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1. Introduction

Dietary habits are an important modifiable environmental factor influencing human health
and disease. Epidemiologic evidence suggests that regular consumption of fruits and vege‐
tables may reduce risk of some diseases, including cancer [1]. These properties have been
attributed to foods that are rich sources of numerous bioactive compounds such as phyto‐
chemicals [2]. Modifying the intake of specific foods and/or their bioactive components
seems to be a prudent, noninvasive, and cost-effective strategy for preventing some diseases
in people who appear to be “healthy” [3]. As will be discussed in this chapter, potential
problems occur when patients taking medicines regularly also consume certain fruits or
vegetables.

Thousands of drugs are commercially available and a great percentage of the population
takes at least one pharmacologically active agent on a regular basis. Given this magnitude of
use and variability in individual nutritional status, dietary habits and food composition,
there is a high potential for drug-nutrient interactions. However, there is a relatively short
list of documented fruit-drug or vegetable-drug interactions, necessitating further and ex‐
tensive clinical evaluation. Healthcare providers, such as physicians, pharmacists, nurses,
and dietitians, have to be aware of important food-drug interactions in order to optimize the
therapeutic efficacy of prescribed and over-the-counter drugs. Here, we review some of the
most widely consumed fruits and vegetables to inform healthcare providers of possible nu‐
trient-drug interactions and their potential clinical significance.

There are numerous patients who encounter increased risks of adverse events associated
with drug-nutrient interactions. These include elderly patients, patients with cancer and/ or
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malnutrition, gastrointestinal tract dysfunctions, acquired immunodeficiency syndrome and
chronic diseases that require the use of multiple drugs, as well as those receiving enteral nu‐
trition or transplants. Therefore, the main reason for devoting a major review to nutrient-
drug interactions is the enormous importance of fruits and vegetables used for their
beneficial effects as nutrients and as components in folk medicine. There are currently few
studies that combine a nutrient-based and detailed pharmacological approach [4], or studies
that systematically explore the risk and benefits of fruit and vegetables [5-7].

2. Food-drug interactions

A drug-nutrient interaction is defined as the result of a physical, chemical, physiological, or
pathophysiological relationship between a drug and a nutrient [8,9]. An interaction is con‐
sidered significant from a clinical perspective if it alters the therapeutic response. Food-drug
interactions can result in two main clinical effects: the decreased bioavailability of a drug,
which predisposes to treatment failure, or an increased bioavailability, which increases the
risk of adverse events and may even precipitate toxicities (See Figure 1) [4, 10,11].

Figure 1. Drug-fruit/vegetable interaction and effects on bioavailability of drugs. During the consumption of drugs
with fruits or vegetables the ADME properties of drug (Absorption, Distribution, Metabolism and Excretion) can be
modified by drug-phytochemical interaction. As a result of this interaction can be increased or decreased plasma con‐
centrations of a drug which can lead to the presence of adverse events or treatment failure.
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Nutritional status and diet can affect drug action by altering metabolism and function. In
addition, various dietary components can have pharmacological activity under certain cir‐
cumstances [12]. For healthy-treatment intervention, it is necessary to understand how these
drug-food interactions can induce a beneficial result or lead to detrimental therapeutic con‐
ditions (less therapeutic action or more toxicity). Drug-drug interactions are widely recog‐
nized and evaluated as part of the drug-approval process, whether pharmaceutical,
pharmacokinetic, or pharmacodynamic in nature. Equal attention must be paid to food-drug
interactions (Figure 2).

Figure 2. Bioassay models for studying drug-phytochemical interaction.
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There are four types of accepted drug-food interactions based on their nature and mecha‐
nisms.

• Type I are ex vivo bioinactivations, which refer to interactions between the drug and the
nutritional element or formulation through biochemical or physical reactions, such as hy‐
drolysis, oxidation, neutralization, precipitation or complexation. These interactions usu‐
ally occur in the delivery device.

• Type II interactions affect absorption. They cause either an increase or decrease in the oral
bioavailability of a drug. The precipitant agent may modify the function of enzymes or
transport mechanisms that are responsible for biotransformation.

• Type III interactions affect the systemic or physiologic disposition and occur after the
drug or the nutritional element has been absorbed from the gastrointestinal tract and en‐
tered the systemic circulation. Changes in the cellular or tissue distribution, systemic
transport, or penetration to specific organs or tissues can occur.

• Type IV interactions refer to the elimination or clearance of drugs or nutrients, which may
involve the antagonism, impairment or modulation of renal and/or enterohepatic elimina‐
tion [13].

Drug metabolizing enzymes and drug transporters play important roles in modulating drug
absorption, distribution, metabolism, and elimination. Acting alone or in concert with each
other, they can affect the pharmacokinetics and pharmacodynamics of a drug. The interplay
between drug metabolizing enzymes and transporters is one of the confounding factors that
have been recently shown to contribute to potential complex drug interactions [14].

3. Food and drug transporters

The oral administration of drugs to patients is convenient, practical, and preferred for many
reasons. Oral administration of drugs, however, may lead to limited and variable oral bioa‐
vailability because of absorption across the intestinal barrier [15,16]. Drug absorption across
the gastrointestinal tract is highly dependent on affinity for membrane transporters as well
as lipophilicity [17]. On the other hand, the liver plays a key role in the clearance and excre‐
tion of many drugs. Hepatic transporters are membrane proteins that primarily facilitate nu‐
trient and endogenous substrate transport into the cell via uptake transporters, or protect
the cell by pumping out toxic chemicals via canalicular transporters [18]. Consequently,
drug transporters in both the gut and the liver are important in determining oral drug dis‐
position by controlling absorption and bioavailability [19]

The major uptake transporters responsible for nutrient and xenobiotic transport, both up‐
take and efflux transporters, belong to the two solute carrier (SLC and SLCO) superfamilies
[20]. The SLC superfamily encompasses a variety of transporters, including the organic
anion transporters (OAT, SLC22A), the organic cation transporters (OCT, SLC22A), the elec‐
troneutral organic cation transporters (OCTN, SLC22A), the equilibrative nucleoside trans‐
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porters (ENT, SLC29), the concentrative nucleoside transporters (CNT, SLC28), the apical
Na+−dependent bile salt transporter (ASBT, SLC10), the monocarboxylate transporters
(MCT, SLC16), and the peptide transporters (PEPT, SLC15) [21]. The SLCO family is made
up of the organic anion transporting polypeptides (OATP) [22]. Efflux transporters ex‐
pressed in the intestine and liver include P-glycoprotein (Pgp, ABCB1), bile salt export
pump (BSEP, ABCB11), multidrug resistance proteins (MRP1- 6, ABCC1-6), and breast can‐
cer resistance protein (BCRP, ABCG2), all members of the ATP-Binding Cassette superfami‐
ly (ABC transporters) [23]. Members of this superfamily use ATP as an energy source,
allowing them to pump substrates against a concentration gradient. In the liver, uptake
transporters are mainly expressed in the sinusoid, and excretion transporters are mainly ex‐
pressed on the lateral and canalicular membranes. There are transporters on the lateral
membrane the primary function of which is pumping drugs back into the blood circulation
from the hepatocytes. Nowadays, a large amount of work has identified and characterized
intestinal and hepatic transporters in regards to tissue expression profiles, regulation, mech‐
anisms of transport, substrate and inhibitor profiles, species differences, and genetic poly‐
morphisms. Given the circumstances outlined above, there is no doubt of the overall
relevance of drug transport for clinical pharmacokinetics.

Until recently, little regard was given to the possibility that food and food components
could cause significant changes to the extent of drug absorption via effects on intestinal and
liver transporters. It is now well known that drug-food interactions might affect the pharma‐
cokinetics of prescribed drugs when co-administered with food [24]. Common foods, such
as fruits and vegetables, contain a large variety of secondary metabolites known as phyto‐
chemicals (Tabla 1), many of which have been associated with health benefits [25]. However,
we know little about the processes through which these phytochemicals (and/or their me‐
tabolites) are absorbed into the body, reach their biological target, and are eliminated. Re‐
cent studies show that some of these phytochemicals are substrates and modulators of
specific members of the superfamily of ABC transporting proteins [26]. Indeed, in vitro and
preclinical data in rats suggest that a variety of foodstuffs [27,28], including herbal teas
[29,30] and vegetables and herbs [31,32] can modulate the activity of drug transporters. It is
not yet known whether these effects are predictive of what will be observed clinically.

4. Foods and drug-metabolizing enzyme

It has been shown that, before reaching the systemic circulation, the metabolism of orally in‐
gested drugs (‘first-pass metabolism’ or ‘presystemic clearance’) has clinically relevant influ‐
ences on the potency and efficacy of drugs. Both the intestine and liver account for the
presystemic metabolism in humans. Drug metabolism reactions are generally grouped into
2 phases. Phase I reactions involve changes such as oxidation, reduction, and hydrolysis and
are primarily mediated by the cytochrome P450 (CYP) family of enzymes. Phase II reactions
use an endogenous compound such as glucuronic acid, glutathione, or sulfate, to conjugate
with the drug or its phase I–derived metabolite to produce a more polar end product that
can be more readily excreted [33].
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The CYP enzymes involved in drug metabolism in humans are expressed predominantly
in the liver.  However,  they are  also present  in  the large and small  intestine,  lungs and
brain [34]. CYP proteins are categorized into families and subfamilies and can metabolize
almost any organic xenobiotic [35]. CYP enzymes combined with drug transport proteins
constitute the first-pass effect  of  orally administered drugs [33].  On the other  hand,  the
Phase II  drug metabolizing or conjugating enzymes consist  of  many enzyme superfami‐
lies,  including  sulfotransferases  (SULT),  UDP-glucuronosyltransferases  (UGT),  DT-dia‐
phorase or NAD(P)H:quinone oxidoreductase (NQO) or NAD(P)H: menadione reductase
(NMO), epoxide hydrolases (EPH), glutathione S-transferases (GST) and N-acetyltransfer‐
ases  (NAT).  The  conjugation  reactions  by  Phase  II  drug-metabolizing  enzymes  increase
hydrophilicity and thereby enhance excretion in the bile and/or the urine and consequent‐
ly affect detoxification [36].

The metabolism of a drug can be altered by foreign chemicals and such interactions can of‐
ten be clinically significant [37]. The most common form of drug interactions entail a foreign
chemical acting either as an inhibitor or an inducer of the CYP enzyme isoform responsible
for metabolizing an administered medicinal drug, subsequently leading to an unusually
slow or fast clearance of said drug [38,39]. Inhibition of drug metabolism will result in a con‐
centration elevation in tissues, leading to various adverse reactions, particularly for drugs
with a low therapeutic index.

Often, influence on drug metabolism by compounds that occur in the environment, most re‐
markably foodstuffs, is bypassed. Dietary changes can alter the expression and activity of
hepatic drug metabolizing enzymes. Although this can lead to alterations in the systemic
elimination kinetics of drugs metabolized by these enzymes, the magnitude of the change is
generally small [8, 40]. Metabolic food-drug interactions occur when a certain food alters the
activity of a drug-metabolizing enzyme, leading to a modulation of the pharmacokinetics of
drugs metabolized by the enzyme [12]. Foods, such as fruits, vegetables, alcoholic beverag‐
es, teas, and herbs, which consist of complex chemical mixtures, can inhibit or induce the
activity of drug-metabolizing enzymes [41].

The observed induction and inhibition of CYP enzymes by natural products in the presence
of a prescribed drug has (among other reasons) led to the general acceptance that natural
therapies can have adverse effects, contrary to popular beliefs in countries with active ethno‐
medicinal practices. Herbal medicines such as St. John's wort, garlic, piperine, ginseng, and
gingko, which are freely available over the counter, have given rise to serious clinical inter‐
actions when co-administered with prescription medicines [42]. Such adversities have spur‐
red various pre-clinical and in vitro investigations on a series of other herbal remedies, with
their clinical relevance yet to be established. The CYP3A4-related interaction based on food
component is the best known; it might be related to the high level of expression of CYP3A4
in the small intestine, as well as its broad substrate specificity. If we consider that CYP3A4 is
responsible for the metabolism of more than 50% of clinical pharmaceuticals, all nutrient-
drug interactions should be considered clinically relevant, in which case all clinical studies
of drugs should include a food-drug interaction screening [43].
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5. Nutrient-drug interactions: examples with clinical relevance

Fruits and vegetables are known to be important components in a healthy diet, since they
have low energy density and are sources of micronutrients, fiber, and other components
with functional properties, called phytochemicals (See Figure 2). Increased fruit and vegeta‐
ble consumption can also help displace food high in saturated fats, sugar or salt. Low fruit
and vegetable intake is among the top 10 risk factors contributing to mortality. According to
the World Health Organization (WHO), increased daily fruit and vegetable intake could
help prevent major chronic non-communicable diseases [44]. Evidence is emerging that spe‐
cific combinations of phytochemicals may be far more effective in protecting against some
diseases than isolated compounds (Table 1 and 2). Observed drug-phytochemical interac‐
tions, in addition to interactions among dietary micronutrients, indicate possibilities for im‐
proved therapeutic strategies. However, several reports have examined the effects of plant
foods and herbal medicines on drug bioavailability. As shown in Tables 3 and 4 and as dis‐
cussed below, we have surveyed the literature to identify reports suggesting important food
and phytochemical modulation of drug-metabolizing enzymes and drug transporters lead‐
ing to potential important nutrient-drug interactions.

Data from: [26,52,53,55, 82, 111, 112]

Table 1. Commonly Consumed Fruits
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Data from: [26,105,114,126, 151]

Table 2. Commonly Consumed Vegetables

Table 3. Fruit-Drug Interactions
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Table 4. Vegetable-Drug Intractions

5.1. Grapefruit (Citrus paradisi)

The interaction of grapefruit with certain drugs was unintentionally discovered two decades
ago [45]. Since then, there have been numerous reports on the effects of grapefruit and its
components on CYP450 drug oxidation and transportation [46,47]. Several findings showed
that grapefruit juice had a major effect on the intestinal CYP system with a minor effect at
the hepatic level [48]. The predominant mechanism for this interaction is the inhibition of
cytochrome P-450 3A4 in the small intestine, which results in a significant reduction of drug
presystemic metabolism. Grapefruit juice intake has been found to decrease CYP3A4 mRNA
activity through a post transcriptional activity, possibly by facilitating degradation of the en‐
zyme [49]. An additional mechanism may be the inhibition of P-glycoprotein and MRP2-
mediated drug efflux, transporters that carry drugs from enterocytes back to the gut lumen,
all of which results in a further increase in the fraction of drug absorbed and increased sys‐
temic drug bioavailability [50-52]. It has also been reported that the major constituents of
grapefruit significantly inhibit the OATP-B function in vitro [53,54].

The interaction between grapefruit juice and drugs has been potentially ascribed to a num‐
ber of constituents [27]. It has been suggested that flavonoids such as naringin, naringenin,
quercetin, and kaempferol, major components in grapefruit, are responsible for drug inter‐
action. Some of these chemicals are also found in other fruit juices. Pomegranate, for exam‐
ple, shares certain properties with grapefruit, suggesting that both could modify the
bioavailability of drugs [55,56]. Another group of compounds that has been detected in
grapefruit juice are the furanocoumarins (psoralens), which are known to be mechanism-
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based inactivators of CYP450. The major furanocoumarin present in grapefruit is bergamot‐
tin, which demonstrated a time- and concentration-dependent inactivation of CYP enzymes
in vitro [49]. One interesting characteristic of this interaction is that grapefruit juice does not
need to be taken simultaneously with the medication in order to produce the interaction.
The bioavailability of drugs has been reported to be doubled by grapefruit juice, even when
taken 12 h after ingestion. Colored grapefruit juice and white grapefruit juice are equally ef‐
fective in producing drug interactions.

This inhibitory interaction should be kept in mind when prescribing drugs metabolized by
CYP3A4. Examples of drugs affected by grapefruit or its components include: calcium chan‐
nel antagonists such as felodipine, nisoldipine, amlodipines, verapamil, and diltiazem [57];
central nervous system modulators, including diazepam, triazolam, midazolam, alprazolam,
carbamazepine, buspurone and sertraline [58]; HMG-CoA reductase inhibitors, such as sim‐
vastatin, lovastatin, atorvastatin, and pravastatin [59]; immunosuppressants such as cyclo‐
sporine [60]; anti-virals such as saquinavir [61]; a phosphodiesterases-5 inhibitor such as
sildenafil [62]; antihistamines, including as terfenadine and fexofenadine [63]; antiarhyth‐
mics such as amiodarone [62]; and antibiotics such as eritromicine [64].

Epidemiologic studies reveal that approximately 2% of the population in the United States
consumes at least one glass of regular strength grapefruit juice per day. This becomes perti‐
nent if we consider that many people suffer from chronic metabolic diseases (including hy‐
pertension, hyperlipidemia, and cardiovascular diseases) and receive calcium channel
antagonis therapy and HMG-CoA reductase inhibitors. Patients with mental disorders also
chronically receive central nervous system modulators. In the case of many drugs, an in‐
crease in serum drug concentration has been associated with increased frequency of dose-
dependent adverse effects [65-67]. In light of the wide ranging effects of grapefruit juice on
the pharmacokinetics of various drugs, physicians need to be aware of these interactions
and should make an attempt to warn and educate patients regarding the potential conse‐
quences of concomitant ingestion of these agents.

5.2. Orange (Citrus sinensis)

Consumption of most types of orange juice does not appear to alter CYP3A4 activity in vivo
[55]. However, orange juice made from Seville oranges appears to be somewhat similar to
grapefruit juice and can affect the pharmacokinetics of CYP3A4 substrates [68]. It has been
previously shown that consumption of a single 240 mL serving of Sevilla orange juice result‐
ed in a 76% increase in felodipine exposure, comparable to what is observed after grapefruit
juice consumption [11]. Presumably, the mechanism of this effect is similar to that of grape‐
fruit juice-mediated interactions, because Sevilla orange contains significant concentrations
of flavonoids, mainly bergamottin and 6´,7´-dihydroxybergamottin [69]. Orange juice has al‐
so been shown to exert inhibitory effects on P-glycoprotein (P-gp)-mediated drug efflux. Ta‐
kanaga and others showed that 3,3′,4′,5,6,7,8-heptamethoxyflavon and tangeretin were the
major P-gp inhibitors present in orange juice and showed that another component, nobiletin,
was also a P-gp inhibitor [55]. Therefore, the intake of orange juice might inhibit the efflux
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transporters by P-gp, which could enhance the bioavailability of drugs and thus lead to an
increase in the risk of adverse events [52].

It has also been observed that components of orange juice -naringin in particular- are in vitro
inhibitors of OATP transport activity [70]. Dresser et al., have previously reported that or‐
ange juice inhibits the function of human OATP-A (OATP1A2, gene symbol SLC21A3/
SLCO1A2) in vitro [29]. OATP-A, however, is predominantly expressed in the brain, but not
in the intestine. On the other hand, Satoh et al. reported that OATP-B-mediated uptake of
glibenclamide as well as estrone-3-sulfate was significantly inhibited by 5% orange juice
[53]. Orange juice might reduce the intestinal absorption of substrates of OATP-B (e.g., di‐
goxin, benzylpenicillin, and hormone conjugates), resulting in a decrease in concentration in
the blood.

Previous studies in humans using fexofenadine as a probe showed that oral coadministra‐
tion with orange juice decreased the oral bioavailability of fexofenadine [63]. Orange juice
and its constituents were shown to interact with members of the OATP transporter family
by reducing their activities. The functional consequences of such an interaction are reflect‐
ed in a significant reduction in the oral bioavailability of fexofenadine, possibly by prefer‐
ential direct inhibition of intestinal OATP activity. Other reports indicate that orange juice
slightly reduced the absorption of ciprofloxacin, levofloxacin and celiprolol [65] A study
of  an  interaction  between  orange  juice  and  pravastatin  showed  an  increase  in  AUC
[54].Orange juice also moderately reduces the bioavailability of atenolol, which may neces‐
sitate a dose adjustment [71,72].

5.3. Tangerine (Citrus reticulata)

Early studies demonstrated the influence of tangeretin, a flavonoid found in high levels in
tangerine juice, on drug metabolizing liver enzymes. It was demonstrated that tangeretin in‐
hibits P450 1A2 and P450 3A4 activity in human liver microsomes [73]. Tangeretin is a po‐
tent regioselective stimulator of midazolam 1'-hydroxylation by human liver microsomes
CYP3A4. Although, clinical studies have shown no influence on midazolam pharmacokinet‐
ics in vivo, further studies are needed to evaluate its effects on other drugs [74]. Diosmin is
one of the main components of citrus fruits, such as tangerine. Diosmin may increase the ab‐
sorption or bioavailability of co-administered drugs able to serve as P-gp substrates. As a
result, some caution may be required with its clinical use [52].

5.4. Grapes (Vitis vinifera)

Grapes are one of the most valued conventional fruits worldwide. The grape is considered a
source of unique and potentially useful medicinal natural products; they are also used in the
manufacturing of various industrial products [75,76](Yadav and others 2009; Vislocky and
Fernandez 2010). The main biologically active and well-characterized constituent from the
grape is resveratrol, which is known for various medicinal properties in treating human dis‐
eases [75](Yadav and others 2009). Resveratrol was shown to be an irreversible (mechanism-
based) inhibitor of CYP3A4 and a non-competitive reversible inhibitor for CYP2E1 in
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microsomes from rat liver and human liver cells containing cDNA-expressed CYPs [77,78]
(Chan and Delucchi 2000; Piver and others 2001). Resveratrol is an electron-rich molecule
with two aromatic benzene rings linked by an ethylene bridge. CYP3A-mediated aromatic
hydroxylation and epoxidation of resveratrol are possible, resulting in a reactive p-benzo‐
quinone methide metabolite which is capable of binding covalently to CYP3A4, leading to
inactivation and potential drug interactions.

5.5. Cranberry (Vaccinium macrocarpon)

American cranberry is a fruit used as a prophylactic agent against urinary tract infections
[79]. Drug interactions with cranberry juice might be related to the fact that the juice is rich
in flavonol glycosides, anthocyanins, proanthocyanidins, and organic and phenolic acids
[80]. Izzo [81] described a total of eight cases of interaction between cranberry juice and war‐
farin, leading to changes in international normalized ratio (INR) values and bleeding. The
mechanism behind this interaction might be the inhibition by cranberry flavonoids of
CYP3A4 and/or CYP2C9 enzymes, which are responsible for warfarin metabolism [31,82].

It has also been shown that cranberry juice inhibits diclofenac metabolism in human liver
microsomes, but this has not been demonstrated clinically in human subjects [83]. Cranberry
juice may increase the bioavailability of CYP3A4 substrates (e.g., calcium antagonists or cal‐
cineurin inhibitors) as was discussed [61]. Uesawa and Mohri have demonstrated that nife‐
dipine metabolism in rat intestinal and human hepatic microsomes are inhibited by
preincubation with cranberry juice. Furthermore, cranberry juice increased the nifedipine
concentration in rat plasma. These findings suggest that cranberry juice might affect the
plasma concentration of nifedipine in humans as well [84].

5.6. Pomegranate (Punica granatum)

Pomegranate is commonly eaten around the world and has been used in folk medicine for a
wide variety of therapeutic purposes [85-86]. Pomegranate is a rich source of several chemi‐
cals such as pectin, tannins, flavonoids, and anthocyanins. It has been have reported that
pomegranate juice influenced the pharmacokinetics of carbamazepine in rats by inhibiting
enteric CYP3A activity. Such inhibition of the enteric CYP3A activity by a single exposure to
pomegranate juice appears to last for approximately 3 days [56]. Nagata and others [88]
found that pomegranate juice inhibited human CYP2C9 activity and increased tolbutamide
bioavailability in rats. Recently, pomegranate juice was shown to potently inhibit the sulfo‐
conjugation of 1-naphthol in Caco-2 cells. It has been suggested that some constituents of
pomegranate juice, most probably punicalagin, may impair the metabolic functions of the
intestine (specifically sulfoconjugation) and therefore might have effects upon the bioavaila‐
bility of drugs [89].

5.7. Mango (Mangifera indica)

The beneficial effects of mango include anti-inflammatory and antimicrobial activities
[90,91] Preliminary phytochemical screening revealed the presence of flavonoids, including
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quercetin and glycosylated xanthones such as mangiferin [92,93] Quercetin has been shown
to possess antioxidant, antimicrobial, antitumor, antihypertensive, antiatherosclerosis, and
anti-inflammatory properties [94]. In a series of studies, Rodeiro and others have shown the
effects of mango on drug metabolizing enzymes and drug transporters [95, 96] They found
that exposure of hepatocytes to mango extract produced a significant reduction (60%) in 7-
methoxyresorufin-O-demethylase (MROD; CYP1A2) activity and an increase (50%) in 7-
penthoxyresorufin-O-depentylase (PROD; CYP2B1) activity. This group also studied the
effect of mangiferin on CYP enzymes and found that mangiferin reduced the activities of
five P450s: POD (CYP1A2), midazolam 1'-hydroxylation (M1OH; CYP3A1), diclofenac 4'-hy‐
droxylation (D4OH; CYP2C6), S-mephenytoin 4'-hydroxylation (SM4OH), and chlorzoxa‐
zone 6-hydroxyaltion (C6OH; CYP2E1). Recently, mango and mango-derived polyphenols
have been shown to potentially affect the activity of the multidrug transporter P-gp ABCB1
[97]. These findings suggest that mango and its components inhibit the major human P450
enzymes involved in drug metabolism and some transporters. The potential for drug inter‐
actions with mango fruit should therefore be considered.

5.8. Guava (Psidium guajava L)

Guava is an important food crop and medicinal plant in tropical and subtropical countries;
it is widely used as food and in folk medicine around the world [98, 99]. A number of me‐
tabolites such as phenolics, flavonoid, carotenoid, terpenoid and triterpene have been found
in this fruit. Extracts and metabolites of this plant, particularly those from the leaves and
fruit, possess useful pharmacological activities [100]. There is only one report about the ef‐
fect of guava extracts on drug transport: guava extract showed a potent inhibitory effect on
P-gp mediated efflux in Caco-2 cells. It was also found to inhibit efflux transport from seros‐
al to mucosal surfaces in the rat ileum [101]. This means that guava could interact with P-gp
substrates such as digoxin, fexofenadine, indinavir, vincristine, colchicine, topotecan, and
paclitaxel in the small intestine. For this reason, this fruit should be consumed with caution
by patients taking medicines.

5.9. Raspberry (Rubus spp.)

Berries have been shown to have a positive impact on several chronic conditions including
obesity, cancer, and cardiovascular and neurodegenerative diseases [102-104]. Like other
fruits, raspberries contain micro- and macronutrients such as vitamins, minerals, and fiber.
Their biological properties, however, have been largely attributed to high levels of various
phenolic compounds, as well as the interactive synergies among their natural phytochemical
components (e.g., ellagic acid, quercetin, gallic acid, anthocyanins, cyanidins, pelargonidins,
catechins, kaempferol and salicylic acid). Raspberry or raspberry constituents have antioxi‐
dant and anti-inflammatory properties, and inhibit cancer cell growth [105-107]. Black rasp‐
berries (Rubus coreanus) have been called the “king of berries” for their superior health
benefits, whereas black mulberry (Morus nigra) is most commonly used for its antioxidants
properties and for its high bioactive content of phenolics, anthocyanins, and gallic acid. It
has been shown that black raspberry and black mulberry are able to inhibit the human
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CYP3A-catalyzed midazolam 1-hydroxylation activity in liver microsomes, and the inhibito‐
ry effects are somewhat greater than those of pomegranate [49, 56]. It has also been reported
that black mulberry extract potently inhibits OATP-B function at concentrations that seem to
be physiologically relevant in vitro [53]. These results suggest that black raspberry and black
mulberry may decrease the plasma concentrations of concomitantly ingested OATP-B sub‐
strate drugs or increase the plasma concentration levels of concomitantly ingested CYP3A-
substrate drugs. In vivo studies on the interaction between black mulberry and black
raspberry and CYP3A substrates are needed to determine whether inhibition of CYP3A ac‐
tivity by fruit juices is clinically relevant.

5.10. Apple (Malus domestica)

Apple and its products contain high amounts of polyphenols, which show diverse biological
activities and may contribute to beneficial health effects such as protecting the intestine
against inflammation due to chronic inflammatory bowel diseases [108, 109]. It has been
found that apple juice extract inhibits CYP1A1 at levels of CYP1A1 mRNA, protein, and en‐
zymatic activity [110]. On the other hand, it has also been reported that apple juice and its
constituents can interact with members of the OATP transporter family (OATP-1, OATP-3
and NTCP) by reducing their activities in vitro. The functional consequence of such an inter‐
action was a significant reduction in the oral bioavailability of fexofenadine in human plas‐
ma levels, possibly by preferential direct inhibition of intestinal OATP activity [29]. These
findings suggest that apple might interact with OATP substrates (e.g., estrone-3-sulfate, del‐
torphin II, fexofenadine, vasopressin, and rosuvastatin).

5.11. Papaya (Carican papaya L.)

Papaya is prized worldwide for its flavor and nutritional properties. An ethno-botanical sur‐
vey showed that papaya is commonly used in traditional medicine for the treatment of vari‐
ous human diseases, including abdominal discomfort, pain, malaria, diabetes, obesity,
infections, and oral drug poisoning [111,112]. Papaya leaves and seeds are known to contain
proteolytic enzymes (papain, chymopapain), alkaloids (carpain, carpasemine), sulfurous
compounds (benzyl iso- thiocyanate), flavonoids, tannins, triterpenes, anthocyanins, organic
acids and oils. Papaya fruit is a good source of nutrients and some phytochemicals such as
beta-cryptoxanthin and benzyl isothiocyanates [113]. Hidaka et al. found that papaya pro‐
duced an inhibition of CYP3A activity in human microsomes [114]. So far, there has been no
clinical report suggesting adverse food-drug interaction caused by the intake of papaya. Ac‐
cordingly, the inhibition of CYP3A by papaya may not be observed in vivo. However, the
results obtained by others raised the hypothesis that papaya extracts were capable of alter‐
ing the pharmacokinetics of therapeutic drugs coadministered via CYP3A inhibition, as in
the case of grapefruit. Thus, the possibility of adverse food-drug interaction involving pa‐
paya and medicine acting via CYP3A metabolism should be examined in vivo. The empiri‐
cal evidence regarding the wide use of fermented papaya preparation (FPP), especially by
elderly people, has indicated an unknown collateral effect, i.e., drops in blood sugar levels,
especially in the afternoon. Those findings have been corroborated by a clinical study that
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shows that FPP use can induce a significant decrease in plasma sugar levels in both healthy
subjects and type 2 diabetic patients [115]. Therefore, patients consuming papaya and taking
antidiabetic therapy could suffer from potential drug-food interaction.

5.12. Leafy vegetables

Broccoli (Brassica oleracea var. italica) and cauliflower (Brassica oleracea var. botrytis) are unique
among the common cruciferous vegetables that contain high levels of the aliphatics glucosi‐
nolate and glucoraphanin [116]. Upon hydrolysis, glucoraphanin produces several products
that include the bioactive isothiocyanate sulforaphane. The percentage of isothiocyanate sul‐
foraphane present in these vegetables may vary depending on conditions of hydrolysis,
food handling, and preparation procedures [117, 118]. In animal studies, dietary freeze-
dried broccoli was found to offer protection against several cancers [119]. However, brocco‐
li, cauliflower and their glucosinolate hydrolysis products have been shown to induce phase
I and phase II drug-metabolizing enzymes in intact liver cells from both rats and humans.
The isothiocyanate sulforaphane decreased the enzyme activities hepatocytes associated
with CYP1A1 and 2B1/2, namely ethoxyresorufin-O-deethylase and pentoxyresorufin-O-
dealkylase, respectively, in a dose-dependent manner [120]. An increase in hGSTA1/2
mRNA has been observed in isothiocyanate sulforaphane-treated human hepatocytes,
whereas the expression of CYP3A4, the major CYP in the human liver, markedly decreased
at both mRNA and activity levels [121]. Conversely, it was recently shown that sulforaphane
induces mRNA levels of MRP1 and MRP2 in primary hepatocytes and Caco-2 cells [122]. It
has been additionally reported that broccoli is able to induce the activity of phenolsulfo‐
transferases [123]. These results suggest that other vegetables with a high content of isothio‐
cyanates, such as those of the family Cruciferae (e.g., cabbage, cauliflower, Brussels sprouts,
watercress, broccoli, and kale) and the genus Raphanus (radishes and daikons) may have
pharmacological and toxicological implications in humans.

Watercress is another important member of the cruciferous vegetables, an excellent source
for glucosinolates and other bioactive phytochemicals [124]. Watercress (Nasturtium offici‐
nale) is an exceptionally rich dietary source of beta-phenylethyl isothiocyanate (PEITC)
[125]. Previous studies have shown that a single ingestion of watercress inhibits the hydrox‐
ylation of chlorzoxazone, an in vivo probe for CYP2E1, in healthy volunteers [126]. It has al‐
so been shown that watercress is a bifunctional agent with the ability to induce both phase I
(CYP450) and II enzymes. Adding watercress juice to human liver cells induced the activity
of CYP4501A and ethoxyresorufin-O-deethylase and NAD(P)H-quinone reductase [127]. Ac‐
cording to reports, PEITC also has several anti-carcinogenic effects given that it can inhibit
phase I enzymes and/or activate phase II enzymes. Watercress juice can increase the en‐
zymes SOD and GPX in blood cells in vitro and in vivo [128]. Isothiocyanates also interact
with ATP-binding cassette (ABC) efflux transporters such as P-glycoprotein, MRP1, MRP2
and BCRP, and may influence the pharmacokinetics of substrates of these transporters [26].
According to current data, watercress and isothiocyanate may have clinical repercussions by
inducing changes in the bioavailability of some drugs.
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Spinach (Spinacia oleracea) is an important antioxidant vegetable usually consumed after
boiling the fresh or frozen leaves [129]. Freshly cut spinach leaves contain approximately
1,000 mg of total flavonoids per kilogram, and the occurrence of at least 10 flavonoid glyco‐
sides has been reported [130]. These are glucuronides and acylated di-and triglycosides of
methylated and methylene dioxide derivatives of 6-oxygenated flavonols [131]. While epide‐
miological and preclinical data support the nutritional benefits of spinach and the safety of
its consumption there are no publications about its effects on drug metabolizing enzymes
and drug transporters. Little is currently known about the in vivo effects these compounds
have on the bioavailability of xenobiotics the clearance and/or tissue distribution of which is
determined by active transport and biotransformation. Platt and others [132] reported the
protective effect of spinach against the genotoxic effects of 2-amino-3-methylimidazo[4,5-
f]quinoline (IQ) by interaction with CYP1A2 as a mechanism of anti-genotoxicity. Its high
isothiocyanate and flavonoid content demands additional research to evaluate possible nu‐
trient-drug interactions.

5.13. Vegetable fruits

Tomatoes (Lycopersicon esculentum) and tomato-based products are a source of important nu‐
trients and contain numerous phytochemicals, such as carotenoids, that may influence
health (carotenoids such as phytofluene, phytoene, neurosporene, γ-carotene, and ζ-caro‐
tene) [133,134]. Tomatoes are also a source of a vast array of flavonols (e.g., quercetin and
kaempferol), phytosterols, and phenylpropanoids [135]. Lycopene is the most important car‐
otenoid present in tomatoes and tomato products, and their dietary intake has been linked
to a decreased risk of chronic illnesses such as cancer and cardiovascular disease [136,137].
Studies performed on human recombinant CYP1 showed that lycopene inhibits CYP1A1
and CYP1B1. Lycopene has also been shown to slightly reduce the induction of ethoxyresor‐
ufin-O-deethylase activity by 20% by DMBA in MCF-7 cells [138]. It appears to inhibit bioac‐
tivation enzymes and induce detoxifying enzymes. It has been suggested that lycopene
might have a potential advantage over other phytochemicals by facilitating the elimination
of genotoxic chemicals and their metabolites [138]. Recent in vitro evidence suggests that
high dose lycopene supplementation increases hepatic cytochrome P4502E1 protein and in‐
flammation in alcohol-fed rats [139].

Carrots (Daucus carrota) are widely consumed as food. The active components of carrots,
which include beta-carotene and panaxynol have been studied by many researchers
[140-142]. Carrots induce phenolsulfotransferase activity [123] and decrease CYP1A2 activity
[122]. It has been reported that a carrot diet increased the activity of ethoxycoumarin O-dee‐
thylase ECD activity in a mouse model [143].

Avocado (Persea americana) is a good source of bioactive compounds such as monounsatu‐
rated fatty acids and sterols [144]. Growing evidence on the health benefits of avocadoes
have led to increased consumption and research on potential health benefits [145, 146]. Phy‐
tochemicals extracted from avocado can selectively induce several biological functions
[147,148]. Two papers published in the 1990’s reported avocados interact with warfarin, stat‐
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ing that the fruit inhibited the effect of warfarin. They, however, did not establish the cause
of such inhibition [149, 150].

Red pepper (Capsicum annuum L.) is used as a spice that enhances the palatability of food
and drugs such as the counterirritant present in stomach medicines across many countries
[151]. The pungencyof red pepper is derived from a group of compounds called capsaici‐
noids, which possess an array of biological properties and give it its spicy flavor. Two major
capsaicinoids, dihydrocapsaicin (DHC) and capsaicin (CAP) are responsible for up to 90% of
the total pungency of pepper fruits. Red pepper has several uses as a fruit stimulant and ru‐
bifacient in traditional medicine; it is also used in the treatment of some diseases such as
scarlatina, putrid sore throat, hoarseness, dispepsia, yellow fever, piles and snakebite [152].
Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is a fundamental component of Capsicum
fruits. Capsaicin is known to have antioxidant properties and has therefore been associated
with potent antimutagenic and anticarcinogenic activities [153]. Early studies have reported
that capsaicin strongly inhibited the constitutive enzymes CYP 2A2, 3A1, 2C11, 2B1, 2B2 and
2C6 [154]. There is also a report indicating that capsaicin is a substrate of CYP1A2 [155].
Pharmacokinetic studies in animals have shown that a single dose of Capsicum fruit could
affect the pharmacokinetic parameters of theophylline, while a repeated dose affected the
metabolic pathway of xanthine oxidase [156]. Therefore, a potential interaction may occur
when is taken along with some medicines that are CYP450 substrates. Recently, it has been
evidenced that red pepper induces alterations in intestinal brush border fluidity and passive
permeability properties associated with the induction of increased microvilli length and pe‐
rimeter, resulting in an increased absorptive surface for the small intestine and an increased
bioavailability not only of micronutrients but also of drugs [157]. Cruz et al. have shown
that pepper ingestion reduces oral salicylate bioavailability, a likely result of the gastrointes‐
tinal effects of capsaicin [158]. On the other hand, Imaizumi et al. have reported capsaici‐
noid-induced changes of glucose in rats. Therefore, there is a possible interaction risk
between red pepper and hypoglycemic drugs in diabetic patients [159]. Patients consuming
red pepper and taking antidiabetic therapy could suffer potential drug-food interaction.

5.14. Other vegetables

Yeh and Yen have reported that asparagus, cauliflower, celery and eggplant induced signifi‐
cant phenol sulfotransferase –P (PST-P) activity, whereas asparagus, eggplant and potato in‐
duced PST-M activity [123]. It has been have also reported that a diet supplemented with
apiaceous vegetables (dill weed, celery, parsley, parsnip) resulted in a 13-15% decrease in
CYP1A2 activity [122]. The authors speculate that furanocumarins present in the apiaceous
vegetables were responsible for the inhibitory effects on CYP1A2 ^115 [117,160].

Vegetables such as cabbage, celery, onion and parsley are known to have a high content of
polyphenols. It has been reported that polyphenols can potentially affect phase I metabolism
either by direct inhibition of phase I enzymes or by regulating the expression of enzyme lev‐
els via their interactions with regulatory cascades. Several studies have directly and indirect‐
ly shown that dietary polyphenols can modulate phase II metabolism [161]. In addition,
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polyphenols have been shown to interact with ABC drug transporters involved in drug re‐
sistance and drug absorption, distribution and excretion [32].

6. Drug-food interaction in specific diets with high content of fruits and
vegetables

Weight-reduction diets, vegetarian diets, hospitalization, or post-operative regimes all lead
to dietary modifications. These diets are often maintained for long periods of time and are
likely to result in metabolic changes due to subsequently administered drugs or exposure to
environmental chemicals. Several epidemiologic, clinical, and experimental studies have es‐
tablished that certain types of diet may have beneficial effects on health. For example, the
traditional Mediterranean diet has been shown to reduce overall mortality and coronary
heart disease events [162]. This diet, however, varies across at least 16 countries bordering
the Mediterranean Sea. Cultural, ethnic, religious, economic and agricultural differences in
these regions account for variations in dietary patterns, which are widely characterized by
the following: daily consumption of fruits, vegetables, whole grain breads, non-refined cere‐
als, olive oil, and dairy products; moderate weekly consumption of fish, poultry, nuts, pota‐
toes, and eggs; low monthly consumption of red meat, and daily moderate wine
consumption [163]. Increasing evidence suggests that a Mediterranean-style diet rich in
fruits, vegetables, nuts, fish and oils with monounsaturated fat and low in meat promotes
cardiovascular health and aids cancer prevention because of its positive effects on lipid pro‐
file, endothelial function, vascular inflammation, insulin resistance, and its antioxidant
properties [164,165].

Vegetarians, on the other hand, exhibit a wide diversity of dietary practices often described
by what is omitted from their diet. When a vegetarian diet is appropriately planned and in‐
cludes fortified foods, it can be nutritionally suitable for adults and children and can promote
health and lower the risk of major chronic diseases [166]. A vegetarian diet usually provides a
low intake of saturated fat and cholesterol and a high intake of dietary fiber and many health-
promoting phytochemicals. This is achieved by an increased consumption of fruits, vegeta‐
bles, whole-grains, legumes, nuts, and various soy products. As a result of these factors,
vegetarians typically have a lower body mass index, low-density lipoprotein cholesterol lev‐
els, and lower blood pressure; a reduced ischemic heart disease death rate; and decreased in‐
cidence of hypertension, stroke, type 2 diabetes, and certain cancers that are more common
among non-vegetarians [167]. The vegan dietary category may be more comparable across
countries and cultures because avoiding all animal products leaves little choice but to include
large quantities of vegetables, fruit, nuts, and grains for nutritional adequacy. Admittedly,
vegetable and fruit variety may also vary widely according to location [168].

Due to their high content of fruits and vegetables, all these diets contain a large propor‐
tion of antioxidant vitamins, flavonoids, and polyphenols [169]. Phenolic compounds may
help protect the gastrointestinal tract against damage by reactive species present in foods
or generated within the stomach and intestines.  However,  they may be beneficial  in the
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gut in correct amounts. The overall health benefits of polyphenols are uncertain, and con‐
sumption of large quantities of them in fortified foods or supplements should not yet be
encouraged [170].

Flavonoids have been known as plant pigments for over a century and belong to a vast
group of phenolic compounds that are widely distributed in all foods of plant origin. Un‐
fortunately, the potentially toxic effects of excessive flavonoid intake are largely ignored. At
higher doses, flavonoids may act as mutagens, pro-oxidants that generate free radicals, and
as inhibitors of key enzymes involved in hormone metabolism [171]. It has been shown that
phenol ring-containing flavonoids yield cytotoxic phenoxyl radicals upon oxidation by per‐
oxidases; co-oxidize unsaturated lipids, GSH, NADH, ascorbate, and nucleic acids; and
cause ROS formation and mitochondrial toxicity [172]. In high doses, the adverse effects of
flavonoids may outweigh their beneficial ones, and caution should be exercised when in‐
gesting them at levels above those which would be obtained from a typical vegetarian diet
[173]. Moreover, it is possible that people ingesting a vegetarian or Mediterranean diet may
be taking medication and thus have drug-food interaction.

Inhibition of CYP enzymes, which are necessary for carcinogen activation, is a beneficial
chemopreventive property of various flavonoids but may be a potential toxic property in
flavonoid-drug interactions. Inhibition of CYP activities by flavonoids has been extensively
studied because of their potential use as blocking agents during the initial stage of carcino‐
genesis [174]. The general conclusion after an analysis of available data on CYP-flavonoid
interactions is that flavonoids possessing hydroxyl groups inhibit CYP activity, whereas
those lacking hydroxyl groups may induce the metabolizing enzyme [175]. Flavonoids can
either inhibit or induce human CYP enzymes depending on their structure, concentration, or
experimental conditions [176]. The interaction of flavonoids with CYP3A4, the predominant
human hepatic and intestinal CYP responsible for metabolizing 50% of therapeutic agents as
well as the activation of some carcinogens, is of particular interest [177].

The simultaneous administration of flavonoids present in fruits or vegetables and clinically
used drugs may cause flavonoid-drug interactions by modulating the pharmacokinetics of
certain drugs, which results in an increase in their toxicity or a decline in their therapeutic
effect, depending on the flavonoid structure [178]. Additional reasons for concern regarding
mega flavonoid supplements include potential flavonoid-drug interactions, since flavonoids
have been shown to both induce and inhibit drug-metabolizing enzymes [38, 39]. Further re‐
search regarding the potential toxicities associated with flavonoids and other dietary phe‐
nolics is required if these plant-derived products are to be used as therapy.

It is a fact that diets based on fruits and vegetables may have a variety of phytochemicals, as
was mentioned earlier, so the possibility of developing a drug-food interaction is high.
While dietary polyphenols may be beneficial in the correct amount, but too much may not
be good and combining them with medication should be avoided.
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7. Conclusion

WHO and the Food and Agriculture Organization of the United Nations (FAO) recommend
a daily intake of at least 400 grams or five servings of fruits and vegetables to aid in the pre‐
vention of chronic illnesses such as heart disease, cancer, diabetes, and obesity. As a conse‐
quence, there is an increased global consumer demand for fruits and vegetables, and some
consumers purchase organic foods with the understanding that they are healthy. The use of
natural products for improving human health has evolved independently in different re‐
gions of the world and production, use, attitudes, and regulatory aspects vary globally. Al‐
though modern medicine may be available in most countries for the treatment of many
chronic degenerative diseases, folk medicine (phytomedicine) has remained popular for his‐
torical and cultural reasons. Although the significance of interactions between drugs is
widely appreciated, little attention has been given to interactions between drugs and nu‐
trients. Most of the documented information about the effects of fruit and vegetables on me‐
tabolizing enzymes and drug transporters comes from preclinical studies. However, the
possibility that these effects could occur in humans should not be ignored. Several clinical
studies on the interactions of grapefruit juice and drugs have been conducted with impres‐
sive results. Most of the fruits and vegetables examined in this review contain a similar phy‐
tochemical mix to that of grapefruit juice. In vitro models and animal models have shown
that many of these agents influence drug metabolizing enzymes and drug transporters. It is
possible that other fruits and vegetables could have the same potential for fruit and drug
interactions, and this should be taken into account. This review shows evidence of the influ‐
ence of fruit, vegetables or their components (phytochemicals) on the CYP3A4 enzyme,
which metabolizes most drugs used by the human population. A more consistent approach
to the evaluation of nutrient-drug interactions in human beings is therefore needed. Said ap‐
proach must be systematic in order to a) assess the influence of nutritional status, foodstuffs,
or specific nutrients on a drug’s pharmacokinetics and pharmacodynamics, and b) evaluate
the influence of a drug on overall nutritional status or the status of a specific nutrient. In ad‐
dition to all this, we must account for the fact that we live in an era of very varied lifestyles.
Some people are vegetarians, others take high doses of flavonoids or antioxidants as supple‐
ments, some ingest large amounts of bottled water from plastic bottles, or use chlorinated
disinfectants. In industrialized countries, fruits and vegetables tend have been subjected to
some sort of processing (e.g., refrigeration, acidification, fermentation, and thermal, high
pressure, chemical, or physical processing) that might have an effect on the bioactive com‐
pound. All of these factors could have an impact on the metabolism or transport of drugs in
a individual, potentially altering pharmacological responses. Our knowledge regarding the
potential risk of nutrient-drug interactions is still limited. Therefore, efforts to elucidate po‐
tential risk of food-drug interactions should be intensified in order to prevent undesired and
harmful clinical consequences.
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