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Chapter

Autophagy and Cell Death in 
Alzheimer’s, Parkinson’s and Prion 
Diseases
Samo Ribarič and Irina Milisav Ribarič

Abstract

Neurodegenerative brain disorders (NBD) impair brain cells’ proteostasis 
with the accumulation of normal, mutant, misfolded or unfolded proteins in the 
endoplasmic reticulum (ER). The increased ER burden of these proteins elicits the 
unfolded protein response (UPR) and stimulates autophagy (AUT). In the short 
term, UPR and AUT attenuate ER’s burden. With prolonged ER stress, the UPR 
changes from supporting cell survival to promoting apoptosis. The failure of the 
UPR, to meet the increased protein burden, leads to an increase in cytosolic protein 
accumulation that initially further stimulates AUT. Over time, the accumulated 
proteins in the cytosol undergo post-translational changes into toxic monomers and 
oligomers that repress AUT at multiple levels and promote cell death. This review 
describes the interlinked signalling pathways of AUT, apoptosis and necroptosis 
and their modulation by Alzheimer’s, Parkinson’s and prion diseases and outlines 
the pharmacological strategies for targeting AUT, apoptosis and necroptosis signal-
ling pathways.

Keywords: Alzheimer’s disease, apoptosis, autophagy, necroptosis, 
neurodegenerative brain disorders, Parkinson’s disease, prion diseases, proteostasis

1. Introduction

1.1 Proteostasis in neurodegenerative brain disorders (NBD)

Proteostasis integrates synthesis, folding, trafficking and degradation of 
proteins. It is perturbed in the early stages of neurodegenerative brain disorders 
(NBD), before clinical manifestations [1–3]. Mutant, misfolded or unfolded pro-
teins (P) or increased P production increases the endoplasmic reticulum (ER) pro-
tein burden in NBD such as Alzheimer’s (AD), Parkinson’s (PD) and prion diseases 
(PrD). This increased ER burden stimulates the unfolded protein response (UPR) 
and autophagy (AUT). The UPR response to ER stress is dichotomous [4–7]. During 
acute ER stress, UPR supports cell survival, by reducing ER’s protein folding load 
and increasing ER’s protein folding capacity. With prolonged ER stress, the UPR 
preferentially represses cell survival and triggers apoptosis. The failure of ER’s stress 
responses (i.e. increased protein folding capacity and enhanced removal of mutant, 
misfolded or unfolded proteins by the UPR pathway) to attenuate the P burden 
leads to an increase in cytosolic P accumulation that further stimulates AUT. Over 
time, these P undergo post-translational changes and produce toxic monomers and 
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oligomers; their production is stimulated by chronic inflammation and increased 
reactive oxygen species (ROS) production. These monomers and oligomers repress 
AUT and trigger either apoptosis or necroptosis (Figure 1) [4, 6–8].

1.2 Autophagy changes in selected NBD

An efficient autophagy (AUT) delays or attenuates the progression of AD, PD 
and PrD [9–12]. A summary of AUT changes in selected NBD is shown in Figure 2. 
Post-translationally modified proteins (PTMP)—such as soluble amyloid β-peptide 
42 with a single oxidised methionine residue at position 35 (Aβ42-MET35-OX) in 
Alzheimer’s disease, alpha-synuclein oxidised on methionine residues (MET-OX-
αSYN) in Parkinson’s disease and oxidised, self-propagating infectious isoforms of 
prion protein (MET-OX-PRPSc) in prion diseases (PrD)—inhibit (a) AUT, in AD, 
PD and PrD, and also (b) mitochondrial (MITO) function [13–23]. MET-OX-PRPSc 
indirectly damage MITO function. The normal prion protein (PrPc) binds with 

Figure 1. 
Proteostasis in human neurodegenerative brain disorders (NBD). Abbreviations: P (proteins), ER 
(endoplasmic reticulum), UPR (unfolded protein response), ROS (reactive oxygen species); red lines and 
arrows indicate progressive failure of proteostasis ultimately leading to NBD. Green arrows and lines indicate 
appropriate responses of proteostasis to altered P that prevent or slow down the progress of NBD.
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a variety of molecules, including copper ions [24, 25], and PrPc expression levels 
correlate with Cu/Zn superoxide dismutase, glutathione reductase and cytochrome 
c oxidase activities [26]. These observations support the hypothesis that PrPc is (a) 
an important endogenous scavenger, protecting structural and signalling proteins 
from oxidation, due to its high number of methionine residues, and (b) vital for 
the intracellular transport of copper to superoxide dismutase, which is dependent 
on copper binding for its antioxidant function. Loss of PrPc, due to conversion to 
PrPSc and MET-OX-PrPSc, which do not bind copper and have a reduced antioxidant 
activity, reduces the cell’s intracellular antioxidant and copper transport capacity 
and precipitates MITO dysfunction, due to an increased oxidation of cytochrome c 
oxidase and other MITO proteins [27–30].

AUT is inhibited at the stage of protein digestion (during autolysosome cargo 
degradation) by the undigestible PTMP and is diverted to the formation of large 
endocytic vacuoles that rupture and release the undigested PTMP into the cytosol, 
thus progressively increasing their intracellular concentration. PTMP of AD and PD 
accelerate microtube cytoskeletal depolarisation, thus blocking autolysosome retro-
grade trafficking and accelerating loss of neurites, synapses and synaptic transmission 
[31–39]. PTMP inhibition of MITO function leads to (a) a reduced ATP production 
and an increased MITO release of ROS and Ca2+ into the cytosol [38, 40–44] and  

Figure 2. 
Summary of AUT changes in selected NBD. Abbreviations: AKT (protein kinase B), GSK3 (glycogen synthase 
kinase 3), JNK (c-Jun N-terminal kinase), TAU (TAU protein), TAU-P (phosphorylated TAU protein).



Programmed Cell Death

4

(b) activation of inflammasomes with an increased release of cytokines interleukin 1 
(IL1), from microglia, and tumour necrosis factor alpha (TNFα), from astrocytes and 
neurons, and finally apoptosis or necroptosis [38, 45–52]. Apoptosis or necroptosis 
of nerve cells and astrocytes releases PTMP and their oligomers into the extracellular 
space, thus contributing to the spread of inflammation and neurodegenerative disor-
der in the brain. The physiological process of apoptosis that normally prevents the spill 
of cell’s molecules to the extracellular space is perturbed by the altered proteostasis into 
a pathological one in NBD. This transformation is sustained by several intracellular 
processes including the accumulation of undigestible PTMP, increased oxidative stress, 
and distorted expression of apoptotic proteins [53–56].

The AUT capacity of brain cells is important in the regulation of immune 
responses and inflammation that occur in NBD [57, 58]. Protein aggregates 
(aggresomes), present in age-related NBD, activate inflammasomes. Activated 
inflammasomes lead to a low-grade inflammation associated with a declined 
autophagic capacity [59]. On the other hand, autophagy attenuation leads to 
inflammasome precipitated excessive caspase-1 activation and elevated IL-1β 
secretion in response to lipopolysaccharide (LPS) stimulation [10, 60, 61]. Also, 
ER stress and inflammation coexist in NBD, for example, in AD, and are inter-
twined [57]. Chronic neuroinflammation (CNI) develops into a self-damaging 
process and is an important factor in sustaining NBD including AD, PD and 
PRD. CNI includes activation of microglia and astrocytes and infiltration of 
peripheral immune cells. Transient activation of microglia, accompanied by the 
release of inflammatory cytokines that amplify the inflammatory response by 
activating and recruiting astrocytes and peripheral immune cells to the brain 
lesion, ensures the brain’s integrity by removing foreign bodies and cell debris. 
CNI is toxic to neurons due to sustained release of inflammatory cytokines (e.g. 
ILs 1β and 6, TNFα) and ROS and microglial phagocytosis of neighbouring intact 
nerve cells, thus contributing to the development and progression of NBD. The 
progressive loss of neurons further contributes to generation of cell debris and 
sustains microglial hyperactivation [62].

The detrimental effects of PTMP, sustained inflammation and increased ROS 
production are further exacerbated by the formation of AUT-resistant soluble Aβ 
oligomers (AβO) in AD and AUT-resistant αSYN oligomers in PD that further 
stimulate chronic inflammation and increased cytosolic ROS, contributing to apop-
tosis or necroptosis of neurons. Therefore, activation of apoptosis or necroptosis in 
AD, PD or PrD is triggered by a positive feedback loop between chronic inflamma-
tion in the brain (to which astrocytes and microglia are the main contributor) and 
the production of PTMP. In addition to high levels of ROS, the production of PTMP 
in the cytosol is facilitated by copper ions in AD [63] and by iron ions, dopamine 
and accumulation of alpha-synuclein (the precursor of oxidised αSYN monomer) 
in PD [17]. Although chronic brain inflammation contributes to the process of 
PrPSc production, it is not necessary to sustain it, since the PrPSc only needs the PrPc 
molecules for its propagation [64].

2.  Crosstalk among AUT, apoptosis and necroptosis signalling pathways 
in selected NBD

AUT, apoptosis and necroptosis have interlinked signalling pathways. Examples 
of key signalling molecules that regulate the transition among these three processes 
are presented in Section 2.1. The crosstalk among AUT, apoptosis and necrop-
tosis signalling pathways, with the potential sites of modulation by Alzheimer’s, 
Parkinson’s and prion diseases (PrD), is summarised in Figure 3.
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Figure 3. 
Crosstalk among AUT, apoptosis and necroptosis signalling pathways with the potential sites of modulation by AD, 
PD and PrD. Abbreviations: αSYN (alpha-synuclein); AβO (amyloid β oligomers); AβP (amyloid β monomers 
with 39 to 42 amino acid residues); AIF (apoptosis-inducing factor); AKT (protein kinase B); AMPK (5’ AMP-
activated protein kinase); AP-1 (activator protein 1); APAF-1 (apoptotic protease activating factor 1); APO-3L 
(APO3 ligand); ASK-1 (apoptosis signal-regulating kinase 1); ATG-5 (AUT-related 5); BAD (Bcl2-associated 
agonist of cell death); BAK (Bcl-2 homologous antagonist/killer); BAX (apoptosis regulator BAX); BCL-2 (B-cell 
lymphoma 2); BCL-XL (B-cell lymphoma-extra large); Beclin-1 (mammalian ortholog of the yeast AUT-related 
gene 6 (ATG-6)); BID (BH3 interacting domain death agonist); BIP-P (phosphorylated binding immunoglobulin 
protein); C-FLIP (FADD-like IL-1β-converting enzyme-inhibitory protein); calpain (proteolytic enzyme, a protein 
belonging to the family of calcium-dependent, non-lysosomal cysteine proteases); CASP-3, CASP-8/10, CASP-9 
(caspase-3, caspase-8/10, caspase-9); cIAP-1 (cellular inhibitor of apoptosis protein 1); CL-ATG5 (cleaved AUT-
related 5 (ATG5) protein); CL-BAX (cleaved apoptosis regulator BAX); CL-Beclin-1 (cleaved mammalian ortholog 
of the yeast AUT-related gene 6); Complex-I (TNFα bound to TNFα receptor that is associated with TRADD 
(tumour necrosis factor receptor type 1-associated death domain protein), RIPK1 (receptor-interacting serine/
threonine-protein kinase 1), TRAF2 (TNF receptor-associated factor 2) and cIAP-1/2 (cellular inhibitor of apoptosis 
protein 1 and 2)); Complex-IIa (pro-caspase-8, RIPK1, FADD (FAS-associated protein with death domain)); 
Complex-IIb (pro-caspase-8, RIPK1, RIPK3 (receptor-interacting serine/threonine-protein kinase 3), FADD, MLKL 
(mixed lineage kinase domain-like pseudokinase)); CYT-C (cytochrome c); DAMPs (damage-associated molecular 
patterns); DCAP-AKT (activation of toll/IL-1R (TIR) domain-containing adaptor proteins (e.g. mal, TRIF, 
TRIF-related adaptor molecule, IL-1R-associated kinase-1, IL-1R-associated kinase-M, MAPK, TNFR-associated 
factor 6, toll-interacting protein)); FAS (apoptosis antigen 1); HMGB-1 (high-mobility group box 1 protein); IKK 
(IκB kinase enzyme complex, part of the upstream NF-κB signal transduction cascade); IL-1β (interleukin-1 beta); 
JAK (Janus kinase); JNK (c-Jun N-terminal kinase); JNK-P (phosphorylated c-Jun N-terminal kinase); MITO 
(mitochondrial); MITO MP (mitochondrial membrane permeability); MITO ROS (mitochondrial reactive oxygen 
species); MKK7 (MAP kinase kinase 7); MLKL-O (MLKL oligomerisation with translocation and insertion into 
cell’s and organelles’ membranes with increased permeability); MLKL-P (phosphorylated pseudokinase mixed 
lineage kinase domain-like protein); mTORC1 (mammalian target of rapamycin complex 1); NF-κB (nuclear factor 
kappa-light-chain-enhancer of activated B cells protein complex); NOXA (adult T cell leukaemia-derived PMA-
responsive); OMI alias HtrA2 (serine protease HTRA2); ORG (cell organelles); p53 (cellular tumour antigen p53); 
p62 (nucleoporin p62 protein complex associated with the nuclear envelope); PRO CASP 8/10 (pro-caspase-8/10); 
PRPC (normal form of prion protein); PRPSC (self-propagating, protease-resistant, infectious isoforms of prion 
protein); PTM (post-translationally modified); PUMA (p53 upregulated modulator of apoptosis); RIP-1 (receptor-
interacting serine/threonine-protein kinase 1); ROS (reactive oxygen species, e.g. peroxides, superoxide, hydroxyl 
radical or singlet oxygen); SMAC (second mitochondria-derived activator of caspases); STAT (signal transducer and 
activator of transcription 3/5); tBID (truncated BID protein); TLR-4 (toll-like receptor 4, member of the pattern 
recognition receptor (PRR) family); TNFα (tumour necrosis factor alpha); TNFαR (tumour necrosis factor alpha 
receptor); TNFRS (tumour necrosis factor receptor superfamily); TRAF (TNF receptor-associated factor); TRAIL 
(TNF-related apoptosis-inducing ligand); UBIQ PROT (ubiquitinated proteins); ULK1 (serine/threonine-protein 
kinase ULK1); XIAP (X-linked inhibitor of apoptosis protein).
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2.1  Examples of signalling molecules that regulate crosstalk among AUT, 
apoptosis and necroptosis pathways in selected NBD

Intracellular adenosine triphosphate (ATP) promotes either apoptosis or 
necroptosis in a concentration-dependent manner; high ATP levels promote 
apoptosis, and low ATP levels promote necroptosis [65, 66]. Therefore, ATP 
production in the MITO determines the type of cell death. The best understood 
inflammation- and necroptosis-promoting cytokine that modulates mitochon-
drial ATP and ROS levels is TNFα [67]. As explained above, PTMP inhibition of 
MITO function leads to activation of inflammasomes with an increased release of 
tumour necrosis factor alpha (TNFα) from astrocytes and neurons [38, 45–52]. 
The sustained TNFα stimulation in NBD is the result of two mechanisms. (a) The 
PTMP of AD, PD and PrD are not digested by AUT; they accumulate in affected 
cells by their release into the cytosol from endolysosomal and autolysosomal 
compartment together with proteolytic enzymes [68]. (b) The PTMP in PD and 
PrD spread through the brain by a prion-like mechanism [69, 70]. The sustained 
TNFα stimulation can lead to over-activation of PARP1, a nuclear DNA repair 
enzyme that is activated by DNA damage, due to an increased MITO ROS produc-
tion. PARP1 over-activation precipitates an acute depletion of NAD+, inhibition of 
oxidative phosphorylation with a severe drop in ATP production and a subsequent 
activation of necroptosis [65, 71–73].

AUT-related 5 (Atg5) protein stimulates elongation of autophagosome mem-
branes that envelope PTMP into autophagosomes [74–76] and also regulates the 
balance between AUT and apoptosis [77]. The neurons’ cytosolic Ca2+ is increased 
in NBD due to the PTMP elicited (a) ER and MITO release of Ca2 into the cytosol  
[4–7, 78] and (b) an increased Ca2+ entry through the N-methyl-D-aspartate 
(NMDAR) glutamate receptor and ion channel proteins from the extracellular space 
[79–81]. Increased cytosolic Ca2+ promotes calpain-1- and calpain-2-mediated 
cleavage of ATG5, with a loss of pro-AUT function and concomitant triggering of 
cytochrome c-/caspase-mediated apoptosis due to the inhibition of Bcl-xL in the 
MITO by the cleaved ATG5 [82]. The calpain-1- and calpain-2-mediated cleavage 
of ATG5 is attenuated by decreased levels of cytosolic Ca2+ [83]. Cytosolic HMGB1 
attenuates apoptosis by protecting the AUT proteins beclin 1 and ATG5 from 
calpain-mediated cleavage during inflammation [84].

Beclin 1 stimulates AUT [16, 85, 86]; an enhanced AUT has a concomitant anti-
apoptotic effect by clearing apoptosis-associated molecules, for example, active 
caspase-8 [87–89]. Beclin 1 is cleaved by caspases, thus losing its pro-AUT function, 
and the cleaved beclin 1 (i.e. C-terminal beclin 1 fragment) promotes apoptosis by 
triggering the release of MITO cytochrome c [90–92].

B-cell lymphoma 2 (Bcl-2) family of proteins regulate MITO apoptotic pathway 
and also AUT; for example, Bcl-2 and Bcl-xL inhibit AUT and apoptosis [93, 94]. 
Bcl-2 and Bcl-xL proteins have an anti-apoptotic effect, whereas Bax, Bad, Bid, 
Bim, Bmf, PUMA and NOXA promote apoptosis. Calpain-mediated cleavage of 
Bax, induced by high cytosolic Ca2+, mediates apoptosis [82]. The interactions 
between anti-apoptotic and pro-apoptotic Bcl-2 family members determine the 
activation of apoptosis [95–104]. Bcl-2 and Bcl-xL associate with beclin 1 and 
supress the beclin 1-dependent autophagic activation [105]. This AUT suppression 
can be abolished by the pro-apoptotic Bcl-2 family proteins (e.g. Bad, Bid) [106]. 
The inhibition of Bcl-2 on beclin 1 is also attenuated by phosphorylation of Bcl-2 by 
JNK-1 or Beclin-1 by DAPK1, thus promoting AUT [107, 108]. Increased expression 
of Bak, Bad, Bcl-2 and Bcl-x was observed in AD [109]. Cytosolic PrPc protects 
human primary neurons from Bax-mediated apoptosis [110–112]; therefore the 
PrPsc-precipitated reduction should facilitate apoptosis in PrD.
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Caspase-8 activity is changed in NBD. It has been suggested that an increased 
caspase-8 activity, associated with an increased caspase-3 activity in the same 
hippocampal tissue sections from patients with AD, contributes to the development 
of AD in humans. Recently, two caspase-8 variants, with a reduced activity and 
associated with an increased risk for development of AD in human, were identified. 
This finding is consistent with the multiple AD-related changes in the human brain, 
including loss of synaptic plasticity and memory function and increased microglia 
pro-inflammatory activation [113]. Caspase-8, within the death-inducing complex 
II, triggers either apoptotic or necroptotic cell death. Activated caspase-8 promotes 
apoptosis and also inhibits necroptosis by cleaving RIPK1, RIPK3 and CYLD 
[114–116], thus preventing CYLD-mediated deubiquitylation of RIPK1 and subse-
quent RIPK1 kinase activation and necroptosis [117]. The association of caspase-8 
with pseudo-caspase cFLIP suppresses apoptosis and also necroptosis, since the 
residual levels of caspase-8 activity are still sufficient to cleave and inactivate RIPK1 
and RIPK3 [118].

c-Jun N-terminal kinase (JNK) promotes either apoptosis or necroptosis, 
depending on its upstream signalling pathways. JNK is required for apoptosis of 
central nervous system neurons [119]. JNK promotes apoptosis by several signal-
ling pathways that were characterised in different cell experimental models. It is 
unlikely that all of the observed JNK’s pro-apoptotic effects are present in all of the 
cells at the same time [120]. However, it is important to be aware of the JNK’s ability 
to modulate apoptosis at different levels. To summarise, the known pro-apoptotic 
effects of JNK are: (a) Activated MAP2Ks phosphorylate JNK and phosphorylated 
JNK translocates to the nucleus and phosphorylates c-Jun [121, 122] that promotes 
AP-1 expression; AP-1 promotes transcription of pro-apoptotic proteins TNF-α, 
Fas-L and Bak [123–125]. (b) JNK phosphorylates p53, enhancing the expression 
of pro-apoptotic genes Bax and PUMA [126–128]; the increased Bax expression 
and translocation to mitochondria is sufficient to promote MITO outer membrane 
permeabilization, the consequent release of cytochrome c and caspase-9 and 
caspase-3 activation [129–133]. (c) JNK phosphorylates 14-3-3-associated Bad, thus 
promoting its translocation into MITO and subsequent release of cytochrome c 
[134, 135]. (d) JNK phosphorylates pro-apoptotic proteins Bim and Bmf, and these 
phosphorylated proteins activate Bax and/or Bak [136–140]. (e) Phosphorylated 
Bim binds to and inhibits the Bcl2’s anti-apoptotic activity, thus increasing the prob-
ability of MITO-activated apoptosis [141, 142]. (f) JNK inhibits the anti-apoptotic 
Bcl2 by phosphorylation, to induce apoptosis [143, 144]. (g) JNK has the ability 
to promote apoptosis by stimulating the activity of many pro-apoptotic signalling 
molecules. (h) Activation of TNFRS (e.g. TNFR1, DR3-6) can lead to apoptosis 
[144, 145]. (i) Activation of DRs and TNFα receptors stimulates JNK activation that 
promotes apoptosis by increased expression of DRs [146, 147]; increased expression 
of pro-apoptotic proteins Bak, Bim and Bax [148, 149]; inhibition of anti-apoptotic 
proteins XIAP (caspase-3, caspase-7 and caspase-9 inhibitor) and cIAP1 (caspase-8 
inhibitor) [150, 151]. JNK’s role in NBD is best understood in AD; JNK activation 
is positively correlated with AD progression [152]. Amyloid-β protein fragments 
activate JNK [153, 154]. Also, JNK phosphorylates tau, thus promoting (a) microtu-
bule cytoskeleton breakdown, (b) attenuation of intracellular transport and (c) loss 
of synaptic terminals [155–166].

Activation of tumour necrosis factor receptor superfamily (e.g. TLRs or TNFαR) 
or DNA damage can trigger necroptosis by activation of the Complex I-IIa-IIb-
phosphorylated pseudokinase mixed lineage kinase domain-like protein (MLKL) 
signalling pathway; the final steps are (a) RIP3-dependent phosphorylation of 
MITO proteins PGAM5 and Drp-1 (increasing MITO ROS production); (b) inser-
tion of phosphorylated MLKL into the MITO membrane with the cumulative effects 
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of increased MITO membrane permeability, loss of membrane potential, decreased 
ATP and increased ROS production [120, 167–169]; and (c) phosphorylated MLKL’s 
translocation to the plasma membrane and activation of Ca2+ influx through 
plasma membrane channels with concomitant plasma membrane breakdown 
[169]. Increased cytosolic ROS production inactivates MAP kinase phosphatase 1, 
enabling sustained activation of phosphorylated JNK; phosphorylated JNK pro-
motes necroptosis by (a) stimulating MLKL phosphorylation and by (b) promoting 
cytochrome c release from MITO via activation of BID [170, 171].

FLICE inhibitory proteins (FLIPs). Under stress-free conditions, FLIPs (FLICE 
inhibitory proteins) attenuate LC3’s binding with ATG3, thus preventing ATG3-
mediated elongation of autophagosomes and AUT. During stress, FLIPs allow for 
ATG3-LC3 interaction and stimulate AUT. Therefore, FLIPs (e.g. C-FLIP) can 
inhibit apoptosis and also AUT [172].

The high-mobility group box protein 1 (HMGB1) is a nuclear protein released by 
glia and necrotic or hyper-excitatory neurons after inflammasome activation; it 
activates receptors for advanced glycation end products (RAGE) and the toll-like 
receptor (TLR) 4 on neurons and microglia [173, 174]. When HMGB1 binds to 
TLR4 on neurons, it phosphorylates MARCKS via MAP kinases and induces neurite 
degeneration, present in AD [173]. The disulphide form of HMGB1 potentiates the 
microglia pro-inflammatory response; therefore, repeated releases of HMGB from 
damaged nerve cells during chronic neuroinflammation in PD and AD could lead to 
an exacerbated neuroinflammatory response of microglia [175–177]. HMGB1, in a 
rat model of AD, caused (a) inhibition of microglial amyloid β-peptide 42 clearance 
and enhanced amyloid β-peptide 42 neurotoxicity [178] and (b) dysfunction of 
microglial amyloid β-peptide 40 phagocytosis [179].

The nuclear factor kappa-light-chain-enhancer of activated B cells protein complex 
(NF-κB) signalling pathway was repressed in a prion-infected cell line and animal 
brain tissues as evidenced by a decreased level of transcription factor p65/nuclear 
factor NF-kappa-B p65 subunit (p65) and downregulation of phosphoinositide 
3-kinase (PI3K) and protein kinase B (PKB/Akt) in both experimental models 
[180]. In AD cell models, the exposure to amyloid β-peptide or amyloid precursor 
protein induced NF-κB activation [181, 182], and inhibition of NF-κB transcrip-
tional activity increased neuronal death in the presence of amyloid β-peptide [183]. 
NF-κB activation can protect neurons against amyloid β-peptide-induced cell death 
[184]. Patients with PD have an increased percentage of dopaminergic neurons 
in the substantia nigra with nuclear p65 immunoreactivity [185]. NF-κB is one of 
the several factors that regulate Beclin-1 expression; Beclin-1 promotes AUT by 
stimulating autophagosome formation [186–188]. Increased NF-κB activation in the 
brain, in addition to stimulating AUT, protects nerve cells against NBDs’ mediated 
injury by several mechanisms including increased transcription of MITO antioxi-
dant enzyme manganese superoxide dismutase (MnSOD) and Bcl-xL genes [189].

Sirtuins (SIRTs), NAD+-dependent protein deacetylases, modulate apoptosis and 
necroptosis [190]. For example, SIRT1 promotes AUT by deacetylation of ATG5, 
ATG7 and ATG8 [191]. Following TNFα receptor stimulation, SIRT2 promotes the 
association of RIP1 and RIP3, the subsequent formation of complex II and necrop-
tosis [192]. In animal and cell culture models of AD, SIRT1 reduces neurodegenera-
tion in mouse hippocampus and promotes primary neuronal survival [193]. The 
reduced SIRT1 mRNA and protein levels are associated with an accumulation of 
amyloid β-peptide 42 and tau in the brains of AD patients [194].

Tumour protein p53 (p53) modulates AUT and apoptosis. It promotes apoptosis 
by Bax activation in the cytoplasm; BAX initiates apoptosis by triggering mitochon-
drial cyt c release and caspase-3 activation [195]. In the nucleus, p53 activates tran-
scription of Bax, PUMA and Noxa [196]. PUMA displaces cytoplasmic p53 from 
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the Bcl-xL-p53 complex, promoting p53 activation of the apoptotic pathway [197]. 
In the nucleus, p53 also stimulates AUT through transcription activation of ULK1, 
sestrin1/2 and damage-regulated AUT modulator (DRAM) [198, 199]. Indirectly, 
p53 promotes AUT by mTOR inhibition, via activation of AMP-dependent kinase 
and tuberous sclerosis (TSC) 1/TSC2 complex pathway [200]. It was suggested 
that DRAM has a dual role of promoting either AUT- or p53-mediated apoptosis 
[201]. In a Drosophila model of AD tauopathy, p53 prevented neurodegenera-
tion by increased expression of amphiphysin, clathrin light chain, clathrin heavy 
chain, RAS oncogene family and synaptotagmin β synaptic genes [202]. p53 levels 
are significantly increased in brains of patients with AD [203] and are correlated 
with brain MITO dysfunction [204]. Recently, it was suggested that tau oligomers 
sequester and downregulate functional phospho-p53 in an AD mouse model and in 
patients with AD [205].

Ubiquitin-binding protein p62 (p62) modulates cell death switching between 
apoptosis and necroptosis. In a cell model, p62 promotes either necroptosis, when 
p62 is associated with the necrosome (i.e. complex II), or apoptosis when the P62-
necrosome association is blocked [206]. The p62 regulates apoptotic and autophagic 
processes [207]. P62 mediates AUT degradation by first binding polyubiquitinated 
proteins with the ubiquitin-associated domain and then to autophagosomes through 
the LC3-interacting region [208, 209]. In response to tumour necrosis factor recep-
tor stimulation, P62 promotes apoptosis by stimulating activation of caspase-8 
[210, 211]. The levels of p62 are increased in NBD, for example, in PrD [212, 213]. 
Autophagy disposal of aberrant proteins is stimulated by the p62-Keap1-NRF2 sig-
nalling pathway [214]. For example, in a mouse model of AD, increased brain p62 
expression improved cognition by an autophagy-mediated mechanism that reduced 
amyloid β-peptide 40/42 levels [215].

2.2  Summary of similarities/differences in the mechanistic pathways between 
selected NBD

Beclin-1, ATG-5, NF-κB, JNK, p53, p62, HMGB1 and ROS are the key signalling 
molecules that mediate crosstalk among AUT, apoptosis and necroptosis. ATG5 
and Beclin-1 in conjunction with ULK-1 and BAX promote AUT by initiating 
phagophore induction and nucleation steps. Cleavage of ATG-5 and Beclin-1 by 
calpain, caspase-3 or increased cytosolic free calcium changes their function from 
stimulating AUT to promoting apoptosis via increased MITO membrane perme-
ability. Cleaved ATG5 inhibits the anti-apoptotic activity of BCL2 and BCL-XL on 
BAX and BAK, further promoting increased MITO membrane permeability and 
apoptosis. P53 activation plays a dual role by promoting apoptosis (via activation 
of PUMA and NOXA) and AUT by ULK1 activation. The JNK signalling kinase 
blocks the binding of BCL-2 to Beclin-1, thus enabling Beclin-1 to participate 
in AUT initiation, and also activates the apoptosis-triggering proteins BAX and 
BAK. Phosphorylated JNK promotes necroptosis by stimulating MLKL phosphory-
lation and apoptosis by caspase-8 activation. p62 promotes AUT and apoptosis. 
HMGB-1 is released during AUT, apoptosis and necroptosis, and by inhibiting the 
cleavage of ATG-5, BAX and Beclin-1 simultaneously promote AUT and inhibit 
apoptosis. Mild increases in cytosolic ROS act as signalling molecules that promote a 
physiological balance between AUT, apoptosis and necroptosis, which favour AUT; 
moderate and high increases in cytosolic ROS concentrations favour apoptosis and 
necroptosis over AUT. The products of post-translational protein modifications 
in AD, PD and PrD favour apoptosis and necroptosis over AUT by (a) increasing 
the activation of apoptosis (e.g. by increasing MITO membrane permeability) 
and necroptosis, by chronic activation of TRL4 and TNFα receptors [216–234], 
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(b) promoting moderate to high increases in cytosolic ROS concentrations and 
(c) attenuating AUT [42, 62, 235–240]. In contrast to PD and AD, PrPSC-infected 
cells are more likely to respond with necroptosis and then apoptosis. For example, 
a significant upregulation of necroptosis signalling molecules phosphorylated 
MLKL, MLKL and receptor-interacting serine/threonine-protein kinase 3 (RIP3) 
was measured in the post-mortem cortical brains of patients with various types of 
human PRD [241].

3.  Pharmacological strategies targeting AUT, apoptosis and necroptosis 
signalling pathways

At present, most of the studies, devoted to the development of pharmacological 
interventions for NBD, are focused on the crosstalk of AUT and apoptosis signalling 
pathways in neurons. Future research should also include development of pharma-
cological interventions that target other cells involved in the development of NBD, 
including microglia, astrocytes, endothelial cells and pericytes [242]. The develop-
ment of pharmacological interventions for NBD should be guided by several key 
questions: (a) How to modulate the role of AUT from pro-death to pro-survival?  
(b) How is the information from the crosstalk among AUT, apoptosis and necrop-
tosis integrated? (c) How to modulate the crosstalk among AUT, apoptosis and 
necroptosis? and (d) How is the information from the crosstalk among AUT, 
apoptosis and necroptosis (e.g. inflammation-promoting molecules) shared among 
different cells involved in the development of NBD? [242]. Examples of pharmaco-
logical strategies are given below:

Pharmacological strategies to ameliorate MITO dysfunction include:

(a) Targeting excessive ROS production:

(a1) Mercaptamine that increases levels of glutathione in human [78].

(a2) Antioxidant vatiquinone used in clinical trials [243].

(a3) RTA-308 stimulates Nrf2 to enhance the expression of pro-oxidant 
genes and to repress inflammatory genes in an animal model [244].

(a4) Antioxidants coenzyme Q , lipoic acid and green tea polyphenol epigallo-
catechin gallate attenuate the effects of NBD in animal models [245–248].

(a5) Ceria nanoparticles are ROS scavengers that localise in MITO and sup-
press neuronal death in an AD mouse model [249].

(b) Targeting mitochondrial biogenesis: stimulation of PGC1-α’s ROS scavenging 
activity with SIRT1 could attenuate ROS-induced damage in AD [250].

AUT inducers are (a) mTOR inhibitors, either ATP-competitive inhibitors (e.g. 
Torin1 and related compounds) or non-ATP-competitive inhibitors (e.g., rapamy-
cin and rapalogs), and (b) acting by mTOR-independent targets [238]. The most 
promising AUT inducers, acting by mTOR inhibition, are the non-ATP-competitive 
inhibitors rapamycin and rapalogs that are mTORC1 selective and induced AUT in 
animal models of AD, PD and PrD [251–258]. The AMPK signalling pathway is acti-
vated by mTOR-independent AUT activators, for example, by trehalose. Trehalose 
inhibits GLUT proteins, thus eliciting AMPK activation [259]. Trehalose-induced 



11

Autophagy and Cell Death in Alzheimer’s, Parkinson’s and Prion Diseases
DOI: http://dx.doi.org/10.5772/intechopen.86706

AUT induction, with concomitant therapeutic effects, was demonstrated in mouse 
models of NBD, including AD, PD and PrD [260–265].

TNFα signalling pathway is the focus of pharmacological interventions target-
ing neuroinflammation in NBD with a variety of compounds [57]: (a) serotonin 
binds to microglial receptors and has anti-inflammatory effects; serotonin 
treatment reduced TNFα release in cultured primary microglia cells exposed to 
AβO and in mouse brains infused with AβO and also prevented AD-associated 
behavioural changes [266]; (b) etanercept, a decoy TNF receptor and IgG1 Fc 
fusion protein that inhibits the binding of soluble TNF to cell-surface TNF recep-
tors, was evaluated in several clinical trials on patients with AD; no statistically 
significant results were reported; however, the drug was well tolerated, and large-
scale trials are expected [57]; and (c) infliximab, a human monoclonal antibody 
that binds TNFα and was used to treat human auto-immune and inflammatory 
diseases, prevented eIF2a phosphorylation and long-term memory loss in a mouse 
model of AD [7, 267].

4. Conclusions

Neurodegenerative brain disorders (NBD) change brain cell proteostasis due 
to the accumulation of normal, mutant, misfolded or unfolded proteins in the 
endoplasmic reticulum (ER). The increased ER burden elicits the unfolded protein 
response (UPR) and stimulates AUT. In the short term, these responses tend to 
attenuate ER’s stress, by reducing the ER’s protein load and increasing the ER’s 
folding capacity. In the long term, with prolonged ER stress, the UPR changes 
from supporting cell survival to promoting apoptosis. The failure of the ER stress 
response to meet the increased protein burden is reflected in an increased cyto-
solic protein accumulation that initially further stimulates AUT. Over time, the 
accumulated proteins in the cytosol undergo post-translational changes into toxic 
monomers and oligomers that repress AUT at multiple levels and promote either 
apoptosis or necroptosis. Apoptosis and necroptosis of the affected cells lead to 
the release of toxic proteins into the surrounding tissue and trigger the response of 
microglia and astrocytes. Chronic neuroinflammation, sustained by the spread of 
progressive failure of AUT among brain cells, due to the release of toxic monomers 
and oligomers from dying cells and their uptake by initially healthy cells and by the 
persistent activation of microglia and astrocytes by toxic monomers and oligomers, 
also contributes to nerve apoptosis or necroptosis. The signalling pathways of 
apoptosis, AUT and necroptosis are interlinked. A better understanding on how 
chronic neuroinflammation, Alzheimer’s, Parkinson’s and prion diseases modulate 
the crosstalk among these signalling pathways could contribute to the development 
of new therapeutic interventions for these NBD.
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