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1. Introduction

We present here our contribution to the "Machine Learning for Bioacoustics" workshop
technical challenge of 30th International Conference on Machine Learning (ICML 2013). The
aim is to build a classifier able to recognize bird species one can hear from a recording in the
wild.

The method we present here is a rather simple strategy for bird songs and calls classification.
It builds on known and efficient technologies and ideas and must be considered as a baseline
on this challenge. As we are also co-organizing this challenge, our participation aimed at
defining a baseline system, with raw features, that all other participants could compare too.
We did not look for optimizing each parameter of our system, and as any other participant,
we conducted all the modeling and experimentation applying strictly the rules of the challenge.
The method we present is dedicated to the particular setting of the challenge. It relies in
particular on the fact that training signals are monolabel, i.e. only one species may be heard,
while test signals are multilabeled.

2. Description of the method

We present now the main steps of our approach. The Figures 1 and 2 illustrates the main steps
of the preprocessing and of feature extraction.

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



We consider we want to learn a multilabel classifier from a set of N monolabeled training
samples {(xi, yi) | i = 1.. N} where each input xi is an audio recording and each yi is a bird species
∀  i,yi ∈  { bu | u = 1.. K} (in our case there are 35 species, K=35). The system should be able to
infer the eventually multiple classes (presence of bird species) in a test recording x.

Figure 1. Main steps of the preprocesing and of feature extraction.
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2.1. Preprocessing

Our preprocessing is based on MFCC cepstral coefficients, which have been proved useful for
speech recognition [4, 11]. A signal is first transformed into a series of frames where each frame
consists in 17 MFCC (mel-frequency cepstral coefficients) feature vectors, including energy.
Each frame represents a short duration (e.g. 512 samples of a signal sampled at 44.1 kHz).

2.2. Windowing, silence removal and feature extraction

2.2.1. Windowing

We use windowing, i.e. computing a new feature vector on a window of n frames, to get new
feature vectors that are representative of longer segments. The idea is close to the standard
syllable extraction step that is used in most of methods for bird identification [12, 2, 1], but is
much simpler to implement. In our case we considered segments of about 0.5 second duration
(i.e. n ~ few hundreds of frames) and used a sliding window with overlap (about 80%).

2.2.2. Silence removal

We first want to remove segments (windows) corresponding to silence since these would
perturbate the training and test steps. This is performed with a clustering step (learnt on
training signals) that only considers the average energy of the frames in a window. Ideally this
clustering makes that the windows are clustered into silence segments on the one hand, and
calls and songs segments on the other hand. Each window with low average energy is
considered a silence window and removed from consideration. Our best results were achieved
when performing a clustering in three clusters and removing all windows in the lowest energy
cluster.

2.2.3. Feature extraction

The final step of the preprocessing consists in computing a reduced set of features for any
remaining segment / window. Recall that each segment consists in a series of n 17-dimensional
feature vectors (with n in the order of hundreds). Our feature extraction consists in computing
6 values for representing the series of n values for each of the 17 MFCC features. Let consider
a particular MFCC feature v, let note (vi)i=1..n, the n values taken by this feature in the n frames
of a window and let note vi the mean value of vi. Moreover let note d and D the velocity and
the acceleration of v, which are approximated all along the sequences with di=vi+1-vi, and
Di=di+1-di. The six features we compute are defined as:
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At the end a segment in a window is represented as the concatenation of the 6 above features
for the 17 cepstral coefficients. It is then a new feature vector St (with t the number of the
window) of dimension 102.

Each signal is finally represented as a sequence of feature vectors St, each representing duration
of about 0.5 second with 80% overlap.

2.3. Training

Based on the feature extraction step we described above the simplest strategy to train a
classifier (e.g. we used Support Vector Machines) on the feature vectors St which are long
enough to include a syllable or a call, with the idea of aggregating all the results found on the
windows of a test signal to decide which species are present (see section Inference below).

Yet we found that a better strategy was to first perform a clustering in order to split all samples
(i.e. St) corresponding to a species into two different classes. The rationale behind this process
is that calls and songs of a particular species are completely different sounds [9] so that
corresponding feature vectors St probably lie in different areas in the feature space. It is then
probably worth using this prior to design classifiers (hopefully linear) with two times the
number of species rather than using non linear classifiers with as many classes as there are
species.

We implemented this idea by clustering all the frames St for a given species into two or more
clusters. The two clusters are now considered as two classes that correspond to a single species.
At the end, a problem of recognizing K species in a signal turns into a classification problem
with 2 x K classes. Note also that since the setting of the challenge is such that there is only one
species per training signal, all feature vectors St of all signal of a given bird species bu that fall
into cluster one are labeled as belonging to class bu

1 and all that fall into cluster 2 are labeled

as belonging to class bu
2.
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The final step is to learn a multiclass classifier (SVM) in a one-versus-all fashion, i.e. learning
one SVM to classify between the samples from one class and the samples from all other classes.
This is a standard approach (named Binary Relevance) for dealing with multilabel classifica‐
tion problem where one sample may belong to multiple classes. It is the optimal method with
respect to the Hamming Loss, i.e. the number of class prediction errors (either false positive
and false negative).

2.4. Inference

At test time an incoming signal is first preprocessed as explained before in section 2.1, silence
windows are removed (using clusters), and feature extraction is performed for all remaining
segments. This yields that an input signal is represented as a series of m feature vectors St.

All these feature vectors are processed by all 2K binary SVMs which provide scores that are
interpreted as class posterior probabilities (we use a probabilistic version of SVM), we then
get a matrix m x 2K of scores P (c |St) with c∈ {bu

j |u =1.. K ,  j =1,2} and t = 1..m.

We experimented few ways to aggregate all these scores into a set of K scores, one for each
species, enabling ranking the species by decreasing probability of occurrence. Indeed this is
the expected format of a challenge submission, from which an AUC (Area Under the Curve)
score is computed. First we compute 2K scores, one for each class, then we aggregate the scores
of the two classes of a given species.

Our best results were obtained by computing mean probabilities of all scores { P (c | st) | t=1..m }
for each class c, using harmonic mean or trimmed harmonic mean (where a percentage of the
lowest scores are discarded before computing the mean). This yields scores that we consider
as class posterior probabilities of classes given the input signal x, P (c | x).

The ultimate step consists in computing a score for each species bu given the scores of the two
corresponding classes bu

1 and bu
2. We used the following aggregation formulae:

P(bu | x)=1 - (1 - P(bu
1 | x)) ×  (1 - P(bu

2 | x)) (7)

3. Experiments

3.1. Dataset

We describe now the data used for the "Machine Learning for Bioacoustics" technical challenge.
Note that the training dataset (signals with corresponding ground truth) was available for
learning systems all along the challenge together with the test set, without ground truth.
Participants were able to design their methods and select their best models by submitting
predictions on the test set which were scores on a subset only of the test set (33%). The final
evaluation and the ranking of participants were performed on the full test set once all partic‐
ipants have selected 5 of all their systems submitted.
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Training data consisted in thirty-five 30-seconds audio recordings labeled with a single species;
there was one recording per species (35 species overall). Yet, some train recording can include
low signal-to-noise ratio (SNR) signals of a second bird species of bird. Moreover, according
to circadian rhythm of each species, other acoustically actives species of animals can be present
such as nocturnal and diurnal insects (Grylidae, Cicada).

Test data consisted in ninety 150-seconds audio recordings with possibly none or multiple
species occurring in each signal.

The training and test data recordings have been performed with various devices in various
geographical and climatological settings. In particular background and SNR are very different
between training and test. All wav audio recordings have been sampled at 44 100 Hz with a
16-bits quantification resolution. Recordings were performed with 3 Song Meter SM2+
(Wildlife Acoustic recording device). Each SM2+ has been installed in a different sector (A, B
and C) of a Regional Park of the Upper Chevreuse Valley.

Every SM2+ recorded, at the same dates and hours (between 24 03 2009 and 22 05 2009), one
150-seconds recording per day between 04h48m00s a.m. and 06h31m00s a.m., which corre‐
spond to the maximal acoustical bird-activity period.

3.2. Implementation details

3.2.1. Frames and overlapping sizes

We computed Mel-frequency cepstral coefficients (MFCC) with the melfcc.m Matlab function
from ROSA laboratory of Columbia University [8]. This function proposes 17 different input
parameters. We tested numerous possible configurations [7] and measured for each one the
difference of energy contained in a given train file and a reconstructed signal of this recording
based on cepstral coefficients.

The difference was minimal with following parameters values:

window=512, fbtype=mel, broaden=0, maxfreq=sr/2, minfreq=0,wintime=window/sr, hoptime=
wintime/3, numcep=16,usecmp=0, dcttype=3, nbands=32, dither=0, lifterexp=0,sumpower=1, pre‐
emph=0, modelorder=0, bwidth=1, useenergy=1

This process transforms a 30-seconds train audio recording (at 44 kHz sampling rate) into about
7 700 frames of 16 cepstral coefficients which we augmented with the energy computed by
setting useenergy=0.

Next we computed feature vector St on 0.5 second windows with 80% overlap, which yields
about n=300 feature vectors per training signal (hence per species since there is only one
training recording per species) and about m= feature vectors per test signal.

3.2.2. LIBSVM settings

We used a multiclass SVM algorithm based on LIBSVM [3]. We selected model parameters
(kernel type etc.) through two fold cross validation. Best scores have been obtained with C-
SVC SVM type and linear kernel function.
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4. Results

4.1. General results

We report only our best results that correspond to the method presented in this paper for
various computations for the class score at inference time.

Table 1 shows how the way the mean score of a class is computed on the test set (see section
2.4) and influences the final result. The table compares arithmetic mean, harmonic mean, and
trimmed arithmetic mean (at 10, 20 et 30%). A trimmed mean at p% is the arithmetic mean
computed after discarding p% extreme values, i.e. the p/2% lowest values and the p/2% largest
values.

Although our method is simple it reached the fourth rank over more than 77 participating
teams at the Kaggle ICML Bird challenge with a score of 0.64639 while the best score (Private
score) of all challengers was 0.694 (the corresponding public Leaderboard score was 0.743).
See [13] for the best system, and [14] for the description of the other systems. It is also worth
noting that our system ranked about fifteen only on the validation set (one third of the total
test set). This probably shows that our system being maybe simpler than other methods
exhibits at the end a more robust behavior and improved generalization ability.

Figure 2. Technical principle of our best-scored run
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4.2. Monospecific results

According to these scores for 7 species, we notice in Figure 3:

• Scores of our model are close to the best ones and evolve the same way for the concerned
species. The slight difference is probably due to the way we calculate (trimmed mean) the
presence probability of one given species in a 150-seconds recording compared to the
presence probability of this same species in a half-second frame.

• All teams were not able to score high for Columba palumbus (Common Wood-pigeon),
Erithacus rubecula (European Robin), Parus caeruleus (Blue Tit), Parus palustris (Marsh Tit),
Pavo cristatus (Blue Peafowl) and Turdus viscivorus (Mistle Thrush).

◦ In the Common Wood-pigeon (top of Figure 4) train recording, we can see a series of 5
syllables (around 500 Hz). Syllables are very stable and different. Their alternation in time
domain is strict. Also, the train recording is highly corrupted by cicadas between 4 and
6 kHz and in the test recording, SNR is low. The series last 2.5 seconds (compared to 4
seconds in TRAIN) and are composed of 6 syllables well differentiated.

◦ The European Robin (bottom of Figure 4) is typically bird species whose songs are diverse
and rich in syllables. Frequency-domain variability between different songs and syllables
is important. Song duration varies between 1.5 and 3 seconds. It is one of the rare species
that can emit up to 8 kHz.

◦ In Blue Tit train recording, other species of birds are present. Therefore, Blue Tit produces
5 different cries composed of 5 different syllables.

◦ Mistle Thrush train recording songs vary a lot and are very different from songs in the
test recordings.

MFCC compression has the property of lowering the weights of cepstral coefficients corre‐
sponding to higher frequencies of the spectrogram. As a result, MFCC can lead to losing a part
of the signal that may be important in European Robin's case. Futhermore, the high variability
of the cries or songs of the different species is difficult to manage by classifiers, especially when
they are constrained to retain and learn only 2 types of emissions per species. Considering two
types of emissions was particularly sub-optimal for these 3 cases.

Table 1. Score Kaggle icml (AUC) according to the way scores are aggregated. Public scores are calculated on a third
of the test data, while private scores are calculated on the other part. Only the private scores are the official
competition results. The best private score of all challengers is 0.694 [13].
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Figure 3. Mean Average Precision (MAP) scores on nine species (ordered in abscissa from left to right) of the 6 best
teams of the challenge. The label 'USTVetal' refers to our team (MAP was not the official metrics of the challenge but
give interesting comparisons).

• For all teams, scores were very satisfactory for Parus major (Great Tit), Troglodytes troglo‐
dytes (Winter Wren) and Turdus merula (Eurasian Blackbird).

◦ Great Tit's signals (middle of Figure 4) are very simple and periodically repeated. A 500-
hertz high-pass filter has been applied on the train recording.

◦ Winter Wren's acoustic patterns are really stable. A 1000-hertz high-pass filter has been
applied on the train recording.

◦ Eurasian Blackbird's train recording has been filtered by a band pass filter from 1-6 kHz.
Best Mean Average Precisions were obtained when low frequency and high-frequency
noise was removed by filtering.
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Figure 4. Time-Frequential spectrograms of train recording's extracts. From top to bottom: Common Wood-pigeon,
Great Tit and European Robin.

We assume that congruence observed between the scores of the 6 best teams for these 9 species
is the same considering each of the species. The fact that the scores of each species evolve the
same way indicates that the Mean Average Precision (M.A.P) differences between species can
be due to:

1. Some species produce sounds harder to characterize than others: strong variability in
frequency and/or temporal domain.

2. Train recordings can't be compared to test recordings regarding SNR: filters, harmonic
richness, source-microphone distances etc. differ a lot.

3. Signals of interest are easier to extract in some train recordings than in others because of
data acquisition. Some filters have been applied to a part of the train recordings.
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4. For a given species, the signals provided in the train recording may not include a global
repertoire and this way not be part of the respective species test recordings.

5. For each species, frequency content of emissions and location of source in its environment
differ widely. Each bird species uses the available space in an ecosystem differently.
Obstacles between source and microphone depend on diet and customs of species
(arboricol, walking, granivorous, insectivorous species etc). But all frequencies aren't
affected the same way by transmission loss in the environment. For example, low
frequencies are particularly well filtered by vegetation close from the ground. Common
Wood-pigeon typically emits in low frequencies (see figure 4).

6. Natural (rain, wind, insects) or anthropic (motors etc) acoustic events are more diverse
and strong (regarding energy) in test recordings than in train. In addition, these events
vary much from one species to an other.

Hence, it seems reasonable to affirm that more complex syllables extraction methods (seg‐
mentation step) combined with the MFCC way constitute a better solution to improve our
performance. They would allow us to retain intraspecific variability for each class and
eliminate non-relevant information.

5. Conclusion and perspectives

Although the method that we presented is simple it performed well on the challenge and was
much robust between validation step and test set. We believe this robustness comes from the
simplicity of the method that do not rely on complex processing steps (like identifying
syllables) that other participants could have used [10, 13, 15, 16].

Possible improvements would consist in the integration in the model of additional information
such as syllables extraction, weather condition, or a taxonomia of species, allowing more
accurate hierarchical classification schemes. Also the MFCC shall be replaced either by a
scattering transform [17] or a deep convolutional network [18], that build invariant, stable and
informative signal representations for classification.
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