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Abstract

Recently, discriminative visual trackers obtain state-of-the-art performance, yet they suffer
in the presence of different real-world challenges such as target motion and appearance
changes. In a discriminative tracker, one or more classifiers are employed to obtain the
target/nontarget label for the samples, which in turn determine the target’s location. To
cope with variations of the target shape and appearance, the classifier(s) are updated
online with different samples of the target and the background. Sample selection, labeling,
and updating the classifier are prone to various sources of errors that drift the tracker. In
this study, we motivate, conceptualize, realize, and formalize a novel active co-tracking
framework, step by step to demonstrate the challenges and generic solutions for them. In
this framework, not only classifiers cooperate in labeling the samples but also exchange
their information to robustify the labeling, improve the sampling, and realize efficient yet
effective updating. The proposed framework is evaluated against state-of-the-art trackers
on public dataset and showed promising results.

Keywords: visual tracking, active learning, active co-tracking, uncertainty sampling

1. Introduction

Visual tracking is one of the building blocks of human-robot interaction. Implicit or explicit,

this task is embedded in many high-level complicated tasks of the robot: automating industrial

workcells [1], attending the speaker in a multimodal spoken dialog system [2], following the

target [3] and vision-based robot navigation [4], aerial visual servoing [5], imitating the behav-

ior of a human [6], extracting tacit information of an interaction [7], sign-language interpreta-

tion [8], and autonomous driving as well as simpler tasks such as human-robot cooperation

[9], obstacle avoidance [10], first-person view action recognition, [11] and human-computer

interfaces [12].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The most general type of tracking is single-object model-free online tracking, in which the

object is annotated in the first frame and tracked in the subsequent frames with no prior

knowledge about the target’s appearance, its motions, the background, the configurations of

the camera, and other conditions of the scene. Visual tracking is still considered as a challeng-

ing problem despite numerous efforts made to address abrupt appearance changes of the

target [13], complex transformations [14] and deformations [15, 16], background clutter [17],

occlusion [18], and motion artifacts [19].

Generative trackers attempt to construct a robust object appearance model or to learn it on the

fly using advanced machine learning techniques such as subspace learning [20], hash learning

[21], dictionary learning [22], and sparse code learning [13]. General object tracking is the task

of tracking arbitrary objects through one-shot learning, typically with no a priori knowledge

about the target’s geometry, category, or appearance. Called model-free tracking, the task is to

learn the target appearance and update it by adjusting to target’s changes on the fly. To this

end, discriminative models focus on target/background separation using correlation filters

[23–25] or dedicated classifiers [26], which assist them to dominate the visual tracking bench-

marks [27–29]. Using tracking-by-detection approaches is a popular trend in recent years, due

to significant breakthroughs in object detection domain (deep residual neural networks [30],

for instance), yielding strong discriminating power with offline training. Adopted for visual

tracking, many of such trackers are adjusted for online training and accumulate knowledge

about a target with each successful detection (e.g., [26, 31–33]).

Tracking-by-detection methods primarily treat tracking as a detection problem to avoid having

model object dynamics especially in the case of sudden motion changes, extreme deforma-

tions, and occlusions [34, 35]. However, there is a multitude of drawbacks in the tracking-by-

detection setting:

1. Label noise: inaccurate labels confuse the classifier [15] and degrade the classification

accuracy [34]. The labeler is typically built upon heuristics and intuitions, rather than

using the accumulated knowledge about the target.

2. Self-learning loop: the classifier is retrained by their own output from earlier frames, thus

accumulating error over time [35].

3. Uniform treatment of samples: equal weight for all samples in evaluating the target [36] and

training the classifier [37], despite the uneven contextual information in different samples.

The classifier is trained using all the examples with equal weights, meaning that negative

examples which overlap very little with the target bounding box are treated equally as

those negative examples with significant overlaps.

4. Stationarity assumption: assuming a stationary distribution of the target appearance does

not hold for most of the real-world scenarios with drastic target appearance changes [35].

In the context of visual tracking, the non-stationarity means that the appearance of an

object may change so significantly that a negative sample in the current frame looks more

similar to a positive example in the previous frames.

5. Model update difficulties: adaptive trackers inherently suffer from the drifting problem.

Noisy model update [38] and the mismatch between model update frequency and target
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evolution rate [39] are two major challenges of the model update. If the update rate is

small, the changes of the target are not reflected into target’s template, whereas rapid

update of the tracker renders it vulnerable to data noise and small target localization

errors. This phenomenon is also known as stability plasticity dilemma.

In this study we motivate, conceptualize, realize, and formalize a novel co-tracking frame-

work. First, the importance of such system is demonstrated by a recent and comprehensive

literature review. Then a discriminative tracking framework is formalized to be evolved to a

co-tracking by explaining all the steps, mathematically and intuitively. We then construct

various instances of the proposed co-tracking framework (Table 1), to demonstrate how

different topologies of the system can be realized, how the information exchange is optimized,

and how different challenges of tracking (e.g., abrupt motions, deformations, clutter) can be

handled in the proposed framework. Active learning will be explored in the context of labeling

and information exchange of this co-tracking framework to speed up the tracker’s convergence

while updating the tracker’s classifiers effectively. Dual memory is also proposed in the co-

tracking framework to handle various tracking scenarios ranging from camera motions to

temporal appearance changes of the target and occlusions.

It should be noted that preliminary results of this research were published in [40, 41]; however,

the results presented here are slightly different because of using different feature-based auxil-

iary classifier, different target estimations, and ROI-detection scheme (that was omitted here to

conserve the flow of the progressive system design).

2. Tracking by detection

Typically tracking-by-detection method consists of five major steps: SAMPLING, CLASSIFY-

ING, LABELING, ESTIMATING, UPDATING.

T0 T1 T2 T3 T4 T5 T6

Online update

Co-tracking

Active learning

Dual memory

Ensemble

Table 1. Trackers introduced in this chapter: T0, a part-based tracker without model update; T1, the part-based tracker

with model update; T2, a KNN-based tracker with color and HOG features; T3, co-tracking of KNN-based classifier T2

and part-based detector T1; T4, active co-tracking of T1 and T2 with online update; T5, active asymmetric co-tracking of

short-memory T1 and long-memory T2 (modified from [40]); and T6, active ensemble co-tracking of bagging-induced

ensemble and long-memory T2 (modified from [41]).
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SAMPLING: To obtain the positive sample(s) and negative samples (the target and the

background, respectively), dense or sparse (stochastic) sampling is performed either

around last known target position (using Gaussian distributions, particle filters, or various

motion models) or around the saliencies or key points in the current frame [21]. Adaptive

weights for the samples based on their appearance similarity to the target [42], occlusion

state [18], and spatial distance to previous target location [43] have been considered; espe-

cially in the context of tracking by detection, boosting [44] has been extensively investigated

[45–47].

CLASSIFYING: The classification module of tracking-by-detection schemes utilizes offline-

trained classifiers or online supervised learning methods to classify the target from its back-

ground (e.g., [48]). To robustify this module especially against label noise, supervised learning

with robust loss functions [46, 49] and semi-supervised [39, 50] and multi-instance [47, 51, 52]

learning approaches are considered. Efficient sparse sampling [53], leveraging context infor-

mation [17, 54], considering sample information content for the classifier [55], and landmark-

based label propagation [43] are among other proposed approaches to address this issue.

Another interesting approach is to reformulate to couple the labeling and updating process to

bridge the gap between the objectives of these two steps, as labeling aims for predicting binary

sample labels, whereas updating typically tries to estimate object location [15]. The label noise

problem amplifies when the tracker does not have a forgetting mechanism or a way to obtain

external scaffolds (i.e., self-learning loop). This inspired the use of co-tracking [34], ensemble

tracking [56, 57], or label verification schemes [58] to break the self-learning loop using auxil-

iary classifiers.

LABELING: The result of classification process provides the target/background label for each

sample, a process which can be enhanced by employing an ensemble of classifiers [56, 57],

exchanging information between collaborative classifiers [34], and verifying labels by auxiliary

classifiers [58] or landmarks [43].

ESTIMATING: The state of the target, i.e., the location and scale of the target usually

described with a bounding box, is then determined by selecting the sample with the highest

classification score [15], calculating the expectation of target state [41], or performing an

estimated bounding box regression [59].

UPDATING:Updating the classifier is another challenge of the tracking-by-detection schemes.

Updating the classifier, with the data labeled by itself previously in a closed-loop (known as

self-learning loop), is susceptible to drift from the original data distribution because a tiny

error or a small noise can be amplified. Therefore along with many types of research to

revalidate the data labels (such as [58]), the importance of having a “teacher” to guide the

classifier during training is discussed in literature [39]. Cooperative classifiers in frameworks

such as ensembles of homogeneous or heterogeneous classifiers [60], co-learning [34], and

hybrids of generative and discriminative models [61] are some of the approaches to provide

this guidance through cooperation. Furthermore, feature selection based on its discrimination

ability [45], replacing the weakest classifier of an ensemble [45] or the oldest one [60], or

applying a budget on the sample pool (hence, keeping only some prototypical samples) [15,

43] is proposed to improve the performance of such solutions.
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On top of that, the frequency of update is another important role player in tracker’s perfor-

mance [39]. Higher update rates capture the rapid target changes but is prone to occlusions,

whereas slower update paces provide a long memory for the tracker to handle temporal target

variations but lack the flexibility to accommodate permanent target changes. To this end,

researchers try to combine long- and short-term memories [62] and role-back improper

updates [57] or utilize different temporal snapshots of the classifier to overcome non-stationary

distribution of the target’s appearance [63]. This pipeline, however, was altered in some

studies to introduce desired properties, e.g., to avoid label noise by merging sampling and

labeling steps [15].

2.1. Formalization

Online visual tracking is the task to update the state vector pt involving location, size, and

shape of the bounding box, at each observation of video frame t ¼ 1,…, T. The update process

is sometimes written with transformation yt that transforms the previous state vector pt�1 to

the current state pt ¼ pt�1 ∘ yt.

In tracking-by-discrimination framework, we utilize a classifier θt that discriminates an image

patch x into either target or background, where the classifier is denoted as a real valued

discriminant function h xjθtð Þ∈R and the function value s ¼ h xjθtð Þ is called a discrimination

score or, in short, score. The patch x (i.e., the area of the image bounded by the bounding box

pt) is labeled as target if s > τ with a threshold τ and as background if x < τ. A typical

procedure of the tracking-by-discrimination is written as follows.

SAMPLING: The samples are defined using these transformations, and their corresponding

image patches x
j
t ∈X t are selected from image. We obtain N samples of state p

j
t, j ¼ 1,…, N by

drawing random transformations y
j
t ∈Yt using dense or sparse sampling strategy, transfor-

ming the previous state pt�1 with a transformations y
j
t as p

j
t ¼ pt�1 ∘y

j
t ∈Pt.

CLASSIFYING: We calculate the score s
j
t of the image patches x

p
j
t

t corresponding to all sam-

ples, or bounding boxes, using the current classifier θt (h : X ! R):

s
j
t ¼ h x

pt�1 ∘y
j
t

t jθt

� �

(1)

LABELING: We determine label l
j
t of each sample j using the score of the sample. If the score is

above a threshold τ, the sample is likely to be target match:

l
j
t ¼ sign s

j
t � τ

� �

(2)

ESTIMATING: We determine the next target state pt typically by selecting the best p
j
t that

corresponds to the maximum score s
j
t, pt ¼ pt�1 ∘ y

j∗

t s.t. j∗ ¼ argmaxj∈ 1;…;Nf gs
j
t.

UPDATING: Finally, we update the classifier by its own labeled data:
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θtþ1 ¼ u θt;X t;Ltð Þ (3)

in which u lð Þ is the update function (e.g., budgeted SVM update [15]) and X t,Lt are the set of

input patches and output labels used as the training set of the discriminator.

2.2. Baseline system implementation

To develop a baseline tracking-by-detection algorithm for this study, we use a robust part-

based detector for the CLASSIFYING process. This detector employs strong low-level features

based on histograms of oriented gradients (HOG) and uses a latent SVM to perform efficient

matching for deformable part-based models (pictorial structures) [64]. From each frame, we

draw N samples from a Gaussian distribution whose mean is the target’s bounding box in the

last frame (including its location and size). The selected detector then outputs the classification

score for each sample, which is thresholded to obtain the sample’s label. The highest classifi-

cation score is considered as the current target location (Figure 1).

In the first frame, we generate α1N-positive samples by perturbing the first annotated target

patch by few pixels in location and size, select α2N-negative samples from local neighborhood

of the target, and select α3N-negative samples from global background of the object in a

regular grid (α1 þ α2 þ α3 ¼ 1). These samples are used to train the SVM detector in the first

frame. From the next frames, the labels are obtained by the detector itself, and the classifier is

batch-trained with all of the samples collected so far.

There are several parameters in the system such as the parameters of sampling step (number of

samples N, effective search radius Σsearch). These parameters were tuned using a simulated

annealing optimization on a cross validation set. The part-base detector dictionary, and the

thresholds τl, τu, and the rest of abovementioned parameters have been adjusted using cross

validation. With N ¼ 1000, τ ¼ 0:34 T1 achieved the speed of 47.29 fps on a Pentium IV PC @

3.5 GHz and a Matlab/C++ implementation on a CPU.

2.3. Method of evaluation

The experiments are conducted on 100 challenging video sequences, OTB-100 [65], which

involves many visual tracking challenges such as target appearance, pose and geometry

changes, environment lighting and camera position changes, target movement artifacts such

Figure 1. A simple tracking-by-detection pipeline. After gathering some samples from the current frame, the tracker

employs its detector to label the samples as positive (target) or negative (background). The target position is estimated

using these labeled samples. The labels, in turn, are used to update the classifier for the next frame.
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as blur and trajectory variations, and low imaging resolution and noise and background

objects which may cause occlusions, clutter, or target identity confusion. The performance of

the trackers is compared with the area under the curve of success plots and precision plots, on

all of the sequences, or a subset of them with the given attribute.

Success plot indicates the reliability of the tracker and its overall performance, while precision

plot reflects the accuracy of the localization. The area under the surface of this plot (AUC)

counts the number of successes of tracker over time t∈ 1;…;Tf g, i.e., when the overlap of the

tracker target estimation pt with the ground truth p∗
t exceeds the threshold τov. Success plot

graphs the success of the tracker against different values of the threshold τov, and its AUC is

calculated as

AUC ¼
1

T

ð1

0

X

T

t¼1

1
∣pt ∩p

∗
t ∣

∣pt∪p
∗
t ∣

> τov

� �

dτov , (4)

where T is the length of sequence; ∣:∣ denotes the area of the region; ∩ and ∪ stand for

intersection and union of the regions, respectively; and 1 :ð Þ denotes the step function that

returns 1 iff its argument is positive and 0 otherwise. This plot provides an overall perfor-

mance of the tracker, reflecting target loss, scale mismatches, and localization accuracy.

To establish a fair comparison with the state of the art of tracking-by-detection algorithms,

TLD [58] and STRUCK [15] are selected based on the results of [27], BSBT [66] and MIL [47] are

selected based on popularity, and CSK [36] was selected as one of the latest algorithms in the

category. Since our trackers contain random elements (in sampling and resampling), the results

reported here are the average of five independent runs.

2.4. Results

Figure 2 presents the success and precision plots of T1 along with other competitive trackers

for all sequences. We also included a fixed version of T1 tracker (a detector without model

Figure 2. Quantitative performance comparison of the baseline tracker (T1), its variant without model update (T0), and

the state-of-the-art trackers using success plot.
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update) as T0 to emphasize the role of updating. The figure demonstrates that without the

model update, the detector cannot reflect the changes in target appearance and lose the target

rapidly in most of the scenarios (comparing T0 and T1). However, it is also evident that having

a single tracker is not robust against all of the target’s variations (in line with [60]) and the

performance of T1 is still low.

3. Co-tracking

A single detector may have difficulties in distinguishing the target from the background in

certain scenarios. In those cases, it is beneficial to consult another detector with higher robust-

ness. These second detector may have complimentary characteristics to the first one or simply

may be a more sophisticated detector that trades computational complexity with speed.

Collaborative discriminative trackers utilize classifiers that exchange their information, to

achieve more robust tracking. These information exchanges are in the form of queries that

one classifier sends to another. The purpose of this information exchange is to bridge across

long-term and short-term memories [62]; accommodate multi-memory dictionaries [67], mix-

ture of deep and shallow models [68]; facilitate multi-view on the data [34]; and enable

learning from mistakes [58].

3.1. Formalization

Built on co-training principle [69], collaborative tracking (co-tracking) provides a framework in

which two classifiers exchange their information to promote tracking results and break self-

learning loop (Figure 3). In this two-classifier framework [34], the challenging samples for one

classifier are labeled by the other one, i.e., if a classifier finds a sample difficult to label, it relies

on the other classifier to label it for this frame and similar samples in the future. In this case, we

calculate the discrimination score s
j
t as a weighted sum of the two discriminant functions,

s
j
t ¼

P2
c¼1 α

cð Þ
t h x

j
tjθ

cð Þ
t

� �

where α
cð Þ
t denotes the weight of each discriminator θ

cð Þ
t , c ¼ 1, 2. At

the CLASSIFYING step, the corresponding sample x
j
t is considered as a challenging sample

for the cth discriminator when τl < h x
j
tjθ

cð Þ
t

� �

< τu holds because it locates close to the

corresponding discrimination boundary. When one of the two discriminators answered it

challenging, the score of the sample is calculated with using the other score:

s
j
t ¼

α
2ð Þ
t h x

j
tjθ

2ð Þ
t

� �

, h x
j
tjθ

1ð Þ
t

� �

∈ τl; τuð Þ and h x
j
tjθ

2ð Þ
t

� �

=∈ τl; τuð Þ

α
1ð Þ
t h x

j
tjθ

1ð Þ
t

� �

, h x
j
tjθ

2ð Þ
t

� �

∈ τl; τuð Þ and h x
j
tjθ

1ð Þ
t

� �

=∈ τl; τuð Þ

P2
c¼1 α

cð Þ
t h x

j
tjθ

cð Þ
t

� �

, otherwise

0

B

B

B

B

@

(5)

At the UPDATING step, the weight α
cð Þ
t of the discriminator c is adjusted according to the

degree of contradiction to the provisional answers that are determined at the ESTIMATION
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step by an integration of all the information. Finally, the classifiers are updated using only the

samples that they successfully labeled in the previous frame to reflect the latest target changes.

3.2. Evaluation

For this experiment, we selected a naive classifier with complementary properties to the main

classifier in the previous section. This classifier is a KNN classifier using HOC and HOG

features, trained on the samples trained from the first frame and updated with all the labeled

samples by the collaboration of the classifiers. Not being pre-trained, the performance of this

auxiliary classifier is poor in the beginning but gradually gets better. The quick classification of

the KNN (owning to its kd-tree implementations and lightweight features) and lack of pre-

training grant it high speed and generalization which is in contrast to the main detector.

However, it should be noted that without being supervised by the main SVM-based detector,

this classifier cannot perform well in isolation for tracking task. Figure 5 presents the perfor-

mance of this auxiliary tracker as T2. As observed in the figure, the performance of the

obtained co-tracker (T3) is better than the main detector (T1) and the auxiliary classifier (T2)

as a result of co-labeling, data exchange, and co-learning.

4. Active co-tracking

The co-tracking framework provides a means for classifiers to exchange information. This

framework utilizes a utility measure (e.g., the classification confidence in [34]) to select the

data for which one of the collaborators fails to classify with high confidence and then trains the

other classifier on those data. This approach has two main shortcomings: (1) the redundant

labeling of all samples for both classifiers and (2) training the collaborator with “all” of the

uncertain samples. While the former increases the complexity of the system, the latter is not the

optimal solution for tracking a target with non-stationary appearance distributions [35].

In this view, a principled ordering of samples for training [70] and selecting a subset of them

based on criteria [37] can reduce the cost of labeling leading to faster performance increase as a

Figure 3. Collaborative tracking. A detector and an auxiliary classifier trust each other to handle the sample difficult for

them to classify.
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function of the amount of data available. It is found that detectors trained with an effective,

noise-free, and outlier-free subset of the training data may achieve higher performance than

those trained with the full set [71, 72].

Robust learning algorithms provide an alternative way of differentially treating training exam-

ples, by assigning different weights to different training examples or by learning to ignore

outliers [73]. Learning first from easy examples [74], pruning adversarial examples1 [75], and

sorting the samples based on their training value [37] are some of the approaches explored in

the literature. However, the most common setting is active learning, whereby most of the data

is unlabeled and an algorithm selects which training examples to label at each step, for the

highest gains in performance. Thus, some active learning approaches focus on learning the

hardest examples first (those closest to the decision boundary). Some approaches focus on

learning the hardest examples first (e.g., those closest to the decision boundary), whereas some

others gauge the information contained in the sample and select the most informative ones

first. For example, Lewis and Gale [76] utilized the uncertainty of the classifier for a sample as

an index of its usefulness for training.

4.1. The idea

Active learning has been used in visual tracking to consider the uncertainty caused by bags of

samples [55], to reduce the number of necessary labeled samples [77], to unify sample learning

and feature selection procedure [78], and to reduce the sampling bias by controlling the

variance [79].

In this study, we utilized the sampling uncertainty that can bind the active learning and co-

tracking. As mentioned earlier, the baseline classifier, despite being accurate, has low general-

ization on new samples, slow classification speed, and computationally expensive retraining.

On the other hand, the auxiliary classifier is agile and learns rapidly, with negligible retraining

time. To combine the merits of these two classifiers, to cancel out their demerits with one

another, and to address the aforementioned issues of co-tracking (redundant labeling and

excessive samples), we incorporate an active learning module to select the most informative

data, i.e., those for which the naive classifier is most uncertain, and query their labels from the

part-based detector. This architecture (Figure 4, here called T4) mainly uses naive classifier for

labeling the data and only asks the label of hard samples from the slower detector and,

therefore, limits the redundancy and unleashes the speed of the agile classifier. In addition, by

training the naive classifier only on hard samples, the generalization of this classifier is pre-

served while increasing its accuracy.

To further increase the accuracy of the tracker and make it more robust against occlusions and

drastic temporal changes of the target, it is possible to update the detector less frequently. This

asymmetric version of the active co-tracker (T5), by introducing long-term memory to the

tracker, benefits from combining the long- and short-term collaboration (as in [62]) and

reduces the frequency of the expensive updates of the tracker (Algorithm 1).

1

Images with tiny, imperceptible perturbations that fool a classifier into predicting the wrong labels with high confidence
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Algorithm 1: Active co-tracking (ACT)

Input: Target position in last frame pt�1

Output: Target position in current frame pt

for j 1 to n do

Generate a sample p
j
t � N pt�1;Σsearch

� �

Calculate s
j
t  h x

p
j
t

t jθ
1ð Þ
t

� �
(Eq.(6))

Determine uncertain samples U t (Eq.(7))

if p
j
t ∈U t then θ

1ð Þ
t is uncertain

Query θ
2ð Þ
t : l

j
t  Sign h x

p
j
t

t jθ
2ð Þ
t

� �� �

else

Label using θ
1ð Þ
t : l

j
t  Sign s

j
t

� �

Dt  Dt∪ x
p
j
t

t ; l
j
t

� 	

Update θ
2ð Þ
t with Dt�Δ, ::, t every Δ frames (Δ ¼ 1 for T4)

if
Pn

j¼1 1 l
j
t > 0

� �
> τp and

Pn
j¼1 π

j
t > τa then

Approximate target state bpt (Eq.(9))

Update θ
1ð Þ
t with U t

else target occluded

bpt  pt�1

Figure 4. Active co-tracker, a collaborative tracker that utilizes an active query mechanism to query the most informative

samples from the main detector and feeds them to the lightweight classifier to learn.
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4.2. Formalization

In the proposed active co-tracking framework, a main classifier attempts to label the sample,

and it queries the label from the other classifier if the main classifier emits uncertain results.

This is in contrast with using a linear combination of both classifiers based on their classifica-

tion accuracy as adopted in T3. At the CLASSIFYING step, the proposed tracker can score

each sample based on the classifier confidence, i.e., for sample p
j
t we calculate score s

j
t:

s
j
t ¼ h x

p
j
t

t jθ
1ð Þ
t

� �
: (6)

Based on uncertainty sampling [76], the samples for which the classification score is more

uncertain (i.e., s
j
t ! 0) contain more information for the classifier if they are labeled by the

other classifier. Therefore, the scores of all samples are sorted, and m samples with the closest

values to 0 are selected to be queried from θ
2ð Þ
t . To handle the situations for which the number

of highly uncertain samples are more than m, a range of scores are determined by lower and

higher thresholds (τl and τu), and all the samples in this range are considered highly uncertain:

U t ¼ pi
tjτl < sit < τu or j ∃j 6¼ ijs

j
t ≤ s

i
t

n o
j < m

n o
(7)

in which U t is the list of uncertain samples. The label of the samples l
j
t ∈Lt, j ¼ 1,…, N is then

determined by

l
j
t ¼

sign h x
p
j
t

t jθ
1ð Þ
t

� �� �
,p

j
t ∈U t

sign h x
p
j
t

t jθ
2ð Þ
t

� �� �
,p

j
t∉U t

0

BBB@ (8)

and all image patches x
p
j
t

t and labels l
j
t are stored in Dt.

At the ESTIMATION step, we follow the importance sampling mechanism originally employed

by particle filter trackers:

bpt ¼

Pn

j¼1

π
j
tp

j
t

P1

j¼1

π
j
t

: (9)

where π
j
t ¼ s

j
t1 l

j
t > 0

� �
and 1 :ð Þ are the indicator function, 1 if true, zero otherwise. This

mechanism approximates the state of the target, based on the effect of positive samples, in

which samples with higher scores gravitate the final results more toward themselves. Upon

the events such as massive occlusion or target loss, this sampling mechanism degenerates [13].

In such cases, the number of positive samples and their corresponding weights shrinks signif-

icantly, and the importance sampling is prone to outliers, distractors, and occluded patches. To
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address this issue, if the number of positive samples is less than τp, and their score average is

less than τa, the target is deemed occluded to avoid tracker degeneracy.

4.3. Evaluation

Figure 5 illustrates the effectiveness of the proposed trackers against their baselines. The active

query mechanism in T4 improves the efficiency and effectiveness of co-tracking (T3). Espe-

cially in the asymmetric co-tracker (T5), the mixture of long-term and short-term memory

classifiers using this method is to key to automatically balance the stability-plasticity equilib-

rium. It is also prudent for the tracker to adapt to the temporal distribution of the target

appearance, before its redistribution by illumination changes, etc.

In summary, the advantages of the proposed trackers especially the asymmetric ones (T5)

compared to the conventional co-tracking (T3) are as follows: (1) the classifiers do not

exchange all the data they have problems in labeling; instead, the most informative samples

are selected by uncertainty sampling and exchanged; (2) the update rate of classifiers is

different to realize a short- and long-term memory mixture; (3) the samples that are labeled

for the target localization can be reused for training, and the need for an extra round of

sampling and labeling is revoked; and (4) since in the proposed asymmetric co-tracking, one

of the classifiers scaffolds the other one instead of participating in every labeling process, a

more sophisticated classifier with higher computational complexity can be used.

5. Active ensemble co-tracking

Ensemble discriminative tracking utilizes a committee of classifiers, to label data samples,

which are in turn used for retraining the tracker to localize the target using the collective

Figure 5. Quantitative performance comparison of the asymmetric active co-tracker (T5), active co-tracker (T4), the

ordinary co-tracker (T3), and their individual trackers (T1 and T2).
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knowledge of the committee. In such frameworks the labeling process is performed by

leveraging a group of classifiers with different views [45, 56, 80], subsets of training data [57,

81], or memories [57, 82].

In ensemble tracking [45, 47, 56, 57, 60, 83–85], the self-learning loop is broken, and the labeling

process is performed by eliciting the belief of a group of classifiers. However, this framework

typically does not address some of the demands of tracking-by-detection approaches like a proper

model update to avoid model drift or non-stationary of the target sample distribution. Besides,

ensemble classifiers do not exchange information, and collaborative classifiers entirely trust the

other classifier to label the challenging samples for them and are susceptible to label noise.

Traditionally, ensemble trackers were used to providing a multi-view classification of the

target, realized by using different features to construct weak classifiers. In this view, different

classifiers represent different hypotheses in the version space, to accurately model the target

appearance. Such hypotheses are highly overlapping; therefore an ensemble of them overfits

the target. The desired committee, however, consists of competing hypotheses, all consistent

with the training data, but each of the specialized in certain aspect. In this view, the most

informative data samples are those about which the hypotheses disagree the most, and by

labeling them, the version space is minimized leading to quick convergence yet accurate

classification [86]. Motivated by this, we proposed a tracker that employs a randomized

ensemble of classifiers and selects the most informative data samples to be labeled.

5.1. The idea

To create ensembles of classifiers, researchers typically make different classifiers by altering the

features [45], using a pool of appearance and dynamics models [87], utilizing different mem-

ory horizons [82], and employing previous snapshots of a classifier in different times [57], but

creating a collaborative mechanism in the ensemble, where classifiers exchange information is

hardly addressed in the visual tracking literature. This data exchange can be in the form of

query passing between ensemble members, in which the queries can be the samples for which

a classifier is uncertain or even the ensemble is most uncertain.

Selecting such queries is addressed in different machine learning domains such as curriculum

learning [74] and active learning. Query-by-Committee (QBC) algorithm [86, 88] is an active

learning approach for ensembles that selects the most informative query to pass within a

committee of models which are all trained on the current labeled set but represent competing

hypotheses. The label of the queried sample is then decided by the vote of the ensemble

members, and the samples for which the ensemble has more diverse ideas are selected as the

next query to ask from the teacher (here, the auxiliary classifier). In this case, where the task is

a binary classification, the most disputed sample (i.e., with close positive and negative votes) is

the most informative since learning its label would maximally train the ensemble. Training

with the external label for this sample, shrinks the version space (i.e., the space of all consistent

hypotheses with the training data) such that it remains consistent with the hypotheses of all

classifiers, but rejects more potential incorrect ones.
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QBC was originally designed to work with stochastic learning algorithms, which pose limita-

tions to use it with non-probabilistic or deterministic models. To alleviate this problem, Abe

and Mamitsuka [89] enable deterministic classifiers to work with random subsets of training

data to create different variations of the same learning model. By creating temporary ensemble

using this “bagging” procedure [90], they realized Query-by-Bagging (QBag) to enhance the

learning speed and generalization of the base learning algorithm.

We propose the adjustment of the QBag algorithm for online training to solve the label noise

problem in T6. Similar to T5, the drift problem is handled using dual-memory strategy: the

committee rapidly adapts to target changes, whereas the main classifier possesses a longer

memory to promote the stability of the target template (Figure 6).

5.2. Formalization

An ensemble discriminative tracker employs a set of classifiers instead of one. These classifiers,

hereafter called committee, are represented by C ¼ θ
1ð Þ
t ;…;θ

Cð Þ
t

n o

and are typically homoge-

neous and independent (e.g., [56, 85]). Popular ensemble trackers utilize the majority voting of

the committee as their utility function:

s
j
t ¼

X

C

c¼1

sign h x
pt�1 ∘ y

j
t

t jθ
cð Þ
t

� �� �

: (10)

And Eq. (8) is used to label the samples. Finally, the model is updated for each classifier

independently, meaning that each of the committee members is trained with a random subset

of the uncertain set. θ
cð Þ
tþ1 ¼ u θ

cð Þ
t ;Γ

cð Þ
t � U t

� �

where u θ;Xð Þ is the updating the model θ with

samples X . The uncertain set U t contains all of the samples for which the ensemble disagrees

and was sent to the auxiliary classifier for labeling. The detector θ
oð Þ
t is also updated with all

recent data Dt�Δ, ::, t every Δ frames.

Figure 6. Active ensemble co-tracker. The bagging-induced ensemble labels the input samples and only queries the most

disputed ones from the slow part-based classifier.
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5.3. Evaluation

Figure 7 depicts the overall performance of the proposed tracker against other benchmarked

algorithms on all sequences of the dataset. The plots show that T6 has a superior performance

over T5 and its predecessors. The steep slope between 0:9 ≥ τov > 1 indicates the high quality of

the predictions (i.e., more predictions have higher overlap with the ground truth, rather than

being partially correct), and the other slope around τov ≈ 0:4 along with high success rate near

τov ! 0 indicates that the algorithm was successful in continue tracking, despite all the tracking

challenges.

Figure 7. Quantitative performance comparison of the active ensemble co-tracker (T6) with its predecessors.
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6. Discussion

The instances of the proposed framework are evaluated against state-of-the-art trackers on

public sequences that become the de facto standards of benchmarking the trackers. The

trackers are compared with popular metrics such as success plot and precision plot to establish

a fair benchmark. In addition, the performance of the proposed trackers is investigated for

videos with a distinguished tracking challenge, and the results are compared with state of the

art and discussed. Additionally, the effect of the information exchanged will be examined

thoroughly to illustrate the dynamics of the system. The preliminary results of the proposed

framework demonstrate a superior performance for the proposed trackers when applied on all

the sequences and most of the subsets of the test dataset with distinguished challenges. Finally,

the future research direction is discussed, and the opened research avenues are introduced to

the field.

As Figure 7 and Table 2 demonstrate, T6 has the best overall performance among investigated

trackers on this dataset. While this algorithm has a clear edge in handling many challenges, its

performance is comparable with T5 in the case of occlusions and z-rotations. It is also evident

that T6 is troubled with fast deformations since neither of the ensemble members is specialized

in handling a specific type of deformations and the collective decision of the ensemble may

involve mistakes with high confidence. On the other hand, T5 utilizes a dual-memory scheme,

and a single classifier can handle extreme temporal deformations better than the ensemble in

IV DEF OCC SV IPR OPR OV LR BC FM MB ALL

T0 12 12 13 12 13 13 14 5 12 15 18 14

T1 37 29 3 36 42 39 43 30 33 39 36 38

T2 23 19 23 23 28 25 25 22 23 24 20 25

T3 41 32 39 40 44 42 43 30 36 43 39 41

T4 50 39 47 48 53 49 48 37 44 50 45 49

T5 52 47 53 51 59 56 52 38 41 53 46 52

T6 57 40 51 53 61 55 63 46 53 60 58 56

TLD 49 32 42 44 50 43 45 37 40 45 42 46

STRK 46 41 44 43 51 48 44 39 39 52 48 48

CSK 40 36 36 34 43 39 32 29 42 39 32 41

MIL 35 35 38 35 41 39 40 32 31 35 28 36

BSBT 23 18 23 21 27 24 32 23 23 26 24 25

The first, second, and third best methods are shown in color. The challenges are illumination variation (IV), scale variation

(SV), occlusions (OCC), deformations (DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-play

rotation (OPR), out-of-view problem (OV), background clutter (BC), and low resolution (LR)

Table 2. Quantitative evaluation of state of the art under different visual tracking challenges using AUC of success plot (%).
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T6. Interestingly, it is observed that in most of the subcategories that T6 is clearly better than

the other trackers, the success plot of T6 starts with a plateau and later has a sharp drop

around τov ¼ 0:8. This means that T6 provides high-quality localization (i.e., bigger overlaps

with the ground truth). Similarly, from precision plot, it is evident that T6 shows a graceful

degradation in different scenarios, and although it does not provide a good scale adaptation

for targets, it is able to localize them better than the competing trackers (Figure 8).

7. Conclusions and future works

This chapter provides a step-by-step tutorial for creating an accurate and high-performance

tracking-by-detection algorithm out of ordinary detectors, by eliciting an effective collaboration

among them. The use of active learning in junction with co-learning enables the creation of a

battery of tracker that strives to minimize the uncertainty of one classifier by the help of another.

The progressive design leads to use a committee of classifiers that use online bagging to keep up

with the latest target appearance changes while improving the accuracy and generalization of

the base tracker (a feature-based KNN). Inspired by the query-by-bagging algorithm, this

Figure 8. Qualitative results of T6 in red against other trackers (T0–T5 in blue and TLD, STRK, CSK, MIL, and BSBT in

gray) on challenging video scenarios of OTB-100 [65]. The sequences are (from top to bottom, left to right) FaceOcc2 and

Walking2 with severe occlusion, Deer and Skating1 with abrupt motions, Firl and Ironman with drastic rotations, Singer1

and CarDark and Shaking with poor lighting, Jumping and Basketball with nonrigid deformations, and Shaking,Soccer

with drastic lighting, pose, and noise level changes and Board with intensive background clutter. The ground truth is

illustrated with yellow dashed box. The results are available in http://ishiilab.jp/member/meshgi-k/act.html.
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algorithm selects the most informative samples to learn from the long-term memory auxiliary

detector, which realizes a gradually decreasing dependence on this slow and likely overfit

detector yet robust against fluctuations in target appearance and occlusions. Furthermore, using

an expectation of the bounding boxes compensates for overreliance of the tracker on the classi-

fiers’ confidence function. The balance in stability-plasticity equilibrium is achieved by the

combination of several short-term classifiers with a long-term classifier and managing their

interaction with an active learning mechanism.

The trail of proposed trackers led to T6, which incorporates ensemble tracking, active learning,

and co-learning in a discriminative tracking framework and outperform state-of-the-art dis-

criminative and generative trackers on a large video dataset with various types of challenges

such as appearance changes and occlusions.

The future direction of this study involves other detectors to care for context, to have accurate

physical models for known categories, to use deep features to improve discrimination, and to

examine different methods of building the ensemble and detecting most informative samples

or exchanging.
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