
C O N S E C U T I V E D E L E G ATA B L E S I G N I N G R I G H T S F O R T H E
I S S U A N C E O F A N O N Y M O U S AT T R I B U T E - B A S E D

C R E D E N T I A L S

hong yi victor li

to obtain the degree of Master of Science in Computer Science
Software Technology Track

with a 4TU specialization in Cyber Security
to be defended publicly on October 29, 2018

D E L F T U N I V E R S I T Y O F T E C H N O L O G Y

Faculty of Electrical Engineering, Mathematics & Computer Science
Department of Intelligent Systems

Cyber Security Group

Hong Yi Victor Li: Consecutive Delegatable Signing Rights for the Issuance
of Anonymous Attribute-Based Credentials, Master of Science, © October
2018

student number:
4218906

committee members:
Dr. Odette Scharenborg
Dr. Zekeriya Erkin
Dr. Annibale Panichella
Dr. Ir. Zhijie Ren

supervisors:
Dr. Zekeriya Erkin
Dr. Ir. Zhijie Ren

A B S T R A C T

Digital identities and credentials are gradually replacing physical
documents, as they can be verified with more accuracy and
efficiency. Since online privacy is becoming more crucial than ever, it
is essential to preserve the privacy of individuals whenever possible.
Therefore, anonymous attestation of digital credentials should be
feasible, where provers can selectively disclose attributes and create
abstractions over attributes in their credential, in order to solely
disclose the minimum amount of information required to complete
the goal of verification.

Many schemes in the field of attribute-based credentials consider
a single root authority issuing credentials to provers. This is
coherent to the traditional way of the issuance of credentials since
the process of producing physical documents is costly to distribute
to multiple issuers. Digital identities provide the opportunity for
authorities to distribute credential issuance rights (consecutively) to
smaller entrusted entities.

To the best of our knowledge, we propose the first protocol which
combines both anonymous attestation with attribute-based
credentials and the delegation of selective signing rights for the
issuance of these credentials. Root authorities could delegate signing
rights for selective attributes consecutively to trustees, which are
able to create anonymous attribute-based credentials with the
acquired attributes for provers. Verifiers are able to verify
presentation tokens with solely the public key of the root authority,
without gaining knowledge about the identities of the prover and
intermediate delegators. We introduce three adapted signature
schemes based on existing work in order to realize a concrete
instantiation of the protocol. Anonymity is achieved by
incorporating Schnorr’s zero-knowledge proof of knowledge with
bilinear pairings to efficiently prove the correctness of presentation
tokens.

We realized a prototype of our concrete instantiation and
optimized the verification algorithm in order to achieve optimal
pairing performance. Complexity analysis of the protocol shows
improvement in efficiency by aggregating attribute signatures
throughout signing right delegation. Experimental results
demonstrate a degree of practical feasibility for the verification of
presentation tokens on commodity hardware within the challenging
public transportation access control time bound of 300 ms.

P R E FA C E

When I started my master’s thesis project, I joined the research
group in the field of applied cryptography with a huge interest in
blockchain. During the study of relevant literature, I also got curious
about digital identity and anonymous credentials. My indecisiveness
of interest resulted in a slow start and had put me into a journey
filled with ups and downs. Now finally, nine months later, I finished
my report on digital identity and anonymous credentials, which I
did not foresee at the beginning of my masters, especially since I did
not expect to conduct research in the field of cryptography at all.

First of all, I would like to express my gratitude to my thesis
supervisors Zeki and Zhijie, for guiding me through the past nine
months. Even though the first months were tough, they always have
provided the support I needed in many ways and kept me focused
on creating the work that lays in front of you today.

I also wish to acknowledge the help provided by Peter Schwabe
from Radboud University, who gave advise and feedback on my
work.

Furthermore, I am grateful to Zeki for providing us with an
environment within the research group where we closely interacted
with each other. We always had a great time, whether we had coffee
or discussing cryptographic schemes. Therefore, a lot of appreciation
goes out to my fellow master and PhD-students, for making the
thesis period at least more enjoyable. Besides all the hard work, there
was always a little room for some fun and, of course, (cheese)cake!

Additionally, I would like to express my appreciation to Zhijie for
the countless brainstorming sessions, even when it did not involve
blockchain and consensus algorithms, and to Gamze, Oğuzhan and
Chibuike for helping me out whenever I had questions.

Finally and most importantly, I would like to thank my family and
friends who have always stood by me, especially them who helped
me through my thesis in any way. I am grateful to have them in my
life, and I could not have achieved this work without them. Special
thanks to Lars, Hari, Wielande, Tim, Wing Yi and Christina for their
efforts during the creation of this work.

Victor Li
Delft, October 2018

C O N T E N T S

1 introduction 1

1.1 Digital Identities and Credentials 2

1.2 Privacy Awareness . 3

1.3 Self-Sovereign Identity 3

1.4 Anonymous Attestation 4

1.5 Delegatable Signing Rights for Credentials Issuance . . 5

1.6 Use Cases . 6

1.6.1 European Driver’s Licences 6

1.6.2 Stock Exchange 7

1.7 Research Question . 7

1.8 Contributions . 8

1.9 Research Outline . 9

2 background 11

2.1 Digital Identities and Credentials 11

2.2 Anonymous Credentials 12

2.3 Self-Sovereign Identity 13

3 primitives and prior art 15

3.1 Bilinear Groups . 15

3.2 Computational Problems 16

3.3 Random Oracle Model 16

3.4 Zero-Knowledge Proofs 17

3.5 Prior Art . 19

3.5.1 Anonymous Credential Schemes 20

3.5.2 Hierarchical Signing Right Delegation 21

3.5.3 Anonymous Proxy Signatures 21

3.5.4 Delegatable Anonymous Credentials 22

3.5.5 Comparison between DAC schemes 23

3.5.6 Comparsion between APS and DAC 24

3.5.7 Analysis . 25

3.6 Research Challenges . 26

4 system model definition 29

4.1 Actors . 29

4.2 Algorithms . 30

4.2.1 Setup . 31

4.2.2 Delegation . 31

4.2.3 Credential Issuance 31

4.2.4 Token Generation 32

4.2.5 Verification . 32

4.3 Properties . 32

5 protocol design 35

5.1 Generic Construction . 35

5.2 Aggregation of Attribute Signatures 36

viii contents

5.3 Delegation Chain . 37

5.4 Randomizability of the Signatures 39

5.5 Anonymous Credentials 41

5.6 Group Element Proof of Knowledge in Pairings 42

5.7 Conclusion / Key Takeaways 43

6 preliminary signature schemes 45

6.1 Randomization by Multiplication 45

6.1.1 Security Proof . 46

6.2 RBLS: Randomizable BLS Multi-Signatures with
Public-Key Aggregation 47

6.2.1 Random Oracle Public-Key Dependency 47

6.2.2 Randomizability of (Aggregated) Signatures . . 48

6.2.3 Instantiation . 48

6.2.4 Security Proof . 50

6.3 RSPS-M: Randomizable Structure-Preserving
Signatures by Multiplication 50

6.3.1 Instantiation . 51

6.3.2 Security Proof . 51

6.4 SRS-M: Short Randomizable Signatures by Multiplication 53

6.4.1 Randomization 53

6.4.2 Verifying Randomized Credentials 54

6.4.3 Instantiation . 55

6.4.4 Security Proof . 55

7 entrust : consecutive delegatable signing

rights for anonymous credentials 57

7.1 Overview . 57

7.2 Aggregated Signatures in a Credential 58

7.3 Randomizability . 58

7.4 Construction . 59

7.4.1 Delegation . 59

7.4.2 Credential Issuance 60

7.4.3 Presentation Token Generation and Verification 60

7.5 Signature Schemes . 61

7.5.1 General . 62

7.5.2 Randomizable BLS Signature - Single Signature 62

7.5.3 Randomizable BLS Signature - Multi Signature 62

7.5.4 Randomizable BLS Signature - Batch Signature 62

7.5.5 Randomizable Structure-Preserving Signatures
by Multiplication 62

7.5.6 Short Randomizable Signatures by Multiplication 63

7.6 Concrete Instantiation 63

7.6.1 Setup . 63

7.6.2 Initial Delegation 63

7.6.3 Consecutive Delegation 64

7.6.4 Credential Issuance 64

7.6.5 Presentation Token Generation 66

contents ix

7.6.6 Zero-Knowledge Verification 69

7.7 Security Discussion . 70

7.7.1 Root Authority 70

7.7.2 Delegator . 70

7.7.3 Prover . 71

7.7.4 Verifier . 72

7.7.5 Man in the Middle Adversaries 73

8 evaluation 77

8.1 The Experiment Setting 77

8.2 RELIC Library Benchmarks 78

8.2.1 Execution Times of a Single Operation 78

8.2.2 Storage Size of a Single Group Element 79

8.3 Optimalization of Verification Pairings 80

8.4 Complexity . 81

8.4.1 Computational Complexity 81

8.4.2 Complexity of Storage and Communication . . 83

8.5 Run-Time Analysis . 83

8.5.1 Presentation Token Generation Times 83

8.5.2 Presentation Token Verification Times 84

8.5.3 Presentation Token Size 85

8.5.4 Analysis . 85

8.6 Comparison to DAC . 86

8.6.1 Computational complexity 86

8.6.2 Presentation Token Size 88

8.7 Conclusion . 89

9 discussion and future work 91

9.1 Discussion . 91

9.2 Future Work . 93

9.3 Conclusion . 95

bibliography 97

a primitive existing signature schemes 105

a.1 BLS Multi-Signatures . 105

a.2 BLS Multi-Signatures with Public-Key Aggregation . . 106

a.3 Structure-Preserving Signatures 107

a.4 Short Randomizable Signatures 108

L I S T O F F I G U R E S

Figure 2.1 Issuer/Prover/Verifier model. 12

Figure 2.2 Privacy spectrum of attributes from W3C [78]. 13

Figure 3.1 Comparison between different types of
delegation schemes. 24

Figure 4.1 Schematic overview of the application setting. 30

Figure 4.2 Schematic overview of a concrete application
scenario. 30

Figure 7.1 Signature Proof of Knowledge (witnesses are
underlined for clarity). 61

Figure 8.1 Individual Pairings versus k-Miller Loop +
Final Exponentiation. 79

Figure 8.2 Computational time of generating a
presentation token. 84

Figure 8.3 Computational time of verifying a
presentation token. 84

Figure 8.4 The storage size of a presentation token. 85

Figure 8.5 Comparison in verification time between
CDD17 [20] and ENTRUST. 88

L I S T O F TA B L E S

Table 3.1 Comparison between DAC schemes. 23

Table 5.1 Signatures in a delegation bundle: Relation
between signatures and R-values. 36

Table 5.2 Aggregated signatures in a delegation bundle:
Relation between signatures and R-values. . . 37

Table 5.3 Comparison between the two delegation chain
methods. 39

Table 5.4 Signatures in a credential: Relation between
signatures and R-values. 42

Table 7.1 Aggregated signatures in a credential: Relation
between signatures and R-values. 58

Table 8.1 Execution time of the most expensive
operations on the BLS12-381 curve from the
RELIC library in our experimental setting. . . 78

Table 8.2 Size of elements of the BLS12-381 curve from
the RELIC library. 79

Table 8.3 Complexity of all operations for the Root
Authority and a Delegator. 82

Table 8.4 Complexity of all operations for a Prover and
a Verifier. 82

Table 8.5 Complexity of storage size of the data bundles
in ENTRUST. 83

Table 8.6 Verification speed comparison between
CDD17 [20] and ENTRUST. 87

Table 8.7 Comparison in presentation token size
between DAC and ENTRUST. 89

L I S T O F A L G O R I T H M S

Algorithm 1 Schnorr’s Zero-Knowledge Proof of
Knowledge Protocol 18

Algorithm 2 Schnorr’s Zero-Knowledge Proof of
Knowledge Protocol with Fiat-Shamir Transform 18

Algorithm 3 The Initial Delegation Algorithm 64

Algorithm 4 The Consecutive Delegation Algorithm 64

Algorithm 5 The Commitment Algorithm (Prover) 65

Algorithm 6 The Credential Issuance Algorithm 65

Algorithm 7 The Presentation Token Generation Algorithm 67

Algorithm 8 Predicate Commitments 68

Algorithm 9 The Zero-Knowledge Verification Algorithm . 69

Algorithm 10 The Zero-Knowledge Verification Algorithm 9

Revised - Optimized for Implementation . . . 80

A C R O N Y M S

APS Anonymous Proxy Signature

DAC Delegatable Anonymous Credential

DAAC Delegatable Attribute-Based Anonymous Credential

CL Camenisch and Lysyanskaya Signature [24]

BBS Boneh, Boyen and Shacham Signature [13]

PS Pointcheval and Sanders Signature [64]

1
I N T R O D U C T I O N

Citizens carry wallets full of physical documents in order to identify
themselves for a variety of purposes. While presenting physical
documents has become a force of habit, there are numerous
drawbacks to this approach of identification. First of all, presenting
physical documents often leaks more information to verifiers than
required to complete the task at hand. As society is becoming
increasingly privacy-aware [3, 71], people strive to minimize
information disclosure whenever possible. Furthermore, currently
used physical documents require manual inspection during
verification to ensure proper unforgeability characteristics to be
present. However, these need to be assessed within a short time
frame, and can only be judged by visual inspection to a limited
extent.

In the era of digitalization, physical documents are being replaced
with digital identities and credentials [76]. Various governments
have already employed initial identity solutions in a digital format,
while others are currently exploring options to realize more
extensive digital identities [31]. Furthermore, the current movement
that is embodying Self-Sovereign Identity is striving towards the
notion of user-autonomous identities with which individuals are in
full control of the information they provide [29]. Users can create
and use their identities freely across any number of authorities while
maintaining control over their privacy. Individuals are able to make
claims about themselves, where endorsements backed by relevant
authorities or peers increase their credibility.

Technological progressions in digital identities and concepts
embracing user autonomy for identity require more extensive
cryptographic building blocks, in order to reliably employ digital
identities and credentials. The research field focused on these
building blocks is zooming into solutions and push towards more
secure and practical underlying protocols.

Digital credentials provide the opportunity for large-scale
credential providers to distribute credential issuance rights to
smaller entrusted entities, in order to lessen the workload and
management tasks of the root entity. Various protocols have been
proposed for anonymous attestation with attribute-based credentials,
as well as for the delegation of anonymous credentials or signing
rights (Section 3.5). Nevertheless, current approaches either only
focus on authentication, do not involve attribute-based credentials,
do not offer complete privacy for provers, or lack practical efficiency.

2 introduction

To the best of our knowledge, we are the first to present a protocol
that combines both anonymous attestation of attribute-based
credentials and the delegation of selective signing rights for the
issuance of these credentials. We modified three existing signature
schemes in order to realize a concrete instantiation of the protocol to
form a building block towards more flexible and advanced digital
identities.

1.1 digital identities and credentials

Due to rapid technological advancements, society is shifting towards
the digitalization of all physical documents. Library cards, paper
contracts, and passports are good examples of documents which
will be replaced with digital substitutes. Not only are digital
alternatives more trustworthy and efficient, but they also offer
reduced costs for both creators and verifiers of these documents.
Digital identity is a fundamental building block to achieve the
realization of these digital documents.

The primary driver for the realization of digital identities is to
identify entities with more accuracy, reliability, and efficiency.
Governments and companies are currently investing heavily in
digital identity solutions. In early 2018, it was estimated that banks
alone collectively spend more than $1 billion per year on research
and development in the field of digital identity [47]. The World
Economic Forum estimates that $12 billion of total investments is
necessary in order to realize digital identities for everyone [76].

The realization of solely digital identities is not sufficient. Entities
holding digital identities often wish to prove to other parties that
they have specific attributes or traits obtained from a trusted party.
Attribute-based credentials enable issuers to assign values to
attributes which allows them to define the traits of the prover more
specifically and dynamically, e.g., "city = Amsterdam" or
"birth_date = 19940101". It can be applied in a variety of use cases
ranging from electronic passports to "Privacy-Aware Smart Health
Services in IoT-Based Smart Cities" [46].

In various cases, the verification party solely needs to verify
whether the prover has specific attributes of particular values,
endorsed by a trusted party. A well-known example is where a
customer visits a liquor store to purchase alcoholic beverages. Before
proceeding the sale, the store is required by law to verify the age of
its customers. Currently, customers have to present a physical
identification card which also includes information not required for
the verification of age, enabling the store to gain unintentional
knowledge of other non-relevant attributes on the credential.
Although data extraction unlikely with physical credentials, this
would be more feasible with digital credentials, allowing the liquor

1.2 privacy awareness 3

store to use the extraneous information to conduct data analysis on
their customers without their consent or to reuse presented
credentials anywhere else.

1.2 privacy awareness

Individuals are becoming more aware of privacy and thereby getting
more concerned about the privacy risks associated with online
activity [3, 71]. This trend is mainly fueled by three factors.

First of all, data breaches of online platforms and businesses occur
more frequently. For example, LinkedIn got breached in 2012 by
adversaries, leaking personal information of 117 million users [74].
Since 2013, Have I Been Pwned 1 has collected more than 5 billion
online user accounts from data breaches. Adversaries, for instance,
use the collected information to access other online platforms or to
impersonate individuals. Even though breached platforms and
businesses react as fast as they can, leaked information can never be
recovered from the internet.

Additionally, the recent data scandal involving Facebook and
Cambridge Analytica has occurred prominently in the news.
Personal information has been collected by Cambridge Analytica in
order to influence the opinion of the voter [72]. The misuse of
personal information led to concerns among people, which is
increasingly questioning the safety of their personal data and
privacy.

Finally, the increasing realization of the importance to protect the
privacy of citizens is also growing in politics, due to the increasing
privacy risks. This led to more legislation and awareness to protect
the online privacy of individuals. For instance, the General Data
Protection Regulation (GDPR) law [38] went into effect in the
European Union. This law protects the online privacy of individuals
by enforcing new rules for consent, data collection, data processing,
and profiling of individuals, thereby giving individuals more control
over their private information.

1.3 self-sovereign identity

The emerging movement embodying Self-Sovereign Identity is
striving towards user-autonomous identities, where individuals are
central to the administration of identity [29]. Currently, users are
locked into various identity providers who are able to deny their
identity or even confirm a false identity. The reduction of power
previously located at these centralized entities allows individuals to
use their identities freely across any number of authorities and being

1 Have I Been Pwned https://haveibeenpwned.com/

https://haveibeenpwned.com/

4 introduction

in full control of their personal information, which inherently
increases privacy.

The realization of Self-Sovereign Identity in its purest form is
however challenging. Since the trust in centralized identity providers
is omitted, new frameworks are essential to establish trust among
entities. Determining the trustworthiness of claims is difficult since
trust is established through a peer-to-peer economy. Nevertheless,
relevant authorities could issue attestations to provers, which
enables trust depending on the nature of the claim and the use case.

The essence of Self-Sovereign Identity is to enable individuals to
store their identity data locally, instead of on many centralized
repositories across the internet. Users are free to create their own
identity and make claims about themselves or others, where
endorsements backed by relevant authorities or peers should
increase the credibility of such claims. It allows users to disclose
selective information to verifiers whenever necessary. In this way,
individuals are in full control of the information they provide to
others and do not have to worry about the inherent risk of identity
data stored at central repositories.

1.4 anonymous attestation

As privacy becomes more important in society, it is essential to
preserve the privacy of an individual whenever possible. While
Self-Sovereign Identity is striving for ownership of personal data, it
should also be possible to enhance privacy during verification of
claims as opposed to the presentation of physical credentials. The
information disclosed during the presentation of claims should be
reduced and only disclose the minimum amount of information that
is required to complete the goal of verification. Therefore, provers
should be able to attest claims selectively and anonymously and be
able to apply abstraction on attributes by attesting predicates over
their attributes values in the credential. In the case of purchasing
alcoholic beverages, customers should be able to prove that their age
is at least 18 or higher, without revealing their date of birth, any
other attributes in the provided credential nor their identity to the
store.

Several cryptographic schemes for attribute-based credentials with
anonymous attestation have already been proposed in the scientific
field (Section 3.5.1). Nevertheless, they all rely on a single central
authority for the issuance of credentials. The presence of the
peer-to-peer trust model within Self-Sovereign Identity motivates a
similar approach, using the consecutive trust concept within
anonymous claims to increase their credibility. An authority could
declare trust consecutively towards smaller entrusted entities, which
are able to endorse specific claims for provers on behalf of the

1.5 delegatable signing rights for credentials issuance 5

authority. We portray this concept to a more concrete problem
scenario next.

1.5 delegatable signing rights for credentials

issuance

In large-scale organizations, root entities often already delegate the
management of specific tasks to other trusted entities. The root entity
would pass selective authorization rights downwards in the hierarchy,
in order to reduce its workload. This enables lower-level entities to act
on behalf of the root entity for permitted actions.

The notion of task delegation can be extended to the issuance of
credentials, where the root entity is a trusted authority which issues
credentials to provers. Nevertheless, credential issuance from this
authority occurs on a large scale. Therefore, the authority could
delegate signing rights for specific attributes to its departments. The
departments are able to issue credentials containing acquired
attributes to provers, on behalf of the authority. Since large
organizations are often structured hierarchically in multiple layers,
entities which obtained signing rights can delegate the rights further
downwards.

In order to preserve the privacy of provers during anonymous
attestation, the verifiers of credentials should not gain any
information about the intermediate delegators. Learning the identity
of the intermediate delegators could potentially leak information
about the prover and could allow verifiers to link multiple
presentations of the same credential with more accuracy. Therefore,
the verifier should be convinced that the credential is correct
without disclosing any identifiable information about the delegators
and the prover.

The concept of delegating rights has been explored in the field of
cryptography. Research in the delegation of rights for anonymous
attestation occurs in two categories: Anonymous Proxy Signatures
and Delegatable Anonymous Credentials.

anonymous proxy singatures The root authority assigns a set
of attributes to a user, where the attributes act as authorization rights.
Users can propagate a subset of the acquired attributes to other users.
It also allows users to sign messages, along with particular acquired
attributes. The signature is able to prove that the message is signed
by an anonymous entity which has acquired the required attributes.
The identity of the prover and the intermediate delegators are not
disclosed.

delegatable anonymous credentials The root authority
issues a credential to a user with various attributes. Users can

6 introduction

present specific attributes of their credential anonymously to
authenticate themselves. It is also possible for users to propagate the
received credential to other users. The user is free to choose
attributes for the next user. A subsequent user can use this credential
to anonymously authenticate himself by showing particular
attributes assigned to him and users of prior levels, which results in
an attribute chain. The credential can only be used for authentication
purposes and could require complex business logic for the verifier to
decide whenever to accept the attribute chain in the credential.

Both concepts incorporate the delegation of rights but are only
suitable for authentication purposes. Nevertheless, schemes for
selective signing right delegation for anonymous attribute-based
credentials has not been introduced before. The issuance of these
credentials in a hierarchical delegation setting could have interesting
applications to various use cases.

1.6 use cases

We discuss two examples to demonstrate the potential relevance and
the possibilities for signing right delegation for the issuance of
anonymous attribute-based credentials.

1.6.1 European Driver’s Licences

The first imaginable scenario is where the European Union wishes to
issue electronic driver’s licenses to European citizens. A driver’s
license would contain attributes such as name, gender,
date_of_birth, categories, and expiration_date. As the European
Union has many citizens, it is hard to issue and manage driver’s
licenses for each of them. Therefore, the European Union could
delegate the signing rights for these attributes to nations, which in
turn could delegate these rights to municipalities. When a citizen
obtains the authorization to drive vehicles of a particular category,
the municipality could issue a European electronic driver’s license to
the citizen on behalf of the European Union.

The licensee could then anonymously present particular attributes
and the assigned attribute values from the electronic driver’s license
to verifiers, without disclosing its identity. The credential also does
not disclose which nation or municipality was involved in signing
the driver’s license in order to preserve the privacy of the prover. The
verifiers will accept the driver’s licenses due to its trust relationship
with the European Union.

1.7 research question 7

1.6.2 Stock Exchange

The scheme could also be interesting in an investment banking
setting. Companies within this industry can have multiple
departments with many traders who submit their orders directly to
be directly executed on different stock exchanges. In the financial
world, many traders are closely watching the trading behavior of
particular well-performing traders or investment companies in order
to benefit from that information. To prevent analysis of trading
behavior by competitors, anonymous trading orders can be
incorporated with anonymous attribute-based credentials. In this
scenario, the stock exchange would be the root authority, delegating
signing rights for placing anonymous orders on the exchange. The
stock exchange will delegate the signing rights in multiple
delegations towards departments of traders. The department is able
to issue specific trading rights to traders. The department could, for
example, restrict types of stocks or the monetary limit per order by
issuing a credential with specific attributes and attribute values.
Traders can use this credential to anonymously place orders directly
on the stock exchange. In case of unusual behavior, fraud or insider
trading, the stock exchange is able to revoke anonymity in order to
inspect orders, and thereby capture any misbehaving adversaries.

1.7 research question

The conception of consecutive trust in a peer-to-peer setting within
Self-Sovereign Identity encourages the idea for delegatable signing
rights for the issuance of attribute-based credentials. The presented
use cases exhibit the advantages for the realization of a scheme
which allows the issuance of attribute-based credentials in a
hierarchical fashion. Applications of the scheme to other fields and
settings could be interesting as well. In this research, we attempt to
solve this problem by designing and implementing a protocol for the
delegation of signing rights for the issuance of anonymous
attribute-based credentials. The main research question of this
research is as follows:

How can we consecutively delegate signing rights for the
issuance of attribute-based credentials, and construct practical,

verifiable, and anonymous attribute-based proofs with
delegation chain anonymity?

The following sub-questions are derived from this research question:

(i) How can signing rights for attribute-based credentials be
delegated in a more efficient manner opposed to existing
schemes?

8 introduction

(ii) How can delegators issue valid attribute-based credentials on
behalf of the root authority?

(iii) How can provers transform such a credential into proofs for
anonymous attestation?

(iv) How can verifiers check the proofs without the knowledge of
the identity of the intermediate delegators and the prover?

(v) Can we improve the efficiency of proof verification in terms of
computational speed and storage size?

1.8 contributions

In this thesis, we propose a protocol for consecutive delegation of
signing rights for the issuance of anonymous attribute-based
credentials. The flexibility of the scheme allows delegators to
selectively propagate signing rights to subsequent delegatees and
enables provers to selectively present attributes, which achieves
complete privacy for provers opposed to existing work. The protocol
allows verifiers to check the correctness of the proofs, without
learning the identities of intermediate delegators and the prover. As
building blocks for the protocol, we introduce adapted three
signature schemes, based on existing work. The main contributions
of our work are as follows:

• A signature scheme which allows the aggregation of
multi-signatures, and incorporates randomizability by
multiplication, called RBLS: Randomizable BLS Multi-Signatures
with Public-Key Aggregation.

• A structure-preserving signature scheme which allows
randomizability by multiplication, called RSPS-M:
Randomizable Structure-Preserving Signatures by Multiplication.

• A short randomizable signature scheme which incorporates
both randomizability by exponentiation and multiplication,
called SRS-M: Short Randomizable Signatures by Multiplication.

• A protocol, which incorporates the three aforementioned
signature schemes as building blocks, for the consecutive
delegation of signing rights for anonymous attribute-based
credentials, called ENTRUST.

• A concrete instantiation of ENTRUST, implemented as a
prototype and evaluated in terms of computation time and
storage size, which shows feasibility to be used in practice.

1.9 research outline 9

1.9 research outline

The research towards answering the research questions and leading
to the mentioned contributions is documented in the rest of this
work. The report is structured as follows. Chapter 2 gives the reader
more background information on the landscape of digital identities
and credentials. In Chapter 3, primitives are provided upon which
the prior art, the modified signature schemes and our protocol
ENTRUST is built, after which the prior art is discussed. Chapter 4

gives the formal definition of the protocol employing delegation of
signing rights for the issuance of anonymous attribute-based
credentials. Chapter 5 covers ideas, motivation, considerations, and
decisions during the design of a concrete instantiation of the
protocol. With the concluding remarks of the design phase in mind,
we introduce three preliminary signature schemes in Chapter 6. By
having the design and the preliminary signature schemes as
building blocks, we give a concrete instantiation of our protocol
called ENTRUST in Chapter 7. Chapter 8 evaluates the efficiency of
the protocol by running experiments on a prototype. The report will
be concluded in Chapter 9 with a discussion of limitations, and
identifies open problems and future work.

2
B A C K G R O U N D

In the introductory chapter, we have briefly touched upon the
concepts of digital identities and credentials, anonymous credentials
and self-sovereign identity. In this chapter, we give more in-depth
knowledge of these concepts, in addition to the introductory chapter.

2.1 digital identities and credentials

Diverse entities, such as natural persons and organizations, should
have a way to identify themselves digitally. This can be realized with
digital identities, which are digital representations of entities in the
form of cryptographic keys and a set of attributes related to the
entity [57]. Digital identities enable the authentication and
verification of entities and allow entities to sign and verify digital
messages. As described by Rivest et al. in 1978 [66], signatures on
digital messages are essential:

If electronic mail systems are to replace the existing paper mail
system for business transactions, "signing" an electronic

message must be possible.

Besides paper mail systems, this also applies to the replacement of
physical documents and credentials. Digital signatures ensure
authentication, non-repudiation, and integrity of digital messages.

Digital identity is a fundamental building block for various other
digital concepts, such as digital credentials, which is a collection of
claims about an entity in the form of attributes issued by a trusted
authority. There are three parties in the most basic setting with digital
credentials: an issuer, a prover, and a verifier. The prover is the entity
which needs to show digital proof of a specific claim in order to get
access or to obtain a benefit. This verifiable claim (or attestation) can
be obtained by the issuer. Upon presentation of the verifiable claim
by the prover, the verifier will check the correctness and authenticity
of the proof. In this case, the verifier has a trust relationship with the
issuer, since the verifier accepts all claims which are signed by the
issuer. Figure 2.1 depicts this setting.

Sovrin states that two challenges need to be overcome before digital
identities can be widely deployed [69]:

• Representation and verification of digital identities and
credentials need to be standardized.

• Verification the source and integrity of the digital credentials
need to be standardized.

12 background

Issuer Prover Verifier

Verifiable claim

Trust relationship

Verifiable claim

Figure 2.1: Issuer/Prover/Verifier model.

Due to the lack of a standard for the issuance and verification of
digital credentials, the World Wide Web Consortium (W3C) created
a working group on Verifiable Claims Data Model and
Representations [77]. They have released an editor’s draft [79], since
the working group is still actively discussing terminology and
concepts for verifiable claims.

Currently, people use physical documents to prove their identity
and their issued attributes. Verifiers determine the authenticity of
the document within a limited time-bound with a level of certainty
based on physical aspects and unforgeability characteristics of the
document. This is challenging in the digital world since the verifier
inspects a digital credential, which is essentially data. Therefore
digital credentials require different security properties than physical
ones. During the verification of physical credentials, the verifier is
incapable to directly replicate the credential. One could make a
photocopy of the document, but cannot present this to others in a
convincing way. Since digital identities are verified by sending data
to the verifier, the verifier could store the credential to carry out data
analysis or to reuse the credential somewhere else. Therefore,
additional properties are required in order to prevent reuse/misuse
of presented credentials.

2.2 anonymous credentials

Anonymous claims are similar to verifiable claims. However, the
identity of the prover will not be revealed to the verifier. This is
advantageous for interactions between provers and verifiers where
the identity of the prover is irrelevant for the task at hand. This
applies for instances where provers are required to prove their age
for the purchase of alcoholic beverages or to attest their membership
in a particular group.

While the identity of the prover will not be disclosed to the
verifier, attribute values could correlate to the identity of a person.
The correlative nature of attributes could be placed in a spectrum of
privacy from non-correlatable to highly correlatable. Figure 2.2
depicts the privacy spectrum of different types of attributes.

2.3 self-sovereign identity 13

Figure 2.2: Privacy spectrum of attributes from W3C [78].

It is vital in the digital world to preserve the privacy of
individuals whenever possible. In various cases, it is nonessential to
present exact personal information to verifiers, while the verifier
only has to know if the value of a particular attribute lies within a
given range, or if the value is part of a given set of values. In
addition, the verifier should not gain any information about the
values of other non-relevant attributes. Therefore, the prover should
be able to selectively present attributes and create abstractions on
attribute values in the form of predicates. This leads to shifting
attributes in the privacy spectrum towards less correlatability and
minimize the disclosed information to the verifier.

Even when provers are able to present valid credentials, it is also
essential for the verifier to be sure that the anonymous credentials are
linked to the physical persons in reality. Since the verifier does not
learn the identity of the prover, the verifier has no guarantee that the
physical person owns the identity behind the anonymous credential.
Measures need to be incorporated to ensure that the identity and
credential have not been transferred or relayed from someone else.
Identity solutions, such as ePassports [49], are attempting to mitigate
this by incorporating biometrics to confirm that the physical prover
is the owner of the digital identity. Nevertheless, confirmation of the
relation between digital identity and physical presence is challenging,
especially in the emerging concept of Self-Sovereign Identity, where
users are central to the administration of their own identity.

2.3 self-sovereign identity

Self-Sovereign Identity is the user-autonomous concept of entities
creating, managing and controlling their own identity without
relying on any trusted parties/anchors such as governments and
other authorities. Every entity can freely create their own digital
identity and make claims about themselves and others, allowing
individuals to have full control over their identity. Trust is
established in a peer-to-peer economy, where endorsements backed
by peers should increase the trustworthiness of claims.

14 background

The precedent concept of Self-Sovereign Identity is called "Web of
Trust" and has been introduced by Phil Zimmerman in the GPG
manual from 1992 [63]:

As time goes on, you will accumulate keys from other people
that you may want to designate as trusted introducers.

Everyone else will each choose their own trusted introducers.
And everyone will gradually accumulate and distribute with

their key a collection of certifying signatures from other people,
with the expectation that anyone receiving it will trust at least
one or two of the signatures. This will cause the emergence of a
decentralized fault-tolerant web of confidence for all public keys.

Christopher Allen wrote an article to define the main principles of
Self-Sovereign Identity [29]. Others have adopted these main
principles in assessing self-sovereign identity solutions [73]. The ten
principles of self-sovereign identity according to Allen are existence,
control, access, transparency, persistence, portability, interoperability,
consent, minimalization and protection.

Multiple initiatives [30, 68] and various researchers [61, 70] are
currently exploring the possibilities to design protocols and realize
solutions towards self-sovereign identity. Hyperledger Indy [55] is a
project which creates a foundation for decentralized identities. The
Sovrin Foundation is working towards a framework which leverages
the foundation of Hyperledger Indy to build a decentralized
ecosystem with self-sovereign identity and a trust framework for
users and organizations.

Nevertheless, most of the current solutions are not entirely self-
sovereign, since it is hard to bootstrap a vast ecosystem without any
trust anchors. Therefore it is hard to determine the trustworthiness of
other identities since everyone is able to create identities and claims
freely. In order to realize self-sovereign identity in the purest form,
researchers are exploring trust estimation frameworks [65].

3
P R I M I T I V E S A N D P R I O R A RT

As the prior work and this research are built upon existing concepts
and scheme, we introduce the primitives which are used and required
to understand the rest of this report. First, various cryptographical
concepts and assumptions are discussed upon which the prior art
and this work are built. Finally, we discuss and analyze the prior art
of anonymous credentials and delegatable signing rights.

3.1 bilinear groups

A bilinear group is a tuple Λ = (q, G1, G2, GT, e, g1, g2) where:

• G1, G2 and GT are multiplicative cyclic groups of prime order q;

• g1 and g2 generate G1 and G2 respectively;

• e : G1 ×G2 → GT is an efficient non-degenerate bilinear map;

• for all X ∈ G1, Y ∈ G2, and a, b ∈ Zq, e
(
Xa, Yb) = e(X, Y)ab.

BGGen(1κ) is a bilinear-group generator with an polynomial-time
algorithm that takes a security parameter κ, and outputs a bilinear
group tuple Λ = (q, G1, G2, GT, e, g1, g2).

3.1.1 Types of Bilinear Pairings

Bilinear pairings are categorized into three types [48]:
Type-1 (Symmetric): G1 = G2.
Type-2 (Asymmetric): G1 6= G2 and there is an efficiently

computable homomorphism ψ : G2 → G1. Efficient secure
hashing to elements in G2 is not possible.

Type-3 (Asymmetric): G1 6= G2 and there exists no efficiently
computable homomorphisms between G1 and G2. Secure
hashing is possible to both G1 and G2.

Type-1 pairings were mostly used at the beginning of pairing-based
cryptography but have been increasingly replaced by Type-3 pairings.
Type-3 pairings appear to be more efficient [27] and are compatible
with computational assumptions, such as the Decision Diffie-Hellman
problem (Assumption 3) in both G1 and G2. Therefore in this work,
we only consider Type-3 bilinear pairings.

16 primitives and prior art

3.2 computational problems

The very nature of cryptography depends on computationally hard
problems, where it should take adversaries an infeasible amount of
computation beyond the reach of current and foreseeable future to
break a cryptographic scheme. In this section, we give an overview
of several computational hard problems, which will be referred to in
the rest of the thesis.

Assumption 1 (Discrete Logarithm (DL) Problem): The discrete
logarithm assumption in a group G with generator g states that given
(g, ga) for random a ∈ Zq, it is hard to a polynomial-time adversary
to find a′ ∈ Zq, such that ga′ = ga.

Assumption 2 (Static Diffie-Hellman (SDH) Problem): The Static
Diffie-Hellman assumption in a group G states that given (g, h, ga) for
g, h ∈ G and a random a ∈ Zq, it is hard to a polynomial-time
adversary to find a′ ∈ Zq, such that ha′ = ha.

Assumption 3 (Decision Diffie–Hellman (DDH) Problem): The
Decision Diffie–Hellman assumption in a group G with generator g
states that given (gr, gs, gt) for random r, s ∈ Zq, it is hard to decide
whether t = rs or t is random.

This assumption does not hold for symmetric pairings, since the

decision is easy to make by checking e(gr, gs)
?
= e(grs, g).

Assumption 4 (Symmetric External Diffie–Hellman (SXDH)
Problem): For Λ = (q, G1, G2, GT, e, g1, g2), the DDH assumption
holds in both G1 and G2.

Assumption 5 (Linear Problem): The Linear assumption [37] in a
symmetric group (q, G, GT, e, g) states that given (ga, gb, gac, gbd) ∈ G

for random a, b, c, d ∈ Zq, it is hard to compute gc+d.

Assumption 6 (Decision Linear (DLIN) Problem): The Decision
Linear assumption [13] in a symmetric group (q, G, GT, e, g) states
that given (ga, gb, gra, gsb, gt) for random a, b, r, s ∈ Zq, it is hard to
decide whether t = r + s or t is random.

Assumption 7 (Computational co-Diffie-Hellman (co-CDH)
Problem): The Computational co-Diffie-Hellmann problem [16]
states that given (g1, g2, ga

1, gb
1, gb

2) for random a, b ∈ Zq, it is hard to
compute gab

1 in polynomial-time.

3.3 random oracle model

A random oracle can be seen as a black box, which takes a bit string
of arbitrary length as input. When the random oracle has never
observed the input before, it outputs a completely new output,

3.4 zero-knowledge proofs 17

random and uniform over a predetermined range, and retains the
input-output combination. Every time the random oracle has seen
the same input as before, it outputs the same random output for that
input.

In the ideal environment, the random oracle outputs a unique
random output for every unique input, where it would not be
possible to obtain the same output for two different inputs. In
practice, hash functions are used and treated as random oracles [32].
Due to the nature of hash functions, they can never fully act as
random oracles, since hash functions are algorithms which
scrambles the input data to a random-appearing output. Therefore
hash functions can never guarantee that there will be no output
collisions for every two distinct inputs.

Bellare and Rogaway were the first to describe random oracles as
primitives for cryptographic protocols [7], and how hash functions
could model the behavior of random oracles.

Researchers do not favor schemes in the Random Oracle Model
[58], since schemes in this model are secure in a theoretical sense,
but the security of random oracles cannot be completely realized in
practice. Therefore, researchers rather avoid random oracles or
transform schemes to other security models.

Nevertheless, schemes in the Random Oracle Model appear to
require less storage space and are faster in computation [58].
Although hash functions might not offer a full guarantee on
non-colliding inputs, it is still widely used to verify the integrity of
data with high probability.

3.4 zero-knowledge proofs

Zero-Knowledge Proofs are proofs which could convince other
parties with high probability that the sender knows a secret value,
without revealing it. The concept of proof of knowledge has been
formally introduced by Feige et al. [39], while Goldwasser et al. [50]
were the first to introduce the formal definition of zero-knowledge.

3.4.1 Schnorr’s Zero-Knowledge Proof of Knowledge

Schnorr’s Zero-Knowledge Proof of Knowledge is a three-stage
protocol, which allows a prover to convince the verifier that he
knows a secret value, without disclosing the secret value. The
protocol consists of the commitment, challenge and response phase.
These phases will be repeated until the verifier is convinced that the
prover knows the hidden value. Algorithm 1 depicts the three-phase
protocol. In this example, the prover proves the knowledge of the
secret exponent x in the public element A = gx.

18 primitives and prior art

Algorithm 1 Schnorr’s Zero-Knowledge Proof of Knowledge Protocol

Prover Verifier

Choose t R← Zq

Compute T = gt
T

−−−−−−−−→
c

←−−−−−−−− Choose c R← Zq

s = x · c + t
s

−−−−−−−−→
Accept if: gs ?

= AcT

Using the Fiat-Shamir heuristic [40], the interactive protocol can
be transformed into a non-interactive protocol, where a hash
function will generate the challenge for the prover. Algorithm 2

shows the algorithm of the Schnorr’s Zero-Knowledge Proof of
Knowledge protocol with Fiat-Shamir transform to prove the
knowledge of the secret exponent x in A = gx, where Λ is the
common reference string containing public parameters.

Algorithm 2 Schnorr’s Zero-Knowledge Proof of Knowledge Protocol
with Fiat-Shamir Transform

1: procedure Create(Λ, x)
2: A← gx

3: t R← Zq

4: T ← gt

5: c← H(A||T)
6: s← t + c · x
7: return (s, T)
8: end procedure
9: procedure Validate(Λ, A, (s, T))

10: c← H(A||T)
11: return gs = AcT
12: end procedure

3.4.2 Groth-Sahai Proofs

Groth and Sahai realized an efficient and modular proof system [53],
which allows the creation of non-interactive zero-knowledge proofs
and non-interactive witness-indistinguishable proofs over a large
class of statements over bilinear groups. The most interesting type of
the Groth-Sahai proofs for bilinear pairings is the pairing-product
equation, which consists of products of pairings applied to the
variables and constants from the cyclic group.

3.5 prior art 19

The idea behind pairing-product pairings in Groth-Sahai proofs is
that bilinear pairings with variable elements
X1, . . . ,Xn ∈ G1,Y1, . . . ,Yn ∈ G2 in the form of

n

∏
i=1

e (Xi,Yi)

can always be rewritten as

n

∏
i=1

e (Ai,Yi) ·
n

∏
i=1

e (Xi,Bi) ·
n

∏
i=1

e (Xi,Yi)
γi = tT ,

where Ai ∈ G1,Bi ∈ G2, tT ∈ GT, and γi ∈ Zq are constants. This
pairing-product equation can be rewritten, such that it could proof
the knowledge over the variables, without disclosing them.

Groth and Sahai generalizes this pairing-product equation for
future use of function e, where matrices might be applicable. This
pairing-product equation with variable elements
X1, . . . ,Xm ∈ G1,Y1, . . . ,Yn ∈ G2 is in the form of

n

∏
i=1

e (Ai,Yi) ·
m

∏
i=1

e (Xi,Bi) ·
m

∏
i=1

n

∏
j=1

e
(
Xi,Yj

)γij = tT ,

determined by constants Aj ∈ G1,Bi ∈ G2, tT ∈ GT, and γij ∈ Zq.
Groth-Sahai proofs can be applied to a wide range of statements

over bilinear pairing, which makes it very modular to combine with
other schemes. There is a wide variety of schemes which incorporates
this proof system [1, 5, 6, 45].

While Groth-Sahai proofs are efficient in a complexity theoretical
sense, it is not practical due to the large credential size and many
pairing operations to verify the proof [20]. There is a significant
performance gap between schemes which use Groth-Sahai proofs
and schemes which are secure in the Random Oracle Model (Section
3.3). Due to the large overhead in computation and storage, it seems
that Groth-Sahai proofs in the current form are not efficient enough
in practice.

3.5 prior art

The concepts of anonymous credentials and consecutive delegation
of signing rights has been studied before by other researchers in the
field of cryptography. The chapter gives an overview of the existing
techniques and schemes, where anonymous credentials and
delegation of signing rights are realized. We analyze the
shortcomings of the prior art and conclude with the observations
from the analysis.

20 primitives and prior art

3.5.1 Anonymous Credential Schemes

According to Camenisch et al. [22–24], there are three requirements in
order to realize anonymous credentials. It is sufficient to incorporate
a commitment scheme, a signature scheme and efficient protocols to
(1) proof equality of two committed values; (2) getting a signature on
a committed value; and (3) proving the knowledge of a signature on
the committed value.

Camenisch and Lysyanskaya [24] provide a commitment and
signature scheme, which supports these requirements for Type-1
bilinear pairings. In the paper, they also show how their schemes
lead to an anonymous credential system. The authors incorporate
Pedersen commitments for the commitment of values. CL-Signatures
has been widely used by other researchers, which try to improve or
extend the signature scheme [13, 21] or to incorporate the flexible
signature scheme in their own protocols [9, 11, 28].

Au et al. [2] modified BBS-Signatures [13] for the realization of
anonymous credentials. The scheme has similar properties to
CL-Signatures but is more efficient in signature size and verification
costs. However, the BBS-Signature cannot be randomized, and
therefore the prover must commit to the signature and prove that he
has a valid signature for the commitments.

P-Signatures are introduced by Belenkiy et al. [5] and incorporates
Groth-Sahai zero-knowledge proofs. Therefore, the scheme does not
rely on the Random Oracle model and allows non-interactive
zero-knowledge proofs. As shown in Section 3.4.2, Groth-Sahai are
efficient in theory but are not practical due to many expensive
pairing operations and a large credential size.

Recently, Pointcheval and Sanders [64] introduced a new signature
scheme with the properties for anonymous credentials, which allows
signatures on commitments to be of constant size. In addition, the
paper also features a scheme which allows sequential aggregation of
signatures. The scheme outperforms CL-Signatures and
BBS-Signatures in terms of credential size and verification costs. Like
the CL-Signature, the PS-Signatures allow randomization of the
signature by simply exponentiating the signature elements with a
random scalar. The scheme requires Type-3 bilinear pairings, which
are more efficient and secure compared to Type-1 bilinear pairings.

Several concrete anonymous credential solutions have been
introduced. Microsoft developed U-Prove [60], which allows the
issuance of single-show credentials. U-Prove provides untraceability,
which disallows the issuer and verifier to collude with each other to
reveal the identity of the prover during the presentation.
Nevertheless, when the credential is shown twice, the verifier is able
to link these presentations. Also, the protocol does not support

3.5 prior art 21

predicate proofs over attribute values, which allows provers to
abstract personal information in credentials.

IBM has introduced Identity Mixer (Idemix) [56], which uses
Camenisch-Lysyanskaya signatures for the issuance of anonymous
credentials [24]. Idemix credentials are multi-show; therefore a
verifier cannot link multiple presentations of the same credential.
The prover randomizes the signature of the credential for every
presentation. Idemix does support inequality proofs, which allows
partial information disclosure.

Hyperledger Indy incorporates IBM’s Idemix protocol [59], where
they combine CL-Signatures with the anonymous credential
construction from Au et al. [2]. This project is used by Sovrin [68] as
underlying framework.

3.5.2 Hierarchical Signing Right Delegation

The concept of hierarchical group signatures has been introduced by
Trolin and Wikström [75]. The scheme generalizes group signatures,
where the group is organized in a tree structure with group
managers and signers. When a verifier checks the signature
produced by a signer, it only learns that someone in the group has
signed, without revealing the signer’s identity or the identity of
group managers that were involved. Group managers can open
signatures generated from its own subtree and identify the next
group manager/signer in the chain.

3.5.3 Anonymous Proxy Signatures

In Anonymous Proxy Signatures (APS), the root entity delegates a set
of attributes to a user, where the attributes act as authorization
rights. The user can assign subsets of the acquired attributes to
subsequent users. This can happen consecutively. It also allows users
to sign messages, along with the acquired attributes. The user is able
to present the signature to verifiers, which proves anonymously that
the message is signed on behalf of the root entity by a user who has
obtained the attached attributes.

The concept of Anonymous Proxy Signatures (APS) has been
properly introduced by Fuchsbauer et al. [43, 44]. Users create
signatures on messages, and verifiers are able to verify the
signatures with solely the public key of the root entity. All
intermediate delegators and the final signer remain anonymous
during the presentation of the signature. In case of misuse or fraud,
an opening authority will be able to open the signature and revoke
the anonymity of the delegation chain.

[43, 44] gives a proper generalization of group signatures and
proxy signatures. The paper gives a theoretical instantiation and

22 primitives and prior art

formal definitions of security for the model. However, no concrete
instantiation has been given.

In another paper, Fuchbauer et al. [45] do give a concrete
instantiation, although it is not practical. The authors use encryption
and proofs based on a generalization of techniques of Boyen-Waters
Group Signatures [18]. However, the signature scheme is inefficient
due to zero-knowledge proofs using bit-by-bit techniques.

Abe et al. [1] introduce automorphic signatures, which are
structure-preserving signatures where the verification keys lie in the
message space. The authors give an instantiation of anonymous
proxy signatures. They describe how automorphic signatures could
instantiate the anonymous proxy signatures, but do not give
concrete details. The scheme incorporates the proof system of
Groth-Sahai (Section 3.4.2).

3.5.4 Delegatable Anonymous Credentials

In Delegatable Anonymous Credentials (DAC), the root authority
issues credentials to users with various attributes. Users can use
their credential to anonymously authenticate themselves for having
selective attributes. It is also possible for users to issue credentials
for others. The user is free to choose attributes for the next user.
Subsequent users can use their credential to anonymously
authenticate itself by showing particular attributes from itself and
the prior levels. This will form a chain of attributes, where different
authority levels can be modeled.

For instance, a user wishes to anonymously authenticate himself
on a web forum. The prover can prove that he is a user of the forum
by showing the attribute chain of delegation: User ← Moderator ←
Web Master ← System Administrator, without disclosing any
concrete identities. The verifier only requires the public key of the
root authority to verify the credential. In most of the Delegatable
Anonymous Credential (DAC) schemes, anonymity also holds
between delegators during the delegation of credentials. Therefore,
delegators do not know the identities of its predecessors in the
delegation chain.

Chase and Lysyanskaya [25] were the first to introduce the
concept of Delegatable Anonymous Credentials. Belenkiy et al. [6]
formalized the concept with security requirements and gave a
construction of DACs. Multiple other constructions have been
proposed [26, 42] to improve upon the work of Belenkiy et al. [6],
but roughly use the same techniques, such as the Groth-Sahai proof
system.

Recently, Camenisch et al. [20] have proposed a practical scheme
for Delegatable Anonymous Credentials. In contrast to previous

3.5 prior art 23

CL06 [25] BCC+09 [6] Fuch11 [42] CDD17 [20] BB18 [12]

ZKP Generic Groth-Sahai Groth-Sahai Schnorr Schnorr

Non-interactive Delegation V X V V X

Non-interactive Verification V V V V V

Randomizable X V V V V

Inter-delegation anonymity X V V X V

Attribute-based credentials X X X X V

Signature type Generic Boneh-Boyen
Automorphic /

Commuting
Structure-preserving

Dynamically

Malleable Signatures

Credential size increase

per delegation
Exponential G50

1 ×G40
2 G20

1 ×G18
2 G2

1 ×G2
2 -

Table 3.1: Comparison between DAC schemes.

schemes, they do not consider the privacy between the delegators
and the delegatee. This is because they believe that in most cases,
the credential will be delegated hierarchically and therefore the
delegators already know each other. By omitting this privacy notion,
expensive primitives can be avoided to make the scheme practical.

Even more recently, Blömer and Bobolz [12] introduced Delegatable
Attribute-Based Anonymous Credentials from Dynamically Malleable
Signatures. The Delegatable Attribute-Based Anonymous
Credential (DAAC) scheme allows root authorities to issue
delegatable credentials with fixed indexed attributes to delegators.
Delegators can, in turn, decides to delegate the credential further
with more restrictions, where concrete values are assigned to
attributes. The attribute "city" can, for instance, be attached to the
value "San Francisco", which becomes immutable for other
delegatees. Furthermore, delegations can be prevented anytime by
lowering the delegation flag, therefore issuing a final attribute-based
credential to provers.

Delegation privacy is achieved by removing the identity of the
delegator from the credential during the delegation to a delegatee.
While this is efficient, the scheme does not incorporate a delegation
chain and therefore does not allow any possibility to trace the
preceding delegators. The credential is, in fact, a malleable signature
which changes ownership when delegated.

3.5.5 Comparison of Delegatable Anonymous Credentials schemes

Table 3.1 gives an overview of the different DAC instantiations and
the different properties. As can be noticed, the DAC schemes all differ
in properties and incorporate different signature schemes as proof
systems. Throughout the years, there have been major improvements
in reducing the credential size per delegation.

24 primitives and prior art

Root ? ? ?
? ? ?

(B >= 18, D = ’X’)

Root D1 D2 P
A, B, C, D A, B, D

{ A=7, B=23,
D='X' }

Proposed scheme

Proof

Delegation

Root ? ? ?
? ? ?

(?, >= 18, 'X')

Root D1 D2 P
(*, *, *) (*, 23, *) (7, 23, 'X')

DAAC

Proof

Delegation

Root ? ? ? M
A, ?, ? ?, E, F G, ?

Root U1 U2 U3
A, B, C D, E, F G, H

DAC

Proof

Delegation

Root ? ? ? M
A, D A, D A, D

Root U1 U2 U3
A, B, C, D A, B, D A, B, D

APS

Proof

Delegation

Figure 3.1: Comparison between different types of delegation schemes. For
the first two scheme, U3 receive their attributes after three
propagations (root → U1 → U2 → U3). The third user is able
to sign a message M, along with the acquired attributes. The
figure also depicts which information verifiers would learn from
proofs during verification. For the last two schemes, D2 receives
a credential or signing rights after two delegations. The second
delegator creates a credential for the prover P. The prover is able
to present predicates on attribute values hidden in commitments.

3.5.6 Comparsion between Anonymous Proxy Signatures and Delegatable
Anonymous Credentials

Delegatable Anonymous Credentials and Anonymous Proxy
Signatures have similar properties, but there are some fundamental
differences between the concepts. Figure 3.1 depicts the comparison

3.5 prior art 25

between the delegation concepts APS, DAC and DAAC. Entities in APS

cannot be an issuer and a prover simultaneously, while in users in
DAC and DAAC posses the credential, which they could delegate
further. In DAC, delegators are free to choose the attributes for their
delegatees, while delegators in APS are only allowed to delegate a
subset of their acquired attributes. In DAAC, the attributes are fixed
throughout the whole delegation and cannot be changed. The
verification phase in DAC could be more sophisticated, since the
verifier would need complex business logic to determine if the
attributes on each level of delegation occur correctly in the chain to
be accepted. Also, the root entity of a DAC is not able to restrict the
message signing space of its delegatees.

3.5.7 Analysis

By analyzing the prior art of delegatable signing rights and
anonymous attribute-based credentials, we have observed the
following:
APS schemes do not issue attribute-based credentials. In

Anonymous Proxy Signature schemes, it is only possible to sign
messages with particular acquired attributes as a user. The
delegated attributes only act as authoritative rights of the user
who signs the message. Therefore, it is not possible to issue
(attribute-based) credentials.

DAC schemes do not issue attribute-based credentials. In
Delegatable Anonymous Credential schemes, users are able to
assign attributes to subsequent users in the credential.
Nevertheless, DAC does not allow users to assign attribute
values to specific attributes, which does not allow more flexible
credentials in contrast to attribute-based credentials.
Furthermore, the scheme can only be used for authentication
purposes, since the prover selectively shows the attributes of
himself and its predecessors. Therefore, verifiers might require
complex business logic to verify the attribute chain and to
decide whether to accept the credential.

DAC schemes do not offer complete privacy of intermediate
delegators during verification. Delegators in Delegatable
Anonymous Credentials sign attributes for its delegatees
sequentially. Intermediate delegators and provers are able to
mask attributes from its predecessors while maintaining the
ability to prove that the signature is valid. However, attribute
values are signed sequentially in DAC. Therefore, the indices of
the disclosed and hidden attributes are disclosed on each
delegation level to the verifier. The verifier could use this
information to correlate multiple presentations of the same

26 primitives and prior art

credential with more accuracy. Therefore, presentations of DAC

do not preserve complete privacy of the provers.
Most of the DAC and APS schemes do not incorporate practical

zero-knowledge proofs systems. Various Delegatable
Anonymous Credential schemes are efficient in a complexity
theoretical sense but are not practical because they use generic
zero-knowledge proofs or Groth-Sahai proofs (Section 3.4.2),
which has a large credential size and requires many expensive
pairing operations [20]. The same applies to Anonymous Proxy
Signature schemes.

DAAC does not offer delegation of selective attributes. The DAAC

scheme introduced by Blömer and Bobolz [12] offers malleable
credentials with fixed credentials, where delegators can
selectively set attribute values and make the attribute values
unmalleable for delegatees. The downside of this scheme is that
the attributes are already fixed in the credential by the root
authority, and does not allow delegators to delegate a subset of
the attributes in the credential.

Anonymous attribute-based credential schemes lack the ability of
consecutive delegation of signing rights. In anonymous
attribute-based credential schemes, there is a single root
authority which handles the issuance and management of all
anonymous attribute-based credentials. This assumption works
for many practical cases. However, larger organizations which
operate in a hierarchy often delegate the management of specific
tasks to other trusted entities. This could also apply to cases
where the root authority wishes to delegate selective signing
right for the issuance of attribute-based credentials to lower
levels in the hierarchy.

3.6 research challenges

From our analysis of the prior art, we observe that various schemes
have been proposed for anonymous attestation of attribute-based
credentials, as well as for the delegation of signing rights or
credentials. Nevertheless, current approaches either only focus on
authentication, do not involve attribute-based credentials, do not
offer complete privacy for provers, or lack practical efficiency.

We observe the lack of a scheme which allows consecutive
delegation of signing rights, for the issuance of anonymous
attribute-based credentials. Figure 3.1 depicts the missing scheme.
The scheme could have interesting applications for larger
organizations where the root authority wishes to delegate issuance
of attribute-based credentials downwards in the hierarchy. As shown
in Chapter 1, this scheme has interesting potential applications. Our
previously stated research question aims to realize a protocol and a

3.6 research challenges 27

concrete instantiation of the aforementioned scheme. In order to
achieve this, there are three main challenges which need to be
overcome.

3.6.1 Adapting and Integrating Multiple Signature Schemes

Multiple preliminary signatures schemes are required as
fundamental building blocks in order to realize the protocol. The
primary challenge is to identify, adapt, combine and integrate these
signature schemes into a protocol. Different kinds of signatures
should be interlinked to each other and should zero-knowledge
proved during presentations to verifiers.

3.6.2 Zero-Knowledge Proof

The prover cannot directly present its credential to verifiers, since
verifiers could learn the identities of the prover or the intermediate
delegators, or can link multiple presentations of the same credential
together.

A presentation token should be able to prove that (1) the
delegation chain is valid, e.g., the issuing delegator has obtained the
signing rights from its predecessors correctly, where the first entity
in the chain is the root entity; (2) all intermediate delegators have the
signing rights of the attributes used in the presentation token; (3) the
presented predicates are valid under the attribute value in the
signed commitment.

All these statements must be proven without disclosing the
signatures, commitments nor the attribute values directly. Since
zero-knowledge proofs often lead to large credential sizes and
require many expensive pairings, it would be desired to incorporate
more efficient and practical zero-knowledge proof systems.

3.6.3 Efficiency and Practicality

It is essential that the verification process is efficient in terms of
computational time and token size, such that it would achieve
practical feasibility. This implies that the presentation token should
be verified within a reasonable time and should be as compact as
possible. Achieving fast verification and small token size is
challenging since the verifier needs to be convinced by verifying
multiple zero-knowledge proofs in the presentation token.

4
S Y S T E M M O D E L D E F I N I T I O N

In the prior chapter, we concluded that a scheme which allows
consecutive delegation of signing rights for the issuance of
anonymous attribute-based credentials has not been introduced
before in prior art. In this chapter, we give a formal definition of our
system model, which forms the foundation for the design of our
protocol.

4.1 actors

In order to give a proper application setting, we define four entities
in our protocol:
Root Entity The root entity is an entrusted party by verifiers and

(indirectly) issues credentials to provers.
Delegator Delegators gain signing rights over specific attributes from

the root entity and act on behalf of the root entity as they are
issuing credentials to provers within the allowed message space,
or assigning the signing rights further to delegatees.

Prover Provers obtain credentials from delegators and can use them
to convince verifiers that they possess specific attributes and
values issued on behalf of the root entity.

Verifier Verifiers trust the root entity in a particular context and
accepts every credential that has been issued on behalf of the
root entity.

Figure 4.1 depicts a schematic overview of the interaction between
the entities within the protocol. The root entity assigns signing rights
over a set of attributes to a delegator, which allows the delegator to
assign the acquired signing rights further to other delegatees. The
delegation of signing rights can happen consecutively. Delegators are
able to issue credentials to provers with the acquired signing rights
attributes on behalf of the root entity. Provers holding a credential can
generate presentation tokens from the credential, to selectively proof
predicates over the attribute values of selective attributes. The verifier
inspects the proof and can be convinced that the prover holds a valid
credential with the presented attributes and attribute values.

To get a better grasp of the idea behind the application setting, we
provide a depiction of a more concrete application scenario in Figure
4.2. In this example, the prover is an elderly who wishes to prove to
a museum that his age is at least 65 in order to receive a benefit (e.g.,
discount on the entrance fee). The prover can prove this fact to the

30 system model definition

Delegator Prover Verifier

Trust relationship

Root Entity Delegator

Credential Presentation Token

Figure 4.1: Schematic overview of the application setting.

Issuer /
Delegatee Prover Verifier

Trust relationship

Root Entity Delegator Delegator

Delft Citizen MuseumNetherlandsEuropeWorld

{ "age" = 70 } { "age" >= 65 }{ "name", "age",
"gender" }

{ "name", "age",
"gender" } { "name", "age" }

Figure 4.2: Schematic overview of a concrete application scenario.

museum by providing proof, showing that he possesses a credential
from the world root entity stating that his age is above 65. Since
there are many world citizens on earth, the root entity delegates the
signing rights of the attribute "age" along with other attributes to its
delegatees. After several delegations, the municipality Delft obtains
the signing right over the attribute "age" and can issue the claim
"age = 70" to the prover on behalf of the root entity. The prover can
generate a presentation token about this claim proving the predicate
"age >= 65" and present it to the museum.

4.2 algorithms

We define our formal definition of delegatable signing rights for the
issuance of anonymous attribute-based credentials, along with the
notation of elements which will be used in the rest of the thesis.

The root entity assigns signing rights for credential issuance to a
delegator. The first delegator obtaining signing rights directly from
the root becomes a level-1 delegator. When the signing rights have
been delegated, the level-1 delegator does not need to communicate
with the root entity anymore. Delegators can pass its acquired
signing rights further to other delegatees. When a delegator on
level-L delegates the signing rights to the next delegatee, the
delegatee becomes a level-(L + 1) delegator. A level-L delegator
could also issue a credential to a prover, containing attributes and
attribute values which the prover is allowed to hold. The prover can
generate a presentation token containing proofs about the knowledge
over signatures and attribute values.

4.2 algorithms 31

The entities in the protocol interact with each other through five
main operations: Setup, Delegation, Credential Issuance,
Token Generation and Verification. The definitions for these five
operations in the protocol will be discussed in the following
subsections.

4.2.1 Setup

In the setup phase, an honest party (either the root entity or a trusted
entity not related nor involved the protocol) generates a set of public
parameters Λ, which will be accessible for all entities participating in
the protocol at all times. The root entity sets up its secret and public
key (rsk, rpk). The root entity publishes its public key rpk, and will be
entrusted by the verifier. A delegator on level L generates a secret and
public key (dskL, dpkL). The prover generates the secret and public
key (psk, ppk).

4.2.2 Delegation

Instead of allowing delegators to generate credentials over the all
possible attributes, the root entity defines a set of attributes αi ∈ attr1

to delegate to the level-1 delegator. The delegator is thereby only
allowed to issue credentials with the acquired attributes on behalf of
the root entity. Delegators are able to issue credentials to provers
with the acquired attributes or to delegate the signing rights further
to a delegatee. The delegator on level L could restrict the signing
rights of the delegatee on level (L + 1) by delegating a subset of the
attributes αk ∈ attrL+1, where attrL+1 ⊆ attrL.

4.2.3 Credential Issuance

When the prover wishes to obtain a credential from an issuing
delegator holding signing rights attrL, the prover makes various
claims he wishes to be endorsed by the delegator. For a selective set
of attributes αk ∈ attrC, the prover defines attribute values νk ∈ val
for each attribute αk. Then, the prover generates commitments
comνk ∈ com over the attribute values, and send attrC, com and val to
the issuing delegator, along with proofs which should convince the
delegator that the commitments in com open to the attribute values
in val.

Upon receipt of the credential request, the delegator verifies if
attrC ⊆ attrL, decides whether he wishes to endorse the provided
claims for the considered prover, and checks if the given
commitment opening proofs are valid. When the delegator is
convinced of the proofs, the delegator will issue the credential to the
prover by signing the attributes and the commitments.

32 system model definition

4.2.4 Token Generation

The prover is able to use the obtained credential to generate
unlinkable presentation tokens to prove selective attributes and
attribute values to a verifier. The prover chooses
(αk, νk) ∈ (attrP, valP), where attrP ∈ attrC and valP ∈ valC, and
prepares predicate proofs for each attribute pair.

4.2.5 Verification

The verifier checks if the presentation token is valid using solely the
root’s public key rpk, i.e., proofing the prover possesses a valid
credential issued on behalf of the root containing the presented
attributes and predicates over the signed attribute values. The
verifier should not be able to link multiple presentations of the same
underlying credential, and should not be able to learn any
information including the identity from the prover and the
intermediate delegators.

4.3 properties

In this section, we define the properties for our protocol, for the
delegation of signing rights for the issuance of anonymous
attribute-based credentials.

The main properties of the protocol are the following:
Consecutive Signing Rights Delegation The root entity should be

able to delegate the signing rights over a set of credential
attributes consecutively through intermediate delegators.

Selective Signing Right Delegation Intermediate delegators should
be able to delegate a subset of their acquired attributes to a
delegatee.

Credential Issuance A delegator may issue a credential for a prover
on behalf of the root entity with the acquired attributes.

Selective Anonymous Attestation The prover should be able to
create presentation tokens from the acquired credential, which
allows anonymous attestation of selective attributes. The verifier
should be able to determine the validity of the presentation
token with solely the knowledge of the public key of the root
entity rpk and the provided presentation token, without
learning any information (including identities) about the prover
or the intermediate delegators.

Predicate Proofs The prover should be able to create abstractions
over the values hidden in the signed commitments. The verifier
should be convinced that the presented predicate proofs are

4.3 properties 33

valid without gaining knowledge over the actual value.

From these main requirements, the following sub-requirements are
derived:
Complete Delegation Privacy The presentation token should not

disclose any information about non-relevant attributes which
intermediate delegators acquired during delegation.

Unlinkability The verifier should not be able to link two different
presentations of the same credential together.

Proof Integrity The verifier should not be able to reuse or replay the
presented presentation token anywhere else.

Non-Interactive Proof The presentation token should contain
non-interactive proofs which will be sent to verifiers for
inspection.

We consider that once a delegatee obtained signing rights from its
delegator, the delegatee does not need to communicate with any of
its predecessors to issue credentials or to delegate signing rights to
others.

In various other Anonymous Proxy Signature and Delegatable
Anonymous Credential schemes (Section 3.5), privacy is achieved by
preserving anonymity during both the delegation and the
presentation of the credential. Since the delegators are unaware of
the identities of its predecessors, the credentials also do not disclose
any information about other identities in the chain. Similar to the
work of Camenisch et al. [20], we argue that it is unnecessary to
achieve this superior privacy guarantee. In most of the real-life
scenarios, the entities already know each other, especially in settings
where signing rights are delegated. Inherently, there is already trust
involved that the delegatee will act faithfully on behalf of the root
entity, and performs issuance and delegation as expected. Therefore,
there is no need to hide the identities of the delegators during
delegation or issuance of credentials. We assume that delegators and
provers are allowed to know the identities of its predecessors, which
avoids unnecessary and expensive computation. Additionally, it
allows us to incorporate Schnorr’s Proof of Knowledge (Section
3.4.1) as an efficient proof system for the presentation tokens.

5
P R O T O C O L D E S I G N

To realize the protocol for consecutive delegation of signing rights
for the issuance of anonymous attribute-based credentials, a generic
construction need to be designed, in order to select or design the
fundamental signature schemes. This chapter covers ideas,
motivation, considerations, and decisions while designing the
protocol in order to realize a generic construction.

5.1 generic construction

The entities in the protocol interact with each other through five main
operations: the setup, the delegation of signing rights over attributes,
the issuance of credentials, the generation of presentation tokens and
the verification of the presentation tokens. We will discuss various
concepts for our protocol design which will be applied across these
algorithms.

The main idea for delegating signing rights is to let the root entity
sign the public key of the first delegator, and let the delegator signs
the public key of the next delegator. The consecutive delegation will
result in a delegation chain of signatures, where the designated
delegatee in one signature will be the signer in the next signature.
The delegation signatures are represented as
φr→D1 , φD1→D2 , . . . , φDL−1→DL .

For each delegation, the delegator delegates a subset of their
acquired attributes to the next delegator. To allow the next delegator
to use selected attributes for the issuance of credentials, the
delegator signs the attributes to delegate to the next delegatee. For
each to-be-delegated attribute αi, the delegator will create an
attribute signature σαi .

Instead of hiding/masking particular attributes from each
delegation level, the delegator will sign each attribute individually.
This allows the next delegator to selectively leave out signatures of
attributes that he does not wish to pass further to other delegators.
In other concrete DAC schemes [12, 20], the delegator signs the
attributes for the delegatee sequentially. During delegation, issuance
or presentation, the concerned entity can decide to hide non-relevant
attributes from various delegation levels. However, this exposes
information about the delegators and prover involved in the
presentation token to the verifier. The verifier will gain information
about the number of attributes for each delegation level, and the
indices of the hidden and disclosed attributes for each delegation

36 protocol design

level. This information could allow verifiers to correlate delegators
and multiple presentations of the same credential.

As discussed before, the delegator on level L delegating attributes
α1, . . . , αn ∈ attrL+1 to a level-(L + 1) delegator will generate the
signatures (σα1,L, . . . , σαn,L, φDL→DL+1). Nevertheless, these signatures
are not linked to each other in any way. The signatures only
convince verifiers that the same delegator has signed them, but does
not tell whether the signatures occur in the same delegation bundle.
This could allow an adversary to potentially combine signatures
from other delegations to craft a delegation bundle which never has
been created by a delegator. To make sure that these signatures are
linked to each other, the signatures will be randomized with the

same random r R← Zq. Since the randomized signatures can then be
verified with the same randomization element R← gr

2 ∈ G2, they are
innately related to each other.

In Table 5.1, the signatures created by the root entity and three
delegators are depicted for three delegated attributes. The circled
groups portray the relations between the signatures and the
respective R-values.

α1 α2 α3 φ R

root σα1,r σα2,r σα3,r φr→D1 R1

D1 σα1,1 σα2,1 σα3,1 φD1→D2 R2

D2 σα1,2 σα2,2 σα3,2 φD2→D3 R3

D3 σα1,3 σα2,3 σα3,3 φD3→D4 R4

Table 5.1: Signatures in a delegation bundle: Relation between signatures
and R-values.

After creating the signatures and the R-values, the level-L
delegator will send a delegation bundle to the delegatee on
level-(L + 1), consisting of the group elements(

〈σαi ,r〉
n
i=1 , φr→D1 , R1,

〈〈
σαi ,j

〉n
i=1 , φDj→Dj+1 , Rj+1

〉L

j=1

)
.

5.2 aggregation of attribute signatures

By observing Table 5.1, one can notice that signatures
(σα,r, σα,1, . . . , σα,L) all sign the same attribute α. To reduce the total
number of signatures in the delegation bundle, signatures could be
aggregated together into a single signature by incorporating a
multi-signature scheme with signature aggregation. This allows the
number of attribute signatures in a presentation token to be reduced
from n ∗ (L + 1) to n.

5.3 delegation chain 37

Considering the relationship between attribute signatures and
R-values, the aggregated attribute signatures will depend on the
R-values of all delegators. Table 5.2 depicts the relations between the
signatures and R-values after signature aggregation.

α1 α2 α3 R φ

root

σα1 σα2 σα3

R1 φr→D1

D1 R2 φD1→D2

D2 R3 φD2→D3

D3 R4 φD3→D4

Table 5.2: Aggregated signatures in a delegation bundle: Relation between
signatures and R-values.

5.3 delegation chain

Delegators will generate a delegation signature φ on the public key
of its delegatee, in order to construct the delegation chain. The
public key of the delegatee will be the message in the signature.
Signature schemes based on bilinear pairings require that the
message and the verification key should be group elements from the
opposite group in the pairing. When we consider asymmetric Type-3
bilinear pairings, it is practically impossible to transform an element
from G1 to an element in G2. Therefore it is not possible to directly
use the message from one signature as the verification key of
another.

There are two potential ways to solve this issue in order to construct
the delegation chain:
Double Key Pair The first method involves public-key pairs which

are group elements from both G1 and G2. Both public keys hide
the same secret key x. The public key in G1 will be signed by
its successor, while the public key in G2 acts as verification key.
The root entity and the delegators generate their own secret key

sk j := x R← Zq and public keys pk j := gx
1 ∈ G1 and p̃kj := gx

2 ∈ G2.
A simplified delegation chain will look like this:

e (φD1→D2 , g2) = e
(

pksk1
2 , g2

)
= e
(

pk2 , p̃k1

)
e (φD2→D3 , g2) = e

(
pksk2

3 , g2

)
= e
(

pk3 , p̃k2

)
e (φD3→D4 , g2) = e

(
pksk3

4 , g2

)
= e
(

pk4 , p̃k3

)
e (φD4→D5 , g2) = e

(
pksk4

5 , g2

)
= e
(

pk5 , p̃k4

)
.

38 protocol design

The delegation signatures form a chain, since the public key in
G1 in one delegation signature relates to the public key in G2 in
the next signature. The disadvantage of this approach is that the
verifier also needs to verify if the public-key pairs are
constructed with the same private key. Therefore, the verifier

additionally need to check e(pk j, g2)
?
= e(g1, p̃kj) for every

public-key pair in the presentation token.

Group Alternation The second method involves alternating between
groups for each delegation level. Depending on the delegation
level, the delegator will sign messages in either G1 or G2. The
delegation process will therefore differ for odd- and even-levels
delegations. This method allows the message in one delegation
to become the verification key in the next delegation. The root

and all delegators generate secret keys sk j := x1
R← Zq and s̃kj :=

x2
R← Zq, and public keys pk j := gx1

1 ∈ G1 and p̃kj := gx2
2 ∈ G2. A

simplified delegation chain will look like this:

e (φD1→D2 , g2) = e
(

pksk1
2 , g2

)
= e
(

pk2 , p̃k1

)
e (g1, φD2→D3) = e

(
g1, p̃ksk2

3

)
= e
(

pk2 , p̃k3

)
e (φD3→D4 , g2) = e

(
pksk3

4 , g2

)
= e
(

pk4 , p̃k3

)
e (g1, φD4→D5) = e

(
g1, p̃ksk4

5

)
= e
(

pk4 , p̃k5

)
.

The downside of group alternation is that signatures signing the
same message cannot be aggregated into one single signature.
Attribute signatures signed by odd-level delegators can be
aggregated together, and likewise for signatures signed by
even-level delegators. Therefore L attribute signatures on the
same message can be reduced to 2 multi-signatures, one in G1

and one in G2. In addition, it also requires twice as many
pairings during the verification of the attribute signatures in
comparison to one aggregated signature.

Because this method requires alternating groups on each
delegation level, it requires two hash functions to hash group
elements to both G1 and G2. Only Type-3 bilinear pairings are
compatible with hashing to both G1 and G2 [48].

In Table 5.3, both methods are put side by side to compare the
number of verification pairing and the number of group elements in
a credential. One can observe that Double Key Pair has a smaller
credential size than Group Alternation. Comparing the number of
verification pairings, the Double Key Pair method grows harder when
the number of delegations grows (due to two additional pairings per

5.4 randomizability of the signatures 39

entity in the chain to verify the key pair), while the Group Alternation
grows harder when the number of attributes grows.

In practice, we expect that the number of attributes will be larger
than the number of delegation. When we consider a scenario where
L = 3 and n = 10, then Double Key Pair will result in 35 verification
pairings, while Group Alternation has 49 requires verification pairings.

Considering our expectation of the number of attributes versus
the number of delegations, the credential size, and the additional
complexity of alternating between groups, the Double Key Pair
method is preferred as construction for the delegation chain.

Double Key Pair Group Alternation

Bilinear group type Type-2 & Type-3 Type-3

Verification pairings 5L + 2n 3L + 4n

Attribute signatures n G1 n G1 + n G2

Delegation signatures L G1
1
2 L G1 +

1
2 L G2

Randomization elements L G2
1
2 L G1 +

1
2 L G2

Public keys L G1 + L G2 L G1 + L G2

Total number of elements
2L + n G1

2L G2

2L + n G1

2L + n G2

Table 5.3: Comparison between the two delegation chain methods. The total
number of elements in credentials is evaluated for both methods.

5.4 randomizability of the signatures

As introduced before, the signatures should be randomized with the
same r, as they can be linked together and can be verified with the
same group element R. In order to realize multi-show credentials
without linkability between presentations, the signature schemes
need to maintain randomizability. Therefore, it should be possible to
re-randomize the signatures and the R-value in the same fashion,
such that the verification of the signatures will still be correct.

There are four potential methods to randomize elements, while
preserving correctness during verification using the same pairings:

Inner-pairing Exponentiation Choose random elements X R← G1

and Y R← G2. When the elements are paired together, e.g.
e(X, Y), elements X and Y can be randomized by choosing a

random r R← Zq, and by computing X′ ← Xr and Y′ ← Y1/r. The
result of the pairing will not change, since
e(X′, Y′) = e(Xr, Y1/r) = e(X, Y)r·(1/r) = e(X, Y).

40 protocol design

Outer-pairing Exponentiation (Opposite groups) Pick X ∈ G1, Y ∈
G2, where the equation e(X, ·) = e(· , Y) holds. Both elements

can be randomized by choosing r R← Zq and by computing X′ =
Xr and Y′ = Yr. Verification of both elements still holds, because

e(X′, ·) = e(· , Y′)

e(Xr, ·) = e(· , Yr)

e(X, ·)r = e(· , Y)r ,

which is still correct.
Outer-pairing Exponentiation (Same group) Pick X, Y ∈ G1, where

the equation e(X, ·) = e(Y, ·) holds. Then we can randomize both

elements by choosing r R← Zq and computing X′ = Xr and Y′ =
Yr. Verification of both elements still holds, since

e(X′, ·) = e(Y′, ·)
e(Xr, ·) = e(Yr, ·)
e(X, ·)r = e(Y, ·)r ,

which is still correct. This is also applicable for two group
elements in G2 instead of G1.

Multiplication Pick a R← Zq, h R← G1, X ← ha ∈ G1 and Y ← ga
2.

The elements can be verified by computing e(X, g2) = e(h, Y). X

and Y can be randomized by choosing a random r R← Zq, and
computing X′ ← X · hr and Y′ ← Y · gr

2. The verification of the
pairings will still hold, because

e(X′, g2) = e(h, Y′)

e(X · hr, g2) = e(h, Y · gr
2)

e(ha+r, g2) = e(h, ga+r
2) ,

which is still correct.

Randomizing elements by exponentiation is simple since the
randomizer only requires the knowledge of the elements X and Y. In
the case of multiplication, the knowledge of the base elements used
in X and Y is also required. Therefore the multiplication method is
only possible when the base elements are known by the randomizer.

As discussed in Section 5.2, the aggregated signature need to be
verified with the elements R1, . . . , RL+1 during verification. Aggregate
signatures are verified with the aggregated randomization element R,
which becomes:

R = R1 · · · RL+1 = gr1
2 · · · g

rL+1
2 = gr1+...+rL+1

2 .

Notice here that the exponents are added together in the
aggregated element when group elements are multiplied. When
signatures are aggregated, the aggregated signature will become

σ← σ1 · · · σL+1 = Xr1 · · ·XrL+1 = Xr1+...+rL+1 ,

5.5 anonymous credentials 41

where X ∈ G1. The secret keys of the signers are left out of the
signature for the purpose of demonstration and clarity. The
aggregate signature can be verified by checking

e(σ, g2)
?
= e(X, R) . (5.1)

The inner-pairing exponentiation method and the outer-pairing
exponentiation methods all randomize elements by exponentiation.
Aggregated signatures from these methods can be verified using
Equation 5.1. A problem arises when a randomization element
Rj ∈ R1, . . . , RL+1 need be randomized after signature aggregation.
The aggregated signature should be randomized accordingly as well,
such that the signature will be still correct during verification.
Considering randomization by exponentiation, the randomizer

chooses rx
R← Zq. The randomization element then becomes

R′j ← Rrx
j = g

rj·rx
2 . The aggregated randomization element becomes

R = R1 · · · Rj · · · RL+1 = gr1
2 · · · g

rj·rx
2 · · · grL+1

2 = gr1+...+rj·rx+...+rL+1
2 .

However, it is not possible to randomize the aggregated signature
in such a way that the exponent of the aggregated signature
corresponds to the exponent of the randomization element, without
the knowledge of the individual signatures. Therefore
randomization by exponentiation is not suitable in combination with
signature aggregation.

Considering the multiplication method, the delegator randomizes a

signature by computing σ′i ← σi · Xri for a random ri
R← Zq. After

aggregating the signatures together, σ becomes Xr1+···+rL . This
signature can be verified by checking e(σ, g2) = e(X, R1 · · · RL).
When a randomizer wants randomize element Rj = g

rj
2 , he chooses

rx
R← Zq, computes R′j ← Rj · grx

2 = g
rj+rx
2 and randomized the

aggregated signature σ′ ← σ · Xrx . The signature can be correctly
verified by checking

e(σ′, g2) = e(X, R1 · · · RL)

e(mr1+...+rj+...+rL ·mrx , g2) = e(m, gr1+...+(rj+rx)+...+rL
2)

e(mr1+...+rj+rx+...+rL , g2) = e(m, gr1+...+(rj+rx)+...+rL
2) .

This randomization method therefore supports signature
aggregation.

To conclude, the signature scheme needs to support the
multiplication randomization method to incorporate both
aggregation and randomizability into attribute signatures.

5.5 anonymous credentials

To issue a credential to a prover, the issuing delegator signs the public
key of the prover and assigns attribute values to the corresponding

42 protocol design

attributes. The prover will first create commitments over the attribute
values of the to-be-issued attributes in the credential. The prover will
send the commitments to the issuing verifier and carries out a (non-)
interactive zero-knowledge proof of knowledge of the opening of the
commitments.

When the issuing delegator is convinced, the delegator will sign
the commitment and send the commitment signatures back to the
prover. The prover will be able to prove that he has a signature over a
commitment which opens to a particular value, without revealing the
signature nor the commitment. This also allows proofing predicates
over the committed values during the presentation to a verifier.

Table 5.4 extends Table 5.2 by adding commitment signatures ωαi

for each corresponding attribute signature σαi . The value signatures
will be linked to the attribute signatures by the respective Rαi -value
and the RP-value of the issuing delegator. This results in the structure
of a credential which will be issued to prover P.

α1 α2 α3 R φ

root

σα1 σα2 σα3

R1 φr→D1

D1 R2 φD1→D2

D2 R3 φD2→D3

D3 ωα1 ωα2 ωα3 RP φD3→P

Rα1 Rα2 Rα3

Table 5.4: Signatures in a credential: Relation between signatures and R-
values.

Since the commitment signature ωαi and the attribute signature σαi

are linked by Rαi , the commitment signature scheme for the values
must also support randomization by multiplication.

5.6 group element proof of knowledge in pairings

The verifier would need to obtain all the group elements from the
credential to be able to compute the verification pairings, in order to
verify the validity of the credential from a prover. However, this is
not desired, since the verifier learns the identities of the delegators
and the prover from the public keys in the credential. Therefore, it
is preferred for the prover to prove that he has the knowledge over
the signatures and public keys, without disclosing the actual group
elements from the credential to the verifier.

Pairing-based zero-knowledge proofs (e.g., Groth-Sahai) discussed
in Section 3.4.2 require expensive pairing operations and are not
efficient enough for practical use. To avoid more pairing operations,

5.7 conclusion / key takeaways 43

we incorporate Schnorr’s zero-knowledge proofs of knowledge [67].
Instead of proofing the knowledge of a secret exponent, the same
technique can also be applied to proving the knowledge of a group
element in a pairing. The Fiat-Shamir heuristic [40] will be used to
transform the interactive proof to a non-interactive one.

Given a pairing equation z = e(X, Y), where X ∈ G1 and Y ∈ G2, a
prover can prove the knowledge of element X non-interactively
without disclosing the actual group element. The prover computes

chooses R R← G1, and computes t ← e(R, Y), c ← H(· · ·) ∈ Zq and
S ← R · Xc. The prover sends the non-interactive proof (t, c, S) to the
verifier. The verifier checks the proof by computing t̂ ← e(S, Y) · z−c

and check if the Fiat-Shamir hash is equal to c.

As discussed before, delegators will generate a signature φ on the
public key of the delegatee to form a delegation chain. In this case,
the public key of the delegatee will be the message in the signature.
During verification, the verifier uses the public key of the delegatee
as verification key for the next signature in the delegation chain.

Notice that in the delegation signature φ, both the message element
and the verification key element need to be zero-knowledge proved.
Both proofs also need to be used to verify the adjacent delegation
signatures in the chain. Since the two group elements in the same
pairing cannot be both zero-knowledge proved at the same time, the
delegation signature φ, the message, and the verification key need to
be verified in separate pairings in the verification equation.

5.7 conclusion / key takeaways

We have discussed the generic construction of our protocol, and
shown which requirements are needed to realize the protocol.

There are three signatures schemes required as primitive, in order
to realize a concrete construction and instantiation of the protocol.

The first signature scheme allows delegators to sign attributes
which they wish to delegate to a delegatee. Signatures signing the
same message can be aggregated together into a single
multi-signature to reduce the total number of signatures.

The second signature scheme enables a delegator to delegate
signing rights by signing the public key of the delegatee as the
message of the signature. To incorporate Schnorr’s zero-knowledge
proofs of knowledge, the delegation signature, the message and the
verification key need to be verified in separate pairings in the
verification equation.

The last commitment signature scheme allows issuers to sign
commitments created by provers. The provers can convince verifiers

44 protocol design

that they have knowledge over a commitment signature signed by
the issuer, and prove predicates over the committed values.

The three signature schemes need to be randomized in the same
manner to link the generated signatures together. The related
signatures can then be verified with the same randomization
element R. As discussed and concluded in Section 5.4, the
multiplication method of randomization is the most suitable for our
scenario. Therefore, all three signatures schemes need to adopt this
method of randomization.

6
P R E L I M I N A RY S I G N AT U R E S C H E M E S

In Chapter 5, we discussed the design of the protocol and concluded
with the desired properties for the three signature scheme required
to create a concrete construction and instantiation of the protocol.

To the best of our knowledge, none of the existing signature
schemes offers the desired properties that we need nor could they be
adapted to our needs with ease. Therefore, we propose three new
signature schemes, inspired by existing signature schemes. These
signature schemes will form the primitives for the protocol
construction and instantiation in the following chapters.

In Section 6.2, we will introduce the first signature scheme RBLS:
Randomizable BLS Multi-Signatures with Public-Key Aggregation. The
second signature scheme RSPS-M: Randomizable Structure-Preserving
Signatures by Multiplication will be introduced in Section 6.3. The last
commitment signature scheme SRS-M: Short Randomizable Signatures
by Multiplication will be introduced in Section 6.4.

The definitions and details of the existing primitive signature
schemes on which the new schemes build upon can be found in
Appendix A.

6.1 randomization by multiplication

As introduced in the previous chapter, we will incorporate
randomizability and linkability of signatures through multiplication
of the base elements exponentiated with a random scalar. We
propose Assumption 8, which can be reduced to the discrete
logarithm problem (Assumption 1).

Assumption 8 (Computational Linear Problem): Let (q, G1, G2, GT, e)
be a Type-3 bilinear group setting, with g1 and g2 as generators of
respectively G1 and G2. Given (gr+s

1 , gr
2, gs

2) for random r, s ∈ Zq, it is
hard to compute gr

1 or gs
1 in polynomial-time.

Notice that deciding whether the elements hide the same exponents
is easy, since one could check

e(gr+s
1 , g2)

?
= e(g1, gr

2 · gs
2) .

This assumption only holds for Type-3 bilinear maps, where no
efficiently computable homomorphisms exist between G1 and G2.
When such an efficiently computable homomorphism ψ : G2 → G1

would exist (Type-2 pairings), then one can compute ψ(gr
2) = gr

1
with ease. Assumption 8 does also not hold in symmetric groups.

46 preliminary signature schemes

Given (ga, gb, gra+sa, grb, gsb) for random a, b, r, s ∈ Zq, it is easy to
compute gra or gsa in polynomial-time, since

grb/gb · ga = gra and gsb/gb · ga = gsa .

6.1.1 Security Proof

We will prove that Randomization by Multiplication does not
compromise the security of existing schemes and achieves both
randomization and linkability to other signatures.

Theorem 1. Randomizability by Multiplication achieves perfect
randomizability of group elements.

Proof. Let h̃ ∈ G1 and h ∈ G2. Compute signature σ ← h̃x and
verification element V ← hx. The signature can be verified as
follows:

e(σ, h) ?
= e(h̃, V)

e(h̃x, h) ?
= e(h̃, hx) .

Randomization by multiplication works as follows. The

randomizer chooses a random r R← Zq, and randomize the signature
by using the known base element h̃, exponentiate the element with r
and multiplies it with the signature σ. This results in
σ′ ← σ · h̃r = h̃x · h̃r = h̃x+r. The randomizer also generates a
randomization element R ← hr. The randomized signature can be
verified by checking

e(σ′, h) ?
= e(h̃, V · R)

e(h̃x+r, h) ?
= e(h̃, hx · hr) .

Since r is random, the randomized signature h̃x+r is also random,
and does not correlate to the existing signature h̃x. The signature can
be re-randomized in the same fashion, and can be verified by either
generating an additional randomization element or by randomizing
the existing randomization element. �

Theorem 2. Randomization by Multiplication allows perfect linkability
among signatures from diverse schemes.

Proof. An adversary might want to remove or alter the relationship
between existing signatures and randomization elements since it
would enable them to link the valid signature to other signatures.
Given Assumption 8, it would not be possible for an adversary to
remove or alter the randomization from signatures without the
knowledge of r, h̃r or h̃x. Inherently, the adversary cannot link new
signatures to existing randomization elements without the

6.2 rbls : randomizable bls multi-signatures with public-key aggregation 47

knowledge of the hidden exponent r. Therefore, the randomization
scheme prevents adversaries to (1) remove the link of signatures to
the given randomization element; and (2) prevent new signatures to
be linked to existing randomization elements. �

6.2 rbls : randomizable bls multi-signatures with

public-key aggregation

Boneh, Lynn, and Shacham (BLS) [15] came up with a signature
scheme, which allows the aggregation of multiple signatures into a
single signature. The aggregated signature can be efficiently verified
with just two pairings instead of 2n and reduces in total signature
size. The limitation of this scheme is that all messages from the
individual signatures have to be distinct for the aggregated
signature to be secure. This is due to the possibility of a rogue public
key attack, where an adversary could craft aggregated signatures
with known public keys and claim that others have signed the
maliciously crafted signature as well. Details of the scheme and the
attack can be found in Appendix Section A.1.

6.2.1 Random Oracle Public-Key Dependency

Boneh, Drijvers and Neven [14] came up with an improvement
which prevents rogue public key attacks while having the ability to
combine signature signing the same message. The BLS
Multi-Signatures with Public-Key Aggregation (MSP) scheme
incorporates the public keys of the signers as the input of a random
oracle, where the output will be used to exponentiate each signature
which will be aggregated. The output of the random oracle will be
different for every signature, which prevents the rogue public key
attack. Therefore, multiple signatures signing the same message can
be aggregated together. Details of the scheme can be found in
Appendix Section A.2.

Nevertheless, the public keys would also be required as input to
the random oracle during verification. This is not ideal when a
prover does not want to directly reveal the public keys involved in
the signatures but instead wishes to provide zero-knowledge proofs
about the knowledge over the signatures and the public keys.
Without concrete public keys, it becomes impossible for the verifier
to compute the same hash values as computed during signature
aggregation.

In addition, the MPS scheme is designed for the aggregation of n
signatures at the same time. Therefore, the scheme computes the
exponentiation of each public key based on the all public keys in the
aggregated signature. When the group composition changes, all
public key exponentiations will be different. While letting the

48 preliminary signature schemes

exponentiation depend on the group composition offers better
protection against forgery, it does not support sequential
aggregation, where signatures are added one-by-one to the
aggregated signature.

In our scheme, we incorporate a seed element s ← G2 and a
counter value c ← Zq as input for the random oracle. The seed is a
publicly known element in G2, and the counter value increments for
each signature which will be aggregated. Signatures can be either
aggregated in one time:

σ←
n

∏
i=1

σ
H(seed||i)
i ,

or sequentially:

σ′ ← σ · σH(seed||i)
i .

This allows the verifier to compute an aggregated public key

apk←
n

∏
i=1

pkH(seed||i)
i

for verification of the aggregated signature. Similar to MSP, the rogue
public key attack is mitigated due to the exponentiation of different
hash values to every public key.

6.2.2 Randomizability of (Aggregated) Signatures

The BLS Multi-Signatures with Public-Key Aggregation scheme does not
incorporate the possibility to randomize signatures. We extend this
scheme by adding randomizability by multiplication. The individual

signatures σi are randomized with a random ri
R← Zq and can be

verified using the element Ri ← gri
2 ∈ G2. The randomized signature

becomes σ′i ← σi · H1(α)
ri . When the signatures are aggregated as

before to σ, the aggregated signature can be verified with the element
R← ∏n

i=1 Ri ∈ G2 in the equation:

e(σ, g2) = e(H1(α), apk · R) .

An essential property in our scheme is the ability to re-randomize
Ri and σ, such that the randomized aggregated signature σ′ can be
verified with the randomized R′i. In our scheme, the elements will be

randomized by choosing rx
R← Zq, and computing R′i ← Ri · grx

2 ∈ G2

and σ′ ← σ · H1(m)rx ∈ G1.

6.2.3 Instantiation

Like the two previous BLS-Signature schemes, we use a bilinear
pairing e : G1 ×G2 → GT, where G1, G2 and GT are of prime order q,

6.2 rbls : randomizable bls multi-signatures with public-key aggregation 49

and the pairing is non-degenerate and efficiently computable. Let g1

and g2 be generators for G1 and G2 respectively. Also we incorporate
two hash functions H1 : {0, 1}∗ → G1 and H : {0, 1}∗ → Zq, which
are viewed as random oracles [8].

6.2.3.1 Single Signature

KeyGen(): Choose random x R← Zq and set h ← gx
2 ∈ G2. Output

pk := h and sk := x.

Sign(sk, m, L): Choose random r R← Zq. Output R = gr
2 ∈ G2 and

σ = H1(m)x·H(seed||L)+r ∈ G1.

Verify(pk, m, L, σ, R): If e(σ, g2) = e(H1(m), pkH(seed||L) · R) output 1
otherwise 0.

Randomize(m, σ, R): Choose random r R← Zq. Output R′ = R · gr
2 ∈ G2

and σ′ = σ · H1(m)r ∈ G1.

6.2.3.2 Multi Signature

When σ1, . . . , σn sign the same message m, the signatures can be
aggregated and verified with two pairings.

Aggregate(〈σi, Ri〉ni=1): Output: σ← ∏n
i=1 σi and R← ∏n

i=1 Ri.

AggVerify(〈pki〉ni=1, m, σ, R): Compute apk ← ∏n
i=1 pkH(seed||i)

i . If
e(σ, g2) = e(H1(m), apk · R) output 1 otherwise 0.

AggRandomize(m, σ, R): Choose random r R← Zq. Output R′ = R · gr
2 ∈

G2 and σ′ = σ · H1(m)r ∈ G1.

6.2.3.3 Batch Signature

n multi-signatures can be aggregated together and batch verified
with (n + 1) pairings.

BatchAggregate(〈σi〉ni=1): Output σ← ∏n
i=1 σi.

BatchVerify(〈apki, Ri, mi〉ni=1, σ):
If e(σ, g2) = e(H1(m1), apk1 · R1) · · · e(H1(mn), apkn · Rn) output
1 otherwise 0.

6.2.3.4 Batch signature from the same signers

When apk1 = · · · = apkn, and R1 = · · · = Rn, then the number of
pairings for verification could be even further reduced to two.

BatchVerify2(apk, R, 〈mi〉ni=1, σ):
If e(σ, g2) = e(H1(m1) · · ·H1(mn), apk · R) output 1 otherwise 0.

BatchRandomize2(〈mi〉ni=1, σ, R): Choose random r R← Zq. Output
R′ = R · gr

2 ∈ G2 and σ′ = σ · (∏n
i=1 H1 (mi))

r ∈ G1.

50 preliminary signature schemes

6.2.4 Security Proof

We will show that our modification to the BLS Multi-Signatures with
Public-Key Aggregation scheme does not affect the security of the
original scheme.

Theorem 3. RBLS prevents rogue public key attacks.

Proof. Assume an adversary wishes to execute a rogue public key
attack on signatures in RBLS. The adversary computes

e(H1(α)
xr , g2)

H(seed||1) = e(H1(α), pkH(seed||1)
r)

= e(H1(α), (gxr
2)H(seed||1))

= e(H1(α), (gx1
2)H(seed||1) · (gxr−x1

2)H(seed||1))

= e(H1(α), pkH(seed||1)
1 · pkH(seed||1)

2) .

Although the adversary is still able to compute pk2 ← pkr/pk1, the
forged signature worthless since pk2 will be exponentiated by the
verifier with a different hash value H(seed||2) instead of H(seed||1).
The adversary does not control the public key exponentiation during
verification and therefore the rogue key attack is ineffective.

Even though the exponentiation values are the same for public keys
across the same delegation level, an adversary still cannot perform
signature forgery which passes verification, since the exponentiation
values differ for each public key in the delegation chain. �

Theorem 4. The addition of the Randomization by Multiplication method
in RBLS does not affect the security of the underlying MSP scheme.

Proof. RBLS randomizes signatures by using the base element H1(m),
which is already known to all entities. The entity chooses a random r
to establish relationships between RBLS and other signatures. As
shown in Section 6.1.1, we have proven that randomizing elements
using the Randomization by Multiplication method is secure under
the Computational Linear Assumption (Assumption 8). Even when
this assumption appears to be easy, it only affects the linkability and
randomization property of the signature scheme and does not
influence the security of the existing signature properties. �

6.3 rsps-m : randomizable structure-preserving

signatures by multiplication

In order to construct our protocol for the consecutive delegation of
signing rights, we need a signature scheme to be randomizable in
the same way as the RBLS: Randomizable BLS Multi-Signatures with
Public-Key Aggregation scheme introduced and discussed in Section
6.2. Therefore we need to randomize the signature in such a way,

6.3 rsps-m : randomizable structure-preserving signatures by multiplication 51

that signatures can be verified with the element R ← gr
2, and be

randomized with R′ ← R · gr′
2 . Also, the signature, the message, and

the verification key elements need to occur in different pairings in
the verification equation as concluded in Section 5.7.

Groth [52] introduced a structure-preserving signature scheme,
which verifies the message and the verification key in different
pairings during verification. However, the scheme incorporates
inner-pairing randomizability, which prevent the signatures from to
be aggregated as discussed in Section 5.4. Details on the
structure-preserving signature scheme by Groth can be found in
Appendix Section A.3.

Inspired by the construction of the structure-preserving signature
scheme of Groth, we propose RSPS-M: Randomizable
Structure-Preserving Signatures by Multiplication, where the signature
is randomizable by the multiplication method, and the signature, the
message, and the verification key elements are verified in different
pairings during verification.

6.3.1 Instantiation

We use a bilinear pairing e : G1 ×G2 → GT, where G1, G2 and GT

are of prime order q, and the pairing is non-degenerate and
efficiently computable. Let g1 and g2 be generators for G1 and G2

respectively. We assume that the setup will be done by an honest
party.

Setup(): Choose random y1, y2
R← G2. Output: y1, y2.

KeyGen(): Choose random x R← Zq and set h ← gx
2 ∈ G2. Output:

pk := h and sk := x.

Sign(sk, m): Output: Choose random r R← Zq. Output R = gr
2 ∈ G2

and φ = ysk
1 · (y2 ·m)r ∈ G1.

Verify(pk, m, φ, R): If e(φ, g2) = e(y1, pk) · e(y2 · m, R) output 1
otherwise 0.

Randomize(m, φ, R): Choose random r R← Zq. Output
R′ = R · gr

2 ∈ G2 and φ′ = φ · (y2 ·m)r ∈ G1.

6.3.2 Security Proof

Definition 1 (EUF-CMA). The RSPS-M scheme (Setup, KeyGen, Sign,
Verify, Randomize) with message space (G∗1) is existentially unforgeable
under adaptively chosen-message attacks if for all probabilistic

52 preliminary signature schemes

polynomial-time adversaries A having access to a signing oracle Sign(sk, ·),
we have

Pr

 Λ← Setup();

(sk, pk)← KeyGen();

(M∗, φ∗, R∗)← ASign(sk,·)

:
M∗ 6∈ Q ∧
Verify(pk, M∗, φ∗, R∗) = 1

 ≤ ε(κ)

where Q is the set of queries which A made to the signing oracle.

Theorem 5. The RSPS-M scheme is resistant against existential
unforgeability under chosen message attacks (Definition 1).

Proof. Assume adversaries A have the ability send queries to the
oracle OSign(sk,·) in polynomial time, where oracle outputs valid
signatures for the chosen messages. The adversaries could compute
the following for each two signatures:

(φ1, R1)← OSign(sk,m1)

(φ2, R2)← OSign(sk,m2)

φ1

φ2
=

ysk
1 · (y2 ·m1)

r1

ysk
1 · (y2 ·m2)r2

=
(y2 ·m1)

r1

(y2 ·m2)r2
= yr1−r2

2 ·
mr1

1
mr2

2
.

Since the oracle used different random scalars r for each signature,
the chosen messages in the signature are also random and does not
give the adversaries any advantage. Assuming that r1 and r2 are
large scalars, the adversaries are not able to compute ysk

1 to forge
signatures.

When adversaries A queries the oracle for the same message m in
polynomial time, then A would be able to compute for every two
signatures:

(φ1, R1)← OSign(sk,m)

(φ2, R2)← OSign(sk,m)

φ1

φ2
=

ysk
1 · (y2 ·m)r1

ysk
1 · (y2 ·m)r2

=
(y2 ·m)r1

(y2 ·m)r2
= (y2 ·m)r1−r2 .

(y2 ·m)r1−r2 is only useful to the adversaries when they were able to
obtain a signature from the oracle where the signature on m is
randomized with r = r1 − r2. In addition, adversaries need to
compute two pairings to decide whether r = r1 − r2:

e((y2 ·m)r1−r2 , g2)
?
= e((y2 ·m), Rx) .

Since r is uniformly random over Zq, the probability that
adversaries obtain this signature in polynomial time is negligible.

6.4 srs-m : short randomizable signatures by multiplication 53

We also proof that A are not able use the randomization property
to alter the integrity of the message in the signature. When A wishes
to perform existential forgery on a signature by randomization, then
they need to compute r2, m′ and m2 such that:

ysk
1 · (y2 ·m1)

r1 · (y2 ·m2)
r2 = ysk

1 · (y2 ·m′)r′

(y2)
r1 · (y2)

r2 · (m1)
r1 · (m2)

r2 = (y2)
r′ · (m′)r′

(y2)
r1 · (m1)

r1 =
(y2)r′ · (m′)r′

(y2)r2 · (m2)r2
.

Since r1, (y2)r1 , (m1)
r1 and (y2)r1 · (m1)

r1 are unknown to the
adversaries, they cannot compute r2, m′ and m2 in polynomial time,
such that the alter ranodmized signature is correct. �

6.4 srs-m : short randomizable signatures by

multiplication

Most of the signature schemes for commitments use the
inner-pairing or the outer-pairing methods (Section 5.4) for the
randomization of their signatures [24, 64]. Therefore, we need to
modify an existing signature/commitment scheme to support
randomization by multiplication. For the signature scheme for
commitments, we are incorporating the signature scheme by
Pointcheval and Sanders [64]. More details about this signature
scheme can be found in the Appendix Section A.4.

In this section, we introduce SRS-M: Short Randomizable Signatures
by Multiplication, which allows PS-signatures to be randomized by
exponentiation and multiplication in a hybrid fashion.

6.4.1 Randomization

The signature scheme by Pointcheval and Sanders [64] is
randomizable by the outer-pairing method, where the signature and
the randomization element are in the same group. The signature
scheme outputs σ ← (σ1, σ2) = (h̃r, (X̃C)r), and can be randomized
by choosing a random r ← Zq and computing σ′ ← (σr

1, σr
2).

In Table 5.4, we can see that commitment signature ωαi should be
dependent on the randomization elements RP and Rαi . Therefore the
signature scheme must also support randomization by multiplication.

In our modified scheme, we allow PS-signatures to be randomized
with both exponentiation and multiplication mixed at the same time.
To achieve this, we introduce two additional elements to the signature:
π ← (π1, π2). When the signer wants to sign commitment C with its

private element X̃, the signer chooses r, s R← Zq, and computes σ ←
((h̃s)r, ((X̃C)s)r) and π ← (h̃s, (X̃C)s). Note here that σ = (πr

1, πr
2).

Therefore, the π elements are the base elements of σ elements.

54 preliminary signature schemes

When the signature need to be randomized by multiplication, the

randomizer will choose t R← Zq and computes:

σ′1 ← σ1 · πt
1 =

(
h̃s)r ·

(
h̃s)t

=
(
h̃s)r+t

σ′2 ← σ2 · πt
2 =

((
X̃C
)s
)r
·
((

X̃C
)s
)t

d =
((

X̃C
)s
)r+t

.

This results in the accumulation of the secret exponent r and t,
which both resides outside of the base element. When the previously
obtained randomized signature σ′ needs to be randomized by

exponentiation, the randomizer will choose v R← Zq and computes:

σ′′1 ←
(
σ′1
)v

=
((

h̃s)r+t
)v

=
(
h̃sv)r+t

σ′′2 ←
(
σ′2
)v

=

(((
X̃C
)s
)r+t

)v

=
((

X̃C
)sv
)r+t

π′1 ← πv
1 =

(
h̃s)v

= h̃sv

π′2 ← (π2)
v =

((
X̃C
)s
)v

=
(
X̃C
)sv .

In this case, the base element accumulates the s exponent and does
not affect the outer exponents of the base element.

As shown, both signatures σ′′1 and σ′′2 are still randomized with the
same exponents, while the signature is now randomized with both
methods. Also, π′1 and π′2 became the new base elements of σ′′1 and
σ′′2 to support the next iteration of randomization by multiplication.

6.4.2 Verifying Randomized Credentials

The randomized PS-signatures can verified as usual, since the
randomization exponents of σ1 and σ2 are still the same after
randomization with both methods. Because the signature also
incorporates randomization by multiplication, we can verify the
signature with a randomization element R. Given the previous
computed signature σ′′1 , base element π′1 and randomization element
R ← gr+t

2 , we can verify that the signature includes the secret
exponents in the randomization element R:

e(σ′′1 , g2) = e(π′1, R) (6.1)

e(
(
h̃sv)r+t

, g2) = e(h̃sv, gr+t
2) . (6.2)

6.4 srs-m : short randomizable signatures by multiplication 55

6.4.3 Instantiation

Keygen(): Choose random h̃ R← G1, h R← G2 and (x, y) R← Zq.
Compute (X̃, Ỹ) ← (h̃x, h̃y) and (X, Y) ← (hx, hy), set sk ← X̃
and pk← (h̃, Ỹ, h, X, Y).

Commit(m): Choose random t R← Zq, and compute C ← h̃tỸm ∈ G1.
Output: (C, t).

Sign(sk, C): Choose random r, s R← Zq and σ′ ← (h̃sr, (X̃C)sr) and
π′ ← (h̃s, (X̃C)s).

Unblind(σ′, t): Parse σ′ = (σ′1, σ′2). Output σ ← (σ′1, σ′2/σ
′t
1) and π ←

(π′1, π′2/π
′t
1).

Verify(pk, m, σ): Parse σ = (σ1, σ2). If σ1 6= 1G1 and e(σ1, X · Ym) =

e(σ2, h), output 1 otherwise 0.

Randomize(σ, π): Parse σ = (σ1, σ2) and π = (π1, π2). Choose random

t R← Zq and output σ′ ← (σ1 · πt
1, σ2 · πt

2)

GenPoK(ω): Parse ω = ((σ1, σ2), π). Choose random r, t R← Zq.
Compute σ′ ← (σr

1, (σ2 · σt
1)

r) and output (t, σ′).

6.4.4 Security Proof

Theorem 6. The addition of the π elements to the SRS-M scheme does not
affect the security of the underlying PS-Signature scheme.

Proof. π ← (π1, π2) are in fact the base elements of the signature
σ ← (σ1, σ2). Because σ is in fact π exponentiated with random
scalars, π itself is also a valid signature on commitment C. An
adversary does not learn anything about the random exponents
given σ and π, assuming the discrete logarithm problem. Therefore
disclosing π does not compromise the security of the original
signature scheme in any way. �

Theorem 7. The addition of the Randomization by Multiplication method
to the SRS-M scheme does not affect the security of the underlying
PS-Signature scheme.

Proof. As shown in Section 6.4.1, both randomization methods
randomize the elements in σ ← (σ1, σ2) in a different way, but
always maintain the same random scalar in σ1 and σ2. The
modification to the scheme does not affect the security of the
signature scheme at all and operates identically to the existing
protocol. �

Theorem 8. The addition of the Randomization by Multiplication method
to the SRS-M scheme enables linkability to other signatures.

56 preliminary signature schemes

Proof. Given σ ←
(
h̃sv)r+t

, π ← h̃sv and R ← gr+t
2 derived from

Equation 6.2, the verifier checks if the following holds:

e(σ1, g2) = e(π1, R)

e(
(
h̃sv)r+t

, g2) = e(h̃sv, gr+t
2)

As shown in the previous proof, σ and π do not leak the secret
random exponent r + t assuming the discrete logarithm problem.
When an adversary wished to alter R, it also need to alter σ such
that the verification equation still holds. This is only possible when
the adversary randomizes σ and R according to the protocol,
therefore σ and R are still linked together. The verification equation
proofs that the secret random exponent r + t is also hidden in the
randomization element R. Since an adversary does not know the
secret random exponent, it cannot link the signature to a different R
values. As proven in Section 6.1.1, randomizing elements using the
Randomization by Multiplication method is secure under the
Computational Linear Assumption (Assumption 8). �

7
E N T R U S T: C O N S E C U T I V E D E L E G ATA B L E S I G N I N G
R I G H T S F O R A N O N Y M O U S C R E D E N T I A L S

In the prior chapters, we have designed the protocol for the
delegation of signing rights for the issuance of attribute-based
credentials, and introduced the preliminary signature schemes
which are required to build such a protocol. In this chapter, we put
everything together in order to realize a concrete instantiation. We
propose our protocol, ENTRUST, for the consecutive delegation of
signing rights for anonymous attribute-based credentials.

7.1 overview

We will first give a high-level overview of our concrete instantiation,
where we apply the preliminary signature scheme to our protocol
design.

The goal of the protocol is to convince the verifiers that the
presented presentation tokens are authentic and integer, without
revealing the identity of the intermediate delegators and the prover.
A presentation token has to prove the following:

• The delegation chain is correct, e.g φr→D1 , . . . , φDL−1→DL , φDL→P;

• The public key pairs are correctly constructed;

• All attributes are signed by the root and all intermediate
delegators;

• The committed values correspond to the correct attributes;

• The presented predicates holds for the attribute value
committed in the signed commitment.

During delegation of the signing rights of attributes, the delegator
will create a signature σαi on each attribute αi, and a delegation
signature φDx→Dy on the public key of the delegatee. To ensure that
all these signatures are related to each other, signatures are linked

together by randomizing the signatures with the same r R← Zq. By
incorporating the same r value in each signature, all signatures can
be verified the same randomization element R ← gr

2 ∈ G2. Given
(σα1 , . . . σαn , φx→y, R), an adversary cannot recover r due the assumed
discrete-log problem.

The delegator which issues a credential to a prover creates a
signature σαi on each attribute αi as before, and a commitment
signature ωαi on the value νi corresponding to αi. The delegator will

58 entrust

also generate a signature φx→P on the public key of the prover.
However, this signature will be signed in a different way than
delegation signatures, in order to prevent the prover to gain signing
rights and issue credentials for others as a delegator. All signatures
generated by the issuing delegator will be randomized with

rP
R← Zq. Additionally, the delegator generates rαi and Rαi values for

each attribute, such that the attribute αi and the corresponding value
νi can be linked together. Therefore, σαi and ωαi are also randomized
with rαi , and can both be verified with Rαi .

7.2 aggregated signatures in a credential

As proposed in our design chapter (Chapter 5), we will use
aggregated signatures for signing the attributes in order to reduce
the total size of the credential. To realize this, we use the RSPS-M
scheme introduced and discussed in Section 6.2. The delegator signs
each attribute he wishes to delegate and aggregates the signature
with the aggregated signature from its predecessor. This allows the
total number of attribute signatures in the credential to reduce from
n ∗ (L + 1) signatures to n signatures.

Table 7.1 gives an overview of how the (aggregated) signatures in
a credential are interlinked together by the R-values as before.

α1 α2 α3 R φ

root

σα1 σα2 σα3

R1 φr→D1

D1 R2 φD1→D2

D2 R3 φD2→D3

D3 ωα1 ωα2 ωα3 RP φD3→P

Rα1 Rα2 Rα3

Table 7.1: Aggregated signatures in a credential: Relation between
signatures and R-values.

Like before, the delegation signature φDx→Dy is linked to the Rx-
value of delegator Dx. The aggregated signature σαi will depend on
the Ri-values of all delegators, the Rp value of the credential issuer
and Rαi . The commitment signature ωαi is linked to the Rp value of
the credential issuer and the attribute-value binding element Rαi .

7.3 randomizability

One of the properties of the credential is randomizability. Provers
randomize their credential before generating presentation token in
order to make multiple presentations of the same credential

7.4 construction 59

unlinkable. To randomize the credential, the prover picks r ← Zq for
each R-value in the credential. The prover will then use r to
randomize the R-value and all related signatures in the credential
which are linked to that R-value. For instance, when the prover
randomizes R2 in Table 5.2, the signatures σα1 , σα2 , σα3 and φD1→D2

need to be randomized as well with the same r. During verification,
the verifier will observe different R-values every presentation of the
same credential and can therefore not link multiple presentations
together. Nevertheless, the credential remains valid, since the
credential still proofs the correctness of the signatures and the
relations between the signatures by verifying signatures with the
corresponding R-values.

7.4 construction

We incorporate the three preliminary signature schemes introduced
in Chapter 6 in order to create a concrete instantiation of our protocol.

7.4.1 Delegation

The Randomizable BLS Multi-Signatures with Public-Key Aggregation
scheme proposed in Section 6.2 is used for the signing of attributes
during delegation. When a delegator wishes to delegate a set of
acquired attributes, the delegator signs all attributes, and the
aggregates the signatures with the aggregate signature of its
predecessors. Therefore the delegation bundle will always contain at
most n attribute signatures. The public key of the root entity rpk will
be used as the seed value for the hash function in the RBLS scheme,
and the counter value L will be the delegation level of the current
delegator. The first delegator from the root entity to the first
delegator uses counter value L = 0.

The delegation chain will be signed using the Randomizable
Structure-Preserving Signatures by Multiplication scheme proposed in
Section 6.3. If a level-L delegator wishes to assign signing rights to a
level-(L + 1) delegatee, the secret key will be sk := dskL and the
message m := dpkL+1 will be the public key of its delegatee. The
delegation chain will be constructed using the Double Key Pair
method as discussed in Section 5.3.

On each level L, the attribute signatures and the delegation

signature will be randomized with the same r R← Zq and can all be
verified with the same randomization element RL+1. After the
aggregation of the attribute signature, the aggregate signature can
be verified with R← ∏L

j=1 Rj.

60 entrust

7.4.2 Credential Issuance

When the delegator wishes to issue credentials to provers, delegators
create the same signatures as if they would delegate signing rights.
However, when the delegator signs the public key of the prover, the
delegator will use a different group element y3 from the public
parameters instead of y2. This prevents the prover from gaining
signing rights. Besides these steps, attribute values need to be
assigned with the to-be-issued attributes. The Short Randomizable
Signatures by Multiplication scheme proposed in Section 6.4 will be
used to sign commitments over attribute values. The prover commits
the attribute values for the credential and sends them to the issuing
delegator, along with a zero-knowledge proof proving that the
commitment, in fact, open to the attribute values. The verifier signs
the commitments and links the commitment signatures to the
corresponding attribute signatures. Because both the RSPS-M and
the SRS-M scheme support randomization by multiplication, the
attribute-value pairs can be interlinked to the same randomization
element Rαi .

7.4.3 Presentation Token Generation and Verification

To generate a presentation token, the prover will first randomize all
R-values in the credential and all signatures related to the
corresponding R-values accordingly. To reduce the size of the
presentation token, the aggregated signatures of the to-be-presented
attributes will be aggregated to a single batch signature.

After these steps, the prover will incorporate Schnorr’s
zero-knowledge proof of knowledge scheme to prove the knowledge
of elements in verification pairings. First, the prover generates
random γ-values for each element/value which need to be
zero-knowledge proved and commits these values according to the
pairing in which they need to be verified. Then, a Fiat-Shamir hash
will be calculated over the commitment values and other elements
which will be sent to the verifier, such as the R-values and rpk. The
hash output will be the challenge value for the non-interactive proof.
The response values can be generated with this challenge value c.

During verification, the verifier will use the response values to
compute the verification pairings. The pairings should result in the
same commitment values as the computed commitment values by
the prover. The verifier can compute the Fiat-Shamir hash in the
same fashion, and check if the hash is the same as the challenge
value of the prover.

Figure 7.1 depicts all verification equations, where the
Schnorr-based proofs will prove the knowledge over the signatures,
public keys in the chain, hidden values of attributes and the prover’s

7.5 signature schemes 61

private key. The to-be-proved elements and values are underlined in
Figure 7.1 and will be replaced with witnesses (the response value).
The figure distinguishes between attribute values which are
disclosed or hidden. When attribute values are hidden, the prover
only proves that it has knowledge over an attribute value, but does
not disclose it. Dν represents the set of attribute values which the
prover wishes to disclose.

SPK

{
(σ, apk←

L

∏
j=1

dpkH(seed||j)
j , 〈 ˜dpkj, φj〉Lj=1, φP, X, 〈νi, ti〉i 6∈Dν

, psk) :

e(σ, g2) = e(M, apk) · e(M, rpkH(seed||0) ·
L

∏
j=1

Rj) ·
n

∏
i=1

e(H1(αi), Rαi) ∧

e(φP, g2) = e(g
psk
1 , Rj) · e(y3, RP) · e(y1, dpkL) ∧

L∧
j=1

(
e(˜dpkj, g2) = e(g1, dpk j) ∧

e(φj, g2) = e(˜dpkj, Rj) · e(y2, Rj)
[
· e(y1, dpk j−1)

]
j 6=1

[
· e(y1, rpk)

]
j=1

)
∧

n∧
i=1

e(πνi , Rp · Rαi) = e(ϕνi ,1, g2) ∧∧
i∈Dν

e(ϕνi ,2, h) = e(ϕνi ,1, X) · e(ϕνi ,1, Yνi) · e(ϕνi ,1, h)ti ∧

∧
i 6∈Dν

e(ϕνi ,2, h) = e(ϕνi ,1, X) · e(ϕνi ,1, Y)νi · e(ϕνi ,1, h)ti

}

Figure 7.1: Signature Proof of Knowledge (witnesses are underlined for
clarity).

7.5 signature schemes

To construct the efficient consecutive delegation of signing rights
scheme, we will use the Randomizable BLS Multi-Signatures with
Public-Key Aggregation scheme proposed in Section 6.2, the
Randomizable Structure-Preserving Signatures by Multiplication scheme
proposed in Section 6.3 and the Short Randomizable Signatures by
Multiplication scheme proposed in Section 6.4.

The three signature schemes are slightly modified for the protocol,
such that multiple signatures can be randomized using the same r.
Therefore the signing and randomization methods will not handle
the generation of new r’s, but instead, take them as input.

62 entrust

7.5.1 General

Setup(κ): Run Λ ← BGGen(κ). Choose random y1, y2, y3
R← G1, h̃ R←

G1, h R← G2 and y R← Zq. Compute Ỹ ← h̃y and Y ← hy. Output:
Λ =

(
q, G1, G2, GT, e, g1, g2, y1, y2, y3, h̃, h, Ỹ, Y

)
.

KeyGen(): Choose random sk R← Zq and set p̃k ← gsk
1 ∈ G2 and pk ←

gsk
2 ∈ G2. Compute X̃ ← h̃sk, X ← hsk, and output secret ←

(sk, X̃) and public← (p̃k, pk, X).

VerifyKeypair(p̃k, pk): If e(p̃k, g2) = e(g1, pk) output 1 otherwise 0.

GenR(): Choose random r R← Zq and set R← gr
2 ∈ G2. Output: r and

R.

RandomizeR(R): Choose random r R← Zq and set R′ ← R · gr
2 ∈ G2.

Output: r and R′.

7.5.2 Randomizable BLS Signature - Single Signature

RBLS.Sign(sk, α, L, r): Output σ = H1(α)
sk·H(seed||L)+r ∈ G1.

RBLS.Verify(pk, α, L, σ, R): If e(σ, g2) = e(H1(α), pkH(seed||L) · R) output
1 otherwise 0.

RBLS.Randomize(α, σ, r): Output σ′ = σ · H1(α)
r ∈ G1.

7.5.3 Randomizable BLS Signature - Multi Signature

RBLS.Aggregate(〈σi〉ni=1): Output: σ = ∏n
i=1 σi.

RBLS.AggVerify(〈pki〉ni=1, α, σ, 〈Ri〉ni=1):

Compute apk ← ∏n
i=1 pkH(seed||i)

i and R ← ∏n
i=1 Ri. If e(σ, g2) =

e(H1(α), apk · R) output 1 otherwise 0.

RBLS.AggRandomize(α, σ, r): Output σ′ = σ · H1(α)
r ∈ G1.

7.5.4 Randomizable BLS Signature - Batch Signature

RBLS.BatchAggregate(〈σi〉ni=1): Output: σ = ∏n
i=1 σi.

RBLS.BatchVerify(〈pki, Ri, αi〉ni=1, σ): Compute apk ← ∏n
i=1 pkH(seed||i)

i
and R ← ∏n

i=1 Ri. If e(σ, g2) = e(H1(α1) · · ·H1(αn), apk · R)
output 1 otherwise 0.

RBLS.BatchRandomize(〈αi〉ni=1, σ, r): Output σ′ = σ · (∏n
i=1 H1 (αi))

r ∈
G1.

7.5.5 Randomizable Structure-Preserving Signatures by Multiplication

RSPS.Sign(sk, m, r): Output φ = ysk
1 · (y2 ·m)r ∈ G1.

RSPS.Sign2(sk, m, r): Output φ = ysk
1 · (y3 ·m)r ∈ G1.

7.6 concrete instantiation 63

RSPS.Verify(pk, m, φ, R): If e(φ, g2) = e(y1, pk) · e(y2 · m, R) output 1
otherwise 0.

RSPS.Randomize(m, φ, r): Output φ′ = φ · (y2 ·m)r ∈ G1.

7.5.6 Short Randomizable Signatures by Multiplication

SRS.Commit(m): Choose random b R← Zq, and compute C ← h̃bỸm ∈
G1. Output: (C, b).

SRS.Sign(X̃, C, r): Choose random s R← Zq. Compute
ϕ′ ← (h̃sr, (X̃C)sr), π′ ← (h̃s, (X̃C)s). Output: ω′ ← (ϕ′, π′).

SRS.Unblind(ω′, b): parse ω′ = ((ϕ′1, ϕ′2), (π
′
1, π′2)). Output

ω ← ((ϕ′1, ϕ′2/ϕ′1
b), ((π′1, π′2/π′1

b)).

SRS.Verify(X, m, ϕ): Parse ϕ = (ϕ1, ϕ2). If ϕ1 6= 1G2 and
e(ϕ1, X ·Ym) = e(ϕ2, h), output 1 otherwise 0.

SRS.Randomize(ω, r): Parse ω = ((ϕ1, ϕ2), (π1, π2)). Output ω′ ←
((ϕ1 · πr

1, ϕ2 · πr
2), (π1, π2)).

SRS.GenPoK(ω): Parse ω = ((ϕ1, ϕ2), π). Choose random r, t R← Zq.
Compute ϕ′ ← (ϕr

1, (ϕ2 · ϕt
1)

r) and output (t, ϕ′).

7.6 concrete instantiation

By incorporating the slightly modified signature schemes from the
previous section, we give a concrete instantiation of ENTRUST.

7.6.1 Setup

A root entity or another trusted entity not related to the protocol
runs Λ ← Setup(κ), and outputs Λ = (q, G1, G2, GT, e, g1, g2,
y1, y2, y3, h̃, h, Ỹ, Y

)
. Everyone in the protocol has access to these

public parameters at all times. The public key rpk of the root entity
will be used as seed for the RBLS signature scheme.

7.6.2 Initial Delegation

The root entity wishes to delegate signing rights for particular
attributes for anonymous credentials to a delegatee. It will sign the
to-be-delegated attributes αi ∈ attr1 and the public key dpk1 of the
delegatee. The delegatee will become a level-1 delegator. For the
RBLS signature, the root entity starts signing attributes with the
counter value L = 0.

64 entrust

Algorithm 3 The Initial Delegation Algorithm

1: input: rsk, ˜dpk1, αi ∈ attr1

2: r, R1 ← GenR()

3: for αi ∈ attr1 do
4: σαi ← RBLS.Sign(rsk, αi, 0, r)
5: end for
6: φ1 ← RSPS.Sign(rsk, ˜dpk1, r)
7: output: 〈σαi〉ni=1, φ1, R1

7.6.3 Consecutive Delegation

A delegator on level-L wishes to assign signing rights for a subset of
its acquired attributes to another delegatee. The delegator will
chooses the attributes αk ∈ attrL+1, such that attrL+1 ⊆ attrL. The
delegator will sign the attributes in attrL+1 and aggregate the
signatures with the attribute signatures of the previous delegators.
Also, the delegator signs the public key dpkL+1 of the delegatee. The
counter value for the RBLS signature will be the current level of the
delegator.

Algorithm 4 The Consecutive Delegation Algorithm

1: delegator input: dskL, ˜dpkL+1, αk ∈ attrL+1

2: input previous delegator: 〈σαi〉ni=1, 〈φj, Rj, ˜dpkj, dpk j〉Lj=1, rpk, attrL

3: r, RL+1 ← GenR()

4: for αk ∈ attrL+1 do
5: σ′αk

← RBLS.Sign(dskL, αk, L, r)
6: σαk ← RBLS.Aggregate({σαk , σ′αk

})
7: end for
8: φL+1 ← RSPS.Sign(dskL, ˜dpkL+1, r)

9: output: 〈σαk〉
|attrL+1|
k=1 , φL+1, RL+1

7.6.4 Credential Issuance

A prover with public key ppk wants to obtain a credential from a
delegator on level-L. The prover chooses αk ∈ attrC and defines the
attribute values νk ∈ val for the corresponding attributes. The prover
to generate commitments over the attribute values (Algorithm 5) and
send the commitments comνk ∈ com to the verifier, along with a non-
interactive zero-knowledge proof of knowledge over the opening of
the commitment to the hidden attribute values. For simplicity, we use
the Schnorr’s Proof of Knowledge protocol [67] in combination with
the Fiat-Shamir heuristic [40] to make the proof non-interactive. The

7.6 concrete instantiation 65

proof can also be carried out interactively or be replaced with another
zero-knowledge proof of knowledge scheme.

Algorithm 5 The Commitment Algorithm (Prover)

1: input from the issuing delegator: 〈νi〉ni=1
2: for i = 1, . . . , n do
3: (bi, comνi)← SRS.Commit(νi)

4: p R← Zq

5: Pi ← h̃p

6: c← H(comνi ||Pi)

7: si ← p + c · bi
8: end for
9: output: 〈bi, (comνi , Pi, si)〉ni=1

The delegator receives attrC, val, 〈(comνi , Pi, si)〉ni=1 from the prover,
and checks whether attrC ⊆ attrL. When the delegator decides to
endorse the provided claims, he checks if the non-interactive
zero-knowledge proof of knowledge is correct. If the delegator is
convinced that the prover knows the opening values of the provided
commitments, the delegator will sign the commitments and link
them to the corresponding attributes. The delegator will sign the
public key of the prover with RSPS.Sign2 instead of RSPS.Sign, in
order to prevent the prover to obtain signing rights and to issue
credentials.

Algorithm 6 The Credential Issuance Algorithm

1: delegator input: dskL, X̃L

2: input from prover: ˜ppk, αk ∈ attrC, νk ∈ val, 〈comνk , Pk, sk〉
|val|
k=1

3: input previous delegator: 〈σαi〉ni=1, 〈φj, Rj, ˜dpkj, dpk j〉Lj=1, rpk, attrL

4: check if: attrC ⊆ attrL else return ⊥
5: for νk ∈ val do
6: c← H(comνi ||Pi)

7: check if: h̃sk · Ỹνk ·c ?
= (comνk)

c · Pk else return ⊥
8: end for
9: rP, RP ← GenR()

10: for αk ∈ attrC do
11: rαk , Rαk ← GenR()

12: σ′αk
← RBLS.Sign(dskL, αk, L, rP + rαk)

13: σαk ← RBLS.Aggregate({σαk , σ′αk
})

14: ωαk ← SRS.Sign(X̃L, comνk , rP + rαk)

15: end for
16: φP ← RSPS.Sign2(dskL, ˜ppk, r)
17: output: 〈σαk , ωαk , Rαk〉

|attrC |
k=1 , φP, RP

66 entrust

7.6.5 Presentation Token Generation

When the prover wants to generate a new presentation token, the
prover will randomize all R-values, and all signatures accordingly,
depending on the relations to the R-values. The commitment
signatures ω′i will be unblinded by the prover with the bi values
used during commitment. Instead of including the signatures and
the public keys directly in the presentation token, the prover
generates zero-knowledge proofs of knowledge about the group
elements instead. Figure 7.1 depicts all the verification equations
which the verifier needs to run in order to be convinced. Based on
the verification equations, the commitment values are generated by
the prover.

As example, we demonstrate this by creating a Zero-Knowledge
Proof of Knowledge over a simple pairing equation e(A, B) = e(C, D),
where A, C ∈ G1, B, D ∈ G2 and group elements B and C need to be
zero-knowledge proved.

The verification equation can be rewritten as 0 = e(A, B) · e(C, D)−1.
For each element that need to be hidden, a random value γ will be
generated. Therefore γB, γC

R← Zq. The response values of the to-be-
hidden elements will be resB ← gγB

2 Bc and resC ← gγC
2 Cc. When we

use these response values in the verification, it will result in:

e(A, resB) · e(resC, D)−1

=e(A, gγB
2 Bc) · e(gγC

2 Cc, D)−1

=e(A, gγB
2) · e(A, Bc) · e(gγC

2 , D)−1 · e(Cc, D)−1

=e(A, g2)
γB · e(g2, D)−γC · e(A, B)c · e(C, D)−c

=e(A, g2)
γB · e(g2, D)−γC .

The hidden elements in the response value will be used to verify
the verification pairings. If the prover does have the knowledge over
B and C, the verification parings will cancel each other out, since
they should be equal. This will result in a remainder value, which
will become the commitment value. The prover will precalculate
these commitments values using the generated random values γ and
should be the same as the remainder value of the verification
pairings of the verifier.

Our protocol supports predicates, which allows prover to
minimizes information disclosure depending on the use case. The
predicates in our protocol can be easily extended to support e.g.,
equality proofs, range proofs [17, 19, 62], set membership proofs [19],
AND, OR, and NOT proofs [21], or any other predicate proofs based
on Pedersen commitments. Nevertheless, only the predicates
ProveValue and ProveCommitment are shown in the algorithm for
demonstration purposes, where ProveValue is used to disclose the
value of attributes, and ProveCommitment is used to solely proof the

7.6 concrete instantiation 67

Algorithm 7 The Presentation Token Generation Algorithm

1: prover input: psk, αk ∈ attrD, ρk ∈ predicate, 〈bi〉ni=1

2: input from signer:
〈
σαi , ω′αi

, Rαi

〉n
i=1 ,

〈
φj, Rj, ˜dpkj, dpk j

〉L

j=1
,

rpk, ˜ppk, ppk, φP, RP, XL, attr, val
3: rP, R′P ← RandomizeR(RP)

4: φ′P ← RSPS.Randomize(˜ppk, φP, rP)

5: for Rj ∈ R1, . . . , RL do
6: rj, R′j ← RandomizeR(Rj)

7: φ′j ← RSPS.Randomize(˜dpkj, φj, rj)

8: end for
9: for αk ∈ α1, . . . , α|attrD | do

10: rαk , R′αk
← RandomizeR(Rαk)

11: σ′αk
← RBLS.AggRandomize(αk, σαk ,

(
∑L

j=1 rj

)
+ rP + rαk)

12: ωαk ← SRS.Unblind(ω′αk
, bk)

13: ω∗αk
← SRS.Randomize(ωαk , rP + rαk)

14: (tk, ϕαk)← SRS.GenPoK(ω∗αk
)

15: end for
16: σ← RBLS.BatchAggregate({σ′α1

, . . . , σ′α|attrD |
})

17: γσ,
〈

γφj , γdpk j , γ ˜dpkj

〉L

j=1
, 〈γνi , γti〉

|attrD |
k=1 , γφP , γpsk, γX

R← Zq

18: M← ∏n
i=1 H1(αi) ∈ G1

19: comσ ← e(g−1
1 , g2)γσ · e(M, g2)

∑L
j=1 γdpkj

·H(seed||j)

20: comφP ← e(g−1
1 , g2)

γφP · e(g1, RP)
γpsk · e(y1, g2)

γdpkL

21: for j = 1, . . . , L do
22: comφj ← e(g−1

1 , g2)
γφj · e(g1, Rj)

γ ˜dpkj
[
· e(y1, g2)

γdpkj−1

]
j 6=1

23: comdpk j ← e(g1, g2)
γ ˜dpkj · e(g1, g−1

2)
γdpkj

24: end for
25: for k = 1, . . . , |attrD| do
26: comνk ← Entrust.ValComm(ρk) . Algorithm 8

27: end for

28: c← H
(

rpk, comσ,
〈

Rj, comφj , com ˜dpkj
, comdpk j

〉L

j=1
, comφP , 〈Rαk , ϕαk〉

|attr|
k=1

)
29: resσ ← gγσ

1 σc

30: resφP ← g
γφP
1 φc

P
31: respsk ← γpsk + c · psk
32: resX ← gγX

2 Xc
L

33: for j = 1, . . . , L do
34: resφj ← g

γφj
1 φc

j

35: resdpk j ← g
γdpkj
2 dpkc

j

36: res ˜dpkj
← g

γ ˜dpkj
1

˜dpkc
j

37: end for
38: for k = 1, . . . , |attrD| do
39: (resνk , restk)← Entrust.ValRes(ρk) . Algorithm 8

40: end for

41: output: c, resσ,
〈

resφj , resdpk j , res ˜dpkj
, R′j
〉L

j=1
,〈

resνk , restk , R′αk
, ϕαk

〉|attr|
k=1 , resφP , respsk, R′P

68 entrust

knowledge over the value. For every attribute αk the prover wishes
to disclose, the prover will choose a predicate type ρk over the
corresponding attribute value.

Algorithm 8 Predicate Commitments

1: procedure Entrust.ValComm(ρk)
2: if ρk == ProveValue then . Value is disclosed
3: comνk ← e(ϕνk ,1, g2)γX · e(ϕνk ,1, h)γtk

4: end if
5: if ρk == ProveCommitment then . Value is hidden
6: comνk ← e(ϕνk ,1, g2)γX · e(ϕνk ,1, Y)γνk · e(ϕνk ,1, h)γtk

7: end if
8: end procedure
9:

10: procedure Entrust.ValRes(ρk)
11: if ρk == ProveCommitment then . Value is hidden
12: resνk ← γνk + νk · c
13: restk ← γtk + tk · c
14: return (resνk , restk)

15: end if
16: return ∅
17: end procedure

7.6 concrete instantiation 69

7.6.6 Zero-Knowledge Verification

As discussed in the prior subsection, the verifier will use the response
values to compute the verification pairings. The remainder value of
the pairings should be equal to the commitment value of the prover.
When all remainder values are the same as the commitment values
of the prover, i.e., the challenge hash from the prover is equal to the
hash of the verifier, the verifier is convinced that the prover has the
knowledge over the hidden elements depicted in Figure 7.1.

Algorithm 9 The Zero-Knowledge Verification Algorithm

1: verifier input: Λ, rpk
2: input from prover: attr, c, resσ, resφP , respsk, resX, RP,〈

resφj , resdpk j , res ˜dpkj
, Rj

〉L

j=1
, 〈resνi , resti , Rαi , ϕνi , πνi〉

n
i=1

3: M← ∏n
i=1 H1(αi) ∈ G1

4: R← RP ·∏L
j=1 Rj ·∏n

i=1 Rαi ∈ G2

5: resapk ← ∏L
j=1 resH(seed||j)

dpk j

6: comσ ← e(resσ, g−1
2) · e(M, resapk) · e(M, rpkH(seed||0) ·R)c ·∏n

i=1 e(H1(αi), Rαi)
c

7: comφP ← e(resφP , g−1
2) · e(g1, RP)

respsk · e(y3, RP)
c · e(y1, resdpkL)

8: for j = 1, . . . , L do
9: comφj ← e(resφj , g−1

2) · e(res ˜dpkj
, Rj) · e(y2, Rj)

c[
· e(y1, resdpk j−1)

]
j 6=1

[
· e(y1, rpk)c

]
j=1

10: comdpk j ← e(res ˜dpk j
, g2) · e(g−1

1 , resdpk j)

11: end for
12: for i = 1, . . . , n do
13: check if: e(πνi , Rp · Rαi)

?
= e(ϕνi ,1, g2) else return ⊥

14: if ρi == ProveValue then . Value is disclosed
15: comνk ← e(ϕνi ,2, h)−c · e(ϕνi ,1, resX) · e(ϕνi ,1, Yαi)c · e(ϕνi ,1, h)resti

16: end if
17: if ρi == ProveCommitment then . Value is hidden
18: comνk ← e(ϕνi ,2, h)−c · e(ϕνi ,1, resX) · e(ϕνi ,1, Y)resνi · e(ϕνi ,1, h)resti

19: end if
20: end for

21: c← H
(

rpk, comσ,
〈

Rj, comφj , com ˜dpkj
, comdpk j

〉L

j=1
, comφP , 〈Rαi , ϕαi〉

n
i=1

)
22: output: c ?

= c′

70 entrust

7.7 security discussion

Entities in the protocol might have different intentions with the
obtained information and might want to gain more knowledge than
intended or alter information such it would benefit in their favor. In
this section, we will enumerate possible adversarial acts for the
different entities in the protocol, and discuss how the protocol
mitigates these scenarios.

7.7.1 Root Authority

Since the root authority is giving away its signing rights, it is in its
best interest to behave honestly in the protocol. Therefore, we
consider the root authority as a non-malicious entity in our scheme.

Either the root authority or a trusted entity not participating in the
protocol will honestly run Setup, and output Λ = (q, G1, G2, GT, e,
g1, g2, y1, y2, y3, h̃, h, Ỹ, Y

)
, where g1, y1, y2, y3, h̃, Ỹ ∈ G1 and g2, h, Y ∈

G2.

7.7.2 Delegator

A delegator receives a delegation bundle from either the root
authority or a preceding delegator. A malicious delegator might
want to:

• Link valid signatures from the delegation bundle to signatures
created by the delegator in order to gain more signing rights;

• Alter signatures, such that the delegator gains more signing
rights;

• Mix signatures from different delegation bundles to build a
delegation bundle that has never been issued.

Theorem 9. An adversary is not able to link new signatures to existing
randomization elements in the delegation bundle.

Proof. The protocol verifies the relation between signatures by
incorporating the randomization elements in the verification
equation. In order to pass verification, the signature needs to
randomized with the same secret exponent r as in the
randomization element R. Therefore, to link a signature to an
existing randomization element, the adversary needs to know the
secret random exponent r. However, given R and the signatures
linked to R, the adversary does not gain any knowledge about the
secret exponent r due to the discrete logarithm problem. This is also
proven in Theorem 2. �

7.7 security discussion 71

Theorem 10. An adversary is not able to link valid signatures from the
delegation bundle to other randomization elements.

Proof. All signatures σ, φ and the randomization elements R are
randomized by multiplication. To link a valid signature to a different
randomization element, the adversary needs to know the secret
random element r which was used to randomize the existing
signature. As shown in Theorem 2 and Theorem 9, it is not possible
to gain any knowledge about r with the given elements. �

Theorem 11. A delegator cannot gain more signing rights than delegated.

Proof. For each delegated attribute αi ∈ attrL, the previous delegator
puts a attribute signature σαi in the delegation bundle. To gain
signing rights over the attribute αx 6∈ attrL, the malicious delegator
need to forge a multi-signature, where all predecessors are involved
and randomized with the secret exponent r hidden in the
randomization element R.

Assume that the adversary knows the factors of H1(αi) = gs
1 and

H1(αx) = gt
1. The existing valid signature will be

σαi ← H1(αi)
∑L

j=1(xj·H(seed||j)+rj) = (gs
1)

∑L
j=1(xj·H(seed||j)+rj). The adversary

is still not able to factorize the exponent s from σ in polynomial time,
assuming the discrete logarithm problem. �

Theorem 12. A delegator cannot mix signatures from different delegation
bundles in order to compose a valid delegation bundle which has never been
issued.

Proof. This follows from Theorem 9 and 10. In order to alter
relationships between signatures and randomization elements in a
delegation bundle, the delegator need to know the secret exponent r.
�

7.7.3 Prover

Provers create commitments over attribute values they wish to be
endorsed and send them to the delegator. In return, the prover
receives a credential from the delegator and is able to generate
presentation tokens in order to present them to verifiers. A malicious
prover might want to:

• Try convincing the delegator that the provided commitments
open to specific values, while the commitments, in fact, open to
different values.

• Prove invalid predicates over the committed attribute values;

• Gain signing rights and issue credentials for others;

• Prove attributes or attribute values that never have been issued.

72 entrust

Theorem 13. A prover cannot convince delegators that a given commitment
opens to a specific value, while the commitment, in fact, open to a different
value.

Proof. In the protocol, the prover commits to attribute values using
Pedersen’s commitment scheme. Furthermore, the prover generates
a Schnorr’s zero-knowledge proof of knowledge which proves that
the commitments open to committed values. The prover should not
be able to fool the issuing delegator with a high probability since
the challenge value depends on both the random commitment value
of the proof and the commitment over the attribute value. When an
adversary wishes to alter one of the commitment values in order to
convince the verifier, the challenge will be different. Therefore it is
computationally infeasible to compute

The proof can be made non-interactive by applying the Fiat-Shamir
heuristic and is proven secure in the random oracle model. The zero-
knowledge proof can also be carried out interactively if the issuing
delegator does not want to rely on the random oracle assumption.
Nevertheless, �

Assumption 9: A prover cannot prove invalid predicates over the
committed attribute values.

The security depends on the underlying predicate scheme. ENTRUST
is compatible with all predicate schemes that are compatible with
Pedersen commitments.

Theorem 14. A prover cannot gain signing rights and issue credentials for
others.

Proof. To prevent the prover to gain signing rights, the issuing
delegator uses SPS.Sign2 instead of SPS.Sign to sign the public key
of the prover. In the algorithm SPS.Sign2, the public element y2 is
replaced with y3, such that this signature can only be correctly
verified with y3 and not with y2. �

Theorem 15. A prover cannot prove attributes or attribute values that
never have been issued.

Proof. To generate a valid attribute token with an attribute that has
not been issued by the verifier, the prover need to prove that it knows
a valid signature which signs this attribute. Since the prover does not
have knowledge of such an attribute signature, he will not be able to
generate a valid response value for this signature in order to convince
the verifier. This also holds for attribute value signatures. �

7.7.4 Verifier

Verifiers receive presentation tokens from provers. A malicious
verifier might want to:

7.7 security discussion 73

• Link multiple presentations of the same credential;

• Gain knowledge about the identity of the prover;

• Gain knowledge about the identities of the intermediate
delegators;

• Reuse the proof somewhere else.

The reuse of the presentation token can be prevented by either
making the proving process interactive or including an expiration
timestamp in the presentation to limit the duration of validity.

By making the proof interactive, verifiers will generate different
challenges every time. The adversary cannot correctly respond to the
challenges with a high probability, which makes the proofs of the
presentation token invalid.

To incorporate non-interactivity, the prover could add a signed
message with an expiration timestamp to the presentation token.
The verifier would verify this timestamp, and only accept the proof
if the signature on the expiration timestamp is valid, and if the
timestamp is larger than the current timestamp. This does not
prevent a replay of the proof but does limit the timebound in which
an adversary can act.

Theorem 16. A verifier cannot link two presentation tokens to the same
credential.

Proof. For every presentation token, the randomization elements and
commitment signatures are randomized with random scalars. This
also results in randomized response values. Since every element in
the presentation token is completely random, the verifier cannot
correlate two presentations to the same credential. This only holds
given that the disclosed attribute values are abstract enough and do
not contain identifiable information. �

Theorem 17. A verifier does not learn any information about the identities
of the prover and intermediate delegators.

Proof. The public keys from the prover and intermediate delegators
are not disclosed to the verifier, neither are the delegation and
attribute signatures. Instead, response values are sent to the verifier
in order to prove the knowledge of these public keys and signatures.
Therefore, verifiers do not learn anything from the presentation
token, while they could be convinced that the proofs are correct. �

7.7.5 Man in the Middle Adversaries

When the transmission of messages between the entities is
compromised, an adversary could obtain delegation bundles,
credentials or presentation tokens. In this section, we show that the
compromised information has limited to no value to the adversary.

74 entrust

7.7.5.1 Root/Delegator→ Delegator

When an adversary would intercept the delegation bundle send from
the root authority or delegator to the next delegator, he would try to:

• Gain the signing rights from the delegation bundle.

Theorem 18. An adversary intercepting delegation bundles cannot obtain
signing rights for delegation or the issuance of credentials.

Proof. The adversary cannot obtain signing rights from the
delegation bundle since the previous delegator has dedicated the
signing rights specifically to next delegator by signing its public key.
Without the knowledge of the secret key of the designated delegator,
the adversary cannot create valid delegation chains for credentials
and delegation bundles. As seen in Theorem 9, the adversary also
cannot generate a new delegation signature φ, and link it to an
existing R. Therefore, he cannot issue valid credentials nor delegate
signing rights to someone else. �

7.7.5.2 Delegator↔ Prover

When an adversary would intercept a credential send from the
delegator to a prover, he would try to:

• Use the credential to generate valid zero-knowledge
presentation tokens.

Theorem 19. An adversary intercepting credentials cannot use the
credential or generate valid presentation tokens.

Proof. Credentials are issued in two phases. In the first phase, the
prover commits to attributes values and sends the commitments and
zero-knowledge proofs to the verifier in order to prove that the
commitment opens to the attribute values. In the second phase, the
issuing delegator generates a credential and sends it to the prover.

Assume that the adversary intercepts both transmissions. The
adversary does not gain any advantage knowing the commitments
and zero-knowledge proof sent by the prover since all commitment
are blinded by the prover. Additionally, the credential is designated
to the public key of the prover. To generate a valid presentation
token, the adversary needs to prove knowledge over the secret key
of the designated prover. Like in Theorem 18, the adversary cannot
replace the delegation signature with a newly crafted signature.
Furthermore, the commitments in the credential need to be
unblinded with the blinding values used during commitment. The
adversary does not have knowledge about the blinding values. �

7.7 security discussion 75

7.7.5.3 Prover→ Verifier

When an adversary would intercept a presentation token send from
the prover to a verifier, he could attempt to:

• Reuse the proof somewhere else.

We have discussed the reuse of presentation tokens in Section
7.7.4. To recap, there are two possibilities to prevent the reuse of
presentation tokens. The first possibility is to let the prover add an
expiration timestamp to the presentation token, limiting the
duration of validity. This does not prevent the replay of proofs but
does limit the timeframe in which an adversary can act. The other
possibility is to carry out the zero-knowledge proof interactively.
Since the verifiers will send random challenges to the prover, the
adversary cannot reuse the intercepted proof, which was created for
a specific challenge.

8
E VA L U AT I O N

To determine the relevance of our work, we evaluate the theoretical
complexity of our protocol in terms of computational speed and
storage size. Besides that, we implemented ENTRUST in a prototype
to establish the practical performance of our concrete instantiation.

First, we will introduce the setting wherein the prototype will be
evaluated, after which we rearrange the verification pairings of
ENTRUST to ensure optimal performance. Then, we evaluate the
theoretical complexity of the main algorithms in our protocol and
show experimental results from our prototype. Finally, we assess our
scheme in comparison to a Delegatable Anonymous Credential
scheme.

8.1 the experiment setting

We realized our concrete instantiation of ENTRUST in a prototype
written in the C++ programming language, which provides
object-oriented convenience without compromising performance in
comparison to the C programming language. We incorporated the
RELIC library [34], which is a cryptographic meta-toolkit written in
the C programming language. The library currently has
state-of-the-art support for bilinear maps and related extension
fields [36]. The last official release of RELIC is version 0.4.0 dated to
Aug 19, 2014. Since then, multiple curves and hash functions have
been added to the library, including the BLS12-381 curve [35].
Therefore, we decided to used the library code from the master
branch for our prototype, pulled from the GitHub repository [34] on
Sep 3, 2018.

As recommended personally by the library creator Diego F.
Aranha, we use the BLS12-381 pairing-friendly elliptic curve for our
prototype, which has been introduced by the ZCash team [80]. This
curve is favored over the 256-bit Barreto-Naehrig Curve [4] in terms
of performance for most protocols and also targets 128-bit security
[36]. To improve performance even further, we used RELIC in
combination with the GNU Multiple Precision Arithmetic Library
(GMP) [41] to enhance performance on precision arithmetics on
small and huge operands. As hash function we used SHA-256,
which offers 128-bit security against collision attacks 1.

All experiments are run with the Google Benchmark Library [51],
which is a microbenchmark library for the C++ programming

1 Keylength - NIST Recommendations 2016 https://www.keylength.com/en/4/

https://www.keylength.com/en/4/

78 evaluation

language. By executing a benchmark, the library dynamically
determines the number of iterations to run by running the
benchmark a few times and measuring the time taken. This ensures
that the ultimate result will be statistically stable. Additionally, all
benchmarks are run 100 times to ensure the negation of any
potential outliers in the results.

We ran the prototype on commodity hardware to prove the
practicality of our protocol. All experiments are run on a MacBook
Pro with a 2.8 GHz Intel i7-7700HQ CPU.

8.2 relic library benchmarks

Since the performance of the experiments depends on the used
hardware and the curve implementation, this chapter gives an
overview of the performance of single operations in RELIC in our
experimental setting. Furthermore, we give an overview of the
storage size of the elements of the BLS12-381 curve.

8.2.1 Execution Times of a Single Operation

In RELIC, we use the "x64-pbc-128-b12" preset 2, which incorporates
the BLS12-381 pairing friendly eliptic curve, and uses the optimal ate
pairing algorithm for pairings.

Table 8.1 gives an overview of the individual execution times of the
most expensive operations in our experimental setting on the BLS12-
381 curve in RELIC.

Time (µs)

G1 Exponentiation 148

G2 Exponentiation 283

GT Exponentiation 452

1 Single Pairing 1456

2-Miller Loop Pairings 1862

n-Miller Loop Pairings ∼ 1028 + 428n

Hash string to element in G1 243

Table 8.1: Execution time of the most expensive operations on the BLS12-381

curve from the RELIC library in our experimental setting.

The execution time of all other operations used in our protocol are
considered negligible since they are executed in less than 5 µs, which
requires significantly less execution time than the operations listed in
Table 8.1.

2 RELIC’s "x64-pbc-128-b12" Preset https://github.com/relic-toolkit/relic/

blob/master/preset/x64-pbc-128-b12.sh

https://github.com/relic-toolkit/relic/blob/master/preset/x64-pbc-128-b12.sh
https://github.com/relic-toolkit/relic/blob/master/preset/x64-pbc-128-b12.sh

8.2 relic library benchmarks 79

As can be noticed, the pairings of elements are the most expensive
operations. However, products of pairings can be computed more
efficiently by computing the pairings in the same Miller loop and
share a single final exponentiation [10]. This allows three pairings in
a product to be computed in less time than it would take to compute
two distinct pairings. Figure 8.1 shows the time to compute the
product of k pairings, where the k-Miller Loop and final shared
exponentiation will be compared to individual pairings.

We also observe that exponentiations in G1 require less
computation time than in G2 and GT. Therefore during
implementation, it is preferred to exponentiate in G1 whenever
possible.

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

Pairings in product

Ti
m

e
[m

s]

Individual pairings
k-Miller Loop pairing

Figure 8.1: Individual Pairings versus k-Miller Loop + Final Exponentiation.

8.2.2 Storage Size of a Single Group Element

Table 8.2 shows the storage size of each element of the BLS12-381

curve in RELIC. The RELIC library offers the ability to compress
group elements for storage. The size for both uncompressed and
compressed elements is shown in the table. We denote BN as Big
Number, which are scalars in Zq. Group elements in G2 takes
roughly twice the storage size in comparison to group elements in
G1.

Storage Size (bytes)

Uncompressed Compressed

G1 Element 97 49

G2 Element 193 97

GT Element 576 384

Big Number BN 32 32

Table 8.2: Size of elements of the BLS12-381 curve from the RELIC library.

80 evaluation

8.3 optimalization of verification pairings

We rearrange the verification pairings in Algorithm 9 to get the most
optimal computation time during verification in the prototype of
ENTRUST. First, we observe from Table 8.1 that exponentiations in
G1 are faster than in G2 and GT. Therefore, exponentiations of
pairings are moved to the group elements in G1 whether possible.
Second, products of pairings can be computed more efficiently by
incorporating the Miller Loop, whereafter the product will be
exponentiated with a shared final exponentiation. Therefore,
products of pairings are computed together using the same Miller
Loop whenever possible. We denote fexp for this operation on a
product of pairings.

Algorithm 10 shows a revised version of Algorithm 9, where all
pairing equations for the verifier are optimized for efficient
computation of the commitment values. Small benchmarks showed
an improvement of roughly 23-35% in computation time relative to
the non-optimized algorithm for implementation.

Algorithm 10 The Zero-Knowledge Verification Algorithm 9 Revised - Optimized
for Implementation

6: comσ ← fexp
(

e(M, rpkH(seed||0) · R) ·∏n
i=1 e(H1(αi), Rαi)

)c

· e(M, resapk) · e(resσ, g2)−1

7: comφP ← fexp
(

e(g
respsk
1 , RP) · e(yc

3, RP) · e(y1, resdpkL)
)
· e(resφP , g2)−1

8: for j = 1, . . . , L do

9: comφj ← fexp

(
e(res ˜dpkj

, Rj) · e(yc
2, Rj)

[
· e(y1, resdpk j−1)

]
j 6=1

[
· e(yc

1, rpk)
]

j=1

)
· e(resφj , g2)−1

10: comdpk j ← e(res ˜dpk j
, g2) · e(g1, resdpk j)

−1

11: end for
12: for i = 1, . . . , n do
13: check if: e(πνi , Rp · Rαi)

?
= e(ϕνi ,1, g2) else return ⊥

14: if ρi == ProveValue then . Value is disclosed
15: comνk ← fexp

(
e(ϕνi ,1, resX) · e(ϕαi ·c

νi ,1
, Y) · e(ϕ

resti
νi ,1

, h)
)
· e(ϕc

νi ,2, h)−1

16: end if
17: if ρi == ProveCommitment then . Value is hidden
18: comνk ← fexp

(
e(ϕνi ,1, resX) · e(ϕ

resνi
νi ,1

, Y) · e(ϕ
resti
νi ,1

, h)
)
· e(ϕc

νi ,2, h)−1

19: end if
20: end for

8.4 complexity 81

8.4 complexity

This section provides a theoretical performance analysis of
ENTRUST. First, we discuss the computational complexity for all
entities and main algorithms, where after we evaluate the storage
sizes and communication costs of delegation bundles, credentials
and presentation tokens.

8.4.1 Computational Complexity

We have evaluated all main algorithms of ENTRUST in terms of
theoretical complexity and present them for each entity in Tables 8.3
and 8.4. The complexity is determined based on the operations
which have a significant impact on the execution time. The
expensive operations mentioned Section 8.2.1 are listed in the upper
part of the tables. Besides that, we also give the complexity of less
significant operations in the lower part of the tables. Note that in
Table 8.4, the optimized algorithm for verification is evaluated as
introduced in Algorithm 10.

As can be observed, the delegation, credential issuance and
commitment algorithms depend on the number of attributes in
terms of computational complexity. The complexity of the token
generation algorithm is large and depend on both the level of
delegation and the number of attributes since the prover needs to
randomize all signatures and randomization elements, whereafter it
needs to generate non-interactive zero-knowledge proofs for all
signatures and public keys. The complexity of the verification
algorithm is also O(n + L), as it has to verify the validity of L
delegation signatures, n attribute, and n commitment signatures.

82 evaluation

Root Authority Delegator

Delegation Delegation Cred. Issuance

Operation type Complexity

G1 Exponentiation n + 2 n + 2 8n + 2

G2 Exponentiation 1 1 n + 1

Hash to G1 n n n

Hash to BN 1 1 n + 1

Random BN ∈ Zq 1 1 2n + 1

G1 Multiplication 2 n + 2 4n + 2

BN Multiplication 1 1 n + 1

BN Addition n n n + 1

Overall Complexity O(n) O(n) O(n)

Table 8.3: Complexity of all operations for the Root Authority and a
Delegator.

Prover Verifier

Commitment Token Generation Verification

Operation type Complexity

G1 Exponentiation 3n 5L + 8n + 5 L + 3n + 2

G2 Exponentiation − 3L + n + 3 L + 1

GT Exponentiation − 5L + 2n + 4 1

1 Single Pairing − 5L + 2n + 4 3L + 3n + 3

3-Miller Loop Pairings − − L + n + 1

(n + 1)-Miller Loop Pairings − − 1

Hash to G1 − n n

Hash to BN n L + 1 L + 2

Random BN ∈ Zq 2n 4L + 3n + 5 −
G1 Multiplication n 4L + 8n + 2 2n− 1

G2 Multiplication − 2L + n + 2 2L + 2n

GT Multiplication − 3L + n + 2 2L + n + 3

GT Inversion − 2L + 2 2L + n + 2

BN Multiplication n L + 2n + 1 n

BN Addition n 2L + 2n + 1 −
Overall Complexity O(n) O(n + L) O(n + L)

Table 8.4: Complexity of all operations for a Prover and a Verifier.

8.5 run-time analysis 83

8.4.2 Complexity of Storage and Communication

Table 8.5 provides an overview of the storage sizes of delegation
bundles, credentials and presentation tokens in our protocol. The
storage size complexity of the three data bundles is O(n + L). This is
accomplished by aggregating attribute signatures during the
delegation phase.

Complexity Elements

Delegation bundle size on level L O(n + L) (2L + n) G1 + (2L + 1) G2

Credential size at the prover O(n + L)
(2L + 5n + 2) G1 +

(2L + n + 4) G2

Presentation token size send to verifier O(n + L)

(2L + 3n + 2) G1 +

(2L + n + 2) G2 +

(2n + 2) Zq

Table 8.5: Complexity of storage size of the data bundles in ENTRUST.

8.5 run-time analysis

We conducted experiments on our prototype in order to determine
the practical performance of our protocol. We evaluate the practical
performance of generating and verifying presentation tokens, as well
as the storage size of presentation tokens in practice.

8.5.1 Presentation Token Generation Times

Figure 8.2 shows the computational time for provers to generate
presentation tokens, where 1,2,3,4 and 5 intermediate delegators
were involved in the delegation process. The shown performance
only reflects token generation on a laptop. Although provers in
real-life scenarios will likely not use a device as powerful as a laptop
to generate presentation tokens, it still gives an impression of the
performance could achieve on devices with fewer resources.

The token generation time grows linearly to the number of
attributes since the aggregated attribute signatures need be
randomized before combining them into a single batch signature.

84 evaluation

1 5 10 15 20 25 30
0

50

100

150

200

250

300

350

Attributes

Ti
m

e
[m

s]

1 Delegator
2 Delegators
3 Delegators
4 Delegators
5 Delegators

Figure 8.2: Computational time of generating a presentation token.

8.5.2 Presentation Token Verification Times

Figure 8.3 depicts the performance of the verification of a
presentation token. The verification time grows linearly to the
number of attributes. Even though aggregated signatures are
combined into a single batch signature, the presentation token is not
verified in constant time relative to n, since there are still n
commitment signatures in the presentation token which need to be
verified.

1 5 10 15 20 25 30
0

50

100

150

200

250

300

350

Attributes

Ti
m

e
[m

s]

1 Delegator
2 Delegators
3 Delegators
4 Delegators
5 Delegators

Figure 8.3: Computational time of verifying a presentation token.

8.5 run-time analysis 85

8.5.3 Presentation Token Size

Figure 8.4 depicts the storage size in practice of a presentation token,
where all group elements are stored in the compressed format. As
expected, we see that the presentation token size grows linearly to
the number of attributes, since each additional attribute requires an
extra commitment signature and randomization elements.

1 5 10 15 20 25 30
0

2

4

6

8

10

12

Attributes

Si
ze

[k
ilo

by
te

s]

1 Delegator
2 Delegators
3 Delegators
4 Delegators
5 Delegators

Figure 8.4: The storage size of a presentation token.

8.5.4 Analysis

When we assume that an average presentation token contains 10

attributes and is issued by 3 intermediate delegators, the token can
be generated in 143 ms, verified in 121 ms, and requires 4312 bytes
of storage space. It is noteworthy that the verification speed of the
verification token lies within the challenging time bound of 300 ms
for access control systems in public transportation.

Presentation tokens containing 30 attributes issued by 3

intermediate delegators are able to be verified in 276 ms. Although
the computational speed of verification is acceptable during practical
use of presentation tokens, it still might be challenging for devices
with restricted resources to generate presentation tokens, since the
size of the presentation token grows to 10472 bytes, linearly to the
number of attributes. Nevertheless, we expect in practice that
credentials could contain many attributes, but that most of the
practical verification cases require a few predicates to be proven
during the presentation. In use cases where many predicates need to
be proven, we expect that strict verification times to ensure optimal
human-computer interaction are often not required.

86 evaluation

8.6 comparison to dac

To the best of our knowledge, we are the first to present a protocol
which allows the delegation of signing rights for the issuance of
attribute-based credentials. Therefore, there are no concrete schemes
which we can directly compare performance against. However, we
could divide ENTRUST into two parts: the elements and equations
which are responsible for signing right delegation, and elements and
equations which are responsible for attribute-based credentials.

For the attribute-based credentials, we use the Short
Randomizable Signature scheme of Pointcheval and Sanders [64].
Although we made an adjustment in the signature scheme to include
randomization by multiplication, it does not affect the performance
of the existing scheme whatsoever.

For the part relevant for the signing right delegation, we compare
our scheme to Delegatable Anonymous Credentials, where users can
delegate their credentials to other users. Our delegation scheme is
actually more similar to Anonymous Proxy Signatures. However,
most of the scheme does not give a concrete instantiation or use the
Groth-Sahai proof system, which is not as efficient as using
Schnorr’s zero-knowledge proof of knowledge. DAC is similar to APS,
expect that APS delegates subsets of the acquired attributes, while
DAC allows different attributes on each delegation level.

Most of the DAC schemes also incorporates the Groth-Sahai proof
system. Therefore, we will compare our delegation scheme with the
recent work on Delegatable Anonymous Credential from Camenisch
et al. [20], as their scheme use the same proof system like ours. Since
DAC considers different attributes for each delegation level, it is not
an entirely fair comparison. However, it still highlights the effect of
signature aggregation on the efficiency in ENTRUST.

8.6.1 Computational complexity

Table 8.6 compares the verification complexity for a verifier in the
DAC scheme of Camenisch et al. [20] and in ENTRUST. In this
comparison, we consider that all delegators delegate the same n
attributes and all delegated attributes are disclosed during the
presentation. For ENTRUST, solely the correctness of the delegation
chain and the attributes will be checked during verification.

8.6 comparison to dac 87

CDD17 [20] ENTRUST

Attribute + Delegation

All attributes disclosed
Attribute + Delegation

Operation type Complexity

G1 Exponentiation − L + 3

G2 Exponentiation − L + 1

GT Exponentiation (n + 1)(L + 1) + 3 1

1 Single Pairing n + 1 3L + 4

2-Miller Loop Pairings (n + 1)(L− 1) + 2 −
3-Miller Loop Pairings L− 2 if L >= 2 L + 1

(n + 1)-Miller Loop Pairings − −
Hash to G1 − n

Overall complexity O(n ∗ L) O(n + L)

Table 8.6: Verification speed comparison between CDD17 [20] and
ENTRUST.

As noticed from the comparison in Table 8.6, the computational
complexity of verification for CDD17 is O(n ∗ L), while ENTRUST
achieves O(n + L). This is because CDD17 needs to check the
signatures of every single attribute for each level, whereas
ENTRUST is able to solely verify the single batch signature.

To demonstrate the effect of the difference in complexity to both
protocols, we show in Figure 8.5 the theoretical computation time to
verify presentation tokens in both CDD17 and ENTRUST, using the
operation times from Table 8.1.

We noticed that CDD17 did not optimize its performance by
moving exponentiations to G1, but instead exponentiates more
expensively in GT. To give a more fair comparison, we consider the
computation time of exponentiating to GT for the CDD17 scheme
the same as exponentiating to G1.

88 evaluation

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Number of Attributes

Ti
m

e
[m

s]

DAC
ENTRUST
L = 1
L = 2
L = 3

Figure 8.5: Comparison in verification time between CDD17 [20] and
ENTRUST.

In Figure 8.5, we observe that DAC outperforms ENTRUST in
verification speed for the first attributes. This is due to the difference
in delegation technique. DAC incorporates Group Alternation, while
ENTRUST uses Double Key Pair as delegation method (Section 5.3).
Due to the Double Key Pair method, ENTRUST requires 2 extra
pairing to check if each public keys pair hides the same secret
exponent.

Nevertheless, the verification time of DAC grows
sub-quadratically, while ENTRUST grows linearly to the number of
attributes. When the verifier would precompute the hashed elements
of the expected attributes, then the verification time would stay
constant to the number of attributes. For 3 intermediate delegators,
ENTRUST requires 258 µs for the verification of each additional
attribute in the presentation token, while CDD17 requires 9108 µs.

8.6.2 Presentation Token Size

We also compare the size of the presentation tokens of both schemes,
where only elements required for the verification of attributes and
delegations are considered. Since users in CDD17 are able to directly
generate presentation tokens, we consider a user on level-L
equivalent to a prover in ENTRUST, which got its credential from
delegator on level-(L − 1). Table 8.7 shows our comparison, where
we only take into account the storage size within a presentation
token required for the verification of attributes and delegations.

We observe from the comparison that both presentation tokens are
equivalent in size when there are no attributes present. Nevertheless,
the presentation token size of CDD17 grows sub-quadratically when

8.7 conclusion 89

CDD17 [20] ENTRUST

Without attributes

Every odd level adds 3 G1 + 1 G2 2 G1 + 2 G2

Every even level adds 1 G1 + 3 G2 2 G1 + 2 G2

Total on an even level L
2L G1 +

2(L− 1) G2 +

2 Zq

2L G1 +

2(L− 1) G2 +

2 Zq

With attributes

Every odd-level attribute adds 1 G1 -

Every even-level attribute adds 1 G2 -

Total on an even level L
(2L + 1

2 Ln) G1 +

(2(L− 1) + 1
2 Ln) G2 +

2 Zq

(2L + 1) G1 +

(2(L− 1)) G2 +

2 Zq

Overall complexity O(n ∗ L) O(L)

Table 8.7: Comparison in presentation token size between DAC and
ENTRUST.

attributes are taken into account, while the presentation token size
in ENTRUST is constant and is not dependent on the number of
attributes. This is achieved by combining the aggregated attribute
signatures into a single batch signature.

8.7 conclusion

From the theoretical complexity of ENTRUST, we saw that the
aggregation of attribute signatures allows both the computation and
size complexity to be in the order of O(n + L) instead of O(n ∗ L).
When we compare the part responsible for the verification of
attributes and delegation chain in ENTRUST to DAC, we clearly see
the efficiency of the delegation scheme of ENTRUST. Due to the
aggregation of attribute signatures into a single batch signature, the
computational time to verify attribute signatures and the total
attribute signatures size reduces from O(n ∗ L) to O(1).

From the run-time experiments, we saw that presentation tokens
containing 10 attributes and issued by 3 intermediate delegators
could be generated in 143 ms, verified in 121 ms, and require 4312

bytes of storage space. The verification speed, in this case, lies within
the challenging time bound of 300 ms for access control systems in
public transportation. Although more attributes can be added to the
presentation token while staying under the 300 ms boundary, we
saw that the presentation token size grows linearly to the number of
attributes. This is due to our choice to commit each value

90 evaluation

individually in order to maintain complete delegator chain privacy,
which results into n commitment signatures. Researchers have
already proposed multiple commitment schemes where multiple
values can be committed to a single commitment. The downside of
these schemes is that values are committed sequentially and are
bounded to an index value in the commitment. During selective
disclosure, it would disclose information about the specific indices
of the specific attributes. It would be interesting to apply
non-sequential commitment schemes to ENTRUST in order to
reduce the total commitment signature size.

9
D I S C U S S I O N A N D F U T U R E W O R K

The presence of the peer-based trust model within Self-Sovereign
Identity motivates to apply the notion of consecutive trust for claim
endorsement. Authorities are able to declare trust consecutively
towards smaller entrusted entities, which are able to endorse claims
for provers on behalf on the authority. This conception is interesting
for various applications and settings, especially for large-scale
organizations, which wish to delegate rights for credential issuance
to lower-level entities in the hierarchy.

Current approaches supporting consecutive delegation of rights
are only suitable for authentication and do not support credential
issuance, while anonymous attribute-based credential schemes all
rely on a single central entity for the issuance and management of
credentials. Therefore, we attempt to offer a solution for consecutive
delegation of signing rights for the issuance of anonymous
attribute-based credentials. The main research question examined in
this work was as follows:

How can we consecutively delegate signing rights for the
issuance of attribute-based credentials, and construct practical,

verifiable, and anonymous attribute-based proofs with
delegation chain anonymity?

In this chapter, we review the stated research question and discuss
how the proposed protocol achieves the research goal. Furthermore,
we discuss the limitations of our scheme and identify possible future
improvements.

9.1 discussion

At the end of the introductory chapter, we have identified five
sub-questions to our main research question. We are discussing and
answering these questions in this section.

How can signing rights for attribute-based credentials be delegated in a more
efficient manner opposed to existing schemes?

As seen in the complexity section of the evaluation chapter
(Section 8.4), the delegation of signing rights is realized efficiently.
The speed of delegating signing rights solely dependent on the
number of attributes which the delegator wishes to delegate. Other
schemes achieve this as well since delegators solely add their own
signatures to the delegation bundle and do not perform any

92 discussion and future work

computation on signatures from predecessors. However, delegators
in ENTRUST aggregate their attribute signatures with the attribute
signatures from its predecessors, which allows the storage size
complexity of a delegation bundle in ENTRUST to be reduced to
O(n + L) instead of O(n ∗ L) in other schemes.

How can delegators issue valid attribute-based credentials on behalf of the
root authority?

ENTRUST achieves this by incorporating delegation signatures,
where delegators sign the public key of the delegatee to whom they
wish to delegate selective signing rights. The delegation signatures
will form a delegation chain, where the owner of the signed public
key in one delegation signature becomes the signer in the next
delegation signature. The verifier accepts the credential when the
delegation signatures form a correct delegation chain.

Delegation chains alone are not sufficient to realize attribute-based
credentials. Therefore, we introduce three signature schemes: RBLS,
RSPS-M, and SRS-M, in order to realize attribute signatures,
delegation signatures, and commitment signatures. To create these
signature schemes, we modified three existing signature scheme to
support randomization by multiplication. This type of
randomization enables multiple of these different signatures to be
linked together and allows flexible randomization even when
signatures are aggregated together.

How can provers transform such a credential into proofs for anonymous
attestation?

In our protocol, provers do not provide the signatures and the
public keys from the credential to the verifier. Instead, provers
generate Schnorr’s zero-knowledge proofs of knowledge for each
signature and public key. The presentation token containing all these
proofs should convince the verifier that (1) the delegation chain in
the credential is valid; (2) all intermediate delegators have the
signing rights of the attributes used in the presentation token; (3) the
presented predicates are valid under the attribute value in the
signed commitment.

How can verifiers check the proofs without the knowledge of the identity of
the intermediate delegators and the prover?

As discussed in the previous paragraph, the prover generates a
presentation token with Schnorr’s zero-knowledge proofs of
knowledge for each signature and public key. While the verifier does
not know the actual signatures and public keys, the verifier is still
able to compute adapted verification pairings, which are compatible
with the zero-knowledge proofs. During the creation of the
zero-knowledge proofs, each concealed signature and public key

9.2 future work 93

will result in a response element or response value. Since these
response elements and values will be used multiple times in the
verification pairings in a specific way to prove relations between
group elements, the verifier can be sure that the credential is correct
with a high probability.

Can we improve the efficiency of proof verification in terms of computational
speed and storage size?

Since the verification phase should be as efficient as possible, we
have employed multiple optimizations to reduce the computational
time of verification pairings. Small benchmarks have shown an
improvement of roughly 23-35% opposed to our non-optimized
algorithm.

In our experiments, we have shown that ENTRUST can verify
presentation tokens with 30 attributes under 300 ms considering 5

intermediate delegators. It is noteworthy that the verification time of
these presentation tokens lies within the challenging time bound of
300 ms required for access control in public transportation systems
[33, 54]. Therefore, the scheme achieves a certain degree of practical
feasibility. The addition of each extra delegator to the credential
solely adds ∼ 8 ms to the verification time.

A limitation of ENTRUST is that the presentation token size grows
linearly depending on the number of attributes. Although we
attempt to remove the linear dependency by aggregating the
aggregated attributes signatures into a single batch signature in the
presentation token, there are still commitment signatures present for
every committed attribute value. It is already possible to commit
multiple commitment values into a single commitment, which allow
the presentation token to contain a single commitment signature.
However, this does not comply with our complete privacy
requirement, since the values are committed sequentially, which
could allow verifiers to correlate two presentations of the same
credential more accurately. Future work should determine whether
multiple values can be committed to a single commitment without
compromising the complete privacy of the prover.

9.2 future work

The proposed protocol forms a building block towards more flexible
and advanced digital identities. Although this work attempts to
address numerous properties required for the realization of
anonymous credentials created by delegatable signing rights, there
are several additional properties which are desired for anonymous
credentials. We introduce several of these properties and state the
opportunities to improve the limitations of our protocol.

94 discussion and future work

Delegation chain auditability In case of unusual behavior or
suspicion of fraud with anonymous credentials, verifiers should
be able to hand over the presented presentation token to an
inspector party, which will be to revoke the anonymity of the
prover and intermediate delegators. This allows the inspector to
check if the credential has been correctly issued and who is
responsible for potential misbehavior.

Credential revocation The validity of delegation bundles and
anonymous credentials should be able to be revoked by the root
authority or issuing entities when necessary. Ideally, neither the
prover nor the verifier should interact with the root authority
before or during verification. The main challenge is to efficiently
achieve the revocation of credentials since communication with
the root authority is unavoidable to fetch the latest revocation
information.

There are multiple approaches to achieve revocability of
credentials. The verifier could beforehand periodically fetch lists
or accumulators of either valid or revoked credentials, and check
during verification if some element in the presentation token
occurs in the lists or accumulators. Besides the overhead of
continuous fetching of the verifier, it could be possible this way
for the verifier to correlate multiple presentations of the same
credentials, since there is some sort of identifier present in the
presentation token.

The other approach is to let provers convince verifiers that
their credential has not been revoked in the most recent list or
accumulator, and therefore have a valid credential. The
downside of this approach is that provers need to contact the
root authority every time they wish to generate a presentation
token.

Incorporating non-sequential multi-message commitments In
ENTRUST, the prover creates commitments over every single
attribute value which will be issued by the issuing delegator.
This results in n commitment signatures in the credential. As
already mentioned in our discussion of the last sub-question of
the main research question, it would be more efficient to commit
multiple values into a single commitment, as the credential will
result in just one commitment signature. Researchers have
already proposed multiple commitment schemes where multiple
values can be committed into one commitment. The downside of
these schemes is that values are committed sequentially and are
bounded to an index value in the commitment. During selective
disclosure, this would disclose information about the specific
indices of the attributes. Because ENTRUST preserves privacy

9.3 conclusion 95

whenever possible, we decided to use single-message
commitments. It would be interesting to apply non-sequential
multi-message commitments to ENTRUST, such that only one
commitment signature is needed and complete privacy will be
preserved.

Aggregation of the delegation signatures In this work, the attribute
signatures are aggregated in order to reduce the credential size.
However, it would also be interesting to see whether the
delegation signature could also be aggregated, while
maintaining the same security as the current scheme.

Immutable attribute values during delegation Blömer and Bobolz
[12] introduced Delegatable Attribute-Based Anonymous Credentials
from Dynamically Malleable Signatures, where selective attribute
values are assigned and made immutable in the credential
during delegation. It would be interesting to see whether this
could apply to the signing rights in ENTRUST since this allows
delegators to restrict the subsequent delegatees to issue
restricted attribute values for particular attributes.

9.3 conclusion

The primary goal of this thesis was to realize a concrete and
practical instantiation for delegatable signing rights for the issuance
of anonymous attribute-based credentials. Previous work already
attempts to achieve anonymity in a consecutive delegation setting
but lacks practical efficiency due to expensive zero-knowledge
proofs. In addition, many schemes do not involve attribute-based
credentials, and many of them only focus on authentication. This
thesis presents a protocol with incorporates both anonymous
attestation with attribute-based credentials and the delegation of
signing rights for the issuance of these credentials.

Since none of the existing signatures schemes met our
requirements derived from our protocol design, we introduced three
signature schemes based on existing work. By incorporating these
preliminary signature schemes as fundamental building blocks, we
realize the protocol for delegatable signing rights for the issuance of
anonymous attribute-based credentials. This thesis provides a
concrete instantiation of the protocol and shows practical feasibility
for the verification of presentation tokens. In most use cases,
presentation tokens can be verified within 300 ms, which complies to
challenging time bound of access control in public transportation
systems [33, 54].

The proposed scheme is not limited to the application on
large-scale organizations for the hierarchical issuance of credentials.

96 discussion and future work

The scheme can already be applied in a Self-Sovereign Identity
setting where relevant authorities declare trust consecutively
towards trustees, and individuals are able to obtain endorsements
on claims from the trustees on behalf of the authority. Due to the
nature of the peer-to-peer economy of trust in Self-Sovereign
Identity, it is likely that the scheme can be applied for other diverse
scenarios in Self-Sovereign Identity as well. Nevertheless, the
presented protocol forms a building block towards more flexible and
advanced digital identities.

B I B L I O G R A P H Y

[1] Masayuki Abe, Georg Fuchsbauer, Jens Groth,
Kristiyan Haralambiev, and Miyako Ohkubo.
“Structure-Preserving Signatures and Commitments to Group
Elements.” In: CRYPTO. Vol. 6223. Lecture Notes in Computer
Science. Springer, 2010, pp. 209–236.

[2] Man Ho Au, Willy Susilo, and Yi Mu. “Constant-Size Dynamic
k-TAA.” In: SCN. Vol. 4116. Lecture Notes in Computer Science.
Springer, 2006, pp. 111–125.

[3] Australian Government. Australian Community Attitudes to
Privacy Survey 2017. https :

//www.oaic.gov.au/resources/engage-with-us/community-

attitudes / acaps - 2017 / acaps - infographic . pdf. [Online;
accessed 17-Sep-2018].

[4] Paulo S. L. M. Barreto and Michael Naehrig. “Pairing-Friendly
Elliptic Curves of Prime Order.” In: Selected Areas in
Cryptography. Vol. 3897. Lecture Notes in Computer Science.
Springer, 2005, pp. 319–331.

[5] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and
Anna Lysyanskaya. “P-signatures and Noninteractive
Anonymous Credentials.” In: TCC. Vol. 4948. Lecture Notes in
Computer Science. Springer, 2008, pp. 356–374.

[6] Mira Belenkiy, Jan Camenisch, Melissa Chase,
Markulf Kohlweiss, Anna Lysyanskaya, and Hovav Shacham.
“Randomizable Proofs and Delegatable Anonymous
Credentials.” In: CRYPTO. Vol. 5677. Lecture Notes in
Computer Science. Springer, 2009, pp. 108–125.

[7] Mihir Bellare and Phillip Rogaway. “Random Oracles are
Practical: A Paradigm for Designing Efficient Protocols.” In:
ACM Conference on Computer and Communications Security.
ACM, 1993, pp. 62–73.

[8] Mihir Bellare and Phillip Rogaway. “The Exact Security of
Digital Signatures - How to Sign with RSA and Rabin.” In:
EUROCRYPT. Vol. 1070. Lecture Notes in Computer Science.
Springer, 1996, pp. 399–416.

[9] David Bernhard, Georg Fuchsbauer, Essam Ghadafi,
Nigel P. Smart, and Bogdan Warinschi. “Anonymous
attestation with user-controlled linkability.” In: Int. J. Inf. Sec.
12.3 (2013), pp. 219–249.

https://www.oaic.gov.au/resources/engage-with-us/community-attitudes/acaps-2017/acaps-infographic.pdf
https://www.oaic.gov.au/resources/engage-with-us/community-attitudes/acaps-2017/acaps-infographic.pdf
https://www.oaic.gov.au/resources/engage-with-us/community-attitudes/acaps-2017/acaps-infographic.pdf

98 bibliography

[10] Jean-Luc Beuchat, Jorge Enrique González-Díaz,
Shigeo Mitsunari, Eiji Okamoto,
Francisco Rodríguez-Henríquez, and Tadanori Teruya.
“High-Speed Software Implementation of the Optimal Ate
Pairing over Barreto-Naehrig Curves.” In: Pairing. Vol. 6487.
Lecture Notes in Computer Science. Springer, 2010, pp. 21–39.

[11] Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart,
and Bogdan Warinschi. “Get Shorty via Group Signatures
without Encryption.” In: SCN. Vol. 6280. Lecture Notes in
Computer Science. Springer, 2010, pp. 381–398.

[12] Johannes Blömer and Jan Bobolz. “Delegatable
Attribute-Based Anonymous Credentials from Dynamically
Malleable Signatures.” In: ACNS. Vol. 10892. Lecture Notes in
Computer Science. Springer, 2018, pp. 221–239.

[13] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group
Signatures.” In: CRYPTO. Vol. 3152. Lecture Notes in Computer
Science. Springer, 2004, pp. 41–55.

[14] Dan Boneh, Manu Drijvers, and Gregory Neven. “Compact
Multi-Signatures for Smaller Blockchains.” In: IACR Cryptology
ePrint Archive 2018 (2018), p. 483.

[15] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures
from the Weil Pairing.” In: ASIACRYPT. Vol. 2248. Lecture
Notes in Computer Science. Springer, 2001, pp. 514–532.

[16] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham.
“Aggregate and Verifiably Encrypted Signatures from Bilinear
Maps.” In: EUROCRYPT. Vol. 2656. Lecture Notes in
Computer Science. Springer, 2003, pp. 416–432.

[17] Fabrice Boudot. “Efficient Proofs that a Committed Number
Lies in an Interval.” In: EUROCRYPT. Vol. 1807. Lecture Notes
in Computer Science. Springer, 2000, pp. 431–444.

[18] Xavier Boyen and Brent Waters. “Full-Domain Subgroup
Hiding and Constant-Size Group Signatures.” In: Public Key
Cryptography. Vol. 4450. Lecture Notes in Computer Science.
Springer, 2007, pp. 1–15.

[19] Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. “Efficient
Protocols for Set Membership and Range Proofs.” In:
ASIACRYPT. Vol. 5350. Lecture Notes in Computer Science.
Springer, 2008, pp. 234–252.

[20] Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya.
“Practical UC-Secure Delegatable Credentials with Attributes
and Their Application to Blockchain.” In: CCS. ACM, 2017,
pp. 683–699.

bibliography 99

[21] Jan Camenisch and Thomas Groß. “Efficient Attributes for
Anonymous Credentials.” In: ACM Trans. Inf. Syst. Secur. 15.1
(2012), 4:1–4:30.

[22] Jan Camenisch and Els Van Herreweghen. “Design and
implementation of the idemix anonymous credential system.”
In: ACM Conference on Computer and Communications Security.
ACM, 2002, pp. 21–30.

[23] Jan Camenisch and Anna Lysyanskaya. “An Efficient System
for Non-transferable Anonymous Credentials with Optional
Anonymity Revocation.” In: EUROCRYPT. Vol. 2045. Lecture
Notes in Computer Science. Springer, 2001, pp. 93–118.

[24] Jan Camenisch and Anna Lysyanskaya. “Signature Schemes
and Anonymous Credentials from Bilinear Maps.” In:
CRYPTO. Vol. 3152. Lecture Notes in Computer Science.
Springer, 2004, pp. 56–72.

[25] Melissa Chase and Anna Lysyanskaya. “On Signatures of
Knowledge.” In: CRYPTO. Vol. 4117. Lecture Notes in
Computer Science. Springer, 2006, pp. 78–96.

[26] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and
Sarah Meiklejohn. “Malleable Signatures: Complex Unary
Transformations and Delegatable Anonymous Credentials.” In:
IACR Cryptology ePrint Archive 2013 (2013), p. 179.

[27] Sanjit Chatterjee and Alfred Menezes. “On cryptographic
protocols employing asymmetric pairings - The role of Ψ
revisited.” In: Discrete Applied Mathematics 159.13 (2011),
pp. 1311–1322.

[28] Liqun Chen, Dan Page, and Nigel P. Smart. “On the Design
and Implementation of an Efficient DAA Scheme.” In: CARDIS.
Vol. 6035. Lecture Notes in Computer Science. Springer, 2010,
pp. 223–237.

[29] Christopher Allen. The Path to Self-Sovereign Identity. http://
www.lifewithalacrity.com/2016/04/the- path- to- self-

soverereign-identity.html. [Online; accessed 17-May-2018].
2016.

[30] Dan Gisolfi - IBM. Self-sovereign identity: Our recent activity as
a Sovrin Steward. https://www.ibm.com/blogs/blockchain/
2018/05/self-sovereign-identity-our-recent-activity-

as-a-sovrin-steward/. [Online; accessed 24-Sep-2018].

[31] Darkreading. Digital Identity Makes Headway Around the World.
https://www.darkreading.com/endpoint/authentication/

digital-identity-makes-headway-around-the-world/a/d-

id/1331576. [Online; accessed 24-Sep-2018].

http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://www.ibm.com/blogs/blockchain/2018/05/self-sovereign-identity-our-recent-activity-as-a-sovrin-steward/
https://www.ibm.com/blogs/blockchain/2018/05/self-sovereign-identity-our-recent-activity-as-a-sovrin-steward/
https://www.ibm.com/blogs/blockchain/2018/05/self-sovereign-identity-our-recent-activity-as-a-sovrin-steward/
https://www.darkreading.com/endpoint/authentication/digital-identity-makes-headway-around-the-world/a/d-id/1331576
https://www.darkreading.com/endpoint/authentication/digital-identity-makes-headway-around-the-world/a/d-id/1331576
https://www.darkreading.com/endpoint/authentication/digital-identity-makes-headway-around-the-world/a/d-id/1331576

100 bibliography

[32] Hans Delfs and Helmut Knebl. Introduction to Cryptography:
Principles and Applications. Information Security and
Cryptography. Springer, 2002.

[33] Nicolas Desmoulins, Roch Lescuyer, Olivier Sanders, and
Jacques Traoré. “Direct Anonymous Attestations with
Dependent Basename Opening.” In: CANS. Vol. 8813. Lecture
Notes in Computer Science. Springer, 2014, pp. 206–221.

[34] Diego F. Aranha and Conrado P. L. Gouvêa. RELIC
Cryptographic Meta-Toolkit - Master branch.
https://github.com/relic-toolkit/relic. [Online; accessed
03-Sep-2018].

[35] Diego F. Aranha. Git Commit - "Add curve B12_P381 generated
by ZCash team." https://github.com/relic-toolkit/relic/

commit/c78652d850f28870113f1f522a4bfd095d5e2579. [Online;
accessed 17-Sep-2018].

[36] Diego F. Aranha. Pairings are not dead, just resting - ECC 2017.
https://ecc2017.cs.ru.nl/slides/ecc2017- aranha.pdf.
[Online; accessed 17-Sep-2018].

[37] ECRYPT II. D.MAYA.6 - Final Report on Main Computational
Assumptions in Cryptography. http :

//www.ecrypt.eu.org/ecrypt2/documents/D.MAYA.6.pdf.
[Online; accessed 13-Oct-2018].

[38] European Union. General Data Protection Regulation (GDPR).
https : / / www . eugdpr . org. [Online; accessed 22-May-2018].
2016.

[39] Uriel Feige, Amos Fiat, and Adi Shamir. “Zero-Knowledge
Proofs of Identity.” In: J. Cryptology 1.2 (1988), pp. 77–94.

[40] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical
Solutions to Identification and Signature Problems.” In:
CRYPTO. Vol. 263. Lecture Notes in Computer Science.
Springer, 1986, pp. 186–194.

[41] Free Software Foundation. The GNU Multiple Precision
Arithmetic Library. https : / / gmplib . org/. [Online; accessed
17-Sep-2018].

[42] Georg Fuchsbauer. “Commuting Signatures and Verifiable
Encryption.” In: EUROCRYPT. Vol. 6632. Lecture Notes in
Computer Science. Springer, 2011, pp. 224–245.

[43] Georg Fuchsbauer and David Pointcheval. “Anonymous Proxy
Signatures.” In: SCN. Vol. 5229. Lecture Notes in Computer
Science. Springer, 2008, pp. 201–217.

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic/commit/c78652d850f28870113f1f522a4bfd095d5e2579
https://github.com/relic-toolkit/relic/commit/c78652d850f28870113f1f522a4bfd095d5e2579
https://ecc2017.cs.ru.nl/slides/ecc2017-aranha.pdf
http://www.ecrypt.eu.org/ecrypt2/documents/D.MAYA.6.pdf
http://www.ecrypt.eu.org/ecrypt2/documents/D.MAYA.6.pdf
https://www.eugdpr.org
https://gmplib.org/

bibliography 101

[44] Georg Fuchsbauer and David Pointcheval. “Anonymous
Consecutive Delegation of Signing Rights: Unifying Group
and Proxy Signatures.” In: Formal to Practical Security.
Vol. 5458. Lecture Notes in Computer Science. Springer, 2009,
pp. 95–115.

[45] Georg Fuchsbauer and David Pointcheval. “Proofs on
Encrypted Values in Bilinear Groups and an Application to
Anonymity of Signatures.” In: Pairing. Vol. 5671. Lecture Notes
in Computer Science. Springer, 2009, pp. 132–149.

[46] José María de Fuentes, Lorena González-Manzano,
Agusti Solanas, and Fatbardh Veseli. “Attribute-Based
Credentials for Privacy-Aware Smart Health Services in
IoT-Based Smart Cities.” In: IEEE Computer 51.7 (2018),
pp. 44–53.

[47] GSM Association (GSMA). Digital Identity: What to Expect in
2018. https://www.gsma.com/identity/digital-identity-
expect-2018. [Online; accessed 22-May-2018]. 2018.

[48] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart.
“Pairings for cryptographers.” In: Discrete Applied Mathematics
156.16 (2008), pp. 3113–3121.

[49] Gemalto. ePassport solutions: for seamless electronic passport
migrations. https://www.gemalto.com/govt/travel. [Online;
accessed 24-Sep-2018].

[50] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The
Knowledge Complexity of Interactive Proof-Systems
(Extended Abstract).” In: STOC. ACM, 1985, pp. 291–304.

[51] Google. Google Benchmark Library.
https : / / github . com / google / benchmark. [Online; accessed
17-Sep-2018].

[52] Jens Groth. “Efficient Fully Structure-Preserving Signatures for
Large Messages.” In: ASIACRYPT (1). Vol. 9452. Lecture Notes
in Computer Science. Springer, 2015, pp. 239–259.

[53] Jens Groth and Amit Sahai. “Efficient Non-interactive Proof
Systems for Bilinear Groups.” In: EUROCRYPT. Vol. 4965.
Lecture Notes in Computer Science. Springer, 2008,
pp. 415–432.

[54] Gesine Hinterwälder, Christian T. Zenger, Foteini Baldimtsi,
Anna Lysyanskaya, Christof Paar, and Wayne P. Burleson.
“Efficient E-Cash in Practice: NFC-Based Payments for Public
Transportation Systems.” In: Privacy Enhancing Technologies.
Vol. 7981. Lecture Notes in Computer Science. Springer, 2013,
pp. 40–59.

[55] Hyperledger. Hyperledger Indy. https://www.hyperledger.org/
projects/hyperledger-indy. [Online; accessed 22-May-2018].

https://www.gsma.com/identity/digital-identity-expect-2018
https://www.gsma.com/identity/digital-identity-expect-2018
https://www.gemalto.com/govt/travel
https://github.com/google/benchmark
https://www.hyperledger.org/projects/hyperledger-indy
https://www.hyperledger.org/projects/hyperledger-indy

102 bibliography

[56] IBM. Identity Mixer. https://www.zurich.ibm.com/identity_
mixer/. [Online; accessed 22-May-2018].

[57] ISO/IEC. ISO/IEC 24760-1: Information technology – Security
techniques – A framework for identity management – Part 1:
Terminology and concepts.
https : / / www . iso . org / standard / 57914 . html. [Online;
accessed 24-Sep-2018].

[58] Neal Koblitz and Alfred J. Menezes. “The random oracle model:
a twenty-year retrospective.” In: Des. Codes Cryptography 77.2-3
(2015), pp. 587–610.

[59] Maria Dubovitskaya - IBM. Jira Ticket - FABJ-327 - Idemix - Java
SDK MVP. https://jira.hyperledger.org/browse/FABJ-327.
[Online; accessed 24-Sep-2018].

[60] Microsoft. U-Prove. https : / / www . microsoft . com / en -

us / research / project / u - prove/. [Online; accessed
22-May-2018].

[61] Alexander Mühle, Andreas Grüner, Tatiana Gayvoronskaya,
and Christoph Meinel. “A Survey on Essential Components of
a Self-Sovereign Identity.” In: CoRR abs/1807.06346 (2018).

[62] Kun Peng and Feng Bao. “An Efficient Range Proof Scheme.”
In: SocialCom/PASSAT. IEEE Computer Society, 2010,
pp. 826–833.

[63] Phil Zimmermann. PGP User’s Guide, Volume I: Essential Topics.
https://web.pa.msu.edu/reference/pgpdoc1.html. [Online;
accessed 24-Sep-2018].

[64] David Pointcheval and Olivier Sanders. “Short Randomizable
Signatures.” In: CT-RSA. Vol. 9610. Lecture Notes in Computer
Science. Springer, 2016, pp. 111–126.

[65] Johan Pouwelse, André de Kok, Joost Fleuren,
Peter Hoogendoorn, Raynor Vliegendhart, and Martijn de Vos.
“Laws for Creating Trust in the Blockchain Age.” In: European
Property Law Journal 6.3 (2017), pp. 321–356.

[66] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A
Method for Obtaining Digital Signatures and Public-Key
Cryptosystems.” In: Commun. ACM 21.2 (1978), pp. 120–126.

[67] Claus-Peter Schnorr. “Efficient Identification and Signatures
for Smart Cards.” In: CRYPTO. Vol. 435. Lecture Notes in
Computer Science. Springer, 1989, pp. 239–252.

[68] Sovrin Foundation. Sovrin Website. https : / / sovrin . org.
[Online; accessed 22-May-2018]. 2018.

https://www.zurich.ibm.com/identity_mixer/
https://www.zurich.ibm.com/identity_mixer/
https://www.iso.org/standard/57914.html
https://jira.hyperledger.org/browse/FABJ-327
https://www.microsoft.com/en-us/research/project/u-prove/
https://www.microsoft.com/en-us/research/project/u-prove/
https://web.pa.msu.edu/reference/pgpdoc1.html
https://sovrin.org

bibliography 103

[69] Sovrin Foundation. Sovrin™: A Protocol and Token for Self
Sovereign Identity and Decentralized Trust - White Paper.
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-

Protocol - and - Token - White - Paper . pdf. [Online; accessed
22-May-2018]. 2018.

[70] Quinten Stokkink and Johan Pouwelse. “Deployment of a
Blockchain-Based Self-Sovereign Identity.” In: CoRR
abs/1806.01926 (2018).

[71] TRUSTe/NCSA. 2016 Consumer Privacy Infographic – US Edition.
https://www.trustarc.com/resources/privacy-research/

ncsa-consumer-privacy-index-us/. [Online; accessed 17-Sep-
2018].

[72] The Guardian. Cambridge Analytica Data Scandal News Overview.
https : / / www . theguardian . com / uk - news / cambridge -

analytica. [Online; accessed 17-Sep-2018].

[73] Tommy Koens and Stijn Meijer. Matching Identity Management
Solutions to Self-Sovereign Identity Principles.
https : / / www . slideshare . net / TommyKoens / matching -

identity - management - solutions - to - selfsovereign -

identity-principles/1. [Online; accessed 24-Sep-2018].

[74] Trend Micro. 2012 Linkedin Breach had 117 Million Emails and
Passwords Stolen, Not 6.5M. https : / / www . trendmicro . com /

vinfo/us/security/news/cyber- attacks/2012- linkedin-

breach-117-million-emails-and-passwords-stolen-not-6-

5m. [Online; accessed 17-Sep-2018].

[75] Mårten Trolin and Douglas Wikström. “Hierarchical Group
Signatures.” In: ICALP. Vol. 3580. Lecture Notes in Computer
Science. Springer, 2005, pp. 446–458.

[76] World Economic Forum. Digital Identity – Why It Matters and
Why It’s Important We Get It Right. https://www.weforum.org/
press/2018/01/digital- identity- why- it- matters- and-

why-it-s-important-we-get-it-right/. [Online; accessed
22-May-2018]. 2018.

[77] World Wide Web Consortium (W3C). Verifiable Claims Data
Model and Representations - Working Draft.
https://www.w3.org/TR/verifiable- claims- data- model.
[Online; accessed 9-May-2018]. 2017.

[78] World Wide Web Consortium (W3C). Verifiable Credentials Data
Model 1.0 - Editors Draft: Privacy Spectrum. https://w3c.github.
io/vc-data-model/diagrams/privacy-spectrum.svg. [Online;
accessed 22-May-2018]. 2018.

[79] World Wide Web Consortium (W3C). Verifiable Credentials Data
Model 1.0 - Editors Draft. https://w3c.github.io/vc-data-
model/. [Online; accessed 22-May-2018]. 2018.

https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://www.trustarc.com/resources/privacy-research/ncsa-consumer-privacy-index-us/
https://www.trustarc.com/resources/privacy-research/ncsa-consumer-privacy-index-us/
https://www.theguardian.com/uk-news/cambridge-analytica
https://www.theguardian.com/uk-news/cambridge-analytica
https://www.slideshare.net/TommyKoens/matching-identity-management-solutions-to-selfsovereign-identity-principles/1
https://www.slideshare.net/TommyKoens/matching-identity-management-solutions-to-selfsovereign-identity-principles/1
https://www.slideshare.net/TommyKoens/matching-identity-management-solutions-to-selfsovereign-identity-principles/1
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/2012-linkedin-breach-117-million-emails-and-passwords-stolen-not-6-5m
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/2012-linkedin-breach-117-million-emails-and-passwords-stolen-not-6-5m
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/2012-linkedin-breach-117-million-emails-and-passwords-stolen-not-6-5m
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/2012-linkedin-breach-117-million-emails-and-passwords-stolen-not-6-5m
https://www.weforum.org/press/2018/01/digital-identity-why-it-matters-and-why-it-s-important-we-get-it-right/
https://www.weforum.org/press/2018/01/digital-identity-why-it-matters-and-why-it-s-important-we-get-it-right/
https://www.weforum.org/press/2018/01/digital-identity-why-it-matters-and-why-it-s-important-we-get-it-right/
https://www.w3.org/TR/verifiable-claims-data-model
https://w3c.github.io/vc-data-model/diagrams/privacy-spectrum.svg
https://w3c.github.io/vc-data-model/diagrams/privacy-spectrum.svg
https://w3c.github.io/vc-data-model/
https://w3c.github.io/vc-data-model/

104 bibliography

[80] ZCash. BLS12-381: New zk-SNARK Elliptic Curve Construction.
https://blog.z.cash/new-snark-curve/. [Online; accessed
17-Sep-2018].

https://blog.z.cash/new-snark-curve/

A
P R I M I T I V E E X I S T I N G S I G N AT U R E S C H E M E S

a.1 bls multi-signatures

Boneh et al. [16] designed a signature scheme, where n signatures on
n distinct message from n distinct signers can be combined into a
single short signature. The scheme reduces the total signature size
and the number of pairing during the verification phase. The
signature scheme relies on hash functions, which are viewed as
random oracles [8].

The BLS Signature scheme is as follows:

KeyGen(): Choose random x R← Zq and set h ← gx
2 ∈ G2. Output:

pk := h and sk := x.

Sign(sk, m): Output: σ = H1(m)x ∈ G1.

Verify(pk, m, σ): If e(σ, g2) = e(H1(m), pk) output 1 otherwise 0.

a.1.1 Signature Aggregation

BLS Signatures can be aggregated together into a single signature.
Given (pki, mi, σi), where i = 1, . . . , n , m1, . . . , mn are all distinct
messages and σ1, . . . , σn ∈ G1, the signatures can be combined into
one short signature:

σ← σ1 · · · σn ∈ G1 .

The aggregated signature can be verified by checking:

e(σ, g2)
?
= e (H1(m1), pk1) · · · e (H1(mn), pkn) .

A disadvantage of the BLS Multi-Signature scheme is the
requirement where all messages have to be distinct. When all
messages m1, . . . , mn would be the same, the verification can be
reduced to computing just two pairings:

e(σ, g2)
?
= e (H1(m), pk1 · · · pkn) .

However, this leads to the need to multiply public-keys together.
Multiplying public-keys is susceptible to a rogue public-key attack,
which will be discussed next.

106 primitive existing signature schemes

a.1.2 Rogue Public-Key Attack

In the rogue public-key attack, an adversary chooses a random secret

x2
R← Zq, and computes pk2 ← gx2

2 ∈ G2. Given a known public-key
pk1, the adversary can compute a rogue public-key pkR ← pk2/pk1.
Instead of publishing pk2, the adversary will publish pkR as its public-
key.

The adversary computes σ = H(m)x2 . The adversary is now able
to convince others that both pk1 and pkR have signed a message m,
without the knowledge of secret key of pk1. The verification of the
"aggregate" signature holds, because:

e(H(m), pk1 pkR) = e(H(m), gx1
2 gx2−x1

2)

= e(H(m), gx2
2)

= e(H(m)x2 , g2)

= e(σ, g2) .

Therefore, this attack can be prevented by enforcing the
distinctness of the messages, since the secret exponents are kept
separate by the different base elements. This attack can also be
prevented by requiring a proof of knowledge, that proofs that the
public-key holder knows the secret exponent of the published
public-key. However, this method requires an unnecessary overhead
of zero-knowledge proofs and computation.

a.2 bls multi-signatures with public-key aggregation

Boneh et al. [14] proposed a solution which allows multiple signers
to sign the same message and aggregate the signatures together
while preventing the rogue key attack. Every signature will be
exponentiated with a hash value containing all public-keys of the
signers before aggregation. During verification, the verifier can
verify the signature by computing a aggregated public-key
apk ← ∏n

i=1 pkH(pki ,{pk1,...,pkn})
i . Because all public-keys are first

exponentiated with a random hash value, the public-keys cannot be
combined anymore as in the rogue key attack. The MPS signature
scheme is as follows:

KeyGen(): Choose random x R← Zq and set h ← gx
2 ∈ G2. Output:

pk := h and sk := x.

Sign(sk, m): Output: σ = H1(m)x ∈ G1.

Aggregate(〈pki, σi〉ni=1): Output: σ← ∏n
i=1 σ

H(pki ,{pk1,...,pkn})
i

Verify(〈pki〉ni=1, m, σ): Compute apk ← ∏n
i=1 pkH1(pki ,{pk1,...,pkn})

i . If
e(σ, g2) = e(H1(m), apk) output 1 otherwise 0.

A.3 structure-preserving signatures 107

a.2.1 Batch Verification

Given (apki, mi, σi), where i = 1, . . . , n , m1, . . . , mn are all distinct
messages and σ1, . . . , σn ∈ G1 are aggregated signatures, the
signatures can be combined into a single batch signature:

σ← σ1 · · · σn ∈ G1 .

The aggregated batch signature can be batch verified by checking:

e(σ, g2)
?
= e (H1(m1), apk1) · · · e (H1(mn), apkn) .

Notice here that if all aggregated public-keys apk1 = · · · = apkn are
the same, then the verification can be reduced to two pairings:

e(σ, g2)
?
= e (H1(m1) · · ·H1(mn), apk) .

a.3 structure-preserving signatures

Structure-preserving signatures [1] are pairing-based signatures
where the verification keys, messages, and signatures all consist
solely of group elements. This allows the verification to be done by
computing and comparing pairings and multiplications. In fully
structure-preserving signature schemes, the secret key also only
consists of groups elements.

Groth [52] has defined a structure-preserving signature scheme
and a fully structure-preserving signature scheme for large
messages that allows the signing of N = n · m group elements with
(n + 2) signatures. The protocol can either create randomizable or
strongly existentially unforgeable signatures.

Camenisch et al. [20] simplifies the structure-preserving signature
scheme of Groth to sign n group elements resulting in (n + 2)
signatures, and uses the randomizability property. The simplified
scheme is as follows:

Setup(): Choose random yi
R← G2 for i = 1, . . . , n. Output: y1, . . . , yn.

Gen(): Choose random v R← Zq and set V ← gx
2 ∈ G2. Output: pk :=

V and sk := v.

Sign(sk,
→
m): Choose random r R← Z∗q and set R← gr

1, S← (y1 · gv
2)

1/r,
and Ti ← (yv

i ·mi)
1/r. Output: σ = (R, S, T1, . . . , Tn).

Verify(vk, σ,
→
m): For σ = (R, S, T1, . . . , Tn), if

e(R, S) = e(g1, y1) e(V, g2) and e(R, Ti) = e(V, yi) e(g1, mi) for
i = 1, . . . , n, then output 1 otherwise 0.

Rand(σ): For σ = (R, S, T1, . . . , Tn), choose a random r′ R← Z∗q . Let

R′ ← Rr′ , S′ ← S1/r′ and T′i ← T1/r′
i . Output

σ′ = (R′, S′, T′1, . . . , T′n).

108 primitive existing signature schemes

a.4 short randomizable signatures

Pointcheval and Sanders [64] came up with a structure-preserving
signature scheme as a more efficient alternative to CL-signatures [24].
It allows a user to get a signature on a secret value, and prove the
secret value multiple times without linkability of the provided proofs.
Realizing this scenario with conventional signature schemes require
the prover to commit the signature, and carry out a zero-knowledge
proof of knowledge about the commitment opening to a signature on
the secret value. With PS-signatures, the prover can randomize the
signatures and send those to the verifier to prove that the signature
is valid on the secret value while remaining unlinkable. Unlinkability
relies on the DDH assumption in G1 (Assumption 3), which lead to
the requirement to use asymmetric pairings.

Keygen(): Choose random h R← G1, h̃ R← G2 and (x, y) R← Zq.
Compute (X, Y) ← (hx, hy) and (X̃, Ỹ) ← (h̃x, h̃y), set sk ← X
and pk← (h, Y, h̃, X̃, Ỹ).

Commit(m): Choose random t R← Zq, and compute C ← htYm.
Output: (C, t).

Sign(sk, C): Choose random u R← Zq, and outputs σ′ ← (hu, (XC)u).

Unblind(σ′, t): σ′ = (σ′1, σ′2). Output σ← (σ′1, σ′2/σ
′t
1).

Verify(pk, σ, m): Parse σ = (σ1, σ2). If σ1 6= 1G1 and e(σ1, X̃ · Ỹm) =

e(σ2, h̃), output 1 otherwise 0.

Randomize(σ): Parse σ = (σ1, σ2). Choose random t R← Zq and output:
σ′ ← (σt

1, σt
2)

GenPoK(σ): Parse σ = (σ1, σ2). Choose random r, t R← Zq. Compute
σ′ ← (σr

1, (σ2 · σt
1)

r) and output (t, σ′).

	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	1 Introduction
	1.1 Digital Identities and Credentials
	1.2 Privacy Awareness
	1.3 Self-Sovereign Identity
	1.4 Anonymous Attestation
	1.5 Delegatable Signing Rights for Credentials Issuance
	1.6 Use Cases
	1.7 Research Question
	1.8 Contributions
	1.9 Research Outline

	2 Background
	2.1 Digital Identities and Credentials
	2.2 Anonymous Credentials
	2.3 Self-Sovereign Identity

	3 Primitives and Prior Art
	3.1 Bilinear Groups
	3.2 Computational Problems
	3.3 Random Oracle Model
	3.4 Zero-Knowledge Proofs
	3.5 Prior Art
	3.6 Research Challenges

	4 System Model Definition
	4.1 Actors
	4.2 Algorithms
	4.3 Properties

	5 Protocol Design
	5.1 Generic Construction
	5.2 Aggregation of Attribute Signatures
	5.3 Delegation Chain
	5.4 Randomizability of the Signatures
	5.5 Anonymous Credentials
	5.6 Group Element Proof of Knowledge in Pairings
	5.7 Conclusion / Key Takeaways

	6 Preliminary Signature Schemes
	6.1 Randomization by Multiplication
	6.2 RBLS: Randomizable BLS Multi-Signatures with Public-Key Aggregation
	6.3 RSPS-M: Randomizable Structure-Preserving Signatures by Multiplication
	6.4 SRS-M: Short Randomizable Signatures by Multiplication

	7 ENTRUST: Consecutive Delegatable Signing Rights for Anonymous Credentials
	7.1 Overview
	7.2 Aggregated Signatures in a Credential
	7.3 Randomizability
	7.4 Construction
	7.5 Signature Schemes
	7.6 Concrete Instantiation
	7.7 Security Discussion

	8 Evaluation
	8.1 The Experiment Setting
	8.2 RELIC Library Benchmarks
	8.3 Optimalization of Verification Pairings
	8.4 Complexity
	8.5 Run-Time Analysis
	8.6 Comparison to DAC
	8.7 Conclusion

	9 Discussion and Future Work
	9.1 Discussion
	9.2 Future Work
	9.3 Conclusion

	 Bibliography
	A Primitive Existing Signature Schemes
	A.1 BLS Multi-Signatures
	A.2 BLS Multi-Signatures with Public-Key Aggregation
	A.3 Structure-Preserving Signatures
	A.4 Short Randomizable Signatures

