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Abstract

The power electronics research community is balancing on the edge of a game-chang-
ing technological innovation: as traditionally silicon (Si) based power semiconductors 
approach their material limitations, next-generation wide bandgap (WBG) power semi-
conductors are poised to overtake them. Promising WBG materials are silicon carbide 
(SiC), gallium nitride (GaN), diamond (C), gallium oxide (Ga

2
O

3
) and aluminum nitride 

(AlN). They can operate at higher voltages, temperatures, and switching frequencies with 
greater efficiencies compared to existing Si, in power electronics. These characteristics can 
reduce energy consumption, which is critical for national economic, health, and security 
interests. However, increased voltage blocking capability and trend toward more compact 
packaging technology for high-power density WBG devices can enhance the local electric 
field that may become large enough to raise partial discharges (PDs) within the module. 
High activity of PDs damages the insulating silicone gel, lead to electrical insulation failure 
and reduce the reliability of the module. Among WBG devices, electrical insulation weak-
nesses in WBG-based Insulated Gate Bipolar Transistor (IGBT) have been more investi-
gated. The chapter deals with (a) current standards for evaluation of the insulation systems 
of power electronics modules, (b) simulation and modeling of the electric field stress inside 
modules, (c) diagnostic tests on modules, and (d) PD control methods in modules.

Keywords: wide bandgap devices, partial discharge, electric field stress

1. Introduction

The growing integration of distributed generation resources, envisagement of direct current 

(DC) microgrids and high-voltage direct current (HVDC) networks, the continued electrifica-

tion and grid-level power flow controls call for advanced power electronics with improved 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



efficiency, reliability and power density [1]. Undergoing dynamic evolution in power elec-

tronics is mainly due to the development of power semiconductor devices seeking simultane-

ous operation at a higher voltage, power, and switching frequency. Having higher blocking 

voltage capability, higher temperature tolerance, and higher switching frequency than Si 

technology, wide-bandgap (WBG) semiconductor materials such as silicon carbide (SiC) and 

gallium nitride (GaN) are expected to be a response to the mentioned challenge [2]. Si has a 

bandgap of 1.1 eV, whereas the bandgap of SiC and GaN is, respectively, 3.3 and 3.4 eV. The 
bandgap is the energy required to transfer an electron from the valence to the conduction 

band. Insulators, semiconductors, and conductors have large, small and very small bandgaps, 

respectively. While the highest commercial Si IGBT breakdown voltage capability is 6.5 kV, 
a record high blocking voltage of 15 kV was reported for the SiC IGBT produced in [3] and 

higher voltage capability up to 20–30 kV is expected shortly [4].

The metalized ceramic substrate shown in Figure 1a is well-known and established insula-

tion technology for blocking voltages up to 3.3 kV, but it exhibits some weaknesses due to 
partial discharges (PDs) in silicone gel at higher voltages. In a sufficient electric stress condi-
tion localized gaseous breakdowns known as PDs can occur within an insulation system. 
Various measuring techniques and sensors have been developed for PD detection to perform 
an accurate condition monitoring and assessment of the insulation status of power equipment 

[5, 6]. We will discuss this topic in Section 4. The blocking voltage places across substrate solid 
insulating material, which is aluminum nitride (AlN) or alumina (Al

2
O

3
) ceramics where HV 

electrode is IGBT or diode and the ground electrode is copper or aluminum silicon carbide 

(AlSiC) base plate connected to the heat sink. However, both sides of the insulating ceramic 

are metalized by copper to evacuate better and transfer the heat generated by IGBTs or diodes 
to the base plate [7]. IGBTs, diodes and base plate are soldered onto the metalized ceramic 

substrate [7]. In this regard, solid dielectric substrates should also have appropriate thermal 

properties such as resistance to high temperatures and good thermal conductivity in addition 

to their desirable electrical insulation and mechanical properties. This is the case for AlN and 

Al
2
O

3
 with a thermal conductivity of typically, respectively, 180 and 27 W/mK [8]. Note that, 

however, the thermal resistance of the AlN substrates assembled with IGBTs is around a fac-

tor of only three less than Al
2
O

3
 substrates [8] (not 180/27 = 6.7 times for AlN and Al

2
O

3
 materi-

als itself). Attaching the copper metallization to the ceramic substrate can be done by direct 

Figure 1. (a) A schematic of an IGBT substrate with active metal brazing (AMB) of the metallization and (b) protrusions 

with extremely sharp edges of some braze below the metallization.
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bonded copper (DBC) or active metal brazing (AMB). Figure 1a shows active metal brazing 

method [7]. No braze layers are needed for DBC as shown in Figure 2. Then a soft dielectric 

such as silicone gel is used to encapsulate the whole module to prevent electrical discharges 

in air as well as to protect semiconductors, substrates, and connections against humidity, dirt, 

and vibration. As a commercial example, “SYLGARD™ 527 Silicone Dielectric Gel” manufac-

tured by the Dow Chemical Company has a dielectric constant of 2.85 and dielectric strength 
of 17 kV/mm [9].

Silicone gel also prevents thermal induced movements of bond wires attached to the semicon-

ductor. The final encapsulation is achieved using polymer housing. The schematic layout of an 
IGBT with AMB is similar to that shown in Figure 2 where brazes are also added to the structure.

As a consequence of higher blocking voltage, new packaging solutions to provide electrical 

insulation between the grounded heat sink and the HV terminals of the module are required. 
Due to the high electric fields, especially at the edges of the copper metallization, PDs can be 
initiated from these regions. The situation gets worse at protrusions shown in Figure 1b with 

extremely sharp edges of some braze below the metallization. High activity of PDs damages 
the insulating silicone gel and leads to electrical insulation failure and reduces the reliability 

of the module. Moreover, high-frequency PD pulses can lead to disturbance of the power 
electronics and cause severe shortcomings in high-power applications. The PD issue is one 
of the most crucial challenges to the development of HV high power density WBG power 
semiconductor devices. A description of current standards on PD tests on power electronics 
modules and relevant technical gaps is presented in Section 2. Section 3 deals with simulation 

and modeling of electric field stress inside power electronics modules. The various PD detec-

tion techniques employed for modules and correlation between measurements and electric 

field calculation is discussed in Section 4, and finally, PD control methods to relieve high field 
regions is explained in Section 5.

2. International standards on PD tests on power electronics devices

IEC 61287-1: “Railway applications-power converters installed on board rolling stock-part 1: 

characteristics and test methods” is the current standard commonly used for IGBT working 
at 1.5 kV or more [10]. The test voltage is a 50 Hz or 60 Hz alternating current (AC) root mean 

Figure 2. A schematic of an IGBT module with DBC, (a) connection to bus bars, (b) bond wire, (c) diode, (d) IGBT, (e) 
plastic case, (f) baseplate, (g) silicone gel, (h) AlN ceramic, and (i) copper metallization.
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square (RMS) voltage equal to  1.5  U  
m
   /  √ 

__
 2    or higher where   U  

m
    is the maximum blocking voltage 

of the module in (V). For a 6.5 kV IGBT, it is  1.5 × 6.5 /  √ 
__

 2   ≈ 6.9kV . The voltage is ramped up to  

1.5  U  
m
   /  √ 

__
 2    in 10 s and is maintained for t

1
 = 1 min as shown in Figure 3. The rate of the ramp as 

shown in Figure 3 is (  1.5  U  
m
   /  √ 

_
 2   )   / 10kV / s  . During this time   t  

1
   , some PDs may be observed. After   t  

1
   , 

the voltage is decreased to  1.1  U  
m
   /  √ 

__
 2    in 10 s. For a 6.5 kV IGBT, it is  1.1 × 6.5 /  √ 

__
 2   ≈ 5.1kV . The voltage  

1.1  U  
m
   /  √ 

__
 2    is applied for   t  

2
    = 30 s. During the last 5 s of   t  

2
   , the peak magnitude of partial discharge 

in pC is measured. A typical value to pass the test for a component and a subassembly is, 

respectively, 10 and 50 pC.

However, IGBT modules are subjected to pulse width modulator (PWM) stress-type instead 

of power frequency AC voltages. To elucidate this stress-type, consider a single-phase full-

bridge inverter as shown in Figure 4a. An inverter changes a DC input voltage to a sym-

metrical ac output voltage of desired magnitude and frequency. When switches (which can 

be IGBTs)   Q  
1
    and   Q  

2
    are turned on at the same time, the input voltage   U  

s
    appears across the 

load. In this situation, the voltage on   Q  
3
    and   Q  

4
    which are off will be   U  

s
   . If switches   Q  

3
    and   Q  4    

are turned on simultaneously, the voltage across the load is  −  U  
s
   . In this situation, the voltage 

on   Q  
1
    and   Q  

2
    which are off will be  −  U  

s
   . Figure 4b shows the waveform for the output voltage. 

Thus a unipolar square wave voltage with a magnitude of   U  
s
    for ( 0 −  T  

0
   / 2 ) and almost zero for 

(  T  
0
   / 2 −  T  

0
   ) places on   Q  

3
    and   Q  

4
    and a unipolar square wave voltage with an amagnitude of nearly 

zero for ( 0 −  T  
0
   / 2 ) and  −  U  

s
    for (  T  

0
   / 2 −  T  

0
   ) places on   Q  

1
    and   Q  

2
   .

In many industrial applications, it is often required to control the output voltage of inverters 

(1) to cope with the variations of dc input voltage, (2) for voltage regulation of inverters, and 

(3) for the constant volts/frequency control requirement [11]. The most efficient method of 
controlling the gain is to incorporate pulse-width-modulation (PWM) control with the invert-

ers. In this regard, the commonly used techniques are:

1. Single-pulse-width modulation

2. Multiple-pulse-width modulation

3. Sinusoidal-pulse-width modulation

4. Modified sinusoidal pulse-width modulation

5. Phase-displacement control

Here we describe only sinusoidal-pulse-width modulation (SPWM) technique which is widely 

used. For other methods see [11]. In SPWM, the width of each gating signal can be varied in pro-

portion to the amplitude of a sine wave. As shown in Figure 5, the gating signals are generated 

by comparing a sinusoidal reference signal with a triangular carrier wave of frequency,   f  
c
   , and 

peak,   A  
c
   . In this case,   Q  

3
    and   Q  

4
    should withstand   u  

ab
    which is a fast-rising and fall square waveform 

known as PWM-stress in (0 −  π ) and   Q  
1
    and   Q  

2
    should withstand   u  

ab
    in ( π  − 2  π ).

It has been known that repetitive voltage impulses generated as PWM-stress can lead to insu-

lation premature failure of stator winding due to partial discharges in inverter-fed motors 

[12, 13]. About IGBTs the studies in [14, 15] show that PD behavior under 50 Hz or 60 Hz AC 
sinusoidal voltage is different from that for fast rise bipolar high-frequency square wave volt-
ages. In this regard, for example for the test sample in [14] while partial discharge inception 

voltage (PDIV) under 50 Hz sinusoidal test voltage is 13 kV, for a bipolar square voltage with 
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rising time of about 400 μs, fast rise positive unipolar square and fast rise negative unipolar 
square both with rise time of about 100 ns it is 12, 9 and 7 kV, respectively. Moreover, the rate 
of increase in the PD magnitude concerning voltage is higher for steeper voltage rise [14].

Therefore new standards are needed to take into account actual voltages for power electronic 

modules. It was shown in [16] that although IGBTs could pass 50 Hz sinusoidal test under IEC 

61287-1, insulation failure occurs when applying PWM input voltage with 50 Hz modulating 

frequency with 1 kHz carrier frequency and a rise time of 10 μs that is the stress condition 
more similar to the real operating conditions.

According to IEC 61287-1, the collector, emitter, and gate of a power electronics module should 
be connected, and PDs are measured when an alternating voltage is applied between the inter-

connected terminal and the metal base plate. The drawback is that it tests only the insulation 

Figure 4. Single-phase full-bridge inverter.

Figure 3. IEC 61287-1: “Railway applications-power converters installed on board rolling stock-part 1: characteristics 

and test methods” for partial discharge test.
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of the substrate and the bulk of the gel is not tested. To address this issue, the test voltage is 

proposed as an AC voltage superimposed on a direct current (DC) one directly applied to 
the component turned off using a negative gate polarization [17–19]. The inverse DC offset of 
magnitude higher than the AC peak value as shown for an example in Figure 6a used as the 

test voltage avoids diode conduction [18]. The discharge inception voltage (  U  
DIV

   ) is then defined 
as the peak value of the applied voltage (  U  

DC
   +  U  

AC
   ) [17]. Figure 6b shows an experimental set-up 

generating such test voltage [17].

This method leads to detect PD for voltages lower than the one necessary to trig them during 
IEC 61287-1 test [17–19]. Although neither the test proposed in [17–19] nor IEC 61287-1 test 

can represent thoroughly the stresses endured by the power modules in inverters, the testing 

method proposed in [17–19] can provide more useful information on PDs during normal 
operation by stressing all the components involved in the packaging.

Figure 6. (a) New test voltage waveform and (b) set-up generating new test voltage for PD detection of an IGBT [18], 

License No. 4383271241884.

Figure 5. Sinusoidal pulse-width modulation.
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3. Simulation and modeling of electric stress inside the module

Since a combination of material defects in gel and the high electric stress due to sharp edges 

leads to partial discharge, PDs do not occur all along the sharp edges. However, identifying 
the critical spots with the maximum electric field magnitude due to only sharp edges can be 
useful to develop geometrical strategies to reduce the electric field magnitude peaks due to 
the effect of one contributing factor.

Note that the maximum electric field magnitude at perfectly sharp edges is theoretically infi-

nite. Thus, the smaller mesh size, the higher electric stress and mathematically there is no 

convergence point. Assuming a rounded edge converges to a finite maximum electric field 
intensity with increasing resolution of the mesh grid. However, the value depends on the 

assumed edge radius. The smaller assumed edge radius, the higher amount of maximum 

electric field magnitude. To overcome this difficulty, it was shown in [20, 21] that when the 

distance to sharp edges becomes larger than 20 μm for the assumed geometry and dimen-

sions, the differences between the electric field magnitudes for different meshing sizes are 
less than 1%. To be on the safe side, measuring points were considered at a distance of 50 μm 
to sharp edges in [20, 21]. In [22], both strategies containing rounded edges and considering 

measuring points at a distance of 20 μm from edges were benefited.

Assuming the measuring points defined above, the influence of following geometrical options 
are studied in [20, 22] on reducing the electric field stress values.

1. The thickness of the metallization layer,

2. The thickness of the substrate,

3. The shape of the edge,

4. Metal/conductive layer offset.

Among four parameters above, the thickness of the substrate and metal/conductive layer 

offset have a strong influence on the electric field magnitude. By varying the thickness of the 
ceramic, the electric field stress does not follow the equation of a plate capacitor: a doubling 
of the thickness (1–2 mm) reduces the electric field stress only by about 30% and not by 50%. 
However, an increased substrate thickness decreases cooling efficiency of the semiconduc-

tors, and this technique may not meet the miniaturization needs of power electronics as well.

Defining an offset of the two metallization layers as   r  
off

   =  r  
u
   −  r  

l
    for   r  

u
    (the distance from the 

AlN ceramic edge to the edge of the upper Cu metallization) and   r  
l
    (the distance from the 

AlN ceramic edge to the edge of the lower Cu metallization) shown in Figure 7a. Figure 8 

shows the electric field stress values at measuring point located on L1 for different values of   
r  
off

    for a d = 630 μm ceramic layer [22]. For that (Figure 7a), a finite-element method (FEM) 
model was developed in the Electrostatics (es) module of COMSOL Multiphysics solving 

Poisson’s equation.

   ∇   2  U = −   
 ρ  
v
  
 ____  ϵ  

0
   ϵ  
r
       (1)
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  E = − ∇ U   (2)

where   ρ  
v
    is volume charge density which is   ρ  

v
   = 0  in the model considered in [22],   ϵ  

r
    is rela-

tive permittivity which for AlN and gel were considered, respectively, 8.9 and 2.7 in [22],  E  is 

electric field intensity, and  U  is electric potential.

As shown in Figure 7b, an extremely custom fine meshing with a maximum element size of 
0.001 mm was used for Area 1 shown in Figure 7a to obtain precise results for electric field 

intensity along L1 [22]. Such meshing strategy, using several levels of extremely custom 

fine meshing for the study area having sharp edges and a normal meshing for other areas to 
increase the computational efficiency was used in [23–29] as well. From Figure 8, it can be seen 

that with decreasing offset the electric field magnitude reduces. In other words, an increase in 
the length of the upper metal layer relieves the worst high field region. It is due to the influence 
of the grounded based plate, since the more extended top metal layer, the less nonuniform 

electric field. Changing   r  off    from 0.35 to −0.5 mm reduces the electric field intensity up to 57% 
that presents the method as an efficient electric field control technique [22].

Figure 8. Influence of   r  off    on electric field intensity.

Figure 7. (a) The geometries considered for simulations in COMSOL Multiphysics and (b) meshing strategy.
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4. Partial discharge measurements

Research carried out on PD detection, and localization inside an IGBT can mainly be divided 
into electrical and optical PD measurements. For electrical PD measurement, measured phase-
resolved partial discharge (PRPD) patterns were analyzed to identify the type and location of 
PD. As shown in Figure 9 [30, 31], it was observed that the PD of a metalized ceramic in an 
isolating liquid occurs at the maximum voltage at 90° and 270° and the amount of PD does not 
rise sharply with increasing voltage.

However, as shown in Figure 10 [21, 30, 31] for the same metalized ceramic embedded in 

silicone gel, PD was found at a phase between zero and the maximum voltage, between 0–90° 
and 180–270°. Since the number and magnitude of the PDs strongly increase with rising volt-
age, it was argued that the origin of this discharge phenomenon is due to discharges at the 

interface between the silicone gel and the substrate and not due to locally restricted cavities 

in the gel.

In [21] the calculated electric field intensity and the measured PDIV were correlated. 
Combining the calculated electric field intensity in four measuring points ML1-ML4 shown 
in Figure 11a, the PDIV was plotted as shown in Figure 11b as a function of the geometric 

mean of  E  values at ML1-ML4. A fitted equation as “PDIV (kV) = 20.4–0.25E (kV/mm)” was 
also reported for Figure 11b [21].

However, through an artificial spherical void embedded in silicone gel, it was shown in [32] 

that voids inside the silicone gel significantly accelerate the aging of the materials even at a 
normal operating electric stress. It was also found that an extremely non-uniform electric field 
resulted by a needle-sphere electrode with no artificial void inside the material can also lead to 
rapid aging at a normal operating electric stress [32]. Thus, it was concluded that the electrical 

treeing in front of the needle tip produces gas-filled voids inside the silicone and these week 
points besides conductive channels of trees lead to shortening the lifetime of the insulation [32].

In [33, 34] an optical PD localization setup benefitting from compact charge-coupled device 
(CCD) camera modules was used to record the small light intensities emitted by electrolu-

minescence effects as well as the light caused by PD. It should be noted that before partial 
discharge inception, insulating polymers subjected to high electrical fields usually display 
electroluminescence as a result of the radiative relaxation of excited molecular states within 

the gel excited by high electrical field [34]. The measurement of electroluminescence allows the 

critical regions of high electric fields to be identified in the translucent silicone gel insulation 

Figure 9. PD spectroscopy of AlN substrates in an insulating liquid [31], License No. 4383271013906.
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even before electrical aging begins. Increasing the voltage, PD starts at distinct locations. Bright 
shining spots in the image as seen in Figure 12 show the higher possibility for PD inception.

In [35] the results concerning both electrical and optical detection of PDs occurring in the 
silicone gel were presented. That work showed that optical measurements could be used to 

study PDs in transparent gels, with any voltage shape and with very high sensitivity (<1 pC). 
In recent years, micro silicon photomultipliers (SiPM) were also examined and compared to 

conventional photomultiplier tubes (PMT) for optical PD detection [36].

In [37, 38], besides PRPD measurements, other diagnostic and quality control test methods 
to discriminate the dielectric condition between new and aged IGBT samples and reveal the 

influence of moisture on dielectric state of IGBT modules were used. They are time-dependent 
dielectric response measurements such as insulation resistance and polarization index, and 

frequency-dependent dielectric response measurements such as loss factor and frequency 

response analysis (FRA). Humidity as a result of the condensation caused by the difference in 
the interior and exterior temperatures may impact on the dielectric integrity of IGBT modules.

Figure 10. PD spectroscopy of AlN substrates in silicone gel (a) from [31], License No. 4383271013906, (b) from [21], 

License No. 4383270757365.

Figure 11. PDIV as a function of the geometric mean of MP1-4 [21], License No. 4383270757365.
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Converters are often located in cubicles under atmospheric pressure, and the most widely 

used material for encapsulation of power electronic circuits is silicone gel [8, 15–22, 30–38, 

42–45, 48, 51–54]. However, for variable-frequency drive (VFD) fed motors used in the subsea 
factory for oil and gas production at depths more than 3000 m, the development of pressure 

tolerant power electronics is envisaged where an incompressible insulating material is needed 

for power electronic modules. Thus, liquid embedded power electronics are investigated. In 

[14, 39] PDs in liquid embedded power electronics under three different waveforms as sinu-

soidal (50 Hz) voltage, a slow rise bipolar square voltage with a rise time of 400 μs, and a fast 
unipolar positive and negative rise square voltage with a rise time of 100 ns were investigated. 

Both electrical and optical techniques were used to study PD behavior of IGBT insulation. 
Regarding a good correlation found in [14, 39] between the measured electrical and optical 

PDs, optical PDs can also be considered for the characterization of PD phenomena. Another 
significant result obtained in [14, 39] is that the fast rise square voltage has the lowest PDIV 
while the sinusoidal voltage has the highest one. Moreover, it was reported in [14, 39] that 

the number and magnitude of PDs decrease when the pressure of the liquid in the test cell 
increases. In other words, pressure can collapse the propagation of the streamers, and that is 

the great merit of liquid embedded power electronics used for the subsea application.

Various liquid dielectrics such as Nytro 10XN, Midel 7131 and Galden HT230 were examined 
in [40, 41] for pressure tolerant liquid embedded power electronics modules for deep, and 

ultra-deepwater. The test object used in [40] is a printed circuit board (PCB) card shown in 

Figure 13a with a dimension of 50 × 24 × 1 mm3 and a schematic shown in Figure 13b. The 

thickness of copper metallization at both sides is 420 μm. The trench located at the upper met-
allization layer has a width of 2 mm. The left end of the board was connected to a high voltage 

source and the other end of the board and the base plate (the lower metallization layer) was 

connected to ground. Sharp edges were rounded to ensure the set-up is PD free.

Figure 12. Optical localization of PD for an AIN substrate embedded in silicone gel. The discharges are located at the 
outer edges of the copper metallization [34], License No. 4383270494717.
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Voltage type Samples U
1%

 (kV) U
50%

 (kV)  α  (kV)  β 

Sinusoidal voltage Nytro 20.01 40.89 43.89 5.92

Midel 25.94 39.76 41.26 9.92

Galden 27.56 41.98 43.54 10.06

Positive square voltage Nytro 19.19 22.5 22.86 26.29

Midel 15.28 22.98 23.75 10.43

Galden 20.80 32.17 33.41 9.7

Table 1. U
1%

, U
50%

, and U
63%

 breakdown probability for PCB card test object [40].

Table 1 shows the U
1%

, U
50%

, and U
63%

 breakdown probability. For U
63%

, the cumulative Weibull 

function was considered given by

  f (ν)  = 1 −  e     [−ν/α]    β     (3)

where  ν  is voltage,  f (ν)   is the probability of failure,  α  is the characteristic breakdown voltage and  

β  is the range of failure voltages within the distribution. The higher the  β , the lower the scatter 
is. Besides sinusoidal voltage (38.5 Hz), tests were carried out under a fast-rising positive square 

wave voltage. From Table 1 it can be seen that Galden has a superior breakdown characteristic.

The influence of temperature on PD characteristics in silicone gel was experimentally inves-

tigated in [42]. It was found that with increasing the temperature, the PDIV and the overall 
shape of PD patterns remain unchanged, but both discharge amplitudes and number increase 
as shown in Figure 14 for PRPD patterns in the same sample at a fixed applied voltage at 20 
and 100°C [42].

Figure 15 shows the influence of temperature on the variation of the average PD current (  I  
av

   ), 

which is the sum of all recorded discharges per unit time, versus voltage in the same experi-

ments [42]. It can be seen that with increasing the temperature, the PDIV remains unchanged. 
However, due to the increase of PD amplitudes and number the increase of   I  

av
    is faster at high 

temperature [42].

Figure 13. (a) PCB card test object and (b) the schematic of PCB card [40], License No. 4383270012789.

Simulation and Modelling of Electrical Insulation Weaknesses in Electrical Equipment140



5. Partial discharge control

5.1. Linear resistive electric field control

Applying functional materials on the highly stressed region can reduce the electric field. Two 
types of stress relieving composite dielectrics are as follows. (1) The conductivity of the mate-

rial varies with the electric field, field-dependent conductivity (FDC) [43, 48], (2) the permit-

tivity of the material changes with the electric field, field dependent permittivity (FDP) [50].

In FDC stress relieving control, also called resistive field control, a conductive layer is applied 
at the metallization edge. The field distribution is modified by flowing the conduction current 

Figure 14. PRPD patterns at two temperatures (a: 20°C, b: 100°C) with a point-plane sample embedded in silicone gel 

(ac 50 Hz, the tip radius of curvature for the point of r
0
 = 1.4 μm, gap distance of d = 4 mm, V = 8 kV) [42], License No. 

4383261112180.

Figure 15. Influence of temperature on average PD current versus voltage (ac 50 Hz, r
0
 = 1.4 μm, d = 4 mm) [42], License 

No. 4383261112180.
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through the layer. Materials used for resistive field control can be linear or nonlinear. The conduc-

tivity of linear resistive field control materials is not field dependent. Therefore, the conductivity 
of the layer made of linear materials must be carefully selected. For too low conductivity, the 
layer has no role in electric stress control [48]. On the other hand, if the conductivity of the layer 

is too high and for the case of a non-bridging layer, the layer behaves as a prolongation of the 

metallization and the high field problem is merely transferred to the end of the layer [48]. For the 
case of a layer bridging HV and ground potential, the layer leads to massive leakage current [48].

In [43], a 300-nm high impedance layer having an electrical conductivity of 105 Ω cm made 
of semiconducting amorphous silicon, a-Si: H, was applied by plasma-enhanced chemical 

vapor deposition (PECVD) process to the edge of the substrate connecting the top copper 
metallization with the bottom. The mentioned conductivity was adjusted to homogenize the 
electric field by having the magnitude of the conduction current higher than the capacitive 
current. By electric field simulations, the same value of the electric conductivity of the layer 
was reported in [44, 45]. Two sample modules with and without a-Si:H coating built under 

manufacturing conditions were tested in [43]. While the partial discharge increases sharply 

at low voltages of 3–4 kV without an a-Si:H coating, it does not exceed 10 pC up to a voltage 
of 10 kV with an a-Si:H coating layer satisfying the partial discharge requirements based 
on IEC 61287-1. Note that the linear resistive field control depends on the frequency and its 
advantage reduces with increasing frequency.

The intrinsic semi-conductive nature of the particles and their connectivity lead to non-linear 

behavior of nonlinear resistive electric field control composites. In this regard, the particle to 
particle contact is possible if the filler concentration is above a prescribed limit. The electrical 
field magnitude must also be high enough to allow conduction through the semi-conductive 
particles and barriers between particles.

A theory-based evaluation of the behavior of field grading materials with strongly field-
dependent conductivities is presented in [46] with a survey of ZnO microvaristors in various 

applications in [47]. ZnO microvaristor layer was studied to relieve high field regions in an 
IGBT [48]. An advantage of nonlinear materials compared to linear materials is that losses 

are not permanent. They occur only when the electrical field magnitude passes a threshold 
known as switching filed where the material switches to a conductive behavior.

An electrostatic FEM model developed in ACE TripleC was used for electric field calculations 
in [48]. Figure 16a shows electric field distribution for without a coating layer on the protrusion 
considered in the model. In this case, the maximum electric stress,   E  

max
   , obtained 2.6 × 108 V/m at 

the gel adjacent to the protrusion [48]. To relieve this high field stress region, a layer for coating 
the metallization edges was considered in three cases with polyimide layer (  ε  

r
    = 3.5), a high per-

mittivity (  ε  
r
    = 40) layer of a polymer/ceramic composite and ZnO microvaristor layer described 

above. A comprehensive study of the general structure of polymers, their properties and appli-

cations can be found in [49]. For polyimide layer,   E  
max

    in the layer (adjacent to the protrusion) 

and gel will be 2.3 × 108 and 0.18 × 108 V/m, respectively [48]. In this regard, although polymer/

ceramic composite with   ε  
r
    = 40 can reduce the maximum electric field in the layer adjacent to 

the protrusion to 0.3 × 108 V/m, the electric field in the gel reaches higher values (0.2 × 108 V/m) 
than with polyimide coating. Employing a ZnO microvaristor layer,   E  

max
    in both the layer 

(0.066 × 108 V/m as shown in Figure 16b) and gel (0.06 × 108 V/m) dramatically decreases.
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5.2. FDP stress relieving control

As mentioned in Section 5.1 although a high permittivity coating layer relieves high electric field 
stress adjacent to the copper metallization, it leads to higher electric field stress in the gel and 
in particular the weak interface between the layer and the gel encapsulation. This means a high 

permittivity material as a coating layer may not be efficient. Thus in [50] employing it as a filler 
was examined. The filler studied in [50] was a ferroelectric filler, barium titanate, in the base 
silicone gel to form an FDP stress relieving dielectric material having a   ϵ  

r
   (E)   as   ϵ  

r
   (E)  = 6.4 + 1.3E . 

By enhancing polarization mechanisms, the ferroelectric filler particles can reduce high electrical 
stresses. However, it should be noted that this electric field control method works only under ac 
fields and at the temperatures higher than Curie temperature which is 130°C for pure barium 
titanate [51] this advantage will disappear [50].

It is shown in [50] that applying a high permittivity non-dependent field filler can reduce elec-

tric stress by around 10% while with a dependent-field one a reduction of 29% can be achieved.

5.3. The quality and type of substrates

Despite all publications, which have concluded that PDs occur in the silicone gel or at the 
interface between the substrate and the gel, a different conclusion about the origin of PDs was 
reported in [52]. To explore the actual origin of PDs, six insulating liquids including Silicon 
oil #1 (Sil20), Silicon oil #1 (Sil350), Transformer oil (Toil), Synthetic capacitor liquid (Scl), 

Synthetic transformer liquid (Stl) and Ester liquid (Est), which have different PD properties 
were used instead of gel, and three substrate materials including AlN, Al

2
O

3
, and glass/epoxy 

composite were also examined.

A rather large variation in PDIV was observed for six mentioned liquids used in a point-plane 
electrode geometry under 50 Hz AC voltage at room temperature (20°C). However, a sub-

strate test geometry similar to an IGBT shows almost no changes in PDIV for the mentioned 
different liquids. Moreover, for the IGBT test geometry, PDs appear in both polarities and 
provides somewhat symmetrical patterns with good stability. However, asymmetrical PRPD 

Figure 16. The influence of nonlinear FDC coating layer on reducing the electric field in the module [48], License No. 

4383260855923.
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patterns for the point-plane electrode geometry were obtained. Using the gel in the men-

tioned experiments produces no change. Thus, it was concluded that PDs recorded with the 
substrate indeed do not occur within the liquid or the gel. The only remaining possibility is 

that PDs originate from the porous nature of the AlN or Al
2
O

3
 substrates. This is a hypothesis 

opposed to the ideas commonly accepted. The experiments carried out with another sintered 

porous material, and with a non-porous material (epoxy resin) confirm this hypothesis where 
with epoxy, no stable PD regime can be achieved.

In the almost same direction, it was experimentally shown in [53, 54] that surface discharges 

initiated at the triple junction and propagated at the gel-AlN substrate interface creates cavi-

ties composed of tree-like structure and spherical sub-cavities leading to the degradation of 

AlN substrate [53] as well as give rise to the growth of cavities in the gel [54]. Regarding the 

first issue, other substrates such as Al
2
O

3
 and glass were compared with AlN. The cavities 

usually start from the triple junction with high voltage and being pushed away from the high 

voltage conductor through a conductive channel on the power module substrate. Focusing on 
the conductive channel, it was found that during repetitive surface discharges, desorption of 

nitrogen from AlN substrate results in the formation of Al and this leads to a decrease in the 

resistance of cavity path that was measured around 5 kΩ/100 μm for AlN compared to above 
1 MΩ/100 μm for glass and Al

2
O

3
. Thus, it was justified that the high electric field at the tip 

of surface conductive paths is the reason for elongation the cavity stopping length for AlN 

to more than twice than that on other substrates. To address the second issue, the dynamic 

potential distribution of surface discharges in gel was measured by a two-dimensional sens-

ing technique with a Pockels crystal [54].

Another survey of the topics discussed in this book chapter can be found in [55] where other 

papers, as well as other aspects of the documents reviewed in this book chapter, are evalu-

ated. These two publications, [55] and this book chapter, cover together almost all electrical 

insulation issues in power electronics modules.

6. Conclusion

The book chapter reviews some technical issues raised for electrical insulation weaknesses in 

high power IGBTs. FEM modeling of electric stress inside modules, which have perfectly sharp 
edges, is a challenge where using rounded edges or assuming measuring points at a distance 

from edges are used to address this issue. Although PRPD patterns can be used to identify the 
origin and location of PDs, the hypotheses proposed based on the measured patterns have not 
reached an agreement. Further investigation is also needed to determine permissible levels 
for time and frequency dependent diagnostic methods for modules. The optical technique is 

a promising technique to localize PDs in a power electronics module. Using linear and non-

linear resistive electric field control as a coating layer or using field dependent permittivity 
materials as a filler in the silicone gel can be used to control PD in modules. However, these 
mitigation solutions are not mature and need further research.
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