INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

Yu, David Chunjen

OPTIMAL LOAD FLOW STUDY - UTILIZING O.R. TECHNIQUES

Ph.D. 1983

PLEASE NOTE:

in all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \qquad .

1. Glossy photographs or pages \qquad
2. Colored illustrations, paper or print \qquad
3. Photographs with dark background \qquad
4. Illustrations are poor copy \qquad
5. Pages with black marks, not original copy \qquad
6. Print shows through as there is text on both sides of page
7. Indistinct, broken or small print on several pages \qquad
8. Print exceeds margin requirements \qquad
9. Tightly bound copy with print lost in spine \qquad
10. Computer printout pages with indistinct print \qquad
11. Page (s) \qquad lacking when material received, and not available from school or author.
12. Page (s) \qquad seem to be missing in numbering only as text follows.
13. Two pages numbered \qquad . Text follows.
14. Curling and wrinkled pages \qquad
15. Other \qquad

University
Microfilms
International

THE UNIVERSITY OF OKINHOEA

GRADUATE COLLEGE

OPTIMAL LOAD FLON SIUDY - UTILIIZING O.R. TECHNIOUES

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULITY
in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

BY
DAVID C. YU
Norman, Oklahoma
1983

OPTIMAL LOAD FLOW STUDY - UTILIEING O.R.
TECHNIQUES

ACKNONLEDGEMENTSS

The author wishes to express his sincere thanks to his advisor Dr. J. E. Fagan for his continuous enthusiastic guidance and encouragement during the entire period of the research. Without his generous support, this work would be impossible.

Deep appreciation are also extended to Dr. M. E. Council for his understanding ,encouragement and support over the past few years.

Further, the author thanks Dr. J. P. Hilliard, Dr. S. Lakshmivarahan and Dr . A. A. Aly for their suggestions, valuable advices and constructive criticisms.

Special thanks goes to Mrs. Marita Hardcastle for her enormous help in the preparation of the manuscript.

Last, but not least. I would like to thank my wife Ellen and my parents, without their devoted love. total understanding, patience and encouragement, this work could not have been completed.

Abstract

The purpose of this research is to present a new operational research (OR) optimal load flow approach. This new approach is implemented using nonlinear programuing methods. As conventional and existing O.R. models, this model incorporates network performance variables such as bus voltages as well as topological and elemental constraints.

This research includes a discussion of the performance constraints of the network and implementation into the O.R. model. In addition, it also explores the development and sensitivity of the model. Two examples of a small network problem and an IEEE 39 bus system are implemented and solved. Detail discussions about the ability of the model to work under a wide variety of situations such as loss of generation, loss of lines, various faults, and voltage regulation are also included in this research.

TABLE OF CONTENTS

Page
List of Figures vii
List of Tables viii
Chapter ONE Introduction. 1
State of the art 1
The need for a more realistic and accurate model 5
Chapters overview. 6
Chapter TWO Development of the model. 7
Derivation of the power flow equation 7
Model formulation. 10
The model. 13
Sensitivity analysis of the model. 16
Chapter THREE Model implementation. 22
First problem formulation 22
O.R. analysis of the problem 26
The algorithm and results 37
Second problem formulation and its results 42
Comparisons of the model 58
Summary of comparisons 72
Chapter FOUR Sunmary and conclusion 75
Bibllography 78
Appendix One 81
Appendix Two 84
Appendix Three 95
Appendix Four A. 104
Appendix Four B 113
Appendix Five. 122
Appendix Six 131

LIST OF FIGURES

Page
2.1 Vector diagram 7
3.1 Five bus system diagram 23
3.2 Thirty nine bus system diagram 44

LIST OF TABLES

Page
3.1 Five bus system bus data 23
3.2 Five bus system line data 23
3.3 Resultant bus voltage 38
3.4 Resultant line flows and system reactive losses 39
3.5 Resultant bus voltage in polar form 40
3.6 Program status. 40
3.7 Quasiconvexity or quasiconcavity check at the K -T point. 43
3.8 Thirty nine bus system line data 45
3.9 Thirty nine bus system bus data 46
3.10 Resultant bus voltages in polar form 49
3.11 Line flows. 53
3.12 System status 55
3.13 Quasiconvexity or quasiconcavity check at the K -T point. 57
3.14 Structure and operation comparison. 58
3.15 Bus voltage 59
3.16 Results of the five bus system by Gauss-Siedel method. 60
3.17 Results of the 39 bus system by Gauss-Siedel method. 62
3.18 Line flow and system losses under bus fault 66
3.19 Bus voltage under bus fault 67
3.20 The cut demand on the load buses under the bus fault 67
3.21 Line flow and system losses under the line $\mathbf{1 - 2}$
fault 68
3.22 Bus voltage under line 1-2 fault. 69
3.23 The cut demand on the load buses under line 1-2
fault 69
3.24 Bus voltage under voltage regulation on line 2- 5 70
3.25 Line flow and system losses under voltage regu- lation on line 2-5 71
3.26 The differences of the results of the five bus system and network solution 72
3.27 The differences of the results of the 39 bus system and network solution 73

CHAPTER ONE

INIRODUCTION

Over the past thirty years an enormous amount of effort has been expended in research and development in the load flow area. Hundreds of papers have been published on methods of load flow calculation. Perhaps the most recurrent question arising in this field is : which is the best method to choose for a given application? The answer is rarely easy. The relative properties and performances of different load flow methods can be influenced substantially by the types and sizes of problems to be solved, by the computing facilities available and by the precise details of implementation. The final choice is almost inevitably a compromise between the various criteria by which load flow methods are to be compared with each other.
O.R. techniques are certainly the most promising tool for solving this type of problems. The L.P. solution technique applied to solve optimal real power generation is already well known. However, the same technique is much more difficult to apply to reactive power optimization, due to the non-linearity of relations between power flow and bus voltages or between reactive power injections and voltages.

State of the art

In the past, some O.R. methods using sensitivity relationships and gradient search approaches have emerged to solve this complex problem. Peschon et al. (1) developed the power flow sensitivity and cost sensitivity relationship to optimize the real and reactive power generations in the system. They also presented a linear programuing approximation to the optimization problem of minimizing the production costs.

Dopaz et al. (2) presented a method of minimizing the production cost by coordinating real and reactive power allocation in the system. The procedure at first determines the real power dispatch based on the Lagrangian multipliers and then proceeds to optimize the reactive power allocation by a gradient approach. The objective function, which is system loss reduction, yields the required gradient vector.

Hano et al. (3) presented a method of controling the systen voltage and reactive power distribution in the system. They deterained the required sensitivity relationships between controlled and controllable variables, and loss sensitivity indices, and then employed a direct search technique to minimize the system losses.

Donmel and Tinney (4) developed and presented a noninnear optimization technique to determine the optimal power flow solution. They minimized a nonlinear objective function of production costs or losses using Kuhn-Tucker conditions.

Savulesu (5) presented an approach to determine loss sensitivity, reactive power transmittance and steady-state stability indices. Based on these indices, he employed a suitable search procedure to move toward the required optimal system conditions.

Since most of the above mentioned algorithms use a gradient search technique, there is no coordinated variable control over the system performance.

Narital and Hamnan (6) use the sensitivity analysis of power systems as an optimization technique called the "Method of Box" to minimize the voltage deviations from their desired values. As a secondary step, they minimize the system losses.

Shoults and Chen (7) found the adjustments to the transformer taps and the generator terminal voltage required to restore the reactive power flows in lines and the load bus voltages to their desired values.

These methods, however, are not suitable for optimal scheduling of reactive power flows and voltages in the system.

Hobson (8) developed a method of finding the network constrained reactive power control. He used incremental transmission line and transformer models and linearized network equations. Then the problem was solved by a special L.P. technique by giving priorities to generators in the system. This method seems to maintain only soft limits on
transformer taps, generator voltages, generator reactive power, etc..

Mamandur and Chenoweth (9) developed a new L.P. and N.R. inter-reactive and repetitive method to improve the voltage profile and to minimize the system losses. They used the dual linear programming technique to evaluate the new status for the state variables (e.g. P, Q, V, etc.). Then a conventional N.R. load flow is performed. This completes one iteration of the VAR control problem. Iterations are repeated until the constraints are satisfied. Since this method used L.P. technique to evaluate the system performance, it linearizes some non-linearity of the state variables, and injects some reactive flow errors. Although the $L P-N R$ repetition will reduce the errors, the computer time will be increased.

Chamorel and Germond (10) presented a method based on the active-reactive decoupling. First an active power flow optimization is performed, then the constraints are modified for reactive optimization. The difficulty of this method is reactive power optimization because each voltage modification leads to general modification of loads, reactive losses and penalty factors.

Shoults and Sun (11) developed another decoupling technique to solve power flow optimization. They decomposed the power flow problem into two suboptimal problems (i) real power optimization with system voltage assumed constant,
(11) reactive power optimization with real power generation and bus phase angles assumed constant. Then using nonlinear programming technique (SUNT) solves these two subproblems alternatively.

Burchett et al. (12) presented a similar method as (11), except they used different non-linear programoing technique to reach the optimal.

Since, all three algorithms used decoupling techniques, they assume the ratio R / X of transmission line is low. If this assumption does not hold the results will be inaccurate.

The need for a more realistic and accurate model
The electric utility industry has doubled its energy output almost every decade since its inception in 1882. As a result it is one of the largest single industries in the United States. In addition, the electric utilities, with a few exceptions, make up a singie electrically contiguou system covering the entire continental United States.

Therefore, in planning a future power system, it is extremely important to study how the projected transmission network will really perform under certain forecasted load levels and contingency conditions.

The proposed model is based on the system performance as well as the topology. Bus voltages are assigned to be the control variables, which governs the system to satisfy
an acceptable performance index. The solution method utilizes non-linear programaing techniques to solve the optimal load flow problem generally and in several contingency situations; such as loss of generation, loss of lines, various faults and voltage regulation.

Chapters overview

Chapter one Introduction.
Chapter two Development of the model.
Chapter three Model implementation.
Chapter four Summary and conclusion.
That where possible equations are expressed in the standard mathematical forms. Example equations are expressed in the Fortran notations to more clearly show model mechanization.

CHAPTER TWO

DEVELORMENT OF THE MODEL

Any power system load flow model is composed of three parts, (i) real power flow for each system line, (ii) reactive power flow for each line, and (iii) real and imaginary solution of the bus voltage. The bus voltage variables are the dominant variables of the system solution, since they determine the real and reactive power flows of the network, as in the following derivation.

Derivation of the power flow equation
(a) Real power flow

$$
\begin{aligned}
& P_{i}=E_{i} I_{i j} \operatorname{Cos} \phi_{i} \\
& I_{i j}=\frac{E_{i}-E_{j}}{Z_{i j}}
\end{aligned}
$$

Figure 2.1 Vector diagram

$$
I_{i j} \cos \phi_{i}=\frac{E_{i}}{z_{i j}} \cos \phi_{z}-\frac{E_{j}}{z_{i j}} \cos \left(\phi_{z}+\delta_{i j}\right)
$$

$$
\begin{align*}
& P_{i j}=E_{i} I_{i j} \cos \phi_{i}=\frac{E_{i}^{2}}{Z_{i j}} \cos \phi_{z}-\frac{E_{i} E_{i}}{Z_{i j}} \cos \left(\phi_{z}+\delta_{i j}\right) \\
& =\frac{E_{i}^{2}}{z_{i j}} \frac{R_{i j}}{z_{i j}}-\frac{E_{i j} E_{j}}{z_{i j}} \operatorname{Sin}\left(90-\phi_{z}-\delta_{i j}\right) \\
& =-\frac{E_{i} E_{i}}{Z_{i j}} \sin \left(-\delta_{i j}+\alpha_{z}\right)+\frac{E_{i}^{2} R}{z_{i j}^{2}}, \quad \alpha_{z}=90-\phi_{z} \\
& =\frac{E_{i} E_{j}}{Z_{i j}} \operatorname{Sin}\left(+\delta_{i j}-\alpha_{z}\right)+\frac{E_{i}^{2} R}{z_{i j}^{2}} \tag{3.1}\\
& \delta_{i j}=\operatorname{Tan}^{-1} \frac{I V_{i}}{R V_{i}}-\operatorname{Tan}^{-1} \frac{I V_{j}}{R V_{j}} \\
& \operatorname{Sin} \delta_{i j}=\operatorname{Sin}\left(\operatorname{Tan}^{-1} \frac{I V_{i}}{R V_{i}}-\operatorname{Tan}^{-1} \frac{I V_{j}}{R V_{j}}\right. \\
& =\operatorname{Sin}\left(\operatorname{Tan}^{-1} \frac{I V_{i}}{R V_{i}}\right) \cos \left(\operatorname{Tan}^{-1} \frac{I V_{i}}{R V_{j}}\right) \\
& -\operatorname{Cos}\left(\operatorname{Tan}^{-1} \frac{I V_{i}}{R V_{i}}\right) \sin \left(\operatorname{Tan}^{-1} \frac{I V_{j_{-}}}{R V_{j}}\right. \\
& =\frac{-I V_{i}}{E_{i}} \times \frac{R V_{j}}{E_{j}}-\frac{R V_{i}}{E_{i}} \times \frac{I V_{j}}{E_{j}}
\end{align*}
$$

$$
\begin{aligned}
& \cos _{i j}=\operatorname{Cos}\left(\operatorname{Tan}^{-1} \frac{I V_{i}}{R V_{i}}-\operatorname{Tan}^{-1} \frac{I V_{j_{-}}}{R V_{j}}\right. \\
& =\frac{R V_{i}}{E_{i}} \times \frac{R V_{j}}{E_{j}}+\frac{I V_{i}}{E_{i}} \times \frac{I V_{j}}{E_{j}} \\
& P_{i j}=\frac{E_{i}^{2} R_{i j}}{z_{i j}^{2}}+\frac{E_{i} E_{j}}{Z_{i j}} \sin \left(\sigma_{i j}-\alpha_{z}\right), \alpha_{z}=\operatorname{Tan}^{-1}-\frac{R}{X} \\
& =\frac{E_{i=1}^{2} R_{i j}}{z_{i j}^{2}}+\frac{E_{i} E_{j}}{z_{i j}}\left(\operatorname{Sin} \sigma_{i j} \operatorname{Cos} \alpha_{z}-\operatorname{Cos} \sigma_{i j} \operatorname{Sin} \alpha_{z}\right) \\
& =-\frac{E_{i}^{2} R_{i j}}{z_{i j}^{2}}+-\frac{E_{i} E_{j}}{z_{i j}^{2}}\left(x \operatorname{Sin} \sigma_{i j}-R \operatorname{Cos} \sigma_{i j}\right) \\
& =\frac{E_{i}^{2} R_{i j}}{2_{i j}^{2}}+\frac{E_{i} E_{j}}{z_{i j}^{2}}\left[X_{i j}\left(\frac{I V_{i} R V_{j}-R V_{i} I V_{j}}{E_{i} E_{j}}\right)-R_{i j}\left(\frac{R V_{i} R V_{j}-I V_{i} I V_{j}}{E_{i} E_{j}}\right)\right] \\
& =\frac{E_{i}^{2} R_{i j}}{Z_{i j}^{2}}+\frac{X_{i j}\left(I V_{i} R V_{j}-R V_{i} I V_{j}\right)-R_{i j}\left(R V_{i} R V_{i}+I V_{i} I V_{j}\right)}{z_{i j}^{2}} \\
& P_{j i}=\frac{E_{j}^{2} R_{i j}}{z_{i j}^{2}}+\frac{x_{i j}\left(I V_{j} R V_{i}-R V_{j} I V_{i}\right)-R_{i j}\left(R V_{j} R V_{i}+I V_{j} I V_{i}\right)}{z_{i j}^{2}}
\end{aligned}
$$

(b) Reactive power flow

$$
\begin{aligned}
Q_{i j}^{\prime} & =-\frac{E_{i}^{2} x_{i j}}{z_{i j}^{2}}+\frac{E_{i j} E_{j}}{z_{i j}} \operatorname{Cos}\left(\sigma_{i j}-\alpha_{z}\right), \alpha_{z}=\operatorname{Tan}^{-1} \frac{R}{X} \\
& =-\frac{E_{i}^{2} x_{i j}}{z_{i j}^{2}}+\frac{E_{i j} E_{j}}{z_{i j}}\left(\operatorname{Cos} \sigma_{i j} \operatorname{Cos} \alpha_{z}+\sin \sigma_{i j} \sin \alpha_{z}\right) \\
& =-\frac{E_{i}^{2} x_{i j}}{z_{i j}^{2}}+\frac{E_{i j} E_{j}}{z_{i j}^{2}}\left(x \cos \sigma_{i j}+R \sin \sigma_{i j}\right) \\
& =+-\frac{E_{i}^{2} x_{i j}}{z_{i j}^{2}}-\frac{x_{i j}\left(R V_{i} R V_{j}+I V_{i} I V_{j}\right)+R_{i j}\left(I V_{i} R V_{j}-R V_{i} I V_{j}\right)}{z_{i j}^{2}} \\
Q_{i j} & =Q_{i j}^{\prime}-\frac{V_{i j}}{2 x_{c i j}}
\end{aligned}
$$

Model Formulation

Based on above equations, the bus voltage variables are utilized as instant bridges between the real and reactive power flow as well as control variables on the system performance. The mathematical relations among these three variables are original and interfaced. There is no linearization involved; thus the inaccuracy due to the linearization ,occurring in many other optimal load flow techniques, is nonexistant in this model. The system performance is controlled by various objective functions and line capacity constraints. Instead of using tap changing variables, this
model formulates voltage regulation constraints, and keeps the voltage drop of the designated lines within the preset value. The objective function of this technique will give the best system voltage profile for the least system losses. Furthermore, unlike most optimal load flow techniques, this model does not include a swing bus, because the optimal solution is produced upon a total system capacity for all source and sink buses including the swing bus.

Objective - As in all optimization problems, one of the difficulties is to define the objectives of power flow optimization, which will serve as the optimization objective function. The following objectives can be mentioned :

- Minimizing system real power losses.
- Minimizing system reactive power losses.
- Rescheduling the generating units in case of failure of one or more system elements (line, transformer or generator) to avoid an unsecure state (in this research, the generation failure and loss of a line have been looked into.)
- Existing load expansion.
- Minimizing real power generation cost.

In this research, although the model is capable of doing them, the last two objectives have not been addressed.

Constraints - serving as a feasible region for the optimization, constraints are determined by the relation with the
physical properties of system elements. Based on the different purposes, the constraints in this model are separated into two major sets and one optional set.
(1) Real power flow constraints - This set of constraints using voltage variables and the Kirchhoff's Law distributes the real power among the whole systen. At the generation buses, the generation capacity limit will be kept. At the load buses, the demand will also be kept.
(2) Reactive power flow constraints - Like the real power flow constraints, these constraints use voitage variables and the Kirchhoff's Law and distribute the reactive power among the whole system. Depending on the system instant situation, the generation buses will have the capability to either allow the generator sending or receiving VARS, but it is limited within a range. At the load bus, depending on the nature of the load, it will be formed either to send or receive VARS, and most importantly, this model includes the Charging VARS in the network to make the result realistic.

Another unique feature of this model is that voltage profile or voltage regulation conetraints are optional. If the objective function is to minimize the system loss, it will seek the over all system minimal losses and produce the entire system voitage profile at minimal losses. If a particular line voltage profile constraint is put in, either that constraint will be redundant or the over all system losses will be converged to a suboptimal value or even
divergent. So unless a specific requirement is made to oertain lines voltage profile restriction, putting voltage regulation constraint into this model 18 not recommended, because it will not improve the over all system losses.

The model
Prior to the introduction of the formal mathematical model the following notations are defined :
A. Notation

1. List of solution variables

5 : the real part of the bus voltage at the node i.
T : the reactive part of the bus voltage at the node i
2. Known system data

B : real power demand at the node 1.
G : real power eource at the node i.
Z : the magnitude of the line impedance.
I : line reactance.
R : line resistance.
Y : line charging admittance.
H : line capacity of the line 1 - j.
C : upper limit of the transmitting generator reactive power.

D : lower limit of the generator receiving reactive power.

E : voltage regulation factor.
F : reactive load demand or reactive power supply from the load center.
3. Set definitions.

G : generator buses.
L : load buses.
N : network (non-generator, non-load) buses.
M : total system buses.
B. Objective function - The intent of the user may be formed in the following ways :

1. Minimize the total reactive power losses. $\operatorname{Min} \underset{i j}{\sum \sum\left\{\left(S_{i}^{2}+T_{i}^{2}+S_{j}^{2}+T_{j}^{2}-2 S_{i} S_{j}-2 T_{i} T j\right) \times \frac{I_{i j}}{T_{i j}^{2}}\right\}, i<j, \quad i \varepsilon M} \underset{j \varepsilon M}{i \varepsilon M}$
2. Minimize the total real power losses.

3. Maximize the total real power received by the load buses. $\operatorname{Min}{\sum \sum \sum\left\{\left(-\frac{I_{i j}}{T_{i j}^{2}} \times\left(T_{i} S_{j}-S_{i} T_{j}\right)+\frac{R_{i j}}{T_{i j}^{2}} \times\left(S_{i}^{2}+T_{i}^{2}-S_{i} S_{j}-T_{i} T_{j}\right), ~\right.\right.}_{\text {in }}$ ie M $j \varepsilon M$
C. Constraints.
4. All the real transmitted power from the source bus will be less than or equal to the source real power capacity. $\left.\underset{j}{\sum\{ } \frac{I_{i j}}{T_{i j}^{2}} \times\left(T_{i} S_{j}-S_{i} T_{j}\right)+\frac{R_{i j}}{T_{i j}^{2}} \times\left(S_{i}^{2}+T_{i}^{2}-S_{i} S_{j}-T_{i} T_{j}\right)\right\} \leqslant A_{i}$, ј $\in M$
5. All the real power received by the load bus will be greater than or equal to the real power demand at that bus. $\left.-\underset{j}{\sum\{ } \frac{I_{i j}}{T_{i j}^{2}} \times\left(T_{i} S_{j}-S_{i} T_{j}\right)+\frac{R_{i j}}{T_{i j}^{2}} \times\left(S_{i}^{2}+T_{i}^{2}-S_{i} S_{j}-T_{i} T_{j}\right)\right\}$ -14-
6. At an intermediate (non-source and non-sink) bus, the sum of all the real power transmitted will equal to zero.

$$
-\sum_{j}^{-}\left\{\frac{I_{i j}}{T_{i j}^{2}} \times\left(T_{i} S_{j}-S_{i} T_{j}\right)+\frac{R_{i j}}{T_{i j}^{2}} \times\left(S_{i}^{2}+T_{i}^{2}-S_{i} S_{j}-T_{i} T_{j}\right)\right\}=0, ~\left(\begin{array}{l}
i \in N \\
j \in M
\end{array}\right.
$$

4. The generator can either transmit or receive reactive power; however, there is an upper and lower limit on the reactive power transmitted.

$$
\pm \underset{j}{ \pm} \frac{I_{i j}}{T_{i j}^{2}} \times\left(S_{i}^{2}+T_{i}^{2}-S_{i} S_{j}-T_{i} T_{j}\right)-\frac{R_{i j}}{T_{i j}^{2}} \times\left(T_{i} S_{j}-S_{i} T_{j}\right)
$$

$$
\left.-\frac{A_{i j}}{2} \times\left(S_{i}^{2}+T_{i}^{2}\right)\right\} \leqslant C_{i} \text { or } D_{i}, \quad \begin{aligned}
& i \varepsilon G \\
& j \varepsilon M
\end{aligned}
$$

5. The load bus can either transmit or receive reactive power. All the reactive power received by the load bus should be greater than or equal to the amount of reactive power capable of being transmitted or received (positive means receive, negative means transmit).

$$
-\underset{j}{-\sum\{ } \underset{T_{i j}^{2}}{I_{i j}^{2}} \times\left(S_{i}^{2}+T_{i}^{2}-S_{i} S_{j}-T_{i} T_{j}\right)-\frac{R_{i j}}{T_{i j}^{2}} \times\left(T_{i} S_{j}-S_{i} T_{j}\right)
$$

$$
\left.-\frac{A_{i j}}{2} \times\left(s_{i}^{2}+T_{i}^{2}\right)\right\} \geqslant \pm F_{i}
$$

$i \varepsilon L$
$\mathrm{j} \varepsilon \mathrm{M}$
6. At the intermediate (non-source and non-sink) bus, the -15-
sum of all the reactive power thal can be transmitted will be equal to zero.
$-\Sigma\left\{\frac{I_{i j}}{T_{i j}^{2}} \times\left(S_{i}^{2}+T_{i}^{2}-S_{i} S_{j}-T_{i} T_{j}\right)-\frac{R_{i j}}{T_{i j}^{2}} \times\left(T_{i} S_{j}-S_{i} T_{j}\right)\right.$
$\left.-\frac{A_{i j}}{2} \times\left(S_{i}^{2}+T_{i}^{2}\right)\right\}=0, \quad \begin{aligned} & i \varepsilon N \\ & j \in M\end{aligned}$
7. (optional) Voltage regulation constraint of the system can be controlled by choice of the factor e.

$$
S_{i}^{2}+T_{i}^{2}+S_{j}^{2}+T_{j}^{2}-2 x\left(S_{i} S_{j}+T_{i} T_{j}\right) \leqslant E_{i} \times\left(S_{i}^{2}+T_{i}^{2}\right)
$$

i $\varepsilon \mathrm{M}$
$S_{i}^{2}+T_{i}^{2}+S_{j}^{2}+T_{j}^{2}-2 x\left(S_{i} S_{j}+T_{i} T_{j}\right) \leqslant E_{j} \times\left(S_{j}^{2}+T_{j}^{2}\right)$,
8. (optional) The line constraints are as follows :
$-\frac{I_{i j}}{T_{i j}^{2}} \times\left(T_{i} S_{j}-S_{i} T_{j}\right)+-\frac{R_{i j}}{T_{i j}^{2}} \times\left(S_{i}^{2}+T_{i}^{2}-S_{i} S_{j}-T_{i} T_{j}\right) \leqslant H_{i j}$, $i \neq j, \quad i \varepsilon M$

The above equations show that this model only deals with two different kinds of variables: real part of bus voltage and reactive part of bus voltage. Real power flows and reactive power flows will be calculated from the output of the model independently (see Appendix 1.). Therefore a lot of variables and constraints are reduced, so the computation speed is improved tremendously.

Sensitivity analysis of the model
One of the major difficulties of the nonlinear programaing is that the results produced by the model can merely be a local optimus. In order to decide whether it
indeed is a global optimum or not, further analysis of the results is needed. Another difficult reason for nonlinear programming is that there are a lot of different methods to solve nonlinear problems. It is always helpful to analyze the problem first, then choose the method.

Generally, if the objective funct!-s is convex and the subjective constraints form a convex set, then there exists a global optimum. If either the objective function or the constraint set is not convex, then the situation is more complicated, but there are still some rules can be followed.

Rule (1) Minimize $f(x)$

$$
\begin{array}{ll}
\text { S.T. } & g_{i}(x) \leqslant 0 \\
& g_{j}(x) \geqslant 0
\end{array}
$$

Let x be a feasible solution, and let $I=\left\{i=g_{i}\right.$ $(\bar{x})=0\}, J=\left\{j: g_{j}(\bar{x})=0\right\}$, suppose that f is pseudoconvex at \bar{x}, g_{i} is quasiconvex and differentiable at x for each $i \varepsilon I$, and g_{j} is quasiconcave and differentiable at x for each $j \in J$. Furthermore, suppose that the Kuhn-Tucker condition hold true at x; that is, there exists non-negative scalar u_{i} for $i \varepsilon I$, and non-positive scalar u_{j} for $j \varepsilon J$, such that $\nabla f+$ $\Sigma u_{i} g_{i}+\Sigma u_{j} g_{j}=0$. Then \bar{X} is a global optimal solution to the problem.

Rule (2) Minimize $f(x)$
S.T. $g_{i}(x) \leqslant 0$

$$
g_{j}(x) \geqslant 0
$$

This rule is similar to rule 1 , except that some authors prefer to use the multipliers $\left.: u_{i}=-u_{i}<0, u_{j}=-u_{j}\right\rangle$ 0. In this case, the Kuhn-Tucker conditions are hold as $\nabla f-\sum_{i} u_{i} g_{i}-\sum_{j} u_{j} g_{j}=0$.
Rule (3) minimize $f(x)$

$$
\begin{array}{ll}
\text { S.T. } & g_{i}(x) \leqslant 0 \\
& g_{j}(x) \geqslant 0 \\
& h_{k}(x)=0
\end{array}
$$

The rule for inequality constraints in rule 3 are the same as (1), the differences exist at equality constraints which the previous two types did not inciude. Assume the Kuhn-Tucker conditions hold at x, that is $\nabla f+\sum_{i} u_{i} g_{i}$

$$
+\sum_{j} u_{j} g_{j}+\sum_{k} v_{k} h=0 . \quad \text { Let } M=\{k, v>0\}
$$

and $N=\{k, v<0\}$. Further suppose that h is quasiconvex at \bar{x} for $k \in M$, and h is quasiconcave at \bar{x} for $k \in N$. Then \bar{x} is a global optimal solution to the problem.

Rule (4) minimize $f(x)$
S.T. $\quad g_{i}(x) \leqslant 0$
$g_{j}(x) \geqslant 0$
$h_{k}(x)=0$
Rule 4 is not much different from rule 3, except that the multipliers are chosen negative of the rule 3 , so the Kuhn-Tucker conditions are hold as $\nabla f-\sum_{i} u_{i} g_{i}-\sum_{j} u_{j} g_{j}-\sum_{k} v_{k} h_{k}=0$. To prove convexity, it must prove that let f:sex be twlce differentiable on S, and the Hessian matrix is posi-
tive semidefinite at each point in S. To prove quasiconvexity at x is to show $f[\lambda \bar{X}+(1-\lambda) x] \leqslant$ maximum $\{f(x), f(\bar{x})\}$ for each $\lambda \varepsilon(0,1)$ and each $x \varepsilon S$. To prove quasiconcavity at \bar{x} is to show $f[\lambda \bar{x}+(1-\lambda) x])$ minimum $\{f(x), f(\bar{x})\}$ for each $\lambda \varepsilon(0$, 1) and each x. To prove function f pseudoconvexity at \bar{x} is to show if $\nabla f(X)^{t}(x-X) \geqslant 0$ for $X \varepsilon S$ implies that $f(x)$) $f(\bar{x})$. Otherwise if the function is convex then it is pseudoconvex.

The following examples will illustrate some characteristics of the objective function and constraints.
(a) Objective function
(1) $f(x)=S_{i}^{2}+T_{i}^{2}+S_{j}^{2}+T_{j}^{2}-2 S_{i} S_{j}-2 T_{i} T_{j}$

So $f(x)$ is twice differentiable.
$\left(\begin{array}{cccc}2 & -2 & 0 & 0 \\ -2 & 2 & 0 & 0 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & -2 & 2\end{array}\right)$
$H-\lambda I=0$, are eigenvalues, I is an identity matrix, $\lambda=0$, $0,4,4$, so the Hessian matrix is positive semidefinite, from the conditions stated above, $f(x)$ is a convex function. (2) $f(x)=S_{1}^{2}+T_{1}^{2}+S_{2}^{2}+T_{2}^{2}-2 S_{1} S_{2}-2 T_{1} T_{2}+40 x\left(S_{1}^{2}+T_{1}^{2}+S_{3}^{2}+T_{3}^{2}\right.$ $\left.-2 S_{1} S_{3}-2 T_{1} T_{3}\right)$
$f(x)$ is twice differentiable.

$$
\left(\begin{array}{cccccc}
82 & -2 & -80 & 0 & 0 & 0 \\
-2 & 2 & 0 & 0 & 0 & 0 \\
-80 & 0 & 80 & 0 & 0 & 0 \\
0 & 0 & 0 & 82 & -2 & -80 \\
0 & 0 & 0 & -2 & 2 & 0 \\
0 & 0 & 0 & -80 & 0 & 80
\end{array}\right)
$$

$H-\lambda I=0$, are eigenvalues, I is an identity matrix, λ $=0.0,0.0,2.981,2.981,161.01888,161.01888$, so the Hessian matilx 19 positive semidefinite, from the conditions shown above, $f(X)$ is a convex function.
(b) Constraints
$g(X)=T_{i} S_{j}-S_{i} T_{j}+2 x\left(S_{i}^{2}+T_{i}^{2}-S_{i} S_{j}-T_{i} T_{j}\right)$
$g(X)$ is twice differentiable.

$$
\left[\begin{array}{cccc}
4 & -2 & 0 & -1 \\
-2 & 0 & 1 & 0 \\
0 & 1 & 4 & -2 \\
-1 & 0 & -2 & 0
\end{array}\right]
$$

$H-\lambda I=0$, are eigenvalues, I is an identity matrix, $\lambda=-1$, -1, 5, 5. The Hessian matrix failed to prove either posi-
tive or negative semidefinite.
These examples show that although the objective furiction can be proved convex in most cases, the constraint set has shown no general convexity for the load flow problems. Therefore, it has to be studied individually, which will be done in the next chapter.

CHAPTER THREEE

MODEL IMPIEMENTATION

In order to demonstrate the capability of the model, two sample problems will be solved, the optimality of the solution will be checked and results will be compared with the results from existing network solution technique and from some linearized O.R. technique. It will also be proved in this chapter that the model is able to handle a list of various situations, e.g. loss of line, loss of generation, bus fault, line fault, and voltage regulation.

The first problem is a five bus system chosen from Computer Methods in Power System Analysis [13]. The system consists of two generator buses and three load buses. A single line diagram of the system is shown in figure 3.1, while the generator data and other network details of the system are given in Table 3.1 and 3.2 .

Problem formalation

By utilizing the above data and the developed model, this five bus problem is transformed into a series of mathematical expressions. First consider the objective function, the model stated there are three different choices for it. Minimizing the total reactive power losses is

Figure 3.1 five bus system

Table 3.1 bus data

$\left.\right\|_{p} ^{\text {Bus code }} \begin{gathered} p \end{gathered}$	Assumed bus vollage	Generation		Load	
		Megawatts	Megavara	Megacalle	Megavara
1	$1.06+j 0.0$	0	0	0	0
2	$1.0+j 0.0$	40	30	20	10
3	$1.0+j 0.0$	0	0	45	15
4	$1.0+j 0.0$	0	0	40	5
5	$1.0+j 0.0$	0	0	60	10

Table 3.2 line data

Bus code $p-q$	Impedance $z_{p 1}$	Line charging $y_{p r}^{\prime} / 2$
$1-2$	$0.02+j 0.06$	$0.0+j 0.030$
$1-3$	$0.08+i 0.24$	$0.0+j 0.025$
$2-3$	$0.06+j 0.18$	$0.0+j 0.020$
$2-4$	$0.06+j 0.18$	$0.0+j 0.020$
$2-5$	$0.04+j 0.12$	$0.0+j 0.015$
$3-1$	$0.01+j 0.03$	$0.0+j 0.010$
$4-5$	$0.08+j 0.24$	$0.0+j 0.025$

chosen to be the object of this problem, and the equation is:

```
g(11)=18.75*x(1)**2+32.5*x(3)**2+38.75*x(5)**2+38.75*x(7)**2
    +11.25*x(9)**2+18.75*x(2)**2+32.5**(4)**2+38.75*x(6)
    **2+38.75*x(8)**2+11.25*x(10)**2-30.0*x(1)*x(3)-7.5*
    x(1)*x(5)-10.0*x(3)*x(5)-10.0*x(3)*x(7)-15.0*x(3)*x(9)
    -60.0*x(5)*x(7)-7.5*x(7)*x(9)-30.0*x(2)*x(4)-7.5*x(2)*
    x(6)-10.0*x(4)*x(6)-10.0*x(4)*x(8)-15.0*x(4)*x(10)-
    60.0*x(6)*x(8)-7.5*x(8)*x(10)
```

Note that it should have a similar form of objective function for minimizing real power losses, except the coefficients will be different. Since the goal is to minimize the total system reactive power losses, those optional constraints can be omitted, and the constraint set is composed of real and reactive power flow. Since the system has no non-generator or non-load bus, intermediated constraints can be omitted.
(a) Real power flow

```
g(1)=6.25*x(1)**2+6.25*x(2)**2-5.0*x(1)*x(3)-1.25*x(1)*x(5)+
    15.0*x(2)*x(3)-15.0*x(1)*x(4)+3.75*x(2)*x(5)-3.75*x(1)*
    x(6)-5.0*x(2)*x(4)-1.25*x(2)*x(6)
g(2)=10.83333*x(3)**2+10.83333*x(4)**2-5.0*x(1)*x(3)-1.66667
    *x(3)*x(5)-1.66667*x(3)*x(7)-2.5*x(3)*x(9)+15.0*x(1)*
```

```
    x(4)-15.0*x(3)*x(2)+5.0*x(5)*x(4)-5.0*x(3)*x(6)+5.0
    *x(7)*x(4)-5.0*x(3)*x(8)+7.5*x(9)*x(4)-7.5*x(3)*x(10)-
    5.0*x(2)*x(4)-1.66667*x(4)*x(6)-1.66667*x(4)*x(8)-2.5
    *x(4)*x(10)
g(3)=-12.9167*x(5)**2-12.9167*x(6)**2+1.25*x(1)*x(5)+1.66667
    *x(3)*x(5)+10.0*x(5)*x(7)-3.75*x(1)*x(6)+3.75*x(5)*x(2)
    -5.0*x(3)*x(6)+5.0**(5)*x(4)-30.0*x(7)*x(6)+30.0*x(5).
    *x(8)+1.25*x(2)*x(6)+1.66667*x(4)*x(6)+10.0*x(6)*x(8)
g(4)=-12.9167*x(7)**2-12.9167*x(8)**2+1.66667*x(3)*x(7)+10.0
    *X(5)*X(7)+1.25*x(7)*X(9)-5.0*X(3)*X(8)+5.0*X(7)*X(4)-
    30.0*x(5)*x(8)+30.0*x(7)*x(6)-3.75*x(9)*x(8)+3.75*x(7)*
    x(10)+1.66667*x(4)*x(8)+10.0*x(6)*x(8)+1.25*x(8)*x(10)
g(5)=-3.75*x(9)**2-3.75*x(10)**2+2.5*x(3)*x(9)+1.25*x(9)
    *x(7)-7.5*x(3)*x(10)+7.5*x(9)*x(4)-3.75*x(7)*x(10)+3.75
    *x(9)*x(8)+2.5*x(4)*x(10)+1.25*x(8)*x(10)
```

(b) Reactive power flow

```
g(6)=18.695*x(1)**2+18.695*x(2)**2-15.0*x(1)*x(3)-3.75*x(1)
    *x(5)-5.0*x(3)*x(2)+5.0*x(1)*x(4)-1.25*x(5)*x(2)+1.25*
    x(1)*x(6)-15.0*x(2)*x(4)-3.75*x(2)*x(6)
g(7)=32.415*x(3)**2+32.415*x(4)**2-15.0*x(1)*x(3)-5.0*x(3)*
    x(5)-5.0*x(3)*x(7)-7.5*x(3)*x(9)-5.0*x(1)*x(4)+5.0*x(3)
    *x(2)-1.66667*x(5)*x(4)+1.66667*x(3)*x(6)-1.66667*x(7)
    *x(4)+1.66667*x(3)*x(8)-2.5*x(9)*x(4)+2.5*x(3)*x(10)-
    15.0*x(2)*x(4)-5.0*x(4)*x(6)-5.0*x(4)*x(8)-7.5*x(4)*
    x(10)
```

```
g(8)=-38.695*x(5)**2-38.695*x(6)**2+3.75*x(1)*x(5)+5.0*x(3)*
    x(5)+30.0*x(5)*x(7)+1.25*x(1)*x(6)+1.66667*x(3)*x(6)+
    10.0*x(7)*x(6)-1.25*x(5)*x(2)-1.66667*x(5)*x(4)-10.0*
    x(5)*x(8)+3.75*x(2)*x(6)+5.0*x(4)*x(6)+30.0*x(6)*x(8)
g(9)=-38.695*x(7)**2-38.695*x(8)**2+5.0*x(3)*x(7)+30.0*x(5)*
    x(7)+3.75*x(7)*x(9)+1.66667*x(3)*x(8)+10.0*x(5)*x(8)+
    1.25*x(9)*x(8)-1.66667*x(7)*x(4)-10.0*x(7)*x(6)-1.25*
    x(7)*x(10)+5.0*x(4)*x(8)+30.0*x(6)*x(8)+3.75*x(8)*x(10)
g(10)=-11.21*x(9)**2-11.21*x(10)**2+7.5*x(3)*x(9)+3.75*x(7)*
    x(9)+2.5*x(3)*x(10)+1.25*x(7)*x(10)-2.5*x(9)*x(4)-1.25
    *x(9)*x(8)+7.5*x(4)*x(10)+3.75*x(8)*x(10)
```


O.R. analysis of the problem

The Hessian matrix of the objective function can be formulated in following way:
$\left(\begin{array}{ccccccccccc}37.5 & -30 & -7.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -30 & 65 & -10 & -10 & -15 & 0 & 0 & 0 & 0 & 0 \\ -7.5 & -10 & 77.5 & -60 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -10 & -60 & -77.5 & -7.5 & 0 & 0 & 0 & 0 & 0 \\ 0 & -15 & 0 & -7.5 & 22.5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 37.5 & -30 & -7.5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -30 & 65 & -10 & -10 & -15 \\ 0 & 0 & 0 & 0 & 0 & -7.5 & -10 & 77.5 & -60 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -10 & -60 & 77.5 & -7.5 \\ 0 & 0 & 0 & 0 & 0 & 0 & -15 & 0 & -7.5 & 22.5\end{array}\right)$

The eigenvalues are equal to 0.00011, 0.00022, 24.99982, 24.99997, 29.27783, 29.27788, 87.68541, 87.68552, 138.03539, 138.03583. Since the objective function is twice differentiable and the Hessian matrix is positive definite, it is strictly convex.

The Hessian matrix of each constraint can be formed as following :
(1) Constraint no. 1

$$
\left(\begin{array}{cccccc}
12.5 & -5 & -1.25 & 0 & -15 & -3.75 \\
-5 & 0 & 0 & 15 & 0 & 0 \\
-1.25 & 0 & 0 & 3.75 & 0 & 0 \\
0 & 15 & 3.75 & 12.5 & -5 & -1.25 \\
-15 & 0 & 0 & -5 & 0 & 0 \\
-3.75 & 0 & 0 & -1.25 & 0 & 0
\end{array}\right)
$$

The eigenvalues equal to $-11.20528,-11.20527,0.0$, 0.0 23.70514, 23.70518. Since Hessian matrix failed to prove semi-positive definite or semi-negative definite, therefore constraint no. 1 is neither convex nor concave.
(2) Constraint no. 2
$\left[\begin{array}{ccccccccccc}0 & -5 & 0 & 0 & 0 & 0 & 15 & 0 & 0 & 0 \\ -5 & 21.667 & -1.667 & -1.667 & -2.5 & -15 & 0 & -5 & -5 & -7.5 \\ 0 & -1.667 & 0 & 0 & 0 & 0 & 5 & 0 & 0 & 0 \\ 0 & -1.667 & 0 & 0 & 0 & 0 & 5 & 0 & 0 & 0 \\ 0 & -2.5 & 0 & 0 & 0 & 0 & 7.5 & 0 & 0 & 0 \\ 0 & -15 & 0 & 0 & 0 & 0 & -5 & 0 & 0 & 0 \\ 15 & 0 & 5 & 5 & 7.5 & -5 & 21.667 & -1.667 & -1.667 & -2.5 \\ 0 & -5 & 0 & 0 & 0 & 0 & -1.667 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 & 0 & 0 & -1.667 & 0 & 0 & 0 \\ 0 & -7.5 & 0 & 0 & 0 & 0 & -2.5 & 0 & 0 & 0\end{array}\right]$

The eigenvalues are equal to $-11.19884,-11.19881$, $0.0,0.0,0.0,0.0,0.0,0.0,32.86534,32.86536$, so it is neither convex nor concave.
(3) Constraint no. 3
$\left(\begin{array}{cccccccc}0 & 0 & 1.25 & 0 & 0 & 0 & -3.75 & 0 \\ 0 & 0 & 1.667 & 0 & 0 & 0 & -5 & 0 \\ 1.25 & 1.667 & -25.83 & 10 & 3.75 & 5 & 0 & 30 \\ 0 & 0 & 10 & 0 & 0 & 0 & -30 & 0 \\ 0 & 0 & 3.75 & 0 & 0 & 0 & 1.25 & 0 \\ 0 & 0 & 5 & 0 & 0 & 0 & 1.667 & 0 \\ -3.75 & -5 & 0 & -30 & 1.25 & 1.667 & -25.83 & 10 \\ 0 & 0 & 30 & 0 & 0 & 0 & 10 & 0\end{array}\right)$

The eigenvalues are equal to -47.70515, -47.70494, $0.0,0.0,0.0,0.0,21.8716,21.8718$, so it is neither convex nor concave.
(4) Constraint no. 4
$\left[\begin{array}{cccccccc}0 & 0 & 1.667 & 0 & 0 & 0 & -5 & 0 \\ 0 & 0 & 10 & 0 & 0 & 0 & -30 & 0 \\ 1.667 & 10 & -25.83 & 1.25 & 5 & 30 & 0 & 3.75 \\ 0 & 0 & 1.25 & 0 & 0 & 0 & -3.75 & 0 \\ 0 & 0 & 5 & 0 & 0 & 0 & 1.667 & 0 \\ 0 & 0 & 30 & 0 & 0 & 0 & 10 & 0 \\ -5 & -30 & 0 & -3.75 & 1.667 & 10 & -25.83 & 1.25 \\ 0 & 0 & 3.75 & 0 & 0 & 0 & 1.25 & 0\end{array}\right]$

The eigenvalues are equal to -47.70514, -47.7049, $0.0,0.0,0.0,0.0,21.87166,21.87175$, so it is neither convex nor concave.
(5) Constraint no. 5

$$
\left[\begin{array}{cccccc}
0 & 0 & 2.5 & 0 & 0 & -7.5 \\
0 & 0 & 1.25 & 0 & 0 & -3.75 \\
2.5 & 1.25 & -7.5 & 7.5 & 3.75 & 0 \\
0 & 0 & 7.5 & 0 & 0 & 2.5 \\
0 & 0 & 3.75 & 0 & 0 & 1.25 \\
-7.5 & -3.75 & 0 & 2.5 & 1.25 & -7.5
\end{array}\right]
$$

The eigenvalues are equal to $-13.35142,-13.35138$, $0.0,0.0,5.85143,5.85143$, so it is neither convex nor concave.
(6) Constraint no. 6
$\left[\begin{array}{cccccc}37.39 & -15 & -3.75 & 0 & 5 & 1.25 \\ -15 & 0 & 0 & 5 & 0 & 0 \\ -3.75 & 0 & 0 & -1.25 & 0 & 0 \\ 0 & 5 & -1.25 & 37.39 & -15 & -3.75 \\ 5 & 0 & 0 & -15 & 0 & 0 \\ 1.25 & 0 & 0 & -3.75 & 0 & 0\end{array}\right]$

The eigenvalues are equal to $-8.96589,-8.87181,0.0$, $0.0,40.2616,46.35579$, so it is neither convex nor concave.
-32-
(7) Constraint no. 7
$\left[\begin{array}{cccccccccc}0 & -15 & 0 & 0 & 0 & 0 & -5 & 0 & 0 & 0 \\ -15 & 64.83 & -5 & -5 & -7.5 & 5 & 0 & 1.667 & 1.667 & 2.5 \\ 0 & -5 & 0 & 0 & 0 & 0 & -1.667 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 & 0 & 0 & -1.667 & 0 & 0 & 0 \\ 0 & -7.5 & 0 & 0 & 0 & 0 & -2.5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 & 0 & -15 & 0 & 0 & 0 \\ -5 & 0 & -1.667 & -1.667 & -2.5 & -15 & 64.83 & -5 & -5 & -7.5 \\ 0 & 1.667 & 0 & 0 & 0 & 0 & -5 & 0 & 0 & 0 \\ 0 & 1.667 & 0 & 0 & 0 & 0 & -5 & 0 & 0 & 0 \\ 0 & 2.5 & 0 & 0 & 0 & 0 & -7.5 & 0 & 0 & 0\end{array}\right]$

The eigenvalues are equal to $-5.25179,-5.25179,0.0$, $0.0,0.0,0.0,0.0,0.0,70.08154,70.08171$, so it is neither convex nor concave.
(8) Constraint no. 8
$\left[\begin{array}{cccccccc}0 & 0 & 3.75 & 0 & 0 & 0 & 1.25 & 0 \\ 0 & 0 & 5 & 0 & 0 & 0 & 1.667 & 0 \\ 3.75 & 5 & -77.39 & 30 & -1.25 & -1.667 & 0 & 0 \\ 0 & 0 & 30 & 0 & 0 & 0 & 10 & 0 \\ 0 & 0 & -1.25 & 0 & 0 & 0 & 3.75 & 0 \\ 0 & 0 & -1.667 & 0 & 0 & 0 & 5 & 0 \\ 1.25 & 1.667 & 0 & 10 & 3.75 & 5 & -77.39 & 30 \\ 0 & 0 & -10 & 0 & 0 & 0 & 30 & 0\end{array}\right]$

The eigenvalues are equal to $-89.10028,-89.10013$, $0.0,0.0,11.71033,11.71043$, so it is neither convex nor concave.
(9) Constraint no. 9
$\left[\begin{array}{cccccccc}0 & 0 & 5 & 0 & 0 & 0 & 1.667 & 0 \\ 0 & 0 & 30 & 0 & 0 & 0 & 10 & 0 \\ 5 & 30 & -77.39 & -1.25 & -1.667 & -10 & 0 & -1.25 \\ 0 & 0 & -1.25 & 0 & 0 & 0 & 1.25 & 0 \\ 0 & 0 & -1.667 & 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & -10 & 0 & 0 & 0 & 30 & 0 \\ 0 & 10 & 0 & 1.25 & 5 & 30 & -77.39 & 3.75 \\ 0 & 0 & -1.25 & 0 & 0 & 0 & 3.75 & 0\end{array}\right]$

The eigenvalues are equal to $-89.12573,-88.9503$, $0.0,0.0,0.0,0.0,11.56047,11.73605$, so it is neither convex nor concave.
$\left(\begin{array}{cccccc}0 & 0 & 7.5 & 0 & 0 & 2.5 \\ 0 & 0 & 3.75 & 0 & 0 & 1.25 \\ 7.5 & 3.75 & -22.42 & -2.5 & -1.25 & 0 \\ 0 & 0 & -2.5 & 0 & 0 & 7.5 \\ 0 & 0 & -1.25 & 0 & 0 & 3.75 \\ 2.5 & 1.25 & 0 & 7.5 & 3.75 & -22.42\end{array}\right)$

The eigenvalues are equal to $-25.48544,-25.48543$, $0.0,0.0,3.06547,3.06547$, so it is neither convex nor concave.

From these analyses, it is found that although the objective function of this problem is convex, its constraint set failed to show convex or concave, so there is no general convexity or concavity existing for the problem. To solve it, another useful conception in optimization is the notion of convexity or concavity at a point. In some cases, the requirement of a convex or concave function may be too strong and really not essential. Instead, convexity or concavity at a point may be all that is needed. So the next step is to choose an algorithm, to find the Kuhn-Tucker point, and to check the convexity or concavity at that point.

The algorithm and results

Since the problem is not a convex, so it can not be applied to a special convex programming, and it has to go to some generalized non-linear programming techniques. The generalized reduced gradient algorithm (GRG)[14] is a generalized non-linear programming, and an extension of the Wolf algorithm [15] to accommodate both a non-linear objective function and non-linear constraints. In essence, the method defines new variables that are normal to some of the constraints and transforms the gradient to this new basis.

In this research, a program called GRG2 [16,17] has been used to implement the presented problem. GRG2 is a revised GRG method, and uses the generalized reduced gradient technique to solve constrained non-linear problems of the following form:

Minimize or maximize $f(x)$
Subject to :

$$
\begin{aligned}
& L_{i}<g_{i}(x)<U_{i}, 1=1, \ldots, m \\
& L_{j}\left\langle x_{j}\right\rangle U_{j}, j=1, \ldots, n
\end{aligned}
$$

Where x is a vector of n real variables, $g(x)$ are m constraints, $f(x)$ is the objective function.

To use GRG2, it is required to prepare a subroutine which computes the values of $g(x)$. It is also needed to provide the bounds on the constraints. GRG2 uses first par-
tial derivatives of each $g(x)$ with respect to each x variable. These are automatically computed by a finite difference approach.

This GRG2 program operates in two phases. If the starting point is infeasible, optimization terminates either with a message that the problem is infeasible or with a feasible solution. In the former case a different starting point should be tried since the problem may actually have feasible solutions. If the start point.is feasible, it will definitely stay in the feasible region. One of the advantages of staying in feasible solution is although the solution might not be optimal, it still is a reasonable solution.

After implementing the five bus system to GRG2 at the range of $0<S_{i}<1.09,-0.15<T_{i}<0$, the resultant bus voltages and line flows are placed in the following Tables.

Table 3.3 resultant bus voltage

bus no.	bus voltage
1	$1.09+j 0$
2	$1.0768628-j 0.049845636$
3	$1.0523333-j 0.086923925$
4	$1.0512788-j 0.092621771$
5	$1.044449-j 0.10620502$

It was mentioned in chapter three that in order to

Table 3.4 Resultant line flows and system reactive losses

From bus 1 to bus	real (NW)	reactive (MVAR)
$1-2$	88.6573	-9.251
$1-3$	40.6622	0.5826
$2-1$	-87.3288	6.1858
$2-3$	24.6699	3.1006
$2-4$	27.906	2.495
$2-5$	54.7543	6.694
$3-1$	-39.5404	-2.9748
$3-2$	-24.3405	-6.6665
$3-4$	18.8774	-5.3594
$4-2$	-27.4919	-5.8046
$4-3$	-18.8439	3.2312
$4-5$	6.3324	-2.4277
$5-2$	-53.6975	-7.0333
$5-4$	-6.3035	-3.0254
The total reactive power	losses is	
12.939 MVRR		

Table 3.5 resultant bus voltage in polar form

bus no.	magnitude	angle
1	1.09	0.0
2	1.078016	-2.6502
3	1.055917	-4.72198
4	1.055351	-5.03498
5	1.049835	-5.80618

Table 3.6 program status

constraint	status	largrange multiplier
1	FREE	0.0
2	UPPERBND	NEGATIVE
3	LOWERBND	POSITIVE
4	LOWERBND	POSITIVE
5	LOWERBND	POSITIVE
6	FREFE	0.0
7	FREFE	0.0
8	LOWERBND	POSITIVE
9	LOWERBEND	POSITIVE
10	LOWERBND	POSITIVE

save the computing time, a independent small program is put into effect to calculate the bus voltage magnitude and angle, and line flows from the bus voltage. The results are included in Table 3.4, 3.5 and 3.6.

The results obtained from GRG2 is called a KuhnTucker point, and it is not necessarily the global optimum. Since this five bus problem failed to prove a general convexity or concavity, it has to use point examining criteria in order to check the global optimum. The techniques for point convexity and point concavity were mentioned in the Chapter three, the rules for global optimal check were also developed in the previous chapter. From Table 3.6, there are several things which can be observed to help select the rule. They are as follows:
(1) Constraint 1 and 6 are not binded.
(2) Constraint 2 and 7 reach the upper bounds, and their largrange multipliers are non-positive.
(3) Constraint $3,4,5,8,9$, and 10 reach the lower bounds, and their largrange multipliers are nonnegative.

Therefore, to check the global optimum, rule 2 should apply here. Thus, constraint 1 and 6 do not need analysis; constraint 2 and 7 should be quasiconvex and differentiable at the $K-T$ point; constraint $3,4,5,8,9$, and 10 should be quasiconcave and differentiable at the $K-T$ point, and the objective function should be pseudoconvex at the K-T point.

In order to check the quasiconvexity and quasiconcavity at x, two approaches described in chapter three are:
(1) quasiconvexity $f[\lambda \bar{x}+(1-\lambda) x] \leqslant \max i f(x)$, $f(\bar{x})\} \quad, \quad \lambda \varepsilon(0,1), \quad$ (3.1)
(2) quasiconcavity $f[\lambda 8+(1-\lambda) x] \geqslant \min f f(x)$, $f(\bar{X})\} \quad, \quad \lambda \varepsilon(0,1)$, (3.2)

A random feasible point $\overline{\mathrm{x}}$ is selected, so that $\mathrm{f}[\lambda \overline{\mathrm{x}}+(1-\lambda) \mathrm{x}$], $\lambda \varepsilon(0,1)$ can be calculated. The results of each constraints are in the Table 3.7.

Table 3.7 shows that binded constraints no. 2 and 7 are quasiconvex at the K-T point, and binded constraints no. $3,4,5,8,9$, and 10 are quasiconcave at the $K-T$ point. Furthermore all the constraints are differentiable at the K-T point, and it has already been proved that the objective function is convex, hence the rule 2 is satisfied, so the solution is a global optimal solution.

The second testing problem is a IEEE 39 bus system[18]. The system consists of 10 generator buses and 17 load buses. A one line diagram of the system is shown in figure 3.2, while the generator data, line data, and other network details of the system are given in Table 3.8 and 3.9

Problem formulation

The procedures of formulating this 39 bus system into the model are similar to the previous problem, however, this problem is much bigger in size and is more complex. First consider the objective function. Like the previous example,
-42-

Table 3.7 quasiconvexity or quasiconcavity check at the $\mathrm{K}-\mathrm{T}$ point.

$\underset{\sim}{1}$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.29320 | .20000 | .45000 | .40000 | .60001 | -.08668 | .18534 | .15000 | .05001 | .10004 |
| 1.35524 | .19998 | .45000 | .40000 | .65732 | -.03068 | .18977 | .15002 | .05002 | .14419 |
| 1.39660 | .19998 | .45000 | .39999 | .69526 | .00665 | .19272 | .15002 | .05001 | .17266 |
| 1.43796 | .19998 | .44999 | .39999 | .73298 | .04399 | .19564 | .15000 | .05000 | .20053 |
| 1.50000 | .20000 | .44999 | .39998 | .78917 | .09999 | .20000 | .14999 | .04997 | .24109 |

Figure 3.2 Thirty nine bus system
TEST ESCHA LINE ThTA
in p.u. on 100 NA Hase

Table 3.9

EUS	I'PE	V019	61:GLE	$\begin{gathered} 15.1 .0 \\ 1: i \end{gathered}$	$\begin{aligned} & 1 E \angle 5 \\ & 1 \because V \angle R \end{aligned}$	$\begin{aligned} & \text { ri i : } \\ & \mathrm{Hh} \end{aligned}$	$\begin{aligned} & \text { ci! } \\ & \text { rivif } \end{aligned}$
1	0	1.1675	-9.37n	. 00	.00	-10	.00
2	0	1.6LEQ	- c.ton	$.00$. 00	. 010	-60
3	0	1.15304	-6.E50	322.00	2.40	. 80	- 00
4	0	1.0038	- 10.470	500.00	264.00	- On	- 00
5	0	:.6050	-0.310	$.00$	$.00$. Of	. 00
6	0	1.10074	-8.t.2. 0	$.00$	$.00$. 00	. 00
7	0	. 90.007	-10.510	233.60	$\text { HU. } 00$	- 00	. 00
8	0	-4957	-11.320	S22.0n	176.00	. 00	- 0
19	0	1.6231	-11.120	..0n	$.00$. On	. 00
10	0	1.0270	- H .210	.00	.60	. 00	. 00
11	0	3.0125	-7.030	. 00	.00	. 00	. 00
12	0	1.0000	-7.040	6.50	64.00	. 00	- 00
13	0	1.0142	-6.4こ0	.00	. 00	. OC	. 00
14	0	1.0187	- F. Sõn	. 00	. 00	-60	. 01
15	0	1.08b8	-E.C70	38.0.60	153.00	-0\%	- 00
16	0	1.0372	-7.550	329.40	32.30	.05	. 00
17	0	1.0330	-2.550	.00	. 00	. 00	. 00
18	0	1.0313	- - icf	158.0n	30.00	- On	- 02
19 -8	0	1.051 .0	-2.520	$.00$	$.00$	- En	. 00
20	0	. 976	- 4.360	ARC.CO	103.00	- 00	. On
31	0	J.C5<1	- $5.1=0$	274.00	115.00	. 00	- 08
22 23	0	1.0500	-65n	207.0n	4.0n	- U0	- 10
23 24	0	1.0:390	- 650 -7.430	207.50	HLCO $-0 \% 0$	- 00	- 10
24 04	0	1.0377	-7.430	30 BCHO	-9\%.20	- On	- 00
25	0	1.0575 1.0521	-5.430	220.00 130.00	47.20	- On	- 08
26 27	0	1.0521 1.0379	-6.hE0 -8.700	134.00 889.00	17.00	- 00	- bin
20	0	1.0879 1.0501	-8.780 -3.170	C89.00	75.50 $2 \% .60$. 00	- 00
29	0	1.0500	-410	283.30		- Un	.00 .00
30	1	1.0475	-4.3ño	-808	2.00	250.60	145.10
31	1	. 2520	. 000	9.20	4.60	363.30	205.50
32	1	.9431	1.740	. 00	. 00	650.00	2ns.in
33	1	.9972	2.290	.00	. 00	632.00	108.10
34 35	1	1.0123	-850	. $n 0$.00	308.00	267.01
35	1	1.0493	0.270	. 00	.60	650.00	281.30
36	1	1.0835	E. 7 Ho	. 00	.00	\$20.06	200.50
31 38	1	1.07.71	1.350	. 00	. 00	\$40.00	.71
38 30.	1	1.02 .65	6.650	1104.00	. 00	830.00	22.80
39°	1	1.0300	-10.920	1104.00	250.00	1000.00	88.00

the choice is to minimize the system reactive power losses as the goal to demonstrate the model. Therefore, in the constraint set, those optional constraints are also neglected. (The detail mathematical formulation of this system see Appendix 2.).

The results of the O.R. analysis are similar to the previous problem too. Since the objective function is convex, it 1s positive definite. The constraint set does not form a convex set, because all of the constraints failed to show convexity or concavity, for instance constraint no. 31, its eigenvalues equal to $-40.0,-40.0,40.0,40.0$, it is neither semi-positive definite nor semi- negative definite, so it is not convex or concave. The similar results will happen to the other constraints.

Since the pre-analysis does not yield many special characters of the system, the five bus problem, a general and powerful non-linear programming code, has to be used, and a K-T point convexity or concavity check will be performed afterwards. The choice of programming code still is GRG2, and the results are in Table 3.10, 3.11, and 3.12.

This problem includes intermediate nodes, and from Table 3.12 it shows the multipliers are non-positive when $g(x)$ < 0 , the multipliers are non-negative when $g(x) \geqslant 0$, so rule (4) should be applied. The objective function has already been proved convex, hence it is pseudoconvex at the K-T point and satisfies the rule 3. A feasible point is

Table 3.10 resultant bus voltages in polar form

pus no.	magnitude	angle
1	1.080566	-8.1548
2	1.07746	-5.7335
3	1.06071	-8.43349
4	1.036155	-9.15705
5	1.037672	-8.02113
6	1.039851	-7.35731
7	1.029972	-9.42774
8	1.029198	-9.90412
9	1.062895	-9.76046
10	1.050386	-5.14108
11	1.045664	-5.89711
12	1.027795	-5.9166
13	1.047298	-5.81423
14	1.04399	-7.38933
15	1.045629	-7.80983
16	1.060452	-6.49299
17	1.063955	-7.44311
18	1.061498	-8.22489
19	1.073384	-2.06018
20	1.069121	-3.25178

21	1.058776	-4.22368
22	1.07422	0.0
23	1.070567	-0.20678
24	1.065601	-6.38534
25	1.087637	-4.52947
26	1.086807	-5.75489
27	1.070817	-7.61212
28	1.089483	-2.54372
29	1.09	0.0
30	1.092072	-3.52961
31	1.06978	0.00317
32	1.081517	1.43078
33	1.088563	2.30764
34	1.090237	1.19352
35	1.093429	4.53883
36	1.089268	7.2037
37	1.084616	1.56726
38	1.092929	6.19346
39	1.065036	-9.59073

Table 3.11 line flows

from bus 1 to bus j	$\begin{gathered} \text { real } \\ \times 100 \mathrm{MW} \end{gathered}$	reactive *100MVAR
1-2	-1.179095	-0.200546
1-39	1.179117	0.200689
2-1	1.183391	-0.562477
2-3	3.648416	0.815858
2-25	-2.331772	0.568304
2-30	-2.499969	-0.821699
3-2	-3.632467	-0.924591
3-4	0.723791	1.058176
3-18	-0.311249	-0.15687
4-3	-0.72157	-1.265182
4-5	-1.66536	-0.074239
4-14	-2.613258	-0.501568
5-4	1.667426	-0.036992
5-6	-4.844216	-0.492715
5-8	3.176741	0.530187
6-5	4.848617	0.503095
6-7	4.265453	0.853376
6-11	-3.413409	-0.477719
6-31	-5.700514	-0.878196
7-6	-4.254893	-0.812478
7-8	1.917262	-0.026879

(continue)

8-5	-3.168968	-0.579005
8-7	-1.915875	-0.039855
8-9	-0.135546	-1.148189
9-8	0.137532	0.763184
9-39	-0.137545	-0.763163
10-11	3.449878	0.814545
10-13	3.051015	0.447898
10-32	-6.500778	-1.261777
11-6	3.421057	0.416278
11-10	-3.445299	-0.845392
11-12	0.02417	0.428641
12-11	-0.023901	-0.42131
12-13	-0.061075	-0.458514
13-10	-3.047554	-0.490891
13-12	0.061399	0.467323
13-14	2.986093	0.023293
14-4	2.618482	0.436309
14-13	-2.978765	-0.129441
14-15	0.360292	-0.306816
15-14	-0.360059	-0.08991
15-16	-2.839769	-1.439335
16-15	2.847899	1.334614
16-17	2.05795	-0.637266
16-19	-4.524557	-0.328331
16-21	-3.270048	0.247432

(continue)

16-24	-0.405825	-0.942635
17-16	-2.055118	0.521861
17-18	1.893717	0.09524
17-27	0.161662	-0.615882
18-3	0.311345	-0.082691
18-17	-1.891482	-0.218027
19-16	4.553718	0.337678
19-20	1.742593	0.26113
19-33	-6.296221	-0.598024
20-19	-1.740706	-0.223947
20-34	-5.059337	-0.806389
21-16	3.277763	-0.403321
21-22	-6.017829	-0.747266
22-21	6.043933	0.912329
22-23	0.456154	0.274515
22-35	-6.500022	-1.185407
23-22	-0.455972	-0.483891
23-24	3.515585	-0.086615
23-36	-5.534654	-0.276233
24-16	0.406089	0.870969
24-23	-3.491833	0.052654
25-2	2.367126	-0.695973
25-26	0.778595	-0.344268
25-37	-5.385707	0.568506
26-25	-0.77695	-0.245524
26-27	2.658219	0.829176

(continue)

26-28	-1.389862	-0.356816
26-29	-1.881269	-0.396116
27-17	-0.161416	0.252744
27-26	-2.648726	-1.008376
28-26	1.396934	-0.489033
28-29	-3.456943	0.212964
29-26	1.898565	-0.633219
29-28	3.471193	-0.35497
29-38	-8.204756	0.66182
30-2	2.499969	0.929669
31-6	5.700514	1.647344
32-10	6.500778	2.0567
33-19	6.320523	1.091021
34-20	5.080004	1.219722
35-22	6.500022	1.726401
36-23	5.54805	1.005018
37-25	5.400583	0.006685
38-29	8.25038	0.227832
39-1	-1.177577	-1.025408
39-9	0.137568	-0.594682
The total reactive power losses are 84.9205 MVAR, real power losses are 38.789 NW		

Table 3.12 system status

constraint no.	system status	largrange multiplier
1,40	EQUALITY	NEGATIVE
2,41	EQUALITY	NEGATIVE
3,42	LOWERBED	POSITIVE
4,43	LOWERBEND	POSITIVE
5,44	EQUALITY	NEGATIVE
6,45	EQUAITTY	NEGATIVE
7,46	LOWEREND	POSITIVE
8,47	LOWERBND	POSITIVE
9, 48	EQUALITY	NEGATIVE
10, 49	EQUALITY	NEGATIVE
11, 50	EQUALITY	NEGATIVE
12, 51	LOWERBND	POSITIVE
13, 52	EQUALITY	NEGATIVE
14, 53	EQUALITY	NEGATIVE
15, 54	LOMIEREND	POSITIVE
16, 55	LOWERBND	POSITIVE
17, 56	EQUALITY	NEGATIVE
18, 57	IONERBND	POSITIVE
19, 58	EQUALTIY	NEGATIVE
20, 59	LOMEREND	POSITIVE
21, 60	LOWERBED	POSITIVE
22, 61	EQUALITY	NEGATIVE
23:62	LOWERBIT	POSITIVE

(continue)

24, 63	LOWERBND	POSITIVE
25.64	LOWERBND	POSITIVE
26, 65	LOWERBND	POSITIVE
27, 66	LOWERBND	POSITIVE
28, 67	LOWERBND	POSITIVE
29	LOWERBND	POSITIVE
30	UPPERBND	NEGATIVE
31	UPPERBND	NEGATIVE
32, 71	UPPEREND	negative
33, 72	UPPERBND	NEGATIVE
34	UPPERBND	NEGATIVE
35	UPPERBND	NEGATIVE
36	FREE	0.0
37, 76	UPPERBND	NEGATIVE
38	FREE	0.0
39	UPPERBND	NEGATIVE
68	FREE	0.0
69	FREE	0.0
70	FREE	0.0
73	FREE	0.0
74	FREE	0.0
75	UPPERBND	NEGATIVE
77	UPPERBND	NEGATIVE
78	LOWERBND	POSITIVE
79	EQUALITY	NEGATIVE
80	EQUALITY	NEGATIVE

B : quasiconcave Table 3.13 quasiconvexity or quasiconcavity check at the $k-T$ point.

41	42	43	44	45	46	47	48	49	50
. 00001	. 02399	1.83998	. 00000	-. 00002	. 83999	1.76602	. 00000	. 00002	. 00003
. 00001	. 02406	1.84019	. 00006	-. 00005	. 84011	1.76633	. 00001	. 00001	. 00003
. 00000	. 02409	1.84022	. 00001	-. 00003	. 84015	1.76636	. 200001	. 00000	-. 00003
-. 00001	. 02405	1.84021	.00005	-. 000002	.84013	1.76627	. 00000	. 00000	-. 000003
$.00000$	$.02401$	$\begin{gathered} 1.84002 \\ \mathrm{~B} \end{gathered}$	$-.00002$	$.00000$	$\begin{gathered} .83997 \\ \text { B } \end{gathered}$	$\begin{gathered} 1.76600 \\ \mathrm{~B} \end{gathered}$	$\begin{aligned} & .00001 \\ & \mathrm{~A}, \mathrm{~B} \end{aligned}$	$\begin{gathered} .00003 \\ A \end{gathered}$	$\begin{gathered} -.00003 \\ \mathrm{~A}, \mathrm{~B} \end{gathered}$
51	52	53	54	55	$5 飞$	57	58	59	60
. 88000	. 00000	. 00003	1.53001	. 32300	. 00001	. 30001	-. 00002	1.03001	1.14999
. 88005	-. .00003	. 00002	1.53010	. 32305	. 00000	. 30002	-. 00003	1.03001	1.15003
.88005	-. 00007	. 00002	1.53011	. 32306	$\therefore .00001$. 30004	-. 00001	1.03004	1.15003
.88004	-. 00003	. 00001	1.53011	. 32306	.00000	. 30003	. 00000	1.03005	1.15002
$\begin{gathered} 88000 \\ B \end{gathered}$	$\underset{A}{-.00004}$	$\text { . } 00002$	$\begin{gathered} 1.52999 \\ B \end{gathered}$	$.32300$	$.$	$.30000$	$.00002$	1.03000	$\begin{gathered} 1.15000 \\ \mathrm{~B} \end{gathered}$
61	62	63	64	65	66	67	68	69	70
. 00000	. 84599	-. 92201	.47201	. 17001	. 75501	. 27601	. 32642	. 92978	1.64734
. 00000	. 84600	-. 92201	.47203	.17002	. 75506	. 27603	. 30906	1.08673	1.78361
-. 00001	. 84600	-. 92198	. 47203	.17003	. 75509	. 27603	. 29753	1.19109	1.87424
-. 00002	. 84600	-. 92197	. 47203	. 17004	. 75507	. 27602	. 28607	1.29522	1.96468
$\begin{aligned} & -.00002 \\ & A, B \end{aligned}$	B	$-.92200$	$.47200$	$\text { . } 17001$	$.75500$	$\begin{gathered} .27600 \\ B \end{gathered}$	$\stackrel{26899}{A, B}$	$\begin{gathered} 1.45100 \\ A, B \end{gathered}$	$\begin{gathered} 2.10000 \\ A, B \end{gathered}$
71	72	73	74	75	76	77	78	79	80
2.05699	1.09101	1.21973	1.72670	1.00500			1.61999		
2.05699	. 94952	1.35481	1.84270	1.00491	. 00694	. 22790	1.83360	-. 00663	-. 00136
2.05700	. 85604	1.44487	1.91998	1.00490	. 00693	. 22788	1.97283	-. 00788	-. 00160
2.05700	. 76323	1.53493	1.99722	1.00491	. 00695	. 22790	2.10952	-. 00666	-. 00128
$\begin{gathered} 2.05700 \\ A, B \end{gathered}$	$.62531$	$\begin{gathered} 1.67001 \\ A, B \end{gathered}$	$\begin{gathered} 2.11301 \\ A, B \end{gathered}$	1.00500	$.$	${ }_{A}^{.22800}$	$\begin{gathered} 2.30978 \\ A, B \end{gathered}$	$.00000$	$.00015$

randomly selected, so that the quasiconvexity or quasicon cavity of each constraint at the $K-T$ point can be verified. The results are in the Table 3.13.

Since the objective function satisfies rule 3 , and all the constraints are differentiable and satisfy rule 3, so the K-T point is a global optimal solution.

Comparisons of the model

(a) Nonlinear (GRG2) method vs linearized method

Since this research focuses on non-linear programming, comparisons of the accuracy and complexity between the GRG2 and a linearized method are worthwhile to consider. In this linearized method, real and reactive power flow are also treated as variables; a separable programing algorithm is introduced to linearize the model, and a very powerful linear package called MPSX is used to execute the model. The results of the comparisons of the five bus system are the following.

Table 3.14 structure and operation comparisons.

	linear	G.R.G
Zloss	0.16045	0.126817
Time	6.76 sec	0.34 sec
Iteration	360	20
Constraint	133	10
Variables	396	10

Table 3.15 bus voltage

	linear	G.R.G
1	$1.1+j 0$	$1.1+j 0$
2	$1.08637-j 0.04967$	$1.08693-j 0.049332$
3	$1.06108-j 0.0863$	$1.06287-j 0.08616$
4	$1.06-j 0.09197$	$1.06183-j 0.0918$
5	$1.05374-j 0.10551$	$1.05506-j 0.105246$

The reasons that the executing time of the non-linear model is faster than the linearized model are two: (1) The non-linear model only consists of voltage variables, after the program reaches the optimal solution, then the voltage variables will be substituted into the power system equations to calculate the real and reactive power flow. All these post optimal calculation takes only one iteration, thus it is much faster than allowing put real and reactive power flows as variables in the model. (2) Not including separable programing technique, this model has less constraints and variables, therefore, it is faster.

Also comparing the losses from Table 3.14, the results from the model is more accurated and realistic, because this technique does not linearize the network.
(b) This model vs Gauss-Siedel method

Most of the existing load flow packages have used
either Gauss-Siedel or Newton- Raphson or their revised versions; however, in several contingent situations the accuracy and ability of the conventional load flow methods are very limited. These problems could be overcome if this model were used.

Following are several comparisons of the accuracy of the results between this model and the conventional method [18] under different contingencies. In order to have a justified comparison, the swing bus voltage is alway assigned to be the same bus voltage of the GRG2 method.
(1) Comparison of the results under normal situation

Table 3.16 results of the five bus system by Gauss-Siedel method

no	magnitude	angle
1	1.09	0.0
2	1.08	-2.7
3	1.058	-4.7
4	1.058	-5.1
5	1.052	-5.8
The system reactive power losses are 12.94 MVAR		

After comparing Table 3.4 with table 3.16 , and table 3.9 with table 3.17 , this model clearly shows several advantages. (1) The system reactive losses are less in both

Table 3.17 the results of the 39 bus system by Gauss-Siedel method

no	magnitude	angle
1	1.069	. -8.3
2	1.062	-5.9
3	1.054	-8.6
4	1.047	-9.4
5	1.059	-8.4
6	1.064	-7.7
7	1.052	-9.7
8	1.05	-10.2
9	1.066	-10.0
10	1.07	-5.6
11	1.067	-6.3
12	1.054	-6.3
13	1.064	-6.2
14	1.054	-7.7
15	1.04	-8.0
16	1.048	-6.6
17	1.05	-7.6
18	1.05	-8.4
19	1.055	-2.0
20.	0.994	-3.4
21	1.043	-4.3

(continue)

22	1.056	0.1
23	1.051	-0.1
24	1.052	-6.5
25	1.068	-4.4
26	1.063	-5.7
27	1.051	-7.7
28	1.056	-2.2
29	1.054	0.5
30	1.053	-3.5
31	1.07	0.0
32	1.04	1.6
33	0.997	3.2
34	1.012	1.8
35	1.049	5.1
36	1.064	7.8
37	1.027	2.3
38	1.027	7.6
39	1.056	-9.8
The system reactive losses are 933.51 MVAR		

cases, because the model has an objective function which is minimizing the reactive losses, and there is no way to put such a function on the conventional load flow methods.

There is no swing bus assigned in the model, all bus voltages are given a range initially, and from that point on, the model will generate the optimal bus voltage data for the Whole system; thus this is more flexible than most conventional methods. (3) In most conventional methods, unless the choice of the swing bus is better or additional required transformer tap changing is installed, the ability for the conventional methods to reach an optimal solution is greatly reduced; however, the effect of the tap changing, because of the objective function and flexibility, is automatically included in this model.
(2) Comparison of results under loss of generation

Assume generator bus 31 of the 39 bus system suddenly loses 195MN of its capacities. In the conventional methods, the losses will be supplied by the swing bus. In contrast, this model,using minimal cut off real load as an objective function, will show the minimal amount of the load to be cut and where to cut them. The results of this contingent situation are shown in Appendix 3, and it is found that bus7 and bus 12 have to cut some amount of their real load in this model in order to meet the crisis, this gives a more realistic result.
(3) Comparison of results under loss of a line

Assume line 4-14 of the 39 bus system is cut off. In the conventional methods, all the additional load will be picked up.by the swing bus; however, this model being more realistic, uses the same technique as (2), and locates the minimal amount of the load that needed to be cut. The results of. this contingent situation are in Appendix 4, it shows that in the model the bus 7 has to cut some of its real power load or bus 23, 28 , and 29 have to cut some amount of their reactive load, in order to save the system.

Various capabilities of the model

In additional to loss of a line and loss of generation, this model can also deal with various situations. They are (1) minimal real power losses, (2) bus fault, (3) line fault, (4) voltage regulation. They are discussed in the following paragraphs:
(1) Minimal real power losses

While the procedure for this is similar to minimizing reactive power losses, the objective function is different. The results of the same 39 bus system under the object of minimizing real losses is shown in Appendix 5, so that the comparisons can be made against the results of minimal reactive losses (see Table 3.10 and 3.11) and the results of the Gauss-siedel method(see Table 3.17). The results of minimlzing real power losses are almost the same as minimizing reactive power losses; the reactive losses of the former is slightly larger than the latter, the real losses of the
former is slightly smaller than the latter. So minimizing the real losses will also minimize the reactive losses and vise versa. Since it has already demonstrated that the results of minimal reactive power losses are more accurate than the results of Gauss-Siedel method in the previous section, the results of minimizing the real power losses are more accurate than the results of Gauss-Siedel method too.
(2) Bus fault

Assume bus no. 3 of the five bus system is faulted, the fault impedance is $1.0+j 0.0$ ohms. This model will be able to locate minimal load which should be cut off. In addition, it will lower the bus voltages to meet the crisis. The results are in Table $3.18,3.19$ and 3.20 .
(3) Line fault

Assume line 1 - 2 of the five bus system is shorted In the middle, this model is able to do the same things as in the bus fault, and the results are in Table 3.21, 3.22 and 3.23.
(4) Voltage regulation

Chapter three states that voltage regulation is an unique optional constraint set which conventional methods have no ability to include. It also stated that with this constraint set installed, they will either be redundant or increase the total system losses or the results sometimes will be infeasible. The five bus example illustrates the regulation of the voltage drop of the line $2-5$.

Table 3.18 line flow and system losses under bus fault, $z f=1.0+j 0.0$

$\begin{aligned} & \text { From bus } 1 \\ & \text { to bus } j \end{aligned}$	$\begin{aligned} & \text { real } \\ & \text { x100MW } \end{aligned}$	reactive x100MVAR
1-2	0.994614	0.021611
1-3	0.505398	0.078387
2-1	-0.960231	0.048089
2-3	0.340444	0.060727
2-4	0.33495	0.048674
2-5	0.484843	0.042247
3-1	-0.468746	0.005158
3-2	-0.326966	-0.040672
3-4	-0.038573	-0.069161
4-2	-0.322061	-0.03048
4-3	0.03869	0.059862
4-5	-0.01032	-0.029381
5-2	-0.467199	-0.005335
5-4	0.010386	0.005089
The system reactive power losses are 34.569MVAR, real losses are 58.759MW		

Table 3.19 bus voltage under bus fault, $z f=1.0+j 0.0$

no	magnitude	angle
1	0.759147	0.0
2	0.733981	-6.0678
3	0.69298	-12.50099
4	0.696323	-12.44001
5	0.703459	-12.31182

Table 3.20 the cut demand on every load bus under the bus fault

bus no.	real	reactive
3	9.60455	4.53642
4	10.6264	5.0
5	14.3185	10.0
total	34.5494	19.53642

Table 3.21 line flow and system losses under the line 1 - 2 fault.

$\begin{aligned} & \text { From bus } 1 \\ & \text { to bus } j \end{aligned}$	$\begin{gathered} \text { real } \\ \times 100 \mathrm{MW} \end{gathered}$	$\begin{aligned} & \text { reactive } \\ & \text { x100MVAR } \end{aligned}$
1-3	0.021291	0.004077
2-3	0.037977	0.020104
2-4	0.039229	0.020151
2-5	0.056387	0.026394
3-1	-0.018346	0.004194
3-2	-0.031721	-0.001888
3-4	0.005091	-0.002268
4-2	-0.032642	-0.000942
4-3	-0.00506	0.002169
4-5	-0.00148	-0.001195
5-2	-0.047668	-0.030674
5-4	0.001506	0.000768
The system reactive power losses are 42.177MVAR, real losses are 14.059MW		

Table 3.22 bus voltage under line 1 - 2 fault

no	magnitude	angle
1	0.113317	0.0
2	0.133600	-0.00733
3	0.098382	-25.26415
4	0.098542	-26.2952
5	0.102102	-24.70547

Table 3.23 the cut demand on every load bus under line 1 - 2 fault.

bus no.	real	reactive
3	40.5012	15.0
4	36.0802	5.0
5	55.3783	10.0
total	131.9587	30.0

Originally the percentage of the voltage regulation of that line $1 s 6.19 \%$ at bus 5 end and 6.03% at bus 2 end (see Table 4.3). If the factors are more than 6.19%, then these constraints are redundant. If the factors are assigned to 6\%, the systen will not be convergent, because 6\% voltage regulation on line 2 - 5 at bus 5 end will lower bus 2 voltage, which creates extra power flow from bus 1 to bus 2. Since line 2 - 5 is regulated, then this extra power can not be supplied to load bus 5, therefore the demand on bus 5 can not be met. If the factor at the bus 2 end is 6% and at the bus 5 end is 6.16\%, the system will converge; the voltage drop of line 2 - 5 will be regulated, yet the total system losses are increased. The results are shown in the Table 3.24 and table 3.25. After comparing these Tables with table 3.4 and table 3.5 , it can be seen that when the voltage drop of the line 2 - 5 is regulated, the total system losses are higher.

> Table 3.24 bus voltage under voltage regulation on line $2-5$

no	magnitude	angle
1	1.09	0.0
2	1.075059	-3.16454
3	1.053494	-5.11431
4	1.052809	-5.45559
5	1.046958	-6.30258

Table 3.25 line flow and system losses under voltage regulation on line 2 - 5.

From bus i to bus	real x100MW	reactive x100MVAR
$1-2$	1.060688	-0.088002
$1-3$	0.439318	0.008705
$2-1$	-1.041703	0.074642
$2-3$	0.232401	0.031861
$2-4$	0.267604	0.025601
$2-5$	0.541851	0.06729
$3-1$	-0.426223	-0.026869
$3-2$	-0.22944	-0.068291
$3-4$	0.20561	-0.054925
$4-2$	-0.263763	-0.059361
$4-3$	-0.20521	0.03394
$4-5$	0.068952	-0.024524
$5-2$	-0.531439	-0.070956
$5-4$	-0.068608	-0.029557
Total system reactive power		
$10 s s e s$ are 15.0109 MVR		

Sumary of the comparisons

In this chapter, two example problems were presented and solved. Accuracy, efficiency and capability comparisons have been made from the results of this model verses some existing models including both network solution and O.R. solution. The comparisons show this model is superior to most existing ones in many ways.
(1) Normal situation

Comparing to some O.R. solutions, the results of this model show less losses and higher efficiency (see Table 3.14). Comparing to the network solution, the results of this model show that the bus voltage value is very closed to the network solution, but the losses are less (see Table 3.26 , and 3.27)

Table 3.26 the differences of the results of the five bus system and network solution.

bus no.	voltage different ($\%$)
1	0.0
2	0.1837037
3	0.1968756
4	0.2503733
5	0.205806
Difference of the system reactive power losses are .0077237 	

(2) Contingency situation

The results of this model show that it is capable of handing various contingency situations, which most existing models have difficulties to deal with.

Table 3.27 the differences of the results of the 39 bus system and network solution.

pus no.	voltage difference ($\%$)
1	1.0819497
2	1.4826739
3	0.6366161
4	1.0358229
5	2.0139728
6	2.2696486
7	2.0939248
8	1.9811336
9	1.2912688
10	1.9996325
11	2.486249
12	1.5697422
13	.9497157
14	.5412561
15	1.1881685
16	

(continue)

17	1.3290474
18	1.0950567
19	1.7425689
20	7.5574427
21	1.5125636
22	1.7253737
23	1.861752
24	1.2928654
25	1.8386694
26	2.2396095
27	1.885537
28	3.1707413
29	3.4155612
30	3.7105448
31	. 0205664
32	3.9920211
33	9.1838503
34	7.7309346
35	4.2353616
36	2.3748081
37	5.6101265
38	6.4195776
39	. 8556879
Difference of the system reactive power losses are 9.0309677 \%	

CHAPTER POUR

SUMMARY AND CONCLUSION

In the beginning chapter, this research has shown the needs for a new optimal load flow model, then this new model, based on the electrical and socialogical concerns, was carefully developed in the following chapter. It showed that the new O.R. model does not linearize the electrical phenonmeon, and it only contains bus voltage variables which ties the real power flow and the reactive power flow together. In the third chapter, this new model was implemented by two examples to prove its wide range of capabilities. The detail results and various comparisons with existing model shown in the same chapter.

This new model demonstrated its effectiveness and potential for load flow studies. It differs from most conventional methods by not having a swing bus and the tap changing effect is included automatically, which leads to a better and more accurated solution. This model also proved that it is able to do various things that most conventional methods can not do or are very limited in doing. For instance:
(1) Loss of line - this model locates the minimal amount of load which is to be cut off, but most conventional
methods, because of the swing bus, are not able to do this.
(2) Loss of generation - the model handles this situation similar to loss of a line.
(3) Bus fault - the swing bus prohibits most conventional methods to search for minimal load cut, but this model is able to do that.
(4) Line fault - this model locates the minimal amount of load which is to be cut off and lowers the system voltage automatically.
(5) Voltage regulation -most conventional methods are not able to do it at all, but in this model voltage regulation can be installed optionally to meet a line specific requirement. This will reduce the voltage drop and losses of that particular line, but it will not improve the over all system losses.

Furthermore, this model is capable of doing things which are not illustrated in this research, e.g. load expansion, line capacity limitation, and minimal cost of the power losses.

As a non-linear model, this model used the GRG2 nonlinear package to execute the program. The objective function is a convex function, but the constraint set does not form a convex set, so the result is not necessarily the global optimum. Therefore; a point quasiconvexity or quasiconcavity was introduced in chapter three in order to check the
optimality of the solution. Since this is a primal type of problem, the solution will always be a feasible one, even though the global optimum might not be reached in some cases.

Future studies

Because of non-linearity, the only disadvantage of this model is that the execution time is slower than the conventional method. As a consequence, a better non-linear algorithm would help solve the time problem, and a better non-linear algorithm will also help to search for the glohal optimum.

If the zero-one integer variables were included, this model could be expanded as a system planning tool. It would be able to give the line flow and bus voltage data; however, an additional advantage of this model would be to indicate where to build more lines and substations in order to meet the forecast.

Another area this model might be able to break into is stability, because if the governing equations in the stability study can be transformed into O.R. type constraints, then the stability problem can be solved by operational research techniques.

BIBLIOCRAPHY

1. Peschon, J., Plercy, D.S., Tinney, W.F., and Treit, O.J., "Sensitivity in power systems." IFEE Trans. on PAS., Vol. 87, 1968, pp. 1687-1696.
2. Dopazo, J.F., Klitin, O.A., Stagg, G.W., and Watson, M., "An optimization technique for real and reactive power allocation." Proceedings of the IEFEF, 1967, pp. 18771885.
3. Hano, I., Tanura, Y., Narita, S., and Matscemoto, Ki., nReal time control of syster voltage and reactive power." IEAE Trans. on PAS. , 1969, pp. 1544-1550.
4. Dommel, H.W., and Tinney, W.F., "Optimal power flow solution." IEFE Trans. on PAS., Vol. 87, 1968, pp. 1866-1876.
5. Saunlescu, S.C., "Qualitative indices for the system voltage and reactive power control." IEAE Trans. on PAS., Vol. 95, 1976, p p. 1413-1421.
6. Narita, S., and Hamman, A.A., "A computational algorithm for real time control of systems voltage and reactive power, part I \& part II." IHFE Trans. on PAS., Vol. 95, 1971, pp. 2495-2508.
7. Shoults, R.R. and Chen, M.S., "Reactive power control by least squares minimization.n IFHE Trans. on PAS., VOL. 95, 1976, pp. 325-334.
8. Hobson, E., "Network constrainted reactive power control using linear programming." Paper F79214-8 presented at the 1979 IEEE PES Winter Meeting, New York, New York.
9. Mamandur, K.R.S. and Chenoweth, R.D., "Optimal control of reactive power flow for improvements in voltage profiles and for power loss minimization." IEEE Trans. on PAS., Vol. 100, 1981, pp. 3185-3194.
10. Chamorel, P.A., and Germond, A.J., "An efficient constrained power flow technique based on active-reactive decoupling and the use of linear programming." IEEE Trans. on PAS., Vol. 101, 1982, pp. 158-167.
11. Shoults, R.R., and Sun, D.T., "Optimal power flow based upon P-Q decomposition." IEEE Trans. on PAS., Vol. 101, 1982, pp. 397-405.
12. Burchett, R.C., Happ, H.H., Vierath, D.R., and Wirgan, K.A., "Developments in optimal power flow." IEEE Trans. on PAS., Vol. 101, 1982, pp. 406-414.
13. Stagg, G. and El-Abiad, A., "Computer methods in power system analysis." McGraw-Hill Series in Electronic System.
14. Himmelblau, D.M. "Applied nonlinear programming." McGraw-Hill, Inc., 1972.
15. Wolfe, P., "Methods of nonlinear programming." Notices Am. Math. SOC., 9(4):308, 1962.
16. Lasdon, L.S., Waren, A.D., Jain, A., and Ratner, M., "Design and testing of a generalized reduced gradient
code for nonlinear programming." ACM Trans. on Math. Software, Vol. 1, No. 1, March 1978, pp. 34 -50.
17. Lasdon, L.S., "Generalized reduced gradient software for linearly and nonlinearly constrained problems." Work Paper 77-85, Graduate School of Business, University of Texas, Austin, Texas 78712.
18. Fagan, J.E. "Guass-Siedel load flow study." Report. University of Texas at Arlington. 1971.
19. Stott, Brain, "Review of load flow calculations methods." Proceedings of the IEEF, Vol. 62. 1974. pp. 916-929.
20. Bazaraa, M.S., and Shetty, C.M. "Nonlinear progranming: Theory and Algorithms." John Wiley \& Sons. Inc. 1979.
21. Yu, D.C. "A model for distribution system planning." Master Thesis, University of Oklahoma, 1979.
22. Shoults, R.R. "Application of a fast linear ac power flow model to contingency simulation and optimal control of power systems" Ph.D. Dissertation, The University of Texas at Arlington, 1974.

APPENDIX ONE

Compler gode for the calculation of the P and Q.

```
ieee 39 buses system (feasible injtial solution, slack bus is 31)
        dimension pf(39,39),gf(39,39),vb(39),ang(39), rl (39,39),
        1xl(39,39), са(39,39),x(78)
        G=0.
        do 101 m=1,78
        read(5,339)x(m)
    101 continue
    reau(5,340)nn,d1,d2,vr,zloss
    do 131 i=1,39
    do 132 j=1,39
    Il(1,j)=0.
    xl(1,j)=0.
    cs(1,j)=0.
132 continue
131 continue
    write(6,331)
    write(6,341)nn,d1,d2,vr,zloss
    do 133 1=1,39
    read(5,332)kk,kl,km,kn,kj
    ni=1:i 39
    write(6,333)
    write(6,336)
    do 134 j=1,39
    nj=j+39
    if(j.eq.kk.or.j.eq.kl.or.j.eq.km.or.j.eq.kn.or.j.eq.kJ)go to 431
    go to 134
    431 if(j.gt.i)go to 432
    rl(1,j)=rl(j,i)
    xl(1,j)=xl(j,1)
    ca(1,j)=ca(j,i)
    go to 433
432 read(5,334)ri(i,j),xl(i,j),ca(i,j)
    a=a+rl(i,j)*(x(i)**2+x(j)**2+x(ni)**2+x(nj)**2-2.*x(i)*x(j)-2.*
    1x(ni)*x(nj))
    433 pf(i,j)=xi(i,j)*(x(ni)*x(j)-x(i)*x(nj).)+rl(i,j)*(x(i)**2+x(ni)**2
    1-x(1)*x(j)-x(ni)*x(nj))
    qf(i,j)=xi(1,j)*(x(1)**2+x(ni)**2-x(i)*x(j)-x(ni)*x(nj))-rl(i,j)
    1 *(x(ni)*x(j)-x(i)*x(nj))-ca(i,j)*(x(i)**2+x(ni)**2)
    write(6,335)i,j,pf(i,j),qf(i,j)
    134 continue
    133 continue
    write(6,333)
    write(6,342)a
    Write(6,333)
    write(6,337)
    do 135 k=1,39
    nk=k+39
    Vb(k)=sgrt(x(k)**2+y(nk)**2)
    ang(k)=57.29578*atan(x(nk)/x(k))
    write(6,338)k,vb(k),ang(k)
    135 continue
    331 format(////1x,'************************************************************
    |**************/1x,'the final report of epri 39 buses system')
    332 format(5i5)
    333 format(/1x,'*****k***************************************************
    1***********)
    334 format(3f15.5)
    336 format(/1x,'the line flow report')
```

335, format(/1x,'from bus', $2 x, 12,2 x$, to bus', $2 x, 12,3 x$, 'real power'
1 , £11.6,3x,'reactive power',f11.6)
337 format(/1x,'the bus voltage report')
338 format(/1\%,'the bus no.', $2 \mathrm{x}, \mathrm{i} 2,3 \mathrm{x}$, 'magnitude', $1 \mathrm{x}, \mathrm{f} 10.6,3 \mathrm{x}$, 1 'angle',1x,£10.5)
339 format(f12.7)
340 format(is,4fio.5)
341 format(/1x,'the slack bus is', $2 x, i 2 / 1 x$, real power limit', $1 \mathrm{x}, \mathrm{f} 10.5$ l/ix,'reactive power limit', $1 x, f 10.5 / 1 x$,'real part of the bus volta 2ge is less than',2x,f6.3/1x,'************************************* 3****************************///1x,'the optimal value of the total 4 reactive power losses under the stated condition is', $2 x, f 10.5$)
342 format(/1x,'the associated system real power losses', $2 \mathrm{x}, \mathrm{f10.5}$) stop end

APPENDIX THO

Mathematical formulation of the IEEE 39 bus system for GRG2 technique.
data ncore/20000/
call grg(2,ncore)
stop
enid
subroutine gcomp (g, x)

```
real*8 g(1),x(1)
```

c
c
constraints

-87-


```
1 *(x(43)*x(3)-x(4)*x(42))-77.82101*(x(4)**2+x(43)**2
2 -x(4)*x(5)-x(43)*x(44))+4.86381*(x(43)*x(5)-x(4)*x(44))
3 -77.22239*(x(4)**2+x(43)**2-x(4)*x(14)-x(43)*&(53))
4 +4.78899*(x(43)*x(14)-x(4)*x(53))+0.2469*(x(4)**2+x(43)**2)
g(44)=77.82101*(x(5)**2+x(44)**2-x(5)*x(4)-x(44)*x(43))-4.86381
1 *(x(44)*x(4)-x(5)*x(43))+382.353*(x(5)**2+x(44)**2
2 -x(5)*x(6)-x(44)*x(45))-29.411777*(x(44)*x(6)-x(5)*x(45))
    +88.83249*(x(5)**2+x(44)**2-x(5)**(8)-x(44)*x(47))
    -6.34518*(x(44)*x(8)-x(5)*x(47))-0.1626*(x(5)**2+x(44)**2)
    g(45)=382.353*(x(6)**2+x(45)**2-x(6)*x(5)-x(45)*x(44)>-29.41177
1 * *(x(45)*x(5)-x(6)*x(44))+108.2353*(x(6)**2+x(45)***2
    +121.069*(x(6)**2+x(45)**2-x(6)*x(11)-x(45)*x(50))
    -10.33515*(x(45)*x(11)-x(6)*x(50))+40.*(x(6)**2
    +x(45)**2-x(6)*x(31)-x(45)*x(70))-0.14765*(x(6)**2+x(45)**2)
    g(46)=-108.2353*(x(7)**2+x(46)**2-x(7)*x(6)-x(46)*x(45))+7.05882
1 *(x(46)*x(6)-x(7)*x(45))-215.7599*(x(7)**2+x(46)**2
2 -x(7)*x(8)-x(46)*x(47))+18.76173*(x(46)*x(8)-x(7)*x(47))
    +0.0955*(x(7)**2+x(46)**2)
    g(47)=-88.83249*(x(8)**2+x(47)**2-*(8)*x(5)-x(47)*x(44))+6.34518
1. *(x(47)*x(5)-x(8)*x(44))-215.7599*(x(8)**2+x(47)**?
2* -x(8)*x(7)-x(47)*x(46))+18.76173*(x(47)*x(7)-x(8)*x(46))
3-27.43806*(x(8)**2+x(47)**2-x(8)*x(9)-x(47)*x(48))
    +1.7385*(x(47)*x(9)-x(8)*x(48))+0.303*(4(8)**2+x(47)**2)
    g(48)=27.43806*(x(9)**2+x(48)**2-x(9)*x(8)-x(48)*x(47))-1.7385
1 *(x(48)*x(8)-x(9)*x(47))+39.9361*(x(9)**2+x(48)**2
2 -x(9)*x(39)-x(48)*x(78))-1.59744*(x(48)*x(39)-x(9)*x(78))
3-0.7902*(x(9)**2+x(48.)**2)
    g(49)=230.563*(x(10)**2+x(49)**2-x(10)*x(11)-x(49)*x(50))
1-21.44772*(x(49)*x(11)-x(10)*x(50))+230.563*(x(10)
2 **2+x(49)**2-x(10)*x(13)-x(49)*x(52))-21.44772*(x(49)*x(13)
    -x(10)*x(52))+50.*(x(10)**2+x(49)**2-x(10)*x(32)
    -x(49)*x(71) )-0.0729*(x(10)**2+x(49)**2)
    g(50)=121.069*(x(11)**2+x(50)**2-x(11)*x(6)-x(50)*x(45))-10.33515
1**(x(50)*x(6)-x(11)*x(45))+230.563*(x(11)**2+x(50)**2
        -x(11)*x(10)-x(50)*x(49))-21.44772*(x(50)*x(10)-x(11)*x(49))
        +22.95745*(x(11)**2+x(50)**2-x(11)*x(12)-x(50)*x(51))
        -0.84441*(x(50)*x(12)-x(11)*x(51)) -0.1059*(x(11)**2+x(50)**2)
    g(51)=-22.95745*(x(12)**2+x(51)**2-x(12)*x(11)-x(51)*x(50))
        +0.84441*(x(51)*x(11)-x(12)*x(50))-22.95745*(x(12)**2+x(51)
        **2-x(12)*x(13)-x(51)*x(52))+0.84441*(x(51)*x(13)-x(12)
        *x(52))
    g(52)=230.563*(x(13)**2+x(52)**2-x(13)*x(10)-x(52)*y(49))-21.44772
        *(x(52)*x(10)-x(13)*x(49))+22.95745*(x(13)**2+x(52)
        **2-x(13)*x(12)-x(52)*x(51) -0.84441*(x(52)*x(12)-x(13)
        *x(51))+98.22992*(x(13)**2+x(52)**2-x(13)*x(14)-x(52)*x(53))
        -8.75316*(x(52)*x(14)-x(13)*x(53))-0.1226*(x(13)**2+x(52)**2)
    g(53)=77.22235*(x(14)**2+x(53)**2-x(14)**(4)-x(53)*x(43))-4.78899
    1 *(x(53)*x(4)-x(14)*x(43))+98.22992*(x(14)**2+x(53)**2
        -x(14)*x(13)-x(53)*x(52))-8.75316*(x(53)*x(13)-x(14)*x(52))
        +45.76804*(x(14)**2+*(53)**2-x(14)*x(15)-x(53)*x(54))
        -3.79643*(*(53)*x(15)-8(14)*X(54))-0.33825*(x(14)**24*(53)
        **2)
    g(54)=-45.76804*(x(15)**2+x(54)**2-x(15)*x(14)-x(54)*x(53))
    +3:79643*(x(54)*x(14)-x(15)*x(53))-105.4166*(x(15)**2
    2 +x(54)**2-x(15)*x(16)-x(54)*x(55))+10.0930B*(x(54)*x(16)
    -x(15)*x(55))+0.2685*(x(15)**2+x(54)**2)
    g(55)=-105.4166*(x(16)**2+x(55)**2-x(16)*x(15)-x(55)*x(54))
```

```
1 +10.09308*(x(55)*x(15)-x(16)*x(54))-111.6688*(x(16)**2
2 +x(55)**2-x(16)*x(17)-x(55)*x(56))+8.78294*(x(55)*x(17)-x(16)
3 *x(56))-50.93911*(x(16)**2+x(55)**2-x(16)*x(19)-x(55)
4 *x(58))+4.17962*(x(55)*x(19)-x(16)*x(58))-73.81486
5
6
7
g(56)=111.6688*(x(17)**2+**(55)**2-x(17)**(16)-x(56)*y(55))-8.78294
1 *(x(56)*x(16)-x(17)*x(55))+121.069*(x(17)**2+4(56)**2
2 -x(17)*x(18)-x(56)*x(57))-10.33515*(x(56)*x(18)-x(17)*x(57))
3 +57.4789*(x(17)**2+x(56)**2-x(17)*x(27)-x(56)*x(66))
4 -4.31922*(x(56)*x(27)-x(17)*x(66))-0.23385*(x(17)**2
5 +x(56)**2)
    g(57)=-74.67715*(x(18)**2+x(57)**2-x(18)*x(3)-x(57)*x(42))+6.17631
* *(x(57)*x(3)-x(18)*x(42))-121.069*(x(18)**2+x(57)**2
+0.17285*(x(18)**2+x(57)**2)
    g(58)=50.93911*(x(19)**2+x(58)**2-x(19)*x(16)-x(58)*x(55))-4.17962
        *(x(58)*x(16)-x(19)*x(55))+72.2778*(x(19)**2+x(58)**2
        -x(19)*x(20)-x(58)*x(59))-3.65627*(x(58)*x(20)-x(19)*x(59))
        +70.25182*(x(19)**2+x(58)**2-x(19)*x(33)-x(58)*x(72))-3.46312
        *(x(58)*x(33)-x(19)*x(72))-0.152*(x(19)**2+x(58)**2)
    g(59)=-72.2778*(x(20)**2+x(59)**2-x(20)*x(19)-x(59)*x(58))+3.66627
        *(x(59)*x(19)-x(20)*x(58))-55.41701*(x(20)**2+x(59)**2-x(20)
        *x(34)-x(59)*x(73))+2.77085*(x(59)*x(34)-x(20)*x(73))
    g(60)=-73.81486*(x(21)**2+x(60)**2-x(21)*x(16)-x(60)*x(55))+4.3742
        *(x(60)*x(16)-x(21)*x(55))-71.19609*(x(21)**2+x(60)**2
        -x(21)*x(22)-x(60)*x(61))+4.06835*(x(60)*x(22)-x(21)*x(61))
        +0.25565*(x(21)**2+x(60)**2)
    g(61)=71.19609*(x(22)**2+x(61)**2-x(22)*x(21)-x(61)*x(60))-4.06835
        *(x(61)*x(21)-x(22)*x(60))+103.7614*(x(22)**2+x(61)
        **2-x(22)*x(23)-x(61)*%(62))-6.48508*(x(61)**(23)-x(22)
        *x(02))+69.93007*(x(22)**2+x(61)**2-x(22)*x(35)-x(61)
        *x(74))-0.22055*(4(22)**2+x(61)**2)
    g(62)=-103.7614*(x(23)**2+x(62)**2-x(23)*x(22)-x(62)*x(61))
        +6.48508*(x(62)*x(22)-x(23)*x(61))-28.45899*(x(23)**2
        +x(62)**2-x(23)*x(24)-x(62)*x(63))+1.78885*(x(62)*x(24)
        -x(23)*x(63))-36.75229*(x(23)**2+x(62)**2-x(23)*x(36)
        -x(62)*x(75))+0.67559*(x(62)*x(36)-x(23)*x(75))
        +0.2728*(x(23)**2+x(62)**2)
    g(63)=-169.0544*(x(24)**2+x(63)**2-x(24)**(16)-x(63)*x(55))
        +8.59599*(x(63)*x(16)-x(24)**(55))-28.45899*(x(24)**2
        +x(63)**2-x(24)*x(23)-x(63)*x(62))+1.78885*(x(63)*x(23)-x(24)
        *x(62))+0.2145*(x(24)**2+x(63)**2)
    g(64)=-69.94144*(x(25)**2+x(64)**2-x(25)*x(2)-x(64)*x(41))+56.9291
        *(x(64)*x(2)-x(25)*x(41))-30.65883*(x(25)**2+x(64)**2
        -x(25)*x(26)-x(64)*x(65))+3.03741*(x(64)*x(26)-x(25)*x(65))
        -43.07464*(x(25)**2+x(64)**2-x(25)*x(37)-x(64)*x(76))
        +1.114*(x(64)*x(37)-x(25)*y(76))+0.3295*(x(25)**2+x(64)**2)
    g(65)=-30.65883*(x(26)**2+x(65)**2-x(26)*x(25)-x(65)*x(64))+3.0374
1 *(x(65)*x(25)-x(26)*x(64))-67.41573*(x(26)**2+x(65)**2
    2. -x(26)*x(27)-x(65)*x(66))+6.42055*(x(65)*x(27)-x(26)*x(66))
    -20.92484*(x(26)**2+*(65)**2-x(26)**(28)-x(65)**(67))
    +1.89825*(x(65)*x(28)-x(26)*x(67))-15.86802*(x(26)**2
    +x(65)**2-x(26)*x(29)-x(65)*x(68))+1.44716*(x(65)*x(29)-x(26)
    *x(68))+1.2809*(x(26)**2+x(65)**2)
```

```
g(66)=-57.4789*(x(27)**2+x(66)**2-x(27)*x(17)-x(66)*x(56))+4.31922
1 *(x(66)*x(17)-x(27)*x(56))-67.41573*( }\because(27)**2+x(66)**
        -x(27)*x(26)-x(66)*x(65))+6.42055*(x(66)*x(26)-x(27)*x(65))
        +0.2806*(x(27)**2+x(66)**2)
    g(67)=-20.92484* (x(28)**2+x(67)**2-x(28)*x(26)-x(67)*x(65))
        +1.89825*(x(67)*x(26)-x(28)*x(65))-65.66074*(x(28)**2
        +x(67)**2-x(28)*x(29)-x(67)*x(68))+6.08775*(x(67)*x(29)-x(28)
        *x(68))+0.5146*(x(28)**2+*(67)**2)
    g(68)=-15.86802*(x(29)**2+x(68)**2-x(29)*x(26)-x(68)*x(65))
1 +1.44716*(x(68)*x(26)-x(29)*x(65))-65.66074*(x(29)**2
2 +x(68)**2-x(29)*x(28)-x(68)*y(67))+6.08775*(x(68)*x(28)-x(29)
        *x(67))-63.93443*(x(29)**2+x(68)**2-x(29)*x(38)-x(68)
        *x(77) )+3.27869*(x(68)*x(38)-x(29)*x(77))
        +0.639*(x(29)**2+x(68)**2)
    g(69)=55.24862* (x(30)**2+x(69)**2-x(30)*x(2)-x(69)*x(41))
    g(70)=40.*(x(31)**2+x(70)**2-x(31)*x(6)-x(70)*x(45))
    g(71)=50.*(x(32)**2+x(71)**2-x(32)*x(10)-x(71)*x(49))
    g(72)=70.25182*(x(33)**2+x(72)**2-x(33)*x(19)-x(72)*x(58))-3.46312
1 *(x(72)*x(19)-x(33)*x(58))
g(73)=55.41701*(x(34)**2+x(73)**2-x(34)*x(20)-x(73)*x(59))-2.77085
1 *(x(73)*x(20)-x(34)*x(59))
    g(74)=69.93007* (x(35)**2+x(74)**2-x(35)*x(22)-x(74)*x(61))
    g(75)=36.75229*(x(36)**2+x(75)**2-x(36)*x(23)-x(75)*x(62))-0.67559
1 *(x(75)*x(23)-x(36)**(62))
    g(76)=43.07464*(x(37)**2+x(76)**2-x(37)*x(25)-x(76)*x(64))-1.114
1 *(x(76)*x(25)-x(37)*x(64))
    g(77)=63.93443*(x(38)**2+x(77)**2-x(38)*x(29)-x(77)*x(68))-3.27869
1 *(x(77)*x(29)-x(38)*x(68))
    g(78)=-39.9361*(x(39)**2+x(78)**2-x(39)*x(1)-x(78)*x(40))+1.59744
1 *(x(78)*x(1)-x(39)*x(40))-39.9361*(x(39)**2+x(78)**2
2 -x(39)*x(9)-x(78)*x(48))+1.59744*(x(78)*x(9)-x(39)*x(48))
3+0.975*(x(39)**2+x(78)**2)
function
\(g(79)=24.15573 *(x(1) * * 2+x(40) * * 2+x(2) * * 2+x(41) * * 2-2 . * x(1) * x(2)-2\). \(-* x(40) * x(41))+39.9361 *(x(1) * * 2+x(40) * * 2+x(39) * * 2+x(78) * * 2-2 . * x(1)\) \(-* x(39)-2 . * x(40) * x(78))+65.73792 *(x(2) * * 2+x(41) * * 2+x(3) * * 2+x(42) * * 2\) \(-2 . * x(2) * x(3)-2 . * x(41) * x(42))+69.94144 *(x(2) * * 2+x(41) * * 2+x(25) * * 2\) \(-+x(64) * * 2-2 . * x(2) * x(25)-2 . * x(41) * x(64))+55.21862 *(x(2) * * 2+x(41) * * 2\) \(-+x(30) * * 2+x(69) * * 2-2 . * x(2) * x(30)-2 . * x(41) * x(69))+46.77412 *(x(3) * * 2\) \(-+x(42) * * 2+x(4) * * 2+x(43) * * 2-2 . * x(3) * x(4)-2 . * x(42) * x(43))+74.67715\) \(-*(x(3) * * 2+x(42) * * 2+x(18) * * 2+x(57) * * 2-2 . * x(3) * x(18)-2 . * x(42) * x(57))\) \(-+77.82101 *(x(4) * * 2+x(43) * * 2+x(5) * * 2+x(44) * * 2-2 . * x(4) * x(5)-2 . * x(43)\) \(-* x(44))+77.22239 *(x(4) * * 2+x(43) * * 2+x(14) * * 2+x(53) * * 2-2 . * x(4) * x(14)\) \(-2 . * x(43) * x(53))+382.353 *(x(5) * * 2+x(44) * * 2+x(6) * * 2+x(45) * * 2-2\). \(-* x(5) * x(6)-2 . * x(44) * x(45))+88.83249 *(x(5) * * 2 \dot{r} x(44) * * 2+x(8) * * 2+x(47\) \(-) * * 2-2 . * x(5) * x(8)-2 . * x(44) * x(47))+108.2353 *(x(6) * * 2+x(45) * * 2+x(7)\) \(-* * 2+x(46) * * 2-2 . * x(6) * x(7)-2 . * x(45) * x(46))+121.069 *(x(6) * * 2+x(45) * *\) \(-2+x(19) * * 2+x(50) * * 2-2 . * x(6) * x(11)-2 . * x(45) * x(50))+40 . *(x(6) * * 2+x(4\) \(-5) * * 2+x(31) * * 2+x(70) * * 2-2 . * x(6) * x(31)-2 . * x(45) * x(70))+215.7599\) \(-*(x(7) * * 2+x(46) * * 2+x(8) * * 2+x(47) * * 2-2 . * x(7) * x(8)-2 . * x(46) * x(47))\)
\(-+27.43806 *(x(8) * * 2+x(47) * * 2+x(9) * * 2+x(48) * * 2-2 . * x(8) * x(9)-2 . * x(47)\)
\(-* x(48))+39.9361 *(x(9) * * 2+x(48) * * 2+x(39) * * 2+x(78) * * 2-2 . * x(9) * x(39)\)
\(-2 . * x(48) * x(78))-x(79)\)
\(g(80)=230.563 *(x(10) * * 2+x(49) * * 2+x(11) * * 2+x(50) * * 2-2 . * x(10) * x(11)\) \(-2 . * x(49) * x(50))+230.563 *(x(10) * * 2+x(49) * * 2+x(13) * * 2+x(52) * * 2-2 . *\) \(-x(10) * x(13)-2 . * x(49) * x(52))+50 . *(x(10) * * 2+x(49) * * 2+x(32) * * 2+x(71) *\) \(-* 2-2 . * x(10) * x(32)-2 . * x(49) * x(71))+22.95745 *(x(11) * * 2+x(50) * * 2+x(12\)
```


g	23	2.475
g	24	3.086
g	25	2.24
g	26	1.39
g	27	2.81
g	28	2.06
g	29	2.835
1	30	2.5
1	31	5.7008
1	32	6.51
1	33	6.3205
1	34.	5.08
1	35	6.5
1	36	5.6
1	37	5.4006
1	38	8.3
- 9	39	1.04
e	40	0.0
e	41	0.0
g	42	0.024
g	43	1.84
e	44	0.0
e	45	0.0
g	46	0.84
g	47	1.766
e	48	0.0
e	49	0.0
e	50	0.0
g	51	0.88
e	52	0.0
e	53	0.0
g	54	1.53
g	55	0.323
e	56	0.0
g	57	0.3
e	58	0.0
g	59	1.03
g	60	1.15
e	61	0.0
g	62	0.846
g	63	-0.922
g	64	0.472
g	65	0.17
g	66	0.755
g	67	0.276
g	68	0.269
1	69	1.451
1	70	2.1.
1	71	2.057
1	72	1.091
1	73	1.67
1	74	2.113
1	75	1.005
1	76	0.007
,	77	0.228
g	78.	1.62
e	79°	0.0
e	80	0.0

end bounds		
. 1	$39 \quad 0.0$	1.09
r 40	$69-0.25$	0.0
r 70	$77 \quad 0.0$	0.25
r 78	-0.25	0.0
g 79	0.0	
$g 80$	0.0	
end		
initial separate		
- 1	1.0372955	
2	1.0574767	
3	1.0343415	
4	1.0069168	
5	1.0109224	
6	1.0152323	
7	$0.99768 \% 1$	
8	0.99448366	
9	1.0140103	
10	1.030481	
11	1.0243039	
12	1.0063022	
13	1.0262932	
14	1.0199604	
15	1.0223909	
16	1.0412665	
17	1.0414622	
18	1.036458	
19	1.0596739	
20	1.0599007	
21	1.0462078	
22	1.0675683	
23	1.0626191	
24	1.047215	
25	1.0695653	
26	1.0665716	
27	1.0469693	
28	1.0735929	
29	1.0754144	
30	1.0842141	
31	1.0645418	
32	1.0657641	
33.	1.0685404	
34	1.09	
35	1.0883983	
36	1.0721631	
37	1.0693344	
38	1.0716231	
39	1.0075499	
40	-0.15058421	
41	-0.10810876	
42	-0.15663458	
43	-0.16594766	
44	-0.14550843	
45	-0.13380395	
46	-0.16952209	
47	-0.17774838	

48	-0.17791118
49	-0.094162621
50	-0.10767591
51	-0.10612918
52	-0.10631416
53	-0.13492473
54	-0.14303749
55	-0.12074215
56	-0.13882546
57	-0.15296544
58	-0.038349017
59	-0.061175254
60	-0.078543037
61	0.0
62	-0.0034997948
63	-0.11932808
64	-0.0859941
65	-0.10973339
66	-0.14294843
67	-0.048815033
68	0.0
69	-0.068051678
70	0.00005910088
71	0.028767894
72	0.045607408
73	0.021941672
74	0.086859624
75	0.13933975
76	0.031153123
77	$0.1 i 516878$
78	-0.17339433
79	1.9175105
80	2.2085374
end	
print	4
ipr	4
end	
met	
min	
end	
go	
stop	
/l	
fteof	

APPENDIX THREE

The results under the loss of generation contengency

- bus 31 lost 195 kN of its capacity.
 the final report of epri 39 buses system under loss of generation on bus 31 , amount 195 MH
the real demand will be cut 2.21748 at the bus 7
the real demand will be cut .08500 at the bus 12
the total real demand is cut by amount of 2.30248

the line flow report

the line flow report

from bus	2	to bus	1	real power	1.030287	reactive power	-.412431
from bus 2	to bus	3	real power	3.675242	reactive power	1.123990	
from bus 2	to bus 25	real.power	-2.205508	reactive power	.612267		
from bus 2	to bus	30	real power	-2.500011	reactive power	-1.324285	
**							

the line flow report

| from bus | 3 | to bus | 2 | real power | -3.658019 | reactive power | -1.211748 |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| from bus | 3 | to bus | 4 | real power | .580099 | reactive power | 1.445126 |
| from bus | 3 | to bus 18 | real power | -.142014 | reactive power | -.257054 | |

the line flow report

| from bus | 4 | to bus | 3 | real power | -.576791 | reactive power | -1.626276 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus | 4 | to bus | 5 | real power | -2.251665 | reactive power | .100447 |
| from bus | 4 | to bus 14 | real power | -2.171607 | reactive power | -.314119 | |

*

the line flow report

from bus	5	to bus	4	real power	2.255627	reactive power	-.175220
from bus	5	to bus	6	real power	-4.713789	reactive power	-.320382
from bus	5	to bus	8	real power	2.458094	reactive power	.495814

the line flow report

| Erom bus | 6 | to bus | 5 | real power | 4.718124 | reacive power | .331976 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus | 6 | to bus | 7 | real power | 2.912684 | reactive power | .750422 |
| Erom bus | 6 | to bus 11 | real power | -1.929802 | reactive power | .193316 | |
| from bus | 6 | to bus | 31 | real power | -5.700471 | reactive power | -1.274131 |

the line flow report

from bus	7	to bus	6	real power	-2.907378	reactive power	-.784810
from bus 7	7 to bus	8	real power	2.786535	reactive power	-.055648	

the line flow report
from bus 8 to bus 5 real power -2.453145 reactive power -.577309
from bus 8 to bus 7 real power -2.783475 reactive power .011699
frombus 8 to bus 9° real power . 016803 reactive power -1.200449

the line flow report

from bus	9	to bus	8	real power	-.014498	reactive power	.837103
from bus	9	to bus	39	real power	.014396	reactive power	-.837407

the line flow report

| from bus 10 . to bus 11 | real power | 1.965224 | reactive power | .072423 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| from bus 10 to bus 13 | real power | 2.584904 | reactive power | -.191625 |
| from bus 10 to bus 32 | real power | -4.549999 | reactive power | .120550 |

the line flow report

from bus	11	to	6	real power	1.932372	reactive power	-. 306623
from bus	11	to bus	10	real power	- 1.963727	reactive power	-. 131630
from bus	11	to bus	12	real power	. 031002	reactive power	. 436612

the line flow report

the line flow report

| from bus 13 | to bus 10 | real power | -2.582311 | reactive power | .144132 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 13 | to bus 12 | real power | -.030383 | reactive power | .460302 |
| from bus 13 | to bus 14° | real power | 2.612631 | reactive power | -.605563 | ***

the line flow report

from bus	14	to bus	4	real power	2.175317	reactive power	. 231250
from bus	14	to bus	13	real power	-2.606455	reactive power	. 496235
from bus	14	to bus	15	real power	. 431292	reactive power	-. 726677

the line flow report							
from bus	15	to bus	14	real power	-. 430473	reactive power	. 351899
from bus	15	to bus	16	real power	-2.769728	reactive power	-1.882381

the line flow report

| from bus 16 | to bus 15 | real power | 2.778949 | reactive power | 1.793717 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 16 | to bus 17 | real power | 1.914813 | reactive power | -.532786 |
| from bus 16 | to bus 19 | real power | -4.522977 | reactive power | -.535990 |
| from bus 16 | to bus 21 | real power | -3.161054 | reactive power | .016841 |
| from bus 16 | to bus 24 | real power | -.303602 | reactive power | -1.064213 |

**
the line flow report

| from bus 17 | to bus 16 | real power | -1.912349 | reactive power | .415910 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 17 | to bus | 18 | real power | 1.723977 | reactive power | .199375 |
| from bus 17 | to bus 27 | real power | .188264 | reactive power | -.616127 | |

the line flow report

the line flow report
from bus 30 to bus 2 real power 2.500011 reactive power 1.451203

the line flow report
from bus 31 to bus 6 real power 5.700471 reactive power 2.099735
 the line flow report
from bus 32 to bus 10 real power 4.549999 reactive power 280088
 the line flow report from bus 33 to bus 19 real power 6.320484 reactive power 1.090545
 the line flow report from bus 34 to bus 20 real power 5.079997 reactive power 1.458006
 the line flow report from bus 35 to bus 22 real power 6.500024 reactive power 2.112389
 the line flow report from bus 36 . to bus 23 real power 5.600009 reactive power 1.004697
 the line flow report
from bus 37 to bus 25 real power 5.400611 reactive power .007349 *** the line flow report from bus 38 to bus 29 real power 8.300ü29 reactive power . 227892

the line flow report
from bus 39 to bus 1 real power -1.025552 reactive power -1.146758
from bus 39 to bus 9 real power -.014364 reactive power -.472941
the associated system real power losses 2.00241

the bus no.	1	magnitude	1.066277	angle	-7.50195
the bus no.	2	magnitude	1.068388	angle	-5.36932
the bus no.	3	magnitude	1.047169	angle	-8.12789
the bus no.	4	magnitude	1.014633	angle	-8.68439
the bus no.	5	magnitude	1.014671	angle	-7.07264
the bus no.	6	magnitude.	1.016435	angle	-6.39507
the bus no.	7	magnitude	1.007727	angle	-7.86702
the bus no.	8	magnitude	1.006775	angle	-8.59128
the bus no.	9	magnitude	1.043073	angle	-8.75101
the bus no.	10	magnitude	1.016952	angle	-5.04027
the bus no.	11	magnitude	1.015747	angle	-5.50656
the bus no.	12	magnitude	. 997001	angle	-5.54333
the bus no.	13	magnitude	1.016646	angle	-5.65967
the bus no.	14	magnitude	1.019807	angle	-7.14379
the bus no.	15	magnitude	1.030508	ancle	-7.70669
the bus no.	16	magnitude	1.049537	angle	-6.41276
the bus no.	17	magnitude	1.052281	angle	-7.31358
the bus n	18	magnitude	1.049095	angle	-8.03740
the bus no.	19	magnitude	1:066551	angle	-1.92393
the bus no.	20	magnitude	1.065235	angle	-3.13595
the bus no.	21	magnitude	1.050716	angle	-4.18847
the bus no.	22	magnitude	1.069180	angle	. 00000
the bus no.	23	magnitude	1.064191	angle	-. 25779
the bus no.	24	magnitude	1.055397	angle	-6.33604
the bus no.	25	magnitude	1.077470	angle	-4.18284
the bus no.	26	magnitude	1.075535	angle	-5.63363
the bus no.	27	magnitude	1.059257	angle	-7.51027

| the bus no. 28 | magnitude | 1.178189 | angle | -23.90643 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| the bus no. 29 | magnitude | 1.078770 | angle | .00000 |
| the bus no. 30 | magnitude | 1.091645 | angle | -3.14580 |
| the bus no. 31 | magnitude | 1.057112 | angle | 1.22667 |
| the bus no. .32 | magnitude | 1.018520 | angle | .00000 |
| the bus no. 33 | magnitude | 1.081779 | angle | 2.49954 |
| the bus no. .34 | magnitude | 1.090287 | angle | 1.31478 |
| the bus no. 35 | magnitude | 1.093421 | angle | 4.56030 |
| the bus no. 36 | magnitude | 1.082739 | angle | 7.31346 |
| the bus no. 37 | magnitude | 1.074315 | angle | 2.03090 |
| the bus no. 38 | magnitude | 1.081552 | angle | 6.36256 |
| the bus no. 39 | magnitude | 1.047484 | angle | -8.77957 |

APPENDIX FOUR A

The results under the loss of a line contengency demand cut restricts to real load.
** the final report of epri 39 buses system under loss of line 4-14
the real demand will be cut .00008 at the bus 4
the real demand will be cut . 19252 at the bus 7
the total real demand is cut by amount of . 19260

the line flow report

| from bus 1 | to bus 2 | real power | -1.145573 | reactive power | -.346356 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 1 | to bus 39 | real power | 1.145505 | reactive power | .346117 |
| $* ~$ | | | | | |

the line flow report

from bus	3	to bus	2	real power	-3.830449	reactive power	-1.136346
from bus	3	to bus	4	real power	1.597879	reactive power	1.561219
frombus	3	to bus 18	real power	-.987633	reactive power	-.449581	

the line flow report

from bus	4	to bus	3	real power	-1.591374	reactive power	-1.684356
from bus	4	to bus	5	real power	-3.408525	reactive power	-. 155460
**							
the line flow report							
from bus	5	to bus	4	real power	3.417818	reactive power	. 169189
from bus	5	to bus	6	real power	-6.382701	reactive power	-. 689876
from bus	5	to bus	8	real power	2.965308	reactive power	. 521109

the line flow report

| from bus | 6 | to bus | 5 | real power | 6.390856 | reactive power | .751894 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus | 6 | to bus | 7 | real power | 4.319199 | reactive power | .904726 |
| from bus | 6 | to bus | 11 | real power | -5.009881 | reactive power | -.880859 |
| frombus | 6 | to bus | 31 | real power | -5.700517 | reactive power | -.776038 |

the line flow report

| from bus $\quad 7$ | to bus | 6 | real power | -4.307644 | reactive power | -.841250 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 7 | 7 to bus | 8 | real power | 2.162364 | reactive power | .001415 |

 the line flow report

from bus	8	to bus	5	real power	-2.958065	reactive power	-.567611
from bus	8	to bus	7	real power	-2.160484	reactive power	-.057372
from bus	8	to bus	9	real power	-.101687	reactive power	-1.141066

the line flow report

| from bus 9 | to bus 8 | real power | .103810 | reactive power | .783145 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 9 | to bus 39 | real power | -.103812 | reactive power | -.783274 |

the line flow report

| from bus 10 | to bus 11 | real power | 4.921218 | reactive power | 1.344311 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 10 | to bus 13 | real power | 1.579262 | reactive power | -.119429 |
| from bus 10 | to bus 32 | real power | -6.500791 | reactive power | -1.227010 |

the line flow report

| from bus 11 to bus | 6 | real power | 5.027611 | reactive power | .945799 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 11 to bus 10 | real power | -4.911303 | reactive power | -1.314010 | |
| from bus 11° | to bus 12 | real power | -.116223 | reactive power | .368531 |

the line flow report

| from bus 12 to bus 11 real power | .116453 | reactive power | -.362280 | |
| :--- | :--- | :--- | :--- | ---: | :--- | ---: | :--- |
| from bus 12 to bus 13 | real power | -.201446 | reactive power | -.517663 |

** the line flow report
from bus 13 to bus 10 real power -1.578312 reactive power . . 052808
from bus 13 to bus 12 real power . 201936 reactive power .53098T
from bus 13 to bus 14 . real power 1.376486 reactive power -. 582944

the inne flow report

| Erom bus 14 to bus 13 | real power | -1.374661 | reactive power | .421217 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 14 | to bus 15 | real power | 1.374857 | reactive power | -.420368 |

the line flow.report
from bus 15 to bus 14 real power -1.371564 reactive power .070569

the line flow report

from bus	16	to bus	15	real power	1.833428	reactive power	1.465746
from bus	16	to bus	17	real power	2.868456	-reactive power	-. 150318
from bus	16	to bus	19	real power	-4.522822	reactive power	-. 556908
from bus	16	to bus	21	real power	-3.134884	reactive power	-. 009107
from bus	16	to bus	24	real power	-. 338136	reactive power	-1.071828
the line flow report							
from bus	17	to bus	16	real power	-2.863214	reactive power	. 069587
from bus	17	to bus	18	real power	2.573266	reactive power	. 440260
from bus	17	to bus	27	real power	. 290114	reactive power	-. 509156

the line flow report

from bus	18 to bus	3	real power	. 988747	reactive power	. 232151
from bus	18 to bus	17	real power	-2.568875	reactive power	-. 532775
**						
the line flow report						
from bus	19 to bus	16	real power	4.552819	reactive power	. 582724
from bus	19 to bus	20	real power	1.743080	reactive power	. 008701
from bus	19 to bus	33	real power	-6.295845	reactive power	-. 590819

the line flow report

| from bus 20 | to bus 19 real power -1.741207 reactive power |
| :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 20 to bus 34 real power -5.058792 reactive power -1.058204 | |

the line flow report

from bus	21 to bus	16	real power	3.142049	reactive power	-. 150469
from bus	21 to bus	22	real power	-5.882009	reactive power	-. 999286

the line	flow report		-			
from bus	22 to bus	21	real power	5.907652	reactive power	1.160193
from bus	22 to bus	23	real power	. 336706	reactive power	. 432386
from bus	22 to bus	35	real power	-6.244387	reactive power	-1.593303

the line flow report

| from bus | 23 | to bus | 22 | real power | -.336493 | reactive power | -.638824 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 23 | to bus 24 | real power | 3.447667 | reactive power | .046207 | | |
| from bus 23 | to bus 36 | real power | -5.586172 | reactive power | -.253354 | | |

the IIne flow report

| from bus 24 | to bus 16 | real power | .338459 | reactive power | 1.003006 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 24 | to bus 23 | real power | -3.024432 | reactive power | -.081426 |

the line flow report

the line flow report

| Erom bus 27 | to bus 17 | real power | -.289883 | reactive power | .157642 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 27 | to bus 26 | real power | -2.519965 | reactive power | -.912027 |

the line flow report
from bus 28 to bus 26 real power 1.419617 reactive power -.500953
from bus 28 to bus 29 real power -3.479588 reactive power .225174

the line flow report

| from bus 29 | to bus 26 | real power | 1.922391 | reactive power | -.629134 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 29 | to bus 28 | real power | 3.494592 | reactive power | -.347904 |
| from bus 29 | to bus 38 | real power | -8.251959 | reactive power | .708146 |

 the line flow report
from bus 30 to bus 2 real power 2.499965 reactive power 1.150882 ***
the line flow report
from buc 31 to bus 6 real power 5.700517 reactive power 1.589313
 the line flow report Erom bus 32 to bus 10 real power 6.500791 reactive power 2.057337
 the line flow report
from bus 33 to bus 19 real power 6.320483 reactive power 1.090624
 the line flow report from bus 34 to bus 20 real power 5.079994 reactive power 1.482237
 the line flow report from bus 35 to bus 22 real power 6.244387 reactive power 2.113314
 the line flow report from bus 36 to bus 23 real power 5.599991 reactive power 1.005115
 the line flow report from bus 37 to bus 25 real power 5.400614 reactive power . 007250
 the line flow report
from bus 38 to bus 29 real power 8.299953 reactive power .227762 *** the line flow report
frombus 39 to bus 1 real power -1.143800 reactive power -1.122127
from bus 39 to bus 9 real power $\quad .103842$ reactive power -.497689 the associated system real power'losses . 42640
the bus voitage report

th	1	magnitude	1.054129	angle	-8.95493
the bus no.	2	magnitude	1.057251	angle	-6.52612
the bus no.	3	magnitude	1.036496	angle	-9.48373
the bus n	4	magnitude	1.000437	angle	-11.24389
the bus no	5	magnitude	1.005236	angle	-8.76148
the bus no	6	magnitude	1.008367	angle	--7.83097
the bus no.	7	magnitude	. 997774	angle	-10.06154
the bus no.	8	magnitude	. 996771	angle	-10.63366
the bus no.	9	magnit	1.031680	angle	-10.55000
the bus n	10	magnitude	1.026736	angle	-4.44340
he bus n	11	magnitude	1.019226	angle	-5.57179
n	12	magnitud	1.003695	angle	-5.25561
the bus n	13	magnitude	1.026482	angle	-4.81434
the bus no.	14	magnitude	1.030212	angle	-5.59161
the bus	15	magnitude	1.032991	angle	-7.22001
5	16	magnitude	1.048438	angle	-6.38250
the	17	magnitud	1.047457	angle	-7.71734
the bus n	18	magnitude	1.041913	angle	-8.80635
e bus n	19	magnitud	1.065869	angle	-1.88798
the bus n	20	magnitude	1.064850	angle	-3.10206
the bus no.	21	magnitude	1.049924	angle	-4.17369
the bus no	22	magnitude	1.068680	angle	. 00000
e bus no.	23.	magnitude	1.063663	angle	-. 14666
the bus no	24	magnitude	1.054358	angle	-6.29518
he bus no.	25	magnitude	1.068287	angle	-5.18273
the bus no.	26	magnitude	1.067387	angle	-6. 16690

| the bus no. 27 | magnitude | 1.052605 | angle | -8.00064 |
| :--- | :--- | :--- | :--- | :--- | ---: |
| the bus no. 28 | magnitude | 1.068772 | angle | -2.77336 |
| the bus no. 29 | magnitude | 1.069292 | angle | -.11243 |
| the bus no. 30 | magnitude | 1.080721 | angle | -4.25648 |
| the bus no. 31 | magnitude | 1.037280. | angle | .00000 |
| the bus no. 32 | magnitude | 1.058241 | angle | 2.42914 |
| the bus no. 33 | magnitude | 1.081103 | angle | 2.54110 |
| the bus no. 34 | magnitude | 1.090302 | angle | 1.34914 |
| the bus no. 35 | magnitude | 1.093198 | angle | 4.38355 |
| the bus no. 36 | magnitude | 1.082222 | angle | 7.43196 |
| the bus no. 37 | magnitude | 1.064991 | angle | 1.13973 |
| the bus no. 38 | magnitude | 1.071976 | angle | 6.36429 |
| the bus no. 39 | magnitude | 1.035289 | angle | -10.41854 |

APPENDIX FOUR B

The results under the loss of a line contengency demind cut includes the reactive load.
 the final report of epri 39 bu ses system

the reactive demand will be cut	0.269000 at the bus 23
the reactive.demand will be cut	0.845000 at the bus 28
the reactive demand will be cut	0.0583357 at the bus 29
the total real demand is cut by	unt of 0.0000

the line flow report
 the line flow report

| from bus | 2 | to bus | 1 | real power | 1.179366 | reactive power | -.162777 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus | 2 | to bus | 3 | real power | 3.851047 | reactive power | 1.046141 |
| from bus | 2 | to bus | 25 | real power | -2.529979 | reactive power | .433156 |
| from bus | 2 | to bus | 30 | real power | -2.499984 | reactive power | -1.315850 |

**
the line flow report

from bus	3	to bus	2	real power	-3.831315	reactive	power	-1.086566
from bus	3	to bus	4	real power	1.698618	reactive	power	1.905130
from bus	3	to bus	18	real power	-1.087285	reactive	power	-. 842558

the line flow report

| from bus 4 | to bus 3 | real power | -1.689808 | reactive power | -1.978519 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

the line flow report

| from bus | 5 | to bus | 4 | real power | 3.319523 | reactive power | -.115005 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus | 5 | to bus | 6 | real power | -6.354269 | reactive power | -.769001 |
| from bus | 5 | to bus | 8 | real power | 3.034696 | reactive power | .883918 |

the line flow report

| from bus | 6 | to bus | 5 | real power | 6.362962 | reactive power | .840982 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| from bus | 6 | to bus | 7 | real power | 4.417631 | reactive power | 1.530347 |
| from bus | 6 | to bus 11 | real power | -5.080104 | reactive power | -1.173854 | |
| from bus | 6 | to bus | 31 | real power | -5.700529 | reactive power | -1.205459 |

*** the line flow report
from bus 7 to bus 6 real power -4.403684 reactive power -1.429844
from bus 7 to bus 8 real power 2.065812 reactive power -. 316255

the line flow report

| from bus | 8 | to bus | 5 | real power | -3.026102 | reactive power | -.900786 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus | 8 | to bus | 7 | real power | -2.063913 | reactive power | .266601 |
| from bus | 8 | to bus | 9 | real power | -.130115 | reactive power | -1.131794 |

 the line flow report

from bus	9	to bus	8	real power	.132457	reactive power	.806322
from bus	9	to bus 39	real power	-.132449	reactive power	-.806322	

the line flow report
from bus 10 to bus 11 real power 4.989776 reactive power 1.657676
from bus 10 . to bus 13 real power 1.510979 reactive power -. 479074
from bus 10 to bus 32 real power -6.500798 reactive power $\mathbf{- 1 . 1 7 8 5 4 9}$

the line flow report

| from bus 11 | to bus | 6 | real power | 5.100054 | reactive power | 1.273913 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| from bus 11 | to bus 10 | real power | -4.978599 | reactive power | -1.609310 | |
| from bus 11 | to bus 12 | real power | -.121387 | reactive power | .335380 | |

[^0]the line flow report

| from bus 12 | to bus 11 | real power | .121596 | reactive power | -.329706 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 12 | to bus 13 | real power | -.206599 | reactive power | -.550284 |

the line flow report

from bus	13	to bus	10	real	power	-1.509981	reactive power	. 417260
from bus	13	to bus	12	real	power	. 207182	reactive prwer	. 566151
from bus	13	to bus	14	real	power	1. 302878	reactive ranver	-. 983228

the line flow report

| from bus 14 to bus 13 | real power | -1.300619 | reactive power | .835507 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 14 | to bus 15 | real power | 1.300470 | reactive power | -.835843 |

the line flow report
from bus 15 to bus 14 real power -1.296712 reactive power 506072
from bus 15. to bus 16 real power -1.903053 reactive power $\mathbf{- 2 . 0 3 5 0 5 6}$

the line flow report

| from bus 16 | to bus 15 | real power 1.909489 | reactive power | 1.921415 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 16 | to bus 17 | real power | 3.005102 | reactive power | .282052 |
| from bus 16 | to bus 19 | real power | -4.521090 | reactive power | -.711440 |
| from bus 16 | to bus 21 | real power | -3.265735 | reactive power | -.386409 |
| from bus 16 | to bus 24 | real power | -.421687 | reactive power | -1.428848 |
| $* ~$ | | | | | |

the line flow report

| from bus | 17 | to bus | 16 | real power | -2.999154 | reactive power | -.350395 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 17 | to bus 18 | real power | 2.674338 | reactive power | .864834 | | |
| from bus 17 | to bus 27 | real power | .324578 | reactive power | -.515015 | | |

from bus	18 to bus	3	real power	1.089126	reactive power	. 642850
from bus	18 to bus	17°	real power	-2.669074	reactive power	-. 942803
the line flow report						
from bus	19 to bus	16	real power	4.551880	reactive power	.752510
from bus	19 to bus	20	real power	1.743587	reactive power	-. 168374
from bus	19° to bus	33	real power	-6.295525	reactive power	-. 584558

the line flow report						
from bus	20 to bus	19	real power	-1.741670	reactive power	. 206156
from bus	20 to bus	34	real power	-5.058270	reactive power	-1. 235342
**						
the line flow report						
from bus	21 to bus	16	real power	3.273698	reactive power	. 244428
from bus	21 to bus	22	real power	-6.013767	reactive power	-1.394751
**						
the line flow report						
from bus	22 to bus	21	real power	6.041428	reactive power	1.592237
from bus	22 to bus	23	real power	. 422026	reactive power	-. 031658
from bus	22 to bus	35	real power	-6.463422	reactive power	-1.559608
**						
the line flow report						
from bus	23 to bus	22	real power	-. 421929	reactive power	-. 177628
from bus	23 to bus	24.	real power	3.533233	reactive power	. 437173
from bus	23 to bus	36	real power	-5.586289	reactive power	-. 259469

the line flow report

| from bus 29 | to bus | 26 | real power | 1.920106 | reactive power | -.477628 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 29 | to bus | 28 | real power | 3.496469 | reactive power | -.238732 |
| from bus 29° | to bus 38 | real power | -8.251567 | reactive power | .716159 | |

 the line flow report from bus 30 to bus 2 real power 2.499984 reactive power 1.450939 *** the line flow report from bus 31 to bus 6 real power 5.700529 reactive power $2.100 i 72$
 .the Ine flow report from bus 32 to bus 10 real power 6.500798 reactive power 2.056935
 the line flow report
from bus 33 to bus 19 real power 6.320488 reactive power 1.090957
 the line flow report
from bus 34 to bus 20 real power 5.079985 reactive power 1.669654
 the line flow report
from bus 35 to bus 22 real power 6.463422 reactive power 2.112664 *** the line flow report
from bus 36 to bus 23 real power 5.599992 reactive power 1.004906
 the line flow report
from bus 37 to bus 25 real power 5.400596 reactive power .007109
 the line flow report from bus 38 to bus 29 real power 8.300005 reactive power . 228381

the line flow report

| from bus 39 | to bus 1 | real power | -1.172505 | reactive power | -1.235073 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| from bus 39 | to bus 9 | real power | .132513 | reactive power | -.384822 |

the associated system real power losses . 45280
the associated system reactive power losses
9.59000

the bus voltage report

| the bus no. 1 | magnitude | 1.022797 | angle | -9.40101 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| the bus no. | 2 | magnitude | 1.034125 | angle | -6.81437 |
| the bus no. | 3 | magnitude | 1.013480 | angle | -9.91075 |
| the bus no. | 4 | magnitude | .969438 | angle | -11.86798 |
| the bus no. | 5 | magnitude | .970500 | angle | -9.27700 |
| the bus no. | 6 | magnitude | .973961 | angle | -8.28459 |
| the bus no. | 7 | magnitude | .957070 | angle | -10.72474 |
| the bus no. | 8 | magnitude | .957607 | angle | -11.32584 |
| the bus no. | 9 | magnitude | .994215 | angle | -11.17412 |
| the bus no. 10 | magnitude | .996921 | angle | -4.64029 | |
| the bus no. | 11 | magnitude | .987832 | angle | -5.84929 |
| the bus no. | 12 | magnitude | .973278 | angle | -5.50263 |
| the bus no. 13 | magnitude | .998247 | angle | -5.02456 | |
| the bus no. 14 | magnitude | 1.006249 | angle | -5.82124 | |
| the bus no. 15 | magnitude | 1.018371 | angle | -7.46481 | |
| the bus no. 16 | magnitude | 1.038140 | angle | -6.59023 | |
| the bus no. 17 | magnitude | 1.033391 | angle | -8.00553 | |
| the bus no. 18 | magnitude | 1.024365 | angle | -9.15713 | |
| the bus no. 19 | magnitude | 1.058738 | angle | -2.03536 | |
| the bus no. 20 | magnitude | 1.060026 | angle | -3.26988 | |

the bus no. 21	magnitude	1.044752	angle	-4.27113	
the bus no. 22	magnitude	1.069140	angle	.00000	
the bus no. 23	magnitude	1.068247	angle	-.20103	
the bus no. 24	magnitude	1.046176	angle	-6.48101	
the bus no. 25	magnitude	1.047286	angle	-5.47386	
the bus no. 26	magnitude	1.053953	angle	-6.47500	
the bus no. 27	magnitude	1.038746	angle	-8.32907	
the bus no. 28	magnitude	1.062383	angle	-3.04805	
the bus no. 29	magnitude	1.064432	angle	-.36510	
the bus no. 30	magnitude	1.058061	angle	-4.44420	
the bus no. 31	magnitude	1.015500	angle	.00000	
the bus no.	32	magnitude	1.028864	angle	2.64205
the bus no. 33	magnitude	1.074034	angle	2.45300	
the bus no. 34	magr:itude	1.088609	angle	1.20018	
the bus no. 35	magnitude	1.093423	angle	4.53474	
the bus no. 36	magnitude	1.086800	angle	7.31292	
the bus no. 37	magnitude	1.043645	angle	1.10840	
the bus no. 38	magnitude	1.067074	angle	6.17136	
the bus no. 39	magnitude	.999715	angle	-10.99553	

APPENDIX FIVE

The results of the minimum of real power loss.
*太*****太 the final report of epri 39 buses system
the slack bus $1 s 31$ real power 11 mlt 5.70050
reactive power $11 \mathrm{mit} \quad 2.10000$
real part of the bus voltage is less than 1.090

the optimal value of the total real power losses under the stated condition is . 38784

the line flow report
from bus 1 to bus 2 real power -1.179095 reactive power -. 200546 from bus 1 to bus 39 real power 1.179121 reactive power .200688

the line flow report

the line flow report

| from bus 4 | to bus | 3 | real power | -.721570 | reactive power | -1.265182 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 4 | to bus | 5 | real power | -1.665360 | reactive power | -.0742 .39 |
| from bus 4 | to bus 14 | real power | -2.613298 | reactive power | -.501559 | |

 the line flow report
frombus 5 to bus 4 real power 1.667426 reactive power -. 036992

| from bus | 5 | to bus | 6 | real power | -4.844216 | reactive power | -.492715 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 5 | to bus | 8 | real power | 3.176741 | reactive power | .530187 | |

the line flow report

from bus	6	to bus	5	real power	4.848617	reactive power	. 503095
from bus	6	to bus	7	real power	4.265453	reactive power	. 853376
from bus	6	to bus	11	real power	-3.413409	reactive power	-. 477719
from bus	6	to bus	31	real power	-5.700514	reactive power	-. 878196

the line flow report
from bus 7 to bus 6 real power $\mathbf{- 4 . 2 5 4 8 9 3 ~ r e a c t i v e ~ p o w e r ~ - . ~} 812478$
from bus 7 to bus 8 real power 1.917262 reactive power -.026879

the line flow report

from bus	8	bus	5	real	ower	-3.168968	reactive	power	-. 579005
from bus	8	to bus	7	real	powier	-1.915875	reactive	power	-. 039855
from bus	8	to bus	9	real	power	-. 135546	reactive	power	-1.148189

the line flow report

from bus	9	to bus	8	real power	. 137532	reactive power	. 763184
from bus	9	to bus	39	real power	-. 137541	reactive power	-. 763163

the line flow report							
from bus	10	to bus	11	real power	3.449878	reactive power	. 814545
from bus	10	to bus	13	real power	3.051039	reactive power	. 447893
from bus	10	to bus	32	real power	-6.500820	reactive power	-1.262302

the line flow report
from bus 11 to bus 6 real power 3.421 .057 reactive power .416278

| from bus 11 to bus 10 real power | -3.445299 | reactive power | -.845392 |
| :--- | :--- | :--- | :--- | ---: | :--- | ---: | :--- |
| from bus 11 to bus 12 real power | .024173 | reactive power | .428640 |

 the line flow report

| from bus 12 to bus 11 real power | -.023903 | reactive power | -.421310 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 12 to bus 13 | real power | -.061075 | reactive power | -.458515 |

*

the line flow report

| from bus 13 | to bus 10 | real power | -3.047579 | reactive power | -.490892 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 13 | to bus 12 | real power | .061399 | reactive power | .467323 |
| from bus 13 | to bus 14 | real power | 2.986032 | reactive power | .023302 |
| $* ~$ | | | | | |

the line flow report

| from bus 14 | to bus | 4 | real power | 2.618522 | reactive power | .436303 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| from bus 14° | to bus 13 | real power | -2.978704 | reactive power | -.129454 | |
| from bus 14 | to bus 15 | real power | .360321 | reactive power | -.306821 | |

the line flow report
from bus 15 to bus 14 real power -.360088 reactive power -. 089905
from bus 15 to bus. 16 real power -2.839737 reactive power -1.439346

the line flow report

| from bus | 16 | to bus | 15 | real power | 2.847866 | reactive power | 1.334623 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 16 | to bus | 17 | real power | 2.057845 | reactive power | -.637243 | |
| from bus 16 | to bus | 19 | real power | -4.524578 | reactive power | -.328324 | |
| from bus | 16 | to bus | 21 | real power | -3.270078 | reactive power | .247440 |
| from bus 16 | to bus 24 | real power | -.405969 | reactive power | -.942607 | | |

the line flow report

from bus	17	to bus	16	real power	-2.055013	reactive power	. 521840
from bus	17	to bus	18	real power	1.893819	reactive power	. 095221
Erom bus	17	to bus	27	real power	. 161699	reactive power	-. 615888
**							
the line flow report							
from bus	18	to bus	3	real power	. 311322	reactive power	-. 082683
from bus	18	to bus	17	real power	-1.891583	reactive power	-. 218000

the line flow report							
from bus	19	to bus	16	real power	4.553740	reactive power	. 337675
from bus	19	to bus	20	real power	1.742585	reactive power	. 261131
from bus	19	to bus	33	real power	-6.296228	reactive power	-. 598024
**							
the line flow report							
from bus	20	to bus	19	real power	-1.740699	reactive power	-. 223947
from bus	20	to bus	34	real power	-5.059330	reactive power	-. 806390

the line flow report

| from bus 21 | to bus 16 | real power | 3.277794 | reactive power | -.403325 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 21 | to bus 22 | real power | -6.017829 | reactive power | -.747266 |

the line flow report

| from bus 22 | to bus 21 | real power | 6.043933 | reactive power | .912329 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| from bus 22 | to bus 23 | real power | .456154 | reactive power | .274515 |
| from bus 22 | to bus 35 | real power | -6.500022 | reactive power | -1.185407 |

[^1]| from bus 23 | to bus 22 | real power | -.455972 | reactive power | -.483891 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 23 | to bus 24 | real power | 3.515572 | reactive power | -.086614 |
| from bus 23 | to bus 36 | real power | -5.534646 | reactive power | -.276233 |

 the line flow report

| from bus 24 | to bus 16 | real power | .406232 | reactive power | .870942 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 24 | to bus 23 | real power | -3.491821 | reactive power | .052650 | ** the line flow report

| from bus 25 | to bus | 2 | real power | 2.367126 | reactive power | -.695973 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| frombus 25 | to bus | 26 | real power | .778582 | reactive power | -.344265 |
| from bus 25 | to bus 37 | real power | -5.385702 | reactive power | .568506 | |

 the line flow report

| from bus 26 | to bus 25 | real power | -.776937 | reactive power | -.245528 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 26 | to bus 27 | real power | 2.658254 | reactive power | .829168 |
| from bus 26 | to bus 28 | real power | -1.389853 | reactive power | -.356819 |
| from bus 26 | to bus 29 | real power | -1.881263 | reactive power | -.396119 |

the line flow report
from bus 27 to bus 17 real power -.161453 reactive power .252757 from bus 27 to bus 26 real power -2.648761 reactive power -1.008362 "*** the line flow report

from bus	28	to bus	26	real power	1.396925	reactive power	-. 489032
from bus	28	to bus	29	real power	-3.456943	reactive power	. 212964

the line flow report

the line flow report
from bus 30 to bus 2 real power 2.499975 reactive power .929670

the line flow report
from bus 31 to bus 6 real power 5.700514 reactive power 1.647344 *** the line flow report
from bus 32 to bus 10 real power 6.500820 reactive power 2.057254 ** the line flow report
from bus 33 to bus 19 real power 6.320531 reactive power 1.091021

the IIne E1OW report
from bus 34 to bus 20 real power 5.079998 reactive power 1.219722

the line flow report:
from bus 35 to bus 22 real power 6.500022 reactive power 1.726401 *** the line flow report
from bus 36 to bus 23 real power 5.548043 reactive power 1.005013

the line flow report
the line flow report
from bus 38 to bus 29 real power 8.250407 reactive power . 227838
**
the line flow report

**
the associated system reactive power losses 8.49237

the bus voltage report

the bus no. 1	magnitude	1.080566	angle	-8.15479	
the bus no.	2	magnitude	1.077460	angle	-5.73350
the bus no.	3	magnitude	1.060710	angle	-8.43349
the bus no.	4	magnitude	1.036155	angle	-9.15705
the bus no.	5	magnitude	1.037672	angle	-8.02113
the bus no.	6	magnitude	1.039851	angle	-7.35731
the bus no.	7	magnitude	1.029972	angle	-9.42774
the bus no.	8	magnitude	1.029198	angle	-9.90412
the bus no.	9	magnitude	1.062895	angle	-9.76046
the bus no. 10	magnitude	1.050386	angle	-5.14108	
the bus no. 11	magnitude	1.045664	angle	-5.89711	
the bus no. 12	magnitude	1.027795	angle	-5.91661	
the bus no. 13	magnitude	1.047298	angle	-5.81424	
the bus no. 14	magnitude	1.043990	angle	-7.38930	
the bus no. 15	magnitude	1.045629	angle	-7.80984	
the bus no. 16	magnitude	1.060452	angle	-6.49301	

e bus no.	17	magnitude magnitude	1.063955 1.061498	angle angle	-7.44308 -8.22490
the bus no.	19	magnitude	1.073384	angle	-2.06018
bus n	20	magnitude	1.069121	angle	-3.25178
e bus no	21	magnitude	1.058776	angle	. 4.22368
n	22	magnitude	1.074220	angle	. 00000
the bus no.	23	magnitude	1.070567	angle	-. 20678
the bus no.	24	magnitude	1.065601	angle	-6.38532
the bus no.	25	magnitude	1.087637	angle	-4.52947
bus no.	26	magnitude	1.086807	angle	-5.75487
the bus no	27	magnitude	1.070817	angle	-7.61213
bus n	28	magnitude	1.089483	angle	-2.54372
the bus n	29	magnitude	1.090000	angle	. 00000
the bus n	30	magnitude	1.092072	angle	-3.52961
the bus	31	magnitude	1.069780	angle	. 00317
the bus no	32	magnitude	1.081527	angle	1.43076
the bus no	33	magnitude	1.088563	angle	2.30765
the bus no	34	magnitude	1.090237	angle	1.19352
the bus no	35	magnitude	1.093429	angle	4.53883
the bus no.	36	magnitude	1.089268	angle	7.20369
the bus no.	37	magnitude	1.084616	angle	1.56726
the bus no.	38	magnitude	1.092929	angle	6.19348
the bus no.	39	magnitude	1.065036	angle	-9.59074

APPENDIX SIX

The results of the minimum of reactive power loss.

 the final report of epri 39 buses system
the slack bus is
 31

 real power limit 5.70050 reactive power limit 2.10000real part of the bus voltage is less than 1.090

the optimal value of the total reactive power losses under the stated

Abstract

condition is 8.49205

the line flow report
from bus 1 to bus 2 real power -1.179095 reactive power -. 200546
from bus 1 to bus 39 real power 1.179117 reactive power 200689

the line flow report

from bus	2	to bus	1	real	power	1.183391	reactive	power	-. 562477
from bus	2	to bus	3	real	power	3.648416	reactive	power	. 815858
from bus	2	to bus	25	real	power	-2.331772	reactive	power	. 558304
from bus	2	to bus	30	real	power	-2.499969	reactive	power	-. 821699

the line flow report

| frombus | 3 | to bus | 2 | real power | -3.632467 | reactive power | -.924591 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| frombus | 3 | to bus | 4 | real power | .723791 | reactive power | 1.058176 |
| frombus | 3 | to bus 18 | real power | -.311249 | reactive power | -.156870 | |

the line flow report

from bus	5 to bus	4	real power	1.667426	reactive power	-. 036992
from bus	5 to bus	6	real power	-4.844216	reactive power	-. 492715
from bus	5 to bus	8	real power	3.176741	reactive power	. 530187

the line flow report						
from bus	6 to bus	5	real power	4.848617	reactive power	. 503095
from bus	6 to bus	7	real power	4.265453	reactive power	. 853376
from bus	6 to bus	11	real power	-3.413409	reactive power	-. 477719
from bus	6 to bus	31	real power	-5.700514	reactive power	-. 878196

the line flow report						
from bus	7 to bus	6	real power	-4.254893	reactive power	-. 812478
from bus	7 to bus	8	real power	1.917262°	reactive power	-. 026879

the line flow report						
Erom bus	8 to bus	5	real power	-3.168968	reactive power	-. 579005
from bus	8 to bus	7	real power	-1.915875	reactive power	-. 039855
from bus	8 to bus	9	real power	-. 135546	reactive power	-1.148189

the line flow report						
from bus	9 to bus	8	real power	. 137532	reactive power	. 763184
from bus	9 to bus	39	real power	-. 137545	reactive power	-. 763163
**						
the line flow report						
from bus	10 to bus	11	real power	3.449878	reactive power	. 814545
from bus	10 to bus	13	real power	3.051015	reactive power	. 447898
from bus	10 to bus	32	real power	-6.500778	reactive power	-1.261777

－DEL－

เعย8てE－	ramod anf70eax	Lssb2s．8－	xamod reex	66	snq 07	96	snq wozz
992LE9＊－	semod anfloeax	0S6LS0＊2	xemod teex	46	snq 07	91	snq wox
ه198EE•	ramod anf70eax	668L\＃8＊	xemod teax	St	snq 07	91	sn9 mox3
					7xodex	MOTJ	จutt ${ }^{\text {a }}$－

\＃x

91890E－	remod anfzoeax	Z6209E	ramod teas	S！	snq 07	D1	snq woxf
18862！－	İMOd Paf70eox	59L8L6＊	xamod teax	$\varepsilon!$	snq 07	$\nabla 1$	snq 以oxf
60ع9を\％	İmod anf7oeax	280819＇Z	remod teex	b	snq 07	B1	snq moxf
					7xodex	MOLJ	วuft zu7

189828＊	хәmod ənf70eəx	0LLbてO＊	remod teex	21	snq 07	11	5n9 woxj
26Es88＊－	лemod әnf7oeax	662580＊	ramod trex	01	snq 07	1.	snq wox
8L2910＊	xemod anf7oeax	LSOしで昂	remod teax	9	snq 07	16	snq proxz
					$7 x 0 d 7 x$	noty	อUTT 247

[^2]from bus 16 to bus 21
from bus 16 to bus 24
real power -3.270048
real power -. 405825
reactive power . 247432
reactive power -.942635
** the line flow report

| from bus 17 | to bus 16 | real power | -2.055118 | reactive power | .521861 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 17 | to bus 18 | real power | 1.893717 | reactive power | .095240 |
| from bus 17 | to bus 27 | real power | .161662 | reactive power | -.615882 | * the line flow report

from bus 18 to bus 3 real power .311345 reactive power -. 082691
from bus 18 to bus 17 real power -1.891482 reactive power -.218027

the line flow report

| from bus 19 | to bus 16 | real power | 4.553718 | reactive power | .337678 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 19 | to bus 20 | real power | 1.742593 | reactive power | .261130 |
| from bus 19 | to bus 33 | real power | -6.296221 | reactive power | -.598024 |

the inne flow report
from bus 20 to bus 19 real power -1.740706 reactive power -.223947
from bus 20 to bus 34 real power -5.059337 reactive power -. 806389
 the line flow report

| from bus 21 | to bus 16 real power | 3.277763 | reactive power | -.403321 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 21 | to bus 22 | real power | -6.017829 | reactive power | -.747266 |

the line flow report

| from bus 22 | to bus 21 | real power | 6.043933 | reactive power | .912329 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| from bus 22 | to bus 23 | real power | .456154 | reactive power | .274515 |
| from bus 22 | to bus 35 | real power | -6.500022 | reactive power | -1.185407 |

the line flow report

| Erom bus 23 | to bus 22 | real power | -.455972 | reactive power | -.483891 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Erom bus 23 | to bus 24 | real power | 3.515585 | reactive power | -.086615 |
| from bus 23 | to bus 36 | real power | -5.534054 | reactive power | -.276233 |

the line flow report
from bus 24 to bus 16 real power .406089 reactive power .870969
from bus 24 to bus 23 real power -3.491833 reactive power . 052654

the line flow report

| from bus | 25 | to bus | 2 | real power | 2.367126 | reactive power | -.695973 |
| :--- | :--- | :--- | :--- | :--- | ---: | :--- | ---: | :--- |
| from bus 25 | to bus 26 | real power | .778595 | reactive power | -.344268 | | |
| from bus 25 | to bus 37 | real power | -5.385707 | reactive power | .568506 | | |

the line flow report

the line flow report
from bus 27 to bus 17 real power -. 161416 reactive power . 252744
from bus 27 to bus 26 real power -2.648726 reactive power -1.008376

the line flow report

| from bus 28 | to bus 26 | real power | 1.396934 | reactive power | -.489033 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 28 | to bus 29 | real power | -3.456943 | reactive power | .212964 |

the line flow report

| from bus 29 | to bus 26 | real power | 1.898565 | reactive power | -.633219 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from bus 29 | to bus 28 | real power | 3.471193 | reactive power | -.354970 |
| from bus 29 | to bus 38 | real power | -8.204756 | reactive power | .661820 |

 the line flow report from bus 30 to bus 2 real power 2.499969 reactive power 929669
 the line flow report from bus 31 to bus 6 real power 5.700514 reactive power 1.647344
 the line flow report
from bus 32 to bus 10 real power 6.500778 reactive power 2.056700 *** the line flow report
from bus 33 to bus 19 real power 6.320523 reactive power 1.091021
 the line flow report from bus 34 to bus 20 real power 5.080004 reactive power 1.219722 ** the line flow report
from bus 35 to bus 22 real power 6.500022 reactive power 1.726401
 the line flow report
from bus 36 to bus 23 real power 5.548050 reactive power 1.005018
 the line flow report
from bus 37 to bus 25 real power 5.400583 reactive power .006685
 the line flow report
from bus 38 to bus 29 real power 8.250380 reactive power .227832

the line flow report

| from bus 39 | to bus | 1 | real power | -1.177577 | reactive power | -1.025408 |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| from bus 39 | to bus | 9 | real power | .137568 | reactive power | -.594682 |

the associated system real power losses . 38789

the bus voltage report

the bus no. 1	magnitude	1.080566	angle	-8.15479	
the bus no.	2	magnitude	1.077460	angle	-5.73350
the bus no.	3	magnitude	1.060710	angle	-8.43349
the bus no.	4	magnitude	1.036155	angle	-9.15705
the bus no.	5	magnitude	1.037672	angle	-8.02113
the bus no.	6	magnitude	1.039851	angle	-7.35731
the bus no.	7	magnitude	1.029972	angle	-9.42774
the bus no.	8	magnitude	1.029198	angle	-9.90412
the bus no.	9	magnitude	1.062895	angle	-9.76046
the bus no. 10	magnitude	1.050386	angle	-5.14108	
the bus no. 11	magnitude	1.045664	angle	-5.89711	
the bus no. 12	magnitude	1.027795	angle	-5.91660	
the bus no. 13	magnitude	1.047298	angle	-5.81423	
the bus no. 14	magnitude	1.043990	angle	-7.38933	
the bus no. 15	magnitude	1.045629	angle	-7.80983	
the bus no. 16	magnitude	1.060452	angle	-6.49299	
the bus no. 17	magnitude	1.063955	angle	-7.44311	

the bus n	18	magnitude	1.061498	angle	-8.22489
the bus no.	19	magnitude	1.073384	angle	-2.06018
the bus no.	20	magnitude	1.069121	angle	-3.25178
the bus no.	21	magnitude	1.058776	angle	-4. 22368
the bus no.	22	magnitude	1.074220	angle	. 00000
the bus no.	23	magnitude	1.070567	angle	-. 20678
the bus no.	24	magnitude	1.065601	angle	-6.38534
.the bus no.	25	magnitude	1.087637	angle	-4.52947
the bus no.	26	magnitude	1.086807	angle	-5.75489
the bus no.	27	magnitude	1.070817	angle	-7.61212
the bus no.	28	magnitude	1.089483	angle	-2.54372
the bus no.	29	magnitude	1.090000	angle	. 00000
the bus no.	30	magnitude	1.092072	angle	-3.52961
the bus no.	31	magnitude	1.069780	angle	. 00317
the bus no.	32	magnitude	1.081517	angle	1.43078
the bus no.	33	magnitude	1.088563	angie	2.30764
the bus no.	34	magnitude	1.090237	angle	1.19352
the bus no.	35	magnitude	1.093429	angle	4.53883
the bus no.	36	magnitude	1.089268	angle	7.20370
the bus no.	37	magnitude	1.084616	angle	1.56726
the bus no.	38	magnitude	1.092929	angle	6.19346
the bus no.	39	magnitude	1.065036	angle	-9.59073

[^0]:

[^1]:
 the line flow report

[^2]:

