
Department of Chemistry

Part IA Chemistry
Lent Term 2005

Energetics and Equilibria

Nicolas Carnot (1796–1832)

[Classical thermodynamics] is the only
physical theory of universal content,
which I am convinced, that within the
framework of applicability of its basic
concepts will never be overthrown.
Albert Einstein

∆rG◦ = −RT ln K
∆rG◦ = ∆rH◦ − T∆rS ◦

Dr James Keeler



Contents

1 Introduction 1
1.1 Books 2

2 The Second Law 3
2.1 Spontaneous processes 3
2.2 Energy minimization 4
2.3 The Second Law 5
2.4 Molecular basis of entropy 5

2.4.1 Energy levels 6
2.4.2 Ways of arranging things 6
2.4.3 The most probable distribution 7
2.4.4 The Boltzmann distribution 7
2.4.5 Entropy and distributions 8
2.4.6 Entropy as a microscopic property: summary 9

2.5 Classical view of entropy 10
2.6 The Second Law in action: how to make ice 10

2.6.1 Separating the Universe into the system and the sur-
roundings 11

2.6.2 Water freezing 12

3 The First Law of Thermodynamics 15
3.1 What is heat? 15
3.2 What is work? 15
3.3 What is internal energy? 15
3.4 State functions and path functions 16

3.4.1 State functions 16
3.4.2 Path functions 17

3.5 Sign conventions 17

4 Gas expansions 19
4.1 Gas laws 19
4.2 How to think about a gas expansion 19
4.3 Expansion against constant external pressure 20
4.4 Expansion doing maximum work 21

4.4.1 Reversible and irreversible processes 21
4.4.2 Reversible isothermal expansion of an ideal gas 22

4.5 Heat changes in gas expansions 22
4.6 Entropy and the reversible heat 23

4.6.1 Entropy change in an isothermal expansion of an ideal
gas 23



5 Internal energy, enthalpy and heat capacity 25
5.1 Differential forms 25
5.2 Constant volume processes 25

5.2.1 Heat capacities 26
5.3 Constant pressure processes – enthalpy 27

5.3.1 Heat capacity at constant pressure 28
5.3.2 Variation of enthalpy with temperature 28

5.4 Measurement and tabulation of heat capacities 29

6 Measuring entropy 31
6.1 Absolute entropies 31

6.1.1 Practical evaluation of entropies 31
6.1.2 Converting entropies from one temperature to another 32

7 Gibbs energy 34
7.1 Gibbs energy and the Universal entropy 34
7.2 How the Gibbs energy varies with pressure and temperature 35

7.2.1 The Master Equations 35
7.2.2 Variation of G with p (and V), at constant T 36
7.2.3 Variation of G with T, at constant p 38

8 Chemical changes 39
8.1 The ∆r symbol 39
8.2 Standard states and standard changes 39
8.3 Enthalpies of formation 40
8.4 Standard entropy and Gibbs energy changes for reactions 41
8.5 Variation of ∆rH◦ with temperature 41
8.6 Variation of ∆rS ◦ with temperature 42

9 Mixtures 43
9.1 The mixing of ideal gases 43

9.1.1 Partial pressures 43
9.1.2 Gibbs energy of the components in a mixture 44

9.2 Reacting mixtures 44
9.3 Chemical potential 45

9.3.1 The chemical potential of gases, solutions and solids 46

10 Equilibrium 48
10.1 Equilibrium constants 48
10.2 Condition for chemical equilibrium 49
10.3 Relation between ∆rG◦ and the equilibrium constant 50

10.3.1 Equilibria involving solids 51
10.4 Interpretation of ∆rG◦ = −RT ln K 52
10.5 Influencing equilibrium 53

10.5.1 Le Chatelier’s principle 53
10.5.2 Changing concentration 54
10.5.3 Effect of temperature 54
10.5.4 Variation of equilibrium with pressure 57

11 Applications in biology 59



12 Electrochemistry 61
12.1 Cell conventions 62

12.1.1 Half-cell reactions and couples 62
12.1.2 The cell conventions 62
12.1.3 Shorthand for cells 62
12.1.4 Examples of using the cell conventions 63

12.2 Thermodynamic parameters from cell potentials 64
12.3 The Nernst equation 64

12.3.1 Chemical potentials and activities 64
12.3.2 Derivation of the Nernst equation 65
12.3.3 Nernst equation for half cells 66

12.4 Standard half-cell potentials 67
12.4.1 Tabulation of standard half-cell potentials 67

12.5 The spontaneous cell reaction 67
12.6 Types of half cells 68

12.6.1 Metal/metal ion 68
12.6.2 Gas/ion 69
12.6.3 Redox 69
12.6.4 Metal/insoluble salt/anion 69
12.6.5 Liquid junctions 70

12.7 Redox stability 70
12.8 Applications 72

12.8.1 Solubility product of AgI 72
12.8.2 Thermodynamic parameters of ions 72
12.8.3 Concentration cells 73

13 Appendix: available on www-teach.ch.cam.ac.uk 74
13.1 Partial derivatives 74

13.1.1 The Master Equations 74
13.1.2 Maxwell’s relations 76

13.2 More about ∆r quantities 77
13.2.1 Variation of ∆rH with temperature 77
13.2.2 Variation of ∆rS with temperature 78

13.3 Relationship between ∆rG for the cell reaction and the cell EMF 78
13.3.1 Electrical work from a cell 78
13.3.2 Relation of the cell potential to ∆rGcell 79





1

1 Introduction

These lectures are concerned with a very important topic in chemistry (and,
more generally, in any molecular science): what makes a reaction ‘go’ and
what determines to position of equilibrium. Put another way, we will be look-
ing into what is the driving force for chemical reactions in order to explain
why some reactions go entirely to products, whereas some come to a position
of equilibrium in which there are significant amounts of reactants still present.

We shall see there there is one very important physical law, the Second
Law of Thermodynamics, which determines whether a reaction (or physical
process) will ‘go’ and what the position of equilibrium is. The Law itself is
simple to state, but working from this statement to practical relationships and
ideas which we can apply is a fairly involved task. A substantial part of these
lectures will be devoted to showing how the Second Law can be developed in
this way; we will then go on to look at some applications.

Historically, the topic we are going to look at is usually called Thermody-
namics although, as we shall see, there is a lot more to it than simply heat!
The theory is quantitative; for example, we will see that we can calculate
equilibrium constants and predict, in a quantitative way, how they vary with
temperature.

Thermodynamics is expressed in mathematical language, but we must not
get bogged down in the equations – we must remember that each equation is
simply expressing some physical principle. If we keep sight of the physical
principles, then the equations will take care of themselves. If we loose sight of
the physical meaning, then we will soon get lost in the equations. The really
important equations (which you might like to remember) are surrounded by
boxes .

In this course we will develop the following relationships, which are per-
haps the most important in the whole of chemical thermodynamics:

∆rG
◦ = −RT ln K ∆rG

◦ = ∆rH
◦ − T∆rS

◦.

In these K is the equilibrium constant and ∆rG◦ is the standard Gibbs en-
ergy change for the reaction. This, as the second equation shows, can be
computed from ∆rH◦, the standard enthalpy change and ∆rS ◦, the standard
entropy change.

Simple though these equations are, it will take us quite a while to arrive
at them as quite a few new ideas need to be introduced. The effort will be
worthwhile, though, as these equations, coupled with an understanding of
how ∆rH◦ and ∆rS ◦ are affected by chemical changes, are the basis of under-
standing chemical equilibrium.

Some additional material (not examinable) is available in the form of an
appendix. This can be downloaded from www-teach.ch.cam.ac.uk; click
on ‘Teaching Materials’.



2 Introduction

1.1 Books

You will find that any general physical chemistry text book has a section on
Thermodynamics and Equilibrium which are the subject of these lectures. The
problem is that most books tend to cover far more than we need at the moment,
and also there is a tendency to couch the discussion in very mathematical
language, which can sometimes obscure the underlying principles. So, when
you consult a book, be prepared to be selective.

Probably the best book for this course is G J Price Thermodynamics of
Chemical Processes (Oxford Chemistry Primers no. 56, Oxford University
Press, 1998). Another useful book is P W Atkins The Elements of Physical
Chemistry (OUP, any edition). This is a simpler version of Physical Chemistry
(OUP, any edition) also by P W Atkins, which is an excellent book although
it is rather comprehensive.

Why Chemical Reactions Happen by J Keeler and P Wothers (OUP, 2003)
includes quite a lot of discussion of the ideas from this course, although
mainly framed in non-mathematical language.

Atkins has also written a ‘coffee table book’ called The Second Law (Sci-
entific American Library, 1994) which is a well illustrated and very readable
informal account of thermodynamics and its applications.
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2 The Second Law

2.1 Spontaneous processes

Once set going, some reactions ‘go’ completely to products with no further
intervention from us
NH3(g) + HCl(g) −→ NH4Cl(s) [clouds of white fumes formed]

Combustion of hydrocarbons: CH4(g) + 2O2(g) −→ 2H2O(g) + CO2(g)

2Mg(s) + O2(g) −→ 2MgO(s) [very violent]

Similarly, some physical processes also go without any intervention from
us:
Gases mix completely

Gases expand to fill the volume available to them

NaOH(s) dissolves in water

If a hot object is placed in contact with a cooler one, the hot one cools
down and the cool one warms up

The reverse of all these processes do not happen on their own, but we can
often force these processes to take place by intervening.

Strong heating can dissociate ammonium chloride:
NH4Cl(s) −→ NH3(g) + HCl(g)

Gases can be separated e.g. by liquefaction and fractional distillation

An object can be cooled using a refrigerator

These observations lead to the recognition that there are some physical and
chemical processes with can be described as spontaneous or natural. Once
started, such processes take place without any further intervention from us.
The reverse of spontaneous processes do not take place naturally but can be
forced to take place by intervention. What we are seeking is a physical princi-
pal or law which determines which processes will be spontaneous and which
will not.

For chemical reactions the situation is a little more complex as it is not
usually the case that a reaction either goes or does not go. Rather, the species
involved come to a position of equilibrium which involves a particular ratio
of reactants and products.

For example, when HCl dissolves in water, the dissociation is virtually
complete

HCl + H2O −→ H3O+ + Cl−,

whereas when ethanoic acid dissolves only a small fraction dissociates (about
1% in a 0.1 M solution)

CH3COOH + H2O� H3O+ + CH3COO−.
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So, for chemical reactions we need to find a physical law or principal
which allows us to predict the position of the equilibrium.

2.2 Energy minimization

A tempting idea is that reactions are spontaneous because the products are
‘more stable’ than the reactants. What do we mean by ‘more stable’? Usually
we think of this as meaning ‘lower in energy’.

If reactions take place because the products are lower in energy than the
reactants, then the implication is that spontaneous reactions must give out
heat, as they are accompanied by a reduction in energy. In other words, they
must be exothermic. Does this work out in practice?

NH3(g) + HCl(g) −→ NH4Cl(s) ∆rH◦= −176 kJ mol−1

CH4(g) + 2O2(g) −→ 2H2O(g) + CO2(g) ∆rH◦= −890 kJ mol−1

2Mg(s) + O2(g) −→ 2MgO(s) ∆rH◦= −1204 kJ mol−1

NaOH(s) dissolving in water ∆rH◦= −45 kJ mol−1

These are all spontaneous exothermic processes, but we can think of ex-
amples of processes which are spontaneous but are not exothermic:

NH4NO3(s) dissolving in water ∆rH◦= 45 kJ mol−1

mixing of inert gases no energy change

It is clear that the idea that spontaneous processes have to be exothermic
is not correct.

Chemical equilibrium also illustrates the point well: for example, the
dimerization of NO2 to give N2O4:

2NO2(g)� N2O4(g);

at 25 ◦C the equilibrium mixture consists of about 70% N2O4. The reaction
going from left to right involves making a bond (between the two nitrogen
atoms) and so it is not surprising that this reaction is exothermic. The reverse,
in which the bond is broken, therefore has to be endothermic, that is it heat is
absorbed.

Suppose we start with pure NO2 and then allow the system to come to
equilibrium. We can actually do this experiment by first lowering the pressure,
as this favours dissociation (dissociation involves increasing the number of
moles of gas); at sufficiently low pressures it is found that very little of N2O4

is present. If we then increase the pressure up to, say, one atmosphere, the
position of equilibrium changes and some N2O4 is formed; this is illustrated
in the picture below. The reaction involved is the exothermic process:

2NO2(g) −→ N2O4(g).
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exothermic endothermic

2NO2 → N2O4 N2O4 → 2NO2

low pressure
>99% NO2

high pressure
>99% N2O4

1 atmosphere
70% N2O4

Illustration of how the equilibrium between N2O4 and NO2 can be altered by altering the pressure. Since NO2

is dark brown and N2O4 is colourless the shift in the position of equilibrium can easily be detected by observing
the brown colour.

On the other hand, we can approach equilibrium by starting with the pure
product, N2O4. Experimentally, this can be achieved by increasing the pres-
sure on the system; this favours the dimer and at high enough pressures dimer-
ization is essentially complete. If we then decrease the pressure back to one
atmosphere some of the dimer dissociates to NO2 as the equilibrium position
is approached. The reaction involved is the endothermic process:

N2O4(g) −→ 2NO2(g).

We see that the equilibrium position can be approached either starting from
solely reactants or solely products. Approaching equilibrium from one side
involves an exothermic process and approaching from the other side involves
an endothermic process; both processes are spontaneous.

In summary, it is clear from our experience that spontaneous processes
do not need to be exothermic. Energy minimization is not the criterion for a
spontaneous process.

2.3 The Second Law

It is the Second Law of Thermodynamics which governs whether or not a
process is spontaneous; we will simply state the law and then go on to explore
what it means and what its consequences are.

In a spontaneous process the entropy of the Universe increases

Entropy is a property of matter, just like density and heat capacity. It is given
the symbol S and has units J K−1 or, for a molar quantity, J K−1 mol−1.

But what is entropy? We will explore this is two ways: the first starts by
thinking about how the molecules are distributed amongst the energy levels;
the second defines entropy in terms of heat changes.

The entropy of a gas is greater
than that of a liquid which in turn
is greater than that of a gas. This
increase in entropy can be associ-
ated with the increasing freedom
with which the molecules move as
we go from a solid to a gas.

2.4 Molecular basis of entropy

Entropy is often described as being associated with ‘randomness’. So, for
example, a gas has higher entropy than a liquid, which in turn has higher
entropy than a solid. But what do we mean by ‘randomness’? We will see
in the next section that by thinking about the energy levels which molecules
occupy we can define precisely what we mean by ‘randomness’ and come to
a clear understanding of the molecular basis of entropy.
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2.4.1 Energy levels
In the Shapes and Structures of Molecules course you came across the idea
that molecules have quantized energy levels. Each molecule has available to
it a set of energy levels associated with translation, rotation, vibration and
electronic structure. At any one moment, a given molecule is in a particular
energy level corresponding to a certain amount of translation, rotation etc.

In a macroscopic sample there are a very large number of molecules (1020,
say) and each of these has available to it very many energy levels. The ques-
tion is, how do the molecules distribute themselves amongst the available
energy levels?

To answer this question in detail is clearly an impossibly difficult task
simply because the numbers of molecules and levels is so high. However,
it turns out that such a large assembly of molecules behaves in a way which
can be described using statistics and the thermodynamic properties are related
to this statistical analysis; we do not need to know the details of what each
individual molecule is doing.

2.4.2 Ways of arranging things
We start by imagining a system which has a certain number of molecules,
occupying a fixed volume and with a certain amount of energy. Neither
molecules nor energy is allowed to flow into or out of the system.

0

1

2

3

4

The five energy levels available in
our hypothetical system.

To make the numbers tractable, we will suppose that there are just 16
molecules in our system, and that there are five energy levels with energy
0, 1, 2, 3, 4 units. We will also suppose that the system has 15 units of
energy. These numbers are very very much smaller than we would find in a
real system, but they are large enough to show the essential details.

One possible distribution of molecules amongst the energy levels is:

energy 0 1 2 3 4

population, ni 8 4 2 1 1

We can quickly confirm that all 16 molecules are accounted for

8 + 4 + 2 + 1 + 1 = 16

and that the total energy, found by multiplying the population of level i by its
energy and summing over all levels, is 15 units

8 × 0 + 4 × 1 + 2 × 2 + 1 × 3 + 1 × 4 = 15.

There are clearly lots of different ways of slotting the molecules into the
energy levels to give this overall distribution. For example, any one of the
sixteen molecules can be in the level with energy = 3. In fact, the total number
of ways, W, that a particular distribution can be achieved is given by

W =
N!

n0! n1! n2! n3! n4!

where ni is the population of level i i.e. the number of molecules in that level
and N is the total number of molecules. n! is called ‘n factorial’ and is com-
puted from

n! = n × (n − 1) × (n − 2) . . . 1
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so, for example, 3! = 3×2×1 = 6. For reasons we cannot go into here 0! = 1.
In fact this expression for W is computed assuming that the molecules are

distinguishable from one another. Clearly this is not actually the case, but
assuming it is makes the mathematics simpler and does not affect the final
outcome; we will therefore continue with this expression.

For the distribution shown above we can easily work out that
W = 1.1 × 107.

Another distribution for the 16 molecules with a total of 15 units of energy
is

energy 0 1 2 3 4

population, ni 12 0 0 1 3

This has W = 7280. Another distribution is

energy 0 1 2 3 4

population, ni 11 1 0 2 2

This has W = 1.3 × 105. Clearly there are many other possible distributions
we could think of.

2.4.3 The most probable distribution
At this point we introduce the hypothesis that the system has no preference
for one arrangement of molecules over any other. We can imagine that, as
the molecules jostle and collide with one another, the molecules are being
constantly moved from one level to another, thus continuously changing their
arrangement amongst the energy levels.

Each arrangement of molecules belongs to one of the possible distribu-
tions. The number of arrangements which correspond to the same distribution
are the number of ways, W, in which that distribution can be achieved.

The greater the number of ways (arrangements) that a particular distribu-
tion can be achieved, the more likely it is that distribution will be observed. In
other words, as the molecules constantly rearrange themselves, a distribution
which can be achieved in a greater number of ways will occur more often.

It turns out that one distribution has a larger value of W than all of the
others; in this case it is the first distribution given. This distribution is called
the most probable distribution.

As the number of particles becomes larger, this most probable distribution
becomes overwhelmingly more probable (i.e. has the largest value of W) than
any of the others and we can safely assume, to all intents and purposes, that
the particles are distributed in this way.

2.4.4 The Boltzmann distribution
To find the most probable distribution we need to maximise W for a given total
number of particles and total energy; the details of how this is actually done
are well beyond the present course. We will simply content ourselves to use
the outcome of this calculation, which is that the most probable distribution
is that known as the Boltzmann distribution. In this, the number of molecules



8 The Second Law

in level i, ni, which has energy εi is given by

ni = n0 exp (−εi/kT )

Visualization of how the popula-
tion of energy levels depends on
kT. The size of kT is indicated in
relation to the energy levels by the
arrow: T2 > T1. Note how the
molecules move to higher levels
as the temperature increases, but
the population always tails off in
the higher energy levels.

where it is assumed that the lowest energy level, with i = 0, has energy 0; n0

is the population of this level.
k is Boltzmann’s constant, which in SI has the value 1.38 × 10−23 J K−1; k

is related to the gas constant, R: R = NAk, where NA is Avogadro’s number.
It follows that kT has the dimensions of energy, making the argument of the
exponential dimensionless, as required.

In words, the Boltzmann distribution says that as the energy of a level
increases its population decreases. Levels whose energies are much greater
than kT have vanishingly small populations, whereas those whose energy is
less than or comparable to kT have significant populations. The ground state,
level 0, is always the most highly populated.

Thus, as the temperature is raised, molecules move to higher energy lev-
els. At very low temperatures, the molecules all cluster in the lowest levels.
From a knowledge of the energy levels of individual molecules and the way in
which molecules are distributed amongst them we can calculate the bulk prop-
erties of matter. The theory thus connects the microscopic world of quantum
mechanics with the macroscopic world of thermodynamics.

2.4.5 Entropy and distributions
Boltzmann postulated that the entropy was related to the number of ways that
a distribution could be achieved:

S = k ln W (2.1)

heat

Heating a system causes its inter-
nal energy to rise and hence the
molecules to move to higher lev-
els. The arrangement on the right
can be achieved in a larger num-
ber of ways that that on the left,
and is thus of higher entropy.

Despite its simplicity, this is undoubtedly one of the most profound results
in physical science. This relationship puts into quantitative form the idea that
an increase in ‘randomness’ represents an increase in entropy. Randomness
is measured as the number of ways, W, that a particular distribution can be
achieved; in practice, this distribution will be the most probable distribution.
We can see how Eq. 2.1 works in practice by considering some particular
cases.

Heating the system
The heat supplied to the system is stored as internal energy of the molecules.
Increasing the internal energy of the molecules means that they must move
up to higher energy levels. As the molecules spread themselves out more
amongst the energy levels, there are more ways of achieving the resulting
distribution, so from Eq. 2.1 the entropy goes up.

expand

Expanding a system causes its
energy levels to move closer to-
gether and hence the molecules
can spread themselves over more
levels. The arrangement on the
right can be achieved in a larger
number of ways that that on the
left, and is thus of higher entropy.
Note that energy is conserved in
this expansion.

Expanding the system
Quantum mechanics tells us that as the system is expanded the spacing of the
energy levels decreases. Thus there are more energy levels available to the
molecules (that is, levels within kT of the ground state), so the molecules are
distributed over more levels and W is increased. Thus increasing the volume
increases the entropy.

A physical transformation, such as solid going to liquid or gas, is also
associated with a large increase in the number of energy levels available to
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the system. In a solid the molecules (or atoms) are only able to vibrate about
fixed positions in the lattice and so only vibrational energy levels are available
to them. In a liquid or gas the molecules are free to translate, and this gives
them access to the large number of translational energy levels; thus W is larger
and the entropy of the liquid or gas is much greater than that of the solid.

The effect of temperature
We have seen that supplying energy to the system increases its entropy. How-
ever, the size of the entropy change depends on the temperature of the system.
This is illustrated in the diagram below.

On the left is shown a ‘cold’ system which has little energy: the particles
are clustered in the lower levels. When six units of energy are added the
particles move up the ladder of levels and we obtain the distribution in the
middle. As expected, W increases.

Now if we add a further six units of energy, the particles can move up
further, and we obtain the distribution shown in the right. Again, W increases.
However, the crucial thing to notice is that the increase in W is much less
when going from the ‘warmer’ to the ‘hottest’ system than it was when going
from the ‘coldest’ to the ‘warmer’ system.

We therefore conclude that the increase in entropy resulting from a certain
amount of heat being supplied is greater the lower the temperature of the
system.

2.4.6 Entropy as a microscopic property: summary
To summarize what we have found so far:

• Molecules have available to them a large number of energy levels. For
a given total energy and number of molecules, any arrangement of the
molecules amongst the energy levels is possible; however, in practice
one such arrangement is overwhelmingly more probable than the others.
This arrangement corresponds to the Boltzmann distribution.

• The entropy is related to the number of ways, W, a particular arrange-
ment can be achieved: S = k ln W.

• Supplying energy to the molecules (in the form of heat) increases W
and hence the entropy.



10 The Second Law

• Increasing the number of energy levels available, for example by in-
creasing the volume of a gas, increases W and hence the entropy.

• The entropy increase resulting from supplying a certain amount of en-
ergy is greater the lower the temperature of the system.

At this point we will have to abandon further discussion of this micro-
scopic approach. It can be developed much further to provide a complete
description of chemical equilibrium in terms of molecular energy levels – the
theory is called Statistical Thermodynamics and is covered in our second year
course. However, a rather simpler approach is to use the ‘classical’ version of
thermodynamics in which entropy is defined in a different way.

This is not to say that a statistical view of entropy is not useful – far from
it. We will appeal frequently to these ideas when we want to rationalize or
understand trends in entropies.

2.5 Classical view of entropy

In ‘classical’ thermodynamics we define entropy in the following way:

dS =
δqrev

T
. (2.2)

This gives the small change in entropy, dS , when a small amount of heat,
δqrev, is absorbed by an object at temperature T under reversible conditions.
We have used the language of calculus to write the small change in S as dS .We will discuss what ‘reversible

conditions’ means later on in sec-
tion 4.4.1 on p. 21.

We cannot ‘prove’ that this definition of entropy is correct; all we can do
is accept it and show that its predictions are in accord with the Second Law
and our experience.

Let’s start this by thinking about what happens when heat is supplied to
an object. In section 2.4.5 on p. 8 we saw that this results in an increase in the
entropy. This is precisely what Eq. 2.2 predicts: if the system absorbs heat, δq
will be positive (endothermic) and so dS will also be positive implying that
the entropy increases, just as expected. Our definition of entropy thus fits in
with this expectation.

In Eq. 2.2 the entropy change depends inversely on the temperature. This
means that the entropy increase is greater the cooler the object to which the
heat is supplied. We came to the same conclusion when discussing the micro-
scopic basis of entropy.

Try as we might, Eq. 2.2 still seems rather abstract and to have little con-
nection with the real world of chemical reactions and equilibria. In the next
section, we will put this definition to use and show that is has real predictive
power.

2.6 The Second Law in action: how to make ice

In this section we are going to use the Second Law:

In a spontaneous process the entropy of the Universe increases

to explain how to make ice from water.
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2.6.1 Separating the Universe into the system and the surroundings
It is important to note that the Second Law says that the entropy of the Uni-
verse increases. So, we have to think not just about the entropy changes in the
thing we are interested in (the chemical or physical process), but of the whole
Universe. This seems like a very difficult task, but we will see that because
the Universe is so large, it is relatively simple to calculate its entropy change.

The Universe is separated into the
part we are interested in—the sys-
tem, and the rest—the surround-
ings. For example, the system
would be our chemical reactants
in a beaker and the surroundings
would be the bench, the labora-
tory and everything else in the
Universe.

The way we proceed is to divide the Universe into two parts:

• the system, which is the thing we are interested in i.e. the chemical
species which are reacting;

• the surroundings, which are the rest of the Universe.

We can the write the entropy change of the universe, ∆S univ, as the sum of
the entropy change of the system, ∆S sys, and that of the surroundings ∆S surr:

∆S univ = ∆S sys + ∆S surr.

To evaluate whether or not a process will be spontaneous, we need to compute
the entropy change of the system and the surroundings; this enables us to find
the entropy change of the Universe, which we can then examine in the light
of the Second Law.

Entropy change of the system
As entropy is a property of matter, ∆S sys can be evaluated from tabulated
values of the entropies of substances. We will see later in section 6.1 on p. 31
how such values are determined experimentally.

Entropy change of the surroundings
∆S surr initially represents more of a challenge. How can we find the entropy
change of something as large as the rest of the Universe?

We usually arrange it that the only thing which is exchanged between the
system and the surroundings is heat; such a system is said to be isolated,
which means that no exchange of matter is allowed between the system and
the surroundings. The entropy change of the surroundings is simply a result
of the gain or loss of heat.

We can thus compute the entropy change directly using the definition of
entropy, Eq. 2.2 on p. 10:

dS =
δqrev

T
.

For the case of the surroundings there are two special circumstances which
make it possible to use this equation in a simple way. Both of these arise
because the surroundings are very large (the rest of the Universe!).

• The temperature of the surroundings does not change when they absorb
heat from, or lose heat to, the system;

• any heat exchanged with the system can be considered as reversible
from the point of view of the surroundings.
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These points mean that the very large surroundings are equally ‘happy’ to
give up or receive energy, something which is not true of the much smaller
system. We can therefore write, for the surroundings, that

∆S surr =
qsurr

Tsurr
. (2.3)

This has been written for a finite change: qsurr is the heat absorbed by the
surroundings, Tsurr is their temperature and ∆S surr is the entropy change of the
surroundings.

So, what this boils down to is that to determine the entropy change of the
surroundings we just need to know how much heat is transferred to (or from)
the surroundings.

Heat changes of the surroundings

exothermic endothermic

surroundings surroundings

Illustration of the heat flow be-
tween the system (the black circle)
and the surroundings. An exother-
mic process results in the flow of
heat into the surroundings; an en-
dothermic process results in the
flow of heat out of the surround-
ings.

In an exothermic process the heat given out by the system is absorbed by the
surroundings. Conversely, in an endothermic process the surroundings supply
heat to the system. We can see that the heat change of the surroundings is
opposite in sign to that of the system

qsurr = −qsys ,

where qsys is the heat change of the system. Using this, and assuming that
the surroundings are at the same temperature as the system, we can write the
entropy change of the surroundings as

∆S surr =
−qsys

Tsys
.

So to compute the entropy change of the surroundings we simply need to
know the heat change of the system.

The entropy change of the Universe
Using the above result, we can therefore write

∆S univ = ∆S sys + ∆S surr.

as
∆S univ = ∆S sys − qsys

Tsys
.

This is a practical relationship that we can use to discuss chemical and physi-
cal processes.

2.6.2 Water freezing
If water freezes to ice, there is clearly a reduction in entropy (liquid−→ solid),
so ∆S sys is negative. For the process to be spontaneous (i.e. for ∆S univ to be
positive), therefore, we have to make ∆S surr sufficiently positive to overcome
the negative ∆S sys.

How do we make a positive ∆S surr? As ∆S surr = −qsys/T we need to have
a negative qsys, i.e. the process must be exothermic. We know that ice melting
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to water is an endothermic process, so the reverse, water freezing to ice, is
therefore exothermic.

ice endothermic−−−−−−−−−−−→ water

water exothermic−−−−−−−−−→ ice

From ∆S surr = −qsys/T it follows that ∆S surr will be positive for water
freezing to ice. For ∆S surr to be sufficiently positive to overcome the negative
∆S sys, the temperature has to be below a certain value; the overall idea is
illustrated below.

water ice

This is why water freezes only when the surroundings are below a certain
temperature. This point can be illustrated with some numbers.

From tables, we find that ∆S sys for water freezing to ice is −22.0
J K−1 mol−1; as expected, this is negative. The heat involved in water
going to ice is −6010 J mol−1 (exothermic).
Let us consider water going to ice at +5 ◦C (= 278 K).

∆S surr =
−qsys

Tsys
= −(−6010)/278 = 21.6 J K−1 mol−1.

The entropy of the Universe is therefore

∆S univ =∆S sys + ∆S surr

= − 22.0 + 21.6 = −0.4 J K−1 mol−1.

As ∆S univ is negative the process is not allowed by the Second Law i.e.
water will not freeze to ice at +5 ◦C.
At −5 ◦C (= 268 K) things are different.

∆S surr =
−qsys

Tsys
= −(−6010)/268 = 22.4 J K−1 mol−1.

As expected, the entropy of the surroundings increases more at −5 ◦C
than it does at +5 ◦C.

∆S univ =∆S sys + ∆S surr

= − 22.0 + 22.4 = +0.4 J K−1 mol−1.

As ∆S univ is positive the process is allowed by the Second Law i.e. water
will freeze to ice at −5 ◦C.

This is why we have to put water in the freezer to make ice. It is not that
the cold freezer ‘sucks out the heat’. Rather, it is so that the temperature of
the surroundings are low enough that the entropy increase of the surroundings
is large enough to compensate for the entropy decreases of the system.
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Equilibrium
We have seen that a spontaneous process has ∆S univ > 0 and that a process in
which ∆S univ < 0 does not take place. What about the case where ∆S univ = 0,
in which there is no change in the entropy of the Universe?
In the case of water freezing to ice we can compute the temperature at which
∆S univ = 0.

Using the data from above we have, at temperature T

∆S univ = ∆S sys + ∆S surr = −22.0 + −(−6010)/T.

It is easy to solve this to find the temperature, Teq, at which ∆S univ = 0:

−22.0 + (6010)/Teq = 0.

The result is 273.2 K, which we know is the temperature at which water
and ice are at equilibrium. We see that at this temperature there is no
entropy change for conversion in either direction. In fact ∆S univ = 0 is the
condition for equilibrium.

S
un

iv
er

se

time

equilib.

In a spontaneous process
the entropy of the Universe
increases; once equilibrium has
been reached the entropy is at a
maximum. Once at equilibrium
no further change takes place,
as this would inevitably lead to
a reduction in the entropy of the
Universe, as indicated by the
dotted line.

In summary:

• The entropy of the Universe increases in a spontaneous process;

• ∆S univ is zero at equilibrium.

It therefore follows that the entropy of the Universe increases in a spontaneous
process and reaches a maximum at equilibrium.

The way forward
We have begun to see how the Second Law can be used to predict which
processes will and will not take place, but we are quite some way yet from
being able to describe chemical equilibrium. To do this we need to introduce
some additional ideas, in particular the Gibbs energy, but before that we need
to back-track somewhat and sharpen-up our understanding of the different
forms of energy we will encounter. This is the domain of the First Law of
Thermodynamics.
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3 The First Law of
Thermodynamics

The First Law of Thermodynamics is a statement about the conservation of
different forms of energy. Like the Second Law, it is based on experience.

In words, the First Law says that energy cannot be created or destroyed
but is just transformed from one form into another.

The ‘forms’ of energy are heat, work and internal energy. Heat and (me-
chanical) work are perhaps familiar concepts, whose precise definitions we
will consider in the following sections. Internal energy is something that ob-
jects posses – it is a property of matter. The internal energy of a system can
be changed by supplying heat to it or by the system doing work. q is the heat absorbed by the

system: it will be positive if heat
flows into the system (an en-
dothermic process) and negative
if heat flows out of the system (an
exothermic change). w is the work
done on the system: it will be neg-
ative if the system does work on
its surroundings.

The First Law can be expressed mathematically in the following way. If
we take a system from state A to state B, then there is a definite change in the
internal energy, ∆U: ∆U = UB−UA where UA and UB are the internal energies
of the system in state A and state B. Such a change can be brought about by the
system absorbing a certain amount of heat, q, and a certain amount of work,
w, being done on the system. The First Law relates these three quantities:

∆U = q + w. (3.1)

3.1 What is heat?

Heat is not really a thing – it is not a fluid or a substance. Rather it is the
means by which energy is transferred from a hotter body to a cooler one in
order to equalize their temperatures.

It is very hard to talk about heat without using words which imply that it
‘flows’ between objects. Inevitably we will fall into this error, but we must
remember that heat is something that is ‘done’ to an object, not something
which ‘flows’ into an object.

Heat is a form of energy and so in SI it has units of Joules.

3.2 What is work?
q

x
F

Work is done when a force moves. A force F moving a distance x does work
F × x. An example would be the work done pushing an object along a rough
surface, where the force is due to friction. Like heat, work is something that
is done to objects – for example when they are compressed by the action of
an external force.

Like heat, work is a form of energy and in SI it has units of Joules.

3.3 What is internal energy?

Internal energy is quite distinct from heat and work. It is a property that an
object possesses; different substances have different internal energies, and the
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amount of internal energy also depends on temperature, pressure and so on.
Internal energy is the sum of the kinetic energy of the particles, together

with their energies of interaction, including bond energies. The internal en-
ergy is locked up inside a substance as the kinetic energy of the particles and
the interactions between the particles, particularly chemical bonds. Internal
energy is closely analogous to potential energy in mechanical systems – it is
stored up energy.

Internal energy is also closely related to temperature. For an ideal gas (in
which there are no interactions between particles) all of the internal energy
is present as the kinetic energy of the particles. If the temperature is raised,
the particles move more quickly and the internal energy is therefore raised.
Similarly, for solids and liquids an increase in temperature implies an increase
in internal energy.

3.4 State functions and path functions

There is another important distinction between U on the one hand and q and w
on the other. U is a state function, whereas q and w are path functions. State
functions play a particularly important role in thermodynamics and several
such functions will be introduced in this course.

3.4.1 State functions
A state function is one whose value depends only on the state of the substance
under consideration; it has the same value for a given state, no matter how that
state was arrived at.

By state we mean specified temperature, pressure, chemical composition
and so on – in fact all the necessary variables to define the state of the system.
For example, the state of an ideal gas is specified completely by the number of
moles, the temperature and pressure. For a mixture of ideal gases, we would
also need to know the amount of each substance present.

For chemical reactions the idea of a state function is used in Hess’s Law.
For example, consider the cycle

CO + 1
2O2

C + O2 CO2

2

1

3

�

�
�

�
�

�
���

The change in (internal) energy on going from C + O2 to CO2 is the same
whether it is done directly, step 1, or via step 2 and then step 3.

We have not proved that U is a state function. We will just appeal to
experience and say that all we know about heat, work and internal energy in
chemical and physical processes confirms that U is indeed a state function.
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3.4.2 Path functions
The value which a path function takes depends on the path which the system
takes going from A to B.

UA

∆U

UB

q1

q2

q3

w3

w2

w1

A

B

A change from A to B is accompa-
nied by an increase in internal en-
ergy U. This can appear as heat
or work, in any combination, pro-
vided that ∆U = q + w. In the
diagram, upward pointing arrows
represent positive quantities, and
downward pointing arrows repre-
sent negative quantities.

For example, consider the reaction between hydrogen and oxygen to give
water: H2 +

1
2 O2 −→ H2O. We could just let the hydrogen burn, releasing

heat and doing no work. Alternatively, we could react the gases in a fuel
cell, thereby creating electrical energy which could be used to drive a motor
and hence do mechanical work, such as lifting a weight. The amount of heat
and work done depends on how the overall conversion H2 +

1
2 O2 −→ H2O is

carried out, that is on the path taken. Hence the description of heat and work
as path functions.

Having now seen what U, q and w are, and the distinction between state
and path functions, we can interpret the First Law in the following way

A −→ B ∆U = UB − UA

= q + w.

State A has a certain amount of internal energy, UA, and similarly state B has
internal energy UB. In going from A to B there is a change in internal energy
∆U = UB−UA, which is the same regardless of the path taken between A and
B. This energy can appear as heat or work, and these can be in any proportions
provided that their sum, q + w, is equal to ∆U. The way in which the change
in internal energy is partitioned between heat and work will depend on the
path taken.

What the First Law really does is to establish the idea of internal energy,
U, as a state function.

3.5 Sign conventions

Heat and work are signed quantities, and we need to have a convention about
what the signs mean. The convention we use is that positive values correspond
to those done to the system. For heat, q is the heat absorbed by the system. It
is therefore positive for a change in which heat is absorbed by the system, that
is an endothermic process, and negative for a change in which heat is given
out by the system, an exothermic process.

For work, w is the work done on the system. This means that when a gas
is compressed by an external force the work is positive, whereas when a gas
expands by pushing against an external force the work is negative.

Sometimes it is convenient to think about the work done by the system.
This is given the symbol w′ and is simply the reverse of the work done on the
system: w′ = −w.

In going from state A to B there is a definite change in the value of a state
function, such as U, as it has a particular value for A and for B; it is thus
acceptable to write this change as ∆U, meaning (UB − UA). In contrast, for a
path function such as heat, was cannot talk about its value for state A or state
B and hence a change in q ‘∆q’. All we can specify is the amount of heat,
q, involved in going from A to B. The ∆ symbol is therefore only appropriate
for state functions.
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The way forward
We have seen that there is a strong distinction between, on the one hand,
internal energy and, on the other, heat and work. This distinction is brought
more sharply into light by considering what happens when a gas expands.

Unpromising though this may seem, we will find that this simple process
allows us not only to appreciate the difference between state and path func-
tions, but also to define what we mean be a reversible process.
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4 Gas expansions

To explore the idea of heat and work as path functions, and to illustrate the
important concept of reversibility, we will look at the work done when a gas
expands. The results which we will obtain turn out to be practically useful
and lead to ideas which are applicable in a much wider context. However,
before starting on this we will remind ourselves about gas laws.

4.1 Gas laws

For n moles of a gas, the pressure, p, volume, V, and absolute temperature, T,
are related by what is called an equation of state or gas law. An ideal gas is
one which has the following equation of state

pV = nRT (4.1)

where R is the gas constant (8.3145 J K−1 mol−1). At a molecular level such a
law is expected for a gas which is composed of molecules (or atoms) which do
not interact significantly with one another and are negligibly small compared
to the space between the molecules.

This gas law embodies Boyle’s Law, which states that, at constant temper-
ature, the volume and pressure are inversely proportional to one another and
Charles’ Law, which states that for a fixed volume the pressure is proportional
to the temperature. For non-ideal gases the equation

of state is much more complex
and different for each gas.

Exercise 1

If the molecules start to interact with one another, the gas ceases to be
ideal and no longer obeys the ideal gas law. For simplicity, we will assume
that all of the gases we are dealing with are ideal – an approximation which
is reasonable provided we stick to modest pressures and temperatures.

4.2 How to think about a gas expansion

We start out by thinking of a gas confined inside a cylinder by a piston. The
gas, cylinder and piston form our system, and, so that we can just focus on
the work done by the gas, we will assume that the piston has no mass and that
it moves without friction.

gas
cylinder

The pressure of the gas inside the cylinder is pint, and the pressure of gas
outside is pext. Both gas pressures exert a force on the piston; the higher the
pressure the higher the force.

Suppose that the pressure outside is lower than the pressure inside. The
forces on the piston will be such that it moves out. What is the work done?
The key point to understand here is that the force which the system moves
against is that due to the external pressure. Of course, the fact that the internal
pressure is higher is the reason that the piston moves out, but nevertheless the
force which is being pushed back is that due to the external pressure. pressure × area

= (force/area) × area
= force

Suppose that the piston has area A. Then, as pressure is force per unit area,
the force on the piston due to the external pressure is pext × A. If the piston



20 Gas expansions

moves out by a small distance dx (we are using the language of calculus) then
the small amount of work done by the gas, δw′, is

δw′ = force × distance

= pext A × dx.

dx

area, A

The volume swept out by the pis-
ton of area A when it moves
through a distance dx is A × dx.

The quantity (A dx) is the volume by which the gas inside the piston has
increased (recall that the volume of a cylinder is the area of the base times the
height – here the base area is A and the height is dx). Writing this volume as
dV , the work done is

δw′ = pext dV. (4.2)

If we want to think in terms of the work done on the gas, w, then as
w′ = −w (section 3.5 on p. 17), the relationship becomes

δw = −pext dV.

We can now use this relationship to find the work done in some special
cases. Rather trivially, if the external pressure is zero, then clearly no work is
done i.e. no work is done expanding against a vacuum.

4.3 Expansion against constant external pressure

If the external pressure is constant, Eq. 4.2 is easy to integrate. If the gas
expands from volume Vi to volume Vf , then the work done is found by inte-
grating between these two limits:

Vi
pext

pextVf

a b

Visualization of expansion against
a constant external pressure. To
start with the internal pressure
is greater than the external pres-
sure, so the piston wants to move
out but is restrained from doing so
by the peg a; the volume is Vi.
When peg a is removed the pis-
ton moves out until it hits peg b;
the volume is now Vf.

w′ =
∫ Vf

Vi

pext dV

= pext

∫ Vf

Vi

dV

= pext

[
V
]Vf

Vi

= pext (Vf − Vi) .

On the second line we have assumed that pext is constant, and so it can be
moved outside the integral. The final result is

w′ = pext (Vf − Vi) . const. external pressure (4.3)

This expression assumes that throughout the expansion the internal pressure
is always greater than the external pressure; remember that as the gas expands
the internal pressure will fall.Example 1

If the external pressure exceeds the internal pressure, the gas will be com-
pressed; the final volume will be less than the initial volume and so w′ is
negative. This is as expected, as in this situation work is done on the gas.
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4.4 Expansion doing maximum work

For a given initial gas pressure in the cylinder, how can we arrange things
so that the maximum amount of work is done? As it is the external pressure
which provides the force against which the gas pushes, it follows that to maxi-
mize the work the external pressure needs to be as high as possible. However,
this pressure cannot exceed the internal pressure, otherwise the gas would not
expand but would instead be compressed.

So, to obtain the maximum work the external pressure needs to be in-
finitesimally less that the internal pressure.

If we start with this situation, the gas will expand and as a result the inter-
nal pressure will fall. Eventually the internal pressure will fall to the value of
the external pressure, and the expansion will stop. To continue the expansion
the external pressure needs to be lowered, again by an amount that makes it
infinitesimally less that the internal pressure. Again, the gas expands until the
pressures are equalized, and then once more we have to lower the external
pressure.

In summary, the condition for doing the maximum work is that the ex-
ternal pressure should always be kept infinitesimally less than the internal
pressure.

4.4.1 Reversible and irreversible processes
An expansion in which the external pressure is always just less than the in-
ternal pressure does the maximum work but takes place infinitely slowly. At
any point the expansion can be turned into a compression simply by making
the external pressure infinitesimally greater that the internal pressure. Such a
process, whose direction can be changed by an infinitesimal change in some
variable (in this case the pressure), is said to be reversible.

In contrast, an expansion against a fixed external pressure proceeds at a
finite rate until the internal and external pressures are equalized. Such a pro-
cess cannot be reversed by an infinitesimal change in the external pressure –
rather it would need to be increased by a significant amount until it exceeds
the internal pressure. Such a process is said to be irreversible. Spontaneous
processes are inherently irreversible.

From the previous discussion we have seen that a reversible expansion of
a gas does the maximum work. Although we only demonstrated it for the case
of a gas expansion, it turns out to be generally true that any reversible process
does the maximum work:

reversible processes:
• infinitely slow
• at equilibrium

• do maximum work

irreversible processes
(spontaneous):

• go at finite rate
• not at equilibrium

• do less than
the maximum work

a reversible process is one in which the work is a maximum
or the work done in a reversible process is a maximum.

The converse is that an irreversible process always does less work than the
corresponding reversible processes.

Reversible processes are also called equilibrium processes. The idea is
that in a reversible process, such as a gas expansion, the system is always in
balance (the external and internal pressures are only infinitesimally different)
and so essentially in equilibrium.
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4.4.2 Reversible isothermal expansion of an ideal gas
Isothermal means at constant
temperature. For example, we
might achieve this by surround-
ing the system with a large water
bath whose temperature is care-
fully regulated. Heat flows into or
out of the water bath so as to keep
the objects of interest at a con-
stant temperature.

If we assume that we have an ideal gas and that it is expanding reversibly we
can integrate Eq. 4.2 on p. 20, δw′ = pext dV , to find out the work done by the
gas. To make the process reversible the external pressure is essentially equal
to the internal pressure, pext = pint, so

w′ =
∫ Vf

Vi

pint dV. (4.4)

For an ideal gas
pintV = nRT ;

rearranging this gives us an expression for pint in terms of V

pint =
nRT

V
.

This can then be substituted into Eq. 4.4 and integrated

w′ =
∫ Vf

Vi

nRT
V

dV

= nRT
∫ Vf

Vi

1
V

dV

= nRT
[

ln V
]Vf

Vi

= nRT ln
Vf

Vi
.

∆U

A

B

Going from state A to state B
has the same ∆U regardless of
the path. In the reversible case
the work has its greatest absolute
value; in the case shown above
wrev is more negative that wirrev. It
follows from the First Law that the
heat absorbed in the reversible
process is a maximum; in this
case qrev is more positive than
qirrev.

On the second line we have imposed the condition of constant temperature,
and so have taken the T outside the integral. So, the work done in the re-
versible, isothermal expansion of an ideal gas is

w′ = nRT ln
Vf

Vi
isothermal, reversible, ideal gas. (4.5)

4.5 Heat changes in gas expansions

Having calculated the work done in a gas expansion, we can use the First Law
to say something about the heat involved. For any gas expansion ∆U will be
a certain fixed value, regardless of whether or not the expansion is reversible
or irreversible (recall that U is a state function). Hence from the First Law

∆U = q + w or ∆U = q − w′

it follows that if w′ is a maximum in a reversible change, so too must q be a
maximum (the signs get a bit confusing here – it is best to think of the absolute
values of q and w′ both being a maximum).

In a reversible process the heat absorbed is a maximum.
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For the special case of an ideal gas, it turns out that U only depends on
temperature. At a molecular level, this is because the internal energy of an
ideal gas is present entirely as kinetic energy of the molecules (section 3.3 on
p. 15). If the gas is heated, that is given energy, the only place that the energy
can be stored is in the motion of the molecules. As there are no interactions
between the molecules, altering the pressure or volume at constant tempera-
ture does not affect the internal energy.

So, for an isothermal expansion of an ideal gas ∆U = 0, and hence from
the First Law 0 = q − w′ or w′ = q. In section 4.4.2 we have calculated the
value of w′ so we immediately know the value of q. Example 2

Exercise 2 , Exercise 3What is happening in this isothermal expansion is that the work done in
the expansion is exactly compensated for by the heat flowing in. If no heat
flowed in, some of the internal energy would have to be converted to work,
and as a result the temperature of the gas would drop. However, we specified
that the process had to be isothermal, so heat must be supplied in order to
maintain the temperature (internal energy) of the gas.

4.6 Entropy and the reversible heat

We can now understand more about the definition of entropy given in sec-
tion 2.5 on p. 10:

dS =
δqrev

T
.

As we have seen, q is a path function so its value depends on the path taken.
Entropy is defined in terms of the reversible heat, even if the process itself is
not reversible.

This is a subtle point which it is worth spelling out again. If we have
an irreversible process taking us from A to B, then, in order to calculate the
entropy change, we need to work out what the heat would be if we were to go
from A to B by a reversible path.

You can see that calculating entropy directly from the above definition is
not very easy as we have to keep constructing imaginary reversible processes
and then determining the heat involved. There are various ways of getting
round this awkward point, which we will come to in due course.

The one exception to this is when calculating the entropy change of the
surroundings. Recall from p. 12 that, from the point of view of the surround-
ings, any heat exchanged with it is reversible; hence we can write

∆S surr =
qsurr

Tsurr
.

Example 3
Exercise 4 , Exercise 5Now that we have seen more precisely what a reversible process is, it is

clearer why this heat exchange with the very large surroundings is reversible.
The surroundings are essentially unaffected by the heat and so are indifferent
to the direction of flow of heat. An infinitesimal change (for example in the
temperature) will cause the direction to change: this is the characteristic of a
reversible process.

4.6.1 Entropy change in an isothermal expansion of an ideal gas
Recall from the section 4.5 that for an isothermal change of an ideal gas
∆U = 0, so that q = w′. It therefore follows from Eq. 4.5 that the heat ab-
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sorbed in a reversible, isothermal expansion of an ideal gas is

qrev = nRT ln
Vf

Vi
.

The entropy change of the gas as a result of this expansion is, by definition,
qrev/T , so

∆S = nR ln
Vf

Vi
isothermal, ideal gas.

Since entropy is a state function, this expression for the entropy change is
valid for any isothermal expansion of an ideal gas from Vi to Vf, whether or
not the expansion is carried out reversibly. Our expression for ∆S shows that
the entropy increases as the volume increases, which is precisely the result we
anticipated using statistical arguments (see section 2.4.5 on p. 8).
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5 Internal energy, enthalpy and
heat capacity

This section extends the discussion of the First Law (section 3 on p. 15) in
some ways which will be very useful for us when it comes to discussing chem-
ical equilibrium. The first thing we will do is to introduce a new state function
called the enthalpy, H. You are already familiar with this from talking about
‘∆H’ values for chemical reactions.

We shall see that the enthalpy and the internal energy are complementary
functions which have the important properties that:

• the internal energy change, ∆U, is equal to the heat under constant
volume conditions;

• the enthalpy change, ∆H, is equal to the heat under constant pressure
conditions.

This section closes with a discussion of heat capacities. Unpromising
though these quantities seem to be, they turn out to be the key to many im-
portant calculations. Not least of these is that heat capacities provide us with
a practical way of determining the entropies of substances – an exceptionally
important application which we will discuss in the next section.

5.1 Differential forms

So far we have written the First Law as ∆U = q + w, where the ∆ implies a
finite change in U. We could just as well have written it for an infinitesimal
change in U, using the language of calculus:

dU = δq + δw.

We have been careful here to write δq and not dq. This is because dq would
imply ‘a small change in the heat’, but heat is not a state function so we cannot
talk of a ‘change in heat’. Rather, all we can do is talk of a small amount of
heat, which is what δq implies. The same is true for work, so we write δw. Work can take many forms, such

as that due to gas expansions,
due to moving charges (a cur-
rent) in an electrical field or due
to expanding a surface. Work due
to gas expansions is sometimes
called ‘pV work’.

In section 4.2 on p. 19 we found that the work of expanding a gas was
δw = −pdV , so, if this is the only kind of work done, the First Law can be
written

dU = δq − p dV. pV work only (5.1)

Unless we say otherwise, we will assume that the only kind of work done
is that due to gas expansions, and so use the form of the First Law given in
Eq. 5.1.

5.2 Constant volume processes

If we imagine a process taking place in a sealed container, that is at constant
volume, then no work can be done as the gas cannot expand. In terms of
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Eq. 5.1 the p dV term is zero (dV = 0 as the volume does not change) and so

dU = δqconst. vol constant volume
q

If heat is supplied to a gas in
a sealed container (constant vol-
ume) no work is done as the gas
cannot expand. All of the heat
therefore ends up as internal en-
ergy of the gas. As the internal
energy rises, so does the temper-
ature of the gas.

This says that the heat absorbed under conditions of constant volume is
equal to the change in internal energy; in other words, all the heat goes into
internal energy. If we want to measure ∆U, therefore, all we have to do is
measure the heat change under constant volume conditions.

It is important to realize that, for a given change, ∆U has a certain value
because U is a state function. In the special case of a constant volume process
∆U is equal to the heat absorbed, but under other conditions although ∆U is
no longer equal to the heat it still has a well defined value.

5.2.1 Heat capacities
When heat is supplied to an object its temperature usually increases; the more
heat that is supplied the greater the temperature rise. The relationship between
the heat supplied, q, and the temperature rise, ∆T , is

q = c∆T

where c is the heat capacity of the object. For infinitesimal quantities this
relationship becomes δq = c dT .

The larger the object the greater the heat capacity. If we are talking about
chemical substances it is convenient to use the molar heat capacity, C, which
is the amount of heat needed to raise one mole of the substance through one
degree. C has units of J K−1 mol−1. Using this molar quantity the above
equation becomes

q = nC∆T

where n is the number of moles.
For a process taking place at constant volume, we have seen in the pre-

vious section that the heat is equal to the change in internal energy: ∆U =
qconst. vol, so we can write

∆U = n CV ∆T

where CV is the molar heat capacity at constant volume.
Writing this in the differential form we obtain

dU = CV dT constant volume (5.2)

where we are now assuming that dU is the change in internal energy per mole
(i.e. n = 1). Equation 5.2 can be rearranged to

CV =

(
dU
dT

)
constant volume

. (5.3)

Typical values (in J K mol−1 and
at 1 bar and 298 K) for CV for
gases: noble gases 12.5, H2 20.4,
O2 21.0, CO2 28.5

We have written ‘constant volume’ to remind ourselves that this only ap-
plies to constant volume processes. Mathematically, Eq. 5.3 can be expressed
as a partial derivative:

CV =

(
∂U
∂T

)
V

definition of CV (5.4)

The ‘curly d’, ∂, indicates that only the variation of U with T is being consid-
ered, and the subscript V indicates that volume is to be held constant. Equa-
tion 5.4 is taken as the definition of the constant volume heat capacity.
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5.3 Constant pressure processes – enthalpy

Supplying heat to a gas held at
constant pressure (here held in
a cylinder by a piston) results in
the gas expanding and so doing
work against the external pres-
sure. Some of the heat supplied
increases the internal energy and
some appears as work of expan-
sion.

Processes taking place under constant pressure conditions are more common,
especially in chemistry, where open apparatus ‘on the bench’ can be consid-
ered to be at constant pressure.

If we heat a gas at constant external pressure it will expand and by doing
so it will do work. Thus, some of the heat is converted into work and some is
converted to internal energy. For a given amount of heat, the increase in the
internal energy will be less in a constant pressure process than in a constant
volume one on account of part of the heat being converted to work.

It will be convenient to have a state function whose value is equal to this
heat supplied at constant pressure; this function will be the constant pressure
analogue of U.

The function we need is called the enthalpy, H and it is defined as

H = U + pV definition of H. (5.5)

From this it follows that H is a state function as it is defined in terms of
other state functions (U) and variables (p and V) which define the state of the
system. It will be useful to alter the form of Eq. 5.5 so that it is expressed in
terms of the change in H, dH.

The procedure is as follows: suppose that p changes by a small amount dp
giving a new value (p+dp), likewise V changes by a small amount dV giving
a new value (V + dV), and likewise U changes by a small amount dU giving
a new value (U + dU). As a result of the changes in p, V and U, it is clear that
H will also change by a small amount dH giving a new value (H + dH). So,
from Eq. 5.5 we have

(H + dH) = (U + dU) + (p + dp)(V + dV).

Multiplying this out gives

H + dH = U + pV + dU + p dV + V dp + dp dV.

We ignore the last term, dp dV , because it is the square on an infinitesimal
quantity; we also note that, as H = U + pV , the term H on the left and
(U + pV) on the right will cancel to give

dH = dU + p dV + V dp. (5.6)

Equation 5.6 is called the complete differential of Eq. 5.5.
Another way of thinking about how to take the complete differential is just

to differentiate both sides of Eq. 5.5

dH = dU + d(pV)

and recognise that pV is a product of two functions and so needs to be differ-
entiated using the usual rule

dH = dU + p dV + V dp.

Once we have seen how this works we can go straight from relationships like
Eq. 5.5 to their complete differentials without doing the intermediate steps.
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Now we substitute in the First Law, dU = δq − p dV (Eq. 5.1 on p. 25),
into Eq. 5.6

dH = dU + p dV + V dp

= δq − p dV + p dV + V dp

= δq + V dp.

Finally, we impose the condition of constant external pressure, which means
that the term V dp is zero (the change in p, dp, is zero), to give

dH = δqconst. press.. (5.7)

What we have shown is that the enthalpy change is equal to the heat measured
under conditions of constant pressure. With hindsight we can see that this is
precisely why H is defined as it is (Eq. 5.5) so that it will have this useful
property.

Just as with ∆U, we must not forget that ∆H has a defined value for a
particular change, regardless of whether or not it is at constant pressure. It is
only if the pressure is constant that q is equal to ∆H. Chemists tend to talk
of ‘heat of reaction’ by which they normally mean the enthalpy of reaction.
Enthalpies are the quantities which are most commonly tabulated.

5.3.1 Heat capacity at constant pressure
For a process taking place at constant pressure, we have just shown that the
heat absorbed is equal to the change in H: dH = δqconst. press.. Following a
similar line of argument as in section 5.2.1 on p. 26, we have

dH = Cp dT constant pressure
Since in a constant pressure pro-
cess some of the heat supplied
ends up as work of expansion,
more heat is needed to raise the
temperature of a gas at constant
pressure than is needed at con-
stant volume i.e. Cp > CV. For an
ideal gas Cp − CV = R.

where Cp is the constant pressure molar heat capacity. Note that in this equa-
tion as the heat capacity is expressed per the mole, the enthalpy is also per
mole. As with CV , the usual definition of Cp is as a partial derivative

Cp =

(
∂H
∂T

)
p

definition of Cp. (5.8)

5.3.2 Variation of enthalpy with temperature
Suppose we know the (molar) enthalpy, H(T1), of a substance at a particular
temperature, T1, but we want to know its (molar) enthalpy, H(T2), at another
temperature T2. This is quite a common situation as data are often tabulated
at only a few temperatures, and these may not correspond to the temperature
of interest.

Heat capacities are the key to finding how H varies with T. We start with
Eq. 5.8

Cp =

(
∂H
∂T

)
p

and rearrange this to give

dH = Cp dT. constant pressure (5.9)
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We have dropped the partial derivative symbol and moved to working with
normal derivatives, but have made ourselves a mental note that all of what
follows is only valid at constant pressure. Both sides of Eq. 5.9 can be inte-
grated. First the left-hand side∫ T2

T1

dH =
[
H
]T2

T1

= H(T2) − H(T1).

This needs a little explanation. The integral of dx is just x, so in the same
way the integral of dH is H. However, the limits of integration are T1 and T2,
which means we need to evaluate H at these two temperatures. These values
are written H(T1), meaning ‘the value of H at temperature T1’, and likewise
H(T2).

The right-hand side of Eq. 5.9 is also integrated, and we make the addi-
tional assumption that Cp does not vary with temperature, so it can be taken
outside the integral ∫ T2

T1

Cp dT = Cp

∫ T2

T1

dT

= Cp

[
T
]T2

T1

= Cp [T2 − T1] .

Putting the left- and right-hand sides together we have

H(T2)−H(T1) = Cp [T2 − T1] or H(T2) = H(T1)+Cp [T2 − T1] . (5.10)

This is a practical relationship: if we know H at one temperature and the heat
capacity, we can work out H at any other temperature (assuming that it is
valid to consider Cp as constant in this range). Note that as Cp is a molar
quantity, Eq. 5.10 gives the change in molar enthalpy. To compute the change
for n moles, we simply multiply the term in Cp by n so that the terms becomes
nCp [T2 − T1]. Exercise 6

Exercise 7It turns out that we can only measure changes in enthalpy rather than the
absolute values of the enthalpies of substances. However, we will see in sec-
tion 8.5 on p. 41 how a modified form of Eq. 5.10 can be used to convert ∆H
values from one temperature to another.

5.4 Measurement and tabulation of heat capacities

he
at

temperature

The heat capacity at a particular
temperature is the slope at that
temperature of a plot of heat sup-
plied against temperature.

Heat capacities turn out to be surprisingly useful when it comes to manipu-
lating various thermodynamic quantities. They are easy to measure, as all we
need to do is measure the temperature rise for a know heat input. The heat
capacities of a great many substances have been measured and are available
in tabulated form.

It is found that the heat capacity does vary with temperature, although gen-
erally not too strongly. To get around this, heat capacities are often expressed
in the parametrized form

C(T ) = a + bT +
c

T 2
.
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We have written the heat capacity as C(T ), meaning that ‘C is a function of
T’. Armed with the values of the parameters a, b and c (which are tabulated),
the heat capacity can be evaluated at any temperature.
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6 Measuring entropy

We mentioned right at the start that the values of entropies of substances could
be measured and were available in tabulated form. We are in a position to
describe how this is done using the heat capacities introduced in the previous
section.

6.1 Absolute entropies

Entropies can be evaluated from measurements of heat capacities in the fol-
lowing way. The definition of entropy is, in differential form

dS =
δqrev

T
.

If we think about a process at constant pressure, the heat is equal to the en-
thalpy change: δqconst. press. = dH (Eq. 5.7 on p. 28), so

dS =
dH
T
. (6.1)

We do not need to specify ‘reversible’ as H is a state function and takes the
same value for any path. Next we use the definition of the constant pressure
heat capacity to express dH in terms of Cp (Eq. 5.8 on p. 28):

Cp =

(
∂H
∂T

)
p

hence dH = Cp dT.

Substituting this into Eq. 6.1 gives

dS =
Cp dT

T
or

dS
dT
=

Cp

T
const. pressure (6.2)

In principle there are other ways of
finding entropies, but this method
is the one most commonly used
as heat capacities are relatively
simple to measure.

To find the entropy at temperature T ∗ both sides are integrated from T = 0
up to T ∗ ∫ T ∗

0
dS =

∫ T ∗

0

Cp(T )

T
dT

S (T ∗) − S (0) =
∫ T ∗

0

Cp(T )

T
dT. (6.3)

To evaluate the left-hand side a similar line of argument has been used
as in section 5.3.2 on p. 28. We have written the heat capacity as Cp(T ) to
remind ourselves that Cp depends on T. Over a small temperature range it
may be acceptable to assume that it is constant, but not over a wide range.

6.1.1 Practical evaluation of entropies
The right-hand side of Eq. 6.3 has to be evaluated graphically. We make mea-
surements of Cp as a function of temperature and then plot Cp(T )/T against
T all the way from 0 to T ∗. The area under the curve is S (T ∗) − S (0).
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By convention, the entropy at absolute zero is set to zero. In fact this is
not an arbitrary choice, but is founded on an understanding of entropy as a
statistical concept, as discussed in section 2.4 on p. 5.

At absolute zero, kT goes to zero and so all the molecules must be in
the lowest energy level (the ground state). There is thus only one way of
arranging them, W = 1 and hence, from S = k ln W, the entropy is zero. This
is the reason for choosing S at absolute zero to be zero.

Cp

T

T0

Evaluating entropy: the shaded
area is S(T ∗) − S(0).

Having this zero point enables us to determine absolute entropies. In con-
trast, there is no such natural zero for enthalpy or internal energy, so we cannot
determine these quantities absolutely.

Measuring heat capacities right down to absolute zero (or, in practice,
as close as we can get) is not a particularly easy task but it has been done
for many substances. The entropy values determined in this way are called
absolute entropies.

There may well be phase changes (solid to liquid, for example) over the
range of temperature for which we want to plot the graph. At the precise
temperature of the phase change the heat capacity goes to infinity (supplying
heat does not change the temperature) and it is also commonly observed that
there is a jump in the plot. It turns out that the entropy associated with a phase
change, ∆S pc, is related to the enthalpy of the phase change, ∆Hpc, by

∆S pc =
∆Hpc

Tpc
.

Cp

T

T0

A phase change at temperature
Tpc results in a discontinuity in the
Cp/T against T plot. The entropy
change due to the phase change
needs to be added to the shaded
area in order to find S(T ∗).

These extra entropy changes need to be included in the calculation of ab-
solute entropies.

S (T ∗) =
∫ T ∗

0

Cp(T )

T
dT +

∑
phase changes

∆Hpc

Tpc

where the summation symbol,
∑

, means to sum over all phase changes. Usu-
ally, entropies are tabulated as molar quantities, in units J K−1 mol−1.

6.1.2 Converting entropies from one temperature to another
Absolute entropies vary with temperature but tend to be tabulated at just one
or two temperatures. It will therefore be convenient to have a way of convert-
ing the value of the entropy from one temperature to another, just as we did
for enthalpies in section 5.3.2 on p. 28.

The starting point is Eq. 6.2 on p. 31. As before we integrate this but this
time just between T1 and T2. Provided that these two temperatures are not
too different, we can assume that Cp will be constant and so take it out of the
integrand: ∫ T2

T1

dS =

∫ T2

T1

Cp

T
dT

S (T2) − S (T1) = Cp

∫ T2

T1

1
T

dT

= Cp

[
ln T

]T2

T1

S (T2) − S (T1) = Cp ln
T2

T1
or S (T2) = S (T1) + Cp ln

T2

T1
(6.4)
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Example 4
Exercise 8Equation 6.4 is a practical relationship for converting entropies from one

temperature to another. Note that, as Cp is a molar quantity, Eq. 6.4 gives
us the change in the molar entropy. To compute the change for n moles we
simply multiply the term in Cp by n: nCp ln(T2/T1).
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7 Gibbs energy

The Second Law gives us a criterion for which processes are spontaneous,
and which are at equilibrium (reversible) – that is ∆S univ > 0 for a sponta-
neous process and ∆S univ = 0 for a process which has come to equilibrium.
However, it is not convenient to have to calculate the entropy change of the
Universe each time we want to think about a chemical or physical process.

We will show in this section that the Gibbs energy, G, is a convenient way
of using the Second Law. G is defined as

G = H − TS definition of G (7.1)

and we will see that in a spontaneous process G of the system decreases and
reaches a minimum at equilibrium. The convenience is that by employing the
Gibbs energy we only have to think about the system, and not the Universe.

Sometimes the Gibbs energy is called ‘the Gibbs free energy’, ‘the Gibbs
function’ or simply ‘the free energy’.

7.1 Gibbs energy and the Universal entropy

Starting from the definition of G, Eq. 7.1, we can form the complete differen-
tial as we did on p. 27

dG = dH − T dS − S dT

Now, we consider a process at constant temperature, so that the S dT term is
zero. Then, we divide each side by −T to give

−dGsys

Tsys
= −dHsys

Tsys
+ dS sys const. temperature (7.2)

To remind ourselves that all these quantities refer to the system the subscript
‘sys’ has been added.

Now, consider the expression for the Universal entropy found in sec-
tion 2.6.1 on p. 12

∆S univ = ∆S surr + ∆S sys = − qsys

Tsurr
+ ∆S sys.

Writing this in differential form we have

dS univ = −δqsys

Tsurr
+ dS sys.

We impose the further two conditions that: (1) the process is taking place at
constant pressure, so δqsys = dH; and (2) the system and the surroundings are
at the same temperature; then

dS univ = −dHsys

Tsys
+ dS sys. (7.3)
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Comparing Eqs. 7.2 and 7.3 we see that −dGsys/T is exactly the same thing
as dS univ.

It therefore follows that as S univ increases in a spontaneous process, dS univ

must be positive and so must (−dGsys/T ). Therefore dGsys must be negative,
i.e. G decreases in a spontaneous process. For reversible (equilibrium) pro-
cesses dS univ is 0, and so is dGsys. All of this is true under conditions of con-
stant pressure and temperature, as these are restrictions we have introduced
earlier in this argument.

In summary, at constant temperature and pressure:

G falls in a spontaneous process i.e. dG < 0;
at equilibrium G reaches a minimum, i.e. dG = 0

The usual units for G are kJ mol−1, i.e. it is an energy, just as U and H. We
can write Eq. 7.2 for finite changes as

−∆Gsys

Tsys
= −∆Hsys

T
+ ∆S sys (7.4)

−∆Gsys/Tsys is the entropy change of the Universe and −∆Hsys/Tsys is the en-
tropy change of the surroundings. For a process to be spontaneous, ∆S univ

must be positive so ∆Gsys must be negative.
Equation 7.4 can be written another way by multiplying both sides by −T

∆Gsys = ∆Hsys − T∆S sys; (7.5)

this is the form of ∆G we usually quote. The ‘sys’ subscripts are usually left
off, it being taken as implied that we are talking about the system.

We commented in section 2.6.2 on p. 12 that a process which is endother-
mic can be spontaneous provided ∆S sys is sufficiently positive to compensate
for the reduction in entropy of the surroundings. In terms of Eq. 7.5 we would
say that an endothermic process can be spontaneous provided the ∆S sys term
is large enough that the −T∆S sys term overcomes the positive ∆Hsys and so
makes ∆Gsys negative.

Likewise, a process which has a negative ∆S sys can be spontaneous pro-
vided it is sufficiently exothermic that the negative ∆Hsys term overcomes the
positive −T∆S sys term. Thinking about ∆Gsys is really equivalent to thinking
about ∆S univ. Exercise 9

From now on, we will frame all of our discussion of equilibria in terms of
the Gibbs energy.

7.2 How the Gibbs energy varies with pressure and
temperature

When we come to discussing chemical equilibrium we will need to know how
the Gibbs energy varies with pressure and temperature. To find this out, we
first need to introduce the so-called Master Equations.

7.2.1 The Master Equations
In section 5.1 on p. 25 we wrote the First Law in its differential form for the
case that only ‘pV’ work is done as (Eq. 5.1 on p. 25)

dU = δq − p dV.
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Imagine, for the moment, a reversible process: by definition, dS = δqrev/T
(Eq. 2.2 on p. 10), so it follows that δqrev = TdS . Substituting this into the
above expression for dU we have

dU = T dS − p dV. (7.6)

Now, U is a state function, so dU is the same for a given change, regardless
whether or not is takes place reversibly, so Eq. 7.6 is true for all changes.
This seems a bit paradoxical, as Eq. 7.6 appears to have been derived under
the assumption that we are thinking about a reversible process. The point is
that if the process is reversible, T dS is δq and −p dV is δw; if the process is
irreversible then the two terms cannot be identified directly with δq and δw,
but their sum is still equal to dU.

Equation 7.6 is some times called the First and Second Laws combined,
and it is the first of the thermodynamic Master Equations. We will find that
these Master Equations are very useful in relating one thermodynamic quan-
tity to another.

The second Master Equation is developed by starting with the definition
of enthalpy (Eq. 5.5 on p. 27), H = U + pV , and then taking its complete
differential, as we did on p. 27 to give

dH = dU + p dV + V dp. (7.7)

Equation 7.6, the first Master Equation, is used to substitute for dU in
Eq. 7.7 to give

dH = T dS − p dV + p dV + V dp

= T dS + V dp. (7.8)

Equation 7.8 is the second of the Master Equations.
The next Master Equation is found by taking the definition of G, Eq. 7.1 on

p. 34, forming the complete differential and them substituting in for dH from
Eq. 7.8

G = H − TS

thus dG = dH − T dS − S dT

dG = T dS + V dp − T dS − S dT

hence
dG = V dp − S dT. (7.9)

Equation 7.9 is the most useful of the Master Equations we will derive. We
will use it immediately to find out how G varies with pressure and tempera-
ture.

7.2.2 Variation of G with p (and V), at constant T
We start with Eq. 7.9 and impose the condition of constant temperature, so
that dT = 0

dG = V dp const. T . (7.10)

which can be written, using the notation of partial derivatives, as(
∂G
∂p

)
T

= V.
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To integrate Eq. 7.10, and hence find a useful equation for how G varies
with p, we need to recognise that V varies with p according to the ideal gas
equation

pV = nRT so V =
nRT

p
.

Substituting this expression for V into the right-hand side of Eq. 7.10 and
integrating gives

dG =
nRT

p
dp∫ p2

p1

dG =

∫ p2

p1

nRT
p

dp

[
G
]p2

p1
= nRT

∫ p2

p1

1
p

dp

G(p2) −G(p1) = nRT
[

ln p
]p2

p1

G(p2) −G(p1) = nRT ln
p2

p1

where we have written G(p) to indicate that G depends on pressure. On the
third line we have used the fact that T is constant, so it can be taken outside
the integral. 1 bar is 105 N m2.

The usual way of writing the final expression is to take p1 as the standard
pressure, p◦, of 1 bar and to write G(p◦) as G◦, the Gibbs energy at standard
pressure

G(p) = G◦ + nRT ln
p
p◦
. const. T (7.11)

For one mole, n = 1, the quantities all become molar quantities, indicated by
a subscript m:

Gm(p) = G◦m + RT ln
p
p◦
. const. T (7.12)

These relationships apply at ‘con-
stant temperature’. This does
not mean that they apply at
one unique temperature; rather it
means that they apply at any tem-
perature, provided that it remains
constant during the change. At
different temperatures G and G◦
will be different, but they are still
related by Eq. 7.12.

The pressures can be in any units we like, as the only important thing is
the ratio between them. If we choose to write them in bar, p◦ = 1 and it is
tempting to write Gm(p) = G◦m + RT ln p. Apart from the objection that we
appear to be taking the logarithm of a dimensioned quantity, this form can
also lead us into difficulties so it is best to use Eq. 7.12.

Since, for an ideal gas, pressure is inversely proportional to volume (at
constant temperature), it follows that p2/p1 = V1/V2 and so

G(V2) −G(V1) = nRT ln
V1

V2
.

The important take home message of this section is that the Gibbs en-
ergy falls as the pressure falls (at constant temperature); such a process will
therefore be spontaneous.

A rather trivial example is the expansion of a gas into a vacuum. For an
ideal gas, such a process involves no change in temperature; all that happens
is that the pressure falls. We have seen that such a fall in pressure results in a
reduction in the Gibbs energy and so is a spontaneous process, as expected.

We will see a much less trivial application of Eq. 7.12 when we come to
discuss chemical equilibrium.
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7.2.3 Variation of G with T, at constant p
Again we start with the Master Equation, Eq. 7.9, but this time impose the
condition of constant pressure, so that dp = 0:

dG = −S dT const. p. (7.13)

which can be written, using the notation of partial derivatives, as(
∂G
∂T

)
p

= −S . (7.14)

We have already seen in section 6.1 on p. 31 that S itself varies with tem-
perature, so integrating Eq. 7.13 is not straightforward.

In fact there is a special relationship, called the Gibbs–Helmholtz equa-
tion, which we can derive using Eq. 7.13 and which we will need later on.
The derivation starts by considering the derivative of the function G/T with
respect to T. As G depends on T, to find the derivative we have to recognize
that we are differentiating a product of two functions

d
dT

(
GT−1

)
= T−1 dG

dT
− T−2G. (7.15)

At constant pressure, which we will assume from now on, Eq. 7.14 tells us
that dG/dT = −S ; we substitute this on the right of Eq. 7.15. We also know
that, by definition, G = H − TS ; we substitute this for G on the right of
Eq. 7.15. The result is

d
dT

(
GT−1

)
= T−1(−S ) − T−2(H − TS )

= −T−1S − T−2H + T−1S

= −T−2H.
Exercise 10

Tidying this up gives the Gibbs–Helmholtz equation

d
dT

(G
T

)
= − H

T 2
. const. pressure (7.16)

Later on, we will use this odd-looking relationship to good effect!
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8 Chemical changes

We need to extend the ideas we have developed so far to cover chemical re-
actions and then chemical equilibrium. The idea of talking about the ‘∆H of
a reaction’ is a familiar one, but we need to be more careful about exactly
what this means and to define the equivalent quantities for the entropy and
Gibbs energy change. In the following section we will introduce the symbol
∆r which we need to describe the changes accompanying chemical reactions.

8.1 The ∆r symbol

It is easiest to describe what is meant by ∆rH etc. by thinking about a partic-
ular balanced chemical equation

2H2(g) + O2(g)� 2H2O(g).

This says that two moles of H2 react with one mole of O2 to give two moles
of H2O.

Imagine that we have a mixture of H2, O2 and H2O in a particular ratio –
this need not be the equilibrium mixture. The term used to describe a partic-
ular ratio of reactants and products is composition.

Imagine also that we have a very large amount of this mixture. Now, out
of this large amount, we allow two moles of H2 to react with one mole of O2

to give two moles of H2O. The resulting change in enthalpy is written ∆rH.
The reason that we have to think about having a large amount of the reac-

tion mixture is so that, when the two moles of H2O are formed, the ratio of H2

to O2 to H2O does not change i.e. the composition remains the same. This is
important since, as we shall see later, some thermodynamic quantities depend
on the composition.

In short, ∆rH is the enthalpy change when one mole of reaction takes
place at the specified (and constant) composition. In a similar way we can
define ∆rG and ∆rS as the Gibbs energy and entropy changes under the same
circumstances.

The quantity known as the standard enthalpy change (∆rH◦) is more com-
monly encountered (and similarly for the entropy and Gibbs energy). We will
see how these standard changes are defined in the next section.

8.2 Standard states and standard changes
1 bar is a pressure of 105 N m−2

which is very close to, but not
quite the same as, a pressure of
1 atmosphere.

The standard state of a substance is the pure form
at a pressure of one bar and at the specified temperature

The standard state is usually denoted by adding a superscript ◦ or the ‘under-
ground’ symbol (a Plimsoll line) ◦– e.g. S ◦(H2) denotes the standard entropy
of H2.
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It is often thought, erroneously, that the standard state implies a certain
temperature; this is not the case. The value that the standard entropy, Gibbs
energy or enthalpy takes depends on the temperature, which must be stated.

+

Visualization of the meaning of
∆rH◦ for the reaction
2H2(g) + O2(g)→ 2H2O(g)

Referring again to our example reaction

2H2(g) + O2(g)� 2H2O(g).

∆rH◦ is the enthalpy change when two moles of H2 reacts with one mole
of O2 to give two moles of H2O, all species being in their standard states. It
is important to realise that as the standard state implies the pure substance,
this standard enthalpy change is for pure (unmixed) reactants going to pure
(unmixed) products.
∆rS ◦ and ∆rG◦ are defined in a similar way.

8.3 Enthalpies of formation

It is common to tabulate standard enthalpies of formation of compounds, as
from these it is possible to work out the standard enthalpy change for any
reaction.

The standard enthalpy of formation of a compound, ∆fH◦, is the standard
enthalpy change for a reaction in which one mole of the compound is formed
from its constituent elements, each in their reference states. As noted above,
the temperature must be stated.

The reference state is the most stable state of that element at a pressure of
1 bar.

For example, at 298 K the reference state of nitrogen is N2 gas (as opposed
to nitrogen atoms) and the reference state of carbon is graphite. With this
definition the standard enthalpy of formation of elements in their reference
states is zero.

The standard enthalpy change for any reaction can be computed from stan-
dard enthalpies of formation in a way which is best visualized as a cycle:

νA A + νB B νP P + νQ Q�∆rH◦

� �

� �

−νA ∆fH◦(A) −νB ∆fH◦(B) νP ∆fH◦(P) νQ ∆fH◦(Q)

ELEMENTS in their reference states

The arrows on the left show the conversion of the reactants to their ele-
ments in their reference states. The enthalpies are therefore minus the stan-
dard enthalpies of formation; note that these have to be multiplied by the
stoichiometric coefficients νi. The arrows on the right show the formation of
the products from the elements in their reference states.

It follows from the cycle that

∆rH
◦ = νP∆fH

◦(P) + νQ∆fH
◦(Q) − νA∆fH

◦(A) − νB∆fH
◦(B).
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8.4 Standard entropy and Gibbs energy changes for
reactions

As we have seen in section 6.1 on p. 31 it is possible to determine the absolute
entropies of substances; usually these are tabulated as standard entropies, S ◦.
Using these data, ∆rS ◦ for the general reaction

νAA + νBB −→ νPP + νQQ

can be computed as

∆rS
◦ = νPS ◦(P) + νQS ◦(Q) − νAS ◦(A) − νBS ◦(B).

Once we have ∆rH◦ and ∆rS ◦ for a reaction, it is simple to calculate ∆rG◦

using Eq. 7.5 on p. 35:

∆rG
◦ = ∆rH

◦ − T∆rS
◦.

Sometimes you will find values tabulated for the standard Gibbs energy of
formation, ∆fG◦, of a substance; as with standard enthalpies of formation,
∆fG◦ for elements in their reference phases are zero. From these ∆fG◦values,
∆rG◦ can be computed directly in the same way that ∆rH◦ is computed from
∆fH◦ values. Example 5

8.5 Variation of ∆rH◦ with temperature

We were at pains to point out above that ∆rH◦ may well vary with tempera-
ture. Typically, values are tabulated at 298 K, which gives us something of
a problem if we want to know ∆rH◦ at another temperature. The rather un-
promising heat capacities come to our rescue and allow us to convert ∆rH◦

values from one temperature to another.
In section 5.3.2 on p. 28 we saw that enthalpy varies with temperature in

a way which depends on the heat capacity.

dH
dT
= Cp.

We now recall that ∆rH◦ is just the enthalpy of the products minus the en-
thalpy of the reactants, everything being under standard conditions. It thus
follows that

d∆rH◦

dT
= ∆rCp

◦

where, for the general reaction

νAA + νBB −→ νPP + νQQ

∆rCp
◦ is defined as

∆rCp
◦ = νPCp

◦(P) + νQCp
◦(Q) − νACp

◦(A) − νBCp
◦(B).

Cp
◦(A) is the molar heat capacity (at constant pressure and under standard

conditions) of substance A, and so on; these values are tabulated.
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We saw before that if we assume that the heat capacity does not vary with
temperature in the range T1 to T2 then the enthalpies at the two temperatures
are related by (Eq. 5.10 on p. 29)

H(T2) = H(T1) + Cp [T2 − T1] .

Similarly, the ∆rH◦ values at the different temperatures are related by

∆rH
◦(T2) = ∆rH

◦(T1) + ∆rCp
◦ [T2 − T1] . (8.1)

With the aid of tabulated values of Cp
◦ we can therefore convert ∆rH◦ values

from one temperature to another.

8.6 Variation of ∆rS ◦ with temperature

The argument here is just the same as it was in the previous section. We start
with Eq. 6.4 on p. 32

S (T2) = S (T1) + Cp ln
T2

T1

and simply rewrite it for ∆rS ◦ as

∆rS
◦(T2) = ∆rS

◦(T1) + ∆rCp
◦ ln

T2

T1
.

Example 6
Exercises 11 to 14
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9 Mixtures

Ultimately we want to use thermodynamics to understand chemical equilib-
rium, which means that we must deal with the thermodynamic properties of
mixtures of substances (reactants and products). However, none of the tools
we have discussed so far are directly applicable to mixtures, so this is an area
where we need to develop our understanding. The mixing of ideal gases will
be used to illustrate the key concepts.

9.1 The mixing of ideal gases

We know that ideal gases mix spontaneously, so mixing must be accompanied
by a reduction in the Gibbs energy. Our first task will be to understand how
this reduction arises and then calculate the Gibbs energy change of mixing.

Consider two gases, A and B, separated by a partition but both at the same
temperature and pressure, p; let there be nA moles of A and nB moles of B.
When the partition is removed the gases mix completely. The final pressure
is still p and the temperature does not change.

What have changed are the partial pressures of the gases, and it is this
change which is responsible for the reduction in Gibbs energy and hence for
the mixing process being spontaneous.

9.1.1 Partial pressures
The partial pressure of gas i in a mixture is the pressure that it would exert
if it occupied the whole volume on its own. For a mixture of ideal gases, the
partial pressure of i, pi is given by

pi = xi ptot

where ptot is the total pressure and xi is the mole fraction of i.
The mole fraction of i is given by

xi =
ni

ntot
ntot = n1 + n2 + . . . =

∑
i

ni

where ni is the number of moles of i, and ntot is the total number of moles of all
species, found by adding together all of the ni. It is clear from these definitions
that the sum of all the mole fractions of the substances in a mixture is = 1.

Before mixing, when gas A is in its separate compartment, its partial pres-
sure is p. After mixing, the mole fraction of A, xA, is nA/(nA + nB), so the
partial pressure of A, pA, is

pA =
nA

nA + nB
p

and similarly for B

pB =
nB

nA + nB
p.
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As a result of its definition, the mole fraction of A in the mixture is always less
than one, and so the partial pressure of A in the mixture is always less than
the pressure before mixing. We will show that it is this reduction in pressure
which leads to the favourable change in Gibbs energy.

9.1.2 Gibbs energy of the components in a mixture
In section 7.2.2 on p. 36 we saw that the molar Gibbs energy of a pure gas
varies with pressure according to Eq. 7.12 on p. 37

Gm(p) = G◦m + RT ln
p
p◦

const. T (9.1)

If we are considering ideal gases, then there is no difference between a pure
gas at pressure p and the same gas at partial pressure p in a mixture; this is
because ideal gases do not interact. Thus, we can say that the molar Gibbs
energy of i in a mixture depends on its partial pressure, pi, in exactly the same
way as in Eq. 9.1:

Gm,i(pi) = G◦m,i + RT ln
pi

p◦
(9.2)

where Gm,i(pi) is the molar Gibbs energy of substance i present at partial
pressure pi and G◦m,i is the standard molar Gibbs energy of i.Exercise 15

Exercise 16 From this relationship we see that the Gibbs energy falls as the partial
pressure falls. So, the Gibbs energy of A in the mixture is less than its Gibbs
energy before mixing; the same is true of B. The lowering of the partial pres-
sures of the gases which takes place on mixing results in a reduction of the
Gibbs energy of each gas and hence of the mixture as a whole; this is why
gases mix.

9.2 Reacting mixtures

So far, we have established that two ideal gases will always mix, as the process
is accompanied by a reduction in the Gibbs energy. The next question we want
to answer is what would happen if the two species A and B could interconvert
chemically, according to the equilibrium

cyclopropane propene

H2
C

H2C CH2
H3C

H
C

CH2

N N

F

F
N N

FF

Examples of A � B equilibria in-
volving two isomers. A� B

Such a situation would occur if A and B were two isomers of the same com-
pound.

Qualitatively we know that A and B would interconvert until the equilib-
rium mixture is reached, at which point there would be no further change.
This approach to equilibrium is a spontaneous process and so must be accom-
panied by a reduction in the Gibbs energy. At the equilibrium point, the Gibbs
energy will be a minimum.

Suppose that we have nA moles of A and nB moles of B present, and that
the total pressure is p. The Gibbs energy of the mixture can be computed from
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the molar Gibbs energies of A and B in the following way:

Gmixed = nAGm,A(pA) + nBGm,B(pB)

= nA

(
G◦m,A + RT ln

pA

p◦

)
+ nB

(
G◦m,B + RT ln

pB

p◦

)

= nA

(
G◦m,A + RT ln xA

p
p◦

)
+ nB

(
G◦m,B + RT ln xB

p
p◦

)
.

To go to the second line we have used Eq. 9.2 for Gm,A(pA) and Gm,B(pB), and
to go to the last line we have used pA = xA ptot and similarly for B. Note that
here ptot = p.

It is easier to understand the final expression if we divide both sides by
(nA + nB)

Gmixed

nA + nB
=

(
nA

nA + nB

) (
G◦m,A + RT ln xA

p
p◦

)
+

(
nB

nA + nB

) (
G◦m,B + RT ln xB

p
p◦

)

= xA

(
G◦m,A + RT ln xA

p
p◦

)
+ xB

(
G◦m,B + RT ln xB

p
p◦

)
.

where on the second line we have used the definition of xi.
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n B

)

Gmixed/(nA + nB) plotted as a func-
tion of xA. It has been assumed,
arbitrarily, that G◦m,A > G◦m,B

Remember that as A and B interconvert, both (nA + nB) and p remain con-
stant. A plot of Gmixed/(nA+nB) as a function of xA is shown opposite; to make
this plot we have used the fact that (xA + xB) = 1 and have arbitrarily made
G◦m,A greater than G◦m,B. The key thing about the plot is that it shows a mini-
mum in Gmixed; as we shall see, this minimum corresponds to the equilibrium
mixture of A and B.

In the plot, the minimum is at around xA = 0.4. What this means is that
if A and B are mixed at an initial composition of xA = 0.2 the conversion
of B into A will be spontaneous as it is accompanied by a decrease in Gibbs
energy; the result in an increase in xA. This process goes on until the minimum
is reached; from this point no further increase in xA is possible as this would
result in an increase in G.

If the initial composition is xA = 0.6 the conversion of A into B is spon-
taneous, and so xA decreases until the minimum is reached. Either way, the
system ends up at the composition of the minimum. The point to notice is that
even though the Gibbs energy of pure B is less than that of pure A, a mixture
of A and B can have even lower Gibbs energy than pure B.

It is not difficult to show that at the minimum (the equilibrium position)
the ratio xB/xA depends only on ∆rG◦, the change in standard Gibbs energy
between A and B: ∆rG◦ = G◦m,B − G◦m,A. Of course, the equilibrium ratio
xB/xA is the equilibrium constant, so what we have found is that the value of
the equilibrium constant depends only on ∆rG◦. Exercise 17

We will not pursue this important point in more detail here, but now pro-
ceed to a more general derivation of the relationship between ∆rG◦ and the
equilibrium constant for any reaction. However, before doing this we need to
introduce the concept of chemical potential

9.3 Chemical potential

As ideal gases do not, by definition, interact, it is possible to work out the
Gibbs energy of a mixture of such gases simply by using the molar Gibbs
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energies:

G = nAGm,A(pA) + nBGm,B(pB) + nCGm,C(pC) + . . . (9.3)

where the molar Gibbs energy of A at partial pressure pA, Gm,A(pA), can be
found using Eq. 9.2 on p. 44:

Gm,A(pA) = G◦m,A + RT ln
pA

p◦

and so on for B, C . . . .
Once we move away from ideal gases things become much more complex

as there will be specific interactions between the species present. In such
a situation it will no longer be the case that the molar Gibbs energy of A
depends simply on its partial pressure; rather, the identity and amounts of the
other species present will influence the Gibbs energy. Equation 9.3 will no
longer be valid.

To deal with non-ideal mixtures this situation we need to introduce the
chemical potential, given the symbol µi for substance i. The Gibbs energy of
a mixture can be computed from a knowledge of these chemical potentials:

G = nAµA + nBµB + nCµC + . . . (9.4)

where µA is the chemical potential of A when present in the mixture at partial
pressure pA.

Eq. 9.4 looks just the same as Eq. 9.3 with the molar Gibbs energies re-
placed by the chemical potentials. However, the important point is that the
chemical potential of A is, in principle, a function of composition of the en-
tire mixture, not just of the partial pressure of A.

In this course we are only going to consider the theory of reactions involv-
ing ideal gases and solutions, so we do not need chemical potential as such.
However, for compatibility with later courses we will use chemical potentials
in our derivations.

9.3.1 The chemical potential of gases, solutions and solids
Gases
For mixtures of ideal gases the chemical potential is identical to the molar
Gibbs energy at the relevant partial pressure i.e. Eq. 9.2 on p. 44

µi(pi) = µ
◦
i + RT ln

pi

p◦
. (9.5)

In this equation µ◦i is the chemical potential of i under standard conditions i.e.
pure and 1 bar pressure; do not forget that, like the Gibbs energy, µ◦i will be a
function of temperature. For an ideal gas, µ◦i is the same as the molar standard
Gibbs energy, G◦m,i.

Solutions
If species i is a solute, we will simply assert that its chemical potential varies
according to

µi(ci) = µ
◦
i + RT ln

ci

c◦
. (9.6)
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Here ci is the concentration of solute i and c◦ is the standard concentration; µ◦i
is the standard chemical potential of i i.e. when the concentration is equal to
c◦. Usually concentrations are given in mol dm−3, so c◦ = 1 mol dm−3.

In fact Eq. 9.6 only applies to ideal solutions, which are ones in which
there are no significant interactions. In practice, solutions are rarely ideal,
especially when the solutes are ions. Dealing with non-ideal solutions is a
complex matter which is beyond the scope of this course, so we will simply
have to assume that our solutions are ideal and used Eq. 9.6.

Solids and liquids
A solid is always present in the standard state, so its chemical potential is
simply equal to its standard chemical potential, µ◦i .

Similar considerations apply to pure liquids.
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10 Equilibrium

In the section 9.2 on p. 44 we found that for the simple A � B equilibrium
the Gibbs energy is minimised at a particular ratio of A to B which depended
only on ∆rG◦. This minimum corresponds to the position of equilibrium to
which the reaction will move and, of course, the ratio of B to A at this point
is the equilibrium constant.

In this section we will find the position of equilibrium, and hence the
equilibrium constant, for a general chemical reaction. First, though, we will
discuss how equilibrium constants are defined.

10.1 Equilibrium constants

If we take a balanced chemical equation

νAA + νBB . . .� νPP + νQQ . . .

then the equilibrium constant, K, is given by ‘products over reactants’

K =
[P]νP [Q]νQ . . .
[A]νA[B]νB . . .

(10.1)

where [A] means the concentration of A and so on; note that the concentra-
tions are raised to the power of the stoichiometric coefficients.

The point about the equilibrium constant is that it has a fixed value for
a given reaction at a given temperature. A reaction mixture at equilibrium
will always have concentrations such that the right hand side of Eq. 10.1 is
equal to the particular value of K for that reaction, regardless of the initial
concentration of the reagents.

There are different ways in which concentration can be expressed, and
hence different equilibrium constants. Also, we will find that we need to
define K in way which makes it dimensionless.

One way to write the equilibrium constant is in terms of partial pres-
sures; for gases, these are measures of concentrations. Each partial pressure
is divided by the standard pressure, p◦, so as to make the whole expression
dimensionless. The resulting equilibrium constant is called Kp.

Kp =

(
pP

p◦
)νP (

pQ

p◦
)νQ
. . .(

pA

p◦
)νA (

pB

p◦
)νB
. . .

(10.2)

Another commonly encountered form is Kc, the equilibrium constant in
terms of concentrations; again, division by c◦, the standard concentration,
make the equilibrium constant dimensionless; typically, c◦ is 1 mol dm−3.

Kc =

(
cP
c◦
)νP (

cQ

c◦
)νQ
. . .(

cA
c◦
)νA (

cB
c◦
)νB
. . .

(10.3)

The convention is that any solids involved in the equilibrium do not con-
tribute a term to the equilibrium constant. For example, for the reaction



10.2 Condition for chemical equilibrium 49

H2O(g) + C(s)� CO(g) + H2(g)

the equilibrium constant Kp is writen

Kp =
(pCO/p◦)(pH2/p

◦)
(pH2O/p◦)

=
pCO pH2

pH2O p◦
.

Why solids do not appear in expressions for the equilibrium constant, and
indeed why there is such a thing as the equilibrium constant, is the subject of
the next section. Exercise 18

10.2 Condition for chemical equilibrium

We will discuss equilibrium for our general chemical reaction

νAA + νBB� νPP + νQQ

Imagine that we have an arbitrary mixture of the reactants (A and B) and
the products (P and Q); this need not be the equilibrium mixture. Imagine
also that we have a large amount of this mixture and that we let ‘one mole of
reaction’ take place. By one mole of reaction we mean νA moles of A reacting
with νB moles of B to give νP moles of P and νQ moles of Q according to the
above stoichiometric equation. As we have a large amount of mixture, the
composition is unchanged by one mole of reaction taking place.

Using Eq. 9.4 on p. 46 we can work out the change in Gibbs energy, ∆rG,
when this mole of reaction takes place

∆rG = νPµP + νQµQ − νAµA − νBµB. (10.4)

The first two terms are positive as when the reaction proceeds we gain νP

moles of P and νQ moles of Q; the second two terms are negative as νA moles
of A are lost, as are νB moles of B.

Remember that the values of the chemical potentials, µA etc., depend
on the partial pressures (or concentrations) of the species present (sec-
tion 9.3.1 on p. 46). So the size and sign of ∆rG will depend on the com-
position of the mixture.

If, for given concentrations, it turns out that ∆rG is negative then the re-
action will proceed from left to right, as this is associated with a decrease in
Gibbs energy and is thus spontaneous. If ∆rG is positive, then the reaction
will proceed from right to left as this direction will have a negative ∆rG.

Of course in practice we do not have an infinitely large amount of the
reaction mixture so as the reaction proceeds one way or the other the concen-
trations will change. The key thing is that the change in these concentrations
will be such as to lead to a reduction in the Gibbs energy. Eventually we
will reach the composition at which the Gibbs energy becomes a minimum;
at this point ∆rG = 0 so no further spontaneous change is possible. This is the
position of equilibrium.

at equilibrium: ∆rG = 0. (10.5)
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So we can write, at equilibrium,(
νPµP + νQµQ − νAµA − νBµB

)
eq = 0.

where the subscript has been added to remind us that this relationship only
holds at the equilibrium point.

These ideas are illustrated in the diagram below.

G

Illustration of how the sign of ∆rG varies as a function of composition. At composition a, the slope of the graph

of G against composition is negative and so therefore is ∆rG. The spontaneous direction of the reaction will
therefore be towards the products. At composition b, the slope and ∆rG are positive; the reaction thus
proceeds towards the reactants. Finally at point c, the slope is zero: this is the equilibrium point. Once

reached, there will be no further change in composition.

10.3 Relation between ∆rG◦ and the equilibrium constant

Assuming for the moment that all of the species in the reaction are gases, each
chemical potential can be written using Eq. 9.5 on p. 46

µi(pi) = µ
◦
i + RT ln

pi

p◦
. (10.6)

We can rewrite Eq. 10.4 to make it explicit that the chemical potentials
depend on the partial pressures:

∆rG = νPµP(pP) + νQµQ(pQ) − νAµA(pA) − νBµB(pB).

We now substitute each µi(pi) in this equation using Eq. 10.6:

∆rG = νP

(
µ◦P + RT ln

pP

p◦

)
+ νQ

(
µ◦Q + RT ln

pQ

p◦

)

−νA

(
µ◦A + RT ln

pA

p◦

)
− νB

(
µ◦B + RT ln

pB

p◦

)
.

Now we gather together the standard chemical potentials

∆rG =
[
νPµ

◦
P + νQµ

◦
Q − νAµ

◦
A − νBµ

◦
B

]
+νPRT ln

pP

p◦
+ νQRT ln

pQ

p◦
− νART ln

pA

p◦
− νBRT ln

pB

p◦
.

The quantity in the square bracket is the standard Gibbs energy change for the
reaction, ∆rG◦

∆rG
◦ = νPµ

◦
P + νQµ

◦
Q − νAµ

◦
A − νBµ

◦
B.
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This is because ∆rG◦ is defined as ‘products minus reactants’ under standard
conditions; µ◦P is the Gibbs energy of P under standard conditions, and so on
for the other species. Using this, and taking the νP etc. inside the ln terms, we
have

∆rG = ∆rG
◦ + RT ln

(
pP

p◦

)νP
+ RT ln

(
pQ

p◦

)νQ
− RT ln

(
pA

p◦

)νA
− RT ln

(
pB

p◦

)νB
.

Finally, we bring all of the ln terms together

∆rG = ∆rG
◦ + RT ln

(
pP

p◦
)νP (

pQ

p◦
)νQ

(
pA

p◦
)νA (

pB

p◦
)νB . (10.7)

Given a certain composition, i.e. certain values of the partial pressures pA

etc., we can use Eq. 10.7 to compute the value (and sign) of ∆rG (recall that
the value of ∆rG◦ can be determined from tables, as described in section 8.4 on
p. 41).

We can also use Eq. 10.7 to find the position of equilibrium since at this
point ∆rG = 0:

0 = ∆rG
◦ + RT ln

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(

pP

p◦
)νP (

pQ

p◦
)νQ

(
pA

p◦
)νA (

pB

p◦
)νB

⎤⎥⎥⎥⎥⎥⎥⎥⎦
eq.

.

We have added the subscript ‘eq.’ to remind ourselves that this is only true
when the partial pressures are at their equilibrium values.

The quantity in the square bracket is, of course, the equilibrium constant
for the reaction (in fact it is Kp, as defined in Eq. 10.2 on p. 48). So, we can
write

∆rG
◦ = −RT ln Kp. (10.8)

This is the exceptionally important relationship which we have been working
towards for some time now. It shows that the value of the equilibrium constant
is determined only by the value of ∆rG◦. Remember that we can determine
∆rG◦ from tabulated data, so using Eq. 10.8 we are able to compute the equi-
librium constant of any reaction we care to think of. It is indeed a powerful
relationship.

We could just as well have carried through the calculation assuming that
the species were present in solution at concentration ci. In this case we would
have found

∆rG
◦ = −RT ln Kc

where ∆rG◦ is the Gibbs energy change under standard concentration condi-
tions (rather than standard pressure).

10.3.1 Equilibria involving solids
Suppose we have an equilibrium involving solids as well as gases, for example

CaCO3(s)� CaO(s) + CO2(g) .
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From Eq. 10.4 on p. 49 we can write

∆rG = µ(CO2) + µ(CaO) − µ(CaCO3).

As we noted on p. 47, the chemical potentials of solids are always equal to
their standard values. For CO2 we can write the chemical potential in terms
of the partial pressure (Eq. 10.6 on p. 50), just as we did before:

∆rG =
[
µ◦(CO2) + µ◦(CaO) − µ◦(CaCO3)

]
+ RT ln

pCO2

p◦

The quantity in the square bracket is ∆rG◦ so we have, at equilibrium,

∆rG
◦ = −RT ln

pCO2 ,eq.

p◦
.

For this reaction equilibrium constant (the quantity in the ln) is simply
pCO2 ,eq./p◦.

We see that the reason that solids (and liquids) do not contribute to the
expression for the equilibrium constant is that their chemical potentials are
always equal to their standard chemical potentials. It is important not to for-
get that such species do contribute to ∆rG◦, and so affect the value of the
equilibrium constant.Example 7

10.4 Interpretation of ∆rG◦ = −RT ln K

∆rG
◦ = −RT ln K ∆rG

◦ = ∆rH
◦ − T∆rS

◦

These two relationships are so important that it is worthwhile spending some
time exploring their interpretation.

The first thing to notice is that the sign of ∆rG◦ is very important. This is
perhaps best seen by rewriting the relationship for K using exponentials:

K = exp

(−∆rG◦

RT

)
.

From the properties of the exponential function we can see that

positivenegative

∆rGº

K

0
K = 0

• If ∆rG◦ is negative, the equilibrium constant will be greater than 1.
This means that the products are favoured.

• If ∆rG◦ is positive, the equilibrium constant will be less than 1 (but
still positive). This means that the reactants are favoured.

These points are illustrated in the graph opposite.
It is very important to realize that a reaction with positive ∆rG◦ will still

go to products to some extent; it is just that at equilibrium the reactants will
be favoured. Sometimes this can cause confusion as ∆rG must be negative for
a spontaneous process. The plot below should help to clarify this.
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From the plot above we can see that going from pure reactants to pure products results in an increase in the
Gibbs energy; such a process would not be spontaneous. However, if we start from pure reactants, and then
increase the proportion of the products, to start with the Gibbs energy falls: such a process is spontaneous. In

fact, the Gibbs energy falls all the way until we reach the equilibrium composition. So, although ∆rG◦ is
positive, the reaction can still proceed to some extent.

Due to the exponential relationship between ∆rG◦ and the equilibrium
constant, quite small changes in ∆rG◦ cause large changes in the equilibrium
constant. This is illustrated on the graph below where K is plotted on a loga-
rithmic scale (the temperature is taken as 298 K).
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Once ∆rG◦ is more negative than about −40 kJ mol−1, the equilibrium
constant has become so large that the reaction goes essentially completely to
products. Similarly, once ∆rG◦ is more positive that about +40 kJ mol−1, the
equilibrium constant is so small that essentially no products are formed.

10.5 Influencing equilibrium

10.5.1 Le Chatelier’s principle
You may have come across Le Chatelier’s principle, one statement of which
is

When a system in equilibrium is subjected to a change, the com-
position of the equilibrium mixture will alter in such a way as to
counteract that change.

Various kinds of changes can be envisaged, such as concentration, pressure
and temperature.

With the tools we have developed so far we are now able both to explain
how Le Chatelier’s principle arises and put is on a quantitative basis.
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10.5.2 Changing concentration
We can think about the effect of changing concentration using the diagram
opposite which is a typical profile of Gibbs energy against extent of reaction,
from 100% reactants on the left, to 100% products on the right. The minimum
in the plot corresponds to the position of equilibrium.
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Suppose that we first allow the reaction to come to equilibrium. Then, by
some means, we remove some of the product; this will increase the proportion
of the reactants in the mixture, taking us to point a. The Gibbs energy at a is
higher than at the equilibrium point, so moving towards equilibrium will be a
spontaneous process; as a result of this process, some of the reactants will be
converted to products.

Overall, we see that removing some of the products causes the system to
react in such a way as to increase the amount of the products. This is just
what Le Chatelier’s principle predicts: the system moves in such a way as to
oppose the change.

We can also move from equilibrium to point a by adding more of the
reactants; the system will return to equilibrium by increasing the amount of
the products. Once again, this is in accord with Le Chatelier’s principle.

It is important to realise that the value of the equilibrium constant is not
being changed. On the contrary, the concentrations of the species are altering
in order to bring the ratio of the concentrations to the equilibrium value.

This idea of forcing the reaction one way or the other by removing or
adding a reactant or product is used very often in chemistry. For example, the
reaction in which an ester (E) is formed from a carboxylic acid (C) and an
alcohol (A) is in fact a readily reversible equilibrium

H3C
C

OH

O

CH3OH

C A E

H3C
C

OCH3

O

H2O

If we want to increase the yield of the ester we need to remove the products
as they are formed, for example by distilling off the ester (if it is more volatile
than the reactants) or by using a dehydrating agent which will sequestrate
the water. Increasing the concentration of the reactants will also increase the
amount of the ester at equilibrium; one common trick is to use the alcohol
as the solvent. On the other hand, if we want the favoured reaction to be the
reverse one (i.e. hydrolysis of the ester) then we could promote this my adding
more water.

10.5.3 Effect of temperature

∆rG
◦ = −RT ln K ∆rG

◦ = ∆rH
◦ − T∆rS

◦

From these equations we can see that ∆rG◦ is strongly temperature depen-
dent (on account of the T∆rS ◦ term) and so the equilibrium constant is defi-
nitely temperature dependent. It is important to realise that this temperature
dependence is not given by ∆rG◦ = −RT ln K alone as ∆rG◦ is temperature
dependent.
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The quick approach
The temperature dependence of K can be found by starting with
∆rG◦ = −RT ln K and then substituting in ∆rG◦ = ∆rH◦ − T∆rS ◦:

−RT ln K = ∆rG
◦

−RT ln K = ∆rH
◦ − T∆rS

◦

ln K =
−∆rH◦

R
1
T
+
∆rS ◦

R
(10.9)

where to get to the last line we have divided both sides by −RT .
In interpreting Eq. 10.9 we need to be careful to remember that ∆rH◦ and

∆rS ◦ are temperature dependent (see sections 8.5 and 8.6 on p. 41). However,
over a modest temperature range it is often the case that this variation is slight
and so we may interpret Eq. 10.9 under assumption that ∆rH◦ and ∆rS ◦ are
temperate independent.

What Eq. 10.9 says is that the way in which K varies with temperature is
determined by the sign of ∆rH◦.

• For an endothermic reaction (∆rH◦ > 0), the term −∆rH◦/T is nega-
tive and so increasing T makes the term less negative. As a result
ln K increases and so does K.

• For an exothermic reaction (∆rH◦ < 0), the term −∆rH◦/T is positive
and so increasing T makes the term less positive. As a result ln K
decreases and so does K.

These are the familiar results that for an endothermic reaction increasing
the temperature shifts the equilibrium to the right (to products, increase in K)
and that for an exothermic reaction the equilibrium shifts to the left (decrease
in K).

Indirect determination of ∆rH◦

Equation 10.9 implies that a plot of ln K against 1/T will be straight line of
slope −∆rH◦/R and intercept ∆rS ◦/R (assuming that ∆rH◦ and ∆rS ◦ are inde-
pendent of temperature). This proves to be a convenient way of determining
∆rH◦, as it is often quite straightforward to measure equilibrium constants
(you will see several examples in the practical class).

ln
 K

p

1/T0

Graphical method for determining
∆rH◦ from the variation of K with
temperature. A long extrapolation
is needed to find ∆rS◦ from the in-
tercept, so it may be preferable to
compute ∆rG◦ from the measured
values of K and then use ∆rG◦ =
∆rH◦ −T∆rS◦ to find ∆rS◦.

Recall that ∆H is equal to the heat absorbed, at constant pressure. So ∆rH◦

for a reaction will be the heat absorbed when the reactants, in their standard
states, are completely converted to the products, also in their standard states.
It will thus only be possible to use heat measurements to determine ∆rH◦ for
reactions which go completely to products. Examples of such reactions are
the combustion of organic compounds and the formation of some transition
metal complexes:

C2H5OH + 3
2O2 −→ 3H2O + 2CO2

Cu2+(aq) + 4NH3(aq) −→ Cu(NH3)4.

However, it is not possible to measure ∆rH◦ directly for a reaction such as the
dimerization of NO2 in the gas phase
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2NO2(g)� N2O4(g)

for which the equilibrium constant is about 1; the reaction simply does not go
to completion.Exercise 19

Variation of the equilibrium constant with temperature: the van’t Hoff
isochore
A more formal method of finding how the equilibrium constant varies with
temperature starts from the Gibbs–Helmholtz equation, Eq. 7.16 derived in
section 7.2.3 on p. 38

d
dT

(G
T

)
= − H

T 2
. const. pressure

This is equally valid if we replace G by ∆rG◦ and H by ∆rH◦:

d
dT

(
∆rG◦

T

)
= −∆rH◦

T 2
. (10.10)

∆rG◦ = −RT ln K can be rearranged to ∆rG◦/T = −R ln K and then this
can be substituted in for the left-hand side of Eq.10.10 to give

d
dT

(−R ln K) = −∆rH◦

T 2
.

which can be rearranged to give the van’t Hoff isochore

d ln K
dT

=
∆rH◦

RT 2
. (10.11)

This equation says that if ∆rH◦ is positive, i.e. an endothermic reaction,
d ln K/dT is positive and so the equilibrium constant increases with temper-
ature. On the other hand, an exothermic reaction has a negative ∆rH◦ and so
d ln K/dT is negative, meaning that the equilibrium constant decreases with
increasing temperature. These are exactly the conclusions we reached earlier
in this section.

We can go further and integrate Eq. 10.11 to find explicitly how the equi-
librium constant varies with temperature

d ln K
dT

=
∆rH◦

RT 2

d ln K =
∆rH◦

RT 2
dT∫ T2

T1

d ln K =
∆rH◦

R

∫ T2

T1

1
T 2

dT

[
ln K

]T2

T1
=
∆rH◦

R

[−1
T

]T2

T1

ln K(T2) − ln K(T1) = −∆rH◦

R

[
1
T2
− 1

T1

]
(10.12)

On the third line we have assumed that ∆rH◦ does not vary with temperature
and so can be taken outside the integral. As we have commented on above,
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this is probably an acceptable approximation over a small temperature range.
As usual, we have written K(T ) to remind ourselves that the equilibrium con-
stant varies with temperature.

Equation 10.12 is a practical recipe for converting the equilibrium con-
stant from one temperature to another. Alternatively, if we have measured
values of the equilibrium constant at two temperatures we can determine a
value of ∆rH◦.

If, rather than integrating between two temperatures, we simply compute
the indefinite integral, we find

ln K(T ) = −∆rH◦

R
1
T
+ const.

As we found in Eq. 10.9 on p. 55, this implies that a plot of ln K against 1/T
will be a straight line of slope −∆rH◦/R. Example 8

Exercise 20

10.5.4 Variation of equilibrium with pressure
For a reaction in which all of the species are in solution altering the pressure
will not have a significant effect. In contrast, for reactions involving gases we
do expect there to be a direct effect.

Since, for a gas phase reaction, Kp and ∆rG◦ are related via
∆rG◦ = −RT ln Kp, and ∆rG◦ is defined under standard conditions (a pressure
of 1 bar), it follows that Kp does not vary with the actual pressure. This does
not mean that the composition of the equilibrium mixture does not change
when the pressure is altered – quite the contrary.

For example, in a reaction such as

2NO2(g)� N2O4(g)

increasing the pressure moves the equilibrium to the right, as this is associated
with a reduction in the number of moles of gas (an application of Le Chate-
lier’s principle). One way of viewing what happens is to say that when the
pressure is changed, the composition changes in order to keep Kp constant.

We can understand this quantitatively by thinking about a simple equilib-
rium, such as the dissociation of a dimer, A2:

A2(g)� 2A(g)

The extent to which this reaction has gone to products can be characterised by
a parameter α, the degree of dissociation. If α = 1, the dimer is completely
dissociated; if α = 0, there is no dissociation. α can be described as the
fraction of A2 molecules which have dissociated.

Suppose that we start out with n0 moles of A2 in a reaction vessel whose
pressure can be controlled (for example by pushing in or pulling out a piston).
The system is allowed to come to equilibrium at a pressure ptot; at equilibrium
the degree of dissociation is α.

It follows that the number of moles of A2 at equilibrium is (1 − α)n0, and
the number of moles of A is 2αn0; the factor of two arises because each A2

molecule dissociates into two A molecules. The total number of moles is thus
(1 + α)n0.
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We now need to work out the partial pressures of the species, and this is
done using

pi = xi ptot

where pi is the partial pressure of species i and xi is the mole fraction of i,
given by ni/ntot, where ntot is the total number of moles in the system.

Using this, the partial pressures of A2 and A, pA2 and pA, are:

pA2 =
n0(1 − α)
n0(1 + α)

ptot =
(1 − α)
(1 + α)

ptot

pA =
2n0α

n0(1 + α)
ptot =

2α
(1 + α)

ptot.

Hence the equilibrium constant can be written

Kp =
(pA/p◦)2(
pA2/p◦

) = 4α2

(1 + α)2

(1 + α)
(1 − α)

p2
tot

ptot

p◦

(p◦)2

=
4α2

(1 − α2)
ptot

p◦
.

When ptot is varied, we have already seen that Kp does not vary, so it
must be that α varies i.e. the degree of dissociation varies. We could solve
this equation to find how explicitly how α varies with pressure. To make this
solution easier, we will assume that α is small, α << 1, so (1 − α2) ≈ 1 and
hence

Kp = 4α2 ptot

p◦

hence α =

√
Kp p◦

4ptot
.

It is clear from this that as the pressure is increased, the degree of dissoci-
ation, α falls i.e. increasing the pressure moves the equilibrium towards the
reactants, just as we would expect from Le Chatelier’s principle.Exercises 21 to 25
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11 Applications in biology

We are familiar with the idea that living organisms need ‘energy’ in order to
carry out the chemical processes which are the basis of life. However, from
our understanding of the Second Law and Gibbs energy, we now see that the
key characteristic of these reactions is that they must be accompanied by a
reduction in Gibbs energy.

For many organisms the source of Gibbs energy is the oxidation of glucose
to water and carbon dioxide – a reaction which has ∆rG◦ = −2880 kJ mol−1, a
substantial quantity. It is this reduction in Gibbs energy which is used to drive
chemical reactions which would not otherwise ‘go’.

The way Nature does this is to couple two reactions together. The reac-
tion we want to promote, which is accompanied by an increase in the Gibbs
energy, is coupled to a second reaction in which the Gibbs energy decreases.
Provided that this decrease is larger in size than the increase in Gibbs energy
of the first reaction, the two reactions taken together result in a decrease in
Gibbs energy and therefore ‘go’.

The difficult part is coupling the two reactions together: Nature does this
by arranging for an intimate connection between the two reactions, for exam-
ple by arranging that both take place at the active site of an enzyme. Nature
has had a long time to develop ways of coupling reactions, and we can only
marvel at complexity and subtlety of how such coupling is achieved.

ATP
In biological systems the molecule adenosine triphosphate (ATP) plays an
important role in supplying the Gibbs energy which is used to drive other
reactions, such a protein synthesis and active transport.
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ATP releases Gibbs energy through a hydrolysis reaction involving break-
ing one of the phosphate bonds to give ADP. The reaction is

ATP(aq) + H2O(l)→ ADP(aq) + HPO2−
4 (aq) + H+(aq)

At physiological pH (about 7) and body temperature (37 ◦C), this reaction has
∆rG◦ = −30 kJ mol−1, ∆rH◦ = −20 kJ mol−1, ∆rS ◦ = +34 J K−1 mol−1and
−T∆rS ◦ = −10 kJ mol−1. The reaction is thus favoured, both energetically
through the ∆rH◦ term, and entropically through the ∆rS ◦ term.
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Protein synthesis
Proteins are synthesised by coupling together amino acids, a reaction which
has an unfavourable ∆rG◦ of about 17 kJ mol−1.

CH
C

OH
R

O

NH2

CH
C

OH
H2N

O

R'

R
CH

C

H
N

CH
C

OH

O R'

ONH2

H2O

amino acid 1 amino acid 2 dipeptide

The reaction can be made to ‘go’ by coupling it with the hydrolysis of
ATP:

(1) ATP + H2O→ ADP + HPO2−
4 + H+ ∆rG◦ = −30 kJ mol−1

(2) AA1 + AA2→ dipeptide + H2O ∆rG◦ = 17 kJ mol−1

(1)+(2)
ATP + H2O + AA1 + AA2→

ADP + HPO2−
4 + H+ + dipeptide + H2O ∆rG◦ = −13 kJ mol−1

The result is that ∆rG◦ is negative for the coupled reactions, which means
that the equilibrium lies well towards the products i.e. the reaction ‘goes’.
The hard part is to make sure that the two reactions are physically coupled –
it is no use hydrolysing some ATP in one part of the cell and trying to make
a peptide bond in another part! As we mentioned above, Nature has crafted
carefully designed enzymes to ensure this coupling of the reactions.

Synthesis of ATP: respiration
Of course, if ATP is to be used as a source of Gibbs energy, there has to be
a way of converting the ADP back to ATP within the cell. This is done by
coupling the reverse of the hydrolysis of ATP to a reaction whose ∆rG◦ is
more negative than −30 kJ mol−1.

Many organisms utilize glucose as their primary energy source, and the
Gibbs energy is derived from the conversion of glucose into water and carbon
dioxide. The complete conversion of glucose to H2O + CO2 yields a ∆rG◦of
−2880 kJ mol−1. Nature has developed a set of reactions which couple the
formation of no less than 38 ATP molecules (from ADP) to the complete
oxidation of one glucose molecule.

Photosynthesis
Another example of coupling is photosynthesis, which plants use to produce
glucose from water and carbon dioxide. The chemical reaction has ∆rG◦ =
+2880 kJ mol−1, so clearly cannot take place on its own. However, Nature
has developed a method of coupling this reaction to the energy available from
light. The apparatus which a plant has to achieve this coupling, and achieve it
in an efficient way, is very complex.
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12 Electrochemistry

Chemical reactions involving reduction and oxidation can be thought of as
involving the transfer of electrons. For example, the reaction

Cu2+(aq) + Zn(m)→ Cu(m) + Zn2+(aq)

can be thought of as taking place by two electrons being transferred from the
zinc metal to the copper cation.

Cu
e–

Cu2+ Zn2+

Zn

A schematic cell which ‘captures’
the electrons from the redox re-
action between Cu2+ and Zn and
results in the flow of electrons
round an external circuit. The two
compartments are separated by a
porous barrier.

If we just mix the reactants there is no way to ‘trap’ these electrons, but
if the reaction is set up in an electrochemical cell we can arrange for the
electron transfer to take place through an external circuit. A suitable cell is
shown opposite.

The key to capturing the electrons is to keep the Cu and Zn species sepa-
rate in what are called two half cells. In the right-hand half cell Zn dissolves
from the electrode to form Zn2+ ions; the two electrons then move round the
external circuit where, on arrival at the Cu electrode, they pick up a Cu2+ ion
from the left-hand half cell. Overall the reaction is as above, but the electrons
travel round the external circuit rather than between the reacting ions.

Cu

Cu2+ Zn2+

Zn
V

The same cell, but this time wired
to measure the potential (voltage)
produced. Modern electronic volt-
meters are able to measure the
voltage without drawing significant
current from the cell.

This cell turns the energy available from the chemical reaction (in fact
the Gibbs energy) into an electrical current; this is of great practical impor-
tance as this principle is the basis of electrical batteries. However, we will
be more interested not in the current that we can extract from the cell but the
electric potential (sometimes called the electromotive force, EMF, or loosely
the ‘voltage’) that the cell develops between its electrodes under conditions
of zero current flow.

We will show that this potential is directly related to ∆rG for the cell re-
action. This is exceptionally useful, as it gives us a direct measurement of
∆rG, something which is rarely achieved by other methods. Using cells we
can therefore determine the thermodynamic parameters of ions in solution
and other related species. We will also find that there is a relatively simple
relationship (the Nernst Equation) between the cell potential and the concen-
tration of the species in the solutions. Thus concentrations can be determined
from measurements of the cell potential. This has very important practical ap-
plications in the construction of non-invasive sensors for measuring the con-
centration of ions in solution.

A further application of these ideas is in assessing the redox stability of
chemical species, particularly metals and their ions. We will see that, simply
by comparing two electrode potentials, it is possible to determine whether
one species will be oxidized or reduced by another. For example, in the case
copper and zinc, simply by referring to tables of electrode potentials it can be
determined that Zn will reduce Cu2+, whereas Cu will not reduce Zn2+.

This approach is very useful in understanding the redox reactions of such
species as transition metal ions, which have many possible oxidation states.
Similarly, electrode potentials are important for understanding redox chem-
istry in biological systems, where enzyme-bound metal ions often play a cru-
cial role.
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12.1 Cell conventions

When we specify ∆rS for a chemical reaction we understand that this means
‘entropy of products minus entropy of reactants’. The fact we calculate it in
this way is simply a convention; we must adhere to this convention if we want
our values to agree with what every one else obtains. In the same way, there
are certain conventions for dealing with cells which we must adhere to.

12.1.1 Half-cell reactions and couples
We usually think of a cell in terms of two half cells. For example, in the
cell described above the right-hand half cell consists of Zn(m) in contact
with Zn2+(aq), and the left-hand half cell consists of Cu(m) in contact with
Cu2+(aq). The reactions that take place in these half cells include electrons in
the balanced chemical equations. So, in the case of the left-hand half cell, the
reaction is

Cu2+(aq) + 2e−→ Cu(m)

Note that the charges as well as the chemical species balance. Such a reaction
is called a half-cell reaction. In this reaction, Cu2+ is the oxidized form and
Cu is the reduced form. These two forms of Cu, the oxidized and the reduced,
are said to form a couple. So, we talk about the ‘Cu2+/Cu couple’.

Similarly, the Zn2+/Zn couple has the half-cell reaction

Zn2+(aq) + 2e−→ Zn(m)

12.1.2 The cell conventions
We will see in due course that the sign of the cell potential is very important,
so we need to have an agreed convention about what a positive or negative sign
means, and which reaction this refers to. The following set of conventions are
adopted in order to remove any ambiguity.

1. The cell is written on paper, thus identifying clearly the left- and right-
hand half cells.

2. Each half cell reaction is written as a reduction i.e. with the electrons
on the left-hand side of the reaction.RHS: right-hand side; LHS: left-

hand side.

3. Having written the left- and right-hand half cell reactions as reductions
involving the same number of electrons, the conventional cell reaction
is found by taking (RHS half-cell reaction) − (LHS half-cell reaction).This means that you connect the

positive (red) lead of the voltmeter
to the RHS electrode 4. The cell potential is that of the RHS measured relative to the LHS.

12.1.3 Shorthand for cells
There is a commonly used shorthand way for writing cells on paper. The
electrodes and species involved are written out on a line, with the left-hand
electrode on the left and the right-hand on the right. So, for the cell above the
shorthand notation is

Cu(m) | Cu2+(aq) || Zn2+(aq) | Zn(m)

A vertical line, |, is used to separate different phases (here the solution
from the solid), a comma is used to separate species in the same phase, and
a double vertical line, ||, indicates a junction between two solutions – often
called a liquid junction. An alternative symbol for this is | × |.
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12.1.4 Examples of using the cell conventions
Example 1
For the cell

Zn(m)|Zn2+(aq)||Cu2+(aq)|Cu(m)

The RHS half-cell reaction is

Cu2+(aq) + 2e−→ Cu(m)

and the LHS half-cell reaction is

Zn2+(aq) + 2e−→ Zn(m)

Note that both are written as reductions and both involve the same number of
electrons. The conventional cell reaction is thus (RHS − LHS). Remembering
that chemical equations can be subtracted just in the same way as algebraic
equations, we find

Cu2+(aq) + 2e− → Cu(m)

− Zn2+(aq) + 2e− → Zn(m)

≡ Cu2+(aq) + 2e− − Zn2+(aq) − 2e− → Cu(m) − Zn(m)

≡ Cu2+(aq) + Zn(m)→ Cu(m) + Zn2+(aq)

where to get from the third to the fourth line we have moved negative terms
to the opposite side. The conventional cell reaction is thus

Cu2+(aq) + Zn(m)→ Cu(m) + Zn2+(aq)

Example 2
The cell

Pt(m)|H2(g)|H+(aq)||Cd2+(aq)|Cd(m)

has as hydrogen electrode on the left-hand side. In this electrode the species
involved are H+(aq) and H2(g); the platinum just acts as in inert conductor to
‘pick up’ the electrons.

The RHS half cell reaction is

Cd2+(aq) + 2e− → Cd(m)

and the LHS is
H+(aq) + e− → 1

2H2(g)

We note that there are not the same number of electrons involved, so either
the RHS equation will have to be halved, or the LHS doubled; we choose the
latter, although the former is just as valid a choice. The LHS then becomes

2H+(aq) + 2e− → H2(g)

Then, taking (RHS − LHS) as before we find the conventional cell reaction is

Cd2+(aq) + H2(g)→ Cd(m) + 2H+(aq)
Example 9 (a)

We see from these examples that the conventional cell reaction is just a
result of how we write the cell down: if we swapped the two sides, the con-
ventional cell reaction would reverse. The conventional cell reaction may not
be the same as the reaction which takes place when a current is allowed to
flow – called the spontaneous cell reaction; we return to this point in sec-
tion 12.5 on p. 67.
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12.2 Thermodynamic parameters from cell potentials

It can be shown (see appendix section 13.3 on p. 78, but this proof is not
required) that, at constant temperature and pressure, the cell EMF is related
to ∆rGcell for the conventional cell reaction according to:

∆rGcell = −nFE const. p and T. (12.1)

In this relationship, F is the Faraday constant, which is the charge on one mole
of fundamental charges; F = 96,485 C mol−1. n is the number of electrons
involved in the cell reaction.

This is an exceptionally important relationship as it relates the cell EMF,
which can easily be measured with a voltmeter, to the useful thermodynamic
parameter, ∆rGcell. Such an easy measurement of ∆rG is almost unique.

Once we have determined ∆rGcell it is easy to find ∆rS cell. Recall that
Eq. 7.14 on p. 38 gives us a relationship between S and the temperature vari-
ation of G: (

∂G
∂T

)
p

= −S ;

this applies equally well to ∆rGcell and ∆rS cell. So, using Eq. 12.1, we have

∆rS cell = −
(
∂∆rGcell

∂T

)
p

= −
(
∂(−nFE)
∂T

)
p

= nF

(
∂E
∂T

)
p

. (12.2)

So the entropy change of the cell reaction can be found simply from the tem-
perature coefficient of the cell potential. In practice, all we would need to do
is to measure the cell potential over a range of temperatures, plot the graph
and then take the slope.

Once we have ∆rGcell and ∆rS cell, ∆rHcell is easily found from
∆rGcell = ∆rHcell − T∆rS cell. So, for reactions which can be set up to form
an electrochemical cell, it is very straightforward to measure these thermody-
namic parameters.

12.3 The Nernst equation

The cell potential changes as the concentration of the species involved in the
cell reaction change. We shall see that this comes about because ∆rGcell de-
pends on the chemical potentials of the species involved and, as we have
already seen, the chemical potential depends on concentration. The Nernst
equation predicts this dependence of the cell potential on concentration. Be-
fore deriving the Nernst equation we need to consider how chemical potentials
depend on concentration.

12.3.1 Chemical potentials and activities
The idea of chemical potential was introduced in section 9.3 on p. 45, and we
saw there that the chemical potential of a gas varies with its partial pressure,
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pi, according to

µi(pi) = µ
◦
i + RT ln

pi

p◦
.

We also saw that for solids and liquids the chemical potential is always equal
to the standard chemical potential.

For ideal solutions, the chemical potential depends on the concentration,
ci

µi(ci) = µ
◦
i + RT ln

ci

c◦
.

The problem with this is that solutions of ions are not ideal, even at very low
concentrations, so we really cannot use this expression. Rather, we have to
write the chemical potential in terms of a quantity called the activity. ai:

µi(ai) = µ
◦
i + RT ln ai. (12.3)

The activity is a dimensionless quantity whose value is defined by Eq. 12.3.
At first, this seems like an odd definition, but it turns out that chemical poten-
tials are experimentally measurable, for example from electrochemical cells.

As the concentration tends to zero, the activity can be approximated by
the concentration divided by the standard concentration (to make it a dimen-
sionless ratio)

ai →
( ci

c◦

)
as ci → 0

For ions in solution, Debye–Hückel theory gives reasonable estimates of
the activities in terms of concentrations, but this theory lies well beyond the
scope of this course. So for now we will simply assume that in any calcula-
tions activities can be replaced by concentrations. We will, however, continue
to write activities in our expressions.

12.3.2 Derivation of the Nernst equation
Suppose that the conventional cell reaction has the general form

νAA + νBB −→ νPP + νQQ.

We have already argued (in section 10.2 on p. 49) that ∆rG can be written in
terms of the chemical potentials

∆rG = νPµP + νQµQ − νAµA − νBµB.

In section 10.3 on p. 50 we showed that, as the chemical potentials depend
on the partial pressures, ∆rG can be written (Eq. 10.7)

∆rG = ∆rG
◦ + RT ln

(
pP

p◦
)νP (

pQ

p◦
)νQ

(
pA

p◦
)νA (

pB

p◦
)νB

where
∆rG

◦ = νPµ
◦
P + νQµ

◦
Q − νAµ

◦
A − νBµ

◦
B.

These relationships work just as well for ions in solution where the chem-
ical potentials depend on the activities, as given by Eq. 12.3, rather than the
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partial pressures. So, all we have to do is replace each term (pi/p◦) by ai to
give

∆rGcell = ∆rG
◦
cell + RT ln

(aP)νP
(
aQ

)νQ
(aA)νA (aB)νB

(12.4)

Recall from Eq. 12.1 on p. 64 that ∆rGcell = −nFE. Similarly, we can
write

∆rG
◦
cell = −nFE◦

where E◦ is the standard cell potential. It is the potential which the cell will
develop when all the species are present under standard conditions (i.e. unit
activity, p = 1 bar etc.).

Rewriting the ∆rG in Eq. 12.4 in terms of cell potentials (∆rGcell = −nFE)
we have

−nFE = −nFE◦ + RT ln
(aP)νP

(
aQ

)νQ
(aA)νA (aB)νB

;

dividing each side by −nF gives the Nernst equation

E = E◦ − RT
nF

ln
(aP)νP

(
aQ

)νQ
(aA)νA (aB)νB

. (12.5)

For simplicity we have written the Nernst equation in terms of activities,
ai. However, if a particular species is a gas its activity is replaced by (pi/p◦)
as µi(pi) = µ◦i + RT ln(pi/p◦). If a species is a solid or pure liquid, µi = µ

◦
i so

there is no contribution to the fraction on the RHS of Eq. 12.5.
The fraction on the RHS of the Nernst equation has the same form as

an equilibrium constant i.e. ‘products over reactants’. However, it is not an
equilibrium constant as the activities are not necessarily those at equilibrium.

12.3.3 Nernst equation for half cells
As derived, the Nernst equation (Eq. 12.5) refers to the conventional cell reac-
tion which can be thought of as the difference between two half-cell reactions.
It is often convenient to think of the potential developed by each half cell on
its own, called the half-cell potential. Of course, we cannot measure such a
potential directly as any cell necessarily involves two half-cells.

A typical half-cell reaction (written as a reduction in line with the conven-
tion described in section 12.1 on p. 62) is

νLL + νMM + ne− −→ νXX + νYY.

The half-cell potential, E 1
2
, is given by

E 1
2
= E◦1

2

− RT
nF

ln
(aX)νX (aY)νY

(aL)νL (aM)νM
. (12.6)

where E◦1
2

is the standard half-cell potential which is defined as the potential

generated when all the species are present at unit activity. As before, the
fraction in the ln term has the familiar form of ‘products over reactants’.
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The cell potential is calculated by taking ‘RHS − LHS’, just as we did
when determining the conventional cell reaction in section 12.1 on p. 62:

E = E 1
2
(RHS) − E 1

2
(LHS).

In the same way the standard cell potential can be found from the standard
half-cell potentials

E◦ = E◦1
2

(RHS) − E◦1
2

(LHS).

Given that standard half-cell potentials are tabulated (see the following
section), this is the way in which we can determine the standard potential of
any cell.

12.4 Standard half-cell potentials

We noted in the previous section that it is not possible to measure a half-cell
potential on its own as the potential of any cell will always be the differ-
ence of two half-cell potentials. We can draw up a table of standard half-cell
potentials by defining one of the half-cells to have zero potential and then ref-
erencing all other half-cell potentials to this. Since all calculations involve a
difference in half-cell potentials, this arbitrary choice of a zero point will not
cause any problems.

Pt

H2(g, p=1 bar)

H+(aq, a = 1)

Schematic diagram of a standard
hydrogen electrode.

The electrode whose standard potential is take as zero is the standard hy-
drogen electrode (SHE). This consists of H2 gas at a pressure of 1 bar in
contact with an aqueous solution of H+ at unit activity; an inert Pt electrode
is used to make the electrical contact. In the usual notation the cell is

Pt(m) | H2(g,p = 1 bar) | H+(aq, a = 1)

and the half-cell reaction is

H+(aq) + e− → 1
2 H2(g).

The standard potential of an electrode is defined as the potential developed
by a cell in which the left-hand electrode is the standard hydrogen electrode
and the right-hand electrode is the one under test; all species are present at
unit activity. Example 9 (b)

12.4.1 Tabulation of standard half-cell potentials
Extensive tabulations of standard half-cell potentials are available (see, for
example, the data sections in P W Atkins Physical Chemistry). As the cell
potential is essentially a value for ∆rG, we expect it to depend strongly on
temperature. Therefore the tabulated data are at a specified temperature, most
commonly 298 K.

12.5 The spontaneous cell reaction

In section 12.1 on p. 62 we described the way in which the conventional cell
reaction can be determined. It is important to realise that this conventional
reaction depends only on how the cell is written down on paper. If we were
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to swap the RHS and LHS electrodes, the conventional reaction will be the
other way round.

The actual reaction that would take place if current were allowed to flow
– called the spontaneous cell reaction – is found by inspecting the sign of the
cell potential.

• If the potential is positive, it follows from ∆rGcell = −nFE that ∆rGcell

is negative and so the reaction is spontaneous in the direction indi-
cated by the conventional cell reaction.

• If the potential is negative, ∆rGcell is positive and so the reaction is
spontaneous in the opposite direction indicated by the conventional
cell reaction.

For example, the cell

Cu(m) | Cu2+(aq, a = 1) || Zn2+(aq, a = 1) | Zn(m)

in which all species are present at unit activity develops a potential

E = E◦1
2

(RHS) − E◦1
2

(LHS)

= E◦(Zn,Zn2+) − E◦(Cu,Cu2+)

= −0.76 − (+0.34) = −1.10 V.

The conventional cell reaction is

conventional: Cu(m) + Zn2+(aq)→ Cu2+(aq) + Zn(m)

but as the cell potential is negative the spontaneous reaction is the reverse of
this

spontaneous: Cu2+(aq) + Zn(m)→ Cu(m) + Zn2+(aq) .
Example 9 (c)

Exercise 26 Note that cell potentials are affected by the concentrations of the species
involved, so under some circumstances the direction of the spontaneous cell
reaction can be reversed simply by altering the concentrations of the ions.

12.6 Types of half cells

There are many different types of half cells whose potentials are sensitive to a
wide variety of different species. For each half-cell electrode illustrated below
the half-cell reaction and the Nernst equation is also given.

12.6.1 Metal/metal ion
These consist of a metal in contact with a solution of its ions:

Ag+(aq) + e− → Ag(m) E = E◦(Ag+,Ag) − RT
F

ln
1

aAg+
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12.6.2 Gas/ion
These consist of the gas in contact with a solution containing related ions; an
inert Pt electrode provides the electrical contact. The ions can be anions or
cations.

Cl2(g) + 2e− → 2Cl−(aq) E = E◦(Cl2,Cl−) − RT
2F

ln
(aCl−)2

(pCl2/p◦)
.

The second example is similar to the hydrogen electrode, but instead of
there being H+ in the solution we have OH−. In order to balance the equation
two (solvent) water molecules are needed; we can always use solvent in this
way.

2H2O(l) + 2e− → 2OH−(aq) + H2(g)

E = E◦(H2O,OH−,H2) − RT
2F

ln
[
(aOH−)

2(pH2/p
◦)
]
.

As the water is the solvent we assume that it is essentially in its pure form and
so does not contribute a term to the fraction inside the ln.

12.6.3 Redox
The oxidized and reduced species are both present in solution; an inert Pt
electrode provides the electrical contact.

Fe3+(aq) + e− → Fe2+(aq) E = E◦(Fe3+, Fe2+) − RT
F

ln
aFe2+

aFe3+
.

In the second example the solution is acid and solvent (water) is needed to
balance the equation

MnO−4 (aq) + 8H+(aq) + 5e− → Mn2+(aq) + 4H2O(l)

E = E◦(MnO−4 ,Mn2+) − RT
5F

ln
aMn2+

aMnO−4 (aH+)8
.

12.6.4 Metal/insoluble salt/anion
These consist of a metal coated with a layer of the insoluble salt formed by
the metal and the anion which is in the solution. The commonest example is
the combination silver, silver chloride, chloride anion:

AgCl(s) + e− → Ag(m) + Cl−(aq) E = E◦(AgCl,Ag,Cl−) − RT
F

ln aCl−

Ag(m)

layer of
insoluble
AgCl(s)

Cl–(aq)

Schematic diagram of an Ag,AgCl
electrode.

Another commonly encountered electrode is that between liquid mercury,
solid mercurous chloride (mercury(I) chloride) and chloride anions. The mer-
curous chloride is made up in a paste with liquid mercury and then floated on
top of mercury. This electrode is called the calomel electrode.

Hg2Cl2(s) + 2e− → 2Hg(l) + 2Cl−(aq)

E = E◦(Hg2Cl2,Hg,Cl−) − RT
2F

ln(aCl−)
2
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As in earlier examples, some of the half-cell reactions of this type involve
the solvent. For example the lead, lead oxide, hydroxide system

PbO(s) + H2O + 2e− → Pb(m) + 2OH−(aq)

E = E◦(PbO, Pb,OH−) − RT
2F

ln(aOH−)
2

The point about all of these electrodes is that their half-cell potentials
depend on the concentrations of anions. The AgCl/Ag electrode is a much
more convenient chloride electrode to use that the Cl2/Cl− electrode.

12.6.5 Liquid junctions
If it is the case that the solutions in the two half-cells are different, then a
problem arises in that for the cell to produce a potential the two solutions
must be in contact. However, they must not mix as then the reaction would
take place without the electrons moving round the external circuit. The ‘join’
between the two solutions is called a liquid junction.

Cu

Cu2+ Zn2+

Znsat. KCl

Schematic of a cell employing a
salt bridge to connect the two half
cells.

Typically such a junction is handled in practice by having a porous barrier
between the two solutions; this allows contact but prevents rapid mixing. The
problem with this arrangement is that a potential, called a liquid junction po-
tential, may be set up across the barrier. It turns out that this potential detracts
from the cell potential and so the measured potential will not be correct.

Liquid junction potentials can be minimised by using a salt bridge. This is
a tube containing, typically, a concentrated solution of KCl or KNO3; the ends
of the tube dip in the solutions which form the cell and the KCl solution is kept
in the tube by glass sinters at each end. Such a salt bridge provides electrical
contact between the solutions and minimizes the liquid junction potential.

12.7 Redox stability

One very useful application of electrode potentials is in assessing redox re-
actions. For example, we saw in section 12.5 on p. 67 that, under standard
conditions, Zn metal will reduce Cu2+ to Cu metal, the zinc being oxidized to
Zn2+ in the process. We can generalize this approach in the following way.

Suppose that we have a species A which can exist in an oxidized form,
AO, and a reduced form, AR, related by the half-cell reaction involving nA

electrons:
AO + nAe− −→ AR;

it is supposed that the charges on AO and AR are such that this equation is
balanced. Let the EMF of this half cell be EA. Typically, AO will be a metal
ion and AR will be the metal, or a lower oxidation state of the metal.

Similarly, species B exists in an oxidised and a reduced form, related by
the following half cell equation involving nB electrons:

BO + nBe− −→ BR;

let the half-cell EMF of this reaction be EB.
Now imagine a cell in which the RHS is formed from the couple AO/AR

and the LHS from the couple BO/BR. We now want to work out the conven-
tional cell reaction, which we do by taking the RHS half cell reaction minus
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the LHS. However, first we must ensure that there are the same number of
electrons involved in each half cell; this is easily done by multiplying the
half-cell reaction for A by nB and that for B by nA. This gives

RHS nBAO + nBnAe− −→ nBAR

LHS nABO + nAnBe− −→ nABR.

Computing RHS − LHS gives

nBAO + nABR −→ nBAR + nABO. (12.7)

The EMF of the cell is EA−EB and so, as the number of electrons is nAnB,
∆rGcell is

∆rGcell = −nAnBF (EA − EB) .

Recall from section 12.5 on p. 67 that it is the sign of ∆rGcell which determines
the direction of the spontaneous reaction: if ∆rGcell is negative, the conven-
tional cell reaction (Eq. 12.7) is spontaneous in the direction shown i.e. A
is reduced and B is oxidized. On the other hand, if ∆rGcell is positive, the
spontaneous cell reaction is the opposite of the conventional reaction, so B is
reduced and A is oxidized.

The really crucial point here is that the sign of ∆rGcell is determined only
by the sign of (EA − EB); there is no need to go through all of this palaver
of constructing a cell, determining the cell reaction, finding the cell EMF and
hence the sign of ∆rGcell. All we have to do is to compare the two half-cell
EMFs.

Using the shortened approach, the conclusions are drawn quite quickly in
the following way. Consider the two half-cell reactions:

AO + nAe− −→ AR EA

BO + nBe− −→ BR EB

• If EA > EB, then A will be converted from the oxidized form to its
reduced form, whilst B will be converted from its reduced form to its
oxidized form. In other words AO will oxidize BR.

• If EA < EB, then A will be converted from the reduced form to its
oxidized form, whilst B will be converted from its oxidized form to its
reduced form. In other words BO will oxidize AR.

It follows that the oxidized form of a couple with a large positive half-cell
EMF will be a powerful oxidizing agent. Conversely, the reduced form of a
couple with a larger negative half-cell EMF will be a powerful reducing agent. Example 10

Remember that, as described in section 12.3.3 on p. 66, the half-cell EMF
is affected by the concentration of the species involved. Thus, the sign of
(EA − EB) is affected not only by the identity of A and B, but also by the rele-
vant concentrations. However, as these EMFs have a logarithmic dependence
on concentration, and given that R T/F is of the order of 0.03 V at 298 K, the
concentration dependence is not strong.
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12.8 Applications

As has already been commented on, the measurement of cell potentials is
essentially a measurement of ∆rG. All we have to do in order to measure
∆rG is to set up a cell with the appropriate conventional cell reaction and
then measure its potential. Further manipulations can be used to extend the
usefulness of such measurements. We will also see that often we can use
the standard half cell potentials directly to calculate further thermodynamic
parameters without actually setting up an experimental cell.

12.8.1 Solubility product of AgI
AgI is a sparingly soluble salt whose solubility is determined by the solubility
product, Ksp, which is defined as the equilibrium constant for the dissolution
reaction

AgI(s)� Ag+(aq) + I−(aq) Ksp = aAg+aI−

We have written the equilibrium constant using activities rather than concen-
trations. To find Ksp we will first find ∆rG◦ for the above reaction and then
use ∆rG◦ = −RT ln K.

From data tables we find the following two standard half-cell potentials
(at 298 K):

AgI(s) + e−→ Ag(m) + I−(aq) E◦(AgI,Ag) = −0.15 V

Ag+(eq) + e−→ Ag(m) E◦(Ag+,Ag) = +0.80 V

Taking the second of these away from the first gives just the reaction we
want

AgI(s)→ Ag+(aq) + I−(aq) .

The standard potential is given by

E◦ = E◦(AgI,Ag) − E◦(Ag+,Ag) = −0.15 − (+0.80) = −0.95 V

which corresponds to a ∆rG◦ value of −1 × F × (−0.95) = 91.6 kJ mol−1 and
so the equilibrium constant, Ksp, is exp(−91.6 × 103/RT ) = 8.8 × 10−17.

If we assume that the activities can be approximated by concentrations
then Ksp = [Ag+][I−]/(c◦)2 , so the concentration of either Ag+ or I− in the
solution is

√
8.8 × 10−17 = 9.3 × 10−9 mol dm−3 (c◦ = 1 mol dm−3). The

solubility is indeed very low.
Note that to find the solubility product we did not really use a cell as such,

but used the standard half-cell potentials as a source of ∆rG◦ values.

12.8.2 Thermodynamic parameters of ions
We saw in section 8.3 on p. 40 that ∆fH◦ and ∆fG◦ of elements in their ref-
erence states are defined as zero. For ions in solution, we introduce the addi-
tional conventions that

∆fH◦(H+) = 0 ∆fG◦(H+) = 0 .
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In any experiment we will only be able to determine the difference of en-
thalpies or Gibbs energies of ions, so in order to establish values for individual
ions we need to fix a zero point of the scale. Assigning the value 0 to H+ is ar-
bitrary, but as only differences are measurable we are free to choose the origin
to be where we like.

Cell potentials can be used to determine the standard Gibbs energies of
formation of ions. For example, consider the two half-cell reactions

H+(aq) + e−→ 1
2H2(g) E◦(H+,H2) = −0.00 V, by definition

Ag+(eq) + e−→ Ag(m) E◦(Ag+,Ag) = +0.80 V

Taking the second away from the first gives the reaction

H+(aq) + Ag(m)→ 1
2 H2(g) + Ag+(aq)

for which E◦ = E◦(H+,H2) − E◦(Ag+,Ag) = 0.00 − (+0.80) = −0.80 V. The
corresponding ∆rG◦ is −1 × F × (−0.80) = 77.2 kJ mol−1.

For the reaction, we can write ∆rG◦ in terms of standard Gibbs energies
of formation, ∆fG◦. Noting that ∆fG◦ of elements in their reference states is
defined as zero and that ∆fG◦(H+) = 0, gives

∆rG
◦ = 1

2∆fG
◦(H2(g)) + ∆fG

◦(Ag+(aq)) − ∆fG
◦(Ag(m)) − ∆fG

◦(H+(aq))

= ∆fG
◦(Ag+(aq)).

So, the standard Gibbs energy of formation of Ag+(aq) is 77.2 kJ mol−1. Using
this approach, the ∆fG◦ values of other ions can be found.

As discussed in section 12.2 on p. 64, the entropy (and hence the enthalpy)
change can be found from the temperature coefficient of the cell potential.

12.8.3 Concentration cells
A concentration cell has the same electrode on the RHS and LHS, but with
different concentrations or pressures of the species involved. The cell pro-
duces an EMF which depends on the ratio of the concentrations in the two
half cells: see the example for an illustration of this point. Example 11

Exercises 27 to 34
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