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Abstract

Sequences from three palm wine yeast genera namely Saccharomyces cerevisiae, Pichia 

kudriavzevii, and Candida ethanolica were analyzed to establish their phylogenetic 
relationships, geographical origin, and food matrix source of their close relatives. Up 
to 600 sequences present in yeasts representing close relatives of palm wine yeasts 
were examined. Pyhlogenetic trees constructed showed polyphyletic relationships in  
C. ethanolica whereas close relatives of S. cerevisiae and P. kudriavzevii showed little 
divergence. Sequence data for both Elaeis sp. and Raphia sp. palm trees showed that 
highest number of palm wine yeasts relatives sequence submissions to the Genbank 
were from China and beverages were mainly the sources of close relatives of S. cerevisiae 
and P. kudriavzevii whereas C. ethanolica closest relatives were from various non-food 
sources. Overall relatives of palm wine yeasts were not specific to any particular food or 
fermentation mix. The guanine-cytosine (G+C) content in P. kudriavzevii (57–58%) and 
C. ethanolica (56–57%) was higher than that of S. cerevisiae (47.3–51%). This suggests that 
the P. kudriavzevii and C. ethanolica have a higher recombination rate than S. cerevisiae 
strains analyzed. The data may help to understand palm wine yeast conservation and 
the diverse food matrixes and geographical origins where their close relatives exist.

Keywords: yeasts, phylogeny, Saccharomyces cerevisiae, Pichia kudriavzevii,  
Candida ethanolica

1. Introduction

Palm wine is a traditional drink consumed mainly in sub-Saharan Africa, parts of Asia, and 

South America. It is obtained from fermentation of saps of different palm trees. Palm wine is 
sourced from palm trees and they grow throughout tropical and subtropical regions with just 

a few species found in temperate regions possibly due to freeze intolerance of seedlings [1]. 

The method of obtaining the drink by tapping has been described in many reports [2] and the 
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palm sap varies according to palm trees found in different geographical location. Yeasts are 
the main organisms implicated in the fermentation of the drink and they exist as natural flora 
on palm trees. Irrespective of the palm tree source, a common feature of the drink is that it goes 

sour within 24 h unless it is subjected to cold storage. The two trees from which palm wine 

is mostly tapped in Nigeria are Raphia hookeri and Elaeis guineensis. There is a debate on the 

possible origin or source of these palm trees. The tree Raphia hookeri is known as the wine palm 

and is the most widespread familiar Raphia palm in fresh water swamps of west and central 

Africa [3]. Many local varieties exist in the tropical rain forest of Nigeria and it is also grown 

in India, Malaysia, and Singapore [4]. The E. guineensis oil palm variety is more widely found 

around the world. A report pointed out that E. guineensis palm tree originated in the tropical 

rain forest region of West Africa and can be found in Cameroon, Côte d’Ivoire, Ghana, Liberia, 

Nigeria, Sierra Leone, Togo Angola, and the Congo [5]. It is believed in the report that during 

the fourteenth to seventeenth centuries, some palm fruits were taken to the Americas and from 

there to the Far East where it thrived. Yeast are known to reflect human history [6] hence it is 

possible the yeast strains found in palm wine were introduced to new regions via the plant 

materials introduced in those locations.

Although it is known that yeasts have been used for food and beverage fermentations [7] hun-

dreds of years ago and domestication is believed to have been initiated before the discovery of 

microbes [8], the extent of genetic diversity is still under study around the world. Recent reports 

have shown that non-Saccharomyces yeasts have different oenological properties to those of S. 

cerevisiae [9]. Other reports emphasize that even though biochemical and genomic studies of S. 

cerevisiae have helped our understanding of yeasts, the other lesser known yeast species have 

not been fully exploited [10]. More understanding of S. cerevisiae and non-S. cerevisiae yeasts in 

palm wine is needed [11] in order to get more information on the capabilities of yeasts pres-

ent in the drink or to probe for novel species [12]. To generate more information, molecular 

characterization has been used by many investigators and this has led to proper identification 
of new yeast strains in the drink. The diversity of yeasts from palm wine has not had much 

in-depth investigation and reports that show evolutionary trees which are the basic structures 

necessary to establish the relationships among organisms [13] are few in literature. This chapter 

examines evolutionary relationships of palm wine yeasts and their close relatives based on 26S 

rRNA sequence data and aims to shed more light on the diversity of yeasts found in the drink.

2. Methodology

2.1. Ribosomal ribonucleic acid genes partial sequence data

In a previous study [2], partial 26S rRNA gene sequences from 18 palm wine yeast isolates 

were deposited under accession numbers (HG452325-42). The sequences from three yeasts 

genera identified in that study namely S. cerevisiae, P. kudriavzevii, and C. ethanolica from Elaeis 

sp. and Raphia sp. palm trees were selected and used to carry out new updated searches in this 

report. For Elaeis sp., the sequence accession numbers used were HG425336, HG425328, and 

HG425333 whereas HG425332, HG425338, and HG425335 were used for the Raphia sp. palm 

Recent Advances in Phylogenetics26



tree. The current versions of the selected six sequences mentioned above were used separately 

for an updated search in the Genbank database. The searches were optimized for highly simi-

lar sequences and the first 100 sequences from relatives of each yeast species with the highest 
percent identity were marked to make a shortlist of up to 600 sequences. These sequences 

were examined for the features listed at the time of submission after which the countries of 

origin and sources were noted. Sources were classified as beverage, food, or non-food sources.

2.2. Construction of phylogenetic trees

Phylogenetic trees were constructed from the shortlisted sequences by using the molecu-

lar evolutionary genetic analysis (MEGA, version 7) computer software [14]. The software 

allowed a seamless transfer of the sequences from Genbank. Using the multiple sequence 

comparison by log expectation (MUSCLE) reported by Edgar [15], multiple sequence align-

ments (MSA) were constructed with the software. The evolutionary history was inferred by 

using the maximum likelihood method based on the Tamura-Nei model [16]. The tree with 

the highest log likelihood was chosen. Initial trees for the heuristic search were obtained using 

the maximum composite likelihood approach. Trees were drawn to scale, with branch lengths 

measured in the number of substitutions per site. All positions containing gaps and missing 

data were eliminated. The nucleic acid composition of the sequences was calculated auto-

matically by switching to the nucleic acids estimation mode of the software after which the 

G+C content of the sequences were calculated manually from the arginine, guanine, cytosine, 

and thiamine percentage distribution displayed. The MAS tool MUSCLE used assumes an 

equality of substitution rates among sites and takes into account differences in transitional, 
transversional rates, and G+C-content bias [17]. For brevity, only 20 sequences from the initial 

100 relatives obtained are shown in the trees with the reference sequence.

The complete list of 600 sequences analyzed showing sources and countries of origin is avail-

able in the public repository figshare [18].

3. Results and discussion

3.1. Evolutionary relationships of palm wine yeasts and their relatives

Yeasts facilitate several industrial food fermentation processes, which often consist of a 
desired specific strain [19]. This may be why domestication is believed to be the main driver 

of specific yeast prevalence in a geographical location. The understanding of the ecological 
basis of yeast diversity in nature remains fragmented and cross-kingdom competition has 

been proposed as a method to generate industrially useful yeast strains with new metabolic 

traits [20]. Palm wine yeasts are yet to enjoy significant diversity study hence a look at their 
relatives will enable more information to be generated.

In the last decade, there has been increase in submissions of palm wine yeast sequences based 

on 26S rRNA genes mainly due to quality checks by academic journals. The identification 
of new strains is accompanied by performing a search with the basic local alignment search 
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tool [21] followed by submission of DNA sequences to the GenBank. According to Benson 

et al. [22], GenBank is a comprehensive database that contains publicly available nucleotide 

sequences for up to 370,000 formally described species. It is common knowledge that these 

submissions which contain a lot of information are generated mainly through submissions 

from investigators around the world. Each sequence data received is curated by the GenBank 

annotation staff to ensure that it is free from errors after which accession numbers are assigned.

All the sequences used in this study were the first versions submitted by investigators. The 
maximum likelihood method was preferred for the trees constructed because it is compu-

tationally intense and all possible trees are considered. Also the method can be useful for 

widely divergent groups or other difficult situations [23].

3.2. Candida ethanolica

The yeast C. ethanolica is not widely reported in palm wine. It has been reported as a non-

conventional yeast which may present massive resource of yeast biodiversity for industrial 

applications because it has been found to be adapted to some of the stress factors present in 

harsh environmental [24]. In that report, it was found that C. ethanolica tolerated up to 7% v/v 

ethanol. This could be useful information for new palm wine drink development especially 

now that there is increasing interest in non-Saccharomyces yeasts with peculiar features able to 

replace or accompany S. cerevisiae during specific industrial fermentations [25].

The C. ethanolica strain from Raphia sp. (Figure 1) and Elaeis sp. (Figure 2) palm wine showed 

close relationships with other Candida species. The relatives of Raphia sp. palm wine that ema-

nated from the same node (Figure 1) came from diverse sources. The flanking close relatives 
(KY283163 and DQ466540) of C. ethanolica (HG425332) were isolated from composite microbial 

powders for aquaculture in China [26] and composite cocoa fermentation in Ghana [27]. Other 

close relatives included species from the genus Pichia. The P. deserticola strain (KM005182) from 

the same node as the reference strain was from aerobic deterioration of total mixed ration silage 

in China [28]. For Elaeis sp. (Figure 2) palm wine, close relatives to C. ethanolica (HG425336) 

strain were from a laboratory culture collection with unidentified source [29] and a tannin 

tolerant yeasts associated with naturally fermented Miang leaves in Thailand [30]. A close P. 

deserticola strain of unstated source in GenBank was from a large characterization study [31].

In both Elaeis sp. and Raphia sp. palm wine, several monophyletic groups were formed with 

other Pichia species namely P. deserticola, P. Manshurica and P. galeiformis which indicate poly-

phyletic relationships. The polyphyletic nature of Pichia has been demonstrated by Kurtzman 
and Robnett [29] in the analysis of gene sequences that included all known ascomycetous 

yeasts. Apart from possible similar conserved regions, previous nomenclature at the time of 

submission of the sequences may also be the reason why Pichia species of different genus were 
observed as close relatives of C. ethanolica from Elaeis sp. and Raphia sp. palm trees.

It has been reported that ascomycetic fungi submitted to the database previously have been 
assigned names based on their life stages [32, 33]. For example, it was shown that the name 

for the fungi Candida krusei is based on the anamorphic stage whereas its telemorph stage 
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name is Pichia kudriavzevii. It also has an older name Issatchenkia orientalis. The whole Candida 

species consists of up to 850 organisms, which can be distantly related [34]. Hence in order 

to avoid the confusion, the International Botanical Congress in Melbourne in July 2011, made 

a change in the international code of nomenclature for fungi and adopted the principle of 

one fungus can only have one name and ended the system of permitting separate names to 
be used for anamorphs [35]. The report emphasized that this validated all legitimate names 

proposed for a species, regardless of what stage they were typed and can serve as the correct 

name for that species.

3.3. Sachharomyces cerevisiae

The yeast S. cerevisiae is generally known to be the most used microorganism in the food 

and drink manufacturing sector. The organism is the dominant yeast species isolated from 

many studies on palm wine. However, it is unclear whether S. cerevisiae as a species occurs 

naturally or exists solely as a domesticated species [36]. S. cerevisiae strains are genetically 

diverse, largely as a result of human efforts to develop strains specifically adapted to vari-
ous fermentation processes. These adaptive pressures from various ecological niches may 

generate behavioral differences among these strains [37]. In a review [8], it was suggested 

that domestication in Saccharomyces, is most pronounced in beer strains, because they live in 

their industrial niche always and allow only limited genetic admixture with wild stocks and 

minimal contact with natural environments. Due to this restriction, it was pointed out that 

Figure 1. Phylogenetic analysis of Candida ethanolica (HG425332-underlined) from Raphia sp. palm wine. The tree is 

drawn to scale, with branch lengths measured in the number of substitutions per site.
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beer yeast genomes show complex patterns of domestication and divergence, making both ale 
(S. cerevisiae) and lager (S. pastorianus) strains ideal models to study domestication.

The relatives of palm wine S. cerevisiae was not distributed among many species or differ-

ent genus observed for Candida species. Two nodes were observed for the S. cerevisiae trees 

constructed for Elaeis sp. (Figure 3) and Raphia sp. (Figure 4). The yeast strain isolated from 

Elaeis sp. (Figure 3) was in a different branch from most of its relative whereas it was vice 
versa for the palm wine yeast from Raphia sp. (Figure 4) palm wine. As observed for Candida 

species, isolation of S. cerevisiae species was from different sources. The close relatives flanking 
the palm wine strain from Elaeis sp. palm wine (HG425328, Figure 3) with accession numbers 

KU862639 and MF966566 were isolated from grape surface [38] and pear sough dough [39] 

whereas the close relatives of Raphia sp. palm wine (HG425338, Figure 4) with accession num-

bers GU080046 and HM191669 were isolated from must of spontaneous fermentation [40] and 

grape juice used to brew Musalais, a beverage made from compressed grapes [41].

It is believed that 99% of yeasts is still unknown [42], and S. cerevisiae fermentation could be 

specific to a particular substrate, hence more studies of S. cerevisiae from different palm trees 
will be beneficial. The genus Saccharomyces was previously divided into two groups namely 

Figure 2. Phylogenetic analysis of Candida ethanolica (HG425336-underlined) from Elaeis sp. palm wine. The tree is drawn 

to scale, with branch lengths measured in the number of substitutions per site.
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Saccharomyces sensu stricto and Saccharomyces sensu lato and the sensu stricto strains are mostly 

associated with the fermentation industry [43]. The S. cerevisiae in this study are sensu stricto. 

Comparative genomics analysis of S. cerevisiae and closely related species has contributed to 

our understanding of how new species emerge and has shed light on various mechanisms 

that contribute to reproductive isolation [44]. This knowledge can be applied to palm wine 

yeasts to ascertain how they differ from well characterized yeasts.

3.4. Pichia kudriavzevii

From recent molecular studies of yeasts present in palm wine, the yeast species Pichia kudriavzevii 

has emerged as a prevalent non-Saccharomyces yeast species in the drink. The genus has shown 

probiotic potentials [45] and multistress-tolerance [46]. It is worth looking closely at this genus 

because it has been shown that some P. kudriavzevii strains can produce higher quantities of etha-

nol from lignocellulosic biomass than conventional cells of S. cerevisiae at 45°C [47].

The tree constructed for P. kudriavzevii showed the least divergence when compared to  

S. cerevisiae or Candida palm wine yeast relatives. All the relatives and the Elaeis sp. palm 

wine strain (HG425333) originated from one node and formed separate taxonomic units 

Figure 3. Phylogenetic analysis of S. cerevisiae (HG425328-underlined) from Elaeis sp. palm wine. The tree is drawn to 

scale, with branch lengths measured in the number of substitutions per site.
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(Figure 5). In contrast, the P. kudriavzevii (HG425335) from Raphia sp. palm wine formed a 

separate clade and did not lie on the same branch with the relatives (Figure 6). This indi-

cates intraspecies diversity and confirms findings reported previously [11]. In that study, 

intraspecies diversity was suggested because P. kudriavzevii (HG425335) from Raphia sp. 

palm wine formed a separate clade with palm wine isolates from Mexico instead of iso-

lates from the same geographical location.

The information contained in the sequence submission of close relatives of P. kudriavzevii 

strains also shows different sources of isolation. The strains close to the yeast from Elaeis sp. 

palm wine (HG425333, Figure 5) with accession numbers KY283159 and KM234455 show 
that isolation was from composite microbial powders for aquaculture [21] and naturally fer-

mented cashew apple juice [48] whereas a close relative of Raphia sp. palm wine (HG425335, 

Figure 6) with accession number KU167717 was isolated from activated sludge from textile 

dyeing [49].

3.5. Geographical origin and sources of palm wine yeast relatives

After ascertaining the sources of very close relatives from the phylogenetic trees constructed, 

the shortlisted 600 sequences from the aforementioned yeast genera were further examined 

and the information found was used to group the isolates according to country of isolation, 

food, beverage, and non-edible source.

Figure 4. Phylogenetic analysis of S. cerevisiae (HG425338-underlined) from Raphia sp. palm wine. The tree is drawn to 

scale, with branch lengths measured in the number of substitutions per site.
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3.5.1. Isolates submitted by country of origin and source

Overall, sequences examined for the aforementioned yeasts genera were submitted from 38 
countries [18] and the top 6 countries is presented in this report. Sequence data for both Elaeis 

sp. (Figure 7) and Raphia sp. (Figure 8) palm trees show that highest number of submissions to 

the Genbank database was from China. The top three countries from which palm wine yeast 

relatives originated were the same for both palm tree species. This suggests that a large number 

of palm wine yeasts may have common ancestors with yeasts found in China. The origins or 

sources of palm wine yeasts relatives were spread across beverages, food, and non-food sources. 

The prevalence of S. cerevisiae, P. kudriavzevii, and C. ethanolica from these sources is shown for 

Elaeis sp. palm tree (Figure 9) and Raphia sp. palm tree (Figure 10). In both palm wine from Elaeis 

and Raphia palm trees, yeasts relatives of S. cerevisiae and P. kudriavzevii species were isolated 

mainly from beverage sources whereas relatives representing C. ethanolica species were isolated 

from non-food sources. The sources of isolation revealed that the closest relatives of palm wine 

yeasts were from various sources and not specific to any particular food or fermentation mix.

Figure 5. Phylogenetic analysis of P. kudriavzevii (HG425333-underlined) from Elaeis sp. palm wine. The tree is drawn to 

scale, with branch lengths measured in the number of substitutions per site.
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Figure 7. Top six countries from which sequences of palm wine yeast relatives of Elaeis sp. palm tree were submitted to 
the GenBank.

Figure 6. Phylogenetic analysis of P. kudriavzevii (HG425335-underlined) from Raphia sp. palm wine. The tree is drawn 

to scale, with branch lengths measured in the number of substitutions per site.
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A report [50] found that laboratory estimates of optimum growth temperature could be used 

to predict global distributions of free-living microbes. Also, it was pointed out that popula-

tion genetic analyses show that the genetic diversity of S. cerevisiae is high in the tropics and 

subtropics of China [51, 52]. It was suggested that without further sampling in tropical and 

subtropical regions, it is not possible to differentiate whether the higher diversity of S. cerevisiae 

in Asia reflects a greater habitat area or an Asian origin for S. cerevisiae. It would be beneficial 
to carry out further studies in order to establish if palm wine yeasts were taken from Africa 

to Asia or vice versa. The diversity could also be high in temperate regions because a study 

examined S. cerevisiae and S. paradoxus in northeast America and uncovered a large diversity of 

yeasts [53]. Up to 24 yeast isolates could not be assigned to any known species and it was sug-

gested that the yeasts identified may be of taxonomic, medical, or biotechnological importance.

Figure 8. Top six countries from which sequences of palm wine yeast relatives of Raphia sp. palm tree were submitted 
to the GenBank.

Figure 9. Distribution of palm wine yeast relatives with reference to yeasts from Elaeis sp. palm wine according to 

beverage (), food (∎), and non-food (⊞) sources.
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3.6. G+C composition of palm wine yeast relatives

The G+C composition is a well known evolutionary property of eukaryotes, archaea, and 

bacteria. There are suggestions by Chen et al. [54], that concordance between proteomic 

architecture and the genetic code is related closely to genomic G+C content and phylogeny. 

It has been suggested that yeasts with higher G+C content have a higher recombination rate 

[55] and recombination is believed to be suppressed around centromeres [56]. The data in 

Table 1 present the average nucleotide composition and G+C content of partial sequences 

of 26S rRNA genes analyzed. It shows concentration of arginine, guanine and thiamine, 

and cytosine concentration in S. cerevisiae, P. kudriavzevii, or C. ethanolica obtained from the 

aforementioned palm trees. Data were obtained after measuring nucleotide frequencies (%) 

Yeast species T/U C A G G+C

1. S. cerevisiae-R 26.3 16.6 26.5 30.7 47.3

2. S. cerevisiae-E 26.7 20.2 22.7 30.4 51.0

3. P. kudriavzevii-R 20.0 21.9 22.6 35.5 57.0

4. P. kudriavzevii-E 19.8 22.2 22.6 35.5 58.0

5. C. ethanolica-R 21.1 21.4 21.8 35.7 56.0

6. C. ethanolica-E 20.9 21.4 21.9 35.8 57.0

Nucleotide concentration was obtained after analysis with MEGA 7.0 software.

T/U, thiamine/uracil; C, cytosine; A, arginine; G, guanine.

Table 1. Average nucleotide composition and G+C content obtained from yeasts from Raphia sp. (R) or Elaeis sp. (E) palm 

wine and their relatives after measuring nucleotide frequencies (%) in 100 sequences relative to each yeast species shown.

Figure 10. Distribution of palm wine yeast relatives with reference to yeasts from Raphia sp. palm wine according to 

beverage (), food (∎), and non-food (⊞) sources.
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in 100 sequences of strains relative to each palm wine yeast species listed. It was observed 

that the G+C content in P. kudriavzevii and C. ethanolica was higher than that of S. cerevisiae. 

This suggests that the P. kudriavzevii and C. ethanolica have a higher recombination rate than 

S. cerevisiae strains analyzed in this report. The G+C range observed is within the reported 

average genomic G+C-content range (13–75%) among species [57]. It was also found to 

be within range of G+C content (38.3–52.9%) of the MAT locus reported [58] in different 
Saccharomycetaceae species.

Further studies are required because G+C-content is associated with multiple biases of dif-

ferent nature during down stream operations and these biases may include sequencing 

technologies, biological, and methodological reasons [57]. Another factor that could affect 
the G+C content is that some yeasts like Lachancea kluyveri show an intriguing composi-

tional heterogeneity in that a region of the chromosome has an average G+C content of 

52.9% which is significantly higher than the 40.4% global G+C content of the rest of the 
genome [58].

4. Conclusions

Sequence data are useful for comparing palm wine yeasts from different trees. Data show the 
countries where the relatives of palm wine yeasts are dominant and may be useful for evolu-

tion and species migration studies. Palm wine yeast relatives may originate from beverage, 

food, and non-edible source. The G+C nucleotide data present insights on changes which may 

have occurred in conserved regions of some isolates over time. Comparing sequences with the 

highly conserved regions of the 26S rRNA genes gives an immediate picture of the lineage of 

palm wine yeasts and their relatives. It can also provide a foundation to select candidates for 

whole genome sequencing for comparision in future.
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