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Preface

The physical properties of colloidal suspensions are strongly affected by the forces
that act between the colloidal particles. Attempts to explain them in these terms go
back to the beginning of the 20th century. Important and extensively studied forces
in colloidal systems are Van der Waals forces, electrostatic forces, steric forces
due to attached polymers and magnetic forces. In the last decades it has been
observed that the stability of colloidal particles is also affected by non-adsorbing
polymers in solution. The origin of this interaction was first explained successfully
in 1954 by S. Asakura and F. Oosawa using the concept that the free volume
available to non-adsorbing polymers increases whenever two hard particles
approach sufficiently close such that their depletion zones overlap and the total
depletion zone decreases.

However, a number of important applications were used in technology and
medicine (long) before the depletion concept was introduced. For example, clus-
tering of red blood cells due to serum proteins was already detected at the end of
the 18th century and forms the basis of the blood sedimentation test still in use.
Furthermore, creaming of colloidal particles to concentrate latex dispersions upon
the addition of polysaccharides was first studied in the 1920s. Polysaccharides
were also used in the isolation of plant viruses, starting in the 1940s. Systematic
and fundamental investigations on the effect of depletion interactions in colloidal
systems started with the work of B. Vincent in the UK, S. Hachisu in Japan, and A.
Vrij in The Netherlands in the 1970s. Work on depletion interaction gained
momentum after W.R. Russel and co-workers in the US clarified the relationship
between the range and depth of the depletion interaction and the topology of the
phase diagram in the 1980s. Since then the depletion field evolved rapidly.

This book aims at providing a self-contained treatment of the depletion inter-
action and the resulting phase behaviour in colloidal dispersions. It is hoped that
the book may be equally useful to senior undergraduate students or beginning
graduate students in physical chemistry, chemical and mechanical engineering,
biophysicists or soft condensed matter physics. At the same time we hope that
professional chemists and engineers dealing with colloidal suspensions may find it
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a useful reference book to gain an understanding about the implications of the
depletion interaction for the handling of suspensions.

In order to keep the size of the book within bounds a description of the interface
between demixed phases has not been included and the discussion of phase
transition kinetics is rather brief. Also we emphasize that the references quoted do
not claim to be a complete list. If the reader prefers it, (s)he can read the book at
three levels. For a general idea of depletion interactions and their implications not
only in colloid science but also in systems of biological and technological interest
it is recommended to study Chap. 1. At the second level one can study 2.1, 2.2,
Chap. 3, 4.1, 4.2, 4.5 and 6.1–6.3, 6.5. This material could be used for 6–8 hour
senior undergraduate or junior graduate course in physical chemistry or soft matter
physics. The third level covers the complete text of this monograph.

Many people have stimulated us to write this book. Initially, we had hoped to
write it with Dirk Aarts. His enthusiasm for the book project helped us greatly
during the early stages but he was unable to reserve enough time for the book after
his start in Oxford. We are indebted to him, to Jeroen van Duijneveldt and Gerard
Fleer for commenting in detail on drafts of several chapters of the manuscript.
It might well be that remaining errors and unclarities can be traced back to where
we foolishly disagreed with them.

We were fortunate to have the meticulous help in the preparation of texts and
figures of the manuscript by Mieke Kröner, while the illustrations benefited from
the advice of Jeannette Kröner.

R.T. wishes to thank Jan Dhont and his Soft Matter group at the IFF of research center
Jülich for their support during the initial stages leading to this book. The members of the
Colloids & Interfaces group at DSM Research, Leon Bremer, Harm Langermans, Leo
Vleugels, Benjamin Voogt, Jef Bisscheroux, and Feng Li, are acknowledged for the
pleasant and stimulating interactions. Peter Jansens and Jeroen Kluytmans of DSM
Research are thanked for supporting R.T. to finish the book. Collaborations with Martien
Cohen Stuart, Tai-Hsi Fan, Kees de Kruif, Peter Schurtenberger, Takashi Taniguchi, and
Agienus Vrij contributed to the evolution of this book.

H.N.W.L. wishes to thank the staff members and his PhD students and Postdocs
at the Van ’t Hoff laboratory with whom he had the privilege to work. He benefited
from a long-term collaboration with Marc Baus, Louise Bailey, Mike Cates, Bob
Evans, Seth Fraden, Daan Frenkel, Jean-Pierre Hansen, Joseph Indekeu, Geoff
Maitland, Theo Odijk, Roberto Piazza, Wilson Poon, Peter Pusey, Bill Russel,
Patrick Warren and Ben Widom. H.N.W.L. would like to thank the Royal Neth-
erlands Academy of Arts and Sciences for the appointment as Academy Professor
for the period 2006–2011, which made it possible to write this book.

Finally, we express our appreciation for the encouragement and pleasant
cooperation with Maria Bellantone, Mieke van der Fluit and Liesbeth Mol of
Springer Science + Business Media.

Geleen / Utrecht, April 2011 Remco Tuinier
Henk N. W. Lekkerkerker
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Chapter 1
Introduction

1.1 Colloids

In this book colloids are a central theme. We therefore first define what colloids
are. According to IUPAC [1] the term colloidal refers to a state of subdivision,
implying that the molecules or polymolecular particles dispersed in a medium
have at least in one direction a dimension roughly between 1 nm and 1 lm; or that
in a system discontinuities are found at distances of that order’. This means that
colloidal particles are supramolecular submicron sized substances dispersed in a
medium that can be a liquid or a gas, see [2–6]. Supramolecular implies that
colloids are much bigger than ‘normal’ molecules (though they may be compa-
rable in size to macromolecules). The lower length scale for a colloidal particle is
close to a nm. The medium of low molecular mass substances in a colloidal
suspension can often be regarded as ‘background’ with respect to the colloidal size
range, then this medium may be approximated as a continuum.

From a physics point of view colloidal particles are characterized by observable
Brownian motion, originating from a thermal energy of order of kT for each
colloidal particle. Particles in a solvent are considered to be Brownian if sedi-
mentation can be neglected with respect to thermal motion. This means that the
sedimentation length, the ratio of thermal energy and gravity force,

lsed ¼
kT

m�g
; ð1:1Þ

should be larger than the colloid radius. Here the buoyant mass m� equals
ð4p=3ÞDqR3 for a spherical colloid with radius R; where Dq is the density dif-
ference between particle and solvent. Hence the upper colloidal size corresponds
to the condition where lsed � R: For Dq = 100 kg/m3 this implies an upper
diameter of about 2 lm at 300 K.

Perrin [7] studied dispersed resin colloids and detected Brownian motion as
visible manifestation of thermal motion, verifying Einstein’s theoretical results [8].
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The height distribution of the resin colloids in the field of gravity was shown to
obey Boltzmann’s law for the sedimentation equilibrium. The picture emerged that
colloids behave as big atoms in many respects. Later, Onsager [9, 10] and
McMillan and Mayer [11] laid down a statistical mechanics foundation for the
colloid/atom analogy. They pointed out that the degrees of freedom of the solvent
molecules in a colloidal dispersion can be eliminated, implying that the solvent
can be considered as ‘background’. The resulting description involves only col-
loidal particles interacting through an effective potential, the potential of mean
force, that accounts for the presence of the solvent.

Often the interactions between small spherical atoms and some (rotationally-
averaged) molecules similarly depend on the relative interparticle separation; the
Lennard–Jones interaction [12] reasonably describes their pair interaction (see [13]
for an in-depth critical discussion) for quite a number of substances. For these
systems the phase diagrams scaled by the critical values of temperature, pressure
and molar volume appear similar as well. The fact that the thermodynamic
properties of all simple gases exhibit basic similarities is expressed by the law of
corresponding states of Van der Waals. A statistical mechanical derivation of this
law was provided by Pitzer [14].

Just as the pressure of an atomic gas is affected by the interaction between the
atoms, the physical properties of a colloidal dispersion depend on the potential of
mean force between colloidal particles. An extended law of corresponding states
has been conjectured [15] stating that knowledge of the potential of mean force
between spherical colloidal particles enables to predict the phase diagram
(topology). Hence, one may therefore expect similarities between the phase dia-
grams of atomic and colloidal systems.

Apart from such similarities, there are also distinct differences between atoms
and colloidal particles. In contrast to pair interactions between atoms, interactions
between colloidal particles can be tuned by choosing particle type, temperature,
solvent, by supplementing additives such as electrolytes, polymers or colloidal
particles, or by modifying the particle surface. Since the 1970s it gradually became
clear that adding small particles or polymers that do not adsorb onto the colloids
opens up a wide variety of possibilities to tune the phase behaviour of colloidal
dispersions. The interactions mediated by such non-adsorbing species and the
resulting phase behaviour are at the core of this book.

Colloidal dispersions can be found in a wide range of environments and
products. Industrial examples include emulsions (mayonnaise), foams (shaving
cream), surfactant solutions (shampoo) or polymer latex dispersions (paint). The
science of colloids is important for applications ranging from drug delivery and
dairying to coating technology and drilling fluids. For practical reasons, mankind
has always been interested in colloidal stability. Frequently, long-term stability of
a colloidal dispersion is desired, for example in storage of paint or food, and often
adjusting the particle surface chemically or via adsorption is applied to ensure this
stability. For example, carbon is the oldest ink material known and in Egypt its use
for writing can be dated back to 3400 BC [16]. The carbon used for making ink was
soot in most cases. By mixing with gum arabic and water, soot was made into ink.
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Without understanding the underlying principles, the Egyptians effectively used
the stabilization of dispersions by adsorbed macromolecules [3, 17]. This is
nowadays recognized as an example of polymeric stabilization, see Sect. 1.2.4. In
this manner the Egyptians succeeded in engineering the soot particles as to be able
to remain suspended for an indefinite period.

An example where the instability of colloids (clay) plays a role in nature is delta
formation. Deltas [18] are formed due to precipitation of colloidal (clay) particles
carried by the river as its flow meets the sea (or ocean), where the river water
mixes with salty sea water. The delta formation process was already described by
Barton [19] in 1918 before a clear understanding of the role of salt on colloidal
stability had been established.

Milk is a natural colloidal dispersion that contains casein micelles, self-
assembled protein associates with a diameter of about 200 nm [20]. The casein
micelles are protected against flocculation by an assembly of dense ‘hairs’ (often
called a ‘brush’) at their surfaces. Polymer brushes can thus provide steric sta-
bilization of colloids. For millennia, man used the fact that milk flocculates and
gels when it is acidified, as in yogurt production. Below pH ¼ 5 macroscopic
flocculation of the casein micelles in milk is observed [21]. This means that the
interactions between casein micelles change from repulsive to attractive. The
explanation is that acidification leads to collapse of the casein brushes [22]. In
cheese-making the steric stabilization is removed by enzymes, which induce
gelation into cheese curd.

Modest solvent composition changes can also affect the state of a colloidal
dispersion. A charge-stabilized dispersion of polymer latex particles or gold col-
loids may flocculate irreversibly upon adding salt, while ion removal through
dialysis may turn the dispersion into an ordered structure exhibiting Bragg
reflection [23]. Obviously, the physical state of a colloidal dispersion is a function
of the interactions between the colloidal particles.

In foods and paints and in biological systems such as the living cell, colloids
and polymers are often present simultaneously. When the polymers do not adsorb
onto the colloidal particles the result is a socalled depletion layer. As we shall see,
overlap of depletion layers leads to an attractive depletion interaction between the
colloidal particles. The term depletion derives from Latin meaning ‘emptied out’.
The verb ‘plere’ is ‘to fill’ [24]. Thus a ‘pletion’ force is due to accumulation of
some substance between two colloids. The reversal, a ‘depletion’ force is due to
the expulsion of material.

Mixing colloids with polymers or other colloids can lead to phase transitions or
aggregation resulting in for instance gelation, crystallization, glass transition,
flocculation, or fluid–fluid demixing of the dispersion. The type of instability
depends on the range and strength of the particle interactions involved. The
knowledge gained over the last few decades on depletion effects in mixtures of
colloidal particles and polymers is of great interest for designers of new products.
Insight into the factors determining the stability of mixtures changes product
development from trial-and-error towards knowledge-driven innovation. This
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book serves as a guide to help understanding what happens when colloids are
mixed with polymers or other colloids.

This chapter gives an introduction into colloidal interactions, including the
depletion force in a historical context, and provides examples of the manifestations
of depletion effects. First, we start with a brief overview on colloidal interactions
in Sect. 1.2 including the basic concept of the depletion interaction. We sketch the
effects of unbalanced forces, amongst which depletion forces in colloidal disper-
sions from a historical perspective in Sect. 1.3. Finally, we discuss some conse-
quences of depletion forces in Sect. 1.4, followed by a brief Outline of the other
Chapters of this book in Sect. 1.5.

1.2 Colloidal Interactions

The basic understanding of colloidal interactions commenced in the 1940s. Then
Derjaguin and Landau [25] in the former USSR and Verwey and Overbeek [26] in
The Netherlands pointed out that in a dispersion of charged colloids in an elec-
trolyte solution the Van der Waals attraction between two colloidal particles is
opposed by a repulsion originating from electrical double layers. This foundation
for the stability of colloids is known as the DLVO theory and has been remarkably
successful in explaining the results of a vast number and broad range of experi-
ments, including direct force measurements [27]. Polymers, either depleted from
or adsorbed or anchored to colloidal surfaces also turned out to strongly influence
colloidal interactions; these were not considered by DLVO.

In Sects. 1.2.1 and 1.2.2 we shall first qualitatively consider double layer and
Van der Waals interactions, the two contributions to the DLVO potential
(Sect. 1.2.3), and then discuss (polymeric) steric stabilization by end-attached
polymer in Sect. 1.2.4. While not further discussed here we mention that
adsorbing polymers, proteins or particles can also be used to protect colloids
against flocculation. For protein adsorption, often used for instance in food
emulsions, we refer to [28]. Using particles to stabilize colloids is referred to as
Ramsden-Pickering stabilization [29]. Finally, the depletion interaction will be
treated in Sect. 1.2.5.

1.2.1 Van der Waals Interaction

Dispersion or London–Van der Waals forces act between all atoms and molecules.
This intermolecular attractive force arises from a cooperative oscillation of elec-
tron clouds when the molecules are at close range. Each colloidal particle consists
of atoms. When two colloidal particles in a background medium are in close
proximity, the Van der Waals interaction between all atoms contribute to an
effective attraction termed colloidal Van der Waals interaction. This attraction
follows from summation of all atomic Van der Waals interactions [30, 31]. The
dielectric properties of the colloidal particles and the background medium

4 1 Introduction



determine the strength of the interaction. For two colloidal spheres with radius R
the Van der Waals attraction reads [32]

WVdWðhÞ ¼ �
A

6
f ðh=RÞ ð1:2Þ

with

f ðh=RÞ ¼ 2R2

h2 þ 4Rh
þ 2R2

h2 þ 4Rhþ R2
þ ln

h2 þ 4Rh

h2 þ 4Rhþ R2

� �

;

where A is the Hamaker constant and h is the closest distance between the surfaces
of two spheres.

The Hamaker constant for the interaction between two colloidal particles
without intervening medium is, to a good approximation, built up additively from
pair interactions between the atoms (or molecules) which make up the colloidal
particles. This leads to

A ¼ Cp2n2; ð1:3Þ

where n is the number density of atoms. Here C is the coefficient for the dispersion
interaction between the atoms of which the colloidal particles consist. According
to the London theory [33, 34] for dispersion interactions this coefficient can, to a
good approximation, be written as

C ¼ 3
4

E
ap

4pe0

� �2

: ð1:4Þ

Here E is a typical (average) electronic excitation energy, ap is the static polar-
izability and e0 is the vacuum permittivity. As a primitive description for an atom
we use Thomson’s model [35] but now with a point nucleus (with þqe charges)
surrounded by a charged spherical cloud (�qe charges) with diameter ra [36]. In
the presence of an external electric field the nucleus will be shifted while the
electron cloud moves in the opposite direction. Assuming that the electron cloud
retains its spherical shape this leads to a dipole moment l = qed; where d is the
displacement of the nucleus from the center of the negative charge. The value d is
determined by the balance of the forces acting on the nucleus due to the external
field Ee and the internal field Ei caused by the displacement of the nucleus. The
charge outside the sphere of radius d does not contribute to the force acting on the

nucleus. The charge inside this sphere is �qed3=ðra=2Þ3 and acts on the nucleus as
though it were concentrated at the centre and hence

Ei ¼ �
2qe

pe0

d3

r3
a

1
d2
: ð1:5Þ

Exercise Prove the statements above (1.5) using Gauss’s law. Hint: consult
Chap. 2 in [36].
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The balance condition

Ee þ Ei ¼ 0; ð1:6Þ

leads to

l ¼ qed ¼ pe0r3
a

2
Ee; ð1:7Þ

Since l ¼ apEe it follows

ap

4pe0
¼ r3

a

8
: ð1:8Þ

Although this atomic model is extremely crude the result (1.7) is not too bad; it is
accurate to within a factor four or so for many simple atoms. The number density
scales as

n ’ 1
r3

a

; ð1:9Þ

and so we obtain

A ¼ 3p2

256
E: ð1:10Þ

Now using the fact that the typical electronic excitation energies lies in the range
1�5 eV we obtain A ¼ 0:12� 0:6 eV ¼ 2� 10� 10�20 J; in good agreement with
experiment. After expressing A in units kT ð� 4� 10�21 J at room temperature),
we obtain A ¼ 5 � 25 kT: With a medium between the colloidal particles the
value of A is typically reduced by a factor 3 to 10:

From (1.2) it follows that the Van der Waals attraction is very strong at short
interparticle separations (small h; where WVdWðhÞ� � AR=h). In order to stabilize
a colloidal dispersion a significant repulsion is needed preventing the particles
getting too close and flocculate irreversibly. The Van der Waals interaction is
sketched schematically in Fig. 1.1 as the lower dashed curve.

1.2.2 Double Layer Interaction

A charged colloid is surrounded by a solution with an inhomogeneous distribution
of ions. Co-ions (with the same charge as the colloids) are depleted from the
colloid surface and counterions (with opposite charge) adsorb (accumulate) at the
surface. Far from the colloidal surface the concentrations of the two ion types
attain a constant averaged value. The inhomogeneous layer is termed double layer
and its width depends on the ion concentration in the bulk solution: adding more
ions screens the charges on the colloidal surfaces.

When two double layers overlap a repulsive pair potential develops which leads
to a repulsive pressure. Dispersed like-charged colloids hence repel each other
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upon approach due to screened-Coulomb or double layer repulsion. The length
scale over which this force is operational is set by the Debye screening length kD

kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
8pkBns

r

; ð1:11Þ

where ns is the salt number density and kB is the Bjerrum length,

kB ¼
e2

4pe0er kT
; ð1:12Þ

with e the elementary charge and er the relative dielectric constant (�80 in water).
The Bjerrum length is the distance between two elementary charges at which their
interaction equals kT : In water at room temperature its value is � 0:7 nm: For the
Debye length we then find kD ¼ 0:3

ffiffi

I
p

nm with the ionic strength I in mol/L:
The interparticle separation dependence of double layer repulsion is approxi-

mately exponential [26]

WDRðhÞ ¼ B
R

kB
expð�h=kDÞ; ð1:13Þ

which shows that the range of the screened double layer repulsion is kD; and
depends on ionic strength.

The quantity B can be expressed in terms of the surface charge density rc of the
interacting colloids [26]

B

kT
¼ 8p2

c

1þ p2
c

; ð1:14Þ

where pc ¼ 2pkDkB rc=ej j; with pc the number of elementary charges e on a sur-
face area 2pkDkB: Given the fact that rcj j varies roughly between 0.1 and 2 e/nm2;
the value of pc ranges from 0.1 to 10 and hence B has a typical value of 1� 8 kT:
The quantity B can also be expressed as a function of the surface potential w0 [26]:

Fig. 1.1 Schematic plot of a
typical double layer repulsion
between charged colloidal
spheres (top), of the Van der
Waals attraction (bottom) and
their sum, which is the DLVO
interaction potential
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B

kT
¼ 8 tanh

w0

4 kT

� �� �2

: ð1:15Þ

The surface potential of a charged colloidal particle typically varies from 10 to
100 mV leading to B values in the same range as given above.

The double layer interaction between two like-charged colloidal particles is
sketched in Fig. 1.1 (upper dashed curve).

1.2.3 DLVO Interaction

By assuming additivity of the interactions, the total DLVO potential is simply
given by

WDLVO ¼ WVdW þWDR: ð1:16Þ

In Fig. 1.1 the DLVO interaction potential WDLVO is schematically sketched
together with its two contributions. If the maximum of WDLVO is sufficiently high
(larger than a few kT), flocculation is prevented. Flocculation does occur when the
particles can get very close into the socalled primary minimum; this minimum is
usually deep enough for irreversible flocculation.

For a given Van der Waals attraction and particle size the DLVO potential
depends on the ionic strength. The DLVO potential is qualitatively represented
in Fig. 1.2, with from ðiÞ towards ðivÞ more added salt. At low salt concentration
ðiÞ the double layer repulsion dominates, the maximum of WDLVO exceeds several
kT and a stable colloidal dispersion is expected. In situation ðiiÞ the salt concen-
tration is larger but there is still a local maximum that may be significant, pre-
venting the particles to irreversibly stick into the primary minimum. A shallow
secondary minimum now manifests itself at large interparticle distances. If this
local minimum is sufficiently deep (i.e. for large particles), weak flocculation can
take place. Such weakly flocculated aggregates can be redispersed by shaking or
by lowering the salt content. Adding still more salt ðiii; ivÞ leads to irreversible
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Fig. 1.2 Illustrative DLVO pair interactions (left) between two charged colloidal spheres (see
sketch on the right) in an electrolyte solution as a function of adding more salt from ði! ivÞ
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aggregation: the Van der Waals attraction gets dominant and the colloidal dis-
persion will be unstable. DLVO theory is capable of accurately describing early
stage aggregation of dilute charged colloidal spheres for kDJ3 nm [37].

Using the surface force apparatus Israelachvili and Adams [38] measured a
repulsive force in aqueous solution at short separations that could not be inter-
preted in terms of DLVO theory. This interaction is due to hydration forces caused
by the ordering of water molecules. Its range is very short, typically below 2 nm:
For a discussion on the limitations of DLVO theory and possible improvements,
see for instance [39].

In the above descriptions we concentrated on situations where a polar back-
ground solvent was implicitly assumed. In apolar solvents double layer repulsion is
difficult to achieve because dissociation, leading to charged surface groups, is less
likely to occur and it becomes essential to stabilize colloids with polymers as to
prevent instabilities. In the first decades after the establishment of the DLVO
theory most papers on forces between colloidal particles focused on Van der Waals
and double layer interactions. Forces of other origin such as polymeric steric
stabilization [17], depletion [40] or effects of a critical solvent mixture [41] gained
interest at a later stage.

1.2.4 Influence of Attached Polymers

Colloidal dispersions can be very well stabilized by polymers attached to the
particle surfaces [17]. Here we consider polymer chains that are in a ‘good sol-
vent’. This means that the chains are swollen and repel each other. As two col-
loidal particles, protected with attached polymers, approach each other the local
osmotic pressure increases dramatically due to steric hindrance of the polymer
chains on both particles. This competition between the chains for the same volume
leads to a repulsive interaction, as was realized already by Fischer [42].

Polymers can be attached to surfaces for instance as mushrooms, brushes or as
adsorbed chains, see Fig. 1.3. In case of mushrooms and brushes the

Fig. 1.3 Schematic pictures of polymers attached at a surface: a mushroom (left), a brush
(middle), and a layer of adsorbed polymer (right)
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(non-adsorbing) chains are chemically bound to the surface by one chain end.
Brushes are characterized by a high packing density. When polymers adsorb at a
surface many segments stick and densely pack at the interface. Attached polymers
can contribute to a (significant) repulsive interaction between the particles. Upon
overlap of the attached polymers the osmotic pressure between the surfaces
strongly increases which leads to a repulsive interaction between the particles.

A simple picture emerges for polymer brushes, chains that are anchored to the
surface by an end segment with a high anchor density; as a consequence the chains
are highly stretched. The free energy of interaction between brushes consists of
two terms: an osmotic repulsion contribution and a stretching factor. The Alex-
ander–De Gennes theory [43–45] considers the repulsive interaction of overlap-

ping brushes of thickness db in a good solvent. This thickness scales as Mr1=3
b ;

where M is the chain length and rb the anchor density. For h� 2db the pressure P
between two parallel plates with anchored brushes at separation h reads:

PðhÞ
kT r3=2

b

� 2db

h

� �9=4

� h

2db

� �3=4

: ð1:17Þ

The first positive term on the right-hand side represents the osmotic repulsion
between the brushes and the second negative term originates from the elastic
energy gain upon retraction of chains (less stretching). The repulsion dominates
the interaction for h\db: As will become clear in Sect. 2.1, the pressure yields the
interaction potential between two plates from which also the interaction between
two spheres can be derived.

In Fig. 1.4 we qualitatively sketch the effect of adding a polymer brush to two
(uncharged) colloidal spheres subject to Van der Waals attraction. Commonly, one
assumes the total interaction is the sum of all pair interactions:

Wtot ¼
X

i

Wi: ð1:18Þ

So in Fig. 1.4 the total interaction potential is Wtot ¼ WVdW þWbrush: Without the
anchored polymer chains the particles would coagulate spontaneously, since the

Fig. 1.4 Sketch of the influence of a brush repulsion on two spheres with Van der Waals
attraction
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Van der Waals attraction is very strong at small values of h: However, upon adding
the polymer brush repulsion the total interaction (solid curve) is repulsive for a
wide h-range with no significant attraction left.

The Van der Waals attraction can be reduced by choosing a solvent (mixture)
that allows for refractive index matching of colloid and solvent. For model studies
where one desires hard-sphere-like particles, refractive index matching is com-
bined with attaching short hairs (a thin brush; db � R) to the colloidal particles.
This leads to absence of effective attractions and only a short-ranged repulsion
between the particles: basically we now have a system of hard spheres; imagine
sub-micron sized billiard balls. The pair interaction may then be approximated as

WðhÞ ¼ 1 h� 0

¼ 0 h [ 0
; ð1:19Þ

the hard-sphere interaction, plotted in Fig. 1.5 (left panel). In the next section we
consider the effect of non-adsorbing polymer in such a hard-sphere dispersion.

When the medium is a poor solvent for the attached polymers a rather different
situation is encountered. The polymer chains then tend to assume collapsed con-
figurations in order to minimize contact with solvent molecules and the polymer
segments prefer to interact with each other. This results in (short-ranged) attraction
between colloidal particles covered with polymer chains in a poor solvent (see
Sect. 5.5 in [46]). The interaction of such sticky spheres (billiard balls with a thin
layer of honey [47]) is often described in a simple manner using the adhesive hard
sphere interaction (see right panel in Fig. 1.5)

WðhÞ ¼ 1 h� 0

¼ �e 0\h�D;

¼ 0 h [ D

ð1:20Þ

where D is the range of the attraction set by the thickness of the polymer layers and
e is the strength of attraction upon overlap of the polymer layers. For D� R the
sticky sphere model of Baxter [48] can be employed providing simple expressions
for the second osmotic virial coefficient and the equation of state. When the
attractions are sufficiently strong phase separation or aggregation occurs [49–52].

Fig. 1.5 Hard-sphere (left) and adhesive hard-sphere (right) interaction
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1.2.5 Depletion Interaction

Consider a room in a restaurant on two different occasions, as sketched in Fig. 1.6.
On regular evenings the staff arranges the tables in a typical dinner set-up.
Sometimes the room is booked for a cocktail party with many people present. In
such a busy cocktail party the tables are laden with drinks and snacks and the
configuration of the tables is rather different. Obviously, when the number of
visitors exceeds a certain value, people tend to push the tables close to each other
near one wall in order to gain more translational freedom for the visitors. This
‘phase separation’ is driven by entropy only. The apparent attraction between the
tables originates from purely repulsive interactions between the people: the visitors
do not wish to be too close to each other (and can still fetch a drink from a table). It
is, just like depletion, an example of, what Vrij (personal communication) refers to
as ‘attraction through repulsion’. Below we explain the origin of the depletion
effect, first by regarding colloidal hard spheres in a solution of non-adsorbing
polymer.

Suppose colloidal spheres are mixed with non-adsorbing polymers. Negative
adsorption then results in an effective depletion layer near the surface due to a loss
of configurational entropy of a polymer chain in that region. The mechanism that is
responsible for the attraction originates from the presence of depletion layers.
Consider the sketch depicted in Fig. 1.7 of a few colloidal spheres in a polymer
solution. Depletion layers are indicated by the (dashed) circles around the spheres.
When the depletion layers overlap (lower two spheres) the volume available for
the polymer chains increases. It follows that the free energy of the polymers is
minimized by states in which the colloidal spheres are close together. The effect of
this is just as if there were an attractive force between the spheres even while the
direct colloid–colloid and colloid–polymer interactions are both repulsive [40].
For small depletant concentrations the attraction equals the product of the osmotic
pressure and the overlap volume, indicated by the hatched region between the
lower spheres in Fig. 1.7. The picture sketched above became first clear in the
1950s through the work of Asakura and Oosawa [53, 54] and gained full attention

Fig. 1.6 Left dinner set-up in the restaurant on a quiet evening. Right buffet set-up in the same
restaurant after ‘phase separation’. Drawings by D. Frenkel (personal communication)
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only when Vincent et al. [55] and Vrij [40] started systematic experimental and
theoretical work on colloid–polymer mixtures.

Anticipating a more rigorous treatment in Chap. 2, we already give the standard
expression often used for the depletion interaction [40, 54]. Consider two colloidal
spheres each with diameter 2R; each surrounded by a depletion layer with
thickness d: In that case the depletion potential can be calculated from the product
of P ¼ nb kT ; the (ideal) osmotic pressure of depletants with bulk number density
nb; times Vov; the overlap volume of the depletion layers. Hence the Asakura–
Oosawa–Vrij (AOV) depletion potential equals:

WdepðhÞ ¼ 1 h\0

¼ �PVovðhÞ 0� h� 2d;

¼ 0 h	 2d

ð1:21Þ

with overlap volume VovðhÞ

VovðhÞ ¼
p
6
ð2d� hÞ2 ð3Rþ 2dþ h=2Þ: ð1:22Þ

In Fig. 1.8 the AOV interaction potential WdepðhÞ between two hard spheres in a
solution containing free polymers is plotted. The minimum value of the potential
Wdep is achieved when the particles touch (h ¼ 0).

We note that in the original paper of Asakura and Oosawa [54], where
expression (1.21) was first derived, the polymers were regarded as pure hard
spheres. Vrij [40, 56] arrived at the same result by describing the polymer chains
as penetrable hard spheres, see Sect. 2.1. Inspection of (1.21) and (1.22) reveals
that the range of the depletion attraction is determined by the size 2d of the

Fig. 1.7 Schematic picture
of colloidal spheres in a
polymer solution with
non-adsorbing polymers. The
depletion layers are indicated
by the short dashes. When
there is no overlap of
depletion layers (upper two
spheres) the osmotic pressure
on the spheres due to the
polymers is isotropic. For
overlapping depletion layers
(lower two spheres) the
osmotic pressure on the
spheres is unbalanced; the
excess pressure is indicated
by the arrows
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depletant, whereas the strength of the attraction increases with the osmotic pres-
sure, hence with the depletant concentration. Depletion effects offer the possibility
to independently modify the range and the strength of attraction between colloids.
In dilute polymer solutions, the depletion thickness d is close to the polymer’s
radius of gyration Rg:

In a mixture of hard spheres and depletants a phase transition occurs upon
exceeding a certain concentration of colloidal spheres and/or depletants. This is the
subject of Chaps. 3–6 in this book. A key parameter in describing the phase
stability of colloid–polymer mixtures is the size ratio q;

q ¼ Rg

R
: ð1:23Þ

Throughout, colloid–polymer mixtures are described in terms of the volume
fraction of colloids / and the relative polymer concentration:

/p ¼
nb

n�b
¼ u

u�
; ð1:24Þ

which is unity at the overlap concentration and can be regarded as the ‘volume
fraction’ of polymer coils (and exceeds unity in the semi-dilute concentration
regime). Here nb is the bulk polymer number density and n�b is its value at which
the polymer coils overlap. In terms of the volume fraction of polymer segments u
(0�u� 1), one then uses /p ¼ u=u�; with u� the segment volume fraction where
the chains start to overlap:

u� ¼ Mvs

vp
; ð1:25Þ

where M is the number of monomers per chain, vs is the monomer (segment)
volume, and vp ¼ ð4p=3ÞR3

g the coil volume, so u� �M=R3
g: The overlap number

density n�b hence follows as n�b ¼ 3=ð4pR3
gÞ:

It has actually become a standard practice to normalize polymer concentrations
in this way and use u=u� (or nb=n�b) as the parameter for ‘polymer concentration’.

Fig. 1.8 Sketch of the depletion interaction between two hard spheres
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In terms of practical concentrations in kg/m3 or g/L the overlap concentration
follows as

3Mp

4pR3
gNav

; ð1:26Þ

where Mp is the polymer’s molar mass and Nav is Avogadro’s number. The
pressure P in (1.21) can, using (1.24), be rewritten as Pvp=kT ¼ /p:

Exercise
Show that, when using the approximation d ¼ Rg; the attractive part of (1.21) can
be written in normalized quantities as:

WdepðhÞ
kT

¼ q�3/p q� h

2R

� �2 3
2
þ qþ h

4R

� �

:

In Fig. 1.9 we sketch the influence of a combined depletion attraction and a brush
repulsion on the total interaction. The presence of brushes reduces the attraction
and the minimum value of the attraction is found at h [ 0 [57].

The fact that depletion forces enable to vary the range of attraction and its
strength independently is helpful for studying fundamental properties of liquids, as
well as crystallization and gelation phenomena, using colloidal systems instead of
low molar mass substances. Another advantage of colloid–polymer mixtures is that
colloids can be investigated using microscopy. Aarts et al. [58] could even detect
capillary waves at the colloidal gas–liquid interface. Observations of wetting
phenomena can also be studied at the particle level [59, 60].

1.3 Historical Overview on Depletion

In this book depletion in colloidal dispersions is a central theme. As we saw in
Sect. 1.2.5 depletion effects in colloidal dispersions are caused by an unbalanced
force. From a physics point of view the depletion force between colloidal particles

Fig. 1.9 Sketch of the total interaction potential between two spheres covered with polymer
brushes in a good solvent in a solution containing non-adsorbing polymer chains
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due to non-adsorbing polymer chains or small particles has common features with
any other unbalanced force, whether of a colloidal nature or not. Before we focus
on depletion effects on a mesoscopic level we first give two classical examples of
unbalanced forces.

1.3.1 Early Interest in Unbalanced Forces

1.3.1.1 The Von Guericke Force

Halfway the 17th century a series of remarkable experiments were performed initi-
ated by Otto Von Guericke. One took place in 1657 at the court of King Friedrich
Wilhelm III of Brandenburg in Berlin, Germany. Two hollow copper hemispheres
with a diameter of 51 cm were joined and air was pumped out so a partial vacuum
was created. To each hemisphere teams of horses were harnessed, see Fig. 1.10. The
teams of horses, which pull with a force of about 1,500 N each, could not pull apart
the two joined hemispheres, demonstrating the tremendous force of air pressure. This
proved the existence of the nothing we now call a vacuum.

Fig. 1.10 Sketch by Caspar Schott (1602–1666) of the demonstration of the vacuum force by
two teams of horses attempting to disengage the hemispheres
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Exercise
Show that the force on the hemispheres due to air pressure is one order of mag-
nitude larger than the force that can be produced by 24 horses.

This experiment was the brainchild of scientist, inventor, and politician Otto
Von Gericke, later spelled Von Guericke, who lived between 1602 and 1686. The
vacuum pump he used was invented by himself in 1650. His book on vacuum [61]
reminds of the difficulties at the time on understanding vacuum. Von Guericke was
able to abandon established views and developed an independent vision on vac-
uum [62]. The result of the ‘horses’ experiment showed that the surrounding air
molecules push against the Magdeburg hemispheres (Von Guericke was the mayor
of Magdeburg). The unbalanced force thus pulls the hemispheres together.

Exercise
Explain why the osmotic pressure of the polymer solution in a colloid–polymer
mixture plays a similar role as air pressure in Von Guericke’s experiment.

1.3.1.2 Le Sage’s Gravitation Theory

In 1690 Nicolas de Fatio and later in 1748 Georges-Luis Le Sage proposed a
mechanical theory for the explanation of Newton’s gravitational force. This theory
assumes the existence of ‘ultramundane corpuscles’. Streams of such corpuscles
are thought to impact on all materials from all directions. Now if two bodies of
materials are close to one another they can partially shield each other from the
incoming ‘ultramundane corpuscles’; the bodies will be struck by less corpuscles
from the side of the other body. This mutual shielding was then supposed to push
the bodies together due to the unbalanced force of the colliding corpuscles. This
line of reasoning was first formulated by de Fatio in a letter to Huygens [63]. Also
Newton had contact with de Fatio on this matter. While Huygens, Newton and
Leibniz were interested, they never accepted de Fatio’s explanation as the driving
force for gravity.

At a later stage, Le Sage published a similar, more refined version of the theory
[64]. He was in contact with some of the greatest physicists and mathematicians of
his time, including Euler and Bernouilli, who found the theory rather speculative.
Inconsistencies in the theory were later revealed by for instance Laplace, Lord
Kelvin, Lorentz and, for didactic reasons, more recently by Feynman [65].
Nowadays, Le Sage’s theory is out of focus thanks to Einstein’s theory of general
relativity. Still, occasionally there is interest in Le Sage’s theory [66]. This story
reveals that physicists have always been triggered by the concept of an unbalanced
force that brings objects together.
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1.3.2 Experimental Observations on Depletion Before the 1950s

Long before Asakura and Oosawa rationalized the attractive interaction caused by
depletants, the effects of depletion were already noted in various areas of spe-
cialization. In this overview we first give examples of such studies, and try to
interpret them with our current knowledge of depletion forces. Subsequently, we
will discuss several studies that were performed after the work of Asakura and
Oosawa, often in light of the theoretical progress that is being made over, espe-
cially, the last decades. Although it is clearly impossible to cover all developments
within the area of depletion phenomena in physics and chemistry, we aim at giving
the reader a broad overview here.

1.3.2.1 Clustering of Red Blood Cells

Red blood cells (RBCs) are biconcave particles and their detailed shape and size
depend on the RBC type. The human RBC may be considered a disc with a
diameter of 6:6 lm and a thickness of 2 lm; its volume thus being of the order of
102 lm3: The RBCs occupy about 40 to 50 vol % of our blood.

Exercise
Demonstrate stacking all red blood cells in a human being (having about 5 L of
blood) in a single column provides a RBC cylinder with a height that is of the
order of the earth’s circumference.

Already in the 18th century it was known that RBCs tend to cluster, preferably
with their flat sides facing each other. Such a side by side RBC aggregate reminds
of the packing of ‘a number of coins’ [67]. These structures are commonly denoted
as ‘rouleaux’. In blood of healthy human beings the tendency of RBCs to
aggregate is weak. In case of pregnancy or a wide range of illnesses aggregation is
found to be enhanced, giving rather pronounced rouleaux, see Fig. 1.11. An
impressive review on RBC clustering was written by Fåhraeus [67]. Another
historical review, is due to Thysegen [68].

Enhanced RBC aggregation can be detected for instance by measuring the
sedimentation rate. The sedimentation rate varies between 1 and 3 mm/h for
healthy blood up to 100 mm/h in case of severe illnesses. The blood sedimentation
test, based on monitoring aggregation of red blood cells, became a standard
method for detecting illnesses. The relation between pathological condition, RBC
aggregation and enhanced sedimentation rate, has been known for at least two
centuries, as described in [69, 70].

Fåhraeus [67, 69] related enhanced aggregation of RBCs plus longer and
stronger rouleaux to the concentration of the blood serum proteins fibrinogen,
globulin and albumin. The tendency to promote aggregation depends on the type
of protein. Rouleaux formation is most sensitive to increased serum concentrations
of (rod-like) fibrinogen (molar mass 340 kg/mol) compared to (globular) b- and
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c-globulins (90 and 156 kg/mol, respectively). The globulins in turn lead to RBC
aggregation at lower protein concentrations than albumin proteins (69 kg/mol). It
has further been shown that adding other macromolecules such as dextrans also
promote rouleaux formation. Asakura and Oosawa [54] suggested that RBC
aggregation might be caused by depletion forces between the RBCs induced by
serum proteins. This is in line with the finding that the sedimentation rate is more
sensitive to larger serum proteins.

Some authors interpret rouleaux formation as being caused by bridging of
RBCs by serum proteins. There is however no evidence for protein adsorption onto
RBCs. A study on rouleaux formation in mixtures of human RBCs (diameter
6:6 lm) and rabbit RBCs (diameter 7:8 lm) resulted in rouleaux structures that
consisted (mainly) of only a single type of RBC [71]. This can be explained by a
depletion effect (the overlap volume, hence entropy, is maximized if similar RBCs
stack onto each other). In case of bridging, however, mixed aggregates are
expected, so there is little support for the bridging hypothesis [72]. The general
picture is that red blood cells tend to cluster at elevated concentrations of the blood
serum proteins, which act as depletants.

1.3.2.2 Mixing Biopolymers

Another manifestation of a depletion phenomenon was reported by the micro-
biologist Beijerinck [73] who tried to mix gelatin (denatured protein coil) with
starch (polysaccharide) in aqueous solution in order to prepare new Petri dish
growth media for bacteria. He reported that these biopolymers could not be
mixed; ‘emulsion droplets’ appeared instead. With current knowledge [74] this
can be regarded as an early detection of depletion-induced demixing.
Tolstoguzov, Grinberg and coworkers extensively studied many mixtures of

Fig. 1.11 Red blood cells in healthy blood (right) exhibiting weak aggregation and in blood of a
pneumonia patient (left) in which rouleaux formation took place (strong aggregation) [67].
Picture reprinted from R. Fåhraeus, Physiol. Rev., 9:241, Copyright 1929, with permission from
APS
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polysaccharides and proteins and concluded that such mixtures tend to segregate
[75–77], unless there are specific interactions such as opposite charges.
They further found that adding salt decreases the miscibility region in protein/
polysaccharide mixtures [75]. Obviously, double layer interactions also play a
role on top of pure depletion forces in such mixtures. The separate liquid phases
in demixed protein–polysaccharide mixtures can sometimes be characterized by
a sharp liquid–liquid interface. The interfacial tension between the coexisting
phases in protein–polysaccharide mixtures has been determined and is of
O (lN/m) [78, 79].

1.3.2.3 Creaming of Particles in Latex

In the beginning of the 20th century large scale production of latex for rubber and
paint production commenced. The term ‘latex’ is nowadays identified with a stable
dispersion of polymeric particles in an aqueous medium. In order to lower
transport costs there was a significant interest in concentrating the polymeric latex.
Centrifugation is highly energy consuming and thus expensive.

Traube [80] showed that adding plant and seaweed polysaccharides led to a
phase separation between an extremely dilute and a very concentrated phase. Since
the particles are lighter than the solvent the concentrated phase, with volume
fraction 0:5�/� 0:8; floats on top. The lower phase is clear and hardly contains
particles. Baker [81] and Vester [82] systematically investigated the mechanism
that leads to what they called (enhanced) creaming.

In Fig. 1.12 we show microscopic images of the latex dispersion investigated
by Baker [81]. The images are for a 1% latex dispersion, first without added
polymer (A). Images B and C were taken respectively 2 and 10 min after adding
0.3% of polymer (the polysaccharide tragon seed gum). After polymer addition,
Baker reports an immediate slowing down of Brownian motion together with
particle aggregation. After about 10 min particle aggregation discontinues and the
aggregates start creaming. The entire creaming process takes about 1 day. Image D
was taken in the cream layer. Upon diluting the cream layer till 1% of latex
particles Brownian motion restarts, implicating the flocs segregated into individual
particles again. From the work of Baker [81] it can thus be concluded that the
particles aggregate reversibly; upon dilution the latex particles can be resuspended.
This suggests that bridging, which can also cause creaming [83], is not the driving
force for enhanced creaming.

Vester [82] reviewed ways to optimize the creaming speed of latices by using
non-adsorbing polymer chains as depletants. He found that polymer addition can
also lead to formation of emulsion droplets with diameters of Oð10 �100Þ lm that
are enriched in latex while the continuous phase is dilute in latex particles.
Nowadays this is interpreted as a colloidal gas–liquid phase coexistence. A
microscopic image of the resulting emulsion is given in Fig. 1.13 (left panel).
Upon confining the emulsion the droplets deform very easily (right panel
Fig. 1.13). This implies that the interfacial tension c is very low. Indeed we do
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Fig. 1.13 Microscopic images (diameters correspond to 610 lm) of demixed dispersions of
emulsion droplets (black) in a polymer solution. The right panel is the result of pressing the
microscopic slide. Picture reprinted from C. F. Vester, Kolloid Z., 84:63, Copyright 1938, with
permission from Springer

Fig. 1.12 Microscopic images of a rubber latex dispersion [81]. a 1% suspension without
polymer; b 2 min after addition of 0:2% polysaccharide; c 10 min after addition of 0:2%
polysaccharide; d image of the creaming layer. Size of the images are about 130 by 100 lm:
Picture reprinted from H. C. Baker, Inst. Rubber Ind., 13:70, 1937
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expect a small interfacial tension. The order of magnitude of a surface tension can
be estimated from [84]

c � kT

R2
; ð1:27Þ

where R is the particle radius. For molecular systems this yields values for c of 10–
100 mN/m, which agrees perfectly with measured surface tensions. In the colloidal
size domain, for particles with for instance R � 60 nm an interfacial tension of
only 1 lN/m is expected at room temperature. Indeed this is the order of magnitude
of the ultralow interfacial tension measured in unmixed colloid–polymer mixtures
that are in colloidal gas–liquid equilibrium, see Sect. 1.4.

1.3.2.4 Precipitation and Isolation of Viruses

Cohen [85] demonstrated that adding less than a percent of heparin to solutions of
rod-like viruses results in the precipitation of the virus particles. The isolated
precipitate phase consists of ‘paracrystals’. The connection Cohen [85] makes with
the work of Bernal and Farkuchen [86] suggests the phase appears liquid crys-
talline. This opens up the possibility to isolate and separate viruses [87, 88]. In
Fig. 1.14 a microscopic image is shown of clusters of tobacco mosaic virus (TMV)
particles in a dispersion with 0.5 wt% of heparin [85]. In Chap. 6 we consider
depletion effects in colloidal rod dispersions.

1.3.2.5 Aggregation and Creaming of Emulsion Droplets

Cockbain [89] found that creaming of oil droplets in a surfactant-stabilized oil-in-
water emulsion is enhanced when the surfactant concentration exceeds the critical

Fig. 1.14 Light microscopy
image of TMV paracrystals
upon adding heparin [85].
Size of image: 80 by 60 lm:
Picture reprinted from
S. S. Cohen, J. Biol. Chem.,
144:353, Copyright 1942,
with permission from the
American Society for
Biochemistry and Molecular
Biology
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micelle concentration. This phenomenon was left unexplained at the time, but
30 years later Fairhurst et al. [90] made a connection with depletion interaction
theories and suggested that the micelles play a similar role as non-adsorbing
polymers or small colloidal particles as depletants (see Chap. 5).

1.3.3 1950–1969

In the early 1950s Noble Prize winner Paul J. Flory visited Nagoya University
[91]. During this visit Asakura and Oosawa (see Fig. 1.15) reported unpublished
theoretical results on two particles immersed in a solution containing non-
adsorbing polymer chains, showing the chains impose an attractive interaction
between the particles. The very positive response of Flory resulted in submission
of this work, leading to a seminal paper in which Asakura and Oosawa [53]
presented a statistical mechanical derivation of the interaction between two plates
immersed in a solution of ideal non-adsorbing polymers. The segments of ideal
polymer chains have no excluded volume; segments do not ‘feel’ other segments.
The theory of Asakura and Oosawa [53] is the first theoretical prediction of a
depletion force. It will be explained in more detail in Sect. 2.2.

They showed that adding non-adsorbing polymer chains induce an effective
attraction between particles with a hard core interaction. It is a purely entropic
effect; attraction originates from purely repulsive interactions.

Not long after the publication of the work of Oosawa, Sieglaff [92] demon-
strated that a depletion-induced phase transition may occur upon adding poly-
styrene a dispersion of microgel spheres in toluene. This demonstrated that the
attractive depletion force is sufficiently strong to induce a phase separation.
Sieglaff rationalized his findings in terms of the theory of Asakura and Oosawa.
It took several years before subsequent work was done. This study of Sieglaff was
later extended by Clarke and Vincent [93].

Fig. 1.15 Oosawa (left) and
Asakura (right) at Nagoya
University in the 1960s [91].
Courtesy of Professor Fumio
Oosawa
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1.3.4 1970–1982

Early systematic studies with respect to phase stability for colloid–polymer mix-
tures were performed by Vincent and co-workers [55, 94, 95]. At ICI and in
Bristol, they concentrated on mixtures of colloidal spheres (latex particles) plus
non-adsorbing polymers such as polyethylene oxide (PEO). The work started when
Vincent worked at ICI in Slough (1970–1972), where he investigated the origin of
the flocculation of pigment particles in paint dispersions with F. Waite. In the
papers of Vincent et al. there is of lot of attention for properly qualifying the
demixing phenomena in colloid–polymer mixtures [94–98]. These experiments
were ahead of a full theoretical understanding of the phase behaviour of colloid–
polymer mixtures. One of the systems studied were polystyrene spheres with
terminally attached PEO brushes dispersed in mixtures of free PEO and water for a
wide range of concentrations. Both in pure water and in pure PEO melts the
spherical particles were stable. However, in mixed solutions of PEO and water (for
instance 50% water and 50% of PEO) a ‘slow flocculation’ of the particles was
observed. The maximum flocculation rate was measured and was found to shift to
lower PEO concentrations upon increasing the molar mass. This restabilisation at
very high polymer concentrations (reported in a series of papers [94–99]) was also
found in a dispersion of grafted silica spheres mixed with polydimethyl siloxane
(PDMS) polymer chains. Only polymer melts that are sufficiently liquid-like allow
studying such very high polymer concentrations because other polymers would be
too viscous for a proper analysis of the phase behaviour.

In the same period, Hachisu et al. [100] investigated aqueous dispersions of
negatively charged polystyrene latex particles that undergo a colloidal fluid-to-
solid phase transition upon lowering the salt concentration using dialysis or
increasing the particle concentration. Under conditions where the latex dispersion
(particles with R ¼ 170 nm) is not ordered (fluid-like), Kose and Hachisu [101]
added sodium polyacrylate to polystyrene latex particles (both components are
negatively charged), and observed crystallization of the colloidal spheres, see
Fig. 1.16. Since polymers and particles repel each other the crystallization process
is probably induced by depletion interaction, although the authors themselves did
not mention depletion as such. They do suggest that the ordering is due to ‘some
attractive force’. When the polymer concentration is increased crystallization
occurs faster, see Fig. 1.17.

Theoretical work on depletion interactions and their effects on macroscopic
properties such as phase stability commenced along various routes. First, Vrij [40]
considered the depletion interaction between hard spheres due to dilute non-ad-
sorbing polymers such as penetrable hard spheres (see Sect. 1.2.5 and Sect. 2.1).
Vrij [40] referred to the work of Vester [82], Li-In-On et al. [55] and preliminary
experiments at the Van’t Hoff Laboratory on micro-emulsion droplets mixed with
free polymer [40] for experimental evidence of depletion effects.

Progress on the depletion layer thickness was triggered by 1991 Noble Prize
winner De Gennes. In his seminal book [102], De Gennes derived an expression
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for the density profile of a semi-dilute polymer solution near a (non-attractive)
wall and demonstrated that the depletion thickness equals the correlation length,
the length scale over which the polymer segments are correlated. In dilute polymer

Fig. 1.17 Micrograph taken
25 min after mixing
polystyrene latex particles
with 370 mg/L sodium
polyacrylate. Picture
reprinted from A. Kose and
S. Hachisu, J. Colloid
Interface Sci., 55:487, 1976,
with permission from
Elsevier

Fig. 1.16 Microscopic
image of a mixture of
monodisperse polystyrene
latex particles 25 min (top)
and 55 min (bottom) after
adding 185 mg/L sodium
polyacrylate polymers.
Picture reprinted from
A. Kose and S. Hachisu,
J. Colloid Interface Sci.,
55:487, 1976, with
permission from Elsevier
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solutions (below coil overlap) it is the radius of gyration. However, in semi-dilute
solutions (above overlap) the correlation length becomes independent of the chain
length and is a (decreasing) function of the polymer concentration. Hence, also the
depletion thickness decreases with polymer concentration in the semi-dilute
regime. De Gennes considered the depletion contact potential between two col-
loidal hard spheres in a semi-dilute polymer solution in a good solvent. For this
case, where the only relevant length scales are the sphere radius R and the cor-
relation length n; he derived the following scaling relation for the minimum of the
interaction potential [103]:

Wdepðh ¼ 0Þ
kT

ffi �R

n
R� n

ffi � R

n

� �4=3

R� n
; ð1:28Þ

with an unknown prefactor O(1).

Exercise
What is expected with respect to colloidal stability of large ðR� nÞ and tiny
ðR� nÞ colloidal spheres in a semi-dilute polymer solution?

Depletion effects have been studied using mean-field methods since the end of
the 1970s. Insights into polymer physics have increased tremendously through the
development of mean-field theories, which allow both to include excluded-volume
interactions and give insights in details of the configurations of polymers.
A detailed analytical mean-field treatment for depletion interaction was made by
Joanny et al. [104] who calculated the polymer segment concentration profile
between two plates in the semi-dilute regime, in agreement with De Gennes’
scaling prediction discussed above.

Using a Flory–Huggins-like mean-field model, Feigin and Napper [105] cal-
culated the free energy of interaction between two flat plates mediated by non-
adsorbing polymers and noted that a repulsive barrier is present for polymer
concentrations in the concentrated regime. The potential at plate contact is,
however, still attractive. These authors suggested that if the repulsive barrier is
large enough this might lead to so-called depletion stabilization; a colloidal dis-
persion is destabilized at low polymer concentrations but restabilized at high
concentrations. A conceivable intuitive explanation is kinetic: at high polymer
concentrations it is hard to push polymer chains out of the gap between two
particles. The bulk osmotic pressure is very high in a concentrated polymer
solution. The polymer chains between the particles thus need to be transported
towards a very steep osmotic pressure gradient.

Scheutjens and Fleer [106] developed a numerical self-consistent field (SCF)
method that enables the calculation of equilibrium SCF concentration profiles near
interfaces. This SCF method was applied to depletion effects in Ref. [107], showing
that the depletion layer thickness is close to Rg at low polymer concentrations, but
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decreases with increasing polymer concentration in the semi-dilute regime. In the
concentrated regime, very close to the melt concentration, the polymer concen-
tration between two parallel plates oscillates around the bulk polymer concentra-
tion. This finding is supported by Monte Carlo computer simulations of Broukhno
et al. [108]. The interaction potential between the plates was calculated as well by
Scheutjens and Fleer [107]. For dilute polymer solutions the range of the potential is
close to 2Rg and the depth of the potential increases with increasing solvent quality.
When the volume fraction of polymer segments in the system is 0.1 (a very high
polymer concentration in practice), a weak repulsive part appears in the interaction
potential appears as also found by Feigin and Napper [105]. This repulsion appears
at lower concentrations for better solvent quality [17, 107].

A direct link between theoretical and experimental work on depletion-induced
phase separation of a colloidal dispersion due to non-adsorbing polymers was
made by De Hek and Vrij [56, 109]. They mixed sterically stabilized silica dis-
persions with polystyrene in cyclohexane and measured the ‘limiting polymer
concentration’ (phase separation threshold). Commonly, one uses the binodal or
spinodal as experimental phase boundary. A binodal denotes the condition
(compositions, temperature) at which two or more distinct phases coexist, see
Chap. 3. A tie-line connects two binodal points. A spinodal corresponds to the
boundary of absolute instability of a system to decomposition. At or beyond the
spinodal boundary infinitesimally small fluctuations in composition will lead to
phase separation. De Hek and Vrij [56] used the pair potential (1.21) to estimate
the stability of colloidal spheres in a polymer solution by calculating the second
osmotic virial coefficient B2:

B2 ¼ 2p
Z

1

0

r2 1� exp½�WðrÞ=kT �ð Þdr; ð1:29Þ

where we used the centre-to-centre distance r between the spheres which equals
2Rþ h: A simple argument was used to estimate the spinodal curve [56]. For
colloid or polymer concentrations [110] exceeding the spinodal, phase separation
occurs spontaneously. At the spinodal therefore,

dP

d/
¼ 0: ð1:30Þ

The virial expansion for the osmotic pressure P of a colloidal dispersion reads

Pv0

kT
¼ /þ B�2/

2 þ higher order /-terms: ð1:31Þ

with B�2 ¼ B2=v0: Here v0 is the volume of the colloidal sphere. In the limit of low
/; (1.30) and (1.31) provide

1þ 2B�2/
sp ¼ 0: ð1:32Þ
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This relates the polymer activity (which determines B2) to the colloid volume
fraction /sp at the spinodal. De Hek and Vrij [56] could give a good description of
the phase line of mixtures of polystyrene chains plus small volume fractions of
(hard-sphere like) octadecyl silica spheres dispersed in cyclohexane [109].

In Fig. 1.18 we depict results obtained on a mixture of octadecyl silica spheres
and polystyrene polymers in cyclohexane. Both separated phases are fluid. The
limiting polymer concentration below which no phase separation occurs in a
solution containing a given amount of silica is plotted versus the molar mass of the
added polymer polystyrene. It was found that less polymer is required to induce a
phase separation when the molar mass is larger. This experimental trend can be
predicted by using the spinodal condition (1.32), but this is only a semi-quanti-
tative test because in fact the binodal condition is required. Formally one should
compare the stability curve with the binodal. The compositions of the phases in a
demixed dispersion locate the binodal curve. The spinodal is however not too far
off from the binodal and probably gives a good and simple estimate. For the
smallest molar mass, the separated phase was gel-like instead of a fluid. A sta-
tistical mechanics calculation of ideal polymer chains between two walls by De
Hek and Vrij [56] demonstrated that the range of attraction between two flat
parallel plates due to ideal polymer chains is close to 2:25Rg; implying a depletion
thickness at each plate of about Rg:

A light scattering contrast variation study on elucidating the negative adsorp-
tion of polystyrene chains next to a silica sphere in cyclohexane solutions was
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Fig. 1.18 a Photograph of a test tube containing a phase-separated mixture of polystyrene
polymer chains (molar mass 32,410 g/mol) and sterically stabilized silica spheres ðR ¼ 21 nmÞ in
cyclohexane. Initial concentrations: 1 wt % of silica spheres and 2.5 g/L polystyrene. The
concentration below which no phase separation was found is 17 g/L. The two demixed phases are
separated by a sharp interface. Picture reprinted from H. De Hek and A. Vrij, J. Colloid Interface
Sci., 70:592, Copyright 1979, with permission from Elsevier. b State diagram of 1 wt% silica
spheres ðR ¼ 46 nmÞ in cyclohexane mixed with polystyrene polymer chains varying in molar
mass Mp [56]. The limiting polystyrene concentrations below which no phase separation occurred
are indicated as the filled circles. Hatched region theoretical limits between which the spinodal
curve is situated
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described in another paper by de Hek and Vrij [111]. This negative adsorption can
be converted to a depletion thickness, which is close to the radius of gyration of
polystyrene in cyclohexane. From the light scattering experiments the second
virial coefficient of the silica particles could be determined and its value was
shown to become negative (implying attraction between the spheres) when a
sufficient amount of non-adsorbing polystyrene is added.

By mixing aqueous hydroxyethylcellulose (HEC) with latex, Sperry [112, 113]
and coworkers [114] observed phase separation and made a study on the effect of
the structure of the colloid-rich phase as a function of the colloid–polymer size
ratio q ¼ Rg=R: The micrographs in Fig. 1.19 of phase separating mixtures dem-
onstrate how the morphology of the segregating systems varies upon changing q
and polymer concentration. Unstable systems at large q and not too high polymer
concentrations are characterized by smooth interfaces, implying colloidal gas–
liquid coexistence. For small q; demixed systems are characterized by irregular
interfaces that indicate (colloidal) fluid–solid coexistence. This suggests that the
width of the region where a colloidal liquid is found in colloid–polymer mixtures
is limited. We return to this issue in Sect. 4.3. As the polymer concentration is
increased substantially, irregular interfaces are also detected for q [ 1=3:

Fig. 1.19 Micrographs of latex colloids mixed with HEC by Sperry [112–114]. Picture reprinted
from P. R. Sperry, J. Colloid Interface Sci., 99:97, Copyright 1984, with permission from
Elsevier
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1.3.5 1983–1989

The work of Sperry inspired Gast, Hall and Russel to develop a theory which
might explain the experimental phenomena. Gast et al. [115] used thermodynamic
perturbation theory (TPT) [116] to derive the free energy of a mixture of colloidal
particles and polymers (described as phs; penetrable hard spheres), based on pair-
wise additivity of the interactions between the colloids. This is an approach which
is based upon a perturbation from the free energy of a pure colloidal dispersion due
to depletion forces, with (1.21) as input. Using equations of state for the hard-
sphere fluid and the fcc-crystal structure as references, they calculated the phase
behaviour from the (perturbed) free energy. This made it possible to assign the
nature (i.e. colloidal gas, liquid or solid) of the coexisting phases as a function of
size ratio q; the concentration (or formally activity within their approach) of the
polymers, and the volume fraction of colloids. For small values of q; say, q ¼
Rg=R\0:3; increasing the polymer concentration broadens the hard sphere fluid–
solid coexistence region; a (stable) colloidal fluid–solid coexistence is expected if
the polymer chains are significantly smaller than the colloidal spheres (low q).
Inside the unstable regions a (metastable) colloidal gas–liquid branch is located.
For intermediate values of q; the gas–liquid coexistence curve crosses the fluid–
solid curve and for large q-values mainly gas–liquid coexistence is found for
/\0:49; where / is the volume fraction of colloids [110]. The results are in
agreement with the findings of Sperry [112–114]. Experimentally, Gast, Russel
and Hall [117] later verified the predicted types of phase coexistence regions for a
model colloid–polymer system. Colloid–polymer phase diagrams [110] are com-
monly plotted in terms of the volume fraction of colloids / and the relative
polymer concentration /p; defined in (1.24).

Exercise
Use the Gibbs phase rule and derive how many phase states a system can assume
when it consists of two components.

In both the descriptions by De Hek and Vrij and by Gast, Russel and Hall, the
depletion thickness d was assumed to be equal to the radius of gyration. This
assumption was rationalized by Eisenriegler [118]. He calculated the density
profile of ideal chains near a flat surface and from this density profile it follows
that d=Rg ¼ 2=

ffiffiffi

p
p
� 1:13 [119], see Sect. 2.2.

Experimental work on the determination of the depletion layer thickness
commenced in this period. The depletion thickness d of polystyrene at a non-
adsorbing glass plate was measured using an evanescent wave technique by Allain
et al. [120]. The value found for d was indeed close to the radius of gyration of the
polymer. Ausserré et al. [121] measured the depletion thickness of xanthan (a
polysaccharide) at a quartz wall below and above the polymer overlap concen-
tration. In dilute solutions, below overlap, d was close to the radius of gyration of
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xanthan, whereas in the semi-dilute regime, i.e. above overlap (/p [ 1), it

decreases as d�/�0:8
p : This is in accordance with what is expected theoretically,

see Sects. 4.3.1 and 4.3.2.
Attempts to measure depletion forces were made by Luckham and Klein

[122, 123] who could not measure a depletion force with the surface force
apparatus. They measured the interaction between two mica plates in the presence
of non-adsorbing polystyrene in toluene. Pashley and Ninham [124] did succeed in
measuring the depletion potential between mica plates as induced by CTAB
micelles.

1.3.6 1990–1999

The polymer density profile of ideal chains next to a hard sphere for arbitrary size
ratio q was first calculated by Taniguchi et al. [125] and later independently by
Eisenriegler et al. [126]. Eisenriegler also considered the pair interaction between
two colloids for Rg � R [127] and for Rg � R [128], as well as the interaction
between a sphere and a flat wall due to ideal chains [129]. Depletion of excluded
volume polymer chains at a wall and near a sphere was considered by Hanke et al.
[130]. One of their results is that the ratio d=Rg at a flat plate, which is 1.13 for
ideal chains [118, 119], is slightly smaller (1.07) for excluded-volume chains.

Inspired by the work of De Gennes [102, 103], fundamental work commenced
on colloid–polymer mixtures in which the polymers are relatively large compared
to the colloids. This regime is relevant for mixtures of polymer or polysaccharides
mixed with proteins and is often denoted as the protein limit (q [ 1). The opposite
case (small q) is known as the colloid limit. We distinguish three regimes, see
Fig. 1.20, in colloid–polymer mixtures: small q (also termed the ‘colloid limit’) of

Fig. 1.20 Sketch of the different regimes size ratio in colloid–polymer mixtures. Left the ‘colloid
limit’ of relatively small polymer chains. Middle the equal size regime. Right the ‘protein limit’
regime of relatively large polymer chains
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q. 0:5; ‘equal sized’ ð0:5\q\2Þ and the large q regime (also termed the ‘protein
limit’) of q. 2:

Odijk [131–134] published a relevant series of papers devoted to the protein
limit n� R; he considered semi-dilute polymer solutions where the correlation

length n scales as /�3=4
p : He first calculated the density profile of a small colloid in

a semi-dilute polymer solution with n� R and found a very simple shape of the
density profile that is independent of n and only depends on R [131]. By con-
sidering the second virial coefficient between a large polymer and a tiny colloid he
concluded that phase separation is not expected in this case. This was confirmed
later by Eisenriegler [135], who from renormalization group theory found that the
second osmotic virial coefficient of small colloidal spheres, B2; only marginally
decreases with increasing polymer concentration up to the coil overlap concen-
tration above which it increases. Odijk [132] also considered many-body effects by
involving void–void correlations and statistical geometrical approaches [136]. He
concluded that the depletion-induced interaction between small colloids due to
large semi-dilute polymers levels off to a maximum attraction near a volume
fraction /� 0:3: Odijk [134] and Eisenriegler [137–140] also extended the
approach of polymer depletion and small colloids towards colloids with ellipsoidal
shape to mimic proteins.

A semi-grand canonical treatment for the phase behaviour of colloidal spheres
plus non-adsorbing polymers was proposed by Lekkerkerker [141], who developed
‘free volume theory’ (also called ‘osmotic equilibrium theory’), see Chap. 3. The
main difference with TPT [115] is that free volume theory (FVT) accounts for
polymer partitioning between the phases and corrects for multiple overlap of
depletion layers, hence avoids the assumption of pair-wise additivity which
becomes inaccurate for relatively thick depletion layers. These effects are incor-
porated through scaled particle theory (see for instance [136] and references
therein). The resulting free volume theory (FVT) phase diagrams calculated by
Lekkerkerker et al. [142] revealed that for q\0:3 coexisting fluid–solid phases are
predicted, whereas at low colloid volume fractions a gas–liquid coexistence is
found for q [ 0:3; as was predicted by TPT.

A coexisting three-phase colloidal gas–liquid–solid region, not present in TPT
phase diagrams, was predicted by FVT for q [ 0:3 and gained much attention.
Experimental work [143, 144] demonstrated that this three-phase region does
indeed exist. Both Ilett et al. [143] and Leal-Calderon [144] measured phase
diagrams of colloid–polymer mixtures as a function of the size ratio q: The
topology of the phase diagrams correspond well to FVT predictions, as long as q is
below 0.6, see Chap. 4.

As another example of a three-phase system, photographs of dispersions con-
taining 16 vol% polystyrene latex spheres (with a diameter of 67 nm), published
by Faers and Luckham [145], are reproduced in Fig. 1.21. The numbers shown
represent the concentration (in wt%) of the polysaccharide hyroxyethylcellulose
(HEC). In the dispersion with 0.3 wt% of HEC three phases coexist. From top to
bottom colloidal gas, liquid and solid phases can be recognized. The rigidity of the
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solid–liquid interface is demonstrated in the lower photographs where the tubes are
tilted. The gas–liquid interface flows upon tilting the sample, for the gas–solid
interface this is not the case. Using the theory of Lekkerkerker et al. [142] it is also
possible to calculate the tie-lines along which the system demixes, enabling a
comparison of the theory with experimental phase boundaries. For small q the
theory describes the experimental phase diagrams rather accurately [143]. FVT for
colloidal spheres mixed with penetrable hard spheres was tested with computer

Fig. 1.21 Photograph of a
polystyrene latex dispersion
(16 vol%) in 10 mM NaCl at
pH 7 with (as indicated in
wt%) added hydroxyethyl
cellulose (HEC) studied by
Faers and Luckham [145]. In
the lower photograph the
tubes are tilted demonstrating
the difference between rigid
colloidal solid–liquid and
fluid colloidal gas–liquid
interfaces for the three-phase
coexistence at 0.3 wt% HEC.
Reprinted from M. A. Faers
and P.F. Luckham, Langmuir;
13:2922, Copyright 1997,
with permission from the
American Chemical Society
and the authors
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simulations on a dispersion of spheres immersed in a solution of ideal lattice
polymer chains by Meijer and Frenkel [146]. Their simulation results showed that
for small values of q the agreement with the osmotic equilibrium theory of Lek-
kerkerker et al. [142] is very good.

Faers and Luckham [145] also studied the effect of the amount of polymer
grafted onto the colloid surfaces. Decreasing the amount of grafted polymer
increased the phase separation concentration of polymers at fixed colloid con-
centration, demonstrating that it is worthwhile to investigate the effect of the
presence of brushes in combination with non-adsorbing polymers.

Polymers are often added to oil-in-water emulsions in order to impose a certain
emulsion viscosity. This may however lead to instability problems as is known in
food emulsions [28, 147]. Bibette et al. [148–150] were the first to quantitatively
relate phase transitions in emulsions due to non-adsorbing polymers to depletion-
induced forces. They showed that it is possible to size fractionate an emulsion with
a depletion-induced phase transition. An interesting aspect of (micro) emulsion
droplets is that they are not hard spheres, as assumed in FVT [142]. Several groups
[40, 151–153] studied the phase behavior of droplets in a micro-emulsion mixed
with non-adsorbing polymers. The phase behavior could be explained by
describing the micro-emulsion itself as a collection of sticky hard spheres rather
than pure hard spheres. The colloid–polymer mixture is then described as a
mixture of sticky spheres mixed with non-adsorbing polymers [151, 152]. For
emulsions mixed with polymers the theory of Lekkerkerker et al. [142] was found
to agree as regards the phase behavior for the colloid limit, as studied for instance
by Meller and Stavans [154]. The B2-approach of Vrij [40, 56] could explain the
phase line measured for an aqueous mixture of casein micelles plus non-adsorbing
exocellular polysaccharides by Tuinier and de Kruif [155]. However, often the
polymer is larger (protein limit) or has a similar size as the spherical droplets in
polymer/micro-emulsion mixtures. Then phase transitions occur near or above the
polymer overlap concentrations. Obviously, the assumption d ¼ Rg is then no
longer correct. For a proper description of the phase behavior in this case the effect
of interactions between the polymers must be taken into account: more accurate
descriptions of the depletion thickness and osmotic pressure as a function of the
polymer concentration are needed.

Depletion potentials were first measured indirectly using scattering techniques
[156, 157] and can nowadays be probed directly with high precision using a wide
range of techniques [158–161], see Sect. 2.6. Confocal microscopy also allows to
measure the potential of mean force between colloids in colloid–polymer mixtures
as first performed by Royall et al. [162]. Depletion effects can also be quantified
by measuring the spin–spin nuclear resonance time. Cosgrove et al. [163] per-
formed such a study using a dispersion of silica with added sodium polystyrene
sulfonate (NaPSS). The resonance time could be related to the depletion thickness,
which decreased with increasing concentration of NaPSS.

When a colloid–polymer mixture phase separates into a colloid-rich and
polymer-rich phase an interface appears in between. For a colloidal gas–liquid
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interface it is possible to measure the interfacial tension using a number of tech-
niques. The value of the interfacial tension [164] is interesting since it is related to
phase separation kinetics, see Sect. 4.5. The spinning drop method was success-
fully used in the past to determine the interfacial tensions in demixed colloid–
polymer mixtures [165, 166], yielding tensions with values of a few lN/m cor-
roborating the relation between the interfacial tension expressed in (1.27). The
order of magnitude of the data of De Hoog and Lekkerkerker [166] were com-
parable with the theoretical results of Vrij [164], Van der Schoot [167] and of
Brader and Evans [168]. From the results of Chen et al. [169] it follows that the
interfacial tension increases with the distance from the critical point, in agreement
with scaling theory [84]. Using ellipsometry and break-up of an elongated droplet
in a centrifugal field De Hoog et al. [170, 171] demonstrated that the value of the
measured interfacial tension was independent of the method used. Overall, it can
be concluded that the colloidal and the ‘molecular’ gas–liquid interface behave
similar. The difference is that the interface tension between a colloidal liquid and
gas is ultralow.

1.3.7 2000–2010

Until the end of the 1990s most theoretical approaches were based on describing
polymer chains as ideal or as penetrable hard spheres. Especially at the turn of the
last century a wealth of different approaches were proposed to describe colloid–
polymer mixtures in which interactions between polymer segments were
accounted for. Essential was the progress made in Monte Carlo computer simu-
lation studies on depletion effects [172–179] to test such theories.

Despite the success of FVT in predicting the phase diagram of colloid–polymer
mixtures for the colloid limit (small q) (semi-)quantitatively, in the protein limit
(high q) the FVT predictions were far less convincing: it could give only quali-
tative information for large q: Quantitative deviations from FVT appear for
q [ 0:5; as follows from comparing FVT with Monte Carlo computer simulations
[176, 177] and experiment [143, 153, 166, 180–185]. In conclusion, FVT predicts
binodal curves at too small polymer concentrations for large q; see Sect. 4.1.

Under conditions where the polymer chains are much larger than the colloidal
particles, such as mixtures of proteins [186] or micro-emulsion droplets [153, 184]
mixed with large polymers (or polysaccharides) instability does occur at rather
high polymer concentration. In such situations it does not suffice to stick to the
classical Asakura-Oosawa-Vrij description. Van der Schoot [187] showed that
polymer collapse can take place when adding small colloids to a polymer solution.
He derived an expression for the free energy of a polymer solution in a good
solvent in the presence of small colloidal spheres and showed that adding colloids
leads to a distortion of the conformational entropy of a polymer chain. Effectively,
adding spheres thus turns the solvent quality from a good to a bad solvent. As a
consequence, a polymer chain is expected to collapse above a certain colloid
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concentration. This effect originates from the mutual exclusion of polymer seg-
ments and colloidal spheres. Experimental work confirms shrinkage of a polymer
chain caused by adding nanospheres [188–190]. Computer simulations of large
polymer chains in a system with random small obstacles by Wu et al. [191] are in
line with polymer shrinkage due to added nanospheres: the size of the polymers
was found to decrease when small particles are added.

The polymer reference interaction site model (PRISM) is a continuous space
liquid state approach that allows to compute the equilibrium properties of poly-
meric systems [192]. Integral equations methods [12] are widely employed to
understand structure, thermodynamics in atomic, colloidal, and small molecule
fluids, and have been generalized to treat macromolecular materials in the 1990s.
More recently, it has been extended towards a description for the structural and
microscopic properties of colloid–polymer mixtures [193–195]. The results
heavily rely on the accuracy of approximate closure relations. PRISM gives a good
description of the second osmotic virial coefficient of proteins with added non-
adsorbing polymer chains. Predictions of full phase diagrams including binodals
are still too involved computationally. It can be used to predict spinodal curves,
which are quite close to binodals. The measured binodals of Ramakrishnan et al.
[196] agree well with spinodals computed with PRISM.

Several liquid state theories have been developed that are based on effective
potentials [197] from which the thermodynamic properties of many-body systems
can be computed. Louis and Bolhuis et al. [174, 198–202] developed a Gaussian
core model (GCM) for interacting polymer chains. In this model the polymer
chains are replaced with spherical particles with a soft repulsion. This model
enables studying structure, depletion interactions and the full phase behaviour (in
combination with Monte Carlo computer simulations). Basically, the theory is a
liquid state approach. On the level of the depletion interaction mediated by
interacting polymers they showed that their GCM agrees very well with Monte
Carlo computer simulations [198, 202], except for a slight oscillation in the density
profile in case of Gaussian cores due to their ‘particle’ character. In the colloid
limit, GCM predictions for the phase diagram of colloid–polymer mixtures are
similar to those for free volume theory. For larger q-values FVT predicts phase
separation at smaller polymer concentrations as compared to the GCM.

Density functional theory [203] in combination with fundamental measure
theory [204, 205] has been used to study the interactions in and structure and phase
behaviour of colloidal systems [206], colloid–polymer mixtures [168, 207, 208]
and star polymer plus polymer mixtures [209]. Within density functional theory
(DFT) the polymers are commonly treated as penetrable hard spheres. Oversteegen
and Roth [210] discussed the close analogy and discrepancies between FVT and
fundamental measure theory. For asymmetric additive hard sphere mixtures DFT
can be exploited to study the influence the degree of repulsive interaction (the
‘additivity’) between the small spheres on the interaction between the large
spheres. From self-avoiding walk computer simulations it follows that the degree
of additivity of excluded volume polymers is very small [198, 211]. Interestingly,
DFT also allows studying the colloidal gas–liquid interface of a demixed
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dispersion. This made it possible to evaluate the interfacial tension; for a review on
the possibilities of DFT for studying colloid–colloid and colloid–polymer mix-
tures, see [212].

It appears that the phase diagram for very small q (q\0:3) is much simpler than
for larger q [144–145, 213, 214]. For small q the only effect of adding polymer
chains to the pure hard-sphere dispersion is the widening of the fluid–solid
coexistence region. A gas–liquid phase transition occurs at larger polymer con-
centrations above the fluid–solid phase line and is metastable, see Sect. 3.3.4. Only
above a certain range of attraction, the (colloidal) gas–liquid phase transition shifts
below the fluid–solid coexistence curve. For q close to 1/3 the critical point hits the
fluid–solid coexistence curve. This critical point is the critical endpoint, which is
rather insensitive to the shape of the interaction potential used [215].

In the protein limit (q [ 2) the phase behaviour is dominated by the gas–liquid
phase transition at low colloid volume fractions /: Colloidal gas–liquid coexis-
tence concentrations have been determined using Monte Carlo simulations by
Bolhuis, Meijer and Louis [177] on hard spheres plus self-avoiding walk polymer
chains consisting of segments with hard-sphere interactions. For three q-values
coexistence data are shown in Fig. 1.22. Phase transitions then take place near and
above the polymer overlap concentration (/p	 1). In such cases a more detailed
description of the physics of polymer solutions is required to describe depletion
forces and the resulting phase transitions. TPT has been extended to incorporate
interactions between the polymer chains [216]. This indeed shifts the binodal
curves for larger q to higher relative polymer concentrations. It is also possible to
extend FVT and incorporate the effects of interactions between the polymer chains
[217–220], see Sect. 4.3. This generalized free volume theory (GFVT) includes the
correct dependencies for the depletion thickness and the osmotic pressure on
polymer concentration for interacting chains and gives a good description of
colloid–polymer phase diagrams of model systems up to large q [220]. GFVT is in

G
as + Liquid

Fluid

Fig. 1.22 Monte Carlo
computer simulation results
for the gas–liquid
coexistences of hard spheres
mixed with excluded volume
polymers for q = 3.86 (open
circles), 5.58 (crosses) and
7.78 (filled diamonds),
redrawn from Bolhuis et al.
[177]. The binodal curves are
drawn to guide the eye
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(semi)quantitative agreement with experiments and computer simulations [219,
220].

Most of the models for depletion of polymer are based upon the assumption that
the polymer segments are always much smaller then the colloids. Depletion of
freely-jointed chains near a spherical colloid can also be considered for arbitrary
size of the segment, showing that depletion effects get weaker as the segments
become longer (for a fixed value of the polymer’s radius of gyration) [221]. This is
in agreement with work of Paricaud, Varga and Jackson [222] who used Wertheim
perturbation theory.

In this last decade also more insight was gained on the ultra-low interfacial
tension at the colloidal gas–liquid interface in demixed dispersions containing
colloids and polymers. It became clear that this ultra-low interfacial tension affects
the relevant characteristic length- and timescales [223]. The capillary length [224]
decreases down to the order of microns while the thermal length can become of the
order of (sub)microns. The typical interface velocity in such systems is just a few
microns per second. Inertial terms only become important at large length- and
timescales. By means of confocal scanning laser microscopy Aarts et al. [59]
studied the influence of the ultra-low interfacial tension on wetting of colloid–
polymer mixtures on a solid surface and on capillary waves at the interface of a
demixed colloid–polymer dispersion [225]. Studies on the bending rigidity of the
colloidal gas–liquid interface in a demixed colloid–polymer dispersion are in
progress [226].

In this overview on the history of depletion in colloidal dispersions we have
focused on mixtures of colloidal spheres and non-adsorbing polymers, which have
received most attention. Since the 1990s depletion phenomena have also been
studied systematically in dispersions of colloidal rods [227, 228], platelets [229],
rocks [230] (colloidal particles with an irregular surface) or cubes [231] plus non-
adsorbing polymers or in mixtures of different colloids with large size asymmetry
[232–235]. In Chap. 5 we concentrate on mixtures of colloidal large spheres plus
added small spheres or added colloidal rods. Finally, in Chap. 6 we concentrate on
the phase behaviour of colloidal rod plus polymer dispersions.

1.4 Manifestations of Depletion Effects of Biological
and Technological Interest

By the addition of non-adsorbing polymers to colloidal suspensions the mixture
phase separates into a colloid-rich and a polymer-rich phase, as discussed above.
The understanding of this polymer-induced phase separation is very important, not
only for colloid science but also for industrial systems, such as food dispersions
[74, 77, 236, 237]) and paint [238]. In these systems colloids and polymers (or
surfactants) are jointly present and influence the stability and hence related pro-
cessing issues.
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More recently, is has been realized that procedures based on the depletion
interaction have the potential to enable fabrication of materials based on self-
organized colloidal structures [239]. Also in biological systems, the importance of
depletion effects are increasingly appreciated [240, 241]. To illustrate this, we
discuss a few examples of depletion effects in systems of biological and techno-
logical interest in this section.

1.4.1 Depletion Effects in Biological Systems: Macromolecular
Crowding

A longstanding question in molecular biology is the extent to which the behaviour
of macromolecules observed in vitro accurately reflects their behavior in vivo
[242]. The cytoplasm of a living cell contains a high concentration of macro-
molecules (up to 400 g/L), including proteins and nucleic acids. Over the last
30 years or so [243–245] it has been increasingly appreciated that the large volume
fraction occupied by these macromolecules influences several intracellular pro-
cesses [241, 246, 247], ranging from the bundling of biopolymers like DNA and
actin to the phase separation in a bacterial cell. These effects are known amongst
biochemists and biophysicists as macromolecular crowding (for reviews see [240,
248–250]).

Phase separation between a nucleoid and cytoplasm in bacterial cells is a
striking example of macromolecular crowding [251–254]. Chromosomes in bac-
terial cells do not occur in dispersed form but are organized in the nucleoid as a
separate phase. Depletion forces that originate from the presence of proteins can
explain the phase separation [254]. As a result, the proteins partition over the
cytoplasm and nucleoid phases. Their concentration in the cytoplasm is about two
times larger than their concentration in the nucleoid phase [255], see Figs. 1.23
and 1.24.

Depletion forces can be of use in biomedical applications. Non-adsorbing
polymer chains promote the adhesion of cells to surfaces [256] and enhance
adsorption of lung surfactants at the air/water interface in lungs so as to help
patients suffering from acute respiratory syndrome [257]. The physical properties
of actin networks are affected by non-adsorbing polymers [258], which also
modify phase transitions in virus dispersions [228].

1.4.2 Depletion Interactions and Protein Crystallization

In 1934 Desmond Bernal and Dorothy Crowfoot (later Hodgkin) discovered that
crystals of pepsin, a digestive enzyme, give a well-resolved X-ray diffraction
pattern [259]. It took 25 years before the first atomic structures of proteins using
X-ray crystallography were determined. In 1958 Kendrew et al. published the
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structure of the protein myoglobulin [260], which stores oxygen in muscle cells
and in 1960 Perutz et al. [261] reported the structure of the protein hemoglobin,
which transports oxygen in blood.

The first requirement for protein structure determination with X-ray diffraction
is to grow suitable crystals [262]. While great strides have been made in the

Fig. 1.24 Schematic picture of a cell containing phase separated nucleoid (cube on the right;
magnifies DNA (chains) and proteins (small spheres) in this phase) and serum (upper cube;
containing proteins and ribosomes as big spheres). Sketch by Woldringh and Odijk [255].
Reprinted from C. L. Woldringh and T. Odijk in: Organization of the Prokaryotic Genome,
R. L. Charlebois (Ed.). ASM Press, Amsterdam, Copyright 1999, with permission from ASM Press

Fig. 1.23 Sketch of the cross-section of superhelical DNA in a cell. Left DNA is dispersed
throughout the cell. Right DNA is confined within the nucleoid phase [255]. Reprinted from
C. L. Woldringh and T. Odijk in: Organization of the Prokaryotic Genome, R. L. Charlebois
(Ed.). ASM Press, Amsterdam, Copyright 1999, with permission from ASM Press
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determination of protein structures (today about 60,000 protein structures have
been resolved), protein crystallization, notwithstanding a history spanning more
than 150 years [263, 264], remains somewhat magical.

Figure 1.25 characterizes the state of the art in protein crystallization in 1988
[265]. In recent years significant progress has been made in understanding protein
crystallization on the basis of the phase diagram of protein solutions. The key
observation which lies at the basis of this development was made by Benedek and
co-workers [266, 267]. In the course of their investigations of proteins involved in
maintaining the transparency of the eye lens, they discovered that in aqueous
solutions of several calf lens proteins the solid–liquid phase boundary lies higher
in temperature than the liquid–liquid coexistence curves. Thus, over a range of
concentrations and temperatures for which liquid–liquid phase separation occurs,
the coexistence of a protein crystal phase with a protein liquid solution phase is
thermodynamically stable relative to the metastable separated liquid phases, see
Fig. 1.26.

It was shown that this remarkable phase behaviour could be understood on the
basis of the sensitivity to the form of the pair potential of the phase diagram of
small attractive colloidal particles [268–270]. Moreover, it was soon realized that
successful protein crystallization depends on the location (protein concentration
and temperature) in the phase diagram [271–275]. Control of protein crystal
nucleation around the metastable ‘liquid–liquid’ phase boundary appears key to
the development of systematic crystallization strategies (for a concise review see
[276]). This phase boundary can be manipulated by depletion interactions through
the addition of non-adsorbing polymers such as polyethylene glycol.

To illustrate the role of non-adsorbing polymer chains on the protein solution
phase behaviour we discuss the results of adding the polymer PEO (also termed
PEG) to a solution with the protein apoferritin by Tanaka and Ataka [277].
Apoferritin is an iron storage protein consisting of 24 subunits. The effective radius

Fig. 1.25 View upon the
‘art’ of protein crystallization
by J. Drenth [265]. Picture
reprinted from J. Drenth, J.
Cryst. Growth, 90:368,
Copyright 1988, with
permission from Elsevier
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is about 8 nm and the molar mass of apoferritin is 440 kg/mol. It is not easy to
crystallize a solution of apoferritins by adding salt ions. Traditionally, a well-
defined scale, known as the Hofmeister series [278], is used as a measure for the
efficiency of precipitating proteins. A solution of apoferritin cannot be crystallized
in the common manner with the usual salt ions as precipitating agents. Adding
PEO, however, does make it possible to induce crystallization. In Fig. 1.27 the

Fig. 1.26 Sketch of a typical
phase diagram of a globular
protein solution. The critical
point is marked by the
asterisk

Fig. 1.27 Phase behavior of apoferritin with PEO. Left state diagram of apoferritin mixed with
PEO of various molar masses. The apoferritin concentration was kept constant at 54 g/L and the
molar mass and concentration of PEO was varied as indicated in the diagram. Results are redrawn
from [277]. Right micrographs representing the various kinds of unstable solutions that were
found in aqueous apoferritin–PEO mixtures: a crystals, b liquid domains and c random
aggregates. Reprinted with permission from S. Tanaka and M. Ataka, J. Chem. Phys., 117:3504,
Copyright 2002, American Institute of Physics
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experimental data are shown that were obtained from visual and microscopic
inspection of PEO-apoferritin in aqueous 0.6 M NaCl solutions. The concentration
of apoferritin was fixed at 54 g/L. The PEO concentration and molar mass were
varied. Four molar masses MPEG (and radii of gyrations Rg) of the PEOs were used:
1.5 (1.4 nm), 4.0 (2.5 nm), 8.0 (3.7 nm) and 20 (6.2 nm) kg/mol; corresponding to
q = 0.18, 0.31, 0.46, and 0.78. Four kinds of situations were observed after mixing
PEO with apoferritins [277]. For sufficiently small concentrations (depending on M,
hence q), the mixture was stable (triangles in the left panel of Fig. 1.27). Above a
certain PEO concentration a phase transition took place. At q = 0.18 random
aggregates (filled circles) were found, which is typical for a protein solution
undergoing a fluid-to-solid transition, and does not give the proper conditions for
obtaining good-quality crystals. The same happens for the highest concentrations at
q = 0.31 and 0.46. For q = 0.31, 0.46 and 0.78 there was a region where liquid
domains (plusses) were formed, indicative for a gas–liquid phase transition, usually
referred to as liquid-liquid phase separation. For q = 0.78 liquid domains were
found in the entire unstable regime. Finally, good quality crystals (open circles)
were formed at q = 0.31 and 0.46 for intermediate PEO concentrations. For these q-
values the critical point is close to the fluid-crystal coexistence line, in agreement
with the findings of Ten Wolde and Frenkel [272]. It thus follows that adding PEO
indeed allows providing conditions for good crystallization within a specific range
of protein–polymer size ratios and polymer concentrations. The different states are
illustrated with the micrographs in right panel of Fig. 1.27.

1.4.3 Shape and Size Selection

The depletion interaction, as argued in Sect. 1.2.5, depends on the concentration of
the depletion agent and the overlap volume of the depletion zones. For a given
concentration of depletant the only variable is the overlap volume, which in turn
depends on the size and (see Chap. 2) shape of the colloidal particles. Tuning the

Fig. 1.28 Shape-selective separation induced by depletion forces
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strength of the depletion interaction therefore allows to separate particles of dif-
ferent size and shape. For example, the separation of rod-like particles and spheres
under the influence of polymers is schematically indicated in Fig. 1.28.

Unaware of the underlying principle this was first used by Cohen already in
1941 [87] to separate two viruses; Tobacco Mosaic Virus and Tobacco Necrosis
Virus. Tobacco Mosaic Virus is a rod-like virus with a length of 300 nm and
diameter of 18 nm and Tobacco Necrosis Virus a spherical virus with a diameter
of about 26 nm. Cohen used the polysaccharide heparin as depletant to separate
these viruses. Recently, this method to separate colloids of different size and shape
has gained new impetus. For nano-based technologies particles with a specific size
and shape are critical to optimize the nanostructure-dependent optical, electrical
and magnetic properties.

While the self-organisation of nearly monodisperse spherical colloidal particles
has been studied for a long time, the potential of self-assembly of anisometric
colloidal particles (rods and plates) is far from being achieved. Nevertheless
important advances have been made. For example, CdSe semiconductor nanorods
have been shown to form nematic liquid crystals [279] that can potentially be used
as functional components in electro-optical devices. Hence a tool for the effective
separation of anisometric colloids from a mixture of particles of different sizes and
shapes is highly desirable.

Recent studies have shown that depletion-induced shape and size selection of
colloidal particles has the potential to be a powerful enabling method to achieve
this in an effective way. For instance, Park et al. [280] reported the depletion-
induced shape and size selection of gold rods and cubes. In Fig. 1.29 we show their
transmission electron microscopy (TEM) images of gold rods (length L ¼ 77 nm;
diameter D ¼ 11 nm) and cubes (size is 20 nm). In (a) the synthesized mixture is
shown, (b) depicts the sediment concentrated in golds rods and (c) is an image of
the supernatant enriched in cubes.

Baranov et al. [239] showed that the attractive depletion forces were effective
in the shape selective separation of CdSe=CdS-rods from a mixture of rods and
CdSe spheres. Mason [281] showed that the depletion interaction between plate-

Fig. 1.29 TEM images of a dispersion of rod-like and cube-like gold colloids. a Synthesized
mixture, b sediment, c supernatant. Picture reprinted from K. Park, H. Koerner, and R. A. Vaia,
Nano Lett., 10:1433, Copyright 2010, with permission from the American Chemical Society
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like particles is much stronger than between spheres, leading to a separation
between a phase enriched in plates and a phase mainly concentrated in spheres.
The dependence on size of the depletion interaction can also be used to fractionate
a bidisperse population of colloidal spheres [282] or to obtain a monodisperse
population of spheres from a collection of polydisperse spheres [149]. The
monodisperse colloidal particles have the potential to self-organize in colloidal
crystals, see Chap. 5 for more details. These procedures based on the depletion
interaction have the potential to enable fabrication procedures for materials based
on self-organized colloidal structures.

1.4.4 Directing Colloidal Self-assembly Using Surface
Microstructures

As indicated in Sect. 1.4.3, the depletion interaction depends on the overlap vol-
ume for a given depletant concentration. This dependence leads to a difference in
depletion interaction between particles of different size and shape and offers a
powerful and cost-effective way to separate them.

The use of surface microstructures provides a promising route for creating
colloidal assemblies via depletion forces. Dinsmore, Yodh and Pine [283] studied
the interaction of large polystyrene spheres ðR ¼ 203 nm;/ ¼ 10�5Þ in a sea of
small polystyrene spheres ðR ¼ 41 nm;/ ¼ 0:30Þ with a wall with a step edge, see
Fig. 1.30.

Clearly the overlap volume depends on the position of the big sphere with
respect to the step edge. Since (1.21)

WdepðhÞ ¼ �nkTVovðhÞ;

Fig. 1.30 A large colloidal
sphere near a step edge in a
sea of small spheres. The
presence of the small spheres
lead to depletion zones (light
grey regions) near the walls
of the container and around
the big sphere. Overlap of
depletion zones is indicated
by the hatched area. This
overlap volume increases the
volume accessible to the
small spheres, thereby
increasing their entropy
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where n is the number density of the small spheres, this difference in overlap
volume directly translates in a different depletion interaction. By determining with
optical microscopy the probability of the various positions of the big particles on
the terrace with the step edge and relating this probability with the help of the
Boltzmann relation

pðhÞ� expð�WdepðhÞkTÞ; ð1:33Þ
the depletion interaction can be measured. For the system considered the differ-
ences in the overlap volume amount to a difference in the depletion potential of
about twice the thermal energy of the particles.

Exercise
Rationalize why the big sphere in Fig. 1.30 will move to the right.

This indicates that surface structures can create localized force fields which can
trap particles. An interesting application of this concept can be found in the recent
work of Sacanna et al. [284]. They created, by clever colloid synthesis, 5 lm
(diameter) polymerized silicon oil droplets with a well-defined spherical cavity. To
these ‘lock’ particles they added appropriately sized spherical ‘key’ particles
(silica, poly(methyl methacrylate) or polystyrene colloids) that can fit into the
cavity. Nanometer sized non-adsorbing polymers were added to provide a deple-
tion interaction. The depletion interaction, being proportional to the overlap vol-
ume of the depletion zones, attains a maximum when the key particle fits precisely
into the spherical cavity of a lock particle, see Fig. 1.31. The depletion-driven self-
assembly of lock and key particles is demonstrated in Fig. 1.32. This time series
(from left to right) illustrates the site-specificity of the attraction.

Another way to manipulate the overlap volume of the depletion zones is to vary
the roughness of the surface of the colloidal particles, see Fig. 1.33. The left

a key

lock

b depletants

Fig. 1.31 a Colloidal ‘lock’ particles can be synthesized [284] containing a dimple into which
‘key’ particles, spherical colloids with appropriate size, can fit. b By adding depletants (polymer
chains) a key can be pushed into a lock using the depletion force. Inspired by Solomon [285]
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drawings show that surface roughness does not affect the overlap volume for
intermediate overlap of depletion zones. For large/maximum overlap, surface
roughness prevents overlap of certain zones that do overlap in case of flat surfaces,
see the sketches on the right. It is now possible to direct the self-assembly of
particles by selectively controlling the roughness of different sides of colloidal
particles. Badaire et al. [286, 287] demonstrated the potential of this method in the
assembly of lithographically designed colloidal particles. In Fig. 1.34 we show the
particles used by Badaire et al. [286, 287] that consist of roughened rounded side
walls and flat ends. Upon adding surfactant micelles these particles will attract one
another due to the depletion force. Since the attraction is stronger between the flat
sides of the particles rod-like equilibrium structures are formed at a certain
depletant concentration. An example is depicted in Fig. 1.35.

Zhao and Mason [288] demonstrated the same principle on plate-like particles
with manipulated roughness.

Fig. 1.32 Images of Sacanna et al. [284] demonstrating a colloidal sphere entering the lock of
larger colloid. The curved arrow (left) indicates a successful lock-key binding. Scale bar is 2 lm:
Picture reprinted from S. Sacanna, W. T. M. Irvine, P.M. Chaikin, and D. J. Pine, Nature;
464:575, Copyright 2010, with permission from Nature. Kindly provided by S. Sacanna

Fig. 1.33 Sketch of the
overlap zones between flat
surfaces (upper) and between
roughened surfaces lower.
Depletion thickness d is
indicated by the arrows. Left
drawings intermediate
overlap of depletion layers.
Right drawings large overlap
of depletion layers
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1.4.5 Motion of a Sphere Through a Polymer Solution

Macromolecular crowding also has consequences for transport properties. One
may wonder how protein transport occurs through a cell composed of a highly
concentrated dispersion. The viscosity of a serum phase will be significantly larger
than that of a physiological salt solution. The question arises what the friction is
that a protein experiences as it moves through a cell. This relates to a fundamental
problem in colloid physics: the dynamics of a colloidal sphere translating and
rotating through a polymer solution.

As a colloidal particle diffuses or sediments through a solution containing non-
adsorbing polymer chains, one may naively expect that the friction experienced by
the particle is set by the bulk viscosity. In practice, it is smaller. An analysis of the

Fig. 1.34 Scanning electron
microscopy (SEM) image of
colloidal particles having
sides with surfaces roughness
and flat sides. Picture
reprinted from S. Badaire,
C. Cottin-Bizonne, and
A. D. Stroock, Langmuir;
24:11451, Copyright 2008,
with permission the
American Chemical Society

Fig. 1.35 Aggregated state
of the particles in Fig. 1.34
under the influence of
depletion forces. Image size
50� 50 lm2: Picture
reprinted from S. Badaire,
C. Cottin-Bizonne, and
A. D. Stroock, Langmuir;
24:11451, Copyright 2008,
with permission the
American Chemical Society
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velocity profile of a non-adsorbing polymer solution near a flat surface shows that
depletion leads to effective slip [289]. The depletion layer implies a non-uniform
viscosity profile near the surface, which explains this slip.

Phillies and co-workers [290, 291] studied the translational self-diffusion of
well-defined colloidal spheres through polymer solutions and showed that the
interpretation of the measured friction coefficient of the particles is fairly com-
plicated. For a spherical particle that moves through a medium containing small
solvent molecules, the friction coefficient is proportional to the solvent viscosity.
When the solvent is replaced by a polymer solution one may naively expect that
the friction coefficient is proportional to the viscosity of polymer solution. Mea-
surements indicate that this is only true when the chains are very small compared
to the size of the particle.

Exercise
What viscosity is experienced by a tiny sphere in a dilute solution with very long
polymer chains?

For polymer chains that are roughly as big as the particle, the apparent or
effective viscosity experienced by a sphere is in between the viscosities of solvent
and polymer solution. A similar finding was also reported for the rotational dif-
fusion of colloidal particles [292] and for the sedimentation of colloids through a
polymer solution [293].

The fact that the effective viscosity is intermediate between that of solvent and
polymer solution can be rationalized as follows. Within the depletion layer, the
viscosity is expected to follow the polymer density distribution [289] and it
gradually increases from the solvent viscosity at the solid surface to the bulk
viscosity far from the particle. Therefore, as a particle diffuses, the hydrodynamic
resistance force is also in between the two limits. Fan et al. [294, 295] derived
analytical expressions for the friction felt by a sphere when it moves through a
macromolecular medium, and showed that the friction is strongly reduced com-
pared to Stokes’ law. This means that depletion-induced slip effects facilitate
protein transport through crowded media.

1.5 Outline

In this chapter we provided an introduction to colloidal interactions, a historical
perspective on early observations, and on later understanding of depletion effects
and applications of depletion phenomena. In Chap. 2 we address the fundamentals
of depletion interactions, including the effects of anisotropic depletants. The focus
will be on small depletant concentrations which allow simple treatments using
both the force method and the adsorption method to arrive at depletion potentials.
The basics of phase behavior in colloidal dispersions with added depletants are set
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out in Chap. 3. First, the equations of state of the hard-sphere fluid and the hard-
sphere fcc crystal are discussed, leading to the phase diagram which in this case
contains only the fluid-crystal equilibrium. Then the addition of depletants, using
the simple penetrable hard sphere model, is considered within the framework of
free volume theory; now a liquid phase enters. This is followed by extensions
towards mixtures of spherical colloids and polymers in Chap. 4. Experimental
phase diagrams of well-defined colloid–polymer mixtures are discussed and
compared to theories for colloid–polymer mixtures. Phase separation kinetics and
non-equilibrium states in colloid–polymer mixtures are treated as well. Chapter 5
deals with the phase behaviour of mixed colloids in the absence of non-adsorbing
polymer and we will discuss the effect of adding small rod-like colloids or small
spherical colloids to a suspension with colloidal spheres. Rod-like colloids are
considered in Chap. 6, first without polymer: the physics of the isotropic to
nematic phase transition is discussed in some detail. Finally, we describe the
polymer-induced depletion effects for rod-like colloids. Throughout, the concepts
will be illustrated by experimental and computer simulation results.

References

1. Manual of symbols and terminology for physicochemical quantities and units, appendix 2:
Definitions, terminology and symbols in colloid and surface chemistry. Pure Appl. Chem.
31, 7551 (1972)

2. D.H. Everett, Basic Principles of Colloid Science (The Royal Society of Chemistry,
London, 1988)

3. W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions (Cambridge Universtity
Press, USA, 1999)

4. R.J. Hunter, Foundations of Colloid Science, 2nd edn. (Oxford University Press, Oxford,
2001)

5. D.F. Evans, H. Wennerström, The Colloidal Domain: Where Physics, Chemistry, Biology,
and Technology Meet, 2nd edn. (Wiley-VCH, New York, 1999)

6. J. Lyklema, Fundamentals in Colloid and Interface Science, vol. 1–5. (Elsevier,
Amsterdam, 1991–2005)

7. J. Perrin, Ann. de Chem. et de Phys. 18, 5 (1909)
8. A. Einstein, Ann. Phys. 17, 549 (1905)
9. L. Onsager, Chem. Rev. 13, 73 (1933)

10. L. Onsager, Ann. NY. Acad Sci. 51, 627 (1949)
11. W.G. McMillan, J.E. Mayer, J. Chem. Phys. 13, 276 (1945)
12. J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, San Diego, 1986)
13. G.C. Maitland, M. Rigby, E.B. Smith, W.A. Wakeham, Intermolecular Forces: Their

Origin and Determination (Clarendon Press, Oxford, 1981)
14. K.S. Pitzer, J. Chem. Phys. 7, 583 (1939)
15. M.G. Noro, D. Frenkel, J. Chem. Phys. 113, 2941 (2000)
16. A. Lucas, J. Harris, Ancient Egyptian Materials and Industries (Dover, London, 1999)
17. G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at

Interfaces (Chapman & Hall, New York, 1993)
18. The Greek historian Herodotus coined the term delta for the landform where the Nile river

flows into the Mediterranean Sea; the sediment deposited at the river’s mouth has the shape
of the upper-case Greek letter D:

50 1 Introduction



19. E.C. Barton, Geograph J. 51, 100 (1918)
20. C.G. de Kruif, C. Holt, Casein micelle structure, functions and interactions, in: Advanced

Dairy Chemistry Proteins, vol. 1, ed. by P.F. Fox, P.L.H. McSweeney (Kluwer, Plenum
New York, 2002) pp. 233–276

21. P. Walstra, R. Jenness, Dairy Chemistry and Physics (Wiley, New York, 1984)
22. C.G. de Kruif, E.B. Zhulina, Colloids Surf. A. 117, 151 (1996)
23. A. Kose, M. Ozka, K. Takano, Y. Kobayashi, S. Hachisu, J. Colloid Interface Sci. 44, 330

(1973)
24. C. Soanes, A. Stevenson, Oxford Dictionary of English (Oxford University Press, New

York, 2005)
25. B.V. Derjaguin, L. Landau, Acta Physicochimica USSR. 14, 633 (1941)
26. E.J.W. Verwey, J. Th. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier,

Amsterdam, 1948)
27. J.N. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1991)
28. P. Walstra, Physical Chemistry of Foods (Marcel Decker, New York, 2003)
29. R. Aveyard, B.P. Binks, J.H. Clint, Adv.Colloid Interface Sci. 100, 503 (2003)
30. J.H. De Boer, Trans. Faraday. Soc. 32, 21 (1936)
31. H.C. Hamaker, Physica. 4, 1058 (1937)
32. J. Lyklema, Fundamentals in Colloid and Interface Science, vol. 1. (Elsevier, Amsterdam,

1991)
33. F. London, Z. Phys. B. 11, 222 (1930)
34. R. Eisenschitz, F. London, Z. Phys. 60, 491 (1930)
35. R. Becker, Electromagnetic Fields and Interactions, vol. II. (Blaisdell Publishing Company,

New York, 1964)
36. D.J. Griffith, Introduction to Electrodynamics (Prentice-Hall, New Jersey, 1999)
37. S.H. Behrens, D.I. Christel, R. Emmerzael, P. Schurtenberger, M. Borkovec, Langmuir. 16,

2566 (2000)
38. J.N. Israelachvili, G.E. Adams, J. Chem. Soc. Faraday Trans. 74, 975 (1978)
39. B.W. Ninham, Adv. Colloid Interface Sci. 83, 1 (1999)
40. A. Vrij, Pure Appl. Chem. 48, 471 (1976)
41. C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, C. Bechinger, Nature. 451, 172 (2008)
42. E.W. Fischer, Kolloid Z. 160, 120 (1958)
43. S.J. Alexander, J. Phys. Paris. 38, 983 (1977)
44. P.G. De Gennes, C.R. Acad. Sc. Paris ser. B. 300, 839 (1985)
45. P.G. De Gennes, Adv. Colloid Interface Sci. 27, 189 (1987)
46. A. Vrij, R. Tuinier, Chapter 5 in Lyklema J (ed) Fundamentals in Colloid and Interface

Science, vol. 4. (Elsevier, Amsterdam, 2005)
47. C.G. de Kruif, personal communication
48. R.J. Baxter, J. Chem. Phys. 49, 2770 (1968)
49. P.W. Rouw, A. Vrij, C.G. de Kruif, Colloids Surf. 31, 299 (1988)
50. P.W. Rouw, C.G. de Kruif, J. Chem. Phys. 88, 7799 (1988)
51. P.W. Rouw, A. Vrij, C.G. de Kruif, Prog. Colloid Polym. Sci. 76, 1 (1988)
52. E.G.M. Pelssers, M.A. Cohen Stuart, G.J. Fleer, J. Chem. Soc. Faraday Trans. 86, 1355

(1990)
53. S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954)
54. S. Asakura, F. Oosawa, J. Pol. Sci. 33, 183 (1958)
55. R. Li-In-On, B. Vincent, F.A. Waite, ACS Symp. Ser. 9, 165 (1975)
56. H. De Hek, A. Vrij, J. Colloid Interface Sci. 84, 409 (1981)
57. C.M. Wijmans, E.B. Zhulina, G.J. Fleer, Macromolecules. 27, 3238 (1994)
58. D.G.A.L. Aarts, M. Schmidt, H.N.W. Lekkerkerker, Science. 304, 847 (2004)
59. D.G.A.L. Aarts, J.H. van der Wiel, H.N.W. Lekkerkerker, J. Phys Condens. Matter. 15,

S245 (2003)
60. W.K. Wijting, N.A.M. Besseling, M.A. Cohen Stuart, Phys. Rev. Lett. 90, 196101 (2003)

References 51



61. O. Von Guericke, Experimenta nova Magdeburgica de vacuo spatio (Waesberge,
Amsterdam, 1672)

62. E. Mach, The Science of Mechanics (The Open Court Publishing Company, IL, USA, 1960)
63. N. de Fatio Dullier, Oeuvres completes de Christiaan Huygens, The Hague. 9, 381–389

(1888–1950)
64. G-L. Le Sage, Lettre á une académicien de Dijon Mercure de France: 153–171 (1756)
65. R.P. Feynman, The Character of Physical Law. in: The 1964 Messenger Lectures

(Cambridge, MIT, 1967)
66. M.R. Edwards (ed), Pushing Gravity: New Perspectives on Le Sage’s Theory for

Gravitation (C. Roy Keys Inc., Montreal, 2002)
67. R. Fåhraeus, Physiol. Rev. 9, 241 (1929)
68. J.E. Thysegen, Acta Med. Scand. Suppl. 134, 1 (1942)
69. R. Fåhraeus, Acta. Med. Scand. 55, 1 (1921)
70. S.E. Bedell, B.T. Booker, Am. J. Med. 78, 1001 (1985)
71. D.R. Forsdyke, P.M. Ford, Biochem. J. 214, 257 (1983)
72. J. Janzen, D.E. Brooks, Clin. Hemorheol. 9, 695 (1989)
73. M.W. Beijerinck, Zentr. Bakteriol. Paras. Infektionskr. 2, 697 (1896)
74. J.-L. Doublier, C. Garnier, C. Renard, C. Sanchez, Curr.Opin. Colloid Interface Sci. 5, 184

(2000)
75. V.B. Tolstoguzov, Food Hydrocolloids. 4, 429 (1991)
76. V.B. Tolstoguzov, Food Hydrocolloids. 11, 181 (1997)
77. V. Ya. Grinberg, V.B. Tolstoguzov, Food Hydrocolloids. 11, 145 (1997)
78. E. Scholten, R. Tuinier, R.H. Tromp, H.N.W. Lekkerkerker, Langmuir. 18, 2234 (2002)
79. V.B. Tolstoguzov, A.L. Mzhel’sky, V. Ya. Gulov, Colloid Polym. Sci. 252, 124 (1974)
80. J. Traube, Gummi Zeitung. 39, 434 (1925)
81. H.C. Baker, Inst. Rubber Ind. 13, 70 (1937)
82. C.F. Vester, Kolloid Z. 84, 63 (1938)
83. E. Dickinson, Food Hydrocolloids. 17, 25 (2003)
84. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Clarendon Press, Oxford,

1982)
85. S.S. Cohen, J. Biol. Chem. 144, 353 (1942)
86. J.D. Bernal, I. Fankuchen, J. Gen. Physiol. 25, 111 (1941)
87. S.S. Cohen, Proc. Soc. Exp. Biol. Med. 48, 163 (1941)
88. R. Leberman, Virology. 30, 341 (1966)
89. E.G. Cockbain, Trans. Faraday Soc. 48, 185 (1952)
90. D. Fairhurst, M.P. Aronson, M.L. Ohm, E.D. Goddard, Colloids Surf. 7, 153 (1983)
91. F. Oosawa, Hyo-Hyo Rakugaku (Autobiography, Nagoya, 2005)
92. C. Sieglaff, J. Polym. Sci. 41, 319 (1959)
93. J. Clarke, B. Vincent, J. Chem. Soc. Faraday Trans. I. 77, 1831 (1981)
94. C. Cowell, R. Li-In-On, B. Vincent, F.A. Waite, J. Chem. Soc. Faraday Trans. 74, 337

(1978)
95. B. Vincent, P.F. Luckham, F.A. Waite, J. Colloid Interface Sci. 73, 508 (1980)
96. B. Vincent, J. Edwards, S. Emmett, A. Jones, Colloids and Surfaces. 17, 261 (1986)
97. B. Vincent, Colloids and Surfaces. 24, 269 (1987)
98. B. Vincent, J. Edwards, S. Emmett, R. Croot, Colloids and Surfaces. 31, 267 (1988)
99. S. Emmett, B. Vincent, Phase Trans. 21, 197 (1990)

100. S. Hachisu, A. Kose, Y. Kobayashi, J Colloid Interface Sci. 55, 499 (1976)
101. A. Kose, S. Hachisu, J. Colloid Interface Sci. 55, 487 (1976)
102. P.G. De Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca,

1979)
103. P.G. De Gennes, C. R. Acad. Sc. Paris ser. B. 288, 203 (1979)
104. J.F. Joanny, L. Leibler, P.G. De Gennes, J. Polymer Sci. Polym. Phys. 17, 1073 (1979)
105. R.I. Feigin, D.H. Napper, J. Colloid Interface Sci. 75, 525 (1981)
106. J.M.H.M. Scheutjens, G.J. Fleer, J. Phys. Chem. 83, 1619 (1979)

52 1 Introduction



107. J.M.H.M. Scheutjens, G.J. Fleer, Adv. Colloid Interface Sci. 16, 361 (1982)
108. A. Broukhno, B. Jönsson, T. Åkesson, P.N. Vorontsov-Velyaminov, J. Chem. Phys. 113,

5493 (2000)
109. H. De Hek, A. Vrij, J. Colloid Interface Sci. 70, 592 (1979)
110. As dimensionless concentration variable / is used throughout. In case of hard colloidal

particles the quantity / is the volume fraction. For polymers and penetrable hard spheres /
refers to the relative concentration with respect to overlap (see (1.24))

111. H. De Hek, A. Vrij, J. Colloid Interface Sci. 88, 258 (1982)
112. P.R. Sperry, H.B. Hopfenberg, N.L. Thomas, J. Colloid Interface Sci. 82, 62 (1981)
113. P.R. Sperry, J. Colloid Interface Sci. 87, 375 (1982)
114. P.R. Sperry, J. Colloid Interface Sci. 99, 97 (1984)
115. A.P. Gast, C.K. Hall, W.B. Russel, J. Colloid Interface Sci. 96, 251 (1983)
116. J.A. Barker, D. Henderson, Rev. Mod. Phys. 48, 587 (1976)
117. A.P. Gast, W.B. Russel, C.K. Hall, J. Colloid Interface Sci. 109, 161 (1986)
118. E. Eisenriegler, J. Chem. Phys. 79, 1052 (1983)
119. R. Tuinier, G.A. Vliegenthart, H.N.W. Lekkerkerker, J. Chem. Phys. 113, 10768 (2000)
120. C. Allain, D. Ausserré, F. Rondelez, Phys. Rev. Lett. 49, 1694 (1982)
121. D. Ausserré, H. Hervet, F. Rondelez, Macromolecules 19, 85 (1986)
122. P.F. Luckham, J. Klein, Macromolecules 18, 721 (1985)
123. P.F. Luckham, J. Klein, J. Colloid Interface Sci. 117, 149 (1987)
124. R.M. Pashley, B.W. Ninham, J. Phys. Chem. 91, 2902 (1987)
125. T. Taniguchi, T. Kawakatsu, K. Kawasaki, in: K. Kawasaki (ed). ’Slow dynamics in

condensed matter’ AIP series. 256, 503 (1992)
126. E. Eisenriegler, A. Hanke, S. Dietrich, Phys. Rev. E. 54, 1134 (1996)
127. E. Eisenriegler, Phys. Rev. E. 55, 3116 (1997)
128. E. Eisenriegler, J. Phys. D: Condens. Matter 12, A227 (2000)
129. A. Bringer, E. Eisenriegler, F. Schlesener, A. Hanke, Eur. Phys. J. B. 11, 101 (1999)
130. A. Hanke, E. Eisenriegler, S. Dietrich, Phys. Rev. E. 59, 6853 (1999)
131. T. Odijk, Macromolecules 29, 1842 (1996)
132. T. Odijk, J. Chem. Phys. 106, 3402 (1997)
133. T. Odijk, Langmuir 13, 3579 (1997)
134. T. Odijk, Biophys. J. 79, 2314 (2000)
135. E. Eisenriegler, J. Chem. Phys. 113, 5091 (2000)
136. H. Reiss, J. Phys. Chem. 96, 4736 (1992)
137. E. Eisenriegler, A. Bringer, J. Phys.: Condens. Matter. 17, 1711 (2005)
138. E. Eisenriegler, J. Chem. Phys. 124, 144912 (2006)
139. E. Eisenriegler, J. Chem. Phys. 125, 204903 (2006)
140. E. Eisenriegler, A. Bringer, J. Chem. Phys. 127, 034904 (2007)
141. H.N.W. Lekkerkerker, Colloids and Surfaces 51, 419 (1990)
142. H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A. Stroobants, P.B. Warren, Europhys.

Lett. 20, 559 (1992)
143. S.M. Ilett , A. Orrock, W.C.K. Poon, P.N. Pusey, Phys. Rev. E. 51, 1344 (1995)
144. F. Leal-Calderon, J. Bibette, J. Biais, Europhys. Lett. 23, 653 (1993)
145. M.A. Faers, P.F. Luckham, Langmuir 13, 2922 (1997)
146. E.J. Meijer, D. Frenkel, J. Chem. Phys. 100, 6873 (1994)
147. E. Dickinson, Soft Matter. 2, 642 (2006)
148. J. Bibette, D. Roux, F. Nallet, Phys. Rev. Lett. 65, 2470 (1990)
149. J. Bibette, J. Colloid Interface Sci. 147, 474 (1992)
150. J. Bibette, D. Roux, B. Pouligny, J. Phys. II. 2, 401 (1992)
151. M.J. Snowden, P.A. Williams, M.J. Garvey, I.D. Robb, J. Colloid Interface Sci. 166, 160

(1994)
152. K-Q. Xia, Y-B. Zhang, P. Tong, C. Wu, Phys. Rev. E 55, 5792 (1997)
153. I. Lynch, S. Cornen, L. Piculell, J. Phys. Chem. B 108, 5443 (2004)
154. A. Meller, J. Stavans, Langmuir 12, 301 (1996)

References 53



155. R. Tuinier, de C.G. Kruif, J. Colloid Interface Sci. 218, 201 (1999)
156. X. Ye, T. Narayanan, P. Tong, J.S. Huang, M.Y. Lin, B.L. Carvalho, L.J. Fetters, Phys. Rev.

E. 54, 6500 (1996)
157. K.D. Horner, M. Topper, M. Ballauff, Langmuir 13, 551 (1997)
158. A. Sharma, J.Y. Walz, J. Chem. Soc. Faraday Trans. 92, 4997 (1996)
159. D. Rudhardt, C. Bechinger, P. Leiderer, Phys. Rev. Lett. 81, 1330 (1998)
160. R. Verma, J.C. Crocker, T.C. Lubensky, A.G. Yodh, Macromolecules. 33, 177 (2000)
161. D. Kleshchanok, R. Tuinier, P.R. Lang, Langmuir 22, 9121 (2007)
162. C.P. Royall, A.A. Louis, H. Tanaka, J. Chem. Phys. 127, 044507 (2007)
163. T. Cosgrove, T.M. Obey, K. Ryan, Colloids Surf. 651, 1 (1992)
164. A. Vrij, Physica A. 235, 120 (1997)
165. G.A. Vliegenthart, H.N.W. Lekkerkerker, Prog. Colloid Polym. Sci. 105, 27 (1997)
166. E.H.A. de Hoog, H.N.W. Lekkerkerker, J. Phys. Chem. B. 103, 5274 (1999)
167. P. Van der Schoot, J. Phys. Chem. B. 103, 8804 (1999)
168. J.M. Brader, R. Evans, Europhys. Lett. 49, 678 (2000)
169. B.-H. Chen, B. Payandeh, M. Robert, Phys. Rev. E. 62, 2369 (2000)
170. E.H.A. de Hoog, H.N.W. Lekkerkerker, J. Schulz, G.H. Findenegg, J. Phys. Chem. B. 103,

10657 (1999)
171. E.H.A. de Hoog, H.N.W. Lekkerkerker, J. Phys. Chem. B. 105, 11636 (2001)
172. M. Dijkstra, Curr. Opin. Colloid Interface Sci. 4, 372 (2001)
173. P.G. Bolhuis, A. Stroobants, D. Frenkel, H.N.W. Lekkerkerker, J. Chem. Phys. 107, 1551

(1997)
174. A.A. Louis, P.G. Bolhuis, J.P. Hansen, E.J. Meijer, Phys. Rev. Lett. 85, 2522 (2000)
175. A. Moncho-Jorda, A.A. Louis, P.G. Bolhuis, R. Roth, J. Phys. Condens. Matter 15, S3429

(2003)
176. P.G. Bolhuis, A.A. Louis, J.P. Hansen, Phys. Rev. Lett. 89, 128302 (2002)
177. P.G. Bolhuis, E.J. Meijer, A.A. Louis, Phys. Rev. Lett. 90, 068304 (2003)
178. M. Dijkstra, R. van Roij, R. Roth, A. Fortini, Phys. Rev. E. 73, 041409 (2006)
179. A. Fortini, P.G. Bolhuis, M. Dijkstra, J. Chem. Phys. 128, 024904 (2008)
180. I. Bodnár, J.K.G. Dhont, H.N.W. Lekkerkerker, J. Phys. Chem. 100, 19614 (1994)
181. Y. Hennequin, M. Evens, C.M. Quezada Angulo, J.S. Van Duijneveldt, J. Chem. Phys. 123,

054906 (2005)
182. Z.X. Zhang, J.S. van Duijneveldt, J. Chem. Phys. 124, 154910 (2006)
183. Z.X. Zhang, J.S. van Duijneveldt, Langmuir 22, 63 (2006)
184. J.S. Van Duijneveldt, K. Mutch, J. Eastoe, Soft Matter 3, 155 (2007)
185. K.J. Mutch, J.S. van Duijneveldt, J. Eastoe, I. Grillo, R.K. Heenan, Langmuir 25, 3944

(2009)
186. R. Tuinier, J.K.G. Dhont, C.G. de Kruif, Langmuir 16, 1497 (2000)
187. P. Van der Schoot, Macromolecules. 31, 4635 (1998)
188. T. Kramer, S. Scholz, M. Maskros, K. Huber, J. Colloid Interface Sci. 279, 447 (2004)
189. T. Kramer, R. Schweins, K. Huber, J. Chem. Phys. 123, 014903 (2005)
190. T. Kramer, R. Schweins, K. Huber, Macromolecules. 38, 9783 (2005)
191. D. Wu, K. Hui, D. Chandler, J. Chem. Phys. 96, 835 (1991)
192. K.S. Schweizer, J.G. Curro, Adv. Polym. Sci. 116, 319 (1994)
193. M. Fuchs, K.S. Schweizer, Europhys. Lett. 51, 621 (2000)
194. M. Fuchs, K.S. Schweizer, Phys. Rev. E. 64, 021514 (2001)
195. M. Fuchs, K.S. Schweizer, J. Phys. Condens. Matter 14, R239 (2002)
196. S. Ramakrishnan, M. Fuchs, K.S. Schweizer, C.F. Zukoski, J. Chem. Phys. 116, 2201 (2002)
197. C.N. Likos, Phys. Rep. 348, 267 (2001)
198. P.G. Bolhuis, A.A. Louis, J.P. Hansen, E.J. Meijer, J. Chem. Phys. 114, 4296 (2001)
199. P.G. Bolhuis, A.A. Louis, J.P. Hansen, Phys. Rev. E. 6402, 021801 (2001)
200. P.G. Bolhuis, A.A. Louis, Macromolecules. 35, 1860 (2002)
201. A.A. Louis, P.G. Bolhuis, E.J. Meijer, J.-P. Hansen, J. Chem. Phys. 116, 10547 (2002)
202. A.A. Louis, P.G. Bolhuis, E.J. Meijer, J.-P. Hansen, J. Chem. Phys. 117, 1893 (2002)

54 1 Introduction



203. R. Evans, Adv. Phys. 28, 143 (1979)
204. Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989)
205. Y. Rosenfeld, J. Chem. Phys. 98, 8126 (1993)
206. R. Roth, R. Evans, S. Dietrich, Phys. Rev. E. 62, 62 (2000)
207. M. Schmidt, H. Löwen, J.M. Brader, R. Evans, Phys. Rev. Lett. 85, 1934 (2000)
208. M. Schmidt, H. Löwen, J.M. Brader, R. Evans, J. Phys. Condens. Matt. 14, 9353 (2002)
209. J. Dzubiella, C.N. Likos, H. Löwen, J. Chem. Phys. 116, 9518 (2002)
210. S.M. Oversteegen, R. Roth, J. Chem. Phys. 122, 214502 (2005)
211. R. Roth, R. Evans, Europhys. Lett. 53, 271 (2001)
212. J.M. Brader, R. Evans, M. Schmidt, Mol. Phys. 101, 3349 (2003)
213. W.C.K. Poon, F. Renth, R.M.L. Evans, D.J. Fairhurst, M.E. Cates, P.N. Pusey, Phys. Rev.

Lett. 83, 1239 (1999)
214. A. Moussaïd, W.C.K. Poon, P.N. Pusey, M.F. Soliva, Phys. Rev. Lett. 82, 225 (1999)
215. G.J. Fleer, R. Tuinier, Physica A. 379, 52 (2007)
216. B. Rotenberg, J. Dzubiella, J.-P. Hansen, A.A. Louis, Mol. Phys. 102, 1 (2004)
217. D.G.A.L. Aarts, R. Tuinier, H.N.W. Lekkerkerker, J. Phys. Condens. Matter 14, 7551

(2002)
218. G.J. Fleer, A.M. Skvortsov, R. Tuinier, Macromol. Theory Sim. 16, 531 (2007)
219. R. Tuinier, P.A. Smith, W.C.K. Poon, S.U. Egelhaaf, D.G.A.L. Aarts, H.N.W.

Lekkerkerker, G.J. Fleer, Europhys. Lett. 82, 68002 (2008)
220. G.J. Fleer, R. Tuinier, Adv. Colloid Interface Sci. 143, 1–47 (2008)
221. R. Tuinier, Eur. Phys. J. E. 10, 123 (2003)
222. P. Paricaud, S. Varga, G.J. Jackson, J. Chem. Phys. 118, 8525 (2003)
223. D.G.A.L. Aarts, R.P.A. Dullens, H.N.W. Lekkerkerker, New J. Phys. 7, 40 (2005)
224. D.G.A.L Aarts, J. Phys. Chem. B 109, 7407 (2005)
225. D.G.A.L Aarts, Soft Matter 3, 19 (2007)
226. J. Kuipers, E.M. Blokhuis, J. Colloid Interface Sci. 315, 270 (2007)
227. J. Buitenhuis, L.N. Donselaar, P.A. Buining, A. Stroobants, H.N.W. Lekkerkerker, J.

Colloid Interface Sci. 175, 46 (1995)
228. Z. Dogic, K.R. Purdy, E. Grelet, M. Adams, S. Fraden, Phys. Rev. E. 69, 051702 (2004)
229. F.M. Van der Kooij, M. Vogel, H.N.W. Lekkerkerker, Phys. Rev. E. 62, 5397 (2000)
230. C.P. Royall, R. Rice, To be published
231. L. Rossi, S. Sacanna, W.T.M. Irvine , P.M. Chaikin, D.J. Pine, A.P. Philipse, Soft Matter 7,

4139 (2011)
232. H.H. Wensink, G.J. Vroege, H.N.W. Lekkerkerker, J. Chem. Phys. 115, 7319 (2001)
233. H.H. Wensink, H.N.W. Lekkerkerker, Europhys. Lett. 66, 125 (2004)
234. L. Harnau, S. Dietrich, Phys. Rev. E 71, 011504 (2005)
235. S.M. Oversteegen, C. Vonk, J.E.G.J. Wijnhoven, H.N.W. Lekkerkerker, Phys. Rev. E 71,

041406 (2005)
236. A. Syrbe, W.K. Bauer, H. Kostermeyer, Int. Dairy J. 8, 179 (1998)
237. C.G. de Kruif, R. Tuinier, Food Hydrocolloids 15, 555 (2001)
238. A. Overbeek, F. Bückmann, E. Martin, P. Steenwinkel, T. Annable, Progr. Org. Coat. 48,

125 (2003)
239. D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M.

Zanella, R. Cingolani, L. Manna, Nano Lett. 10, 743 (2010)
240. S.B. Zimmerman, A.P. Minton, Annu. Rev. Biophys. Biomol. Struc. 22, 27 (1993)
241. A.P. Minton, Curr. Opin. Struct. Biol. 10, 34 (2000)
242. S.R. McGuffee, A.H. Elcock, PLoS Comp. Biol. 6, e1000694 (2010)
243. A.B. Fulton, Cell. 30, 345 (1982)
244. G.B. Ralston, J. Chem. Edu. 67, 857 (1990)
245. D.S. Goodsell, The Machinery of Life (Springer, New York, 1998)
246. K. Snoussi, B. Halle, Biophys. J. 88, 2855 (2005)
247. M.S. Cheung, D. Klimov, D. Thirumalai, PNAS. 102, 4753 (2005)
248. J. Herzfeld, Acc. Chem. Res. 29, 31 (1996)

References 55



249. R.J. Ellis, Curr. Opin. Struct. Biol. 11, 114 (2001)
250. R.J. Ellis, A.P. Minton, Nature 425, 27 (2003)
251. F.J. Iborra, Theor. Med. Mod. 4, 15 (2007)
252. J.A.C Valkenburg, C.L. Woldringh, J. Bacteriol. 160, 1151 (1984)
253. H. Walter, D.E. Brooks, FEBS Lett. 361, 135 (1995)
254. T. Odijk, Biophys. Chem. 73, 4635 (1998)
255. C.L. Woldringh, T. Odijk, in Organization of the Prokaryotic Genome, ed. by R.

L. Charlebois (ASM Press, Amsterdam, 1999)
256. B. Neu, H.J. Meiselman, Biochim. et Biophys. Acta. 1760, 1772 (2006)
257. P.C. Stenger, J.A. Zasadzinski, Biophys. J. 92, 3 (2007)
258. R. Tharmann, M.M.A.E. Claessens, A.R. Bausch, Biophys. J. 90, 2622 (2006)
259. J.D. Bernal, D. Crowfoot, Nature 133, 794 (1934)
260. J.C. Kendrew, G. Bodo, H.M. Dintzis, R.G. Parrish, H. Wyckoff, D.C. Phillips, Nature 181,

662 (1958)
261. M.F. Perutz, M.G. Rossmann, A.F. Cullis, H. Muirhead, G. Will, Nature 185, 416 (1960)
262. J. Drenth, Principles of Protein X-Ray Crystallography (Springer, Heidelberg, 2007)
263. A. McPherson, J. Cryst. Growth 110, 1 (1991)
264. A. McPherson, Methods 34, 254 (2004)
265. J. Drenth, J. Cryst. Growth. 90, 368 (1988)
266. M.L. Broide, C.R. Berland, J. Pande, O. Ogun, G.B. Benedek, PNAS. 88, 5660 (1991)
267. C.R. Berland, G.M. Thurston, M. Kondo, M.L. Broide, J. Pande, O. Ogun, G.B. Benedek,

PNAS. 89, 1214 (1992)
268. N. Asherie, A. Lomakin, G.B. Benedek, Phys. Rev. Lett. 77, 4832 (1996)
269. D. Rosenbaum, P.C. Zamora, C.F. Zukoski, Phys. Rev. Lett. 76, 150 (1996)
270. This could be considered as a contribution to the ‘Wiedergutmachung’ between colloid

science in the colloid/macromolecule controversy with protein chemistry, see C. Tanford
and J. Reynolds, Nature’s Robots (Oxford University Press, New York, 2001)

271. W.C.K. Poon, Phys. Rev. E. 55, 3762 (1997)
272. P.R. TenWolde, D. Frenkel, Science. 277, 1975 (1997)
273. M. Muschol, F. Rosenberger, J. Chem. Phys. 107, 1953 (1997)
274. C. Haas, J. Drenth, J. Cryst. Growth. 196, 388 (1999)
275. O. Galkin, P.G. Vekilov, PNAS. 97, 6277 (2000)
276. R. Piazza, Curr. Opinion Colloid Interface Sci. 5, 38 (2000)
277. S. Tanaka, M. Ataka, J. Chem. Phys 117, 3504 (2002)
278. see various papers in:. (2004) Curr. Opinion Colloid Interface Sci. 9:1–197
279. L.S. Li, J. Walda, L. Manna, A.P. Alivisatos, Nano Lett. 2, 557 (2002)
280. K. Park, H. Koerner, R.A. Vaia, Nano Lett. 10, 1433 (2010)
281. T.G. Mason, Phys. Rev. E. 66, 60402 (2002)
282. R. Piazza, S. Iacopini, M. Pierno, E. Vignati, J. Phys.: Condens Matter 14, 7563 (2002)
283. A.D. Dinsmore, A.G. Yodh, D.J. Pine, Nature 383, 239 (1996)
284. S. Sacanna, W.T.M. Irvine, P.M. Chaikin, D.J. Pine, Nature 464, 575 (2010)
285. M.J. Solomon, P.T. Spicer, Soft Matter 6, 1391 (2010)
286. S. Badaire, C. Cottin-Bizonne, J.W. Woody, A. Yang, A.D. Stroock, J. Am. Chem. Soc.

129, 40 (2007)
287. S. Badaire, C. Cottin-Bizonne, A.D. Stroock, Langmuir 24, 11451 (2008)
288. K. Zhao, T.G. Mason, Phys. Rev. Lett. 99, 268301 (2007)
289. R. Tuinier, T. Taniguchi, J. Phys. Condens. Matter 17, L9 (2005)
290. T.H. Lin, G.D.J. Phillies, J. Phys. Chem. 86, 4073 (1982)
291. G.S. Ullmann, K. Ullmann, R.M. Lindner, G.D.J. Phillies, J. Phys. Chem. 89, 692 (1985)
292. G.H. Koenderink, S. Sacanna, D.G.A.L. Aarts, A.P. Philipse, Phys. Rev. E. 69, 021804

(2004)
293. X. Ye, P. Tong, L.J. Fetters, Macromolecules 31, 5785 (1998)
294. T-H. Fan, J.K.G. Dhont, R. Tuinier, Phys. Rev. E. 75, 018803 (2007)
295. T-H. Fan, B. Xie, R. Tuinier, Phys. Rev. E. 76, 051405 (2007)

56 1 Introduction



Chapter 2
Depletion Interaction

In this chapter we consider the depletion interaction between two flat plates and
between two spherical colloidal particles for different depletants (polymers, small
colloidal spheres, rods and plates). First of all we focus on the depletion interaction
due to a somewhat hypothetical model depletant, the penetrable hard sphere (phs),
to mimic a (ideal) polymer molecule. This model, implicitly introduced by
Asakura and Oosawa [1] and considered in detail by Vrij [2], is characterized by
the fact that the spheres freely overlap each other but act as hard spheres with
diameter r when interacting with a wall or a colloidal particle. The thermody-
namic properties of a system of hard spheres plus added penetrable hard spheres
have been considered by Widom and Rowlinson [3] and provided much of the
inspiration for the theory of phase behavior developed in Chap. 3.

The depletion potential is a potential of mean force and, as stressed by Onsager
[4, 5], the system is considered at a given chemical potential of the solvent (and
other solution) components; the relevant pressure is the osmotic pressure.

2.1 Depletion Interaction Due to Penetrable Hard Spheres

2.1.1 Depletion Interaction Between Two Flat Plates

2.1.1.1 Interaction Potential Between Two Flat Plates Using the Force
Method

The force per unit area, KðhÞ, between two parallel plates separated by a distance
h, is the difference between the osmotic pressure Pi inside the plates and the
outside pressure Po

K ¼ Pi � Po ð2:1Þ

H. N. W. Lekkerkerker and R. Tuinier, Colloids and the Depletion Interaction,
Lecture Notes in Physics, 833, DOI: 10.1007/978-94-007-1223-2_2,
� Springer Science+Business Media B.V. 2011

57



Since the penetrable hard spheres behave thermodynamically ideally the osmotic
pressure outside the plates is given by the Van ’t Hoff law

Po ¼ nbkT ;

where nb is the bulk number density of the phs. When the plate separation h (see
Fig. 2.1) is equal to or larger than the diameter r of the penetrable hard spheres the
osmotic pressure inside the plates is the same as outside:

Pi ¼ Po ¼ nbkT :

On the other hand, when the plate separation is less than the diameter of the
penetrable hard spheres, no particles can enter the gap and

Pi ¼ 0:

This means that

KðhÞ ¼ �nbkT h\r

¼ 0 h� r:
ð2:2Þ

This is the classical result derived by Asakura and Oosawa [1] more than
50 years ago.

Since K ¼ �dW=dh, integration from 1 to h yields the interaction potential
per unit area WðhÞ between the plates

WðhÞ ¼ �nbkTðr� hÞ h\r

¼ 0 h� r:
ð2:3Þ

2.1.1.2 Interaction Potential Between Two Flat Plates Using the Extended
Gibbs Adsorption Equation

An alternative and insightful way to obtain the interaction potential is from the
extended Gibbs adsorption equation [6–8]. The natural thermodynamic potential to
describe the system depicted in Fig. 2.2 is the grand potential XðT ;V ; l; hÞ

K

σ

h

Fig. 2.1 Schematic picture
of two parallel flat plates in
the presence of penetrable
hard spheres (dashed circles)
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X ¼ F � lN; ð2:4Þ

where F ¼ FðT ;V;N; hÞ is the Helmholtz (free) energy, N the number of pene-
trable hard spheres in the system and l their chemical potential. At constant
temperature and volume we have dF ¼ l dN � KA dh, so dX is given by

dX ¼ �KA dh� N dl; ð2:5Þ
where K is again the force per unit area between the plates and A is the area of the
plates.

From cross-differentiating (2.5) we obtain

oK

ol

� �

h

¼ 1
A

oN

oh

� �

l

: ð2:6Þ

Combining this with

K ¼ � oW

oh

� �

l

ð2:7Þ

we obtain

� o

oh

oW

ol

� �

h

� �

l

¼ 1
A

oN

oh

� �

l

: ð2:8Þ

Since the depletion potential W vanishes at infinite separation for all values of the
chemical potential l of the depletion agent, integration over h gives

� oW

ol

� �

h

¼ N hð Þ � N 1ð Þ
A

; ð2:9Þ

where NðhÞ is the number of penetrable hard spheres in the system when the plates
are at separation h and Nð1Þ is that at infinite separation. The right-hand side of
(2.9) can be conveniently written in terms of the surface adsorption

� oW

ol

� �

h

¼ C hð Þ � C 1ð Þ; ð2:10Þ

ΙΙ

Ι

K

M

μ

h

Fig. 2.2 Illustration of the
(depletion) force between two
plates in the system of
interest (I) at given chemical
potential of the depletant in
the reservoir (II). The system
is connected to the reservoir
through a hypothetical
membrane M that allows
permeation of depletant
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where

C hð Þ ¼
Z

h

0

nðxÞ � nb½ �dx; ð2:11Þ

and

C 1ð Þ ¼ 2Csingle wall

¼ 2
Z

1

0

nðxÞ � nb½ �dx:
ð2:12Þ

In (2.12) nðxÞ refers to the polymer segment concentration profile near a single
wall whereas in (2.11) nðxÞ is the profile between two walls. Expression (2.10) is
the extension of the Gibbs adsorption equation for a single surface to the case of
two surfaces at finite separation [6–8]. Integration of (2.10) gives

W hð Þ ¼ �
Z

l

�1

C hð Þ � C 1ð Þ½ �dl: ð2:13Þ

The depletion thickness of penetrable hard spheres is r=2 and ACðhÞ equals the
overlap volume Aðr� hÞ times nb (see Fig. 2.3)

C hð Þ � C 1ð Þ ¼ nbðr� hÞ h\r
¼ 0 h� r:

ð2:14Þ

The chemical potential of the penetrable hard spheres is

l ¼ kT ln nb: ð2:15Þ

K

h

σ

σ−h

σ/2σ/2

Fig. 2.3 The overlap volume
(hatched area) of depletion
layers due to penetrable hard
spheres between two parallel
flat plates equals Aðr� hÞ
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Inserting (2.14) and (2.15) into (2.13) yields (again) the interaction potential given
by (2.3). The conceptual advantage of the calculation with the extended Gibbs
adsorption equation is that it provides a direct link between the depletion of
particles with the depletion potential, which is highly illuminating. The method
also offers advantages to obtain physically motivated approximate expressions for
the depletion interaction where an exact calculation is not possible.

2.1.2 Depletion Interaction Between Two Spheres

2.1.2.1 Interaction Potential Between Two Spheres
Using the Force Method

When the depletion zones with thickness r=2 around spherical colloidal particles
with radius R start to overlap, i.e., when the distance r between the centers of the
colloidal particles is smaller than 2Rþ r ¼ 2Rd, a net force arises between the
colloidal particles. For a convenient notation we defined an effective depletion
radius Rd [9]

Rd ¼ Rþ r=2: ð2:16Þ

This (attractive) force originates from an uncompensated (osmotic) pressure due to
the depletion of penetrable hard spheres from the gap between the colloidal particles.
This is depicted in Fig. 2.4 from which we immediately deduce that the uncom-
pensated pressure acts on the surface between h ¼ 0 and h0 ¼ arc cosðr=2RdÞ.

Pθ0

θ0

r

R

σ/2

σ

h

Fig. 2.4 Two hard spheres in the presence of penetrable hard spheres as depletants. The PHS
impose an unbalanced pressure P between the hard spheres resulting in an attractive force between
them. The overlap volume of depletion layers between the hard spheres (hatched) has the shape of
a lens with width r� h and height 2H ¼ 2Rd tan h0, where h0 is given by cos h0 ¼ r=2Rd
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For obvious symmetry reasons only the component along the line connecting
the centers of the colloidal spheres contributes to the total force. For the angle h
this component is P cos h where the pressure is P ¼ nbkT . The surface on which
this force acts between h and hþ dh equals 2pR2

d sin h dh: The total force between
the colloidal spheres is obtained by integration over h from 0 to h0

KsðrÞ
nbkT

¼ �2p Rþ r=2ð Þ2
Z

h0

0

sin h cos h dh

¼ �pR2
d 1� r=2Rdð Þ2
h i

2R� r\2Rd

¼ 0 r� 2Rd:

ð2:17Þ

This result was also obtained by Asakura and Oosawa [1]. The minus sign in the
right-hand side of (2.17) implies that the force is attractive.

Exercise
Show that (2.17) can also be written as the pressure times the area of the overlap of
the depletion zones (see Fig. 2.4).

The depletion potential is now obtained by integration of the depletion force
(2.17)

WsðrÞ ¼
R

2Rd

r
KsðrÞ dr

¼ �nbkTVovðrÞ 2R� r\2Rd

¼ 0 r� 2Rd;

ð2:18Þ

with

VovðrÞ ¼
4p
3

R3
d 1� 3

4
r

Rd
þ 1

16
r

Rd

� �3
" #

ð2:19aÞ

which can also be written as

VovðhÞ ¼
p
6
ðr� hÞ2 ð3Rþ rþ h=2Þ ð2:19bÞ

This result of (2.19a), in which r is the variable, was first obtained by Vrij [2].
In (2.19b) the variable is h and was already given (without explicit derivation) in
(1.22). Both (2.19a) and (2.19b) are frequently used in the literature. Note that
WsðrÞ in (2.18) is equal to pressure times the overlap volume Vov. The reason for
this simple form will become clearer after consideration of the interaction between
two spheres using the extended Gibbs equation. In the limit that r=2� R the force
(2.17) and potential (2.18) between the spheres take very simple forms:
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KsðhÞ
nbkT

¼ �pRðr� hÞ ð2:20Þ

and

WsðhÞ
nbkT

¼ �pR
1
2
ðr� hÞ2; ð2:21Þ

for separations h ¼ r � 2R smaller than r

Exercise
Derive (2.20) and (2.21) from (2.17) and (2.18).

2.1.2.2 Interaction Potential Between Two Spheres from the
Extended Gibbs Adsorption Equation

Applying exactly the same line of reasoning as for the derivation of the extended
Gibbs adsorption equation for two flat plates, see (2.9), we now obtain

� oWs

ol

� �

¼ NðrÞ � Nð1Þ; ð2:22Þ

where NðrÞ is the number of penetrable hard spheres in the system when the
colloidal spheres are at centre-to-centre separation r and Nð1Þ that at infinite
separation. Clearly, the difference between NðrÞ and Nð1Þ is caused by the
overlap of the depletion zones

NðrÞ � Nð1Þ ¼ nbVovðrÞ 2R� r\2Rd

¼ 0 r� 2Rd
ð2:23Þ

with Vov defined in (2.19a, b). Integration of (2.22) using (2.23) and (2.15)
immediately leads to the interaction potential (2.18). This route to the interaction
potential makes it clear why the overlap volume of the depletion zones appears.

2.1.3 Depletion Interaction Between a Sphere and a Plate

The force method and the extended Gibbs adsorption equation can also be applied
to obtain the depletion interaction between a sphere and a flat plate. For the Gibbs
adsorption route we use (again)

� oWsp

ol

� �

¼ NðhÞ � Nð1Þ; ð2:24Þ

where now NðhÞ is the number of penetrable hard spheres in the system when the
colloidal sphere is at a separation h from the plate and Nð1Þ is that at infinite
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separation. Again the difference between NðhÞ and Nð1Þ is caused by the overlap
of the depletion zones, now of the sphere and of the plate (see Fig. 2.5)

NðhÞ � Nð1Þ
nb

¼ VovðhÞ

¼ 1
3
pðr� hÞ2 3Rþ r

2
þ h

� �

0� h\r

¼ 0 h� r;

Integration of (2.24) now leads to

WspðhÞ
nbkT

¼ � 1
3
pðr� hÞ2 3Rþ r

2
þ h

� �

0� h\r

¼ 0 h� r:
ð2:25Þ

For R� r (2.25) simplifies to

WspðhÞ ¼ �nbkTpRðr� hÞ2 0� h\r; ð2:26Þ

which is twice (2.21).

2.1.4 Derjaguin Approximation

Some of the above results also follow directly from the so called Derjaguin
approximation. Derjaguin [10] showed that there exists a simple (approximate)
relation for the force between curved objects and the interaction potential between
two flat plates. In the Derjaguin approximation the spherical surface is replaced by
a collection of flat rings. Consider two spheres with radius R at a center-to-center

R

σ/2

σ

σ/2

Fig. 2.5 Illustration of the
overlap volume (hatched) of
depletion layers between a
hard wall and a hard sphere
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distance r ¼ 2Rþ h. The distance H between the sphere surfaces at a distance

z from the line joining the centers is H ¼ hþ 2D, where ðR� DÞ2 þ z2 ¼ R2 (see
Fig. 2.6). When the range of interaction is short it is sufficient to consider only
small values of h=R or z=R, see Fig. 2.7. For z� R we can write to a good
approximation D ¼ z2=2R. Hence H ¼ hþ z2=R and thus dH ¼ ð2z=RÞdz. The
interaction between two spheres can now be written as the sum (integral) of the
interactions of flat rings with radius z and surface 2pz dz at a distance H from each
other (see Fig. 2.7). Assuming that the interaction is sufficiently short-ranged, the
contribution of rings with high values of H may be neglected, and thus the inte-
gration may be extended to z ¼ 1. We obtain

WsðhÞ ¼
Z

1

0

WðHÞ2pz dz

¼ pR

Z

1

h

WðHÞ dH

ð2:27Þ

Δ Δh

R Rh

R−Δ

R

H

z

Fig. 2.6 Relevant length
scales (see text) for
describing the interaction
force between two big
spheres

R Rh

z

dz H

Fig. 2.7 Sketch of the
Derjaguin approximation to
the situation illustrated in
Fig. 2.6
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and hence

KsðhÞ ¼ �
oWsðhÞ

oh
¼ pRWðhÞ: ð2:28Þ

Here WðhÞis the interaction potential between two flat plates at distance h.
Clearly this approximate relation between the force for spheres and the inter-
action potential for plates is more accurate the larger the radius of the spheres
compared to the range of the interaction. In this chapter we shall frequently use
this Derjaguin approximation. It is a useful tool which, under the right conditions
(see above), is very accurate but one has to be careful and be aware of its
limitations.

With respect to the depletion interaction the Derjaguin approximation
becomes accurate when considering a depletion agent which is small compared
to the radius of the colloidal spheres. For example, applying the Derjaguin
approximation to (2.3), the case of penetrable hard spheres, using (2.28)
immediately leads to (2.20).

Applying the Derjaguin approximation to the interaction between a sphere and
a flat plate provides

KspðhÞ ¼ 2pRWðhÞ: ð2:29Þ

This is an important relation as it allows one to obtain the interaction potential
between two parallel plates from the measured force between a sphere and a wall
(see Sect. 2.6)

Exercise
Derive equation (2.29).

From (2.29) it follows that

WspðhÞ ¼ 2pR

Z

1

h

Wðh0Þdh0: ð2:30Þ

For the case of the penetrable hard sphere as depletion agent this leads to

WspðhÞ ¼ � nbkTpRðr� hÞ2 0� h\r

¼ 0 h� r
; ð2:31Þ

in agreement with (2.26).
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2.2 Depletion Interaction Due to Ideal Polymers

2.2.1 Depletion Interaction Between Two Flat Plates

2.2.1.1 Interaction Potential Between Two Flat Plates Using the Force
Method

The simplest model to describe polymers is the ideal-chain model. For books on
polymer physics where all the relevant background material can be found see [11–
19]. In this model the polymer consists of M subunits, each with a fixed bond
length b, and their orientation is completely independent of the orientation and
positions of previous monomers, even to the extent that two different monomers
can occupy the same position in space: there is no excluded volume. This model
plays the same role in polymer physics as an ideal gas in molecular physics. It
allows to describe the polymer chain as a (Gaussian) random walk of M steps, as
depicted in Fig. 2.8.

The average value hRi of the end-to-end vector R joining one end of the
polymer to the other is zero, as ‘negative’ steps have the same probability as
‘positive’ ones. Mathematically, the probability of the end-to-end vector being R is
the same as it being—R so that, for symmetry reasons, the two contributions
cancel in the average. A straightforward calculation (see any of the references [11–
14, 17, 19]) shows that R2

� �

, the average of the square of R is given by

R2
� �

¼ Mb2: ð2:32Þ

This quantity is a measure of the size of the polymer chain. We see that the size
of the ideal polymer chain, being proportional to

ffiffiffiffiffi

M
p

, is much smaller than the
total unfolded contour length Mb of the polymer.

Another commonly used and convenient quantity to describe the size of a
polymer is the radius of gyration Rg, the root-mean-square of the average mono-
mer position from the center of mass which becomes

R2
g ¼

1
6

Mb2: ð2:33Þ

b

r1

r2

R

rM

Fig. 2.8 Sketch of a random
walk chain consisting of
monomers with length b. For
any given walk the end-to-
end vector R ¼

P

ri
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The result Rg ¼ b
ffiffiffiffiffiffiffiffiffi

M=6
p

holds for a Gaussian chain in the bulk solution.
We now consider an ideal Gaussian chain confined between two (large) flat

plates with area A at a plate separation h, see Fig. 2.9.
For the computation of segment density profiles in polymer solutions near

interfaces one can use the fact that there is a close analogy between the diffusion of
a Brownian particle and the flight of a random walk [20, 21]. A diffusion-like
equation can be derived to evaluate the partition function of polymer chains. Given
the boundary condition this ‘diffusion’ equation can be solved. The partition
function zðhÞ of one confined chain is given by [1, 22, 23]

zðhÞ ¼ VvðhÞ; ð2:34Þ
where V ¼ A � h is the volume of the system and

vðhÞ ¼ 8
p2

X

n¼1;3;5;...

1
n2

exp�
n2p2R2

g

h2
: ð2:35Þ

For a derivation of the above expression see for instance [24] or Chap. 2 in [14].
Note that since

X

n¼1;3;5;...

1
n2
¼ p2

8

clearly

0� vðhÞ� 1: ð2:36Þ

Exercise
Show that (2.35) can be approximated as [25]

vðhÞ ¼ 8
p2

e�p2R2
g=h2

0� h� 8Rg
ffiffiffi

p
p

¼ 1� 4Rg

h
ffiffiffi

p
p ; h [

8Rg
ffiffiffi

p
p :

ð2:37Þ

h

Fig. 2.9 An ideal chain
confined between two parallel
flat plates
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Since the ideal chains do not interact the partition function for N confined
chains can be written as

ZðhÞ ¼ zðhÞN

N!
: ð2:38Þ

The Helmholtz energy is given by

FðhÞ ¼ �kT ln ZðhÞ: ð2:39Þ

Hence the result

FðhÞ ¼ NkT ln
N

V

� �

� 1� ln vðhÞ
	 


ð2:40Þ

is obtained after insertion of (2.38). This free energy can be written as

FðhÞ ¼ Funconfined � TDSðhÞ; ð2:41Þ

where DSðhÞ is the entropy of confinement:

DSðhÞ ¼ NDsðhÞ ¼ Nk ln vðhÞ: ð2:42Þ

From (2.36) it follows that the confinement entropy is negative, as expected,
because confinement leads to a decrease of the entropy. From the free energy
(2.39) we obtain for the pressure of the chains inside the plates

Pi ¼ �
oF

oV

� �

¼ kT ni 1þ h

v
ov
oh

	 


ð2:43Þ

where ni ¼ N=Vð Þi is the number density of the ideal chains between the plates.
The first term kT ni corresponds to the Van ’t Hoff law. Likewise, the pressure of
the ideal chains outside the plates is given by

Po ¼ nbkT ; ð2:44Þ

where nb is the bulk number density of the polymer chains. Using Einstein fluc-
tuation theory [26, 27] it follows immediately that

ni ¼ eDs=k nb

¼ vnb:
ð2:45Þ

Exercise
Derive (2.45) by using the equality of the chemical potential of the ideal chains
inside and outside the plates li ¼ lo.

Combining (2.1), (2.43), (2.44), and (2.45) we find for the force per unit area,
KðhÞ, between the plates
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KðhÞ ¼ Pi � Po

¼ �nbkT 1� v� h
ov
oh

	 


: ð2:46Þ

Again this result was first derived by Asakura and Oosawa [1]. Integration of
(2.46) yields the interaction potential per unit area WðhÞ between the plates [28]

WðhÞ ¼ �nbkT
4Rg
ffiffiffi

p
p � hþ hvðhÞ
	 


: ð2:47Þ

Here we have used that

lim
h!1
½h� hvðhÞ� ¼ 4Rg

ffiffiffi

p
p ð2:48Þ

according to (2.37). Comparing (2.47) with the interaction potential (2.3) between
flat plates due to penetrable hard spheres we find that the contact potentials (h ¼ 0)
match if we take r ¼ 4Rg=

ffiffiffi

p
p
¼ 2:26Rg. A plot of the two potentials is given in

Fig. 2.10. For small h, where vðhÞ is negligible, the two potentials coincide: this is
in the region 0\h\3Rg=2. For h [ 2Rg the two potentials deviate because the
discontinuous behaviour of (2.3) is replaced by the smooth crossover of (2.47). In
the transition region ideal polymers have a longer range of attraction than pene-
trable hard spheres. Eisenriegler [29] has shown that (2.47) is identical to (2.3)
(with r ¼ 4Rg=

ffiffiffi

p
p

) up to and including terms of order h4.

2.2.1.2 Interaction Potential Between Two Flat Plates
from the Extended Gibbs Equation

From (2.45) and (2.11) it follows that

CðhÞ ¼ niðhÞ � nb½ �h ¼ nb½vðhÞh� h� ð2:49Þ

Fig. 2.10 Depletion
potential WðhÞ between two
parallel flat plates caused by
non-adsorbing ideal chains
(solid curve). The dotted lines
give WðhÞ according to (2.3)
with r ¼ 4Rg=

ffiffiffi

p
p
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and hence, in view of (2.48)

Cð1Þ ¼ �nb
4Rg
ffiffiffi

p
p : ð2:50Þ

Substituting (2.49) and (2.50) in (2.13) and using the fact that ideal chains show
ideal thermodynamic behaviour, i.e.,

l ¼ kT ln nb;

we obtain for the interaction potential per unit area WðhÞ between two plates again
the result given by (2.47). While the above thermodynamic route to the calculation
of the adsorption is very efficient (as thermodynamics always is!) it is instructive
(and useful for future reference) to consider the calculation of C starting from the
polymer segment concentration profile uðxÞ near a single flat plate (with bulk
concentration ub) and between two flat plates. Eisenriegler [30], and later Marques
and Joanny [31], calculated the polymer concentration near one flat plate for ideal
Gaussian ðM � 1Þ chains and found the following expression for the relative
polymer segment concentration f ðxÞ ¼ uðxÞ=ub:

f ðxÞ ¼ 2wðzÞ � wð2zÞ; ð2:51Þ

with

wðzÞ ¼ erfðzÞ þ 2z
ffiffiffi

p
p e�z2 � 2z2erfcðzÞ; ð2:52Þ

where z is defined as x=ð2RgÞ and x is the distance from the surface. The (Gauss)
error function erfðyÞ is defined as

erfðyÞ ¼ 2
ffiffiffi

p
p
Z

y

0

e�t2
dt;

and the complimentary error function erfcðyÞ ¼ 1� erfðyÞ.
One can characterize the negative adsorption by the depletion layer thickness d,

which is defined as

d ¼
Z

1

0

dxð1� f ðxÞÞ: ð2:53Þ

For the case of ideal polymer chains near a flat plate with the profile (2.51),
we find

d ¼ 2Rg
ffiffiffi

p
p : ð2:54Þ

This is in full agreement with (2.50) as Cð1Þ ¼ 2Csingle wall ¼ �nb2d.
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Exercise
Derive d ¼ 2Rg=

ffiffiffi

p
p

for ideal chains starting from its definition (2.53) and using
the profile (2.51).

A simple approximation for the rather involved (2.51) is [28, 32]

f ðxÞ ¼ tanh2 x

d

� �

ð2:55Þ

with d given by (2.54).
In Fig. 2.11 we depict the concentration profile of an ideal polymer near a flat

wall and its replacement by a step profile with width d ¼ 2Rg=
ffiffiffi

p
p

(dashed). The
simple approximation (2.55) reproduces the exact result within an accuracy of 1%.

Exercise
Show that the profile f ðxÞ ¼ tanh2ðx=dÞ has a depletion thickness d.

For the concentration profile between two flat plates separated by a distance h
the following product function approximation has been proposed [28]

uðxÞ
ub
¼ f ðxÞf ðh� xÞ: ð2:56Þ

In (2.56), uðxÞ is the polymer segment concentration between the plates and f ðxÞ
and f ðh� xÞ are the individual one plate profiles given by (2.51) or, more simply
by (2.55). The concentration near a single plate, say plate 1, can be expressed by a
Boltzmann factor as f ðxÞ ¼ exp½�WwallðxÞ=kT �, where WwallðxÞ is the free energy
giving rise to the profile. For the second plate, located at a distance h, we can then
write f ðh� xÞ ¼ exp½�Wwallðh� xÞ=kT �. Subsequently, the product function
(2.56) follows from the superposition approximation:

Wwall;totðxÞ ¼ WwallðxÞ þWwallðh� xÞ;

Fig. 2.11 Relative segment
concentration of ideal chain
segments (2.51) as a function
of the distance from a flat
plate (solid curve). Dashed
lines represent the step
function profile and the
dotted curve is the
approximation of (2.55)
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which is expected to work well for sufficiently large h=Rg. This is indeed sup-
ported by computer simulations [28], see the comparison in Fig. 2.12. For
h=Rg\3, the product function overestimates the segment concentration between
the plates. In such narrow slits the configurations of an ideal chain are then affected
by both walls, which is not accounted for by the superposition approximation.
While the relative deviation of the production function is largest for small plate
separation h, for these distances CðhÞ ! 0 and hence the absolute error is small.
The resulting adsorption is plotted in Fig. 2.13 (dashed curve). The exact result
from (2.49) (with (2.35) for vðhÞ) is plotted as the solid curve. We conclude
therefore that the product function gives overall a good prediction for the
adsorption and we will use it to calculate the depletion interaction between two
spheres due to ideal polymers using the extended Gibbs adsorption equation.

Fig. 2.13 (Negative)
adsorption of ideal chains
between two walls as a
function of the distance
between the walls. Exact
result: solid curve. Product
function approximation:
dashed curve

Fig. 2.12 Segment
concentrations between two
flat plates. Monte Carlo
simulations with ideal chains
of 100 segments for h=Rg ¼
24:5 (open circles), 5.88
(closed squares), and 3.42
(open triangles) are
compared with (2.56) as solid
curves
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2.2.2 Interaction Between Two Spheres

2.2.2.1 Interaction Between Two Spheres from the Derjaguin Approximation

Using the Derjaguin approximation (2.27) for the force between two spheres the
interaction potential between the spheres can be obtained from

Ws ¼ pR

Z

1

h

Wðh0Þdh0; ð2:57Þ

where WðhÞ is the interaction potential per unit area between flat plates (2.47). The
result for q ¼ 0:01 is plotted in Fig. 2.14. Eisenriegler [29] obtained the following
analytical expression

WsðhÞ ¼ �nbkTRR2
g 4p ln 2� 4

ffiffiffi

p
p h

Rg
þ p

2
h2

R2
g

 !

ð2:58Þ

for small values of h valid up to and including terms of order h4. This equation
matches the numerical results for R=Rg ¼ 100 presented in Fig. 2.14 very closely
for h\ð3=2ÞRg, see [28, 29].

Comparing the expression (2.21) for penetrable hard spheres and (2.58) for
ideal chains reveals that we match the contact potentials for

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8 lnð2Þ
p

Rg

The result r ¼ 2:35Rg agrees closely (within 5%) with the value r ¼
4Rg=

ffiffiffi

p
p
¼ 2:26Rg for flat plates. Hence in the limit R� Rg ideal polymers

behave almost as penetrable hard spheres with a diameter r ’ 2Rg, just as for
ideal chains between flat plates. In the next section we will see that this picture
changes when R.Rg.

Fig. 2.14 Interaction
potential between two big
hard spheres as a function of
the closest distance between
the surfaces of the spheres
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2.2.2.2 Interaction Potential Between Two Spheres from
the Extended Gibbs Equation

The limitation of the Derjaguin approximation is that it only provides reliable
results for R�Rg. To obtain results for the interaction potential between spheres
for arbitrary q ¼ Rg=R we use the extended Gibbs adsorption equation. Taniguchi
et al. [33] and, independently, Eisenriegler et al. [34] found the concentration
profile of Gaussian ideal polymer chains around a single hard sphere with radius R
which reads

fsðxÞ ¼
x

R

� �2
þ2

x

R

� �

wðzÞ þ f ðxÞ
x

R
þ 1

� �2 ; ð2:59Þ

where z again equals x=2Rg and x is now the distance from the surface of the
sphere; the functions f ðxÞ and wðzÞ are defined in (2.51) and (2.52). A simpler, yet
accurate, form of (2.59) is [32]

fsðxÞ ¼
x

R
þ tanhðx=dÞ

x

R
þ 1

0

B

@

1

C

A

2

: ð2:60Þ

For various ratios of q ¼ Rg=R we plotted the profiles fsðxÞ in Fig. 2.15. For
R� Rg, the Odijk [35] result

fsðxÞ ¼
x

xþ R

� �2

is recovered, which is independent of the polymer length scale. For large hard
sphere radii ðq ¼ 0:1Þ we see that the sphere profile approaches that of a flat plate.

fs(x)
Fig. 2.15 Relative ideal
chain segment concentrations
at a wall and at a sphere for
q ¼ 0:1, q ¼ 1, and q ¼ 10
according to (2.59). With
increasing q the profile shifts
closer to the surface
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However, for Rg=R ¼ 1 the depletion layer thickness already becomes signifi-
cantly smaller than 2Rg=

ffiffiffi

p
p

and it further decreases with increasing q.

Exercise
(a) Show that in the limit R� Rg the expression (2.59) for the profile around

spheres becomes equal to the expression (2.51) for the profile at a flat plate.
(b) Give a physical argument why the concentration profile shifts towards the

particle surface when Rg=R increases.

Starting from (2.59) we can obtain an analytical expression for the depletion
thickness around a sphere ds, which is now defined by

4p
3
ðRþ dsÞ3 � R3
h i

¼
Z

1

0

4pðRþ xÞ2 1� fsðxÞð Þdx: ð2:61Þ

After carrying out the integration of the right-hand side of (2.61) we obtain
[36, 37]

ds

Rg
¼ 1þ 6q

ffiffiffi

p
p þ 3q2

� �1=3

�1

" #

=q: ð2:62Þ

Note that in the limit q! 0, (2.62) yields, as expected, the flat plate result
ds=Rg ¼ 2=

ffiffiffi

p
p

. The result in (2.62) holds for Gaussian ideal chains, implying the
segment size b is smaller than all other length scales, Rg and R. For freely-jointed
ideal chains the depletion thickness also depends on the size ratio b=R for
R. 50b [38].

Exercise
(a) Show that in the limit R� Rg (and hence R� ds) expression (2.61) for ds

reduces to the flat plate equation (2.53) for ds.
(b) Carry out the integrations in (2.61) and show that the result for d is given

by (2.62).

The result for the relative depletion thickness d=Rg as a function of the size
ratio q ¼ Rg=R is plotted in Fig. 2.16.

We showed in Sect. 2.2.1 that the product function (2.56) describes the polymer
concentration profile between two flat plates quite well. Here we apply the product
function Ansatz to calculate the concentration profile around two spheres. We
assume that the local polymer concentration nsðrÞ in every point P (see Fig. 2.17)
outside the spheres is given by

nsðrÞ
nb
¼ fsðx1Þfsðx2Þ; ð2:63Þ
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where fsðxiÞ is the polymer concentration profile around a sphere given by (2.59)
with xi the closest distance to the surface of the sphere (see Fig. 2.17). The
interaction between two spheres can now be calculated from (2.22), which for
ideal chains becomes

WsðhÞ
kT

¼ NðhÞ � Nð1Þ; ð2:64Þ

where NðhÞ is the number of polymer molecules in the system when the colloidal
particles are at a distance h (see Fig. 2.17) and Nð1Þ that when the colloidal
particles are infinitely far apart. The quantity NðhÞ can be calculated numerically
from

NðhÞ ¼
Z

dr nsðrÞ ð2:65Þ

1

2

h

R

x 1 P

x 2

Fig. 2.17 Schematic picture
of the geometry of two
spheres separated by a
distance h

Fig. 2.16 Depletion
thickness of ideal chains at a
sphere ðd ¼ 3Þ as a function
of the size ratio q ¼ Rg=a.
For comparison the flat wall
case ðd ¼ 1Þ is given as
straight solid line
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using the profile function (2.63) and obviously

Nð1Þ ¼ nb V � 2
4p
3
ðRþ dsÞ3

� �

:

The result for q ¼ 0:01 is plotted in Fig. 2.18 (dashed curve). We normalised
the interaction curve by dividing by the absolute value at contact. The depth of the
interaction at contact can be computed and it is first compared to the result
Wsð0Þ=kT ¼ �4pRR2

g lnð2Þ that follows from applying the Derjaguin approxima-

tion. We find a numerical value for Wsð0Þ=kT of �4pRR2
gð0:76Þ, which is close. In

Fig. 2.19 we plot the results for different values of the size ratio q. We observe that
the range of the interaction becomes smaller with decreasing colloid radius R in
agreement with the decrease of the depletion thickness ds with decreasing colloid
radius. In fact, by replacing in (2.18) r=2 by ds given by (2.62) we obtain inter-
action curves in good agreement with the results presented in Fig. 2.19 obtained
from the extended Gibbs adsorption equation using the product function (2.63).

Fig. 2.19 Depletion
potential as a function of the
closest distance between the
sphere surfaces for four size
ratios R=Rg ¼ 10 (solid), 3
(dashed), 1 (dotted-dashed),
and 0.3 (dotted)

Fig. 2.18 Interaction
potential between two
spheres for R=Rg ¼ 100.
Dashed curve: (2.64) using
(2.63). Solid curve: (2.58)
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This brings us to the conclusion that as far as the depletion interaction is
concerned ideal polymer chains to a good approximation can be replaced by
penetrable hard spheres with a diameter r ¼ 2ds, where the depletion thickness ds

now depends on the size ratio q ¼ Rg=R. In dilute polymer solutions the ideal
chain description suffices to describe depletion effects. In Chap. 4 we shall see that
for polymers with excluded volume the depletion thickness not only depends on
the size ration q but also on the polymer concentration, see also [36, 39–41]. Also
the (osmotic) pressure is no longer given by the ideal (Van ’t Hoff) expression.
Both features significantly affect depletion effects.

2.3 Depletion Interaction Due to Colloid Hard Spheres

2.3.1 Concentration Profiles Near a Hard Wall
and Between Two Hard Walls

We now consider the depletion interaction due to (small) colloidal hard spheres
with diameter r. At very low concentration, where we may neglect the interaction
between the spheres so the system can considered to be thermodynamically ideal,
the results for the depletion interaction are identical to those for penetrable hard
spheres. At higher concentrations, say at volume fractions larger than a few per-
cent, the interactions between the spheres cannot be neglected. This has two
important consequences for the depletion interaction. First of all the pressure and
chemical potential are no longer given by the ideal expressions. The corrections to
ideal behaviour can be written in terms of the virial series (see textbooks on
statistical thermodynamics, e.g., Hill [42] or Widom [43]):

P

nbkT
¼ 1þ B2nb þ � � � ð2:66Þ

l
kT
¼ ln nb þ 2B2nb þ � � � ð2:67Þ

Now nb is the bulk concentration of (small) hard spheres. The quantity B2 is the
second osmotic virial coefficient

B2 ¼
2pr3

3
¼ 4v0; ð2:68Þ

where v0 ¼ pr3=6 is the volume of a hard sphere. Secondly, the interactions
between the particles among themselves and with a wall leads to a concentration
profile near the wall. Obviously, in a layer at the wall with thickness r=2 no
centers of the hard spheres can penetrate. In the case of penetrable hard spheres the
concentration takes on the bulk value nb outside the depletion layer. However, in
the case of hard spheres the interactions lead to an effective attraction between a
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sphere and the wall and the concentration profile at distance x ¼ r=2þ y from the
wall can be written as

nðxÞ ¼ nb exp �WwallðxÞ=kT½ �; ð2:69Þ

where WwallðxÞ is the effective interaction between the hard sphere and the wall. In
fact this is the potential of mean force between the sphere and the wall due to the
other hard spheres. To lowest order in density we can write

WwallðxÞ ¼ �nbkTmðyÞ ð2:70Þ

where mðyÞ is the overlap volume of the depletion zone around the sphere and the
depletion layer of the wall depicted in Fig. 2.20,

mðyÞ ¼ p
3

2r3 � 3r2yþ y3
� �

0� y� r: ð2:71Þ

or

nbmðyÞ ¼ / 4� 6
y

r
þ 2

y3

r3

� �

0� y� r: ð2:72Þ

Here / ¼ nbpr3=6 is the volume fraction of the (small) spheres.
From (2.69–2.71) we obtain the lowest order in density nðxÞ

nðxÞ
nb
¼ 0 0� x\r=2

¼ 1þ nbmðyÞ r=2� x� 3r=2
ð2:73Þ

This profile of hard spheres at a single wall to order n2
b is depicted in Fig. 2.21.

We see that in addition to the depletion layer there is also an ‘accumulation’ layer,
where nðxÞ[ nb. The hard spheres located close to the depletion layer tend to
‘push’ one another into the layer next to the excluded depletion layer resulting in
the accumulation. As we will see later this layer has important consequences for
the depletion interaction. The concentration profile at a single wall to order n3

b was
calculated by Fisher [44].

σ/2

σ/2

σ/2

x

Fig. 2.20 Overlap volume
(hatched) between a hard
wall and a hard sphere
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For the calculation of the depletion interaction due to hard spheres we need the
concentration profile between two confining walls. This problem was treated
analytically by Glandt [45] and by Antonchenko et al. [46] using Monte Carlo
computer simulations. Like for a single wall we present the calculation of the
concentration profile between two confining walls to order n2

b. For h\r, no
spheres can penetrate between the walls and hence the concentration is zero. For
r� h� 2r, the depletion zone of a sphere overlaps with the depletion zones of
both walls (see Fig. 2.22) and we can write

nðxÞ
nb
¼ 1þ nbmðyÞ þ nbmðh� r� yÞ 0� y� h� r; ð2:74Þ

with nbm defined in (2.72).

Fig. 2.21 Density profile
nðxÞ of hard spheres with / ¼
0:1 as a function of the
distance from the wall x
(2.73)

σ/2

σ/2

σ/2 σ/2

h

Fig. 2.22 A sphere between
two walls. Hatched areas are
the overlap volume between
the hard sphere and the hard
walls
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The profile of hard spheres between two confining walls to order n2
b for

r� h� 2r is depicted in Fig. 2.23. For h [ 2r there is no longer simultaneous
overlap of the depletion layer of a sphere with the depletion layers of the confining
walls. The profile then simply is the sum of the profiles of the two separate walls;
there is no depletion-induced attraction.

2.3.2 Depletion Interaction Between Two Flat Plates

2.3.2.1 Interaction Potential Between Two Flat Plates from
the Force Method

We follow the work of Mao et al. [47]. The same results as presented here were
obtained earlier by Walz and Sharma [48] using a somewhat different method. The
starting point for our treatment is a result by Henderson [49] that the force per unit
area between two parallel hard plates immersed in a suspension of hard spheres is
given by

K ¼ Pi � Po ¼ kTðni � noÞ; ð2:75Þ

where ni and no are the contact densities of the hard spheres inside and outside the
plates. A contact density is ensemble-averaged the density at the surface. This
result can be explained as follows. The particle velocities are separable degrees of
freedom and therefore always obey the Maxwell–Boltzmann distribution. The
force per unit area on a hard plate is therefore given rigorously by elementary
kinetic theory as [50]

P ¼ n	kT ; ð2:76Þ

Fig. 2.23 Density profile of
hard spheres between two
hard walls for h ¼ 7r=4 and
/ ¼ 0:1
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where n	 is the number density of particles at a distance corresponding to the point
of impact (the position at which a particle hits the surface). This is, of course, the
contact density. This argument applies whenever there is a hard interaction
between the particles and the plate [50]. The generality of (2.75) will also be
exploited in Sects. 2.4 and 2.5, where we consider the depletion interaction due to
hard rods and hard disks. Up to order n2

b we find from (2.73) that

Po

kT
¼ no ¼ nb½1þ nbmð0Þ�

¼ nb 1þ nb
2pr3

3

	 


;

ð2:77Þ

or, in terms of /,

Pov0

kT
¼ /þ 4/2: ð2:78Þ

This is in agreement with the virial series (2.66) using the second virial coefficient
(2.68). Between the plates we find

Pi

kT
¼ 0 0� h\r

¼ nb 1þ nbmð0Þ þ nbmðh� rÞ½ � r� h\2r

¼ nb½1þ nbmð0Þ� h� 2r

ð2:79Þ

Hence

KðhÞ
nbkT

¼ �1� 4/ 0� h\r

¼ / 4� 6kþ 2k3
 �

r� h\2r

¼ 0 h� 2r

ð2:80Þ

where k ¼ ðh� rÞ=r, which runs from 0 at h ¼ r to 1 at h ¼ 2r.
The depletion force depicted in Fig. 2.24 jumps from negative (attractive) at

h ¼ r� to positive (repulsive) at h ¼ rþ. The key idea behind the origin of the
repulsive part of the depletion force is that for small k the mutual repulsion of
spheres is substantially reduced due to the fact that the excluded volumes of the
spheres are hidden behind the depletion zones of the walls. In the limit h ¼ rþ, the
spheres behave effectively thermodynamically ideal. To match the chemical
potential (2.67) of the spheres in the bulk the number density inside the gap must be

ni ¼ nb 1þ 2B2nb½ �; ð2:81Þ

and hence for h ¼ rþ

Pi ¼ kTnb½1þ 2B2nb�; ð2:82Þ
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giving rise to a maximum repulsive depletion force

Kmaxðh ¼ rþÞ ¼ Pi � Po

¼ 44kTnb/
ð2:83Þ

Exercise
Derive (2.81)

Integrating the force (2.80) yields the interaction potential per unit area WðhÞ
between the plates

WðhÞ
kTnb

¼ r kþ 3
2
/þ 4k/

� �

0� h\r

¼ r/
3
2
� 4kþ 3k2 � 1

2
k4

� �

r� h\2r

¼ 0 h� 2r

ð2:84Þ

In Fig. 2.25 we present the interaction potential which has a significant
attraction at small separation distance h, but also has a repulsive part of the
potential.

Exercise
(a) Explain why, whereas the force K has a discontinuity at h ¼ r, the interaction

potential W is continuous at that point.
(b) Why is the interaction potential still repulsive for h just below r, while the

force is attractive?

Fig. 2.24 Depletion force
between two hard plates due
to small hard spheres
ð/ ¼ 0:1Þ
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2.3.2.2 Interaction Potential Between Two Flat Plates from
the Extended Gibbs Equation

From the depletion layer with thickness r=2 and concentration profile (2.73) it
follows that the adsorption on a single plate is given by

Csingle wall ¼ �
r
2

nb þ n2
b

Z

r

0

mðxÞdx

¼ � r
2

nb þ n2
b

p
4

r4

ð2:85Þ

Hence

Cð1Þ ¼ 2Csingle wall

¼ �rnb þ n2
b

p
2

r4

¼ rnbð3/� 1Þ

ð2:86Þ

For two confining walls it is clear that for h\r no spheres can penetrate the gap
between the walls. Hence

CðhÞ ¼ rnbð3/� 1Þ ð2:87Þ

Using the concentration profile (2.74) we obtain for r� h\2r

CðhÞ ¼ �rnb þ n2
b

Z

h�r

0

mðxÞ þ mðh� r� xÞ½ �dx

¼ �rnb þ
2p
3

n2
br

4 2k� 3
2

k2 þ 1
4
k4

	 


ð2:88Þ

Fig. 2.25 Interaction
potential between two hard
plates due to small hard
spheres ð/ ¼ 0:1Þ
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or

CðhÞ
nbr
¼ / 8k� 6k2 þ k4
 �

� 1 ð2:89Þ

For h� 2r

CðhÞ ¼ Cð1Þ: ð2:90Þ

Combining (2.86–2.90) gives

CðhÞ � Cð1Þ
nbr

¼ 1� h

r
� 3/; 0� h\r

¼ �/ 3� 8kþ 6k2 � k4
 �

; r� h\2r

¼ 0; h� 2r ð2:91Þ

Taking into account that the chemical potential is now given by (2.67) we
obtain from (2.13)

WðhÞ ¼ �kT

Z

nb

0

CðhÞ � Cð1Þ½ � 1
nb
þ 2B2

	 


dnb: ð2:92Þ

Substituting (2.91) in (2.92) after some algebra yields (2.84). Note that in all cases
considered so far (penetrable hard spheres, polymers) the quantity ½CðhÞ � Cð1Þ�
was always positive (or zero) for all values for h. Here we see that due to accu-
mulation effects in the concentration profiles ½CðhÞ � Cð1Þ� is negative for a
certain range of h values. This leads to a positive interaction energy as is clear
from (2.92).

Such a repulsive contribution to the depletion interaction originates from
excluded volume interactions between the depletants; in case of ideal polymers
and penetrable hard spheres it is absent. One might expect accumulation effects
also in the case of interacting polymers. From Monte Carlo simulation studies [51]
and numerical self-consistent field computations [52, 53] it follows that interacting
polymers do contribute to repulsive depletion interactions but with a strength of
the repulsion that is nearly imperceptible.

2.3.3 Depletion Interaction Between Two (Big) Spheres

Using the Derjaguin approximation (2.27) we obtain the interaction between two
big spheres due to the small spheres by integration:

WsðhÞ ¼ pR

Z

2r

h

Wðh0Þdh0: ð2:93Þ
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Using (2.84) for the interaction potential per unit area in (2.93) we obtain

WsðhÞ
kT

¼ �R

r
3/k2 � /2ð12� 45k� 60k2Þ

 �

0� h\r

¼ R/2

5r
12� 45kþ 60k2 � 30k3 þ 3k5
 �

r� h\2r

¼ 0 h� 2r; ð2:94Þ

which has a positive maximum value of

Ws;max

kT
¼ 12R

5r
/2 at h ¼ r 1� 3

2
/

� �

;

and a minimum value at contact

Ws;min

kT
¼ �3

R

r
/þ 1

5
/2

� �

: ð2:95Þ

In Fig. 2.26 we present the interaction potential between spheres (valid up to n2
b or,

equivalently, up to /2). In [47] results are presented for the interaction valid up to n3
b

including a comparison with the computer simulation results of Biben et al. [54].

Exercise
(a) Derive the interaction potential between spheres (2.94) from the extended

Gibbs adsorption equation in the limit R� r (as is implicit when using the
Derjaguin approximation).

(b) Show that (2.94) in the limit of first order / equals (2.21).

Fig. 2.26 Depletion
potential between two hard
spheres ðR ¼ 5rÞ mediated
by small hard spheres with
/ ¼ 0:1
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2.4 Depletion Interaction Due to Colloidal Hard Rods

Asakura and Oosawa [1, 55] already recognized that rod-like macromolecules are
very efficient depletion agents. In retrospect the observations of Fåhraeus [56] that
the rod-like protein fibrinogen has, on a weight basis, the strongest effect on the
aggregation of red blood cells can be understood on the basis of its high efficiency
as a depletion agent associated with its rod-like shape. Here we consider the
interaction caused by rod-like colloids as depletants and focus on a simple case;
infinitely thin hard rods of length L. These rods have no excluded volume with
respect to each other and hence behave thermodynamically ideally.

2.4.1 Depletion Interaction Between Two Flat Plates

2.4.1.1 Interaction Potential Between Two Flat Plates Using
the Force Method

As we are dealing with hard plates and a hard wall we can again use (2.75) to
calculate the force. The contact densities this time follow by considering the angles
of the rods as a function of distance from the wall that lead to contact of an end
point with the wall. First of all to make contact with the wall the distance of the
center of the rod from the wall should be smaller than L=2. At a distance from the
wall x\L=2 the angle that leads to contact is given by

hx ¼ arc cos
x

L=2
: ð2:96Þ

(see Fig. 2.27). Outside the confining walls x runs from L=2 to 0. Hence hx runs
from 0 to p=2, so using spherical coordinates we obtain

no ¼ nb

Z

p=2

0

sin h dh ¼ nb

giving

L/2

L/2

θ x
x

Fig. 2.27 Hard rod at a
(hard) wall (left) and confined
between two walls (right)
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Po ¼ nbkT : ð2:97Þ
This result could have been written down at once as the infinitely thin rods

behave ideally. Between two confining walls separated by a distance h\L the
second wall prevents contact configurations with the first wall for distances
x� h=2. Hence

ni ¼ nb

Z

p=2

hh=2

sin h dh ¼ nb
h

L
0� h� L

¼ nb h [ L

From this result (plotted in Fig. 2.28) it follows using (2.76) that

Pi ¼ nbkT
h

L
0� h� L

¼ nbkT h [ L
ð2:98Þ

By combining (2.97) and (2.98) we obtain for the force

KðhÞ ¼ Pi � Po

¼ �nbkT 1� h=L½ � 0� h� L

¼ 0 h [ L

ð2:99Þ

Integration of the force (2.99) yields the interaction potential per unit area WðhÞ
between the plates

WðhÞ ¼ � 1
2

nbkT
ðL� hÞ2

L
0� h� L

¼ 0 h [ L ð2:100Þ

Fig. 2.28 Density profile of
hard rods at a hard wall
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This result was first obtained by Asakura and Oosawa [55] (see also Auvray
[57]). Mao et al. [58, 59] considered the depletion interaction due to long thin rods
with a finite diameter D. Then the system is no longer ideal and the interaction
potential contains higher order terms in nb. Like in the case of hard spheres the
interactions between the rods themselves and with the wall results in the accu-
mulation of rods at the wall which in turn leads to a repulsive contribution to the
depletion interaction. For details we refer to the papers by Mao et al. [58, 59].

2.4.1.2 Interaction Potential Between Two Flat Plates
from the Extended Gibbs Equation

The concentration profile of the rods near a wall also follows by considering the
allowed angles. For a rod at a distance x\L=2 from a single wall the angles
ranging from hx (defined by (2.96)) to p=2 are allowed (see Fig. 2.27).

Hence

nðxÞ ¼ nb

Z

p=2

hx

sin h dh ¼ nb
x

L=2
: ð2:101Þ

(see Figs. 2.27 and 2.28). This provides an adsorbed amount at one wall

Csingle wall ¼
Z

L=2

0

nðxÞ � nb½ �dx ¼ �nb L=4;

and thus

Cð1Þ ¼ 2Csingle wall ¼ �nb L=2: ð2:102Þ

For two confining walls separated by a distance h\L

nðxÞ ¼ nb
x

L=2
0� x� h=2

¼ nb
h� x

L=2
h=2� x� h

ð2:103Þ

(see Fig. 2.29). Hence

CðhÞ ¼
Z

h

0

nðxÞ � nb½ �dx ¼ nb
h2

2L
� h

	 


0� h� L

¼ �nb
L

2
h [ L

ð2:104Þ
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Consequently,

CðhÞ � Cð1Þ ¼ nb
L� h½ �2

2L
0� h� L

¼ 0 h [ L

ð2:105Þ

Substituting (2.105) in (2.13) and carrying out the integration, taking account
that l ¼ kT ln nb (ideal behaviour) immediately results in the interaction potential
(2.100). For the calculation and simulation of concentration profiles at walls of
rods of finite thickness and the evaluation of the resulting depletion interaction to
higher orders of nb, we refer to Mao et al. [60].

2.4.2 Interaction Between Two (Big) Colloidal Spheres Using
the Derjaguin Approximation

Using the Derjaguin approximation (2.27) we obtain the interaction between two
big spheres with radius R� L by integration

WsðhÞ ¼ pR

Z

L

h

Wðh0Þdh0:

Using (2.100) for the interaction potential per unit area in the above integration we
obtain

WsðhÞ ¼ �nbkTpR
ðL� hÞ3

6L
: ð2:106Þ

Fig. 2.29 Density of hard
rods between two hard walls
for h ¼ 4=5L
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This expression for the interaction potential is also valid to order nb for long
thin rods with a finite diameter D and we can then write (2.106) in the form

WsðhÞ ¼ �
2
3

kT/
R

D

L

D
1� h

L

� �3

; ð2:107Þ

where

/ ¼ nb
p
4

LD2 ð2:108Þ

is the volume fraction of the rods. Comparing this expression for the depletion
interaction between two big spheres with that for small spheres as depletant (2.94)
for low / reveals that the factor L=D, which usually is significantly larger than
unity, is an important difference. Take as an example R ¼ 1 lm; L ¼ 200 nm and
D ¼ 10 nm. Then the factor

R

D

L

D
¼ 2000;

which implies that for a volume fraction of rods as low as 0:1% the depletion
interaction will already be of order kT . For small colloidal spheres with r ¼ 10 nm
this would require a volume fraction of about 1%.

The higher order terms calculated by Mao et al. [59], result, as in the case of
small spheres as a depletion agent, in a repulsive barrier in the depletion interaction.

2.5 Depletion Interaction Due to Thin Colloidal Disks

Thin colloidal disks provide another example of an anisometric colloidal particle
as an efficient depletion agent. This problem was first considered by Piech and
Walz [61]. At the end of this section, where we compare spheres, rods and disks as
depletion agents, we will see that the disk is intermediate in efficiency to induce
depletion attraction between spheres and rods. Here we consider disks of diameter
D and thickness L, see Fig. 2.30. Notice that for the simplest case, i.e., infinitely
thin hard disks, the excluded volume of the disks with respect to each other is non-
zero and only in limit of the concentration going to zero will the disks behave
thermodynamically ideal. We restrict ourselves to this limiting case.

2.5.1 Depletion Interaction Between Two Flat Plates

2.5.1.1 Interaction Potential Between Two Flat Plates from the Force Method

We again use (2.75) as the starting point for the calculation of the force. To make
contact with the wall, the distance of the center of the disks from the wall should
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be smaller than D=2. At a distance from the wall x\D=2 the angle between the
normal of the disk and the normal of the wall that leads to contact is now given by

hx ¼ arc sin
x

D=2

� �

: ð2:109Þ

(see Fig. 2.30). Outside the confining walls x runs from 0 to D=2. The contact
density no follows as

no ¼ nb

Z

p=2

0

sin h dh ¼ nb

and hence (2.76)

Po ¼ nbkT :

Between two confining walls separated by a distance h\D the second wall pre-
vents contact configurations with the first wall for distances x� h=2. Hence

ni ¼ nb

Z

hh=2

0

sin h dh ¼ nb 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðh=DÞ2
q

	 


0� h�D

¼ nb h [ D

and hence

Pi ¼ nbkT 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðh=DÞ2
q

	 


0� h�D

¼ nbkT h [ D

x

D/2

D/2 θx

Fig. 2.30 Platelet at a hard
wall. The grey area
represents the thickness L
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This leads to the following expression for the force between the plates

KðhÞ ¼ Pi � Po

¼ �nbkT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðh=DÞ2
q

0� h�D

¼ 0 h [ D ð2:110Þ

Integration of the force (2.110) yields the interaction potential per unit area WðhÞ
between the plates

WðhÞ ¼ �nbkT
D

2
p
2
� h

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h
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Exercise
Derive the interaction potential (2.111) from the force (2.110).

2.5.1.2 Interaction Potential Between Two Flat Plates
from the Extended Gibbs Equation

The concentration profile of the disks near a wall also follows by considering the
allowed angles [57]. For a disk at a distance x\D=2 from a single wall the angles
ranging from 0 to hx (defined by (2.109)) are allowed (see Fig. 2.30).

Hence

nðxÞ ¼ nb

Z

hx

0

sin h dh ¼ nb 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x

D=2

� �2
s

2

4

3

5 ð2:112Þ

Fig. 2.31 Density profile of
hard platelets at a hard wall
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(see Fig. 2.31). Hence

Csingle wall ¼
Z

D=2

0

nðxÞ � nb½ �dx ¼ �nb D
p
8
;

and thus

Cð1Þ ¼ 2Csingle wall ¼ �nb D
p
4
: ð2:113Þ

For two confining walls separated by a distance h\D

nðxÞ ¼ nb 1�
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(see Fig. 2.32). Hence

CðhÞ ¼
Z

h

0

nðxÞ � nb½ �dx

¼ �nb
D

2
h

D

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h

D

� �2
s

þ 1
2

arc sin
h

D

� �

2

4

3

5 0� h�D

¼ �nb D
p
4

h [ D ð2:115Þ

Fig. 2.32 Density profile of
hard platelets between two
walls for h ¼ 4D=5
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Combining (2.113) and (2.115) we obtain for 0� h�D

CðhÞ � Cð1Þ ¼ nb
D

2
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5: ð2:116Þ

Substituting (2.116) in (2.13) and carrying out the integration with l ¼ kT ln nb

once again yields the interaction potential (2.111).

2.5.2 Interaction Between Two (Big) Colloidal Spheres
Using the Derjaguin Approximation

Using the Derjaguin approximation (2.27) we obtain the interaction between two
big spheres with radius R� D by integration

WsðhÞ ¼ pR

Z

D

h

Wðh0Þdh0:

Using (2.111) for the interaction potential per unit area in the above integration we
obtain

WsðhÞ ¼ �nbkT
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This result obtained for infinitely thin disks will presumably also be valid for disks
with finite thickness L to lowest order in nb (although such a calculation has not
been carried out) and we can then write (2.117) in the form

WsðhÞ ¼ �
4
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where

/ ¼ nbðp=4Þ LD2: ð2:119Þ
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For thin disks L is small so R=L is large. Assume R ¼ 1 lm, D ¼ 200 nm and
L ¼ 1 nm then R=L ¼ 1000 implies that for volume fractions / of the disks of
0:1% the depletion interaction is already of the order kT .

Comparison of the depletion potentials due to spheres (2.94), rods (2.107), disks
(2.117) and ideal polymers (2.58) reveals that to lowest order in the depletant
density they all have the general form

WsðhÞ ¼ �nbkTRC‘2f
h

‘

� �

; ð2:120Þ

where ‘ is the characteristic length scale of the depletion agent, the prefactor C
determines the depth of the potential and the function f sets the distance depen-
dence normalized such that f ð0Þ ¼ 1 and f ð1Þ ¼ 0. This is summarized in
Table 2.1.

Because for the ideal chain result higher-order h=Rg terms are not available the
f ð1Þ ¼ 0 limit can not be accessed. In Fig. 2.33 we present the functions f for ideal
chains (small h), spheres, rods and plates. It is clear that the dependence on the
interparticle separation f ðh=‘Þ is similar for greatly different depletants. The results
for depletion interaction between big spheres discussed here are based on the
Derjaguin approximation valid for R� ‘ (‘ ¼ r, L, D for spheres, rods and disks).

Table 2.1 Characteristic parameters for C, ‘ and f in (2.120)

Depletion agent C ‘ f

Sphere p=2 r ð1� h=‘Þ2
Rod p=6 L ð1� h=‘Þ3
Disk p=3 D 3

2
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Fig. 2.33 Sketch of the
function f in (2.120) for rods
(dotted), disks (dashed-
dotted), spheres (solid) and
ideal chains (dashed), see
Table 2.1
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In [62] an analysis of the accuracy of the Derjaguin approximation for depletion
potentials is presented. From this analysis it follows that the depletion potential of
large spheres due to small spheres is underestimated by the Derjaguin approxi-
mation, is surprisingly accurate for disks and is overestimated for rod-like depletion
agents. A statistical mechanical analysis of the Derjaguin approximation applied to
depletion interactions in colloidal fluids is presented by Henderson [63].

2.6 Measurements of Depletion Interactions

In this section we summarize experimental methods that enable measuring
(depletion) interaction potentials between particles [64]. We distinguish pair
interactions (Sects. 2.6.1–2.6.3) and many-body interactions (Sect. 2.6.4). The
latter can be measured indirectly using scattering techniques or microscopy,
whereas for pair interactions direct methods are available. Common instruments
for investigating such pair interactions are the surface force apparatus (SFA) [65],
optical tweezers [66, 67], atomic force microscopy (AFM) [68], and total internal
reflection microscopy (TIRM) [69, 70].

The SFA was the first method allowing to measure forces between particles. It
was developed by Tabor and Winterton [71] for two cylindrical surfaces in air or
vacuum. An upgrade of the apparatus enabling measurements in liquids was con-
structed by Israelachvili and Adams [72, 73]. An advantage of SFA is the high
spatial resolution of 0.1 nm when using molecularly smooth mica sheets; SFA is
mainly used for model surfaces. Unfortunately, the force resolution is small
(O(10�8 N)) and the contact area between the surfaces needs to be very large
(O(1 lm2)). Overall, it turned out SFA is less suitable for measuring depletion
forces and therefore we restrict ourselves here to AFM, TIRM and optical tweezers
and briefly introduce these techniques below. A few arbitrarily chosen experimental
examples of potentials in the presence of depletants are given as illustrations.

The effective pair interactions measured with these techniques are the direct
pair interactions between two colloidal particles plus the interactions mediated by
the depletants. In practice depletants are polydisperse, for which there are some-
times theoretical results available. For the interaction potential between hard
spheres we quote references for the depletion interaction in the presence of
polydisperse penetrable hard spheres [74], polydisperse ideal chains [75], poly-
disperse hard spheres [76] and polydisperse thin rods [77].

2.6.1 Atomic Force Microscopy

The atomic force microscope (AFM) was designed for high-resolution surface
topography analysis. The basic measuring principle is sketched in Fig. 2.34. A
sample is scanned by a sharp tip attached to a sensitive cantilever spring via a
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piezo electric positioner. Forces on the tip lead to spring deflection, which is
detected optically [78]. Topographic images of the sample are obtained by plotting
the deflection of the cantilever as a function of the sample position. Alternatively,
a feedback loop can be used to fix the spring deflection, and response of the
piezoelectric positioner generates the image [68]. The pair interactions between a
colloidal sphere and a surface by free depletants can be studied with a colloidal
probe particle attached to the cantilever tip [79].

Interactions between a spherical colloid and a wall can be measured by bringing
probe and substrate together and monitoring the cantilever deflection as a function
of the interparticle distance. The photodetector voltage versus piezo position curve
can be converted into a force–distance curve. The force acting on the cantilever
follows from the deflection of the cantilever and its known spring constant. The
zero force is defined by the deflection of the cantilever as the colloidal probe is far
from the surface of the substrate. To obtain the force–distance dependence on an
absolute scale the zero distance, i.e., where the colloid touches the wall, has to be
determined. Commonly, the zero distance is obtained from the force curve itself
and not through an independent method [68].

In practice, the position where the motion of the probe complies with the piezo
movement defines the point of zero distance. Force–distance curves recorded with
AFM depend on the specific geometry of the probe and the surface. Usually, the
interaction is displayed as the force divided by the radius of the colloid, R, in units
N=m. The Derjaguin approximation relates this quantity to the interaction potential
per unit area between equivalent flat surfaces at given separation distance, see
(2.29).

Lens

Photodetector

Piezoelectric scanner Cantilever tip

LaserFig. 2.34 Schematic picture
of an atomic force
microscope. The sample of
interest is placed on the
piezoelectric scanner and a
laser is reflected off the upper
side of the cantilever and
guided to a split photo
detector. In this way, vertical
and horizontal deflection
signals can be measured. A
well-defined colloidal particle
can be glued to the tip of the
cantilever as to measure the
force between that particle
and the surface
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Since AFM is widely used for imaging, the technology is well-developed. Due
to its high lateral resolution of � 1 nm small samples can be used and material
inhomogeneities can be mapped and imaged. The small contact areas (� 10 nm2)
reduce the probability of experimental artifacts due to surface contamination and
roughness [68]. The high spatial resolution capability makes AFM a comple-
mentary approach to the SFA which has been used to measure interfacial forces
between proximal surfaces over areas on the order of � 1 lm2. Moreover, the
force resolution of AFM is better than that of the SFA.

The determination of the zero separation distance using AFM remains a com-
plicated issue in some cases. This makes it often difficult to fully quantify
depletion interactions. The force sensitivity is limited as compared to TIRM. This
makes AFM only suitable for measuring strong depletion forces.

In Fig. 2.35 we show the measured force oscillating between a silicon wafer
and a silica sphere (radius R ¼ 2:2 lm) attached to a cantilever spring in the
presence of Ludox silica spheres with a radius of 11 nm [80]. The volume fraction
of the Ludox spheres was 1:5%. The effective volume fraction is much larger due
to repulsive double layer interactions.

2.6.2 Total Internal Reflection Microscopy

The interaction potentials between a single particle and a wall can be obtained
using evanescent field scattering in total internal reflection microscopy (TIRM)
[69, 70]. The fluctuations of the separation distance resulting from thermal motion
can be directly detected from the scattered intensity. In a typical TIRM set-up a
laser beam is directed via a prism to the glass/solution interface as sketched in
Fig. 2.36, with an incident angle that is chosen such that total reflection
occurs. The electric field of the laser beam penetrates the interface causing an

Fig. 2.35 Force measured
between a flat silica surface
and a silica sphere
(R ¼ 2:2 lm) in the presence
of 1.5 vol% Ludox spheres
(radius 11 nm) as depletants
at pH 5.6. The ionic strength
was 0.76 mM. Redrawn from
Piech and Walz [80]. Curve
guides the eye

100 2 Depletion Interaction



evanescent wave, the amplitude of which decays exponentially along the normal to
the interface. A single colloidal sphere in the field of gravity, interacting with this
evanescent wave, will scatter light depending on its position h as [81]

IsðhÞ ¼ Iðh ¼ 0Þ exp½�h=.�; ð2:121Þ

where . is the penetration depth of the evanescent wave.

Exercise
Why does the scattered intensity due to a colloid decrease with increasing distance
from the surface?

A photomultiplier is used to monitor the time dependence of the scattered
intensity, with a resolution in the millisecond range. A sufficient number of data
points allows to convert a histogram of intensities to the probability density dis-
tribution of the intensity. Through (2.121) the intensity histogram can be converted
a probability density distribution (pdf ) of separation distances. Using Boltzmann’s
law ln½pdf ðhÞ� � � UðhÞ=kT , this pdf provides the potential energy UðhÞ. Usually,
a charged sphere is used with a size of the order of a lm. The solvent often is an
aqueous salt solution. In this way double layer repulsion between particle and like-
charged surface counterbalances gravity, enabling the particle to fluctuate near the
wall. From UðhÞ the bare pair depletion potential can be found by subtraction of
double layer repulsion and gravity.

An optical trap can be set up to prevent the colloidal particle from moving out
of the microscope’s observation area. For this purpose a second laser beam has to

CCD

PMT

Microscope 
objectiveParticle

Glass
plates

Laser
Prism

α>αc

Fig. 2.36 Sketch of a TIRM
set-up. Whenever the incident
angle is larger than the
critical angle the incident
beam is totally reflected at the
glass–fluid interface and an
evanescent wave penetrates
into the fluid. A colloidal
particle located close to the
surface will scatter light from
the evanescent wave, which is
collected by a photomultiplier
and provides the probability
density of separation
distances between the particle
and the wall. A CCD camera
is used to image the field of
view
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be focused directly at the particle. It is recommended to use p-polarized light and a
penetration depth below 150 nm.

Major advantages of TIRM relative to AFM and SFA for studying depletion
potentials are its outstanding force sensitivity and its non-invasive nature. With
TIRM it is possible to investigate the interactions of a single, freely moving,
Brownian particle. This method enables measurements of forces as small as
10�14 N. The reason for this high sensitivity is the use of a molecular gauge for
energy (kT) instead of a mechanical gauge for the force determined by a spring
constant, as it is used in AFM and SFA [70].

TIRM is less suited for measuring strong depletion potentials. When the
repulsion between the particle and the wall is bigger than 5 kT the pdf for finding
the particle in this range becomes virtually zero. Therefore, the error in deter-
mining pdf ðhÞ becomes very large. If the attraction between the sphere and the
wall becomes too strong, the intensity histogram becomes narrower than the range
set by the electronic noise of the photomultiplier [70].

An example of a pair potential measured using TIRM is given in Fig. 2.37. The
data are measured wall-sphere potentials between a flat silica surface and a
polystyrene sphere (R ¼ 1:85 lm) in the presence of non-adsorbing polydisperse,
charged boehmite rods (averaged length L ¼ 200 nm) [82]. The range of the
potential is obviously close to the length of the rods. The volume fraction of the
rods is 0:09%.

2.6.3 Optical Tweezers

Around 1970 it was found that laser radiation forces can be used to trap and
manipulate small dielectric particles [83]. A laser beam can push a particle towards
the centre of the beam, provided the particle has a higher refractive index than the
surrounding medium. Thus, optical tweezers allow to pick up and manipulate

Fig. 2.37 Interaction
potential between a flat silica
surface and a polystyrene
sphere (R ¼ 1:85 lm)
mediated by polydisperse
boehmite rods (0.09 vol%)
with averaged length of
200 nm. Redrawn from
Helden et al. [82]
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colloidal particles; experts nowadays can even spell your name with a single
optical tweezer and colloidal particles. This technique found a broad application in
biology as well as in colloid science [84, 85]. Figure 2.38 illustrates a typical
optical tweezer arrangement. The laser beam is tightly focused using the micro-
scope objective lens, which also gives the possibility to image trapped particles
with a camera. Optical tweezers can be configured using multiple beams to trap
many particles simultaneously. This can be implemented in the following manner.
Firstly, a single beam is used to rapidly scan two or more trap positions. Next, the
beam is split at an early stage in the optical circuit to produce two separate light
paths which are then recombined before entering the microscope. Finally, com-
puter-generated holograms are used to generate multiple beams simultaneously.

Boltzmann’s law is used to find the interaction potential between the trapped
particles using the measured probability density as a function of separation dis-
tance. Position detection results either from particle tracking using video
microscopy or back focal plane interferometry [67]. Accurate video microscopy
requires the acquisition of bright field or fluorescent images from the microscope
[86]. Particle centre separations can then be determined with a sub-pixel resolution
through image-processing operations [86]. A spatial resolution of � 10 nm can be
achieved. Back focal plane interferometry enables reducing the spatial resolution
to � 1 nm.

A major advantage of optical tweezers is that the detected forces range between
10�13 and 10�10 N. Like TIRM, optical tweezers enable studying colloidal inter-
actions in a non-invasive manner. Complementary to TIRM it enables to measure
the interaction potentials between two colloidal particles, whereas TIRM and AFM

Eye piece or 
CCD camera

Tube lens

Dichroic
mirror

Infinity corrected
objective

Colloidal particle

White light

Laser

Fig. 2.38 Sketch of a simple
optical tweezers arrangement.
The microscope objective
lens enables the tight
focusing of the laser beam
and imaging of trapped
particles

2.6 Measurements of Depletion Interactions 103



are restricted to wall-particle potentials. The main problems that can arise when
making measurements with optical tweezers is that the results are susceptible to
misinterpretations due to image processing problems [87, 88].

The pair interaction measured using optical tweezers between two silica spheres
in the presence of rather monodisperse, non-adsorbing DNA chains [89] is plotted
in Fig. 2.39. Data are given for three DNA concentrations beyond the coil overlap
concentration indicated in the plot.

2.6.4 Scattering and Microscopy

One of the manifestations of depletion effects in a colloidal dispersion is that its
fluid structure is affected by the presence of non-adsorbing depletants (for instance
polymer chains). This is reflected in the radial distribution function gðrÞ; the local
concentration of particle centers from a distance r to a fixed particle center. Sta-
tistical mechanics links gðrÞ to the potential of mean force Wmf [90],

Wmf ðrÞ ¼ �kT ln gðrÞ: ð2:122Þ

For a dilute colloidal dispersion, gðrÞ ¼ exp½�WðrÞ=kT �, where WðrÞ is the pair
interaction. The quantity gðrÞ can be measured using confocal laser scanning
microscopy. This method allows to perform quantitative three-dimensional real
space measurements of the positions of the (fluorescently labeled) colloidal par-
ticles. Analysis of the positions of the particles yields gðrÞ. This means that
confocal microscopy enables to indirectly measure both the potential of mean
force and (using a dilute dispersion) the pair interaction in a mixture of colloids
and depletants. Royall et al. [91] have performed such a study in a colloid–
polymer mixture with free polymers as depletants.

Fig. 2.39 Interaction
potential between two silica
spheres (R ¼ 0:63 lm)
mediated by DNA chains
(Rg ¼ 500 nm) [89]. The
DNA concentrations are
indicated in the plot
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Scattering techniques allow to measure the structure factor SðQÞ as a function
of the wave vector Q of colloidal dispersions defined as

Q ¼ 4p
km

sin
hs

2

� �

: ð2:123Þ

Here km is the wavelength of radiation through the medium and hs the scattering
angle. Statistical mechanics relates the structure factor SðQÞ to the radial distri-
bution function gðrÞ [92]:

SðQÞ ¼ 1þ /
v0

Z

1

0

4pr2½gðrÞ � 1� sin Qr

Qr
dr: ð2:124Þ

Hence, via (2.122), (2.124) reveals SðQÞ contains the potential of mean force in the
long wavelength limit (Q! 0).

In the case of a colloid plus depletant mixture in which the depletant is made
‘invisible’ by contrast matching, the scattered intensity IðQÞ reads

IðQÞ�/PðQÞSðQÞ; ð2:125Þ

where PðQÞ is the particle scattering form factor. The proportionality constant is
the squared particle scattering amplitude. The structure factor then follows from
(2.125) as

SðQÞ ¼ IðQÞ
I0ðQÞ

/0

/
; ð2:126Þ

where /0 is the volume fraction of and I0ðQÞ is the scattered intensity in a very
dilute dispersion. Here the fact was used that SðQÞ equals unity in a very dilute
dispersion.

Following an early light scattering study of De Hek and Vrij [93], Ye et al. [94]
made a small-angle neutron scattering (SANS) study on mixtures of CaCO3 par-
ticles, stabilized with alkylbenzene sulfonate, plus polyethylene propylene (PEP)
copolymers with Rg ¼ 8:3 nm. Here R ¼ 4:8 nm so q ¼ 2:1. SANS allows contrast
matching as to independently measure the structure factors of the free polymers or
the colloids, see [95, 96] for a theoretical analysis. Further SANS is much less
sensitive to multiple scattering problems as encountered in light scattering.

In Fig. 2.40 a few representative measured structure factors SðQÞ of colloidal
spheres at a colloid volume fraction / ¼ 0:086 are plotted at a few PEP con-
centrations. Clearly, the measured structure factor increases upon adding more free
polymer at Q\0:2 nm�1, corresponding to an increase of the attraction between
the colloids. This increase of SðQÞ at small Q has been found also in a few other
studies [97–99]. Mutch et al. [99] showed it is possible to rescale structure factors
at high q (relatively large polymers) to obtain a universal SðQÞ behaviour.

PRISM [100, 101] would be quite useful in quantifying these experimental data.
Static and dynamic light scattering can be used also on colloid–polymer mixtures
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to quantify the spinodal, defined at 1=SðQ! 0Þ � 0 using extrapolation [97].
When the attraction becomes very strong the structure factor diverges at small Q
and the dispersion starts to decompose. This demixing will be considered in
Sect. 4.5.

Exercise
Why does 1=SðQ! 0Þ � 0 correspond to the spinodal? Hint: check (1.30)
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Chapter 3
Phase Transitions of Hard Spheres Plus
Depletants; Basics

In this chapter we discuss the basics of the phase behaviour of hard spheres plus
depletants. Phase transitions are the result of physical properties of a collection of
particles depending on many-body interactions. In Chap. 2 we focused on two-
body interactions. As we shall see, depletion effects are commonly not pair-wise
additive. Therefore, the prediction of phase transitions of particles with depletion
interaction is not straightforward. As a starting point a description is required for
the thermodynamic properties of the pure colloidal dispersion. Here the colloid-
atom analogy, recognized by Einstein and exploited by Perrin in his classical
experiments, is very useful. Subsequently, we explain the basics of the free volume
theory for the phase behaviour of colloids ? depletants. In this chapter we treat
only simplest type of depletant, the penetrable hard sphere.

3.1 Introduction: Colloid/Atom Analogy

In his seminal 1905 paper on Brownian motion, Einstein [1] recognized and used
that colloidal particles in a suspension obey the same statistical thermodynamics as
atoms in an assembly of atoms. A well-known example of this colloid-atom
analogy is the striking similarity between the ideal gas law for the pressure of a
dilute gas and the Van ’t Hoff law for the osmotic pressure of a dilute suspension.
The colloid-atom analogy was exploited by Perrin [2] with simple, yet brilliant,
experiments. Using an ordinary light microscope, Perrin verified that the equilib-
rium concentration of colloidal particles in a dilute suspension in the gravitational
field varies exponentially with height. By applying Boltzmann’s law to this height
distribution he was able to determine the Boltzmann constant k and Avogadro’s
number Nav. For this work Perrin received the 1926 Nobel Prize for Physics.

The colloid-atom analogy can also be applied to interacting systems. The direct
interaction potentials between atoms then have to be replaced by the potential of
mean force between the dispersed colloidal particles. In the calculation of the
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potential of mean force one takes a statistical average over all possible configu-
rations of the solvent components. In the previous chapter we treated the calcu-
lation of the potential of mean force due to dissolved non-adsorbing polymers and
(small) colloidal particles.

The concept ‘potential of mean force’ was used by Onsager [3] in his theory for
the isotropic-nematic phase transition in suspensions of rod-like particles. Since
the 1980s the field of phase transitions in colloidal suspensions has shown a
tremendous development. The fact that the potential of mean force can be varied
both in range and depth has given rise to new and fascinating phase behaviour in
colloidal suspensions [4]. In particular, sterically stabilized colloidal spheres with
interactions close to those between hard spheres [5] have received ample attention.

The phase behaviour of such colloidal suspensions should be nearly the same as
those of the hypothetical hard-sphere atomic system. Kirkwood [6] stated that
when a hard sphere system is gradually compressed, the system will show a
transition towards a state of long-range order long before close-packing is reached.
In 1957, Wood and Jacobson [7] and Alder and Wainwright [8] showed by
computer simulations that systems of purely repulsive hard spheres indeed exhibit
a well-defined fluid–crystal transition. It has taken some time before the fluid–
crystal transition of hard spheres became widely accepted. There is no exact proof
that the transition occurs. Its existence has been inferred from numerical simula-
tions or from approximate theories as treated in this chapter. However, this tran-
sition has been observed in hard-sphere-like colloidal suspensions [9].

The hard sphere fluid–crystal transition plays an important role as a reference
point in the development of theories for the liquid and solid states and their phase
behaviour [10]. We consider it in some detail in the next section; here the phase
behaviour is relatively simple as there is no gas–liquid (GL) coexistence. After that
we discuss the phase behaviour under the influence of the attraction caused by the
depletion interaction; now there is such GL transition. We illustrate the enrichment
of the phase behaviour in the somewhat hypothetical system consisting of an
assembly of hard spheres and (non-adsorbing) penetrable hard spheres.

3.2 The Hard-Sphere Fluid–Crystal Transition

Following the work of Wood and Jacobson [7] and Alder and Wainwright [8], the
location of the hard sphere fluid–crystal transition was determined from computer
simulations by Hoover and Ree [11]. They found that the volume fractions of the
coexisting fluid ðf Þ and face centered cubic crystal ðsÞ are given by /f ¼ v0n ¼
0:494 and /s ¼ v0n ¼ 0:545 at a coexistence pressure Pv0=kT ¼ 6:12. Here
v0 ¼ ð4p=3ÞR3, with R the radius of the hard sphere, is the hard sphere volume. As
in Chap. 2, n ¼ N=V refers to the number density of N particles in a volume V .

We present a simple theoretical treatment of the hard sphere fluid–crystal
transition that will also serve as a reference framework for our treatment of phase
transitions in a system of colloids with depletion attraction.
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3.2.1 Hard-Sphere Fluid

We start with the equation of state for the fluid phase of hard spheres interacting
through (1.19). An accurate expression for hard spheres is the so called Carnahan–
Starling equation of state [12] which can be written in terms of the dimensionless

pressure ePf as

ePf ¼
Pv0

kT
¼ /þ /2 þ /3 � /4

ð1� /Þ3
: ð3:1Þ

In Fig. 3.1 (left part) we compare the pressure given by the Carnahan–Starling
equation of state (3.1) with computer simulations. We see that (3.1) is indeed very
accurate.

A ‘simple’ way to derive this equation of state is to start from the virial
expansion of the pressure [14]

P

nkT
¼ 1þ

X

m¼2

Bmnm�1; ð3:2Þ

and use the fact that, to a good approximation, the virial coefficients can be written
as [12]

Bmþ1 ¼ ðm2 þ 3mÞvm
0 : ð3:3Þ

Together with (3.2) this yields (3.1). For hard spheres it is possible to calculate
exact values of B2 � B4 and to perform numerical calculations for B5 and beyond
using statistical mechanics [15]. In Table 3.1. we compare exact ðB2;B3;B4Þ and

Fig. 3.1 The pressure of hard
spheres. The curves are the
Carnahan–Starling expression
(3.1) for a fluid (/� 0:494)
and the cell model result
(3.12) for an fcc crystal (solid
curves; /� 0:545). The
closed symbols are Monte
Carlo computer simulation
results [13]. The two open
symbols correspond to the
fluid–solid coexistence from
simulation [11], the dotted
line is the theoretical result
(see Sect. 3.2.3)
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numerically highly accurate [16] ðB5;B6;B7;B8;B9;B10Þ virial coefficients with
the approximation given by (3.3)

Exercise Show that the summation on the right-hand side of (3.2) with (3.3) for
the virial coefficients indeed leads to the equation of state (3.1)

From the Gibbs-Duhem relation SdT � VdPþ Ndl ¼ 0 we can calculate the
chemical potential from the pressure. For constant T this relation may be written as

dP ¼ ndl ¼ /
v0

dl ð3:4Þ

so that l follows as

l ¼ kT ln
K3

v0
þ v0

Z

/

0

1

/0
dP

d/0
d/0 ð3:5Þ

where dP=d/ can be calculated from (3.1) for a fluid of hard spheres. The first
(constant) term follows from the ideal gas reference state [15]; K is the De Broglie
wavelength K ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmckT
p

, with the colloid mass mc and Planck’s constant h.
The result for the chemical potential of a hard sphere in a fluid with volume
fraction of hard spheres / is

lf ¼ kT ln
K3

v0
þ ln /þ ð8� 9/þ 3/2Þ/

ð1� /Þ3

" #

: ð3:6Þ

After simplification and defining the dimensionless chemical potential el ¼ l=kT
the simpler form

elf ¼ ln
K3

v0
þ ln /þ 3� /

ð1� /Þ3
� 3 ð3:7Þ

Table 3.1 State-of-the-art
values for the second up to
the tenth virial coefficient of
hard spheres [16] in
comparison with the
Carnahan–Starling result
(3.3)

m Exact/numerical CS (3.3)

2 4 4
3 10 10
4 18.36 18
5 28.22 28
6 39.82 40
7 53.34 54
8 68.53 70
9 85.81 88
10 105.8 108

The numbers in the second and third column are Bm=vm�1
0 for

m ¼ 2. . .10.
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is obtained. Finally, using the standard thermodynamic result eP ¼ /el � eF , the
resulting canonical free energy of the pure hard-sphere dispersion of a fluid is:

eF ¼ / lnð/K3=v0Þ � 1
� �

þ 4/2 � 3/3

ð1� /Þ2
: ð3:8Þ

Here we have introduced the normalized Helmholtz energy eF ¼ Fv0=kTV . The
first term on the right-hand side of (3.8) is the ideal contribution, while the second
hard-sphere interaction term is the Carnahan–Starling equation of state [12].

3.2.2 Hard-Sphere Crystal

To obtain the thermodynamic functions of the hard-sphere crystal we use the cell
model of Lennard-Jones and Devonshire [17]. The idea of the cell model is that a
given particle moves in a free volume v� set by its neighbours which are located on
their lattice positions (see Fig. 3.2). Then the partition function Q takes the form

Q ¼ ðv
�ÞN

K3N : ð3:9Þ

The ‘exact’ free volumes have a complicated geometry [18] but here we will use
the simple approximation of the inscribed sphere. This yields

v� ¼ 4p
3
ðr � 2RÞ3; ð3:10Þ

where r is the centre-to-centre distance between the nearest neighbours. Using the
relations

n
p
6
ð2RÞ3 ¼ /

r

R

r− 2R

Fig. 3.2 Illustration of the
free volume of a hard sphere
(hatched area) in the cage of
its nearest neighbours in the
approximation of the
inscribed sphere (dashed line
radius r � 2R). The hatched
area identifies the available
volume for the center of the
central sphere

3.2 The Hard-Sphere Fluid–Crystal Transition 113



and

n
p
6

r3 ¼ /cp;

where /cp ¼ p=3
ffiffiffi

2
p
’ 0:74 is the volume fraction at close packing, the free

volume can be written as

v� ¼ 8v0
/cp

/

� �1=3

�1

" #3

:

We now obtain for the free energy

F ¼ �kT ln Q

¼ NkT ln
27K3

8v0

� �

� 3 ln
/cp

/

� �

� 1

� �	 


: ð3:11Þ

In writing down (3.11) we used the approximation

/cp

/

� �1=3

�1 ¼ 1
3

/cp

/
� 1

� �

:

Using the standard thermodynamic relations

P ¼ � oF

oV

� �

N;T

;

and

l ¼ � oF

oN

� �

V ;T

;

we obtain for the dimensionless pressure and chemical potential

ePs ¼
3/

1� /=/cp
; ð3:12Þ

and

els ¼ ln
K3

v0
þ 27

8ð/cpÞ3

" #

þ 3 ln
/

1� ð/=/cpÞ

" #

þ 3
1� ð/=/cpÞ

: ð3:13Þ

The pressure given by (3.12) can be compared to computer simulation data (e.g.
[19]) and, as can be seen in Fig. 3.1 (right part), turns out to be highly accurate.
The result for the chemical potential given by (3.13) is close to the computer
simulation results of Frenkel and Ladd [20]. The constant on the right-hand side
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ln
27

8ð/cpÞ3

" #

¼ 2:1178

is quite close to 2:1306, which can be abstracted from computer simulations. The
full free energy expression for the hard-sphere solid phase is

eF ¼ 2:1178/þ 3/ ln
/

1� /=/cp

 !

þ / ln K3=v0
� �

: ð3:14Þ

3.2.3 Fluid–Crystal Coexistence

Solving the coexistence conditions

ePf ð/f Þ ¼ ePsð/sÞ
elf ð/f Þ ¼ elsð/sÞ;

ð3:15Þ

yields coexisting volume fractions /f ¼ 0:491, /s ¼ 0:541 and a coexistence

pressure eP ¼ 6:01. These values are indeed very close to the computer simulation
results, see the comparison in Fig. 3.1.

The equilibrium configuration of hard spheres is the one that maximizes the
entropy of the system. At low densities the configurations of maximum entropy
correspond to disordered arrangements. As the density increases, the number of
disordered arrangements is severely reduced due to the inefficiency of ‘packing’
them into the fixed volume. Then crystalline arrangements lead to a more efficient
packing and make more arrangements possible. This is schematically depicted in
Fig. 3.3.

Hence, the thermodynamic stability of the hard sphere crystal can be
‘explained’ on a purely entropic basis. Starting in the 1950s the fluid–crystal
transition has been observed in suspensions of monodisperse repulsive colloidal
particles [21–23]. Particularly, the work on sterically stabilized silica particles [24]
and sterically stabilized PMMA particles [9] has served as a reference point.
Figures 3.4 and 3.5 illustrate the phase behaviour of dispersed PMMA colloids as
studied by Pusey and Van Megen [9]. In addition to the fluid–crystal transition
these authors observed, above a volume fraction / ¼ 0:58, an amorphous glassy
phase that did not crystallize over several months. The explanation for this phe-
nomenon is that for these high volume fractions the particles become so tightly
trapped or caged by their neighbours that they are unable to move far enough to
nucleate crystallization. Instead, long-lived metastable states called colloidal
glasses are obtained. We return to glasses in Sect. 4.5.2.
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Fig. 3.3 Schematic pictures
of a hard-sphere fluid (left)
and hard spheres with
‘crystalline’ order (right);
free volume entropy drives
freezing

Fig. 3.4 Dispersions with hard-sphere like PMMA spheres at volume fractions around the fluid–
solid phase transition. From Pusey and Van Megen [9]. Samples are denoted from left to right as
samples a, b,... i. See Fig. 3.5 for the state of each sample. Picture reprinted from Pusey and Van
Megen [9], Copyright 1986, with permission from Nature. Kindly provided by P.N. Pusey
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Fig. 3.5 Representation of
the states of the colloidal
PMMA dispersions shown in
Fig. 3.4. The abscissa
indicates the measured
volume fraction of PMMA
cores, which is smaller than
the effective volume fraction
of hard spheres that includes
the short stabilizing brushes
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3.3 Free Volume Theory of Hard Spheres and Depletants

3.3.1 System

Several theories have been developed that enable calculations of phase transitions
in systems with depletion interactions. The first successful treatment accounting
for depletion interactions in a many-body system [25, 26] is thermodynamic
perturbation theory [14, 15]. In this classical approach depletion effects can be
treated as a perturbation to the hard-sphere free energy, as was done by Gast et al.
[25]. Their important work predicted that for a sufficient depletant concentration,
the depletion interaction leads to a phase diagram with stable colloidal gas, liquid
and solid phases for d=R� 0:3. For small depletants with d=R� 0:3 only colloidal
fluid and solid phases are thermodynamically stable, and the gas–liquid transition
is meta-stable. Although implementation of this theory is straightforward, it has
the drawback that it does not account for depletant partitioning over the coexisting
phases.

In the early nineties of the last century a theory that accounts for depletant
partitioning over the coexisting phases was developed [27], which nowadays is
commonly referred to as free volume theory (FVT) [28]. This theory is based on
the osmotic equilibrium between a (hypothetical) depletant and the colloid +
depletant system. The depletants were simplified as penetrable hard spheres. A
pictorial representation is given in Fig. 3.6.

This theory has the advantage that the depletant concentrations in the coexisting
phases follow directly from the (semi-)grand potential which describes the colloid
+ depletant system. As illustrated in Fig. 3.7, the system tries to arrange itself such
as to provide a large free volume for the depletant. This (entropic) physical origin
of the phase transitions induced by depletion interactions is incorporated in the
theory in a natural way.

In FVT multiple overlap of depletion zones with thickness d, see Fig. 3.8, is
taken into account. Multiple overlap occurs for

Fig. 3.6 A system (right)
that contains colloids and
penetrable hard spheres (phs)
in osmotic equilibrium with a
reservoir (left) only
consisting of phs. A
hypothetical membrane that
allows permeation of solvent
and phs but not of colloids is
indicated by the dashed line.
Solvent is considered as
‘background’.
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d
R

[
2
3

ffiffiffi

3
p
� 1 ’ 0:15;

where three depletion zones start to overlap, see Fig. 3.8. Only for d=R\0:15 is a
colloid/depletant mixture pair-wise additive. This has a considerable influence on
the topology of the phase diagram [29]. Multiple overlap of depletion layers
widens the liquid window, which is the parameter range with phase transitions that
include a stable liquid, in comparison with a pair-wise additive system [28].

Exercise Show that multiple overlap only occurs for
d
R

[
2
3

ffiffiffi

3
p
� 1.

Fig. 3.7 Illustration of the
free volume Vfree: it is the
unshaded volume not
occupied by the colloids plus
(partially overlapping)
depletion layers

Fig. 3.8 Three hard spheres surrounded by depletion layers (hatched areas). When the depletion
layers are thin (left) there is no multiple overlap of depletion layers; the system is pair-wise
additive. For thicker depletion layers (right) multiple overlap of depletion layers occurs and
depends on more than two-body contributions. The lowest value for d=R where multiple overlap
occurs follows from considering the triangle formed by the three particle centres; its edge is
2Rþ h at particle separation h. Multiple overlap starts when the centre of the triangle is a
distance Rþ d from the corners
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3.3.2 Thermodynamics

The starting point of FVT is the calculation of the semi-grand potential describing
the system of Nc colloidal spheres plus Nd depletants as depicted in Fig. 3.6.

XðNc;V ; T ; ldÞ ¼ FðNc;Nd;V ; TÞ � ldNd: ð3:16Þ

Using the thermodynamic relation

oX
old

� �

Nc;V ;T

¼ �Nd; ð3:17Þ

we can write

XðNc;V; T ; ldÞ ¼ F0ðNc;V ; TÞ �
Z

ld

�1

Ndðl0dÞdl0d: ð3:18Þ

Here F0ðNc;V ; TÞ is the free energy of the colloidal particle system without added
depletant as given by (3.8) (fluid) or (3.14) (solid).

The key step now is the calculation of the number of depletants in the
colloid ? depletant system as a function of the chemical potential ld imposed by
the depletants in the reservoir. In the calculations presented below we model
the colloidal particles as hard spheres with diameter 2R and the depletants by
penetrable hard spheres with diameter r.

For the calculation of Nd we make use of the Widom insertion theorem [30]
according to which the chemical potential of the depletants in the hard sphere +
depletant system can be written as

ld ¼ constþ kT ln
Nd

hVfreei
: ð3:19Þ

Here hVfreei is the ensemble-averaged free volume for the depletants in the system
of hard spheres, illustrated in Fig. 3.7

The chemical potential of the depletants in the reservoir is simply

ld ¼ constþ kT ln nR
d ; ð3:20Þ

where nR
d is the number density of the depletants in the reservoir. By equating the

depletant chemical potentials (3.19) and (3.20) we obtain

Nd ¼ nR
d hVfreei: ð3:21Þ

The average free volume obviously depends on the volume fraction of the hard
spheres in the system but also on the chemical potential of the depletants. The
activity of the depletants affects the average configuration of the hard spheres. We
now make the key approximation to replace hVfreei by the free volume in the pure
hard sphere dispersion hVfreei0:
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Nd ¼ nR
d hVfreei0: ð3:22Þ

This expression is correct in the limit of low depletant activity but is only an
approximation for higher depletant concentrations. Substituting the approximation
(3.22) in (3.18) and using the Gibbs-Duhem relation,

nR
d dld ¼ dPR; ð3:23Þ

gives

XðNc;V ; T; lpÞ ¼ F0ðNc;V; TÞ � PRhVfreei0; ð3:24Þ

where PR ¼ ndkT is the (osmotic) pressure of the depletants in the reservoir.
As we have expressions for the free energy of the hard sphere system (both in

the fluid and solid state, see Sect. 3.2) and for the pressure of the reservoir, the only
remaining quantity to calculate is hVfreei0. This can be done by using the Widom
insertion Theorem at low depletant concentration:

ld ¼ constþ kT ln
Nd

hVfreei0
: ð3:25Þ

But we can also write the chemical potential ld as

ld ¼ const þ kT ln
Nd

V
þW ; ð3:26Þ

where W is the reversible work required for inserting the depletant in the hard sphere
dispersion. Combining (3.25) and (3.26) we find for the fraction a of free volume

a ¼ hVfreei0
V

¼ e�W=kT : ð3:27Þ

3.3.3 Scaled Particle Theory

An expression for the work of insertion W can be obtained from scaled particle
theory (SPT) [31]. SPT was developed to derive expressions for the chemical
potential and pressure of hard sphere fluids by relating them to the reversible work
needed to insert an additional particle in the system. This work W is calculated is
by expanding (scaling) the size of the sphere to be inserted from zero to its final
size: the size of the scaled particle is kr, with k running from 0 to 1. In the limit
k! 0, the inserted sphere approaches a point particle. In this limiting case it is
very unlikely that the depletion layers overlap. The free volume fraction in this
limit can therefore be written as
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a ¼
V � Nc

p
6ð2Rþ krÞ3

V

¼ 1� nc
p
6
ð2Rþ krÞ3:

It then follows from (3.27) that

W ¼ �kT ln 1� nc
p
6
ð2Rþ krÞ3

h i

for k� 1: ð3:28Þ

In the opposite limit k� 1, when the size of the inserted scaled particle is very
large, W to a good approximation is equal to the volume work needed to create a

cavity p
6ðkrÞ3 and is given by

W ¼ p
6
ðkrÞ3P for k� 1; ð3:29Þ

where P is the (osmotic) pressure of the hard sphere dispersion. In SPT the above
two limiting cases are connected by expanding W as a series in k:

WðkÞ ¼ Wð0Þ þ oW

ok

� �

k¼0

kþ 1
2

o2W

ok2

� �

k¼0

k2 þ p
6
ðkrÞ3P: ð3:30Þ

This yields

Wðk ¼ 1Þ
kT

¼ � ln½1� /� þ 3q/
1� /

þ 1
2

6q2/
1� /

þ 9q2/2

ð1� /Þ2

" #

þ
p
6q3ð2RÞ3P

kT
; ð3:31Þ

where q is the size ratio between the depletant with diameter r and the hard sphere
with diameter 2R

q ¼ r
2R
: ð3:32Þ

As was the original objective of SPT [31], the pressure P of the hard sphere system
can be obtained from the reversible work of inserting an identical sphere ðq ¼ 1Þ

W

kT
¼ � ln½1� /� þ 6/

1� /
þ 9/2

2ð1� /Þ2
þ pð2RÞ3P

6kT
; ð3:33Þ

to obtain the chemical potential of the hard spheres

lc ¼ const þ kT ln
Nc

V
þW : ð3:34Þ
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Applying the Gibbs-Duhem relation

oP

onc
¼ nc

olc

onc

one obtains

Pv0

kT
¼ /þ /2 þ /3

ð1� /Þ3
; ð3:35Þ

which is the famous SPT expression for the pressure of a hard sphere fluid [31],
which preceded the slightly more accurate Carnahan–Starling equation (3.1) (that
contains an additional term /4). Inserting (3.35) into (3.31) and using (3.27) yields

a ¼ ð1� /Þ exp �Qð/Þ½ �; ð3:36Þ

where

Qð/Þ ¼ ayþ by2 þ cy3

y ¼ /=ð1� /Þ
a ¼ 3qþ 3q2 þ q3 ¼ ð1þ qÞ3 � 1

b ¼ 9
2

q2 þ 3q3

c ¼ 3q3:

In Fig. 3.9 we present a comparison of the free volume fraction predicted by SPT
(3.36) and computer simulations [32] on hard spheres plus penetrable hard spheres
for q ¼ 0:5 as a function of /. As can be seen the agreement is very good. In the
limit of small depletants the k2 and k3 terms of (3.30) can be omitted giving:

a ¼ ð1� /Þ exp �3q
/

1� /

� �

; ð3:37Þ

which is (3.36) with Q ¼ 3qy. This equation will be used for hard sphere mixtures
with large size asymmetry in chapter . We now have all the ingredients to compile
the semi-grand potential X given by (3.24).

From X the pressure and chemical potential of the hard spheres in the hard
sphere + depletant system at given lp are obtained:

P ¼ � oX
oV

� �

Nc;T ;lp

¼ P0 þ PR a� nc
oa
onc

� �

ð3:38Þ

lc ¼
oX
oNc

� �

V ;T ;lp

¼ l0
c � PR oa

onc
: ð3:39Þ

For non-interacting depletants PR is simply given by Van ’t Hoff’s law PR ¼ nR
d kT

or
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ePR ¼ PRv0

kT
¼ nR

d vdq�3 ¼ /R
d q�3; ð3:40Þ

with /R
d the relative reservoir depletant concentration nR

d vd, where vd is the volume
of a depletant sphere.

3.3.4 Phase Diagrams

We can now calculate the phase behaviour of a system of hard spheres and
depletants by solving the coexistence equations for a phase I in equilibrium with a
phase II

lI
cðnI

c; ldÞ ¼ lII
c ðnII

c ; ldÞ; ð3:41Þ

PIðnI
c; ldÞ ¼ PIIðnII

c ; ldÞ: ð3:42Þ

For numerical computations of phase coexistence, it is convenient to work with
dimensionless quantities. The dimensionless version of the free volume expression
(3.24) for the grand potential is

eX ¼ eF0 � aePR; ð3:43Þ

where eX ¼ Xv0=kTV .
In Fig. 3.10 the semi-grand potential is presented as a function of the colloid

volume fraction for given depletant reservoir concentration and size ratio q. Four
possible scenarios are considered. Indicated are the common tangent constructions
that allow to determine conditions where two (or three) phases coexist. A first
criterion for two coexisting binodal composition is equality of the slope because it

Fig. 3.9 Free volume
fraction for penetrable hard
spheres in a hard sphere
dispersion for q ¼ r=2R ¼
0:5 as function of the hard
sphere concentration. Data
points are redrawn from
Meijer [32]. Curve is the SPT
prediction (3.36)
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corresponds to the chemical potential. The chemical potential of the colloids elc

can generally be expressed using the standard thermodynamic relation

elc ¼
oeX
o/

 !

ePR;T ;V

; ð3:44Þ

which shows that the slopes along the curves in Fig. 3.10 indeed correspond to elc.
The (total) pressure is found from

eP ¼ /elc � eX: ð3:45Þ

When two compositions can be connected through the common tangent (the thin
straight lines in the figures connecting these compositions), binodal points are

found; the intercepts of the extrapolated lines correspond to the total pressure �eP.
Scenario (i) in Fig. 3.10 corresponds to gas–liquid coexistence. In situation (ii)
eXð/Þ are given for both the fluid state and for the solid state and the common
tangent shows the compositions where fluid and solid coexist. A combination of (i)

Ω~ Ω~

Ω~ Ω~

(i) (ii)

(iii) (iv)

φ φφ

φ φ

φ φliquid φfluid φsolidφgas

φgas φliquid φsolid φfluid φsolid

Fig. 3.10 The dimensionless semi-grand potential eX as a function of volume fraction /.
Schematic view of the common tangent construction (straight lines) to determine the phase
coexistence in mixtures of colloidal hard spheres and phs. (i) gas–liquid coexistence, (ii) fluid–
solid coexistence, (iii) gas–liquid–solid triple coexistence, and (iv) fluid–solid coexistence near a
metastable (dashed lines represent the common tangent construction for this case) gas–liquid
coexistence
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and (ii) is possible under conditions where the curve for the fluid state shows an
instability itself and the gas and liquid compositions coexist with a solid phase
(termed a triple point) as exemplified by (iii). Finally, situation (iv) refers to an
instability of the fluid state within the concentration region where fluid and solid
coexist. Here the value for the chemical potential of the colloidal particles at gas–
liquid coexistence is larger than the chemical potential of the fluid–solid coexis-
tence as follows from the slopes. Hence gas–liquid coexistence is metastable in
such a case. For each polymer concentration the binodal compositions can be
found in this manner; full phase diagrams can be constructed from such binodals.

For non-interacting depletants such as penetrable hard spheres the l’s and P’s
in the phase coexistence equations (3.41) and (3.42) can be written such that
binodal colloid concentrations follow from solving one equation in a single
unknown [28]. We rewrite (3.38) and (3.39) as

el ¼ el0 þ ePR gð/Þ ð3:46Þ

eP ¼ eP0 þ ePR hð/Þ; ð3:47Þ

where g ¼ �oa=o/ and h ¼ aþ g/. The functions g and h may be written as

gð/Þ ¼ e�Qð/Þ 1þ ½1þ y�½aþ 2byþ 3cy2�

 �

ð3:48Þ

and

hð/Þ ¼ e�Qð/Þ 1þ ayþ 2by2 þ 3cy3

 �

: ð3:49Þ

The gas–liquid binodal can be solved from the second and third parts of

ePR ¼
el0

f ð/lÞ � el0
f ð/gÞ

gð/gÞ � gð/lÞ
¼
eP0

f ð/lÞ � eP0
f ð/gÞ

hð/gÞ � hð/lÞ
; ð3:50Þ

where el0
f and eP0

f are only a function of /, see (3.1) and (3.7). Hence, (3.50) gives a
unique relation /l(/g) at given q.

Exercise Derive (3.48), (3.49) and (3.50).

For some value of /g, within the region of /g values where a colloidal gas
coexists with a colloidal liquid, the corresponding value of /l follows from the
second equality of (3.50). The corresponding binodal depletant reservoir pressure
ePR then follows from the first equality.

Similarly, the fluid–solid binodal can be obtained from

ePR ¼
el0

s ð/sÞ � el0
f ð/f Þ

gð/f Þ � gð/sÞ
¼
eP0

s ð/sÞ � eP0
f ð/f Þ

hð/f Þ � hð/sÞ
; ð3:51Þ
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where again el0
f is given by (3.7) and eP0

f by (3.1); these are the fluid contributions.

For colloidal dispersions in the solid state eP0
s ð/Þ and el0

s ð/Þ are given by (3.12)
and (3.13), respectively.

Triple points have equal pressures and chemical potentials at colloidal gas,
liquid and solid compositions. At the triple point expressions (3.50) and (3.51) are

connected through equal values for ePR and, in principle, form a set of four

equations from which the four coordinates of the triple point ð/g;/l;/s; eP
RÞ

follow. However, for the present phs-system the problem can be reduced to solving
one equation in one unknown [28].

For large q ðq� 0:6Þ, the triple point can be approximated easily from (3.46)
and (3.47). It can be observed that the fluid–solid coexistence of the triple point
occurs at nearly similar colloid concentrations as the pure hard sphere phase
transition. For large q values, (3.46) and (3.47) can be written as elf ¼ el0

f ¼ el0
s

and ePf ¼ eP0
f ¼ eP0

s , because gð/Þ and hð/Þ vanish for large q. In the coexisting

colloidal gas phase the colloid concentration is then extremely small so ePg ¼ ePR,

since hð/Þ ! 1, implying ePR ¼ eP0
f ¼ eP0

s ¼ 6:01 at the triple point. Hence, for
large q the fluid–solid coexistence of the triple point occurs at nearly the same
colloid concentrations as for the pure hard-sphere phase transition.

The relative depletant concentration at the triple point now follows as

/R
d ’ ePRq3 ¼ 6:01q3. As can be seen in Figs. 3.11 ðq ¼ 1:0Þ and 3.12 this is rather

accurate.
The critical point can be found also as one equation in one unknown, for details

we refer to [28]. The same applies to the critical endpoint (CEP), which corre-
sponds to the q value where CP and TP coincide; it is the lowest q where stable
liquid is possible. See the extended discussions on liquid windows as related to the
CEP in [28, 29].

In Fig. 3.11 we present phase diagrams for q ¼ 0:1, q ¼ 0:4 and q ¼ 1:0. As
was already found by Gast et al. [25], for q ¼ 0:1 there is only a fluid–crystal
transition. For /d ¼ 0 the demixing gap is 0:491\/\0:541 (see Sect. 3.2.3);
with increasing depletant concentration this gap widens. For q ¼ 0:4 there are a
critical point (CP) and a triple point (TP) in the phase diagram, analogous to those
found in simple atomic systems. At high depletant concentrations in the reservoir
(above TP) a very dilute fluid (colloidal gas), coexists with a highly concentrated
colloidal solid. Between TP and CP a colloidal gas (dilute fluid) coexists with a
colloidal liquid (more concentrated fluid). At high packing fractions below the
triple line, a colloidal liquid coexists with a colloidal solid phase.

In the absence of depletant only the fluid–solid phase transition of a pure hard
sphere dispersion remains. Increasing the depletant activity now plays a role
similar to lowering the temperature in atomic systems. For larger q (see q ¼ 1:0)
the qualitative picture remains the same while the liquid window expands.

In the top diagrams of Fig. 3.11 the ordinate axis is the depletant concentration
in the reservoir. The depletant concentrations in the system of coexisting phases
can be obtained by using the relation
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Nd

V
¼ �1

V

oX
old

� �

Nc ;V ;T

¼ anR
d

or

/d ¼ a/R
d :

Coexisting phases of course have the same ld and hence the same nR
d but since the

volume fractions of hard spheres and, hence, the free volume fractions a are
different, nd in the two (or three) phases are not the same, so the tie-lines are no
longer horizontal. This is illustrated in the bottom diagrams of Fig. 3.11; now the
ordinate axis gives the relative ‘internal’ or system concentrations /d. A few
selected tie-lines are drawn to give an impression of depletant partitioning over the
phases. Interestingly, the horizontal triple line in the presentation of the phase
diagram at constant chemical potential ld (field-density representation) is now
converted into a three-phase triangle system representation.

As discussed in Sect. 3.2.3, the free volume theory is approximate in the sense
that hVfreei is replaced by hVfreei0. To get an idea of the accuracy of the phase
diagrams calculated with free volume theory we compare in Fig. 3.12 the results
for q ¼ 0:6 with recent computer simulations [33]. The agreement is, given the

Fig. 3.11 Free volume theory predictions for the phase diagrams for hard spheres as depletants
following Lekkerkerker et al. [27]. The left diagrams are for q ¼ 0:1, middle q ¼ 0:4, and right
diagrams q ¼ 1:0. Upper diagrams have depletant reservoir concentrations /R

d as ordinates,
lower diagrams are in system depletant concentrations. Triple lines and triangles are indicated as
thick lines. TP triple point, CP critical point (Asterisks refer to the critical points). A few
representative tie-lines are plotted as thin lines
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fact that the free volume theory is approximate, very good. Also for q ¼ 0:1� 1:0
[33] and large q values [34] the agreement with simulations is striking.

In this chapter we have presented the free volume theory for hard spheres plus
depletants and focused on the simplest possible case of hard spheres + penetrable
hard spheres. In the next chapters we will extend the free volume theory to more
realistic situations (Chap. 4; hard spheres ? polymers, Chap. 5; hard spher-
es ? small colloidal particles, Chap. 6; hard rods ? polymers) and compare the
results with experiments and simulations.
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Chapter 4
Stability of Colloid–Polymer Mixtures

When a dispersion containing spherical colloids is mixed with a polymer solution
two kinds of instabilities can occur as depicted in Fig. 4.1: bridging flocculation
(1) caused by adsorbing polymer or unmixing driven by the depletion force (2).
The type of instability encountered depends on whether the polymers adsorb onto
the colloidal surfaces. Polymer adsorption occurs when the contact between the
colloid surface and the polymer segments is energetically favorable to such a
degree that the loss of configurational entropy is compensated [1]. When the
amount of adsorbing polymer in the system does not suffice to fully cover all
available surface area on the colloids, so-called bridging flocculation occurs [2].
Some polymers then attach to more than a single particle leading to aggregates or
complexes (see Fig. 4.1), which tend to sediment when they are large (situation
‘1’). Such a flocculation with both colloids and polymers concentrated in one part
of a container indicates polymer adsorption. When all particle surfaces are satu-
rated with adsorbed polymers in a good solvent (see Fig. 4.2), the particle inter-
actions are effectively repulsive because dense polymer layers overlap upon close
approach giving rise to steric repulsion, which kinetically stabilizes the dispersion
(see Chap. 10 in [1]).

In the introductory chapter we saw that many systematic depletion studies were
performed on mixtures of spherical colloids plus non-adsorbing or free polymers.
The reason is obvious: spherical colloids are of industrial and fundamental rele-
vance, and can be prepared in a relatively controlled way (rather monodisperse,
hard-sphere like), while polymers are ubiquitous, and are efficient depletants.

To verify whether polymers adsorb or not there are various experimental
methods. The typical adsorbed amount at saturation C� 1 mg m�2 [1]. It is pos-
sible to investigate whether a polymer adsorbs onto a colloid by measuring the
friction coefficient that a sphere experiences by for instance sedimentation or
dynamic light scattering [3, 4].

H. N. W. Lekkerkerker and R. Tuinier, Colloids and the Depletion Interaction,
Lecture Notes in Physics, 833, DOI: 10.1007/978-94-007-1223-2_4,
� Springer Science+Business Media B.V. 2011
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Fig. 4.2 Sketch of colloidal
particles that are sterically
stabilized through polymer
adsorption

+

depletion bridging flocculation

2 1

Fig. 4.1 Types of instability
that occur after mixing a
colloidal dispersion with a
polymer solution. When the
polymer chains do not adsorb
depletion leads to partitioning
of colloids and polymers over
different phases (2). In case of
adsorption (and low polymer
concentrations) bridging
between different particles
can induce flocculation (1)
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Exercise
Verify that the polymer concentration cp (in g/L) required to fully cover all spheres
with radii R in a dispersion with volume fraction / can be expressed as

cp ¼
3/C

R
:

Hint: assume that all added polymer adsorbs.

When the effective size, due to adsorption, increases, this results in a larger
friction as follows from the Stokes friction coefficient f ¼ 6pgeffR: We stress that
any study on colloid–polymer mixtures should be preceded with an analysis of
whether the polymers adsorb or not. Analysis of the composition of the two phases
can be used to verify whether depletion interaction is responsible for demixing.

When the colloidal particles are completely covered with adsorbing polymer,
adding more polymer gives rise to excess polymer in the bulk solution, which is
thus not adsorbed. This non-adsorbing polymer may lead to depletion interaction
as well. In such a case depletion effects are weaker for two reasons. Firstly, more
polymer is required before depletion-induced instability of the dispersion occurs
because polymer is first consumed in order to cover the particles [1]. Secondly, the
depletion interaction is weak due to the soft repulsion between the adsorbed
polymer layers. It is known that depletion effects between such soft surfaces are
rather small [1, 5].

For depleting polymer at hard surfaces, exceeding a certain polymer concen-
tration may lead to phase separation into a polymer-enriched phase coexisting with
a particle-enriched phase (see Fig. 4.1). For colloidal gas–liquid phase separation,
the degree of partitioning over the two phases depends on how far the system is
from the critical point. Although the focus in this chapter is on equilibrium phase
behaviour, we also pay attention to nonequilibrium phenomena, ranging from
polymer depletion-induced phase separation kinetics to colloidal (transient) gel
and glass formation. Such effects are of significant practical relevance and are
discussed in Sect. 4.5.

In Chap. 3 we introduced the phase behaviour of hard spheres mixed with
penetrable hard spheres (phs). This provides a starting point for describing the
phase behaviour of colloid–polymer mixtures. In Sect. 4.1 we show that the phs-
description using penetrable hard spheres is adequate for mixtures in the colloid-
limit: small q with polymer chains smaller than the particle radius. In Sect. 4.2 we
treat the modifications for the case that the polymers are treated as ideal chains.
More advanced treatments accounting for non-ideal behaviour of depletion
thickness and osmotic pressure for interacting polymer chains enable to also
describe intermediate and large q situations. This is the topic of Sect. 4.3. In Sect.
4.4 we qualitatively consider work available on the effects of polydispersity on
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depletion interaction and phase behaviour as well as the influence of charges on
depletion effects. Finally, we consider non-equilibrium states in colloid–polymer
mixtures in Sect. 4.5.

4.1 Experimental State Diagrams of Model Colloid–Polymer
Mixtures

In several groups well-defined colloids with a lyophilic surface coating and a steep
repulsive interaction have been developed. Dispersions of such particles in
appropriate solvents can be approximated as hard-sphere fluids (or solids above
some concentration). Spherical silica particles in cyclohexane [6–8], in which the
particles were made lyophilic by covering the surface with a layer of terminally
anchored octadecyl chains, are a first example of such a model dispersion. In this
system the refractive indices of silica (1.45) and cyclohexane (1.42) are close, so
multiple light scattering effects are avoided and the Van der Waals attraction
between the particles is small. Cyclohexane was chosen since it is a good solvent
for octadecyl chains; the surface layers of two encountering particles will repel
each other sterically, see Sect. 1.2.4. This results in a fairly steep pseudo hard-
sphere interaction that can be described through (1.19):

WðrÞ ¼ 1 r� 2Reff

¼ 0 r [ 2Reff ;
ð4:1Þ

where r is the centre-to-centre distance between the spheres (¼ 2Reff þ h). Here
Reff is the effective hard-sphere radius: the sphere radius plus the thickness of the
terminally anchored chains.

Another interesting model system is a dispersion of polymethylmetacrylate
(PMMA) particles that are sterically stabilized with poly-12-hydroxy stearic acid
in solvents such as decalin, sometimes mixed with tetralin in order to match
solvent and particle refractive indices. Early synthesis of and studies with these
particles were performed in Bristol [9, 10]. These systems exhibit fluid to solid
phase transitions when the particle volume fraction exceeds about 0.5.

Well-defined dispersions of hard-sphere-like PMMA colloids and non-adsorbing
polymers were extensively studied in Edinburgh [11]. These PMMA particles can
be synthesized with a size polydispersity below 5%, and behave almost like perfect
hard spheres [12], see Sect. 3.2.

Polystyrene (PS) polymer is one of the well-characterized random coil poly-
mers used in combination with PMMA spheres. PS can be synthesized with
polydispersities as small as MW=MN � 1:02: The physical properties of PS in
solution have been characterized in a wide range of solvents [13]. Optical tweezer
experiments [14] on a pair of PMMA spheres in a PS solution were consistent with
the presence of depletion layers of PS surrounding the spheres. Also DLS mea-
surements showed that adsorption does not occur [3]. Hence, the model system of
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PMMA plus PS offers an excellent tool for studying the phase behaviour of hard
spheres plus free polymers [15].

In Fig. 4.3 state diagrams are plotted that were measured by Poon et al. [16, 17]
for three size ratios q ¼ Rg=R ¼ 0:08; 0:57 and 1: Here /p is the polymer con-
centration relative to overlap, see (1.24). At /\0:49 and low polymer concen-
trations the mixtures appear as single-state fluid phases. At zero polymer content
the hard-sphere fluid–crystal phase transition is found when the colloids occupy
about half of the volume. Upon addition of polymer the fluid–crystal coexistence
region expands for q ¼ 0:08; then a colloidal fluid at smaller volume fraction

Fig. 4.3 State diagrams of
colloid–polymer mixtures for
q ¼ 0:08 (top), q ¼ 0:57
(middle) and q ¼ 1:0
(bottom). Experimental data:
PMMA spheres plus
polystyrene polymers in cis-
decalin [16, 17]. Curves: free
volume theory [18] with d ¼
Rg: For high q a triple triangle
(hatched) is predicted by the
theory
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coexists with a denser colloidal crystal. Slanted tie-lines were observed that
indicate polymer partitioning over the two phases [16]. These findings are con-
sistent with the small-q predictions in Chap. 3 for hard spheres mixed with pen-
etrable hard spheres [18] for small q: For larger q values ðqJ0:3Þ; a critical point
appears in the phase diagram, identifying the onset of the gas–liquid coexistence
region. This is observed in the phase diagrams for q ¼ 0:57 and 1 in Fig. 4.3 and is
also found for larger q values [19–23]. Large q implies a long-ranged attraction.

The absence of a liquid state in phase diagrams for a collection of particles with
short-ranged attractions is a general finding [24, 25] for which Pusey and Poon gave
the following simple physical argument [15, 26]. Consider a close-packed crystal
/ � 0:74 of adhesive hard spheres that have a mutual attraction (see Fig. 4.4).
Upon adding solvent, the crystalline structure expands in volume. At / ¼ 0:545;
the point of loss of rigidity is attained and a fluid state becomes possible. Liquid
configurations require that the particles attract one another sufficiently strong as
they are moving. For weak attraction (weaker than the attraction at the critical
point) thermal energy overcomes this attraction and a liquid state is impossible. For
stronger attractions (exceeding the critical value) the state depends on the range of
attraction. For short-ranged attractions the particles are directly out of their range of
attraction so a low density gas is the most stable situation upon dilution. Gas–liquid
equilibria are then metastable. It has been shown that such ‘hidden’ gas–liquid
coexistence regions have their impact on dynamics and phase separation kinetics
and play a role in crystallisation phenomena [27–31]. Fortini et al. [32] studied the
relationship between equilibrium and nonequilibrium phase diagrams of a system

expansion ~ 1/3

(i) (ii)

1

2

3
4

Fig. 4.4 Schematic picture
of the expansion of a
colloidal crystal phase (1)
towards (2), at the melting
volume fraction ð� 0:55Þ:
After melting, for a short-
ranged attraction (ii) a
colloidal gas (4) is more
favourable upon further
expansion. In case of a long-
ranged attraction with
appropriate strength, a
colloidal liquid (3) is the
stable state (i)
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of hard spheres with a short-ranged attraction using Monte Carlo and Brownian
dynamics simulations. They found that crystallization is enhanced for attractions
that are sufficiently strong to enter the metastable gas–liquid binodal. Then for-
mation of a dense liquid is observed followed by nucleation of the crystallites
within the dense fluid. Only at larger colloid concentrations a percolating network
structure due to an arrested gas–liquid phase separation is found.

For sufficiently long-ranged attraction the particles still attract one another at
the loss of rigidity point so a liquid state then is possible.

Exercise
What does it take to make a stable liquid?

In colloid–polymer mixtures there is no direct attraction between the colloids
but the attraction enters through repulsion. Attraction is caused by overlap of
depletion layers rather than through direct pair interactions. For q [ 0:15; multiple
overlap of depletion layers (see Fig. 3.8) occurs which is expected to promote the
occurrence of a colloidal liquid. The critical point at which the range of attraction
is just sufficient for a stable liquid state is termed the critical end point [25]. For a
shorter range of attraction no critical point borders a stable fluid phase. Theory and
computer simulations point out that the critical end point generally corresponds to
a range of attraction close to 1=3 of the particle diameter [25].

We now return to Fig. 4.3 and focus on the state diagrams for q ¼ 0:57 and 1:
Adding polymer leads to gas–liquid coexistence as discussed, followed by a region
where a gas–liquid–crystal equilibrium (open circles) is found. For q ¼ 0:57 this
three-phase coexistence region corresponds roughly to the theoretical prediction of
the free volume theory (FVT) as outlined in Chap. 3, with penetrable hard spheres
playing the role of the polymer chains. Above the three-phase coexistence region a
gas–crystal binodal is found which is also predicted by FVT. At even higher
polymer concentrations crystallisation did not occur anymore while dense solid
sediments of particles appeared. This nonequilibrium behaviour is also found for
q ¼ 0:08 at high polymer concentrations where (metastable) gel or glassy states
are observed. A colloidal glass refers to a state where the particles are topologi-
cally trapped (‘caged’) by their neighbours. The term gel is identified as a disor-
dered arrested state which does not flow but exhibits solid-like rheological
properties such as an elastic shear modulus [33]. We return to these nonequilib-
rium states of colloid–polymer mixtures in Sect. 4.5.

In Fig. 4.3 we also plot the (equilibrium) binodals using FVT outlined in
Chap. 3 for hard spheres plus penetrable hard spheres with diameters of 2Rg:

Qualitatively, the phase diagram topology is quite well predicted. For q ¼ 0:08;
only equilibrium fluid, crystal and fluid + crystal regions are found and predicted.
Both for q ¼ 0:57 and 1 the phase diagram contains fluid, gas, liquid and crys-
talline (equilibrium) phases. In the different unmixing regions one now finds
gas–liquid coexistence with a critical point, three-phase gas–liquid–crystal and
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gas–crystal coexistences. The observed q-dependence of the phase diagram
topology outlined above is not limited to the PMMA model system. Similar
findings were reported for the phase behaviour of for instance polystyrene latex
spheres mixed with hydroxy-ethyl cellulose in water [34, 35].

Next we make a more quantitative comparison between theory and experiment.
We observe in Fig. 4.3 that the quantitative agreement between FVT and the
experimental data becomes less upon increasing q: For q ¼ 0:08 the fluid–crystal
binodal is in nearly quantitative agreement with the experimental results with a
slight, nearly imperceptible, overestimation of the binodal. The q ¼ 0:57 data are
in fair agreement with the FVT predictions (middle panel of Fig. 4.3). The triple
region lies somewhat above the experimental data, especially at low /; and the
FVT gas–liquid binodal curve lies slightly below the experimental binodal. Hence
the width of the gas–liquid coexistence region is overestimated. Whereas for
q ¼ 0:08 the relevant concentration regime of the FVT prediction is located at
/p\0:3; the relative polymer concentrations are much closer to the overlap
concentration for q ¼ 0:57: This means that one has to take into account the
excluded volume interactions between the polymer chains. Regarding them as
penetrable hard spheres only suffices for small q (�/p).

For q ¼ 1:0 (lower panel of Fig. 4.3) classical FVT fails. The FVT gas–liquid
binodal now lies far below the experimental phase transition and the FVT triple
region (approaching /p � 6) at the gas corner of the triple region, see Fig. 3.11
(lower right panel), largely exceeds the experimental one. In Sect. 4.3 we gener-
alize FVT by incorporating polymeric interactions between the polymer chains and
we compare these results to the experimental equilibrium phase diagrams for
q ¼ 0:57 and 1:0:

To summarize, theory and experiment clearly demonstrate that the types of
phase equilibria encountered in unmixed colloid–polymer mixtures are rather
sensitive to the size ratio q: For sufficiently large q ðJ0:3Þ a colloidal gas–liquid
phase separation is encountered. For qJ0:4; the simple model of hard spheres plus
penetrable hard spheres fails to accurately describe the phase behaviour of well-
defined hard-sphere colloid plus polymer mixtures. For large q-values it is
essential to improve the simple description of polymer chains as penetrable hard
spheres.

4.2 Phase Behaviour of Colloid + Ideal Polymer Mixtures

The first step in taking into account more appropriate polymer physics compared to
the simple description of penetrable hard spheres is by considering the polymers as
ideal chains. Then one needs to incorporate the correct depletion thickness of non-
adsorbing ideal chains near a colloidal hard sphere into free volume theory.

In Chap. 2 we saw that an analytical expression (2.62) can be derived for the
depletion thickness around a sphere due to ideal polymer chains:
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ds

R
¼ 1þ 6q

ffiffiffi

p
p þ 3q2

� �1=3

�1: ð4:2Þ

In Fig. 2.16 we plotted (4.2). It follows that the depletion thickness, normalised
as ds=R; drops with increasing q: For q\1 the depletion thickness is larger than Rg

but not much: the maximum is 2=
ffiffiffi

p
p
� 1:13 times Rg in the limit q! 0: For qJ1

the depletion thickness is smaller than Rg: In Fig. 4.5, ds as normalized with the
sphere radius R is plotted as a function of q:

We now incorporate the correct depletion thickness into free volume theory
presented in Sect. 3.3. We consider the osmotic equilibrium between a polymer
solution (reservoir) and the colloid–polymer mixture (system) of interest, see
Fig. 4.6. The general expression for the semi-grand potential for Nc hard spheres
plus interacting polymers as depletants, see (3.18), is

XðNc;V; T ; lpÞ ¼ F0ðNc;V; TÞ þ
Z

lR
p

�1

oX
olR0

p

dlR0
p ; ð4:3Þ

s

Fig. 4.5 Depletion thickness
of ideal polymer chains
around a sphere (solid curve)
as a function of the polymer-
to-sphere size ratio q: Solid
curve: (4.2), dashed line is
the classical penetrable hard-
sphere approach ds ¼ Rg and
the dotted curve follows the
approximation d=R ¼
0:938q0:9; see (4.24)

Gas

Liquid

reservoir system

Fig. 4.6 Osmotic
equilibrium between a
reservoir containing polymer
chains and a system of
colloids plus polymers where
(in this example) unmixing
resulted in a colloidal gas in
equilibrium with a colloidal
liquid
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with F0 the free energy of the pure hard-sphere dispersion. Just as in Chap. 3 we
define the dimensionless free energies, chemical potential and pressure

eF0 ¼
F0v0

VkT
; eX ¼ Xv0

VkT
; el ¼ l

kT
; eP

ðRÞ ¼ PðRÞv0

kT
:

We drop the explicit dependencies ðNc;V; T ; lpÞ in (3.18) and can write

eX ¼ eF0 �
Z

/p

0

a
oeP

R

o/R0
p

 !

d/R0

p ; ð4:4Þ

using the free volume theory approximations discussed in Chap. 3. Since for ideal

polymers eP
R ¼ /R

p q�3 and a is independent of /p we arrive at (3.43)

eX ¼ eF0 � aeP
R ¼ eF0 � a/R

p q�3: ð4:5Þ

Exercise
Derive (4.4) by starting from (3.16), using oX=olp ¼ �Np; the Gibbs–Duhem

relation dlR
p ¼ ðvp=/

R
p Þ dPR and eP

R ¼ PRv0=kT :

For the free volume fraction a we recall (3.36),

a ¼ ð1� /Þ exp½�ay� by2 � cy3�; ð4:6Þ

with

y ¼ /
1� /

and revised definitions of a; b and c:

a ¼ 3
ds

R
þ 3

ds

R

� �2

þ ds

R

� �3

;

b ¼ 9
2

ds

R

� �2

þ3
ds

R

� �3

;

c ¼ 3
ds

R

� �3

:

ð4:7Þ

Inserting (4.2) into (4.6) gives the corrected free volume fraction in a mixture of
ideal chains and colloidal spheres. Inspection of the gas–liquid coexistence bi-
nodals for q ¼ 1 and smaller q reveals that replacing penetrable hard spheres with
ideal chains does not give significant differences.
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Exercise
Why does replacing penetrable hard spheres with ideal chains result in a polymer
concentration shift upwards (at low colloid volume fractions /) of the gas–liquid
binodals for large q?

It follows from Fig. 4.5 and the detailed comparison in [36] that this corrected
description for q [ 1 does affect the phase diagram. For such high q values,
however, it becomes essential to account for interactions between the polymer
segments, whereby d becomes a function of the polymer concentration and the
osmotic pressure is no longer ideal.

4.3 Mixtures of Spheres Plus Interacting Polymer Mixtures

In this section we consider the phase behaviour of dispersions containing spherical
colloids and interacting polymer chains in a common solvent. For small polymer-
to-colloid size ratios, q. 0:4; the relevant part of the phase diagram lies below the
polymer overlap concentration (/R

p \1). Then accounting for interactions between
the polymers is not essential to properly describe the phase diagram and it is still
sufficient to approximate the polymer-induced osmotic pressure by the ideal gas
law as assumed within free volume theory [18]. However, for qJ0:4; the polymer
concentrations where phase transitions occur are of the order of and above the
polymer overlap concentration: in that case interactions between the polymer
segments should be accounted for.

We treat the extension of FVT and incorporate correct expressions for the
(polymer concentration-dependent) depletion thickness and osmotic pressure,
resulting in generalized free volume theory (GFVT). Expression (4.4) for the semi-
grand potential is still valid in GFVT: it does not contain any assumption as yet on
the physical properties of the depletants or the colloids. But now we need to

specify the quantities a and eP
R

for interacting polymers. We thus need the osmotic
pressure and depletion thickness (that determines a; see (4.6) and (4.7)). These will
be considered in Sects. 4.3.2 and 4.3.3. First we start in Sect. 4.3.1 with some
basics on the physics of polymer solutions in the dilute and semi-dilute concen-
tration regimes.

4.3.1 Characteristic Length Scales in Polymer Solutions

In Sect. 2.2 we considered the concept of ghost or ideal chains. The segments of
such chains do not feel each other. Here we consider excluded volume interactions
between the segments Throughout Sect. 4.3 we consider two limiting cases of
interacting polymer chains; the excluded volume limit (good solvent) and the
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H-solvent situation. The good solvent condition refers to the situation where the
segments of the polymer chains effectively repel other segments so that chains in a
good solvent will swell due to excluded volume interactions.

A special situation occurs when the attraction between the segments exactly
compensates the (hard-core) excluded volume effect. In dilute solutions the chains
then behave quasi-ideal. This situation is commonly referred to as the H-solvent
condition.

Both under good and H-solvent conditions the physical properties of the
polymer solution depend on the concentration regime. The characteristic length
scale is the correlation length n: In the dilute concentration regime this is the radius
of gyration of the coils, which depends on chain length M but not on concentration.
Beyond the overlap concentration of polymer coils the correlation length decreases
with increasing polymer concentration and is independent of M: Figure 4.7 gives a
sketch of the various polymer concentration regimes.

4.3.1.1 Dilute Polymer Concentration

For long chains the following scaling relation holds [37]

Rg�Mm; ð4:8Þ

with

m ¼ 1
2

H-solvent

¼ 0:588 good solvent;
ð4:9Þ

where the scaling exponent m is known as the Flory exponent. In a H-solvent the
chains are ideal so Rg is proportional to

ffiffiffiffiffi

M
p

: Then we have

a b c

Fig. 4.7 Sketch of the various concentration regimes in polymer solutions, a dilute (/p\1),
b near overlap (/p � 1), c semi-dilute (/p [ 1)
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Rg ¼ b

ffiffiffiffiffi

M

6

r

;

where b is the segment size. For a good solvent the exponent m follows from the
Renormalization Group Theory (further on denoted as RGT) result [38].

For shorter chains an approximate expression for any solvency may be derived
using the Flory excluded-volume parameter v; which is unity when the segments
experience hard-core repulsion and vanishes in case of a H-solvent. Based on
Flory’s result [37] for the expansion coefficient, the coil size can be written as [39]:

Rg ¼ 0:31bM1=2 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6:5vM1=2
p

h i0:352
; ð4:10Þ

where we adjusted the Flory scaling exponent 2=5 in the last factor to 0.352 to
achieve the correct scaling behaviour [38] of (4.9).

Exercise
Show that for M � 1 this expression reduces to the scaling limits of (4.8) and
(4.9).

4.3.1.2 Semi-Dilute Polymer Concentration

In the dilute regime (Fig. 4.7a) each polymer coil occupies a volume vp ¼
ð4p=3ÞR3

g: When vpnb becomes unity the solution is completely filled with polymer
coils (Fig. 4.7b). For vpnb [ 1 the chains overlap. Therefore overlap in terms of
the number density is defined as n�b ¼ 1=vp: It is convenient to define a relative
polymer concentration (1.24):

/p ¼ vpnb ¼
u
u�
; ð4:11Þ

which is unity at the overlap concentration. Here u is the polymer segment volume
fraction, often used in polymer physics. Using this polymer segment volume
fraction u ¼ nbMvs the overlap volume fraction u� follows as

u� ¼ M
vs

vp
: ð4:12Þ

Above the polymer overlap concentration we enter the semi-dilute regime
(Fig. 4.7c). The length scale over which the polymer segments are correlated is
denoted as correlation length n: Below overlap (u\u�) this quantity is the coil
size Rg which depends only on M (and solvency). Above overlap (u [ u�) we
have the famous De Gennes scaling law [40]

n�u�c; ð4:13Þ

which does not depend on chain length, The scaling exponent c is given by
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c ¼ 1 H-solvent

¼ 0:77 good solvent:
ð4:14Þ

Near the overlap concentration we have n � Rg and u � u�; so Rg�ðu�Þ�c:

Consequently,

n
Rg
�/�c

p : ð4:15Þ

Since u� �M=vp�R1=m�3
g (4.12) and u� �R�1=c

g ; we have the following general
relation between the Flory and De Gennes exponents

1
c
þ 1

m
¼ 3: ð4:16Þ

To incorporate the crossover from dilute to the semi-dilute polymer concen-
trations, Fleer et al. [41] have derived approximate but accurate expressions for the
polymer concentration-dependent depletion thickness d and osmotic pressure P by
interpolating between the exactly known dilute limit and scaling relations at semi-
dilute polymer concentrations using combination rules. These are discussed in
Sect. 4.3.2 (d) and Sect. 4.3.3 (P).

4.3.2 Depletion Thickness

4.3.2.1 Concentration Profile at a Hard Wall

In the semi-dilute limit, De Gennes [40] made a mean-field analysis of the polymer
concentration at a non-adsorbing hard wall. He used the ground state approxi-
mation (GSA) to approximate the Edwards equation [42–45] for polymer trajec-
tories in an external field. The GSA basically simplifies chains in the sense that the
spatial distribution of the segments is assumed to be independent of the ranking
number of the segments: there is no difference between, for instance, an end
segment and a middle segment of the chains. Especially in the semi-dilute con-
centration regime the GSA is powerful [46]. The GSA concentration profile is
simple

f ðxÞ ¼ tanh2 x

n

� �

: ð4:17Þ

Applying (2.53)

d ¼
Z

1

0

dx½1� f ðxÞ�;

results in d ¼ n: It follows that the correlation length sets the length scale over
which polymer segments are depleted from the wall. Beyond a distance of the
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correlation length from a colloidal surface the segments are ‘unaware’ of a non-
adsorbing surface.

Exercise
Rationalize the shape of the profile f ðxÞ ¼ tanh2ðx=nÞ from the Van der Waals
density profile at a gas–liquid interface. Hint: use the relation between the order
parameter and the density profile.

For other cases (depleted dilute ideal or excluded volume chains, semi-dilute
chains with fluctuation effects) density profiles are substantially more involved in
comparison with a tanh2 profile. Surprisingly, the expression (2.55)

uðxÞ
ub
¼ tanh2 x

d

� �

; ð4:18Þ

where uðxÞ is the local polymer segment concentration and ub its value in the
bulk, turns out to be very accurate in general as long as the correct correlation
length d is inserted, see Fig. 4.8.

4.3.2.2 Depletion Thickness at a Hard Wall

For ideal chains (or dilute chains in a H-solvent) we have seen, (2.51) plus (2.53),
that the depletion thickness at a hard wall equals d0 ¼ 2Rg

ffiffiffi

p
p
� 1:13Rg [47, 48],

where the subscript 0 now refers to the dilute (ideal) limit.
A general expression for dilute polymer solutions is

Fig. 4.8 Segment density
profiles at a flat wall for
non-adsorbing polymers
described as ideal chains
(filled squares) mean-field
chains (open circles) and
excluded volume chains
(open triangles) compared to
the tanh2 profile (solid curve)
of (4.18)

4.3 Mixtures of Spheres Plus Interacting Polymer Mixtures 145



d0 ¼ pRg with p � 1:13 H-solvent
1:07 good solvent

�

ð4:19Þ

The good solvent result was derived by Hanke et al. [49] using RGT.
As we have seen the De Gennes result for the semi-dilute limit provides d ¼ n:

A GSA analysis of mean-field polymer chains in a slit [45] enables to combine the
dilute and semi-dilute limits and provides a very simple and accurate relationship:

d�2 ¼ d�2
0 þ n�2: ð4:20Þ

This result was derived from a mean-field treatment, where the semi-dilute scaling

behaviour is n�/�1
p (H-solvent) or n�/�1=2

p (good solvent). The scaling expo-
nent �1 is valid for chains in a H-solvent but �1=2 is incorrect for good solvent
conditions. Expression (4.20) can, however, be generalised to include the correct
scaling exponents by inserting the correct scaling (4.15) with (4.14), with the
appropriate numerical prefactor, into (4.20). The result is [41]

d0

d

� �2

¼ 1þ b/2c
p ð4:21Þ

with

b ¼ 6:02 H-solvent

¼ 3:95 good solvent:

For a H-solvent with c ¼ 1 (4.21) is in quantitative with numerical self-consistent
field results. For a good solvent with c ¼ 0:77 (4.21) compares favourably with
computer simulation results, see [41].

4.3.2.3 Depletion Thickness Around a Hard Sphere

Converting the depletion thickness d at a hard wall d to its value ds around a hard
sphere is a geometrical issue. In Sect. 2.2.2 we saw that the concentration profile of
ideal polymer chains around a sphere gives (2.62), which can be rewritten in the
form:

ds

R
¼ 1þ 3

d
R
þ 3p

4
d
R

� �2
" #1=3

�1: ð4:22Þ

For dilute chains in the excluded volume limit the following expansion has been
found:

ds

R
¼ 1þ C1

d
R
þ C2

d
R

� �2

þC3
d
R

� �3

þ 	 	 	
" #1=3

�1; ð4:23Þ

with the flat wall result C1 ¼ 3: The curvature terms C2 � 2:273 (which is close to
3p=4) and the small value C3 � �0:0975 were computed using RGT [49].
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Although higher order Ci terms are yet unknown it is clear that the curvature
effects for excluded volume and ideal chains in (4.22) and (4.23) are rather similar.

These expressions for d=R can be easily approximated as the simple accurate
power-laws [39]

d0;s

R
¼ 0:938q0:9 H-solvent

¼ 0:865q0:88 good solvent:
ð4:24Þ

These power-laws hold for a wide range of q-values [39], see for instance
Fig. 4.5. In combination with the concentration dependence (4.21), this approxi-
mation leads to

ds

R
¼ 0:938 q�2 þ 6:02q�2/2

p

� ��0:45
H-solvent

¼ 0:865 q�2 þ 3:95q�2/1:54
p

� ��0:44
good solvent;

ð4:25Þ

expressing the concentration- and curvature dependence of the depletion thickness
around a sphere in a solution with interacting polymers under H-solvent and good
solvent conditions. For the good solvent situation the depletion thickness is plotted
in Fig. 4.9 for three q-values.

4.3.3 Osmotic Pressure of Polymer Solutions

In the limit of dilute polymer solutions the osmotic pressure is given by the ideal
Van’t Hoff law Pid ¼ nbkT (see Sect. 2.2). For the osmotic pressure of non-ideal
polymers in solution one can write down a general virial series

Fig. 4.9 Depletion thickness (solid curves) for three size ratios as indicated and osmotic pressure
(dashed curve) of polymer chains in the excluded volume limit as a function of the relative
polymer concentration
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P

nbkT
¼ 1þ A2nb þ A3n2

b þ 	 	 	 ; ð4:26Þ

where A2 and A3 are the second and third osmotic virial coefficients. Note that we
use Bi for colloids (see for instance (1.29), Sects. 2.3.1 and 3.2.1) and Ai for
polymers. The second virial coefficient is proportional to the effective excluded
volume per polymer segment: A2� v: In the good solvent limit v ¼ 1 this excluded
volume equals the physical volume of a segment, so A2 attains a finite positive
value. In a bad solvent A2\0: For polymer chains in a H-solvent the excluded
volume of a segment is exactly compensated by the attractions between the seg-
ments and A2 
 0; in a H-solvent Van ’t Hoff’s law P ¼ nbkT holds up to qua-
dratic order in nb: Higher-order virial coefficients A3 and beyond are non-zero, so
for higher polymer concentrations deviations from ideal behaviour are found also
in a H-solvent.

Perturbation expansions in terms of the excluded volume in principle yield the
second and higher order osmotic virial coefficients [38, 50]. This procedure
becomes rather cumbersome for A4 and higher-order coefficients and established
scaling exponents [40] for the semi-dilute polymer concentration regime cannot be
reproduced in a virial expansion.

In fact, in the semi-dilute case the picture is simple; the chains overlap to such a
degree that the characteristic length scale is determined by the correlation length n
rather than the coil size set by the chain length M: The corresponding volume n3 is
denoted as a blob. The osmotic pressure can then be viewed upon as an ideal gas of
blobs, so Psd� n�3; with the number of blobs � n�3: Therefore the scaling result
becomes Psd=kT �/3c

p :

A convenient expression that enables to describe both the dilute and semi-dilute
polymer concentration regimes follows from a simple additivity rule P ¼ Pid þ
Psd: This additivity follows from the Flory–Huggins theory [37] for a H-solvent
but appears to be an excellent approximation for good solvents as well [41]. This
leads to the following expression for the ratio P=Pid

P

Pid

¼ Pvp

/pkT
¼ 1þ f/3c�1

p ; ð4:27Þ

with

f ¼ 4:10 H-solvent

¼ 1:62 good solvent:
ð4:28Þ

The numerical coefficient f follows from Flory–Huggins theory for a H-solvent
and from RGT for a good solvent. Equation (4.28) turns out to be extremely
accurate in comparison with experimental and computer simulation data [41]. For
a good solvent the result is plotted in Fig. 4.9. Under H-solvent conditions Flory–
Huggins theory reproduces (4.27).
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The osmotic compressibility that we need in (4.4) now follows straightfor-
wardly

oðPvp=kTÞ
o/p

¼ 1þ 3cf/3c�1
p

¼ 1þ 12:3/2
p H-solvent

¼ 1þ 3:73/1:31
p good solvent:

ð4:29Þ

Exercise
Derive (4.29) from (4.27), (4.28) and (4.14).

4.3.4 Phase Diagrams

Below we summarize the results for the osmotic pressure and depletion thickness
and subsequently we consider the implications for the phase behaviour.

4.3.4.1 GFVT Ingredients; H-Solvent

For polymer chains in a H-solvent the scaling exponent c takes its mean-field
value c ¼ 1: The polymer concentration derivative of the reduced osmotic pressure
follows from (4.29) as

q3 oeP

o/p
¼ 1þ 12:3/2

p; ð4:30Þ

and the ratio between the depletion thickness and the colloid radius is

ds

R
¼ 0:938 q=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6:02/2
p

q

� �0:9

: ð4:31Þ

Equation (4.31) follows directly from (4.25).

4.3.4.2 GFVT Ingredients; Good Solvent

The De Gennes scaling exponent c equals 0.77 under good solvent conditions.
Therefore, we have from (4.29)

q3 oeP

o/p
¼ 1þ 3:73/1:31

p ð4:32Þ

and from (4.25)
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ds

R
¼ 0:865 q=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3:95/1:54
p

q

� �0:88

: ð4:33Þ

Note that in contrast to the classical FVT [18], oeP=o/p and ds=R in (4.30)–(4.33)
now depend on the polymer concentration /p:

In Fig. 4.10 we compare the free volume fraction a calculated from (4.6), in the
good solvency limit with ds=R in (4.7) from (4.33), with Monte Carlo simulation
results of Fortini et al. [51] for q ¼ 1:05 along the binodal gas-liquid curve. Except
for some deviation at large colloid volume fractions the agreement is excellent.

4.3.4.3 GFVT Phase Behaviour

We can now compute the phase diagrams for hard spheres plus interacting poly-
mers using the general expression (4.4) and its ingredients by computing the

chemical potential el ¼ ðoeX=o/Þ and total pressure eP ¼ /el � eX;

el ¼ el0 þ
Z

/R
p

0

g
oeP

R

o/R0
p

 !

d/R0

p ; ð4:34Þ

eP ¼ eP0 þ
Z

/R
p

0

h
oeP

R

o/R0
p

 !

d/R0

p : ð4:35Þ

Here g and h are given by (3.48) and (3.49) with a; b and c defined in (4.7).
Coexistence curves then follow from (3.41) and (3.42).

Fig. 4.10 Free volume
fraction a as a function of
colloid volume fraction for
q ¼ 1:05: GFVT (dashed
curve) compared to Monte
Carlo computer simulations
(data points) [51]
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We compare gas–liquid coexistence curves from GFVT in the good solvent
limit with Monte Carlo simulation results of Bolhuis et al. [52] in Fig. 4.11 for
q ¼ 0:67 and 1:05: It is clear GFVT is capable of predicting the location of the
phase boundaries reasonably well.

The critical end points for H-solvent and good solvent conditions are rather
close to the one for penetrable hard spheres:

qcep ¼ 0:328 penetrable hard spheres

¼ 0:337 H-solvent

¼ 0:388 good solvent:

ð4:36Þ

We turn back to Fig. 4.3 and make a comparison of the experimental phase
diagrams with GFVT under good solvent conditions. We show the experimental
data in Fig. 4.12 and inserted GFVT predictions (good solvency) for the binodals
as the curves and the triple triangle as filled region. GFVT is capable of accurately
describing the experimental equilibrium phase diagrams for q ¼ 0:57 and 1; and
constitutes a major improvement with respect to FVT for q [ 0:5: Especially for
q ¼ 1 GFVT proves to be very useful since FVT completely fails to quantitatively
describe the phase diagram here.

For q ¼ 0:57 the composition of the colloidal liquid that coexists with a col-
loidal gas and crystal was determined by Moussaïd et al. [26]. In Table 4.1 we
compare these data with FVT and GFVT predictions. The experimental colloid
volume fraction and polymer concentration clearly deviate significantly from FVT.
Especially the polymer concentration of the coexisting colloidal liquid phase is
about 30 times larger than the FVT prediction. Generalized free volume theory
gives a much better prediction of the composition, especially if the polymers are
assumed to be in a good solvent.

Fig. 4.11 Gas–liquid coexistence curves for hard spheres plus interacting polymers in a good
solvent (Gaussian core model) from Monte Carlo simulation [52] data for q ¼ 0:67 (left) and
q ¼ 1:05 (right) versus GFVT predictions (curves). The GFVT critical point is marked by a filled
circle
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One might think GFVT is useful only for describing the phase diagrams of well-
defined experimental hard-sphere/random coil systems (such as PMMA + PS) or
phase equilibria from computer simulations. GFVT, however, also helps to give
reasonable predictions for many other colloid plus non-adsorbing polymer mix-
tures [39]. In Fig. 4.13 we compare GFVT binodals for gas–liquid coexistence

Table 4.1 Liquid
composition of the triple
point at q ¼ 0:57

/ /p

FVT 0.489 0.0037
GFVT H 0.470 0.048
GFVT good 0.452 0.108
Experiment 0.444 0.1

Fig. 4.12 State diagrams of colloid–polymer mixtures for q ¼ 0:57 (left) and q ¼ 1:0 (right) as
in Fig. 4.3 but now compared to theoretical GFVT predictions (curves) of Fleer and Tuinier [39].
Experimental data: PMMA spheres plus polystyrene polymers in cis-decalin [16, 17]

Fig. 4.13 Comparison of experimental gas–liquid coexistence binodals (data) compared to
GFVT (curves). Left panel: spherical colloids mixed with polymer chains in a H-solvent for
q ¼ 0:84 (open triangles, [20]), 1:4 (stars, [21]) and 2:2 (crosses, [21]). Right panel: colloidal
spheres plus polymers in a good solvent for q ¼ 0:67 (open squares, [20]), 0:86 (inverse filled
triangle, [54]) and 1:4 (pluses, [20])
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with experimental data on colloid–polymer mixtures under H-solvent (left panel)
and good solvent (right panel) conditions. The order of magnitude of the predicted
binodals is accurate in all cases. Sometimes the agreement is nearly quantitative.
Aspects that give deviations are related to polymer polydispersity and the non-
hard-sphere character of the colloidal particles. The colloids may for instance be
somewhat sticky, or they may repel one another to some extent due to anchored
brushes that are not very short or due to repulsive double layer interactions. In
principle it is possible to include these effects into GFVT [53] but we shall not
consider this here.

Exercise
In what directions will gas–liquid binodals and fluid–solid binodals at low / shift
in case of an additional weak short-ranged double layer repulsion between the
spheres?

4.3.4.4 GFVT in the Semi-Dilute Regime

We now consider the large q-limit, which is the regime where /R
p along the

binodals exceeds unity, so we have semi-dilute polymer solutions. The charac-
teristic length scale in semi-dilute polymer solutions is n which scales as (4.15),
n=Rg�/�c

p : For colloid–polymer mixtures this expression can be rewritten in
terms of n=R ¼ qn=Rg to

/pq�1=c� n
R

� ��1=c

: ð4:37Þ

It is important to note that n is independent of Rg: This implies the right-hand side
of (4.37) is independent of q: Therefore also /pq�1=c is independent of q; yielding

/p� q1=c: ð4:38Þ

For large q values it is therefore efficient to introduce a parameter Y as a rescaled
polymer concentration:

Y ¼ /pq�1=c: ð4:39Þ

In the large q-limit Y is a constant (independent of q). It follows that /p ¼ Yq1=c

diverges as q1=c ¼ q1:3 for large q under good solvent conditions. This predicted
q1:3 scaling [55] of large q binodals is corroborated by simulation [56] and
experiment [57, 58] as we demonstrate in Fig. 4.14, where in the left panel we
show rescaled computer simulation data for the gas–liquid binodal [56], for hard

4.3 Mixtures of Spheres Plus Interacting Polymer Mixtures 153



spheres plus polymer chains in the good solvent limit (long chains consisting of
hard spherical segments). The data are binodal points from Fig. 1.22 for q [ 3; in
the rescaled form they collapse onto a universal curve. Clearly, in the colloid limit,
where Y depends on q; this scaling does not apply.

In the right panel of Fig. 4.14 we plotted experimental data for the gas–liquid
coexistence for two large q values. Also these data collapse onto a single curve
after rescaling according to (4.39). Hence, this predicted q1:3 scaling is corrobo-
rated by both simulations and experiments.

The parameter Y is a convenient normalised polymer concentration which has
the important property that it becomes independent of the size ratio q in the high q
limit [39, 55], where the polymer concentrations along the binodals are in the
semi-dilute regime. The Y values along the binodals always remain order unity.
Then d ¼ n�u�c [40], which does not depend on Rg: Hence, d=R does not depend
on q ¼ Rg=R; and d=R reaches a constant (q-independent) level.

Analytical approximations for the phase behaviour of colloid–polymer mixtures
can be found in [39] for those who need simple, approximate yet reasonably
accurate descriptions of equilibrium phase diagrams. Using Y instead of /p turns
all phase diagrams to more universal ones with a polymer concentration variable
that is always of order unity for the relevant characteristic parts of the phase
behaviour.

4.4 Effects of Polydispersity and Charges

Throughout this book we focus on monodisperse colloidal particles (and depletants)
that are uncharged for didactic purposes. Accounting for polydispersity and/or
charges complicates the theoretical descriptions dramatically. Still, we pay atten-
tion here to some results that have been obtained on these issues in order to get some

Fig. 4.14 Scaling of (left panel) Monte Carlo computer simulation results (see Fig. 1.22) for
q ¼ 3:86 (open circles), 5:58 (crosses) and 7:78 (filled diamonds) by Bolhuis [56] and experi-
mental results (right panel) on (AOT) micro-emulsion droplets plus free polyisoprene polymer
chains (q ¼ 10 (open squares) and q ¼ 16 (filled triangles)) by Mutch et al. [57, 58] for the gas–
liquid coexistence in the protein limit regime
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feeling of how polydispersity and charges affect depletion interactions and the
resulting phase behaviour.

4.4.1 Polydispersity Effects

The particles and polymers in any real experiment have a finite polydispersity. The
influence of polydispersity on depletion interaction and phase behaviour was
investigated by extending existing approaches. The original AO theory for two
parallel plates immersed in a solution of non-adsorbing ideal chains [59] could be
extended to involve polymer size polydispersity [60], still providing analytical
expressions for the interaction between the plates. This work was extended
towards the interaction between two spheres in a solution of polydisperse ideal
chains. It followed the influence of polydispersity on the interaction is rather weak.
Even a polydispersity of 70% (standard deviation) only increases the attraction by
less than 20%. Goulding and Hansen [61] computed the interaction potential
between two spheres in a polydisperse bath of penetrable hard spheres (polydis-
perse phs model). Up to a polydispersity characterized by a standard deviation of
30% there is hardly an effect on the somewhat increased range and slightly deeper
potential between the hard spheres. Above 30% polydispersity the effects become
more significant.

Mao [62] considered the interaction between two spheres in a bath of poly-
disperse small hard spheres using the Derjaguin approximation. The accumulation
effects due to non-adsorbing small hard spheres (see Sect. 2.3) become much less
pronounced with increasing polydispersity. So, although it is known that non-
adsorbing polymers contribute to an extremely weak repulsion at high polymer
concentration [63, 64] it is expected that this weak repulsion is even dampened due
to polydispersity as is the case for hard spheres. Goulding and Hansen [61] used
DFT theory to investigate the case of depletion due to small hard spheres. Their
findings correlate with Mao’s analytical results but also show that Mao’s Derja-
guin approximation already deviates from the DFT result for a size ratio of 5.

Sear and Frenkel [65] investigated the phase behaviour of a colloid–polymer
mixture by treating the polymers as penetrable hard spheres (phs) using a distri-
bution of polydisperse phs. Their calculations demonstrated that phase separation
leads to size fractionation of the phs. FVT was extended to as to model polydis-
persity by replacing the monodisperse polymers with bidisperse polymers by
Warren [66]. Warren found that polydispersity enhances the tendency to phase
separate when a bidisperse polymer mixture is compared to a monodisperse mixture
having identical number-averaged molar masses. It followed that the location of the
binodals of the colloid–bidisperse polymer mixture is almost identical to that of a
colloid–monodisperse polymer mixture when the weight-averaged molar mass of
the bidisperse mixture is taken as the monodisperse molar mass.

The phase behaviour of mixtures of monodisperse hard spheres and polydis-
perse ideal polymers has been investigated using original FVT [67]. At fixed mean
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polymer size, polydispersity favours gas–liquid coexistence and delays the onset of
fluid-solid separation. On the other hand, systems with different size polydispersity
but the same mass-averaged polymer chain length have nearly polydispersity-
independent phase diagrams. The influence of polymer polydispersity on the
colloidal gas–liquid phase coexistence of interacting polymers plus spherical
colloids is a complicated issue that has only been investigated using TPT by
Paricaud et al. [68]. It would be interesting to study polydispersity effects in a
mixture of hard spheres and interacting polymers within a framework that also
allows studying the crystalline phase.

Computer simulations show that crystallization of hard spheres does not occur
above a polydispersity of 11.8% in diameter [69]. Pusey [70] provided a simple
argument suggesting that the maximum polydispersity rmax depends on the close
packing and melting volume fractions /cp and /m; respectively,

rmax ¼
/cp

/m

� �1=3

�1: ð4:40Þ

Exercise
Rationalize this expression (see Sect. 3.2).

For hard spheres with /cp ¼ 0:74 and /m ¼ 0:545; (4.40) provides rmax ¼
0:11; so 11%. In dispersions with large q; small colloids are needed in practice
because it is difficult to synthesize model polymer chains with sizes [ 200 nm in
solution. Small colloids (\100 nm) are often quite polydisperse. Therefore, sys-
tems studied with large q in general tend to be relatively polydisperse in colloidal
sphere size. This implies that in experimental systems with large q; crystallisation
is suppressed or absent.

The effect of particle polydispersity on the phase behaviour of mixtures of
polydisperse hard spheres and ideal polymers has also been explored [71], also
based on original FVT. Even modest polydispersities (\10%) can significantly
change the phase diagram topology by introducing a host of new, multiphasic
equilibria involving multiple solid phases. In practice, such multiphasic equilibria
may show up as kinetic effects preventing the system reaching equilibrium. The
non-equilibrium behaviour observed at higher polymer and particle concentrations
may partly be due to this effect. Colloidal gas–liquid phase separation is however
less sensitive to polydispersity [67].

4.4.2 The Interplay of Depletion and Charges

Many theories and depletion studies with model systems are based on hard-sphere
like colloidal particles. In practice, many stable dispersions containing spherical
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colloids consist of particles that are not ‘pseudo-hard’ but which can be charac-
terised by a pair potential containing an additional soft repulsive tail. An example
is a stable dispersion of charged colloids in a polar solvent. Here double layer
interactions provide a soft repulsive interaction between the particles (Sect. 1.2.2).
In case of an aqueous salt solution as solvent, adjusting the salt concentration
influences the stability of a dispersion of charged colloids mixed with a neutral
depletion agent [72–74]. Patel and Russel [75] studied the phase behaviour of
mixtures of charged polystyrene latex colloids and dextran as (neutral) polymer
chains and reported a significant shift towards higher polymer concentrations of
the fluid–fluid binodal curve as compared to predictions for neutral polymer chains
mixed with hard spheres.

Grinberg and Tolstoguzov [72] presented generalised phase diagrams of pro-
teins mixed with neutral non-adsorbing polysaccharides in aqueous salt solutions.
The miscibility or compatibility was shown to increase when the ionic strength of
the solvent was lowered. The compatibility especially increased below 0.5 M:
Finet and Tardieu [73] studied the stability of solutions of the lens protein
a-crystallin. Adding an excess of salt to this system does not destabilise the protein
dispersion. Hence, it follows that the effective attractions between the proteins are
absent or are very weak in the case of screened charges. Adding PEG however
induces significant attractions [73], and results in a shift of the liquid–liquid phase
transition to higher temperatures [76]. Adding excess salt and PEG induces instant
phase separation [73]. A similar synergetic effect of salt and PEG was found in
aqueous solutions of (spherical) brome mosaic virus particles [74]. Royall et al.
[77] studied the influence of double repulsion on depletion forces using confocal
microscopy. In conclusion, the trend found in experimental studies on mixtures of
charged ‘colloids’ plus neutral polymers is that the miscibility is, as expected,
increased upon decreasing the salt concentration, i.e., increasing the range of the
double layer repulsion.

An early theoretical depletion interaction study with polyelectrolytes as
depleting agents was made by Böhmer et al. [78] who used the self-consistent field
method of Scheutjens and Fleer. For high salt concentrations, the polymer con-
centration dependence of the depletion layer thickness matches with that of an
uncharged polymer in solution. Below a salt concentration of 1 mol/L the
depletion layer thickness starts to decrease with increasing polyelectrolyte con-
centration at lower polymer concentration. At low salt concentrations a significant
repulsive barrier in the potential between two uncharged parallel flat plates was
found.

A force balance theory on the Derjaguin approximation level for the interaction
between two spheres in dispersion with macromolecules (regarded as hard
spheres), with (like) charges on them was developed by Walz and Sharma [79].
For low concentrations of the ‘macromolecules’ the interaction potential curve is
attractive for any salt concentration. The value of the potential at contact is
increased as the Debye length increases or if the charge density on the large
colloidal spheres (same sign as the ‘macromolecules’) increases. The range of the
potential increases as the Debye length increases. At higher concentrations of the
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small particles a repulsive barrier in the interaction potential curve appears for
sufficiently large size ratio of small and large colloid and sufficient Debye lengths.
This might lead to depletion stabilization. In the model of Walz and Sharma [79]
the polymers are modeled however as hard spheres. It is therefore questionable
whether this method applies to colloid–polymer mixtures where the polymer–
colloid repulsion is soft.

There are only a few theoretical studies on mixtures of colloids with a screened-
Coulomb repulsion mixed with neutral or charged polymer chains. Ferreira et al.
[80] made a PRISM analysis up to the level of the pair interaction and computed
gas–liquid spinodal curves from the effective colloid–colloid structure factor.
Denton and Schmidt [81] proposed a simple theory yielding the colloidal gas–
liquid binodal curve for mixed charged spheres plus free neutral polymer chains,
described as penetrable hard spheres. Fortini et al. [82] extended free volume
theory to account for a short-ranged soft repulsion between the spherical colloids,
allowing a description of the full phase diagrams. They also made Monte Carlo
simulations and the results were found to agree quite well with the extended free
volume theory. It was found that especially the colloidal fluid–solid coexistence is
sensitive to the screened-Coulomb repulsion.

Exercise
What happens to the miscibility region of a stable colloidal fluid with added
non-adsorbing polymers upon adding a screened double layer repulsion between
the spheres?

The work of Fortini et al. [82] was later extended towards highly screened
charged spheres mixed with interacting polymers [53]. Zhou et al. [83] have
shown this generalized free volume theory (GFVT) including short-ranged soft
repulsion is capable of quantitatively describing the depletion-induced phase
separation in mixtures of charged silica particles and non-adsorbing polystyrene
polymer chains in dimethylformamide polymer (H-solvent conditions). They
varied both the range of the double layer repulsion and the size ratio q.

Stradner et al. [84] and Sedgwick et al. [85] considered mixtures of charged
spherical colloids with a long-ranged double layer repulsion mixed with very short
polymer chains that induce a short-ranged depletion attraction. In such systems
small equilibrium clusters are formed that can be described theoretically [86] or
using Molecular Dynamics computer simulations [87]. The cluster size follows
from a competition between short-ranged depletion attraction, that favours cluster
growth, and long-ranged repulsion, promoting small aggregates.

Some aspects that could be relevant have not yet been incorporated in the
theory for the phase behaviour. A first issue is the effect of gradients in permit-
tivity. Croze and Cates [88] demonstrated that even the depletion zones caused by
neutral polymers are affected by charged surfaces. The electrical field present
between like-charged surfaces polarize the neutral polymer chains because of their
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(usually) low permittivity. This enhances polymer depletion and increases the
screening of double layer interactions.

The situation gets more complicated when the free polymers are (like-)charged
as well. Work of Israelachvili et al. [89] revealed that the addition of free poly-
electrolyte mainly decreases the effective Debye length in the aqueous salt solu-
tions, leading to a decrease in the double layer repulsion.

Odijk [90] incorporated the effect of (like) charges on both polymer and colloid
in his theory [91] for two small colloidal spheres immersed in a polyelectrolyte
solution. He related the effective depletion radius for small charged spheres,
immersed in a solution with oppositely charged polyelectrolytes to the Debye
length, the effective number of charges on the protein, the hard sphere radius and
the Kuhn length. When the effective depletion radius becomes larger than the
correlation length of the polymer solution, phase separation due to depletion is
expected.

In summary, it seems that at high salt concentrations like charges on polymers
and colloids do not seem to strongly affect the depletion-induced attraction
between colloids due to polymers. At low ionic strength however the situation
becomes quite complicated and detailed theories still have to be developed that
enable a computation of the stability of such systems. It is clear that there is much
work left to be done on the role of (charged) depletants in (charged) systems
before we arrive at a complete picture.

4.5 Phase Separation Kinetics and Long-Lived Metastable
and Nonequilibrium States

So far we have considered the equilibrium phase behaviour in colloidal sus-
pensions resulting from depletion interactions. Due to the tuneability in terms of
range and strength of the depletion interaction we observed, as compared to
atomic and molecular systems, new and fascinating phase behaviour such as a
metastable fluid–fluid phase separation and a three-phase gas–liquid–crystal
region. The predictions of phase diagrams are, however, not always realized.
Systems often become trapped in metastable nonequilibrium gel and glass states.
In several cases the end products strongly depend on the starting position in the
phase diagram and discrepancies between predictions and actual observations are
due to the intricacies of the dynamics of phase transitions. In this section we
briefly consider the phase separation process and the nonequilibrium states in
colloid–polymer mixtures. Taking advantage of the (large) length scales and
(long) time scales involved allows us to reveal some of the secrets of the
complex pathways involved in the formation of gels and glasses. Below we
separate the discussion in systems where the ratio of the polymer-to-colloid size
q is larger than 0.3 in Sect. 4.5.1 and where q is smaller than 0.3 (relatively large
colloidal spheres) in Sect. 4.5.2.
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4.5.1 q [ 0:3

Quantitative predictions of demixing kinetics in colloid–polymer mixtures are
fairly complicated but frequently insight of demixing mechanisms [92] can be
obtained by careful inspection of the equilibrium phase diagrams of colloid–
polymer mixtures. The equilibrium phase diagram for q [ 0:3 as follows from
(G)FVT is summarized in Fig. 4.15. In absence of polymer a fluid–crystal phase
coexistence is found. At /\0:49 a colloidal fluid phase exists. As /p is increased
this fluid becomes unstable above a certain concentration. Then a phase separation
occurs towards colloidal gas–liquid coexistence. At high /p a colloidal gas coexists
with a colloidal crystal. Following Gibbs’ phase rule there must be a three-phase
gas–liquid–crystal coexistence region in between within which is indeed predicted
and observed experimentally.

4.5.1.1 Gas–Liquid Demixing

We first focus on the phase separation in the gas–liquid region. Above the spinodal
curve, long wavelength fluctuations in colloid or polymer concentration lower the
free energy. After a quench in this unstable two-phase region, spontaneous long
wavelength density fluctuations are no longer stable with respect to a homoge-
neous distribution. Concentration fluctuations with large wavelengths have a
stronger thermodynamic driving force, whereas for short wavelengths the diffusion
process is faster. This competition, which results in a fastest growing mode is
characteristic for spinodal decomposition [93–95]. In colloidal systems, the time
and length scales involved allow probing the relevant phenomena by small-angle
light scattering and optical microscopy [19, 96].

Fig. 4.15 Schematic phase
diagram of a colloid–polymer
mixture for large q: Full
curves are binodals. The
different phase states are
indicated
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In Fig. 4.16 (left panel) we plot the measured scattered intensity IðQÞ during
unmixing of a dispersion of whey protein colloids ðR ¼ 27 nmÞ mixed with
polysaccharides ðRg ¼ 86 nmÞ; so q � 3: The overall values of the scattered
intensity increase with time, implicating larger structures are being formed. At
each time frame the scattered intensity passes through a maximum as a function of
Q: The value of the wave vector Qm corresponding to this maximum decreases
with time corroborating an increase of the characteristic length scale K ¼ 2p=Qm:
In Fig. 4.16 (right panel) we present this length scale K as a function of time. In
this figure two regimes can be distinguished:

K� t1=3 ð4:41Þ

and

K� t: ð4:42Þ

These two time scales are characteristic for the diffusive growth (4.41) and viscous
hydrodynamic growth (4.42) regimes in spinodal decomposition [97].

As indicated above the phase separation process can also be studied using
optical microscopy as has been done by Verhaegh et al. [96]. They observed
spinodal decomposition in a well-defined model colloid–polymer mixture of silica
spheres in cyclohexane with dissolved polydimethyl siloxane chains of q � 1; and
found similar results to those plotted in Fig. 4.16. Their findings agree with the
picture sketched above and the characteristic length scale K follows the regimes of
(4.41) and (4.42).

The spinodal decomposition can be studied in much more detail using confocal
scanning laser microscopy (CSLM). Aarts et al. [98] studied the phase separation
kinetics of a PMMA colloid plus PS polymer mixture in decalin with q ¼ 0:56: In
Fig. 4.17 typical spinodal structures are observed that coarsen in time.

Fig. 4.16 Left panel: scattered intensity as a function of the wave vector Q of a dispersion of
unmixing whey protein colloids (R � 27 nm) mixed with exocellular polysaccharides
(Rg ¼ 86 nm; q ¼ 3:2) [19]. The time after mixing is indicated (in hours). Right panel: log–log
plot of the characteristic length scale K ¼ 2p=Qm obtained from the IðQÞ curves as a function of
time. The diffusive growth (4.41) and viscous hydrodynamic growth (4.42) scaling regimes are
indicated as straight lines
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4.5.1.2 Demixing in the Three-Phase Region

We now consider the phase separation process in the three-phase colloidal gas–
liquid–crystal region. This case has been analyzed experimentally and theoreti-
cally in great detail by Poon et al. [99]. By consideration of the free energy
landscape they were able to distinguish several pathways for this phase separation
process. The pathways were shown to depend on the location of the starting
position in the three-phase region. In a large central section of the three-phase
triangle (see Fig. 4.15). Poon et al. predicted and observed the scenario sketched
in Fig. 4.18. Initially, the sample is a colloidal fluid (i) that phase separates into a
polymer-rich colloidal gas and a colloidal liquid that is dilute in polymer (ii). This
gas–liquid coexistence, however, is metastable. Soon after the formation of a

Fluid

Gas

Liquid

Gas

i ii iii iv

t

Liquid

Crystal

Fig. 4.18 Time evolution of phase separation kinetics in the three-phase region as observed by
Poon et al. [99]

Fig. 4.17 CSLM images (each side is 1,400 lm) of a phase separating polystyrene polymers
mixed with fluorescently labeled PMMA spheres exhibiting the typical spinodal structure. The
images correspond to t ¼ 3 s (left), 11 s (middle) and 22 s (right) after homogenization. These
images were kindly provided by D.G.A.L. Aarts, Oxford University, UK. See also the movies on
http://www.njp.org.

162 4 Stability of Colloid–Polymer Mixtures



(sharp) gas–liquid interface, ‘flashes’ of light appear from the liquid (lower) phase
(iii). These flashes are caused by homogeneously nucleating and growing crys-
tallites. Subsequently, the crystallites sink to the bottom, giving rise to the final
gas–liquid–crystal coexistence (iv). This is a classic example of a multi-stepped
kinetic pathway.

4.5.1.3 Depletion Interaction and Gelation

Finally, we consider the large q situation at high polymer concentrations. Here
kinetically arrested (gel or glass) states are observed above /p � 1 ðq ¼ 0:57Þ and
/p � 2 ðq ¼ 1Þ (see Fig. 4.12). From (2.21) it follows that a contact potential of
about -3 kT is required to enter the gel region. We compare this with a phase
diagram of particles with a Lennard-Jones (LJ) interaction with minimum of the
potential e that can be used to describe several atomic and molecular systems. The
attraction of about 3 kT implies kT=e � 1=3: Inspection of the LJ phase diagram
from simulations [100, 101] shows that this corresponds to a rather deep quench
into the unstable region. In molecular or atomic systems such a strength of
attraction correlates with severe undercooling. In fact, one would then expect the
system gets trapped into long-lived metastable states. These states can be realized
quite easily in colloid–polymer mixtures as compared to atomic systems; a huge
instantaneous temperature jump is rather difficult to achieve compared to mixing a
colloidal dispersion with a semi-dilute polymer solution.

In summary, the observed state diagram for large q is sketched in Fig. 4.19.
Across the three-phase region a narrow concentration regime was found of equi-
librium fluid–crystal phase behaviour [16, 17], see also the discussion near Fig. 4.3.
The only difference with Fig. 4.15 is that an arrested state (a gel) is found at high
polymer concentrations /p (or large depletion attraction) [19] (P.A. Smith, S.U.

Fluid

Gas + Liquid

Gas + Crystal

Gas + Liquid + Crystal

Fluid + Crystal

Crystal

Gel

Fig. 4.19 State diagram of a
colloid–polymer mixture for
large q. The different
observed equilibrium and
long-lived nonequilibrium
phase states are indicated
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Egelhaaf, W.C.K. Poon, personal communication). The appearance of the particle
gel can be explained as follows. When the attraction becomes sufficiently strong the
particles stick irreversibly and form a space-spanning network. In such cases the
phase separation process will not reach its equilibrium state but rather a nonequi-
librium gel-like state is encountered. This has been well-studied for small q (see
Sect. 4.5.2) but its appearance for q [ 0:3 has not received much attention yet.

In practice many phase diagrams at larger q do not exhibit crystalline phases
because the colloidal spheres are usually too polydisperse. At / � 0:58 there must
be a glassy state. The influence of a depletion attraction on this state has not yet
been studied for high q:

4.5.2 q\0:3

At first sight the equilibrium phase diagram at low q; sketched in Fig. 4.20,
appears to be dull as compared to the phase diagram for q [ 0:3 in Fig. 4.15.
However, while for large q as a rule the predictions of the phase diagram are
realized, for small q nonequilibrium and metastable states dominate in large
regions of the state diagram. A premonition that the pathways involved in the
phase separation for small q can be intricate is provided by the presence of a
metastable gas–liquid phase separation in the fluid–crystal domain of the phase
diagram.

In order to sample these intricacies we consider the phase separation pathways
upon increasing the polymer concentration at three colloid volume fractions
/; 0:02 (low /), 0:1�0:2 (intermediate /) and 0:6 (high /).

4.5.2.1 Low Colloid Volume Fractions

De Hoog et al. [102] studied the phase behaviour of a mixture containing sterically
stabilized fluorescent PMMA spheres (R ¼ 600 nm) and polystyrene (PS) polymer

metastable 
Gas + Liquid

Fluid
Crystal

Fluid + Crystal

Fig. 4.20 Schematic
equilibrium phase diagram of
a colloid–polymer mixture
for small q: Full curve is the
fluid–solid coexistence curve,
dashed curve is the
metastable gas–liquid
coexistence region
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chains (Mp ¼ 2; 000 kg/mol) in a mixed solvent consisting of tetralin, cis-decalin
and carbon tetra chloride. In this solvent mixture the PMMA spheres are nearly
refractive index matched, enabling fluoresecent confocal scanning light micros-
copy (CSLM) measurements deep into the sample. This solvent mixture has the
additional advantage that the density difference with the PMMA spheres is small to
such a degree that significant sedimentation of PMMA particles only becomes
apparent after months. The radius of gyration of the polymers was determined to
be 46 nm. Hence q ¼ 0:08 and the polymer overlap concentration of the PS chains
was estimated at 8 g/L. The colloid–polymer mixture was studied at a fixed colloid
volume fraction of / � 0:02 and PS concentrations up to 10 g/L i.e. just above the
overlap concentration. From (2.21) the contact potential follows as

Wdep ¼ Wðr ¼ 2RÞ ¼ �/p
3
2

R

Rg
kT : ð4:43Þ

Hence the investigated polymer concentrations imply strengths of the attraction up
to 20 kT. De Hoog et al. observed, depending on the polymer concentration, four
characteristic scenarios. The corresponding concentration regimes A�D are
identified in Fig. 4.21.

Regime (A) is the one-phase fluid region, whereas regimes (B–D) are in the
two-phase region. Representative pictures of the structures found in these regions
are given in Fig. 4.22. These were all taken at t ’ 400sB; where sB is the Brownian
time scale, with sB ¼ R2=Ds; where Ds is the self-diffusion coefficient and R is the
sphere radius. In the narrow region B the formation of nucleation clusters can be
observed, see Fig. 4.22. Eventually, these clusters sediment and form a colloidal
crystal. In this regime, just across the fluid–crystal binodal, the contact potentials
are Wdep � �2:5 kT: In region C, centered at about 2 g/L (corresponding to

Fig. 4.21 State diagram for
the q ¼ 0:08 colloid–polymer
mixture investigated by De
Hoog et al. [102]. The
different regions A�D are
indicated in the plot. The PS
concentration is plotted on
the ordinate versus the colloid
concentration on the abscissa.
Reprinted from [102],
copyright 2001, with
permission from the
American Physical Society
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Wdep � �4:5 kT), aggregates are formed from single particles, followed by growth
of the clusters via subsequent aggregation. These clusters are dense but not
crystalline. The sediment formed is dense but no crystallinity was observed. Above
3.3 g/L in region D, corresponding to Wdep [ � 7:5 kT; aggregation is also
observed but here the clusters have a more ramified or elongated strong-like shape.
The sediment formed is dilute, getting denser in a few days.

4.5.2.2 Intermediate Colloid Volume Fractions

Poon et al. [103] studied a similar system as De Hoog et al. [102], this time with
PMMA particles with R ¼ 238 nm and PS polymers with Mp ¼ 370 kg/mol: We
focus on their experiments carried out at a colloid volume fraction / � 0:1: Just as
De Hoog et al. they observed four regimes. At low concentration a colloidal fluid
was observed. Across the phase boundary a narrow concentration regime was
found of equilibrium fluid–crystal phase behaviour.

At higher concentrations they observed a spinodal-like small-angle light scat-
tering pattern in the region where De Hoog et al. observed aggregation. While at
first surprising, Rouw et al. [104] already noted in the late 1980s that the computer
simulations of Ziff [105] of colloidal aggregation phenomena appear to show a
long-wavelength spinodal-like modulation of the aggregate density. This percep-
tion was turned into a quantitative framework by Carpineti and Giglio [106], who
proved experimentally that colloidal aggregation exhibits the same features as

spinodal decomposition, be it that the scaled structure factor eSðQ=Qm; tÞ is now
described by

Fig. 4.22 CSLM images
taken after mixing colloids
and polymer at four
concentrations [102] at a
colloid volume fraction of
2 vol%. Polymer
concentrations were 1.2 g/L
(region A), 1.7 g/L (region
B), 2.1 g/L (region C) and
8.1 g/L (region D). The
image size is 100 lm by
100 lm These picture were
taken at t � 400sB: Reprinted
from [102], copyright 2001,
with permission from the
American Physical Society
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eSðQ=Qm; tÞ ¼ QmðtÞ�d
ef ðQ=QmÞ; ð4:44Þ

where ef ðQ=QmÞ is a time-independent scaling function. For ordinary spinodal
decomposition d ¼ 3 while for aggregating systems (4.44) holds if we take d ¼ df ;

where df is the fractal dimension of the aggregates. Poon et al. [103] showed that
the small-angle light scattering data of their depletion-induced aggregating system
are described by (4.44) with a value of d that depends on the polymer concen-
tration, i.e., on the strength of the depletion interaction. With increasing strength of
the depletion interaction the fractal dimension decreases from df ¼ 3 (dense
clusters) to df ¼ 1:7 (ramified clusters), see Fig. 4.23, in agreement with the visual
observations of De Hoog et al. [102].

For still higher polymer concentrations Poon et al. observed the formation of a
transient gel. Such a particle gel is characterized by a rapid collapse of its structure
following after a delay period where no significant sedimentation occurs. This
delay time can range from seconds to many months, depending upon the strength
of the gel.

Verhaegh et al. [107, 108] studied transient gelation with a combination of
small-angle light scattering, light microscopy and confocal scanning laser
microscopy in a system of sterically stabilized silica spheres mixed with PDMS
polymer chains in cyclohexane at colloid volume fractions of / � 0:1. Early time
small-angle light scattering curves show a peak at Qm which shifts in time to
smaller values and increases slightly in intensity. This indicates the presence of a
coarsening bicontinuous structure, see Fig. 4.24. Alternating dark and bright
domains observed in light microscopy confirm the existence of this bicontinuous
network of colloid-rich and colloid-poor domains. A slight coarsening of the
domains together with an increased contrast was detected. After this initial stage,
which only lasts a few seconds, the shift in the light scattering peak is arrested.
Also the speckle fluctuations are arrested in time, implying that the system now

Fig. 4.23 Fractal dimension
df inside a gel of aggregated
PMMA spheres plus PS
polymer chains (q ¼ 0:08) as
a function of the attraction at
contact [103]
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has a gel character. The above observations suggest that gelation results from a
spinodal gas–liquid (also termed fluid–fluid) phase separation, which is arrested at
some intermediate stage leaving the system in a state of microphase separation
[107, 109, 110].

From CSLM pictures (see Fig. 4.25) it appears that the internal structure of
particle network becomes disrupted by the formation of fractures. The number of
fractures increases with time as is in agreement with an increase of scattered light

Fig. 4.24 Sketch of a
gelation by arrested spinodal
phase separation. A space
spanning network of colloidal
spheres is aggregated through
depletion of non-adsorbing
polymer chains

Fig. 4.25 CSLM images
from a mixture of fluorescent
silica spheres (R ¼ 115 nm)
mixed with PDMS polymers
(Rg ¼ 23 nm) in cyclohexane.
The images are mixtures with
/ ¼ 0:125; /p ¼ 1:23 (85
g/L PDMS) during gel life
time. t ¼ 230 s (a), 240 s (b),
250 s (c) and 260 s (d). The
vertical bar corresponds to
50 lm: Picture reprinted from
[108], copyright 1999, with
permission from Elsevier
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in forward direction. This increase of the number of fractures weakens the gel
strength until the elastic modulus becomes so small that in the end the gel col-
lapses under gravity.

Using dark-field microscopy, Starrs et al. [111] studied this delayed sedimen-
tation in a colloid–polymer mixture (PMMA spheres and PS polymers in tetralin
and cis�decalin) with Rg ¼ 17 nm and R ¼ 186 nm (q � 0:1). Their results for the
sedimentation profile are shown in Fig. 4.26 for a colloid volume fraction of 0.20
and PS concentration of 5 g/L. After a delay time of about 460 min the gel col-
lapses. Note the brightening of the sample during the delay period from (i) to (ii).

From the work of Verhaegh et al. [108] it follows that it is possible to distin-
guish four stages in the evolution of a transient gel: birth, life (during which the gel
ages), collapse, and finally macroscopic two-phase separation. In Fig. 4.27 we give
a schematic representation of these stages.

The life time of the transient gel is determined by the strength of the depletion
interaction and the colloid concentration and plays a role in many practical sys-
tems. For example in salad dressing, which is an oil-in-water emulsion, the
depletion flocculation of the oil droplets induced by the addition of a polysac-
charide such as xanthan leads to the formation of a particle network [112, 113].
The yield stress of this network (in the sense of food science) ‘stabilizes’ the

Fig. 4.26 Left: Sedimentation profile of PMMA spheres (R ¼ 186 nm; / ¼ 0:2) mixed with
5 g/L PS polymers (Rg ¼ 17 nm) in a tetralin/cis-decalin solvent mixture. Initial sample height is
24.5 mm. Right: corresponding dark-field images of the structures observed during time evolution
of the transient gel. Picture reprinted from [111], copyright 2002, with permission from IOP
Publishing Ltd
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dressing, i.e., prevents creaming. Buscall et al. [114] proposed a simple theory to
rationalize collapse times for the delayed sedimentation of weakly aggregated
colloidal gels.

4.5.2.3 High Colloid Volume Fractions

We now focus on colloid volume fractions above the fluid–crystal phase transition.
As discussed in Sect. 3.2.3, Pusey and Van Megen [11] observed that above a
volume of about 0.58 suspensions of hard-sphere like PMMA particles do not
crystallize over several months. The explanation for this phenomenon is that
particles become increasingly tightly caged as the volume fraction increases. For
sufficiently high volume fractions the particles become tightly caged by their
neighbours to such a degree that they are unable to move far enough to nucleate
crystallization and the system is termed glassy. Mode coupling theory (MCT)

(a)

gel
formation

coarsening

(b)

gel
life-time

(c)

gel
collapse

(d)

macroscopic
two-phase
separation

gas-solid
coexistenceG

gel
restructuring

Fig. 4.27 Sketch of the
demixing process observed in
a sample containing a colloid
polymer mixture at high
polymer concentrations at
q\0:3: The corresponding
light scattering patterns are
indicated as well: a gel
formation ‘birth’, b gel life-
time ‘life’, c gel collapse
‘death’, d macroscopic phase
separation. Redrawn from
Verhaegh et al. [107]
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[115] supports the existence of such a glass transition. Also further experimental
results on hard sphere colloidal glasses [116] have been successfully interpreted
with MCT [117].

Ilett et al. [16] observed that adding 1–2 g/L polystyrene (Mp ¼
390 kg/mol; Rg ¼ 18 nm) to a concentrated (/ � 0:6) glassy suspension of steri-
cally stabilized PMMA colloids, with a radius of 217 nm, leads to crystallization of
the initially glassy suspension. At higher polymer concentrations (above 3 g/L) the
system becomes again kinetically arrested. Systems composed of hard spheres
with short-range attraction display two glass states, one referred to as repulsive
glass (no or very weak attraction) and one referred to as attractive glass
(strong attraction), with a metastable fluid (weak attraction) in between. These two
types of glasses were subsequently predicted by MCT [118–120]. These predic-
tions were substantially confirmed by Pham et al. [121] and Eckert and Bartsch
[122].

A simple physical picture of the repulsive and attractive glass and the meta-
stable fluid was given by Pusey [123] and is depicted in Fig. 4.28. Zaccarelli and
Poon [124] studied the interplay between bonding and caging. Using Molecular
Dynamics simulations they were able to bridge the gap between colloidal glasses

increasing

attraction

(a)

(b)

(c)

Fig. 4.28 Schematic picture of the influence of (short-ranged) attraction on the glassy state.
a Repulsive glass. This corresponds to the situation where attractions are absent or very weak.
There is significant free volume in the cage, but the particle can not escape this cage.
b Metastable fluid that crystallizes. Adding a weak attraction leads to particles clustering in the
cage. Now holes open up and particles can escape. c Attractive glass. Upon further increasing the
attraction an attractive glass is formed. The attraction is now so strong that particles are tightly
bound so again a cage is formed with no escape possible
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and colloidal gels with a state they refer to as dense gel. The observed overall state
diagram is sketched in Fig. 4.29 and differs substantially from the equilibrium
phase diagram drawn in Fig. 4.20.

Only a narrow range of concentrations is found where fluid–crystal phase
transition occurs. This can be explained by the fact that the depth of the potential is
quite significant for small q; it is about 4–5 kT just across the phase boundary. In
retrospect it is even surprising that fluid–crystal phase transitions are observed at
low volume fractions of colloids at small q for that reason.

It is intriguing and challenging that the depletion force, allowing to indepen-
dently control the range and strength of the attraction, opens up new ways of
structuring soft matter.
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Chapter 5
Phase Transitions of Hard Spheres Plus
Colloids

In the previous chapter we considered the effect of added non-adsorbing polymers
on the phase behaviour of suspensions of spherical colloids. The depletion effect is
also operational in mixtures of large and small (hard) spheres, see Fig. 5.1 where
two big spheres in a sea of small spheres are brought together. As the big spheres
get close, the smaller spheres can no longer enter the gap between the big ones.
The outside small particles then push the big spheres together.

When the added non-adsorbing small colloids are substantially smaller (say a
factor of 5) than the major colloidal component their effect on the phase behaviour
can be treated within free volume theory (FVT) [1, 2]. We stress that this treatment
is limited to sufficiently asymmetric hard sphere mixtures, say, q ¼ r2=r1 smaller
than 0.2. For larger q values binary colloidal crystals AB2 and AB13; consisting of
large colloids A with diameter rA and small colloids B with diameter rB; have been
observed in the size range 0:425� rB=rA� 0:60 ðAB2Þ and 0:485� rB=rA� 0:62
ðAB13Þ [3–5]. Such structures cannot be treated within FVT.

The added small colloids may be of a similar colloid shape (i.e., spheres) or a
different shape such as rod-like colloids. In Sect. 2.4 we found that rod-like col-
loids give rise to a strong depletion interaction and in this chapter we will see that
rod-like colloids influence the phase behaviour of a colloidal suspension signifi-
cantly at very low concentrations.

5.1 Free Volume Theory for Big Plus Small Hard Spheres

In 1964 Lebowitz and Rowlinson [6] showed that, within the Percus–Yevick
treatment of hard sphere fluids [7], binary hard sphere mixtures are completely
miscible for all concentrations and size ratios. This proof was later extended by
Vrij [8] to hard sphere mixtures with an arbitrary number of components. Up till
1990, it was indeed generally believed that hard sphere mixtures do not phase

H. N. W. Lekkerkerker and R. Tuinier, Colloids and the Depletion Interaction,
Lecture Notes in Physics, 833, DOI: 10.1007/978-94-007-1223-2_5,
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separate into two fluid phases. Biben and Hansen [9] then showed, on the basis of a
thermodynamically self-consistent theory, that dense binary mixtures of hard
spheres with diameters r1 and r2 phase separate into two fluid phases when the
size ratio r2=r1 is less than 0.2. The physical origin of phase separation in highly
asymmetric hard sphere mixtures is the depletion interaction similar to what we
encountered in Chaps. 3 and 4. Throughout this chapter we refer to the depletants
as the components in the reservoir (R) being either small hard spheres (Sects. 5.1
and 5.2) or hard spherocylinders (Sects. 5.3 and 5.4).

The free volume treatment given for hard spheres + penetrable hard spheres can
be extended to the case of asymmetric hard sphere mixtures as follows. The
osmotic equilibrium system considered is depicted in a schematic way in Fig. 5.2.
We assume the depletion layers are equal to the radii of the small hard spheres.
Following the same steps as in Chap. 3 we obtain for the semi-grand potential of
the asymmetric hard sphere mixture.

XðN1;V ; T; l2Þ ¼ F0ðN1;V ; TÞ � PRhVfreei0: ð5:1Þ

Reservoir System

Fig. 5.2 Osmotic
equilibrium system for a
dispersion of big and small
hard spheres in the system in
equilibrium with a reservoir
that consists of a small sphere
dispersion. The semi-
permeable membrane allows
permeation of small hard
spheres but is impermeable
for the big hard spheres

Fig. 5.1 Illustration of depletion effect in a mixture of two big hard spheres plus small hard
spheres in 2D. As the big spheres approach each other (from left to right) the small spheres cannot
enter the gap between the big spheres in the end
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In (5.1) N1 is the number of large hard spheres, l2 is the chemical potential of the
small hard spheres imposed by the (hypothetical) reservoir, F0 is the (Helmholtz)
free energy of the (large) hard sphere system without added small spheres, PR is
the pressure of the small hard spheres in the reservoir, and hVfreei0 is the free
volume of an added small hard sphere in the system of N1 large hard spheres in a
volume V : The quantity hVfreei0 is given by the same expression as the free volume
of an added penetrable hard sphere,

hVfreei0 ¼ aV : ð5:2Þ
Since we consider small size ratios we use expression (3.37) valid for the limit of
small depletants

a ¼ ð1� /1Þe�3q/1=ð1�/1Þ; ð5:3Þ

where now /1 ¼ n1pr3
1=6 is the volume fraction of the large spheres. For the

pressure PR in the reservoir, which for the case of penetrable hard spheres is given
by the ideal gas law, we now use the SPT expression (3.35),

PR

nR
2 kT
¼ 1þ /R

2 þ ð/R
2 Þ

2

ð1� /R
2 Þ

3 ; ð5:4Þ

where nR is the number density and /R ¼ nRpr3
2=6 the volume fraction of the

small spheres in the reservoir. In this way we account for the hard interactions
between the small spheres.

We now have all the ingredients that make up the semi-grand potential (5.1) of
the asymmetric hard sphere mixture. From it we obtain the pressure of the system
P and the chemical potential l1 of the large hard spheres using standard ther-
modynamic relations.

P ¼ � oX
oV

� �

N1;T ;l2

¼ P0 þ PR a� n1
oa
on1

� �

ð5:5Þ

and

l1 ¼
oX
oN1

� �

V ;T ;l2

¼ l0
1 � PR oa

on1
; ð5:6Þ

where P0 and l0
1 are the pressure and chemical potential of the pure (big) hard

sphere system (for which we use the expressions derived in Chap. 3). The
dimensionless forms of (5.5) and (5.6) are given in (3.44) and (3.45). We can now
calculate the phase behaviour of the asymmetric hard sphere mixture from the
coexistence equations

lI
1ðnI

1; l2Þ ¼ lII
1 ðnII

1 ; l2Þ; ð5:7Þ

PIðnI
1; l2Þ ¼ PIIðnII

1 ; l2Þ: ð5:8Þ

These expressions can, analogously to (3.46) and (3.47), be simplified to
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el ¼ el0 þ ePR
gð/1Þ; ð5:9Þ

eP ¼ eP0 þ ePR
hð/1Þ; ð5:10Þ

with

gð/1Þ ¼ e�3q/1=ð1�/1Þ 1þ 3q½1þ /1=ð1� /1Þ�f g ð5:11Þ

and

hð/1Þ ¼ e�3q/1=ð1�/1Þ 1þ 3q/1=ð1� /1Þf g: ð5:12Þ

The fluid–solid binodal can be obtained from

eP
R ¼

elsð/1;sÞ � elf ð/1;f Þ
gð/1;f Þ � gð/1;sÞ

¼
ePsð/1;sÞ � ePf ð/1;f Þ
hð/1;f Þ � hð/1;sÞ

: ð5:13Þ

In Fig. 5.3 we give the results for q ¼ 0:1: For comparison we add in these
figures the Monte Carlo computer simulation results of Dijkstra et al. [10]. The
agreement is reasonable although not as good as the agreement between FVT and
computer simulations for the hard sphere + penetrable hard sphere system. This
might be due to the fact that accumulation effects, leading to repulsive depletion
contributions as we saw in Sect. 2.3 are not incorporated in FVT.

Note that for the small size ratios, for which the FVT of asymmetric hard sphere
mixtures is applicable, fluid–fluid demixing (also predicted by FVT, not shown) is
metastable with respect to the fluid–solid transition. The presence of this meta-
stable transition does affect the physical properties of the mixtures. Like colloid +
polymer mixtures [11–13], asymmetric hard sphere mixtures display interesting
gel and glass states that are supposed to be connected with the metastable fluid–
fluid transition [14, 15].

Fig. 5.3 Phase diagram of
big + small hard spheres in
the /R

2 � /1 representation
for q ¼ r2=r1 ¼ 0:1: Data
points are redrawn Monte
Carlo simulation results [10]
guided by a dotted curve. The
curves are the FVT
predictions
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From an experimental point of view we are of course interested in the phase
diagram in the /1 � /2 phase. By using the relation

n2 ¼ �
1
V

oX
ol2

� �

N1;V ;T

¼ anR
2

or

/2 ¼ a/R
2 ;

we can directly convert the phase diagram in the /1 � /R
2 representation to the

/1 � /2 representation. Results for q ¼ 0:1 are presented in Fig. 5.4.

5.2 Phase Behaviour of Mixed Suspensions of Large and Small
Spherical Colloids

5.2.1 Phase Separation in Binary Mixtures Differing
only in Diameter

Sanyal et al. [16] and Van Duijneveldt [17] were the first to present experimental
evidence for phase separation in bimodal hard sphere-like colloidal suspensions
with a large size difference. Since then several studies [18–22] have appeared
presenting experimental phase diagrams for mixed suspensions of large and small
colloids. In Fig. 5.5 we give the experimental phase diagram for q ’ 0:1 by Imhof
and Dhont [20], which may be compared to free volume theory and Monte Carlo
computer simulations. FVT overestimates the depletion activity of the small
spheres at the binodal. The difference might be caused by charges on the colloidal
particles in the experimental system not accounted for theoretically. Additional

Fig. 5.4 As Fig. 5.3 but in
the /2 � /1 representation. A
few illustrative theoretical
tie-lines are indicated
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double layer repulsion does shift theoretical FVT binodals for fluid–solid coex-
istence at small q upwards. Kaplan et al. [18] and Dinsmore et al. [19] observe
crystallites at the sample walls at volume fractions of the small spheres signifi-
cantly below the value required for the fluid–solid transition in the bulk (see
Fig. 5.6). This is a manifestation of the stronger depletion interaction between a
colloidal sphere and a wall than the depletion interaction between two spheres (see
Chap. 2). A theoretical treatment for the wall phase behaviour based on the semi-
grand potential of an adsorbed layer of colloids has been given by Poon and
Warren [2]. Comparison with experiment [23] shows that also this treatment
overestimates the depletion effect of the small spheres.

5.2.2 Mixtures of Latex Particles and Micelles

In 1980, Yoshimura et al. [24] reported a fluid–solid phase separation in a mixture
of polystyrene latex ðr1 ¼ 510 nmÞ and the non-ionic surfactant polyoxyethylene
alkyl phenylether at KCl concentrations above 0.05 mole/l. At a surfactant

Fig. 5.5 Fluid–solid
coexistence curves
established from experiments
(closed squares) with
sterically stabilized silica
spheres of q ’ 0:1 dispersed
in DMF with 10�2 M LiCl
[20] Monte Carlo simulations
([10], open squares) and FVT
(solid curves)

Fig. 5.6 Micrographs of polystyrene spheres (r1 ¼ 0:8 lm) at a glass wall with (a) no small
spheres, and added small spheres (r2 ¼ 70 nm) with /2 ¼ 0:08 (b) and /2 ¼ 0:16 (c). The
volume fraction of big spheres /1 ¼ 0:02: Picture reprinted from [23], web:
epljournal.edpsciences.org, Copyright 1997, with permission from EDP Sciences and
A.D. Dinsmore
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concentration of 2 wt% an iridescent bottom phase appeared which increased in
amount upon further increase of the surfactant concentration. At the same time, the
latex concentration in the top phase decreased. The formation of colloidal crystals
in the bottom phase, which causes the iridescence, could be confirmed by direct
visual observation in the microscope. A few years later, Ma [25] recognized that
the origin of the phase separation is depletion interaction between the latex par-
ticles caused by the micelles. Piazza and co-workers [26] have done quantitative
measurements on the depletion-induced phase separation in mixtures of latex
particles and micelles. In Fig. 5.7 we give their results for a mixture of colloidal
PFA (a polytetrafluoro-ethylene copolymer) spheres with diameter r1 ¼ 220 nm
and the non-ionic surfactant Triton X100 which forms globular micelles with
diameters r2 ¼ 6�8 nm: In Fig. 5.7 we compare these experimental results with
the FVT results.

Piazza et al. [27] have also shown that the micelle depletion-induced fluid–solid
phase transition can be profitably exploited to perform an efficient size fraction-
ation of latex particles.

5.2.3 Oil-in-Water Emulsion Droplets and Micelles
of the Stabilizing Surfactant

As early as 1952, Cockbain [28] observed the reversible aggregation and creaming
of soap stabilized oil-in-water emulsion droplets at soap concentrations greater
than the critical micelle concentration. Fairhurst et al. [29] suggested that this
reversible aggregation and creaming arises from the depletion interaction between
the oil droplets caused by the soap micelles. Quantitative measurements on
depletion-induced phase separation by micelles were performed by Bibette and
coworkers on silicone oil-in-water emulsions stabilized by sodium dodecylsulfate
(SDS) [30]. In Fig. 5.8 their experimental phase diagram in the oil-droplet vs
micellar volume fraction is given for three oil-droplet sizes ðr1 ¼ 460; 600 and
930 nmÞ is presented together with the FVT results. The agreement is good.

It is clear that the micellar volume fraction needed to cause phase separation
decreases with increasing size of the oil droplets. This is not surprising as the

Fig. 5.7 Phase diagram for
q ¼ 0:033: Data points are
experimental results from
Piazza and Di Pietro [26],
solid curve is the FVT
prediction and the dashed
curve represents Monte Carlo
computer simulation results
by Dijkstra et al. [10]
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strength of the depletion interaction is directly proportional to r1=r2, see (2.95)
with r1 ¼ 2R and r2 ¼ r: Bibette [31] made clever use of this fact by devising a
method to size fractionate a polydisperse emulsion using the micelle depletion
induced fluid–solid transition.

5.3 Free Volume Theory for Sphere–Rod Mixtures

In the introduction of this chapter we mentioned that rod-like colloids influence the
phase behaviour of suspensions of spherical colloids significantly at very low
concentration. For a review see [32]. This is not surprising as rod-like colloids give
rise to a strong depletion interaction at low concentration, see (2.107). Here we
will see that FVT (correctly) captures the above mentioned pronounced depletion
effect caused by rod-like particles.

Again we start from an osmotic equilibrium where now the reservoir contains
colloidal rods and the system contains colloidal spheres and rods. The osmotic
equilibrium system considered is depicted in a schematic way in Fig. 5.9.
Following the same steps as Sect. 3.3 we obtain for the semi-grand potential for
the system represented in Fig. 5.9,

XðN1;V ; T; l2Þ ¼ F0ðN1;V ; TÞ � PRhVfreei0: ð5:14Þ

In this equation N1 is the number of large hard spheres, l2 is the chemical potential
of the hard rods imposed by the (hypothetical) reservoir, F0 is the free energy of
the hard sphere system without added rods, PR is the pressure of the hard rods in
the reservoir and hVfreei0 is the free volume of an added rod in the system of N1

hard spheres in a volume V :
Since we are now dealing with hard rods as the depletion agent both the pressure

in the reservoir and the free volume differ from the case of spheres as depletion
agent. Both quantities can again be calculated conveniently using SPT [33].

Fig. 5.8 Phase diagram of
micelles (volume fraction /2)
mixed with oil droplets
(volume fraction /1) redrawn
from Bibette et al. [30]. Solid
curves are FVT predictions
for (from top to bottom) q ¼
0:014; 0:01 and 0:006;
assuming a micellar diameter
of 6 nm
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5.3.1 Free Volume Fraction

For the free volume we again start from expression (3.27)

a ¼ hVfreei0
V

¼ e�W=kT ; ð5:15Þ

where W is now the reversible work to insert a rod in the hard sphere system. As
explained in Sect. 3.3 this work can be calculated by expanding the particle to be
inserted from zero to its final size. As a model for the rods we take spherocylinders
(consisting of cylinders of diameter D and length L; capped with two hemi-
spheres). In the case of a spherocyclinder the expansion can be described in terms
of a scaling parameter k for the length and m for the diameter. So the scaled particle
has a length kL and diameter mD: In the limit k; m! 0 the inserted spherocyclinder
approaches a point particle. In this limiting case it is very unlikely that excluded
volumes of a sphere + added scaled spherocylinder overlap. So

Wðk; mÞ ¼ �kT ln½1� n1vexclðk; mÞ� ðk; m! 0Þ; ð5:16Þ

where vexclðk; mÞ is the excluded volume of the added scaled hard spherocylinder
and a hard sphere with diameter r1

vexclðk; mÞ ¼
p
6
ðr1 þ mDÞ3 þ p

4
kLðr1mDÞ; ð5:17Þ

see Fig. 5.10. For large values of the scaling parameters k and m the work required
to insert an additional spherocylinder is just the work to create the volume of the
scaled particle against the pressure P of the hard sphere fluid

Wðk; mÞ ¼ 1
6
pm3D3 þ 1

4
pkLm2D2

� �

P ðk; m� 1Þ: ð5:18Þ

Reservoir System

Fig. 5.9 Osmotic
equilibrium system as in
Fig. 5.2 but with rods
replacing the small hard
spheres
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For intermediate values of the scaling parameters it is assumed that the work
Wðk; mÞ can be found from a Taylor expansion around k ¼ m ¼ 0; with the term
beyond the quadratic being replaced by (5.18)

Wðk; mÞ ¼
X

2

m;n¼0

1
m!n!

omþnW

okmomn
kmmn þ 1

6
pm3D3 þ 1

4
pkLm2D2

� �

P: ð5:19Þ

The expression for the work to insert a spherocylinder with length L and diameter
D is obtained by setting k ¼ m ¼ 1: Using for P the SPT expression for hard
spheres

P

n1kT
¼ 1þ /1 þ /2

1

ð1� /1Þ3
; ð5:20Þ

we obtain

W

kT
¼ � lnð1� /1Þ þ a

/1

1� /1

� �

þ b
/1

1� /1

� �2

þc
/1

1� /1

� �3

: ð5:21Þ

Here

a ¼ 3qþ 3
2

t

� �

þ ð3q2 þ 3qtÞ þ q3 þ 3
2

q2t

� �

;

b ¼ 9
2

q2 þ 9
2

qt

� �

þ 3q3 þ 9
2

q2t

� �

;

c ¼ 3q3 þ 9
2

q2t

� �

;

where

q ¼ D

r1
and t ¼ L

r1
:

σ

λL

νD

Fig. 5.10 Schematic picture
of the excluded volume
between a sphere with
diameter r and a scaled
spherocylinder with length kL
and diameter kD
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Exercise Verify that the above expressions for a; b and c match with those below
(3.36) in the limit that a spherocylinder equals a sphere.

Using (5.15) we now obtain for the free volume fraction of a hard spherocyl-
inder in a sea of N1 hard spheres in a volume V :

a ¼ ð1� /1Þ exp � ay1 þ by2
1 þ cy3

1

� �� �

; ð5:22Þ

where

y1 ¼ /1=ð1� /1Þ:

In the limit D ¼ 0 (and hence q ¼ 0), where the spherocylinder reduces to an
infinitely thin rod, the free volume fraction takes the simple form

a ¼ ð1� /1Þ exp � 3
2

L

r1

/1

1� /1

� �� 	

: ð5:23Þ

This expression is compared to Monte Carlo computer simulations by Bolhuis and
Frenkel [34] for the case L=r1 ¼ 2 in Fig. 5.11.

5.3.2 Pressure of a Dispersion of Rods

We still have to find an expression for the pressure PR of the rods in the reservoir
in order to use (5.14). Since low concentrations of rods already induce phase
transitions in dispersions of hard spheres we only consider dispersions of isotropic
rods. Here we focus on the work of Cotter [35], who presented a thermodynam-
ically consistent scaled particle treatment for the pressure of a system of hard

Fig. 5.11 Free volume
fraction a for needles in a
dispersion of hard spheres
with volume fraction /: Data
points are Monte Carlo
computer simulation results
at nR

2 L3 ¼ 21:6 redrawn from
Bolhuis and Frenkel [34].
Solid curve is the FVT result
(5.23)
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spherocylinders. The starting point is again the calculation of the work W to insert
an additional spherocylinder in the system of spherocylinders to obtain the excess
part of the chemical potential. The pressure can then be obtained by using the
Gibbs–Duhem equation.

Again using the scaling parameter k for the length and m for the diameter we
obtain in the limit k; m! 0;

WðX; k; mÞ ¼ �kT ln 1� nR
2

Z

f ðX0ÞvexclðX;X0; k; mÞ dX0
� 	

: ð5:24Þ

The solid angle X can be decomposed into a polar angle h 2 ½0; p� and an
azimuthal angle / 2 ½0; 2p�: In (5.24) vexclðX;X0; k; mÞ is the excluded volume of
the added scaled spherocylinder with orientation X and a spherocylinder of the
fluid with orientation characterized by the solid angle X0;

vexclðX;X0; k; mÞ ¼
1
6
XðDþ mDÞ3 þ 1

4
pðDþ mDÞ2ðLþ kLÞ

þ ðDþ mDÞkL2= sin cðX;X0Þ; ð5:25Þ

where cðX;X0Þ is the angle between the axes of the two spherocylinders (see
Fig. 5.12). Further f ðXÞ is the orientational distribution function, which gives the
probability of finding a spherocylinder with an orientation characterized by
the solid angle X: To distinguish between the symbols for the grand potential and
the solid angle we use here the boldface X: The distribution function f ðXÞ must be
normalized

Z

f ðXÞ dX ¼ 1: ð5:26Þ

In the isotropic phase all orientations are equally probable which implies in view
of the normalization (5.26)

f ðXÞ ¼ 1
4p
: ð5:27Þ

For large values of the scaling parameters k and m the work required to insert an
additional particle is just the work to create the volume of the scaled particle
against the pressure exerted by the fluid of spherocylinders

λ

L γ

D + νD

rod L,D

scaled rod λL, νD

Fig. 5.12 Sketch of the
excluded volume between a
spherocylinder and a scaled
spherocylinder

188 5 Phase Transitions of Hard Spheres Plus Colloids



WðX; k; mÞ ¼ 1
6
pm3D3 þ 1

4
pm2D2kL

� �

PR ðk; m� 1Þ: ð5:28Þ

For intermediate values of the scaling parameters it is assumed that the work
WðX; k; mÞ can be found from a Taylor expansion of (5.24) around k ¼ m ¼ 0 with
the terms beyond the quadratic being replaced by the expression (5.28)

WðX; k; mÞ ¼
X

2

m;n¼0

1
m!n!

omþnW

okmomn
kmmn

þ 1
6
pm3D3 þ 1

4
pm2D2kL

� �

P: ð5:29Þ

The excess chemical potential of a spherocylinder with length L and diameter D is
obtained by setting k ¼ m ¼ 1 in the above expression and integrating over all
possible orientations with the orientation distribution function f ðXÞ;

lex
2 ¼

Z

f ðXÞWðX; 1; 1Þ dX: ð5:30Þ

As indicated above in the isotropic phase f ðXÞ ¼ 1
4p and in that case the average

value of the (absolute) sine of the angle between the axes of the spherocylinders is
p=4: This leads to

lex
2

kT
¼ � lnð1� /R

2 Þ þ
2nRðpD2 þ pDLÞð12 Dþ 1

4 LÞ
ð1� /R

2 Þ

þ ðn
RÞ2ðpD2 þ pDLÞ3

8pð1� /R
2 Þ

2 þ
PRðp6 D3 þ p

4 D2LÞ
kT

: ð5:31Þ

Using the Gibbs–Duhem relation

1
kT

oPR

onR
2

� �

T

¼ 1þ nR
2

olex
2 =kT

onR
2

� �

: ð5:32Þ

We find

PR

nR
2 kT
¼ 1

1� /R
2

þ
nR

2 ð12 Dþ 1
4 LÞðpD2 þ pDLÞ
ð1� /R

2 Þ
2

þ ðn
R
2 Þ

2ðpD2 þ pDLÞ3

12pð1� /R
2 Þ

3 : ð5:33Þ

Note that for L ¼ 0; where the spherocylinder reduces to a sphere, the above
expression reduces to the pressure of hard spheres (3.35). The dimensionless
pressure PRv0=kT ; where v0 ¼ pD3=6þ pD2L=4 is the volume of the spherocyl-
inder, can be written as
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PRv0

kT
¼ /R

2

1� /R
2

þ A
/R

2

1� /R
2

 !2

þB
/R

2

1� /R
2

 !3

: ð5:34Þ

Here

A ¼ 3cðcþ 1Þ
3c� 1

;

B ¼ 12c3

ð3c� 1Þ2
;

with

c ¼ Lþ D

D
:

In Fig. 5.13 we present a comparison of the SPT result for the pressure of
spherocylinders with computer simulation results of McGrother et al. [36] for
L=D ¼ 5: We now have all the ingredients for analyzing the properties of the semi-
grand potential (5.14) of a colloidal sphere–rod mixture. From it we obtain the
pressure of the system and the chemical potential l1 of the large hard spheres
using the standard thermodynamic relations (5.5) and (5.6) (in dimensionless form
(3.44) and (3.45) can be used). We can then calculate the phase behaviour of the
colloidal sphere–rod mixture by solving the coexistence relations (5.7) and (5.8).
As a test of the quality of the FVT for the phase behaviour of colloidal sphere–rod
mixtures we present in Fig. 5.14 a comparison between FVT and simulation
results for infinitely thin rods with L=r1 ¼ 2 and L=r1 ¼ 3 taken from the work of
Bolhuis and Frenkel [34]. The agreement is, given the approximations made in
FVT, remarkable.

In order to compare FVT with experiments, described in the next section, we
need results for rods with a finite thickness. In Fig. 5.15 we give results [33] for
spherocylinders with L=D ¼ 20 and L=r1 ¼ 0:2; 0:5 and 1:0 both in the /R � /1

representation as well as in the experimentally relevant /2 � /1 representation by

Fig. 5.13 Pressure of a
dispersion of spherocylinders
with L=D ¼ 5 as a function of
the rod volume fraction. Data
points are Monte Carlo
simulations from McGrother
et al. [36] and solid curve is
the SPT result (5.34)
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using (5.15): /2 ¼ a/R: Given that the depletion interaction between two spheres
in a sea of thin rods scales as Lr1=D2; see (2.107), we have scaled the volume

fractions of rods by multiplication with Lr1=D2; e/
R

2 ¼ /RLr1=D2: For L=r1 ¼
0:2; only fluid–solid coexistence is found. For L=r1 [ 0:3; a region of three phase
coexistence (colloidal gas–liquid–crystal) bounded by three distinct two phase
regions (gas–liquid, liquid–crystal and gas–crystal) is found. The topology of
these phase diagrams exhibit the same global features as those for hard spheres
plus penetrable hard spheres in Chap. 3 and colloid–polymer mixtures in Chap. 4.
Note that for L=D ¼ 20; FVT predicts that the rods can cause a fluid–crystal
transition in dilute suspensions of spheres for rod volume fractions as low as
0.003. This is confirmed experimentally as we shall see in the next section.

Fig. 5.14 Colloidal gas–
liquid coexistence of
mixtures of rods plus hard
spheres for L=r1 ¼ 2 and 3.
Data points are Monte Carlo
simulation results [34]. Solid
curves are the FVT
predictions

Fig. 5.15 FVT phase diagrams of mixtures of hard spheres (1) plus spherocylinders (2) for
L=D ¼ 20 and q ¼ 0:01 (left diagrams), q ¼ 0:025 (middle diagrams), q ¼ 0:05 (right
diagrams). Upper curves are in the ð/R

2 � /1Þ-representation and lower curves are in the
ð/2 � /1Þ-plane
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5.4 Phase Behaviour of Colloidal Sphere–Rod Mixtures:
Experiment

Koenderink et al. [37] and Vliegenthart et al. [38] studied depletion-induced
crystallization in a mixture of silica spheres with a diameter of r1 ¼ 740 nm and
boehmite ðc�AlOOHÞ rods of length L ¼ 230 nm and diameter D ¼ 9 nm
dispersed in DMF with 0:001 M LiCl added to screen electrostatic interactions.
The rods are coated with a thin layer of silica to make them compatible with the
silica spheres. The silica spheres are labeled with fluorescein isothiocyanate
(FITC) to make them visible with Fluorescence Confocal Microscopy. Trans-
mission electron micrographs of the boehmite rods and a mixture of the boehmite
rods and the silica spheres are presented in Fig. 5.16.

In Fig. 5.17 a time series of confocal microscopy images is presented of a
sample with a volume fraction of silica spheres of 0.025 and a volume fraction of
boehmite rods of 0.0025. In the confocal microscopy images it is seen that with
time the silica number density increases by sedimentation. Locally ordered
structures are formed but no signs of depletion-induced phase transitions are
found.

In Fig. 5.18 we present a time series of confocal microscopy images of a
sample with the same volume fraction of silica spheres as in Fig. 5.17 but now for
a larger volume fraction of boehmite rods of 0.005. In this case the morphology of
the system is totally different. Clusters are rapidly formed (within minutes) and
those aggregates rapidly transform into crystallites while they grow and coalesce
[38]. The initial clusters contain typically 103 particles. In the final stage
re-orientation of different crystalline patches and annealing of defect lines is seen.
This results in large crystalline areas. The entire process does not take more than
8 min, much faster than the formation of locally ordered structures under the

Fig. 5.16 Micrograph of
(left) silica-coated boehmite
rods mixed with silica
spheres and (right) without
silica spheres. Picture
reprinted from [37], with
permission from the
American Chemical Society
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influence of sedimentation in the system with a volume fraction of rods of 0.0025.
Apparently, in the case of a volume fraction of rods of 0.005 we are in the biphasic
region (fluid–solid) of the phase diagram. Let us compare this to theory. In
Fig. 5.19 we present the theoretical FVT phase diagram for a mixture of hard
spheres with diameter r1 ¼ 740 nm and hard rods with length L ¼ 230 nm and
diameter D ¼ 10 nm: The experimentally investigated systems discussed above are

Fig. 5.17 Confocal
microscopy images of
fluorescently labelled silica
spheres (r1 ¼ 740 nm) mixed
with boehmite rods of length
L ¼ 230 nm and diameter
D ¼ 10 nm various times T
after mixing at 0.25 wt% rods
and 2.5 wt% spheres. Images
are 50� 50 lm: Pictures
reproduced from [38],
Copyright 1999, by
permission of the Royal
Society of Chemistry

Fig. 5.18 As Fig. 5.17 but
for 0.5 wt% of rods at various
times. Pictures reproduced
from [38], Copyright 1999,
by permission of the Royal
Society of Chemistry
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indicated by dots. The experimental observations of no phase separation ð/1 ¼
0:025 and /2 ¼ 0:0025Þ and phase separation ð/1 ¼ 0:025 and /2 ¼ 0:005Þ are in
agreement with theory. The experiments clearly indicate that rods are very efficient
depletion agents.
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Chapter 6
Phase Transitions in Suspensions of
Rod-Like Colloids Plus Polymers

So far we have considered the phase behaviour of colloidal spheres plus deple-
tants. In Chap. 3 we considered the simplest type of depletant, the penetrable hard
sphere. We then extended this treatment in Chap. 4 to ideal and excluded volume
polymers and in Chap. 5 we considered small colloidal spheres (including
micelles) and colloidal rods as depletants. In this chapter we consider the phase
behaviour of mixtures of colloidal rods plus polymeric depletants. For an overview
of several types of colloidal rods encountered in practice we refer to [1].

Pure hard rod suspensions exhibit interesting phase transitions themselves.
Upon concentrating a dilute rod suspension for L=D [ 3:5 the phase states sche-
matically depicted in Fig. 6.1 will be encountered: the isotropic, nematic and
smectic liquid states and a crystalline solid state [2–4]. For a description of the
various liquid crystalline phases we refer the reader to standard textbooks on liquid
crystals such as [5]. We mainly focus on the isotropic and nematic states and it will
become clear that adding depletants will strongly affect the isotropic–nematic
phase transition.

Lyotropic liquid crystalline phases were recognized a long time ago, first in
suspensions of rod-like inorganic colloids (V2O5, Zocher [6]) and later in solutions
of biological particles (tobacco mosaic virus, Bawden et al. [7]). Onsager [8]
showed that an assembly of repelling rods can exhibit a transition from an isotropic
to a nematic state driven by entropy. The effect of non-adsorbing polymer on this
phase transition has been studied since the 1940s with a view towards the practical
possibilities of isolation and separation of viruses [9, 10]. It was observed that the
addition of relatively small amounts of polymer to virus suspensions lead to the
‘precipitation’ of the virus particles (i.e., the formation of a concentrated phase of
the virus particles). Only much later, in the 1990s, experiments were started on
model rod-like colloid ? polymer suspensions to study this phase behaviour in
depth. In this chapter we extend the treatment given in the previous chapters to
rod-like colloids plus depletant and compare the results to experiment and
simulation.

H. N. W. Lekkerkerker and R. Tuinier, Colloids and the Depletion Interaction,
Lecture Notes in Physics, 833, DOI: 10.1007/978-94-007-1223-2_6,
� Springer Science+Business Media B.V. 2011
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6.1 Onsager Theory of the Isotropic–Nematic Transition

As we saw in the previous chapters colloidal phase transitions of hard particles are
governed by entropy. This was in fact first realized by Onsager [8] for the iso-
tropic–nematic (I–N) phase transition in a suspension of rods. He realized that an
attractive force is not necessary for the I–N transition by showing that an assembly
of repelling rods exhibits a transition from an isotropic to a nematic state due to a
gain of packing entropy that compensates the loss of orientational entropy. On-
sager also demonstrated that the I–N transition may be treated within a virial
expansion of the free energy. In fact, this is one of the very few examples where a
phase transition can be treated using a virial expansion. For very thin, rigid, hard
particles the transition occurs at a very low volume fraction and the virial
expansion may be truncated after the second virial term, leading to an exact theory
for infinitely thin particles. In the following we give a brief exposition on On-
sager’s theory. For more details we refer to [8, 11]. The Helmholtz free energy F
for a dispersion of N hard rods (which we again model as spherocylinders with
length L and diameter D) in a volume V in the second virial approximation can be
written as

F½f �
NkT

¼ constant � 1þ ln cþ r½ f � þ cq½ f �: ð6:1Þ

Here we have lumped in the constant quantities that do not affect the phase
transition, i.e., have the same value in the coexisting phases. Further c is the
dimensionless concentration

c ¼ bn; ð6:2Þ

where the excluded volume b ¼ ðp=4ÞL2D and n ¼ N=V is the number density of
the rods. The orientational entropy per particle is expressed in r½f �,

sor ¼ �k

Z

f ðXÞ ln½4pf ðXÞ�dX ¼ �kr½ f �: ð6:3Þ

Fig. 6.1 Phase states of hard rod suspensions. From left to right: isotropic, nematic, smectic and
crystal phases
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where f ðXÞ is the orientational distribution function, which gives the probability
of finding a spherocylinder with an orientation characterized by the solid angle X.
Finally, �kcq½f � is the packing entropy per particle,

q½f � ¼ 4
p

Z Z

j sin cjf ðXÞf ðX0ÞdXdX0; ð6:4Þ

where c is the angle between the rods which depends on their orientations X and
X0 (see Fig. 5.12). As already remarked, the I–N transition originates from a
competition between the orientational and packing entropy. For low concentra-
tions the orientational entropy dominates and attains a maximum value for an
isotropic distribution f ¼ 1=4p, whereas for high concentrations the packing
entropy becomes more important favouring a nematic orientation distribution. The
orientation distribution is determined by the fact that the free energy must be a
minimum. When we minimize (6.1) we obtain the integral equation

ln½4pf ðhÞ� ¼ k� 8c

p

Z

j sin cðX;X0Þjf ðh0ÞdX0: ð6:5Þ

Here we have taken into account that f does not depend on the azimuthal angle /
but only on the polar angle h. Furthermore, the distribution function f ðhÞ must
satisfy inversion symmetry, implying the angles h and p� h are equivalent. The
Lagrange multiplier k is determined by requiring that f ðhÞ fulfills the normaliza-
tion condition

Z

f ðXÞdX ¼ 1:

It is easily seen that the isotropic distribution function

f ¼ 1
4p

satisfies (6.5) for all concentrations (although only for low concentrations this
corresponds to a minimum of the free energy). For the isotropic phase r and q
attain the values

rI ¼ 0; qI ¼ 1: ð6:6Þ

And hence
FI

NkT
¼ constant � 1þ ln cþ c: ð6:7Þ

Exercise
Derive (6.6) from (6.3) and (6.4) using f ¼ 1=4p.

An exact solution to the non-linear integral equation (6.5) for higher concen-
trations, where a nematic distribution minimizes the free energy, has not yet been
found but ways to solve it numerically have appeared [12, 13]. For a didactic
account on how to solve (6.5) numerically, see [14]. This allows the determination
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of r½f � and q½f � and from thereon the free energy in the nematic phase. To be in
mechanical and chemical equilibrium, both phases must have the same osmotic
pressure and the same chemical potential.

PIðcIÞ ¼ PNðcNÞ
lIðcIÞ ¼ lNðcNÞ:

ð6:8Þ

These quantities can be obtained from the free energy using the standard ther-
modynamic relations

P ¼ �oF

oV

l ¼ oF

oN
:

ð6:9Þ

For the isotropic phase we find from (6.7)

PIb

kT
¼ cI þ c2

I

lI

kT
¼ constant þ ln cI þ 2cI :

ð6:10Þ

Exercise
Show that (6.10) follows from (6.7) and (6.9).

In the nematic phase (6.1) gives

PNb

kT
¼ cN þ c2

Nq½f �
lN

kT
¼ constant þ ln cN þ r½f � þ 2cNq½f �;

ð6:11Þ

where the distribution f must be obtained numerically for each concentration from
(6.5). Solving the coexistence equations (6.8) with the above expressions for the
osmotic pressure and chemical potential numerically yields the coexistence
concentrations

cI ¼ 3:290; cN ¼ 4:191: ð6:12Þ

Further the usual measure of the ordering in the nematic phase, given by the
nematic order parameter,

S ¼ 4p
Z

p=2

0

f ðhÞ 3
2

cos2 h� 1
2

� �

sinðhÞdh; ð6:13Þ

has the value

S ¼ 0:7922 ð6:14Þ

for the coexisting nematic phase.
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More convenient calculations of the phase transition can be performed by
choosing a trial function for the orientation distribution function f with one or
more variational parameters. The free energy as a function of these parameters can
then be minimized with respect to these parameters. Onsager [8] chose the fol-
lowing function

fOðhÞ ¼
j coshðj cos hÞ

4p sinh j
; ð6:15Þ

which gives the following results for the coexisting concentrations and nematic
order parameter at coexistence

cI ¼ 3:340 ; cN ¼ 4:486 ; S ¼ 0:848: ð6:16Þ

Comparison of these results with exact values (6.12) and (6.14) shows that the trial
function chosen by Onsager works quite well. Odijk [15, 16] realized that for large
values of j, Onsager’s orientational distribution function can be approximated by a
Gaussian distribution function

fG� eNðjÞ exp �1
2
jh2

� �

0� h� p
2

� eNðjÞ exp �1
2
jðp� hÞ2

� �

p
2
� h� p;

ð6:17Þ

where eNðjÞ is a normalization constant. The advantage of this Gaussian distri-
bution function is that for large values of j the quantities r½f � and q½f � can be
represented accurately by

r½fG� � ln j� 1

q½fG� �
4
ffiffiffiffiffiffi

pj
p :

ð6:18Þ

This leads to the following expression for the free energy in the nematic phase

F

NkT
� constant� 1þ ln cþ ln j� 1þ 4c

ffiffiffiffiffiffi

pj
p : ð6:19Þ

Minimizing this expression with respect to j leads to

j� 4c2

p
: ð6:20Þ

Hence

F

NkT
� constantþ ln

4
p
þ 3 ln c: ð6:21Þ
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Using (6.9) we now obtain for the pressure and chemical potential in the nematic
phase

PNb

kT
¼ 3cN

lN

kT
¼ constant þ ln

4
p
þ 3þ 3 ln cN :

ð6:22Þ

Using these expressions and the expressions given by (6.10) for the pressure and
chemical potential in the isotropic phase, the coexistence equations (6.8) now take
the simple forms

cI þ c2
I ¼ 3cN

ln cI þ 2cI ¼ 3 ln cN þ ln
4
p

� �

þ 3:
ð6:23Þ

From this we find the following coexisting concentrations

cI ¼ 3:451; cN ¼ 5:122; ð6:24Þ

implying, via (6.20), j ¼ 33:4. This leads to the value

S ¼ 0:910 ð6:25Þ

for the nematic order parameter in the coexisting nematic phase. While the results
for the Gaussian distribution function differ more from the exact results than the
Onsager trial function (in both cases too high values for the coexisting concen-
trations and a too high value for the order parameter in the coexisting nematic
phase), the calculations are substantially simpler [17] allowing to obtain a good
estimate of the I–N transition in more complicated situations (that we will
encounter in the next sections). Although the results of Onsager’s theory are of
great fundamental and methodological interest, they refer strictly to infinitely thin
hard rods. Hence, the applicability of the theory to experimental results is limited.
In real suspensions of rod-like particles we have to take into account one or more
of the following aspects

• particles are not infinitely thin
• particles may be polydisperse
• particles are not hard but may show (long-range) repulsions and attractions
• particles may be semiflexible.

Onsager [8] already addressed the issues of particle repulsions and polydis-
persity. These and the other issues raised above have been considered extensively
(for a review, see [11]).

When considering the effect of depletion attraction on the I–N transition in rod-
like suspensions we must take into account that the second virial term B2 no longer
exceeds the higher virial terms. In case of attractions between the rods nearly
parallel configurations are of paramount importance and B2 is no longer the
dominating virial coefficient as in the case of long, repulsive rods. It was shown
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that for even slightly attractive rods the third virial coefficient B3 is almost as large
as B2 [18]. This means that we must start from a theory that takes into account
higher virial coefficients. Here we use Scaled Particle Theory (SPT) [19], which
will be treated in the next section. SPT for rods plus polymers will subsequently be
treated in Sects. 6.3 and 6.4, following [20, 21].

6.2 Scaled Particle Theory of the Isotropic–Nematic
Transition

SPT, a convenient and tractable way to incorporate higher virial coefficients in the
treatment of the isotropic–nematic phase transition was already treated for
assemblies of hard rods in Sect. 5.4 to obtain the osmotic pressure of an isotropic
suspension of rods. The starting point of SPT is the calculation of the reversible
work W to insert an additional spherocylinder in the system of spherocylinders to
obtain the excess part of the chemical potential (5.30)

lex ¼
Z

f ðXÞWðX; 1; 1ÞdX; ð6:26Þ

where WðX; 1; 1Þ is the reversible work to insert a spherocylinder with length L
and diameter D and orientation X in a system of hard spherocylinders. In Sect. 5.4
we considered an isotropic assembly of rods, but (6.26) applies equally well to an
orientationally ordered (nematic) system of rods as long as we use for f ðXÞ the
appropriate orientation distribution function. After replacing the second virial
contribution 2cq½f � in (6.11) with the chemical potential lex we obtain

l
kT
¼ constant þ ln yþ r½f �

þ ð1þ 2A½f �Þyþ A½f � þ 3
2

B½f �
� �

y2 þ B½f �y3: ð6:27Þ

Here y has its usual meaning

y ¼ /
1� /

;

with / is the volume fraction of the rods which equals nv0, where v0 is the
spherocylinder volume given by

v0 ¼
p
4

LD2 þ p
6

D3:

The quantities A½f � and B½f � are defined as
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A½f � ¼ 3þ 3ðc� 1Þ2

ð3c� 1Þ q½f � ð6:28Þ

B½f � ¼ 12cð2c� 1Þ
ð3c� 1Þ2

þ 12cðc� 1Þ2

ð3c� 1Þ2
q½f �; ð6:29Þ

where

c ¼ 1þ L

D
;

the overall length-to-diameter ratio (not to be confused with the angle c). Using the
Gibbs–Duhem equation

oP

on

� �

¼ n
ol
on

� �

;

one obtains for the pressure

Pv0

kT
¼ yþ A½f �y2 þ B½f �y3: ð6:30Þ

Exercise
Show that by setting c ¼ 1 (and f ¼ 1=4p) one recovers the SPT expression for the
pressure of a hard sphere fluid.

Finally, the Helmholtz free energy can be obtained from the relation

F ¼ Nl� PV;

leading to

F½f �
NkT

¼ constant0 � 1þ r½f � þ ln yþ A½f �yþ 1
2

B½f �y2: ð6:31Þ

Exercise
Show that in the limit L=D!1 and low concentrations the above expression for
the free energy reduces to the free energy in the second virial approximation (6.1)
with constant0 ¼ constantþ ln L

D.

To locate the I–N transition one proceeds in exactly the same way as in Sect.
6.1 involving the following steps:

• minimize F½f � numerically with respect to the orientation distribution function f ;
• calculate the orientation distribution function of f ;
• calculate the pressure and chemical potential, and
• solve the coexistence equations.

The results for the coexisting concentrations, which now depend on L=D, are
given in Fig. 6.2 (see also [21]). In this figure we also present Monte Carlo simu-
lation results [4] as well as the Onsager limit result ðL=D!1Þ. Clearly, the
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agreement is quite good. In Fig. 6.3 we give the pressure at isotropic–nematic
coexistence for hard sphere cylinders as a function of the aspect ratio L=D.

It is interesting to compare the results obtained with the numerical orientation
distribution function with the results obtained with the Gaussian orientation dis-
tribution function (6.17). Substituting the expressions for r½fG� and q½fG� given by
(6.18) in (6.31) and minimizing the free energy with respect to j yields

j ¼ 36
p
ðc� 1Þ4

ð3c� 1Þ2
yþ 2c

3c� 1
y2

� �2

: ð6:32Þ

Exercise
Show that in the limit L=D!1 and low concentrations the above expression for
j reduces to (6.20).

Using (6.32) for j in r½fG� and q½fG� and substituting these expressions in (6.27)
and (6.30) provides us with analytical expressions for the chemical potential and

Fig. 6.3 Pressure Pb=kT at
isotropic–nematic
coexistence for hard
spherocylinders as a function
of D=L. Note

v0 ¼ b½D=Lþ ð2=3ÞðD=LÞ2�

Fig. 6.2 Isotropic–nematic
phase coexistence for hard
spherocylinders as a function
of the inverse of the aspect
ratio L=D
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pressure in the nematic phase. The expressions for these quantities in the isotropic
phase are obtained by setting r ¼ 0 and q ¼ 1 in (6.27–6.30). We then can solve
the coexistence equations (6.8). The results for the coexisting concentrations and
the coexistence pressure obtained using the Gaussian orientational distribution
function are also given in Figs. 6.2 and 6.3.

As in the Onsager limit, the results lie somewhat above the numerical solution.
Given the fact that the Gaussian approximation is transparent and simple, it pro-
vides a valuable method to scan through a large parameter space as we shall see in
the next section.

6.3 Isotropic–Nematic Phase Behaviour of Rods Plus Penetrable
Hard Spheres

We now consider the effect of added polymer on the phase behaviour of a system
of hard rods. We first consider the simplest representation of a polymer: the
penetrable hard sphere (phs) with diameter r (see Sect. 2.1 for details about this
model).

The starting point for the calculation of the phase behaviour is the semi-grand
potential for the system of colloidal rods ? phs in osmotic equilibrium with a
reservoir with phs, which sets the chemical potential of the phs. This system is
depicted in Fig. 6.4. In the free volume approximation (see Sect. 3.3) we can write
(3.24)

XðN1;V ; T; l2Þ ¼ F0ðN1;V ; TÞ � PRhVfreei0; ð6:33Þ

where N1 stands for the number of rods, l2 represents the chemical potential of the
depletants (penetrable hard spheres), PR is the pressure in the reservoir and hVfreei0
is the free volume for the penetrable hard spheres in the system of rods sche-
matically illustrated in Fig. 6.5. For FðN1;V ; TÞ we use the SPT expression (6.31)
[19] and the osmotic pressure of the penetrable hard spheres in the reservoir is
given by

PR ¼ nR
2 kT ;

where n2
R of the number density of phs in the reservoir. The free volume is again

calculated using the relation

hVfreei0
V

¼ a ¼ e�W=kT ; ð6:34Þ

where W is the reversible work for inserting the phs in the hard rod suspension. An
expression for the work of insertion W can again be conveniently obtained using
scaled particle theory. The work W is calculated by expanding the phs to be
inserted form zero to its final size. By writing the size of the scaled phs as kr in the
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limit that k! 0, the inserted sphere approaches a point particle. In this limit it is
very unlikely that excluded volumes of the hard rods + added scaled phs overlap.
So,

WðkÞ ¼ �kT ln 1� n1vexclðkÞ½ � for k� 1; ð6:35Þ

where vexclðkÞ is the excluded volume of the added scaled phs and a hard sphe-
rocylinder with length L and diameter D

vexclðkÞ ¼
p
4
ðDþ krÞ2Lþ p

6
ðDþ krÞ3: ð6:36Þ

Fig. 6.4 Osmotic
equilibrium between a
dispersion of hard rods plus
penetrable hard spheres
(system) and a reservoir
containing a penetrable hard
sphere dispersion

Fig. 6.5 Illustration of the
available free volume (the
unshaded volume) in a
dispersion of hard
spherocylinders
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The opposite limit k� 1 corresponds to the case when the size of the inserted phs
is very large. Then W is, to a good approximation, equal to the volume work
needed to create a cavity

p
6
ðkrÞ3

and is given by

W ¼ p
6
ðkrÞ3P for k� 1; ð6:37Þ

where P is the (osmotic) of the hard rod system given by (6.30). In SPT the above
two limiting cases are connected by expanding W in a series in k

WðkÞ ¼ Wð0Þ þ oW

ok

� �

k¼0

kþ 1
2

o2W

ok2

� �

k¼0

k2 þ p
6
ðkrÞ3P: ð6:38Þ

This yields

Wðk ¼ 1Þ
kT

¼ lnð1� /1Þ þ
6cq

3c� 1
þ 3ðcþ 1Þq2

ð3c� 1Þ

� �

y1

þ 1
2

6c
3c� 1

� �2

q2y2
1 þ

2q3

3c� 1
Pv0

kT

;

where

y1 ¼
/1

1� /1

q ¼ r
D

c ¼ L

D
þ 1:

Inserting (6.30) for the pressure of spherocylinders leads to the following
expression for the free volume fraction

a ¼ ð1� /1Þ exp �Qð/1Þ½ �; ð6:39Þ

where

Qð/1Þ ¼ ay1 þ by2
1 þ cy3

1

with
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a ¼ 6c
3c� 1

qþ 3ðcþ 1Þ
3c� 1

q2 þ 2
3c� 1

q3

b ¼ 1
2

6c
3c� 1

� �2

q2 þ 6
3c� 1

þ 6ðc� 1Þ2

ð3c� 1Þ2
q½f �

 !

q3

c ¼ 2
3c� 1

12cð2c� 1Þ
ð3c� 1Þ2

þ 12cðc� 1Þ2

ð3c� 1Þ2
q½f �

 !

q3:

Exercise
Check that in the appropriate limit this expression for a reduces to (3.36) with a, b
and c given below (3.36).

We now have all the contributions to construct the semi-grand potential
XðN1;V ; T; l2Þ given in (6.33). In order to obtain the phase behaviour we proceed
along the same lines as for the system of pure rods involving the following steps

• minimize X with respect to the orientation distribution function f . Note that in
(6.33) both the free energy the pure rod system F0 and the free volume hVfreei0
depend on the orientation distribution function f ,

• evaluate the orientation distribution function f ,
• calculate the (osmotic) pressure and chemical potential of the rods which are

now given by

P ¼ � oX
oV

� �

N1;l2

¼ P0 þ PR a� n1
da
dn1

� �

; ð6:40Þ

l1 ¼
oX
oN1

� �

V;l2

¼ l0
1 � PR da

dn1
; ð6:41Þ

where P0 and l0 are the pressure and chemical potential of the pure rod
system, and

• solve the coexistence relations

lI
1 nI

1; l2

� �

¼ lII
1 nII

1 ; l2

� �

; ð6:42Þ

PI nI
1; l2

� �

¼ PII nII
1 ; l2

� �

: ð6:43Þ

Instead of formal minimization of the free energy leading to an integral
equation for the orientation distribution function f we will first use the Gaussian
distribution function which simplifies the calculations considerably, while leading
to reasonably good results. This is illustrated in Fig. 6.6, where we plot the iso-
tropic–nematic phase coexistence curve for L=D ¼ 10 and q ¼ 1. On the ordinate
the relative reservoir concentration of penetrable hard spheres is plotted versus the
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volume fraction of hard spherocylinders on the abscissa. The solid curves are the
results for the binodals using the Gaussian distribution function, while the dotted
curves were obtained using formal minimization. In Fig. 6.2 we have seen the
Gaussian overestimates the I–N concentrations somewhat for the pure hard
spherocylinder dispersion. For a pure rod dispersion the Gaussian approximation
provides a too sharply peaked orientation distribution function f , reflected by a too
large value for the nematic order parameter S. Hence, the loss of orientational
entropy is overestimated for the pure rod dispersion.

Fig. 6.7 Phase diagrams calculated using free volume theory for spherocylinders with L=D ¼ 20
plus penetrable hard spheres at three size ratios q ¼ 0:3 (left), q ¼ 1 (middle) and q ¼ 2:5 (right).
The upper three curves are in the reservoir representation, the lower curves are the system results.
The Gaussian form for the ODF was used to minimize the semi-grand potential and compute the
coexistence concentrations

Fig. 6.6 Isotropic–nematic
phase coexistence for L=D ¼
10 and q ¼ 1 in the reservoir
representation. The Gaussian
orientational distribution
function result (solid) is
compared to the coexistence
computed using formal
minimisation of the oriental
distribution function (dashed
curves). In the inset we plot
the nematic order parameter S
as a function of /R

2 of the
nematic phase that coexists
with the isotropic phase
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As the depletant concentration becomes significant and attractions play a
dominating role f becomes sharply peaked. This is reflected in a strong increase of
the nematic order parameter S, see the inset in Fig. 6.6. Hence, the Gaussian
orientational distribution function is accurate at larger depletant concentrations.

Phase diagrams for L=D ¼ 20, computed using the Gaussian f , are plotted in
Fig. 6.7 for q ¼ 0:3, q ¼ 1:0 and q ¼ 2:5. The upper plots are the reservoir de-
pletant-rod representations, while the lower plots are the system representations.
These three size ratios reflect the different scenarios that are found in mixtures of
spherocylinders plus depletants. Depending on the length-to-width ratio of the rod-
like particles and the ratio of the depletant diameter over the rod diameter, we find
the following types of phase behaviour:

• coexistence between two isotropic phases (dilute and concentrated, the equiv-
alent of vapour and liquid) and a nematic phase. This phase behaviour is pre-
dicted to occur for mixtures of relatively short rods and large depletants, so
long-ranged attractions.

• coexistence between an isotropic and a nematic phase.
• equilibria with two coexisting nematic phases for rods plus small depletants, so

short-ranged attractions.
• coexistence between one isotropic phase and two nematic phases differing in

concentration. This phase behaviour is predicted to occur for long rod-like
particles and relatively small depletants.

Both for the critical isotropic–isotropic and nematic–nematic points there
exists, at given L=D, a critical end point (cep). This cep identifies the conditions
for which a certain phase transition ceases to exist. The occurrence of the three
different regimes as a function of the geometrical parameters L=D and q is shown
in Fig. 6.8, as marked by the isotropic–isotropic and nematic–nematic critical end
points. As a function of L=D the cep values provide critical end curves. In Fig. 6.8
we have marked (symbols) the conditions for which we plotted the phase diagrams
in Fig. 6.7.

Fig. 6.8 Critical end point
curves for isotropic–isotropic
and nematic–nematic
coexistence in dispersions of
hard spherocylinders and
penetrable hard spheres as a
function of the aspect ratio
L=D. Computed using the
Gaussian approximation for
the orientational distribution
function
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The three types of phase behaviour are illustrated in Fig. 6.7 in a representation
showing colloid volume fraction /1 against depletant concentration /r

2. Experi-
mentally, one controls the depletant (for instance non-adsorbing polymer) con-
centration in the system rather than the polymer concentration (chemical potential)
in the reservoir. Using the relation:

a ¼ n2

nR
2

¼ /2

/R
2

n2 ¼ �
1
V

oX
ol2

� �

N2;V

;

phase diagrams in the experimentally accessible ð/1;/2Þ can be obtained from the
results in the ð/1;/

R
2 Þ plane. The resulting phase diagrams are presented in

Fig. 6.7 (lower diagrams).

6.4 I–N Phase Behaviour of Rod-Like Colloids Plus Polymers

6.4.1 Rod-Like Colloids Plus Ideal Polymers

In Sect. 2.2 we discussed the relationship between phs and ideal polymers in the
depletion interaction between flat plates and between spheres. It turns out that the
depletion thickness d of ideal polymers in the case of a flat plate is given by

d ¼ 2Rg
ffiffiffi

p
p ;

where Rg is the radius of the gyration of the ideal polymer. For spheres with radius
R the depletion thickness depends on the ratio

q ¼ Rg

R
;

and can be evaluated analytically

d
Rg
¼

1þ 6q
ffiffiffi

p
p þ 3q2

� �1=3

�1

q
:

Note that in the limit q! 0 one recovers, as expected, the flat plate result,

d
Rg
¼ 2

ffiffiffi

p
p :

The depletion thickness of an ideal polymer around a cylinder requires a numerical
calculation (see [21]). For practical purposes an empirical expression was given
that describes the numerical data with an accuracy within a percent for q ¼ 2Rg=D
values up to 100 [21],
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d
Rg
¼

1þ 4
ffiffi

p
p q� k1q1:6 þ k2q1:77

	 
1=2
�1

q
; ð6:44Þ

with the constants k1 ¼ 0:62133 and k2 ¼ 1:50338. In Fig. 6.9 the depletion
thickness around a cylinder as a function of q is plotted and compared to the flat
wall and sphere result. The data points are the numerical results, the curve follows
(6.44). It follows that the depletion thickness around a cylinder (rod) is of order of
the polymer’s radius of gyration for q\10. In the next subsection we extend our
approach to also include interacting polymers.

6.4.2 Rod-Like Colloids Plus Interacting Polymers

As we noted in Chap. 4, expression (6.33) just like (4.5) only holds for nonin-
teracting depletants. The general expression for the semi-grand potential for hard
spherocylinders plus interacting depletants is

XðN1;V; T ; ldÞ ¼ F0ðN1;V; TÞ þ
Z

lR
d

�1

oX

olR0
d

dlR0

d ; ð6:45Þ

with F0 given by (6.30), see also (4.3). As in Chap. 4 we use here dimensionless

free energies for convenience hence F0 ! eF0 ¼ F0v0=VkT (so F0=NkT ¼ eF0=/)

and eX ¼ Xv0=VkT and we drop the explicit dependencies ðN1;V; T ; ldÞ identified
above. We restrict ourselves here to polymeric depletants. Analogously to the
situation in Sect. 4.3 we then arrive at

Fig. 6.9 Depletion thickness
(normalised with Rg) around
a spherocylinder as a function
of q ¼ 2Rg=D. Data points
are exact numerical results.
Full curve follows (6.44). For
comparison the sphere ðq ¼
Rg=RÞ and flat wall results are
indicated
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eX ¼ eF0 �
1

2q3
ð3c� 1Þ

Z

/p

0

a½f � oePR

o/R0
p

 !

d/R0

p ; ð6:46Þ

using the free volume theory approximations discussed in Sect. 3.3.

Exercise
Show that v0=vp ¼ ð3=2Þq�3ðc� 1=3Þ.

Here we have used

• oX=olp ¼ �Np ¼ �a/R
p V=vp ,

• the Gibbs–Duhem relation dlR
p ¼ ðvp=/

R
p ÞdPR ¼ ðvp=/

R
p ÞðoPR=o/R

p Þd/R
p , and

• ePR
p ¼ Pvp=kT .

Expression (6.46) may be regarded as a generalized free volume theory (GFVT)
semi-grand potential for rods plus interacting polymers. Subsequently, we can

specify the quantities a and ePR
p for interacting polymers.

While the formalism of (6.46) appears simple and does not present any par-
ticular problem, the computations of X and especially the phase coexistence
concentrations are involved. The reason for this is the combination of the
numerical integration over the polymer concentration plus the minimisation of X
for each rod and polymer concentration. Even within the Gaussian approximation,
where the minimisation is relatively simple and there are explicit expressions for
the variational parameter j, the calculations are demanding.

For the free volume fraction a of interacting polymers in a suspension of hard
spherocylinders we can write down a revised form of (6.39),

a½f � ¼ ð1� /1Þ exp½�ay1 � b½f �y2
1 � c½f �y3

1�; ð6:47Þ
with

a ¼ 6c
3c� 1

2d
D

� �

þ 3ðcþ 1Þ
3c� 1

2d
D

� �2

þ 2
3c� 1

2d
D

� �3

b½f � ¼ 1
2

6c
3c� 1

� �2 2d
D

� �2

þ 6
3c� 1

þ 6ðc� 1Þ2

ð3c� 1Þ2
q½f �

 !

2d
D

� �3

c½f � ¼ 2
3c� 1

12cð2c� 1Þ
ð3c� 1Þ2

þ 12cðc� 1Þ2

ð3c� 1Þ2
q½f �

 !

2d
D

� �3

:

Here d is the depletion thickness around a spherocylinder mediated by interacting
polymers. At a flat wall the depletion thickness due to interacting polymers in a
good solvent reads

d ¼ 1:071Rg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3:95/1:54
p

q ; ð6:48Þ
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which we used first in Sect. 4.3. To describe the depletion layer at a cylinder we
need to incorporate the curvature effect. This is unknown yet for interacting
polymers. The curvature effect around a cylinder by ideal polymers is known
(6.44) and can be written as

2d
D
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4
ffiffiffi

p
p q� 0:62133q1:6 þ 1:50388q1:77

s

� 1; ð6:49Þ

which is plotted in Fig. 6.9.
We now combine the correct polymer concentration dependence (6.48) with the

curvature dependence (6.49) and end up with

2d
D
¼ 1þ 2

1:071q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3:95/1:54
p

q � 0:51215
1:071q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3:95/1:54
p

q

0

B

@

1

C

A

1:60

B

@

þ1:214
1:071q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3:95/1:54
p

q

0

B

@

1

C

A

1:771

C

A

0:5

�1:

ð6:50Þ

The osmotic compressibility of a polymer solution in a good solvent was given in
Sect. 4.3 and reads

oePp

o/p
¼ 1þ 3:7422 /1:31

p : ð6:51Þ

We do not consider h-solvent conditions here as in Chap. 4 since the effects of
accounting properly for interactions between polymers are, in contrast to the
polymers plus spheres case (Chap. 4), not very strong. Therefore we restrict
ourselves to the good solvency case.

We can now compute the phase diagrams for hard spherocylinders plus inter-
acting polymers using (6.46) and its ingredients by computing the chemical

potential el ¼ ðoeX=o/Þ and pressure eP ¼ /el � eX,

el½f � ¼ el0½f � þ
Z

/R
p

0

g½f � oePR

o/R0
p

 !

d/R0

p ; ð6:52Þ

eP½f � ¼ eP0½f � þ
Z

/R
p

0

h½f � oePR

o/R0
p

 !

d/R0

p ; ð6:53Þ

with g and h given by (3.48) and (3.49) with a, b and c defined below (6.47).
Equations 6.52 and 6.53 depend, as specified, on the orientational distribution
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function f . Therefore, at each rod concentration (at given polymer concentration)
(6.46) has to be minimized numerically to obtain the Gaussian variational
parameter j.

In Fig. 6.10 we plot two illustrative results shown already for noninteracting
depletants (penetrable hard spheres) in Fig. 6.7 in the rod volume fraction—
polymer reservoir representation for L=D ¼ 20, q ¼ 1 (left) and q ¼ 2:5 (right).
The dashed curves are the results for rods plus polymer chains in a good solvent.
For q ¼ 1 we observe that there is hardly any effect of accounting properly for the
interactions between the polymers. This is no surprise since the binodal polymer
concentrations are well below the polymer overlap concentration. Also for smaller
size ratios (not shown), the effect of interactions between the polymers is negli-
gible and describing polymers as penetrable hard spheres then is adequate. In the
right panel of Fig. 6.10 we plot results for q ¼ 2:5. In this case there is a more
pronounced effect of accounting for the interaction between the polymers. In the
good solvent description the widening of the I–N transition is enhanced and the
isotropic–isotropic phase coexistence region found for penetrable hard spheres
disappeared. As for q ¼ 1 only I–N phase coexistence is found and the I–I
demixing appears to be metastable. It follows it is only worth while to account for
interactions between polymer chains in rod plus polymer mixtures for large q
values (q� 1). In some cases the polymers can indeed be quite large compared to
the rod diameter. We do stress that the computations are not straightforward when
using the expressions used in this section, even for the Gaussian approximation for
the orientational distribution function that we used.

Exercise

The ideal result is oePp=o/p ¼ 1. Why are the binodals for interacting polymers in
Fig. 6.10 not overall shifted to significantly smaller polymer concentrations due to
an increased osmotic pressure caused by interacting polymers?

Fig. 6.10 Phase diagrams calculated using generalized free volume theory for spherocylinders
with L=D ¼ 20 plus interacting polymer chains in a good solvent (dashed curves) for size ratios
q ¼ 1 (left) and q ¼ 2:5 (right) in the reservoir representation. Full curves are FVT results for
(noninteracting) penetrable hard spheres as depletants as identical to those in Fig. 6.7. As in
Fig. 6.7 the Gaussian form for the ODF was used
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6.5 Experimental Phase Behaviour of Rod/Polymer Mixtures

We now compare experimental results on the isotropic–nematic transition in
mixed suspensions of colloidal rods and polymer with the theory presented in the
previous sections.

The experimental results refer to three types of rod-like colloidal particles
which in suspension give rise to isotropic–nematic phase separation above a
critical concentration:

• stiff virus particles,
• cellulose nanocrystals, and
• colloidal boehmite ðc-AlOOHÞ rods.

The added polymers range from polysaccharides (heparin, chondroitin sulfate,
dextran) to polyethylene oxide (PEO) and polystyrene (PS).

6.5.1 Stiff Virus Particles + Polymer

Probably the best examples of rod-like colloidal particles are stiff virus particles
such as the plant virus tobacco mosaic virus (TMV) and the bacteriophage feline
distemper (fd). In Table 6.1 we summarize the characteristics of TMV and fd,
including their linear charge densities at neutral pH.

Suspensions of TMV (see Fig. 6.11, taken from [22]) have long been recog-
nized as an interesting system to study the I–N transition [7]. TMV is a rigid
cylindrical particle consisting of a protein shell enclosing double stranded RNA.
Fraden et al. [23] measured the coexisting isotropic and nematic concentrations
over a wide range of ionic strengths. As the ionic strength increases the concen-
tration of virus in the coexisting phases increases. Without added salt an isotropic
phase of 15 mg/ml TMV coexists with a nematic phase of 23 mg/ml, while at an
ionic strength of 60 mM the coexisting concentrations are 90 mg/ml in the iso-
tropic phase and 125 g/ml in the nematic phase. Replacing the electrostatic
potential between TMV particles with an appropriate effective diameter gives a
reasonably good description of the experimentally observed phase boundaries [23].

As early as 1942, Cohen [9] observed, in a study directed at the isolation of
TMV from infectious juice, that the addition of 5 mg/ml of the polysaccharide
heparin to a dilute TMV suspension (2 mg/ml) in 0:1 M phosphate buffer ðpH ¼
7:1Þ resulted in the production of needle-shaped paracrystals of length 5–20 lm

Table 6.1 Characteristics of TMV and fd-virus rods

Virus M ðDaÞ L ðnmÞ D ðnmÞ L=D Charge densityðe=nmÞ
TMV 4 � 107 300 18 17 -1 to -2
fd 1.6 � 106 880 6.6 133 -5 to -10
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(see Fig. 1.14 [9]), which may be considered as precursors of the I–N transition
[7]. In the 1990s Sano and co-workers [22, 24, 25] added the polysaccharide
chondroitin sulfate (Chs) to dilute TMV suspensions with a view to establish the
antiviral activity of these polysaccharides. With electron microscopy, Urakami
et al. [22] observed that the addition of very low concentrations of Chs (1 mg/ml)
to dilute TMV suspensions (1 mg/ml) caused the formation of large raft-like
aggregates (see Fig. 6.12). The effect of Chs on infectivity may, according to Sano
[24], be ascribed to these raft-like aggregates blocking the decapsulation process
of TMV protein on the cell membrane surface. The fact that very low Chs con-
centrations lead to aggregation of TMV is attributed to the fact that it is a semirigid
polymer [22, 25]. This is in agreement with the earlier theoretical and experi-
mental observations that rod-like colloids are very efficient depletion agents, see
Sects. 2.4, 5.3 and 5.4.

Leberman [10] observed that addition of 6 mg/ml of the flexible polymer
polyethylene oxide (PEO), with molar mass M ¼ 6 kDa and radius of gyration

Fig. 6.11 Electron
microscopy (EM) micrograph
of TMV particles [22].
Reprinted with permission
from Urakami et al. [22],
Copyright 1999, American
Institute of Physics

Fig. 6.12 EM picture of
ordered TMV particles as
induced by added chondroitin
sulfate [22]. Reprinted with
permission from Urakami
et al. [22], Copyright 1999,
American Institute of Physics
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Rg ¼ 3:6 nm, to a dilute 1 mg/ml TMV suspension leads to precipitation of TMV,
which may be considered as a sign of the I–N transition. To compare this
experimental observation with theory we present in Fig. 6.13 the theoretical phase
diagram for L=D ¼ 300=18 ¼ 17 and q ¼ 2Rg=D ¼ 2 	 3:6=18 ¼ 0:4, which are
the relevant parameters for this mixed TMV-PEO suspension.

From this calculated phase diagram we observe that at low TMV concentrations
a relative polymer concentration /p ¼ 0:125 is required to cause I–N phase sep-

aration which corresponds in this case to a mass concentration of cp ¼
3/pM=4pNAR3

g ¼ 6:4 mg=ml The agreement with experiment should be consid-
ered with care since in the theoretical calculation the electrostatic interactions have
not been taken into account.

More extensive measurements on the I–N transition in TMV suspensions with
added PEO ðM ¼ 100 kDa; Rg ¼ 10 nmÞ were carried out by Adams and Fraden
[26]. They observed at TMV concentrations of 20 mg/ml, at which the pure rod
system is in the isotropic phase, the first signs of I–N phase separation at 5 mg/ml
added PEO and a more definite transition for 10 mg/ml added PEO. To compare
this experimental observation with theory we present in Fig. 6.13 also the theo-
retical phase diagram for L=D ¼ 17 (TMV virus as before) but now with
q ¼ 2Rg=D ¼ 2 	 10=18 ¼ 1:1, which are the relevant parameters for this mixed
TMV-PEO suspension. From this calculated phase diagram we observe that at low
TMV concentration a relative polymer concentration /p ¼ 0:25 is required to
cause I–N phase separation which corresponds in this case to a mass concentration
of cp ¼ 3/pM=4pNAR3

g ¼ 10 mg=ml. This is again in reasonable agreement with
theory. As mentioned before the electrostatic interactions that certainly play a role
have not been taken into account, and therefore the comparison with experiment
should be considered with care.

In addition to TMV the liquid crystal phase behaviour of the semirigid cylin-
drical bacteriophage feline distemper (fd) has been investigated extensively. The

Fig. 6.13 I–N coexistence
for hard spherocylinders with
L=D ¼ 17 mimic TMV plus
penetrable hard spheres with
size q ¼ 0:4 (solid curves)
and q ¼ 1:1 (dot-dashed
curves)
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fd-virus particle consists of a protein shell wound around a single ribbon of single
stranded DNA. In Fig. 6.14 a microscopic image is shown of fd-viruses. Fraden
and co-workers [28] measured the coexisting isotropic and (chiral) nematic con-
centrations over a wide range of ionic strengths. The onset of the (chiral) nematic
phase occurs from 10–20 mg/ml of fd as the ionic strength is increased from 1 to
100 mM. Dogic et al. [29, 30] studied the phase diagram of mixed suspensions of
fd and dextran and an example is plotted in Fig. 6.15. The used dextran poly-
saccharide had a molar mass M of 500 kDa and a radius of gyration Rg of 18 nm.
The phase diagram with M ¼ 500 kDa at ionic strength of 100 mM and pH ¼ 8:15
[31] is redrawn in Fig. 6.15. A clear widening of the I–N transition of the fd-virus
rod dispersion takes place upon increasing the dextran concentration.

Fig. 6.15 Phase diagrams of
dextran/fd-virus mixtures.
Data points are measured
coexistences. Phase diagram
was measured at ionic
strength of 100 mM at pH ¼
8:15 with added 500 kDa
dextrans. Redrawn from [31]

Fig. 6.14 Micrograph of fd-
virus particles, reproduced
from [27] with permission
from the authors
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At low fd concentrations the I–N transition takes place at a relative polymer con-
centration /p ¼ 0:8, which corresponds to a mass concentration of cp ¼ 36 mg=ml.
To compare the experimental phase diagram we present in Fig. 6.16 the theoretical
phase diagram for L=D ¼ 880=6:6 ¼ 133 and q ¼ 2Rg=D ¼ 2 	 11=6:6 ¼ 3:3. For
more sophisticated theoretical descriptions, see [21, 30].

The overall agreement between theory and experiment (compare Figs. 6.15 and
6.16), while far from perfect, is satisfactory considering that we have not taken
into account the electrostatic interactions and the fact that fd is not completely
rigid. These factors are known to have a significant effect on the I–N phase
behaviour [11].

6.5.2 Cellulose Nanocrystals + Polymer

In 1959, Marchessault et al. [32] reported on the formation of liquid crystals in
suspensions of cellulose nanocrystals prepared from cellulose by acid hydrolysis in
sulfuric acid (see Fig. 6.17 for a microscopic image of cellulose nanorods).

The study of the isotropic–(chiral) nematic phase transition in suspensions
of cellulose nanocrystals has since developed in a blossoming and fruitful field
of research (for an overview see [34]). Edgar and Gray [35] studied the effect of
2000 kDa dextran ðRg ¼ 34 nmÞ on the phase behaviour of cellulose nanocrystals
(average length L ¼ 110 nm, D ¼ 10 nm), prepared by acid hydrolysis of cotton
filter paper. In Fig. 6.18 we redraw the I–N phase behaviour at low dextran
concentrations. Above 7 wt%, suspensions of these cellulose nanocrystals start to
phase separate in an isotropic and chiral nematic liquid crystal phase. At
13:3 wt% the relative volume of chiral nematic phase (compared to the total
volume) is 79%. This wide biphasic range is a direct consequence of the
polydispersity of the cellulose nanocrystals [15, 36] and has been observed in
other dispersions containing polydisperse rod-like colloids as well [37, 38].

Fig. 6.16 SPT I–N phase
coexistence for
spherocylinders with L=D ¼
133 plus penetrable hard
spheres with q ¼ 3:3
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When dextran was added to the biphasic region it leads to a significant broad-
ening of the coexistence region and the dextran preferentially partitions in the
isotropic phase. These features are in agreement with the theory described in this
chapter.

6.5.3 Sterically Stabilized Colloidal Boehmite Rods + Polymer

As mentioned in the introduction of this chapter, suspensions of rod-like inorganic
colloids were the first systems in which the I–N transition was observed. In the
early 1960s Zocher and Torök [39–41] and Bugosch [42] observed interesting

Fig. 6.18 Influence of blue
dextran ðRg=D ¼ 3:4Þ
concentration (normalised to
/p) on the isotropic–nematic
coexistence in rod-like
cellulose nanorods ðL=D ¼
11Þ with volume fraction /.
Redrawn from Edgar and
Gray [35]

Fig. 6.17 Micrograph of a
dried suspension of cellulose
nanorods. Picture reprinted
from Dong et al. [33]
Copyright 1996, with
permission from the
American Chemical Society
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liquid crystal phase behaviour in aqueous dispersions of colloidal boehmite rods,
shown in Fig. 6.19.

Later, Buining and Lekkerkerker [37] observed isotropic–nematic phase sepa-
ration in a dispersion of sterically stabilized boehmite rods, which approximate
hard rods, in cyclohexane. Buitenhuis et al. [43] studied the effect of added 35 kDa
polystyrene ðRg ¼ 5:9 nmÞ on the liquid crystal phase behaviour of sterically
stabilized boehmite rods with average length L ¼ 7:1 nm and average diameter
D ¼ 11:1 nm in ortho-dichlorobenzene. Different phase equilibria were observed.
Two biphasic equilibria dilute isotropic phase I1 + nematic N, concentrated iso-
tropic phase I2 + nematic N and a triphasic equilibrium I1 þ I2 þ N (see photo,
Fig. 6.20). In this system the boehmite rods are quite polydisperse. Therefore
comparison with theory should be done with an approach including polydisperse
rods. We further note no I1 þ I2 coexistence was observed experimentally but

Fig. 6.19 Image of boehmite
rods. Picture was kindly
offered by J. Buitenhuis, IFF,
Forschungszentrum Jülich,
Germany

Fig. 6.20 Triphasic I1 + I2 +
N equilibrium in dispersions
of boehmite rods plus
polystyrene chains in ortho-
dichlorobenzene [43]. Picture
was kindly offered by J.
Buitenhuis, IFF,
Forschungszentrum Jülich,
Germany
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rather I1þgel at high polymer concentrations. This behaviour resembles the
behaviour of colloidal sphere/polymer mixtures, see Chap. 4.

6.6 Phase Diagrams of Rod/Polymer Mixtures
Including Highly Ordered Phases

In Sects. 6.3 and 6.4 we treated the calculation of the isotropic–nematic phase
transition in mixed suspensions of rod-like colloids and flexible polymers. Scaled
particle theory (SPT) provided the pressure and chemical potential of the hard
spherocylinder reference system and also provided a route for the calculation of
the free volume fraction, the quantities required in the FVT calculation of the
phase diagram. Depending on L=D and d=D three types of phase diagrams can be
obtained (presented in Fig. 6.7). For intermediate q values a significant broadening
of the I–N biphasic region was found. For large q values an isostructural I–I
transition arises in addition, while for small q values an additional N–N transition
arises. The broadening of the biphasic I–N region and also a triphasic I1 � I2 � N
equilibrium have indeed been observed experimentally in mixed suspensions of
rod-like colloids and flexible polymers [29, 35, 43]. We noted that the theoretical
prediction of the N–N transition (which so far has not been observed experi-
mentally in mixed suspensions of rod-like colloids and flexible polymers) should
be treated with reservation.

The N–N transition is predicted to occur at quite high volume fractions of rods.
At these high volume fractions the N–N transition may be superseded by more
highly ordered (liquid) crystal phases such as the colloidal smectic phase.
Experimentally, this colloidal smectic phase has been observed [28, 44, 45] in
suspensions of monodisperse rods. Simulations confirmed that hard rods can form
a thermodynamically stable smectic phase [2–4].

Here we outline how these more highly ordered phases can be accounted for in
the phase diagram of mixtures of rod-like colloids and flexible polymers using
FVT and follow the work of Bolhuis et al. [46]. The FVT requires the pressure, the
chemical potential of the hard spherocylinder (HSC) reference system, and the free
volume fraction (cf. (6.40) and (6.41)) as input. The computer simulations pre-
sented in [2, 4] contain the necessary information on the pressure and chemical
potential of the HSC reference system and in [46] the free volume fraction was
obtained using the Widom insertion method [47]. In this method one attempts to
insert the polymers (represented by phs with diameter r) at random positions in the
simulation box. The fraction of insertions that does not result in an overlap cor-
responds to the free volume fraction. The free volume fraction measured in this
way at different volume fractions of the HSC was fitted to a functional form
similar to the SPT expression for the free volume fraction and used in (6.40) and
(6.41). In Fig. 6.21 we present the simulation results for L=D ¼ 5 and q ¼ 1:0,
q ¼ 0:65 and q ¼ 0:15 obtained in [46] using the method outline above. In the
upper graph of Fig. 6.21 (q ¼ 1) we compare the results for the I1�I2 transition
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Fig. 6.21 Phase diagrams of
hard spherocylinders ðL=D ¼
5Þ mixed with penetrable
hard spheres in the reservoir-
phs representation for three q-
values as indicated. The
curves were obtained from
perturbation theory with
simulation results of the
reference system. Redrawn
and converted from [46]. The
thick straight lines represent
triple coexistences. Data
points in the upper graph are
direct Monte Carlo computer
simulation results from [47].
Filled circle: critical point,
open circles: I1 þ I2

coexistence
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with direct simulation results for that transition by Jungblut et al. [48]. The close
agreement gives confidence in the FVT results.

From the results for q ¼ 1 presented in Figs. 6.7 and 6.8 one expects to find a
I1�I2 transition followed by I1�I2�N, and I1�N phase equilibria. Including the
more highly ordered smectic (Sm) and solid (S) phase leads to additional
I1�N�Sm, I1�Sm, I1�Sm�S and I1�S phase equilibria. Again in agreement
with the results presented in Figs. 6.7 and 6.8 for q ¼ 0:65 there is only one
isotropic phase I, which above a certain volume fraction of rods is in equilibrium
with the nematic phase. Including the more highly ordered smectic (Sm) and solid
(S) phases, the biphasic I–N phase equilibrium is now, upon increasing the
polymer concentration, followed by I–N–S, I–Sm, I–Sm–S and I–S phase equi-
libria. For q ¼ 0:15 we would expect a N1–N2 transition on the basis of the results
in Figs. 6.7 and 6.8. From Fig. 6.21 we see that this transition is, however,
superseded by I–N–S phase equilibrium and followed by a direct I–S transition.

We now compare this with experiment. Dogic [49] extended the earlier work of
Dogic and Fraden [29] on mixed suspensions of fd and dextran to higher dextran
concentrations. The phase diagram he observed is plotted in Fig. 6.22. Above
dextran concentrations of 55 mg/ml the I–N transition is indeed superseded by the
I–Sm transition (as predicted, see Fig. 6.23). No observations were reported on the
(narrow) triphasic I–N–Sm equilibrium that is expected between the biphasic I–N
and I–Sm phase equilibria.

Fig. 6.22 Phase diagrams of dextran/fd-virus mixtures. Data points are measured coexistences.
Complete phase diagram of fd-virus plus dextran mixture at ionic strength of 200 mM and
pH ¼ 8:10 with added dextrans. Besides the isotropic–nematic coexistence (dotted coexistence
lines), isotropic–smectic coexistence (dashed lines) is found at high polymer and rod
concentrations. Redrawn from [49]
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6.7 Concluding Remarks

In this chapter we have concentrated on rod-like colloids plus polymeric deple-
tants. We note that the addition of colloidal spheres to suspensions of rod-like
particles also leads to novel interesting phase behaviour. For example theory [50],
experiments [51] and simulations [52] demonstrate that the addition of hard
spheres to hard spherocylinders leads to a smectic phase consisting of alternating
two-dimensional liquid-like layers of rods and spheres. The depletion interaction is
increasingly used to control self-assembly of colloidal rods as a pathway towards
the engineering of new materials. For example, Baranov et al. [53] showed that by
tuning the depletion attraction between hydrophobic colloidal rods of semicon-
ductors dispersed in an organic solvent, these rods could be assembled into 2D-
monolayers of close-packed hexagonally ordered arrays directly in solution.
Finally, we note that suspensions of rod-like colloids plus polymers show very
interesting non-equilibrium phenomena such as the formation of gels and glasses.
Also the effect of shear on these systems leads to fascinating non-equilibrium
phase behaviour. These topics are beyond the scope of this book and we refer the
interested reader to [1, 54], where these phenomena are treated and discussed.
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Appendix A
Statistical Mechanical Derivation of the
Free Volume Theory

Here we present a statistical mechanical derivation of the grand potential.
According to statistical mechanics (see for instance T.L. Hill, An Introduction to
Statistical Thermodynamics. Addison-Wesley, New York, 1962) the grand
potential is given by

XðNc;V; T ; ldÞ ¼ �kT ln NðNc;V ; T; ldÞ; ðA:1Þ

where N is the grand canonical partition function

N ¼
X

1

Nd¼0

expðldNd=kTÞ QðNc;V; T ;NdÞ: ðA:2Þ

Here Q is the canonical partition function

Q ¼ 1

K3Nc
c K3Nd

d Nc!Nd !

Z

exp½�ðUc þ UcdÞ=kT � dRNc drNd ; ðA:3Þ

where Uc is the interaction between the Nc hard spheres and Ucd the interaction
between the Nc hard spheres and the Nd (depletants). The latter term in the
interaction limits the integration over the position of the penetrable hard spheres to
the free volume which is a function of the positions RNc of the Nc hard spheres.
This leads to

Q ¼ 1

K3Nc
c K3Nd

d Nc!Nd!

Z

exp½�Uc=kT � hVfreeiNd dRNc : ðA:4Þ

Substituting (A.4) in (A.2) and taking into account that

X

1

Nd¼0

expðldNd=kTÞhVfreeiNd

K3Nd
d Nd!

¼ exp½PRhVfreei=kT �; ðA:5Þ

229



where we have used that the right hand side of (A.5) is just the grand canonical
partition of the penetrable hard spheres with chemical potential ld in a volume
hVfreei, we obtain

N ¼ 1

KNc
c Nc!

Z

exp½�ðUc � PR
d hVfreeiÞ=kT � dRNc

¼ QðNc;V ; TÞ exp
PRhVfreei

kT

� �� �

0

;

ðA:6Þ

where QðNc;V; TÞ is the canonical partition function of the Nc hard spheres and
the pointed brackets with subscript 0 indicate an average over the unperturbed
configurations of the hard spheres. Substitution of (A.6) in (A.1) leads to

X ¼ �kT ln QðNc;V ; TÞ � kT ln exp
PRhVfreei

kT

� �� �

0

¼ F0ðNc;V ; TÞ � kT ln exp
PRhVfreei

kT

� �� �

0

:

ðA:7Þ

This expression for X is exact but, from a point of view of calculating it,
difficult to handle. To make progress we replace the average of the exponent by the
exponent of the average and obtain the following approximate expression for the
grand potential

X ¼ F0ðNc;V; TÞ � PRhVfreei0 ðA:8Þ

This is precisely expression (3.24) we obtained from the thermodynamic
integration route using the approximation (3.22). Using the well-known result that
for an arbitrary probability distribution the following inequality holds

hexpðxÞi � expðhxiÞ

it follows immediately that the approximate grand potential obeys the inequality

X � X: ðA:9Þ

We could have surmised this result also from our thermodynamic integration
approach. As addition of depletants leads to some ‘‘clustering’’ of the hard spheres
one expects that

hVfreei � hVfreei0
and hence using the approximation (3.22) in the integration (3.18) leads to an
approximate grand potential that is larger than the exact one. The statistical
mechanical derivation presented above presents a rigorous proof of this
supposition.
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Depletion; permittivity gradients, 158
Derjaguin approximation, 64, 66, 76, 78, 91
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E
Excluded volume, 141–143, 145–148

F
Fluid-crystal coexistence, 115
Fluid-crystal transition, 110
Force, 57
Force method, 49
Fractal aggregation
Free volume theory, 32, 109
Friction coefficient, 49

G
Gaussian chain, 68
Gaussian distribution function
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Gibbs adsorption equation, extended, 58
Gibbs–Duhem relation, 112
Glass, 132, 158
Gold, 3
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Hard sphere fluid-crystal

transition, 110
Hard-sphere crystal, 113
Hard-sphere fluid, 110

I
Ideal chain, 67
Le Sage, 17
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L
Le sage, 17
Liquid crystalline phases, 194
Liquid window, 118

M
Macromolecular crowding, 48
Many-body interactions, 109
Milk, 3

N
Negative adsorption, 71
Nematic, 223, 225
Nonequilibrium behaviour, 136
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Onsager, 57, 194
Optical tweezers, 98
Orientational distribution function, 196
Orientational entropy, 195
Osmotic pressure, 57
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Packing entropy, 195
Pair-wise additive, 118
Partition function, 68
Penetrable hard spheres, 107, 110, 117
Phase behaviour, 24
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Phase diagrams; experimental colloid-polymer
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Phase separation, 11
Platelets, 94, 95
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PMMA particles, 115
Polyelectrolyte depletion
Polymer adsorption, 130
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Polymer chains in a good solvent, 213
Polystyrene, 133
Potential of mean force, 57, 80, 104
PRISM, 36, 158
Product function, 72
Protein limit, 31
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Radius of gyration; excluded-volume

polymer chains
Radius of gyration; ideal chain
RGT; Renormalization group theory, 142
Rod-like colloids, 88
Rods, 188

S
Salt, 3
Scaled particle theory, 120
Scattering, 98, 100, 104, 105, 131, 134, 160,
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Semi-grand potential, 119
Shape selection, 43
Size selection, 43
Slip, 49
Smectic, 195, 221
Spherocylinders, 188
Spinodal, 27
Spinodal decomposition, 159
Structure factor, 105, 106
Superposition approximation, 72
Surface force apparatus, 98

T
Thermal energy, 1
Thermodynamic perturbation theory, 116
Tie-line, 27
Total internal reflection microscopy, 98
Transient gel, 166
Triple line, 127
Triple points, 126

U
Unbalanced force, 4, 16, 17

V
Van ’t Hoff’s law, 123
Van der Waals, 2
Van der Waals interaction, 4
Virial coefficient, second osmotic, 148
Virial coefficient; second osmotic, 148
Virial coefficients, 111
Virial coefficients of hard spheres, 112
Virial expansion, 111
Viscosity; apparent, 48
Viscosity; effective, 48
Von Guericke, 16, 17

W
Widom insertion theorem, 119
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