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1. Introduction

With the advances in biotechnology, identification of new therapeutic targets, and better un‐
derstanding of human diseases, pharmaceutical companies and academic institutions have
accelerated their efforts in drug discovery. The pipeline to obtain therapeutics often involves
target identification and validation, lead discovery and optimization, pre-clinical animal
studies, and eventually clinical trials to test the safety and effectiveness of the new drugs. In
most cases, screening using genome-scale RNA interference (RNAi) technology or diverse
compound libraries comprises the first step of the drug discovery initiatives. Small interfer‐
ing RNA (siRNA, a class of double-stranded RNA molecules 20-25 nucleotides in length ca‐
pable of interfering with the expression of specific genes with complementary nucleotide
sequence) screen is an effective tool to identify upstream or downstream regulators of a spe‐
cific target gene, which may also potentially serve as drug targets for a more efficient and
successful treatment. On the other hand, screening of diverse small molecule libraries
against a known target or disease-relevant pathway facilitates the discovery of chemical
tools as candidates for further development.

Conducting either genome-wide RNAi or small molecule screens has become possible with
the advances in high throughput (HT) technologies, which are indispensible to carry out
massive screens in a timely manner (Macarron 2006; Martis et al. 2011; Pereira and Williams
2007). In screening campaigns, large quantities of data are collected in a considerably short
period of time, making rapid data analysis and subsequent data mining a challenging task
(Harper and Pickett 2006). Numerous automatic instruments and operational steps partici‐
pate in an HT screening process, requiring appropriate data processing tools for data quality
assessment and statistical analysis. In addition to quality control (QC) and “hit” selection
strategies, pre- and post-processing of the screening data are essential steps in a comprehen‐
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sive HT operation for subsequent interpretation and annotation of the large data sets. In this
chapter, we review statistical data analysis methods developed to meet the needs for han‐
dling large datasets generated from HT campaigns. We first discuss the influence of proper
assay design on statistical outcomes of the HT screening data. We then highlight similarities
and differences among various methods for data normalization, quality assessment and
“hit” selection. Information presented here provides guidance to researchers on the major
aspects of high throughput screening data interpretation.

2. Role of statistics in HT screening design

2.1. HT screening process

A typical HT screening campaign can be divided into five major steps regardless of the as‐
say type and the assay read-out (Fig. 1). Once target or pathway is identified, assay develop‐
ment is performed to explore the optimal assay conditions, and to miniaturize the assay to a
microtiter plate format. Performance of an HT assay is usually quantified with statistical pa‐
rameters such as signal window, signal variability and Z-factor (see definition in section 4).
To achieve acceptable assay performances, one should carefully choose the appropriate re‐
agents, experimental controls and numerous other assay variables such as cell density or
protein/substrate concentrations.

The final distribution of the activities from a screening data set depends highly on the target
and pathway (for siRNA) or the diversity of the compound libraries, and efforts have been
continuously made to generate more diverse libraries (Entzeroth et al. 2009; Gillet 2008;
Kummel and Parker 2011; Zhao et al. 2005). Furthermore, the quality and reliability of the
screening data is affected by the stability and the purity of the test samples in the screening
libraries, where storage conditions should be monitored and validated in a timely manner
(Baillargeon et al. 2011; Waybright et al. 2009). For small molecules, certain compounds
might interfere with the detection system by emitting fluorescence or by absorbing light,
and they should be avoided whenever possible to obtain reliable screening results.

Assay development is often followed by a primary screen, which is carried out at a single con‐
centration (small molecule) or single point measurements (siRNA). As the “hits” identified in
the primary screen are followed-up in a subsequent confirmatory screen, it is crucial to opti‐
mize the assay to satisfactory standards. Sensitivity - the ability to identify an siRNA or com‐
pound as a “hit” when it is a true “hit”, and specificity - the ability to classify an siRNA or
compound as a “non-hit” when it is not a true “hit”, are two critical aspects to identify as many
candidates while minimizing false discovery rates. Specificity is commonly emphasized in the
confirmatory screens which follow the primary screens. For instance, the confirmatory screen
for small molecules often consists of multiple measurements of each compound’s activity at
various concentrations using different assay formats to assess the compound’s potency and se‐
lectivity. The confirmatory stage of an RNAi screen using pooled siRNA may be performed in a
deconvolution mode, where each well contains a single siRNA. Pooling strategy is also applica‐
ble to primary small molecule screens, where a keen pooling design is necessary (Kainkaryam
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and Woolf 2009). The confirmatory screens of compounds identified from small molecule libra‐
ries are followed by lead optimization efforts involving structure-activity relationship investi‐
gations and molecular scaffold clustering. Pathway and genetic clustering analysis, on the
other hand, are widespread hit follow-up practices for RNAi screens. The processes encom‐
passing hit identification from primary screens and lead optimization methods require power‐
ful software tools with advanced statistical capabilities.

Figure 1. The HT screening process.

Accuracy and precision of an assay are also critical parameters to consider for a successful
campaign. While accuracy is a measurement of how close a measured value is to its true val‐
ue, precision is the proximity of the measured values to each other. Therefore, accuracy of
an assay is highly dependent on the performance of the HT instruments in use. Precision, on
the other hand, can be a function of sample size and control performances as well as instru‐
ment specifications, indicating that the experimental design has a significant impact on the
statistical evaluation of the screening data.

2.2. Classical versus robust (resistant) statistics

One of the main assumptions when analyzing HT screening data is that the data is normally
distributed, or it complies with the central limit theorem, where the mean of the distributed
values converge to normal distribution unless there are systematic errors associated with the
screen (Coma et al. 2009). Therefore, log transformations are often applied to the data in the
pre-processing stage to achieve more symmetrically distributed data around the mean as in
a normal distribution, to represent the relationship between variables in a more linear way
especially for cell growth assays, and to make an efficient use of the assay quality assess‐
ment parameters (Sui and Wu 2007).
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In HT screening practices, the presence of outliers - data points that do not fall within the
range of the rest of the data - is generally experienced. Distortions to the normal distribution
of the data caused by outliers impact the results negatively. Therefore, an HT data set with
outliers needs to be analyzed carefully to avoid an unreliable and inefficient “hit” selection
process. Although outliers in control wells can be easily identified, it should be clear that
outliers in the test sample may be misinterpreted as real “hits” instead of random errors.

There are two approaches for statistical analysis of data sets with outliers: classical and ro‐
bust. One can choose to replace or remove outliers based on the truncated mean or similar
approaches, and continue the analysis process with classical methods. However, robust stat‐
istical approaches have gained popularity in HT screening data analysis in recent decades.
In robust statistics, median and median absolute deviation (MAD) are utilized as statistical
parameters as opposed to mean and standard deviation (std), respectively, to diminish the
effect of outliers on the final analysis results. Although there are numerous approaches to
detect and abolish/replace outliers with statistical methods (Hund et al. 2002; Iglewicz and
Hoaglin 1993; Singh 1996), robust statistics is preferred for its insensitivity to outliers (Huber
1981). In statistics, while the robustness of an analysis technique can be determined by two
main approaches, i.e. influence functions (Hampel et al. 1986) and breakdown point (Ham‐
pel 1971), the latter is a more intuitive technique in the concept of HT screening, where the
breakdown point of a sample series is defined as the amount of outlier data points that can
be tolerated by the statistical parameters before the parameters take on drastically different
values that are not representing anymore distribution of the original dataset. In a demon‐
strated example on a five sample data set, robust parameters were shown to perform superi‐
or to the classical parameters after the data set was contaminated with outliers (Rousseeuw
1991). It was also emphasized that median and MAD have a breakdown point of 50%, while
mean and std have 0%, indicating that sample sets with 50% outlier density can still be suc‐
cessfully handled with robust statistics.

2.3. False discovery rates

As mentioned previously, depending on the specificity and sensitivity of an HT assay, erro‐
neous assessment of “hits” and “non-hits” is likely. Especially in genome-wide siRNA
screens, false positive and negative results may mislead the scientists in the confirmatory
studies. While the cause of false discovery results may be due to indirect biological regula‐
tions of the gene of interest through other pathways that are not in the scope of the experi‐
ment, it may also be due to random errors experienced in the screening process. Although
the latter can be easily resolved in the follow-up screens, the former may require a better
assay design (Stone et al. 2007). Lower false discovery rates can also be achieved by careful
selection of assay reagents to avoid inconsistent measurements (outliers) during screening.
The biological interference effects of the reagents in RNAi screens can be considered in two
categories: sequence-dependent and sequence-independent (Echeverri et al. 2006; Mohr and
Perrimon 2012). Therefore, off-target effects and low transfection efficiencies are the main
challenges to be overcome in these screens. Moreover, selection of the appropriate controls
for either small molecule or RNAi screens is very crucial for screen quality assessment as
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well as for “hit” selection, so that the false discovery rates can be inherently reduced. Posi‐
tive controls are often chosen from small-molecule compounds or gene silencing agents that
are known to have the desired effect on the target of interest; however, this may be a diffi‐
cult task if very little is known about the biological process (Zhang et al. 2008a). On the other
hand, selection of negative controls from non-targeting reagents is more challenging due to
higher potential of biological off-target effects in RNAi screens compared to the negative
controls used in small-molecule screens (Birmingham et al. 2009). Another factor that might
interfere with the biological process in an HT screening assay is the bioactive contaminants
that may be released from the consumables used in the screening campaign, such as plastic
tips and microplates (McDonald et al. 2008; Watson et al. 2009). Unreliable and misleading
screening results may be obtained from altered assay conditions caused by leached materi‐
als, and boosted false discovery rates may be unavoidable. Hence, the effects of laboratory
consumables on the assay readout should be carefully examined during assay development.

The false discovery rates are also highly dependent on the analysis methods used for “hit”
selection, and they can be statistically controlled. False discovery rate is defined as the ratio
of false discoveries to the total number of discoveries. A t-test and the associated p value are
often used for hypothesis testing in a single experiment and can be interpreted as the false
positive discovery rate (Chen et al. 2010). However, the challenge arises when multiple hy‐
pothesis testing is needed or when the comparison of results across multiple experiments is
required. For HT applications, a Bayesian approach was developed to enable plate-wise and
experiment-wise comparison of results in a single process, while the false discovery rates
can still be controlled (Zhang et al. 2008b). Another method utilizing the strictly standar‐
dized mean difference (SSMD) parameter was proven to control the false discovery and
non-discovery rates in RNAi screens (Zhang 2007a; Zhang 2010 b; Zhang et al. 2010). By tak‐
ing the data variability into account, SSMD method is capable of determining “hits” with
higher assurance compared to the Z-score and t-test methods.

3. Normalization and systematic error corrections

3.1. Normalization for assay variability

Despite meticulous assay optimization efforts considering all the factors mentioned previ‐
ously, it is expected to observe variances in the raw data across plates even within the same
experiment. Here, we consider these variances as “random” assay variability, which is sepa‐
rate from the systematic errors that can be linked to a known reason, such as failure of an
instrument. Uneven assay performances may unpredictably occur at any given time during
screening. Hence, normalization of data within each plate is necessary to enable comparable
results across plates or experiments allowing a single cut-off for the selection of “hits”.

When normalizing the HT screening data, two main approaches can be followed: controls-
based and non-controls-based. In controls-based approaches, the assay-specific in-plate pos‐
itive and negative controls are used as the upper (100%) and lower (0%) bounds of the assay
activity, and the activities of the test samples are calculated with respect to these values. Al‐
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though, it is an intuitive and easily interpretable method, there are several concerns with the
use of controls for normalization purposes. With controls-based methods, too high or too
low variability in the control wells does not necessarily represent the variability in the sam‐
ple wells, and the outliers and biases within the control wells might impair the upper and
lower activity bounds (Brideau et al. 2003; Coma et al. 2009). Therefore, non-control-based
normalizations are favored for better understanding of the overall activity distribution
based on the sample activities per se. In this method, most of the samples are assumed to be
inactive in order to serve as their own “negative controls”. However, this approach may be
misleading when the majority of the wells in a plate consist of true “hits” (such as screening
a library of bioactive molecules) or siRNAs (e.g., focused library). Since the basal activity
level would shift upwards under these conditions, non-controls-based method would result
in erroneous decision making.

Plate-wise  versus  experiment-wise  normalization  and  “hit”  picking  is  another  critical
point to consider when choosing the best fitting analysis technique for a screen. Experi‐
ment-wise normalizations are advantageous in screens where active samples are clustered
within certain plates. In this case, each plate is processed in the context of all plates in the
experiment. On the other hand, plate-wise normalizations can effectively correct systemat‐
ic  errors  occurring  in  a  plate-specific  manner  without  disrupting  the  results  in  other
plates (Zhang et  al.  2006).  Therefore,  the normalization method that  fits  best  with one’s
experimental  results  should be carefully chosen to perform efficient  “hit” selection with
low false discovery rates.

The calculation used in  the  most  common controls-based normalization methods are  as
follows:

• Percent of control (PC): Activity of the ith sample (Si) is divided by the mean of either the
positive or negative control wells (C).

PC=
Si

mean(C) x100 (1)

• Normalized percent inhibition (NPI): Activity of the ith sample is normalized to the activi‐
ty of positive and negative controls. The sample activity is subtracted from the high con‐
trol (Chigh) which is then divided by the difference between mean of the low control (Clow)
and the mean of the high control. This parameter may be termed normalized percent ac‐
tivity if the final result is subtracted from 100. Additionally, control means may be pref‐
erably substituted with the medians.

NPI=
mean(Chigh)-Si

mean(Chigh)-mean(Clow) x100 (2)

The calculation used in the most common non-controls-based normalization methods are as
follows.
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• Percent of samples (PS): The mean of the control wells in the PC parameter (only when
negative control is the control of interest) is replaced with the mean of all samples (Sall).

PS=
Si

mean(Sall)
x100 (3)

• Robust percent of samples (RPS): In order to desensitize the PS calculation to the outliers,
robust statistics approach is preferred, where mean of Sall in PS calculation is replaced
with the median of Sall.

RPS=
Si

median(Sall)
x100 (4)

Assay Variability Normalization
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Si

mean(Sall)
x100

Z-score

Z-score=
Si-mean(Sall)

std(Sall)

Normalized percent inhibition

NPI=
mean(Chigh)-Si

mean(Chigh)-mean(Clow) x100

Robust

percent of samples

RPS=
Si

median(Sall)
x100

Robust Z-score

Robust Z-score=
Si-median(Sall)

MAD(Sall)

MAD(Sall)=1.4826xmedian(|Si-median(Sall)|)

Systematic Error Corrections

N
on

-c
on
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ol

s-
ba

se
d

Median polish

rijp=Sijp-µ̂p-roŵi-col^
j

BZ-score

BZ-score=
rijp- mean((rijp)

all
)

std((rijp)
all

)

Well-correction

B-score

B-score=
rijp

 MADp

Background correction

zij=
1
N ∑

p= 1

N
Sijp

'

Diffusion state model

(can be controls-based too)

Table 1. Summary of HT screening data normalization methods.

• Z-score: Unlike the above parameters, this method accounts for the signal variability in
the sample wells by dividing the difference of Si and the mean of Sall by the std of Sall. Z-
score is a widely used measure to successfully correct for additive and multiplicative off‐
sets between plates in a plate-wise approach (Brideau et al. 2003).

Z-score=
Si-mean(Sall)

std(Sall)
(5)

• Robust Z-score: Since Z-score calculation is highly affected by outliers, robust version of
Z-score is available for calculations insensitive to outliers. In this parameter, the mean and
std are replaced with median and MAD, respectively.

Robust Z-score=
Si-median(Sall)

MAD(Sall)
(6)
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MAD(Sall)=1.4826 x median(|Si-median(Sall)|) (7)

3.2. Normalization for systematic errors

Besides the data variability between plates due to random fluctuations in assay perform‐
ance, systematic errors are one of the major concerns in HT screening. For instance plate-
wise spatial patterns play a crucial role in cell-based assay failures. As an example,
incubation conditions might be adjusted to the exact desired temperature and humidity set‐
tings, but the perturbed air circulations inside the incubator unit might cause an uneven
temperature gradient, resulting in different cell-growth rates in each well due to evapora‐
tion issues. Therefore, depending on the positions of the plates inside the incubator, column-
wise, row-wise or bowl-shape edge effects may be observed within plates (Zhang 2008b;
Zhang 2011b). On the other hand, instrumental failures such as inaccurate dispensing of re‐
agents from individual dispenser channels might cause evident temporal patterns in the fi‐
nal readout. Therefore, experiment-wise patterns should be carefully examined via proper
visual tools. Although some of these issues might be fixed at the validation stage such as
performing routine checks to test the instrument performances, there are numerous algo‐
rithms developed to diminish these patterns during data analysis, and the most common
ones are listed as follows and summarized in Table 1.

• Median polish: Tukey’s two-way median polish (Tukey 1977) is utilized to calculate the
row and column effects within plates using a non-controls-based approach. In this meth‐
od, the row and column medians are iteratively subtracted from all wells until the maxi‐
mum tolerance value is reached for the row and column medians as wells as for the row
and column effects. The residuals in pth plate (rijp) are then calculated by subtracting the
estimated plate average (µ̂p), ith row effect (roŵi) and jth column effect (col^

j) from the true
sample value (Sijp). Since median parameter is used in the calculations, this method is rela‐
tively insensitive to outliers.

rijp=Sijp-µ̂p-roŵi-col^
j (8)

• B-score: This is a normalization parameter which involves the residual values calculated
from median polish and the sample MAD to account for data variability. The details of
median polish technique and an advanced B-score method, which accounts for plate-to-
plate variances by smoothing are provided in (Brideau et al. 2003).

B-score=
rijp

MADp
(9)

MADp= 1.4826 x median(|(rijp)all- median((rijp)all)|) (10)

• BZ-score: This is a modified version of the B-score method, where the median polish is
followed by Z-score calculations. While BZ-score is more advantageous to Z-score be‐
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cause of its capability to correct for row and column effects, it is less powerful than B-
score and does not fit very well with the normal distribution model (Wu et al. 2008).

BZ-score=
rijp- mean((rijp)all)

std((rijp)all)
(11)

• Background correction: In this correction method, the background signal corresponding to
each well is calculated by averaging the activities within each well (S’ijp representing the nor‐
malized signal of a well in ith row and jth column in pth plate) across all plates. Then, a polyno‐
mial fitting is performed to generate an experiment-wise background surface for a single
screening run. The offset of the background surface from a zero plane is considered to be the
consequence of present systematic errors, and the correction is performed by subtracting the
background surface from each plate data in the screen. The background correction per‐
formed on pre-normalized data was found to be more efficient, and exclusion of the control
wells was recommended in the background surface calculations. The detailed description of
the algorithm is found in (Kevorkov and Makarenkov 2005).

zij=
1
N ∑

p= 1

N
Sijp

' (12)

• Well-correction: This method follows an analogous strategy to the background correction
method; however, a least-squares approximation or polynomial fitting is performed inde‐
pendently for each well across all plates. The fitted values are then subtracted from each
data point to obtain the corrected data set. In a study comparing the systematic error cor‐
rection methods discussed so far, well-correction method was found to be the most effec‐
tive for successful “hit” selection (Makarenkov et al. 2007).

• Diffusion-state model: As mentioned previously, the majority of the spatial effects are
caused by uneven temperature gradients across assay plates due to inefficient incubation
conditions. To predict the amount of evaporation in each well in a time and space de‐
pendent manner, and its effect on the resulting data set, a diffusion-state model was de‐
veloped by (Carralot et al. 2012). As opposed to the above mentioned correction methods,
the diffusion model can be generated based on the data from a single control column in‐
stead of sample wells. The edge effect correction is then applied to each plate in the
screening run based on the generated model.

Before automatically applying a systematic error correction algorithm on the raw data set, it
should be carefully considered whether there is a real need for such data manipulation. To de‐
tect the presence of systematic errors, several statistical methods were developed (Coma et al.
2009; Root et al. 2003). In a demonstrated study, the assessment of row and column effects was
performed based on a robust linear model, so called R score, and it was shown that performing
a positional correction using R score on the data that has no or very small spatial effects results
in lower specificity. However, correcting a data set with large spatial effects decreases the false
discovery rates considerably (Wu et al. 2008). In the same study, receiver operating characteris‐
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tics (ROC) curves were generated to compare the performance of several positional correction
algorithms based on sensitivity and “1-specificity” values, and R-score was found to be the
most superior. On the other hand, application of well-correction or diffusion model on data sets
with no spatial effects was shown to have no adverse effect on the final “hit” selection (Carralot
et al. 2012; Makarenkov et al. 2007). Additionally, reduction of thermal gradients and associat‐
ed edge effects in cell-based assays was shown to be possible by easy adjustments to the assay
workflow, such as incubating the plates at room temperature for 1 hour immediately after dis‐
pensing the cells into the wells (Lundholt et al. 2003).

4. QC methods

There are various environmental, instrumental and biological factors that contribute to as‐
say performance in an HT setting. Therefore, one of the key steps in the analysis of HT
screening data is the examination of the assay quality. To determine if the data collected
from each plate meet the minimum quality requirements, and if any patterns exist before
and after data normalization, the distribution of control and test sample data should be ex‐
amined at experiment-, plate- and well-level. While there are numerous graphical methods
and tools available for the visualization of the screening data in various formats (Gribbon et
al. 2005; Gunter et al. 2003; Wu and Wu 2010), such as scatter plots, heat maps and frequen‐
cy plots, there are also many statistical parameters for the quantitative assessment of assay
quality. Same as for the normalization techniques, both controls-based and non-controls-
based approaches exist for data QC methods. The most commonly-used QC parameters in
HT screening are listed as follows and summarized in Table 2.

• Signal-to-background (S/B): This is a simple measure of the ratio of the positive control
mean to the background signal mean (i.e. negative control).

S/B=
mean(Cpos)
mean(Cneg) (13)

• Signal-to-noise (S/N): This is a similar measure to S/B with the inclusion of signal variabil‐
ity in the formulation. Two alternative versions of S/N are presented below. Both S/B and
S/N are considered week parameters to represent dynamic signal range for an HT screen
and are rarely used.

( ) ( )
( )

( ) ( )
( ) ( )

pos neg

neg

pos neg

2 2
pos neg

mean C -mean C
S/N= (a)

std C

mean C -mean C
S/N= (b)

std C +std C

(14)

Drug Discovery210



• Signal window (SW): This is a more indicative measure of the data range in an HT assay
than the above parameters. Two alternative versions of the SW are presented below,
which only differ by denominator.

( ) ( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )( )
( )

pos neg pos neg

pos

pos neg pos neg

neg

mean C -mean C -3x std C +std C
SW= (a)

std C

mean C -mean C -3x std C +std C
SW= (b)

std C

(15)

• Assay variability ratio (AVR): This parameter captures the data variability in both con‐
trols as opposed to SW, and can be defined as (1-Z’-factor) as presented below.

AVR=
3 x std(Cpos) + 3 x std(Cneg)
|mean(Cpos) - mean(Cneg)| (16)

• Z’-factor:  Despite  of  the  fact  that  AVR and Z’-factor  has  similar  statistical  properties,
the latter is the most widely used QC criterion, where the separation between positive
(Cpos)  and negative (Cneg)  controls  is  calculated as  a  measure of  the signal  range of  a
particular assay in a single plate. Z’-factor has its basis on normality assumption, and
the use  of  3  std’s  of  the  mean of  the  group comes from the  99.73% confidence limit
(Zhang  et  al.  1999).  While  Z’-factor  accounts  for  the  variability  in  the  control  wells,
positional  effects  or  any  other  variability  in  the  sample  wells  are  not  captured.  Al‐
though  Z’-factor  is  an  intuitive  method  to  determine  the  assay  quality,  several  con‐
cerns were raised about the reliability of  this  parameter as an assay quality measure.
Major issues associated with the Z’-factor method are that the magnitude of the Z’-fac‐
tor does not necessarily correlate with the hit  confirmation rates,  and that Z’-factor is
not an appropriate measure to compare the assay quality across different screens and
assay types (Coma et al. 2009; Gribbon et al. 2005).

Z'-factor=1 -
3 x std(Cpos) + 3 x std(Cneg)
|mean(Cpos) - mean(Cneg)| (17)

• Z-factor:  This is the modified version of the Z’-factor,  where the mean and std of the
negative control are substituted with the ones for the test  samples.  Although Z-factor
is more advantageous than Z’-factor due to its ability to incorporate sample variabili‐
ty  in  the  calculations,  other  issues  associated with  Z’-factor  (as  discussed above)  still
apply.  Additionally,  in  a  focused library in  which many possible  “hits”  are  clustered
in  certain  plates,  Z-factor  would  not  be  an  appropriate  QC  parameter.  While  assays
with Z’- or Z-factor values above 0.5 are considered to be excellent, one may want to
include additional measures, such as visual inspection or more advanced formulations
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in  the  decision  process,  especially  for  cell-based  assays  with  inherently  high  signal
variability. The power of the above mentioned parameters were discussed in multiple
studies  (Gribbon  et  al.  2005;  Iversen  et  al.  2006;  Macarron  and  Hertzberg  2009;  Ste‐
vens et al. 1998).

Z-factor=1 -
3 x std(Cpos) + 3 x std(Sall)
|mean(Cpos) - mean(Sall)|

(18)

• SSMD: It is an alternative quality metric to Z’- and Z-factor, which was recently devel‐
oped to assess the assay quality in HT screens (Zhang 2007a; Zhang 2007b). Due to its ba‐
sis on probabilistic and statistical theories, SSMD was shown to be a more meaningful
parameter than previously mentioned methods for QC purposes. SSMD differs from Z’-
and Z-factor by its ability to handle controls with different effects, which enables the se‐
lection of multiple QC criteria for assays (Zhang et al. 2008a). The application of SSMD-
based QC criterion was demonstrated in multiple studies in comparison to other
commonly-used methods (Zhang 2008b; Zhang 2011b; Zhang et al. 2008a). Although
SSMD was developed primarily for RNAi screens, it can also be used for small molecule
screens.

SSMD=
mean(Cpos) + mean(Cneg)

std(Cpos)2+ std(Cneg)2
(19)

Signal-to-background (S/B)
mean(Cpos)
mean(Cneg)

Signal-to-noise (S/N)

mean(Cpos)- mean(Cneg)
std(Cneg)

or
mean(Cpos)- mean(Cneg)

std(Cpos)2+ std(Cneg)2

Signal window (SW)

|mean(Cpos)-mean(Cneg)|- 3 x (std(Cpos)+ std(Cneg))
std(Cpos)

or
|mean(Cpos)-mean(Cneg)|- 3 x (std(Cpos)+ std(Cneg))

std(Cneg)

Assay variability ratio (AVR)
3 x std(Cpos) + 3 x std(Cneg)
|mean(Cpos) - mean(Cneg)| = 1 - Z'-factor

Z’-factor 1 -
3 x std(Cpos) + 3 x std(Cneg)
|mean(Cpos) - mean(Cneg)|

Z-factor 1 -
3 x std(Cpos) + 3 x std(Sall)
|mean(Cpos) - mean(Sall)|

SSMD
mean(Cpos) - mean(Cneg)

std(Cpos)2+ std(Cneg)2

Table 2. Summary of HT screening data QC methods.
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5. “Hit” selection methods

The main purpose of HT screens is to obtain a list of compounds or siRNAs with desirable activ‐
ity for further confirmation. Therefore, the ultimate goal of an HT screening campaign is to nar‐
row down a big and comprehensive compound or siRNA library to a manageable number of
“hits” with low false discovery rates. While the initial library of test samples undergoes multi‐
ple phases of elimination, the most critical factor is to select as many true “hits” as possible. Af‐
ter data normalization is applied as necessary, “hit” selection is performed on the plates that
pass the QC criterion. As stated previously in Section 2.1, HT processes in primary and confir‐
matory screens differ in design. The “hit” selection process following a primary screen is simi‐
lar for RNAi and small-molecule screens, where the screening run is often performed in single
copy, and a single data point (obtained from either endpoint or kinetic reading) is collected for
each sample. On the other hand, a confirmatory RNAi screen is typically performed in repli‐
cates using pooled or individual siRNA, while the confirmatory small-molecule screens are
executed in dose-response mode. Here, we classify the “hit” selection methodologies in two
major categories: primary and confirmatory screen analysis.

5.1. “Hit” selection in primary screen

Although RNAi and small molecule assays differ in many ways, a common aim is to classify the
test samples with relatively higher or lower activities than the reference wells as “hits”. Hence,
it is required to select an activity cut-off, where test samples with values above or below the cut-
off are identified as “hits”. It is very crucial to select a sensible cut-off value with enough differ‐
ence from the noise level in order to reduce false positive rates. Depending on the specific goals
of the projects, the cut-off might need to be a reasonable value that leads to a manageable quan‐
tity of “hits” for follow-up studies. To guide scientists in the process, numerous “hit” selection
methods have been developed for HT screens as presented below.

• Percent inhibition cut-off: The “hits” from HT screening data that is normalized for per‐
cent inhibition (NPI method in Section 3.1) can be selected based on a percent cut-off val‐
ue that is arbitrarily assigned relative to an assay’s signal window. As this method does
not have much statistical basis to it, it is primarily preferred for small molecule screens
with strong controls.

• Mean +/- k std: In this method, cut-off is set to the value that is k std’s above or below the
sample mean. While the cut-off can be applied to the normalized data, a k value of 3 is
typically used, which is associated with the false positive error rate of 0.00135 (Zhang et
al. 2006). As this cut-off calculation method is primarily based on normality assumption,
it is also equivalent to a Z-score of 3. Since the use of mean and std make this method
sensitive to outliers, a more robust version is presented next.

• Median +/- k MAD: To desensitize the “hit” selection to outliers, a cut-off that is k MADs
above or below the sample median was developed, and a study comparing the std- and
MAD-based “hit” selection methods showed lower false non-discovery rates with the lat‐
ter (Chung et al. 2008).
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• Quartile-based method: Similar to the previous approaches, the quartile-based “hit” selec‐
tion method is based on the idea of treating the true “hits” as outliers and identifying
them by setting upper and lower cut-off boundaries based on the quartiles and interquar‐
tiles of the data. The major advantage of the quartile-based method over median +/- k
MAD is its more effective cut-off calculation formulation for non-symmetrical data, where
upper and lower cut-offs can be determined independently. In the comparison of the
three “hit” selection criteria presented so far, the quartile-based method outperformed the
other two methods to detect true “hits” with moderate effects (Zhang et al. 2006).

• SSMD and Robust SSMD: This parameter has become a widely-used method for RNAi
screening data analysis mainly due to its ability to quantify RNAi effects with a statistical
basis, and its better control on false negative and false positive rates (Zhang 2007a; Zhang
2007b; Zhang 2009; Zhang 2010a; Zhang 2010 b; Zhang 2011b; Zhang et al. 2010). SSMD is
a robust parameter to capture the magnitude of the RNAi effects with various sample
sizes. This scoring method also provides comparison of values across screens. Mean and
std in the standard SSMD formula is substituted with median and MAD in the robust ver‐
sion. The SSMD parameter used for the primary screens without replicates holds a linear
relationship with the Z-score method.

• Bayesian method: This method is used to combine both plate-wise and experiment-wise
information within single “hit” selection calculation based on Bayesian hypothesis testing
(Zhang et al. 2008b). Bayesian statistics incorporates a prior data distribution and a likeli‐
hood function to generate a posterior distribution function. In HT screening data analysis
using this method, the experiment- and plate-wise information is incorporated into the
prior and likelihood functions, respectively. With the availability of various prior distri‐
bution models, the Bayesian method can be applied either with positive and negative con‐
trols or with test sample wells. As this method enables the control of false discovery rates,
it is a more powerful “hit” selection measure than the median +/- k MAD when the sam‐
ple data is used to generate the prior distribution.

5.2. “Hit” selection in confirmatory screen

Different strategies are pursued for the confirmation of “hits” from RNAi and small mole‐
cule primary screens. While dose response screens are very common to test the compound
activities in a dose-dependent manner in small molecule screens, this is not applicable to
RNAi screens. Here, we will present the “hit” selection methods for screens with replicates
in two categories: dose-response analysis and others.

5.2.1. Dose-response analysis

After running a primary screen, in which a single concentration of compound is used, a sub‐
set of compounds is selected for a more quantitative assessment. These molecules are tested
at various concentrations and plotted against the corresponding assay response. These types
of curves are commonly referred to as “dose-response” or “concentration-response” curves,
and they are generally defined by four parameters: top asymptote (maximal response), bot‐
tom asymptote (baseline response), slope (Hill slope or Hill coefficient), and the EC50 value.
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A plot of signal as a function of concentration results in a rectangular hyperbola when the
hill coefficient is 1 (Fig. 2A). Because the concentration range covers several orders of magni‐
tude, the x-axis is normally displayed in the logarithm scale, resulting in a sigmoidal curve
(Fig. 2B), which is generally fitted with the Hill equation:

signal=B+ T-B

1+( EC50
x

)h (20)

The most accepted benchmark for drug potency is the EC50 value, which corresponds to the
concentration of compound (x) that generates a signal midway between the top (T) and bot‐
tom (B) asymptotes (Fig. 2B). The steepness is indicated by the Hill slope (h), also known as
the Hill coefficient or the slope factor (Fig. 2C).

It is preferable to apply the Hill equation to concentrations on a logarithmic scale, because
the error associated with the EC50 (log form) follows a Gaussian distribution (Motulsky and
Neubig 2010), as indicated in Eq. 21. The x values represent log[compound].

signal=B+ T-B

1+( 10
Log EC50

10x
)h (21)

In biochemical experiments, a Hill coefficient of 1 is indicative of a 1:1 stoichiometry of en‐
zyme-inhibitor or protein-ligand complexes. Under such condition, an increase from 10% to
90% response requires 81-fold change in compound concentration. Hill coefficient values
that deviate from unity could reflect mechanistic implications (such as cooperativity or mul‐
tiple binding sites) or non-ideal behavior of the compound (acting as protein denaturant or
causing micelle formation) (Copeland 2005).

For  symmetrical  curves,  the  inflection  point  corresponds  to  the  relative  EC50  value,
which lies halfway between the asymptotes. This relative EC50 may be different from the
actual EC50  if  the top and bottom plateaus do not accurately represent 0% and 100% re‐
sponse. For instance, in Fig. 2D, the midpoint in the black curve dictates a value of 60%
based on the positive and negative controls. When using the relative EC50,  careful analy‐
sis  of  data  fitting  is  necessary  to  avoid  deceptive  results,  as  exemplified  by  the  green
curve  in  Fig.  2D.  Curve  fitting  would  provide  a  relative  EC50  value  of  1  for  both  the
green and black curves,  but based on controls,  the compound associated with the green
curve  would  inhibit  the  assay  only  by  20%.  Therefore,  it  is  argued  that  the  best  ap‐
proach  is  to  use  a  two-parameter  curve  fit,  where  only  two parameters  are  allowed to
float  (EC50  and  Hill  coefficient  values),  while  fixing  the  top  and  bottom  boundaries  as
presented in Fig. 2E. (Copeland 2005).

Although EC50 is normally the main criterion to categorize compounds for downstream
analysis, the value is highly dependent on assay conditions, such as cell number and en‐
zyme/substrate amount (Copeland 2003). For enzymatic assays, a more attractive approach
is to consider relative affinities. Cheng and Prusoff formulated a way to convert EC50 values
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to dissociation constants, thus reducing the overload of performing multiple titrations asso‐
ciated with standard enzyme kinetics (Cheng and Prusoff 1973). Nevertheless, the caveat of
using this convenient alternative is to recognize the inhibitory modality of the compounds
(Copeland 2005): competitive (Eq. 22), non-competitive (Eq. 23) and uncompetitive (Eq. 24).

Figure 2. Dose-response curves. A) Response vs. compound concentration resulting in a rectangular hyperbola curve.
B) Response vs. logarithm of compound concentration resulting in a sigmoidal curve. The dashed lines indicate the
concentration corresponding to half-maximal signal. C) Curves at different Hill slopes: 0.5 (black, closed circles), 1 (red,
open circles), 2 (blue, closed squares), 3 (green, open squares) and -1 (pink, closed triangles). D) Relative (blue dash
lines) and actual (red dash lines) EC50 values for a curve with different top boundary from that of the control (black
curve). The green and black curves have the same relative EC50. E) The red curve fits the data points (black circles) al‐
lowing 2 parameters (EC50, hill coefficient) to float, while the blue curve fits the data refining all 4 parameters (EC50, hill
coefficient, top and bottom asymptotes). F) Curves corresponding to a full agonist (red), partial agonist (black), antag‐
onist (green) and inverse agonist (blue).
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EC50=Ki(1+ S
KM

) (22)

EC50=
S+KM

KM
Ki

+
S

α×Ki

(23)

EC50=α×Ki(1+
KM

S ) (24)

The dissociation constant of a reversible compound (Ki) can be calculated based on a single
substrate concentration (S) and the Michaelis constant (KM). The constant α delineates the ef‐
fect of inhibitor binding on the affinity of the substrate for the enzyme. It becomes evident
that EC50 and Ki are roughly the same at much lower substrate concentration relative to KM

(Eq. 22) or when α=1 (Eq. 23).

Dose-response  curves  can  follow  various  patterns,  depending  on  the  biological  system
to  be  investigated.  For  assays  with  certain  basal  level,  increasing  concentrations  of  a
full  agonist  triggers  a  maximal  response  for  the  system  (Fig.  2F,  red  curve).  A  partial
agonist  displays  a  reduced  response  (efficacy)  relative  to  a  full  agonist  (Fig.  2F,  black
curve),  even though they both exhibit  the same potency (i.e.  same EC50  values).  An an‐
tagonist  might  have  certain  affinity  or  potency,  but  it  would  not  show  any  change  in
basal activity as the efficacy has a value of zero (Fig. 2F, green curve). However, an an‐
tagonist  reverses  the  actions  of  an  agonist.  In  pharmacological  terms,  the  effects  of  a
competitive  antagonist  can  be  overcome  by  augmenting  the  amount  of  agonist,  but
such  agonist  increment  has  no  effect  on  the  effects  of  non-competitive  antagonists.  In‐
verse  agonists  reduce  the  basal  response  of  systems  with  constitutive  activity  (Fig.  2F,
blue curve).

5.2.2. Other methods

In  “hit”  selection  for  confirmatory  screens  with  single  concentration  of  compound  or
siRNA,  hypothesis  testing  is  a  commonly-used  method to  incorporate  sample  variabili‐
ty  of  each sample from its  replicates.  Therefore,  confirmatory screens (or  some primary
screens)  are  chosen  to  be  performed  in  replicates  to  statistically  calculate  the  signifi‐
cance  of  the  sample  activity  in  relation  to  a  negative  reference  group.  Since  previously
listed  Z-  and  robust  Z-score  methods  assume  that  the  variability  of  the  test  samples
and the  negative  controls  or  references  is  equal,  it  is  not  a  reliable  measure  for  confir‐
matory  screens  with  replicates,  where  the  sample  variability  can  be  individually  calcu‐
lated.  The  most  common  methods  to  analyze  screening  data  with  replicates  are  listed
below.

• t-test:  For “hit” selection in confirmatory screens,  t  statistics and the associated p  val‐
ue is  used to calculate if  a  sample compound or siRNA is  behaving significantly dif‐
ferent  than  the  majority  of  the  test  samples  or  controls.  A  t-test  determines  whether
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the  null  hypothesis,  which  is  the  mean of  a  test  sample  being  equal  to  the  mean of
the negative reference group, is  accepted or not.  Paired t-test  (first  pairing of the test
sample  and  reference  value  within  each  plate,  then  calculating  t  statistic  on  the
paired  values)  is  often  preferred  to  avoid  the  distortion  of  results  due  to  inter-plate
variability,  whereas unpaired t-test is used for global comparison of the sample repli‐
cates with all  reference values in the experiment (Zhang 2011a).  The p  value calculat‐
ed  from  t  statistic  is  then  used  to  determine  the  significance  of  the  sample  activity
compared to the reference.  An alternative to standard t-test,  namely randomized var‐
iance  model  (RVM) t-test  (Wright  and Simon 2003),  was  found to  be  more  advanta‐
geous  for  screens  with  few replicates  to  detect  relatively  less  strong  “hits” (Malo  et
al.  2010).

• SSMD: While t-test is a useful method to calculate the significance of the sample activ‐
ity  by  incorporating  its  variability  across  replicates,  it  lacks  the  ability  to  rank  the
samples  by  their  effect  sizes.  As  an  alternative  to  t-test,  SSMD-based  “hit”  selection
method for replicates was proposed to enable the calculation of RNAi effects as previ‐
ously  illustrated  in  (Zhang  2011a).  While  SSMD-based  method  is  more  robust  with
small  sample  sizes  as  opposed to  t-test  (Zhang 2008a),  at  least  4  replicates  is  recom‐
mended in  confirmatory  screens  to  identify  samples  with  moderate  or  higher  effects
(Zhang and Heyse 2009).

• Various other p value calculation methods (e.g., redundant siRNA activity, or RSA) (Ko‐
nig et al. 2007) and rank products method (Breitling et al. 2004)) are available, which can
be adapted to detect “hits” in RNAi screens (Birmingham et al. 2009).

6. Conclusion

HT screening is a comprehensive process to discover new drug targets using siRNA and
drug candidates from small molecule libraries. Statistical evaluation of the assay perform‐
ance is a very critical step in HT screening data analysis. A number of data analysis methods
have been developed to correct for plate-to-plate assay variability and systematic errors, and
assess assay quality. Statistical analysis is also pivotal in the “hit” selection process from pri‐
mary screens and in the evaluation during confirmatory screens. While some of these meth‐
ods may be intuitively applied using spreadsheet programs (e.g., Microsoft Excel), others
may require the development of computer programs using more advanced programming
environments (e.g., R, Perl, C++, Java, MATLAB). Besides commercially available compre‐
hensive analysis tools, there are also numerous open-access software packages designed for
HT screening data management and analysis for scientist with little or no programming
knowledge. A short compilation of freely available analysis tools is listed in Table 3. The
growing number of statistical methods will accelerate the discovery of drug candidates with
higher confidence.

Drug Discovery218



Features Programming Language

Screensaver

Web-based laboratory information management

system for management of library and screen

information

(Tolopko et al. 2010)

Java

MScreen

Web-based compound library and siRNA plate

management, QC and dose-response fitting tools

(Jacob et al. 2012)

PHP, Oracle/MySQL

NEXT-RNAi
Library design and evaluation tools for RNAi screens

(Horn et al. 2010)
Perl

K-Screen

Analysis, visualization, management and mining of

HT screening data including dose-response curve

fitting

(Tai et al. 2011)

R, PHP, MySQL

HTS-Corrector

Statistical analysis, visualization and correction of

systematic errors for all HT screens

(Makarenkov et al. 2006)

C#

web cellHTS2

Web-based analysis toolbox for normalization, QC,

“hit” selection and annotation for RNAi screens

(Boutros et al. 2006; Pelz et al. 2010)

R/Bioconductor project

RNAither

Automated pipeline for normalization, QC, “hit”

selection and pathway generation for RNAi screens

(Rieber et al. 2009)

R/Bioconductor project

HTSanalyzeR

Gene set enrichment, network and gene set

comparison analysis for post-processing of RNAi

screening data

(Wang et al. 2011)

R/Bioconductor project

Table 3. Examples of open-access software packages for library management and statistical analysis of HT screening
data.
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