. The control unit cycles the data through the ALU until the entire vector is 
processed.

The pipeline operation can be further enhanced if the vector elements are 
available in registers rather than from main memory. This is in fact suggested by 
Figure 17.15a. The elements of each vector operand are loaded as a block into a 
vector register, which is simply a large bank of identical registers. The result is also 
placed in a vector register. Thus, most operations involve only the use of registers, 
and only load and store operations and the beginning and end of a vector operation 
require access to memory.

The mechanism illustrated in Figure 17.16 could be referred to as pipelining 
within an operation. That is, we have a single arithmetic operation (e.g., C = A + B)
that is to be applied to vector operands, and pipelining allows multiple vector ele-
ments to be processed in parallel. This mechanism can be augmented with pipelin-
ing across operations. In this latter case, there is a sequence of arithmetic vector 
operations, and instruction pipelining is used to speed up processing. One approach 
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Figure 17.15 Approaches to Vector Computation
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to this, referred to as chaining, is found on the Cray supercomputers. The basic rule 
for chaining is this: A vector operation may start as soon as the first element of the 
operand vector(s) is available and the functional unit (e.g., add, subtract, multiply, 
divide) is free. Essentially, chaining causes results issuing from one functional unit 
to be fed immediately into another functional unit and so on. If vector registers are 
used, intermediate results do not have to be stored into memory and can be used 
even before the vector operation that created them runs to completion.

For example, when computing C = (s * A) + B, where A, B, and C are vec-
tors and s is a scalar, the Cray may execute three instructions at once. Elements 
fetched for a load immediately enter a pipelined multiplier, the products are sent to 
a pipelined adder, and the sums are placed in a vector register as soon as the adder 
completes them:

 1. Vector load   A S Vector Register (VR1)

 2. Vector load   B S VR2

Compare
exponent

Shift
significand

Add
significands Normalize

NASC

A NS

(a) Pipelined ALU

(b) Four parallel ALUs
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C S A N
C S A N

C S A N
C S A N

Figure 17.16 Pipelined Processing of Floating-Point Operations
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 3. Vector multiply   s * VR1 S VR3

 4. Vector add     VR3 + VR2 S VR4

 5. Vector store     VR4 S C

Instructions 2 and 3 can be chained (pipelined) because they involve different mem-
ory locations and registers. Instruction 4 needs the results of instructions 2 and 3, 
but it can be chained with them as well. As soon as the first elements of vector reg-
isters 2 and 3 are available, the operation in instruction 4 can begin.

Another way to achieve vector processing is by the use of multiple ALUs in a 
single processor, under the control of a single control unit. In this case, the control 
unit routes data to ALUs so that they can function in parallel. It is also possible to 
use pipelining on each of the parallel ALUs. This is illustrated in Figure 17.16b. The 
example shows a case in which four ALUs operate in parallel.

As with pipelined organization, a parallel ALU organization is suitable for 
vector processing. The control unit routes vector elements to ALUs in a round-
robin fashion until all elements are processed. This type of organization is more 
complex than a single-ALU CPI.

Finally, vector processing can be achieved by using multiple parallel proces-
sors. In this case, it is necessary to break the task up into multiple processes to be 
executed in parallel. This organization is effective only if the software and hardware 
for effective coordination of parallel processors is available.

We can expand our taxonomy of Section 17.1 to reflect these new structures, 
as shown in Figure 17.17. Computer organizations can be distinguished by the pres-
ence of one or more control units. Multiple control units imply multiple processors. 
Following our previous discussion, if the multiple processors can function coopera-
tively on a given task, they are termed parallel processors.

The reader should be aware of some unfortunate terminology likely to be 
encountered in the literature. The term vector processor is often equated with a 
pipelined ALU organization, although a parallel ALU organization is also designed 
for vector processing, and, as we have discussed, a parallel processor organization 
may also be designed for vector processing. Array processing is sometimes used to 
refer to a parallel ALU, although, again, any of the three organizations is optimized 
for the processing of arrays. To make matters worse, array processor usually refers 
to an auxiliary processor attached to a general-purpose processor and used to per-
form vector computation. An array processor may use either the pipelined or paral-
lel ALU approach.

At present, the pipelined ALU organization dominates the marketplace. 
Pipelined systems are less complex than the other two approaches. Their control 

Single control unit Multiple control unit

Uniprocessor Pipelined ALU Parallel ALUs Multiprocessor Parallel processors

Figure 17.17 A Taxonomy of Computer Organizations
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unit and operating system design are well developed to achieve efficient resource 
allocation and high performance. The remainder of this section is devoted to a more 
detailed examination of this approach, using a specific example.

IBM 3090 Vector Facility

A good example of a pipelined ALU organization for vector processing is the vector 
facility developed for the IBM 370 architecture and implemented on the high-end 
3090 series [PADE88, TUCK87]. This facility is an optional add-on to the basic 
system but is highly integrated with it. It resembles vector facilities found on super-
computers, such as the Cray family.

The IBM facility makes use of a number of vector registers. Each register is 
actually a bank of scalar registers. To compute the vector sum C = A + B, the vec-
tors A and B are loaded into two vector registers. The data from these registers are 
passed through the ALU as fast as possible, and the results are stored in a third vec-
tor register. The computation overlap, and the loading of the input data into the reg-
isters in a block, results in a significant speeding up over an ordinary ALU operation.

ORGANIZATION The IBM vector architecture, and similar pipelined vector ALUs, 
provides increased performance over loops of scalar arithmetic instructions in three 
ways:

 • The fixed and predetermined structure of vector data permits housekeep-
ing instructions inside the loop to be replaced by faster internal (hardware or 
 microcoded) machine operations.

 • Data-access and arithmetic operations on several successive vector elements 
can proceed concurrently by overlapping such operations in a pipelined design 
or by performing multiple-element operations in parallel.

 • The use of vector registers for intermediate results avoids additional storage 
reference.

Figure 17.18 shows the general organization of the vector facility. Although the 
vector facility is seen to be a physically separate add-on to the processor, its archi-
tecture is an extension of the System/370 architecture and is compatible with it. The 
vector facility is integrated into the System/370 architecture in the following ways:

 • Existing System/370 instructions are used for all scalar operations.

 • Arithmetic operations on individual vector elements produce exactly the 
same result as do corresponding System/370 scalar instructions. For example, 
one design decision concerned the definition of the result in a floating-point 
DIVIDE operation. Should the result be exact, as it is for scalar floating-point 
division, or should an approximation be allowed that would permit higher-
speed implementation but could sometimes introduce an error in one or more 
low-order bit positions? The decision was made to uphold complete compati-
bility with the System/370 architecture at the expense of a minor performance 
degradation.

 • Vector instructions are interruptible, and their execution can be resumed from 
the point of interruption after appropriate action has been taken, in a manner 
compatible with the System/370 program-interruption scheme.
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 • Arithmetic exceptions are the same as, or extensions of, exceptions for the 
scalar arithmetic instructions of the System/370, and similar fix-up routines 
can be used. To accommodate this, a vector interruption index is employed 
that indicates the location in a vector register that is affected by an exception 
(e.g., overflow). Thus, when execution of the vector instruction resumes, the 
proper place in a vector register is accessed.

 • Vector data reside in virtual storage, with page faults being handled in a stand-
ard manner.

This level of integration provides a number of benefits. Existing operating 
systems can support the vector facility with minor extensions. Existing application 
programs, language compilers, and other software can be run unchanged. Software 
that could take advantage of the vector facility can be modified as desired.

REGISTERS A key issue in the design of a vector facility is whether operands are 
located in registers or memory. The IBM organization is referred to as register 
to register, because the vector operands, both input and output, can be staged 
in vector registers. This approach is also used on the Cray supercomputer. An 
alternative approach, used on Control Data machines, is to obtain operands directly 
from memory. The main disadvantage of the use of vector registers is that the 
programmer or compiler must take them into account for good performance. For 
example, suppose that the length of the vector registers is K and the length of the 
vectors to be processed is N 7 K. In this case, a vector loop must be performed, in 
which the operation is performed on K elements at a time and the loop is repeated 
N/K times. The main advantage of the vector register approach is that the operation 
is decoupled from slower main memory and instead takes place primarily with 
registers.
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Figure 17.18 IBM 3090 with Vector Facility
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The speedup that can be achieved using registers is demonstrated in 
Figure 17.19. The FORTRAN routine multiplies vector A by vector B to produce 
vector C, where each vector has a real part (AR, BR, CR) and an imaginary part (AI, 
BI, CI). The 3090 can perform one main-storage access per processor, or clock, cycle 
(either read or write); has registers that can sustain two accesses for reading and one 
for writing per cycle; and produces one result per cycle in its arithmetic unit. Let us 
assume the use of instructions that can specify two source operands and a result.4 
Part (a) of the figure shows that, with memory-to-memory instructions, each itera-
tion of the computation requires a total of 18 cycles. With a pure register-to-register 

4For the 370/390 architecture, the only three-operand instructions (register and storage instructions, RS) 
specify two operands in registers and one in memory. In part (a) of the example, we assume the existence 
of three-operand instructions in which all operands are in main memory. This is done for purposes of 
comparison and, in fact, such an instruction format could have been chosen for the vector architecture.

FORTRAN ROUTINE:

DO 100 J � 1, 50
CR(J) � AR(J) * BR(J) � AI(J) * BI(J)

100 CI(J) � AR(J) * BI(J) � AI(J) * BR(J)

Operation Cycles Cycles

AR(J) * BR(J)  T1(J)
AI(J) * BI(J)  T2(J)
T1(J) � T2(J)  CR(J)
AR(J) * BI(J)  T3(J)
AI(J) * BR(J)  T4(J)
T3(J) � T4(J)  CI(J)

3
3
3
3
3
3

TOTAL 18

(a) Storage to storage

Operation Cycles

AR(J)  V1(J)
V1(J) * BR(J)  V2(J)
AI(J)  V3(J)
V3(J) * BI(J)  V4(J)
V2(J) � V4(J)  V5(J)
V5(J)  CR(J)
V1(J) * BI(J)  V6(J)
V4(J) * BR(J)  V7(J)
V6(J) � V7(J)  V8(J)
V8(J)  CI(J)

1
1
1
1
1
1
1
1
1
1

TOTAL 10

(c) Storage to register

Vi � Vector registers
AR, BR, AI, BI � Operands in memory
Ti � Temporary locations in memory

Operation

AR(J)  V1(J)
BR(J)  V2(J)
V1(J) * V2(J)  V3(J)
AI(J)  V4(J)
BI(J)  V5(J)
V4(J) * V5(J)  V6(J)
V3(J) � V6(J)  V7(J)
V7(J)  CR(J)
V1(J) * V5(J)  V8(J)
V4(J) * V2(J)  V9(J)
V8(J) � V9(J)  V0(J)
V0(J)  CI(J)

1
1
1
1
1
1
1
1
1
1
1
1

TOTAL 12

(b) Register to register

Operation Cycles

AR(J)  V1(J)
V1(J) * BR(J)  V2(J)
AI(J)  V3(J)
V2(J) � V3(J) * BI(J)  V2(J)
V2(J)  CR(J)
V1(J) * BI(J)  V4(J)
V4(J) � V3(J) * BR(J)  V5(J)
V5(J)  CI(J)

1
1
1
1
1
1
1
1

TOTAL 8

(d) Compound instruction

Figure 17.19 Alternative Programs for Vector Calculation
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architecture (part (b)), this time is reduced to 12 cycles. Of course, with register-
to-register operation, the vector quantities must be loaded into the vector registers 
prior to computation and stored in memory afterward. For large vectors, this fixed 
penalty is relatively small. Figure 17.19c shows that the ability to specify both stor-
age and register operands in one instruction further reduces the time to 10 cycles per 
iteration. This latter type of instruction is included in the vector architecture.5

Figure 17.20 illustrates the registers that are part of the IBM 3090 vector facil-
ity. There are sixteen 32-bit vector registers. The vector registers can also be cou-
pled to form eight 64-bit vector registers. Any register element can hold an integer 
or floating-point value. Thus, the vector registers may be used for 32-bit and 64-bit 
integer values, and 32-bit and 64-bit floating-point values.

5Compound instructions, discussed subsequently, afford a further reduction.
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Figure 17.20 Registers for the IBM 3090 Vector Facility
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The architecture specifies that each register contains from 8 to 512 scalar 
elements. The choice of actual length involves a design trade-off. The time to do a 
vector operation consists essentially of the overhead for pipeline startup and reg-
ister filling plus one cycle per vector element. Thus, the use of a large number of 
register elements reduces the relative startup time for a computation. However, 
this efficiency must be balanced against the added time required for saving and 
restoring vector registers on a process switch and the practical cost and space 
 limits. These considerations led to the use of 128 elements per register in later 3090 
implementations.

Three additional registers are needed by the vector facility. The vector-mask 
register contains mask bits that may be used to select which elements in the vector 
registers are to be processed for a particular operation. The vector-status register 
contains control fields, such as the vector count, that determine how many elements 
in the vector registers are to be processed. The vector-activity count keeps track of 
the time spent executing vector instructions.

COMPOUND INSTRUCTIONS As was discussed previously, instruction execution 
can be overlapped using chaining to improve performance. The designers of the 
IBM vector facility chose not to include this capability for several reasons. The 
System/370 architecture would have to be extended to handle complex interruptions 
(including their effect on virtual memory management), and corresponding changes 
would be needed in the software. A more basic issue was the cost of including the 
additional controls and register access paths in the vector facility for generalized 
chaining.

Instead, three operations are provided that combine into one instruction 
(one opcode) the most common sequences in vector computation, namely multi-
plication followed by addition, subtraction, or summation. The storage-to-register 
MULTIPLY-AND-ADD instruction, for example, fetches a vector from storage, 
multiplies it by a vector from a register, and adds the product to a third vector 
in a register. By use of the compound instructions MULTIPLY-AND-ADD and 
MULTIPLY-AND-SUBTRACT in the example of Figure 17.19, the total time for 
the iteration is reduced from 10 to 8 cycles.

Unlike chaining, compound instructions do not require the use of additional 
registers for temporary storage of intermediate results, and they require one less 
register access. For example, consider the following chain:

 A S VR1

 VR1 + VR2 S VR1

In this case, two stores to the vector register VR1 are required. In the IBM archi-
tecture there is a storage-to-register ADD instruction. With this instruction, only 
the sum is placed in VR1. The compound instruction also avoids the need to reflect 
in the machine-state description the concurrent execution of a number of instruc-
tions, which simplifies status saving and restoring by the operating system and the 
handling of interrupts.

THE INSTRUCTION SET Table 17.3 summarizes the arithmetic and logical operations 
that are defined for the vector architecture. In addition, there are memory-to-register 
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Table 17.3 IBM 3090 Vector Facility: Arithmetic and Logical Instructions

Data Types

Floating-Point

Operation Long Short Binary or Logical Operand Locations

Add FL FS BI V + V S V V + S S V Q + V S V Q + S S V

Subtract FL FS BI V - V S V V - S S V V - V S V Q - S S V

Multiply FL FS BI V * V S V V * V S V Q * V S V Q * S S V

Divide FL FS — V>V S V V>S S V Q>V S V Q>S S V

Compare FL FS BI V # V S V V # S S V Q # V S V Q # S S V

Multiply and Add FL FS — V + V * S S V V + Q * V S V V + Q * S S V

Multiply and Subtract FL FS — V - V * S S V V - Q * V S V V - Q * S S V

Multiply and Accumulate FL FS — P + # V S V P + # S S V

Complement FL FS BI -V S V

Positive Absolute FL FS BI |V| S V

Negative Absolute FL FS BI - |V| S V

Maximum FL FS — Q # V S Q

Maximum Absolute FL FS — Q # V S Q

Minimum FL FS — Q # V S Q

Shift Left Logical — — LO # V S Q

Shift Right Logical — — LO # V S Q

And — — LO V & V S V V & S S V Q & V S V Q & S S V

OR — — LO V/V S V V/S S V Q/V S V Q/S S V

Exclusive-OR — — LO V { V S V V { S S V Q { V S V Q { S S V

Explanation Data types Operand locations
 FL Long floating point V Vector register
 FS Short floating point S  Storager
 BI Binary integer Q Scalar (general or floating-point register)
 LO  Logical  P Partial sums in vector register
    . Special operation
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load and register-to-memory store instructions. Note that many of the instructions 
use a three-operand format. Also, many instructions have a number of variants, 
depending on the location of the operands. A source operand may be a vector 
register (V), storage (S), or a scalar register (Q). The target is always a vector 
register, except for comparison, the result of which goes into the vector-mask 
register. With all these variants, the total number of opcodes (distinct instructions) 
is 171. This rather large number, however, is not as expensive to implement as might 
be imagined. Once the machine provides the arithmetic units and the data paths 
to feed operands from storage, scalar registers, and vector registers to the vector 
pipelines, the major hardware cost has been incurred. The architecture can, with 
little difference in cost, provide a rich set of variants on the use of those registers 
and pipelines.

Most of the instructions in Table 17.3 are self-explanatory. The two sum-
mation instructions warrant further explanation. The accumulate operation adds 
together the elements of a single vector (ACCUMULATE) or the elements of the 
product of two vectors (MULTIPLY-AND-ACCUMULATE). These instructions 
present an interesting design problem. We would like to perform this operation as 
rapidly as possible, taking full advantage of the ALU pipeline. The difficulty is that 
the sum of two numbers put into the pipeline is not available until several cycles 
later. Thus, the third element in the vector cannot be added to the sum of the first 
two elements until those two elements have gone through the entire pipeline. To 
overcome this problem, the elements of the vector are added in such a way as to 
produce four partial sums. In particular, elements 0, 4, 8, 12, . . . , 124 are added 
in that order to produce partial sum 0; elements 1, 5, 9, 13, . . . , 125 to partial sum  
1; elements 2, 6, 10, 14, . . . , 126 to partial sum 2; and elements 3, 7, 11, 15, . . . , 127 
to partial sum 4. Each of these partial sums can proceed through the pipeline at top 
speed, because the delay in the pipeline is roughly four cycles. A separate vector 
register is used to hold the partial sums. When all elements of the original vector 
have been processed, the four partial sums are added together to produce the final 
result. The performance of this second phase is not critical, because only four vector 
elements are involved.

 17.8 RECOMMENDED READING

[MILE00] is an overview of cache coherence algorithms and techniques for multiproces-
sors, with an emphasis on performance issues. Another survey of the issues relating to cache 
coherence in multiprocessors is [LILJ93]. [TOMA93] contains reprints of many of the key 
papers on the subject.

[UNGE02] is an excellent survey of the concepts of multithreaded processors and chip 
multiprocessors. [UNGE03] is a lengthy survey of both proposed and current multithreaded 
processors that use explicit multithreading.

A thorough treatment of clusters can be found in [BUYY99a] and [BUYY99b]. 
[WEYG01] is a less technical survey of clusters, with good commentary on various commer-
cial products. [DESA05] describes IBM’s blade server architecture.

Good discussions of vector computation can be found in [STON93] and [HWAN93].



17.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS  657

 17.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS
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active standby
cache coherence
cluster
directory protocol
failback
failover

MESI protocol
multiprocessor
nonuniform memory access 

(NUMA)
passive standby
snoopy protocol

symmetric multiprocessor 
(SMP)

uniform memory access 
(UMA)

uniprocessor
vector facility

Review Questions
 17.1 List and briefly define three types of computer system organization.
 17.2 What are the chief characteristics of an SMP?
 17.3 What are some of the potential advantages of an SMP compared with a uniprocessor?
 17.4 What are some of the key OS design issues for an SMP?
 17.5 What is the difference between software and hardware cache coherent schemes?
 17.6 What is the meaning of each of the four states in the MESI protocol?
 17.7 What are some of the key benefits of clustering?
 17.8 What is the difference between failover and failback?
 17.9 What are the differences among UMA, NUMA, and CC-NUMA?
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Problems
 17.1 Let a be the percentage of program code that can be executed simultaneously by n 

processors in a computer system. Assume that the remaining code must be executed 
sequentially by a single processor. Each processor has an execution rate of x MIPS.
a. Derive an expression for the effective MIPS rate when using the system for exclu-

sive execution of this program, in terms of n, a, and x.
b. If n = 16 and x = 4 MIPS, determine the value of a that will yield a system per-

formance of 40 MIPS.
 17.2 A multiprocessor with eight processors has 20 attached tape drives. There are a large 

number of jobs submitted to the system that each require a maximum of four tape 
drives to complete execution. Assume that each job starts running with only three 
tape drives for a long period before requiring the fourth tape drive for a short period 
toward the end of its operation. Also assume an endless supply of such jobs.
a. Assume the scheduler in the OS will not start a job unless there are four tape 

drives available. When a job is started, four drives are assigned immediately and 
are not released until the job finishes. What is the maximum number of jobs that 
can be in progress at once? What are the maximum and minimum number of tape 
drives that may be left idle as a result of this policy?

b. Suggest an alternative policy to improve tape drive utilization and at the same 
time avoid system deadlock. What is the maximum number of jobs that can be in 
progress at once? What are the bounds on the number of idling tape drives?

 17.3 Can you foresee any problem with the write-once cache approach on bus-based mul-
tiprocessors? If so, suggest a solution.

 17.4 Consider a situation in which two processors in an SMP configuration, over time, re-
quire access to the same line of data from main memory. Both processors have a cache 
and use the MESI protocol. Initially, both caches have an invalid copy of the line.  
Figure 17.21 depicts the consequence of a read of line x by Processor P1. If this is the 
start of a sequence of accesses, draw the subsequent figures for the following sequence:
1. P2 reads x.
2. P1 writes to x (for clarity, label the line in P1’s cache x=).

x

x

Main
memory

Cache

Processor
1

Cache

Snoop

Memory
access

Processor
2

I E I

Figure 17.21 MESI Example: Processor 1 Reads Line x
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3. P1 writes to x (label the line in P1’s cache x).
4. P2 reads x.

 17.5 Figure 17.22 shows the state diagrams of two possible cache coherence protocols. 
Deduce and explain each protocol, and compare each to MESI.

 17.6 Consider an SMP with both L1 and L2 caches using the MESI protocol. As explained 
in Section 17.3, one of four states is associated with each line in the L2 cache. Are all 
four states also needed for each line in the L1 cache? If so, why? If not, explain which 
state or states can be eliminated.

 17.7 An earlier version of the IBM mainframe, the S/390 G4, used three levels of cache. 
As with the z990, only the first level was on the processor chip [called the processor 
unit (PU)]. The L2 cache was also similar to the z990. An L3 cache was on a separate 
chip that acted as a memory controller, and was interposed between the L2 caches 
and the memory cards. Table 17.4 shows the performance of a three-level cache ar-
rangement for the IBM S/390. The purpose of this problem is to determine whether 
the inclusion of the third level of cache seems worthwhile. Determine the access 
penalty (average number of PU cycles) for a system with only an L1 cache, and nor-
malize that value to 1.0. Then determine the normalized access penalty when both 
an L1 and L2 cache are used, and the access penalty when all three caches are used. 
Note the amount of improvement in each case and state your opinion on the value 
of the L3 cache.

 17.8 a.   Consider a uniprocessor with separate data and instruction caches, with hit ratios 
of Hd and Hi, respectively. Access time from processor to cache is c clock cycles, 
and transfer time for a block between memory and cache is b clock cycles. Let fi 

Table 17.4 Typical Cache Hit Rate on S/390 SMP Configuration [MAK97]

Memory Subsystem
Access Penalty  

(PU cycles) Cache Size Hit Rate (%)

L1 cache  1 32 KB 89

L2 cache  5 256 KB  5

L3 cache 14 2 MB  3

Memory 32 8 GB  3
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Z(i)  � Displace line by cache i
W( j) � Write to line by processor j ( j fi i)
R( j) � Read line by processor j ( j fi i)
Z( j) � Displace line by cache j ( j fi i)

Note: State diagrams are for a
given line in cache i

Z( j )

Z(i)
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Figure 17.22 Two Cache Coherence Protocols
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be the fraction of memory accesses that are for instructions, and fd is the fraction 
of dirty lines in the data cache among lines replaced. Assume a write-back policy 
and determine the effective memory access time in terms of the parameters just 
defined.

b. Now assume a bus-based SMP in which each processor has the characteristics of 
part (a). Every processor must handle cache invalidation in addition to memory 
reads and writes. This affects effective memory access time. Let finv be the fraction 
of data references that cause invalidation signals to be sent to other data caches. 
The processor sending the signal requires t clock cycles to complete the invalida-
tion operation. Other processors are not involved in the invalidation operation. 
Determine the effective memory access time.

17.9  What organizational alternative is suggested by each of the illustrations in 
Figure 17.23?

 17.10 In Figure 17.7, some of the diagrams show horizontal rows that are partially filled. In 
other cases, there are rows that are completely blank. These represent two different 
types of loss of efficiency. Explain.

 17.11 Consider the pipeline depiction in Figure 14.13b, which is redrawn in Figure 17.24a, 
with the fetch and decode stages ignored, to represent the execution of thread A. 
Figure 17.24b illustrates the execution of a separate thread B. In both cases, a simple 
pipelined processor is used.
a. Show an instruction issue diagram, similar to Figure 17.7a, for each of the two 

threads.
b. Assume that the two threads are to be executed in parallel on a chip multiproces-

sor, with each of the two processors on the chip using a simple pipeline. Show an 
instruction issue diagram similar to Figure 17.7k. Also show a pipeline execution 
diagram in the style of Figure 17.24.

c. Assume a two-issue superscalar architecture. Repeat part (b) for an interleaved 
multithreading superscalar implementation, assuming no data dependencies. 
Note: There is no unique answer; you need to make assumptions about latency 
and priority.

d. Repeat part (c) for a blocked multithreading superscalar implementation.
e. Repeat for a four-issue SMT architecture.

 17.12 The following code segment needs to be executed 64 times for the evaluation of the 
vector arithmetic expression: D(I) = A(I) + B(I) * C(I) for 0 … I … 63.

Load R1, B(I) >R1 d  Memory (a + I)>
Load R2, C(I) >R2 d  Memory (b + I)>

(a) (b) (c) (d)

Figure 17.23 Diagram for Problem 18.9
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Multiply R1, R2 >R1 d  (R1) * (R2)>
Load R3, A(I) >R3 d  Memory (g + I)>
Add R3, R1 >R3 d  (R3) + (R1)>
Store D1, R3 >Memory (u + I) d  (R3)>

where R1, R2, and R3 are processor registers, and a, b, g, u are the starting main mem-
ory addresses of arrays B(I), C(I), A(I), and D(I), respectively. Assume four clock 
cycles for each Load or Store, two cycles for the Add, and eight cycles for the Multi-
plier on either a uniprocessor or a single processor in an SIMD machine.
a. Calculate the total number of processor cycles needed to execute this code seg-

ment repeatedly 64 times on a SISD uniprocessor computer sequentially, ignoring 
all other time delays.

b. Consider the use of an SIMD computer with 64 processing elements to execute 
the vector operations in six synchronized vector instructions over 64-compo-
nent vector data and both driven by the same-speed clock. Calculate the total 
execution time on the SIMD machine, ignoring instruction broadcast and other 
delays.

c. What is the speedup gain of the SIMD computer over the SISD computer?
 17.13 Produce a vectorized version of the following program:

  DO 20 I = 1, N
  B(I, 1) = 0
  DO 10 J = 1, M
  A(I) = A(I) + B(I, J) * C(I, J)
10 CONTINUE
  D(I) = E(I) + A(I)
20 CONTINUE

 17.14 An application program is executed on a nine-computer cluster. A benchmark pro-
gram took time T on this cluster. Further, it was found that 25% of T was time in 
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which the application was running simultaneously on all nine computers. The remain-
ing time, the application had to run on a single computer.
a. Calculate the effective speedup under the aforementioned condition as compared 

to executing the program on a single computer. Also calculate a, the percentage of 
code that has been parallelized (programmed or compiled so as to use the cluster 
mode) in the preceding program.

b. Suppose that we are able to effectively use 17 computers rather than 9 comput-
ers on the parallelized portion of the code. Calculate the effective speedup that is 
achieved.

 17.15 The following FORTRAN program is to be executed on a computer, and a parallel 
version is to be executed on a 32-computer cluster.

L1:   DO 10 I = 1, 1024
L2:       SUM(I) = 0
L3:       DO 20 J = 1, I
L4: 20         SUM(I) = SUM(I) + I
L5: 10 CONTINUE

Suppose lines 2 and 4 each take two machine cycle times, including all proces-
sor and memory-access activities. Ignore the overhead caused by the software 
loop control statements (lines 1, 3, 5) and all other system overhead and resource  
conflicts.
a. What is the total execution time (in machine cycle times) of the program on a 

single computer?
b. Divide the I-loop iterations among the 32 computers as follows: Computer 1 ex-

ecutes the first 32 iterations (I = 1 to 32), processor 2 executes the next 32 itera-
tions, and so on. What are the execution time and speedup factor compared with 
part (a)? (Note that the computational workload, dictated by the J-loop, is unbal-
anced among the computers.)

c. Explain how to modify the parallelizing to facilitate a balanced parallel execution 
of all the computational workload over 32 computers. By a balanced load is meant 
an equal number of additions assigned to each computer with respect to both 
loops.

d. What is the minimum execution time resulting from the parallel execution on 
32 computers? What is the resulting speedup over a single computer?

 17.16 Consider the following two versions of a program to add two vectors:

L1: DO 10 I = 1, N DOALL K = 1, M
L2:  A(I) = B(I) + C(I)  DO 10 I = L(K - 1) + 1, KL
L3: 10 CONTINUE   A(I) = B(I) + C(I)
L4:  SUM = 0  10 CONTINUE
L5: DO 20 J = 1, N  SUM(K) = 0
L6:  SUM = SUM + A(J) DO 20 J = 1, L
L7: 20 CONTINUE  SUM(K) = SUM(K) + A(L(K - 1) + J)

 20  CONTINUE
ENDALL

a. The program on the left executes on a uniprocessor. Suppose each line of code 
L2, L4, and L6 takes one processor clock cycle to execute. For simplicity, ignore 
the time required for the other lines of code. Initially all arrays are already loaded 
in main memory and the short program fragment is in the instruction cache. How 
many clock cycles are required to execute this program?
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b. The program on the right is written to execute on a multiprocessor with M proces-
sors. We partition the looping operations into M sections with L = N>M elements 
per section. DOALL declares that all M sections are executed in parallel. The 
result of this program is to produce M partial sums. Assume that k clock cycles are 
needed for each interprocessor communication operation via the shared memory 
and that therefore the addition of each partial sum requires k cycles. An l-level 
binary adder tree can merge all the partial sums, where l = log2M. How many 
cycles are needed to produce the final sum?

c. Suppose N = 220 elements in the array and M = 256. What is the speedup 
achieved by using the multiprocessor? Assume k = 200. What percentage is this 
of the theoretical speedup of a factor of 256?
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A multicore computer, also known as a chip multiprocessor, combines two or more 
processors (called cores) on a single piece of silicon (called a die). Typically, each 
core consists of all of the components of an independent processor, such as registers, 
ALU, pipeline hardware, and control unit, plus L1 instruction and data caches. In 
addition to the multiple cores, contemporary multicore chips also include L2 cache 
and, increasingly, L3 cache.

This chapter provides an overview of multicore systems. We begin with a look 
at the hardware performance factors that led to the development of multicore com-
puters and the software challenges of exploiting the power of a multicore system. 
Next, we look at multicore organization. Finally, we examine three examples of 
multicore products, covering personal computer and workstation systems (Intel), 
embedded systems (ARM), and mainframes (IBM).

 18.1 HARDWARE PERFORMANCE ISSUES

As we discuss in Chapter 2, microprocessor systems have experienced a steady, 
exponential increase in execution performance for decades. Figure 2.12 shows that 
this increase is due partly to refinements in the organization of the processor on the 
chip, and partly to the increase in the clock frequency.

Increase in Parallelism and Complexity

The organizational changes in processor design have primarily been focused on 
increasing instruction-level parallelism, so that more work could be done in each 
clock cycle. These changes include, in chronological order (Figure 18.1):

 • Pipelining: Individual instructions are executed through a pipeline of stages 
so that while one instruction is executing in one stage of the pipeline, another 
instruction is executing in another stage of the pipeline.

 • Superscalar: Multiple pipelines are constructed by replicating execution 
resources. This enables parallel execution of instructions in parallel pipelines, 
so long as hazards are avoided.

 • Simultaneous multithreading (SMT): Register banks are replicated so that 
multiple threads can share the use of pipeline resources.

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

� Understand the hardware performance issues that have driven the move to 
multicore computers.

� Understand the software performance issues posed by the use of 
multithreaded multicore computers.

� Have an appreciation of the use of multicore organization on embedded 
systems, PCs and servers, and mainframes.
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For each of these innovations, designers have over the years attempted to 
increase the performance of the system by adding complexity. In the case of pipelin-
ing, simple three-stage pipelines were replaced by pipelines with five stages, and 
then many more stages, with some implementations having over a dozen stages. 
There is a practical limit to how far this trend can be taken, because with more 
stages, there is the need for more logic, more interconnections, and more control 
signals. With superscalar organization, increased performance can be achieved by 
increasing the number of parallel pipelines. Again, there are diminishing returns as 
the number of pipelines increases. More logic is required to manage hazards and 
to stage instruction resources. Eventually, a single thread of execution reaches the 
point where hazards and resource dependencies prevent the full use of the multiple 
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pipelines available. This same point of diminishing returns is reached with SMT, 
as the complexity of managing multiple threads over a set of pipelines limits the 
number of threads and number of pipelines that can be effectively utilized.

Figure 18.2, from [OLUK05], is instructive in this context. The upper graph shows 
the exponential increase in Intel processor performance over the years.1 The lower 
graph is calculated by combining Intel’s published SPEC CPU figures and processor 
clock frequencies to give a measure of the extent to which performance improvement 
is due to increased exploitation of instruction-level parallelism. There is a flat region in 
the late 1980s before parallelism was exploited extensively. This is followed by a steep 
rise as designers were able to increasingly exploit pipelining, superscalar techniques, 
and SMT. But, beginning about 2000, a new flat region of the curve appears, as the 
limits of effective exploitation of instruction-level parallelism are reached.

1The data are based on published SPEC CPU figures from Intel, normalized across varying suites.
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There is a related set of problems dealing with the design and fabrication of the 
computer chip. The increase in complexity to deal with all of the logical issues related 
to very long pipelines, multiple superscalar pipelines, and multiple SMT register banks 
means that increasing amounts of the chip area are occupied with coordinating and 
signal transfer logic. This increases the difficulty of designing, fabricating, and debug-
ging the chips. The increasingly difficult engineering challenge related to processor 
logic is one of the reasons that an increasing fraction of the processor chip is devoted 
to the simpler memory logic. Power issues, discussed next, provide another reason.

Power Consumption

To maintain the trend of higher performance as the number of transistors per chip 
rise, designers have resorted to more elaborate processor designs (pipelining, super-
scalar, SMT) and to high clock frequencies. Unfortunately, power requirements 
have grown exponentially as chip density and clock frequency have risen. This is 
shown in the Figure 18.3, which repeats Figure 2.11.

One way to control power density is to use more of the chip area for cache 
memory. Memory transistors are smaller and have a power density an order of mag-
nitude lower than that of logic (see Figure 18.4). Further, as chip transistor density 
has increased, the percentage of chip area devoted to memory has grown, and is 
now well over half the chip area.

By 2015, we can expect to see microprocessor chips with about 100 billion 
transistors on a 300 mm2 die. Assuming about 50–60% of the chip area is devoted 
to memory, the chip will support cache memory of about 100 MB and leave over 1 
billion transistors available for logic.

How to use all those logic transistors is a key design issue. As discussed earlier 
in this section, there are limits to the effective use of such techniques as superscalar 
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and SMT. In general terms, the experience of recent decades has been encapsulated 
in a rule of thumb known as Pollack’s rule [POLL99], which states that performance 
increase is roughly proportional to square root of increase in complexity. In other 
words, if you double the logic in a processor core, then it delivers only 40% more 
performance. In principle, the use of multiple cores has the potential to provide 
near-linear performance improvement with the increase in the number of cores.

Power considerations provide another motive for moving toward a multicore 
organization. Because the chip has such a huge amount of cache memory, it becomes 
unlikely that any one thread of execution can effectively use all that memory. Even 
with SMT, you are multithreading in a relatively limited fashion and cannot therefore 
fully exploit a gigantic cache, whereas a number of relatively independent threads or 
processes has a greater opportunity to take full advantage of the cache memory.

 18.2 SOFTWARE PERFORMANCE ISSUES

A detailed examination of the software performance issues related to multicore 
organization is beyond our scope. In this section, we first provide an overview of 
these issues, and then look at an example of an application designed to exploit mul-
ticore capabilities.

Software on Multicore

The potential performance benefits of a multicore organization depend on the 
ability to effectively exploit the parallel resources available to the application. Let 
us focus first on a single application running on a multicore system. Recall from 
Chapter 2 that Amdahl’s law states that:

 Speed up =
time to execute program on a single processor

time to execute program on N parallel processors

 =
1

(1 - f ) +  
f

N

 (18.1)
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The law assumes a program in which a fraction (1 – f) of the execution time involves 
code that is inherently serial and a fraction f that involves code that is infinitely par-
allelizable with no scheduling overhead.

This law appears to make the prospect of a multicore organization attractive. 
But as Figure 18.5a shows, even a small amount of serial code has a noticeable impact. 
If only 10% of the code is inherently serial (f = 0.9), running the program on a multi-
core system with 8 processors yields a performance gain of only a factor of 4.7. In addi-
tion, software typically incurs overhead as a result of communication and distribution 
of work among multiple processors and as a result of cache coherence overhead. This 
results in a curve where performance peaks and then begins to degrade because of the 
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increased burden of the overhead of using multiple processors (e.g., coordination and 
OS management). Figure 18.5b, from [MCDO05], is a representative example.

However, software engineers have been addressing this problem and there are 
numerous applications in which it is possible to effectively exploit a multicore sys-
tem. [MCDO05] analyzes the effectiveness of multicore systems on a set of database 
applications, in which great attention was paid to reducing the serial fraction within 
hardware architectures, operating systems, middleware, and the database applica-
tion software. Figure 18.6 shows the result. As this example shows, database man-
agement systems and database applications are one area in which multicore systems 
can be used effectively. Many kinds of servers can also effectively use the parallel 
multicore organization, because servers typically handle numerous relatively inde-
pendent transactions in parallel.

In addition to general-purpose server software, a number of classes of applica-
tions benefit directly from the ability to scale throughput with the number of cores. 
[MCDO06] lists the following examples:

 • Multithreaded native applications: Multithreaded applications are charac-
terized by having a small number of highly threaded processes. Examples 
of threaded applications include Lotus Domino or Siebel CRM (Customer 
Relationship Manager).

 • Multiprocess applications: Multiprocess applications are characterized by the 
presence of many single-threaded processes. Examples of multi-process appli-
cations include the Oracle database, SAP, and PeopleSoft.

 • Java applications: Java applications embrace threading in a fundamen-
tal way. Not only does the Java language greatly facilitate multithreaded 
applications, but the Java Virtual Machine is a multithreaded process that 
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provides scheduling and memory management for Java applications. Java 
applications that can benefit directly from multicore resources include 
application servers such as Sun’s Java Application Server, BEA’s Weblogic, 
IBM’s Websphere, and the open-source Tomcat application server. All 
applications that use a Java 2 Platform, Enterprise Edition (J2EE platform) 
application server can immediately benefit from multicore technology.

 • Multi-instance applications: Even if an individual application does not scale 
to take advantage of a large number of threads, it is still possible to gain from 
multicore architecture by running multiple instances of the application in par-
allel. If multiple application instances require some degree of isolation, virtu-
alization technology (for the hardware of the operating system) can be used to 
provide each of them with its own separate and secure environment.

Application Example: Valve Game Software

Valve is an entertainment and technology company that has developed a number 
of popular games, as well as the Source engine, one of the most widely played game 
engines available. Source is an animation engine used by Valve for its games and 
licensed for other game developers.

In recent years, Valve has reprogrammed the Source engine software to use 
multithreading to exploit the power of multicore processor chips from Intel and 
AMD [REIM06]. The revised Source engine code provides more powerful support 
for Valve games such as Half Life 2.

From Valve’s perspective, threading granularity options are defined as follows 
[HARR06]:

 • Coarse threading: Individual modules, called systems, are assigned to individ-
ual processors. In the Source engine case, this would mean putting rendering 
on one processor, AI (artificial intelligence) on another, physics on another, 
and so on. This is straightforward. In essence, each major module is single 
threaded and the principal coordination involves synchronizing all the threads 
with a timeline thread.

 • Fine-grained threading: Many similar or identical tasks are spread across mul-
tiple processors. For example, a loop that iterates over an array of data can be 
split up into a number of smaller parallel loops in individual threads that can 
be scheduled in parallel.

 • Hybrid threading: This involves the selective use of fine-grain threading for 
some systems and single threading for other systems.

Valve found that through coarse threading, it could achieve up to twice the 
performance across two processors compared to executing on a single processor. 
But this performance gain could only be achieved with contrived cases. For real-
world gameplay, the improvement was on the order of a factor of 1.2. Valve also 
found that effective use of fine-grain threading was difficult. The time per work unit 
can be variable, and managing the timeline of outcomes and consequences involved 
complex programming.

Valve found that a hybrid threading approach was the most promising and 
would scale the best as multicore systems with eight or sixteen processors became 
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available. Valve identified systems that operate very effectively when assigned to 
a single processor permanently. An example is sound mixing, which has little user 
interaction, is not constrained by the frame configuration of windows, and works on 
its own set of data. Other modules, such as scene rendering, can be organized into a 
number of threads so that the module can execute on a single processor but achieve 
greater performance as it is spread out over more and more processors.

Figure 18.7 illustrates the thread structure for the rendering module. In this 
hierarchical structure, higher-level threads spawn lower-level threads as needed. 
The rendering module relies on a critical part of the Source engine, the world list, 
which is a database representation of the visual elements in the game’s world. The 
first task is to determine what are the areas of the world that need to be rendered. 
The next task is to determine what objects are in the scene as viewed from multi-
ple angles. Then comes the processor-intensive work. The rendering module has 
to work out the rendering of each object from multiple points of view, such as the 
player’s view, the view of TV monitors, and the point of view of reflections in water.

Some of the key elements of the threading strategy for the rendering module 
are listed in [LEON07] and include the following:

 • Construct scene-rendering lists for multiple scenes in parallel (e.g., the world 
and its reflection in water).

 • Overlap graphics simulation.
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Figure 18.7 Hybrid Threading for Rendering Module
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 • Compute character bone transformations for all characters in all scenes in 
parallel.

 • Allow multiple threads to draw in parallel.

The designers found that simply locking key databases, such as the world list, 
for a thread was too inefficient. Over 95% of the time, a thread is trying to read 
from a data set, and only 5% of the time at most is spent in writing to a data set. 
Thus, a concurrency mechanism known as the single-writer-multiple-readers model 
works effectively.

 18.3 MULTICORE ORGANIZATION

At a top level of description, the main variables in a multicore organization are as 
follows:

 • The number of core processors on the chip

 • The number of levels of cache memory

 • The amount of cache memory that is shared

Figure 18.8 shows four general organizations for multicore systems. Figure 
18.8a is an organization found in some of the earlier multicore computer chips and 
is still seen in embedded chips. In this organization, the only on-chip cache is L1 
cache, with each core having its own dedicated L1 cache. Almost invariably, the L1 
cache is divided into instruction and data caches. An example of this organization is 
the ARM11 MPCore.

The organization of Figure 18.8b is also one in which there is no on-chip cache 
sharing. In this, there is enough area available on the chip to allow for L2 cache. 
An example of this organization is the AMD Opteron. Figure 18.8c shows a similar 
allocation of chip space to memory, but with the use of a shared L2 cache. The Intel 
Core Duo has this organization. Finally, as the amount of cache memory available 
on the chip continues to grow, performance considerations dictate splitting off a 
separate, shared L3 cache, with dedicated L1 and L2 caches for each core processor. 
The Intel Core i7 is an example of this organization.

The use of a shared L2 cache on the chip has several advantages over exclusive 
reliance on dedicated caches:

 1. Constructive interference can reduce overall miss rates. That is, if a thread on 
one core accesses a main memory location, this brings the frame containing 
the referenced location into the shared cache. If a thread on another core soon 
thereafter accesses the same memory block, the memory locations will already 
be available in the shared on-chip cache.

 2. A related advantage is that data shared by multiple cores is not replicated at 
the shared cache level.

 3. With proper frame replacement algorithms, the amount of shared cache allo-
cated to each core is dynamic, so that threads that have a less locality can 
employ more cache.
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 4. Interprocessor communication is easy to implement, via shared memory locations.

 5. The use of a shared L2 cache confines the cache coherency problem to the L1 
cache level, which may provide some additional performance advantage.

A potential advantage to having only dedicated L2 caches on the chip is that 
each core enjoys more rapid access to its private L2 cache. This is advantageous for 
threads that exhibit strong locality.

As both the amount of memory available and the number of cores grow, the 
use of a shared L3 cache combined with either a shared L2 cache or dedicated per-
core L2 caches seems likely to provide better performance than simply a massive 
shared L2 cache.

Another organizational design decision in a multicore system is whether the 
individual cores will be superscalar or will implement simultaneous multithreading 
(SMT). For example, the Intel Core Duo uses superscalar cores, whereas the Intel 
Core i7 uses SMT cores. SMT has the effect of scaling up the number of hardware-
level threads that the multicore system supports. Thus, a multicore system with four 
cores and SMT that supports four simultaneous threads in each core appears the 
same to the application level as a multicore system with 16 cores. As software is 
developed to more fully exploit parallel resources, an SMT approach appears to be 
more attractive than a superscalar approach.
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 18.4 INTEL x86 MULTICORE ORGANIZATION

Intel has introduced a number of multicore products in recent years. In this section, 
we look at two examples: the Intel Core Duo and the Intel Core i7-990X.

Intel Core Duo

The Intel Core Duo, introduced in 2006, implements two x86 superscalar processors 
with a shared L2 cache (Figure 18.8c).

The general structure of the Intel Core Duo is shown in Figure 18.9. Let us 
consider the key elements starting from the top of the figure. As is common in mul-
ticore systems, each core has its own dedicated L1 cache. In this case, each core has 
a 32-kB instruction cache and a 32-kB data cache.

Each core has an independent thermal control unit. With the high transistor 
density of today’s chips, thermal management is a fundamental capability, espe-
cially for laptop and mobile systems. The Core Duo thermal control unit is designed 
to manage chip heat dissipation to maximize processor performance within thermal 
constraints. Thermal management also improves ergonomics with a cooler system 
and lower fan acoustic noise. In essence, the thermal management unit monitors 
digital sensors for high-accuracy die temperature measurements. Each core can 
be defined as an independent thermal zone. The maximum temperature for each 
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thermal zone is reported separately via dedicated registers that can be polled by 
software. If the temperature in a core exceeds a threshold, the thermal control unit 
reduces the clock rate for that core to reduce heat generation.

The next key element of the Core Duo organization is the Advanced 
Programmable Interrupt Controller (APIC). The APIC performs a number of 
functions, including the following:

 1. The APIC can provide interprocessor interrupts, which allow any process to 
interrupt any other processor or set of processors. In the case of the Core Duo, 
a thread in one core can generate an interrupt, which is accepted by the local 
APIC, routed to the APIC of the other core, and communicated as an inter-
rupt to the other core.

 2. The APIC accepts I/O interrupts and routes these to the appropriate core.

 3. Each APIC includes a timer, which can be set by the OS to generate an inter-
rupt to the local core.

The power management logic is responsible for reducing power consumption 
when possible, thus increasing battery life for mobile platforms, such as laptops. In 
essence, the power management logic monitors thermal conditions and CPU activ-
ity and adjusts voltage levels and power consumption appropriately. It includes an 
advanced power-gating capability that allows for an ultra fine-grained logic con-
trol that turns on individual processor logic subsystems only if and when they are 
needed.

The Core Duo chip includes a shared 2-MB L2 cache. The cache logic allows 
for a dynamic allocation of cache space based on current core needs, so that one 
core can be assigned up to 100% of the L2 cache. The L2 cache includes logic to 
support the MESI cache coherence protocol for the attached L1 caches. The key 
point to consider is when a cache write is done at the L1 level. A cache line gets the 
M state when a processor writes to it; if the line is not in E or M-state prior to writ-
ing it, the cache sends a Read-For-Ownership (RFO) request that ensures that the 
line exists in the L1 cache and is in the I state in the other L1 cache. The Intel Core 
Duo extends this protocol to take into account the case when there are multiple 
Core Duo chips organized as a symmetric multiprocessor (SMP) system. The L2 
cache controller allow the system to distinguish between a situation in which data 
are shared by the two local cores, but not with the rest of the world, and a situation 
in which the data are shared by one or more caches on the die as well as by an agent 
on the external bus (can be another processor). When a core issues an RFO, if the 
line is shared only by the other cache within the local die, we can resolve the RFO 
internally very fast, without going to the external bus at all. Only if the line is shared 
with another agent on the external bus do we need to issue the RFO externally.

The bus interface connects to the external bus, known as the Front Side Bus, 
which connects to main memory, I/O controllers, and other processor chips.

Intel Core i7-990X

The Intel Core i7-990X, introduced in November of 2008, implements four x86 
SMT processors, each with a dedicated L2 cache, and with a shared L3 cache 
(Figure 18.8d).
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The general structure of the Intel Core i7-990X is shown in Figure 18.10. Each 
core has its own dedicated L2 cache and the four cores share a 12-MB L3 cache. 
One mechanism Intel uses to make its caches more effective is prefetching, in which 
the hardware examines memory access patterns and attempts to fill the caches spec-
ulatively with data that’s likely to be requested soon. It is interesting to compare the 
performance of this three-level on chip cache organization with a comparable two-
level organization from Intel. Table 18.1 shows the cache access latency, in terms of 
clock cycles for two Intel multicore systems running at the same clock frequency. 
The Core 2 Quad has a shared L2 cache, similar to the Core Duo. The Core i7 
improves on L2 cache performance with the use of the dedicated L2 caches, and 
provides a relatively high-speed access to the L3 cache.

The Core i7-990X chip supports two forms of external communications to 
other chips. The DDR3 memory controller brings the memory controller for the 
DDR main memory2 onto the chip. The interface supports three channels that 
are 8 bytes wide for a total bus width of 192 bits, for an aggregate data rate of 
up to 32 GB/s. With the memory controller on the chip, the Front Side Bus is 
eliminated.
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Figure 18.10 Intel Core i7-990X Block Diagram

Table 18.1 Cache Latency (in clock cycles)

CPU Clock Frequency L1 Cache L2 Cache L3 Cache

Core 2 Quad 2.66 GHz 3 cycles 15 cycles —

Core i7 2.66 GHz 4 cycles 11 cycles 39 cycles

2The DDR synchronous RAM memory is discussed in Chapter 5.
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The QuickPath Interconnect (QPI) is a cache-coherent, point-to-point link 
based electrical interconnect specification for Intel processors and chipsets. It 
 enables high-speed communications among connected processor chips. The QPI 
link operates at 6.4 GT/s (transfers per second). At 16 bits per transfer, that adds 
up to 12.8 GB/s, and since QPI links involve dedicated bidirectional pairs, the total 
bandwidth is 25.6 GB/s. Section 3.5 covers QPI in some detail.

 18.5 ARM11 MPCORE

The ARM11 MPCore is a multicore product based on the ARM11 processor fam-
ily. The ARM11 MPCore can be configured with up to four processors, each with 
its own L1 instruction and data caches, per chip. Table 18.2 lists the configurable 
options for the system, including the default values.

Figure 18.11 presents a block diagram of the ARM11 MPCore. The key ele-
ments of the system are as follows:

 • Distributed interrupt controller (DIC): Handles interrupt detection and inter-
rupt prioritization. The DIC distributes interrupts to individual processors.

 • Timer: Each CPU has its own private timer that can generate interrupts.

 • Watchdog: Issues warning alerts in the event of software failures. If the watch-
dog is enabled, it is set to a predetermined value and counts down to 0. It is 
periodically reset. If the watchdog value reaches zero, an alert is issued.

 • CPU interface: Handles interrupt acknowledgment, interrupt masking, and 
interrupt completion acknowledgement.

 • CPU: A single ARM11 processor. Individual CPUs are referred to as MP11 
CPUs.

 • Vector floating-point (VFP) unit: A coprocessor that implements floating-
point operations in hardware.

 • L1 cache: Each CPU has its own dedicated L1 data cache and L1 instruction 
cache.

 • Snoop control unit (SCU): Responsible for maintaining coherency among L1 
data caches.

Table 18.2 ARM11 MPCore Configurable Options

Feature Range of Options Default Value

Processors 1 to 4 4

Instruction cache size per processor 16 kB, 32 kB, or 64 kB 32 kB

Data cache size per processor 16 kB, 32 kB, or 64 kB 32 kB

Master ports 1 or 2 2

Width of interrupt bus 0 to 224 by increments of 32 pins 32 pins

Vector floating point (VFP)  
coprocessor per processor

Included or not Included
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Interrupt Handling

The Distributed Interrupt Controller (DIC) collates interrupts from a large number 
of sources. It provides

 • Masking of interrupts

 • Prioritization of the interrupts

 • Distribution of the interrupts to the target MP11 CPUs

 • Tracking the status of interrupts

 • Generation of interrupts by software

The DIC is a single functional unit that is placed in the system alongside 
MP11 CPUs. This enables the number of interrupts supported in the system to 
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Figure 18.11 ARM11 MPCore Processor Block Diagram
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be independent of the MP11 CPU design. The DIC is memory mapped; that 
is, control registers for the DIC are defined relative to a main memory base  
address. The DIC is accessed by the MP11 CPUs using a private interface through 
the SCU.

The DIC is designed to satisfy two functional requirements:

 • Provide a means of routing an interrupt request to a single CPU or multiple 
CPUs, as required.

 • Provide a means of interprocessor communication so that a thread on one 
CPU can cause activity by a thread on another CPU.

As an example that makes use of both requirements, consider a multithreaded 
application that has threads running on multiple processors. Suppose the applica-
tion allocates some virtual memory. To maintain consistency, the operating system 
must update memory translation tables on all processors. The OS could update the 
tables on the processor where the virtual memory allocation took place, and then 
issue an interrupt to all the other processors running this application. The other 
processors could then use this interrupt’s ID to determine that they need to update 
their memory translation tables.

The DIC can route an interrupt to one or more CPUs in the following three ways:

 • An interrupt can be directed to a specific processor only.

 • An interrupt can be directed to a defined group of processors. The MPCore 
views the first processor to accept the interrupt, typically the least loaded, as 
being best positioned to handle the interrupt.

 • An interrupt can be directed to all processors.

From the point of view of software running on a particular CPU, the OS can 
generate an interrupt to all but self, to self, or to specific other CPUs. For commu-
nication between threads running on different CPUs, the interrupt mechanism is 
typically combined with shared memory for message passing. Thus, when a thread 
is interrupted by an interprocessor communication interrupt, it reads from the 
appropriate block of shared memory to retrieve a message from the thread that 
triggered the interrupt. A total of 16 interrupt IDs per CPU are available for inter-
processor communication.

From the point of view of an MP11 CPU, an interrupt can be

 • Inactive: An Inactive interrupt is one that is nonasserted, or which in a multi-
processing environment has been completely processed by that CPU but can 
still be either Pending or Active in some of the CPUs to which it is targeted, 
and so might not have been cleared at the interrupt source.

 • Pending: A Pending interrupt is one that has been asserted, and for which 
processing has not started on that CPU.

 • Active: An Active interrupt is one that has been started on that CPU, but 
processing is not complete. An Active interrupt can be pre-empted when a 
new interrupt of higher priority interrupts MP11 CPU interrupt processing.
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Interrupts come from the following sources:

 • Interprocessor interrupts (IPIs): Each CPU has private interrupts, ID0-ID15, 
that can only be triggered by software. The priority of an IPI depends on the 
receiving CPU, not the sending CPU.

 • Private timer and/or watchdog interrupts: These use interrupt IDs 29 and 30.

 • Legacy FIQ line: In legacy IRQ mode, the legacy FIQ pin, on a per CPU basis, 
bypasses the Interrupt Distributor logic and directly drives interrupt requests 
into the CPU.

 • Hardware interrupts: Hardware interrupts are triggered by programmable 
events on associated interrupt input lines. CPUs can support up to 224 inter-
rupt input lines. Hardware interrupts start at ID32.

Figure 18.12 is a block diagram of the DIC. The DIC is configurable to sup-
port between 0 and 255 hardware interrupt inputs. The DIC maintains a list of inter-
rupts, showing their priority and status. The Interrupt Distributor transmits to each 
CPU Interface the highest Pending interrupt for that interface. It receives back the 
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Figure 18.12 Interrupt Distributor Block Diagram
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information that the interrupt has been acknowledged, and can then change the 
status of the corresponding interrupt. The CPU Interface also transmits End of 
Interrupt Information (EOI), which enables the Interrupt Distributor to update the 
status of this interrupt from Active to Inactive.

Cache Coherency

The MPCore’s Snoop Control Unit (SCU) is designed to resolve most of the tra-
ditional bottlenecks related to access to shared data and the scalability limitation 
introduced by coherence traffic.

The L1 cache coherency scheme is based on the MESI protocol described in 
Chapter 17. The SCU monitors operations with shared data to optimize MESI state 
migration. The SCU introduces three types of optimization: direct data interven-
tion, duplicated tag RAMs, and migratory lines.

Direct data intervention (DDI) enables copying clean data from one CPU L1 
data cache to another CPU L1 data cache without accessing external memory. This 
reduces read after read activity from the Level 1 cache to the Level 2 cache. Thus, a 
local L1 cache miss is resolved in a remote L1 cache rather than from access to the 
shared L2 cache.

Recall that main memory location of each line within a cache is identified by 
a tag for that line. The tags can be implemented as a separate block of RAM of 
the same length as the number of lines in the cache. In the SCU, duplicated tag 
RAMs are duplicated versions of L1 tag RAMs used by the SCU to check for data 
availability before sending coherency commands to the relevant CPUs. Coherency 
commands are sent only to CPUs that must update their coherent data cache. This 
reduces the power consumption and performance impact from snooping into and 
manipulating each processor’s cache on each memory update. Having tag data 
available locally lets the SCU limit cache manipulations to processors that have 
cache lines in common.

The migratory lines feature enables moving dirty data from one CPU to 
another without writing to L2 and reading the data back in from external memory. 
The operation can be described as follows. In a typical MESI protocol, one proces-
sor has a modified line and another processor attempts to read that line, the follow-
ing actions occur:

 1. The line contents are transferred from the modified line to the processor that 
initiated the read.

 2. The line contents are written back to main memory.

 3. The line is put in the shared state in both caches.

The MPCore SCU handles this situation differently. The SCU monitors the sys-
tem for a migratory line. If one processor has a modified line, and another processor 
reads then writes to it, the SCU assumes such a location will experience this same oper-
ation in the future. As this operation starts again, the SCU will automatically move the 
cache line directly to an invalid state rather than expending energy moving it first into 
the shared state. This optimization also causes the processor to transfer the cache line 
directly to the other processor without intervening external memory operations.
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 18.6 IBM ZENTERPRISE 196 MAINFRAME

In this section, we look at a mainframe computer organization that uses multicore 
processor chips. The example we use is the IBM zEnterprise 196 mainframe com-
puter [CURR11, WHIT11], which began shipping in late 2010. Section 7.8 provides 
a general overview of the z196, together with a discussion of its I/O structure.

Organization

The principal building block of the mainframe is the multichip module (MCM), a 
glass ceramic module that houses 8 chips. The key components of the configuration 
are shown in Figure 18.13:

 • Processor unit (PU): There are six 5.2-GHz processor PU chips, each contain-
ing four processor cores plus three levels of cache. The PUs have external 
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Figure 18.13 IBM z196 Processor Node Structure
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connections to main memory via memory control units and to I/O via host 
channel adapters. Thus, each MCM includes 24 core processors.

 • Storage control (SC): The two SC chips contain an additional level of cache 
plus interconnection logic for connecting to three other MCMs.

The microprocessor core features a wide superscalar, out-of-order pipe-
line that can decode three z/Architecture CISC instructions per clock cycle and 
execute up to five operations per cycle. The instruction execution path is pre-
dicted by branch direction and target prediction logic. Each core has six execu-
tion units: two integer units, one floating-point unit, two load/store units, and 
one decimal unit.

Cache Structure

The z196 incorporates a four-level cache structure, which IBM states is the indus-
try’s first four-level cache. We look at each level in turn (Figure 18.14).

Each core has a dedicated 192-kB level 1 cache, divided into a 128-kB data 
cache and a 64-kB instruction cache. The L1 cache is designed as a store-through 
cache to L2, that is, altered data are also stored to the next level of memory. These 
caches are 8-way set associative.

Each core also has a dedicated 1.5-MB level 2 cache, which is also a store-
through to L3. The L2 cache is 12-way set associative.

Each 4-core processor unit chip includes a 24-MB level 3 cache shared by all 
four processors. Because L1 and L2 caches are store-through, the L3 cache must 
process every store generated by the four cores on its chip. This feature maintains 
data availability during a core failure. The L3 cache is 12-way set associative. The 
z196 implements embedded DRAM (eDRAM) as L3 cache memory on the chip. 
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While this eDRAM memory is slower than static RAM (SRAM) normally used 
to implement cache memory, you can put a lot of it onto a given area. For many 
workloads, having more memory closer to the chip is more important than having 
fast memory.

Finally, all 6 PUs on an MCM share a 192-MB level 4 cache, which is split 
into one 96-MB cache on each SC. The principal motivation for incorporating a 
level 4 cache is that the very high clock speed of the core processors results in a 
significant mismatch with main memory speed. The fourth cache layer is needed to 
keep the cores running efficiently. The large shared L3 and L4 caches are suited to 
transaction-processing workloads exhibiting a high degree of data sharing and task 
swapping. The L4 cache is 24-way set associative. The SC chip, which houses the 
L4 cache, also acts as an L4 cache cross-point switch for L4-to-L4 traffic to up to 
three remote books3 by three bidirectional data buses. L4 is the coherence manager, 
meaning that all memory fetches must be in the L4 cache before that data can be 
used by the processor.

All four caches use a line size of 256 bytes.
The z196 is an interesting study in design trade-offs and the difficulty in 

exploiting the increasingly powerful processors available with current technology. 
The large L4 cache is intended to drive the need for access to main memory down to 
the bare minimum. However, the distance to the off-chip L4 cache costs a number 
of instruction cycles. Thus, the on-chip area devoted to cache is as large as possible, 
even to the point of having fewer cores than possible on the chip. The L1 caches are 
small, to minimize distance from the processor and ensure that access can occur in 
one cycle. The L2 cache is dedicated to a single core, in an attempt to maximize the 
amount of access that can occur without resort to a shared cache. The L3 cache is 
shared by all four processors on a chip and is as large as possible, to minimize the 
need to go to the L4 cache.

Because all of the books of the zEnterprise 196 share the workload, the four 
L4 caches on the four books form a single pool of L4 cache memory. Thus, access 
to L4 means not only going off-chip but perhaps off-book, further increasing access 
delay. This means relatively large distances exist between the higher-level caches in 
the processors and the L4 cache content.

To overcome the delays that are inherent to the book design and to save 
cycles to access the off-book L4 content, the designers try to keep instructions 
and data as close to the processors as possible by directing as much work of a 
given logical partition workload on the processors located in the same book as the 
L4 cache. This is achieved by having the system resource manager/scheduler and 
the z/OS dispatcher work together to keep as much work as possible within the 
boundaries of as few processors and L4 cache space (which is best within a book 
boundary) as can be achieved without affecting throughput and response times. 
Preventing the resource manager/scheduler and the dispatcher from scheduling 
and dispatching a workload on any processor available, and keeping the workload 
in as small a portion, contributes to overcoming latency in a high-frequency proc-
essor design such as the z196.

3Recall from Chapter 7 that a z196 book consists of an MCM, memory cards, and I/O cage connections.
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 18.7 RECOMMENDED READING

Two books that provide good coverage of the issues in this chapter are [OLUK07] and 
[BAER10]. [GOCH06] and [MEND06] describe the Intel Core Duo. [FOG08b] provides a 
detailed description of the Core Duo pipeline architecture.

[ARM08b] provides thorough coverage of the ARM Cortex-A8 pipeline. [HIRA07] 
and [GOOD05] are good overview articles.

ARM08b ARM Limited. ARM11 MPCore Processor Technical Reference Manual. 
ARM DDI 0360E, 2008. www.arm.com

BAER10 Baer, J. Microprocessor Architecture: From Simple Pipelines to Chip 
Multiprocessors. New York: Cambridge University Press, 2010.

FOG08b Fog, A. The Microarchitecture of Intel and AMD CPUs. Copenhagen 
University College of Engineering, 2008. http://www.agner.org/optimize/

GOCH06 Gochman, S., et al. “Introduction to Intel Core Duo Processor Architecture.” 
Intel Technology Journal, May 2006.

GOOD05 Goodacre, J., and Sloss, A. “Parallelism and the ARM Instruction Set Archi-
tecture.” Computer, July 2005.

HIRA07 Hirata, K., and Goodacre, J. “ARM MPCore: The Streamlined and Scal-
able ARM11 processor core.” Proceedings, 2007 Conference on Asia South Pacific 
Design Automation, 2007.

MEND06 Mendelson, A., et al. “CMP Implementation in Systems Based on the Intel 
Core Duo Processor.” Intel Technology Journal, May 2006.

OLUK07 Olukotun, K.; Hammond, L.; and Laudon, J. Chip Multiprocessor Architec-
ture: Techniques to Improve Throughput and Latency. San Rafael, CA: Morgan & 
Claypool, 2007.

 18.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Amdahl’s law
chip multiprocessor

multicore
simultaneous multithreading (SMT)

superscalar

Review Questions
 18.1 Summarize the differences among simple instruction pipelining, superscalar, and si-

multaneous multithreading.
 18.2 Give several reasons for the choice by designers to move to a multicore organization 

rather than increase parallelism within a single processor.
 18.3 Why is there a trend toward giving an increasing fraction of chip area to cache memory?
 18.4 List some examples of applications that benefit directly from the ability to scale 

throughput with the number of cores.

www.arm.com
http://www.agner.org/optimize/
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 18.5 At a top level, what are the main design variables in a multicore organization?
 18.6 List some advantages of a shared L2 cache among cores compared to separate dedi-

cated L2 caches for each core.

Problems
 18.1 Consider the following problem. A designer has a chip available and must decide what 

fraction of the chip will be devoted to cache memory (L1, L2, L3). The remainder of 
the chip can be devoted to a single complex superscalar and/or SMT core or multiple 
somewhat simpler cores. Define the following parameters:

 n = maximum number of cores that can be contained on the chip
k = actual number of cores implemented (1 … k … n, where r = n/k is an integer)
perf (r) = sequential performance gain by using the resources equivalent to r cores to 
form a single processor, where perf(1) = 1.
f = fraction of software that is parallelizable across multiple cores.

Thus, if we construct a chip with n cores, we expect each core to provide sequential 
performance of 1 and for the n cores to be able to exploit parallelism up to a degree 
of n parallel threads. Similarly, if the chip has k cores, then each core should exhibit a 
performance of perf(r) and the chip is able to exploit parallelism up to a degree of k 
parallel threads. We can modify Amdhal’s law (Equation 18.1) to reflect this situation 
as follows:

Speedup =  
1

1 - f

perf(r)
 +  

f * r

perf(r) * n

a. Justify this modification of Amdahl’s law.
b. Using Pollack’s rule, we set perf(r) = 1r. Let n = 16. We want to plot speedup as 

a function of r for f = 0.5; f = 0.9; f = 0.975; f = 0.99; f = 0.999. The results are 
available in a document at this book’s Premium Content site (multicore-perfor-
mance.pdf). What conclusions can you draw?

c. Repeat part (b) for n = 256.
 18.2 The technical reference manual for the ARM11 MPCore says that the Distributed 

Interrupt Controller is memory mapped. That is, the core processors use memory 
mapped I/O to communicate with the DIC. Recall from Chapter 7 that with memory-
mapped I/O, there is a single address space for memory locations and I/O devices. The 
processor treats the status and data registers of I/O modules as memory locations and 
uses the same machine instructions to access both memory and I/O devices. Based on 
this information, what path through the block diagram of Figure 18.11 is used for the 
core processors to communicate with the DIC?

 18.3 In this question we analyze the performance of the following C program on a multi-
threaded architecture. You should assume that arrays A, B, and C do not overlap in 
memory.

for (i=0; i<328; i++) {

  A[i] = A[i]*B[i];

  C[i] = C[i]+A[i];

  }

Our machine is a single-issue, in-order processor. It switches to a different thread 
every cycle using fixed round robin scheduling. Each of the N threads executes one 
instruction every N cycles. We allocate the code to the threads such that every thread 
executes every Nth iteration of the original C code.
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Integer instructions take 1 cycle to execute, floating-point instructions take  
4 cycles and memory instructions take 3 cycles. All execution units are fully pipe-
lined. If an instruction cannot issue because its data is not yet available, it inserts a 
bubble into the pipeline, and retries after I cycles.

Below is our program in assembly code for this machine for a single thread  
executing the entire loop.

loop: ld f1, 0 (r1)   ;f1 = A[i]

    ld f2, 0 (r2)   ;f2 = B[i]

    fmul f4, f2, f1  ;f4 = f1*f2

    st f4 0(r1)     ;A[i] = f4

    ld f3, 0(r3)    ;f3 = C[i]

    fadd f5, f4, f3  ;f5 = f4 + f3

    st f5 0(r3)     ;C[i] = f5

    add r1, r1, 4    ;i++

    add r2, r2, 4

    add r3, r3, 4

    add r4, r4, −1

    bnez r4, loop    ;loop

a. We allocate the assembly code of the loop to N threads such that every thread 
executes every Nth iteration of the original loop. Write the assembly code that one 
of the N threads would execute on this multithreaded machine.

b. What is the minimum number of threads this machine needs to remain fully uti-
lized issuing an instruction every cycle for our program?

c. Could we reach peak performance running this program using fewer threads by 
rearranging the instructions? Explain briefly.

d. What will be the peak performance in flops/cycle for this program?
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A.2 Research Projects

A.3 Simulation Projects
SimpleScalar
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A.4 Assembly Language Projects
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Many instructors believe that research or implementation projects are crucial to 
the clear understanding of the concepts of computer organization and architecture. 
Without projects, it may be difficult for students to grasp some of the basic concepts 
and interactions among components. Projects reinforce the concepts introduced in 
the book, give students a greater appreciation of the inner workings of processors 
and computer systems, and can motivate students and give them confidence that 
they have mastered the material.

In this text, I have tried to present the concepts of computer organization and 
architecture as clearly as possible and have provided numerous homework problems 
to reinforce those concepts. Many instructors will wish to supplement this material 
with projects. This appendix provides some guidance in that regard and describes 
support material available in the Instructor’s Resource Center (IRC) for this book, 
accessible by instructors online from Prentice Hall. The support material covers six 
types of projects and other student exercises:

 • Interactive simulations

 • Research projects
 • Simulation projects
 • Assembly language projects
 • Reading/report assignments
 • Writing assignments
 • Test bank

 A.1 INTERACTIVE SIMULATIONS

Interactive simulations provide a powerful tool for understanding the complex 
design features of a modern computer system. Today’s students want to be able to 
visualize the various complex computer systems mechanisms on their own computer 
screen. A total of 20 simulations are used to illustrate key functions and algorithms 
in computer organization and architecture design. Table A.1 lists the simulations by 
chapter. At the relevant point in the book, an icon indicates that a relevant interac-
tive simulation is available online for student use.

Because the simulations enable the user to set initial conditions, they can serve 
as the basis for student assignments. The IRC for this book includes a set of assign-
ments, one set for each of the interactive simulations. Each assignment includes a 
several specific problems that can be assigned to students.

The interactive simulations were developed under the direction of Professor 
Israel Koren, at the University of Massachusetts Department of Electrical and 
Computer Engineering. Aswin Sreedhar of the University of Massachusetts 
developed the interactive simulation assignments. For access to the animations, 
click on the rotating globe at this book’s web site at http://williamstallings.com/
ComputerOrganization.

http://williamstallings.com/ComputerOrganization
http://williamstallings.com/ComputerOrganization
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Table A.1 Computer Organization and Architecture—Interactive Simulations by Chapter

Chapter 4—Cache Memory

Cache Simulator Emulates small-sized caches based on a user-input cache 
model and displays the cache contents at the end of the simu-
lation cycle based on an input sequence which is entered by 
the user, or randomly generated if so selected.

Cache Time Analysis Demonstrates Average Memory Access Time analysis for the 
cache parameters you specify.

Multitask Cache Demonstrator Models cache on a system that supports multitasking.

Selective Victim Cache Simulator Compares three different cache policies.

Chapter 5—Internal Memory

Interleaved Memory Simulator Demonstrates the effect of interleaving memory.

Chapter 6—External Memory

RAID Determine storage efficiency and reliability.

Chapter 7—Input/Output

I/O System Design Tool Evaluates comparative cost and performance of different I/O  
systems.

Chapter 8—OS Support

Page Replacement Algorithms Compares LRU, FIFO, and Optimal.

More Page Replacement Algorithms Compares a number of policies.

Chapter 14—CPU Structure and Function

Reservation Table Analyzer Evaluates reservation tables. which are a way of representing 
the task flow pattern of a pipelined system.

Branch Prediction Demonstrates three different branch prediction schemes.

Branch Target Buffer Combined branch predictor/branch target buffer simulator.

Chapter 15—Reduced Instruction Set Computers

MIPS 5-Stage Pipeline Simulates the pipeline.

Loop Unrolling Simulates the loop unrolling software technique for  
exploiting instruction-level parallelism.

Chapter 16—Instruction-Level Parallelism and Superscalar Processors

Pipeline with Static vs. Dynamic Scheduling A more complex simulation of the MIPS pipeline.

Reorder Buffer Simulator Simulates instruction reordering in a RISC pipeline.

Scoreboarding Technique for Dynamic 
Scheduling

Simulation of an instruction scheduling technique used in a 
number of processors.

Tomasulo’s Algorithm Simulation of another instruction scheduling technique.

Alternative Simulation of Tomasulo’s 
Algorithm

Another simulation of Tomasulo’s algorithm.

Chapter 17—Parallel Processing

Vector Processor Simulation Demonstrates execution of vector processing instructions.
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 A.2 RESEARCH PROJECTS

An effective way of reinforcing basic concepts from the course and for teaching stu-
dents research skills is to assign a research project. Such a project could involve a 
literature search as well as a Web search of vendor products, research lab  activities, 
and standardization efforts. Projects could be assigned to teams or, for smaller proj-
ects, to individuals. In any case, it is best to require some sort of project proposal early 
in the term, giving the instructor time to evaluate the proposal for appropriate topic 
and appropriate level of effort. Student handouts for research projects should include

 • A format for the proposal

 • A format for the final report

 • A schedule with intermediate and final deadlines

 • A list of possible project topics

The students can select one of the listed topics or devise their own comparable 
project. The IRC includes a suggested format for the proposal and final report as 
well as a list of possible research topics.

 A.3 SIMULATION PROJECTS

An excellent way to obtain a grasp of the internal operation of a processor and to 
study and appreciate some of the design trade-offs and performance implications is 
by simulating key elements of the processor. Two useful tools that are useful for this 
purpose are SimpleScalar and SMPCache.

Compared with actual hardware implementation, simulation provides two 
advantages for both research and educational use:

 • With simulation, it is easy to modify various elements of an organization, to 
vary the performance characteristics of various components, and then to ana-
lyze the effects of such modifications.

 • Simulation provides for detailed performance statistics collection, which can 
be used to understand performance trade-offs.

SimpleScalar

SimpleScalar [BURG97, MANJ01a, MANJ01b] is a set of tools that can be used to sim-
ulate real programs on a range of modern processors and systems. The tool set includes 
compiler, assembler, linker, and simulation and visualization tools. SimpleScalar pro-
vides processor simulators that range from an extremely fast functional simulator to a 
detailed out-of-order issue, superscalar processor simulator that supports nonblocking 
caches and speculative execution. The instruction set architecture and organizational 
parameters may be modified to create a variety of experiments.

The IRC for this book includes a concise introduction to SimpleScalar for 
students, with instructions on how to load and get started with SimpleScalar. The 
manual also includes some suggested project assignments.
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SimpleScalar is a portable software package the runs on most UNIX plat-
forms. The SimpleScalar software can be downloaded from the SimpleScalar Web 
site. It is available at no cost for noncommercial use.

SMPCache

SMPCache is a trace-driven simulator for the analysis and teaching of cache 
 memory systems on symmetric multiprocessors [RODR01]. The simulation is based 
on a model built according to the architectural basic principles of these systems. 
The simulator has a full graphic and friendly interface. Some of the parameters that 
they can be studied with the simulator are: program locality; influence of the num-
ber of processors, cache coherence protocols, schemes for bus arbitration, mapping, 
replacement policies, cache size (blocks in cache), number of cache sets (for set 
associative caches), number of words by block (memory block size).

The IRC for this book includes a concise introduction to SMPCache for stu-
dents, with instructions on how to load and get started with SMPCache. The manual 
also includes some suggested project assignments.

SMPCache is a portable software package the runs on PC systems with 
Windows. The SMPCache software can be downloaded from the SMPCache Web 
site. It is available at no cost for noncommercial use.

 A.4 ASSEMBLY LANGUAGE PROJECTS

Assembly language programming is often used to teach students low-level hard-
ware components and computer architecture basics. CodeBlue is a simplified assem-
bly language program developed at the U. S. Air Force Academy. The goal of the 
work was to develop and teach assembly language concepts using a visual simulator 
that students can learn in a single class. The developers also wanted students to find 
the language motivational and fun to use. The CodeBlue language is much simpler 
than most simplified architecture instruction sets such as the SC123. Still it allows 
students to develop interesting assembly level programs that compete in tourna-
ments, similar to the far more complex SPIMbot simulator. Most important, through 
CodeBlue programming, students learn fundamental computer architecture con-
cepts such as instructions and data co-residence in memory, control structure imple-
mentation, and addressing modes.

To provide a basis for projects, the developers have built a visual develop-
ment environment that allows students to create a program, see its representation in 
memory, step through the program’s execution, and simulate a battle of competing 
programs in a visual memory environment.

Projects can be built around the concept of a Core War tournament. Core 
War is a programming game introduced to the public in the early 1980s, which was 
popular for a period of 15 years or so. Core War has four main components: a mem-
ory array of 8000 addresses, a simplified assembly language Redcode, an execu-
tive program called MARS (an acronym for Memory Array Redcode Simulator) 
and the set of contending battle programs. Two battle programs are entered into 
the memory array at randomly chosen positions; neither program knows where the 
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other one is. MARS executes the programs in a simple version of time-sharing. The 
two programs take turns: a single instruction of the first program is executed, then 
a single instruction of the second, and so on. What a battle program does during the 
execution cycles allotted to it is entirely up to the programmer. The aim is to destroy 
the other program by ruining its instructions. The CodeBlue environment substi-
tutes CodeBlue for Redcode and provides its own interactive execution interface.

The IRC includes the CodeBlue environment, a user’s manual for students, 
other supporting material, and suggested assignments.

 A.5 READING/REPORT ASSIGNMENTS

Another excellent way to reinforce concepts from the course and to give students 
research experience is to assign papers from the literature to be read and analyzed. 
The IRC includes a suggested list of papers to be assigned, organized by chapter. 
The Premium Content Web site provides a copy of each of the papers. The IRC also 
includes a suggested assignment wording.

 A.6 WRITING ASSIGNMENTS

Writing assignments can have a powerful multiplier effect in the learning process 
in a technical discipline such as computer organization and architecture. Adherents 
of the Writing Across the Curriculum (WAC) movement (http://wac.colostate.edu/) 
report substantial benefits of writing assignments in facilitating learning. Writing 
assignments lead to more detailed and complete thinking about a particular topic. In 
addition, writing assignments help to overcome the tendency of students to pursue 
a subject with a minimum of personal engagement, just learning facts and problem-
solving techniques without obtaining a deep understanding of the subject matter.

The IRC contains a number of suggested writing assignments, organized by 
chapter. Instructors may ultimately find that this is the most important part of their 
approach to teaching the material. I would greatly appreciate any feedback on this 
area and any suggestions for additional writing assignments.

 A.7 TEST BANK

A test bank for the book is available at the IRC site for this book. For each chapter, 
the test bank includes true/false, multiple choice, and fill-in-the-blank questions. The 
test bank is an effective way to assess student comprehension of the material.

http://wac.colostate.edu/
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The topic of assembly language was briefly introduced in Chapter 13. This appendix 
provides more detail and also covers a number of related topics. There are a number 
of reasons why it is worthwhile to study assembly language programming (as com-
pared with programming in a higher-level language), including the following:

 1. It clarifies the execution of instructions.

 2. It shows how data is represented in memory.

 3. It shows how a program interacts with the operating system, processor, and 
the I/O system.

 4. It clarifies how a program accesses external devices.

 5. Understanding assembly language programmers makes students better high-
level language (HLL) programmers, by giving them a better idea of the target 
language that the HLL must be translated into.

We begin this chapter with a study of the basic elements of an assembly lan-
guage, using the x86 architecture for our examples.1 Next, we look at the operation 
of the assembler. This is followed by a discussion of linkers and loaders.

Table B.1 defines some of the key terms used in this appendix.

 B.1 ASSEMBLY LANGUAGE

Assembly language is a programming language that is one step away from 
machine language. Typically, each assembly language instruction is translated into 
one machine instruction by the assembler. Assembly language is hardware depen-
dent, with a different assembly language for each type of processor. In particu-
lar, assembly language instructions can make reference to specific registers in the 
processor, include all of the opcodes of the processor, and reflect the bit length 
of the various registers of the processor and operands of the machine language. 
An assembly language programmer must therefore understand the computer’s 
architecture.

1There are a number of assemblers for the x86 architecture. Our examples use NASM (Netwide Assem-
bler), an open source assembler. A copy of the NASM manual is at this book’s Premium Content site.

Programmers rarely use assembly language for applications or even systems 
programs. HLLs provide an expressive power and conciseness that greatly eases the 
programmer’s tasks. The disadvantages of using an assembly language rather than 
an HLL include the following [FOG08a]:

 1. Development time. Writing code in assembly language takes much longer 
than writing in a high-level language.

 2. Reliability and security. It is easy to make errors in assembly code. The assem-
bler is not checking if the calling conventions and register save conventions are 
obeyed. Nobody is checking for you if the number of PUSH and POP instruc-
tions is the same in all possible branches and paths. There are so many possibili-
ties for hidden errors in assembly code that it affects the reliability and security of 
the project unless you have a very systematic approach to testing and verifying.
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Table B.1 Key Terms for this Appendix

Assembler

A program that translates assembly language into machine code.

Assembly Language

A symbolic representation of the machine language of a specific processor, augmented by additional 
types of statements that facilitate program writing and that provide instructions to the assembler.

Compiler

A program that converts another program from some source language (or programming language) 
to machine language (object code). Some compilers output assembly language which is then con-
verted to machine language by a separate assembler. A compiler is distinguished from an assembler 
by the fact that each input statement does not, in general, correspond to a single machine instruc-
tion or fixed sequence of instructions. A compiler may support such features as automatic allocation 
of variables, arbitrary arithmetic expressions,  control structures such as FOR and WHILE loops, 
variable scope, input/output operations, higher-order functions and portability of source code.

Executable Code

The machine code generated by a source code language processor such as an assembler or compiler. 
This is software in a form that can be run in the computer.

Instruction Set

The collection of all possible instructions for a particular computer; that is, the collection of 
machine language instructions that a particular processor understands.

Linker

A utility program that combines one or more files containing object code from separately compiled 
program modules into a single file containing loadable or executable code.

Loader

A program routine that copies an executable program into memory for execution.

Machine Language, or Machine Code

The binary representation of a computer program which is actually read and interpreted by the 
computer. A program in machine code consists of a sequence of machine instructions (possibly 
interspersed with data). Instructions are binary strings which may be either all the same size  
(e.g., one 32-bit word for many modern RISC microprocessors) or of different sizes.

Object Code

The machine language representation of programming source code. Object code is created by a 
compiler or assembler and is then turned into executable code by the linker.

 3. Debugging and verifying. Assembly code is more difficult to debug and verify 
because there are more possibilities for errors than in high-level code.

 4. Maintainability. Assembly code is more difficult to modify and maintain 
because the language allows unstructured spaghetti code and all kinds of 
tricks that are difficult for others to understand. Thorough documentation and 
a consistent programming style are needed.

 5. Portability. Assembly code is platform-specific. Porting to a different platform 
is difficult.
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 6. System code can use intrinsic functions instead of assembly. The best modern 
C+ +  compilers have intrinsic functions for accessing system control registers 
and other system instructions. Assembly code is no longer needed for device 
drivers and other system code when intrinsic functions are available.

 7. Application code can use intrinsic functions or vector classes instead of 
 assembly. The best modern C+ +  compilers have intrinsic functions for vector 
operations and other special instructions that previously required assembly 
programming.

 8. Compilers have been improved a lot in recent years. The best compilers are 
now quite good. It takes a lot of expertise and experience to optimize better 
than the best C+ +  compiler.

Yet there are still some advantages to the occasional use of assembly language, 
including the following [FOG08a]:

 1. Debugging and verifying. Looking at compiler-generated assembly code or 
the disassembly window in a debugger is useful for finding errors and for 
checking how well a compiler optimizes a particular piece of code.

 2. Making compilers. Understanding assembly coding techniques is necessary 
for making compilers, debuggers and other development tools.

 3. Embedded systems. Small embedded systems have fewer resources than PCs 
and mainframes. Assembly programming can be necessary for optimizing 
code for speed or size in small embedded systems.

 4. Hardware drivers and system code. Accessing hardware, system control regis-
ters, and so on may sometimes be difficult or impossible with high level code.

 5. Accessing instructions that are not accessible from high-level language. 
Certain assembly instructions have no high-level language equivalent.

 6. Self-modifying code. Self-modifying code is generally not profitable because it 
interferes with efficient code caching. It may, however, be advantageous, for 
example, to include a small compiler in math programs where a user-defined 
function has to be calculated many times.

 7. Optimizing code for size. Storage space and memory is so cheap nowadays 
that it is not worth the effort to use assembly language for reducing code size. 
However, cache size is still such a critical resource that it may be useful in 
some cases to optimize a critical piece of code for size in order to make it fit 
into the code cache.

 8. Optimizing code for speed. Modern C+ +  compilers generally optimize code 
quite well in most cases. But there are still cases where compilers perform 
poorly and where dramatic increases in speed can be achieved by careful 
assembly programming.

 9. Function libraries. The total benefit of optimizing code is higher in function 
libraries that are used by many programmers.

 10. Making function libraries compatible with multiple compilers and operating 
systems. It is possible to make library functions with multiple entries that are 
compatible with different compilers and different operating systems. This 
requires assembly programming.
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The terms assembly language and machine language are sometimes, errone-
ously, used synonymously. Machine language consists of instructions directly execut-
able by the processor. Each machine language instruction is a binary string containing 
an opcode, operand references, and perhaps other bits related to execution, such as 
flags. For convenience, instead of writing an instruction as a bit string, it can be writ-
ten symbolically, with names for opcodes and registers. An assembly language makes 
much greater use of symbolic names, including assigning names to specific main 
memory locations and specific instruction locations. Assembly language also includes 
statements that are not directly executable but serve as instructions to the assembler 
that produces machine code from an assembly language program.

Assembly Language Elements

A statement in a typical assembly language has the form shown in Figure B.1. It 
consists of four elements: label, mnemonic, operand, and comment.

LABEL If a label is present, the assembler defines the label as equivalent to the 
address into which the first byte of the object code generated for that instruction 
will be loaded. The programmer may subsequently use the label as an address or as 
data in another instruction’s address field. The assembler replaces the label with the 
assigned value when creating an object program. Labels are most frequently used in 
branch instructions.

As an example, here is a program fragment:

L2: SUB EAX, EDX ;subtract contents of register EDX from
    ;contents of EAX and store result in EAX
 JG L2  ;jump to L2 if result of subtraction is
    ;positive

The program will continue to loop back to location L2 until the result is zero 
or negative. Thus, when the jg instruction is executed, if the result is positive, the 
processor places the address equivalent to the label L2 in the program counter.

Reasons for using a label include the following;

 1. A label makes a program location easier to find and remember.

 2. The label can easily be moved to correct a program. The assembler will auto-
matically change the address in all instructions that use the label when the 
program is reassembled.

 3. The programmer does not have to calculate relative or absolute memory 
addresses, but just uses labels as needed.

Label Mnemonic Operand(s) ;comment

Optional Opcode name
or

directive name
or

macro name

Zero or more Optional

Figure B.1 Assembly-Language Statement Structure
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MNEMONIC  The mnemonic is the name of the operation or function of the 
assembly language statement. As discussed subsequently, a statement can 
correspond to a machine instruction, an assembler directive, or a macro. In the 
case of a machine instruction, a mnemonic is the symbolic name associated with a 
particular opcode.

Table 12.8 lists the mnemonic, or instruction name, of many of the x86 instruc-
tions. Appendix A of [CART06] lists the x86 instructions, together with the oper-
ands for each and the effect of the instruction on the condition codes. Appendix B 
of the NASM manual provides a more detailed description of each x86 instruction. 
Both documents are available at this book’s Premium Content site.

OPERAND(S) An assembly language statement includes zero or more operands. 
Each operand identifies an immediate value, a register value, or a memory location. 
Typically, the assembly language provides conventions for distinguishing among the 
three types of operand references, as well as conventions for indicating addressing 
mode.

For the x86 architecture, an assembly language statement may refer to a reg-
ister operand by name. Figure B.2 illustrates the general-purpose x86 registers, 
with their symbolic name and their bit encoding. The assembler will translate the 
symbolic name into the binary identifier for the register.

0

AXAH AL

BH BL

CH CL

DH DL

BX

CX

DX

EAX (000)

EBX (011)

ECX (001)

EDX (010)

16-bit 32-bit

ESI (110)

EDI (111)

EBP (101)

ESP (100)

31
General-purpose registers

Segment registers
0

CS

DS

SS

ES

FS

GS

15

Figure B.2 Intel x86 Program Execution Registers
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As discussed in Section 11.2, the x86 architecture has a rich set of addressing 
modes, each of which must be expressed symbolically in the assembly language. 
Here we cite a few of the common examples. For register addressing, the name 
of the register is used in the instruction. For example, MOV ECX, EBX copies the 
contents of register EBX into register ECX. Immediate addressing indicates that 
the value is encoded in the instruction. For example, MOV EAX, 100H copies the 
hexadecimal value 100 into register EAX. The immediate value can be expressed 
as a binary number with the suffix B or a decimal number with no suffix. Thus, 
equivalent statements to the preceding one are MOV EAX, 100000000B and 
MOV EAX, 256. Direct addressing refers to a memory location and is expressed 
as a displacement from the DS segment register. This is best explained by example. 
Assume that the 16-bit data segment register DS contains the value 1000H. Then 
the following sequence occurs:

MOV AX, 1234H
MOV [3518H], AX

First the 16-bit register AX is initialized to 1234H. Then, in line two, the 
 contents of AX are moved to the logical address DS:3518H. This address is formed 
by shifting the contents of DS left 4 bits and adding 3518H to form the 32-bit logical 
address 13518H.

COMMENT All assembly languages allow the placement of comments in the 
program. A comment can either occur at the right-hand end of an assembly 
statement or can occupy an entire text line. In either case, the comment begins with 
a special character that signals to the assembler that the rest of the line is a comment 
and is to be ignored by the assembler. Typically, assembly languages for the x86 
architecture use a semicolon (;) for the special character.

Type of Assembly Language Statements

Assembly language statements are one of four types: instruction, directive, macro 
definition, and comment. A comment statement is simply a statement that consists 
entirely of a comment. The remaining types are briefly described in this section.

INSTRUCTIONS The bulk of the noncomment statements in an assembly language 
program are symbolic representations of machine language instructions. Almost 
invariably, there is a one-to-one relationship between an assembly language 
instruction and a machine instruction. The assembler resolves any symbolic 
references and translates the assembly language instruction into the binary string 
that comprises the machine instruction.

DIRECTIVES Directives, also called pseudo-instructions, are assembly language 
statements that are not directly translated into machine language instructions. 
Instead, directives are instruction to the assembler to perform specified actions 
doing the assembly process. Examples include the following:

 • Define constants

 • Designate areas of memory for data storage

 • Initialize areas of memory
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L2 DB “A” ;byte initialized to ASCII code for A (65)
 MOV AL, [L1] ;copy byte at L1 into AL
 MOV EAX, L1 ;store address of byte at L1 in EAX
 MOV [L1], AH ;copy contents of AH into byte at L1

Table B.2 Some NASM Assembly-Language Directives

(a) Letters for RESx and Dx Directives

Unit Letter

byte B

word (2 bytes) W

double word (4 bytes) D

quad word (8 bytes) Q

ten bytes T

If a plain label is used, it is interpreted as the address (or offset) of the data. If 
the label is placed inside square brackets, it is interpreted as the data at the address.

MACRO DEFINITIONS A macro definition is similar to a subroutine in several ways. 
A subroutine is a section of a program that is written once, and can be used multiple 
times by calling the subroutine from any point in the program. When a program is 
compiled or assembled, the subroutine is loaded only once. A call to the subroutine 
transfers control to the subroutine and a return instruction in the subroutine returns 

(b) Directives

Name Description Example

DB, DW,
DD, DQ,
DT

Initialize locations L6 DD 1A92H
;doubleword at L6 initialized to 1A92H

RESB,
RESW,
RESD,
RESQ,
REST

Reserve
uninitialized
locations

BUFFER RESB 64
;reserve 64 bytes starting at BUFFER

INCBIN Include binary file  
in output

INCBIN “file.dat” ; include this file

EQU Define a symbol to a 
given constant value

MSGLEN EQU 25
;the constant MSGLEN equals decimal 25

TIMES Repeat instruction  
multiple times

ZEROBUF TIMES 64 DB 0
;initialize 64-byte buffer to all zeros

 • Place tables or other fixed data in memory

 • Allow references to other programs

Table B.2 lists some of the NASM directives. As an example, consider the 
 following sequence of statements:
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control to the point of the call. Similarly, a macro definition is a section of code that 
the programmer writes once, and then can use many times. The main difference is 
that when the assembler encounters a macro call, it replaces the macro call with 
the macro itself. This process is called macro expansion. So, if a macro is defined 
in an assembly language program and invoked 10 times, then 10 instances of the 
macro will appear in the assembled code. In essence, subroutines are handled by 
the hardware at run time, whereas macros are handled by the assembler at assembly 
time. Macros provide the same advantage as subroutines in terms of modular 
programming, but without the runtime overhead of a subroutine call and return. 
The tradeoff is that the macro approach uses more space in the object code.

In NASM and many other assemblers, a distinction is made between a single-
line macro and a multi-line macro. In NASM, single-line macros are defined using 
the %DEFINE directive. Here is an example in which multiple single-line macros 
are expanded. First, we define two macros:

%DEFINE B(X) = 2*X
%DEFINE A(X) = 1 + B(X)

At some point in the assembly language program, the following statement 
appears:

MOV AX, A(8)

The assembler expands this statement to:

MOV AX, 1+2*8

which assembles to a machine instruction to move the immediate value 17 to  
register AX.

Multiline macros are defined using the mnemonic &MACRO. Here is an 
example of a multiline macro definition:

%MACRO PROLOGUE 1
 PUSH EBP ;push contents of EBP onto stack

  ;pointed to by ESP and

  ;decrement contents of ESP by 4

 MOV EBP, ESP ;copy contents of ESP to EBP

 SUB ESP, %1 ;subtract first parameter value from ESP

The number 1 after the macro name in the %MACRO line defines the number of 
parameters the macro expects to receive. The use of %1 inside the macro definition 
refers to the first parameter to the macro call.

The macro call

MYFUNC: PROLOGUE 12

expands to the following lines of code:

MYFUNC: PUSH EBP
 MOV EBP, ESP
 SUB ESP, 12
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Example: Greatest Common Divisor Program

As an example of the use of assembly language, we look at a program to compute 
the greatest common divisor of two integers. We define the greatest common divisor 
of the integers a and b as follows:

gcd(a,b) = max[k,such that k divides a and k divides b]

where we say that k divides a if there is no remainder. Euclid’s algorithm for the 
greatest common divisor is based on the following theorem. For any nonnegative 
integers a and b,

gcd(a, b) = gcd(b, a mod b)

Here is a C language program that implements Euclid’s algorithm:

unsigned int gcd (unsigned int a, unsigned int b)

{
 if (a == 0 && b == 0)
    b = 1;
 else if (b == 0)
    b = a;
 else if (a != 0)
    while (a != b)
     if (a <b)
           b -= a;
     else
        a -= b;
 return b;

}

Figure B.3 shows two assembly language versions of the preceding program. 
The program on the left was done by a C compiler; the program on the right was 
programmed by hand. The latter program uses a number of programmer’s tricks to 
produce a tighter, more efficient implementation.

 B.2 ASSEMBLERS

The assembler is a software utility that takes an assembly program as input and 
produces object code as output. The object code is a binary file. The assembler views 
this file as a block of memory starting at relative location 0.

There are two general approaches to assemblers: the two-pass assembler and 
the one-pass assembler.

Two-Pass Assembler

We look first at the two-pass assembler, which is more common and somewhat easier 
to understand. The assembler makes two passes through the source code (Figure B.4):
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FIRST PASS In the first pass, the assembler is only concerned with label definitions. 
The first pass is used to construct a symbol table that contains a list of all labels 
and their associated location counter (LC) values. The first byte of the object code 
will have the LC value of 0. The first pass examines each assembly statement. 
Although the assembler is not yet ready to translate instructions, it must examine 
each instruction sufficiently to determine the length of the corresponding machine 
instruction and therefore how much to increment the LC. This may require not only 
examining the opcode but also looking at the operands and the addressing modes.

Directives such as DQ and REST (see Table B.2) cause the location counter 
to be adjusted according to how much storage is specified.

When assembler encounters a statement with a label, it places the label into 
the symbol table, along with the current LC value. The assembler continues until it 
has read all of the assembly language statements.

SECOND PASS The second pass reads the program again from the beginning. Each 
instruction is translated into the appropriate binary machine code. Translation 
includes the following operations:

 1. Translate the mnemonic into a binary opcode.
 2. Use the opcode to determine the format of the instruction and the location 

and length of the various fields in the instruction.

 3. Translate each operand name into the appropriate register or memory code.

Figure B.3 Assembly Programs for Greatest Common Divisor

gcd: mov ebx,eax

 mov eax,edx

 test ebx,ebx

 jne L1

 test edx,edx

 jne L1

 mov eax,1

 ret

L1: test eax,eax

 jne L2

 mov eax,ebx

 ret

L2: test ebx,ebx

 je L5

L3: cmp ebx,eax

 je L5

 jae L4

 sub eax,ebx

 jmp L3

L4: sub ebx,eax

 jmp L3

L5: ret

gcd: neg eax

 je L3

L1: neg eax

 xchg eax,edx

L2: sub eax,edx

 jg L2

 jne L1

L3: add eax,edx

 jne L4

 inc eax

L4: ret

 (a) Compiled program (b) Written directly in assembly language
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 4. Translate each immediate value into a binary string.

 5. Translate any references to labels into the appropriate LC value using the 
symbol table.

 6. Set any other bits in the instruction that are needed, including addressing 
mode indicators, condition code bits, and so on.

A simple example, using the ARM assembly language, is shown in Figure B.5. 
The ARM assembly language instruction ADDS r3, r3, #19 is translated in to the 
binary machine instruction 1110 0010 0101 0011 0011 0000 0001 0011.
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Read line
from source

file
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defined?

Determine
size of

instruction

LC = LC + size

Write source line
& other info on
intermediate file

Close  source
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1

Yes
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Yes

No

2
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Figure B.4 Flowchart of Two-Pass Assembler
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ZEROTH PASS Most assembly language includes the ability to define macros. When 
macros are present there is an additional pass that the assembler must make before 
the first pass. Typically, the assembly language requires that all macro definitions 
must appear at the beginning of the program.

The assembler begins this “zeroth pass” by reading all macro definitions. 
Once all the macros are recognized, the assembler goes through the source code 
and expands the macros with their associated parameters whenever a macro call is 
encountered. The macro processing pass generates a new version of the source code 
with all of the macro expansions in place and all of the macro definitions removed.

One-Pass Assembler

It is possible to implement an assembler that makes only a single pass through the 
source code (not counting the macro processing pass). The main difficulty in trying 
to assemble a program in one pass involves forward references to labels. Instruction 
operands may be symbols that have not yet been defined in the source program. 
Therefore, the assembler does not know what relative address to insert in the trans-
lated instruction.

In essence, the process of resolving forward references works as follows. 
When the assembler encounters an instruction operand that is a symbol that is not 
yet defined, the assembler does the following:

 1. It leaves the instruction operand field empty (all zeros) in the assembled bi-
nary instruction.

 2. The symbol used as an operand is entered in the symbol table. The table entry 
is flagged to indicate that the symbol is undefined.

 3. The address of the operand field in the instruction that refers to the undefined 
symbol is added to a list of forward references associated with the symbol 
table entry.

When the symbol definition is encountered so that a LC value can be asso-
ciated with it, the assembler inserts the LC value in the appropriate entry in the 
symbol table. If there is a forward reference list associated with the symbol, then the 
assembler inserts the proper address into any instruction previously generated that 
is on the forward reference list.

Example: Prime Number Program

We now look at an example that includes directives. This example looks at a program 
that finds prime numbers. Recall that prime numbers are evenly divisible by only 1 

0 1 1 0 00 0 10 00 10 1 10 11 11 0 0 0 0 0 010 0 0 1 1ADDS r3, r3, #19

Data processing
immediate format

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

Always
condition
code

Update
condition
flags

Zero
rotation

instr
format S Rn Rd rotate immediatecond opcode

Figure B.5 Translating an ARM Assembly Instruction into a Binary Machine Instruction
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unsigned guess; /* current guess for prime */

unsigned factor; /* possible factor of guess */

unsigned limit; /* find primes up to this value */

printf (“Find primes up to : ”);

scanf(“%u”, &limit);

printf (“2\n”); /* treat first two primes as */

printf (“3\n”); /* special case */

guess = 5; /* initial guess */

while (guess < = limit) { /* look for a factor of guess */

factor = 3;

while (factor * factor < guess && guess% factor != 0)

factor + = 2;

if (guess % factor != 0)

printf (“%d\n”, guess);

guess += 2; /* only look at odd numbers */

}

Figure B.6 C Program for Testing Primality

and themselves. There is no formula for doing this. The basic method this program uses  
is to find the factors of all odd numbers below a given limit. If no factor can be found 
for an odd number, it is prime. Figure B.6 shows the basic algorithm written in C. 
Figure B.7 shows the same algorithm written in NASM assembly language.

 B.3 LOADING AND LINKING

The first step in the creation of an active process is to load a program into main 
memory and create a process image (Figure B.8). Figure B.9 depicts a scenario typi-
cal for most systems. The application consists of a number of compiled or assembled 
modules in object-code form. These are linked to resolve any references between 
modules. At the same time, references to library routines are resolved. The library 
routines themselves may be incorporated into the program or referenced as shared 
code that must be supplied by the operating system at run time. In this section, we 
summarize the key features of linkers and loaders. First, we discuss the concept of 
relocation. Then, for clarity in the presentation, we describe the loading task when 
a single program module is involved; no linking is required. We can then look at the 
linking and loading functions as a whole.

Relocation

In a multiprogramming system, the available main memory is generally shared 
among a number of processes. Typically, it is not possible for the programmer to 
know in advance which other programs will be resident in main memory at the 
time of execution of his or her program. In addition, we would like to be able to 
swap active processes in and out of main memory to maximize processor utiliza-
tion by providing a large pool of ready processes to execute. Once a program has 
been swapped out to disk, it would be quite limiting to declare that when it is next 
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%include “asm_io.inc”
segment .data
Message db “Find primes up to: ”, 0

segment .bss
Limit resd 1  ; find primes up to this limit
Guess resd 1  ; the current guess for prime

segment .text
   global _asm_main
_asm_main:
   enter 0,0 ; setup routine
   pusha

   mov eax, Message
   call print_string
   call read_int ; scanf(“%u”, & limit);
   mov [Limit], eax
   mov eax, 2 ; printf(“2\n”);
   call print_int
   call print_nl
   mov eax, 3 ; printf(“3\n”);
   call print_int
   call print_nl

   mov dword [Guess], 5 ; Guess = 5;
while_limit:  ; while (Guess <= Limit)
   mov eax, [Guess]
   cmp eax, [Limit]
   jnbe end_while_limit ; use jnbe since numbers are unsigned

   mov ebx, 3 ; ebx is factor = 3;
while_factor:
   mov eax,ebx
 mul eax ; edx:eax = eax*eax
 jo end_while_factor ; if answer won’t fit in eax alone
 cmp eax, [Guess]
 jnb end_while_factor ; if !(factor*factor < guess)
 mov eax,[Guess]
 mov edx,0
 div ebx ; edx = edx:eax% ebx
 cmp edx, 0
 je end_while_factor ; if !(guess% factor != 0)

 add ebx,2; factor += 2;
 jmp while_factor
end_while_factor:
 je end_if ; if !(guess% factor != 0)
 mov eax,[Guess] ; printf(“%u\n”)
 call print_int
 call print_nl
end_if:
 add dword [Guess], 2 ; guess += 2
 jmp while_limit
end_while_limit:

 popa
 mov eax, 0 ; return back to C
 leave
 ret

Figure B.7 Assembly Program for Testing Primality
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Figure B.9 A Linking and Loading Scenario

swapped back in, it must be placed in the same main memory region as before. 
Instead, we may need to relocate the process to a different area of memory.

Thus, we cannot know ahead of time where a program will be placed, and we 
must allow that the program may be moved about in main memory due to swapping.  
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These facts raise some technical concerns related to addressing, as illustrated 
in Figure B.10. The figure depicts a process image. For simplicity, let us assume 
that the process image occupies a contiguous region of main memory. Clearly, 
the operating system will need to know the location of process control informa-
tion and of the execution stack, as well as the entry point to begin execution of 
the program for this process. Because the operating system is managing memory 
and is responsible for bringing this process into main memory, these addresses 
are easy to come by. In addition, however, the processor must deal with memory 
references within the program. Branch instructions contain an address to refer-
ence the instruction to be executed next. Data reference instructions contain the 
address of the byte or word of data referenced. Somehow, the processor hardware 
and operating system software must be able to translate the memory references 
found in the code of the program into actual physical memory addresses, reflect-
ing the current location of the program in main memory.

Loading

In Figure B.9, the loader places the load module in main memory starting at loca-
tion x. In loading the program, the addressing requirement illustrated in Figure B.10 
must be satisfied. In general, three approaches can be taken:

 • Absolute loading

 • Relocatable loading

 • Dynamic run-time loading

ABSOLUTE LOADING An absolute loader requires that a given load module 
always be loaded into the same location in main memory. Thus, in the load module 

Process control block

Program

Data

Stack

Current top
of stack

Entry point
to program

Process control
information

Increasing
address
values

Branch
instruction
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to data

Figure B.10 Addressing Requirements for a Process
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presented to the loader, all address references must be to specific, or absolute, main 
memory addresses. For example, if x in Figure B.9 is location 1024, then the first 
word in a load module destined for that region of memory has address 1024.

The assignment of specific address values to memory references within a pro-
gram can be done either by the programmer or at compile or assembly time (Table 
B.3a). There are several disadvantages to the former approach. First, every pro-
grammer would have to know the intended assignment strategy for placing mod-
ules into main memory. Second, if any modifications are made to the  program that 
involve insertions or deletions in the body of the module, then all of the addresses 
will have to be altered. Accordingly, it is preferable to allow memory references 
within programs to be expressed symbolically and then resolve those symbolic ref-
erences at the time of compilation or assembly. This is illustrated in Figure B.11. 
Every reference to an instruction or item of data is initially represented by a sym-
bol. In preparing the module for input to an absolute loader, the assembler or com-
piler will convert all of these references to specific addresses (in this example, for a 
module to be loaded starting at location 1024), as shown in Figure B.11b.

Table B.3 Address Binding

(a) Loader

Binding Time Function

Programming time All actual physical addresses are directly specified by the programmer in the 
program itself.

Compile or assembly time The program contains symbolic address references, and these are converted to 
actual physical addresses by the compiler or assembler.

Load time The compiler or assembler produces relative addresses. The loader translates 
these to absolute addresses at the time of program loading.

Run time The loaded program retains relative addresses. These are converted dynami-
cally to absolute addresses by processor hardware.

(b) Linker

Linkage Time Function

Programming time No external program or data references are allowed. The programmer  
must place into the program the source code for all subprograms that are  
referenced.

Compile or assembly time The assembler must fetch the source code of every subroutine that is  
referenced and assemble them as a unit.

Load module creation All object modules have been assembled using relative addresses. These  
modules are linked together and all references are restated relative to the  
origin of the final load module.

Load time External references are not resolved until the load module is to be loaded into 
main memory. At that time, referenced dynamic link modules are appended 
to the load module, and the entire package is loaded into main or virtual 
memory.

Run time External references are not resolved until the external call is executed by the 
processor. At that time, the process is interrupted and the desired module is 
linked to the calling program.
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RELOCATABLE LOADING The disadvantage of binding memory references to 
specific addresses prior to loading is that the resulting load module can only be 
placed in one region of main memory. However, when many programs share main 
memory, it may not be desirable to decide ahead of time into which region of 
memory a particular module should be loaded. It is better to make that decision 
at load time. Thus we need a load module that can be located anywhere in main 
memory.

To satisfy this new requirement, the assembler or compiler produces not 
actual main memory addresses (absolute addresses) but addresses that are relative 
to some known point, such as the start of the program. This technique is illustrated 
in Figure B.11c. The start of the load module is assigned the relative address 0, and 
all other memory references within the module are expressed relative to the begin-
ning of the module.

With all memory references expressed in relative format, it becomes a simple 
task for the loader to place the module in the desired location. If the module is to be 
loaded beginning at location x, then the loader must simply add x to each memory 
reference as it loads the module into memory. To assist in this task, the load module 
must include information that tells the loader where the address references are and 
how they are to be interpreted (usually relative to the program origin, but also pos-
sibly relative to some other point in the program, such as the current location). This 
set of information is prepared by the compiler or assembler and is usually referred 
to as the relocation dictionary.
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Figure B.11 Absolute and Relocatable Load Modules
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DYNAMIC RUN-TIME LOADING Relocatable loaders are common and provide 
obvious benefits relative to absolute loaders. However, in a multiprogramming 
environment, even one that does not depend on virtual memory, the relocatable 
loading scheme is inadequate. We have referred to the need to swap process images 
in and out of main memory to maximize the utilization of the processor. To maximize 
main memory utilization, we would like to be able to swap the process image back into 
different locations at different times. Thus, a program, once loaded, may be swapped 
out to disk and then swapped back in at a different location. This would be impossible 
if memory references had been bound to absolute addresses at the initial load time.

The alternative is to defer the calculation of an absolute address until it is 
actually needed at run time. For this purpose, the load module is loaded into main 
memory with all memory references in relative form (Figure B.11c). It is not until 
an instruction is actually executed that the absolute address is calculated. To assure 
that this function does not degrade performance, it must be done by special proces-
sor hardware rather than software. This hardware is described in Chapter 8.

Dynamic address calculation provides complete flexibility. A program can be 
loaded into any region of main memory. Subsequently, the execution of the pro-
gram can be interrupted and the program can be swapped out of main memory, to 
be later swapped back in at a different location.

Linking

The function of a linker is to take as input a collection of object modules and pro-
duce a load module, consisting of an integrated set of program and data modules, to 
be passed to the loader. In each object module, there may be address references to 
locations in other modules. Each such reference can only be expressed symbolically 
in an unlinked object module. The linker creates a single load module that is the 
contiguous joining of all of the object modules. Each intramodule reference must be 
changed from a symbolic address to a reference to a location within the overall load 
module. For example, module A in Figure B.12a contains a procedure invocation 
of module B. When these modules are combined in the load module, this symbolic 
reference to module B is changed to a specific reference to the location of the entry 
point of B within the load module.

LINKAGE EDITOR The nature of this address linkage will depend on the type 
of load module to be created and when the linkage occurs (Table B.3b). If, as is 
usually the case, a relocatable load module is desired, then linkage is usually done 
in the following fashion. Each compiled or assembled object module is created with 
references relative to the beginning of the object module. All of these modules are 
put together into a single relocatable load module with all references relative to the 
origin of the load module. This module can be used as input for relocatable loading 
or dynamic run-time loading.

A linker that produces a relocatable load module is often referred to as a link-
age editor. Figure B.12 illustrates the linkage editor function.

DYNAMIC LINKER As with loading, it is possible to defer some linkage functions. 
The term dynamic linking is used to refer to the practice of deferring the linkage of 
some external modules until after the load module has been created. Thus, the load 
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module contains unresolved references to other programs. These references can be 
resolved either at load time or run time.

For load-time dynamic linking (involving upper dynamic library in Figure 
B.9), the following steps occur. The load module (application module) to be loaded 
is read into memory. Any reference to an external module (target module) causes 
the loader to find the target module, load it, and alter the reference to a relative 
address in memory from the beginning of the application module. There are several 
advantages to this approach over what might be called static linking:

 • It becomes easier to incorporate changed or upgraded versions of the target 
module, which may be an operating system utility or some other general- 
purpose routine. With static linking, a change to such a supporting module 
would require the relinking of the entire application module. Not only is this 
inefficient, but it may be impossible in some circumstances. For example, in 
the personal computer field, most commercial software is released in load 
module form; source and object versions are not released.

 • Having target code in a dynamic link file paves the way for automatic code 
sharing. The operating system can recognize that more than one application 
is using the same target code because it loaded and linked that code. It can 
use that information to load a single copy of the target code and link it to 
both applications, rather than having to load one copy for each application.
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Figure B.12 The Linking Function
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 • It becomes easier for independent software developers to extend the function-
ality of a widely used operating system such as Linux. A developer can come 
up with a new function that may be useful to a variety of applications and 
package it as a dynamic link module.

With run-time dynamic linking (involving lower dynamic library in Figure B.9), 
some of the linking is postponed until execution time. External references to target 
modules remain in the loaded program. When a call is made to the absent module, 
the operating system locates the module, loads it, and links it to the calling module. 
Such modules are typically shareable. In the Windows environment, these are call 
dynamic-link libraries (DLLs) Thus, if one process is already making use of a dynam-
ically linked shared module, then that module is in main memory and a new process 
can simply link to the already-loaded module.

The use of DLLs can lead to a problem commonly referred to as DLL hell. 
DLL occurs if two or more processes are sharing a DLL module but expect differ-
ent versions of the module. For example, an application or system function might be 
re-installed and bring in with it an older version of a DLL file.

We have seen that dynamic loading allows an entire load module to be moved 
around; however, the structure of the module is static, being unchanged through-
out the execution of the process and from one execution to the next. However, in 
some cases, it is not possible to determine prior to execution which object modules 
will be required. This situation is typified by transaction-processing applications, 
such as an airline reservation system or a banking application. The nature of the 
transaction dictates which program modules are required, and they are loaded as 
appropriate and linked with the main program. The advantage of the use of such 
a dynamic linker is that it is not necessary to allocate memory for program units 
unless those units are referenced. This capability is used in support of segmenta-
tion systems.

One additional refinement is possible: An application need not know the 
names of all the modules or entry points that may be called. For example, a charting 
program may be written to work with a variety of plotters, each of which is driven 
by a different driver package. The application can learn the name of the plotter that 
is currently installed on the system from another process or by looking it up in a 
configuration file. This allows the user of the application to install a new plotter that 
did not exist at the time the application was written.

 B.4 RECOMMENDED READING

[SALO93] covers the design and implementation of assemblers and loaders.
The topics of linking and loading are covered in many books on program develop-

ment, computer architecture, and operating systems. A particularly detailed treatment is 
[BECK97]. [CLAR98] also contains a good discussion. A thorough practical discussion of 
this topic, with numerous OS examples, is [LEVI00].

[BART03] is an excellent treatment for learning assembly language for x86 processors; 
suitable for self-study. [CART06] covers assembly language for x86 machines. For the seri-
ous x86 programmer, [FOG08a] is highly useful. [KNAG04] is a thorough treatment of ARM 
assembly language.
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 B.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

assembler
assembly language
comment
directive
dynamic linker
instruction

label
linkage editor
linking
load-time dynamic linking
loading
macro

mnemonic
one-pass assembler
operand
relocation
run-time dynamic linking
two-pass assembler

Review Questions
 B.1 List some reasons why it is worthwhile to study assembly language programming.
 B.2 What is an assembly language?
 B.3 List some disadvantages of assembly language compared to high-level languages.
 B.4 List some advantages of assembly language compared to high-level languages.
 B.5 What are the typical elements of an assembly language statement.
 B.6 List and briefly define four different kinds of assembly language statements.
 B.7 What is the difference between a one-pass assembler and a two-pass assembler?

Problems
 B.1 Core War is a programming game introduced to the public in the early 1980s 

[DEWD84], which was popular for a period of 15 years or so. Core War has four main 
components: a memory array of 8000 addresses, a simplified assembly language Red-
code, an executive program called MARS (an acronym for Memory Array Redcode 

http://www.agner.org/optimize/
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Simulator) and the set of contending battle programs. Two battle programs are entered 
into the memory array at randomly chosen positions; neither program knows where 
the other one is. MARS executes the programs in a simple version of time-sharing. 
The two programs take turns: a single instruction of the first program is executed, then 
a single instruction of the second, and so on. What a battle program does during the 
execution cycles allotted to it is entirely up to the programmer. The aim is to destroy 
the other program by ruining its instructions. In this problem and the next several, we 
use an even simpler language, called CodeBlue, to explore some Core War concepts.

CodeBlue contains only five assembly language statements and uses three ad-
dressing modes (Table B.4). Addresses wrap around, so that for the last location in 
memory, the relative address of +1 refers to the first location in memory. For example, 
ADD #4, 6 adds 4 to the contents of relative location 6 and stores the results in loca-
tion 6; JUMP @5 transfers execution to the memory address contained in the location 
five slots past the location of the current JUMP instruction.

Table B.4 CodeBlue Assembly Language

(a) Instruction Set

Format Meaning

DATA <value> <value> set at current location

COPY A, B copies source A to destination B

ADD A, B adds A to B, putting result in B

JUMP A transfer execution to A

JUMPZ A, B if B = 0, transfer to A

(b) Addressing Modes

Mode Format Meaning

Literal # followed by value This is an immediate mode, the operand value is in the 
instruction.

Relative Value The value represents an offset from the current location, 
which contains the operand.

Indirect @ followed by value The value represents an offset from the current location; the 
offset location contains the relative address of the location 
that contains the operand.

a. The program Imp is the single instruction COPY 0, 1. What does it do?
b. The program Dwarf is the following sequence of instructions:

ADD #4, 3

COPY 2, @2

JUMP –2

DATA 0

 What does it do?
c. Rewrite Dwarf using symbols, so that it looks more like a typical assembly lan-

guage program.
 B.2 What happens if we pit Imp against Dwarf?
 B.3 Write a “carpet bombing” program in CodeBlue that zeros out all of memory (with 

the possible exception of the program locations).
 B.4 How would the following program fare against Imp?
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Loop COPY #0, -1
 JUMP -1

  Hint: Remember that instruction execution alternates between the two opposing 
programs.

 B.5 a. What is the value of the C status flag after the following sequence:

mov al, 3

add al, 4

b. What is the value of the C status flag after the following sequence:

mov al, 3

sub al, 4

 B.6 Consider the following NAMS instruction:

cmp vleft, vright

  For signed integers, there are three status flags that are relevant. If vleft = vright, then 
ZF is set. If vleft > vright, ZF is unset (set to 0) and SF = OF. If vleft < vright, ZF is 
unset and SF � OF. Why does SF = OF if vleft > vright?

 B.7 Consider the following NASM code fragment:

mov al, 0

cmp al, al

je next

  Write an equivalent program consisting of a single instruction.

 B.8 Consider the following C program:

/* a simple C program to average 3 integers */

main ()

{ int avg;

  int i1 = 20;

  int i2 = 13;

  int i3 = 82;

  avg = (i1 + i2 + i3)/3;

}

  Write an NASM version of this program.

 B.9 Consider the following C code fragment:

  if (EAX == 0) EBX = 1;

  else EBX = 2;

  Write an equivalent NASM code fragment.

 B.10 The initialize data directives can be used to initialize multiple locations. For example,

  db 0x55,0x56,0x57

  reserves three bytes and initializes their values.

  NASM supports the special token $ to allow calculations to involve the current 
 assembly position. That is, $ evaluates to the assembly position at the beginning of 
the line containing the expression. With the preceding two facts in mind, consider the 
 following sequence of directives:
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message db ‘hello, world’

msglen equ $-message

  What value is assigned to the symbol msglen?

 B.11 Assume the three symbolic variables V1, V2, V3 contain integer values. Write an 
NASM code fragment that moves the smallest value into integer ax. Use only the 
instructions mov, cmp, and jbe.

 B.12 Describe the effect of this instruction: cmp eax, 1
  Assume that the immediately preceding instruction updated the contents of eax.
 B.13 The xchg instruction can be used to exchange the contents of two registers. Suppose 

that the x86 instruction set did not support this instruction.
a. Implement xchg ax, bx using only push and pop instructions.
b. Implement xchg ax, bx using only the xor instruction (do not involve other 

registers).
 B.14 In the following program, assume that a, b, x, y are symbols for main memory loca-

tions. What does the program do? You can answer the question by writing the equiva-
lent logic in C.

 mov eax,a

 mov ebx,b

 xor eax,x

 xor ebx,y

 or eax,ebx

 jnz L2

L1:   ;sequence of instructionsc
 jmp L3

L2:  ;another sequence of instructionsc
L3:

 B.15 Section B.1 includes a C program that calculates the greatest common divisor of two 
integers.
a. Describe the algorithm in words and show how the program does implement the 

Euclid algorithm approach to calculating the greatest common divisor.
b. Add comments to the assembly program of Figure B.3a to clarify that it imple-

ments the same logic as the C program.
c. Repeat part (b) for the program of Figure B.3b.

 B.16 a.  A 2-pass assembler can handle future symbols and an instruction can therefore 
use a future symbol as an operand. This is not always true for directives. The EQU 
directive, for example, cannot use a future symbol. The directive “A EQU B+1” is 
easy to execute if B is previously defined, but impossible if B is a future symbol. 
What’s the reason for this?

b. Suggest a way for the assembler to eliminate this limitation such that any source 
line could use future symbols.

 B.17 Consider a symbol directive MAX of the following form:
  symbol MAX list of expressions
  The label is mandatory and is assigned the value of the largest expression in the 

 operand field. Example:

MSGLEN MAX A, B, C ;where A, B, C are defined symbols

  How is MAX executed by the Assembler and in what pass?
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absolute address An address in a computer language that identifies a storage location or a device 
without the use of any intermediate reference.

accumulator The name of the CPU register in a single-address instruction format. The accumulator, 
or AC, is implicitly one of the two operands for the instruction.

address bus That portion of a system bus used for the transfer of an address. Typically, the address 
identifies a main memory location or an I/O device.

address space The range of addresses (memory, I/O) that can be referenced.

arithmetic and logic unit (ALU) A part of a computer that performs arithmetic operations, logic 
operations, and related operations.

ASCII American Standard Code for Information Interchange. ASCII is a 7-bit code used to repre-
sent numeric, alphabetic, and special printable characters. It also includes codes for control characters, 
which are not printed or displayed but specify some control function.

assembly language A computer-oriented language whose instructions are usually in one-to-one 
correspondence with computer instructions and that may provide facilities such as the use of macro-
instructions. Synonymous with computer-dependent language.

associative memory A memory whose storage locations are identified by their contents, or by a part 
of their contents, rather than by their names or positions.

asynchronous timing A technique in which the occurrence of one event on a bus follows and depends 
on the occurrence of a previous event.

autoindexing A form of indexed addressing in which the index register is automatically incremented 
or decremented with each memory reference.

base In the numeration system commonly used in scientific papers, the number that is raised to the 
power denoted by the exponent and then multiplied by the mantissa to determine the real number 
represented (e.g., the number 10 in the expression 2.7= 102 = 270).

base address A numeric value that is used as a reference in the calculation of addresses in the execu-
tion of a computer program.

binary operator An operator that represents an operation on two and only two operands.

bit In the pure binary numeration system, either of the digits 0 and 1.

block multiplexor channel A multiplexer channel that interleaves blocks of data. See also byte multi-
plexor channel. Contrast with selector channel.

branch prediction A mechanism used by the processor to predict the outcome of a program branch 
prior to its execution.

buffer Storage used to compensate for a difference in rate of flow of data, or time of occurrence of 
events, when transferring data from one device to another.
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bus A shared communications path consisting of one or a collection of lines. In some computer sys-
tems, CPU, memory, and I/O components are connected by a common bus. Since the lines are shared 
by all components, only one component at a time can successfully transmit.

bus arbitration The process of determining which competing bus master will be permitted access to 
the bus.

bus master A device attached to a bus that is capable of initiating and controlling communication on 
the bus.

byte A sequence of eight bits. Also referred to as an octet.

byte multiplexor channel A multiplexer channel that interleaves bytes of data. See also block multi-
plexor channel. Contrast with selector channel.

cache A relatively small fast memory interposed between a larger, slower memory and the logic that 
accesses the larger memory. The cache holds recently accessed data, and is designed to speed up subse-
quent access to the same data.

cache coherence protocol A mechanism to maintain data validity among multiple caches so that 
every data access will always acquire the most recent version of the contents of a main memory 
word.

cache line A block of data associated with a cache tag and the unit of transfer between cache and 
memory.

cache memory A special buffer storage, smaller and faster than main storage, that is used to hold a 
copy of instructions and data in main storage that are likely to be needed next by the processor and that 
have been obtained automatically from main storage.

CD-ROM Compact Disk Read-Only Memory. A nonerasable disk used for storing computer data. 
The standard system uses 12-cm disks and can hold more than 550 Mbytes.

central processing unit (CPU) That portion of a computer that fetches and executes instructions. It 
consists of an Arithmetic and Logic Unit (ALU), a control unit, and registers. Often simply referred to 
as a processor.

cluster A group of interconnected, whole computers working together as a unified computing 
resource that can create the illusion of being one machine. The term whole computer means a system 
that can run on its own, apart from the cluster.

combinational circuit A logic device whose output values, at any given instant, depend only upon the 
input values at that time. A combinational circuit is a special case of a sequential circuit that does not 
have a storage capability. Synonymous with combinatorial circuit.

compact disk (CD) A nonerasable disk that stores digitized audio information.

computer architecture Those attributes of a system visible to a programmer or, put another way, 
those attributes that have a direct impact on the logical execution of a program. Examples of archi-
tectural attributes include the instruction set, the number of bits used to represent various data types 
(e.g., numbers, characters), I/O mechanisms, and techniques for addressing memory.

computer instruction An instruction that can be recognized by the processing unit of the computer 
for which it is designed. Synonymous with machine instruction.
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computer instruction set A complete set of the operators of the instructions of a computer together 
with a description of the types of meanings that can be attributed to their operands. Synonymous with 
machine instruction set.

computer organization Refers to the operational units and their interconnections that realize the 
architectural specifications. Organizational attributes include those hardware details transparent to 
the programmer, such as control signals; interfaces between the computer and peripherals; and the 
memory technology used.

conditional jump A jump that takes place only when the instruction that specifies it is executed and 
specified conditions are satisfied. Contrast with unconditional jump.

condition code A code that reflects the result of a previous operation (e.g., arithmetic). A CPU may 
include one or more condition codes, which may be stored separately within the CPU or as part of a 
larger control register. Also known as a flag.

control bus That portion of a system bus used for the transfer of control signals.

control registers CPU registers employed to control CPU operation. Most of these registers are not 
user visible.

control storage A portion of storage that contains microcode.

control unit That part of the CPU that controls CPU operations, including ALU operations, the 
movement of data within the CPU, and the exchange of data and control signals across external inter-
faces (e.g., the system bus).

daisy chain A method of device interconnection for determining interrupt priority by connecting the 
interrupt sources serially.

data bus That portion of a system bus used for the transfer of data.

data communication Data transfer between devices. The term generally excludes I/O.

decoder A device that has a number of input lines of which any number may carry signals and a 
number of output lines of which not more than one may carry a signal, there being a one-to-one cor-
respondence between the outputs and the combinations of input signals.

demand paging The transfer of a page from auxiliary storage to real storage at the moment of need.

direct access The capability to obtain data from a storage device or to enter data into a storage device 
in a sequence independent of their relative position, by means of addresses that indicate the physical 
location of the data.

direct address An address that designates the storage location of an item of data to be treated as 
operand. Synonymous with one-level address.

direct memory access (DMA) A form of I/O in which a special module, called a DMA module, controls 
the exchange of data between main memory and an I/O module. The CPU sends a request for the transfer 
of a block of data to the DMA module and is interrupted only after the entire block has been transferred.

disabled interrupt A condition, usually created by the CPU, during which the CPU will ignore inter-
rupt request signals of a specified class.

diskette A flexible magnetic disk enclosed in a protective container. Synonymous with flexible disk.
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disk pack An assembly of magnetic disks that can be removed as a whole from a disk drive, together 
with a container from which the assembly must be separated when operating.

disk stripping A type of disk array mapping in which logically contiguous blocks of data, or strips, 
are mapped round-robin to consecutive array members. A set of logically consecutive strips that maps 
exactly one strip to each array member is referred to as a stripe.

dynamic RAM A RAM whose cells are implemented using capacitors. A dynamic RAM will gradu-
ally lose its data unless it is periodically refreshed.

emulation The imitation of all or part of one system by another, primarily by hardware, so that the 
imitating system accepts the same data, executes the same programs, and achieves the same results as 
the imitated system.

enabled interrupt A condition, usually created by the CPU, during which the CPU will respond to 
interrupt request signals of a specified class.

erasable optical disk A disk that uses optical technology but that can be easily erased and rewritten. 
Both 3.25-inch and 5.25-inch disks are in use. A typical capacity is 650 Mbytes.

error-correcting code A code in which each character or signal conforms to specific rules of construc-
tion so that deviations from these rules indicate the presence of an error and in which some or all of the 
detected errors can be corrected automatically.

error-detecting code A code in which each character or signal conforms to specific rules of construc-
tion so that deviations from these rules indicate the presence of an error.

execute cycle That portion of the instruction cycle during which the CPU performs the operation 
specified by the instruction opcode.

fetch cycle That portion of the instruction cycle during which the CPU fetches from memory the 
instruction to be executed.

firmware Microcode stored in read-only memory.

fixed-point representation system A radix numeration system in which the radix point is implicitly 
fixed in the series of digit places by some convention upon which agreement has been reached.

flip-flop A circuit or device containing active elements, capable of assuming either one of two stable 
states at a given time. Synonymous with bistable circuit, toggle.

floating-point representation system A numeration system in which a real number is represented by a 
pair of distinct numerals, the real number being the product of the fixed-point part, one of the numerals, 
and a value obtained by raising the implicit floating-point base to a power denoted by the exponent in 
the floating-point representation, indicated by the second numeral.

G Prefix meaning 230.

gate An electronic circuit that produces an output signal that is a simple Boolean operation on its 
input signals.

general-purpose register A register, usually explicitly addressable, within a set of registers, that can be 
used for different purposes, for example, as an accumulator, as an index register, or as a special handler 
of data.
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global variable A variable defined in one portion of a computer program and used in at least one 
other portion of that computer program.

high-performance computing (HPC) A research area dealing with supercomputers and the software 
that runs on supercomputers. The emphasis is on scientific applications, which may involve heavy use 
of vector and matrix computation, and parallel algorithms.

immediate address The contents of an address part that contains the value of an operand rather than 
an address. Synonymous with zero-level address.

indexed address An address that is modified by the content of an index register prior to or during the 
execution of a computer instruction.

indexing A technique of address modification by means of index registers.

index register A register whose contents can be used to modify an operand address during the execu-
tion of computer instructions; it can also be used as a counter. An index register may be used to control 
the execution of a loop, to control the use of an array, as a switch, for table lookup, or as a pointer.

indirect address An address of a storage location that contains an address.

indirect cycle That portion of the instruction cycle during which the CPU performs a memory access 
to convert an indirect address into a direct address.

input-output (I/O) Pertaining to either input or output, or both. Refers to the movement of data 
 between a computer and a directly attached peripheral.

instruction address register A special-purpose register used to hold the address of the next instruction 
to be executed.

instruction cycle The processing performed by a CPU to execute a single instruction.

instruction format The layout of a computer instruction as a sequence of bits. The format divides 
the instruction into fields, corresponding to the constituent elements of the instruction (e.g., opcode, 
operands).

instruction issue The process of initiating instruction execution in the processor’s functional units. 
This occurs when an instruction moves from the decode stage of the pipeline to the first execute stage 
of the pipeline

instruction register A register that is used to hold an instruction for interpretation.

integrated circuit (IC) A tiny piece of solid material, such as silicon, upon which is etched or imprinted 
a collection of electronic components and their interconnections.

interrupt A suspension of a process, such as the execution of a computer program, caused by an event 
external to that process, and performed in such a way that the process can be resumed. Synonymous 
with interruption.

interrupt cycle That portion of the instruction cycle during which the CPU checks for interrupts. If an 
enabled interrupt is pending, the CPU saves the current program state and resumes processing at an 
interrupt-handler routine.

interrupt-driven I/O A form of I/O. The CPU issues an I/O command, continues to execute subse-
quent instructions, and is interrupted by the I/O module when the latter has completed its work.
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I/O channel A relatively complex I/O module that relieves the CPU of the details of I/O operations. 
An I/O channel will execute a sequence of I/O commands from main memory without the need for 
CPU involvement.

I/O controller A relatively simple I/O module that requires detailed control from the CPU or an I/O 
channel. Synonymous with device controller.

I/O module One of the major component types of a computer. It is responsible for the control of one 
or more external devices (peripherals) and for the exchange of data between those devices and main 
memory and/or CPU registers.

I/O processor An I/O module with its own processor, capable of executing its own specialized I/O 
instructions or, in some cases, general-purpose machine instructions.

isolated I/O A method of addressing I/O modules and external devices. The I/O address space is 
treated separately from main memory address space. Specific I/O machine instructions must be used. 
Compare memory-mapped I/O.

k Prefix meaning 210 = 1024. Thus, 2 kb = 2048 bits.

local variable A variable that is defined and used only in one specified portion of a computer program.

locality of reference The tendency of a processor to access the same set of memory locations repeti-
tively over a short period of time.

M Prefix meaning 220 = 1,048,576. Thus, 2 Mb = 2,097,152 bits.

magnetic disk A flat circular plate with a magnetizable surface layer, on one or both sides of which 
data can be stored.

magnetic tape A tape with a magnetizable surface layer on which data can be stored by magnetic 
recording.

mainframe A term originally referring to the cabinet containing the central processor unit or “main 
frame” of a large batch machine. After the emergence of smaller minicomputer designs in the early 
1970s, the traditional larger machines were described as mainframe computers, mainframes. Typical 
characteristics of a mainframe are that it supports a large database, has elaborate I/O hardware, and is 
used in a central data processing facility.

main memory Program-addressable storage from which instructions and other data can be loaded 
directly into registers for subsequent execution or processing.

memory address register (MAR) A register, in a processing unit, that contains the address of the 
storage location being accessed.

memory buffer register (MBR) A register that contains data read from memory or data to be written 
to memory.

memory cycle time The inverse of the rate at which memory can be accessed. It is the minimum 
time between the response to one access request (read or write) and the response to the next access 
request.

memory-mapped I/O A method of addressing I/O modules and external devices. A single address 
space is used for both main memory and I/O addresses, and the same machine instructions are used 
both for memory read/write and for I/O.
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microcomputer A computer system whose processing unit is a microprocessor. A basic microcomputer 
includes a microprocessor, storage, and an input/output facility, which may or may not be on one chip.

microinstruction An instruction that controls data flow and sequencing in a processor at a more fun-
damental level than machine instructions. Individual machine instructions and perhaps other functions 
may be implemented by microprograms.

micro-operation An elementary CPU operation, performed during one clock pulse.

microprocessor A processor whose elements have been miniaturized into one or a few integrated 
circuits.

microprogram A sequence of microinstructions that are in special storage where they can be dynami-
cally accessed to perform various functions.

microprogrammed CPU A CPU whose control unit is implemented using microprogramming.

microprogramming language An instruction set used to specify microprograms.

multiplexer A combinational circuit that connects multiple inputs to a single output. At any time, only 
one of the inputs is selected to be passed to the output.

multiplexor channel A channel designed to operate with a number of I/O devices simultaneously. 
Several I/O devices can transfer records at the same time by interleaving items of data. See also byte 
multiplexor channel, block multiplexor channel.

multiprocessor A computer that has two or more processors that have common access to a main 
storage.

multiprogramming A mode of operation that provides for the interleaved execution of two or more 
computer programs by a single processor.

multitasking A mode of operation that provides for the concurrent performance or interleaved ex-
ecution of two or more computer tasks. The same as multiprogramming, using different terminology.

nonuniform memory access (NUMA) multiprocessor A shared-memory multiprocessor in which 
the access time from a given processor to a word in memory varies with the location of the memory 
word.

nonvolatile memory Memory whose contents are stable and do not require a constant power source.

nucleus That portion of an operating system that contains its basic and most frequently used func-
tions. Often, the nucleus remains resident in main memory.

ones complement representation Used to represent binary integers. A positive integer is represented 
as in sign magnitude. A negative integer is represented by reversing each bit in the representation of a 
positive integer of the same magnitude.

opcode Abbreviated form for operation code.

operand An entity on which an operation is performed.

operating system Software that controls the execution of programs and that provides services such as 
resource allocation, scheduling, input/output control, and data management.

operation code A code used to represent the operations of a computer. Usually abbreviated to opcode.
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orthogonality A principle by which two variables or dimensions are independent of one another. 
In the context of an instruction set, the term is generally used to indicate that other elements of an  
instruction (address mode, number of operands, length of operand) are independent of (not deter-
mined by) opcode.

page In a virtual storage system, a fixed-length block that has a virtual address and that is transferred 
as a unit between real storage and auxiliary storage.

page fault Occurs when the page containing a referenced word is not in main memory. This causes an 
interrupt and requires the operating system to bring in the needed page.

page frame An area of main storage used to hold a page.

parity Bit A binary digit appended to a group of binary digits to make the sum of all the digits either 
always odd (odd parity) or always even (even parity).

peripheral equipment In a computer system, with respect to a particular processing unit, any equip-
ment that provides the processing unit with outside communication. Synonymous with peripheral device.

pipeline A processor organization in which the processor consists of a number of stages, allowing 
multiple instructions to be executed concurrently.

predicated execution A mechanism that supports the conditional execution of individual instructions. 
This makes it possible to execute speculatively both branches of a branch instruction and retain the 
results of the branch that is ultimately taken.

process A program in execution. A process is controlled and scheduled by the operating system.

process control block The manifestation of a process in an operating system. It is a data structure 
containing information about the characteristics and state of the process.

processor In a computer, a functional unit that interprets and executes instructions. A processor con-
sists of at least an instruction control unit and an arithmetic unit.

processor cycle time The time required for the shortest well-defined CPU micro-operation. It is the 
basic unit of time for measuring all CPU actions. Synonymous with machine cycle time.

program counter Instruction address register.

programmable logic array (PLA) An array of gates whose interconnections can be programmed to 
perform a specific logical function.

programmable read-only memory (PROM) Semiconductor memory whose contents may be set only 
once. The writing process is performed electrically and may be performed by the user at a time later 
than original chip fabrication.

programmed I/O A form of I/O in which the CPU issues an I/O command to an I/O module and must 
then wait for the operation to be complete before proceeding.

program status word (PSW) An area in storage used to indicate the order in which instructions are 
executed, and to hold and indicate the status of the computer system. Synonymous with processor 
status word.

random-access memory (RAM) Memory in which each addressable location has a unique addressing 
mechanism. The time to access a given location is independent of the sequence of prior access.
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read-only memory (ROM) Semiconductor memory whose contents cannot be altered, except by 
 destroying the storage unit. Nonerasable memory.

redundant array of independent disks (RAID) A disk array in which part of the physical storage 
capacity is used to store redundant information about user data stored on the remainder of the stor-
age capacity. The redundant information enables regeneration of user data in the event that one of the 
 array’s member disks or the access path to it fails.

registers High-speed memory internal to the CPU. Some registers are user visible; that is, available to 
the programmer via the machine instruction set. Other registers are used only by the CPU, for control 
purposes.

scalar A quantity characterized by a single value.

secondary memory Memory located outside the computer system itself; that is, it cannot be processed 
directly by the processor. It must first be copied into main memory. Examples include disk and tape.

selector channel An I/O channel designed to operate with only one I/O device at a time. Once the I/O 
device is selected, a complete record is transferred one byte at a time. Contrast with block multiplexor 
channel, multiplexor channel.

semiconductor A solid crystalline substance, such as silicon or germanium, whose electrical con-
ductivity is intermediate between insulators and good conductors. Used to fabricate transistors and 
solid-state components.

sequential circuit A digital logic circuit whose output depends on the current input plus the state of 
the circuit. Sequential circuits thus possess the attribute of memory.

sign–magnitude representation Used to represent binary integers. In an N-bit word, the leftmost bit is 
the sign (0 = positive, 1 = negative) and the remaining N - 1 bits comprise the magnitude of the number.

solid-state component A component whose operation depends on the control of electric or magnetic 
phenomena in solids (e.g., transistor crystal diode, ferrite core).

speculative execution The execution of instructions along one path of a branch. If it later turns out 
that this branch was not taken, then the results of the speculative execution are discarded.

stack An ordered list in which items are appended to and deleted from the same end of the list, 
known as the top. That is, the next item appended to the list is put on the top, and the next item to be 
removed from the list is the item that has been in the list the shortest time. This method is characterized 
as last-in-first-out.

static RAM A RAM whose cells are implemented using flip-flops. A static RAM will hold its data as 
long as power is supplied to it; no periodic refresh is required.

superpipelined processor A processor design in which the instruction pipeline consists of many very 
small stages, so that more than one pipeline stage can be executed during one clock cycle and so that a 
large number of instructions may be in the pipeline at the same time.

superscalar processor A processor design that includes multiple-instruction pipelines, so that more 
than one instruction can be executing in the same pipeline stage simultaneously.

symmetric multiprocessing (SMP) A form of multiprocessing that allows the operating system to 
execute on any available processor or on several available processors simultaneously.
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synchronous timing A technique in which the occurrence of events on a bus is determined by a clock. 
The clock defines equal-width time slots, and events begin only at the beginning of a time slot.

system bus A bus used to interconnect major computer components (CPU, memory, I/O).

truth table A table that describes a logic function by listing all possible combinations of input values 
and indicating, for each combination, the output value.

twos complement representation Used to represent binary integers. A positive integer is represented 
as in sign magnitude. A negative number is represented by taking the Boolean complement of each bit 
of the corresponding positive number, then adding 1 to the resulting bit pattern viewed as an unsigned 
integer.

unary operator An operator that represents an operation on one and only one operand.

unconditional jump A jump that takes place whenever the instruction that specified it is executed.

uniprocessing Sequential execution of instructions by a processing unit, or independent use of a pro-
cessing unit in a multiprocessing system.

user-visible registers CPU registers that may be referenced by the programmer. The instruction-set 
format allows one or more registers to be specified as operands or addresses of operands.

vector A quantity usually characterized by an ordered set of scalars.

very long instruction word (VLIW) Refers to the use of instructions that contain multiple operations. 
In effect, multiple instructions are contained in a single word. Typically, a VLIW is constructed by the 
compiler, which places operations that may be executed in parallel in the same word.

virtual storage The storage space that may be regarded as addressable main storage by the user of a 
computer system in which virtual addresses are mapped into real addresses. The size of virtual storage 
is limited by the addressing scheme of the computer system and by the amount of auxiliary storage 
available, and not by the actual number of main storage locations.

volatile memory A memory in which a constant electrical power source is required to maintain the 
contents of memory. If the power is switched off, the stored information is lost.

word An ordered set of bytes or bits that is the normal unit in which information may be stored, trans-
mitted, or operated on within a given computer. Typically, if a processor has a fixed-length instruction 
set, then the instruction length equals the word length. 
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504–510, 552–554, 587
conditional instructions, 22–23, 426–427, 

498–499
control hazard, 504
delayed, 510, 552–554
instructions, 409, 426–427, 462
loop buffer for, 504–505
multiple streams for, 504
pipelining and, 498–499, 504–510,  

552–554
prediction, 505–510, 587
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development of, 25–27
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development of, 33–35
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organization, 41–43, 168–169
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Clusters, 633–640
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blade servers, 639
computer architecture, 637–639
configurations, 633–636
design requirements, 633
OS system design, 636–637
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shared disk approach, 635–636
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SMP compared to, 639–640
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adders, 384–388
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Boolean function in, 370–372
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NAND implementation, 380
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overview, 370
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function, 8–13
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introduction to, 6–14
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organization, 1–14
performance, 37–59
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structure, 8, 10–13
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487–488

Advanced RISC Machine (ARM), 439–440
branch instructions and, 426–427
Intel x86 system, 434
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registers for, 487–488
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Control, 224–225, 420, 426–431, 532

branch instructions, 426–427
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I/O modules, 224–225
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operations (opcode), 420, 426–431
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storage, 11
system operations, 420, 426
transfer of, 420, 426–431

Control registers, 486, 487–490, 515–517
Control hazards, pipelining, 504
Control lines, 86
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input/output (I/O), 224
Control unit (CU), 12, 532

branch instruction, 22
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in IAS computer, 17–18
instruction execution, 23

Commands, 229–230
programmed I/O, 229–230
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instructions, 588
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compared to, 213–214
read-only (CD-ROM), 210–212
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Compiler-based register  

optimization, 543–545
Complex instruction set computer (CISC), 2, 

534, 536, 545–551, 568–569
high-level language (HLL) and, 536, 545–547
reduced instruction set computer (RISC) 

architecture compared to, 549–551, 568–569
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to, 534
Complex PLD (CPLD), 400
Compound instructions, IBM 3090 vector 

 facility, 650
Computer architecture, 7
Computer arithmetic. See Arithmetic and logic 

unit (ALU)
Computer instruction, 406
Computer organization, 7
Computer performance, 37–59

Advanced RISC Machine (ARM), 45–49
Amdahl’s law, 56–57
benchmark programs, 52–55
chip organization, 41–43
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designing for, 38–43
embedded systems, 45–49
Intel x86 system, 44–45
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Computer systems, 8–13, 65–308
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operating system (OS) support, 265–308
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Computers, 1–62
Advanced RISC Machine (ARM), 2, 46–49
architecture, 1–13
components, 10–12
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processor, 583–584
Decoder, 382–384, 590
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Digital Equipment Corporation (DEC), PDP 
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Boolean algebra, 365–367
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Direct mapping, 126–130
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configurations, 242–243
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registers, 244–245

Directory protocols, 621–622
Dirty (use) bit, 138
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Disk cache memory, 152
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processor control, 12
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integer execution unit, 595
micro-operations (micro-ops), 589–591, 594–595
organization, 141–144
out-of-order execution logic, 594–595

Operating system (OS) (continued)
memory protection, 273
multiprogramming, 270, 273–275
objectives, 266–267
privileged instructions, 273
resource management, 268–270, 275–276
scheduling, 266, 270, 277–283
setup time, 270–271
time-sharing, 276–177
uniprogramming, 270
user/computer interfacing, 266–267
utilities, 266–267
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535–536

Advanced RISC Machine (ARM), 439–440
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conversion, 420, 425–426
data transfer, 418, 320–322
high-level language (HLL), 535–536
input/output (I/O), 420, 425
Intel x86, 431–440
logical, 419, 422–424
machine instructions, 406, 418–440
reduced instruction set computers (RISC), 
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system control, 420, 425
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high-definition optical disks (HD DVD), 
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Original equipment manufacturers (OEM), 33
Orthogonality, 468, 469
Out-of-order execution, 581–584, 594–595
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Overflow, 328–329, 344, 349

P
Packed decimal representation, 413–415
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Page fault, 289
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I/O memory management, 287–291, 296–299
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Point-to-point interfaces, 249
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