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Preface

This is a book about continuous time optimal control and its extension to a certain
class of dynamic games known as open loop differential Nash games. Its intended
audience is students and researchers wishing to model and compute in continuous
time. The presentation is meant to be accessible to a wide audience. Accordingly, the
presentation does not always rest on the most general and least restrictive regularity
assumptions.

This book may be used by those with little mathematical preparation beyond in-
troductory differential and integral calculus and a first course in ordinary differential
equations. Nonetheless, prior exposure to nonlinear programming is desirable. For
those without that prior exposure, a chapter that reviews the foundations of NLP is
included.

The exercises at the end of each chapter should be attempted by anyone seeking
mastery of the material emphasized in this book. The exercises are in some cases
very challenging, yet they accurately represent the kinds of problems one faces in
building and applying dynamic models based on optimal control theory and dy-
namic non-cooperative game theory.

Chapter 1 provides some insight into the history of dynamic optimization and
differential games, as well as a preview of the applications that are covered in
the book. Chapter 2 provides a review of finite dimensional nonlinear program-
ming, while Chapters 3 and 4 present the foundations of continuous time optimal
control and infinite dimensional mathematical programming. Chapter 5 provides a
condensed treatment of finite dimensional Nash games and their representation as
variational inequalities. Chapter 6 presents the foundations of open loop dynamic
Nash games and their representation as differential variational inequalities. Chap-
ters 7, 8, 9 and 10 are devoted, respectively, to the following applications: economic
growth theory; production planning and supply chains; dynamic user equilibrium;
and pricing and revenue management.

I regret that the press of time has not permitted me to cover differential
Stackelberg games or to include chapters on stochastic differential games. It is
my hope that these and other incomplete aspects of the book may someday be
overcome in a revised edition.

The preparation of this book as been made possible by several grants from the
National Science Foundation and the continuous support of the Harold and Inge
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Marcus Chaired Professorship. I have also been aided by several generations of
graduate students and graduate research assistants at Penn State, George Mason
University, the University of Pennsylvania and MIT. In this regard, I am especially
indebted to Changhyun Kwon, Pat Harker, David Bernstein, Enrique Fernandez,
H. J. Cho, C. C. Lin, Niko Kydes, Reeto Mookherjee, Taeil Kim, B.W. Wie and
Ilsoo Lee for their assistance with countless theoretical, numerical and applied ex-
plorations of optimal control and game theory. I am also deeply grateful for the
aid and support of my wife, Joyce, and the companionship of Dakota, Coaly Bay,
Montana, and Nevada.

University Park, Pennsylvania Terry L. Friesz
2010



Chapter 1
Introduction

In this book we present the theory of continuous-time dynamic optimization,
covering the classical calculus of variations, the modern theory of optimal control,
and their linkage to infinite-dimensional mathematical programming. We present
an overview of the main classes of practical algorithms for solving dynamic
optimization problems and develop some facility with the art of formulating dy-
namic optimization models. Upon completing our study of dynamic optimization,
we turn to dynamic Nash games. Our coverage of dynamic games emphasizes
continuous-time variational inequalities and subsumes portions of the classical
theory of differential games.

This book, although it may be used as a text, is meant to be a reference and
guide to engineers, applied mathematicians, and social scientists whose work ne-
cessitates a background in dynamic optimization and differential games. It provides
a detailed exposition of several original dynamic and game-theoretic mathematical
models of operations research and management science applications of current im-
portance, including revenue management, supply chain management, and dynamic
traffic assignment.

Ideally, the reader should have a prior mastery of necessary and sufficient
conditions of finite dimensional (nonlinear) mathematical programming and of the
main algorithmic philosophies used to solve nonlinear programs. The reasons for
needing this background in nonlinear programming will become abundantly clear
as we proceed. Nonetheless, many individuals without significant prior exposure
to nonlinear programming will likely wish to become familiar with and apply the
theory of dynamic optimization and/or the theory of differential games exposited
in this book. Consequently, in Chapter 2, we review nonlinear programming to a
depth that will allow the reader without a prior background in nonlinear program-
ming to understand a significant fraction of the material in subsequent chapters of
this book. Such readers must keep in mind, as we re-emphasize in Chapter 2, that
full preparation in nonlinear programming cannot be obtained from Chapter 2 alone.
In fact, for full comprehension of the material contained in subsequent chapters, one
needs to have successfully completed a formal course in nonlinear programming at
the graduate level. If one’s background is limited to a one-time exposure to the ma-
terial of Chapter 2 certain analyses and results presented in subsequent chapters will
be difficult to understand and in some instances will be opaque.

T.L. Friesz, Dynamic Optimization and Differential Games, International
Series in Operations Research & Management Science 135,
DOI 10.1007/978-0-387-72778-3 1, c� Springer Science+Business Media, LLC 2010
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2 1 Introduction

The following is an outline of the principal topics covered in this chapter:

Section 1.1: Brief History of the Calculus of Variations and Optimal Control.
We give a brief summary of several hundred years of mathematical research, em-
phasizing the origins of the calculus of variations and the special insights offered by
its modern generalization, the theory of optimal control.

Section 1.2: The Brachistochrone Problem. We review a specific version of the
class of minimum time problems that launched the calculus of variations in the 17th
century.

Section 1.3: Optimal Economic Growth. We study the paradigm of neoclassical
optimal economic growth theory, as well as its historical antecedent, Ramsey’s 1928
model.

Section 1.4: Regional Allocation of Public Investment. We show how neoclassi-
cal optimal economic growth theory may be extended to consider interacting regions
of a national economy.

Section 1.5: Dynamic Telecommunications Flow Routing. We present a detailed
deterministic model of message flow routing in a dynamic telecommunications
network.

Section 1.6: Brief History of Differential Games. We give a brief overview of the
history of mathematical games with explicit dynamics, emphasizing the contribution
of Issacs and perspectives based on differential variational inequalities.

Section 1.7: Dynamic User Equilibrium for Vehicular Networks. We show how
one of the most challenging applied problems of present-day operations research,
the so-called dynamic user equilibrium problem for predicting urban traffic flows,
may be viewed as a differential Nash game and expressed as a differential variational
inequality.

Section 1.8: Dynamic Oligopolistic Network Competition. We show how static
notions of oligopolistic competition may be generalized to describe a Nash-type
equilibrium on a network whose flows are driven by inventory and shipping
considerations.

Section 1.9: Revenue Management and Nonlinear Pricing. We give one exam-
ple of pricing in a dynamic, nonlinear, competitive setting. Again the model takes
the form of a differential variational inequality.

1.1 Brief History of the Calculus of Variations
and Optimal Control

Most of the abstract mathematical problems and dynamic optimization models we
will study belong to the broad topic of inquiry known as the calculus of variations.
The calculus of variations, to give a very crude definition that we will refine later, is a
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formalism for analyzing and solving extremal problems in function spaces. As such
the unknowns we are seeking are themselves functions and the extremal criterion is
a functional – that is, a function of other functions. The independent variable is a
scalar that, in applications, typically corresponds to time, although this scalar may
in fact be any independent variable that is useful for a parametric representation of
the dependent variables of interest.

Another notable feature of the calculus of variations is that the extremal criterion
is frequently an integral. This means that many continuous-time optimization mod-
els that involve present value calculations may be viewed as calculus of variations
problems. The limits of integration of the extremal integral may be fixed or un-
knowns to be determined. This allows models to be created that determine not only
the trajectory through time of an optimal process but also the time of its initiation as
well as the time of its termination. It is widely agreed that the calculus of variations
was born almost immediately after the creation of the Newton-Leibnitz calculus fa-
miliar to almost all first-year college students. In fact, Newton and Leibnitz played
a role in the early development of the calculus of variations, although the Bernoulli
brothers, Euler, and Lagrange are generally credited with the innovations that we
loosely refer to as the classical calculus of variations. In the classical calculus
of variations, side conditions, or constraints – as a person with modern training
in mathematical programming would call them – can be accommodated but only
with some difficulty. Perhaps the side conditions that pose the greatest challenge
for the classical theory are functional equations, especially differential equations.
By contrast, optimal control theory – which may be thought of as a modern cal-
culus of variations – is able to treat differential equation constraints with relative
ease. Optimal control theory also employs much more hygienic notational conven-
tions and distinguishes between two classes of decision variables: control variables
and state variables. This distinction meshes perfectly in many economic and techno-
economic applications with intuitive notions of what variables may be used to set
policy (control variables) and what variables describe the implications of policy
(state variables).

Optimal control theory in effect originates with the publication of The Mathe-
matical Theory of Optimal Processes by Pontryagin, Boltyanskii, Gamkrelidze, and
Mishchenko in 1958 in Russian and 1962 in English. This book not only provided
a powerful formalism for including all types of constraints in calculus of variations
problems but also introduced the important theoretical result known as the maximum
principle (or minimum principle when minimizing). The maximum principle allows
the decomposition of a dynamic optimization problem in the form of an optimal
control problem into a set of static problems, one for each instant of time. The op-
timal solution of the instantaneous subproblems can be shown to give the optimal
solution of the original dynamic problem. The power of this result cannot be over-
stated – it is one of the most important intellectual achievements of the twentieth
century and one of the most important mathematical discoveries of all time.



4 1 Introduction

To satisfy diverse applications interests, we will provide in the present chapter
some example dynamic optimization models that are historically important and/or
of current topical interest. The models we consider are the following:

1. the brachistochrone problem;
2. optimal economic growth;
3. regional investment allocation; and
4. dynamic telecommunications flow routing.

When studying these models, our perspective will be exclusively deterministic in
both this and subsequent chapters.

1.2 The Brachistochrone Problem

The archetypal calculus of variations problem is the so-called brachistochrone1

problem:

Imagine a bead slides along a frictionless wire guideway connecting two fixed points
A and B in a constant gravitational field. The speed of the bead along the wire is V0 at point
A. What shape must the wire have to produce a minimum-time path between A and B?

History records this as one of the first, if not the first, calculus of variations problem;
a version of the problem was posed by Johann Bernoulli in 1696 and explored fur-
ther by his brother Jakob Bernoulli, as well as by Newton, L’Hôpital and Euler.
The solution is a cycloid, lying in the vertical plane and passing through A and B .

Let y .x/ denote the vertical position of the bead as a function of its horizontal
position x. Working through the equations of motion for this problem, it can be

shown that the speed of the bead at depth y below the origin is .2gy/
1
2 and that the

time of passage is the functional

J
�
x; y; y0� D 1

.2g/
1
2

Z x

0

"

1C
�
dy .�/

dt

�2#

Œy .�/��
1
2 d�

where � is a dummy variable of integration and g is the acceleration due to gravity.
It is of course the minimization

minJ
�
x; y; y0�

that constitutes the brachistochrone problem. If one studies the historical writings
on the brachistochrone problem, it becomes apparent that there are many variants
and specializations of the basic version we have presented. For this reason, some of
the older books refer, rightly so, to the brachistochrone problems.

1 The word brachistochrone is Greek and means “shortest time.”
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1.3 Optimal Economic Growth

We consider two models of optimal economic growth that are interesting in their
own right and that provide an introduction to the type of thinking characteristic of
dynamic continuous-time optimization models.

1.3.1 Ramsey’s 1928 Model

In a very famous paper Ramsey (1928) proposed the idea of a bliss point, an accumu-
lation point of a sequence of consumption decisions representing the nonattainable,
ideal consumption goal of the consumer. The bliss point, B > 0, has the same units
as utility and obeys

B D sup ŒU .c/ W c � 0�

where c is the consumption level of a representative member of society and U .c/ is
the utility experienced as a result of that consumption. Because there areN identical
members of society, maximization of social welfare is assured by

maxJ D
Z 1

0

ŒU .c/ � B� dt (1.1)

The relevant dynamics are obtained from a neoclassical production function

Y D F .K;L/ (1.2)

where Y is output and K and L are time-varying capital input and constant labor
input, respectively. The neoclassical nature of .1.2/ means that F .:; :/ is homoge-
neous of degree one; that is

F .˛K; ˛L/ D ˛F .K;L/

for ˛ a positive scalar. Taking labor (population) to be fixed, per capita output may
be expressed as

y D Y

L
D 1

L
F.K;L/

D F

�
K

L
; 1

�
D f .k/

where

k � K

L
and f .k/ � F

�
K

L
; 1

�
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Thus, we have

dk

dt
D d

dt

�
K

L

�
D 1

L

dK

dt

D F .K;L/

L
� C

L
� ı

K

L

D f .k/� c � ık (1.3)

where I is investment, C is total consumption, c is per capita consumption, and ı is
the rate of depreciation of capital. Obviously, k is per capita capital. Note that per
capita output f .k/ is expressed in terms of the single state variable k, a fact made
possible by the homogeneous-of-degree-one property of the production function. In
deriving (1.3), we make use of well-known macroeconomic identities relating the
rate of change of capital stocks dK=dt, investment I , consumption C , and capital
depreciation ıK:

dK

dt
D I � ıK

D Y � C � ıK

The above development allows us to state Ramsey’s optimal growth model in the
following form:

maxJ D
Z 1

0

ŒU .c/ � B� dt (1.4)

subject to

dk

dt
D f .k/� c � ık (1.5)

k .0/ D k0 (1.6)

The model (1.4), (1.5), and (1.6) is an optimal control problem with state variable k
and control variable c.

1.3.2 Neoclassical Optimal Growth

Ramsey’s work can be criticized from the points of view that population is not time
varying, that there is no discounting, and that the concept of a bliss point contradicts
the nonsatiation axiom of utility theory. These criticisms are quite easy to remedy
and lead to the so-called neoclassical model of optimal growth. One of the clear-
est and most succinct expositions of the neoclassical theory of optimal economic
growth is contained in the book by Arrow and Kurz (1970).
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To express the neoclassical model of optimal growth, we postulate that
population has a constant proportionate growth rate � obeying

1

L

dL

dt
D � H) L D L0 exp .��t/ (1.7)

where L0 D L.0/ is the initial population (labor force). We then construct
dynamics for per capita capital k D K=L in a fashion highly similar to that
employed for Ramsey’s model. In particular we write

dk

dt
D d

dt

�
K

L

�
D 1

L

dK

dt
� K

L

1

L

dL

dt

D F .K;L/

L
� C

L
� ı

K

L
� �

K

L

D f .k/ � c � ık � �k

where now

f .k/ D F

�
K

L
; 1

�

Consequently, the neoclassical optimal growth model is

maxJ D
Z 1

0

exp .��t/ U .c/ dt (1.8)

subject to

dk

dt
D f .k/� c � ık � �k (1.9)

k .0/ D k0 (1.10)

where � is the constant nominal rate of discount. The model comprised of (1.8),
(1.9), and (1.10) is again an optimal control problem. The neoclassical optimal
growth model is itself open to criticism, especially as regards its assumption of a
constant returns to scale technology.

1.4 Regional Allocation of Public Investment

As another example, let us next consider a model for optimal regional allocation of
public investment, derived from taxes on private sector earnings. That model in its
most general form includes the following characteristics:

1. growth dynamics involve no constant returns assumption and allow increasing
returns;

2. there is an equilibrium in all capital markets;
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3. private and public capital, the latter allowing infrastructure investment decisions
to be modeled, are distinguished from each other;

4. population evolves over time in accordance with a Hotelling-type diffusion
model that includes births, deaths, and location-specific ecological carrying
capacities;

5. capital augmenting technological change is allowed and is endogenous in nature;
6. regulatory and fiscal policy constraints may be imposed; and
7. the optimization criterion is the present value of the national income time stream.

The model we propose is partly based on the spatial disaggregation of macroe-
conomic identities relating the rate of change of capital stocks to investments
and depreciation. This perspective on disaggregation to create coupled differen-
tial equations describing regional growth can be traced back to Datta-Chaudhuri
(1967), Sakashita (1967), Ohtsuki (1971), Domazlicky (1977), Bagchi (1984), and
Friesz and Luque (1987), although the assumptions we make regarding produc-
tion functions and technological change are extensions of this antecedent literature.
The below model also differs from historical regional growth models in that we do
not rely on the assumption of a constant proportionate rate of labor force growth
for each region. The constant proportionate growth (CPG) model of labor and pop-
ulation allows the dynamics for population to be uncoupled from those of capital
formation and technological change. As a consequence, in CPG models popula-
tion always grows exponentially with respect to time and shows no response to
changes in population density, capital or regional income. As an alternative, we re-
place the unrealistic CPG model of population growth with a Hotelling-type model
that includes the effects of spatial diffusion and of ecological carrying capaci-
ties of individual regions and is intrinsically coupled to the dynamics of capital
formation.

1.4.1 The Dynamics of Capital Formation

Basic macroeconomic identities can be used to describe the relationship of the rate
of change of capital to investment, output and savings. In the simplest framework,
output is a function of capital and labor, and the rate of change of capital is equated
to investment less any depreciation of capital that may occur. That is:

dK

dt
D I � ıK (1.11)

where K is capital, dK=dt is the time rate of change of capital, I is investment, and
ı is an abstract depreciation rate. Subsequently ıp will be the depreciation rate of
private capital and ıg the depreciation rate of public capital. Of course (1.11) is
an aspatial model. It is also important to recognize that (1.11) is an equilibrium
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model for which the supply of capital is exactly balanced against the demand for
capital. We shall maintain this assumption of capital market equilibrium throughout
the development that follows. It is also worth noting that (1.11) is the foundation of
the much respected work by Arrow and Kurz (1970) exploring the interdependence
of aspatial private and public sector growth dynamics. To spatialize (1.11) as well
as to introduce a distinction between the public and private sectors we write:

dK
p
i

dt
D I

p
i � ıpK

p
i and

dK
g
i

dt
D I

g
i � ıgKg

i (1.12)

where the subscript i 2 Œ1; N � refers to the i th of N regions, and the superscripts p
and g refer to the private and public (governmental) sectors, respectively.

Further detail can be introduced into the above dynamics by defining ci to be
the consumption rate of region i and r to be a tax rate imposed by the central gov-
ernment on each region’s output. We also define �i to be the share of tax revenues
allocated to subsidize private investments in region i; and �i to be the share of tax
revenues allocated to public (infrastructure) investments in region i . Also, Yi will
be the output of region i . To keep the presentation simple, we assume that all capital
(private as well as public) is immobile, although this assumption can be relaxed at
the expense of more complicated notation. Consequently, the following two identi-
ties hold:

I
p
i D .1 � ci � r/ Yi C �ir

NX

jD1
Yj and I

g
i D �i r

NX

jD1
Yj (1.13)

By virtue of the definitions of �i and �i , we have the following constraints:

NX

iD1
.�i C �i / D 1 (1.14)

and
0 � �i � 1 and 0 � �i � 1 (1.15)

which require that allocations cannot exceed the tax revenues collected and must be
nonnegative.2 We further assume that the i th region’s intrinsic technology, ignoring
for the moment technological innovation, is described by a production function of
the form

Yi D Fi
�
K
p
i ; K

g
i ; Li

�
(1.16)

where Li is the labor force (population) of the i th region.

2 Other tax schemes, such as own-region taxes can easily be described. The one chosen here is
meant to be illustrative.
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It follows at once from (1.12) and (1.16) that the dynamics for the evolution of
private and public sector capital are, respectively:

dK
p
i

dt
D .1 � ci � r/ Fi

�
K
p
i ; K

g
i ; Li

�

C�i r
NX

jD1
Fj

�
K
p
j ; K

g
j ; Lj

	
� ıpKp

i 8i 2 Œ1; N � (1.17)

dK
g
i

dt
D �ir

NX

jD1
Fj

�
K
p
j ; K

g
j ; Lj

	
� ıgK

g
i 8i 2 Œ1; N � (1.18)

It is important to note that we have made no assumption regarding constant returns
to scale in articulating the above dynamics.

1.4.2 Population Dynamics

Traditionally, the literature on neoclassical economic growth, as we noted above,
has assumed a constant proportionate rate of labor force growth. As population and
labor force are typically treated as synonymous, this means that models from this
literature employ quite simple population growth models of the form

dLi

dt
D �iLi Li .0/ D L0i (1.19)

for every region i 2 N where �i is a constant. This means that population (labor
force) always grows according to the exponential law Li .t/ D L0i e

�i t regardless
of any other assumptions employed. The CPG assumption is decidedly unrealistic,
limits the policy usefulness of economic growth models based on it, and calls out
to be replaced with a richer model of population and labor force change over time
and space.

We replace (1.19) with a spatial diffusion model of the Hotelling type3.
In Hotelling-type population models, migration is based on the noneconomic no-
tion of diffusion wherein populations seek spatial niches that have been previously
unoccupied. This means that, unlike (1.19), population will not become inexorably
denser at a given point in space, but rather that population density may rise and fall
over time. Yet because we will link this diffusion process to the capital formation
process, there will be a potential for population to concentrate where infrastruc-
ture agglomeration economies occur. Furthermore, we will employ a version of
the spatial diffusion process that includes a logistic model of birth/death processes

3 See Hotelling (1978).
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and specifically incorporates the ecological carrying capacity of each location
alternative. These features will inform and be informed by the capital dynamics
(1.17) and (1.18), resulting in an economic growth model that is intrinsically more
realistic than would result from rote adherence to the neoclassical paradigm.

Hotelling’s original model is in the form of a partial differential equation which
is very difficult to solve for realistic spatial boundary conditions and is not readily
coupled with ordinary differential equations such as (1.17) and (1.18). In Puu (1989)
and Puu (1997), a multiregion alternative to Hotelling’s model is suggested; that
alternative captures key features of the diffusion process and the birth/death process
in a more tractable mathematical framework. Specifically, Puu (1989) proposes, if
the population of region i is denoted as Pi , the following dynamics:

dPi

dt
D 	iPi .
i � Pi /C

X

j¤i
�j
�
Pj � Pi

� 8i 2 Œ1; N � (1.20)

where 	i , 
i , and �i are positive exogenous parameters to him. The idea here is
that the term

P
j¤i �j

�
Pj � Pi

�
is roughly analogous to diffusion in that it draws

population from regions with higher population density toward regions with lower
population density. Typically �j is referred to as the coefficient of diffusion for re-
gion j 2 N . The entity 
i is sometimes called the fitness measure and describes the
ecological carrying capacity of region i 2 N ; its units are population. The param-
eter 	i ensures dimensional consistency and has the units of .time/�1. Clearly this
model is not equivalent to Hotelling’s, but it does capture the essential ideas behind
diffusion-based population growth and migration and is substantially more tractable
from a computational point of view since (1.20) is a system of ordinary (as opposed
to partial) differential equations.

Moreover, the population dynamics (1.20) can be considerably enriched by
allowing the fitness measure to be locationally and infrastructurally specific, as we
now show. Specifically, we postulate that


i D Vi
�
K
g
i ; t

�C‰i .t/ (1.21)

where Vi
�
K
g
i ; t

�
describes the effect of infrastructure on carrying capacity and

‰i .t/ is the natural or ambient carrying capacity that exists in the absence of in-
frastructure investment. It is important to understand that by “carrying capacity”
we mean the population that a region can sustain. As such, (1.21) expresses the
often-made observation that each individual region is naturally prepared to support
a specific population level, and that level may vary with time and be conditioned
by manmade infrastructure. Puu (1989) observes that population models such as
that presented above have one notable shortcoming: it is possible, for certain initial
conditions, that population trajectories will include periods of negative population.
Negative population is, of course, meaningless, and population trajectories with this
property cannot be accepted as realistic. Consequently, we must include in the final
optimal control formulation a state space constraint that forces population to remain
nonnegative.
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1.4.3 Technological Change

None of the above presentation depends on the idea of balanced growth or the
assumption that a long-run equilibrium exists in the usual sense. Neither do we
assume that technological progress must obey some type of neutrality. When in-
troducing technological progress, we have a free hand to explore any type of
technological progress. In particular, we are not restricted to labor augmenting
progress or progress that enhances overall output, and we can explore capital
augmenting progress, a natural choice since our interest is in the role of public
capital (infrastructure). In fact, we shall concentrate on technological progress that
augments Kg

i . Consequently for each region i , we shall update the associated pro-
duction function by making the substitution

K
g
i H) ˆ.t/K

g
i (1.22)

whereˆ is a scalar function of time describing the extent of infrastructure augment-
ing technological progress. Technological progress for our model is endogenously
generated through separate dynamics for ˆ. We postulate that public capital aug-
menting technological progress occurs when the ratio of national output to public-
capital falls below some threshold and is zero when the ratio exceeds that threshold.
That is, the rate of technological progress dˆ=dt obeys

dˆ

dt
> 0 if � � ‚ (1.23)

dˆ

dt
D 0 if � > ‚ (1.24)

where � is the output/public-capital ratio and ‚ 2 <1C is a known reference thresh-
old which determines the need for and the fact of technological progress. Note that
the output/public-capital ratio is dependent on multiple state variables:

� .Kp; Kg ; L;ˆ/ D
PN
iD1 YiPN
iD1K

g
i

D
PN
iD1 Fi

�
K
p
i ; ˆK

g
i ; Li

�

PN
iD1K

g
i

(1.25)

where Kp, Kg and L are vectors of private capital, public capital and labor re-
spectively. Moreover, � is implicitly time dependent since it is constructed from
time-varying entities. It follows that the rate of technological progress is

dˆ

dt
D 
 Œ‚ � � .Kp; Kg ; L;ˆ/�C (1.26)

where 
 2 <1C is an exogenous constant of proportionality and Œ:�C is the nonneg-
ative orthant projection operator with the property that ŒQ�C D max .0;Q/ for an
arbitrary argumentQ.
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1.4.4 Criterion Functional and Final Form of the Model

In what follows, we have assumed for simplicity that there is full labor force
participation, so that Li D Pi . We wish to maximize the present value of the na-
tional income time steam for the time interval Œt0; tf � expressed as

maxJ.Kp; Kg ; P / D
NX

iD1

Z tf

t0

exp .��t/ Fi
�
K
p
i ; K

g
i ; Pi

�
dt (1.27)

where � > 0 is the constant nominal rate of discount and P is presently a vector of
regional specific populations:

P D .Pi W i 2 N/

This maximization is to be carried out relative to the dynamics and constraints de-
veloped above. Hence, the final form of the model is

maxJ .Kp; Kg ; P /

subject to

dK
p
i

dt
D .1 � ci � r/ Fi

�
K
p
i ; ˆK

g
i ; Pi

�

C �i r

NX

jD1
Fj

�
K
p
j ; ˆK

g
j ; Pj

	
� ıpK

p
i 8i 2 Œ1; N �

and

dK
g
i

dt
D �ir

NX

jD1
Fj

�
K
p
j ; ˆK

g
j ; Pj

	
� ıgKg

i 8i 2 Œ1; N �

dPi

dt
D 	iPi .
i � Pi /C

X

j¤i
�j
�
Pj � Pi

� 8i 2 Œ1; N �

dˆ

dt
D 
 Œ‚ � � .Kp; Kg ; P;ˆ/�C

NX

iD1
.�i C �i / D 1 8i 2 Œ1; N �

0 � �i � 1 8i 2 Œ1; N �
0 � �i � 1 8i 2 Œ1; N �
Pi � 0 8i 2 Œ1; N �
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where the shares �i and �i for all i 2 Œ0; N �, as well as the tax rate r , are the control
variables. The state variables are, of course, Kp

i , Kg
i , and Pi for all i 2 Œ0; N �,

as well as ˆ. We have taken the only technological progress to be public capital
augmenting, although clearly other options exist. The above model is discussed in
more detail in Chapter 7, where a numerical example of it is also presented.

1.5 Dynamic Telecommunications Flow Routing

In telecommunications theory we distinguish between flow routing and flow control.
In flow routing we are concerned with the optimal routing of known message de-
mands. In flow control we are concerned with managing demand, including the
rejection of message transmission requests. Both classes of problems are amenable
to dynamic optimization. For the purpose of providing a preliminary telecommu-
nications example of an optimal control model, we shall presently focus on flow
routing.

1.5.1 Assumptions and Notation

The dynamic flow routing problem is concerned with the routing of known and
forecast message demands that vary with time in order to minimize the congestion
that will be encountered on the telecommunications network. For this problem, we
assume that there is a real physical network based on a graph G .N ;A/ where A is
a set of directed arcs and N is a set of nodes. Every arc has associated with it a
delay function that derives from a simple model arc latency. That is, the arc delay
functions we employ view the traversal time (or latency) experienced by a message
packet on arc a 2 A, denoted by Da Œxa .t/�, as a function of xa .t/, the message
volume on arc a in front of the packet when it enters the arc at time t . The units of
this function are delay (time) per unit of flow. We assume that arc delay is always
positive, so that

Da Œxa .t/� > 0 8a 2 A (1.28)

for any argument xa � 0. Spillbacks that impact upstream nodes are not considered.
It is convenient to describe a given path (or route) p through the network as a

sequence of arcs named in the following fashion:

p � ˚
a1; a2; : : : ; ai�1; ai ; aiC1; : : : ; am.p/



(1.29)

wherem.p/ is the number of arcs in path p. We will describe the flow dynamics of
each arc ai 2 p by

dx
p
ai
.t/

dt
D gpai

.t/ � gpai�1
.t/ (1.30)
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where

xpai
.t/ D the volume on arc ai due to flow on path p at time t

gpai
.t/ D the flow exiting arc ai of path p at time t

gpai�1
.t/ D the flow entering arc ai�1 of path p at time t

Furthermore, we recognize that gpa0
is the flow exiting the origin node of path p. We

give gpa0
the special symbol hp and refer to it as the departure rate into path p; or

more simply as the flow on path p when this latter name is not confusing.
Of course, volume on a given arc is the sum of contributions from the paths

traversing that arc; it is given for every a 2 A by

xa D
X

p2P
ıapx

p
a (1.31)

where

ıap D
(
1 if a 2 p
0 if a … p

and P denotes the set of paths connecting origin-destination (OD) pairs of the
network. We also use NO to denote the set of nodes from which message traffic
originates and ND to denote the set of nodes for which traffic is destined. We also
use W D f.i; j / W i 2 NO ; j 2 NDg to denote the set of origin-destination pairs
between which message traffic moves. Furthermore, Pij will be the set of paths
connecting OD pair .i; j / 2 W , so that

P D
[

.i;j /2W
Pij

describes the set of all network paths.

1.5.2 Flow Propagation Mechanism

We now develop a mechanism to describe the physical propagation of flows through
the network. To this end we introduce the concept of the arc exit time function.
To understand the exit time function, let te be the time at which flow exits the i th
arc of path p when departure from the origin of that path has occurred at time td .
The relationship of these two instants of time is expressed as

te D 
pai
.td / (1.32)
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and we call 
pai
.:/ the exit time function for arc ai of path p. The inverse of the exit

time function is written as
td D �pai

.te/ (1.33)

and describes the time of departure td from the origin of path p for flow which exits
arc ai of that path at time te. Consequently, the following identity must hold

t D �pai

�

pai
.t/
�

(1.34)

for all time t for which flow behavior is being modeled. It then follows immediately
that the total traversal time for path p can be articulated in terms of the final exit
time function and the departure time:

Dp .t/ D
m.p/X

iD1

h

pai

.t/ � 
pai �1 .t/
i

D 
pam.p/
.t/ � t (1.35)

when departure from the origin of path p is at time t .
A further consequence of the assumed model of arc delay is



p
a1

D t CDa1

�
xa1

.t/
� 8 p 2 P (1.36)



p
ai

D 

p
ai�1

.t/CDai

h
xai

�


p
ai�1

.t/
� i 8 p 2 P ; i 2 Œ2;m .p/� (1.37)

Differentiating (1.36) and (1.37) with respect to time gives

d

p
a1
.t/

dt
D 1CD0

a1

�
xa1

.t/
� dxa1

.t/

dt
8 p 2 P (1.38)

d

p
ai
.t/

dt
D
"

1CD0
ai

�
xai

�


p
ai�1

.t/
�� dxa1

�


p
ai�1

.t/
�

d

p
ai�1

.t/

#
d


p
ai�1

.t/

dt
(1.39)

8 p 2 P ; i 2 Œ2;m .p/�

where we have again used the chain rule and the prime superscript denotes total dif-
ferentiation with respect to the associated function argument. Evidently, expressions
(1.30), (1.36), and (1.38) are easily combined to yield

ga1

�
t CDa1

�
xa1

.t/
�� �
1CD0

a1

�
xa1

.t/
� Pxa1

.t/
� D hp .t/ (1.40)

where the overdot refers to a total time derivative. Proceeding inductively from this
last result with the guidance of (1.39), we obtain

gpai

�
t CDai

�
xai

.t/
�� �
1CD0

ai

�
xai

.t/
� Pxai

.t/
� D gpai�1

.t/ (1.41)

8 p 2 P ; i 2 Œ2;m .p/�
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Expressions (1.40) and (1.41) are proper flow progression constraints derived in
a fashion that makes them completely consistent with the assumed model of arc
delay. Note that these constraints involve a state-dependent time lag Dai

�
xai

.t/
�

but make no explicit reference to the exit time functions and their inverses. We will
subsequently use (1.40) and (1.41) as constraints for dynamic flow routing in order
to assure physically meaningful flow.

1.5.3 Path Delay Operators

The preceding development allows us to determine closed-form path delay operators
that tell us the delay experienced by a message packet transmitted at time t and en-
countering traffic conditions x. In particular, we note that the recursive relationships
(1.36) and (1.37) lead to the operators

Dp .t; x/ �
m.p/X

iD1
ˆai

.t; x/ (1.42)

for traffic conditions

x � �
xpai

W p 2 Œ1; jP j� ; i 2 Œ1;m .p/��

where the ˆai
.t; x/ are arc delay operators obeying

ˆa1
.t; x/ D Da1

�
xa1

.t/
�
> 0

ˆa2
.t; x/ D Da2

�
xa2

�
t Cˆa1

��
> 0

ˆa3
.t; x/ D Da3

�
xa3

�
t Cˆa1

Cˆa2

��
> 0

:::

ˆai
.t; x/ D Dai

h
xai

�
t CPi�1

jD1ˆaj

	i
> 0

9
>>>>>>>>=

>>>>>>>>;

(1.43)

We also introduce the arrival penalty operator

…
�
t CDp .t; x/ � TA

�
(1.44)

where TA is the prescribed fixed arrival time. The arrival penalty operator has the
properties

t CDp .t; x/ > TA H) …
�
t CDp .t; x/ � TA

�
> 0 (1.45)

t CDp .t; x/ < TA H) …
�
t CDp .t; x/ � TA

�
> 0 (1.46)

t CDp .t; x/ D TA H) …
�
t CDp .t; x/ � TA

� D 0 (1.47)
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for every path p 2 P . Consequently, the effective delay operator for each path
p 2 P is

‰p .t; x/ D Dp .t; x/C…
�
t CDp .t; x/ � TA

�
> 0 (1.48)

Note carefully that the path delay operators have been expressed as a closed form
in x requiring as a priori knowledge only the arc delay functions. This is a pow-
erful result: expression (1.48) tells us literally how to look into the future to model
the delay of message packets we are transmitting in the present. In that path flows
determine arc exit rates and arc volumes, we may also use the notation

‰p .t; h/ 8p 2 P

to denote the effective delay operators.

1.5.4 Dynamic System Optimal Flows

We imagine that there is a central authority that manages the network, setting
message transmission rates and determining message routes. Therefore, we are in-
terested in minimizing total system wide delay for the full network based on the
graph G .N ;A/ over the period

�
t0; tf

�
, expressed as

minJ1 D
X

p2P

Z tf

t0

‰p Œt; h .t/� hp .t/ dt (1.49)

where t D t0 is the earliest allowed transmission time and tf is the transmission
time horizon. That is, no message traffic can be transmitted prior to time t0 and all
messages must have been transmitted by time tf . It is easy to introduce notation
to allow for different classes of messages with distinct arrival times, but we refrain
from doing so to keep the notation simple.

1.5.5 Additional Constraints

There will be two types of demand: scheduled demand and instantaneous demand.
Scheduled demand is known a priori, by which we mean at or prior to time t0.
Scheduled demand is serviced at the convenience of the controller so long as it is
serviced prior to the end of the planning horizon. By contrast, instantaneous demand
must be serviced at the time it arises. We denote the fixed, scheduled demand for
origin-destination pair .i; j / 2 W by Qij ; the instantaneous demand at time t 2�
t0; tf

�
for the same OD pair will be Rij .t/. Both Qij and Rij .t/ are exogenously

determined and known exactly. This is somewhat unrealistic as demand forecasts
will be subject to error so that each Rij .t/ must necessarily have a stochastic error.
Given the deterministic focus of this book, we ignore this bit of reality so that the
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basic structure of the model can be outlined with the minimum amount of notation.
Therefore, we impose the following flow generation and conservation constraints:

X

p2Pij

hp .t/ � Rij .t/ (1.50)

X

p2Pij

Z tf

t0

hp .t/ dt D Qij C
Z tf

t0

Rij .t/ dt (1.51)

for every defined .i; j / 2 W . Note that constraint (1.50) requires that instantaneous
demand be serviced at the time it arises; there may be a technological lag which
requires that (1.50) be replaced by the constraint

X

p2Pij

hp .t C 
/ � Rij .t/ (1.52)

or all .i; j / 2 W where 
 is a fixed constant time lag reflecting the time needed to
respond to demand. A still richer model can be constructed by assuming that the lag

 is origin-destination specific and depends on the prevailing congestion level.

We also impose the nonnegativity restrictions

x � 0 g � 0 h � 0 (1.53)

where

x � �
xpai

W p 2 Œ1; jP j� ; i 2 Œ1;m .p/�� (1.54)

g � �
gpai

W p 2 Œ1; jP j� ; i 2 Œ1;m .p/�� (1.55)

h � �
hp W p 2 Œ1; jP j�� (1.56)

are the vectors of state and control variables. Individual arcs may be assumed to
have hard capacity constraints on either volumes, entry flows or exit flows as is
appropriate for the network being studied. Arc volume capacity constraints can, of
course, also be reflected in the arc delay functions. For example, the function

Da D Aa C Ba

Ka � xa

ensures that arc volume xa can never exceed the known, fixed capacityKa. In light
of the preceding development, if we employ arc delay functions with embedded
capacities, the set

ƒ1 D f.x; h; g/ W .1.40/; .1.41/; .1.50/; .1.51/; and .1.53/ holdg (1.57)

describes the feasible region of the omniscient controller for flow routing.
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1.5.6 Final Form of the Model

As a consequence of the preceding development, the telecommunications flow
routing problem in a deterministic setting may be stated as

minJ1 D P
p2P

Z tf

t0

‰p Œt; x .t/� hp .t/ dt

s:t: .x; h; g/ 2 ƒ1

9
>>=

>>;
(1.58)

This model is a direct extension of the quasistatic flow routing problem defined
by Bertsekas and Gallager (1992) to a dynamic setting. Traditional necessary
conditions for optimal control problems cannot be employed because (1.58) has em-
bedded time shifts which are state-dependent. Friesz et al. (2001) have developed
necessary conditions for this class of problems. These conditions, when applied to
(1.58), reveal optimal control policies that equate marginal costs on open paths and
are a synthesis of bang-bang and singular controls. Friesz et al. (2004) have used
projection methods to solve this problem. Friesz and Mookherjee (2006) have pro-
posed a fixed-point algorithm for models of this type.

1.6 Brief History of Dynamic Games

The latter half of the twentieth century saw impressive achievements in the
modeling, analysis, and computation of competitive static equilibria of non-
cooperative games, as was underscored by the joint award of a Nobel Prize in
economics to John Nash, John Harsanyi, and Reinhard Selten in 1993 for their
fundamental work on mathematical games and the relationship of games to equi-
librium and optimization. Mathematicians, game theorists, operations researchers,
economists, biologists, and engineers have all employed noncooperative math-
ematical games and the notion of equilibrium to model virtually every kind of
competition. In particular, noncooperative game-theoretic models have been suc-
cessfully employed to study economic competition in the marketplace, highway and
transit traffic in the presence of congestion, wars, and both intra- and interspecies
biological competition. One of the key developments that has made such diverse
applications practical is our ability to compute static game-theoretic equilibria as so-
lutions of appropriately defined variational inequalities, nonlinear complementarity
problems, and fixed-point problems.

In many applications, intermediate disequilibrium states of mathematical games
are intrinsically important. When this is the case, disequilibrium adjustment
processes4 must be articulated, thereby, forcing explicit consideration of time.

4 Such adjustment processes are typically expressed as difference equations or differential equa-
tions. Sometimes it is necessary to use a mixture of both types of dynamics; the adjustment
processes are then referred to as differential-difference equations.
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Also, sometimes flow conservation constraints must be formulated in such a way
that they constitute equilibrium dynamics; this usually occurs when a crucial state
variable must be differentiated in order to form a flow conservation law. As a conse-
quence, the modeling of competitive equilibria and disequilibria frequently involves
dynamic or differential games. While great progress has been made in model-
ing and computation of static equilibria or steady states of competitive systems,
game-theoretic disequilibria and moving equilibria5 are relatively uninvestigated by
comparison.

The main body of technical literature relevant to game-theoretic disequilibria and
moving equilibria is that pertaining to so-called differential games, a field of inquiry
widely held to have been originated by Isaacs (1965). Although a rather substan-
tial body of literature known as dynamic game theory has evolved from the work of
Isaacs (1965), that literature is characterized by an emphasis on the relationship of
such games to dynamic programming and to the Hamilton-Jacobi-Bellman partial
differential equation.6 A consequence of this classical point of view is that full use
of the mathematical apparatus of variational inequalities, discovered originally in
the context of certain free boundary-value problems in mathematical physics, has
not occurred in the study of dynamic games. By contrast, in the last fifteen years,
variational inequalities have become the formalism of choice for applied game the-
orists and computational economists solving various static equilibrium models of
competition. The “hole” in the dynamic game theory literature owing to this failure
to fully exploit the variational inequality perspective is significant, for variational in-
equalities substantially simplify the study of existence and uniqueness. A variational
inequality perspective for infinite-dimensional dynamic games also leads directly to
function space equivalents of the standard finite-dimensional algorithmic philoso-
phies of feasible direction and projection familiar from nonlinear programming.

As examples of non-cooperative dynamic games expressible as differential vari-
ational inequalities, we consider three problems:

1. dynamic traffic equilibrium;
2. dynamic oligopolistic network competition; and
3. competitive dynamic revenue management and pricing.

1.7 Dynamic User Equilibrium for Vehicular Networks

Because of the increased importance of information technology for road traffic,
much attention has been devoted in the last few years to the problem of predicting
time-varying (dis)equilibrium flows on passenger car networks. A predictive ability

5 We define moving equilibrium in a subsequent chapter; however, it suffices at this juncture to
think of a moving equilibrium as a trajectory of decison variables that maintains the same “balance”
among those variables throughout time, although the variables themselves are time-varying.
6 See, for example, Basar and Olsder (1998).
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of this type is necessary to provide data unavailable from real-time sensors and to
forecast future traffic conditions in order to construct route advisories. A dynamic
network user equilibrium (DUE) model of road traffic is quite similar in some re-
spects to that of the dynamic system optimal (DSO) model presented above for
telecommunications flow routing. The notation, for one thing, is identical. The most
fundamental difference lies in the fact that in DUE the DSO objective function is
replaced with an appropriate variational inequality to capture the noncooperative
gaming behavior of drivers. In fact, we are led to posit the following formulation of
the dynamic network user equilibrium problem: find .x�; g�; h�/ 2 � such that

˝
‰
�
t; x�� ; h� h�˛ �

X

p2P

Z tf

t0

�p
�
t; x�� �hp .t/ � h�

p .t/
�
dt � 0 (1.59)

for all .x; g; h/ 2 � , where � is the set of all .x; g; h/ obeying

dx
p
a1
.t/

dt
D hp .t/ � gpa1

.t/ 8p 2 P (1.60)

dx
p
ai
.t/

dt
D gpai�1

.t/ � gpai
.t/ 8 p 2 P; i 2 Œ2;m .p/� (1.61)

.x; g; h/ 2 ˝ (1.62)

x .0/ D x0 (1.63)

Bernstein et al. (1993) were the first to propose a DUE model structure like (1.59)
through (1.63). We now refer to such problems as differential variational inequal-
ities, a type of problem we define formally in Chapter 6. The main motivation for
offering formulation (1.59) through (1.63) is that the variational inequality (1.59)
is known from Friesz et al. (1993) to describe a Nash-like dynamic equilibrium,
while (1.60) through (1.63), as mentioned in our prior discussion of telecommuni-
cations flow routing, are known to be valid constrained dynamics. However, for the
reader unfamiliar with such notions, formulation (1.59) through (1.63) is conjec-
tural; a formal demonstration that its solutions will in fact be dynamic network user
equilibria is required. We postpone that analysis until we have derived and mastered
the necessary conditions for optimal control problems and differential variational
inequalities.

1.8 Dynamic Oligopolistic Network Competition

We consider in this section a version of the dynamic oligopolistic network com-
petition problem due to Friesz et al. (2006). The oligopolistic firms of interest,
embedded in a network economy, are in oligopolistic game-theoretic competition
described by a Nash equilibrium. That equilibrium includes dynamics that describe
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the trajectories of inventories/backorders and correspond to flow conservation for
each firm at each node of the network of interest. The oligopolistic firms, acting
as shippers, compete as price takers in the market for physical distribution services,
which is perfectly competitive due to its involvement in other markets of the network
economy. The time scale we consider is neither short nor long, but rather of suffi-
cient length to allow output and shipping pattern adjustments, yet not long enough
for firms to relocate or enter or leave the network economy.

1.8.1 Notation

We employ the notation used in Miller et al. (1996), augmented to handle temporal
considerations. In particular, time is denoted by the continuous scalar t 2 <1C and
the analysis period by

�
t0; tf

� � <1C where t0 < tf . There are several sets impor-
tant to articulating a model of oligopolistic competition on a network; these are as
follow: F for firms, A for directed arcs, N for nodes, and W for origin-destination
(OD) pairs. Subsets of these sets are formed as is meaningful by using the subscript
f for a specific firm, i for a specific node, and w for a specific OD pair.

Each firm under consideration controls production rates qf , allocations of out-
put to meet demand cf , and shipping rates sf . Inventories If are state variables
determined by the controls. In particular, cf , qf , sf , and If may be concatenated
to form the following:

c 2 �L2 �t0; tf
��jN j �jF j

q 2 �L2 �t0; tf
��jN j �jF j

s 2 �L2 �t0; tf
��jWj�jF j

I .c; q; s/ W �L2 �t0; tf
��jN j �jF j � �L2 �t0; tf

��jN j �jF j � �L2 �t0; tf
��jWj�jF j

�! �H1
�
t0; tf

��jN j�jF j

where L2
�
t0; tf

�
is the space of square-integrable functions and H1

�
t0; tf

�
is a

Sobolev space for the real interval
�
t0; tf

� 2 <1C.

1.8.2 Extremal Problems and the Nash Game

Each firm has an objective of maximizing net profit expressed as revenue less cost
and taking the form of an operator acting on allocations of output to meet demands,
production rates, and shipment patterns. Let �i .:; t/, for each node (market) i 2 N ,
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be the inverse demand function for the homogeneous good that is produced by all
firms. For each f 2 F , net profit is

ˆf .c
f ; qf ; sf I c�f ; q�f / D

Z tf

t0

e��t
(
X

i2N
�i

�X

g2F c
g
i ; t

	
c
f
i

�
X

i2Nf

V
f
i .q

f ; t/ �
X

w2Wf

rw .t/ s
f
w

�
X

i2N
 
f
i

�
I
f
i ; t

	
)

dt (1.64)

where � 2 <1CC is a constant nominal rate of discount, rw 2 <1CC is the freight rate

(tariff) charged per unit of flow sw for origin-destination (OD) pair w 2 Wf ,  fi
is firm f ’s inventory cost at node i , and Ifi is the inventory/backorder of firm f

at node i . In (1.64), cfi is the allocation of the output/inventory of firm f 2 F at
node i 2 N to consumption at that node. Our formulation is in terms of flows, so
we employ the inverse demand functions �i .ci ; t/ where

ci D
X

g2F
c
g
i

is the total allocation of output and/or inventory to consumption for node i 2 N .
Furthermore, qfi is the output of firm f 2 F at node i 2 N . Also V fi .q; t/
is the variable cost of production for firm f 2 F at node i 2 N . Note that
�f .c

f ; qf ; sf I c�f ; q�f / is a functional that is completely determined by the
controls cf , qf and sf when non-own allocations to consumption and non-own
production rates

c�f � . cf
0 W f 0 ¤ f /

q�f � . qf
0 W f 0 ¤ f /

are taken as exogenous data by firm f . In expression (1.64), the first term of the
functional �f .cf ; qf ; sf I c�f ; q�f / is the firm’s revenue; the second term is the
firm’s cost of production; the third term is the firm’s shipping costs; and the last term
is the firms’s inventory or holding cost.

We also impose the terminal time inventory constraints

I
f
i

�
tf
� D QKf

i 8 f 2 F ; i 2 Nf (1.65)

where QKf
i 2 <1C is exogenous. In the event a specific QKf

i is strictly positive,
we need to include in the objective functional an associated penalty for or salvage
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value of residual inventory. All consumption, production and shipping variables are
nonnegative and bounded from above; that is

C f � cf � 0 (1.66)

Qf � qf � 0 (1.67)

Sf � sf � 0 (1.68)

where
C f 2 <jF j

CC
Qf 2 <jF j

CC
Sf 2 <jWf j

CC
are vectors of exogenous parameters. Constraints (1.66), (1.67), and (1.68) are rec-
ognized as pure control constraints, while (1.65) are terminal conditions for the state
variables. Naturally

�f D
n�
cf ; qf ; sf

	
W .1.66/ ; .1.67/ ; .1.68/

o

is the set of feasible controls.
Firm f solves an optimal control problem to determine its production qf , al-

location of production to meet demand cf , and shipping pattern sf – thereby also
determining inventory If via dynamics we articulate momentarily – by maximiz-
ing its profit functional ˆf .cf ; qf ; sf I c�f ; q�f / subject to inventory dynamics
expressed as flow balance equations and pertinent production and inventory con-
straints. The inventory dynamics for firm f 2 F , expressing simple flow conserva-
tion, obey

dI
f
i

dt
D E

f
i 8 i 2 Nf (1.69)

I
f
i .t0/ D K

f
i 8 i 2 Nf (1.70)

where Efi is excess goods flow obeying

E
f
i � q

f
i C

X

w2Wd
i

sfw �
X

w2Wo
i

sfw � cfi 8 f 2 F ; i 2 Nf

while the Kf
i 2 <1CC are exogenous parameters, Wd

i is the set of OD pairs with
destination node i , and Wo

i is the set of OD pairs with origin node i . Consequently

I .c; q; s/ D arg

(
dI

f
i

dt
D E

f
i ; I

f
i .t0/ D K

f
i ; I

f
i

�
tf
� D QKf

i

8 f 2 F ; i 2 Nf
)
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where we implicitly assume that the dynamics have an unique solution for all
feasible controls.

With the preceding development, we note that firm f ’s problem is: with the c�f
and q�f as exogenous inputs, compute cf ; qf and sf (thereby finding If ) in order
to solve the following extremal problem:

max ˆf .c
f ; qf ; sf I c�f ; q�f /

subject to
�
cf ; qf ; sf

� 2 �f

)

8f 2 F (1.71)

where
�f D

n�
cf ; qf ; sf

	
W .1.65/ ; .1.66/ ; .1.67/ ; .1.68/ hold

o

also for all f 2 F . That is, each firm is a Nash agent that knows and employs the
current instantaneous values of the decision variables of other firms to make its own
non-cooperative decisions.

1.8.3 Differential Variational Inequality Formulation

Note that (1.71) defines a non-cooperative game expressed as a set of coupled op-
timal control problems, one for each firm f 2 F . Its solution is a so-called Nash
equilibrium, a notion we study in some detail in subsequent chapters. As demon-
strated formally by Friesz et al. (2006), solutions of the following variational
inequality, when they exist, are Nash equilibria for the above non-cooperative, open-
loop game: find

�
cf �; qf �; sf �� 2 � such that

X

f 2F

Z tf
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4
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i2Nf

@ˆ�
f
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3

5 � 0 (1.72)

for all .c; q; s/ 2 �, where

ˆf

�
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ˆ�
f D ˆf

�
cf �; qf �; sf �; If �I c�f �; q�f �I t

	

� D Q

f 2F
�f

The variational inequality (1.72) is a convenient way to express dynamic oligopolis-
tic network competition.

1.9 Revenue Management and Nonlinear Pricing

Revenue management (RM), also known as revenue optimization, is a relatively
new field of inquiry. Revenue management is concerned with extracting all unused
willingness to pay from consumers of services provided by individual firms who
compete with one another for market shares. Growth of the field of revenue man-
agement was boosted by the deregulation of domestic and international airlines in
the late 1970’s. Airlines, as well as other service firms, exercise quantity-based RM
techniques by controlling the resources sold during a booking period at a prespec-
ified price. In contrast, retailers are said to use price-based RM when they exploit
price as an instrument to control demand over the selling period. See McGill and
van Ryzin (1999) for a detailed survey of research on mathematical models and
quantitative tools for RM from 1970 through the late 1990s.

1.9.1 The Decision Environment

In this section we consider service firms that provide differentiated, nonsubstitutable
services, set prices for their services, may decline some of the booking requests
at any given time, face cancellations (with full or partial refunds) and have finite
supplies of resources. The demand is assumed to be known with certainty, a se-
vere assumption mandated by the introductory and deterministic focus of this book.
Stochastic extensions of the model reported here are found in Mookherjee and Friesz
(2008). Each service firm has to decide both how to allocate its resources (quantity-
based RM) and how to set prices for its services (price-based RM) as it seeks to
maximize its revenue. Such a decision environment differs from that faced by dis-
count airlines mainly in the absence of demand uncertainty.

Consider an oligopoly of abstract service providers. Each firm provides a set of
services (products). Each network product may be viewed as a bundle of resources
sold with certain terms of purchase and restrictions at a given price. As already
noted, these services are nonsubstitutable and differentiated. Furthermore, all firms
have finite resources. The booking period is is expressed in N discrete time periods
t 2 Œ0; N � 1�. At the beginning of a discrete period, firms set service prices and
quantities for sale in that period. The set of all firms is denoted by F , while S
denotes the set of services provided by each form. Furthermore, C will denote the
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set of resources firms use to provide services; Ci is the set of resources used to
provide service i 2 S; and Sj is the set of services that utilize resource j 2 C.
Also, A is the resource-service incidence matrix, and jCj is the cardinality of C, with
analogous definitions for other sets.

There is also notation for a number of parameters that must be introduced.
The minimum price that firm f can charge for service i 2 S will be denoted by
p
f
i;min, and pfi;max will be the maximum price that firm f can charge for service
i 2 S. Also, there will be a strictly positive minimum allowed level of service de-
noted by umin 2 <1CC. The capacity of firm f 2 F for resource type j 2 C will be

named Kf
j , while �ft will denote the cancellation rate for firm f 2 C at the end of

period t .
We turn now to the variables and functions we will employ for our illustrative

revenue management model. In particular, pfi;t will be the price for service i 2S
charged by firm f 2 F in time period t 2 Œ0; N � 1�, while xfj;t will be the allo-
cation of resource type j 2 C by firm f 2 F , also in in time period t 2 Œ0; N � 1�.
The demand realized by firm f 2 F for service i 2 S will be denoted byDf

i;t .pi;t /

in time period t 2 Œ0; N � 1�. The refund by firm f 2 F for cancelling resource
j 2 C, also in time period t 2 Œ0; N � 1�, will be Rfj;t .:/ while ‰fN .:; :/ will be
denial-of-service cost for firm f 2 F at the end of periodN . The vector of decision
variables for service i provided by firm f are

p
f
t D

�
p
f
i;t W i 2 S

	

which concatenates to

pf D
�
p
f
t W t 2 Œ0; N � 1�

	

The pricing decision variables of firm f ’s competitors for period t are denoted by
the vector

p
�f
t D �

p
g
t W g 2 Fnf � ,

The state variables for each firm f are the vectors of cumulative allocations of
resources

x
f
t D

�
x
f
j;t W j 2 C

	

for period t . The network we are interested in has jCj resources and the firm provides
jSj different services. Each network product is a combination of a bundle of the
jCj resources sold with certain terms of purchase and restrictions at a given price.
The resource-service incidence matrix, A D �

aij
�

is a jCj � jSj matrix where

aij D
8
<

:

1 if resource i is used for service j

0 otherwise



1.9 Revenue Management and Nonlinear Pricing 29

Thus, the j th column of A, denoted by Aj , is the incidence vector for service j I
while the i th row, denoted by Ai , has unity in column j provided service j utilizes
resource i .

1.9.2 The Role of Denial-of-Service Costs and Refunds

Typically, service providers are allowed to cancel scheduled services, which are
allocated resources. In particular, cancellations are assumed to occur at the rate �ft
for each firm f 2 F and discrete-time periods t 2 Œ0; N � 1�. Such cancellations
require refunds expressed as

R
f
t

�
�
f
t � xft

	
(1.73)

for firm f 2 F in period t 2 Œ0; N � 1�. Refunds Rft .�/ should monotonically in-
crease with xft and �ft ; and decrease with time t ; such qualitative behavior reflects
the potential for cancellation fees to increase as the end of the booking period is
approached. Denial of service must necessarily involve loss of goodwill on the part
of customers toward service providers. These denial-of-service costs are calculated
at the end of the booking period and involve the comparison of resources delivered
to actual capacity. Denial-of-service costs are expressed as

‰
f
N

�
x
f
N ; K

f
	

(1.74)

for firm f 2 F , where of course

Kf D
�
K
f
j W j 2 C

	
(1.75)

is the vector of actual capacities. If demand, which is a function of final allocation
at the terminal time, is less than or equal to the physical capacity, then no denial-
of-service cost is incurred; otherwise denial-of-service costs increase monotonically
with excess demand.

1.9.3 Firms’ Extremal Problem

With the rival firms’ prices p�f
t taken as exogenous to firm f 2 F ’s discrete-time

optimal control problem and yet endogenous to the overall model, firm f 2 F
computes its prices pft and allocation of resources uft in order to maximize net
revenue generated throughout the booking period subject to pertinent constraints:

max
pf ;uf

J
�
pf Ip�f

	
D �‰fN

�
x
f
N ; K

f
	

�
N�1X

tD 0

R
f
t

�
�
f
t � xft

	
C
N�1X

t D0
p
f
t �Df

t .pt /

(1.76)
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subject to

x
f
tC1 D x

f
t C A �Df

t .pt / � �ft � xft t D 0; : : : ; N � 1 (1.77)

x
f
0 D 0 (1.78)

p
f
min � p

f
t � pfmax t D 0; : : : ; N � 1 (1.79)

D
f
t .pt / � umin t D 0; : : : ; N � 1 (1.80)

The first two terms on the righthand side of (1.76) are the denial-of-service costs
and total refunds, respectively. These are subtracted from total revenue generated
to give net revenue generated in the booking period. As in a typical RM industry,
there is no salvage value of unsold resources at the end of the horizon. Constraints
(1.77) are definitional dynamics that describe the net rate of resource commitment.
Of course (1.78) is an initial condition that states no resources are committed at
the start of the booking period. Service prices are bounded from above and below
as in (1.79). Constraints (1.80) serve to bound realized demand away from zero;
without this constraint, it is possible for a service provider to offer no service in
one or more periods yet to set prices, which is implausible. Like the dynamic user
equilibrium problem, the family of extremal problems considered above may be
recast as a differential variational inequality, as we shall see in Chapter 10 where a
detailed numerical example of a similar model is presented.

1.10 The Material Ahead

In the chapters that follow, the mathematical foundations of dynamic optimization
and of differential non-cooperative games are presented. The presentation involves a
level of mathematical abstraction appropriate for graduate students and researchers
in economics, operations research, industrial engineering, other branches of en-
gineering, and applied mathematics. Although the presentation is unremittingly
mathematical, in principle only a background in elementary calculus and linear al-
gebra is required. Prior exposure to mathematical programming, optimal control
theory, functional analysis, and measure theory is not mandatory. However, the
reader with such prior exposure will be able to move through the material presented
much more quickly.

A distinguishing feature of this book is its emphasis on computation. All readers,
regardless of prior mathematical preparation, should take the time to work through
the computational examples. Doing so will lead to a much deeper understanding
of the relationships of infinite-dimensional mathematical programming, optimal
control theory, variational inequalities, and differential, non-zero sum games. In par-
ticular, the reader who does study the computational examples provided herein will
be able to proceed much more rapidly in the development of custom software to
solve the dynamic optimization problems and dynamic games that are the focus of
his/her own research.
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In the chapters ahead, after optimality conditions and algorithms are studied
in the abstract, several dynamic modelling applications are presented. It should
be noted that the dynamic applications studied in later chapters overlap, by inten-
tion, some of the illustrative applications presented in earlier sections of Chapter 1.
The applications presented include numerical illustrations of various algorithms and
run the gamut from inventory theory to supply chains to traffic assignment to rev-
enue management. Hopefully, there is at least one application of interest to every
reader.
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Chapter 2
Nonlinear Programming and Discrete-Time
Optimal Control

The primary intent of this chapter is to introduce the reader to the theoretical
foundations of nonlinear programming as well as the theoretical foundations of de-
terministic discrete-time optimal control. In fact, deterministic discrete-time optimal
control problems, as we shall see, are actually nonlinear mathematical programs
with a very particular type of structure. In a later chapter, we will also discover that
deterministic continuous-time optimal control problems are specific instances of
mathematical programs in topological vector spaces. Consequently, it is imperative
for the student of optimal control to have a command of the foundations of nonlinear
programming. Particularly important are the notions of local and global optimality
in mathematical programming, the Kuhn-Tucker necessary conditions for optimal-
ity in nonlinear programming, and the role played by convexity in making necessary
conditions sufficient. Readers already comfortable with finite-dimensional nonlinear
programming may wish to go immediately to Section 2.9. We do caution, however,
that subsequent chapters of this book assume substantial familiarity with finite-
dimensional nonlinear programming, so that an overestimate of one’s nonlinear
programming knowledge can be very detrimental to ultimately obtaining a deep
understanding of optimal control theory and differential games.

The following is an outline of the principal topics covered in this chapter:

Section 2.1: Nonlinear Program Defined. A formal definition of a finite-
dimensional nonlinear mathematical program, with a single criterion and both
equality and inequality constraints, is given.

Section 2.2: Other Types of Mathematical Programs. Definitions of linear,
interger and mixed integer mathematical programs are provided.

Section 2.3: Necessary Conditions for an Unconstrained Minimum. We derive
necessary conditions for a minimum of a twice continuously differentiable function
when there are no constraints.

Section 2.4: Necessary Conditions for a Constrained Minimum. Relying on
geometric reasoning, the Kuhn-Tucker conditions, as well as the notion of a con-
straint qualification, are introduced.

T.L. Friesz, Dynamic Optimization and Differential Games, International
Series in Operations Research & Management Science 135,
DOI 10.1007/978-0-387-72778-3 2, c� Springer Science+Business Media, LLC 2010
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34 2 Nonlinear Programming and Discrete-Time Optimal Control

Section 2.5: Formal Derivation of the Kuhn-Tucker Conditions. A formal
derivation of the Kuhn-Tucker necessary conditions, employing a conic definition
of optimality and theorems of the alternative, is provided.

Section 2.6: Sufficiency, Convexity, and Uniqueness. We provide formal defini-
tions of a convex set and a convex function. Then we show formally how those
notions influence sufficiency and uniqueness of a global minimum.

Section 2.7: Generalized Convexity and Sufficiency. We extend the notion of
convexity to include quasiconvexity and pseudoconvexity; we then show how these
extensions may be used to state less restrictive conditions assuring optimality.

Section 2.8: Numerical and Graphical Examples. We provide numerical and
graphical examples that illustrate the abstract optimality conditions introduced in
previous sections of this chapter.

Section 2.9: Discrete-Time Optimal Control. We use the necessary conditions
for nonlinear programs to derive the so-called minimum principle for discrete-time
optimal control and associated necessary conditions.

2.1 Nonlinear Program Defined

We are presently interested in a type of optimization problem known as a finite-
dimensional mathematical program, namely: find a vector x 2 <n that satisfies

min f .x/
s.t. h.x/ D 0

g.x/ � 0

9
=

;
(2.1)

where
x D .x1; : : : ; xn/

T 2 <n

f .�/ W <n ! <1

g.x/ D .g1.x/; : : : ; gm.x//
T W <n ! <m

h.x/ D .h1.x/; : : : ; hq.x//
T W <n ! <q

We call the xi for i 2 f1; 2; : : : ; ng decision variables, f .x/ the objective function,
h.x/ D 0 the equality constraints and g.x/ � 0 the inequality constraints. Becuase
the objective and constraint functions will in general be nonlinear, we shall con-
sider (2.1) to be our canonical form of a nonlinear mathematical program (NLP).
The feasible region for (2.1) is

X � fx W g.x/ � 0; h.x/ D 0g � <n (2.2)
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which allows us to state (2.1) in the form

min f .x/
s.t. x 2 X

�
(2.3)

The pertinent definitions of optimality for NLP are:

Definition 2.1. Global minimum. Suppose x� 2 X and f .x�/ � f .x/ for all
x 2 X . Then f .x/ achieves a global minimum on X at x�, and we say x� is a
global minimizer of f .x/ on X .

Definition 2.2. Local minimum. Suppose x� 2 X and there exists an � > 0 such
that f .x�/ � f .x/ for all x 2 ŒN� .x

�/\ X�, where N� .x
�/ is a ball of radius

� > 0 centered at x�. Then f .x/ achieves a local minimum onX at x�, and we say
x� is a local minimizer of f .x/.

In practice, we will often relax the formal terminology of Definition 2.1 and
Definition 2.2 and refer to x� as a global minimum or a local minimum, respectively.

2.2 Other Types of Mathematical Programs

We note that the general form of a continuous mathematical program (MP) may
be specialized to create various types of mathematical programs that have been
studied in depth. In particular, if the objective function and all constraint functions
are linear, (2.1) is called a linear program (LP). In such cases, we normally add
slack/surplus variables to the inequality constraints to convert them into equality
constraints. That is, if we have the constraint

gi .x/ � 0 (2.4)

we convert it into
gi .x/C si D 0 (2.5)

and solve for both x and si . The variable si is called a slack variable and obeys

si � 0 (2.6)

If we have an inequality constraint of the form

gj .x/ � 0 (2.7)

we convert it to the form
gj .x/ � sj D 0 (2.8)

where
sj � 0 (2.9)
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is called a surplus variable. Thus, we take can convert any problem with inequality
constraints into one that has only equality constraints and non-negativity restrictions.
So without loss of generality, we take the canonical form of the linear programming
problem to be

min
Pn

iD1 cixi

s.t.
Pn

j D1 aijxj D bi i D 1; : : : ; m

Uj � xj � Lj j D 1; : : : ; n

x 2 <n

: (2.10)

where n > m. This problem can be re-stated further, using matrix and vector nota-
tion, as

min cT x

s.t. Ax D b

U � x � L

x 2 <n

9
>>>>>>>>>=

>>>>>>>>>;

LP (2.11)

where c 2 <n, b 2 <n, and A 2 <m�n.
If the objective function and/or some of the constraints are nonlinear, (2.1) is

called a nonlinear program (NLP) and is written as:

min f .x/

s.t. gi .x/ � 0 i D 1; : : : ; m

hi .x/ D 0 i D 1; : : : ; q

x 2 <n

9
>>>>>>>>>=

>>>>>>>>>;

NLP (2.12)

If all of the elements of x are restricted to be a subset of the integers and In denotes
the integer real numbers, the resulting program

min f .x/

s.t. gi .x/ � 0 i D 1; : : : ; m

hi .x/ D 0 i D 1; : : : ; q

x 2 I n

9
>>>>>>>>>=

>>>>>>>>>;

IP (2.13)
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is called an integer program (IP). If there are two classes of variables, some that are
continuous and some that are integer, as in

min f .x;y/

s.t. gi .x;y/ � 0 i D 1; : : : ; m

hi .x;y/ D 0 i D 1; : : : ; q

x 2 <n y 2 I n

9
>>>>>>>>>=

>>>>>>>>>;

MIP; (2.14)

the problem is known as a mixed integer program (MIP).

2.3 Necessary Conditions for an Unconstrained Minimum

Necessary conditions for optimality in the mathematical program (2.1) are systems
of equalities and inequalities that must hold at an optimal solution x� 2 X . Any
such condition has the logical structure:

If x� is optimal, then some property P.x�/ is true.

Necessary conditions play a central role in the analysis of most mathematical pro-
gramming models and algorithms. Understanding them is also extremely important
to understanding the theory of optimal control, even when considering problems
in the infinite-dimensional vector spaces associated with continuous-time optimiza-
tion. This is because the optimal control necessary condition known as the minimum
principle requires solution of a finite-dimensional nonlinear program.

We begin our discussion of necessary conditions for mathematical programs by
considering a special case of the general finite-dimensional mathematical program
introduced in the previous section. In particular, we want to state and prove the
following result for mathematical programs without constraints:

Theorem 2.1. Necessary conditions for an unconstrained minimum. Suppose f W
<n �! <1 is twice continuously differentiable for all x 2 <n. Then necessary
conditions for x� 2 <n to be a local or global minimum of minf .x/ s:t: x 2 <n are

rf �x�� D 0 (2.15)

r2f
�
x�� �

�
@2f .x�/
@xi@xj

�
must be positive semidefinite (2.16)

That is, the gradient vanishes and the Hessian is positive semidefinite matrix at the
minimum of interest.
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Proof. Since f .:/ is twice continuously differentiable, we may make a Taylor series
expansion in the vicinity of x� 2 <n, a local minimum:

f .x/ D f
�
x��C �rf �x���T �x � x��C 1

2

�
x � x��T r2f

�
x�� �x � x��

C kx � x�k2 O �x � x��

where O .x � x�/ �! 0 as x �! x�. If rf .x�/ ¤ 0, then by picking x D x� �
�rf .x�/ we can make f .x/ < f .x�/ for sufficiently small � > 0 and, thereby,
directly contradict the fact that x� is a local minimum. It follows that condition
(2.15) is necessary, and we may write

f .x/ D f
�
x��C 1

2

�
x � x��T r2f

�
x�� �x � x��C kx � x�k2 O �

x � x��

If the matrix r2f .x�/ is not positive semidefinite, there must exist a direction
vector d 2 <n such that d ¤ 0 and dT r2f .x�/ d < 0: If we now choose x D
x� C �d , it is possible for sufficiently small � > 0 to realize f .x/ < f .x�/ in
direct contradiction of the fact x� is a local minimum. �

2.4 Necessary Conditions for a Constrained Minimum

We comment that necessary conditions for constrained programs have the same
logical structure as necessary conditions for unconstrained programs introduced in
Section 8.4.4; namely:

If x� is optimal, then some property P.x�/ is true.

For constrained programs, we will shortly find that P.x�/ is either the so-called
Fritz John conditions or the Kuhn-Tucker conditions. We now turn to the task of
providing an informal motivation of the Fritz John conditions, which are the perti-
nent necessary conditions for the case when no constraint qualification is imposed.

2.4.1 The Fritz John Conditions

The fundamental theorem on necessary conditions is:

Theorem 2.2. Fritz John conditions. Let x� be a (global or local ) minimum of

min f .x/
s.t. x 2 F D fx 2 X0 W g.x/ � 0; h.x/ D 0g � <n

where X0 is a nonempty open set, g W <n �! <m, and h W <n �! <q . Assume
that f .x/, gi .x/ for i 2 Œ1;m� and hi .x/ for i 2 Œ1; q� have continuous first
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derivatives everywhere on X . Then there must exist multipliers �0 2 <1C, � D
.�1; : : : ; �m/

T 2 <mC, and �� D .��
i ; : : : I��

q/
T 2 <q such that

�0rf .x�/CPm
iD1�i rgi .x

�/CPq
iD1 �irhi .x

�/ D 0 (2.17)

�igi .x
�/ D 0 8 i 2 Œ1;m� (2.18)

�i � 0 8 i 2 Œ0;m� (2.19)

.�0; �; �/ ¤ 0 2 <mCqC1 (2.20)

Conditions (2.17), (2.18), (2.19), and (2.20) together with h.x/ D 0 and g.x/ � 0

are called the Fritz John conditions. We will give a formal proof of their validity
in Section 2.5.3. For now our focus is on how the Fritz John conditions are related
to the Kuhn-Tucker conditions, which are the chief applied notion of a necessary
condition for optimality in mathematical programming.

2.4.2 Geometry of the Kuhn-Tucker Conditions

Under certain regularity conditions called constraint qualifications, we may be cer-
tain that �0 ¤ 0. In that case, without loss of generality, we may take �0 D 1.
When �0 D 1, the Fritz John conditions are called the Kuhn-Tucker conditions and
(2.17) is called the Kuhn-Tucker identity. In either case, (2.18) and (2.19) together
are called the complementary slackness conditions. Sometimes it is convenient to
define the Lagrangean function:

L.x;�; �0; �/ � �0f .x/C �T h.x/C �T g.x/ (2.21)

By virtue of this definition, identity (2.17) can be expressed as

rxL.x
�; �; �0; �/ D 0 (2.22)

At the same time (2.18) and (2.19) can be written as

�T g.x�/ D 0 (2.23)

� � 0 (2.24)

Furthermore, we may give a geometrical motivation for the Kuhn-Tucker conditions
by considering the following abstract problem with two decision variables and two
inequality constraints:

min f .x1; x2/

s.t. g1.x1; x2/ � 0

g2.x1; x2/ � 0

9
=

;
(2.25)
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The functions f .:/, g1 .:/ ; and g2 .:/ are assumed to be such that the following are
true:

1. all functions are differentiable;
2. the feasible regionX � f.x1; x2/ W g1.x1; x2/ � 0; g2.x1; x2/ � 0g is a convex

set;
3. all level sets Sk � f.x1; x2/ W f .x1; x2/ � fkg are convex, where fk 2
Œ˛;C1/ � <1C is a constant and ˛ is the unconstrained minimum of f .x1; x2/;
and

4. the level curves

Ck D ˚
.x1; x2/ W f .x1; x2/ D fk 2 <1

	

for the ordering
f0 < f1 < f2 < � � � < fk

do not cross one another, and Ck is the locus of points for which the objective
function has the constant value fk .

Figure 2.1 is one realization of the above stipulations. Note that there is an uncount-
able number of level curves and level sets since fk may be any real number from the
interval Œ˛;C1/ � <1C. In Figure 2.1, because the gradient of any function points
in the direction of maximal increase of the function, we see there is a �1 2 <1CC
such that

rf .x�
1 ; x

�
2 / D ��1rg1.x

�
1 ; x

�
2 /; (2.26)

where .x�
1 ; x

�
2 / is the optimal solution formed by the tangency of g1.x

�
1 ; x

�
2 / D 0

with the level curve f .x�
1 ; x

�
2 / D f2. Evidently, this observation leads directly to

rf .x�
1 ; x

�
2 /C �1rg1.x

�
1 ; x

�
2 /C �2rg2.x

�
1 ; x

�
2 / D 0 (2.27)

�1g1.x
�
1 ; x

�
2 / D 0 (2.28)

�2g2.x
�
1 ; x

�
2 / D 0 (2.29)

�1; �2 � 0; (2.30)

Fig. 2.1 Geometry of an
optimal solution

Global
optimum

x*

D

f0 f3

f2

f1

f3 > f2 > f1 > f0

g1=0g2=0
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Note that g1.x
�
1 ; x

�
2 / D 0 allows us to conclude that (2.28) holds even though

�1 > 0. Similarly, (2.26) implies that �2 D 0, so (2.29) holds even though
g2.x

�
1 ; x

�
2 / ¤ 0. Clearly, the nonnegativity conditions (2.30) also hold. By inspec-

tion, (2.27), (2.28), (2.29), and (2.30) are the Kuhn-Tucker conditions (Fritz John
conditions with �0 D 1) for the mathematical program (2.25).

2.4.3 The Lagrange Multiplier Rule

We wish to give a statement of a particular instance of the Kuhn-Tucker theorem on
necessary conditions for mathematical programming problems, together with some
informal remarks about why that theorem holds when a constraint qualification is
satisfied. Since our informal motivation of the Kuhn-Tucker conditions in the next
section depends on the Lagrange multiplier rule (LMR) for mathematical programs
with equality constraints, we must first state and motivate the LMR. To that end, take
x and y to be scalars and F.x; y/ and h.x; y/ to be scalar functions. Consider the
following mathematical program with two decision variables and a single equality
constraint:

min F .x; y/

s.t. h .x; y/ D 0

�
(2.31)

Assume that h .x; y/ D 0 may be manipulated to find x in terms of y. That is, we
know

x D H .y/ (2.32)

so that
F .x; y/ D F ŒH .y/ ; y� � ˆ.y/ (2.33)

and (2.31) may be thought of as the one-dimensional unconstrained problem

min
y
ˆ.y/ (2.34)

which has the apparent necessary condition

dˆ .y/

dy
D 0 (2.35)

By the chain rule we have the alternative form

dˆ .y/

dy
D @F .H; y/

@y
C @F .H; y/

@H

@H

@y
D 0 (2.36)

Applying the chain rule to the equality constraint h .x; y/ D 0 leads to

dh.x; y/ D @h

@x
dx C @h

@y
dy D 0 (2.37)
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from which we obtain
@x

@y
D .�1/@h=@y

@h=@x
(2.38)

The necessary condition (2.36), with the help of (2.32) and (2.38), becomes

@F

@y
C @F

@x

@x

@y
D @F

@y
C @F

@x
.�1/@h=@y

@h=@x

D @F

@y
C .�1/ @F=@x

@h=@x

@h

@y

D @F

@y
C �

@h

@y
D 0 (2.39)

where we have defined the Lagrange multiplier to be

� D .�1/ @F=@x
@h=@x

(2.40)

The LMR consists of (2.39) and (2.40), which we restate as

@F

@x
C �

@h

@x
D 0 (2.41)

@F

@y
C �

@h

@y
D 0 (2.42)

Recognizing that the generalization of (2.41) and (2.42) involves Jacobian matrices,
we are not surprised to find that, for the equality constrained mathematical program

min f .x/

s.t. h.x/ D 0

where x 2 <n and h 2 <q , the following result holds:

Theorem 2.3. Lagrange multiplier rule. Let x� 2 <n be any local maximum or
minimum of f .x/ subject to the constraints hi .x/ D 0 for i 2 Œ1; q�, where x 2 <n

and q < n. If it is possible to choose a set of q variables for which the Jacobian

J Œh.x�/� �

2

6
66
6
6
4

@h1.x
�/

@x1

: : :
@h1.x

�/
@xq

:::
: : :

:::
@hq.x

�/
@x1

: : :
@hq.x

�/
@xq

3

7
77
7
7
5

(2.43)
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has an inverse, then there exists a unique vector of Lagrange multipliers � D
.�1; : : : ; �m/

T satisfying

@f .x�/
@xj

C
qX

iD1

�i

@hi .x
�/

@xj

D 0 j 2 Œ1; n� (2.44)

The formal proof of this classical result is contained in most texts on advanced
calculus. Note that (2.44) is a necessary condition for optimality.

2.4.4 Motivating the Kuhn-Tucker Conditions

We now wish, using the Lagrange multiplier rule, to establish that the Kuhn-Tucker
conditions are valid when an appropriate constraint qualification holds. In fact we
wish to consider the following result:

Theorem 2.4. Kuhn-Tucker conditions. Let x� 2 X be a local minimum of

min f .x/

s.t. x 2 X D fx 2 X0 W g.x/ � 0; h.x/ D 0g � <n

where X0 is a nonempty open set. Assume that f .x/, gi .x/ for i 2 Œ1;m�

and hi .x/ for i 2 Œ1; q� have continuous first derivatives everywhere on X and
that a constraint qualification holds. Then there must exist multipliers � D
.�1; : : : ; �m/

T 2 <q and �� D .��
i ; : : : ; �

�
q/

T 2 <m such that

rf .x�/CPm
iD1�i rgi .x

�/CPq
iD1 �i rhi .x

�/ D 0 (2.45)

�igi .x
�/ D 0 8 i 2 Œ1;m� (2.46)

�i � 0 8 i 2 Œ1;m� (2.47)

Expression (2.45) is the Kuhn-Tucker identity and conditions (2.46) and (2.47), as
we have indicated previously, are together referred to as the complementary slack-
ness conditions. Do not fail to note that the Kuhn-Tucker conditions are necessary
conditions. A solution of the Kuhn-Tucker conditions, without further informa-
tion, is only a candidate optimal solution, sometimes referred to as a “Kuhn-Tucker
point.” In fact, it is possible for a particular Kuhn-Tucker point not to be an optimal
solution.

We may informally motivate Theorem 2.4 using the Lagrange multiplier rule.
This is done by first positing the existence of variables si , unrestricted in sign, for
i 2 Œ1;m� such that

gi .x
�/C .si /

2 D 0 8 i 2 Œ1;m� (2.48)
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so that the mathematical program (2.1) may be viewed as one with only equality
constraints, namely

min f .x/

s.t. h.x/ D 0

g.x/C diag .s/ � s D 0

9
=

;
(2.49)

where s 2 <m and

diag .s/ �

0

B
B
BB
B
@

s1 0 � � � 0 0

0 s2 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � sm�1 0

0 0 � � � 0 sm

1

C
C
CC
C
A

(2.50)

To form the necessary conditions for this mathematical program, we first construct
the Lagrangian

L.x;s;�;�/ D f .x/C �T h.x/C �T Œg.x/C diag .s/ � s�

D f .x/C
qX

iD1

�ihi .x/C
mX

iD1

�i

�
gi .x/C s2

i

�
(2.51)

and then state, using the LMR, the first-order conditions

@L .x;s;�;�/

@xi

D @f .x/

@xi

C
qX

j D1

�j

@hj .x/

@xi

C
mX

j D1

�j

@gj .x/

@xi

D 0

i 2 Œ1; n� (2.52)

@L .x;s;�;�/

@si
D 2�isi D 0 i 2 Œ1;m� (2.53)

Result (2.52) is of course the Kuhn-Tucker identity (2.45). Note further that both
sides of (2.53) may be multiplied by �si to obtain the equivalent conditions

�i

��s2
i

� D 0 i 2 Œ1;m� (2.54)

which can be restated using (2.48) as

�igi .x/ D 0 i 2 Œ1;m� (2.55)

Conditions (2.55) are of course the complementary slackness conditions (2.46).
It remains for us to establish that the inequality constraint multipliers �i for

i 2 Œ1;m� are nonnegative. To that end, we imagine a perturbation of the inequality
constraints by the vector

" D �
"1 "2 � � � "m

�T 2 <mCC;
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so that the inequality constraints become

g.x/C diag .s/ � s D "

or
gi .x/C s2

i � "i D 0 i 2 Œ1;m� (2.56)

There is an optimal solution for each vector of perturbations, which we call x ."/
where x� D x .0/ is the unperturbed optimal solution. As a consequence there is an
optimal objective function value

Z ."/ � f
�
x� ."/

�
(2.57)

for each x� ."/. We note that

@Z ."/

@"i

D
nX

j D1

@f .x/

@xj

@xj ."/

@"i

(2.58)

by the chain rule. Similarly for k 2 Œ1;m�

@gk .x/

@"i

D @
�
"k � s2

k

�

@"i

D


1 if i D k

0 if i ¤ k
(2.59)

and for k 2 Œ1; q�
@hk .x/

@"i

D
nX

j D1

@hk .x/

@xj

@xj ."/

@"i

(2.60)

Furthermore, we may define

ˆi � @Z ."/

@"i

C
qX

kD1

�k

@hk .x/

@"i

C
mX

kD1

�k

@gk .x/

@"i

(2.61)

and note that

ˆi D @Z ."/

@"i

C �i (2.62)

With the help of (2.58), (2.59), and (2.60), we have

ˆi D
nX

jD1

@f .x/

@xj

@xj ."/

@"i
C

qX

kD1

�k

nX

jD1

@hk .x/

@xj

@xj ."/

@"i
C

mX

kD1

�k

nX

jD1

@gk .x/

@xj

@xj ."/

@"i

D
nX

jD1

"
@f .x/

@xj
C

qX

kD1

�k
@hk .x/

@xj
C

mX

kD1

�k
@gk .x/

@xj

#
@xj ."/

@"i
D 0 (2.63)
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by virtue of the Kuhn-Tucker identity (2.52). From (2.62) and (2.63) it is immediate
that

�i D .�1/@Z ."/
@"i

i 2 Œ1;m� (2.64)

We now note that, when the unconstrained minimum of f .x/ is external to the
feasible region

X ."/ D fx W g.x/ � "; h.x/ D 0g ,

increasing "i can never increase, and may potentially lower, the objective function
for all i 2 Œ1;m�; that is

@Z ."/

@"i

� 0 i 2 Œ1;m� (2.65)

From (2.64) and (2.65) we have the desired result

�i � 0 8i 2 Œ1;m� (2.66)

ensuring that the multipliers for inequality constraints are nonnegative.

2.5 Formal Derivation of the Kuhn-Tucker Conditions

We are interested in formally proving that, under the linear independence constraint
qualification and some other basic assumptions, the Kuhn-Tucker identity and the
complementary slackness conditions form, together with the original mathematical
program’s constraints, a valid set of necessary conditions. For finite-dimensional
mathematical programs, the only type we consider in this chapter, such a demon-
stration is facilitated by Gordon’s lemma, which is in effect a corollary of Farkas’
lemma of classical analysis. The problem structure needed to apply Gordon’s lemma
can be most readily created by expressing the notion of optimality in terms of cones
and separating hyperplanes. Throughout this section we consider the mathematical
program

minf .x/ s.t. x 2 F (2.67)

where, depending on context, either F is a general set or

F � fx 2 X0 W g.x/ � 0g � <n (2.68)

and
f W <n ! <1 (2.69)

g W <n ! <m (2.70)

where X0 is a nonempty open set in <n. Note that we presently consider only in-
equality constraints, as any equality constraint

hk .x/ D 0
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may be stated as two inequality constraints

hk .x/ � 0

�1 � hk .x/ � 0

2.5.1 Cones and Optimality

A cone is a set obeying the following definition:

Definition 2.3. Cone. A set C in <n is a cone with vertex zero if x 2 C implies that
�x 2 C for all � 2 <1C.

Now consider the following definitions:

Definition 2.4. Cone of feasible directions. For the mathematical program (2.67),
provided F is not empty, the cone of feasible directions at x 2 X is

D0.x/ D fd ¤ 0 W x C �d 2 F 8� 2 .0; ı/ and some ı > 0g
Definition 2.5. Feasible direction. Every nonzero vector d 2 D0 is called a feasible
direction at x 2 X for the mathematical program (2.67).

Definition 2.6. Cone of improving directions. For the mathematical program
(10.1), if f is differentiable at x 2 F , the cone of improving directions at x 2 F is

F0.x/ D fd W Œrf .x/�T � d < 0g

Definition 2.7. Feasible direction of descent. Every vector d 2 F0

T
D0 is called

a feasible direction of descent at x 2 F for the mathematical program (2.67).

Definition 2.8. Cone of interior directions. For the mathematical program (10.1),
if gi is differentiable at x 2 X for all i 2 I .x/, where

I.x/ D fi W gi .x/ D 0g ;

then, the cone of interior directions at x 2 F is

G0.x/ D fd W Œrgi .x/�
T � d < 0 8g

Note that in Definition 2.4 and Definition 2.6, if F is a convex set, we may set ı D 1

and refer only to � 2 Œ0; 1�, as will become clear in the next section after we define
the notion of a convex set. Furthermore, the definitions immediately above allow
one to characterize an optimal solution of (2.67) as a circumstance for which the
intersection of the cone of feasible directions and the cone of improving directions is
empty. This has great intuitive appeal for it says that there are no feasible directions
that allow the objective to be improved. In fact, the following result obtains:



48 2 Nonlinear Programming and Discrete-Time Optimal Control

Theorem 2.5. Optimality in terms of the cones of feasible and improving directions.
Consider the mathematical program

minf .x/ s.t. x 2 F (2.71)

where f W <n �! <1, F � <n and F is nonempty. Suppose also that f is
differentiable at the local minimum x� 2 F of (2.71). Then at x� the intersection of
the cone of feasible directionsD0 and the cone of improving directions F0 is empty:

F0.x
�/\D0.x

�/ D ;

That is, at the local solution x� 2 F , no improving direction is also a feasible
direction.

Proof. The result is intuitive. For a formal proof see Bazaraa et al. (1993). �
Theorem 2.6. Optimality in terms of the cones of interior and improving directions.
Let x� 2 F be a local minimum of the mathematical program

minf .x/ s.t. x 2 F D fx 2 X0 W g.x/ � 0g � <n (2.72)

where X0 is a nonempty open set in <n, f W <n �! <1, and g W <n �! <m

are differentiable at x�, while the gi for i 2 I are continuous at x�. The cone of
improving directions and the cone of interior directions satisfy

F0.x
�/ \G0.x

�/ D ;

Proof. This result is also intuitive. For a formal proof see Bazaraa et al. (1993). �

2.5.2 Theorems of the Alternative

Farka’s Lemma is a specific example of a so-called theorem of the alternative. Such
theorems provide information on whether a given linear system has a solution when
a related linear system has or fails to have a solution. Farkas’ lemma has the follow-
ing statement:

Lemma 2.1. Farkas’ lemma. LetA be anm	nmatrix of real numbers and c 2 <n.
Then exactly one of the following systems has a solution: System 1: Ax � 0 and
cT x > 0 for some x 2 <n; or System 2: AT y D c and y � 0 for some y 2 <m.

Proof. Farkas’ lemma is proven in most advanced texts on nonlinear programming.
See, for example, Mangasarian (1969). �
Corollary 2.1. Gordon’s corollary. Let A be anm	nmatrix of real numbers. Then
exactly one of the following systems has a solution: System 1: Ax < 0 for some
x 2 <n; or System 2: AT y D 0 and y � 0 for some y 2 <m.

Proof. See Mangasarian (1969). �
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2.5.3 The Fritz John Conditions Again

By using Corollary 2.1 it is quite easy to establish the Fritz John conditions intro-
duced previously and restated here without equality constraints:

Theorem 2.7. The Fritz John conditions. Let x� 2 F be a minimum of

min f .x/

s.t. x 2 F D fx 2 X0 W g.x/ � 0g

where X0 is a nonempty open set in <n and g W <n �! <m. Assume that f .x/ and
gi .x/ for i 2 Œ1;m� have continuous first derivatives everywhere on F . Then there
must exist multipliers �0 2 <1C and � D .�1; : : : ; �m/

T 2 <mC such that

�0rf .x�/CPm
iD1�i rgi .x

�/ D 0 (2.73)

�igi .x
�/ D 0 8 i 2 Œ1;m� (2.74)

�i � 0 8 i 2 Œ1;m� (2.75)

.�0; �/ ¤ 0 2 <mC1 (2.76)

Proof. Since x� 2 F solves the mathematical program of interest, we know from
Theorem 2.6 that F0.x

�/ \G0.x
�/ D ;; that is, there is no vector d satisfying

�rf .x�/
�T � d < 0 (2.77)

�rgi .x
�/
�T � d < 0 i 2 I.x�/ (2.78)

where I.x�/ is the set of indices of constraints binding at x�. Without loss of gen-
erality, we may consecutively number the binding constraints from 1 to jI.x�/j and
define

A D

0

B
B
BB
B
B
B
B
BB
B
B
@

Œrf .x�/�T 0 0 : : : 0

0 Œrg1.x
�/�T 0 � � � 0

0 0 Œrg2.x
�/�T � � � 0

:::
:::

:::
: : :

:::

0 0 0 � � � 0

0 0 0 � � � �rgjI.x�/j.x�/
�T

1

C
C
CC
C
C
C
C
CC
C
C
A
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As a consequence we may state (2.77) and (2.78) as

A

0

B
B
B
@

d

d
:::

d

1

C
C
C
A
< 0 (2.79)

According to Corollary 2.1, since (2.79) cannot occur, there exists

y D
�

�0

�i W i 2 I.x�/

�
� 0

such that

AT y D AT

�
�0

�i W i 2 I.x�/

�
D 0 (2.80)

Expression (2.80) yields

�0rf �x��C
jI.x�/jX

iD1

�i rgi .x
�/ D 0 (2.81)

We are free to introduce the additional multipliers

�i D 0 i D jI.x�/j C 1; : : : ; m (2.82)

which assure that the complementary slackness conditions (2.74) and (2.75) hold
for all multipliers. As a consequence of (2.81) and (2.82), we have (2.73), thereby
completing the proof. �

2.5.4 The Kuhn-Tucker Conditions Again

With the apparatus developed so far, we wish to prove the following restatement of
Theorem 2.4 in terms of the linear independence constraint qualification:

Theorem 2.8. Kuhn-Tucker conditions. Let x� 2 F be a local minimum of

min f .x/
s.t. x 2 F D fx 2 X0 W g.x/ � 0; h.x/ D 0g

where X0 is a nonempty open set in <n. Assume that f .x/, gi .x/ for i 2 Œ1;m�

and hi .x/ for i 2 Œ1; q� have continuous first derivatives everywhere on F and that
the gradients of binding constraint functions are linearly independent. Then there
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must exist multipliers � D .�1; : : : ; �m/
T 2 <m and � D .�i ; : : : ; �q/

T 2 <q

such that

rf .x�/C
mX

iD1

�i rgi .x
�/C

qX

iD1

�i rhi .x
�/ D 0 (2.83)

�igi .x
�/ D 0 8 i 2 Œ1;m� (2.84)

�i � 0 8 i 2 Œ1;m� (2.85)

Proof. Recall that a constraint qualification is a condition that guarantees the mul-
tiplier �0 of the Fritz John conditions is non-zero. We again use the notation

I
�
x�� D ˚

i W gi

�
x�� D 0

	
, (2.86)

for the set of subscripts corresponding to binding inequality constraints. Note also
that by their very nature equality constraints are always binding. Linear indepen-
dence of the gradients of binding constraints means that only zero multipliers

�i D 0 8 i 2 I �x�� (2.87)

�i D 0 8 i 2 Œ1; q� (2.88)

allow the identity

X

i2I.x�/

�i rgi .x
�/C

qX

iD1

�i rhi .x
�/ D 0, (2.89)

to hold. We are free to set the multipliers for nonbinding constraints to zero; that is

gi .x
�/ < 0 H) �i D 0 8 i … I �x��

which assures (2.84) and (2.85) hold for i 2 Œ1;m�. Consequently, linear inde-
pendence of the gradients of binding constraints actually means that there are no
nonzero multipliers assuring

mX

iD1

�i rgi .x
�/C

qX

iD1

�i rhi .x
�/ D 0 (2.90)

That is, either all �i D 0 and all �i D 0 or

mX

iD1

�i rgi .x
�/C

qX

iD1

�i rhi .x
�/ ¤ 0 (2.91)
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In the latter case, the Fritz John identity

�0rf �x��C
mX

iD1

�i rgi .x
�/C

qX

iD1

�irhi .x
�/ D 0 (2.92)

immediately forces
�0 ¤ 0 (2.93)

unless rf .x�/ D 0 2 <n; in this latter case (2.90) must hold and so we may still
enforce (2.93) without contradiction or loss of generality. �

2.6 Sufficiency, Convexity, and Uniqueness

Sufficient conditions for optimality in a mathematical program are conditions that,
if satisfied, ensure optimality. Any such condition has the logical structure:

If property P.x�/ is true, then x� is optimal.

It turns out that convexity, a notion that requires careful definition, provides useful
sufficient conditions that are relatively easy to check in practice. In particular, we
will define a convex mathematical program to be a mathematical program with a
convex objective function (when minimizing) and a convex feasible region, and we
will show that the Kuhn-Tucker conditions are not only necessary but also sufficient
for global optimality in such programs.

2.6.1 Quadratic Forms

A key concept, useful for establishing convexity of functions, is that of a quadratic
form, formally defined as follows:

Definition 2.9. Quadratic form. A quadratic form is a scalar-valued function de-
fined for all x 2 <n that takes on the following form:

Q.x/ D
nX

iD1

nX

j D1

aijxixj (2.94)

where each aij is a real number.

Note that any quadratic form may be expressed in matrix notation as

Q.x/ D xTAx (2.95)
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where A D .aij / is an n 	 n matrix. It is well known that for any given quadratic
form there is a symmetric matrix S that allows one to to re-express that quadratic
form as

Q.x/ D xT Sx (2.96)

where the elements of S D .sij / are given by sij D sj i D .aij C aj i /=2: Because
of this symmetry property, we may assume, without loss of generality, that every
quadratic form is already expressed in terms of a symmetric matrix. That is, when-
ever we encounter a quadratic form such as (2.95) or (2.96), the underlying matrix
generating that form may be taken to be symmetric if so doing assists our analysis.

A quadratic form may exhibit various properties, two of which are the subject of
the following definition:

Definition 2.10. Positive definiteness. The quadratic form Q.x/ D xT Sx is posi-
tive definite on � � <n if Q.x/ > 0 for all x 2 � and x ¤ 0. The quadratic form
Q.x/ D xT Sx is positive semidefinite on � � <n if Q.x/ � 0 for all x 2 �:
Analogous definitions may be made for negative definite and negative semidefinite
quadratic forms. An important lemma concerning quadratic forms, which we state
without proof, is the following:

Lemma 2.2. Properties of positive definite matrix. Let the symmetric n 	 n matrix
S be positive (negative) definite. Then

1. The inverse S�1 exists;
2. S�1 is positive (negative) definite; and
3.ATSA is positive (negative) semidefinite for any m 	 n matrix A.

In addition, we will need the following lemma, which we also state without proof:

Lemma 2.3. Nonnegativity of principal minirs. A quadratic form Q.x/ D xT Sx,
where S is the associated symmetric matrix, is positive semidefinite if and only if it
may be ordered so that s11 is positive and the following determinants of the principal
minors are all nonnegative:

ˇ
ˇ
ˇ̌ s11 s12

s21 s22

ˇ
ˇ
ˇ̌ � 0;

ˇ
ˇ
ˇ
ˇ̌
ˇ

s11 s12 s13

s21 s22 s23

s31 s32 s33

ˇ
ˇ
ˇ
ˇ̌
ˇ

� 0; : : : ; jS j � 0

2.6.2 Concave and Convex Functions

This section contains several definitions, lemmas, and theorems related to convex
functions and convex sets that we need to fully understand the notion of sufficiency.
First, consider the following four definitions:

Definition 2.11. Convex set. A setX � <n is convex if for any two vectors x1; x2 2
X and any scalar � 2 Œ0; 1� the vector
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x D �x1 C .1 � �/x2 (2.97)

also lies in X .

Definition 2.12. Strictly convex set. A set X � <n is strictly convex if for any two
vectors x1 and x2 in X and any scalar � 2 .0; 1/ the point

x D �x1 C .1 � �/x2 (2.98)

lies in the interior of X .

Definition 2.13. Convex function. A scalar function f .x/ is a convex function de-
fined over a convex set X � <n if for any two vectors x1; x2 2 X

f .�x1 C .1 � �/x2/ � �f .x1/C .1 � �/f .x2/ 8 � 2 Œ0; 1� (2.99)

Definition 2.14. Strictly convex function. In the above, f .x/ is strictly convex if the
inequality is a strict inequality .</ for all � 2 .0; 1/.
Note that concave and strictly concave functions are defined by reversing the in-
equalities in the preceding definitions.

We are now ready to state the following theorems:

Theorem 2.9. Sum of convex functions. The sum of any two convex functions is
convex.

Theorem 2.10. Convexity of linear functions. Any linear function is both convex
and concave.

Theorem 2.11. Convexity of quadratic form. For any positive semidefinite and sym-
metric matrix S , the quadratic form Q.x/ D xT Sx is a convex function over all
of <n.

The proofs of the preceding results are straightforward and are left to the reader.
Another important result is the following that relates convex level sets and convex
functions:

Theorem 2.12. Level sets of convex funtion. If f .x/ is a (strictly) convex function
over <n, then the set of points

S � fx W f .x/ � bg, (2.100)

where b is any real number, is a (strictly) convex set.

Proof. The definition of convexity tells us that

f .�x1 C .1 � �/x2/ � �f .x1/C .1� �/f .x2/

� �b C .1 � �/b D b
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A strict version of this inequality is obtained for strictly convex functions, thereby
completing the proof. �

We will also need the following lemma:

Lemma 2.4. Intersection of convex sets. The intersection of any two convex sets is
itself a convex set.

Proof. Take x1 and x2 within the intersection X1 \ X2, where X1 and X2 are
convex sets. Join these points by a line segment. That line segment and all the points
on it are both in X1 and X2. �

It is now trivial to establish the following result:

Theorem 2.13. Convex feasible region. The feasible region X of the mathematical
program (2.3) is a convex set if the following two conditions are met:

1. the equality constraint functions hi .x/ W <n �! <1 for i 2 Œ1; q� are all linear
on X ; and

2. the inequality constraint functions gi .x/ W <n �! <1 for i 2 Œ1;m� are all
convex on X .

Proof. For the given, the sets

Sh D fx W h.x/ D 0g
Sg D fx W g.x/ � 0g

are convex. The feasible region X obeys

X D Sh \ Sg

Hence, X is convex, since the intersection of two convex sets is a convex set. �

Now we are ready to deal with the following key result:

Theorem 2.14. Global minimum of a convex program. If the function f .x/ W
<n �! <1 is defined and convex on the closed convex set X � <n, then any
constrained local minimum of f .x/ for x 2X is a global minimum onX . Similarly,
if f .x/ is concave on the closed convex set X , then any constrained local maximum
of f .x/ for x 2 X is a global maximum on X .

Proof. Suppose x0 2 X is a constrained local minimum but not a global minimum,
so that there exists some x� 2 X such that f .x�/ < f .x0/. Then for any � 2 Œ0; 1�
the convexity of f .x/ tells us that

f .�x� C .1 � �/x0/ � �f .x�/C .1 � �/f .x0/

< �f .x0/C .1 � �/f .x0/ D f .x0/ (2.101)
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Now, consider a straight line segment from x0 to x� which must lie entirely in X
(by convexity). For any small positive ı (a scalar), there exists � > 0 such that

x D �x� C .1 � �/x0 (2.102)

lies in X at a distance ı away from x0. However, we have already shown in (2.101)
that

f .x/ < f .x0/ (2.103)

Since ı may be infinitesimally small, x0 cannot be a local minimum. Hence, we
have a contradiction. �

Another important result is the following:

Theorem 2.15. Tangent line property of a convex function. Let f .x/ have continu-
ous first partial derivatives. Then f .x/ is convex over the convex region X � <n if
and only if

f .x/ � f .x�/C �rf .x�/
�T
.x � x�/ (2.104)

for any two vectors x� and x in X . Moreover, f .x/ is concave over the convex
region X � <n if and only if

f .x/ � f .x�/C �rf .x�/
�T
.x � x�/ (2.105)

for any two vectors x� and x in X .

This result may be proven by taking a Taylor series expansion of f .x/ about the
point x� and arguing that the second order and higher terms sum to a positive
number. Theorem 2.15 expresses the geometric property that a tangent to a convex
function will underestimates that function. Still another related result is:

Theorem 2.16. Convexity and positive semidefiniteness of the Hessian. Let f .x/
have continuous second partial derivatives. Then f .x/ is convex (concave) over
some the region X � <n if and only if its Hessian matrix

H.x/ �

2
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6
6
66
6
6
6
4
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@2f
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: : :
@2f
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@2f
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@2f

@x2
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: : :
@2f
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:::

: : :
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@2f

@xn@x1

@2f

@xn@x2

: : :
@2f

@x2
n

3

77
7
7
7
77
7
7
7
5

(2.106)

is positive (negative) semidefinite.
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Proof. We give the proof for concave functions, although the case of convex
functions is completely analogous.

(i) Œnegative semidefiniteness H) concavity� First note that the Hessian H is
symmetric by its very nature. We may make a second-order Taylor series expansion
of f .x/ about a point x� 2 X to obtain

f .x/ D f .x�/C �rf .x�/
�T
.x � x�/C 1

2
.x � x�/THŒx� C �.x � x�/�.x � x�/

(2.107)
for some � 2 .0; 1/: Because X is convex we know that the point

x� C �.x � x�/ D �x C .1� �/x� , (2.108)

a convex combination of x and x�, must lie within X . Now suppose that H is
negative definite or negative semidefinite throughoutX , so that the last term on the
righthand side of the Taylor expansion is clearly negative or zero. We get

f .x/ � f .x�/C �rf .x�/
�T
.x � x�/ (2.109)

It follows from the previous theorem that f .x/ is concave.
(ii) Œconcavity H) negative semidefiniteness� Now assume f .x/ is concave

throughout X but that the Hessian matrix H is not negative semidefinite at some
point x� 2 X . Then, of course, there will exist a vector y such that

yTH.x�/y > 0 (2.110)

Now define x0 D x� C y and rewrite this last inequality as

.x0 � x�/TH.x�/.x0 � x�/ > 0 (2.111)

Consider another point x D x� C ˇ.x0 � x�/ where ˇ is a real positive number, so
that

.x0 � x�/ D 1

ˇ
.x � x�/ (2.112)

It follows that for any such ˇ

.x � x�/TH.x�/.x � x�/ > 0 (2.113)

Since H is continuous, we may choose x so close to x� that

.x � x�/THŒx� C �.x � x�/�.x � x�/ > 0 (2.114)

for all � 2 Œ0; 1�. By hypothesis f .x/ is concave over < so that

f .x/ � f .x�/C �rf .x�/
�T
.x � x�/ (2.115)
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holds, together with the Taylor series expansion (2.107). Subtracting (2.115) from
(2.107) gives

0 � 1

2
.x � x�/THŒx� C �.x � x�/�.x � x�/ (2.116)

for some � 2 .0; 1/. This contradicts (2.114). �

Note this last theorem cannot be strengthened to say a function is strictly convex
if and only if its Hessian is positive definite. Examples may be given of functions
that are strictly convex and whose Hessians are not positive definite. However, one
can establish that positive definiteness of the Hessian does imply strict convexity by
employing some of the arguments from the preceding proof.

Furthermore, the manner of construction of the preceding proofs leads directly
to the following corollary:

Corollary 2.2. Solution set convex. If the constrained global minimum of f .x/ for
x 2 X � <n is ˛ when f .x/ W <n �! <1 is convex on X , a convex set, then
the set

‰ D fx W x 2 X � <n; f .x/ � ˛g (2.117)

is the set of all solutions and is itself convex.

We now turn our attention to the question of additional regularity conditions that will
assure that the set ‰ is a singleton. In fact, we will prove the following theorem:

Theorem 2.17. Unique global minimum. Let f .�/ be a strictly convex function de-
fined on a convex setX � <n. If f .�/ attains its global minimum onX , it is attained
at a unique point of X .

Proof. Suppose there are two global minima: x1 2 X and x2 2 X . Let f .x1/ D
f .x2/ D ˛. Then, by the previous corollary the set ‰ is a convex set and is the set
of all solutions. Therefore

x1; x2; x3 2 ‰ (2.118)

where x3 D �x1 C .1 � �/x2; and

˛ D f .x3/ D f .�x1 C .1 � �/x2/ < �f .x1/C .1 � �/f .x2/ D ˛:

This is a contradiction and therefore there cannot be two global minima. �

2.6.3 Kuhn-Tucker Conditions Sufficient

The most significant implication of imposing regularity conditions based on con-
vexity is that they make the Kuhn-Tucker conditions sufficient as well as necessary
for global optimality. In fact, we may state and prove the following:
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Theorem 2.18. Kuhn-Tucker conditions sufficient for convex programs. Let

f W X � <n �! <n

g W X � <n �! <m

h W X � <n �! <q

be real-valued, differentiable functions. Suppose X0 is an open convex set, while f
is convex, the gi are convex for i 2 Œ1;m�, and the hi are linear for i 2 Œ1; q�. Take
x�to be a feasible solution of the mathematical program

min f .x/
s.t. hi .x/ D 0 .�i / i 2 Œ1; q�

gi .x/ � 0 .�i / i 2 Œ1;m�
x 2 X0

9
>>=

>>;
(2.119)

If there exist multipliers �� 2 <m and �� 2 <q satisfying the Kuhn-Tucker
conditions

rf .x�/C
mX

iD1

��
i rgi .x

�/C
qX

iD1

��
i rhi .x

�/ D 0

��
i gi .x

�/ D 0 ��
i � 0 i 2 Œ1;m� ,

then x� is a global minimum.

Proof. To simplify the exposition, we shall assume only constraints that are inequal-
ities; this is possible since any linear equality constraint

hk .x/ D 0

for k 2 Œ1;m�may be restated as two convex inequality constraints in standard form:

hk .x/ � 0

�hk .x/ � 0

and absorbed into the definition of g.x/. The Kuhn-Tucker identity is then

rf .x�/C
mX

iD1

��
i rgi .x

�/ D 0 (2.120)

Post multiplying (2.120) by .x � x�/ gives

�rf .x�/
�T
.x � x�/C

X

i

��
i

�rgi .x
�/
�T
.x � x�/ D 0 (2.121)
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where x� is a solution of the Kuhn-Tucker conditions and

x; x� 2 X D fx 2 X0 W g.x/ � 0; h.x/ D 0g

We know that for a convex, differentiable function

g.x/ � g.x�/C �rg.x�/
�T
.x � x�/ (2.122)

From (2.121) and (2.122), we have

�rf .x�/
�T
.x � x�/ D �

X
��

i

�rgi .x
�/
�T
.x � x�/

�
X

i

��
i Œgi .x

�/ � gi .x/�

D ��
i Œ�gi .x/� � 0 (2.123)

because ��
i gi .x

�/ D 0, ��
i � 0 and gi .x/ � 0: Hence

�rf .x�/
�T
.x � x�/ � 0 (2.124)

Because f .x/ is convex

f .x/ � f .x�/C �rf .x�/
�T
.x � x�/ (2.125)

Hence, from (2.124) and (2.125) we get

f .x/ � f .x�/ � �rf .x�/
�T
.x � x�/ � 0 (2.126)

That is
f .x/ � f .x�/ ,

which establishes that any solution of the Kuhn-Tucker conditions is a global mini-
mum for the given. �

Note that this theorem can be changed to one in which the objective function
is strictly convex, thereby assuring that any corresponding solution of the Kuhn-
Tucker conditions is an unique global minimum. Its given may also be relaxed if
certain results from the theory of generalized convexity are employed.

2.7 Generalized Convexity and Sufficiency

There are certain generalizations of the notion of convexity that allow the sufficiency
conditions introduced above to be somewhat weakened. We begin to explore the
notion of more general types of convexity by introducing the following definition of
a quasiconvex function:
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Definition 2.15. Quasiconvex function. The function f W X �! <n is quasiconvex
on the set X � <n if

f
�
�1x

1 C �2x
2
� � max

�
f
�
x1
�
; f

�
x2
��

for every x1; x2 2 X and every .�1; �2/ 2 ˚.�1; �2/ 2 <2C W �1 C �2 D 1
	
.

We next introduce the notion of a pseudoconvex function:

Definition 2.16. Pseudoconvex function. The function f W X �! <n, differen-
tiable on the open convex set X � <n, is pseudoconvex on X if

�
x1 � x2

�T rf �x2
� � 0

implies that
f .x1/ � f .x2/

for every x1; x2 2 X .

Pseudoconcavity of f occurs of course when �f is pseudoconvex. Furthermore,
we shall say a function is pseudolinear (quasilinear) if it is both pseudoconvex (qua-
siconvex) and pseudoconcave (quasiconcave).

The notions of generalized convexity we have given allow the following theorem
to be stated and proven:

Theorem 2.19. Kuhn-Tucker conditions sufficient for generalized convex pro-
grams. Let

f W X � <n �! <n

h W X � <n �! <m

g W X � <n �! <q

be real-valued, differentiable functions. Suppose X0 is an open convex set, while f
is pseudoconvex, the gi are quasiconvex for i 2 Œ1;m�, and the hi are quasilinear
for i 2 Œ1; q�. Take x�to be a feasible solution of the mathematical program

min f .x/

s.t. hi .x/ D 0 .�i / i 2 Œ1; q�
gi .x/ � 0 .�i / i 2 Œ1;m�
x 2 X0

If there exist multipliers �� 2 <m and �� 2 <q satisfying the Kuhn-Tucker
conditions

rf .x�/C
mX

iD1

��
i rgi .x

�/C
qX

iD1

��
i rhi .x

�/ D 0

��
i gi .x

�/ D 0 ��
i � 0 i 2 Œ1;m� ,

then x� is a global minimum.
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Proof. The proof is left as an exercise for the reader. �
We close this section by noting that if in addition to the given of Theorem 2.19 an ap-
propriate notion of strict pseudoconvexity is introduced for the objective function f ,
then the Kuhn-Tucker conditions become sufficient for a unique global minimizer.

2.8 Numerical and Graphical Examples

In this section we provide several numerical and graphical examples meant to test
and refine the reader’s knowledge of the material on nonlinear programming pre-
sented above. We will need the notions of a level curve Ck and a level set Sk of the
objective function f .x/ of a mathematical program:

Ck D fx W f .x/ D fkg (2.127)

Sk D fx W f .x/ � fkg (2.128)

where fk signifies a numerical value of the objective function of interest. Solving
any mathematical program graphically involves four steps:

1. Draw the feasible region.
2. Draw level curves of the objective function.
3. Choose the optimal level curve by selecting, from the points of tangency of level

curves and constraint boundaries, the fesible point or points giving the best ob-
jective function value.

4. Identify the optimal solution as the point of tangency between the optimal level
curve and the feasible region

2.8.1 LP Graphical Solution

Consider the following linear program:

maxf .x; y/ D x C y

subject to

3x C 2y � 6 (2.129)

1

2
x C y � 2 (2.130)

For the present example the optimal solution is, by inspection of Figure 2.2, the
point

x� D
�
x�

1

x�
2

�
D
0

@
1
3

2

1

A (2.131)
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0.5x + y = 2

3x + 2y = 6

level curves

optimal level curve

f(x,y) = 2.5

f(x,y) = 3.5

f(x,y) = 4.5

Fig. 2.2 LP graphical solution

One can easily verify the Kuhn-Tucker conditions hold at this point. To do so, it is
helpful to restate the problem as follows:

minf .x; y/ D �x � y (2.132)

g1.x; y/ D 3x C 2y � 6 � 0 (2.133)

g2.x; y/ D 1

2
x C y � 2 � 0 (2.134)

We note that

rf .x; y/ D
��1

�1
�

(2.135)

rg1.x; y/ D
�
3

2

�
(2.136)

rg2.x; y/ D
0

@
1

2

1

1

A (2.137)

The Kuhn-Tucker identity is

rf .x1; x2/C �1rg1 .x1; x2/C �2rg2 .x1; x2/ D
�
0

0

�
(2.138)

That is
��1

�1
�

C �1

�
3

2

�
C �2

0

@
1

2

1

1

A D
�
0

0

�
(2.139)
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The complementary slackness conditions are

�1g1 .x1; x2/ D 0 �1 � 0 (2.140)

�2g2 .x1; x2/ D 0 �2 � 0 (2.141)

Note that

I D fi W gi

�
1;
3

2

�
D 0g D f1; 2g (2.142)

and we must find multipliers that obey

�1; �2 � 0 (2.143)

It is easy to solve the above system and show

�1 D 1

4
> 0; �2 D 1

2
> 0 (2.144)

Hence x� satisfies the Kuhn-Tucker conditions. Because the problem is a linear
program, it is a convex program. Therefore, the Kuhn-Tucker conditions are not
only necessary but also sufficient, making x� a global solution.

2.8.2 NLP Graphical Example

Consider the following nonlinear program

min f .x1; x2/ D .x1 � 5/2 C .x2 � 6/2 (2.145)

subject to

g1 .x1; x2/ D 1

2
x1 C x2 � 3 � 0 (2.146)

g2 .x1; x2/ D x1 � 2 � 0 (2.147)

By inspection of Figure 2.3, the point (2, 2) is the globally optimal solution with a
corresponding objective function value of 25. Note that

rf .2; 2/ D
 

�8
�6

!

(2.148)

rg1.2; 2/ D
0

@
1

2

1

1

A (2.149)
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Fig. 2.3 NLP graphical solution

rg2.2; 2/ D
 
1

0

!

(2.150)

The Kuhn-Tucker identity is

��8
�6
�

C �1

0

@
1

2

1

1

AC �2

�
1

0

�
D
�
0

0

�
(2.151)

The complementary slackness conditions are

�1g1 .x1; x2/ D 0 �1 � 0 (2.152)

�2g2 .x1; x2/ D 0 �2 � 0 (2.153)

and
I D fi W gi .1; 2/ D 0g D f1; 2g H) �1; �2 � 0 (2.154)

Solving the above linear system (2.151) yields multipliers of the correct sign:

�1 D 6 > 0 (2.155)

�2 D 5 > 0 (2.156)

Consequently, the Kuhn-Tucker conditions are satisfied. Because the program
is convex with a strictly convex objective function, we know that the Kuhn-Tucker
conditions are both necessary and sufficient for an unique global optimum. So, even
without further analysis, we know .2; 2/ is the unique global optimum.
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2.8.3 Nonconvex, Nongraphical Example

Consider the nonlinear program

minf .x1; x2/ D �x1 C 0x2 (2.157)

subject to

g1 .x1; x2/ D .x1/
2 C .x2/

2 � 2 � 0 (2.158)

g2 .x1; x2/ D x1 � .x2/
2 � 0 (2.159)

Note that the feasible region of this mathematical program is not convex; hence, we
will have to enumerate all the combinations of binding and nonbinding constraints
in order to solve it using the Kuhn-Tucker conditions alone. We begin by observing
that

rf .x1; x2/ D
��1
0

�
(2.160)

rg1 .x1; x2/ D
�
2x1

2x2

�
(2.161)

rg2 .x1; x2/ D
�

1

�2x2

�
(2.162)

The Kuhn-Tucker identity is

��1
0

�
C �1

�
2x1

2x2

�
C �2

�
1

�2x2

�
D
�
0

0

�
(2.163)

from which we obtain the equations

kti1 W �1C 2�1x1 C �2 D 0 (2.164)

kti2 W .�1 � �2/ x2 D 0 (2.165)

The complementary slackness conditions are

csc1 W �1g1 .x1; x2/ D 0 �1 � 0 (2.166)

csc2 W �2g2 .x1; x2/ D 0 �2 � 0 (2.167)

Because there are N D 2 inequality constraints, there are 2N D 22 D 4 possible
cases of binding and nonbinding constraints:
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Case g1 g2

I < 0 < 0

II < 0 D 0

III D 0 < 0

IV D 0 D 0

9
>>>>>=

>>>>>;

(2.168)

It is convenient to use the following symbols and operators for analyzing each of
the four cases:

Symbol/Operator Meaning
˚ consider two statements
H) the implication of such a consideration
t a contradiction has occurred
dno does not occur

9
>>>>>=

>>>>>;

(2.169)

Remembering that we must show each case to either involve a contradiction, thereby
indicating that case does not occur, or derive non-negative multipliers which satisfy
the Kuhn-Tucker conditions, we present the following analysis:

Case I : Œcsc1˚ csc2� H) Œ�1 D �2 D 0�˚ Œkti1� H) ��1 D 0 t
� H) dno

Case II : csc1 H) Œ�1 D 0�˚ Œkti1; kti2� H) Œ�2 D 1 > 0; �2x2 D 0� H)

Œx2 D 0�˚
h
g2 D x1 � .0/2 D 0

i
H) csc2 satisfied H)

h
xA D .0; 0/T is a valid Kuhn-Tucker point

i

Case III : csc2 H) Œ�2 D 0�˚ Œkti1; kti2�H) Œ�1C 2�1x1 D 0; �1x2 D 0� H)

Subcase IIIA : Œ�1 D 0�˚ Œ�1C 2�1x1 D 0� H) ��1 D 0 t
� H) dno

Subcase IIIB : Œ�1 > 0�˚ Œ�1x2 D 0� H) Œx2 D 0�˚
h
g1 D .x1/

2 C .0/2 � 2 D 0
i

H)
h
x1 D ˙p

2
i
˚
h
g2 D x1 � .0/2 � 0

i
H)

h
x1 D �p

2
i
˚Œ�1C 2�1x1 D 0� H)

�
0 � �1 D .2x1/

�1 D
�
�2p2


�1

< 0 t
�

H) dno
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Case IV :
h
g1 D .x1/

2 C .x2/
2 � 2 D 0

i
˚
h
g2 D x1 � .x2/

2 D 0
i

H)

Œx1 D 1; x2 D ˙1�˚ Œkti1; kti2� H)Œ�1C 2�1 C �2 D 0; �1 � �2 D 0� H)
Œ�1 D 1=3 > 0; �2 D 1=3 > 0� H) csc1 and csc2 satisfied H)
h
xB D .1; 1/T ; xC D .1;�1/T are valid Kuhn-Tucker points

i
.

The global optimum is found by noting

f
�
xA
� D 0

f
�
xB
� D f

�
xC
� D �1 < f �xA

� (2.170)

which means xB ; xC are alternative global minimizers. Note also that xA is not a
local minimizer.

2.8.4 A Convex, Nongraphical Example

Let us now consider the mathematical program

minf .x1; x2/ D 0x1 � x2 (2.171)

subject to

g1 .x1; x2/ D .x1/
2 C .x2/

2 � 2 � 0 (2.172)

g2 .x1; x2/ D �x1 C x2 � 0 (2.173)

Note that this problem is a convex mathematical program since the objective func-
tion is linear and the inequality constraint functions are convex. We know the
Kuhn-Tucker conditions will be both necessary and sufficient for a nonunique global
minimum. This means that we need only find one case of binding and nonbinding
constraints that leads to nonnegative inequality constraint multipliers in order to
solve (2.171), (2.172), and (2.173) to global optimality. We begin by observing that

rf .x1; x2/ D
�
0

�1
�

(2.174)

rg1 .x1; x2/ D
�
2x1

2x2

�
(2.175)

rg2 .x1; x2/ D
��1
1

�
(2.176)
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The Kuhn-Tucker identity is

�
0

�1
�

C �1

�
2x1

2x2

�
C �2

��1
1

�
D
�
0

0

�
(2.177)

from which we obtain the equations

kti1 W 2�1x1 � �2 D 0 (2.178)

kti2 W �1C 2�1x2 C �2 D 0 (2.179)

The complementary slackness conditions are

csc1 W �1g1 .x1; x2/ D 0 �1 � 0 (2.180)

csc2 W �2g2 .x1; x2/ D 0 �2 � 0 (2.181)

Since the present mathematical program has two constraints, the table (2.168) still
applies. Let us posit that both constraints are binding, so that the following analysis
applies:

Case IV :
h
g1 D .x1/

2 C .x2/
2 � 2 D 0

i
˚ Œg2 D �x1 C x2 D 0� H)

�
x�

1 D x�
2 D 1

�˚ Œkti1; kti2� H)Œ2�1 � �2 D 0;�1C 2�1 C �2 D 0� H)
�
�1 D 1

4
> 0; �2 D 1

2
> 0

�
H) Œcsc1 and csc2 are satisfied� H)

h
x� D �

x�
1 ; x

�
2

�T D .1; 1/T is a global minimizer
i

However, since the objective function is only convex and not strictly convex, we
cannot ascertain without analyzing the three remaining cases whether this global
minimizer is unique. The reader may verify that the other three cases lead to contra-
dictions, and thereby determine that x� D .1; 1/T is a unique global solution.

2.9 Discrete-Time Optimal Control

We are now ready to formulate a fairly general version of the discrete-time optimal
control problem. Because time is treated discretely, we avoid in this initial foray into
optimal control theory the complications and nuances of infinite-dimensional vector
spaces. In particular, we will show that the discrete-time optimal control problem
can be restated as a nonlinear mathematical program in standard form. We then show
that application of the Kuhn-Tucker conditions leads us directly to a discrete version
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of Pontryagin’s minimum (maximum) principle and the other necessary conditions
of discrete-time optimal control.

The equations of motion, also called the dynamics, that we consider take the form
of the following difference equations:

xtC1 D xt C ft .xt ; ut / t D 0; 1; : : : ; q � 1 (2.182)

where t is a discrete time index (a nonnegative integer) and q is the number of
time steps that constitute our planning or analysis horizon. Note further that xt 2
<n and ut 2 <r are vectors, as is ft W <n 	 <r �! <n. We refer to the xt

as state variables and the ut as control variables. We assume ft is continuously
differentiable on <n 	 <r . The initial and terminal conditions for these dynamics
are taken, respectively, to be

ˆ0 .x0/ D 0 (2.183)

ˆq

�
xq

� D 0 (2.184)

where ˆ0 W <n �! <m0 and ˆq W <n �! <mq , while ˆ0 and ˆq are both C1 on
<n. The control constraints are stated in abstract form as

ut 2 Ut � fu W gt .ut / � 0g � <r t D 0; 1; : : : ; q � 1 (2.185)

where gt W <r �! <s and gt is C1 on <r . As stressed in our development of
the Kuhn-Tucker conditions, there is no loss of generality arising from the fact that
we have only explicitly considered inequality constraints on the controls, as any
equality constraint may be represented by two appropriately defined inequalities.
The final piece of the discrete-time optimal control problem is its cost function
defined by

J D ‰
�
xq

�C
q�1X

tD0

Ft .xt ; ut / (2.186)

where ‰ W <n �! <1 is C1 on <n, while Ft W <n 	 <r �! <1 is C1 on <n 	 <r .
We assume that J is meant to be minimized.

Assembling the individual pieces presented above, we have the following canon-
ical form of the discrete-time optimal control problem:

minJ D ‰
�
xq

�C
q�1X

tD0

Ft .xt ; ut / (2.187)

subject to

xtC1 D xt C ft .xt ; ut / t D 0; 1; :::; q � 1 (2.188)
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ut 2 Ut D fu W gt .ut / � 0g � <r t D 0; 1; : : : ; q � 1 (2.189)

ˆ0 .x0/ D 0 ˆq

�
xq

� D 0 (2.190)

Note that we have included no constraints involving the state variables.

2.9.1 Necessary Conditions

It should be apparent that the discrete-time optimal control problem given by
(2.187), (2.188), (2.189), and (2.190) is a finite-dimensional nonlinear mathemat-
ical program. Let us put it in the following form:

minZ .x; u/ D ‰
�
xq

�C
q�1X

tD0

Ft .xt ; ut / (2.191)

subject to

ht .xt ; xtC1/ D �xtC1 C xt C ft .xt ; ut / D 0 .	tC1/ (2.192)

t D 0; 1; :::; q � 1

gt .ut / � 0 .�t / t D 0; 1; :::; q � 1 (2.193)

ˆ0 .x0/ D 0 .
0/ (2.194)

ˆq

�
xq

� D 0
�

q

�
(2.195)

where for convenience we employ the following notation

x D

0

B
@

x0

:::

xq

1

C
A 2 <n.qC1/ (2.196)

u D

0

B
@

u0

:::

uq�1

1

C
A 2 <rq (2.197)

for the vectors of decision variables for our mathematical program; as we have men-
tioned, in the parlance of optimal control theory, these vectors are vectors of state
variables and control variables, respectively.

We assume that a relevant constraint qualification is in force so that the
Kuhn-Tucker conditions for the mathematical program (2.191), (2.192), (2.193),
(2.194), and (2.195) are a valid characterization of optimality. The names of
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multipliers for the constraints of (2.192), (2.193), (2.194), and (2.195) are indi-
cated in parentheses next to each constraint. We state the Kuhn-Tucker conditions
by first forming the Lagrangean; that is, we price out all constraints and adjoin them
to the original objective function to obtain

L .x; u; 
; 	/ D ‰
�
xq

�C
q�1X

tD0

Ft .xt ; ut /C 
0ˆ0 .x0/C 
qˆq

�
xq

�

C
q�1X

tD0

	T
tC1 .�xtC1 C xt C ft .xt ; ut //C

q�1X

tD0

�T
t gt .ut /

where the symbol T denotes the transpose operation and


 D
�

0


q

�
2 <m0Cmq

	 D

0

B
B
B
B
B
@

	1

:

:

:

	q

1

C
C
C
C
C
A

2 <nq

are vectors of dual variables (
) and adjoint variables1 (	), respectively.
The Kuhn-Tucker identity is, of course, obtained by setting the partial derivatives

of L .x; u; 
; 	/ equal to zero; let us begin with the following:

rxL .x; u; 
; 	/ D 0 (2.198)

It follows that

@L
@x0

D @F0

@x0

C 
0

@ˆ0

@x0

C 	T
1 C 	T

1

@f0

@x0

D 0 (2.199)

@L
@xt

D @Ft

@xt

� 	T
t C 	T

tC1 C 	T
tC1

@ft

@xt

D 0 (2.200)

If we agree to define

	0 D �
�
@ˆ0

@x0

�T


0 (2.201)

1 These discrete-time adjoint variables are clearly mathematical programming dual variables; in
optimal control theory, we refer to them as adjoint variables by tradition.
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then (2.199) and (2.200) can be written as

	0 D 	1 C
�
@f0

@x0

�T

	1 C rx0
F0 (2.202)

	t D 	tC1 C
�
@ft

@xt

�T

	tC1 C rxt
Ft t D 1; : : : ; q � 1 (2.203)

We note that (2.203) and (2.204) have the same form as one another, so they may be
conveniently represented by the single statement

	t D 	tC1 C
�
@ft

@xt

�T

	tC1 C rxt
Ft t D 0; : : : ; q � 1 (2.204)

Next note that
@L
@xq

D @‰

@xq

C 
T
q

@ˆq

@xq

� 	T
q D 0 (2.205)

which can be rewritten as

	q D rxq
‰ C

�
@ˆq

@xq

�T


q (2.206)

The remaining partial derivatives of interest are those of the Lagrangean with respect
to the control variables, which are set to zero:

ruL .x; u; 
; 	/ D 0 (2.207)

It follows that

@L
@ut

D �T
t

@gt

@ut

C 	T
tC1

@ft

@ut

C @Ft

@ut

D 0 t D 0; : : : ; q � 1 (2.208)

which can be rewritten as

rut

"
q�1X

tD0

Ft .xt ; ut /C
q�1X

tD0

	T
tC1 .�xtC1 C xt C ft .xt ; ut //

C
q�1X

tD0

�T
t gt .ut /

#

D 0 (2.209)

The final conditions for us to mention are

�T
t gt D 0 �t � 0 t D 1; : : : ; q � 1 (2.210)

which are recognized as the complementary slackness conditions associated with
the control inequality constraints and their multipliers.
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In deriving the equations and inequalities of this section that express the
necessary conditions, the arguments of all functions and their derivatives have
been purposely omitted in order to simplify the notation. The complete set of neces-
sary conditions for the discrete-time optimal control problem consist of the original
problem constraints together with the conditions we have derived. That is to say,
the necessary conditions are

equations of motion W .2.182/

initial conditions W .2.183/

terminal conditions W .2.184/

control constraints W .2.185/

adjoint equations W .2.202/

transversality conditions W .2.206/

stationarity conditions for the controls W .2.209/

Note that these conditions constitute a so-called two-point boundary-value problem.

2.9.2 The Minimum Principle

In this section we wish to manipulate the necessary conditions for the discrete-time
optimal control problem developed from application of the Kuhn-Tucker conditions
into the traditional form used to study and analyze optimal control problems; in
the process we will articulate Pontryagin’s minimum principle. The mathematics
of this section are essentially algebra and some simple differentiation; the substan-
tive aspect of the discrete-time optimal control problem analysis has already been
completed in the previous section. However, the success of modern optimal control
theory is in no small part due to the elegant, concise statement of the necessary con-
ditions that we are about to give (and which is usually attributed to Pontryagin and
his colleagues); packaging is important!

We begin the task of reformulating the necessary conditions by defining the
Hamiltonian:

Ht .xt ; 	tC1; ut / � Ft .xt ; ut /C 	T
tC1ft .xt ; ut / t D 0; : : : ; q � 1 (2.211)

where xt 2 <n will be called the state variable vector while 	t and ut were named,
in Section 2.9.1, the adjoint vector and control vector, respectively; furthermore
Ht W <n 	 <n 	 <r �! <1. It is immediate that the equations of motion may be
stated as

xtC1 � xt D r�tC1
Ht .xt ; 	tC1; ut / t D 0; : : : ; q � 1 (2.212)
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and the adjoint equations as

	tC1 � 	t D �rxt
Ht .xt ; 	tC1; ut / t D 0; : : : ; q � 1 (2.213)

Results (2.212) and (2.213) are completely analogous to Hamilton’s equations of
classical mechanics that describe conservative Newtonian systems in terms of gen-
eralized coordinates (position and momentum). For this reason, these equations are
sometimes still called Hamilton’s equations, although there is no implication that
(2.212) and (2.213) carry with them any of the assumptions or implications of clas-
sical mechanics.

We may also, in light of the definition of the Hamiltonian (2.211), restate the
stationarity conditions for the optimal controls as

rut

"

Ht .xt ; 	tC1; ut /C
q�1X

tD0

�T
t gt .ut /

#

D 0 t D 0; : : : ; q � 1 (2.214)

�T
t gt .ut / D 0 �t � 0 t D 0; : : : ; q � 1 (2.215)

The system (2.214) and (2.215) is immediately recognized as the necessary condi-
tions for statically minimizing the Hamiltonian with respect to the controls under
the assumption that all other variables are held fixed. We restate this observation as

Ht .xt ; 	tC1; ut / � Ht .xt ; 	tC1; u/ 8u 2 Ut t D 0; : : : ; q � 1 (2.216)

Expression (2.216) is Pontryagin’s minimum principle.

2.9.3 Discrete Optimal Control Example

Consider the following discrete-time optimal control problem:

min J D
5X

tD0

1

2
.xt /

2 (2.217)

subject to

xtC1 � xt D ut t D 0; 1; 2; 3; 4 (2.218)

x0 D 3 (2.219)

�1 � ut � 1 t D 0; 1; 2; 3; 4 (2.220)

The Hamiltonian is

Ht D 1

2
.xt /

2 C �tC1.ut / t D 0; 1; 2; 3; 4
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The minimum principle is

ut D
8
<

:

C1 �tC1 < 0

us
t �tC1 D 0

�1 �tC1 > 0

t D 0; 1; 2; 3; 4

The adjoint equations are

�tC1 � �t D �rxt
Ht .xt ; �tC1; ut /

D �xt t D 0; 1; 2; 3; 4

Inspection indicates that the objective function will be minimized by the application
of the control ut D �1 until the state variable reaches zero at an unknown time
t1; thereafter a so-called singular control us

t D 0 is applied, until the end of time
horizon. Then

xtC1 � xt D ut D �1 t D 0; 1; : : : ; t1

Since x0 D 3 is given, we have

x1 D x0 � 1 D 2

x2 D x1 � 1 D 1

x3 D x2 � 1 D 0

Consequently it is discovered that

t1 D 2

Following the prior assumption, we find that

xtC1 � xt D ut D 0 t D 3; 4

which yields
x4 D x5 D 0

Now let us consider the conditions for adjoint variables. According to the minimum
principle, we should have �t > 0 for t D 0; 1; 2 in order that ut D �1 for the same
time intervals. From the transversality conditions and the adjoint equations, we have

�5 D 0

�4 D �5 C x4 D 0

�3 D �4 C x3 D 0

�2 D �3 C x2 D 1

�1 D �2 C x1 D 3

�0 D �1 C x0 D 6
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which satisfies the minimum principle. In summary, the solution is

t 0 1 2 3 4 5

xt C3 C2 C1 0 0 0

ut �1 �1 �1 0 0 0

�t C6 C3 C1 0 0 0

It is instructive to approach the same problem from a purely mathematical program-
ming perspective. In fact off-the-shelf finite-dimensional mathematical program-
ming software or the Kuhn-Tucker conditions (without invoking the notion of the
Hamiltonian and the minimum principle) may be applied directly to the nonlinear
program (2.217), (2.218), (2.219), and (2.220). We leave the demonstration that the
mathematical programming approach yields an identical result as an exercise for
the reader.

2.10 Exercises

1. Create an example of a mathematical program with two decision variables for
which no constraint qualification exists.

2. Prove or disprove: a nonlinear program with a strictly convex objective function
and a non-convex feasible region arising from constraints satisfying the linear
independence constraint qualification may never have a unique global optimum.

3. Solve the following nonconvex, nonlinear program graphically:

minf .x1; x2/ D �x1 C 0x2

subject to
g1 .x1; x2/ D .x1/

2 C .x2/
2 � 2 � 0

g2 .x1; x2/ D x1 � .x2/
2 � 0

4. Solve the nonconvex, nonlinear program of Exercise 3 above using the Kuhn-
Tucker conditions without appeal to graphical information.

5. The example of Section 2.9.3 suggests that a singular control arises when it ap-
pears linearly in the Hamiltonian and has a coefficient that vanishes. Propose
an alternative definition that relies on the language and optimality conditions of
nonlinear programming.

6. Use the minimum principle to solve the following discrete-time optimal control
problem:

minJ D
5X

tD0

�
1

2
.xt /

2 C ut

�
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subject to

xtC1 � xt D ut t D 0; 1; 2; 3; 4

x0 D 3

�1 � ut � 1 t D 0; 1; 2; 3; 4

7. Use the minimum principle to solve the following discrete-time optimal control
problem:

minJ D
5X

tD0

�
1

2
.xt /

2 C 1

2
.ut /

2

�

subject to

xtC1 � xt D ut t D 0; 1; 2; 3; 4

x0 D 3

�1 � ut � 1 t D 0; 1; 2; 3; 4

List of References Cited and Additional Reading

Bazaraa, M., H. Sherali, and C. Shetty (1993). Nonlinear Programming: Theory and Algorithms.
New York: John Wiley.

Canon, M., C. Cullum, and E. Polak (1970). Theory of Optimal Control and Mathematical
Programming. New York: McGraw-Hill.

Luenberger, D. G. (1984). Linear and Nonlinear Programming. Reading, MA: Addison-Wesley.
Mangasarian, O. (1969). Nonlinear Programming. New York: McGraw-Hill.



Chapter 3
Foundations of the Calculus of Variations
and Optimal Control

In this chapter, we treat time as a continuum and derive optimality conditions for the
extremization of certain functionals. We consider both variational calculus problems
that are not expressed as optimal control problems and optimal control problems
themselves. In this chapter, we relie on the classical notion of the variation of a
functional. This classical perspective is the fastest way to obtain useful results that
allow simple example problems to be solved that bolster one’s understanding of
continuous-time dynamic optimization.

Later in this book we will employ the more modern perspective of infinite-
dimensional mathematical programming to derive the same results. The
infinite-dimensional mathematical programming perspective will bring with it
the benefit of shedding light on how nonlinear programming algorithms for finite-
dimensional problems may be generalized and effectively applied to function
spaces. In this chapter, however, we will employ the notion of a variation to derive
optimality conditions in a fashion very similar to that employed by the variational-
calculus pioneers.

The following is a list of the principal topics covered in this chapter:

Section 3.1: The Calculus of Variations. A formal definition of a variation is
provided, along with a statement of a typical fixed-endpoint calculus of variations
problem. The necessary conditions known as the Euler-Lagrange equations are de-
rived. Other optimality conditions are also presented.

Section 3.2: Calculus of Variations Examples. Illustrative applications of the op-
timality conditions derived in Section 3.1 are presented.

Section 3.3: Continuous-Time Optimal Control. A cannonical optimal control
problem is presented. The notion of a variation is employed to derive necessary con-
ditions for that problem, including the Pontryagin minimum principle. Sufficiency
is also discussed.

Section 3.4: Optimal Control Examples. Illustrative applications of the optimal-
ity conditions derived in Section 3.3 are presented.

Section 3.5: The Linear-Quadratic Optimal Control Problem. The linear-
quadratic optimal control problem is presented; its optimality conditions are derived
and employed to solve an example problem.

T.L. Friesz, Dynamic Optimization and Differential Games, International
Series in Operations Research & Management Science 135,
DOI 10.1007/978-0-387-72778-3 3, c� Springer Science+Business Media, LLC 2010

79
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3.1 The Calculus of Varations

In this section, we take a historical approach in the spirit of the earliest investigations
of the calculus of variations, assume all operations performed are valid, and avoid
the formal proof of most propositions. As already indicated, our main interest is in
necessary and sufficient conditions for optimality.

3.1.1 The Space C1
�
t0; tf

�

The space of once continuously differentiable scalar functions relative to the real
interval

�
t0; tf

� � <1C is denoted by C1 �t0; tf
�
, and we write x 2 C1 �t0; tf

�
to de-

note a member of this differentiability class. When x is a vector with n components,
we write x 2 �C1 �t0; tf

��n
and say x belongs to the n-fold product of the space of

once continuously differentiable functions. Although C1 �t0; tf
�

seems to be a sensi-
ble choice of function space, it turns out that the space of continuously differentiable
functions has an important shotcoming: it is not a complete space. In particular,
mappings defined on C1 �t0; tf

�
may be fail to be closed. Thus, it is possible that

elementary operations involving functions belonging to C1 �t0; tf
�

may lead to a
result that does not belong to C1 �t0; tf

�
. However, during the early development

of the calculus of variations, an alternative fundamental space for conceptualizing
dynamic optimization problems was not known, and the failure of C1 �t0; tf

�
to be

a complete space was either worked around or ignored. In our discussions, we will
also encounter the space of continuous functions C0 �t0; tf

�
, usually as the range

of mappings whose domain is C1 �t0; tf
�
. Clearly any function which belongs to

C1 �t0; tf
�

also belongs to C0 �t0; tf
�
.

3.1.2 The Concept of a Variation

Let us consider the abstract calculus of variations problem

minJ .x/ D
Z tf

t0

f0

�
t; x .t/ ;

dx.t/

dt

�
dt (3.1)

t0 fixed, x .t0/ D x0 fixed (3.2)

tf fixed, x
�
tf
� D xf fixed (3.3)

for which

x 2 �C1 �t0; tf
��n

(3.4)

dx

dt
2 �C0 �t0; tf

��n
(3.5)
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while
f0 W <1C � �C1 �t0; tf

��n � �C0 �t0; tf
��n �! <1

Of course the initial time t0 and the terminal time tf are such that tf > t0 while�
t0; tf

� � <1C. If a particular curve x.t/ satisfies the initial conditions (3.2) as well
as the terminal conditions (3.3), we say it is an admissible trajectory. A trajectory
that maximizes or minimizes the criterion in (3.1) is called an extremal of J.x/. An
admissible trajectory that minimizes J.x/ is a solution of the variational problem
(3.1), (3.2), and (3.3). Also, the reader should note that in (3.1) the objective J .x/
should be referred to as the criterion functional, never as the “criterion function”.
This is because J .x/ is actually an operator, and we are seeking as a solution the
function x .t/; this distinction is sometimes explained by saying a “functional is a
function of a function.”

The variation of the decision function x .t/, written as ıx .t/, obeys

dx .t/ D ıx .t/C Px .t/ dt (3.6)

In other words the total differential of x .t/ is its variation ıx .t/ plus the change
in the variable attributed solely to time, namely Px .t/ dt . To understand the variation
of the criterion functional J .x/, we denote the change in the functional arising from
the increment h 2 �C1 �t0; tf

��n
by

�J .h/ � J .x C h/ � J .x/ (3.7)

for each x 2 �C1 �t0; tf
��n

. This allows us to make the following definition:

Definition 3.1. Differentiability and variation of a functional. If

�J .h/ D ıJ .h/C " khk (3.8)

where, for any given x 2 �C1 �t0; tf
��n

, ıJ .h/ is a linear functional of h 2�C1 �t0; tf
��n

and " �! 0 as khk �! 0, J .x/ is said to be differentiable and
ıJ .h/ is called its variation (for the increment h).

This definition is conveniently summarized by saying that the variation of the func-
tional J .x/ is the principal linear part of the change�J .h/. Note that the variation
is dependent on the increment taken for each x. Furthermore, since the variation is
the principal linear part, it may be found by retaining the linear terms of a Taylor
series expansion of the criterion functional about the point x.

To illustrate let us consider the functional

J .w1;w2/ D
Z tf

t0

F .w1;w2/ dt (3.9)

w1.t0/;w2.t0/ fixed (3.10)

w1.tf /;w2.tf / fixed (3.11)
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where for convenience we take w1, w2 and F .�; �/ to be scalars. The change in this
functional for the increment h D .h1; h2/

T is

�J .h1; h2/ D J .w1 C h1;w2 C h2/� J.w1;w2/ (3.12)

D
Z tf

t0

�
F .w1;w2/C @F .w1;w2/

@w1
Œ.w1 C h1/� w1� (3.13)

C @F .w1;w2/

@w2
Œ.w2 C h2/ � w2� � F .w1;w2/

	
dt C " khk

(3.14)

D
Z tf

t0

�
@F .w1;w2/

@w1
h1 C @F .w1;w2/

@w2
h2

�
dt C " khk (3.15)

It is immediate that

ıJ .h1; h2/ D
Z tf

t0

�
@F .w1;w2/

@w1
h1 C @F .w1;w2/

@w2
h2

�
dt (3.16)

If we identify the decision variable variations ıw1 and ıw2 with the increments h1
and h2, respectively, this last expression becomes

ıJ .h1; h2/ D
Z tf

t0

�
@F .w1;w2/

@w1
ıw1 C @F .w1;w2/

@w2
ıw2

�
dt (3.17)

which is a chain rule for the calculus of variations. Expression (3.17) is a specific
instance of the following variational calculus general chain rule: the variation of the
functional (3.1) obeys

ıJ .x/ D
nX

iD1

Z tf

t0

�
@f0

@xi
ıxi C @f0

@ Pxi ı Pxi
�
dt (3.18)

where x .t/ 2 <n for each instant of time t 2 �
t0; tf

�
. We reiterate that, in the

language we have introduced, ıJ .x/ is the variation of the functional J .x/.

3.1.3 Fundamental Lemma of the Calculus of Variations

The necessary conditions for the classical calculus of variations depend on a spe-
cific result that herein we choose to call the fundamental lemma of the calculus of
variations. In this section we derive that result.
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In order to establish the fundamental lemma, we first state and prove a
preliminary result concerning the implication of the vanishing of a certain integral.
That preliminary result is the following:

Lemma 3.1. Vanishing integral property. If 2 C0 Œa; b� and if, for all � 2 C1 Œa; b�
such that � .a/ D � .b/ D 0, we have

Z b

a

 .t/
d�

dt
.t/ dt D 0, (3.19)

then  .t/ D c, a constant, for all t 2 Œa; b� 2 <1:

Proof. Suppose we set

� .t/ D
Z t

a

Œ .t/ � c� dt

where c is defined by the relationship

� .b/ D
Z b

a

Œ .t/ � c� dt D 0

Note that
d�

dt
D  .t/ � c (3.20)

This observation together with (3.19) tells us that

0 D
Z b

a

 .t/
d�

dt
.t/ dt D

Z b

a

 .t/ Œ .t/� c� dt

D
Z b

a

n
Œ .t/�2 � c .t/

o
dt

D
Z b

a

n
Œ .t/�2 � 2c .t/C c2 C c .t/ � c2

o
dt

D
Z b

a

Œ .t/ � c�2 dt C
Z b

a

c Œ .t/ � c� dt

D
Z b

a

Œ .t/ � c�2 dt C
Z b

a

c
d�

dt
dt

Thus

0 D
Z b

a

Œ .t/ � c�2 dt C c

Z b

a

d�

D
Z b

a

Œ .t/ � c�2 dt C c Œ� .b/ � � .a/� D
Z b

a

Œ .t/ � c�2 dt
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which can only hold if
 .t/ D c 8t 2 Œa; b�

The proof is complete. �

Now we turn to the main lemma:

Lemma 3.2. The fundamental lemma. If g 2 C0 Œa; b�, h 2 C0 Œa; b� and if, for all
� 2 C1 Œa; b� such that � .a/ D � .b/ D 0, we have

Z b

a

�
g .t/ � .t/C h .t/ P� .t/� dt D 0,

then

g .t/ D dh .t/

dt
8t 2 Œa; b�

Proof. Define

G .t/ D
Z t

a

g .�/ d�

and consider the integral

Z b

a

G .t/ d� .t/ D
Z b

a

G .t/
d�

dt
dt (3.21)

Using the standard formula for integration by parts, (3.21) can be stated as

Z b

a

G .t/
d�

dt
dt D ŒG .t/ � .t/�ba �

Z b

a

g .t/ � .t/ dt (3.22)

where this last result holds for all � 2 C1 Œa; b� such that � .a/ D � .b/ D 0 per the
given. It is immediate that

ŒG .t/ � .t/�ba D G .b/ � .b/ �G .a/ � .a/ D 0

so that (3.22) becomes

Z b

a

G .t/
d�

dt
dt D �

Z b

a

g .t/ � .t/ dt (3.23)

for all � 2 C1 Œa; b�. Consequently, we have

Z b

a

�
g .t/ � .t/C h .t/ P� .t/� dt D

Z b

a

Œ�G .t/C h .t/� P� .t/ dt D 0 (3.24)
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By the Lemma 3.1, it follows that

�G .t/C h .t/ D c, a constant 8t 2 Œa; b�

Hence

g .t/ D dG .t/

dt
D dh .t/

dt
(3.25)

which complete the proof. �

We note that Lemma 3.2 is easily generalized to deal with � 2 �C1 Œa; b��n :

3.1.4 Derivation of the Euler-Lagrange Equation

In this section, we derive necessary conditions for the following calculus of varia-
tions problem:

minJ .x/ D
Z tf

t0

f0

�
t; x .t/ ;

dx

dt
.t/

�
dt (3.26)

t0 fixed, x .t0/ D x0 fixed (3.27)

tf fixed, x
�
tf
� D xf fixed (3.28)

where x 2 �C1 �t0; tf
��n

is the decision function we are seeking. In what follows,
we interpret partial derivative operators to be gradients when n � 2; that is

@f0 .t; x; Px/
@x

D Œrxf0 .t; x; Px/�T

@f0 .t; x; Px/
@ Px D Œr Pxf0 .t; x; Px/�T

Next we construct the variation ıJ .x/ by taking the principal linear part of

�J D J .x C h/� J .x/ (3.29)

D
Z tf

t0

f0



t; x C h;

d .x C h/

dt

�
dt �

Z tf

t0

f0



t; x;

dx

dt

�
dt (3.30)

D
Z tf

t0

�
f0



t; x C h;

d .x C h/

dt

�
� f0



t; x;

dx

dt

��
dt (3.31)
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where h is an arbitrary increment. Making a Taylor series expansion of the integrand
about the point .x; Px/, this becomes

�J D
Z tf

t0

�
f0



t; x;

dx

dt

�
� f0



t; x;

dx

dt

��
dt

C
Z tf

t0

�
@f0 .t; x; Px/

@x
Œ.x C h/ � x�

C@f0 .t; x; Px/
@ Px

h�
Px C Ph



� Px

i	
dt C : : :

which tells us that

ıJ .x/ D
Z tf

t0

�
@f0 .t; x; Px/

@x
hC @f0 .t; x; Px/

@ Px
Ph
�
dt (3.32)

A necessary condition for our original problem is

ıJ .x/ D 0

Thus, upon invoking the fundamental lemma of the calculus of variations (Lemma
3.2), we see that

@f0 .t; x; Px/
@x

� d

dt

�
@f0 .t; x; Px/

@ Px
�

D 0 (3.33)

x .t0/ D x0 (3.34)

x
�
tf
� D xf (3.35)

where (3.33) is called the Euler-Lagrange equation, and (3.34) and (3.35) are the
original boundary conditions of the problem we have analyzed; note in particular
that these relationships constitute necessary conditions for the calculus of variations
problem (3.26), (3.27), and (3.28).

We turn now to another form of the Euler-Lagrange equation. Note that an appli-
cation of the chain rule yields the following two results:

df0

dt
D @f0

@t
C @f0

@x

dx

dt
C @f0

@ Px
d Px
dt

d

dt



Px @f0
@ Px
�

D @f0

@ Px
d Px
dt

C Px d
dt



@f0

@ Px
�

Combining the above two equations, we get

d

dt



Px @f0
@ Px
�

D
�
df0

dt
� @f0

@t
� @f0

@x

dx

dt

�
C Px d

dt



@f0

@ Px
�
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Upon reordering

Px
�
@f0

@x
� d

dt



@f0

@ Px
��

C d

dt



Px @f0
@ Px
�

� df0

dt
C @f0

@t
D 0 (3.36)

Note that the first term of (3.36) contains the righthand side of the Euler-Lagrange
equation. Therefore, if x is a solution of the Euler-Lagrange equation, then

d

dt



Px @f0
@ Px � f0

�
C @f0

@t
D 0 (3.37)

Result (3.37), known as the second form of the Euler-Lagrange equation, can be

very useful in particular cases. Note that if
@f0

@t
D 0, then

d

dt



Px @f0
@ Px � f0

�
D 0 or Px @f0

@ Px � f0 D constant

We will study an application of the second form later in this chapter.

3.1.5 Additional Necessary Conditions in the Calculus
of Variations

In certain situations the first-order necessary conditions are not adequate to fully
describe an extremal trajectory, and additional necessary conditions are needed.
In particular, it is possible to derive second-order necessary conditions. To that end,
we need to first establish the following result:

Lemma 3.3. Nonnegativity of a functional. Let g 2 C0 Œa; b�, h 2 C0 Œa; b� ; and
� 2 C1 Œa; b�; suppose also that � .a/ D � .b/ D 0. A necessary condition for the
functional

F D
Z b

a

h
g .t/ f� .t/g2 C h .t/

˚ P� .t/�2
i
dt (3.38)

to be nonnegative for all � is that

h .t/ � 0 8t 2 Œa; b�

Proof. See Gelfand and Fomin (2000). �

For a function f .x/ to be minimized, we know from Chapter 2 that a second-
order necessary condition is f 00.x/ � 0 at the minimum. For the problem (3.26),
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(3.27), and (3.28), we have a similar variational calculus necessary condition called
Legendre’s condition, which is given in the following theorem:

Theorem 3.1. Legendre’s condition. A necessary condition for x to minimize J.x/
in the problem defined by (3.26),(3.27), and (3.28) is that

@2f0 .t; x; Px/
@ Px2 � 0

for all t 2 �t0; tf
�
. When maximizing, the inequality is reversed.

Proof. Let us define

I.�/ D J.x C ��/ D
Z tf

t0

f0
�
t; x C ��; Px C � P�� dt

for all � 2 C1 �t0; tf
�

such that � .t0/ D �
�
tf
� D 0. For J.x/ to be minimized at

x, I.�/ should be minimized at � D 0. That is

d 2

d�2
I.�/

ˇ̌
ˇ
ˇ
�D0

� 0

Note that

d

d�
I.�/

ˇ
ˇ
ˇ
ˇ
�D0

D
Z tf

t0

�
@f0

@x
� C @f0

@ Px
P�
�
dt

d 2

d�2
I.�/

ˇ
ˇ
ˇ
ˇ
�D0

D
Z tf

t0

�
@2f0

@x2
�2 C @2f0

@x@ Px �
P� C @2f0

@ Px2
P�2 C @2f0

@x@ Px �
P�
�
dt

D
Z tf

t0

�
@2f0

@x2
�2 C 2

@2f0

@x@ Px �
P� C @2f0

@ Px2
P�2
�
dt (3.39)

Integrating by parts, we have

Z tf

t0

2
@2f0

@x@ Px �
P� dt D @2f0

@x@ Px �
2

ˇ
ˇ
ˇ
ˇ

tf

t0

�
Z tf

t0

d

dt

�
@2f0

@x@ Px
�
�2dt

D �
Z tf

t0

d

dt

�
@2f0

@x@ Px
�
�2dt (3.40)

where we have used the boundary conditions � .t0/ D �
�
tf
� D 0. Substituting

(3.40) into (3.39), we get

d 2

d�2
I.�/

ˇ
ˇ̌
ˇ
�D0

D
Z tf

t0

�

@2f0

@x2
� d

dt

�
@2f0

@x@ Px
��
�2 C @2f0

@ Px2
P�2
�
dt (3.41)
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For (3.41) to be nonnegative, we must have, by Lemma 3.3

@2f0

@ Px2 � 0

for all t 2 �t0; tf
�
. This completes the proof. �

We now turn our attention to another necessary condition, namely the so-called
Weierstrass condition, which is the subject of the following theorem:

Theorem 3.2. Weierstrass condition. For the problem defined by (3.26), (3.27), and
(3.28), if x.t/ is the solution, then we have

E.t; x; Px; Py/ � 0

where E.�/ is the Weierstrass excess function (E-function)

E.t; x; Px; Py/ D f0.t; x; Py/ � f0.t; x; Px/� @f0.t; x; Px/
@ Px . Py � Px/ (3.42)

for all admissible y.

Proof. We follow Spruck (2006). Let us pick t1 2 Œt0; tf � and Py to be fixed but
otherwise arbitrary. For both � and h positive, fixed and suitably small, we define

�.t/ D

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

t � t1 t 2 Œt1; t1 C �h�

�

1 � � .t1 C h� t/ t 2 Œt1 C �h; t1 C h�

0 otherwise

We also define
x1 D x C �.y � Px.t1// (3.43)

Since x is a minimizer
J.x/ � J.x1/

As a consequence we have
0 � J.x1/� J.x/

It then follows that

0 �
Z t1Ch

t1

f0 .t; x.t/C �. Py � Px.t1//; Px.t/C P�. Py � Px.t1// dt

�
Z t1Ch

t1

f0.t; x.t/; Px.t//dt
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D
Z t1C�h

t1

f0.t; x.t/C .t � t1/. Py � Px.t1//; Px C Py � Px.t1//dt

C
Z t1Ch

t1C�h
f0.t; x.t/C �

1 � �
.t1 C h� t/. Py� Px.t1//; Px � �

1 � �
. Py � Px.t1///dt

�
Z t1Ch

t1

f0.t; x; Px/dt (3.44)

We wish to simplify (3.44); this is accomplished by introducing the change of
variable

t D t1 C �h

which leads directly to
0 � AC B C C (3.45)

where

A D h

Z �

0

f0.t1 C �h; x.t1 C �h/C �h. Py � Px.t1//; Px.t1 C �h/C Py � Px.t1//d�
(3.46)

B D h

Z 1

�

f0.t1 C �h; x.t1 C �h/C �

1 � �
.1 � �/h. Py � Px.t1//; Px.t1 C �h/

� �

1 � � . Py � Px.t1///d� (3.47)

C D �h
Z 1

0

f0.t1 C �h; x.t1 C �h/; Px.t1 C �h//d� (3.48)

Dividing by h and taking the limit h ! 0, for each of the terms above, we obtain

0 �
Z �

0

f0.t1; x.t1/; Py/d� C
Z 1

�

f0.t1; x.t1/; Px.t1/� �

1 � � . Py � Px.t1///d�

�
Z 1

0

f0.t1; x.t1/; Px.t1//d� (3.49)

Because the integrands of (3.49) are independent of � we may write

0 � �f0.t1; x.t1/; Py/C .1 � �/f0.t1; x.t1/; Px.t1/ � �

1 � �
. Py � Px.t1///

�f0.t1; x.t1/; Px.t1// (3.50)

Dividing (3.50) by � yields

0 � f0.t1; x.t1/; Py/C 1 � �

�
f0.t1; x.t1/; Px.t1/� �

1 � � . Py � Px.t1///

�1
�
f0.t1; x.t1/; Px.t1//
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D f0.t1; x.t1/; Py/� f0.t1; x.t1/; Px.t1/ � �

1 � �
. Py � Px.t1///

C1

�

h
f0.t1; x.t1/; Px.t1/ � �

1 � �
. Py � Px.t1/// � f0.t1; x.t1/; Px.t1//

i

D f0.t1; x.t1/; Py/� f0.t1; x.t1/; Px.t1/ � �

1 � �
. Py � Px.t1///

�
f0.t1; x.t1/; Px.t1// � f0.t1; x.t1/; Px.t1/� �

1 � � . Py � Px.t1///
�

1 � �
. Py � Px.t1//

� Py � Px.t1/
1 � �

(3.51)

Taking the limit of (3.51) as � ! 0, we get

0 � f0.t1; x.t1/; Py/ � f0.t1; x.t1/; Px.t1// � @f0.t1; x.t1/; Px.t1//
Px.t1/ . Py � Px.t1//

Since Py and t1 are arbitrary, the theorem is proven. �

Reflection on the apparatus introduced above reveals that we may consider any
solution trajectory to be a continuous function of time that is piecewise smooth. We
note, however, that when an admissible function x.t/ is piecewise smooth, Px .t/
need not be continuous but rather only piecewise continuous. This is because a
piecewise smooth curve may have points, often loosely referred to as corners, at
which the first derivative is discontinuous. Specifically, it exhibits a jump disconti-
nuity. For such points of jump discontinuity of the time deivative (corners), we have
necessary conditions, called Weierstrass-Erdman conditions, which are the subject
of the following result:

Theorem 3.3. Weierstrass-Erdman conditions. For the problem defined by
(3.26),(3.27), and (3.28), suppose an optimal solution x.t/ has a jump discon-
tinuity of its time derivative at t D t1. Then the Weierstrass-Erdman conditions

�
@f0

@ Px
�

tDt�
1

D
�
@f0

@ Px
�

tDtC
1

�
f0 � @f0

@ Px Px
�

tDt�
1

D
�
f0 � @f0

@ Px Px
�

tDtC
1

must hold.

Proof. We follow Gelfand and Fomin (2000) and observe that for J.x/ to have a
minimum, the Euler equation must be satisfied:

@f0

@x
� d

dt

�
@f0

@ Px
�

D 0 (3.52)
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Let us decompose the objective functional so that J D J1 C J2 where

J1 D
Z t1

t0

f0 .t; x; Px/ dt

J2 D
Z tf

t1

f0 .t; x; Px/ dt

and t1 2 �t0; tf
�
. Since x.t1/ is not a fixed point, we have

�J1 D J1 .x C h/ � J1 .x/

D
Z t1Cıt1

t0

f0

�
t; x C h; Px C Ph



dt �

Z t1

t0

f0 .t; x; Px/ dt

D
Z t1

t0

n
f0

�
t; x C h; Px C Ph



� f0 .t; x; Px/

o
dt C

Z t1Cıt1

t1

f0

�
t; x C h; Px C Ph



dt

D
Z t1

t0

�
@f0

@x
hC @f0

@ Px
Ph
	
dt C " khk C Œf0�tDt1 ıt1 C " kıt1k

where we have employed a Taylor series expansion. It is immediate that the principal
linear part of the above expansion is

ıJ1 D
Z t1

t0

�
@f0

@x
hC @f0

@ Px
Ph
	
dt C Œf0�tDt1 ıt1 (3.53)

Integrating by parts we get

ıJ1 D
Z t1

t0

�
@f0

@x
� d

dt

�
@f0

@ Px
�	
hdt C

�
@f0

@ Px h
�

tDt1
C Œf0�tDt1 ıt1

From (3.52), we have

ıJ1 D
�
@f0

@ Px h
�

tDt�
1

C Œf0�tDt�
1
ıt�1

Since h is arbitrary, we are free to set

h.t�1 / D ıx.t�1 / � Px.t�1 /ıt�1
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provided ıx is arbitrary. Therefore

ıJ1 D
�
@f0

@ Px ıx
�

tDt�
1

C
�
f0 � @f0

@ Px Px
�

tDt�
1

ıt�1

Similarly

ıJ2 D �
�
@f0

@ Px ıx
�

tDtC
1

�
�
f0 � @f0

@ Px Px
�

tDtC
1

ıtC1

Continuity for x.t/ at t D t1 implies

ıx.t�1 / D ıx.tC1 /
ıt�1 D ıtC1

So we must have

0 D ıJ D ıJ1 C ıJ1

D
 �
@f0

@ Px
�

tDt�
1

�
�
@f0

@ Px
�

tDtC
1

!

ıx.t�1 /

C
 �
f0 � @f0

@ Px Px
�

tDt�
1

�
�
f0 � @f0

@ Px Px
�

tDtC
1

!

ıt�1

Since ıx.t�1 / and ıt�1 are arbitrary, the conditions

�
@f0

@ Px
�

tDt�
1

D
�
@f0

@ Px
�

tDtC
1�

f0 � @f0

@ Px Px
�

tDt�
1

D
�
f0 � @f0

@ Px Px
�

tDtC
1

must hold. This completes the proof. �

3.1.6 Sufficiency in the Calculus of Variations

In this section, we derive sufficient conditions for optimality in variational calculus
problems. We begin by stating and proving the following result:

Theorem 3.4. Sufficiency of the Euler-Lagrange equation. Consider the variational
calculus problem defined by (3.26),(3.27), and (3.28). Let the integrand f0 be convex
with respect to .x; Px/ for each instant of time t considered. Furthermore, let x�.t/
be a piecewise smooth, admissible function satisfying the Euler-Lagrange equation
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everywhere except possibly at points of jump discontinuity of its time derivative
where it satisfies the Weierstrass-Erdman conditions. Then x�.t/ is a solution to
(3.26),(3.27), and (3.28).

Proof. We follow Brechtken-Manderscheid (1991). Because of the assumed con-
vexity, we have

f0 .t; x; Px/ � f0
�
t; x�; Px��C @f0 .t; x

�; Px�/
@x

�
x � x��C @f0 .t; x

�; Px�/
@ Px

� Px � Px��

(3.54)

Now let x and x� be two piecewise smooth admissible functions, and let the corners
of x and x� correspond to instants of time ti for i 2 Œ1;m� such that

t0 < t1 < � � � < tm < tmC1 D tf

Using (3.54), we may write

J .x/ � J
�
x�� D

Z tf

t0

�
f0 .t; x; Px/� f0

�
t; x�; Px��� dt

�
Z tf

t0

�
@f0 .t; x

�; Px�/
@x

�
x � x��C @f0 .t; x

�; Px�/
@ Px

� Px � Px��
�

dt

(3.55)

Integrating by parts, we have

Z tf

t0

@f0 .t; x
�; Px�/

@ Px
� Px � Px�� dt D

mC1X

iD1

�
@f0 .t; x

�; Px�/
@ Px

�
x � x��

�tDti

tDti�1

�
Z tf

t0

d

dt

�
@f0 .t; x

�; Px�/
@ Px

�
x � x��

�
dt

(3.56)

Since x� satisfies the Weierstrass-Erdman corner conditions while x and x� are
identical at the both endpoints, the first term on the righthand side of (3.56) is zero.
Therefore, we have

J .x/� J �x�� �
Z tf

t0

�
@f0 .t; x

�; Px�/
@x

� d

dt

�
@f0 .t; x

�; Px�/
@ Px

�	 �
x � x��dt D 0

because of the assumption that x� satisfies the Euler-Lagrange equation. This com-
pletes the proof. �
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3.1.7 Free Endpoint Conditions in the Calculus of Variations

Now consider the problem

minJ .x/ D
Z tf

t0

f0

�
t; x .t/ ;

dx

dt
.t/

�
dt (3.57)

t0 fixed, x .t0/ free (3.58)

tf fixed, x
�
tf
�

free (3.59)

where the endpoints are free. Clearly, the present circumstances require invocation
of boundary conditions different from those used for the fixed endpoint problem.
In particular, the boundary conditions are chosen to make the variation ıJ .x/
expressed by

ıJ D
Z tf

t0

�
@f0

@x
hC @f0

@ Px
Ph
	
dt

D
Z tf

t0

�
@f0

@x
� d

dt

�
@f0

@ Px
�	
hdt C

�
@f0

@ Px h
�tDtf

tDt0

vanish. This is accomplished by enforcing the Euler-Lagrange equation plus the
conditions

�
@f0 .t; x; Px/

@ Px
�

tf

D 0 (3.60)

�
@f0 .t; x; Px/

@ Px
�

t0

D 0 (3.61)

which are the free endpoint conditions; sometimes they are also called the natural
boundary conditions. Note that they are to be enforced only when the endpoints are
free. Furthermore, if only one endpoint is free then only the associated free endpoint
condition is enforced.

3.1.8 Isoperimetric Problems in the Calculus of Variations

In the calculus of variations, one may encouter constraints, over and above endpoint
conditions, that must be satisfied by an admissible trajectory. An important class
of such constraints is a type of integral constraint that is often referred to as an
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isoperimetric constraint; the presence of such a constraint causes the problem of
interest to take the following form:

min J.x/ D
Z tf

t0

f0.t; x; Px/dt (3.62)

x.t0/ D x0 (3.63)

x.tf / D xf (3.64)

K .x/ D
Z tf

t0

g.t; x; Px/dt D c (3.65)

where g 2 C1 �t0; tf
�

and c is a constant. Necessary conditions for this problem are
provided by the following theorem:

Theorem 3.5. Isoperimetric constraints and the Euler-Lagrange equation. Let the
problem defined by (3.62),(3.63),(3.64), and (3.65) have a minimum at x .t/. Then if
x.t/ is not an extremal of K.x/, there exists a constant 	 such that x.t/ is a mini-
mizer of the functional

Z tf

t0

.f0 C 	g/ dt (3.66)

That is, x.t/ satisfies the Euler-Lagrange equation for (3.66):

@f0

@x
� d

dt

�
@f0

@ Px
�

C 	



@g

@x
� d

dt

�
@g

@ Px
��

D 0

This theorem is analogous to the Lagrange multiplier rule for mathamatical pro-
grams with equality constraints; hence, its proof is not given here, but, instead, is
left as an exercise for the reader. Intriligator (1971) points out a duality-type result
for the isoperimetric problem, which he calls the principle of reciprocity. It states
that if x.t/ minimizes J subject to the condition that K is constant, then for certain
mild regularity conditions x.t/ maximizes K subject to the condition that J is a
constant.

3.1.9 The Beltrami Identity for @f0

@t
D 0

We now derive a result that is useful for studying the Brachistochrone problem, a nu-
merical example of which we shall shortly consider. For now consider the chain rule

df0

dt
D @f0

@x
Px C @f0

@ Px
d Px
dt

C @f0

@t
(3.67)
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which may be re-expressed as

@f0

@x
Px D df0

dt
� @f0

@ Px
d Px
dt

� @f0

@t
(3.68)

Consider now the expression

Px @f0
@x

D Px d
dt

�
@f0

@ Px
�

(3.69)

which is the Euler-Lagrange equation multiplied by Px. Substituting (3.69) into
(3.68) we obtain

df0

dt
� @f0

@ Px
d Px
dt

� @f0

@t
� Px d

dt

�
@f0

@ Px
�

D 0 (3.70)

We note that

d

dt

�
f0 � Px @f0

@ Px
�

D df0

dt
� @f0

@ Px
d Px
dt

� Px d
dt

@f0

@ Px (3.71)

so

�@f0
@t

C d

dt

�
f0 � Px @f0

@ Px
�

D 0 (3.72)

When the variational problem of interest has an integrand f0 that is independent of
time, that is when

@f0

@t
D 0 , (3.73)

it is immediate that

d

dt

�
f0 � Px @f0

@ Px
�

D 0 (3.74)

In other words

Px @f0
@ Px � f0 D C0 , a constant (3.75)

Expression (3.75) is Beltrami’s identity.

3.2 Calculus of Variations Examples

Next we provide some solved examples that make use of the calculus of variations
optimality conditions discussed previously.
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3.2.1 Example of Fixed Endpoints in the Calculus of Variations

Consider

f0 .x; Px; t/ D 1

2

"

x2 C


dx

dt

�2#

t0 D 0

tf D 5

x .t0/ D 10

x
�
tf
� D 0

That is, we wish to solve

minJ .x/ D
Z tf

t0

1

2

"

x2 C


dx

dt

�2#

dt

x .0/ D 10

x .5/ D 0

Note that

@f0 .t; x; Px/
@x

D x

@f0 .t; x; Px/
@ Px D dx

dt

d

dt

�
@f0 .t; x; Px/

@ Px
�

D d 2x

dt2

Therefore
@f0 .t; x; Px/

@x
� d

dt

�
@f0 .t; x; Px/

@ Px
�

D x � d 2x

dt2

and the Euler-Lagrange equation with endpoint conditions is

d 2x

dt2
� x D 0

x .0/ D 10

x .5/ D 0

The exact solution is

x .t/ D 1

ete5 � ete�5
�
10e5 � 10e�5e2t

�
(3.76)

We leave as an exercise for the reader the determination of whether this particu-
lar problem also satisfies the conditions that assure the Euler-Lagrange equation is
sufficient and allow us to determine (3.76) is in fact an optimal solution.
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3.2.2 Example of Free Endpoints in the Calculus of Variations

Consider

f0 .t; x; Px/ D 1

2

"

x C


dx

dt

�2#

t0 D 0

tf D 5

x .t0/ D 5

x
�
tf
�

free

That is, we wish to solve

minJ .x/ D
Z 5

0

1

2

"

x C


dx

dt

�2#

dt

x .0/ D 5

x .5/ free

Note that

@f0 .t; x; Px/
@x

D 1

2

@f0 .t; x; Px/
@ Px D dx

dt

d

dt

�
@f0 .t; x; Px/

@ Px
�

D d 2x

dt2

and, therefore, the Euler-Lagrange equation is

@f0 .t; x; Px/
@x

� d

dt

�
@f0 .t; x; Px/

@ Px
�

D 1

2
� d 2x

dt2
D 0

Since we have a free endpoint, the terminal condition is

�
@f0 .t; x; Px/

@ Px
�

tDtf
D
�
dx

dt

�

tD5
D 0

Thus, we have the following ordinary differential equation with boundary condi-
tions:

d 2x

dt2
D 1

2
(3.77)

x .0/ D 5 (3.78)

dx.5/

dt
D 0 (3.79)
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As may be verified by direct substitution, the exact solution is

x.t/ D 1

4
t2 � 5

2
t C 5 (3.80)

3.2.3 The Brachistochrone Problem

In Chapter 1 we encountered the famous brachistochrone problem, which is gener-
ally thought to have given birth to the branch of mathematics that is known as the
calculus of variations. Recall that we used y .x/ to denote the vertical position of
a bead sliding on a wire as a function of its horizontal position x. What we now
want to do is extremize the functional J .x; y; y0/ associated with that problem.
To that end, we consider the start point PA D .xA; yA/ D .0; 0/ and the endpoint
PB D .xB ; yB/. Let us define a variable s to denote arc length along the wire; then,
a segment of the wire must obey

ds D
p
dx2 C dy2 D

q
1C .y0/2dx

where

y0 D dy

dx
(3.81)

Assuming a constant gravitaional acceleration g and invoking conservation of en-
ergy, we see the speed of the bead, v, obeys

1

2
mv2 �mgy D 0

which in turn requires

v D p
2gy (3.82)

The total travel time J , which is to be minimized, may be stated as

J D
Z PB

PA

ds

v

D
Z xB

0

q
1C .y0/2dx

p
2gy

D 1p
2g

Z xB

0

q
1C .y0/2

p
y

dx
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Therefore, our problem may be given the form

minJ
�
x; y; y0� D 1

.2g/
1
2

Z xB

0

h
1C �

y0.�/
�2i 1

2

Œy.�/��
1
2 d� (3.83)

where � is a dummy variable of integration. If

f0.x; y; y
0/ D 1

.2g/
1
2

h
1C �

y0.�/
�2i 1

2

Œy.�/��
1
2 (3.84)

denotes the integrand, its partial derivatives are

@f0

@y
D �



1

2
p
g

�
1

2y

s
1C .y0/2

y

@f0

@y0 D



1

2
p
g

�
y0

p
y.1C .y0/2/

@f0

@x
D 0

Therefore, the Euler-Lagrange equation for this problem is

@f0

@y
� d

dx

�
@f0

@y0

�
D



1

2
p
g

�
8
<

:
� 1

2y

s
1C .y0/2

y
� d

dx

"
y0

p
y.1C .y0/2/

#9=

;
D 0

Hence, we wish to solve the following differential equation with boundary condi-
tions for the shortest path from .xA; yA/ D .0; 0/ to .xB ; yB /:

� 1

2y

s
1C .y0/2

y
� d

dx

"
y0

p
y.1C .y0/2/

#

D 0 (3.85)

y.0/ D 0 (3.86)

y.xB / D yB (3.87)

Note that (3.85), (3.86), and (3.87) form a two-point boundary-value problem. The
elementary theory of ordinary differential equations does not prepare one for solv-
ing a two-point boundary-value problem. We will discuss two-point boundary-value
problems in more detail when we turn our attention to optimal control theory. For
our present discussion of the brachistochrone problem, we will attempt a solution
by first noting that

@f0

@x
D 0 (3.88)
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which suggests that we make use of the Beltrami identity (3.75) of Section 3.1.9 to
assert

y0 @f0
@y0 � f0 D K0 , a constant (3.89)

Therefore

2
p
gK0 D y0

"
y0

p
y.1C .y0/2/

#

�
s
1C .y0/2

y

D .y0/2 � �
1C .y0/2

�

p
y.1C .y0/2/

D �1
p
y.1C .y0/2/

(3.90)

By introducing a new constant, (3.90) may be put in the form

p
y.1C .y0/2/ D K � �1

2
p
gK0

(3.91)

Thus

dy

dx
D
s
K2 � y

y

from which we obtain

dx D dy

r
y

K2 � y
(3.92)

It may be shown that the parametric solution

x.t/ D K2

2
.t � sin t/

y.t/ D K2

2
.1 � cos t/

satisfies (3.92). The constant K is determined by the boundary conditions. If we
consider the case of .xB ; yB / D .
 � 2; 2/, then the brachistochrone path becomes

x.t/ D 2.t � sin t/

y.t/ D 2.1� cos t/

This path is shown by the dotted line in Figure 3.1.
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Fig. 3.1 An Approximate solution of the brachistochrone problem

It is instructive to also solve this problem numerically by exploiting off-the-shelf
nonlinear programming software. In particular, by using the definition of a Riemann
integral, the criterion (3.83) may be given the discrete approximation

minJ .x0; : : : ; xN ; y0; : : : ; yN / D 1

.2g/
1
2

NX

iD1

�
1C

�yi � yi�1
�x


2� 1
2

Œyi �
� 1

2 �x

(3.93)

.x0; y0/ D .xA; yA/ D .0; 0/ (3.94)

.xN ; yN / D .xB ; yB / D .
 � 2; 2/ (3.95)

The Optimization Toolbox of MATLAB may be employed to solve the finite-
dimensional mathematical program (3.93), (3.94), and (3.95) to determine an ap-
proximate trajectory, shown by the solid line in Figure 3.1 when N D 11. Note that
the approximate solution compares favorably with the exact solution (the dashed
line). Better agreeement may be achieved by increasing N .

3.3 Continuous-Time Optimal Control

In the theory of optimal control we are concerned with extremizing (maximizing or
minimizing) a criterion functional subject to constraints. Both the criterion and the
constraints are articulated in terms of two types of variables: control variables and
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state variables. The state variables obey a system of first-order ordinary differential
equations whose righthand sides typically depend on the control variables; initial
values of the state variables are either specified or meant to be determined in the
process of solving a given optimal control problem. Consequently, when the con-
trol variables and the state initial conditions are known, the state dynamics may be
integrated and the state trajectories found. In this sense, the state variables are not re-
ally the decision varibles; rather, the control variables are the fundamental decision
variables.

For reasons that will become clear, we do not require the control variables to be
continuous; instead we allow the control variables to exhibit jump discontinuities.
Furthermore, the constraints of an optimal control problem may include, in addi-
tion to the state equations and state initial conditions already mentioned, constraints
expressed purely in terms of the controls, constraints expressed purely in terms of
the state variables, and constraints that involve both control variables and state vari-
ables. The set of piecewise continuous controls satisfying the constraints imposed
on the controls is called the set of admissible controls. Thus, the admissible controls
are roughly analogous to the feasible solutions of a mathematical program.

Consider now the following canonical form of the continuous-time optimal con-
trol problem with pure control constraints:

criterion W minJ Œx .t/ ; u .t/� D K
�
x
�
tf
�
; tf

�C
Z tf

t0

f0 Œx .t/ ; u .t/ ; t � dt

(3.96)
subject to the following:

state dynamics W dx
dt

D f .x .t/ ; u .t/ ; t/ (3.97)

initial conditions W x .t0/ D x0 2 <m t0 2 <1 (3.98)

terminal conditions W ‰ �x �tf
�
; tf

� D 0 tf 2 <1 (3.99)

control constraints W u .t/ 2 U 8t 2 �t0; tf
�

(3.100)

where for each instant of time t 2 �t0; tf
� � <1C:

x .t/ D .x1 .t/ ; x2 .t/ ; : : : ; xn .t//
T (3.101)

u .t/ D .u1 .t/ ; u2 .t/ ; : : : ; um .t//
T (3.102)

f0 W <n � <m � <1 �! <1 (3.103)

f W <n � <m � <1 �! <n (3.104)

K W <n � <1 �! <1 (3.105)

‰ W <n � <1 �! <r (3.106)
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We will use the notation OCP.f0; f;K;‰;U; x0; t0; tf / to refer to the above canon-
ical optimal control problem. We assume the functions f0 .:; :; /,‰ .:; :/,K.:; :/; and
f .:; :; :/ are everywhere once continuously differentiable with respect to their argu-
ments. In fact, we employ the following definition:

Definition 3.2. Regularity for OCP.f0; f;K;‰;U; x0; t0; tf /. We shall say optimal
control problem OCP.f0; f;K;‰;U; x0; t0; tf / defined by (3.96), (3.97), (3.98),
(3.99), and (3.100) is regular provided f .x; u; :/, f0.x; u; :/, ‰Œx.tf /; tf �, and
KŒx.tf /; tf � are everywhere once continuously differentiable with respect to their
arguments.

We also formally define the notion of an admissible solution for

OCP.f0; f;K;‰;U; x0; t0; tf /

Definition 3.3. Admissible control trajectory. We say that the control trajectory u.t/
is admisible relative to OCP.f0; f;K;‰;U; x0; t0; tf / if it is piecewise continuous
for all time t 2 �t0; tf

�
and u 2 U .

Note that the initial time and the terminal time may be unknowns in the continuous-
time optimal control problem. Moreover, the initial values x .t0/ and final values
x
�
tf
�

may be unknowns. Of course, the initial and/or final values may also be
stipulated. The unkowns are the state variables x and the control variables u. It is
critically important to realize that the state variables will generally be completely
determined when the controls and initial states are known. Consequently, the “true”
unknowns are the control variables u. Note also that we have not been specific about
the vector space to which

x D �
x .t/ W t 2 �t0; tf

��

u D �
u .t/ W t 2 �t0; tf

��

belong. This is by design, as we shall initially discuss the continuous-time optimal
control problem by developing intuitive dynamic extensions of the notion of station-
arity and an associated calculus for variations of x .t/ and u .t/. In the next chapter,
we shall introduce results from the theory of infinite-dimensional mathematical pro-
gramming that allow a more rigorous mathematical analysis of the continuous-time
optimal control problem.

3.3.1 Necessary Conditions for Continuous-Time Optimal Control

We begin by commenting that we employ the notation ıL, which is used in classical
and traditional references on the theory of optimal control, for what we have defined
in Section 3.1.2 to be the variation of the functional L. Relying as it does on the
variational notation introduced early in Section 3.1.2, our derivation of the optimal
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control necessary conditions in this section will be informal. To derive necessary
conditions in such a manner, we will need the variation of the state vector x, denoted
by ıx. We will make use of the relationship

dx D ıx C Pxdt (3.107)

that identifies ıx, the variation of x, as that part of the total change dx not at-
tributable to time. Variations of other entities, such as u, are denoted in a completely
analogous fashion. We start our derivation of optimal control necessary conditions
by pricing out all constraints to obtain the Lagrangean

L D K
�
x
�
tf
�
; tf
�C �T‰

�
x
�
tf
�
; tf
�C

Z tf

t0

˚
f0 .x; u; t /C 	T Œf .x; u; t / � Px��dt

(3.108)

Using the variational calculus chain rule developed earlier, we may state the varia-
tion of the Lagrangean L as

ıL D �
ˆt
�
tf
�
dtf Cˆx

�
tf
�
dx
�
tf
�C f0

�
tf
�
dtf

� � f0 .t0/ dt0

C
Z tf

t0

h
Hxıx CHuıu � 	T ı Px

i
dt (3.109)

where
H .x; u; 	; t/ � f0 .x; u; t/C 	T f .x; u; t/ (3.110)

is the Hamiltonian and

ˆ
�
tf
� � K

�
x
�
tf
�
; tf

�C �T‰
�
x
�
tf
�
; tf

�
(3.111)

f0 .t0/ � f0 Œx .t0/ ; u .t0/ ; t0� (3.112)

f0
�
tf
� � f0

�
x
�
tf
�
; u
�
tf
�
; tf

�
(3.113)

ˆt � @ˆ

@t
ˆx � @ˆ

@x
(3.114)

f0x � @f0

@x
fx � @f

@x
(3.115)

Hx � @H

@x
D .rxH/T Hu � @H

@u
D .ruH/

T (3.116)

We next turn our attention to the term

I �
Z tf

t0

�
�	T ı Px



dt D �

Z tf

t0

	T
d

dt
.ıx/ dt

D �
Z tf

t0

	T d .ıx/
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appearing in (3.109). In particular, using the rule for integrating by parts1 this inte-
gral becomes

I D 	T .t0/ ıx .t0/ � 	T �tf
�
ıx
�
tf
�C

Z tf

t0

�
d	T



ıx

D 	T .t0/ ıx .t0/ � 	T �tf
�
ıx
�
tf
�C

Z tf

t0



d	T

dt
ıx

�
dt (3.117)

We also note that

ıx
�
tf
� D dx

�
tf
� � Px �tf

�
dtf (3.118)

ıx .t0/ D dx .t0/ � Px .t0/ dt0 (3.119)

from the definition of a variation of the state vector. Using (3.117) in (3.109) gives

ıL D
h
ˆt
�
tf
�

dtf CˆTx
�
tf
�

dx
�
tf
�C f0

�
tf
�

dtf
i

� f0 .t0/ dt0

C
Z tf

t0

ŒHxıx CHuıu� dt

C 	T .t0/ ıx .t0/� 	T
�
tf
�
ıx
�
tf
�C

Z tf

t0



d	T

dt
ıx

�
dt (3.120)

Using (3.118) and (3.119) in (3.120) gives

ıL D �
ˆt
�
tf
�

dtf Cˆx
�
tf
�

dx
�
tf
�C f0

�
tf
�

dtf
� � f0 .t0/ dt0

C 	T .t0/ Œdx .t0/� Px .t0/ dt0�� 	T
�
tf
� �

dx
�
tf
� � Px �tf

�
dtf

�

C
Z tf

t0

�

Hx C d	T

dt

�
ıx CHuıu

�
dt (3.121)

It follows from (3.121), upon rearranging and collecting terms, that

ıL D
h
ˆt
�
tf
�C f0

�
tf
�C 	T

�
tf
� Px �tf

�i
dtf

C
h
ˆTx

�
tf
� � 	T �tf

�i
dx
�
tf
�C 	T .t0/ dx .t0/

�
h
f0 .t0/C 	T .t0/ Px .t0/

i
dt0

C
Z tf

t0

h�
Hx C P	T



ıx CHuıu

i
dt (3.122)

1 Integration by parts:
R

udv D uv � R
vdu.
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We see from (3.122) that, in order for ıL to vanish for arbitrary admissible varia-
tions, the coefficient of each individual differential and variation must be zero. That
is, for the case of no explicit control constraints, ıL D 0 is ensured by the following
necessary conditions for optimality:

1. state dynamics:
dx

dt
D f .x .t/ ; u .t/ ; t/ (3.123)

2. initial time conditions:

H .t0/ D 0 and 	 .t0/ D 0 H) f0 Œx .t0/ ; u .t0/ ; t0� D 0 (3.124)

x .t0/ D x0 2 <m (3.125)

3. adjoint equations:

P	 D �Hx D �f0x � 	T fx (3.126)

4. transversality conditions:

	
�
tf
� D ˆx

�
tf
� D Kx

�
x
�
tf
�
; tf

�C �T‰x
�
x
�
tf
�
; tf

�
(3.127)

5. terminal time conditions:

‰t
�
x
�
tf
�
; tf

� D 0 (3.128)

�H �
tf
� D ˆt

�
tf
�

(3.129)

where

H
�
tf
� � f0

�
x
�
tf
�
; u
�
tf
�
; tf

�C 	T
�
tf
�
f
�
x
�
tf
�
; u
�
tf
�
; tf

�

ˆt
�
tf
� � Kt

�
x
�
tf
�
; tf

�C�T‰t
�
x
�
tf
�
; tf

�

6. minimum principleW
Hu .x; u; 	; t/ D 0 (3.130)

Note carefully that a two-point boundary-value problem is an explicit part of these
necessary conditions. That is to say, we need to solve a system of ordinary dif-
ferential equations, namely the original state dynamics (3.123) together with the
adjoint equations (3.126), given the initial values of the state variables (3.125) and
the transversality conditions (3.127) imposed on the adjoint variables at the terminal
time; this will typically be the case even when the initial time t0, the terminal time
tf and the initial state x .t0/ are fixed and the terminal state x

�
tf
�

is free. Note
also that when the initial time t0 is fixed, we do not enforce (3.124), since dt0 will
vanish.

To develop necessary conditions for the case of explicit control constraints,
we invoke an intuitive argument. In particular, we argue that the total variation
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expressed by ıL must be nonnegative if the current solution is optimal; otherwise,
there would exist a potential to decrease L (and hence J ) and such a potential would
not be consistent with having achieved a minimum. Since it is only the variation ıu
that is impacted by the constraints u 2 U and which can no longer be arbitrary, we
may invoke all the conditions developed above except the one requiring the coeffi-
cient of ıu to vanish; instead, we require

ıL D
Z tf

t0

.Huıu/ dt � 0 (3.131)

In order for condition (3.131) to be satisfied for all admissible variations ıu, we
require

Huıu D Hu
�
u � u�� � 0 8u 2 U (3.132)

where we have expressed the variation of u as

ıu D u � u�

which describes feasible directions rooted at the optimal control solution u� 2 U

when the set U is convex. Inequality (3.132) is the correct form of the minimum
principle when there are explicit, pure control constraints forming a convex set U ;
it is known as a variational inequality. We will have much more to say about varia-
tional inequalities when we employ functional analysis to study the continuous-time
optimal control problem in the next chapter.

The above discussion has been a constructive proof of the following result:

Theorem 3.6. Necessary conditions for continuous-time optimal control problem.
When the variations of x, Px and u are well defined and linear in their increments,
the set of feasible controls U is convex, and regularity in the sense of Definition 3.2
obtains, the conditions (3.123), (3.124), (3.125), (3.126), (3.127), (3.128), (3.129),
and (3.132) are necessary conditions for a solution of the optimal control problem
OCP.f0; f;K;‰;U; x0; t0; tf / defined by (3.96), (3.97), (3.98), (3.99), and (3.100).

3.3.2 Necessary Conditions with Fixed Terminal Time,
No Terminal Cost, and No Terminal Constraints

A frequently encountered problem type is

min J D
Z tf

t0

f0 .x; u; t/ dt

subject to
dx

dt
D f .x; u; t/
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x .t0/ D x0

where both t0 and tf are fixed; also x0 is fixed. In this case

ıL D
Z tf

t0

h
Hxıx CHuıu � 	T ı Px

i
dt (3.133)

Using integration by parts, we have

Z tf

t0

�
�	T ı Px



dt D �

Z tf

t0

	T d .ıx/

D 	T .t0/ ıx .t0/� 	T
�
tf
�
ıx
�
tf
�C

Z tf

t0



d	T

dt
ıx

�
dt

D �	T �tf
�
ıx
�
tf
�C

Z tf

t0



d	T

dt
ıx

�
dt (3.134)

We also know that

ıx
�
tf
� D dx

�
tf
� � Px �tf

�
dtf D dx

�
tf
�

(3.135)

so that (3.134) becomes

Z tf

t0

�
�	T ı Px



dt D �	T �tf

�
dx
�
tf
�C

Z tf

t0



d	T

dt
ıx

�
dt

It follows that (3.133) becomes

ıL D �	T �tf
�

dx
�
tf
�C

Z tf

t0

�

Hx C d	T

dt

�
ıx CHuıu

�
dt (3.136)

It is then immediate from (3.136) that ıL vanishes when the following necessary
conditions

Hx C d	T

dt
D 0 (3.137)

	T
�
tf
� D 0 (3.138)

Hu D 0 (3.139)

together with the original state dynamics, state initial condition and control
constraints.
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3.3.3 Necessary Conditions When the Terminal Time Is Free

In some applications the terminal time may not be fixed and so its variation will not
be zero. We are interested in deriving necessary conditions for such problems and
then in exploring how they may be used to solve an example problem. To illustrate
how such conditions are derived, we consider the following simplified problem:

min J D K
�
x
�
tf
�
; tf

�C
Z tf

t0

f0 .x; u; t/ dt

subject to

dx

dt
D f .x; u; t/

x .t0/ D x0

where tf is free, t0 and x0 are fixed, and

xi
�
tf
�

is fixed for i D 1; : : : ; q < n

xi
�
tf
�

is free for i D q C 1; : : : ; n

We will denote the states that will be free at the terminal time by the following
vector

xfree D �
xqC1; : : : ; xn

�T

Moreover the terminal cost function is taken to be

K
�
x
�
tf
�
; tf

� D �
�
xfree.tf /; tf

�

to reflect that it depends only on those states that are free. We proceed as previously
by pricing out the dynamics to create

L D �
�
xfree.tf /; tf

�C
Z tf

t0

n
f0 .x; u; t/C 	T Œf .x; u; t/ � Px�

o
dt

so that the variation of L is

ıL D


@�

@t
dt C @�

@x
dx

�

tDtf
C .f0/tDtf dtf

C
Z tf

t0

�

@f0

@x
C 	T

@f

@x

�
ıx C



@f0

@u
C 	T

@f

@u

�
ıu � 	T ı Px

�
dt
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Using the usual device of integrating by parts then collecting terms, the above ex-
pression becomes

ıL D
�

@�

@t
C f0

�
dtf C @�

@x
dx

�

tDtf
�
h
	T ıx

i

tDtf
C
h
	T ıx

i

tDt0

C
Z tf

t0

�

@f0

@x
C 	T

@f

@x
C P	T

�
ıx C



@f0

@u
C 	T

@f

@u

�
ıu

�
dt

We next observe ıx.t0/ D 0 and exploit the identity

ıx
�
tf
� D dx

�
tf
� � Px �tf

�
dtf

to rewrite ıL as

ıL D
�

@�

@t
CH

�
dtf C



@�

@x
� 	T

�
dx

�

tDtf

C
Z tf

t0

�

@H

@x
C P	T

�
ıx C



@H

@u

�
ıu

�
dt

For the above we realize that

dxi .tf / D 0 for i D 1; : : : ; q < n (3.140)

Therefore, ıL will vanish when the following necessary conditions hold:

d	j

dt
D � @H

@xj
j D 1; : : : ; q

	j
�
tf
� D

8
ˆ̂
<

ˆ̂
:

�j j D 1; : : : ; q



@�

@xj

�

tDtf
j D q C 1; : : : ; n

@H

@u
D 0

0 D


@�

@t
CH

�

tDtf

where the vj for j D 1; : : : ; q are in effect additional control variables that
must somehow be determined in order for the free terminal time problem we have
posed to have a solution; their determination should result in stationarity of the
Hamiltonian, in accordance with the minimum principle.
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3.3.4 Necessary Conditions for Problems with Interior Point
Constraints

Suppose there are interior boundary conditions

N Œx .t1/ ; t1� D 0 (3.141)

where t0 < t1 < tf and N W <nC1 ! <q . Constraints (3.141) are terminal con-
straints for the interval Œt0; t1�. In this setting we take t0, t1; and tf to be fixed; also
x .t0/ is fixed. We let t�1 signify an instant in time just prior to t1 and tC1 an in-
stant just following t1. We develop necessary conditions by adjoining (3.141) to the
criterion so that

J1 D ‰
�
x
�
tf
�
; tf

�C 
TN Œx .t1/ ; t1�

C
Z tf

t0

n
f0 .x; u; t/C 	T Œf .x; u; t/ � Px�

o
dt

Proceeding in the usual way we have

ıJ D


@‰

@t
ıx

�

tDtf
C 
T

@N

@t1
dt1 C 
T

@N

@x .t1/
dx .t1/

�
h
	T ıx

itf
t

C

1

�
h
	T ıx

it�
1

t0
C
�
H � 	T Px




tDt�
1

dt1 �
�
H � 	T Px




tDtC
1

dt1

C
Z tf

t0

�

P	T C @H

@x

�
ıx C @H

@u
ıu

�
dt

We next employ the identities

dx .t1/ D
(
ıx
�
t�1
�C Px �t�1

�
dt1

ıx
�
tC1
�C Px �tC1

�
dt1

which lead, after some manipulation, to the following

ıJ D
�

@‰

@t
� 	T

�
ıx

�

tDtf
C
�
	T

�
tC1
� � 	T

�
t�1
�C 
T

@N

@x .t1/

�
dx .t1/

C
�
H
�
t�1
� �H

�
tC1
�C 
T

@N

@t1

�
dt1 C

�
	T ıx




tDt0

C
Z tf

t0

�

P	T C @H

@x

�
ıx C @H

@u
ıu

�
dt
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Obviously ıx .t0/ vanishes, given x .t0/ is fixed. Our task is to select 	
�
t�1
�

and
H
�
t�1
�

to cause the coefficients of dx .t1/ and dt1 to vanish. Doing so yields

	T
�
t�1
� D 	T

�
tC1
�C 
T

@N

@x .t1/
(3.142)

H
�
t�1
� D H

�
tC1
� � 
T

@N

@t1
(3.143)

We of course also have the traditional necessary conditions

P	T D �@H
@x

(3.144)

	T
�
tf
� D



@‰

@x

�

tDtf
(3.145)

@H

@u
D 0 (3.146)

3.3.5 Dynamic Programming and Optimal Control

Another profound contribution to the field of dynamic optimization in the twentieth
century was the theory and computational paradigm known as dynamic program-
ming, frequently referred to as “DP.” Dynamic programming, developed by the
reknown American mathematician Richard Bellman, provides an alternative ap-
proach to the study and solution of optimal control problems for both discrete and
continuous-time. It is important, however, to recognize that dynamic programming
is much more general than optimal control theory in that it does not require that the
dynamic optimization problem of interest be a calculus of variations problem.

The fundamental result that provides the foundation for dynamic programming
is known as the Principle of Optimality, which Bellman (1957) originally stated as

An optimal policy has the property that, whatever the initial state and decision [control in
our language] are, the remaining decisions must constitute an optimal policy with regard to
the state resulting from the first decision.

This principle accords with common sense and is quite easy to prove by contra-
diction. From the principle of optimality (POO) we directly obtain the fundamental
recursive relationship employed in dynamic programming.

Let us define
J � .x; t/ (3.147)

to be the optimal performance function (OPF) for the continuous-time optimal
control problem introduced previously. The OPF is the minimized value of the ob-
jective functional of the continuous-time optimal control problem. Note carefully
that (3.147) is referred to as a function and not as a functional because it is viewed
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as the specific value of the performance functional corresponding to an optimal
process starting at state x at time t . This distinction is critical to avoiding mis-
use and misinterpretation of the results we next develop. According to the POO, if
J � .x; t/ is the OPF for a problem starting at state x at time t , then it must be that
J � .x C�x; t C�t/ is the OPF for that portion of the optimal trajectory starting
at state x C �x at time t C �t . However, during the interval of time Œt; t C�t�,
the only change in the OPF is that due to the integrand f0 .x; u; t/ of the objective
functional acting for �t units of time with effect f0 .x; u; t/�t . It, therefore, fol-
lows from the POO that the OPF values for .x; t/ and .x C�x; t C�t/ are related
according to

J � .x; t/ D min
u2U

�
f0 .x; u; t/ �t C J � .x C�x; t C�t/

�
(3.148)

Our development of (3.148), as well as of subsequent results in this section, depends
on two mild but important regularity conditions, namely

1. J � .x; t/ is single valued; and
2. J � .x; t/ is C1(continuously differentiable).

This means in effect that solutions to the problem of constrained minimization of
the objective functional vary continuously with respect to the initial conditions.

Because of the aforementioned regularity assumptions, we may make a Taylor
series expansion of the OPF J � .x C�x; t C�t/ about the point .x; t/. That ex-
pansion takes the form

J � .x C�x; t C�t/ D J � .x; t/C �rxJ � .x; t/
�T
�x C @J � .x; t/

@t
�t C : : :

(3.149)

where ŒrxJ � .x; t/�T is the row vector

�rxJ � .x; t/
�T D

�
@J � .x; t/
@x1

;
@J � .x; t/
@x2

; : : : ;
@J � .x; t/
@xn

�
� @J � .x; t/

@x

Inserting (3.149) in (3.148), dividing by �t and retaining only the linear terms, we
obtain

0 D min
u2U

�
f0 .x; u; t/C @J � .x; t/

@x

�x

�t
C @J � .x; t/

@t

�

Taking the limit of this last expression as �t �! 0 yields

.�1/ @J
� .x; t/
@t

D min
u2U

�
f0 .x; u; t/C @J � .x; t/

@x
f .x; u; t/

�
(3.150)

since Px D f .x; u; t/. Result (3.150) is the basic recursive relationship of dynamic
programming and is known as Bellman’s equation.

Before continuing with our analysis of the relationship between the continuous-
time optimal control problem and dynamic programming, we must develop a deeper
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understanding of the adjoint variables. To this end, we observe that the Lagrangean
for an arbitrary initial time t0 will be

L .x; u; �; 	; t/ D K Œx .T / ; T �C �T‰
�
x
�
tf
�
; tf

�

C
Z tf

t0

n
f0 .x; u; t/C 	T Œf .x; u; t/ � Px�

o
dt (3.151)

for which the key constraints have been priced out and added to the objective func-
tional. For the analysis that follows, we shall consider, unless otherwise stated, that
we are on an optimal solution trajectory. On that optimal trajectory we take our cri-
terion to be L .x; u; �; 	; t/ D J Œx .t0/ ; t0�. Integrating (3.151) by parts we obtain

J Œx .t0/ ; t0� D K
�
x
�
tf
�
; tf

�C �T‰
�
x
�
tf
�
; tf

�

C
Z tf

t0

�
H .x; u; 	; t/C

� P	

T
x

�
dt

�
h
	T

�
tf
�
x
�
tf
� � 	T .t0/ x .t0/

i
(3.152)

upon using the definition of the Hamiltonian

H .x; u; 	; t/ D f0 .x; u; t/C 	T f .x; u; t/

By inspection of (3.152), it is apparent that partial differentiation of the criterion
with respect to the initial state along an optimal solution trajectory yields

@J Œx .t0/ ; t0�

@x .t0/
D �

	� .t0/
�T

(3.153)

Since time t0 in this analysis is arbitrary so that
�
t0; tf

�
may correspond to any

portion of the optimal trajectory, we see from expression (3.153) that the adjoint
variable measures the sensitivity of the OPF to changes in the state variable at
the start of the time interval under consideration. That is, the adjoint variables are
dynamic dual variables for the state dynamics, and we may more generally write

@J �

@x
D 	�T (3.154)

Result (3.153) means that Bellman’s equation (3.150) may be restated as

.�1/ @J .x; t/
@t

D min
u2U

�
f0 .x; u; t/C @J .x; t/

@x
f .x; u; t/

�

D min
u2U

�
H



x; u;

@J .x; t/

@x
; t

��
� H 0



x;
@J .x; t/

@x
; t

�
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which can in turn be restated as

H 0



x;
@J .x; t/

@x
; t

�
C @J .x; t/

@t
D 0 (3.155)

where H 0 is the Hamiltonian after the optimal control law obtained from the
minimum principle is used to eliminate control variables. The partial differential
equation (3.155) is known as the Hamilton-Jacobi equation (HJE). The appropriate
boundary condition for (3.155) comes from recognizing that at the terminal time the
OPF must equal the terminal value. Hence

J
�
x
�
tf
�
; tf

� D K
�
x
�
tf
�
; tf

�C �T‰
�
x
�
tf
�
; tf

�
(3.156)

is the appropriate boundary condition.
Our use of the dynamic programming concept of an optimal performance func-

tion (OPF) in this section has shown that the adjoint variables are true dynamic dual
variables expressing the sensitivity of the OPF to changes in the initial state variable.
We have also seen that the continuous-time optimal control problem has a necessary
condition known as the Hamilton-Jacobi (partial differential) equation. Although
sufficiency (of the HJE representation of the continuous-time optimal control prob-
lem) can be established under certain regularity conditions, we do not pursue that
result here, partly because of dynamic programming’s (and the HJE’s) so-called
“curse of dimensionality.” This memorable phrase refers to the fact that, in order
to use dynamic programming for a general problem, we must employ a grid of
points for every component of x .t/ 2 <n to approximate the OPF by interpola-
tion on that grid. Let us assume, for the sake of discussion, that we use ten (10)
grid points for each component of x .t/ 2 <n. The result is that the number of grid
points (number of values of the OPF) to be stored is 10n for each instant of time
considered!

3.3.6 Second-Order Variations in Optimal Control

Sometimes additional information is needed beyond the necessary conditions de-
rived above and based on the first-order variation. These additional conditions
depend on second-order variations. To derive them, we consider the problem

criterion W minJ Œx .t/ ; u .t/� D K
�
x
�
tf
�
; tf

�C
Z tf

t0

f0 Œx .t/ ; u .t/ ; t � dt

(3.157)
subject to

state dynamics W dx
dt

D f .x .t/ ; u .t/ ; t/ (3.158)

initial conditions W x .t0/ D x0 2 <m t0 2 <1 (3.159)
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terminal conditions W ‰ �x �tf
�
; tf

� D 0 tf 2 <1 (3.160)

control constraints W u .t/ 2 <m 8t 2 �t0; tf
�

(3.161)

Note we have made the simplifying assumption that there are no control constraints.
Our prior derivation of the Hamilton-Jacobi equation (HJE) tells us that

H�


x;
@J � .x; t/

@x
; t

�
C @J � .x; t/

@t
D 0 (3.162)

where

H�


x;
@J � .x; t/

@x
; t

�
D min

u

�
H



x; u;

@J � .x; t/
@x

; t

��
(3.163)

Since minimization on the righthand side of (3.163) is unconstrained, the neces-
sary conditions for a finite-dimensional unconstrained local minimum developed in
Chapter 2 apply; that is

@H

@u
D 0 (3.164)

@2H

@u2
� 0 (3.165)

for all t 2 �
t0; tf

�
. For (3.163), we are able to use the conditions for finite-

dimensional mathematical programs because (3.163) is meant to hold separately
at each instant of time. The conditions (3.164) and (3.165) are recognized as neces-
sary conditions for an unconstrained local minimum of (3.163). Inequality (3.165)
is called the Legendre-Clebsch condition.

As in prior discussions, we now form the Lagrangean

L D K Œx .T / ; T �C�T‰ Œx .T / ; T �C
Z tf

t0

n
f0 .x; u; t/C 	T Œf .x; u; t/ � Px�

o
dt

(3.166)

where our notation is identical to that introduced previously. We consider small
perturbations from the extremal path corresponding to the minimization of L; these
small changes are a result of small perturbations ıx .t0/ of the initial state x .t0/. We
of course denote the variations of state, adjoint and control variables corresponding
to these perturbations by ıx .t/, ı	 .t/, and ıu .t/, respectively. We let

F.x; Px; u; 	; P	/ D 0
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be an abstract representation of the system of equations resulting from linearizing
the state dynamics, the adjoint equations and the minimum principle @H=@u D 0. It
can be shown that

ıF.x; Px; u; 	; P	/ D 0

is assured by the following

ı Px D fxıx C fuıu (3.167)

ı P	 D � .Hxxıx/T � .ı	/ f T � .Hxuıu/
T (3.168)

ıHu D .Huxıx/
T C .ı	/HT

u� C .Huuıu/
T

D .Huxıx/
T C .ı	/ fu C .Huuıu/

T D 0 (3.169)

Because x .t0/ D x0 and 	
�
tf
�

is specified by the transversality conditions, the sys-
tem (3.167), (3.168), and (3.169) constitutes a two-point boundary-value problem
provided (3.169) may be solved to obtain an expression for the variation ıu; this
requires that the Hessian Huu be a nonsingular matrix. That is, when Huu is invert-
ible, we may completely characterize optimal solutions through the second variation
equations (3.167), (3.168), and (3.169). We, therefore, call an optimal control cor-
responding to Huu D 0 a singular control. Moreover, when Hu D 0, it must be
that Huu D 0 is singular, preventing the necessary conditions (3.164) and (3.165)
for the minimum principle from yielding information regarding the optimal control.
The interested reader may easily extend the above results on singular controls in the
absence of constraints to the case of explicit control constaints and is encouraged to
do so as a training device.

3.3.7 Singular Controls

As we have noted above, a simple definition of singular controls is that they are
controls that arise when

@2H

@u2i
D 0 for all i D 1; 2; : : : ; m (3.170)

Singular controls cannot be found from the unembellished minimum principle;
rather they must be found from information that supplements the minimum prin-
ciple. That information is obtained in any way that is consistent with the conditions
that lead to singularity and can be thought of as invoking additional necessary con-
ditions beyond the usual first-order and second-order conditions, which are trivially
satisfied.

For problems that are linear in the controls u, the coefficient of u in the
Hamiltonian is always Hu D 0, a circumstance that guarantees (3.170) is fulfilled.
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One can seek functional equations describing the singular control of interest by
forming differential equations based on successive time derivatives of Hu; that is

dk

dtk
.Hu/ D 0 k D 1; 2; : : : (3.171)

In other cases, Tait’s necessary condition may be employed:

.�1/n @

@u

"

d

dt

�2n
Hu

#

� 0 (3.172)

See Tait (1965) for a detailed presentation and proof of this result.

3.3.8 Sufficiency in Optimal Control

The necessary conditions considered in this chapter may only be used to find a
globally optimal solution if we are able to uncover and compare all of the solutions
of them. This is of course not in general possible for mathematical programming,
variational and optimal control problems. Consequently, we are interested in this
section in regularity conditions that make the optimal control necessary conditions
developed previously sufficient for optimality. There are two main types of suf-
ficiency theorems employed in optimal control theory. We refer to these loosely
as the Mangasarian and the Arrow theorems. Actually, Arrow’s original proof of
his sufficiency theorem was incomplete although the theorem itself was correct.
The correct proof of Arrow’s sufficiency theorem is generally attributed to Seierstad
and Sydsæter (1977).

Mangasarian’s theorem essentially states that, when no state-space constraints
are present, the Pontryagin necessary conditions are also sufficient if the
Hamiltonian is convex (when minimizing) with respect to both the state and
the control variables. By contrast, the Arrow sufficiency theorem requires only
that the Hamiltonian expressed in terms of the optimal controls be convex with
respect to the state variables.

3.3.8.1 The Mangasarian Theorem

We are interested in this section in proving one version of the Mangasarian (1966)
sufficiency theorem for the continuous-time optimal control problem. This can be
done with relative ease for the case of fixed initial and terminal times. We will ad-
ditionally assume that there are no terminal time conditions and that the initial state
is known and fixed. We will also assume that the Hamiltonian, when minimizing, is
jointly convex in both the state variables and the control variables.
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In particular, we study the following version of Mangasarian’s theorem articu-
lated by Seierstad and Sydsæter (1977) and Seierstad and Sydsæter (1999):

Theorem 3.7. Restricted Mangasarian sufficiency theorem. Suppose the admissible
pair .x�; u�/ satisfies all of the relevant continuous-time optimal control prob-
lem necessary conditions for OCP.f0; f;K;‰;U; x0; t0; tf / when regularity in the
sense of Definition 3.2 obtains, the set of feasible controls U is convex, the Hamil-
tonian H is jointly convex in x and u for all admissible solutions, t0 and tf are
fixed, x0 is fixed, K

�
x
�
tf
�
; tf

� D 0, and there are no terminal time conditions
‰
�
x
�
tf
�
; tf

� D 0. Then any solution of the continuous-time optimal control nec-
essary conditions is a global minimum.

Proof. We follow the exposition of Seierstad and Sydsæter (1999) and begin the
proof by noting that for .x�; u�/ to be optimal it must be that

� �
Z tf

t0

f0 .x; u; t/ dt �
Z tf

t0

f0
�
x�; u�; t

�
dt � 0 8 admissible .x; u/

(3.173)
when minimizing. Moreover, the associated Hamiltonian is

H D f0 C 	T Px

We note that (3.173) may be restated as

� D
Z tf

t0

�
H �H��dt �

Z tf

t0

	T
� Px � Px�� dt (3.174)

Since H is convex with respect to x and u, the tangent line underestimates and we
write

H� C @H�

@x

�
x � x��C @H�

@u

�
u � u�� � H

or equivalently

@H�

@x

�
x � x��C @H�

@u

�
u � u�� � H �H� (3.175)

It follows from (3.174) and (3.175) that

� �
Z tf

t0

�
@H�

@x

�
x � x��C @H�

@u

�
u � u��

�
dt �

Z tf

t0

	T
� Px � Px�� dt (3.176)

Using the adjoint equation �d	T =dt D @H�=@x, this last result becomes

� �
Z tf

t0

�
�d	

T

dt

�
x � x��C @H�

@u

�
u � u��

�
dt �

Z tf

t0

	T
� Px � Px�� dt
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D �
Z tf

t0

�
d	T

dt

�
x � x��C 	T

� Px � Px��
�
dt C

Z tf

t0

@H�

@u

�
u � u�� dt

D �
Z tf

t0

d

dt

h
	T

�
x � x��

i
dt C

Z tf

t0

@H�

@u

�
u � u��dt

D �
h
	T

�
x � x��

itf
t0

C
Z tf

t0

@H�

@u

�
u � u��dt (3.177)

Expression (3.177) allows us to write

� � �
n
	T .t0/

�
x .t0/� x� .t0/

�oC
n
	T

�
tf
� �
x
�
tf
� � x� �tf

��o

C
Z tf

t0

@H�

@u

�
u � u�� dt

D �	T .t0/ Œ0�C
˚
0
�
x
�
tf
�� x� �tf

���C
Z tf

t0

@H�

@u

�
u � u��dt

D
Z tf

t0

@H�

@u

�
u � u��dt � 0 (3.178)

where inequality (3.178) follows from the convexity of U and the fact the minimum
principle is satisfied. Thus� � 0, and we have established optimality. �

Theorem 3.7 is easily extended to the case of mixed terminal conditions and a non-
trivial salvage function. These generalizations are left as an exercise for the reader.

3.3.8.2 The Arrow Theorem

In Arrow and Kurz (1970) an alternative sufficiency theorem is presented, a theorem
that is generally credited to Arrow. The Arrow theorem is based on a reduced form of
the Hamiltonian obtained when the optimal control law derived from the minimum
principle is employed to eliminate control variables from the Hamiltonian. Under
appropriate conditions, if the reduced Hamiltonian is convex in the state variables,
the necessary conditions are also sufficient. Seierstad and Sydsæter (1999) provide
the following statement and proof of the Arrow result:

Theorem 3.8. The Arrow sufficiency theorem. Let .x�; u�/ be an admissible pair
for OCP.f0; f;K;‰;U; x0; t0; tf / when regularity in the sense of Definition 3.2
obtains, the set of feasible controls is U D Rm,the Hamiltonian H is jointly
convex in x and u for all admissible solutions, t0 and tf are fixed, x0 is fixed,
K
�
x
�
tf
�
; tf

� D 0, and there are no terminal time conditions‰
�
x
�
tf
�
; tf

� D 0.
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If there exists a continuous and piecewise continuously differentiable function
	 D .	1; : : : ; 	n/

T such that the following conditions are satisfied:

P	i D �@H�

@xi
; almost everywhere i D 1; : : : ; n (3.179)

H.x�; u; 	.t/; t/ � H.x�; u�; 	; t/ for all u 2 U and all t 2 �t0; tf
�

(3.180)

bH.x; 	; t/ D min
u2U H.x; u; 	; t/ exists and is convex in x for all t 2 �t0; tf

�

(3.181)

then .x�; u�/ solves OCP.f0; f;K;‰;U; x0; t0; tf / for the given. If bH.x; 	; t/ is
strictly convex in x for all t , then x� is unique (but u� is not necessarily unique).

Proof. Suppose .x; u/ and .x�; u�/ are admissible pairs and that .x�; u�/ satisfies
the minimum principle and related necessary conditions. Optimality will be assured
if we show that

� D
Z tf

t0

f0 .x; u; t/ dt �
Z tf

t0

f0
�
x�; u�; t

�
dt � 0 8 admissible .x; u/

(3.182)
Suppose we are able to establish, for all admissible .x; u/, that

H �H� � P	T .x � x�/ (3.183)

Then it is immediate that

� D
Z tf

t0

�
H �H��dt �

Z tf

t0

	T
� Px � Px�� dt � 0 (3.184)

which in turn implies (3.182). Consequently, it is enough to establish condition
(3.183). From definition (3.181) for bH , we have

H� D bH�

H � bH

Therefore
H �H� � bH � bH� (3.185)

Consequently it suffices to prove

bH � bH � � �P	T .x � x�/ (3.186)

for any admissible x, an inequality which makes �P	 a subgradient of bH.x; 	; t/ at
x�. To prove the existence of the subgradient, let us suppose

bH � bH� � aT .x � x�/, (3.187)
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again for all admissible x. If bH is differentiable, it is immediate that

rcHx
ˇ
ˇ̌
xDx�

D rH�
x D �P	 (3.188)

From (3.185) and (3.187), we have

H �H� � aT .x � x�/ (3.189)

Consequently
G.x/ D H �H� � aT .x � x�/ � 0 8x (3.190)

for any t 2 �
t0; tf

�
and all admissible x. Note that since G.x�/ D 0, we know x�

minimizes G.x/. Therefore rxG.x�/ D 0; that is

rg.x�/ D rH jxDx�

� a D 0, (3.191)

Moreover, the adjoint equation compells

�P	 D rH� D a, (3.192)

thereby establishing the existence of a subgradient, namely a D rH�. It is then
immediate from (3.189) and (3.192) that

bH � bH� � aT .x � x�/ D �P	.x � x�/ (3.193)

which is recognized to be identical to (3.186) and completes the proof. �

3.4 Optimal Control Examples

In this section, we provide simple examples of optimal control problems, solved
using the necesary and sufficient conditions we have derived above.

3.4.1 Simple Example of the Minimum Principle

Let us employ the necessary and sufficient conditions developed previously to
solve an illustrative continuous-time optimal control problem that has only upper
and lower bound constraints on its controls. The example we select was originally
proposed by Sethi and Thompson (2000):

minJ D
Z 5

0



1

2
u2 C 3u � x

�
dt
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subject to

dx

dt
D x C u

x .0/ D 10

0 � u � 4

where x and u are scalars. Our first step is to form the Hamiltonian as the sum of the
integrand plus an adjoint variable times the right-hand side of the state dynamics:

H D 1

2
u2 C 3u � x C 	 .x C u/

where 	 is the adjoint variable for the state dynamics. The minimum principle
requires

u D
�

arg



@H

@u
D 0

��4

0

where the notation Œ:�ba refers to the minimum norm projection operator for the in-
terval Œa; b� 2 <1 of the real line defined by

Œv�ba D
8
<

:

b if v � b

v if a < v < b
a if v � a

Consequently
u D Œarg .u C 3C 	 D 0/�40

or
u D Œ�3 � 	�40

Furthermore, the adjoint dynamics are

.�1/ d	
dt

D @H

@x
D �1C 	

with transversality condition
	 .5/ D 0

Therefore we must solve the problem

d	

dt
D 1 � 	

	 .5/ D 0

The exact solution is
	 .t/ D 1 � exp.5 � t/
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Fig. 3.2 Plot of the control law

with the consequence that the optimal control must obey

u D Œˆ�40

where
ˆ � �4C e5�t

The plot of the control law is given in Figure 3.2 where we see that ˆ.t/ exceeds
the control upper bound once and crosses the time axis once for t 2 Œ0; 5�. In fact,
the instants in time for these phenomena are found by solving the following two
equations:

ˆ.t/ D 4 H) t D 5 � ln 8 	 2:9206

ˆ .t/ D 0 H) t D 5 � ln 4 	 3:6137

The necessary conditions admit only one solution and are sufficient, due to joint
convexity of the Hamiltonian in x and u; that solution is given by

u� D

8
<̂

:̂

4 for t 2 Œ0; 2:9206�
� 4C e5�t for t 2 .2:9206; 3:6137�

0 for t 2 .3:6137; 5�
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3.4.2 An Example Involving Singular Controls

When optimal control problems are linear in their control variables, the necessary
conditions may admit so-called bang-bang controls as well as singular controls. We
will consider the following continuous-time optimal control problem, also originally
proposed by Sethi and Thompson (2000):

minJ D
Z 4

0

1

2
x2dt

subject to

dx

dt
D u

x .0/ D 3

�1 � u � C1
where x and u are scalars. We of course begin by forming the Hamiltonian:

H D 1

2
x2 C 	u

The minimum principle requires that

u D
8
<

:

C1 for 	 < 0
�1 for 	 > 0
us for 	 .t/ D 0

In order for the singular control strategy us to be meaningful, the coefficient of the
control u in the Hamiltonian, namely 	 for this specific example, must vanish over a
nontrivial arc of time Œt1; t2� where t2 > t1. Only then do we have a singular control.
When the points in time at which the control coefficient vanishes are finite in number
and countable, we may ignore them and develop a pure bang-bang control strategy
wherein the optimal control is either at its upper bound or its lower bound. Note that
even when there is no singular control the number of switchings between the upper
and lower bounds cannot generally be known in advance. Neither may we know
without some analysis whether the optimal control strategy begins at time t0 with
an upper bound or a lower bound. We use the name control synthesis to describe
the process of determining the time intervals and order of bang-bang and singular
controls.

For the present example the adjoint equation and boundary condition are

.�1/d	
dt

D @H

@x
D x

	 .3/ D 0
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We see immediately that the adjoint dynamics are coupled to the state dynamics in
that we cannot find the adjoint variable unless we know the state variable. Moreover,
we cannot know the state variable unless we know the control, and we cannot know
the control unless we know the adjoint variable. To break out of this simultaneity of
the conditions describing the state, control and adjoint variables, we posit that

u D �1 for t 2 Œ0; t1/

This is a wise choice since the criterion will be minimized when the state vanishes
and the chosen control strategy reduces the state variable value from its initial value
of unity at the maximal feasible rate. We realize that to reduce the state below zero
would be inefficient due to the quadratic nature of the integrand of the criterion
functional. The state initial-value problem for t 2 Œ0; t1/ is

dx

dt
D �1 x .0/ D 3

Consequently
x D 3 � t

We further posit, based on the argument given above, that

x .t1/ D 3 � t1 D 0 for t 2 Œ0; t1/
which requires that

t1 D 3

Since the state will have reached its ideal value of zero at time t1, we are inclined to
believe that

u D us D 0 for t 2 Œ3; 4�

To check that our candidate solution

u� D
� �1 for t 2 Œ0; 3/
0 for t 2 Œ3; 4� (3.194)

satisfies the necessary conditions, we need to find the adjoint variable and show that
it has appropriate signs/values on the two time intervals of interest.

In particular, we note that for t 2 Œ3; 4� the state dynamics are the initial-value
problem

dx

dt
D 0 x .3/ D 0 (3.195)

with solution

x .t/ D 0 for t 2 Œ3; 4�
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A direct consequence is that we have the following terminal-value problem for the
adjoint variable:

d	

dt
D �x D 0 	 .4/ D 0 for t 2 Œ3; 4�

Therefore
	 .t/ D 0 for t 2 Œ3; 4�

which is consistent with the singular control strategy (3.194).
Now we note that the adjoint dynamics and transversality condition for t 2 Œ0; 3/

are
d	

dt
D �x D �3C t 	 .3/ D 0 ,

and therefore

	 .t/ D �3t C 1

2
t2 C 9

2
for t 2 Œ0; 3/ (3.196)

The graph of this adjoint variable as a function of time is given in Figure 3.3, which
makes clear that 	 .t/ given by (3.196) is positive for all t 2 Œ0; 3/, as required for
the posited solution (3.194) to satisfy the necessary conditions. Since the Hamil-
tonian is jointly convex in .x; u/, (3.194) is the optimal control strategy for this
example.
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Fig. 3.3 Graph of adjoint variable as a function of time
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3.4.3 Approximate Solution of Optimal Control Problems
by Time Discretization

The preceeding example, namely

minJ D
Z 4

0

1

2
x2dt (3.197)

subject to

dx

dt
D u (3.198)

x .0/ D 3 (3.199)

�1 � u � C1 (3.200)

where x and u are scalars may be solved by making a discrete time approxima-
tion that may in turn be solved by finite-dimensional mathematical programming
algorithms. In fact, if we employ N finite time intervals normalized to have identi-
cal unit length, we obtain the following mathematical program:

min J D
N�1X

tD0

1

2
x2t

subject to

xtC1 D xt C ut 8t D 0; 1; : : : ; N � 1

x0 D 3

�1 � ut � C1 8t D 0; 1; : : : ; N

We are able to recognize the singular control of the optimal trajectory shown in
(3.194) only when an appropriately fine level of time resolution is employed. That
is, some levels of temporal resolution may not be able to find the singular control
strategy that characterizes the optimal control for problem (3.197), (3.198), (3.199),
and (3.200); such a circumstance is illustrated in Figure 3.4. In particular, we see
that the jump discontiuity from u� D �1 to u� D 0 that occurs at t D 3 is disguised
when N is small and becomes increasingly obvious as N grows.

3.4.4 A Two-Point Boundary-Value Problem

As we see from the preceding examples the minimum principle will frequently lead
to a control law in the form of an equation that relates the optimal control strat-
egy to the state and adjoint variables. This control law may sometimes be used to
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Fig. 3.4 Optimal control trajectories with different levels of time resolution

eliminate the control variables from both the state dynamics and the adjoint dynam-
ics. When this is the case, we are left with a so-called two-point boundary-value
problem of the form

dx

dt
D F .x; 	; t/ (3.201)

d	

dt
D G.x; 	; t/ (3.202)

x .t0/ D x0 (3.203)

	
�
tf
� D 	f (3.204)

where vector notation is employed. Furthermore t0, tf , x0, and 	f are known. This
problem is called a two-point boundary-value problem because some of the vari-
ables sought have boundaries defined at time t0 and the rest have boundaries defined
at time tf . A general method of solution whose convergence is assured does not ex-
ist for such problems.

Nonetheless, methods exist for the direct solution of (3.201), (3.202), (3.203),
and (3.204) under appropriate regularity conditions. It is not our intent to present a
formal treatment of numerical methods for two-point boundary-value problems, as
we believe other methods to be presented in later chapters are easier to implement
and offer distinct advantages. It is nonetheless important for any practitioner of opti-
mal control theory to understand the key notions surrounding the numerical solution
of two-point boundary-value problems. Accordingly, we now illustrate the class of
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numerical methods known as shooting methods via a simple example. Consider the
following problem:

minJ D
Z 1

0

1

2

�
x2 C u2

�
dt

subject to

dx

dt
D u

x .0/ D 1:5431

where x and u are scalars. We note that

H D 1

2

�
x2 C u2

�C 	u

�d	
dt

D @H

@x
D x

	 .1/ D 0

Furthermore

u D arg



@H

@u
D 0

�
D arg .u C 	 D 0/

Therefore

u D �	
and

dx

dt
D �	

Consequently the two-point boundary-value problem that expresses the necessary
conditions is

d	

dt
D �x

dx

dt
D �	

x .0/ D 1:5431

	 .1/ D 0

We can guess the initial condition for the adjoint variable; in fact let us assume

	 .0/ D Rk
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where Rk is a scalar denoting the initial value of the adjoint variable for iteration k
of the shooting method. Thus, we will repeatedly solve the initial-value problem

d	

dt
D �x (3.205)

dx

dt
D �	 (3.206)

x .0/ D 1:5431 (3.207)

	 .0/ D Rk (3.208)

We will be pleased if one of the “shots fired” by solving the single-point initial-value
problem hits its metaphorical “target,” namely that it satisfies

	 .1/ 	 0

If not, we adjust the value of 	k .0/, then fire another shot. Table 3.1 shows the
progression of a heuristic shooting algorithm wherein the missing adjoint initial
condition is adjusted heuristically based on changes in the sign of 	k .1/. The
attentive reader may have noticed that a shooting method is not actually needed
for the present example since (3.205), (3.206), (3.207), and (3.208) may be restated
by noting that

d2x

dt2
D �d	

dt
D x

and
dx.1/

dt
D �	 .1/ D 0

Hence, we could instead solve the following second-order differential equation with
explicit boundary conditions:

d 2x

dt2
D x

x .0/ D 1: 5431

dx.1/

dt
D 0

Table 3.1 Progression of
heuristic shooting method Iteration k 	k .0/ D Rk 	k .1/

1 :5 �1: 0419
2 1 �0:2704
3 1:5 C0:5012
4 1:25 C0:1154
5 1:125 �0:0775
:
:
:

:
:
:

:
:
:

10 1:1752 � 6: 2058 � 10�6 � 0
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whose exact solution is

x .t/ D 0: 18394et C 1: 3592e�t

It follows that

d	

dt
D �0: 18394et � 1: 3592e�t

	 .1/ D 0

for which the solution is

	 .t/ D �0:18394et C 1: 3592e�t

Using the solution just obtained for the adjoint, it is an easy matter to verify the
transversality condition:

	 .1/ D �2: 9096� 10�10 	 0

The above solution obtained from reduction of the optimality conditions to a single
second-order differential equation is readily seen to agree with that found using
the heuristic shooting algorithm. However, it is essential to note that reduction
of the two-point boundary-value problem to a system of second-order differential
equations with appropriate boundary conditions is neither generally nor typically
possible.

3.4.5 Example with Free Terminal Time

Consider the following problem:

minJ D
Z tf

0

1

2

�
x2 C u2

�
dt

subject to

dx

dt
D u

�1 � u � C1
x .0/ D 1:5431

x.tf / D 1

tf free

where x and u are scalars. By introducing the dual variable � , we price out the
terminal constraint to obtain the alternative form

minJ1 D � � �x.tf /� 1
�C

Z tf

0

1

2

�
x2 C u2

�
dt
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for which it is immediate that

H D 1

2

�
x2 C u2

�C 	u

�d	
dt

D @H

@x
D x

	
�
tf
� D @�

�
x.tf / � 1�

@x.tf /
D �

Furthermore, without control constraints the minimum principle requires

u D arg



@H

@u
D 0

�
D arg .u C 	 D 0/

H) u D �	

However, owing to the upper and lower bound constraints, we must employ a pro-
jection, and so we write

u D Œ�	�C1�1

Given the need to decrease the state variable x.t/ from 1:5431 to 1:0, it is reasonable
to attempt a solution based on the control strategy

u D �1 8t 2 �0; tf
�

(3.209)

so that

dx

dt
D �1 H) x D 1:5431� t

Furthermore, because tf is not fixed, we have



H C @‰

@t

�

tDtf
D 0 H) 1

2

��
x
�
tf
��2 C u2



C 	

�
tf
�

u D 0

However

1

2

��
x
�
tf
��2 C u2



C 	

�
tf
�

u D 1

2

�
Œ1�2 C Œ�1�2



C 	

�
tf
�
.�1/ D 0

which requires

	
�
tf
� D 1

That is, we now know

x
�
tf
� D 	

�
tf
� D � D 1
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The two-point boundary-value problem that expresses the necessary conditions is

d	

dt
D �x

dx

dt
D �	

x .0/ D 1:5431

	
�
tf
� D � D 1

It is obvious from the above that

d 2x

dt2
D �d	

dt
D x

and
dx.tf /

dt
D �	 �tf

� D ��
Hence, we may instead solve the second-order problem

d 2x

dt2
D x (3.210)

x .0/ D 1: 543 1 (3.211)

dx.tf /

dt
D �� D �1 (3.212)

Note that the solution must be of the form

x D Aet CBe�t

Using this knowledge with (3.211), we have

AC B D 1:5431

By virtue of (3.212) we have

dx

dt
D Aet � Be�t H) Aetf � Be�tf D �� D �1

Recalling that x.tf / D 1, we also have

Aetf CBe�tf D 1

Therefore, we must solve the system

AC B D 1:5431

Aetf � Be�tf D �1
Aetf C Be�tf D 1
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The solution is

A D 0

B D 1: 5431

tf D 0:4338

That is
x D 1:5431e�t

Note also that

d	

dt
D �1:5431et

	 .0:4338/ D 1

whose exact solution is

	 .t/ D 3: 3812� 1: 5431et

and so
u D Œ�	�C1�1 D �

1: 5431et � 3:3812�C1�1 D �1
as assumed in (3.209) since

F D �	 D 1: 54et � 3:38 � �1

for all t 2 Œ0; 0:434� as is made clear by Figure 3.5:
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3.5 The Linear-Quadratic Optimal Control Problem

Without a doubt one of the most significant versions of the continuous-time optimal
control problem is that known as the linear-quadratic problem (LQP). This fame
derives from the fact the Hamilton-Jacobi partial differential equation corresponding
to the LQP can be solved very efficiently. The formulation we shall emphasize in
this section corresponds to

f0 .x; u; t/ D 1

2
xTA .t/ x C 1

2
uTB .t/ u

f .x; u; t/ D F .t/ x CG .t/ u

K
�
x
�
tf
�
; tf

� D 1

2

�
x
�
tf
��T

S
�
tf
�
x
�
tf
�

U D V , the entire vector space

so that the problem we face is

minJ Œx .t/ ; u .t/� D K
�
x
�
tf
�
; tf

�C
Z tf

t0

f0 Œx .t/ ; u .t/ ; t � dt

D 1

2

�
xT Sx




tDtf
C 1

2

Z tf

t0

�
xTAx C uTBu



dt (3.213)

subject to

dx

dt
D f .x .t/ ; u .t/ ; t/ (3.214)

D Fx CGu (3.215)

x .t0/ D x0 (3.216)

where t0 2 <1C is known and we have suppressed time dependencies of the matrices
A,B , F ,G, and S . There is no terminal time constraint, and both the initial time (t0)
and the terminal time (tf ) are fixed. Likewise x0 is fixed. Furthermore, we assume
that the matrices A and S are positive semidefinite and the matrix B is positive
definite.

3.5.1 LQP Optimality Conditions

It is a relatively simple matter to derive an equivalent two-point boundary-value
formulation of this problem since the necessary conditions are also sufficient due to
the assumptions of positive definiteness just mentioned. In fact we find

H .x; u; 	/ D 1

2

�
xTAx C uTBu



C 	T .F x CGu/ (3.217)
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�d	
dt

D @H

@x
D Ax C F T 	 (3.218)

u D arg

�
@H

@u
D Bu CGT	 D 0

	
(3.219)

H) u D �B�1GT	 (3.220)

It follows at once that

� Px
P	
�

D
�
F �GB�1GT

�A �F T
� �
x

	

�
(3.221)

with

x .t0/ D x0 (3.222)

	
�
tf
� D

�
@K

@x

�

tDtf
D
�
@

@x

�
xT Sx


�

tDtf
(3.223)

Clearly, (3.221), (3.222), and (3.223) constitute a linear two-point boundary-value
problem. As such we could solve this system using a shooting method.

Instead we attempt a direct solution of the Hamilton-Jacobi partial differential
equation:

H�


x;
@J �

@x

�
C @J �

@t
D 0 (3.224)

where J � is the optimal-value function and H� is obtained by evaluating the
Hamiltonian along its optimal trajectory using the control law (obtained from the
minimum principle) and the identity

	T D @J �

@x
H) 	 D



@J �

@x

�T
(3.225)

also valid along the optimal trajectory. Thus

H�


x;
@J �

@x

�
� min

u2U ŒH .x; u; 	/�
�D

0

@
@J �

@x

1

A

T

D ŒH .x; u; 	/�
uD�B�1GT �; �D

0

@
@J �

@x

1

A

T

D
�
1

2

�
xTAxCuTBu



C	T .F x CGu/

�

uD�B�1GT �;�D
0

@
@J �

@x

1

A

T
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D 1

2
xTAx C 1

2

"

B�1GT


@J �

@x

�T#T
B

"

B�1GT


@J �

@x

�T#

C


@J �

@x

�
Fx C



@J �

@x

�
G

"

�B�1GT


@J �

@x

�T#

(3.226)

Note that

"

B�1GT


@J �

@x

�T#T
B

"

B�1GT


@J �

@x

�T#

D
"


@J �

@x

�T#T �
GT


T �
B�1�T �BB�1�

"

GT


@J �

@x

�T#

D


@J �

@x

�
G
�
B�1�T GT



@J �

@x

�T
D


@J �

@x

�
GB�1GT



@J �

@x

�T

(3.227)

since GB�1GT is a symmetric matrix. Results (3.226) and (3.227) give

H�


x;
@J �

@x

�
D 1

2
xTAx C



@J �

@x

�
Fx � 1

2



@J �

@x

�
GB�1GT



@J �

@x

�T

(3.228)
so that the Hamilton-Jacobi partial differential equation is

1

2
xTAx C



@J �

@x

�
Fx � 1

2



@J �

@x

�
GB�1GT



@J �

@x

�T
C @J �

@t
D 0 (3.229)

with

J
�
x
�
tf
�
; tf

� D 1

2

�
x
�
tf
��T

S
�
tf
�
x
�
tf
�

(3.230)

as the boundary condition.

3.5.2 The HJPDE and Separation of Variables for the LQP

We attempt a solution of (3.229) subject to (3.230) by employing the following
transformation:

J � D 1

2
xTZ .t/ x (3.231)

where Z .t/ is an unknown time-dependent symmetric matrix. (This is a very spe-
cific instance of a technique known as separation of variables commonly used to
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solve so-called separable partial differential equations.) Substituting (3.231) into
(3.229) yields after some manipulation

1

2
xT

�
dZ

dt
CZF C F TZ �ZGB�1GT

Z C A

�
x D 0 (3.232)

Hence
dZ

dt
CZF C F TZ �ZGB�1GT

Z C A D 0 (3.233)

which is known as the matrix Ricatti equation and is subject to the boundary
condition

Z
�
tf
� D S

�
tf
�

(3.234)

in keeping with the original boundary condition (3.230).

3.5.3 LQP Numerical Example

Consider the example familiar from our discussion of the shooting method in
Section 3.4.4, namely

minJ D
Z 1

0

1

2

�
x2 C u2

�
dt (3.235)

subject to

dx

dt
D u (3.236)

x .0/ D 1:5431 (3.237)

where x and u are scalars. In terms of the notation of the previous section, we have

A D 1

B D 1

F D 0

G D 1

K D 0

S D 0

t0 D 0

tf D 1

This means that the Ricatti equation

dZ

dt
CZF C F TZ �ZGB�1GT

Z C A D 0
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becomes

dZ

dt
�Z2 C 1 D 0 (3.238)

Z .1/ D 0 (3.239)

with solution given by
Z .t/ D � tanh .t � 1/ (3.240)

so that
Z .0/ D : 76159 (3.241)

We find the initial adjoint variable by noting

	 .0/ D
�
@J �

@x

�

tD0
D
�
@

@x

�
1

2
x .t/T Z .t/ x .t/

�	

tD0
D Z .0/ x .0/ D :76159 .1:5431/ D 1:1752 (3.242)

which is immediately recognized as the value that allowed the shooting method to
converge when applied to this problem in Section 3.4.4.

3.5.4 Another LQP Example

Consider the problem

minJ D
Z 1

0

1

2

�
x2 C u2

�
dt (3.243)

subject to the following dynamics that, while still linear, involve both state and con-
trol variables on the righthand side:

dx

dt
D x C u .	/ (3.244)

x .0/ D 1 (3.245)

We know that

H D 1

2

�
x2 C u2

�C 	 .x C u/

�d	
dt

D @H

@x
D x C 	

	 .1/ D 0

u D arg

�
@

@u
H D u C 	 D 0

�

H) u D �	
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Note that this is a linear-quadratic problem for which

dZ

dt
CZF C F 0Z �ZGB�1G 0

Z C A D 0 (3.246)

Z
�
tf
� D S

�
tf
�

(3.247)

A D B D F D G D 1 (3.248)

S D 0 (3.249)

tf D 1 (3.250)

Consequently

dZ

dt
C 2ZF �Z2 C 1 D 0

Z .1/ D 0

whose exact solution is

Z .t/ D 1

2

 p
2 � 2 tanh

 

t � 1

4

p
2

 

ln

p
2 � 1p
2C 1

C 2
p
2

!!p
2

!p
2 (3.251)

which in turn tells us that
Z .0/ D 1:6895 (3.252)

It is then immediate that

	 .0/ D Z .0/ x .0/ D 1:6895 .1/ D 1:6895

Thus, we have the following initial-value problem:

dx

dt
D x C u D x � 	

�d	
dt

D @H

@x
D x C 	

x .0/ D 1

	 .0/ D 1:6895

Numerical solution of the above initial-value problem gives

0

B
BB
B
B
@

	 .0/

	 .:25/

	 .:5/

	 .:75/

	 .1/

1

C
CC
C
C
A

D

0

B
BB
B
B
@

1:6895

1:1097

:67012

:31516

1:3022� 10�6

1

C
CC
C
C
A

(3.253)
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Note that 	 .1/ 	 0. Since u D �	, we have the following optimal control solution:

0

B
B
B
B
B
@

u .0/
u .:25/
u .:5/

u .:75/
u .1/

1

C
C
C
C
C
A

D

0

B
B
B
B
B
@

�1:6895
�1:1097
�:670 2
�:315 6

	 0

1

C
C
C
C
C
A

(3.254)

3.6 Exercises

1. Prove Theorem 3.5.
2. Give a formal statement of a theorem that establishes the Euler-Lagrange equa-

tions derived in Section 3.1.4 are, in fact, valid necessary conditions for the
problem given by (3.26), (3.27), and (3.28). Be sure to include all regularity
conditions in your theorem.

3. Give a formal statement and proof of Intiligator’s duality theorem, mentioned
in Section 3.1.8, for isoperimetric constraints in the calculus of variations.

4. Numerically solve the brachistochrone problem of Section 3.2.3 usingN D 20,
50, 100. Comment on your findings.

5. Extend the Mangasarian sufficiency theorem of Section 3.3.8.1 to include con-
sideration of terminal constraints

‰
�
x
�
tf
�
; tf

� D 0 2 <r

and nontrivial terminal costs K
�
x
�
tf
�
; tf

�
:

6. Construct and prove an optimal control sufficiency theorem that includes con-
sideration of mixed state and control constraints.

7. Describe how an optimal control problem with free terminal time may be ap-
proached and solved using a sequence of problems with fixed terminal time.
Apply your method to the example problem of Section 3.4.5.

8. Consider the problem

minJ D 1

2
Œx .1/�2 C

Z 1

0



1

2
x2 C u

�
dt (3.255)

subject to

dx

dt
D 1

8
x � u .	/ (3.256)

�1 � u � C1 (3.257)

x .0/ D 1 (3.258)

where both x and u are scalars. Do the Arrow and/or Mangasarian sufficiency
theorems hold? Solve by the minimum principle.
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9. Create an optimal control problem that has two control variables, a singular
control that is optimal, and satisfies the Arrow sufficiency theorem. Establish
that the singular control is optimal by applying the necessary conditions for
continuous-time optimal control.

10. Consider the problem

minJ D 1

2
Œx .1/�2 C

Z 1

0

1

2

�
x2 C u2

�
dt (3.259)

subject to

dx

dt
D x C u .	/ (3.260)

x .0/ D 1 (3.261)

where both x and u are scalars. Solve by a shooting method.
11. Solve the problem of Exercise 9 above by forming and solving the Hamilton-

Jacobi partial differential equation.
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Chapter 4
Infinite Dimensional Mathematical
Programming

In this chapter we are concerned with the generalization of finite-dimensional
mathematical programming to infinite-dimensional vector spaces. This topic is per-
tinent to dynamic optimization because dynamic optimization in continuous time
de facto occurs in infinite-dimensional spaces since the variable x .t/, even if x is a
scalar, has an infinity of values for continuous t 2 �t0; tf

� � <1C where tf > t0.
In fact, in this chapter we will define a class of dynamic optimization problems

that is more general than the calculus of variations and optimal control problems we
have discussed up to this point. We will then show how the foundation material of
this chapter allows us to derive the Euler-Lagrange equation and the Pontryagin min-
imum principle from the notions of a Gâteaux derivative and variational inequality
optimality conditions for infinite-dimensional mathematical programs. In this way
we are able, despite the introductory nature of this book, to understand the deep
connection between infinite-dimensional mathematical programing and continuous-
time optimal control without resort to discrete-time approximations.

We also derive Kuhn-Tucker type necessary conditions for infinite-dimensional
mathematical programs in preparation for the extension of mathematical pro-
gramming algorithms familiar from the study of finite-dimensional nonlinear
programming to Hilbert spaces. In fact, because of the connection between infinite-
dimensional mathematical programming and continuous-time optimal control, we
will be able to apply the algorithms developed in this chapter to a variety of models
discussed in subsequent chapters.

The following is an outline of the contents of this chapter:

Section 4.1: Elements of Functional Analysis. We present some elementary
properties of topological vector spaces, emphasizing the differences between finite-
dimensional and infinite-dimensional vector spaces.

Section 4.2: Variational Inequalities and Constrained Optimization of Func-
tionals. We present the notion of an infinite dimensional mathematical program
and show that it has necessary conditions in the form of infinite dimensional varia-
tional inequalities.

Section 4.3: Continuous-Time Optimal Control. We derive necessary conditions
for optimal control problems from necessary conditions for infinite dimensional
mathematical programs.

T.L. Friesz, Dynamic Optimization and Differential Games, International
Series in Operations Research & Management Science 135,
DOI 10.1007/978-0-387-72778-3 4, c� Springer Science+Business Media, LLC 2010
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Section 4.4: Optimal Control with Time Shifts. We extend the results of the
previous section to problems involving time shifts.

Section 4.5: Derivation of the Euler-Lagrange Equation. We derive the Euler-
Lagrange equation from necessary conditions for infinite dimensional mathematical
programs.

Section 4.6: Kuhn-Tucker Conditions for Hilbert Spaces. In this section, we
show that, under appropriate regularity conditions, Kuhn-Tucker conditions may be
articulated for infinite dimensional mathematical programs.

Section 4.7: Mathematical Programming Algorithms. Having established op-
timality conditions for infinite dimensional mathematical programs, we set about
expressing and testing continuous-time algorithms that are direct generalizations of
algorithms familiar from nonlinear programming in finite-dimensional spaces.

4.1 Elements of Functional Analysis

This chapter contains several important results from functional analysis that are
stated without proof in order to focus the reader’s energies on those aspects of
infinite-dimensional mathematical programming that are essential to model building
and solution without lengthy detours. At the end of this chapter we provide a list of
references that may be consulted should the reader wish to study the formal proofs
omitted here.

4.1.1 Notation and Elementary Concepts

To proceed the reader will need to recall some basic notions from elementary
analysis, including the following which are defined without elaboration:

1. Norm: The norm of a vector v shall be denoted as kvk. The norm itself is a
pre-established notion of “distance” or “length.”

2. Neighborhood: Given a point x 2 S , a set of interest, and " 2 <1CC, the set

N".x/ D fy W jjy � xjj � "g

is called the "-ball or "-neighborhood of x 2 S:
3. Bounded Set: A set S is bounded if it can be enclosed in a ball of finite radius.
4. Closed Set: Given a set S; the closure of S; denoted cl S; is the set of points that

are arbitrarily close to S ; that is x 2 cl S if, for each " > 0;

S \N".x/ ¤ ;

where N".x/ D fy W jjy � xjj � "g. The set S is closed if S D cl S:
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5. Open Set: A set that is not closed is an open set.
6. Compact Set: A set S is compact if it is closed and bounded.
7. Fundamental Set Operations: Given two setsA andB;withA � S andB � S;

the following are fundamental set operations:

A\ B D fx W x 2 A and x 2 Bg
A[ B D fx W x 2 A or x 2 Bg
A nB D fx W x 2 A and x … Bg
AC B D fz D x C y W x 2 A and y 2 Bg
A� B D fz D x � y W x 2 A and y 2 Bg

Note that A � S implies that if x 2 A; then x 2 S: In our exposition, this will
be taken to mean A is a proper .A ¤ S/ subset of S:

8. Interior Point: Given S � V; a normed vector space, then the point a 2 S

is an interior point of S if there is an � > 0 such that all vectors x satisfying
kx � ak < � are also members of S: The set of all interior points of S is denoted
int S:

9. O.n/ Notation: Given two sequences fang and fbng such that bn � 0 for all n,
we say fang is of order fbng and write

an D O Œbn� as n ! 1

when
lim
n!1

an

bn
D 0

4.1.2 Topological Vector Spaces

We need to define some basic concepts and introduce some key results from
functional analysis, which is the branch of mathematics that deals with problems
whose solutions are functions of a continuous independent variable; that continuous
independent variable is usually time. As remarked previously, because any nontrivial
subinterval of continuous time – sometimes referred to as an “arc of time” – contains
an uncountable number of instants of time, we say continuous-time problems are
infinite-dimensional. There are some subtleties associated with infinite-dimensional
analysis, and certainly the notion of convergence is the most important of these.
In particular the notion of pointwise convergence and the notion of convergence in
the sense of operators are not equivalent and lead to distinct topologies. For this
reason, infinite-dimensional vector spaces are sometimes called topological vector
spaces. Moreover, as we shall see, fundamental constructions – like the gradient –
have different realizations in different topological vector spaces. For these reasons,
analyses of continuous-time problems require the clear and unambiguous articula-
tion of the vector spaces in which one is working. Note also that we will ultimately
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be concerned – when we return to direct consideration of the calculus of variations
and optimal control – solely with normed spaces for which the norm is induced
by an inner product. Thus, in applications, when we speak of a specific normed
topological vector space, the reader will need to recall the unique, unambiguous,
well-defined inner product associated with it.

In our discussion of the foundations of topological vector spaces that follows, we
assume the reader already has some familiarity with what is meant by a normed vec-
tor space on <n; consequently our explanations of many of the most basic concepts
are given in a narrative style and are neither detailed nor illustrated by examples.
Furthermore, we repeat a point made previously: some of the theoretical results for
infinite-dimensional vector spaces contained in the ensuing overview are presented
without proof so that nonmathematicians may penetrate quickly to the level appro-
priate for their applications. The reader with prior exposure to functional analysis
and topological vector spaces may wish to skip to Section 4.2 of this chapter.

Loosely speaking, a vector space V is a nonempty set of elements for which
vector addition and multiplication of vectors by scalars are defined. A normed vector
space on < is a vector space V for which a mapping V �! <1 called the norm is
defined. We reiterate that the norm of v 2 V may be thought of as the “length” of v,
and that it is denoted by kvk. The relevant formal definition is:

Definition 4.1. Normed linear vector space. A normed linear vector space V is a
vector space V on which there is a well-defined real-valued function that maps each
v 2 V into a real number kvk called the norm of v. The norm has the following
properties:

1. kvk � 0 8v 2 V with kvk D 0 ” v D 0

2. kv C wk � kvk C kwk 8v;w 2 V
3. k�vk D j�j kvk 8v 2 V; � 2 <1.

Note that the above three properties may be referred to as the zero length property,
the triangle inequality property, and the scalar multiplication property, respectively.

One of the most important vector spaces in applied mathematics is that of contin-
uous functions. Another is the space of functions of bounded variation. To provide
examples and also to prepare for subsequent analyses, we now formally define these
spaces and some associated concepts:

Definition 4.2. Space of continuous functions. The normed linear vector space
C Œa; b� consists of continuous functions on an interval of the real line Œa; b� where
a; b 2 <1 and a < b. The norm of x 2 C Œa; b� is

kxk D max fjx.t/j W a � t � bg

Definition 4.3. Bounded variation. For an interval of the real line Œa; b� where
a; b 2 <1 and a < b, the partition created by the finite set of points ti 2 Œa; b�

for i D 0; 1; 2; : : : ; n such that

a D t0 < t1 < t2; : : : < tn D b
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gives rise to the bounded variation of a function f .x/ defined on Œa; b� provided
there exists a finite constantK such that

nX

iD1
Œx .ti / � x .ti�1/� � K

Definition 4.4. Total variation. The total variation of a function x defined on the
real interval Œa; b� is denoted by

T V.x/ D
Z b

a

jdx.t/j

and defined by

T V.x/ D sup
nX

iD1
Œx .ti /� x .ti�1/�

for a given partition of Œa; b�.

Definition 4.5. Space of functions of bounded variation. The normed linear vector
space BV Œa; b� consists of all functions of bounded variation on an interval of the
real line Œa; b� where a; b 2 <1 and a < b. Its norm is

kxk D jx .a/j C T V.x/

Note that the total variation of a constant is zero.
The vector spaces in which we are mainly interested, as the preceding examples

suggest, are spaces of functions. In the definitions and results that follow, the vector
spaces employed should be considered spaces of functions unless there is an explicit
statement to the contrary. In this and subsequent chapters, we will have cause to
speak of mappings – sometime called transformations or operators. Also among
the definitions introduced below is the definition of a functional. We have already
introduced these concepts in an informal way in previous chapters; now we give the
following formal definitions:

Definition 4.6. Mapping. Let V and W be vector spaces and let D be a subspace
of V . A rule that associates an element y 2 W with every element of x 2 D is said
to be a mapping F from V to W with domainD, and we write

F W D �! W

or y D F .x/.

We will have cause to refer to the related notion of a linear form defined on a vector
space:

Definition 4.7. Linear form. We say a linear and continuous mapping from a vector
space V to <1 is a continuous linear form.
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From prior discussions, we already are familiar with the concept of a functional:

Definition 4.8. Functional. A mapping F from a vector space V into <1, the space
of real numbers, is called a functional, and we write

F W V �! <1

We may allow functionals to be vectors that arise when mapping from V to <n, so
that the following definition obtains:

Definition 4.9. Vector functional. A mapping J from a vector space V into <n, the
space of finite-dimensional n-vectors of real numbers, is called a vector functional,
and we write

J W V �! <n

Note that the norm of an infinite-dimensional vector space is a functional. Fur-
thermore, both scalar and vector functionals are by definition mappings and often
referred to as transformations or operators.

Next we take care to note that there is a notion of strong convergence that we
distinguish from weak convergence:

Definition 4.10. Strong convergence. In a normed vector space V , we shall say that
the sequence

˚
vk 2 V � converges strongly to v 2 V as k �! 1 if and only if

lim
k�!1

��
�vk � v

��
� D 0

Definition 4.11. Weak convergence. Let V be a normed vector space and V � its
dual. We say that the sequence

˚
vk 2 V � converges weakly to v 2 V as k �! 1 if

and only if

lim
k�!1

F
�

vk
�

D F .v/

for all F 2 V �:

The dual space referred to in Definition 4.11 is explained subsequently in Definition
4.24. Furthermore, the dichotomy of strong convergence and weak convergence,
introduced in Definitions 4.10 and 4.11, is recognized by the terminology set forth
in the following definitions of the two fundamental topologies:

Definition 4.12. Strong topology. A vector space for which the property of strong
convergence holds throughout is said to exhibit the strong topology.

Definition 4.13. Weak topology. A vector space for which the property of weak but
not strong convergence holds throughout is said to exhibit the weak topology.

It is not hard to prove the following key result:

Theorem 4.1. Relationship of strong and weak convergence. If vk �! v strongly,
then vk �! v weakly.
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It is fundamental that the converse of this theorem is true in finite-dimensional
spaces (specifically, in <n) but is generally FALSE in infinite-dimensional spaces.
So the two topologies, weak and strong, are distinct. This leads to strong and weak
topological distinctions for every mathematical concept that relies on the notion of
convergence of sequences.

The two notions of convergence (topology) also naturally give rise to two notions
of continuity:

Definition 4.14. Strong continuity. We say that the functional J is strongly
continuous if h

vk �! v strongly
i

H) J
�

vk
�

�! J .v/

Definition 4.15. Weak continuity. Similarly we say that the functional J is weakly
continuous if h

vk �! v weakly
i

H) J
�

vk
�

�! J .v/

We introduce next the notion of semicontinuity:

Definition 4.16. Strong lower semicontinuity. We say that the functional J WV �!
<1 is strongly lower semicontinuous if, for all v 2 V and for all sequences

˚
vk
� 2

V , the implication of vk ! v (strongly) is that

lim inf J
�

vk
�

� J .v/ (4.1)

Definition 4.17. Weak lower semicontinuity. We say that the functional J W V �!
<1 is weakly lower semicontinuous if, for all v 2 V and for all sequences

˚
vk
� 2 V ,

the implication of vk ! v (weakly) is that

lim inf J
�

vk
�

� J .v/ (4.2)

Similarly, strong and weak upper semicontinuity are defined by replacing (4.1) and
(4.2) by

lim supJ
�

vk
�

� J .v/

We will also make use of the notion of uniform continuity:

Definition 4.18. Uniform continuity. When u; v 2 V , we say the functional J is
uniformly continuous on V if for every " > 0 there exists � ."/ > 0 such that

ku � vk � � ."/

H) jhJ .u/� J .v/ ; �ij � " 8� such that k�k D 1

while
� ."/ �! 0C ” " �! 0C
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We also define the notion of Lipschitz continuity:

Definition 4.19. Lipschitz continuity. We say that the functional J is Lipschitz con-
tinous on V if there exists a positive constant L 2 <1CC such that

kJ .u/� J .v/k � L ku � vk
for all u; v 2 V .

We also have

Definition 4.20. Cauchy sequence. A Cauchy sequence in V relative to the strong
topology is a sequence

˚
vk 2 V � such that for every " > 0 there exists k ."/ such

that �
�
�vl � vm

�
�
� < " 8l; m � k ."/

Definition 4.21. Complete vector space. The space V is said to be complete if every
Cauchy sequence in V has a limit which is an element of V .

Completeness is highly desirable as it assures that convergent algorithms yield
meaningful results, in the sense of those results being within the space for which
the underlying problem of interest is defined. Some topological vector spaces that
are intuitively appealing are not complete.

Subsequently, we will need Lebesgue’s dominated convergence theorem, which
we now state:

Theorem 4.2. Lebesgue’s dominated convergence theorem. Let ffn .u .t//g be a
sequence of measurable functions on V such that

f .u .t// D lim
n�!1fn .u .t//

exists for every u .t/ 2 V . Suppose there exists an integrable function g such that

jfn .u .t//j � g .u .t// n D 1; 2; 3; : : : 8u 2 V

Then

lim
n�!1

Z tf

t0

fn .u .t// dt D
Z tf

t0

f .u .t// dt

Proof. See Rudin (1987). �

We now offer the following definition of a specific category of vector spaces, namely
Banach spaces, that play a critical role in the study of infinite-dimensional optimiza-
tion problems:

Definition 4.22. Banach space. A Banach space is a normed and complete vector
space for the strong topology.
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We shall be concerned principally with Banach spaces; frequently we will be
concerned with a special type of Banach space called a Hilbert space. Moreover,
the mappings between vector spaces we shall consider in applications will generally
be linear and frequently strongly continuous in the sense of the following definition:

Definition 4.23. Linear mapping. If V and Y are two normed vector spaces on <1,
then the mapping A W V �! Y is called a linear mapping if for all w; v 2 V and
for all �;� 2 <1

A .�w C �v/ D �A .w/C �A .v/

Note that in an infinite-dimensional space a linear mapping is not necessarily con-
tinuous, unlike finite-dimensional spaces.

We denote the set of all linear and strongly continuous mappings from V �! Y

by L .V; Y /. Note that L .V; Y / is a vector space. It is not difficult to prove that a
linear mapping A W V �! Y is strongly continuous if and only if there exists a
constantM 2 .0;1/ such that

kA .v/kY < M kvkV
in the strong topology. In light of this property, it is possible to associate with every
element of L .V; Y / (that is, with every linear, strongly continuous mapping A W
V �! Y ) the real number

kAkL.V;Y / D sup
v2V;v¤0

kA .v/kY
kvkV

(4.3)

It can be formally shown that the operator k:kL.V;Y / is a norm for the vector space
L .V; Y /. It may also be proven that if V is a normed vector space and Y a Banach
space, then L .V; Y / is a Banach space.

With the above material concerning the space of all linear and strongly continu-
ous mappings as preamble, we make the following definition:

Definition 4.24. Dual of a normed vector space. If V is a normed vector space,
the strong topological dual of V is L �V;<1

	
, the space of all linear and strongly

continuous mappings from V to <1:

It is essential to note that the dual of a topological vector space is a space of func-
tionals; in particular, every element of the dual space is a linear functional. It is
immediate from Definition 4.24 that the (strong topological) dual of V , which we
call V �, is a Banach space. Furthermore, for F 2 V � the value of F at v 2 V is
denoted by F .v/, and the norm of F in V � is defined as

kFkV �

D sup
v2V;v¤0

jF .v/j
kvkV

We let V �� denote the dual of the dual V �; furthermore, V �� is defined, is also a
Banach space, and is called the bidual of V (in the sense of the strong topology).
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Furthermore, we say that a Banach space is reflexive if V �� D V . There is an
important result on reflexive Banach spaces called the weak compactness theorem,
whose statement is the following:

Theorem 4.3. Weak compactness theorem. If V is a reflexive Banach space, then
from every bounded set of elements of V , it is possible to extract a subsequence
converging weakly to an element of V .

Proof. See Wouk (1979). �

A very important theorem regarding Banach spaces is the contraction mapping
theorem:

Theorem 4.4. Contraction mapping theorem. Let V be a Banach space,� a metric
space, and let ˆ W ƒ � V �! V be a Lipschitz continuous mapping with Lipschitz
constant L < 1. Then, for each � 2 ƒ there exists a unique fixed point v .�/ 2 V

such that
v .�/ 2 ˆ.�; v .�//

Moreover, the map � �! v .�/ is continuous, and, for any � 2 ƒ and u 2 V , we
have

ku � v .�/k � 1

1 �L ku �ˆ.�; u/k
Proof. See Bressan and Piccoli (2007). �

We next define the notion of a Hilbert space:

Definition 4.25. Hilbert space. A vector space V with a scalar product h:; :i is
called a Hilbert space if V is complete for the strong topology and norm kvk D
Œhv; vi�1=2 :
As a consequence, a Hilbert space is a Banach space for which the norm derives
from the notion of a scalar product. Furthermore, every Hilbert space is reflexive.
Another key result for Hilbert spaces is the following version of the representation
theorem due to Riesz:

Theorem 4.5. Riesz representation theorem. Let V be a Hilbert space and let
F 2 V � be a continuous linear form on V . Then there exists a unique element
w0 2 V such that

F .v/ D ˝
w0; v

˛ 8v 2 V
and

kFkV �

D ��w0
��
V

Conversely, it is possible to associate with each u 2 V the continuous linear form
Fu defined by

Fu .v/ D hu; vi 8v 2 V
There is an alternative form of the Riesz representation theorem given by
Luenberger (1969) that is useful in some applications:
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Theorem 4.6. Alternative form of the Riesz representation theorem. Let f be a
bounded linear functional on the space of continuous functions C Œa; b�. Then there
is a function v of bounded variation on Œa; b� such that for all x 2 X

f .x/ D
Z b

a

x .t/ dv.t/ (4.4)

Moreover, the norm of f is the total variation of v on Œa; b�. Furthermore, a bounded
linear functional on C Œa; b� is defined by (4.4) for every function v of bounded
variation on Œa; b�.

4.1.3 Convexity

We begin our discussion of convexity in functional analysis with the following def-
inition familiar from the study of finite-dimensional spaces:

Definition 4.26. Convex set. A set S is convex if, for each v1; v2 2 S; and � 2 Œ0; 1�,
we have

�v1 C .1 � �/ v2 2 S
Related notions are the convex hull and the closed convex hull:

Definition 4.27. Convex hull. The convex hull of a set S � V; is the intersection of
all convex sets in V containing S; and is denoted by fSg : The convex hull is the
smallest convex set containing S: The set S is convex if and only if S D fSg :
Definition 4.28. Closed convex hull. The closed convex hull of a set S � V; is the
intersection of all closed convex sets in V containing S; and is denoted by cl fSg :
The set S is closed and convex if and only if S D cl fSg.

These definitions set the stage for presentation and proof of the following theorem,
portions of which are familiar from Chapter 2:

Theorem 4.7. Properties of convexity. The following are true:(a) S is convex )
cl S is convex; (b) S is convex ) fSg is convex; (c) fSg is convex ) cl fSg is
convex; (d) for convex sets A and B; the set A\B is convex; and (e) for convex sets
A and B; the set AC B is convex.

Proof. (a) Define the open ball N".v/ D fw W jjw � vjj < "g and two arbitrary
points v;w 2 S , a convex set. Let u D �v C .1 � �/w, 0 � � � 1, and assume
v;w 2 cl S . Therefore, there exist points v0 2 N".v/\S and w0 2 N".w/\S , and
it is desired to prove that

u0 D �v0 C .1� �/w0 2 cl S ) u0 2 N".u/
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Note that
��u � u0

�� D ���v C .1 � �/w � �
�v0 C .1 � �/w0

	��

D �
��
�
v � v0

	C .1 � �/ �w � w0
	��

� �
�
�v � v0

�
�C .1 � �/

�
�w � w0

�
�

Note v0 2 N".v/ H) �
�v � v0

�
� < � and w0 2 N".w/ H) �

�w � w0
�
� < �; thus

�
�u � u0

�
� < �"C .1 � �/� D �

It is clear that u0 2 N".u/. Since u0 is on the line segment joining v0 and w0 and S
is convex by definition, then u0 2 S: Therefore, N".u/ \ S ¤ ; for all u 2 S and
cl S is convex.

(b) fSg is convex by definition.
(c) cl fSg is convex by (a).
(d) If the Si for i D Œ1; n� are convex, then \jSj � Si for any i 2 Œ1; n�. Since a

contiguous subset of a convex set is clearly convex, \jSj is convex.
(e) By the definition of convexity, �v1 C .1 � �/ v2 2 S for all v1; v2 2 S where

� 2 .0; 1/, which implies closure under addition and scalar multiplication. �

In some situations it is necessary to recognize and exploit the notion of local con-
vexity, and hence we make the following definition:

Definition 4.29. Convexity of linear spaces. A linear vector space is locally convex
if it has a basis about 0 consisting entirely of convex sets.

Note that a Banach space is locally convex.

4.1.4 The Hahn-Banach Theorem

The ability to separate sets using a linear functional is established by an important
theorem in functional analysis known as the Hahn-Banach theorem, which is cru-
cial to the development of optimality conditions. To articulate the Hahn-Banach
theorem we must introduce some additional formal definitions. In particular:

Definition 4.30. H is a hyperplane if there exists a nonzero continuous linear func-
tional J and a real constant ˛ such that

H D fv 2 V W J.v/ D ˛g

Definition 4.31. The hyperplane H D fv 2 V W J.v/ D ˛g, where J W V ! V �is
a continuous linear mapping, is a separating hyperplane of A and B if one of the
following holds:

.i/ J.a/ � ˛ 8a 2 A and J.b/ � ˛ 8b 2 B
.i i/ J.a/ � ˛ 8a 2 A and J.b/ � ˛ 8b 2 B
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Definition 4.32. The hyperplane H D fv 2 V W J.v/ D ˛g, where J W V ! V �is
a continuous linear mapping, is a strictly separating hyperplane of A and B if one
of the following holds:

.i/ J.a/ < ˛ 8a 2 A and J.b/ > ˛ 8b 2 B
.i i/ J.a/ > ˛ 8a 2 A and J.b/ < ˛ 8b 2 B

Definition 4.33. Disjoint sets. We shall say two sets are disjoint if they share no
interior points.

The so-called geometrical version of the Hahn-Banach theorem may now be stated
as follows:

Theorem 4.8. Hahn-Banach theorem. Let A and B be disjoint nonempty convex
sets in a vector space V: If int A ¤ ;, then there exists a hyperplane separating
A and B:

There are two further theorems important to the characterization of optimality that
are directly related to the Hahn-Banach theorem, namely:

Theorem 4.9. Weak separation theorem. Let A and B be disjoint nonempty con-
vex sets in a vector space V: If A is open, then there exists a closed hyperplane
separating A and B such that

J .a/ � ˛ � J .b/ 8a 2 A;8b 2 B

where J W V ! V �is a continuous linear mapping.

Theorem 4.10. Strong separation theorem. Let A and B be disjoint nonempty con-
vex sets in a locally convex vector space V: IfA is compact, then given real numbers
˛ and � > 0; there exists a closed hyperplane strictly separating A and B such that

J .a/ � ˛ > ˛ � � � J .b/ 8a 2 A;8b 2 B

where J W V ! V �is a continuous linear mapping. Furthermore A \ B D ;;
A\ H D ;; and B \ H D ;.

4.1.5 Gâteaux Derivatives and the Gradient of a Functional

The derivative of a function f .x/ of a real variable x 2 <1 is of course defined by

df

dx
D lim

h!0

f .x C h/ � f .x/
h

provided the indicated limit exists. This definition is not readily generalized to form
the derivative of a functional J .v/ in a Banach space, since the decision variables v
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may have kinked trajectories or exhibit jump discontinuities, which make the func-
tional J .v/ nonsmooth. Consequently, in order to articulate necessary conditions for
optimality in infinite-dimensional mathematical programming we rely on the notion
of a directional derivative. In fact, in this section and in Section 4.1.6, we introduce
two notions of a directional derivative in Banach space.

We first consider the Gâteaux derivative, or G-derivative, which is defined as
follows:

Definition 4.34. G-derivative. Let V be a vector space and J a functional defined
on V . Provided it exists, the limit

lim
��!02<1

J .v C 	�/ � J .v/

	
� ıJ .v; �/ (4.5)

is the Gâteaux derivative (G-derivative) at v 2 V in the direction � 2 V . If the limit
ıJ .v; �/ exists for all � 2 V , we say that the functional J is differentiable in the
sense of Gâteaux (G-differentiable) at v 2 V .

The G-derivative is a generalization of the idea of a directional derivative familiar
in finite-dimensional spaces. The notion of a G-derivative allows us to give a very
general characterization of the gradient of a functional in Banach spaces with a
well-defined inner product (i.e., in a Hilbert space). In fact the following definition
obtains:

Definition 4.35. Gradient in Hilbert space. Let V be a Hilbert space with asso-
ciated scalar product h:; :i and J a functional that is G-differentiable on V . The
element rJ .v/ 2 V such that

ıJ .v; �/ D hrJ .v/ ; �i 8� 2 V

is called the gradient of J at v.

Note that the Riesz representation theorem for Hilbert spaces, Theorem 4.5, ensures
that rJ .v/ exists and is well defined.

The preceding definition of the gradient of a functional is so important that we
need to give an illustrative example:

Example 4.1. Distinct derivatives in distinct Hilbert spaces. Consider x D
.x1; x2; : : : ; xn/

T along with mappings v.x/ belonging to the Sobolev space

H1 Œa; b� D



v W v 2 L2 Œa; b� ; @v

@xi
2 L2 Œa; b� ; i D 1; 2; : : : ; n

�

whose scalar product for w; v 2 H1 Œa; b� is

hw; vi D
Z b

a

"

wT 	 v C
�
dw

dt


T
	 dv

dt

#

dt (4.6)
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where Œa; b� 2 <1 is a closed interval of the real line and L2 Œa; b� is the space of
square integrable functions for the same interval. It can be shown that H1 Œa; b� is
a Hilbert space. For the space of square integrable functions L2 Œa; b�, the scalar
(inner) product of w; v 2 L2 Œa; b� is

hw; vi D
Z b

a

wT 	 vdt (4.7)

Note that L2 Œa; b� is also a Hilbert space. Our interest in this example is finding a
continuous linear form which is the gradient of the functional

J .v/ D
Z b

a

v2dt (4.8)

for v in both H1 Œa; b� and L2 Œa; b�. To this end, we take the limit

ıJ .v; �/ D lim
��!02<1

J .v C 	�/ � J .v/

	

D lim
��!02<1

Z b

a

.v C 	�/2 � v2

	
dt

D lim
��!02<1

Z b

a

v2 C 2	vT 	 � C .	�/2 � v2

	
dt

D lim
��!02<1

Z b

a

�
2	vT 	 �

	
C 	2�2

	

�
dv

D
Z b

a

2vT 	 �dv C lim
��!02<1

Z b

a

	�2dv

D
Z b

a

2vT 	 �dv

It is immediate from the identity ıJ .v; �/ D hrJ .v/ ; �i and the definition of the
scalar product in L2 Œa; b� that

ıJ .v; �/ D
Z b

a

2vT 	 �dv D h2v; �i
H) rJ .v/ D 2v

Moreover, in H1 Œa; b�, we can demonstrate that

ıJ .v; �/ D
Z b

a

2vT 	 �dv ¤ h2v; �i (4.9)
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In particular, in H1 Œa; b�, we have that

h2v; �i D
Z b

a

"

2vT 	 � C 2

�
dv

dt


T
	 d�
dt

#

dt

That is, in H1 Œa; b�, the G-derivative is not a continuous linear form consistent with
2v being the gradient of J.v/ defined by (4.8). More generally, the gradient is not
invariant from one topological vector space to another.

4.1.6 The Fréchet Derivative

Another notion of directional derivative which is equivalent to the G-derivative in
most cases is the Fréchet or F-derivative. The formal definition of the F-derivative is

Definition 4.36. F-Derivative. Let V be a Banach space with dual V � and J be
a functional defined on V . The Fréchet derivative (F-derivative) of J at v 2 V

in direction � 2 V is the continuous linear mapping 
J.v; �/ W V �V �! V �
such that

lim
jj�jj!0

jjJ.v C �/ � J.v/�
J.v; �/jj
jj�jj D 0

If the limit 
J .v; �/ exists for all � 2 V , we say that the functional J is differen-
tiable in the sense of Fréchet (F-differentiable) at v 2 V .

The following result establishes a relationship between the G-derivative and the
F-derivative under very mild restrictions:

Theorem 4.11. Relationship of Fréchet and Gâteaux derivatives. Given the real
Banach space V and its dual V �, as well as J a functional defined on V , if the
Fréchet derivative 
J.v; �/ 2 V � is defined at v 2 V for direction �, then the
Gâteaux derivative ıJ.v; �/ is also defined at v 2 V for direction �, and the two
derivatives are equal.

Proof. Since the Fréchet derivative is defined at V; we have

lim
jj�jj!0

jjJ.v C �/ � J.v/�
J.v; �/jj
jj�jj D 0

For any fixed nonzero � 2 V; substitution of 	� for �; where 	 ! 0 gives

lim
�!0

jjJ.v C 	�/ � J.v/ �
J.v; 	�/jj
	 k�k
D lim

�!0

jjJ.v C 	�/ � J.v/ �
J.v; 	�/jj
	

D 0
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Since 
J.v; 	�/ is a continuous linear operator,
J.v; 	�/ D 	 
J.v; �/; and

lim
�!0

jjJ.v C 	�/ � J.v/�
J.v; 	�/jj
	

D lim
�!0

J.v C 	�/ � J.v/
	

�
J.v; 	/ D 0

or


J.v; 	/ D lim
�!0

J.v C 	�/ � J.v/
	

D ıJ.v; 	/: �

4.2 Variational Inequalities and Constrained Optimization
of Functionals

We are ready to begin formal consideration of infinite-dimensional mathematical
programs. For that consideration, we assume that we are given a topological vector
space V and a functional J W V �! <1. We want to minimize J either on V or on
some subset U � V . This fundamental problem includes finite-dimensional math-
ematical programming, as well as the classical calculus of variations and modern
optimal control theory, as special cases.

To explore the constrained optimization of a functional, we recall one of the most
famous of all theorems in mathematical analysis, namely the Weierstrass theorem:

Theorem 4.12. Weierstrass existence theorem. If the subset U � V is strongly
(respectively weakly) compact and J is strongly (respectively weakly) continuous
on U , then the problem

minJ .v/ s.t. v 2 U � V

has an optimal solution v� 2 U .

It is because of this theorem that optimization problems, both finite- and infinite-
dimensional (static and dynamic), have intrinsic meaning and warrant systematic
study. In infinite dimensions, the weak version of the Weierstrass theorem is used
almost exclusively because of the difficulty associated with checking U for strong
compactness. When the space V of interest is a reflexive Banach space or a Hilbert
space, it is enough to establish that U is bounded and weakly closed to assure weak
compactness.

We next establish that the G-derivative may be employed to state necessary con-
ditions for an optimal solution. In particular, the following theorem obtains:

Theorem 4.13. First-order necessary condition for unconstrained optimum. If
J .v/ is a functional on V and is G-differentiable at v� 2 V , then a necessary
condition for v� to be an optimum of J is

ıJ
�
v�; �

	 D 0 8� 2 V
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Proof. For v�to be either a local or a global minimum of the functional J , it must
be that the function J.v� C 	�/ of the real variable 	 obeys

0 D
�
d

d	
J
�
v� C 	�

	�

�D0
D lim

��!0

J .v� C 	�/ � J .v�/
	

8� 2 V

By (4.5) this limit is the G-derivative. �
Another key result is:

Theorem 4.14. Second-order necessary condition for an unconstrained minimum.
If J .v/ is a functional and twice continuously differentiable at v� 2 V , necessary
conditions for v� to be a minimum of J are that

ıJ
�
v�; �

	 D 0 8� 2 V
ı2J

�
v�; �; �

	 � ı
�
ıJ
�
v�; �

	
; �
� � 0 8� 2 V

Proof. This result follows directly from the second-order necessary condition for
functions of a real variable 	 . �
We now turn our attention to the constrained minimization of functionals. The key
result is:

Theorem 4.15. Variational inequality necessary condition. Take J .v/ to be a func-
tional on V that is G-differentiable at v� 2 U; and let U � V be a convex set. A
necessary condition for v� 2 U to be a minimum of J on U is

ıJ
�
v�; v � v�	 � 0 8v 2 U (4.10)

Proof. Consider an arbitrary v 2 V . Since U is convex it must be that

	v C .1 � 	/ v� D v� C 	
�
v � v�	 2 U 8	 2 Œ0; 1�

For v� to be a minimum of J .v/ subject to v 2 V , it must be that 	 D 0 is a solution
of the one-dimensional mathematical program

minF .	/ � J
�
v� C 	

�
v � v�	�

subject to

g1 .	/ D �	 � 0

g2 .	/ D 	 � 1 � 0

for which the Kuhn-Tucker conditions are

dF .	/

d	
C �1

dg1 .	/

d	
C �2

dg2 .	/

d	
D 0 (4.11)

�1g1 .	/ D 0 (4.12)
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�2g2 .	/ D 0 (4.13)

�1; �2 � 0 (4.14)

At 	 D 0, we have g1 D 0 and g2 < 0, so that �1 � 0 and �2 D 0. It follows at
once from the Kuhn-Tucker identity (4.11) that

�
d

d	
J
�
v� C 	

�
v � v�		

�

�D0
D �1 � 0 (4.15)

This last result together with the definition of the G-derivative gives the variational
inequality

�
d

d	
J
�
v� C 	

�
v � v�		

�

�D0
D ıJ

�
v�; v � v�	 � 0 8v 2 V

since v 2 V was arbitrary in our development of (4.15). �

Note that when the gradient of a functional J exists and U is a convex subset of a
Hilbert space, the necessary condition (4.10) becomes the more familiar form

v� 2 U such that
˝rJ �v�	 ; v � v�˛ � 0 8v 2 U (4.16)

This result follows from the representation theorem and the fact that v � v� for all
v 2 U generates all direction vectors pointing away from v� when U is convex.

4.3 Continuous-Time Optimal Control

In this section, we want to use the theory of infinite-dimensional mathematical
programming developed above to give an alternative derivation of the necessary
conditions for the continuous-time optimal control problem. We consider the fol-
lowing restricted form of the continuous-time optimal control problem:

minJ .u/ D
Z tf

t0

f0 .x; u; t/ dt

subject to

dx

dt
D f .x; u; t/

x .t0/ D �0 (fixed)

Note that there are no explicit control constraints. There are n state variables andm
control variables; t0, tf ; and x.t0/ are fixed; there are neither terminal-time costs
nor terminal-time constraints.
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4.3.1 Analysis Based on the G-Derivative

We will assume

u 2 �L2 �t0; tf
�	m

(4.17)

x .u; t/ W �L2 �t0; tf
�	m � <1C �! �H1

�
t0; tf

�	n
(4.18)

f0 W �H1
�
t0; tf

�	n � �L2 �t0; tf
�	m � <1C �! L2

�
t0; tf

�
(4.19)

f W �H1
�
t0; tf

�	n � �L2 �t0; tf
�	m � <1C �! �

L2
�
t0; tf

�	n
(4.20)

Presently, we will assume the following properties of the state operator x .u; t/: it
exists for all admissible u and is unique, strongly continuous and G-differentiable
with respect to u. This means that the G-derivative

ıx .u; �I t/ D lim
��!0

x .u C 	�; t/ � x .u; t/

	
� y .u/

exists. To simplify notation, we will sometimes use the symbol y .u/ to denote this
G-derivative.

Note that x .u; t/ satisfies the integral equation

x .u; t/ D x .t0/C
Z t

t0

f Œx .u; �/ ; u; �� d�

from which it is immediate that

x .u C 	�; t/ D x .t0/C
Z t

t0

f Œx .u C 	�; �/ ; u C 	�; �� d�

We note that the ratio

R.u; �I 	/ � x .u C 	�; t/ � x .u; t/

	

has a numerator equivalent to

x .t0/C
Z tf

t0

f Œx .u C 	�; �/ ; u C 	�; �� d� � x .t0/�
Z tf

t0

f Œx .u; �/ ; u; �� d�

which may be simplified to obtain

R.u; �I 	/ D
Z t

t0

f Œx .u C 	�; �/ ; u C 	�; �� � f Œx .u; �/ ; u; ��

	
d�
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The last expression yields, upon taking the limit 	 �! 0, the following:

ıx .u; �I t/ D lim
��!0

R.u; �I 	/ D
Z t

t0

ıf .u; �I �/ d�

where

ıf .u; �I �/ � lim
��!0

f Œx .u C 	�; �/ ; u C 	�; �� � f Œx .u; �/ ; u; ��
	

denotes the G-derivative of f Œx .u; t/ ; u; t � relative to the direction �. We assume
that f .	; 	; 	/ is continuously differentiable with respect to both x and u; hence, the
variational chain rule gives

ıx .u; �I t/ D
Z t

t0

�
@f Œx .u; �/ ; u; ��

@x
ıx .u; �I �/C @f Œx .u; �/ ; u; ��

@u
ıu .�/

�
d�

(4.21)

Observing that

ıu .�/ D lim
��!0

.u C 	�/ � u

	
D �

and employing the shorthand y D ıx .u; �I t/, expression (4.21) becomes the inte-
gral equation

y D
Z tf

t0

�
@f

@x
	 y C @f

@u
	 �
�
dt (4.22)

It is of course immediate from this integral equation that y obeys

dy

dt
D @f

@x
	 y C @f

@u
	 � (4.23)

y .t0/ D 0 (4.24)

which is recognized as an initial-value problem.
We now turn our attention to the G-derivative of J :

ıJ .u; �/ D lim
��!0

C

J .u C 	�/ � J .u/

	
(4.25)

To express this derivative we note that

J .u C 	�/ � J .u/
	

D
Z tf

t0

f0 .x .u C 	�; t/ ; u C 	�; t/ � f .x .u; t/ ; u; t/

	
dt

Using arguments completely analogous to those employed above in expressing y,
we find that taking the limit of (4.25) as 	 �! 0C leads to

ıJ .u; �/ D
Z tf

t0

�
@f0

@x
	 y C @f0

@u
	 �
�
dt (4.26)
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where it is implicit that y depends on �. We restate (4.26) by introducing adjoint
variables � defined by the final value problem

� d�

dt
D
�
@f

@x


T
�C

�
@f0

@x


T
(4.27)

�
�
tf
	 D 0 (4.28)

Note that there are n adjoint variables, one for each state equation. Furthermore,
(4.27) is equivalent to

�
�
d�

dt


T
� �T

@f

@x
D @f0

@x

so that (4.26) becomes

ıJ .u; �/ D
Z tf

t0

"

�
�
d�

dt


T
y � �T

@f

@x
y C @f0

@u
�

#

dt (4.29)

Upon noting that h
�T y

itf
t0

D 0

since �
�
tf
	 D 0 and y .t0/ D 0, integration by parts combined with substitution

based on (4.23) yields

Z tf

t0

�
�
d�

dt


T
ydt D

Z tf

t0

�T
dy

dt
dt �

h
�T y

itf
t0

D
Z tf

t0

�T
dy

dt
dt

D
Z tf

t0

�T
�
@f

@x
	 y C @f

@u
	 �
�
dt (4.30)

It follows that

ıJ .u; �/ D
Z tf

t0

"

�
�
d�

dt


T
y � �T @f

@x
y C @f0

@u
�

#

dt

D
Z tf

t0

�
�T
@f

@x
y C �T

@f

@u
� � �T @f

@x
y C @f0

@u
�

�
dt

D
Z tf

t0

�
�T
@f

@u
C @f0

@u

�
�dt (4.31)

when (4.30) is substituted into (4.29).
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Expression (4.31) makes it clear that in the space V D �
L2
�
t0; tf

�	n
we have

ruJ .u/ D �T
@f

@u
C @f0

@u
(4.32)

Furthermore, Theorem 4.13 tells us

ıJ
�
u�; �

	 D 0 8� 2 �L2 �t0; tf
�	n

at an optimal control u�. That is

ruJ
�
u�	 D �T

@f .x .u�; t/ ; u�; t/
@u

C @f0 .x .u�; t/ ; u�; t/
@u

D 0 (4.33)

When the usual definition

H .x; u; �; t/ � f0 .x; u; t/C �f .x; u; t/ (4.34)

of the Hamiltonian is employed, (4.33) is readily seen to be the minimum principle;
that is

u� D arg min
u
H .x; u; �; t/ ” @H

@u
D 0 8t 2 �t0; tf

�

since there are no control constraints. The remaining necessary conditions are the
adjoint equation (4.27) and the transversality condition (4.28), plus of course the
state initial-value problem, which is parametric in �.

Thus, we have shown in this section that continuous-time optimal control nec-
essary conditions, including the minimum principle, may be obtained directly from
the theory of infinite-dimensional mathematical programming for the case of no
terminal time constraints, no terminal costs, and no control constraints. In fact,
it is possible to analyze the general continuous-time optimal control problem in
a completely analogous fashion to obtain the same necessary conditions derived
in Chapter 3 using the perspective of the classical calculus of variations (namely,
the notion of a variation). This demonstration is quite important, for it establishes
that there is indeed a single root problem (an infinite-dimensional mathematical
program) that is the fundamental problem of dynamic optimization.

4.3.2 Variational Inequalities as Necessary Conditions

In this section, we want to consider a more general form of continuous-time op-
timal control and show its necessary conditions may be expressed as a variational
inequality. To that end, we now employ the following form of the state operator:

x .u; t/ D arg



dx

dt
D f .x; u; t/ ; x .t0/Dx0; ‰

�
x
�
tf
	
; tf

�D0
�

2 �H1
�
t0; tf

�	n

(4.35)
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arising in optimal control problem OCP.f0; f;K;‰;U; x0; t0; tf / with x0, t0; and
tf fixed; note that x

�
tf
	

obeys the terminal constraints intrinsic to (4.35). The rel-
evant mappings are

f W �H1
�
t0; tf

�	n � �L2 �t0; tf
�	m � <1C �! �

L2
�
t0; tf

�	n

‰ W <n � <1C �! <r

u 2 U � �
L2
�
t0; tf

�	m

where
�
L2
�
t0; tf

�	m
is the m-fold product of the space of square-integrable

functions L2
�
t0; tf

�
, while

�H1
�
t0; tf

�	n
is the n-fold product of the Sobolev

space H1
�
t0; tf

�
.

Additionally we invoke the following regularity condition for the two-point
boundary-value problem (4.35):

Definition 4.37. Regular state operator. We shall say the state operator x .u; t/
given by (4.35) is regular if it exists for all admissible u and is unique, strongly
continuous and G-differentiable with respect to u.

The notation x .u; t/ is of course familiar from the discussion of Section 4.3.1; it
denotes an operator which determines the state vector for each control vector. In
order to use the state operator notation x .u; t/, we will invoke regularity in the
sense of Definition 4.37 to ensure that the two-point boundary-value problem of
(4.35) is well posed. In particular, the two-point boundary-value problem of (4.35) is
assumed to have a unique solution for all admissible controls. In the event a terminal
state x

�
tf
	

fulfilling the terminal constraints‰
�
x
�
tf
	
; tf

� D 0 cannot be reached
from the intial state x0 for controls u 2 U � � U , then the control constraints must
be restated as

u 2 U nU � � �
L2
�
t0; tf

�	m
(4.36)

In the material that follows, we assume any such restatement to assure reachability
has already occurred and regularity in the sense of Definition 4.37 holds.

Keeping in mind that t0, tf ; and x0 are fixed, the optimal control problem we
consider is

minJ .u/ D K
�
x
�
tf
	
; tf

�C
Z tf

t0

f0.x; u; t/dt (4.37)

subject to

dx

dt
D f .x; u; t/ (4.38)

x .t0/ D x0 2 <n (4.39)

u 2 U (4.40)

‰
�
x
�
tf
	
; tf

� D 0 (4.41)
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where

K W <n � <1C �! <1

f0 W �H1
�
t0; tf

�	n � �L2 �t0; tf
�	m � <1C �! L2

�
t0; tf

�

We wish to formally state and prove the following result:

Theorem 4.16. Necessary conditions for optimal control. Consider the optimal
control problem OCP.f0; f;K;‰;U; x0; t0; tf / defined by (4.37), (4.38), (4.39),
(4.40), and (4.41) with t0, x.t0/; and tf fixed. Suppose the following regularity
conditions are satisfied

R1. u 2 U � �
L2 Œt0; 
 �

	m

R2. the operator x .u; t/ W �L2 �t0; tf
�	m�<1C �! �H1

�
t0; tf

�	n
is regular in the

sense of Definition 4.37;
R3. K W <n � <1C �! <1 is continuously differentiable with respect to x and t;
R4. ‰ W <n � <1C �! <r is continuously differentiable with respect to x and t;
R5. f0 W �H1

�
t0; tf

�	n � �
L2
�
t0; tf

�	m � <1C �! L2
�
t0; tf

�
is continuously

differentiable with respect to x and u;
R6. f W �H1

�
t0; tf

�	n � �
L2
�
t0; tf

�	m � <1C �! �
L2
�
t0; tf

�	n
is continuously

differentiable with respect to x and u;
R7. x0 2 <n, t0 2 <1C, and tf 2 <1CC are known and fixed;
R8. U is convex; and
R9. � 2 <r .

Then any solution u� 2 U obeys the following necessary conditions:

N1. the variational inequality:

mX

iD1

@H .x�; u�; ��; t/
@ui

�
ui � u�

i

	 � 0 8u 2 U (4.42)

where
H .x; u; �; t/ D f0.x; u; t/C �T f .x; u; t/

N2. the state initial-value problem:

dx�

dt
D f

�
x�; u�; t

	

x� .t0/ D x0I

N3. the adjoint dynamics:

.�1/ d�
�

dt
D rxH�I and
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N4. the transversality conditions:

�
�
tf
	 D @ˆ

�
x� �tf

	
; tf

�

@x
�
tf
	

ˆ
�
x� �tf

	
; tf

� D K
�
x� �tf

	
; tf

�C �T‰
�
x� �tf

	
; tf

�

Proof. Note that

x .u; t/ D x .t0/C
Z t

t0

f Œx .u; �/ ; u; �� d�

It is immediate that

x .u C 	�; t/ D x .t0/C
Z t

t0

f Œx .u C 	�/ ; u C 	�; �� d�

Consequently,

ıx .u; �I t/ D
Z t

t0



@f Œx .u; �/ ; u; ��

@x
ıx .u; �I t/C @f Œx .u; �/ ; u; ��

@u
ıu .�/

�
d�

where of course the G-derivative of u obeys

ıu .�/ D lim
��!0

.u C 	�/� u

	
D �

Employing the shorthand y D ıx .u; �I t/, we have the integral equation

y D
Z t

t0

�
@f

@x
y C @f

@u
�

�
dt (4.43)

It is of course immediate from this integral equation that y obeys

dy

dt
D @f

@x
y C @f

@u
�I y .t0/ D 0 (4.44)

which is recognized as an initial value problem, verifying that the G-derivative of x
is well defined. The G-derivative of J obeys

ıJ .u; �/ D
�
@ˆ Œx .t/ ; t �

@x
ıx .u; �I t/

�

tDtf

C
Z tf

t0

�
@f0

@x
ıx .u; �I t/C @f0

@u
ıu .�/

�

D @ˆ
�
x
�
tf
	
; tf

�

@x
y
�
tf
	C

Z tf

t0

�
@f0

@x
y C @f0

@u
�

�
dt
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We introduce adjoint variables � defined by the following final value problem

�d�
dt

D
�
@f

@x


T
�C

�
@f0

@x


T
I �

�
tf
	 D @ˆ

�
x
�
tf
	
; tf

�

@x
�
tf
	 (4.45)

so that

ıJ .u; �/ D
Z tf

t0

"

�
�
d�

dt


T
y � �T

@f

@x
y C @f0

@u
�

#

dt (4.46)

Note that

h
�T y

itf
t0

D �
�
�
tf
	�T

y
�
tf
	 � Œ� .t0/�T y .t0/ D @‰

�
x
�
tf
	
; tf

�

@x
y
�
tf
	

due to (4.45) and the fact that y .t0/ D 0, so an integration by parts yields

Z tf

t0

�
�
d�

dt


T
ydt D

Z tf

t0

�T
dy

dt
dt �

h
�T y

itf
t0

D
Z tf

t0

�T
dy

dt
dt � @ˆ

�
x
�
tf
	
; tf

�

@x
y
�
tf
	

D
Z tf

t0

�T
�
@f

@x
	 y C @f

@u
	 �
�
dt � @ˆ

�
x
�
tf
	
; tf

�

@x
y
�
tf
	

(4.47)

It follows that

ıJ .u; �/ D @ˆ
�
x
�
tf
	
; tf

�

@x
y
�
tf
	C

Z tf

t0



�T

�
@f

@x
	 y C @f

@u
	 �
�

��T @f
@x
y C @f0

@u
�

�
dt � @ˆ

�
x
�
tf
	
; tf

�

@x
y
�
tf
	

D
Z tf

t0

�
�T
@f

@u
C @f0

@u

�
�dt

By virtue of the definition of the Hamiltonian, we have

ıJ .u; �/ D
Z tf

t0

�
@H

@u
�

�
dt (4.48)
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as an expression for the G-derivative of the criterion with respect to u. By Theorem
4.15, optimality requires u� 2 U to obey

ıJ.u�; �/ � 0 8� D u � u� (4.49)

Thus, by statement (4.16), we know

ıJ.u�; u � u�/ D hrJ.u�/; u � u�i � 0 8u 2 U (4.50)

where

ŒrJ .u/�i D @H

@ui
(4.51)

for t 2 �t0; tf
�
. The desired necessary conditions (4.42) are immediate from (4.50)

and (4.51). �
It is tempting to say that, if one additionally requires the Hamiltonian to be convex
in its controls u, then the necessary conditions of Theorem 4.16 above will become
sufficient. This is, in general, not true. Rather, merely imposing the requirement for
the Hamiltonian to be convex in u will only make the variational inequality (4.42)
equivalent to the minmum principle. To assure sufficiency of the necessary condi-
tions of Theorem 4.17, one must require the Hamiltonian to be convex in .x; u/,
thereby allowing application of an extended version of the Mangasarian sufficiency
theorem presented in Chapter 3.

It should also be clear to the reader that the variational inequality (4.42), which
holds for each instant of time, leads directly to the following infinite-dimensional
variational inequality:

Z tf

t0

mX

iD1

@H Œx .u�; t/ ; u�; � .u�; t/ ; t �
@ui

�
ui � u�

i

	
dt � 0 8u 2 U (4.52)

which is also a necessary condition. In (4.52), we have taken some notational lib-
erties in introducing the adjoint operator � .u; t/ without having formally defined it;
hopefully this informality does not hamper the reader’s understanding. We will have
more to say about infinite-dimensional variational inequalies in Chapter 6.

4.4 Optimal Control with Time Shifts

It is possible to extend the results obtained previously for deterministic optimal con-
trol to consider the possibility that control variables with state-dependent time shifts
may appear in the formulation of some optimal control problem of interest. In par-
ticular, we will allow both the integrand of the criterion functional and the dynamics
themselves to involve time shifts that are state-dependent. Such time-shifted prob-
lems arise in dynamic traffic assignment, logistics, and supply chain modeling, as
well as in other applications.
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4.4.1 Some Preliminaries

We now consider a somewhat different state operator

x .u; u� ; t/

D arg



dx

dt
D f .x; u; u� ; t/ ; x .t0/ D x0; ‰

�
x
�
tf
	
; tf

� D 0

�
2 �H1

�
t0; tf

�	n

(4.53)

where t0, tf ; and x0 are fixed and

�
t0; tf

� � <1C

Furthermore u� .t/ is a shorthand for the shifted control vector

u� .t/ D

0

B
@

u1 .t � 
1 .x//
:::

um .t � 
m .x//

1

C
A

where

i W �H1

�
t0; tf

�	n �! <1C
for each i 2 Œ1;m�. Other relevant mappings needed in this discussion are

f W �H1
�
t0; tf

�	n � �L2 �t0; tf
�	m � �L2 �t0; tf

�	m � <1C �! �
L2
�
t0; tf

�	n

‰ W <n � <1C �! <r

K W <n � <1C �! <1

u 2 U � �
L2
�
t0; tf

�	m

u� 2 �L2 �t0; tf
�	m

and
ˆ
�
x
�
tf
	
; tf ; v

� D K
�
x
�
tf
	
; tf

�C vT‰
�
x
�
tf
	
; tf

�
(4.54)

As is by now familiar,
�
L2
�
t0; tf

�	m
is the m-fold product of the space of square-

integrable functions L2
�
t0; tf

�
, while

�H1
�
t0; tf

�	n
is the n-fold product of the

Sobolev space H1
�
t0; tf

�
. We invoke the following regularity condition for the

time-shifted two-point boundary-value problem intrinsic to (4.53):

Definition 4.38. Regular dynamics. We shall say the state operator x .u; u� ; t/
given by (4.53) is regular if it exists for all admissible u and is unique, strongly
continuous, and G-differentiable with respect to u and u� .

Remarks about reachability analogous to those made following Definition 4.37 ap-
ply to Definition 4.38 and the interpretation of x .u; u� ; t/.
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4.4.2 The Optimal Control Problem of Interest

Keeping in mind t0, tf ; and x0 are fixed, we consider the following optimal control
problem:

minK
�
x
�
tf
	
; tf

�C
Z tf

t0

f0.x; u; u� ; t/dt (4.55)

subject to

dx

dt
D f .x; u; u� ; t/ (4.56)

x .t0/ D x0 (4.57)

u 2 U (4.58)

‰
�
x
�
tf
	
; tf

� D 0 (4.59)

This is a nonstandard optimal control problem due to the presence of state-
dependent time shifts, and we will need to derive its necessary conditions. We
refer to this optimal control problem as OCP.f0; f;K;‰;U; x0; t0; tf ; 
/.

4.4.3 Change of Variable

Let us briefly consider the following abstract integral:

I D
Z tf

t0

F.t/dt

For this integral we wish to make a change of variables, namely

s D t � w.t/

Thus, we have

ds D
�
1 � dw

dt



dt

or equivalently

dt D 1

1 � Pwds
Therefore, we have

I D
Z tf �w.tf /

t0�w.t0/

�
F.t/

1 � Pw .t/
�

tDsCw.t/

ds (4.60)

The meaning of �
F.t/

1 � Pw .t/
�

tDsCw.t/
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is that the integrand of (4.60) is to be evaluated at the instant of time t that solves
the fixed-point problem

t D s C w.t/

for each s 2 �
t0 � w.t0/; tf � w.tf /

�
that is visited during the integration process.

Note that the roles of s and t may be exchanged, so that (4.60) becomes the equiva-
lent expression

I D
Z tf �w.tf /

t0�w.t0/

�
F.s/

1� Pw .s/
�

sDtCw.s/

dt

In developing necessary conditions for optimal control with time shifts, we will
employ a change of variables and related notation similar to that introduced above.

4.4.4 Necessary Conditions for Time-Shifted Problems

We will state and prove the following result that extends the analysis by Budelis and
Bryson (1970) of problems involving time shifts that are fixed:

Theorem 4.17. Necessary conditions for optimal control with time shifts. Consider
the optimal control problem OCP.f0; f;K;‰;U; x0; t0; tf ; 
/ defined by (4.55),
(4.56), (4.57), (4.58), and (4.59) with t0, x.t0/; and tf fixed. Suppose the follow-
ing regularity conditions are satisfied:

R1. u 2 U � �
L2
�
t0; tf

�	m
;

R2. u� 2 U 2 �L2 �t0; tf
�	m

;
R3. x .u; u� ; t/ W �L2 �t0; tf

�	m � �
L2
�
t0; tf

�	m � <1C �! �H1
�
t0; tf

�	n
is

regular in the sense of Definition 4.38;
R4. 
 is continuously differentiable with respect to x;
R5. K W <n � <1C �! <1 is continuously differentiable with respect to x and t ;
R6. ‰ W <n � <1C �! <r is continuously differentiable with respect to x and t ;
R7. f0 W �H1

�
t0; tf

�	n � �L2 �t0; tf
�	m � �

L2
�
t0; tf

�	m � <1C �! L2
�
t0; tf

�

is continuously differentiable with respect to x, u; and u� ;
R8. f W �H1

�
t0; tf

�	n��L2 �t0; tf
�	m��L2 �t0; tf

�	m�<1C �! �
L2
�
t0; tf

�	n
is

continuously differentiable with respect to x; u; and u� ;
R9. x0 2 <n, t0 2 <1C, and tf 2 <1CC are known and fixed;

R10. U is convex; and
R11. v 2 <r .

Then any solution u� 2 U obeys the following necessary conditions:

N1. the variational inequality:

mX

iD1

@H1
�
x�; u�; u�

� ; �
�; t
	

@ui

�
ui � u�

i

	 � 0 8u 2 U
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where
H1 .x; u; u� ; �; t/ D f0.x; u; u� ; t/C �T f .x; u; u� ; t/ I

N2. the state dynamics:

dx�

dt
D f

�
x�; u�; u�

� ; t
	

x� .t0/ D x0 ;

N3. the adjoint dynamics:

.�1/ d�
�

dt
D rx

�
��	T f

�
x�; u�; u�

� ; t
	

; and

N4. the transversality condition:

�� �tf
	 D @ˆ

�
x� �tf

	
; tf ; v

�

@x

Proof. A similar result was proven by Budelis and Bryson (1970). Our proof differs
from theirs by making the time-shifts state-dependent, relying on the notion of a
G-derivative, and emphasizing the variational inequality version of the necessary
conditions for optimal control that are the subject of Theorem 4.15. We begin by
noting that

x .u; u� ; t/ D x .t0/C
Z t

t0

f Œx .u; u� ; �/ ; u; u� ; �� d�

It is immediate that

x .u C 	�; u� C 	�� ; t/ D
x .t0/ C

Z t

t0

f Œx .u C 	�; u� C 	�� ; �/ ; u C 	�; u� C 	�� ; �� d�

Consequently,

ıx .u; �I u� ; �� I t/ D
Z t

t0

@f Œx .u; u� ; �/ ; u; u� ; ��

@x
ıx .u; �I u� ; �� I t/

C @f Œx .u/ ; u; u� ; ��

@u
ıu .�/

C@f Œx .u/ ; u; u� ; ��

@u�
ıu� .�� / d�
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where the G-derivatives of u and u� obey

ıu .�/ D lim
��!0

.u C 	�/� u

	
D � ıu� .�� / D lim

��!0

.u� C 	�� / � u�
	

D ��

(4.61)

Employing the shorthand y D ıx .u; �I u� ; �� I t/, we have the integral equation

y D
Z t

t0

�
@f

@x
y C @f

@u
� C @f

@u�
��

�
dt (4.62)

It is of course immediate from this integral equation that y obeys

dy

dt
D @f

@x
y C @f

@u
�C @f

@u�
�� I y .t0/ D 0 (4.63)

which is recognized as an initial value problem, verifying that the G-derivative of x
is well defined. The G-derivative of J obeys

ıJ .u; �I u� ; �� / D
�
@ˆ Œx .t/ ; t; v�

@x
ıx .u; �I u� ; �� /

�tf

t0

C
Z tf

t0

�
@f0

@x
ıx .u; �I u� ; �� /C @f0

@u
ıu .�/C @f0

@u�
ıu .�� /

�

D @ˆ
�
x
�
tf
	
; tf ; v

�

@x
y
�
tf
	C

Z tf

t0

�
@f0

@x
y C @f0

@u
� C @f0

@u�
��

�
dt

We introduce adjoint variables � defined by the final value problem

�d�
dt

D
�
@f

@x


T
�C

�
@f0

@x


T
I � �tf

	 D @ˆ
�
x
�
tf
	
; tf ; v

�

@x
(4.64)

so that

ıJ .u; �I u� ; �� / D @ˆ
�
x
�
tf
	
; tf ; v

�

@x
y
�
tf
	

C
Z tf

t0

"

�
�
d�

dt


T
y � �T

@f

@x
y C @f0

@u
�C @f0

@u�
��

#

dt

Note that

h
�T y

itf
t0

D �
�
�
tf
	�T

y
�
tf
	 � Œ� .t0/�

T y .t0/ D @ˆ
�
x
�
tf
	
; tf ; v

�

@x
y
�
tf
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due to (4.64) and the fact that y .t0/ D 0, so an integration by parts yields

Z tf

t0

�
�
d�

dt


T
ydt D

Z tf

t0

�T
dy

dt
dt �

h
�T y

itf
t0

D
Z tf

t0

�T
dy

dt
dt � @ˆ

�
x
�
tf
	
; tf ; v

�

@x
y
�
tf
	

D
Z tf

t0

�T
�
@f

@x
	 y C @f

@u
	 � C @f

@u�
��

�
dt

� @ˆ
�
x
�
tf
	
; tf ; v

�

@x
y
�
tf
	

It follows that

ıJ .u; �I u� ; �� / D @ˆ
�
x
�
tf
	
; tf ; v

�

@x
y
�
tf
	

C
Z tf

t0



�T

�
@f

@x
	 y C @f

@u
	 � C @f

@u�
��

�

��T @f
@x
y C @f0

@u
�C @f0

@u�
��

�
dt � @ˆ

�
x
�
tf
	
; tf ; v

�

@x
y
�
tf
	

D
Z tf

t0

�
�T
@f

@u
C @f0

@u

�
�dt C

Z tf

t0

�
�T

@f

@u�
C @f0

@u�

�
��dt

Since H1 .x; u; u� ; �; t/ D f0 .x; u; u� ; t/C �T f .x; u; u� ; t/, we have

ıJ .u; �I u� ; �� / D
Z tf

t0

�
@H1

@u
�C @H1

@u�
��

�
dt (4.65)

as an expression for the G-derivative of the criterion with respect to both u and u� .
Moreover, terms of the form

Z tf

t0

@H1

@ .u� /i
.ıu� /i dt D

Z tf

t0

@H1

@ .u� /i
ıui .t C 
i .xi // dt

may be re-expressed by making the change of variables

t D si C 
i Œx .t/�
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Because the 
i .x/ are differentiable with respect to xi , the implicit function theorem
gives

dt

dsi
D �@ Œt � si � 
i .x/� =@si

@ Œt � si � 
i .x/� =@t D 1

1 �Pn
jD1

@
i .x/

@xj
Pxj

or,

dt D 1

1�Pn
jD1

@
i .x/

@xj
Pxj
dsi (4.66)

Note that

t D t0 H) si D t0 � 
i Œx .t0/� I t D tf H) si D tf � 
i
�
x
�
tf
	�

A change of variables based on (4.66) leads to

Z tf

t0

@H1

@ .u�/i
ı .u� /i dt D

Z tf ��i.xi.tf //

t0��i .x.t0//

2

6
6
4
@H1

@ .u� /i

1

1 �Pn
jD1

@
i .x/

@xj
Pxj

3

7
7
5

si

ı .u/i dt

(4.67)

where si .t/ obeys si .t/ D arg Œs D t C 
i Œx .s/�� for any time t visited during the
integration process; that is, the expression

@H1

@ .u�/i

1

1 �Pn
jD1

@
i .x/

@xj
Pxj

taken from (4.67) is meant to be evaluated at si . Furthermore, without loss of gen-
erality, we may consider ıui D 0 for any time t < t0. Therefore, upon recalling
(4.61), we have from (4.67) the following:

Z tf

t0

@H1

@ .u� /i
ı .u� /i dt D

Z tf ��i .xi.tf //

t0

2

6
6
4
@H1

@ .u�/i

1

1 �Pn
jD1

@
i .x/

@xj
Pxj

3

7
7
5

si .t/

�idt

(4.68)
since ı .u/ D �. We next note that

Z tf

t0

@H1

@ui
�idt D

Z tf ��i.xi.tf //

t0

@H1

@ui
�idt C

Z tf

tf ��i .xi.tf //

@H1

@ui
�idt (4.69)
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From (4.65), (4.68), and (4.69) we see that

ŒıJ .u; �I u� ; �� /�i D ŒıJ .u; �/�i

�
Z tf

tf ��i.xi.tf //

@H1

@ui
�idt

C
Z tf ��i .x.tf //

t0

8
ˆ̂
<̂

ˆ̂
:̂

@H1

@ui
C

2

6
6
4
@H1

@ .u� /i

1

1 �Pn
jD1

@
i .x/

@xj
Pxj

3

7
7
5

si

9
>>>=

>>>;

�idt

which establshes that

ŒrJ .u/�i D @H1

@ui
if t 2 �tf � 
i

�
x
�
tf
		
; tf

�

ŒrJ .u/�i D @H1

@ui
C

2

66
4
@H1

@ .u� /i

1

1 �Pm
jD1

@
i .x/

@xj
Pxj

3

77
5

si

if t 2 �t0; tf �
i
�
x
�
tf
	��

The variational inequality optimality condition

ıJ
�
u�; �

	 D hrJ �u�	 ; �i D
mX

iD1

Z tf

t0

�rJ �u�	�
i

�
ui � u�

i

	
dt � 0 8u 2 U

directly yields the desired variational inequality necessary condition when it is ob-
served that each direction may be stated as � D .u � u�/ for u 2 U . �

The following result, stemming directly from the final remarks of the proof imedi-
ately above, is important:

Corollary 4.1. Gradient of the criterion in the presence of time shifts. Under the
given of Theorem 4.17, the gradient of the criterion (4.55) is defined by

ŒrJ .u/�i D @H1

@ui
if t 2 �tf � 
i

�
x
�
tf
		
; tf

�

ŒrJ .u/�i D @H1

@ui
C

2

66
4
@H1

@ .u� /i

1

1�Pm
jD1

@
i .x/

@xj
Pxj

3

77
5

si .t/

if t 2 �t0; tf �
i
�
x
�
tf
		�

for i D Œ1;m�.
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4.4.5 A Simple Abstract Example

Consider the optimal control problem

minJ.u/ D
Z 1

0

1

2
u2dt

subject to

dx

dt
D x C u.t �  /

0 � u � 1

x .0/ D 1

where  is a constant scalar time lag obeying

0 <  < 1

and we use the abbreviation

u � u .t �  /

to denote the time shifted control. By inspection, we see that the null control
(u� D 0) will be optimal for this problem.

We know the relevant Hamiltonian is

H D 1

2
u2 C � Œx C u.t �  /�

We will need the partial derivatives

@H

@u
D u

@H

@u 
D �

@H

@x
D �

Let us first consider t 2 Œ1 �  ; 1�. The optimal control problem is one for which
the variational inequality principle is

@H�

@u

�
u � u�	 D u� �u � u�	 � 0 0 � u � 1 and 0 � u� � 1 t 2 Œ1 �  ; 1�

(4.70)
Any solution of (4.70) must solve the following mathematical program

min u�u s.t. 1 � u � 0 and � u � 0
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which has the solution
u� D 0 for t 2 Œ1 �  ; 1�

Let us now consider t 2 Œ0; 1�  �. An optimal solution u� must obey the variational
inequality principle

8
ˆ̂
<

ˆ̂
:

@H�

@u
C

2

6
4
@H�

@
�
u 
	
i

1

1 � d 

dt

3

7
5

s.t/

9
>>=

>>;

�
u � u�	 � 0

Therefore, u� solves

˚
u� C Œ��s.t/

� �
u � u�	 � 0 0 � u � 1 and 0 � u� � 1 t 2 Œ0; 1 �  �

where

s.t/ D t C  

Furthermore

.�1/d�
dt

D @H

@x
D �

� .1/ D 0

Consequently
� D K exp.�t/

and

� .1/ D K

e
D 0 H) K D 0 H) � D 0 for t 2 Œ0; 1 �  �

Furthermore, for this unusually easy example problem, we have

Œ��s.t/ D � .s/ D � .t C  / D 0

Thus, the relevant variational inequality is

�
u� C 0

	 �
u � u�	 � 0 0 � u � 1 and 0 � u� � 1 t 2 Œ0; 1 �  � (4.71)

It is trivial to show via the Kuhn-Tucker conditions for (4.71) that again

u� D 0 for t 2 Œ0; 1�  �

Consequently
u� D 0 for t 2 Œ0; 1�

as expected.
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4.5 Derivation of the Euler-Lagrange Equation

In this section we are concerned with the following problem:

minJ .x/ D
Z tf

t0

f0 Œx .t/ ; Px .t/ ; t � dt (4.72)

x .t0/ D x0 (4.73)

x
�
tf
	 D xf (4.74)

where x0 and xf are known (fixed) vectors; t0 and tf are also fixed. The functional
J .x/ is to be minimized on

�
C 1

�
t0; tf

�	n
, the vector space of continuous functions

with continuous first derivatives relative to the segment
�
t0; tf

�
of the nonnegative

real line <1C. This is the foundation problem of the classical calculus of variations,
that we studied in Chapter 3. It can be shown that C 1

�
t0; tf

�
is not complete and,

hence, not a Banach space nor a Hilbert space. The implication of C 1
�
t0; tf

�
not

being a Hilbert space is that the Riesz representation theorem does not hold and the
G-derivative ıJ .x; �/ is not a continuous linear form from which we can identify
the gradient of the functional J .x/.

The relevant G-derivative for directions � 2 �C 1 �t0; tf
�	n

is

ıJ .x; �/ D lim
��!0

J .x C 	�/ � J .x/

	

D
�
d

d	

Z tf

t0

f0
�
x C 	�; Px C 	 P�; t	 dt

�

�D0
(4.75)

If we make the definition

I �
Z tf

t0

f0
�
x C 	�; Px C 	 P�; t	 dt

then the chain rule tells us that for all � 2 C 1 �t0; tf
�

ıJ .x; �/ D
"

@I

@ .x C 	�/

@ .x C 	�/

@	
C @I

@
� Px C 	 P�	

@
� Px C 	 P�	

@	

#

�D0

D
Z tf

t0

�
@f0 .x; Px; t/

@x
� C @f0 .x; Px; t/

@ Px
P�
�
dt (4.76)

where the partial derivatives are to be interpreted as (transposed) gradients according
to the usual scheme. From the preceding discussion, it is clear that the gradient of
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J cannot be found in the usual way. Furthermore, because the endpoints x0 and xf
are fixed, we expect that

ıJ Œx .t0/ ; � .t0/� D lim
��!0

J Œx .t0/C 	� .t0/� � J Œx .t0/�

	
D 0 (4.77)

a fact that is ensured by taking � .t0/ D 0; similar reasoning for the other endpoint
leads to the following:

� .t0/ D �
�
tf
	 D 0 (4.78)

which are our boundary conditions for the directions � 2 C 1 �t0; tf
�

of (4.76).
Thus, based on (4.78) and our discussion of unconstrained minimization in

infinite-dimensional vector spaces, the appropriate necessary conditions are

ıJ .x; �/ D
Z tf

t0

�
@f0 .x; Px; t/

@x
� C @f0 .x; Px; t/

@ Px
P�
�
dt D 0 (4.79)

� .t0/ D �
�
tf
	 D 0 (4.80)

for all � 2 C 1 �t0; tf
�
. We may now invoke the fundamental lemma of the calculus

of variations presented in Chapter 3; doing show establishes that (4.79) and (4.80)
can only hold if

@f0 .x; Px; t/
@x

� d

dt

"
@f0

�
x;

:
x; t

	

@ Px

#

D 0 (4.81)

x .t0/ D x0 (4.82)

x
�
tf
	 D xf (4.83)

where (4.81) is recognized as the Euler-Lagrange equation and (4.82) and (4.83)
are the original boundary conditions of the problem we have analyzed. Note in par-
ticular that these relationships constitute necessary conditions for the calculus of
variations problem (4.72), (4.73), and (4.74); they are identical to those we derived
in Chapter 3.

4.6 Kuhn-Tucker Conditions for Hilbert Spaces

We have been able so far to uncover several properties of infinite-dimensional math-
ematical programs that may be viewed as generalizations of results we know to
be true for finite-dimensional mathematical programs. It is therefore no surprise
that infinite-dimensional programs have necessary conditions that are recognizable
generalizations of the finite-dimensional Kuhn-Tucker conditions when a suitable
constraint qualification and other regularity conditions are enforced.

Let V be a real Hilbert space, arbitrary elements of which are denoted by v and
�, while V � denotes the dual space to V . Suppose that J.v/ is a functional over
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V , which is differentiable in the sense of Gâteaux. Furthermore, let the gi .v/ for
i 2 Œ1;m� be functionals which are also differentiable in the sense of Gâteaux. We
denote the G-derivatives of J.v/ and of the gi .v/ by

ıJ .v; �/ and ıgi .v; �/ i 2 Œ1;m� (4.84)

for directions � 2 V . These derivatives are considered elements of the dual space
V �. Additionally, we shall assume the G-derivatives (4.84) are continuous linear
forms in �, so that

ıJ .v; �/ D hrJ.v/; �i (4.85)

ıgi .v; �/ D hrgi .v/; �i i 2 Œ1;m� (4.86)

and
ıJ .v; ��/ D �ıJ .v; �/ (4.87)

for any scalar �. The problem we wish to address is of course

minJ.v/ s:t: v 2 U � fv W gi .v/ � 0 i 2 Œ1;m�g � V (4.88)

We will invoke a constraint qualification reminiscent of that employed by Kuhn and
Tucker (1951) for finite-dimensional mathematical programs and applied by Ritter
(1967) to infinite-dimensional programs. That constraint qualification, which serves
to exclude certain singularities which might otherwise occur on the boundary of U ,
is the subject of the following definition:

Definition 4.39. Kuhn-Tucker constraint qualification for infinite-dimensional
mathematical program (4.88). We will say the Kuhn-Tucker constraint qualifi-
cation holds if there exists a differential mapping h.t/ W Œ0; 1� �! V with the
properties:

1. h.t/ 2 U for t 2 Œ0; ˛� � <1C;
2. h.0/ D v�; and

3.
dh .0/

dt
D ˇ� for ˇ 2 <1CC

for any point v� 2 U and � 2 V such that ıgi .v�; �/ < 0 for all i 2 I D
fi W gi .v�/ D 0g.

Armed with the foregoing constraint qualification, we are ready to state and prove
the following theorem:

Theorem 4.18. Kuhn-Tucker optimality conditions for mathematical program
(4.88). Suppose the constraint qualification expressed in Definition 4.39 holds.
Then:

(i) If J.v/ and the gi .v/ for i 2 Œ1;m� are G-differentiable and their G-derivatives
are continuous linear forms on the Hilbert space V , then there exist scalar
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multipliers �i for all i 2 Œ1;m� such that the following conditions are necessary
for v� to be a local minimum of (4.88):

rJ.v�/C
mX

iD1
�irgi .v�/ D 0 (4.89)

�igi .v
�/ D 0 i 2 Œ1;m� (4.90)

�i � 0 i 2 Œ1;m� (4.91)

(ii) If, in addition, J.v/ is convex on U and the gi .v/ are convex on U for all
i 2 Œ1;m�, then conditions (4.89), (4.90), and (4.91) are also sufficient for v� to
be a global minimum of J.v/ on U .

Proof. (i) Let v� be a local minimum. If gi .v�/ < 0 for each i , then ıJ.v�; �/ D 0

for all � 2 V ; it follows easily that rJ.v�/ D 0 on U . Thus, for such a circum-
stance, conditions (4.89), (4.90), and (4.91) are satisfied trivially with

�1 D �2 D 	 	 	 D �m D 0

Now suppose

gi .v
�/ D 0 i 2 I

gi .v
�/ < 0 i … I

Let � be an arbitrary element of V such that ıgi .v�; �/ > 0 for all i 2 I and � 2 U .
For the differential mapping h, we know that

J.h/ D J.v�/C ıJ.v�;
dh .0/

dt
t/CO.j t j/ (4.92)

By the given, v D h.t/ is feasible for t 2 Œ0; 1�. If ˛ is a suitably small positive
scalar and we set t D ˛ in (4.92), terms of order o.˛/ are negligible. So we have

0 � J.h/ � J.v�/ D ˛ˇŒıJ.v�; �/�

since Ph.0/ D ˇ� and ıJ.v�; �/ is a continuous linear form. Because ˇ > 0, it
follows that

ıJ.v�; �/ � 0 (4.93)

Furthermore, by virtue of the constraint qualification, we have

ıgi .v
�; �/ > 0 (4.94)

So results (4.93) and (4.94) characterizing optimality in the presence of the con-
straint qualification will hold, if the following system has no solution,:

ıgi .v
�; �/ � 0 (4.95)
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ıJ.v�; �/ < 0 (4.96)

Because the G-derivatives are continuous linear forms, we have

ıgi .v
�; �/ D hrgi .v�/; �i � 0 (4.97)

ıJ.v�; �/ D hrJ.v�/; �i < 0 (4.98)

By Farkas’ lemma, since the system comprised of (4.97) and (4.98) has no solution,
it must be that

�rg.v�/
�T
� D �rJ.v�/ (4.99)

� � 0 (4.100)

has a solution, where

� D .�i W i 2 I /
By defining

�i D 0 8i … I
we assure that

rJ.v�/C
mX

iD1
�irgi .v�/ D 0 (4.101)

�igi .v
�/ � 0 (4.102)

�i � 0 (4.103)

(ii) Suppose .v�; �1; : : : ; �m/ satisfies the conditions (4.89), (4.90), and (4.91). Since
J.v/ is convex by the given

J.v�/C t ŒJ.v/ � J.v�/� 5 J Œv� C t.v � v�/� (4.104)

holds for any pair .v; v�/ and t 2 Œ0; 1�. For t 2 .0; 1� the relation (4.104) is equiva-
lent to

J.v/� J.v�/ 5 1

t
fJ Œv� � t.v � v�/�C J.v�/g

Since J.v/ is G-differentiable, it follows that

J.v/ � J.v�/ 5 ıJ.v�; v � v�/ D hrJ.v�/; v � v�i (4.105)

Similarly, we obtain for each i 2 Œ1;m�

gi .v/� gi .v
�/ = ıgi .v

�; v � v�/ D hrgi .v�/; v � v�i (4.106)
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Because of (4.90), if �i > 0, then gi .v�/ D 0; in that case (4.106) yields

hrgi .v�/; v � v�i 5 gi .v/

Therefore, we see that by exploiting the Kuhn-Tucker identity (4.89)

J.v/ � J.v�/ 5 hrJ.v�/; v � v�i D
mX

iD1
�i hrgi .v�/; v � v�i 5 0

for any v 2 U . This completes the proof. �

4.7 Mathematical Programming Algorithms

For almost every algorithm for finite-dimensional mathematical programs, there is
an analogous algorithm for infinite-dimensional mathematical programs. In this sec-
tion we study three categories of algorithms for infinite-dimensional mathematical
programming:

1. steepest descent methods
2. projected gradient methods
3. penalty function methods

We give detailed statements of continuous-time algorithms belonging to each of
these categories; proofs of convergence are also provided. All algorithms are illus-
trated by application to example problems. The reader should note that, for each
algorithm considered, our theoretical presentation and our examples are limited to
fixed step sizes.

4.7.1 The Steepest Descent Algorithm

The notion of steepest descent is an algorithmic philosophy for unconstrained opti-
mization wherein we follow the negative gradient of the criterion when minimizing.
The algorithm can be applied to infinite-dimensional mathematical programs of the
form

minJ .u/ s.t. u 2 V
where V is a Hilbert space. If we take V D �

L2
�
t0; tf

�	m
, the method is applicable

to optimal control problems of the form

minJ .u/ D K
�
x
�
tf
	
; tf

�C
Z tf

t0

f0 .x; u; t/ dt (4.107)
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subject to

dx

dt
D f .x; u; t/ (4.108)

x .t0/ D x0 (4.109)

where x0 is a known, fixed vector and both t0 and tf are fixed. Note that

H .x; u; �; t/ D f0.x; u; t/C �T f .x; u; t/

is the Hamiltonian for the unconstrained problem (4.107), (4.108), and (4.109).

4.7.1.1 Structure of the Steepest Descent Algorithm

The specific algorithmic structure we are considering is:

Steepest Descent Algorithm

Step 0. Initialization. Set k D 0 and pick u0 .t/ 2 �L2 �t0; tf
�	m

.

Step 1. Find state trajectory. Using uk .t/ solve the state initial-value problem

dx

dt
D f

�
x; u0; t

	

x .t0/ D x0

and call the solution xk .t/.

Step 2. Find adjoint trajectory. Using uk .t/ and xk .t/ solve the adjoint final-value
problem

.�1/ d�
dt

D @H
�
xk ; uk; �; t

	

@x

�
�
tf
	 D @K

�
x
�
tf
	
; tf

�

@x

and call the solution �k .t/.

Step 3. Find gradient. Using uk .t/, xk .t/ and �k .t/ calculate

ruJ.u
k/ D

"
@H

�
xk ; uk; �; t

	

@u

#T

@H
�
xk ; uk; �; t

	

@u
D @f0.x

k; uk; t/

@u
C
�
�k
�T @f

�
xk ; uk; t

	

@u
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Step 4. Update and apply stopping test. For a suitably small step size 	k , update
according to

ukC1 D uk � 	kruJ.u
k/

If an appropriate stopping test is satisfied, declare

u� .t/ 
 ukC1 .t/

Otherwise set k D k C 1 and go to Step 1.

4.7.1.2 Convergence of the Steepest Descent Algorithm

To establish convergence of the steepest descent algorithm, it is helpful to first es-
tablish two lemmas. The first preliminary result is the following:

Lemma 4.1. Suppose the functional J W V �! <1 has a well-defined gradient on
V , a reflexive Banach space. Take rJ .u/ to be uniformly continuous, and define

gk.	/ � J
�

uk C 	dk
�

Let the step size 	k be defined by

	k > 0

g0
k.	k/ D 0

J
�

uk C 	kd
k
�

� J
�

uk C 	dk
�

8	 2 Œ0; 	k�

Then
	k > �

�ˇˇc 	 g0
k .0/

ˇ
ˇ	 8c 2 .0; 1/ (4.110)

where �
�ˇˇc 	 g0

k
.0/
ˇ
ˇ	 satisfies

�
�
�ukC1 � uk

�
�
� � �

�ˇˇc 	 g0
k .0/

ˇ
ˇ	

Proof. The assumption of uniform continuity means

ku � vk � � ."/ H) jhrJ .u/� rJ .v/ ; �ij � " 8� such that k�k D 1

(4.111)
while

� ."/ �! 0C ” " �! 0C (4.112)

Following Minoux (1986) we define

gk .	/ D J
�

uk C 	dk
�

(4.113)
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Then we have

g0
k .	/ D d

d	
J
�

uk C 	dk
�

D
D
rJ

�
uk C 	dk

�
; dk

E
(4.114)

We assert that

	k >
�
�ˇˇc 	 g0

k
.0/
ˇ
ˇ	

�
�dk

�
� D �

�ˇˇc 	 g0
k .0/

ˇ
ˇ	 8c 2 .0; 1/ (4.115)

when we assume
�
�dk

�
� D 1. To prove this assertion, suppose

	k � �
�ˇˇc 	 g0

k .0/
ˇ
ˇ	 (4.116)

Then, note
ukC1 � uk D 	kd

k (4.117)

From (4.116) and (4.117), we have

�
�
�ukC1 � uk

�
�
� D 	k

�
�
�dk

�
�
� � �

�ˇˇc 	 g0
k .0/

ˇ
ˇ	

If we take " D ˇ
ˇc 	 g0

k
.0/
ˇ
ˇ, the precondition of (4.111) is met. Therefore, also by

(4.111), we have

ˇ
ˇc 	 g0

k .0/
ˇ
ˇ �

ˇ
ˇ̌DrJ

�
uk C 	kd

k
�

� rJ
�

uk
�
; dk

Eˇˇ̌

D
ˇ̌
ˇ
D
rJ

�
uk C 	kd

k
�
; dk

E
�
D
rJ

�
uk
�
; dk

Eˇ̌
ˇ

D ˇ
ˇg0
k .	k/� g0

k .0/
ˇ
ˇ D ˇ

ˇg0
k .0/

ˇ
ˇ (4.118)

That is ˇ
ˇc 	 g0

k .0/
ˇ
ˇ � ˇ

ˇg0
k .0/

ˇ
ˇ (4.119)

which is a contradiction since c 2 .0; 1/. Thus, assertion (4.115) holds. �

The following result, which depends on Lemma 4.1, will be directly employed in
the convergence proof:

Lemma 4.2. For the given of Lemma 4.1, the following inequality obtains


Jk

�
ukI 	k

�
� 
Jk

�
ukI N	k

�
� �

�ˇˇc 	 g0
k .0/

ˇ
ˇ	 .1 � c/

ˇ
ˇg0
k .0/

ˇ
ˇ (4.120)

where

N	k � �
�ˇˇc 	 g0

k .0/
ˇ
ˇ	


Jk

�
ukI 	

�
� J

�
uk
�

� J
�

uk C 	dk
�

8	 2 Œ0; 	k�
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Proof. By the given, we know (4.115) obtains. Also by virtue of the given, we have
the following condition for the step size

J
�

uk C 	kd
k
�

� J
�

uk C 	dk
�

8	 2 Œ0; 	k�

from which it follows that


Jk

�
ukI 	

�
D J

�
uk
�

� J
�

uk C 	dk
�

(4.121)

� J
�

uk
�

� J
�

uk C 	kd
k
�

D 
Jk

�
ukI 	k

�
(4.122)

That is

Jk

�
ukI 	

�
� 
Jk

�
ukI 	k

�
8	 2 Œ0; 	k� (4.123)

In (4.123) choose
	 D N	k � �

�ˇˇc 	 g0
k .0/

ˇ
ˇ	 (4.124)

so that from (4.115) we have
N	k < 	k (4.125)

Then from (4.123) and (4.125) we have


Jk

�
ukI N	k

�
� 
Jk

�
ukI 	k

�
(4.126)

By virtue of (4.113) and (4.122), we have


Jk

�
ukI N	k

�
D J

�
uk
�

� J
�

uk C N	kdk
�

D gk .0/� gk
� N	k

	
(4.127)

By the mean-value theorem, we know

gk .0/� gk
� N	k

	 D N	kg0
k

�
	0k
	

for some 	0k 2 �0; N	k
	

(4.128)

Substitution of (4.128) into (4.127) yields


Jk

�
ukI N	k

�
D N	kg0

k

�
	0k
	

(4.129)

Moreover, we have
	0k <

N	k D �
�ˇ̌
c 	 g0

k .0/
ˇ̌	

(4.130)

Let us return to (4.111) and set

u D uk C 	0k

v D uk

" D ˇ
ˇc 	 g0

k .0/
ˇ
ˇ

� D dk



4.7 Mathematical Programming Algorithms 195

so that
��
�uk C 	0k � uk

��
� D 	0k � �

�ˇˇc 	 g0
k .0/

ˇ
ˇ	 (4.131)

H)
ˇ
ˇ
ˇ
D
rJ

�
uk C 	0k

�
� rJ

�
uk
�
; dk

Eˇˇ
ˇ � ˇ

ˇc 	 g0
k .0/

ˇ
ˇ (4.132)

Because of (4.130), we know (4.131) holds; therefore (4.132) also holds. Moreover,
(4.114) allows us to restate (4.132) as

ˇ
ˇg0
k

�
	0k
	 � g0

k .0/
ˇ
ˇ � ˇ

ˇc 	 g0
k .0/

ˇ
ˇ (4.133)

which in turn yields

� ˇˇc 	 g0
k .0/

ˇ
ˇ � g0

k

�
	0k
	 � g0

k .0/ � ˇ
ˇc 	 g0

k .0/
ˇ
ˇ

or

g0
k

�
	0k
	 � g0

k .0/� ˇ
ˇc 	 g0

k .0/
ˇ
ˇ

If g0
k
.0/ � 0 then

g0
k

�
	0k
	 � .1 � c/ g0

k .0/ (4.134)

If g0
k
.0/ < 0 then

g0
k

�
	0k
	 � .1C c/ g0

k .0/ (4.135)

Since 0 < c < 1, the inequality

g0
k

�
	0k
	 � .1 � c/

ˇ
ˇg0
k .0/

ˇ
ˇ (4.136)

ensures both case (4.134) and case (4.135) are satisfied. Now we note that, taken
together, (4.129) and (4.136) give


Jk

�
ukI N	k

�
D N	kg0

k

�
	0k
	 � N	k .1 � c/

ˇ
ˇg0
k .0/

ˇ
ˇ (4.137)

In (4.124), we set N	k D �
�ˇˇc 	 g0

k
.0/
ˇ
ˇ	, so that the following inequality


Jk

�
ukI 	k

�
� 
Jk

�
ukI N	k

�
� �

�ˇˇc 	 g0
k .0/

ˇ
ˇ	 .1 � c/

ˇ
ˇg0
k .0/

ˇ
ˇ (4.138)

is immediate from (4.137). �

We are now ready to present the main convergence result for the steepest descent
algorithm:

Theorem 4.19. Convergence of the steepest descent algorithm. Suppose the func-
tional J W V �! <1 has a well-defined gradient and is convex and weakly bounded
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from below, where V is a reflexive Banach space. Take rJ .u/ to be uniformly con-
tinuous, and determine the optimal step size 	k according to

1 > 	k > 0 (4.139)

dk D � rJ �uk	
�
�rJ �uk	�� (4.140)

d

d	
J
�

uk C 	kd
k
�

D hrJ
�

uk C 	kd
k
�
; dki D 0 (4.141)

J
�

uk C 	kd
k
�

� J
�

uk C 	dk
�

8	 2 Œ0; 	k� (4.142)

Then, if the condition
lim

kuk�!1
J .u/ �! 1 (4.143)

holds, the steepest descent algorithm converges to a minimum u�of J on V .

Proof. Following Minoux (1986) , we again recall from the given that

J
�

uk C 	kd
k
�

� J
�

uk C 	dk
�

8	 2 Œ0; 	k�

Choosing 	 D 0, we obtain

J
�

uk C 	kd
k
�

� J
�

uk
�

which we restate as
J
�

ukC1
�

� J
�

uk
�

Hence
˚
J
�
uk
	�

is a decreasing sequence. Thus, by the assumption that J is
bounded from below, we have

lim
k�!1

n
J
�

uk
�

� J
�

ukC1�o D 0

This condition leads to

lim
k�!1

n
J
�

uk
�

� J
�

ukC1
�o

D lim
k�!1

n
J
�

uk
�

� J
�

uk C 	kd
k
�o

D lim
k�!1


Jk

�
ukI 	k

�
D 0 (4.144)

As 
Jk
�
ukI 	k

	
approaches zero, we see from Lemma 4.2, specifically from

(4.138), that
lim

k�!1
ˇ
ˇg0
k .0/

ˇ
ˇ �
�ˇˇc 	 g0

k .0/
ˇ
ˇ	 D 0 (4.145)

which in turn requires
lim

k�!1
ˇ
ˇg0
k .0/

ˇ
ˇ D 0 (4.146)
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By (4.114) of the proof of Lemma 4.1, we know that

g0
k .0/ D hJ

�
uk
�
; dki (4.147)

From (4.146) and (4.147), it is immediate that

lim
k�!1

ˇ
ˇ
ˇ
D
rJ

�
uk
�
; dk

Eˇˇ
ˇ D 0 (4.148)

Thus, we have

lim
k�!1

ˇ
ˇ
ˇ
D
rJ

�
uk
�
; dk

Eˇˇ
ˇ D lim

k�!1

ˇ
ˇ
ˇ
ˇ
ˇ

*

rJ
�

uk
�
;� rJ �uk	
�
�rJ �uk	��

+ˇˇ
ˇ
ˇ
ˇ

D lim
k�!1

ˇ
ˇ
ˇ
ˇ̌�
�
�rJ �uk	��2
�
�rJ �uk	��

ˇ
ˇ
ˇ
ˇ̌

D lim
k�!1

�
�
�rJ

�
uk
���
� D 0, (4.149)

Furthermore, the assumption limkuk�!1 J .u/ �! 1, together with the already
established fact that the sequence

˚
J.uk/

�
is decreasing, implies that all uk are

contained in a bounded set. Our assumption that J .u/ is weakly bounded, allows us
to apply the weak compactness theorem (Theorem 4.3) to conclude that there exists at
least one weak cluster point, u� . That is, there exists a sequence uk �! u� (weakly)
as k �! 1 for some u� 2 V . From the convexity assumption, we have

J .v/ � J
�

uk
�

C
D
rJ

�
uk
�
; v � uk

E
8v 2 V (4.150)

Note further that

lim
k�!1

D
rJ

�
uk
�
; v � uk

E
�! 0 (4.151)

since
�
�rJ �uk	�� �! 0 and uk is contained in a bounded set while: (1) either

v D u` 2 ˚uk� and is therefore bounded or (2) v … ˚uk� and is therefore unaffected
by the limit k �! 1. From (4.150) and (4.151) it is immediate that

J .v/ � lim
k�!1

J
�

uk
�

8v 2 V (4.152)

Moreover, since J is convex, J is weakly lower semicontinuous; therefore, by
Definition 4.17, we have

uk �! u� .weakly/ H) lim
k�!1

J
�

uk
�

� J
�
u�	 (4.153)
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From (4.152) and (4.153) we have

J .v/ � J
�
u�	 8v 2 V (4.154)

This completes the proof. �

4.7.2 The Projected Gradient Algorithm

In this section we will be concerned with constructing an algorithm for the con-
strained infinite-dimensional mathematical program:

minJ .u/ s:t: u 2 U � V (4.155)

where V is a Hilbert space and

J W V �! <1C

Furthermore, we suppose that J .u/ is G-differentiable on U and that V D�
L2
�
t0; tf

�	m
. In this case, V is a Hilbert space, and we know that the G-derivative

of the functional J .u/ is well defined and allows immediate articulation of a
first-order necessary for the optimal solution u� 2 U :

ıJ
�
u�; �

	 D ˝rJ �u�	 ; u � u�˛ � 0 8u 2 U (4.156)

It therefore seems reasonable to explore algorithms based on the notion of the gradi-
ent of a functional. Clearly, if there were no constraints (U D V ), we could directly
employ the steepest descent algorithm. However, many applied problems of interest
have constraints, so we need some notion of modifying the gradient direction when
it points out of U in order to obtain a related, alternative direction that is feasible.
This is accomplished by use of the minimum norm projection.

4.7.2.1 The Minimum Norm Projection

Consider the mathematical program

min
�
��u � uk

�
�� s:t: u 2 U � V (4.157)

where V is a Hilbert space and kvk D ˝
vT ; v

˛ 1
2 of course denotes the norm induced

by the scalar product. We say that

zk D PU

h
u � uk

i
D arg min

u2U

���
�u � uk

�
�
�
�

(4.158)
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is the minimum norm projection of uk onto U . It is equivalent to write

zk D arg min
u2U

1

2

�
�
�u � uk

�
�
�
2

(4.159)

D arg min
u2U

�
J kproj .u/ D 1

2

�
u � uk

�T 	
�

u � uk
��

(4.160)

� arg min
u2U

Z 1

0

1

2

�
u � uk

�2
dt (4.161)

since the norm is a monotonic transformation. If V D �
L2
�
t0; tf

�	m
, we know that

the gradient of the objective functional in (4.161) is

rJ kproj .u/ D
�

u � uk
�

Clearly, a necessary condition that zk must satisfy is

D
rJ kproj

�
zk
�
;
�

u � zk
�E

� 0 8u 2 U

which is equivalent to

D�
zk � uk

�
;
�

u � zk
�E

� 0 8u 2 U (4.162)

Due to the convexity of the minimum norm problem, necessary condition (4.162)
is also a sufficient condition. This variational inequality will be a key ingredient
in stating and proving the convergence of a projection algorithm for constrained
mathematical programming in

�
L2
�
t0; tf

�	m
.

The first thing we want to show is that the minimum norm projection is a con-
traction mapping; that is, we want to show that for one iteration

�
�z1 � z0

�
� � �

�u1 � u0
�
� (4.163)

This result can be proven using the variational inequality (4.162) together with
Schwartz’s inequality for Hilbert spaces:

kak kbk � ha; bi (4.164)

From (4.162) we can state immediately the following two results for all u 2 U :

˝�
z0 � u0

	
;
�
u � z0

	˛ � 0 (4.165)

˝�
z1 � u1

	
;
�
u � z1

	˛ � 0 (4.166)
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In (4.165) set u D z1 2 U and in (4.166) set u D z0 2 U , as we are free to do, to
obtain

˝�
z0 � u0

	
;
�
z1 � z0

	˛ � 0 (4.167)
˝�

z1 � u1
	
;
�
z0 � z1

	˛ � 0 (4.168)

Adding these last two expressions yields

˝�
z0 � u0

	C �
u1 � z1

	
; .z1 � z0/

˛ � 0

which leads to
˝�

z0 � z1
	C �

u1 � u0
	
; .z1 � z0/

˛ � 0

Further manipulation gives

˝�
u1 � u0

	
; .z1 � z0/

˛ � ˝�
z1 � z0

	
; .z1 � z0/

˛ � 0

which is equivalent to

˝�
u1 � u0

	
; .z1 � z0/

˛ � ��z1 � z0
��2 � 0 (4.169)

By Schwartz’s inequality we know that

˝�
u1 � u0

	
; .z1 � z0/

˛ � �
�u1 � u0

�
� 	 ��z1 � z0

�
� (4.170)

Combining (4.169) and (4.170) gives us

��u1 � u0
�� 	 ��z1 � z0

�� � ��z1 � z0
��2 (4.171)

from which (4.163) follows immediately. �

4.7.2.2 Structure of the Gradient Projection Algorithm

The gradient projection algorithm is summarized by the following updating rule:

ukC1 D PU

h
uk � 	krJ

�
uk
�i

(4.172)

where the superscript k denotes an iteration index and 	k is a step size for iteration
k. Note that this is fundamentally the same projection algorithm familiar from finite-
dimensional mathematical programming, but it is now carried out in a Hilbert space
V of which U is a subset; the mechanics of the projection are governed by the
variational inequality (4.162).
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Based on (4.172) we may now provide the following formal statement of the
gradient projection algorithm:

Gradient Projection Algorithm

Step 0. Initialization. Set k D 0 and pick u0 .t/ 2 �L2 �t0; tf
�	m

.

Step 1. Find state trajectory. Using uk .t/ solve the state initial-value problem

dx

dt
D f

�
x; u0; t

	

x .t0/ D x0

and call the solution xk .t/.

Step 2. Find adjoint trajectory. Using uk .t/ and xk .t/ solve the adjoint final value
problem

.�1/ d�
dt

D @H
�
xk ; uk; �; t

	

@x

�
�
tf
	 D @K

�
x
�
tf
	
; tf

�

@x

and call the solution �k .t/.

Step 3. Find gradient. Using uk .t/, xk .t/, and �k .t/ calculate

ruJ.u
k/ D @H

�
xk ; uk; �; t

	

@u

D @f0.x
k ; uk; t/

@u
C
�
�k
�T @f

�
xk ; uk; t

	

@u

Step 4. Update and apply stopping test. For a suitably small step size 	k , update
according to

ukC1 D PU

h
uk � 	krJ

�
uk
�i

If an appropriate stopping test is satisfied, declare

u� .t/ 
 ukC1 .t/

Otherwise, set k D k C 1 and go to Step 1.



202 4 Infinite Dimensional Mathematical Programming

4.7.2.3 Coerciveness

We need to define a concept known as coerciveness or ˛-convexity that will be
important to proving the convergence of the projection algorithm described above:

Definition 4.40. Let J W V �! <1 be a functional on V , a normed vector space.
J is said to be coercive (or ˛-convex) if there is a real scalar ˛ > 0 such that

J Œ.1 � 	/ u C 	v� � .1 � 	/ J .u/C 	J .v/� ˛

2
	 .1 � 	/ ku � vk2 (4.173)

for all u; v 2 V and 	 2 .0; 1/.
Note that if ˛ D 0 in (4.173) we have the usual notion of convexity. We also state
without proof the following lemma.

Lemma 4.3. If J W V �! <1 is G-differentiable at every point of V , then

J coercive (˛-convex) ” ıJ .u; u � v/� ıJ .v; u � v/ � ˛ ku � vk2 (4.174)

for all u; v 2 V .

Note that, when the gradient of J is defined on V , the righthand side of (4.174)
becomes

hrJ .u/� rJ .v/ ; u � vi � ˛ ku � vk2 (4.175)

4.7.2.4 Convergence of the Gradient Projection Algorithm

We now state and prove the following key result regarding convergence of the pro-
jection algorithm:

Theorem 4.20. Suppose the functional J W U � V �! <1 is coercive (˛-convex)
with ˛ > 0 and rJ .u/ is defined and satisfies the Lipschitz condition

krJ .u/� rJ .v/k � ˇ ku � vk (4.176)

for all u; v 2 U . Then the projection algorithm based on the negative gradient
direction converges to the minimum u�of J on U for fixed step size choices

	 2
�
0;
2˛

ˇ2



(4.177)

Proof. We begin by invoking the variational inequality first-order condition

˝rJ �u�	 ; u � u�˛ � 0 8u 2 U (4.178)
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Because of variational inequality (4.178) we have

˝�
u� � �

u� � 	rJ �u�		� ;
�
u � u�	˛ � 0 8u 2 U (4.179)

for all 	 > 0. Recalling property (4.162), we see from (4.179) that u� must be the
projection of u� � 	rJ .u�/; that is

u� D PU
�
u� � 	rJ �u�	� (4.180)

From this last observation and the projection algorithm itself (4.172), it is an easy
matter to construct the difference

ukC1 � u� D PU

h
uk � 	rJ

�
uk
�i

� PU
�
u� � 	rJ �u�	� (4.181)

Remembering result (4.163) that establishes the projection mapping is a contraction,
we obtain from (4.181)

�
�
�ukC1 � u�

�
�
� �

�
�
�
�

uk � 	rJ
�

uk
��

� �
u� � 	rJ �u�		

�
�
� (4.182)

so that

�
��ukC1 � u�

�
��
2 �

�
��
�

uk � u�� � 	
h
rJ

�
uk
�

� rJ �u�	i
�
��
2

(4.183)

The righthand side (RHS ) of (4.183) can be restated using the given Lipschitz
condition and property (4.175):

RHS D
�
�
�uk � u�

�
�
�
2 � 2	

D
rJ

�
uk
�

� rJ �u�	 ; uk � u�E

C	2
�
�
�rJ

�
uk
�

� rJ �u�	
�
�
�
2

�
�
�
�uk � u�

�
�
�
2 � 2˛	

�
�
�uk � u�

�
�
�
2 C ˇ2	2

�
�
�uk � u�

�
�
�
2

D �
1 � 2˛	 C ˇ2	2

	 ��
�uk � u�

�
�
�
2

(4.184)

Results (4.183) and (4.184) tell us that

�
�
�ukC1 � u�

�
�
�
2 � �

1 � 2˛	 C ˇ2	2
	 ��
�uk � u�

�
�
�
2

H)
�
��ukC1 � u�

�
�� � �

1 � 2˛	 C ˇ2	2
	 1

2

�
��uk � u�

�
�� (4.185)
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Inequality (4.185) will establish convergence if

�
1 � 2˛	 C ˇ2	2

	
< 1

H) ˇ2	2 < 2˛	

H) 	 <
2˛

ˇ2
(4.186)

Since 	 > 0, the desired result follows. �

4.7.3 Penalty Function Methods

When constraints that destroy special structure or other desirable properties of
infinite-dimensional mathematical programs arise, one approach is to form penalty
functions for these constraints and append them to the objective functional. It is in
principle possible to convert a constrained optimization problem into a sequence
of unconstrained problems whose solutions converge to the solution of the original
problem. As penalty functions are defined below, algorithms based on them begin
with infeasible points and move toward feasibility, although feasibility is generally
achieved only in the sense of a limit.

4.7.3.1 Definition of a Penalty Function

Let us first recall what is meant by weak lower semicontinuity according to
Definition 4.17: the functional J is weakly lower semicontinuous on V if for
all v; vk 2 V such that

vk ! v (weakly) ,

we have
lim

k�!1
infJ

�
vk
�

� J .v/

Now consider
minJ .u/ s:t: u 2 U � V (4.187)

Furthermore, we say that P.u/ is a penalty function for (4.187) if

P.u/ D 0 ” u 2 U
P.u/ � 0 8u
P is weakly lower semicontinuous

Our intention is to replace the constrained problem (4.187) with the unconstrained
problem

min J�.u/ D J.u/C �P.u/ (4.188)

where � > 0 is a penalty multiplier (parameter) that tends to infinity so that the
product �P.u/ is recognized as positive according to the numerical precision of the
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computing platform employed as the boundary is approached. The following are
two examples of penalty functions for minimization problems:

Constraint Penalty function

g.x/ � 0 P.x/ D 1

2
Œmax.g.x/; 0/�2

h.x/ D 0 P.x/ D 1

2
Œh.x/�2

4.7.3.2 Description of the Penalty Function Algorithm

In the penalty function method, where the superscript k is an iteration index, we
follow the scheme

uk D arg
˚
min J�k

.u/ D J.u/C �kP.u/
�

(4.189)

given the penalty function multiplier �k , which must be made increasingly large. If
an appropriate stopping test is satisfied at iteration k, declare

u� .t/ 
 uk .t/

Otherwise, select

�kC1 > �k ;

set k D k C 1, and repeat (4.189).

4.7.3.3 Convergence of the Penalty Function Method

Under certain conditions, (4.188) has a solution u�
� for each � > 0. In that case, it is

our hope that, when � ! 1, the sequence fu�
�g converges to a solution of (4.187),

namely u�. In particular, we have the following result:

Theorem 4.21. Assume that J is weakly lower semicontinous, bounded from below,
and J.u/ ! 1 as kuk ! 1. Also assume that the set U is weakly closed. Then
every weak cluster point of the sequence fu�

�g is an optimal solution of (4.187).

Proof. We follow Minoux (1986). Note that

J�.u
�
�/ D J

�
u�
�

	C �P.u�
�/ � J .u0/C �P.u0/ 8u0 2 V

Since P.u0/ D 0 for u0 2 U , we have

J�.u
�
�/ � J .u0/ 8u0 2 U
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Consequently J� remains bounded from above by a constant scalar independent
of �. Since J.u/ ! 1 as kuk ! 1, it follows that the whole sequence fu�

�g is
contained in a bounded set. Using the weak compactness theorem, one may extract
from this sequence a subsequence fu�

�0

g which converges weakly to u� 2 V . Also,
since we have

J.u�
�0

/C �0P.u�
�0

/ � J.u0/

for all �0, we may state that

P.u�
�0

/ � 1

�0
�
J.u0/� J.u�

�0

/
�

Because J is bounded from below, there has to exist a numberm0 such that

J.u/ � m0 8u

Consequently

P.u�
�0

/ � 1

�0 ŒJ.u0/�m0� 8�0

Therefore P.u�
�0

/ ! 0 when �0 ! 1 as required. Because P is weakly lower
semicontinous and since u�

�0

weakly converges to u�, we know

lim
�0!1P.u�

�0

/ � P
�
u�	

Hence P.u�/ � 0. By the definition of a penalty function, it must also be that
P.u�/ � 0. It follows immediately that P.u�/ D 0 and u� 2 U . Finally, since

J.u�
�0

/ � J.u0/ 8u0 2 U ,

it must be that J is weakly lower semicontinuous:

J.u�/ � lim
�0!1 infJ.u�

�0

/ � J .u0/ 8u0 2 U

It of course then follows that u� is optimal to problem (4.187). �

4.7.4 Example of the Steepest Descent Algorithm

Consider the following familiar problem where u 2 L2 Œa; b� and x 2 H1 Œa; b�:

minJ D
Z b

a

1

2

�
x2 C u2

	
dt (4.190)
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subject to

dx

dt
D Bu .�/ (4.191)

x .a/ D A (4.192)

We know

H D 1

2

�
x2 C u2

	C �Bu

�d�
dt

D @H

@x
D x

� .b/ D 0

We employ the parameter values

A D 1:5431

B D 1

a D 0

b D 1

To apply the steepest descent algorithm, we must compute the gradient and take
steps along it. We note that the gradient of the criterion functional is

ruJ .u/ D �
@f

@u
C @f0

@u
(4.193)

where f refers to the right hand side of the state dynamics and f0 is the integrand
of the criterion. Thus, for the problem at hand

@f

@u
D @u

@u
D 1 (4.194)

@f0

@u
D 1

2

@
�
x2 C u2

�

@u
D u (4.195)

H) ruJ .u/ D �C u (4.196)

We also know
dx

dt
D u (4.197)

d�

dt
D �x (4.198)

So the iterative procedure that is the steepest descent algorithm in continuous time
has the following structure:

1. guess u0 .t/
2. calculate x0 .t/ using u0 .t/ in (4.197),
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3. calculate �0 .t/ using x0 .t/ in (4.198)
4. calculate ruJ

�
u0
	 D �0 C u0

5. apply the steepest descent algorithm for step size 	0:

u1 .t/ D u0 .t/ � 	0ruJ
�
u0 .t/

�
(4.199)

D u0 .t/ � 	0
�
�0 .t/C u0 .t/

�
(4.200)

6. repeat for subsequent iterations

The following calculations are grouped by iteration number k:

k D 0 : We select u0 D 0; hence x0 .t/ D x .0/ D 1: 543 1. Therefore

P� D �1:5431
� .1/ D 0

(4.201)

whose solution is

�0 .t/ D �1:5431t C 1:5431

Consequently

ruJ
�
u0
	 D �1:5431t C 1:5431 (4.202)

u1 .t/ D u0 .t/ � 	0
�ruJ

�
u0
	�

(4.203)

D 1:5431	0t � 1:5431	0 (4.204)

k D 1 :
Px D u1 D 1:5431	0t � 1:5431	0

x .0/ D 1
(4.205)

whose solution is

x1 .t/ D :77155	0t
2 � 1:5431	0t C 1 (4.206)

Consequently
P� D �:77155	0t2 C 1:5431	0t � 1

� .1/ D 0
(4.207)

whose solution is

�1 .t/ D �:25718	0t3 C :77155	0t
2 � 1:0t � :514 37	0 C 1:0 (4.208)

from which we find

ruJ
�
u1
	 D �:25718	0t3 C :77155	0t

2 � 1:0t � :51437	0 C 1:0

C 1:5431	0t � 1:5431	0
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Consequently

u2 .t/ D u1 .t/� 	1
�ruJ

�
u0
	�

D .1 � 	1/ .1:5431	0t � 1:5431	0/

�	1
��:25718	0t3 C :77155	0t

2 � 1:0t � :51437	0 C 1:0
�

Note that although we started with a point estimate for the optimal control we now
have a nonlinear function of time as our approximate optimal control. Note also that
we have performed no explicit time discretizations in arriving at this approximation;
that is, we have carried out the iterations of the algorithm in the appropriate function
space. It is also important to recognize that the two-pointedness of the boundaries
has also been completely overcome because the algorithm always permits the ad-
joint and state dynamics to be solved separately.

Let us pick

	0 D :76158

	1 D :01

so that

u2 .t/ D 1:9586 � 10�3t3 � 5:876 � 10�3t2

C 1:1734t � 1:1695 (4.209)

As a check, let us compare expression (4.209), which is the solution obtained by
steepest descent (SD) for k D 2, to the two-point boundary-value problem (TPBVP)
solution obtained in Chapter 3 for the identical problem. That comparison is con-
tained in the following table:

t u.t/ W TPBVP u.t/ W SD, k D 2

0:0 �1:1752 �1:1695
:25 �:8223 �:8765
:5 �:5211 �:5840
:75 �:2526 �:2919
1:0 2:46 � 10�5 
 0 �1:74 � 10�5 
 0

4.7.5 Example of the Gradient Projection Algorithm

Consider the following optimal control problem similar to the problem employed in
the example of Section 4.7.4, recalling u 2 L2 Œa; b� and x 2 H1 Œa; b�:

minJ D
Z 1

0

1

2

�
x2 C u2

	
dt (4.210)
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subject to
dx

dt
D u .�/ (4.211)

x .0/ D 2:5 (4.212)

�1 � u � 1 (4.213)

Let us apply the projected gradient algorithm to this problem. We know from
Section 4.7.4 that

H D 1

2

�
x2 C u2

	C �u (4.214)

�d�
dt

D @H

@x
D x (4.215)

� .1/ D 0 (4.216)

We also know that

ruJ .u/ D @H

@u
D �C u

We recall that the minimum norm projection onto� D fu W a � u � bg is

P� .v/ D arg fmin kv � yk W y 2 �g D Œv�ba (4.217)

where

Œv�ba D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

b if v > b

v if a � u � b

a if v < a

(4.218)

So the iterative procedure that is the steepest descent algorithm in continuous time
has the following structure:

1. guess u0 .t/
2. calculate x0 .t/ using u0 .t/ in (4.211),
3. calculate �0 .t/ using x0 .t/ in (4.215)
4. calculate

d0 D �rJ �u0	 D ��0 � u0

5. iterate according to

u1 .t/ D P�
�
u0 .t/C 	0d

0 .t/
�

D �
u0 .t/C 	0d

0 .t/
�C1

�1

6. repeat for subsequent iterations
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The following calculations are grouped by iteration number k:

k D 0 W Pick the following initial feasible solution

u0 D 0:5et � 1:5 (4.219)

Our indicated choice of u0 .t/, namely expression (4.219), has the consequence that
the state dynamics are

dx

dt
D 0:5et � 1:5

x .0/ D 2:5

The solution of the state dynamics for the current iteration is

x0 .t/ D 0:50et � 1:50t C 2

Consequently the adjoint dynamics are

d�

dt
D �x0.t/ D �0:50et C 1:50t � 2

� .1/ D 0

The solution of the adjoint dynamics for the current iteration is

�0 D 0:75t2 � 0:5et � 2:0t C 2:61

This leads directly to the descent direction

d 0 D �ruJ
�
u0
	 D � ��0 C u0

	

D � �0:75t2 � 2:0t C 1:11
	

D �0:75t2 C 2:0t � 1:11

Setting 	0 D 0:1, we have

u1 D �
u0 C 	0d

0
�C1
�1

D �
0:2t C 0:5et � 0:075 t2 � 1:61�C1�1

D min
�
max

��1; 0:2t C 0:5et � 0:075 t2 � 1:61	 ; 1	
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whose plot is:
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We see that there is a critical instant of time tb D 0:152 after which the constraint
u1 � �1 ceases to bind; that time is a solution of the following equation:

0:2t C 0:5et � 0:075 t2 � 1:61 D �1

Thus, we have

u1 D
8
<

:

�1 for t 2 Œ0:0; 0:152�

0:2t C 0:5et � 0:075 t2 � 1:61 for t 2 .0:152; 1:0�

k D 1 : For t 2 Œ0:0; 0:152�, we have

u1 D �1
x1 D �t C 1:54

�1 D 0:50t2 � 1:54t C 1:04

Setting 	1 D 0:1, we have

d 1 D �ruJ
�
u1
	 D � ��1 C u1

	

D � �0:50t2 � 1:54t C 0:04
	

D �0:50t2 C 1:54t � 0:04



4.7 Mathematical Programming Algorithms 213

We update the current control to obtain

u2 D �
u1 C 	1d

1
�C1
�1

D ��0:05t2 C 0:15t � 1:00�C1�1
D min

�
max

��1;�0:05t2 C 0:15t � 1:00	 ; 1	

For t 2 Œ0:0; 0:152�, we find u2 D 0. However, for t 2 .0:152; 1:0� we find that

dx

dt
D u1 D 0:2t C 0:5et � 0:075 t2 � 1:61

x.0/ D 2:5

Solving the above initial-value problem, we obtain

x1 .t/ D 0:5et � 1:61t C 0:1t2 � 0:025 t3 C 2:0

with the corresponding adjoint dynamics

d�

dt
D �0:5et C 1:61t � 0:1t2 C 0:025 t3 � 2:0

�.1/ D 0

Consequently,

�1.t/ D 0:81t2 � 0:5et � 2:0t � 0:033t3 C 0:006t4 C 2:58

The descent direction is given by

d 1 D �ruJ
�
u1
	 D � ��1 C u1

	

D �0:006t4 C 0:033t3 � 0:735t2 C 1:8t � 0:97

Setting 	1 D 0:1, we obtain the following expression for u2 when t 2 .0:1522; 1:0�:

u2 D �
u1 C 	1d

1
�C1

�1 D �
0:38t C 0:5et � 0:15t2 � 1:71

�C1
�1

For the argument of the above function a critical point for which u2 D �1 is

tb 
 0:229

Therefore, our second iterate u2 for all t 2 Œ0; 1� is

u2 D
8
<

:

�1 for t 2 Œ0:0; 0:229�

0:38t C 0:5et � 0:15t2 � 1:71 for t 2 .0:229; 1:0�
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Continuing in a similar manner one obtains after ten iterations the result

u10 D
8
<

:

�1 for t 2 Œ0:0; 0:389�

1:3027t C 0:50et � 0:63t2 � 2:15 for t 2 .0:389; 1:0�

If the algorithm is implemented on a computer, so that higher precision may be
easily employed, the following table of iterations is obtained:

k uk.t/ for t 2 .tk ; 1/ .tk; 1/ 
k

0 0:5et�1:5 � �
1 0:2t C 0:5et�0:075 t2�1:6109 .0:1522; 1:0� 0:11

2 0:38t C 0:5et�0:14805t2�1:7079C : : : .0:2289; 1:0� 0:09

3 0:542t C 0:5et�0:21864t2�1:7927C : : : .0:2766; 1:0� 0:05

4 0:6878t C 0:5et�0:28641t2�1:8670C : : : .0:3093; 1:0� 0:035

5 0:81902t C 0:5et�0:35112t2�1:932C : : : .0:3328; 1:0� 0:028

6 0:93712t C 0:5et�0:41261t2�1:9890C : : : .0:3504; 1:0� 0:022

7 1:0434t C 0:5et�0:47080t2�2:0389C : : : .0:3638; 1:0� 0:017

8 1:1391t C 0:5et�0:52567t2�2:0827C : : : .0:3743; 1:0� 0:014

9 1:2252t C 0:5et�0:57724t2�2:1211C : : : .0:3826; 1:0� 0:012

10 1:3027t C 0:5et�0:62558t2�2:1548C : : : .0:3892; 1:0� 0:009

where
k D ˇ
ˇukC1 � uk

ˇ
ˇ.

4.7.6 Penalty Function Example

Consider the following problem where u 2 L2 Œa; b� and x 2 H1 Œa; b�:

minJ D
Z 1

0

1

2
x2dt (4.220)

subject to

dx

dt
D u .�/ (4.221)

x .0/ D 1 (4.222)

u � �1 (4.223)

We need to form a penalty function for the single constraint

g .u/ D �u � 1 � 0
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Therefore, we seek to solve

minJ D
Z 1

0



1

2

�
x2 C u2

	C 1

2
Œ�max.0; g/�2

�
dt (4.224)

D
Z 1

0



1

2

�
x2 C u2

	C 1

2
Œ�max.0;�u � 1/�2

�
dt (4.225)

subject to

dx

dt
D u .�/ (4.226)

x .0/ D 1 (4.227)

as � �! C1. The augmented Hamiltonian is

H D 1

2

�
x2
	C 1

2
Œ�max.0;�u � 1/�2 C �u

The optimality conditions are

� d�

dt
D @H

@x
D x (4.228)

� .1/ D 0 (4.229)

u D arg

�
@

@u
H D 0

�
(4.230)

H) @

@u

�
1

2

�
x2
	C 1

2
Œ�max.0;�u � 1/�2 C �u

�
D 0 (4.231)

Note that (4.231) reduces to

� Œmax.0;�u � 1/� .�1/C � D 0

Hence, either

� D 0

or

� .u C 1/C � D 0

From the last equation, we obtain

u� D lim
�!1

�
�1 � �

�

�
D �1
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The optimal state obeys
x�.t/ D 1 � t

The optimal adjoint variable is

��.t/ D 1

2
t2 � t C 1

2

4.8 Exercises

1. If V D <n, what is its dual V �‹
2. If V D L2 Œa; b�, what is its dual V �‹
3. Prove that any Hilbert space is reflexive.
4. Compare and contrast the notion of a variation with the notion of a G-derivative

of a functional.
5. In the proof of Theorem 4.19, we make use of condition (4.112), repeated here

for convenience
� ."/ �! 0C ” " �! 0C

Show that this property is assured by Lipschitz continuity as the notion is stated
in Definition 4.19.

6. Extend the derivation in Section 4.3 of necessary conditions for continuous-
time optimal control problems to include terminal costs and pure control
constraints.

7. Solve this optimal control problem:

minJ.u/ D
Z 1

0

1

2
u2dt

subject to

dx

dt
D x C u.t � 
/

0 � u � 1

x .0/ D 1

where 
 D aC bx is a time shift.
8. Prove or disprove: linear functionals in a Hilbert space satisfy the Kuhn-Tucker

constraint qualification in Definition 4.39.
9. Using the proof of Theorem 4.18 as a guide, extend the necessary conditions

to handle equality constraints and give a proof that your conditions are in fact
necessary.

10. Prove Lemma 4.3 related to coerciveness.
11. State as a theorem conditions that make (4.52) a sufficient as well as a necessary

condition; formally prove your theorem.
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12. Give an expanded statement of the penalty function algorithm (4.189), wherein
individual steps are enumerated and a stopping test is expressed.

13. Discuss the challenges surrounding extension of the methods of this chapter to
consider variable step sizes for mathematical programs in infinite dimensional
spaces. Include a brief description of how these challenges might be overcome.

14. Solve the following optimal control problem using the steepest descent
algorithm:

minJ.u/ D
Z 10

0

1

2

�
x2 � u

	
dt

subject to

dx

dt
D x � u

x .0/ D 1

15. Solve the following optimal control problem using the gradient projection
algorithm:

minJ.u/ D
Z 5

0

1

2
x2dt

subject to

dx

dt
D x � u

�1 � u � 1

x .0/ D 1

16. Solve the following optimal control problem using a penalty function:

minJ.u/ D
Z 5

0

1

2
x2dt

subject to

dx

dt
D u2 � u1

.u1/
2 C .u2/

2 � 2

x .0/ D 1
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Chapter 5
Finite Dimensional Variational Inequalities
and Nash Equilibria

In this chapter, we lay the foundation for turning our focus from dynamic
optimization, which has been the subject of preceding chapters, to the notion of
a dynamic game. To fully appreciate the material presented in subsequent chapters,
we must in the present chapter review some of the essential features of the theory
of finite-dimensional variational inequalities and static noncooperative mathemat-
ical games. Today many economists and engineers are exposed to the notion of a
game-theoretic equilibrium that we study in this chapter, namely Nash equilibrium.
Yet, the relationship of such equilibria to certain nonextremal problems known
as fixed-point problems, variational inequalities and nonlinear complementarity
problems is not widely understood. It is the fact that, as we shall see, Nash and
Nash-like equilibria are related to and frequently equivalent to nonextremal prob-
lems that makes the computation and qualitative investigation of such equilibria so
tractable. Although the static games discussed in this chapter are really steady states
of dynamic games, we are, for the most part, indifferent in this chapter to any un-
derlying dynamics. We also comment that readers familiar with finite-dimensional
variational inequalities and static Nash games may wish to skip this chapter.

The following is a preview of the principal topics covered in this chapter:

Section 5.1: Some Basic Notions. We begin this chapter by introducing the
distinction between games in normal form and games in extensive form.

Section 5.2: Nash Equilibria and Normal Form Games. In this section, we de-
fine a Nash equilibrium and present the corresponding noncooperative game in
normal form for which it is a solution.

Section 5.3: Some Related Nonextremal Problems. In this section, we introduce
finite-dimensional, fixed point, complementarity, and variational inquality prob-
lems, as well as relationships among them.

Section 5.4: Sensitivity Analysis of Variational Inequalities. Because finite-
dimensional variational inequalities are encountered as approximations of certain
infinite-dimensional noncooperative games in subsequent chapters, we describe how
to conduct sensitivity analysis of them.

T.L. Friesz, Dynamic Optimization and Differential Games, International
Series in Operations Research & Management Science 135,
DOI 10.1007/978-0-387-72778-3 5, c� Springer Science+Business Media, LLC 2010
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Section 5.5: The Diagonalization Algorithm. In this section, we present the
widely used diagonalization method for solution of finite-dimensional variational
inequalities. We caution that it may fail to converge.

Section 5.6: Gap Function Methods for VI .F; ƒ/. In this section, we present
a number of so-called gap functions for finite-dimensional variational inequalities.
The minimization of a gap function is observed to yield a solution of the underlying
variational inequality.

Section 5.7: Other Algorithms for VI .F; ƒ/. In this section, we present a brief
survey of other solution methods for variational inequalities and noncooperative
Nash games.

Section 5.8: Computing Network User Equilibria. The concluding section of
this chapter illustrates how the well-known user equilibrium problem for road net-
works may be solved by a fixed-point algorithm.

5.1 Some Basic Notions

A mathematical game is a mathematical representation of some form of competi-
tion among agents or “players” of the game. Most mathematical games have rules
of play, agent-specific utilities or payoffs, and a notion of solution. These may be
expressed in two fundamental ways: the so-called extensive form and the normal
form. A game in extensive form is a presentation, usually via a table or a decision
tree, of all possible sequences of decisions that can be made by the game’s players.
This presentation is, by its very nature, exhaustive and potentially tedious or even
impossible for large games involving multiple players and numerous decisions. By
contrast a game in normal form is expressed via mappings, equations, inequalities,
and extremal principles. As such, large normal form games are potentially much
more computationally tractable, since they may draw upon the computational meth-
ods of mathematical programming and optimal control theory, as well as general
variational methods.

5.2 Nash Equilibria and Normal Form Games

The best understood and most widely used mathematical games are noncooperative
games, wherein game players, also called agents, act selfishly. A noncooperative
mathematical game in normal form uses equations, inequalities, and extremal prin-
ciples to describe competition among agents – who are intrinsically in conflict and
do not collude – informed by some notion of utility and acting according to rules
known by the agents of the game. We are especially interested in a notion of solution
of noncooperative games known as a Nash equilibrium (named after John Forbes
Nash, who proposed it). A set of actions undertaken by the noncooperative agents
of interest is a Nash equilibrium if each agent knows the equilibrium strategies of
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the other agents, and no agent has anything to gain by unilaterally changing his/her
own strategy. In particular, if no agent can benefit by changing his/her strategy while
the other agents keep theirs unchanged, then the current set of strategy choices and
the corresponding payoffs constitute a Nash equilibrium. As such, finding the Nash
equilibrium of a noncooperative game in normal form is not generally equivalent
to a single optimization problem, but is, rather, naturally articulated as a family
of coupled optimization problems. We will learn how, for certain assumptions,
those coupled optimization problems may be expressed as so-called nonextremal
problems. Certain nonextremal problems have a structure that makes them quite
amenable to analysis and solution. For our purposes in this chapter, the nonextremal
problems known as fixed-point problems, variational inequality problems, and non-
linear complementarity problems are the most important; below, we define each
in turn.

The following definition will apply:

Definition 5.1. Nash equilibrium. Suppose there are N agents, each of which
chooses a feasible strategy vector xi from the strategy set �i which is independent
of the other players’ strategies. Furthermore, every agent i 2 Œ1; N � � ICC has a
cost (disutility) function ‚i .x/ W � �! <1 that depends on all agents’ strategies
where

� D
NY

iD1

�i

x D �
xi W i D 1; : : : ; N

�

Every agent i 2 Œ1; N � seeks to solve the problem

min‚i .x
i ; x�i / s:t: xi 2 �i (5.1)

for each fixed yet arbitrary non-own tuple

x�i D �
xj W j ¤ i

�

A Nash equilibrium is a tuple of strategies x, one for each agent, such that each xi

solves the mathematical program (5.1), and is denoted as NE.‚;�/.

In other words no agent may lower his/her cost (disutility) by unilaterally altering
his/her strategy.

When the strategy set of any agent i 2 Œ1; N � depends on non-own strategies xj

where j ¤ i , extension of the definition of a Nash equilibrium is called a general-
ized Nash equilibrium. That is, we have the following definition:

Definition 5.2. Generalized Nash equilibrium. Suppose there areN agents, each of
which chooses a feasible strategy vector xi from the strategy set�i .x/ that depends
on the strategies of all agents where
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x D �
xi W i D 1; : : : ; N

�

Furthermore, every agent i 2 Œ1; N � � ICC has a cost (disutility) function ‚i .x/ W
�.x/ �! <1 that depends on all agents’ strategies where

�.x/ D
NY

iD1

�i .x/

Every agent i 2 Œ1; N � seeks to solve the problem

min‚i .x
i ; x�i / s:t: xi 2 �i .x/ (5.2)

for each fixed yet arbitrary non-own tuple

x�i D �
xj W j ¤ i

�

A generalized Nash equilibrium is a tuple of strategies x, one for each agent, such
that each xi solves the mathematical program (5.1), and is denoted asGNE.‚;�/.

5.3 Some Related Nonextremal Problems

We now define the fixed-point problem:

Definition 5.3. Fixed-point problem. Given a nonempty set ƒ � <n and a function
F W ƒ ! ƒ, the fixed-point problem FPP .F;ƒ/ is to find a vector y such that

y 2 ƒ
y D F .y/

�
FPP .F;ƒ/ (5.3)

If ƒ � <1, then FPP .G;ƒ/ seeks to find a point where the graph of F crosses the
45-degree line.

It will also be useful to define an extension of FPP .F;ƒ/ which employs the
notion of a minimum norm projection. The minimum norm projection of the vector
v 2 <n onto the set ƒ is denoted as Pƒ Œv� and has the following definition:

Definition 5.4. Minimum norm projection. Pƒ Œv�, the minimum norm projection of
the vector v 2 <n onto the set ƒ � <n, is the vector

y D arg
n
min

x
kv�xk W x 2 ƒ

o

The fixed-point problem with projection is:

Definition 5.5. Fixed-point problem based on projection. Given a nonempty set
ƒ � <n, a fixed vector v 2 ƒ, and a function F W ƒ ! ƒ, the fixed-point problem
based on the minimum norm projection FPPmin .F;ƒ/ is to find a vector y such that
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y 2 ƒ
y D Pƒ Œy�F .y/�

�
FPPmin .F;ƒ/ (5.4)

That is, the solution of FPPmin .F;ƒ/ is

y D arg
n
min

x
kv�F .y/�xk W x 2 ƒ

o
(5.5)

by virtue of the definition of the minimum norm operator.
Next, we define the variational inequality problem:

Definition 5.6. Variational inequality. Given a nonempty set ƒ � <n and a func-
tion F W ƒ ! <n, the variational inequality problem VI .F;ƒ/ is to find a vector
y such that

y 2 ƒ
ŒF.y/�T .x � y/ � 0 8 x 2 ƒ

�
VI .F;ƒ/ (5.6)

Geometrically, a vector y is a solution of VI .F;ƒ/ if and only if F.y/ forms an
acute or right angle with all feasible vectors emanating from y.

Finally, we define the nonlinear complementarity problem:

Definition 5.7. Nonlinear complementarity problem. Given a (nonlinear) function
F W <n ! <n, the nonlinear complementarity problem NCP .F / is to find a vector
y such that

ŒF .y/�T � y D 0

F.y/ � 0

y � 0

9
=

;
NCP .F / (5.7)

Geometrically, a vector y is a solution of NCP .F / if and only if y is nonnegative,
F.y/ is nonnegative, and F.y/ is orthogonal to y. Alternatively, a vector y is a
solution of NCP .F / if and only if all elements of y are nonnegative, all elements of
F.y/ are nonnegative, and for each positive element of y, denoted by yi , Fi .y/ is
zero (and vice versa).

5.3.1 Nonextremal Problems and Programs

Let us begin our analysis of nonextremal problems by stating and proving a key
result that relates variational inequalities to mathematical programs. That result is

Theorem 5.1. Variational inequality global optimality condition. A necessary and
sufficient condition for y 2 ƒ � <n to be a global optimum of the mathematical
program

min Z.x/

s:t: x 2 ƒ
�

NLP .F;ƒ/ (5.8)
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when ƒ is non-empty and convex and Z .x/ is convex and differentiable for all
x 2 ƒ, is the variational inequality

ŒrZ.x/�T .x � y/ � 0 8x 2 ƒ (5.9)

Proof. The proof is in two parts:
(i) [.5.9/ H) .5.8/] The well-known property that any tangent to a differentiable

convex function underestimates that function is expressed for the present case as

Z .x/ � Z .y/C ŒrZ .y/�T �x�y�� 8x 2 ƒ (5.10)

It is immediate from (5.10) that

Z .x/ �Z
�
y�� � �rZ �y���T �x�y�� � 0 8x 2 ƒ (5.11)

in light of the given (5.9), thereby establishing sufficiency.
(ii) [.5.8/ H) .5.9/] Necessity is established by observing that following any

direction vector .x�y/ rooted at the global optimum y must lead to another feasible
solution that increases the objective function of (5.8). That is, every .x�y/ must
have a component in the direction of rZ.y/, a circumstance ensured by (5.9). �

5.3.2 Kuhn-Tucker Conditions for Variational Inequalities

The so-called Kuhn-Tucker necessary conditions for finite-dimensional mathemat-
ical programs, as we presented them in Chapter 2, express the gradient as a linear
combination of binding constraints at optimality. Kuhn-Tucker type necessary con-
ditions may also be developed for variational inequalities and Nash equilibria; these
conditions are needed for a variety of applications in subsequent chapters as well as
for the sensitivity analysis of variational inequalities discussed in the next section.
Our development of Kuhn-Tucker conditions for variational inequalities parallels
that in Tobin (1986) and depends on observing that VI .F;ƒ/ requires

�
F
�
x���T x � �

F
�
x���T x� 8x 2 ƒ (5.12)

This last inequality is recognized as the definition of a constrained global minimum
for the objective function ŒF .x�/�T x. That is, VI .F;ƒ/ can be restated as the
following mathematical program:

min
�
F
�
x���T x s:t: x2ƒ � <n (5.13)

where
F .x/ W <n �! <n

Note carefully that (5.13) is of no real use for computation as it presumes knowledge
of the solution x� 2 ƒ.
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In our development of Kuhn-Tucker conditions for variational inequalities, we
will consider the feasible region ƒ to be determined by equality and inequality
constraints; that is

ƒ D fx 2 <n W h .x/ D 0; g .x/ � 0g (5.14)

where

h .x/ W <n �! <q

g .x/ W <n �! <m

We will further assume that the functionsF .x/ and g .x/ are both continuous, g .x/
is differentiable on ƒ, while h .x/ is linear affine on ƒ. The key result is:

Theorem 5.2. Necessary conditions for VI .F;ƒ/. Let

x� 2 ƒ D fx 2 <n W h .x/ D 0; g .x/ � 0g

be a solution of VI .F;ƒ/. Further assume that F .x/ and g .x/ are continuous
on ƒ; g .x/ is differentiable on ƒ, and h .x/ is linear affine on ƒ. Then, if the
gradients rgi .x

�/ for i such that gi .x
�/ D 0 together with the gradients rhi .x

�/
for i 2 Œ1; q� are linearly independent, there exist multipliers � 2 <m and � 2 <q

such that

F.x�/C �rg.x�/
�T
� C �rh.x�/

�T
� D 0 (5.15)

�T g
�
x�� D 0 (5.16)

� � 0 (5.17)

Proof. Observe that x� also solves the nonlinear program

minZ
�
x�� � �

F
�
x���T x s:t: x2ƒ � <n (5.18)

The assumption of linear independence of the gradients of binding constraints is
a sufficient condition for the Kuhn-Tucker constraint qualification to hold at x�;
therefore, the Kuhn-Tucker conditions for this mathematical program are

rZ �x��C �T rg �x��C �T rh �x�� D 0 (5.19)

�T g
�
x�� D 0 (5.20)

� � 0 (5.21)

However
rZ �x�� D F

�
x�� (5.22)

so (5.19), (5.20), and (5.21) are equivalent to (5.15), (5.16), and (5.17). �
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Note that Theorem 5.2 can be strengthened by employing a weaker (less restrictive)
constraint qualification.

We further comment that the variational inequality necessary conditions become
sufficient if we stipulate that the inequality constraint functions gi .x/ are convex.
This observation is formalized in the next theorem:

Theorem 5.3. Sufficient conditions for VI .F;ƒ/. Suppose the assumptions of
Theorem 5.2 hold; the gi .x/ for i 2 Œ1;m� are convex onƒ; and x� 2 ƒ, � 2 <m,
� 2 <q satisfy (5.15), (5.16), and (5.17). Then x� is a solution to VI .F;ƒ/.

Proof. By the given of this theorem, the nonlinear program (5.18) is a convex math-
ematical program. Thus, (5.15), (5.16), and (5.17) are sufficient to conclude that x�
solves (5.18). Consequently

�
F
�
x���T x � �

F
�
x���T x� 8x 2 ƒ (5.23)

demonstrating that x� solves VI .F;ƒ/. �

5.3.3 Variational Inequality and Complementarity Problem
Generalizations

It is possible to generalize VI.F;ƒ/ in a variety of ways. Two of those generaliza-
tions are defined below:

Definition 5.8. Generalized variational inequality. Given a nonempty set ƒ � <n

and functions F W <n ! <n and f W <n ! <n, the generalized variational
inequality problem GVI .F; f;ƒ/ is to find a vector y 2 <n such that

f .y/ 2 ƒ
ŒF .y/�T Œf .x/ � f .y/� � 0 8f .x/ 2 ƒ

)

GVI.F;ƒ/

Definition 5.9. Quasivariational inequality. Given a function F W <n ! <n and
the point-to-set mappingK .y/ such thatK .y/ � <n, the quasivariational inequal-
ity problem QVI .ƒ; F / is to find a vector y 2 K .y/ such that

y 2 K.y/
ŒF .y/�T .x � y/ � 0 8x 2 K.y/

�
QVI.F;ƒ/

5.3.4 Relationships Among Nonextremal Problems

There is a variety of relationships among the various nonextremal problems we have
defined. We formalize some of those relationships in the following results:
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Lemma 5.1. Nonlinear complementarity and variational inequality equivalence. If
ƒ D <nC then the variational inequality problem VI .F;ƒ/ is equivalent to the
nonlinear complementarity problem NCP .F /.

Proof. The proof is in two parts:
(i) [NCP .F / H) VI .F;ƒ/] First we show that if y is a solution of NCP .F /

then it is also a solution to VI .F;ƒ/. To do so, note that, if y is a solution to
NCP .F /, then F.y/ � 0. Therefore, ŒF .y/�T x � 0 for all x 2 ƒ. Thus, since
ŒF .y/�T y D 0 for all y � 0, it follows that

ŒF .y/�T x � ŒF .y/�T y � 0 (5.24)

H) ŒF .y/�T .x � y/ � 0 x; y 2 ƒ: (5.25)

(ii) [VI .F;ƒ/ H) NCP .F /] Next we show that if y is a solution of VI .F;ƒ/
then it is also a solution of NCP .F /. To do so, note that if y is a solution to VI .F;ƒ/
then

ŒF .y/�T .x � y/ � 0 8 x 2 ƒ (5.26)

H) ŒF .y/�T .�y/ � 0; since x D 0 2 ƒ (5.27)

H) ŒF .y/�T y � 0 (5.28)

Also note that x D 2y 2 ƒ since y 2 ƒ. Thus,

ŒF .y/�T .2y � y/ � 0 H) ŒF .y/�T y � 0: (5.29)

However

ŒF .y/�T y � 0 and ŒF .y/�T y � 0 H) ŒF .y/�T y D 0 (5.30)

By assumption

ŒF .y/�T .x � y/ D
nX

iD1

Fi .y/.xi � yi / � 0 8 x 2 ƒ: (5.31)

Now, suppose F.y/ ¤ 0 and F.y/ 6> 0. Then, there exists a j 2 Œ1; n� such that
Fj .y/ < 0. So, pick xj D C1 > 0. Then, it is immediate that

X

i

Fi .y/.xi � yi / < 0 (5.32)

which is a contradiction of our supposition; hence F.y/ � 0. Also, since y 2 ƒ, it
is immediate that y � 0. Thus,

ŒF .y/�T y D 0; F.y/ � 0; y � 0: (5.33)

�
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Lemma 5.2. Fixed-point problem and variational inequality equivalence. The fixed-
point problem based on the minimum norm projection FPPmin .F;ƒ/ is equivalent
to the variational inequality problem VI .F;ƒ/ when ƒ � <n is a convex set.

Proof. By definition FPPmin .F;ƒ/ can be viewed as requiring the solution of

min
x

ky�F .y/ � xk s:t: x 2 ƒ (5.34)

The mathematical program (5.34) is equivalent to

min
x

1

2
.y�F .y/ � x/T .y�F .y/ � x/ � Z .xIy/ s:t: x 2 ƒ (5.35)

since the objective function of (5.35) is a monotonic transformation of the objective
function of (5.34). By Theorem 5.1 a necessary and sufficient condition for x� 2 ƒ
to be an optimal solution of (5.35) is

ŒrxZ .xIy/�T �x�x�� � 0 8x2ƒ (5.36)

or
.�1/ .y�F .y/ � x/T �x�x�� � 0 8x2ƒ (5.37)

Since by the given we are solving a fixed-point problem, we know that y D x�; it
is then immediate from (5.37) that

ŒF .y/�T .x�y/ � 0 8x2ƒ

as required. �

Observe that if the vector function F .y/ is replaced by �F .y/ where � 2 <1CC the
result is unchanged.

It is interesting to note that the following result also holds:

Theorem 5.4. Nonlinear complementarity and variational inequality equivalence.
There is a nonlinear complementarity problem that is equivalent to VI .F;ƒ/ pro-
vided VI .F;ƒ/ obeys a constraint qualification and

ƒ D fx � 0 W g .x/ � 0; h .x/ D 0g � <nC

is convex.

Proof. Taking

F .x/ W <n �! <n

g .x/ W <n �! <m

h .x/ W <n �! <q
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define

‰ .y/ D

0

BB
@

F .x�/C Œrg .x�/�T �C Œrh .x�/�T �
�g .x�/
h .x�/

�h .x�/

1

CC
A 2 <nCmC2q (5.38)

and

y D

0

B
B
@

x

�

�

�

1

C
C
A 2 <nCmC2q (5.39)

We know that h .x�/ D 0 is equivalent to

h
�
x�� � 0 and h

�
x�� � 0 (5.40)

The Kuhn-Tucker identity for VI .F;ƒ/ is

F
�
x��C �rg �x���T �C �rh �x���T � D 	 (5.41)

while the pertinent complementary slackness conditions are

�T g
�
x�� D 0 (5.42)

�g �x�� � 0 (5.43)

� � 0 (5.44)

and

	T x� D 0 (5.45)

x� � 0 (5.46)

	 � 0 (5.47)

and

�T h
�
x�� D 0 (5.48)

h
�
x�� � 0 (5.49)

� � 0 (5.50)

and

�T
��h �x��� D 0 (5.51)

�h �x�� � 0 (5.52)

� � 0 (5.53)
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It is immediate from complementary slackness and the Kuhn-Tucker identity that

�
F
�
x��C �rg �x���T �C �rh �x���T �

�T

x� D 0 (5.54)

F
�
x��C �rg �x���T �C �rh �x���T � � 0 (5.55)

x � 0 (5.56)

The nonlinear complementarity problem

Œ‰ .y/�T y D 0

‰ .y/ � 0

y � 0

follows, if we employ definitions (5.38) and (5.39). Because of convexity the Kuhn-
Tucker conditions are also sufficient. Hence, the two problems are equivalent. �

Note that variational inequalities are more “general” than nonlinear programs. To
see this, consider the nonlinear program

min

x∮

0

F.z/d z

s.t. x 2 ƒ

9
>>=

>>;
NLP

	∮
F.z/d z; ƒ



(5.57)

where
∮

denotes a line integral which must be well defined and yield a single valued
function on ƒ for (5.57) to be meaningful. For this program, we have the following
result:

Lemma 5.3. Nonlinear program and variational inequality equivalence. Let ƒ be
convex and take

x∮

0

F.z/d z

to be single valued and strictly convex on ƒ. Then, the nonlinear program
NLP Œ

∮
F.z/d z; ƒ� is equivalent to the variational inequality VI .F;ƒ/. That

is, the variational inequality VI .F;ƒ/ is a necessary and sufficient condition for
optimality of the nonlinear programNLP Œ

∮
F.z/d z; ƒ�.

Proof. By Theorem 5.1 we know that a necessary and sufficient condition for opti-
mality of NLP Œ

∮
F.z/d z; ƒ� is

2

4rx

x∮

0

F.z/d z

3

5

T

xDy

.x � y/ D ŒF .y/�T .x � y/ � 0; 8 x 2 ƒ (5.58)

which is VI .F;ƒ/. �
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5.3.5 Variational Inequality Representation of Nash Equilibrium

Although the kinds of nonextremal problems introduced above are very interesting
in their own right, they are perhaps most useful in the formulation of both network
and nonnetwork game-theoretic equilibrium models. Loosely speaking, a system
is in equilibrium when fluctuations have ceased. Thus, if we think of the function
G.y/ � y as embodying the signals that guide how a system evolves over time, an
equilibrium exists when the fixed-point problem G.y/ D y obtains. It is therefore
no surprise that most equilibrium models can be formulated as fixed-point problems.
In light of the connection between fixed-point and variational inequality problems
that we have established, we fully expect that a Nash equilibrium in the sense of
Definition 6.3 will be equivalent to a variational inequality under appropriate regu-
larity conditions. In fact, the following result may be stated and proven:

Theorem 5.5. Nash equilibrium equivalent to a variational inequality. The Nash
equilibrium NE.‚;�/ of Definition 5.1 is equivalent to the variational inequality
VI.r‚;�/ the following regularity conditions hold: (1) each 
i .x/ W ˝i �! <1

is convex and continuously differentiable in xi; and (2) each ˝i is a closed convex
subset of <ni.

Proof. Each agent i 2 Œ1; N � seeks to solve

min
i .x
i ; x�i / s.t. xi 2 ˝i (5.59)

Because of convexity and differentiability, the variational inequality principle pro-
vides a necessary and sufficient condition for yi 2 ˝i to be an equilibrium, namely

ri
i .y
i ; y�i /

�
xi � yi

� � 0 8xi 2 ˝i i 2 Œ1; N � (5.60)

where ri denotes the gradient operator relative to xi for i 2 Œ1; N �. Concatenating
the expressions (5.60) gives

�r
.y/�T .x � y/ � 0 8x 2 ˝ (5.61)

which is recognized as VI.r
;˝/. Now suppose we are given (5.61); we may,
for any arbitrary i 2 Œ1; N �, select the tuple x to have yj as its j th subvector for
every j ¤ i . As a consequence of such choices, (5.61) yields the expressions (5.60).
Thereby, the desired equivalency has been demonstrated. �

5.3.6 User Equilibrium

In vehicular traffic science much effort has been devoted to modeling and comput-
ing a Nash-like equilibrium known as user equilibrium. This type of equilibrium is
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a steady state flow pattern that is sometimes also called user-optimized flow. Traffic
is said to achieve a user equilibrium when no traveler can change his/her route with-
out experiencing greater travel delay or increased generalized cost (that includes
consideration of the value of time).

To construct a model of user equilibrium we begin with a general network
G .N ;A/, where N is a set of nodes and A is a set of arcs. We use .i; j / 2 W
to denote an origin-destination (OD) pair for which the origin is node i and the des-
tination is node j while the set of all OD pairs is W : There is a fixed travel demand
Tij, expressed in flow units, for each OD pair .i; j / 2 W . Furthermore, the mini-
mum travel cost for OD pair .i; j / 2 W is uij. The set of paths from node i to node
j is denoted by Pij, while the unit cost of travel over path p 2 Pij is denoted by
cp . In addition, we denote the flow on path p by hp. Letting P denote the set of all
paths in the network, we are able to say the vector h D �

hp W p 2 P� � 0 is a user
equilibrium when it obeys the following:

hp > 0; p 2 Pij H) cp D uij (5.62)

where
uij D min

p2Pij

cp

and flow conservation constraints are also enforced. The condition

cp > uij; p 2 Pij H) hp D 0 (5.63)

is automatically enforced and need not be separately articulated, as may be easily
established by assuming hp > 0 when cp > uij for p 2 Pij. Using (5.62) a contra-
diction immediately results, verifying (5.63).

Usually path costs are taken to be additive in unit arc costs; that is

cp D
X

a2A
ıapca.f / 8p 2 P (5.64)

where ca is a unit cost function that reflects congestion by depending on the vector
of arc flows f D .fa W a 2 A/ while fa is the flow on each arc a 2 A. We will use
the vectors

c D .ca W a 2 A/
C D .cp W p 2 P/

to denote the vector of arc costs and the vector of path costs, respectively. Also

ıap D
�
1 if arc a belongs to path p
0 if arc a does not belong to path p

(5.65)
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for each arc a 2 A and path p 2 P . Arc flows are related to path flows according to

fa D
X

p2P
ıaphp 8a 2 A (5.66)

The relationships
Tij �

X

p2Pij

hp D 0 8 .i; j / 2 W (5.67)

are the conservation of flow constraints. Clearly, then, the set

‡ D
8
<

:
h � 0 W Tij �

X

p2Pij

hp D 0 8i; j
9
=

;

is the set of feasible flows from which the user equilibrium must be selected.
The user equilibrium problem we have desbribed above may be restated in a

number of ways. One version is the following:

Definition 5.10. User equilibrium with fixed demand. A user equilibriumUE.C;‡/
with fixed demand T D �

Tij W .i; j / 2 W�
is a flow pattern h � �

hp W p 2 P/ such
that

�
cp � uij

�
hp D 0 8 .i; j / 2 W; p 2 Pij (5.68)

cp � uij � 0 8 .i; j / 2 W; p 2 Pij (5.69)
X

p2Pij

hp � Tij D 0 8 .i; j / 2 W (5.70)

hp � 0 8p 2 P (5.71)

where
uij D min

p2Pij

cp 8 .i; j / 2 W
The system (5.68), (5.69), (5.70), and (5.71) looks quite similar to a nonlinear com-
plementaity problem but is not. However, under the assumption of cost positivity, it
is equivalent to a nonlinear complementarity problem:

Theorem 5.6. User equilibrium as a nonlinear complementarity problem. Assume
each arc cost ca.f / is strictly positive for all feasible flow and all a 2 A. Any pair
.h; u/, where h D �

hp W p 2 P� and u D �
uij W .i; j / 2 W�

, is a user equilibrium
UE.C;‡/ if it satisfies the following nonlinear complementarity problem:

�
cp � uij

�
hp D 0 8 .i; j / 2 W; p 2 Pij (5.72)

cp � uij � 0 8 .i; j / 2 W; p 2 Pij (5.73)
0

@
X

q2Pij

hq � Tij

1

A uij D 0 8 .i; j / 2 W (5.74)
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0

@
X

p2Pij

hp � Tij

1

A � 0 8 .i; j / 2 W (5.75)

hp � 0 8p 2 P (5.76)

Proof. That any solution of system (5.72), (5.73), (5.74), (5.75), and (5.76) is a
solution of system (5.68), (5.69), (5.70), and (5.71) is seen by the following argu-
ment: if the desired relationship does not hold, the following chain of implications
obtains:

X

q2Pij

hq � Tij > 0 H) uij D 0 and 9 hq > 0 H) cq D uij D 0 (5.77)

Clearly (5.77) violates the assumption of cost positivity; thereby we have extab-
lished that any solution of (5.72), (5.73), (5.74), (5.75), and (5.76) is a user equilib-
rium. �

It is an easy matter to show that a flow pattern is a user equilibrium if and only if
it satisfies an appropriate variational inequality:

Theorem 5.7. User equilibrium as a variational inequality. The flow pattern h� D�
h�

p W p 2 P� is a user equilibrium if and only if

h� 2 ‡P
p2P cp .h

�/
�
hp � h�

p

� � 0 8h 2 �

)

VI.c;�/ (5.78)

where

‡ D
8
<

:
h � 0 W Tij �

X

p2Pij

hp D 0 8 .i; j / 2 W
9
=

;
(5.79)

Proof. The proof is in two parts:
(i) [UE .C;‡/ H) VI .C;‡/] Note that

cp

�
h�� � uij

for any p 2 Pij. so that

cp

�
h�� �hp � h�

p

� � uij
�
hp � h�

p

�
(5.80)

including the case of
�
hp � h�

p

�
< 0, for then

h�
p > hp � 0 H) cp.h

�/ D uij
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Therefore, from (5.80), upon summing over paths, we have at once the variational
inequality (5.78).

(ii) [VI .C;‡/ H) UE .C;‡/] The Kuhn-Tucker conditions for (5.78) are

cp

�
h�� � uij � 	p D 0 8 .i; j / 2 W; p 2 Pij

	php D 0 8 .i; j / 2 W; p 2 Pij

	p � 0 8 .i; j / 2 W; p 2 Pij

which are easily seen to yield the conditions that define UE .C;‡/. �

5.3.7 Existence and Uniqueness

There is an existence and uniqueness theory for finite-dimensional games and
variational inequalities. The relevant starting point for developing an existence the-
ory for finite-dimensional nonextremal noncooperative games is, not surprisingly,
Brouwer’s existence theorem for fixed-point problems in <n; we will employ the
following version, slightly different from that presented in Chapter 4:

Theorem 5.8. Brouwer’s fixed-point theorem. If S is a convex, nonempty, and com-
pact set, and F.x/ is continuous on S , then the fixed-point problem FPP .F;ƒ/ has
a solution.

Proof. See Todd (1976). �

Not surprisingly then, we also have the following existence result:

Theorem 5.9. Stampacchia existence theorem. If ƒ is convex, nonempty, and com-
pact and F.x/ is continuous on ƒ, then VI .F;ƒ/ has a solution.

Proof. By the given, FPPmin .F;ƒ/ satisfies the regularity conditions of Brouwer’s
fixed-point theorem and must, therefore, have a solution. It is immediate that
VI .F;ƒ/ also has a solution, since by Lemma 5.2 we know that any solution of
FPPmin .F;ƒ/ is a solution of VI .F;ƒ/. �

This last theorem has an important implication for equilibria of Nash and Nash-like
noncooperative games. In particular, we have:

Corollary 5.1. Existence ofNE .‚;�/. Assume� is a convex, nonempty and com-
pact set. A Nash equilibrium NE .‚;�/ exists when �i .x

i ; x�i / is convex and
continuously differentiable with respect to xi for all x D �

xi ; x�i
� 2 ˝ and ev-

ery i 2 Œ1; N �.
Proof. The result is immediate from Theorems 5.9 and 5.5. �
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We now discuss the uniqueness of solutions to variational inequality problems.
To this end, we introduce the notion of monotonicity of a vector function:

Definition 5.11. Montotonically increasing function. A functionF.y/ W <n �! <n

is monotonically increasing on ƒ if

ŒF .y1/� F.y2/�T .y1 � y2/ � 0 (5.81)

for all y1; y2 2 ƒ.

We also introduce at this time the notion of strict monotonicity:

Definition 5.12. Strictly monotonically increasing function. A function F.y/ W
<n �! <n is strictly monotonically increasing on ƒ if

ŒF .y1/� F.y2/�T .y1 � y2/ > 0 (5.82)

for all y1; y2 2 ƒ such that y1 ¤ y2.

Of course monotone decreasing versions of the above definitions are obtained by
reversing the directions of the inequalities. The notion of strict monotonicity allows
us to establish the following uniqueness result:

Theorem 5.10. VI .F;ƒ/ uniqueness. If y 2 ƒ � <n is a solution of VI .F;ƒ/
and F.x/ is strictly monotonically increasing then y is unique.

Proof. Suppose there are two solutions y1 2 ƒ and y2 2 ƒ, where y1 6D y2; as
such the following variational inequalities obtain:

F.y1/.y2 � y1/ � 0 and F.y2/.y1 � y2/ � 0 (5.83)

Adding these inequalities leads to

ŒF .y1/� F.y2/�T .y1 � y2/ � 0; (5.84)

which contradicts strict monotonicity (5.82). Hence y1 D y2, and any solution is
unique. �

There is an intimate relationship between differentiable convex functions and
monotonically increasing functions that is important to the qualitative analysis of
variational inequalities. That result is:

Theorem 5.11. Relationship of convexity and monotonicity. If the differentiable
function E .x/ W ƒ � <n �! <n is (strictly) convex for all x 2 ƒ, then its
gradient rE .x/ is (strictly) monotonically increasing for all x 2 ƒ.

Proof. Convexity and differentiability of E .x/ ensure that

E
�
y1
� � E

�
y2
�C �rE �y2

��T �
y1�y2

�
(5.85)

E
�
y2
� � E

�
y1
�C �rE �y1

��T �
y2�y1

�
(5.86)
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for all y1; y 2 ƒ. Adding these two inequalities leads directly to

0 � ŒrE .y2/�
T
�
y1�y2

�C �rE �y1
��T �

y2�y1
�

(5.87)

which is easily manipulated to obtain

� ŒrE .y2/�
T
�
y1�y2

�C �rE �y1
��T �

y1�y2
� � 0 (5.88)

or n�rE �y1
��T � ŒrE .y2/�

T
o �
y1�y2

� � 0 (5.89)

which is recognized as the condition defining the monotonically increasing nature
of E .:/. �

5.4 Sensitivity Analysis of Variational Inequalities

For both extremal and nonextremal problems, we are frequently interested in
estimating a new solution from a known solution after changes in model param-
eters. A very elegant theory that is also quite practical can be developed for such
sensitivity analyses of variational inequalities. In light of our previous development,
it should be clear to the reader that the theory of variational inequality sensitivity
analysis that we are about to present is also relevant to Nash games.

We begin our discussion of sensitivity analysis with a reminder of what is meant
by sensitivity analysis. In our presentation, sensitivity analysis is the analysis of
the impact of parameter perturbations on the solutions of variational inequalities.
We modify the statement of the variational inequality problem to include explicit
reference to parameters that are determined external to the problem:

Definition 5.13. Perturbed variational inequality. Given a vector of exogenous pa-
rameter perturbations � 2 <s, a function h .x�I �/ W <n �! <q , a function
g .x�I �/ W <n �! <m, a function F .xI �/ W ƒ ! <n and the feasible set

ƒ.�/ D fx 2 <n W h .x; �/ D 0; g .x; �/ � 0g , (5.90)

the perturbed variational inequality problem VI .F;ƒI�/ is to find a vector y such
that

y 2 ƒ.�/
ŒF.yI �/�T .x � y/ � 0 8 x 2 ƒ.�/

�
VI .F;ƒI �/ (5.91)

We are now able to state and prove the following preliminary result:

Theorem 5.12. Continuous differentiable functions of perturbations. Let

x� 2 ƒ.0/ D fx 2 <n W h .x; 0/ D 0;G .x; 0/ � 0g
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be a solution of VI .F;ƒI 0/ such that: (i) local sufficiency of any solution of
VI .F;ƒI 0/ is assured; (ii) the gradients rgi .x

�; 0/ for all i such that gi .x
�; 0/ D

0 together with the gradients rhi .x
�; 0/ for all i 2 Œ1; q� are linearly independent;

and (iii) the strict complementary slackness condition

�i > 0 when gi

�
x�; 0

� D 0 (5.92)

is satisfied. Then the multipliers �� and �� associated with x� are unique. Also,
in a neighborhood of � D 0, there exists a unique once continuously differentiable
function 2

4
x .�/

� .�/

� .�/

3

5 (5.93)

where x .�/ is a locally unique solution of VI .F;ƒI �/ and � .�/ and � .�/ are
unique associated Kuhn-Tucker multipliers. Furthermore, in a neighborhood of
� D 0, the gradients of constraints binding at x .�/ are linearly independent.

Proof. For � D 0 the solutions of the perturbed and unperturbed variational inequal-
ities are of course identical:

2

4
x�
��
��

3

5 D
2

4
x .0/

� .0/

� .0/

3

5 (5.94)

From Theorem 5.2 we have

F.x; �/C Œrg.x; �/�T� C Œrh.x; �/�T � D 0 (5.95)

�T g .x; �/ D 0 (5.96)

h .x; �/ D 0 (5.97)

� � 0 (5.98)

A system of equations with the structure of (5.95) through (5.98) has a Jacobian
with respect to x, �, and � that is nonsingular at ��; ��, and �� when � D 0.
Consequently the implicit function theorem may be invoked and the conclusions of
the present theorem follow immediately. �

The preceding theorem ensures that the perturbed variational inequality has well-
behaved primal and dual solutions that vary continuously with the perturbations and
can be differentiated with respect to those perturbations.

It is now rather easy to establish our central result on sensitivity analysis of vari-
ational inequalities:

Corollary 5.2. First-order approximate solutions of VI .F;ƒI �/ near � D 0. Un-
der the assumptions of Theorem 5.12, a first-order approximation of the solution to
VI .F;ƒI �/ is
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y .�/ D
2

4
x .�/

� .�/

� .�/

3

5 D
2

4
x�
��
��

3

5C �
Jy .0/

��1
h
�J �

� .0/
i
� (5.99)

where Jy .�/ is the Jacobian matrix of the system (5.95), (5.96), (5.97), and (5.98)
with respect to y .�/ evaluated at .y .�/ ; �/ and J� .�/ is the Jacobian of the same
system with respect to � also evaluated at .y .�/ ; �/.

Proof. The proof is given by Tobin (1986) and parallels an earlier result by Fiacco
and McCormick (1990) for perturbed mathematical programs. �

5.5 The Diagonalization Algorithm

Since Nash and many Nash-like equilibria may be articulated as variational inequal-
ities, we only focus here in this section on algorithms for variational inequalities.
On the surface, it would appear that variational inequalities can be solved by refor-
mulating them as mathematical programs using Lemma 5.3. However, that result
depends on the introduction of an objective function that involves a line integral.
Line integrals are not generally single valued; in fact their value depends on the
path of integration one employs. As this is a somewhat subtle point, an example is
warranted. Consider the line integral

I D
∮ .b1;b2/

.a1;a2/
ŒF .x/�T dx (5.100)

for which x 2 <2 and F W <2 �! <2. In summation notation we write

I D
2X

iD1

Z bi

ai

Fi .x1; x2/ dxi (5.101)

Let

F1 .x1; x2/ D x1 C 2x2

F2 .x1; x2/ D x1 C x2

a1 D a2 D 0

b1 D b2 D 1

and consider two distinct paths of integration:

Path 1st segment 2nd segment

1 x1 D 0; x2 2 Œ0; 1� x1 2 Œ0; 1� ; x2 D 1

2 x1 2 Œ0; 1� ; x2 D 0 x1 D 1; x2 2 Œ0; 1�
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For path 1 we have

I D
Z 1

0

F2 .0; x2/ dx2 C
Z 1

0

F1 .x1; 1/ dx1

D
Z 1

0

x2dx2 C
Z 1

0

.x1 C 2/ dx1 D 3 (5.102)

For path 2 we have

I D
Z 1

0

F1 .x1; 0/ dx1 C
Z 1

0

F2 .1; x2/ dx2

D
Z 1

0

x1dx1 C
Z 1

0

.1C x2/ dx2 D 2 (5.103)

Evidently the value of this line integral depends on the path of integration.
In fact, it is well known that a line integral

I D
∮ b

a
F.x/dx D

nX

iD1

Z bi

ai

Fi .x1; x2/ dxi (5.104)

where a; b; x 2 <n and F.x/ W <n �! <n has a value independent of the path of
integration if and only if

@Fi

@xj

D @Fj

@xi

8i; j 2 Œ1; n� (5.105)

The restrictions (5.105) are known as symmetry conditions since they make the
Jacobian matrix

J.F / �

0

BB
B
B
B
@

@F1

@x1

@F1

@x2

� � � @F1

@xn
:::

:::
: : :

:::

@Fn

@x1

@Fn

@x2

� � � @Fn

@xn

1

CC
C
C
C
A

(5.106)

symmetric. It is significant that one class of functions F.x/ W <n �! <n always
leads to a symmetric J.F / and thereby satisfaction of (5.105); that is the class of
functions known as separable functions for which each scalar component has only
an own-variable dependence, which we express symbolically as

Fi D Fi .xi / 8i 2 Œ1; n� (5.107)

By inspection we see that the Jacobian matrix for the vector function F.x/ whose
scalar components obey (5.107) is a diagonal and therefore symmetric matrix.
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5.5.1 The Algorithm

The algorithm we emphasize in this section is called the diagonalization algorithm
or diagonalization for short; it is an algorithmic philosophy very similar to the
Gauss-Seidel method1 familiar from the numerical analysis literature. Diagonaliza-
tion is appealing for solving finite-dimensional variational inequalities because the
resulting subproblems are all nonlinear programs that can be efficiently solved with
well-understood nonlinear programming algorithms, which are often available in
the form of commercial software. This fact not withstanding, diagonalization may
fail to converge and its use on large-scale problems can be frustrating.

The diagonalization algorithm rests on the creation of separable functions at each
iteration k of the form

F k
i .xi / � Fi

�
xi ; xj D xk

j 8 j ¤ i
�

(5.108)

Evidently the functions F k
i .xi / are separable by construction, so that the Jacobian

of F k D .: : : ; F k
i ; : : :/

T is diagonal; hence, the name of the method. The diago-
nalization algorithm may be stated as follows:

Diagonalization Algorithm for VI.F;ƒ/

Step 0. Initialization. Determine an initial feasible solution x0 2 ƒ and set k D 0.

Step 1. Solve diagonalized variational inequality. Form the separable functions

F k
i .xi / for all i 2 Œ1; n� and solve the associated diagonalized variational inequal-

ity problem. That is, find xkC1 2 ƒ such that

nX

iD1

F k
i .x

kC1
i /.xi � xkC1

i / � 0 8x 2 ƒ (5.109)

Step 2. Stopping test and updating. For 
 2 <1CC, a preset tolerance, if

max
i2Œ1;n�

jxkC1
i � xk

i j < 


stop; otherwise set k D k C 1 and go to Step 1.

Note that the variational inequalities of Step 1 of the above algorithm may be solved
using the nonlinear program

minJ .x/ D
X

i

Z xi

0

F k
i .zi /d zi s.t. x 2 ƒ , (5.110)

1 See Ortega and Rheinboldt (2000) for a typology of iterative algorithms in numerical analysis.



242 5 Finite Dimensional Variational Inequalities and Nash Equilibria

where the zi are dummy variables of integration, because the conditions needed to
invoke Lemma 5.3 are in force since the integral in (5.110) is an ordinary integral,
not a line integral, and no symmetry restrictions need be imposed because the func-
tions F k

i .�/ are separable. Thus, the diagonalization algorithm involves, in effect,
the solution of a sequence of separable problems, each of which may be expressed
as a well-defined mathematical program.

5.5.2 Converence of Diagonalization

To state a convergence result for the diagonalization algorithm, we will use the G-
norm of a vector x, which is defined by

kxkG �
�
xTGx

�1=2

(5.111)

Referring back to the variational inequality problem VI .F; �/ and letting D and
B denote respectively the diagonal and off-diagonal portions of ŒrF.x�/�T �
J ŒF.x�/� (the Jacobian of F.x/ evaluated at x D x�), we consider the following
theorem due to Pang and Chan (1982):

Theorem 5.13. Convergence of diagonalization. Let D and B denote, respec-
tively, the diagonal and off-diagonal portions of rf .x�/. If x� is a solution of
VI .F; �/ and

(1) � is convex

(2) F .x/ is differentiable 8x 2 �

(3) F .x/ is continuously differentiable in a neighborhood of x�

(4)
@Fi .x/

@xi

� 0 8 i 2 Œ1; n� ; x 2 �

(5)
@Fi .x

�/
@xi

> 0 8 i 2 Œ1; n�

(6) k D�1=2BD�1=2 k< 1,

then, provided that the initial vector x0 is chosen in a suitable neighborhood of x�,
the diagonalization algorithm will converge to x�.

Proof. See Pang and Chan (1982). �

It is interesting to note that both Pang and Chan (1982) and Dafermos (1983) give
global proofs of convergence of the diagonalization method by invoking more re-
strictive regularity conditions than those employed above. Also, diagonalization and
the family of related iterative algorithms which Pang and Chan (1982) and Dafer-
mos (1983) discuss may converge under circumstances that do not fulfill the known
convergence theory. Nonetheless, examples of nonconvergence are known and the
method must be used with great caution.
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5.5.3 A Nonnetwork Example of Diagonalization

In this section we consider an example given originally by Tobin (1986). In partic-

ular, we study the following variational inequality: find
�
x�

1 ; x
�
2

�T 2 � such that

F1

�
x�

1 ; x
�
2

� �
x1 � x�

1

�C F2

�
x�

2 ; x
�
2

� �
x2 � x�

2

� � 0 8 .x1; x2/
T 2 � (5.112)

where

� D
n
.x1; x2/

T W g1 .x1; x2/ � 0; g2 .x1; x2/ � 0; g3 .x1; x2/ � 0
o

and

F1 .x1; x2/ D x1 � 5
F2 .x1; x2/ D :1x1x2 C x2 � 5

g1 .x1; x2/ D �x1 � 0 .�1/

g2 .x1; x2/ D �x2 � 0 .�2/

g3 .x1; x2/ D x1 C x2 � 1 � 0 .�3/

By inspection, the Jacobian

rF .x1; x2/ D

0

BB
B
@

@F1

@x1

@F2

@x1

@F1

@x2

@F2

@x2

1

CC
C
A

D
�
1 :1x2

0 :1x1 C 1



(5.113)

is asymmetric and, consequently, we cannot directly construct an equivalent op-
timization problem with a single valued objective function. In particular, we
note that an equivalent optimization problem must have as an objective the line
integral

Z D
∮ .x1;x2/

.0;0/
ŒF .z/�T d z (5.114)

We diagonalize by constructing

F k
1 .x1/ � F1

�
x1; x

k
2

�
D x1 � 5 (5.115)

F k
2 .x2/ � F2

�
xk

1 ; x2

�
D
�
:1xk

1 C 1
�
x2 � 5 (5.116)
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where
�
xk

1 ; x
k
2

�T 2 � is the current approximate solution. Thus, the mathematical
program solved to find xkC1 has the objective

minZk �
Z x1

0

F k
1 .z1/ d z1 C

Z x2

0

F k
2 .z2/ d z2

D
Z x1

0

.z1 � 5/ d z1 C
Z x2

0

h�
:1xk

1 C 1
�

z2 � 5
i
d z2

D 1

2
.x1/

2 � 5x1 C 1

2

�
:1xk

1 C 1
�
.x2/

2 � 5x2 s.t. .x1; x2/
T 2 �

(5.117)

We denote the solution of (5.117) by
�
xkC1

1 ; xkC1
2

�T

, which of course satisfies the

Kuhn-Tucker conditions:

@Zk

@x1

C �1

@g1

@x1

C �2

@g2

@x1

C �3

@g3

@x1

D x1 � 5 � �1 C �3 D 0 (5.118)

@Zk

@x2

C �1

@g1

@x2

C �2

@g2

@x2

C �3

@g3

@x2

D
�
:1xk

1 C 1
�
x2 � 5 � �2 C �3 D 0

(5.119)

�1x1 D 0 (5.120)

�2x2 D 0 (5.121)

�3 .x1 C x2 � 1/ D 0 (5.122)

�1; �2; �3 � 0 (5.123)

Assuming a primal solution in the first quadrant and that g3 .x1; x2/ binds at op-
timality, as is easily verified by graphical solution of (5.117), these conditions
reduce to

x1 C �3 D 5
�
:1xk

1 C 1
�
x2 C �3 D 5

x1 C x2 D 1

�1 D �2 D 0

which yield the convenient formulae

x1 D xk
1 C 10

xk
1 C 20

(5.124)

x2 D 10

xk
1 C 20

(5.125)

�1 D �2 D 0 (5.126)

�3 D 2
2xk

1 C 45

xk
1 C 20

(5.127)
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It must be noted that generally the mathematical programming subproblems result-
ing from diagonalization are not this simple and one must select an appropriate
numerical algorithm for their solution.

With the results developed above, we can describe the iterations of the diagonal-
ization algorithm:

Step 0. Initialization. Pick
�
x0

1 ; x
0
2

�T D .1; 0/T and set k D 0:

k D 0, Step1. Solve the diagonalized variational inequality using (5.124) to find:

�
x1

1

x1
2



D

0

BB
@

x0
1 C 10

x0
1 C 20
10

x0
1 C 20

1

CC
A D

0

B
@

11

21
10

21

1

C
A D

�
0:52381

0:47619




k D 0, Step 2. Updating. Set k D 0C 1 D 1.

k D 1, Step 1. Solve the diagonalized variational inequality using (5.124) to find:

�
x2

1

x2
2



D

0

B
B
B
@

x1
1 C 10

x1
1 C 20

10

x1
1 C 20

1

C
C
C
A

D

0

B
@

0:52381C 10

0:52381C 20
10

0:52381C 20

1

C
A D

�
0:51276

0:48724




k D 1, Step 2. Updating. Set k D 1C 1 D 2.

k D 2, Step 1. Solve the diagonalized variational inequality using (5.124) to find:

�
x3

1

x3
2



D

0

B
B
B
@

x2
1 C 10

x2
1 C 20

10

x2
1 C 20

1

C
C
C
A

D

0

B
@

0:51276C 10

0:51276C 20
10

0:51276C 20

1

C
A D

�
0:5125

0:4875




k D 2, Step 2. Stopping. Assuming a stopping tolerance " D :001, we see that

max
i2Œ1;2�

jx3
i � x2

i j D max fj0:51276� 0:5125j ; j0:48724� 0:4875jg
D :00026 < :001

H)
�
x�

1

x�
2



Š
�
x3

1

x3
2



D
�
0:5125

0:4875



(5.128)
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Note also that the dual variables associated with solution (5.128) are

��
1 D ��

2 D 0 (5.129)

��
3 D 2

2x�
1 C 45

x�
1 C 20

D 2
2 .0:5125/C 45

.0:5125/C 20
D 4:4875 (5.130)

By inspection, the inequality constraint functions are linearly independent and con-
vex. Consequently, the Kuhn-Tucker conditions for this variational inequality are
necessary and sufficient, so that any solution to

Fj

�
x�

1 ; x
�
2

�C
3X

iD1

�i

@gi

�
x�

1 ; x
�
2

�

@xi

D 0 j D 1; 2 (5.131)

�igi

�
x�

1 ; x
�
2

� D 0 i D 1; 2; 3 (5.132)

�i � 0 i D 1; 2; 3 (5.133)

is the desired global solution. These conditions yield

x�
1 � 5 � ��

1 C ��
3 D 0 (5.134)

:1x�
1x

�
2 C x�

2 � 5 � ��
2 C ��

3 D 0 (5.135)

��
1x

�
1 D 0 (5.136)

��
2x

�
2 D 0 (5.137)

��
3

�
x�

1 C x�
2 � 1

� D 0 (5.138)

��
1; �

�
2; �

�
3 � 0 (5.139)

which are subtly different than conditions (5.118) through (5.123). In fact, (5.136),
(5.137), (5.138), and (5.139) are seen by inspection to be satisfied, while (5.134)
and (5.135) give

x�
1 � 5 � ��

1 C ��
3 D 0:5125� 5 � 0C 4:4875 D 0 (5.140)

:1x�
1x

�
2 C x�

2 � 5 � ��
2 C ��

3 D :1 .0:5125/ .0:4875/C 0:4875� 5 � 0C 4: 4875

D �1:5625	 10�5 (5.141)

That is, the variational-inequality Kuhn-Tucker conditions are approximately satis-
fied by our solution obtained from the diagonalization algorithm.

Now imagine that the function F2 .x1; x2/ D :1x1x2 C x2 � 5 is perturbed
according to

F2 .x1; x2I �/ D .:1C �/ x1x2 C x2 � 5 (5.142)
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where now � 2 <1. To apply the sensitivity analysis results derived in Section 5.4,
we employ the Kuhn-Tucker system for the perturbed problem:

x1 � 5 � �1 C �3 D 0 (5.143)

.:1C �/ x1x2 C x2 � 5 � �2 C �3 D 0 (5.144)

�1x1 D 0 (5.145)

�2x2 D 0 (5.146)

�3 .x1 C x2 � 1/ D 0 (5.147)

where of course �1; �2; �3 � 0. The relevant Jacobians of this system are

Jy .�/ D

0

B
B
B
BB
@

1 0 �1 0 1

.:1C �/ x2 .:1C �/ x1 0 �1 1

�1 0 x1 0 0

0 �2 0 x2 0

�3 �3 0 0 x1 C x2 � 1

1

C
C
C
CC
A

J �
� .�/ D

0

B
B
B
B
B
@

0

x1x2

0

0

0

1

C
C
C
C
C
A

Consequently
2

6
66
6
6
4

x1 .�/

x2 .�/

�1 .�/

�2 .�/

�3 .�/

3

7
77
7
7
5

D

2

6
66
6
6
4

x1 .0/

x2 .0/

�1 .0/

�2 .0/

�3 .0/

3

7
77
7
7
5

C �
Jy .0/

��1
h
�J �

� .0/
i
�

D

0

B
B
B
B
B
@

x�
1

x�
2

��
1

��
2

��
3

1

C
C
C
C
C
A

�

0

B
B
B
B
B
@

1 0 �1 0 1

.:1C �/ x�
2 .:1C �/ x�

1 0 �1 1

��
1 0 x�

1 0 0

0 ��
2 0 x�

2 0

��
3 ��

3 0 0 x�
1 Cx�

2�1

1

C
C
C
C
C
A

�10

B
B
B
B
B
@

0

x�
1x

�
2

0

0

0

1

C
C
C
C
C
A
�

D

0

B
BB
B
B
B
B
BB
B
@

0:5125C 1:4006 	 109
�

5:6199 	 109 C 1:4015 	 108�

0:4875� 1:4006 	 109
�

5:6199	 109 C 1:4015	 108�
0

0

4:4875� 1:4006 	 109
�

5:6199	 109 C 1:4015 	 108�

1

C
CC
C
C
C
C
CC
C
A

(5.148)
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Use of (5.148) leads to the following table of results:

perturbation exact 1st order exact 1st order exact 1st order
� x�

1 .�/ x1 .�/ x�
2 .�/ x2 .�/ ��

3 .�/ �3 .�/

0 0:5125 0:5125 0:4875 0:4875 4:4875 4:4875

:01 0:5137 0:5150 0:4863 0:4850 4:4863 4:4850

:05 0:5187 0:5250 0:4813 0:4751 4:4813 4:4751

:1 0:5249 0:5374 0:4751 0:4626 4:4751 4:4626

:15 0:5311 0:5497 0:4689 0:4503 4:4689 4:4503

Note that in the above table we have used the notation x�
1 .�/, x

�
2 .�/ ; and ��

3 .�/ to
denote the exact solutions of the perturbed problem and the notation x1 .�/, x2 .�/ ;

and �3 .�/ to denote the first-order approximate solutions found using sensitivity
analysis. The exact solutions were found using separate software and are included
for comparison. Even for rather large pertubations, the first-order approximations
stemming from the sensitivity analysis are quite good. This accuracy for large per-
turbations, although not guaranteed, is not uncommon for the sensitivity analysis
theory we have presented.

5.6 Gap Function Methods for VI .F; ƒ/

There is a special class of functions associated with variational inequality problems,
so-called gap functions, which forms the foundation of a family of algorithms that
are sometimes very effective for solving VI.F;ƒ/. A gap function has two important
and advantageous properties: (1) it is always nonnegative and (2) it has zero value
if and only if we have a solution of the corresponding variational inequality.

5.6.1 Gap Function Defined

Formally, we define a gap function for VI .F;ƒ/ as follows:

Definition 5.14. Gap function. A function 
 W ƒ � <n �! <C is called a gap
function for VI .F;ƒ/ when the following statements hold:

1. 
 .y/ � 0 for all y 2 ƒ
2. 
 .y/ D 0 if and only if y is the solution of VI .F;ƒ/

Clearly, a gap function with the properties of Definition 5.14 allows us to re-
formulate VI .F;ƒ/ as an optimization problem, namely as

min
y2ƒ


 .y/ (5.149)

An optimal solution of (5.149) solves VI .F;ƒ/ provided 
 .y/ may be driven
to zero.
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5.6.2 The Auslender Gap Function

A gap function given by Auslender (1976) is the subject of the following result that
employs the notation

hv;wi � vT w

when v;w 2 <n:

Theorem 5.14. Auslender’s function is a gap function. The function


 .y/ D max
x2ƒ

hF .y/ ; y � xi (5.150)

is a gap function for VI.F;ƒ/, where ƒ is convex.

Proof. The proof is in two parts:
(i) Œ
 .y/ � 0� To establish Property 1 of Definition 5.14, we observe that, when

ƒ is convex, a necessary and sufficient condition for x 2 ƒ to solve (5.150) is

ŒF .y/�T .z � x/ � 0 8z 2 ƒ (5.151)

Picking z D y, it is immediate that 
 .y/ is a nonnegative function of y.
(ii) Œ
.y/ D 0 ” VI.F;ƒ� If y 2 ƒ solves VI.F;ƒ/ then

ŒF .y/�T .x � y/ � 0 8x 2 ƒ

or
ŒF .y/�T .y � x/ � 0 8x 2 ƒ (5.152)

Comparing (5.152) to (5.150) assures 
 .y/ D 0, as required. To show 
.y/ D 0

assures y solves VI.F;ƒ/, let us assume it does not; that is, there exists x 2 ƒ such
that

ŒF .y/�T .y � x/ > 0 (5.153)

However, (5.153) means that 
 .y/ D 0 cannot be the result of solving (5.150),
which is a contradiction; therefore 
 .y/ D 0 assures y solves VI.F;ƒ/. �

For the Auslender gap function, we may rewrite (5.149) as

min
y2ƒ


 .y/ D min
y2ƒ

max
x2ƒ

hF .y/ ; y � xi D min
y2ƒ

�
hF .y/ ; yi C max

x2ƒ
hF .y/ ;�xi

�

(5.154)

a format that reveals the underlying min-max nature of the gap function perspective
for solving variational inequalities. Note further that the Auslender gap function

 .y/ is not in general differentiable, even if F is differentiable.
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5.6.3 Fukushima-Auchmuty Gap Functions

Auchmuty (1989) and Fukushima (1992) independently suggested a class of differ-
entiable gap functions of the form


˛ .y/ D max
x2ƒ

n
hF .y/ ; y � xi � ˛

2
ky � xk2

o
(5.155)

for ˛ 2 <1CC. Function (5.155) is differentiable whenever F is differentiable. In
particular, recognizing that

ky � xk2 D .y � x/T .y � x/ � .y � x/2 ,

its gradient with respect to y is given by

r
˛ .y/ D F .y/C hrF .y/ ; y � x˛i � ˛ .y � x˛/

where x˛ denotes the unique maximizer of (5.155). The differentiability of (5.155)
is due to the uniqueness and realized finiteness of x˛ , which occurs because the
objective function on the right-hand side of (5.155) is strongly convex in x.

Wu et al. (1993) proposed the following generalization of the Fukushima-
Auchmuty gap function (5.155):


˛ .y/ D max
x2ƒ

fhF .y/ ; y � xi � ˛� .y; x/g (5.156)

In (5.156) � is a function that satisfies the following conditions:

1. � is continuously differentiable on <2n;
2. � is nonnegative on <2n;
3. � .y; �/ is strongly convex for any y 2 <n; and
4. � .y; x/ D 0 if and only if y D x.

If (5.156) is a gap function, it gives rise to the following constrained mathematical
program

min
y2ƒ


˛ .y/

which is equivalent to VI.F;ƒ/ provided 
˛ .y/ may be driven to zero. That is, we
are now ready to state and prove the following result:

Theorem 5.15. The extended Fukushima-Auchmuty function is a gap function. The
function (5.156) is a gap function for VI.F;ƒ/, where ƒ is convex.

Proof. The proof is in two parts:
(i) Œ
˛ .y/ � 0� To establish Property 1 of Definition 5.14, we observe that

(5.156) is equivalent to

min
x2ƒ

ŒF .y/�T x C ˛� .y; x/ (5.157)
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Strong convexity of � .y; �/ assures that the maximum in (5.156) and the minimum
in (5.157) are bounded away from zero and may actually be attained. Furthermore,
(5.157) has the necessary and sufficient condition

ŒF .y/C ˛rx� .y; x/�
T .z � x/ � 0 8z 2 ƒ

which upon picking z D y becomes

ŒF .y/�T .y � x/C ˛ Œrx� .y; x/�
T .y � x/ � 0 8z 2 ƒ (5.158)

Because � .y; �/ is strongly convex it is also convex so that

� .y; z/ � � .y; x/C Œrx� .y; x/�
T .y � x/ 8z 2 ƒ

Taking z D y in the last expression and noting that by the given � .y; y/ D 0, we
have

�� .y; x/ � Œrx� .y; x/�
T .y � x/ (5.159)

It is immediate from (5.158) and (5.159) that


˛ .y/ D ŒF .y/�T .y � x/ � ˛� .y; x/ � 0 8z 2 ƒ (5.160)

(ii) Œ
˛.y/ D 0 ” VI.F;ƒ� If y 2 ƒ solves VI.F;ƒ/ then

ŒF .y/�T .x � y/ � 0 8x 2 ƒ

or
ŒF .y/�T .y � x/ � 0 8x 2 ƒ (5.161)

So because � .y; x/ � 0 we have

ŒF .y/�T .y � x/ � ˛� .y; x/ � 0 8x 2 ƒ (5.162)

Comparing (5.162) and (5.160) assures 
˛ .y/ D 0. On the other hand if 
˛.y/ D 0,
then

ŒF .y/�T .y � x/ � ŒF .y/�T .y � x/ � ˛� .y; x/ D 0

which assures y solves VI.F;ƒ/. �

5.6.4 The D-Gap Function

The gap functions introduced above all lead to equivalent constrained mathemat-
ical programs. It is reasonable to ask whether there is a gap function that leads
to an equivalent unconstrained mathematical program. In fact, the so-called D-gap
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function proposed by Peng (1997) and generalized by Yamashita et al. (1997) is
such a function. A D-gap function is the difference between two gap functions. The
D-gap function we will consider is

 ˛ˇ .y/ D 
˛ .y/ � 
ˇ .y/ (5.163)

D max
x2ƒ

fhF .y/ ; y � xi � ˛� .y; x/g � max
x2ƒ

fhF .y/ ; y � xi � ˇ� .y; x/g

where 0 < ˛ < ˇ and the conditions imposed on the function � .y; x/ are the same
as those given in Section 5.6.3. The corresponding unconstrained mathematical pro-
gram equivalent to VI.F;ƒ/ is

min
y
 ˛ˇ .y/ (5.164)

Moreover, the gradient of  ˛ˇ .y/ is well defined. To express the gradient let us
define x˛ .y/ and xˇ .y/ such that

max
x2ƒ

fhF .y/ ; y � xi � ˛� .y; x/g D hF .y/ ; y � x˛ .y/i � ˛� .y; x˛ .y//

max
x2ƒ

fhF .y/ ; y � xi � ˇ� .y; x/g D ˝
F .y/ ; y � xˇ .y/

˛ � ˇ� �y; xˇ .y/
�

That is,

x˛ .y/ D arg max
x2ƒ

fhF .y/ ; y � xi � ˛� .y; x/g
xˇ .y/ D arg max

x2ƒ
fhF .y/ ; y � xi � ˇ� .y; x/g

As a consequence we may rewrite (5.163) as

 ˛ˇ .y/ D hF .y/ ; y � x˛ .y/i � ˛� .y; x˛ .y// � ˝
F .y/ ; y � xˇ .y/

˛

Cˇ� �y; xˇ .y/
�

D ˝
F .y/ ; xˇ .y/� x˛ .y/

˛C ˇ�
�
y; xˇ .y/

� � ˛� .y; x˛ .y// (5.165)

Since � .y; �/ is strongly convex in y and ƒ is convex and compact, x˛ .y/ and
xˇ .y/ are unique and realized as vectors whose components are finite. From (5.165)
the gradient of  ˛ˇ .y/ is readily seen to be

r ˛ˇ .y/ D rF .y/ �xˇ .y/ � x˛ .y/
�C ˇry�

�
y; xˇ .y/

� � ˛ry� .y; x˛ .y//

For detailed proofs of the assertions we have made concerning  ˛ˇ .y/ see
Yamashita et al. (1997).
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5.6.5 Gap Function Numerical Example

Once a differentiable gap function has been formed for VI.F;ƒ/, it is used to create
a nonlinear program that may be solved by conventional nonlinear programming
methods. This is now illustrated for the D-gap function:

D-Gap Algorithm for VI.F;ƒ/

Step 0. Initialization. Initialization. Determine an initial feasible solution y0 2 <n

and set k D 0.

Step 1. Finding the steepest descent direction. Find the gradient of the D-gap

function:

r ˛ˇ

�
yk
�

D rF
�
yk
� �
xˇ

�
yk
�

� x˛

�
yk
��

C ˇry�
�
yk ; xˇ

�
yk
��

�˛ry�
�
yk ; x˛

�
yk
��

where

x˛

�
yk
�

D arg max
x2ƒ

nD
F
�
yk
�
; yk � x

E
� ˛�

�
yk; x

�o

xˇ

�
yk
�

D arg max
x2ƒ

nD
F
�
yk
�
; yk � x

E
� ˇ�

�
yk ; x

�o

Then find

dk D arg min

�h
�r ˛ˇ

�
yk
�iT

y s.t. kyk � 1

�

Note that the negative gradient itself may be used as a steepest descent direction so
long as it has a bounded norm.

Step 2. Step size determination. Find

�k D arg min
n
 ˛ˇ

�
yk C �dk

�
s.t. 0 � � � 1

o
(5.166)

or employ a suitably small constant step size.

Step 2. Stopping test and updating. For " 2 <1CC, a preset tolerance, if

�
��r ˛ˇ

�
yk
���� < ",

stop; otherwise set

ykC1 D yk � �kd
k
�
yk
�

and go to Step 1 with k replaced by k C 1.
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For a numerical example of the gap function method, let us consider VI .F;ƒ/
where

x D
�
x1

x2



y D

�
y1

y2




F .x/ D
�
F1 .x1; x2/

F2 .x1; x2/



D
�

x1 � 5

0:1x1x2 C x2 � 5



ƒ D f.x1; x2/ W x1 � 0; x2 � 0; x1 C x2 � 1 � 0g
In this example, we employ a D-gap function of the form

 ˛ˇ .y/ D 
˛ .y/� 
ˇ .y/

where


˛ .y/ D max
x2ƒ

n
hF .y/ ; y � xi � ˛

2
ky � xk2

o


ˇ .y/ D max
x2ƒ

�
hF .y/ ; y � xi � ˇ

2
ky � xk2

�

and 0 < ˛ < ˇ. Thereby, we have defined � to be

� � 1

2
ky � xk2

Then the gradient information we need is

r ˛ˇ .y/ D rF .y/ �xˇ .y/ � x˛ .y/
�C ˇry�

�
y; xˇ .y/

� � ˛ry� .y; x˛ .y//

D
�

1 0

0:1y2 0:1y1 C 1


�
xˇ1 .y/ � x˛1 .y/

xˇ2 .y/ � x˛2 .y/



C ˇ

�
y1 � xˇ1 .y/

y2 � xˇ2 .y/




� ˛

�
y1 � x˛1 .y/

y2 � x˛2 .y/




which leads to

r ˛ˇ .y/ D
�

xˇ1 .y/ � x˛1 .y/C ˇ
�
y1 � xˇ1 .y/

� � ˛ .y1 � x˛1 .y//

0:1y2

�
xˇ1 .y/� x˛1 .y/

�C .0:1y1 C 1/
�
xˇ2 .y/ � x˛2 .y/

�CK




where
K D ˇ

�
y2 � xˇ2 .y/

� � ˛ .y2 � x˛2 .y//

Also

x˛ .y/ D arg max
x2ƒ

fhF .y/ ; y � xi � ˛� .y; x/g

D arg max
x2ƒ

(�
y1 � 5

0:1y1y2 C y2 � 5

T �

y1 � x1

y2 � x2



� ˛

2

��
�
�

�
y1 � x1

y2 � x2


��
�
�

2
)

D arg max
x2ƒ

f.y1 � 5/ .y1 � x1/C .0:1y1y2 C y2 � 5/ .y2 � x2/ �Ag
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xˇ .y/ D arg max
x2ƒ

f.y1 � 5/ .y1 � x1/C .0:1y1y2 C y2 � 5/ .y2 � x2/ � Bg
where

A D 1

2
˛
�
.x1 � y1/

2 C .x2 � y2/
2
�

B D 1

2
ˇ
�
.x1 � y1/

2 C .x2 � y2/
2
�

If we employ the constant step size �k D 0:5, the following table of results is
generated:

Iteration k gap  ˛ˇ .y
k/ yk x˛

�
yk
�

xˇ

�
yk
�

0 0:375 .0; 0/ .0:5000; 0:5000/ .0:5000; 0:5000/

1 2:3512 	 10�2 .0:3750; 0:3750/ .0:5141; 0:4859/ .0:5035; 0:4965/

2 1:0139 	 10�4 .0:4750; 0:4635/ .0:5167; 0:4833/ .0:5081; 0:4919/

3 7:005 	 10�6 .0:5017; 0:4826/ .0:5147; 0:4853/ .0:5108; 0:4892/

4 4:9345 	 10�7 .0:5095; 0:4866/ .0:5133; 0:4867/ .0:5119; 0:4881/

5 3:5878 	 10�8 .0:5117; 0:4873/ .0:5123; 0:4872/ .0:5123; 0:4877/

6 2:7672 	 10�9 .0:5123; 0:4875/ .0:5126; 0:4874/ .0:5124; 0:4876/

7 1:1008 	 10�10 .0:5124; 0:4875/ .0:5125; 0:4875/ .0:5125; 0:4875/

Evidently, the algorithm terminates with gap< 10�9 and approximate solution y D
.0:5125; 0:4875/T .

5.7 Other Algorithms for VI .F; ƒ/

There are four additional classes of methods for solving finite-dimensional varia-
tional inequalities:

1. methods based on differential equations
2. fixed-point methods
3. generalized linear methods
4. succesive linearization and Lemke’s algorithm.

Methods based on differential equations express the variational inequality’s decision
variables as functions of an independent variable t , conveniently called “time”,2 to
create differential equations for trajectories that may be continuously deformed to
approximate the solution of an equivalent fixed-point problem; the stationary states
of these differential equations for t �! 1 generate a sequence that converges to the
solution of the original variational inequality problem. Fixed-point methods exploit

2 The independent variable t need not refer to physical time; rather it may be a surrogate for the
progress of an algorithm toward the solution of the underlying variational inequality.
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the relationship between variational inequalities and fixed-point problems, which
enjoy an obvious iterative algoithm

xkC1 D G.xk/

We have already discussed some aspects of generalized linear methods in
Section 5.5. Differential equation and fixed-point methods are discussed by Scarf
(1967), Todd (1976), Zangwill and Garcia (1981), and Smith et al. (1997). Gener-
alized linear methods for variational inequalities are reviewed by Pang and Chan
(1982), Hammond (1984), and Harker and Pang (1990).

Extensive computational experience during the last decade has produced con-
vincing empirical evidence that a particular method is especially attractive for solv-
ing many finite-dimensional variational inequalities. This approach is based on lin-
earization of the nonlinear complementarity formulation of a variational inequality
in conjunction with an efficient linear complementarity algorithm – namely Lemke’s
method. In fact, successive linearization of the nonlinear complementarity formu-
lation of noncooperative equilibria frequently provides the most efficient numerical
solution approach. See Cottle et al. (1992) for a discussion of algorithms for linear
complementarity problems, as well as Facchinei and Pang (2003a) and Facchinei
and Pang (2003b) for additional detail regarding algorithms that exploit the nonlin-
ear complementarity formulation of variational inequalities and Nash equilibria.

5.7.1 Methods Based on Differential Equations

Although there are a variety of homotopic differential equations for solution
trajectories of variational inequalities, a particularly straightforward approach
proposed by Friesz et al. (1994) and Smith et al. (1997) is to equate the rates
of change of decision variables to the degree to which the fixed-point equivalent of
VI .F;ƒ/ fails to be satisfied, denoted by

� � Pƒ fx .t/��F Œx .t/�g � x .t/
That is, we write

dx .t/

dt
D ��

D � ŒPƒ fx .t/��F Œx .t/�g � x .t/� (5.167)

x .0/ D x0 (5.168)

where
�; � 2 <1CC



5.7 Other Algorithms for VI .F;ƒ/ 257

are parameters adjusted to control stability and assure convergence. It should be
apparent that any steady state for which

dx .t/

dt
D 0 (5.169)

must correspond to
x D Pƒ Œx��F .x/� (5.170)

which is recognized, per Lemma 5.2, as the fixed-point equivalent of VI .F;ƒ/.
Thus, if the dynamics (5.167) and (5.168) lead to (5.169) as t �! 1, the desired
variational inequality solution is obtained.

5.7.2 Fixed-Point Methods

As we have commented before, there is a natural and obvious algorithm associated
with any fixed-point problem

y D G .y/ ,

namely

ykC1 D G
�
yk
�

(5.171)

where k is of course the iteration counter. Again we make use of the fact that,
for convex feasible regions, VI .F;ƒ/ is equivalent to the fixed-point problem
FPPmin .F;ƒ/; that is,

G .y/ D Pƒ Œy��F .y/� (5.172)

where Pƒ Œ:� is the minimum norm projection operator. It is, therefore, quite reason-
able to consider an algorithm for VI .F;ƒ/ wherein the iterations follow

ykC1 D Pƒ

h
y��F

�
yk
�i

(5.173)

and
� 2 <1CC

can be considered a step size that may be adjusted to aid convergence. Of course,
the righthand side of (5.173) may be expressed as a mathematical program owing
to the presence of the minimum norm projection operator. That is, the new iterate
ykC1 must be the solution of

min
y2ƒ

Zk .y/ D 1

2

h
yk��F

�
yk
�

�y
iT h

yk��F
�
yk
�

�y
i

(5.174)

D 1

2

h�
yk�y

�
��F

�
yk
�iT h�

yk�y
�

��F
�
yk
�i

(5.175)
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D 1

2

��
yk�y

�T �
yk�y

�
� 2�

�
yk�y

�T

F
�
yk
�

C �2
h
F
�
yk
�iT

F
�
yk
��

(5.176)

Upon eliminating the additive constant and multiplying by .2�/�1, this last expres-
sion gives the following form for the subproblems arising in a fixed-point algorithm
when the minimum norm projection is involved:

min
y2ƒ

�
y � yk

�T

F
�
yk
�

C 1

2�

�
y � yk

�T �
y � yk

�
(5.177)

which is meant to be solved by an appropriate nonlinear programming algorithm.
Browder (1966), Bakusinskii and Poljak (1974), Dafermos (1980), and Bertsekas
and Gafni (1982) have used these notions with subtle embellishments to develop
algorithms that have linear rates of convergence and perform quite similarly in
practice.

5.7.3 Generalized Linear Methods

Pang and Chan (1982) offer a very useful and succinct typology of generalized linear
methods. In particular, they describe the fundamental subproblem of a generalized
linear algorithm to be the following variational inequality

F k.ykC1/.x � ykC1/ � 0 8x 2 ƒ

which approximates VI.F;ƒ/. Each specific approximation results in a different
algorithm. For example, if

F k.y/ D F.yk/C rF.yk/.y � yk/ (5.178)

then the result is Newton’s method. If, on the other hand, we use

F k.y/ D F.yk/C
h
rF.yk/

iT

.y � yk/ (5.179)

then the result is the linearized Jacobi method.
Generalized linear algorithms for variational inequalities are described in some

detail by Harker (1988) and Harker and Pang (1990). As we have described above,
algorithms belonging to this class proceed by creating a linear approximation of
the function F.x/ in the variational inequality. The resulting quadratic program
can be approached in a variety of ways, including decomposition methods that ex-
ploit special structure. Details and applications of generalized linear methods are
described by Pang and Chan (1982), Dafermos (1983), Harker (1983), Hammond
(1984), Friesz et al. (1985), Nagurney (1987), and Goldsman and Harker (1990).
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5.7.4 Successive Linearization with Lemke’s Method

We have shown that for certain regularity conditions a variational inequality may
be expressed as a nonlinear complementarity problem. Assume that we have a test
solution xk for the equivalent NCP .F / and the function F .�/ is continuously dif-
ferentiable. We approximate F by the first two terms of a Taylor series expansion:

F k.y/ D F.yk/C
h
diagrF

�
yk
�iT

.y � yk/

which yields the following linear complimentarity problem, denoted by LCP
�
F k
�
:

h
F k .x/

iT

x D 0

F k .x/ � 0

x � 0

The structure of the successive linearization method is as follows:

Successive Linearization for NCP.F /

Step 0. Initialization. Initialization. Determine an initial feasible solution x0 2
<nC and set k D 0.

Step 1. Solve the approximating LCP. Approximate the function F about the cur-

rent solution xk and, using Lemke’s method, solve
h
F k .x/

iT

x D 0

F k .x/ � 0

x � 0

where
F k .x/ � F

�
xk
�

C rF.xk/
�
x � xk

�

Call the solution xkC1.

Step 2. Stopping test and updating. For " 2 <1CC, a preset tolerance, if

�
�
�xkC1 � xk

�
�
� < ",

stop; otherwise set k D k C 1 and go to Step 1.

Convergence of the successive linearization algorithm for nonlinear complementar-
ity problems is treated by Pang and Chan (1982).
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5.8 Computing Network User Equilibria

In Section 5.3.6 we discussed the Nash-like equilibrium known as user equilib-
rium and saw that such problems may be formulated as nonlinear complementarity
problems or as variational inequalities. In this section we employ the following nu-
merical example of user equilibrium to illustrate a fixed-point algorithm.

For our example of a user equilibrium let us consider the network of Figure 5.1,
consisting of 5 arcs and 4 nodes. For this example, the set of OD pairs is a
singleton: W D f.1; 4/g; as a consequence there are three paths belonging to the
set P D P14 D fp1; p2; p3g, namely

p1 D f1; 4g p2 D f2; 3; 4g p3 D f2; 5g

In addtion we assume the travel cost for each arc is of the form

ca D Aa C Ba .fa/
2 a D 1; 2; 3; 4; 5

where fa denotes the total flow on arc a. Moreover, the arc flows and the path flows
obey the following relationships:

f1 D hp1

f2 D hp2
C hp3

f3 D hp2

f4 D hp1
C hp2

f5 D hp3

1

2

4

3

1

2

3

4

5

Fig. 5.1 A Simple travel network with five arcs and four nodes
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Table 5.1 Parameters a Aa Ba

1 25:0 0:010

2 25:0 0:010

3 75:0 0:001

4 25:0 0:010

5 25:0 0:010

The numerical values for the coefficientsAa and Ba are given in Table 5.1. Further-
more, assuming path costs are additive in arc costs, we may write

cp1
D c1 C c4

cp2
D c2 C c3 C c4

cp3
D c2 C c5

Finally, we stipulate the fixed travel demand

T14 D 100

so that the relevant variational inequality formulation of this particular user equilib-
rium UE.C;‡/ is: find the traffic pattern h� 2 ‡ such that

ŒC .h/�T
�
h� h�� � 0 8h 2 ‡ (5.180)

where

C .h/ D

2

6
6
4

A1 C B1

�
h�

p1

�2 C A4 C B4

�
h�

p1
C h�

p2

�2

A2 CB2

�
h�

p2
C h�

p3

�2 C A3 C B3

�
h�

p2

�2 C A4 C B4

�
h�

p1
C h�

p2

�2

A2 C B2

�
h�

p2
C h�

p3

�2 C A5 C B5

�
h�

p3

�2

3

7
7
5

h D
0

@
hp1

hp2

hp3

1

A

‡ D
n�
hp1

; hp2
; hp3

�T W hp1
C hp2

C hp3
D T14 and hp1

; hp2
; hp3

� 0
o

Evidently, feasible region‡ is convex.
For the problem at hand, UE.C;‡/ given by (5.180) takes the following form:

Cp1

�
h�� �hp1

� h�
p1

�C Cp2

�
h�� �hp2

� h�
p2

�C Cp3

�
h�� �hp3

� h�
p3

� � 0

Since h�; h 2 ‡ , we consider the substitutions

h�
p1

D T14 � �
h�

p2
C h�

p3

�

hp1
D T14 � �

hp2
C hp3

�
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Consider the expression

Z � �
C.h�/

�T
.h� h�/DCp1

�
h�� ��T14� �hp2

Chp3

�� � �
T14 � �

h�
p2

C h�
p3

���

CCp2

�
h�� �hp2

� h�
p2

�C Cp3

�
h�� �hp3

� h�
p3

� � 0

We find that

Z D Cp1

�
h�� �� �hp2

C hp3

�C �
h�

p2
C h�

p3

��

CCp2

�
h�� �hp2

� h�
p2

�C Cp3

�
h�� �hp3

� h�
p3

�

D �Cp1

�
h�� �hp2

� h�
p2

� � Cp1

�
h�� �hp3 � h�

p3

�

CCp2

�
h�� �hp2

� h�
p2

�C Cp3

�
h�� �hp3

� h�
p3

�

D ��Cp1

�
h��C Cp2

�
h��� �hp2

� h�
p2

�

C ��Cp1

�
h��C Cp3

�
h��� �hp3

� h�
p3

�

Now the variational inequality may be rewritten as follows: find

h�T D
�
h�

p2
h�

p3

�T � 0

such that "
�Cp1

.h�/C Cp2
.h�/

�Cp1
.h�/C Cp3

.h�/

#T "
hp2

� h�
p2

hp3
� h�

p3

#

� 0

for all
hT D �

hp2
hp3

�T � 0

The corresponding fixed-point iterative scheme is

"
hkC1

p2

hkC1
p3

#

D
"
hk

p2
� ˛ ˚�Cp1

�
hk
�C Cp2

�
hk
��

hk
p3

� ˛ ˚�Cp1

�
hk
�C Cp3

�
hk
��

#

C

for any ˛ > 0, where
Œv�C D max.0; v/

Table 5.2 contains a record of iterations corresponding to this fixed-point computa-
tional scheme with starting solution

h0
p1

D 30; h0
p2

D 50; h0
p3

D 20

We see that the solution is

h�
p1

D 50; h�
p2

D 0; h�
p3

D 50
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Table 5.2 Iterations Iteration hp1 hp2 hp3 Error

0 30 50 20

1 43 16 41 42.0238
2 50:2 0 49:8 19.6286
3 50:04 0 49:96 0.2263
4 50:008 0 49:992 0.0453
5 50:0016 0 49:9984 0.0091
6 50:0003 0 49:9997 0.0018
7 50:0000 0 50:0000 0.0002

The corresponding path costs are

c�
p1

D 100; c�
p2

D 175; c�
p3

D 100 ,

indicating a user equilibrium has been obtained.

5.9 Exercises

1. Give a variational inequality statement of user equilibrium with fixed demand
that involves only nonnegativity constraints.

2. Prove the existence of a generalized Nash equilibrium GNE.‚;�/ for suitable
regularity conditions.

3. Solve the example of Section 5.5 using a D-gap function.
4. Prove the existence of user equilibrium UE.C;‡/ for fixed, bounded travel de-

mand and continuous cost functions.
5. Prove the uniqueness of user equilibrium UE.c;‡0/ where c is the vector of arc

costs and

‡0 D ff W h � 0, �h D T , f D �hg
� D

�
�

p
ij

�
is the OD-path incidence matrix

� D �
ıap
�

is the arc-path incidence matirx

Assume c.f / is strictly monotonically increasing.
6. State a nonlinear program based on Lemma 5.3 for finding user equilibrium arc

flows, along with conditions that assure its objective function is single valued.
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Chapter 6
Differential Variational Inequalities
and Differential Nash Games

In this chapter we focus on extending the notion of a noncooperative Nash
equilibrium to a dynamic, continuous-time setting. The dominant mathematical
perspective we will employ is that of a differential variational inequality. In fact
we shall see that many of the results obtained in the previous chapter for finite-
dimensional variational inequalities and static games carry over with some slight
modifications to the dynamic, continuous-time setting we now address.

The dynamic games we shall exclusively consider will be deterministic; that is,
there is no uncertainty. The solution concept we employ for these games is that of
a Nash equilibrium, appropriately generalized from the static setting of Chapter 5
to the dynamic setting of the present chapter. Furthermore, the dynamic games we
consider are known as open-loop games. An open-loop game is one for which initial
information is perfect and complete solution trajectories from the start time t0 to the
end time tf can be calculated, without reliance on any feedback. By contrast, closed-
loop games involve the explicit consideration of feedback; we shall not consider
closed-loop games in this book.

The following is a preview of the principal topics covered in this chapter:

Section 6.1: Infinite-Dimensional Variational Inequalities. We introduce the
infinite-dimensional variational inequality problem and explore the existence of so-
lutions to it.

Section 6.2: Differential Variational Inequalities. We define a deterministic dif-
ferential variational inequality and establish necessary conditions that must be
satisfied by any solution to it.

Section 6.3: Differential Nash Games. We define the notion of a differential
Nash game. We note that such games may be expressed as differential variational
inequalities.

Section 6.4: Fixed-Point Algorithm. We present and study a simple fixed point
algorithm that is often very effective for solving infinite-dimensional and differential
variational inequalities.

Section 6.5: Descent in Hilbert Space with Gap Functions. We study the solution
of infinite-dimensional and differential variational inequalities using gap functions
that are minimized by a descent method based on gradient projection.

T.L. Friesz, Dynamic Optimization and Differential Games, International
Series in Operations Research & Management Science 135,
DOI 10.1007/978-0-387-72778-3 6, c� Springer Science+Business Media, LLC 2010
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Section 6.6: Differential Variational Inequalities with Time Shifts. In prepara-
tion for subsequent applications that are Nash games involving explicit time shifts,
we derive necessary conditions for differential variational inequalities involving
time shifts.

6.1 Infinite-Dimensional Variational Inequalities

In Chapter 4 we encountered infinite-dimensional variational inequalities as
necessary conditions for infinite-dimensional mathematical programs. However,
infinite-dimensional variational inequalities may be studied even when they are not
necessary conditions of some mathematical program. In particular, if the vector
space V is a topological vector space and F W U � <1C �! V , where U � V , we
may pose the problem

u� 2 U
hF .u/ ; u � u�i � 0 8u 2 U

�
VI.F;U / (6.1)

which is notationally similar to the variational inequalities considered in Chapter 5.
In fact we may also define fixed-point problems and nonlinear complmentarity prob-
lems relative to F.:/ and U . These may be solved by adaptation of the numerical
methods presented in Chapter 5 to infinite-dimensional spaces. Moreover, nearly ev-
ery result presented in Chapter 5 regarding the relationship of fixed-point problems,
nonlinear complementarity problems, variational inequalities and mathematical pro-
grams may be proven for either general or specific infinite-dimensional spaces.

In this chapter, we are interested in a specific class of infinite-dimensional varia-
tional inequalities, namely so-called differential variational inequalities. Differential
variational inequalities are defined formally in the next section; for now it is enough
to recognize two things about them:

1. differential variational inequalities are characterized by explicit state dynamics
and explicit controls; and

2. at times we will restate differential variational inequalities as infinite-
dimensional variational inequalities without explicit state dynamics, by using
the notion of a state operator, to be defined below in Section 6.2.1.

Exploitation of the state operator allows us to easily apply available theory on the
existence of solutions to variational inequalities to study the existence of solutions
to differential variational inequalities.

Thus, it is appropriate to now present three existence theorems: one for fixed-
point problems defined on a simplex in <n, one for fixed-point problems in topolog-
ical vector spaces, and one for variational inequalities in topological vector spaces.
The classical result by Brouwer (1910) is presented without proof. The other two
theorems and their proofs are due to Browder (1968). The Brouwer theorem in its
so-called classical form is:
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Theorem 6.1. Brouwer’s classical fixed-point theorem. Under a continuous
mapping f W S �! S � <n of an n-dimensional simplex into itself, there
exists at least one point x 2 S such that f .x/ D x.

Proof. See Todd (1976). �

Theorem 6.2. Browder’s elementary fixed-point theorem. Let U be a nonempty
compact convex subset of a topological vector space V . Let F be a mapping of
U into 2U . For each u 2 U , F .u/ is a nonempty convex subset of U . Suppose fur-
ther that for each v 2 U , F �1 .v/ D fu W u 2 U; v D F .u/g is open in U . Then
there exists Nu 2 U such that Nu 2 F .Nu/.
Proof. We follow Browder (1968). For any v 2 U , we note that F �1 .v/ is an open
subset of U . Moreover, each point x of U lies in at least one such open subset.
Because U is compact, there exists a finite family fv1; v2; : : : ; vng such that each
vj 2 U where

U D
nS

j D1

F�1
�
vj

�

Take fˇ1; ˇ2 : : : ; ˇng to be a partition of unity corresponding to the above covering.
In particular, let each ˇj be a continuous mapping of U into <1 such that

ˇj .u/ D 0 8u 62 F�1
�
vj

�
j 2 f1; 2; : : : ; ng

while

nX

j D1

ˇj .u/ D 1; 0 � ˇj .u/ � 1 8u 2 U j 2 f1; 2; : : : ; ng

Next define a continuous mapping p W U �! U by setting

p .u/ D
nX

j D1

ˇj .u/ vj

Because vj 2 U , the convex combination p .u/ also lies in U . Furthermore, for
each j such that ˇj .u/ 6D 0, u 2 F�1

�
vj

�
so that vj 2 F .u/. Consequently, p .u/

is a convex linear combination of points in the convex set F .u/ and, therefore, it
must be that p .u/ 2 F .u/ for each u 2 U .

Now take U0 � U to be the finite-dimensional simplex spanned by the n points
fv1; : : : ; vng. Note that the topology induced on any finite-dimensional subspace of
V by the topological structure of V coincides with the usual Euclidean topology.
Hence U0 is homeomorphic to a Euclidean ball. Since p .�/ maps U0 into U0, by
Brouwer’s classical fixed-point theorem, p .�/ has a fixed point Nu 2 U0. That is

Nu D p .Nu/
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Because p .Nu/ 2 F .Nu/, we have

Nu D p .Nu/ 2 F .Nu/

This completes the proof. �

The result on existence of solutions to infinite-dimensional variational
inequalities is:

Theorem 6.3. Browder’s fixed-point theorem for infinite-dimentional variational
inequalities. Let U be a compact convex subset of the locally convex topological
vector space V and F a continuous (single-valued) mapping of U into V � (the dual
space of V ). Then there exists u� 2 U such that

˝
F
�
u�� ; u� � u

˛ � 0

for all u 2 U .

Proof. Following Browder (1968), we provide a proof by contradiction. Suppose
that, for each u� 2 U , there exists an element u 2 U such that

˝
F
�
u�� ; u� � u

˛
< 0 (6.2)

For each u� 2 U , let

G
�
u�� D ˚

u W u 2 U ,
˝
F
�
u�� ; u� � u

˛
< 0

�
(6.3)

Then G .u�/ is nonempty, by the assumption made in (6.2), for each u� 2 U . Fur-
thermoreG .u�/ is convex for each u�. Let us now define the function

f .u; v/ D hF .u/ ; u � vi

Since F W U �! V � is a continuous mapping of the compact (and hence bounded)
set U , f .u; v/ is a continuous function of v on U for each fixed u 2 U . Thus
G�1 .u/ is open in U for each u 2 U .

By Theorem 6.2, there exists an element Nu 2 U such that Nu 2 G .Nu/. However,
for this element Nu, we have

G .Nu/ D fu W u 2 U; hF .Nu/ ; Nu � ui < 0g

by virtue of (6.3). Since Nu 2 G .Nu/ we have

0 > hF .Nu/ ; Nu � Nui D 0

which is a contradiction. Hence, supposition (6.2) is false and the theorem is
proven. �
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6.2 Differential Variational Inequalities

To articulate an adequately general differential variational inequality with controls,
we must specify the function spaces associated with the key mappings that arise in
such a problem formulation. The specific function spaces we employ in our expo-
sition are familiar from previous chapters where they allowed optimal control prob-
lems to be analyzed as infinite-dimensional mathematical programs. Those same
spaces are again employed since we are extending the notion of an optimal control
problem to the more general setting of an infinite-dimensional variational inequality.

6.2.1 Problem Definition

We begin by considering the control vector

u 2 �L2
�
t0; tf

��m

and associated state operator

x.u; t / D arg
�
dy

dt
D f .y; u; t / ; y .t0/ D y0, �

�
y
�
tf
�
; tf
� D 0

�
2 �H1

�
t0; tf

��n

(6.4)

where

x0 2 <n (6.5)

f W �H1
�
t0; tf

��n � �L2
�
t0; tf

��m � <1C �! �
L2
�
t0; tf

��n
(6.6)

� W <n � <1C �! <r (6.7)

and
�
L2
�
t0; tf

��m
is them-fold product of the space of square-integrable functions

L2
�
t0; tf

�
with inner product defined by

hv; ui D
Z tf

t0

vT udt (6.8)

while
�H1

�
t0; tf

��n
is the n-fold product of the Sobolev space H1

�
t0; tf

�
.

The entity x.u; t/ is to be interpreted as an operator that tells us the state vec-
tor x for each control vector u and each instant of time t 2 �

t0; tf
� � <1C when

there are end point conditions which the state variables must satisfy. Working with
this operator is, in effect, a supposition that the two-point boundary-value problem
involving the state variables has a unique solution for each control vector consid-
ered. That is, terminal states obeying the terminal constraints are reachable from
the specified initial states for each admissible control. Note that constraints on u
are enforced separately, so in working with x.u; t/ we are not presuming existence
of a solution of the variational inequality to be articulated below. Moreover, unless
other conditions are satisfied x .u; t/ is not a solution of the variational inequality
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considered in (6.9); rather it should be thought of as a parametric representation of
the state vector in terms of the controls. Note also that we do not actually have to
explicitly solve for x.u; t/, as is made clear in our subsequent analysis. The notion
of a state operator x .u; t/ is precisely that used in Chapter 4 when analyzing opti-
mal control problems from the point of view of infinite-dimensional mathematical
programming; this notation is not original to us but has been employed by others;
see, for example, Minoux (1986).

Furthermore, we assume that every control vector is constrained to lie in a set

U � �
L2
�
t0; tf

��m
;

where U is defined to ensure the terminal conditions imposed on the state variables
may be reached from the initial conditions intrinsic to (6.4). Given the operator
(6.4), the variational inequality of interest to us takes the following form:

find u� 2 U such that
hF .x.u�; t/; u�; t/ ; u � u�i � 0 8u 2 U

�
(6.9)

where

F W �H1
�
t0; tf

��n � �L2
�
t0; tf

��m � <1C �! �
L2
�
t0; tf

��m

Note that, by virtue of the inner product (6.8), we may state the variational inequality
(6.9) as

hF �x.u�; t/; u�; t
�
; u � u�i 	

Z tf

t0

�
F
�
x.u�/; u�; t

��T �
u � u�� � 0

We refer to (6.9) as a differential variational inequality (with explicit state equations
and controls) and give it the symbolic name DVI(F, f, � , U, x0, t0, tf ).

6.2.2 Naming Conventions

At this time it is instructive to consider the history of naming conventions for prob-
lems like (6.9). In particular, the name differential variational inequality has been
used by Aubin and Cellina (1984) to describe a somewhat different problem, namely
that of finding x� 2 X � V such that

	
dx

dt
� g.x/; x � x�



� 0 for all x 2 X

where V is typically a Hilbert space while g 2 G W X �! <n is a set valued map.
However, the result of generalizing a game with static equilibria to a dynamic game
with explicit differential equations of motion is widely referred to as a differential
game, in accord with the way the name was originally employed by Isaacs (1965).
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Since we shall be formulating differential games as variational inequalities with
explicit state dynamics and explicit controls, it is natural to call problem (6.9) a
differential variational inequality (DVI), as we have done.

There are relatively few published applications in which a problem structure like
(6.9) arises. Among these few are the papers by Bernstein et al. (1993), Friesz et al.
(1993), and Friesz et al. (1996), who have studied problems with a structure such as
(6.9), in the context of dynamic traffic assignment. Perakis (2000) and Kachani and
Perakis (2002b) used a formulation somewhat similar to DVI(F, f, � , U, x0, t0, tf )
to study dynamic transportation equilibrium. Kachani and Perakis (2002a) studied
certain inventory and supply chain management problems, again using a formula-
tion similar to DVI(F, f,� , U, x0, t0, tf ). Kwon et al. (2009) and Mookherjee and
Friesz (2008) used the differential variational inequality formalism to study pricing
and revenue management problems. The paucity of prior applications exploiting
the differential variational formalism developed in this chapter notwithstanding,
virtually any dynamic game-theoretic model that views agents to be competing non-
cooperatively and moving through space and time in a way that maintains a Nash
equilibrium with explicit state dynamics and controls may be expressed as a dif-
ferential variational inequality of the type discussed herein. Subsequent chapters of
this book show a differential variational inequality representation is possible for a
variety of manufacturing and service operations management applications.

6.2.3 Regularity Conditions for DVI(F, f, � , U, x0, t0, tf )

To analyze (6.9) we will rely on the following notion of regularity:

Definition 6.1. Regularity of DVI(F, f, � , U, x0, t0, tf ). We call DVI(F, f, � , U, x0,
t0, tf ) regular if:

R1. u 2 U � �
L2
�
t0; tf

��m

R2. x 2 �H1
�
t0; tf

��n

R3. x .u; t/ W �L2
�
t0; tf

��m �<1C �! �H1
�
t0; tf

��n
exists and is unique, strongly

continuous and G-differentiable for all admissible u;
R4. � W <n � <1C �! <r is continuously differentiable with respect to x and t;
R5. F W �H1

�
t0; tf

��n � �
L2
�
t0; tf

��m � <1C �! L2
�
t0; tf

�
is continuous with

respect to x and u;
R6. f W �H1

�
t0; tf

��n � �
L2
�
t0; tf

��m � <1C �! �
L2
�
t0; tf

��n
is continuously

differentiable with respect to x and u;
R7. x0 2 <n, t0 2 <1C, and tf 2 <1CC are known and fixed;
R8. U � �

L2
�
t0; tf

��m
is convex; and

R9. there is a constant dual vector � 2 <r for the terminal constraints
�
�
x
�
tf
�
; tf

� D 0.

The motivation for this definition of regularity is to parallel as closely as possible
those assumptions used in Chapter 4 to analyze traditional optimal control problems
from the point of view of infinite-dimensional mathematical programming.
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6.2.4 Necessary Conditions

To develop necessary conditions for solutions of DVI(F, f, � , U, x0, t0, tf ), we note
that (6.9) may be restated as the following optimal control problem

min�T�
�
x
�
tf
�
; tf

�C
Z tf

t0

�
F
�
x�; u�; t

��T
udt (6.10)

subject to

dx

dt
D f .x; u; t/ (6.11)

u 2 U (6.12)

x .t0/ D x0 (6.13)

where x� D x.u�; t/ is the optimal state vector and � 2 <r is the vector of dual
variables for the terminal constraints �

�
x
�
tf
�
; tf

� D 0. Care must be taken to
correctly understand the meaning of optimal control problem (6.10), (6.11), (6.12),
and (6.13). In particular, this optimal control problem is a mathematical abstraction
and of no use for computation, since its criterion depends on knowledge of the
variational inequality solution u�. Nonetheless, it is valuable for deriving necessary
conditions for DVI(F, f, � , U, x0, t0, tf ). In particular, the necessary conditions for
DVI(F, f, � , U, x0, t0, tf ) follow directly from the minimum principle and related
necessary conditions for (6.10), (6.11), (6.12), and (6.13).

In what follows we will need the Hamiltonian for (6.10), (6.11), (6.12), and
(6.13), namely

H .x; u; �; t/ D �
F
�
x�; u�; t

��T
u C �T f .x; u; t/ (6.14)

where � .t/ is the adjoint vector that solves the adjoint equations and satisfies the
transversality conditions for the given state variables and controls. Note that, for a
given state vector and a given instant in time, the expression (6.14) is convex in u
when DVI(F, f, � , U, x0, t0, tf ) is regular in the sense of Definition 6.1. It is now
a relatively easy matter to derive the necessary conditions stated in the following
theorem:

Theorem 6.4. Necessary conditions for DVI(F, f, � , U, x0, t0, tf ). Consider the
differential variational inequality DVI(F, f, � , U, x0, t0, tf ) defined by (6.9) with t0,
x.t0/; and tf fixed. When regularity in the sense of Definition 6.1 holds, necessary
conditions for u� 2 U to be a solution are:

1. the variational inequality:

h
F
�
x�; u�; t

�C ru
�
���T f

�
x�; u�; t

�iT �
u � u�� � 0 8u 2 U ; (6.15)
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2. the state initial-value problem:

dx�

dt
D f

�
x�; u�; t

�
(6.16)

x� .t0/ D x0; (6.17)

3. the adjoint dynamics:

.�1/ d�
�

dt
D rx

�
���T f

�
x�; u�; t

�
; and (6.18)

4. the transversality conditions:

�
�
tf
� D vT

@�
�
x� �tf

�
; tf

�

@x
�
tf
�

Proof. The Pontryagin minimum principle is a necessary condition for optimal
control problem (6.10) through (6.13). Hence

u� D arg

�
min
u2U

H
�
x�; u; ��; t

�
�

(6.19)

for each t 2 �t0; tf
�
, which in turn has the necessary condition

�ruH
�
x�; u�; ��; t

��T �
u � u�� � 0 u; u� 2 U

Note that
ruH .x; u; �; t/ D F

�
x�; u�; t

�C ru�
T f .x; u; t/

where for given u

� .u; t/ D arg

(

.�1/ d�
dt

D rxH .x; u; �; t/ ; �
�
tf
� D vT

@�
�
x
�
tf
�
; tf

�

@x
�
tf
�

)

D arg

�
.�1/ d�

dt
D rx

�
F
�
x�; u�; t

��T
u C rx�

T f .x; u; t/ ;

�
�
tf
� D vT

@�
�
x
�
tf
�
; tf

�

@x
�
tf
�

)

D arg

(

.�1/ d�
dt

D rx�
T f .x; u; t/ ; �

�
tf
� D vT

@�
�
x
�
tf
�
; tf

�

@x
�
tf
�

)

(6.20)

since x.u; t/ is completely determined by knowledge of the controls u. The theorem
follows immediately. �
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6.2.5 Existence

We are ready to state and prove the following existence result:

Theorem 6.5. Existence of a solution to DVI(F, f, � , U, x0, t0, tf ). When regularity
in the sense of Definition 6.1 and U is compact, DVI(F, f, � , U, x0, t0, tf ) has a
solution.

Proof. By the assumption of regularity x.u; t/ is well defined and continuous. So
F .x.u; t/; u; t/ is continuous in u. Also, by regularity, we know U is convex and
compact. Consequently, by Theorem 6.3, DVI(F, f, � , U, x0, t0, tf ) has a solution. �

6.2.6 Nonlinear Complementarity Reformulation

In this section we view the set of feasible controls U as arising from linear con-
straints; that is

U D fu � 0 W Au � bg
where b 2 <` is a constant vector and

A D �
aij

�

is a constant `�m matrix. We restate DVI(F, f, � , U, x0, t0, tf ) by converting it into
a nonlinear complementarity problem in infinite dimensions. This manipulation is
accomplished by examining the Kuhn-Tucker conditions for the finite-dimensional
variational inequality principle of Theorem 6.4:

ruH .x; u; �; t/C
mX

j D1

�j ru
��uj

�C
X̀

j D1

�j ru .Au � b/j D 0 (6.21)

�j uj D 0

�j � 0 (6.22)

�j .Au � b/j D 0

�j � 0

for all j 2 Œ1;m�. So for each i D 1; 2; : : : ; m

Fi .x; u; t/C
nX

j D1

�j

@

@ui

fj .x; u; t/C
X̀

j D1

�j

@

@ui

.Au � b/j D �i � 0 (6.23)

or

Fi .x; u; t/C
nX

j D1

�j

@

@ui

fj .x; u; t/C
X̀

j D1

aj i�j D �i � 0
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Since �i ui D 0 because of complementary slackness, we have

2

4Fi .x; u; t/C
nX

j D1

�j

@

@ui

fj .x; u; t/C
X̀

j D1

aj i�j

3

5 ui D �i ui D 0 (6.24)

for each i D 1; 2; : : : ; m. Thus, we arrive at the following functional nonlinear
complementarity problem:

hG .z; t/ ; zi D 0 (6.25)

G .z; t/ � 0 (6.26)

z � 0 (6.27)

where

z 2 �L2
�
t0; tf

��2mC`

G W �L2
�
t0; tf

��2mC` � <1C �! �
L2
�
t0; tf

��2mC`

and

G D
0

@
F .x; u; t/C Œruf .x; u; t/�

T � �C Œru .Au � b/�T � �
Au � b

u

1

A z D
0

@
u
�

�

1

A

for which it is understood that x and � are operators obeying (6.4) and (6.20). Note
that in the event F .:; :; :/ and f .:; :; :/ are linear in u, the reformulation (6.25),
(6.26), and (6.27) yields a linear complimentarity problem.

6.3 Differential Nash Games

In this section we want to develop definitions and formulations of dynamic games
that employ generalizations of the notions of Nash and generalized Nash equilibria,
familiar from Chapter 5, as solution concepts. As previously noted, we will be solely
concerned with open-loop games. Recall that, an open-loop game is one for which
initial information is perfect and complete solution trajectories from the start time
t0 to the end time tf can be calculated, without reliance on any feedback.

6.3.1 Differential Nash Equilibrium

We need to stipulate that each agent i 2 Œ1; N � has its own control and own state
tuples, namely xi and ui 2 �i , where �i is the set of admissible controls for
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agent i 2 Œ1; N �. The non-own control and non-own state vectors faced by agent
i 2 Œ1; N � are u�i and x�i where

u D
�

ui

u�i

�
x D

�
xi

x�i

�

for each partition of variables into own and non-own tuples. We will employ the
following definition of a differential Nash equilibrium:

Definition 6.2. Differential Nash equilibrium. Suppose there are N agents, each
of which chooses a feasible strategy vector ui from the strategy set �i which is
independent of the other players’ strategies. Furthermore, every agent i 2 Œ1; N �

has a cost (disutility) functional Ji .u/ W � �! <1 that depends on all agents’
strategies where

� D
NY

iD1

�i

u D �
ui W i D 1; : : : ; N

�

Every agent i 2 Œ1; N � seeks to solve the problem

minJi .u
i ; u�i / D Ki

�
xi
�
tf
�
; tf

�C
Z tf

t0

‚i .x
i ; ui ; x�i ; u�i ; t/dt (6.28)

subject to
dxi

dt
D f i

�
xi ; ui ; t

�
(6.29)

xi .t0/ D xi
0 (6.30)

� i
�
xi
�
tf
�
; tf

� D 0 (6.31)

ui 2 �i , (6.32)

for each fixed yet arbitrary non-own control tuple

u�i D �
uj W j ¤ i

�

where xi
0 is a vector of initial values of xi , the state tuple of the i th agent, and

x�i D �
xj W j ¤ i

�

is the corresponding non-own state tuple. A differential Nash equilibrium is a tuple
of strategies u such that each ui solves the optimal control problem (6.28), (6.29),
(6.30), (6.31), and (6.32); that equilibrium is denoted as DNE(‚; f;K;‰, �, x0,
t0, tf ).
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In other words, we have the familiar situation wherein no agent may lower his/her
cost (disutility) by unilaterally altering his/her strategy. The vectors and mappings
intrinsic to Definition 6.2 are the following:

ui 2 �
L2
�
t0; tf

��mi

xi 2 �H1
�
t0; tf

��ni

xi
0 2 <ni

m D m1 Cm2 C : : :CmN

n D n1 C n2 C : : :C nN

‚i W �H1
�
t0; tf

��n � �L2
�
t0; tf

��m � <1C �! L2
�
t0; tf

�

f i W �H1
�
t0; tf

��ni � �L2
�
t0; tf

��mi � <1C �! �
L2
�
t0; tf

��ni

Ki W <ni � <1C �! <1

� i W <ni � <1C �! <ri

for each agent i 2 Œ1; N �.
It is intuitive that a differential Nash equilibrium may be represented as a differ-

ential variational inequality. In fact, the following result holds:

Theorem 6.6. Differential variational inequality equivalent to differential Nash
equilibrium. Take t0, x.t0/; and tf to be fixed. There is a differential variational
inequality equivalent to the differential Nash equilibrium DNE(‚, f, K, � , U , x0,
t0, tf) when f i

�
xi ; ui ; t

�
and ‚i .x

i ; ui ; x�i ; u�i ; t/ are convex and continuously
differentiable with respect to

�
xi ; ui

�
for all fixed non-own tuples

�
x�i ; u�i

�
, for all

i 2 Œ1; N �.
Proof. The relevant Hamiltonian for each agent i 2 Œ1; N � is

Hi .x
i ; ui ; �i ; t I x�i ; u�i / D ‚i .xi ; ui ; x�i ; u�i ; t/C �

�i
�T
f i
�
xi ; ui ; t

�

and the minimum principle has, by virtue of convexity, the necessary and sufficient
condition

�ruiHi .x
i ; ui ; �i ; t I x�i ; u�i /

�T �
vi � ui

� � 0 for all vi 2 �i (6.33)

where the �i are tuples of adjoint variables determined by

.�1/ d�
i

dt
D rxi

�
�i
�T
f i .x; u; t/

�i
�
tf
� D @	 i

�
x
�
tf
�
; tf

�

@x
�
tf
�

	 i
�
x
�
tf
�
; tf

� D K i
�
x
�
tf
�
; tf

�C �

 i
�T
� i
�
x
�
tf
�
; tf

�
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for agent i 2 Œ1; N �. Let us define the tuples

yi D
�
xi

�i

�
and y�i D

�
x�i

��i

�

gi D
0

@
f i

.�1/rxi

�
�i
�T
f i .x; u; t/

1

A

ˆi
�
x
�
tf
�
; tf

� D

0

B
B
@

	 i
�
x
�
tf
�
; tf

�

�i
�
tf
� � @	 i

�
x
�
tf
�
; tf

�

@x
�
tf
�

1

C
C
A D 0

for each i 2 Œ1; N �, so that

y D �
yi W i D 1; : : : ; N

�

g D �
gi W i D 1; : : : ; N

�

ˆ D �
ˆi W i D 1; : : : ; N

�

Also

y .t0/ D y0 D
�

x .t0/

� .t0/ free

�

In addition we define

Gi .yi ; ui ; t Iy�i ; u�i / D ruiHi .x
i ; ui ; �i ; t I x�i ; u�i / (6.34)

G D �
Gi W i D 1; : : : ; N

�
(6.35)

It follows from (6.33) and the above notation that

u� 2 � 	 QN
iD1�iZ tf

t0

�
G.y

�
u�; t

�
; u�; t/

�T �
v � u��dt � 0 8v 2 �

9
=

;
(6.36)

where

y.u; t/ D arg

�
dy

dt
D g .y; u; t/ ; y .t0/ D y0; ˆ

�
y
�
tf
�
; tf

� D 0

�
(6.37)

If given differential variational inequality (6.46) and (6.47), by selecting vj D u�j

for all j ¤ i , the minimum principle is recovered for each individual i 2 Œ1; N �. �
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6.3.2 Generalized Differential Nash Equilibrium

When the strategy set and dynamics of any agent i 2 Œ1; N � depend on non-own
strategies u�i and non-own states x�i , extension of the definition of a differential
Nash equilibrium to a generalized differential Nash equilibrium is exactly what we
would expect. That is, we have the following definition:

Definition 6.3. Generalized differential Nash equilibrium. Suppose there are N
agents, each of which chooses a feasible strategy vector ui from the strategy set
�i .u/ that depends on all agents’ strategies where

u D �
ui W i D 1; : : : ; N

�

Furthermore, every agent i 2 Œ1; N � has a cost (disutility) functional Ji .u/ W
�.u/ �! <1 that depends on all agents’ strategies where

�.u/ D
NY

iD1

�i .u/

Every agent i 2 Œ1; N � seeks to solve the problem

minJi .u
i ; u�i / D Ki

�
xi
�
tf
�
; tf

�C
Z tf

t0

‚i .x; u; t/dt (6.38)

subject to

dxi

dt
D f i .x; u; t/ (6.39)

xi .t0/ D xi
0 (6.40)

� i
�
x
�
tf
�
; tf

� D 0 (6.41)

ui 2 �i .u/ , (6.42)

for each fixed yet arbitrary non-own control tuple

u�i D �
uj W j ¤ i

�

where xi
0 is a vector of initial values of xi , the state tuple of the i th agent, and

x�i D �
xj W j ¤ i

�

is the corresponding non-own state tuple. A generalized differential Nash equilib-
rium is a tuple of strategies u such that each ui solves the optimal control problem
(6.38), (6.39), (6.40), (6.41), and (6.42) and is denoted as GDNE(‚; f;K;‰, U ,
x0, t0, tf ).
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It is straightforward to define the notion of a differential quasivariational inequality;
in turn it is possible to show that GDNE(‚, f, K, � , U , x0, t0, tf ) is equivalent to
a differential quasivariational inequality. Of course, a generalized differential Nash
equilibrium may be represented as a differential quasivariational inequality, as the
reader may easily verify.”

6.4 Fixed-Point Algorithm

In order to apply the results developed above regarding the relationship of dynamic
Nash games to differential variational inequalities, we must be able to compute the
solutions to differential variational inequalities. It should come as no surprise that
there is often an equivalent functional fixed-point problem corresponding to a given
differential Nash game. This formulation provides an immediate, simple and some-
times quite effective algorithm for solving DVI(F, f, � , U, x0, t0, tf ).

6.4.1 Formulation

In particular, we are now ready to state and prove the following result:

Theorem 6.7. Fixed-point formulation of DVI(F, f, � , U, x0, t0, tf ). When regular-
ity in the sense of Definition 6.1 holds and f (x; u) is convex in (x; u), DVI(F, f, � ,
U, x0, t0, tf ) is equivalent to the following fixed-point problem:

u D PU Œu � ˛F .x.u; t/; u; t/�

where PU Œ:� is the minimum norm projection onto U � �
L2 Œt0; � �

�m
and ˛ 2 <1CC

is an arbitrary positive constant.

Proof. The fixed-point problem under consideration requires that

u D arg min
v

�
1

2
ku � ˛F .x.u; t/; u; t/ � vk2 W v 2 U

�
(6.43)

where ˛ 2 <1CC is any positive real scalar. That is, we seek the solution of the
optimal control problem

min
v

T�

�
x
�
tf
�
; tf

�C
Z tf

t0

1

2
Œu � ˛F .x; u; t/ � v�2 dt

subject to

dx

dt
D f .x; v; t/ I x .t0/ D x0

v 2 U
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where u is treated as fixed for the purpose of projection. The necessary conditions of
the above optimal control problem, which are also sufficient by virtue of convexity,
require

�rvH1

�
x�; v�; ��; t

��T
.v � v�/ � 0 8v 2 U (6.44)

where

H1 .x; v; �; t/ D 1

2
Œu � ˛F .x; u; t/ � v�2 C �T f .x; v; t/

and for given x and v

� D arg

(

.�1/ d�
dt

D rxH1 .x; v; �; t/ ; �
�
tf
� D 
T

@�
�
x
�
tf
�
; tf

�

@x
�
tf
�

)

Note that

rvH1 .x; v; �; t/ D �u C ˛F .x; u; t/C v C rv�
T f .x; v; t/

Because u D v by virtue of (6.43) we have

ruH1 .x; v; �; t/ D ˛F .x; u; t/C ru

h
�T f .x; u; t/

i
(6.45)

Now if we set � D �

˛
; we have

h
F
�
x�; u�; t

�C ru
�
���T f

�
x�; u�; t

�iT

.u � u�/ � 0 8v 2 U (6.46)

which is identical to the finite-dimensional variational inequality principle of
Theorem 6.4. The other optimality conditions are also identical. This completes
the proof. �

6.4.2 The Unembellished Algorithm

Naturally there is an associated fixed-point algorithm based on the iterative scheme

ukC1 D PU

h
uk � ˛F



x



uk; t
�
; uk; t

�i

The positive scalar may be chosen empirically to assist convergence and may even
be changed as the algorithm progresses. The detailed structure of the fixed-point
algorithm is given below:
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Fixed-Point Algorithm

Step 0. Initialization. Identify an initial feasible solution u0 2 U and set k D 0.

Step 1. Solve the optimal control subproblem. Solve the following optimal control

subproblem:

min
v
J k .v/ D 
T�

�
x
�
tf
�
; tf

�C
Z tf

t0

1

2

h
uk � ˛F



xk ; uk; t

�
� v

i2

dt (6.47)

subject to

dx

dt
D f .x; v; t/ (6.48)

x .t0/ D x0 (6.49)

v 2 U (6.50)

Call the solution ukC1.

Step 2. Stopping test. If
�
�ukC1 � uk

�
� � "1 where "1 2 <1CC is a preset tolerance,

stop and declare u� 
 ukC1. Otherwise set k D k C 1 and go to Step 1.

The convergence of this algorithm is guaranteed under certain conditions by the
following result:

Theorem 6.8. Convergence of the unembellished fixed-point algorithm. When
DVI(F, f, � , U, x0, t0, tf ) is regular in the sense of Definition 6.1, while addition-
ally F Œx .u/ ; u; t � is strongly monotonically increasing and satisfies the Lipschitz
condition

kF .x .u; t/ ; u; t/ � F .x .v; t/ ; v; t/k � 
0 ku � vk
for some 
0 2 <1CCand all u; v 2 U , the fixed-point algorithm presented above
converges for appropriate ˛ 2 .0; N̨ /.
Proof. The projection operator is nonexpansive; that is, we know

�
�PU

�
uk � ˛F �x �uk; t

�
; uk; t

�� � PU Œu� � ˛F .x .u�; t/ ; u�; t/�
�
�

� �
��uk � ˛F �x �uk; t

�
; uk; t

�� � Œu� � ˛F .x .u�; t/ ; u�; t/�
�
�

D �
��uk � u�� � ˛ �F k � F ���� (6.51)

where

F k 	 F


x



uk; t
�
; uk; t

�

F � 	 F
�
x
�
u�; t

�
; u�; t

�
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and u� 2 U solves DVI(F, f, � , U, x0, t0, tf ). Thus, we may write

�
��ukC1 � u�

�
��

2 �
�
��



uk � u�� � ˛


F k � F ��

�
��

2

(6.52)

D



uk � u�
�2 � 2˛



F k � F �

�T 

uk � u�

�
C ˛2



F k � F �

�2

The given of strong monoticity requires

hF k � F �; uk � u�i � ˇ
�
�
�uk � u�

�
�
�

2

(6.53)

for some ˇ 2 <1CC. It follows from (6.52) and (6.53) that

�
�
�ukC1 � u�

�
�
�

2 �
�
�
�uk � u�

�
�
�

2 � 2˛ˇ
�
�
�uk � u�

�
�
�

2 C ˛2
�
�
�F k � F �

�
�
�

2

(6.54)

Because F is Lipschitz continuous, we know

��
�F k � F �

��
�

2 � 
0

��
�uk � u�

��
�

2

(6.55)

for some 
0 2 <1CC. From (6.54) and (6.55) we have

��
�ukC1 � u�

��
�

2 � �
1 � 2˛ˇ C 
0˛

2
� ��
�uk � u�

��
�

2

If we stipulate

� D 1 � 2˛ˇ C 
0˛
2 < 1 (6.56)

then
p
� < 1 and

�
�
�ukC1 � u�

�
�
� �

p
� �
�
�
�uk � u�

�
�
� <

�
�
�uk � u�

�
�
� (6.57)

which, by the contraction mapping theorem, assures convergence. The upper bound
on ˛ consistent with convergence satisfies

1 � 2˛ˇ C 
0˛
2 D 1

or

˛ .�2ˇ C 
0˛/ D 0 H) N̨ D 2ˇ


0

> 0

The desired result has been proven. �
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6.4.3 Solving the SubProblems

It is important to realize that the fixed-point algorithm of Section 6.4 can be carried
out in continuous time provided we employ a continuous-time representation of the
solution of each subproblem (6.47), (6.48), (6.49), and (6.50) from Step 1. This
may be done using a continuous-time gradient projection method. For our present
circumstances, that algorithm may be stated as

Descent in Hilbert Space Algorithm for Projection Subproblems

Step 0. Initialization. Pick vk;0 .t/ 2 U and set j D 0.

Step 1. Finding state variables. Solve the state dynamics

dx

dt
D f



x; vk;j ; t

�
(6.58)

x .t0/ D x0 (6.59)

Call the solution xk;j .t/. In the event a discrete-time method is used to solve the
state dynamics (6.58) and (6.59), curve fitting is used to obtain the continuous-time
state vector xk;j .t/ :

Step 2. Finding adjoint variables. Solve the adjoint dynamics

.�1/ d�
dt

D rxH
k
1

ˇ̌
ˇvDvk;j

xDxk;j (6.60)

�
�
tf
� D 
T

@�
�
xk;j

�
tf
�
; tf

�

@x
�
tf
� (6.61)

where

H k
1 D 1

2

h
uk � ˛F



xk ; uk; t

�
� v

i2 C �T f


x; vk;j ; t

�

Call the solution �k;j .t/. In the event a discrete-time method is used to solve the
adjoint dynamics (6.60) and (6.61), curve fitting is used to obtain the continuous-
time adjoint vector �k;j .t/.

Step 3. Finding the gradient. Determine

rvJ
k;j .t/ D rvH

k
1

Step 4. Step determination. For a fixed and suitably small fixed step size

�k 2 <1CC

determine
vk;j C1 .t/ D PU

h
vk;j .t/ � �krvJ

k;j
i

(6.62)
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In the event a discrete-time method is used to solve the above projection
subproblem, curve fitting is used to obtain the continuous-time control vector (6.62).

Step 5. Stopping test. For "2 2 <1CC, a preset tolerance, stop if

�
��vk;j C1 � vk;j

�
�� < "2

and declare vk� 
 vk;j C1: Otherwise set j D j C 1 and go to Step 1.

The reader is reminded that convergence of the gradient projection algorithm de-
scribed above for fixed-point subproblems was analyzed in Chapter 4.

6.4.4 Numerical Example

Consider DVI(F, f, � , U, x0, t0, tf ) with the following specific data:

u 2 �
L2 Œ0; 1�

�3

x 2 �H1 Œ0; 1�
�2

x .0/ D
�
1

0:7

�

t0 D 0

tf D 5

Additionally, the key functions are

F.x; u; t/ D

0

B
@

F1.x; u; t/

F2.x; u; t/

F3.x; u; t/

1

C
A D

0

B
@

.x1/
2 � u1 C u2

x2 � .u2/
2 � u3

1
10
.x2/

2 � .u3/
2

1

C
A

f .x; u; t/ D
 
f1.x; u; t/

f2.x; u; t/

!

D

0

BB
@

1

5
x1 C 1

2
u1 C 3

10
u2

1

4
x2 C 1

2
u2 � 1

5
u3

1

CC
A

and the set of admissible controls is

U D fu W 1 � u1 � 0:2; 1:2 � u2 � 0:2; 1:3 � u3 � 0:2g

The fixed-point parameter is ˛ D 0:05: A fifth-power polynomial was used to ex-
press the controls, adjoint variables, and state variables as continuous functions
of time. Also the nominal decision time interval is Œ0; 5�. The stopping tolerances
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for both fixed-point and descent iterations were set at " D 10�2: The combined
fixed-point-descent algorithm converged after 12 fixed-point iterations; each of the
descent subproblems converged in nine or fewer iterations. We forgo the detailed
symbolic statement of this example and, instead, provide numerical results in graph-
ical form. Figure 6.1 shows the plot of controls u� (left) and states x� (right)
against time.
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Fig. 6.1 u� vs. time t and x� vs. time t plots



6.5 Descent in Hilbert Space with Gap Functions 289

6.5 Descent in Hilbert Space with Gap Functions

The unembellished fixed-point algorithm presented in Section 6.4.2 above is neither
sophisticated nor completely reliable. In particular, it is known to sometimes con-
verge slowly even when the regularity conditions invoked to assure convergence are
satisfied. Of course, it may also fail to converge when those conditions are violated,
although not always since the conditions are merely sufficient for convergence.
A variety of other algorithms may be employed. One such re-expresses the DVI
of interest as a nonlinear complementarity problem in function space. That non-
linear complementaity problem may be approximated through time discretization,
then linearized and Lemke’s algorithm employed. Another possible approach is to
employ a gap function to create an equivalent optimal control problem that may be
solved using the tools we developed in Chapter 4 for infinite-dimensional mathe-
matical programs.

Using the notion of a gap function, a variational inequality problem can be con-
verted to an equivalent optimization problem, whose objective function is always
nonnegative and whose optimal objective function value is zero if and only if the op-
timal solution solves the original variational inequality problem. Several algorithms
in this class have been developed for finite-dimensional variational inequalities; see,
for example, Zhu and Marcotte (1994), Yamashita et al. (1997), Patriksson (1997),
and Peng (1997). For infinite-dimensional problems, Zhu and Marcotte (1998) and
Konnov et al. (2002) present descent methods using gap functions in Banach spaces
and Hilbert spaces, respectively. Moreover, Konnov and Kum (2001) have provided
a gap function method for mixed variational inequalities in Hilbert spaces. The dis-
cussion of gap functions given next is similar in many respects to the discussion of
gap functions for finite-dimensional problems familiar from Chapter 4. However,
there are some subtle yet important differences. Furthermore, inclusion of a com-
plete discussion of gap functions here, although somewhat repetitive, helps to make
this chapter self-contained.

6.5.1 Gap Functions in Hilbert Spaces

When the regularity conditions given in Definition 6.1 hold, DVI(F, f, � , U, x0, t0,
tf ) belongs to the class of infinite-dimensional variational inequalities considered
by Konnov et al. (2002), wherein U is a nonempty closed and convex subset and F
is a continuously differentiable mapping of u. This allows us to analyze DVI(F, f, � ,
U, x0, t0, tf ) by considering gap functions, which we define as follows:

Definition 6.4. Gap function defined. A function G W U �! <C is called a gap
function for DVI(F, f, � , U, x0, t0, tf ) when the following statements hold:

1. G .u/ � 0 for all u 2 U
2. G .u/ D 0 if and only if u is the solution of DVI(F, f, � , U, x0, t0, tf ).



290 6 Differential Variational Inequalities and Differential Nash Games

In particular, we will consider gap functions of the form

G˛ .u/ D max
v2U

ˆ˛ .u; v/ (6.63)

where

ˆ˛ .u; v/ D hF Œx .u; t/ ; u; t � ; u � vi � ˛� .u; v/ (6.64)

x .u; t/ D arg

�
dy

dt
D f .y; u; t/ ; y .t0/ D y0; �

�
y
�
tf
�
; tf

� D 0

�

2 �H1
�
t0; tf

��n
(6.65)

U � �
L2
�
t0; tf

��m
(6.66)

˛ 2 <1CC (6.67)

and the function � appearing in (6.63) satisfies the following assumptions:

A1. � is continuously differentiable on
�
L2
�
t0; tf

��2m
;

A2. � is nonnegative on
�
L2
�
t0; tf

��2m
;

A3. � .u; v/ D 0 if and only if u D v; and
A4. � .u; v/ is strongly convex in v 2 U with modulus c > 0 for any u 2�

L2
�
t0; tf

��m
; that is

� .u; v/C hrv� .u; v/ ; u � vi C 1

2
c ku � vk2 � � .u; u/ D 0

for all u 2 U .

Yamashita et al. (1997) propose, for finite-dimensional spaces, the following
�-functions that satisfy the four assumptions listed above:

1. �1 .u; v/ D �1 .u � v/, where �1 is nonnegative, continuously differentiable,
strongly convex, and �1 .0/ D 0;

2. �2 .u; v/ D �2 .v/ � �2 .u/ � hr�2 .u/ ; u � vi, where �2 is twice continuously
differentiable, and strongly convex; and

3. �3 .u; v/ D hu � v;M .u/ .u � v/i, whereM .u/ is a continuously differentiable,
symmetric, and uniformly positive-definite matrix.

Konnov and Kum (2001) and Konnov et al. (2002) observe that functions of the type
�2 and �3, as defined above, may be used to develop gap functions appropriate for
Hilbert spaces.

We note, following Konnov and Kum (2001) and Konnov et al. (2002), that the
maximization problem (6.63) has a unique solution, since ˆ˛ .u; v/ is strongly con-
vex in v and U is convex. We will use v˛ .u/ to denote the solution of (6.63); that is,

G˛ .u/ D ˆ˛ Œu; v˛ .u/�
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With these preliminaries, we are now able to state and prove the following result:

Lemma 6.1. Gap function for DVI(F, f, U, � , x0, t0, tf ). The function G˛ .u/ de-
fined by (6.63) is a gap function for DVI(F, f, U, � , x0, t0, tf ). In particular, u is the
solution to DVI(F, f, U, � , x0, t0, tf ), if and only if u D v˛ .u/ :

Proof. The proof is in two parts.
(i)
�
u D v˛ .u/ H) DVI.F; f ; ; U; x0, t0, tf )

�
The optimality condition for

(6.63) is 	
@ˆ˛ .u; v˛/

@v
; v � v˛



� 0 8v 2 U

That is
h�F .x; u; t/ � ˛rv� .u; v˛/ ; v � v˛i � 0 8v 2 U (6.68)

Substituting u for v in (6.68), we obtain

hF .x; u; t/ ; u � v˛i � �˛ hrv� .u; v˛/ ; u � v˛i 8u 2 U (6.69)

Note that strong convexity for the �-function intrinsic to the gap function means the
following extension of the tangent line property holds:

� .u; v˛/C hrv� .u; v˛/ ; u � v˛i C 1

2
c ku � v˛k � � .u; u/ (6.70)

By virtue of relationships (6.69) and (6.70), we have

G˛ .u/ D ˆ˛ .u; v˛/

D hF .x; u; t/ ; u � v˛i � ˛� .u; v˛/

� �˛ hrv� .u; v˛/ ; u � v˛i � ˛� .u; v˛/

D ˛ Œ� .u; u/� � .u; v˛/� hrv� .u; v˛/ ; u � v˛i�
� ˛c

2
kv˛ � uk2 � 0 (6.71)

where the property � .u; u/ D 0 is used. Therefore, G˛ .u/ � 0 for all u 2 U .
Moreover, if G˛ .u/ D 0, then by (6.71) we have u D v˛. From (6.69), we see by
inspection that u D v˛ solves DVI.F; f ; U; � ; x0; t0; tf /.

(ii)
�
DVI.F; f ; U; � ; x0; t0; tf / H) u D v˛ .u/

�
Suppose now that u is a so-

lution of DVI.F; f ; U; � ; x0; t0; tf /. Then

hF .x; u; t/ ; v � ui � 0 8v 2 U

and it follows that

ˆ˛ .u; v/ D hF .x; u; t/ ; u � vi � ˛� .u; v/ � �˛� .u; v/
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for all v 2 U . Furthermore, we have

G˛ .u/ D max
v2U

ˆ˛ .u; v/ � �˛� .u; v˛/

which contradicts the nonnegativity property of G˛ .u/, unless G˛ .u/ D 0 and
u D v˛ .u/. �

The above result assures that a broad class of gap functions for differential varia-
tional inequalities may be defined.

6.5.2 D-gap Equivalent Optimal Control Problem

Note that the preceding definition of the gap function does not ensure that G˛ .u/
is in general differentiable, a limitation we would like to overcome. To that end, let
us introduce the so-called a D-gap function, which is based on the primitive gap
functionsG˛ and Gˇ introduced above and has the form

 ˛ˇ .u/ D G˛ .u/�Gˇ .u/ (6.72)

for 0 < ˛ < ˇ. While G˛ .u/ is not differentiable in general,  ˛ˇ .u/ is Gateaux-
differentiable, as we demonstrate subsequently. To show that  ˛ˇ .u/ is a gap
function, we only need to show the essential nonnegativity property holds. We
continue to invoke assumptions A1, A2, A3, and A4; hence, by virtue of strong
convexity of � .u/, we have

 ˛ˇ .u/ D G˛ .u/�Gˇ .u/

D ˆ˛ .u; v˛/ �ˆˇ

�
u; vˇ

�

� ˆ˛

�
u; vˇ

� �ˆˇ

�
u; vˇ

�

D ˝
F .x; u; t/ ; u � vˇ

˛ � ˛�
�
u; vˇ

� � ˝
F .x; u; t/ ; u � vˇ

˛C ˇ�
�
u; vˇ

�

D .ˇ � ˛/ �
�
u; vˇ

�

This demonstrates  ˛ˇ .u/ � 0, and, of course, G˛ .u/ � Gˇ .u/ for all u 2 U . So
(6.72) does in fact define a gap function.

We will employ, as our D-gap function, the gap function Fukushima (1992) has
named the regularized gap function for finite-dimensional spaces and Konnov et al.
(2002) have extended to Hilbert spaces. In particular, we introduce as a generator of
the regularized gap function the following

� .u; v/ D 1

2
kv � uk2 (6.73)
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which satisfies the relevant assumptions on � .�/, especially that of strong convexity
with modulus ˛ > 0. From (6.64) and (6.73) we get

ˆ˛ .u; v/ D hF .x; u; t/ ; u � vi � ˛

2
kv � uk2

The corresponding D-gap function becomes

 ˛ˇ .u/ D G˛ .u/�Gˇ .u/ D max
v2U

ˆ˛ .u; v/� max
v2U

ˆˇ .u; v/

or, alternatively

 ˛ˇ .u/ D ˝
F .x; u; t/ ; vˇ .u/� v˛ .u/

˛ � ˛

2
kv˛ .u/� uk2 C ˇ

2

�
�vˇ .u/� u

�
�2

(6.74)

where

v˛ .u/ D arg max
v2U

ˆ˛ .u; v/ (6.75)

vˇ .u/ D arg max
v2U

ˆˇ .u; v/ (6.76)

Furthermore, it should be noted that, for a fixed u 2 U , the maximization problem
(6.75) is equivalent to the following:

v˛ .u/ D arg min
v2U

�
�
�
�v �

�
u � 1

˛
F .x; u; t/

���
�
�

2

which may be rewritten in the form of a fixed-point problem involving a projection
operator, namely

v˛ .u/ D PU

�
u � 1

˛
F .x; u; t/

�
(6.77)

as observed in Fukushima (1992) for finite dimensions and Konnov et al. (2002) for
infinite dimensions.

Let us now consider the D-gap function in the context of an unconstrained differ-
ential variational inequality without terminal-time constraints. That is, we stipulate
the following

U D �
L2
�
t0; tf

��m

x.tf / free

Thus, in terms of our notation, we are interested in restating the problem

DVI.F; f ;
�
L2
�
t0; tf

��m
; x.tf / free ; x0; t0; tf / (6.78)
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in terms of the D-gap function (6.74). That restatement yields the following equiv-
alent optimal control problem:

min  ˛ˇ .u/ D
Z tf

t0

F0 .x; u; t/ dt (6.79)

subject to

dx

dt
D f .x; u; t/ (6.80)

x .t0/ D x0 (6.81)

where

F0 .x; u; t/ 	 F .x; u; t/
�
vˇ .u/� v˛ .u/

� � ˛

2
Œv˛ .u/� u�2 C ˇ

2

�
vˇ .u/� u

�2

(6.82)

The criterion integrand (6.82) is determined by observing that

 ˛ˇ .u/ D ˝
F .x; u; t / ; vˇ .u/ � v˛ .u/

˛ � ˛

2
kv˛ .u/ � uk2 C ˇ

2

�
�vˇ .u/ � u

�
�2

D
Z tf

t0

�
F .x; u; t /

�
vˇ .u/ � v˛ .u/

� � ˛

2
Œv˛ .u/ � u�2 C ˇ

2

�
vˇ .u/ � u

�2
�
dt

A more general differential variational inequality than (6.78) could be considered
without complications other than increased notational complexity. The problem
(6.79), (6.80), and (6.81) is a Bolza-form optimal control problem; it is unusual only
in that the objective functional involves the maximizers of subproblems defined by
(6.75) and (6.76), namely v˛ .u/ and vˇ .u/.

Now we are interested in the gradient of the objective functional  ˛ˇ .u/, which
is equivalent to the gradient of the corresponding Hamiltonian, owing to the partic-
ular function spaces we have elected in this chapter. In particular, the Hamiltonian
for problem (6.79), (6.80), and (6.81) is

H˛ˇ .x; u; �; t/ D F .x; u; t /
�
vˇ .u/ � v˛ .u/

� � ˛

2
Œv˛ .u/ � u�2 C ˇ

2

�
vˇ .u/ � u

�2

C�f .x; u; t / (6.83)

To obtain the gradient of  ˛ˇ .u/, we need to carefully consider the role of v˛ .�/
and vˇ .�/ which are maximizers defined by (6.75) and (6.76). In particular, v˛ .�/
and vˇ .�/ are unique by the strong concavity of ˆ˛ .u; v/ and ˆˇ .u; v/ in v and
the convexity of the set U . To continue our analysis, we employ, without proof, the
following lemma from Pshenichnyi (1971):

Lemma 6.2. Gradient and G-derivatives. Let V be an abstract Hilbert space, U �
V and h W V � U ! < a mapping whose gradient ruh .u; v/ exists everywhere on
U and is continuous on V � U: Define two functions as follows:
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w .u/ D max
v2U

h .u; v/

z .u/ D fv 2 U W w .u/ D h .u; v/g

Then the G-derivative of w .u/ and the G-derivative of h.u; v/ in the direction � are
related according to

ıw .u; �/ D max
v2z.u/

ıh .u; �I v; �/

Furthermore, if z .u/ is a singleton for all u 2 V and z is a continuous function on
V , then w is continuously differentiable and its gradient is given by

rw .u/ D r max
v2U

h .u; v/ D ruh .u; z .u// :

Now we are in a position to articulate the gradient of the objective functional
 ˛ˇ .u/:

Theorem 6.9. Gradient of D-gap function. Suppose F .x; u; t/ is Lipschitz con-
tinuous on every bounded subset of

�
L2
�
t0; tf

��m
. Then  ˛ˇ .u/ is continuously

differentiable in the sense of Gateaux and

r ˛ˇ .u/ D @

@u
H˛ˇ .x; u; �; t/

D @F .x; u; t/

@u

�
vˇ .u/� v˛ .u/

�

C˛ Œv˛ .u/� u�� ˇ
�
vˇ .u/� u

�C �
@f .x; u; t/

@u

Proof. Rewrite the objective functional as

 ˛ˇ .u/ D G˛ .u/�Gˇ .u/

D max
v2U

�Z tf

t0

F .x; u; t/ Œu � v� � ˛

2
Œv � u�2 dt

�

� max
v2U

�Z tf

t0

F .x; u; t/ Œu � v� � ˇ

2
Œv � u�2 dt

�

Let us define

g˛ .u; v/ D F .x; u; t/ Œu � v� � ˛

2
Œv � u�2

gˇ .u; v/ D F .x; u; t/ Œu � v� � ˇ

2
Œv � u�2

Then, by Lemma 6.2 we have

ıG˛ .u; �/ D
Z tf

t0

�
@g˛ .u; v˛/

@x
y C @g˛ .u; v˛/

@u
�

�
dt
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ıGˇ .u; �/ D
Z tf

t0

(
@gˇ

�
u; vˇ

�

@x
y C @gˇ

�
u; vˇ

�

@u
�

)

dt

so that

ı ˛ˇ .u; �/ D
Z tf

t0

�
@g

@x
y C @g

@u
�

�
dt (6.84)

where we for simplicity of notation we write

g .u/ D g˛ .u; v˛/� gˇ

�
u; vˇ

�

and y D ıx is a variation in x which implicitly depends on �. Furthermore, by
definition

x .t/ D x0 C
Z t

t0

f .x; u; y/ dt

Also, we know from our analysis of continuous-time optimal control problems in
Chapter 4 that

y D
Z t

t0

�
@f

@x
y C @f

@u
�

�
dt

We introduce the adjoint vector defined by the final-value problem

�d�
dt

D
�
@f

@x

�T

�C
�
@g

@x

�T

(6.85)

�
�
tf
� D 0 (6.86)

so that (6.84) becomes

ı ˛ˇ .u; �/ D
Z tf

t0

("

�
�
d�

dt

�T

� �T @f

@x

#

y C @g

@u
�

)

dt

Noting that y .t0/ D 0 and �
�
tf
� D 0, the by now familiar step of integration by

parts yields

Z tf

t0

�
�
d�

dt

�T

ydt D
Z tf

t0

�T dy

dt
dt

D
Z tf

t0

�T

�
@f

@x
y C @f

@u
�

�
dt

It follows that

ı ˛ˇ .u; �/ D
Z tf

t0

�
�T

�
@f

@x
y C @f

@u
�

�
� �T @f

@x
y C @g

@u
�

�
dt
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D
Z tf

t0

�
�T @f

@u
C @g

@u

�
�dt

D
	
�T @f

@u
C @g

@u
; �




Therefore, the gradient of  ˛ˇ .u/ becomes

r ˛ˇ .u/ D �T @f

@u
C @g

@u
D ruH˛ˇ .x; u; �; t/

Furthermore, we note that

r ˛ˇ .u/ D ruH˛ˇ .x; u; �; t/

D �
@f .x; u; t/

@u
C @F .x; u; t/

@u

�
vˇ .u/� v˛ .u/

�

C ˛ Œv˛ .u/� u�� ˇ
�
vˇ .u/� u

�

Also, we note that

�d�
dt

D rxH˛ˇ .x; u; �; t/

which is recognized as the adjoint equation. �
To solve an extremal problem with fixed initial time, fixed terminal time, and free
terminal state using the D-gap function in Hilbert space, one needs certain additional
information. In particular, the terminal time constraint

�
�
x
�
tf
�
; tf

� D 0 (6.87)

and the final value of the adjoint vector

�
�
tf
� D �T

@�
�
x
�
tf
�
; tf

�

@x

where � is the Lagrange multiplier for (6.87).

6.5.3 Numerical Example

Let us consider the following example of DVI(F, f, � , U, x0, t0, tf ) from Friesz and
Mookherjee (2006), again involving three controls and two states:

u 2 �
L2 Œ0; 1�

�3

x 2 �H1 Œ0; 1�
�2
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x .t0/ D
�
1

0:7

�

�
t0; tf

� D Œ0; 5�

F.x; u/ D

0

B
BB
B
B
@

F1.x; u/

F2.x; u/

F3.x; u/

1

C
CC
C
C
A

D

0

B
BB
B
B
B
@

x2
1 � u1 .t/C u2 .t/

x2 � u2
2 .t/ � u3 .t/

1

10
x2

2 � u2
3 .t/

1

C
CC
C
C
C
A

f .x; u/ D
0

@
f1.x; u/

f2.x; u/

1

A D

0

B
B
B
@

1

5
x1 .t/C 1

2
u1 .t/C 3

10
u2 .t/

1

4
x2 .t/C 1

2
u2 .t/ � 1

5
u3 .t/

1

C
C
C
A

U D fu W 0:2 � u1 � 1I 0:2 � u2 � 1:2I 0:2 � u3 � 1:3g
Results using a projected gradient/D-gap function in Hilbert space are presented
in Figures 6.2 and 6.3. This example was solved using MATLAB on a PC with
an Intel Xeon 3.06 GHz CPU and 3.37 GB RAM. The computation time is less than
20 seconds. The algorithm converged in 11 iterations involving 22 subproblems with
a gap size less than 10�10.

6.6 Differential Variational Inequalities with Time Shifts

We are now ready to consider the formulation of differential inequalities with state-
dependent time shifts. In particular, we retain as much of our prior notation as
possible and consider:

u� 2 U
hF �x �u�; u�

�

�
; u�; u�

� ; t
�
; u � u�i � 0 8u 2 U

�
(6.88)

where

x .u; u� ; t/ D

arg

�
dx

dt
D f .x; u; u� ; t / ; x .t0/ D x0; u 2 U;� �x �tf

�
; tf
� D 0

�
2 �H1

�
t0; tf

��n

(6.89)
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Fig. 6.2 Result by gap function ( gap < 10�10, ˛ D 0:5, ˇ D 2)

for �
t0; tf

� � <1C
Furthermore u� .t/ is a shorthand for the shifted control vector

u� .t/ D

0

B
@

u1 .t � �1 .x1//
:::

um .t � �m .xm//

1

C
A
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Fig. 6.3 Convergence of the descent algorithm, which is terminated with the gap less than 10�10

where

�i W �H1
�
t0; tf

��n �! <1C
� D .�i W i 2 Œ1;m�/

for each i 2 Œ1;m�. The other relevant mappings are

f W �H1
�
t0; tf

��n � �L2 Œt0; � �
�m � �L2

�
t0; tf

��m � <1C �! �
L2
�
t0; tf

��n

� W <n � <1C �! <r

u 2 U � �
L2
�
t0; tf

��m

u� 2 �L2
�
t0; tf

��m

Of course, in the above
�
L2
�
t0; tf

��m
is the m-fold product of the space of square-

integrable functions L2
�
t0; tf

�
, while

�H1
�
t0; tf

��n
is the n-fold product of the

Sobolev space H1
�
t0; tf

�
. We refer to (6.88) as a differential variational inequality

with time shifts, abbreviated DVI(F, f, � , U, x0, t0, tf ; �).

6.6.1 Necessary Conditions

To develop necessary conditions for DVI(F, f, � , U, x0, t0, tf , �), we will rely on
the following notion of regularity:

Definition 6.5. Regularity of DVI(F, f, � , U, x0, t0, tf , �). We call DVI(F, f, � , U,
x0, t0, tf , �) regular if
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R1. u 2 U � �
L2
�
t0; tf

��m
;

R2. u� 2 U 2 �L2
�
t0; tf

��m
;

R3. x 2 �H1
�
t0; tf

��n

R4. x .u; u� ; t/ W �L2
�
t0; tf

��m � �L2
�
t0; tf

��m � <1C �! �H1
�
t0; tf

��n
exists

for all admissible u and is unique, strongly continuous, and G-differentiable
with respect to u and u� ;

R5. � is continuously differentiable with respect to x;
R6. � W <n � <1C �! <r is continuously differentiable with respect to x and t;
R7. F.x; u; u� ; t/ W �H1

�
t0; tf

��n � �
L2
�
t0; tf

��m � �
L2
�
t0; tf

��m � <1C �!
L2
�
t0; tf

�
is continuous with respect to x, u, and u� ;

R8. f W �H1
�
t0; tf

��n � �L2
�
t0; tf

��m � �L2
�
t0; tf

��m � <1C �! �
L2
�
t0; tf

��n

is continuously differentiable with respect to x, u, and u� ;
R9. x0 2 <n, t0 2 <1C, and tf 2 <1CC are known and fixed;

R10. U � �
L2
�
t0; tf

��m
is convex; and

R11. there is a constant dual vector 
 2 <r for the terminal constraints
�
�
x
�
tf
�
; tf

� D 0.

We next note that (6.88) may be restated as the following optimal control problem

min 
T�
�
x
�
tf
�
; tf

�C
Z tf

t0

�
F
�
x�; u�; u�

� ; t
��T

udt (6.90)

subject to

dx

dt
D f .x; u; u� ; t/ x .t0/ D x0 (6.91)

u 2 U (6.92)

where x� D x
�
u�; u�

� ; t
�

is the optimal state vector and 
 2 <r is the vector
of dual variables for the terminal constraints �

�
x
�
tf
�
; tf

� D 0. We point out
that this optimal control problem is a mathematical abstraction and of no use for
computation, since its criterion depends on knowledge of the variational inequality
solution u�. In what follows we will need the Hamiltonian for (6.90), (6.91), and
(6.92), namely

H2 .x; u; u� ; �; t/ D �
F
�
x�; u�; u�

� ; t
��T

u C �T f .x; u; u� ; t/ (6.93)

where � .t/ is the adjoint vector that solves the adjoint equations and transversality
conditions for given state variables and controls. It is now a relatively easy matter
to derive the necessary conditions stated in the following theorem:

Theorem 6.10. Necessary conditions for DVI(F, f, � , U, x0, t0, tf , �). When x0,
t0; and tf are fixed and regularity in the sense of Definition 6.5 holds, necessary
conditions for u� 2 U , a solution of DVI(F, f, � , U, x0, t0, tf , �), are:
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1. the variational inequality principle:

mX

iD1

@H2

�
x�; u�; u�

� ; �
�; t
�

@ui

�
ui � u�

i

� � 0 8u 2 U

where

H2 .x; u; u� ; �; t/ D �
F
�
x�; u�; u�

� ; t
��T

u C �T f .x; u; u� ; t/

@H2

@ui

D Fi

�
x�; u�; u�

� ; t
�C

mX

j D1

�j

@fi

�
x�; u�; u�

� ; t
�

@ui

if t 2 �tf � �i

�
x
�
tf
��
; tf

�

@H2

@ui

D Fi

�
x�; u�; u�

� ; t
�C

mX

j D1

�j

@fj

�
x�; u�; u�

� ; t
�

@ui

C

2

6
6
4�j

@fj

�
x�; u�; u�

� ; t
�

@ .u� /i

1

1 �Pm
j D1

@�i .x
�/

@xj

fj

�
x�; u�; u�

� ; t
�

3

7
7
5

si

if t 2 �t0; tf � �i

�
x� �tf

���

and each si solves the fixed point problem

t D si C �i Œx .t/�

2. the state dynamics:

dx�

dt
D f

�
x�; u�; u�

� ; t
�

x� .t0/ D x0

3. the adjoint dynamics:

.�1/ d�
�

dt
D rx

�
���T f

�
x�; u�; u�

� ; t
�

�� �tf
� D 
T

@�
�
x� �tf

�
; tf

�

@x

where 
 2 <r is the vector of dual variables for the terminal constraint

�
�
x
�
tf
�
; tf

� D 0
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Proof. DVI(F, f, � , U, x0, t0, tf , �) is equivalent to the optimal control problem
(6.90), (6.91), and (6.92), with Hamiltonian (6.93). By virtue of regularity, we may
employ the necessary conditions for optimal control problems with state-dependent
time shifts from Chapter 4; the relevant differential variational inequality necessary
conditions follow immediately. �

6.6.2 Fixed-Point Formulation and Algorithm

There is a fixed-point form of DVI(F, f, � , U, x0, t0, tf , �). In particular we state
and prove the following result:

Theorem 6.11. Fixed-point formulation of DVI(F, f, � , U, x0, t0, tf , �). When reg-
ularity in the sense of Definition 6.5 holds, any fixed-point of

u D PU Œu � ˛F .x .u; u� ; t/ ; u; u� ; t/�

must be a solution of DVI(F, f, � , U, x0, t0, tf , �), where PU Œ:� is the minimum
norm projection onto U � �

L2 Œt0; � �
�m

and ˛ 2 <1CC.

Proof. The proof is very similar to the case of no time shifts; however, in the interest
of gaining familiarity with time-shifted problems, it is worth providing a detailed
exposition. In particular, we note the fixed-point problem considered requires that

u D arg min
v

�
1

2
ku � ˛F .x .u; u� ; t/ ; u; u� ; t/ � vk2 W v 2 U

�
(6.94)

where ˛ 2 <1CC is any strictly positive real number. That is, we seek the solution of
the optimal control problem

min
v

T�

�
x
�
tf
�
; tf

�C
Z tf

t0

1

2
Œu � ˛F .x; u; u� ; t/ � v�2 dt (6.95)

subject to

dx

dt
D f .x; v; v� ; t/ I x .t0/ D x0 (6.96)

v 2 U (6.97)

where u and u� are treated as fixed vectors. Any solution of optimal control problem
(6.95), (6.96), and (6.97) must satisfy the necessary conditions of Theorem 6.4. In
particular, we must have

�rvH3

�
x�; v�; v�

� ; �
�; t
��T

.v � v�/ � 0 8v 2 U (6.98)
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where

H3 .x; v; v� ; �; t/ D 1

2
Œu � ˛F .x; u; u� ; t/ � v�2 C �T f .x; v; v� ; t/

and for given x and v

� D arg

(

.�1/ d�
dt

D rxH3 .x; v; v� ; �; t/ ; �
�
tf
� D 
T

@�
�
x
�
tf
�
; tf

�

@x
�
tf
�

)

Note that

rvH3 .x; v; v� ; �; t/ D �u C ˛F .x; u; u� ; t/C v C rv�
T f .x; v; v� ; t/

Because u D v by virtue of (6.94) we have

ruH3 .x; v; v� ; �; t/ D ˛F .x; u; u� ; t/C ru�
T f .x; u; u� ; t/ (6.99)

Now if we set � D �

˛
; we have

h
F
�
x�; u�; u�

� ; t
�C ru

�
���T f

�
x�; u�; t

�iT

.u � u�/ � 0 8v 2 U
which is identical to the finite-dimensional variational inequality principle of
Theorem 6.10. The other optimality conditions are also identical. This completes
the proof. �

Naturally there is an associated fixed-point algorithm based on the iterative
scheme

ukC1 D PU

h
uk � ˛F



x



uk; uk
�

�
; uk; uk

� ; t
�i

The detailed structure of the fixed-point algorithm is:

Step 0. Initialization. Identify an initial feasible solution u0 2 U and set k D 0.

Step 1. Solve optimal control problem. Solve the following optimal control
problem:

min
v
J k .v/ D 
T�

�
x
�
tf
�
; tf

�

C
Z tf

t0

1

2

h
uk � ˛F



xk ; uk; uk

� ; t
�

� v
i2

dt (6.100)

subject to
dx

dt
D f .x; v; v� ; t/ x .t0/ D x0 (6.101)

v 2 U (6.102)

Call the solution ukC1.

Step 2. Stopping test. If
�
�ukC1 � uk

�
� � " where " 2 <1CC is a preset tolerance,

stop and declare u� 
 ukC1. Otherwise set k D k C 1 and go to Step 1.
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Note that, if time shifts do appear in the principal operatorF , but not in the dynamics
or constraints of the time-shifted differential variational inequality whose solution
is sought, the fixed-point subproblems formed by (6.100), (6.101), and (6.102) have
the appealing property that they are conventional (not time-shifted). This means
that the subproblems may be solved by conventional methods. In particular, for the
special circumstance we have mentioned, gradient projection will be a convergent
algorithm for the subproblems, provided appropriate regularity conditions for con-
vergence without time shifts are met.

6.6.3 Time-Shifted Numerical Examples

In this section we provide three related numerical examples of DVI(F, f, � , U, x0,
t0, tf , �) with time shifts to illustrate a fixed-point, descent-in-Hilbert-space solu-
tion scheme. The computations were performed using Matlab 6.5 on a Pentium 4
processor desktop computer with 1 GB RAM. The three examples differ from one
another according to what type of time shift is employed. In particular, we consider
both fixed and state-dependent time shifts as well as the degenerate case of no of
time shifts. The run times for these examples were found to be less than 1 minute
for the computing hardware described above.

Example 1 (State-Dependent Time Shifts)

Consider a version of DVI(F, f, � , U, x0, t0, tf , �) involving three controls and two
states:

u 2 �
L2 Œ0; 1�

�3
x 2 .H Œ0; 1�/2 x .0/ D

�
1

0:7

�
tf D 5

F.x; u; u� / D

0

B
B
BB
B
@

F1.x; u; u� /

F2.x; u; u� /

F3.x; u; u� /

1

C
C
CC
C
A

D

0

B
B
BB
B
B
@

x2
1 � u1 .t C �1 .x//C u2 .t C �2 .x//

x2 � u2
2 .t C �2 .x//� u3 .t/

1

10
x2

2 � u2
3 .t C �3 .x//

1

C
C
CC
C
C
A

f .x; u/ D
0

@
f1.x; u; u� /

f2.x; u; u� /

1

A D

0

B
B
B
@

1

5
x1 .t/C 1

2
u1 .t/C 3

10
u2 .t C �2 .x//

1

4
x2 .t/C 1

2
u2 .t/� 1

5
u3 .t C �3 .x//

1

C
C
C
A

U D fu W 1 � u1 � 0:2; 1:2 � u2 � 0:2; 1:3 � u3 � 0:2g
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Note that the righthand side of the state dynamics has shifted controls; the shifted
control vectors obey

u� D

2

6
6
6
6
6
4

u1 .t C �1 .x//

u2 .t C �2 .x//

u3 .t C �3 .x//

3

7
7
7
7
7
5

where

�1 .x .t// D x1 .t/

k1

�2 .x .t// D x2 .t/

k2

�3 .x .t// D 0:7 � x1 .t/C 0:3 � x2 .t/

k3

and 0

BB
B
B
B
@

k1

k2

k3

1

CC
C
C
C
A

D

0

BB
B
B
B
@

80

85

90

1

CC
C
C
C
A

We choose the fixed-point parameter to be ˛ D 0:05: A fifth-power polynomial
was used to express the controls, adjoint variables and state variables as continuous
functions of time. Also, the nominal decision time interval is Œ0; 5�. The stopping
tolerances for both fixed-point and descent iterations were set at " D 10�2: The
combined fixed-point, descent-in-Hilbert-space algorithm converged after 17 fixed-
point iterations; each of the descent subproblems converged in 10 or fewer iterations.
We forgo the detailed symbolic statement of this example and, instead, provide nu-
merical results in graphical form. Figure 6.4 shows the controls u� and the states x�
plotted against time.

Example 2 (Fixed Time Shifts)

Next we modify Example 1 so that the shifts do not depend on the states; instead
they are fixed. In particular we assume

�1 D 3:5

k1

�2 D 2

k2

�3 D 3

k3
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Fig. 6.4 u� vs. time and x� vs. time with state-dependent time shifts

and keep all other parameters the same. The solution obtained is shown in Figure
6.5. In this case, the combined fixed-point, descent-in-Hilbert-space algorithm con-
verged in 15 fixed-point iterations; each of the descent subproblems converged in
12 or fewer iterations.
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Fig. 6.5 u� vs. time and x� vs. time with fixed time shifts

Example 3 (Degenerate Case: No Time Shifts)

Next we modify Example 1 so that there are no time shifts; that is

�1 D �2 D �3 D 0
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Fig. 6.6 u� vs. time and x� vs. time without time shifts

Figure 6.6 shows the corresponding numerical solution of DVI(F, f, � , U, x0, t0, tf ,
� D 0). The fixed-point-descent-in-Hilbert-space algorithm converged in 12 fixed-
point iterations, and each of the subproblems converged in nine or fewer iterations.
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6.7 Exercises

1. By analogy to the finite-dimensional case, define the notion of a differential qua-
sivariational inequality

2. Explain why a generalized differential Nash equilibrium is equivalent to an ap-
propriately defined differential quasivariational inequality.

3. Establish that, for appropriate regularity conditions, x.u; u� ; t/ exists.
4. Establish that, for appropriate regularity conditions, x.u; u� ; t/ is unique.
5. Consider the following DVI(F, f, � , U, x0, t0, tf ) involving two controls and two

states:

u 2 �
L2 Œ0; 1�

�2

x 2 �H1 Œ0; 1�
�2

x .t0/ D
�
1

1

�

�
t0; tf

� D Œ0; 5�

F.x; u/ D
�
F1.x; u/
F2.x; u/

�
D
�
.x1/

2 � u1

x2 � u2

�

f .x; u/ D
�
f1.x; u/
f2.x; u/

�
D
�
x1 � u1 C .u2/

2

x2 C .u1/
2 � u2

�

U D fu W 0 � u1 � 1I 0 � u2 � 1I 0 � u3 � 1g

Solve this problem using a fixed-point algorithm in continuous time.
6. Repeat Exercise 5 using a gap function in continuous time.
7. Repeat Exercise 5 using a discrete-time approximation.
8. Consider the following DVI(F, f, � , U, x0, t0, tf , �) involving two controls and

two states:

u 2 �
L2 Œ0; 1�

�2

x 2 �H1 Œ0; 1�
�2

x .t0/ D
�
1

1

�

�
t0; tf

� D Œ0; 5�
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F.x; u; u� / D
�
F1.x; u/
F2.x; u/

�
D
�
.x1/

2 � u1 C u2.t � 4/

.x2/
2 C .u1/

2 � u2

�

f .x; u/ D
�
f1.x; u/
f2.x; u/

�
D
��u1

�u2

�

U D fu W 0 � u1 � 1I 0 � u2 � 1I 0 � u3 � 1g

where u2 .t � 4/ denotes a control variable with a fixed time shift. Solve this
problem using a fixed-point algorithm in continuous time.
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Chapter 7
Optimal Economic Growth

The theory of optimal economic growth is a branch of economic theory that makes
direct and sophisticated use of the theory of optimal control. As such, the models of
optimal economic growth that have been devised and reported in the economics lit-
erature are relatively easy for a person who has mastered the material of Chapters 3
and 4 of this book to comprehend. Among other things, this chapter shows how as-
patial optimal economic growth theory may be extended to study optimal growth of
interdependent regions in a national economy. Moreover, working through the anal-
yses presented in this chapter provides a means of assessing and improving one’s
mastery of the key mathematical concepts from the theory of optimal control that
were introduced in previous chapters, especially the analysis and interpretation of
optimality conditions and singular controls.

Multiregional optimal growth models are generally notationally complicated, and
those presented in this chapter are no exception. For that reason, the first multire-
gional model of optimal econmomic growth considered here is based on a very
simple model of production that is quite tractable even though it is theoretically
somewhat naive and outdated. In particular, Section 7.2 presents an extremely de-
tailed analysis of that model’s optimality conditions, study of which will allow the
reader to become familiar with the style and depth of analysis that must be con-
ducted when a new optimal control model is created. From there we go on to discuss,
in Section 7.3, a more advanced model of optimal regional growth, similar to the
growth theory application introduced in Chapter 1, that will provide the profes-
sional economist with some practical knowledge about how to numerically solve
models of optimal economic growth using a discrete time/mathematical program-
ming approach.

The following is a preview of the principal topics covered in this chapter:

Section 7.1: Alternative Models of Optimal Economic Growth. In this section,
we present Ramsey’s famous model of optimal growth. We also formulate a
model of optimal economic growth based on the Harrod-Domar growth dynamics.
Additionally, we present the optimal control problem at the heart of the neoclassical
theory of optimal growth.

Section 7.2: Optimal Regional Growth Based on the Harrod-Domar Model.
In this section, we show how the Harrod-Domar model may be disaggregated to
create a multiregion optimal growth model.

T.L. Friesz, Dynamic Optimization and Differential Games, International
Series in Operations Research & Management Science 135,
DOI 10.1007/978-0-387-72778-3 7, c� Springer Science+Business Media, LLC 2010
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Section 7.3: A Computable Theory of Regional Public Investment Allocation.
In this section, we show how public investment may be optimally allocated among
regions without invoking any assumptions regarding economies of scale.

7.1 Alternative Models of Optimal Economic Growth

There are alternative theories of optimal economic growth. We now review three of
these that take the form of optimal control problems.

7.1.1 Ramsey’s 1928 Model

As we noted in Chapter 1, Ramsey (1928) proposed the idea of a bliss point, an
accumulation point of a sequence of consumption decisions representing the nonat-
tainable, ideal consumption goal of the consumer. The bliss point, B > 0, has the
same units as utility and obeys

B D sup ŒU .c/ W c � 0�

where c is the consumption level of a representative member of society and U .c/ is
the utility experienced as a result of that consumption. Because there areN identical
members of society, maximization of social welfare is assured by

maxJ D
Z 1

0

ŒU .c/ � B� dt (7.1)

The relevant dynamics are obtained from a neoclassical production function

Y D F .K;L/ (7.2)

where Y is output and K and L are capital and labor inputs, respectively. The neo-
classical nature of .7.2/ means that F .:; :/ is homogeneous of degree one; that is

F .˛K; ˛L/ D ˛F .K;L/

for ˛ a positive scalar. Taking labor (population) to be fixed, per capita output may
be expressed as

y D Y

L
D 1

L
F.K;L/

D F

�
K

L
; 1

�
D f .k/
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where

k � K

L
and f .k/ � F

�
K

L
; 1

�

Thus, we have
dk

dt
D d

dt

�
K

L

�
D 1

L

dK

dt
D I

L

from which we obtain

dk

dt
D F .K;L/

L
� C

L
� ıK

L
D f .k/ � c � ık (7.3)

where
I D Y � C � ıK

is investment, c is the per capita consumption rate, .1 � c/ is the savings rate, C is
total consumption, and ı is the rate of depreciation of capital. Obviously, k is per
capita capital. Note that per capita output f .k/ is expressed in terms of the single
state variable k, a fact made possible by the homogeneous-of-degree-one property
of the production function. In deriving (7.3), we make use of well-known macroe-
conomic identities relating the rate of change of capital stocks dK=dt , investment
I , consumption C , and capital depreciation ıK:

dK

dt
D I � ıK

D Y � C � ıK

The above development allows us to state Ramsey’s optimal growth model in the
following form:

maxJ D
Z 1

0

ŒU .c/ � B� dt (7.4)

subject to

dk

dt
D f .k/� ık � c (7.5)

k .0/ D k0 (7.6)

The model (7.4), (7.5), and (7.6) is an optimal control problem with state variable k
and control variable c.

7.1.2 Optimal Growth with the Harrod-Domar Model

Ramsey’s work can be criticized from the points of view that population is not
time varying that the concept of a bliss point contradicts the nonsatiation axiom of
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utility theory. We may quite easily overcome these weaknesses, and we now do so
for an especially simple production technology. Specifically, we imagine a produc-
tion function of the form

Y.t/ D �K.t/ (7.7)

where Y.�/ is the aggregate output, � is the output-capital ratio, K.�/ is aggregate
capital, and t is a continuous-time variable. Relationship (7.16) is the basis of the
well-known Harrod-Domar model, for which the output-capital ratio is argued to
be constant on a so-called balanced growth path [see Hahn and Matthews (1964)].
Thus, one may write

dY.t/

dt
D �

dK.t/

dt
D �I.t/ (7.8)

where I.�/ denotes total investment. We also know that

dK

dt
D I � ıK

D Y � C � ıK

where I is investment and C is total consumption. If we again assume labor to be
fixed, we have

dk

dt
D �k � c � ık

where c is per capita consumption, ı is the rate of depreciation of capital and k is
per capita capital. Upon introducing a constrant nominal interest rate �, we give the
following as a model of optimal economic growth:

maxJ D
Z 1

0

exp.��t/U .c/ dt (7.9)

subject to

dk

dt
D .� � ı/ k � c (7.10)

k .0/ D k0 (7.11)

The model (7.9), (7.10), and (7.11) is an optimal control problem with state variable
k and control variable c.

7.1.3 Neoclassical Optimal Growth

The weaknesses of Ramsey’s model may also be overcome for a more general
class of production functions involving capital and labor inputs and constant scale
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economies of production; the resulting model is known as the neoclassical optimal
growth model. One of the clearest and most succinct expositions of the neoclassical
theory of optimal economic growth is contained in the book by Arrow and Kurz
(1970). To express the neoclassical model of optimal growth, as explained in
Chapter 1, we postulate that population has a constant proportionate growth rate
� obeying

1

L

dL

dt
D � H) L D L0 exp .��t/ (7.12)

where L0 D L.0/ is the initial population (labor force). We then construct dynam-
ics for per capita capital k D K=L in a fashion highly similar to that employed for
Ramsey’s model. In particular we write

dk

dt
D d

dt

�
K

L

�
D 1

L

dK

dt
� K

L

1

L

dL

dt

D 1

L
I � �k

D .1 � c/ Y � ıK
L

� �K
L

D F .K;L/

L
� C

L
� ı

K

L
� �

K

L

D f .k/ � c � ık

D f .k/ � c � ık � �k

where

f .k/ D F

�
K

L
; 1

�

as before. Consequently, the neoclassical optimal growth model is

maxJ D
Z 1

0

exp .��t/ U .c/ dt (7.13)

subject to

dk

dt
D f .k/ � .ı C �/ k � c (7.14)

k .0/ D k0 (7.15)

where � is the constant nominal interest rate. The model (7.13), (7.14), and (7.15) is
again an optimal control problem. The neoclassical optimal growth model is itself
open to criticism, especially as regards its assumption of a constant returns to scale
technology.
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7.2 Optimal Regional Growth Based on the Harrod-Domar
Model

In this section, we consider two especially easy-to-analyze models of optimal
economic growth that are interesting in their own right and that provide an introduc-
tion to the type of thinking characteristic of dynamic continuous-time optimization
modeling applications. We assume an economy with a private sector and a pub-
lic sector comprising n different geographical regions. For each sector within each
region, the production function is assumed to be of the Harrod-Domar form intro-
duced above:

Y.t/ D �K.t/ (7.16)

where Y.�/ is the aggregate output, � is the output-capital ratio, K.�/ is aggregate
capital, and t is a continuous-time variable. Because the output-capital ratio is con-
stant on the balanced growth path, we have

dY.t/

dt
D �

dK.t/

dt
D �I.t/ (7.17)

where I.�/ denotes total investment.
To construct an n-region model let us introduce the following notation:

Yi D total income of region i

�i D output-capital ratio for private investment in region i

ıi D output-capital ratio for public investment in region i

r D uniform income tax rate for all regions controlled

by the central government

si D savings ratio in region i

 ij D fraction of private savings generated in region j

that is transferred to region i

aij D fraction of transferred private savings not consumed

in the transportation process

�ij D fraction of public savings generated in region j that

is transferred to region i

bij D fraction of transferred public savings funds not consumed

in the transportation process

These definitions allow dynamical descriptions for the evolution of regional incomes
with respect to time to be written down. One point of view is to assume that from
the j th region’s income, Yi , a fraction .1 � sj / is the consumption allowance of
region j , including both public and private consumption. The remainder sjYj is
taxed at the rate r.t/, leaving .1� r.t//sjYj to be privately controlled and r.t/sjYj
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to be publicly controlled. Some fraction of these region j funds are transferred to
region i . In fact .1 � r.t// ij aij sjYj describes the amount of funds transferred to
region i from the j th region’s public sector. It clearly follows that the rate of change
of the i th region’s income with respect to time can be formulated as

dYi .t/

dt
D .1 � r.t//�i

nX

j D1

 ij aij sjYj C r.t/ıi

nX

j D1

�ij .t/bij sjYj i 2 Œ1; n�
(7.18)

Expression (7.18) of course gives rise to a set of simultaneous differential equations,
since (7.18) holds for every region i 2 Œ1; n�. Moreover, expression (7.18) can be
considered a generalization of the dynamics proposed by Sakashita (1967a).

A differential point of view has been proposed by Friesz and Luque (1987). They
assume that the income of region j is divided, by means of the tax rate r.t/, be-
tween the public and private sectors: the after-tax income for the private sector is
.1 � r.t//Yj .t/, and the corresponding public sector income is r.t/Yj .t/. The rel-
evant private and public sector investment funds are generated through a private
savings ratio, sj , and a public saving ratio, vj : As before, these funds are allocated
and transferred to the private and public investment pools of other regions, finally
obtaining

dYi .t/

dt
D .1 � r.t//�i

NX

j D1

 ij aij sjYj C r.t/ıi

NX

j D1

�ij .t/bij vjYj i 2 Œ1; n�
(7.19)

The initial conditions for both sets of dynamics (7.18) and (7.19) are Yi .0/ D Y 0
i ,

known constants for each region i 2 Œ1; n�.
The income tax rate is such that

0 � r.t/ � � (7.20)

where � is a known constant and 0 < � < 1. Note also the transfer allocation
controls �ij , for all time t 2 �t0; tf

�
; satisfy

nX

iD1

�ij .t/ D 1 i 2 Œ1; n� (7.21)

One does not have to worry about circularities in public sector transfers because
the bij are positive, but less than one; consequently, transfers have implicit nonzero
costs, 1 � bij , which ensure that the optimal solution is well behaved. Circularities
with respect to transfers in the private sector can exist in principle, since that sector
is composed of independent decision makers, each of whom makes claims upon
only a part of the income of the private sector and each of whom possesses distinct
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views regarding the best investment opportunities. Nonetheless, we treat  ij as an
exogenously supplied parameter and require that

nX

iD1

 ij D 1 i 2 Œ1; n� (7.22)

so that the aforementioned issue of private sector transfer circularities is not a prob-
lem in our analysis.

A very general objective function that is a scalarized version of a vector objective
function is

J D w1

nX

iD1

˛iYi .tf /C w2

Z tf

t0

exp.��t/
nX

iD1

ˇiYi .t/dt (7.23)

The intent is, of course, to maximize J. The weights ˛i and ˇi describe different
relative values for their respective scalar objectives: the i th region’s end of period
income Yi .tf / and the i th region’s income time stream

R tf
t0

exp.��t/Yi .t/dt . The
weights w1 and w2 determine the relative importance of aggregate terminal versus
aggregate time stream benefits. Thus (7.23) is really based on a scalarization of the
following vector objective function

Z D ŒY1.tf /; : : : ; Yn.tf /I
Z tf

t0

exp.��t/Y1.t/dt; : : : ;

Z tf

t0

exp.��t/Yn.t/dt�

(7.24)

As in Section 7.1, the entity � is a constant nominal interest rate used to calculate
present values.

We now show that maximization of (7.23) subject to (7.19), (7.20), and (7.21)
includes previous models reported in the literature as special cases. The first paper
on the subject of optimal regional public investment allocation from a mathemat-
ical perspective appears to be Rahman (1963a) using a discrete-time framework.
Intriligator (1964) set forth a continuous-time formulation of Rahman’s approach,
but made a mistake in its solution as Rahman (1963a) noted. Eventually, the origi-
nal Rahman model was thoroughly solved by Takayama (1967). The Rahman model
may be obtained from our formulation by making these simplifications:

1. Assume there is only one sector, namely the public sector, since interregional
transfers of funds are centrally planned. This implies that r.t/ D 1 for all t 2�
t0; tf

�
.

2. Also assume zero transportation costs; thus bij D 1 for all i and j .
3. Further assume that public savings are first consolidated and then distributed,

which is equivalent to requiring �ij .t/ D �i .t/ for all j .

As a consequence the relevant constrained dynamics, for each i 2 Œ1; n� and all
t 2 �t0; tf

�
, are

dYi .t/

dt
D ıi�i .t/

X

j

vjYj .t/ D ıi�i .t/
X

j

vjYj .t/ i 2 Œ1; n� (7.25)
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Yi .t0/ D Y 0
i i 2 Œ1; n� (7.26)

P
i �i .t/ D 1 (7.27)

�i .t/ � 0 i 2 Œ1; n� (7.28)

The objective of Rahman’s model is to maximize national income at the terminal
time t D tf ; that objective function is an obvious special case of (7.23), and we
write it as

J D
nX

iD1

Yi .tf / (7.29)

It is important to observe that Intriligator (1964) also analyzed the alternative ob-
jective of maximizing undiscounted per capita consumption for which he assumes
exponential population growth at the proportionate rate m; thus for Intriligator

J D
Z tf

t0

exp.�mt/
nX

iD1

.1 � vi /Yi .t/dt (7.30)

Expression (7.30) is clearly a special case of our general objective function (7.23).
In his analysis of the problem, Takayama (1967) introduced a constant nominal
interest rate �; under the assumption �Cm > 0, he considers the objective

maxJ D
Z tf

t0

expŒ�.mC �/t�

nX

iD1

.1 � vi /Yi .t/dt (7.31)

which is obviously another special case of (7.23).
Transportation is introduced for the first time by Datta-Chaudhuri (1967).

He assumes an ex ante neoclassical production function, without techn0logical
change and with the usual convexity (diminishing returns) assumption; therefore

Yi D Fi .Ki ; Li / D Li � Fi

�
Ki

Li

; 1

�
D Li � fi

�
Ki

Li

�
(7.32)

for each region i 2 Œ1; n�. One of the cases analyzed by Datta-Chaudhuri (1967), the
one of unlimited supply of labor, which would arise for example in the first stages
of development of an economy, can be easily fitted into our framework. Since labor
is unlimited, Ki=Li will be maintained at the constant optimal level ki ; that is,
Li D Ki=ki and

Yi D Kifi .ki /

ki

D ıiKi ıi D fi .ki /

ki

(7.33)
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Savings are assumed to be a fraction of profits after labor wages have been paid out.
If Vi denotes total public savings

Vi .t/ D vi .Yi � wiLi /

D viLi .fi .ki /� wi /

D
�

vi

�
fi .ki /� wi

ki

��
Ki

D
�

vi

�
fi .ki /� wi

kiıi

��
Yi (7.34)

for each region i 2 Œ1; n�. By redefining vi as

vi

�
fi .ki /� wi

kiıi

�
(7.35)

we get
dYi

dt
D ıi

nX

j D1

�ij .t/bij vjYj .t/ i 2 Œ1; n� (7.36)

In his paper, Datta-Chandhuri analyzes a two-region model, and makes the follow-
ing assumptions:

�
b11 b12

b21 b22

�
D
�

1 1 � b

1 � b 1

�

�
�11 �12

�21 �22

�
D
�
1 � �1 �1

�2 1 � �2

�

Thus, for the two-region case, expression (7.36) specializes to Datta-Chaudhuri’s
dynamic equations:

dY1

dt
D ı1Œ.1 � �1.t//v1Y1 C .1 � b/�2v2Y2�

dY2

dt
D ı2Œ.1 � b/�1.t/v1Y1 C .1 � �2/v2Y2�

The constraints on the controls are

�1.t/; �2.t/ 2 Œ0; 1� t 2 �t0; tf
�

(7.37)

The objective considered by Datta-Chaudhuri (1967) is to minimize the time to
reach a certain level of total capital stock; that is

minJ D
Z tf

t0

dt subject to
nX

iD1

Yi .tf /

ıi

� K (7.38)
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A similar objective is that of maximizing total capital stock at the end of the planning
period:

maxJ D
nX

iD1

Yi .tf /

ıi

(7.39)

This objective is clearly a special case of the general objective function (7.23)
and so, in light of the preceding development, we may consider Datta-Chandhuri’s
model a special case of our general model.

Domazlicky (1977) uses the same two-region model introduced above, including
the same production function Y.t/ D �K.t/, and considers the objective function
proposed by Rahman (1963a), namely

maxJ D
nX

iD1

Yi .tf / (7.40)

Consequently, the Domazlicky model is another special case of our general model.
Domazlicky argues that Rahman’s and Datta-Chandhuri’s results are not comparable
because the latter uses a neoclassical production function. However, we have seen
that under the assumption of unlimited supply of labor, the neoclassical production
function may be re-expressed in Harrod-Domar form. Differences arise, in any case,
from the authors’ consideration of different objective functions: minimization of the
time in which a certain level of total capital stock is reached versus maximization
of the end of period sum of regional incomes. Clearly, the objective function (7.23)
of our general model will allow both of these objectives to be considered simulta-
neously if desired.

Two sectors, public vs. private, appear for the first time in Sakashita (1967a), who
considers two distinct types of public investment. The first type, social overhead
investment, has indirect effects on changes in the productivity of already installed
capital and on the allocation of private funds to the different regions. The second
type, productive government expenditure, has direct effects on both the levels of
capital stock and on income. We will limit our attention to productive government
expenditure models; this type of model has been extended to n regions by Ohtsuki
(1971), and it will be his version that we analyze and to which will draw contrasts.
For Ohtsuki (1971), transportation costs are assumed to be zero and private and
public funds are first consolidated and then distributed among regions; that is, for
all i 2 Œ1; n� and j 2 Œ1; n�:

bij D 1

 ij D  i

�ij D �i

The regional income dynamics are

dYi

dt
D .1 � r.t// i�i

nX

j D1

sjYj C r.t/�i .t/ıi

nX

j D1

sjYj i 2 Œ1; n� (7.41)
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Ohtsuki generalizes the unweighted end-of-period income

maxJ D
nX

iD1

Yi .tf / (7.42)

to

maxJ D
nX

iD1

˛iYi .tf / (7.43)

In the two-region case the dynamical equations are

dY1

dt
D .1� r.t// �1.s1Y1 C s2Y2/C r.t/�.t/ı1.s1Y1 C s2Y2/ (7.44)

dY2

dt
D .1� r.t//.1 �  /�2.s1Y1 C s2Y2/C r.t/.1 � �.t//ı2.s1Y1 C s2Y2/

(7.45)

The following are

0 � r.t/ � � 0 � �.t/ � 1 8t 2 Œt0; tf � (7.46)

control constraints.
Proceeding in a similar way, Friesz and Luque (1987) generalize the Sakashita

model to take into account different savings ratio in the public and private sectors;
as an objective, they use maximization of the present value of total income:

maxJ D
Z tf

t0

exp.��t/
nX

iD1

Yi .t/dt (7.47)

where the nominal interest rate is �. The corresponding equations of motion ana-
lyzed by Friesz and Luque (1987) are

dYi .t/

dt
D .1 � r.t// i�i

nX

j D1

sjYj C r.t/�i .t/ıi

nX

j D1

vjYj i 2 Œ1; n�

For two regions, the dynamical equations studied by Friesz and Luque (1987) are

dY1.t/

dt
D .1 � r.t// �1.s1Y1 C s2Y2/C r.t/�.t/ı1.v1Y1 C v2Y2/ (7.48)

dY2.t/

dt
D .1 � r.t//.1 �  /�2.s1Y1 C s2Y2/C r.t/.1 � �.t//ı2.v1Y1 C v2Y2/

By virtue of the above presentation, the Ohtsuki model given by (7.43), (7.44), and
(7.46) and the Sakashita-Friesz model given by (7.46), (7.47), and (7.48) are both
clearly special cases of the general model given by (7.20), (7.21), (7.22), and (7.23).
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7.2.1 Tax Rate as the Control

The general model introduced above and its variants, which we have described in the
previous section, are expressed as optimal control problems; their solution requires
the application of the Pontryagin maximum principle presented in previous chapters.
To appreciate fully the nature of solutions obtained from application of this type of
necessary condition to models of the type described in the previous section, it is
instructive to first consider a somewhat simplified single objective problem which is
a specified case of the general model. In particular, let the only control variable be
the tax rate and take the public investment share �i to be a constant for all regions
i 2 Œ1; n�. The model, henceforth called problem P1 for short, is the following:

maxJ D
Z tf

t0

exp.��t/
nX

iD1

ˇiYi .t/dt (7.49)

subject to

dYi

dt
D �i i .1 � r.t//

nX

j D1

sjYj C ıi�i r.t/

nX

j D1

vjYj i 2 Œ1; n� (7.50)

Yi .t0/ D Y 0
i > 0 i 2 Œ1; n� (7.51)

0 � r.t/ � � � 1 (7.52)

Here all notation is as previously defined. The ˇi are weights attached to individual
regional incomes so that

P
i ˇiYi is a scalarized version of the vector function

ŒY1.t/; : : : ; Yn.t/� (7.53)

Of course, in (7.50) we have the implicit fact that

nX

iD1

�i D
nX

iD1

 i D 1

By introducing the matrices

A D �
�i i sj

	
i 2 Œ1; n� j 2 Œ1; n�

B D �
ıi�i vj

	
i 2 Œ1; n� j 2 Œ1; n�

and the vectors
Y D .Yi ; : : : ; Yn/

T ˇ D .ˇ1; : : : ; ˇn/
T (7.54)

we can place the specialized model described by (7.49), (7.50), (7.51), and (7.52)
into the following form:

maxJ D
Z tf

t0

exp.��t/ˇT Y.t/dt (7.55)
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subject to
dY

dt
D ŒAC r.t/.B � A/�Y (7.56)

Y.t0/ D Y 0 2 <nCC (7.57)

0 � r.t/ � � � 1 (7.58)

0 � r.t/ � � � 1 (7.59)

where Y 0 D .Y 0
1 ; : : : ; Y

0
n /

T is a given positive vector. The Hamiltonian for the
problem described by (7.55), (7.56), (7.57), (7.58), and (7.59) is

H D exp.��t/ˇT Y C � ŒAC r.B � A/� Y (7.60)

where � denotes a vector of adjoint variables. The adjoint equations and transver-
sality conditions are:

d�

dt
D �HY D � exp.��t/ˇT � � ŒAC r.B � A/� (7.61)

�.tf / D 0 H.t/ free (7.62)

In order to apply the Pontryagin maximum principle we note that

Hr D �.B � A/Y (7.63)

Consequently, the extremal tax rate is given by

r� D
8
<

:

� if �.B � A/Y > 0

0 if �.B � A/Y < 0

rs if �.B � A/Y C 0

(7.64)

The case �.B � A/Y D 0, if it occurs for an arc of time, corresponds to a singular
control rs.

The value of the control on a singular arc is found by taking successive time
derivatives of the gradient of the HamiltonianHr and requiring that these derivatives
vanish. For this particular case the vanishing of Hr yields the following expression
for the singular control:

r�.t/ D �f�ŒŒB;A��; A�� C exp.��t/ˇT Œ.B � A/.�I �A/ � ŒB;A���gY
f�ŒŒB;A��; .B � A/�� � exp.��t/ˇT .B � A/.B � A/gY

(7.65)

where ŒC;D�� represents the commutation operator CD � DC for any pair of
square matrices C and D. In order that the singular control (7.65) maximize the
Hamiltonian as required by the Pontryagin conditions, we must invoke the general-
ized convexity condition for singular arcs:

� @

@r
Œ
d 2Hr

dt2
� � 0 (7.66)
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For our case (7.66) becomes

f�ŒŒB;A��; .B � A/�� � exp.��t/ˇT .B �A/.B �A/gY � 0 (7.67)

The complete optimal policy for this scalar example will consist of a combination of
so-called “bang-bang” controls and singular controls described by (7.64) and (7.65).
In fact, more general vector problems that consider terminal as well as time stream
benefits and public investment shares as well as the tax rate as control variables may
be formulated. These too, as we will see, may possess both singular and bang-bang
controls.

The interpretation of (7.64) is straightforward. We see that the different possibil-
ities are

pBY T pAY (7.68)

or equivalently

 
nX

iD1

�iıi�i

!0

@
nX

j D1

vjYj

1

A �
 

nX

iD1

�i�i i

!0

@
nX

j D1

sjYj

1

A T 0 (7.69)

Per unit of tax rate,
P

j sjYj and
P

j vjYj are the total amounts of investment funds
lost by the private sector and gained by the public sector, respectively. Those losses
or gains are allocated to different regions according to the parameters  i and �i ,
i D 1; : : : ; n, where they produce changes in income given by

	Y
p
i D �i i

0

@
nX

j D1

sjYj

1

A i 2 Œ1; n� (7.70)

	Y
g
i D ıi�i

0

@
nX

j D1

vjYj

1

A i 2 Œ1; n� (7.71)

In the private sector .p/ these changes are income losses; in the public sector .g/
they are income gains. These income losses and gains should not be compared
directly; instead, the appropriate comparison is in terms of their effects on the ob-
jective function. Along an optimal path, it is well known that the adjoint variables
satisfy

�i D @J

@Yi

i 2 Œ1; n� (7.72)

Therefore

�i�i i

0

@
nX

j D1

sjYj

1

A D @J

@Yi

	Y
p
i i 2 Œ1; n� (7.73)
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�iıi�i

0

@
nX

j D1

vjYj

1

A D @J

@Yi

	Y
g
i i 2 Œ1; n� (7.74)

give the relevant measures of the effects of a unit of tax rate in region i on the
objective function J . We may therefore interpret (7.73) as the marginal “cost” to
the private sector .p/ and (7.74) as the marginal “benefits” to the public sector .g/.
Consequently, it is clear that �.B �A/Y is the net overall effect of a unit change in
tax rate on the objective function, or the difference between marginal benefits and
marginal costs of such a change in tax rate. If �.B � A/Y > 0, that difference is
positive (marginal benefits exceed marginal costs) and, then, the tax rate is set at the
maximum level, r D 0. If �.B � A/Y < 0; the decrease of the objective function
accompanying the losses of private investment funds produced per unit of tax rate
more than offsets the increase caused by the corresponding gains due to investment
in the public sector (marginal costs exceed marginal benefits) and, thus, the tax rate
is set at the minimum level r D 0.

Finally, if �.B � A/Y D 0, opposing private and public effects on the objective
function caused by the income tax completely offset each other. The gradient of
the Hamiltonian with respect th the tax rate, Hr D �.B � A/Y , does not depend
on r since H is linear in r ; therefore, if Hr ¤ 0; the tax rate corresponds to the
appropriate end point of its range of feasible values, as we have seen. However,
when Hr D 0 we can make no such simple conclusion regarding r ; in addition,
sinceHr does not depend on r in this case, we do not have any immediate condition
to find r , and we have to examine the different derivatives of Hr with respect to
time. These remarks, of course, suggest interpretation of singular arcs as the case
where marginal benefits equal marginal costs of the tax/investment policy.

7.2.2 Tax Rate and Public Investment as Controls

We next consider another specialization of the general model with the following
characteristics: (a) transportation costs will be assumed to be zero, (b) different
savings ratios will be considered for each sector in each region, (c) the objective
function will be a vector function whose first component will be the sum of incomes
at the terminal time tf and whose second component will be the present value of
total income, and (d) the controls considered will be the tax rate r.t/ and the al-
locations of public funds to different regions �i .t/, where i 2 Œ1; n�. The precise
statement of this model, henceforth called P2 for short, is as follows:

max

"
nX

iD1

Yi .tf /I
Z tf

t0

exp.��t/
nX

iD1

Yi .t/dt

#

(7.75)
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subject to

dYi

dt
D .1 � r.t// i�i

X

j

sjYj C r.t/�i .t/ıi

X

j

vjYj ; i 2 Œ1; n� (7.76)

Yi .t0/ D Y 0
i i 2 Œ1; n� (7.77)

0 � r.t/ � � (7.78)

0 � �i .t/ i 2 Œ1; n� (7.79)

nX

iD1

�i .t/ D 1 (7.80)

In order to solve problem P2, we weight both components of the objective function
with nonnegative weights w1 and w2, such that w1 C w2 D 1, and consider the
following problem:

maxJ D w1

nX

iD1

Yi .tf /C w2

Z tf

t0

exp.��t/
nX

iD1

Yi .t/dt (7.81)

subject to the constraints (7.76), (7.77), (7.78), (7.79), and (7.80) for a range of
possible weights .w1;w2/. Solution of (7.81), subject to appropriate constraints for
several different values of the weights, will of course generate an approximation to
the noninferior (nondominated or Pareto optimal) set of solutions.

The application of the maximum principle is facilitated by defining the new con-
trol variables

qi .t/ D r.t/�i .t/ i 2 Œ1; n� (7.82)

where
nX

iD1

�i .t/ D 1

Therefore, we have

r.t/ D
X

i

qi .t/ and �i .t/ D qi .t/=r.t/ for i 2 Œ1; n�

Moreover, since
Pn

iD1�i .t/ D 1 uniquely determines �i as a function of �j for
j D 1; : : : ; i � 1; i C 1; ::; n, the number of truly distinct controls has not changed;
thus, our problem becomes

maxJ D w1

nX

iD1

Yi .tf /C w2

Z tf

t0

exp.��t/
nX

iD1

Yi .t/dt (7.83)
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subject, for all i 2 Œ1; n�, to the following constraints:

dYi

dt
D  i�i

 

1 �
nX

kD1

qk

!0

@
nX

j D1

sjYj

1

AC qiıi

0

@
nX

j D1

vjYj

1

A (7.84)

Yi .t0/ D Y 0
i � 0 (7.85)

0 � qi .t/ .
i / (7.86)

nX

iD1

qi .t/ � � .�/ (7.87)

The Hamiltonian for the problem defined by (7.83) and (7.84) through (7.87) is

H D w2 exp.��t/
nX

iD1

Yi C
 

nX

iD1

�i i�i

! 

1 �
nX

kD1

qk

!0

@
nX

j D1

sjYj

1

A

C
 

nX

iD1

�iqiıi

!0

@
nX

j D1

vjYj

1

A (7.88)

where the �i are adjoint variables such that the usual adjoint equations are satisfied;
that is

�d�i

dt
D @H

@Yi

D w2 exp.��t/Csi
 

nX

iD1

�i i�i

! 

1 �
nX

kD1

qk

!

Cvi

 
nX

iD1

�iqiıi

!

(7.89)

where of course, since the terminal time tf is fixed,

�i .tf / D w1 for i 2 Œ1; n� and H.tf / free (7.90)

The maximum principle requires that we solve

max
q1;:::;qn

H subject to 0 � qi and
X

i

qi � � i 2 Œ1; n� (7.91)

The part of H that depends upon qi is given by

�
0

@
nX

j D1

qj

1

A

0

@
nX

j D1

�j j�j

1

A

0

@
nX

j D1

sjYj

1

AC
0

@
nX

j D1

�j qj ıj

1

A

0

@
nX

j D1

vjYj

1

A (7.92)
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We can thus construct the Lagrangian

L D �
0

@
nX

j D1

qj

1

A

0

@
nX

j D1

�j j �j

1

A

0

@
nX

j D1

sjYj

1

A

C
0

@
nX

j D1

�j qj ıj

1

A

0

@
nX

j D1

vjYj

1

AC
nX

j D1


j qj C �

0

@� �
nX

j D1

qj

1

A (7.93)

Clearly, the first-order conditions are

@L

@qi
D �

0

@
nX

j D1

sjYj

1

A

0

@
nX

j D1

�j j �j

1

AC
0

@
nX

j D1

vj Yj

1

A .�i ıi /C 
i � � D 0 i 2 Œ1; n�

(7.94)

This expression involves terms that can be associated with the amount of savings
lost in the private sector per unit of tax and the amount of savings generated in the
public sector per unit of tax. In particular, these are respectively given by

S D
nX

j D1

sjYj and V D
nX

j D1

vjYj (7.95)

Nonnegativity and complementary slackness conditions are


i � 0 i 2 Œ1; n� (7.96)

qi � 0 i 2 Œ1; n� (7.97)


iqi D 0 i 2 Œ1; n� (7.98)

� � 0 i 2 Œ1; n� (7.99)

� �
nX

iD1

qi (7.100)

�

 

� �
nX

iD1

qi

!

D 0 (7.101)

where the 
i and � are dual variables associated with the inequality constraints (7.86)
and (7.87). Now let us define

�i�ıi� D maxf�iıi W i 2 Œ1; n�g (7.102)
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which may be interpreted as the greatest possible enhancement of the objective
function per unit of public capital invested; hence i� is an efficient region from
the point of view of public investment. Then we have


k D 
i� C V.�i�ıi� � �kık/ (7.103)

It follows that

�kık < �i�ıi� H) 
k > 
i� � 0 H) 
k > 0 H) qk D 0 (7.104)

However, since �i D @J=@Yi , this last condition is equivalent to

@J

@.Yk=ık/
<

@J

@.Yi�=ıi�/
H) qk D 0 (7.105)

That is, if the change in J due to one unit of further investment in public sector k is
smaller than that obtained from investing in the most efficient sector, then accord-
ing to (7.105) we should not invest. Since our model derives from the relationship
Y D �K , we know that Yi=ıi is the equivalent capital stock that in the hands of
the government would produce the current output of region i ; let us call this KG

i :

Condition (7.105) may therefore be restated as

@J

@KG
k

<
@J

@KG
i

H) qk D 0 (7.106)

To determine the extremal controls, we note from (7.94) and (7.95) that

V �i�ıi� � S
X

j

�j�j j D � � 
i� (7.107)

It follows that

V �i�ıi� � S
X

j

�j�j j



> 0 H) � � 
i� > 0 H) � > 
j � 0 H) � > 0

< 0 H) �� 
i� < 0 H) 0 � � < 
i� H) 
i� > 0

(7.108)

In the first case considered in (7.108) .�> 0/, we have by complementary slack-
ness that � D Pn

iD1 qi ; and some of the qi ’s will be positive; in addition, r.t/ DPn
iD1 qi D �: In the second case .
i� > 0/ we have qi� D 0 and, thus, from (7.82)

and (7.104) we know that qi D 0 for i 2 Œ1; n� and r.t/ D 0 so long as �i > 0: The
interpretation of this policy is straightforward. Considered per unit of tax rate, V and
S defined by (7.95) are, respectively, total savings of the public sector and the total
loss of savings of the private sector. When the funds V are invested in region i , they
produce an output of ıiV . Since �i D @J=@Yi , it is clear that Vpiıi is the slope of J
with respect to r when all public funds go to region i . Since �i�ıi� D maxif�iıig,
it is also clear that V �i�ıi� is the increment in J per unit of tax rate when the public
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funds are invested in the best use, that is, in the region that will produce the high-
est increase in J . Analogously, S , the loss of savings of the private sector, may be
translated into the loss of savings for the j th region,  jS , and an income loss for
the j th region, �j jS:This income loss has an effect �j�j jS on J ; the sum of
such effects for all region is S

P
�j�j j .

We are now in a position to articulate the following rule: if the increase of J
produced by the investment of additional public funds per unit of tax rate in the best
available opportunity .V �i�ıi�/ is greater than the decrease in J produced by the
loss of savings in the private sector per unit of tax rate .S

P
j �j�j j /, taking into

account the prevailing private allocation pattern  j
i for i 2 Œ1; n�, then tax at the

maximum rate and invest in the best regions. Those best regions must belong to the
set I� where

I� D fi 2 Œ1; n� W �iıi � �j ıj j 2 Œ1; n�g (7.109)

Note that the following decision rules result:

1. If I � has more than one element, then the marginal benefits of further allocation
of public investment to regions in I� are the same, and we have singularity in
the optimal allocations. In this case the optimal allocations would be found using
the condition

� D
X

i2I �

q�
i

and vanishing of the successive derivatives with respect to time of the gradient
of the Hamiltonian with respect of qi where i 2 I�.

2. If the marginal benefits in the best region, V �i�ıi� , equal the marginal cost
S
Pn

j D1 �j�j j , we may have two levels of singularity: one in the determina-
tion of the tax rate r.t/ D Pn

iD1 qi .t/, and if I� has more than one element,
another in the determination, as above, of the qi ; i 2 I �, themselves.

3. Finally, if V �i�ıi� < S
Pn

j D1 �j�j j , then even the best public investment
opportunity is not profitable in comparison with the given pattern of investments
of the private sector; in such a case r D 0 and �i D 0 for i 2 Œ1; n�.

The existence of and properties of singular solutions, as has been demonstrated
above, are necessary to fully specify an optimal policy. The interpretation of the
singular policies involves a comparison of appropriate marginal benefits for both the
public and private sectors. In that singular solutions may exist over finite portions
of the planning horizon, failure to include singular controls in the specification of
the optimal policy will correspond to an incomplete analysis. This has not been
emphasized in most of the published regional economic growth theory literature.

7.2.3 Equal Public and Private Savings Ratios

As we indicated in the presentation of the general model and its relationship to other
models, the special case of identical public and private savings ratios has played a
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central role in the models reported in the published literature. For this reason we
devote our attention in this section to the analysis of that special case. To make
the analysis as simple as possible we consider the case of only the tax rate as a
control variable; the public investment shares will be assumed to be exogenously
determined. Following this we will consider the more general case of both tax rate
and public investment shares as controls.

When we take sj D vj , the general model [namely (7.19), (7.20), (7.21), and
(7.23)] is substantially simplified. In fact, for the case of two regions, objective
function weights w1 and w2 and considering only the tax rate as a control, we obtain
the following formulation, called P3:

maxJ D w1cx.tf /C w2

Z tf

t0

exp.��t/cx.t/ (7.110)

subject to

x D Ax.t/C r.t/.B � A/x.t/ (7.111)

x.t0/ D x0 H) xi .t0/ D x0
i

0 � r.t/ � � t 2 �t0; tf
�

The transformation used to specify (7.110) and (7.111) is as follows:

x D .x1; : : : ; xn/
T (7.112)

where
xi D siYi i 2 Œ1; n� (7.113)

and

A D .a; a; : : : ; a/ (7.114)

a D .s1 1�1; : : : ; sn n�n/
T

B D .b; b; : : : ; b/

b D .s1�1ı1; : : : ; sn�nın/
T

c D
�
1

s1
;
1

s2
; : : : ;

1

sn

�

All other notation is as used previously. In order to apply Pontryagin’s maximum
principle we need to construct the Hamiltonian which for the present case takes on
the form

H D w2 exp.��t/cx C �ŒAx C r.B � A/x� (7.115)

where � is the vector of adjoint variables. To determine the maximum of the
Hamiltonian with respect to the control r.t/ we must specify the so-called switch-
ing function which is the gradient of H with respect to r , that is Hr D �.B �A/x.
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Thus, the extremal tax rate is

r� D
8
<

:

� if �.B � A/x > 0

0 if �.B � A/x < 0

undetermined if �.B � A/ D 0

(7.116)

Clearly, we must specify the adjoint equation in order to analyze further the extremal
policy (7.116). The adjoint equation is

�d�
dt

D Hx D �ŒAC r.B � A/�C w2 exp.��t/c (7.117)

with the terminal conditions
�.tf / D w1c (7.118)

that are recognized as the transversality conditions.
The standard procedure for determining singular controls is to take successive

time derivatives of the switching function or gradient of the Hamiltonian, Hr in
this case. Since H is linear in the control r.t/, Hr is independent of r.t/. One
can proceed by taking successive time derivatives of Hr and making appropriate
substitutions using the adjoint equations and the dynamics of the problem in an
attempt to find an explicit expression for r.t/ on a singular arc. In the present case
we may show that this procedure fails to yield an explicit expression for r.t/ along
a singular arc of time (ultimately reducing to a trivial identity) and, so, we conclude
that a singular control does not arise. To follow this paradigm, we first note that the
switching function can be written as

�.B � A/x D �.b � a; : : : ; b � a/x

D �.b � a/
�
1T x

�

However, since

1T � x D
nX

iD1

xi D
nX

iD1

siYi > 0

in all cases, we must have �.b � a/ D 0, which implies that

�.B �A/ D 0 (7.119)

Expression (7.119) therefore becomes a necessary condition for a singular arc. If we
now recall expression (7.117), it is clear that on a singular arc the adjoint equation is

�d�
dt

D �AC w2 exp.��t/c (7.120)

By inspection we have that the adjoint variables do not depend on r , our control
variable. Thus, successive time derivatives of (7.119) combined with substitutions
based on (7.120) will never yield an expression for r , which indicates that a singular
arc for the problem as presently considered does not exist.
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Let us now consider the case of controls involving not only r.t/, the income tax
rate, but also the �i .t/, the public investment shares. Moreover, we assume that the
public and private savings ratios are unequal. In that case it may be shown that the
condition for a singular arc is

V �i�ıi� D S

nX

j D1

�j�j j (7.121)

where, for convenience, we recall that

V D
nX

iD1

viYi

�i�ıi� D maxf�iıi W i 2 Œ1; n�g
S D

X

i

siYi

When si D vi expression (7.121) may be simplified to

�i�ıi� D
nX

j D1

�j�j j (7.122)

We may assume that when (7.122) obtains for a finite period of time it does so in
such a way that i� does not change over that period. In that case

d�i�

dt
ıi� D

nX

j D1

d�j

dt
�j j (7.123)

The adjoint equations for the problem with both types of control variables (tax rate
and public investment shares) are

�d�
dt

D w2 exp.��t/C si

0

@
nX

j D1

�j�j j

1

A

0

@1 �
nX

j D1

qj

1

AC vi

 
nX

iD1

�iıiqi

!

(7.124)
In addition, we know that

�iıi < �i�ıi� H) qi D 0 (7.125)

and consequently
nX

iD1

�iıiqi D �i�ıi�

nX

iD1

qi (7.126)
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Thus, the adjoint equations on a singular path become

�d�j

dt
D w2 exp.��t/C sj�i�ıi� (7.127)

By making appropriate substitutions into (7.122) and (7.123), we obtain the
following expressions:

�i� D
w2 exp.��t/

�Pn
j D1 �j j � ıi�

�

ıi�

�
ıi�si��

Pn
j D1 �j j sj

� (7.128)

d�i�

dt
D
�w2 exp.��t/

�P
j �j j � ıi�

�

ıi�

�
ıi�si� �Pn

j D1 �j j sj

� (7.129)

By substituting both (7.128) and (7.129) into (7.127), the adjoint equations become

�

0

@
nX

j D1

�j j � ıi�

1

A D ıi�

0

@si�

nX

j D1

�j j �
nX

j D1

�j j sj

1

A (7.130)

which is a necessary condition for the existence of singular arcs. This necessary
condition only involves structural parameters of the problem and will not, in general,
be satisfied for any i�. Expression (7.122), (7.123), and (7.127) do not depend on qi

or Yi and, consequently, imply that further differentiations with respect to time will
not lead to explicit expressions for the qi ’s; hence, singular arcs do not typically exist
for this more general problem. Notably, the results of Sakashita (1967a) and Ohtsuki
(1971) are seen a fortiori to be correct, although these authors did not consider
singular controls.

We now will consider a special case of this same problem in which the tax rate
and the investment shares are the controls and the public and private savings ra-
tios are equal, and an additional assumption regarding the relationship of certain
structural parameters is invoked. This version is of interest because it leads to an ex-
act analytical representation of the noninferior set (set of Pareto optimal solutions).
The switching function which determines whether r.t/ D 0 or r.t/ > 0 is the same
as for the previous case, namely, expression (7.121):

V �i�ıi� � S

nX

j D1

�j�j j (7.131)

Under the assumption of an equal, normalized savings ratio for both the public and
private sectors of each region

V D S D 1
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and expression (7.121) may be simplified to

�i�ıi� D
nX

j D1

�j�j j (7.132)

From the transversality conditions �i .tf / D w1 for i 2 Œ1; n�; hence, the value of
the switching function at t D tf is

ıi� �
nX

j D1

�j j (7.133)

where w1 D 1 has been normalized as well. Let us assume that ıi �P
j �j j < 0

for all i 2 Œ1; n�; then qi D 0 for all i 2 Œ1; n� and r D 0. In the neighborhood of
tf , the adjoint equations become

�d�i

dt
D w2 exp.��t/C si�i

nX

j D1

�j�j j (7.134)

Expression (7.134) will be used to analyze the behavior of the switching function to
the left of t D tf :

The derivative of the switching function with respect to time is

d

dt

0

@�iıi �
nX

j D1

�j�j j

1

A D d�i

dt
ıi �

nX

j D1

�
�i�j j (7.135)

Using the adjoint equations (7.134), we obtain

d

dt

0

@�iıi �
nX

j D1

�j�j j

1

A (7.136)

D w2 exp.��t/
0

@
nX

j D1

�j j � ıi

1

A
X

k

�k�k k

0

@
nX

j D1

sj�j j � siıi

1

A

By assumption
Pn

j D1 �j j �ıi > 0 for all i , and it is also clear that w2 exp.��t/ >
0 for all t . Thus, the first term of the right-hand side of (7.136) is clearly nonnegative
for all t � tf . From the transversality conditions, we have

nX

j D1

�j�j j jtDtf D w1

nX

j D1

�j j > 0 (7.137)
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In addition, by using the adjoint equation we obtain

�
nX

j D1

d�i

dt
�j j D w2 exp.��t/

nX

j D1

�j j C
nX

iD1

�i�i i

nX

j D1

sj�j j (7.138)

It is clear then that
Pn

iD1 �i�i i > 0 for all t � tf because of the exponential
nature of solution to (7.138). Thus, if we assume that

nX

j D1

sj �j j > siıi .i D 1; : : : ; n/ (7.139)

It follows immediately that

d

dt

0

@�iıi �
nX

j D1

�j�j j

1

A > 0 i 2 Œ1; n� t � tf (7.140)

Then by assumption

0

@�iıi �
nX

j D1

�j�j j

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
tDtf

D w1

0

@ıi �
nX

j D1

�j j

1

A < 0 i 2 Œ1; n�

It is now evident that the switching function will be negative over the whole planning
period and thus r�.t/ D 0 for all t 2 �

t0; tf
�
. In this particular case the optimal

policy r�.t/ D 0 for all t 2 �
t0; tf

�
does not depend on w1 or w2, and, therefore,

the noninferior set will consist of the points on the straight line segment joining
.J �

1 ; 0/ and .0; J �
2 /; where

J �
1 D

X

i

Y �
i .tf / J �

2 D
Z tf

t0

exp.��t/
X

i

Y �
i .t/dt (7.141)

when the Y �
i denote state functions correspond to the optimal policy. The computa-

tion of J �
1 and J �

2 is straightforward and is not reported here.

7.2.4 Sufficiency

The conditions established by Pontryagin’s maximum principle are only necessary
conditions, and therefore any solution derived from them is only a candidate for opti-
mality. In this section, for the Harrod-Domar type regional growth models presented
above, we will analyze the circumstances which cause their necessary conditions to
be sufficient. We will anlyze sufficiency using the Arrow-Kurz sufficiency theorem
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presented in Chapter 3. In particular, the Arrow-Kurz sufficiency theorem, when
applied to the class of optimal regional growth models we have considered, tells us
that a policy ŒY �.t/; Z�.t/� obtained from the maximum principle, where Y �.t/
is the vector of regional incomes and Z�.t/ is the vector of controls [which in
some cases may have only one component, the tax rate r.t/], will produce a global
maximum of the objective function J.Z.t// if H�.Y; �; t/ is concave in the state
variables Y for all t 2 �t0; tf

�
, where

H�.Y; �; t/ D max
Z2�

H.Y; �;Z; t/

andH.Y; �;Z; t/ is the Hamiltonian. The specific problem we wish to analyze is the
general regional investment allocation model introduced in Section 7.2.2, namely

maxJ.r; �1; : : : ; �n/ D w1

nX

iD1

Yi .tf /C w2

Z tf

t0

exp.��t/
nX

iD1

Yi .t/dt (7.142)

subject to

dYi

dt
D .1 � r.t// i�i

X

j

sjYj C r.t/�i .t/ıi

X

j

vjYj i 2 Œ1; n� (7.143)

Yi .t0/ D Y 0
i i 2 Œ1; n� (7.144)

0 � r.t/ � � (7.145)

0 � �i .t/ i 2 Œ1; n� (7.146)

nX

iD1

�i .t/ D 1 (7.147)

This is a Bolza-type problem, since the criterion values of the state variables at one
of the end points .t D tf / of the interval

�
t0; tf

�
.

In order to apply the Arrow-Kurz theorem, it is necessary to have a problem
whose objective function depends only on the path followed. Using the transforma-
tion suggested by Hadley and Kemp (1971), it is possible to change the objective
function so as to obtain a problem of Lagrange type, i.e., one whose objective func-
tion does not depend on the values of the state variables and/or the control variables
at the end points of

�
t0; tf

�
. To this end let us introduce a new state variable YnC1.t/

and consider the problem

maxJ0.r.t/; �1.t/; : : : ; �n.t// D
Z tf

t0

 

YnC1.t/C w2 exp.��t/
X

i

Yi .t/

!

dt

(7.148)
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subject, for all i 2 Œ1; n�, to the following constraints:

dYi

dt
D .1 � r.t// i�i

X

j

sjYj C r.t/�i .t/ıi

X

j

vjYj (7.149)

dYnC1

dt
D 0 (7.150)

Yi .t0/ D Y 0
i (7.151)

0 D w1

X

i

Yi .tf /� tf YnC1.tf / (7.152)

0 � r.t/ � � (7.153)

0 � �i .t/ (7.154)
nX

iD1

�i .t/ D 1 (7.155)

That this second formulation of the problem is equivalent to the first is easy to
show, and so we do not further elaborate on it. Note that the Hamiltonian for the
transformed problem is

H.Y; �; r; �; t/ D YnC1 C exp.��t/
nX

iD1

Yi

C
nX

iD1

�i

2

4.1 � r/ i�i

nX

j D1

sjYjCr�iıi

nX

j D1

vjYj

3

5C �nC1 � 0

D YnC1 C exp.��t/
nX

iD1

Yi C
nX

iD1

�i i�i

nX

j D1

sjYj

�r
nX

iD1

�i i�i

nX

j D1

sjYj C r

nX

iD1

�i�iıi

nX

j D1

vjYj (7.156)

We first analyze the case in which r.t/ is the only control variable; in that case the
�i ’s are considered to be constants. The switching function is the same as that found
previously, namely

Fs D
nX

iD1

�i�iıi

nX

j D1

vjYj �
nX

iD1

�i i�i

nX

j D1

sjYj

and gives rise to three cases

Fs

8
<

:

> 0 H) r D �

< 0 H) r D 0

D 0 H) singular control r 2 Œ0; ��
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The forms of the Hamiltonian corresponding to these cases are

Fs > 0 W H�.Y; �; t/ D YnC1 C exp.��t/
nX

iD1

Yi C
nX

iD1

�i i�i

nX

j D1

sjYj (7.157)

� �

2

4
nX

iD1

�i i�i

nX

j D1

sjYj �
nX

iD1

�i�iıi

nX

j D1

vjYj

3

5

Fs � 0 W H�.Y; �; t/ D YnC1 C exp.��t/
nX

iD1

Yi C
nX

iD1

�i i�i

nX

j D1

sjYj (7.158)

Both expressions are linear and, thus, concave in the state variables and, therefore,
the sufficiency theorem holds.

We next consider as control variables r.t/ and �1.t/; : : : ; �n.t/. As before, we
introduce the control vector

q D Œq1.t/; : : : ; qn.t/�
T

defined by
qi .t/ D r.t/�i .t/ i 2 Œ1; n� t 2 �

t0; tf
�	

The Hamiltonian then becomes

H.Y; �; r; �; t/ D YnC1 C exp.��t/
nX

iD1

Yi

C
nX

iD1

�i

2

4.1 � r/ i�i

nX

j D1

sjYj C r�iıi

nX

j D1

vjYj

3

5

D YnC1 C exp.��t/
nX

iD1

Yi C
nX

iD1

�i i�i

nX

j D1

sjYj

�
nX

kD1

qk

nX

iD1

�i i�i

nX

j D1

sjYj

C
nX

iD1

�iqiıi

nX

j D1

vjYj (7.159)

and the set of admissible values for the optimal controls is

� D
(

q W
nX

iD1

qi � � qi � 0

)
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The switching function is

�kık

nX

j D1

vjYj �
nX

iD1

�i i�i

nX

j D1

sjYj

It is left as an exercise for the reader to determine that the Hamiltonian is linear and
thus concave when evaluated for the optimal control policy, making the necessary
conditions also sufficient.

7.3 A Computable Theory of Regional Public
Investment Allocation

In this section, we want to consider a model for optimal regional allocation of public
investment that corrects several of the shortcomings of the simple models considered
in Section 7.2. In particular, we will introduce a model that possesses the following
characteristics:

1. growth dynamics are not based on a constant returns assumption and allow in-
creasing returns to scale;

2. the production technology employs both capital and labor inputs;
3. capital markets are in equilibrium;
4. private and public capital, the latter allowing infrastructure investment decisions

to be modeled, are distinguished from one another;
5. population evolves over time in accordance with a Hotelling-type of diffusion

model that includes births, deaths, and location-specific ecological carrying ca-
pacities;

6. capital augmenting technological change is allowed and is endogenous in nature;
7. regulatory and fiscal policy constraints may be imposed; and
8. the optimization criterion is the present value of the national income time stream.

The model relies on the same spatial disaggregation of macroeconomic identities
relating the rate of change of capital stocks to investments and depreciation that
is characteristic of Datta-Chaudhuri (1967), Sakashita (1967b), Ohtsuki (1971),
Domazlicky (1977), Bagchi (1984) and Friesz and Luque (1987) and was employed
in Section 7.2 of this chapter. The model introduced below, however, differs from
historical regional growth models in that it does not rely on the assumption of a
constant proportionate rate of labor force growth for each region. The constant pro-
portionate growth (CPG) model of labor and population allows, as was seen in
Section 7.1.3, the dynamics for population growth to be uncoupled from those of
capital formation. Thus, in CPG models, population always grows exponentially
with respect to time and shows no response to changes in population density or re-
gional income. In the presentation below, we replace the unrealistic CPG model of
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population growth with a Hotelling-type model that includes the effects of spatial
diffusion and of ecological carrying capacities of individual regions and is intrinsi-
cally coupled to the dynamics of capital formation.

7.3.1 The Dynamics of Capital Formation

Once again we employ basic macroeconomic identities to describe the relationship
of the rate of change of capital to investment, output and savings. In particular we
take output to be a function of capital and labor, and the rate of change of capital is
equated to investment less any depreciation of capital that may occur. That is:

dK

dt
D I � ıK (7.160)

where K is capital, dK=dt is the time rate of change of capital, I is investment,
and ı is now an abstract depreciation rate (rather than an output-capital ratio as in
Section 7.2). Subsequently ıp will be the depreciation rate of private capital and
ıg the depreciation rate of public capital. Of course, (7.160) is an aspatial model.
It is also important to recognize that (7.160) is an equilibrium model for which the
supply of capital is exactly balanced against the demand for capital. We shall main-
tain this assumption of capital market equilibrium throughout the development that
follows. It is also worth noting that (7.160) is the foundation of the much respected
work by Arrow and Kurz (1970) exploring the interdependence of aspatial private
and public sector growth dynamics. To spatialize (7.160) as well as to introduce a
distinction between the public and private sectors we write:

dK
p
i

dt
D I

p
i � ıpK

p
i and

dK
g
i

dt
D I

g
i � ıgK

g
i (7.161)

where the subscript i 2 Œ1; n� refers to the i th of n regions and the superscripts p
and g refer to the private and public (governmental) sectors respectively.

Further detail can be introduced into the above dynamics by defining ci to be the
consumption rate of region i and r to be a tax rate imposed by the central govern-
ment on each region’s output. We also now define !i to be the share of tax revenues
allocated to subsidize private investments in region i; and 
i to be the share of tax
revenues allocated to public (infrastructure) investments in region i . Also Yi will be
the output of region i . To keep the presentation simple, we assume that all capital
(private as well as public) is immobile, although this assumption can be relaxed at
the expense of more complicated notation. Consequently, the following two identi-
ties hold for all i 2 Œ1; n�:

I
p
i D .1 � ci � r/ Yi C !i r

nX

j D1

Yj and I
g
i D 
ir

nX

j D1

Yj (7.162)
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By virtue of the definitions of !i and 
i the following constraints obtain:
nX

iD1

.!i C 
i / D 1 (7.163)

0 � !i � 1 and 0 � 
i � 1 (7.164)

which require that allocations cannot exceed the tax revenues collected and must be
nonnegative1. We further assume that the i th region’s intrinsic technology, ignoring
for the moment technological innovation, is described by a production function of
the form

Yi D Fi

�
K

p
i ; K

g
i ; Li

	
(7.165)

where Li is the labor force (population) of the i th region.
It follows at once from (7.161) and (7.165) that the dynamics for the evolution of

private and public sector capital are

dK
p
i

dt
D .1 � ci � r/ Fi

�
K

p
i ; K

g
i ; Li

	C !i r

nX

j D1

Fj

�
K

p
j ; K

g
j ; Lj

�
� ıpK

p
i

8i 2 Œ1; n� (7.166)

dK
g
i

dt
D 
i r

nX

j D1

Fj

�
K

p
j ; K

g
j ; Lj

�
� ıgK

g
i 8i 2 Œ1; n� (7.167)

It is important to note that we have made no assumption regarding constant returns
to scale in articulating the above dynamics.

7.3.2 Population Dynamics

Traditionally, the literature on neoclassical economic growth, as we noted above,
has assumed a constant proportionate rate of labor force growth. As population and
labor force are typically treated as synonymous, this means that models from this
literature employ quite simple population growth models of the form

dLi

dt
D �i Li .0/ D L0

i (7.168)

for every region i 2 n where �i is a constant. This means that population (labor
force) always grows according to the exponential law Li .t/ D L0

i e
�i t regardless

of any other assumptions employed. The CPG assumption is decidedly unrealistic,

1 Other tax schemes, such as own-region taxes, can easily be described. The one chosen here is
meant to be illustrative.
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limits the policy usefulness of economic growth models based on it and calls out
to be replaced with a richer model of population and labor force change over time
and space.

We replace (7.168) with a spatial diffusion model of the Hotelling-type.2

In Hotelling-type population models, migration is based on the noneconomic no-
tion of diffusion wherein populations seek spatial niches that have been previously
unoccupied. This means that unlike (7.168) population will not become inexorably
denser at a given point in space, but rather that population density may rise and fall
over time. Yet because we will link this diffusion process to the capital formation
process there will be a potential for population to concentrate where infrastructure
agglomeration economies occur. Furthermore, we will employ a version of the
spatial diffusion process that includes a logistic model of birth/death processes and
specifically incorporates the ecological carrying capacity of each location alterna-
tive. These features will inform and be informed by the capital dynamics (7.44) and
(7.45), resulting in an economic growth model that is intrinsically more realistic
than would result from rote adherence to the neoclassical paradigm.

Hotelling’s original model is in the form of a partial differential equation which is
very difficult to solve for realistic spatial boundary conditions and is not readily cou-
pled with ordinary differential equations such as (7.44) and (7.45). Puu (1989) and
Puu (1997), however, have suggested a multiregion alternative to Hotelling’s model
which captures key features of the diffusion process and the birth/death process in
a more tractable mathematical framework. Specifically, Puu (1989) proposes, if the
population of region i is denoted as Pi , the following dynamics:

dPi

dt
D �iPi .�i � Pi /C

X

j 2Œ1;n�ni

�j

�
Pj � Pi

	 8i 2 Œ1; n� (7.169)

where �i , �i and �i are positive exogenous parameters. The idea here is that the
term

P
j 2Œ1;n�ni �j

�
Pj � Pi

	
is roughly analogous to diffusion in that it draws

population from regions with higher population density toward regions with lower
population density. Typically �j is referred to as the coefficient of diffusion for re-
gion j 2 n. The entity �i is sometimes called the fitness measure and describes
the ecological carrying capacity of region i 2 n; its units are population. The pa-
rameter �i ensures dimensional consistency and has the units of .time/�1. Clearly
this model is not equivalent to Hotelling’s, but it does capture the essential ideas
behind diffusion-based population growth and migration and is substantially more
tractable from a computational point of view since (7.169) is a system of ordinary
(as opposed to partial) differential equations.

Moreover, the population dynamics (7.169) can be considerably enriched by al-
lowing the fitness measure to be locationally and infrastructurally specific as we
now show. Specifically, we postulate that

�i D Vi

�
K

g
i ; t

	C‰i .t/ (7.170)

2 See Hotelling (1978).



7.3 A Computable Theory of Regional Public Investment Allocation 347

where Vi

�
K

g
i ; t

	
describes the effect of infrastructure on carrying capacity and

‰i .t/ is the natural or ambient carrying capacity that exists in the absence of in-
frastructure investment. It is important to understand that by “carrying capacity”
we mean the population that a region can sustain. As such, (7.170) expresses the
often made observation that each individual region is naturally prepared to support
a specific population level, and that level may vary with time and be conditioned
by manmade infrastructure. Puu (1989) observes that population models like that
presented above have one notable shortcoming: it is possible, for certain initial
conditions, that population trajectories will include periods of negative population.
Negative population is of course meaningless and population trajectories with this
property cannot be accepted as realistic. Consequently, we must include in the final
optimal control formulation a state space constraint that forces population to remain
nonnegative.

7.3.3 Technological Change

None of the above presentation depends on the idea of balanced growth or the
assumption that a long-run equilibrium exists in the usual sense. Neither do we
assume that technological progress must obey some type of neutrality. So when
introducing technological progress we have a free hand to explore any type of
technological progress. In particular, we are not restricted to labor augmenting
progress or progress that enhances overall output, and we can explore capital
augmenting progress, as is natural since our interest is in the role of public capi-
tal .infrastructure). That is, we shall concentrate on technological progress which
augments Kg

i . Consequently for each region i , we shall update the associated pro-
duction function by making the substitution

K
g
i H) ˆ.t/K

g
i (7.171)

whereˆ is a scalar function of time describing the extent of infrastructure augment-
ing technological progress. Technological progress for our model is endogenously
generated through separate dynamics for ˆ. We postulate that public capital aug-
menting technological progress occurs when the national output/public-capital ratio
falls below some threshold and is zero when the ratio exceeds that threshold. That
is, the rate of technological progress dˆ=dt obeys

dˆ

dt
> 0 if � � ‚ (7.172)

dˆ

dt
D 0 if � > ‚ (7.173)
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where � is the output/public-capital ratio and ‚ 2 <1C is a known reference
threshold that determines the need for and the fact of technological progress. Note
that the output/public-capital ratio is dependent on multiple state variables:

� .Kp; Kg ; L;ˆ/ D
Pn

iD1 YiPn
iD1K

g
i

D
Pn

iD1 Fi

�
K

p
i ; ˆK

g
i ; Li

	

Pn
iD1K

g
i

(7.174)

where Kp, Kg and L are vectors of private capital, public capital, and labor re-
spectively. Moreover, � is implicitly time dependent since it is constructed from
time-varying entities. It follows that the rate of technological progress is

dˆ

dt
D � Œ‚ � � .Kp; Kg ; L;ˆ/�C (7.175)

where � 2 <1CC is an exogenous positive constant of proportionality and Œ:�C is the
nonnegative orthant projection operator with the property that ŒQ�C D max .0;Q/
for an arbitrary argumentQ.

7.3.4 Criterion Functional and Final Form of the Model

In what follows, we have assumed for simplicity that there is full labor force par-
ticipation, so that Li D Pi .We wish to maximize the present value of the national
income time steam for the time interval

�
t0; tf

�
expressed as

maxJ.Kp; Kg ; P / D
nX

iD1

Z tf

t0

exp .��t/ Fi

�
K

p
i ; K

g
i ; Pi

	
dt (7.176)

where � > 0 is the constant nominal interest rate and P is presently a vector of
regional specific populations:

P D .Pi W i 2 n/

This maximization is to be carried out relative to the dynamics and constraints de-
veloped above. Hence, the final form of the model is

maxJ .Kp; Kg ; P /

subject to

dK
p
i

dt
D .1� ci � r/ Fi

�
K

p
i ; ˆK

g
i ; Pi

	C !i r

nX

j D1

Fj

�
K

p
j ; ˆK

g
j ; Pj

�
� ıpK

p
i

8i 2 Œ1; n�
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and

dK
g
i

dt
D 
i r

nX

j D1

Fj

�
K

p
j ; ˆK

g
j ; Pj

�
� ıgK

g
i 8i 2 Œ1; n�

dPi

dt
D �iPi .�i � Pi /C

X

j ¤i

�j

�
Pj � Pi

	 8i 2 Œ1; n�

dˆ

dt
D � Œ‚ � � .Kp; Kg ; P;ˆ/�C

nX

iD1

.!i C 
i / D 1 8i 2 Œ1; n�

0 � !i � 1 8i 2 Œ1; n�
0 � 
i � 1 8i 2 Œ1; n�
Pi � 0 8i 2 Œ1; n�

where the shares !i and 
i for all i 2 Œ0; n�, as well as the tax rate r , are the
control variables. The state variables are of courseKp

i , Kg
i and Pi for all i 2 Œ0; n�,

as well as ˆ. We have taken the only technological progress to be public capital
augmenting, although clearly other options exist.

7.3.5 Numerical Example Solved by Time Discretization

As a numerical example, we consider four regions as shown in Figure 7.1. In this
example, we assume there is no technological for the sake of simplicity and numer-
ical tractability.We employ a Cobb-Douglas production function for each region,
which is expressed as

Yi D Fi

�
K

p
i ; ˆK

g
i ; Pi

	 D Ai .K
p
i ˆ.t/K

g
i /

1�˛.Pi /
˛

where Ai is a productivity parameter and ˛ is a coefficient. We assume ˛ is 0:5 and
Ai for each region is shown in Table 7.1. We set the private and public capital decay
rates of ıp and ıg at 0:005 and 0:01; respectively and the constant nominal rate of
discount � at 0:05. Note that the fitness measure is

�i D Vi

�
K

g
i ; t

	C‰i .t/

where Vi

�
K

g
i ; t

	
describes the effect of infrastructure on carrying capacity and

‰i .t/ is the natural or ambient carrying capacity which exists in the absence of
infrastructure investment. To make this example simple, we assume that Vi

�
K

g
i ; t

	

is linearly proportional to Kg
i and ‰i .t/ is constant:

Vi

�
K

g
i ; t

	 D viK
g
i

‰i .t/ D  i
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Fig. 7.1 Capital, labor, and tax flows

Table 7.1 Numerical values
of parameters

Parameter Region 1 Region 2 Region 3 Region 4

Ai 0:100 0:120 0:090 0:125

ci 0:10 0:20 0:08 0:30

�i 0:01 0:02 0:03 0:02

�i 0:01 0:03 0:005 0:01

vi 0:05 0:03 0:01 0:05

 i 100 120 110 150


i 0:01 0:03 0:05 0:02

�i 0:02 0:01 0:06 0:05

The remaining numerical values of parameters used in this example are given in
Table 7.1. A complete presentation of this example’s mathematical formulation,
associated data, algorithmic details and numerical solution may be found by follow-
ing self-explanatory links found at the website http://www2.ie.psu.edu/csee/DODG/
Ch7opt.pdf.

7.4 Exercises

1. Refering to the optimal control model (7.148), (7.149), (7.150), (7.151), (7.152),
(7.153), (7.154), and (7.155), show the necessary conditions are also sufficient,
and then determine the optimal policy

�
r�; ��

1 ; : : : ; �
�
n

	
.

2. Note that the dynamics of technological progress

dˆ

dt
D � Œ‚ � � .Kp; Kg ; L;ˆ/�C
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given by expression (7.175) involve a nondifferentiable righthand side. Hence,
the associated Hamiltonian will also be nondifferentiable. One technique for
dealing with this circumstance is to replace (7.175) with

dˆ

dt
D �

˚
Œ‚ � � .Kp; Kg ; L;ˆ/�C


2

Discuss whether these alternative dynamics sacrifice any modeling rigor. Explain
why these alternative dynamics will allow the maximum principle to be applied
in the form presented in previous chapters and analyze the associated optimal-
ity conditions to obtain investment decision rules like those developed for the
Harrod-Domar family of models in Section 7.2 of this chapter.

3. In Section 7.3.4, we introduce the notion of full labor force participation, so that
Li D Pi for every region i 2 Œ1; n�. Provide an alternative model formulation
that relaxes the assumption of full labor force participation. Analyze the associ-
ated optimality conditions.

4. For the model of Section 7.3.4, introduce transportation in form of mobility of
capital by assuming transportation costs a fixed percentage of the appropriate
form of capital. Analyze the optimality conditions of the resulting model, as-
suming there is no technological progress and ˆ D 1 has a constant value.

5. Develop and present a discrete-time approximation of an extension of the exam-
ple of Section 7.3.5 that uncludes technological progress. Solve your approxima-
tion using a commercial nonlinear program solver, such as MINOS. Comment
on your solution.

6. Provide regularity conditions for the models of this chapter that assure the opti-
mal control necessary conditions that have been invoked are also sufficient.
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Chapter 8
Production Planning, Oligopoly and Supply
Chains

In this chapter we develop models that describe how prices, production rates and
distribution activities evolve over time and influence one another for three output
market structures:

1. perfect competition
2. monopoly, and
3. oligopoly.

In particular, we apply the material from previous chapters to the modeling and
computation of production, distribution, and supply chain decisions made by firms
operating within the three competitive environments mentioned above. Throughout
this chapter our perspective is deterministic, and the dynamic games considered are
open loop in nature with perfect initial information. We begin with aspatial models
and move to models with explicit network path flows. We shall deal exclusively
with finite terminal times and see that policies near the terminal time are of great
importance to the lifetime profitability of firms. One of our goals will be to study
how policies on inventory remaining at the terminal time as will as the value of such
residual inventories when liquidated can influence operations throughout a firm’s
history.

The following is a preview of the principal topics covered in this chapter:

Section 8.1: The Aspatial Price-Taking Firm. In this section, we present a simple
dynamic production planning model involving a single firm.

Section 8.2: The Aspatial Monopolistic Firm. In this section, we present a model
of dynamic production planning for a monopoly.

Section 8.3: The Monopolistic Firm in a Network Economy. In this section, we
extend the model of Section 8.2 to a network structure.

Section 8.4: Dynamic Oligopolistic Spatial Competition. In this section, we
present a network model of dynamic oligopolistic competition, wherein firms are
located at nodes and distribution of output takes place over routes that are sequences
of arcs.

T.L. Friesz, Dynamic Optimization and Differential Games, International
Series in Operations Research & Management Science 135,
DOI 10.1007/978-0-387-72778-3 8, c� Springer Science+Business Media, LLC 2010
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Section 8.5: Competitive Supply Chains. In this section, we present an integrated
supply-production-distributionmodel along with an informative numerical example.

8.1 The Aspatial Price-Taking Firm

We first consider the circumstance of perfect competition. The price of the single
homogeneous output of each firm is a known function of continuous time

� .t/ 2 L2
�
t0; tf

�

since we assume every firm conducts its business in a perfectly competitive market
and is, as a consequence, a price-taker: Moreover, as mentioned above, the deci-
sion environment is deterministic and open loop. The time interval considered is�
t0; tf

� � <1C, where t0 2 <1C is the fixed initial time, tf 2 <1CC is the fixed termi-
nal time, and of course tf > t0. There is a constant nominal rate of discounting �,
and compounding is continuous. The firm’s output rate is q .t/ with associated pro-
duction cost V .q/; the rate of allocation of output to consumption is c .t/; and the
firm’s inventory is I .t/, a quantity of undelivered stock or a quantity of backorders
according to its sign. Moreover, the controls

q 2 L2
�
t0; tf

�

c 2 L2
�
t0; tf

�

completely determine the state (inventory) which may be viewed as the operator

I .q; c/ W L2
�
t0; tf

� �L2
�
t0; tf

� �! H1
�
t0; tf

�

where L2
�
t0; tf

�
is the space of square-integrable functions and H1

�
t0; tf

�
is a

Sobolev space for the real interval
�
t0; tf

� 2 <1C. The upper bounds on output,
consumption and inventory are, respectively

Q 2 <1CC

C 2 <1CC

K 2 <1CC

In addition we use the notation

 .I / W H1
�
t0; tf

� �! H1
�
t0; tf

�

for the inventory holding/backorder cost functional.
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8.1.1 Optimal Control Problem for Aspatial Perfect Competition

A consequence of the above notation and assumptions is the firm’s extremal
problem:

max pf I
�
tf
�
e��tf C

Z tf

t0

e��t f� .t/ c � V .q/�‰ .I/g dt (8.1)

subject to

dI

dt
D q � c (8.2)

I .0/ D I0 (8.3)

0 � I � K (8.4)

0 � q � Q (8.5)

0 � c � C (8.6)

where pf is the price per unit of inventory liquidated at the terminal time.Within
the criterion, pf I

�
tf
�
e��tf is the present value of inventory and backorders at the

terminal time. Under the integral is the instantaneous net present value of profit
for the firm, consisting of the price multiplied by the amount consumed minus
the variable cost of production for each instant in time. This is integrated to give
the net present value of the time stream of profits. If pf is high enough, there may
be inventory held until the terminal time tf to take advantage of a favorable liqui-
dation price, one that might have been negotiated well in advance.

8.1.2 Numerical Example of Aspatial Perfect Competition

As an example let us assume that inventory and backorder costs are zero, while the
remaining model parameters are

t0 D 0

tf D 10

� .t/ D 1C 0:01t

V .q/ D 1

2
q2

‰ .I/ D 0

pf D 1

� D 0:05

C D Q D 10
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Also, for simplicity, we will completely relax the constraints

0 � I � K

Consequently we face the optimal control problem

max I .10/ e�.0:05/.10/ C
Z 10

0

e�.0:05/t

�
.1C 0:01t/ c � 1

2
q2

�
dt

dI

dt
D q � c

I .0/ D 100

0 � q � 10

0 � c � 10

We see immediately that c will have a bang-bang solution because it appears lin-
early in the problem formulation; there may or may not be a singular consumption
control c. The Hamiltonian is

H .c; q; �/ D e��t f� .t/ c � V .q/g C � .q � c/

D e�.0:05/t

�
.1C 0:01t/ c � 1

2
q2

	
C � .q � c/

So we have

d�

dt
D �@H

@I
D 0

) �� D � .10/ D @
�
pf I .10/ e

�.0:05/.10/
�

@I .10/
D e�.0:5/

If 0 < q < 10 we have

@H

@q
D e�.0:05/t .�q/C � D 0

Hence

q� .t/ D
h
�e.0:05/t

i10

0

Note that for t 2 Œ0; 10�
10 > e.0:05/t�.0:5/ > 0

so we know
q�.t/ D e.0:05/t�.0:5/
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We also know that c obeys

c D
8
<

:

C if S > 0

0 if S < 0

cs if S D 0

where S is the switching function given by

S D @H

@c
D e�.0:05/t .1C 0:01t/ � �

D e�.0:05/t .1C 0:01t/ � e�.0:5/

whose plot is
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We can see that S is positive on the interval Œ0; 10/, so c� D C D 10 since the set
of times for which the switching function vanishes on Œ0; 10� is a singleton and has
measure zero. That is, there is no singular control cs .

It is now a simple matter to determine the optimal production schedule and the
optimal inventory history. In particular, inventory is determined from the initial-
value problem

dI

dt
D e.0:05/t�.0:5/ � 10

I .0/ D 100

whose solution is

I .t/ D 12:131 exp Œ0:05t� � 10:0t C 87:869
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The plot of inventory versus time is
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which makes clear that I.10/ > 0 and the liquidation value of residual inventory
make it desirable to hold some stock until the terminal time.

8.1.3 The Aspatial Price Taking Firm with a Terminal
Constraint on Inventory

An alternative treatment of inventory/backordering is to stipulate that inventory is
zero at the terminal time but may change sign as often as needed prior to the terminal
time to support profit maximization by the firm. In that case the abstract model is

max �I
�
tf
�
e��tf C

Z tf

t0

e��t f� .t/ c � V .q/�‰ .I/g dt

subject to
dI

dt
D q � c

I .0/ D I0

0 � q � Q

0 � c � C

where � is the dual variable associated with the terminal time constraint

I
�
tf
� D 0
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that assures no unfulfilled backorders. Consequently, we could drop the residual
value term �I

�
tf
�
e��tf from our formulation. However, it is instructive to retain

the residual term and see what happens.
Let us consider the same data used for the example of Section 8.1 but now with

some important additions:

‰ .I/ D 1

2
I 2 (8.7)

I
�
tf
� D 0 (8.8)

Consequently, we face the optimal control problem

max �I .10/ e�.0:05/.10/ C
Z 10

0

e�.0:05/t

�
.1C 0:01t/ c � 1

2
q2 � 1

2
I 2

�
dt

dI

dt
D q � c

I .0/ D 100

0 � q � 10

0 � c � 10

where � is a dual variable for the terminal time constraint (8.8) on inventory.
The Hamiltonian is

H .c; q; �/ D e��t f� .t/ c � V .q/g C � .q � c/
D e�.0:05/t

�
.1C 0:01t/ c � 1

2
q2 � 1

2
I 2

�
C � .q � c/

So we have

d�

dt
D .�1/ @H

@I
D e�.0:05/tI

� .10/ D @
�
�I .10/ e�.0:05/.10/

�

@I .10/
D �e�.0:05/.10/

As before if 0 < q < 10 we have

@H

@q
D e�.0:05/t .�q/C � D 0

Hence the production control law is

q .t/ D
h
�e.0:05/t

i10

0
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We again know that c is a potentially bang-bang and possibly singular control:

c D
8
<

:

10 if S > 0

0 if S < 0

cs if S D 0

(8.9)

where S is the switching function given by

S D @H

@c
D e�.0:05/t .1C 0:01t/ � � D 0;

and it is not presently known whether there is a singular control cs . Let us assume

S > 0 (8.10)

q � 10 (8.11)

for all t 2 Œ0; 10�. Hence the control laws are

c D 10 (8.12)

q D max


0; �e.0:05/t

�
(8.13)

so that the state and adjoint equations form the two-point boundary-value problem:

dI

dt
D max.0; �e.0:05/t /� 10

d�

dt
D e�.0:05/tI

I .0/ D 100

� .10/ D �e�.0:05/.10/

Note that one of the boundary conditions involves the unknown dual variable �.
As such the problem would appear to be very challenging. However, we know the
terminal value of the state variable; that is, I .10/ D 0. As a consequence we seek
to find the value � of the final-value problem

dI

dt
D max



0; �e.0:05/t

�
� 10

d�

dt
D e�.0:05/tI

I .10/ D 0

� .10/ D �e�.0:05/.10/
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using a reverse shooting method wherein we adjust the value � to force the initial
state value I .0/ D 100. Let us select � D 0 so that

� .10/ D �e�.0:05/.10/ D 0

and assume that �.t/ < 0 for t 2 Œ0; 10/; in which case inventory must obey

dI

dt
D �10

I .10� �/ D 0

as � �! 0, with the apparent closed-form solution

I .t/ D 100� 10t

which also satisfies I.0/ D 100. It follows that the adjoint dynamics have the sim-
plified form

d�

dt
D e�.0:05/t .100� 10t/

� .10/ D 0

so that

� .t/ D exp.�:05t/ .200t C 2000/� 2426:1 (8.14)

whose plot, the reader may easily verify, agrees with our assumption that the adjoint
is negative for t 2 Œ0; 10/. Note further that the transversality condition is satisfied:

� .10/ D exp.�:05.10// .200.10/C 2000/� 2426:1
D 4000 exp.�:5/ � 2426:1
D 2426:1� 2426:1 D 0:0

We also note that the nonpositivity of the adjoint variable requires that

S D e�.0:05/t .1C 0:01t/ � � D e�.0:05/t .1C 0:01t/C j�j > 0

in keeping with (8.9), (8.10), and (8.12). So that the consumption rate is

c D 10

for all time t 2 Œ0; 10� and there are no singular controls. Furthermore, the optimal
production policy is

q .t/ D max.0; �e.0:05/t/ D max.0; F .t//
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where
F.t/ � exp.:05t/ Œexp.�:05t/ .200t C 2000/� 2426:1�

Note that F .t/ � 0 as is evident from the plot:
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Consequently,
q .t/ D 0

for all time t 2 Œ0; 10�, which is understood to mean that the firm sells from its
inventories and does not produce any finished products during the time interval of
our analysis.

8.2 The Aspatial Monopolistic Firm

We now turn our attention to aspatial monopoly in a dynamic setting. The firm of
interest is now without competition and exploits the demand curve for its product in
order to maximize profit. We employ the notion of an inverse demand curve; that is,

� D � .c; t/

denotes the price consumers pay for the firm’s product as a function of consumption
rate c and time t . The explicit dependence on time arises from changes in consumer
preferences over time and/or seasonal effects. Consequently, we consider the fol-
lowing model:

max J D �I
�
tf
�
e��tf C

Z tf

t0

e��t f� .c; t/ c � V .q/ �‰ .I/gdt
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subject to
dI

dt
D q � c

I .0/ D I0

I
�
tf
� D 0

0 � q � Q

0 � c � C

where once again � is the dual variable for the terminal condition I
�
tf
� D 0.

8.2.1 Necessary Conditions for the Aspatial Monopoly

The relevant Hamiltonian is

H D e��t Œ� .c; t/ c � V .q/�‰ .I/�C �.q � c/ (8.15)

Provided the Hamiltonian is convex in its controls, the minimum principal requires

c� D
�

arg

�
@H

@c
D 0


�C

0

q� D
�

arg

�
@H

@q
D 0


�Q

0

The adjoint equation and transversality condition are

d�

dt
D .�1/ @H

@I
D e��t d‰ .I /

dI
(8.16)

�
�
tf
� D @�I

�
tf
�
e��tf

@I.tf /
D �e��tf (8.17)

Assuming none of the control constraints are binding for the optimal trajectory, we
have

@H

@c
D e��t @

@c
Œ� .c; t/ c� � � D 0 (8.18)

@H

@q
D �e��t @V.q/

@q
C � D 0 (8.19)

which tells us
@

@c
Œ� .c; t/ c� D @V.q/

@q
D �e�t (8.20)



364 8 Production Planning, Oligopoly and Supply Chains

along the optimal trajectory. This last expression is a statement that marginal
revenue with respect to consumption equals marginal variable cost with respect to
output. Futhermore, the adjoint variable is the present value of marginal variable
cost with respect to output:

� D e��t @V.q/

@q

8.2.2 Numerical Example

We will consider an example based on the data

t0 D 0

tf D 10

� .c; t/ D .11 � c/ exp

�
1

10
t




V .q/ D 1

2
q2

‰ .I/ D 1

2
I 2

I
�
tf
� D 0

� D 0:05

C D Q D 10

which is identical to our example of Section 8.1.3 except that the firm, now a
monopoly, may exploit the market’s inverse demand function � .c; t/ which de-
scribes price as falling when consumption increases as well as generally drifting
upward over time (as a result of wage growth or other economic forces). Thus, we
face the optimal control problem

max �I.10/e�.0:05/.10/ C
Z 10

0

e�.0:05/t

�
.11 � c/ exp

�
1

10
t



c � 1

2
q2 � 1

2
I 2

	
dt

subject to

dI

dt
D q � c

I .0/ D I0

0 � q � 10

0 � c � 10

The associated Hamiltonian is

H .c; q; �/ D e�0:05t

8
<

:
�
11c � c2

�
e

1

10
t � 1

2
q2 � 1

2
I 2

9
=

;
C � .q � c/
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Note that the problem is no longer linear in c and, as such, c will not be bang-bang
or singular. Moreover if 0 < c < 10 then

@H

@c
D e�0:05t .11 � 2c/ e

1

10
t � � D 0

so the consumption control law is

c D

2

6
6
4�1

2

�11e�0:05te

1

10
t C �

e�0:05te

1

10
t

3

7
7
5

10

0

D min

0

B
B
@10;max

0

B
B
@0;�

1

2

�11e�0:05te

1

10
t C �

e�0:05te

1

10
t

1

C
C
A

1

C
C
A

Also if 0 < q < 10 then

@H

@q
D e�0:05t .�q/C � D 0

so the production control law is

q D �
�e0:05t

�10

0
D min.10;max.0; �e0:05t//

The adjoint equation and terminal time condition are:

d�

dt
D .�1/ @H

@I
D e�.0:05/tI

� .10/ D @�I .10/ e�.0:05/.10/

@I .10/
D �e�.0:05/.10/

Consequently, the relevant two-point boundary-value problem is

dI

dt
D min



10;max



0; �e0:05t

��
� min

0

BB
@10;max

0

BB
@0;�

1

2

�11e�0:05t e

1

10
t C �

e�0:05t e

1

10
t

1

CC
A

1

CC
A

d�

dt
D e�.0:05/tI

I .0/ D 100

� .10/ D �e�.0:05/.10/
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Note that one of the boundary conditions involves the unknown dual variable �.
As such the problem can be restated as a final-value problem and solved using a
reverse shooting method. Let us select the multiplier � so that

� .10/ D �e�.0:05/.10/ D �100

giving the system

dI

dt
D min

�
10;max

�
0; �e0:05t

�� � min

0

B
B
@10;max

0

B
B
@0;�

1

2

�11e�0:05t e

1

10
t C �

e�0:05te

1

10
t

1

C
C
A

1

C
C
A

d�

dt
D e�

.0:05/t I

I .10/ D 0

� .10/ D �100

whose exact solution is

I D �10:0t C 100:0

� D e�0:05t .200:0t C 2000:0/� 100� 4000 exp.�:5/

This solution has the following graphical expression:
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where the straight line is inventory I.t/ and the other curve is the adjoint vari-
able � .t/. Clearly inventory is never negative, and I .10/ D 0 so that there are no
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unfulfilled backorders. Note also that � .t/ < 0, so again

q D �
�e0:05t

�10

0
D 0

for all t 2 Œ0; 10�.

8.3 The Monopolistic Firm in a Network Economy

Now we consider the firm of interest to be located at one of the nodes of a
distribution network for which flows over paths generate flows over arcs controlled
by shipping agents who set freight tariffs for the firm’s output at the origin-
destination (OD) pair level. Although some of the notation needed is identical
or very similar to notation already introduced in this chapter, we provide a self-
contained treatment of notation within this section to avoid any confusion. In
particular, time is again denoted by the scalar t 2 <1C, initial time by t0 2 <1C, final
time by tf 2 <1CC, with t0 < tf so that t 2 �

t0; tf
� � <1C. There are three sets

important to articulating a model of production and distribution on a network; these
are as follow: A for directed arcs, N for nodes, and W for origin-destination (OD)
pairs. Subsets of these sets are formed as is meaningful by using the subscripts i for
a specific node and ij for a specific OD pair .i; j /.

The firm controls production output rates expressed as a vector q, allocations of
output to meet demand expressed as a vector c, and shipping patterns expressed as
a vector s. Inventories I are a vector of state variables determined by the controls.
That is,

c 2 �L2
�
t0; tf

��jN j

q 2 �L2
�
t0; tf

��jN j

s 2 �L2
�
t0; tf

��jWj

I .c; q; s/ W �L2
�
t0; tf

��jN j � �L2
�
t0; tf

��jN j � �L2
�
t0; tf

��jWj

�! �H1
�
t0; tf

��jN j

where again L2
�
t0; tf

�
is the space of square-integrable functions and H1

�
t0; tf

�

is a Sobolev space for the real interval
�
t0; tf

� 2 <1C.

8.3.1 The Network Firm’s Extremal Problem

The firm has the objective of maximizing net profit expressed as revenue less cost
and taking the form of an operator acting on production rates, shipment patterns,
and allocations of output to meet demands. For simplicity we imagine that the firm
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has operations at every node and that every node is a perfectly competitive market
for the firm’s output. That is, the firm’s net profit is

J.c; q; s/ D
Z tf

t0

e��t

(
X

i2N
�i . ci ; t/ ci �

X

i2N
Vi .q; t/

�
X

.i;j /2W
rij .t/ sij �

X

i2N
 i .Ii ; t/

9
=

;
dt (8.21)

where � 2 <1CC is a constant nominal rate of discount, rij 2 L2CC
�
t0; tf

�
is the

exogenous freight rate (tariff) charged per unit of flow sij for OD pair .i; j / 2 W ,

 i W H1
�
t0; tf

� � <1C �! <1C

is the firm’s inventory cost at node i , and Ii is the inventory/backorder at node i .
In (8.21), ci is the allocation of the firm’s output to consumption at node i . Our
formulation is in terms of flows and is based on the inverse demand functions1

�i .ci ; t/ W L2
�
t0; tf

� � <1C �! <1C

Furthermore, qi is the firm’s output at node i 2 N . Also

Vi .q; t/ W �L2
�
t0; tf

��jN j � <1C �! <1C
is the variable cost of production for the firm at node i 2 N . Note that J.c; q; s/
is a functional that is completely determined by the controls. The first term of the
functional J.c; q; s/ in expression (8.21) is the firm’s revenue; the second term is
the firm’s cost of production; the third term is the firm’s shipping costs; and the last
term is the firms’s inventory or holding cost.

We also impose the terminal time inventory constraints

Ii

�
tf
� D Ki 8 i 2 N (8.22)

where the Ki 2 <1CC are exogenous. All consumption, production, and shipping
control variables are nonnegative and bounded from above. That is,

C � c � 0 (8.23)

Q � q � 0 (8.24)

S � s � 0 (8.25)

1 The assumption of demand separability is easily relaxed.
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where

C 2 <jF j
CC

Q 2 <jF j
CC

S 2 <jWj
CC

are known constant vectors. Constraints (8.23), (8.24), and (8.25) are recognized as
pure control constraints, while (8.22) are terminal conditions for the state variables.
Naturally,

	 D f.c; q; s/ W .8.23/ ; .8.24/ ; .8.25/g (8.26)

is the set of feasible controls.
The inventory dynamics, expressing simple flow conservation, obey

dIi

dt
D qi C

X

.j;i/2W
sj i �

X

.i;j /2W
sij � ci 8 i 2 N (8.27)

Ii .t0/ D I 0
i 8 i 2 N (8.28)

where I 0
i 2 <1CC is exogenous. Consequently, the vector of inventories may be

viewed as the operator

I.c; q; s/ D arg

8
<

:
dIi

dt
D qi C

X

.j;i/2W
sj i �

X

.i;j /2W
sij � ci ;

Ii .t0/ D I 0
i ; Ii .tf / D Ki 8i 2 N

9
=

;

where we implicitly assume that the dynamics have solutions for all feasible
controls.

We are nearly ready to give a succinct statement of the extremal problem faced
by the firm carrying out its production and distribution activities to meet demands on
a network. The firm solves an optimal control problem to determine its production
q, allocation of output to meet demand c, and shipping pattern s by maximizing its
profit functional J.c; q; s/ subject to inventory dynamics expressed as flow balance
equations and upper and lower bounds for the controls .c; q; s/. With the preced-
ing development, we note that the firm’s problem is: compute c; q and s (thereby
finding I ) in order to solve

max J.c; q; s/

s.t. .c; q; s/ 2 	
(8.29)

where	 is as defined in (8.26).
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8.3.2 Discrete-Time Approximation

We note that (8.29) can be solved in a number of ways, although direct appeal to
the necessary conditions is unlikely to be successful for general networks due to
the large number of variables. Furthermore, since there are no time shifts and the
state dynamics are linear in the formulation proposed above, time discretization and
finite-dimensional mathematical programming is especially appealing. To this end
we construct the following discrete-time approximation of the criterion of (8.29),
where t now denotes a discrete time period:

J.c; q; s/ D
(

NX

kD0

e��tk
X

i2N
�i Œci .tk/ ; tk� ci .tk/�

X

i2N
Vi .Œq .tk/; tk �

�
X

.i;j /2W
rij .tk/ sij .tk/ �

X

i2N
 i .ŒIi .tk/; tk �

9
=

;
(8.30)

The discrete-time approximation of the associated dynamics is

Ii .tk/ � Ii .tk�1/ D qi .tk/C
X

.j;i/2W
sj i .tk/�

X

.i;j /2W
sij .tk/� ci .tk/

8 i 2 N ;8k 2 Œ1; N � (8.31)

where we define
t D t0 C j
t

and N is the number of discretizations, defined by

N D tf � t0


t

Furthermore

Ii .t0/ D I 0
i 8 i 2 N (8.32)

and

c .tk/ D .ci .tk/ W i 2 N /
q.tk/ D .qi .tk/ W i 2 N /
s .tk/ D .sij .tk/ W .i ; j / 2 W/

c D .c.tk/ W k 2 Œ1; N �/
q D .q .tk/ W k 2 Œ1; N �/
s D .s.tk/ W k 2 Œ1; N �/
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so that we may write

C � c � 0 (8.33)

Q � q � 0 (8.34)

S � s � 0 (8.35)

8.3.3 Numerical Example

Let us consider a network of five arcs and four nodes for which the single firm of
interest has activities located at each node i D 1; 2; 3; 4: Consumption of the firm’s
output potentially occurs at every node; this consumption may be of local output
or of imported output as the network topology permits. Figure 8.1 illustrates the
network. The time interval of interest is Œ0; 10�; that is t0 D 0 and tf D 10. Before
time discretization, there are 13 controls and 4 state variables associated with this
example; these are listed in Table 8.1.

At time t0 D 0, the initial inventory at each node is

I1.0/ D 5 (8.36)

I2.0/ D 3 (8.37)

I3.0/ D 2

I4.0/ D 0 (8.38)

1

2

4

3

Market 1

Market 2

Market 3

Market 4

s1

s2

s3

s4

s5

Fig. 8.1 Network of five arcs, four nodes

Table 8.1 Controls and
states for example

Controls States

c1 q1 s1 I1
c2 q2 s2 I2
c3 q3 s3 I3
c4 q4 s4 I4
- - s5 -



372 8 Production Planning, Oligopoly and Supply Chains

In addition, we impose the condition that no backordering is allowed by any firm at
any node at the terminal time tf D 10. That is,

Ii .10/ D 0 for i D 1; 2; 3; 4 (8.39)

The inventory dynamics are the following flow balance equations:

dI1

dt
D q1 � s1 � s2 � c1

dI2

dt
D q2 C s1 � s3 � s4 � c2

dI3

dt
D q3 C s2 C s3 � s5 � c3

dI4

dt
D q4 C s4 C s5 � c4

We assume the inverse demands at each node take the following form:

�1.c1; t/ D 4:0.11� c1/ exp

�
t

40



�2.c2; t/ D 3:0.11� c2/ exp

�
t

30




�3.c3; t/ D 3:5.11� c3/ exp

�
t

35



�4.c4; t/ D 2:5.11� c4/ exp

�
t

25




9
>>>>=

>>>>;

(8.40)
The production cost functions for each node have the form

V1.q1; t/ D 1:00.q1/
2 V3.q3; t/ D 0:65.q3/

2

V2.q2; t/ D 0:35.q2/
2 V4.q4; 5/ D 2:00.q4/

2

9
=

;
(8.41)

We assume the holding costs are

 1.I1; t/ D 0:5 .I1/
2  3.I3; t/ D 1:5 .I3/

2

 2.I2; t/ D 5:0 .I2/
2  4.I4; t/ D 2:0 .I4/

2

9
=

;
(8.42)

We assume that the freight rates for each arc are the following constants:

r1.s1; t/ D 5 r3.s3; t/ D 3 r5.s5; t/ D 4

r2.s2; t/ D 2 r4.s4; t/ D 2

9
=

;
(8.43)
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We also impose the following bounds on control variables:

C D

0

B
B
@

5

10

10

5

1

C
C
A Q D

0

B
B
@

5

2

5

5

1

C
C
A S D

0

B
B
@

10

10

10

10

1

C
C
A

The individual firms’ profit functions are found by substituting (8.40), (8.41),
(8.42), and (8.43) into (8.21), then discretizing to obtain a form like (8.30).

8.3.4 Solution by Discrete-Time Approximation

We solve the functional mathematical program corresponding to the details pre-
sented in Section 8.3.3 using a discrete-time approximation withN D 10 equal time
steps. In our calculations we allowed GAMS/MINOS to solve the specific instance
of (8.30) through (8.35) corresponding to the data we have given. The solution time
for this example is approximately 2 cpu seconds on a Pentium R	 4 single-processor
computer. The results are presented in Figure 8.2.

8.3.5 Solution by Continuous-Time Gradient Projection

We next solve the example problem presented in Section 8.3.3 by the continuous-
time gradient projection method. We calculate 40 values of the gradients and then
construct a 6-th order polynomial approximation of each as a smooth function of
time. The algorithm is implemented in MATLAB and the solution time for the exam-
ple presented is approximately 10 cpu seconds on a Pentium R	 4 single-processor
computer. The results are shown in Figure 8.3. The gradient projection algorithm is
articulated below in terms of the state and control vectors specific to the example
problem:

Gradient Projection Algorithm

Step 0. Initialization. Set k D 0 and pick c0
i .t/, q

0
i .t/, and s0

i .t/ for i D 1; 2; 3; 4

where time t is now continuous.

Step 1. Find state trajectory. Using current controls, solve the state initial-value
problem

dI1

dt
D qk

1 � sk
1 � sk

2 � ck
1 I1.0/ D 5

dI2

dt
D qk

2 C sk
1 � sk

3 � sk
4 � ck

2 I2.0/ D 3



374 8 Production Planning, Oligopoly and Supply Chains

0 2 4 6 8 10
−1

0

1

2

3

4

5

6

Time

In
ve

nt
or

y
I1
I2
I3
I4

Inventory dynamics

0 2 4 6 8 10
−1

0

1

2

3

4

5

6

Time

q1
q2

q3

q4

P
ro

du
ct

io
n 

R
at

e

Production rate

0 2 4 6 8 10
3

3.5

4

4.5

5

5.5

6

Time

c1
c2
c3
c4

C
on

su
m

pt
io

n 
R

at
e

Consumption rate

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

Time

s1
s2
s3
s4
s5

A
rc

 F
lo

w

Freight flow

0 2 4 6 8 10
15

20

25

30

35

40

Time

π1
π2
π3
π4

P
ric

e

Price

Fig. 8.2 Solution by discrete-time approximation

dI3

dt
D qk

3 C sk
2 C sk

3 � sk
5 � ck

3 I3.0/ D 2

dI4

dt
D qk

4 C sk
4 C sk

5 � ck
4 I4.0/ D 0

and call the solution I k
1 .t/ ; I

k
2 .t/ ; I

k
3 .t/, and I k

4 .t/.
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Fig. 8.3 Solution by continuous time gradient projection method
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Step 2. Find adjoint trajectory. Using current controls and states, solve the adjoint
final-value problem

.�1/ d�1

dt
D exp.��t/.I k

1 / �1.10/ D �I k
1 .10/

.�1/ d�2

dt
D exp.��t/.10I k

2 / �2.10/ D �I k
2 .10/

.�1/ d�3

dt
D exp.��t/.3I k

3 / �3.10/ D �I k
3 .10/

.�1/ d�4

dt
D exp.��t/.4I k

4 / �4.10/ D �I k
4 .10/

picking the dual variable � to enforce zero inventory at the terminal time; call the
solution �k

1 .t/ ; �
k
2 .t/ ; �

k
3 .t/, and �k

4 .t/.

Step 3. Find gradient. Using current controls, states, and adjoints, calculate

ruJ.u
k/ D ruH



I k ; uk; �k; t

�
D ruf0.I

k ; uk; t/C ru

h
�T f



I k ; uk; t

�i

where

uk D

0

B
@

ck

qk

sk

1

C
A

and H .I; u; �; t/ is the relevant Hamiltonian for this problem.

Step 4. Update and apply stopping test. For a suitably small step size �k , update
according to

ukC1 D PU

h
uk � �krJ



uk
�i

If an appropriate stopping test is satisfied, declare

u� .t/ 
 ukC1 .t/

Otherwise, set k D k C 1 and go to Step 1.

8.4 Dynamic Oligopolistic Spatial Competition

Recently Friesz et al. (2006) showed that it is possible to model differential Nash
equilibria among producers whose facilities and final demand markets are fixed at
distinct nodes of a distribution network and connected by paths involving chains of
arcs of that network. Their model, which takes the form of a differential variational
inequality, is presented in this section.
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8.4.1 Some Background and Notation

The oligopolistic firms of interest, embedded in a network economy, are in
oligopolistic competition according to dynamics that describe the trajectories of
inventories/backorders and correspond to flow conservation for each firm at each
node of the network of interest. The oligopolistic firms, acting as shippers, compete
as price takers in the market for physical distribution services which is perfectly
competitive. Perfect competition in shipping arises because numerous shipping
companies serve numerous customers due to the involvement of shippers in the
numerous output markets of the network economy. The time scale we consider is
neither short nor long, but rather of sufficient length to allow output and shipping
pattern adjustments although not long enough for firms to relocate or enter or leave
the network economy.

We employ much of the notation introduced in previous sections of this chapter.
Because there are some key differences between the dynamic ologopolistic compe-
tition to now be studied and problems explored previously in this chapter, we choose
to give an exhaustive list of the notation to be employed below, even though that will
involve a bit of duplication. In particular, we again let continuous time be denoted
by the scalar t 2 <1C, initial time by t0 2 <1C, and final time by tf 2 <1CC, with
t0 < tf so that t 2 �t0; tf

� � <1C. There are several sets important to articulating
a model of oligopolistic competition on a network; these are as follow: F for firms,
A for directed arcs, N for nodes and W for origin-destination (OD) pairs. Subsets
of these sets are formed as is meaningful by using the subscripts f for a specific
firm, i for a specific node, and ij for a specific OD pair .i; j /.

Each firm f 2 F controls production (output) rates qf , allocation of output to
meet demand cf and shipping pattern sf . Inventories If are state variables deter-
mined by the controls. In particular, concatenations of the firm-specific vectors cf ,
qf , and sf give the following:

c 2 �L2
�
t0; tf

��jN j �jF j

q 2 �L2
�
t0; tf

��jN j �jF j

s 2 �L2
�
t0; tf

��jWj�jF j

Furthermore, the state operator, once again, will be

I .c; q; s/ W �L2
�
t0; tf

��jN j �jF j � �L2
�
t0; tf

��jN j �jF j � �L2
�
t0; tf

��jWj�jF j

�! �H1
�
t0; tf

��jN j�jF j

where L2
�
t0; tf

�
is the space of square-integrable functions and H1

�
t0; tf

�
is a

Sobolev space for the real interval
�
t0; tf

� 2 <1C.
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8.4.2 The Firm’s Objective and Constraints

Each firm has the objective of maximizing net profit expressed as revenue less cost
and taking the form of an operator acting on allocations of output to meet demands,
production rates, and shipment patterns. For each firm f 2 F , net profit is

ˆf .c
f ; qf ; sf I c�f ; q�f / D e��tf Zf

�
I.tf /; tf

�

C
Z tf

t0

e��t

8
<

:

X

i2N
�i

0

@
X

g2F
c

g
i ; t

1

A cf
i

�
X

i2Nf

V
f

i .q
f ; t/�

X

.i;j /2Wf

rij .t/ s
f
ij

�
X

i2N
 

f
i .I

f
i ; t/dt (8.44)

where � 2 <1CC is a constant nominal rate of discount, rij 2 <1CC is the freight

rate (tariff) charged per unit of flow sij for OD pair .i; j / 2 Wf ,  f
i is firm f ’s

inventory cost at node i , and If
i is the inventory/backorder of firm f at node i .

In (8.44), cf
i is the allocation of the output of firm f 2 F at node i 2 N to

consumption at that node. Also

Zf

h
If .tf /; tf

i

is the liquidation value of inventory remaining at the terminal time, where

If D


I

f
i W i 2 Nf

�

Our formulation is in terms of flows so we employ the inverse demand functions
�i .ci ; t/ where

ci D
X

g2F
c

g
i

is the total allocation of output to consumption for node i . Furthermore, qf
i is the

output of firm f 2 F at node i 2 N . Also V f
i .q; t/ is the variable cost of pro-

duction for firm f 2 F at node i 2 N . Note that �f .c
f ; qf ; sf I c�f ; q�f / is

a functional that is completely determined by the controls cf , qf and sf when
non-own allocations to consumption and non-own production rates

c�f � . cf 0 W f 0 ¤ f /

q�f � . qf 0 W f 0 ¤ f /

are taken as exogenous data by firm f . The first term of the objective functional
�f .c

f ; qf ; sf I c�f ; q�f / in expression (8.44) is the firm’s revenue; the second
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term is the firm’s cost of production; the third term is the firm’s shipping costs; and
the last term is the firm’s inventory or holding cost.

We also impose the terminal time inventory constraints

I
f
i

�
tf
� D QKf

i 8 f 2 F ; i 2 Nf (8.45)

where the QKf
i 2 <1CC are exogenous. All consumption, production, and shipping

variables are nonnegative and bounded from above; that is,

C f � cf � 0 (8.46)

Qf � qf � 0 (8.47)

Sf � sf � 0 (8.48)

where

C f 2 <jF j
CC

Qf 2 <jF j
CC

Sf 2 <jWf j
CC

Constraints (8.46), (8.47), and (8.48) are recognized as pure control constraints,
while (8.45) are terminal conditions for the state space variables. Naturally

	f D
n

cf ; qf ; sf

�
W .8.46/ ; .8.47/ ; .8.48/

o

is the set of feasible controls.
Firm f solves an optimal control problem to determine its production qf , al-

location of production to meet demand cf , and shipping pattern sf – thereby also
determining inventory If via dynamics we articulate momentarily – by maximiz-
ing its profit functional ˆf .c

f ; qf ; sf I c�f ; q�f / subject to inventory dynamics
expressed as flow balance equations and pertinent production and inventory con-
straints. The inventory dynamics for firm f 2 F , expressing simple flow conserva-
tion, obey

dI
f
i

dt
D q

f
i C

X

.j;i/2W
s

f
ji �

X

.i;j /2W
s

f
ij � cf

i 8 i 2 Nf (8.49)

I
f
i .t0/ D K

f
i 8 i 2 Nf (8.50)

I
f
i

�
tf
� D QKf

i 8 i 2 Nf (8.51)

where Kf
i 2 <1CC and QKf

i 2 <1C are exogenous. Note that the transportation time
for the flow of finished goods is not captured explicitly in the inventory dynamics,
however it is accounted for implicitly in the freight rate (tariff) charged per unit of
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flow. Further, in addition to the terminal time inventory (state) constraints (8.51),
the model is general enough to handle inventory constraints over the entire planning
horizon

�
t0; tf

�
. For instance, nonnegativity of the inventory (state) variables could

be imposed to restrict firms from taking backorders. In light of the above notions
and definitions, we may write

I .c; q; s/ D arg

8
<

:
dI

f
i

dt
D q

f
i C

X

.j;i/2W
s

f
ji �

X

.i;j /2W
s

f
ij � c

f
i ;

I
f
i .t0/ D K

f
i ; I

f
i .tf / D QKf

i 8f 2 F i 2 Nf

9
=

;

where we implicitly assume that the dynamics have solutions for all feasible
controls.

With the preceding development, we note that firm f ’s problem is: with the c�f

and q�f as exogenous inputs, compute cf ; qf and sf (thereby finding If ) in order
to solve the following extremal problem:

max ˆf .c
f ; qf ; sf I c�f ; q�f /

s.t.
�
cf ; qf ; sf

� 2 	f

)

8f 2 F (8.52)

where
	f D

n

cf ; qf ; sf

�
W .8.45/ ; .8.46/ ; .8.47/ ; .8.48/ hold

o

also for all f 2 F . That is, each firm is a Nash agent that knows and employs the
current instantaneous values of the decision variables of other firms to make its own
noncooperative decisions. As such, (8.52) is a differential Nash game.

8.4.3 The DVI Formulation

We assume this game is regular in the sense of the following definition:

Definition 8.1. The dynamic oligopolistic network competition problem introduced
above will be considered regular if: (1) the state operator I .c; q; s/ exists and
is unique, while each of its components is continuous and G-differentiable; (2)
the inverse demand, production cost and inventory cost functions are continuously
differentiable with respect to controls and states; and (3) for each f 2 F , the com-
posite terminal cost function

Zf

h
If

�
tf
�
; tf

i
C
X

i2Nf

�
f
i

h QKf
i � I

f
i

�
tf
�i

is continuously differentiable with respect to If
i

�
tf
�

for all i 2 Nf .
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In the above definition, each �f
i is a constant dual variable that prices out the termi-

nal constraint on inventory.
We further note that (8.52) is an optimal control problem with fixed terminal

time. Its Hamiltonian is

Hf



cf ; qf ; sf ; If ; ˛f ; ˇf ; �f I c�f I q�f I t

�

� ˆf



cf ; qf ; sf ; If I c�f ; q�f I t

�
C‰f



cf ; qf ; sf ; If ; ˛f ; ˇf ; �f

�

where

ˆf



cf ; qf ; sf ; If I c�f ; q�f I t

�
D e��t

8
<

:

X

i2Nf

�i

0

@
X

g2F
c

g
i ; t

1

A cf
i

�
X

i2Nf

V
f

i .q; t/ �
X

.i;j /2Wf

rij .t/ s
f
ij

�
X

i2Nf

 
f
i .I

f
i ; t/

9
=

;
(8.53)

and

‰f



cf ; qf ; sf ; If ; ˛f ; ˇf ; �f

�

D
X

i2Nf

�
f
i

0

@ qf
i C

X

.j;i/2W
s

f
ji �

X

.i;j /2W
s

f
ij � cf

i

1

A (8.54)

where ˛f
i 2 <1C and ˇf

i 2 <1C are dual variables for the inventory-bounding con-

straints (8.45) while ˛f 2 <jNf j and ˇf 2 <jNf j; also �f
i 2 <1C is the adjoint

variable for the dynamics of firm f at node i while �f 2 �H1
�
t0; tf

��jN j
. Clearly

ˆf is the instantaneous profit. To interpret ‰f we need to understand the relevant
dynamic shadow benefits and shadow costs of this model. To that end, recall that,
along an optimal trajectory, the adjoint variables obey

�
f
i D @Jf

@I
f
i

Consequently,

‰f D
X

i2Nf

@Jf

@I
f
i

dI
f
i

dt

which is recognized as the shadow value of dynamic benefits arising from current
inventory held; it can be either a cost or a benefit, depending on its sign.
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Due to regularity, the maximum principle takes the form of requiring that the
nonlinear program

maxHf s.t:


C f ;Qf ; Sf

�
�


cf ; qf ; sf

�
� 0

be solved by every firm f 2 F for every instant of time t 2 �t0; tf
�
. Consequently,

since the feasible set is convex, the finite-dimensional variational inequality princi-
ple from the necessary conditions requires any optimal solution to satisfy
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� 0 (8.55)
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� 0 (8.57)

for every f 2 F at every time, t 2 �t0; tf
�
. Familiarity with variational inequalities

suggests that the following variational inequality has solutions that are differential
Nash equilibria for a noncooperative game in which individual firms maximize net
profits in light of current information about their competitors:

find


cf �; qf �; sf �

�
2 	 such that

0 �
X

f 2F
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s
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ij

�
3

5dt for all .c; q; s/ 2 	 (8.58)

where

ˆ�
f

D ˆf

�
cf �; qf �; sf �; If �I c�f ; q�f I t� (8.59)

	 D Q

f 2F
	f (8.60)

We note that (8.58) is a differential variational inequality expressing the differential
Nash game that is our present interest. This formulation also provides guidance in
devising a computational strategy, as we show in Section 8.4.4.
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The issue of immediate concern is to formally demonstrate that solutions of
(8.58) are differential Nash equilibria. In fact, we state and prove the following
result:

Theorem 8.1. Differential variational inequality formulation of dynamic oligopolis-
tic network competition. Any solution of (8.58) is a solution of the dynamic
oligopolistic network competition problem when regularity in the sense of Defi-
nition 8.1 holds.

Proof. We begin by noting that (8.58) is equivalent to the following optimal control
problem

maxG .c; q; s/ D
X

f2F

Z tf

t0

2

4
X

i2Nf

@ˆ�

f

@c
f
i

c
f
i C
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@q
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i

q
f
i C

X

.i;j /2Wf

@ˆ�

f

@s
f
ij

s
f
ij

3

5 dt

s.t. .8.45/ ; .8.46/ ; .8.47/ ; .8.48/ ; and .8.49/

where it is essential to recognize that G .c; q; s/ is a linear functional that assumes
knowledge of the solution to our oligopolistic game; as such, G .c; q; s/ is a mathe-
matical construct for use in analysis and has no meaning as a computational device.
The augmented Hamiltonian for this artificial optimal control problem is
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The associated maximum principal requires

maxH0 s.t.


C f ;Qf ; Sf

�
�


cf ; qf ; sf

�
� 0

The corresponding necessary conditions for this mathematical program are identical
to (8.55) through (8.57), since
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where
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cf �

; qf �; sf �; If �; ˛f �; ˇf �; �f �
�

�

We next note that the following existence result holds:

Theorem 8.2. Existence of dynamic oligopolistic network equilibrium. When the
variational inequality of Theorem 8.1 is regular in the sense of Definition 8.1, there
exists a solution of the dynamic oligopolistic network competition problem.

Proof. Note that each set of admissible controls 	f is convex and compact by the
virtue of the given and the explicit lower and upper bounds of the formulation. Note
also that continuity is assured by regularity. Existence is then immediate from the
results of Chapter 6. �

8.4.4 Discrete-Time Approximation

Let us define the discrete instant of time

tk D t0 C k
t

where
t is the time step employed, while

N D tf � t0


t

is the number of discretizations and

tN D tf

Then, the extremal problem (8.52) for all firms f 2 F becomes the following:

maxˆf .cf ; qf ; sf I c�f ; q�f / 

NX

kD0

� .tk/ e
��tk �


�
8
<

:

X

i2Nf

�i

0

@
X

g2F
c
g
i .tk/ ; tk

1

A cfi .tk/
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f
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3

5

8k D 1; : : : ; N and i 2 Nf

I
f
i .t0/ D K

f
i 8i 2 Nf

I
f
i .tf / D QKf

i 8i 2 Nf

0 � cf .tk/ � C f 8k 2 Œ1; N �
0 � qf .tk/ � Qf 8k 2 Œ1; N �
0 � hf .tk/ � Hf 8k 2 Œ1; N �

where the vectors cf , qf , and hf have the obvious definitions; moreover, � .t/
is presently the coefficient which arises from a trapezoidal approximation of the
present value integral; that is

�.t/ D
8
<

:

0:5 if t D t0
0:5 if t D tf
1 if t0 < t < tf

One advantage of time discretization is that we can now completely eliminate state
variables (inventories) from the problem by noting that

I
f
i .tkC1/ D K

f
i C
 �

tP

kD0

"

q
f
i .tk/C

P

.j;i/2W
s

f
ji .tk/ � P

.i;j /2W
s

f
ij .tk/ � cf

i .tk/

#

(8.61)

I
f
i .tf / D QKf

i (8.62)

for t D 0; : : : ; N � 1 and all i 2 Nf . As a consequence one obtains a finite-
dimensional variational inequality involving only upper and lower bound constraints
on the remaining control variables. This finite-dimensional variational inequality
may be solved by conventional algorithms developed for such problems or a finite-
dimensional nonlinear complementarity formulation may be created and used in
combination with a successive linearization scheme and a linear complementar-
ity solver.
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8.4.5 A Comment About Path Variables

It should be noted that one may introduce path flows in the above formulation by
re-expressing the state dynamics as

dI
f
i

dt
D q

f
i C

X

j 2Nf

X

p2Pji

hf
p �

X

j 2Nf

X

p2Pij

hf
p � c

f
i

for every firm f 2 F and node i 2 Nf , where Pji is the set of paths from node
j 2 Nf to node i 2 Nf ; furthermore, hp is the flow on path p 2 Pji. There
are corresponding, but quite obvious, changes in the firm’s objective function and
the upper and lower bound constraints on its controls. We omit a complete statement
of such details for the sake of brevity.

8.4.6 Numerical Example

Let us consider a network of five arcs, four nodes and four firms, where a single
firm f is located at each node i D 1; 2; 3; 4. Consumption of each firm’s output
potentially occurs at every node; this consumption may be of local or of imported
output as the network topology permits. Figure 8.4 illustrates the network. The time
interval of interest is Œ0; 20�; that is

t0 D 0

tf D 20

In this example, firm 1 has an economic presence at all nodes, firm 2 at nodes 2,
3, and 4; firm 3 at nodes 3 and 4, and finally firm 4 at node 4 only. Therefore

F D f1; 2; 3; 4g

Fig. 8.4 Network
of five arcs, four nodes,
and four firms

1

2

4

3

Market 1

Market 2

Market 3

Market 4

a1

a2

a3

a4

a5
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and
N1 D f1; 2; 3; 4g N2 D f2; 3; 4g N3 D f3; 4g N4 D f4g

Before time discretization there are 29 controls and 10 state variables associated
with this example; these are enumerated in the following table:

Firm controls by node or path states

1 c1
1 c1

2 c1
3 c1

4 I 1
1 I 1

2 I 1
3 I 1

4

2 c2
2 c2

3 c2
4 I 2

2 I 2
3 I 2

4

3 c3
3 c3

4 I 3
3 I 3

4

4 c4
4 I 4

4

all q1
1 q2

2 q3
3 q4

4

1 h1
1 h1

2 h1
3 h1

4 h1
5 h1

6 h1
7 h1

8 h1
9 h1

10

2 h2
7 h2

8 h2
9 h2

10

3 h3
10

At time t0 D 0, every firm has an inventory of 100 units at their respective locations.
That is,

I
f
i .0/ D 100 for f 2 F and i 2 Nf

In addition, we impose the condition that no backordering is allowed by any firm at
any node at the terminal time tf D 20. That is

I
f
i .20/ D 0 for f 2 F and i 2 Nf (8.63)

The inventory dynamics are the flow balance equations:

dI 1
1

dt
D q1

1 � h1
1 � h1

2 � h1
3 � h1

4 � h1
5 � h1

6 � c1
1

dI 1
2

dt
D h1

1 � h1
7 � h1

8 � h1
9 � c1

2 (8.64)

dI 1
3

dt
D h1

2 C h1
3 C h1

7 � h1
10 � c1

3

:::

dI 4
4

dt
D q4

4 � c4
4

which we only partially enumerate in the interest of saving space. We assume the
inverse demands at each node i take the following form:

�i .ci ; t/ D ˛i � ˇi .ci /
m (8.65)
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wherem 2 <1CC is a constant. Also ˛i 2 <1CC and ˇi 2 <1CC for all i are constants.
The production cost functions for each firm f have the form

V i
i D 1

2
�i

i

�
qi

i

�2 C 1

3

 i

i

�
qi

i

�3
for all i D 1; : : : ; 4 (8.66)

where �f
i and 
f

i 2 <1CC are also constants for all allowed i and f. In (8.66), we
consider nonconvex production cost functions in order to capture both increasing
and decreasing economies of scale for different production rate regimes. We assume
the holding costs are quadratic and of the form

 
f
i D 1

2
�

f
i



I

f
i

�2

for f 2 F and i 2 Nf (8.67)

where �i
j 2 <1CC are constants, again for allowed i and f. The relationships be-

tween arc and path variables are summarized in thee following table.

Path Arc sequence
p1 a1

p2 a2

p3 a1; a3

p4 a1; a4

p5 a1; a3; a5

p6 a2; a5

p7 a3

p8 a4

p9 a3; a5

p10 a5

Furthermore, the relevant arc-path incidence matrix is


p D �
ıap

� D

2

66
6
6
6
4

1 0 1 1 1 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0

0 0 1 0 1 0 1 0 1 0

0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 1 0 0 1 1

3

77
7
7
7
5

The associated path costs are
R D 
T r (8.68)

where
r D �

rai
W i D 1; 2; 3; 4; 5

�
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and the
rai

D Ai C Bai
.fi /

n i D 1; 2; 3; 4; 5

are unit freight rates for individual arcs and the Ai 2 <1CC and Bi 2 <1CC are
known constants. We impose the following vectors of bounds on control variables:

C f D Qf D Hf D 75

Each firm’s instantaneous profit function is found by substituting (8.65), (8.66),
(8.67), and (8.68) into (8.53), where � 2 <1CC is again the fixed nominal inter-
est rate. A discrete-time approximation of the corresponding differential variational
inequality was created using N D 21 equal time steps. The resulting finite-
dimensional variational inequality was restated as a nonlinear complementarity
problem and solved using GAMS with the PATH solver. The numerical values of
the model’s parameters are presented in the following table:

Parameter Value Parameter Value Parameter Value

� 0:05 A1 2 A2 2

A3 2 A4 2 A5 2

B1 0:9 B2 0:9 B3 0:9

B4 0:9 B5 0:9 ˛1 2000

ˇ1 12 ˛2 2200 ˇ2 16

˛3 2400 ˇ3 14 ˛4 2500

ˇ4 18 �1
1 0:3 �2

2; �
4
4 0:1

�3
3 0:2 
 i

i ; i D 1; : : : ; 4 1 �1
2; �

1
4; �

3
4; �

4
4 1

�1
1 4 �1

3; �
2
2; �

2
3 2 �2

4; �
3
3 3

t0 0 tf 20 N 20


 1 n 1 m 1

8.4.7 Interpretation of Numerical Results

Inventory trajectories are plotted against time in Figure 8.8, which shows that most
firms adopt a policy of backordering at most nodes; this backordering behavior is
represented by a negative inventory level. Only firms 1 and 2 have nodes that do
not place backorders; these nodes correspond to the nodes where firms 1 and 2 pro-
duce their goods. The production rates for the four firms are plotted in Figure 8.5.
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Fig. 8.5 Production rates of the firms during the planning horizon Œ0; 20�

Each firm seems to follow a different production plan; firm 2 operates at its full
capacity for the first 10 time units, abruptly halts production and then returns to full
production for the last time period to meet the final inventory constraints, whereas
firm 1 slowly increases production until near the end of the planning horizon where
production begins to decline. Prices of finished goods in four spatially separated
markets are plotted against time in Figure 8.6. Figure 8.9 presents consumption
trajectories (allocations of output to meet demands) in different markets over time.
Figure 8.10 presents path flow trajectories, while Figure 8.7 illustrates the aggre-
gated arc flows of all firms. There is relatively little transport of goods until the
terminal time nears; then goods are moved between nodes to satisfy the terminal
inventory constraints at each node. In Figure 8.11 we compare the net present of
cumulative production, inventory holding, and transportation costs incurred by the
4 firms.The present values of profits for each firm are:

Firm 1 �$185; 592 < 0
Firm 2 �$926; 070 < 0
Firm 3 C$248; 179 > 0
Firm 4 �$314; 978 < 0

It is evident from the above that the only firm to realize positive profits is firm 3; all
other firms experience losses.
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Fig. 8.7 Path flows (grouped by firms)
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Fig. 8.10 Path flows (grouped by firms)
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8.5 Competitive Supply Chains

It is possible to modify and extend the spatial oligopolistic competition model
presented in the previous section to include consideration of supply chains. We will
use the same notation as that used in Section 8.4, modified to distinguish among
producers, suppliers, and retailers. The setting will be one for which a single ho-
mogenous good is manufactured by producers for sale by retailers; shipments from
producers to retailers are free onboard; there is a multi-echelon supply chain that
prepares the input flows to producers and may create and exploit inventories at each
level. Additionally, producers may also build up and spatially redistribute invento-
ries to their advantage. In the discussion that follows, it will simplify our notation
to imagine all producers and all retailers maintain a presence at every node of the
underlying graph. In recognition of this feature, we allow transport between all pairs
.i; j / of nodes, where i; j 2 N and N is the complete set of network nodes.
This generality is merely a notational convenience; a model in which individual
producers and retailers are restricted to subsets of nodes may be easily created.

8.5.1 Inverse Demands

Agreements are in place that prevent producers from selling directly to consumers,
so retailers and consumers will face subtlely distinct inverse demand functions for
the finished good of interest. To understand this, let FP be the set of producers and
FR the set of retailers, potentially occupying every network node. Also let wj refer
to the wholesale price paid by retailers r 2 FR for the producers’ ouput in market
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j 2 N . We note the following identity holds:

Dj .wj C ˛j wj / D
X

r2FR

cr
j (8.69)

where Dj .:/ is the market demand function at node j 2 N for the finished good
and cr

j is the consumption at node j 2 N of the goods flow from retailer r 2 FR;
furthermore, ˛j 2 <1CC is the retailers’ margin at node j 2 N . We assume that
each such demand function has an inverse denoted by ‚j .:; :/ such that

wj D ‚j

0

@
X

r2FR

cr
j ; ˛j

1

A 8j 2 N (8.70)

which we call the wholesalers’ inverse demand. Next we denote the consumers’
inverse demand for the finished good at node j 2 N by ‰j .:/; that inverse is
obtained from (8.69) but is not identical to the wholesalers’ inverse demand (8.70).
In particular, the consumers’ inverse demand takes the form

wj C ˛j wj D vj D ‰j

0

@
X

r2FR

cr
j

1

A 8 j 2 N (8.71)

and wj C ˛j wj is the retail price paid by consumers for the finished good at node
j 2 N . We assume that the inverse demand ‰j .:/ exists for every retail market
j 2 N . Clearly an alternative form of (8.71) is

wj D 1

1C ˛j

‰j

0

@
X

r2FR

cr
j

1

A 8r 2 FR; j 2 N (8.72)

Expressions (8.70) and (8.72) make very clear that

‚j

0

@
X

r2FR

cr
j ; ˛j

1

A D 1

1C ˛j

‰j

0

@
X

r2FR

cr
j

1

A 8 j 2 N (8.73)

8.5.2 Producers’ Extremal Problem

To facilitate the story begun above, we employ the following state dynamics for
producers:

dI
f
i

dt
DF

f
i .h

f
i /C

X

j 2N
s

f
ji �

X

j 2N
s

f
ij �

X

r2FR

X

j 2N
q

f r
ij 8f 2 FP ;8 r 2 FR; i 2 N

(8.74)
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where F f
i .:/ is a node-specific single factor production function for producer f 2

FP , and FP is the set of firms producing the homogeneous product of interest. In
addition, hf

i is the flow of the single factor to firm f 2 FP at node i 2 N . As

already mentioned, the set of retailers we consider is FR. Additionally, qf r
ij denotes

the sales by producer f 2 FP from inventory or new production at node i 2 N
to retailer r 2 FR at node j 2 N . Although we refer to the input to production
as a single factor, it is in fact a precisely constitutued aggregate of several inputs,
constructed from individual factors added at each level of the supply chain through
which it passes. Furthermore,N is the final echelon (stage) of supplying the single
factor to producers at nodes i 2 N . Moreover, the aggregate input factor flow uN

is disaggregated into individual flows hf
i used by each firm f 2 FP at each node

i 2 N where
uN D

X

f 2FP

X

i 2N
h

f
i (8.75)

Naturally we employ the notation

hf D .h
f
i W i 2 N / (8.76)

to describe the vector of factor allocations controlled by producer f 2 FP . We as-
sume there are supply contracts in place, between producer f 2 FP and the supply
chain agent, that have the effect of establishing a cost function C f

i .h
f
i ; t/ for the

instantaneous cost to acquire the input flow h
f
i at each node i 2 N . Additionally,

the factor flow to each producer is constrained according to

Af �
X

i 2N
h

f
i � Bf 8f 2 FP (8.77)

In (8.77)

Af ; Bf 2 <1CC
are the lower and upper bounds (on factor flows) established by the aformentioned
contracts.

In light of the above development, we may express the extremal problem for each
producer f 2 FP as follows:

max J f
P
.qf ; sf ; hf I c/ D

Z tf

t0

e��t
X

r2FR

X

i2N

X

j 2N

1

1C ˛r
j

‰j

0

@
X

g2FP

c
g
j

1

A qf r
ij

�
X

i2N
C

f
i



h

f
iN
; t
�

�
X

i2N

X

j 2N
rij

0

@ sf
ij C

X

r2FR

q
f r
ij

1

A

�
X

i2N
 

f
i



I

f
i ; t

�
)

dt (8.78)
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subject to

dI
f
i

dt
DF

f
i .h

f
i /C

X

j 2N
s

f
ji �

X

j 2N
s

f
ij �

X

r2FR

X

j 2N
q

f r
ij 8f 2 FP ;8 r 2 FR; i 2 N

(8.79)

and

I
f
i .t0/ D K

f
i 8i 2 N (8.80)

I
f
i

�
tf
� � QKf

i 8i 2 N (8.81)

0 � q
f r
ij �eqf r

ij i ; j 2 N ; r 2 Fr (8.82)

0 � s
f
ij �esf

ij i ; j 2 N (8.83)

Af �
X

i 2N
h

f
i � Bf 8f 2 FP (8.84)

uN D
X

g2FP

X

i 2N
h

g
N i (8.85)

where qf , sf , and hf are vectors, which are vectors of output, shipping, and in-
put factor flows under the control of producer f 2 FP . We recall that shipments
to retailers are free onboard and thus paid by producers. Furthermore, rij is the
freight rate for origin-destination (OD) pair .i; j /, while inventory cost for producer
f 2 FP at node i 2 N is  f

i .:; :/; also Kf
i is the initial inventory for pro-

ducer f 2 FP at node i 2 N . Moreover, .8.81/ is the terminal time inventory
constraint; .8.82/ and .8.83/ are constraints expressing bounds on outputs and ship-
ments, where QKf

i ,eqf r
ij , andesf

ij are exogenous fixed parameters for all f 2 FP and
i; j 2 N . Constraints (8.84) form the aforementioned upper and lower bounds on
aggregate factor flows to producers. Note that

q
f
ij D



q

f r
ij W r 2 FR

�
(8.86)

qf D .q
f
ij W i; j 2 N / (8.87)

q�f D .qg W g 2 FP nf / (8.88)

sf D


s

f
ij W i; j 2 N

�
(8.89)

hf D .h
f
i W i 2 N / (8.90)

h D


hf W f 2 FP

�
(8.91)

h�f D .hg W g 2 FP nf / (8.92)
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cr D �
cr

j W j 2 N � (8.93)

c D .cr W r 2 FR/ (8.94)

Furthermore, the constraints of this extremal problem depend on the vector h�f

and on the scalar unknown uN , both of which are determined exogenously by the
producers and the supply chain manager, respectively.

8.5.3 Retailers’ Extremal Problem

Turning our attention to retailers, we stipulate that only retailers may sell finished
goods. Since the single homogeneous finished good must be obtained from produc-
ers, the pertinent dynamics for retailers are

dRr
j

dt
D

X

f 2FP

X

i2N
q

f r
ij � cr

j 8r 2 FR; j 2 N (8.95)

where Rr
j denotes the inventory of retailer r 2 FR at node j 2 N , while FR is

the set of retailers and N is the set of nodes at which retailer r is located. Note also
that cr

j denotes the consumption activity served by retailer r 2 FR at node j 2 N .
Therefore, the extremal problem faced by each retailer r 2 FR is the following:

max J r
R.c

r ; qr I c�r / D
Z tf

t0

e��t
X

j 2N

 

cr
j � 1

1C ˛r
j

X

i2N
q

f r
ij

!

‰j

0

@
X

g2FP

c
g
j

1

A

�
X

j 2N
�r

j .R
r
j ; t/dt (8.96)

subject to

dRr
j

dt
D

X

f 2FP

X

i2N
q

f r
ij � cr

j 8r 2 FR; j 2 N (8.97)

0 � cr
j �ec r

j 8 r 2 FR; j 2 N (8.98)

Rr
j .t0/ D Qr

j 8 r 2 FR; j 2 N (8.99)

Rr
j

�
tf
� D eQr

j 8 r 2 FR; j 2 N (8.100)

In (8.96), �r
i



Rr

j ; t
�

denotes the inventory costs at node i 2 N for retailer r 2 FR.

Additionally,Qr
j is the initial inventory and eQr

j is the terminal time inventory, while
ec r

j is the upper bound on consumption, for retailer r 2 FR at node i 2 N . Note
that
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cr D �
cr

j W j 2 N � (8.101)

c�r D .cg W g 2 FP � frg/ (8.102)

qr
ij D



q

f r
ij W f 2 FP

�
(8.103)

qr D �
qr

ij W i; j 2 N � (8.104)

Note that the constraints of this extremal problem depend on the vector qr , which is
exogenous, since output allocations are determined by the producers.

8.5.4 Supply Chain Extremal Problem

Now let us consider a multi-echelon supply chain stretching from unrefined raw
materials to factor flows ready for use by producers. We use uk to denote the flow
of the input factor exiting stage k (i.e., the flow from stage k to stage k C 1). If we
use Sk to denote the inventory at stage k of the supply chain, we may write

dSk

dt
D uk�1 � uk k D 1; : : : ; N

where it is understood that only the terminal flow uN is ready for use in producing
the homogeneous finished good of present interest to us. Recall that we have already
assumed there are contracts in place specifying a fee schedule C f

i .h
f
i ; t/ and guar-

antied upper and lower bounds for factor flow to each producer f 2 Fp at node
i 2 N at time t 2 �

t0; tf
�
, where the allocations hf are controlled by producer

f 2 FP . The controls available to the supply chain agent are captured by the vector

u D .uk W k 2 Œ1; N �/ (8.105)

As a consequence the single manager who operates all supply chain stages k 2
Œ1; N � seeks to minimize his/her total cost; that is, he/she seeks to solve the follow-
ing optimal control problem:

minJS .u/ D
Z tf

t0

e��t

NX

kD1

ŒVk.uk; t/C 'k .Sk; t/� dt (8.106)

subject to

dSk

dt
D uk�1 � uk k 2 Œ1; N � (8.107)

Sk.0/ D S0
k k 2 Œ1; N � (8.108)
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uN D
X

f 2FP

X

i 2N
h

f
i (8.109)

0 � uk � Quk k 2 Œ1; N � (8.110)

where Vk.:; :/ denotes the variable costs of preparing the stage k flow, 'k .:; :/ is
the inventory cost function, S0

k
is the initial inventory, and Quk is the technological

upper bound for stage k flow of the supply chain. Note that constraint (8.109) was
introduced prevously as (8.75). Note also that the constraints of this extremal prob-
lem depend on the vector h which is determined exogenously, since the producers
decide factor flows to their production facilities consistent with the contracts they
hold with the supply chain manager.

8.5.5 The Differential Variational Inequality

In this section we give an overview of how the relevant differential variational
inequality for our combined producer-retailer-supply chain game may be formed.

8.5.5.1 Maximum Principle for the Producers

With 0

@
c

uN

q�f

1

A (8.111)

as exogenous, each producer f 2 FP solves

maxJ f
P .q

f ; sf ; hf I c/ s.t.


qf ; sf ; hf

�
2 ƒf

P .h
�f ; uN / (8.112)

where

�
f
P
.h�f ; uN / �

8
<̂

:̂

0

B
@
qf

sf

hf

1

C
A W .8.79/; .8.80/; .8.81/; .8.82/;

.8.83/; .8.84/; .8.85/; adjoint equations, and transversality hold

9
>=

>;
(8.113)

The corresponding Hamiltonian is

H
f
P .q

f ; sf ; hf ; I f ; �f I c/ D e��t

8
<

:

X

r2FR

X

i2N

X

j2N

1

1C ˛rj
‰j

0

@
X

g2FP

c
g
j

1

A qf rij

� X

i2N
C
f
i .h

f
iN ; t /� X

i2N

X

j2N
rij

0

@ sfij C X

r2FR

q
f r
ij

1

A
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� X

i2N
 
f
i .I

f
i ; t /

)

C X

i2N
�
f
i

8
<

:
F
f
i .h

f
i /C X

j2N
s
f
ji � X

j2N
s
f
ij � X

r2FR

X

j2N
q
f r
ij

9
=

;

where If D .I
f
i W i 2 N / and �f D .�

f
i W i 2 N / is a vector of adjoint variables.

We will use the notation

rzf H
f �
P D rzH

f
P .q

f �; sf �; hf �; If �; �f �I c�/ (8.114)

to denote the gradient of the Hamiltonian with respect to the control vector

zf D
0

@
qf

sf

hf

1

A

of producerf evaluated at a Nash equilibrium. The maximum principle for producer
f 2 FP leads to:

h
rqf H

f �
P

iT

.qf �qf �/C
h
rsf H

f �
P

iT

.sf �sf �/C
h
rhf H

f �
P

iT

.hf �hf �/ � 0

(8.115)

0

@
qf

sf

hf

1

A ;

0

@
qf �
sf �
hf �

1

A 2 ƒf
P .h

�f �; u�
N / (8.116)

8.5.5.2 Maximum Principle for the Retailers

With �
c�r

qr



(8.117)

as exogenous, each retailer r 2 FR solves

maxJ r
R.c

r ; qr I c�r / s.t. cr 2 ƒr
R .q

r / (8.118)

where

�r
R .q

r/ � fcr W .8.97/; .8.98/; .8.99/; .8.100/; adjoint equations,

and transversality holdg (8.119)
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The corresponding Hamiltonian is

H r
R.c

r ; Rr ; � r I c�r ; qr / D e��t

2

4
X

i2N

X

j 2N

 

cr
j � 1

1C ˛r
j

X

i2N
q

f r
ij

!

‰ j

0

@
X

g2FR

c
g
j

1

A �
X

j 2N
�r

j .R
r
j ; t/

3

5

C
X

j 2N
� r

j

0

@
X

f 2FP

X

i2N
q

f r
ij � cr

j

1

A

where Rr D


Rr

j W j 2 N
�

and � r D


� r

j W j 2 N
�

is a vector of adjoint

variables. We will use the notation

rcrH r�
R D rcrH r

R .c
r�; Rr�; � r�I c�r�; qr�/ (8.120)

to denote the gradient of the Hamiltonian with respect to the controls of re-
tailer r evaluated at a Nash equilibrium. The maximum principle for retailer r 2FR

leads to: �rcrH r�
R

�T
.cr � cr�/ � 0 cr ; cr� 2 ƒr

R

�
qr�� (8.121)

8.5.5.3 Minimum Principle for the Supply Chain

With h as exogenous, the supply chain manager solves

minJS .u/ s.t. u 2 ƒS .h/ (8.122)

where
h D



hf W f 2 FP

�
(8.123)

and

�S .h/ � fu W .8.107/; .8.108/; .8.109/; .8.110/, adjoint equations,

and transversality holdg (8.124)

The corresponding Hamiltonian is

HS .u; S; �Ih/ D e��t

NX

kD1

ŒVk.uk; t/C 'k .Sk; t/�C
NX

kD1

�k .uk�1 � uk/

where S D .Sk W k 2 Œi; N �/ and � D .�k W k 2 Œ1; N �/ is a vector of adjoint vari-
ables. We will use the notation

ruH
�
S D ruHS .u

�; S�; ��Ih�/ (8.125)
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to denote the gradient of the Hamiltonian with respect to supply chain controls
evaluated at a Nash equilibrium. The minimum principle for the single supply chain
manager leads to:

�ruH
�
S

�T
.u � u�/ � 0 u; u� 2 ƒS .h

�/ (8.126)

8.5.6 The DVI

We note that the finite-dimensional variational inequalities derived above hold for
each instant of continuous time. So we may integrate the individual variational in-
equalities over time and sum them over discrete agent indices to obtain a single
necessary condition: the solution

0

B
B
B
B
B
@

q�
s�
h�
c�
u�

1

C
C
C
C
C
A

2 � (8.127)

must satisfy

X

f 2FP

Z tf
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iT

.qf � qf �/ C
h
�rsf H

f �
P

iT

.sf �sf �/

C
h
�rhf H

f �
P

iT

.hf �hf �/
	
dt

C
Z tf

t0

X

rFR

��rcrH r�
R

�T
.cr�cr�/dt

C
Z tf

t0

�ruH
�
S

�T
.u � u�/dt � 0

(8.128)

for all 0

B
B
B
BB
@

q

s

h

c

u

1

C
C
C
CC
A

2 �.h; q; u/ (8.129)
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where

� D �S .h
�/ �

Y

f 2FP

�
f
P .h

�f ; uN / �
Y

r2FR

�r
R

�
qr�� (8.130)

8.5.7 Numerical Example

Let us consider the network of Figure 8.12, which has two arcs and three nodes
for suppliers and nine arcs and seven nodes for producers and retailers. In addition,
there are five arcs between suppliers and producers. Producer 1 and producer 2 have
activities located at nodes i D 1; 2; 3; 4; 5. Retailer 1 is located at node 6; retailer
2 is located at node 7. The time interval of interest is Œ0; 10�; that is t0 D 0 and
tf D 10. The initial inventories at each node for producers and retailers are the
following:

I1.0/ D 2 S0.0/ D 10 R6.0/ D 1

I2.0/ D 3 S1.0/ D 3 R7.0/ D 1

I3 .0/ D 2 S2 .0/ D 1

I4.0/ D 3

I5.0/ D 2

The discount rate � is assumed to be 0:05 and the retailers’ margins at nodes j D 6

and j D 7 are 0:1 and 0:08, respectively. Keeping in mind that the retailers occupy

1 2 3

1

2

3

6

7

5

4
q37

Suppliers

Producers /
Retailer

Firm 1
(Producers)

Firm 2
(Producers)

Retailer 1
and 2

u1 u2

h2

h1

S12

S13

S23
q27

q47

q56q26

S45

h4

h5

h3

u3 = h1 + h2 + h3 + h4 + h5

Fig. 8.12 Integrated supply, production and distribution network
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distinct nodes in this example, we may assume the consumers’ inverse demand
functions for nodes i D 6 and i D 7 are the following:

‰6.c6; c7/ D 11 � c6

‰7.c6; c7; / D 11 � 1:5 � c7

where cj is the consumption at j from the sole retailer located there. The production
cost functions at nodes i D 1; 2; 3; 4; 5 are the following:

F1.h1/ D 0:50 .h1/
2 F4.h4/ D 0:20 .h4/

2

F2.h2/ D 0:10 .h2/
2 F5.h5/ D 0:30 .h5/

2

F3 .h3/ D 0:15 .h3/
2

where we use hi to denote the input factor flow from the final (third) stage of
the supply chain to producer i . The inventory cost functions for producers i D
1; 2; 3; 4; 5 are

 1.I1; t/ D 1:5 .h1/
2  4.I4; t/ D 2:0 .h4/

2

 2.I2; t/ D 1:5 .h2/
2  5.I5; t/ D 1:5 .h5/

2

 3.I3; t/ D 1:5 .h3/
2

The inventory cost functions for retailers at nodes i D 6; 7 are

�6.R6; t/ D 3:0 .R6/
2 �7.R7; t/ D 2:5 .R7/

2

The inventory cost functions for the k D 1; 2; 3 stages of the supply chain are

'1.S1; t/ D 5:0 .S1/
2 '2.S2; t/ D 3

8
.S2/

2 '3.S3; t/ D 1:0 .S3/
2

We assume that unit freight costs between nodal pairs are constant:

r1 D 2:0 r4 D 0:5 r7 D 5:0

r2 D 2:0 r5 D 4:0 r8 D 3:0

r3 D 0:5 r6 D 3:0 r9 D 4:0

The costs to producers at i D 1; 2; 3; 4; 5 for acquiring factor input flows at i D
1; 2; 3; 4; 5 are the following:

C1.h1; t/ D 2:0 .h1/ C4.h4; t/ D 3:0 .h4/

C2.h2; t/ D 2:5 .h2/ C5.h5; t/ D 2:1 .h5/

C3.h3; t/ D 2:1 .h3/

Finally, the variable costs of preparing the stage k D 1; 2; 3 supply chain flows are

V1.u1; t/ D 1:2 .u1/ V2.u2; t/ D 1:3 .u2/ V3.u3; t/ D 2:0 .u3/
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The upper bounds on control variables are
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Keeping in mind that the subnetworks for producers and retailers are disjoint,
the initial-value problems that consitute inventory dynamics for producers i D
1; 2; 3; 4; 5 are the following flow balance equations:

dI1

dt
D F1.h1/� s12 � s13 I1.t0/ D I 0

1 D 2

dI2

dt
D F2.h2/C s12 � s23 � q26 I2.t0/ D I 0

2 D 3

dI3

dt
D F3.h3/C s13 C s23 � q37 I3.t0/ D I 0

3 D 2

dI4

dt
D F4.h4/ � s45 � q46 I4.t0/ D I 0

4 D 3

dI5

dt
D F5.h5/C s45 � q56 I5.t0/ D I 0

5 D 2

where qij is the flow from a producer at i to a retailer at j .
Inventory dynamics for retailers i D 6; 7 are the following flow balance

equations

dR6

dt
D q26 C q56 � c6 R6.t0/ D R0

6 D 1

dR7

dt
D q27 C q37 C q46 � c7 R7.t0/ D R0

7 D 1

Inventory dynamics for the k D 1; 2; 3 supply chain stages are the following flow
balance equations:

dS1

dt
D u0 � u1 S1.t0/ D S0

1 D 10

dS2

dt
D u1 � u2 S2.t0/ D S0

2 D 3

dS3

dt
D u2 � u3 S2.t0/ D S0

2 D 1
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Furthermore, we have

u3 D h1 C h2 C h3 C h4 C h5

We leave, as an exercise for reader, the formulation of the relevant Hamiltonians
and the encompassing differential variational inequality. In this numerical example,
we employ production functions exhibiting increasing returns to scale, as well as
linear demand functions. A fixed-point algorithm implemented in discrete time is
an attractive numerical scheme since the dynamics are linear. Note, however, that
the model considered is actually a differential quasivariational inquality; thus, its
discrete time counterpart, is a finite-dimensional quasivariational inequality. As such
the unembellished fixed-point algorithm may fail to converge, since a proof of its
convergence for general quasi-variational inequalities is not available. That is, the
fixed-point algorithm is a heuristic in the present application. A complete presenta-
tion of this example’s mathematical formulation, associated data, algorithmic details
and numerical solution may be found by following self-explanatory links found at
the website http://www2.ie.psu.edu/csee/DODG/Ch8NuEx.pdf.

8.6 Exercises

1. Study some of the consumption, inventory, and shipping trajectories from the
models of this chapter, paying particular attention to what happens as the ter-
minal time is approached. (a) Can you explain any of the phenomena observed?
(b) In particular, are implausible actions attributed to a producer by a produc-
tion planning model when a finite horizon is employed without requiring that
inventory vanish when the horizon is reached? (c) How can one compute steady
states of the models of this chapter given the complexity of observed behavior
near the terminal time?

2. Using necessary and sufficient conditions, articulate decision rules for the mod-
els presented in this chapter. How would these decision rules be employed in
practice?

3. For each of the models expressed as a differential variational inequality (DVI)
in this chapter, provide conditions that assure any solution of the DVI is also a
solution of the differential Nash game being studied.

4. For each of the models expressed as a differential variational inequality (DVI)
in this chapter, provide conditions that ensure a solution exists.

5. Develop a supply chain model like that of Section 8.5, but with a single, mo-
nopolistic producer of the finished goods delivered to retailers.

6. State regularity conditions that will assure the existence and uniqueness of state
operators for the supply chain model of Section 8.5.

7. State relevant regularity conditions and provide a proof of the existence of a
solution to the supply chain model of Section 8.5.



List of References Cited and Additional Reading 409

8. Give the complete statement of the feasible region of the supply chain differen-
tial variational inequality appearing in expression (8.130).

9. Create a small two-firm, two-market numerical example of the spatial
oligopolistic network competition model presented in Section 8.4. Solve it
by using the maximum principle.

10. For the dynamic aspatial monopoly considered in Section 8.1, reformulate the
problem for noninvertible, nonseparable demand functions. Analyze and give
an economic interpretation of the optimality conditions. What difficulties do
you foresee in the numerical solution of your reformulation? Have we devel-
oped any algorithms in previous chapters that apply?
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Chapter 9
Dynamic User Equilibrium

Dynamic traffic assignment (DTA) is the positive (descriptive) modeling of
time-varying flows of automobiles on road networks consistent with established
traffic flow theory and travel demand theory. Dynamic user equilibrium (DUE) is
one type of DTA wherein the effective unit travel delay, including early and late
arrival penalties, of travel for the same purpose is identical for all utilized path and
departure time pairs. In the context of planning, DUE is usually modelled for the
within-day time scale based on demands established on a day-to-day time scale.

In the last several years, much effort has been expended to develop a theoretically
sound formulation of dynamic network user equilibrium that is also a canonical form
acceptable to scholars and practitioners alike. DUE models tend to be comprised of
four essential submodels:

1. a model of path delay;
2. flow dynamics;
3. flow propagation constraints; and
4. a path/departure-time choice model.

Peeta and Ziliaskopoulos (2001), in a comprehensive review of DTA and DUE re-
search, note that there are several published models comprised of the four submodels
named above.

We are interested in this chapter in investigating how such DUE models may be
mathematically characterized and numerically solved using the notion of a differ-
ential variational inequality in Hilbert space to capture their game-theoretic nature.
To that end we focus on two infinite-dimensional variational inequality formulations
of the DUE problem reported in Friesz et al. (1993) and Friesz et al. (2001) that have
much in common with other published models. In fact, the Friesz et al. (1993) and
Friesz et al. (2001) formulations are more computationally demanding than most if
not all other DUE models because of the complicated path delay operators, equa-
tions of motion, and time lags they embody. As such, the algorithms discussed in
this chapter should work as well or better when adapted to other DUE models, in-
cluding those for which path delay is determined by a nonlinear response surface or
by simulation in conjunction with a so-called rolling horizon.

In the next section, we review four categories of arc dynamics and associated
flow propagation constraints in order to motivate the model formulation presented

T.L. Friesz, Dynamic Optimization and Differential Games, International
Series in Operations Research & Management Science 135,
DOI 10.1007/978-0-387-72778-3 9, c� Springer Science+Business Media, LLC 2010
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in this chapter. This review focuses on those antecedent efforts that are the most
useful in motivating our approach. After this literature review, we derive flow prop-
agation constraints. This is followed by a mathematical statement of the problem of
finding a dynamic user equilibrium (DUE), on a network, as a differential variational
inequality. We also provide a formal demonstration that any solution of it is a dy-
namic user equilibrium relative to both departure time and path choice. A discussion
of algorithms and a numerical example conclude this chapter.

The following is a preview of the principal topics covered in this chapter:

Section 9.1: Some Background. In this section, some general remarks are made
and some terminology introduced that will helpful in the remaining sections.

Section 9.2: Arc Dynamics. In this section, we review some alternative arc dy-
namics and select the dynamics we will emphasize in this chapter.

Section 9.3: The Measure-Theoretic Nature of DUE. In this section, we explain
why the mathematical expression of a dynamic user equilibrium (DUE) intrinsically
requires a measure-theoretic perspective.

Section 9.4: The Infinite-Dimensional Variational Inequality Formulation. In
this section, we present an infinite-dimensional variational inequality formulation
of the DUE.

Section 9.5: When Delays Are Exogenous. In this section, DUE is investigated
for the circumstance of exogenous effective path delays.

Section 9.6: When Delays Are Endogenous. In this section, DUE is investigated
for the circumstance of endogenous effective path delays.

9.1 Some Background

The Friesz et al. (1993) formulation is an exact formulation of dynamic network user
equilibrium, where by “exact” we mean a model that is completely mathematically
internally consistent and involves no ad hoc treatment of delay operators, depar-
ture time choice, flow propagation anomalies, or other critical model features prior
to its numerical solution. The Friesz et al. (1993) formulation employs path delay
operators that obey appropriate arc dynamics and incorporate a path flow propa-
gation mechanism. This embedded path flow propagation mechanism ensures arc
entry and exit at appropriate times along a given path and preserves the first-in-
first-out (FIFO) queue discipline when appropriate regularity conditions are met.
The requirement that the delay operators reflect arc level dynamics and flow prop-
agation considerations makes the delay operators unknowable in closed form. The
flow propagation mechanism of the Friesz et al. (1993) formulation depends on
arc exit time functions and their inverses. Inverse exit time functions, like the path
delay operators, cannot be known in closed form. The Friesz et al. (1993) model
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expresses a dynamic Nash-like equilibrium relative to departure time and path
choice as an infinite-dimensional variational inequality. This variational inequal-
ity cannot be solved by traditional methods since it is based on nonanalytic path
delay operators which are only known numerically. In subsequent papers, Friesz
et al. (2001) and Friesz and Mookherjee (2006) developed a differential variational
inequality formulation of dynamic user equilibrium, equivalent to the Friesz et al.
(1993) formulation.

9.2 Arc Dynamics

It is possible to write the dynamics of flow on arcs of a network in different ways.
In this section, we explore dynamics that view the rate of change of arc volume as
equal to the difference between entrance flow and exit flow at each instant of time.
To form arc dynamics of this type, several perspectives, which we next review, have
been proposed in the literature.

9.2.1 Dynamics Based on Arc Exit Flow Functions

If one posits that it is possible to specify and empirically estimate, or to mathemat-
ically derive from some plausible theory, functions that describe the rate at which
traffic exits a given network arc for any given volume of traffic present on that arc,
one is led to some deceptively simple traffic dynamics. To express this supposition
symbolically, we use xa .t/ to denote the volume of traffic on arc a at time t and
ga .xa .t// to denote the rate at which traffic exits from link a. Where it will not be
confusing, we suppress the explicit reference to time t and write the arc volume as
xa and the exit flow function as ga .xa/ with the understanding that both entities
are time varying. It is also necessary to define the rate at which traffic enters arc a,
which we denote as ua .t/. Again, when it is not confusing, we may suppress the
time dependency of the entrance rate for arc a and simply write ua: Note that both
ga .xa/ and ua are rates; that is, they have the units of volume per unit time, so it is
appropriate to refer to them as exit flow and entrance flow, respectively. A natural
flow balance equation can now be written for each link:

dxa

dt
D ua � ga .xa/ 8a 2 A (9.1)

where A denotes the set of all arcs of the network of interest. Although (9.1) is a
fairly obvious identity, it seems to have been first studied in depth by Merchant and
Nemhauser (1978a, 1978b) in the context of system optimal dynamic traffic assign-
ment. The same dynamics were employed by Friesz et al. (1989) and Wie et al.
(1995) to explore certain extensions of the Merchant-Nemhauser model. Exit flow
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functions have been widely criticized as difficult to specify and measure. Exit flow
functions are known to allow certain anomalies as illustrated and discussed by Carey
(1986, 1987, 1992, 1995). As a consequence, many researchers studying dynamic
network flow problems have abandoned dynamics based on exit flow functions.

9.2.2 Dynamics with Controlled Entrance and Exit Flows

A possible modification of the Merchant-Nemhauser arc dynamics that avoids the
use of problematic exit flow functions is to treat both arc entrance and exit flows as
control variables. Let W be the set of origin-destination pairs and recall A is the
set of arcs for the network of interest. Then, one way to operationalize the idea of
modeling entrance and exit flows as controls is to write

dx
ij
a

dt
D uija � vija 8a 2 A; .i; j / 2 W (9.2)

where xija is the volume on arc a traveling between origin-destination pair .i; j /,
while uija and vija denote the rates at which traffic, also traveling between .i; j /, en-
ters and exits arc a, respectively. By treating both uija and vija as control variables,
we do not mean to imply that any kind of normative considerations have been in-
troduced, for these variables are viewed as controlled by network users constrained
by physical reality and observed only at the level of their aggregate (flow) behavior.
A criticism is that missing from the unembellished version of (9.2) is any explana-
tion of the queue discipline for the origin-destination flows on the same arc: just as
with dynamics based on exit flow functions, we have no way of ensuring that the
FIFO queue discipline is enforced without additional constraints or assumptions.
Furthermore, use of dynamics (9.2) without additional constraints may result in flow
propagation speeds faster than would occur under free flow with no congestion, a
rather profound violation of physical reality.

To overcome the difficulties mentioned above, Bernstein et al. (1993), Ran et al.
(1993), and Ran and Boyce (1996) have suggested flow propagation constraints for
dynamics (9.2) of the form:

U pa .t/ D V pa Œt C�a .t/� 8a 2 A; p 2 P (9.3)

where U pa .:/ and V pa .:/ are the cumulative numbers of vehicles associated with
path p that are entering and leaving link a, respectively, while �a .t/ denotes the
time needed to traverse link a at time t and P is the set of all paths. The meaning
of these constraints is fairly intuitive: vehicles entering an arc at a given moment in
time must exit at a later time consistent with the arc traversal time. Moreover, these
constraints assume that flows moving through the network are incompressible; that
is, wave packets and vehicle platoons are neither shortened nor elongated in the
presence of congestion. We will see later that this incompressibility assumption is
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incompatible with at least one model of arc delay widely employed in dynamic
traffic assignment modeling; this is because the constraints (9.3) omit a fundamental
term that describes the expansion and contraction of wave packets or platoons
moving through the network.

9.2.3 Cell Transmission Dynamics

The cell transmission model is the name given by Daganzo (1994) to dynamics of
the following form:

xj .t C 1/� xj .t/ D yj .t/ � yjC1 .t/ (9.4)

yj .t/ D min
˚
xj�1 .t/ ;Qj .t/ ; ˛

�
Nj .t/� xj .t/

��
(9.5)

where t is now a discrete time index and a unit time step is employed. In the above,
the subscript j 2 C refers to a spatially discrete physical “cell” of the roadway
segement of interest, while .j � 1/ 2C refers to the cell downstream;C is of course
the set of cells needed to describe the roadway. Also, xj refers to the traffic volume
of cell j . Furthermore, yj is the actual inflow to cell j , Qj is the maximal rate of
discharge from cell j , Nj is the holding capacity of cell j , and ˛ is a parameter.
Daganzo (1995) shows how (9.4) and (9.5) can be extended to deal with network
structures through straightforward bookkeeping. Note that (9.5) is a constraint on
the variables xj and yj .

The language introduced previously is readily applicable to the cell transmission
model; in particular, (9.4) are arc (cell) dynamics (now several dummy arcs can
make up a real physical arc), and (9.5) are flow propagation constraints. The cell
transmission model also includes an implicit notion of arc delay. That notion, how-
ever, is somewhat subtle: namely delay is that which occurs from traffic flowing
in accordance with the fundamental diagram of road traffic. This is because (9.5),
as explained by Daganzo (1994), is really a piecewise linear approximation com-
patible with hydrodynamic models of traffic flow. This feature immunizes the cell
transmission model against potential inconsistencies among the three submodels:
arc dynamics, flow propagation, and arc delay.

It is possible to couple the dynamical description (4) and (5) to path and depar-
ture time choice mechanisms to yield a mathematically exact model for network
equilibrium. In fact, Ziliaskopoulos (2000) and Li et al. (2003) have employed the
cell transmission model to determine dynamic system optimal flows. Lo and Szeto
(2002) and Szeto and Lo (2004) have used the cell transmission model to inves-
tigate dynamic user equilibrium. A major difficulty associated with using the cell
transmission model as a foundation for a dynamic network user equilibrium model
is the fact that the righthand sides of (9.4) are nondifferentiable; this means that, if
the path delay operators are nonlinear, any kind of direct control-theoretic approach
will involve a nonsmooth Hamiltonian and all the attendant difficulties.
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9.2.4 Dynamics Based on Arc Exit Time Functions

Another alternative to the Merchant-Nemhauser dynamics (9.1) is based on the use
of exit time functions and their inverses. This approach, due to Friesz et al. (1993),
allows one to avoid use of exit flow functions and the pitfalls associated therewith.
The resulting formulation of link dynamics and of the dynamic network user equilib-
rium problem has been employed by Wu et al. (1998), Zhu and Marcotte (2000), and
Bliemer and Bovy (2003) for additional investigations of dynamic network flows.
The main numerical complication of the Friesz et al. (1993) formulation arises form
the need to numerically determine inverse exit time functions. Even so, this chal-
lenge is not insummountable, as we shall see.

To understand the exit time function, let ti be the time at which flow exits the
i th arc of some path p when departure from the origin of that path has occurred at
time t . The relationship of these two instants of time is expressed as

ti D �pai
.t/ (9.6)

and we call �pai
.:/ the exit time function for arc ai of path p. The inverse of the exit

time function is written as
t D �pai

.ti / (9.7)

and describes the time of departure t from the origin of path p for flow exiting arc
ai of that path at time ti . Consequently, the following identity must hold:

t D �pai

�
�pai
.t/
�

(9.8)

for all time t for which flow behavior is being modeled. The role of the exit time
function becomes clearer if we describe path p as the following sequence of conve-
niently labeled arcs:

p � ˚
a1; a2; : : : ; ai�1; ai ; aiC1; : : : ; am.p/

�
(9.9)

where m.p/ is the number of arcs in path p. It then follows immediately that the
total traversal time for path p may be articulated in terms of the final exit time
function and the departure time:

Dp .t/ D
m.p/X

iD1

h
�pai

.t/ � �pai �1 .t/
i

D �pam.p/
.t/ � t (9.10)

when departure from the origin of path p is at time t .
Construction of the arc dynamics begins by noting that arc volumes are the sum

of volumes associated with individual paths using a given arc:

xa .t/ D
X

p

ıapx
p
a .t/ 8a 2 A (9.11)
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where xpa .t/ denotes the volume on arc a associated with path p and

ıap D
�
1 if arc a belongs to path p
0 otherwise

(9.12)

If we use the notation hp .t/ for the flow entering pathp at time t , it is possible to ex-
press its contribution to the flow on any arc at a subsequent instant in time using the
inverse exit time functions defined previously. In particular, the cumulative depar-
tures from the origin for a given path up to some moment t , which is the cumulative
number of vehicles that have entered the first arc of that path, may be expressed as

Ip .t/ D
Z t

0

hp .y/ dy 8p 2 P (9.13)

where y is a dummy variable of integration and P is the set of all paths of the net-
work. From the definition of Ip .t/, the volume contributed by a path to any arc at
any moment in time is easily represented as the difference between the cumulative
departures from the origin that have had time to reach the arc and the cumulative
departures from the origin that have had time to exit the arc, or

xpai
.t/ D Ip

�
�pai�1

.t/
� � Ip

�
�pai

.t/
� 8a 2 A; p 2 P (9.14)

which becomes

xpai
.t/ D

Z �
p
ai�1

.t/

0

hp .y/ dy �
Z �

p
ai
.t/

0

hp .y/ dy 8 p 2 P ; i 2 Œ1;m .p/�
(9.15)

Expressions (9.14) and (9.15) are predicated on the elementary notion that the flow
entering arc ai is the flow exiting its predecessor arc ai�1 for any path and any
instant in time. It is important to realize that (9.14) and (9.15) are fundamental
identities that must apply to any dynamic traffic network. The strongest assump-
tion made in their articulation is that the inverse exit time functions exist.

Note that (9.14) and (9.15) can be expressed in the Merchant-Nemhauser form as

dx
p
ai
.t/

dt
D gpai�1

.t/ � gpai
.t/ 8 p 2 P ; i 2 Œ1;m .p/� (9.16)

where the following definitions of entrance and exit flows related to path p are
employed:

gpai�1
.t/ D dIp

�
�
p
ai�1

.t/
�

dt
D d

dt

Z �
p
ai�1

.t/

0

hp .y/ dy (9.17)

gpai
.t/ D dIp

�
�
p
ai
.t/
�

dt
D d

dt

Z �
p
ai
.t/

0

hp .y/ dy (9.18)
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These last two expressions can be considerably simplified by using the following
identity based on the chain rule and valid for arbitrary j :

d

dt

Z �
p
aj
.t/

0
hp .y/ dy D d�

p
aj
.t/

dt
� d

d�
p
aj
.t/

Z �
p
aj
.t/

0
hp .y/ D d�

p
aj
.t/

dt
� hp

h
�
p
aj
.t/
i

(9.19)

Use of (9.19) allows (9.17) and (9.18) to be re-expressed as

gpai�1
.t/ � d�

p
ai�1

.t/

dt
� hp

�
�pai�1

.t/
�

(9.20)

gpai
.t/ � d�

p
ai
.t/

dt
� hp

�
�pai

.t/
�

(9.21)

Note that even though (9.16) is remarkably similar to (9.2), the entrance and
exit flows (9.20) and (9.21) have been very carefully related to departure rates
(i.e., path flows) to avoid internal inconsistencies and flow propagation anomalies
like instantaneous propagation. Note also that the dynamics (9.16) are intrinsically
complicated, having righthand sides that are neither explicit functions nor variables
but rather operators that involve inverse exit time functions. Our reading of the liter-
ature indicates that relationships (9.20) and (9.21) were first noted by Tobin (1993)
and Friesz et al. (1995).

9.2.5 Constrained Dynamics Based on Proper Flow
Propagation Constraints

There is a way of re-expressing the model of arc dynamics (9.16) to obtain an
alternative formulation involving constrained differential equations, state-dependent
time lags, and arc entrance and exit flows that are control variables rather than op-
erators. We will see that this alternative formulation obviates the need to explicitly
know exit time functions and their inverses but nonetheless preserves all the main
features of the Friesz et al. (1993) model of link dynamics. Moreover, the resulting
dynamical description may be readily employed as a foundation for a dynamic net-
work user equilibrium model. The constrained dynamical formulation rests on using
the definition of �pai

.t/ to rewrite (9.21) as

gpai

�
�pai

.t/
� D hp .t/

d�
p
ai

�
�
p
ai
.t/
�

d�
p
ai
.t/

d�
p
ai
.t/

dt
(9.22)

Furthermore, use of the chain rule and the identity �pai

�
�
p
ai
.t/
� D t easily re-

veals that
d�

p
ai

�
�
p
ai
.t/
�

d�
p
ai
.t/

D
�
d�

p
ai
.t/

dt

	�1
(9.23)
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By substituting (9.23) into (9.22), we obtain

hp .t/ D gpai

�
�pai

.t/
� d�pai

.t/

dt
(9.24)

which of course holds for any path p 2 P and any arc ai 2 p.
We will next need to model link delay. To this end we introduce a simple deter-

ministic link delay model suggested by Friesz et al. (1993) for modeling dynamic
user equilibria and herein named the separable arc delay model. To articulate this
delay model, let the time to traverse arc ai for drivers who arrive at its tail node
at time t be denoted by Dai

�
xai

.t/
�
. That is, the time to traverse arc ai is only

a function of the number of vehicles in front of the entering vehicle at the time of
entry. As a consequence, we have

�pa1
D t CDa1

�
xa1

.t/
� 8 p 2 P (9.25)

�pai
D �pai�1

.t/CDai

�
xai

�
�pai�1

.t/
�� 8 p 2 P ; i 2 Œ2;m .p/� (9.26)

Differentiating (9.25) and (9.26) with respect to time gives

d�
p
a1
.t/

dt
D 1CD0

a1

�
xa1

.t/
� dxa1

.t/

dt
8 p 2 P (9.27)

d�
p
ai
.t/

dt
D
"

1CD0
ai

�
xai

�
�pai�1

.t/
�� dxa1

�
�
p
ai�1

.t/
�

d�
p
ai�1

.t/

#
d�

p
ai�1

.t/

dt

8 p 2 P ; i 2 Œ2;m .p/� (9.28)

where we have again used the chain rule and the “0” superscript denotes differentia-
tion with respect to the associated function argument. Thus, we are clearly assuming
that all arc delay functions are differentiable with respect to their own arguments,
an assumption maintained throughout this chapter.

Evidently, expressions (9.24), (9.25), and (9.27) are easily combined to yield

ga1

�
t CDa1

�
xa1

.t/
�� �
1CD0

a1

�
xa1

.t/
� Pxa1

.t/
� D hp .t/ (9.29)

where the overdot “ � ” refers to a total time derivative. Proceeding inductively from
this last result with the guidance of (9.28), we obtain

gpai

�
t CDai

�
xai

.t/
�� �
1CD0

ai

�
xai

.t/
� Pxai

.t/
� D gpai�1

.t/

8 p 2 P ; i 2 Œ2;m .p/� (9.30)

Expressions (9.29) and (9.30) are flow propagation constraints derived in a fash-
ion that makes them completely consistent with the chosen exit time function
dynamics and the separable arc delay model. Note that these constraints involve
a state-dependent time lag Dai

�
xai

.t/
�

but make no explicit reference to the exit
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time functions and their inverses. Expressions (9.29) and (9.30) may be interpreted
as describing the expansion and contraction of vehicle platoons or wave packets
moving through various levels of congestion enroute to their destinations. These
flow propagation constraints were first pointed out by Tobin (1993) and presented
by Friesz et al. (1995). Our reading of the literature indicates Astarita (1995, 1996)
independently proposed flow propagation constraints that are essentially identical to
(9.29) and (9.30).

To support our development of a dynamic network user equilibrium model in
subsequent sections, we need to introduce some additional categories of constraints.
The first of these is the flow conservation constraints, which we express as

X

p2Pij

Z tf

t0

hp .t/ dt D Qij 8 .i; j / 2 W (9.31)

where Pij is the set of all paths that connect origin-destination pair .i; j /, W is
set of all origin-destination pairs, t0 is the initial time, and tf is the terminal time.
Furthermore, Qij is the fixed travel demand for origin-destination pair .i; j /. The
fixed travel demand vector is

Q D �
Qij W .i; j / 2 W�

(9.32)

Note that
Qij D 0 if .i; j / … W

Finally, we impose the nonnegativity restrictions

x � 0 g � 0 h � 0 (9.33)

where

x � �
xpai

W p 2 Œ1; jP j� , i 2 Œ1;m .p/�� (9.34)

g � �
gpai

W p 2 Œ1; jP j� , i 2 Œ1;m .p/�� (9.35)

h � �
hp W p 2 Œ1; jP j�� (9.36)

are the relevant vectors of state variables and control variables.
As a consequence of the preceding development we can now state the model

of constrained arc dynamics we will subsequently employ in modeling user
equilibrium:

dx
p
a1
.t/

dt
D hp .t/ � gpa1

.t/ 8p 2 P (9.37)

dx
p
ai
.t/

dt
D gpai�1

.t/ � gpai
.t/ 8 p 2 P ; i 2 Œ2;m .p/� (9.38)
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X

p2Pij

Z tf

t0

hp .t/ dt D Qij 8 .i; j / 2 W (9.39)

hp .t/ D ga1

�
t CDa1

�
xa1

.t/
�� �
1CD0

a1

�
xa1

.t/
� Pxa1

.t/
�

(9.40)

gpai�1
.t/ D gpai

�
t CDai

�
xai

.t/
�� �
1CD0

ai

�
xai

.t/
� Pxai

.t/
�

8 p 2 P ; i 2 Œ2;m .p/� (9.41)

x .t0/ D x0 (9.42)

It should be clear that the link volumes xpai
are natural state variables while the path

flows hp and link exit (entrance) flows gpai
are natural control variables in the above

constrained dynamical formulation. The essential feature of the preceding discus-
sion is: in order to use arc inflows and outflows as control variables one must use
flow propagation constraints that are fully consistent with the dynamics selected
and the delay model employed. Otherwise one will obtain an intrinsically inconsis-
tent model. We have derived flow propagation constraints for the case of dynamics
(9.37) and (9.38) and for delays based on the separable arc delay model. Use of our
flow propagation constraints with other dynamics and other delay models would be
ill advised.

9.3 The Measure-Theoretic Nature of DUE

In our remarks immediately above, we have assumed large numbers of vehicles
and the intrinsic continuity of time allow traffic volumes to be represented by a
continuous-time, continuous-state model. However, real-world departure rates are
discontinuous in time. This may easily be understood by considering a moment
of time when one vehicle enters the first arc of a path; at that instant there is a
discontinuous change in the departure rate. This means that, in order to construct a
continuous-time and continuous-state model, departure rates should be considered
densities that are equivalent so long as they differ only on a set of measure zero and
that Lebesgue concepts of integration should be employed, resulting in equilibrium
conditions that need only hold almost everywhere.

For convenience, let LC D .L2CŒt0; tf �/� denote the nonnegative cone of the
�-fold product of the Hilbert space L2

�
t0; tf

�
of square-integrable functions on the

closed interval
�
t0; tf

�
, where

� D jP j
Each element, h D .hp W p 2 P/ 2 LC is interpreted as a vector of departure-time
densities, or more simply path flows, measured at the entrance of the first arc of the
relevant path. It will be seen that these departure time densities are defined only up
to a set of measure zero. With this in mind, let � denote a Lebesgue measure on
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�
t0; tf

�
, and for each measurable set, S � �

t0; tf
�
, let 8�.t 2 S/ denote the phrase

for �-almost all t 2 S . If S D �
t0; tf

�
, then we may at times simply write 8�.t/.

Using the notation and concepts we have mentioned, the feasible region for DUE
when effective delay operators are known is

ƒ D
8
<

:
h 2 LC W

X

p2Pij

Z tf

t0

hp .t/ d�.t/ D Qij 8 .i; j / 2 W
9
=

;
(9.43)

For simplicity of notation, we shall express the integrals in (9.43) without making
explicit reference to � when measure-theoretic arguments are not needed and con-
fusion will not result.

In light of the observations made above, we may now construct a mathematical
statement of DUE as follows. In order to define an appropriate concept of minimum
travel costs in the present context, we employ the measure-theoretic analogue of the
infimum of a set of numbers. In particular, for any measurable set S � �

t0; tf
�

with
�.S/ > 0, and any measurable function M W S ! <1, the essential infimum of
some M on S is given by

ess inffM.s/ W s 2 Sg D supfx 2 <1 W �fs 2 S W M.s/ < xg D 0g (9.44)

Note that, for each ˛ > ess inffM.s/ W s 2 Sg, it must be true by definition that
�fs 2 S W M.s/ < ˛g > 0. Next, for each p 2 P , we define the operator Fp W�
t0; tf

� � LC ! <1C for all .t; h/ 2 �t0; tf
� � LC by

Fp.t; h/ D Dp.t; h/C‚Œt CDp.t; h/ � TA� � 0 (9.45)

where‚ Œ:� is a penalty for early or late arrival relative to the desired arrival time TA.
We interpret Fp.t; h/ as the effective delay at time t on path p under travel condi-
tions h. Presently, our only assumption about such costs is that for each h 2 LC the
operator Fp.�; h/ W �t0; tf

� ! <1C is measurable on
�
t0; tf

�
. Given these concepts,

observe that, for any kl-traveler who is currently considering the choice of a depar-
ture time for path p 2 Pkl under travel conditions h, the lower bound on achievable
cost levels for this traveler is given by the essential infimum of Fp.�; h/ over the set
of all departure times. Hence, the relevant lower bound on such achievable costs is
given by

�p.h/ D ess inffFp.t; h/ W t 2 �t0; tf
�g � 0 (9.46)

Given this lower bound on each path p 2 Pkl it then follows (from the finiteness
of the path set Pkl ) that, for any kl-traveler who is currently reconsidering his/her
present choice of departure time t 2 �

t0; tf
�

and path p 2 Pkl , the relevant lower
bound on achievable costs for this traveler is given by

�kl .h/ D minf�p.h/ W p 2 Pkl g � 0 (9.47)
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It is important to note that because of the arrival penalty function and congestion
externalities of the network, there may be more than one departure time for the
which users will incur �kl . In fact, there may be an interval of departure times for
which �kl is realized.

With these concepts, we are now ready to define the relevant notion of an equi-
librium for simultaneous path choice and departure time decisions:

Definition 9.1. Dynamic user equilibrium. For any h D .hp W p 2 P/ 2 ƒ and

any nonnegative vector � D .�kl W .k; l/ 2 W/ 2 <jWj
C , the pair .h; �/ is a

simultaneous departure-time-and-path-choice dynamic user equilibrium if and only
if the following two conditions are satisfied for all p 2 Pkl and for all .k; l/ 2 W:

hp.t/ > 0 ) Fp.t; h/ D �kl 8�.t/ (9.48)

Fp.t; h/ � �kl 8�.t/ (9.49)

To interpret these conditions, observe that, since hp.t/ > 0 must hold on some
set of positive measure for at least one p 2 Pkl , it follows from (9.48) that the
�kl are precisely the essential infima of cost levels achievable by kl-travelers at
all available departure times under h. Given these observations, condition (9.48) is
seen to assert that every traveler in the system is currently achieving a cost level
that cannot be improved by changing his/her current choice of path and/or departure
time. Furthermore, for almost all t , if Fp.t; k/ > �kl , from (9.48), hp.t/ D 0. Thus,
the dynamic equilibrium conditions (9.48) and (9.49) are directly analogous to the
usual static conditions for user optimized flow, requiring that costs be minimal for
the current path and departure time choices for �-almost all kl-travelers.

Observe that the path flows hp may be viewed as densities that are only unique
up to sets of �-measure zero. (Formally, they are equivalent classes of functions
differing only on sets of �-measure zero.) Hence, although the notion of a single
“kl-traveler” serves as a convenient story for purposes of behavioral interpretation,
such individuals are formally sets of �-measure zero, and can have no influence
on the densities hp . Thus the only meaningful notion of “dynamic equilibrium”
here is one in which no set of kl-travelers of positive measure can all do better
by changing their current decisions. However, the lower bound on costs which are
achievable by switching sets of kl-travelers of positive measure under h is precisely
the essential infimum, �kl .h/ as defined by (9.46) and (9.47). Thus, these costs are
the appropriate ones for defining user equilibria in a dynamic setting.

9.4 The Infinite-Dimensional Variational Inequality
Formulation

Friesz et al. (1993) observe that the integral equation form of the arc dynamics (9.15)
may be used to eliminate the state variables and arc exit flows completely from
the formulation of DUE, for then the effective path delay operators are expressible
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solely in terms of departure rates and the time of departure; that is, the effective
delay operators are of the form

Fp .t; h/ 8p 2 P (9.50)

The operators (9.50) can also be obtained from a simulation or response service
methodology for a particular network of interest. Friesz et al. (1993) show that
any solution of the following variational inequality is also a solution of the DUE
problem:

h� 2 ƒ
hF .t; h�/ ; .h � h�/i � 0 8h 2 ƒ



(9.51)

where

˝
F
�
t; h�� ;

�
h � h��˛ �

X

p2P

Z tf

t0

Fp
�
t; h�� �hp .t/ � h�

p .t/
�
dt ,

and we use the feasible region introduced previously:

ƒ D
8
<

:
h 2 LC W

X

p2Pij

Z tf

t0

hp .t/ dt D Qij 8 .i; j / 2 W
9
=

;
(9.52)

We refer, in this chapter, to the formulation (9.51) as VI(F ,ƒ). The advantage of
this formulation is that it subsumes almost all DUE models regardless of the arc
dynamics, flow propagation constraints and arc delay functions employed; it is the
formulation originally put forward by Friesz et al. (1993).

To develop a variational inequality formulation of DUE, we first establish the
following elementary property of measurable functions on the real interval

�
t0; tf

�
:

Lemma 9.1. For any set S � �
t0; tf

�
with �.S/ > 0 and any measurable function

with �ft 2 S W f .t/ > 0g > 0, there is some 	0 > 0 such that �ft 2 S W f .t/ > 	g
> 0 for all 	 2 Œ0; 	0�.
Proof. If for each n > 0 we set

Sn D ft 2 S W 1=n < f .t/g ,

then by definition
ft 2 S W f .t/ > 0g D S

n

Sn

However, by the countable subadditivity of measures (Halmos, 1974, Theorem 8:C ),

0 < �ft 2 S W f .t/ > 0g D �

�
S

n

Sn

�
� P

n

�.Sn/
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which in turn implies that �.Sn/ > 0 for some n > 0. Hence, by letting 	0 D 1=n >

0, we may conclude that for all 	 2 Œ0; 	0�

Sn � ft 2 S W f .t/ > 	g ) �ft 2 S W f .t/g > 0g > 0

�

Given Lemma 9.1, we are ready to establish the following equivalent formulation of
simultaneous path and departure equilibria:

Theorem 9.1. Infinite-dimensional inequality formulation of DUE. The simultane-
ous departure-time-and-path-choice dynamic user equilibrium of Definition 9.1 is
equivalent to the following variational inequality problem on ƒ: find h� 2 ƒ such
that for all h 2 ƒ:

X

p2P

Z tf

t0

Fp.t; h
�/Œhp.t/ � h�

p.t/�dv.t/ � 0 (9.53)

We refer to this formulation as VI(F ,ƒ).

Proof. We repeat here the proof by Friesz et al. (1993). That proof is in two parts.
(i)[Necessity] If .h�; ��/ is a dynamic user equilibrium then h� 2 ƒ by defini-

tion. Hence, to establish that h� is a solution to the (9.53), it suffices to show that
for all h 2 ƒ and .k; l/ 2 W

X

p2Pkl

Z tf

t0

Fp.t; h
�/Œhp.t/ � h�

p.t/�d�.t/ � 0 (9.54)

However, because (9.52) implies that

Z tf

t0

Œhp.t/ � h�
p.t/�d�.t/ D 0

it follows that (9.54) is equivalent to the condition that

X

p2Pkl

Z tf

t0

fFp.t; h�/� ��
klgŒhp.t/ � h�

p.t/�d�.t/ � 0 .k; l/ 2 W (9.55)

Hence, it suffices to show that for all h 2 ƒ, p 2 Pkl and .k; l/ 2 W

fFp.t; h�/ � ��
kl gŒhp.t/ � h�

p.t/� � 0; 8�.t/ (9.56)

To do so, observe first that if (9.56) fails for any t 2 �t0; tf
�
, then either Fp.t; h�/�

��
kl
< 0 or hp.t/�h�

p.t/ < 0. But by (9.49), for �-almost all t , Fp.t; h�/���
p � 0.

Moreover, by (9.48) it follows that for �-almost all t
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hp.t/ < h
�
p.t/ ) h�

p.t/ > 0 ) Fp.t; h
�/ D ��

kl

) fFp.t; h�/� ��
kl gŒhp.t/ � h�

p.t/� D 0 (9.57)

Hence (9.56) follows.
(ii) [Sufficiency ] Next suppose that h� 2 ƒ satisfies (9.53) for all h 2 ƒ, and

let the individual components of the vector �� D .��
kl

W .k; l/ 2 W/ 2 <jWj
C

be defined by ��
kl

D �kl .h
�/ for all .k; l/ 2 W . Our objective is to show that

.h�; ��/ is a dynamic user equilibrium. To do so, observe first from the defini-
tions of �p.h�/ and �kl .h�/ above that, for all p 2 Pkl and �-almost all t , that
Fp.t; h

�/ � �p.h
�/ � �kl .h

�/ D ��
kl

. Hence, (h�; ��) satisfies condition (9.49)
by construction, and it remains to establish condition (9.48). To do so, suppose to
the contrary that (9.48) fails for some p 2 Pkl , .k; l/ 2 W . Then, by definition,
the set

Sp D ft 2 �t0; tf
� W h�

p.t/ > 0; Fp.t; h
�/� ��

kl > 0g (9.58)

must have positive measure. In particular, this implies from Lemma 9.1 that for
some sufficiently small value of 	 > 0 the subset

Sp.	/ D ft 2 Sp W Fp.t; h�/� ��
kl > 2	g (9.59)

has positive measure. Since Sp.	/ � Sp ) h�
p.t/ > 0, 8� Œt 2 Sp.	/�, a second

application of Lemma 9.1 shows that there exists some sufficiently small value of
ı > 0 such that

Sp.	; ı/ D ft 2 Sp.	/ W h�
p.t/ > ıg (9.60)

has positive measure. Next, choosing any path q 2 Pkl with �q.h�/ D �kl .h
�/

(possibly with q D p), it follows from the definition of �p.h�/ that the set

Tq.	/ D ft 2 �t0; tf
� W Cq.t; h�/ < ��

kl C 	g (9.61)

also has positive measure. Finally, letting ˛0 D minf�ŒSp.	; ı/�, �ŒTq.	/�g > 0

and observing that the Lebesgue measure is nonatomic, it follows (Halmos, 1974,
Proposition 41.2) that for any choice of ˛ 2 .0; ˛0/ there exist subsets Sp.	; ı; ˛/ �
Sp.	; ı/ and Tq.	; ˛/ � Tq.	/ with �ŒSp.	; ı; ˛/� D ˛ D �ŒTq.	; ˛/�. Given these
two sets, we now construct a vector of densities h D .hr W r 2 P/ 2 ƒ which
violates condition (9.53) for h�. To do so, let hr D h�

r for all r 2 P � fp; qg, and
let hp and hq be defined respectively by

hp.t/ D
(
h�
p.t/ � ı t 2 Sp.	; ı; ˛/
h�
p t 2 Œ0; T � � Sp.	; ı; ˛/ (9.62)

hq.t/ D
(
h�
q C ı t 2 Tq.	; ˛/
h�
q.t/ t 2 Œ0; T � � Tq.	; ˛/

(9.63)

Note that if p D q, then these two conditions still yield a well-defined function, hp .
To see this, observe from (9.59) that Sp.	; ı; ˛/ � Sp.	/ implies Fp.t; h�/ >
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��
kl

C 2	, 8�Œt 2 Sp.	; ı; ˛/�, and similarly from (9.61) that Tp.	; ˛/ � Tp.	/

implies Fp.t; h�/ < ��
kl

C 	, 8� Œt 2 Tp.	; ˛/�. Hence, if p D q, then we must
have �ŒSp.	; ı; ˛/\Tp.	; ˛/� D 0, and it follows that hp is well defined up to a set
of measure zero. Thus, without loss of generality, we may henceforth assume that
p ¤ q. With this convention, we next show that h 2 ƒ. To do so, observe first that
for �-almost all t 2 Sp.	; ı; ˛/, we have h�

p.t/ � ı ) hp.t/ � 0. Similarly, for
�-almost all t 2 Tq.	; ˛/, h�

q.t/ � 0 ) hq.t/ � 0. Moreover,

�ŒSp.	; ı; ˛/� D ˛ D �ŒTq.	; ˛/�

implies that

X

r2Pkl

Z tf

t0

hr .t/d�.t/ D
X

r2Pkl �fp;qg

Z tf

t0

hr.t/d�.t/

C
Z tf

t0

hp.t/d�.t/C
Z tf

t0

hq.t/d�.t/

D
X

r2Pkl nfp;qg

Z tf

t0

h�
r .t/d�.t/

C
�Z tf

t0

h�
p.t/d�.t/ � ı � ˛

	

C
�Z tf

t0

h�
q.t/d�.t/C ı � ˛

	

D
X

r2Pkl

Z tf

t0

h�
r .t/d�.t/

D Qkl (9.64)

Therefore, we must have h 2 ƒ. However, (9.62) and (9.63) also imply that

X

p2P

Z tf

t0

Fp.t; h
�/Œhp.t/ � h�

p.t/�d�.t/ D
Z

Sp.�;ı;˛/

Fp.t; h�/Œhp.t/ � h�
p.t/�

C
Z

Tq.�;˛/

Cq.t; h
�/Œhq.t/� h�

q.t/�;

(9.65)

Furthermore, the construction of Sp.	; ı; ˛/ and Tq.	; ˛/ imply, respectively, that

Z

Sp.�;ı;˛/

Fp.t; h
�/Œhp.t/� h�.t/� D

Z

Sp.�;ı;˛/

Fp.t; h
�/Œ�ı�d�.t/

� �
Z

Sp.�;ı;˛/

�
.��
kl C 2	/ı

�
d�.t/

D �.��
kl C 2	/ı˛ (9.66)
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and
Z

Tq.�;˛/

Cq.t; h
�/Œhq.t/� h�

q.t/� D
Z

Tq.�;˛/

Cq.t; h
�/Œı�d�.t/

�
Z

Tq.�;˛/

�
.��
kl C 	/ı

�
d�.t/

D .��
kl C 	/ı˛ (9.67)

Finally, by combining (9.65),(9.66), and (9.67), we may conclude that

X

p2P

Z tf

t0

Fp.t; h
�/Œhp � h�

p.t/�d�.t/ � �	ı˛ < 0; (9.68)

which contradicts (9.53) for this choice of h 2 ƒ. Thus the hypothesized failure of
condition (9.48) leads to a contradiction, and we may conclude that .h�; ��/ is a
simultaneous path-departure equilibrium. �

In Chapter 5 we learned that under certain conditions a finite-dimensional vari-
ational inequality may be viewed as a necessary condition for an appropriately
defined finite-dimensional extremal problem. In static traffic assignment, the exis-
tence of extremal problems corresponding to variational inequality formulations for
static user equilibrium requires that the cost (or delay) functions have a symmetric
Jacobian matrix. [See Friesz et al. (1985) for a review of static network equilib-
rium.] The extremal problem is then the minimization of the sum of integrals of arc
costs (or delays) when travel demand is exogenous. In the present dynamic case,
the usual symmetry conditions ensuring that a line integral has a value independent
of the path of integration are not readily tested since the Fp.t; h/ operators do not
have a closed-form representation. Furthermore, intuitive arguments with regard to
the irreversibility of time would seem to contravene such symmetry, for otherwise
travelers’ decisions at opposite ends of the analysis time horizon would have equal
and symmetric impacts on one another.

9.5 When Delays Are Exogenous

Let us consider a circumstance for which the effective path delay operators are
known in advance or are represented by a simulation model that does not employ the
constrained state dynamics (9.37), (9.38), (9.39), (9.40), (9.41), and (9.42). We be-
gin, by noting that the flow conservation constraints

X

p2Pij

Z tf

t0

hp .t/ dt D Qij (9.69)
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of formulation (9.51) may be restated as

dyij

dt
D

X

p2Pij

hp .t/ 8 .i; j / 2 W (9.70)

yij .t0/ D 0 8 .i; j / 2 W (9.71)

yij
�
tf
� D Qij 8 .i; j / 2 W (9.72)

For discussions in subsequent sections, it is useful to restate the state dynamics
(9.70), (9.71), and (9.72) as

dy

dt
D Ah (9.73)

y.t0/ D y0 � 0 (9.74)

‰
�
y
�
tf
�� � Q � y

�
tf
� D 0 (9.75)

where
A D



A
p
ij W .i; j / 2 W; p 2 Pij

�
(9.76)

is the path-OD incidence matrix and

A
p
ij D

8
<

:

1 if p 2 Pij

0 if p … Pij

Also
y D �

yij W .i; j / 2 W�

is the vector of dummy variables used to represent the flow conservation constraints.
Clearly (9.73), (9.74), and (9.75) constitute a two-point boundary-value problem.
We also introduce the inner product notation

hF 0.t; h�/; h� h�i D
X

p2P

Z tf

t0

F 0p .t; h
�/
�
hp � h�

p

�
dt � 0 (9.77)

where
F 0.t; h�/ D �

F 0p .t; h
�/ W p 2 P� (9.78)

is the exogenously determined effective path delay operator. As a consequence prob-
lem (9.51) may be expressed as the following differential variational inequality: find
h� 2 ƒ0 such that

h� 2 ƒ0
hF 0.t; h�/; h� h�i � 0 8h 2 ƒ0



DVI.F0; ƒ0/ (9.79)
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where we have suppressed the previous measure-theoretic notation, although the
integral above remains a Lebesgue integral. Furthermore, in (9.79) the set of admis-
sible controls is now stated as

ƒ0 D
�
h � 0 W dy

dt
D Ah; y .t0/ D y0; y

�
tf
� D Q



(9.80)

The variational inequality (9.79) may be written as

X

.i;j /2W

X

p2Pij

Z tf

t0

F 0p .t; h
�/hpdt �

X

.i;j /2W

X

p2Pij

Z tf

t0

F 0p .t; h
�/h�

pdt 8h 2 ƒ0
(9.81)

which means that the solution h� 2 ƒ0 satisfies the optimal control problem

minJ0 D
X

.i;j /2W
vij
�
Qij � yij

�
tf
��C

X

.i;j /2W

X

p2Pij

Z tf

t0

F 0p .t; h
�/hpdt (9.82)

subject to

dyij

dt
D

X

p2Pij

hp .t/ 8 .i; j / 2 W (9.83)

yij .t0/ D 0 8 .i; j / 2 W (9.84)

h � 0 (9.85)

where the vij are dual variables for the terminal conditions on the state variables.
The Hamiltonian for problem (9.82), (9.83), and (9.85) is

H0 D
X

.i;j /2W

X

p2Pij

F 0p .t; h
�/hp C

X

.i;j /2W

ij

X

p2Pij

up (9.86)

where the adjoint equation is

d
ij

dt
D �@H0

@yij
D 0 8 .i; j / 2 W; p 2 Pij ; t 2 �t0; tf

�
(9.87)

with transversality condition


ij
�
tf
� D @

P
.i;j /2W vij

�
Qij � yij

�
tf
��

yij
�
tf
� D �vij D constant

8 .i; j / 2 W; p 2 Pij ; t 2 �t0; tf
�

(9.88)

The implication of (9.87) and (9.88) is of course that


ij .t/ D �vij 8 .i; j / 2 W; t 2 �t0; tf
�

(9.89)
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The minimum principle requires the controls h to obey

minH0 s.t. � h � 0 (9.90)

with Kuhn-Tucker conditions

F 0p .t; h
�/� vij D �p � 0 8 .i; j / 2 W; p 2 Pij ; t 2 �t0; tf

�
(9.91)

where the �p are dual variables satisfying the complementary slackness conditions

�php D 0 8 .i; j / 2 W; p 2 Pij ; t 2 �t0; tf
�

(9.92)

From (9.91) and (9.92) we have immediately the conditions of a dynamic user equi-
librium, namely

h�
p > 0; p 2 Pij H) F 0p .t; h

�/ D vij (9.93)

F 0p .t; h
�/ > vij ; p 2 Pij H) h�

p D 0 (9.94)

with the obvious interpretation that each dual variable vij is the essential infimum
of the effective unit path delay F 0p .t; h

�/. Thus, we are assured that any solution of
our differential variational inequality is a dynamic user equilibrium relative to path
and departure time choice.

It is an easy matter to show that (9.93) and (9.94) lead to an appropriate version of
(9.79); in fact, the arguments employed in the proof of Theorem 9.1 directly apply.
However, it is instructive to give an informal derivation of the same result for those
readers not familar with measure theory. In particular we note that

F 0p .t; h
�/ � vij 8 .i; j / 2 W; p 2 Pij ; t 2 �t0; tf

�
(9.95)

Therefore, if
�
hp � h�

p

� � 0 we have

F 0p .t; h
�/
�
hp � h�

p

� � vij
�
hp � h�

p

� 8 .i; j / 2 W; p 2 Pij ; t 2 �t0; tf
�

(9.96)
However, �

hp � h�
p

�
< 0 H) h�

p > hp � 0 H) h�
p > 0 (9.97)

which by (9.93) requires (9.95) to hold as an equality, thereby assuring (9.96) is
valid for any hp; h�

p 2 ƒ0. As a consequence, we may sum and integrate both sides
of (9.96) to obtain

X

p2P

Z tf

t0

F 0p .t; h
�/
�
hp � h�

p

�
dt �

X

p2P

Z tf

t0

vij
�
hp � h�

p

�
(9.98)
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D
X

.i;j /2W
vij

X

p2Pij

Z tf

t0

�
hp � h�

p

�
(9.99)

D
X

.i;j /2W
vij .Qij �Qij / D 0 (9.100)

Thus, we have established the following result:

Theorem 9.2. Variational inequality VI.F 0; ƒ/ with exogenous delay operators
and differential variational inequality DVI.F 0; ƒ0/ are equivalent and their solu-
tions are dynamic user equilibria.

We now need to say a few things about solving DVI.F 0; ƒ0/.
In particular, we are interested in re-stating (9.79) as a fixed-point problem, pri-

marily because fixed-point problems enjoy simple iterative algorithms that do not
involve derivatives; this will allow us to avoid differentiating the effective path delay
operators, which are typically nondifferentiable. Consider the following fixed-point
problem:

h D Pƒ0

�
h � ˛F 0.t; h�/

� 

FPP.F 0; ƒ0/ (9.101)

where Pƒ0
Œ:� denotes a minimum norm projection and ˛ 2 <1CC is an arbitrary

scalar parameter that may be adjusted to facilitate convergence. We need to establish
that any solution of (9.101) is a solution of (9.79). This is done by noting that (9.101)
may be restated as

h� D arg

8
<

:
min

z

Z tf

t0

1

2

X

p2P

�
h�
p � ˛F 0p .t; h

�/� zp
�2
dt s.t. z 2 ƒ0

9
=

;
(9.102)

That is, (9.102) requires that the following optimal control problem must be solved

min
z

X

.i;j /2W
�ij
�
Qij � yij

�
tf
��C

X

p2P

Z tf

t0

1

2

�
h�
p � ˛F 0p .t; h

�/� zp
�2
dt

(9.103)
subject to

dyij

dt
D

X

p2Pij

zp .t/ 8 .i; j / 2 W (9.104)

yij .t0/ D 0 8 .i; j / 2 W (9.105)

z � 0 (9.106)

The Hamiltonian for this problem is

H0 D 1

2

X

p2P

�
h�
p � ˛F 0p .t; h

�/� zp
�2 C

X

.i;j /2W

ij

X

p2Pij

zp (9.107)
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where the adjoint equation is

d
ij

dt
D �@H0

@yij
D 0 8 .i; j / 2 W; p 2 Pij ; t 2 �t0; tf

�
(9.108)

with transversality condition


ij
�
tf
� D @

P
.i;j /2W �ij

�
Qij � yij

�
tf
��

yij
�
tf
� D ��ij D constant

8 .i; j / 2 W; p 2 Pij ; t 2 �t0; tf
�

(9.109)

Thus, we conclude


ij .t/ D ��ij 8 .i; j / 2 W; t 2 �t0; tf
�

(9.110)

The minimum principle requires the controls z to obey

minH0 s.t. � z � 0 (9.111)

for which the Kuhn-Tucker conditions include

�hp C ˛F 0p .t; h
�/C zp C 
ij D �p � 0 8 .i; j / 2 W; p 2 Pij ; t 2 �t0; tf

�

(9.112)

where the �p are dual variables satisfying the complementary slackness conditions

�pzp D 0 8 .i; j / 2 W; p 2 Pij ; t 2 �t0; tf
�

(9.113)

Thus

zp D �p � 
ij C h�
p � ˛F 0p .t; h�/ 8 .i; j / 2 W; p 2 Pij ; t 2 �t0; tf

�
(9.114)

Using (9.114) with (9.102) we obtain

h�
p D �p � 
ij C h�

p � ˛F 0p .t; h�/ 8 .i; j / 2 W; p 2 Pij ; t 2 �t0; tf
�

(9.115)

In light of (9.110) this last result becomes

F 0p .t; h
�/ D �p

˛
C �ij

˛
8 .i; j / 2 W; p 2 Pij ; t 2 �t0; tf

�
(9.116)

If we define

�p � �p

˛
� 0 8 .i; j / 2 W; p 2 Pij (9.117)

vij � �ij

˛
8 .i; j / 2 W , (9.118)
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then, from the complementary slackness conditions (9.113) and the identity h� D z
obtained from (9.102), we see that (9.116) assures the dynamic user equilibrium
conditions

h�
p > 0; p 2 Pij H) F 0p .t; h

�/ D vij (9.119)

F 0p .t; h
�/ > vij ; p 2 Pij H) h�

p D 0 (9.120)

Manipulations like those intrinsic to (9.97), (9.98), (9.99), and (9.100) establish that
(9.119) and (9.120) lead to DVI.F 0; ƒ0/. Thus, we have established the following
result:

Theorem 9.3. Fixed-point representation of DUE. The differential variational in-
equality DVI.F 0; ƒ0/ and fixed-point problem FPP.F 0; ƒ0/ for exogenous delay
operators are equivalent and any solutions of them are dynamic user equilibria.

Associated with our fixed-point formulation FPP
�
F 0; ƒ0

�
, as we have noted

in previous chapters, is a simple and obvious algorithm:

hkC1 D Pƒ0

h
hk � ˛F 0.t; hk/

i
(9.121)

When the projection operator is properly interpreted, algorithm (9.121) involves the
repeated solution of an optimal control problem and takes the following form:

Step 0. Initialization. Identify an initial feasible solution h0 2 ƒ0 and set k D 0.

Step 1. Optimal control subproblem. Solve

min
u

X

.i;j /2W
�ij
�
Qij � yij

�
tf
��C

X

p2P

Z tf

t0

1

2

h
hkp � ˛F 0p .t; hk/ � up

i2
dt

(9.122)
subject to

dyij

dt
D

X

p2Pij

up .t/ 8 .i; j / 2 W (9.123)

yij .t0/ D 0 8 .i; j / 2 W (9.124)

u � 0 (9.125)

and call the solution hkC1.

Step 2. Stopping test. If
�
�
�hkC1 � hk

�
�
� � "

where " 2 <1CC is a preset tolerance, stop and declare h� 	 hkC1. Otherwise set
k D k C 1 and go to Step 1.
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In order to to solve the subproblem (9.122), (9.123), (9.124), and (9.125), a critical
step is finding the dual variables �ij for all .i; j / 2 W . If these may be approximated
using primal information, a direct solution of the subproblem is possible. We note
that the optimality conditions for the subproblem provide the following relationships
when the current optimal values of each up, �p and �p are referred to as hkC1

p , �kC1
p

and �kC1
p , respectively:

hkC1
p D hkp C �kC1

p C �kC1
ij � ˛F 0p .t; h

k/ 8 .i; j / 2 W; p 2 Pij ; t 2 �t0; tf
�

0 D �kC1
p hkC1

p �kC1
p � 0 8 .i; j / 2 W; p 2 Pij ; t 2 �t0; tf

�

Therefore

hkC1
p D

h
hkp C �kC1

ij � ˛F 0p .t; hk/
i

C 8 .i; j / 2 W; p 2 Pij ; t 2 �t0; tf
�

(9.126)
where Œ:�C is the elementary projection operator:

Œx�C D
8
<

:

x if x � 0

0 if x < 0

(9.127)

By virtue of flow conservation, the dual variables �kij obey the following system of
uncoupled equations:

X

p2Pij

Z tf

t0

h
hkp C �kC1

ij � ˛F 0p .t; h
k/
i

C dt D Qij 8 .i; j / 2 W (9.128)

One dimensional line search may be used to find each dual variable �kC1
ij from

(9.128). In fact, there are jWj such line searches to perform, and all may be carried
out simultaneously.

9.6 When the Delay Operators Are Endogenous

In Section 9.4 we studied the problem of finding a dynamic user equilibrium when
the delay operators are exogenous. Now we consider the circumstance where the
delay operators are endogenous. This means that we must employ as constraints
the system of constrained dynamics summarized at the end of Section 9.2.5 and
repeated here for convenience:

dx
p
a1
.t/

dt
D hp .t/ � gpa1

.t/ 8p 2 P (9.129)
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dx
p
ai
.t/

dt
D gpai�1

.t/ � gpai
.t/ 8 p 2 P ; i 2 Œ2;m .p/� (9.130)

X

p2Pij

Z tf

t0

hp .t/ dt D Qij 8 .i; j / 2 W (9.131)

hp .t/ D ga1

�
t CDa1

�
xa1

.t/
�� �
1CD0

a1

�
xa1

.t/
� Pxa1

.t/
�

(9.132)

gpai�1
.t/ D gpai

�
t CDai

�
xai

.t/
�� �
1CD0

ai

�
xai

.t/
� Pxai

.t/
�

8 p 2 P ; i 2 Œ2;m .p/� (9.133)

x .t0/ D x0 (9.134)

That is, we consider the admissible set

ƒ1 D fh W (9.129), (9.130), (9.131), (9.132), (9.133), and (9.134) holdg

In particular we seek h� 2 ƒ1 such that

hF .t; h/ ; h � h�i D
X

p2P

Z tf

t0

Fp
�
t; x

�
h��� �hp .t/ � h�

p .t/
�
dt � 0 8h 2 ƒ1

(9.135)

We refer to problem (9.135) as DVI.F ; ƒ1/, where the delay operator is now F to
signify that path delays are determined endogenously. Bernstein et al. (1993) pos-
tulated a similar formulation but used intuitive flow propagation constraints that do
not account for the compressibility of vehicle platoons. Bernstein et al. (1993) infor-
mally argued that their formulation was correct since it was constructed from valid
submodels; that is, they did not formally demonstrate that the associated necessary
conditions ensured solutions were dynamic network user equilibria. The specific for-
mulation (9.135) was first conjectured by Friesz et al. (1995), also without a formal
analysis of the necessary conditions. The first complete analysis of the necessary
conditions for (9.135) was carried out by Friesz et al. (2001). The main motiva-
tion for offering formulation (9.135) is that a variational inequality is known from
Friesz et al. (1993) to describe a simultaneous path and departure choice dynamic
equilibrium, while (9.129) through (9.134) were shown in Section 9.2.5 to be valid
constrained dynamics based on the separable arc delay model. However, with re-
gard to the formal development presented so far in this chapter, formulation (9.135)
is conjectural; it remains for us to formally demonstrate that its solutions will in fact
be dynamic network user equilibria. This is done in Section 9.6.3.
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9.6.1 Nested Operators

To create the desired differential variational inequality, we need first to more fully
characterize the delay operators. In light of how the arc exit time functions were
defined in Section 9.2.4, it is immediate that path traversal time may be expressed as

Dp.t/ D
m.p/X

iD1
Œ�pai

.t/ � �pai�1
.t/�

D Œ�pa1
.t/ � t �C Œ�pa2

.t/ � �pa1
.t/�C : : :C Œ�pam.p/

.t/ � �am.p/�1
.t/�

D �pam.p/
.t/ � t 8p 2 P (9.136)

for all p 2 P . Moreover, as we have already observed, the exit time functions obey
the recursive identities

�pa1
.t/ D t CDa1

Œxa1
.t/� 8p 2 P (9.137)

and

�pai
.t/ D �pai�1

.t/CDai
Œxai

.�pai�1
.t//� 8p 2 P ; i 2 Œ2;m.p/� (9.138)

It is easy to see that (9.137) and (9.138) may be used to construct nested delay
operators that rapidly become very complex as the number of arcs comprising a
path increases, as discussed by Wie et al. (1995). Also, note that, because Dp .t/ D
�
p
am.p/

.t/ � t , we may write the path delay operators in the following form:

Dp .t; x/ � path delay for departure at time t under traffic conditions x

D
m.p/X

iD1
ıaipˆai

.t; x/ (9.139)

where the ˆai
.t; x/ are arc delay operators obeying

ˆa1
.t; x/ D Da1

�
xa1

.t/
�

ˆa2
.t; x/ D Da2

�
xa2

�
t Cˆa1

��

ˆa3
.t; x/ D Da3

�
xa3

�
t Cˆa1

Cˆa2

��

:::

ˆai
.t; x/ D Dai

�
xai

�
t Cˆai �1 C : : :Cˆa1

�� D Dai

h
xai



t CPi�1

jD1ˆaj

�i

(9.140)
We also introduce the asymmetric arrival penalty

‚
�
t CDp .t; x/ � TA

�
(9.141)
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where TA is the prescribed fixed arrival time and TA > tf . The arrival penalty
operator has the properties

t CDp .t; x/ > TA H) ‚
�
t CDp .t; x/ � TA

� D �L .t; x/ > 0 (9.142)

t CDp .t; x/ < TA H) ‚
�
t CDp .t; x/ � TA

� D �E .t; x/ > 0 (9.143)

t CDp .t; x/ D TA H) ‚
�
t CDp .t; x/ � TA

� D 0 (9.144)

�L .t; x/ > �E .t; x/ (9.145)

for every path p 2 P to reflect the fact that arriving late is more serious than arriving
early. Consequently, the effective delay operator for each path p 2 P is

Fp .t; h/ D Dp .t; x/C‚
�
t CDp .t; x/ � TA

�
(9.146)

since the states x (as well as the arc exit flows g) are completely determined by
knowledge of h.

9.6.2 The Problem Setting

In Chapter 6 we studied differential variational inequalities that possess state-
dependent time shifts, as does the proposed formulation (9.135). In order to
apply the formalism developed in Chapter 6, we make the following observa-
tions/assumptions:

1. the controls are g 2 �L2 �t0; tf
��n1 and h 2 �L2 �t0; tf

��jPj
where

n1 D
jPjX

pD1
m.p/ ;

2. the state variables are the traffic volumes

xpai
8p 2 P ; i 2 Œ1;m .p/� ;

3. the arc delays
Dai

�
xai

� 8p 2 P ; i 2 Œ1;m .p/� ;
appear as explicit time shifts in the flow propagation constraints;

4. the controls g (arc exit flows) are intermediate variables that could be elimi-
nated using the flow propagation constraints, allowing us to look at the states as
operators of the form x .h; t/, when doing so clarifies our exposition;

5. the state operator x.h; t/ is continuous and G-differentiable;
6. each Dai

.x/ is continuously differentiable with respect to its own argument;
7. an appropriate Lipschitz condition holds for the effective delay operator
F .t; h/; and
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8. in discussing algorithm convergence, we will assume F .t; h/ is strongly
monotone with respect to h, although examples of nonmonotonic effective
delay operators may be constructed; for other-than-convergence discussions this
assumption will not be invoked.

It should be noted that conditions (1) through (6) immediately above present no diffi-
culty for either analysis or computation. Condition (7) is not particularly restrictive.
However, condition (8), which is needed to assure convergence of our fixed-point
iterative scheme, is known to to be violated in dynamic user equilibrium. Given this
remark, it should be evident that the fixed-point algorithm is presently a heuristic
algorithm, when applied to the dynamic user equilibrium problem.

9.6.3 Analysis

To facilitate the analysis of the necessary conditions for (9.135), it is helpful
to restate that differential variational inequality as the following optimal control
problem:

min
X

p2P

Z tf

t0

Fp
�
t; h��hp .t/ dt (9.147)

subject to

dx
p
a1
.t/

dt
D hp .t/� gpa1

.t/
�

pa1

� 8p 2 P (9.148)

dx
p
ai
.t/

dt
D gpai�1

.t/ � gpai
.t/

�

pai

� 8 p 2 P ; i 2 Œ2;m .p/� (9.149)

dyij .t/

dt
D

X

p2Pij

hp .t/
�
�ij
� 8 .i; j / 2 W (9.150)

ga1

�
t CDa1

�
xa1

�� �
1CD0

a1

�
xa1

� Pxa1

�� hp D 0
�
�pa1

� 8p 2 P (9.151)

g
p
ai

�
t CDai

�
xai

�� 

1CD0

ai

�
xai

� Pxai

�
� gpai�1

D 0
�
�
p
ai

� 8 p 2 P ; i 2 Œ2;m .p/�
(9.152)

�hp � 0
�
�pa0

� 8p 2 P (9.153)

�gpai
.t/ � 0

�
�pai

� 8p 2 P ; i 2 Œ1;m .p/� (9.154)

�xpai
.t/ � 0

�
�pai

� 8p 2 P ; i 2 Œ1;m .p/� (9.155)

yij
�
tf
� D Qij

�
�ij
� 8 .i; j / 2 W (9.156)

yij .t0/ D 0
�
�ij
� 8 .i; j / 2 W (9.157)

x .t0/ D x0 y .t0/ D y0 (9.158)
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We call this optimal control problem OCP.F �; �/. Some remarks are in order
concerning this formulation:

1. Any solution of (9.135) must be a solution of (9.147) through (9.158). This is
because (9.135) is a necessary condition for OCP.F �; �/;

2. OCP.F �; �/ cannot be used for computation as stated because its articulation
assumes knowledge of the dynamic user equilibrium departure rates h� that gen-
erate the state vector x�. Rather, OCP.F �; �/ is a mathematical convenience
for analyzing the necessary conditions of DVI .F; �/, allowing us to use the
minimum principal and other necessary conditions of optimal control theory;

3. OCP.F �; �/ is an optimal control problem with state-dependent time shifts;
4. the variables in parentheses next to the dynamics (9.148), (9.149), and (9.150)

are the traditional adjoint variables of optimal control theory, and the variables
in parentheses next to the remaining constraints are dual variables;

5. in (9.150) we have used the standard device for treating isoperimetric constraints
of introducing a new state variable yij and terminal time condition yij

�
tf
� �

yij .t0/ D Qij to replace each flow conservation constraint

X

p2Pij

Z tf

t0

hp .t/ dt D Qij ;

6. problem OCP.F �; �/ has linear dynamics and a linear objective, so its
Hamiltonian is linear in controls (and states); and

7. the minimum principle is a convex mathematical program, the minimization of
a linear objective subject to linear constraints, that may be solved by inspection.

With the above features in mind, let us turn to the question of whether the suggested
differential variational inequality does in fact describe a dynamic user equilibrium.

In particular, let us next assume we have a solution of DVI .F;ƒ1/. We wish
to show that this solution is a dynamic network user equilibrium. Because of the
observations made previously, it is enough to show that the necessary conditions for
(9.147) through (9.158) are a description of dynamic network user equilibrium. Our
analysis will be facilitated by the shorthand

Qgpai
� gpai

�
t CDai

�
xai

�� 8 p 2 P ; i 2 Œ1;m .p/� (9.159)

This allows us to write the augmented HamiltonianH1 for optimal control problem
(9.147) through (9.158) as

H1 D
X

p2P
Fp

�
t; h��hp C

X

p2P

pa1

�
hp � gpa1

�C
X

p2P

X

i2Œ2;m.p/�

pai

�
gpai�1

� gpai

�

C
X

.k;l/2W
�kl

X

p2Pkl

hp C
X

p2P
�pa1

� Qgpai
� �1CD0

a1
Pxa1

� � hp
�

C
X

p2P

X

i2Œ2;m.p/�
�pai

� Qgpai
� �1CD0

ai
Pxai

� � gpai�1

�
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C
X

.k;l/2W
�kl

�
tf
� �
Qkl � ykl

�
tf
��

�
X

p2P
�pa0

hp �
X

p2P

X

i2Œ1;m.p/�
�pai
gpai

C
X

p2P

X

i2Œ1;m.p/�
�pai
xpai

(9.160)

In taking partial derivatives of H1, we will treat the Qgpai
as though they were sepa-

rate controls, temporarily ignoring their relationship to the gpai
and the xai

. This is
possible because we employ a specific form of the minimum principle, taken from
Chapter 4, for optimal control problems with time shifts; the minimum principle
accounts for the fact that the Qgpai

are future values of the gpai
determined by the state

variables xpai
. In other words, the formulae we will use for differentiating the Hamil-

tonian will correct for treating the Qgpai
as independent variables when analyzing the

minimum principle.
We are going to need the following partial derivatives of H1:

@H1

@hp
D Fp

�
t; h��C �ij C 
pa1

� �pa1
� �pa0

8 .i; j / 2 W; p 2 Pij
(9.161)

@H1

@g
p
ai

D �
pai
C 
paiC1

� �pai
� �paiC1

8 p 2 P ; i 2 Œ1;m .p/ � 1� (9.162)

@H1

@g
p
am

D �
pam.p/
� �pam.p/

8 p 2 P (9.163)

@H1

@ Qgpai

D �pai

�
1CD0

ai
Pxai

� 8 p 2 P ; i 2 Œ1;m .p/� (9.164)

@H1

@x
p
ai

D �pai
8 p 2 P ; i 2 Œ1;m .p/ � 1� (9.165)

We are now ready to apply the actual necessary conditions for optimal control with
state-dependent time shifts derived in the Chapter 4.

Because we have priced-out all constraints, the following form of the minimum
principle applies:

@H1

@hp

ˇ
ˇ̌
ˇ
t

p
0

D 0 8 .i; j / 2 W; p 2 Pij (9.166)

@H1

@g
p
ai

ˇ̌
ˇ
ˇ
t

p

i

C
2

4 @H1

@
�
g
p

ai

� 1
�
1CD0

ai
Pxai

�

3

5

t
p

i�1

D 0 8 p 2 P ; i 2 Œ1;m .p/�

(9.167)

where Œ:�tp
i�1

means that the argument of this operator is to be evaluated at tpi�1, the
moment in time of entering arc ai 2 p when

t
p
i D t

p
i�1 CDai

�
xai

�
t
p
i�1
��
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is the moment in time of exiting arc ai 2 p. Taking tp0 as the time of departure from
the origin, it is immediate from (9.161) and (9.166) that

Fp
�
t
p
0 ; x

��C�ij C
pa1

�
t
p
0

���pa1

�
t
p
0

���pa0

�
t
p
0

� D 0 8 .i; j / 2 W; p 2 Pij
(9.168)

For condition (9.167), we consider the cases i 2 Œ1;m .p/� 1� and i D m.p/

separately. Using the derivatives (9.162) and (9.163) in (9.167), gives


paiC1

�
t
p
i

� � 
pai

�
t
p
i

�� �paiC1

�
t
p
i

� � �pai

�
t
p
i

�C Q�pai

�
t
p
i

� D 0

8 p 2 P ; i 2 Œ1;m .p/� 1�

(9.169)

� 
pam.p/

�
tpm
�� �pam.p/

�
tpm
�C Q�pam.p/

�
tpm
� D 0 8 p 2 P

(9.170)

In these last two expressions we have employed the notation

Q�pai

�
t
p
i

� � �pai

�
t
p
i�1
� 8 p 2 P ; i 2 Œ1;m .p/� (9.171)

where tpi and tpi�1 are as defined previously. Also among the necessary conditions
are the following complementary slackness conditions:

�pa0
hp D 0 �pa0

� 0 8 p 2 P (9.172)

�pai
gpai

D 0 �pai
� 0 8 p 2 P ; i 2 Œ1;m .p/� (9.173)

�pai
xpai

D 0 �pai
� 0 8 p 2 P ; i 2 Œ1;m .p/� (9.174)

where it is understood that these conditions apply for all t 2 �t0; tf
�
.

We further observe that the necessary conditions for the time evolution of the


p
ai

, known as adjoint equations, are

�d

p
ai

dt
D @H1

@x
p
ai

� d

dt

@H1

@ Pxpai

D �pai
C
2

4 @

@x
p
ai

X

q

X

j

�qaj
Qgqaj

�


1CD0

aj
Pxaj

�
3

5

� d

dt

@

@ Pxpai

X

q

X

j



�qaj

Qgqaj
D0
aj

Pxaj

�

D �pai
C
X

q

X

j

�qaj
Qgqaj

@D0
aj

@x
p
ai

Pxaj
� d

dt

X

q

X

j

�qaj
Qgqaj
D0
aj

@ Pxaj

@ Pxpai

(9.175)
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Noting that
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which results in
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when k D j .
We now define an open path p D ˚

a1; a2; : : : ; ai�1; ai ; aiC1; : : : ; am.p/
� 2 Pkl

by the conditions

g
p
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�
t
p
0

� � hp
�
t
p
0

�
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9
>>>>>=

>>>>>;

(9.177)

Note that the complementary slackness conditions (9.172), (9.173), and (9.174) re-
quire that for an open path
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p
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>>=

>>;
(9.178)

The identities (9.169), (9.170), and (9.176) become
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(9.179)
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pam

�
tpm
� � Q�pam

�
tpm
� D 0 (9.180)

d
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.t/

dt
D 0 8 t 2 �tpi�1; tpi

�
; i 2 Œ1;m .p/� (9.181)

for an open path described by (9.177) and (9.178)
We see from (9.181) that on the last arc of the open path which we are considering

d

p
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p
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�
(9.182)

That is, 
pam
is time invariant during the time flow traverses arc am, so that
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It then follows from (9.180) and (9.183) that
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where we have used the identity Q�pam

�
t
p
m

� D �
p
am

�
t
p
m�1

�
obtained from (9.171). It

is immediate from (9.184) that
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Using the recursive formula (9.179) together with (9.185), we have
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Additionally, we know from (9.181) that
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which of course means that 
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.t/ is time invariant for t 2 �tpm�2; t

p
m�1

�
, so that


pam�1

�
t
p
m�2

� D 
pam�1

�
t
p
m�1

�
(9.188)

This last fact together with the identity Q�pam
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p
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(9.171) means that (9.186) implies
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Proceeding inductively in this fashion, we arrive at the result


pa1

�
t
p
0

� � �pa1

�
t
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0

� D 0 (9.190)

for any open path.
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To conclude our analysis, we must exploit the transversality conditions

@
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� 8 .k; l/ 2 W

(9.191)

Conditions (9.191) together with the implications of complementary slackness for
an open path (9.178) and the identity (9.190) allow us to extract from (9.168) the
following property of an open path p:
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(9.192)

which is immediately recognized as the fundamental condition for a dynamic net-
work user equilibrium. Moreover, we also see that

Fp
�
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� D 0 (9.193)

since the only alternative implication of Fp
�
t
p
0 ; h

��>�kl
�
tf
�

would be h�
p

�
t
p
0

�
>0

which would directly contradict (9.192); thus, we have established that any solution
of the differential variational inequality formulation we have proposed is a dynamic
user equilibrum. That is, the preceeding analysis has provided, as we intended, a
constructive proof of the following theorem:

Theorem 9.4. Any solution of DVI.F; �/ given by (9.135) is a dynamic network
user equilibrium relative to departure time and path choice.

9.6.4 Computation with Endogenous Delay Operators

We know from Chapter 6 that one approach to the numerical solution of differential
variational inequalities is to convert them to fixed-point problems involving linear-
quadratic optimal control problems as subproblems; it is significant that such an
approach does not require the complicated effective path delay operators encoun-
tered in DUE to be differentiated. We comment, however, that the convergence of
the fixed-point algorithm described in this chapter when applied to the dynamic user
equilibrium problem may not be assured when using results from Chapter 6 because
the effective delay operator will not generally satisfy the monotonicity condition in-
voked to establish convergence.

9.6.4.1 Dealing with Time Shifts

A critical hurdle to clear in solving the differential variational inequality
representation of DUE is that of dealing with the state-dependent time shifts
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intrinsic to the flow propagation constraints, when the delay operators are en-
dogenously determined. We deal with this challenge by employing an implicit
fixed-point computational scheme that, for each main iteration, approximates any
decision variable with shifted argument as a pure, continuous function of time. It is
easiest to understand this scheme in the abstract without the complicated notation
that surrounds the differential inequality representation of dynamic user equilib-
rium. To do this, let us suppose one is faced at iteration ` with the need to evaluate
the following abstract control with shifted argument

u Œt C�.x .t//� (9.194)

for which t denotes continuous time, x denotes an abstract state variable, and the
time shift� is state-dependent. Further suppose that in iteration `� 1 we found the
continuous time results

�.x .t// 	
rX

jD0
˛`�1j � .t/j (9.195)

u .t/ 	
sX

kD0
ˇ`�1k � .t/k (9.196)

where s, r , ˛`�1j , and ˇ`�1
k

are arbitrary names of parameters and the polynomial
forms are meant merely to be illustrative. For such a circumstance we form the
following approximation of the shifted control

u` .t C�/ 	
sX

kD0
ˇ`�1k �

0

@t C
rX

jD0
˛`�1j .t/j

1

A

k

� Qu` .t/ (9.197)

Clearly, (9.197) is a pure function of time constructed from information acquired
in iteration ` � 1 and meant for use in iteration `. It is important to note that
the continuous-time forms (9.195) and (9.196) may be either the direct result of
a continuous-time analysis or they may be polynomials fit to the output of a dis-
crete time approximation. In either case it is possible to form the approximation Qu`.
As the main algorithm proceeds through iterations ` C 1, ` C 2, and so forth, one
is refining the estimate of u .t C�/. If the algorithm’s action on the time shifted
variable is denoted by the abstract operator Y , then the proposed approach may be
expressed as that of seeking a repesentation Qu� that is a fixed point according to

Qu� D Y
�Qu��

where
lim
`�!1

Qu` D Qu�

although the operator Y will not generally be expressible in closed form.
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9.6.4.2 A Numerical Example

As a numerical example of application of the fixed-point algorithm for differential
variational inequalities presented in Chapter 6, augmented by the implicit fixed-
point scheme of Section 9.6.4.1 immediately above, let us now consider the five-arc,
four-node network shown in Figure 9.1 and considered by Friesz and Mookherjee
(2006). The forward-star array is

Arc Name From Node To Node

a1 1 2

a2 1 3

a3 2 3

a4 2 4

a5 3 4

The arc delay functions considered are

Da1
D 1

2
C 1

70
xa1

Da4
D 1C 1

150
xa4

Da2
D 1C 1

150
xa2

Da5
D 1

2
C 1

100
xa5

Da3
D 1

2
C 1

100
xa3

There is a travel demand of Q D 75 units from node 1 (the single origin) to node 4
(the single destination). There are three paths connecting origin-destination pair
.1; 4/; specifically, we have

P14 D fp1; p2; p3g
p1 D fa1; a4g

Fig. 9.1 Five-arc, four-node
traffic network

2

1

3

4

a1

a2

a3

a4

a5
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p2 D fa2; a5g
p3 D fa1; a3; a5g

The controls (path flows and arc exit flows) and states (path-specific arc volumes)
associated with this network are

Paths path flows arc exit flows arc volumes

p1 hp1
g
p1
a1
; g
p1
a4

x
p1
a1
; x
p1
a4

p2 hp2
g
p2
a2
; g
p2
a5

x
p2
a2
; x
p2
a5

p3 hp2
g
p3
a1
; g
p3
a3
; g
p3
a5

x
p3
a1
; x
p3
a3
; x
p3
a5

The path flows and arc exit flows are bounded from above by 15 and from below by
zero:

0 � hp � 15 8p 2 P
0 � gpai

� 15 8p 2 P ; i 2 Œ1;m .p/�
The initial time is t0, the terminal time is tf D 10, and the time interval consid-
ered is Œ0; 10�, while the desired arrival time is tA D 5. We employ the symmetric
early/late arrival penalty

F
�
t CDp .x; t/ � tA

� D �
t CDp .x; t/ � tA

�2

Furthermore, without any loss of generality, we take

xpai
.t0/ D 0 8p 2 P ; i 2 Œ1;m .p/�

The fixed-point stopping tolerance will be set at

" D 0:01

To assist convergence we choose the free parameter of the fixed-point formulation
to obey

˛ D 1

k

where k is the fixed-point iteration counter.
We forgo the detailed symbolic statement of this example and, instead, provide

numerical results in graphical form for the solution after 77 iterations of the fixed-
point algorithm. Figures 9.2, 9.3, and 9.4 depict path flows and arc exit flows for
paths p1, p2, and p3 defined above. Cumulative traffic volumes on the network’s 5
different arcs are plotted against time in Figure 9.5 where
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Fig. 9.2 Path and arc exit flows for path p1
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Fig. 9.3 Path and arc exit flows for path p2

xa1
.t/ D xp1

a1
.t/C xp3

a1
.t/

xa2
.t/ D xp2

a2
.t/

xa3
.t/ D xp3
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.t/
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Fig. 9.4 Path and arc exit flows for path p3
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Fig. 9.5 Cumulative traffic volume on each arc

xa4
.t/ D xp1

a4
.t/

xa5
.t/ D xp2

a5
.t/C xp3

a5
.t/

for all t 2 Œ0; 10�: Figure 9.5 presents arc volumes derived from activity on all
paths and corresponding to the departure rates. When we compare the effective path
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delay operator (9.146) with path flow (departure rate) by plotting both for the same
time scale, Figures 9.6 and 9.7 are obtained. These figures show that departure rate
peaks when the associated effective path delay achieves a local minimum, thereby
demonstrating that an user equilibrium has been found.
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Fig. 9.6 Comparison of path flow and unit travel cost for path p2
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Fig. 9.7 Comparison of path flow and unit travel cost for path p3
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Fig. 9.8 Control fluctuations from one iteration to the next: (�k) vs. the iteration counter (k)

In Figure 9.8 the relative change in exit flows from one iteration to the next,
expressed as

�k D
�
�
�gk � gk�1

�
�
� � ",

is plotted against the iteration counter k: It is worth noting that for this particular

example even though �1 	 4 � 104, the next several iterations see a very rapid
decrease of�k . The run time for this example is less than 3minutes using a generic
desktop computer with dual Intel Xeon processors and 2 GB of RAM. The com-
puter code for the fixed-point algorithm is written in MatLab 6:5 and calls a gradient
projection subroutine for which control, state and adjoint variables are determined
in continuous time, as explained in our discussion of the projected gradient algo-
rithm in Chapter 4. In other words, the solution of this example is achieved using
continuous-time methods for both the main fixed-point problem and the projection
subproblems.

9.7 Conclusions

In this chapter, we have seen two formulations of the dynamic user equilibrium
problem. One is based on exogenous effective delay operators, and the other endo-
genizes those operators. Each of these models may be expressed as a differential
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variational inequality. We have seen how the differential variational inequality
formulations may be solved using the methods developed in previous chapters. We
also wish to comment in closing that there are several extensions of the models
we have reported in this chapter that can be made more or less immediately. These
involve the introduction of:

1. nonseparable arc delay functions to model link and nodal interactions associ-
ated with turning phenomena and the presence of multiple modes and classes of
travelers;

2. elastic travel demand submodels whereby travel demand varies with effective
delay;

3. departure and arrival time windows; and
4. stochastic considerations wherein model parameters or unobserved components

of generalized travel impedance are governed by probability distributions.

Although these extensions are straightforward from a mathematical point of view,
their presentation is quite tedious and is not included here.

9.8 Exercises

1. What properties of dynamic traffic systems make it necessary to consider
measure-theoretic issues in defining and constructing mathematical represen-
tations of dynamic user equilibrium?

2. Given an argument for the choice of L2
�
t0; tf

�
and H1

�
t0; tf

�
as fundamental

spaces for the study of dynamic traffic assignment.
3. Introduce regularity conditions that allow the existence of a dynamic user equi-

librium with fixed travel demand to be proven. Give that proof.
4. Extend the definition of dynamic user equilibrium and its representation as a

differential variational inequality to the case of elastic and time-dependent travel
demand:

Qij .v; t/

where
v D �

vij W .i; j / 2 W�

is the essential infimum of effective path delay F .t; h/.
5. Attempt a proof of existence for the model you have developed in response to

Question 4 above.
6. Pick two methods of solving differential variational inequalities, other than the

fixed-point algorithm. Compare and contrast these algorithms to each other and
to the fixed-point algorithm when used to solve the dynamic user equilibrium
problem with fixed demand.
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7. What are the obstacles to proving convergence of a fixed-point algorithm for the
dynamic user equilibrium problem in continuous time? Elaborate on and conjec-
ture about how these might be overcome.

8. If the version of the fixed-point algorithm presented in this chapter converges,
may we be certain it has computed a bona fide dynamic user equilibrium?

9. Numerically solve the following dynamic user equilibium problem using the
fixed-point algorithm. The arc delay functions are

Dai
D Ai CBixai

The network is described by the array

From Node To Node Arc Name Ai Bi

1 2 a3 1:0 5:0

1 4 a1 1:0 5:0

2 3 a6 1:0 5:0

2 5 a4 1:0 5:0

4 2 a2 1:0 5:0

5 3 a5 1:0 5:0

There are two origin-destination pairs:

W D f.1; 3/; .2; 3/g

There are six paths for the two origin-destination pairs, namely:

p1 D f3; 6g
p2 D f1; 2; 6g
p3 D f1; 2; 4; 5g
p4 D f3; 4; 5g
p5 D f6g
p6 D f4; 5g

Each origin-destination pair is assumed to have a fixed travel demand:

Q13 D 100

Q23 D 100

The desired arrival time of TA D 9:00 AM for all travelers and both origin-
destination pairs. The period of analysis is 7:00 AM to 10:00 AM. You may
assume any other data needed for your calculations.
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Chapter 10
Dynamic Pricing and Revenue Management

An active and rapidly growing applied operations research discipline is the field
known as revenue management (RM). The principal intent of revenue management
is to extract all unused willingness to pay from consumers of differentiated services
and products. Talluri and van Ryzin (2004) provide a comprehensive introduction
to most aspects of the theory and practice of revenue management. For this chapter,
our goal is to illustrate and solve some differential Nash games that occur in network
revenue management and that provide critical information about pricing, resource
allocation, and demand management to retailers and service providers.

Network RM arises in airline, railway, hotel and cruiseline service environments,
where customers enter into service relationships with service providers, and those
relationships may be viewed as bundles of resources. As we shall see, the relation-
ships among service providers, customers, and resources naturally take the form of
a network. Network RM also arises in the provisioning of retail businesses that sell
consumer goods. By intention the scope of this book does not include stochastic
models, so our discussion of revenue management in this chapter necessarily omits
important details of the random aspect of demand that influences both pricing and
overbooking. We hope someday to address stochastic dynamic optimization and
stochastic differential games, including stochastic revenue management models that
acknowledge demand uncertainty, in a revised edition.

In essentially all revenue management applications, one of the most important
issues is how to model demand. Since the root tactic upon which revenue manage-
ment is based is pricing, especially the dynamic adjustment of prices to maximize
immediate or short-run revenue, the more accurate the model of demand, the more
revenue one can typically generate. Another important RM tool is demand man-
agement through overbooking and demand rejection, a tactic that also underscores
the importance of demand information. Overbooking results when a service firm ac-
cepts more reservations than its physical capacity can serve in order to hedge against
cancellations and no-shows. A third revenue management tactic is resource alloca-
tion by which we mean the efficient use of those resources available to a service
provider or retailer. Resource allocation includes the assignment of crews and vehi-
cles to routes, network design, and other resource allocation problems familiar from
applied operations research.

T.L. Friesz, Dynamic Optimization and Differential Games, International
Series in Operations Research & Management Science 135,
DOI 10.1007/978-0-387-72778-3 10, c� Springer Science+Business Media, LLC 2010

457



458 10 Dynamic Pricing and Revenue Management

The following is a preview of the principal topics covered in this chapter:

Section 10.1: Dynamic Pricing with Fixed Inventories. In this section, we con-
sider an abstract model that has some of the characteristics of revenue management,
namely nonreplenishable inventories and the potential to employ dynamic pricing
strategies.

Section 10.2: Revenue Management as an Evolutionary Game. In this section,
we consider an abstract oligopoly and introduce market dynamics that adjust prices
according the difference between current price and the moving average of price.
That is, competitors learn how to set prices while simultaneously adjusting their
outputs.

Section 10.3: Network Revenue Management. In this section, we allow com-
peting Nash-firms to control pricing, resources and overbooking. The resulting
generalized differential Nash game is solved heuristically.

10.1 Dynamic Pricing with Fixed Inventories

To prepare for studying dynamic pricing in a pure service setting for which outputs
may not be inventoried, let us first consider a situation characterized by fixed en-
dowments in the form of inventories that cannot be replenished since there is no
production. Such a circumstance represents a kind of proto-service environment that
allows us to become familiar with some of the issues that are intrinsic to dynamic
pricing. Motivated by Perakis and Sood (2006), who consider a similar problem in
discrete time, we consider a decision environment with the following properties:

1. At the outset, perfect information obtains about the structure of demand, the
impact of price changes on demand, and the initial inventory.

2. Demand for the output of each seller is a function only of current prices, and
prices are the only factor that distinguishes products from one another. That is,
we assume there is a deterministic demand function faced by each seller that
depends on own-period prices.

3. There is a single product, and inventory must be zero at the terminal time.
4. Sellers maximize the present value of their respective revenues by setting

prices and allocating their demand to customers; they do not employ any other
strategies.

5. An infinite-dimensional generalized Nash equilibrium describes the market of
interest.

We will employ the notation �s .t/ to note the price charged by seller s 2 S at time
t 2 Œt0; tf �, where S denotes the set of all sellers. We use the notation

� D .�s W s 2 S/ 2 �L2 �t0; tf
��jSj

(10.1)



10.1 Dynamic Pricing with Fixed Inventories 459

to represent the vector of prices that are the decision variables of the model to be
constructed. We use the notation

hs Œ�.t/� W �L2 �t0; tf
��jSj �! H1

�
t0; tf

�
(10.2)

for the observed demand for the output of each seller s 2 S. We let Ds.t/ represent
the realized demand experienced by seller s 2 S, and naturally define

D D .Ds W s 2 S/ 2 �L2 �t0; tf
��jSj

h D .hs W s 2 S/ 2 �H1
�
t0; tf

��jSj

Since realized demand must be less than or equal to observed demand, we impose
the constraint

Ds.t/ � hs Œ�.t/� 8s 2 S; t 2 �t0; tf
�

or equivalently
D.t/ � h Œ�.t/� 8t 2 �t0; tf

�
(10.3)

Each seller s 2 S, seeks to solve the infinite-dimensional mathematical program

maxJ .�s ;Ds/ D
Z tf

t0

exp.��t/�s .t/Ds.t/dt (10.4)

subject to
.�s ;Ds/ 2 ƒs.��s/

Ds � hs Œ�s ; �
�s � (10.5)

Ks D
Z tf

t0

Ds .t/ dt (10.6)

�s � �min 2 <1CC (10.7)

�s � �max 2 <1CC (10.8)

Ds � Dmin 2 <1CC (10.9)

In the above
��s D �

�g W g 2 Sns�

is a vector of non-own prices, while Ks is the initial endowment of inventory pos-
sessed for each seller s 2 S. Furthermore,�min is a lower bound on prices, and �max

is the upper bound on prices. In a slight abuse of notation we take

� D .�s ; �
�s/

to be the complete column vector of prices.
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10.1.1 Infinite-Dimensional Variational Inequality Formulation

It is helpful to restate the problem faced by each seller s 2 S as the following:

maxJs .�s ;Ds/ D
Z tf

t0

exp.��t/�s .t/ Ds.t/dt s.t. .�s ;Ds/ 2 ƒs.��s/

(10.10)
where

ƒs.�
�s/ �

�
.�s ;Ds/ W �min � �s � 0, �s � �max � 0,

Z tf

t0

Ds .t/ dt �Ks D 0, Dmin �Ds � 0, Ds � hs .�s ; �
�s/ � 0

�

is the strategy space for seller s 2 S. Also we define

ƒ D f.�;D/ W .�s ;Ds/ 2 ƒs.��s/ 8s 2 Sg (10.11)

We will assume each hs .�s ; ��s/ is quasiconcave in �s so that�s.��s/ is concave,
a result formalized in the following lemma:

Lemma 10.1. Each seller’s convex strategy space. For each seller s 2 S, take
hs .�s ; �

�s/ to be quasiconcave in �s for all ��s . Then the strategy space of each
seller, ƒs.��s/, is convex in .�s ;Ds/ for all s 2 S. Additionallyƒ is convex.

Proof. Note that all the constraint functions for seller s 2 S are convex functions.
In particular, let us consider the constraint

gs.Ds/ �
Z tf

t0

Ds .t/ dt �Ks � 0

For arbitrary pointsD1
s and D2

s with � 2 Œ0; 1� � <1C, we have

gs
�
�D1

s .t/C .1 � �/D2
s

� D
Z tf

t0

�
�D1

s .t/C .1� �/D2
s

�
dt �Ks

D �

Z tf

t0

D1
s .t/ dt � �Ks

C .1 � �/

Z tf

t0

D2
s .t/dt � .1 � �/Ks

D �

�Z tf

t0

D1
s .t/ dt �Ks

�

C .1 � �/

�Z tf

t0

D2
s .t/dt �Ks

�

D �gs
�
D1
s

�C .1 � �/ gs
�
D2
s

�
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so the constraints gs.Ds/ are linear for all s 2 S and, therefore, convex.
Furthermore, since hs .�s ; ��s/ is quasiconcave by the given, it is easy to show that

fs.�/ � Ds � hs .�s ; �
�s/ � 0

is quasiconvex for all s 2 S. Thus, since the level sets of a quasiconvex function are
convex, every ƒs.��s/ is convex as a set. Moreover, the convexity of the ƒs.��s/
for all s 2 S assures the convexity of ƒ. �

Furthermore, we know for the function spaces stipulated that the G-derivative of the
criterion functional is

ıJs .�s ;Ds I�� ; �D/

D lim
��!0

Z tf

t0

exp.��t/ .�s C ���/ .Ds C ��D/ � �sDs
�

dt

D lim
��!0

Z tf

t0

exp.��t/
�
�sDs C �2���D C �Ds�� C ��s�D

� � �sDs

�
dt

D lim
��!0

Z tf

t0

exp.��t/����D CDs�� C �s�D

1
dt

D
Z tf

t0

exp.��t/ .Ds�� C �s�D/ dt

D
Z tf

t0

�
exp.��t/Ds
exp.��t/�s

	T �
��
�D

	
dt (10.12)

Of course,

ıJs .�s ;Ds I�� ; �D/ D
Z tf

t0

ŒrsJ .�s ;Ds/�T �dt (10.13)

where

� D
�
��
�D

	

Upon comparing (10.12) and (10.13), we see that

rsJs .�s ;Ds/ D
�
@Js=@�s
@Js=@Ds

	
D
�

exp.��t/Ds
exp.��t/�s

	

The first-order condition when
�
��
s ;D

�
s

� 2 ƒs.��s/ is a solution is

ıJ
�
��
s ;D

�
s I�� ; �D

� � 0
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for all feasible directions

�� D �s � ��
s

�D D Ds �D�
s

The above is easily restated in the more familiar form



rsJs

�
��
s ;D

�
s

�
;

�
�s � ��

s

Ds �D�
s

	�
� 0

or equivalently as

Z tf

t0

"
@Js

�
��
s ;D

�
s

�

@�s

�
�s � ��

s

�C @Js
�
��
s ;D

�
s

�

@Ds

�
Ds �D�

s

�
#

dt � 0

8.�s;Ds/ 2 �s.��s/

In light of our knowledge of the gradient of the criterion Js , this last variational
inequality may be stated as

Z tf

t0

exp.��t/ �D�
s � ��s � ��

s

�C ��
s � �Ds �D�

s

��
dt � 0 8.�s ;Ds/ 2 �s.��s/

(10.14)

Statement (10.14) will not only be a necessary condition but also a sufficient con-
dition if Js .�s ;Ds/ is pseudoconcave on ƒs.��s/. The pseudoconcavity of each
seller’s criterion will allow us to establish an equivalent variational inequality for-
mulation of the generalized Nash equilibrium among sellers described by (10.10).
To that end we state and prove the following result:

Lemma 10.2. Seller’s criterion is pseudoconcave. When the best response of each
seller s 2 S is constrained to be strictly positive and bounded away from the origin,
each criterion Js .�s ;Ds/ is pseudoconcave on ƒs.��s/.

Proof. For the criterion Js .�s ;Ds/ to be pseudoconcave on �s.��s/, we must
show that



rsJs

�
�2s ;D

2
s

�
;

�
�1s � �2s
D1
s �D2

s

	�
� 0 H) Js

�
�2s ;D

2
s

� � Js
�
�1s ;D

1
s

�
(10.15)

for
�
�1s ;D

1
s

�
;
�
�2s ;D

2
s

� 2 ƒs.�
�s/. Property (10.15) is assured if Rs .�s ;Ds/ D

�sDs is pseudoconcave at each instant of time t 2 �t0; tf
�
. By Theorem 9 of Ferland

(1972), we know that
Zs D .�1/ �Rs .�s ;Ds/

is pseudoconvex (and hence Rs .�s ;Ds/ is pseudoconcave), if the following matrix
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Ms D

0

B
B
B
BB
B
B
B
BB
@

0
@Zs

@�s

@Zs

@Ds

@Zs

@�s

@2Zs

@�2s

@2Zs

@�s@Ds

@Zs

@Ds

@2Zs

@Ds@�s

@2Zs

@D2
s

1

C
C
C
CC
C
C
C
CC
A

D
0

@
0 �Ds ��s

�Ds 0 �1
��s �1 0

1

A

has a determinant that is strictly negative. We note that

detMs D �2Ds�s < 0
since by the given each seller s 2 S employs a strictly positive solution bounded
away from the origin. �

We now present a key result:

Theorem 10.1. The generalized Nash game among seller’s captured by (10.10) for
all s 2 S, is equivalent to the infinite-dimensional variational inequality

X

s2S

Z tf

t0

exp.��t/ �D�
s � ��s � ��

s

�C ��
s � �Ds �D�

s

��
dt � 0 8.�;D/ 2 ƒ

(10.16)
when each demand function is concave in own price.

Proof. Clearly we have established above that (10.14) is a necessary condition for
the Nash equilibrium of interest. Summing (10.14) over s 2 S yields (10.16). It re-
mains for us to establish sufficiency. However, for each s 2 S, the pseudoconcavity
of Rs.�s ;Ds/ assures (10.14) is a sufficient condition for (10.10). If given varia-
tional inequality (10.16), by selecting Ds D D�

s and �s D ��
s for all s ¤ r , the

minimum principle is recovered for each seller r 2 Œ1; jSj�. Equivalency is thereby
established. �

10.1.2 Restatement of the Isoperimetric Constraints

Each seller s 2 S will face the constraint

Z tf

t0

Ds .t/ dt D Ks (10.17)

which has the form of an isoperimetric constraint. As such, (10.17) may be restated
as the following two-point boundary-value problem:

dys

dt
D Ds (10.18)
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ys.t0/ D 0 (10.19)

y.tf / D Ks (10.20)

where ys is a newly introduced state variable.

10.1.3 Differential Variational Inequality Formulation

By exploiting the two-point boundary-value problem (10.18), (10.19), and (10.20),
the infinite-dimensional variational inequality (10.16) may be given the following
form: find .��;D�/ 2 	 such that

X

s2S

Z tf

t0

exp.��t/ �D�
s � ��s � ��

s

�C ��
s � �Ds �D�

s

��
dt � 0 8.�;D/ 2 	

(10.21)
where

	 D f.�;D/ W .�s ;Ds/ 2 	s.��s/ 8s 2 Sg
and

	s.�
�s/ D

�
.�s ;Ds/ W dys

dt
D Ds , ys.t0/ D 0, y.tf / D Ks, �min � �s � 0,

�s � �max � 0, Dmin �Ds � 0, Ds � hs .�s ; �
�s/ � 0

�

The reader should recognize that (10.21) is a continuous-time differential quasivari-
ational inequality.

10.1.4 Numerical Example

Because we are dealing with a differential quasivariational inequality, algorithms
that enjoyed proofs of convergence for mere differential variational inequalities will
not ncessarily converge when applied to (10.21). So we now proceed to apply a
gap-function algorithm heuristically; if convergence is acheived, the result will be
a generalized differential Nash equilibrium. With these remarks in mind, consider
the following simple example of three firms with fixed inventories and both upper
and low bounds on their prices and the demands they fulfill. We elect to solve this
problem using time discretization and a finite-dimensional gap function. The three
sellers’ initial endowments are

K1 D 3000

K2 D 2000

K3 D 2500
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The initial and terminal times are t0 D 0 and tf D 5, respectively. Observed de-
mand for the output of seller s D 1, 2, or 3 is

hs Œ�.t/� D as.t/ � bs.t/�s.t/C
X

i¤s
ci .t/�i .t/

where

a1 D 300

a2 D 200

a3 D 300

bs.t/ D 2 � 0:2t s D 1; 2; 3

cs.t/ D 0:1t C 0:5 s D 1; 2; 3

Upper and lower bounds on their prices and demands are as follow:

Dmin D 0 �min D
0

@
50

35

45

1

A �max D
0

@
300

300

300

1

A

We will solve this example using the D-gap function method. Recall that, once a
differential gap function has been formed, it is used to create a nonlinear program
whose solution is also a solution of the differential variational inequality of interest.

This example is expressible as a differential variational inequality having the
control vector

u D
�
�

D

	

The set of feasible controls is

U D fu W �min � �s � 0 �s � �max � 0 Ds � 0 Ds � hs .�s ; ��s/ s D 1; 2; 3g

The following definitions also apply:

F D
�
D

�

	
f D dy

dt
D D

‰
�
y
�
tf
�
; tf

� D
0

@
y1.10/

y2.10/

y3.10/

1

A D
0

@
3000

2000

2500

1

A

Of course,DVI.F; f;‰;U; x0; t0; tf / denotes the differential variational inequality
of interest.

In this example, we employ a D-gap function of the form

 ˛ˇ D '˛.u/� 'ˇ .u/
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where
'˛.u/ D max < F.y; u; t/; v � u > �˛

2
kv � uk2

'ˇ .u/ D max < F.y; u; t/; v � u > �ˇ
2

kv � uk2

Therefore

 ˛ˇ D< F.y; u; t/; vˇ .u/� v˛.u/ > �˛
2

kv˛.u/� uk2 C ˇ

2

�
�vˇ .u/� u

�
�2

where

v˛.u/ D PU



u � 1

˛
F.y; u; t/

�
D PU


�
�

D

	
� 1

10

�
D

�

	 �

vˇ .u/ D PU



u � 1

ˇ
F.y; u; t/

�
D PU


�
�

D

	
� 1

10:2

�
D

�

	 �

Then the gradient information we need is

r ˛ˇ D @F.y; u; t/

@u

�
vˇ .u/� v˛.u/

�C˛ Œv˛.u/� u��ˇ �vˇ .u/� u
�C�@f .y; u; t/

@u

We employ the constant step size �k D 0:5 and solve the above differential
variational inequality using the D-gap function, after discretizing to create a finite di-
mensional problem. The discrete time approximation employed involvesN D 1000

equal time steps. GAMS/PATHNLP supported by Matlab was used to solve this
problem. We set ˛ D 10 and ˇ D 10:2, where evidently 0 < ˛ < ˇ. The algorithm
was terminated after 10000 iterations with a gap of about :03. The results generated
using the aforementioned computing scheme are summarized in this table:

Iteration k Gap  ˛ˇ .uk/
1 16:1861

2 0:1335

3 0:1333
:::

:::

500 0:1132

1000 0:0922

2000 0:0412

5000 0:0368

8000 0:0312

10000 0:0283

Figures 10.1 and 10.2 provide depictions of realized demand and price trajectories.
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Fig. 10.1 Realized demand trajectories of sellers
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Fig. 10.2 Price trajectories of sellers

10.2 Revenue Management as an Evolutionary Game

Although demand theoretically devolves from utility maximization by individuals,
an actual demand curve and its parameters are seldom available for most markets.
We want now to model the dynamics of demand as a differential equation based on
an evolutionary game theory (EGT) perspective. To that end, we express a dynamic
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nonzero sum evolutionary game among service providers as a differential variational
inequality. The service providers of interest will be viewed as having fixed upper
bounds on output derived from capacity constraints on available resources.

The service providers of interest in this section are in oligopolistic game-theoretic
competition according to a learning process that can be likened to the learning mech-
anisms considered in evolutionary game theory and for which price changes are
proportional to their signed excursion from a market clearing price. We stress that
in this model firms are setting prices for their services while simultaneously deter-
mining the levels of demand they will serve. This is unusual in that, typically, firms
in oligopolistic competition are modeled in microeconomic theory as setting either
prices or output flows, but not both. The joint adjustment of prices and outputs is
modeled here by comparing current price to the price that would have cleared the
market for the demand that has most recently been served. However, the service
providers are unable to make this comparison until the current round of play is com-
pleted as knowledge of the total demand served by all competitors is required.

Kachani et al. (2004) put forward a revenue management model for service
providers to address such joint pricing and demand learning in an oligopolistic set-
ting with fixed capacity constraints. The model they consider assumes the demand
faced by a service provider is a linear function of its price and other competitors’
prices, although the impact of a change in price on demand in one period does not
automatically propagate to later time periods. In our presentation below, we allow
this impact to propagate to all subsequent time periods. Furthermore, we consider
only a single class of customers, so-called bargain-hunting buyers searching for per-
sonal or, to a limited extent, business services or products at the most competitive
prices; these buyers are willing to sacrifice some convenience for the sake of a lower
price. Because the services and products are assumed to be homogeneous, ties be-
tween two sellers offering the same price are broken arbitrarily. In other words,
the consumer has no concept of brand preference in the decision environment we
consider.

10.2.1 Assumptions and Notation

Assume that a set of service providers are competing in an oligopolistic setting, each
with the objective of maximizing their revenue. These service providers have very
high fixed costs compared to their relatively low variable or operating costs. There-
fore, each provider focuses only on maximizing its own revenue. Moreover, each
firm provides a set of services, each of which is homogeneous. For example, the
difference between an economy class seat on Southwest Airlines and an economy
class seat on Jet Blue is indiscernible by customers; the only differences that the
customers perceive are the prices charged by the different service providers. Fur-
thermore, every service provider can set the price for each of its services. The price
charged for each service in one time period will affect the demand for that service in
the next time period. The price a service provider charges is compared to the moving
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average price over all competitors. The rate of service provision by each company
has an upper bound. A provider must, therefore, choose prices that create demand
for its services, maximize revenue, and ensure capacities are not exceeded.

We denote the set of revenue managing firms by F , each of whom is providing a
set of services S. Continuous time is denoted by the scalar t 2<1C, while t0 is the
initial time and tf 2 <1CC the finite terminal time so that t 2 �t0; tf

� � <1C. Each
firm f 2 F controls prices

�
f
i 2 L2 �t0; tf

�

corresponding to each service type i 2 S. The control vectors of individual firms
are

�f 2 �L2 �t0; tf
��jSj 8f 2 F

which are then concatenated to form the complete vector of controls

� 2 �L2 �t0; tf
��jSj �jF j

,

We also let

D
f
i .�; t/ W �L2 �t0; tf

��jSj �jF j � <1C �! H1
�
t0; tf

�

denote the demand for service i 2 S of firm f 2 F and define the vector of all such
demands for firm f to be

Df 2 �H1
�
t0; tf

��jSj

All such demands for service i 2 S of firm f 2 F are denoted by

D 2 �H1
�
t0; tf

��jSj�jF j

We will use the notation

D�f D �
D
g
i W i 2 S; g 2 Fn ff g�

for the vector of service levels provided by the competitors of firm f 2 F .

10.2.2 Demand Dynamics

In evolutionary game theory the notion of comparing a moving average to the
current state is used to develop ordinary differential equations describing learning
processes; see Fudenberg and Levine (1999). As we have already stressed, the ser-
vices provided by different agents are homogeneous; hence, customers’ decisions
depend only on prices. The demand for the service offerings of firm f 2 F evolve
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according to the following dynamics:

dD
f
i

dt
D 


f
i �
�

Q�i � �
f
i

�
8i 2 S; f 2 F (10.22)

D
f
i .t0/ D K

f
i;0 8i 2 S; f 2 F (10.23)

where Q�i is the moving average price for service i 2 S given by

Q�i .t/ D 1

jF j .t � t0/

Z t

t0

X

g2F
�
g
i .�/d� 8i 2 S

while Kf
i;0 2 <1CC and 
fi 2 <1CC are exogenous parameters for each i 2 S and

f 2 F . The firms set the parameter 
fi by analyzing past demand data and the
elasticity of demand with respect to price. The demand for service type i provided
by firm f changes over time in accordance with the excess between the firm’s price
and the moving average of all agents’ prices for the particular service. The coeffi-
cient 
fi influences how quickly demand reacts to price changes for each firm f and
service type i . Some providers may specialize in certain services and may be able
to adjust more quickly than their competitors. These dynamics are reminiscent of
so-called replicator dynamics which are used in evolutionary games; see Hofbauer
and Sigmund (1998). The rate of growth of demand, may be viewed as the rate of
growth of firm f with respect to service type i . This growth follows the “basic tenet
of Darwinism” in that it may be interpreted as the difference between the fitness
(price charged) of the firm providing a given service and the moving average of the
fitness of all firms providing that same service.

10.2.3 Constraints

There are positive upper and lower bounds, reflecting market regulations or known
customer behavior, on service prices charged by firms. Thus, we write

�
f
min;i � �

f
i � �

f
max;i 8i 2 S; f 2 F

where the �fmin;i 2<1CC and �fmax;i 2<1CC are known constants. Similarly, there will
be a lower bound on the demand for services of each type by each firm as negative
demand levels are meaningless; that is,

D
f
i � 0 8i 2 S; f 2 F

Let R be the set of resources that the firms can utilize to provide services, while jRj
is the cardinality of R. Define an arbitrary element of the incidence matrix

A D .alm/



10.2 Revenue Management as an Evolutionary Game 471

by

alm D
�
1 if resource l is used by the service type m
0 otherwise

Joint resource-constraints for each firm f are also imposed and take the form

0 � A �Df
i � C

f
i 8i 2 S; f 2 F (10.24)

where C fi denotes the resources available for use by firm f 2 F in providing
service i .

10.2.4 The Firm’s Optimal Control Problem

Since revenue management firms have negligible variable costs and high fixed costs,
each firm’s objective is to maximize revenue which in turn ensures that profit is
maximized. The instantaneous revenue for firm f is

X

i2S
�
f
i �Df

i

Consequently, each firm f 2 F faces the following extremal problem: with the
��f as exogenous inputs, solve the following optimal control problem:

max
�f

Jf .�
f ; ��f ; t/ D

Z tf

t0

e��t
 
X

i2S
�
f
i �Df

i

!

dt � e��t0‰f0 (10.25)

subject to
dD

f
i

dt
D 


f
i �
�

Q�i � �
f
i

�
8i 2 S; f 2 F (10.26)

D
f
i .t0/ D K

f
i;0 8i 2 S (10.27)

�
f
min;i � �

f
i � �

f
max;i 8i 2 S (10.28)

0 � A �Df
i � C

f
i 8i 2 S (10.29)

where‰f0 is the fixed cost of production for firm f which is later dropped from the
formulation, � is the nominal discount rate compounded continuously, and

Z tf

t0

e��t
 
X

i2S
�
f
i �Df

i

!

dt
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is the net present value of revenue. We may restate these dynamics for all f 2 F as

dD
f
i

dt
D 


f
i �
�

yi

jF j .t � t0/ � �
f
i

	
8i 2 S (10.30)

dyi

dt
D
X

g2F
�
g
i 8i 2 S (10.31)

D
f
i .t0/ D K

f
i;0 8i 2 S (10.32)

yi .t0/ D 0 8i 2 S (10.33)

As a consequence we may rewrite the optimal control problem of firm f 2 F as

max
�f

Jf .�
f ; ��f ; t/ D

Z tf

t0

e��t
 
X

i2S
�
f
i �Df

i

!

dt (10.34)

subject to

dD
f
i

dt
D 


f
i �
�

yi

jF j .t � t0/
� �fi

	
8i 2 S (10.35)

dyi

dt
D
X

g2F�
g
i 8i 2 S (10.36)

D
f
i .t0/ D K

f
i;0 8i 2 S (10.37)

yi .t0/ D 0 8i 2 S (10.38)

�
f
min;i � �

f
i � �

f
max;i 8i 2 S (10.39)

�Df
i � 0 8i 2 S (10.40)

A �Df
i � C fi � 0 8i 2 S (10.41)

In condensed notation, this generalized differential Nash game can be expressed as:
with the ��f as exogenous inputs, each firm must compute �f � that solves the
following optimal control problem:

max Jf .�f ; ��f ; t/

s.t. �f 2 	f
�
��f � (10.42)

for all f 2 F where

	f

�
��f � D

n
�f W (10.35), (10.36), (10.37), (10.38), (10.39), (10.40), and (10.41) hold

o
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10.2.5 Differential Quasivariational Inequality Formulation

Each service provider is a Nash agent that knows and employs the current
instantaneous values of the decision variables of other firms to make its own
noncooperative decisions. Clearly, (10.42) defines a set of coupled optimal control
problems, one for each firm f 2 F . It is useful to note that each instance of (10.42)
is an optimal control problem with a fixed terminal time and a fixed terminal state.
Its Hamiltonian is

Hf

�
Df ; y; �f ; �f ; �; ˛f ; ˇf I��f I t

�
� e��t

 
X

i2S
�
f
i

�Df
i

!

Cˆf

�
�f IDf I�f I �f I˛f Iˇf I��f �

where

ˆf

�
Df ; y; �f ; �f ; �; ˛f ; ˇf I��f I t

�
�
X

i2S
�
f
i





f
i �
�

yi

jF j .t � t0/ � �fi
	�

C
X

i2S
�i

0

@�fi C
X

g2Fnf
�
g
i

1

A

C
X

i2S
˛
f
i

�
�Df

i

�

C
X

i2S
ˇ
f
i

�
A �Df

i � C fi
�

(10.43)

while �fi 2 H1
�
t0; tf

�
is the adjoint variable for the demand dynamics associated

with the firm f 2 F and service type i 2 S, while �f 2 �H1
�
t0; tf

��jSj
. Fur-

thermore, �i 2 H1
�
t0; tf

�
is the adjoint variable for the dynamics describing the

dummy state variables yi 2 H1
�
t0; tf

�
for all i 2 S, while � 2 �H1

�
t0; tf

��jSj
and

y 2 �H1
�
t0; tf

��jSj
; and of course Df

i 2 H1
�
t0; tf

�
and D 2 �H1

�
t0; tf

��jF j�jSj
.

Additionally, for all i 2 S and f 2 F , the ˛fi 2 <1C and ˇfi 2 <1C are dual
variables for the state space constraints (10.40) and (10.41), respectively.

We assume that the game arising from the coupled optimal control problems
(10.42) is such that all the operations performed previously and below are well de-
fined and the necessary conditions we have introduced in previous chapters are also
sufficient. Therefore, the maximum principle tells us that an optimal solution to

(10.42) is the tuple
�
D�f ; y�; ��f ; ��f ; ��; ˛�f ; ˇ�f

�
that solves the nonlinear

program
maxHf s.t: �

f
min � �f � �fmax
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for every firm f 2 F for every instant of time t 2 �t0; tf
�

where

�
f
min D

n
�
f
min;i W i 2 S

o

�fmax D
n
�
f
max;i W i 2 S

o

That is, any optimal solution must satisfy at each time t 2 �t0; tf
�

�f � D arg

(

max
�

f
min��f ��f

max

Hf

�
Df ; y; �f ; �f ; �; ˛f ; ˇf I��f I t

�
)

(10.44)

which in turn is equivalent to

h
r�f H

�
f

iT �
�f � ��f � dt � 0 (10.45)

when  
�
f
min

�
f
min

!

�
�
��f
�f

	
�
 
�
f
max

�
f
max

!

(10.46)

where

H�
f � e��t

 
X

i2S
�
f �
i �Df �

i

!

Cˆ�
f (10.47)

and
ˆ�
f D ˆf

�
Df �; y�; �f �

; �f �; ��; ˛f �; ˇf �I��f �I t
�

(10.48)

Furthermore, the relevant adjoint dynamics include

@Hf

@D
f
i

D .�1/ d�
f �
i

dt
(10.49)

Due to absence of terminal time constraints, transversality requires

�f � �tf
� D 
T

@�
�
Df � �tf

�
; tf

�

@Df � �tf
� D 0 (10.50)

which, when taken together with the state dynamics and the dynamics for y, gives
rise to a two-point boundary-value problem.

With the preceding background, we are now in a position to create a variational
inequality for noncooperative competition among the firms. In particular, we have
immediately from (10.45) the following differential quasivariational inequality that
has dynamic generalized Nash equilibria as solutions:
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Z tf

t0

2

4
X

s2S

X

f 2F

@H�
f

@�
f
i

�
�
f
i � �f �

i

�
3

5dt � 0 8� 2 ƒ.�/ �
Y

f 2F
ƒf

�
��f

�

(10.51)
whereH�

f
is defined by (10.47) and (10.48) and we recall that

�f

�
��f

�
D
n
�f 2 ˝f

�
��f

�
W (10.49) and (10.50) hold

o

This differential quasivariational inequality is a convenient way of expressing the
generalized Nash game that is our present interest. The reader will find it instruc-
tive to itemize all the assumptions implicit in 10.51. We leave as an exercise for the
reader a formal demonstration that a solution of (10.51) is a solution of the underly-
ing generalized differential Nash game (10.42).

10.2.6 Numerical Example

Let us consider an abstract revenue management scenario wherein five service
providers are involved in oligopolistic competition. Each of these firms offers a set
of four services and compete for the market demand of these services. The minimal
prices are

�
f
min;i D 0 8i 2 S; f 2 F

The remaining parameters used for this example are given in the tables provided
below. In particular, the demand sensitivity parameters are:



f
i W 10�3 �

Service type, i 1 2 3 4

Firm 1 10 8 12 9

Firm 2 11 7 10 15

Firm 3 20 12 20 20

Firm 4 15 10 15 18

Firm 5 18 6 20 20

The initial demands are:

K
f
i;0 W

Service type, i 1 2 3 4

Firm 1 10 17:5 22:5 30

Firm 2 9:5 16:5 20 31

Firm 3 10:5 17 25 28:5

Firm 4 11 19 24 31

Firm 5 10:5 18 23 30:5

The resource upper bounds are:
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C
f
i W

Service type, i 1 2 3 4

Firm 1 50 35 25 10

Firm 2 30 25 20 12:5

Firm 3 51 37:5 26 10:5

Firm 4 45 37:5 28 11

Firm 5 42 35 27:5 10:5

The price upper bounds are:

�
f
max;i W

Service type, i 1 2 3 4

Firm 1 8:5 13:5 18 20:5

Firm 2 7:5 10:8 18:5 21

Firm 3 8:6 11:7 15:5 20:1

Firm 4 9 11 16:5 20:5

Firm 5 9:2 11:6 17:5 21:8

The revenue management and pricing problem that the firms face is to continuously
set the prices of their four services for t 2 Œt0; tf � where t0 D 0 and tf D 5: The
nominal discount rate is � D 0:05, compounded continuously. Because the we are
dealing with differential quasivariational inequalities, the algorithms presented in
Chapter 6 do not enjoy convergence proofs. Hence, we elect to heuristically apply
a fixed-point algorithm, solving its subproblems by gradient projection after time
discretization. If convergence occurs, a generalized differential Nash equilibrium
will have been achieved. The fixed-point stopping tolerance is set at

" D 0:01

Additionally, we choose

˛ D 1

k

where k is the fixed-point major iteration counter and ˛ is the arbitrary positive
coefficient of the fixed-point formulation.

We forgo the detailed symbolic statement of this example and, instead, provide
numerical results in graphical form for the solution after 113 fixed-point iterations.
Figure 10.3 shows the price trajectories for the services set by the firms as well
as the moving average of price for each service type. Figure 10.4 depicts how de-
mands for the services of each firm change over time in response to the prices set by
the firms. The instantaneous revenues generated over time by the firms are plotted in
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Fig. 10.5 Instantaneous revenue generated by the firms

Figure 10.5. The net present vaues of revenue generated by the firms at the end of
planning horizon are given in the following table:

Firm Net Present Values
Firm 1 8586

Firm 2 7268

Firm 3 11128

Firm 4 9484

Firm 5 10026

The parameters of this numerical example depict a scenario wherein service type
1 is a low-valued service and service type 4 is a high-valued service. Firm 2 is a
discounter with modest capacity, while firm 5 is a more expensive service provider.
Demand for firm 3 is more sensitive to price than is the case for the other firms.
A fascinating behavior is observed for all the firms in their price-setting mech-
anisms: even though they initially set different prices for a service, toward the
end of the planning horizon, all firms start behaving similarly and their prices
converge. Furthermore, possibly singular controls are observed for all firms. This
only affirms the difficult nature of pricing in a competitive, nonlinear environment.
Even the slightest deviation from the optimal trajectories may cause the firms to
suffer dramatic performance degradation. Finally, the net present values of cumula-
tive revenue show that the discounting firm 2, which offers deep discounts, cannot
effectively exploit its low price structure and lags behind the others in the long run.
Additionally, we see that firm 3 benefits most in the competition, even though it is
not a discounter.
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Fig. 10.6 (Up) Relative change of controls from one iteration to the next (�k) vs. the iteration
counter (k), (Down) the zoomed-in view

As mentioned earlier, the fixed-point algorithm converged after 113 iterations for
this numerical example. In Figure 10.6 the relative change from one iteration to the
next, expressed as

�k D
�
�
��k � �k�1

�
�
� � "
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is plotted against the iteration counter k: It is worth noting that for this particular
example even though �1 D 3:4 � 103, the next several iterations very rapidly de-
crease �k . The run time for this example is less than 3 minutes using a generic
desktop computer with single Intel Pentium processors and 1 GB RAM. The com-
puter code for the continuous-time fixed-point algorithm was written in MatLab 6:5
and calls a gradient projection subroutine implemented in discrete time.

10.3 Network Revenue Management

In this section we consider service firms that provide differentiated, nonsubstitutable
services, set prices for their services, may decline booking requests at any given
time, face cancellations and no-shows (with full or partial refunds), and have finite
supplies of resources. The demand is assumed to be known with certainty, a severe
assumption mandated by the deterministic focus of this book. Stochastic extensions
of the model reported here are found in Mookherjee and Friesz (2008). Each service
firm has to decide both how to allocate its resources (quantity-based RM) and how
to set prices for its services (price-based RM) as it seeks to maximize its revenue.
Such a decision environment differs from that faced by discount airlines only in the
absence of demand uncertainty.

10.3.1 Discrete-Time Notation

We consider an oligopoly of abstract service providers. Each firm provides a set of
services (products). Each network service is to be viewed as a bundle of resources
sold with certain terms of purchase and restrictions at a given price. These services
are nonsubstitutable and differentiated. All firms have finite resource capacities. The
booking period is taken to be Œ0; L� which is discretized in N time segments. For
this model, at the beginning of discrete period t 2 Œ0; N �, firms set service prices
and quantities for sale in that period. The notation we will use for sets and matrices
is given in the following table:

Set/Matrix Definition
F set of firms
S set of services each firm provides
C set of resources that firms use to provide services
Ci set of resources that firms use to provide service i 2 S
Sj set of services that utilize resource j 2 C
A resource-service incidence matrix
jCj cardinality of C, with analogous definitions for other sets
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The notation for model parameters is the following:

L D end time of the booking period

0 � tn � tN D L constrains nth period of the booking horizon

� D L

N � 1 defines inter-period time step tnC1 � tn
p
f
i;min 2 <1CC is the minimum price charged by firm f for service i 2 S
p
f
i;min 2 <1CC is the maximum price charged by firm f for service i 2 S
xmin 2 <1CC strictly positive minimum allowed level of service

K
f
i 2 <1CC capacity of firm f 2 F for resource type j 2 C
�
f
t 2 <1CC cancellation rate for firm f 2 C at end of period t

The notation for variables and functions, for period t 2 Œ0; N � 1�, is the following:

p
f
i;t D price for service i 2 S charged by firm f 2 F

x
f
j;t D resource allocation by firm f 2 F of type j 2 C

D
f
i;t .pi;t / D demand realized by firm f 2 F for service i 2 S

R
f
j;t .�

f
t � xft / D refund by firm f 2 F for cancelling resource j 2 C

Additionally ‰fN .x
f
N ; K

f / is the denial of service cost for firm f 2 F . The vector
of prices for service i provided by firm f is

p
f
i D

�
p
f
i;t W t 2 Œ0; N �

�

We will also need to work with the vectors

p
f
t D

�
p
f
i;t W i 2 S

�

pf D
�
p
f
t W t 2 Œ0; N �

�

pt D
�
p
f
t W f 2 F

�

The pricing decision variables of firm f ’s competitors for period t are denoted by
the vector

p
�f
t D �

p
g
t W g 2 Fnf � ,

The state variables for firm f are the vectors of cumulative allocations of resources

x
f
t D

�
x
f
j;t W j 2 C

�

for period t .
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The network we are interested in has jCj resources and the firm provides jSj
different services. As already noted, each network product is a combination of a
bundle of the jCj resources sold with certain terms of purchase and restrictions at a
given price. The resource-service incidence matrix, A D �

aij
�

is a jCj � jSj matrix
where

aij D
8
<

:

1 if resource i is used for service j

0 if resource i is not used for service j

Thus, the j th column of A, denoted by Aj , is the incidence vector for service j I
while the i th row, denoted by Ai , has unity in column j provided service j utilizes
resource i . Note that there may be multiple identical columns of A if there are mul-
tiple ways of selling a given bundle of resources, although each could have different
revenue values and different demand patterns; see Talluri and van Ryzin (2004) for
a more detailed discussion of this and related subtleties.

10.3.2 Demand Functions

For our demand model we assume that the customers make their purchasing de-
cisions based on the current period’s price only; hence, demand for any period
depends only on the price vector for that period only. Firm f ’s realized demand,
or bookings, for service i during time period t , when the prevailing market price is
pt , will be denoted as Df

i;t .pi;t /. The following are an exhaustive set of regularity
assumptions for demand suggested by Mookherjee and Friesz (2008). We do not
actually employ all of them in the analyses that follow; yet, since each has a be-
havioral foundation, it in convenient to assume all demand functions considered are
regular in the sense of the below definition:

Definition 10.1. Demand regularity. For any firm f 2 F and service type i 2 S;
the demand function Df

i;t .pi;t / is said to be regular if it displays the following
properties for all periods t 2 Œ0; N �:
1. Each price pfi;t is defined on a range

h
p
f
i;min; p

f
i;max

i
, where pfi;max 2 <1CC is the

maximum admissible value of pfi and pfi;min 2 <1CCis the minimum admissible

value of pfi , while Df
i .pi;t/

ˇ
ˇ
ˇ
p

f

i;t
Dpf

i;max

D 0;

2. Df
i;t .pi;t/ depends only on the current period t 2 Œ0; N � prices charged by firm

f and its competitors for service type i ;
3. Df

i;t .pi;t/ is continuous, bounded, and differentiable for all pi;t 2 Œpi;min; pi;max�

where pi;t D
n
p
g
i;t W g 2 F

o

4.
@D

f
i;t .pi;t/

@p
f
i;t

< 0
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5. The own-price elasticity of Df
i;t .pi;t/ ; defined as efi;t � �

 
@D

f
i;t

@p
f
i;t

,
D
f
i;t

p
f
i;t

!

is

nondecreasing in pfi;t ; that is,
@e
f
i;t

@p
f
i;t

� 0;

6.
@D

f
i .pi;t /

@p
g
i;t

> 0 for all g ¤ f ;

7.
@e
f
i;t

@p
g
i;t

� 0 for all g ¤ f ; and

8.
@e
f
i;t

@p
f
i;t

CP
g¤f

@e
f
i;t

@p
g
i;t

� 0 for all i 2 S; f 2 F .

It is instructive to give qualitative descriptions for each of the separate conditions
above. In particular, items 1 and 3 impose bounds that arise from regulations and
policy. Item 2 stipulates that consumers of services do not make direct intertempo-
ral price comparisons. Items 4 and 5 indicate that Df

i;t .pi;t/ is downward sloping

in firm f ’s own price and has nondecreasing price elasticity relative to pfi;t . Item 6

states that when any other firm increases its price for service i , there is a correspond-
ing increment of firm f ’s demand for the service i . Item 7 further requires that an
increase in firm g’s price for service i not only increases firm f ’s demand, but also
decreases firm f ’s price elasticity. Item 8 stipulates that the local price effect of a
price change dominates the cross price effect on the local price elasticity.

It is easy to verify that most of the commonly used demand functions satisfy
the restrictions set forth above in our notion of demand regularity. In particular, the
following demand functions are regular in the sense of Definition 10.1:

1. Linear

D
f
i;t .pi;t / D �

f
i;t � �

f
i;t � pfi;t C

X

g2Fnf


g
i;t � pgi;t

where �fi;t ; �
f
i;t ; 


f
i;t 2 <1CC for all f 2 F ; i 2 S, and 0 � t � N:

2. Logit

D
f
i;t .pi;t/ D

a
f
i;t exp

�
�bfi;t � pfi;t

�

�i CP
g2F a

f
j;t exp

�
�bfj;t � pfj;t

�

where afi;t ; b
f
i;t ; �i 2 <1CC for all f 2 F ,i 2 S, and 0 � t � N:

3. Cobb-Douglas

D
f
i;t .pi;t/ D a

f
i

�
p
f
i;t

��ˇf

i
Y

g2Fni

�
p
g
i;t

�ˇfg

i

where afi > 0; ˇ
f
i > 1; ˇ

fg
i > 0 for all f 2 F ; i 2 S, and 0 � t � N .
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10.3.3 Denial-of-Service Costs and Refunds

In our model, deterministic demand and so-called show demand are identical; thus
there is no meaning in such a setting to overbooking. However, we do allow service
providers to cancel scheduled resources. In particular, cancellations are assumed to
occur at the rate �ft for firm f 2 F and discrete-time period t 2 Œ0; N � 1�. Such
cancellations require refunds expressed as

R
f
t

�
�
f
t � xft

�
(10.52)

for firm f 2 F in period t 2 Œ0; N � 1�. Refunds Rft .�/ should monotonically in-
crease with xft and �ft ; and decrease with timė t ; such qualitative behavior reflects
the potential for cancellation fees to increase as the end of the booking period is
approached. Denial of service must necessarily involve loss of goodwill on the part
of customers toward service providers. These denial-of-service costs are calculated
at the end of the booking period and involve the comparison of resources delivered
to actual capacity. Denial-of-service costs are expressed as

‰
f
N

�
x
f
N ; K

f
�

(10.53)

for firm f 2 F , where of course

Kf D
�
K
f
j W j 2 C

�
(10.54)

is the vector of actual capacities.

10.3.4 Firms’ Extremal Problem

With the rival firms’ prices p�f
t taken as exogenous to the discrete-time optimal

control problem of firm f 2 F and yet endogenous to the overall model, firm
f 2 F computes its prices pft and allocation of resources xft in order to maximize
net revenue generated throughout the booking period; this behavior we express as

max
pf

J
�
pf Ip�f

�
D �‰fN

�
x
f
N ; K

f
�

�
N�1X

tD0
R
f
t

�
�
f
t � xft

�
C
N�1X

tD0
p
f
t �Df

t .pt /

(10.55)

subject to

x
f
tC1 D x

f
t C A �Df

t .pt /� �
f
t � xft t D 0; : : : ; N � 1 (10.56)
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x
f
0 D 0 (10.57)

p
f
min � p

f
t � pfmax t D 0; : : : ; N � 1 (10.58)

D
f
t .pt / � xmin t D 0; : : : ; N � 1 (10.59)

The first two terms on the righthand side of (10.55) are the denial-of-service costs
and total refunds, respectively. These are subtracted from total revenue generated to
give net revenue generated in the booking period. As in a typical service industry,
there is no salvage value of unsold resources at the end of the horizon. Constraints
(10.56) are definitional dynamics that describe the net rate of resource commitment.
Of course (10.57) is an initial condition that states no resources are committed at
the start of the booking period. Service prices are bounded from above and below in
(10.58). Constraint (10.59) serves to bound realized demand away from zero; with-
out this constraint, it is possible for a service provider to offer no service in one
or more periods yet to set prices, which would be implausible. Furthermore, it is
clear that the above defines a generalized differential Nash equilibrium; we there-
fore expect the associated variational inequality to be a differential quasivariational
inequality.

Since the firms’ optimal control problems are coupled, we are dealing with a
dynamic Nash game. Observe that service provider f ’s resource allocations xft im-
pacts his/her own revenue but not that of any of his/her competitors whereas service
price does. Hence a firm only needs information on his/her competitors’ pricing
policies and not information on their allocations, as is appropriate since the latter
would be unrealistic in practice. Let us now form the discrete-time Hamiltonian

Hf � Hf

�
pf I�f Ip�f I t

�
D

N�1X

tD0

h
p
f
t �Df

t .pt / �Rft
�
�
f
t � xft

�

C
�
�
f
tC1

�T �
�
x
f
t C A �Df

t .pt / � �ft � xft
��

(10.60)
where �f is the vector of adjoint variables such that

�
f
t D

�
�
f
j;t W j 2 C

�

�f D
�
�
f
t W t 2 Œ1; N �

�

The adjoint variables�f may be interpreted as the shadow prices of resources. From
the maximum principle, at each time period t 2 Œ0; N � 1� firm f seeks to solve the
following static optimization problem

max
p

f
t

Hf;t (10.61)
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subject to

p
f
min � p

f
t � pfmax (10.62)

D
f
t .pt / � xmin (10.63)

The adjoint dynamics arising from the optimal control problem of each firm f 2 F
are

�
f
j;tC1 � �

f
j;t D .�1/ @Hf

@x
f
j;t

for all j 2 C (10.64)

Also the transversality condition for each firm f 2 F is

�
f
j;N D .�1/

@‰
f
N

�
x
f
N ; K

f
�

@x
f
j;N

for all j 2 C (10.65)

A necessary condition for pf �
t to be a solution of the best response problem can be

expressed as the following variational inequality: find pf � 2 Kf such that

h
rpf Hf

�
pf �I�f Ip�f I t

�iT �
�
pf � pf �� � 0 (10.66)

for all pfi;t 2 �f where

Kf
�
p�f

�
D
n
pf W (10.56), (10.57), (10.58), (10.59), (10.64), and (10.65)

o

(10.67)

10.3.5 Market Equilibrium Problem as a Quasivariational
Inequality

With the preceding background, we can now formulate the market equilibrium prob-
lem as a variational inequality. We combine the variational inequalities (10.66) for
each firm f 2 F and time t 2 Œ0; N � 1�. We define the following feasible space
for all service providers:

K .p/ D
Y

f 2F
Kf

�
p�f

�
(10.68)

The discrete-time differential quasivariational inequality of interest seeks to find
p� 2 K .p�/ such that
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0

B
@

rp1H1
�
p1�I�1�Ip�1��

:::

rpjFj

HjF j
�
pjF j�I�jF j�Ip�jF j��

1

C
A

T

�

0

B
@

p1 � p1�
:::

pjF j � pjF j�

1

C
A � 0 (10.69)

for all p 2 K .p/. We leave the formal demonstration, including the imposition
of regularity conditions, that solutions of (10.69) are generalized differential Nash
equilibria as an exercise for the reader.

10.3.6 Numerical Example

For the example that follows, we have elected to heuristically apply a fixed-point al-
gorithm, meant for problems that are merely variational inequalities, to our present
quasivariational inequality; if convergence occurs, we will have found a discrete-
time generalized differential Nash equilibrium. Such an algorithm relies on our
ability to re-express the variational inequality (10.69) as a fixed-point problem, a
task that has been illustrated repeatedly in previous chapters and which we, there-
fore, do not dwell on here. The numerical example we present here is motivated
by the notion of airline revenue management; the network employed is a simplified
version of that found in Mookherjee and Friesz (2008).

In particular, we consider the six-node and eight-leg network of Figure 10.7. Two
firms (f and g) are competing over this network. To keep the exposition simple, we
assume that each firm uses the same network; of course this may be relaxed to a
more general setting where each firm has its own service network that is coupled
to its competitors via congestion or other externalities. We consider nine different

1 2

3

4

5

6
1

5
2

73

4 8

6

Fig. 10.7 Six-node, eight-Leg airline network
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paths (services) for this network that connect five different origin-destination pairs
as shown in the following table:

Service ID O-D Itinerary Service ID O-D Itinerary

1 .1; 2/ 1 � 2 6 .1; 6/ 1 � 2 � 4 � 6

2 .1; 3/ 1 � 2 � 3 7 .1; 6/ 1 � 2 � 5 � 6

3 .1; 4/ 1 � 2 � 4 8 .1; 6/ 1 � 2 � 3 � 4 � 6
4 .1; 5/ 1 � 2 � 5 9 .1; 4/ 1 � 2 � 3 � 4

5 .1; 6/ 1 � 2 � 3 � 6

The relevant sets of firms and services are

F D f1; 2g
S D f1; 2; 3; 4g

We assume that the relevant demand functions for offered services have the form

d
f
i .pi ; t/ D .˛

f
i .t/ � ˇfi .t/ � pfi .t/C 


f;g
i .t/ � pgi .t// � jsin.wt/j

for all f 2 F , i 2 S, and t 2 Œt0; t1�; the parameters ˛fi .t/, ˇ
f
i .t/, 


f;g
i .t/ 2 <1CC

are specified in the following table:

Service 1 2 3 4 5 6 7 8 9

˛
f1

i 60 50 40 60 45 50 50 30 100

˛
f2

i 25 50 60 75 35 50 30 60 45

ˇ
f1

i :3 :3 :2 :5 :25 :2 :15 :25 :15

ˇ
f2

i :2 :25 :3 :15 :45 :1 :2 :5 :3



f1;f2

i :15 :2 :1 :15 :2 :1 :2 :2 :15



f2;f1

i :1 :1 :15 :2 :15 :2 :1 :1 :1

In addition, w is assumed to be 20. The booking period runs from clock time t0 D 0

to clock time tf D 20: The bounds on service prices are:

Service 1 2 3 4 5 6 7 8 9

p
f
i;min 50 50 75 25 30 20 50 50 75

p
f
i;max 180 150 200 160 120 80 180 150 200
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Cancellations are assumed to occur at the rates 1��tj for all j 2 C and discrete-time
periods t 2 Œ0; N � 1�. Such cancellations require refunds expressed as

R
f
jt

�
�
f
jt � xft

�
D 15.1� �tj /xj

The parameters �j for each j 2 C are indicated below:

Leg 1 2 3 4 5 6 7 8

�j :9 :8 :9 :85 :9 :7 :9 :8

Denial of service must necessarily involve loss of goodwill on the part of customers
toward service providers. These denial-of-service costs are calculated at the end
of the booking period and involve the comparison of resources delivered to actual
capacity. Denial-of-service costs are expressed as

‰
f
N

�
x
f
N ; K

f
�

D 300.max.xj �K
f
j ; 0//

2

where
Kf D

�
K
f
j W j 2 C

�

for each firm f 2 F . Each service provider has different, yet mostly comparable,
capacities on each of the 8 legs; these are given in the table below:

Legs 1 2 3 4 5 6 7 8

Firm 1 600 400 400 250 250 300 300 250

Firm 2 500 250 300 250 300 300 300 500

Only bidirectional pricing is considered. For the sake of brevity, we forgo the de-
tailed symbolic statement of this example and, instead, provide numerical results in
graphical form in Figure 10.8 and Figure 10.9.

10.4 Exercises

1. Develop a model of dynamic monopolistic pricing with fixed inventories; ex-
press your model as a differential variational inequality. Develop a pricing
decision rule by analyzing the necessary conditions for your formulation.

2. Establish existence under plausible regularity conditions for the dynamic pricing
model with fixed inventories presented in Section 6.7.

3. Establish existence under plausible regularity conditions for the network revenue
management model of Section 10.3.

4. Discuss the advantages and disadvantages of discrete versus continuous-time
formulations of dynamic pricing with fixed inventories. In particular, discuss the
question of uniqueness for both formulations.
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Fig. 10.8 Service price trajectory of firm 1

5. Consider the generalized differential Nash game of Section 10.2. Formally show,
for appropriate regularity conditions, that a solution of (10.42) is in fact a gener-
alized differential Nash equilibrium.

6. Consider the discrete time network revenue management model of Section 10.3.
Formally show, for appropriate regularity conditions, that a solution of (10.69)
is in fact a generalized differential Nash equilibrium.

7. After reading Chapter 10, create a Stackelberg leader-follower pricing model,
and describe its domain of application. Use as your model of followers the evo-
lutionary game pricing model of Section 10.2.
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Fig. 10.9 Service price trajectory of firm 2
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