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Abstract

Measurements in laboratory medicine have a degree of uncertainty; this uncertainty is
often called “error” and refers to imprecisions and inaccuracies in measurement. This
measurement error refers to the difference between the true value of the measured sample
and the measured value. One of the types of error is systematic error, also called bias,
because these errors errors are reproducible and skew the results consistently in the same
direction. A common approach to identify systematic error is to use control samples with a
method comparison approach. An alternative is use of statistical methods that analyze
actual patient values either as an “Average of Normals” or a “Moving Patient Averages.”
Fundamental questions should be decided before a quality control method is used: how
are weights assigned to the results? Is preference given to more recent samples or to the
older samples? How sensitive should the model be? In this chapter, we will expand the
fundamental notion of systematic error and explain why it is difficult to identify and
measure and current statistical methods that are used to detect systematic error or bias.

Keywords: bias, systematic error, measurement uncertainty, bias detection,
method comparison, patient average methods

1. Introduction

The role of clinical laboratory is to measure and test patient samples. These measurements are

a central part of modern clinical management; they are used by clinicians to diagnose disease

states, to guide treatment course and to determine prognosis. The modern clinical laboratory

uses a plethora of instruments to quantify and measure different analytes and reports results

that are used by clinicians. The most important metrics that a test must possess to be used in

clinical laboratory are technical accuracy and precision [1].

A test is technically accurate if it produces valid information. A precise test will produce similar

results when the test is repeated multiple times. Accuracy (or rather trueness) is a measure of the

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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proximity of the test results to the true value. Precision measures reliability and reproducibility.

These metrics are complementary and a good clinical test needs to be both accurate and precise

[2]. Some have suggested that trueness should be used to refer to the agreement of the measure-

ment to the true value and accuracy to encompass both trueness and precision.

Accuracy and precision are related to a concept called measurement error: every measurement is

associated with a degree of error or uncertainty. The goal in laboratory medicine is to minimize

the measurement error so that it does not adversely affect the clinical decision-making process.

Measurement error can never be truly nullified, but it can be decreased to a scale that is

acceptable by clinicians, laboratory directors and laboratory regulatory agencies [2, 3].

Measurement errors can be random, i.e. they can be unpredictable. All measurements have

random error. Random errors are due to unpredictable variations in sample, instrument,

measurement process or analysis and it can be said to follow a Gaussian distribution, i.e.

random error follows randomness and chance and thus laws of probability apply to random

error. As the instruments get more precise the Gaussian distribution of the random error gets

narrower and the random error decreases. At the same time, if we repeat an experiment or test

multiple times we can average out random error from our measurements. i.e. the mean of

multiple repeated measurements gets closer to the true value as the number of repeats

increases. This forms the basis of reporting confidence intervals for measurements [2, 4].

Bias or systematic error is a form of measurement error that skews the results to one side.

Repeating the measurements cannot eliminate bias. In other words, bias is a non-zero error

which will consistently affect the results and can show a problem with the measurement

process often requiring corrective action. The corrective action can be in form of calibration

by introducing a correction factor or by changing components of measurement. Systematic

error can be short-term or long-term, with very short-term systematic error often manifesting

as random error.

Systematic error and random error have a cumulative effect on the measurement results

(Figure 1). Thus, measurement error is often considered as total error with both bias and

random error contributing. Laboratories often have limits for total error, bias and random

Figure 1. This figure depicts the cumulative effect of systematic error and random error. The X-axis represents the value

determined and the Y-axis plots the frequency of occurrence of each value.
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error. All tests need to be checked continuously for presence of error and identifying system-

atic error is part of the function of a clinical laboratory. The measurement error can be regarded

as a noise that can obscure the signal or true test value. In the presence of noise, drawing

conclusions from the signal that may change the true value in a clinically significant manner

risks jeopardizing the patient’s health. As a result, the lab should strive to identify noise,

minimize it or reduce its impact on patient outcomes. In this regard, systematic error is

especially dangerous since it will skew the test results in a manner that cannot be corrected

by repeat measurements. Unfortunately, systematic error can be very difficult to identify and/

or quantify. In this chapter we focus on approaches for identification of systematic error using

within-laboratory comparisons [5, 6].

2. Systematic error detection using quality control experiments

Simply stated, the aim of quality control experiments is to determine the performance of the

laboratory tests with measuring of known samples or references, that is, samples in which the

true value of the analyte being tested is known. These methods are mainly set up to detect

random error and check instrument precision. However, the same results can be used to detect

bias and systematic error [7].

The laboratories can use certified reference materials to measure and identify systematic error.

If the reference sample is measured with each analytical run, you would expect the results of

the reference sample measurements to show a random distribution around the true value, yet

if the results are consistently lower or higher than the reference value then you would suspect

that a bias exists [2, 8].

For systematic error measurement, a method comparison method is needed to identify sys-

tematic error. Any systematic error found needs to be corrected using a recovery experiment

and calibration.

2.1. Levey-Jennings plots

The first step in identification of systematic error is to visually inspect the quality control

process. Levey-Jennings plot shows the fluctuation of reference sample measurements around

the mean against time. The chart’s reference lines include control limits, 2 standard deviation

lines, 1 standard deviation lines and the mean reference line.

The mean, standard deviation and the control limits are calculated by a replication study

where the certified reference material is repeatedly measured. The repeated measurements

allow for calculation of mean and standard deviation of the control sample levels. The trial

limits are mean �3 standard deviations. The next step is to eliminate the replication study

results that are beyond the 3 standard deviations. Then the mean and standard deviation are

recalculated and the trial limits are again set. Again, results beyond the trial limits are

excluded. The process continues until all the remaining results are within the trial limits. These

final trial limits, mean and standard deviation are set as the reference measures for that

reference sample.
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The number of replication studies to perform can be calculated based on the number of

acceptable failures. The sample size calculation is based on set levels of confidence and

reliability. Confidence (accuracy) is the difference between 1 and type I error rate. Reliability

is the degree of precision. For a failure rate of 0 (i.e. we are not allowing any incorrect results),

the equation can be stated as:

n ¼
ln 1� confidenceð Þ

ln reliabilityð Þ
(1)

The confidence level is often set at 0.95 and reliability at 0.90 or 0.80. If we allow failure events,

then the calculation of the sample size is based on the following equation:

1� Confidence ¼
X

f

i¼1

n

i

� �

1� Reliabilityð ÞiReliabilityn�i (2)

where f is the failure rate and n is the sample size.

In a Levey-Jennings plot the X-axis represents time and Y-axis represents the measured value.

Reference lines are drawn parallel to the X-axis corresponding to mean, mean �1 standard

deviations, mean �2 standard deviations, and mean �3 standard deviations. The next step is

to plot measured values of the reference material for each run on the plot (Figure 2).

2.2. Westgard rules

Westgard rules are a set of guidelines set by Dr. JamesWestgard for identification of random and

systematic error in laboratory quality control experiments. They are based on repeated measure-

ments of at least two reference samples with each analytical run. Some of the Westgard rules are

Figure 2. An example of a Levey-Jennings plot. X-axis plots the time of measurement (e.g. day) and the Y-axis plot the

measurement value for that unit of time. The lines denoting the mean value and 1, 2 and 3 standard deviations from the

mean are explained in the figure.
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concerned with identification of random error and within runs error detection [2, 7]. Other

Westgard rules are focused on identification of systematic error and between runs error detec-

tion. In this chapter we will focus on the latter rules.

• 22S rule: The QC results are considered to have failed and a bias is present if two consec-

utive control values fall between the 3 standard deviations and 2 standard deviation limits

on the same side of the means reference line.

• 41S rule: The QC results is considered to have failed and a bias is present if four consecu-

tive control values fall on the same side of the mean reference line and are at least one

standard deviation away from the mean.

• 10x rule: The QC results are considered to have failed and a bias is present if 10 consecu-

tive control values fall on the same side of the mean reference line.

These rules are shown in Figure 3.

2.3. Method comparison

Method comparison is used for initial assay validation as well as for studying accuracy of a test.

The aim of method comparison is to establish whether the assay measures what it is supposed to

measure and how accurately it measures it. The findings of method comparison also allow for

correction of the results if a bias is found (i.e. calibration). The principal for method comparison is

that a gold standard or a standard reference material exists where in the amount of analyte in the

sample is exactly known (or known with a high degree of accuracy). We can use this reference

standard as a comparator against the performance of our assay and determine the degree of bias

that exists in our measurements. This essentially means that we are measuring the relative

performance of our assay against the reference standard.

Ideally, identification of a bias should lead to a search for the source of the bias and systematic

error, and attempts should be made to rectify the cause of the observed bias. However, there

are instances in which no fault or solvable problem is identified; in these instances, if the assay

has enough precision and stability as well as clinical merit then we can use the findings of

method comparison to adjust for the observed bias.

Bias can take two general forms: constant bias and proportional bias. The constant bias is a

difference between the observed measurement and the expected measurement that is constant

throughout the range of the observations. Constant bias (β0) is represented in regression statistics

Figure 3. Examples of systematic error in Levey-Jennings plot: A. An example of 2-2S rule, B. An example of 4-1S rule, C.

An example of 10x rule.
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as intercept. Proportional bias (β1), on the other hand, is proportional to the observed value of

the measurement and varies across the range of measurements. Proportional bias is represented

in regression statistics as the slope of the regression line. If the expected value of measurement is

Yi for each sample i, and the observed value of measurement for sample i is Xi, then we can form

a linear regression between the expected values and observed values:

Yi ¼ β0þ β1 Xi þ εi (3)

where εi is the random error of the expected observations under the Youden assumption which

states that the randomerrorof observedvalues is smaller than the randomerror for expectedvalues.

The regression formula is the representation of the best regression line that shows the relation-

ship of the observed value to the expected value. Figure 4 shows the regression lines for

different constant and proportional bias levels.

If no bias exists then Yi ¼ Xi.

The simple linear regression formula allows us to calculate the constant and proportional bias

using a simple unweighted ordinary least squares estimator. In ordinary least squares (OLS)

models, different candidate values for the parameter vector β1 are tested to create regression

lines. Then for each i-th observation the residual for that observation is calculated by measuring

the vertical distance between the data point (Yi, Xi) and the regression line formed using the

candidate value. The sum of squared residuals (SSR) is determined as a measure of the overall

model fit. The candidate value that minimizes the sum of squared residuals is considered as the

OLS estimator for the slope. For simplemethod comparison studies where only two comparators

are present the model can be simplified as:

β1 ¼

P
XiYi �

1
n

P
Xi

P
Yi

P
Xi

2 � 1
n

P
Xið Þ2

¼
Covariance X;Yð Þ

Variance Xð Þ
(4)

The constant bias can be calculated by subtracting the mean expected value from mean

observed value weighted by proportional bias:

β0 ¼ Y � β1 X (5)

Constant and proportional bias usually has different root causes. Constant bias often stems

from insufficient blank sample correction and is fairly easy to address and rectify. Proportional

Figure 4. A. When no systematic error exists. B. Shows constant bias. C. Shows a proportional bias.
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problems can sometimes be caused by the difference in the composition of calibrator samples

and the standard samples or biologic test matrices. The matrix of the reference standard is

usually near the actual matrix of the patient samples and thus may contain confounders which

may adversely affect the measurement. Yet calibrators often do not have a biologic matrix. If the

source of the proportional bias is due to calibration problems, then a recalibration can rectify the

problem.

The problem with the Youden assumption is that it considers our observations to have no

random disruptions, an assumption which is false as we know every measurement is associ-

ated with a degree of uncertainty and imprecision. Alternatively, we can use Deming’s regres-

sion where the random error for both expected and observed values is factored into the

calculation of the proportional and constant bias. In Deming’s regression a ratio of the vari-

ances of the random error of observed and expected values is calculated:

δ ¼
σε

2

ση2
(6)

where σε
2 is the variance of the expected values random error and ση

2 is the variance of the

observed values random error. Using this ratio, the OLS estimator for the proportional bias can

be given by:

β1 ¼
Var Yð Þ � δVar Xð Þð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Yð Þ � δVar Xð Þð Þ2 þ 4δCovar X;Yð Þ2
q

2Covar X;Yð Þ
(7)

This regression formula is also known as the maximum likelihood estimator [9].

If a linear relation between errors and measurements exists (or is assumed) then an alternative

method for error detection is to create Bland-Altman plots. In these plots, the average of the

paired values for expected and observed values is plotted on the x-axis and the difference of

each pair is plotted on the y-axis. In this method the average difference of the values is called

bias and the standard deviation of the differences is also calculated to determine the limits of

agreement which constitutes Mean difference �1.96SD.

The Bland-Altman approach allows for a visual inspection of the proportional bias. How-

ever, by dividing the limits of agreement by the mean value of the expected values we can

obtain a metric called percentage error. The acceptable percentage error levels for different

analytes have been determined and are standardized. In cases where the percentage error

exceeds the acceptable levels, corrective action is needed for the detected bias [10].

2.4. R statistics

One of the important statistics for simple linear regression is calculation of the Pearson’s r

coefficient. This coefficient shows how well the compared results change together and can

have values of between minus 1 and 1. This coefficient can be calculated by dividing the

covariance of the two variables to the product of their standard deviations:
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r ¼ Covar X;Yð Þ
σXσy

(8)

The closer the r coefficient gets to 1, the greater the linear relationship is between the two

variables. Some interpret the r coefficient as a measure of correlation with r coefficients more

than 0.8 showing correlation. However, in laboratory medicine a correlation of 0.8 actually

signifies a great degree of bias. In fact, laboratories should aim for a perfect degree of linearity

(r > 0.99) to ensure that systematic error is minimized. Attaining a Pearson’s r coefficient of

<0.975 signals the presence of systematic error and should prompt the lab to conduct further

investigation (using t-test and f-test) to determine the source of this error.

The degree of agreement or the coefficient of determination (R2). This coefficient is calculated

from the ratio of explained variance to the total variance of Y:

R2 ¼
P bY i � Y

� �2

P
Yi � Y
� �2 (9)

where bY i is the calculated value of Y based on the regression for the i-th observation and Yi is

the actual value of Y for i-th observation.

Alternatively, the coefficient of determination can be simply calculated by squaring the Pearson’s r

coefficient. While the Pearson’s r coefficient shows the presence of linearity, the coefficient of deter-

minationhelps us to determine howwell the regression line fits the actual data points. In assessment

of a method comparison evaluating this coefficient is necessary as it shows fit of the model:

The closer the coefficient gets to 1, the better the regression line fits actual data points. However, it

must be noted that even at numbers very close to 1 significant biasmay exist. For example, a 5%bias

will only result in a R squared score of 0.99 and a 10% bias will result in a R squared score of 0.96.

For laboratorymedicine purposeswe should aim for a R squared score ofmore than 0.99.

2.5. T-test and F-test

In cases where there is a suspicion of significant bias (as determined by Pearson’s r or R

squared statistics), then we should determine whether the bias stems from difference in the mean

assay concentration or in the variance of the assay. To check for mean we run a paired t-test, and,

to check for variance, we run an f-test.

The paired t-test is performed by comparing the means of the observed and expected values;

more specifically themean difference of the values (μD) is used for the comparison. The t-statistics

can be calculated by:

t ¼ μD

σD= ffiffi
n

p (10)

where n is the number of data points and σD is the standard deviation of the mean difference. To

determine the significance of the results (the p-value), the t-statistics should be looked up on a t

table corresponding the degree of freedom; the degree of freedom in paired t-tests equals n–1.
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A t-test with a significant p-value signifies the presence of a significant bias in the mean of the

methods. The next step then would be to determine whether the systematic error represents a

constant bias or a proportional bias. This can be done by examining the regression curve or

equation. The presence of an intercept signifies a constant bias while presence of a slope other

than 1 signifies proportional error. The correction for a constant bias is simple and would

require adding the constant to the measurement results. Correction of the proportional bias,

however, requires a recovery experiment as described in Section 3.8 below.

The f-test compares the expected variance of the values to the observed variance; while the t-

test compares the centroid of the data points (the mean), the f-test deals with the distribution

and variance of the data points (the variance). The t-test is more sensitive to differences in the

values in the middle of the data range while f-test is more sensitive to differences in the

extremes of the data range. A significant f-test would signify random error in the measurement

or in other words imprecision. To calculate the f-test the following equation is used (the larger

of the two variances will always be the numerator and the smaller one the denominator in this

fraction):

f ¼
Var1
Var2

(11)

The degree of freedom of the f-test is (n-1, n-1) and the significance threshold can be looked in a

f-table corresponding the degree of freedom.

It is important to perform the f-test prior to the t-test; one of the basic assumptions of the t-test is

that the standard deviations of the data points are similar between the two groups, i.e. no

significant imprecision should exist for t-test results to be valid. In presence of a significant

imprecision, the determination of presence of a significant bias should be done using a Cochran

variant of the t-test.

In Cochran variant of t-test, standard deviation cannot be pooled between the two groups:

t ¼
μD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var1þVar2
n

q (12)

The critical value for the t-statistics should also be calculated:

Critical t ¼
t
n Var1 þ Var2ð Þ

Var1þVar2
n

(13)

where t is the t-score corresponding to n-1 degrees of freedom [11].

2.6. Accuracy profile

Accuracy profiling has moved away from treating bias and imprecision as separate entities. In

fact, most guidelines (whether based on the total error principles or measurement uncertainty

principles) combine bias and imprecision for acceptability criteria. To calculate bias and

Systematic Error Detection in Laboratory Medicine
http://dx.doi.org/10.5772/intechopen.72311

57



imprecision, we need to run a reproducibility study. Reproducibility of quantitative studies is

obtained by repeated measurements of a sample in a series and then conducting multiple

series of reproducibility studies.

The overall measurement of bias will be the difference between the mean value of the analyte

obtained from the repeated measurement and the reference value:

Bias ¼ Overall mean� Reference value (14)

Bias and imprecision are used to form the tolerance interval; it is the interval which, with a

determined degree of confidence, a specified proportion of results for a sample fall. Tolerance

interval can be expressed as:

Tolerance Interval ¼ reference valueþ bias� intermediate precision (15)

For laboratory medicine, the tolerance interval of analytes needs to be smaller than the accept-

ability limits. In united states, the acceptability limits are set and governed by the Clinical

Laboratory Improvement Amendments of 1988 (CLIA88). These acceptability limits are pro-

vided under the following heading: 42 CFR Part 493, Subpart I - Proficiency Testing Programs

for Nonwaived Testing (https://www.gpo.gov/fdsys/pkg/CFR-2011-title42-vol5/pdf/CFR-2011-

title42-vol5-part493.pdf).

The important factor from intermediate precision that is needed in calculation of tolerance

interval is the standard deviation of reproducibility (SR). The standard deviation of reproduc-

ibility can be calculated by the following equation:

SR
2 ¼

1

n

Varbetweenseries
p� 1

þ n� 1ð Þ
Varwithinseries

n� p

� �

(16)

where n is the number of within-series measurement repeats and p is the number of series of

reproducibility measurements.

An advantage of calculating the intermediate precision is that we can use it in combination

with within- series repeatability to determine the uncertainty of bias:

Uncertainty of Bias ¼ 1:96
n SR

2 � Sr
2

� �

þ Sr
2

np

" #1=2

(17)

Sr
2 is the within-series repeatability and can be calculated using the following equation:

Sr
2 ¼

Varwithinseries
p n� 1ð Þ

(18)

Uncertainty of bias is essentially 1.96 times the standard deviation of bias which corresponds

to a 95% confidence interval for bias determination.

The between-series reproducibility is calculated using the following equation:
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SL
2 ¼

1

n

Varbetweenseries
p� 1

� Sr
2

� �

(19)

The between-series reproducibility is used in calculation of the Mee factor (Ks). Mee factor is

the other component of intermediate precision. Since the calculation of the Mee factor is

complicated we have broken it down into a series of equations. The first step is to calculate

the H ratio:

H ¼
SL

2

Sr
2

(20)

The next step is to calculate the G2:

G2 ¼
H þ 1

nH þ 1
(21)

Which in turn is used to calculate C:

C ¼ 1þ
1

npG2

 !1=2

(22)

The final step is to multiply C by the t-score associated with the degree of freedom (dof):

Degree of Freedom ¼
H þ 1ð Þ2

Hþ1
nð Þ

2

p�1 þ
1�1

n

np

(23)

And:

Ks ¼ C� tdof (24)

By calculating the Mee factor and the standard deviation of reproducibility we can now obtain

the intermediate precision:

Intermediate precision ¼ Ks � SR (25)

Thus, we can rewrite the tolerance interval as [12]:

Tolerance Interval ¼ reference valueþ bias� Ks � SRð Þ (26)

2.7. Weighting procedures

The problem with simple linear regression is that is based on a set of assumptions; one of the

problematic assumptions is that the standard deviation of the random error is constant

throughout the range of measurement. This assumption, however, is often wrong as the

standard error of measurement is often much larger near the extremes of measurement range

(near the limit of detection and the highest range of linearity). The solution in laboratory
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medicine can be to run linearity experiments and limit the measurement range based on the

linearity results. Despite this the effect of random variation on the regression line remains. To

rectify this, a solution is to employ a weighting procedure.

The simplest weighting procedure is to use the standard deviation of variation for each data

point of the method comparison study. This requires that the method comparison study is

repeated multiple times (20-30 times). This allows us to calculate the standard deviation of

measurement for each point (Si). The weighting coefficient will then be the inverse of this

standard deviation:

wi ¼
1

Si
(27)

This weight can then be incorporated into the equations of the method comparison. For

example, the r coefficient can be recalculated as:

r ¼

P

wi Xi � X
� �

Yi � Y
� �

P

wi Xi � X
� �2 P

wi Yi � Y
� �2

� �1
2

(28)

Weighting can often considerably decrease the bias percentage especially at the extremes of

measurement compared to non-weighted regression. Weighting by inverse of standard devia-

tion tends to normalize the relative bias at the extremes of measurement while weighting by

inverse of variance tends to favor the bias correction for lower ends of measurement (less bias

at lower concentrations). The decision for weighting and/or choice of weighting procedure

should be based on the assay characteristics and performance requirements [13].

2.8. Recovery percentage

To estimate the proportional bias, a recovery experiment is needed. The recovery experiments

are performed by calculating the amount of recovery when adding a known amount of the

analyte to the sample: this is done by dividing the measurement sample into two equal

aliquots and performing the measurement for both aliquots. To one of the aliquots, a known

amount of target analyte is added (aliquot 1). For the other aliquot (aliquot 2) an equal amount

of diluent is added and the measurement is repeated. The recovery percentage can then be

calculated:

Recovery% ¼
Analyte amount in aliquot 1ð Þ � Analyte amount in aliquout 2ð Þ

Amount of analyte added to aliquote 1
� 100 (29)

The recovery or bias percentage is often used in laboratory medicine to state the proportional

bias. Most of the regulatory agencies have set critical values for the recovery percentage for

different analytes. The advantage of using recovery percentage is that it normalizes to 100

allowing for easier understanding of the scale of bias present [2].
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3. Bias detection without comparators

Up to this point we have discussed bias detection methods that use a reference material or

comparator to assess the presence of bias. While this has been the accepted standard for many

laboratory regulatory agencies, there are arguments against this approach to bias detection:

first of all, the assumption of method comparison studies is that the reference material (control

samples) values are true and do not suffer from imprecisions. The measurement uncertainty is

considered to be minimal in these samples. Yet, unless these samples vary considerably from

the biologic sample matrix, a degree of measurement uncertainty would exist in these samples

which lead to inaccurate estimates of bias and imprecision of laboratory instruments and

techniques. On the other hand, running repeated control samples with each run and the need

for revalidation of the instrument and techniques after each change in the parameters, requires

a considerable investment in terms of time, labor and cost.

Alternatively, the systematic error can be determined by using the patient samples. This can be

done by either tracking the results of known normal patients (i.e. those expected to have a

result within the reference range based on their clinical and physiologic state) or by following

the trend of all the results of an analyte over time. Using patient samples has the advantage of

including the inherent biologic uncertainty into the calculation of bias.

3.1. Average of normal (AON)

In this approach the comparator for quality control would the average values of the analyte in

normal individuals. This requires us to know the population average and standard deviation

for that analyte. If we measure the analyte in a normal individual, we would expect the results

to approximate the population average. Deviations of the normal results from the expected

reference normal can signal the presence of a systematic error.

In AON, the mean value of normal samples is compared to a mean reference value. The mean

reference value should be established by the laboratory based on the population it serves; this is

best done as part of the initial validation of an assay when a large size sample of normal indi-

viduals is tested to establish the reference ranges. This experiment allows us to calculate the

population mean, standard deviation and standard error (SD/√N). We expect the Average of

Normals from our analytical run to fall within the 95% confidence interval of the populationmean.

95%CI ¼ Population Mean� 1:96 Standard Error (30)

With each analytical run, a sample of normal results should be used to calculate the Average of

Normals for that analytical run. If the calculate average is beyond the 95% CI of the population

then we have detected a systematic error in the analytical run.

In AON method, as the size of the normal sample increases the probability of detecting bias

also increases. The size calculations for the AON method are determined by the ratio of the

biological variance of the target analyte (CVb) to the variance of the method (CVa) (CVb/CVa)
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as well the expected probability of detecting the bias. To help with these calculations, one can

utilize the Cembrowski nomogram [14] or, alternatively, the methods used in [15]. It is also

possible to perform the AON by performing a two-sample independent t-test.

3.2. Moving patient averages

Unlike the AONmethod, in moving patient averages, all the results of an assay are included in

evaluation of bias. The principle for moving patient averages is that the samples tested in a

laboratory follow a repeating pattern. This assumption means that the overall biologic and

clinical spectrum of patients and individuals tested in the laboratory is constant throughout

the analytical runs. In moving patient averages, we expect the average results of an assay for

two overlapping subsets of patient to be constant. In this method, for example, an average is

calculated on the first 100 patients, should be similar to the average calculated based on the

results of patients number 2 to 101, etc.

The moving average can be calculated using exponentially weighted moving average (XM, i). It

is important to consider that, in moving patient averages the weight 1� rð Þ assigned to

previous results average (XM, i�1) should be greater than the weight (r) assigned to the most

recent results (Xi) (in other words the average of each batch is weighted down by previous

averages). This can be stated as:

XM, i ¼ rXi þ 1� rð ÞXM, i�1 (31)

The weight assigned to current values is usually set between 0.05 and 0.25 with recommended

value of 0.1.

The comparator in moving patient averages are the control limits. We expect the weighted

patient average to fall within the control limits for that test. Any moving patient average outside

of this control limit signifies the presence of a bias. The control limit equation is provided below.

Control limits of exponential moving average ¼ XM,0 � Lσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r

2� r
1� 1� rð Þ2i
h i

	

	

	

	

	

	

r

(32)

where L is a constant set based on the confidence level (for 95% CI, L equals 2), and σ is the

standard deviation of the current batch.

The moving patient averages can also be evaluated using the Bull’s algorithm. In this approach,

the moving average (Xb) is calculated for subsets of 20 samples with 19 patient values and one

value representing the previous moving average. These values are weighted differently (i.e. more

weight is assigned to the previous moving average than the 19 new samples).

The general formula for Bull’s moving average can be written as:

Xb, i ¼ 2� rð ÞXb, i�1 þ rD (33)

where Xb, i is the current moving average, r is the weight for current values (with possible

values of 0 < r ≤ 1, usually set to 1), Xb, i�1 is the previous moving average and D is calculated
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from the value of current measurements in the batch. If we assume a value of 1 for r then we

can write the bull’s algorithm as:

Xb, i ¼ Xb, i�1 þ

P

N

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xj � Xb, i�1

p

N

0

B

B

B

@

1

C

C

C

A

2

(34)

where N is the number of results in the batch.

The control limits of Bull’s moving average are set as Xb,0 � 3%Xb,0, with Xb,0 being the target

value for that analyte.

The advantage of moving averages is that they can filter out outliers’ effect thus removing

confounding by imprecision.

The moving patient averages algorithms are very powerful for detection of bias: they can

routinely identify bias percentages of 1% and more. Most automated hematology analyzers

use moving patient averages to check for presence of bias in their assays. However, the patient

moving averages algorithms have suffered from implementation problems and are not widely

used beyond hematology analyzers [2].

3.3. Time series analysis and forecasting for bias identification

An extension of the moving patient averages is the application of time series analysis and

forecasting for bias detection. In time series analysis the previous trends of the analyte results

are used to predict (forecast) the trend in future. If the observed analyte results deviate from

the forecasted trend, then a measurement error may exist. In the setting of laboratory medi-

cine, we need to be able to detect bias in short time series and distinguish the measurement

error from the noise and chaos stemming from biologic variation. Here, we will introduce the

concept of using time series analysis for bias detection but we will not explain the methodol-

ogy in depth as it goes beyond the scope of this chapter.

In forecast models, a series of data points are used to create one or more projection patterns for

future trends. This is done using forecasting models such as ARIMA (Autoregressive inte-

grated moving average). These projections are often correct for very short-term predictions

(next 1 or 2 data points), but for forecasting further, the noise and chaos cause the prediction

accuracy to fall. However, by examining the correlation of predicted and observed values and

documenting its changes as we forecast further into the future, we can determine if the

observed pattern represents the deterministic chaotic nature of biologic measurement or if it

represents a measurement error; for measurement error we expect the correlation coefficient to

remain constant with time; however, with chaos, we expect the correlation coefficient to

deteriorate over time [16].

There are other approaches using times series analysis that can be helpful in systematic error

identification. One of these approaches uses unit root tests such as the Dickey-Fuller test [17].

These tests examine whether a time series is stationary over time, i.e., whether the mean and
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variance are constant over time. In contrast, nonstationary time series will have either a

varying mean and/or varying variance over time. Using this approach any departure from

stationarity can signal either a drift (proportional bias) and/or a shift (constant bias) or even

increase in imprecision over time (difference-stationary nonstationarity) [17]. If the Dickey-

Fuller test returns a significant p-value then we can say that the series is stationary, and no

significant measurement error is present.
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