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Chapter 1  Introduction

A database is not about storing away archive data; i t  is more about

searching and updating live, dynamic data. Database indexes are the

search engines for the database, and therefore constitute an important part

of any database management system. They are a means for the database

management system to deal with the data. From the application

perspective, however, the index is invisible.

1.1 The problem
An efficient index is a fundamental requirement for good performance in a

database. An accurate, fast index will  result in a good quality, quick-

responding database. An investment in an efficient index to the database

is always a good idea. That is why in many commercial systems, a

specialized handcrafted index is the classical choice to achieve the

maximum efficiency possible. A specialized index is an index that

supports a specific database application in a specific domain using

predetermined structures and access methods as well as data types and

queries. A specialized index for each new application is generally better

for code efficiency and performance. The tradeoff is a lot of development

time, and cost,  normally affordable only by large corporations. Another

choice is to make use of framework technology to develop a framework

for a family of indexes, and reuse it  to develop different indexes for

different applications. This largely reduces the cost of providing a new

index. These frameworks produce an application that is less expensive in

terms of cost and time investments. Sometimes, however, frameworks

provide applications that have less efficient performance than a

specialized application. J.  M. Hellerstein explains in [HNP95] that the use
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of their framework for database indexes does not always provide an

efficient lookup.

Early frameworks exist that apply this idea. They generate flexible code

with some hot spots that can be easily adjusted to develop different

applications but they result  in a generic source code that  is often complex

and not easy to read or modify; characterized by many as having a steep

learning curve. The reason is that in one source code, the framework is

meant to satisfy all  the possible needs of the future members of a family

of application at one time. We can see this methodology as concentrating

the complexity of future expansions in one stage; the source code. That is

one reason why the resultant source code is often less user-friendly than a

well-written specialized code. Cost-wise, however, it  is a very good

alternative.

In some cases, as part of their evolutionary lifecycle, frameworks

themselves need some maintenance work. A typical case of modification

is by adding new features to the framework to serve a larger family of

applications than the original framework was meant to serve. That usually

means adding further code even to the cold spots, or frozen spots in the

source code, which were not meant to be touched in the original

framework. This should lead to another framework that covers more

applications than the original one. As a side effect, however, it  also often

leads to an even more generic code that is bigger and less user-friendly.

The reason is the same, namely concentrating the complexity of evolution

in one stage; the source code. As this trend progresses, the framework,

going in its normal lifecycle, grows bulkier and less user-friendly with

more patches added to it .  In the end, time comes when it  is necessary to

recycle some ideas from this framework and use them to develop a new

framework to replace it .

The Generalized Index Search Tree, GiST   [HNP95] is an example. GiST

is an existing framework of a generalized index system. It  has friendly hot

spots that can be adapted to different key types and access methods. The
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rest of the source code, however, is meant to be black box so it  is not user

friendly. GiST tried to address all  possibilities in the same piece of code,

so it  ended up with a large source code that is complex and not easy to

follow or comprehend, especially when there is no design documents other

than the few pages explaining how to adapt the hot spots.  The source code

itself, largely influenced by the C programming language, has poor

object-oriented style.  Despite the efforts to cover all  cases, the original

GiST did not cover the similarity search trees so it  was added later to it

[Aok98] as part of the framework evolution cycle. This, however, made

the source code even more unreadable as the modification was spread all

over the original code. Another addition to visually fine-tune the access

method, the amdb [SKH99] was also added later on. This made GiST more

useful,  but it  almost doubled the size of the already large code. In

general,  we can see that the additions to the framework, albeit useful,  had

disadvantages with them. 

As the framework development methodologies improve, these problems

are being recognized and addressed. The load on the source code should

be diffused; i .e.  the complexity of expansion should be spread to the

earlier stages of framework development, following the motto the earlier

the better .  This would help getting closer to the goal of producing

frameworks that achieve the advantages of both worlds: the specialized

code with efficiency, understandability, and maintainability, and the

framework-reusable code with its inherited advantages of efficient time

and cost utilization. On the evolutionary side, being able to modify the

early stages of the framework, like its architecture and design as well as

the code, in a constant process, could mean a better evolution as the

framework can be easily redeveloped instead of recycled.

1.2 Our Work
Frameworks have a good potential for improving the process of

developing good quality software. They combine the experience of expert
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programmers (most likely not domain experts) with that of domain experts

(most likely not expert programmers) into a mass production environment

for applications. They allow for producing several applications using

virtually the same time, money and experience investment, thus the cost

per application is cheaper as the total development cost is divided

between several applications. 

While mass production greatly helps make the application development

affordable, it  l imits the freedom of choice a developer has [BCC+02].

Ford, the father of mass production technique in automobile industry,

reduced the cost per car several folds using early, ad hoc mass production

methods. Nonetheless, they had their concept of freedom of choice as you

can have any color you want in your new car, as long as it  is black .  As

the mass production concept was researched and improved, it  now has

better options, better quality, and better products that rival the custom-

made ones at a fraction of the cost per application.

1.2.1 The Domain
Butler is leading a research group in framework methodologies and

development for scientific applications. It  is aimed at adopting and

improving frameworks as a technique to produce good quality software.

He is interested in framework development and evolution methodologies

that make for better frameworks. 

A better framework would:

-Produce good quality software (by combining effort of domain

experts with that of expert programmers)

-Allow non-experts to easily develop professional application (most

of experience is already in the framework) 

-Promote code reuse to reduce time and cost and enhance quality.

-Produce flexible applications that are user-friendly and

modification-friendly, not only in final stage (source code) but

rather in all  development stages. 
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-Be user-friendly and modification-friendly with well-defined

development, documentation, application and evolution lifecycle.

On the domain front,  Butler sees that “The research on software

methodology in an academic setting needs a concrete case study in

order to evaluate the methodology and models”  [BCC+02].

He is interested in the database domain as a case study to validate the

methodology. This resulted in the ongoing development of the Know-It-

All (KIA) project,  a “framework for DBMS that support a variety of data

models of data and knowledge, the integration of different paradigms and

heterogeneous databases” [BCC+02]. 

The KIA project involves multiple subframeworks that are integrated

together in an adaptable DBMS context.  It  started by supporting the

traditional relational database model, and it  is expanding to support other

types of database applications using different data models. Eventually, it

will be applied to advanced applications in bioinformatics.

1.2.2 The Programming Language
The language of the source code is essential in the development process.

In the end, the framework needs to be implemented using a programming

language. Designing for the interface rather than for the implementation is

always a good choice to follow, making the design implementation

independent which allows for more freedom in the design. The

programming languages are nonetheless more than just implementations.

Concepts and features of some programming languages like inheritance

and polymorphism can and should be reflected on the design stages to

improve the quality. In other words, selecting a suitable programming

language to do the job can certainly affect the quality of the software. Dr.

Butler selects the C++ as one of the languages to write the

implementations of different subframeworks of the KIA project. 
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As Stroustrup [Str94] quotes Alexander Stepanov summarizing the

experience of writing and using a major library of data structures and

algorithms:

“C++ is a powerful enough language – the first such language in our

experience – to allow the construction of generic programming

components that combine mathematical precision, beauty, and

abstractness with the efficiency of non-generic hand-crafted code.” 

It  is worth mentioning that this  major library of data structures and

algorithms mentioned by Stroustrup was the STL, designed by Alexander

Stepanov and Meng Lee. The ANSI/ISO committee later recognized it  as

part of the standard library. STL is a library of high quality and efficiency

with great emphasis on code reuse, certainly good credentials influenced

by the language of implementation of that library, the C++. 

The ever-evolving programming languages are introducing new features to

improve their capabilities. The C++, one of the popular languages is no

exception. The recent adoption of an ANSI/ISO standard for the C++

language with the STL library as part of the standard library has many

advantages for the programming community. STL makes extensive use of

templates, and favoring them over the traditional inheritance, casting and

void* has brought advantages with it  regarding code modularity and

performance efficiency.

Templates
Collins dictionary defines template as a piece of metal or plastic cut into

a particular shape and is used to reproduce the same shape many times.

Webster’s defines it  as a mold used as a guide to the form of a piece being

made. While this concept can apply to frameworks themselves, being seen

as templates for design ruse, templates can also be adopted to the lower

stages like source code, allowing for code reuse. Instead of writing the
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same code several times with several similar pieces, we can factor out the

similarity of these pieces into one template ,  and write the code once only

using this template. Later we can use the same code many times by

replacing the template with actual pieces of the same shape. This saves on

the amount of code to be written (code reuse) and improves run-time

performance (efficiency).   

As Stroustrup [Str94] explains

“The template mechanism is completely a compile-time and link-time

mechanism. No part of the template mechanism needs run-time support” .  

1.3 Contribution of the Thesis
This thesis introduces a design of a generalized index framework, a

subframework of the KIA project.  The generalized framework is capable

of producing tree-based indexes that are adaptable to different data / key

types, different queries, and different database application domains. We

produce several models of the index framework; analysis, architecture,

design and interface, and we apply them to different index applications

and show that the development of each of these applications is reflected

in all  models. Developing a new application using this framework starts at

the earliest stage; the requirements analysis, by reusing the existing

analysis to determine the requirements for the new application. This will

determine the necessary changes or replacement in the system

architecture. We obtain the new architecture from an existing one by

applying the necessary changes mapped from the analysis.  The new

architecture will help us identify the necessary changes in the design. We

map these changes to the corresponding design models (structural and

behavioral) and obtain a new design. As we get a new design, it  will  help

us map the changes from it  to the interface.

To follow these steps, we build a modular framework by applying the STL

modularity concept in the analysis,  architecture, design and interface

stages. We develop a new set of models for an index in different
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application domains; linearly ordered domain, general domain, and

eventually similarity search domain. This will  produce the reusable

models we need for all  the development stages of the framework, not just

for the source code. Using coherent, decoupled building blocks allows us

to locate and replace certain blocks in each model to obtain a new model

with no major impact on the rest of the model. This makes modifications

limited to specific regions of the system. A wealth of off-the-shelf STL

modules can be used in the replacement process. The framework also

allows for introducing new compatible modules as needed. 

In the end we can have a new index (and thus a new source code) for each

new application. Each code would be a pseudo-specialized source code

that is more adjusted to its specific application than one generic code

meant to serve all  the possible applications. 

1.4 Layout of the Thesis
Chapter 1 gives an introduction with an overview of the work of the

research group. Chapter 2 presents a development environment analysis of

the STL modularization concept and how to adopt its building blocks

approach to decouple system modules. Chapter 3 gives an example of

database indexes. Chapter 4 provides a context analysis of using an index

system in a DBMS environment, and the relation between an index and

both its upper level user; the application, and its lower level server; the

database. Chapter 5 includes the design rationale and the general analysis,

architecture, and design of the index system. We then provide examples of

adapted systems for each of linearly ordered domain (chapter 6), general

domain (chapter 7),  and similarity search database (chapter 8). Chapter 9

gives a summary and future work. 

We assume the reader is familiar with the Unified Modeling Language

(UML) [BRI99], and the concepts of object-oriented design [Bch94].
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Chapter 2   The ST L   

The Standard Template Library, STL, is not just another C++ library

among many libraries available today; it  is a rather important addition to

the C++ programming community. One reason is in the word “Standard”.

The ANSI/ISO standard committee accepted the STL as part of the C++

standard library (ISO/IEC 1998). It  is “A particularly carefully

constructed library”, [Bry00]. Another technical reason is in the word

“Template”. The STL is using the template mechanism of the C++

language and extends it  to new dimensions by using interoperable

components concept. As Matthew Austern [Aus99] states, “Computer

programming is largely a matter of algorithms and data structures”. The

STL is based on separating algorithms from data structures as two

different types of generic building blocks. It  also introduces other generic

building blocks (e.g. iterators, functors, container adaptors) to work as

adaptors or glue to allow for building a large system using a combination

of these blocks. This emphasizes code reuse. STL allows for new building

blocks to be written and put to work with the existing ones, thus

emphasizing flexibility and extendibility. This makes the STL particularly

adaptive to different programming contexts including algorithms, data

structures, and data types.

Part 2.1 introduces some of these building blocks with brief examples.

Part 2.2 shows how to connect them together to build a useful system. 

2.1 STL Building Blocks
The STL building blocks are meant to be largely independent of each

other. They have different types, and a block of one type can connect and

work correctly with other blocks of the same- or different types, giving an

endless number of possible correct combinations. 
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This section introduces some of these blocks with brief examples to

demonstrate their context.

 

2.1.1 Containers
A container is a common data structure that stores a group of similar

objects, each of which can be a primitive data type, a class object, or –as

in the database domain- a data record.

The container manages its own objects:  their storage (see Allocators) and

access (see Iterators).  The stored objects belong to the container and are

accessed through it .  Each container provides a set of public type

members, data members and member functions to provide information,

and facilitate the access to its elements. Different container types have

different ways of managing their objects. In other words they offer

different sets of functionality to deal with their objects.  Storing an object

requires it  to have some identity to help access it  back. In computer

science, objects are identified by their physical existence, so two exact

copies of the same object are considered as two different objects

occupying two different areas in the memory with two different  identities.

Object database follow the same concept by concentrating on objects as

the elements, thus allowing for two similar copies to be stored as two

different objects.  In relational database, on the other hand, objects are

identified by their contents, so two exact copies of the same object are

considered as one object occupying one area in the storage with one

identity. This is mainly because relational model is concerned with

storing data, rather than objects, so it is considered redundant to store two

copies of the same data. For simplicity, we will consider the first  storage

concept only (the object concept) as a general concept. The relational

database concept can be considered in a larger, more specialized

discussion. Containers can be classified according to the way they store

and allow access to their objects into sequential containers and
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associative containers. They allow access to their elements either in a

sequential or a random access method.

Tree containers are more complex data structures that can be build using

some of the STL containers. Tree containers have internal structure that is

controlled by the design of the tree, and they are built  in multiple levels.

Access methods in tree containers are also more complex than the other,

one-level containers. Each access request by the user typically involves

more than one element of the tree. We can consider this type of access as

automatic access since it  progresses internally from one tree element to

the other without user intervention. We can build database indexes as tree

containers. Details of these structures are provided in the design of

database index containers, chapter 5. 

Table2.1 shows a brief comparison between different access types for the

containers. 
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Table 2.1: Comparison between Different Access Types

Access
Category

Container
Category

Number
of Levels

Access Mechanism

Sequential
access

Sequence
container

One Container knows physical ID of
one element. Each element knows
physical ID of one other element
(next element).  No logical ID.
User can advance to next element
only. Current element translates it
to one physical ID.

Indexed
random
access

Sequence
container

One Container knows physical ID of
all  elements. Each element is
donated logical ID equals its
position. Container binds
positions with Physical ID’s. User
can directly go to any position.
Container translates it  to one
physical ID. 

Keyed
random
access

Associative
container

One Container knows physical ID of
all  elements. Each element has
intrinsic logical ID (a key).
Container binds keys with
physical IDs. User asks for any
key. Container translates it  to
one/more physical ID.

Automatic
access

Tree
container

Multi
level

Each element has logical ID; a
key. Container knows physical
and logical ID of some elements.
Each element knows physical and
logical ID of some more
elements. User asks for any key.
Container translates key to some
elements, each of which further
translate same key to other
elements. This continues until
reaching terminal elements.  
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2.1.2 Container Adaptors
Containers have some characteristics (associative, or sequential

containers with random or sequential access, etc.),  which will determine

the functionality offered by the container to the user (how to access its

elements, how to insert or delete an element, and even how to name an

element).

Sometimes the user might be interested in only one part of this

functionality; the rest is not to be used at all .  In this case we might want

to use the original container while leaving the unused functions in it ,  or

we might want to mask them from the user, it  accidental use of them could

cause problems. In this case we may use a container adaptor to help mask

the unused functions. It  will  have an interface to the user offering only

those functions the user is allowed to use; the adaptor then simply

translates them to the ones offered by the original container. The rest of

the unused functions will  never be called, as the adaptor does not allow

the user to access them. Another use of container adaptor is when the

functions used by the user have different names that those offered by the

container.  Instead of changing the signature (the name or argument or

both) of the functions used by one party (the user or the container) to

accommodate the other, an adaptor can be used for this purpose. It  takes

the user call to a particular function and delegates the call to the suitable

function(s) in the container.

2.1.3 Template Parameters
Containers are made independent of the types of the objects they store by

using template parameters. Each container type is implemented only once

using a general template parameter as the type of objects stored in it ,

allowing the programmer to completely implement the desired

functionality of the container without knowing the type of objects that

will be stored in it .
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template <class T> class vector { 

//implementation in terms of template T as

//the generic type for the stored elements  

    }

Figure 2.1: The Container and Templates

Later on when the container is to be used, an instance of it  is created and

passed the type of objects to be stored in, be it  an int ,  a double ,  or a

complex user defined type. This parameterization allows for code reuse by

making the same container code usable many times. Different container

object of the same class can be instantiated and passed - as template

parameters- different types of objects to store.

vector <int> intVec ;

vector <student> studentListVec;

The programmer has different container types (with different

functionality) to select from, according to the application needs. 

    ( template  parameter  1)

✱     ( template  parameter  2)

    ( template  parameter  3)

Container
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2.1.4 Iterators
Containers do not allow direct access to their stored objects, but rather

through another class called an Iterator. The Iterator is an object that can

reference an element in a container. It  allows programmers to visit  each

element in a sequential or random (indexed) way depending on the type of

the container.

X++
++X
X--  
 -- X

Increment /  decrement

X + n
X – n 

Move n elements forward / backward

X = Y    
X+=n     
X - =n 

Assign to /  from an iterator

X-Y            Distance between two iterators

X = = Y
X != Y  
X>Y   
X <Y
X>= Y
X <=Y 

Logical comparisons

X [n] 
*X 

Access

Table 2.2: Iterator Operations

This is another technique that adds to the concept of code reuse.

Programmers do not need to know the exact interface to different

containers to use them. They only need to know one common interface;

that of the iterator.  Different container types are readily accessible
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through the same piece of code, since all  containers support iterators that

have the same interface. This allows for changing the container type

without significantly changing the code that is using the containers. 

Iterators support some or all  of the following operations, depending on

the container they are accessing. Table 2.2 lists these operations

associated with two iterators X, Y and an integer n.

Figure 2.2: The Iterator Interface

2.1.5 Iterator Traits 
The STL iterators have become a standard way of dealing with containers.

Each iterator type posses a standard set of characteristics that completely

describe it .  Some of these characteristics are a set of types associated

with each specific iterator type. A function, when passed any iterator

through its argument, should be able to extract the different type

information associated with that particular iterator.  For example, an

Iterator

I terator

I terator

Container

Container

Container

Program

  I terator   ++ ;
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iterator points to an element, and a function that receives an iterator

should be able to find out the type of that element.   

Some of these types are shown in figure 2.3.

value_type;  //The type of the element the iterator points to.

difference_type; //A signed value indicating the distance between 

//two iterators 

pointer; //Pointer to the type_value of the iterator.

reference; //Reference to the type_value of the iterator.

iterator_category //A tag telling the category of the iterator.

Figure 2.3: Some Standard Iterator Associated Types

2.1.6 Algorithms
Iterators separate the logic from the container types and element types

stored in them. The same algorithm, written once, can be applied to

different containers with different stored elements by using iterators in

the algorithm code. This allows for a complete implementation of generic

algorithms without knowing the exact type of the container (its

functionality) or the type of elements stored in it .

This is achieved by writing the algorithms to deal with a standard Iterator

interface common to all  containers. Later in the program, these algorithms

can be imported and added to the existing code and used directly without

modifications, assuming that the existing code is using the Iterator-

Container-Template building concept. This is a further contribution to the

code reuse in importing and using already written algorithms in our code.

The algorithm shown in figure 2.4, which is already implemented in STL,

will fill  any container with any value of type T. All i t  needs is a standard

iterator (of type ForwardIterator) that refers to some container, an object

value of type T to use in filling the container, and a compatibility

relationship between T and the type stored in the container.
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template <class ForwardIterator, class T>

void fill (ForwardIterator   first,

    ForwardIterator   last,

    Const T&             value) ;

Figure 2.4: An STL fill  Algorithm

Later in our code we can use this algorithm to fill  a specific container

with a suitable type of elements. By suitable we mean that the type T of

the value must be assignment-compatible with the type of elements the

container stores. This is because the algorithm will perform the

assignment operation from value into container elements. For an

algorithm to access the elements of a container, i t  needs to find its

beginning and end positions (in fact the beginning and the past-the-end

positions, an STL standard, denoted by the [a,b) notation which means the

range from a to b including a and excluding b) or more generally any

starting and ending position of a sub range within the container where the

algorithm will be allowed to work. In the above algorithm, we see that it

is allowed to work within the range [first ,  last).  For some data structures,

like an array object Arr  of n elements, it  is easy to find its beginning

address, which is the array name Arr  i tself,  and the past-the-end address,

which is the address Arr+n. For STL containers, however, these positions

cannot, in general, be easily found. Therefore each container must provide

two methods begin( ), and end( ) that return an iterator to locate its first

and past-the-end positions respectively. They can then be assigned to

other iterators or passed directly to the algorithm when using it  as in the

following code.

vector<int> myVector(100); //creates a vector of 100 integers

fill (myVector.begin ( ), myVector.end( ), 1); 
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Figure 2.5: Using Same Algorithm for Different Containers

llowing the STL standard process for templates, containers,

rs, and algorithms when building a database index, it  will be easy

end the code to support new data types, new queries, new access

ds and produce a readable standard code with some off-the-shelf
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sketches the concept of using different algorithms with different

containers.

2.1.7 Functors
Function objects,  or functors,  are generalization of function pointers

[Rob00], the same way as iterators are generalization of pointers. They

add more functionality to them, making them much more powerful and

conformant to STL specifications for building blocks. Function pointers

can be bound to one of many functions at compile- or runtime depending

on a condition (like user input for example). They are then used to

perform the action they were bound to by overloading the operator ( ) (the

call operator) on them.

2.1.8 Function Adaptors
Some functions accepted two parameters in their argument and a

compatible binary functor (that represent a binary operation). The

function will call the functor, pass its two parameters to it  as operands,

and do something with the returned value from the functor.  For a function

that accepts a functor of type BinaryPredicate, an implementation would

look like the one shown in figure 2.6.

There are other types of functors defined in the STL, like UnaryFunction,

(which take one parameter as input and return a result) and

UnaryPredicate (actually called “Predicate”, and takes one parameter as

input and return a Boolean). What can we do if we have a function that

takes only one parameter in its argument and we want to pass to it  a

binary functor, l ike less ( ) .  How can the function obtain the second

operand to pass it  to the functor? Also assume that we want to pass a

binary functor to a function that is expecting a unary functor in its

argument instead?
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less <double> P;

plus <int> Q;

int Fn1 (int a, int b, Q ( ) ) { return  Q (a, b) ;}; 

//Fn1 expects a binary functor that returns an int, 

//a functor of type BinaryFunction.

bool Fn2 (double a, double b, P ( ) ){return P (a, b) ;} ; 

// Fn2 expects a binary functor that returns a bool, 

// a functor of type BinaryPredicate.

Figure 2.6: Functions with Different Functor Types

The STL provide adapters that can adjust this kind of irregularity when

combining the building blocks, so that we can still  put some blocks

together that seem incompatible at  first  sight.

Passing sequences as input parameters.

The main advantage of the functors and adapters is that they can be

applied repeatedly on a sequence of elements; a container.  We can write

(or reuse) our functions and pass them a container (or more) and functors

with adapters if needed.

The function F4 ( )  can be passed a complete sequence of elements (a

container) to test  for the elements that are less than 5 ,  and do something

to those elements (e.g. replace them with value 10). So we pass to F4 ( ) a

container of elements to test  (by passing an iterators to first- and past-the-

end positions) and a functor less ( ) which is bound to 5 to be compatible

with F4( )

F4 (iterator first, iterator last, bind2nd ( less <int> ( ), 5 );
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F5 accepts two sequences and a binary functor that applies a binary

operation to them, element by element and produces a new sequence of

the results. Note that we need to pass three containers to the function: the

two input containers and the output container to be filled with the results.

Note also that we need the size of one input container only (the smaller of

the two, passed before the larger one, if they were not equal in size) since

the algorithm will  stop as soon as any input container is exhausted.  We

pass the beginning and past-the-end positions of first container, and the

beginning of second input container,  and the beginning of the output

container

Template <class InputIterator, class OutputIterator, class BinaryOperation >

OutputIterator manipulateContainers (InputIterator           begin1,    

 InputIterator           end1, 

   InputIterator           begin2,  

   OutputIterator        result, 

   BinaryOperation    bin);

Figure 2.7: Passing Multiple Containers to a Function

And we can use the function as shown in figure 2.8. Note that the

container list  provides two functions begin( ) and end( ) that returns

iterators to the first  and past-the-end locations of the container

respectively. STL containers must provide these standard functions. What

the function does is,  i t  selects every two corresponding elements from the

two input containers, passes them to whatever binary functor object it  has

in its argument, gets the output from the functor, and puts it  in the output

container. The function repeats the process until  the first  input container

is exhausted. STL has allowed the function to be independent of the

container, the container elements, and the operation applied to them.
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void main ( )
{
int in1[10], in2[12], out[10];          
int* in1_end = in1+10    //need the location of past-the-end element of in1

//… code to fill the two input containers in1 and in2

manipulateContainers (in1, in1_end, in2, out, plus<int> ( ) ); 
//the array name is a pointer to its first element

// … other code

list<double> list1, list2, list3, list4;  
//we use same function on a different container with a different element type and
//different functors

// … code to fill list1 and list2

//list3 will have element-by-element subtraction of list1 and list2

manipulateContainers (list1.begin( ), list1.end( ), 
  list2.begin( ), 
  list3.begin( ), 
  minus<double> ( ) ); 

//list4 will have element-by-element multiplication of list1 and list2
manipulateContainers (list1.begin( ), list1.end( ), 

 list2.begin( ), 
 list4.begin( ), 

  multiplies<double> ( ) );
}

Figure 2.8: Using the Function manipulateContainers

2.1.9 Allocators
Containers are responsible for managing the access and storage of their

elements. The access is allowed by providing suitable iterators and a set

of functions to provide information about the elements, return a reference

to- or add/ delete an element. The storage is an essential part to the

container, allocating memory to new elements, and freeing memory from
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the deleted elements. Normally the user need not worry about storage

management when using a container. This is done behind the scene

without any user intervention and this greatly simplifies the use of

containers. On the other hand, some special applications require a special

kind of storage management and cannot simply work with the standard

one. This would mean that those special applications will have to discard

the STL containers altogether and write their own special containers that

have a special storage management. This means a lot of efforts,  most

likely without the efficiency and elegance of STL code. To be able to

serve those special cases as well,  while still  keeping the containers simple

for everyone else, the STL made a further separation of building blocks.

The Container is not exactly responsible for the storage. An allocator

class was made responsible for the storage of the container elements, and

each container handles storage by simply asking an allocator object to do

that.  To keep things behind the scene for users,  each container uses a

default  allocator for its storage needs, unless given a specialized allocator

to handle the job. For example, the container “vector” has the format:

template <class T, class Allocator = allocator<T>  > class vector ;

 We can see that a vector of integers can be instantiated by simply writing

vector <int> intVec ;

and a default allocator object will be used, without user intervention. On

the other hand, the same container can be passed a specialize allocator,

written by the user, or imported from another library as follows:

vector <int, my_allocator> myVec ;



In this case we made full use of the standard container class in a special

application without writing a special container. In writing a specialized

allocator, they must have the standard interface of the STL allocators to

be integrated seamlessly into any STL container.  This is very useful in

database, where we need a special storage on the hard disk, where files

are too large to fit  in memory. We can now put all  the building blocks

together on one diagram. These building blocks satisfy the standard

interface provided by STL for components. They are compatible with each

other, and we can replace on or more of these blocks with a specialized

block provided that i t  has the same interface of the corresponding STL

block. Figure 2.9 shows a general system Layout for this system. 
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2.2 Building Blocks Connectivity
The STL provides us with a complete set of compatible building blocks that

can be connected together to build complex systems. Using these blocks,

we can produce a blueprint design of the system, which can be drawn as a

directed graph. The nodes would be STL blocks and the edges would be

the connections between them. Semantically, a connection between two

nodes would represent a use relationship between the two STL blocks

represented by the nodes. Connecting these blocks is not,  however, done

at random. We cannot simply connect any one block of our choice to

another and put them to work. There are certain rules that apply when

trying to connect two blocks together. In order to show these rules easily,

we will divide the three fundamental building blocks, Containers,

Iterators and Algorithms, into categories. Then we can show how these

categories connect together properly.

 

2.2.1 Iterator Categories
We can categorize the iterators according to their movement ability. Some

iterators have more movement freedom than others. Figure 2.10 shows

these categories.

Input Iterator

Input i terators have the least amount of movement; they can provide only

one step forward. They are single-pass iterators, meaning that they cannot

be used to access the same container twice; they might give different

values each pass. They are used as rvalue to take input into program.

Output iterators are similar to them, only they work as lvalue, taking

output from the program to a container.

Forward Iterator  

Forward iterators have the ability to move forward. They support the

operator++ to step forward incrementally. They support multipass
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concept, where they give the same values every time they pass through the

container.  They do not support backward movement. To access the

previous element,  we increment the iterator all the way to the end of

container, and start a new pass from the beginning until  we get to that

element.

Bidirectional Iterator

Bidirectional iterators have all the abilities of the previous two

categories. They also support the backward (reverse) movement using the

operator --.

Figure 2.10: Iterator Categories

Random Access Iterator

Random Access iterators are the iterators with the highest degree of

freedom. They can move forward, backward and also allow direct access

to an arbitrary element using operator [ ] to specify the desired element

by its index.
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2.2.2 Container Categories
We can categorize the containers according to the movement freedom they

offer to i terators trying to access their elements. Each Container can allow

iterators to iterate through its element with certain degree of freedom,

depending on how the container organized and stored its elements. Figure

2.11 shows these categories. 

Compatibility between Iterators and Containers

If the iterator has more movement ability than what the container can

afford, the extra iterator abilities cannot be used unless we upgrade the

container. Using this extra functionality without upgrading the container

category is incorrect and dangerous. It  can crash the program, or at least

provide incorrect information 

Also if the iterator has less ability than what the container can offer, the

extra container abilities cannot be used, unless we upgrade the iterator.

This is,  however, not a serious practice, and will  cause no harm since we

use iterators to access the container so we will have no access to any

incorrect functionality; we will just lose some. 

Internal and External Iterators

Iterator can communicate with internal and external iterators. For external

iterators, they are built  outside the container, but for a specific type of

containers; meaning that the internal structure of the container must be

known to the iterator. They can be used with any container of the same

type by passing to them a particular element of the container and using

them to move in the container. For internal i terators,  the container

provides them as methods that return an iterator.  Each container can

return iterators of different categories. The container is wise enough not

to provide an internal iterator with higher movement ability than the

container can afford, yet they can typically return a lower category

iterator if that is all  we need. 
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Input Container

Input Containers are conceptual containers capable of providing only

input i terator. They would only provide input to the program in a single

pass concept,  like input stream object.  An input container is conceptual as

it  does not really belong to the program itself,  but it  is more of an

external component that provides input to the program. 

The keyboard can be seen as an input container that provides input to the

program. A second pass through this container (in the form of running the

program code twice and accepting a set of input variables by a set of cin

statements each time) may produce different elements as typed in by the

user in every run. This set of cin statements can be seen as receiving their

values from the “conceptual” input container;  the keyboard.

Forward Container

Forward Containers are containers that are organized such that they can

be accessed in a forward incremental direction; like single-linked-list  data

structure. No backward movement is allowed. This type of containers can

only provide a forward iterator or an iterator with less functionality.

Bidirectional Container

Bidirectional Containers store their elements in a sequential way and

allows access to them in a forward or backward direction, in incremental

steps only. This is similar to the concept of doubly linked list  data

structure. They can therefore provide Bidirectional iterators (or less-

capable iterators if needed). Also any external Bidirectional iterator can

access this type of containers with no problems. 

Random Access Container

Random Access containers store their elements such that they can be

accessed in both directions, and can also support direct access to an
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arbitrary element without the need to incrementally access all  elements

before it .  Obviously they can support a random access iterator or less. 

Figure 2.11: Container Categories

2.2.3 Algorithm Categories
A fundamental STL concept was to use iterators as an interface between

algorithms and containers, allowing the same algorithm to be used on

different containers and vise versa, promoting the cut-and-past concept on

code; or code reuse. It  might seem that we could say: “iterator allows the

use of any algorithm with any container”. This is not exactly correct. A

more exact statement would be: “iterator allows the use of many algorithm

with many container”; hinting that some algorithms do not work with

some containers. To make it  clear, we can categorize algorithm using the

same criterion. An algorithm will  be categorized according to the iterator

it  uses. Figure2.12 shows these categories.

Compatibility between Iterators and Algorithms

For simplicity, we will consider the category of iterator needed for the

algorithm, and ignore the category of the container as it  can be inferred
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from iterator category. After all,  this is why we use iterators; to make

algorithms container-independent.  Obviously the algorithm can connect to

a higher-category iterator without any problems; it  only will not make any

use of the extra set of functionality provided by that iterator. Each

algorithm will  therefore be written with the minimum iterator category

required to work correctly. Connecting an algorithm with a lower category

iterator is,  however, dangerous. The algorithm will be using some

functionality that is not provided by the iterator,  which will  result in an

incorrect performance, or even a program crash. 

Input Algorithm

Input Algorithms require an input i terator to work properly. Their

functionality would obviously be to input some elements to a container in

an incremental unidirectional way, in a single pass concept.

Apparently this type of algorithms works fine with the lowest category of

the containers (input container) and needs only the lowest category of

iterators (input iterator).

For example the algorithm accumulate  in figure 2.12 needs an input

iterator to work correctly.

Forward Algorithm

Forward Algorithms need forward iterators to work correctly

For example, the algorithm remove  in figure 2.12 needs a forward iterator

to work correctly.

Bidirectional Algorithm

Bidirectional Algorithms needs at least a bidirectional i terator. This kind

of algorithms will need to move forward and backward to work correctly.

For example, the algorithm reverse  in figure 2.12 needs a bidirectional

iterator to work correctly.
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template < class InputIterator, class T >
T  accumulate (InputIterator first, 

 InputIterator last, 
 T init) ;

template < class ForwardIterator, class T >
ForwardIterator  remove (ForwardIterator first, 

   ForwardIterator  last,
    const T&  value ) ;

template  < class BidirectionalIterator >
void  reverse (BidirectionalIterator first, 

         BidirectionalIterator last);

template  < class RandomAccessIterator >
    void  sort (RandomAccessIterator first, 

           RandomAccessIterator last);

Figure 2.12: Some Algorithms

Figure 2.13: Algorithm Categories
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Random Access Algorithm

Random Access Algorithms are the most demanding algorithms of all .

They need the highest i terator category, a random access iterator.  This

kind of algorithms will  need to move forward and backward and access

any arbitrary element in the container to work correctly.

For example, the algorithm sort  in figure 2.12 needs a random Access

iterator to work correctly.

Downgrading an Algorithm

It is worth mentioning here that most algorithms can be downgraded to a

lower category and still  work correctly. This will,  however, not be an

efficient algorithm anymore. The minimum category for an algorithm will

guarantee that it  will  have the best performance in term of time

complexity as guaranteed by STL. Downgrading an algorithm by rewriting

it such that it  can be used with a lower category iterator could mean a

much less efficient performance. For example, an algorithm that requires

direct access iterator can be rewritten to use only Bidirectional iterator.

Each time the algorithm will need to jump to another element, i t  will  have

to start  from the beginning or current position and access all  elements

lying before the desired one. Such an algorithm could take very long time

to complete. 

2.2.4 A Blue Print for the Connectivity
Figure 2.14 shows how we can connect the categories of STL building

blocks correctly. An arrow means that the two blocks are compatible.

We can divide the components into other categories using different

criteria. For example, we can divide iterators according to their

mutability; read-only iterators allow algorithms to take a copy of

container elements without being able to change it  (a const iterator). The

container element itself can be constant for all  algorithms, or can be



mutable by other algorithms. Containers can also be divided into sequence

and associative container, regardless of the above categories.
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Figure 2.14: A Blue Print for Connectivity
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Chapter 3   Databa se Indexes

3.1 Introduction
Indexes help access information. To make a large amount of data useful,  i t

has to be organized and classified into logical parts,  then an index added.

The index tells us where to find the data of interest in a data collection.

Using a specific search method, we can go through an index and get a

location where the data is to be found. A simple example is the table of

contents of a book. We use the table of contents to find information in the

book using the topic name as a search method through the index.

To build and use such an index we perform the basic steps:

1-  We divided the book data into Partitions (in this case chapters,

sections and paragraphs).

2-  We found a key for each partition to give us some clue about the

contents of the partit ion (in this case a header or a caption for

each part relevant to its content).

3-  We gave a physical address; a reference to each partition,

marking its exact location (in this case unique page numbers).

4-  We decided on a certain access method; a criterion of how to

search for information (in this case since the number of entries

is relatively small,  the index would be limited in size to few

pages, we will  search the index sequentially by scanning the

keys from the first one until  we find a topic of interest.  This

would take O(n) time to search where n is the number of entries.

Since n is small,  an O(n) algorithm performs well enough.

Sequential listing of contents will also help to give an overview

of the book, but that is not one of our concerns for an index.

5-  We built  the index by collecting all  the keys and references in

one part – the table of contents.
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Another example of an index is the keyword index that can be found at the

end of the book. This index is built  to locate data in the book using

keyword as the search criterion. We follow the same four steps to design

and build the new index:

1-  Partitions are the keywords we want to highlight in the data and

include in index.

2-  The best key for the keyword is  the whole keyword (or part of

it).

3-  Each keyword has a page number (or numbers) where it  is

mentioned in the book

4-  Since this index will  have many more entries than the previous

one (n, the number of keywords, is now much larger, O(n) might

be unacceptably high. Searching a table that contains a few

thousand unsorted keywords can be annoying. We thus decide to

sort the keys alphabetically and use binary search as an access

method. We go to the middle of the alphabetical index and check

the word and then decide if the keyword we are searching was

before or after the middle, and so on.  This will have a time

complexity of O(log n) on the average, giving an improved

performance

5-  We then build the index and add it  to the book.  

Saving time is clearly an advantage in using an index. We could scan

sequentially through all  the book headers (chapters,  sections and

paragraphs) to find the topic we are looking for,  but scanning through the

index gives the same results in a much faster time. With keywords it  is

even clearer.  To search for a keyword in a book without a keyword index,

we need to search every word in the book sequentially which is a lot of

work. 
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3.2 Index Tree Applications 
Almost any kind of data can be stored in a database. Numbers, text data,

images, maps, fingerprints and even audio and video files are typical

examples. A lot of work has been made on the concept of index tree,

resulting in many different types of trees suitable for this variety of

applications. The idea is to be able to categorize data in such a way that

we can retrieve it  fast ,  and then build an index that allows us to locate

data of interest in an efficient way. Similarly, different index concepts

were developed to be able to deal with the variety of application data. In

the next pages, we will briefly present some of these index trees, and

show how to use them with database applications.  

3.3 B+ tree Index Example
Figure 3.1 shows a simplified B+ tree index layout. It  contains pages that

store pairs of keys and pointers. Pages are laid out in a tree-like structure.

The top level contains only one page, the root page. The lowest level

contains the data (or references to the data). Each page in that level is

called a leaf page. Data is included at the leaf level only. No data is

allowed to exist in other levels.  The tree is balanced; all leaves are at the

same level.  The number of pointers, R in a page determines the number of

children of that page. This number, called the fan out of the tree, has a

maximum allowed value, and is fixed for the tree. It  shows the

multiplication factor from one level to the next. Each page is allowed to

be totally or partially fil led with a factor called fill  factor. The minimum

fill  factor is typically 50% and the maximum is 100%, except for the root

page, which can have as little as two children or as much as any other

page. The example shows the basic search operation for a value 202 in the

leaf level,  starting from the root. Other operations involve writing to the

index, or modifying its contents, l ike insertion and deletion operations.
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Figure 3.1: B+ Tree

These operations are far more complex in their algorithms and procedures

than a simple search operation. A single insertion or a deleteion operation

can result in one simple step, or it  can trigger a chain reaction leading to

a large number of related steps spread over multiple index pages with

multiple sub operations of splitt ing pages, merging pages or moving some

contents between pages before it  comes to an end. The algorithm for these

operations and their related sub operations must guarantee the integrity

and correctness of both data and indexes after any number of operations

with any combination of data.  

3.4 General Domain Applications
The previous example showed an index using integers (or comparably

strings of characters) as its data type, and equality as its search criteria

(query). This works well for traditional relational databases. It  can also be
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extended to serve other queries (range query for example). For some

applications, however, that example does not quite serve their needs.

One domain of those applications is the spatial database, with a multi

dimensional data type. The data in this domain can be represented in the

Cartesian space as multi-dimensional objects. For examples geographical

information about earth surface, cities layout in a country, or detailed city

maps for buildings, streets, etc. Some index trees have emerged to deal

with these database applications including K-D-B-tree [Rbn81], R-tree

[Gut84], R+-tree [SRF87], and R*-tree [BKS90].

As an example, the R-tree is a height-balanced tree similar to the B+-tree,

but it  considers the data type to be an n-dimensional polygon in Cartesian

space, composed of a group of lines related together. Figure 3.2 shows a

collection of polygons representing some data. This could be any

geometric figure, a city map, districts map, etc. Arcs can also be

considered by approximating them to a number of lines. 

Figure 3.2: Finding the Key for Partitions of Polygons
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To build an index, we need to partition data, by considering each polygon

or a group of polygons as one partition. We then need to find a key for

each polygon (or group of polygons). The key is the bounding rectangle to

the spatial partition, covering all  the partition (of one or more polygons)

while reducing the data size from many points of (x, y) describing each

polygon to just four points. To represent a rectangle we just need two

points; the op left,  and the bottom right corners. Now this key covers all

the partition with much less data size; the desired nature of any key. Note

that partit ions might be allowed to overlap depending on the application.

This will  not affect data integrity, as for overlapping keys their associated

data can still  be easily distinguished.  

Searching will  typically have a point or an area (another polygon) with

the search key as the smallest rectangle to cover this area. The search

mechanism will try to find those polygons in the database that have

something in common with it ,  by finding the database index keys

(rectangles) that intersect with it .  Figure 3.3 shows an example of

searching a key and we can see the three data keys that match that key (by

intersecting with it) .

The figure shows that some rectangles might intersect with the key

rectangle we search, giving positive search result  while the two actual

data parts inside the polygons do not intersect, making the data found by

searching the database useless. This is a side effect of using keys for the

polygons and is not harmful in being unable to locate correct data inside

the database; It  will  just impose some acceptable performance burden by

accessing some useless data once in a while. 

Similarly for an index, we need to merge partitions by finding one key to

cover all  merged partitions (for merging two pages, or for building a

higher level in the index where each key will  cover many keys below it) .

Other applications use sets as their data types where data entities are sets

of related or unrelated elements. Keys for sets can be found using



41

different techniques and algorithms to extract a summary for each set. Set

theory with its notations like union, intersection, subset… is used here to

combine keys, search for a key, etc.

Figure 3.3: Searching Data Using a Key to
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images, l ike multimedia, journalism, art,  astronomy, image and voice

recognition, traditional medicine (e.g. 2D X-ray and 3D CATSCAN

medical imaging) as well as new genetics and protein databases.

One main difference in these applications is that data is not directly

represented by concrete numbers. Another difference is that even after we

have translated the images to numbers (they have to, to be stored in

digital medium), we cannot simply compare these numbers to decide on

matching.

Considered a simple case of scanning and storing the same image multiple

times as pixels with digital values, then comparing them with a similar

image to retrieve back these stored occurrences of the image. Apart from

the great inefficiency due to the large amount of data to be compared, a

slight shift  or rotation, or even a rounding error might give a different

number for few pixels, giving a negative search result for the same image,

which is unacceptable. If those images were compressed to increase

storage- and transfer efficiency, chances are all  occurrences of the image

will be different.

Seidl and Kriegel [SK01] show how to add flexibility to large image

databases including pixel-based shape similarity to tolerate and

compensate for such errors and locate similar images. 

This example shows that we are looking for the same contents with

similar digital representation. Similarity search can have much broader

meaning when we want to look for similar contents.  This makes the

subject more complicated than just numbers. Deciding whether objects are

similar or not is very subjective, and could be different for different

persons, or even for the same person under different circumstances. We

will show this with an example. 

Consider three objects:  A goldfish, a white shark, and a dolphin and we

want to select the two most similar ones out of them. For a biologist ,  the

gold fish and the shark are similar, both are cold-blooded, fish, while a

dolphin is a worm-blooded mammal with lungs to breathe. Now we change



the person. For an ordinary person swimming in water,  the gold fish and

the dolphin are similar, both are peaceful water creatures, while a white

shark is a terrible monster. Now we change the circumstance of the same

person. If this person is looking for a house pet to put in a glass bowel,

the dolphin and the white shark are similar and must be avoided, both are

too large and have enormous appetite and not sold in pet stores, while a

gold fish is perfect  for the purpose.

Due to this subjectivity, content similarity research developed different

criteria to manage and decide on the similarity decision. We can recognize

two main parts: criteria for extracting a key, and criteria for comparing

keys to decide on similarity between them.

Figu

s
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Biologist:
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3.5.1 Extracting keys: Feature Vectors  
Images of 2D or 3D objects could be digitally represented and stored as a

mathematical representation using a multidimensional matrix or CAD

tables or other digital forms. However we want to extract a key for this

large object to satisfy the main properties of a database key: smaller size

while still  having information about the contents.  We will  consider two

examples for 2D and 3D images. 

For 2D color images, for example, the SR-tree [KS97] develops a criterion

to extract a color histogram to be used as an efficient key. It  divides an

image into 4 regions from upper left  to lower right.  For each region,

munsell color space (hue, saturation, intensity) are measured and

quantified into nine basic colors, giving a color histogram for the region.

The four histograms are concatenated to give a 36-dimensional feature

vector, which is then reduced to a 20-dimensional feature vector (since

higher dimensions dramatically increase search time, making queries

slower).  Each image will  have a 20-dimensional key (feature vector)

representing its contents. The key is much smaller than the image itself.

For 3D images, Examples of 3D-protein database [AKKS99], [KKS98]

divide 3D images of complex-shaped protein molecules into 3D cells

(concentric shells of a sphere, sectors of a sphere, or a combination of

both). Assuming that protein images are given as sets of points in 3D

space [SK95], the shape histograms are determined by counting the

number of points within each cell .  This gives a feature vector for each

protein image that represents its shape. This feature vector,  again, is much

smaller than the original protein object, and represents its contents, so we

can use it  a key when building a database for the 3D protein images.

Feature vectors can also be text or keywords about the images. For

example in journalism, we can generate a feature vector for the thousands

of pictures taken daily by giving them numbers to represent the date and

place they were taken, the contents (people, objects, landscape) and the

subject (politics, celebrity, fashion, sports) and so on. This could generate
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the feature model for pictures. We can also build a hierarchy of these keys

(feature models) by defining criteria to combine groups of keys into a

super key that represent them. Algorithms can then be written to generate

these keys.  

3.5.2 Comparing Keys: Distance Functions
Feature vectors give compact digital  representations of images.

Nevertheless comparing two feature vectors as keys is not a

straightforward application. As we can see, we do not look for exact

match because of the nature of digitizing images errors, and contents

differences. Different criteria have been developed to decide how similar

two n-dimensional feature vectors are, such as the Euclidean distance in

SR-tree [KS97] or the quadratic distance function explained in [AKKS99].

3.5.3 Searching the Database: Query Processing 
After developing a criterion to extract keys and a criterion to compare

them, we can use them to query the database to find similar objects. Goals

can differ from one application to another, or within the same application.

For example in biomolecular databases (like 3D protein images), a basic

task is classification of new molecules [AKKS99]. In molecular biology,

there are already defined classes for molecules. So after a new molecule

has been discovered, we need to determine its class. First  we look up the

database and find the closest neighbors to it ,  then domain experts can

decide on the exact class by comparing the new molecule against the

similar ones in the database with more complex classification criteria than

just the 3D shape. In this case, efficient classification algorithms can be

used as fast filters for further investigations by the experts.  

In other 2D, 3D, or color image applications for example, similarity

search can use other algorithms to lookup similar pictures for

fingerprints, or for news archive image search.
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3.5.4 Building an Index to Speed up Query Processing
Comparing feature vectors to determine the distance typically include a

large amount of calculations, which can be a heavy load on the processor.

Some search sessions can take overnight to finish, so research has been

done in the area of reduction of dimensionality of feature vector.

Searching a database in parallel  can some times speed up the search. 

As the dimensionality of the feature vector increases, or the complexity of

distance function increases, or both, the time for an evaluation of two

vectors can significantly increase. We can avoid many unnecessary

feature vector distance evaluations by using an index as a pre-filter.

Multi-step keys can be used to eliminate large number of objects without

the expensive full-evaluation of their feature vectors, thus building a

multi-level hierarchical index to the database. The idea is to cluster a

group of similar keys (feature vectors) together into one super key

working as a pre key (pre filter) to all  members of the group, and apply

this concept recursively to build a hierarchical index. [BBBK00] explains

the difference between hierarchical algorithms and partitioning

algorithms. Hierarchical algorithms decompose the database into several

levels of nested partitions (clusterings), whereas partitioning algorithms

construct a flat  (one-level) partitions, each of which contains similar

database objects.  In this paper, a high performance clustering concept

based on the similarity join is introduced to help build the key of keys by

efficiently clustering a group of similar keys.

Another approach to speed up the search is to use a parallel similarity

search [BEK+98], [BBB+97]. In parallel search, data is declustered (by

uniformly distributing it  over different disks) and thus the time for

accessing and processing can overlap. [BBB+97] explains the importance

of efficiently distributing data among the available disks and shows how

this can speed up the search and introduces some efficient declustering

algorithms.  



47

3.5.5 Traversing an Index
Access methods used to traverse a multi-dimensional database in

similarity search domain have many more variations than the equality-

based database domains. [GG98] gives an extensive overview of

multidimensional access methods. As explained before, indexes are built

by recursively clustering data together and creating keys for the clusters.

The higher level keys cover larger clusters and are thus coarse-grained

compared to the lower ones. Traversing the index will produce different

similarity distance at different levels, which may result in moving up and

down the index structure as these values change, in order to locate the

nearest neighbors. P. M. Aoki [Aok98] gives an example obtained from

the SS-tree [WJ96] to demonstrate this feature. The SS-tree organizes

records in hierarchical clusters.  Each cluster is represented by a centroid

and a bounding sphere with minimum radius to cover the elements within

a cluster as shown in figure 3.5 in centers c11, c12, c13, c21, c22. Each

group of spheres can be further combined into a higher level cluster

(sphere) of one centroid representing the weighted center of mass and a

radius to cover the elements in the group. This is shown in figure 3.5 as

c1 and c2. As we search a key using a query, we can represent the search

process as searching the closest (nearest) neighbor data (shown as black

spheres) to our element key (shown as x in the figure).  Since this is a

multilevel index hierarchy, data elements (black spheres) are not directly

exposed until  we reach data levels. At higher levels of the index, only

hierarchical keys (the hollow spheres) are exposed. In the first step, we

compare our query to the high level clusters centered at c1 and c2. c2

looks closer so we descend to the right subtree (link b) at second level in

the index. We retrieve the c21 and c22 clusters. At this point,  both c21

and c22 are further than c1, i .e.  c1 is now the nearest to our query of all

c1, c21, c22, so we abandon the subtree of c2  (link b) and jump back to

the subtree of c1 using link a. Descending on the subtree of c1 yields c11,

c12, c13. As we measure the distance, we find that c13 is the nearest



neighbor. We can now access the three data components of c13 and find

the nearest of them to our query x. From this example it  is clear that we

may need to go back and forth within the tree levels to get to the nearest

neighbor. The example also depicts that as we get to a lower levels (like

c21, and c22 level) the closeness (proximity) of clusters differ  as they

become more exact that the coarse-grained keys at higher levels (c2). That

is why c21 and c22 appeared further than their super key c2 promised

when comparing it  against c1.

Similarity search algorithms use different distance evaluation techniques

to determine the distance between two objects,  which will  indicate how

similar they are. Less values for distance will  imply higher percentage of

similarity, with zero distance considered as 100% similar.
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Chapter 4    Conte x t Analysis
Database is manipulated in different ways depending on the user.  In this

chapter we concentrate on the different users and the context of using a

database system.

4.1 Context Use Cases

Figure 4.1 shows the main actors of a DBMS.

Figure 4.1: Co
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4.1.1 Actors

Expert developer

The expert developer is an experienced programmer who designs the

database system to satisfy domain experts needs and then implements the

design using a programming language.

Database developer

Database developer is a knowledge domain expert, responsible for

customizing an existing database system by modifying some of its parts

(components) or by replacing some parts with others to be able to support

a new data or query type, or support a completely new index structure

with new access method. Database developer is also responsible for

setting the parameters to suit the system platform and the application

variables.

Database administrator

Database administrator is the person responsible for building the Database

system, which include building the scheme, the physical tables and the

indexes used to access them.

User

User is the software that is using the system to search for,  insert or delete

data from the database.

          

4.1.2 Use Cases

Develop Database

The expert developer puts a complete design for a database system and

implements it  to run on a platform. 
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Customize Database 

From the extension programmer’s point of view, part  of the database can

be customized to support new data types and/or query types. New index

structures supporting new access methods can also be produced by

modifying few parts of an existing index that has a different structure.

Build Database 

The DBA is responsible for building the database by using a DDL

language to define the scheme, and by defining the physical data tables,

storage formats, and data partit ioning, and building the indexes needed

to access them in appropriate index files.  

Use Database

This is the main use case that concerns the application, while the

previous use cases are invisible to it .  It  involves connecting to an

existing database and either looking up some data or doing some

transaction (insert/delete) on that data using a query language.

4.2 Detailed Use Cases 
In this part we will consider the index as a part  of the database with the

following properties:

- It  is built as a balanced tree structure

- It  can be customized to suit different applications

- It  can be used to lookup data in the database (read-only

access)

- It  can also be used to insert  or delete data in the database

(read-write   access)

Figure 4.2 shows the diagram for detailed use cases.

For more details on the index, see section 2.4, “Database indexes”.
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Design database

The expert developer puts a complete design for a database system to

satisfy the functional need of database domain experts as well as the non-

functional needs like storage, and retrieval issues, platform mounting, etc. 

Implement database

The expert developer implements the design including all details such as

the physical access details and the platform-dependent details.

Provide new query

The database developer defines a new query and passes it  to the existing

database to be used in searching the existing data. 

Provide new data type

The database developer defines a new data type by writing an index

implementation to produce a new index capable of handling the data type

used by a new application. This includes defining suitable keys to

describe the data partitions, and defining ways to compare them, setting a

suitable layout for the node pages and a page policy for adding/deleting

this new data type keys inside them.

Define new access method

The database developer defines a new method to traverse the index by

replacing some parts of an existing index in order to produce a new

index that is using a new access method 

Set index parameters

The database developer sets the index parameters,  l ike the tree order,  the

page minimum fill  factor, and the page size, depending on the system

environment, hardware profile, and application variables.
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Figure 4.2: Detailed Use cases
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Build data references

The data, once available, is prepared for the indexes by extracting

suitable attributes to be used as keys in each index (primary / secondary)

along with the corresponding physical location references. They are then

sorted by their key value and in case of a secondary index further sorted

by their physical location or by their primary key values, then put in the

reference file as pairs of  key, data reference. 

Build Index

The DBA will build the index by successive insertions of the pairs of

key, data reference into an empty index file (bulk loading the data

reference file).  A successful bulk loading operation will yield a

complete index to the data.

Dynamically fine-tune

After the database system is up and running, the DBA needs to

dynamically fine-tune it  by slightly changing / adjusting its parameters

to achieve the optimal performance under typical workloads.

Search

The application will connect to the database and use some query or a key

to search for some data. An index will be used to lookup data. The index

will  return the matching data in the form of references to their physical

locations. The references will  then be used to access the data. 

Insert

For an insertion, the search use case runs first to find a suitable

insertion position. The position is then used to insert the data, and the

index structure is adjusted if necessary to reflect the changes to the data.
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Delete

For a delete use case, the search use case runs first  to locate the

matching data to be deleted. Then the candidate data is deleted. The

index structure is adjusted if necessary.

Appendix A lists the flow of events.

4.3 The Database Data Model
The index is a major data component. Typically we have one primary

index and multiple secondary indices, all  built  on the same data set.

They help access the data using different keys/ queries for the search. 

Each index is built  on the physical data indirectly, through a data

reference file.  This reference file is composed of a key, data reference

pair,  and constitutes the data level of each index (see figure 4.3). This

separation between physical data and data references allows for building

multiple indexes on the same data set (data is not included in the index)

and for the ability to change physical data formats without affecting the

existing indexes.

In dealing with an index, we provide a data reference as an input (for

insert  /  delete) or obtain one as an output (search). The data access

component will then take the responsibility to bind the references used

by the indices to the data tuples on the physical storage.  

Depending on some system characteristics (like access time constraints,

and system volatility) different binding mechanisms are applied (see

book). The mechanism used must guarantee that changes in the tuple

physical locations will st ill  allow for all  associated indices to access

them correctly. 

4.3.1 The Index Data Model

The index does not provide us directly with data, but with information

about where the data is. This mean that the data stored in the index is



different from the typical database information (tables, records, etc).

Figure 4.4 shows a graphical presentation of the relation between the

index data and the database data.
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Figure 4.4: The Reference File Model
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Chapter 5 The General Design 
This chapter presents the design of a generic index system that can be

adapted to different applications.

 

5.1 Design Rationale

System Modularization 
The system is designed as an integrated set of modules. These modules

provide all the necessary parts needed for implementing a complete

system. Each of these modules, referred to as a building block, is well

defined and has a clear set of functionality that is meant to carry out a

specific task. This provides highly cohesive building blocks, a

fundamental requirement for a good Object-Oriented design. Building

blocks are also completely independent of each other. Each block can

perform all i ts functions regardless of the types of the other blocks it  is

connected to, providing a very low coupling between these blocks,

another fundamental requirement for a good Object-Oriented design.

Adopting the STL Concept
The STL, is a recent addition to the C++ language (1998) that supports

good programming practices and provides a wealth of building blocks that

can satisfy the needs of many sophisticated modern systems. We can build

complete systems with the majority of its building blocks obtained from

the STL library.

Code Reuse
A large number of building blocks already exist with a complete

implementation on hand. This dramatically reduces the time needed for

the implementation for many large systems where a great percentage of

the code is simply imported from the STL.
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Interface Reuse, and Combinatorial Composition
Each building block belongs to a group such as container group, iterator

group, …etc and these different groups are designed to carry out a

different part of a system so that in the end we can have a complete

system from these groups. The interface of these blocks is carefully

designed to seamlessly connect to other blocks of the same or a different

group, giving an endless number of possibilities of arrangements to

achieve the needed system design. Some of these blocks do not perfectly

fit  together. This would imply that they cannot be connected or that their

interface needs to be modified. This would, however violate the concept

of generality and implementation-independence. Some extra building

blocks are specifically designed to solve this problem in an elegant way.

Without changing the standard interface of any block, some incompatible

blocks can be made compatible using adaptors, a type of building blocks

designed to smooth out some interface incompatibilit ies,  thus increasing

the number of possible combinations between the blocks.

   

Implementation Independence
The system design was made regarding only the interface of all  the

building blocks without any implementation details.  This implementation-

independent design frees the system from any unnecessary constraints,

needed only for a later implementation, producing a simple abstract

design.

Efficiency
All the STL building blocks used are written with the most efficient

implementation possible, therefore allowing the system itself to be

efficient.  The efficiency, as a fundamental issue in any new system, is

addressed as a design goal of STL. 
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System Flexibility
The framework has a flexible design by adopting a complete building

block replacement policy. No building block is made mandatory to the

design. In other words all the blocks that make up the system are

replaceable. This gives the designer the freedom to isolate and replace

any one or more of these blocks with no- or minimal impact on the

system. The design can be adapted to the needs of any application by

simply changing some of the building blocks. This was made easy since

the building blocks are highly decoupled.

Wide Rage of Complexity 
Even that the available generic blocks cover a wide range of applications;

other specialized systems can still  be implemented when the existing

blocks do not cover all  their functionality. The user can add any

specialized building block to the system to replace an existing one,

provided that the new block has the same interface. This allows for a

minimal impact on the system since the user-defined block will

seamlessly integrate with the other blocks eliminating the need to do a

completely new system.

Default Values for Simplicity
In order to keep the system simple, only the necessary building blocks are

exposed to the designer. Default building blocks are placed automatically

in the system to do some of the necessary work without exposing them to

the designer. Only when the designer wishes, are these default  blocks

replaced with other generic or even user-defined ones. 

Favoring Templates over Inheritance 
Inheritance is a relatively old concept in C++, compared to templates.

Inheritance produces what can be seen as vertically-built or deep system,
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which can, depending on the design and implementation, compromise the

system run-time performance, a fundamental measure in database system.

Templates, on the other hand, produce a horizontally-built or shallow

system, which would, in general, have a better run-time performance than

a comparable system designed with inheritance. Our design was built

using templates extensively with minimal inheritance. This does not mean

that the use of further inheritance is excluded from the system. It  is

always possible to inherit  from the existing building blocks to produce

new blocks with added functionality.   

 

User-friendly, Readable Code
The system was made up of standard blocks. Each of these blocks has a

clear standard interface and a well-defined functionality. This makes all

the blocks easy to understand. Also new blocks may be added with the

same look as standard ones. The code will then add up these blocks with

some extra lines of code working as glue between the blocks, without

masking their interface. This will make the code more readable that a

specialized code that does not use standard building blocks.  

Ease of Modification
For programmers, modifying a code written by someone else (or even by

themselves after some time had elapsed) can be a nightmare, especially if

the original code was poorly designed and/or insufficiently commented.

We opt for ease of modification for any design using the framework by

having a completely modular system design. This allows any programmer

modifying the system to focus on the modules to be changed without the

need to understand the details of the whole system. 

Sustained Code Quality 
A neatly designed and implemented code can quickly deteriorate in

quality after few patches and modifications.
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The system modularity allows for an endless number of modifications and

patching by simply replacing some blocks in the system without affecting

the system quality. The system quality will not deteriorate by adding

scattered patches all  over the code because modifications are mainly done

by replacing modules, keeping code quality the same during its lifecycle. 

5.2 System Structure

5.2.1 The Basic Components
The system will be built  using STL components. These components will

provide the necessary index structure, and manage the access and storage

of the index.

The index is a container that provides an iterator to its contents. The only

way to interact with the container is through its iterator, which provides

controlled access to the elements of the container.

The index container will be an index of pages, so the elements that the

index stores are of type page. They are passed to the index as template

type in the implementation phase. This makes the index independent of

the page design and can work with any page type.

The index iterator is therefore iterating through pages, one page at a time.

This is exactly the database concept of indexes: paged indexes to

facilitate access and improve performance. 

The index uses an index allocator to manage the storage of its own

elements, the pages. In practical application the index exists permanently

on non-volatile storage, like a hard disk or other mass storage media since

it is normally too large to fit  entirely in memory. This means that the

container will  use a specialized allocator that takes the responsibili ty of

retrieving the page from the storage into memory for access and

controlling the different objects accessing the same page simultaneously.

This will  ensure data integrity by applying a suitable access and locking

policy (pinning the page).  After the pages have been modified, they also



63

need to be updated in the physical storage (flushing the page) by the

allocator. A default,  in-memory allocator is provided for simple

applications where the whole index can fit  in memory at one time. It  is up

to the system designer to use it  or override it  by providing a storage-

dependent specialized allocator.

.

Figure 5.1: The Components Layout
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page can perform its tasks of searching for a key in its contents, accepting

new entries, deleting some existing ones, etc. This design produces a

simple system structure without affecting its complexity level or

extensibility. The basic modules are shown in fig. 5.2. 

5.2.2 The Class Diagram
Figure 5.3 shows the class diagram of the index system
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components (the built-in set of functions) to operate. The application uses

the internal algorithms (like find ( ) and insert (  )  ) ,  which accesses the

container elements via its internal iterator and apply the internal functor

to them to decide on the candidate elements to a key provided by the

application. The container uses a default allocator to manage data storage

and retrieval.  

Figure 5.4 shows this layout. As we can see all  the components of the

container class can be replaced by other external components.

In order to achieve this flexibility of replacement of objects without

affecting the run time performance, an interface is provided for each of

the system classes as in figure 5.5. The built-in classes are then an

implementation of these standard interfaces. Any new class that is meant

to replace an existing one must satisfy its exact interface, so it  should

inherit  the necessary functionality of the original object by simply

inheriting its interface. This is just an abstract inheritance that has no

effect on the run time performance.  

Figure 5.4: Components Replaceabil
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The basic interfaces of the container, i terator, and algorithm modules are

shown in figure 5.5.

Figure 5.
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5.4 Exception Handling
The system manages part of its functionality through exceptions. An

ordinary insertion operation would result  in adding the new entry to the

page and probably adjusting its key with no further impact on the system.

Considering the fact that the index starts with its pages partially empty,

the scenario of adding new entries will  continue to the point where the

page becomes full  and thus it  becomes necessary to split  i t .  Assuming a

comparable amount of deletion along with the insertions, the page will

take much longer time before becoming full.  Once the page becomes full

during an insertion operation, the operation will throw an exception

page_full as a signal.  The index class will  catch this signal and start the

procedures of splitting that page.

A comparable situation can happen during a deletion operation. Typically

a page starts only partially full,  and can support some extra deletion

operations with no impact other than deleting the entry and probably

readjusting the page key. Adding to that the counteraction of adding some

entries to the same page, the page size will  fluctuate within the allowed

range without impact outside the page. Once, however, the net amount of

deletion to a page becomes dominant, the page size can shrink to below

the minimum allowed fill  factor (typically 50 %). At this point,  during the

critical deletion operation, the page will throw an exception page_sparse.

The index will catch that signal and start the procedures to fix the sparse

page.

One of the first steps to fix a sparse page is to try to borrow some entries

from one of i ts siblings. Redistributing the entries of two pages equally

between them will  solve the problem with a minimal impact on the index.

Only the two pages involved will  be modified and possibly their keys at

the parent nodes as well.  If  the two siblings of the sparse node were not

suitable for borrowing, the operation check_to_borrow ( ) will  fail  and

throw an exception none_to_borrow. The index will  catch this signal and

start the procedures of merging the sparse node with one of its siblings.
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Figure 5.6 shows the signals received by the index class and the hierarchy

of signals sent by the page class.

Figure 5.6: The Exception Class Diagr
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5.5 The General System Interface
Page is an associative container that manages its data (page entries),

which are pairs of key and data reference and allow for searching these

pairs for a given key. Page is an STL-like container that must conform to

all STL interface characteristics. The page container can be implemented

using one of two implementation criteria:  Interface realization or Implicit

container inclusion. 

Interface realization

Interface realization is implemented by inheriting the public container

interface from STL container class and implementing the class methods

completely. This will  provide a more specialized code that is still

conformant with the design. This is particularly useful when special time

or space restrictions might apply.

Implicit container inclusion

For efficient implementation, the page container can be built  on top of an

existing STL container. The page will  work as a wrapper class that has an

STL container class as one of its data members (an implicit  container).

This will  allow for masking the unneeded member functions in the STL

class, and will  save a lot of implementation time. The page flexibility will

depend on the container used. This will give a more generic code. 

In both cases we then need to add the needed functionality of the page.

Many STL containers can be used as an implicit  container,  but we

consider map to be the most suitable one for the following reasons:

i- It  supports any user-defined keys (sequential containers can only

support integers as keys)

ii- It  supports unique keys (multimaps support multiple keys, if

needed)

iii-It  stores data entries as key and data (sets store keys only, if

needed)
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iv-It has efficient storage and search time

All containers provide their own public functions (built-in algorithms like

find ( )).  They also provide public iterators and type definitions to allow

for interaction with external STL algorithms like find_if ( )  or any new

user_defined algorithm. Depending on the search algorithm of the index,

we can adopt any of these searching policies.

-Each page keeps a reference to its parent page if depth first  with

no stack were used as traversal method or for tree maintenance

purpose.

-If tree supported sequential access (like B+ tree),  leaf pages will

have references to both its left  and right siblings as well.

-Each page has a method to extract its key (the page_key( ) )  and –

possibly- to save it  as a data member for efficient retrieval of it

with some storage overhead. As with other computer science issues,

it  is a compromise between efficient dynamic behavior and efficient

storage (time and space).

-The page will  receive pairs of <Key, page &> as entries to store

within the page.

-The page is capable of adjusting its page_key after an entry

insertion.

5.5.1 The Page Container
The page container is invisible to the application. It  is created and

managed by the index container.  The page stores a pair of (Key, T). Class

T can be any user-defined type, typically a reference to another page.

Class T will  be referred to as the mapped object of type mapped type. The

pair (Key, T) will  be referred to as the value object of type value type.  

Key is used to distinguish the different pairs.  It can be any user-defined

type. Key does not have to be part  of the mapped object T, extracted from

its contents, it  can be added to it .  Keys are unique (other containers allow

for duplicate keys). 
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Compare is the functor used when searching objects to decide on the

matching keys. The default  values allow for simply using the built-in

comparison methods as built-in queries, or adding external functors as

new user-defined queries new matching criteria.  The page provides its

built-in set of functions (as standard algorithms), type definitions and

iterators to its contents to interact with external algorithms and external

iterators.  Insertion /  retrieval takes logarithmic time when using the STL

map as an implicit container in the implementation because objects will

be stored in the page in a tree structure. This has, however, no big impact

on performance since the whole page container is meant to fit  in memory

as one page and is typically small (on block size) so the retrieval t ime is

insignificant compared to disk access time. Figure 5.7 shows the page

class. Appendix B shows some public and private members of class page.

template <class Key,
           class T,
           class Compare = less <Key> , 
           class Allocator = allocator <pair <const Key, T> >>

class page;

Figure 5.7: Page Class Signature

5.5.2 The Leaf Page Interface
Figure 5.8 shows the leaf page class. Leaf pages are different in the data

type stored inside them (class T). They also have a true value for the

private flag is_leaf,  which is accessible through the constant public

function is_leaf ( ) .

template <class Key, class T, 
       class Compare = less <Key>,
       class Allocator = allocator <pair <const Key, T> > >

class leaf_page: public page<Key, T, Compare, Allocator>;

 
Figure 5.8: The Leaf Page
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5.5.3 The Index Tree Container 
The index is an abstract data type that can use different implicit  data

types in its implementation. As with the page design, the index container

functionality can be either inherited from an STL container interface and

undergo a complete implementation, or can be implemented by using an

STL container as an implicit container in a new index container class. We

follow the second approach. The index container provides methods that

use some of the implicit  container methods, but this is transparent to the

user. The page container is meant to be small enough to easily fit  into

memory  (a fundamental concept in the index page). The index container,

on the other hand, does not have to fit  completely in the memory. In

typical cases it  will not. The characteristics of the index container will

decide on the implicit  container used.  Since index exists mainly on hard

disk, inserting new pages can only be made at the end of the index file, or

by using a recycled page (for efficiency reasons). No support for insertion

anywhere else is needed from the implicit  container.  For the same reason,

the index uses a special allocator to manage the storage on the hard disk

(pinning the page).  The access of pages is required to be a direct access.

Given a page number (or offset) we expect to be able to read it  directly

without the need to access all  pages before it .  Therefore the implicit

container must support random access using operator [ ].  Sequential

access to the index pages would result in unacceptable performance. This

means that we have two choices. We can use a sequential container that

supports random access to its elements (pages) using some index number

to identify each page (by translating it  to the physical page address).

Alternatively, we an use an associative container that supports random

access to i ts elements (pages) using a unique key for each page, (again by

associating it  to a unique physical page address).
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The Interface

The incrementing operator implementation in class cursor might have

different implementations depending on the index type

1-  It  can be as easy as reading the next entry from the private

vector component if all  results were deposited into the cursor in

one batch as in general domain batch search  (breadth first

policy). 

2-  It  might include sending messages to an index page to iterate to

its next entry as in linear domain sequential access.

3-  It  might include sending a message to the index to continue

searching and locating the next entry as in general domain depth

first  policy. 

For class index, it  is more likely to use the default container than the

default allocator, so allocator comes first  in the template argument.

Figure 5.9 shows the signature of the query, cursor, and index classes, all

included in the index class. 

Public type members and data members:

Each user-defined container must provide a set of standard STL types that

are internally translated to the equivalent container-specific types with

typedef statements. This allow for the container to be easily integrated

with other STL components.

This can be accomplished directly as public type members or by providing

a struct traits to define these types. We follow the first approach.
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template <class T>
class query : public Unary_function <T >

      {
typedef  page <Key, T, Compare, Allocator> :: key_type   key_type;
//the query includes a page key in it.

T  operator ( ) (T a, key_type k ) const; 
// return value must be convertible to boolean
      
} 

template <class T>
class cursor
{
public:

T  operator = ( );  // for index to deposit results
T  operator * ( );  // for application to dereference 

        // results
T  operator ++ ( ); // for application to pre increment
T  operator ++ (int ); // post increment 
begin ( );
end ( );

private

vector <T> V 

} //end class cursor

template <class T,
           class Allocator = allocator <T>,

                       class Container = vector <T>  >
class index;

Figure 5.9: The query, cursor, and index Classes
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Chapter 6  Design  for Linearly Ordered Domain
Before describing details of system design, we will explore some

properties of linearly ordered domain. This will  clarify the design

decisions made for a linearly ordered domain index.

6.1 The Concept of Linearly Ordered Domain
Data in this domain is stored in a sequential order. The data is at least

Less-Than Comparable, meaning that it  must be possible to compare two

objects of that type using the operator < and the operator < must define a

consistent order  [Aus99], so it  can be at least partially ordered. For

example, for two elements A and B, we can decide which one is less than

the other, and store them in their order.  If  we cannot decide, they are said

to be equivalent and we store them in the same order as one group. So

ordering here can be done only partially as for two equivalent elements,

there is no specific order even that they are two different elements. But at

least between groups, there must be a complete order. No two groups can

be equivalent unless they are the same group.  

An example is when storing information about a number of cars. We can

order them according to their model year. For every two cars, we can say

if one is older than the other and put them in order. If two cars have the

same year model, we cannot order them according to this criterion. They

are equivalent,  even that they are two different cars, and we put them in

one group.

Data can also satisfy the more stringent Strict Weakly Comparable

concept,  generating a total ordering for the data. This means that for two

elements A, and B, we must be able to decide their order. They cannot be

equivalent anymore as long as they are two different elements. Each

element is equivalent to itself only, so we reduce the number of elements
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per group to one and the equivalent concept becomes equal. An element is

equal to only itself.

In the previous car example, ordering the cars by their license plate will

give a total ordering. No two different cars can have the same license

plate, and for any two cars, we must be able to decide which one is less

than the other. For every group of license plate, we have only one car.   

This implies that the search for a specific key will  find a specific element

(or a specific group of elements) that satisfies the search comparison

criteria.  This element (or the first element in case of a group result) will

be returned as the result  for the search.

In case of a group result,  the beginning of the group is sufficient to give

the necessary data. Since data is ordered, the rest of the group can be

easily located. This mandates a small addition to the generic page

concept: Each leaf page should be physically connected to the next leaf

page. Even that pages are not necessarily physically ordered, it  is easy to

find the logical order of leaf pages regarding their contents. Then it  would

be easy to link each page with the page that has the immediately next

sequence of data. In the design, each leaf page will  therefore have a

reference to the page that follows it  in the sequence. Acting like a linked

list  data structure, inserting a new page between two pages requires some

modifications to keep the logical sequence in order.

Linking each page to the previous page as well can make a further

addition. It  will  then act  like a doubly- linked list.

We not that leaf pages act like linked lists when it  comes to sequentially

accessing the data, But, unlike linked lists,  they also provide the

functionality of direct access when performing a search.  

It  is clear that the search technique can be composed of one single dive

downward through the index, with no stack needed for the lookup process.
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6.2 Class Diagram
For a linearly ordered domain, the index will have an index algorithm

class to provide the index functionality (search, insert,  delete, etc).  This

algorithm will be used by the application to demand services from the

index. The index will have two types of iterations, implicit  internal

iteration, done without a real internal i terator object, and explicit  external

iterator;  the cursor.

Implicit internal iteration 

This iteration will  provide a special kind of internal tree traversal .  I t  will

generate a page reference and simply access the page. No iterator range

(begin, end) or functionality is needed. Generating a page reference will

be  based on one of the following tree iteration concepts:

Concept 1: Iterating using a key:

The iteration will start from the root page as the begin ( )   position.

The incrementing process operator ++ must be based on a search

key; no arbitrary incrimination is supported since there is no

specific next element without a search key. The next page in the

index will  be decided by interrogating the index current page using

the key. This interrogation will  provide the next element (a page

reference), where the iteration can proceed. This will make it  the

new current element.

Concept 2: Iterating using a page reference:

The page reference can be obtained by different ways. 

One way is by interrogating another page using a certain key. This

case will  be invoked internally by a search operation that uses

concept #1 iteration without interaction with the application. 

The page reference can also be obtained by interrogating a leaf page

for the next page reference (in case of sequential access). This case

will be called externally by a cursor iterator that is accessing the

result  data sequentially.
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The page reference can also be obtained by interrogating any page

for a parent page reference. This case will be called internally by an

insert or delete operation that needs to fix a parent to a modified

page.

All these iterations are invisible to the application. The only iteration

done by the application is iterating through the result data using a cursor.

The index provides the results to an external iterator (the cursor), which

will then be able to iterate through the index leaf pages contents as well

as iterating from one leaf page to the next to access successive results.

Explicit external iteration; the cursor:

The cursor is a special kind of external iterator. It  is created by the

application when searching for some data. As the index searches and

locates the beginning of that data, the cursor can iterate through the

successive entries (on request from the application). Here, unlike

internal i terator,  the next element is sequentially defined; it  is the next

page entry (a pair of key, reference). As the leaf page is depleted, the

cursor is capable of jumping to the next leaf page to continue iteration.

Here the next element is also clearly defined; it  is the first page entry in

the following page. The cursor will  use the page iterator to go within a

leaf page, and will use the index iterator to go from one leaf page to the

next. This is invisible to the application. The application will  be able to

iterate through resultant data continuously as if they were inside a

sequential container.  The index will  have pages as its stored elements.

The index will  use an index allocator to store the pages on an external

storage medium that holds the index pages (typically the index size is

too large to fit  in memory in one shot). An in-memory allocator can be

used if the index can fit  in memory. The index will  use an index functor

(query) that will  be passed to the pages to check for matching entries.

This query is external to the page, but built  in within the index and

passed to the page to use it .  This query will  carry out the equality
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search. So the linear domain index comes with a built in query. Any

other query can be passed to the index by the application and be used by

the page. The page will have page algorithms to decide on the policy of

searching, inserting, and deleting within the page. An in-memory page

allocator will  carry out the memory allocation and deallocation

operations. The page will  have a page iterator to iterate through the

contents of the page depending on the contents layout. The application

that uses the index will  use the algorithms provided by the index to

build, search, insert,  or delete entries. The application will have a

cursor, which the index will be made aware of. The index will  pass the

results to the cursor, and the application will  then access them from the

cursor.

Note that some components are missing, like the page functor class for

example, because they are not needed in this design. This does not,

however, exclude the possibility of adding it  to the design in a later

modification. 

6.3 System Behavior
In order to easily track the behavior of the system using sequence

diagrams, we will  use a specific concept for numbering the pages of the

index. For simplicity, we will  assume each page to have a maximum of 10

children (the same concept can apply to any number of children). The root

page, at first level,  has the number 0. The children of root page have

numbers 00, 01, 02, 03, … up to 09, where the first  digit  (the 0) is the

parent number, and the second digit  is the child number (0 through 9).

Each of these pages also has children numbered by post fixing the child

number to the parent number. For example, page 03 has children

numbered 030, 031, 032, … up to 039. This also means that the number of

digits in a page number gives the level at which the page is. Of course, it

is possible for a page to have less than 10 children, so for example if page

044 has 8 children (0440 to 0447), then 0448 and 0449 will simply not
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not consider unneeded details l ike a missing child in the middle between

two children (for example as if  0355 was missing, the next page to 0354

would be 0356). We will  simply assume that no missing pages exist in the

middle. Each page will have a reference to it  carrying its number and a

key with the same number as well.  For example page 0338 has reference

P0388 to it  and its key is referred to as key0388. From the page number

we can get all  the information we need; its immediate parent, its ancestors

all  the way back to the root,  i ts siblings (if existed), and the possible

children. For example page 05380 is the first child of page 0538, which is

in return the 9th  child of page 053. Page 04256 has the two siblings 04255

(previous), and 04257 (next, if existing)

Figure 6.1: The N
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finding the next sibling of the parent (page 022) and access the first child

of it  (0220). We followed the tree paths, and did not just add

(0219+1=0220). This concept, albeit pure theoretical,  can simplify our

tracking of the system behavior across the index pages. Note that all  page

numbers will  start with 0 as the index tree has one root only, page 0.

6.3.1 Scenario for “search” Using an Internal Query
Search is the fundamental operation in using the index. The application

uses the index to locate data by searching its contents to find where the

physical data resides. As mentioned before, the index does not provide the

data we are looking for, but tells us where it  is stored, so the data

returned by the index is typically a reference to a location. The other

index use cases insert and delete also depend on the search operation. In

order to delete an element, we must find its location first .  Also to insert

an element, we must search for the best location to insert  i t .  For unique

elements, we must search before inserting an element to make sure it  does

not already exist.

The search function comes in two fundamental forms: using a key or using

a query. Search by a key is the basic form. It  uses the internal comparison

operator (the built-in functor) inside the index to find the first data entry

whose key matches the searched key. As shown in figure 6.2, the

application starts by (1) creating a cursor object to receive the search

result in it .  Then it  (2) sends a search request to the index algorithm

providing information about the key to search for, and the cursor to put

the results in. The Index starts the search operation by creating a page

algorithm object; this object has the semantics of searching a particular

page for a key. From the STL concept, this object needs to be passed three

things: a key, a page iterator, and a functor object. The tree creates a

functor from the built-in functor class, and an iterator to the root page and

passes them along with the key to the page algorithm object.  This latter

object will  use the iterator to go through the root page entries, one at a
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time. With each entry retrieved, the page algorithm will  extract the key,

and check it  against the searched key. If the check returned false, the page

algorithm discard this entry and repeat the same process on the next entry.

Once an entry’s key evaluates to true, the page algorithm will extract the

data part of the entry (a page reference) and send it  back to the index

algorithm. The index algorithm will  remove the root page iterator if i t  is

not needed any more, create another page iterator to the page returned by

the first page search. The Page algorithm object will  then be passed the

three parameters: the searched key, the iterator to the new page, and the

built-in functor to check the retrieved keys for a match. The same process

is repeated for all  page entries until  an entry that satisfies the key is

found and its reference part is returned to the index. The index will keep

retrieving the pages and interrogating them for further pages down the

tree until  a leaf page is reached. 

As the leaf is interrogated for the key, and the data part for a matching

key is found, the data part  is (2.1) returned to the cursor object.  The

search carried out by the index comes to an end.

Now the result for the search is in the cursor (in the form of a page

iterator pointing to the page entry that matches the key) and the

application can (3) retrieve this result by (3.1) instantiating the iterator

object using (*result) and incrementing the iterator to the next result

using (iterator ++). As the cursor is incremented, i t  will  (3.2) iterate to

the next entry in the index. The next entry is (3.3) sent to the cursor and

then (3.4) to the application. As the application iterates to the next

result,  another iteration cycle (3.5), (3.6),  (3.7) takes place.

Figure 6.3 shows a high-level sequence diagram of this interaction.

Figure 6.4 shows a detailed sequence diagram. 
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Figure 6.2: Hi-level Collaboration Diagram

Figure 6.3: Hi-level Sequence Diagram
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6.3.2 Scenario for “search” Using an External Query
We can use the index to search for a key using an external query instead

of the internal one. No major change is needed. In database concept,

search using a query is a search for certain elements that satisfy the

query. All we need to do to the system is simple: pass to the page

algorithm object an external functor that resembles the query, so that

when the page algorithm retrieves page entries, i t  will  check them

against this external functor instead of the internal one. From the page

algorithm’s perspective, nothing much has changed. Only the functor

used for the check is different. The scenario with these change reflected

on it  is shown in figure 6.5. Now the application creates the query object

of its choice (it  must, of course, conform to the standard functor

interface by inheriting the abstract interface of a functor). The query

object will contain the searched key inside it  as well as the comparison

criteria. It  can check any key passed to it .  It  will be able to check the

keys sent by the page algorithm and return true or false to the page

algorithm. The index algorithm will make the necessary adaptation. As it

receives a search request with a query instead of a key, it  will  create the

suitable page algorithm object and passes to it  the two objects: the root

page iterator and the query object. The page algorithm will  retrieve page

entries as before, and check their keys against the external query, and

select the matching ones. We need to notice one subtle difference

between the algorithm of internal and external queries. For internal

query case, the algorithm receives two parameters: the searched key

along with the page iterator. It  will  then use the internal functor (the

default one), extract the keys from page entries and send the two objects

extracted key and searched key to be checked by the internal functor.

For external query case, the page algorithm receives two parameters: the

page iterator and the external query object.  No key is sent as the

information about it  is now inside the query object.  
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Figure 6.5: Using External Qu
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Figure 6.5 (cont.):  Using External Query
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6.3.3 The Cursor Behavior: Iterating Through the Search Result
The cursor object is an iterator object that has the capability of iterating

through an index page and being dereferenced to give access to the object

it  references. As the index returns the candidate leaf page having the

needed information, it  will in fact return an iterator to the location of

interest inside it .  The cursor will therefore be referring to a location in a

particular page where the information of interest starts. The application

can then dereference the iterator and get the information.

Having the same capabilities as a page iterator, the cursor allows the

application to iterate through the page sequentially using the operator ++.

This is no done directly from the application to the data without asking

the index. At a certain point, the cursor might come to the situation where

the page contents are depleted and the application is still  asking for the

next element. Here we can see the difference between the page iterator

and the cursor. A page iterator will  return null  value as the last entry of

the page is accessed. The cursor might want to continue to the next page

if data was sequentially ordered. For the cursor, data is a linear sequence

and the end of a leaf page is followed by the beginning of the next leaf

page. This mandates a slight change to the page iterator: as the page

contents are depleted, the page will  not return a null value but rather a

reference to the next leaf page. As the cursor receives this result while

trying to access the next page entry, it  will be understood and the cursor

will go to the next leaf page using that information and start  accessing its

contents by iterating sequentially through it  upon further requests from

the application. 

This scenario continues until  the application ceases asking for further

iterations or the last entry in the last  leaf page was accessed.

We should notice that this scenario applies for linearly ordered domains

only, where data is sorted and stored in a sequential form.

For non linear data, other scenarios apply, as will be shown later.
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Figure 6.6: Cursor Iteration throug
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6.3.4 The Activity Diagram for Insertion

After an insertion, the page could become full .  In this case the index will

need to split  i t  in two. Figure 6.7 shows the activity diagram for insertion.

Figure 6.7: Insertion Activity Diagram
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6.3.5 The Activity Diagram for Deletion

After a deletion, the page could become sparse. In this case the index will

need to borrow from or  merge with a neighbor page. Figure 6.8 shows the

activity diagram for deletion.
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ure 6.8: Deletion Activity Diagram

find bes t
ne ighbor  to

merge

move  a l l
ent r ie s  in to

one  page

adjus t
page  key

dele te
empty   page

bor row

f ind  r i ch
ne ighbor

adjus t  keys  o f
bo th  pages

none

found one

OK

page  sparse

Fix  pa rent  page  by
removing en t ry  of
de le ted  page  and
readjus t ing  ent ry
of  the  o ther  page



94

Chapter 7 Design for General Domain
The linearly ordered domain is a common application in database, but it

does not work for all  applications as it  poses some constraints and

assumptions on the properties of data to be used as a database. We need

to isolate the characteristics that are specific to the linearly ordered

domain, but not necessarily applicable to the general domain, then we

generalize them to define the general characteristics that apply to the

general domain. This would mean easing up some of the constraints

required on data, to make the system workable with general data

formats.

7.1 The Design 
The main difference we need to address in general domain index is that

each page searched may have more that one result . For example, in the

R-tree index, as shown earlier,  searching a key might give more than one

matching entry. Each of these entries will  lead the index algorithm to

descend to a different child. So one page leads to descending to multiple

children, each of which may lead to descending to yet more children. In

the end the index search algorithm will arrive at more than one leaf

page, probably tens or hundreds of them as shown in figure 7.1. All of

these leaves may have some matching data for the application. The

problem is that they are not stored in a sequential order anymore, so

they cannot be accessed by just diving to the first matching data entry

and then sequentially reading the rest of the entries. We cannot even

define first match or sequential in an unambiguous way anymore. The

design will  include two main modifications to be able to accommodate a

general domain database:

1-When searching a page, the searching algorithm should not terminate as

soon as the first match was found. Since there might well be other



matches in the page, the algorithm should check all  the entries in a page

and return all  the matching ones.

2-When traversing the index tree, the traversal process should have the

ability to go through different paths downward. This cannot be done

simultaneously, so the index will use some temporary container to store

all  the candidate paths and then access them one at a time. A stack will  be

used to push all  the children references returned by a page, and they will

be popped one at a time for access. 
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using its implicit container iterator. It  can only pop the contents

sequentially by sending a pop ( ) request to the stack adaptor.  

Figure 7.2: System Layout for General Domain Index
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7.3 System Flexibility; Using Stack or Queue
Note that the leaf pages are retrieved in a reversed order due to the stack

returning the last  element first  (Last In First Out,  LIFO). This makes no

impact on this batch search because in the end all  matching entries will

be in the cursor. If an application requires accessing the leaf pages in a

forward order, the system allows for an easy adjustment by replacing the

helper container stack with another helper container,  Queue (STL

container deque) without affecting any of the other system components.

Since queue has a first-in-first-out policy (FIFO), this will give the

needed result  of accessing the leaf pages in a forward order. All the

analysis,  and requirements for using the stack use are applicable when

using the queue. 

7.3.1 The Effect of Stack and Queue on Index Behavior 
Comparing the behavior of stack and queue and following the pattern of

visiting the index pages shows some index behavior differences. The

queue allows the index to access the leaf pages in a forward order, while

the stack allows accessing them in a reversed order.

Besides, after completing a search in any page, the stack favors the

depth direction while the queue favors the breadth direction (if

possible). This makes the stack-based search capable of reaching the

first  leaf page faster (before exhaustively searching each level), while

the queue-based search visits all  pages in each level before moving to

the next level, so after 50% of the search time has elapsed, a stack-based

search would have accessed more leaf pages than a queue-based search.

In the end, however, they will both have accessed the same pages. 

Both these search policies have one thing in common; they both

completed the search in every page before going to the next page. They

then acted differently when deciding on the next page, going depth or

breadth. A third search policy, depth first will  follow a different

behavior. The search in each page is not even completed, but rather
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interrupted after finding the first  matching child. This behavior allows

reaching the first leaf page even faster than the other two. Table 7.1

shows a brief comparison between the three policies. The Depth first

policy is discussed in more details at  the end of this chapter.  

Page search Next page level Index
Traversal

Queue-
based

Complete
searching every
page, visit  each
page once.

Complete searching
all pages in same
level.

Pure
breadth-
first
policy.

Stack-
based

Complete search
in every page,
visit  each page
once.

Quit other pages in
same level,  go to
next level, and
come back later to
other pages of same
level. 

Mix of
breadth-
and depth-
first
policies.

Stack-
based
depth-
first

Quit page after
finding first
child, go to
child, and come
back later to
other children of
same page.

Quit other pages in
same level,  go to
next level, and
come back later to
same page or other
pages of same level.

Pure
depth-first
policy.

Table 7.1: Comparison between Index Traversal Policies

7.4 The Class Diagrams
The nature of our framework allows for strong cohesion of classes and

weak coupling. This is advantageous here as i t  reduces the modifications

necessary to change from one design to another to as few classes as

possible.  The first modification, showing the advantage of strong

cohesion, will  be restricted to the page algorithm or the tree algorithm

without affecting other system components. The second modification,

showing the advantage of weak coupling, will be done by adding a new



component to the design, a stack,  and slightly modifying the index tree

algorithm. We will study both modifications in more details.  An object

diagram of the new design is shown in the figure 7.3. It  has a stack as a

new component owned and used by the index algorithm to remember the

multiple paths in traversing the tree. 

The application always owns the result  cursor.  It  uses the index

algorithm to ask for the available services like search, insert , delete.

The index algorithm will deposit all  the results (in case of search for

example) into the cursor. The cursor here does not have to access the 

page iterator or the index iterator to get more results,  as they are all

deposited into it  during the search.
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Figure 7.3: Object Diagram for Using Internal Query
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7.5 The Behavior of the System
Figure 7.4 shows the sequence of interacting with the traversal stack

using an internal query. The query is built-in inside the page container

as an internal functor.  The index will  be the main object controlling the

interaction here. It will  create a page algorithm and connect it  to the

root page through an iterator.  It  will also create a traversal stack object.  

Next it  will  start  i terating through the page by sending a search

command. The page algorithm will search for the first match, send it  to

the index and stop at the next position after the first match.  Assuming

that the page accessed is an internal node page having other page

references as its data entries, the index, receiving the matching data in

the form of page references, will  send it  to the stack for later use, (see

also section 3). Next the index will send another search command to the

page iterator, which will start  the search from its current position, right

after the first matching data, and search for the next match, send it to

the index, and so on. As the page algorithm reaches the end of page, it

will send an end-of-page, EOP, signal to the index. The index will

proceed by popping the next page reference from the stack and access

that page and iterate through it .

Modifying the system to use an external query requires only slight

changes. The modification will  be limited to making the page algorithm

ask the external query if entries were matching, instead of asking the

internal functor. The index will  not always send the received page

entries matching the searched key to the stack. It  will need to decide on

whether to send them to the cursor or to the stack depending on their

type. Index page references will go to the stack, while data page

references will  go to the cursor. The source of entries will  decide their

type. Entries from a leaf page will certainly be data references and must

be sent to the cursor to be retrieved by the application, so index will test

if  the statement page is leaf was true then send entries to the cursor.
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Entries from a node page will not, however, always be page references to

be sent to the traversal stack. For example, a single-node index will have

only one node page (the root),  which is also a leaf page. This page will

therefore have data references as its entries (there is no other pages to

send to the traversal stack). Testing if this page was a node page will give

true even that,  being a leaf as well,  i t  has entries that are actually data

references and should be sent to the cursor, not to the stack. Therefore,

the index must check if page is a leaf  was false  and not  page was a node

was true to avoid such a problem. This should be reflected in the flag of

the page itself, by having the flag to test  leaf_page  or not. There will be

no need for another flag like node-page. 

The iteration can be left to the page to do without index interaction. The

page algorithm will send data directly to its proper destination.
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agram when Using Internal Query
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Fig7.4 (cont.):  Sequence Diagram when Using Internal Query
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Chapter 8 Similarity Search Applications
So far we have seen the analysis and design for two different domains: the

linearly ordered domain, and the general domain (with both breadth first

and depth first  access methods). These domains have one common search

concept; the equality search. As we searched for a key in different index

pages, we compared the keys in a page with the key we are searching.

Each comparison was done using an internal- or an external functor

(query), and always gave one of two outcomes, matching or not matching.

We then did our next move either downward (in depth-first general

domain, and in linearly ordered domain) or laterally (in breadth-first

general domain).

All these methods depend on choosing one of the two outcomes of the

comparison object.  No other outcomes of the comparison were allowed.

In some database applications, this is not always the case. Some times the

comparison of two objects does not just give a yes/no result,  but rather

how close the two objects are; or in exact terminology how similar the

two objects are. Even if the two objects do not exactly match, we are

interested in them if they were similar, and not interested if they were not

similar.

8.1 The Analysis
The similarity comparison would search for common features between two

different objects, depending on the application. As explained in 3.6, the

search result could produce a number to represent the distance between

two objects (with 0 being exactly the same) or a percentage value showing

how similar the two objects are (with 100% being exactly the same). A

higher distance value or a lower percentage value would mean less

similarities between the two objects.

Translating the percentage value into more similar or less similar is also

application dependent. A 90 % similarity could be considered very similar
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in one application, while considered not similar enough in another. This

introduces the concept of threshold value for similarity, wherein we may

define a threshold value for similarity outcomes to be considered in the

result  set of similar objects or not. 

Changing this rather vague concept of the percentage values outcome into

a more solid one like similar or not will  make data easier to handle and

study. The application may set the threshold for the percentage outcome

depending on the domain. All values below this threshold value will  be

considered as not matching and ignored, while values above it  will be

considered as matching and taken into account (another approach is to

consider the n-most similar objects without using a threshold value. This,

again, depends on the application, but does not affect our analysis here).  

This helps in eliminating a certain amount of data that is not similar

enough (to the data we are searching) to be considered.

As we search we will have on hand more than one object to consider as

similar to the one we are looking for.  We may want to visit  some or all  of

them, so it  would make sense to visit  the more similar ones first;  the ones

with higher percentage similarity. In other words out interest in visiting

these objects will be proportional to their value of similarity. The best

way to do that is by ordering them in a queue according to their similarity

value, and start visiting them from higher to lower.

With the index pages arranged into a hierarchy over different levels, i t

will  be slightly more complex. Starting from the top, we go downward

visiting all similar pages (with similarity percentage value above

threshold value) from higher to lower percentage. As we visit  a page, we

exhaustively search all its entries and the search will  return certain page

entries (of key and page reference) accompanied with how similar it  is to

our key. All these entries are then added to a priority queue with their

percentage similarity value as its priority. The priority queue will take the

responsibility of inserting entries partially or totally ordered such that we

can always access the entry with the highest priority next.  
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As we finish searching a page, we look for the next page to visit by

reading the priority queue. We will  get the page with the highest

similarity value, and search it ,  inserting further entries with their

similarity values into the queue, read the next page, search it  and so on.

This search is neither a depth first  nor a breadth first.  As explained in

chapter 3, the direction of our next move is not simply one step lateral or

one-step vertical.  It  solely depends on the next value popped from the

queue. This could result in any kind of movements. The next page could

be anywhere in the index, two steps up, five pages to the right, … etc. On

the index it  will  look like jumping in all  directions, possibly multiple

levels at a time, just favoring the highest similarity value as the sole

motive to our next move (a demonstration with a numerical example of

this movement is given in section 8.2). It  is clear that,  unlike depth-first

general domain, and linearly ordered domain, and similar to the breadth-

first  general domain, we are doing an exhaustive search on each page. The

reason is that we are not in a hurry to descend to the first  match found,

but rather want to find the best match in each page before leaving it .  This

implies that we delete the page from the priority queue after we visited it .  

On the index level,  we pick up the best page to visit,  and search for the

best matching entries in it  (more pages). We are doing what can be called

the best of the best search. To guarantee this criterion, we do not just take

the best match in a page and visit  i t  directly; we rather put all  matching

pages from every search, regardless of their level,  in the queue with the

matching pages from previous search. We then select the best global

match over the whole index again and again, and search for the best

matches in it ,  add them to the queue, and so on.

As we hit a data item, we send it  to the cursor. This item should be the

most similar i tem to the one the application is looking for. We then wait

for the application to access it .  
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8.2 A Numerical Example
Figure 8.1 shows with a numerical example how the similarity search

proceeds to find the matching data according to how close they are to data

we are searching. For simplicity, we will  assume that each leaf page

contains directly the data we are looking for (an Image, for example). If

the leaf pages contained keys with similarity percentage values, we can

just add one more level to the example, and use the same technique. It

would only be unwieldy large. This example here will  show the necessary

details only. The pages of interest are shown with their numbers, using

the same numbering convention as before. The pages, which are of no

interest to us, are shown only as smaller rectangles to work as a

placeholder for those pages. They are considered anonymous pages and

their numbers are not shown, for obvious space reasons

We note that as we descend on the branches of a subtree in the figure, we

might get lower priority values than the higher level nodes of the same

subtree. For example, node 07 had priority 89%, but as we descend on it,

i ts children 075, and 077 have lower priorities of 75 % and 85%, then

further child 0774 has only 74%. This is not an unusual feature of

similarity search. The keys at higher levels of the index, covering larger

subtrees, will  be required to summarize the features of all  the pages in

their subtrees. This might lead to ignoring some details, or generalizing

them, making them coarse-grained. Testing one of those coarse-grained

keys might give a less accurate high similarity value. As we take on this

key and descend in its subtree, we get more fine-grained keys as more

details are revealed about the now smaller subtree. Those new details

might result  in a lower, but more accurate similarity values than first

appeared on the parent page key. This could lead to the unwanted side

effect of accessing less similar node pages before accessing more similar

ones, being misled by this feature. Using the priority queue helps recover

and avoid this side effects in the leaf level as we put all  pages in one

global priority queue, with their similarity to the searched key as the
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priority metric.  As the pages in a branch get less similar than their parent

page once did, they are automatically pushed behind older pages already

in the queue with now more similarity to our searched key, resulting in

abandoning the less similar branch, and moving to the more similar one.

In figure 8.1, instead of going to 0774, we abandoned the whole subtree of

node 07, and moved to 03. This will  always guarantee that we will visit

the page with highest priority, and reduce the possibility of going on a

less lucrative path. In this example, the arrows show that we have

information about that page with the percentage of their similarity to the

key we search. The dotted ones mean that the page is not yet visited. The

solid arrows show that we used this path, and already visited the page at

its end. The visited pages are shown in a light gray tone.

8.3 The Order of Reading Leaf Pages
In both linearly ordered and general domain, we access the leaf pages in

some forward or reverse physical order depending on the access method

and the type of helper container used. The breadth first policy using a

stack (we called it  a mix of breadth- and depth first policies) always read

the matching leaves from the last  to the first .  The breadth first  policy

using a queue (we called it  pure breadth-first policy) always read the

matching leaves from the first  to the last.   The depth first  policy starts by

reading the first  and precedes to the last match. All these policies are

position-oriented in that the order of accessing the pages depends on their

position, regardless of their contents. 

In similarity search, there is no predetermined order in accessing the

matching pages. This policy is contents-oriented in determining the

sequence of pages to access, regardless of their position. We access the

most similar page, then the second most similar and so on. Changing the

similarity value of the pages to the one we search will  therefore be the

factor leading to changing the order we access them.
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Figure 8.1: Search Sequence in Similarity Search
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Chapter 9 Conclus ion
In this thesis we describe how to build a generalized tree index from

independent building blocks that are coherent and decoupled.

A database index is a data structure with a set of functionality to search

and update a database. The index structure follows certain algorithms for

searching, insertion, and deletion of data as well as internal index

maintenance algorithms that guarantee data integrity. 

The C++ STL library, a part of the standard library, introduces a concept

for breaking a container data structure into a set of algorithm – iterator –

container modules. We expand this concept to build a complete modular

index system. In the design, we break the  index data structure with

functionality into  container of pages with each page built  as container of

entries where each entry is a pair of <key, reference> . 

The index module, being a container of pages, is further decomposed into

algorithm – iterator – container modules. Similarly the page module,

being a container of entries is further decomposed into algorithm –

iterator – container modules. The entries are then stored in each page as

pairs of key, reference. Other modules; allocators, further separate the

process of primary and secondary storage management from the other

modules. We also use some helper modules; like result cursor container,

search container (stack /  queue), and functors to complement the

necessary system parts.  We use adaptor modules like functor adaptors,

container adaptors, and iterator adaptors to adjust the slight irregularities

between some incompatible modules. In the end we add the data and the

data reference modules to complete the system. This allows us to

construct a complete index system from modules.

In order to adapt the system to different keys /  data types, different

queries, different access methods, and different storage media, we need to

locate and modify (or simply replace) some modules in the system. We

provide some examples to show how to adopt the system to linearly
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ordered domain applications by providing an analysis of this domain. This

analysis identifies the modules in the system that needed modifications.

We reflect these modifications on the system design and eventually on the

interface. Similarly we adapt the system to general domain applications

by first providing an analysis of this domain and exposing the main

changes found in this domain. Again, this leads us to identifying the

modules to modify in the design along with a new module to add (either a

stack, or a queue) to achieve a new system in general domain (with both

depth-first  and breadth first  access methods). Again these modifications

are then reflected to the interface. Finally, we provide an analysis of the

similarity-search domain and follow the same steps to identify and apply

the changes needed in the affected modules.

Using a modular design for the index system has the advantage of making

it easier to adapt the system to work in different database domains. The

analysis of the domain determines the modules that need changes (or

replacement),  and the kind of changes (or modules) required. This means

that the other modules need not be changed. This greatly reduces the

efforts needed to modify the system. The complexity of modification is

also reduced since the developer does not need to know about the details

of all  modules, but only of those modules to be changed along with an

overview of the system. The adoption of STL approach adds great

advantage of having a wealth of off- the-shelf standard modules that can

be simply used to replace system modules in the process of modifying the

system. This promotes code reuse and thus increase readability, user-

friendliness and reduces time and money overheads incurred during the

application development process.   

9.1 Future Work
Our ultimate goal is to build an index system to handle any type of data,

key, query or access method in a real database application. One important

issue in database is concurrency and locking mechanisms to allow for
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multiple access to the same piece of information while guaranteeing data

integrity. This issue needs to be addressed according to the classes

suggested in the design. Another important work that still  needs to be

done is the construction of concrete classes as shown in the design to

obtain a working index. 

The design started with tree indexes and we see that it  has a potential  to

handle other index types such as inverted lists,  hash tables, and parallel

search. These types of indexes deserve further investigations, and we hope

to see the design extended to cover them as well.  
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Appendix A  Flow of Events
Expert developer “designs a database system”
Pre-condition: None 
Main flow: The developer studies the different functional and non-functional requirements of the
system and puts a design to satisfy them.
Post-condition: A design for a database and index system, including the primary and secondary
indexes. 
Expert developer “Implements a database system”
Pre-condition: An integrated design of the system. 
Main flow: The developer implements the different components of the system and test it on a
platform.
Post-condition: A core code for a database system including the indexes to help access them. 
Database Developer “provide a query ”
Pre-conditions: An index core code must be present.
Main flow: Database Developer writes the code for a new index query class to be used by an
existing system.
Post-condition: A customized index code that supports a new query.      
Database Developer “provides a data type ”
Pre-conditions: An index core code must be present.
Main flow: Database Developer writes the code for a new index data type class to be used by a
new system. This data type will give a new index capable of dealing with database that uses the
new data type.
Post-condition: A customized index code that supports an application with a new data type. 
Database Developer “defines new access method”
Pre-conditions: An index core code must be present.
Main flow: Database Developer writes the code for building a new index 
required by a new system. The new index structure will be capable of using a new access
method concept to traverse the tree.
Post-condition: A customized new index code that supports a new access method concept.
Database Developer “sets index parameters ”
Pre-conditions: An index core code must be present, and any customizable parts (extensions)
must be implemented.
Main flow: The extension programmer sets the index parameters (like the page fill factor), the
tree order to adjust the index implementation to the particular application.
Post-condition: A customized index code that has specific values for its parameters suitable for
the application and the system variables.
Database Administrator “defines scheme”
Pre-conditions: A suitable design for data tables and a Data Definition Language (DDL). 
Main flow: The DBA uses the DDL tools to define the format of the tables used to store the
data. The definition will include table name, the name and type of each field and the constraints
applied to them. 
Post-condition: A definition of the tables used in the data and the relations between them. 
Database Administrator “builds data references”
Pre-conditions: Physical data files carrying the bulk of data to be used in the database must be
available in the data tables.
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Main flow: Build data groups / partitions (if necessary), and define references to their physical
locations, as well as suitable keys describing those partitions.
Post-condition: Creation of data references that will be used by the index.
Database Administrator “build index”
Pre-condit ion:  A customized index for a particular application must be available. Data
scheme must be defined and Physical data must be loaded. Reference file comprising data keys
and references to their physical locations must be available.
Main flow; using a bottom up technique: Create an empty index file, sort the reference file, then
build the index using the bottom up technique.
Alternative flow; using the top down technique: Create an empty index file then build the index
using top down technique.
Post-condition: Creation of an index to the data.
Database Administrator “dynamically fine-tune index”
Pre-conditions: An index file built on the physical data, and an index object that can
successfully open an index file (same type)
Main flow: The DBA runs the system by using an index object to open an existing index file of
the same type, then dynamically fine-tune the system by monitoring the performance while the
index is being used and adjusting the system parameters (bucket/page size, fill factor etc.) to
reach the optimal performance.
Post-condition: An index that is optimized for the applications using it.    
Database application “uses index”
Precondition: A customized index suitable for this application and a cursor must be available. A
previously created index object must exist, that can be opened by the application, connected to
an index file built with the same extension type.  
Main flow: Search data
The application will search for some data using a query. First it initializes an iterator (cursor)
object to accept pairs of key, data reference as an output from the search operation. The search
algorithm traverses the index using the query to select the candidate data references at leaf level
that satisfy the given key. These will be returned to the cursor object, where the application can
access them sequentially.
Alternative flow: Insert data
The application will insert some data in the form of  key, data reference. The application will
provide the key, data reference pair to be inserted. The index insertion algorithm will perform it
in two steps: First it will use the key in the search algorithm to find a suitable location on the
index leaf level for insertion. Second the insertion algorithm is used to insert the key, data
reference pair in the resulting location. The necessary adjustments to the index are then
performed.
Alternative flow: Delete data
The application will attempt to delete some data from the database using a key. The application
provides a key for data to be deleted. This is done in two steps: First the delete algorithm will
use the key to try and locate the data to be deleted using the search algorithm. Second if the
index find the location of candidate data for deletion, the delete will be applied on data
occupying that location. The necessary adjustments to the index are then performed.
Post-condition: The index is adjusted to reflect the current status of the data.
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Appendix B  Interfaces
Page public type members and data members.

page <Key, T, Compare, Allocator> :: iterator ;   //internal iterator class

page <Key, T, Compare, Allocator> :: const_iterator ;
//An iterator class that allow read-only access to the container elements

page <Key, T, Compare, Allocator> :: reference ; 
//type of the reference to the contents of the container

page <Key, T, Compare, Allocator> :: const_reference ;

page <Key, T, Compare, Allocator> :: key_type;   
//typedef, allow for user defined key types

page <Key, T, Compare, Allocator> :: mapped_type; //typedef of the class T

page <Key, T, Compare, Allocator> :: value_type;  //typedef, the pair <const Key, T>

page <Key, T, Compare, Allocator> :: size_type;  

page <Key, T, Compare, Allocator> :: difference_type;  

page <Key, T, Compare, Allocator> :: allocator_type;

page <Key, T, Compare, Allocator> :: key_compare;

page <Key, T, Compare, Allocator> :: page_key;

Page public member functions.

page <Key, T, Compare, Allocator> :: page (const Compare& comp = Compare ( ),
           const Allocator& = Allocator ( ) );

//constructs an empty page

template <class InputIterator> 
page <Key, T, Compare, Allocator> :: page ( InputIterator first,

          InputIterator last, 
          const Compare& comp = Compare ( ),
          const Allocator& = Allocator ( ) );

//constructs a page and inserts the values in the range first to last.
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page <Key, T, Compare> :: page (const  page <Key, T, Compare, Allocator>  & x );
//copy constructor

size_type page <Key, T, Compare, Allocator> :: size ( ) const; //returns current size

bool page <Key, T, Compare, Allocator> :: is_leaf ( ) const; //true if page is a leaf 

bool page <Key, T, Compare, Allocator> :: is_full ( ) const;//true if page is full

bool page <Key, T, Compare, Allocator> :: is_sparse ( ) const; //true if page is sparse

bool page <Key, T, Compare, Allocator> :: is_dirty ( ) const;
//true if page contents have been modified.

size_type page <Key, T, Compare, Allocator> :: max_size ( ) const;
//returns maximum size

iterator page <Key, T, Compare, Allocator> :: parent ( );  

const_iterator page <Key, T, Compare, Allocator> :: parent ( ) const ; 

iterator page <Key, T, Compare, Allocator> :: begin ( );  

const_iterator page <Key, T, Compare, Allocator> :: begin ( ) const ; 

iterator page <Key, T, Compare, Allocator> :: end ( );

const_iterator page <Key, T, Compare, Allocator> :: end ( ) const;

iterator page <Key, T, Compare, Allocator> :: find (const key_type& x);

const_iterator page <Key, T, Compare, Allocator> :: find (const key_type& x) const;
//find first object equal to x

iterator  page <Key, T, Compare, Allocator> :: find_if (query& Query);

const iterator  page <Key, T, Compare, Allocator> :: find_if (query& Query);
//this algorithm is using an external comparison query. 

pair <iterator, bool>  page <Key, T, Compare, Allocator> :: insert 
         (const value_type& x);

//inserts a value (the pair <const Key, T) in its proper place.

iterator page<Key, T, Compare, Allocator>:: insert 
      (iterator position, const value_type& x);

//inserts a value in its ordered place but start searching for the place from position.
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void page <Key, T, Compare, Allocator> :: erase (iterator position);
//delete object at position

size_type page <Key, T, Compare, Allocator>::erase ( const key_type& x); 
//delete all occurrences of object x and returnthe number of objects deleted (zero or one
//for unique key

void page <Key, T, Compare, Allocator> :: erase (iterator first, iterator last);
// delete all objects in the range from first to last.

T&  page <Key, T, Compare, Allocator> :: operator [ ] (const key_type & x);
//allow for directly indexing the objects by their keys

key_compare page <Key, T, Compare, Allocator> :: key_comp ( ) const;
// return the functor used in the page (for comparing keys)

iterator page <Key, T, Compare, Allocator> :: find_split_point ( );
//return an iterator to the best position to split a page if it was full.

key_type page <Key, T, Compare, Allocator> :: find_page_key ( );
//each page is able to extract the key of its contents

Index public type members and data members.

typedef  page <Key, T, Compare, Allocator> :: key_type   key_type;
//the key type used in the index container is obtained from the page container

index < page, Allocator, Container> :: iterator;   //An iterator to the container

index < page, Allocator, Container> :: const_iterator;

index < page, Allocator, Container> :: reference; 
//type of the reference to the contents of the container: a page reference 

index < page, Allocator, Container> :: const_reference;

index < page, Allocator, Container> :: data_type; // the class page

index < page, Allocator, Container> :: allocator_type;

const index < page, Allocator, Container> :: page_fill_factor;

Index public member functions.

reference index < page, Allocator, Container> :: root_page( );



123

reference index < page, Allocator, Container> :: find (key_type& x, cursor &results);
//key_type is from page container. 

const_ reference page < page, Allocator, Container> :: find 
(const key_type& x, cursor &results) const;

reference index < page, Allocator, Container> :: find_if (query &Query , cursor results);
// searching the index using an external query 

const_reference index < page, Allocator, Container> :: find_if
          (query &Query , cursor results);

reference index < page, Allocator, Container> :: insert 
        (const key_type& x, const page :: mapped_type );

reference index < page, Allocator, Container> :: delete (const key_type &x);

reference index < page, Allocator, Container> :: operator [ ] (const page &p);

Some index private member functions.

page&  index < page, Allocator, Container> :: create_page ( ); 

page&  index < page, Allocator, Container> :: check_to_borrow 
(page& left, page& right);

void index < page, Allocator, Container> :: borrow (page &from, page &to);

page& index < page, Allocator, Container> :: check_to_merge 
(page &left, page &right);

void index < page, Allocator, Container> :: merge (page &from, page &to);

void index < page, Allocator, Container> :: fix_page (page &p );

iterator index < page, Allocator, Container> :: split_page (page &p );

iterator index < page, Allocator, Container> :: fix_sparse_page (page &p );

iterator index < page, Allocator, Container> :: pin_page (page &p );

void index < page, Allocator, Container> :: flush_page (page &p );

//For a B+ tree, we need the following additional methods :
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iterator page <Key, T, Compare, Allocator> :: left_sibling ( );  

const_iterator page <Key, T, Compare, Allocator> :: left_sibling ( ) const ; 

iterator page <Key, T, Compare, Allocator> :: right_sibling ( );  

const_iterator page <Key, T, Compare, Allocator> :: right_sibling ( )  const ; 
  
iterator page <Key, T, Compare, Allocator> :: rbegin ( );

const_iterator page <Key, T, Compare, Allocator> :: rbegin ( ) const ;

iterator  page <Key, T, Compare, Allocator> :: rend ( );

const_iterator  page <Key, T, Compare, Allocator> :: rend ( ) const;

Interface example: B+ tree with integer. 

We can implement the complete class from scratch, or include an internal STL
container as an implicit container and just use it.
 
Interface for complete implementation method 

#ifndef    page_H
#define    page_H
#include  <….>

template <class Key, class T, >  //using default comparison and default allocator
class page

{
  public :
  // Constructors
  page ( )  { } //constructs an empty page

  page (  InputIterator first,  InputIterator last ) { . . . }
  //constructs a page and inserts values in the range first to last.

  page (const page <Key, T>& x ) {  }
  //copy constructor

 class iterator 
  {
     public:

iterator (pair<Key, T>  * Initial = 0) :current (Initial ) { } //constructor
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T&  operator* ( )
{

  return current -> second ;
}

  
const T&  operator* ( ) const
{

   return current -> second ;
}

bool operator = = (const iterator&  x) const
{

  return current = = x . current;
}

iterator& operator ++ ( ) { }

// . . .  with other operators and functions

     private: 
pair <Key, T> *  current;
// . . . possibly with other data members 

   } //  end iterator

class const_iterator {  . . . }
//An iterator class that allow read-only access to the container

typedef  pair<const Key, T>&  reference; 
//type of the reference to the contents of the container

typedef const pair<const Key, T>&  const_reference;

typedef  Key  key_type; 
//typedef, allow for user defined key types

typedef T mapped_type;
//typedef of the class T

typedef  pair<const Key, T> value_type; 
//typedef, the pair <const Key, T>

typedef  ptrdiff_t  size_type;  

typedef  ptrdiff_t  difference_type;  
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typedef  Allocator  allocator_type;

typedef  less<T>  Compare key_compare;

   public:

page ( ) { 
     //construct an empty page
   }

page ( InputIterator first, InputIterator last )  
{
//constructs a page and inserts the values in the range first to 
//last.
}

page (const page <Key, T, Compare, Allocator> & x ) 
{ //copy constructor }

size_type  size ( ) const 
{ return size ;}

bool is_full ( ) const
{ return is_full ;}

bool is_sparse ( ) const
{return is_sparse ;}

bool is_dirty ( ) const
{return is_dirty ;}

size_type max_size ( ) const
{ return maximum_size ;}

iterator parent ( )
{return parent ; } 

const_iterator parent ( ) const 
{return parent ;}

iterator begin ( )
{// return iterator to the first element }
const_iterator begin ( ) const  
{ //return iterator to the first element }



127

iterator end ( )
{ //return iterator to location after last element}
const_iterator end ( ) const{ }

iterator find (const key_type& x) { }
const_iterator find (const key_type& x) const { }

iterator  find_if (query& Query);
const_iterator  find_if (query& Query) const;

pair <iterator, bool> insert (const value_type& x){ }

iterator insert (iterator position, const value_type& x) { }

void erase (iterator position) { } // delete object at position

size_type erase ( const key_type& x) { }
//delete all occurrences of object x and return the number of objects deleted 

void erase (iterator first, iterator last) { }
// delete all objects in the range from first to last.

T& operator [ ] (const key_type & x) { }
//allow for directly indexing the objects by their keys

key_compare key_comp ( ) const{ }
// return the functor used in the page (for comparing keys)

iterator find_split_point ( ) { }
// return an iterator to the best position to split a page.

key_type find_page_key ( ) { }
//each page is able to extract the key of its contents

private:

size_type  size = 0; 
bool is_full = false;
bool is_sparse = false;
bool is_dirty = false;
size_type max_size ;
iterator parent ;
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Interface for implicit container method
We can design the page to be a class that use an implicit container as one of its private
data members, namely the map, and thus use the existing map iterator and methods in the
implementation of the page (easier). 

template<class Key, class T> 
class page 
{ 
  public: 

typedef map <Key, T> Container
 

//import these definitions from map to page. Now they’ll apply to the page.
 typedef Container::iterator  iterator;
 typedef Container::const_iterator  const_iterator;
 typedef  Container::key_type   key_type;
 typedef  Container::mapped_type mapped_type;
 typrdef  Container::value_type value_type;
 typedef Container::size_type  size_type; 
 
  private:
 bool is_full; 

bool is_sparse;
 bool is_dirty;
 size_type max_size;

size_type current_size;

 iterator parent ;

Container C; //implicit map container

   public:
page ( ) : is_full (0), is_sparse(0), is_dirty(0), current_size (0) { }

         //constructs an empty page

page (  InputIterator first,  InputIterator last ) : is_full (0), is_sparse(0),
is_dirty(0) , current_size (0) { }

  //constructs a page and inserts the values in the range first to last.

  page (const page&  x ) ;

size_type  size ( ) const { return current_size ;}

bool is_full ( ) const { return is_full ;}

bool is_sparse ( ) const {return is_sparse ;}
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bool is_dirty ( ) const {return is_dirty ;}

size_type max_size ( ) const { return max_size ;}

iterator parent ( ) { return parent ; } 

const_iterator parent ( ) const { return parent ;}

iterator begin ( ) {return C.begin ( ) ;}  

const_iterator begin ( ) const {return C.begin ( ) ;}  

iterator end ( ) {return C.end ( ) ; }

const_iterator end ( ) const{ }{return C.end ( ) ;}

iterator find (const key_type& x) ;

const_iterator find (const key_type& x) const ; //find first object equal to x

pair <iterator, bool> insert (const value_type& x);

iterator insert (iterator position, const value_type& x) ;

void erase (iterator position) ;

size_type erase ( const key_type& x) ;

void erase (iterator first, iterator last) ;

T& operator [ ] (const key_type & x) ;

 key_compare key_comp ( ) const ;

iterator find_split_point ( ) ;
 

key_type find_page_key ( ) ;

 } //end class page
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Usage examples.

//to create an index of pages:
index < page <int, smart_pointer>, Physical_Alloc>   An_index ;

//Internally, the index creates pages and bilk-load data into them:
page <int, smart_pointer>  page_1 ;
    
 //bulk-load the page 
 for ( int i = 1 ,  i = 200 ,  i ++)
          {
               . . .  “read data (a_key, a_smart_pointer) ” 
                       pair <int, smart_pointer >  p = make_pair  (a_key, a_smart_pointer) ;
                       page_1 . insrt (p) ;
          }

. . . 

//To insert a pair into the index:
 int  key_x = 515; 
 smart_pointer  sp_x ( physical_data_reference ) ;   
  . . .  =  An_index . insert ( key_x, sp_x ) ;

//To search for a key:
 int  key_y = 515 ;    
 cursor  result ;
 An_index . find ( key_y , result) ;
 int  First_result =  * result ++ ;
 int  Second_result = * result ++ ;
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