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Chapter 1

Signals and Systems in Communications

1.1 Signals

1.1.1 Signal Classi�cations and Properties1

1.1.1.1 Introduction

This module will begin our study of signals and systems by laying out some of the fundamentals of signal clas-
si�cation. It is essentially an introduction to the important de�nitions and properties that are fundamental
to the discussion of signals and systems, with a brief discussion of each.

1.1.1.2 Classi�cations of Signals

1.1.1.2.1 Continuous-Time vs. Discrete-Time

As the names suggest, this classi�cation is determined by whether or not the time axis is discrete (countable)
or continuous (Figure 1.1). A continuous-time signal will contain a value for all real numbers along the
time axis. In contrast to this, a discrete-time signal (Section 1.1.6), often created by sampling a continuous
signal, will only have values at equally spaced intervals along the time axis.

Figure 1.1

1This content is available online at <http://cnx.org/content/m10057/2.23/>.
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2 CHAPTER 1. SIGNALS AND SYSTEMS IN COMMUNICATIONS

1.1.1.2.2 Analog vs. Digital

The di�erence between analog and digital is similar to the di�erence between continuous-time and discrete-
time. However, in this case the di�erence involves the values of the function. Analog corresponds to a
continuous set of possible function values, while digital corresponds to a discrete set of possible function
values. An common example of a digital signal is a binary sequence, where the values of the function can
only be one or zero.

Figure 1.2

1.1.1.2.3 Periodic vs. Aperiodic

Periodic signals2 repeat with some period T , while aperiodic, or nonperiodic, signals do not (Figure 1.3).
We can de�ne a periodic function through the following mathematical expression, where t can be any number
and T is a positive constant:

f (t) = f (t+ T ) (1.1)

fundamental period of our function, f (t), is the smallest value of T that the still allows (1.1) to be true.

(a)

(b)

Figure 1.3: (a) A periodic signal with period T0 (b) An aperiodic signal

2"Continuous Time Periodic Signals" <http://cnx.org/content/m10744/latest/>

Available for free at Connexions <http://cnx.org/content/col10631/1.3>



3

1.1.1.2.4 Finite vs. In�nite Length

Another way of classifying a signal is in terms of its length along its time axis. Is the signal de�ned for all
possible values of time, or for only certain values of time? Mathematically speaking, f (t) is a �nite-length
signal if it is de�ned only over a �nite interval

t1 < t < t2

where t1 < t2. Similarly, an in�nite-length signal, f (t), is de�ned for all values:

−∞ < t <∞

1.1.1.2.5 Causal vs. Anticausal vs. Noncausal

Causal signals are signals that are zero for all negative time, while anticausal are signals that are zero for
all positive time. Noncausal signals are signals that have nonzero values in both positive and negative time
(Figure 1.4).

Available for free at Connexions <http://cnx.org/content/col10631/1.3>



4 CHAPTER 1. SIGNALS AND SYSTEMS IN COMMUNICATIONS

(a)

(b)

(c)

Figure 1.4: (a) A causal signal (b) An anticausal signal (c) A noncausal signal

1.1.1.2.6 Even vs. Odd

An even signal is any signal f such that f (t) = f (−t). Even signals can be easily spotted as they
are symmetric around the vertical axis. An odd signal, on the other hand, is a signal f such that
f (t) = −f (−t) (Figure 1.5).

Available for free at Connexions <http://cnx.org/content/col10631/1.3>
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(a)

(b)

Figure 1.5: (a) An even signal (b) An odd signal

Using the de�nitions of even and odd signals, we can show that any signal can be written as a combination
of an even and odd signal. That is, every signal has an odd-even decomposition. To demonstrate this, we
have to look no further than a single equation.

f (t) =
1

2
(f (t) + f (−t)) +

1

2
(f (t)− f (−t)) (1.2)

By multiplying and adding this expression out, it can be shown to be true. Also, it can be shown that
f (t) + f (−t) ful�lls the requirement of an even function, while f (t) − f (−t) ful�lls the requirement of an
odd function (Figure 1.6).

Example 1.1

Available for free at Connexions <http://cnx.org/content/col10631/1.3>



6 CHAPTER 1. SIGNALS AND SYSTEMS IN COMMUNICATIONS

(a)

(b)

(c)

(d)

Figure 1.6: (a) The signal we will decompose using odd-even decomposition (b) Even part: e (t) =
1
2

(f (t) + f (−t)) (c) Odd part: o (t) = 1
2

(f (t) − f (−t)) (d) Check: e (t) + o (t) = f (t)
Available for free at Connexions <http://cnx.org/content/col10631/1.3>



7

1.1.1.2.7 Deterministic vs. Random

A deterministic signal is a signal in which each value of the signal is �xed, being determined by a
mathematical expression, rule, or table. On the other hand, the values of a random signal3 are not strictly
de�ned, but are subject to some amount of variability.

(a)

(b)

Figure 1.7: (a) Deterministic Signal (b) Random Signal

Example 1.2
Consider the signal de�ned for all real t described by

f (t) = {
sin (2πt) /t t ≥ 1

0 t < 1
(1.3)

This signal is continuous time, analog, aperiodic, in�nite length, causal, neither even nor odd, and,
by de�nition, deterministic.

1.1.1.3 Signal Classi�cations Summary

This module describes just some of the many ways in which signals can be classi�ed. They can be continuous
time or discrete time, analog or digital, periodic or aperiodic, �nite or in�nite, and deterministic or random.
We can also divide them based on their causality and symmetry properties.

1.1.2 Signal Operations4

1.1.2.1 Introduction

This module will look at two signal operations a�ecting the time parameter of the signal, time shifting and
time scaling. These operations are very common components to real-world systems and, as such, should be
understood thoroughly when learning about signals and systems.

3"Introduction to Random Signals and Processes" <http://cnx.org/content/m10649/latest/>
4This content is available online at <http://cnx.org/content/m10125/2.18/>.
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8 CHAPTER 1. SIGNALS AND SYSTEMS IN COMMUNICATIONS

1.1.2.2 Manipulating the Time Parameter

1.1.2.2.1 Time Shifting

Time shifting is, as the name suggests, the shifting of a signal in time. This is done by adding or subtracting
a quantity of the shift to the time variable in the function. Subtracting a �xed positive quantity from the
time variable will shift the signal to the right (delay) by the subtracted quantity, while adding a �xed positive
amount to the time variable will shift the signal to the left (advance) by the added quantity.

Figure 1.8: f (t− T ) moves (delays) f to the right by T .

1.1.2.2.2 Time Scaling

Time scaling compresses or dilates a signal by multiplying the time variable by some quantity. If that
quantity is greater than one, the signal becomes narrower and the operation is called compression, while if
the quantity is less than one, the signal becomes wider and is called dilation.

Figure 1.9: f (at) compresses f by a.

Example 1.3
Given f (t) we woul like to plot f (at− b). The �gure below describes a method to accomplish this.

Available for free at Connexions <http://cnx.org/content/col10631/1.3>
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(a) (b)

(c)

Figure 1.10: (a) Begin with f (t) (b) Then replace t with at to get f (at) (c) Finally, replace t with
t− b

a
to get f

(
a
(
t− b

a

))
= f (at− b)

1.1.2.2.3 Time Reversal

A natural question to consider when learning about time scaling is: What happens when the time variable
is multiplied by a negative number? The answer to this is time reversal. This operation is the reversal of
the time axis, or �ipping the signal over the y-axis.

Figure 1.11: Reverse the time axis

Available for free at Connexions <http://cnx.org/content/col10631/1.3>



10 CHAPTER 1. SIGNALS AND SYSTEMS IN COMMUNICATIONS

1.1.2.3 Time Scaling and Shifting Demonstration

Figure 1.12: Download5 or Interact (when online) with a Mathematica CDF demonstrating Discrete
Harmonic Sinusoids.

1.1.2.4 Signal Operations Summary

Some common operations on signals a�ect the time parameter of the signal. One of these is time shifting in
which a quantity is added to the time parameter in order to advance or delay the signal. Another is the time
scaling in which the time parameter is multiplied by a quantity in order to dilate or compress the signal in
time. In the event that the quantity involved in the latter operation is negative, time reversal occurs.

1.1.3 Common Continuous Time Signals6

1.1.3.1 Introduction

Before looking at this module, hopefully you have an idea of what a signal is and what basic classi�cations
and properties a signal can have. In review, a signal is a function de�ned with respect to an independent
variable. This variable is often time but could represent any number of things. Mathematically, continuous

5See the �le at <http://cnx.org/content/m10125/latest/TimeshifterDrill_display.cdf>
6This content is available online at <http://cnx.org/content/m10058/2.17/>.
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time analog signals have continuous independent and dependent variables. This module will describe some
useful continuous time analog signals.

1.1.3.2 Important Continuous Time Signals

1.1.3.2.1 Sinusoids

One of the most important elemental signal that you will deal with is the real-valued sinusoid. In its
continuous-time form, we write the general expression as

Acos (ωt+ φ) (1.4)

where A is the amplitude, ω is the frequency, and φ is the phase. Thus, the period of the sinusoid is

T =
2π

ω
(1.5)

Figure 1.13: Sinusoid with A = 2, w = 2, and φ = 0.

1.1.3.2.2 Complex Exponentials

As important as the general sinusoid, the complex exponential function will become a critical part of your
study of signals and systems. Its general continuous form is written as

Aest (1.6)

where s = σ+jω is a complex number in terms of σ, the attenuation constant, and ω the angular frequency.

1.1.3.2.3 Unit Impulses

The unit impulse function, also known as the Dirac delta function, is a signal that has in�nite height and
in�nitesimal width. However, because of the way it is de�ned, it integrates to one. While this signal is useful
for the understanding of many concepts, a formal understanding of its de�nition more involved. The unit
impulse is commonly denoted δ (t).

More detail is provided in the section on the continuous time impulse function. For now, it su�ces to
say that this signal is crucially important in the study of continuous signals, as it allows the sifting property
to be used in signal representation and signal decomposition.

Available for free at Connexions <http://cnx.org/content/col10631/1.3>



12 CHAPTER 1. SIGNALS AND SYSTEMS IN COMMUNICATIONS

1.1.3.2.4 Unit Step

Another very basic signal is the unit-step function that is de�ned as

u (t) =

 0 if t < 0

1 if t ≥ 0
(1.7)

t

1

Figure 1.14: Continuous-Time Unit-Step Function

The step function is a useful tool for testing and for de�ning other signals. For example, when di�erent
shifted versions of the step function are multiplied by other signals, one can select a certain portion of the
signal and zero out the rest.

1.1.3.3 Common Continuous Time Signals Summary

Some of the most important and most frequently encountered signals have been discussed in this module.
There are, of course, many other signals of signi�cant consequence not discussed here. As you will see later,
many of the other more complicated signals will be studied in terms of those listed here. Especially take
note of the complex exponentials and unit impulse functions, which will be the key focus of several topics
included in this course.

1.1.4 Continuous Time Impulse Function7

1.1.4.1 Introduction

In engineering, we often deal with the idea of an action occurring at a point. Whether it be a force at
a point in space or some other signal at a point in time, it becomes worth while to develop some way of
quantitatively de�ning this. This leads us to the idea of a unit impulse, probably the second most important
function, next to the complex exponential, in this systems and signals course.

1.1.4.2 Dirac Delta Function

The Dirac delta function, often referred to as the unit impulse or delta function, is the function that
de�nes the idea of a unit impulse in continuous-time. Informally, this function is one that is in�nitesimally

7This content is available online at <http://cnx.org/content/m10059/2.27/>.

Available for free at Connexions <http://cnx.org/content/col10631/1.3>
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narrow, in�nitely tall, yet integrates to one. Perhaps the simplest way to visualize this is as a rectangular
pulse from a − ε

2 to a + ε
2 with a height of 1

ε . As we take the limit of this setup as ε approaches 0, we see
that the width tends to zero and the height tends to in�nity as the total area remains constant at one. The
impulse function is often written as δ (t). ∫ ∞

−∞
δ (t) dt = 1 (1.8)

Figure 1.15: This is one way to visualize the Dirac Delta Function.

Figure 1.16: Since it is quite di�cult to draw something that is in�nitely tall, we represent the Dirac
with an arrow centered at the point it is applied. If we wish to scale it, we may write the value it is
scaled by next to the point of the arrow. This is a unit impulse (no scaling).

Below is a brief list a few important properties of the unit impulse without going into detail of their
proofs.

Unit Impulse Properties

Available for free at Connexions <http://cnx.org/content/col10631/1.3>



14 CHAPTER 1. SIGNALS AND SYSTEMS IN COMMUNICATIONS

• δ (αt) = 1
|α|δ (t)

• δ (t) = δ (−t)
• δ (t) = d

dtu (t), where u (t) is the unit step.
• f (t) δ (t) = f (0) δ (t)

The last of these is especially important as it gives rise to the sifting property of the dirac delta function, which
selects the value of a function at a speci�c time and is especially important in studying the relationship of an
operation called convolution to time domain analysis of linear time invariant systems. The sifting property
is shown and derived below.∫ ∞

−∞
f (t) δ (t) dt =

∫ ∞
−∞

f (0) δ (t) dt = f (0)

∫ ∞
−∞

δ (t) dt = f (0) (1.9)

1.1.4.3 Unit Impulse Limiting Demonstration

Figure 1.17: Click on the above thumbnail image (when online) to download an interactive Mathematica
Player demonstrating the Continuous Time Impulse Function.

1.1.4.4 Continuous Time Unit Impulse Summary

The continuous time unit impulse function, also known as the Dirac delta function, is of great importance
to the study of signals and systems. Informally, it is a function with in�nite height ant in�nitesimal width
that integrates to one, which can be viewed as the limiting behavior of a unit area rectangle as it narrows
while preserving area. It has several important properties that will appear again when studying systems.

Available for free at Connexions <http://cnx.org/content/col10631/1.3>
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1.1.5 Continuous Time Complex Exponential8

1.1.5.1 Introduction

Complex exponentials are some of the most important functions in our study of signals and systems. Their
importance stems from their status as eigenfunctions of linear time invariant systems. Before proceeding,
you should be familiar with complex numbers.

1.1.5.2 The Continuous Time Complex Exponential

1.1.5.2.1 Complex Exponentials

The complex exponential function will become a critical part of your study of signals and systems. Its general
continuous form is written as

Aest (1.10)

where s = σ+ iω is a complex number in terms of σ, the attenuation constant, and ω the angular frequency.

1.1.5.2.2 Euler's Formula

The mathematician Euler proved an important identity relating complex exponentials to trigonometric func-
tions. Speci�cally, he discovered the eponymously named identity, Euler's formula, which states that

ejx = cos (x) + jsin (x) (1.11)

which can be proven as follows.
In order to prove Euler's formula, we start by evaluating the Taylor series for ez about z = 0, which

converges for all complex z, at z = jx. The result is

ejx =
∑∞
k=0

(jx)k

k!

=
∑∞
k=0 (−1)

k x2k

(2k)! + j
∑∞
k=0 (−1)

k x2k+1

(2k+1)!

= cos (x) + jsin (x)

(1.12)

because the second expression contains the Taylor series for cos (x) and sin (x) about t = 0, which converge
for all real x. Thus, the desired result is proven.

Choosing x = ωt this gives the result

ejωt = cos (ωt) + jsin (ωt) (1.13)

which breaks a continuous time complex exponential into its real part and imaginary part. Using this
formula, we can also derive the following relationships.

cos (ωt) =
1

2
ejωt +

1

2
e−jωt (1.14)

sin (ωt) =
1

2j
ejωt − 1

2j
e−jωt (1.15)

8This content is available online at <http://cnx.org/content/m10060/2.25/>.
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16 CHAPTER 1. SIGNALS AND SYSTEMS IN COMMUNICATIONS

1.1.5.2.3 Continuous Time Phasors

It has been shown how the complex exponential with purely imaginary frequency can be broken up into
its real part and its imaginary part. Now consider a general complex frequency s = σ + ωj where σ is the
attenuation factor and ω is the frequency. Also consider a phase di�erence θ. It follows that

e(σ+jω)t+jθ = eσt (cos (ωt+ θ) + jsin (ωt+ θ)) . (1.16)

Thus, the real and imaginary parts of est appear below.

Re{e(σ+jω)t+jθ} = eσtcos (ωt+ θ) (1.17)

Im{e(σ+jω)t+jθ} = eσtsin (ωt+ θ) (1.18)

Using the real or imaginary parts of complex exponential to represent sinusoids with a phase delay multiplied
by real exponential is often useful and is called attenuated phasor notation.

We can see that both the real part and the imaginary part have a sinusoid times a real exponential. We
also know that sinusoids oscillate between one and negative one. From this it becomes apparent that the
real and imaginary parts of the complex exponential will each oscillate within an envelope de�ned by the
real exponential part.

(a) (b)

(c)

Figure 1.18: The shapes possible for the real part of a complex exponential. Notice that the oscillations
are the result of a cosine, as there is a local maximum at t = 0. (a) If σ is negative, we have the case of
a decaying exponential window. (b) If σ is positive, we have the case of a growing exponential window.
(c) If σ is zero, we have the case of a constant window.

Available for free at Connexions <http://cnx.org/content/col10631/1.3>
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1.1.5.3 Complex Exponential Demonstration

Figure 1.19: Interact (when online) with a Mathematica CDF demonstrating the Continuous Time
Complex Exponential. To Download, right-click and save target as .cdf.

1.1.5.4 Continuous Time Complex Exponential Summary

Continuous time complex exponentials are signals of great importance to the study of signals and systems.
They can be related to sinusoids through Euler's formula, which identi�es the real and imaginary parts of
purely imaginary complex exponentials. Eulers formula reveals that, in general, the real and imaginary parts
of complex exponentials are sinusoids multiplied by real exponentials. Thus, attenuated phasor notation is
often useful in studying these signals.

Available for free at Connexions <http://cnx.org/content/col10631/1.3>



18 CHAPTER 1. SIGNALS AND SYSTEMS IN COMMUNICATIONS

1.1.6 Discrete-Time Signals9

So far, we have treated what are known as analog signals and systems. Mathematically, analog signals are
functions having continuous quantities as their independent variables, such as space and time. Discrete-time
signals10 are functions de�ned on the integers; they are sequences. One of the fundamental results of signal
theory11 will detail conditions under which an analog signal can be converted into a discrete-time one and
retrieved without error. This result is important because discrete-time signals can be manipulated by
systems instantiated as computer programs. Subsequent modules describe how virtually all analog signal
processing can be performed with software.

As important as such results are, discrete-time signals are more general, encompassing signals derived
from analog ones and signals that aren't. For example, the characters forming a text �le form a sequence,
which is also a discrete-time signal. We must deal with such symbolic valued12 signals and systems as well.

As with analog signals, we seek ways of decomposing real-valued discrete-time signals into simpler com-
ponents. With this approach leading to a better understanding of signal structure, we can exploit that
structure to represent information (create ways of representing information with signals) and to extract in-
formation (retrieve the information thus represented). For symbolic-valued signals, the approach is di�erent:
We develop a common representation of all symbolic-valued signals so that we can embody the information
they contain in a uni�ed way. From an information representation perspective, the most important issue
becomes, for both real-valued and symbolic-valued signals, e�ciency; What is the most parsimonious and
compact way to represent information so that it can be extracted later.

1.1.6.1 Real- and Complex-valued Signals

A discrete-time signal is represented symbolically as s (n), where n = {. . . ,−1, 0, 1, . . . }. We usually draw
discrete-time signals as stem plots to emphasize the fact they are functions de�ned only on the integers.
We can delay a discrete-time signal by an integer just as with analog ones. A delayed unit sample has the
expression δ (n−m), and equals one when n = m.

Discrete-Time Cosine Signal

n

sn

1

…

…

Figure 1.20: The discrete-time cosine signal is plotted as a stem plot. Can you �nd the formula for
this signal?

9This content is available online at <http://cnx.org/content/m0009/2.24/>.
10"Discrete-Time Signals and Systems" <http://cnx.org/content/m10342/latest/>
11"The Sampling Theorem" <http://cnx.org/content/m0050/latest/>
12"Discrete-Time Signals and Systems" <http://cnx.org/content/m10342/latest/#para11>

Available for free at Connexions <http://cnx.org/content/col10631/1.3>
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1.1.6.2 Complex Exponentials

The most important signal is, of course, the complex exponential sequence.

s (n) = ei2πfn (1.19)

1.1.6.3 Sinusoids

Discrete-time sinusoids have the obvious form s (n) = Acos (2πfn+ φ). As opposed to analog complex
exponentials and sinusoids that can have their frequencies be any real value, frequencies of their discrete-
time counterparts yield unique waveforms only when f lies in the interval

(
− 1

2 ,
1
2

]
. This property can be

easily understood by noting that adding an integer to the frequency of the discrete-time complex exponential
has no e�ect on the signal's value.

ei2π(f+m)n = ei2πfnei2πmn

= ei2πfn
(1.20)

This derivation follows because the complex exponential evaluated at an integer multiple of 2π equals one.

1.1.6.4 Unit Sample

The second-most important discrete-time signal is the unit sample, which is de�ned to be

δ (n) =

 1 if n = 0

0 otherwise
(1.21)

Unit Sample

1

n

δn

Figure 1.21: The unit sample.

Examination of a discrete-time signal's plot, like that of the cosine signal shown in Figure 1.20 (Discrete-
Time Cosine Signal), reveals that all signals consist of a sequence of delayed and scaled unit samples. Because
the value of a sequence at each integer m is denoted by s (m) and the unit sample delayed to occur at m is
written δ (n−m), we can decompose any signal as a sum of unit samples delayed to the appropriate location
and scaled by the signal value.

s (n) =

∞∑
m=−∞

s (m) δ (n−m) (1.22)

This kind of decomposition is unique to discrete-time signals, and will prove useful subsequently.
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Discrete-time systems can act on discrete-time signals in ways similar to those found in analog signals
and systems. Because of the role of software in discrete-time systems, many more di�erent systems can
be envisioned and �constructed� with programs than can be with analog signals. In fact, a special class of
analog signals can be converted into discrete-time signals, processed with software, and converted back into
an analog signal, all without the incursion of error. For such signals, systems can be easily produced in
software, with equivalent analog realizations di�cult, if not impossible, to design.

1.1.6.5 Symbolic-valued Signals

Another interesting aspect of discrete-time signals is that their values do not need to be real numbers. We
do have real-valued discrete-time signals like the sinusoid, but we also have signals that denote the sequence
of characters typed on the keyboard. Such characters certainly aren't real numbers, and as a collection of
possible signal values, they have little mathematical structure other than that they are members of a set.
More formally, each element of the symbolic-valued signal s (n) takes on one of the values {a1, . . . , aK} which
comprise the alphabet A. This technical terminology does not mean we restrict symbols to being mem-
bers of the English or Greek alphabet. They could represent keyboard characters, bytes (8-bit quantities),
integers that convey daily temperature. Whether controlled by software or not, discrete-time systems are
ultimately constructed from digital circuits, which consist entirely of analog circuit elements. Furthermore,
the transmission and reception of discrete-time signals, like e-mail, is accomplished with analog signals and
systems. Understanding how discrete-time and analog signals and systems intertwine is perhaps the main
goal of this course.

[Media Object]13

1.2 Systems

1.2.1 System Classi�cations and Properties14

1.2.1.1 Introduction

In this module some of the basic classi�cations of systems will be brie�y introduced and the most important
properties of these systems are explained. As can be seen, the properties of a system provide an easy way
to distinguish one system from another. Understanding these basic di�erences between systems, and their
properties, will be a fundamental concept used in all signal and system courses. Once a set of systems can be
identi�ed as sharing particular properties, one no longer has to reprove a certain characteristic of a system
each time, but it can simply be known due to the the system classi�cation.

1.2.1.2 Classi�cation of Systems

1.2.1.2.1 Continuous vs. Discrete

One of the most important distinctions to understand is the di�erence between discrete time and continuous
time systems. A system in which the input signal and output signal both have continuous domains is said
to be a continuous system. One in which the input signal and output signal both have discrete domains is
said to be a discrete system. Of course, it is possible to conceive of signals that belong to neither category,
such as systems in which sampling of a continuous time signal or reconstruction from a discrete time signal
take place.

13This media object is a LabVIEW VI. Please view or download it at
<SignalApprox.llb>

14This content is available online at <http://cnx.org/content/m10084/2.24/>.
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1.2.1.2.2 Linear vs. Nonlinear

A linear system is any system that obeys the properties of scaling (�rst order homogeneity) and superposition
(additivity) further described below. A nonlinear system is any system that does not have at least one of
these properties.

To show that a system H obeys the scaling property is to show that

H (kf (t)) = kH (f (t)) (1.23)

Figure 1.22: A block diagram demonstrating the scaling property of linearity

To demonstrate that a system H obeys the superposition property of linearity is to show that

H (f1 (t) + f2 (t)) = H (f1 (t)) +H (f2 (t)) (1.24)

Figure 1.23: A block diagram demonstrating the superposition property of linearity

It is possible to check a system for linearity in a single (though larger) step. To do this, simply combine
the �rst two steps to get

H (k1f1 (t) + k2f2 (t)) = k1H (f1 (t)) + k2H (f2 (t)) (1.25)
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1.2.1.2.3 Time Invariant vs. Time Varying

A system is said to be time invariant if it commutes with the parameter shift operator de�ned by ST (f (t)) =
f (t− T ) for all T , which is to say

HST = STH (1.26)

for all real T . Intuitively, that means that for any input function that produces some output function, any
time shift of that input function will produce an output function identical in every way except that it is
shifted by the same amount. Any system that does not have this property is said to be time varying.

Figure 1.24: This block diagram shows what the condition for time invariance. The output is the
same whether the delay is put on the input or the output.

1.2.1.2.4 Causal vs. Noncausal

A causal system is one in which the output depends only on current or past inputs, but not future inputs.
Similarly, an anticausal system is one in which the output depends only on current or future inputs, but not
past inputs. Finally, a noncausal system is one in which the output depends on both past and future inputs.
All "realtime" systems must be causal, since they can not have future inputs available to them.

One may think the idea of future inputs does not seem to make much physical sense; however, we have
only been dealing with time as our dependent variable so far, which is not always the case. Imagine rather
that we wanted to do image processing. Then the dependent variable might represent pixel positions to the
left and right (the "future") of the current position on the image, and we would not necessarily have a causal
system.
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(a)

(b)

Figure 1.25: (a) For a typical system to be causal... (b) ...the output at time t0, y (t0), can only
depend on the portion of the input signal before t0.

1.2.1.2.5 Stable vs. Unstable

There are several de�nitions of stability, but the one that will be used most frequently in this course will
be bounded input, bounded output (BIBO) stability. In this context, a stable system is one in which the
output is bounded if the input is also bounded. Similarly, an unstable system is one in which at least one
bounded input produces an unbounded output.

Representing this mathematically, a stable system must have the following property, where x (t) is the
input and y (t) is the output. The output must satisfy the condition

|y (t) | ≤My <∞ (1.27)

whenever we have an input to the system that satis�es

|x (t) | ≤Mx <∞ (1.28)

Mx andMy both represent a set of �nite positive numbers and these relationships hold for all of t. Otherwise,
the system is unstable.

1.2.1.3 System Classi�cations Summary

This module describes just some of the many ways in which systems can be classi�ed. Systems can be
continuous time, discrete time, or neither. They can be linear or nonlinear, time invariant or time varying,
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and stable or unstable. We can also divide them based on their causality properties. There are other ways
to classify systems, such as use of memory, that are not discussed here but will be described in subsequent
modules.

1.2.2 Linear Time Invariant Systems15

1.2.2.1 Introduction

Linearity and time invariance are two system properties that greatly simplify the study of systems that exhibit
them. In our study of signals and systems, we will be especially interested in systems that demonstrate both
of these properties, which together allow the use of some of the most powerful tools of signal processing.

1.2.2.2 Linear Time Invariant Systems

1.2.2.2.1 Linear Systems

If a system is linear, this means that when an input to a given system is scaled by a value, the output of the
system is scaled by the same amount.

Linear Scaling

(a) (b)

Figure 1.26

In Figure 1.26(a) above, an input x to the linear system L gives the output y. If x is scaled by a value
α and passed through this same system, as in Figure 1.26(b), the output will also be scaled by α.

A linear system also obeys the principle of superposition. This means that if two inputs are added
together and passed through a linear system, the output will be the sum of the individual inputs' outputs.

(a) (b)

Figure 1.27

15This content is available online at <http://cnx.org/content/m2102/2.26/>.
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Superposition Principle

Figure 1.28: If Figure 1.27 is true, then the principle of superposition says that Figure 1.28 (Superpo-
sition Principle) is true as well. This holds for linear systems.

That is, if Figure 1.27 is true, then Figure 1.28 (Superposition Principle) is also true for a linear system.
The scaling property mentioned above still holds in conjunction with the superposition principle. Therefore,
if the inputs x and y are scaled by factors α and β, respectively, then the sum of these scaled inputs will
give the sum of the individual scaled outputs:

(a) (b)

Figure 1.29

Superposition Principle with Linear Scaling

Figure 1.30: Given Figure 1.29 for a linear system, Figure 1.30 (Superposition Principle with Linear
Scaling) holds as well.
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Example 1.4
Consider the system H1 in which

H1 (f (t)) = tf (t) (1.29)

for all signals f . Given any two signals f, g and scalars a, b

H1 (af (t) + bg (t)) = t (af (t) + bg (t)) = atf (t) + btg (t) = aH1 (f (t)) + bH1 (g (t)) (1.30)

for all real t. Thus, H1 is a linear system.

Example 1.5
Consider the system H2 in which

H2 (f (t)) = (f (t))
2

(1.31)

for all signals f . Because

H2 (2t) = 4t2 6= 2t2 = 2H2 (t) (1.32)

for nonzero t, H2 is not a linear system.

1.2.2.2.2 Time Invariant Systems

A time-invariant system has the property that a certain input will always give the same output (up to
timing), without regard to when the input was applied to the system.

Time-Invariant Systems

(a) (b)

Figure 1.31: Figure 1.31(a) shows an input at time t while Figure 1.31(b) shows the same input
t0 seconds later. In a time-invariant system both outputs would be identical except that the one in
Figure 1.31(b) would be delayed by t0.

In this �gure, x (t) and x (t− t0) are passed through the system TI. Because the system TI is time-
invariant, the inputs x (t) and x (t− t0) produce the same output. The only di�erence is that the output
due to x (t− t0) is shifted by a time t0.

Whether a system is time-invariant or time-varying can be seen in the di�erential equation (or di�erence
equation) describing it. Time-invariant systems are modeled with constant coe�cient equations.
A constant coe�cient di�erential (or di�erence) equation means that the parameters of the system are not
changing over time and an input now will give the same result as the same input later.
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Example 1.6
Consider the system H1 in which

H1 (f (t)) = tf (t) (1.33)

for all signals f . Because

ST (H1 (f (t))) = ST (tf (t)) = (t− T ) f (t− T ) 6= tf (t− T ) = H1 (f (t− T )) = H1 (ST (f (t))) (1.34)

for nonzero T , H1 is not a time invariant system.

Example 1.7
Consider the system H2 in which

H2 (f (t)) = (f (t))
2

(1.35)

for all signals f . For all real T and signals f ,

ST (H2 (f (t))) = ST

(
f(t)

2
)

= (f (t− T ))
2

= H2 (f (t− T )) = H2 (ST (f (t))) (1.36)

for all real t. Thus, H2 is a time invariant system.

1.2.2.2.3 Linear Time Invariant Systems

Certain systems are both linear and time-invariant, and are thus referred to as LTI systems.

Linear Time-Invariant Systems

(a) (b)

Figure 1.32: This is a combination of the two cases above. Since the input to Figure 1.32(b) is a scaled,
time-shifted version of the input in Figure 1.32(a), so is the output.

As LTI systems are a subset of linear systems, they obey the principle of superposition. In the �gure
below, we see the e�ect of applying time-invariance to the superposition de�nition in the linear systems
section above.
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(a) (b)

Figure 1.33

Superposition in Linear Time-Invariant Systems

Figure 1.34: The principle of superposition applied to LTI systems

1.2.2.2.3.1 LTI Systems in Series

If two or more LTI systems are in series with each other, their order can be interchanged without a�ecting
the overall output of the system. Systems in series are also called cascaded systems.
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Cascaded LTI Systems

(a)

(b)

Figure 1.35: The order of cascaded LTI systems can be interchanged without changing the overall
e�ect.

1.2.2.2.3.2 LTI Systems in Parallel

If two or more LTI systems are in parallel with one another, an equivalent system is one that is de�ned as
the sum of these individual systems.

Parallel LTI Systems

(a) (b)

Figure 1.36: Parallel systems can be condensed into the sum of systems.
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Example 1.8
Consider the system H3 in which

H3 (f (t)) = 2f (t) (1.37)

for all signals f . Given any two signals f, g and scalars a, b

H3 (af (t) + bg (t)) = 2 (af (t) + bg (t)) = a2f (t) + b2g (t) = aH3 (f (t)) + bH3 (g (t)) (1.38)

for all real t. Thus, H3 is a linear system. For all real T and signals f ,

ST (H3 (f (t))) = ST (2f (t)) = 2f (t− T ) = H3 (f (t− T )) = H3 (ST (f (t))) (1.39)

for all real t. Thus, H3 is a time invariant system. Therefore, H3 is a linear time invariant system.

Example 1.9
As has been previously shown, each of the following systems are not linear or not time invariant.

H1 (f (t)) = tf (t) (1.40)

H2 (f (t)) = (f (t))
2

(1.41)

Thus, they are not linear time invariant systems.

1.2.2.3 Linear Time Invariant Demonstration

Figure 1.37: Interact(when online) with the Mathematica CDF above demonstrating Linear Time
Invariant systems. To download, right click and save �le as .cdf.

1.2.2.4 LTI Systems Summary

Two very important and useful properties of systems have just been described in detail. The �rst of these,
linearity, allows us the knowledge that a sum of input signals produces an output signal that is the summed
original output signals and that a scaled input signal produces an output signal scaled from the original
output signal. The second of these, time invariance, ensures that time shifts commute with application of
the system. In other words, the output signal for a time shifted input is the same as the output signal for the
original input signal, except for an identical shift in time. Systems that demonstrate both linearity and time
invariance, which are given the acronym LTI systems, are particularly simple to study as these properties
allow us to leverage some of the most powerful tools in signal processing.
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1.3 Time Domain Analysis of Continuous Time Systems

1.3.1 Continuous Time Convolution16

1.3.1.1 Introduction

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output a system produces for a given input signal. It can be shown that a linear time invariant system
is completely characterized by its impulse response. The sifting property of the continuous time impulse
function tells us that the input signal to a system can be represented as an integral of scaled and shifted
impulses and, therefore, as the limit of a sum of scaled and shifted approximate unit impulses. Thus, by
linearity, it would seem reasonable to compute of the output signal as the limit of a sum of scaled and
shifted unit impulse responses and, therefore, as the integral of a scaled and shifted impulse response. That
is exactly what the operation of convolution accomplishes. Hence, convolution can be used to determine a
linear time invariant system's output from knowledge of the input and the impulse response.

1.3.1.2 Convolution and Circular Convolution

1.3.1.2.1 Convolution

1.3.1.2.1.1 Operation De�nition

Continuous time convolution is an operation on two continuous time signals de�ned by the integral

(f ∗ g) (t) =

∫ ∞
−∞

f (τ) g (t− τ) dτ (1.42)

for all signals f, g de�ned on R. It is important to note that the operation of convolution is commutative,
meaning that

f ∗ g = g ∗ f (1.43)

for all signals f, g de�ned on R. Thus, the convolution operation could have been just as easily stated using
the equivalent de�nition

(f ∗ g) (t) =

∫ ∞
−∞

f (t− τ) g (τ) dτ (1.44)

for all signals f, g de�ned on R. Convolution has several other important properties not listed here but
explained and derived in a later module.

1.3.1.2.1.2 De�nition Motivation

The above operation de�nition has been chosen to be particularly useful in the study of linear time invariant
systems. In order to see this, consider a linear time invariant system H with unit impulse response h. Given
a system input signal x we would like to compute the system output signal H (x). First, we note that the
input can be expressed as the convolution

x (t) =

∫ ∞
−∞

x (τ) δ (t− τ) dτ (1.45)

by the sifting property of the unit impulse function. Writing this integral as the limit of a summation,

x (t) = lim
∆→0

∑
n

x (n∆) δ∆ (t− n∆) ∆ (1.46)

16This content is available online at <http://cnx.org/content/m10085/2.35/>.
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where

δ∆ (t) = {
1/∆ 0 ≤ t < ∆

0 otherwise
(1.47)

approximates the properties of δ (t). By linearity

Hx (t) = lim
∆→0

∑
n

x (n∆)Hδ∆ (t− n∆) ∆ (1.48)

which evaluated as an integral gives

Hx (t) =

∫ ∞
−∞

x (τ)Hδ (t− τ) dτ. (1.49)

Since Hδ (t− τ) is the shifted unit impulse response h (t− τ), this gives the result

Hx (t) =

∫ ∞
−∞

x (τ)h (t− τ) dτ = (x ∗ h) (t) . (1.50)

Hence, convolution has been de�ned such that the output of a linear time invariant system is given by the
convolution of the system input with the system unit impulse response.

1.3.1.2.1.3 Graphical Intuition

It is often helpful to be able to visualize the computation of a convolution in terms of graphical processes.
Consider the convolution of two functions f, g given by

(f ∗ g) (t) =

∫ ∞
−∞

f (τ) g (t− τ) dτ =

∫ ∞
−∞

f (t− τ) g (τ) dτ. (1.51)

The �rst step in graphically understanding the operation of convolution is to plot each of the functions.
Next, one of the functions must be selected, and its plot re�ected across the τ = 0 axis. For each real t, that
same function must be shifted left by t. The product of the two resulting plots is then constructed. Finally,
the area under the resulting curve is computed.

Example 1.10
Recall that the impulse response for the capacitor voltage in a series RC circuit is given by

h (t) =
1

RC
e−t/RCu (t) , (1.52)

and consider the response to the input voltage

x (t) = u (t) . (1.53)

We know that the output for this input voltage is given by the convolution of the impulse response
with the input signal

y (t) = x (t) ∗ h (t) . (1.54)

We would like to compute this operation by beginning in a way that minimizes the algebraic
complexity of the expression. Thus, since x (t) = u (t) is the simpler of the two signals, it is
desirable to select it for time reversal and shifting. Thus, we would like to compute

y (t) =

∫ ∞
−∞

1

RC
e−τ/RCu (τ)u (t− τ) dτ. (1.55)
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The step functions can be used to further simplify this integral by narrowing the region of inte-
gration to the nonzero region of the integrand. Therefore,

y (t) =

∫ max{0,t}

0

1

RC
e−τ/RCdτ. (1.56)

Hence, the output is

y (t) = {
0 t ≤ 0

1− e−t/RC t > 0
(1.57)

which can also be written as

y (t) =
(

1− e−t/RC
)
u (t) . (1.58)

1.3.1.2.2 Circular Convolution

Continuous time circular convolution is an operation on two �nite length or periodic continuous time signals
de�ned by the integral

(f ∗ g) (t) =

∫ T

0

^
f (τ)

^
g (t− τ) dτ (1.59)

for all signals f, g de�ned on R [0, T ] where
^
f,
^
g are periodic extensions of f and g. It is important to note

that the operation of circular convolution is commutative, meaning that

f ∗ g = g ∗ f (1.60)

for all signals f, g de�ned on R [0, T ]. Thus, the circular convolution operation could have been just as easily
stated using the equivalent de�nition

(f ∗ g) (t) =

∫ T

0

^
f (t− τ)

^
g (τ) dτ (1.61)

for all signals f, g de�ned on R [0, T ] where
^
f,
^
g are periodic extensions of f and g. Circular convolution

has several other important properties not listed here but explained and derived in a later module.
Alternatively, continuous time circular convolution can be expressed as the sum of two integrals given by

(f ∗ g) (t) =

∫ t

0

f (τ) g (t− τ) dτ +

∫ T

t

f (τ) g (t− τ + T ) dτ (1.62)

for all signals f, g de�ned on R [0, T ].
Meaningful examples of computing continuous time circular convolutions in the time domain would in-

volve complicated algebraic manipulations dealing with the wrap around behavior, which would ultimately
be more confusing than helpful. Thus, none will be provided in this section. However, continuous time circu-
lar convolutions are more easily computed using frequency domain tools as will be shown in the continuous
time Fourier series section.
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1.3.1.2.2.1 De�nition Motivation

The above operation de�nition has been chosen to be particularly useful in the study of linear time invariant
systems. In order to see this, consider a linear time invariant system H with unit impulse response h. Given
a �nite or periodic system input signal x we would like to compute the system output signal H (x). First,
we note that the input can be expressed as the circular convolution

x (t) =

∫ T

0

^
x (τ)

^
δ (t− τ) dτ (1.63)

by the sifting property of the unit impulse function. Writing this integral as the limit of a summation,

x (t) = lim
∆→0

∑
n

^
x (n∆)

^
δ∆ (t− n∆) ∆ (1.64)

where

δ∆ (t) = {
1/∆ 0 ≤ t < ∆

0 otherwise
(1.65)

approximates the properties of δ (t). By linearity

Hx (t) = lim
∆→0

∑
n

^
x (n∆)H

^
δ∆ (t− n∆) ∆ (1.66)

which evaluated as an integral gives

Hx (t) =

∫ T

0

^
x (τ)H

^
δ (t− τ) dτ. (1.67)

Since Hδ (t− τ) is the shifted unit impulse response h (t− τ), this gives the result

Hx (t) =

∫ T

0

^
x (τ)

^
h (t− τ) dτ = (x ∗ h) (t) . (1.68)

Hence, circular convolution has been de�ned such that the output of a linear time invariant system is given
by the convolution of the system input with the system unit impulse response.

1.3.1.2.2.2 Graphical Intuition

It is often helpful to be able to visualize the computation of a circular convolution in terms of graphical
processes. Consider the circular convolution of two �nite length functions f, g given by

(f ∗ g) (t) =

∫ T

0

^
f (τ)

^
g (t− τ) dτ =

∫ T

0

^
f (t− τ)

^
g (τ) dτ. (1.69)

The �rst step in graphically understanding the operation of convolution is to plot each of the periodic
extensions of the functions. Next, one of the functions must be selected, and its plot re�ected across the
τ = 0 axis. For each t ∈ R [0, T ], that same function must be shifted left by t. The product of the two
resulting plots is then constructed. Finally, the area under the resulting curve on R [0, T ] is computed.
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1.3.1.3 Convolution Demonstration

Figure 1.38: Interact (when online) with a Mathematica CDF demonstrating Convolution. To Down-
load, right-click and save target as .cdf.

1.3.1.4 Convolution Summary

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output signal of a linear time invariant system for a given input signal with knowledge of the system's unit
impulse response. The operation of continuous time convolution is de�ned such that it performs this function
for in�nite length continuous time signals and systems. The operation of continuous time circular convolution
is de�ned such that it performs this function for �nite length and periodic continuous time signals. In each
case, the output of the system is the convolution or circular convolution of the input signal with the unit
impulse response.

1.3.2 Properties of Continuous Time Convolution17

1.3.2.1 Introduction

We have already shown the important role that continuous time convolution plays in signal processing. This
section provides discussion and proof of some of the important properties of continuous time convolution.
Analogous properties can be shown for continuous time circular convolution with trivial modi�cation of the
proofs provided except where explicitly noted otherwise.

17This content is available online at <http://cnx.org/content/m10088/2.21/>.
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1.3.2.2 Continuous Time Convolution Properties

1.3.2.2.1 Associativity

The operation of convolution is associative. That is, for all continuous time signals x1, x2, x3 the following
relationship holds.

x1 ∗ (x2 ∗ x3) = (x1 ∗ x2) ∗ x3 (1.70)

In order to show this, note that

(x1 ∗ (x2 ∗ x3)) (t) =
∫∞
−∞

∫∞
−∞ x1 (τ1)x2 (τ2)x3 ((t− τ1)− τ2) dτ2dτ1

=
∫∞
−∞

∫∞
−∞ x1 (τ1)x2 ((τ1 + τ2)− τ1)x3 (t− (τ1 + τ2)) dτ2dτ1

=
∫∞
−∞

∫∞
−∞ x1 (τ1)x2 (τ3 − τ1)x3 (t− τ3) dτ1dτ3

= ((x1 ∗ x2) ∗ x3) (t)

(1.71)

proving the relationship as desired through the substitution τ3 = τ1 + τ2.

1.3.2.2.2 Commutativity

The operation of convolution is commutative. That is, for all continuous time signals x1, x2 the following
relationship holds.

x1 ∗ x2 = x2 ∗ x1 (1.72)

In order to show this, note that

(x1 ∗ x2) (t) =
∫∞
−∞ x1 (τ1)x2 (t− τ1) dτ1

=
∫∞
−∞ x1 (t− τ2)x2 (τ2) dτ2

= (x2 ∗ x1) (t)

(1.73)

proving the relationship as desired through the substitution τ2 = t− τ1.

1.3.2.2.3 Distributivity

The operation of convolution is distributive over the operation of addition. That is, for all continuous time
signals x1, x2, x3 the following relationship holds.

x1 ∗ (x2 + x3) = x1 ∗ x2 + x1 ∗ x3 (1.74)

In order to show this, note that

(x1 ∗ (x2 + x3)) (t) =
∫∞
−∞ x1 (τ) (x2 (t− τ) + x3 (t− τ)) dτ

=
∫∞
−∞ x1 (τ)x2 (t− τ) dτ +

∫∞
−∞ x1 (τ)x3 (t− τ) dτ

= (x1 ∗ x2 + x1 ∗ x3) (t)

(1.75)

proving the relationship as desired.
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1.3.2.2.4 Multilinearity

The operation of convolution is linear in each of the two function variables. Additivity in each variable
results from distributivity of convolution over addition. Homogenity of order one in each variable results
from the fact that for all continuous time signals x1, x2 and scalars a the following relationship holds.

a (x1 ∗ x2) = (ax1) ∗ x2 = x1 ∗ (ax2) (1.76)

In order to show this, note that

(a (x1 ∗ x2)) (t) = a
∫∞
−∞ x1 (τ)x2 (t− τ) dτ

=
∫∞
−∞ (ax1 (τ))x2 (t− τ) dτ

= ((ax1) ∗ x2) (t)

=
∫∞
−∞ x1 (τ) (ax2 (t− τ)) dτ

= (x1 ∗ (ax2)) (t)

(1.77)

proving the relationship as desired.

1.3.2.2.5 Conjugation

The operation of convolution has the following property for all continuous time signals x1, x2.

x1 ∗ x2 = x1 ∗ x2 (1.78)

In order to show this, note that

(x1 ∗ x2) (t) =
∫∞
−∞ x1 (τ)x2 (t− τ) dτ

=
∫∞
−∞ x1 (τ)x2 (t− τ)dτ

=
∫∞
−∞ x1 (τ)x2 (t− τ) dτ

= (x1 ∗ x2) (t)

(1.79)

proving the relationship as desired.

1.3.2.2.6 Time Shift

The operation of convolution has the following property for all continuous time signals x1, x2 where ST is
the time shift operator.

ST (x1 ∗ x2) = (STx1) ∗ x2 = x1 ∗ (STx2) (1.80)

In order to show this, note that

ST (x1 ∗ x2) (t) =
∫∞
−∞ x2 (τ)x1 ((t− T )− τ) dτ

=
∫∞
−∞ x2 (τ)STx1 (t− τ) dτ

= ((STx1) ∗ x2) (t)

=
∫∞
−∞ x1 (τ)x2 ((t− T )− τ) dτ

=
∫∞
−∞ x1 (τ)STx2 (t− τ) dτ

= x1 ∗ (STx2) (t)

(1.81)

proving the relationship as desired.
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1.3.2.2.7 Di�erentiation

The operation of convolution has the following property for all continuous time signals x1, x2.

d

dt
(x1 ∗ x2) (t) =

(
dx1

dt
∗ x2

)
(t) =

(
x1 ∗

dx2

dt

)
(t) (1.82)

In order to show this, note that

d
dt (x1 ∗ x2) (t) =

∫∞
−∞ x2 (τ) d

dtx1 (t− τ) dτ

=
(
dx1

dt ∗ x2

)
(t)

=
∫∞
−∞ x1 (τ) d

dtx2 (t− τ) dτ

=
(
x1 ∗ dx2

dt

)
(t)

(1.83)

proving the relationship as desired.

1.3.2.2.8 Impulse Convolution

The operation of convolution has the following property for all continuous time signals x where δ is the Dirac
delta funciton.

x ∗ δ = x (1.84)

In order to show this, note that

(x ∗ δ) (t) =
∫∞
−∞ x (τ) δ (t− τ) dτ

= x (t)
∫∞
−∞ δ (t− τ) dτ

= x (t)

(1.85)

proving the relationship as desired.

1.3.2.2.9 Width

The operation of convolution has the following property for all continuous time signals x1, x2 where
Duration (x) gives the duration of a signal x.

Duration (x1 ∗ x2) = Duration (x1) +Duration (x2) (1.86)

. In order to show this informally, note that (x1 ∗ x2) (t) is nonzero for all t for which there is a τ such that
x1 (τ)x2 (t− τ) is nonzero. When viewing one function as reversed and sliding past the other, it is easy to
see that such a τ exists for all t on an interval of length Duration (x1)+Duration (x2). Note that this is not
always true of circular convolution of �nite length and periodic signals as there is then a maximum possible
duration within a period.

1.3.2.3 Convolution Properties Summary

As can be seen the operation of continuous time convolution has several important properties that have
been listed and proven in this module. With slight modi�cations to proofs, most of these also extend to
continuous time circular convolution as well and the cases in which exceptions occur have been noted above.
These identities will be useful to keep in mind as the reader continues to study signals and systems.
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1.4 Frequency Domain

1.4.1 Introduction to the Frequency Domain18

In developing ways of analyzing linear circuits, we invented the impedance method because it made solving
circuits easier. Along the way, we developed the notion of a circuit's frequency response or transfer function.
This notion, which also applies to all linear, time-invariant systems, describes how the circuit responds to a
sinusoidal input when we express it in terms of a complex exponential. We also learned the Superposition
Principle for linear systems: The system's output to an input consisting of a sum of two signals is the sum
of the system's outputs to each individual component.

The study of the frequency domain combines these two notions�a system's sinusoidal response is easy to
�nd and a linear system's output to a sum of inputs is the sum of the individual outputs�to develop the
crucial idea of a signal's spectrum. We begin by �nding that those signals that can be represented as a
sum of sinusoids is very large. In fact, all signals can be expressed as a superposition of sinusoids.

As this story unfolds, we'll see that information systems rely heavily on spectral ideas. For example,
radio, television, and cellular telephones transmit over di�erent portions of the spectrum. In fact, spectrum
is so important that communications systems are regulated as to which portions of the spectrum they can
use by the Federal Communications Commission in the United States and by International Treaty for the
world (see Frequency Allocations19). Calculating the spectrum is easy: The Fourier transform de�nes
how we can �nd a signal's spectrum.

1.4.2 Complex Fourier Series20

In an earlier module21, we showed that a square wave could be expressed as a superposition of pulses. As
useful as this decomposition was in this example, it does not generalize well to other periodic signals: How
can a superposition of pulses equal a smooth signal like a sinusoid? Because of the importance of sinusoids
to linear systems, you might wonder whether they could be added together to represent a large number of
periodic signals. You would be right and in good company as well. Euler22 and Gauss23 in particular worried
about this problem, and Jean Baptiste Fourier24 got the credit even though tough mathematical issues were
not settled until later. They worked on what is now known as the Fourier series: representing any periodic
signal as a superposition of sinusoids.

But the Fourier series goes well beyond being another signal decomposition method. Rather, the Fourier
series begins our journey to appreciate how a signal can be described in either the time-domain or the
frequency-domain with no compromise. Let s (t) be a periodic signal with period T . We want to show
that periodic signals, even those that have constant-valued segments like a square wave, can be expressed
as sum of harmonically related sine waves: sinusoids having frequencies that are integer multiples of
the fundamental frequency. Because the signal has period T , the fundamental frequency is 1

T . The

complex Fourier series expresses the signal as a superposition of complex exponentials having frequencies k
T ,

k = {. . .,−1, 0, 1, . . .}.

s (t) =

∞∑
k=−∞

cke
i 2πkt
T (1.87)

with ck = 1
2 (ak − ibk). The real and imaginary parts of the Fourier coe�cients ck are written in this

unusual way for convenience in de�ning the classic Fourier series. The zeroth coe�cient equals the signal's

average value and is real- valued for real-valued signals: c0 = a0. The family of functions
{
ei

2πkt
T

}
are called

18This content is available online at <http://cnx.org/content/m0038/2.10/>.
19"Frequency Allocations" <http://cnx.org/content/m0083/latest/>
20This content is available online at <http://cnx.org/content/m0042/2.33/>.
21"Signal Decomposition", Exercise 1 <http://cnx.org/content/m0008/latest/#swsuper>
22http://www-groups.dcs.st- and.ac.uk/∼history/Mathematicians/Euler.html
23http://www-groups.dcs.st- and.ac.uk/∼history/Mathematicians/Guass.html
24http://www-groups.dcs.st- and.ac.uk/∼history/Mathematicians/Fourier.html
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basis functions and form the foundation of the Fourier series. No matter what the periodic signal might
be, these functions are always present and form the representation's building blocks. They depend on the
signal period T , and are indexed by k.

Key point: Assuming we know the period, knowing the Fourier coe�cients is equivalent to
knowing the signal. Thus, it makes no di�erence if we have a time-domain or a frequency- domain
characterization of the signal.

Exercise 1.4.2.1 (Solution on p. 139.)

What is the complex Fourier series for a sinusoid?

To �nd the Fourier coe�cients, we note the orthogonality property

∫ T

0

ei
2πkt
T e(−i) 2πlt

T dt =

 T if k = l

0 if k 6= l
(1.88)

Assuming for the moment that the complex Fourier series "works," we can �nd a signal's complex Fourier
coe�cients, its spectrum, by exploiting the orthogonality properties of harmonically related complex expo-
nentials. Simply multiply each side of (1.87) by e−(i2πlt) and integrate over the interval [0, T ].

ck = 1
T

∫ T
0
s (t) e−(i 2πkt

T )dt

c0 = 1
T

∫ T
0
s (t) dt

(1.89)

Example 1.11
Finding the Fourier series coe�cients for the square wave sqT (t) is very simple. Mathematically,
this signal can be expressed as

sqT (t) =

 1 if 0 < t < T
2

−1 if T
2 < t < T

The expression for the Fourier coe�cients has the form

ck =
1

T

∫ T
2

0

e−(i 2πkt
T )dt− 1

T

∫ T

T
2

e−(i 2πkt
T )dt (1.90)

note: When integrating an expression containing i, treat it just like any other constant.

The two integrals are very similar, one equaling the negative of the other. The �nal expression
becomes

ck = −2
i2πk

(
(−1)

k − 1
)

=

 2
iπk if k odd

0 if k even

(1.91)

sq (t) =
∑

k∈{...,−3,−1,1,3,... }

2

iπk
e(i) 2πkt

T (1.92)

Consequently, the square wave equals a sum of complex exponentials, but only those having
frequencies equal to odd multiples of the fundamental frequency 1

T . The coe�cients decay slowly
as the frequency index k increases. This index corresponds to the k-th harmonic of the signal's
period.
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A signal's Fourier series spectrum ck has interesting properties.

Property 1.1:
If s (t) is real, ck = c−k (real-valued periodic signals have conjugate-symmetric spectra).

This result follows from the integral that calculates the ck from the signal. Furthermore, this result means
that < (ck) = < (c−k): The real part of the Fourier coe�cients for real-valued signals is even. Similarly,
= (ck) = −= (c−k): The imaginary parts of the Fourier coe�cients have odd symmetry. Consequently, if
you are given the Fourier coe�cients for positive indices and zero and are told the signal is real-valued, you
can �nd the negative-indexed coe�cients, hence the entire spectrum. This kind of symmetry, ck = c−k, is
known as conjugate symmetry.

Property 1.2:
If s (−t) = s (t), which says the signal has even symmetry about the origin, c−k = ck.

Given the previous property for real-valued signals, the Fourier coe�cients of even signals are real-valued.
A real-valued Fourier expansion amounts to an expansion in terms of only cosines, which is the simplest
example of an even signal.

Property 1.3:
If s (−t) = −s (t), which says the signal has odd symmetry, c−k = −ck.

Therefore, the Fourier coe�cients are purely imaginary. The square wave is a great example of an
odd-symmetric signal.

Property 1.4:
The spectral coe�cients for a periodic signal delayed by τ , s (t− τ), are cke

− i2πkτT , where ck denotes
the spectrum of s (t). Delaying a signal by τ seconds results in a spectrum having a linear phase
shift of − 2πkτ

T in comparison to the spectrum of the undelayed signal. Note that the spectral
magnitude is una�ected. Showing this property is easy.
Proof:

1
T

∫ T
0
s (t− τ) e(−i) 2πkt

T dt = 1
T

∫ T−τ
−τ s (t) e(−i) 2πk(t+τ)

T dt

= 1
T e

(−i) 2πkτ
T

∫ T−τ
−τ s (t) e(−i) 2πkt

T dt
(1.93)

Note that the range of integration extends over a period of the integrand. Consequently, it should

not matter how we integrate over a period, which means that
∫ T−τ
−τ (·) dt =

∫ T
0

(·) dt, and we have
our result.

The complex Fourier series obeys Parseval's Theorem, one of the most important results in signal
analysis. This general mathematical result says you can calculate a signal's power in either the time domain
or the frequency domain.

Theorem 1.1: Parseval's Theorem
Average power calculated in the time domain equals the power calculated in the frequency domain.

1

T

∫ T

0

s2 (t) dt =

∞∑
k=−∞

(|ck|)2
(1.94)

This result is a (simpler) re-expression of how to calculate a signal's power than with the real-valued
Fourier series expression for power.

Let's calculate the Fourier coe�cients of the periodic pulse signal shown here (Figure 1.39).
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∆

T

∆

t

p(t)
A

……

Figure 1.39: Periodic pulse signal.

The pulse width is ∆, the period T , and the amplitude A. The complex Fourier spectrum of this signal
is given by

ck =
1

T

∫ ∆

0

Ae−
i2πkt
T dt = −

(
A

i2πk

(
e−

i2πk∆
T − 1

))
At this point, simplifying this expression requires knowing an interesting property.

1− e−(iθ) = e−
iθ
2

(
e
iθ
2 − e− iθ2

)
= e−

iθ
2 2isin

(
θ

2

)
Armed with this result, we can simply express the Fourier series coe�cients for our pulse sequence.

ck = Ae−
iπk∆
T

sin
(
πk∆
T

)
πk

(1.95)

Because this signal is real-valued, we �nd that the coe�cients do indeed have conjugate symmetry: ck = c−k.
The periodic pulse signal has neither even nor odd symmetry; consequently, no additional symmetry exists
in the spectrum. Because the spectrum is complex valued, to plot it we need to calculate its magnitude and
phase.

|ck| = A|
sin
(
πk∆
T

)
πk

| (1.96)

∠ (ck) = −πk∆

T
+ πneg

(
sin
(
πk∆
T

)
πk

)
sign (k)

The function neg (·) equals -1 if its argument is negative and zero otherwise. The somewhat complicated
expression for the phase results because the sine term can be negative; magnitudes must be positive, leaving
the occasional negative values to be accounted for as a phase shift of π.
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Periodic Pulse Sequence

Figure 1.40: The magnitude and phase of the periodic pulse sequence's spectrum is shown for positive-
frequency indices. Here ∆

T
= 0.2 and A = 1.

Also note the presence of a linear phase term (the �rst term in ∠ (ck) is proportional to frequency k
T ).

Comparing this term with that predicted from delaying a signal, a delay of ∆
2 is present in our signal.

Advancing the signal by this amount centers the pulse about the origin, leaving an even signal, which in
turn means that its spectrum is real-valued. Thus, our calculated spectrum is consistent with the properties
of the Fourier spectrum.

Exercise 1.4.2.2 (Solution on p. 139.)

What is the value of c0? Recalling that this spectral coe�cient corresponds to the signal's average
value, does your answer make sense?

The phase plot shown in Figure 1.40 (Periodic Pulse Sequence) requires some explanation as it does not seem
to agree with what (1.96) suggests. There, the phase has a linear component, with a jump of π every time
the sinusoidal term changes sign. We must realize that any integer multiple of 2π can be added to a phase
at each frequency without a�ecting the value of the complex spectrum. We see that at frequency index 4
the phase is nearly −π. The phase at index 5 is unde�ned because the magnitude is zero in this example. At
index 6, the formula suggests that the phase of the linear term should be less than −π (more negative). In
addition, we expect a shift of −π in the phase between indices 4 and 6. Thus, the phase value predicted by
the formula is a little less than − (2π). Because we can add 2π without a�ecting the value of the spectrum
at index 6, the result is a slightly negative number as shown. Thus, the formula and the plot do agree. In
phase calculations like those made in MATLAB, values are usually con�ned to the range [−π, π) by adding
some (possibly negative) multiple of 2π to each phase value.
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1.4.3 Classic Fourier Series25

The classic Fourier series as derived originally expressed a periodic signal (period T ) in terms of harmonically
related sines and cosines.

s (t) = a0 +

∞∑
k=1

akcos

(
2πkt

T

)
+

∞∑
k=1

bksin

(
2πkt

T

)
(1.97)

The complex Fourier series and the sine-cosine series are identical, each representing a signal's
spectrum. The Fourier coe�cients, ak and bk, express the real and imaginary parts respectively of the
spectrum while the coe�cients ck of the complex Fourier series express the spectrum as a magnitude and
phase. Equating the classic Fourier series (1.97) to the complex Fourier series (1.87), an extra factor of two
and complex conjugate become necessary to relate the Fourier coe�cients in each.

ck =
1

2
(ak − ibk)

Exercise 1.4.3.1 (Solution on p. 139.)

Derive this relationship between the coe�cients of the two Fourier series.

Just as with the complex Fourier series, we can �nd the Fourier coe�cients using the orthogonality proper-
ties of sinusoids. Note that the cosine and sine of harmonically related frequencies, even the same frequency,
are orthogonal.

∀k, l, k ∈ Zl ∈ Z :

(∫ T

0

sin

(
2πkt

T

)
cos

(
2πlt

T

)
dt = 0

)
(1.98)

∫ T

0

sin

(
2πkt

T

)
sin

(
2πlt

T

)
dt =

 T
2 if (k = l) ∧ (k 6= 0) ∧ (l 6= 0)

0 if (k 6= l) ∨ (k = 0 = l)

∫ T

0

cos

(
2πkt

T

)
cos

(
2πlt

T

)
dt =


T
2 if (k = l) ∧ (k 6= 0) ∧ (l 6= 0)

T if k = 0 = l

0 if k 6= l

These orthogonality relations follow from the following important trigonometric identities.

sin (α) sin (β) = 1
2 (cos (α− β)− cos (α+ β))

cos (α) cos (β) = 1
2 (cos (α+ β) + cos (α− β))

sin (α) cos (β) = 1
2 (sin (α+ β) + sin (α− β))

(1.99)

These identities allow you to substitute a sum of sines and/or cosines for a product of them. Each term in
the sum can be integrated by noticing one of two important properties of sinusoids.

• The integral of a sinusoid over an integer number of periods equals zero.
• The integral of the square of a unit-amplitude sinusoid over a period T equals T

2 .

To use these, let's, for example, multiply the Fourier series for a signal by the cosine of the lth harmonic
cos
(

2πlt
T

)
and integrate. The idea is that, because integration is linear, the integration will sift out all but

the term involving al.∫ T
0
s (t) cos

(
2πlt
T

)
dt =

∫ T
0
a0cos

(
2πlt
T

)
dt +

∑∞
k=1 ak

∫ T
0
cos
(

2πkt
T

)
cos
(

2πlt
T

)
dt +∑∞

k=1 bk
∫ T

0
sin
(

2πkt
T

)
cos
(

2πlt
T

)
dt

(1.100)

25This content is available online at <http://cnx.org/content/m0039/2.24/>.
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The �rst and third terms are zero; in the second, the only non-zero term in the sum results when the
indices k and l are equal (but not zero), in which case we obtain alT

2 . If k = 0 = l, we obtain a0T .
Consequently,

∀l, l 6= 0 :

(
al =

2

T

∫ T

0

s (t) cos

(
2πlt

T

)
dt

)
All of the Fourier coe�cients can be found similarly.

a0 = 1
T

∫ T
0
s (t) dt

∀k, k 6= 0 :
(
ak = 2

T

∫ T
0
s (t) cos

(
2πkt
T

)
dt
)

bk = 2
T

∫ T
0
s (t) sin

(
2πkt
T

)
dt

(1.101)

Exercise 1.4.3.2 (Solution on p. 139.)

The expression for a0 is referred to as the average value of s (t). Why?

Exercise 1.4.3.3 (Solution on p. 139.)

What is the Fourier series for a unit-amplitude square wave?

Example 1.12
Let's �nd the Fourier series representation for the half-wave recti�ed sinusoid.

s (t) =

 sin
(

2πt
T

)
if 0 ≤ t < T

2

0 if T
2 ≤ t < T

(1.102)

Begin with the sine terms in the series; to �nd bk we must calculate the integral

bk =
2

T

∫ T
2

0

sin

(
2πt

T

)
sin

(
2πkt

T

)
dt (1.103)

Using our trigonometric identities turns our integral of a product of sinusoids into a sum of integrals
of individual sinusoids, which are much easier to evaluate.∫ T

2

0
sin
(

2πt
T

)
sin
(

2πkt
T

)
dt = 1

2

∫ T
2

0
cos
(

2π(k−1)t
T

)
− cos

(
2π(k+1)t

T

)
dt

=

 1
2 if k = 1

0 otherwise

(1.104)

Thus,

b1 =
1

2

b2 = b3 = · · · = 0

On to the cosine terms. The average value, which corresponds to a0, equals
1
π . The remainder

of the cosine coe�cients are easy to �nd, but yield the complicated result

ak =

 −
(

2
π

1
k2−1

)
if k ∈ {2, 4, . . . }

0 if k odd
(1.105)

Thus, the Fourier series for the half-wave recti�ed sinusoid has non-zero terms for the average,
the fundamental, and the even harmonics.
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1.4.4 A Signal's Spectrum26

A periodic signal, such as the half-wave recti�ed sinusoid, consists of a sum of elemental sinusoids. A plot
of the Fourier coe�cients as a function of the frequency index, such as shown in Figure 1.41 (Fourier Series
spectrum of a half-wave recti�ed sine wave), displays the signal's spectrum. The word "spectrum" implies
that the independent variable, here k, corresponds somehow to frequency. Each coe�cient is directly related
to a sinusoid having a frequency of k

T . Thus, if we half-wave recti�ed a 1 kHz sinusoid, k = 1 corresponds
to 1 kHz, k = 2 to 2 kHz, etc.

Fourier Series spectrum of a half-wave recti�ed sine wave
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Figure 1.41: The Fourier series spectrum of a half-wave recti�ed sinusoid is shown. The index indicates
the multiple of the fundamental frequency at which the signal has energy.

A subtle, but very important, aspect of the Fourier spectrum is its uniqueness: You can unambiguously
�nd the spectrum from the signal (decomposition (1.101)) and the signal from the spectrum (composition).
Thus, any aspect of the signal can be found from the spectrum and vice versa. A signal's frequency
domain expression is its spectrum. A periodic signal can be de�ned either in the time domain (as a
function) or in the frequency domain (as a spectrum).

A fundamental aspect of solving electrical engineering problems is whether the time or frequency domain
provides the most understanding of a signal's properties and the simplest way of manipulating it. The
uniqueness property says that either domain can provide the right answer. As a simple example, suppose
we want to know the (periodic) signal's maximum value. Clearly the time domain provides the answer
directly. To use a frequency domain approach would require us to �nd the spectrum, form the signal from
the spectrum and calculate the maximum; we're back in the time domain!

Another feature of a signal is its average power. A signal's instantaneous power is de�ned to be its
square. The average power is the average of the instantaneous power over some time interval. For a periodic
signal, the natural time interval is clearly its period; for nonperiodic signals, a better choice would be entire
time or time from onset. For a periodic signal, the average power is the square of its root-mean-squared

26This content is available online at <http://cnx.org/content/m0040/2.21/>.
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(rms) value. We de�ne the rms value of a periodic signal to be

rms (s) =

√
1

T

∫ T

0

s2 (t) dt (1.106)

and thus its average power is

power (s) = rms2 (s)

= 1
T

∫ T
0
s2 (t) dt

(1.107)

Exercise 1.4.4.1 (Solution on p. 139.)

What is the rms value of the half-wave recti�ed sinusoid?

To �nd the average power in the frequency domain, we need to substitute the spectral representation of the
signal into this expression.

power (s) =
1

T

∫ T

0

(
a0 +

∞∑
k=1

akcos

(
2πkt

T

)
+

∞∑
k=1

bksin

(
2πkt

T

))2

dt

The square inside the integral will contain all possible pairwise products. However, the orthogonality proper-
ties (1.98) say that most of these crossterms integrate to zero. The survivors leave a rather simple expression
for the power we seek.

power (s) = a0
2 +

1

2

∞∑
k=1

ak
2 + bk

2 (1.108)

Power Spectrum of a Half-Wave Recti�ed Sinusoid
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Figure 1.42: Power spectrum of a half-wave recti�ed sinusoid.

It could well be that computing this sum is easier than integrating the signal's square. Furthermore,
the contribution of each term in the Fourier series toward representing the signal can be measured by its
contribution to the signal's average power. Thus, the power contained in a signal at its kth harmonic is
ak

2+bk
2

2 . The power spectrum, Ps (k), such as shown in Figure 1.42 (Power Spectrum of a Half-Wave
Recti�ed Sinusoid), plots each harmonic's contribution to the total power.
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Exercise 1.4.4.2 (Solution on p. 139.)

In high-end audio, deviation of a sine wave from the ideal is measured by the total harmonic
distortion, which equals the total power in the harmonics higher than the �rst compared to power
in the fundamental. Find an expression for the total harmonic distortion for any periodic signal.
Is this calculation most easily performed in the time or frequency domain?

1.4.5 Fourier Series Approximation of Signals27

It is interesting to consider the sequence of signals that we obtain as we incorporate more terms into the
Fourier series approximation of the half-wave recti�ed sine wave (Example 1.12). De�ne sK (t) to be the
signal containing K + 1 Fourier terms.

sK (t) = a0 +

K∑
k=1

akcos

(
2πkt

T

)
+

K∑
k=1

bksin

(
2πkt

T

)
(1.109)

Figure 1.43 ( Fourier Series spectrum of a half-wave recti�ed sine wave ) shows how this sequence of signals
portrays the signal more accurately as more terms are added.

27This content is available online at <http://cnx.org/content/m10687/2.11/>.
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Fourier Series spectrum of a half-wave recti�ed sine wave
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Figure 1.43: The Fourier series spectrum of a half-wave recti�ed sinusoid is shown in the upper
portion. The index indicates the multiple of the fundamental frequency at which the signal has energy.
The cumulative e�ect of adding terms to the Fourier series for the half-wave recti�ed sine wave is shown
in the bottom portion. The dashed line is the actual signal, with the solid line showing the �nite series
approximation to the indicated number of terms, K + 1.

We need to assess quantitatively the accuracy of the Fourier series approximation so that we can judge
how rapidly the series approaches the signal. When we use a K + 1-term series, the error�the di�erence
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between the signal and the K + 1-term series�corresponds to the unused terms from the series.

εK (t) =

∞∑
k=K+1

akcos

(
2πkt

T

)
+

∞∑
k=K+1

bksin

(
2πkt

T

)
(1.110)

To �nd the rms error, we must square this expression and integrate it over a period. Again, the integral of
most cross-terms is zero, leaving

rms (εK) =

√√√√1

2

∞∑
k=K+1

ak2 + bk
2 (1.111)

Figure 1.44 (Approximation error for a half-wave recti�ed sinusoid) shows how the error in the Fourier series
for the half-wave recti�ed sinusoid decreases as more terms are incorporated. In particular, the use of four
terms, as shown in the bottom plot of Figure 1.43 ( Fourier Series spectrum of a half-wave recti�ed sine
wave ), has a rms error (relative to the rms value of the signal) of about 3%. The Fourier series in this case
converges quickly to the signal.

Approximation error for a half-wave recti�ed sinusoid
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Figure 1.44: The rms error calculated according to (1.111) is shown as a function of the number of
terms in the series for the half-wave recti�ed sinusoid. The error has been normalized by the rms value
of the signal.

We can look at Figure 1.45 (Power spectrum and approximation error for a square wave) to see the power
spectrum and the rms approximation error for the square wave.
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Power spectrum and approximation error for a square wave
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Figure 1.45: The upper plot shows the power spectrum of the square wave, and the lower plot the
rms error of the �nite-length Fourier series approximation to the square wave. The asterisk denotes the
rms error when the number of terms K in the Fourier series equals 99.

Because the Fourier coe�cients decay more slowly here than for the half-wave recti�ed sinusoid, the rms
error is not decreasing quickly. Said another way, the square-wave's spectrum contains more power at higher
frequencies than does the half-wave-recti�ed sinusoid. This di�erence between the two Fourier series results
because the half-wave recti�ed sinusoid's Fourier coe�cients are proportional to 1

k2 while those of the square
wave are proportional to 1

k . If fact, after 99 terms of the square wave's approximation, the error is bigger
than 10 terms of the approximation for the half-wave recti�ed sinusoid. Mathematicians have shown that
no signal has an rms approximation error that decays more slowly than it does for the square wave.

Exercise 1.4.5.1 (Solution on p. 139.)

Calculate the harmonic distortion for the square wave.

More than just decaying slowly, Fourier series approximation shown in Figure 1.46 (Fourier series approxi-
mation of a square wave) exhibits interesting behavior.
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Fourier series approximation of a square wave
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Figure 1.46: Fourier series approximation to sq (t). The number of terms in the Fourier sum is
indicated in each plot, and the square wave is shown as a dashed line over two periods.

Although the square wave's Fourier series requires more terms for a given representation accuracy, when
comparing plots it is not clear that the two are equal. Does the Fourier series really equal the square wave
at all values of t? In particular, at each step-change in the square wave, the Fourier series exhibits a peak
followed by rapid oscillations. As more terms are added to the series, the oscillations seem to become more
rapid and smaller, but the peaks are not decreasing. For the Fourier series approximation for the half-wave
recti�ed sinusoid (Figure 1.43: Fourier Series spectrum of a half-wave recti�ed sine wave ), no such behavior
occurs. What is happening?

Consider this mathematical question intuitively: Can a discontinuous function, like the square wave, be
expressed as a sum, even an in�nite one, of continuous signals? One should at least be suspicious, and in
fact, it can't be thus expressed. This issue brought Fourier28 much criticism from the French Academy of
Science (Laplace, Lagrange, Monge and LaCroix comprised the review committee) for several years after its
presentation on 1807. It was not resolved for almost a century, and its resolution is interesting and important
to understand from a practical viewpoint.

28http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Fourier.html
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The extraneous peaks in the square wave's Fourier series never disappear; they are termed Gibb's
phenomenon after the American physicist Josiah Willard Gibbs. They occur whenever the signal is dis-
continuous, and will always be present whenever the signal has jumps.

Let's return to the question of equality; how can the equal sign in the de�nition of the Fourier series be
justi�ed? The partial answer is that pointwise�each and every value of t�equality is not guaranteed.
However, mathematicians later in the nineteenth century showed that the rms error of the Fourier series was
always zero.

limit
K→∞

rms (εK) = 0

What this means is that the error between a signal and its Fourier series approximation may not be zero, but
that its rms value will be zero! It is through the eyes of the rms value that we rede�ne equality: The usual
de�nition of equality is called pointwise equality: Two signals s1 (t), s2 (t) are said to be equal pointwise
if s1 (t) = s2 (t) for all values of t. A new de�nition of equality is mean-square equality: Two signals
are said to be equal in the mean square if rms (s1 − s2) = 0. For Fourier series, Gibb's phenomenon peaks
have �nite height and zero width. The error di�ers from zero only at isolated points�whenever the periodic
signal contains discontinuities�and equals about 9% of the size of the discontinuity. The value of a function
at a �nite set of points does not a�ect its integral. This e�ect underlies the reason why de�ning the value of
a discontinuous function, like we refrained from doing in de�ning the step function29, at its discontinuity is
meaningless. Whatever you pick for a value has no practical relevance for either the signal's spectrum or for
how a system responds to the signal. The Fourier series value "at" the discontinuity is the average of the
values on either side of the jump.

1.4.6 Encoding Information in the Frequency Domain30

To emphasize the fact that every periodic signal has both a time and frequency domain representation, we can
exploit both to encode information into a signal. Refer to the Fundamental Model of Communication31.
We have an information source, and want to construct a transmitter that produces a signal x (t). For the
source, let's assume we have information to encode every T seconds. For example, we want to represent
typed letters produced by an extremely good typist (a key is struck every T seconds). Let's consider the
complex Fourier series formula in the light of trying to encode information.

x (t) =

K∑
k=−K

cke
i 2πkt
T (1.112)

We use a �nite sum here merely for simplicity (fewer parameters to determine). An important aspect of
the spectrum is that each frequency component ck can be manipulated separately: Instead of �nding the
Fourier spectrum from a time-domain speci�cation, let's construct it in the frequency domain by selecting
the ck according to some rule that relates coe�cient values to the alphabet. In de�ning this rule, we want
to always create a real-valued signal x (t). Because of the Fourier spectrum's properties (Property 1.1, p.
41), the spectrum must have conjugate symmetry. This requirement means that we can only assign positive-
indexed coe�cients (positive frequencies), with negative-indexed ones equaling the complex conjugate of the
corresponding positive-indexed ones.

Assume we have N letters to encode: {a1, . . . , aN}. One simple encoding rule could be to make a single
Fourier coe�cient be non-zero and all others zero for each letter. For example, if an occurs, we make cn = 1
and ck = 0, k 6= n. In this way, the nth harmonic of the frequency 1

T is used to represent a letter. Note

that the bandwidth�the range of frequencies required for the encoding�equals N
T . Another possibility is

to consider the binary representation of the letter's index. For example, if the letter a13 occurs, converting

29"Elemental Signals": Section Unit Step <http://cnx.org/content/m0004/latest/#stepdef>
30This content is available online at <http://cnx.org/content/m0043/2.17/>.
31"Structure of Communication Systems", Figure 1: Fundamental model of communication

<http://cnx.org/content/m0002/latest/#commsys>

Available for free at Connexions <http://cnx.org/content/col10631/1.3>



54 CHAPTER 1. SIGNALS AND SYSTEMS IN COMMUNICATIONS

13 to its base 2 representation, we have 13 = 11012. We can use the pattern of zeros and ones to represent
directly which Fourier coe�cients we "turn on" (set equal to one) and which we "turn o�."

Exercise 1.4.6.1 (Solution on p. 139.)

Compare the bandwidth required for the direct encoding scheme (one nonzero Fourier coe�cient
for each letter) to the binary number scheme. Compare the bandwidths for a 128-letter alphabet.
Since both schemes represent information without loss � we can determine the typed letter uniquely
from the signal's spectrum � both are viable. Which makes more e�cient use of bandwidth and
thus might be preferred?

Exercise 1.4.6.2 (Solution on p. 140.)

Can you think of an information-encoding scheme that makes even more e�cient use of the
spectrum? In particular, can we use only one Fourier coe�cient to represent N letters uniquely?

We can create an encoding scheme in the frequency domain (p. 53) to represent an alphabet of letters. But,
as this information-encoding scheme stands, we can represent one letter for all time. However, we note that
the Fourier coe�cients depend only on the signal's characteristics over a single period. We could change
the signal's spectrum every T as each letter is typed. In this way, we turn spectral coe�cients on and o�
as letters are typed, thereby encoding the entire typed document. For the receiver (see the Fundamental
Model of Communication32) to retrieve the typed letter, it would simply use the Fourier formula for the
complex Fourier spectrum33 for each T -second interval to determine what each typed letter was. Figure 1.47
(Encoding Signals) shows such a signal in the time-domain.

Encoding Signals
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Figure 1.47: The encoding of signals via the Fourier spectrum is shown over three "periods." In
this example, only the third and fourth harmonics are used, as shown by the spectral magnitudes corre-
sponding to each T -second interval plotted below the waveforms. Can you determine the phase of the
harmonics from the waveform?

32"Structure of Communication Systems", Figure 1: Fundamental model of communication
<http://cnx.org/content/m0002/latest/#commsys>

33"Complex Fourier Series and Their Properties", (2) <http://cnx.org/content/m0065/latest/#complex>
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In this Fourier-series encoding scheme, we have used the fact that spectral coe�cients can be indepen-
dently speci�ed and that they can be uniquely recovered from the time-domain signal over one "period." Do
note that the signal representing the entire document is no longer periodic. By understanding the Fourier se-
ries' properties (in particular that coe�cients are determined only over a T -second interval, we can construct
a communications system. This approach represents a simpli�cation of how modern modems represent text
that they transmit over telephone lines.

1.4.7 Filtering Periodic Signals34

The Fourier series representation of a periodic signal makes it easy to determine how a linear, time-invariant
�lter reshapes such signals in general. The fundamental property of a linear system is that its input-output
relation obeys superposition: L (a1s1 (t) + a2s2 (t)) = a1L (s1 (t)) + a2L (s2 (t)). Because the Fourier series
represents a periodic signal as a linear combination of complex exponentials, we can exploit the superposition
property. Furthermore, we found for linear circuits that their output to a complex exponential input is just the
frequency response evaluated at the signal's frequency times the complex exponential. Said mathematically,
if x (t) = ei

2πkt
T , then the output y (t) = H

(
k
T

)
ei

2πkt
T because f = k

T . Thus, if x (t) is periodic thereby
having a Fourier series, a linear circuit's output to this signal will be the superposition of the output to each
component.

y (t) =

∞∑
k=−∞

ckH

(
k

T

)
ei

2πkt
T (1.113)

Thus, the output has a Fourier series, which means that it too is periodic. Its Fourier coe�cients equal
ckH

(
k
T

)
. To obtain the spectrum of the output, we simply multiply the input spectrum by

the frequency response. The circuit modi�es the magnitude and phase of each Fourier coe�cient. Note
especially that while the Fourier coe�cients do not depend on the signal's period, the circuit's transfer
function does depend on frequency, which means that the circuit's output will di�er as the period varies.

34This content is available online at <http://cnx.org/content/m0044/2.12/>.
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Filtering a periodic signal
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Figure 1.48: A periodic pulse signal, such as shown on the left part (∆
T

= 0.2), serves as the input to
an RC lowpass �lter. The input's period was 1 ms (millisecond). The �lter's cuto� frequency was set to
the various values indicated in the top row, which display the output signal's spectrum and the �lter's
transfer function. The bottom row shows the output signal derived from the Fourier series coe�cients
shown in the top row. (a) Periodic pulse signal (b) Top plots show the pulse signal's spectrum for various
cuto� frequencies. Bottom plots show the �lter's output signals.

Example 1.13
The periodic pulse signal shown on the left above serves as the input to a RC-circuit that has the
transfer function (calculated elsewhere35)

H (f) =
1

1 + i2πfRC
(1.114)

Figure 1.48 (Filtering a periodic signal) shows the output changes as we vary the �lter's cuto�
frequency. Note how the signal's spectrum extends well above its fundamental frequency. Having
a cuto� frequency ten times higher than the fundamental does perceptibly change the output
waveform, rounding the leading and trailing edges. As the cuto� frequency decreases (center, then
left), the rounding becomes more prominent, with the leftmost waveform showing a small ripple.

35"Transfer Functions", Figure 2: Magnitude and phase of the transfer function
<http://cnx.org/content/m0028/latest/#magphase>
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Exercise 1.4.7.1 (Solution on p. 140.)

What is the average value of each output waveform? The correct answer may surprise you.

This example also illustrates the impact a lowpass �lter can have on a waveform. The simple RC �lter used
here has a rather gradual frequency response, which means that higher harmonics are smoothly suppressed.
Later, we will describe �lters that have much more rapidly varying frequency responses, allowing a much
more dramatic selection of the input's Fourier coe�cients.

More importantly, we have calculated the output of a circuit to a periodic input without writing,
much less solving, the di�erential equation governing the circuit's behavior. Furthermore, we made these
calculations entirely in the frequency domain. Using Fourier series, we can calculate how any linear circuit
will respond to a periodic input.

1.4.8 Derivation of the Fourier Transform36

Fourier series clearly open the frequency domain as an interesting and useful way of determining how circuits
and systems respond to periodic input signals. Can we use similar techniques for nonperiodic signals? What
is the response of the �lter to a single pulse? Addressing these issues requires us to �nd the Fourier spectrum
of all signals, both periodic and nonperiodic ones. We need a de�nition for the Fourier spectrum of a signal,
periodic or not. This spectrum is calculated by what is known as the Fourier transform.

Let sT (t) be a periodic signal having period T . We want to consider what happens to this signal's
spectrum as we let the period become longer and longer. We denote the spectrum for any assumed value of
the period by ck (T ). We calculate the spectrum according to the familiar formula

ck (T ) =
1

T

∫ T
2

−T2
sT (t) e−

i2πkt
T dt (1.115)

where we have used a symmetric placement of the integration interval about the origin for subsequent deriva-
tional convenience. Let f be a �xed frequency equaling k

T ; we vary the frequency index k proportionally as
we increase the period. De�ne

ST (f) ≡ Tck (T ) =

∫ T
2

−T2
sT (t) e−(i2πft)dt (1.116)

making the corresponding Fourier series

sT (t) =

∞∑
k=−∞

ST (f) ei2πft
1

T
(1.117)

As the period increases, the spectral lines become closer together, becoming a continuum. Therefore,

limit
T→∞

sT (t) ≡ s (t) =

∫ ∞
−∞

S (f) ei2πftdf (1.118)

with

S (f) =

∫ ∞
−∞

s (t) e−(i2πft)dt (1.119)

S (f) is the Fourier transform of s (t) (the Fourier transform is symbolically denoted by the uppercase
version of the signal's symbol) and is de�ned for any signal for which the integral ((1.119)) converges.

Example 1.14
Let's calculate the Fourier transform of the pulse signal37, p (t).

P (f) =

∫ ∞
−∞

p (t) e−(i2πft)dt =

∫ ∆

0

e−(i2πft)dt =
1

− (i2πf)

(
e−(i2πf∆) − 1

)
36This content is available online at <http://cnx.org/content/m0046/2.22/>.
37"Elemental Signals": Section Pulse <http://cnx.org/content/m0004/latest/#pulsedef>
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P (f) = e−(iπf∆) sin (πf∆)

πf

Note how closely this result resembles the expression for Fourier series coe�cients of the periodic
pulse signal (1.96).
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Figure 1.49: The upper plot shows the magnitude of the Fourier series spectrum for the case of T = 1
with the Fourier transform of p (t) shown as a dashed line. For the bottom panel, we expanded the period
to T = 5, keeping the pulse's duration �xed at 0.2, and computed its Fourier series coe�cients.

Figure 1.49 (Spectrum) shows how increasing the period does indeed lead to a continuum of coe�cients,

and that the Fourier transform does correspond to what the continuum becomes. The quantity sin(t)
t has a

special name, the sinc (pronounced "sink") function, and is denoted by sinc (t). Thus, the magnitude of the
pulse's Fourier transform equals |∆sinc (πf∆) |.

The Fourier transform relates a signal's time and frequency domain representations to each other. The
direct Fourier transform (or simply the Fourier transform) calculates a signal's frequency domain representa-
tion from its time-domain variant ((1.120)). The inverse Fourier transform ((1.121)) �nds the time-domain
representation from the frequency domain. Rather than explicitly writing the required integral, we often
symbolically express these transform calculations as F (s) and F−1 (S), respectively.

F (s) = S (f)

=
∫∞
−∞ s (t) e−(i2πft)dt

(1.120)
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F−1 (S) = s (t)

=
∫∞
−∞ S (f) ei2πftdf

(1.121)

We must have s (t) = F−1 (F (s (t))) and S (f) = F
(
F−1 (S (f))

)
, and these results are indeed valid with

minor exceptions.

note: Recall that the Fourier series for a square wave gives a value for the signal at the dis-
continuities equal to the average value of the jump. This value may di�er from how the signal is
de�ned in the time domain, but being unequal at a point is indeed minor.

Showing that you "get back to where you started" is di�cult from an analytic viewpoint, and we won't try
here. Note that the direct and inverse transforms di�er only in the sign of the exponent.

Exercise 1.4.8.1 (Solution on p. 140.)

The di�ering exponent signs means that some curious results occur when we use the wrong sign.
What is F (S (f))? In other words, use the wrong exponent sign in evaluating the inverse Fourier
transform.

Properties of the Fourier transform and some useful transform pairs are provided in the accompanying
tables (Table 1.1: Short Table of Fourier Transform Pairs and Table 1.2: Fourier Transform Properties).
Especially important among these properties is Parseval's Theorem, which states that power computed
in either domain equals the power in the other.∫ ∞

−∞
s2 (t) dt =

∫ ∞
−∞

(|S (f) |)2
df (1.122)

Of practical importance is the conjugate symmetry property: When s (t) is real-valued, the spectrum at
negative frequencies equals the complex conjugate of the spectrum at the corresponding positive frequencies.
Consequently, we need only plot the positive frequency portion of the spectrum (we can easily determine the
remainder of the spectrum).

Exercise 1.4.8.2 (Solution on p. 140.)

How many Fourier transform operations need to be applied to get the original signal back:
F (· · · (F (s))) = s (t)?

Note that the mathematical relationships between the time domain and frequency domain versions of the
same signal are termed transforms. We are transforming (in the nontechnical meaning of the word) a signal
from one representation to another. We express Fourier transform pairs as s (t) ↔ S (f). A signal's time
and frequency domain representations are uniquely related to each other. A signal thus "exists" in both
the time and frequency domains, with the Fourier transform bridging between the two. We can de�ne an
information carrying signal in either the time or frequency domains; it behooves the wise engineer to use the
simpler of the two.

A common misunderstanding is that while a signal exists in both the time and frequency domains, a single
formula expressing a signal must contain only time or frequency: Both cannot be present simultaneously.
This situation mirrors what happens with complex amplitudes in circuits: As we reveal how communications
systems work and are designed, we will de�ne signals entirely in the frequency domain without explicitly
�nding their time domain variants. This idea is shown in another module (Section 1.4.6) where we de�ne
Fourier series coe�cients according to letter to be transmitted. Thus, a signal, though most familiarly de�ned
in the time-domain, really can be de�ned equally as well (and sometimes more easily) in the frequency domain.
For example, impedances depend on frequency and the time variable cannot appear.

We will learn (Section 1.4.9) that �nding a linear, time-invariant system's output in the time domain can
be most easily calculated by determining the input signal's spectrum, performing a simple calculation in the
frequency domain, and inverse transforming the result. Furthermore, understanding communications and
information processing systems requires a thorough understanding of signal structure and of how systems
work in both the time and frequency domains.
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The only di�culty in calculating the Fourier transform of any signal occurs when we have periodic signals
(in either domain). Realizing that the Fourier series is a special case of the Fourier transform, we simply
calculate the Fourier series coe�cients instead, and plot them along with the spectra of nonperiodic signals
on the same frequency axis.

Short Table of Fourier Transform Pairs

s (t) S (f)

e−(at)u (t) 1
i2πf+a

e−(a|t|) 2a
4π2f2+a2

p (t) =

 1 if |t| < ∆
2

0 if |t| > ∆
2

sin(πf∆)
πf

sin(2πWt)
πt S (f) =

 1 if |f | < W

0 if |f | > W

Table 1.1

Fourier Transform Properties

Time-Domain Frequency Domain

Linearity a1s1 (t) + a2s2 (t) a1S1 (f) + a2S2 (f)

Conjugate Symmetry s (t) ∈ R S (f) = S (−f)

Even Symmetry s (t) = s (−t) S (f) = S (−f)

Odd Symmetry s (t) = −s (−t) S (f) = −S (−f)

Scale Change s (at) 1
|a|S

(
f
a

)
Time Delay s (t− τ) e−(i2πfτ)S (f)

Complex Modulation ei2πf0ts (t) S (f − f0)

Amplitude Modulation by Cosine s (t) cos (2πf0t)
S(f−f0)+S(f+f0)

2

Amplitude Modulation by Sine s (t) sin (2πf0t)
S(f−f0)−S(f+f0)

2i

Di�erentiation d
dts (t) i2πfS (f)

Integration
∫ t
−∞ s (α) dα 1

i2πf S (f) if S (0) = 0

Multiplication by t ts (t) 1
−(i2π)

dS(f)
df

Area
∫∞
−∞ s (t) dt S (0)

Value at Origin s (0)
∫∞
−∞ S (f) df

Parseval's Theorem
∫∞
−∞ (|s (t) |)2

dt
∫∞
−∞ (|S (f) |)2

df

Table 1.2

Example 1.15
In communications, a very important operation on a signal s (t) is to amplitude modulate it.
Using this operation more as an example rather than elaborating the communications aspects here,
we want to compute the Fourier transform � the spectrum � of

(1 + s (t)) cos (2πfct)
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Thus,
(1 + s (t)) cos (2πfct) = cos (2πfct) + s (t) cos (2πfct)

For the spectrum of cos (2πfct), we use the Fourier series. Its period is 1
fc
, and its only nonzero

Fourier coe�cients are c±1 = 1
2 . The second term is not periodic unless s (t) has the same period

as the sinusoid. Using Euler's relation, the spectrum of the second term can be derived as

s (t) cos (2πfct) =

∫ ∞
−∞

S (f) ei2πftdfcos (2πfct)

Using Euler's relation for the cosine,

(s (t) cos (2πfct)) =
1

2

∫ ∞
−∞

S (f) ei2π(f+fc)tdf +
1

2

∫ ∞
−∞

S (f) ei2π(f−fc)tdf

(s (t) cos (2πfct)) =
1

2

∫ ∞
−∞

S (f − fc) ei2πftdf +
1

2

∫ ∞
−∞

S (f + fc) e
i2πftdf

(s (t) cos (2πfct)) =

∫ ∞
−∞

S (f − fc) + S (f + fc)

2
ei2πftdf

Exploiting the uniqueness property of the Fourier transform, we have

F (s (t) cos (2πfct)) =
S (f − fc) + S (f + fc)

2
(1.123)

This component of the spectrum consists of the original signal's spectrum delayed and advanced
in frequency. The spectrum of the amplitude modulated signal is shown in Figure 1.50.

S(f)

f
W–W

X(f)

f
–fc+W–fc–W fc+Wfc–W–fc fc

S(f–fc)S(f+fc)

Figure 1.50: A signal which has a triangular shaped spectrum is shown in the top plot. Its highest
frequency � the largest frequency containing power � isW Hz. Once amplitude modulated, the resulting
spectrum has "lines" corresponding to the Fourier series components at ± (fc) and the original triangular
spectrum shifted to components at ± (fc) and scaled by 1

2
.

Note how in this �gure the signal s (t) is de�ned in the frequency domain. To �nd its time
domain representation, we simply use the inverse Fourier transform.

Exercise 1.4.8.3 (Solution on p. 140.)

What is the signal s (t) that corresponds to the spectrum shown in the upper panel of Figure 1.50?
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Exercise 1.4.8.4 (Solution on p. 140.)

What is the power in x (t), the amplitude-modulated signal? Try the calculation in both the time
and frequency domains.

In this example, we call the signal s (t) a baseband signal because its power is contained at low frequencies.
Signals such as speech and the Dow Jones averages are baseband signals. The baseband signal's bandwidth
equalsW , the highest frequency at which it has power. Since x (t)'s spectrum is con�ned to a frequency band
not close to the origin (we assume fc � W ), we have a bandpass signal. The bandwidth of a bandpass
signal is not its highest frequency, but the range of positive frequencies where the signal has power. Thus,
in this example, the bandwidth is 2WHz. Why a signal's bandwidth should depend on its spectral shape
will become clear once we develop communications systems.

1.4.9 Linear Time Invariant Systems38

When we apply a periodic input to a linear, time-invariant system, the output is periodic and has Fourier
series coe�cients equal to the product of the system's frequency response and the input's Fourier coe�cients
(Filtering Periodic Signals (1.113)). The way we derived the spectrum of non-periodic signal from periodic
ones makes it clear that the same kind of result works when the input is not periodic: If x (t) serves as
the input to a linear, time-invariant system having frequency response H (f), the spectrum of
the output is X (f)H (f).

Example 1.16
Let's use this frequency-domain input-output relationship for linear, time-invariant systems to
�nd a formula for the RC-circuit's response to a pulse input. We have expressions for the input's
spectrum and the system's frequency response.

P (f) = e−(iπf∆) sin (πf∆)

πf
(1.124)

H (f) =
1

1 + i2πfRC
(1.125)

Thus, the output's Fourier transform equals

Y (f) = e−(iπf∆) sin (πf∆)

πf

1

1 + i2πfRC
(1.126)

You won't �nd this Fourier transform in our table, and the required integral is di�cult to evaluate
as the expression stands. This situation requires cleverness and an understanding of the Fourier
transform's properties. In particular, recall Euler's relation for the sinusoidal term and note the
fact that multiplication by a complex exponential in the frequency domain amounts to a time delay.
Let's momentarily make the expression for Y (f) more complicated.

e−(iπf∆) sin(πf∆)
πf = e−(iπf∆) eiπf∆−e−(iπf∆)

i2πf

= 1
i2πf

(
1− e−(i2πf∆)

) (1.127)

Consequently,

Y (f) =
1

i2πf

(
1− e−(iπf∆)

) 1

1 + i2πfRC
(1.128)

The table of Fourier transform properties (Table 1.2: Fourier Transform Properties) suggests
thinking about this expression as a product of terms.

• Multiplication by 1
i2πf means integration.

38This content is available online at <http://cnx.org/content/m0048/2.19/>.
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• Multiplication by the complex exponential e−(i2πf∆) means delay by ∆ seconds in the time
domain.

• The term 1− e−(i2πf∆) means, in the time domain, subtract the time-delayed signal from its
original.

• The inverse transform of the frequency response is 1
RC e

− t
RC u (t).

We can translate each of these frequency-domain products into time-domain operations in any
order we like because the order in which multiplications occur doesn't a�ect the result. Let's
start with the product of 1

i2πf (integration in the time domain) and the transfer function:

1

i2πf

1

1 + i2πfRC
↔
(

1− e− t
RC

)
u (t) (1.129)

The middle term in the expression for Y (f) consists of the di�erence of two terms: the constant
1 and the complex exponential e−(i2πf∆). Because of the Fourier transform's linearity, we simply
subtract the results.

Y (f)↔
(

1− e− t
RC

)
u (t)−

(
1− e−

t−∆
RC

)
u (t−∆) (1.130)

Note that in delaying the signal how we carefully included the unit step. The second term in this
result does not begin until t = ∆. Thus, the waveforms shown in the Filtering Periodic Signals
(Figure 1.48: Filtering a periodic signal) example mentioned above are exponentials. We say that
the time constant of an exponentially decaying signal equals the time it takes to decrease by 1

e
of its original value. Thus, the time-constant of the rising and falling portions of the output equal
the product of the circuit's resistance and capacitance.

Exercise 1.4.9.1 (Solution on p. 140.)

Derive the �lter's output by considering the terms in (1.127) in the order given. Integrate last
rather than �rst. You should get the same answer.

In this example, we used the table extensively to �nd the inverse Fourier transform, relying mostly on
what multiplication by certain factors, like 1

i2πf and e−(i2πf∆), meant. We essentially treated multiplication

by these factors as if they were transfer functions of some �ctitious circuit. The transfer function 1
i2πf

corresponded to a circuit that integrated, and e−(i2πf∆) to one that delayed. We even implicitly interpreted
the circuit's transfer function as the input's spectrum! This approach to �nding inverse transforms � breaking
down a complicated expression into products and sums of simple components � is the engineer's way of
breaking down the problem into several subproblems that are much easier to solve and then gluing the results
together. Along the way we may make the system serve as the input, but in the rule Y (f) = X (f)H (f),
which term is the input and which is the transfer function is merely a notational matter (we labeled one
factor with an X and the other with an H).

1.4.9.1 Transfer Functions

The notion of a transfer function applies well beyond linear circuits. Although we don't have all we need
to demonstrate the result as yet, all linear, time-invariant systems have a frequency-domain input-output
relation given by the product of the input's Fourier transform and the system's transfer function. Thus,
linear circuits are a special case of linear, time-invariant systems. As we tackle more sophisticated problems
in transmitting, manipulating, and receiving information, we will assume linear systems having certain
properties (transfer functions) without worrying about what circuit has the desired property. At this point,
you may be concerned that this approach is glib, and rightly so. Later we'll show that by involving software
that we really don't need to be concerned about constructing a transfer function from circuit elements and
op-amps.
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1.4.9.2 Commutative Transfer Functions

Another interesting notion arises from the commutative property of multiplication (exploited in an example
above (Example 1.16)): We can rather arbitrarily choose an order in which to apply each product. Consider
a cascade of two linear, time-invariant systems. Because the Fourier transform of the �rst system's output is
X (f)H1 (f) and it serves as the second system's input, the cascade's output spectrum is X (f)H1 (f)H2 (f).
Because this product also equals X (f)H2 (f)H1 (f), the cascade having the linear systems in the
opposite order yields the same result. Furthermore, the cascade acts like a single linear system, having
transfer function H1 (f)H2 (f). This result applies to other con�gurations of linear, time-invariant systems
as well; see this Frequency Domain Problem (Problem 1.13). Engineers exploit this property by determining
what transfer function they want, then breaking it down into components arranged according to standard
con�gurations. Using the fact that op-amp circuits can be connected in cascade with the transfer function
equaling the product of its component's transfer function (see this analog signal processing problem39), we
�nd a ready way of realizing designs. We now understand why op-amp implementations of transfer functions
are so important.

1.4.10 Frequency Domain Problems40

Problem 1.1: Simple Fourier Series
Find the complex Fourier series representations of the following signals without explicitly calculating Fourier
integrals. What is the signal's period in each case?

a) s (t) = sin (t)
b) s (t) = sin2 (t)
c) s (t) = cos (t) + 2cos (2t)
d) s (t) = cos (2t) cos (t)
e) s (t) = cos

(
10πt+ π

6

)
(1 + cos (2πt))

f) s (t) given by the depicted waveform (Figure 1.51).

t

s(t)
1

1
8

1
4 13

8

Figure 1.51

Problem 1.2: Fourier Series
Find the Fourier series representation for the following periodic signals (Figure 1.52). For the third signal,
�nd the complex Fourier series for the triangle wave without performing the usual Fourier integrals. Hint:
How is this signal related to one for which you already have the series?

39"Analog Signal Processing Problems", Problem 44 <http://cnx.org/content/m10349/latest/#i25>
40This content is available online at <http://cnx.org/content/m10350/2.43/>.
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t

s(t)

1 2 3

1

(a)

t

s(t)

1 2 3

1

(b)

t

s(t)

1 2 3

1

4

(c)

Figure 1.52

Problem 1.3: Phase Distortion
We can learn about phase distortion by returning to circuits and investigate the following circuit (Fig-
ure 1.53).
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+ –

1

1

+

–

1

1

vin(t)
vout(t)

Figure 1.53

a) Find this �lter's transfer function.
b) Find the magnitude and phase of this transfer function. How would you characterize this circuit?
c) Let vin (t) be a square-wave of period T . What is the Fourier series for the output voltage?
d) Use Matlab to �nd the output's waveform for the cases T = 0.01 and T = 2. What value of T delineates

the two kinds of results you found? The software in fourier2.m might be useful.
e) Instead of the depicted circuit, the square wave is passed through a system that delays its input, which

applies a linear phase shift to the signal's spectrum. Let the delay τ be T
4 . Use the transfer function

of a delay to compute using Matlab the Fourier series of the output. Show that the square wave is
indeed delayed.

Problem 1.4: Approximating Periodic Signals
Often, we want to approximate a reference signal by a somewhat simpler signal. To assess the quality of
an approximation, the most frequently used error measure is the mean-squared error. For a periodic signal
s (t),

ε2 =
1

T

∫ T

0

(s (t)− s̃ (t))
2
dt

where s (t) is the reference signal and s̃ (t) its approximation. One convenient way of �nding approximations
for periodic signals is to truncate their Fourier series.

s̃ (t) =

K∑
k=−K

cke
i 2πk
T t

The point of this problem is to analyze whether this approach is the best (i.e., always minimizes the mean-
squared error).

a) Find a frequency-domain expression for the approximation error when we use the truncated Fourier
series as the approximation.

b) Instead of truncating the series, let's generalize the nature of the approximation to including any set of
2K + 1 terms: We'll always include the c0 and the negative indexed term corresponding to ck. What
selection of terms minimizes the mean-squared error? Find an expression for the mean-squared error
resulting from your choice.

c) Find the Fourier series for the depicted signal (Figure 1.54). Use Matlab to �nd the truncated approx-
imation and best approximation involving two terms. Plot the mean-squared error as a function of K
for both approximations.
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1 2

1
s(t)

t

Figure 1.54

Problem 1.5: Long, Hot Days
The daily temperature is a consequence of several e�ects, one of them being the sun's heating. If this were
the dominant e�ect, then daily temperatures would be proportional to the number of daylight hours. The
plot (Figure 1.55) shows that the average daily high temperature does not behave that way.
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Figure 1.55

In this problem, we want to understand the temperature component of our environment using Fourier
series and linear system theory. The �le temperature.mat contains these data (daylight hours in the �rst
row, corresponding average daily highs in the second) for Houston, Texas.

a) Let the length of day serve as the sole input to a system having an output equal to the average daily
temperature. Examining the plots of input and output, would you say that the system is linear or not?
How did you reach you conclusion?
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b) Find the �rst �ve terms (c0, ... , c4) of the complex Fourier series for each signal. Use the following
formula that approximates the integral required to �nd the Fourier coe�cients.

ck =
1

366

366∑
n=0

s (n) e−(i 2πnk
366 )

c) What is the harmonic distortion in the two signals? Exclude c0 from this calculation.
d) Because the harmonic distortion is small, let's concentrate only on the �rst harmonic. What is the

phase shift between input and output signals?
e) Find the transfer function of the simplest possible linear model that would describe the data. Char-

acterize and interpret the structure of this model. In particular, give a physical explanation for the
phase shift.

f) Predict what the output would be if the model had no phase shift. Would days be hotter? If so, by
how much?

Problem 1.6: Fourier Transform Pairs
Find the Fourier or inverse Fourier transform of the following.

a) ∀t :
(
x (t) = e−(a|t|))

b) x (t) = te−(at)u (t)

c) X (f) =

 1 if |f | < W

0 if |f | > W

d) x (t) = e−(at)cos (2πf0t)u (t)

Problem 1.7: Duality in Fourier Transforms
"Duality" means that the Fourier transform and the inverse Fourier transform are very similar. Conse-
quently, the waveform s (t) in the time domain and the spectrum s (f) have a Fourier transform and an
inverse Fourier transform, respectively, that are very similar.

a) Calculate the Fourier transform of the signal shown below (Figure 1.56(a)).
b) Calculate the inverse Fourier transform of the spectrum shown below (Figure 1.56(b)).
c) How are these answers related? What is the general relationship between the Fourier transform of s (t)

and the inverse transform of s (f)?

t

s(t)1

1

(a)

f

S(f)1

1

(b)

Figure 1.56
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Problem 1.8: Spectra of Pulse Sequences
Pulse sequences occur often in digital communication and in other �elds as well. What are their spectral
properties?

a) Calculate the Fourier transform of the single pulse shown below (Figure 1.57(a)).
b) Calculate the Fourier transform of the two-pulse sequence shown below (Figure 1.57(b)).
c) Calculate the Fourier transform for the ten-pulse sequence shown in below (Figure 1.57(c)). You

should look for a general expression that holds for sequences of any length.
d) Using Matlab, plot the magnitudes of the three spectra. Describe how the spectra change as the

number of repeated pulses increases.

t

1

1 2

1

2

(a)

t

1

1 2

1

2

(b)

t

1

1 2

1

2

3 4 5 6 7 8 9

(c)

Figure 1.57

Problem 1.9: Spectra of Digital Communication Signals
One way to represent bits with signals is shown in Figure 1.58. If the value of a bit is a �1�, it is represented
by a positive pulse of duration T . If it is a �0�, it is represented by a negative pulse of the same duration.
To represent a sequence of bits, the appropriately chosen pulses are placed one after the other.
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t
T

t
T

Figure 1.58

a) What is the spectrum of the waveform that represents the alternating bit sequence �...01010101...�?
b) This signal's bandwidth is de�ned to be the frequency range over which 90% of the power is contained.

What is this signal's bandwidth?
c) Suppose the bit sequence becomes �...00110011...�. Now what is the bandwidth?

Problem 1.10: Lowpass Filtering a Square Wave
Let a square wave (period T ) serve as the input to a �rst-order lowpass system constructed as a RC �lter.
We want to derive an expression for the time-domain response of the �lter to this input.

a) First, consider the response of the �lter to a simple pulse, having unit amplitude and width T
2 . Derive

an expression for the �lter's output to this pulse.
b) Noting that the square wave is a superposition of a sequence of these pulses, what is the �lter's response

to the square wave?
c) The nature of this response should change as the relation between the square wave's period and the

�lter's cuto� frequency change. How long must the period be so that the response does not achieve
a relatively constant value between transitions in the square wave? What is the relation of the �lter's
cuto� frequency to the square wave's spectrum in this case?

Problem 1.11: Mathematics with Circuits
Simple circuits can implement simple mathematical operations, such as integration and di�erentiation. We
want to develop an active circuit (it contains an op-amp) having an output that is proportional to the
integral of its input. For example, you could use an integrator in a car to determine distance traveled from
the speedometer.

a) What is the transfer function of an integrator?
b) Find an op-amp circuit so that its voltage output is proportional to the integral of its input for all

signals.

Problem 1.12: Where is that sound coming from?
We determine where sound is coming from because we have two ears and a brain. Sound travels at a
relatively slow speed and our brain uses the fact that sound will arrive at one ear before the other. As shown
here (Figure 1.59), a sound coming from the right arrives at the left ear τ seconds after it arrives at the right
ear.
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τ

Sound
wave

s(t)s(t-τ)

Figure 1.59

Once the brain �nds this propagation delay, it can determine the sound direction. In an attempt to
model what the brain might do, RU signal processors want to design an optimal system that delays each
ear's signal by some amount then adds them together. ∆l and ∆r are the delays applied to the left and right
signals respectively. The idea is to determine the delay values according to some criterion that is based on
what is measured by the two ears.

a) What is the transfer function between the sound signal s (t) and the processor output y (t)?
b) One way of determining the delay τ is to choose ∆l and ∆r to maximize the power in y (t). How are

these maximum-power processing delays related to τ?

Problem 1.13: Arrangements of Systems
Architecting a system of modular components means arranging them in various con�gurations to achieve
some overall input-output relation. For each of the following (Figure 1.60), determine the overall transfer
function between x (t) and y (t).
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x(t) y(t)
H1(f) H2(f)

(a) system a

H1(f)

H2(f)

x(t)

x(t)

x(t)

y(t)

(b) system b

H1(f)
x(t) e(t) y(t)

H2(f)

–

(c) system c

Figure 1.60

The overall transfer function for the cascade (�rst depicted system) is particularly interesting. What
does it say about the e�ect of the ordering of linear, time-invariant systems in a cascade?

Problem 1.14: Filtering

Let the signal s (t) = sin(πt)
πt be the input to a linear, time-invariant �lter having the transfer function shown

below (Figure 1.61). Find the expression for y (t), the �lter's output.

f

H(f)

1
4

1
4

1

Figure 1.61
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Problem 1.15: Circuits Filter!
A unit-amplitude pulse with duration of one second serves as the input to an RC-circuit having transfer
function

H (f) =
i2πf

4 + i2πf

a) How would you categorize this transfer function: lowpass, highpass, bandpass, other?
b) Find a circuit that corresponds to this transfer function.
c) Find an expression for the �lter's output.

Problem 1.16: Reverberation
Reverberation corresponds to adding to a signal its delayed version.

a) Assuming τ represents the delay, what is the input-output relation for a reverberation system? Is
the system linear and time-invariant? If so, �nd the transfer function; if not, what linearity or time-
invariance criterion does reverberation violate.

b) A music group known as the ROwls is having trouble selling its recordings. The record company's
engineer gets the idea of applying di�erent delay to the low and high frequencies and adding the result
to create a new musical e�ect. Thus, the ROwls' audio would be separated into two parts (one less
than the frequency f0, the other greater than f0), these would be delayed by τl and τh respectively,
and the resulting signals added. Draw a block diagram for this new audio processing system, showing
its various components.

c) How does the magnitude of the system's transfer function depend on the two delays?

Problem 1.17: Echoes in Telephone Systems
A frequently encountered problem in telephones is echo. Here, because of acoustic coupling between the ear
piece and microphone in the handset, what you hear is also sent to the person talking. That person thus
not only hears you, but also hears her own speech delayed (because of propagation delay over the telephone
network) and attenuated (the acoustic coupling gain is less than one). Furthermore, the same problem
applies to you as well: The acoustic coupling occurs in her handset as well as yours.

a) Develop a block diagram that describes this situation.
b) Find the transfer function between your voice and what the listener hears.
c) Each telephone contains a system for reducing echoes using electrical means. What simple system

could null the echoes?

Problem 1.18: E�ective Drug Delivery
In most patients, it takes time for the concentration of an administered drug to achieve a constant level
in the blood stream. Typically, if the drug concentration in the patient's intravenous line is Cdu (t), the
concentration in the patient's blood stream is Cp

(
1− e−(at)

)
u (t).

a) Assuming the relationship between drug concentration in the patient's drug and the delivered concen-
tration can be described as a linear, time-invariant system, what is the transfer function?

b) Sometimes, the drug delivery system goes awry and delivers drugs with little control. What would the
patient's drug concentration be if the delivered concentration were a ramp? More precisely, if it were
Cdtu (t)?

c) A clever doctor wants to have the �exibility to slow down or speed up the patient's drug concentration.
In other words, the concentration is to be Cp

(
1− e−(bt)

)
u (t), with b bigger or smaller than a. How

should the delivered drug concentration signal be changed to achieve this concentration pro�le?
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Problem 1.19: Catching Speeders with Radar
RU Electronics has been contracted to design a Doppler radar system. Radar transmitters emit a signal that
bounces o� any conducting object. Signal di�erences between what is sent and the radar return is processed
and features of interest extracted. In Doppler systems, the object's speed along the direction of the radar
beam is the feature the design must extract. The transmitted signal is a sinsusoid: x (t) = Acos (2πfct).
The measured return signal equals Bcos (2π ((fc + ∆f) t+ ϕ)), where the Doppler o�set frequency ∆f equals
10v, where v is the car's velocity coming toward the transmitter.

a) Design a system that uses the transmitted and return signals as inputs and produces ∆f.
b) One problem with designs based on overly simplistic design goals is that they are sensitive to unmodeled

assumptions. How would you change your design, if at all, so that whether the car is going away or
toward the transmitter could be determined?

c) Suppose two objects traveling di�erent speeds provide returns. How would you change your design, if
at all, to accomodate multiple returns?

Problem 1.20: Demodulating an AM Signal
Let m (t) denote the signal that has been amplitude modulated.

x (t) = A (1 +m (t)) sin (2πfct)

Radio stations try to restrict the amplitude of the signal m (t) so that it is less than one in magnitude. The
frequency fc is very large compared to the frequency content of the signal. What we are concerned about
here is not transmission, but reception.

a) The so-called coherent demodulator simply multiplies the signal x (t) by a sinusoid having the same
frequency as the carrier and lowpass �lters the result. Analyze this receiver and show that it works.
Assume the lowpass �lter is ideal.

b) One issue in coherent reception is the phase of the sinusoid used by the receiver relative to that used
by the transmitter. Assuming that the sinusoid of the receiver has a phase φ, how does the output
depend on φ? What is the worst possible value for this phase?

c) The incoherent receiver is more commonly used because of the phase sensitivity problem inherent in
coherent reception. Here, the receiver full-wave recti�es the received signal and lowpass �lters the
result (again ideally). Analyze this receiver. Does its output di�er from that of the coherent receiver
in a signi�cant way?

Problem 1.21: Unusual Amplitude Modulation
We want to send a band-limited signal having the depicted spectrum (Figure 1.62(a)) with amplitude mod-
ulation in the usual way. I.B. Di�erent suggests using the square-wave carrier shown below (Figure 1.62(b)).
Well, it is di�erent, but his friends wonder if any technique can demodulate it.

a) Find an expression for X (f), the Fourier transform of the modulated signal.
b) Sketch the magnitude of X (f), being careful to label important magnitudes and frequencies.
c) What demodulation technique obviously works?
d) I.B. challenges three of his friends to demodulate x (t) some other way. One friend suggests modulating

x (t) with cos
(
πt
2

)
, another wants to try modulating with cos (πt) and the third thinks cos

(
3πt
2

)
will

work. Sketch the magnitude of the Fourier transform of the signal each student's approach produces.
Which student comes closest to recovering the original signal? Why?

Available for free at Connexions <http://cnx.org/content/col10631/1.3>



75

1/4

S(f)

f

1

/4

(a)

t

1

1 3

(b)

Figure 1.62

Problem 1.22: Sammy Falls Asleep...
While sitting in ELEC 241 class, he falls asleep during a critical time when an AM receiver is being described.
The received signal has the form r (t) = A (1 +m (t)) cos (2πfct+ φ) where the phase φ is unknown. The
message signal is m (t); it has a bandwidth of W Hz and a magnitude less than 1 (|m (t) | < 1). The phase φ
is unknown. The instructor drew a diagram (Figure 1.63) for a receiver on the board; Sammy slept through
the description of what the unknown systems where.

r(t)

cos 2πfct

sin 2πfct

LPF
W Hz

LPF
W Hz

?

?

xc(t)

xs(t)

?

Figure 1.63

a) What are the signals xc (t) and xs (t)?
b) What would you put in for the unknown systems that would guarantee that the �nal output contained

the message regardless of the phase?

Hint: Think of a trigonometric identity that would prove useful.

c) Sammy may have been asleep, but he can think of a far simpler receiver. What is it?
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Problem 1.23: Jamming
Sid Richardson college decides to set up its own AM radio station KSRR. The resident electrical engineer
decides that she can choose any carrier frequency and message bandwidth for the station. A rival college
decides to jam its transmissions by transmitting a high-power signal that interferes with radios that try to
receive KSRR. The jamming signal jam (t) is what is known as a sawtooth wave (depicted in Figure 1.64)
having a period known to KSRR's engineer.

… …

t

jam(t)

T 2T–T

A

Figure 1.64

a) Find the spectrum of the jamming signal.
b) Can KSRR entirely circumvent the attempt to jam it by carefully choosing its carrier frequency and

transmission bandwidth? If so, �nd the station's carrier frequency and transmission bandwidth in
terms of T , the period of the jamming signal; if not, show why not.

Problem 1.24: AM Stereo
A stereophonic signal consists of a "left" signal l (t) and a "right" signal r (t) that conveys sounds coming
from an orchestra's left and right sides, respectively. To transmit these two signals simultaneously, the
transmitter �rst forms the sum signal s+ (t) = l (t) + r (t) and the di�erence signal s− (t) = l (t) − r (t).
Then, the transmitter amplitude-modulates the di�erence signal with a sinusoid having frequency 2W , where
W is the bandwidth of the left and right signals. The sum signal and the modulated di�erence signal are
added, the sum amplitude-modulated to the radio station's carrier frequency fc, and transmitted. Assume
the spectra of the left and right signals are as shown (Figure 1.65).

–W W

L(f)

f
–W W

R(f)

f

Figure 1.65

a) What is the expression for the transmitted signal? Sketch its spectrum.
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b) Show the block diagram of a stereo AM receiver that can yield the left and right signals as separate
outputs.

c) What signal would be produced by a conventional coherent AM receiver that expects to receive a
standard AM signal conveying a message signal having bandwidth W?

Problem 1.25: Novel AM Stereo Method
A clever engineer has submitted a patent for a new method for transmitting two signals simultaneously
in the same transmission bandwidth as commercial AM radio. As shown (Figure 1.66), her approach is to
modulate the positive portion of the carrier with one signal and the negative portion with a second.
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Figure 1.66

In detail the two message signalsm1 (t) andm2 (t) are bandlimited toW Hz and have maximal amplitudes
equal to 1. The carrier has a frequency fc much greater than W . The transmitted signal x (t) is given by

x (t) =

 A (1 + am1 (t)) sin (2πfct) if sin (2πfct) ≥ 0

A (1 + am2 (t)) sin (2πfct) if sin (2πfct) < 0

In all cases, 0 < a < 1. The plot shows the transmitted signal when the messages are sinusoids: m1 (t) =
sin (2πfmt) and m2 (t) = sin (2π2fmt) where 2fm < W . You, as the patent examiner, must determine
whether the scheme meets its claims and is useful.

a) Provide a more concise expression for the transmitted signal x (t) than given above.
b) What is the receiver for this scheme? It would yield both m1 (t) and m2 (t) from x (t).
c) Find the spectrum of the positive portion of the transmitted signal.
d) Determine whether this scheme satis�es the design criteria, allowing you to grant the patent. Explain

your reasoning.
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Problem 1.26: A Radical Radio Idea
An ELEC 241 student has the bright idea of using a square wave instead of a sinusoid as an AM carrier.
The transmitted signal would have the form

x (t) = A (1 +m (t)) sqT (t)

where the message signal m (t) would be amplitude-limited: |m (t) | < 1

a) Assuming the message signal is lowpass and has a bandwidth of W Hz, what values for the square
wave's period T are feasible. In other words, do some combinations of W and T prevent reception?

b) Assuming reception is possible, can standard radios receive this innovative AM transmission? If so,
show how a coherent receiver could demodulate it; if not, show how the coherent receiver's output
would be corrupted. Assume that the message bandwidth W = 5 kHz.

Problem 1.27: Secret Communication
An amplitude-modulated secret message m (t) has the following form.

r (t) = A (1 +m (t)) cos (2π (fc + f0) t)

The message signal has a bandwidth of W Hz and a magnitude less than 1 (|m (t) | < 1). The idea is to
o�set the carrier frequency by f0 Hz from standard radio carrier frequencies. Thus, "o�-the-shelf" coherent
demodulators would assume the carrier frequency has fc Hz. Here, f0 < W .

a) Sketch the spectrum of the demodulated signal produced by a coherent demodulator tuned to fc Hz.
b) Will this demodulated signal be a �scrambled� version of the original? If so, how so; if not, why not?
c) Can you develop a receiver that can demodulate the message without knowing the o�set frequency fc?

Problem 1.28: Signal Scrambling
An excited inventor announces the discovery of a way of using analog technology to render music unlistenable
without knowing the secret recovery method. The idea is to modulate the bandlimited message m (t) by a
special periodic signal s (t) that is zero during half of its period, which renders the message unlistenable and
super�cially, at least, unrecoverable (Figure 1.67).

s(t)

t
T

1

2
T

4
T

Figure 1.67

a) What is the Fourier series for the periodic signal?
b) What are the restrictions on the period T so that the message signal can be recovered from m (t) s (t)?
c) ELEC 241 students think they have "broken" the inventor's scheme and are going to announce it to

the world. How would they recover the original message without having detailed knowledge of the
modulating signal?
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1.5 Continuous Time Fourier Transform (CTFT)

1.5.1 Continuous Time Fourier Transform (CTFT)41

1.5.1.1 Introduction

In this module, we will derive an expansion for any arbitrary continuous-time function, and in doing so,
derive the Continuous Time Fourier Transform (CTFT).

Since complex exponentials (Section 1.1.5) are eigenfunctions of linear time-invariant (LTI) systems42,
calculating the output of an LTI system H given est as an input amounts to simple multiplication, where
H (s) ∈ C is the eigenvalue corresponding to s. As shown in the �gure, a simple exponential input would
yield the output

y (t) = H (s) est (1.131)

Using this and the fact that H is linear, calculating y (t) for combinations of complex exponentials is also
straightforward.

c1e
s1t + c2e

s2t → c1H (s1) es1t + c2H (s2) es2t

∑
n

cne
snt →

∑
n

cnH (sn) esnt

The action of H on an input such as those in the two equations above is easy to explain. H inde-
pendently scales each exponential component esnt by a di�erent complex number H (sn) ∈ C. As such, if
we can write a function f (t) as a combination of complex exponentials it allows us to easily calculate the
output of a system.

Now, we will look to use the power of complex exponentials to see how we may represent arbitrary signals
in terms of a set of simpler functions by superposition of a number of complex exponentials. Below we will
present the Continuous-Time Fourier Transform (CTFT), commonly referred to as just the Fourier
Transform (FT). Because the CTFT deals with nonperiodic signals, we must �nd a way to include all real
frequencies in the general equations. For the CTFT we simply utilize integration over real numbers rather
than summation over integers in order to express the aperiodic signals.

1.5.1.2 Fourier Transform Synthesis

Joseph Fourier43 demonstrated that an arbitrary s (t) can be written as a linear combination of harmonic
complex sinusoids

s (t) =

∞∑
n=−∞

cne
jω0nt (1.132)

where ω0 = 2π
T is the fundamental frequency. For almost all s (t) of practical interest, there exists cn to make

(1.132) true. If s (t) is �nite energy ( s (t) ∈ L2 [0, T ]), then the equality in (1.132) holds in the sense of energy
convergence; if s (t) is continuous, then (1.132) holds pointwise. Also, if s (t) meets some mild conditions
(the Dirichlet conditions), then (1.132) holds pointwise everywhere except at points of discontinuity.

The cn - called the Fourier coe�cients - tell us "how much" of the sinusoid ejω0nt is in s (t). The formula
shows s (t) as a sum of complex exponentials, each of which is easily processed by an LTI system (since it
is an eigenfunction of every LTI system). Mathematically, it tells us that the set of complex exponentials{
∀n, n ∈ Z :

(
ejω0nt

)}
form a basis for the space of T-periodic continuous time functions.

41This content is available online at <http://cnx.org/content/m10098/2.17/>.
42"Eigenfunctions of LTI Systems" <http://cnx.org/content/m10500/latest/>
43http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Fourier.html
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1.5.1.2.1 Equations

Now, in order to take this useful tool and apply it to arbitrary non-periodic signals, we will have to delve
deeper into the use of the superposition principle. Let sT (t) be a periodic signal having period T . We want
to consider what happens to this signal's spectrum as the period goes to in�nity. We denote the spectrum
for any assumed value of the period by cn (T ). We calculate the spectrum according to the Fourier formula
for a periodic signal, known as the Fourier Series (for more on this derivation, see the section on Fourier
Series.)

cn =
1

T

∫ T

0

s (t) exp (−ßω0t) dt (1.133)

where ω0 = 2π
T and where we have used a symmetric placement of the integration interval about the origin

for subsequent derivational convenience. We vary the frequency index n proportionally as we increase the
period. De�ne

ST (f) ≡ Tcn =
1

T

∫ T

0

(ST (f) exp (ßω0t) dt(1.134)

making the corresponding Fourier Series

sT (t) =

∞∑
−∞

f (t) exp (ßω0t)
1

T
(1.135)

As the period increases, the spectral lines become closer together, becoming a continuum. Therefore,

lim
T→∞

sT (t) ≡ s (t) =

∞∫
−∞

S (f) exp (ßω0t) df (1.136)

with

S (f) =

∞∫
−∞

s (t) exp (−ßω0t) dt (1.137)

Continuous-Time Fourier Transform

F (Ω) =

∫ ∞
−∞

f (t) e−(iΩt)dt (1.138)

Inverse CTFT

f (t) =
1

2π

∫ ∞
−∞
F (Ω) eiΩtdΩ (1.139)

warning: It is not uncommon to see the above formula written slightly di�erent. One of the most
common di�erences is the way that the exponential is written. The above equations use the radial
frequency variable Ω in the exponential, where Ω = 2πf , but it is also common to include the more
explicit expression, i2πft, in the exponential. Click here44 for an overview of the notation used in
Connexion's DSP modules.

Example 1.17
We know from Euler's formula that cos (ωt) + sin (ωt) = 1−j

2 ejωt + 1+j
2 e−jωt.

44"DSP notation" <http://cnx.org/content/m10161/latest/>
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1.5.1.3 CTFT De�nition Demonstration

Figure 1.68: Interact (when online) with a Mathematica CDF demonstrating Continuous Time Fourier
Transform. To Download, right-click and save as .cdf.

1.5.1.4 Example Problems

Exercise 1.5.1.1 (Solution on p. 140.)

Find the Fourier Transform (CTFT) of the function

f (t) =

 e−(αt) if t ≥ 0

0 otherwise
(1.140)

Exercise 1.5.1.2 (Solution on p. 140.)

Find the inverse Fourier transform of the ideal lowpass �lter de�ned by

X (Ω) =

 1 if |Ω| ≤M
0 otherwise

(1.141)

1.5.1.5 Fourier Transform Summary

Because complex exponentials are eigenfunctions of LTI systems, it is often useful to represent signals using
a set of complex exponentials as a basis. The continuous time Fourier series synthesis formula expresses a
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continuous time, periodic function as the sum of continuous time, discrete frequency complex exponentials.

f (t) =

∞∑
n=−∞

cne
jω0nt (1.142)

The continuous time Fourier series analysis formula gives the coe�cients of the Fourier series expansion.

cn =
1

T

∫ T

0

f (t) e−(jω0nt)dt (1.143)

In both of these equations ω0 = 2π
T is the fundamental frequency.

1.5.2 Properties of the CTFT45

1.5.2.1 Introduction

This module will look at some of the basic properties of the Continuous-Time Fourier Transform (Sec-
tion 1.5.1) (CTFT).

note: We will be discussing these properties for aperiodic, continuous-time signals but understand
that very similar properties hold for discrete-time signals and periodic signals as well.

1.5.2.2 Discussion of Fourier Transform Properties

1.5.2.2.1 Linearity

The combined addition and scalar multiplication properties in the table above demonstrate the basic property
of linearity. What you should see is that if one takes the Fourier transform of a linear combination of signals
then it will be the same as the linear combination of the Fourier transforms of each of the individual signals.
This is crucial when using a table (Section 1.8.7) of transforms to �nd the transform of a more complicated
signal.

Example 1.18
We will begin with the following signal:

z (t) = af1 (t) + bf2 (t) (1.144)

Now, after we take the Fourier transform, shown in the equation below, notice that the linear
combination of the terms is una�ected by the transform.

Z (ω) = aF1 (ω) + bF2 (ω) (1.145)

1.5.2.2.2 Symmetry

Symmetry is a property that can make life quite easy when solving problems involving Fourier transforms.
Basically what this property says is that since a rectangular function in time is a sinc function in frequency,
then a sinc function in time will be a rectangular function in frequency. This is a direct result of the similarity
between the forward CTFT and the inverse CTFT. The only di�erence is the scaling by 2π and a frequency
reversal.

45This content is available online at <http://cnx.org/content/m10100/2.16/>.

Available for free at Connexions <http://cnx.org/content/col10631/1.3>



83

1.5.2.2.3 Time Scaling

This property deals with the e�ect on the frequency-domain representation of a signal if the time variable
is altered. The most important concept to understand for the time scaling property is that signals that are
narrow in time will be broad in frequency and vice versa. The simplest example of this is a delta function,
a unit pulse46 with a very small duration, in time that becomes an in�nite-length constant function in
frequency.

The table above shows this idea for the general transformation from the time-domain to the frequency-
domain of a signal. You should be able to easily notice that these equations show the relationship mentioned
previously: if the time variable is increased then the frequency range will be decreased.

1.5.2.2.4 Time Shifting

Time shifting shows that a shift in time is equivalent to a linear phase shift in frequency. Since the frequency
content depends only on the shape of a signal, which is unchanged in a time shift, then only the phase
spectrum will be altered. This property is proven below:

Example 1.19
We will begin by letting z (t) = f (t− τ). Now let us take the Fourier transform with the previous
expression substituted in for z (t).

Z (ω) =

∫ ∞
−∞

f (t− τ) e−(iωt)dt (1.146)

Now let us make a simple change of variables, where σ = t − τ . Through the calculations below,
you can see that only the variable in the exponential are altered thus only changing the phase in
the frequency domain.

Z (ω) =
∫∞
−∞ f (σ) e−(iω(σ+τ)t)dτ

= e−(iωτ)
∫∞
−∞ f (σ) e−(iωσ)dσ

= e−(iωτ)F (ω)

(1.147)

1.5.2.2.5 Convolution

Convolution is one of the big reasons for converting signals to the frequency domain, since convolution in
time becomes multiplication in frequency. This property is also another excellent example of symmetry
between time and frequency. It also shows that there may be little to gain by changing to the frequency
domain when multiplication in time is involved.

We will introduce the convolution integral here, but if you have not seen this before or need to refresh
your memory, then look at the continuous-time convolution (Section 1.3.1) module for a more in depth
explanation and derivation.

y (t) = (f1 (t) , f2 (t))

=
∫∞
−∞ f1 (τ) f2 (t− τ) dτ

(1.148)

46"Elemental Signals": Section Pulse <http://cnx.org/content/m0004/latest/#pulsedef>
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1.5.2.2.6 Time Di�erentiation

Since LTI (Section 1.2.1) systems can be represented in terms of di�erential equations, it is apparent with
this property that converting to the frequency domain may allow us to convert these complicated di�erential
equations to simpler equations involving multiplication and addition. This is often looked at in more detail
during the study of the Laplace Transform47.

1.5.2.2.7 Parseval's Relation

∫ ∞
−∞

(|f (t) |)2
dt =

∫ ∞
−∞

(|F (ω) |)2
df (1.149)

Parseval's relation tells us that the energy of a signal is equal to the energy of its Fourier transform.

Figure 1.69

1.5.2.2.8 Modulation (Frequency Shift)

Modulation is absolutely imperative to communications applications. Being able to shift a signal to a di�erent
frequency, allows us to take advantage of di�erent parts of the electromagnetic spectrum is what allows us
to transmit television, radio and other applications through the same space without signi�cant interference.

The proof of the frequency shift property is very similar to that of the time shift (Section 1.5.2.2.4: Time
Shifting); however, here we would use the inverse Fourier transform in place of the Fourier transform. Since
we went through the steps in the previous, time-shift proof, below we will just show the initial and �nal step
to this proof:

z (t) =
1

2π

∫ ∞
−∞

F (ω − φ) eiωtdω (1.150)

Now we would simply reduce this equation through another change of variables and simplify the terms.
Then we will prove the property expressed in the table above:

z (t) = f (t) eiφt (1.151)

1.5.2.3 Properties Demonstration

An interactive example demonstration of the properties is included below:

47"The Laplace Transform" <http://cnx.org/content/m10110/latest/>
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This media object is a LabVIEW VI. Please view or download it at
<CTFTSPlab.llb>

Figure 1.70: Interactive Signal Processing Laboratory Virtual Instrument created using NI's Labview.

1.5.2.4 Summary Table of CTFT Properties

Operation Name Signal ( f (t) ) Transform ( F (ω) )

Linearity (Section 1.5.2.2.1: Lin-
earity)

a (f1, t) + b (f2, t) a (F1, ω) + b (F2, ω)

Scalar Multiplication (Sec-
tion 1.5.2.2.1: Linearity)

αf (t) αF (ω)

Symmetry (Section 1.5.2.2.2:
Symmetry)

F (t) 2πf (−ω)

Time Scaling (Section 1.5.2.2.3:
Time Scaling)

f (αt) 1
|α|F

(
ω
α

)
Time Shift (Section 1.5.2.2.4:
Time Shifting)

f (t− τ) F (ω) e−(iωτ)

Convolution in Time (Sec-
tion 1.5.2.2.5: Convolution)

(f1 (t) , f2 (t)) F1 (t)F2 (t)

Convolution in Frequency (Sec-
tion 1.5.2.2.5: Convolution)

f1 (t) f2 (t) 1
2π (F1 (t) , F2 (t))

Di�erentiation (Section 1.5.2.2.6:
Time Di�erentiation)

dn

dtn f (t) (iω)
n
F (ω)

Parseval's Theorem (Sec-
tion 1.5.2.2.7: Parseval's Re-
lation)

∫∞
−∞ (|f (t) |)2

dt
∫∞
−∞ (|F (ω) |)2

df

Modulation (Frequency Shift)
(Section 1.5.2.2.8: Modulation
(Frequency Shift))

f (t) eiφt F (ω − φ)

Table 1.3: Table of Fourier Transform Properties

1.6 Sampling theory

1.6.1 Introduction48

Contents of Sampling chapter

• Introduction(Current module)
• Proof (Section 1.6.2)

48This content is available online at <http://cnx.org/content/m11419/1.29/>.
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• Illustrations (Section 1.6.3)
• Matlab Example49

• Hold operation50

• System view (Section 1.6.4)
• Aliasing applet51

• Exercises52

• Table of formulas53

1.6.1.1 Why sample?

This section introduces sampling. Sampling is the necessary fundament for all digital signal processing and
communication. Sampling can be de�ned as the process of measuring an analog signal at distinct points.

Digital representation of analog signals o�ers advantages in terms of

• robustness towards noise, meaning we can send more bits/s
• use of �exible processing equipment, in particular the computer
• more reliable processing equipment
• easier to adapt complex algorithms

1.6.1.2 Claude E. Shannon

Figure 1.71: Claude Elwood Shannon (1916-2001)

Claude Shannon54 has been called the father of information theory, mainly due to his landmark papers on the
"Mathematical theory of communication"55 . Harry Nyquist56 was the �rst to state the sampling theorem

49"Sampling and reconstruction with Matlab" <http://cnx.org/content/m11549/latest/>
50"Hold operation" <http://cnx.org/content/m11458/latest/>
51"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
52"Exercises" <http://cnx.org/content/m11442/latest/>
53"Table of Formulas" <http://cnx.org/content/m11450/latest/>
54http://www.research.att.com/∼njas/doc/ces5.html
55http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
56http://www.wikipedia.org/wiki/Harry_Nyquist
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in 1928, but it was not proven until Shannon proved it 21 years later in the paper "Communications in the
presence of noise"57 .

1.6.1.3 Notation

In this chapter we will be using the following notation

• Original analog signal x (t)
• Sampling frequency Fs
• Sampling interval Ts (Note that: Fs = 1

Ts
)

• Sampled signal xs (n). (Note that xs (n) = x (nTs))
• Real angular frequency Ω
• Digital angular frequency ω. (Note that: ω = ΩTs)

1.6.1.4 The Sampling Theorem

note: When sampling an analog signal the sampling frequency must be greater than twice the
highest frequency component of the analog signal to be able to reconstruct the original signal from
the sampled version.

1.6.1.5

Finished? Have at look at: Proof (Section 1.6.2); Illustrations (Section 1.6.3); Matlab Example58; Aliasing
applet59; Hold operation60; System view (Section 1.6.4); Exercises61

1.6.2 Proof62

note: In order to recover the signal x (t) from it's samples exactly, it is necessary to sample x (t)
at a rate greater than twice it's highest frequency component.

1.6.2.1 Introduction

As mentioned earlier (p. 86), sampling is the necessary fundament when we want to apply digital signal
processing on analog signals.

Here we present the proof of the sampling theorem. The proof is divided in two. First we �nd an
expression for the spectrum of the signal resulting from sampling the original signal x (t). Next we show
that the signal x (t) can be recovered from the samples. Often it is easier using the frequency domain when
carrying out a proof, and this is also the case here.

Key points in the proof

• We �nd an equation (1.159) for the spectrum of the sampled signal
• We �nd a simple method to reconstruct (1.165) the original signal
• The sampled signal has a periodic spectrum...
• ...and the period is 2× πFs

57http://www.stanford.edu/class/ee104/shannonpaper.pdf
58"Sampling and reconstruction with Matlab" <http://cnx.org/content/m11549/latest/>
59"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
60"Hold operation" <http://cnx.org/content/m11458/latest/>
61"Exercises" <http://cnx.org/content/m11442/latest/>
62This content is available online at <http://cnx.org/content/m11423/1.27/>.
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1.6.2.2 Proof part 1 - Spectral considerations

By sampling x (t) every Ts second we obtain xs (n). The inverse fourier transform of this time discrete
signal63 is

xs (n) =
1

2π

∫ π

−π
Xs

(
eiω
)
eiωndω (1.152)

For convenience we express the equation in terms of the real angular frequency Ω using ω = ΩTs. We then
obtain

xs (n) =
Ts
2π

∫ π
Ts

−π
Ts

Xs

(
eiΩTs

)
eiΩTsndΩ (1.153)

The inverse fourier transform of a continuous signal is

x (t) =
1

2π

∫ ∞
−∞

X (iΩ) eiΩtdΩ (1.154)

From this equation we �nd an expression for x (nTs)

x (nTs) =
1

2π

∫ ∞
−∞

X (iΩ) eiΩnTsdΩ (1.155)

To account for the di�erence in region of integration we split the integration in (1.155) into subintervals of
length 2π

Ts
and then take the sum over the resulting integrals to obtain the complete area.

x (nTs) =
1

2π

∞∑
k=−∞

∫ (2k+1)π
Ts

(2k−1)π
Ts

X (iΩ) eiΩnTsdΩ (1.156)

Then we change the integration variable, setting Ω = η + 2×πk
Ts

x (nTs) =
1

2π

∞∑
k=−∞

∫ π
Ts

−π
Ts

X

(
i

(
η +

2× πk
Ts

))
ei(η+ 2×πk

Ts
)nTsdη (1.157)

We obtain the �nal form by observing that ei2×πkn = 1, reinserting η = Ω and multiplying by Ts
Ts

x (nTs) =
Ts
2π

∫ π
Ts

−π
Ts

∞∑
k=−∞

1

Ts
X

(
i

(
Ω +

2× πk
Ts

))
eiΩnTsdΩ (1.158)

To make xs (n) = x (nTs) for all values of n, the integrands in (1.153) and (1.158) have to agreee, that is

Xs

(
eiΩTs

)
=

1

Ts

∞∑
k=−∞

X

(
i

(
Ω +

2πk

Ts

))
(1.159)

This is a central result. We see that the digital spectrum consists of a sum of shifted versions of the original,
analog spectrum. Observe the periodicity!

We can also express this relation in terms of the digital angular frequency ω = ΩTs

Xs

(
eiω
)

=
1

Ts

∞∑
k=−∞

X

(
i
ω + 2× πk

Ts

)
(1.160)

This concludes the �rst part of the proof. Now we want to �nd a reconstruction formula, so that we can
recover x (t) from xs (n).

63"Discrete time signals" <http://cnx.org/content/m11476/latest/>
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1.6.2.3 Proof part II - Signal reconstruction

For a bandlimited (Figure 1.73) signal the inverse fourier transform is

x (t) =
1

2π

∫ π
Ts

−π
Ts

X (iΩ) eiΩtdΩ (1.161)

In the interval we are integrating we have: Xs

(
eiΩTs

)
= X(iΩ)

Ts
. Substituting this relation into (1.161) we

get

x (t) =
Ts
2π

∫ π
Ts

−π
Ts

Xs

(
eiΩTs

)
eiΩtdΩ (1.162)

Using the DTFT64 relation for Xs

(
eiΩTs

)
we have

x (t) =
Ts
2π

∫ π
Ts

−π
Ts

∞∑
n=−∞

xs (n) e−(iΩnTs)eiΩtdΩ (1.163)

Interchanging integration and summation (under the assumption of convergence) leads to

x (t) =
Ts
2π

∞∑
n=−∞

xs (n)

∫ π
Ts

−π
Ts

eiΩ(t−nTs)dΩ (1.164)

Finally we perform the integration and arrive at the important reconstruction formula

x (t) =

∞∑
n=−∞

xs (n)
sin
(
π
Ts

(t− nTs)
)

π
Ts

(t− nTs)
(1.165)

(Thanks to R.Loos for pointing out an error in the proof.)

64"Table of Formulas" <http://cnx.org/content/m11450/latest/>
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1.6.2.4 Summary

note: Xs

(
eiΩTs

)
= 1

Ts

∑∞
k=−∞X

(
i
(

Ω + 2πk
Ts

))

note: x (t) =
∑∞
n=−∞ xs (n)

sin( π
Ts

(t−nTs))
π
Ts

(t−nTs)

1.6.2.5

Go to Introduction (Section 1.6.1); Illustrations (Section 1.6.3); Matlab Example65; Hold operation66; Alias-
ing applet67; System view (Section 1.6.4); Exercises68 ?

1.6.3 Illustrations69

In this module we illustrate the processes involved in sampling and reconstruction. To see how all these
processes work together as a whole, take a look at the system view (Section 1.6.4). In Sampling and
reconstruction with Matlab70 we provide a Matlab script for download. The matlab script shows the process
of sampling and reconstruction live.

1.6.3.1 Basic examples

Example 1.20
To sample an analog signal with 3000 Hz as the highest frequency component requires sampling
at 6000 Hz or above.

Example 1.21
The sampling theorem can also be applied in two dimensions, i.e. for image analysis. A 2D
sampling theorem has a simple physical interpretation in image analysis: Choose the sampling
interval such that it is less than or equal to half of the smallest interesting detail in the image.

1.6.3.2 The process of sampling

We start o� with an analog signal. This can for example be the sound coming from your stereo at home or
your friend talking.

The signal is then sampled uniformly. Uniform sampling implies that we sample every Ts seconds. In
Figure 1.72 we see an analog signal. The analog signal has been sampled at times t = nTs.

65"Sampling and reconstruction with Matlab" <http://cnx.org/content/m11549/latest/>
66"Hold operation" <http://cnx.org/content/m11458/latest/>
67"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
68"Exercises" <http://cnx.org/content/m11442/latest/>
69This content is available online at <http://cnx.org/content/m11443/1.33/>.
70"Sampling and reconstruction with Matlab" <http://cnx.org/content/m11549/latest/>
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Figure 1.72: Analog signal, samples are marked with dots.

In signal processing it is often more convenient and easier to work in the frequency domain. So let's look
at at the signal in frequency domain, Figure 1.73. For illustration purposes we take the frequency content
of the signal as a triangle. (If you Fourier transform the signal in Figure 1.72 you will not get such a nice
triangle.)

Figure 1.73: The spectrum X (iΩ).

Notice that the signal in Figure 1.73 is bandlimited. We can see that the signal is bandlimited because

Available for free at Connexions <http://cnx.org/content/col10631/1.3>
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X (iΩ) is zero outside the interval [−Ωg,Ωg]. Equivalentely we can state that the signal has no angular

frequencies above Ωg, corresponding to no frequencies above Fg =
Ωg
2π .

Now let's take a look at the sampled signal in the frequency domain. While proving (Section 1.6.2) the
sampling theorem we found the the spectrum of the sampled signal consists of a sum of shifted versions of
the analog spectrum. Mathematically this is described by the following equation:

Xs

(
eiΩTs

)
=

1

Ts

∞∑
k=−∞

X

(
i

(
Ω +

2πk

Ts

))
(1.166)

1.6.3.2.1 Sampling fast enough

In Figure 1.74 we show the result of sampling x (t) according to the sampling theorem (Section 1.6.1.4: The
Sampling Theorem). This means that when sampling the signal in Figure 1.72/Figure 1.73 we use Fs ≥ 2Fg.
Observe in Figure 1.74 that we have the same spectrum as in Figure 1.73 for Ω ∈ [−Ωg,Ωg], except for the
scaling factor 1

Ts
. This is a consequence of the sampling frequency. As mentioned in the proof (Key points

in the proof, p. 87) the spectrum of the sampled signal is periodic with period 2πFs = 2π
Ts
.

Figure 1.74: The spectrum Xs. Sampling frequency is OK.

So now we are, according to the sample theorem (Section 1.6.1.4: The Sampling Theorem), able to recon-
struct the original signal exactly. How we can do this will be explored further down under reconstruction
(Section 1.6.3.3: Reconstruction). But �rst we will take a look at what happens when we sample too slowly.

1.6.3.2.2 Sampling too slowly

If we sample x (t) too slowly, that is Fs < 2Fg, we will get overlap between the repeated spectra, see
Figure 1.75. According to (1.166) the resulting spectra is the sum of these. This overlap gives rise to the
concept of aliasing.

note: If the sampling frequency is less than twice the highest frequency component, then frequen-
cies in the original signal that are above half the sampling rate will be "aliased" and will appear in
the resulting signal as lower frequencies.

The consequence of aliasing is that we cannot recover the original signal, so aliasing has to be avoided.
Sampling too slowly will produce a sequence xs (n) that could have orginated from a number of signals.
So there is no chance of recovering the original signal. To learn more about aliasing, take a look at this
module71. (Includes an applet for demonstration!)

71"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
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Figure 1.75: The spectrum Xs. Sampling frequency is too low.

To avoid aliasing we have to sample fast enough. But if we can't sample fast enough (possibly due to
costs) we can include an Anti-Aliasing �lter. This will not able us to get an exact reconstruction but can
still be a good solution.

note: Typically a low-pass �lter that is applied before sampling to ensure that no components
with frequencies greater than half the sample frequency remain.

Example 1.22
The stagecoach e�ect

In older western movies you can observe aliasing on a stagecoach when it starts to roll. At �rst
the spokes appear to turn forward, but as the stagecoach increase its speed the spokes appear to
turn backward. This comes from the fact that the sampling rate, here the number of frames per
second, is too low. We can view each frame as a sample of an image that is changing continuously
in time. (Applet illustrating the stagecoach e�ect72 )

1.6.3.3 Reconstruction

Given the signal in Figure 1.74 we want to recover the original signal, but the question is how?
When there is no overlapping in the spectrum, the spectral component given by k = 0 (see (1.166)),is

equal to the spectrum of the analog signal. This o�ers an oppurtunity to use a simple reconstruction process.
Remember what you have learned about �ltering. What we want is to change signal in Figure 1.74 into
that of Figure 1.73. To achieve this we have to remove all the extra components generated in the sampling
process. To remove the extra components we apply an ideal analog low-pass �lter as shown in Figure 1.76
As we see the ideal �lter is rectangular in the frequency domain. A rectangle in the frequency domain
corresponds to a sinc73 function in time domain (and vice versa).

72http://�owers.ofthenight.org/wagonWheel/wagonWheel.html
73http://ccrma-www.stanford.edu/∼jos/Interpolation/sinc_function.html
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Figure 1.76: H (iΩ) The ideal reconstruction �lter.

Then we have reconstructed the original spectrum, and as we know if two signals are identical in
the frequency domain, they are also identical in the time domain. End of reconstruction.

1.6.3.4 Conclusions

The Shannon sampling theorem requires that the input signal prior to sampling is band-limited to at most
half the sampling frequency. Under this condition the samples give an exact signal representation. It is truly
remarkable that such a broad and useful class signals can be represented that easily!

We also looked into the problem of reconstructing the signals form its samples. Again the simplicity of
the principle is striking: linear �ltering by an ideal low-pass �lter will do the job. However, the ideal �lter
is impossible to create, but that is another story...

1.6.3.5

Go to? Introduction (Section 1.6.1); Proof (Section 1.6.2); Illustrations (Section 1.6.3); Matlab Example74;
Aliasing applet75; Hold operation76; System view (Section 1.6.4); Exercises77

1.6.4 Systems view of sampling and reconstruction78

1.6.4.1 Ideal reconstruction system

Figure 1.77 shows the ideal reconstruction system based on the results of the Sampling theorem proof
(Section 1.6.2).

Figure 1.77 consists of a sampling device which produces a time-discrete sequence xs (n). The recon-

struction �lter, h (t), is an ideal analog sinc79 �lter, with h (t) = sinc
(
t
Ts

)
. We can't apply the time-discrete

sequence xs (n) directly to the analog �lter h (t). To solve this problem we turn the sequence into an analog
signal using delta functions80. Thus we write xs (t) =

∑∞
n=−∞ xs (n) δ (t− nT ).

74"Sampling and reconstruction with Matlab" <http://cnx.org/content/m11549/latest/>
75"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
76"Hold operation" <http://cnx.org/content/m11458/latest/>
77"Exercises" <http://cnx.org/content/m11442/latest/>
78This content is available online at <http://cnx.org/content/m11465/1.20/>.
79http://ccrma-www.stanford.edu/∼jos/Interpolation/sinc_function.html
80"Table of Formulas" <http://cnx.org/content/m11450/latest/>
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Figure 1.77: Ideal reconstruction system

But when will the system produce an output x̂ (t) = x (t)? According to the sampling theorem (Sec-
tion 1.6.1.4: The Sampling Theorem) we have x̂ (t) = x (t) when the sampling frequency, Fs, is at least twice
the highest frequency component of x (t).

1.6.4.2 Ideal system including anti-aliasing

To be sure that the reconstructed signal is free of aliasing it is customary to apply a lowpass �lter, an
anti-aliasing �lter (p. 93), before sampling as shown in Figure 1.78.

Figure 1.78: Ideal reconstruction system with anti-aliasing �lter (p. 93)

Again we ask the question of when the system will produce an output x̂ (t) = s (t)? If the signal is entirely
con�ned within the passband of the lowpass �lter we will get perfect reconstruction if Fs is high enough.

But if the anti-aliasing �lter removes the "higher" frequencies, (which in fact is the job of the anti-aliasing
�lter), we will never be able to exactly reconstruct the original signal, s (t). If we sample fast enough we
can reconstruct x (t), which in most cases is satisfying.

The reconstructed signal, x̂ (t), will not have aliased frequencies. This is essential for further use of the
signal.

1.6.4.3 Reconstruction with hold operation

To make our reconstruction system realizable there are many things to look into. Among them are the fact
that any practical reconstruction system must input �nite length pulses into the reconstruction �lter. This
can be accomplished by the hold operation81. To alleviate the distortion caused by the hold opeator we
apply the output from the hold device to a compensator. The compensation can be as accurate as we wish,
this is cost and application consideration.

81"Hold operation" <http://cnx.org/content/m11458/latest/>
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Figure 1.79: More practical reconstruction system with a hold component82

By the use of the hold component the reconstruction will not be exact, but as mentioned above we can
get as close as we want.

1.6.4.4

Introduction (Section 1.6.1); Proof (Section 1.6.2); Illustrations (Section 1.6.3); Matlab example83; Hold
operation84; Aliasing applet85; Exercises86

1.6.5 Sampling CT Signals: A Frequency Domain Perspective87

1.6.5.1 Understanding Sampling in the Frequency Domain

We want to relate xc (t) directly to x [n]. Compute the CTFT of

xs (t) =

∞∑
n=−∞

xc (nT ) δ (t− nT )

Xs (Ω) =
∫∞
−∞

∑∞
n=−∞ xc (nT ) δ (t− nT ) e(−i)Ωtdt

=
∑∞
n=−∞ xc (nT )

∫∞
−∞ δ (t− nT ) e(−i)Ωtdt

=
∑∞
n=−∞ x [n] e(−i)ΩnT

=
∑∞
n=−∞ x [n] e(−i)ωn

= X (ω)

(1.167)

where ω ≡ ΩT and X (ω) is the DTFT of x [n].

note:

Xs (Ω) =
1

T

∞∑
k=−∞

Xc (Ω− kΩs)

X (ω) = 1
T

∑∞
k=−∞Xc (Ω− kΩs)

= 1
T

∑∞
k=−∞Xc

(
ω−2πk
T

) (1.168)

where this last part is 2π-periodic.

82"Hold operation" <http://cnx.org/content/m11458/latest/>
83"Sampling and reconstruction with Matlab" <http://cnx.org/content/m11549/latest/>
84"Hold operation" <http://cnx.org/content/m11458/latest/>
85"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
86"Exercises" <http://cnx.org/content/m11442/latest/>
87This content is available online at <http://cnx.org/content/m10994/2.2/>.
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1.6.5.1.1 Sampling

Figure 1.80

Example 1.23: Speech
Speech is intelligible if bandlimited by a CT lowpass �lter to the band ±4 kHz. We can sample
speech as slowly as _____?

Available for free at Connexions <http://cnx.org/content/col10631/1.3>
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Figure 1.81

Figure 1.82: Note that there is no mention of T or Ωs!

1.6.5.2 Relating x[n] to sampled x(t)

Recall the following equality:

xs (t) =
∑
nn

x (nT ) δ (t− nT )

Available for free at Connexions <http://cnx.org/content/col10631/1.3>
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Figure 1.83

Recall the CTFT relation:

x (αt)↔ 1

α
X

(
Ω

α

)
(1.169)

where α is a scaling of time and 1
α is a scaling in frequency.

Xs (Ω) ≡ X (ΩT ) (1.170)

1.7 Time Domain Analysis of Discrete Time Systems

1.7.1 Discrete-Time Systems in the Time-Domain88

A discrete-time signal s (n) is delayed by n0 samples when we write s (n− n0), with n0 > 0. Choosing n0

to be negative advances the signal along the integers. As opposed to analog delays89, discrete-time delays
can only be integer valued. In the frequency domain, delaying a signal corresponds to a linear phase shift
of the signal's discrete-time Fourier transform: s (n− n0)↔ e−(i2πfn0)S

(
ei2πf

)
.

Linear discrete-time systems have the superposition property.

S (a1x1 (n) + a2x2 (n)) = a1S (x1 (n)) + a2S (x2 (n)) (1.171)

88This content is available online at <http://cnx.org/content/m10251/2.25/>.
89"Simple Systems": Section Delay <http://cnx.org/content/m0006/latest/#delay>
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A discrete-time system is called shift-invariant (analogous to time-invariant analog systems90) if delaying
the input delays the corresponding output. If S (x (n)) = y (n), then a shift-invariant system has the property

S (x (n− n0)) = y (n− n0) (1.172)

We use the term shift-invariant to emphasize that delays can only have integer values in discrete-time, while
in analog signals, delays can be arbitrarily valued.

We want to concentrate on systems that are both linear and shift-invariant. It will be these that allow us
the full power of frequency-domain analysis and implementations. Because we have no physical constraints
in "constructing" such systems, we need only a mathematical speci�cation. In analog systems, the di�er-
ential equation speci�es the input-output relationship in the time-domain. The corresponding discrete-time
speci�cation is the di�erence equation.

y (n) = a1y (n− 1) + · · ·+ apy (n− p) + b0x (n) + b1x (n− 1) + · · ·+ bqx (n− q) (1.173)

Here, the output signal y (n) is related to its past values y (n− l), l = {1, . . . , p}, and to the current and
past values of the input signal x (n). The system's characteristics are determined by the choices for the
number of coe�cients p and q and the coe�cients' values {a1, . . . , ap} and {b0, b1, . . . , bq}.

aside: There is an asymmetry in the coe�cients: where is a0? This coe�cient would multiply the
y (n) term in (1.173). We have essentially divided the equation by it, which does not change the
input-output relationship. We have thus created the convention that a0 is always one.

As opposed to di�erential equations, which only provide an implicit description of a system (we must
somehow solve the di�erential equation), di�erence equations provide an explicit way of computing the
output for any input. We simply express the di�erence equation by a program that calculates each output
from the previous output values, and the current and previous inputs.

Di�erence equations are usually expressed in software with for loops. A MATLAB program that would
compute the �rst 1000 values of the output has the form

for n=1:1000

y(n) = sum(a.*y(n-1:-1:n-p)) + sum(b.*x(n:-1:n-q));

end

An important detail emerges when we consider making this program work; in fact, as written it has (at least)
two bugs. What input and output values enter into the computation of y (1)? We need values for y (0),
y (−1), ..., values we have not yet computed. To compute them, we would need more previous values of the
output, which we have not yet computed. To compute these values, we would need even earlier values, ad
in�nitum. The way out of this predicament is to specify the system's initial conditions: we must provide
the p output values that occurred before the input started. These values can be arbitrary, but the choice
does impact how the system responds to a given input. One choice gives rise to a linear system: Make the
initial conditions zero. The reason lies in the de�nition of a linear system91: The only way that the output
to a sum of signals can be the sum of the individual outputs occurs when the initial conditions in each case
are zero.

Exercise 1.7.1.1 (Solution on p. 141.)

The initial condition issue resolves making sense of the di�erence equation for inputs that start at
some index. However, the program will not work because of a programming, not conceptual, error.
What is it? How can it be "�xed?"

90"Simple Systems" <http://cnx.org/content/m0006/latest/#para4wra>
91"Simple Systems": Section Linear Systems <http://cnx.org/content/m0006/latest/#linearsys>
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Example 1.24
Let's consider the simple system having p = 1 and q = 0.

y (n) = ay (n− 1) + bx (n) (1.174)

To compute the output at some index, this di�erence equation says we need to know what the
previous output y (n− 1) and what the input signal is at that moment of time. In more detail, let's
compute this system's output to a unit-sample input: x (n) = δ (n). Because the input is zero for
negative indices, we start by trying to compute the output at n = 0.

y (0) = ay (−1) + b (1.175)

What is the value of y (−1)? Because we have used an input that is zero for all negative indices, it
is reasonable to assume that the output is also zero. Certainly, the di�erence equation would not
describe a linear system92 if the input that is zero for all time did not produce a zero output. With
this assumption, y (−1) = 0, leaving y (0) = b. For n > 0, the input unit-sample is zero, which
leaves us with the di�erence equation ∀n, n > 0 : (y (n) = ay (n− 1)). We can envision how the
�lter responds to this input by making a table.

y (n) = ay (n− 1) + bδ (n) (1.176)

n x (n) y (n)

−1 0 0

0 1 b

1 0 ba

2 0 ba2

: 0 :

n 0 ban

Table 1.4

Coe�cient values determine how the output behaves. The parameter b can be any value, and
serves as a gain. The e�ect of the parameter a is more complicated (Table 1.4). If it equals zero,
the output simply equals the input times the gain b. For all non-zero values of a, the output
lasts forever; such systems are said to be IIR (In�nite Impulse Response). The reason for this
terminology is that the unit sample also known as the impulse (especially in analog situations), and
the system's response to the "impulse" lasts forever. If a is positive and less than one, the output
is a decaying exponential. When a = 1, the output is a unit step. If a is negative and greater
than −1, the output oscillates while decaying exponentially. When a = −1, the output changes
sign forever, alternating between b and −b. More dramatic e�ects when |a| > 1; whether positive
or negative, the output signal becomes larger and larger, growing exponentially.

92"Simple Systems": Section Linear Systems <http://cnx.org/content/m0006/latest/#linearsys>
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1

n

y(n)
a = 0.5, b = 1

n

-1

1

y(n)
a = –0.5, b = 1

n
0

2

4

y(n)
a = 1.1, b = 1

x(n)

n

n

Figure 1.84: The input to the simple example system, a unit sample, is shown at the top, with the
outputs for several system parameter values shown below.

Positive values of a are used in population models to describe how population size increases
over time. Here, n might correspond to generation. The di�erence equation says that the number
in the next generation is some multiple of the previous one. If this multiple is less than one, the
population becomes extinct; if greater than one, the population �ourishes. The same di�erence
equation also describes the e�ect of compound interest on deposits. Here, n indexes the times at
which compounding occurs (daily, monthly, etc.), a equals the compound interest rate plus one,
and b = 1 (the bank provides no gain). In signal processing applications, we typically require that
the output remain bounded for any input. For our example, that means that we restrict |a| < 1
and choose values for it and the gain according to the application.

Exercise 1.7.1.2 (Solution on p. 141.)

Note that the di�erence equation (1.173),

y (n) = a1y (n− 1) + · · ·+ apy (n− p) + b0x (n) + b1x (n− 1) + · · ·+ bqx (n− q)

does not involve terms like y (n+ 1) or x (n+ 1) on the equation's right side. Can such terms also
be included? Why or why not?

y(n)

n

1
5

Figure 1.85: The plot shows the unit-sample response of a length-5 boxcar �lter.
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Example 1.25
A somewhat di�erent system has no "a" coe�cients. Consider the di�erence equation

y (n) =
1

q
(x (n) + · · ·+ x (n− q + 1)) (1.177)

Because this system's output depends only on current and previous input values, we need not
be concerned with initial conditions. When the input is a unit-sample, the output equals 1

q for

n = {0, . . . , q − 1}, then equals zero thereafter. Such systems are said to be FIR (Finite Impulse
Response) because their unit sample responses have �nite duration. Plotting this response (Fig-
ure 1.85) shows that the unit-sample response is a pulse of width q and height 1

q . This waveform
is also known as a boxcar, hence the name boxcar �lter given to this system. We'll derive its
frequency response and develop its �ltering interpretation in the next section. For now, note that
the di�erence equation says that each output value equals the average of the input's current and
previous values. Thus, the output equals the running average of input's previous q values. Such a
system could be used to produce the average weekly temperature (q = 7) that could be updated
daily.

[Media Object]93

1.7.2 Discrete Time Convolution94

1.7.2.1 Introduction

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output a system produces for a given input signal. It can be shown that a linear time invariant system is
completely characterized by its impulse response. The sifting property of the discrete time impulse function
tells us that the input signal to a system can be represented as a sum of scaled and shifted unit impulses.
Thus, by linearity, it would seem reasonable to compute of the output signal as the sum of scaled and shifted
unit impulse responses. That is exactly what the operation of convolution accomplishes. Hence, convolution
can be used to determine a linear time invariant system's output from knowledge of the input and the impulse
response.

1.7.2.2 Convolution and Circular Convolution

1.7.2.2.1 Convolution

1.7.2.2.1.1 Operation De�nition

Discrete time convolution is an operation on two discrete time signals de�ned by the integral

(f ∗ g) [n] =

∞∑
k=−∞

f [k] g [n− k] (1.178)

for all signals f, g de�ned on Z. It is important to note that the operation of convolution is commutative,
meaning that

f ∗ g = g ∗ f (1.179)

93This media object is a LabVIEW VI. Please view or download it at
<DiscreteTimeSys.llb>

94This content is available online at <http://cnx.org/content/m10087/2.30/>.
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for all signals f, g de�ned on Z. Thus, the convolution operation could have been just as easily stated using
the equivalent de�nition

(f ∗ g) [n] =

∞∑
k=−∞

f [n− k] g [k] (1.180)

for all signals f, g de�ned on Z. Convolution has several other important properties not listed here but
explained and derived in a later module.

1.7.2.2.1.2 De�nition Motivation

The above operation de�nition has been chosen to be particularly useful in the study of linear time invariant
systems. In order to see this, consider a linear time invariant system H with unit impulse response h. Given
a system input signal x we would like to compute the system output signal H (x). First, we note that the
input can be expressed as the convolution

x [n] =

∞∑
k=−∞

x [k] δ [n− k] (1.181)

by the sifting property of the unit impulse function. By linearity

H (x [n]) =

∞∑
k=−∞

x [k]H (δ [n− k]) . (1.182)

Since H (δ [n− k]) is the shifted unit impulse response h [n− k], this gives the result

H (x [n]) =

∞∑
k=−∞

x [k]h [n− k] = (x ∗ h) [n] . (1.183)

Hence, convolution has been de�ned such that the output of a linear time invariant system is given by the
convolution of the system input with the system unit impulse response.

1.7.2.2.1.3 Graphical Intuition

It is often helpful to be able to visualize the computation of a convolution in terms of graphical processes.
Consider the convolution of two functions f, g given by

(f ∗ g) [n] =

∞∑
k=−∞

f [k] g [n− k] =

∞∑
k=−∞

f [n− k] g [k] . (1.184)

The �rst step in graphically understanding the operation of convolution is to plot each of the functions.
Next, one of the functions must be selected, and its plot re�ected across the k = 0 axis. For each real n, that
same function must be shifted left by n. The point-wise product of the two resulting plots is then computed,
and then all of the values are summed.

Example 1.26
Recall that the impulse response for a discrete time echoing feedback system with gain a is

h [n] = anu [n] , (1.185)

and consider the response to an input signal that is another exponential

x [n] = bnu [n] . (1.186)
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We know that the output for this input is given by the convolution of the impulse response with
the input signal

y [n] = x [n] ∗ h [n] . (1.187)

We would like to compute this operation by beginning in a way that minimizes the algebraic
complexity of the expression. However, in this case, each possible choice is equally simple. Thus,
we would like to compute

y [n] =

∞∑
k=−∞

aku [k] bn−ku [n− k] . (1.188)

The step functions can be used to further simplify this sum. Therefore,

y [n] = 0 (1.189)

for n < 0 and

y [n] =

n∑
k=0

[ab]
k

(1.190)

for n ≥ 0. Hence, provided ab 6= 1, we have that

y [n] = {
0 n < 0

1−(ab)n+1

1−(ab) n ≥ 0
. (1.191)

1.7.2.2.2 Circular Convolution

Discrete time circular convolution is an operation on two �nite length or periodic discrete time signals de�ned
by the sum

(f ~ g) [n] =

N−1∑
k=0

^
f [k]

^
g [n− k] (1.192)

for all signals f, g de�ned on Z [0, N − 1] where
^
f,
^
g are periodic extensions of f and g. It is important to

note that the operation of circular convolution is commutative, meaning that

f ~ g = g ~ f (1.193)

for all signals f, g de�ned on Z [0, N − 1]. Thus, the circular convolution operation could have been just as
easily stated using the equivalent de�nition

(f ~ g) [n] =

N−1∑
k=0

^
f [n− k]

^
g [k] (1.194)

for all signals f, g de�ned on Z [0, N − 1] where
^
f,
^
g are periodic extensions of f and g. Circular convolution

has several other important properties not listed here but explained and derived in a later module.
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Alternatively, discrete time circular convolution can be expressed as the sum of two summations given
by

(f ~ g) [n] =

n∑
k=0

f [k] g [n− k] +

N−1∑
k=n+1

f [k] g [n− k +N ] (1.195)

for all signals f, g de�ned on Z [0, N − 1].
Meaningful examples of computing discrete time circular convolutions in the time domain would involve

complicated algebraic manipulations dealing with the wrap around behavior, which would ultimately be
more confusing than helpful. Thus, none will be provided in this section. Of course, example computations
in the time domain are easy to program and demonstrate. However, disrete time circular convolutions are
more easily computed using frequency domain tools as will be shown in the discrete time Fourier series
section.

1.7.2.2.2.1 De�nition Motivation

The above operation de�nition has been chosen to be particularly useful in the study of linear time invariant
systems. In order to see this, consider a linear time invariant system H with unit impulse response h. Given
a periodic system input signal x we would like to compute the system output signal H (x). First, we note
that the input can be expressed as the circular convolution

x [n] =

N−1∑
k=0

^
x [k]

^
δ [n− k] (1.196)

by the sifting property of the unit impulse function. By linearity,

H (x [n]) =

N−1∑
k=0

^
x [k]H

(
^
δ [n− k]

)
. (1.197)

Since H (δ [n− k]) is the shifted unit impulse response h [n− k], this gives the result

H (x [n]) =

N−1∑
k=0

^
x [k]

^
h [n− k] = (x~ h) [n] . (1.198)

Hence, circular convolution has been de�ned such that the output of a linear time invariant system is given
by the convolution of the system input with the system unit impulse response.

1.7.2.2.2.2 Graphical Intuition

It is often helpful to be able to visualize the computation of a circular convolution in terms of graphical
processes. Consider the circular convolution of two �nite length functions f, g given by

(f ~ g) [n] =

N−1∑
k=0

^
f [k]

^
g [n− k] =

N−1∑
k=0

^
f [n− k]

^
g [k] . (1.199)

The �rst step in graphically understanding the operation of convolution is to plot each of the periodic
extensions of the functions. Next, one of the functions must be selected, and its plot re�ected across the
k = 0 axis. For each n ∈ Z [0, N − 1], that same function must be shifted left by n. The point-wise product
of the two resulting plots is then computed, and �nally all of these values are summed.
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1.7.2.3 Interactive Element

Figure 1.86: Interact (when online) with the Mathematica CDF demonstrating Discrete Linear Con-
volution. To download, right click and save �le as .cdfAvailable for free at Connexions <http://cnx.org/content/col10631/1.3>
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1.7.2.4 Convolution Summary

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output signal of a linear time invariant system for a given input signal with knowledge of the system's unit
impulse response. The operation of discrete time convolution is de�ned such that it performs this function
for in�nite length discrete time signals and systems. The operation of discrete time circular convolution is
de�ned such that it performs this function for �nite length and periodic discrete time signals. In each case,
the output of the system is the convolution or circular convolution of the input signal with the unit impulse
response.

1.7.3 Discrete Time Circular Convolution and the DTFS95

1.7.3.1 Introduction

This module relates circular convolution of periodic signals in one domain to multiplication in the other
domain.

You should be familiar with Discrete-Time Convolution (Section 1.7.2), which tells us that given two
discrete-time signals x [n], the system's input, and h [n], the system's response, we de�ne the output of the
system as

y [n] = x [n] ∗ h [n]

=
∑∞
k=−∞ x [k]h [n− k]

(1.200)

When we are given two DFTs (�nite-length sequences usually of length N), we cannot just multiply them
together as we do in the above convolution formula, often referred to as linear convolution. Because the
DFTs are periodic, they have nonzero values for n ≥ N and thus the multiplication of these two DFTs will be
nonzero for n ≥ N . We need to de�ne a new type of convolution operation that will result in our convolved
signal being zero outside of the range n = {0, 1, . . . , N − 1}. This idea led to the development of circular
convolution, also called cyclic or periodic convolution.

1.7.3.2 Signal Circular Convolution

Given a signal f [n] with Fourier coe�cients ck and a signal g [n] with Fourier coe�cients dk, we can de�ne
a new signal, v [n], where v [n] = f [n] ~ g [n] We �nd that the Fourier Series96 representation of v [n], ak,
is such that ak = ckdk. f [n] ~ g [n] is the circular convolution (Section 1.7.3) of two periodic signals and is

equivalent to the convolution over one interval, i.e. f [n] ~ g [n] =
∑N
n=0

∑N
η=0 f [η] g [n− η].

note: Circular convolution in the time domain is equivalent to multiplication of the Fourier
coe�cients.

This is proved as follows

ak = 1
N

∑N
n=0 v [n] e−(jω0kn)

= 1
N2

∑N
n=0

∑N
η=0 f [η] g [n− η] e−(ωj0kn)

= 1
N

∑N
η=0 f [η]

(
1
N

∑N
n=0 g [n− η] e−(jω0kn)

)
= ∀ν, ν = n− η :

(
1
N

∑N
η=0 f [η]

(
1
N

∑N−η
ν=−η g [ν] e−(jω0(ν+η))

))
= 1

N

∑N
η=0 f [η]

(
1
N

∑N−η
ν=−η g [ν] e−(jω0kν)

)
e−(jω0kη)

= 1
N

∑N
η=0 f [η] dke

−(jω0kη)

= dk

(
1
N

∑N
η=0 f [η] e−(jω0kη)

)
= ckdk

(1.201)

95This content is available online at <http://cnx.org/content/m10786/2.16/>.
96"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>
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1.7.3.2.1 Circular Convolution Formula

What happens when we multiply two DFT's together, where Y [k] is the DFT of y [n]?

Y [k] = F [k]H [k] (1.202)

when 0 ≤ k ≤ N − 1
Using the DFT synthesis formula for y [n]

y [n] =
1

N

N−1∑
k=0

F [k]H [k] ej
2π
N kn (1.203)

And then applying the analysis formula F [k] =
∑N−1
m=0 f [m] e(−j) 2π

N kn

y [n] = 1
N

∑N−1
k=0

∑N−1
m=0 f [m] e(−j) 2π

N knH [k] ej
2π
N kn

=
∑N−1
m=0 f [m]

(
1
N

∑N−1
k=0 H [k] ej

2π
N k(n−m)

) (1.204)

where we can reduce the second summation found in the above equation into h [((n−m))N ] =
1
N

∑N−1
k=0 H [k] ej

2π
N k(n−m) y [n] =

∑N−1
m=0 f [m]h [((n−m))N ] which equals circular convolution! When we

have 0 ≤ n ≤ N − 1 in the above, then we get:

y [n] ≡ f [n] ~ h [n] (1.205)

note: The notation ~ represents cyclic convolution "mod N".

1.7.3.2.1.1 Alternative Convolution Formula

Alternative Circular Convolution Algorithm

• Step 1: Calculate the DFT of f [n] which yields F [k] and calculate the DFT of h [n] which yields H [k].
• Step 2: Pointwise multiply Y [k] = F [k]H [k]
• Step 3: Inverse DFT Y [k] which yields y [n]

Seems like a roundabout way of doing things, but it turns out that there are extremely fast ways to
calculate the DFT of a sequence.

To circularily convolve 2 N -point sequences: y [n] =
∑N−1
m=0 f [m]h [((n−m))N ] For each n : N multiples,

N − 1 additions
N points implies N2 multiplications, N (N − 1) additions implies O

(
N2
)
complexity.

1.7.3.2.2 Steps for Circular Convolution

We can picture periodic97 sequences as having discrete points on a circle as the domain

97"Continuous Time Periodic Signals" <http://cnx.org/content/m10744/latest/>
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Figure 1.87

Shifting by m, f (n+m), corresponds to rotating the cylinder m notches ACW (counter clockwise). For
m = −2, we get a shift equal to that in the following illustration:

Figure 1.88: for m = −2
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Figure 1.89

To cyclic shift we follow these steps:
1) Write f (n) on a cylinder, ACW

Figure 1.90: N = 8
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2) To cyclic shift by m, spin cylinder m spots ACW

f [n]→ f [((n+m))N ]

Figure 1.91: m = −3

1.7.3.2.2.1 Notes on circular shifting

f [((n+N))N ] = f [n] Spinning N spots is the same as spinning all the way around, or not spinning at all.
f [((n+N))N ] = f [((n− (N −m)))N ] Shifting ACW m is equivalent to shifting CW N −m
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Figure 1.92

f [((−n))N ] The above expression, simply writes the values of f [n] clockwise.

(a) (b)

Figure 1.93: (a) f [n] (b) f
[
((−n))N

]
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Example 1.27: Convolve (n = 4)

(a) (b)

Figure 1.94: Two discrete-time signals to be convolved.

• h [((− (m () ()N ]

Figure 1.95

Multiply f [m] and sum to yield: y [0] = 3

• h [((1 (− (m () ()N ]

Figure 1.96

Multiply f [m] and sum to yield: y [1] = 5

• h [((2 (− (m () ()N ]
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Figure 1.97

Multiply f [m] and sum to yield: y [2] = 3

• h [((3 (− (m () ()N ]

Figure 1.98

Multiply f [m] and sum to yield: y [3] = 1

1.7.3.2.3 Exercise

Take a look at a square pulse with a period of T.

For this signal ck =


1
N if k = 0

1
2

sin(π2 k)
π
2 k

otherwise

Take a look at a triangle pulse train with a period of T.
This signal is created by circularly convolving the square pulse with itself. The Fourier coe�cients for

this signal are ak = ck
2 = 1

4
sin2

(π2 k)

Exercise 1.7.3.1 (Solution on p. 141.)

Find the Fourier coe�cients of the signal that is created when the square pulse and the triangle
pulse are convolved.

1.7.3.3 Circular Shifts and the DFT

Theorem 1.2: Circular Shifts and DFT
If f [n]

DFT↔ F [k] then f [((n−m))N ]
DFT↔ e−(i 2π

N km)F [k] (i.e. circular shift in time domain =
phase shift in DFT)
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Proof:

f [n] =
1

N

N−1∑
k=0

F [k] ei
2π
N kn (1.206)

so phase shifting the DFT

f [n] = 1
N

∑N−1
k=0 F [k] e−(i 2π

N kn)ei
2π
N kn

= 1
N

∑N−1
k=0 F [k] ei

2π
N k(n−m)

= f [((n−m))N ]

(1.207)

1.7.3.4 Circular Convolution Demonstration

Figure 1.99: Interact (when online) with a Mathematica CDF demonstrating Circular Shifts.

1.7.3.5 Conclusion

Circular convolution in the time domain is equivalent to multiplication of the Fourier coe�cients in the
frequency domain.
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1.8 Discrete Time Fourier Transform (DTFT)

1.8.1 Discrete Time Fourier Transform (DTFT)98

1.8.1.1 Introduction

In this module, we will derive an expansion for arbitrary discrete-time functions, and in doing so, derive the
Discrete Time Fourier Transform (DTFT).

Since complex exponentials (Section 1.1.5) are eigenfunctions of linear time-invariant (LTI) systems99,
calculating the output of an LTI system H given eiωn as an input amounts to simple multiplication, where
ω0 = 2πk

N , and where H [k] ∈ C is the eigenvalue corresponding to k. As shown in the �gure, a simple
exponential input would yield the output

y [n] = H [k] eiωn (1.208)

Figure 1.100: Simple LTI system.

Using this and the fact that H is linear, calculating y [n] for combinations of complex exponentials is
also straightforward.

c1e
iω1n + c2e

iω2n → c1H [k1] eiω1n + c2H [k2] eiω1n

∑
l

cle
iωln →

∑
l

clH [kl] e
iωln

The action of H on an input such as those in the two equations above is easy to explain. H inde-
pendently scales each exponential component eiωln by a di�erent complex number H [kl] ∈ C. As such, if
we can write a function y [n] as a combination of complex exponentials it allows us to easily calculate the
output of a system.

Now, we will look to use the power of complex exponentials to see how we may represent arbitrary signals
in terms of a set of simpler functions by superposition of a number of complex exponentials. Below we will
present the Discrete-Time Fourier Transform (DTFT). Because the DTFT deals with nonperiodic
signals, we must �nd a way to include all real frequencies in the general equations. For the DTFT we simply
utilize summation over all real numbers rather than summation over integers in order to express the aperiodic
signals.

98This content is available online at <http://cnx.org/content/m10108/2.18/>.
99"Eigenfunctions of LTI Systems" <http://cnx.org/content/m10500/latest/>
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1.8.1.2 DTFT synthesis

It can be demonstrated that an arbitrary Discrete Time-periodic function f [n] can be written as a linear
combination of harmonic complex sinusoids

f [n] =

N−1∑
k=0

cke
iω0kn (1.209)

where ω0 = 2π
N is the fundamental frequency. For almost all f [n] of practical interest, there exists cn to

make (1.209) true. If f [n] is �nite energy ( f [n] ∈ L2 [0, N ]), then the equality in (1.209) holds in the sense
of energy convergence; with discrete-time signals, there are no concerns for divergence as there are with
continuous-time signals.

The cn - called the Fourier coe�cients - tell us "how much" of the sinusoid ejω0kn is in f [n]. The formula
shows f [n] as a sum of complex exponentials, each of which is easily processed by an LTI system (since it
is an eigenfunction of every LTI system). Mathematically, it tells us that the set of complex exponentials{
∀k, k ∈ Z :

(
ejω0kn

)}
form a basis for the space of N-periodic discrete time functions.

1.8.1.2.1 Equations

Now, in order to take this useful tool and apply it to arbitrary non-periodic signals, we will have to delve
deeper into the use of the superposition principle. Let sT (t) be a periodic signal having period T . We want
to consider what happens to this signal's spectrum as the period goes to in�nity. We denote the spectrum
for any assumed value of the period by cn (T ). We calculate the spectrum according to the Fourier formula
for a periodic signal, known as the Fourier Series (for more on this derivation, see the section on Fourier
Series.)

cn =
1

T

∫ T

0

s (t) exp (−ßω0t) dt (1.210)

where ω0 = 2π
T and where we have used a symmetric placement of the integration interval about the origin

for subsequent derivational convenience. We vary the frequency index n proportionally as we increase the
period. De�ne

ST (f) ≡ Tcn =
1

T

∫ T

0

(ST (f) exp (ßω0t) dt(1.211)

making the corresponding Fourier Series

sT (t) =

∞∑
−∞

f (t) exp (ßω0t)
1

T
(1.212)

As the period increases, the spectral lines become closer together, becoming a continuum. Therefore,

lim
T→∞

sT (t) ≡ s (t) =

∞∫
−∞

S (f) exp (ßω0t) df (1.213)

with

S (f) =

∞∫
−∞

s (t) exp (−ßω0t) dt (1.214)

Discrete-Time Fourier Transform

F (ω) =

∞∑
n=−∞

f [n] e−(iωn) (1.215)
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Inverse DTFT

f [n] =
1

2π

∫ π

−π
F (ω) eiωndω (1.216)

warning: It is not uncommon to see the above formula written slightly di�erent. One of the most
common di�erences is the way that the exponential is written. The above equations use the radial
frequency variable ω in the exponential, where ω = 2πf , but it is also common to include the more
explicit expression, i2πft, in the exponential. Sometimes DTFT notation is expressed as F

(
eiω
)
,

to make it clear that it is not a CTFT (which is denoted as F (Ω)). Click here100 for an overview
of the notation used in Connexion's DSP modules.

1.8.1.3 DTFT De�nition demonstration

Figure 1.101: Click on the above thumbnail image (when online) to download an interactive Mathe-
matica Player demonstrating Discrete Time Fourier Transform. To Download, right-click and save target
as .cdf.

1.8.1.4 DTFT Summary

Because complex exponentials are eigenfunctions of LTI systems, it is often useful to represent signals using
a set of complex exponentials as a basis. The discrete time Fourier transform synthesis formula expresses a
discrete time, aperiodic function as the in�nite sum of continuous frequency complex exponentials.

F (ω) =

∞∑
n=−∞

f [n] e−(iωn) (1.217)

100"DSP notation" <http://cnx.org/content/m10161/latest/>
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The discrete time Fourier transform analysis formula takes the same discrete time domain signal and
represents the signal in the continuous frequency domain.

f [n] =
1

2π

∫ π

−π
F (ω) eiωndω (1.218)

1.8.2 Properties of the DTFT101

1.8.2.1 Introduction

This module will look at some of the basic properties of the Discrete-Time Fourier Transform (Section 1.8.1)
(DTFT).

note: We will be discussing these properties for aperiodic, discrete-time signals but understand
that very similar properties hold for continuous-time signals and periodic signals as well.

1.8.2.2 Discussion of Fourier Transform Properties

1.8.2.2.1 Linearity

The combined addition and scalar multiplication properties in the table above demonstrate the basic property
of linearity. What you should see is that if one takes the Fourier transform of a linear combination of signals
then it will be the same as the linear combination of the Fourier transforms of each of the individual signals.
This is crucial when using a table (Section 1.8.7) of transforms to �nd the transform of a more complicated
signal.

Example 1.28
We will begin with the following signal:

z [n] = af1 [n] + bf2 [n] (1.219)

Now, after we take the Fourier transform, shown in the equation below, notice that the linear
combination of the terms is una�ected by the transform.

Z (ω) = aF1 (ω) + bF2 (ω) (1.220)

1.8.2.2.2 Symmetry

Symmetry is a property that can make life quite easy when solving problems involving Fourier transforms.
Basically what this property says is that since a rectangular function in time is a sinc function in frequency,
then a sinc function in time will be a rectangular function in frequency. This is a direct result of the similarity
between the forward DTFT and the inverse DTFT. The only di�erence is the scaling by 2π and a frequency
reversal.

101This content is available online at <http://cnx.org/content/m0506/2.8/>.

Available for free at Connexions <http://cnx.org/content/col10631/1.3>



121

1.8.2.2.3 Time Scaling

This property deals with the e�ect on the frequency-domain representation of a signal if the time variable
is altered. The most important concept to understand for the time scaling property is that signals that are
narrow in time will be broad in frequency and vice versa. The simplest example of this is a delta function,
a unit pulse102 with a very small duration, in time that becomes an in�nite-length constant function in
frequency.

The table above shows this idea for the general transformation from the time-domain to the frequency-
domain of a signal. You should be able to easily notice that these equations show the relationship mentioned
previously: if the time variable is increased then the frequency range will be decreased.

1.8.2.2.4 Time Shifting

Time shifting shows that a shift in time is equivalent to a linear phase shift in frequency. Since the frequency
content depends only on the shape of a signal, which is unchanged in a time shift, then only the phase
spectrum will be altered. This property is proven below:

Example 1.29
We will begin by letting z [n] = f [n− η]. Now let us take the Fourier transform with the previous
expression substituted in for z [n].

Z (ω) =

∫ ∞
−∞

f [n− η] e−(iωn)dn (1.221)

Now let us make a simple change of variables, where σ = n− η. Through the calculations below,
you can see that only the variable in the exponential are altered thus only changing the phase in
the frequency domain.

Z (ω) =
∫∞
−∞ f [σ] e−(iω(σ+η)n)dη

= e−(iωη)
∫∞
−∞ f [σ] e−(iωσ)dσ

= e−(iωη)F (ω)

(1.222)

1.8.2.2.5 Convolution

Convolution is one of the big reasons for converting signals to the frequency domain, since convolution in
time becomes multiplication in frequency. This property is also another excellent example of symmetry
between time and frequency. It also shows that there may be little to gain by changing to the frequency
domain when multiplication in time is involved.

We will introduce the convolution integral here, but if you have not seen this before or need to refresh your
memory, then look at the discrete-time convolution (Section 1.7.2) module for a more in depth explanation
and derivation.

y [n] = (f1 [n] , f2 [n])

=
∑∞
η=−∞ f1 [η] f2 [n− η]

(1.223)

102"Elemental Signals": Section Pulse <http://cnx.org/content/m0004/latest/#pulsedef>
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1.8.2.2.6 Time Di�erentiation

Since LTI (Section 1.2.1) systems can be represented in terms of di�erential equations, it is apparent with
this property that converting to the frequency domain may allow us to convert these complicated di�erential
equations to simpler equations involving multiplication and addition. This is often looked at in more detail
during the study of the Z Transform103.

1.8.2.2.7 Parseval's Relation

∞∑
n=−∞

(|f [n] |)2
=

∫ π

−π
(|F (ω) |)2

dω (1.224)

Parseval's relation tells us that the energy of a signal is equal to the energy of its Fourier transform.

Figure 1.102

1.8.2.2.8 Modulation (Frequency Shift)

Modulation is absolutely imperative to communications applications. Being able to shift a signal to a di�erent
frequency, allows us to take advantage of di�erent parts of the electromagnetic spectrum is what allows us
to transmit television, radio and other applications through the same space without signi�cant interference.

The proof of the frequency shift property is very similar to that of the time shift (Section 1.8.2.2.4: Time
Shifting); however, here we would use the inverse Fourier transform in place of the Fourier transform. Since
we went through the steps in the previous, time-shift proof, below we will just show the initial and �nal step
to this proof:

z (t) =
1

2π

∫ ∞
−∞

F (ω − φ) eiωtdω (1.225)

Now we would simply reduce this equation through another change of variables and simplify the terms.
Then we will prove the property expressed in the table above:

z (t) = f (t) eiφt (1.226)

1.8.2.3 Properties Demonstration

An interactive example demonstration of the properties is included below:

103"The Laplace Transform" <http://cnx.org/content/m10110/latest/>
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This media object is a LabVIEW VI. Please view or download it at
<CTFTSPlab.llb>

Figure 1.103: Interactive Signal Processing Laboratory Virtual Instrument created using NI's Labview.

1.8.2.4 Summary Table of DTFT Properties

Discrete-Time Fourier Transform Properties

Sequence Domain Frequency Domain

Linearity a1s1 (n) + a2s2 (n) a1S1

(
ei2πf

)
+ a2S2

(
ei2πf

)
Conjugate Symmetry s (n) real S

(
ei2πf

)
= S

(
e−(i2πf)

)
Even Symmetry s (n) = s (−n) S

(
ei2πf

)
= S

(
e−(i2πf)

)
Odd Symmetry s (n) = −s (−n) S

(
ei2πf

)
= −S

(
e−(i2πf)

)
Time Delay s (n− n0) e−(i2πfn0)S

(
ei2πf

)
Multiplication by n ns (n) 1

−(2iπ)

dS(ei2πf)
df

Sum
∑∞
n=−∞ s (n) S

(
ei2π0

)
Value at Origin s (0)

∫ 1
2

− 1
2

S
(
ei2πf

)
df

Parseval's Theorem
∑∞
n=−∞ (|s (n) |)2 ∫ 1

2

− 1
2

(
|S
(
ei2πf

)
|
)2
df

Complex Modulation ei2πf0ns (n) S
(
ei2π(f−f0)

)
Amplitude Modulation s (n) cos (2πf0n)

S(ei2π(f−f0))+S(ei2π(f+f0))
2

s (n) sin (2πf0n)
S(ei2π(f−f0))−S(ei2π(f+f0))

2i

Table 1.5: Discrete-time Fourier transform properties and relations.

1.8.3 Discrete Time Fourier Transform Pair104

When we obtain the discrete-time signal via sampling an analog signal, the Nyquist frequency corresponds
to the discrete-time frequency 1

2 . To show this, note that a sinusoid at the Nyquist frequency 1
2Ts

has a
sampled waveform that equals

Sinusoid at Nyquist Frequency 1/2T

cos
(

2π × 1
2Ts

nTs

)
= cos (πn)

= (−1)
n

(1.227)

The exponential in the DTFT at frequency 1
2 equals e

−(i2πn)
2 = e−(iπn) = (−1)

n
, meaning that the

correspondence between analog and discrete-time frequency is established:

Analog, Discrete-Time Frequency Relationship

fD = fATs (1.228)

104This content is available online at <http://cnx.org/content/m0525/2.7/>.
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where fD and fA represent discrete-time and analog frequency variables, respectively. The aliasing
�gure105 provides another way of deriving this result. As the duration of each pulse in the periodic sampling
signal pTs (t) narrows, the amplitudes of the signal's spectral repetitions, which are governed by the Fourier
series coe�cients of pTs (t) , become increasingly equal. 106 Thus, the sampled signal's spectrum becomes
periodic with period 1

Ts
. Thus, the Nyquist frequency 1

2Ts
corresponds to the frequency 1

2 .
The inverse discrete-time Fourier transform is easily derived from the following relationship:∫ 1

2

− 1
2

e−(i2πfm)eiπfndf =

 1 if m = n

0 if m 6= n
(1.229)

Therefore, we �nd that∫ 1
2

− 1
2

S
(
ei2πf

)
ei2πfndf =

∫ 1
2

− 1
2

∑
mm s (m) e−(i2πfm)ei2πfndf

=
∑
mm s (m)

∫ 1
2

− 1
2

e(−(i2πf))(m−n)df

= s (n)

(1.230)

The Fourier transform pairs in discrete-time are

Fourier Transform Pairs in Discrete Time

S
(
ei2πf

)
=
∑
nn

s (n) e−(i2πfn) (1.231)

Fourier Transform Pairs in Discrete Time

s (n) =

∫ 1
2

− 1
2

S
(
ei2πf

)
ei2πfndf (1.232)

1.8.4 DTFT Examples107

Example 1.30
Let's compute the discrete-time Fourier transform of the exponentially decaying sequence s (n) =
anu (n) , where u (n) is the unit-step sequence. Simply plugging the signal's expression into the
Fourier transform formula,

Fourier Transform Formula

S
(
ei2πf

)
=

∑∞
n=−∞ anu (n) e−(i2πfn)

=
∑∞
n=0

(
ae−(i2πf)

)n (1.233)

This sum is a special case of the geometric series.

Geometric Series

∀α, |α| < 1 :

( ∞∑
n=0

αn =
1

1− α

)
(1.234)

105"The Sampling Theorem", Figure 2: aliasing <http://cnx.org/content/m0050/latest/#alias>
106Examination of the periodic pulse signal reveals that as ∆ decreases, the value of c0 , the largest Fourier coe�cient, decreases
to zero: |c0| = A∆

T
. Thus, to maintain a mathematically viable Sampling Theorem, the amplitude A must increase as 1

∆
,

becoming in�nitely large as the pulse duration decreases. Practical systems use a small value of ∆ , say 0.1Ts and use ampli�ers
to rescale the signal.
107This content is available online at <http://cnx.org/content/m0524/2.11/>.
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Thus, as long as |a| < 1 , we have our Fourier transform.

S
(
ei2πf

)
=

1

1− ae−(i2πf)
(1.235)

Using Euler's relation, we can express the magnitude and phase of this spectrum.

|S
(
ei2πf

)
| = 1√

(1− acos (2πf))
2

+ a2sin2 (2πf)
(1.236)

∠
(
S
(
ei2πf

))
= −arctan

(
asin (2πf)

1− acos (2πf)

)
(1.237)

No matter what value of a we choose, the above formulae clearly demonstrate the periodic
nature of the spectra of discrete-time signals. Figure 1.104 shows indeed that the spectrum is a
periodic function. We need only consider the spectrum between − 1

2 and 1
2 to unambiguously de�ne

it. When a > 0 , we have a lowpass spectrum � the spectrum diminishes as frequency increases
from 0 to 1

2 � with increasing a leading to a greater low frequency content; for a < 0 , we have a
highpass spectrum (Figure 1.105).

-2 -1 0 1 2

1

2

f

|S(ej2πf)|

-2 -1 1 2

-45

45

f

∠S(ej2πf)

Figure 1.104: The spectrum of the exponential signal (a = 0.5) is shown over the frequency range
[−2, 2], clearly demonstrating the periodicity of all discrete-time spectra. The angle has units of degrees.
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Figure 1.105: The spectra of several exponential signals are shown. What is the apparent relationship
between the spectra for a = 0.5 and a = −0.5 ?

Example 1.31
Analogous to the analog pulse signal, let's �nd the spectrum of the length- N pulse sequence.

s (n) =

 1 if 0 ≤ n ≤ N − 1

0 otherwise
(1.238)

The Fourier transform of this sequence has the form of a truncated geometric series.

S
(
ei2πf

)
=

N−1∑
n=0

e−(i2πfn) (1.239)

For the so-called �nite geometric series, we know that

Finite Geometric Series
N+n0−1∑
n=n0

αn = αn0
1− αN

1− α
(1.240)

for all values of α .

Exercise 1.8.4.1 (Solution on p. 141.)

Derive this formula for the �nite geometric series sum. The "trick" is to consider the di�erence
between the series'; sum and the sum of the series multiplied by α .

Applying this result yields (Figure 1.106.)

S
(
ei2πf

)
= 1−e−(i2πfN)

1−e−(i2πf)

= e(−(iπf))(N−1) sin(πfN)
sin(πf)

(1.241)
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The ratio of sine functions has the generic form of sin(Nx)
sin(x) , which is known as the discrete-time sinc

function, dsinc (x) . Thus, our transform can be concisely expressed as S
(
ei2πf

)
= e(−(iπf))(N−1)dsinc (πf)

. The discrete-time pulse's spectrum contains many ripples, the number of which increase with N , the
pulse's duration.
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Figure 1.106: The spectrum of a length-ten pulse is shown. Can you explain the rather complicated
appearance of the phase?

1.8.5 Discrete Fourier Transformation108

1.8.5.1 N-point Discrete Fourier Transform (DFT)

X [k] =

N−1∑
n=0

x [n] e(−i) 2π
n kn∀k, k = {0, . . . , N − 1} : (k = {0, . . . , N − 1}) (1.242)

x [n] =
1

N

N−1∑
k=0

X [k] ei
2π
n kn∀n, n = {0, . . . , N − 1} : (n = {0, . . . , N − 1}) (1.243)

Note that:

• X [k] is the DTFT evaluated at ω = 2π
N k∀k, k = {0, . . . , N − 1} : (k = {0, . . . , N − 1})

• Zero-padding x [n] to M samples prior to the DFT yields an M -point uniform sampled version of the
DTFT:

X
(
ei

2π
M k
)

=

N−1∑
n=0

x [n] e(−i) 2π
M k (1.244)

108This content is available online at <http://cnx.org/content/m10421/2.11/>.
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X
(
ei

2π
M k
)

=

N−1∑
n=0

xzp [n] e(−i) 2π
M k

X
(
ei

2π
M k
)

= Xzp [k]∀k, k = {0, . . . ,M − 1} : (k = {0, . . . ,M − 1})

• The N -pt DFT is su�cient to reconstruct the entire DTFT of an N -pt sequence:

X
(
eiω
)

=

N−1∑
n=0

x [n] e(−i)ωn (1.245)

X
(
eiω
)

=

N−1∑
n=0

1

N

N−1∑
k=0

X [k] ei
2π
N kne(−i)ωn

X
(
eiω
)

=

N−1∑
k=0

X [k]
1

N

N−1∑
k=0

e(−i)(ω− 2π
N k)n

X
(
eiω
)

=

N−1∑
k=0

X [k]
1

N

(
sin
(
ωN−2πk

2

)
sin
(
ωN−2πk

2N

)e(−i)(ω− 2π
N k)N−1

2

)

1

0 2pi/N 4pi/N 2pi

D.

Figure 1.107: Dirichlet sinc, 1
N

sin(ωN2 )
sin(ω2 )

• The DFT has a convenient matrix representation. De�ning WN = e(−i) 2π
N ,

X [0]

X [1]
...

X [N − 1]

 =


W 0
N W 0

N W 0
N W 0

N . . .

W 0
N W 1

N W 2
N W 3

N . . .

W 0
N W 2

N W 4
N W 6

N . . .
...

...
...

...
...




x [0]

x [1]
...

x [N − 1]

 (1.246)

where X = W (x) respectively. W has the following properties:
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· W is Vandermonde: the nth column of W is a polynomial in Wn
N

· W is symmetric: W = WT

· 1√
N
W is unitary:

(
1√
N
W
)(

1√
N
W
)H

=
(

1√
N
W
)H (

1√
N
W
)

= I

· 1
NW = W−1, the IDFT matrix.

• For N a power of 2, the FFT can be used to compute the DFT using about N
2 log2N rather than N2

operations.

N N
2 log2N N2

16 32 256

64 192 4096

256 1024 65536

1024 5120 1048576

Table 1.6

1.8.6 Discrete Fourier Transform (DFT)109

The discrete-time Fourier transform (and the continuous-time transform as well) can be evaluated when we
have an analytic expression for the signal. Suppose we just have a signal, such as the speech signal used
in the previous chapter, for which there is no formula. How then would you compute the spectrum? For
example, how did we compute a spectrogram such as the one shown in the speech signal example110? The
Discrete Fourier Transform (DFT) allows the computation of spectra from discrete-time data. While in
discrete-time we can exactly calculate spectra, for analog signals no similar exact spectrum computation
exists. For analog-signal spectra, use must build special devices, which turn out in most cases to consist of
A/D converters and discrete-time computations. Certainly discrete-time spectral analysis is more �exible
than continuous-time spectral analysis.

The formula for the DTFT111 is a sum, which conceptually can be easily computed save for two issues.

• Signal duration. The sum extends over the signal's duration, which must be �nite to compute the
signal's spectrum. It is exceedingly di�cult to store an in�nite-length signal in any case, so we'll
assume that the signal extends over [0, N − 1].

• Continuous frequency. Subtler than the signal duration issue is the fact that the frequency variable
is continuous: It may only need to span one period, like

[
− 1

2 ,
1
2

]
or [0, 1], but the DTFT formula as it

stands requires evaluating the spectra at all frequencies within a period. Let's compute the spectrum
at a few frequencies; the most obvious ones are the equally spaced ones f = k

K , k ∈ {0, . . . ,K − 1}.

We thus de�ne the discrete Fourier transform (DFT) to be

∀k, k ∈ {0, . . . ,K − 1} :

(
S (k) =

N−1∑
n=0

s (n) e−
i2πnk
K

)
(1.247)

Here, S (k) is shorthand for S
(
ei2π

k
K

)
.

We can compute the spectrum at as many equally spaced frequencies as we like. Note that you can think
about this computationally motivated choice as sampling the spectrum; more about this interpretation later.

109This content is available online at <http://cnx.org/content/m10249/2.28/>.
110"Modeling the Speech Signal", Figure 5: spectrogram <http://cnx.org/content/m0049/latest/#spectrogram>
111"Discrete-Time Fourier Transform (DTFT)", (1) <http://cnx.org/content/m10247/latest/#eqn1>
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The issue now is how many frequencies are enough to capture how the spectrum changes with frequency.
One way of answering this question is determining an inverse discrete Fourier transform formula: given S (k),
k = {0, . . . ,K − 1} how do we �nd s (n), n = {0, . . . , N − 1}? Presumably, the formula will be of the form

s (n) =
∑K−1
k=0 S (k) e

i2πnk
K . Substituting the DFT formula in this prototype inverse transform yields

s (n) =

K−1∑
k=0

N−1∑
m=0

s (m) e−(i 2πmk
K )ei

2πnk
K (1.248)

Note that the orthogonality relation we use so often has a di�erent character now.

K−1∑
k=0

e−(i 2πkm
K )ei

2πkn
K =

 K if (m = {n, n±K,n± 2K, . . . })
0 otherwise

(1.249)

We obtain nonzero value whenever the two indices di�er by multiples of K. We can express this result as
K
∑
l δ (m− n− lK). Thus, our formula becomes

s (n) =

N−1∑
m=0

s (m)K

∞∑
l=−∞

δ (m− n− lK) (1.250)

The integers n and m both range over {0, . . . , N − 1}. To have an inverse transform, we need the sum
to be a single unit sample for m, n in this range. If it did not, then s (n) would equal a sum of values,
and we would not have a valid transform: Once going into the frequency domain, we could not get back
unambiguously! Clearly, the term l = 0 always provides a unit sample (we'll take care of the factor of K
soon). If we evaluate the spectrum at fewer frequencies than the signal's duration, the term corresponding
to m = n + K will also appear for some values of m, n = {0, . . . , N − 1}. This situation means that our
prototype transform equals s (n) + s (n+K) for some values of n. The only way to eliminate this problem
is to require K ≥ N : We must have at least as many frequency samples as the signal's duration. In this
way, we can return from the frequency domain we entered via the DFT.

Exercise 1.8.6.1 (Solution on p. 141.)

When we have fewer frequency samples than the signal's duration, some discrete-time signal values
equal the sum of the original signal values. Given the sampling interpretation of the spectrum,
characterize this e�ect a di�erent way.

Another way to understand this requirement is to use the theory of linear equations. If we write out the
expression for the DFT as a set of linear equations,

s (0) + s (1) + · · ·+ s (N − 1) = S (0) (1.251)

s (0) + s (1) e(−i) 2π
K + · · ·+ s (N − 1) e(−i) 2π(N−1)

K = S (1)

...

s (0) + s (1) e(−i) 2π(K−1)
K + · · ·+ s (N − 1) e(−i) 2π(N−1)(K−1)

K = S (K − 1)

we have K equations in N unknowns if we want to �nd the signal from its sampled spectrum. This require-
ment is impossible to ful�ll if K < N ; we must have K ≥ N . Our orthogonality relation essentially says that
if we have a su�cient number of equations (frequency samples), the resulting set of equations can indeed be
solved.

By convention, the number of DFT frequency values K is chosen to equal the signal's duration N . The
discrete Fourier transform pair consists of
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Discrete Fourier Transform Pair

S (k) =
∑N−1
n=0 s (n) e−(i 2πnk

N )

s (n) = 1
N

∑N−1
k=0 S (k) ei

2πnk
N

(1.252)

Example 1.32
Use this demonstration to perform DFT analysis of a signal.

This media object is a LabVIEW VI. Please view or download it at
<DFTanalysis.llb>

Example 1.33
Use this demonstration to synthesize a signal from a DFT sequence.

This media object is a LabVIEW VI. Please view or download it at
<DFT_Component_Manipulation.llb>

1.8.7 Common Fourier Transforms112

1.8.7.1 Common CTFT Properties

Time Domain Signal Frequency Domain Signal Condition

e−(at)u (t) 1
a+iω a > 0

eatu (−t) 1
a−iω a > 0

e−(a|t|) 2a
a2+ω2 a > 0

te−(at)u (t) 1
(a+iω)2 a > 0

tne−(at)u (t) n!
(a+iω)n+1 a > 0

δ (t) 1

1 2πδ (ω)

eiω0t 2πδ (ω − ω0)

cos (ω0t) π (δ (ω − ω0) + δ (ω + ω0))

sin (ω0t) iπ (δ (ω + ω0)− δ (ω − ω0))

u (t) πδ (ω) + 1
iω

sgn (t) 2
iω

cos (ω0t)u (t) π
2 (δ (ω − ω0) + δ (ω + ω0)) +
iω

ω0
2−ω2

continued on next page

112This content is available online at <http://cnx.org/content/m10099/2.12/>.
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sin (ω0t)u (t) π
2i (δ (ω − ω0)− δ (ω + ω0)) +
ω0

ω0
2−ω2

e−(at)sin (ω0t)u (t) ω0

(a+iω)2+ω0
2 a > 0

e−(at)cos (ω0t)u (t) a+iω
(a+iω)2+ω0

2 a > 0

u (t+ τ)− u (t− τ) 2τ sin(ωτ)
ωτ = 2τsinc (ωt)

ω0

π
sin(ω0t)
ω0t

= ω0

π sinc (ω0) u (ω + ω0)− u (ω − ω0)(
t
τ + 1

) (
u
(
t
τ + 1

)
− u

(
t
τ

))
+(

− t
τ + 1

) (
u
(
t
τ

)
− u

(
t
τ − 1

))
=

triag
(
t

2τ

) τsinc2
(
ωτ
2

)

ω0

2π sinc2
(
ω0t
2

) (
ω
ω0

+ 1
)(

u
(
ω
ω0

+ 1
)
− u

(
ω
ω0

))
+(

− ω
ω0

+ 1
)(

u
(
ω
ω0

)
− u

(
ω
ω0
− 1
))

=

triag
(

ω
2ω0

)
∑∞
n=−∞ δ (t− nT ) ω0

∑∞
n=−∞ δ (ω − nω0) ω0 = 2π

T

e−
t2

2σ2 σ
√

2πe−
σ2ω2

2

Table 1.7

triag[n] is the triangle function for arbitrary real-valued n.

triag[n] = {
1 + n if− 1 ≤ n ≤ 0

1− n if 0 < n ≤ 1

0 otherwise

1.8.8 Linear Constant Coe�cient Di�erence Equations113

1.8.8.1 Introduction: Di�erence Equations

In our study of signals and systems, it will often be useful to describe systems using equations involving
the rate of change in some quantity. In discrete time, this is modeled through di�erence equations, which
are a speci�c type of recurrance relation. For instance, recall that the funds in an account with discretely
componded interest rate r will increase by r times the previous balance. Thus, a discretely compounded
interest system is described by the �rst order di�erence equation shown in (1.253).

y (n) = (1 + r) y (n− 1) (1.253)

Given a su�ciently descriptive set of initial conditions or boundary conditions, if there is a solution to the
di�erence equation, that solution is unique and describes the behavior of the system. Of course, the results
are only accurate to the degree that the model mirrors reality.

1.8.8.2 Linear Constant Coe�cient Di�erence Equations

An important subclass of di�erence equations is the set of linear constant coe�cient di�erence equations.
These equations are of the form

Cy (n) = f (n) (1.254)

113This content is available online at <http://cnx.org/content/m12325/1.5/>.
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where C is a di�erence operator of the form given

C = cND
N + cN−1D

N−1 + ...+ c1D + c0 (1.255)

in which D is the �rst di�erence operator

D (y (n)) = y (n)− y (n− 1) . (1.256)

Note that operators of this type satisfy the linearity conditions, and c0, ..., cn are real constants.
However, (1.254) can easily be written as a linear constant coe�cient recurrence equation without di�er-

ence operators. Conversely, linear constant coe�cient recurrence equations can also be written in the form
of a di�erence equation, so the two types of equations are di�erent representations of the same relationship.
Although we will still call them linear constant coe�cient di�erence equations in this course, we typically
will not write them using di�erence operators. Instead, we will write them in the simpler recurrence relation
form

N∑
k=0

aky (n− k) =

M∑
k=0

bkx (n− k) (1.257)

where x is the input to the system and y is the output. This can be rearranged to �nd y (n) as

y (n) =
1

a0

(
−

N∑
k=1

aky (n− k) +

M∑
k=0

bkx (n− k)

)
(1.258)

The forms provided by (1.257) and (1.258) will be used in the remainder of this course.
A similar concept for continuous time setting, di�erential equations, is discussed in the chapter on time

domain analysis of continuous time systems. There are many parallels between the discussion of linear
constant coe�cient ordinary di�erential equations and linear constant coe�cient di�erece equations.

1.8.8.3 Applications of Di�erence Equations

Di�erence equations can be used to describe many useful digital �lters as described in the chapter discussing
the z-transform. An additional illustrative example is provided here.

Example 1.34
Recall that the Fibonacci sequence describes a (very unrealistic) model of what happens when a
pair rabbits get left alone in a black box... The assumptions are that a pair of rabits never die
and produce a pair of o�spring every month starting on their second month of life. This system is
de�ned by the recursion relation for the number of rabit pairs y (n) at month n

y (n) = y (n− 1) + y (n− 2) (1.259)

with the initial conditions y (0) = 0 and y (1) = 1. The result is a very fast growth in the sequence.
This is why we do not open black boxes.

1.8.8.4 Linear Constant Coe�cient Di�erence Equations Summary

Di�erence equations are an important mathematical tool for modeling discrete time systems. An important
subclass of these is the class of linear constant coe�cient di�erence equations. Linear constant coe�cient
di�erence equations are often particularly easy to solve as will be described in the module on solutions to
linear constant coe�cient di�erence equations and are useful in describing a wide range of situations that
arise in electrical engineering and in other �elds.
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1.8.9 Solving Linear Constant Coe�cient Di�erence Equations114

1.8.9.1 Introduction

The approach to solving linear constant coe�cient di�erence equations is to �nd the general form of all
possible solutions to the equation and then apply a number of conditions to �nd the appropriate solution.
The two main types of problems are initial value problems, which involve constraints on the solution at several
consecutive points, and boundary value problems, which involve constraints on the solution at nonconsecutive
points.

The number of initial conditions needed for an Nth order di�erence equation, which is the order of the
highest order di�erence or the largest delay parameter of the output in the equation, is N , and a unique
solution is always guaranteed if these are supplied. Boundary value probelms can be slightly more complicated
and will not necessarily have a unique solution or even a solution at all for a given set of conditions. Thus,
this section will focus exclusively on initial value problems.

1.8.9.2 Solving Linear Constant Coe�cient Di�erence Equations

Consider some linear constant coe�cient di�erence equation given by Ay (n) = f (n), in which A is a
di�erence operator of the form

A = aND
N + aN−1D

N−1 + ...+ a1D + a0 (1.260)

where D is the �rst di�erence operator

D (y (n)) = y (n)− y (n− 1) . (1.261)

Let yh (n) and yp (n) be two functions such that Ayh (n) = 0 and Ayp (n) = f (n). By the linearity of
A, note that L (yh (n) + yp (n)) = 0 + f (n) = f (n). Thus, the form of the general solution yg (n) to any
linear constant coe�cient ordinary di�erential equation is the sum of a homogeneous solution yh (n) to the
equation Ay (n) = 0 and a particular solution yp (n) that is speci�c to the forcing function f (n).

We wish to determine the forms of the homogeneous and nonhomogeneous solutions in full generality in
order to avoid incorrectly restricting the form of the solution before applying any conditions. Otherwise, a
valid set of initial or boundary conditions might appear to have no corresponding solution trajectory. The
following sections discuss how to accomplish this for linear constant coe�cient di�erence equations.

1.8.9.2.1 Finding the Homogeneous Solution

In order to �nd the homogeneous solution to a di�erence equation described by the recurrence relation∑N
k=0 aky (n− k) = f (n), consider the di�erence equation

∑N
k=0 aky (n− k) = 0. We know that the solu-

tions have the form cλn for some complex constants c, λ. Since
∑N
k=0 akcλ

n−k = 0 for a solution it follows
that

cλn−N
N∑
k=0

akλ
N−k = 0 (1.262)

so it also follows that

a0λ
N + ...+ aN = 0. (1.263)

Therefore, the solution exponential are the roots of the above polynomial, called the characteristic polyno-
mial.

114This content is available online at <http://cnx.org/content/m12326/1.6/>.
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For equations of order two or more, there will be several roots. If all of the roots are distinct, then the
general form of the homogeneous solution is simply

yh (n) = c1λ
n
1 + ...+ c2λ

n
2 . (1.264)

If a root has multiplicity that is greater than one, the repeated solutions must be multiplied by each power
of n from 0 to one less than the root multipicity (in order to ensure linearly independent solutions). For
instance, if λ1 had a multiplicity of 2 and λ2 had multiplicity 3, the homogeneous solution would be

yh (n) = c1λ
n
1 + c2nλ

n
1 + c3λ

n
2 + c4nλ

n
2 + c5n

2λn2 . (1.265)

Example 1.35
Recall that the Fibonacci sequence describes a (very unrealistic) model of what happens when a
pair rabbits get left alone in a black box... The assumptions are that a pair of rabits never die
and produce a pair of o�spring every month starting on their second month of life. This system is
de�ned by the recursion relation for the number of rabit pairs y (n) at month n

y (n)− y (n− 1)− y (n− 2) = 0 (1.266)

with the initial conditions y (0) = 0 and y (1) = 1.
Note that the forcing function is zero, so only the homogenous solution is needed. It is easy to

see that the characteristic polynomial is λ2 − λ − 1 = 0, so there are two roots with multiplicity

one. These are λ1 = 1+
√

5
2 and λ2 = 1−

√
5

2 . Thus, the solution is of the form

y (n) = c1

(
1 +
√

5

2

)n
+ c2

(
1−
√

5

2

)n
. (1.267)

Using the initial conditions, we determine that

c1 =

√
5

5
(1.268)

and

c2 = −
√

5

5
. (1.269)

Hence, the Fibonacci sequence is given by

y (n) =

√
5

5

(
1 +
√

5

2

)n
−
√

5

5

(
1−
√

5

2

)n
. (1.270)

1.8.9.2.2 Finding the Particular Solution

Finding the particular solution is a slightly more complicated task than �nding the homogeneous solution. It
can be found through convolution of the input with the unit impulse response once the unit impulse response
is known. Finding the particular solution ot a di�erential equation is discussed further in the chapter
concerning the z-transform, which greatly simpli�es the procedure for solving linear constant coe�cient
di�erential equations using frequency domain tools.
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Example 1.36
Consider the following di�erence equation describing a system with feedback

y (n)− ay (n− 1) = x (n) . (1.271)

In order to �nd the homogeneous solution, consider the di�erence equation

y (n)− ay (n− 1) = 0. (1.272)

It is easy to see that the characteristic polynomial is λ − a = 0, so λ = a is the only root. Thus
the homogeneous solution is of the form

yh (n) = c1a
n. (1.273)

In order to �nd the particular solution, consider the output for the x (n) = δ (n) unit impulse case

y (n)− ay (n− 1) = δ (n) . (1.274)

By inspection, it is clear that the impulse response is anu (n). Hence, the particular solution for a
given x (n) is

yp (n) = x (n) ∗ (anu (n)) . (1.275)

Therefore, the general solution is

yg (n) = yh (n) + yp (n) = c1a
n + x (n) ∗ (anu (n)) . (1.276)

Initial conditions and a speci�c input can further tailor this solution to a speci�c situation.

1.8.9.3 Solving Di�erence Equations Summary

Linear constant coe�cient di�erence equations are useful for modeling a wide variety of discrete time systems.
The approach to solving them is to �nd the general form of all possible solutions to the equation and then
apply a number of conditions to �nd the appropriate solution. This is done by �nding the homogeneous
solution to the di�erence equation that does not depend on the forcing function input and a particular
solution to the di�erence equation that does depend on the forcing function input.
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1.9 Viewing Embedded LabVIEW Content115

In order to view LabVIEW content embedded in Connexions modules, you must install the LabVIEW Run-
time Engine on your computer. The following are sets of instructions for installing the software on di�erent
platforms.

note: Embedded LabVIEW content is currently supported only under Windows 2000/XP. Also,
you must have version 8.0.1 of the LabView Run-time Engine to run much of the embedded content
in Connexions.

115This content is available online at <http://cnx.org/content/m13753/1.3/>.
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1.9.1 Installing the LabVIEW Run-time Engine on Microsoft Windows 2000/XP

1. Point your web browser to the LabVIEW Run-time Engine download page at:
http://digital.ni.com/softlib.nsf/websearch/077b51e8d15604bd8625711c006240e7116 .

2. If you're not logged in to NI, click the link to continue the download process at the bottom of the page.
3. Login or create a pro�le with NI to continue.
4. Once logged in, click the LabVIEW_8.0.1_Runtime_Engine.exe link and save the �le to disk.
5. Once the �le has downloaded, double click it and follow the steps to install the run-time engine.
6. Download the LabVIEWBrowser Plug-in at: http://zone.ni.com/devzone/conceptd.nsf/webmain/7DBFD404C6AD0B24862570BB0072F83B/$FILE/LVBrowserPlugin.ini117

.
7. Put the LVBrowserPlugin.ini �le in the My Documents\LabVIEW Data folder. (You may have to

create this folder if it doesn't already exist.)
8. Restart your web browser to complete the installation of the plug-in.

116http://digital.ni.com/softlib.nsf/websearch/077b51e8d15604bd8625711c006240e7
117http://zone.ni.com/devzone/conceptd.nsf/webmain/7DBFD404C6AD0B24862570BB0072F83B/$FILE/LVBrowserPlugin.ini
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Solutions to Exercises in Chapter 1

Solution to Exercise 1.4.2.1 (p. 40)
Because of Euler's relation,

sin (2πft) =
1

2i
ei2πft − 1

2i
e−(i2πft) (1.277)

Thus, c1 = 1
2i , c−1 = − 1

2i , and the other coe�cients are zero.
Solution to Exercise 1.4.2.2 (p. 43)
c0 = A∆

T . This quantity clearly corresponds to the periodic pulse signal's average value.
Solution to Exercise 1.4.3.1 (p. 44)
Write the coe�cients of the complex Fourier series in Cartesian form as ck = Ak + iBk and substitute into
the expression for the complex Fourier series.

∞∑
k=−∞

cke
i 2πkt
T =

∞∑
k=−∞

(Ak + iBk) ei
2πkt
T

Simplifying each term in the sum using Euler's formula,

(Ak + iBk) ei
2πkt
T = (Ak + iBk)

(
cos
(

2πkt
T

)
+ isin

(
2πkt
T

))
= Akcos

(
2πkt
T

)
−Bksin

(
2πkt
T

)
+ i
(
Aksin

(
2πkt
T

)
+Bkcos

(
2πkt
T

))
We now combine terms that have the same frequency index in magnitude. Because the signal is real-
valued, the coe�cients of the complex Fourier series have conjugate symmetry: c−k = ck or A−k = Ak and
B−k = −Bk. After we add the positive-indexed and negative-indexed terms, each term in the Fourier series
becomes 2Akcos

(
2πkt
T

)
− 2Bksin

(
2πkt
T

)
. To obtain the classic Fourier series (1.97), we must have 2Ak = ak

and 2Bk = −bk.
Solution to Exercise 1.4.3.2 (p. 45)
The average of a set of numbers is the sum divided by the number of terms. Viewing signal integration as
the limit of a Riemann sum, the integral corresponds to the average.
Solution to Exercise 1.4.3.3 (p. 45)
We found that the complex Fourier series coe�cients are given by ck = 2

iπk . The coe�cients are pure
imaginary, which means ak = 0. The coe�cients of the sine terms are given by bk = − (2= (ck)) so that

bk =

 4
πk if k odd

0 if k even

Thus, the Fourier series for the square wave is

sq (t) =
∑

k∈{1,3,... }

4

πk
sin

(
2πkt

T

)
(1.278)

Solution to Exercise 1.4.4.1 (p. 47)
The rms value of a sinusoid equals its amplitude divided by

√
22. As a half-wave recti�ed sine wave is zero

during half of the period, its rms value is A
2 since the integral of the squared half-wave recti�ed sine wave

equals half that of a squared sinusoid.
Solution to Exercise 1.4.4.2 (p. 48)

Total harmonic distortion equals
∑∞
k=2 ak

2+bk
2

a1
2+b12 . Clearly, this quantity is most easily computed in the fre-

quency domain. However, the numerator equals the square of the signal's rms value minus the power in the
average and the power in the �rst harmonic.
Solution to Exercise 1.4.5.1 (p. 51)

Total harmonic distortion in the square wave is 1− 1
2

(
4
π

)2
= 20%.
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Solution to Exercise 1.4.6.1 (p. 54)

N signals directly encoded require a bandwidth of NT . Using a binary representation, we need log2N
T . For

N = 128, the binary-encoding scheme has a factor of 7
128 = 0.05 smaller bandwidth. Clearly, binary encoding

is superior.
Solution to Exercise 1.4.6.2 (p. 54)
We can use N di�erent amplitude values at only one frequency to represent the various letters.
Solution to Exercise 1.4.7.1 (p. 57)
Because the �lter's gain at zero frequency equals one, the average output values equal the respective average
input values.
Solution to Exercise 1.4.8.1 (p. 59)

F (S (f)) =

∫ ∞
−∞

S (f) e−(i2πft)df =

∫ ∞
−∞

S (f) ei2πf(−t)df = s (−t)

Solution to Exercise 1.4.8.2 (p. 59)
F (F (F (F (s (t))))) = s (t). We know that F (S (f)) =

∫∞
−∞ S (f) e−(i2πft)df =

∫∞
−∞ S (f) ei2πf(−t)df =

s (−t). Therefore, two Fourier transforms applied to s (t) yields s (−t). We need two more to get us back
where we started.
Solution to Exercise 1.4.8.3 (p. 61)
The signal is the inverse Fourier transform of the triangularly shaped spectrum, and equals s (t) =

W
(

sin(πWt)
πWt

)2

Solution to Exercise 1.4.8.4 (p. 62)
The result is most easily found in the spectrum's formula: the power in the signal-related part of x (t) is
half the power of the signal s (t).
Solution to Exercise 1.4.9.1 (p. 63)
The inverse transform of the frequency response is 1

RC e
− t
RC u (t). Multiplying the frequency response by

1 − e−(i2πf∆) means subtract from the original signal its time-delayed version. Delaying the frequency

response's time-domain version by ∆ results in 1
RC e

−(t−∆)
RC u (t−∆). Subtracting from the undelayed signal

yields 1
RC e

−t
RC u (t)− 1

RC e
−(t−∆)
RC u (t−∆). Now we integrate this sum. Because the integral of a sum equals the

sum of the component integrals (integration is linear), we can consider each separately. Because integration
and signal-delay are linear, the integral of a delayed signal equals the delayed version of the integral. The
integral is provided in the example (1.130).
Solution to Exercise 1.5.1.1 (p. 81)
In order to calculate the Fourier transform, all we need to use is (1.138) (Continuous-Time Fourier Trans-
form), complex exponentials (Section 1.1.5), and basic calculus.

F (Ω) =
∫∞
−∞ f (t) e−(iΩt)dt

=
∫∞

0
e−(αt)e−(iΩt)dt

=
∫∞

0
e(−t)(α+iΩ)dt

= 0− −1
α+iΩ

(1.279)

F (Ω) =
1

α+ iΩ
(1.280)

Solution to Exercise 1.5.1.2 (p. 81)
Here we will use (1.139) (Inverse CTFT) to �nd the inverse FT given that t 6= 0.

x (t) = 1
2π

∫M
−M ei(Ω,t)dΩ

= 1
2π e

i(Ω,t)|Ω,Ω=eiw

= 1
πt sin (Mt)

(1.281)
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x (t) =
M

π

(
sinc

Mt

π

)
(1.282)

Solution to Exercise 1.7.1.1 (p. 100)
The indices can be negative, and this condition is not allowed in MATLAB. To �x it, we must start the
signals later in the array.
Solution to Exercise 1.7.1.2 (p. 102)
Such terms would require the system to know what future input or output values would be before the
current value was computed. Thus, such terms can cause di�culties.
Solution to Exercise 1.7.3.1 (p. 115)

ak = {
unde�ned k = 0

1
8

sin3[π2 k]
[π2 k]

3 otherwise

Solution to Exercise 1.8.4.1 (p. 126)

α

N+n0−1∑
n=n0

αn −
N+n0−1∑
n=n0

αn = αN+n0 − αn0 (1.283)

which, after manipulation, yields the geometric sum formula.
Solution to Exercise 1.8.6.1 (p. 130)
This situation amounts to aliasing in the time-domain.
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