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1. Introduction 

Depth estimation or extraction refers to the set of techniques and algorithms aiming to 

obtain a representation of the spatial structure of a scene. In other terms, to obtain a measure 

of the distance of, ideally, each point of the seen scene. We will talk, as well, about 3D 

vision. 

In this chapter we will review the main topics, problems and proposals about depth 

estimation, as an introduction to the Stereo Vision research field. This review will deal with 

some essential and structural aspects of the image processing field, as well as with the depth 

perception capabilities and conditions of both computer and human based systems. 

This chapter is organized as follows: 

 This introduction section will present some basic concepts and problems of the depth 

estimation. 

 The depth estimation strategies section will detail, analyze and present results of the 

main families of algorithms which solve the depth estimation problem, among them, 

the stereo vision based approaches. 

 Finally, a conclusions section will summarize the pros and contras of the main 

paradigms seen in the chapter. 

1.1. The 3D scene. Elements and transformations 

We will call “3D scene” to the set of objects placed in a three dimensional space. A scene, 

however, is always seen from a specific point. The distorted image that is perceived in that 

point is the so-called projection of the scene. This projection is formed by the set of rays 

crossing a limited aperture arriving to the so-called projection plane (see figure 1). 
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Figure 1. The 3D scene projected into a plane. 

This projection presents some relevant characteristics: 

 The most evident consequence of a projection is the loose of one dimension. Since in 

each pixel only one point of the real scene is projected, the depth information is 

mathematically erased during the projection process into the image plane. However, 

some algorithms can retrieve this information from the 2D image, as we will see. 

 On the contrary, the projection of a scene presents important advantages, such a simple 

sampling by already well developed devices (the so-called image sensors). Moreover, 

dealing with 2D images is, by obvious reasons, much simpler than managing 3D sets of 

data, reducing computational load. 

Thus, the scene is transformed into a 2D set of points, which can be described in a Cartesian 

plane: 

 

Figure 2. A 2D projection of a scene. “Teddy” image (Scharstein, 2010). 

The 3D vision processes have as goal the reconstruction of this lost information, and, thus, 

the distances from each projected point to the image plane. An example of such 

reconstruction is shown in figure 3. 
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Figure 3. A 3D reconstruction of the previous image (Bleyer & Gelautz, 2005). 

The reconstruction, also called depth map estimation, has to face some fundamental 

problems. 

On the one hand, some extra information has to be obtained, for an absolute depth 

estimation. This aspect will be discussed in section 1.3.12. 

On the other hand, there are, geometrically, infinite points in the scene that are not projected 

and, then, must be, in some cases, interpolated. This is the case of occluded points, shown in 

figure 4. 

 

Figure 4. Occluded points, marked with squares. 

1.2. Paradigms for 3D images representation over a plane 

As we saw in the previous section, the projection onto a plane forces the loose of the depth 

dimension of the scene. However, the depth information should be able to be represented in 

a plane, for printing purposes, for example. 

There are three widely used modes for depth representation: 

 Gray scale 2.5D representation. This paradigm uses the gray scale intensity to represent 

the depth of each pixel in the image. Thus, the colour, texture and luminosity of the 

original image are lost in this representation. The name “2.5D” refers to the fact that this 
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kind of images has the depth information directly in each pixel, while it is represented 

over a 2D space. In this paradigm, the gray level represents the inverse of the distance. 

Thus, more a pixel is bright, closer is the point represented. Vice versa, the darker is a 

pixel, further is the represented point. This is the most commonly used way for depth 

representation. Figure 5 shows an original image and its gray scale 2.5D representation. 

  
(a)                                       (b) 

Figure 5. (a) The “Sawtooth” image and (b) its gray scale 2.5D representation  (Scharstein, 2010). 

 Colour 2.5D representation. This representation is similar to the previous one. The 

difference is the use of colours to represent the depth. In the following image, red-black 

colours represent closer points, and blue-dark colours the further points. However, 

other colour representations are available in the literature (see, for example, (Saxena, 

Chung, & Ng, 2008)). Figure 6 shows an example of the same image, represented in 

colour 2.5D. 

 

Figure 6. Colour based representation of the depth map (Kostková & Sára, 2006). In gray occluded 

parts. 

 Pseudo-3D representation. This representation provides different points of view of the 

reconstructed scene. Figure 3 showed an example of this. 

The main advantage of the first two methods is the possibility of implementing objective 

comparison among algorithms, as it is done in the Middlebury data base and test system  

(Scharstein, 2010). 

We can appreciate a difference in the definition between the image of the figure 5.b and that 

of the figure 6. The image shown in figure 5.b is the so-called ground truth, i.e. the exact 

representation of the distances (obtained by laser, projections, or directly from 3D design 
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environments), while the image of figure 6 is a computed depth map and, hence, is not 

exact. The ground truth is used for quantitative comparisons in distances between the 

extracted image and the real ones. 

1.3. Important terms and issues in depth estimation 

The depth estimation world is a quite complex research field, where many techniques and 

setups have been proposed. The set of algorithms which solve the depth map estimation 

problem deals with many different mathematical concepts which should be briefly 

explained for a minimum overall comprehension of the matter. 

In this section we will review some important points about image processing applied to 

depth estimation. 

1.3.1. Standard Test beds 

The availability of common tests and comparable results is a mandatory constraint in active 

and widely explored fields. Likewise, the possibility of objective comparisons make easier to 

classify the different proposals. 

In depth estimation, and more specifically in stereo vision, one of the most important test 

bed is the Middlebury database and test bed  (Scharstein, 2010). 

The test beds provide both eyes images of a 3D scene, as well as the ground truth map. 

Figure 7 shows the “Cones” test set with its ground truth. 

   
                           (a)                                          (b)                                          (c) 

Figure 7. (a) Left eye, (b) right eye and (c) ground truth representation of the “Cones” scene (Scharstein 

& Szeliski, 2003). 

The same test allow, as said, algorithms classification. An example of such a classification 

can be found in the URL http://vision.middlebury.edu/stereo/eval/  

1.3.2. Colour or gray scale images? 

The first point when we want to process an image, whichever is the goal, is to decide what 

to process. In this case colour or gray scale images. 

As it can be seen in the following figure, colour images have much more information that 

gray scale images: 
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Figure 8. Advantages of colour vision (Nathans, 1999). 

Colour images should, hence, be more appropriated for data extraction, among them, depth 

information. 

However, the colour images have an important disadvantage: For a 256 level definition, 

they are represented by 3 bytes (24-bit representation), while gray scale images with the 

same level only require one single byte. 

The consequence is obvious: colour image processing requires much more time and 

operations. 

An example of the improvement of the depth estimation of colour images can be seen in the 

following table, where the same algorithm is run over gray scale images and a pseudo-color 

gray scale version of the same images sets, from  (Scharstein, 2010): 

 

Images set Mode Error (%) Time 

Tsukuba 
Gray 55 50ms (20fps) 

Colour 46.9 77.4ms (12fps) 

Teddy 
Gray 79 78.9ms (12.7fps) 

Colour 60 114.2ms (8fps) 

Venus 
Gray 73.9 76.6ms (13fps) 

Colour 77 11.8ms (8fps) 

Table 1. Comparison the colour based and gray scale processing of the same algorithm (Revuelta Sanz, 

Ruiz Mezcua, & Sánchez Pena, 2011). 

1.3.3. The epipolar geometry 

When dealing with stereo vision setups, we have to face the epipolar geometry problem. 

Let Cl and Cr be the focal centres of the left and right sensors (or eyes), and L and R the left 

and right image planes. Finally, P will be a physical point of the scene and pl and pr the 

projections of P over L and R, respectively: 
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Figure 9. Epipolar geometry of a stereo vision system (Bleyer, 2006). 

In this figure, we can also see both “epipoles”, i.e., the points where the line connecting both 

focal centres intersects the image planes. They are noted as el and er. 

The geometrical properties of this setup force that every point of the line Ppl lies on the line 

prer, which is called “epipolar line”. The correspondence of a point seen in one image must 

be searched in the corresponding epipolar line in the other one, as shown in figure 10. 

 

  

Figure 10. Epipolar lines in two different perspectives (Tuytelaars & Gool, 2004). 

A simplified version of this geometry arise when the image planes are parallel. This is the 

base of the so-called fronto-parallel hypothesis. 

1.3.4. The fronto-parallel hypothesis 

The epipolar geometry of two sensors can be simplified, as said, positioning both planes 

parallel, arriving to the following setup: 
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Figure 11. Epipolar geometry of a stereo vision system in a fronto-parallel configuration (Bleyer, 2006). 

The epipoles are placed in the infinite, and the epipolar (and search) lines become 

horizontal. The points (except the occluded ones) are only decaled horizontally: 

 

Figure 12. Corresponding points in two images, regarding the opposite image (Bleyer, 2006). 

This geometrical setup can be implemented by properly orienting the sensors, or by means 

of mathematical transformation of the original images. If this last option is the case, the 

result is called “rectified image”. 

Other assumptions of the fronto-parallel hypothesis are described in detail in (Pons & 

Keriven, 2007; Radhika, Kartikeyan, Krishna, Chowdhury, & Srivastava, 2007). 

The most important consequences of this geometry, regarding the Cartesian plane proposed 

in figure 2, can be written as follows: 

 yl=yr. The height of a physical point is the same in both images. 

 xl=xr+Δd. The abscissa of a physical point is decaled by the so-called parallax or disparity, 

which is inversely related to the depth. 

 A point in the infinite has identical abscissa coordinates in both image planes. 

1.3.5. Matching 

When different viewpoints from the same scene are compared, a further problem arises that 

is associated with the mutual identification of images. The solution to this problem is 

commonly referred to as matching. The matching process consists of identifying each 

physical points within different images (Pons & Keriven, 2007). However, matching 
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techniques are not only used in stereo or multivision procedures but also widely used for 

image retrieval (Schimd, Zisserman, & Mohr, 1999) or fingerprint identification (Wang & 

Gavrilova, 2005) where it is important to allow rotational and scalar distortions (He & 

Wang, 2009). 

There are also various constraints that are generally satisfied by true matches thus 

simplifying the depth estimation algorithm, such as similarity, smoothness, ordering and 

uniqueness (Bleyer & Gelautz, 2005). 

As we will see, the matching process is a conceptual approach to identify similar 

characteristics in different images. It is, then, subjected to errors. The matching is, hence, 

implemented by means of comparators allowing different identification strategies such as 

minimum square errors (MSE), sum of absolute differences (SAD) or sum of squared 

differences (SSD). 

The characteristic compared through the matching process can be anything quantifiable. 

Thus, we will see algorithms matching points, edges, regions or other image cues. 

1.3.6. The minimum distance measure constraint 

It is assumed that the image planes are finite in area. Taking the fronto-parallel hypothesis 

into account, we can see that there is a minimum distance until which corresponding points 

can be found, but not below this distance. The geometrical representation of this constraint 

is shown in the following figure, were two image sensors with arbitrary cone of view 

present a blind area, which correspond to pixels out of both images: 

 

Figure 13. Minimum distance measurable in terms of the cone view angle α and the distance between 

sensors dcam. 

Some algorithms also impose an extra constraint, allowing a maximum disparity value, over 

which the points in the image plane are not recognized as the same physical point. This 

additional constraint present the advantage of reducing the number of operations: given 

that for one point, for example, in the left image, every pixel of the corresponding scan line 

in the right one must be compared to the original one, if the comparison presents a limit 

and, hence, not every pixel is compared, the algorithm improves its efficiency. However, 

some available matching will not be found. 
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1.3.7. The region segmentation 

Region segmentation is a conceptual approach to image segmentation which is based on the 

similarities of adjacent pixels. The image is chopped into non-overlapping homogeneous 

regions which are based on a specific characteristic. In mathematical terms, let Ω be the 

image domain. Segmented regions can be expressed as (Pham, Xu, & Prince, 2000): 

 




K

k

k
S

1  (1) 

where Sk means the kth region and Sk∩ Sj =Ø for k≠j. 

This method is commonly applied to binary images, where the region segmentation is 

ambiguousless. Many different approaches have been developed regarding gray-scale 

medical imaging (Pham et al., 2000) and other imaging fields (Gao, Jiang, & Yang, 2006; 

Espindola, Camara, Reis, Bins, & Monteiro, 2006) or color images (Wang & Wang, 2008). The 

potential of this last option is greater than the second one, however more than three times 

the amount of operations are required. However, region segmentation has proven to be a 

very efficient method (but not the most exact) as it is capable of segmenting the image after 

a single analysis of the pixels contained within the image. 

1.3.8. Edges and points extraction 

Edges and points are important cues of the image, and are often used as descriptors. For that 

purpose, they must be extracted from or identified within the image. 

Both edges and points are retrieved by means of different spatial operators, such as 

Laplacians or Laplacian-of-Gaussians (LoG). Figure 14 shows some typical operators for 

features extraction: 

 

 

 

Figure 14. Three examples of image processing operators: Sobel, Laplace and Prewitt. 

Figure 15 shows an original image and the results of the processing (convolution) with the 

previous operators:  
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                                                             (a)                               (b) 

   
                                                             (c)                              (d) 

Figure 15. (a) Original image. (b) Sobel bidirectional (vertical and horizontal) filtering, (c) Prewitt’s 

bidirectional filtering and (d) Laplacian filtering (Rangarajan, 2005). 

Points are also extracted convoluting a mask, or kernel, with the whole image. 

 

   
(a)                             (b) 

 

Figure 16. Relevant point retrieval. (a) Corner extraction; in blue, epipolar line. (b) The whole image 

already processed and the detected points in green. Both images extracted from  (Yu, Weng, Tian, 

Wang, & Tai, 2008). 

1.3.9. Focus 

Since the aperture of a sensor is finite and not null, not every point in the projection is 

focused. This effect, applicable to both human and synthetic visual systems, produces a 

Gaussian blur on the projected image, proportional to the distance of that point to the 

focused plane (see figure 17). 

An important problem arises when using the focus to estimate the depth: the symmetry 

effect of defocusing. We cannot know whether an object is closer or farther to the camera 

from a defocusing measurement. We will discuss this later in this chapter. 
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(a) 

 
(b) 

Figure 17. (a) Focus and defocus scheme and (b) example. 

1.3.10. Dense and interpolated depth maps 

The dense depth map concept refers to those 2.5D images computed for every pixel. 

Oppositely, if only some relevant points’ distances are computed, and the rest of them 

interpolated, we will talk about interpolated depth maps. Advantages and disadvantages of 

both strategies depend of the final application and resources. 

1.3.11. Relative and absolute depth measures 

We will call a relative measure of the depth, when we only can know if a point is closer or 

farther than another one (or regarding the same point in a video sequence, when the frames 

go on), and an absolute measure of the depth, when we can know what is the real distance 

between a pixel and the camera. These results are constrained by the technology used, as we 

will see. Depending of the application, a relative measure, which uses to be lighter in 

computational load, may be enough. Likewise, we may need an absolute measure, so we 

will not be able to use some algorithms, technologies or setups. 

1.4. The human visual perception of the depth 

The human visual system is prepared for the depth perception. This perception is possible 

by a combination of different and complementary physiological and psychological 

structures and functions: 
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 Two eyes: the most important source of depth perception is the two eyes, sharing an 

important area of vision. However, the fronto-parallel hypothesis is only respected 

when looking at something placed in the infinity. If it is not the case, the configuration 

is that shown in figure 9. The angle of obliqueness (parallax) also provides information 

about the distance of the object. 

 Focus: the crystalline is an elastic tissue which allows changing the focal distance of the 

eye and, hence, focusing in a wide range of distances. This information helps the brain 

computing the distance of the focused plane.  

 Features extraction to match: many different image features extraction have been 

explored in the human visual system, such as shapes (Kurki & Saarinen, 2004), areas 

(Meese & Summers, 2009), colors (Jacobs, Williams, Cahill, & Nathans, 2007), 

movements (Stromeyer, Kronauer, Madsen, & et al., 1984) and other visual or 

psychological characteristics (Racheva & Vassilev, 2009), pattern (Georgeson, 1976) or a 

mixture of them (Guttman, Gilroy, & Blake, 2007). 

 Differences in brightness: For constant illumination, the depth can be perceived in 

terms of the brightness. This method has been applied to compute the distance to stars 

(however, the hypothesis of constant brightness was not true), and works in daily live 

to help the brain knowing the distance, as perceived in figure 18. 

   
(a)                                           (b) 

Figure 18. Depth perception through the fog. (a) original image, (b) inverse, similar to a 2.5D image. 

 Finally, the structure of the perceived image can provide some depth information, 

although the brain can commit some errors when estimating the distance by this 

method, as seen in the following figure. 

 

Figure 19. Visual deformation of the sizes of A and B due to structure perception of the depth. 

Summarizing, we can take the human vision system as a set of functions and devices 

prepared to dynamically interact for a proper depth perception. 
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2. Depth estimation strategies 

In computer vision, i.e. the set of algorithms implemented to process images or video in a 

complex way, the human visual system has been an important source of inspiration. Thus, 

we will find many algorithms trying to achieve some human capabilities, among others, the 

depth estimation. 

However, there are other approaches to obtain the distance of a point (or a set of them).  In 

general terms, we can divide all the methods to electronically measure the distance as active 

and passive. 

2.1. Active methods 

Active methods put some energy in the scene, projecting it in order to, in some way, 

illuminate the space, and processing, passively, the reflected energy. These methods were 

proposed before the passive ones, because of one main reason: the microprocessing was not 

even invented.  

These methods present the main disadvantage, regarding the passive ones, in the energy 

needed. However, their accuracy use to be much higher, and some of them are used to 

obtain the ground truth. 

2.1.1. Light based depth estimation 

Light was the first kind of energy proposed to measure the distance. An example of this can 

be found in (Benjamin, 1973), working with incandescent light. 

However, many light sources can be used and, hence, many different algorithms, setups and 

hardware are also available. 

2.1.1.1. Incandescent light 

Incandescent light is an uncorrelated emission of electromagnetic waves, produced by the 

high temperature of a coil. This is the basic setup for distance measuring and, hence, the first 

proposed. The information provided by such method is very rough, and only allows, under 

some conditions (for example, the system is very sensitive to the colour of the illuminated 

object), a measure in some small area, or even in a single direction.  An example of this 

method has already been given. 

2.1.1.2. Pattern projection 

An improvement regarding the incandescent light (we should keep talking about 

incandescent light), is to produce it in a known pattern, which is projected to the scene. A 

camera, displaced from the light source, captures the geometrical distortion of the pattern. 

Figure 18 shows an example. This variant produces, with the help of a quite simple image 

processing, very accurate results. 
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(a)                                        (b) 

Figure 20. (a) pattern projection setup (Albrecht & Michaelis, 1998), and (b) figure 7 “Cones” scene 

from Middlebury database being processed to obtain fig.7c by structured light projection (Scharstein & 

Szeliski, 2003). 

2.1.1.3. Time-of-Flight 

The time of flight (ToF) principle uses the known speed of light to measure the time an 

emitted pulse of light takes to arrive to an image sensor (Schuon, Theobalt, Davis, & Thrun, 

2008).  

The emission can be made by IR LEDs, or Laser, the only sources to provide a short enough 

pulse to be useful for such measurements. Likewise, we can find different techniques inside 

this family, some of them moving the beam sequentially to illuminate the whole scene (as it 

is the case of Laser implementations, see (Saxena et al., 2008) for an example) or providing a 

pulse of light illuminating the whole scene in one single shot (LEDs options). 

On the one hand, the main advantages of this proposal is the relatively high accuracy (in a 

sub-centimetre scale) and high processing rates (up to 100 fps) in the case of CMOS and LED 

based illumination (ODOS Imaging, 2012).This technology use to present, on the other hand, 

high power needs (10 W in the case of the SwissRanger (Mesa Imaging, 2011), 20 W in that 

used by Saxena (Saxena et al., 2008)) and cost (around $9000 for the SwissRanger). 

2.1.2. Ultrasounds based methods 

The ultrasounds based methods use the same ToF principle, applied to Ultrasounds. This 

technique has been largely applied, for example, in ultrasounds to examine foetus. As we 

saw in the case of light based ToF, sometimes it is necessary to perform a scanning (Douglas, 

Solomonidis, Sandham, & Spence, 2002). 

2.2. Passive methods 

We call passive methods for depth estimation to those techniques working with natural light 

in the ambient, and the optical information of the captured image. These techniques capture 

the images with image sensors, being the problem solved in a computational way. Thus, we 

will mostly talk about algorithms. 

In this family of algorithms we can appreciate two former groups: monocular and multiview 

solutions.  
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2.2.1. Monocular solutions for the depth estimation 

The first one uses one single image (or a video sequence of them) to obtain the depth map. 

The main limitation of this approach, as we will see, is the intrinsic limitation of the depth 

characteristics lost during the projection of the scene into the image plane. An advantage of 

this approach uses to be the relatively low amount of operations needed to process one 

single image, instead of two or more. 

2.2.1.1. Image structure 

Structures within the image can be analyzed to obtain approximation to the volume, as it is 

proposed in (François & Medioni, 2001). In this approximation, some basic structures are 

assumed, producing a relative volume computation of objects represented in an image. 

 

Figure 21. Structure estimation from a single image (François & Medioni, 2001). 

Another related option is to compute the depth of well-known structures, such as human 

hands or faces (Nagai, Naruse, Ikehara, & Kurematsu, 2002), or indoor floors and walls 

(Delage, Lee, & Ng, 2005). 

The measurement of distances in this proposal is relative. We cannot know the exact 

distance to each point of the image but just the relative distance among them. Moreover, 

some other disadvantages of these algorithms arise from the intrinsic limitation in terms of 

expected forms and geometries of figures appearing in the image. Perspective can trick this 

kind of algorithms producing uncontrolled results. 

2.2.1.2 Points tracking or Optical flow 

Tracking points in a set of images, which change with the time, supposed solid bodies, may 

drive to a structure of the space in which the video sequence has been recorded. 

   

Figure 22. Augmented reality and 3D estimation through points relative movements in (Ozden, 

Schindler, & van Gool, 2007) 
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This approach provides, as in the previous case, a relative measure of the distances, tracking 

only relative variation in the positions of some relevant pixels. 

2.2.1.3. Depth-on-defocus 

The only approach that provides an absolute measurement of distance with monocular 

information is based in the focus properties of the image. This approach estimates the 

distance of every point in the image by computing the defocusing level of such points, 

following the human visual focusing system. This defocusing measurement is mainly done 

with Laplacian operators, which computes the second spatial derivative for every point in a 

neighbourhood of N pixels in each direction. Many other operators have been proposed, 

and a review of them can be found in (Helmi & Scherer, 2001). 

Focused pixels provide an exact measurement of the distance, if the camera optical 

properties are known. 

   
(a)                                  (b) 

Figure 23. Planar object distance estimation by focus (Malik & Choi, 2008). 

This approximation has important errors when defocusing is high, and is very sensitive to 

texture features of the image and other noise distortions. 

2.2.2. Multiview solutions for the depth estimation 

In this group, we find algorithms dealing with two or more images to compute the depth 

map. Stereo vision is a particular case of this set, using two images. For clearness purposes, 

we will talk about stereo vision when two images are involved, and multiview for more 

than two images. 

Some reasons explain why this new approach was proposed and, finally, widely used: 

 Computation power available for civil and academic projects grew very fast for the last 

20 years. This allows some algorithms to run in real time for the first time. 

 Absolute measures may be needed in some environments, and the depth-on-focus only 

provides an accurate measure of the depth in a quite narrow field. 

 Multiview systems, in some specific configurations, allow parallel computation, which 

can be a huge advantage when implementing them over GPUs or FPGAs or other 

parallel processing hardware. 

Before presenting the most important approaches to solve the depth problem with 

multiview setups, we will discuss about the matching problem, which appears in this family 

for the first time. 
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2.2.2.1. The matching problem 

This problem is posed for every stereo or multiview system (but not restricted to computer 

vision). 

The matching problem can be solved with four main strategies: local, cooperative, dynamic 

programming and global approximations. 

The first option takes into account only disparities within a finite window or neighborhood 

which presents similar intensities in both images (Islam & Kitchen, 2004; Williams & 

Bennamoun, 1998). The value of a matching criterion (sum-of-absolute-differences (SAD), 

sum-of-squared-differences (SSD) or any other characterization of the neighborhood of a 

pixel) for every windows positions is compared with the value for any other position. These 

windows are k×k pixel size. Then, this sum is optimized and the best match pixel is found. 

Finally, the disparity is computed from the abscissa difference of matched windows: 

        

Figure 24. Moving window finding an edge. Graph taken from (Hirchsmüller, Innocent, & Garibaldi, 

2002) 

The main disadvantage can be clearly seen: the number of operations needed gives a global 

order of the algorithm of o(n)=N3�k4 for a N×N image with windows of k×k pixels. This 

order is very high and these algorithms are not so fast, around 1 and 5 fps (Hirchsmüller et 

al., 2002) the fastest one. Another possibility for local matching is implemented by means of 

point matching. The basic idea consists on identifying important points (information 

relevant) in both images. After this process, all relevant points are identified and their 

disparity computed. These algorithms are neither too fast, achieving processing times of few 

seconds (Kim, Kogure, & Sohn, 2006). In the case of Lui (Liu, Gao, & Zhang, 2006), he gives 

time measures to obtain these results with a Pentium IV (@2.4GHz): 11.1 seconds and 4.4 

seconds for the Venus and the Tsukuba pairs respectively. The main drawback is the 

necessity of interpolation. Only matched points are measured. After that, an interpolation of 

the non identified points is mandatory, increasing slightly the processing time. Another 

important disadvantage is the disparity computation on untextured surfaces, where the real 

depth reference is easily lost. 

Cooperative algorithms were firstly proposed by Marr & Poggio (Marr & Poggio, 1976) and 

they were implemented trying to simulate how the human brain works. A two dimensional 

neural network iterates with inhibitory and excitatory connections until a stable state is 
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reached. Later, some other proposals in this group have been proposed (Mayer, 2003; 

Zitnick & Kanade, 2000).  

Dynamic programming strategy consists on assuming the ordering constraint as always true 

(Käck, 2004). The matching is done line by line, although the independent match of 

horizontal lines produces horizontal “streaks”. The problem with the noise sensitivity of this 

proposal is smoothed with vertical edges (Ohta & Kanade, 1985) or ground control points 

(Bobick & Intille, 1999). These are some of the fastest proposals, achieving around 50 fps in a 

3 GHz CPU (Kamiya & Kanazawa, 2008) 

Global algorithms make explicit smoothness assumptions converting the problem in an 

optimization one. They seek a disparity assignment that minimizes a global cost or energy 

function that combines data and smoothness terms (Scharstein & Szeliski, 2002; Käck, 2004): 

 E(d)=Edata(d)+ λ�Esmooth(d) (2) 

Some of the best results with global strategies have been achieved with the so called graph 

cuts matching. Graph cuts extends the 1D formulation of dynamic programming approach 

to 2D, assuming a local coherence constraint, i.e. for each pixel, neighbourhoods have 

similar disparity. Each match is taken as a node and forced to fit in a disparity plane, 

connected to their neighbours by disparity edges and occlusion edges, adding a source node 

(with lower disparity) and a sink node (highest disparity) connected to all nodes. Costs are 

assigned to matches, and mean values of such costs to edges. Finally, we compute a 

minimum cut on the graph, separating nodes in two groups and the largest disparity that 

connect a node to the source is assigned to each pixel (Käck, 2004). 

We can find also a group using some specific features of the image, like edges, shapes and 

curves (Schimd et al., 1999; Szumilas, Wildenauer, & Hanbury, 2009; Xia, Tung, & Ji, 2001). 

In this family, a differential operator must be used (typically Laplacian or Laplacian of 

Gaussian, as in (Pajares, Cruz, & López-Orozco, 2000; Jia et al., 2003)). This task requires a 

convolution of 3×3, 5×5 or even bigger windows; as a result, the computing load increases 

with the size of the operator (for separable implementations). However, these algorithms 

allow real-time implementations. 

Another possibility of global algorithms are those of Belief propagation (Sun, Shum, & 

Zheng, 2002), modelling smoothness, discontinuities and occlusions with three Markov 

Random Fields and itinerates finding the best solution of a “Maximum A Posteriori” (MAP). 

A final family of global algorithms to be referred in this study is the segment-based 

algorithms. This group of algorithms chops the image as explained in equation 1 to match 

regions. An initial pair of images is smoothed and segmented in regions. The aim of this 

family of algorithms addresses the problem of untextured regions. After forcing pixels to fit 

in a disparity plane, the depth map estimation is obtained. 

These algorithms have the advantage of producing a dense depth map, disparity estimated 

at each pixel (Scharstein & Szeliski, 2002), hence, avoiding interpolation. Some algorithms 

also perform a k×k window pre-match, and a plane fitting, producing a high computational 
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load (and computation time of tens of seconds), and avoiding its use in real-time 

applications (Bleyer & Gelautz, 2005). 

Combinations of segment-based and graph cuts algorithms have also been implemented 

(Hong & Chen, 2004). 

A further group of global algorithms are based on wavelets, as described in (Xia et al., 2001). 

These algorithms present important problems in terms of time performance, around hours 

in 3 GHz CPU for two images matching (Radhika et al., 2007). 

Summarizing, each of the previously described approaches to the matching problem 

presents several computing problems. In the case of edges, curves and shapes, differential 

operators increase the order linearly with the size (for separable implementations). This 

problem gets worse when using area-based matching algorithms, following the 

computational load an exponential law. The use of a window to analyze and compare 

different regions is seen to perform satisfactorily (Bleyer & Gelautz, 2005) however this 

technique requires many computational resources. Even most of segment-based matching 

algorithms perform a N×N local windowing matching as a step of the final depth map 

computation (Hong & Chen, 2004; Scharstein & Szeliski, 2002). It is important to notice that 

this step is not dimensional separable. Most of these algorithms, however, obtain very 

accurate results, with the counterpart of interpolating optimized planes that forces to solve 

linear systems (Hong & Chen, 2004; Klaus, Sormann, & Kraner, 2006). The calculations 

required for depth mapping of images is very high. It has been studied in detail, and a 

complete review of algorithms performing this task by means of stereovision can be found 

at (Scharstein & Szeliski, 2002). 

Figure 25 shows some results of the presented algorithms. 

     
(a)                                              (b) 

     
(c)                                                (d) 
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(e)                                               (f) 

   
(g)                                               (h) 

Figure 25. (a) Ground truth of the Tsukuba scene (Scharstein & Szeliski, 2002), (b) Window 9x9 SAD 

matching (Hirchsmüller, 2001), (c) points matching (Liu, Gao, & Zhang, 2006), (d) cooperative algorithm 

(Zitnick & Kanade, 2000), (e) graph cuts depth estimation (Kolmogorov & Zabih, 2010), (f) Belief 

propagation (Sun et al., 2002), (g) segment regions and plane fitting (Bleyer & Gelautz, 2005),  (h) 

dynamic programming (Scharstein & Szeliski, 2002). 

In (Scharstein & Szeliski, 2002) a detailed stereo matching taxonomy can be found. 

2.2.2.2. Stereo vision structure 

The set of images used to compute the depth can be taken in many different ways, attending 

to their spatial organization. The first group being analyzed will be the stereo vision. This 

setup requires two cameras, closely placed and pointing to the scene. The figure 9 shows the 

general structure of a stereo vision images acquisition. 

However, the stereo setup structure presents some free parameters, which may change the 

way the images should be analyzed. We have already seen some constraints, which allow 

some simplifications and, thus, fast algorithms, to extract the depth map, such as the fronto-

parallel hypothesis (figure 11). 

Stereo vision, as defined, allows obtaining a 2.5D image (or a 3D fragmented reconstruction, 

as it is shown in figure 3). Depending on how much are the image sensors are separated, we 

will be able to reconstruct more or less points of the volume analyzed. Following (Seitz & 

Kim, 2002), we can talk about central perspective stereo (when the displacement between 

both images is done in one single axis) and multiperspective stereo (otherwise). Regarding 

this last case, (Ishuguro, Yamamoto, & Tsuji, 1992) demonstrated how any perspective can 

be transformed to a stereo scene, under some geometrical and optical restrictions. In such 

case, the image rectification and dewrapping is mandatory. 
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2.2.2.3. 2 Multiview structure 

The final case that we will present is the multiview setup. In this option, several cameras are 

placed around the scene, which is captured from different points of view. See figure 26 for 

an example. 

        

Figure 26. Multiview scheme (Kim, Kogure, & Sohn, 2006). 

The algorithms dealing with this scheme need to perform a high number of matches, 

obtaining, however, a full 3D model, which is not restricted to a single perspective. 

3. Conclusions 

The depth is an important cue of a scene, which is lost in standard image acquisition 

systems. For that reason, and given that many applications need this information, several 

strategies have been proposed to extract the depth. 

We have seen active methods, which project some energy onto the scene to process the 

reflections, and passive methods, only dealing with the natural received energy from the 

scene. Among this last option, we found monocular systems, working with a single 

perspective, and stereo or multiview systems, which work with more than one single 

perspective. 

We have shown why these last algorithms have to solve the matching problem, or finding 

the same physical points in two or more images. Several strategies, again, are available in 

this category. 

The analysis has revealed advantages and disadvantages in every system, regarding energy 

needs, computational load and, hence, speed, complexity, accuracy, range, hardware 

implementation or price, among others. Thus, there is not a concluding winner among all 

the analyzed solutions. Instead of that, we will have to think about the final application of 

our algorithm, to make the correct choice.  
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