
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

118,000 130M

TOP 1%154

4,500

1

Chapter

High-Efficient Video Transmission
for HDTV Broadcasting
Yasser Ali Ismail

Abstract

Before broadcasting a video signal, redundant data should be removed from
the transmitted video signal. This redundancy operation can be performed using
many video coding standards such as H.264/Advanced Video Coding (AVC) and
H.265/High-Efficient Video Coding (HEVC) standards. Although both stan-
dards produce a great video resolution, too much data are considered to be still
redundant. The most exhaustive process in video encoding process is the Motion
Estimation (ME) process. The more the resolution of the transmitted video
signal, the more the video data to be fetched from the main memory. This will
increase the required memory access time for performing the Motion Estimation
process. In This chapter, a smart ME coprocessor architecture, which greatly
reduces the memory access time, is presented. Data reuse algorithm is used to
minimize the memory access time. The discussed coprocessor effectively reuses
the data of the search area to minimize the overall memory access time (I/O
memory bandwidth) while fully using all resources and hardware. This would
speed up the video broadcasting process. For a search range of 32 × 32 and block
size of 16 × 16, the architecture can perform Motion Estimation for 30 fps of
HDTV video and easily outperforms many fast full-search architectures.

Keywords: HDTV broadcasting, motion estimation, H.264/AVC, H.265/HEVC,
video coding, video transmission

1. Introduction

Broadcasting is the distribution of audio or video content to a dispersed audience
via any electronic mass communication medium but typically is the one using the
electromagnetic spectrum (radio waves). Recently, broadcasting operations are not
used only by television signal, but also it includes many smart devices such as cell
phones, video phones, and video conferencing. Two main problems were high-
lighted because of the high demand of video applications that need broadcasting
[1–3]. The first problem is the huge bandwidth needed for transmitting such huge
video data. The second problem is the delay in the video transmission process due
to the huge computations required for video coding and transmission process [4, 5].
Many video coding standards tried to solve such problems. H.264/Advanced Video
Coding (AVC) and H.265/High-Efficient Video Coding (HEVC) are the most recent
video coding standards that tried to tackle the aforementioned problems [6, 7].
Although the two video coding standards provide a great video resolution and a low
bit rate (BR), the computational complexity required for the video encoding process

The Future of Television - Convergence of Content and Technology

2

is very high [1, 3, 8]. Consequently, the video transmission speed will slow down.
As a result, using H.264/AVC and/or H.265/HEVC standards may not be suitable for
real-time video broadcasting applications.

H.264/AVC [9] is a video coding standard that was developed by ITU and ISO [10].
The main advantage of H.264/AVC standard is to minimize the bit rate of the trans-
mitted video signal. It achieves up to 50% savings in the transmitted video bit rate if
compared to other previous standards (please see Figure 1). As a result, H.264/AVC
standard is used in many video applications such as HD-DVD, multimedia stream-
ing, remote video surveillance, medical image processing field, video conferencing,
HDTV broadcasting, video on demand, and multimedia messaging [5, 6, 11]. Multiple
reference frames, half-pel and quarter-pel accurate Motion Estimation, using small
block size, exact-match transform, adaptive in-loop deblocking filter, and enhanced
entropy coding methods, and variable block size techniques are used to achieve low
bit rate and high resolution of the transmitted video signal [12].

Due to the high demand of high-resolution video applications and the traffic
constrains of the network infrastructure, the offered transmission bit rate of H.264/
AVC standard is not suitable to fulfill such application needs. ITU-T VCEG and ISO/
IEC MPEG [13] developed a new video coding standard called H.265/High-Efficient
Video Coding (HEVC) standard. H.265/HEVC standard was developed for three
main goals. The first goal is to be able to encode high-resolution video sequences
such as 4 K and ultrahigh definition (UHD). The second goal is to lower the video
transmission bit rate by approximately 50% compared to the H.264/AVC standard.
The last goal is to speed up the video coding and transmission process by utilizing
parallel processing operations. It is worth mentioning that H.265/HEVC encoder
is four times more complex than older standards [1, 14]. However, from the previ-
ous aforementioned discussions, it is clear that both H.264/AVC and H.265/HEVC
standards require processing too much data in order to obtain higher compression
and accordingly low bit rate. This is why the implementation of both standards is
not that easy because of the high demand of huge memory size that is being able to
process such huge data. This is the main bottleneck in such video coding standards,

Figure 1.
Video coding standards.

3

High-Efficient Video Transmission for HDTV Broadcasting
DOI: http://dx.doi.org/10.5772/intechopen.79908

since fetching such huge data from memory will increase the memory access time
and slow down the encoding process. As a result, those video coding standards may
not be suitable for real-time video applications such as HDTV broadcasting.

The huge data and memory access time that are needed for HDTV broadcasting,
if using either H.264/AVC or H.265/HEVC standards, are the recent problems under
study for many researchers nowadays. Some techniques tried to reduce the search
area size in the Motion Estimation process in order to reduce the memory access time.
Adaptive search window size (ASWS) technique [15, 16] adaptively decides the size
of the search area according to the motion activity of the Current Block. The authors
in [15] used three window sizes 3 × 3, 7 × 7, and 15 × 15. The main drawback of such
algorithm is the lake of video visual quality since the selected window sizes are not
enough to cover fast motion activities of certain Current Blocks. In [2], this problem
is avoided by adaptively adjusting the search window size according to some model
equations that used some parameters. Those parameters changed according the
motion activity of a Current Block and considering the motion activity of surround-
ing blocks. The accuracy to decide the search window size in [2] is very high, and,
accordingly, the memory access time is less than the case of using the conventional
full-search Motion Estimation (FSME) process. Although the previous techniques
greatly reduce the memory access time, their very-large-scale integration (VLSI)
implementation is not easy [17]. They are not suitable for hardware implementation
as they lose the regularity of data flow, but they can greatly reduce the computational
complexity. Some straightforward VLSI architectures are used to implement the
FSME of the video encoder (either for H.264/AVC or H.265/HEVC standards). Such
implementation has many advantages such as they are greatly reducing the memory
access time. Additionally, the data flow of their architecture is uniform. This gives
such architectures simplicity in their design. The architecture given in [4] is a good
example for such architectures. The authors in [4] used a smart algorithm with a
simple local memory to reuse data (data reuse level A and level B) of the search area.
It means that data could be fetched only once from the main memory. This greatly
decreases the memory access time required for the Motion Estimation process. The
design proposed in [4] is a flexible one, at which it can be used either for H.264/AVC
or H.265/HEVC standards with slightly modifications in the hardware.

The chapter is organized as follows. Section 2 illustrates the problem formula-
tion in details. Section 3 describes the memory I/O bandwidth reduction tech-
niques. Motion Estimation co-processor with data reuse is described in details in
Section 4.

2. Problem formulation

The most exhaustive part in video encoding process is the Motion Estimation
process [18]. As seen in Figure 2, Motion Estimation process consumes up to 53 and
70% of the entire encoding process in case of using one and four reference frames,
respectively. This is due to the huge data and computations that are required to per-
form such operation. As a result, we emphasize on reducing both the computations
and the data fetched from the main memory in order to speed up the video encod-
ing process in order to be available for real-time HDTV broadcasting application. In
Motion Estimation process, the current frame ψ should be divided into blocks called
Current Blocks (please see Figure 3). The size of each block is M × M pixels. The
main idea of the Motion Estimation process is to reduce the temporal redundancy
in the transmitted video sequences. This can be done by searching for a best match
candidate block of each Current Block within a search area in the reference frame

The Future of Television - Convergence of Content and Technology

4

Figure 3.
The current and the reference frames in ME process.

ψ − 1 as seen in Figure 3. Referring to Figure 3, the best match candidate block
can be calculated by exhaustively searching all candidate blocks allocated in every
pixel in the search area. The search area is allocated at frame ψ − 1. The search area
size is 2Xmax × 2Xmax, where 2Xmax is the range of the selected search area. The sum
of absolute difference (SAD) metric is used to search for the best match candidate
block. The pixel in the search area corresponding to the minimum SAD value (i.e.,
point (k,l) in Figure 3) represents the best match candidate block. Two outputs of
the Motion Estimation process are seen in Figure 3. The first output is the residue
between the Current Block and the best match candidate block. The second output
is the displacement between the center of the search area and the best match candi-
date block, represented by the motion vector (MV). The MV can be represented as

 MV (x, y) = arg min {SAD (x, y; k, l) } (1)

where −Xmax ≤ k,l ≤ Xmax, x, and y are the center coordinates of the search area
and k and l are the coordinates of the best match candidate block.

Figure 2.
Motion estimation computational complexity using one and four reference frames, respectively, and using
H.264.AVC standard.

5

High-Efficient Video Transmission for HDTV Broadcasting
DOI: http://dx.doi.org/10.5772/intechopen.79908

It is worth mentioning that video applications consume much data compared to
some other multimedia sources such as image, speech, and text. The number of bits
required to transmit video sequences depends on the video frame resolution. The
lager the frame resolution is, the larger the number of bits required to be transmit-
ted. Consequently, the transmission bit rate will also increase. Different video frame
formats are shown in Table 1. Given that the number of bits/pixels required for specific
video resolution is B, the number of pixel per line of one video frame is P, the number
of lines per video frame is L, and the transmitted frame per second for such video
resolution is F, the video transmission bit rate (BR) can be calculated as in Eq. (2):

 BR = B × P × L × F (2)

It is noticed from Table 1 that frame size is increased due to the increase of
consumer demand for higher resolution [4]. The more the video frame size is, the
more the required search area size will be. This increases the data to be fetched
from the memory. Accordingly, more memory I/O bandwidth is required. This is
a big problem since the memory I/O bandwidth is limited. As an example, HDTV
broadcasting requires much data to be fetched from the memory than the Internet
streaming video which uses QSIF or SIF video formats. Many recent researches are
directed to create different techniques for a better use of the available memory I/O
bandwidth. In the following section, a review of most recent techniques that have
been used for reducing the I/O bandwidth problem will be performed.

3. Memory I/O bandwidth reduction

The memory I/O bandwidth is the main problem in video encoding process.
The more the data is needed from the memory, the more the required memory
I/O bandwidth is. As a result, the delay of the video encoding process will be high.
This will prevent the use of such video encoding process in real-time applica-
tions such as HDTV and SDTV broadcasting. To avoid such problem, the search
area data required for the Motion Estimation process in a video encoder should
be reused. In other words, the required data for the Motion Estimation process
should be fetched only once from the main memory. This will speed up the video
encoding process and allow the video encoder to be used in real-time video
applications.

Frame size (pixels) Frame rate (frames/sec)

HDTV broadcast 1920 × 1080 30

SDTV broadcast (D1) 720 × 486 30

Digital cinema (DC) 4096 × 2160 24 fps

Standard definition (SD) 720 × 486 30 fps

Video conferencing (SIF) 352 × 240 30

Internet streaming video

(QSIF to SIF)

176 × 144

352 × 240

30

Desktop video phone (QSIF) 176 × 144 15–30

Table 1.
Video encoding formats [4].

The Future of Television - Convergence of Content and Technology

6

During the full-search Motion Estimation, the current frame is divided into
nonoverlapped blocks. Each block (Current Block) has a size of M × M pixels. The
selected search area has a size of SAx × SAy. The size of the Current Block and the
search area is different according to the frame size. As an example, the Current
Block and search area sizes for SIF video sequences are 16 × 16 and 32 × 32, while
for SDTV and HDTV are 32 × 32 and 64 × 64, respectively. The search area can
be divided into { SA x − M + 1} × { SA y − M + 1} candidate blocks or search pixels. It is
worth mentioning that the candidate blocks for the contour pixels use additional
padding (please see dashed line area in Figure 4). The padding pixels will have
maximum values to be sure that they will be excluded from our selections.

Considering the candidate blocks #1 and #2 in Figure 4, there will be M − 1
overlapped pixels that should be fetched twice from the main memory. If we con-
tinue horizontally, there will be a complete strip that contains several overlapped
areas between the candidate blocks of the search area. The horizontal strip of over-
lapped Data Pixels can be reused and fetched only once from the main memory. In
this case, such data is called data reuse level A. If the Motion Estimation process
is proceeded by going one step down, huge Data Pixels will be overlapped. This is
called data reuse level B, if fetched only once from the memory. It is worth men-
tioning that a smart architecture of the Motion Estimation processor is required
in order to be able to reuse data and reduce the I/O memory access bandwidth.
Given that the size of the Current Block is M × M, the number of Data Pixels (DP)
required from the memory to perform the Motion Estimation process for only one
Current Block is given by Eq. (3). There are much redundant (repeated) data that
are fetched from the main memory. This increases the I/O memory bandwidth
which is not practical for real-time applications such as HDTV broadcasting:

Figure 4.
Data reuse (levels A and B).

7

High-Efficient Video Transmission for HDTV Broadcasting
DOI: http://dx.doi.org/10.5772/intechopen.79908

 DP = { SA x − M + 1} × { SA y − M + 1} × (M × M) (3)

Data reuse is the most recent efficient algorithm that is used to reduce the I/O
memory bandwidth while performing Motion Estimation process [4, 19, 20]. Many
redundant memory access times are skipped during the Motion Estimation process
while performing the data reuse algorithm. The algorithm skips the calling of the
same pixels multiple times and accesses the required Data Pixels only once while
performing the Motion Estimation process. This is how it reduces accessing the main
memory many times, and, consequently, it reduces the I/O memory bandwidth. For
a maximum reduction of the I/O memory bandwidth, there are four levels of data
reuse: levels A, B, C, and D [4, 19]. The four levels are described in the following
subsections.

3.1 Data reuse level A

For a horizontal strip as seen in Figure 4, there will be an overlapped Data Pixels
between any two consecutive blocks. The overlapped area size is { SA y − M + 1} ×
{M − 1} . Data reuse level A principle is achieved by loading only new data from
the memory and ignoring old data that are already fetched before from the main
memory [4, 19]. This requires a smart local memory in the Motion Estimation pro-
cessor to keep reusing the old fetched data. As an example, seen in Figure 4, when
performing the SAD operation between the Current Block and candidate block #2,
only M column of Data Pixels will be fetched from the memory. This is a huge saving
in the memory I/O bandwidth.

3.2 Data reuse level B

As seen in Figure 4, there is another vertical level of overlapped data if the SAD
operation is performed one pixel in the down direction [4, 19]. The size of the over-
lapped Data Pixels is SA y × [M − 1] . The overlapped Data Pixels will be while perform-
ing the SAD operation between the Current Block and both of candidate blocks strip
#1 and #2 as seen in Figure 4. Data reuse level B is achieved by loading only SAx
Data Pixels when moving from one horizontal strip to the next strip below it.

3.3 Data reuse level C

For two horizontal consecutive search areas SA1x × SAy and SA2x × SAy, there
will be an overlapped area of a size { |SA 1 x − SA 2 x | } × SA y as seen in Figure 5. These
overlapped Data Pixels could be fetched only once if level C data reuse is applied
while performing Motion Estimation process [4, 19].

3.4 Data reuse level D

For two vertical consecutive search areas SAx × SA1y and SAx × SA2y, there will
be an overlapped area of a size SA x × { |SA 1 y − SA 2 y | } as seen in Figure 6. These
overlapped Data Pixels could be fetched only once if level D data reuse is applied
while performing Motion Estimation process [4]. Performing data reuse levels C
and D require higher complexity in the design of the Motion Estimation process to
reuse data already loaded from the former search area strips to the latter search area
strips. This is a trade-off between the higher design complexity and the reductions
in the memory I/O bandwidth.

The Future of Television - Convergence of Content and Technology

8

Figure 6.
Level D data reuse.

Figure 5.
Level C data reuse.

9

High-Efficient Video Transmission for HDTV Broadcasting
DOI: http://dx.doi.org/10.5772/intechopen.79908

4. Motion estimation co-processor with data reuse

The main idea that is discussed in this section is how to design a smart Motion
Estimation co-processor that could perform data reuse for a maximum reduction in
the memory I/O bandwidth. So, such co-processor can be used for real-time video
applications such as HDTV broadcasting. The design of the co-processor is preferred
to be simple. This requires implementing only level A and level B data reuse since
the other two levels require too much hardware complexity. One smart design that
is modified and discussed in this chapter is the one proposed in [4]. The modified
Motion Estimation co-processor can be used for both H.264/Advanced Video Coding
(AVC) and H.265/High-Efficient Video Coding (HEVC) standards. Although the used
window size for such co-processor is 32 × 32 pixels with a Current Block size of 16 × 16
pixels, it can be generalized for a higher number of pixels in both the search area and
the Current Block to be suitable for HD video sequences. A modified top-level archi-
tecture of the proposed Motion Estimation co-processor in [4] is shown in Figure 7.

This co-processor is designed for H.264/AVC; however, it could be used for H.265/
HEVC standard with a little modification in the hardware. The structure in [4] is
designed to perform the Motion Estimation process for a Current Block of size 16 × 16.
The search area can be 32 × 32 or more. To increase the speed of the co-processor
proposed in [4], the Current Block is directly loaded from the main memory, and the
search area will be loaded into a local memory as will be discussed later. The structure
consists of a processing element (PE) array. The PE array consists of a 16 × 16 PE
that computes the absolute difference (AD) values between the Current Block and
a candidate block in the search area. The Current Block will be directly loaded into
the PE array from the main memory, while the candidate block will be loaded into
the PE array from the local memory. Data reuse levels A and level B are implemented
using a local memory. This local memory is very simple and consists only of bank of

Figure 7.
Motion estimation co-processor.

The Future of Television - Convergence of Content and Technology

10

registers. Using smart control signals, this local memory can succeed to greatly reduce
the memory I/O bandwidth. Once the ADs are calculated using the PE array, an adder
tree is used to add all of them and calculate a final SAD. The adder tree is adding all
values in parallel fashion so that the addition process will be very fast. The SAD will
be compared with the calculated SAD so far, and the minimum value will be selected.
The candidate block in the search area with the minimum SAD so far will be selected
to be the best match candidate block and the corresponding motion vector. The
demultiplexer is used to smartly feed the candidate blocks into the PE array.

4.1 Design the local memory

Implementing data reuse levels A, B, C, and D can be performed using a local
memory inside the Motion Estimation co-processor. This local memory could fetch
the search areas only once from the main memory. This means less memory access
time is required. A smart algorithm is needed to control the data flow in/out of the
local memory. The local memory in Figures 7 and 8 is designed to perform level
A and level B data reuse. However, it can be used with slight modifications in its
hardware and the operating algorithm to perform the other two data reuse levels
(i.e., level C and level D data reuse). The modified architecture of the local memory
[4] is shown in Figure 8. As mentioned before, this co-processor is mainly used for
the Motion Estimation process of the H.264/AVC encoder.

The Current Block (CB) is loaded only once per one search area directly from
the main memory into the PE array. The 16 × 16 Current Block is loaded into the PE
array row by row as seen in Figure 9. The CB loading process starts from the bottom
PE row and shifted in the up direction as seen in Figure 9. Each pixel of the CB is
loaded into a register Rx of each PE via pin Xin as seen in Figure 8. While loading
a new row of the CB into the PE array, the content of the register RX in each PE
will be shifted up via the pin Xout. This process will be continued until all the CB is
loaded into the PE array. Loading the CB into the PE array consumes 16 clock cycles.
The local memory is used to load the PE array with the search area of size SAx × SAy
(including the padding area). The local memory is very simple in its design. It
consists of two banks of registers. Each bank is 16 × 16 byte registers. No addressing
modes are required for such local memory. Only a simple 5-bit counter is used for
addressing. There is an additional (1 × 2) demultiplexer (Demux) used to control
loading the PE array by the search area.

The Motion Estimation process starts by loading the Current Block inside the PE
array as mentioned before. The local memory starts loading the search area by loading
the top left 16 × 16 candidate block into Register Bank #1 of the local memory as seen in
Figure 8. This will be performed via connecting terminal 1 of the Demux to the main
memory. Loading operation will be performed by loading the candidate block of the
search area line by line into Register Bank #1. This will take additional 16 clock cycles.

In clock cycle 33, two operations will be performed at the same time. First,
since the first top-left candidate block is available on Register Bank #1 of the local
memory, the Motion Estimation co-processor will start loading this candidate block
into the PE array column by column starting by the left column of the Register Bank
#1 of the local memory. A simple 5-bit counter will be used to read such columns.
The pixels of the candidate block will be loaded into the PE via pin Yin and stored
into register RY (please see Figure 8). It is worth mentioning that every time a
column of a candidate block is loaded into the PE array, it will be shifted to the left
direction via pin Yout (as seen in Figures 8 and 9) until the PE array is filled with
the candidate block. Second, the second group of the search area will be loaded into
the Register Bank #2 of the local memory. This will be performed by connecting
terminal 2 of the Demux to the main memory.

11

High-Efficient Video Transmission for HDTV Broadcasting
DOI: http://dx.doi.org/10.5772/intechopen.79908

Figure 8.
Local memory design for the motion estimation co-processor.

Figure 9.
Loading the current block (CB) and the candidate block (RB) into a 4 × 4 PE array.

The Future of Television - Convergence of Content and Technology

12

Once the candidate block is loaded into the PE array, the PE array will start
calculating the AD between each pixel in the Current Block and the corresponding
pixel in the candidate block using the adder of each PE. It is worth mentioning that
level A data reuse will be performed by shifting only one column from the Register
Bank #2 of the local memory into the PE array. While loading the first strip candi-
date blocks inside the PE array using the Register Bank #2 of the local memory, level
B data reuse could be performed by loading new horizontal line into the left bank
registers of local memory (Register Bank #1) via terminal 1 of the demultiplexer.
Once the last candidate block of the first strip is loaded into the PE array, the coun-
ter will back to load a new candidate block (using level B data reuse) by loading the
first left column of the Register Bank #1 of the local memory into the PE array. This
operation will be continued until all candidate blocks are loaded into the PE array.

Every time a new candidate block is loaded into the PE array, 256 ADs will be
calculated by the PEs. The adder tree will calculate the SAD value of the 256 ADs.
The comparator will compare the current SAD value with the minimum SAD so far.
The final minimum SAD will be decided after all candidate blocks are checked. All
of these operations are performed at no stall at all and 100% utilization of the PE
array. This is the main advantage of the architecture discussed in this section; this
is why such architecture is suggested for real-time high-speed HDTV broadcasting
applications. The final output of the co-processor will be the best candidate block
with the minimum SAD value and the corresponding MV. These two values will be
sent to the main processor to calculate the residue as seen in Figures 3 and 7.

5. Conclusion

This book chapter provides a solution for the huge memory access time required
by the high-resolution video broadcasting operation (HDTV broadcasting). A
high-speed ME architecture that greatly minimizes the memory access time, if
adopted into high-resolution H.264/AVC and H.265/HEVC video standards, has
been presented. The proposed architecture can perform ME process for 30 fps of
HDTV video. It can easily outperforms over many fast full-search architectures
due to the great reduction in the memory access time required for the ME process.
The proposed architecture effectively uses pipelining, parallelism, and data reuse
to achieve a high-throughput rate while maintaining 100% PE utilization. The
proposed co-processor is suitable for high-performance and high-accuracy real-
time video applications such as HDTV and SDTV broadcastings. As a future work,
the author of the book chapter is welling to reduce the processing time required for
the ME process. This can be achieved by adopting some dynamic models inside this
co-processor to adaptively select the proper size of the search area. The size of the
search area is decided using these model equations according to the motion activity
of the Current Block. Accordingly, the computations and the memory access time
required for the ME process are expected to be greatly reduced.

Acknowledgements

The author acknowledges the support of Southern University and A&M College,
Baton Rouge, USA, for its support to finalize this work.

13

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

High-Efficient Video Transmission for HDTV Broadcasting
DOI: http://dx.doi.org/10.5772/intechopen.79908

Author details

Yasser Ali Ismail
Electrical Engineering Department, Southern University and A&M College,
Baton Rouge, USA

*Address all correspondence to: yasser_ismail@subr.edu

14

The Future of Television - Convergence of Content and Technology

References

[1] Jamali M, Coulombe S. Fast HEVC
intra mode decision based on RDO
cost prediction. IEEE Transactions on
Broadcasting. 2018:1-14

[2] Ismail Y, McNeely JB, Shaaban M,
Mahmoud H, Bayoumi MA. Fast
motion estimation system using
dynamic models for H.264/AVC video
coding. IEEE Transactions on Circuits
and Systems for Video Technology.
2012;22:28-42

[3] Sotelo R, Joskowicz J, Anedda M,
Murroni M, Giusto DD. Subjective video
quality assessments for 4K UHDTV. In:
2017 IEEE International Symposium
on Broadband Multimedia Systems and
Broadcasting (BMSB); 2017. pp. 1-6

[4] Ismail Y, El-Medany W, Al-Junaid H,
Abdelgawad A. High performance
architecture for real-time HDTV
broadcasting. Journal of Real-Time
Image Processing. 2014;11(4):633-644

[5] Vayalil NC, Kong Y. VLSI
architecture of full-search variable-
block-size motion estimation for HEVC
video encoding. IET Circuits, Devices
and Systems. 2017;11:543-548

[6] Rao KR. High efficiency video
coding. In: 2016 Signal Processing:
Algorithms, Architectures,
Arrangements, and Applications (SPA);
2016. pp. 11-11

[7] Hannuksela MM, Yan Y, Huang X,
Li H. Overview of the multiview high
efficiency video coding (MV-HEVC)
standard. In: 2015 IEEE International
Conference on Image Processing (ICIP);
2015. pp. 2154-2158

[8] Ismail Y, Elgamel MA, Bayoumi MA.
Fast variable padding motion estimation
using smart zero motion prejudgment
technique for pixel and frequency
domains. IEEE Transactions on Circuits
and Systems for Video Technology.
2009;19:609-626

[9] Wiegand T, Sullivan GJ, Bjontegaard
G, Luthra A. Overview of the H.264/
AVC video coding standard. IEEE
Transactions on Circuits and Systems
for Video Technology. 2003;13:560-576

[10] Advanced video coding for
generic audiovisual services.
International Telecommunications
Union, Telecommun. (ITU-T) and
the International Organization
for Standardization/International
Electrotechnical Commission (ISO/
IEC) JTC 1, Recommendation H.264
and ISO/IEC 14 496-10 (MPEG-4)
AVC; 2003

[11] Ohm J, Sullivan GJ, Schwarz H,
Thiow Keng T, Wiegand T. Comparison
of the coding efficiency of video
coding standards 2014 including high
efficiency video coding (HEVC).
IEEE Transactions on Circuits and
Systems for Video Technology.
2012;22:1669-1684

[12] Lee TK, Chan YL, Siu WC. Adaptive
search range by depth variant decaying
weights for HEVC inter texture coding.
In: 2017 IEEE International Conference
on Multimedia and Expo (ICME); 2017.
pp. 1249-1254

[13] ITU-T and JVT. High Efficiency
Video Coding (HEVC) Text Specification
Draft 6. Joint Video Team of ISO/IEC
MPEG and ITU-T VCEG; 2012

[14] Kuang W, Tsang SH, Chan YL, Siu
WC. Fast mode decision algorithm for
HEVC screen content intra coding. In:
2017 IEEE International Conference
on Image Processing (ICIP); 2017.
pp. 2473-2477

[15] Goel S, Ismail Y, Bayoumi MA.
Adaptive search window size algorithm
for fast motion estimation in H.264/AVC
standard. In: 48th Midwest Symposium
on Circuits and Systems; 2005; Vol. 2.
2005. pp. 1557-1560

15

High-Efficient Video Transmission for HDTV Broadcasting
DOI: http://dx.doi.org/10.5772/intechopen.79908

[16] Kibeya H, Belghith F, Ayed MAB,
Masmoudi N. Adaptive motion
estimation search window size
for HEVC standard. In: 2016 7th
International Conference on Sciences
of Electronics, Technologies of
Information and Telecommunications
(SETIT); 2016. pp. 410-415

[17] Mukherjee R, Banerjee A,
Chakrabarti I, Dutta PK, Ray
AK. Efficient VLSI design of CAVLC
decoder of H.264 for HD videos. In:
2017 7th International Symposium on
Embedded Computing and System
Design (ISED); 2017. pp. 1-4

[18] Celebi AT, Yavuz S, Celebi A, Urban
O. One-dimensional filtering based two-
bit transform and its efficient hardware
architecture for fast motion estimation.
IEEE Transactions on Consumer
Electronics. 2017;63:377-385

[19] Tuan J-C, Chang T-S, Jen C-W. On
the data reuse and memory bandwidth
analysis for full-search block-matching
VLSI architecture. IEEE Transactions
on Circuits and Systems for Video
Technology. 2002;12:61-72

[20] Goel S, Ismail Y, Devulapalli P,
McNeely J, Bayoumi MA. An efficient
data reuse motion estimation engine. In:
IEEE Workshop on Signal Processing
Systems Design and Implementation
(SIPS '06); 2006; 2006. pp. 383-386

