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Abstract

In the last decade, increased tendency in the field of automotive industry was focused on
the development of highly efficient and low-cost electric propulsion systems to replace the
existing internal combustion solutions. The aim is to reduce the pollution due to carbon
dioxide emissions into the air. Several electric machine topologies with their power elec-
tronics, control and supply units are continuously in the development process to reach the
desired goal. One such machine is the switched reluctance machine (SRM), reaching
increased power density, low cost and possibility of continuous operation despite fault
occurrence. Designing the machine, choosing its power electronics and controlling the
machine to diminish the negative effect of the torque ripples are key points in reaching
the proper propulsion system. The main topics presented in detail in this chapter are
managing the reader’s skills with an analytic design breviary, presenting the machine’s
control strategies for instantaneous torque linearization and finally, showing a power
converter topology with increased performances in low voltage applications. To be more
close to such an application, the exampled machine is developed for a light electric vehicle
for people with physical disabilities. Operational skills of the machine will be validated
based on complex simulations.

Keywords: switched reluctance machine (SRM), design breviary, power electronics,
torque smoothening, light electric vehicle

1. Introduction

Nowadays, research activity in the field of automotive industry receives a strong influence due

to necessity to reduce the emissions of polluting gasses in the atmosphere. Hence, replacing the

classical internal combustion engines with electric propulsion systems that are non-polluting

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



became a hot topic in research labs all over the world [1]. Different electrical machine structures,

their power electronics and supply units are continuously developed and tested, aiming the goal

of high efficiency at as low costs as possible. Induction machines and permanent magnet

machines are now implemented on Tesla and Toyota electric vehicles. However, their design

and building costs are higher compared with other machine topologies, such as the switched

reluctance machine (SRM). The latter has the main drawback of more complex power electronics

and complex control. However, with the advance of the semiconductors and processors, it

became possible to develop reduced price electronics and their applied control for SRMs.

Another feature of the SRM is the ability to continuously operate even in faulted conditions

and if added to the original topology, structural modifications one can reach a highly fault

tolerant propulsion machine [2].

Designing an SR machine is not too complicated, however, it is important to establish during

sizing process, proper flux density values in the magnetic core. Too low values have the

outcome of an unsaturated machine and by this, poor power density and too high values will

limit the developed power and cause core heating [3]. Proper sizing of the air-gap is having

huge performance influence; hence, a compromise must be considered between low values

and building costs that are increasing drastically for values smaller than 0.5 mm.

Choosing and designing the proper architecture for the power electronics for an SR machine is

crucial from the point of view regarding costs and ability to perform torque linearization

control. If no such dedicated control is required, only classical hysteresis one is engaged, there

are simple power converters that can be used with minimal number of transistors. However, if

one desires to develop and use torque smoothening procedures, topologies that allow these are

mandatory to be used, based on complete or half-H bridge designs, with independent switch

control. Moreover, the driver that turns on/off the power switches must be able to maintain the

state of the switch for an unlimited time [4].

A serious drawback of the SRM is the increased torque ripples that are caused due to the working

principle of the machine to switch the current from one phase to the next one that encounters the

lowest magnetic reluctance. By this, the rotor moves from unaligned to aligned rotor to stator

poles, the movement being characterized by a sudden instantaneous torque variation. Part of the

torque ripple minimization can be handled during the design phase [5], shaping correctly the

rotor poles function of the stator ones. However, this is limited up to an extent that is still

considered too much for automotive applications. The main method for decreasing as much as

possible the torque ripples that create mechanical stress, noise and vibrations is to engage direct

instantaneous torque control (DITC) of current profiling based on torque sharing functions (TSF).

For both, as mentioned in the previous paragraph, it is necessary to have certain electronics that

allow their operation. Following the details presented in this chapter, one can see that the toque

characteristic of the SRM can reach a shape just like that of an induction or synchronous motor,

yet using a much cheaper and more simple machine structure.

To be more comprehensive when designing such a machine, it is more transparent if one

considers a specific application. For this case, the application will be a light electric vehicle

designed for people with physical disabilities. Based on an existing DC machine mounted on
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such a vehicle, the main parameters that will be the start-up for the design process are: the

required output power (P2N) 1.2 kW, the supply voltage (UN) of 24 V, shaft speed (nN) of 3400

rpm and electromagnetic required torque (T) of 3.4 Nm. Besides these considerations, it is

mandatory that the machine needs to fit in the place of the existing DC machine. Hence, the

maximum dimensions allowed are as follows: for the outer diameter 115 mm and for the active

stack length 150 mm.

2. Design of the switched reluctance machine

Based on the specifications detailed in the introduction part, one can start sizing the SRM.

Before that the stator (QS) and rotor (QR) pole numbers must be imposed. Usually, three-phase

SRMs are cheaper both in electronics and machine building, but encounter high torque ripples,

while five- or six-phase machine with low torque ripples reach increased development costs.

Hence, the best compromise is to develop a four-phase machine, with a QS/QR ratio of 8/6 [6].

Another parameter that must be imposed is the flux density toward the air-gap (Bgmax) at 1.9 T.

The current computed function of the supply voltage and the machine’s requested power,

considering an efficiency of 0.65 (low power SRMs have quite poor efficiency) is I = 80 A. The

design process is an iterative one, as this will be explained later. Hence, the air-gap was set to a

low value of g = 0.1 mm, this is due to the dimension limitations of the outer machine diameter.

The most influential parameter of the machine is the mean diameter [7] (Dg).

Dg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2N �Qs � kσ

QR � π2 � kL �
nN
60 � Bgmax � 1� 1

Kcr

� �

� AS

3

v

u

u

t ð1Þ

In Eq. (1), k
σ
and kL coefficients are the leakage flux factors, chosen between 0.75 and 0.95,

respectively, the aspect factor, which can be calculated from the rotor pole number using Eq. (2).

kL ¼
π

2
�

1
ffiffiffiffiffiffiffi

QR
3
p ð2Þ

It should be mentioned that for this particular design, as the active stack length is given in the

specifications, one does not need to compute it any more. The term As represents the electrical

loading that is chosen in the range 25,000–100,000 A/m, where higher values correspond to

smaller dimensions [8]. Carter’s factor (KCR) considers the flux path’s distortion due to the

shape of the salient poles. Its value ranges between 1.4 and 2. The ratio of the mean diameter

with respect to the aspect factor will give an estimate of the active stack length of the machine

(lS), but as mentioned for this design, this is a known value.

The stator and rotor pole pitch is computed as ratio between the mean diameter and the

number of the poles, using Eq. (3).
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τS;R ¼ π �
Dg

QS;R

ð3Þ

The width of the stator and rotor poles (bpS and bpR) can be calculated by using the pole pitch

values, considered about 0.1–1.3 of it. The values chosen for stator and rotor were, respectively,

0.8 and 1.15 to reach as low torque ripples as possible [6]. Using these values, the yokes of the

stator and rotor can be computed considered in the range of 0.5–1 of the pole width. Smaller

values will reach proper saturation in the magnetic cores [5, 9] which will help to extract the

energy from the coils when the phase is turned off. However, too low values will saturate the

core too much resulting in the overheating of machine.

The slot openings are used to determine function of the stator and rotor pole widths and the

pole pitch values computed with Eq. (3).

bcS;cR ¼ τS;R � bpS;pR ð4Þ

Using a catalogue value for the shaft (dax) one can now finalize the sizing process that regards

the SRM’s rotor. The rotor pole height, meaning the dimension from the airgap to the rotor

yoke, and the inner rotor diameter will be computed using Eqs. (5) and (6), both function of the

rotor yoke height (hjR).

hpR ¼
Dg � g

2
� hjR �

dax
2

ð5Þ

DiR ¼ Dg � g� hjR � hpR ð6Þ

To finalize the sizing process with regard to the stator; firstly, it is necessary to size the coils of

the machine, because these influence the height of the stator poles. This process starts from the

magnetomotive force (mmf). There are several methods to compute it, but one efficient and

simple way is to take advantage of the known parameters, such as the air-gap length (g) and its

flux density value (Bgmax), the saturation factor, the flux leakage factor (kρ) and the relative

permeability of the air (µ0).

Θ ¼
g � ksat � Bgmax

kρ � μ0

ð7Þ

Now a round value of the number of turns can be established as a function of the magneto-

motive force and the phase current (I) of the SRM.

Nf ¼ round
Θ

I

� �

ð8Þ

Next, sizing the cross-section of the wire has handled function of the current density (Jc) in the

range of 2.5–8 A/cm2.

Scond ¼
Irms

Jc
ð9Þ

Switched Reluctance Motor - Concept, Control and Applications62



In Eq. (9), it is seen the rms value of the current (Irms) is used instead of its rated value. The

reason is that the current is switched from one phase to another, and the machine has four

phases; one phase will be energized for only ¼ of the entire period. Hence, the rms current will

be computed as the function of the number of phases (Nphase) like in AC supply systems, based

on Eq. (10).

Irms ¼
I

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Nphase

p ð10Þ

The used wire diameter can be computed as the function of the cross-section in Eq. (9). This

value will be used for arranging the turns inside the stator slots, as it will be presented as

follows. The total number of turns is placed in several layers. Each layer will have a certain

number of turns (Nsp_strat), computed function of the slot opening (bcS), its insulation (giz) and

the actual wire diameter.

Nsp_strat ¼ round
lbob � 2 � giz

1:05 � d

� �

ð11Þ

The number of layers (nstrat) is found by dividing the total number of turns by the number of

turns in a layer. Now, the height of the coil can be used to find the function of the number of

layers, the wire diameter and the isolation of each wire (giz_strat), using Eq. (12).

hbob ¼ nstrat � ðdþ giz_stratÞ þ 2 � giz ð12Þ

The area inside the stator slot occupied by the coil is used to compute function of the number

of turns, the cross-section of the wire and a factor (ku) ranged between 0.5 and 0.85 that

considers the wire surface imperfections.

Abob ¼ Nf �
Scond
ku

ð13Þ

The term Abob is used for only half of the stator slot. In one slot, two such areas need to fit as

two phases sharing the same slot. Hence, the total slot area will be computed using Eq. (14).

Ac ¼ 1:1 � 2 � Abob ð14Þ

The term ‘1.1’ is added as a safety caution because there are other imperfections of the coils

that cannot be taken into calculation every time. Having these dimensions fixed, one can

compute the height of the coil using Eq. (15).

hcS ¼ round
Ac

bcS

� �

ð15Þ

Usually for simplifying the cutting process, round values are imposed. At this point, it is easy

to find the height of the stator pole (hpS), adding to the height of the coil the height of a

nonmagnetic displacer (hlim) used to fix the coil into the slot.
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hpS ¼ hcS þ hlim ð16Þ

At this point, having all the required dimensions, it is possible to compute the outer diameter

of the machine, for this project, to check if this does not exceed the imposed value.

DM ¼ Dg þ gþ 2 � hpS þ 2 � hjS ð17Þ

To be able to compute the resistance of one phase winding, it is necessary to know the wire

length function of the machine dimensions.

linf ¼ 2 �Nf � ðlS þ hjSÞ ð18Þ

Finally, the resistance is given by Eq. (19) considering the cross-section and the material

properties.

R ¼ ρCu �
linf
Scond

ð19Þ

2.1. Analytic calculation of losses and torque in SR machines

To calculate the efficiency of the newly designed SR machine, different methods for losses

approximation can be used [7, 10]. Preliminary, it is mandatory to compute the frequency of

the flux density variation in the magnetic core, both for the stator and the rotor.

f jS ¼
QS

2
�
nN
60

f jR ¼
QR

2
�
nN
60

ð20Þ

The specific losses in the machine’s core, computed for standard values measured for 50 Hz and

1 T are calculated using Eq. (21), where BjS and BjR are the stator and rotor yoke flux densities.

pFeS ¼ pFesp � BjS � f jS

pFeR ¼ pFesp � BjR � f jR
ð21Þ

To calculate the losses in the machine and function of its dimensions, one needs to compute the

weight of the assemblies of the core function of the used material’s properties.

GFejS ¼ π �
D2

M

4
�

DM

2
� h2jS

� �2
" #

� lS � ρFe

GFejR ¼ π � hjR þ dax
2

� �2
� dax

2

� �2
h i

� lS � ρFe

GFepS ¼ QS � bpS � hpS � lS � ρFe

GFepR ¼ QR � bpR � hpR � lS � ρFe

ð22Þ

The losses in the winding have computed function of the internal resistance and the phase

current.
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Pj ¼ R � I2 ð23Þ

The mechanical losses are estimated approximately 0.5% of the machine’s output power.

PM ¼ 0:005 � P2N ð24Þ

Finally, the total losses of the machine will be the sum of the above calculated ones:

PT ¼ Pj þ PFe þ PM ð25Þ

Hence the efficiency will be

ηSRM ¼
Pout

Pout þ PT
ð26Þ

The developed torque can be used to compute function of the mmf created in the machine and

its main dimensions using Eq. (29).

TSRM ¼ 2 � ðNf � I
2Þ �

Dg

2
� μ0 �

lS
2g

ð27Þ

The term 2g (twice the air-gap) in Eq. (29) stands because always two diametrically opposed

poles contribute to the torque development, hence, the air-gap length is considered double

along the flux path.

a)

b) c)

Figure 1. The resulted SRM dimensions: (a) the entire machine, (b) details of the stator and (c) details of the rotor.
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Starting from the requirements detailed at the beginning of the chapter and using the above

presented breviary, an SRM designed for light electric vehicle was obtained with the main

dimensions which are depicted in Figure 1.

To certify that the machine meets the requirements of developing at 80 A, a torque of 3.4 Nm at

3400 rpm, in finite element analysis (FEA) model was created in Cedrat Flux 2D software. The

current in the windings was handled using hysteresis controller referenced at 80 A as depicted

in Figure 2a. At rated current the mean torque reaches the value of 3.4 Nm, but, despite

attempts to reduce the torque ripple by design, these are still quite high. In such cases, the

SRM cannot be used for electric propulsion systems as those ripples create high noise and

vibration in the mechanical transmission and the car’s body itself.

3. Torque linearization control strategies for the SRM

The results shown in Figure 2 indicate that the operational skills of the SRM, but more, it is

also proved that the torque ripples are too high compared to the requirements of an electric

vehicle propulsion unit. The structure recorded a success up to an extent. However, the torque

ripples need to be further reduce to fit the machine in the EV requirements. For this purpose,

special control procedures are engaged, such as direct instantaneous torque control (DITC)

[11, 12] or current profiling based on torque sharing functions (TSF) [13].

Before detailing each of the above-mentioned methods, some requirements regarding their

implementation must be highlighted. Besides a good knowledge about the parameters of the

machine, of the power converter and of the controller’s sampling frequency, each of the two

methods is based on inserting into the control model look-up-tables (LUT). For DITC, the LUT

must contain information of the variation of the torque versus current and rotor position, as

depicted in Figure 3a. Usually the content of this LUT is fetched from the FEA model of the

machine. If the laboratory facility permits it, it is better to record this data from experimental

measurements. However, as its name mentions it, DITC is an instantaneous torque control;

hence, at each computation sample, the controller must have precise information of the torque

values. This information can be extracted from the LUT, knowing precisely the shaft position

and the measured phase current.

The second control strategy, the current profiling based on TSF, requires a reversed structure of

the LUT depicted in Figure 3a, having the variation of the current versus torque and rotor

a) b)
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Figure 2. The simulation results of the designed SRM: (a) the phase currents and (b) the developed torque.

Switched Reluctance Motor - Concept, Control and Applications66



position. The data can be obtained proceeding for a reversed interpolation of the torque versus

current and rotor position, with respect to the phase current. This LUT is depicted in Figure 3b.

3.1. Direct instantaneous torque control (DITC)

The DITC (see Figure 4a) method [14] invokes a procedure of torque smoothening based on

the control of instantaneous torque developed by the machine, using a hysteresis band. The

main advantage of this procedure is that it does not require any PI (proportional integral) or

PID (proportional integral derivate). The actual shape of the torque is regulated based on a

double-layered hysteresis band. The comparison of the torque with the hysteresis band returns

directly the gate signals for the power switches. As the torque is not measured directly from

the machine, but it is estimated from the LUT, the setup does not require an instantaneous

torque transducer which usually costs too much.

Practically, the DITC is implemented using two hysteresis bands, one larger than the other. The

controller divides these into three regions, two of them form the torque reference to the upper

and lower extremities and the main one is placed in the middle as depicted in Figure 4a.

During single phase conduction, the torque is regulated inside the limits of the main (inner)

band (as shown in Figure 4b). In Figure 4c, with blue the voltage of the outgoing phase is

depicted, while with red the voltage of the incoming one is represented. With the same colors,

in Figure 4d, with blue the torque of the outgoing phase is represented while with red the

torque of the incoming one is shown. The main involvement of the DITC is reflected during

phase commutation. During phase commutation, the torque is regulated by the incoming

phase, on one hand, to maintain it inside the inner hysteresis band, and on the other hand, by

the outgoing one that becomes energized just enough to increase the torque when it falls and

reaches the lower limit of the outer band. On increasing the torque, this will be re-established

inside the inner band. At this point, the current increases close to maximum value, hence the

torque tends to increase fast. To compensate this issue, the outgoing phase is again energized

but with negative voltage (Figure 4c) to force fast-fall of the torque to maintain it in the desired

a) b)

Figure 3. The look-up-table used for the DITC (a) and TSF (b).
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band. From the moment when the incoming phase is energized, despite the times when the

torque gets out of the inner hysteresis band, the outgoing phase is kept at zero voltage. Hence,

the phase torque is regulated precisely during phase commutation, as seen in Figure 4c, time

interval when usually the increased ripples appear.

3.2. Torque sharing functions (TSF)

Despite DITC, there are control methods that are more precise based on shaping the current

and by this, automatically modifying the torque profile to become close to the linear one. The

torque sharing function (TSF) is engaged mainly in the region of phase switching. The outgo-

ing and incoming phase currents are profiled based on specific functions in order to compen-

sate the ripples in the torque characteristic. One important issue that needs to be controlled for

this strategy is the overlap angle [15] that needs to be precisely 15 mechanical degrees θov:

θov ≤
θrot

2
� θoff ð28Þ

In Eq. (30), θrot denotes the period of the rotor and θoff the turn off angle; with θon the turn on

angle of the phase is denoted for all the following equations. A general rule for engaging the

TSF of the rotor position described in Eq. (31) is valid for all the following analysed

cases [16, 17]. As it can be seen there are five levels of the control based on the rotor position.

While the machine phase is in non-conducting region, the TSF is null. During the increase and
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Figure 4. The DITC control scheme (a), the instantaneous torque (b), voltage of adjacent phases and (c) the phase torque (d).
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decrease of the current, the slopes are described by functions finc(θ) and fdec(θ). If the region of

the phase is in full conduction (neither increase nor decrease of the current), the TSF becomes

equal with the reference torque. As it can be seen that the profile of the current is obtained

using the LUT data depicted in Figure 3b.

TSFðθÞ ¼

0 0 ≤θ ≤θon

f incðθÞ θon ≤θ ≤θon þ θov

Tref θon þ θov ≤θ ≤θoff

f decðθÞ θoff ≤θ ≤θoff þ θov

0 θoff þ θov ≤θ ≤θp

8

>

>

>

>

<

>

>

>

>

:

ð29Þ

In total, there are four different types of TSF named after the mathematical operator that

describes them: linear, sinusoidal, exponential and cubic.

The linear TSF refers to the fact that the instantaneous torque during phase commutation

follows a linear variation with the rotor position. The function that describes this variation is

detailed in Eq. (32) for the increasing and decreasing slopes.

f incðθÞ ¼
Tref

θov
ðθ� θonÞ

f decðθÞ ¼ Tref �
Tref

θov
ðθ� θoffÞ

ð30Þ

It has to be noted that during phase commutation the incoming and outgoing phases of the

machine are both active.

Using sinusoidal TSF implies using functions with sinusoidal or co-sinusoidal evolution of the

TFS during phase commutation. The model that refers to such variations is detailed in Eq. (33).

f incðθÞ ¼ 0:5 � Tref � 0:5 � Tref cos
�

π=θov � ðθ� θonÞ
�

f decðθÞ ¼ 0:5 � Tref þ 0:5 � Tref cos
�

π=θov � ðθ� θoffÞ
� ð31Þ

In Ref. [11], the functions detailed in Eq. (33) are presented only function of the on and off

angles of the phase. Here, in order to improve the functionality, the overlap angle is also

introduced.

The third model, the exponential TSF, considers the on and off angles, the actual rotor position

and the overlap angle too, as detailed in Eq. (34).

f incðθÞ ¼ Tref 1� exp
�ðθ� θonÞ

2

θov

 !" #

f decðθÞ ¼ Tref exp
�ðθ� θoffÞ

2

θov

 !" # ð32Þ

Cubic TSF is the last involved method, described as third degree polynomial functions for

both increasing and decreasing slopes, as explained in Eq. (35).
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f incðθÞ ¼
3Tref

θ
2
ov

ðθ� θonÞ
2 �

2Tref

θ
3
ov

ðθ� θonÞ
3

f decðθÞ ¼ Tref � f incðθ� θoff þ θonÞ
ð33Þ

Plotting in Figure 5, all the four functions superimposed for comparison some important

remarks can be underlined.

As depicted in Figure 5a, the TSF for the cubic and sinusoidal evolutions nearly overlap and

for a better comparison in Figure 5b, a zoomed plot of the rising slopes of the functions is

depicted.

The exponential one has the largest deviation from the linear one, the latter being considered

for reference. Another important remark to be mentioned is that the machine’s geometry or its

parameters do not have an important significance over the effectiveness of the TSFs. Main

modifications regard changing the stator to rotor pole ratio. However, it is possible to invoke

optimization regarding the losses and the torque variation [17], together with the on and off

switching angles.

3.3. Testing the control strategies for torque linearization

As already stated, and depicted in Figure 2, the torque ripples of the SRMwith ‘natural‘ hysteresis

control strategy are too high to be used in EV propulsion systems [18]. However, applying the

control procedures detailed in Section 3.2, this drawback can be compensated to reach a torque

characteristic close to a linear one, comparable with the one of a permanent magnet synchronous

or induction machine. To test the control strategies, a Matlab/Simulink model was created for the

SRM based on a hybrid model based on equations and on data both fetched from the FEAmodel.

a)           b)
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Figure 5. The variation of the TSFs used in the SRM controller.
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In Figure 6a and b, the simulation results for the DITC are depicted for an imposed speed of

1000 rpm testing at 1 and 3 Nm. The phase currents and the phase torques provide information

of the contribution of each of them to the total electromechanical torque development. The

latter, as seen, reaches a quite linear characteristic, which is maintained inside the hysteresis

bands. One important mention that needs to be expressed is that for such simulation or real

control, the computation step time must be imposed to values that allow at least 5–10 steps

inside the hysteresis band. Another important issue is that the width of the bands automati-

cally increases the switching frequency of the transistors. Hence, a compromise between the

latter and the type of power switch used must be considered when sizing the bands.

Plotting the results for the linear TSF was accomplished in Figure 6c and d for the same conditions

as for the DITC. There are similarities between them; however, the results for the linear TSF are

smoother than those obtained with DITC. The variation of the phase torque during phase

switching is quite linear, as expected for this method. Both for the DITC and the linear TSF tests

were performed at low and rated torque to prove the operational skills in extreme conditions. As

Figure 6 shows that the expectations are reached in all the cases. Tests were performed ranging

the rotor speed from low to rated one and still the controller responded well, linearizing the

torque as expected.

The other three TSF strategies, the exponential, cubic and sinusoidal ones were tested for 1000

rpm at 3 Nm and are depicted in Figure 7. As seen, these too can linearize the shape of the

instantaneous torque.

However, the lowest ripple is yelled by the exponential TSF while for the cubic and sinusoidal,

during phase commutation there are some spikes that are visible in the plots. However, as

a) b)                                           c)                                      d)
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Figure 6. Simulated results for: (a) DITC @1 Nm, (b) DITC @ 3 Nm, (c) linear TSF @1 Nm and (d) linear TSF @3 Nm.
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global conclusion, the DITC and all the four TSFs can move the SRM from the point of high

torque ripples to the point where these are neutralized by obtaining a linear characteristic. By

this, the SRM becomes a candidate with serious advantages for the field of electric vehicle

propulsion systems, combining low costs, high efficiency, fault tolerance and linear torque,

over the entire range of speed and torque values.

4. Custom made SRM electronic converter architecture

In SRM-drive application, the 48 V input voltage seems to present some advantages in com-

parison with the 24 V systems. For application where the 48 V is not available, as for the

designed SRM, this section is presenting a possible solution regarding the electronics that can

enhance the performances of SRM in 24 V systems. One way to boost the input voltage by

means of a front-end converter is increasing the voltage up to 48 V. For this, numerous

electronic circuits can be implemented [19]. Usually, these converters are using an inductance

that can increase the size of the converter, but also its price.

In this section, based on a derived C-dump topology [20], a low-cost SRM electronic circuit is

presented which can add a boost voltage to a regular asymmetrical converter, increasing the

overall performances of the drive system. The present circuit is fed from a 24-V power supply, as

designed, and can perform in some situations like the classic SRM converter with 48 V input
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Figure 7. Simulated results for exponential, cubic and sinusoidal TSF @3 Nm.
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voltage. This is achieved, as depicted in Figure 8, by adding the transistor Q and the capacitor C

to a regular asymmetrical SRM drive. Moreover, the input diode D is needed for proper control

of the power flow. This diode is adding some losses to the circuit, but the auxiliary feature

obtained by adding protection in revered polarizations is an important characteristic for automo-

tive electronics. The auxiliary circuit is boosting the voltage across the capacitor C, by recovering

the energy from the motor during de-fluxing. The voltage across C can be higher than the input

voltage and this energy can be re-used to drive the motor when needed. Thus, with proper

control, the motor can be fed in this situation with a higher voltage then the input voltage. If the

voltage across C is regulated to a 48 V, the drive can act in some working modes like a 48-V drive

system.

The energy recovered from the motor is not high enough to fed the motor all the time, but if we

consider that the high voltage is strongly needed only in some particularly situations like the

beginning of the phase energizing, the stored energy in the capacitor C could be sufficient.

The circuit is presented in Figure 8, while Figure 9 highlights the main working modes for one

phase. In the first two figures (Figure 9a and b), the phase fluxing is presented, while Figure 9c

and d highlights de-fluxing possible working modes.

In the followings, two comparison situations will be presented to highlight the advantages

obtained by using the presented topology in correlation with the regular asymmetrical SRM

converter, applied on a 48-V SRM. In Figure 10 and 11, the instantaneous toque, the phase

current and the phase voltage are presented at 800 and 1000 rpm, for the analyzed converter

topologies.

This circuit is working with different voltage levels, thus the control of the T1 switch should be

correlated with the working speed. At low speed, the energy needed to obtained the 48 V

across the C is easily obtained, thus the excess energy is used during normal phase operation,

or correlated with special control algorithms that can be used for smoothing the torque ripple

at low speeds. At high speeds, the energy recovered in the capacitor C is just high enough for

full or partial first energising of the phase coil.

If the energy recovered in the capacitor C is managed in the right way, the drive converter can

act almost like a 48-V converter. This is boosting the performance of the drive system, by
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Figure 8. Proposed SRM boost converter.
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adding flexibility regarding the torque control, extend the working range and is expected to

add 3–5% on the system efficiency. Moreover, the presented converter topology can be used to

enhance the performances also in 12 V systems.

Comparing the results in Figure 10 and 11, a first remark regards the slope of the energized

coil. It can be observed that due to boosted voltage, the slope of the current is faster than in the
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Figure 9. Operation points for the investigated converter topology; one phase is considered; (a and b) phase energising; (c

and d) phase de-fluxing.
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Figure 10. Waveforms for the proposed converter (a) and regular asymmetrical SRM converter (b) at 1000 rpm.
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case of non-boosted one. On the other hand, if comparing the mean torque, developed by the

machine for all cases, at 1000 rpm this value reaches 3.36 Nm for the boosted case, instead of

3.18 Nm for the regular converter. For the second case of analysis, the mean torque in the case

of the modified converter yells for 3.65 Nm while for the regular one reaches only 3.55 Nm.

Implying such changes, one can express that with low cost modifications of a classical asym-

metrical converter structure, higher performances can be obtained. It is true that the gain is not

extremely high, but considering that the subject is dedicated to electric propulsion systems,

each step forward in increasing the autonomy of the vehicle is an addition to the actual

progress of science in this field of high interest nowadays.

5. Conclusions

The goal of the chapter is to offer a solution as a complete development tool for the reader to be

able to design an SRM, design an increased performance power converter for it and create smart

control strategies to reach linear torque characteristics as requirement for electric propulsions.

Combining analytical models of the design with finite element analysis-based validation can

reach in a properly design machine. Usually, a backtracking concept is engaged, performing

changes at the level of design and observe performance modifications during FEA simulations.

Once the machine fits in the designer’s expectations, adding an electronic power converter and

torque smoothening strategies becomes the second and third steps in the design of the system.

The issues detailed in the chapter points out that an SRM can be used easily in the field of electric

propulsion. Placing it in the list of serious candidates for the automotive industry, adds to the
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Figure 11. Waveforms for the proposed converter (a) and regular asymmetrical SRM converter (b) at 800 rpm.
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actual status of research focused on PMSMs or AC machines, with a low cost, robust and simple

solution. Comparing the SRMwith the above-mentioned machines, it can be stated that all need

precise rotor position measurement, performed by a resolver, all need power electronics and a

main electronic digital controller. However, the price of electronics nowadays decreased a lot due

to fast advance. Hence, the battle on financial level is now dictated by the architecture of the

machine, the materials used and the complexity of its geometry. Regarding the magnetic cores,

the windings, the use of permanent magnets, etc., a comparative analysis of the ac machines with

the SRM points strongly for higher costs and more complex manufacturing process.

Worldwide, there are already several companies that invest in development of SR machines for

propulsion systems, both for light and heavy electrical vehicles.
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