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1. Introduction  

Plants are continuously exposed to an extensive array of environmental biotic and abiotic 

stresses. Among the first ones, viruses, bacteria, fungi, nematodes and insects are the causal 

agents of the most serious plant diseases. In some cases the interactions between host and 

pathogen result in the loss of agricultural yield that is often linked to product quality 

decrease (Bhadauria et al., 2010; Bray et al., 2000; Montesano et al., 2003; Zipfel, 2008). The 

best and most effective approach for increasing crop yield is to enhance the production 

efficiency and to reduce agricultural yield losses due to various plant diseases and several 

other stress factors. However, plants are under strong evolutionary pressure to maintain 

surveillance against pathogens. Part of this success is because plants have evolved a variety 

of sophisticated responses that recognise compounds produced and/or are released by the 

pathogens (elicitors) and employ these, to trigger defence signalling, normally designated 

by innate immunity (Montesano et al., 2003; Parker, 2009; Zipfel, 2008). Moreover, to grow 

in their natural environment, some crop genotypes naturally defend themselves against 

pathogen infection through the development of a series of morphological, physiological and 

molecular changes, which are all controlled by functional genomic networks. For instance, 

the interaction between fungal cell wall and plant surface is the beginning of compatible 

interaction establishment. Plant cuticle is the region where fungal infection structures 

differentiated, and the plant/fruit invasion is initiated. The molecular recognition of fungal 

cell wall may cause stress reactions and activate host’s defence mechanisms. Pathogen 

stresses are one of the most significant damaging factors that limit the development and 

consequently, decrease the yield and quality of many crops. Understanding the pathogen 

infection mechanisms is crucial in an integrated analysis in order to target specialized 

functions as signalling, defence responses, and cell death, among others. Nowadays, the use 

of model plants may help to target candidate genes in other crop species, decreasing, 

therefore, the amount of work required in unknown genomes. This chapter is a review of 

the state-of-the-art concerning plant-pathogen interaction focused on: (i) plant defence 
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responses (e.g., levels of host defence, pathogen molecules), (ii) plant defence signalling 

(e.g., molecular recognition, gene expression), and (iii) Olea europaea L. and Colletotrichum 

acutatum strategies in susceptible and resistant olive cultivars.  

1.1 Compatible and Incompatible Interactions 

The resistance in plants has been defined as an incompatible interaction between plant and 
pathogen. In general, a incompatible interaction involves the plant recognition processes 
that prevent or retard the pathogen growth, and spread it through plant cells. On the other 
hand, a compatible interaction is when plant disease occurs, due to an inadequate defence 
response of the host against the pathogen in terms of timing and intensity (Casado Díaz et 
al., 2006; Mysore & Ryu, 2004). In many plant species one of the most typical symptoms of 
defence response is the rapid plant cell death at the infection site, the hypersensitive 
response (HR), which limits pathogen from spreading to other cells (Dangl et al., 1996; 
Glazebrook, 2005; Oh et al., 2006). Van Der Plank (1966) reported two categories of disease 
resistance in plants: vertical and horizontal resistance. Vertical resistance (monogenic or 
oligogenic) protects hosts against only one pathogen race. This complete resistance is 
conferred by a few genes, or even it can be based on a single gene pair, i.e., host R-gene 
activation by pathogen avirulence gene (avr). The horizontal resistance (polygenic) or 
incomplete resistance is conditioned by many genes with minor effect. In the review work 
Mysore & Ryu (2004) proposed that non-host resistance against bacteria, fungi, and 
oomycetes can be also classified into: (i) type I, which does not result in visible cell death 
and (ii) type II, in which a hypersensitive response occurs, resulting in cell death at the 
infection site. The host resistance has been studied intensively in different pathosystem, 
while non-host resistance remains poorly understood (Oh et al., 2006). However, many 
aspects related to the gene expression patterns in some host-pathogen interaction have not 
yet been cleared. 

1.2 Functional genomic 

Functional genomics in plant-pathogen interaction involves studies that reveal the complex 
networks of host stresses perception and signal transduction, leading to the multiple 
defensive responses to pathogens (Langridge et al., 2006; Sreenivasulu et al., 2007; Vij & 
Tyagi, 2007). Functional genomics involves the development of global experimental 

approaches in order to analyse gene function, in contrast to structural genomics, where the 
entire nucleotide sequence of an organism’s genome is determined (Hieter & Boguski, 1997). 
The purpose of functional genomics is to understand the genes function, how cells work, 
how cells form organisms, what goes wrong in disease and how components work together 
to comprise functioning cells and organisms (Lockhart & Winzeler, 2000). Advances on 
functional analysis considering genome, proteome and metabolome of an organism, 
together with the potential of bioinformatics and microscopic tools, enable scientists to 
assess global gene and, protein expression, and metabolite profiles of some damaged 
tissues, allowing a better understanding of the plant response mechanisms. The knowledge 
of complete genomic sequence of different crops is, sometimes the only way to gain access 
to the entire set of genes. The genome sequencing of the first higher plant, thale cress 
(Arabidopsis thaliana), provides nowadays an excellent model species to study host plant 
stress responses and to identify target genes for biotechnology applications (Bevan & Walsh, 
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2005; Zhang et al., 2006). For instance, cDNA from strawberry differently expressed upon 
challenge with the pathogen Colletotrichum acutatum has recently been isolated, and showed 
similarity to (At WRKY75) defence genes in Arabidopsis thaliana (Casado-Díaz et al., 2006; 
Encinas-Villarejo et al., 2009). With the development of high-throughput sequencing 
technologies, the number of genomes sequenced has been increasing fast. The Oryza sativa 
L., Triticum aestivum L., Zea mays L., Vitis vinifera L., Glycine max L., and Fragaria vesca L. 
genome sequencing have been extremely successful in the discovery of new genes. Similarly 
to plants, the knowledge of the pathogens genome is very important to monitor global 
changes that occur during plant-fungal interactions. Several fungal genomes have been now 
sequenced, being some of them extremely important in terms of yield lost in key crops such 
as Botrytis cinerea (grape grey mould, and other host species), Fusarium graminearum (cereal 
head blight), Fusarium verticillioides (corn seed rot), Magnaporthe oryzae (rice blast), 
Mycosphaerella fijiensis (banana black leaf streak), Septoria tritici (wheat leaf blotch), Puccinia 
graminis (cereal rust), Phytophthora ramorum (sudden oak death) and Phytophthora sojae 
(soybean stem/root rot) (Bhadauria et al., 2009).  

2. Plant defence responses 

2.1 Pre and post-invasive levels in plant-pathogen interaction 

Disease resistance in plant-pathogen interactions requires sensitive and specific recognition 

mechanisms for pathogen-derived signals in plants. Plants lack mobile defender cells (like 

animal antibodies) and a somatically adaptive immune system (Jones & Dangl, 2006; Palma 

et al., 2009). However, they are equipped, at least, by two levels of defence: a pre-invasive, 

which is expressed at the cell wall and apoplastic spaces level aiming to prevent pathogens 

penetration, and a post-invasive, which mediates resistance relatively to pathogen that have 

successfully penetrated plant cells, and often results in a localized cell death at the infection 

site.  

The physical barriers are the first level of a general plant defence against pathogens 
invasion, and include waxy cuticular skin layers, the plants’ cell wall and actin cytoskeleton 
that play a key role in penetration resistance (Dangl & Jones, 2001; Kobayashi & Kobayashi, 
2007). The plants’ cell wall is one of the sites where the changes, due to the defence 
response, can be observed. These can include cell-wall thickening and lignification, papilla 
formation, phenolic compounds accumulation, phytoalexins and other secondary 
metabolites, as well transcriptional activation of pathogenesis-related proteins (Anand et al., 
2009; Bhadauria et al., 2010; Montesano et al., 2003; Salazar et al., 2007; Shan & Goodwin, 
2005; Zipfel, 2008). The papilla structures were observed on blueberry fruits inoculated with 
Colletotrichum acutatum, and it was formed beneath subcuticular hyphae and represented 
one of the host defence responses (Wharton & Schilder, 2008). If passive defences, such as 
the cell wall, is overcome by the pathogen, active defence responses are triggered a long 
lasting systemic response (systemic acquired resistance, SAR) which confers to the plant 
resistance against a broad spectrum of pathogens (Thordal-Christensen, 2003). 

Primary or basal immune defence response is induced by perception of molecules called 

pathogen-associated molecular patterns (PAMPs or MAMPs) (Dangl & Jones, 2001; Jeong et 

al., 2009). The pathogen-associated molecular patterns (PAMPs) are recognised by the plant 

innate immune systems through receptor proteins called pattern recognition receptors 
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(PRRs), and include cold shock protein, flagellin, lipopolysaccharides of Gram-negative 

bacteria, lipids, elongation factor (EF-Tu), enzyme superoxide dismutase, peptidoglycan, 

and chitin of fungi (Bent & Mackey, 2007; Chisholm et al., 2006; Jeong et al., 2009; McDowell 

& Simon, 2008; Rafiqi et al., 2009; Zipfel, 2008).  Perception of PAMPs occurs through PRRs 

located on the cell surface which could activate a chain of intracellular defensive signalling 

pathways, including the activation of a mitogen-activated protein kinase (MAPK) signalling 

cascade. When PAMPs are recognised by PRRs the PAMP-triggered immunity (PTI) system 

can halt microbial growth. In general, the PRRs are constituted by an extracellular leucine-

rich repeat (LRR) domain, and an intracellular kinase domain. 

The second molecular level of plants defence (post-invasive) occurs after the effectors 

pathogen invasion. The effectors secreted by pathogens into host cells are recognised by 

intracellular nucleotide-binding (NB)-LRR receptors which induce effector-triggered 

immunity (ETI). Successful pathogens have evolved effector molecules that target virulence 

effector proteins (Avr) that can overcome host defensive pathways. In a dynamic co-

evolution between plants and pathogens, some plants have evolved disease resistance 

proteins (R) to recognise these effectors directly or indirectly, and activate an effective 

immune response like activation of localised cell death at the pathogen infection sites, called 

the hypersensitive response (HR) (Kim et al., 2008; Lindeberg & Collmer, 2009; Zipfel, 2008). 

The gene-for-gene resistance model, proposed by Flor (1971), requires that Avr-protein 

recognise the corresponding R-protein, which is accompanied by localised cell death. This 

effect triggers a cascade of signal transduction events that include rapid ion fluxes, 

extracellular oxidative burst, changes of phosphorylation status, induction of salicylic acid, 

and localised transcription reprogramming at the infection site (Dangl & Jones, 2001; Dangl 

& McDowell, 2006; Kim et al., 2008; Palma et al., 2009). Although they have been 

documented in others pathosystem in the olive fruits infected by Colletotrichum acutatum no 

reports considering these events have been made. New perspectives on plant defence signal 

transduction mechanisms have been given by the discovery of novel intracellular perception 

of pathogen effector proteins. The events of pathogen effectors recognition are mediated by 

plant NB-LRR proteins and allows resistance defence response to pathogens (Dodds & 

Rathjen, 2010). The plant NB-LRR proteins are able to recognise pathogen effectors through 

diverse pathways: (i) direct recognition, (ii) guard and decoy models, or by (iii) bait-and-

switch model, and translate these interactions into a defence response (Collier & Moffett, 

2009; Dangl & Jones, 2001; Dodds & Rathjen, 2010; Rafiqi et al., 2009; Van der Hoorn & 

Kamour, 2008). All models illustrated the diversity of perception mechanisms employed by 

plants to detect the broad variety of pathogen effectors, and activating plant defence 

responses to infection. In pathogen and plant direct recognition, the effectors triggers 

immune signalling by physical binding to the NB-LRR receptor. The LRR domain is 

considered the major determinant of perception and recognition specificity (Rafiqi et al., 

2009). The guard and decoy models report a modification on an accessory protein which is 

then recognised by NB-LRR receptor. In bait-and-switch model the effector interacts with an 

accessory protein associated with NB-LRR, and then a recognition mechanism occurs 

between the effector and NB-LRR protein in order to trigger signalling. However, none of 

these models are completely understood. Thus we face the need to expand our knowledge 

on how plant immune receptors are activated by effector recognition and how the resistance 

signal is triggered. 
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2.2 Plant defence signaling molecules 

Various signalling molecules mediate the expression of pathogenesis-related proteins, which 
can interfere with the plant resistant to a pathogen attack. The defence protein products 
include peroxidase, polyphenol oxidase, which catalyzes the formation of lignin and 
phenylalanine ammonia-lyase, involved in phytoalexin and phenolics biosynthesis (Salazar et 
al., 2007). Some pathogenesis-related proteins such as chitinase, and β-1,3 glucanase have 
potential antifungal activity which degrade the fungal cell wall and cause fungal cells lyses. 
Co-induction of chitinases, peroxidases, Ɣ-thionins and β-1,3-glucanases gene expression, 
during pathogen infection, has been described in several plants, including wheat, strawberry, 
potato, soybean, maize, tobacco, tomato, bean, and pea, among others (Bettini et al., 1998; 
Casado-Díaz et al., 2006; Cheong et al., 2000; Lambais & Mehdy, 1998; Li et al., 2001; Liu et al., 
2010; Petruzzelli et al., 1999; Vogelsang & Barz, 1993). Defence responses can also be mediated 
by endogenous signalling molecules such as salicylic acid, jasmonic acid, and ethylene 
(Encinas-Villarejo et al., 2009; Mysore & Ryu, 2004). Plant hormones have been reported to 
have a role in induce plant defence responses, operating in two major defence pathways in 
plants, depending on salicylic acid or jasmonic acid and ethylene, and conferring resistance to 
different pathogens (de Vos et al., 2005; Dempsey et al., 1999; Jones & Dangl, 2006; Métraux, 
2001). Salicylic acid confers resistance to host plants, especially against biotrophs and 
hemibiotrophs pathogens, whereas jasmonic acid and ethylene signalling contributes to 
resistance against necrotrophs pathogens (Ausubel, 2005; Chisholm et al., 2006; Glazebrook, 
2005). An incompatible interaction has been reported (Lee et al., 2009), where salicylic acid 
protects unripe fruit of pepper against Colletotrichum gloeosporioides infection through the 
inhibition of appressorium development. Genes encoding ethylene and jasmonic acid 
biosyntheses and indole-3-acetic acid regulation were found to be highly induced in citrus 
flowers during Colletotrichum acutatum infection (Lahey et al., 2004; Li et al., 2003).  

2.3 Colletotrichum spp. as pathogenic fungi of Olea europaea L. 

Fungi are the causal agents of most serious disease and are one of the pathogens that are able 
to breach the intact surfaces of hosts, rapidly establishing infections that can result in 
significant agricultural yield loss (Bhadauria et al., 2010). Colletotrichum species comprises a 
diverse range of important plant pathogenic fungi that cause pre- and postharvest crop losses 
worldwide. Colletotrichum acutatum and Colletotrichum gloeosporioides have been reported as 
causal agents of olive anthracnose, which is a major disease of cultivated olive orchards. The 
Olea europaea L. was domesticated in the Mediterranean region where it has a huge eco-social 
role. However, due to its importance as a crop it has spread to other Mediterranean climates 
worldwide (Gutiérrez & Ponti, 2009). Like other crops, olive is susceptible to a large number 
of diseases some of which are causing considerable damage to the olive orchards worldwide. 
Without the support of pest-control chemicals, such as fungicides or herbicides, crops are 
increasingly exposed to a range of biotic attacks. As for Olea europaea L. one of the main 
problems, concerning long-term cultivation, is the fungal contamination such as Colletotrichum 
acutatum, Colletotrichum gloeosporioides, Fusicladium oleagineum, Phytophthora megasperma, 
Rhizoctonia, Verticillium dahliae, Pseudomonas syringae pv. savastanoi, and the pests such as 
Bactrocera oleae, and Prays oleae (Sergeeva & Spooner-Hart, 2009; Tsitsipis et al., 2009). 

Olive anthracnose was reported for the first time in Portugal in 1899 by Almeida (1899) 
which classified the Gloesporium olivarum as the causal agent of olive disease. In 1957, Von 
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Arx reported that Colletotrichum gloeosporioides was the species responsible for olive 
anthracnose. Latter, Simmonds introduced Colletotrichum acutatum in 1965 as one of the 
pathogen responsible for olive anthracnose. Research focused in host–pathogen interactions 
developed in Greece, Italy, and Spain has provided new insights into olive disease 
identification, and Colletotrichum gloeosporioides (originally: Gloeosporium olivarum) was 
reported as the primary cause of olive anthracnose (Mateo-Sagasta, 1968; Zachos & Makris, 
1963). It has also been very difficult to discriminate between Colletotrichum acutatum and 
Colletotrichum gloeosporioides by traditional taxonomical methods. Morphologically, 
Colletotrichum acutatum and Colletotrichum gloeosporioides are very similar because of their 
host range overlapping and the wide variability found among their pathotypes. 
Considerable progress has been made in Colletotrichum species identification. In Portugal, 
Talhinhas et al. (2005) using molecular approaches, and Carvalho et al. (2003) with Potato 
dextrose agar enzyme linked immunosorbent assay (PDA-ELISA) reported that Colletotrichum 
acutatum is the predominate species in olive orchards, and consequently responsible for olive 
anthracnose. Nowadays, Colletotrichum acutatum is the dominant species in both olive 
growing regions: Alentejo in Portugal, and Andalusia in Spain (Moral et al., 2009; Talhinhas 
et al., 2005, 2009). Recently, molecular tools such as random amplification of polymorphic 
DNA (RAPD), species-specific primers for Colletotrichum acutatum isolates using internal 
transcribed spacer (ITS) region of rDNA sequences, and other regions of the genome have 
been effectively used to clearly discriminate Colletotrichum acutatum from Colletotrichum 
gloeosporioides and to identify genetically distinct subgroups of Colletotrichum acutatum (Peres 
et al., 2005; Talhinhas et al., 2005, 2011). Other characters, such as growth rates and 
sensitivity to benomyl fungicide, have been helpful to differentiate between Colletotrichum 
acutatum and Colletotrichum gloeosporioides (Peres et al., 2005).  

Besides olive crop, Colletotrichum acutatum is a major constraint in global food production as 

it causes many of the world’s most devastating diseases in cereals, grasses, legumes, 

vegetables, perennial crops and a number of fruit trees (Bailey et al., 1992; Peres et al., 2005; 

Wharton & Diéguez-Uribeondo, 2004). This species can infect all plant surfaces, but favours 

the young leaves, small branches and fruits of herbaceous species growing in a humid 

microclimate (Peres et al., 2005; Wharton & Diéguez-Uribeondo, 2004). In different regions 

of Portugal the Colletotrichum acutatum severely affects olive orchards leading to a decrease 

in olive oil production and quality, which compromises the protected denomination of 

origin (PDO) of Portuguese olive oils (Fig. 1). The Colletotrichum acutatum can affect up to 

100% of the fruit on a olive tree during humid (or rain) autumns where susceptible olive 

cultivars are grown (Casado-Díaz et al., 2006; Freeman et al., 2002; Garrido et al., 2008; Peres 

et al., 2005; Talhinhas et al., 2011; Trapero & Blanco, 2008). Moreover, a poor quality and low 

stability olive oil is obtained from olives harvested in areas affected by anthracnose, 

presenting alterations in oil color (red), high acidity and other typical organoleptic 

characteristics (Carvalho et al., 2006; Moral et al., 2008; Talhinhas et al., 2009, 2011) (Fig.1). 

In Portugal the olive oil production employs more than 400 000 people and the average yield 

is about 42 000 ton/year. The area occupied by olive trees is more than 340 thousand of 

hectares. In the last ten years, an expansion of olive tree planting area by Portuguese farmers 

was observed. This was as a result of an increasing of 2.5% in the demand of olives in the 

world. During the same period of time, in Portugal, the consume of olive oil was recuperated 

from 3.3 Kg to 7.0 Kg per capita. Beyond the improvement of national production/consume of  
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Fig. 1. Olive fruits infected by Colletotrichum acutatum. (a) Olive fruits without pathogen 
infection; (b) olive fruits with Colletotrichum acutatum infection, and (c) 192 hours after 
inoculation olive fruit is completely destroyed by pathogen infection.  

olive oil, there was also an increase in exportations of about 19%. Nationally, the prevalent 
olive cultivar is ‘Galega’ that gives to olive oil a good specificity when compared with olive 
oils from others cultivars. This characteristic is unique in the world and for that reason it is a 
national imperative to preserve ‘this heritage’ at all cost. However, this cultivar has a disease 
resistant problem, related to its high susceptibility to olive anthracnose caused by the 
Colletotrichum acutatum, known in Portugal as ‘gafa’ disease. This disease is very aggressive 
and is one of the main constraints affecting both the Portuguese olive oil production and unique 
characteristics. The Colletotrichum species are known to produce enzymes that degrade 
carbohydrates and thus dissolve plant cell walls (e.g., polygalacturonases, pectin lyases and 
proteases) and hydrolyze fruit cuticles (Wharton & Diéguez-Uribeondo, 2004). In a response, 
several plants have evolved inhibitor proteins (PGIPs) that specifically recognise and inhibit 
fungal polygalacturonases (Mehli et al., 2004). Recently, a new report concerning the 
reduction of Colletotrichum acutatum infection by a polygalacturonase inhibitor protein 
extracted from apple, has been provided (Gregori et al., 2008). 

The penetration of the plant tissue is always a crucial event for plant-pathogen interaction 
and the success of colonization depends on the ability of the pathogen to retrieve the 
nutrients from the host. In some host-pathogen interactions, such as olive fruits and pepper, 
the fruit index maturation may compromise the success of colonization (Lee et al., 2009; 
Moral et al., 2008). The resistance of immature fruits to colonization by Colletotrichum species 
can be related with the sugar content which is a non-suitable substrate to fulfil the 
nutritional and energy requirements of the pathogen (Wharton & Diéguez-Uribeondo, 
2004). Additionally, there are a large number of secondary metabolites such as alkaloids, 
tannins, phenols and resins, which create a hostile and toxic environment for pathogens 
growth due to their anti-microbial activity (Dixon, 2001). Preformed fungi toxic compounds 
in unripe avocado fruit were reported to inhibit the Colletotrichum gloeosporioides growth 
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(Prusky et al., 2000). Phytoalexins have also been identified in Capsicum annum L. 
anthracnose, caused by Colletotrichum capsici and Glomerella cingulata. There are few reports 
about phytoalexins production after Colletotrichum species infection. The most recently, an 
evidence of phytoalexins production was observed on unripe blueberry fruits inoculated 
with Colletotrichum acutatum (Wharton & Diéguez-Uribeondo, 2004).  

 

Fig. 2. The Colletotrichum acutatum life cycle on Olea europaea L. fruits. All Colletotrichum spp. 
produce acervuli with abundant spores that are rain-splashed and serve as an inoculum 
source for futures infections. Spore germinates to form appressoria, and quiescent infections 
can be established on fruits, small branches and/or leaves. Long biotrophic phase on unripe 
fruits are observed during spring, and summer. Necrotrophic phase appears primarily on 
ripe fruits and then on leaves and branches (adapted from Peres et al., 2005; Trapero & 
Blanco, 2008).  

2.3.1 Colletotrichum acutatum life cycle on olive fruits 

The early events of basic pathogenicity and susceptible interactions between olive 
cultivars and Colletotrichum acutatum as well as lifestyle of the Colletotrichum species are 
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still not understood, and therefore needs to be explored. The Colletotrichum species life 
cycle comprises a teleomorph (sexual) and an anamorph (asexual) stages. However, in 
many plant-fungal systems asexual phase has still not been found, even on economically 
important crops like olive tree. The Colletotrichum species life cycle is summarized in Fig. 
2. In general, the sexual stage accounts for the fungus genetic variability while the asexual 
is responsible for fungal spore formation and appressorium development. The 
Colletotrichum spores are essential for the fungus dispersal (Peres et al., 2005; Wharton & 
Diéguez-Uribeondo, 2004). Specific structures or developmental stages, such as acervuli 
formation, spore germination and appressorium formation are distinguished during the 
Colletotrichum species life cycle.  

2.4 Colletotrichum acutatum and olive fruits interaction 

To establish a compatible interaction with a host, the fungal pathogen does not only need to 

overcome host physical barriers, but also they have to establish a feeding relationship with 

the host. The early events in Colletotrichum spp. infection process are very similar among the 

different hosts. Frequently, the host-pathogen interaction includes (i) spore adhesion to the 

host surface, (ii) spore germination, (iii) appressorium development and (iv) fungal growth 

through the colonization of the hosts’ tissues (Fig. 3). Spores are embedded in a matrix of moist 

hydrophilic mucilaginous material including glycoproteins, lipids and polysaccharides. These 

compounds are essential not only for spore adhesion, but also for their protection against 

desiccation, physical damage, and host defence responses. After spore germinate a short 

germ tube is generated which finally differentiate into an appressorium with a penetration 

pore (Fig. 3).  

The appressorium with penetration pore are a penetration structure that is formed after 

germ tube germination, and allows many pathogens to enter into the host cells. Pathogens 

may force their way through plant surfaces by different means; some take advantage of 

natural doors, such as stomata or lenticels; some others enter through wounds or directly 

through cuticle (Bailey et al., 1992; Gomes et al., 2009; Jong & Ackerveken, 2009). In order to 

infect plants, fungal pathogens have developed a wide variety of infection strategies: (i) 

Necrotrophs, pathogen kill the host and feed from the cell contents; (ii) Biotrophs, require a 

living host to complete their life cycle; and (iii) Hemibiotrophs, act as both biotrophs and 

necrotrophs at different stages of infection. Most of the Colletotrichum species are 

hemibiotrophs with different spans of their biotrophic phase, and may also undergo a 

period of quiescence in order to overcome resistance mechanisms (Gomes et al., 2009; Peres 

et al., 2005). Two types of interaction between Colletotrichum species and their hosts have 

been reported: intercellular hemibiotrophy and subcuticular intramural necrotrophy 

(Gomes et al., 2009; O’Connell et al., 2000; Perfect et al., 1999) (Fig. 4). 

In intercellular hemibiotrophic infections, a symptomless biotrophic phase is followed by a 

destructive necrotrophic one, during which symptoms become apparent. Examples of 

pathogens employing this infection strategy are Colletotrichum graminicola Politis & Wheeler, 

1973). Colletotrichum gloeosporioides (Ogle et al., 1990), and Colletotrichum lindemuthianum 

(Mercer et al., 1975; O’Connell et al., 1985). In the subcuticular intramural infection strategy, 

rather than penetrating the epidermal cell wall, the fungus grows under the cuticle and 

within the periclinal and anticlinal walls of epidermal cells (Arroyo et al., 2007; O’Connell et 
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al., 2000; Wharton & Diéguez-Uribeondo, 2004). Colletotrichum phomoides (Bailey et al., 1992), 

Colletotrichum capsici (Pring et al., 1995) and Colletotrichum circinans (Bailey et al., 1992) 

behave in this manner. On olive fruits, a combination of both strategies has been reported, 

and results in intra- and intercellular colonization of fruits (Gomes et al., 2009) (Fig. 4). In 

this pathosystem Colletotrichum acutatum used hemibiotrophy and subcuticular colonization 

strategies to colonize ‘Galega’ that is Colletotrichum acutatum susceptible olive cultivar and 

‘Picual’ that is Colletotrichum acutatum resistant olive cultivar. 

 
 
 

 

Fig. 3. Colletotrichum acutatum infection structures in olive fruits. (a) Massive adhesion of 
fusiform spore on the susceptible cultivar (Galega) was observed at 48 hours after 
inoculation (hai). (b) Germinated and ungerminated spore on the fruit surface 48 hai; a 
penetration pore has differentiated under a mature appressorium and internal light spot 
(ILS) was observed at 72 hai. (c) Conidia (with a septum at the equatorial zone (arrow)) 
developed a germ tube at the end of which a pigmented fluorescing appressorium 
differentiated within 72 hai. (d) The development of one or more secondary conidia 
simultaneously was observed at 48 hai. Scale bar represents 20 µm in panel (a) 10 µm in 
panels (b) and (d) and 5 µm in panel (c) CL - host cuticle; MS - mesocarp; C - conidium; A - 
appressorium; ILS - internal light spot; PP - penetration pore; GT - germ tubes; SP - septum; 
NC - new conidial formation.  
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Fig. 4. Intracellular hemibiotrophic-like infection structures in infected olive fruit. Penetration 
of epidermal cells and fungal development inside the host were observed. (a) The host 
membrane (arrow) encloses a globose infection vesicle without damaging the host plasma 
membrane. (b) and (c) Subcuticular infection vesicles were observed in susceptible ‘Galega’ (b) 
and resistant ‘Picual’ (c) olive fruit. During the early events of infection, hyphae grow inside 
the host cell wall of ‘Galega’ without penetrating the lumen. (c) Development of hyphae with 
internodes are marked with arrows. Scale bar represents 10 µm in all panels. HM - host 
membrane; GIV - globose infection vesicle; I - internodes; SCH - subcuticular hypha.  

3. Conclusion  

Functional genomics studies in species like Olea europaea L., where no sequence data are 

available, has a major constraint, which limits the screening of potentially transcript-derived 

fragments (TDFs) and their function. The identification and the role of genes involved in 

olive polygenic resistance is complex and remain unknown. Current knowledge about 

Colletotrichum acutatum-olive interaction, in susceptible and resistant cultivars and its 

functional genomic impact on plant resistance is not yet sufficient to provide solid 

explanations. Data for model plants may direct strategies that are transferable to crop 

systems, even when there is a lack of sequencing information related to the crop under 

study, once they may provide guidelines to which direction studies may be conducted. 

Furthermore, Colletotrichum acutatum-strawberry (pathosystem model for Colletotrichum 

acutatum - plant interaction) interactions are still poorly understood making the task even 
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more difficult in olive. The identification of resistance genes is essential not only to 

understand the basis of olive anthracnose disease but also to identify novel fungicide targets 

and, in the long term, environmental and human safe fungicides. 
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