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Abstract

Different studies have elucidated the mechanisms underlying the formation and 
expression of drug-related cue memories; corticotrophin-releasing factor (CRF) 
plays a critical role in reward- and aversion-driven associative learning. In the 
present chapter, we have evaluated whether CP-154,526, a selective CRF1 receptor 
(CRF1R) antagonist, or genetic deletion of CRF1R (KO mice) have comparable 
effects on conditioned place preference (CPP) and conditioned place aversion 
(CPA) learning. We also investigated CP-154,526 effects on morphine-induced 
CPP activation of CRF, CREB phosphorylation, and thioredoxin (Trx1) expression 
in dentate gyrus (DG), a brain region involved in memory consolidation, and the 
role of hypothalamic-pituitary-adrenocortical (HPA) axis in CPA expression and 
extinction. The CRF1R antagonist abolished the acquisition of morphine CPP, Trx-1 
and BDNF increased expression, and pCREB/Trx-1 co-localization in the DG. The 
increase in adrenocorticotropic hormone (ACTH) plasma levels observed after 
CPA expression was attenuated in CRF1R KO mice, suggesting a role of HPA axis in 
aversive memories. Altogether, these results suggest a critical role of CRF, through 
CRF1R, in molecular changes involved in memory formation and consolidation and 
may facilitate the development of effective treatments for opioid addiction.

Keywords: conditioned place preference, conditioned place aversion, morphine, 
hippocampus, CRF, HPA axis

1. Introduction

Drug addiction is a chronic brain disease with a high rate of relapse [1–3]. Despite 
years of abstinence from drugs, relapse can occur when addicts encounter cues, includ-
ing people or places, associated with their prior drug use [4]. Drug-associated memory 
can persist throughout the lifetime of a patient; therefore, the elimination of this kind 
of memory is considered to be crucial for the treatment of drug addiction.
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In organism and human models, drug reward can be assessed using a Pavlovian 
conditioning procedure known as conditioned place preference/conditioned place 
aversion (CPP/CPA) [5–7]. CPP for the drug-paired environment is predicted by 
self-reported measures of drug liking in humans [6]. CPA for the drug-paired envi-
ronment is used to infer the dysphoric properties of drugs, including opioid receptor 
antagonists [8]. Many neurotransmitters, neurotrophic factors, and protein kinases 
have been delineated in the regulation of the formation and expression of drug-
associated reward memories and withdrawal-associated aversive memories [9–13].

Corticotrophin-releasing factor (CRF) in the brain plays a critical role in 
reward- and aversion-driven associative learning. However, it is not clear whether it 
does this by a common mechanism or by separated mechanisms that can be dissoci-
ated. The knowledge of these mechanisms could lead to more effective treatments 
for addictive processes. CRF and its CRF1 receptor (CRF1R) are widely distributed 
and in a highly conserved way in several brain regions, including the hippocampal 
formation, involved in reward reinforcement, craving and aversive effects of drug 
of abuse [14–17]. At the extrahypothalamic level, CRF acts as a neuroregulator of 
the behavioral and emotional integration of environmental and endogenous stimuli 
associated with drug dependence [18, 19]. In the hippocampal dentate gyrus (DG), 
an important brain region involved in saving similar experiences and contexts [20], 
CRF is released from inhibitory interneurons [21] through CRF1R [14] by environ-
mental signals. CRF1R activation stimulates Gαs protein, promoting the induction 
of the protein kinase A/cAMP response element binding protein (CREB) pathway 
[22]. CREB activity in the brain is critical for learning and memory processes [23], 
and it has been reported to be involved in the expression of opioid dependence. 
The activation of CREB, as one of the main downstream effectors of extracellular 
signal-regulated kinase (ERK), accelerates the transcription of CREB-dependent 
genes such as the brain-derived neurotrophic factor (BDNF). With respect to 
hypothalamus, CRF release from paraventricular nucleus (PVN) controls the 
hypothalamic-pituitary-adrenal (HPA) axis responses to stress and drug addiction 
[24–26]. CRF neurons in the PVN and CRF fibber in DG have direct connexion with 
dopaminergic neurons located in the ventral tegmental area (VTA) projecting to 
nucleus accumbens (NAc) [27, 28].

2. Role of CRF in the rewarding effects of morphine

CPP is an animal model widely used to evaluate the correlation between contexts 
and drugs. Different substances of abuse display differential ability to produce 
CPP. Opiates induce strong CPP over a wide range of experimental conditions [5]. 
Previous studies from our laboratory [29–32] and others [33, 34] have demonstrated 
that morphine administration evokes significant CPP for the drug-associated envi-
ronment. Different neurobiological substrates have been involved in the rewarding 
properties of drugs of abuse, although the mesolimbic dopaminergic pathway has 
been pointed out to be the critical system for drug reward. Recently, it has been sug-
gested that PVN may have a role in the reinforcing effects of opioids [35]. Various 
studies have elucidated the mechanisms underlying the formation and expression 
of drug-related cue memories. CRF in the brain plays a critical role in reward-driven 
associative learning. During the formation or consolidation process (CPP expres-
sion), the majority of the CRF-positive neurons in the PVN, central nucleus of 
amygdale (CeA), and bed nucleus of stria terminalis (BNST) coexpresses pCREB 
after morphine-induced CPP, suggesting that drug-paired context could trigger 
neuronal activity in the brain stress system [29]. Morphine-treated mice in their 
home cage do not show any changes in total CRF/CREB positive neurons, indicating 



3

Corticotrophin-Releasing Factor (CRF) Through CRF1 Receptor Facilitates the Expression…
DOI: http://dx.doi.org/10.5772/intechopen.80504

that the exposure to drug-paired environments is necessary for CRF activation in 
the brain stress system [29]. Anatomical and functional studies reveal connec-
tions between CRF and the mesolimbic dopaminergic system. Thus, VTA and NAc 
receive CRF-positive projections from the PVN and stress extrahypothalamic areas 
[36, 37], which have been proposed to regulate dopamine release. The rewarding 
effect of morphine (CPP expression) is decreased by pretreatment with CP-154,526, 
a selective CRF1 antagonist, suggesting an important role of CRF/CRF1 receptor in 
memory formation and consolidation [30].

2.1 Implications of different signaling pathways in the rewarding effects of 
morphine. Role of CRF1 receptors

Hippocampus is a brain region known to participate in associative processes 
such as declarative memory, and PVN is an important stress area. Both structures 
are related with mesolimbic pathways [38]. Our group has studied the implication 
of different signaling pathways in both areas, because the understanding of how 
the formation of drug-reward memories alters the neurobiology of the hippocam-
pal DG and PVN, and may shed light on the later and more persistent aspect of 
addiction.

The transcription factor CREB is critical in the conversion from short-term 
to long-term memory, and it is involved in the creation of long-term memory. 
Learning and memory and drug addiction share certain intracellular signaling path-
ways and depend on activation of CREB [39]. According to previous studies [40, 
41], our laboratory has demonstrated that the number of pCREB positive neurons 
in PVN and DG is significantly increased after morphine-induced CPP expression 
(Figure 1). Since CRF1R is coupled to stimulatory G protein Gαs and can thus 
activate PKA and, subsequently, CREB [22], our group has investigated if CRF1R 
signaling is involved in CREB activity after morphine-induced CPP. Administration 
of the CRF1R antagonist, CP-154,526, completely revoked pCREB positive neuron 
enhancement induced by morphine in PVN and slightly in DG. CREB involvement 
in morphine dependence has been previously supported by studies demonstrating 
that CREB mutant mice do not respond to the reinforcing properties of morphine 
in a conditioned place preference paradigm [42], suggesting that specific CREB 
functions are necessary for the rewarding properties of this drug.

Although it is known that CRF signaling is involved in the drug withdrawal-
induced anxiogenic-like and negative behavioral response [43], no definitive data 
are available about the role in the positive reinforcing properties of opiates. CRF-
immunoreactive fibers densely innervate many intrahypothalamic and extrahypo-
thalamic brain areas, such as hippocampus. Besides, CRF, through CRF1R, increases 
neuronal activity propagation from DG, the classical hippocampal input region, to 
the hypothalamic structure CA1 [44]. CRF is present in GABAergic hippocampal 
neurons of the pyramidal cells [14]. The supramammillary (SuM) region of the 
hypothalamus acts a connection nucleus between limbic and hypothalamic struc-
tures involved in controlling cognitive aspects [45]. Thus, SuM sends robust and 
direct inputs to DG. For example, it has been shown that mild stress could activate 
the SuM cells that project to the hippocampus [46]. Our group has previously 
shown that most of the CRF positive neurons in PVN coexpresses pCREB dur-
ing morphine CPP. In addition, we have observed an enhancement in CRF fibers 
density in DG after morphine administration. Both changes were antagonized by 
injection of CP-154,526 (Figure 2). CRF binding to CRF1R results in activation 
of heterotrimeric G-proteins. The physiological functions of CRF1R in the central 
nervous system and in the periphery have been mainly associated to an increase in 
intracellular cAMP levels. This is consistent with a predominant coupling to Gαs 
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(cAMP/PKA/CREB). However, CRF through CRFR1 is capable of activating other 
Gα types such as Gαs and activate inositol triphosphate (IP3) cascade. An enhance-
ment in the concentration of secondary messengers (cAMP, IP3, and Ca2+) in cells, 
induced by CRF1R agonists, promotes the activation of several transcriptional 
factors such as CREB, AP-1, NF-κB, and the calcium response element (CARE) 
[47–53]. In this sense, the antagonist of the CRF1R, CP-154,526, by blocking the 
postsynaptic CRF1R, inhibited CREB phosphorylation in PVN and DG. Moreover, 
morphine treatment induced an increase in CRF fiber immunodetection in DG, 
suggesting an elevated CRF release, which was prevented by pretreatment with 
this antagonist. Since CRF1R activation increases Ca2+ levels, it is possible that 
CP-154,526 inhibits CRF release by blocking presynaptic CRF1R in PVN.

Several evidences suggest that CREB phosphorylation represents a site of conver-
gence for various signaling pathways and alters gene expression [40]. CREB activa-
tion can also be regulated by the family of the redox protein Trx-1 [54]. In addition to 
its antioxidant activity, Trx-1 has been shown to play a crucial role in cellular signal-
ing by controlling several important members of the signal transduction pathway. 
Thus, NF-κB, p38 mitogen-activated protein kinases, activator protein-1, CREB 
(as mentioned before), estrogen receptor, glucocorticoid receptor, and p53 are the 
targets of Trx-1 [55]. Data from our laboratory have shown that morphine-induced 
CPP increases Trx-1 expression in DG (Figure 3). Trx-1 might activate CREB 

Figure 1. 
CREB activation in PVN (A) and DG (C) after morphine-induced CPP. Scale bar 100 μm. Quantitative 
analysis of pCREB immunodetection in PVN (B) and DG (D). Data are expressed as mean ± SEM. **p < 0.01, 
***p < 0.001 versus vehicle (veh) + saline (S); +p < 0.05, +++p < 0.001 versus veh + morphine (M). CP-154,526 
(CP). Optical density (OD).
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phosphorylation, thus increasing the rewarding effects of morphine. In agreement 
with our results, other studies have also observed an increased Trx-1 expression 
following morphine or methamphetamine administration [56]. Upregulation of 
CREB activity induced by methamphetamine was suppressed by Trx-1siRNA, which 
suggests that Trx-1 is necessary for CREB activation [55, 56]. Moreover, morphine-
induced Trx-1 expression is blocked by naloxone, indicating that morphine induces 
Trx-1 expression via activating opioid receptors [57]. Results from our laboratory 
showing a positive relationship between morphine rewarding effects, and Trx-1 
expression are in contrast with another study [58] demonstrating that geranylgeran-
ylacetone induces Trx-1 and, concomitantly, reduces morphine-induced CPP. These 
variations could be explained by the differential regulating roles of NAc and hippo-
campus. Besides, CREB expression has been shown to be increased in hippocampus 
but decreased in NAc after morphine conditioning [40], which suggests that CREB 
activity is differently regulated depending on the brain area studied. Our investiga-
tions have demonstrated a large number of pCREB/Trx-1 double-labeled neurons 
in DG (Figure 3). These neuron colocalizations in DG suggest that CREB might be 
activated by Trx-1 in this brain nucleus involved in memory consolidation processes. 

Figure 2. 
CRF/pCREB double-labeling photomicrographs in PVN (A). The upper right side of the figure shows the 
quantitative analysis of double-labeled neurons (B). CRF fiber photomicrographs in the DG (C). The down 
right side of the figure shows the CRF fiber density in the DG (D). Scale bar 100 or 50 μm. Data are expressed 
as mean ± SEM. ***p < 0.001 versus vehicle (veh) + saline (S); ++p < 0.01, +++p < 0.001 versus veh + morphine 
(M). CP-154,526 (CP). Optical density (OD).
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Due to the important role of TRX-1 in regulating the cellular redox balance, the 
induction of TRX-1 expression following morphine CPP could be associated to a 
mechanism of neural protection against a stressful situation.

Pretreatment with CP-154,526 completely blocks morphine-induced CPP eleva-
tion of Trx-1 expression in DG (Figure 3).

We have also shown an increase in the number of pCREB neurons coexpress-
ing Trx-1 following morphine-induced CPP, so CRF1R could be involved in CREB 
phosphorylation, probably through a Trx-1-dependent way. The exact mechanism 
by which the CRF system participates in Trx-1 signaling regulation in DG is not 
completely understood. One possible explanation could indicate that pCREB binds 
to CRE in the 5′-upstream sequence of Trx-1 gene, thus inducing Trx-1 expression 
to regulate its phosphorylation. In agreement with this hypothesis, other authors 
have demonstrated that ephedrine promotes Trx-1 expression via the β-adrenergic 

Figure 3. 
Characterization of pCREB and Trx-1 immunostaining in the dentate gyrus (DG) after morphine-induced 
CPP. (A) Schematic illustration showing the analyzed region of the DG (diagram modified from Franklin & 
Paxinos) [59]. Coordinate −1.94 mm from Bregma. (B) High-magnification image of a mouse midbrain coronal 
section immunostained for pCREB and Trx-1. Scale bar 100 μm. Representative confocal images of pCREB (red) 
(C–F) and Trx-1 (green) (C′–F′). Colocalization (pCREB/Trx-1) is shown in C″–F″ by yellow-orange neurons 
in the merged images. Scale bar 20 μm. Graphs on the right indicate the mean total number of pCREB (G), 
Trx-1 (H), and double-labeled (pCREB/Trx-1) neurons (I). Data are expressed as mean ± SEM. ***p < 0.001 
versus vehicle (veh) + saline (S); +p < 0.05, ++p < 0.01 versus veh + morphine (M). CP-154,526 (CP).
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receptor/cyclic AMP/PKA/DARPP-32 signaling pathway [60]. Besides, metham-
phetamine-induced CREB activity in rat pheochromocytoma cells was shown to be 
regulated by Trx-1 [56].

As shown in Figure 4, morphine-induced CPP increases the number of pCREB-
positive neurons in PVN, an increase that was blocked by CP-154,526 treatment. 
However, there are no changes in the number of Trx-1 positive neurons or in the 
double labeled neurons (pCREB/Trx-1).

On the other hand, BDNF, an important neurotrophin for synaptic plastic-
ity, is one of the molecular candidates underlying the development of persistent 

Figure 4. 
Characterization of pCREB and Trx-1 immunostaining in the paraventricular nucleus (PVN) after 
morphine-induced CPP. (A) Schematic illustration showing the analyzed region of the PVN (diagram 
modified from Franklin & Paxinos) [59]. Coordinate −0.82 mm from Bregma. (B) High-magnification image 
of a mouse midbrain coronal section immunostained for pCREB and Trx-1. Scale bar 100 μm. Representative 
confocal images of pCREB (red) (C–F) and Trx-1 (green) (C′–F′). Colocalization (pCREB/Trx-1) is shown 
in C″–F″ by yellow-orange neurons in the merged images. Scale bar 20 μm. Graphs on the right indicate the 
mean total number of pCREB (G), Trx-1 (H), and double-labeled (pCREB/Trx-1) neurons (I). Data are 
expressed as mean ± SEM. **p < 0.01, versus vehicle (veh) + saline (S); ++p < 0.01, versus veh + morphine 
(M). CP-154,526 (CP).
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neuroplastic adaptation that regulates drug addiction [61]. Several lines of evidence 
indicate that chronic morphine treatment triggers ERK activation in different 
brain regions [62]. ERK phosphorylates CREB and active (phosphorylated) CREB 
stimulates the expression of target genes, including BDNF [63–65]. Chronic 
morphine use has been shown to increase the expression of BDNF in the NAc and 
hippocampus [61, 66, 67]. According to these data, our findings demonstrated that 
morphine-induced CPP activates BDNF signaling in the DG without any changes 
in the saline group (Figure 5), demonstrating that repeated morphine with context 
exposure, but not merely the context, increases BDNF expression in DG, suggesting 
that BDNF is implicated in drug-induced contextual memory formation. Therefore, 
BDNF is a crucial signal molecule involved in morphine dependence. However, 
whether this molecule is regulated in a CRF1R-dependent manner remains largely 
unknown: CP-154,526 attenuated CREB-BDNF expression (Figures 4 and 5) and 
prevented morphine-induced CPP [29]. Taken together, CRF1R-mediated CREB-
BDNF signaling changes may regulate morphine reward through modulating 
contextual memory in the hippocampus.

3. Role of CRF1 receptor in the aversive effects induced by naloxone-
precipitated withdrawal

The physical component of morphine withdrawal syndrome can be assessed by 
scoring some somatic withdrawal signs after morphine exposure [68]. Recent results 
from our group have demonstrated significant alterations in some morphine with-
drawal signs such as body weight loss, rearing, rubbing, grooming, diarrhea, freezing, 
and time to first immobility in wild type morphine-withdrawn animals compared 
with controls treated with saline (Figure 6). Besides, and in agreement with previous 
studies [69–71], our laboratory has shown that body weight loss (Figure 6H), freez-
ing (Figure 6F), and diarrhea (Figure 6E) are significantly attenuated in CRF1R 
KO mice although an increase in jumping in CRF1R KO mice was observed (Figure 
6A), as it has been described previously by other authors [72]. Jumping is a sensi-
tive and commonly used index of naloxone-induced withdrawal [73–76]. However, 

Figure 5. 
Western-blotting analysis of BDNF in the dentate gyrus (DG) and paraventricular nucleus (PVN) from 
animals pretreated with vehicle (veh) or CP-154,526 (CP) before saline or morphine. The immunoreactivity 
corresponding to BDNF is expressed as a percentage of that in the control group defined as 100% value. 
***p < 0.001 versus morphine + CP; +p < 0.05 versus saline + veh.
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it is important to clarify that different neural elements mediate several withdrawal 
behaviors [77, 78]. Thus, it is not easy to extrapolate naloxone-precipitated jumping in 
CRF1R KO mice to other physical symptoms like body weight loss.

4. Role of CRF1 receptor in CPA expression and extinction

It is commonly accepted that affective drug withdrawal symptoms are of major 
motivational significance in contributing to relapse and continued drug use; thus, it 
is important to understand the mechanisms that mediate affective behaviors during 
morphine withdrawal. CPA paradigm is a highly sensitive animal model for the 
measurement of the negative affective component of drug withdrawal as well as to 
investigate the neural substrates underlying the aversive memory associated with 
drug withdrawal [79, 80]. In this model, a morphine-dependent animal undergoing 

Figure 6. 
Behavior effects by naloxone (nx)-precipitated morphine withdrawal in wild type (WT) or knockout (CRF1R 
KO) mice. The following somatic signs, (A) jumping, (B) rearing, (C) rubbing, (D) grooming, (E) diarrhea, 
(F) freezing behavior, and (H) body weight loss, induced after nx (1 mg/kg, s.c.)-injection to morphine or 
saline-treated mice during 18 min, were evaluated. The time to first immobilization (G) was also evaluated. 
Data are expressed as the mean ± SEM. $$p < 0.01 versus WT mice treated with morphine + nx; **p < 0.01 
versus WT mice treated with saline + nx; +p < 0.05, ++p < 0.01, +++p < 0.001 versus WT mice treated with 
saline+nx; ##p < 0.01, ###p < 0.001 versus KO mice treated with saline + nx; &&&p < 0.001 versus WT mice 
treated with morphine + nx.
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withdrawal is exposed to a particular environment for a period of time. When later 
is given the opportunity to freely explore the apparatus, animals trained in this 
way tend to avoid the previously paired context due to the association between the 
context and aversive memories of drug withdrawal [79].

The extinction of this aversion occurs if the association is weakened by repeated 
exposure to the withdrawal-associated context in the absence of the conditioned 
stimulus, and the initial response (CPA) can be reinstated by a drug priming 
injection, stress or by conditioned cues. Extinction is complete when animals no 
longer avoid the previously cue-paired compartment. Typically, while memory 
reconsolidation requires single context reexposure, extinction requires multiple cue 
reexposures [81]. For example, fear conditioning studies suggest that the extinction 
process does not eliminate the initial context, but the organism learns that this cue 
does not cause the previous stimulus [82]. Thus, extinction requires associative 
learning, consolidation, and the formation of a new memory [83].

Recently, our group has investigated the mechanism underlying CPA expression 
and extinction. These experiments showed that morphine administration induced 
a significant place aversion for the naloxone-paired compartment, compared to the 
saline group. However, CRF1R KO mice presented less aversion than wild type mice 
(Figure 7A).

Figure 7. 
(A) CPA expression induced by naloxone (nx, 1 mg/kg, s.c.) in wild type (WT) or knockout (CRF1R KO) 
mice treated with morphine or saline. The score was calculated for each mouse as the difference between the 
postconditioning and the preconditioning time spent in the naloxone-paired compartment. (B) Extinction of 
CPA training. Aversion scores from day 5 to 13 for WT and CRF1R KO mice are shown. Data are expressed 
as the mean ± SEM. +++p < 0.001 versus WT mice treated with saline + nx, &p < 0.05, &&p < 0.01, 
&&&p < 0.001 versus WT mice treated with morphine + nx.
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There is much information about the neurobiological mechanisms involving 
extinction of reward memory of drug taking [84–86]. However, little information 
is known about extinction of aversive memory of drug withdrawal [87]. Previous 
studies have demonstrated that the aversive effects of opiates might be related to 
basal genotype differences in the brain systems [88]. Accordingly, we have clearly 
demonstrated that the genetic disruption of the CRF/CRF1R pathway decreases the 
period of CPA extinction (Figure 7B).

Thus, results obtained by our laboratory regarding CPA expression and extinc-
tion suggest an important role for CRF1R in aversive memory.

5. Role of HHA axis in the CPA induced by morphine withdrawal

It is well established that acute withdrawal of all major drugs of abuse dys-
regulates the HPA axis and alters CRF activity in the PVN of the hypothalamus, 
with a common response of increased adrenocorticotropic hormone (ACTH) and 
corticosterone [89], which mediate somatic and aversive components of withdrawal 
[72, 90–92]. To evaluate whether a causal link exists between CRF1R activation 
and HPA axis, our group has measured plasma ACTH and corticosterone levels in 
wild type and CRF1R KO mice after naloxone-induced CPA expression and CPA 
extinction (Figure 8). Our investigations have shown that plasma ACTH levels 
are increased in wild type mice although plasma corticosterone levels are not 
changed following CPA expression. These results indicate that ACTH-independent 
mechanisms could have an important role in the regulation of the adrenal stress 
system to appropriately adapt its response to physiological necessities, and even the 
presence of pituitary ACTH is basic for adrenocortical function. Numerous lines of 
evidence indicate that a large number of neuropeptides, neurotransmitters, growth 

Figure 8. 
Effect of CPA expression and CPA extinction training on ACTH (A and B) and corticosterone (C and D) plasma 
levels in wild type (WT) and knockout (CRF1R KO) mice. Data are expressed as the mean ± SEM. +++p < 0.001 
versus WT mice treated with saline + nx, &&&p < 0.001 versus WT mice treated with morphine + nx.
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factors, and bacterial ligands can influence the release of adrenal glucocorticoids 
independently of pituitary ACTH [93]. Adrenocortical cells express a large diversity 
of receptors for these factors, thus triggering potential direct actions on glucocor-
ticoids release. Damage in the upstream stress regulating pathways in the brain 
leads to a rupture between ACTH and corticosterone, which suggests that central 
nervous system neurocircuits can regulate HPA axis response at both pituitary and 
adrenal sites [94]. Our results also indicate that CPA expression-induced ACTH 
release is attenuated in CRF1R KO mice. In agreement with these observations, it 
has been reported fewer ACTH levels in morphine withdrawn animals treated with 
CRF1R antagonists [70]. Besides, a role for the HPA axis and extra-hypothalamic 
brain circuitry in somatic, molecular, and endocrine changes induced during opioid 
withdrawal has been described [72]. ACTH plasma levels returned to basal in wild 
type and CRF1R KO mice after CPA extinction. These results suggest that CPA 
expression is, at least, partially due to an increase in plasma ACTH levels which can 
be decreased after naloxone CPA extinction.

6. Conclusion

CP-154,526 administration or genetic deletion of CRF1R impairs CPP and 
CPA learning, suggesting that the expression of reward and aversive learning and 
memory shares some common neural circuits related with CRF/CRF1R signaling. 
During the formation or consolidation process (CPP expression), the majority 
of phospho-CREB positive neurons in DG coexpresses Trx-1, in parallel with 
an increased expression of BDNF, suggesting that Trx-1 could activate CREB 
and this in turn accelerates the transcription of CREB-dependent genes such as 
BDNF. However, CP-154,526 diminishes CPP expression, in parallel with a block of 
phospho-CREB/Trx-1 colocalization and BDNF expression, suggesting that Trx-1-
CREB-BDNF signaling could be essential for memory formation or consolidation. 
In addition, CPA expression training increases plasma ACTH levels, which is critical 
for the maintenance of aversive memories associated with drug withdrawal. Genetic 
deletion of CRF1R (KO mice) induces a reduction in CPA expression accompanied 
with a higher decrease in ACTH plasma levels. CPA extinction period is reduced in 
KO mice, indicating a role for CRF1R in the aversive memory retrieval. Altogether, 
these results indicate a critical role for CRF, through CRF1R, in molecular changes 
involved in reward memory-associated behaviors and in aversive memory expres-
sion and extinction. The disruption of these processes by CRF1 antagonists might 
lead to effective treatments in drug addiction.
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