
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

118,000 130M

TOP 1%154

4,500



Chapter 2

A Multi-Features Fusion of Multi-Temporal
Hyperspectral Images Using a Cooperative GDD/SVM
Method

Selim Hemissi and Imed Riadh Farah

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/56949

1. Introduction

Considering the emergence of hyperspectral sensors, feature fusion has been more and more
important for images classification, indexing and retrieval. In this chapter, a cooperative
fusion method GDD/SVM (Generalized Dirichlet Distribution/Support Vector Machines),
which involves heterogeneous features, is proposed for multi-temporal hyperspectral images
classification. It differentiates, from most of the previous approaches, by incorporating the
potentials of generative models into a discriminative classifier. Therefore, the multi-features,
including the 3D spectral features and textural features, can be integrated with an efficient
way into a unified robust framework. The experimental results on a series of Hyperion
images show that the precision is 92.64% and the recall is 91.87%. The experiments on
AVIRIS dataset also confirm the improved performance and show that this cooperative fusion
approach has consistence over different testing datasets.

2. Problem statement

The semantic categorization of remote-sensing images requires analysis of many features
of the images such as texture, spectral profiles, etc. Current feature fusion approaches
commonly concatenate different features. It gives, generally good results and several
approaches have been proposed using this schema. However, most of them have various
conditional constraints, such as noise and imperfection, which might retain the use of such
systems under degraded performance. However, how to fuse heterogeneous features in a
flexible way is still an open research question.
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Similarly, in the area of Supervised Machine Learning (SML), diversity with respect to
the errors committed by component classifiers has received much attention. Generative
and discriminative approaches are two distinct schools of probabilistic machine learning.
It has shown that discriminative approaches such as SVM [1] outperform model based
approaches due to their flexibility in decision boundaries estimation. Conversely, since that
discriminative methods are concerned with boundaries, all the classes need to be estimated
conjointly [2]. Complementary, one of the interesting characteristics, that generative models
have over discriminative ones, is that they are learnt independently for each class. Moreover,
following their modeling power, generative models are able to deal with missing data.
An ideal fusion method should combine these two approaches in order to improve the
classification accuracy.

3. Theoretical background

3.1. Generalized dirichlet distribution

Priors based on Dirichlet location-scale mixture of normals are widely used to model
densities as mixtures of normal kernels. A random density f arising from such a prior
can be expressed as

f (y) = (φ ∗ P)(y) =
∫

1

σ
φ

(

y − θ

σ

)

dP(θ, σ), (1)

where φ(·) is the standard normal density and the mixing distribution P follows a Dirichlet
process.

[3] initiated a theoretical study of these priors for the problem of density estimation. They
showed that if a density f0 satisfies certain conditions, then a Dirichlet location mixture of
normals achieves posterior consistency at f0. Their conditions can be best summarized as
f0 having a moment generating function on an open interval containing [−1, 1]. Ghosal and
van der Vaart (2001) extended these results to rate calculations for the more general Dirichlet
location-scale mixture prior. However, they restricted the scale parameter σ to a compact
interval [σ, σ] ⊂ (0, ∞).

3.1.1. Preliminaries

To make this chapter relatively self-contained, we recall the definitions of posterior
consistency in the context of density estimation and regression. These definitions formalize
the concept that in order to achieve consistency, the posterior should concentrate on
arbitrarily small neighborhoods of the true model when more observations are made
available.

Posterior consistency for density estimation: Suppose X1, X2, · · · are independent and
identically distributed according to an unknown density f0. We take the parameter space
as F - a set of probability densities on the space of the observations and consider a prior
distribution Π on F . Then the posterior distribution Π(·|X1, · · · , Xn) given a sample
X1, · · · , Xn is obtained as,
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Π(A|X1, · · · , Xn) =

∫

A ∏
n
i=1 f (Xi)dΠ( f )

∫

F ∏
n
i=1 f (Xi)dΠ( f )

.

We say that the posterior achieves weak (or strong) posterior consistency at f0 if for any weak
(or L1) neighborhood U of f0, Π(U|X1, X2, · · · , Xn) → 1 almost surely as n → ∞.

Posterior consistency for regression: Suppose one observes Y1, Y2, · · · from the model
Yi = α0 + β0xi + ǫi, where xi’s are known non-random covariate values and ǫi’s are
independent and identically distributed with an unknown symmetric density f0. The
regression coefficients α0, β0 are also unknown. Here, it is appropriate to consider the
parameter space as Θ = F ∗ × R × R, where F ∗ is a set of symmetric probability densities
on R with a prior Π on Θ. The posterior distribution Π(·|Y!, · · · , Yn) is then computed as,

Π(A|Y1, · · · , Yn) =

∫

A ∏
n
i=1 f (Yi − α − βxi)dΠ( f , α, β)

∫

× ∏
n
i=1 f (Yi − α − βxi)dΠ( f , α, β)

.

We say that the posterior achieves weak consistency at ( f0, α0, β0) if for any weak
neighborhood U of f0 and any δ > 0,

Π(( f , α, β) : f ∈ U, |α − α0| < δ, |β − β0| < δ|Y1, Y2, · · · , Yn) → 1

almost surely as n → ∞.

3.1.2. Density estimation: weak consistency

We start with weak posterior consistency for the problem of density estimation. Our main
tool is the following theorem due to Schwartz (1965).

A prior Π achieves weak posterior consistency at a density f0, if

∀ǫ > 0, Π

(

f ∈ F :
∫

f0(x) log
f0(x)

f (x)
dx < ǫ

)

> 0 (2)

We would use the notation f0 ∈ KL(Π) to indicate that a density f0 satisfies (2).

General Mixture Priors First consider the case when the mixing distribution P in (1) follows
some general distribution Π̃, not necessarily a Dirichlet process. It is reasonable to assume
that the weak support of Π̃ contains all probability measures on R × R

+ that are compactly
supported. The next lemma reveals the implication of this property.

Consider an f0 ∈ F such that
∫

x2 f0(x)dx < ∞. Suppose f̃ = φ ∗ P̃ is such that P̃((−a, a)×
(σ, σ)) = 1 for some a > 0, 0 < σ < σ. Then for any ǫ > 0, there exists a weak neighborhood
W of P̃ such that for any f = φ ∗ P with P ∈ W,

∫

f0(x) log
f̃ (x)

f (x)
dx < ǫ (3)
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The proof of this lemma is similar to the proof of Theorem 3 of Ghosal et al. (1999) and we
present it in the appendix. Here we state and prove the main result.

Let f0(x) be a continuous density on R satisfying:

1. f0 is nowhere zero and bounded above by M < ∞.

2.
∣

∣

∫

R
f0(x) log f0(x)dx

∣

∣ < ∞.

3.
∫

R
f0(x) log

f0(x)
ψ1(x)

dx < ∞ where ψ1(x) = inft∈[x−1,x+1] f0(t) .

4. ∃η > 0 such that
∫

R
|x|2(1+η) f0(x)dx < ∞.

Then, f0 ∈ KL(Π).

Assumption 4 provides the important moment condition on f0. Assumption 2 is satisfied by
most of the common densities and assumption 3 can be viewed as a regularity conditions.
The interval [x − 1, x + 1] that appears in assumption 3 can be replaced by [x − a, x + a] for
any a > 0.

Proof. of Theorem 3.1.2 Note that,

∫

f0(x) log
f0(x)

f (x)
dx =

∫

f0(x) log
f0(x)

f̃ (x)
dx +

∫

f0(x) log
f̃ (x)

f (x)
dx. (4)

Therefore, the result would follow if for any ǫ > 0, we can find an f̃ which makes
∫

f0 log
f0

f̃
dx < ǫ/2 and also satisfies the condition of Lemma 3.1.2. Next we show how

to construct such an f̃ .

Consider the densities fn = φ ∗ Pn, n ≥ 1, with Pn’s constructed as,

dPn(θ, σ) = tn I(θ∈[−n,n]) f0(θ)δσn (σ) (5)

where σn = n−η , tn = (
∫ n
−n f0(y)dy)−1, IA is the indicator function of a set A and δx is the

point mass at a point x. Note that fn can be simply written as,

fn(x) = tn

∫ n

−n

1

σn
φ

(

x − θ

σn

)

f0(θ)dθ. (6)

Find a positive constant ξ such that
∫ ξ
−ξ φ(t)dt > 1 − ǫ. Now fix an x ∈ R. For sufficiently

large n such that [x − ξσn, x + ξσn] ⊂ [−n, n], one obtains,

inf
y∈(x−ξσn ,x+ξσn)

f0(y)(1 − ǫ) <
fn(x)

tn
< sup

y∈(x−ξσn ,x+ξσn)

f0(y) + Mǫ (7)
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Since tn → 1 and σn → 0, (7) would imply that fn(x) → f0(x) as n → ∞ by continuity of f0.
Therefore one can conclude,

log
f0(x)

fn(x)
→ 0 for all x ∈ R (8)

Since tn is a decreasing sequence and f0(θ) < M for all θ ∈ R, one can readily see that for all
n ≥ 1 and all x ∈ R,

fn(x) = tn

∫ n

−n

1

σn
φ

(

x − θ

σn

)

f0(θ)dθ ≤ Mtn ≤ Mt1. (9)

Now, fix an x ∈ R. Since, |x − θ| ≤ |x|+ n for all θ ∈ [−n, n] and tn ≥ 1, it follows that for
all n ≤ |x|,

fn(x) ≥
1

σn
φ

(

|x|+ n

σn

)

= nηφ(nη(|x|+ n)) ≥ |x|ηφ(2|x|1+η). (10)

The last inequality follows from the fact that τηφ(τη(|x|+ τ)) is decreasing in τ for τ ≥ 1.

Let ψn(x) = inft∈[x−σn ,x+σn ] f0(t). It may be noted that the function ψ1(x) of assumption 3

is consistent with this definition. Let An = [−n, n] ∩ [x − σn, x + σn] and c =
∫ 1

0 φ(t)dt < 1.
Observe that for all n > |x|,

fn(x) ≥ tn

∫

An

1

σn
φ

(

x − θ

σn

)

f0(θ)dθ ≥ tnψn(x)
∫

An

1

σn
φ

(

x − θ

σn

)

dθ (11)

Since tn ≥ 1, ψn(x) ≥ ψ1(x) and
∫

An

1
σn

φ( x−θ
σn

)dθ ≥
∫ 1

0 φ(t)dt = c for all n ≥ 1 and all x ∈ R

it follows from (11) that fn(x) ≥ cψ1(x) for all n > |x|.. Therefore,

fn(x) ≥

{

cψ1(x) |x| < 1

min(|x|ηφ(2|x|1+η), cψ1(x)) |x| ≥ 1
(12)

A little algebraic manipulation with (9) and (12) obtains, ∀n ≥ 1,

∣

∣

∣

∣

log
f0(x)

fn(x)

∣

∣

∣

∣

≤ log
Mt1

f0(x)
+ log

f0(x)

cψ1(x)
+ I{|x|>1} log

f0(x)

|x|ηφ(2|x|1+η)
(13)

From the assumptions of Theorem 3.2, it can be easily verified that the function on the right
hand side of the above display is f0 integrable. Therefore an application of DCT on (8)
implies that,

lim
n→∞

∫

f0(x) log
f0(x)

fn(x)
dx = 0. (14)

Therefore we can simply choose f̃ = fn0 for some large enough n0.
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3.2. Dirichlet mixture of normals

Next we consider Π̃ = Dir(αG0), a Dirichlet process with parameter αG0. Here α is a positive
constant and G0 is a probability measure on R × R

+.

Suppose f0 ∈ F satisfies the following property: For any 0 < τ < 1, ǫ > 0, there exist a set
A and a positive number x0 such that Π̃(A) > 1 − τ and for any f = φ ∗ P with P ∈ A,

∫

|x|>x0

f0(x) log
f0(x)

f (x)
dx < ǫ. (15)

Then, f0 ∈ KL(Π).

Note that the moment condition of Theorem 3.1.2 is substantially reduced.

Let f0 be a density on R satisfying

1.
∫

f0(x) log f0(x)dx < ∞.

2. ∃ η ∈ (0, 1) such that
∫

|x|η f0(x)dx < ∞.

Further assume that there exist σ0 > 0, 0 < β < η, γ > β and b1, b2 > 0 such that for large
x > 0

3. max
(

G0

([

x − σ0x
η
2 , ∞

)

× [σ0, ∞)
)

, G0

(

[0, ∞)× (x1− η
2 , ∞)

))

≥ b1x−β

4. G0

(

(−∞, x)× (0, e|x|
η− 1

2 )
)

> 1 − b2|x|
−γ.

and for large x < 0,

3’. max
(

G0

((

−∞, x + σ0|x|
η
2

]

× [σ0, ∞)
)

, G0

(

(−∞, 0]× (|x|1−
η
2 , ∞)

))

≥ b1|x|
−β

4.’ G0

(

(x, ∞)× (0, e|x|
η− 1

2 )
)

> 1 − b2|x|
−γ.

then f0 ∈ KL(Π). Other than the important moment condition on f0 this theorem also
requires some regularity in the tail of the base measure G0. For example, assumption 3,3’
requires the tail of G0 not to decay faster than a polynomial rate for the scale parameter σ.
This condition seems very reasonable since the Cauchy density itself can be written as a scale
mixture of normals with the mixing density having a polynomial decay towards infinity.

A standard choice for G0 is the conjugate normal-inverse gamma distribution (see Escobar
and West 1995), under which, θ|σ ∼ N(0, ξσ2) and σ−2 ∼ Gamma(r, λ), for some ξ, r, λ > 0.
For such a G0 with r ∈ (1/2, 1), one can show that the conditions of Theorem 3.2 hold true
with η ∈ (2r/(1+ r), 1), β = r(2− η) and γ = 2r. For example, the conditions in Assumptions
3, 3’ are satisfied since,

G0

(

[0, ∞)× (x1− η
2 , ∞)

)

=
1

2
Pr(σ−2 ≤ x−(2−η)) = c

∫ x−(2−η)

0
vr−1e−λvdv ≤ c′x−r(2−η),
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for some positive constants c, c′. To see that the conditions of Assumptions 4, 4’ also hold,
note that,

1 − G0

(

(−∞, x)× (0, e|x|
η− 1

2 )
)

≤ Pr(θ > x) + Pr(σ−2
< e−2|x|η+1).

An argument similar to the one provided above shows that the second term, namely,

Pr(σ−2
< e−2|x|η+1) is bounded by a constant times e−2r|x|η+r. Therefore, this term

can be made smaller than c|x|−γ for a suitable constant c. Now, using the inequality
1−Φ(X) ≤ (1/x)φ(x), where Φ(·) and φ(·) are the standard normal distribution and density
functions, we obtain

Pr(θ > x) ≤ c

x

∫

∞

0
vr−1/2−1e−( x2

2ξ +λ)vdv =
c′

x( x2

2ξ + λ)r−1/2
≤ c′′

x2r

for some positive constants c, c′, c′′. The desired inequality follows from these two bounds.
Therefore, such a choice of G0 would lead to posterior consistency, for example, when f0 is a
Cauchy density.

Proof. of Theorem 3.2 We simply need show that such an f0 satisfies the condition of Lemma
3.2. Let w(x) = exp(−xη), x ≥ 0. Define a class of subsets of R × R

+ indexed by x ∈ R, as
follows:

Kx =

{

(θ, σ) ∈ R × R
+ :

1

σ
φ

(

x − θ

σ

)

≥ 1√
2π

w(|x|)
}

(16)

These sets are of particular interest, since for f = φ ∗ P,

∫

|x|>x0

f0(x) log
f0(x)

f (x)
dx ≤

∫

|x|>x0

f0(x) log
f0(x)

∫

Kx

1
σ φ

(

x−θ
σ

)

dP(θ, σ)
dx

≤
∫

|x|>x0

f0(x) log
f0(x)

1√
2π

w(|x|)P(Kx)
dx

≤
∫

|x|>x0

f0(x)

{

log f0(x) + |x|η + log

√
2π

P(Kx)

}

dx. (17)

By the assumptions of the Theorem, this quantity can be made arbitrarily small for a suitably
large x0 if we can show that P(Kx) > c1 exp(−c2|x|η) for all |x| > x0 for some fixed constants
c1, c2 > 0. Therefore it suffices to prove that, For any τ > 0 there exists an x0 > 0 and a set
A with Π̃(A) > 1 − τ such that P ∈ A ⇒ P(Kx) ≥ (1/2) exp(−2|x|η/b1) for all |x| > x0.

The proof of this Lemma is fairly technical. It makes an extensive use of the tail behavior of
a random probability P arising from a Dirichlet process. For clarity of reading, we present
details of the proof in the Appendix.
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4. Density estimation: strong consistency

We establish L1-consistency of a Dirichlet location-scale mixture of normal prior Π by
verifying the conditions of Theorem 8 of Ghosal et al. (1999). This theorem is reproduced
below.

Let Π be a prior on F such that f0 ∈ KL(Π). If there is a δ < ǫ/4, c1, c2 > 0, β < ǫ2/8 and
Fn ⊆ F such that for all n large,

1. Π(F c
n) < c1e−nc2 ,

2. J(δ,Fn) < nβ,

then Π achieves strong posterior consistency at f0.

Here J(δ,G) denotes logarithm of the covering number of G by L1 balls of radii δ.

We first show how to calculate J(δ,G) for certain type of sets G. For some a > 0, u > l > 0
define

Fa,l,u = { f = φ ∗ P : P ((−a, a]× (l, u]) = 1} (18)

Then,

J(2κ,Fa,l,u) ≤ b0

(

b1
a

l
+ b2 log

u

l
+ 1
)

. (19)

where b0, b1 and b2 depend upon κ but not on a, l or u.

Proof. Let φθ,σ denote the normal density with mean θ and standard deviation σ. For σ2 >

σ1 > σ2/2, it can be shown that,

∥

∥φθ1,σ1
− φθ2,σ2

∥

∥ ≤
∥

∥φθ1,σ2
− φθ2,σ2

∥

∥+
∥

∥φθ2,σ1
− φθ2,σ2

∥

∥

≤

√

2

π

|θ2 − θ1|

σ2
+ 3

σ2 − σ1

σ1
. (20)

Let ζ = min(κ/6, 1). Define σm = l(1 + ζ)m, m ≥ 0. Let M be the smallest integer such
that σM = l(1 + ζ)M ≥ u. This implies M ≤ (1 + ζ)−1 log(u/l) + 1. For 1 ≤ j ≤ M, let

Nj =

⌈

√

32
π a/(κσj−1)

⌉

. For 1 ≤ i ≤ Nj; 1 ≤ j ≤ M, define

Eij =

(

−a +
2a(i − 1)

Nj
, −a +

2ai

Nj

]

× (σj−1, σj]. (21)

Then, (θ, σ), (θ′, σ′) ∈ Eij ⇒
∥

∥φθ,σ − φθ′ ,σ′

∥

∥ < κ. Take N = ∑
M
j=1 Nj and let

PN =







(P11, · · · , PN11, · · · , P1M, · · · , PNM M) : Pij ≥ 0, ∑
ij

Pij = 1







(22)
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be the N dimensional probability simplex and P∗
N be a κ-net in PN . Let τj’s be as before and

θij = −a + 2a(i − 1/2)/Nj, 1 ≤ i ≤ Nj, 1 ≤ j ≤ M. So (θij, σj) ∈ Eij ∀i, j. It can be shown by
following an argument similar to the one presented in the proof of Lemma 1 of Ghosal et al.
(1999) that ,

F =







M

∑
j=1

Nj

∑
i=1

P∗
ijφθij ,σj

: P∗ ∈ P∗
N







(23)

is a 2κ-net in Fa,l,u and consequently, J(2κ,Fa,l,u) ≤ J(κ,PN) ≤ N
(

1 + log 1+κ
κ

)

. But,

N ≤
M

∑
j=1

(

√

32

π

a

σj−1κ
+ 1

)

=

√

32

π

a

lκ

M−1

∑
j=0

(1 + ζ)−j + M

≤
√

32

π

a

l

1 + ζ

κζ
+

1

1 + ζ
log

u

l
+ 1

= b1
a

l
+ b2 log

u

l
+ 1 (24)

From this the result follows with b0 = 1 + log 1+κ
κ .

Let F κ
a,l,u = { f = φ ∗ P : P((−a, a]× (l, u]) ≥ 1 − κ}. Then J(3κ,F κ

a,l,u) ≤ J(κ,Fa,l,u).

Proof. Let f = φ ∗ P ∈ F κ
a,l,u. Consider the probability measure defined by P∗(A) = P(A ∩

(−a, a]× (l, u])/P((−a, a]× (l, u]). Then the density f ∗ = φ ∗ P∗ clearly belongs to Fa,l,u and
further satisfies ‖ f − f ∗‖ < 2κ. This proves the lemma.

Suppose for each κ > 0, β > 0, there exist sequences of positive numbers an, un ↑ ∞, ln ↓ 0
with ln < un and constant β0, all depending on κ and β such that

1. Π̃ ({P : P((−an, an]× (ln, un]) < 1 − κ}) < e−nβ0 ,

2. an/ln < nβ, log(un/ln) < nβ.

then f0 ∈ KL(Π) implies that Π achieves strong posterior consistency at f0.

Proof. Take Fn = F κ
an ,ln ,un

. Then the conditions of Theorem 4 are easily verified using Lemma
4 for a suitable choice of κ > 0.

If Π̃ = Dir(αG0), verification of conditions 1 and 2 becomes particularly simple. For example,
if G0 is a product of a normal on θ and an inverse gamma on σ2, then the conditions of
theorem 4 are satisfied if an = O(

√
n), ln = O(1/

√
n) and un = O(en).
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4.1. Support vector machines

We give, in this section, a very brief presentation of Support Vector Machines (SVMs) that
is needed for the definition of their functional versions. We refer the reader to e.g. [4] for
a more comprehensive presentation. As stated in section ??, X denotes an arbitrary Hilbert
space. Our presentation of SVM departs from the standard introduction because it assumes
that the observations belong to X rather than to a d. This will make clear that the definition
of SVM on arbitrary Hilbert spaces is not the difficult part in the construction of functional
SVM. We will discuss problems related to the functional nature of the data in section 4.1.5.

Our goal is to classify data into two predefined classes. We assume given a learning set, i.e.
N examples (x1, y1), . . . , (xN , yN) which are i.i.d. realizations of the random variable pair
(X, Y) where X has values in X and Y in {−1, 1}, i.e. Y is the class label for X which is the
observation.

4.1.1. Hard margin SVM

The principle of SVM is to perform an affine discrimination of the observations with maximal
margin, that is to find an element w ∈ X with a minimum norm and a real value b, such that
yi(〈w, xi〉+ b) ≥ 1 for all i. To do so, we have to solve the following quadratic programming
problem:

(P0) min
w,b

〈w, w〉, subject to yi(〈w, xi〉+ b) ≥ 1, 1 ≤ i ≤ N.

The classification rule associated to (w, b) is simply (x) = sign(〈w, x〉+ b). In this situation
(called hard margin SVM), we request the rule to have zero error on the learning set.

4.1.2. Soft margin SVM

In practice, the solution provided by problem (P0) is not very satisfactory. Firstly, perfectly
linearly separable problems are quite rare, partly because non linear problems are frequent,
but also because noise can turn a linearly separable problem into a non separable one.
Secondly, choosing a classifier with maximal margin does not prevent overfitting, especially
in very high dimensional spaces (see e.g. [5] for a discussion about this point).

A first step to solve this problem is to allow some classification errors on the learning set.
This is done by replacing (P0) by its soft margin version, i.e., by the problem:

(PC)minw,b,ξ〈w, w〉+ C ∑
N
i=1 ξi,

subject to yi(〈w, xi〉+ b) ≥ 1 − ξi, 1 ≤ i ≤ N,
ξi ≥ 0, 1 ≤ i ≤ N.

Classification errors are allowed thanks to the slack variables ξi. The C parameter acts as
an inverse regularization parameter. When C is small, the cost of violating the hard margin
constraints, i.e., the cost of having some ξi > 0 is small and therefore the constraint on w
dominates. On the contrary, when C is large, classification errors dominate and (PC) gets
closer to (P0).
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4.1.3. Non linear SVM

As noted in the previous section, some classification problems don’t have a satisfactory linear
solution but have a non linear one. Non linear SVMs are obtained by transforming the
original data. Assume given an Hilbert space H (and denote 〈., .〉H the corresponding inner
product) and a function φ from X to H (this function is called a feature map). A linear SVM
in H can be constructed on the data set (φ(x1), y1), . . . , (φ(xN), yN). If φ is a non linear
mapping, the classification rule (x) = sign(〈w, φ(x)〉H + b) is also non linear.

In order to obtain the linear SVM in H one has to solve the following optimization problem:

(PC,H)minw,b,ξ〈w, w〉H + C ∑
N
i=1 ξi,

subject to yi(〈w, φ(xi)〉H + b) ≥ 1 − ξi, 1 ≤ i ≤ N,
ξi ≥ 0, 1 ≤ i ≤ N.

It should be noted that this feature mapping allows to define SVM on almost arbitrary input
spaces.

4.1.4. Dual formulation and Kernels

Solving problems (PC) or (PC,H) might seem very difficult at first, because X and H are
arbitrary Hilbert spaces and can therefore have very high or even infinite dimension (when
X is a functional space for instance). However, each problem has a dual formulation. More
precisely, (PC) is equivalent to the following optimization problem (see [6]):

(DC)maxα ∑
N
i=1 αi − ∑

N
i=1 ∑

N
j=1 αiαjyiyj〈xi, xj〉,

subject to ∑
N
i=1 αiyi = 0,

0 ≤ αi ≤ C, 1 ≤ i ≤ N.

This result applies to the original problem in which data are not mapped into H, but also to
the mapped data, i.e., (PC,H) is equivalent to a problem (DC,H) in which the xi are replaced
by φ(xi) and in which the inner product of H is used. This leads to:

(DC,H)maxα ∑
N
i=1 αi − ∑

N
i=1 ∑

N
j=1 αiαjyiyj〈φ(xi), φ(xj)〉H,

subject to ∑
N
i=1 αiyi = 0,

0 ≤ αi ≤ C, 1 ≤ i ≤ N.

Solving (DC,H) rather than (PC,H) has two advantages. The first positive aspect is that
(DC,H) is an optimization problem in N rather than in H which can have infinite dimension
(the same is true for X ).

The second important point is linked to the fact that the optimal classification rule can
be written (x) = sign(∑N

i=1 αiyi〈φ(xi), φ(x)〉H + b). This means that both the optimization
problem and the classification rule do not make direct use of the transformed data, i.e. of the
φ(xi). All the calculations are done through the inner product in H, more precisely through
the values 〈φ(xi), φ(xj)〉H. Therefore, rather than choosing directly H and φ, one can provide
a so called Kernel function K such that K(xi, xj) = 〈φ(xi), φ(xj)〉H for a given pair (H, φ).
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In order that K corresponds to an actual inner product in a Hilbert space, it has to fulfill
some conditions. K has to be symmetric and positive definite, that is, for every N, x1, . . . , xN

in X and α1, . . . , αN in , ∑
N
i=1 ∑

N
j=1 αiαjK(xi, xj) ≥ 0. If K satisfies those conditions, according

to Moore-Aronszajn theorem [? ], there exists a Hilbert space H and feature map φ such that
K(xi, xj) = 〈φ(xi), φ(xj)〉H.

4.1.5. The case of functional data

The short introduction to SVM proposed in the previous section has clearly shown that
defining linear SVM for data in a functional space is as easy as for data in d, because we
only assumed that the input space was a Hilbert space. By the dual formulation of the
optimization problem (PC), a software implementation of linear SVM on functional data
is even possible, by relying on numerical quadrature methods to calculate the requested
integrals (inner product in L2(µ), cf section ??).

However, the functional nature of the data has some effects. It should be first noted that
in infinite dimensional Hilbert spaces, the hard margin problem (P0) has always a solution
when the input data are in general positions, i.e., when N observations span a N dimensional
subspace of X . A very naive solution would therefore consists in avoiding soft margins and
non linear kernels. This would not give very interesting results in practice because of the
lack of regularization (see [5] for some examples in very high dimension spaces, as well as
section ??).

Moreover, the linear SVM with soft margin can also lead to bad performances. It is indeed
well known (see e.g. [7]) that problem (PC) is equivalent to the following unconstrained
optimization problem:

(Rλ)min
w,b

1

N

N

∑
i=1

max (0, 1 − yi(〈w, xi〉+ b)) + λ〈w, w〉,

with λ = 1
CN . This way of viewing (PC) emphasizes the regularization aspect (see also

[8–10]) and links the SVM model to ridge regression [? ]. As shown in [11], the penalization
used in ridge regression behaves poorly with functional data. Of course, the loss function
used by SVM (the hinge loss, i.e., h(u, v) = max(0, 1 − uv)) is different from the quadratic
loss used in ridge regression and therefore no conclusion can be drawn from experiments
reported in [11]. However they show that we might expect bad performances with the linear
SVM applied directly to functional data. We will see in sections ?? and ?? that the efficiency
of the ridge regularization seems to be linked with the actual dimension of the data: it does
not behave very well when the number of discretization points is very big and thus leads to
approximate the ridge penalty by a dot product in a very high dimensional space (see also
section ??).

It is therefore interesting to consider non linear SVM for functional data, by introducing
adapted kernels. As pointed out in e.g. [10], (PC,H) is equivalent to

(Rλ,H)min
f∈H

1

N

N

∑
i=1

max (0, 1 − yi f (xi))) + λ〈 f , f 〉H.
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Using a kernel corresponds therefore both to replace a linear classifier by a non linear one,
but also to replace the ridge penalization by a penalization induced by the kernel which
might be more adapted to the problem (see [9] for links between regularization operators
and kernels). The applications presented in ?? illustrate this fact.

5. Proposed approach

5.1. Overview of the proposed fusion schema

In this chapter, we propose a new technique in remote-sensing images classification by fusing
heterogeneous representations. The proposed approach involve several steps including
preprocessing; features extraction; features fusion; matching and classification stages. The
block diagram of the proposed technique is shown in Fig. 1. In our previous work [12],
we proposed a novel 3D model which design the spectral signature as a three dimensional
function which are the time, reflectance, and wavelength band (equation 1). For each pixel,
we generated a surface (3D Mesh) which generalizes the usual signature by adding a time
dimension. We call this new representation the multi-temporal spectral signature. Interested
readers can refer to [12].

Figure 1. General workflow of the proposed approach

5.2. Images pre-processing and features extraction

In this study multi-temporal hyperspectral images constitutes the source data. Spectral and
textural features are the foundational data for this kind of images. The 3D spectral features
are extracted from the relative mesh of a given pixel (multi-temporal spectral signature)
while the textural ones are derived directly from images. Mainly, two features vectors are
generated for each pixel as follows:

Heat kernel signature (HKS) : The HKS is a signature computed only from the intrinsic
geometry of an object. Suppose (m, g) is a compelte Riemannian manifold, g is the
Riemannian metric. δ is the Laplace-Beltrami operator. The eigenvalues {λn} and
eigenfunctions {φn} of δ are δφn = λnφn, where φn is normalized to be orthonormal in
L2(M). The Laplace spectrum is given by 0 = λ0 < λ1 ≤ λ2 ≤ . . . , λn → ∞. △ is the
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Laplace-Beltrami operator. As a local shape descriptor, Sun et al. [? ] defined the heat kernel
signature (HKS) by :

h(x, t) = Kx,t(x, x) =
∞

∑
i=0

e−λt φ2
i (x) (25)

where λ0, λ1, · · · ≥ O are eigenvalues and 0, φ1, . . . are the corresponding eigenfuctions on
the Laplace-Beltrami operator, satisfying δXφi = λiφi. Let’s denote this vector by Y.

Spatio-temporal Gabor filters: Texture is one of the important characteristics used in
identifying objects or regions of interest. It contains important information about the
structural arrangement of surfaces. Fusing texture with 3D spectral information is conducive
to the interpretation of remote seeing image [13]. We use a method for dynamic texture
modeling based on spatio-temporal Gabor filters. Briefly, the sequence of images is convolved
with a bank of spatiotemporal Gabor filters and a feature vector is constructed with the
energy of the responses as components. Let’s denote this vector by Y′.

5.3. Multi-Features fusion based on a cooperative GDD/SVM classifier

In this section, we present an approach that combines an SVM classifier [1] with a
generatively trained GDD model and profits, accordingly, from the advantages of both
techniques. The key idea here is to concatenate the extracted features into one vector and to
project it in a new space. First, a straightforward feature combination approach is used to
concatenate feature vectors (Y and Y′) to a single feature vector X = (Xi1, . . . , Xidim). The dim
size may differ from one pixel to another making the fusion and classification a challenging
tasks. To overcome this limit, we use the Generalized Dirichelet Distribution (GDD) model
[14] to map each feature vector into its Fisher score. Therefore, the Fisher kernel function
from the GDD is used to replace the Gaussian kernel in the classical SVM.

Let (X1, . . . , XN) denote a collection of N multi-temporal hyperspectral pixels. Each data Xi

is assumed to have dim size, X = (Xi1, . . . , Xidim). Each data Xi is assumed to be drawn from
the following finite mixture model :

p(Xi/θ) =
M

∑
j=1

p(Xi/j, θj)P(j) (26)

where M is the number of components, the P(j), (0 < P(j) < 1 and ∑
dim
j=1 P(j) = 1) are the

mixing proportions and p(X/j, θj) is the Probability Density Function PDF. θ is the set of
parameters to be estimated : θ = (α1, . . . , αM, P(1), . . . , P(M)).

If the random vector X = (Xi1, . . . , Xidim) follows a Dirichelet distribution, the joint density
function is given by :

X = (Xi1, . . . , Xidim) =
τ(|α|)

∏
dim+1
i=1 τ(αi)

dim+1

∏
i=1

Xαi−1
i (27)
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Since that each feature vector X may has an arbitrary dimension, the proposed method
defines the fusion as a projection from one feature vector space (spectral bands) to another
with a fixed dimentionnality. Accordingly, the feature-level fusion is done by projecting the
vector X combining into one vector in the Fisher space. Thus, the generative model will have
its impact on the final classification result through the projection of the extracted features in
this new space.

SVM classifier is used to classify the fused features and the multi-temporal dataset of images.
Given the generative model obtained by GDD with parameters θ, we compute for each
sample X the Fisher score Ud = ▽θ logP(x|θ) (the gradient of the log likehood of x for
model θ). The Fisher kernel operates in the gradient space of the generative mode and
provides a natural similarity measure between data samples. For each sample, this score is a
vector of fixed dimentionality. Using this score, the Fisher Information matrix is defined as
I = EXi

{

UXi
TUXi

}

. After Fisher score normalization, we compute the Fisher kernel function
on the basis of the Euclidean distance between the scores of the new sample and the training
samples :

K(X, X
′
) = UXi

I
−1UX′

i
T (28)

In the second stage, suppose our training set S consists of labels input vectors (Xi, zj), i =
1, . . . , m where Xi ∈ R

n and zi ∈ {±1}. Given a kernel matrix and a set of labels zi for each
sample, the SVM proceeds to learn a classifier of the form,

z(x) = sign(∑
i

αizi)K(Xi, X)) (29)

where the coefficients αi are determined by solving a constrained quadratic program which
aims to maximize the margin between the classes. In our experiments we used the LIBSVM
package. Our research deals with multi-class problem. The One-Vs-One approach is
adopted to extend the proposed approach to multi-temporal hyperspectral classification.

6. Results and discussion

The proposed approach was tested on two different data sets. The datasets involve several
types of information with dimensions ranging from 176 to 183 bands. The first dataset,
Hyperion, contains vegetation type data, is divided into five classes, has 183 spectral bands
and has a pixel size of 30m. The second set is from an airborne sensor (AVIRIS), divided into
7 classes, has 176 spectral bands and a pixel size of 18m. First, we present experiments that
assess the classification accuracy of the proposed approach (PA). We also included the direct
SVM fusion and a probabilistic fusion approach in our comparison as a baseline. Figure (2)
summarizes the results obtained. At each level of label noise we carry out four experiments,
and the figures show the mean performance. The strength of this approach is that it combines
the rich modeling power of GDD with the discriminative power of the SVM algorithm.
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(a) Overall accuracy of the EKFD [Both two sets] 

(b-1) Map of ground truth 
(b-2) Result of classificationwith EKFD [First set] 

(c) Overall accuracy of the EKFD [Two sets] 

Figure 2. Experimental results.
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