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Abstract

Transcriptome, the functional element of the genome, is comprised of different kinds of
RNA molecules such as mRNA, miRNA, ncRNA, rRNA, and tRNA to name a few. Each
of these RNA molecules plays a vital role in the physiological response, and understand‐
ing the regulation of these molecules is extremely critical for the better understanding of
the functional genome. RNA Sequencing (RNASeq) is one of the latest techniques applied
to study genome-wide transcriptome characterization and profiling using high-through‐
put sequenced data. As compared to array-based methods, RNASeq provides in-depth
and more precise information on transcriptome characterization and quantification.
Based upon availability of reference genome, transcriptome assembly can be reference-
guided or de novo. Once transcripts are assembled, downstream analysis such as expres‐
sion profiling, gene ontology, and pathway enrichment analyses can give more insight
into gene regulation. This chapter describes the significance of RNASeq study over array-
based traditional methods, approach to analyze RNASeq data, available methods and
tools, challenges associated with the data analysis, application areas, some of the recent
advancement made in the area of transcriptome study and its application.

Keywords: RNASeq, de novo and reference-based transcriptome assembly, Differential
gene expression, Next Generation Sequencing

1. Introduction

Completion of the Human Genome Project in 2001 brought with it the realization that while
understanding the genome is of great value, our understanding of biology is woefully
incomplete without the knowledge of the functional elements of the genome. The functional
element of the genome is the transcriptome, which is the set of RNA molecules such as mRNA,
rRNA, tRNA, and various small RNAs. A large number of research projects are now focused
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on the transcriptome rather than on genome and proteome as only 1-2% of genes are coding
and 80-90% of the transcribed genes are not translated to proteins. However, these are known
to be involved in epigenetic regulation and gene expression regulation [1-4]. Gene expression
is a complex process regulated at multiple levels such as gene transcription, post-transcrip‐
tional modifications, and translation. Briefly, complexity at the transcription regulation arises
from the presence of multiple Transcription Start Sites (TSSs), which can result in production
of multiple transcripts from a single gene [5] and alternate splicing as well as alternate
polyadenylation of the primary RNA to produce several different forms of transcripts
originating from the same gene [6, 7]. Because of different TSSs, eventually each mature
transcript will code for different protein [8]. Additionally, noncoding RNAs, which are not
translated to proteins, play catalytic and structurally important roles. For example, tRNAs and
rRNAs play a critical role in translation, small nuclear RNAs (snRNAs) participate in mRNA
splicing, small nucleolar RNAs (snoRNAs) regulate rRNA splicing, guide RNAs (gRNAs)
regulate RNA editing, and miRNA are involved in translational repression [9]. Study of the
transcriptome provides an understanding of the regulation of gene expression pattern [10],
alternative splicing and transcript structure [11], dynamic regulation of transcripts in different
tissues [12], and detailed information about the gene regulation in normal and diseased
conditions [13].

Transcriptome profiling is typically performed using hybridization or sequencing-based
methodologies. Hybridization-based methods involve binding of fluorescently labeled
fragments to complementary probe sequences either in solution or on a solid surface, e.g.,
microarray [14, 15]. These approaches, however, suffer from limitations such as low resolution,
low specificity, and low sensitivity [16]. Later, Sanger sequencing-based approaches such as
SAGE (Serial Analysis of Gene Expression) [17], CAGE (Cap Analysis of Gene Expression) [18],
and MPSS (Massively Parallel Signature Sequencing) [19] were developed, but these ap‐
proaches have serious limitations such as consideration of partial transcripts structure for gene
expression and inability to distinguish between isoforms [20]. With the advent of Next
Generation Sequencing (NGS), a technology that enables sequencing of millions of nucleotide
fragments in parallel, RNA Sequencing (RNASeq) has emerged as a powerful method for
studying the transcriptome. Though microarrays are high-throughput and economical,
RNASeq offers numerous advantages over microarrays [15]. Some of the key benefits of using
RNASeq over microarrays are:

a. Genome-wide coverage of transcripts is offered by RNASeq.

b. No prior knowledge of genome sequence is required in the case of RNASeq as opposed
to microarray and hence RNASeq experiment can be performed in the absence of the
reference genome.

c. Improved sensitivity and specificity: RNASeq offers enhanced detection of transcripts and
differentially expressed genes and isoforms. Moreover, RNASeq is known to be more
accurate in terms of fold change detection for both high- and low-abundance genes.

d. Detection of novel transcripts: Unlike microarray, RNASeq enables genome-wide
unbiased study and is not dependent on transcript or region-specific probes and hence it
investigates both known and novel transcripts.
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e. Detection of low-abundance transcripts if sequencing is done at high depth.

f. No or minimal background signal: While mapping the reads to the genome, one can
consider reads mapping unambiguously, which results in noise reduction. On the other
hand, cross-hybridization increases noise-to-signal ratio in microarrays.

g. SNP detection: RNASeq data can be used for SNP detection especially for highly and
medium expressed genes.

Because of its wider detection range, more sensitivity, genome-wide capture of expression
profile, and rapidly decreasing cost, RNASeq technology is being preferred over array-based
methods for transcriptome profiling. RNASeq has been widely used in the detection of
differentially expressed genes between cancerous and normal tissue samples [21], identifica‐
tion of novel gene fusion events in melanoma [22], discovery of several novel miRNAs in
cancerous cells [23], identification of differential gene expression and splicing events in
Alzheimer’s disease [24], identification of differential promoter usage, and higher expression
of noncoding RNA in diabetes [25, 26]. RNASeq is now being used extensively for transcrip‐
tome assembly, thus enabling better characterization of economically important plants such
as Garlic [27], Pea [28], Chickpea [29], Rice [30], Olive [31], Wheat [32], and many other plants
[33]. Further, combination of molecular biology and biochemical techniques with sequencing
has led to the study of different aspects of the transcriptome, such as mRNASeq, miRNASeq,
GROSeq, CLIPSeq, NETSeq, PARESeq, and ChIRPSeq (additional information in Table 1).
Projects such as ENCODE (ENCyclopedia of the DNA Elements) and TCGA (The Cancer
Genome Atlas) have characterized transcriptome of several different human cell lines and
tumor samples, respectively, using NGS-based transcriptome profiling. Goal of ENCODE
(https://www.encodeproject.org/) is to identify genome-wide transcriptome profile to under‐
stand the downstream effects of gene regulation in the human genome. TCGA (www.cancer‐
genome.nih.gov/), which contains information on cancer patient data, aims to understand the
mechanism of tumor transformation and progression.

RNASeq methods Description Reference

mRNASeq To identify messenger RNAs (mRNAs) [12]

miRNASeq To identify micro RNAs (miRNAs) [167]

GROSeq (Global Run On
Sequencing), PROSeq

To identify nascent RNAs that are actively transcribed by RNA
Pol II

[168]

ChIRPSeq (Chromatin Isolation
by RNA Purification)

To discover regions of the genome bound by a specific RNA [169]

RiboSeq (Ribosome profile
Sequencing)

To identify RNAs that are being processed by the ribosome and
hence this method helps to monitor the translation process

[170]

CLIPSeq (Cross-Linking and
Immunoprecipitation
Sequencing)

To identify the binding sites of cellular RNA-binding proteins
(RBPs) using UV light to cross-link RNA to RBPs without the
incorporation of photoactivatable groups into RNA

[171]
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RNASeq methods Description Reference

PAR-CLIP
Seq(Photoactivatable-
Ribonucleoside-Enhanced
Cross-Linking and
Immunoprecipitation
Sequencing)

To identify and sequence the binding sites of cellular RNA-
binding proteins (RBPs) and microRNA-containing
ribonucleoprotein complexes (miRNPs)

[172]

NETSeq (Native Elongation
Transcript Sequencing)

It sequences and captures nascent RNA transcripts after
immunoprecipitation of RNA Pol II elongation complex

[173]

TRAPSeq (Targeted
Purification of Polysomal
mRNA Sequencing)

To detect and identify translating mRNAs [174]

PARESeq (Parallel Analysis of
RNA Ends Sequencing) and
GMUCT (Genome-wide
Mapping of Uncapped
Transcripts)

To detect and identify miRNA cleavage sites and uncapped
transcripts that undergo degradation

[175]

TIFSeq (Transcript Isoform
Sequencing) or Paired-End
Analysis of Transcription start
site (PEAT)

RNA isoforms are identified after 5' and 3' paired-end
sequencing

[176]

CELSeq (Cell Expression by
Linear amplification and
Sequencing), SMARTSeq
(Switching Mechanism At the
5′ end of the RNA Template
Sequencing), STRT (Single-cell
Tagged Reverse Transcription)

Single-cell transcriptomics methods [177]

Table 1. Various RNASeq-based methods to study transcriptome

One of the first steps while designing the RNASeq experiment is choosing an appropriate
sequencing platform. Several sequencing platforms such as Illumina, Roche, PacBio, and Ion
Torrent, which are based on different sequencing chemistry and technology, are available
[reviewed in 34, 35]. Current leading platform for RNASeq (and other NGS-based analyses) is
the HiSeq series of sequencers from Illumina (https://www.illumina.com/systems.html)
because it provides high throughput, deep sequencing, low sequence error, and long enough
read data to be useful in multiple applications. Recently, the PacBio RS II (http://www.pacif‐
icbiosciences.com/) is gaining popularity for better transcriptome construction, because of its
ability to generate long reads. Once the millions of reads are generated from an RNASeq
experiment, the bioinformatics data analysis begins. In the following section, we briefly present
the bioinformatics data analysis steps, tools, and methods.
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2. Bioinformatics analysis of RNASeq data

Analysis of the RNASeq data is a multistep process that typically includes quality check, data
preprocessing, transcriptome assembly (reference-guided and de novo transcriptome assem‐
bly), quantification, statistical analysis, and functional annotation (Figure 1). These steps are
described in details in the following.

Figure 1. Basic RNASeq data analysis workflow. Firstly, raw sequenced data are checked for the quality and, if re‐
quired, low-quality reads and artifacts are removed. In the case of reference-based assembly, the reads are mapped to
the reference genome in order to know their location. All the mapped reads are then analyzed for expression profiling.
Further, differentially expressed genes and isoforms can be annotated using Gene Ontology (GO) and Pathway enrich‐
ment analyses. In de novo assembly approach, after preprocessing of the raw reads, transcriptome can be assembled
using different de novo transcriptome assemblers. Once transcripts are constructed and abundance estimate is obtained,
the complete Open Reading Frames (ORFs) transcripts are predicted. The predicted ORFs can be annotated or ana‐
lyzed for expression profiling and then annotated using remote homology search method, GO, and pathway enrich‐
ment analyses.

2.1. Quality check and data preprocessing

Next generation sequencers assign a Phred quality score, which is the probability of the base
call being inaccurate, to the called bases. Low Phred scores (Q< 30) indicate read data of poor
quality. Poor-quality read data can arise from problems in the library preparation or from
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sequencing itself. Additionally, PCR artifacts, sequence-specific biasness, untrimmed adapter
sequences, and other possible contaminants can lead to poor data quality. These factors can
affect the downstream analysis and data interpretation, and can give inaccurate results. In
order to assess quality of raw sequenced data several tools such as FastQC (http://www.bioin‐
formatics.babraham.ac.uk/projects/fastqc/) and PRINSEQ [36] are available. Once the data are
checked for quality, they should be processed to remove reads with low-quality bases, adapter
sequences, and other contaminating sequences. Tools such as Cutadapt [37], Trimmomatic
[38], TrimGalore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), FASTX-
Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), which trim adapter or other contaminants
based upon user-provided parameters, can be used for performing these operations. A brief
description of some of these quality and data preprocessing tools is provided below:

FastQC: FastQC is a simple, easy-to-use tool that evaluates the quality of read data generated
from the next generation sequencers. The input file/s for FastQC can be in Fastq, SAM, or BAM
format either in the compressed or uncompressed form. FastQC reports basic statistics for the
read data such as overrepresented sequences, k-mer content, base quality and content, adapter
content, read duplication level, etc. FastQC is available as a stand-alone Java-based program
with a graphical user interface and can be run from both Linux (using command line) and
Windows systems.

PRINSEQ: PRINSEQ reports base quality, GC content, duplicates, adapters, presence of
ambiguous sequences represented as “N,” poly A tails, etc. Unlike FastQC, PRINSEQ also has
the option of trimming and filtering reads. PRINSEQ is available as stand-alone as well as web
application (http://prinseq.sourceforge.net/). It accepts uncompressed files in Fasta, Qual, and
Fastq formats.

Trimmomatic: Trimmomatic is a Java-based program for the preprocessing of NGS read data
(http://www.usadellab.org/cms/?page=trimmomatic). It can trim contaminant sequences,
adapters, and filter reads based upon the quality. It supports compressed files in Fastq format
and generates output in Fastq format. Because of its multithreading option, its data processing
speed is higher than other tools available to perform the same function. Unlike some of the
other tools, Trimmomatic can analyze both single-end as well as paired-end read data.

Cutadapt: Cutadapt is a python-based tool for read preprocessing and can be run as a
command line application (https://cutadapt.readthedocs.org/en/stable). It accepts compressed
files in Fasta, Qual, and Fastq formats, and supports both paired-end and single-end files. It
trims low-quality bases, multiple adapter sequences from either 3’, 5’, or from both ends. In
addition, Cutadapt can remove fixed number of bases from either ends of the sequences and
supports demultiplexing, i.e., reads can be written to different output files depending upon
the adapter sequence found in the reads. The demultiplexing feature is particularly useful since
pooling multiple samples in a single run is an increasingly common practice as a result of
increased sequencer throughput.

TrimGalore: TrimGalore is a wrapper tool written around FastQC and Cutadapt for quality
check and adapter trimming for regular as well as MspI-digested RRBS-type (Reduced
Representation Bisufite-Seq) libraries. It accepts compressed Fastq files and supports paired-
end and single-end data.
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FASTX-Toolkit: FASTX-Toolkit is a collection of tools that accepts read data in Fasta and Fastq
file formats and trim the data based on base quality and adapter sequence contamination.
Additionally, the toolkit has tools that can perform file format conversion, split sequences
based upon barcodes, and generate reverse complement of sequences.

Once the read data are filtered and trimmed to remove low-quality bases, adapter sequence,
and contaminants, they are ready for transcriptome assembly and profiling analysis. There are
two different approaches for constructing full-length transcripts: reference-based assembly
(when a reference genome is available) and de novo assembly (when the reference genome is
not available), a computationally intensive and complex process (Table 2). Reference-based or
genome-guided assembly refers to mapping sequenced reads to the reference genome
followed by assembling the transcripts. In contrast, in de novo transcriptome assembly,
transcripts are constructed directly from the overlapping sequenced reads. For the transcrip‐
tome assembly of organisms without reference genome, only de novo transcriptome assembly
approach is available for transcriptome construction. However, for organisms with known
reference genome, both reference-based and de novo transcriptome assembly can be employed
for transcriptome construction. In fact, in this case, de novo transcriptome assembly will be
more effective in filling in the gaps (observed due to variation in reference genome sequence
and poor-quality annotation) and hence would complement the reference-based transcriptome
assembly. More details on these two transcriptome assembly approaches are discussed in the
following sections.

Reference-based assembly de novo assembly

Reference genome is required to assemble
the transcriptome

Transcriptome is assembled de novo

Relatively less computation- intensive Computation- intensive

Contaminants and sequencing artifacts
are not of major concern

Contaminants and sequencing artifacts can lead to poor quality of
assembled transcriptome

Mapping quality of transcripts is
dependent on splice aligners

Mapping is not required

Can assemble transcripts of low
abundance

Difficult to assemble the transcripts of low abundance unless sequencing
depth is high

Can work well with low sequencing
depth data (~10X)

Work well with high sequencing depth data (~30X)

Less efficient in identifying novel isoforms
and SNPs

Efficient in identifying novel isoforms and SNPs

Completeness and contiguity of
transcriptome is relatively higher

Completeness and contiguity of transcriptome is relatively lower
especially for low sequencing depth data

Table 2. Difference between reference-based and de novo assembly approaches
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2.2. Transcriptome assembly

2.2.1. Reference-based transcriptome assembly and profiling

Typically, in a reference-based transcriptome profiling study, the computational workflow
starts with aligning the quality-checked reads to the reference genome or transcriptome using
a suitable read aligner. The aligned reads are then used to quantitate the genomic features
(genes/isoforms). The quantity of the features needs to be normalized before comparison
between different experimental conditions. The normalized feature counts are then used for
drawing statistical inference on their difference in expression between samples under study.
Finally, the differentially expressed set of genes is processed to derive biological insights
relevant to the experimental setup. The success of this analysis depends very much on
decisions that the user takes while choosing reference genome, annotation, tools, and associ‐
ated parameter values at every step of the analysis. Steps involved in reference-based tran‐
scriptome assembly and analysis are described below.

2.2.1.1. Choice of reference build and annotation file

Reference genome and annotation files of a large number of species are available from a
number of publicly available resources. Three of the most widely used resources are Ensembl
(http://www.ensembl.org), the National Center of Biotechnology Information (NCBI; ftp://
ftp.ncbi.nih.gov/genomes), and UCSC genome browser (http://genome.ucsc.edu). Ensembl is
jointly headed by the European Molecular Biology Laboratory – European Bioinformatics
Institute (EMBL-EBI) and the Wellcome Trust Sanger Institute (WTSI). Ensembl generates
genome annotation for vertebrates and other eukaryotic species, and the information is made
freely available to the research community [39]. According to the latest Ensembl release 81, a
total 23,636 genomes from 4,991 species are available. The NCBI also hosts genome sequence
annotation data of over 1000 organisms including bacteria, archaea, eukaryote, viruses,
phages, viroids, plasmids, and organelles. The UCSC genome browser is maintained by the
UCSC Genome Bioinformatics group and provides data for over 90 organisms that belong to
vertebrates, deuterostomes, insects, nematodes, yeast, viruses, and others [40]. In addition to
the aforementioned data resources, Genome Reference Consortium (GRC), comprising of
WTSI, the Genome Institute of Washington University (TGI), EBI, and NCBI ensures that the
human, mouse, and zebrafish, and the genome assemblies of other model organisms are
continuously updated and properly maintained.

Irrespective of the source, it is always recommended to use the latest genome sequence and
its annotation. Zhao et al. [41] demonstrated that the choice of a gene model (annotation
information/annotation catalog) has a dramatic effect on both gene quantification and
differential analysis. We would recommend using Ensembl as it provides more detailed
annotation of the genomic features.

2.2.1.2. Choice of read aligner

One of the most challenging parts of RNASeq analysis is mapping the sequencing reads to the
genome correctly, especially for eukaryotes where presence of splicing events adds to the
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complexity. Multiple aligners, which can be divided into two categories, are available for
aligning short-reads to the genome:

1. Non-spliced aligners: These aligners do not handle splicing events and are therefore
suitable for prokaryotic RNASeq analysis only.

2. Spliced aligners: These aligners can place spliced reads across introns and determine
exon–intron boundaries. Therefore, these are preferred for eukaryotic RNASeq analysis.

The non-spliced aligners can be further classified, on the basis of the algorithm used, into two
categories:

• Hash table-based aligners: This set of aligners uses a seed sequence to identify alignment
candidates, which are then either extended or discarded using more precise dynamic
programming alignment algorithms. These aligners can be further divided, based upon the
approach of finding a seed, into two groups:

a. Reference indexing: Aligners create index using reference genome. Examples include
BFAST [42], Novoalign (http://www.novocraft.com), GNUMAP [43], SHRiMP2 [44],
Mosaik [45].

b. Read indexing: Aligners use read-based index. Examples include MAQ [46], RMAP
[47], and RazerS [48].

• FM-index-based aligners: This set of aligners creates FM-index of the genome using Burrows
Wheeler Transform data compression algorithm. FM-index’s compressed, yet searchable
suffix array-like structure makes these aligners both memory-efficient and ultrafast.
Examples include Bowtie1 [49], Bowtie2 [50], BWA [51], and SOAP2 [52].

Example of spliced aligners include GSNAP [53], MapSplice [54], SpliceMap [55], STAR [56],
and TopHat2 [57]. GSNAP can identify a splice site in two ways: first, by evaluating the
surrounding genomic sequence using probabilistic models of donor and acceptor splice site;
second, by utilizing user-provided database of known exon–intron boundaries, which
improves the sensitivity and specificity of the tool. Both MapSplice and TopHat2 use a two-
step algorithm where in the first step potential splice sites are detected, which are then used
in the second step to find correct map of reads. MapSplice is a de novo spliced aligner, whereas
TopHat2 can perform both de novo and gene-annotation-based splice alignment. TopHat2
incorporates Bowtie1 or Bowtie2, in the back-end, for initial alignments. SpliceMap is also a
de novo splice aligner, which is highly sensitive and specific in finding novel splice junctions
without using any existing gene model information in arbitrary RNASeq read lengths. Another
splice-aware aligner, STAR, utilizes sequential maximum mappable seed search in uncom‐
pressed suffix arrays followed by seed clustering and stitching procedure. It has been evalu‐
ated to be the fastest aligner among the above-listed spliced aligners with lowest false-positive
rate at high sensitivity [56]. However, its RAM requirement is higher as compared to its
counterparts.

The latest addition to the list of spliced aligners is HISAT (Hierarchical Indexing for Spliced
Alignments of Transcripts) [58], which is claimed to be the fastest aligner currently available.
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The reason for this highly efficient system is believed to be the indexing scheme it utilizes. As
compared to its counterparts, HISAT uses two different types of indexes instead of a single
index: (i) a whole-genome FM index to anchor each alignment, and (ii) numerous local FM
indexes for very rapid extension of these alignments. HISAT is 50 times faster than TopHat2,
12 times faster than GSNAP, and slightly faster than STAR [56]. In addition, HISAT requires
comparable amount of RAM as TopHat2 but maximum 20% of RAM as GSNAP or STAR needs.
Similar to TopHat2, HISAT also uses Bowtie2 in the back-end. Furthermore, it is the only
aligner that can work directly on an SRA file, which eliminates the sra to fastq file conversion
requirement.

Considering the options available, selecting the right aligner is a nontrivial task and there are
several publications comparing the read aligners. Fonseca et al. [59] published a feature-level
comparison of 60 mappers and highlighted the difficulties in determining the best aligner (in
terms of accuracy and speed). Other comparative studies include one by Lindner and Friedel
[60] on non-spliced aligners and another by Engstrom et al. [61] on spliced aligners.

Answers to the following questions may help to choose a suitable aligner:

1. Does the genome sequence belong to a prokaryote (where a gene lacks intron) or eukaryote
(where a gene has introns)?

If the genome is bacterial (example of a prokaryote), then computationally intensive splice
aligners such as TopHat2 or STAR are not required. In this case, non-splice aligners such as
Bowtie1, Bowtie2, or BWA are more appropriate because of the contiguous read mapping to
the reference genome. On the contrary, for eukaryotic genomes such as human/mouse, where
the reads will span an exon boundary and therefore a part of it will not map contiguously on
the reference genome; it is better to use a splice aligner that can identify splice sites.

2. Are the sequence data available in base space or color space format?

If the data are generated from a SOLiD sequencing platform, they will be in color space format
and almost all recently developed tools do not support color space data. In this case, the only
available options are aligners such as BWA (older than 0.6.x), Bowtie1, and TopHat2.

3. Does the aim of RNASeq experiment include calling variants in transcripts?

In experiments where the aim is to find variants in transcripts, mapping quality plays a crucial
role, and hence it is advisable to use only aligners that provide accurate mapping quality. BWA
and STAR aligners are suitable for this purpose; however, Bowtie 1 is not because it does not
assign appropriate quality score to the mapped reads.

Additionally, one should also consider the comparative precision and recall statistics, CPU,
and RAM requirements of the aligners. In addition to the aligners used, the data type itself
plays a critical role in the quality of mapped data. For example, paired-end information
improves mapping accuracy and, therefore, paired-end data are favored over single-end data
for RNASeq experiment.

The aligned read data generated from aligners mentioned in the previous section are stored
in Sequence Alignment/Map (SAM) file format, which is a gold standard to store alignment

Next Generation Sequencing - Advances, Applications and Challenges120



data. The SAM format has been created by the SAM/BAM format specification working group
(https://samtools.github.io/hts-specs/SAMv1.pdf) for standardizing the format in which
aligned data are stored. A SAM file contains information about the reference sequence name,
query sequence name, alignment position and direction of the read on the genome, mapping
quality, etc. However, SAM files are typically very large; hence, these files are converted into
binary counterpart known as BAM (Binary of SAM) files. This is done typically using SAMtools
[62], which provides a set of programs to manipulate the alignment files. Alignment files can
be further manipulated with utilities such as SAMtools and Picard (http://broadinsti‐
tute.github.io/picard/) to efficiently retrieve reads and regions of interest.

2.2.1.3. Choice of annotation source

Depending upon the biological question of interest, one may wish to perform expression study
either on known transcripts only, as per a given annotation catalog, or on reconstructed
transcriptome built using a known reference annotation. This enables the quantification of
novel genes/isoforms in addition to the known ones. In the first case, the mapped reads and
the annotation catalog can be used to assign read counts to each feature (genes/transcripts)
using a tool like htseq-count [63], and then perform statistical analysis to identify the differ‐
entially expressed genes/isoforms. In the second case, transcriptome reconstruction is required
prior to differential expression analysis. It requires assembly of reads into transcription units
using either the reference-based or de novo assembly approach. Given a reference genome and
an annotation catalog, there are tools such as Cufflinks [64, 65] that first map all the reads to
the genome and then use spliced reads directly to reconstruct the transcriptome. It generates
a GTF file that contains the assembled isoforms along with isoform-level relative abundance
in Fragments Per Kilobase of exon model per Million mapped fragments (FPKM) units [65].

2.2.2. De novo transcriptome assembly

Building a transcriptome using de novo methods is a powerful way to create the transcriptome
of a divergent or novel species. Mainly three features affect the quality of assembled transcripts:
a) type of transcript: presence of repeats, polymorphisms, splicing event, complexity of
organism, e.g., ploidy level, GC content; b) sequencing technology: library preparation,
sequencing accuracy; c) bioinformatics workflow: assembly algorithms and annotation.
Currently available de novo assemblers have different sensitivity, and specificity in terms of
transcript identification are error-prone, and lead to fused transcripts, splicing errors, and gaps
[66]. In order to enhance the sensitivity and specificity one can take the combined approach,
which employs de novo assembly method with reference-guided approach.

2.2.2.1. De novo assembly approaches

There are several algorithms available for de novo transcriptome assembly (Table 3). In de
novo transcriptome assembly, contigs or transfragments are created from overlapping reads.
Process of assembly involves either de Bruijn graphs construction using k-mers or overlap-
layout-consensus (OLC) approach for short and long reads, respectively [67].
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Tool name Algorithm Read type Reference

Trinity de Bruijn graph Single and Paired end [78]

Velvet-Oases de Bruijn graph Single and Paired end [74, 77]

SOAPdenovo-Trans de Bruijn graph Single and Paired end [80]

IDBA-tran de Bruijn graph Paired end [178]

Trans-ABySS de Bruijn graph Single and Paired end [79]

EBARDe novo Extension, Bridging, and
Repeat-sensing de novo

Paired end [179]

Bayesembler Bayesian model Paired end [180]

Mira Overlap graph Single and Paired end [68]

Table 3. A list containing different de novo transcriptome assemblers

Overlap-Layout-Consensus (OLC) approach:

OLC approach was initially developed for reconstruction of the genome from Sanger sequence
and EST (Expressed sequenced tag) data. As the name suggests, in the OLC approach, the read
data are searched for overlapping sequences and merged to create longer reads. Depending
on the volume of data and complexity of genome (e.g., repeats), the OLC approach is compu‐
tation- intensive. Some of the OLC-based assemblers are MIRA [68], Newbler (from Roche/454
Life Sciences), and CAP3 [69]. The assemblers using the OLC approach are more suitable for
small volume of data, not sensitive to repeat region detection and resolution, and cannot
handle the high-depth short read data generated from sequencers such as Illumina. The
Eulerian path assemblers, which are based on de Bruijn graph algorithms [70], are more suitable
for the high-depth short read data and are discussed in detail below.

De Bruijn-graph-based approach:

De Bruijn graph is a mathematical graph that uses a substring of letters (here nucleotides) of
length k to represent nodes. Nodes are connected if shifting a substring by one nucleotide
creates an exact k-1 overlap between the nodes [70]. De Bruijn graph can be created for both
small as well as large sequences. Based upon the defined k-mer (a nucleotide substring of
length k) length, reads are broken in k-length to generate substrings. Using these substrings,
de Bruijn graph is generated in which each unique substring represents a node (or vertex)
connected with overlaps between the last k-1 nucleotides of the previous sequence with the
first k-1 nucleotides of the subsequent sequence [71]. Identical overlaps of k-mers are merged
and counted while creating the graph. If the assembler finds differences in the nodes, the graph
is branched. Upon subsequent identity and overlap in the nodes, the graph will join the ends.
Presence of single nucleotide difference between the sequence data gives rise to bubbles in the
graph. In the case of RNASeq data, occurrence of large bubbles and open-ended branches in
the graph suggests presence of alternative splicing and alternative transcription start and end.
Occurrence of small bubbles can be due to single nucleotide variation or sequencing errors [72].
In most of the de Bruijn-graph-based assemblers, the preferred value of k-mer is usually an
odd number in order to avoid reverse complement of k-mers. The chosen size of k-mer has
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great impact on the assembly process as using a large k-mer can result in a unique de Bruijn
graph, but this approach is computationally intensive. On the other hand, using small k-mers
can result in a fragmented assembly. According to some of the previous studies it has been
observed that smaller k-mers can be useful in more accurate transcriptome assembly of lowly
expressed genes whereas larger k-mers perform better for abundant transcripts [73-75]. It is
therefore essential to identify the optimal k-mer for the sequence being assembled and it
depends to a large extent on the read length, sequencing depth, sequencing error rate, and the
complexity of the genome. Additionally, using directionality of the read from paired-end data,
assemblers can generate more accurate assembly as compared to single-end data [76]. Some
of the most commonly used de Bruijn-graph-based assemblers are: Velvet/Oases [74, 77],
Trinity [78], Trans-Abyss [79], SOAPdenovo-Trans [80].

Oases: Oases has a set of algorithms that post-processes the assembly generated by Velvet at
different k-mers such as dynamic filtering of the noise, resolution of alternative splicing
transcripts, and merging of the multiple assemblies generated using different k-mers
(www.ebi.ac.uk/~zerbino/oases/). Data generated from different k-mers are merged to
generate a complete assembly. Oases works well for the correction of errors and resolution of
repeats in the case of paired-end data.

Trinity: Trinity uses three steps to produce transcriptome assembly: inchworm, chrysalis, and
butterfly. Inchworm builds initial sets of contigs using k-mer graphs. Chrysalis groups these
contigs and builds de Bruijn graphs from them. Butterfly simplifies and resolves the graphs to
generate the final set of transcripts containing spliced variants and isoforms.

Trans-Abyss: Trans-Abyss considers multiple assemblies generated from Abyss to optimize
the assembly and can tackle varying coverage of the transcripts very well.

SOAPdenovo-Trans: SOAPdenovo-Trans is derived from the genome assembler, SOAPdeno‐
vo2 [81] and is known to construct transcriptome faster than the above-mentioned assemblers.

2.2.2.2. Choosing the transcriptome assembler

Choosing an assembly algorithm is difficult as it depends on a number of factors such as read
type, length, and complexity of the genome. Some instrument vendors such as Roche provide
assembly algorithms, e.g., Newbler, which can handle the long read data and the homopoly‐
mer issue frequently observed in the data generated from 454. A recent study using peanut
plant RNASeq data suggests that performance of Trinity is better than TransAByss and
SOAPdenovo-Trans when raw reads are mapped to the reconstructed assembly of the
polyploidy transcriptome [82]. Another study suggested use of multiple k-mers and clustering
of k-mer assemblies and at the same time identifying unique contigs from each assembly for
effective extraction of biological information from transcriptome assembly [83].

2.2.2.3. Assessing quality and accuracy of de novo assembled transcriptome

Because of sequencing errors and presence of repeats in the genome, it is hard to achieve a
perfect assembly. Moreover, different assemblers use different heuristic approaches to
assemble the transcriptome, which results in different number of identified transcripts.
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Quality and accuracy of assembled transcriptome are assessed in several different ways [84, 85]:

1. Assembly statistics: Most algorithms generate an assembly statistic that includes the
number of contigs/transfragments generated, total contigs/transfragments length and
singletons, size of the assembly (in number of nucleotides), percentage of reads assembled
to transfragments, percent GC content, etc. Assembly statistics provide overview of the
organisms’ transcriptome.

2. Transfragments/contigs statistics: This statistics includes lengths of the largest and
shortest transfragments, average and median length of transfragments, and N50 of
assembled transcriptome. N50 of the assembly is calculated by sorting the contigs in
descending order and the size of the contig that makes the total greater than or equal to
50% of the genome size is regarded as the N50 value. A large N50 is indicative of a more
contiguous assembly.

3. Mis-assembly and variations: Some of the major reasons for mis-assembly of the tran‐
scriptome are presence of ambiguous bases, repeat regions, insertions, deletions, SNPs,
and chromosomal rearrangements in the transcriptome. Percentage of mis-assembled
contigs can be calculated by mapping the contigs back to the reference genome. QUAST,
a tool, generates consolidated report on mis-assembly statistics [84].

4. Number of transfragments matching with the closest reference genome: Once transcripts
are assembled, it can be compared against a closely related species/genome. Assembly is
considered to be of high quality if the number of reference transcripts matching with the
transfragments is high. However, the genes that are not expressed, or lowly expressed,
might not be captured.

5. Hybrid or fused transcripts: Hybrid transcripts result from joining of two or more different
transcripts and hence matching to different locations of the genome. Reasons for hybrid
transcript generation are sequencing error, improper trimming of the adapter/contami‐
nant from the raw read, similarity of the transcripts, assembly algorithm’s parameters,
etc. Low number of hybrid transcripts reflects better assembly.

2.3. Quantification

Choice of expression unit: CPM, RPKM, FPKM, TPM, or read count

Once the read data is aligned to the reference genome, the gene expression can be quantitated
by read counting at exon, transcript, or gene-level. Here are few possible expression units:

a. Read Count: read counts are number of reads overlapping a genomic feature such as a
gene or transcript.

b. CPM (Counts Per Million mapped reads): CPMs are read counts scaled by the number of
fragments sequenced times one million. This unit is used in a differential expression
analysis R package edgeR [86].

c. RPKM (Reads Per Kilobase of transcript per Million): RPKM for a feature is computed by
dividing the number of read counts by it length and total number of reads sequenced,
followed by multiplication with one billion [12]. Applicable only for single-end data.
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d. FPKM (Fragments Per Kilobase of transcript per Million): similar as RPKM. But takes into
account a fragment (not reads) [65]. For pair-end data, there will be two reads for a single
fragment of genome while for single-end data, there will be one read for a single fragment.
Both the situations will add only one count.

e. TPM (Transcripts Per Million): TPM for a transcript is calculated by dividing the ratio of
its read counts over its length by the summation of ratios for all the transcripts, and
multiplying with one million [87]. Especially for transcript abundance.

2.4. Normalization

Why should one normalize the expression data?

RNASeq experiments have multiple sources of systematic variations introduced through inter-
sample differences such as difference in library size (sequencing depth) or unwanted variations
due to batch effects such as sampling time or different sequencing technology [12] or through
intra-sample differences such as difference in read length [88] or GC content between genes
[89, 90]. These variations, if ignored, can dramatically reduce the accuracy of statistical
inference and hence should be removed or controlled during statistical analysis. Therefore,
read count and FPKM of a feature, as calculated for example by htseq-count and Cufflinks,
respectively, may not be appropriate to compare across features and samples without nor‐
malization.

Normalization is a process that aims to ensure that expression estimates are comparable. There
are a number of normalization methods, such as:

a. Total Count: each read count of a feature expression is divided by total number of mapped
reads in that sample and multiplied by the average total count across all the samples.

b. Upper Quartile: each feature expression is divided by the upper quartile of expression
values, other than 0, in that sample and multiplied by the average upper quartile across
all the samples [91]. Upper quartile for FPKMs or fragment counts has been implemented
in Cuffdiff2 tool from Cufflinks suite [92].

c. Median: each feature expression is divided by the median of these expression values (other
than 0) in that sample and multiplied by the average median expression across all the
samples.

d. Quantile: the distribution of expression values for each sample is made identical [93].
Quantile method is available in R package limma [94].

e. Trimmed Mean of M-values (TMM): TMM normalization factor for each sample is
computed as the weighted mean of log ratios between a test sample and a reference sample
after excluding the features with highest expressions and features with largest log ratios.
These factors are rescaled by the mean of normalized library sizes. Finally, each feature
expression value is divided by these rescaled normalization factors to get the normalized
expression [86, 95]. TMM method has been implemented in R package edgeR [86].
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f. Median of ratio: the normalization factor for each sample is computed as the median of
ratios of expressions of features over their geometric means across all samples. Finally,
each feature expression is divided by this factor to get the normalized expression [96].
Median of ratio has been implemented in R packages DESeq [96], DESeq2 [97], and in
Cuffdiff2 [92].

Several publications [98, 99] comparing normalization methods suggest that median of ratio
is the best method for normalization in differential expression study for mRNASeq experiment.

In addition to normalization methods, several packages have been developed to control batch
effects, for example, svaseq [100]. svaseq can work on both, count-based data (e.g., htseq-count
generated data) as well as FPKMs (Cufflinks generated data).

2.5. Differential expression analysis

Differential expression analysis helps identify genes that are important in the experimental
conditions being tested and hence is the most routine analysis performed using the RNASeq
data. In RNASeq data, a linear relationship has been observed between the number of reads
that map to a transcript and the abundance of the transcript [12]. The goal of differential
expression analysis is to compare these read counts for a feature between distinct sample
groups and perform a statistical test to determine whether the difference is significant. For this
purpose, a distribution is required to be fitted to the count data using generalized linear model
(GLM). Based upon the assumption that reads are independently sampled from a population
with a given, fixed fractions of genes, it can be said that the read counts will follow a multi‐
nomial distribution. This multinomial distribution can be approximated by the Poisson
distribution and therefore Poisson distribution has been used to test differential expression in
several studies [101-103]. But it has been found that this distribution predicts smaller variations
than what is seen in the data. To overcome this issue, negative binomial (NB) distribution and
beta negative binomial distribution were proposed. NB has been used in several differential
expression tools such as edgeR [86], DESeq [96], DESeq2 (an enhanced version of DESeq) [97],
and BaySeq [104]. Though these tools use a common distribution, the method of variance
(dispersion) estimation differs, which affects the final outcome of the analysis. Cuffdiff2 uses
beta negative binomial distribution to fit fragment counts [92].

Recent advances in this area of research suggest that a combination of Poisson distribution and
NB distribution may yield better results. Chen et al. [105] derived a novel algorithm XBSeq
from DESeq, where they used Poisson distribution to fit read counts that map to nonexonic
regions (considered as sequencing noise) and used NB distribution to fit read counts that map
to exonic regions (considered as true signals).

Recently, limma [94], a well-known R package for performing differential expression analysis
of microarray data, has been empowered with RNASeq data analysis ability. It does not use
the above-mentioned distribution, rather converts count data (or normalized count data) to
log-counts per million using voom transformation, then fits a linear model to this data and
performs differential expression analysis using an empirical Bayes method.
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There is no clear evidence as such about the best tool for differential expression analysis;
however, multiple studies comparing available methods have been performed. Soneson and
Delorenzi [106] evaluated and compared eleven methods for differential expression analysis
on simulated and real RNASeq data, whereas Seyednasrollah et al. [107] compared eight
widely used tools on real data sets. Both the studies concluded that no single method is optimal
under all circumstances. Soneson and Delorenzi [106] observed that limma performed well
under many different conditions and Seyednasrollah et al. [107] found limma and DESeq as
the preferred choice. Additionally, these studies have suggested that the method of choice
should depend on the experimental conditions that include the number of samples per
condition.

2.6. Annotation and pathway analysis

2.6.1. Annotation of de novo assembled transcriptome

In addition to transcriptome abundance calculation after mapping the assembled contigs/
transfragments to the assembled transcriptome or reference genome and differential expres‐
sion data analysis, coding regions within de novo assembled transcripts can be searched using
ORF predictor tools such as Transdecoder (http://transdecoder.github.io/). Further, homolo‐
gous gene/protein identification of assembled transcripts can be done using tools such as BLAT
and BLAST [108].

2.6.2. Making sense of the differentially expressed gene list

List of differentially expressed genes is just the first tangible outcome of an RNASeq experi‐
ment. In order to derive biological insight from this list of genes, it is important to identify
functional categories of the genes that are differentially expressed and the biological pathways
that are enriched as a result of these differentially expressed genes. In order to do so, enrich‐
ment analysis is typically performed using publicly available resources such as GO (Biological
Processes and Molecular Functions) databases [109], KEGG pathways [110], BioCarta
(www.biocarta.com), and Reactome [111].

In a review article, Khatri et al. [112] elaborated the current approaches of pathway analysis
and their challenges and divided the existing approaches into three generations:

a. First Generation: Overrepresentation Analysis (ORA) approach

This approach statistically evaluates the fraction of genes, among the set of differentially
expressed genes, in a particular pathway. There are many tools that follow this approach, for
example, Onto-Express [113], GenMAPP [114], GoMiner [115], and DAVID [116, 117]. How‐
ever, this approach has certain limitations. For example, it does not consider the fold change
values associated with the genes, thereby ignoring the extent of regulation. Moreover, it does
not consider the gene product interactions that are found in a pathway. This approach also
ignores the dependency between the pathways.

b. Second Generation: Functional Class Scoring (FCS) approach
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This approach addresses few limitations of ORA. It considers all the genes and their expression
for pathway enrichment, so as to take into consideration the coordinated changes (irrespective
of the magnitude) unlike ORA where only differentially expressed genes were considered and
that too without considering their expression levels. Example of such tools include global test
[118], GSEA [119].

But this approach too has some limitations. Similar to ORA, this approach ignores the
dependency between the pathways and the interaction between gene products in a given
pathway.

c. Third Generation: Pathway Topology (PT)-based approach

To overcome the limitations of ORA and FCS, the Pathway-Topology-based approach has been
devised. It uses pathway knowledgebase to include pathway topology information for
enrichment analysis [112]. This information includes genes that are interacting, their mode of
interaction (e.g, activation, inhibition), and their location of interaction (e.g, cytoplasm,
nucleus). SPIA [120], an R package, is an example of this category of pathway analysis
approach, which combines evidence of pathway overrepresentation and unusual signaling
perturbations. NetGSA [121] is another method in this category that takes into consideration
the change in correlation as well as the change in network structure as experimental condition
changes. However, in the absence of high-resolution knowledge databases that can provide
knowledge for all conditions, tissue- and cell-specific functions of a gene product; the true
pathway topology is rarely inferred. And hence this restricts a researcher to investigate the
dynamic states of a system [112].

2.7. Visualization

Analyzed RNASeq data can be visualized in many different ways. Several tools such as
Cummerbund (an R package), RNAseqViewer for single and multiple sample visualization
[122], HeatmapGenerator for heatmap visualization, GOexpress for GO term enrichment
visualization (http://www.bioconductor.org/packages/devel/bioc/html/GOexpress.html),
RNASeq-specific genome viewers such as RNASeqExpressionBrowse [123], and RNASeq‐
Browser [124] are available for RNASeq data visualization.

We have recently developed SanGeniX (www.sangenix.com), an easy-to-use client-server-
based NGS data analysis application with a highly intuitive user interface (manuscript under
preparation). SanGeniX supports primary, secondary, and tertiary analysis of sequence data
from Illumina, Ion Torrent, SOliD, and PacBio RS. SanGeniX integrates multiple robust and
validated algorithms in the form of predefined workflows and offers flexibility to construct
custom workflows for RNASeq (reference-based as well as de novo), genome assembly,
ChIPSeq and DNASeq (for SNP and CNV calling). For example, in the case of RNASeq
workflow, the analysis starts with quality check (using tool FastQC), contaminant/adapter
trimming and removal (using Cutadapt and in-house scripts), read mapping using splice
aware aligners (using STAR, TopHat2), transcript quantification, differential expression
analysis (using Cufflinks packages and DESeq2), and gene ontology, as well as pathway
enrichment analysis (using GoMiner) (Figure 2). Further, graphically enriched visuals such as
heatmap based on clustering, scatter plot, and volcano plot for differentially expressed genes,
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pie chart on gene-ontology-based annotation, visualization of read data in the genome viewer,
etc., are generated for easy interpretation of the data (Figure 3). These figures and underlying
data can be downloaded in svg, png, and tsv formats. Moreover, the raw output files such as
output of mapping in SAM and BAM formats can also be downloaded. The executed work‐
flows can be shared with peers, rerun after changing parameters or tools. SanGeniX is available
as cloud-hosted as well as on premise solution and supported on multiple Linux platforms
such as Ubuntu, CentOS, and RedHat.

 
 

Figure 2. Snapshots of RNASeq data analysis workflow canvas in SanGeniX using (A) Cufflinks package and (B)
HTSeq and DESeq2 are shown.
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Figure 3. Snapshots from RNASeq results dashboard from SanGeniX for an experiment consisting of four groups (or
samples). (A) Boxplot: It displays distribution of normalized expression values among different groups. Similar distri‐
bution of normalized expression values among the different groups of interest indicates that any technical biases due
to difference in sequencing depth have been taken care of. (B) Heatmap is a convenient way to visualize cluster of
genes based upon their expression. Here, log2 fold change of genes in three groups with respect to a reference group,
Group1 has been plotted. The color-code helps to infer gene expression level. Scatter plot (C), MA plot (D), and Volca‐
no plot (E) present visual investigation of differentially expressed genes between two conditions, for example, here
Group 4 and Group 1. Scatter plot helps to quickly compare the expression of a gene between the two conditions,
while MA plot depicts trends of difference in expression over the average expression, and Volcano plot helps to spot
genes by considering both fold change and test statistic.

3. Challenges in RNASeq data generation and analysis

As described above, NGS-based transcriptomic data generation and analysis is a complex and
multistep process. Every step has some key challenges that hinder the data analysis.

3.1. Library preparation

The process of library preparation is generating cDNA from the large RNA fragments, adding
the adapters, and amplifying the cDNA for sequencing. Due to a series of experimental
reactions, several biases can be introduced in the library preparation step. In majority of the
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cases, fragmentation of RNA or DNA, which plays an important role in the preparation of
high-quality sequencing library, is done using physical or enzymatic methods or chemical
shearing. The fragmentation of RNA has even coverage in the gene body and hence it is biased
toward the gene body as compared to the 5′ and 3′ ends where the coverage is relatively
depleted [20]. The library preparation step is further complicated by the presence of several
identical short reads and hence duplicate sequences in the library could arise from abundance
of RNA molecules. Another source of duplicate sequences in a library could be due to PCR
artifacts. These two different scenarios can be assessed by considering biological replicates in
the study. In the case of total RNAseq, abundance of ribosomal RNA (rRNA) dominates
sequenced reads and hence creates bias if not removed.

3.2. Sequencing platform

Sequencing platforms are available from multiple vendors such as Illumina (http://www.illu‐
mina.com/), Life Technologies (https://www.lifetechnologies.com/), and Pacific Biosciences
(www.pacificbiosciences.com/), and each of the platforms has its set of advantages and
disadvantages [35]. In choosing a sequencing platform, some of the factors to be considered
are sequencing length, sequencing type (single end or paired end), throughput, error rate, and
type of errors in the generated sequence data. The gigabytes of short reads generated from the
current platforms are not error-free, which affects the downstream analysis and interpretation.
For transcriptome assembly, the larger read length (such as produced from 454, PacBio) is
preferred over short read length (as produced by Illumina) as it will result in assembly of the
high-quality and reliable transcripts. However, both 454 and PacBio platforms have limited
throughput and hence the approach most commonly used is to generate data from multiple
platforms and combine the data during analysis.

3.3. Mapping

Accurate mapping of RNASeq reads is a challenging issue because of large data volume, slow
mapping speed, false-positive splicing events and incorrect estimation of exon–intron boun‐
daries, large genome size, repeat sequences in the genome, and annotation quality of the
genome. Usually, aligners search for introns smaller than a fixed length to reduce the compu‐
tational power, which often leads to missing the splice reads spanning longer introns [66].
Multiple mapping of reads is another major problem that can be due to presence of repeat
regions, similar sequences, and number of mismatches allowed in the mapping step. If such
reads mapping to multiple regions are discarded, it will lead to gap in the regions that cannot
be mapped uniquely, and if it is included, it can lead to false-positive transcription status.
Reference-based assembly cannot efficiently detect trans-spliced genes that are formed from
splicing and joining of two different precursor mRNAs and found in some disease conditions
such as cancer [125, 126]. Additionally, aligners have to cope with sequencing errors, SNP,
InDels, other genomics variations and parameters-based, suboptimal mapping outcome. In
summary, mapping-based RNASeq analysis can be more effective and complete when reads
are long, genome is well-annotated, and it can be combined with de novo genome assembly to
identify novel transcripts.
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3.4. Read quantification for the estimation of gene expression

Once the sequenced reads are aligned, gene expression is measured. The most common way
of read quantification is counting the number of reads overlapping the exons of a gene and if
the exon boundaries are not well-annotated, it may lead to false-positive hits. Another major
challenge in read quantification is reads mapping to multiple locations.

3.5. Count normalization

There are several methods such as quantile-based normalization, GC-content-based normali‐
zation, Poisson model with variable rates for different positions, available to normalize and
correct the biasness in the count data for the improved detection of differentially expressed
genes [91, 127, 128]. The increasing number of normalization methods requires a state-of-the-
art technique for comparing these methods. In the absence of such technique, there is no
consensus on the best method for normalization. For example, Zyprych-Walczak et al. [99]
found that TMM method worked poorly for them while Dillies et al. [98] found TMM and
median of ratio methods to be the best as compared to other methods. The transcript length is
another source of bias and leads to detection of more differential expression in longer tran‐
scripts compared to shorter transcripts [88].

3.6. Differential expression analysis

There are several tools and methods developed for the differential expression analysis
comparing differences in gene expression in different conditions (see section 2). Nonparamet‐
ric methods are not capable of better differential expression detection in the absence of sample
replicates and hence parametric methods are preferred for differential expression analysis
[129]. A study comparing various differential expression methods suggests that there is no
optimized method that can serve well for all the different conditions. As compared to other
tools, Cuffdiff performed poorly with large number of false-positives [130]. The accuracy of
differentially expressed genes is statistically significant and makes more sense if multiple
replicates are used in the analysis.

Similar to the situation as in normalization, picking up the best tool for differential analysis is
a tricky job. This is because there is no consensus about the tool best-suited for all experimental
setups. Soneson and Dolerenzi [106] found limma performing well under many conditions but
it required at least three replicates. Furthermore, they found limma performing worse when
dispersion differed between two conditions. They also observed that with large sample sizes
DESeq was overly conservative, while edgeR was producing large number of false-positives.

3.7. De novo assembly

The performance and accuracy of the de novo transcriptome assembly is largely dependent on
the complexity of the genome (e.g., genome size, number of paralogs, ploidy level), differential
read coverage of the sequenced data, and sequencing error. Transcriptome assembly is
complex and different from genome assembly in which read coverage is uniform. In contrast,
in RNASeq, the abundance of reads vary based upon gene expression, in which case isoforms
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originating from same gene can have different expression levels and hence poses significant
challenge in estimating the abundance especially for the lowly expressed genes if the sequenc‐
ing depth is too low. In general, de novo transcriptome requires much higher sequencing depth
than the reference-based transcriptome assembly.

The de novo transcriptome assembly generally consumes more time and is more computation-
intensive than reference-based assembly [131]. The number of transfragments produced using
the de novo approach is quite high, which can be due to multiple similar transcripts/isoforms
at the locus from allelic variation, or could be due to artifacts. Additionally, the contiguity and
completeness of the de novo assembled transcriptome is less than the reference-based assembly
especially for the data with less sequencing depth [132].

3.8. Deep sequencing versus cost

Another challenge associated with the RNASeq technology is read coverage and cost associ‐
ated with it. In order to detect lowly expressed genes or rare variants in the coding region,
high read coverage is required. According to Nagalakshmi et al. [10], for simple organism such
as yeast, which does not undergo alternative splicing, 30 million reads are sufficient to observe
genome-wide transcriptome profile [10]. But for larger and complex genomes such as the
human genome, higher-depth RNASeq data are required in order to capture the complete
transcriptomes. Moreover, in a given organism the number of transcripts expressed in different
conditions is different and hence same coverage may not be sufficient to capture all the
transcripts expressed under different conditions. Hence, before designing an experiment, one
should be aware of both sequencing depth required and the number of samples to be se‐
quenced. If the aim of experiment is to detect rare variants or lowly expressed genes, one
should go for high coverage of the transcriptome, whereas, if the aim of the experiment is
focused on gene expression differences between different samples (or conditions), one should
consider generating replicate data for statistical power [133].

There are other bioinformatics challenges such as data retrieval, storing, unavailability of
optimized statistical methods, and high-end compute infrastructure requirement that add to
the complexity of transcriptome analysis.

4. Applications of RNASeq

RNASeq provides an unprecedented view into the complexity of the transcriptome and hence
is a powerful tool to characterize and profile transcriptome on a genome-wide scale. Some of
these applications with detailed examples are discussed below.

4.1. Transcriptome profiling of economically important plants

Understanding the transcriptome and the functional elements of the economically important
plants can provide tremendous insights into biological entities, critical for traits such as disease
resistance, productivity, and characteristics such as flavor. Recently, Hu et al. [134] performed
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transcriptome assembly and annotation for the spice black pepper. Black pepper is one of the
most widely used fruit for adding flavor to food as well for its medicinal properties. The
authors were able to identify genes that might participate in piperidine, quinolizidine,
indolizidine, and lycopodium alkaloid biosynthesis, of which piperidine alkaloids account for
pungent taste and medicinal properties of black pepper. Similarly, Shudeesh et al. [135]
performed assembly and annotation of field pea, a legume that is cultivated worldwide for
human as well as livestock consumption. Studies have also been undertaken to identify
transcriptomes of the pathogens that infect economically important plants and the defense
mechanisms deployed by the plants. For example, the transcriptome of coffee leaf rust
pathogen Hemileia vastatrix was sequenced by Talhinhas et al. [136] to identify genes/
pathways that play a key role in the early stage of the infection, and Yang et al. [137] sequenced
the sand pear germplasm with differential resistance to infection by Alternaria alternata to
identify genes that contribute toward the resistance.

4.2. Transcriptome profiling of economically important animals

Similar to the value provided by transcriptome profiling of plants, transcriptome profiling of
economically important animals contributes toward better understanding of disease resist‐
ance, productivity, breeding, quality of meat, etc., in animals. Ropka-Molik et al. [138] have
used the NGS transcriptome profiling approach to identify genes that are differentially
expressed between two pig breeds with differences in muscularity that could contribute
toward the quality of meat. Gene expression profiles have been generated from different
breeds of cows to identify genes that contribute toward milk protein and fat percentage in cow
milk [139, 140] and milk yield [141]. Transcriptome profiling has also been used very recently
to identify the genes that are differentially expressed in silkworms (B. mori) undergoing
thermal parthenogenesis [142]. Thermal parthenogenesis is a process that is used in silkworm
breeding and selection.

4.3. Cancer

Cancer is a complex and heterogeneous genetic disorder that results from either inherited or
somatic genetic variations such as single nucleotide variations (SNV), insertions, deletions,
copy number variations, dysregulation of gene expression, and epigenetic modifications. As
changes in the gene expression pattern play a key role in tumorigenicity [143], metastasis [144],
prognosis [145], and relapse [146, 147], gene expression profiling has been used extensively in
cancer research and diagnosis. OncotypeDx (http://www.oncotypedx.com/) is a gene-expres‐
sion-based commercially available test that is used for breast cancer, colon cancer, and prostate
cancer diagnosis and prognosis.

Contrary to microarrays and RT-PCR-based approaches used earlier, RNASeq, which can
detect coding and noncoding RNA, strand orientation, and genetic variants all in one go, is a
very powerful tool in deciphering the complex transcriptome changes usually found in cancer.
One of the most comprehensive studies published recently is the transcriptome profiling of
4043 Cancers and 548 Normal Tissue Controls across 12 TCGA Cancer Types [148]. In this
study, in addition to identifying tissue specific gene signature, the authors were able to identify
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a 14-gene signature that accurately distinguished the cancer samples from the normal. Using
a whole transcriptome sequencing approach, Koh et al. [149] recently reported 14 candidate
genes that are important in rhabdoid glioblastoma (R-GBM) tumor, a rare form of GBM.
Similarly, RNASeq approach was used to identify gene signature in flow-sorted viable EpCAM
+ tumor epithelial cells and CD45+ tumor-infiltrating immune cells that were obtained from
cervical cancer samples [150]. The authors identified TCL1A as a novel biomarker, found
specifically in the immune cells, for predicting survival in cervical cancer patients.

The aforementioned studies highlight the varied approaches that can be used for identifying
biomarkers or gene signatures associated with distinct cancer characteristics.

4.4. Reproductive health

With the advancing parental age and a desire to limit the number of pregnancies, many couples
opt for assisted reproduction for childbearing. The advanced parental age is a key factor that
contributes toward the complications in assisted reproduction, and genomics-based ap‐
proaches are widely used to ensure a high success rate. Gene expression changes in ovarian
granulosa cells in women >35 years of age include downregulation of polo-like kinase
pathway, which plays an important role in cell cycle arrest of granulosa cells, and the G2/GM
checkpoint pathway [151]. Another very recent study also used the RNASeq approach to
identify differential gene expression profiles in women with successful pregnancy and a failed
pregnancy through assisted reproduction [152]. The authors found that the genes that were
differentially expressed played a role in immune response and inflammation, oocyte meiosis,
and rhythmic process.

The application of RNASeq in reproductive health is relatively new and as more knowledge
is gleaned through this, it might be possible to develop a signature that can be used for
predicting the success of assisted reproductive approach.

4.5. Developmental disorders

Developmental disorders are ones in which the child develops slower than peers in areas such
as motor function, social skills, and cognitive ability. Developmental disorders include
Austism, Asperger’s Syndrome, Attention Deficit Hyperactivity Disorder (ADHD), Rett
Syndrome, and stereotypic movement disorder, to name a few. Gene expression profiling has
been used extensively in Austism and genes involved in neuronal action potential, myelina‐
tion, axon ensheathment, cellular development, and cellular proliferation have been found to
be differentially expressed in autistic children [153]. Another study, using an in vitro model of
Autism found expression differences in genes involved in cell proliferation, neuronal differ‐
entiation, and synaptic assembly [154]. Similarly, a gene expression study in Rett Syndrome
[155], which is a rare variant of Austism, has identified genes involved in mitochondrial
functions, cellular protein metabolic processes, and RNA processing and DNA organization
to be differentially regulated.

In addition to the applications listed here, gene expression profiling can be used in number of
other human disorders such as diabetes, hypertension, psychiatric disorders, and infectious
diseases.
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5. Future perspective

RNASeq technology is proving to be a valuable tool to study known and novel transcripts of
an organism by providing more insights into the role of gene expression in development,
differential expression between different conditions, changes in gene expression in disease
progression, alternative splicing events, RNA editing, fusion transcripts, allele-specific
expression, etc. This technology is revolutionizing the field of plant and animal transcriptome,
where many of the species lack reference genome because of genome size and complexity.
Metatranscriptomic-NGS technology employed to study microbial transcriptome is another
emerging area of research in which construction of transcriptome assembly has led to simul‐
taneous identification of thousands of transcripts from the microbial community of the human
gastrointestinal tract [156], and the marine [157, 158] and soil [159]. Because of the fact that
gene expression levels vary significantly from one cell to another, researchers are now moving
toward single-cell transcriptomics, in which cell-to-cell variability on a genome-wide scale can
be profiled. Hence, transcriptome of single cell can be probed more efficiently as compared to
cell population where average transcript abundance of population is seen [160, 161]. A recent
study by Sasagawa et al. developed the method Quartz-Seq for individual cell isolation
followed by RNA sequencing and distinguished mouse embryonic stem cells from primitive
endoderm based upon transcriptome profile as well as cell-to-cell stochastic variation [162].
Another recently developed method, RaceID, is very useful in identifying rare cell types in
healthy and diseased tissues using mRNA sequencing [163]. Tissue-specific RNASeq is another
emerging area of research that can reveal tissue-specific requirement of RNA expression. A
recent study done on 13 different cell types discovered many tissue-specific and novel
miRNAs, which suggests that the repertoire of human miRNA is more extensive than our
current knowledge [164]. RNASeq is used as a powerful tool for clinical application as well. A
recent study developed exome capture RNASeq protocol for degraded clinical formalin-fixed
samples, which has shown to work successfully on prostate cancer samples suggesting that
capture transcriptome study can be used beyond cell lines and in the clinical setting [165].

Moreover, there are several publicly available RNASeq data repositories such as ENCODE
(https://www.encodeproject.org/), TCGA (www.cancergenome.nih.gov), and The Geuvadis
Project (http://www.geuvadis.org/), which provide enormous amount of data to researchers
to conduct genome-wide analyses beyond traditional gene expression and profiling analysis.
Mining data from public repositories will provide new insights into the transcriptome and
hence enable researchers to gain more information on gene regulation, which has been
previously neglected.

Sequencing method and experimental protocols are also continuously improving to reduce
the challenges associated with the technology. Platforms such as PacBio can produce a full-
length transcript in a single read, which can eventually eliminate the transcript assembly step
of the data analysis.

Additionally, to cater to the high volume of data and the demand for high-end computational
resources for the transcriptome assembly, many assemblers have started supporting parallel
data processing, which has significantly reduced the time required for the assembly (reviewed
in [66]). Cloud computing is another lucrative approach for parallel computing, which is
scalable and can be used as per the user requirement [166].
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