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Abstract

The market for thin films of complex oxides obtained by different deposition techniques
is increasing exponentially in last decades due to large variety of possible application
such as high-efficient solar cell, optoelectronic devices, etc. pulsed laser deposition
(PLD) is a versatile growth technique and recently became more attractive for industrial
applications due to the possibility to obtain crystalline thin films on a large area. Laser
processing techniques were successfully used to obtain thin films with good optical
properties starting from simple oxides, such as Sm2O3, ZrO2, etc., to more complex
lead-free materials: SrxBa1�xNb2O6 (SBN) and Na1/2Bi1/2TiO3�x%BaTiO3, or supercon-
ductive oxide YBa2Cu3O7�δ. When oxide thin films are designated for electronic and
optoelectronic devices or for solar cells, the optical properties and the thickness must be
well known. For this purpose, the spectroscopic ellipsometry technique was developed.
Ellipsometry is a powerful technique to determine the optical properties of thin films
especially when the thicknesses of thin films are in a nanometer range.

Keywords: spectroscopic ellipsometry, pulsed laser deposition, thin films, complex
oxides, magnetic alloy, high temperature superconductor

1. Introduction

A thin film is a layer of material, which can be created by various processes, one of the most

common being the condensation of particles (atoms, molecules, ions, aggregates) on a sub-

strate. The thickness of the layer can vary between few angstroms (monolayer) and several

micrometers. The market for thin films obtained by different deposition techniques had an

exponential increase in the last decades due to the large variety of possible applications, such

as hard coatings, semiconductor devices, optical coatings, energy generation and storage,

memory devices, sensors, actuators, etc.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Thin film deposition techniques are divided in two major categories: chemical vapor deposi-

tion (CVD) and physical vapor deposition (PVD) [1, 2]. Pulsed laser deposition (PLD), devel-

oped by Maiman, Smith, and Turner, in the 1960s, is a PVD technique based on laser-material

interaction [3–5]. It is a versatile technique and recently became more attractive for industrial

applications due to the possibility to obtain crystalline thin films on large areas. Laser

processing techniques were successfully used to obtain thin films from all kind of materials,

starting from alloys (NdFeB), simple oxides (Sm2O3, ZrO2, etc.), to more complex materials:

high temperature superconductors (YBa2Cu3O7�δ), ferroelectric SrxBa1�xNb2O6 with tungsten

bronze structure or solid solution of Na1/2Bi1/2TiO3�x%BaTiO3, etc.

The basic setup for pulsed laser deposition is relatively simple, but the physical phenomena of

laser-matter interaction and film growth are very complex [5]. Because thin films have a large

surface area to bulk volume ratio, their physical and chemical properties can be different from

the bulk materials [6]. The substrate properties and the deposition parameters during the

grown process can drastically influence the properties of thin films. By carefully choosing

these parameters, thin films with enhanced physical properties can be obtained.

The properties of thin films can be investigated by various analysis techniques. X-ray diffrac-

tion (XRD) and transmission electron microscopy (TEM) are used for structural investigation,

scanning electron microscopy (SEM) and atomic force microscopy (AFM) for morphological

analysis, secondary ion mass spectroscopy (SIMS) for compositional analysis, etc. Electrical

and optical properties are also very important when thin films are designated to be used in

electronic, opto-electronic, or optical applications. For optical investigation, ellipsometry is a

very precise and fast method, especially when the thickness of the thin films ranges from

subnanometers to hundreds of nanometers.

In Section 2, a short overview of the principles and analysis procedures of ellipsometry are

presented. In Section 3, a review of the optical investigation of thin films obtained by PLD is

presented. Finally, conclusions are given in Section 4.

2. Ellipsometry

The history of ellipsometry is difficult to trace precisely. It can be said that it starts with the “wave

theory of light” of Robert Hooke followed by the contribution of many scientists: Christian

Huygens, Augustin-Jean Fresnel, Michael Faraday, James Clerk Maxwell, etc. In 1902, Paul

Drude published the “Polarization” chapter in the book “The Theory of Optics,” which still

serves as a modern introduction to the study of polarized light and ellipsometry [7]. Ellipsometry

developed slowly for long time after the Drude ellipsometer, using a single wavelength in the

1960s. After 1970, due to the necessity of faster measurements for thin films used in computers or

the semiconductor industry, the ellipsometry techniques developed rapidly [8, 9]. Nowadays,

there are many types of ellipsometers, such as null, photometric, spectroscopic, etc.

Ellipsometry is a tool that gives information about the optical properties and microstructural

parameters of materials, such as layer thicknesses, porosity, and crystalline state. Ellipsometry

is a nondestructive, fast, sensitive, and accurate technique used to determine the optical

constants of a large range of materials: metals, glasses, complex oxide structures, polymers,
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organic materials, etc. It can be used for ex-situ or in-situ analysis, both for inorganic and

organic materials. However, a major disadvantage of this technique is that it is an indirect

analysis, and an accurate optical model is required for data analysis.

2.1. Principle and analysis procedure of ellipsometry

In the past decades, many books and scientific papers regarding the principle, data analysis

procedure, and applications of ellipsometry were published [8, 10–13]. In this section, we

present a brief overview of the ellipsometry principles and data acquisition and analysis

procedure.

In ellipsometry, the change of the polarization state of linearly polarized light is measured

upon reflection at the surface of a sample. The polarization states after reflection depend on

properties of the investigated surface and, in case of multilayer thin film system, on the

properties of each layer. Two experimental parameters, ψ and Δ, called ellipsometric angles,

are usually measured (Figure 1).

Here, ψ is the relative amplitude and Δ is the phase difference for p- and s-polarized lights, and

the quantities ψ and Δ are described by the fundamental equation of ellipsometry (Eq. (1)),

ρ ¼
~Rp

~Rs

¼ tan Ψð ÞeiΔ ¼
Erp=Eip

Ers=Eis

� �

, (1)

where Rp and Rs are the Fresnel reflection coefficients; Erp, Eis, Erp, and Ers represent the p- and

s-components of the incident and reflected light waves. The p- and s-polarization terms

represent the parallel (p) and the perpendicular (s) components of electric field, related to the

incidence plane.

In case of thin films, the incident light is reflected on the thin film surface and penetrates into

the film and into the substrate. An obtained ellipsometric data include information about the

Figure 1. Scheme showing the basic principle of ellipsometry: linearly polarized light with p- and s-components at

oblique incidence is reflected and it becomes elliptically polarized. Relative attenuation of s- and p-polarized lights

etermines the tilt of the ellipse and the relative phase shift is related to ellipticity [12].
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investigated materials. For a thin film deposited on a substrate, ρ = F(n0, n1, n2, θ, d) where n0,

n1, and n2 are the complex refractive indices of the ambient, the thin film, and the substrate, θ

is the angle of incidence of the light beam, and d is the thickness of the thin layer (Figure 2).

The complex refractive index is composed by a real part “n” and by an imaginary part “k” The

imaginary part is called the extinction coefficient and is directly related to absorption of the

light in the material. The absorption coefficient is given by α = 4πk/λ, where λ is the free-space

wavelength of light. The complex dielectric function ε = ε1 � iε2 and the complex index of

refraction N are related to each other through the relation derived from Maxwell’s equations

[11, 12]: ε = N2. The real and imaginary parts are: ε1 = n2 � k2 and ε2 = 2nk. Since ellipsometry

measures changes in the polarization state, this makes it a highly accurate and reproducible

technique. Ψ and Δ can be determined experimentally with high precision, but the extraction

of information (optical constants and thickness) requires, for calculation, an accurate optical

model.

In case of thin film system, the purpose of ellipsometry measurement is to determine the

optical properties of the materials from the measured Ψ and Δ parameters. The refractive

index, extinction coefficient, and thickness of each layer can be determined. Figure 3 shows

the process of ellipsometry analysis procedure.

The standard procedure of analysis includes the following steps.

Figure 2. The optical model for thin film system.

Figure 3. Process of ellipsometry data fitting and model analysis.
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2.1.1. The experimental measurement

In this step, the routine of experimental data point acquisition is established. The set-up

parameters include the wavelength, the number of experimental data points, and the angle of

incidence. For spectroscopic ellipsometry, measurements are done in a large wavelength spec-

trum, ranging from deep ultraviolet (UV) to near infrared (IR) (i.e., 250–1700 nm).

2.1.2. The optical model

A suitable optical model is required for ellipsometric analysis. In case of thin films, the optical

model is composed by a stack of several kinds of material layers with different thicknesses. The

properties of material layers are described by a specific complex dielectric function. Usually, at

this point, the dielectric function of the substrate is known. If not, a separate analysis is

required for bulk substrate. In the optical model, some of the parameters are unknown, such

as the thickness or the values of optical constants. For optical characterization of thin films, it is

necessary to select a suitable dispersion model. Examples of dispersion models are Cauchy

dispersion with Urbach tail, Sellimeier model, effective medium approximation (EMA), Drude

model or Lorentz model, etc. In order to find what dispersion model should be selected for a

thin film depends on the types of materials.

2.1.3. Comparison of model and experimental data

Using the optical model, the values of theoretical Ψ and Δ are generated and compared with

the experimental data. If the graphs of both data match, the optical model can be considered

correct. The following function is usually employed for the comparison (Eq. (2)):

MSE ¼
1

2N �M

X

N

i¼1

Ψmod
i � Ψ

exp
i

σ
exp
ψ, i

 !2

þ
Δ
mod
i � Δ

exp
i

σ
exp
Δ, i

 !2
2

4

3

5, (2)

where N is the number of (Ψ, Δ) pairs, M is the number of variable parameters in the model,

and σ is the standard deviations on the experimental data points.

The MSE, as shown in the equation, represents a sum of the squares of differences between the

measured and calculated data, with each difference weighted by the standard deviation of that

measured data point. The unknown parameters in the optical model are varied in order to

produce a good fit. The best fit will lead to minimum of the MSE value. In case of “bad”match

of theoretical and experimental data, or high value of MSE, the optical model will be adjusted

until the minimum value of MSE is reached. After obtaining the best fit and the minimum of

MSE value, the values of the optical constants can be generated. The dispersion of optical

constants needs to be physically reasonable regarding the analyzed thin film materials.

As mentioned before, for optical characterization of thin films, it is necessary to select a

suitable dispersion model, and this model depends on the analyzed material. The values of

the refractive index, the extinction coefficients, and the thickness of the thin film are considered

as unknown parameters. Also, the optical model will usually include a distinct top layer, which

accounts for the roughness of the thin film.
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In many cases, the analyzed materials are UV-absorbing, such as semiconductors, metal

oxides, or ferroelectric or multiferroic materials. For these materials, a common routine for

ellipsometric analysis can be given. When the film is transparent over a portion of mea-

sured spectral range, it is possible to determine the thickness of the film with high accuracy

using a Cauchy or Sellmeier dispersion model. In the next step, the thickness and Cauchy

parameters values will be kept fixed, and the experimental data will be fitted point by point

across the entire measured spectral range. In this way, a set of optical constants is obtained.

The final values of optical constants (or dielectric function) will be obtained by replacing the

Cauchy model with a sum of oscillators. Fitting again the experimental data, the parameters

of the oscillators will be determined. For example, in case of Lorentz or Gauss oscillators,

the parameters are as follows: the oscillation amplitude, the broadening, and the position of

oscillation. After the oscillator parameters are known, the thickness will be fitted again for

final adjustment. Ellipsometry is quite sensitive to the surface structure and is necessary to

incorporate a rough top layer in the optical model in the data analysis.

Once the unknown parameters of thin film are determined, the value of thickness and dielec-

tric function of the rough top layer will be calculated. It is rather difficult to estimate the

complex refractive index of the roughness layer. The rough top layer is composed by a mix of

thin film materials and air or voids.

If we apply the effective medium approximation (EMA), the complex refractive indices of

surface roughness layer can be calculated [14]. In case of thin films, a percent of 50:50 (voids:

material) in Bruggeman effective medium approximation (BEMA) is a good approximation for

the composition of the rough top layer. The Bruggeman effective medium approximation

(BEMA) is expressed by the following equation (Eq. (3)):

f A
~εA � ~ε

~εA þ 2~ε
þ f B

~εB � ~ε

~εB þ 2~ε
¼ 0, (3)

where fA and fB are the volume ratios of media A and B, and εA and εB are the complex

dielectric functions of media A and B.

In the next section, we will present some examples of ellipsometric analysis on thin films

obtained by pulsed laser techniques, starting from simple oxide materials, magnetic, to more

complex ferroelectric thin films, evidencing in this way the capability of this technique.

3. Results and discussion

3.1. Experimental set-up

3.1.1. Pulsed laser deposition (PLD)

The experimental set-up for PLD experiment is based on two main equipments: a laser system

and a vacuum chamber. The used laser systems were a Nd:YAG laser and a ArF excimer laser.

The targets and collector substrate are mounted in the chamber in a vertical position, at

variable distance. The angle of incidence of the laser beam was set at 45�. The substrates were

fixed on a heating system. During deposition, the targets were rotated and the laser beam was
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translated on surface of the targets. The film deposition was performed in a dynamic ambient

background gas (O2, N2, etc.) and the flow rates of gases were precisely controlled through a

MKS mass flow controller. All substrates used in the experiments were commercial substrates

and before the experiments were cleaned in an ultrasonic bath using acetone or methanol as

cleaning agents, then dried under pressurized nitrogen gas.

3.1.2. Spectroscopic ellipsometry

Optical measurements were performed with a Woollam variable angle spectroscopic ellip-

someter (VASE) system, equipped with a high pressure Xe discharge lamp incorporated in an

HS-190 monochromator. The ellispometry measurements and analysis were done using the

VASE32 software. Usually, the experimental data ofΨ and Δwere acquired in the 250–1700 nm

range of wavelengths, with a step of 2 nm. The angle of incidence of the light beam was set in

function of the analyzed materials, from 60 to 75� with a step of 5�.

3.1.3. Samarium oxide

Samarium oxide (Sm2O3) is a lanthanide oxide with a monoclinic structure. Sm2O3 is used as a

neutron absorber in control rods for nuclear power reactors and in optical and infrared

absorbing glass to absorb infrared radiation or as a gate dielectric in metal-oxide-semiconduc-

tor (MOS) devices [15, 16].

The target used in PLD experiments was prepared by pressing the Sm2O3 powder of 99.9%

purity. For ellipsometry measurements, the substrate used was silicon. A laser beam from a

pulsed Nd:YAG laser system (266 nm wavelength) was focused on the Sm2O3 target, with a

laser spot of 0.8 mm2 with 10 Hz repetition rate. The substrates were kept at room temperature

during the depositions. The deposition was performed under the oxygen pressure range

between 0.02 and 0.6 mbar.

Spectroscopic ellipsometry measurements were performed in the UV-visible and near-IR

region of the spectrum (250–1350 nm), a step of 10 nm, at 60 and 65� angles of incidence. The

optical model consists of five layers: the silicon substrate, the Si-SiO2 interface, the native SiO2

layer, the Sm2O3 layer, and a rough top layer. The rough top layer is set to be half air and half

Sm2O3. The refractive indices for the substrate and the native oxide are from Herzinger et al.

[17]. For optical constants of Sm2O3, we used the Cauchy dispersion model for transparent

zone of wavelength, with Urbach tail for low absorbing region (below 400 nm). The Cauchy-

Urbach model is given by the following equations (Eqs. (4) and (5)):

n λð Þ ¼ An þ
Bn

λ
2
þ
Cn

λ
4

(4)

and

k ¼ Ak � e
B E�Ebð Þ, (5)

where An, Bn, Cn, Ak, and B are constants and E is energy in eV (E = 1240/λ; Eb = 1240/λb).
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Fitting the experimental data with Cauchy-Urbach dispersion model and assuming that the top

layer consists of 50% air (voids) and 50% Sm2O3, we have obtained the parameters listed inTable 1:

Figure 4 presents the SE spectra of a 59.8 � 0.3 nm thick Sm2O3 on silicon substrate with a

roughness of 6.5� 0.3 nm, the optical constants n = 1.94 and k = 6� 10–3, at λ = 550 nm, and the

MSE = 4.55.

The surface topography was analyzed by AFM. The roughness of the thin film was found to be

in nanometer range, excluding the droplets present on the film surface [18].

The obtained Sm2O3 thin films are highly transparent in the 400–1350 nm wavelength range.

Below 400 nm, the film becomes optically absorbing, with a maximum extinction coefficient

k ~ 3 � 10�2 (at 250 nm). The Sm2O3 is a high refractive index material, with a value of n = 2.09

at a wavelength of 589.3 nm and has a monoclinic crystalline phase. This value is with 0.1

larger than our value. The amorphous materials have a smaller refractive index than the

crystalline material [11, 12], and our smaller value indicates an amorphous phase of Sm2O3 in

the thin film, which is consistent with the XRD measurements [18].

As a short conclusion of this case: using a simple model such as Cauchy dispersion with Urbach

tail, it is possible to obtain valuable information regarding the dispersion of optical constants,

thickness, and the crystalline phase of the film. However, the Cauchy dispersion model is limited

at the transparent range of wavelength, and the Urbach tail is limited at low absorption zone. To

sum up: a correct value of optical band gap Eg cannot be given using this model.

3.1.4. Zirconia

Zirconia (ZrO2) (zirconium dioxide) is a dielectric material with a dielectric constant of about

20 (in the low frequency domain). Because of its low leakage current level and high thermal

Sample Thickness (nm) Roughness (nm) An Bn Ak Bk MSE

Sm2O3/Si 59.8 � 0.22 6.5 � 0.36 1.932 � 0.002 0.016 � 0.003 0.002 � 0.001 1.343 � 0.28 4.555

Table 1. The Cauchy-Urbach fit parameters for Sm2O3 thin film.

Figure 4. SE spectra on a Sm2O3 film: (left) the open symbols represent experimental data, whereas the solid line (Ψ) and

dashed line (Δ) are obtained from a fitting procedure using a five-layer model and (right) the refractive index (solid line)

and the extinction coefficient (dashed line) for the Sm2O3 thin films [18].
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stability, ZrO2 is another candidate used for gate dielectrics in metal-oxide-semiconductor

(MOS) [19]. Pure ZrO2 exists as three polymorphs at different temperatures: monoclinic,

tetragonal, and cubic.

A ceramic target of ZrO2 was ablated with an ArF laser beam (λ = 193 nm) at a repetition rate

of 40 Hz. The laser fluences were varied in the range of 2.0–3.4 J/cm�2. The silicon (Si) substrate

was kept at a distance of 4 cm from the target. The substrate temperature was between room

temperature and 600�C, in the presence of reactive oxygen at a pressure of 0.1 mbar. The

reactive oxygen was introduced in the deposition chamber by an additional RF discharge at a

power of 100 W.

Ellipsometric measurements were carried out in the spectral range of 250–1700 nm, in steps of

2 nm, and incident angles of 60, 65, and 70�. The optical model comprises the silicon substrate,

a layer of native oxide of silicon (3 nm), the ZrO2 thin film, and a roughness layer, approxi-

mated by 50% voids and 50% ZrO2. For the substrate, we used the dielectric function from

literature [17].

The calculation of the complex refractive index and the thickness of the thin film and the rough

layer required a two-step fitting procedure. In the first step, a simple Cauchy dispersion model

was used in the 500–1700 nm range of wavelength, where the ZrO2 is transparent [20]. The

values of thickness and Cauchy parameters are listed in Table 2 [21].

In order to fit the entire measured spectra and to calculate the extinction coefficients, the values

of thickness were kept fixed and the Cauchy dispersion model was replaced by a single

Gaussian oscillator. The imaginary part of the dielectric function for Gauss oscillator is given

by the following equations (Eqs. (6) and (7)):

ε2 ¼ A
e
�

E�En
σð Þ

2

� A
e
�

EþEn
σð Þ

2

(6)

and

σ ¼
Brn

2
ffiffiffiffiffiffiffiffiffiffiffi

In 2ð Þ
p , (7)

where A is the amplitude of the curve’s peak, En refers to the centering energy or energy at the

curve’s peak, Br is the broadening, and σ is the standard deviation of the curve [12]. The fitted

result parameters are listed in Table 3.

Values of MSE obtained in the second step of fitting increase slightly from 5.94 for Cauchy fit

for the thin film grown at 300�C to 9.67 for Gauss fit, but the difference is still small enough to

Sample/temperature (�C) Thickness (nm) Roughness (nm) An Bn MSE

ZrO2/Si (RT) 64.177 � 0.0391 0.904 � 0.06 1.9882 � 0.000591 0.014203 � 0.000156 1.908

ZrO2/Si (300
�C) 190.812 � 0.0537 1.403 � 0.0481 2.1417 � 0.000256 0.018515 � 0.000153 5.944

ZrO2/Si (600
�C) 154.380 � 0.0384 2.047 � 0.0429 2.1535 � 0.000211 0.01856 � 0.000192 4.815

Table 2. The Cauchy fit parameters for ZrO2 thin film.
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be taken into consideration. This difference can arise from small discrepancy between the

model and the experimental curve in the UV region caused by small defects on the surface,

such as droplets or pores.

In Figure 5, we can observe that the higher values of refractive index were obtained for a

substrate temperature of T = 600�C and also for the highest value of extinction coefficients. At

room temperature, the smaller value of “n” indicates an amorphous phase, and this is in

agreement with XRD results [21]. The best optical constants in terms of high “n” and lower

“k”were obtained at 300�C. From Table 2, the values of thickness of ZrO2 thin films grown by

PLD in the presence of RF discharge were found to be 64 nm for room temperature, 190 nm for

300�C, and 154 nm for 600�C. At this point, we can conclude that the best temperature for

growing transparent ZrO2 thin films is 300�C. The XRD results indicate the presence of two

crystalline phases, tetragonal and monoclinic, for ZrO2 thin film in case of 600�C substrate

temperature [21]. Coexistence of these two phases indicates a polycrystalline grown mode and

explains the higher value of extinction coefficient (for 600�C).

As a short conclusion of this case, using a simple Gauss model, it is possible to determine the

behavior of complex refractive index in function of PLD deposition parameters.

3.1.5. NdFeB

NdFeB is a permanent magnet based on rare earth components and has been widely investi-

gated for its applications in micromagnetic, magneto-electronic, or magnetic recording media.

Sample/temperature (�C) Amp En (eV) Br (eV) MSE

ZrO2/Si (RT) 19.849 � 5.15 8.9932 � 0.137 1.9394 � 0.525 4.533

ZrO2/Si (300
�C) 20.196 � 1.41 8.841 � 0.0585 2.2913 � 0.171 9.675

ZrO2/Si (600
�C) 16.331 � 0.338 9.1236 � 0.0346 2.9503 � 0.0698 9.783

Table 3. The Gauss fit parameters for ZrO2 thin film.

Figure 5. (Left) Experimental and Gauss-modeled curves for the parameters psi (Ψ) and delta (Δ) for an ZrO2/Si(100) thin

film deposited at 6000�C by RF-plasma-assisted PLD and (right) the dispersion of optical constants for ZrO2 thin films

grown at different substrate temperatures.
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NdFeB thin films were deposited by various methods, e.g., magnetron sputtering, molecular

beam epitaxy (MBE), and PLD [22–25].

In our experiments, the NdFeB thin films were obtained by PLD method [26] starting from an

alloy target. A Nd:YAG laser (266 nm) was used to irradiate the targets with 20,000–40,000

pulses. The substrates were platinized silicon (Pt/Si). The samples were heated to 650�C, and

the temperature was kept constant during the thin film growth.

Spectroscopic ellipsometry measurements were performed between 350 and 1700 nm spectral

ranges, with a step of 2 nm at a fixed angle of incidence (75�). The initial optical model used to

determine the complex refractive index consisted of a stack of five layers: the silicon substrate,

the titanium layer (25 nm), the platinum layer (150 nm), the NdFeB layer, and the rough top

layer. Because the platinum layer is thick enough, we considered this layer as a substrate and

the optical model was reduced to three layers: Pt, NdFeB, and the rough layer. The values for

the optical constants of NdFeB thin films were fitted using different procedures. The Cauchy-

Urbach dispersion model used in case of Sm2O3 did not fit the NdFeB due to their limitation

[11, 12]. The best fit was obtained with a Lorentz oscillator having the complex dielectric

function (Eq. (8)) written as:

εn�Lorentz ¼
AnBrnEn

E
2
n � E

2
� iBrnE

, (8)

where An is an oscillation amplitude (dimensionless), Br is broadening (expressed in eV), and

En is the position of oscillation (eV). The total dielectric function is given by (Eq. (9)):

ε ¼ ε1 þ iε2 ¼ e1offset þ εn�Lorentz, (9)

where ε1 offset is a purely real constant, equivalent to εinf. [12].

The Lorentz parameters and the thickness resulted from fitting experimental data with the

proposed optical mode are presented in Table 4.

The thickness of a thin film deposited at 40,000 pulses, 266 nm laser wavelength, and 2 J/cm2

laser fluency was found to be 93 nm with a roughness of 10 nm. For optical constants, a

refractive index with a value of n = 2.43 was found for λ = 600 nm with a maximum of 2.46 at

360 nm. The extinction coefficient “k” is nonzero on the entire measured range of wavelength

thin film that has high optical absorption [26].

The value of MSE is 31, and from Figure 6, it is easy to observe a mismatch between the

experimental and the model data in UV-visible range. This mismatch indicates an improve-

ment needed in the optical model. Even with this discrepancy, we have demonstrated that

with a correct dispersion model (Lorentz in this case), it is possible to determine the complex

optical constants for this magnetic thin film.

Thickness (nm) Roughness (nm) En (eV) Br (eV) An e1offset MSE

93.609 � 0.307 10.353 � 0.221 5.7013 � 0.208 4.2273 � 0.217 3.1234 � 0.169 3.3783 � 0.13 31.3

Table 4. Spectroscopic ellipsometry fitted data for an NdFeB thin film.
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3.1.6. Yttrium barium copper oxide (YBa2Cu3O7�δ)

YBa2Cu3O7�δ (YBCO) is the famous high-temperature superconductive material, and it was

extensively studied due to its superconducting properties. For appropriate oxygen content in

the films, the maximum critical temperature Tc can reach a value of 92 K. The application of

YBCO thin films varies from electronic industry (microwave filters), military to medical

devices (magnetic resonance imaging, Josephson junctions), or in sensor industry as highly

sensitive magnetic field sensors (SQUIDs) [27, 28] and IR radiation sensors (bolometer). The

superconducting properties of YBa2Cu3O7�δ thin films are highly sensitive to the oxygen

content. When δ varies between 0 ≤ δ ≤ 1, two symmetry phases can be observed, the tetragonal

phase and the orthorhombic phase. For δ = 1, YBCO became an insulator, and for δ ≈ 0.1, this

compound is a superconductor [29]. The epitaxial YBa2Cu3O7�δ thin films have been obtained

by PLD at high deposition temperature, usually around 780�C. For achieving the highest

quality, the YBa2Cu3O7�δ thin films need a postdeposition thermal treatment in oxygen atmo-

sphere [30].

The deposition of YBCO thin films by pulsed laser deposition technique has been done by

ablating a commercial YBCO ceramic target with an ArF excimer laser (λ = 193 nm) working at

5 Hz repetition rate. The thin films of YBCO was deposited on SrTiO3 (001) single-crystal

substrates [31]. Two sets of YBCO thin films have been deposited: first set was obtained by

conventional PLD method and the second one by a hybrid technique where the PLD process is

assisted by a radiofrequency-generated oxygen plasma plume (RF-PLD). For the first set of

films, the following deposition parameters were used: laser fluency of 1.5 J/cm2, oxygen

pressure of 0.2 mbar, and substrate temperature of 780�C and target-substrate distance of

5 cm. The annealing treatments were done in the deposition chamber in two steps: 15 min at

650
�

C in 1 bar O2 and 1 hour at 450
�

C in 1 bar of oxygen. The second set of samples was done

by RF-PLD with or without postannealing treatments. The substrates were kept during depo-

sition at 730�C, and the radiofrequency oxygen plasma beamworking at 13.56 MHz and 200W

was used. The role of gas-discharge plasma (in oxygen) was to compensate the difference in

deposition temperature.

Spectroscopic-ellipsometry measurements were performed between 300 and 1700 nm spectral

range, with a step of 2 nm at 45, 60, and 75
�

angles of incidence. The optical model consists of

three layers: the SrTiO3 substrate, the YBCO layer, and a rough top layer considered to be

Figure 6. Experimental and model spectra for Δ (left) and Ψ (center) and refractive indices (n), and extinction coefficients

(inset graph), for a thin film sample deposited at 266 nm laser wavelength [24].
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composed by 50% air and 50% YBCO in the Bruggeman effective medium approximation [11,

12]. The bulk dielectric function for the STO substrate was taken from literature [32]. In case of

YBCO material, the dielectric function was described in detail by Kumar et al. [33] and is

written as a sum of Lorentz and Drude terms.

The experimental data of Ψ and Δ for YBCO thin films were fitted with a sum of Lorentz

oscillators for UV-VIS wavelengths and a Drude oscillator for near IR. The thickness of samples

was found in the range of 120–150 nm, whereas the thickness of the top layer was 20–40 nm

with an MSE value higher than 20. The roughness was in the same range with AFM results

[31]. Because the ellipsometry is very sensitive at surface roughness, the large value of MSE can

be explained by high value of roughness. In Figure 7, the experimental data and the fit results

using the Lorentz-Drude model for the thin film of YBCO obtained by PLD at 780�C substrate

temperature are presented.

From Figure 7, it is easy to observe the difference in the optical behavior for YBCO thin film

growth in different conditions. For sample growth at 780�C, the normal optical behavior was

Figure 7. Comparison between the Lorentz and Drude fitting predictions and experimental measurements for YBCO thin

film deposited by PLD and the refractive indices (left down) and extinction coefficient (right down) for YBCO thin films.
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obtained [34]. In case of RF-PLD thin film growth at lower temperature (730�C) but in presence
of oxygen RF discharge (without postannealing treatments), the value of refractive index and
extinction coefficients are higher, and the optical behavior is different in the range of 250–600 nm.
From XRD results, the YBCO films have an orthorhombic symmetry (a ~ 3.840 Å, b ~ 3.880 Å,
and c ~ 11.688 Å) [31]. However, in case of RF-PLD deposition, the cell parameters were found to
be a ~ 3.865 Å, b ~ 3.880 Å, and c ~ 11.70 Å, which means that the films were incompletely
oxidized. The difference in the optical behavior can be explained by this difference in an oxidized
state of YBCO layer.

For thin films deposited in the same way but with postannealing treatments in oxygen atmo-
sphere, the dispersion of refractive index and extinction coefficients are completely different.
This behavior is not characteristic for YBCO superconductor, and most probably, the amount
of oxygen during deposition was too high.

As short conclusion of this study, the deposition parameters are very important especially
when the properties of materials can be easily modified by the amount of certain chemical
component, in our case the amount of oxygen in YBCO structure.

3.1.7. Strontium barium niobate

Strontium barium niobate (SBN) (SrxBa1�xNb2O6) is a ferroelectric material with tetragonal
tungsten bronze structure without volatile chemical elements. SBN has pyroelectric activity as
well as a large linear electro-optic (EO) coefficient(s) (r33 ~ 1300 p mV�1) [34]. The high value of
EO coefficient makes SBN an excellent candidate for electro-optic devices.

In the PLD experiment, the target of single-crystal SBN:60 (ce inseamna 60?) was ablated by a
Surelite II Nd:YAG laser (λ = 265 nm). The repetition rate of the laser beam was set at 10 Hz.
The laser fluency was varied in the 1.5–2.8 J/cm2 range. The substrates, MgO(001) and Si(100),
were placed at a distance of 4–5 cm from the target and were heated to the deposition
temperature (600–700�C).

Spectroscopic ellipsometry measurements were performed in the visible and near-UVregion of
the spectrum, at energies between 1 and 5 eV, a step of 0.01 eV and at 65, 70, and 75

�

angles of
incidence, with a step of 5

�

. The correlation between the energy and the wavelength scale of the
spectrum is given by E = 1240/λ [12]. For the thin films of SBN deposited on Si substrates, the
optical model consists of four layers: the silicon substrate, the native oxide (~3 nm), the SBN
layer, and the rough top layer. In case of MgO substrate, the optical model was reduced to
three layers: the MgO substrate, the SBN thin film, and the rough layer. In both cases, the
dielectric function of the substrates is taken from literature and the rough top layer was
approximated to consist of 50% air and 50% SBN in the Bruggeman approximation.

The film thickness and roughness were obtained by fitting the experimental data with a Cauchy
dispersion model in the 1.2–2 eV range (620–1030 nm). In this range, the film is nonabsorbing
(k ~ 0) and such dispersion is accepted. The thickness was found to be in the 150–250 nm range,
and the MSE was found to be 3.8 for SBN/MgO and 2.5 for SBN/Si [35] (Table 5).
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In the next step, we replaced the Cauchy layer with a Tauc-Lorentz (T-L) oscillator. The T-L

oscillator model was developed by Jellison and Modine and is used for amorphous materials

[12], having the dielectric function (Eqs. (10) and (11)) written as:

ε ¼ ε1 þ jε2 ¼ nþ jkð Þ2 (10)

with

ε2 ¼
AE0C E� Eg

� �2

E2 � E2
0

� �2
þ C2E2

1

E
forE > Eg and e2 ¼ 0for E ≤Eg (11)

where A, E0, and C are dispersion parameters in the following limits: E0 > Eg and C < 2E0.

For Tauc Lorentz oscillator, the real part of the dielectric function ε1 is a (the) complete

analytical solution to the Kramers-Kroning integral [12] (Figure 8 and Table 6).

For the SBN thin film deposited on MgO and Si substrates, the values of refractive index and

extinction coefficients were found to be smaller than for the crystalline target. The optical band

gap, Eg, that results from Tauc-Lorentz fit is Eg = 3.81 eV for SBN on MgO substrate and

Eg = 3.74 for SBN on Si substrate. The Eg value for single crystal target is Eg = 3.85 eV. From the

XRD analysis, it results that all the samples made from the single-crystal targets are amor-

phous [35]. In this way, the smaller value of optical constants and value of band gap (Eg) can

be explained because amorphous materials have lower refractive index than the same crystal-

line ones [12].

3.1.8. Na1/2Bi1/2TiO3�x%BaTiO3

The solid solution of (Na1/2Bi1/2)TiO3 (BNT) with BaTiO3 (BT) (BNT-BT) is considered to be a

good alternative lead-free material to the PZT perovskite materials. (1-x) NBT-x BT shows a

morphotropic phase boundary (MPB) between the rhombohedral and the tetragonal phase, at

x between 0.06 and 0.07 [36]. The electrical and optical properties of NBT-xBT can be modified

due to the phase transition from rhombohedral (R) to tetragonal (T).

A ceramic target of BNT-5%BTwas ablated by a Surelite II Nd:YAG pulsed laser with wavelength

of 266 nm, pulse duration of 5 ns and frequency 10 Hz, and a fluency of 1.6 J/cm2. The number of

laser pulses was 36,000. The films were grown on Pt/TiO2/SiO2/Si substrates, in reactive oxygen

atmosphere at 0.1 mbar pressure. The distance between target and substrate was kept at 5 cm.

During deposition, the substrates were heated at temperatures of 700 and 730�C.

Samples MSE Thickness (nm) An Bn Roughness (nm)

On MgO 3.741 165.935 � 0.0418 2.0486 � 0.000727 0.027885 � 0.000728 2.215 � 0.0428

On Si 2.559 227.304 � 0.167 2.0418 � 0.000943 0.024381 � 0.000546 1.618 � 0.121

Table 5. The fitting parameters obtained by Cauchy fit for SBN thin films [35].
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For ellipsometric measurements, the angle of beam light incidence was set at 60–70� with a step

of 5�. The experimental data of Ψ and Δ were acquired in the 250–1700 nm range of wavelength

with a step of 2 nm. The optical model consists of three material layers: the platinum layer with a

thickness of 150–200 nm, considered as a substrate; the BNT-5%BT thin film, and the roughness.

As in the case of SBN, the fitting procedure consists of two steps: first, the thicknesses of thin

films and the roughness were calculated from fitting the experimental data in the 600–1700 nm

Samples MSE A En C Eg ε1

On MgO 8.094 193.1 � 8.77 5.2978 � 0.0393 3.2284 � 0.162 3.8102 � 0.0105 1.639 � 0.0591

On Si 8.842 131.58 � 8.34 5.2161 � 0.0427 1.759 � 0.163 3.7443 � 0.0209 2.3611 � 0.0893

Table 6. The fitting parameters obtained from Tauc-Lorentz fit [35].

Figure 8. Ellipsometry spectrum for a-SBN on MgO. The circles represent the experimental data, whereas the solid lines

result from the fitting procedure using the Tauc-Lorentz oscillator. (Down) Refractive index for crystalline target (dashed

lines): a-SBN on MgO (red thick line) and a-SBN on Si (blue thin line) [35].
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range of wavelength, and second, the Cauchy layer was replaced by an oscillator. In case of BNT-

5%BT, the best fit was obtained using a sum of Gauss and Cody-Lorentz oscillator [37], a well-

known optical model for BNT and solid solution BNT�x%BT [38, 39]. The thickness of samples

was found to be d = 131.9 nm for BNT-5BT growth at 700�C, with a roughness of 26.9 nm, and for

a film growth at 730�C, the thickness was 241.2 nm with a roughness of 23.7 nm. The values of

MSE was 78.8 in case of Tdep = 700�C and 91.34 for Tdep = 730�C. In Figure 9, the Cody-Lorentz

fit result and the calculated optical constants are presented.

The results of XRD indicate a polycrystalline randomly oriented thin films of BNT-BT growth by

PLD on Pt/Si substrate [40]. The polycrystalline nature of BNT-BT thin film with randomly

oriented nanocrystals can explain the high value of MSE. From Figure 9, it is easy to observe

the discrepancy in modeled and experimental data in UV range, and this discrepancy can be

caused by existence of small defects in sample. In terms of refractive index, the highest value was

obtained for higher deposition temperature. The extinction coefficients “k” increase fast in the

wavelength ranging from 280 to 380 nm. In the 380–600 nm spectrum range, the “k” presents an

Urbach tail and this can be explained by optical scattering on randomly oriented nanocrystals.

4. Conclusions

Thin films of amorphous and crystalline oxides (Sm2O3, ZrO2, SrxBa1�xNb2O6 (SBN), Na1/2Bi1/

2TiO3�x%BaTiO3 (NBT-x%BT), high-temperature superconductive oxide YBa2Cu3O7�δ

(YBCO), and magnetic alloy (NdFeB) have been grown by pulsed laser deposition. The optical

properties of films were successfully determined by spectroscopic ellipsometry. High transparent

thin film was obtained in case of ZrO2. The films of SBN and NBT-x%BT show a high value of

refractive index (n > 2) and low extinction coefficients (k < 10�4) in visible and near-IR range of

wavelength. In our optical models presented above, we have to choose every time a different

oscillator to describe the behavior of complex refractive index, and this choice was conducted

by applying two rules: the “rule” of MSE—the smallest values of MSE mean the better fit, and

in order to obtain the smallest value, a sum of oscillators can be tried until the experimental

data and the theoretical data are overlapped. Second, we have to look at the types and

properties of an initial material. The Lorentz oscillator have a symmetric shape, and the high

Figure 9. Ellipsometry spectrum for BNT-5%BTon PT Si (left and center). The black lines represent the experimental data,

whereas the dots result from the fitting procedure using the Gauss and Cody-Lorentz oscillator; the calculated refractive

index and extinction coefficient (inset) for BNT-5%BT (right) deposited at substrate temperature of 700 (dots) and 730�C

(lines) [40].

Optical Properties of Complex Oxide Thin Films Obtained by Pulsed Laser Deposition
http://dx.doi.org/10.5772/intechopen.70803

139



and low energy sides of the function decrease at the same rate and can be used for complex

refractive index of conductive oxides or metal [41, 42]. The Lorentz oscillators have long

asymptotic tail and cause unwanted absorption in transparent regions for some types of

materials. The long tail of Lorentz oscillator was the reason for Lorentz fit in case of NdFeB

alloy. In case of ferroelectric materials, the Lorentz does not fit very well because of the

characteristics of the complex dielectric function at the near ultraviolet and ultraviolet (UV).

For ferroelectric materials, the Tauc-Lorentz [43] or Cody-Lorentz oscillators are more flexible

at higher energies in the ultraviolet range of the spectrum. The Tauc-Lorentz oscillator is used

for amorphous ferroelectric materials, and this was the reason for choosing it in case of SBN

thin film. For BNT-BT material, a Cody-Lorentz combined with a Gaussian oscillator will give

the best results.
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