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1. Introduction

The Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling
pathway play a fundamental role in regulating chronic systemic inflammatory responses in
rheumatoid arthritis (RA) [1-5], based on compelling evidence that JAK/STAT is activated
by many of the pro-inflammatory cytokines such as interleukin-1β (IL-1β), IL-2, IL-3, IL-6,
IL-12, IL-17, IL-18, IL-19/IL-20, interferon-α/γ (IFN-α/γ) and oncostatin M (OSM) which are
well-known to regulate, in part, immune-mediated inflammation in several autoimmune
diseases, including RA [6-10]. However, complicating matters is the fact that some of the an‐
ti-inflammatory cytokines, which are known to dampen inflammatory responses induced by
pro-inflammatory cytokines, including, IL-4, IL-10 and IL-13 also activate JAK/STAT [11-14].
In this regard, Müller-Ladner et al. [15] showed that synovial tissue obtained from RA pa‐
tients contained significant amounts of constitutively activated IL-4/STAT. Therefore it will
be necessary to understand more precisely the extent to which pro- and/or anti-inflammato‐
ry cytokine gene expression is deregulated in RA and which of the STAT-responsive genes
known to alter immune-mediated inflammation in response to these cytokines may be ame‐
nable to therapeutic intervention.

2. JAKs

JAKs are non-receptor tyrosine kinases that are pre-associated with the membrane-proximal
site of cytokine receptors [16]. Four mammalian JAK isoforms, JAK1, JAK2 and JAK3 and
TYK2 have been described to date mainly from the results of gene structural analysis [17].
All of the JAK isoforms share a common structure known as the JAK homology (JH) do‐

© 2013 Malemud; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



main. Leonard and O’Shea [18] identified a proline-rich conserved region in the cytokine re‐
ceptors, called Box1, that associated with JH7 whereas the catalytic phosphotyrosine kinase
site, called YY was determined to correspond to the other JH domains (Figure 1).

Figure 1. JH domains and phosphorylation sites of JAK3: Structural analysis combined with functional studies of JAK3
showed that the JH4-JH7 region contained band 4.1 also known as the Four-point-one, Ezrin, Radixin, Moesin (FERM)
domain. Reprinted by permission from [16].

Additional structural analysis predicted that the JH2 domain was more than likely to be a
pseudosubstrate domain [19]. In view of this latter finding the structural requirements for
JAK activation was further clarified. Thus, the JH3-JH4 domain which shows a Src-homolo‐
gy-2-like structure had a shared homology with JH2. This finding indicated that the JH4-JH7
domains were, indeed, the critical regions required for regulating the interactions between
the various JAK isoforms and other protein kinases. JH4-JH7 were also found to be essential
for receptor binding, catalytic function, JAK autophosphorylation and even in some cases,
inhibition of JAK activity.

3. Stat proteins

Gene analysis has revealed the existence of at least 6 STAT protein isoforms, namely, JAK1,
JAK2, JAK3, JAK5A, JAK5B and JAK6 [20]. In normal homeostasis, phosphorylation of these
STAT proteins is achieved via phosphorylation (i.e. activation) of specific JAK isoforms fol‐
lowing the interaction of various cytokines and growth factors with their specific receptors
[16, 21]. In this manner, cytokine receptor-mediated JAK activation results in the conversion
of latent cytoplasmic un-phosphorylated STAT (U-STAT) proteins into phosphorylated
STAT (p-STAT) proteins which can form homo- or heterodimers and are then translocated
to the nucleus where these activated STAT protein dimers act as potent transcription factors
[17-20]. Although phosphorylation of specific STAT-tyrosine residues remains the primary
requisite mechanism for p-STAT protein dimer formation, a second phosphorylation site
was also recognized at a serine in the C-termini domain of the STAT protein [20, 22].

An amplification loop with potential major clinical significance in RA involves the transcrip‐
tional activity of p-STAT proteins which further regulate the expression of pro-inflammato‐
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ry and anti-inflammatory cytokine genes as well as other genes of significance in cancer and
autoimmune diseases [23-28]. In addition, p-STAT proteins can regulate other signaling
pathways necessary for lymphocyte development, as well as the aberrant survival of activat‐
ed dendritic cells, monocytes, lymphocytes and synoviocytes in disorders of the immune
system [29-33].

It is noteworthy that during normal homeostasis, activation of STAT proteins induced the
expression of Suppressor of Cytokine Signaling (SOCS) and Cytokine-Inducible SH-2 (CIS)
proteins and it has been concluded that this is the negative feedback loop that underlies one
of the mechanisms responsible for inhibiting JAK-mediated signaling by cytokines [34-38].
Thus, results of recently published experiments with human endothelial cells are germane to
this point since the data in this paper provided a direct connection between the silencing of
STAT3 with STAT3-specific silencing RNA and the suppression of SOCS3 [39].

The extent to which negative regulation of JAK-mediated signaling by SOCS/CIS may be in‐
activated in autoimmune diseases is a focus of current studies. In that regard, recent advan‐
ces in unraveling the details of mechanism(s) governing negative regulation of cytokine
signaling by SOCS/CIS proteins have shed additional light on the extent to which SOCS/CIS-
mediated down-regulation of pro- and/or anti-inflammatory cytokine JAK/STAT signaling
may be compromised in inflammatory arthritis [40]. However, the results of some recent
studies with osteoarthritic human cartilage have not clarified this issue. For example, one
study showed that the level of SOCS2 and CIS-1, but not SOCS1 and SOCS3, were reduced
in femoral head cartilages from subjects with osteoarthritis [41], whilst the results of another
study [42] indicated that SOCS3, but not SOCS1 expression, was elevated in chondrocytes
obtained from osteoarthritic cartilage compared to chondrocytes from cartilage obtained
from patients who had femoral neck fracture.

The status of the activity of certain other negative regulators such as protein tyrosine phos‐
phatases, including SHP-1,-2 [43] and CD45 [44] and the ‘Protein Inhibitor of Activated
STAT’ (PIAS) proteins [16, 45, 46] are also not precisely known in autoimmune diseases.
These proteins could very likely suppress the activity of phosphorylated JAKs and p-STAT
proteins by dephosphorylation or by interacting with p-STAT proteins in normal cells.
However, these pathways may be compromised or markedly suppressed in arthritis.

It is also critical for gaining a further understanding of what alterations may occur in cyto‐
kine signaling in RA to recognize the fact that activation of JAK/STAT by any of the relevant
cytokines can also activate other intracellular signaling pathways via the “cross-talk” mech‐
anism. Thus, “cross-talk” between JAK/STAT and other signaling pathways [16] can cause
activation of the Stress-Activated Protein Kinase/Mitogen-Activated Protein Kinase (SAPK/
MAPK) pathway, the Phosphatidylinositol-3-Kinase/Akt/mammalian Target of Rapamycin
(PI3K/Akt/mTOR) pathway [47], activation of signaling via Toll-like receptors [47, 48] and
immunoreceptor tyrosine-based activation motifs (ITAMs) [49] as well as the NF-κB path‐
way [50]. These alternative signaling pathways which are all connected to inflammation
have also been shown to significantly modulate many of the survival and/or apoptosis-sig‐
nals required to perpetuate abnormal proliferation and/or to cause the death of activated
dendritic cells, lymphocytes, macrophages, synoviocytes and chondrocytes.
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Evidence from a genome-wide analysis study (GWAS) of STAT-target genes showed that many
of these genes regulated cellular proliferation, angiogenesis and metastasis in cancer cells [51].
These results when coupled with the data from another recent study [52] which highlighted the
nature of the several forms of STAT-interacting proteins that bind to DNA suggested that GWAS
could be employed to identify pro-inflammatory and/or anti-inflammatory cytokine STAT-tar‐
get gene structures and potentially additional STAT-interacting proteins present in RA joint tis‐
sues. Thus GWAS may be considered the next step in the development of future therapies for RA
based on targeting STAT-responsive genes. This could be especially useful depending on the
status of the activity of the SOCS/CIS protein family acting on cytokine-receptor-mediated sig‐
naling. For example, if SOCS/CIS activity is dampened or deregulated in RA then it would be un‐
likely that this negative regulator pathway for controlling cytokine signaling would be able to
inhibit the amplification of pro-inflammatory cytokine-induced JAK/STAT signaling. To illus‐
trate this point, Isomäki et al. [40] showed that although SOCS-1 and SOCS-2 were up-regulated
in T-cells recovered from peripheral blood, that SOCS-3 was found in peripheral blood mono‐
cytes and a significant number of synovial tissue macrophages expressed SOCS-1 and SOCS-3
proteins, the majority of T-cells in RA synovium were ‘SOCS negative.’

For further discussion, this chapter will focus on the recent progress that has been made in
furthering our understanding of how cytokine gene expression is regulated by both U-STAT
and p-STAT proteins. The long-term prospect arising from the results of these studies would
be to exploit this new knowledge to reduce the level of pro-inflammatory cytokines or to
raise the level of anti-inflammatory cytokines in RA. By doing so this could potentially re‐
store the balance between these cytokine families and retard ongoing synovial joint damage
whilst also ameliorating RA clinical signs and symptoms.

4. Stat-DNA promoter-binding motifs

Defining transcription factor binding sites was critical for revealing the structure of cis-regu‐
latory motifs that regulated transcriptional activity [53]. However, microarray analysis using
different cell types determined that although several hundred genes were potential STAT3-
target gene sites, only a small fraction of those STAT3-target gene sites turned out to be true
direct STAT3-target genes [54].

As previously indicated, p-STAT proteins do not act independently of one another and U- and
p-STAT-protein interactions take various forms which enable them to bind efficiently to DNA
[55]. These activated STAT-protein interaction types include, 1) the direct binding of activated
STAT homodimers to DNA; 2) the interaction of activated STATs with non-STAT proteins to
form activated STAT/non-STAT protein complexes which bind to DNA; and 3) activated STAT
proteins interacting with other non-STAT transcription factors or co-activator proteins which
bind to DNA [16, 53]. In addition, several novel mechanisms were described for the binding of
U-STAT3 and U-STAT1 to DNA [54, 55]. In that regard, Cheon et al. [56] showed that U-STAT3
can drive expression of proteins not induced by p-STAT3, whereas U-STAT1 was shown to ex‐
tend and up-regulate the expression of a subset of genes initially responsive to p-STAT1 (e.g.,
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interferon, IL-6), that result in more prolonged antiviral and/or immune responses. Thus, the
results of these studies provided novel information regarding the functional significance for U-
STAT1 and U-STAT3 acting as transcriptional activators and organizers of chromatin. These
events have been shown to be important cellular mechanisms for regulating gene transcription
in the nuclei of cells of the immune system and cancer cells.

The results of DNA sequencing studies originally demonstrated specific DNA-binding sites for
STAT1 and STAT3 [57]. Boucheron et al. [58] then demonstrated that specific DNA binding
sites existed for STAT5A and STAT5B homodimers despite the fact that STAT5A and STAT5B
are evolutionarily conserved and encoded by 2 genes with a 91% homology in amino acid
structure [59]. Moreover, targeted gene deletion of STAT5A and STAT5B in mice resulted in
distinctive phenotypes [60]. This finding suggested a structural dissimilarity in the DNA-bind‐
ing motifs for these two STAT proteins. The results of studies reported in [60] were later con‐
firmed using the IL-3-dependent early pre-B cell line, Ba/F3 [61]. Here it was shown that both
STAT isoforms bound to all of the promoters tested, but STAT5A and STAT5B bound with dif‐
fering kinetics [62]. This result suggested that DNA binding activity was likely at the root of
any differences in the biological activity of these two STAT protein isoforms.

Ehret et al. [63] compared the specificity of STAT-DNA binding sites in specific STAT gene
knockout mice showing distinct phenotypes with the STAT-DNA binding sites in a variety
of cultured cells. From the in vitro analysis, Ehret et al. [63] also demonstrated that DNA
binding site motifs for STAT1, STAT5A, STAT5B and STAT6 were essentially the same with
only minor differences in DNA binding site specificity. However, STAT5A DNA-binding
specificity was much more similar to STAT6 than was the preferential DNA-binding site for
STAT1. Thus, the preferential DNA binding site for STAT6 contained a 4 base pair spacer
(i.e. TTCNNNNGAA) (N4) which was defined as the weak DNA binding site. However, ad‐
ditional analyses showed that STAT6 bound to TTCNNNG-AA (N3) sites (i.e. the strong
binding site) as well [63]. The binding of STAT1 and STAT5 to the N3 site was distinct from
STAT5A which preferred N4. Of note, most of the STAT6 binding sites were found in IL-4
responsive promoters in the N4 sites [64-67]. These results reported by Ehret et al. [63] were
extended by the findings of Moucadel and Constantinescu [64] who showed that STAT5B
bound to chromatin at both the N3 and the N4 site.

5. Stat-responsive cytokines genes

This overview covering the specificity of STAT-DNA binding becomes especially important
for improving our understanding of which cytokine gene expressional events are altered by
p-STAT and U-STAT proteins. This section analyzes our current interpretation of several cy‐
tokines relevant to RA and other autoimmune diseases, namely, IL-2, IL-3, IL-4, IL-6, IL-15,
IL-17, IL-19 and INF-γ, all of which have been shown to activate the JAK/STAT pathway
[16]. Moreover, activation of JAK/STAT signaling by these cytokines was shown to result in
altered patterns of transcriptional activity which lead to changes in the expression of the fol‐
lowing cytokine or cytokine-related genes, IL-2R, IL-3, IL-4, IL-6, IL-6ST (gp130), IL-10,
IL-18R1, INF-γ, oncostatin M (OSM) and TNF-α (Table 1).
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1Cytokines that activate this STAT protein

2Activated STAT that becomes a transcription factor for the STAT-responsive cytokine/protein

3Function(s) of STAT-responsive cytokine/protein

4IL-6 Signal Transducer

5Leukemia Inhibitory Factor Receptor

6Oncostatin M Receptor

7p38 kinase

8C-Jun-N-terminal kinase

Table 1. STAT-Responsive Pro-Inflammatory Cytokine Gene Expression
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6. Th1/Th2 Cells, Treg Cells, IL-2R, and IL-15

Up-regulation of the Th1 and Th17 T-cell subsets and reduced levels of human T-regulatory
(Treg) cells are known to occur in autoimmune diseases [16, 68]. In addition, Treg cells are a
critical contributor to T-cell development in the thymus as well as being the T-cell subset
that regulates the genesis and maintenance of immune tolerance [16].

The IL-2Rα/IL-2Rβ subunits in complex with the common IL-2γ subunit make up the high-
affinity IL-2 receptor, whereas homodimeric IL-2Rα results in a low-affinity receptor [69].
The functional significance of blocking the high-affinity IL-2R with the small molecule inhib‐
itor (SMI), SP4206 (Kd ~70nM) in response to IL-2 (Kd~10nM) was that JAK/STAT activation
was inhibited [70]. This result could provide the impetus for development of the next gener‐
ation SMI designed to efficiently inhibit the IL-2/IL-2R pathway and this task should be fa‐
cilitated by employing recently developed technologies based on the principles of protein-
protein interactions [71].

As indicated previously, the interaction of IL-2 with the high-affinity IL-2R causes activation
of JAK/STAT with STAT5A and STAT5B, the principally activated STAT proteins. However,
the eventual change in STAT5-gene responsiveness following IL-2 activation of STAT5 was
shown to be dependent on the complexity of the promoter regions of those STAT5-target
genes [72]. Interestingly, Tsuji-Takayama et al. [73] showed that IL-2-mediated JAK/STAT
activation up-regulated the production of IL-10 by Treg cells. The production of IL-10 arose
from the interaction of STAT5 with a STAT5-responsive element within intron 4, designated
I-SRE-4 of the IL-10 locus which was considered to be an interspecies conserved enhancer
sequence (Table 1). Of note, the clustered CpG regions around I-SRE-4 were under-methy‐
lated in IL-10-producing Treg cells, but not in other T-cell subsets. This result confirmed pre‐
vious results which showed that expression of Foxp3, a member of the forkhead/winged-
helix family of transcription factors and a biomarker for the development and function of
Treg cells [47, 74] was also IL-2/STAT5-dependent [75]. Thus, development of Treg cells was
regulated by the methylation status of CpG residues because methylation of CpG residues
suppressed Foxp3 expression [76].

Chen et al. [77] identified a novel set of IL-4/STAT6-target genes in mice that regulated the
proliferation of activated T-cells. In addition, these genes were shown to regulate the pro‐
duction of the Th2 lineage as evinced by the finding that the cells isolated from wild-type
mice produced Th2 whereas cells from STAT6-/- mice did not. Later, Lund et al. [78] showed
that the IL-4/STAT6 pathway was also critical for the commitment of naïve T-cells to become
either the Th1 or Th2 subset. In that regard, the ratio of Th1 to Th2 produced from naïve T-
cells was found to be dependent on a set of STAT6-responsive genes which included the
transcription factors STATB1, Bcl-6, and TCF7 [78, 79]. Moreover, the IL-4/STAT6-mediated
pathway was also shown to be a strong modulator of human Treg cell production from either
Th1 or Th17 cells [80].

Wurster et al. [81] were among the first to demonstrate that IL-4-mediated activation of
STAT6 could also up-regulate IL-2Rα gene expression (Table 1). Because IL-2 is the major
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growth-promoting cytokine for T-cells [81], elevated production of IL-2Rα in response to ac‐
tivated STAT6 is considered instrumental in facilitating the proliferation of activated T-cells
in cancer as well as in several types of autoimmune diseases. In that regard, the high level of
expression of IL-2Rα in tumors correlated with a poor prognosis in cancer patients [82].
Thus, it will be interesting to determine if the same relationship holds true for RA patients
as well, including what role IL-2Rα polymorphisms [83, 84] might play in determining the
level of the expression of IL-2Rα. For example, IL-15, a pro-inflammatory cytokine which in‐
teracts with two receptor subunits similar to IL-2Rα/β drives the production of the memory
CD8+ T-cell phenotype [85]. Experimental therapies focusing on inhibiting the binding of
IL-15 to the IL-2Rα/β receptor complex were a decade ago considered to be a potential target
for autoimmune diseases [85]. However, since then considerable evidence has accumulated
showing a robust relationship between IL-15/IL-2Rα/β-mediated signaling, osteoclastogene‐
sis and boney erosions in RA joints [3]. In addition, González-Alvaro et al. [86] showed that
IL-15 stimulated production of TNF-α by monocytes derived from RA patients including,
the induction of the CD69 monocyte biomarker, and synthesis of IFN-γ protein by natural
killer (NK) cells. Of note, the results of a clinical study showed that IL-15 expression in RA
synovial tissue persisted even after TNF-α blockade, the latter treatment resulting in a posi‐
tive clinical response and reduced disease activity [87]. However, treating mononuclear cells
in vitro with HuMax-IL-15 f (ab’)2 neutralized the effect of IL-15 on these cells. Furthermore,
treatment with HuMax-IL-15 f(ab’)2 caused a significant improvement in RA disease activity
as measured by the American College of Rheumatology (ACR) clinical response criteria [88].
This finding may be particularly important for future drug development because the results
of a recently completed clinical trial showed that high levels of serum IL-15 in patients with
early arthritis predicted a more progressive and severe clinical course which may call for
early and aggressive drug therapy [89].

6.1. IL-6/gp130/IL-17

The IL-6/IL-6R/gp130 pathway is one of the strongest inducers of STAT3 activation [9] (Ta‐
ble 1) so much so that many studies have been devoted to the activation of the JAK/STAT
pathway by IL-6 because IL-6 is critical to the progression of joint damage in RA [16]. In fact,
the development of the anti-IL-6R monoclonal antibody, tocilizumab, appears to have been
predicated on this emerging evidence such that this drug is now considered useful in the
armamentarium of drug therapies for RA [90, 91]. Most compelling was recent evidence that
tocilizumab in conjunction with methotrexate retarded the progression of joint damage in
RA patients [92], an effect of this drug regimen that was apparently independent of the ca‐
pacity of tocilizumab to modify several clinical biomarkers of inflammation and concomi‐
tant RA disease activity.

Recent results have also emerged which have focused attention on the extent to which other
pro-inflammatory cytokines, such as IL-17, activate JAK/STAT and the mechanism by which
IL-17 modifies the production of IL-6 and other pro-inflammatory cytokines [9]. In that re‐
gard, the results of a study by Jovanovic et al. [93] was extremely informative because it pro‐
vided evidence that IL-17 was capable of activating additional signaling pathways other
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than JAK/STAT which resulted in elevated production of IL-1β and TNF-α. Therefore, it has
become obvious that suppressing the activity of IL-17 could bring about a reduction of these
pro-inflammatory cytokines as well, although this point must be rigorously reexamined in
view of the results from Dragon et al. [94] who showed that IL-17A significantly decreased
GM-CSF-induced neutrophil/granulocyte apoptosis by suppressing activation of p38 kinase,
extracellular-regulated kinase 1/2 and STAT5B.

Inhibiting aberrant T-cell survival in RA may ultimately hinge on the development of a ther‐
apeutic strategy directed specifically at STAT3 since STAT3 was shown to inhibit T-cell pro‐
liferation by up-regulating the Class O Forkhead transcriptions factors (Fox) via the binding
of STAT3 to FoxO1and FoxO3a promoters [95]. Potentially, STAT3 may also protect T-cells
from apoptosis [30, 96] in RA by suppressing IL-2 activity, although the results [95] indicat‐
ed that STAT3 increased T-cell proliferation and their survival through the up-regulation of
OX-40 (CD134), a member of the TNFR-superfamily of receptors and bcl-2 and by suppress‐
ing FasL and Bad expression.

Perhaps the most intriguing aspect of the clinical studies with tocilizumab performed in RA
patients is the extent to which neutralization of the IL-6/IL-6R/gp130 pathway using this
drug together with the putative suppression of IL-6 and gp130 gene expression in response
to inhibition of the STAT3 activation rebalances the skewed ratio of Th17/Treg in favor of Treg

[97, 98], the elevated serum levels of Th17-associated cytokines, IL-17, IL-23, IL-6 and TNF-α,
and the depressed level of Treg cells with its associated growth factor, transforming growth
factor-β (TGF-β) [99]. What is pertinent to these events are the results of a recent study
which showed that treatment of RA patients with tocilizumab in combination with metho‐
trexate resulted in a significant decrease in the percentage of Th17 cells (from 0.9% at base‐
line to 0.45%) and a significant increase in Treg cells (from 3.05% to 3.94%) whilst maintaining
their functional activity [98].

The  extent  to  which  gp130  gene  expression  is  altered  in  response  to  inhibition  of  the
JAK/STAT pathway activation is also an area of immense importance because deregulat‐
ed over-expression of gp130 in RA patients should not be neutralized by anti-IL-6R ther‐
apy. Importantly, O’Brien and Manolagas [100] showed that IL-6 or oncostatin M (OSM),
a member of the IL-6 protein superfamily, stimulated the activity of the gp130 (Table 1)
promoter in which the cytokine response element contained a cis-acting motif for activat‐
ed  STAT  complexes,  including  activated  STAT1  and  STAT3  homo-  and  heterodimers.
Furthermore, it can be conjectured that other pro-inflammatory cytokine members of the
IL-6 protein superfamily, such as ciliary neutrotrophic factor (CNTF), leukemia inhibitory
factor (LIF)  and cardiotropin-1 which use gp130 as their  primary signal  transducer pro‐
tein [9, 101] may provide an alternate mechanism resulting in constitutive JAK/STAT ac‐
tivation. Under those conditions STAT protein activation may not be inhibited any of the
anti-IL-6R agents which retain up-regulated gp130 gene expression. Of note, constitutive
activation of  STAT proteins is  one of  the signature events in the development and pro‐
gression of various cancers [102, 103] with a similar phenomenon having been described
in RA synovial  tissue [15].  Constitutively activated STAT proteins could also be predic‐
tive of a more aggressive form of RA [96].
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6.2. INF-α/IFN-γ

The interferon protein family in conjunction with the interferon-regulated gene (IRG) path‐
way plays an important role in RA, SLE and other autoimmune diseases because the IRG
pathway is a critical mediator of autoimmune-dependent inflammation [104-106]. INF-γ is
known to be one of the strongest activators of JAK/STAT and Tyk2 resulting in IRG-mediat‐
ed responses [16, 107, 108]. INF-γ has also been shown to play a role in the epigenetic regu‐
lation of specific gene activation as evinced by the finding of an association of pJAK2 and
IFN-γ receptor in the nucleus with histone H3 in IFN-γ-treated human amnionic (WISH;
American Tissue Culture Collection; CCL 25) cells in vitro [109]. AG-490 a JAK2 inhibitor,
also down-regulated STAT1 gene expression and AG-490 inhibited prolactin-induced IFN-γ,
TNF-α, IL-1β and IL-12p40 synthesis in mouse peritoneal macrophages in vitro [110]. Of
note, inhibition of JNK activity with the SMI, SP600125, also resulted in down-regulating
IFN-γ and TNF-α indicating that both the JAK/STAT and MAPK pathways contributed to
alterations in the expression of these cytokines. Although the importance of these results in
providing a rationale for manipulating signal transduction pathways in human RA remains
to be fully elucidated, the fact that the expression of several pro-inflammatory cytokines rel‐
evant to RA pathology are potentially controlled by cross-talk between JAK/STAT and
MAPK appears to be significant [47, 111, 112].

Three DNA-binding sites related to STAT protein-DNA binding have been recognized with‐
in the IFN-γ promoter. These DNA binding sites include an IL-12-mediated STAT4/DNA
binding site, an IL-2-induced STAT5/DNA binding site and a CD2-mediated STAT/IFN-γ
binding site [113]. Thus, CD2-mediated activation of human peripheral blood mononuclear
cells was shown to result in STAT/DNA binding to a 3.6kb DNA motif within the IFN-γ pro‐
moter which occurred principally via STAT5A binding and less so by STAT5B, with both be‐
ing independent of IL-2.

Induction of some of the IFN-regulatory factors (Irfs), including those gene responses brought
about by activation of irf9 via IFN-α were found to be STAT protein-independent [114]. In ad‐
dition, results from other studies showed that Akt activity was also involved in key IFN-α, -γ
gene responses [115]. Moreover, regulation of IFN-α, -γ-mediated responses required the di‐
rect control of mTOR [116] beginning with the initiation of protein translation [117].

In RA, the depressed level of IL-4 and IL-10 in mononuclear phagocytes is, in part, responsible
for the imbalance in Th1/Th2 cytokines [3, 16]. The primary model employed to describe the re‐
lationship between IFN-γ and IL-4/IL-10 is dependent on several factors. This view was origi‐
nally proposed by Hamilton et al. [118] as follows; IL-4 was shown to markedly suppress the
transcriptional activity of IFN-γ because the promoter sequence between IL-4 and IFN-γ were
essentially identical. Proof of this came from the results of experiments that showed that IFN-γ/
STAT1 and IL-4/STAT6 both formed complexes at the same regulatory sequence, but whereas
activated STAT1 promoted IFN-γ transcription, activated STAT6 did not. However, activated
STAT6 was required to suppress the transcriptional up-regulation of IL-4. Thus, in the model,
IL-4 appeared to be necessary to reduce IFN-γ gene expression (Table 1) and was related to a
competition between activated STAT1 and activated STAT6 for binding to the IFN-γ promoter.
In keeping with this model, the expression of IL-10 is also known to be suppressed by INF-γ
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[119]. Thus, it was shown that when transfected RPMI 8226.1 B-cells were incubated with IFN-
γ followed by lipopolysaccharide (LPS), IFN-γ reduced LPS-induced IL-10 promoter activity
which was independent of the irf, but dependent on an activated STAT-motif. Further analyses
indicated that IFN-γ down-regulated IL-10 gene expression via displacement of the trans-acti‐
vated STAT3 by STAT1 induced by IFN-γ.

Experimental strategies could be designed to increase the mononuclear cell expression of
IL-4/IL-10 by manipulating the ultra-sensitive INF-γ promoter region with various activated
STAT protein types. Another strategy for potentially improving the level of IL-10 in RA
would involve manipulating natural Treg cells in a cell-based therapy mode because Treg cells
are a rich source of IL-10 [120, 121]. However, as pointed out by Nandakumar et al. [121]
one must be mindful that the antigen specificity of natural Treg cells must be carefully regu‐
lated to protect against the development of self-reactive effector T-cells or for that matter,
Treg cells with inappropriate antigen specificity.

6.3. OSM

Recent advances have assigned OSM, a member of the IL-6 protein superfamily an impor‐
tant role in the pathogenesis and progression of RA and OA [101]. In that regard, one of the
more important experimental results involving OSM were reported by Hams et al. [122]
who compared the inflammatory responses in wild-type mice to IL-6-deficient and mice de‐
ficient in the OSM receptor β (OSMRβ). They showed that the OSMRβ knockout mice
showed enhanced trafficking of monocytes to sites of inflammation when these mice were
compared to the wild-type or IL-6-knockout mice. However, the OSMRβ knockout mice did
not demonstrate any differences in neutrophil or lymphocyte migration to inflamed tissue
when compared to their wild-type or IL-6-deficient counterparts. These results suggested
that the OSM/OSMRβ-pathway probably regulated chemokine production and chemokine
function. Indeed this proved to be the case when the up-regulated chemokine in response to
the activation of the OSMRβ-pathway was eventually identified as CCL5. CCL5 has been
shown to be a critical chemokine for regulating the recruitment and retention of monocytes
in inflamed RA synovial joints [3]. Although the evidence was indirect, these results sug‐
gested that a drug with the capacity to neutralize the interaction between IL-6 and IL6R in
arthritic joints would not alter OSM/OSMRβ-mediated STAT activation [9]. This view was
supported by the results from several previous studies which showed that 1) although the
OSMR consisted of a heterodimer of the LIF receptor and gp130, the alternative form of
OSMR, namely, OSMRβ, was activated only by OSM and not by LIF [123]; 2) OSM, but nei‐
ther IL-6 nor LIF induced tyrosine phosphorylation in the Shc adaptor protein p52 and p66
isoforms which in association with growth factor receptor-bound protein 2 (Grb2) were both
recruited to OSMR, but not to gp130 [124]; and 3) at least in human or canine osteosarcoma
cell lines, treatment with OSM phosphorylated JAK2/STAT3 and Src, each of which was
shown to be involved in an OSM dose-dependent-mediated increase in expression of the
MMP-2 gene (i.e. 72kDa gelatinase) and vascular endothelial growth factor (VEGF) gene
[125]. Of note, the STAT3 SMI, LLL3, inhibited MMP-2 and VEGF gene expression indicat‐
ing that MMP-2 and VEGF were genes targeted by activated STAT3. Importantly, Clarkson
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et al. [126] showed that another one of the activated STAT-responsive genes in mammary
epithelial cells was OSMR. This finding was critical for completing the circle which showed
that activation of OSMRβ was central to the upstream activation of the OSM-mediated path‐
way as well as to the downstream increase in the expression of the OSMRβ gene, both
events involving STAT proteins.

7. Other cytokines/cytokine receptors

The role played by activated STAT proteins in various aspects of autoimmune diseases and
in oncogenesis is best exemplified by the many genes and transcription factors that have
been shown to be STAT protein-responsive [51, 127]. Many of these STAT-regulated genes
include additional pro-inflammatory cytokine and cytokine receptor genes besides those
previously discussed. In this section we will analyze the contributions of these cytokine and
cytokine receptor genes to the pathology of RA.

7.1. IL-18

IL-18 is structurally similar to IL-1 and the IL-18 receptor is a member of the IL-1R/TLR pro‐
tein superfamily [128]. However, the function of IL-18 differs considerably from that of IL-1
and, in fact unlike IL-1, IL-18 is produced by a variety of immune as well as non-immune
cells. Although IL-18 in its role as a stimulator of Th1 responses is well known by its activity
as an immune defense cytokine against microbial infection, the over-production of IL-18 can
result in autoimmune disease via its capacity to modify and accentuate adaptive immuno‐
logical responses such as those seen in RA [129-132]. However, paradoxically IL-18 can also
stimulate Th2-related cytokine responses as well [128]. Thus, its putative role in altering the
Th1/Th2 cytokine repertoire cannot be dismissed.

Particularly important with regard to the role played by IL-18 in RA were results of a study
by Gracie et al. [133] who first identified abundant IL-18 in RA synovial tissue. These find‐
ings are relevant when coupled with those from other studies by Tanaka et al. [134] who al‐
so found elevated IL-18 and the IL-18 receptor α/β in RA synovial tissue. They also
demonstrated that IL-18 was a co-factor and regulatory cytokine in stimulating the synthesis
of IFN-γ by T-cells in RA synovial tissue, the latter also requiring IL-12, thus implicating the
up-regulation of IL-18 gene expression as an important component of RA disease progres‐
sion.

Activated STAT3 was identified as the JAK/STAT-related transcription factor responsible for
the increased synthesis of IL-18 [127]. In that regard, TNF-α was shown to increase IL-18
gene expression in RA synoviocyte cultures suggesting the possibility that TNF-α, a known
activator of p38 kinase and JNK may also activate STAT3 in synoviocyte and chondrocyte
cultures. Indeed, recent results from our laboratory showed that recombinant human TNF-α
activated STAT3 in normal human chondrocyte cultures and TNF-α activated STAT3, p38
kinase and JNK in cultured chondrocytes derived from human osteoarthritic knee cartilage
[Malemud et al. submitted]. Thus, it was instructive to learn that treating RA patients with
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the combination therapy of infliximab and methotrexate reduced the level of IL-18 in serum
whilst the level of the chemokine, CXCL12 was unaltered [135]. Moreover, synovial fluid
from these RA patients had higher levels of IL-18 (as well as TNF-α and IL-15) prior to be‐
ginning combination therapy with infliximab and methotrexate compared to the level of
these cytokines in a patient’s sera. In addition, the level of IL-18/TNF-α in synovial fluid was
strongly correlated with a patient’s high Disease Activity Score-28 [136]. Thus, it may be in‐
formative going forward to assess the level of activated STAT3 and IL-18 in the synovial flu‐
id and sera of RA patients before and after treatment with TNF antagonists or other
biological drugs that neutralize the activation of JAK/STAT and MAPK pathways to deter‐
mine the extent to which the level of activated STAT3, p38 kinase or JNK is correlated with
IL-18 gene expression by synovium and cartilage ex vivo.

7.2. IL-12

IL-12 is made up of 2 disulfide-linked protein subunits, termed IL-12p35 and IL-12p40
linked in a heterodimer configuration [137, 138]. Whilst the IL-12p40 subunit has structural
similarities with cytokine receptors, the IL-12p35 component is structurally similar to IL-6
and granulocyte-colony stimulating factor (G-CSF) [139]. Of note, if IL-12p35 and IL-12p40
are produced by the same cell, the bioactive heterodimer is termed, IL-12p70 [140].

IL-12 is synthesized by many cell types of the innate and adaptive immune systems, includ‐
ing, monocytes, macrophages, dendritic cells and neutrophils. IL-12 is a minor product of B-
cells [140]. Although IL-12p35 is constitutively expressed at low levels by many of these
cells, the expression of IL-12p40 is limited to those phagocytic cells that synthesize IL-12p70.

The connection between IL-12 and activation of the JAK/STAT pathway stems from the find‐
ing that IL-12 production was positively regulated by IFN-γ, the latter cytokine which is al‐
so induced by IL-12. Thus, IFN-γ regulates IL-12 gene expression and vice versa. By
contrast, two of the anti-inflammatory cytokines, namely, IL-10 and IL-13 which also acti‐
vate JAK/STAT, suppressed IL-12 production [140] (Table 1). In addition, the type I interfer‐
on proteins, exemplified by IFN-β, which activates STAT1 [141] was shown to inhibit IL-12
gene expression in mice [142].

The main immune functions of IL-12 involve the regulation of Th1 differentiation via the ac‐
tivation of STAT4 which induces the synthesis of the T-bet transcription factor [143]. T-bet
was shown to regulate IFN-γ expression and CD8+ suppressor T-cell development which
had been characterized as principally IFN-γ/STAT1-dependent, and IL-12/STAT4 independ‐
ent. In fact, expression of T-bet was shown to require activated STAT4 to achieve total IL-12-
dependent Th1 cell-fate determination [143]. However, Yang et al. [144] showed that the
effect of IL-12/STAT4 was more complex. Thus, IL-12 -induced activated STAT4 bound to a
distant but highly conserved STAT-responsive T-bet enhancer region where it induced IFN-
γ-activated STAT1 independent T-bet gene expression in CD8+ cells. Importantly, IL-4-in‐
duced STAT6 activation regulates the development and effector functions, not of Th1 cells,
but rather of Th2 cells in peripheral tissues such as skin, lung and gut [145]. However, Th2
cell produced in lymph nodes did not require IL-4-mediated activation of STAT6 [145].

Suppression of Pro-Inflammatory Cytokines via Targeting of STAT-Responsive Genes
http://dx.doi.org/10.5772/52506

385



In summary, cell-fate determination induced by the IL-12-mediated activation of STAT4,
IL-4-mediated activation of STAT6, transforming growth factor-β (TGF-β), IL-6 plus TGF-β
and IL-27 activation of STAT3 profoundly influence the balance of Th1 and Th2 cells, Th17
cells and Treg cell production, respectively [80, 146-149]. This conclusion must, however, be
tempered by results of recent studies which also showed that formal interplays occurred be‐
tween IL-4-induced STAT6 phosphorylation, the GATA-binding protein-3 (GATA3) zinc-fin‐
ger transcription factor [150] and the Treg cell transcription factor, FoxP3 as well.
Importantly, GATA3 was revealed as the key transcription factor in this complex interplay
because GATA3 could 1) directly inhibit Th1 differentiation through its capacity to block up-
regulation of the IL-12β2 receptor; 2) inhibit the activity of STAT4; and 3) neutralize the ac‐
tivity of runt-related transcription factor 3 (runx3), via its capacity to induce protein-protein
interactions [150]. Thus, by modulating the activities of IL-4/STAT6, GATA3/STAT4 and
runx3 one could potentially alter the activity of pro-inflammatory and anti-inflammatory cy‐
tokines as well as overcome immune tolerance.

7.3. IL-21

IL-21 is a member of the Type I cytokine superfamily of cytokine receptors. In this group, the
common γ cytokine receptor complex is the functional component for receptor-mediated signal
transduction of IL-2, IL-4, IL-7, IL-9 and IL-15 [151-153]. Although IL-21 has strong structural ho‐
mology to IL-15, IL-21 interacts with a unique receptor, termed, IL-21Rα, which pairs with the γ-
common cytokine receptor chain (i.e. CD132) to form the active IL-21 receptor complex [154].

IL-21-mediated events affect the functions of NK cells, T-cells and B-cells. Although devel‐
opment of Treg cells from the Th17 lineage is generally considered to require IL-6 because
IL-6 reciprocally controls Th17 and Treg cell development through its ability to inhibit TGF-β-
induced FoxP3 and by inducing RORγ, in fact, IL-21 can also induce RORγ and Th17 devel‐
opment in the absence of IL-6. However, evidence also showed that the number of Th17
cells, the recruitment of Th17 cells to inflamed tissues and the development of autoimmune
encephalitis and myocarditis did not differ between IL-21R and IL-21 deficient mice com‐
pared to their wild-type counterparts [155, 156]. More importantly, IL-6 was the more potent
inducer of Th17 differentiation compared to IL-21 thus calling into question, whether IL-21
was even required for Th17 development.

Despite the emerging controversies regarding how important IL-21 is in T-cell development
and immune responses, a therapeutic intervention designed to limit the responses of im‐
mune cells to IL-21 has long been considered for treating cancer and autoimmune diseases
[157]. In addition, because the binding of IL-21R induces activation of several of the JAK iso‐
forms [153], it became apparent that it would be necessary to elucidate which cellular events
were controlled by STAT proteins activated by phosphorylated JAKs in response to IL-21/
IL-21R. Attempting to address this point, Habib et al. [151] found that IL-21 induced prolif‐
eration of pro-B-lymphoid cells in vitro which was dependent on both γc and the γc-associ‐
ated JAK3 complex. However, a monoclonal antibody reactive only with γc was effective in
limiting the proliferation of BaF3/IL21R α cells [151] indicating that neutralization of γc
alone could cause inhibition of JAK activation by IL-21/IL-21R.
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Implying a role for IL-21 in the development and progression of RA would also depend on
finding an elevated level of IL-21 in human RA tissues and by demonstrating an involve‐
ment of IL-21 in the pathogenesis of CIA or inflammatory arthritis in other animal models.
Thus the results of a study by Young et al. [158] were noteworthy in this regard for several
reasons. First and foremost, treating DBA mice with CIA with an antibody to IL-21R (i.e.
IL-21R.Fc) reduced the severity of arthritis. The reduction in hind paw swelling was accom‐
panied by lower levels of IL-6 in the hind paw but also in the sera of mice treated with
IL-21R.Fc suggesting that one of the downstream events regulated by IL-21 was IL-6 gene
expression. Of note, the level of INF-γ was increased in the hind paws of mice with CIA.
Furthermore, the cultured cells from the lymph nodes of mice with CIA treated with
IL-21R.Fc showed an increased level of IFN-γ ex vivo. These findings (i.e. reduced IFN-γ; in‐
creased IL-6) were mirrored ex vivo using Type II collagen-specific spleen cells from CIA
mice treated with IL-21R.Fc. Most importantly from the perspective of potentially using an
anti-IL-21R antibody as a therapeutic agent for RA was the finding that treating Lewis rats
with adjuvant –induced arthritis therapeutically with IL-21R.Fc “reversed” the swelling in
inflamed joints and tissues from these joints whilst the tissues showed improvement using a
well-validated histological scoring system. More recently, Yuan et al. [159] showed that
IL-21R mRNA was found in human RA synovial tissue samples. In addition, this group also
confirmed the results of the Young et al. study [158] since they showed that an anti-IL-21R
antibody ameliorated the severity of arthritis in CIA which was accompanied by reduced
cytokine levels in cells derived from the anti-IL-21R antibody-treated mice. Interestingly,
IL-21R-deficient K/BxN mice [160] failed to develop arthritis; a result which suggested that
IL-21R played a critical role in the pathogenesis of K/BxN serum-induced arthritis.

There now are several lines of evidence that showed that the IL-21/IL-21R pathway plays a
functional role in regulating inflammatory responses in autoimmune arthritis. In that re‐
gard, anti-IL-21 blockade should also be considered for future drug development for RA.
However, what would also be crucial to improving our understanding of the role of IL-21 in
RA would be to discover which pro-inflammatory cytokine levels are altered in response to
the JAK/STAT activation by IL-21/IL21R. This could provide a novel paradigm for reducing
pro-inflammatory cytokine levels in RA.

8. The extended IL-10 cytokine superfamily

IL-19, IL-20, IL-22, IL-24 (melanoma differentiation-associated gene 7; mda-7), and IL-26
(AK155) are all structurally similar to IL-10 and these interleukins constitute members of the
extended IL-10 cytokine superfamily [161-163]. Three additional members of the IL-10 cyto‐
kine superfamily have recently been added to this list, namely, IL-28A, IL-28B and IL-29
which now comprise the IFN-λ cytokine subfamily [164-166].

IL-19 and IL-20 are α-helical proteins. They have similar cysteine sites; their amino acid se‐
quences are approximately 30% identical. In the human genome, the genes encoding these
IL-10 superfamily members are located in two clusters; one cluster comprises the genes for
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IL-10, IL-19, IL-20, and IL-24/mda-7 which are located on chromosome 1q31-32 [167]. IL-19 and
IL-20 were predominately expressed in monocytes, as well as non-immune cells under inflam‐
matory conditions [168], whereas IL-22 and IL-26 was only produced by T-cells, especially Th1
cells and NK cells, whilst IL-24 synthesis was restricted to monocytes and T-cells [169].

Both IL-20 and IL-24 bind to the IL-20R complex which is made up of the cytokine receptor
family 2-8/IL-20Rα (IL-20R1) [170], although it was previously shown that IL-19/IL-19 recep‐
tor binding was similar to IL-20/IL-24 receptor binding [170]. IL-19 was also shown to inter‐
act with a DIRS1-like element which is composed of tyrosine recombinase-encoding
transposons/IL-20Rβ (IL-20R2) [170-172].

In all cases, the binding of IL-19, IL-20 or IL-24 to these receptors caused activation of STAT3
and activation of a minimal promoter region containing those sequences identified as STAT-
binding sites. Importantly, absent either of the R1 proteins in the two types of receptor com‐
plexes, IL-20R1/IL-20R2 and IL-22R1/IL-22R2 reduced the affinity of IL-19 or IL-24 for these
receptors. Furthermore, IL-20R2, and not IL-20R1, was identified as the high affinity recep‐
tor chain for these cytokines [173].

The functional significance of the IL-10-related cytokines, IL-19, IL-20, IL-21, IL-22 and IL-24
in terms of the pathophysiology of RA and other autoimmune diseases is systematically be‐
ing elucidated. In most cases, the role played by these cytokines has been inferred from
measurements in sera of RA patients before and/or after medical therapy.

8.1. IL-19

Sakurai et al. [174] showed that IL-19 was produced by cells of human RA synovial tissue.
The majority of IL-19 positive cells were vimentin- and CD68-positive, indicating that fibro‐
blasts and macrophages were the main sources of IL-19 in RA synovium. From a functional
perspective, synovial tissue lining and sublining layers were both identified with anti-
IL-20R1 and anti-IL-20R2 antibodies.

IL-19 activated synoviocyte STAT3 and, downstream, STAT3 activation caused up-regula‐
tion of IL-6 and IL-19 gene expression whilst decreasing synoviocyte apoptosis induced by
serum-starvation [174], a change which may predict the role of IL-19 in the development of
synovial hyperplasia [30, 96]. However, the role of IL-19 in RA relative to its activation of
signal transduction was further complicated by the findings of Alanärä et al. [175] who
showed that IL-1β, an activator of the MAPK pathway [176], also increased the level of IL-19
in peripheral blood mononuclear cells in vitro. Combined with other data this result showed
that in RA joints IL-19 expression was the highest of all of the IL-10 family cytokines. Fur‐
thermore, these results suggested that IL-19 played a significant role in synovial tissue in‐
flammation, with the caveat that further consideration of IL-19 as a target for intervention in
in RA must focus on the relative level of JAK/STAT activation of JAK/STAT versus activa‐
tion of the other signaling pathways.

IL-19 was highly expressed in synovial tissue and, in particular, expressed in fibroblasts iso‐
lated from rats with collagen-induced arthritis (CIA) [177]. Of note, treating these rats with a
anti-IL-19 antibody, 1BB1, reduced arthritis severity which was accompanied by the lower
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level of boney erosions and an improvement in the quality of subchondral bone. Moreover,
treatment of rats with CIA with 1BB1 reduced the expression of TNF-α, IL-1β, IL-6 and Re‐
ceptor Activator of Nuclear Factor Kappa-B Ligand (RANKL) genes in synovial tissue and
also lowered IL-6 levels in serum. Synovial fibroblasts isolated from rats with CIA respond‐
ed to treatment with IL-19 in a similar fashion seen with synovial tissue in situ where in‐
creased synthesis of TNF-α, IL-1β, IL-6 and RANKL was detected.

There is now compelling evidence that IL-19-mediated activation of STAT3 was associated
with the development and progression of inflammatory arthritis which was characterized
by the elevated expression of many of the pro-inflammatory cytokines pertinent to human
RA joint destruction. These data also showed that the rat CIA model could be further ex‐
ploited to determine the extent to which specific dampening or up-regulation of STAT-re‐
sponsive cytokine genes would ameliorate inflammatory responses associated with CIA.

8.2. IL-20

IL-20 interacts with IL-20R1/IL-20R2 to activate the JAK/STAT pathway [166] and IL-20 has
been implicated in the pathogenesis of autoimmune diseases [178]. However, IL-20R2 sig‐
naling was shown to blunt mouse CD4 and CD8 T-cell responses to antigen in vitro and in
vivo [179]. Thus, it remains to be determined the extent to which IL-20 promotes or sup‐
presses immune-mediated inflammation.

In the CIA model in the rat, treatment with an anti-IL-20 antibody 7E, either alone, or in
combination with the TNF blocker, etanercept was compared to etanercept alone for their
capacity to 1) ameliorate cartilage damage; 2) stabilize bone mineral density; and 3) alter cy‐
tokine production [180]. In addition, the effect of antibody 7E on expression of various genes
implicated in the progression of CIA was evaluated on rat synovial fibroblasts in vitro. Treat‐
ment with 7E or etanercept or the combination of 7E and etanercept significantly reduced
the severity of arthritis as measured by rat hind paw thickness and swelling. These treat‐
ments also prevented cartilage degradation and bone loss whilst reducing the level of syno‐
vial tissue IL-20, IL-1β, IL-6, RANKL and MMPs. Of note, IL-20 induced the expression of
TNF-α in synovial fibroblasts isolated from rats with CIA. Moreover, IL-20 induced RANKL
production in synovial fibroblasts, osteoblasts and Th17 cells. In another study, antibody 7E
was shown to inhibit mouse osteoclast differentiation induced by macrophage-CSF and
RANKL [181]. These results [181] coupled with results from the CIA model [180] indicated
that IL-20 was likely to have promoted the increased bone loss in CIA by promoting osteo‐
clast differentiation and the activity of osteoclast-mediated bone resorption.

Correlative human studies of IL-20-mediated responses in RA are just emerging. However,
the results have differed somewhat from those seen in the CIA model. Thus, Kragstrup et al.
[182] showed that plasma IL-20 levels were increased in RA compared to OA patients with
the elevated level of IL-20 primarily localized to mononuclear cells and neutrophils. Stimu‐
lating mononuclear cells isolated from RA synovium with recombinant IL-20 resulted in the
increased secretion of the chemoattractant CCL2/MCP-1. However, at variance with find‐
ings in the CIA model, recombinant IL-20 did not alter the expression of TNF-α or IL-6 by
mononuclear cells in vitro.
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8.3. IL-22

IL-22 binds to the class II cytokine receptor family, IL-22R and IL-10Rβ [183]. IL-22 was
shown to activate STAT-1, -3 and -5 in H4IIE rat hepatoma cells by inducing the phosphory‐
lation of JAK1 and Tyk2, but not JAK1 [184]. However, H4IIE failed to respond to IL-10 via
activation of JAK1 and Tyk2 indicating a distinct signaling pathway for IL-22 versus IL-10.
IL-22 also failed to inhibit pro-inflammatory cytokine gene expression by monocytes in re‐
sponse to LPS although IL-22 did blunt the inhibitory effects of IL-4 produced from Th2 cells,
a finding distinct from the activity of IL-10.

A role for IL-22 in inflammation was inferred from its involvement as an inducer of pancrea‐
titis-associated protein by pancreatic acinar cells [185] and by the elevated serum levels of
IL-22 in patients with active Crohn’s disease [186]. With regard to activating various signal‐
ing mechanisms, Lejeune et al. [187] showed that IL-22 activated JAK/STAT. However, IL-22
also activated ERK, JNK and p38 kinase indicating that IL-22 could activate all of the 3 major
MAPK pathways. Brand et al. [186] then showed that treating intestinal epithelial cells with
TNF-α, IL-1β or LPS significantly increased IL-22R1 gene expression without altering
IL-10R2 mRNA. IL-22 also activated STAT1/STAT3, Akt, ERK 1/2 and JNK and, most impor‐
tantly IL-22 increased the expression of SOCS3, TNF-α, IL-8 and human-defensin-2 mRNAs.
Because IL-22 was shown to activate several disparate signaling pathways it is conjecture
that up-regulation of pro-inflammatory gene mRNAs by IL-22 involves ‘cross-talk’ between
all three pathways. Thus, experiments employing specific SMIs added either individually or
together to cells in culture will have to be performed to determine the extent to which any or
all of these signaling pathways are involved in regulating TNF-α, IL-8 or IL-1β gene expres‐
sion in response to IL-22.

IL-22 is elevated in RA synovial tissue with the lining and sublining layers of RA synovium
expressing the highest levels of IL-22R1 [188]. Recently, Leipe et al. [189] showed that about
50% of the RA patients studied had elevated serum IL-22 compared to a group of healthy
subjects. The level of serum IL-22 closely correlated with the extent of bone erosions as de‐
termined from radiographic analysis. However serum IL-22 did not correlate with the pres‐
ence or absence of either rheumatoid factor (RF) or anti-cyclic citrullinated peptide
antibodies nor was IL-22 associated with disease activity. CD4 T-cells were identified as the
main source of IL-22 in these RA patients. However, in another study, de Rocha Jr et al.
[190] showed that elevated serum IL-22 did correlate with the Disease Activity Score-28
(DAS-28) and the Clinical Disease Activity Index, a positive titer for RF and the extent to
which bone was eroded. The findings from this study [190] agreed with the results from an‐
other recently published study [191] the latter showing that plasma IL-22 was increased in
30 patients with established RA (i.e. mean disease duration of 10.7 years), even in those pa‐
tients receiving immunomodulatory therapy. Thus, any discrepancies between the results of
these various clinical studies relative to establishing a relationship between IL-22, RA dis‐
ease activity and RF levels may involve differences in terms of the types and duration of the
immunotherapies employed or in the proportion of RA patients who were in the early or
late stage of disease. The relationship between IL-22 and the presence of RF could also corre‐
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late with the immunological status of B-cells since, unlike IL-10, IL-22 does apparently not
regulate the induction of Ig by activated B-cells [192].

8.4. IL-24/mda-7

The apoptosis-inducing activity of IL-24/mda-7 has made this unique member of the extend‐
ed IL-10 cytokine family a target for cancer therapeutics [193-195] in view of the finding that
IL-24/mda-7 could kill cancer cells specifically without affecting the vitality off normal cells
or tissues [196]. Receptor binding of IL24/mda-7 to IL-20R activates STAT1 and STAT3 al‐
though additional signaling pathways have been shown to be modulated by cells over-ex‐
pressing IL-24/mda-7 which did not involve JAK/STAT activation [193]. Besides the interest
in IL-24/mda-7 as a tumor suppressor cytokine, mda-7/IL-24 has also been implicated in reg‐
ulating some of components of RA and psoriasis immunopathology [197]. However, some
of the details of the mechanism(s) by which IL-24/mda-7 could alter pro-inflammatory cyto‐
kine gene expression in RA via JAK/STAT have not been fully elucidated, although epige‐
netic and other transcriptional factor activity beyond activated STAT proteins have been
postulated to play critical roles. Thus, it is of interest that Sahoo et al. [198] recently showed
that STAT6 and c-Jun binding to the IL-24 promoter locus in Th2 cells caused trans-activa‐
tion of the IL-24 gene. Finding a relationship between the activators of STAT6 and c-Jun that
are relevant to RA which leads to IL-24 gene transcription may hold the key to increasing
local IL-24/mda-7 levels by Th2 cells. This, in turn, could help overcome the ‘apoptosis-resist‐
ance’ of RA synovium [96].

8.5. IL-3

IL-3 is one of several major cytokines that drive the differentiation of cells of the hemato‐
poietic lineage. The interaction between IL-3 and its cognate receptor activates several sig‐
naling pathways, including, JAK/STAT, PI3K/Akt/mTOR and the Ras/Raf/MAPK pathways
[199]. Downstream events that are regulated by IL-3 which are germane to RA and autoim‐
munity, in general, include the findings that depending on the conditions in the microenvir‐
onment, IL-3 can alter cell proliferation, survival or induce cell death by apoptosis [30].

IL-3 was identified as an activator of JAK2 and STAT5 [200] and the expression of the pro-
apoptotic protein, c-myc. This finding provided the initial evidence that cell proliferation
and apoptosis was regulated, in part, by activated STAT5. However, a subsequent study by
Chaturvedi et al. [201] provided evidence to the contrary in that the interaction of IL-3 with
its receptor activated STAT3 via the phosphorylation of tyr701. Moreover, the results of this
study [201] also showed that myeloid cell proliferation was regulated by IL-3-activated Src
kinase and not by IL-3-actiivated JAK3. This conclusion was based on the following results.
Inhibition of c-Src kinase activation using a dominant-negative (dn) Src mutant also blocked
STAT3 activation and, this in turn, inhibited proliferation of the 32Dcl3 myeloid cell line in
response to IL-3. Moreover, expression of a dn-JAK2 mutation increased apoptosis in 32Dcl3
cells in the absence of IL-3 which also involved the concomitant down-regulation of ERK-2.
Taken together these results indicated that Src kinase activation of STAT proteins regulated
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myeloid cell proliferation whereas JAKs controlled the activation of ERK-2 and associated
anti-apoptotic signals [202].

The results of another study [203] showed that IL-3 played an important role in regulating
SOCS3 and PIAS proteins [16, 20, 21] both of which are important in regulating cytokine sig‐
naling as well as the fine-tuning of the survival and/or cell death pathways for immune and
non-immune cells in general. IL-3 plays a particularly critical role in regulating these events
in mast cells [203], plasmacytoid dendritic cells [204], osteoclast-like cells, [205] and osteo‐
clasts [206, in particular. All of these cell types are involved in some aspect of RA pathology.

To further illustrate this point, Gupta et al. [206] showed that osteoclasts treated with IL-3
were diverted to the dendritic cell lineage which may also be related to the finding that that
IL-3 dampened human osteoclast-mediated bone resorption. Most recently, Srivastava et al.
[207] showed that IL-3 increased the number of functionally active Treg cells by stimulating
the production of IL-2 by non-Treg cells the latter being dependent on the dose of IL-3. Of
note, treating mice with CIA with IL-3 significantly reduced the severity of arthritis and also
increased the frequency of Treg cells found in the thymus, lymph nodes and spleen. Al‐
though this study [207] did not directly measure the status of activated STAT proteins in the
CIA mice treated with IL-3, these additional results showed that treatment of CIA with IL-3
decreased production of IL-6, IL-17A, TNF-α and IL-1 whilst increasing IFN-γ and IL-10
(Table 1).

8.6. IL-7

IL-7 was shown to be a fundamental contributor to thymocyte development as well as a regula‐
tor of T-cell homeostasis in peripheral blood. IL-7 activates both the PI3K/Akt/mTOR and JAK/
STAT pathways suggesting that IL-7 regulates the survival and/or death of T-cells [208].

The IL-7 receptor provides an indicator of the biological activity of IL-7. IL-7R is composed
of a γC and Rα polypeptide. JAK3 associates with γC. The binding of JAK3 to γC allows
IL-7 dimer formation to occur between γC and Rα so that JAK3 can phosphorylate Rα
and/or JAK1 [209]. In most cases, activation of JAK3 causes STAT5 to be phosphorylated.

With respect to relationship between IL-7 and RA, Kim et al. [210] showed that the levels of
IL-1β and TNF-α found in the synovial fluid of RA patients could typically increase IL-7
production by stromal cells in culture. In addition, IL-7 was also a strong inducer of RANKL
production by T-cells, independent of TNF-α [210]. Interestingly, van Roon et al. [211]
showed that TNF-α blockade in RA patients reduced IL-7 production. However, high levels
of IL-7 persisted in RA patients who failed to respond to antagonists of TNF-α.

Hartgring et al. [212] found significantly higher amounts of IL-7Rα in the synovial fluid of
RA patients as well as in synovial fluid from patients with undifferentiated arthritis. IL-7
level strongly correlated with the number of activated CD3+ T-cells. IL-7Rα was also identi‐
fied on B-cells and macrophages from RA patients, but importantly IL-7Rα-expressing T-
cells did not co-express, FoxP3. Ex vivo studies performed on monocytes collected from RA
patients revealed that recombinant human IL-7Rα inhibited IL-7 induced T-cell proliferation
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and IFN-γ production suggesting that blockade of IL-7Rα in RA patients reduced the ex‐
pression of the STAT-responsive gene, IFN-γ.

With respect to the putative role of IL-7 in regulating certain aspects of cartilage responses
in arthritis, Yammani et al. [213] reported that IL-7, IL-6 or IL-8 stimulated the production of
the Ca2+-binding protein, S100A4, by cultured human articular chondrocytes. Importantly,
IL-7 increased the synthesis of S100A4 to a greater extent than either IL-6 or IL-8 with IL-7-
stimulated S100A4 resulting from JAK3/STAT3 activation. In that regard, pre-treating chon‐
drocytes with the experimental JAK3, inhibitor, WHI-P154, or with cyclohexamide blocked
S100A4 synthesis which also inhibited the production of MMP-13. Because S100A4 has been
implicated as significantly contributing to pannus-mediated destruction of cartilage in RA
inflammation [214], blockade of IL-7R may be useful for down-regulating the expression of
S100A4 and MMP-13 with associated blunting of pannus invasion into cartilage.

The interaction between S100A4 and the tumor suppressor p53 protein was purported to be
related to the role of S100A4 as a promoter of cancer metastasis [215]. IL-7 via S100A4 was
also shown to induce the expression of MMP-13 as well as MMP-1, MMP-9 and S100A4 was
also shown to be involved in the neoangiogenesis and aberrant cell proliferation of rheuma‐
toid synovium [216]. Importantly a selective inhibitor of MMP-13 reduced the level of carti‐
lage destruction in 2 of 3 animal models of RA, including the SCID-mouse co-implantation
model and CIA, but not adjuvant arthritis. [217]. Thus, evidence has gradually accumulated
to show that up-regulation of S100A4 via activation of STAT3 significantly alters the pro‐
gression of inflammatory arthritis.

9. Experimental therapies that inhibit activated stat proteins: Is cytokine
gene expression altered?

The results  of  a  Phase 2B RA clinical  trial  have recently  been published which showed
that  the JAK3-specific  SMI,  tofacitinib (CP690,  550)  had clinical  efficacy as measured by
the  ACR  response  criteria  [218].  However,  there  has  been  less  progress  on  developing
novel  strategies  to  directly  inhibit  activated  STAT  proteins  or  dampen  STAT  gene  re‐
sponses.  Noteworthy  have  been  proof-of-principle  studies  that  activated  STAT  proteins
can be experimentally ‘deactivated’ which result in the inhibition of STAT/DNA binding.
Thus, JNK-mediated phosphorylation of the STAT6 ser707 decreased the DNA binding ca‐
pacity  of  IL-4-stimulated  STAT6  resulting  in  the  inhibition  of  STAT6-responsive  genes
[219].  Using immunosuppressive STAT oligodeoxynucleotides (ODN) to inhibit activated
STAT proteins have also been relatively successful.  These ODN have been shown to in‐
terfere  with  the  phosphorylation  of  STAT1  and  STAT4  [220]  and  STAT1  and  STAT3
[221].  Lastly,  administration  of  a  single  dose  of  a  STAT1  decoy  ODN  suppressed  joint
swelling  and the  histological  appearance  of  acute  and chronic  adjuvant-induced experi‐
mental arthritis in the mouse [222].  Electrophoretic mobility shift  analysis of the nuclear
extracts  from synoviocytes  from the  STAT1 decoy ODN-treated animals  incubated with
the STAT-1 decoy ODN inhibited STAT-1 binding to DNA. Of note, STAT-1 decoy ODN
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also  inhibited  the  expression  of  macrophage  CD40  suggesting  that  interference  with
CD40-mediated signaling by macrophages may be the mechanism responsible for the at‐
tenuation of arthritis by the STAT-1 decoy ODN.

10. Conclusion

The medical therapy of RA was revolutionized with the introduction of biological drugs, in‐
cluding TNF antagonists, the IL-6R antagonist, tocilizumab, the T-cell co-stimulatory factor
inhibitor, abatacept, the B-cell inhibitor, rituximab and the IL-1 receptor antagonist, anakin‐
ra as well as the use of first-line therapy with disease-modifying anti-rheumatic drugs
(DMARDs) such as methotrexate and anti-malarial drugs [223]. Nevertheless, the long-term
and chronic use of these drugs for treating RA patients is not without potential deleterious
consequences for those RA patients who use them. Thus, RA patients prescribed DMARDs
and/or biological drugs need to be continuously monitored for changes in liver enzyme lev‐
els, ocular and/or kidney toxicities, infections and to a lesser extent malignancies such as
lymphoma [224]. Just as important is the fact that some RA patients fail to respond to one or
several of these biological drugs or become refractory to their action [225].

Development of JAK-specific SMIs was originally predicated on their use as a treatment for
suppressing organ transplant rejection. However, JAK-SMIs were also considered as a po‐
tential adjunctive therapy for overcoming issues of long-term use of biological drugs for the
therapy of RA [7, 11, 16, 17]. Now only time will tell whether or not the JAK-specific SMI,
tofacitinib [218, 225], will be aggressively employed in the treatment of RA, or whether tofa‐
citinib will be used in RA patients who only have exhibited a moderate or inadequate re‐
sponse to biological drugs or DMARDs.

Presently, there has been little attention paid, comparatively speaking, on acquiring data
from RA patients in the general population who have been treated over several years with
biological drugs to determine the extent to which the pro-inflammatory and/or anti-inflam‐
matory cytokine repertoires have been altered from baseline. In addition, there are hardly
any systematic studies, with the exception of some analyses conducted (often as a minor
component of an RA clinical trial) with respect to which of several biological drugs restore
the imbalance between Th1 and Th2 cytokines, suppress the activity of Th17-producing cyto‐
kines, or improve the biological activity of dysfunctional Treg cells [225]. Truly, the possibili‐
ty exists that treating RA patients with biological drugs only partially inhibit over-
expression of the pro-inflammatory cytokines that have been shown to mainly contribute to
the progression of RA, namely, IL-6, IFN-γ and TNF-α (Table 1). This ‘take-home’ point ap‐
pears to adequately justify a continual search for alternative cellular mechanisms that are ac‐
tive in determining whether clinical remission in RA patients is sustained or not. In
conclusion, determining how STAT-responsive cytokine genes are regulated at the molecu‐
lar and cellular level offers the potential going forward for developing yet another treatment
modality designed to suppress the clinical activity and progression of RA pathology.
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