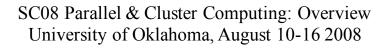


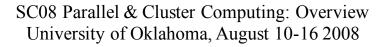
High Performance Computing

OU Supercomputing Center for Education & Research
University of Oklahoma
SC08 Education Program's Workshop on Parallel & Cluster computing
August 10-16 2008

People



Things



What is Supercomputing?

What is Supercomputing?

Supercomputing is the **biggest**, **fastest computing** right this minute.

Likewise, a <u>supercomputer</u> is one of the biggest, fastest computers right this minute.

So, the definition of supercomputing is **constantly changing**.

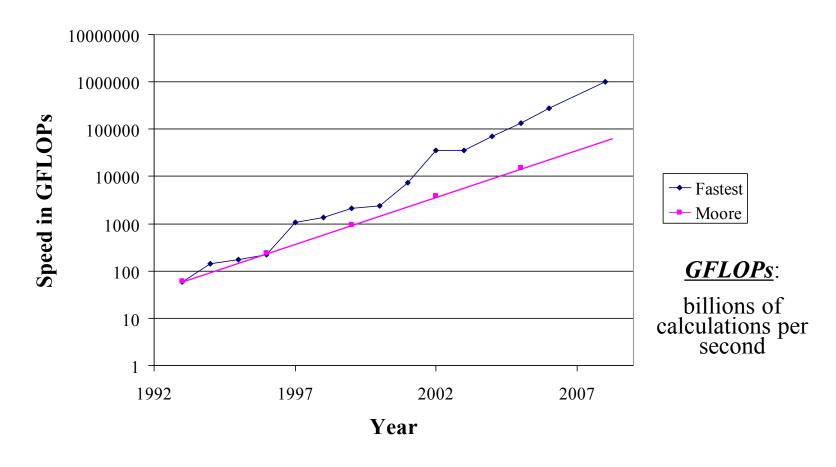
Rule of Thumb: A supercomputer is typically at least 100 times as powerful as a PC.

Jargon: Supercomputing is also known as

High Performance Computing (HPC) or

High End Computing (HEC) or

Cyberinfrastructure (CI).



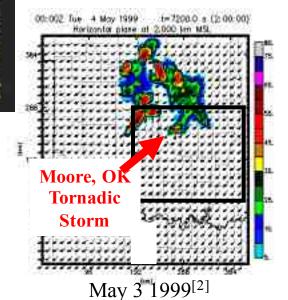
Fastest Supercomputer vs. Moore

Fastest Supercomputer in the World

What is Supercomputing About?

What is Supercomputing About?

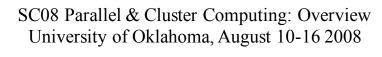
- Size: Many problems that are interesting to scientists and engineers can't fit on a PC – usually because they need more than a few GB of RAM, or more than a few 100 GB of disk.
- Speed: Many problems that are interesting to scientists and engineers would take a very very long time to run on a PC: months or even years. But a problem that would take a month on a PC might take only a few hours on a supercomputer.



What Is HPC Used For?

Simulation of physical phenomena, such as

- Weather forecasting
- Galaxy formation
- Oil reservoir management
- Data mining: finding needles
 of information in a haystack of data,
 such as
 - Gene sequencing
 - Signal processing
 - Detecting storms that might produce tornados
- Visualization: turning a vast sea of data into pictures that a scientist can understand



OSCER

OU Supercomputing Center for Education & Research

What is OSCER?

- Multidisciplinary center
- Division of OU Information Technology
- Provides:
 - Supercomputing <u>education</u>
 - Supercomputing <u>expertise</u>
 - Supercomputing <u>resources</u>: hardwa

• For:

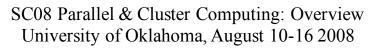
- Undergrad students
- Grad students
- Staff
- Faculty
- Their collaborators (including <u>off campus</u>)

Who is OSCER? Academic Depts

- Aerospace & Mechanical Engr
- Anthropology
- Biochemistry & Molecular Biology
- Biological Survey
- Botany & Microbiology
- Chemical, Biological & Materials Engr
- Chemistry & Biochemistry
- Civil Engr & Environmental Science
- Computer Science
- Economics
- Electrical & Computer Engr
- Finance
- Health & Sport Sciences

- History of Science
- Industrial Engr
- Geography
- Geology & Geophysics
- Library & Information Studies
- Mathematics
- Meteorology
- Petroleum & Geological Engr
- Physics & Astronomy
- Psychology
- Radiological Sciences
- Surgery
- Zoology

More than 150 faculty & staff in 26 depts in Colleges of Arts & Sciences, Atmospheric & Geographic Sciences, Business, Earth & Energy, Engineering, and Medicine – with more to come!


Who is OSCER? Organizations

- Advanced Center for Genome Technology
- Center for Analysis & Prediction of Storms
- Center for Aircraft & Systems/Support Infrastructure
- Cooperative Institute for Mesoscale Meteorological Studies
- Center for Engineering Optimization
- Fears Structural Engineering Laboratory
- Geosciences Computing Network
- Great Plains Network
- Human Technology Interaction Center
- Institute of Exploration & Development Geosciences
- Instructional Development Program
- Interaction, Discovery, Exploration, Adaptation Laboratory
- Langston University Mathematics Dept
- Microarray Core Facility

- National Severe Storms Laboratory
- NOAA Storm Prediction Center
- OU Office of Information Technology
- OU Office of the VP for Research
- Oklahoma Center for High Energy Physics
- Oklahoma Climatological Survey
- Oklahoma EPSCoR
- Oklahoma Medical Research Foundation
- Oklahoma School of Science & Math
- Robotics, Evolution, Adaptation, and Learning Laboratory
- St. Gregory's University Physics Dept
- Sarkeys Energy Center
- Sasaki Applied Meteorology Research Institute
- Symbiotic Computing Laboratory

Biggest Consumers

- Center for Analysis & Prediction of Storms: daily real time weather forecasting
- Oklahoma Center for High Energy Physics: simulation and data analysis of banging tiny particles together at unbelievably high speeds

Who Are the Users?

Over 400 users so far, including:

- approximately 100 OU faculty;
- approximately 100 OU staff;
- over 150 students;
- over 80 off campus users;
- ... more being added every month.

Comparison: The National Center for Supercomputing Applications (NCSA), after 20 years of history and hundreds of millions in expenditures, has about 2150 users:* the TeraGrid is 4500 users.†

* Unique usernames on cu.ncsa.uiuc.edu and tungsten.ncsa.uiuc.edu
† Unique usernames on maverick.tacc.utexas.edu

OK Cyberinfrastructure Initiative

- Oklahoma is an EPSCoR state.
- Oklahoma recently submitted an NSF EPSCoR Research Infrastructure Proposal (up to \$15M).
- This year, for the first time, all NSF EPSCoR RII proposals MUST include a statewide Cyberinfrastructure plan.
- Oklahoma's plan the <u>Oklahoma Cyberinfrastructure</u>
 <u>Initiative</u> (OCII) involves:
 - all academic institutions in the state are eligible to sign up for free use of OU's and OSU's centrally-owned CI resources;
 - other kinds of institutions (government, NGO, commercial) are eligible to use, though not necessarily for free.
- To join: see Henry after this talk.

Why OSCER?

- Computational Science & Engineering has become sophisticated enough to take its place alongside experimentation and theory.
- Most students and most faculty and staff don't learn much CSE, because it's seen as needing too much computing background, and needs HPC, which is seen as very hard to learn.
- **HPC can be hard to learn**: few materials for novices; most documents written for experts as reference guides.
- We need a new approach: HPC and CSE for computing novices OSCER's mandate!

Why Bother Teaching Novices?

- Application scientists & engineers typically know their applications very well, much better than a collaborating computer scientist ever would.
- Commercial software lags far behind the research community.
- Many potential CSE users don't need full time CSE and HPC staff, just some help.
- One HPC expert can help dozens of research groups.
- Today's novices are tomorrow's top researchers, especially because today's top researchers will eventually retire.

What Does OSCER Do? Teaching

Science and engineering faculty from all over America learn supercomputing at OU by playing with a jigsaw puzzle (NCSI @ OU 2004).

What Does OSCER Do? Rounds

OU undergrads, grad students, staff and faculty learn how to use supercomputing in their specific research.

Okla. Supercomputing Symposium

2003 Keynote:
Peter Freeman
NSF
Computer &
Information
Science &
Engineering
Assistant Director

2004 Keynote: Sangtae Kim NSF Shared Cyberinfrastructure Division Director

2005 Keynote:
Walt Brooks
NASA Advanced
Supercomputing
Division Director

Over 150 in the first day, over 200 in the first week, over 225 in the first month.

2006 Keynote: Dan Atkins Head of NSF's Office of Cyberinfrastructure

2007 Keynote:
Jay Boisseau
Director
Texas Advanced
Computing Center
U. Texas Austin

2008 Keynote:
José Munoz
Deputy Office
Director/ Senior
Scientific Advisor
Office of Cyberinfrastructure
National Science
Foundation

FREE! Parallel Computing Workshop Mon Oct 6 @ OU sponsored by SC08 FREE! Symposium Tue Oct 7 @ OU

http://symposium2008.oscer.ou.edu/

2008 OSCER Hardware

• TOTAL:

- **Early 2008: 14,300 GFLOPs***, 2038 CPU cores, 2766 GB RAM
- Late 2008: 42,418 GFLOPs, 5323 CPU cores, 9939 GB RAM
- **DEPLOYING NOW!** Dell Pentium4 Xeon Linux Cluster
 - **34**,834.88 GFLOPs, 4344 CPU cores, 8880 GB RAM
- OLD: Dell Pentium4 Xeon 64-bit Linux Cluster
 - 1024 Pentium4 Xeon CPUs, 2176 GB RAM, 6553 GFLOPs
- Condor Pool: 775 student lab PCs, 7583 GFLOPs
- Tape Archive LTO-3/LTO-4, 100 TB
- National Lambda Rail (10 Gbps network)
- Internet2

* GFLOPs: billions of calculations per second

Old Pentium4 Xeon Cluster

1,024 Pentium4 Xeon CPUs
2,176 GB RAM
23,000 GB disk
Infiniband & Gigabit Ethernet
OS: Red Hat Linux Enterp 4

Peak speed: 6,553 GFLOPs*

*GFLOPs: billions of calculations per

second

Old Pentium4 Xeon Cluster

DEBUTED AT #54
WORLDWIDE,
#9 AMONG US
UNIVERSITIES,
#4 EXCLUDING BIG 3
NSF CENTERS

DOLL

topdamg.oscer.ou.edu

www.top500.org

NEW! Pentium4 Xeon Cluster

1066 Quad Core Pentium4 Xeon CPU chips ==> 4264 CPU cores (mostly 2.0 GHz, a few 2.33 GHz or 2.4 GHz)

8720 GB RAM

Over 100,000 GB disk

Infiniband (20 Gbps)

Gigabit Ethernet

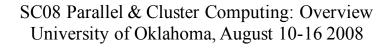
~30 x nVidia Tesla C870 cards (512 GFLOPs each single prec)

2 R900 quad socket nodes with 128 GB RAM each

OS: Red Hat Linux Enterp 5

Peak speed: 34,194.88 GFLOPs*

*GFLOPs: billions of calculations per second



Being deployed now

sooner.oscer.ou.edu

Condor Pool

<u>Condor</u> is a software package that allows number crunching jobs to run on idle desktop PCs.

OU IT has deployed a large Condor pool (775 desktop PCs).

It provides a huge amount of additional computing power – more than was available in all of OSCER in 2005.

And, the cost is very very low.

Also, we've been seeing empirically that Condor gets about 80% of each PC's time.

Tape Library

Overland Storage NEO 8000 LTO-3/LTO-4 Current capacity 100 TB raw EMC DiskXtender



Existing Resources:

National Lambda Rail/Internet2

10 Gbps network to research universities and national laboratories

For more information regarding NLR see http://www.nlr.net or contact info@nlr.net

SC08 Parallel & Cluster Computing: Overview University of Oklahoma, August 10-16 2008

Supercomputing

Supercomputing Issues

- The tyranny of the <u>storage hierarchy</u>
- *Parallelism*: doing many things at the same time
 - *Instruction-level parallelism*: doing multiple operations at the same time within a single processor (e.g., add, multiply, load and store simultaneously)
 - *Multicomputing*: multiple CPUs working on different parts of a problem at the same time
 - Shared Memory Multithreading
 - **Distributed** Multiprocessing
 - *Hybrid* Multithreading/Multiprocessing

A Quick Primer on Hardware

Henry's Laptop

Dell Latitude D620^[4]

- Pentium 4 Core Duo T24001.83 GHz w/2 MB L2 Cache ("Yonah")
- 2 GB (2048 MB)667 MHz DDR2 SDRAM
- 100 GB 7200 RPM SATA Hard Drive
- DVD±RW/CD-RW Drive (8x)
- 1 Gbps Ethernet Adapter
- 56 Kbps Phone Modem

Typical Computer Hardware

- Central Processing Unit
- Primary storage
- Secondary storage
- Input devices
- Output devices

Central Processing Unit

Also called <u>CPU</u> or <u>processor</u>: the "brain" **Parts**:

- <u>Control Unit</u>: figures out what to do next -- e.g., whether to load data from memory, or to add two values together, or to store data into memory, or to decide which of two possible actions to perform (<u>branching</u>)
- Arithmetic/Logic Unit: performs calculations—e.g., adding, multiplying, checking whether two values are equal
- Registers: where data reside that are being used right now

-

Primary Storage

Main Memory

- Also called <u>RAM</u> ("Random Access Memory")
- Where data reside when they're being used by a program that's currently running

Cache

- Small area of much faster memory
- Where data reside when they're <u>about to be used</u> and/or <u>have been used recently</u>
- Primary storage is <u>volatile</u>: values in primary storage disappear when the power is turned off.

Secondary Storage

- Where data and programs reside that are going to be used in the future
- Secondary storage is *non-volatile*: values **don't** disappear when power is turned off.
- Examples: hard disk, CD, DVD, magnetic tape, Zip, Jaz
- Many are <u>portable</u>: can pop out the CD/DVD/tape/Zip/floppy and take it with you

Input/Output

- Input devices e.g., keyboard, mouse, touchpad, joystick, scanner
- Output devices e.g., monitor, printer, speakers

The Tyranny of the Storage Hierarchy

The Storage Hierarchy

[5]

Fast, expensive, few

Registers

Cache memory

Main memory (RAM)

Hard disk

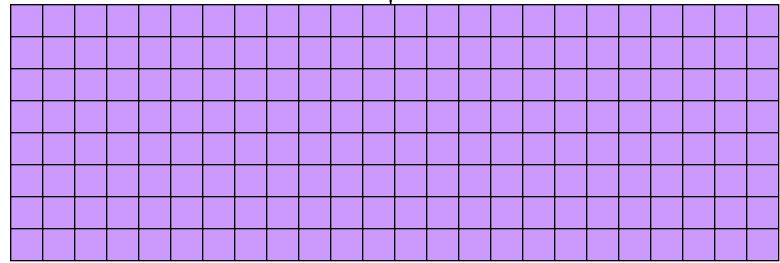
Removable media (e.g., DVD)

Internet

[6]

RAM is Slow

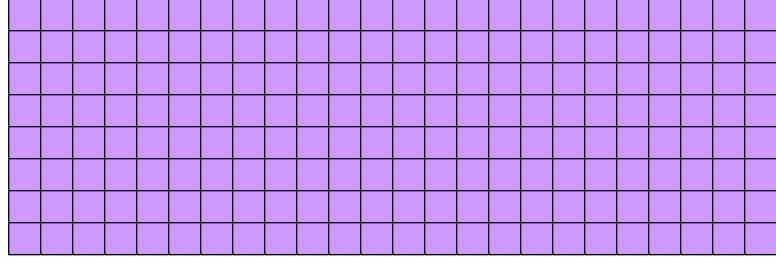
The speed of data transfer between Main Memory and the CPU is much slower than the speed of calculating, so the CPU spends most of its time waiting for data to come in or go out.



351 GB/sec^[7]

Bottleneck

10.66 GB/sec^[9] (3%)



Why Have Cache?

Cache is nearly the same speed as the CPU, so the CPU doesn't have to wait nearly as long for stuff that's already in cache: it can do more operations per second!

Henry's Laptop, Again

Dell Latitude D620^[4]

- Pentium 4 Core Duo T24001.83 GHz w/2 MB L2 Cache ("Yonah")
- 2 GB (2048 MB)667 MHz DDR2 SDRAM
- 100 GB 7200 RPM SATA Hard Drive
- DVD±RW/CD-RW Drive (8x)
- 1 Gbps Ethernet Adapter
- 56 Kbps Phone Modem

Storage Speed, Size, Cost

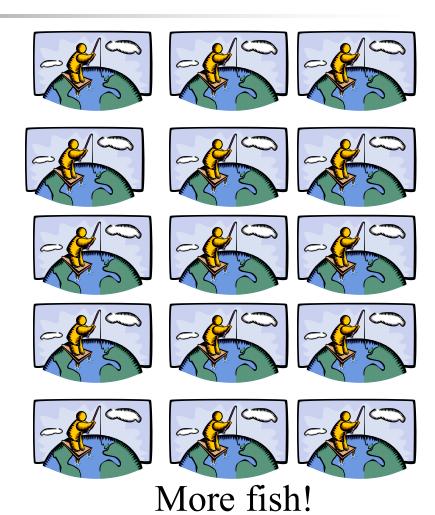
Heni Lap		Registers (Pentium 4 Core Duo 1.83 GHz)	Cache Memory (L2)	Main Memory (667 MHz DDR2 SDRAM)	Hard Drive (SATA 7200 RPM)	Ethernet (1000 Mbps)	DVD <u>+</u> RW (8x)	Phone Modem (56 Kbps)
Specification (MB/s) [pear	sec)	359,792 ^[7] (14,640 MFLOP/s*)	259,072 [8]	10,928	100	125	10.8	0.007
Siz (MI		304 bytes**	2	2048	100,000	unlimited	unlimited	unlimited
Cos (\$/M		_	\$46 [13]	\$0.14 [13]	\$0.0001	charged per month (typically)	\$0.00004	charged per month (typically)

^{*} MFLOP/s: millions of floating point operations per second

^{** 8 32-}bit integer registers, 8 80-bit floating point registers, 8 64-bit MMX integer registers, 8 128-bit floating point XMM registers

Storage Use Strategies

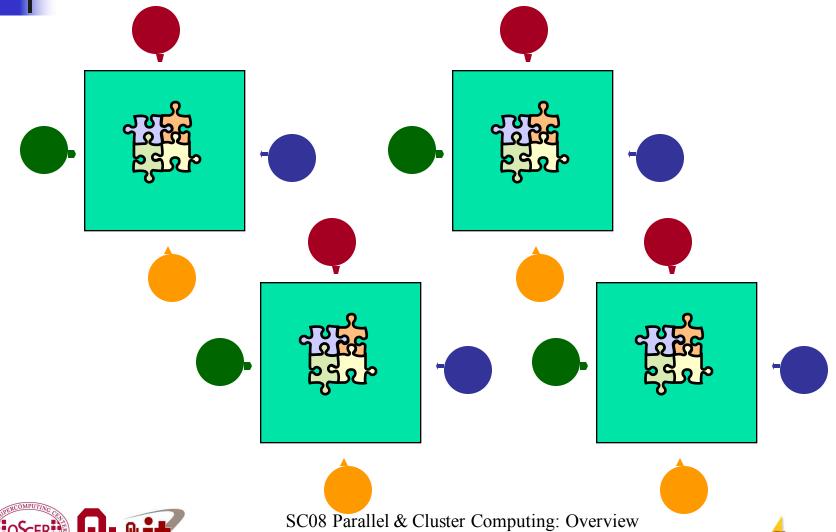
- <u>Register reuse</u>: do a lot of work on the same data before working on new data.
- <u>Cache reuse</u>: the program is much more efficient if all of the data and instructions fit in cache; if not, try to use what's in cache a lot before using anything that isn't in cache.
- **Data locality**: try to access data that are near each other in memory before data that are far.
- <u>I/O efficiency</u>: do a bunch of I/O all at once rather than a little bit at a time; don't mix calculations and I/O.



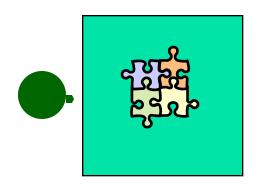
Parallelism

Parallelism means doing multiple things at the same time: you can get more work done in the same time.

Less fish ...



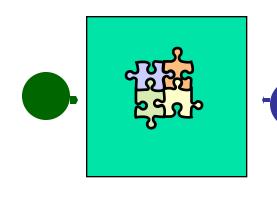
The Jigsaw Puzzle Analogy



Serial Computing

Suppose you want to do a jigsaw puzzle that has, say, a thousand pieces.

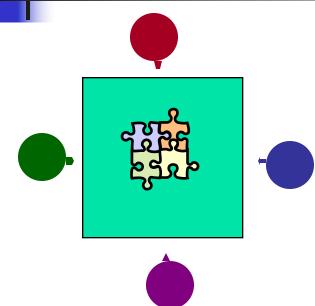
We can imagine that it'll take you a certain amount of time. Let's say that you can put the puzzle together in an hour.



-

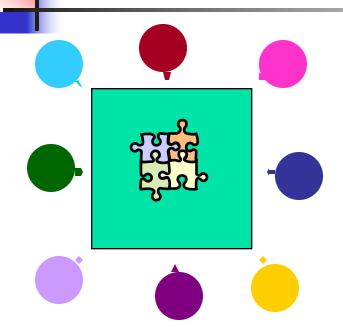
Shared Memory Parallelism

If Scott sits across the table from you, then he can work on his half of the puzzle and you can work on yours. Once in a while, you'll both reach into the pile of pieces at the same time (you'll *contend* for the same resource), which will cause a little bit of slowdown. And from time to time you'll have to work together (communicate) at the interface between his half and yours. The speedup will be nearly 2-to-1: y'all might take 35 minutes instead of 30.



-

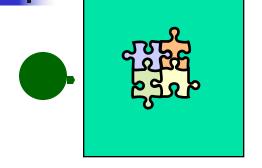
The More the Merrier?

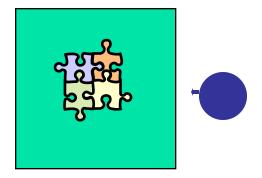


Now let's put Paul and Charlie on the other two sides of the table. Each of you can work on a part of the puzzle, but there'll be a lot more contention for the shared resource (the pile of puzzle pieces) and a lot more communication at the interfaces. So y'all will get noticeably less than a 4-to-1 speedup, but you'll still have an improvement, maybe something like 3-to-1: the four of you can get it done in 20 minutes instead of an hour.

Diminishing Returns

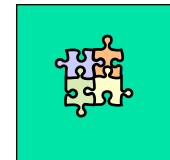
If we now put Dave and Tom and Horst and Brandon on the corners of the table, there's going to be a whole lot of contention for the shared resource, and a lot of communication at the many interfaces. So the speedup y'all get will be much less than we'd like; you'll be lucky to get 5-to-1.

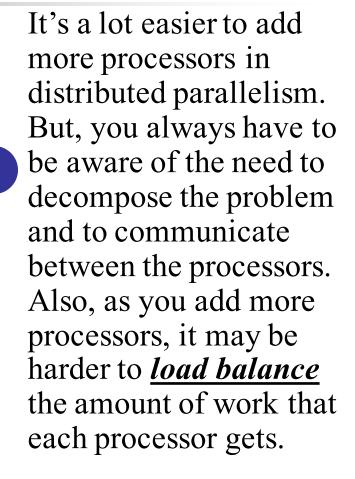

So we can see that adding more and more workers onto a shared resource is eventually going to have a diminishing return.

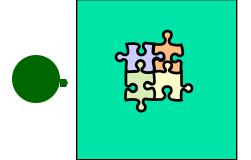


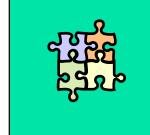
Distributed Parallelism

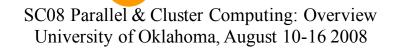
Now let's try something a little different. Let's set up two tables, and let's put you at one of them and Scott at the other. Let's put half of the puzzle pieces on your table and the other half of the pieces on Scott's. Now y'all can work completely independently, without any contention for a shared resource.

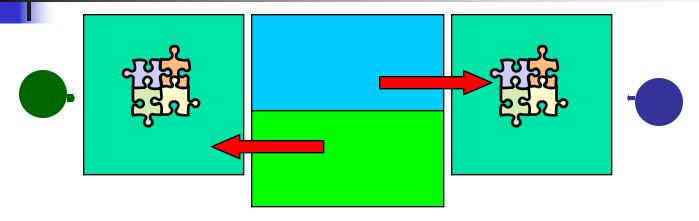

BUT, the cost of communicating is MUCH higher (you have to scootch your tables together), and you need the ability to split up (decompose) the puzzle pieces reasonably evenly, which may be tricky to do for some puzzles.


More Distributed Processors

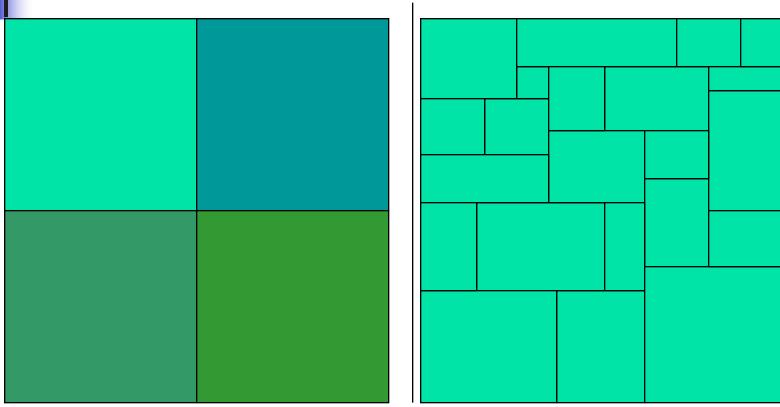








Load Balancing


Load balancing means giving everyone roughly the same amount of work to do.

For example, if the jigsaw puzzle is half grass and half sky, then you can do the grass and Julie can do the sky, and then y'all only have to communicate at the horizon — and the amount of work that each of you does on your own is roughly equal. So you'll get pretty good speedup.

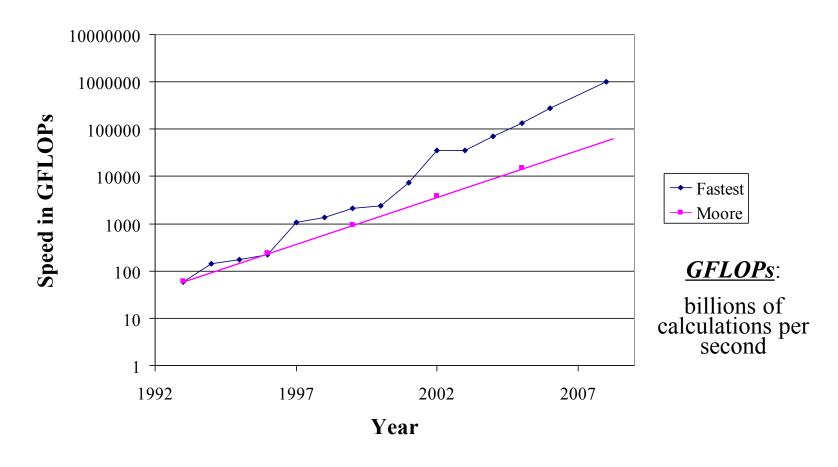
Load Balancing

Load balancing can be easy, if the problem splits up into chunks of roughly equal size, with one chunk per processor. Or load balancing can be very hard.

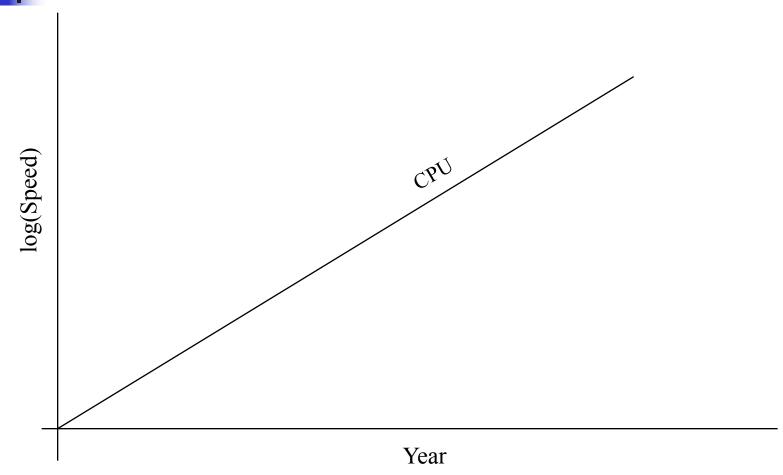
Moore's Law

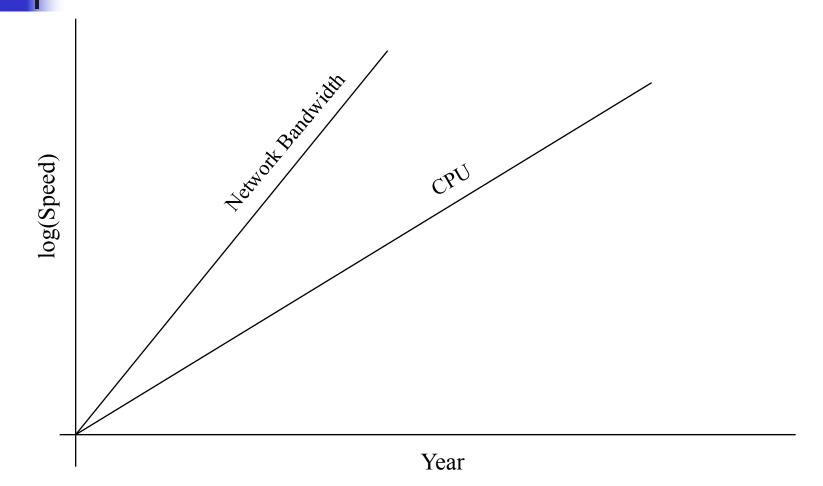
Moore's Law

- In 1965, Gordon Moore was an engineer at Fairchild Semiconductor.
- He noticed that the number of transistors that could be squeezed onto a chip was doubling about every 18 months.
- It turns out that computer speed is roughly proportional to the number of transistors per unit area.
- Moore wrote a paper about this concept, which became known as "Moore's Law."

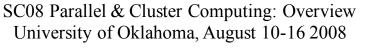


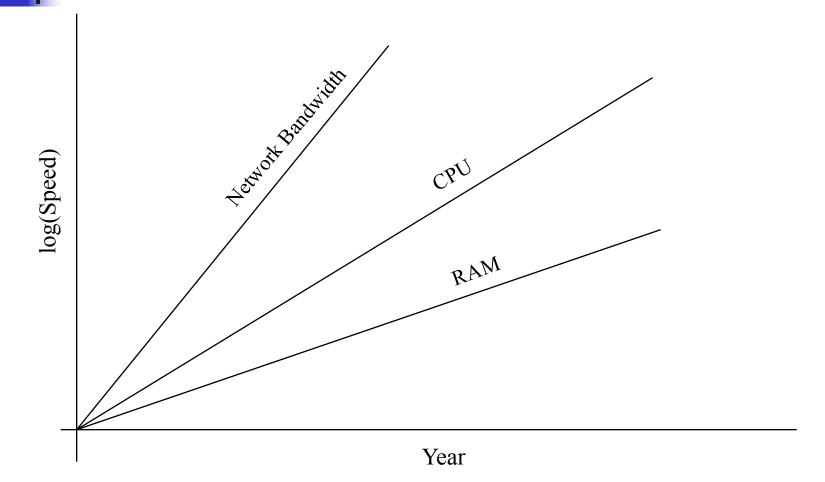
Fastest Supercomputer vs. Moore

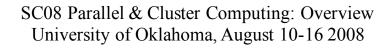

Fastest Supercomputer in the World

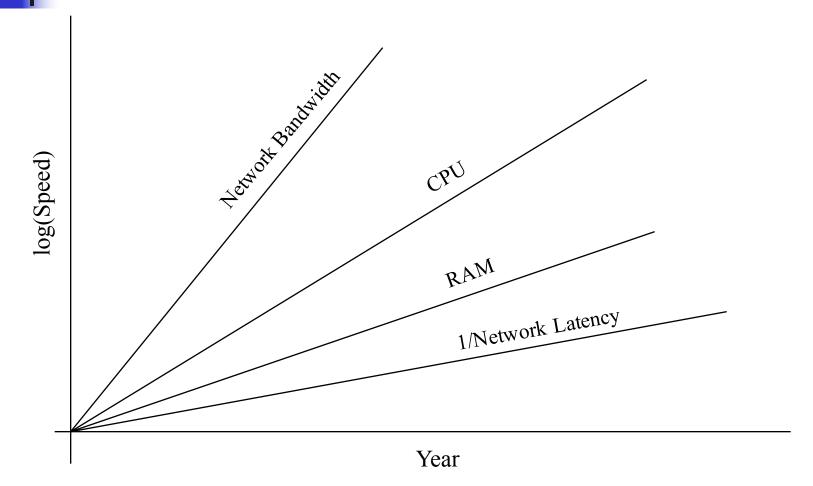


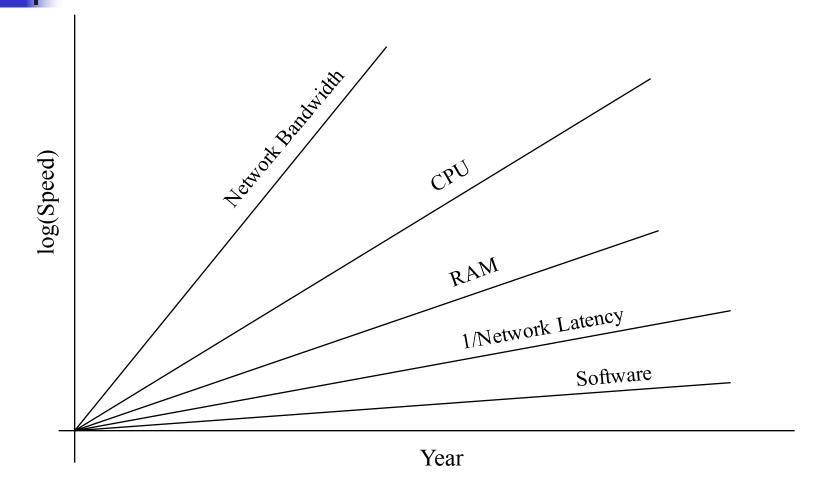
4











Why Bother?

Why Bother with HPC at All?

It's clear that making effective use of HPC takes quite a bit of effort, both learning how and developing software.

That seems like a lot of trouble to go to just to get your code to run faster.

It's nice to have a code that used to take a day run in an hour. But if you can afford to wait a day, what's the point of HPC?

Why go to all that trouble just to get your code to run faster?

Why HPC is Worth the Bother

- What HPC gives you that you won't get elsewhere is the ability to do <u>bigger</u>, <u>better</u>, <u>more exciting science</u>. If your code can run faster, that means that you can tackle much bigger problems in the same amount of time that you used to need for smaller problems.
- HPC is important not only for its own sake, but also because what happens in HPC today will be on your desktop in about 15 years: it puts you <u>ahead of the</u> curve.

The Future is Now

Historically, this has always been true:

Whatever happens in supercomputing today will be on your desktop in 10-15 years.

So, if you have experience with supercomputing, you'll be ahead of the curve when things get to the desktop.

OK Cyberinfrastructure Initiative

- Oklahoma is an EPSCoR state.
- Oklahoma recently submitted an NSF EPSCoR Research Infrastructure Proposal (up to \$15M).
- This year, for the first time, all NSF EPSCoR RII proposals MUST include a statewide Cyberinfrastructure plan.
- Oklahoma's plan the <u>Oklahoma Cyberinfrastructure</u>
 <u>Initiative</u> (OCII) involves:
 - all academic institutions in the state are eligible to sign up for free use of OU's and OSU's centrally-owned CI resources;
 - other kinds of institutions (government, NGO, commercial) are eligible to use, though not necessarily for free.
- To join: see Henry after this talk.

Okla. Supercomputing Symposium

2003 Keynote:
Peter Freeman
NSF
Computer &
Information
Science &
Engineering
Assistant Director

2004 Keynote: Sangtae Kim NSF Shared Cyberinfrastructure Division Director

2005 Keynote:
Walt Brooks
NASA Advanced
Supercomputing
Division Director

Over 150 in the first day, over 200 in the first week, over 225 in the first month.

2006 Keynote: Dan Atkins Head of NSF's Office of Cyberinfrastructure

2007 Keynote:
Jay Boisseau
Director
Texas Advanced
Computing Center
U. Texas Austin

2008 Keynote:
José Munoz
Deputy Office
Director/ Senior
Scientific Advisor
Office of Cyberinfrastructure
National Science
Foundation

FREE! Parallel Computing Workshop Mon Oct 6 @ OU sponsored by SC08 FREE! Symposium Tue Oct 7 @ OU

http://symposium2008.oscer.ou.edu/

To Learn More Supercomputing

http://www.oscer.ou.edu/education.php

Thanks for your attention!

Questions?

References

- [1] Image by Greg Bryan, MIT: http://zeus.ncsa.uiuc.edu:8080/chdm_script.html
- [2] "Update on the Collaborative Radar Acquisition Field Test (CRAFT): Planning for the Next Steps." Presented to NWS Headquarters August 30 2001.
- [3] See http://scarecrow.caps.ou.edu/~hneeman/hamr.html for details.
- [4] http://www.dell.com/
- [5] http://www.flphoto.com/
- [6] http://www.vw.com/newbeetle/
- [7] Richard Gerber, The Software Optimization Cookbook: High-performance Recipes for the Intel Architecture. Intel Press, 2002, pp. 161-168.
- [8] http://www.anandtech.com/showdoc.html?i=1460&p=2
- [9] ftp://download.intel.com/design/Pentium4/papers/24943801.pdf
- [10] http://www.seagate.com/cda/products/discsales/personal/family/0,1085,621,00.html
- [11] http://www.samsung.com/Products/OpticalDiscDrive/SlimDrive/OpticalDiscDrive SlimDrive SN S082D.asp?page=Specifications
- [12] ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
- [13] http://www.pricewatch.com/
- [14] Steve Behling et al, The POWER4 Processor Introduction and Tuning Guide, IBM, 2001, p. 8.
- [15] Kevin Dowd and Charles Severance, *High Performance Computing*, 2nd ed. O'Reilly, 1998, p. 16.
- [16] http://emeagwali.biz/photos/stock/supercomputer/black-shirt/

