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Chapter

Quantum Theory of the Seebeck
Coefficient in YBCO
Shigeji Fujita and Akira Suzuki

Abstract

The measured in-plane thermoelectric power (Seebeck coefficient) Sab in
YBCO below the superconducting temperature Tc (�94 K) Sab is negative and
T-independent. This is shown to arise from the fact that the “electrons” (minority
carriers) having heavier mass contribute more to the thermoelectric power. The
measured out-of-plane thermoelectric power Sc rises linearly with the temperature
T. This arises from moving bosonic pairons (Cooper pairs), the Bose-Einstein con-
densation (BEC) of which generates a supercurrent below Tc. The center of mass of
pairons moves as bosons. The resistivity ρab above Tc has T-linear and T-quadratic
components, the latter arising from the Cooper pairs being scattered by phonons.

Keywords: Seebeck coefficient, in-plane thermoelectric power, out-of-plane
thermoelectric power, moving bosonic pairons (Cooper pairs), Bose-Einstein
condensation, supercurrent, YBCO

1. Introduction

In 1986, Bednorz and Müller [1] reported their discovery of the first of the
high-Tc cuprate superconductors (La-Ba-Cu-O, Tc > 30 K). Since then many inves-
tigations [2, 3] have been carried out on high-Tc superconductors (HTSC) including
Y-Ba-Cu-O (YBCO) with Tc � 94 K [4]. These compounds possess all of the main
superconducting properties, including zero resistance, Meissner effect, flux quanti-
zation, Josephson effect, gaps in the excitation energy spectra, and sharp phase
transition. In addition these HTSC are characterized by (i) two-dimensional (2D)
conduction, (ii) short zero-temperature coherence length ξ0 (� 10Å), (iii) high
critical temperature Tc (� 100 K), and (iv) two energy gaps. The transport
behaviors above Tc are significantly different from those of a normal metal.

YBCO has a critical (superconducting) temperature Tc � 94 K, which is higher
than the liquid nitrogen temperature (77 K). This makes it a very useful supercon-
ductor. Terasaki et al. [5, 6] measured the resistivity ρ, the Hall coefficient RH, and
the Seebeck coefficient (thermoelectric power) S in YBCO above the critical tem-
perature Tc. A summary of the data is shown in Figure 1. In-plane Hall coefficient
RH
ab is positive and temperature Tð Þ-independent, while in-plane Seebeck coefficient

Sab is negative and T-independent (anomaly). Thus, there are different charge
carriers for the Ohmic conduction and the thermal diffusion. We know that the
carrier’s mass is important in the Ohmic currents. Lighter mass particles contribute
more to the conductivity. The T independence of RH

ab and Sab suggests that “elec-
trons” and “holes” are responsible for the behaviors. We shall explain this behavior,
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by assuming “electrons” and “holes” as carriers and using statistical mechanical
calculations. Out-of-plane Hall coefficient RH

c is negative and temperature-
independent, while out-of-plane Seebeck coefficient Sc is roughly temperature
Tð Þ-linear. We shall show that the pairons, whose Bose condensation generates the
supercurrents below Tc, are responsible for this strange T-linear behavior. The
in-plane resistivity appears to have T-linear and T-quadratic components. We
discuss the resistivity ρ above the critical temperature Tc in Section 6.

In this paper we are mainly interested in the sign and the temperature behavior
of the Seebeck coefficient in YBCO. But we discuss the related matter for
completeness. There are no Seebeck currents in the superconducting state below the
critical temperature (S ¼ 0).

2. The crystal structure of YBCO: two-dimensional conduction

HTSC have layered structures such that the copper planes comprising Cu and O
are periodically separated by a great distance (e.g., a ¼ 3:88 Å, b ¼ 3:82 Å, c ¼ 11:68
Å for YBCO). The lattice structure of YBCO is shown in Figure 2. The succession of
layers along the c-axis can be represented by CuO–BaO–CuO2–Y-CuO2–BaO-CuO–

[CuO–BaO–…]. The buckled CuO2 plane where Cu-plane and O-plane are separated
by a short distance as shown is called the copper planes. The two copper planes
separated by yttrium (Y) are about 3 Å apart, and they are believed to be responsi-
ble for superconductivity.

The conductivity measured is a few orders of magnitude smaller along the c-axis
than perpendicular to it [7]. This appears to contradict the prediction based on the

Figure 1.
Normal-state transport of highly oxygenated YBa2Cu3O7�δ after Terasaki et al.’s [5, 6]. Resistivities (top
panel); Hall coefficients (middle panel); Seebeck coefficient (bottom panel). The subscripts ab and c denote
in-copper plane and out-of-plane directions, respectively.

2

Advanced Thermoelectric Materials for Energy Harvesting Applications



naive application of the Bloch theorem. This puzzle may be solved as follows [8].
Suppose an electron jumps from one conducting layer to its neighbor. This gener-
ates a change in the charge states of the layers involved. If each layer is macroscopic
in dimension, we must assume that the charge state Qn of the nth layer can
change without limits: Qn ¼ …, � 2, � 1, 0, 1, 2,… in units of the electron charge
(magnitude) e. Because of unavoidable short circuits between layers due to lattice
imperfections, these Qn may not be large. At any rate if Qn are distributed at
random over all layers, then the periodicity of the potential for electron along the
c-axis is destroyed. The Bloch theorem based on the electron potential periodicity
does not apply even though the lattice is periodic along the c-axis. As a result there
are no k-vectors along the c-axis. This means that the effective mass in the c-axis
direction is infinity, so that the Fermi surface for a layered conductor is a right cylinder
with its axis along the c-axis. Hence a 2D conduction is established.

Since electric currents flow in the copper planes, there are continuous k-vectors
and Fermi energy εF. Many experiments [1–3, 9] indicate that a singlet pairs with
antiparallel spins called Cooper pairs (pairons) form a supercondensate below Tc.

Let us first examine the cause of electron pairing. We first consider attraction via
the longitudinal acoustic phonon exchange. Acoustic phonons of lowest energies
have long wavelengths λ and a linear energy-momentum (ε‐ℏk) relation:

ε ¼ csℏk, (1)

may be assumed, where cs is the sound speed. The attraction generated by the
exchange of longitudinal acoustic phonons is long-ranged. This mechanism is good

Figure 2.
Arrangement of atoms in a crystal of YBa2Cu3O7.
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for a type I superconductor whose pairon size is of the order of 104 Å. This attrac-
tion is in action also for a HTSC, but it alone is unlikely to account for the much
smaller pairon size.

Second we consider the optical phonon exchange. Roughly speaking each copper
plane has Cu and O, and 2D lattice vibrations of optical modes are expected to be
important. Optical phonons of lowest energies have short wavelengths of the order
of the lattice constants, and they have a quadratic dispersion relation:

ε ¼ ε0 þ A1 k1 �
π

a1

� �2

þ A2 k2 �
π

a2

� �2

, (2)

where ε0, A1, and A2 are constants. The attraction generated by the exchange of
a massive boson is short-ranged just as the short-ranged nuclear force between two
nucleons generated by the exchange of massive pions, first shown by Yukawa [10].
Lattice constants for YBCO are given by a1; a2ð Þ ¼ 3:88; 3:82ð Þ Å, and the limit
wavelengths λminð Þ at the Brillouin boundary are twice these values. The observed
coherence length ξ0 is of the same order as λmin:

ξ0 � λmin ≃ 8Å: (3)

Thus an electron-optical phonon interaction is a viable candidate for the cause of
the electron pairing. To see this in more detail, let us consider the copper plane.
With the neglect of a small difference in lattice constants along the a- and b-axes,
Cu atoms form a square lattice of a lattice constant a0 ¼ 3:85 Å, as shown in
Figure 3. Twice as many oxygen (O) atoms as copper (Cu) atoms occupy midpoints
of the nearest neighbors (Cu, Cu) in the x1‐x2 plane.

First, let us look at the motion of an electron wave packet that extends over more
than one Cu-site. This wave packet may move easily in 110h i rather than the first
neighbor directions 100½ � and 010½ �. The Bloch wave packets are superposable;
therefore, the electron can move in any direction characterized by the two-
dimensional k-vectors with bases taken along 110½ � and 110

� �

. If the number density
of electrons is small, the Fermi surfaces should then be a small circle as shown in the
central part in Figure 4.

Second, we consider a hole wave packet that extends over more than one O-site.
It may move easily in 100h i because the Cu-sublattice of a uniform charge

Figure 3.
The idealized copper plane contains twice as many O’s as Cu’s.
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distribution favors such a motion. If the number of holes is small, the Fermi surface
should consist of the four small pockets shown in Figure 4. Under the assumption
of such a Fermi surface, pair creation of � pairons via an optical phonon may occur
as shown in the figure. Here a single-phonon exchange generates an electron tran-
sition from A in the O-Fermi sheet to B in the Cu-Fermi sheet and another electron
transition from A0 to B0, creating the �pairon at B;B0ð Þ and the +pairon at A;A0ð Þ.
From momentum conservation the momentum (magnitude) of a phonon must be
equal to ℏ times the k-distance AB, which is approximately equal to the momentum
of an optical phonon of the smallest energy. Thus an almost insulator-like layered
conductor should have a Fermi surface comprising a small electron circle and small
hole pockets, which are quite favorable for forming a supercondensate by exchang-
ing an optical phonon.

3. Quantum statistical theory of superconductivity

Following the Bardeen, Cooper, and Schrieffer (BCS) theory [11], we regard the
phonon-exchange attraction as the cause of superconductivity. Cooper [12] solved
Cooper’s equation and obtained a linear dispersion relation for a moving pairon:

ε ¼ w0 þ
1
2
vFp, (4)

where w0 is the ground-state energy of the Cooper pair (pairon) and vF is the
Fermi speed. This relation was obtained for a three-dimensional (3D) system. For a
2D system, we obtain

ε ¼ w0 þ
2
π
vFp: (5)

The center of mass (CM) motion of a composite is bosonic (fermionic)
according to whether the composite contains an even (odd) number of elementary

Figure 4.
The two-dimensional Fermi surface of a cuprate model has a small circle (electrons) at the center and a set of
four small pockets (holes) at the Brillouin boundary. Exchange of a phonon can create the electron pairon at
B;B0ð Þ and the hole pairon at A;A0ð Þ. The phonon must have a momentum p � ℏk, with k being greater than
the distance between the electron circle and the hole pockets.
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fermions. The Cooper pairs, each having two electrons, move as bosons. In our
quantum statistical theory of superconductivity [13], the superconducting temper-
ature Tc is regarded as the Bose-Einstein condensation (BEC) point of pairons. The
center of mass of a pairon moves as a boson [13]. Its proof is given in Appendix for
completeness. The critical temperature Tc in 2D is given by

kBTc ¼ 1:24ℏvFn1=2, (6)

where n is the pairon density. The inter-pairon distance

r0 � n�1=2 ¼ 1:24ℏvF kBTcð Þ�1 (7)

is several times greater than the BCS pairon size represented by the BCS
coherence length:

ξ0 � 0:181ℏvF kBTcð Þ�1: (8)

Hence the BEC occurs without the pairon overlap. Phonon exchange can be
repeated and can generate a pairon-binding energy εb of the order of kBTb:

εb � kBTb, Tb � 1000 K: (9)

Thus, the pairons are there above the superconducting temperature Tc. The
angle-resolved photoemission spectroscopy (ARPES) [14] confirms this picture.

In the quantum statistical theory of superconductivity, we start with the crystal
lattice, the Fermi surface and the Hamiltonian and calculate everything, using
statistical mechanical methods. The details are given in Ref. [15].

Loram et al. [15] extensively studied the electronic heat capacity of YBa2CuO6þδ

with varying oxygen concentrations 6þ δ. A summary of their data is shown in
Figure 5. The data are in agreement with what is expected of a Bose-Einstein (B-E)

Figure 5.
Electronic heat capacity Cel plotted as Cel=T vs. temperature T after Loram et al. [15] for YBa2Cu3O6þδ with
the δ values shown.
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condensation of free massless bosons in 2D, a peak with no jump at Tc with the T2-
law decline on the low-temperature side. The maximum heat capacity at Tc with a
shoulder on the high-temperature side can only be explained naturally from the
view that the superconducting transition is a macroscopic change of state generated
by the participation of a great number of pairons with no dissociation. The standard
BCS model regards their Tc as the pair dissociation point and predicts no features
above Tc.

The molar heat capacity C for a 2D massless bosons rises like T2 in the condensed
region and reaches 4:38R at T ¼ Tc; its temperature derivative ∂C T; nð Þ=∂T jumps
at this point. The order of phase transition is defined to be that order of the derivative
of the free energy F whose discontinuity appears for the first time. Since CV ¼

T ∂S=∂Tð ÞV ¼ �T ∂
2F=∂T2� �

, ∂CV=∂T ¼ �T ∂
3F=∂T3� �

� ∂
2F=∂T2� �

, the B-E
condensation is a third-order phase transition. The temperature behavior of the heat
capacity C in Figure 6 is remarkably similar to that of YBa2Cu3O6:92 (optimal
sample) in Figure 5. This is an important support for the quantum statistical theory.
Other support is discussed in Sections 5 and 6.

Our quantum statistical theory can be applied to 3D superconductors as well.
The linear dispersion relation (4) holds. The superconducting temperature Tc in 3D
is given by

kBTc ¼ 1:01ℏvFn
1
3, (10)

which is identified as the BEC point. The molar heat capacity C for 3D bosons
with the linear dispersion relation ε ¼ cp rises like T3 and reaches 10:8R, R ¼ gas

constant, at Tc ¼ 2:02ℏcn1=30 . It then drops abruptly by 6:57R and approaches 3R in
the high-temperature limit. This temperature behavior of C is shown in Figure 7.
The phase transition is of second order. This behavior is good agreement with
experiments, which supports the BEC picture of superconductivity.

Figure 6.

The molar heat capacity C for 2D massless bosons rise like T2, reaches 4:38R at the critical temperatureTc, and
then decreases to 2R in the high-temperature limit.
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4. In-plane Seebeck coefficient above the critical temperature

4.1 Seebeck coefficient for conduction electrons

When a temperature difference is generated and/or an electric field E is applied
across a conductor, an electromotive force (emf) is generated. For small potential
and temperature gradients, the linear relation between the electric current density
j and the gradients

j ¼ σ �∇Vð Þ þ A �∇Tð Þ ¼ σE� A∇T (11)

holds, where E ¼ �∇V is the electric field and σ is the conductivity. If the ends
of the conducting bar are maintained at different temperatures, no electric current
flows. Thus from Eq. (11), we obtain

σES � A∇T ¼ 0, (12)

where ES is the field generated by the thermal emf. The Seebeck coefficient S,
also called the thermoelectric power or the thermopower, is defined through

ES ¼ S∇T, S � A=σ: (13)

The conductivity σ is always positive, but the Seebeck coefficient S can be
positive or negative depending on the materials. We present a kinetic theory to
explain Terasaki et al.’s experimental results [5, 6] for the Seebeck coefficient in
YBa2Cu3O7�δ, reproduced in Figure 1.

We assume that the carriers are conduction electrons (“electron,” “hole”) with
charge q (�e for “electron,” þe for “hole”) and effective massm ∗ . At a finite tem-
perature T >0, “electrons” (“holes”) are excited near the Fermi surface if the surface
curvature is negative (positive) [16]. The “electron” (“hole”) is a quasi-electronwhich
has an energy higher lower than the Fermi energy εF and which circulates clockwise
(counterclockwise) viewed from the tip of the applied magnetic field vector.

Figure 7.

The molar heat capacity C for 3D massless bosons rises like T3 and reaches 10:8R at the critical temperature

Tc ¼ 2:02ℏcn
1=3
0 . It then drops abruptly by 6:57R and approaches the high-temperature limit 3R.
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“Electrons” (“holes”) are excited on the positive (negative) side of the Fermi surface
with the convention that the positive normal vector at the surface points in the
energy-increasing direction. The number of thermally excited “electrons”Nex, having
energies greater than the Fermi energy εF, is defined and calculated as

Nex �

ð∞

εF

dεD εð Þf ε;T; μð Þ≈D εFð Þ

ð∞

εF

dε
1

eβ ε�μð Þ þ 1

≃ ln 2 kBTD εFð Þ,

(14)

where D εð Þ is the density of states. This formula holds for 2D and 3D in high
degeneracy. The density of thermally excited “electrons,”

nex ¼ Nex=A, A ¼ planer area, (15)

is higher at the high-temperature end, and the particle current runs from the
high- to the low-temperature end. This means that the electric current runs toward
(away from) the high-temperature end in an “electron” (“hole”)-rich material.
After using Eqs. (13) and (14), we obtain

S ¼
<0 for “electrons”

>0 for “holes”

�

(16)

The Seebeck current arises from the thermal diffusion. We assume Fick’s law:

j ¼ qjparticle ¼ �qD∇nex, (17)

where D is the diffusion constant, which is computed from the standard formula:

D ¼
1
d
vℓ ¼

1
d
v2Fτ, v ¼ vF, ℓ ¼ vτ, (18)

where vF is the Fermi velocity and τ the relaxation time of the charged particles.
The symbol d denotes the dimension. The density gradient ∇nex is generated by the
temperature gradient ∇T and is given by

∇nex ¼
ln 2
Ad

kBD εFð Þ∇T, (19)

where Eq. (14) is used. Using Eqs. (17)–(19) and (11), we obtain the thermal
diffusion coefficient A as

A ¼
ln 2
2A

qv2FkBD εFð Þτ: (20)

We divide A by the conductivity

σ ¼ nq2τ=m ∗ , (21)

and obtain the Seebeck coefficient S [see Eq. (13)]:

S � A=σ ¼ ln 2
kBεF
nq

D εFð Þ

A
, εF �

1
2
m ∗ v2F: (22)

The relaxation time τ cancels out from numerator and denominator. This result
is independent of the temperature T.
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4.2 In-plane thermopower for YBCO

We apply our theory to explain the in-plane thermopower data for YBCO. For
YBa2Cu3O7�δ (composite), there are “electrons” and “holes”. The “holes”, having
smaller m ∗ and higher vF � 2εF=m ∗ð Þ1=2, dominate in the Ohmic conduction and
also in the Hall voltage VH, yielding a positive Hall coefficient RH

ab (see Figure 1).
But the experiments indicate that the in-plane thermopower Sab is negative. This
puzzle may be solved as follows.

We assume an effective mass approximation for the in-plane “electrons”:

ε ¼ p2x þ P2
y

	 


=2m ∗ : (23)

The 2D density of states including the spin degeneracy is

D ¼ m ∗A= πℏ2� �

, (24)

which is independent of energy. The “electrons” (minority carriers), having
heavier mass m ∗

1 , contribute more to A, and hence the thermopower Sab can be
negative as shown below.

When both “electrons” (1) and “holes” (2) exist, their contributions to the
thermal diffusion are additive. Using Eqs. (20) and (24), we obtain

Aab ¼ �e ln 2
kB

2πℏ2 v
1ð Þ
F

	 
2
m ∗

1 τ1 þ e ln 2
kB

2πℏ2 v
2ð Þ
F

	 
2
m ∗

2 τ2

¼ �e ln 2
kBεF

πℏ2 τ1 � τ2ð Þ:

(25)

If phonon scattering is assumed, then the scattering rate is given by

Γ � τ�1 ¼ nph vF s, (26)

where s is the scattering diameter and nph denotes the phonon population given
by the Planck distribution function:

nph ¼ exp εph=kBT
� �

� 1
� ��1

, (27)

where εph is a phonon energy. We then obtain

τ1 � τ2 ¼ 1=Γ1 � 1=Γ2 ¼ nph v
1ð Þ
F s

	 
�1
� nph v

2ð Þ
F s

	 
�1

¼
1

nph s

1

v
1ð Þ
F

�
1

v
2ð Þ
F

 !

>0, v
1ð Þ
F < v

2ð Þ
F

	 


:

(28)

The total conductivity is

σ ¼ σ1 þ σ2 ¼
e2n1
m ∗

1
τ1 þ

e2n2
m ∗

2
τ2

¼
e2n1

m ∗
1 v

1ð Þ
F nph s

þ
e2n2

m ∗
2 v

2ð Þ
F nph s

:

(29)
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Using Eqs. (25)–(29), we obtain the in-plane thermopower Sab above the critical
temperature as

Sab �
Aab

σab
¼ � ln 2

kBεF

πeℏ2
1

v
1ð Þ
F

�
1

v
2ð Þ
F

 !

n1

m ∗
1 v

1ð Þ
F

þ
n2

m ∗
2 v

2ð Þ
F

 !�1

: (30)

The factors nphs drop out from numerator and denominator. The obtained
Seebeck coefficient Sab is negative and T-independent, in agreement with
experiments in YBa2Cu3O7�δ, reproduced in Figure 1.

5. Out-of-plane thermopower

Terasaki et al. [17, 18] and Takenaka et al. [19] measured the out-of-plane resis-
tivity ρc in YBa2Cu3Ox. In the range 6:6< x< 6:92, the data for ρc can be fitted with

ρc ¼ C1ρab þ C2=T, (31)

where C1 and C2 are constants and ρab is the in-plane resistivity. The first term
C1ρab arises from the in-plane conduction due to the (predominant) “holes” and þ
pairons. The second term C2=T arises from the � pairons’ quantum tunneling
between the copper planes [20]. Pairons move with a linear dispersion relation [21]:

ε ¼

2
π
vFp � cp, p< p0 � ∣w0∣=c

0, otherwise

8

<

:

(32)

with ∣w0∣ being the binding energy of a pairon. The Hall coefficient RH
c (current

along the c-axis) is observed to be negative, indicating that the carriers have nega-
tive charge (see Figure 1).

The tunneling current is calculated as follows. A pairon arrives at a certain
lattice-imperfection (impurity, lattice defect, etc.) and quantum-jumps to a neigh-
boring layer with the jump rate given by the Dirac-Fermi golden rule

w ¼
2π
ℏ

pf jUjpi

� �











2
δ εf � εið Þ �

2π
ℏ
M

2δ εf � εið Þ, (33)

where pi pf

� �

and εi εfð Þ are, respectively, the initial (final) momentum and
energy and U is the imperfection-perturbation. We assume a constant absolute
squared matrix-elementsM2. The current density j ið Þc along the c-axis due to a group
of particles i having charge q ið Þ and momentum-energy p; εð Þ is calculated from

j ið Þc ¼ j
ið Þ
c,H � j

ið Þ
c,L ¼ q ið Þa0wn

ið Þ v
ið Þ
H � v

ið Þ
L

	 


, (34)

where n ið Þ is the 2D number density, a0 the interlayer distance, and j
ið Þ
c,H j

ið Þ
c,L

	 


represents the current density from the high (low)-temperature end. Pairons move
with the same speed c ¼ 2=πð ÞvF, but the velocity component vx is

vx ¼
∂ε

∂px
¼

cpx
p

¼
c2

ε
px: (35)
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Lower-energy (smaller p) pairons are more likely to get trapped by the imper-
fection and going into tunneling. We represent this tendency by K ¼ B=ε, where B
is a constant having the dimension of energy/length. Since the thermal average of
the v is different, a steady current is generated. The temperature difference
ΔT ¼ TH � TLð Þ causes a change in the B-E distribution F:

F εð Þ � e ε�μð Þβ þ 1
h i�1

, β � kBTð Þ�1, (36)

where μ is the chemical potential. We compute the current density jc from

jc ¼ 2e
M

2B

ℏ
3c2

a0ΔT

kBT
2

ðcp0

0
dε

dF εð Þ

dβ
, (37)

assuming a small ΔT. Not all pairons reaching an imperfection are triggered into
tunneling. The factor B contains this correction.

At the BEC temperature Tcð Þ, the chemical potential μ vanishes:

μ Tcð Þ ¼ 0, (38)

and

βμ � μ=kBT (39)

is negative and small in magnitude for T >Tc. For high temperature and low
density, the B-E distribution function F can be approximated by the Boltzmann
distribution function:

F εð Þ≈ f 0 εð Þ ¼ exp μ� εð Þβ, (40)

which is normalized such that

1

2πℏð Þ2

ð

d2pf 0 εð Þ ¼ n0 pairon density
� �

: (41)

All integrals in (37) and (41) can be evaluated simply by using
Ð∞

0 dxe�xxn ¼ n!.
Hence we obtain

ð

d2pf 0 εð Þ ¼ 2πm
ð∞

0
dεeβμ e�βε ¼ 2πmeμββ�1: (42)

The integral in (37) is then calculated as

ðcp0

0
dε

dF εð Þ

dβ
≈

ðcp0

0
dε

d
dβ

f 0 εð Þ ¼ eμβ
ð∞

0
dεεe�βε ¼ eβμβ�2: (43)

From Eqs. (11) and (37) along with Eq. (43), we obtain

Ac � 2eM2BkBa0 ℏ
3c2

� ��1
, (44)

which is T-independent.
Experiments [5] indicate that the first term C1ρab in (31) is dominant for x> 6:8:

ρc � C1ρab ∝T: (45)
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Hence at x ¼ 7, we have an expression for the out-of-plane Seebeck coefficient
Sc above the critical temperature:

Sc �
Ac

σc
¼ AcC1ρab ∝T >0: ρab ∝Tð Þ: (46)

The lower the temperature of the initial state, the tunneling occurs more fre-
quently. The particle current runs from the low- to the high-temperature end, the
opposite direction to that of the conduction in the ab-plane. Hence Sc >0, which is
in accord with experiments (see Figure 1).

6. Resistivity above the critical temperature

We use simple kinetic theory to describe the transport properties [22]. Kinetic
theory was originally developed for a dilute gas. Since a conductor is far from being
the gas, we shall discuss the applicability of kinetic theory. The Bloch wave packet
in a crystal lattice extends over one unit cell, and the lattice-ion force averaged over
a unit cell vanishes. Hence the conduction electron (“electron,” “hole”) runs
straight and changes direction if it hits an impurity or phonon (wave packet). The
electron–electron collision conserves the net momentum, and hence, its contribu-
tion to the conductivity is zero. Upon the application of a magnetic field, the system
develops a Hall electric field so as to balance out the Lorentz magnetic force on the
average. Thus, the electron still move straight and is scattered by impurities and
phonons, which makes the kinetic theory applicable.

YBCO is a “hole”-type HTSC in which “holes” are the majority carriers above Tc,
while Nd1:84Ce0:16 CuO4 is an “electron”-type HTSC.

6.1 In-plane resistivity

Consider a system of “holes,” each having effective mass m ∗
2 and charge þe,

scattered by phonons. Assume a weak electric field E applied along the x-axis.
Newton’s equation of motion for the “hole” with the neglect of the scattering is

m ∗
2
mdvx
dt

¼ eE: (47)

Solving it for vx and assuming that the acceleration persists in the mean-free
time τ2, we obtain

vd ¼
eE

m ∗
2
τ2 (48)

for the drift velocity vd. The current density (x-component) j is given by

j ¼ en2vd ¼ n2
e2 τ2
m ∗

2
E, (49)

where n2 is the “hole” density. Assuming Ohm’s law

j ¼ σE, (50)

we obtain an expression for the electrical conductivity:
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σ2 ¼
n2e

2

m ∗
2

1
Γ2

, (51)

where Γ2 � τ�1
2 is the scattering rate. The phonon scattering rate can be

computed, using

Γ2 ¼ nph vFA2, (52)

where A2 is the scattering diameter. If acoustic phonons having average energies

ℏωq

� �

� α0ℏωD ≪ kBT, α0 � 0:20 (53)

are assumed, then the phonon number density nph is given by [23].

nph ¼ na exp α0ℏωD=kBTð Þ � 1½ ��1
≃ na

kBT

α0ℏωD
, (54)

where

na � 2πð Þ�2
ð

d2k (55)

is the small k-space area where the acoustic phonons are located.
Using Eqs. (51), (52), and (54), we obtain

σ2 ¼
C2n2e

2

T
, C2 �

α0ℏωD

nam ∗
2 kBvFA2

: (56)

Similar calculations apply to “electrons.” We obtain

σ1 ¼
C1n1e

2

T
, C1 �

α0ℏωD

nam ∗
1 kBvFA2

: (57)

The resistivity ρ is the inverse of the conductivity σ. Hence the resistivity for
YBCO is proportional to the temperature T:

ρ �
1
σ
∝T: (58)

Let us now consider a system of + pairons, each having charge þ2e and moving
with the linear dispersion relation:

ε ¼ cp: (59)

Since

vx ¼ dε=dpð Þ ∂p=∂px
� �

¼ c px=p
� �

, (60)

Newton’s equation of motion is

p

c

dvx
dt

¼
ε

c2
dvx
dt

¼ 2eE, (61)

yielding vx ¼ 2e c2=εð ÞEtþinitial velocity. After averaging over the angles,we obtain
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v
3ð Þ
d ¼ 2ec2τ3E ε�1� �

, (62)

where τ3 is the pairon mean free time and the angular brackets denote a thermal
average. Using this and Ohm’s law, we obtain

σ3 ¼ 2eð Þ2c ε�1� �

n3Γ
�1
3 , Γ3 � τ�1

3 , (63)

where n3 is the pairon density and Γ3 is the pairon scattering rate. If we assume a
Boltzmann distribution for bosonic pairons above Tc, then we obtain

ε�1� �

�
2π

2πℏð Þ2

ð∞

0
dpp

1
ε
eβcp

 !

2π

2πℏð Þ2

ð∞

0
dppeβcp

 !�1

¼ kBTð Þ�1 for T >Tc:

(64)

The rate Γ3 is calculated with the assumption of a phonon scattering. We then
obtain

σ3 ¼
4n3e2c2

kBTΓ3
¼

2n2e2C3

T2 , C3 �
8
π2

α0ℏωDvF

nak
2
BA3

: (65)

The total conductivity σ for YBCO is σ2 þ σ3. Thus taking the inverse of σ, we
obtain, by using the results (56) and (65):

Figure 8.
Resistivity in the ab plane, ρab vs. temperature T. Solid lines represent data for HTSC at optimum doping and
dashed lines data for highly overdosed samples, after Iye [24].

15

Quantum Theory of the Seebeck Coefficient in YBCO
DOI: http://dx.doi.org/10.5772/intechopen.86378



ρab �
1
σ
¼

C2n2e
2

T
þ
C3n32e2

T2

� ��1

¼
T2

n2e2 C2T þ 2C3ð Þ
(66)

while the conductivity for Nd1:84Ce0:16CuO4 is given by σ1 þ σ3, and hence the
resistivity is similarly given by

ρab ¼
T2

n1e2 C1T þ 2C3ð Þ
: (67)

In Nd1:84Ce0:16 while in YCuO4 system, “electrons” and � pairons play an
essential role for the conduction. In YBa2Cu3O7�δ the “holes” and þ pairons are the
major carriers in the in-plane resistivity. The resistivity in the plane (ρab) vs.
temperature (T) in various samples at optimum doping after Iye [24] is shown in
Figure 8. The overall data are consistent with our formula.

At higher temperature > 160Kð Þ, the resistivity ρab is linear (see formula (58)):

ρab ∝T, T > 160 K, (68)

in agreement with experiments (Figure 8). This part arises mainly from the
conduction electrons scattered by phonon. At the low temperatures close to the
critical temperature Tc, the in-plane resistivity ρab shows a T-quadratic behavior
[see formula (66)]:

ρab ∝T2 near  and  above Tcð Þ: (69)

This behavior arises mainly from the pairons scattered by phonons. The agree-
ment with the data represents one of the most important experimental supports for
the BEC picture of superconductivity.
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