
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and teaming
300 North Zeeb Road, Ann Artwr, Ml 48106-1346 USA

800-521-0600

UMI’

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

AN INTELLIGENT SEARCH-BASED METHODOLOGY FOR SELECTION OF

SAMPLE POINTS FOR FORM ERROR ESTIMATION

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

MOHAMMAD AFFAN BADAR
Norman, Oklahoma

2002

UMI Number; 3059900

UMI
UMI Microform 3059900

Copyright 2002 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. 60x1346
Ann Arbor, Ml 48106-1346

© Copyright by Mohammad AfFan Badar 2002
Ail Rights Reserved.

AN INTELLIGENT SEARCH-BASED METHODOLOGY FOR SELECTION OF
SAMPLE POINTS FOR FORM ERROR ESTIMATION

A Dissertation APPROVED FOR THE
SCHOOL OF INDUSTRIAL ENGINEERING

BY

Dr. Shivakumar Raman, Chair

Dr. Pakize Simin Pulat, Co-Chair

Dr. Kanda L. Shehab

Dr. Theodore B. Trafalis

Dr. Sridhar Radhakrishnan

ACKNOWLEDGEMENTS

First, I am very grateful to the Almighty for His Guidance and Support throughout

my life. Then, I would like to express my sincere gratitude to my late parents. In fact,

everything I have accomplished is because of them. I am also thankful to my sister and

brothers and their families for their cooperation in general and for taking care o f our

parents during their last days while I was away in particular. Further, I would like to

thank my wife for her understanding and patience, especially after the birth o f our

daughter, Sidrah. I am grateful to my in-laws and the family as well for their thoughts.

Special thanks are due to my advisors. Dr. Shivakumar Raman and Dr. P. Simin

Pulat for their continuous guidance and assistance during these past years as a PhD

student. I am grateful to my committee member. Dr. Randa L. Shehab for her guidance,

particularly in the experimental design and analysis part of the dissertation. I would also

like to express my appreciation to my committee members. Dr. Theodore B. Trafalis and

Dr. Sridhar Radhakrishnan for their valuable suggestions leading to the completion o f this

work. I am thankful to Dr. Thomas L. Landers as well for his advice and help. Further

gratitude is extended to the entire faculty, staff, and colleagues at the School of Industrial

Engineering, especially to Allison Richardson, Jean Shingledecker, and Madan Mathevan

for their support. Furthermore, I am thankful to the entire Graduate College staff,

particularly to Dean Amelia Adams and C. Rene Jenkins for their help.

I would also like to thank all of my relatives and friends for their encouragement.

Thank you.

IV

TABLE OF CONTENTS

LIST OF TABLES ... vii
LIST OF FIGURES... viii
NOMENCLATURE ... ix
ABSTRACT ... x

CHAPTER
1. INTRODUCTION .. 1
2. LITERATURE REVIEW.. 5

2.1 Coordinate Measuring Machine ... 6
2.2 Sample Design .. 7

2.2.1 Sample Size .. 7
2.2.2 Sample Locations.. 11

2.3 Surface Profiles in Manufacturing.. 15
2.4 Form Error Estimation Methods .. 21

2.4.1 Minimum Zone Method .. 22
2.4.2 Least Squares Method .. 27

3. OPTIMIZATION SEARCH METHODS .. 30
3.1 Optimization of Functions of One Variable ... 30
3.2 Pattern Search Methods ... 33

3.2.1 Coordinate Search ... 35
3.2.2 Hooke-Jeeves Pattern Search ... 37
3.2.3 Tabu Search... 38
3.2.4 Hybrid Search... 43

4. OBJECTIVE AND OVERVIEW OF METHODOLOGY 44
4.1 Objective .. 44
4.2 Overview o f Methodology .. 44

5. MANUFACTURING SURFACE PATTERN .. 48
5.1 Pattern for Flatness .. 48

5.1.1 End Milling .. 48
5.1.2 Face Milling .. 59

5.2 Pattern for straightness.. 69
5.2.1 End Milling .. 69
5.2.2 Face Milling .. 70

5.3 Population Data .. 71
6. ALGORITHM DEVELOPMENT 72

6.1 Straightness Using Region Elimination Search 72
6.2 Flatness .. 76

6.2.1 Tabu Search .. 77
6.2.2 Hybrid Search .. 85

7. EXPERIMENTAL DESIGN .. 88
7.1 Straightness .. 88
7.2 Flatness ... 92

8. RESULTS AND DISCUSSIONS ... 96
8.1 Straightness .. 96
8.2 Flatness .. 97
8.3 Comparison with Previous Work .. 100

9. CONCLUSIONS AND RECOMMENDATIONS 104
REFERENCES ... 108

APPENDIX
A. POPULATION DATA .. 115

A. 1 Straightness .. 115
A. 1.1 End Milling ... 115

Table A. 1.1.1: Plate #4 115
Table A.1.1.2: Plate #12 116
Table A.1.1.3: Plate #9 117
Table A. 1.1.4: Plate #2 118

A. 1.2 Face Milling ... 119
Table A.1.2.1: Plate #3 119
Table A. 1.2.2: Plate #1 119
Table A. 1.2.3: Plate #11 120
Table A. 1.2.4: Plate #7 .. 120

A.2 Flatness .. 121
A.2.1 End Milling ... 121

Table A.2.1.1: Plate #10 121
Table A.2.1.2: Plate #5 126
Table A.2.1.3: Plate #7 130
Table A.2.1.4: Plate #4 135

A.2.2 Face Milling ... 139
Table A.2.2.1: Plate #2 139
Table A.2.2.2: Plate #9 142
Table A.2.2.3: Plate #11 145
Table A.2.2.4: Plate #5 148

B. JAVA CODES ... 151
B.l Least Squares Line .. 151
B.2 Least Squares Plane .. 153
B.3 Region Elimination Search ... 155
B.4 Tabu Search .. 160
B.5 Hybrid Search.. 173

C. SAS FILES ... 197
C.l Straighmess ... 197
C.2 Flatness ... 203

VI

LIST OF TABLES

Table
1. Observed response - number of sampled points (absolute percentage error) for

straightness estimation ... 90
2. ANOVA for the three-factor nested-factorial model for straightness 91
3. Observed response - number of sampled points (absolute percentage error) for flatness

estimation.. 94
4. ANOVA for the four-factor nested-factorial model for flatness 95

vu

LIST OF FIGURES

Figure
1. Sample points for a line feature, tolerance = 1 ema(+) I + 1 Smaxo) I 3
2. The pattern for CS in with a step length 4 t ... 36
3. All possible subsets ofthe steps for CS in R^ ... 36
4. The pattern step in R , given Xk # Xk-i, k> 0 37
5. Cutter and workpiece deflection in end milling (source: [48]) 49
6. Surface error i a y - z plane in end milling (source: [48]) 53
7. Aluminum workpiece for end milling .. 54
8. Surface measurement with CMM (source: [35]) .. 55
9. Flatness error profile for end-milled plate # 1 0 .. 57
10. Flatness error profile for end-milled plate # 5 .. 57
11. Flatness error profile for end-milled plate # 7 .. 58
12. Flatness error profile for end-milled plate # 4 .. 58
13. Mutli-tooth face milling schematic showing the instantaneous forces exerted by each
tooth on the workpiece (source: [35])... 60
14. Schematic o f spindle axis tilt & effect of tooth’s axial position (source: [35]) 63
15. Schematic o f workpiece geometry used in [35] .. 64
16. Surface error in face milling (source: [35]) 65
17. Cast iron workpiece for face milling .. 66
18. Flatness error profile for face-milled plate # 2 .. 67
19. Flatness error profile for face-milled plate # 9 .. 68
20. Flatness error profile for face-milled plate # 1 1 .. 68
21. Flatness error profile for face-milled plate # 5 .. 68
22. Straightness error profile for end-milled plates.. 69
23. Straightness error profile for face-milled plates..70
24. Flowchart of the region elimination algorithm for straightness estimation ... 73
25. Neighborhood points of a starting point in tabu search 78
26. Tabu search algorithm flowchart for flatness estimation............................ 80
27. Hybrid search algorithm flowchart for flatness estimation 86
28. Effect of manufacturing process and step size in straightness estimation... 97
29. Results o f the flatness estimation using tabu search 99
30. Results o f the flatness estimation using hybrid search 99
31. Manufacturing process - algorithm and strategy - algorithm plot 100

viu

NOMENCLATURE

line: z = zo + Iqx

plane: z = zq + Iqx + mgy

ahx ■ helix angle

: flexibility influence coefficient at point p ̂ due to a unit force at point

CFY: y force center

d y : y cutter deflection

e/, ê, : linear and normal deviation o f /th point from assessment feature

^max(+)■> ^max(-) '■ maximum deviation in +ve and -ve direction from assessment

feature

FF FR : elemental tangential and radial force

F y: y cutting force

hi : form tolerance

K t . K r : empirical constants

l O , mo : slopes

N : total number of data points

n : point sequence number used in the po

R : radius

0 : angular position

Xi, y i, Xi ’. cartesian coordinates of ith data point

z q : intercept

IX

ABSTRACT

Efficient part feature verification through CMM requires prudent sampling of data

points. This dissertation presents an adaptive sampling procedure, which uses

manufacturing error patterns and optimization search methods for reducing sample size,

while maintaining high accuracy. The methodology is demonstrated with straighmess

and Harness evaluation.

Two manufacmring processes, end and face milling are used to produce plates.

Respective surface errors are quantified and previous models are validated. Sampling

begins with a necessary number of initial points guided by the geometry and error profiles

of the object surface. The least squares method is applied to compute a tolerance zone.

Next points are sampled based on search methods with suitable intensification and

diversification, looking for improvements in the zone. The final zone value is compared

with that obtained for a population sample in terms of the absolute % error. For

straighmess estimation, region-elimination search is used. For flamess determination,

tabu search and a hybrid search are employed and their performance is compared. The

hybrid search developed is a combination of coordinate search, Hooke-Jeeves search and

tabu search. Experiments are conducted to investigate the effect of different factors on

the sample size and % error.

Comparison with other sampling methods reveals that the present approach is

more efficient and reliable. The research is expected to lead to improved solutions to

inspection problems faced by industries.

CHAPTER 1

INTRODUCTION

Dimensional and geometric tolerances are assigned to selected features of

engineering components to satisfy certain functional or assembly requirements [81, 95].

Dimensional tolerances are defined as the permissible variation in the dimensions such as

height, width, diameter, angles, etc. of a part [43]. Geometric constraints are expressed in

terms of ANSI Y14.5M-1994 [3]. In these standards, allowable variation of individual

and related features is based on the ‘envelope principle'; that is, the entire surface o f a

part feature of interest must lie within two minimum separating envelopes o f ideal shape.

The minimum range allowed for any shape is called form tolerance/error [40]. As

dimensional tolerances are easier to compute, this work is focused toward form errors.

Verification of manufactured parts is done through manual checking against

standard gages or by appropriate measurements using coordinate measuring machines

(CMMs). The latter have become more popular because of the flexibility, accuracy, and

ease of automation. It is extremely important to estimate form tolerances correctly in

order to reduce the chance of accepting bad parts or rejecting good ones. Nevertheless,

there are some problems associated with probe-type CMMs. They measure only a sample

of discrete points on surfaces for individual and/or related feature verification of parts

whereas tolerance standards require knowledge of the entire surface [75]. Then a zone

fitting technique is used to estimate the tolerance zone. Therefore, the estimation

accuracy depends on both the sampling plan and the estimation method.

Two most common methods to evaluate form tolerances are the least squares (LS)

and the minimum zone (MZ) methods [22]. The LS method is simpler, but its estimates

may not be the minimum. The MZ method has a kind of similarity with the envelope

principle mentioned in the tolerance-standard definition, however, it underestimates the

deviations since it encloses only a set o f sample points. The simplex search or any other

suitable search technique can be used to obtain the MZ. Both methods give seriously

biased estimates of the part form tolerance when the sample size is small [21]. Thus, the

larger the sample size is, the better the evaluation of tolerances will be. However, large

sample size will increase the measurement time and the effect of machine drift due to

temperature. Therefore, a trade-off between the benefit of additional sampling and the

cost of increased time is to be made (benefit-cost analysis). This is the motivation behind

this dissertation, which uses the LS technique to estimate a zone.

Although optimization strategies are routinely employed for minimum zone

estimation in the current metrology literature, optimization and search are rarely utilized

in sample point selection. Further, each manufacturing process in conjunction with the

work-holding induces different types o f deflections on the manufactured parts. These

deflections result in specific patterns of surface errors. If the point that has got maximum

error can be caught at the initial stages, then prolonging the measurement process may

not be necessary, and the measurement time can be reduced [63]. But. little to no

attempts are evident in quantifying and utilizing such patterns in sampling.

A methodology for sample reduction, based on optimization search heuristics,

exploiting the knowledge of manufacturing surface pattern is proposed here. The interim

result of search-based selection of sample points with an example has been presented in

[7-8] without quantifying manufacturing errors. The approach is illustrated with

straightness and flatness evaluation. Straightness as defined in [3] is the condition where

an element of a surface, or an axis, is a straight line. A straighmess tolerance as shown in

Figure 1, specifies a tolerance zone within which the considered element or derived

median line must lie. Similarly, flatness is the condition of a surface having all elements

in one plane. A flamess tolerance is specified through a tolerance zone defined by two

minimum separating parallel planes within which the surface must lie in order to meet the

functional requirements of a part.

i t

^ ma x(-t

Figure 1 : Sample points for a line feature, tolerance = I emax(-^) I + 1 ^max(-) I •

Continuing on the work [7-8], manufacturing surface profiles are also

characterized. Kline et al. [48] have given surface error model for end milling using

7075-T6 aluminum workpiece and Gu et al. [35] for face milling using cast iron

workpiece. Aluminum and cast iron plates are produced using end and face milling (fly-

cutting) respectively for the present work. The surface patterns are quantified and the

error models [35, 48] are verified. Initial locations to inspect and search directions are

governed by the profile and geometry of the part surface. An ideal feature is fit to the

initial set of points and a tolerance zone is computed. Additional points are sampled

using search methods, seeking improvement in the zone. Search is conducted in both the

+ve and -ve directions from the fit feature and is stopped when a solution for the

maximum deviation is realized. The two solution points are added to the initial set and

the corresponding tolerance is determined. In doing so, an optimum sample size is

obtained with respect to the cost-benefit analysis. The tolerance value is compared with

that obtained for a very large population sample to verify the accuracy. In case of

straighmess, region-elimination search method [70] is employed. Tabu search [31] and a

hybrid search are applied for flamess. The hybrid search developed is a combination of

coordinate search [86], Hooke-Jeeves pattern search [70, 86] and tabu search. Extensive

experimental analysis is conducted to verify the sturdiness and feasibility o f the present

adaptive sampling procedure. The results obtained signify the importance of the

contribution and its potential for application in inspection for interchangeability.

The dissertation is organized as follows. Next chapter reviews the literature on

CMM, sample design, manufacturing surface profiles, and form tolerance evaluation

methods. Chapter 3 discusses the search methods employed. Objective and overview of

the methodology are described in Chapter 4. Experimental verification of the

manufacturing error profiles and collection of the population data are enumerated in

Chapter 5. Chapter 6 explains the development of the search algorithms. Experimental

design is discussed in Chapter 7. Chapter 8 analyzes the results and compares them with

previous work. Chapter 9 contains the conclusions and suggestions for future work.

CHAPTER 2

LITERATURE REVIEW

Functional requirements or assembly conditions on a manufactured part are

normally translated into geometric constraints to which the component must conform.

These constraints are expressed in terms of ANSI Y14.5M-I994 [3]. In these standards,

allowable variation of individual and related features is based on the envelope principle’;

that is, entire surface of the part feature o f interest must lie within two minimum

separating envelopes of ideal shape. This minimum range is called form tolerance/error.

It is important to use correct definition of tolerance specifications [71]. Commonly used

form tolerances are straighmess, flamess. circularity, cylindricity, sphericity, and conicity

[21, 67, 74, 77]. Etesami [26] also includes profile of a surface as a kind of form

tolerance. Formal definition of form, using computational geometry concepts with 2-D

measurement data is given in [27]. To determine form tolerances, CMMs are used to take

sample measurements representing a feature. The measurements are taken based on a

sampling plan. If manufacturing surface errors can be quantified, it will aid in sampling.

Form error evaluation algorithms are used to analyze the sampled data. The results

obtained depend upon the measuring errors, tolerance specified, manufacturing process,

sampling strategy, and form error estimation method [36]. In this chapter, a review is

presented on CMM, sample design, manufacturing surface profiles, and form error

evaluation methods.

2.1 Coordinate Measuring Machine

A coordinate measuring machine (CMM) is a computer-controlled device that

uses a probe to get measurements [21, 22, 75], generally one point at a time, on a

manufactured component’s surface. Probe movements may be programmed or

determined manually by operation of a joystick. An algorithm is used to relate the

sample o f coordinate data to obtain the information about a form. Since CMMs are

flexible, adequately accurate, and can be easily automated, therefore they are popular in

inspection of mechanical parts [50]. Now, they are also being used for statistical process

or quality control in-process inspection to assess trends in manufacturing processes. This

trend will increase as new CMM designs become less sensitive to shop floor conditions.

Although CMMs have gained tremendous popularity, difficulties arise with its

use. Its measurements are associated with unavoidable imperfections (straightness and

perpendicularity deviations in the guides, probe deformations, errors in the length

measuring system, etc.) and external influences (temperature changes, vibration, etc.)

which lead to random and systematic errors [89]. There are a few methods available in

the literature to assess and/or reduce the measurement uncertainties [24, 39, 76].

Tolerance standards require knowledge of the entire surface, whereas a CMM measures

only a small sample o f the surface. Sometime CMM algorithms may also draw incorrect

conclusions. As a result, it may accept bad parts and reject good ones. Therefore, the

estimation accuracy depends on the sample size and the estimation method. Selection of

an appropriate sample size involves a trade-off between the cost of taking additional

measurements and the cost of making incorrect decisions. The choice of estimation

method involves a trade-off between the ease of use and the accuracy of the estimation.

2.2 Sample Design

An important decision in any CMM application is the determination o f the

number and location of probe measurements to collect. If enough data points are not

collected, then a large discrepancy may occur in the results [17]. Little work has been

done on design issues and there exist many research opportunities.

2.2.1 Sample Size

Selection of a sample size for CMM inspection is affected in general by factors

such as the size of a feature, the tolerance specification (band), and the machining process

capability. A bigger size of a feature may need a larger sample size to cover the entire

surface. For a specified tolerance band, a machine with a better process capability

requires a smaller sample size. For the same process capability, a tighter tolerance band

requires a larger sample size. Industries prefer small sample sizes; e.g., 3-5 points for a

line feature, 5-8 for a plane, 4-8 for a circle [22]. This is to minimize the measurement

time and to reduce the effect of machine drift; without giving any formal consideration to

costs associated with the inspection errors. Therefore, a trade-off needs to be made in

determining a suitable sample size, which can represent the entire population with

sufficient confidence and accuracy. It is to be noted that there is a difference between the

elimination of some data points from a sample set in order to decrease computational

time and the reduction of a sample set to shorten the measurement time. Some

techniques concerning the former issue have been suggested in [44, 65]. The latter is the

subject of this study.

Weckenmann et al. [89] discussed how the use of functionality-oriented

evaluation procedures requires a sampling strategy that establishes a certain minimum

number and optimal distribution of data points for sufficient reliability. As the number of

data points increases, the estimated values converge to the ‘true’ value of form error and

the sampling strategy dispersion converges to zero. Babu et al. [6] simulated different

measurement conditions and suggested that information regarding the manufacturing

process, measurement uncertainty, and the tolerance on the part is required to choose a

proper sampling plan. Zhang et al. [100] reached similar conclusion about the factors

with the addition of the size of a feature, which may affect the sample size required for

CMM. They used a back-propagation neural network approach in their study of ‘hole’

features. They measured the diameter of the hole for different number of sample points,

and found the tolerance band as the difference in the average diameters for one sample

size to other.

Weckenmann et al. [90] considered the effect of various sample sizes on least

squares (LS) estimates of the parameters describing a circular feature. They concluded

that 10 to 20 points are needed to obtain sufficient precision on parameter estimates,

which is twice the sample size used in practice. In a study on circularity. Chang and Lin

[14] found a relationship between the relative measurement error U and the sample size

by a Monte Carlo simulation method for the i"’-order harmonic function. For example, at

U = 20% and i =20, they reported that the minimum sample size should be 35.

Damodaran et al. [18] investigated the effect of size of data point sets and radius of the

component using different algorithms for the determination of minimum circularity

tolerance zone. They reported that an adequate sample size ranges from 15 for a

component of radius 2 inches to 25 for a component of radius 20 inches.

Hurt [41] noticed that the accuracy of the LS estimate improves by measuring

more points and 20 or more points are needed in order to get a reasonable flatness value.

Caskey et al. [13] studied the behavior of a plane fit using the sample sizes in perfect

squares o f 4, 9, 16, 25, 36, and 49, and could not find the sampling strategy dispersion

converging to zero even with 49 points. For a line of 40 in. (sample sizes of 5, 25. 50)

and a plane of 20x20 in. (sample sizes of 4, 9, 16, 25, 36,49), Hocken et al. [36] reported

that the parameters described in both the fit line and plane did not converge to stable

values until a larger number of points (> 50) were sampled. All the three studies were

based on simulation.

Menq et al. [56] took a more theoretical approach to the choice of sample size.

Standard statistical methods were used to develop a hypothesis test on the variance of the

residuals that result from a LS fit; a large variance means an unacceptable part. A sample

size formula was then derived for the desired levels of Type I and II errors. The result

shows that the appropriate sample size should depend on both the tolerance specification

and the variability o f the manufacturing process. As the tolerance gets tighter the sample

size increases, while as the process capability improves the sample size decreases (also

mentioned by Yau and Menq [94]). The validity of the result depends on having

normally distributed deviations, which may not be true in the presence of systematic

errors. Yau and Menq [95] and Yau [96] used a sensitivity measure to relate the

uncertainty (or accuracy) of the evaluated best-fit parameters to the dimensional errors

and the number of measurements & their locations. In agreement with Babu et al. [6] and

Zhang et ai. [100], they reported that as the variance of specified tolerance (depending on

manufacturing process and process variability) increases, the uncertainty of the evaluated

error increases. On the other hand, as the number of measurement points increases, the

uncertainty decreases. As an example, for a 2D circle with uniform distribution of data

points, they reported that the uncertainty was proportional to the magnitude of

dimensional error and inversely proportional to the square root of the number of points

(<T = 5 ^ 2 / n). For a 99.7% confidence level, uncertainty U = 3a. Interestingly, they

found no effect o f the size of the circle radius, which is in contrast to the findings of

Zhang et al. [100] and Damodaran et al. [18]. For a general 3D case, Yau [96] indicated

that the sensitivity as well as uncertainty values are in general inversely proportional to

the square root of the sample size. This helps in finding a suitable number of points that

will control the best-fit result to satisfy the allowable uncertainty constraints.

Namboothiri and Shunmugam [63] introduced a new parameter, based on the

asymptotic distribution of the form errors and with the assumption that the errors follow a

normal distribution, which is a function of the sample size and the corresponding values

of errors. The parameter gives the probability that the form error is less than a particular

value. Thus, form error can be measured accurately with less measurement time with the

help o f this parameter. They also realized the importance of a sampling pattern in

measurements. But they didn’t propose any technique to characterize the pattern. The

other drawback in their study is that the measurements were based on simulation. The

present study measures actual points on the surface using a CMM.

1 0

Sweet et al. [85] used statistical approach to determine the minimum number of

measurements to make at each location and their location in order to locate a part within a

specified confidence interval. For planes, if the variances of the measurement errors and

the machined surface imperfections are known, they recommend 12 locations: one

measurement in each comer and two measurements on each side of the rectangle, to

satisfy the confidence interval. If the variances are unknown, then eight locations may be

used, with one measurement at each comer and one measurement in the middle of each

side. For circles, with one measurement at each location, they found that the results for

20 locations were better than that of four locations. Also, it was better to use equally

spaced angles for locations. It is to be noted that the problem of part location is similar to

problems encountered when using CMMs, but some aspects are different enough to make

them independent.

2.2.2 Sample Locations

Most CMM guidelines suggest users to distribute measurements evenly on the

surface being measured [95-96]. Three sampling schemes most commonly discussed in

the CMM literature are uniform or equidistant, totally randomized, and a simple form of

stratified sampling called randomized block or randomized grid. Cochran [16] provided a

general reference for theory related to these methods. Simple random sampling is a

sampling method whereby a sample of n units is selected out o f a population of N units

such that every one of the n sample units has an equal chance of being chosen [16]. The

two types of simple random sampling are sampling with replacement and sampling

without replacement. The difference is that the latter makes it possible for the same n

I I

units to be redrawn since the units are returned into the population after selection. In

stratified sampling the population of N units is divided into sub-populations, or strata, of

M. ..., Nî imits. Then sampling is obtained by performing simple random sampling

on each stratum [9]. Systematic (uniform) sampling is a sampling method where by the

first unit selected determines the whole sample. The first unit is randomly generated

while the others are selected automatically by some predetermined pattern. The pattern

used in selecting a systematic sample is simple with regular spacing of units [9]. A

population consists of N units numbered from 1 to TV in some order [16]. To select a

sample of n units, a random number, /, less than or equal to k where N = k xn. is drawn.

Then, the zth unit and every Mi subsequent unit will make a sample of n units. The

sample of n units consists of units ordered as i, / + k, i + 2k, ..., i + (n - l)Ar. Say for

example o f « = 4 units where = 40 and k = 10, if the first drawn number is 8. the

subsequent units are numbers 18, 28, and 38. Dowling et al. [22] have mentioned that a

simulation study to test the behavior of CMM fitting algorithms under these three

sampling schemes has been done. Results indicated that stratified sampling performs

better than random sampling. This is obvious because stratified sampling ensures better

coverage of the entire profile. Uniform sampling is the easiest and has this advantage as

well; however it can have problems when there are periodic features in the data. Caskey

et al. [13] used stratified sampling and believed, but have not proven, that this type of

sampling would be more robust to feature waviness. Hocken et al. [36] performed both

uniform and stratified sampling.

12

Alternative designs providing good feature coverage should also be considered.

McKay et al. [55] suggested a latin hypercube sampling (LHS) for the case o f high

dimensional spaces. This technique assures a dense and even coverage of the entire range

when the design is projected onto a single dimension. They and Stein [83] showed that

the variance in a predicted surface is reduced when LHS is used instead of random or

stratified sampling. Another option is Hammersley sequence sampling [52, 91, 92, 93]

for planar features. The results indicated that Hammersley sequence requires fewer

observations than uniform sampling to achieve a pre-specified accuracy (a nearly

quadratic reduction in the number of points, i.e. loosely speaking 250.000 points reduce

to 500). Hammersley sequence is also more accurate than that of random samples [52].

For a workpiece with multiple geometric features forming strata, the stratified

Hammersley sampling is more robust than the stratified random sampling and stratified

uniform sampling [52]. Woo et al. [93] compared Hammersley and Halton-Zaremba

sequences and could not find any significant difference in their performance. The choice

is largely a matter of convenience as Halton-Zaremba requires the sample size to be a

power o f 2, i.e., 2,4, 8 ,...,.

Besides the accuracy and sample size, if the length of a CMM probe path is also

considered, then it can be concluded for flatness that any one sampling strategy may not

be the best for all cases [46-47]. It is possible that the most accurate sampling method

may not be the most efficient one. Hocken et al. [36] pointed out that on real CMMs the

software provided by the manufacturer is limited. Hence, it is easier to program a

measuring machine to do equal intervals in angle or space (imiform sampling) than it is to

use any o f the other sampling techniques. Yau [96] adopted the conjugate gradient

13

method to search for the optimal sampling positions given a fixed number o f

measurement points. To start the iterative search, he chose uniform parameter

distribution to determine the initial values. He concluded that the long time taken by this

method for marginal improvement in the measurement result was not justified.

Expert knowledge of the part surface should be incorporated in the choice of

sampling design. For example, an operator may avoid probing areas near holes or edges

that are felt to be unrepresentative o f the surface. Kurfess and Banks [51] suggested the

possibility of exploiting knowledge about locations o f likely deformations depending on

the manufacturing process. It was assumed that the measurement error has a multivariate

Gaussian distribution. They showed their method on cylindricity. However, they did not

employ any actual error calculations based on processing and work-holding, nor did they

do any search starting with error locations. Namboothiri and Shunmugam [63] also

realized the importance of a sampling pattem in measurements. If the point that has got

maximum error can be caught at the initial stages following a sampling pattem, then

further prolonging the measurement process is not necessary, and the measurement time

can be reduced.

It is perceived that exact locations of errors are often difficult to mathematically

model. However, if approximate locations are determined prior to inspection, searching

for the exact locations is viable using a pmdent application of search methods. Also,

rather than fit a generic or empirical function to describe a surface, actual modeling of

errors based on process constraints is more desirable.

14

2.3 Surface Profiles in Manufacturing

Surface profiles obtained in manufacturing include surface texture as well as

surface error. Surface texture or finish, which includes roughness, waviness, lay, and

flaws, is used to describe the general characteristics o f a workpiece surface [23, 43].

Roughness consists of finer irregularities over a sampling length or cutoff smaller than

that of waviness and is described in terms of arithmetic mean R, or root-mean-square

(RMS) value. Surface error is defined as the deviation of the finished machined surface

from the nominal or desired surface, that is, the surface that would be produced by a

completely rigid machining system [48, 84].

Texture o f machined surfaces has deterministic and stochastic components in it

[98]. The deterministic portion of a surface profile is formed mainly by the geometry of

cutting action, namely, the tool geometry and cutting parameters. The random portion is

the effect of the complex interaction of workpiece material properties, tool vibration,

metal shearing during the chip formation, etc. Without considering the dynamics in the

tool-workpiece system. You and Ehmaim [97] extended their earlier proposed method for

face milling, based on the superposition of a tertiary motion onto the conventional cutter

motions, to ball nose end milling. It has been shown that the RMS value of a milled

surface roughness can be reduced to a minimum by introducing a proper spindle

eccentricity for a given set of machining conditions. Accordingly, a wide variety o f the

milled surface topographies can be obtained with tertiary cutter motions.

When structural vibrations are present during milling, Montgomery and Altintas

[57] have mentioned that the relative motion between the tool and workpiece influences

the uncut chip thickness variation. The cutting forces are modulated with changes in the

15

uncut chip thickness, which in turn excite the tool-workpiece structure, resulting in more

changes to the uncut chip thickness. This process has closed loop dynamics, which may

result in self-excited or chatter vibrations. They presented a comprehensive dynamic

milling model, which includes the tool geometry and the vibrations of both workpiece

and tool in any direction. The model analyzes primarily the peripheral milling dynamics

and is valid for both rigid and flexible workpiece-tool system. The model explains the

mechanism of chip thickness and predicts the topology of finished workpiece surface,

cutting forces in the feeding (ploughing) and normal shearing directions, and vibrations

of both the tool and work-piece simultaneously. Zhang and Kapoor [98] made an

assumption that the stochastic component comes from the tool vibratory motion caused

by the random excitation, which originates from the force variation due to the non-

homogeneous distribution of micro hardness in the workpiece material. They developed

a model to describe the phenomenon of random excitation. Zhang and Kapoor [99]

presented a procedure to dynamically construct the surface topography using the results

of the random excitation model and the geometric action of cutting tool. This way, the K,

value of a surface roughness profile under consideration can be obtained without being

measured on a surface profilometer. Their experimental and simulation results for a

turning operation confirm that when a small feed is used, the influence of the spiral

trajectory of tool geometrical motion on the surface generation decreases dramatically

and the random excitation system, on the opposite, is strengthened playing a significant

role in surface texture generation. In face milling, Radulescu et al. [68] recommend that

variable speed machining is safer to use than constant speed machining when the effects

16

of the tool-work dynamics and geometry on the vibration of the cutting process are hard

to predict.

It is typical that the manufacturing process and work-holding (fixturing) apply

different forces that manifest in the workpiece as surface errors. Significant literature is

available in the modeling o f deflection and work surface characterization based on

material characteristics and the process employed. Ehmann et al. [101] have presented an

extensive review of the investigations on the modeling of milling process. In the present

work, end and face milling have been considered as the processes to produce plates. For

end milling, standard cantilevered beam equations have been employed by Kline et al.

[48] to quantify the tool deflection using the y-direction cutting forces, a mechanistic

force model. They have also showed a method for calculating the workpiece deflection

and surface errors using the Finite Element Method. The rectangular plate element was

used to model the thin-walled workpiece. They have compared these calculated surface

errors against the measured errors for a series of machining experiments for climb or

down milling without coolant on rigid and flexible 7075-T6 aluminum work pieces.

They reported a good match, particularly for the rigid workpieces. In their model,

primary components of the error were the cutter and workpiece deflections. Factors, such

as chip formation process and vibration, which contribute significantly in case of light

cuts, producing surface errors of the order of 25 pm, were not included. They also

discussed the effect of cutter run out on the surface generation mechanism. However, for

their study the run out level was insignificant.

1 7

The model of Kline et al. [48] has produced good results for a class of problems in

which cutter and workpiece deflections were not too large. Large deflections have a

significant effect on the chip load and thus on the cutting forces and surface error. For

such cases, both the peak cutting forces and surface errors when determined from the chip

load calculated for a rigid system, may be over-estimated by as much as 100-150%. In

order to incorporate the flexible system chip loads, Sutherland and DeVor [84] presented

an iterative method to balance the cutting forces and deflections generated in end milling.

The flexible system model predictions of forces and surface error were compared against

both measured and rigid system model-predicted values associated with the machining

conditions for a series of down milling experiments on 390 casting aluminum alloy.

Instantaneous cutting forces were measured with a Kistler dynamometer and the surface

errors were measured with a dial indicator. It was shown that the enhanced chip load

model gives predictions o f both cutting force signatures and surface error profiles that are

much better than the rigid system chip load model, particularly for long cutters. This

method can be used for a flexible end milling system which may result from the use o f a

long cutter, machining a thin-walled work piece, using a light radial depth of cut, or in

general, any cut in which the deflections of the end mill or workpiece are large relative to

the radial depth of cut. They also demonstrated and discussed the fact that system

deflections temper the effects of run out and reduce both peak cutting force and

maximum surface error.

Tsai and Liao [102] extended the work of [48, 84] and presented a dynamic finite

element model to analyze the surface errors in peripheral milling of thin-walled

workpieces. They modeled the helical fluted end mill and the workpiece with the pre

18

twisted Timoshenko-beam element and a 3-D isoparametric 12-node element,

respectively to more accurately simulate both the geometries as well as the thickness

variations of the workpiece during milling. They adopted the flexible system cutting

force model o f [84] to estimate the dynamic cutting forces. However, their results with

the dynamic and static models for the steady milling were very close. In [48], the

maximum surface error occurred at the bottom of cut assuming the workpiece to be rigid.

But, for the thin-walled workpiece, the flexibility may lead to an increase in the surface

errors, the location of maximum error may shift upward, and there may exist larger errors

at the top of cut [102].

Ismail et al. [42] developed a mechanistic model, which predicts surface

roughness as well as surface profile error for surface generation in end milling,

specifically peripheral milling. The model includes the effects of tool flank wear, tool

vibrations, as well as run out. The results obtained from the simulation runs were verified

by conducting experiments on 7075-T6 aluminum alloy workpieces. The change in the

slope of the feed marks on the workpiece due to cutter run out, were noticed. The feed

marks near the bottom of the cut are considerably shallower as compared to those at the

top of the cut, which results in the generation of flat bands at the location of maximum

cutter deflection in the feed direction. The peak-to-valley surface roughness is found to

be higher at higher speed because of the larger vibration amplitude associated with the

higher speed. It is observed that the wear land smears the high peaks resulting in lower

peak-to-valley roughness at any height and especially at the bottom of the cut. The

ploughing force acting on the wear land, influences the profile error. The error generated

19

with the worn tool is significantly smaller in magnitude than that obtained with the sharp

tool.

For face milling, Fu et al. [28] and Kim and Ehmann [45] calculated the

instantaneous chip load (thickness) on the tooth as f t sinOi where f is the feed per tooth

and 0i is the angular position of the tooth at that instant. The instantaneous chip cross

section is then given by f sinOi x depth of cut, assuming that the depth of cut variation is

negligible. Fu et al. [28] assumed that the normal force acting on the chip cross-section is

the product of the cross-sectional area and the specific cutting pressure K j. The radial

force acting along the cutting edge is obtained by multiplying the normal force by an

empirical constant K/j. Balasubramanian and Raman [10] used these equations to

calculate forces while comparing alternate tool paths in face milling path planning. Gu et

al. [35] presented a model to predict surface flatness error in face milling. The model

includes the machining conditions, deflection of the cutter-spindle and workpiece-fixture.

and static spindle axis tilt. They have used the influence coefficients to compute the tool-

workpiece deflections at the points of cutting force applications.

The present research uses prior knowledge of approximate solutions of surface

errors induced by manufacturing processes to aid the search of the CMM probe. The

processes are modeled on the machining conditions given in Kline et al. [48] and Gu et al.

[35]. Therefore, these two studies are again described in chapter 5.

2 0

2.4 Form Error Estimation Methods

A given set of CMM data can be analyzed by a variety of techniques [25] to

obtain form error/tolerance. These include analysis based on point-to-point

measurements and techniques based on curve fitting. Curve fitting can be viewed as an

optimization problem of finding the parameters of substitute geometry that optimize a

particular fitting objective for a set of points [37]. For this, first the corresponding

deviation for each data from the ideal feature is obtained. Then a method for assessing

feature conformance to form is used to describe the underlying part geometry, which is

required for decision-making.

Expressions for the linear and orthogonal deviations for different kind o f features

are given in [59, 78]. Suppose that a line feature is known to lie in a horizontal plane, so

that the measured points can be expressed in terms of (x, y) coordinates only. Let the

ideal form be defined by yg + Ig then the normal deviation corresponding to (x/, y{) is

given by = [y/ -(yg -^ Ig x/)] x [1/(1 + Ig^)]''^. The value is positive if the point is above

the line and negative if it falls below. If the feature is well aligned with the x-axis, the

deviation can be expressed in the linear form e/ = yi - (yg + Ig x/). For flatness, the

assessment plane is represented by zg + Ig x + mg y and = [z/ - {zg + Ig x/ + mg y/)] x

[1/(1 + Ig' + /»()-)]'^. For a surface well aligned parallel to the x-y plane, e/ = z/ - (zg + Ig

xi + mg yi). Linearizing approximations for other shapes also require certain feature

orientations relative to the part coordinate system to work well. Corresponding

21

expressions for circularity, cylindricity. and sphericity can be obtained from [78] and for

conicity from [67].

Many fitting criteria can be expressed as special cases of a general criterion called

Lp-norm estimation [37]. The problem is to find the fit parameters that minimize

\! p

= . The two most common fitting techniques are the minimum-zone

(MZ) and the least squares (LS) techniques [22]. The LS fitting corresponds to the case p

= 2. The limit of Lp as p goes to infinity is the largest magnitude residual, so that the Lac

problem is minimizing the maximum magnitude residual, i.e., finding the MZ fit. It

should be noted, however, that the two methods give seriously biased estimates of the

part form tolerance when the sample size is small [21]. In order to reduce the bias of the

two methods, some jackknife estimates [75] or Huber loss statistics [38] can be used.

Damodaran et al. [18] compared the accuracy of the minimum circularity tolerance zone

obtained from the five algorithms: two point method, three point method, minimum

spanning circle algorithm, least squares method, and voronoi method. They concluded

that the voronoi and the two point algorithms consistently give the most accurate

estimates.

2.4.1 Minimum-Zone Method

The ANSI specification [3] for form tolerance describes allowable deviations

from the ideal form in terms of the normal distance between the maximum inscribing and

minimum circumscribing features that bound the entire feature of interest. The

minimum-zone (MZ) method works on the same basis, but it encloses the set of sample

2 2

points [21-22]. The ANSI standard does not specify a method for establishing the

minimiun zone. Various algorithms have been developed for different features. One of

the earliest papers dealing with the MZ principles was that of Murthy and Abdin [59].

The problem was formulated as a minimax problem. Concerning the search techniques to

arrive at the solutions, they recommended using the simplex search for any surface, the

random (Monte Carlo) search if the associated variables are few, and the spiral search

when the variables are two or three. This search, however, requires extensive computer

time. Fukuda and Shimokohbe [29] developed algorithms based on the minimax

approximation but did not use the simplex search. The algorithm, as an example for

flatness evaluation, determines the orientation of an ideal geometric plane in iterative

steps such that the maximum value of the absolute residuals of the data set was the

minimum. The initial plane was formed through four points that were selected randomly

from the data set. During each iteration step, a point having the maximum residual error

with the previously established plane was identified to replace one of the four points that

formed the plane. They claimed that the time required using their algorithm for a large

number o f points would be less than that using even the least squares technique.

Shunmugam [77] introduced a heuristic method called the median technique, i.e.,

obtain the minimum value of a form error h(=

M inimizing/ = I «max I I I does not fix the position (yo or zq in a line or plane) or

the size {Rq of a circle, cylinder or sphere). Therefore, Shunmugam [78] suggested a

modified function/ = I e ^ a x I + 1 eminI + l/[l Cmox11 I] to be minimized which yields

a minimum value of ht and imique values of the parameters such that

2 3

The simplex search method was employed. Murthy and Abdin [59] and Shunmugam

[78] compared the M2 obtained from the linear (e,) and normal deviations (ê,), and

found no significant difference when the errors are of minute degree. Shunmugam [81]

presented a generalized algorithm to establish the reference figures outlined in the

standards. The enveloping figures serve as soft-gages and can replace conventional gages

used for inspection. The algorithm is also used to find the minimum separation

enveloping surfaces that may be useful in closer fitting assemblies. The MZ figure is

established on the basis of the theory of discrete and linear Chebyshev approximation.

Traband et al. [87] gave algorithms that guarantee the minimum zones for

straightness and flamess based on the convex hull of the sample of points. Roy and Xu

[72] developed an algorithm to determine the MZ for cylindricity convex hulls and

voronoi diagrams. Roy and Zhang [73] presented a similar algorithm for circularity.

Allada and Anand [1] used the Hough transform method to obtain the MZ of

manufactured parts for verifying straightness, flatness, perpendicularity, parallelism, and

angularity tolerances. This is a point-to-point measurement analysis [25]. Since the MZ

is calculated based on each of the measured data points without any approximation, the

estimate is accurate. Damodarasamy and Anand [19] proposed a methodology to

determine a true MZ for flatness for a given set o f data points using the simplex search.

The perpendicular distance p from the origin to a normal plane intersecting each point in

the data set is determined. The difference between the maximum p and the minimum p

for a particular set of parameters (direction cosine angles) determines the MZ.

24

Wang [88] transformed the minimax problem into a constrained nonlinear

optimization problem (NLOP) that contains an extra variable h, denoting the half width

of the MZ. The reformulated problem was solved using the sequential quadratic

programming (SQP) method. This method guarantees the MZ. Considering the

difficulty o f solving a constrained NLOP, Carr and Ferreira [11-12] suggested a kind of

transformed Lp-norm solution model; so the objective function and all but one constraint

are made linear. The employed linearization process does not change the optimization

problem nor is there a loss of generality. They developed algorithms that solve a

sequence o f linear programs, which converge to the solution of the nonlinear problem.

The algorithms can be used for evaluating an exact value of straightness, flamess, and

cylindricity for a given sample set.

There exist algorithms using unconstrained nonlinear optimization method

(NLOM), which can also find an exact MZ corresponding to the measured data set. One

such algorithm developed by Elmaraghy et al. [25] is based on point-to-point

measurement analysis. Their study deals with one geometric feature only, the cylinder.

With respect to this feature, the algorithm can determine the size tolerance and eight

different geometric deviations. The method uses the Hooke-Jeeves direct search

procedure [70]. Other unconstrained NLOM algorithms for straighmess [65] and flamess

[44] are based on curve fitting. These algorithms utilize a downhill simplex search

method. The initial condition of the NLOM is obtained by the least square (LS) method,

then the MZ is optimized. In addition to straighmess, Orady et al. [64] have listed vector

of the parameters representing a fitting geometric feature and objective function for

flatness, circularity, and cylindricity. In order to decrease computational time for

2 5

flatness, Kanada and Suzuki [44] suggested to reduce the data set containing z for

different (x, y), by using only those values that are far from the mean p, i.e., I r - p i >

1.5a. If the data z/ are distributed normally, this way 86.6% of the original data set is

thrown out. Taking the advantage of the LS results, Orady et al. [65] advised to filter out

the outlier points using Grubbs statistical control and to further reduce the data set using a

simple control zone specified by them (the data points inside the control zone are deleted

from NLOM).

A drawback of the minimum deviation procedure is that only a few points on the

feature control the position/size and slope/center. Therefore, Shunmugam [79-80]

proposed a different criterion minimizing the sum of absolute deviation values/ = El e/I.

This is called the minimum average deviation method and it determines the ideal surface

in such a way that the areas above and below it are equal. Therefore, the sum of the areas

is a minimum. This requires simplex search procedure for the solution. In a

mathematical sense, this formulation represents an L/-norm. Namboothiri and

Shunmugam [61-62] using the Z,/-approximation developed a general algorithm for

function-oriented form evaluation. This helps identify the wild points present on the

surface o f a part that can be compensated by further operation (machining) to produce a

better quality part.

Another problem in finding an exact MZ is that the methods are combinatorial in

nature and take a substantial amount of computing time when many points are involved,

0{n log ri) time for the line and (7(«*) time for planes [22]. Further, exact solutions are

not available for more complex features. Computational difficulties of the MZ

2 6

algorithms preclude their use in practice, but many researchers advocate the approach on

theoretical grounds. They argue that the method retains the spirit o f the tolerance

standards, and the resulting zone width will coincide with the true deviation range in the

ideal case in which sampling is infinite and dense, and measurement error is negligible.

This viewpoint, however, overlooks the fact that the method tends to underestimate a

feature's true deviation range for the small sample sizes used in practice (assuming no

measurement error). This downward bias as well as a slow convergence to the correct

value when the sample size increases, has been illustrated in [21].

2.4.2 Least Squares Method

The least squares (LS) method fits an ideal form to coordinate data by

minimizing the sum of squared deviations Z c / or Y.êf . Solutions to the LS parameters

for line, circle, plane, cylinder, and sphere are given in [77] when Z c / is minimized. For

symmetrical and equispaced data points, the simplified solutions are presented in [79-80].

The estimated deviation range is taken to be the sum of the maximum absolute residuals

on either side of the fitted surface, h(= I I + 1 I - To be more accurate, multiply

h(by [1/(1 + for straightness and by [1/(1 + for flamess, respectively

to account for normal distance [59, 87].

If the residuals considered are normal to the fitted feature, the method is often

called as normal/orthogonal least squares (NLS), and is minimized. An analytical

NLS solution for straight lines is presented in [59]. This reference also contains a

deterministic solution for planes assuming symmetric data points in the x-y plane to

2 7

simplify the equations. This assumption may not be reasonable for many CMMs and it

would be better to solve iteratively. For other features, the NLS method requires a search

procedure to arrive at the estimates. An iterative algorithm like Gauss-Newton [22] or

Newton-Raphson [56] can be employed to obtain the solution. Some approximation

algorithms, which lead to faster computations, can be used as well.

Murthy and Abdin [59] state that when the deviations are small, the difference in

the LS and NLS methods are often not significant. Therefore, Shunmugam [78] suggests

that the larger computation time for NLS is not justifiable in view o f the marginal

difference in values.

In comparison to the MZ method, the LS method is superior in terms of

calculation time [44]. As discussed in [22], MZ tends to underestimate a feature’s

deviation range by treating few measurements in practice to be representative o f the entire

surface, assuming that measurement error is negligible. Thus, it is very sensitive to

asperities (such as that caused by dirt or scratches on the surface), which render the result

useless if they go undetected [95]. This is an issue for LS as well, but to a lesser extent,

since it treats the data as a sample rather than as the entire population. LS generally over

estimates the form error, so the values are larger than those obtained with MZ [44, 59, 64,

65 78, 79]. However, Dowling et al. [21] showed that the estimates of the deviation

range for straightness and flamess from the LS approach have better statistical properties

than that o f the MZ estimates. Thus LS is more reliable, flexible, and suitable for

practical applications [95] and fitting algorithms provided with CMMs are generally its

variants. The implementation of optimization routines and approximation algorithms,

however, is not standardized among manufacturers of CMMs. Therefore differences in

28

results across machines exist. In this work, the LS technique has been used for

minimizing Eg/.

The present study focuses on exploiting the knowledge of manufacturing surface

pattem for initial sampling and then adding data points intelligently with the help of

search methods. Next chapter includes a review on optimization search methods.

29

CHAPTER 3

OPTIMIZATION SEARCH METHODS

As discussed in Chapter 2, straightness is the condition where an element of a

surface is a straight line, which is a function of one variable. Flatness is the condition of

a surface having all elements in one plane. Hence, gathering of sample points for

straightness estimation is similar to optimizing functions of a single variable. Sampling

for flatness evaluation resembles optimization problems suitable for pattem search

methods. Therefore, optimization methods for functions of one-variable and pattem

search methods are described in this chapter.

3.1 Optimization of Functions of One Variable

Reklaitis et al. [70] have discussed how to determine the global optimum of a

function o f one variable, \.c.,f(x). A simple approach is to compute all local optima and

choose the best. If a function is bounded in an interval a < x <b, then in addition to the

stationary points belonging to the interval, the boundary points may also qualify for the

local optimum. Stationary points are obtained by setting df/dx = 0. For a minimization

problem, if the value off at the boundary points and the stationary points are found; then

the smallest value corresponds to the global minimum point. However, instead of

evaluating all the stationary points and their functional values, certain properties of the

function can be used to determine the global optimum faster. For example, for unimodal

functions, a local optimum is the global optimum. There exists a special class of

3 0

unimodal functions, called convex and concave functions, which can be identified with

some simple tests. A function is convex, if / ' is in increasing or at least non-decreasing

order as x increases, and / " > 0 for all x in the interval. A function is concave if - f is

convex. For a convex function, local minimum is the global minimum, and for a concave

function, local maximum is the global maximum.

For general functions, we can employ different search methods for locating the

optimal point in a given interval. Methods that locate an optimum by successively

eliminating subintervals are called region-elimination methods [70]. Whether a function

is continuous, discontinuous, or discrete, assume that within the domain o f interest say (a,

b), the function is unimodal and convex for a minimization problem. Let x / and x2 be

two points in the interval such that a < x j <X2 < b. Compare the functional values a tx /

and x2- Iff(x i) >f(x2), then the minimum does not lie in {a, x/). Iff fxj) < f(x2), then the

minimum does not lie in (x^ b). Iff(x i) =f(x2), the minimum does not lie in {a, x j) and

(x2, b), and must occur in (x/, x j) provided / i s strictly unimodal. Thus, the subinterval

in which the optimum does not lie is eliminated from the search. This way a search is

organized in which the optimum is found by recursively eliminating sections o f the initial

bounded interval. When the remaining subinterval is reduced to a sufficiently small

length, the search is terminated. These search methods require only functional

evaluations and functions need not be differentiable.

The region-elimination methods can be broken down into two phases: bounding

phase and interval refinement phase. In the initial bounding phase with an arbitrarily

selected starting point, the optimum is roughly bracketed within a finite interval using the

31

elimination property. An example is Swann’s method [70]. Once a bracket has been

established around the optimum, more sophisticated interval refinement phase can be

applied. Interval halving method eliminates exactly one-half the interval at each stage.

This is also known as a three-point equal-interval search procedure [70] since it works

with three equally spaced trial points x/, x^id , and X2 spaced at one-fourth of the interval

{a, b). At each subsequent step, at most two functional evaluations are necessary since

the midpoint of subsequent intervals is always equal to one of the previous trial points x/,

x2, or Xffiid- Hence, aher nil iteration (n functional evaluation), the initial search interval

of unit length will be reduced to (1/2)"^. Golden section search [70] is another interval

refinement method. The interval {a, b) is rescaled to unit length (0, 1) by defining a new

variable w in place of x. Inside the unit interval, two trial points are located at a fraction x

= 0.618 and 1-x = x" from either end. With this symmetric placement, regardless of

which of the corresponding function values is smaller, the length of the remaining

interval is always x. The interval remaining after n evaluation will be o f the length x'*’’.

The search can be terminated either by specifying a limit on the number of evaluation or

relative accuracy in the function value. Preferably both tests should be applied. The

golden section search out-performs the interval halving in terms of the fractional

reduction o f the interval achieved for the same number of functional evaluation or the

number o f functional evaluations required for the same accuracy.

A smooth function can be approximated by a polynomial, and the approximating

polynomial can be used to predict the location of the optimum. For this strategy to be

effective, the function needs to be unimodal and continuous over the interval. Quadratic

3 2

estimation method and successive quadratic estimation method (Powell’s method) are the

polynomial approximation or point-estimation methods [70]. In addition to unimodality

and continuity, if a function is differentiable, further efficiencies in the search could be

achieved employing methods that require derivatives like Newton-Raphson method,

bisection method, secant method, and cubic search method [70].

3.2 Pattem Search Methods

In optimization, there exist problems in which the decision variables are discrete,

and are known as combinatorial problems [69]. Many combinatorial problems cannot be

solved exactly using reasonable computer time and space, even when there are only a

moderate number o f decision variables. Therefore researchers continue to develop good

heuristics, i.e., algorithms efficient with respect to computing time and storage space, and

with a likelihood of delivering a solution relatively close to an optimal one [69, 82].

These heuristics can even be applied to continuously differentiable function / R” -> R.

The main problem with a number of heuristic algorithms is their inability to cope with

locally optimal points, i.e. their inability to continue the search for a global optimum after

a local one is reached. Therefore, it may not be possible to state how close to optimality a

particular heuristic solution is. However, many modem heuristic techniques do give

high-quality solutions in practice [69].

Direct search methods for a minimization problem are methods that neither

compute nor explicitly approximate derivatives off , instead they require only values off

to proceed [15, 70, 86]. Commonly adopted direct search techniques are random search.

3 3

simplex or S' search, and pattem search. It should be noted that this simplex search has

no relationship to the simplex method of linear programming. Pattem search (PS)

methods are descent methods. Examples of such algorithms are coordinate search with

specified step sizes, evolutionary operation using factorial designs, Hooke-Jeeves pattem

search, tabu search, and Dennis & Torczon’s multidirectional search [86]. Lewis and

Torczon [53] extended the PS methods of Torczon [86] to solve bound constrained

nonlinear problems, and Lewis and Torczon [54] extended it for linearly constrained

problems. Audet and Dennis [5] gave a simpler analysis of the PS methods of Torczon

[86] and Lewis and Torczon [53]. Audet and Dennis [4] presented a PS method for

general constrained nonlinear optimization based on filter methods for step acceptance.

The unifying theme that distinguishes the PS algorithms from other direct search methods

is that each of them performs a search using a pattem of points and a step length control

parameter that are independent of the objective function / These methods proceed by

conducting a series of exploratory moves about a current iterate before declaring a new

iterate and updating the associated information. The moves can be viewed as sampling

the function about the current iterate x/ ̂ in a well-defined fashion in search of a new

iterate = xiç + A/ ̂ with a better function value. The individual PS methods are

distinguished in part by the manner in which these moves are conducted.

Other methods of design optimality (D-, A-, G-, and Q- optimality) have been

reviewed in [60]. These methods provide criteria for comparison and evaluation of

response surface methodology designs as well as computer-generated designs. Chen and

Tsai [15] have mentioned that the response surface method requires considerable time

3 4

and effort on the part of users. Therefore, PS methods are considered in the present work.

A few relevant PS methods are described in detail in the following paragraphs.

3.2.1 Coordinate Search

The method of coordinate search (CS) is the simplest and most obvious of all the

PS methods [86]. It has other names as well like alternating directions, alternating

variable search, axial relaxation, and local variation. Figure 2 shows all possible trial

points defined by the pattem for CS when n = 2 (i.e., 2-dimension), for a step length

Afc- To explain it, consider all possible outcomes for a minimization problem for a

single iteration as shown in Figure 3. The current iterate is marked as xj[. The x'Vs

denote trial points considered during the course of the iteration. The next iterate is

marked as x/c+j. Solid lines indicate successful intermediate steps taken during the

course of the exploratory moves while dash lines indicate points at which the function

was evaluated but that did not produce further decrease in the value of the objective

function/ Thus, in the first scenario shown, an intermediate step from x^ to x^/ç (+ve

X direction) resulted in a decrease in f , so another step from x^^ to xk+ / (+ve y

direction) was tried and led to a further decrease. The iteration would then terminate

with new point %&+/- l(i the second scenario, after the successful intermediate step

from x/ç to x^i(, a step from x^k to x^k (+ve y direction) did not result in any decrease,

so a step in the -ve y direction was tried and yielded a reduced / value. Hence, this

would be the new iterate x^+j. In the worst case (the last scenario), 2n trial points

were evaluated (x^k^ x^ k-> and k) without producing decrease in the/value at

3 5

x/ç. In such case, x^+1 ~ and the step size must be reduced for the next iteration.

The search is terminated when the step size becomes sufficiently small. However, in

the present work, a bad move (choosing the least bad among x^ k, x^k, and x^ 0

is made in order to escape from a local optimum instead o f reducing the step size.

The search is terminated when bad moves exceed the allowed limit.

Figure 2: The pattem for CS in R with a step length [86].

Xk

X k t !

X'

x -k

Xk • M

XkH

Xk # -

x-k

Xk~!

XT k

X k ^ l

x ' k -------- • -

Xk

XTk

x 'k x ' k

Xk~!

< # -

Xk

X 'k

x 'k X k . ,

XT k

4 ------- • -

Xk

x 'k

x ' k

X k . l

I
Xk

x -k

x 'k x ' k
Xk T

x 'k

Xk*l

x ' k

x -k

X k ^ l

Xk 1
I
I"f ' I

x - k

x 'k

Figure 3: All possible subsets of the steps for CS in [86].

3 6

3.2.2 Hooke-Jeeves Pattem Search

The PS method of Hooke-Jeeves (HJ) is a variant of CS that incorporates a pattem

step to accelerate the progress o f the algorithm by exploiting information gained from the

search during previous successful iterations [86]. To explain this, consider an example of

minimization problem as shown in Figure 4. Given xjç.i and xjç, for A: > 0 and x^ # x^.i,

the algorithm takes a step from current iterate x^ in the pattem direction. The

function is evaluated at the trial step and this step is accepted temporarily, even if/(x^ +

{xk - xf^.i)) >f(xj^. The HJ procedure then proceeds to conduct CS about the temporary

iterate xk + {xk - x^-i) and the exploratory moves are same as shown in Figure 3. If the

result of this exploratory move is a better point than that of xjç, then this point is accepted

as new iterate Xyt+ /. If not, \.e.,f((xk + (x/t - x^.j)) + ^ f(x 0 , then the pattem step is

deemed unsuccessful and the method reduces to CS about x̂ t, where an exploratory

search is undertaken to find a new pattem. Eventually a situation is reached when even

this exploratory search fails. In this case the step size is reduced by some factor and the

exploration resumes. The search is terminated when the step size becomes sufficiently

small. It should be noted that when A: = 0, the search starts with an exploratory move

about xQ-

* -/

Figure 4: The pattem step in R \ givenx^^ x ^ . j , k > 0 [86].

3 7

Reklaitis et al [70] advised to modify the basic HJ method in order to exploit

pattern moves. That is, when a pattern step is a success, then completely exploit the

direction by conducting a line search along the pattern direction, or at least trying pattern

steps of increasing magnitude. This can significantly accelerate the convergence of the

method. In the present work, the modified HJ pattern search is used. That is, ifffxic + (x/ç

- xfç./)) <f(x0, then it is accepted as new iterate x^+/ without conducting any further CS.

If/fxyt + (xyt - Xfç.])) ^f(xfç), then the pattern step is deemed unsuccessful and the method

reduces to CS about xfç, where an exploratory search is undertaken to find a new pattern.

As mentioned in CS, if exploratory moves fail to yield a better/ value, then a bad move is

made instead of reducing the step size. The search is terminated when bad moves exceed

the allowed limit.

3.2.3 Tabu Search

Tabu search (TS) is a meta-heuristic intelligent problem solving technique, which

guides a local heuristic search procedure to explore the solution space beyond local

optimality [30, 31, 66]. The underlying idea is to forbid some search directions (moves)

at a present iteration in order to avoid cycling, but to be able to escape from a local

optimal point. In doing so, the method incorporates adaptive memory (remembers key

elements of the path followed) and responsive exploration (makes strategic choices along

the way). The memory structures work with respect to four major dimensions consisting

of recency, frequency, quality, and influence. In a sense, quality is a special case of

influence. Recency is associated with short-term memory, while the other three are

3 8

related to intermediate-term and long-term memory for intensification and diversification.

The memory is both explicit and attributive. Explicit memory records complete

solutions, typically consisting of elite solutions visited. This helps expand the local

search, or in some cases, avoid repetition. The other type of memory keeps information

about solution attributes that change in moving from one solution to another. This assists

to reduce the local search making certain moves tabu (forbidden). Tabu status of such

moves can be overridden by aspiration criteria. A special type of memory is created

employing hash functions [31]. This may be considered as a semi-explicit memor>%

which can be used as an alternative to attributive memory.

To elaborate the above idea, consider a problem of finding an optimal tree (a sub

graph without cycles consisting of edges by joining nodes 1 to 7), which has a complex

nonlinear objective function [31]. A move needed for changing one tree into another is

defined as to drop an edge and add another, so that the result remains a tree. Assume the

move applied at iteration k tree with edges (I, 2), (1, 3). (1, 4), (2. 5), (3, 6), and (4. 7) to

produce the tree of iteration k+l consists of dropping the edge (1,3) and adding the edge

(4, 6). Hence, for iteration k, we can consider (1, 3)j„ and (4, 6)o„, as the two different

solution attributes. Since these are the attributes that change as a result of the move, they

are tabu-active, and will be used to define the tabu status of moves at future iterations. A

move is defined to be tabu if any of its attributes is tabu-active. In a recency-based

memory, (1, 3)j„ can be given a tabu tenure of, for example 3, meaning edge (1, 3) is

prevented from being added back to the current tree for 3 iterations. Thus, the earliest

that edge (1 ,3) can belong to the current tree will be iteration k+4. Similarly, (4 , can

be specified tabu-active for 1 iteration., i.e., edge (4, 6) is prevented from being removed

3 9

from the current tree for this duration. These conditions seek to avoid ‘reversing’

particular changes created by the move at iteration k. This example illustrates the concept

of multiple tabu lists, each for a particular type o f attribute [34]. It is to be noted that the

tabu tenure of an attribute is chosen by experimentation or heuristic for a particular

problem size, and it depends on the restrictiveness of the associated tabu condition. In

this example, making (1, 3)j„ tabu-active is much less restrictive than making (4,

tabu-active. That’s why a larger tenure is given to the former. Glover [33] introduced

new dynamic strategies for managing tabu lists.

As mentioned before, explicit memory can be employed to lead the search from

the current solution to an elite solution, making the search to visit solutions that are

difficult to reach when guided solely by changes in the objective function value. For

example, consider the solution at iteration k+\ with edges (1, 2), (I, 4), (2, 5), (3, 6), (4,

6), and (4, 7), and assume that a previously identified elite tree with edges (I. 2), (2, 5),

(3, 4), (3, 6), (4, 5), and (6, 7) has been stored in explicit memory. The primary goal of

the search can now be made to find a path between the current solution and the stored

elite solution. This exploration allows the search to perform moves that may be

unattractive by the objective function evaluation but which may be necessary to reach

better regions in the solution space. Therefore, one possibility is to forbid moves that

drop edges that are part of both the current tree and the target elite tree. The first iteration

of the search stage will thus forbid edges (1, 2), (2, 5) and (3, 6) from being removed.

This use o f explicit memory is an illustration of the path re-linking process. It is clear

from the example that explicit memory and attributive memory are complementary.

4 0

In many applications, short-tenn (recency-based) memory, has itself resulted in

high quality solutions; but in general to make TS significantly stronger, intermediate and

long-term memory (frequency-based) are incorporated to intensify and diversify the

search [30-34]. Accordingly a penalty/incentive function or probability function is

devised to assist the search. During an intensification stage, the search focuses on

examining neighbors of elite solutions, which are recorded by explicit memory. This

may also initiate a return to attractive regions to search them more thoroughly.

Intensification strategy is more closely carried out by intermediate-term memory. A

diversification stage encourages the search process to examine unvisited regions and to

generate solutions that differ in various significant ways from those seen before.

Diversification of the search is more closely operated by long-term memory. Strategic

oscillation provides a means to achieve an effective interplay between intensification and

diversification [30-32]. The process of repeatedly approaching and crossing a critical

level or oscillation boundary from different directions creates an oscillatory behavior,

which gives the method its name. A useful integration of intensification and

diversification strategies occurs in the approach called path re-linking [30-31]. This

approach generates new solutions by exploring trajectories that connect elite solutions

starting from an initiating solution and reaching toward the other solutions, called guiding

solutions. This is accomplished by selecting moves that introduce attributes contained in

the guiding solutions.

Aspiration criteria are introduced in TS to determine when tabu status of a move

can be overridden. A flow chart showing connections between candidate lists, tabu

status, and aspiration criteria has been presented in [31, 34]. Glover and Laguna [30]

41

have discussed the four types of aspiration criteria. If all moves currently available lead

to solutions that are tabu, the penalties result in choosing a ‘least tabu’ solution based on

aspiration by default. If a tabu move gives a solution better than the best obtained so far,

aspiration by objective permits it to be a candidate for selection. If a tabu attribute results

in improving direction, this makes it tabu-inactive from aspiration by search direction.

The fourth is aspiration by influence (degree of change). A low influence move is

tolerated until the gain appears to be negligible. A high influence move is performed to

break away from the local optimality. Like tabu tenure, aspiration criteria can also be

given tenures [34].

Applications of tabu search in different optimization problems have been

described in Glover and Laguna [31] and other references of both the authors. The areas

include production planning & scheduling, facility layout & line balancing in

manufacturing, telecommunication networks, transportation, flnancial analysis, etc.

Skorin-Kapov [82] adapted tabu search to the quadratic assignment problem (QAP).

QAP is to find an optimal assigrunent of n objects to n locations to minimize the

cumulative product of flows between every two objects and distances between every two

locations. The function to be optimized is quadratic and non-convex (i.e., there exist a

number o f local optima) and a feasible set is a set of permutations. It can be noted that in

a special restricted form, a QAP may be reduced to a traveling salesman problem (TSP).

The tabu search method was implemented on QAPs in a flexible form, which allowed the

user to interact and change the parameters (tabu list size, iteration limit, a search

diversification parameter, and number of new starting solutions i.e. restart). The results

suggested that good tabu sizes increase with dimension of the problem. The algorithm

42

appeared to be a very efficient method for QAPs. In comparison with simulated

annealing, TS gave superior solution quality. Badiru [9] applied a TS based algorithm to

find the maximum and minimum thickness of a flat plate measured by CMM. Kolahan

and Liang [49] used a TS approach to minimize the total processing cost for hole-making

operations. The total cost involved tooling cost, machining cost, non-productive tool

traveling cost, and tool switching cost.

3.2.4 Hybrid Search

It is also possible to use a heuristic algorithm, which is hybrid of more than one

search method. For example, Al-Sultan and Al-Fawzan [2] developed a combination of

TS and HJ algorithm to solve unconstrained optimization problems. The objective

function o f such problems may not necessarily be convex and therefore may possess

many local minima in the region of interest.

Manufacturing processes generate predictable patterns of errors on parts as

mentioned in Chapter 2. If the error profiles can be suitably identified, it will help

determine approximate maximum and minimum locations on the surface. Then,

optimization search methods can be applied in the neighborhood of such locations to

further improve the solutions. Thus, the surface error quantification will reduce the

search time (i.e., sampling time) and increase the accuracy. Based on this idea, a

methodology for adaptive sampling in coordinate metrology is developed and discussed

in the next chapter.

4 3

CHAPTER 4

OBJECTIVE AND OVERVIEW OF METHODOLOGY

4.1 Objective

This research deals with the application of manufacturing surface profiles and

optimization search methods in sample point selection for form tolerance estimation

using CMM. The objective is to develop a unique and sturdy adaptive sampling

procedure to reduce sample size while maintaining accuracy of the zone estimation

during efficient part feature verification. Straightness and flatness evaluations are

illustrated as examples in form tolerance verification.

4.2 Overview of Methodology

Regardless of the form tolerance evaluation method, it is obvious that the location

and number of data points affect the time of measurement and accuracy of the result. The

present work proposes search-based sampling and uses the linear least squares (LS)

method for tolerance estimation. The search is guided by the geometry of the object

surface and the manufacturing process used to produce it. That is, the surface profile is

suitably quantified to simplify the selection of number and locations for initial data

points. Parts have been manufactured by end milling and face milling. The surface

pattern generated by each process is modeled as per literature. The predicted patterns are

experimentally verified in Chapter 5.

4 4

mo =

Search-based sampling starts with initial points dictated by the surface pattern.

For the initial sample, a fit feature and the corresponding deviation e/ of each point are

obtained. For straighmess, if the assessment line is z = zq + iQ x, then the deviation can

be expressed in the form of e/ = z/ - (zq + Iq xf), and the LS solutions [59, 77, 87] are

given as /q = ~Io'Z x,) /N , and

tolerance h, = |emax(+)| + |̂ ma)c(-)|)/-\/̂ +̂ o • For flatness, if the assessment plane is

represented by z = zq + lo x + mg y and e/ = z/ - (zg + Ig xf + mg y/), then the LS

solutions [77, 87] are given as

term = (N Y ,x ,z , -S '^ -Z - ') (^ Z ^ -> '- - 'Z ^ 'Z) ' ') / k Z ^ ' ' " (Z ^ -) ' '

 [/erm + T x % z , - y,z^]_______________

Ig = [mg (i> / ZV/ - NlJxiyi) + NDciZi -2%/ 2zy] / [N H xp - (2x/)-^],

zg = {Zzi - Ig Dci - mg I ^ i) /N , and tolerance h, = + |e„„,.,|)/V ^h5^T 5" •

Here, x/, y/, z/ are the cartesian coordinates of /th data point, zg the intercept. Iq, mg are

the slopes, N the total number of data points, and efnax(+) ^max(-) the maximum

deviation in the +ve and -ve direction from the assessment feature respectively.

Then a search method is used to pick up next point until an optimum ef^ax is

reached. The search is performed in both the +ve and -ve directions from the fit surface.

Thus a trade-off is attempted between the time (number of points measured) and

accuracy. With the two solution points so obtained and the initial points, the final form

tolerance is determined. As the measurements are taken intelligently, number of the

4 5

sample points is much smaller than would be expected for achieving the desired accuracy

level. In any iteration, more than one point may be evaluated, but only one point results

in an actual move depending on the search technique and that p>oint is considered as a

sampled point. The initial set is accounted for in the total number of sampled points.

For straightness, region-elimination (RE) search [70] is employed to choose

additional data points. Application of the RE algorithm is discussed with a flow chart in

Chapter 6. It is to be noted that the objective is to reduce the sample size while

demonstrating reasonable accuracy in the tolerance evaluation. For demonstration

purposes, only three iteration with the intervals of A, A/2, and A/4 have been used (A = 4

X step size). Effect of step size is studied in Chapter 7 on the design of experiments. The

algorithm looking for an optimum emax starts from a point in the initial sample that has

got the maximum deviation value in the direction of interest. If the surface pattern and

the initial sample predict the possibility of more than one optimum, then the search has to

be performed in the neighborhood of all such points. Then from all the optima, the point

yielding the best e/nax is selected as an optimum solution. For example, in case of an

end-milled surface, the pattern (Figure 22) shows one optimum in the +ve direction from

the initial fit line about the center of the edge, but two optima in the -ve direction around

the ends. In case of a face-milled surface (Figure 23), there are two optima in either

direction.

For flatness, two pattern search methods, tabu search [31] and a hybrid search are

applied to sample data points outside the initial set. The hybrid search (HS) developed is

a combination of coordinate search [86], Hooke-Jeeves pattern search [70, 86] and tabu

4 6

search (TS). The objective is to estimate the form tolerance with a reduced number of

points. Therefore, instead of full-scale TS or HS with large number of allowed bad

moves and re-starts to find a very high quality solution, approximate TS and HS which

can yield a good solution after only a few iterations are used. More details of the

algorithms are given in Chapter 6. A tabu size o f one is used. The algorithm starts from

a point that has got the maximum deviation among the initial data points in the -ve or

+ve direction depending which direction a solution is being sought. The search is

stopped if the bad moves (BM) exceed the maximum bad moves allowed or if the

iterations exceed the maximum iterations allowed. A constant number of allowed

iterations o f 35 as used in [9], is selected for both the algorithms. The algorithms are

tested for different number of allowed bad moves as well as with no re-start (RSO) and

one re-start (RSI). This has been elaborated in Chapter 7 on the experimental design. If

a search needs to be re-started (e.g., in case o f RSI), then the re-start would originate

from a point that has got the second maximum deviation in the initial set, if it is not

covered in the previous attempt. Results o f both algorithms (TS and HS) are c^^mpared in

terms o f the accuracy of flatness tolerance and the sample size (which also includes the

initial set) in Chapter 8.

4 7

CHAPTER 5

MANUFACTURING SURFACE PATTERN

The search methods require prior knowledge of approximate locations o f form

errors induced by manufacturing processes to guide the movement the CMM probe. Two

processes: end (peripheral) milling and face milling are considered for which the surface

error models are given in [48] and [35] respectively. Constraints on the manufacturing

processes, tools and work-holding are placed to ensure that the model assumptions are

not violated. Machining experiments conducted to verify the models and the surface

profiles obtained are discussed in this chapter.

5.1 Pattern for Flatness

5.1.1 End Milling

End milling process is extensively used in the aerospace industry for a variety of

roughing and finishing operations on aircraft structural components such as bulkheads

and wing sections. An analysis of surface error in end milling requires an understanding

of the surface generation mechanism. Kline et al. [48] have mentioned that a milled

surface generated by climb or down milling shows a series of tooth marks or ‘troughs'

approximately parallel to the axial depth of cut produced by the cutter teeth as they slide

across the surface. As the cutter rotates, a tooth first begins to generate the finished

surface at the bottom of cut. This point of contact between the cutter and the finished

surface slides up the workpiece as the cutter rotates due to the helix angle. Also, as the

cutter rotates, the magnitude of the cutting forces and the distribution of the forces on the

4 8

cutter vary. In peripheral down milling, the cutting forces generally tend to separate the

cutter and workpiece as shown in Figure 5. The surface dimensional errors increase with

the cutter feed rate or radial depth of cut [102]. To fully analyze the surface error

problem, models for the cutting force system, deflection of the cutter, and deflection of

the workpiece are required [48].

Workp*ece C utter

Figure 5: Cutter and workpiece deflection in end milling (source: [48]).

Prediction of the Cutting Force System: A computer-based mechanistic model of

the force system in end milling has been developed in [20]. The model has been called a

mechanistic model because the chip load or thickness and cutting forces are computed

based on the cutter geometry and cutting conditions. The model equations are given as

F t — K t . d Z . t c (1)

Fr — Kr . Ft (2)

4 9

where. Ft is the elemental tangential force, Fr the elemental radial force. dZ the force

element width, tc the chip load, and Kr & Kr the empirical constants. The empirical

constants may be estimated from average x and y force data measured over a few cutter

revolutions and used with the model to predict instantaneous force system characteristics

including the force distributions along the axis of the cutter, the total forces on the cutter,

and the force centers. The force distributions along the axis of the cutter are obtained by

resolving the elemental forces acting along the flutes into the x (feed) and y

(perpendicular to feed) directions. The force center is the center of mass or center of

force of a force distribution, i.e.. it is the point of application of.r or y force (point force)

along the axis of the cutter necessary to produce the same bending moment about the tool

holder as the bending moment produced by the distributed force loading. It is seen that

the y force and force center are key elements in the prediction of surface error, because

the V force tends to separate the cutter and workpiece [48]. This cutting force model

assumes a rigid machining system. The model is used to compute cutter and workpiece

deflections, but the feedback effect of these deflections on the chip load and cut geometry

is not included in the force calculations. However, it is found in [48] that this assumption

is not critical for the accurate prediction of surface error profiles.

Prediction of End Mill Deflection: A relatively simple but effective model has

been used in [48] for predicting the deflection of the cutter. It is assumed that the end

mill is a cantilever beam, rigidly supported by the tool holder and that the end mill

deflects due to the x and y cutting forces applied to the cutter at the x and y force centers.

The model [48] for they/ deflection of a slender cantilever beam loaded with a point force

is given in Eq. (3).

5 0

(^) = - { L - Z Ÿ - X L - Z) - { L - C F Y)] (3)6 El y

where dY(Z) is the y cutter deflection at point Z, Fy is the y cutting force, CFY is the y

force center, ly is the moment of inertia of the end mill (ly = D^/48). E is the modulus of

elasticity o f the end mill, D is the diameter o f the cutter, and L is the effective length of

the cutter. The deflection of an end mill illustrating these variables is shown in Figure 5.

Prediction of Workpiece Deflection: A thin-walled workpiece, such as that

encountered in aerospace applications, can be thought of as a rectangular plate clamped

on three edges with the fourth edge free to deflect, and as the workpiece is machined, the

thickness o f the plate is reduced. The deflection of the plate is computed in [48] with the

help of the finite element method applying the y cutting force located at the y force center

to the plate.

The above three models are combined to yield surface error predictions. Surface

error is defined as the deviation of the finished machined surface in the y direction from

the nominal or desired surface, that is, the surface that would be produced by a

completely rigid machining system. If the angular position of the cutter where a tooth

contacts the finished surface at the free end of the cutter is called zero degree, the surface

generation point (SG) or point of contact along the z-axis between the cutter tooth and

finished surface is defined [48] as

SG = R .6/tan uhx (4)

where R is the radius o f the cutter, aia is the helix angle, and 0 is the angular position of

the cutter in radians. With the surface generation point defined, the surface generation

procedure may now be described, for a particular set of machining conditions, at a

particular point along the workpiece.

51

1. At an angular position of the cutter of zero degree, the cutting forces and force centers

are computed from equations (1-2).

2. The surface generation point is determined from Eq. (4).

3. The y cutting force is applied to the cutter at the y force center, and the cutter

deflection is estimated at the point of surface generation from Eq. (3).

4. If a flexible workpiece is being machined, the y cutting force is applied to the

workpiece at the y force center, and the workpiece deflection is computed at the point of

surface generation from the finite element program.

5. The cutter and workpiece deflections in direction are added to yield the surface error

prediction at the surface generation point.

The cutter is rotated, and this sequence o f operations is repeated to trace out the

surface error profile produced by the y force along the axial depth of cut. Figure 6 shows

the cutter deflection, workpiece deflection, and predicted surface error profiles for one of

the tests conducted by Kline et al. [48] for end (peripheral) milling. They compared the

calculated surface errors against the measured errors for a series o f machining

experiments without coolant on rigid and flexible 7075-T6 aluminum workpieces in

down milling. They found a good match, particularly for the rigid workpieces.

Experiments are carried out in this work as well to verify their error model. Figure 7

displays the current workpiece and the machining conditions as given in [48] are detailed

later. For those conditions, Kline et al. [48] reported that an angular rotation of the cutter

of 176.4 deg is required for a tooth to move from the bottom of cut, z = 0, to the top of

cut, z = 50.8 mm (2 in.). The workpiece deflection (Figure 6) from z = 0.0 to 25 mm is

small because it is being computed near the supported edge of the workpiece. From 32 to

5 2

Warkpieoe
Deflection J

Comer /
Deflectcn A

Predicted >
Surface Error12.7

400 500300200X»200 400
Stffoce Error

Figure 6: Surface error i n ^ - z plane in end milling (source: [48]).

45 mm, the workpiece deflection increases greatly. This region along the profile

corresponds to an angular position of the cutter of 110 to 155 deg, and in this region, the

force center is high on the workpiece. With both the surface generation point and force

center high, larger deflection occurs. Figure 6 shows a kink or curvature in the cutter

deflection profile from 13 to 25 mm. At 13 mm, the force center is high on the cutter and

the y force is at a minimum. At 19 mm, the force center shifts lower on the cutter and the

force increases giving rise to greater deflection. Moving further up the profile, the cutter

deflection decreases because the force center moves higher on the cutter and the

deflections are computed nearer the fixed end of the cutter. Theoretically, the error

profile of Figure 6 is the profile produced by a single tooth. Assuming for a four-fluted

cutter with no nmout that the cutting force and force center profiles repeat every 90 deg,

successive teeth on the cutter trace out the same profile, with the spacing between

5 3

profiles or toothmarks equal to the feed per tooth. For a very small runout level in [48],

the effect o f runout on the cutting forces and surface accuracy is negligible.

Figure 7: Aluminum workpiece for end milling.

Kline et al [48] have validated the model o f Figure 6 measuring the surface errors

of the plates used in their experiments with a dial indicator across the length o f the

workpiece (start to end of cut) and across the width of the workpiece (bottom to top of

cut). It can be said that at the bottom o f cut, the surface errors are relatively constant

across the cut because along this edge, the workpiece is rigid, and the surface errors are

produced solely by cutter deflection. Across the top of cut, the surface errors increase

from the start to middle of cut, and the errors at the end of cut are slightly larger than the

corresponding errors at the start o f cut. Measuring across the middle o f the plate, the

same effect is noted. The surface errors increase from the top to bottom of cut and each

profile has a kink/curvature in it near the middle of cut (also reported in [84]). Kline et al

[48] measured the profiles approximately midway between the start and end o f cut so that

the full effect of the workpiece deflection can be studied. Their model for predicting

54

surface error is limited to cases where the primary components of the error are the cutter

and workpiece deflections and they are not too large.

For the present work, 12 plates have been produced using end (peripheral)

milling, each with a new cutter, so as to minimize the influence of wear and fracture of

used tools. Similar conditions have been used as given in [48]. The plates are numbered

from 1 to 12 in the sequence they have been milled. The details are as follows:

Workpiece: 7075-T6 aluminum, 11 x 3 x 0.25 inches, sandwiched between two C-shaped

fixtures from the three sides (fixture was made of linch thick steel), unsupported

workpiece = 8.5 x 2 x 0.25 in. as shown in Figure 7.

Cutter: 4-fluted high-speed steel end mill, diameter = 0.75 in., 30° helix angle, flute

length = 3.75 inches.

Machining conditions: no coolant, down milling, radial depth of cut = 0.05 in.. axial

depth of cut = 2 in., cutter speed = 525 rpm, # of teeth = 4, feed = 0.015 in./tooth =

0.015x525x4 = 31.5 in./min.

Figure 8: Surface measurement with CMM (source: [35]).

5 5

For validation of the above error model, measurements are carried out using a

Brown & Sharpe® Reflex™ 343 series CMM, as shown in Figure 8. Note that the

workpiece in Figure 7 is shown in vertical (x-z) plane for the milling. But for the

measurements, the plate is laid on horizontal CMM table. Hence (x-z) is changed to (x-

y). Before the measurements, the CMM coordinate system is initialized. From the total

machined area, a surface of 3 in. long in the center (i.e., x = 5 to 8) and 2 in. wide (top to

bottom of cut, i.e. y = 5 to 7) is measured to study the surface profile. The CMM probe

gives (x, y, z) values for each data point. Now, x = 5 and x = 8 will be referred to as start

and end of cut. Four plates, # 10, 5, 7, and 4 are randomly selected and their surface

patterns have been shown in Figures 9 - 1 2 . In these figures, the deviation (e) values

obtained across the width (y = 5 to 7) are plotted for x values corresponding to the start,

center, and end of cut. The profiles obtained agree with that o f Kline et al. [48]. It is

seen in Figure 6 that the surface errors (i.e., the deviations of the finished surface from

the nominal surface) are positive. Since this study is focused on flatness zone, an ideal

plane is fit to the points measured from the surface and the deviations from the fit plane

are shown in Figures 9 - 1 2 . Therefore, some points have negative values and some have

positive.

Looking into Figures 9 - 1 2 , across the length, at the bottom o f cut (y = 7), the

surface errors are relatively constant (deviations are all positive). Along this edge, the

workpiece is rigid, and the surface errors are produced solely by cutter deflection, so

constant surface errors are expected. Across the top of cut (y = 5), the deviations are

negative at the start, positive at the center, and negative at the end of cut. Kline et al. [48]

reported that the errors at the end should be slightly larger than the corresponding errors

5 6

at the start o f cut, which are true in the present case as well, except in plate #7.

Measuring around the center of cut, large deviations in the -ve direction at the start and

end of cut and small deviations (-ve or +ve) at the center are noted.

0.0015 -

Start
Center
End of cut

§ 0.0005 ■
■ss

-0.0005 -

-0.0015
Top to bottom of cut, y

Figure 9: Flatness error profile for end-milled plate #10.

0.002

0.001 -

Start
Center
End of cut

C

I
I

-0.001 H

- 0.002
Top to bottom of cut, y

Figure 10: Flatness error profile for end-milled plate #5.

5 7

0.002

0.001

0

1 - 0.001

- 0.002

-0.003

—O—Start

—4— Center

Top to twttom of cut. /

Figure 11 : Flatness error profile for end-milled plate #7.

0.0015

= 0.0005 -
8

start
Center
End of cut1

I -0.0005 -

-0.0015

Top to bottom of cut y

Figure 12: Flatness error profile for end-milled plate #4.

Across the width, the surface errors increase fi’om top to bottom of cut and each

profile has a kink/curvature in it near the center of cut as reported in [48, 84]. At the top

of cut, the points have negative deviation and then start having positive deviation as we

move down. At the middle (i.e., about 1 in. finm the top), the points have -ve deviation

(a kink). Then again at the bottom of cut, the points have +ve deviation. This means five

segments 0 - 0.2, 0.4 - 0.8, 0.95 - 1.15, 1.3 - 1.7, 1.8 - 2 inch firom the top (y = 5) are

important for initializing the search procedure. In the first segment, select a point at the

5 8

end of cut (x = 7.8 - 8); in the second, select a point at the middle (x = 6.4 - 6.6); in the

third, at the end; in the fourth, at tlie start (x = 5 - 5.2); and in the last segment, at the

middle. This way, five points can be selected as the initial sample of points to be

measured.

5.1.2 Face Milling

In the automotive industry, components such as engine blocks, cylinder heads,

and crank castings are face milled. For face milling, Gu et al. [35] have presented a

model to predict surface flatness error. The model includes the machining conditions

(speed, feed, depth of cut, tool geometry), deflections of the cutter-spindle and

workpiece-flxture, static spindle axis tilt, and axially inclined tool path. Models for each

of these factors given in [35] are presented here.

Elastic Deformation of the System due to Cutting Forces: The elastic deflection

of the machining system consisting of the cutter-spindle and workpiece-flxture

assemblies is computed by finite element analysis. This involves constructing a finite

element model of the system and creating a flexibility influence coefficient database.

The flexibility influence coefficient, , is defined as the static deflection in the axial

direction (normal to the workpiece surface) at point p\ due to a unit force applied at point

P2 in one of the three cartesian directions. The influence coefficients for the workpiece-

flxture assembly and/or the cutter-spindle assembly need to be computed only once,

provided their configurations do not change. Once the influence coefficient database has

been generated the effect of different processing conditions on the form error can be

simulated quickly.

5 9

F.CO

Figure 13: Mutli-tooth face milling schematic showing the instantaneous forces exerted

by each tooth on the workpiece (source: [35]).

In face milling more than one insert is usually engaged in cutting at any time

instance (see Figure 13). Hence, the relative deflection of the cutter and workpiece at a

particular insert location is due to the combined effect of the cutting forces, produced by

all the inserts engaged in cutting. In general, the instantaneous insert locations do not

coincide with the finite element nodes. In order to compute the elastic deflections at

points other than the nodal positions, Gu et al. [35] have developed an equivalent

influence coefficient method. The equivalent influence coefficient (nodal or otherwise),

p ,, is determined from the nodal influence coefficients and the shape functions of the

elements enclosing points p\ and p^. Mathematically, this can be written as

6 0

-

É ŷp, ’)Z >’ P̂ * P2k-\ l=\

Y.̂ kkhk{x,̂ ,y,̂ ,ẑ ŷ,p, =p .
(5)

.*=1

where ,z^) and /i,(x^,,>'p,,z^J are the shape functions of the elements

enclosing points p\ and pz, respectively; m and n are the number of nodes in the two

elements; a*/ is the flexibility influence coefficient at node k o f the element enclosing p\

due to the unit force at node / of the element containing pz-

The instantaneous cutting force components in the three cartesian directions

acting on insert / of the cutter are given by

cos^,(/),-sin^,(/),0 'F^iÛ ,{l))cosa,-F ,(0,(t))cosr, sin or.
sin0^(/),cos^,(/),O /v (^ ,(0)sin a , +F,(<9,(/))cosy, cos a . (6)
0,0.1 F,(^,(/))siny,

where, Fc(0,(t)) and F,(ûi(t)) are the instantaneous equivalent orthogonal forces in the

cutting and thrust directions acting on the /th insert, respectively; 0i(t) is the

instantaneous angular position of the /th insert; ûTv defines the direction of the relative

velocity vector, and / l is the effective lead angle of the cutting edge.

The surface flatness error resulting from a change in the axial depth of cut due to

elastic deflection of the workpiece-flxture assembly, SE»p(Xi(t), ytO)), can now be

computed as

N T

SE».p(Xi(t), yi(O) = - ^ Y .^ 'p ,p ,^U W ,i,
/=l k=x,y.:

(7)

where, N T is the total number of inserts. The index j denotes the insert number while

index k refers to the direction of the cutting force component in the Cartesian coordinate

system such that Fjk represents the force on the workpiece in the Ath direction due to

6 1

insert j; S(j) is the Kronecker Delta function which defines the insert and workpiece

engagement by taking on a value of 1 when the insert is engaged in cutting and 0

otherwise. The negative sign in Eq. (7) implies that when the forces on the workpiece are

positive (i.e.. the axial force is in the direction of the workpiece surface normal), the

resulting surface height of the workpiece is lower than the nominal height due to

increased depth of cut.

The surface error arising from elastic deflection of the cutter-spindle assembly,

SEsp(Xi(l). yi(t)), is given by

N T

SEsp(Xi(t), yi(t)) = Y , (8)
7=1 k-r.K.A

where, /*)* represents the cutting force on the yth insert in the Mt direction with respect to

a local cylindrical coordinate system fixed to the spindle axis; refers to the axial

deflection of cutter-spindle assembly at the position of the /th insert tip due to force in the

tth direction acting on theyth insert. Equation (8) does not have a negative sign because,

when the forces on the cutter are positive, the resulting workpiece surface height is lower

than the nominal height due to an increase in the depth of cut. Gu et al. [35] have

reported that the effect of the cutter-spindle assembly is negligible, in particular for fly

cutting.

Static Spindle Axis Tilt: The spindle axis tilt is described by two parameters.

and fils, which represent the magnitude and direction of tilt; fits is measured in the x-y

plane in the ccw direction (see Figure 14). The presence of spindle axis tilt results in

varying axial depth of cut along the insert path. The surface flatness error due to static

spindle axis tilt, SEst(x,(t), yiO)), is given by

6 2

Figure 14: Schematic of spindle axis tilt and effect of tooth’s axial position (source: [35]).

SEJx,(t), yi(0) = - R , (/) sin sin[0, (/) - /?„ - a , (01 (9)

where, RJi) is the radius of the fth insert measured from the spindle axis, and a/t)

defines the direction of cutter feed with respect to the x-axis o f the global coordinate

system. The negative sign in Eq. (9) indicates that the surface height of the workpiece is

lower than the nominal height when the spindle tilt angle //j is positive.

The surface error equation due to the axially inclined tool feed path is given in

[35]. The cumulative surface error at the location of /th insert tip at time (can be

obtained by adding the individual surface errors described above. Since the errors due to

cutter-spindle deflection and axially inclined cutter path are small, the total surface error

may be predicted taking into account the effects of workpiece-fixture deflection and static

spindle axis tilt [35].

Gu et al. [35] have verified the surface flatness error model experimentally for

fly-cutting as well as multiple-insert cutting. The tool geometry used was as follows: 4

in. diameter, 15° lead angle and -7° radial & axial rake angles. Square carbide inserts of

6 3

grade KC 710 with nose radius of 3/64 in. were used. A cast iron workpiece block, 6 x 3

X 1 in. (152 X 76.2 x 25.4 mm), with holes and slots as shown in Figure 15, was used.

The middle four holes are fixturing holes for clamping the workpiece. The cutter was fed

along the centerline of the workpiece in the +ve x direction. It entered at y = 76 mm and

exited at y = 0 in section 1. The surface flatness errors were measured with a CMM in

the four sections shown by the dotted lines. The predicted total surface flatness errors

due to the effects o f the workpiece-fixture system and static spindle axis tilt, and the

measured errors for a fly-cutting test are shown in Figure 16. The model prediction

agrees very well with the measured surface errors. It has been explained in [35] that the

effect of spindle axis tilt is noticed to dominate the total error profile.

SeeriM#!

Figure 15: Schematic of workpiece geometry used in [35].

In the present work, tests have been carried out to measure the surface errors and

compare with Gu et al.’s model [35]. Twelve plates, each with a new insert, have been

manufactured, as done with the end-milled plates. Figure 17 shows the current

6 4

workpiece. The middle four holes are fixturing holes as explained with respect to Figure

15. The machining conditions are as follows.

V Section #1

Section #2

Section #3

Section #4

O lO 2 0 3 0 40 s o 60

Distance mXomg Y (mm)

Figure 16: Surface error in face milling (source: [35]).

Workpiece: cast iron. 6 x 2 x 1 in. Note that the width of 2 in. is smaller than 3 in. used

in [35].

Tool: Cutter diameter = 3 in., 15° radial rake angle, 17° axial rake angle. Square carbide

inserts with PVD coating, 0° lead angle, 11° rake angle, and nose radius o f 3/64 in. (Gu

6 5

et al. [35] used a cutter of 4 in. diameter with 15“ lead angle and -7“ radial & axial rake

angles and square carbide inserts of grade KC 710 with nose radius = 3/64 in.).

Machining conditions: no coolant, # of insert = 1 (fly-cutting), cutter speed = 1000 rpm

clockwise, feed = 0.007 in./tooth = 7 in /min, axial depth of cut = 0.05 inch.

Figure 17: Cast iron workpiece for face milling.

The surface is divided into sections 1 to 4 across the length in the feed direction

(Figure 17). Sections 2 and 3 are near the workpiece Gxture locations. In section I, the

cutter enters at y = 3 and exits aty = 1 where as in section 4, the cutter enters at y = 1 and

leaves at y = 3. Four plates # 2,9, 11, and 5 are randomly selected for the surface

measurements using the CMM as described in Section 5.1.1 with Figure 8. The surface

profiles measured as shown in Figures 18-21 did not agree fully with the profiles given

by Gu et al. [35] in Figure 16. This may be due to the following reasons. The present

cutter is not identical to the one used in [35], although the inserts are similar. Further,

there is no tilt in the spindle used in this work, whereas their spindle was tilted and the

effect of spindle axis tilt was found to dominate the total surface error profile.

6 6

It can be seen from Figures 18-21 that deviations (e) of the points along sections

1 and 4 are negative while that of the points along sections 2 and 3 are positive from the

fît plane. This is because the cutter removes more material in sections 1 & 4 than

sections 2 & 3. Across the width of sections 1 & 4, absolute deviation is larger in the

neighborhood of the cutter entry than the exit, except in plate #2. As expected along

sections 2 & 3, there is not much difference across the width, except in plate #9. Based

on the profîles (Figures 1 8 -2 1), fîve initial points can be selected as follows: one each

near the cutter entry in section 1 (y « 3), near the lower hole in section 2 (y « 1.5), near

the upper hole in section 3 (y « 2.5), near the cutter entry in section 4 (y » 1), and the last

anywhere near the middle (y « 2) or the cutter exit. Each of these points represents a

positive or negative deviation. Extending to the inspection of such parts, the alone

developed rule-set will be used instead o f the one proposed by gu et al. [35] consistent

with the present observations. Note that this is a fîrst attempt at determining initial

locations. More research and mathematical models must be developed for sturdier

procedures o f initial sample point determination.

0.001

0.0005

I
-0.0005 -

- 0.001

y

^ Section 1
—4— Section 2

A Section 3
—X—Section 4

Figure 18: Flatness error profîle for face-milled plate #2.

6 7

0.001

0.0005 ■c

-0.0005 ■

- 0.001

y

o Section 1
- I Section 2
- A Section 3
—X—Section 4

Figure 19: Flatness error profile for face-milled plate #9.

0.002

0.001 -
C

g

1Q
- 0.001 •

- 0.002

y

• o " Section 1
- 4 — Section 2
■ 6 Section 3

—X—Section 4

Figure 20: Flatness error profile for face-milled plate #11.

0.002

0.001 ■

C

g

1Q
- 0.001 ■

- 0.002

y

— o " Section 1
— I— Section 2
—A—Section 3
—X—Section 4

Figure 21 : Flatness error profile for face-milled plate #5.

68

5.2 Pattern for Straightness

5.2.1 End Milling

The unsupported workpiece (see Figure 7) for the end milling is 8.5 x 2 x 0.25 in.

The error measurements for flatness have been discussed in Section 5.1.1. For

straightness, the plates are measured at the center from the top of cut (i.e., a ty = 6) across

the length of 6 in. (i.e., x = 4 to 10) leaving 1.25 in. from both sides o f the unsupported

workpiece. For a fixed y, (x, z) coordinates of the data points are obtained using the

CMM probe. The CMM measurement process has been explained earlier with the help

o f Figure 8. The value of x increases from the start to end of cut. The surface error

pattern is displayed in Figure 22. The deviations (e) are negative at the start, positive at

the middle, and then negative at the end o f cut. Therefore, three points (one each near the

start, middle and end) may act as the initial data set and then the region-elimination

search can be performed in their neighborhood.

0.003

0.002 -

= 0.001 -

® - 0.001 -

- 0.002

-0.003

Start to end of cut, x

-AI Plate 9
•AI Plate 2
-AI Plate 12
■AI Plate 4

Figure 22; Straightness error profile for end-milled plates.

69

5.2.2 Face Milling

The error measurements for flatness have been described in Section 5.1.2. For

straightness, the cast iron plates (see Figure 17) are measured along the centerline at

constant y = 2 and Figure 23 shows the error pattern. The value o f x increases from the

start to end of cut. For the initial set, four points can be chosen, one each from section 1

(x = 2 - 2.3), 2 (x = 3.4 - 4.4), 3 (% = 5.6 - 6.6), and 4 (x = 7.7 - 8). From sections 2 & 3,

points in the center of the section will be better as initial points.

0.0015

0.001 -

Ç 0.0005 -

® -0.0005

- 0.001 ■

-0.0015

Start to end of cut. x

-AI Plate 11
-AI Plate 3
-AI Plate 7
-AI Plate 1

Figure 23: Straightness error profile for face-milled plates.

Now, the number and approximate locations for selecting the initial set of points,

on the basis of the measured surface error profiles, for flatness and straighmess

evaluation of the plates produced from the end and face milling are known. Instead of

the actual errors, one can also use the predicted errors from the models given in [48] and

[35] for end and face milling respectively for the initial sample. Next points will be

sampled on the basis of the search methods described in the next chapter.

7 0

S3 Population Data

After getting the surface profiles o f the plates, measurement data are obtained for

a population (i.e., very large) sample. The data for straightness for plate # 4, 12, 9, and 2

from end milling at a fixed value of y = 6 and x varying fix>m 4 (start) to 10 (end of cut)

are presented in Appendix A, Tables A .I.1.1 - A.1.1.4. The data at a fixed value of y = 2

for plate # 3,1,11, and 7 from face milling are shown in Tables A. 1.2.1 - A. 1.2.4. It may

be noted that each face-milled plate has four sections from start to end o f cut: 1 (x = 2 -

2.3), 2 (x = 3.4 - 4.4), 3 (x = 5.6 - 6.6), and 4 (x = 7.7 - 8). For flamess, the data for plate

10, 5, 7, and 4 from end milling are given in Tables A.2.1.1 - A.2.1.4. Top to bottom

of cut corresponds to y = 5 to 7 and start to end of cut is x = 5 to 8. The data for plate #

2,9, 11, and 5 from face milling are displayed in Tables A.2.2.1 - A.2.2.4. Each plate

has four sections from start to end o f cut: 1 (x = 2 - 2.3), 2 (x = 3.4 - 4.4), 3 (x = 5.6 -

6.6), and 4 (x = 7.7 - 8). The cutter enters at y = 3 in section 1 and exits a ty = 1 whereas

in section 4, it enters at y = 1 and leaves at y = 3. In sections 2 & 3, the fixturing holes

are located aty = 2.5 andy = 1.5. Corresponding form tolerance obtained using the least

squares (LS) method for the population is also shown in these tables. The tolerance

obtained from the proposed sampling method will be compared with the tolerance

computed for the population in terms of the absolute percentage error to find the

estimation accuracy. The Java codes for the LS line and plane are given in Appendix B.

71

CHAPTER 6

ALGORITHM DEVELOPMENT

As mentioned in Chapter 4, sampling starts with initial points guided by the

surface patterns obtained in the previous chapter. We suggest three points in end-milled

plates and four points in face-milled plates to determine straightness, and five points for

flatness estimation in plates machined by either process. Determination of their locations

is explained in Chapter S. For the initial sample, a fit feature and the corresponding

deviation e, of each point are obtained using the linear least squares (LS) technique.

Then a search method is used to pick up next points intelligently until an optimum e„ax is

reached. The search is performed in both the +ve and -ve directions firom the fit surface.

At any iteration, the algorithm avoids the neighborhood points that are outside the

surface. With the two points obtained for optimum e„ax and the initial points, the final

form tolerance is determined.

6.1 Straightness Using Region Elimination Search

For straightness evaluation, region-elimination (RE) search [70] is employed to

choose additional sample points. The RE method assumes that the function is unimodal

within the interval of interest. For a multimodal function, the interval needs to be refined

to obtain multiple optima. Then a global optimum can be determined. A flow chart for

the RE algorithm is shown in Figure 24. It is to be noted that the objective is to reduce

the sample size while demonstrating reasonable accuracy in the tolerance estimation, and

therefore only three iterations with the intervals o f A, A/2, and A/4 are used (where A = 4

7 2

X step size). In the next chapter on experimental design, step sizes of 0.05, 0.1, and 0.2

inch are investigated to find a proper step size.

Search starts firom a point that has got the maximum deviation among the initial

data set. If the surface pattern and the initial sample predict the possibility o f more than

one optimum in any direction, then the search has to be performed in the neighborhood of

all such points. Then fi-om all the optima, the point yielding the largest e„ax is selected as

an optimum solution. For example, in case o f end milling, the pattern (Figure 22) shows

one optimum about the center of the edge in the +ve direction but two optima near both

ends in the -ve direction fi-om the initial fit line. In case of face milling (Figure 23), there

are two optima in both the directions.

Stop

Repeat for A/4 w/in boundary

Begin with a starting point

Repeat for A/2 w/in boundary

Select next point with best e value

Evaluate points at ±A interval w/in boundary

Figure 24: Flowchart of the region elimination algorithm for straightness estimation.

It is to be noted that the current CMM software is not integrated with the RE

search method. Therefore, the population data {x, z) for a fixed y, are collected using the

CMM probe as outlined in Chapter 5 (see Figure 8 and Section 5.3) to represent the edge

7 3

for which straightness is being evaluated. On this data set, the RE algorithm is applied.

Java codes for the algorithm to find points corresponding to emaxc-) and ê axc+j have been

written and are given in Appendix B. The algorithm to find a solution point pertaining to

emaxf-) has the following steps:

Step 1: Initialization Step

Specify x coordinate limits {xibound, Xrbound) to define the boundary points of the

edge and step size (i.e., As) or interval A, where A = 4 x As.

Specify the fit line parameters for the initial set of points obtained on the basis of

the surface error profile.

Read population data points (x, z) o f the discretized edge fi*om a file.

Specify the position (index) o f a starting point in the discretized space to get (x„ow,

z„ow)- Also, specify the corresponding e„ow, which is known or can be found out

fi*om the equation of the line specified.

Step 2: Search from x„ow

Xle/t = X„ow - 4AS Xrighi = X„ow + 4As

Check whether the points are within the boundary, i.e., xie/i > xitound and Xright ^

Xrbound- The points outside the boundary will not be considered.

Calculate e/e/t and enght and compare with e„ow

Set tlie least of the three as e„ow and the corresponding x as x„ow.

Step 3:

Xlt ̂ Xiioyir ~ 2Ar Xright Xnow ^ 2Aî

Check whether the points are within the boundary.

Calculate ei^, and enght and compare with e„ow

74

Set the least of the three as enow and the corresponding x as Xnow-

Step 4:

Xiefi Xnow ~ Xright Xnow

Check whether the points are within the boundary.

Calculate and and compare with enow-

The least o f the three is the best estimate of e„ax(-j and the corresponding x is the

solution point in the -ve direction. The algorithm stops here.

The algorithm to find a point corresponding to e„ax(+) is similar with the exception

that when we compare the values of e, we go for the largest value.

Example:

Consider aluminum plate #4 fi-om end milling. Population data measurement with

the CMM has been described in Chapter 5 (Section 5.3). Straightness tolerance A,

obtained for the population sample of 121 points is 0.005475 inch (see Table A. 1.1.1).

Sample points following the present methodology are selected as follows. Initial

3 points on the basis of the surface profile discussed in Chapter 5 (Figure 22) are selected

as (at = 4.1, z = -14.85474), (6.95, -14.854), and (9.85, -14.86047). The LS solutions for

the initial set are lo = -0.001 and zo = -14.84944. The corresponding deviations (e) of the

three points firom the fit line respectively are -0.0012, 0.00239, and -0.00118, and the

tolerance computed is ht = 0.00359. Additional data points will be sampled intelUgently

with the help of the RE search to improve the zone.

It is clear firom the e values o f the 3 points, that a point with an optimum e„ax(-)

may exist in the neighborhood of x = 4.1 or 9.85 (this has also been discussed in the RE

75

algorithm development earlier). Hence, the search algorithm is applied with As = 0.05

around both points. As an example, the first iteration is shown here.

Iteration 1: Fromx = 4.1 (e = -0.0012), As = 0.05 (i. e., A = 0. 2)

Point in the left (x = 3.9) is outside the boundary. In the right, at x = 4.3, e = -

0.00042. Comparing the two e values, point x = 4.1 is better, so no move is

made.

In the next iteration, the algorithm looks around x = 4.1 with a reduced interval

A/2 =0.1. Note that for this iteration, x = 4 is within the boundary. This way the search

is continued and stopped after the 3"* iteration. The solution obtained is (x = 4.05, z = -

14.85511) corresponding to emax(-) ~ -0.00162. Similarly, the search is conducted about x

= 9.85. But the earlier solution at x = 4.05 is better.

In the same way, a solution point (x = 6.85, z = -14.85302) pertaining to an

optimum emaxM is obtained by applying the search around x = 6.95. The two points

pertaining to emax(-) and emax(*) are added to the initial set of 3 points. Then the final

tolerance estimated has an error o f 6.1 % compared to the population value. The number

of points sampled is 8 (3 initial and 5 in the search), although other points are evaluated

during the search. In comparison to 121 points of the population, a reduced set of 8

points accounted for an accuracy o f 93.9 % illustrating the potential o f the applied search.

6.2 Flatness

For flatness evaluation, two pattern search methods, tabu search (TS) and hybrid

search (HS) are applied to sample data points outside the initial set of five points

determined fi-om the surface error patterns discussed in Chapter 5. The objective is to

7 6

estimate the form tolerance with a reduced number o f points. Therefore, instead of full-

scale TS or HS with large number of allowed bad moves and re-start to find a very high

quality solution, approximate TS and HS which can yield a good solution after only a few

iterations are used. A fixed step size (i.e., the distance between each search point) o f 0.1

inch is selected. Tabu size of one and maximum iteration o f 35 have been used as

mentioned in (Zh^ter 4. Search is performed twice, first in the -ve direction from the

initial fit plane and then in the +ve direction. It starts from a point that has got the

maximum deviation among the initial data set depending on which direction a solution is

being sought. It stops if the bad moves exceed the maximum bad moves allowed or if the

iterations exceed the maximum iterations allowed. The algorithms are tested for different

number of allowed bad moves (BMl, BM3, and BM5) as well as with no re-start (RSO)

and one re-start (RSI). The reason for selecting these levels of strategy is detailed in the

next chapter on experimental design. If a search needs to be re-started (e.g., in case of

RSI) in any direction, then the re-start would originate from a point that has got the

second maximum deviation from the initial fit plane (if it is outside the region searched

before), and so on. Performance of TS and HS algorithms is compared in Chapter 7.

6.2.1 Tabu Search

To apply the tabu search method, a starting point from the initial set is selected as

explained above. Figure 25 is a representation of a hypothetical search area divided into

rectangular grids. The size o f each grid is As by As, where As is the step size. Deviations

(e) of neighborhood points with respect to the starting point (xq, yo) are obtained. Four

neighborhood points as shown in Figure 25 are (xq + As, yo), (xq, yo + As), (xo - As, yo).

7 7

and (xo,yo - ^) - A move is made to the point with the ‘best’ e value. If all the neighbors

result in worse e value, then the least bad is selected. In case o f searching for ema(-), the

least is the 'best' and for fimaxr+j» the largest is the 'best'.

Arbitr ary sta) tingpo int
\

As
(

As
’ As ' Jeighb iitood point

Figure 25: Neighborhood points of a starting point in tabu search.

For the next iteration, point (xo, yo) becomes tabu (forbidden). A move is defined

to be tabu if any of its attributes is tabu-active for certain tenure or size. Tabu size

determines the length of the tabu Ust. Tabu list is a short-term memory to store the

coordinates o f the most recent moves. This will prevent the reversal of the search to any

point in the tabu list. Aspiration criteria are applied to determine when the tabu status of

a move needs to be overridden [30]. In the present algorithm, a tabu size of one is used,

so that in any iteration not all moves would be tabu. Hence, no aspiration criteria are

required. The search continues based on the total number of iterations specified, the tabu

size, and the number of bad moves allowed.

If a move is made to a neighborhood point with a better e value than that o f the

current point, that move is referred to as a "good" or "improving" move. If all neighbors

have e values worse than that o f the current point, then the move is made to the

7 8

neighborhood point with the least worse e value; and this move is referred to as a "bad"

or "non-improving" move. The bad move parameter is an aid to help the algorithm

escape the entrapment of local optimality. The larger the number of bad moves allowed,

more iterations would be performed for a particular search. The search is terminated

prematurely if the bad moves exceed the allowed number o f bad moves, regardless o f

whether the number of moves has exceeded the maximum number of iterations allowed.

If the two successive iterations result in good moves in the same direction, then

the present search is intensified in this direction to examine more elite solutions.

Occasionally, it is possible that the normal moves of bs length may not be sufGcient to

break away firom the local optimality. Hence, a high influence (longer) move is

performed to diversify the search in a region not visited before and that becomes the

starting point for a re-start of the search. This has been done in the case of RSI, which

allows a re-start. A flow chart for the approximate TS algorithm applied in this work is

displayed in Figure 26. It is clear fi-om the flow chart that the search stops if bad moves

(BM) exceed maximum bad moves allowed (6m) or iterations exceed maximum number

of iterations (Af).

It is to be noted that the current CMM software is not integrated with the tabu

search or hybrid search (discussed later) algorithm. Therefore, the population data (r, y,

z) is collected using the CMM probe as outlined in Chapter 5 (see Figure 8 and Section

5.3) to represent the plate surface for which flatness is being evaluated. On this data set,

the respective search algorithm is applied. Java codes developed for the algorithm to find

points corresponding to e„utxc-j and ê oxf+j are given in Appendix B.

79

Begin with a starting point

Create a candidate list of neighborhood moves w/in boundary

Choose the hest admissible candidate and make the prev point tabu

A bad move?

Iteration > Af?BM > bm or
iteration > M l

Intensify: prev two
move same direc?

GoodNext point in
same direction?

Move & make the prev point tabu

Figure 26: Tabu search algorithm flowchart for flatness estimation.

80

The TS algorithm has following steps:

Step 1 : Initialization Step

Specify x & y values for the boundaries o f the plate, step size (As), maximum bad

moves (bm), maximum number of iterations (M), and the fit plane parameters for

the initial set of points.

Read population data points (x, y, z) of the discretized plate fi*om a file.

Specify the position (row & column) of a starting point in the discretized space

pertaining to the search for e„ax(-) or emax(+) fi’om the initial set to get (x„ow, ynow,

z„oyJ). Also specify the corresponding e„ow, which is known or can be obtained

fi’om the equation o f the plane specified.

Set initial values:

Sbest = 100 (a very large value) to search for a point with e„ax(.),

Sbesi = -100 (a very small value) to search for a point with e„ax(+),

iteration = 0, badmove = 0, k = 0,

tabu point (x = 100.0, y = 100.0, i.e., a hypothetical point) for tabu size = 1.

Step 2: Updating best solution and tabu list

If ̂ now is better than B̂ esti then B̂ est B̂ qw and (x̂ esu y best) (̂ now. ynow)*

Otherwise, Bbest remains unchanged.

Add (x„ow. ynow) to the tabu list.

Step 3: Neighborhood Search fi’om (x„ow. ynow)

iteration = iteration + 1

Define neighborhood points as:

Xj = X„ow + As, y I =y„ow = X„ow,y2 =ynow’t- As

81

X3 = X„ow - As, ys =y„ow X4 = X„ow,y2 =ynow ~ As

Ignore any point, if it is outside the surface boundaries.

Calculate e, value for (Xi, y(). / = 1 ,2 ,3 ,4 that is not in the tabu list.

Let 6b denote the best e, value with b = i.

If tie, then break arbitrarily with smaller i.

If b = 1 then define a direction d* = (1,0)

Else if b = 2 then d* = (0,1)

Else if b = 3 then d* = (-1,0)

Else (i.e., b = 4), dt = (0, -1).

Step 4: Intensification Check Step

If A: < 1 or > 1 and d* # d*./) then

if 6b is better than e„ow, go to step 6

otherwise, go to step 7.

Otherwise, if eb is not better than e„ow, go to step 7

otherwise, go to step 5.

Step S: Intensification Step

(Xnowi ynow) (Xb> yb)t ^now ~ ^b

(Xnexo ynext) Ĉ now> ynow) As X dk

If (Xnext. ynext) is not withui the boundary, go to step 2.

Otherwise, calculate e„ext.

If e„ext is better than e„ow, then

iteration = iteration + 1

if iteration > M; stop and check for ebest-

82

otherwise, k = k - ^ \

dk - dk-i

(p̂ bt yb) ~ (^nextt ynext) 30(1 ^next

Go to the Start of step S.

Otherwise go to step 2.

Step 6: Improving Move Step

Ô nowt ynow) Ô bi yb)t ^now ~ ^b

If iteration > Af; stop and check for ebest-

Otherwise, k = k+ I

Go to step 2.

Step 7: Non-improving Move Step

(Xnowi ynow) (Xbi yb)t ^now %

badmove = badmove + 1

If badmove > bm or iteration > Af; stop and check for ctest-

Otherwise, k = k+ I

Go to step 2.

Step 8: Output Step

Display the solution point (xtest, ybest, Zbest) with Cbest and the iteration needed to

reach the solution. If stopped due to bm, then iteration should be less than Af.

Also, display the area searched (i.e., this row to this row and this column to this

column).

Step 9: Re-start Step

If re-start is desired, then start in a region, which was not covered in the previous

83

search to diversify the search. Specify the row & column o f the starting point

pertaining to the next best point in the initial set to get (x„ow, ynow, Znow) and specify

the corresponding e„ow

Set initial values:

iteration = 0, badmove = 0. k = 0.

Go to step 2.

Example:

Consider aluminum plate #5 firom end milling. Population data measurement has

been explained in Chapter 5. Flamess tolerance A, obtained for the population o f 651

points is 0.005959 inch (see Table A.2.1.2).

Sample points following the present methodology are selected as follows. Initial

5 points as discussed in Chapter 5 guided by the surface profile are selected as (x = 8, y =

5, z = -14.86218), (6.6, 5.5, -14.85546), (7.9, 6, -14.85815), (5.2, 6.4, -14.85391), and

(6.4, 7, -14.85195). For this set, the LS solutions are lo = -0.0015, mo = 0.003138 and zo

= -14.86487. The corresponding deviations (e) of the 5 points fi’om the fit plane

respectively are -0.001, 0.002051, -0.000258, -0.001323, and 0.000554. The computed

tolerance represents an error of 43.4 % fi-om the zone estimated for the population.

Additional data points are chosen intelligently with the help of the approximate TS with

step size of 0.1, no re-start, and one bad move allowed (RSOBMl).

The starting points to search for Cmoxr-j and emax(-̂) based on the e values obtained

above for the initial set would be (x = 5.2, y = 6.4) and (6.6, 5.5), respectively. For emax(-h

the search yields a solution as (5, 6.6, -14.85461) and for as (6.8, 5.2, -14.85487).

84

The two points are added to the initial set o f 5 points. Then the tolerance estimated has

an error o f only 10.4 % compared to the population zone. The number o f points sampled

is 15 (5 initial and 10 in the search), although other points are evaluated during the

search. In comparison to 651 points of the population, a reduced set o f 15 points

accounted for an accuracy of 89.6 % proving the usefulness of the approach.

6.2.2 Hvbrid Search

Hybrid search (HS) developed is a combination of coordinate search (CS),

modified Hooke-Jeeves (HJ) pattern search, and TS (as explained above with tabu size of

one). The methods o f CS and HJ search have been discussed in Chapter 3. A flowchart

for the approximate HS algorithm developed in this work is shown in Figure 27. In the

flow chart, BM stands for bad moves, bm for maximum bad moves allowed, and M for

maximum iterations allowed. The algorithm begins with CS exploratory moves, then

utilizes modified HJ search along the pattern direction as well as TS.

For starting point (xo,yo), the first iteration will be as follows:

Evaluate a neighborhood point (xo + As, yo) for its deviation (e).

If it is better than (xo, yo), evaluate (xo + As, yo + As).

If it is better than (xo + As, yo), this is the new iterate, i.e., (xj, y{).

Otherwise evaluate(xo + A s,yo- As).

If it is better than (xo + As, yo), this is the new iterate.

Otherwise, (xo + As, yo) is the new iterate.

85

Begin with a starting point

Check for CS
exploratory move?

Good
Bad

NoYes Iteration > Ml
No

YesBM > bm or
iteration > Ml

GoodBad Check for HJ
pattern move?

Yes
NoRe-start ?

Stop

Move & make the
prev point tabuMove to the least

bad & make the prev
point tabu

Figure 27: Hybrid search algorithm flowchart for flatness estimation.

Otherwise, i.e., {xo + Ay, yo) is not better than (xq, yo), evaluate (xo - Ay, yo).

If it is better than (xo, yo)j evaluate (xo - Ay, yo + Ay).

If it is better than (xo - Ay, yo), this is the new iterate.

Otherwise evaluate (xq - As , y o - Ay).

86

If it is better than (xq - As, yo), this is the new iterate.

Otherwise, {pco - As, yo) is the new iterate.

Otherwise evaluate {xo, yo + As).

If it is better than (xo, yo), this is the new iterate.

Otherwise evaluate (xo, yo - As).

If it is better than (xo, yo), this is the new iterate.

Otherwise, select the least bad from (xo + As, yo), (xo - As, yo), (xo,

yo + As), and (xo, y o - As) as the new iterate.

For the next iteration (xo, yo) is tabu. If the new iterate (x/, y i) is a bad move, then

again CS moves are explored about it. Otherwise, the HJ pattern move is evaluated. That

is, the algorithm takes a step [(x/, y{) - {xo, yo)] from (x/, yi) in the pattern direction. If e

of {(%/, yi) + [(x/, yi) - (xo, >̂ o)]} is better than (x/, y/), then it is accepted as new iterate

(x2, y2)- If the pattern move is unsuccessful, then the method reduces to CS about (x/, y/).

This way the search continues and stops when BM exceeds bm or iteration exceeds M.

Example:

Consider the example given for the approximate TS for no re-start and one bad

move allowed (RSOBMl). For the same initial set o f points, the starting points for the

HS algorithm remain the same. The approximate HS obtains the same solution points but

with fewer iterations. The number of points sampled is 11 (5 initial and 6 in the search).

In comparison to 651 points o f the population, a reduced set of 11 points accounted for an

accuracy of 89.6 % proving the usefulness o f the method.

8 7

CHAPTER?

EXPERIMETNAL DESIGN

In order to explore the effects o f certain factors when using search methods in

selecting sample points, experiments are carried out. Before this, the factors to be varied

in the experiment, the ranges over which these should be varied, the specific levels at

which runs should be made, and the dependent variable are determined. The response

variables are identified to be number of sampled data points using the search

methodology and corresponding absolute percentage error o f the form tolerance achieved

in comparison to the entire population (i.e., a very large sample). The first independent

variable (factor A) used throughout all analyses is manufacturing process (i.e., surface

pattern) to determine if the number and location of data points depend upon the process.

Two levels of manufacturing process are chosen, end milling and face milling.

The present methodology proposes to start the sampling with initial set of data

points dictated by the surface pattern obtained in Chapter 5 and then to sample additional

points using a search technique. Selection of the initial set by other means may not be

able to capture the ‘true’ surface pattern and hence may result in higher tolerance

estimation error or may require more points to be sampled to achieve the desired level of

accuracy [63].

7.1 Straightness

For the evaluation of the straightness o f an edge, the second independent variable

(factor B) is step size (i.e., As) used in the region elimination (RE) search method.

88

Badiru [9] selected the step size to be 0.2 inch for the tabu search algorithm. Three levels

o f step size as 0.05, 0.1, and 0.2 inch are selected making A of the RE algorithm = 4 x

step size = 0.2, 0.4, and 0.8. Four random plates are selected from each o f the end-milled

plates (# 4, 12, 9, 2) and face-milled plates (# 3, 1, 11, 7). Details o f the machining

conditions and measurement surface have been outlined in Chapter 5. Other factors are

not changed for the experiment.

As explained in Chapter 5 on the basis o f the surface patterns (see Figures 22-23),

three initial points are selected (one from each end and one from the center) for end

m illing and four initial points are selected (one each from section 1, 2, 3, and 4) for face

milling. Plates are nested within the levels o f manufacturing process, whereas step size

and process are crossed creating a nested-factorial design [58]. Each plate is repeated

four times with a different set of the initial points; however, the same set is used for all

the step sizes. All the observed data (N = 2 4 3 4 = 96) have been presented in Table 1.

Ifyiju denotes the observed response, the linear statistical model for the design is

ygu ~ + ■ (̂0 + i^) ij + jtii) (10)

where, |i is the overall mean effect. Ai is the effect o f the zth manufacturing process, Bj is

the effect of the yth step size, Pk(i) is the effect o f the Ath plate within the /th level of

process, (AB)ij is the process x step size interaction, (BP)jka) is the step size x plates

within process interaction and is the random experimental error term. As the levels

(treatments) o f process and step size are specifically selected, both are fixed. Plate is a

random factor. So, it is a mixed model.

89

Table I : Observed response - number o f sampled points (absolute percentage error) for
straightness estimation

Step size (inc
Manufacturing Process Plate 0.05 0.1 0.2

4
8(6.1)
7(0.0)
7(0.0)
7(6.9)

7(12.8)
6(0.14)
6(7.2)
6(8.2)

7(14.7)
6(10.2)
4(20.9)
4(19.7)

End milling (A1 plates.

12
7(6.75)
7(11.4)
6(3.25)
4(0.61)

7(6.75)
5(6.08)
5(2.69)
4(0.61)

5(14.23)
4(6.97)
5(5.82)
4(0.61)

Population=121 points)
9

5(4.7)
6(2.0)
7(2.04)
3(9.6)

4(4.7)
7(2.0)
7(4.2)
4(3.8)

3(13.3)
6(0.0)
5(2.6)

4(8.26)

2
6(9.58)
5(9.84)

6(15.17)
8(3.76)

4(21.86)
5(9.84)
5(14.53)
8(2.43)

4(19.05)
4(3.54)
5(24.9)

5(30.62)

3
11(7.35)
9(8.6)

11(6.74)
10(1.24)

8(11.0)
7(8.6)

9(9.86)
12(0.31)

6(2.7)
6(6.06)
6(2.33)
9(0.48)

Face milling (Cl plates.

1
9(6.3)
11(3.9)
9(18.4)
9(0.85)

8(2.0)
8(13.9)

10(13.56)
7(13.75)

6(2.0)
7(13.9)
7(25.2)
6(16)

Population = 56 points)
11

11(9.4)
10(12.0)
13(4.2)
9(2.9)

10(4)
9(12.0)
7(4.4)
9(0.5)

7(6.2)
6(3.9)
6(5.7)
8(2.3)

7
10(4.65)
8(4.17)
6(7.93)
10(2.7)

6(0.03)
7(4.17)
7(7.93)
7(0.65)

6(0.03)
7(4.17)
6(7.93)

5(11.14)

The null hypotheses are constructed as follows;

1. Manufacturing process has no effect; Ho: A,- = 0, i =1,2

2. Step size has no effect; Hq: Bj = QJ = 1 ,2 ,3 .

3. Plate within process has no effect; Ho: Pk(i) = 0 , k = 1,2,3,4; z = 1,2.

90

4. There is no interaction between process and step size; H q: {AB)ij = 0 for all i,j.

5. There is no interaction between step size and plate within process; Ho: {BP)jk(i) = 0 for

all i j , k.

Symbolically the total sum of squares SSt may be written as

SS t = SS a + S S b + SSp{A) + S S ab + S S bp(a) + SS e (11)

Computational formulas for the sums o f squares can be obtained from [58]. Assume that

the model (Eq. 10) is adequate and that the error terms are normally and

independently distributed with mean zero and constant variance Then each of the

ratios o f mean squares MSa/MSp(a), MSb/MSbp(a), MSp(a)/MSe, MSab/MSbp(a). and

MSbp(a)/MSe is distributed as F with vi numerator degrees o f freedom (df) and v2

denominator df, and the critical region would be the upper tail o f the F distribution. The

analysis of variance is done using SAS and is summarized in Table 2. Complete SAS

output is given in Appendix C. A null hypothesis Ho is rejected when Fq > (Fa,vi,v2) for a

= 0.05.

Table 2: ANOVA for the three-factor nested-factorial model for straightness

Source Vl, V2
of points % error Fo.05MS Fo MS Fo

Mfg process (A) 1,6 168.01 32.63* 61.6 0.41 5.99
Step size (B) 2, 12 45.29 84.7* 111.29 3.51 3.89
P(A), plates w/in A 6, 72 5.15 3.1* 149.07 5.03* 2.234
A X B interaction 2, 12 6.17 11.53* 84.52 2.66 3.89
B X P(A) interaction 12, 72 0.535 0.32 31.74 1.07 1.902
Error 72 1.663 29.646
Total 95

To check the model adequacy, the residuals are examined. It is clear from the

SAS output that the residuals are structureless (i.e., followed no clear pattern). Therefore,

91

they are independent. A test of the normality (0, (/) assumption is made plotting the

residuals as suggested in [9,18, 58]. It can be observed from the SAS output, the plot of

the cumulative probability vs the residuals is a straight line centered about zero.

Therefore the ncnnality test is satisfied. An analysis of the results is presented in the

next chapter.

7.2 Flatness

In case of flatness estimation, factor A is again manufacturing process:

end and face milling. A fixed step size (i.e.. As) o f 0.1 in. is chosen. Factor B is strategy

(i.e., number of bad moves and re-start allowed in the search algorithm). In general,

increasing the allowed bad moves will increase the number of sampled points. Badim [9]

used three levels of bad moves as 5, 6, and 10 in his work on tabu search (TS). hi the

pilot work [8], the authors demonstrated the TS algorithm with 3 bad moves and hybrid

search (HS) algorithm with 1 bad move. They [8] also illustrated the HS algorithm with

no re-start as well as with one re-start. The goal of the present work is to reduce the

sample size while maintaining the estimation accuracy. Therefore, four levels of strategy

are selected as RSOBMl (i.e. re-start = 0 and bad move = 1), RS0BM3, RS0BM5, and

RSIBMI for the investigation. Factor C is search method and two levels are: tabu search

and hybrid search. Four random plates (# 10, 5, 7, 4) are selected fi’om the end-milled

plates and plates (# 2, 9, 11, 5) firom the face-milled specimens. Details of the machining

condition and measurement surface have been outlined in Chapter 5. Plates are nested

within the levels of manufacturing process. Therefore, this design with four factors is a

nested-factorial design [58].

92

Each plate is repeated four times with a different set o f the initial points; however,

the same set is used for the four levels o f strategy and two levels o f search technique.

The number and locations of the initial points for both milling processes on the basis of

the surface patterns have been discussed in Chapter 5. The initial set consists of five

points for both processes. In case o f an end-milled plate, fi’om top to bottom of cut (i.e.,

y = 5 to 7) segments 0 - 0.2,0.4 - 0.8, 0.95 - 1.15, 1.3 -1.7, 1 .8 -2 inch fi-om the top are

important to choose the initial set. In the first segment, a point at the end o f cut (x = 7.8 -

8) can be selected; in the second, a point at the center (x = 6.4 - 6.6); in the third, at the

end; in the fourth, at the start (x = 5 - 5.2); and in the last segment, at the center. In case

of a face-milled plate, five points can be selected as follows: one each near the cutter

entry in section 1 (y » 3), near the lower hole in section 2 (y * 1.5), near the upper hole in

section 3 (y » 2.5), near the cutter entry in section 4 (y » 1), and the last any where near

the center (y « 2) or the cutter exit. In general, N = 2 4 4 2 4 = 256 observations and the

observed data have been presented in Table 3.

I f y ijum denotes the observed response, the linear statistical model for the design is

yyum + B j + Pk(i) + Q + C ^),y + W Q a + jk{i) + (^ O ji + (CP)*(/) +

+ (BCP) + £̂ iJU)m (12)

where, p is the overall mean effect. Ai is the effect of the ith manufacturing process, Bj is

the effect of the yth strategy, Pk(i) is the effect of the Ath plate within the ith level o f

process, Q is the effect of the /th search method, (AB)ij is the process x strategy

interaction, (AC)a is the process x search algorithm interaction, (BP)jkCi) is the strategy x

plates within process interaction, (BC)ji is the strategy x search method interaction,

(CP)ik(i) is the algorithm x plates within process interaction, (ABC)iji is the process x

93

Table 3: Observed response - number o f sampled points (absolute percentage error) for
flatness estimation

Mfg.
Process Plate

Tabu search method Hybrid search method
Strategy Strategy

RSO
BMl

RSO
BM3

RSO
BM5

RSI
BMl

RSO
BMl

RSO
BM3

RSO
BM5

RSI
BMl

End
milling
(pop =
651

points)

10

10(34.8)
8(21.8)
11(46.1)
8(35.2)

16(33.7)
15(26.7)
18(41.9)
15(32.8)

26(33.7)
22(26.7)
24(41.9)
25(32.8)

15(34.8)
14(21.8)
17(21.8)
17(16.6)

9(33.7)
8(21.8)
10(46.1)
8(35.2)

14(33.7)
13(21.8)
19(46.1)
15(35.2)

23(33.7)
19(21.8)
31(46.1)
29(35.2)

14(33.7)
16(17.3)
16(16.3)
12(24.7)

5

10(24.3)
15(10.4)
12(46.9)
10(44.1)

20(26.9)
24(10.4)
20(48.1)
18(44.1)

28(26.9)
35(10.4)
30(4.8)
26(44.1)

15(24.2)
21(10.4)
17(30.0)
18(37.7)

13(30.0)
11(10.4)
12(44.1)
10(44.1)

21(30.0)
16(10.4)
22(44.1)
17(44.1)

28(30.0)
26(10.4)
32(44.1)
25(44.1)

18(30.0)
19(10.4)
16(31.2)
15(37.7)

7

12(40.8)
17(35.3)
19(33.3)
12(49.6)

20(41.2)
21(35.3)
29(33.3)
19(49.6)

32(41.2)
30(36.4)
41(33.3)
29(38.6)

15(40.8)
31(30.7)
22(33.3)
16(47.4)

10(40.0)
16(35.3)
16(42.9)
12(49.6)

17(40.8)
21(35.3)
23(42.9)
19(49.6)

26(41.2)
30(36.4)
31(42.9)
27(49.8)

14(40.0)
28(30.7)
19(42.9)
17(47.4)

4

13(57.1)
14(51.6)
13(41.8)
10(21.8)

19(57.1)
22(51.6)
22(24.1)
17(21.8)

27(57.1)
32(41.1)
27(24.1)
23(21.8)

18(48.3)
22(38.2)
18(29.5)
21(8.0)

15(50.9)
14(51.6)
12(58.7)
10(21.8)

21(50.9)
21(51.6)
18(58.7)
16(21.8)

27(50.9)
29(46.9)
26(58.7)
21(21.8)

20(48.3)
21(38.2)
16(29.5)
18(21.81

Face
milling
(p o p -

410
points)

2

11(29.2)
13(17.6)
13(13.8)
12(28.2)

20(30.9)
21(7.1)
19(10.5)
21(28.2)

27(24.2)
27(7.1)
25(10.5)
29(23.8)

19(11.5)
19(17.6)
17(13.8)
21(28.2)

9(31.6)
11(17.6)
13(14.2)
13(27.1)

17(31.3)
20(6.1)
18(10.8)
23(22.6)

26(31.9)
24(6.1)
27(10.8)
29(21.5)

16(11.5)
17(17.6)
17(14.2)
22(12.2)

9

12(7.4)
11(9.4)
9(17.4)
13(7.9)

19(7.3)
17(9.4)
17(17.4)
19(8.1)

24(7.3)
24(9.4)
25(17.4)
29(16.3)

21(7.4)
16(9.4)
15(8.3)
23(7.9)

10(7.4)
11(9.4)
10(15.7)
9(8.9)

15(7.4)
17(9.4)
18(17.4)
16(8.9)

22(7.4)
23(9.4)
26(17.4)
20(8.9)

18(7.4)
16(9.4)
14(5.9)
18(4.6)

11

13(2.8)
12(9.9)
16(11.6)
16(0.26)

24(2.8)
21(9.3)
29(11.6)
25(0.26)

34(2.8)
28(9.3)
41(11.6)
33(0.26)

25(11.8)
22(9.9)
27(11.6)
26(0.26)

11(3.4)
10(10.2)
14(10.5)
14(0.65)

20(2.6)
17(9.0)
21(10.5)
20(0.65)

25(2.6)
24(9.0)
27(10.5)
26(0.65)

21(8.5)
18(10.2)
26(7.0)
21(2.8)

5

13(6.0)
15(4.8)
13(9.3)
8(15.3)

21(6.0)
22(4.8)
25(9.3)
16(15.3)

29(6.0)
29(4.8)
37(9.3)
24(15.3)

21(6.0)
26(4.8)
20(8.6)
15(14.4)

13(6.0)
13(4.8)
14(9.3)
8(15.3)

20(6.0)
18(4.8)
23(9.3)
15(15.3)

27(6.0)
24(4.8)
32(9.3)
21(15.3)

19(6.0)
19(4.8)
24(8.6)
16(19.7)

strategy x search method interaction, (BCP)jik(i) is the strategy x algorithm x plates within

process interaction, and is the random experimental error term. Manufacturing

process, strategy, and search algorithm are fixed. Plate is a random factor. Hence, it is a

94

mixed model.

Computational formulas for the mean squares can be obtained bom [58]. Assume

that the model (Eq. 12) is adequate and that the error terms are normally and

independently distributed with mean zero and constant variance Then each of the

ratios of mean squares MSa/MSp(a), MSb/MSbp(a), MSc/MScp(a), MSp(a)/MSe,

MSab/MSbp(a), MSac/MScp(a)> MSbp(a/MSe, MSbc/MSbcp(a). MScp(a/MSe,

MSabc/MSbcp(a), and MSbcp(a/MSe is distributed as F with vi numerator d f and v2

denominator df, and the critical region would be the upper tail o f the F distribution. The

analysis of variance is shown in Table 4. Complete SAS output is given in Appendix C.

A null hypothesis Ho is rejected when Fo > (Fa,vi,v2) for a = 0.05.

Table 4: The ANOVA table for the four-factor nested-factorial model

Source Vl, V2 # of points % error
Fo.05MS Fo MS Fo

Mfg process (A) 1,6 10.16 0.08 37713.9 39.82* 5.99
Strategy (B) 3,18 2571.8 467.27* 267.685 6.96* 3.16
Algorithm (C) 1,6 164.16 8.49* 94.466 4.37 5.99
P(A), plates w/in A 6,192 123.95 12.21* 947.156 9.89* 2.10
A X B interaction 3, 18 17.0 3.09 119.785 3.11 3.16
A x C interaction 1,6 32.347 1.67 181.054 8.37* 5.99
B X P(A) interaction 18, 192 5.504 0.54 38.454 0.40 1.61
B X C interaction 3, 18 11.483 2.99 23.995 3.47* 3.16
C X P(A) interaction 6, 192 19.337 1.90 21.62 0.23 2.10
A X B X C 3, 18 2.92 0.76 19.109 2.76 3.16
B x C x P(A) 18, 192 3.841 0.38 6.91 0.07 1.61
Error 192 10.155 95.763
Total 255

To check the model adequacy, the residuals are examined. It is clear from the

SAS output that the residuals are structureless. Therefore, they are independent. Plot of

the cumulative probability vs the residuals is a straight line centered about zero.

Therefore the normality test is satisfied. The results are discussed in the next chapter.

95

CHAPTERS

RESULTS AND DISCUSSIONS

Based on the analysis o f variance presented in Tables 2 and 4 in Chapter 7 and

SAS outputs in Appendix C, the results are analyzed in this chapter.

8.1 Straightness

Considering the number of sampled points as the dependent variable in Table 2,

manufacturing process is significant, step size is significant, plates within manufacturing

process differ significantly, and interaction between manufacturing process and step size

is significant. Tukey’s studentized range test (see Appendix C) reveals that end-milled

plates require significantly less number of points (mean = 5.5) than that of face-milled

plates (8.15). Step sizes of 0.2, 0.1, and 0.05 respectively require 5.59, 6.9, and 7.97

average points significantly different firom each other. Concerning the significant

interaction effect, it is clear firom Figure 28 that changing step size firom 0.05 to 0.1 or

fi-om 0.1 to 0.2, sample size decreases rapidly for face milling in comparison to end

milling. Considering the absolute % error in the tolerance estimation compared with the

population as the dependent variable, plates are significant; however, manufacturing

process and step size are not significant.

Plates within manufacturing process are significant in both response variables

(number of points and % error). This may be due to the variation in the plate surface

before the milling and/or variation resulting from different set o f the initial points. If the

initial points selected truly represent the surface pattern, then the number of sampled

96

points and the resulting % error are less.

0.05 0.1

S ep size (I nch)

0.2

Figure 28; Effect of manufacturing process and step size in straightness estimation.

8.2 Flatness

Considering the number of sampled points as the dependent variable in the

ANOVA Table 4, strategy is significant, search algorithm is significant, and plates within

manufacturing process also differ significantly. However, manufacturing process is not

significant, i.e., mean number of sampled points for end milling (19.3) is significantly

same as for face milling (19.7). Pertaining to strategy, Tukey’s studentized range test

(see Appendix C) reveals that average number o f points for RSOBMl (11.9) is

significantly less than RSIBMI (18.9) or RS0BM3 (19.7), which are not significantly

different, but significantly less than RS0BM5 (27.4). Also, the average sample size for

HS (18.7) is significantly smaller than TS (20.3). Considering the absolute % error in the

tolerance estimation compared with the population as the dependent variable,

manufacturing process is significant, strategy is significant, plates within manufacturing

97

process are significant, manufacturing process x algorithm interaction is significant, and

strategy x algorithm interaction is also significant. Tukey’s test reveals that the average

% error for end milling (35.2) is significantly higher than face milling (10.95). Pertaining

to strategy, % errors for RSOBMl (24.91), RS0BM3 (24.15) and RS0BM5 (23.06) are

same as well as RS0BM3, RS0BM5 and RSIBMI (20.24) are same. But the error for

RSOBMl is significantly higher than that for RSIBMI. Also, the average error for HS

(23.7) is not significantly different firom TS (22.5). These results have also been

displayed in Figures 29 - 31. Concerning the significant interaction effects. Figure 31

shows that the error increases fi-om TS to HS in end milling whereas decreases in face

milling. Also, it increases fi-om TS to HS in all four levels of strategy with the highest

increment in RS0BM5 and almost no increment in RSIBM I.

Considering both the sample size and accuracy o f the fiatness estimation, it can be

concluded that the tolerance zone obtained firom significantly same sample size for face

milling has a very high accuracy (i.e., 89% of the population sample) as compared to

65% for end milling. This is because the average tolerance zone of the four plates

obtained fi-om the population sample for face milling (0.0023 inch) is smaller in

comparison to end milling (0.00704), i.e., the face milling process capability is better in

the present case because o f the machining conditions and workpiece used. Strategy

RSOBMl yields a very low sample size without losing significant accuracy in comparison

with RS0BM3 and RS0BM5. A larger sample size with RSIBMI increases the accuracy

(more evident for end milling). Although HS algorithm results in a significantly smaller

sample size for significantly same accuracy, it is practically not much different from TS.

Hence, it will be a matter of convenience in choosing between the algorithms. As

98

mentioned earlier, variability of plates within manufacturing process can be because of

the variation in the raw material, variation associated with the process capability, and

variation resulting from different set of the initial points. If the initial points represent the

surface pattern truly, then the sampled points and the resulting error are less.

40

35 -

b 30

® 25 4

I 20

Q. 15
"5
% 10

15 -

•1
BMl BM3 BM5

Strategy

RSI

□ Point, End

■ Point, Face

Error,End

Error, Face

Figure 29: Results of the flatness estimation using tabu search.

40

35 -

ë 3 0 -

I 25

a 20
Q. 15
o

* 1010 r *

: i l
BMl BM3 BM5

Strategy

RSI

□ Point,End

■ Point, Face

Error, End

Error, Face

Figure 30: Results o f the flatness estimation using hybrid search.

99

35 -

30 -

25 -
§«

15 -

10 -

TS HS

-End

•Face
RSOBMl

RS0BM3
-RS0BM5
-RSIBM I

Algorithm

Figure 31; Manufacturing process - algorithm and strategy - algorithm plot.

8.3 Comparison with Previous Work

The present methodology exploits the knowledge of manufacturing error patterns,

as suggested in [51, 63] for initial sample point selection. Then it uses search methods

intelligently for continuing sampling. It is interesting to find that following this

approach, the number of the sample points is much smaller than that required by other

generally applied procedures for achieving the desired accuracy level.

In case o f straightness evaluation, it is observed that smaller step size increases

the sample size with no significant effect on the accuracy of the estimation. The lowest

sample size corresponding to step size of 0.2 inch is found to be 5 and 7 respectively for

end and face milling. This yields a zone having an average accuracy of 92.6 % with

respect to the zone obtained fi-om the population sample. Length of the line feature

considered is 6 inches. For a line o f 40 in., Hocken et al. [36] reported that the

parameters described in the fit line did not converge to stable values until a larger number

1 0 0

of points (> 50) were sampled. An increase in the size o f a feature may increase the

sample size [18, 100] or may not [95-96]. The present woric is focused around the

characterization o f surface error pattern. Depending on the surface profile, increasing the

length to 40 in. may increase the initial set size and in turn the total number of sampled

points or may reduce the estimation accuracy. Despite this, the sample size obtained

firom the present method is much smaller than that would be expected based on the work

of Hocken et al. [36] for the desired accuracy, which identifies its potential for fixture use.

For the population data, average straightness tolerance of four plates for end

milling is 0.005 inch and for face milling is 0.0019. This means the latter has a better

process capabihty. This is because of the machining conditions and workpiece used in

this work. Otherwise, in general, face milling is a ‘roughing’ operation and end milling is

a ‘finishing’ operation. As the process capability improves the sample size should

decrease [56, 94]. But, in the present case, it is observed that end milling requires less

number of points than face milling. This is because of an extra initial point in face

milling based on the surface error profile and the fact that the search is performed in the

neighborhood o f four points instead of three points as in end milling. For fiatness, again

the face milling process capabihty is better as the average tolerance zone of four plates

computed fi’om the population data for this process is smaller (0.0023) in comparison to

end milling (0.00704). Hence, for same sample size, face milling is found to yield a

much higher accuracy (89 %) than end milling (65 %).

Flatness estimation with strategy RSOBMl (i.e., no re-start and one bad move)

requires a sample size of 12 and yields an absolute error of 37.2 and 11.9 % compared to

the zone obtained firom the population sample for end and face milling, respectively.

101

Strategy RSIBMI (i.e., one re-start) increases the sample size to 20 but reduces the error

to 29.6 and 10.7 %, respectively. This result is in agreement with that of Hurt [41], who

recommended measuring 20 or more points in order to get a reasonable flatness value by

the LS method. Caskey et al. [13] studied the behavior of a plane fît and could not find

the sampling strategy dispersion converging to zero even with 49 points. For a plane of

20 X 20 in., Hocken et al. [36] reported that the parameters described in the fit plane did

not converge to stable values until a larger number o f points (> 49) were sampled. In

comparison to the work of [13, 36], the present method for point selection looks more

efficient. However, it is be noted that the surface measured in this study is 3 x 2 in.

Therefore, detailed comparisons need to be made considering the surface of same size.

Also, it is to be noted that the earlier studies [13, 36, 41] were based on simulation

whereas the present work incorporates actual surface data using CMM.

In another simulated manufacturing surface (that included milling). Woo et al.

[93] applied the Hammersley and Halton-Zaremba sequences in 2-D sampling and found

no discernible difference in their performance. If the present end-milled plates are

measured with Hammersley sequence of 10 points and Halton-Zaremba sequence of 16

points, the average error o f four plates will be 39.7 % and 46.2 %, respectively (note in

the present study, 12 points yields 37.2 % error and 20 points gives 29.6 % error). In

contrast to the finding in [93], Halton-Zaremba sampling performed very poorly in

comparison to Hammersley sampling. This discrepancy is because they modeled a

random surface while this research has used actual fabricated plates. Further, any

sampling not using the knowledge o f the actual surface pattern may on occasion catch the

approximate error locations with a reduced sample size (like Hammersley) and at other

102

times may not (like Halton-Zaremba in this case) even with a larger sample size. The

present procedure at the very least provides proof for this experimentally. Thus, the

manufacturing error patterns are extremely important in sample point selection.

In this work, tolerance ht is obtained by multiplying (I + 1 em a x(-l) by [1/(1 +

for straightness and by [1/(1 + Iq + for flatness, respectively to account for

normal distance as suggested in [59, 87]. But the values are similar to what would be

obtained flom (I e„ax(+ ^ + I em ax(-^). This is in greement with that given in [59, 78] that

the zone obtained from the linear (g,) and normal deviations (ê,) are not significantly

different when the errors are of minute degree.

Based on the results discussed and comparisons with other related work made in

this chapter, concluding remarks are given in the next chapter. It is to be noted that in

this study, the surface error profiles have been measured to verify the surface error

models given in [48] and [35] for end and face milling respectively. One must ideally

predict the errors with these suggested mathematical models and use that to guide the

initial point selection, now that their feasibility has been experimentally verified. Then

use the search methods to sample additional points.

103

CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

An intelligent methodology for sample reduction, using optimization search heuristics

and manufacturing surface error profiles, is presented here for form tolerance verification

in coordinate metrology. It is shown that a high accuracy in sampling can be achieved

through a prior characterization of manufacturing errors on the part being measured.

Error profile models given in [48] and [35] for end and face milling respectively are

experimentally verified. The end milling profile obtained is in good agreement with the

model. The face milling errors do not agree completely with the profile presented in [35]

because o f the difference in the tool geometry and spindle axis tilt. However, both

models can be utilized to predict the errors. The surface errors dictate initial locations to

sample. Next points to inspect are determined using search methods looking for

improvements in the tolerance zone estimated by the linear least squares technique. The

methodology is demonstrated with examples of straightness and flamess tolerance. For

straightness estimation, region-elimination search is used. For flatness determination,

tabu search and hybrid search are employed.

In case o f straightness evaluation, it is observed that small step size increases the

sample size with no significant effect on the accuracy of the estimation. The lowest

sample size corresponding to step size of 0.2 inch is found to be 5 and 7 respectively for

end and face milling. This yields a zone having an average accuracy o f 92.6 % with

respect to the zone obtained fi-om the population sample. Flatness estimation with

strategy RSOBMl (i.e., no re-start and one bad move) requires a sample size of 12 and

104

results in an accuracy of 62.8 and 88.1 % for end and face milling respectively without

losing significant accuracy in comparison with RS0BM3 and RS0BM5. Strategy

RSIBMI (i.e., one re-start) increases the sample size to 20 but increases the accuracy as

well to 70.4 and 89.3 %, respectively. Concerning the two search methods employed in

flatness, although hybrid search results in a significantly smaller sample size for the same

accuracy, it is practically not much different from tabu search. Hence, it is a matter o f

convenience in choosing between the two algorithms. Comparison of the present

sampling procedure with other methods reveals that this is more efficient and reliable.

Also, unlike the findings in [93], Halton-Zaremba sequence performed very poorly

against Hammersely sequence for the end-milled surface (flatness determination).

Based on the findings of this dissertation, it is suggested to exploit the knowledge of

the manufacturing process used to produce an object surface in part feature verification.

This can be done utilizing the surface error profile to sample initial data points. In the

literature, there exist manufacturing error models for different processes, which can be

used. If for any manufacturing process, there is no previous model available, then the

surface error pattern can be quantified experimentally for one part and this pattern can be

used for other parts produced from the same process. Once a set o f initial data points is

selected and corresponding form tolerance is computed, additional data points can be

sampled using a suitable search method in order to improve the tolerance zone. In case

o f straightness estimation, region-elimination search method can be employed and for

flatness evaluation, tabu search or hybrid search method can be used.

In the future, the approach can be extended for the estimation of other form tolerances

(circularity and cylindricity). Since coordinate metrology applies to die casting, cold

105

fonning, machining, and grinding domains o f tolerances, these processes may be suitably

characterized for their surface error patterns.

In this work, the least squares (LS) technique is employed to compute the tolerance

zone. The minimum zone (MZ) method can be used in the future. LS over-estimates and

MZ under-estimates the corresponding zone, if the sample size is small. Therefore, other

techniques (e.g., Huber loss statistics [38]) should be incorporated to improve the zone

estimation.

As explained in Chapter 4 and illustrated with an example on each search method in

Chapter 6, from a starting point, the search goes to all the allowed neighborhood points

and evaluates them. Then it selects the ‘best’ or the ‘least bad’ neighborhood point

resulting a final move (‘good’ or ‘bad’) o f the particular iteration. This point is referred

to as sampled point. This way, the search continues. In the region-elimination algorithm

for straightness verification, if the neighborhood points are not good, then instead of

making a ‘bad’ move, the search stays at the starting point and the interval is reduced for

the next iteration. Thus, the total number of sampled points includes the initial points and

the points sampled during the search. The other evaluated points are not considered

because they do not take part in the tolerance zone improvement and hence, are not stored

for the next iteration. The search, however, does take some time to go to such points and

evaluate them. Therefore, total inspection time should include the time to measure the

initial data points, the sampled points, and the evaluated points. In the future, the search

algorithms can be integrated with the measurement software of CMMs to determine the

total measurement time.

106

Further, length of the CMM probe path must also be considered. CMM measurement

uncertainty data can also be included in the analysis to further enhance the accuracy of

the zone estimation.

107

REFERENCES

1. Allada, V. and Anand, S., 1994, “Computer-Aided Inspection Using Hough
Transform,” HE 3 ^ Industrial Engineering Research Conf. Proceedings, Atlanta,
May 18-19, pp. 40-45.

2. Al-Sultan, K.S. and AI-Fawzan, M.A., 1997, “A Tabu Search Hooke and Jeeves
Algorithm for Unconstrained Optimization,” European J. o f Operational Research,
Vol. 103, pp. 198-208.

3. ASME Y14.5M-1994, Dimensioning and Tolerancing, The American Society of
Mechanical Engineers, New York, NY.

4. Audet, C. and Dennis Jr., J.E., 2000, “A Pattem Search Filter Method for Nonlinear
Programming without Derivatives,” TROO-09, Dept, of Computational & Applied
Mathematics, Rice Univ., Houston, TX.

5. Audet, C. and Dennis Jr., J.E., 2000, “Analysis of Generalized Pattem Searches,”
TROO-07, Dept, of Computational & Applied Mathematics, Rice Univ., Houston, TX.

6. Babu, U., Raja, J., and Hocken, R.J., 1993, “Sampling Methods and Substitute
Geometry Algorithms for Measuring Cylinders in Coordinate Measuring Machines,”
Proceedings o f the Eighth Annual Meeting, American Society for Precision
Engineering, pp. 70-73.

7. Badar, M.A., Raman, S., and Pulat, P.S., 2000, “Search-Based Selection of Sample
Points for Form Error Estimation,” ASME Proceedings o f the ASME Manufacturing
Engineering Division - 2000, R.J. Fumess, ed, MED-Vol. 11, pp. 73-80.

8. Badar, M.A., Raman, S., and Pulat, P.S., 2002, “Intelligent Search-Based Selection of
Sample Points for Straightness and Flatness Estimation,” ASME J. o f Manufacturing
Science and Engineering, accepted.

9. Badiru, K., 1999, “A Tabu-Search-Based Algorithm for Surface Inspection,” MS
Thesis (Advisor: P. Simin Pulat), Univ. o f Oklahoma, Norman, OK.

10. Balasubramanian, N. and Raman, S., 1998, “Modeling Gradual Process Variables in
Path Planning,” Technical Paper - Society of Manufacturing Engineers, MR, Vol.
MR98-17, SME, Dearborn, MI.

11. Carr, K. and Ferreira, P., 1995a, “Verification of Form Tolerances Part I: Basic
Issues, Flamess, and Straightness,” Precision Engineering, Vol. 17, No. 2, pp. 131-
143.

12. Carr, K. and Ferreira, P., 1995b, “Verification of Form Tolerances Part H:
Cylindricity and Straighmess o f a Median Line,” Precision Engineering, Vol. 17, No.
2, pp. 144-156.

13. Caskey, G., Hari, Y., Hocken, R., Machireddy, R., Raja, J., Wilson, R., Zhang, G.,
Chen, K., and Yang, J., 1992, “Sampling Techiiiques for Coordinate Measuring
Machines,” Proceedings o f the 1992 NSF Design and Manufacturing Systems Conf,

108

Atlanta, GA, Jan 8-10, pp. 983-988.

14. Chang, H. and Lin, T.W., 1993, “Evaluation o f Circularity Tolerance Using Monte
Carlo Simulation for Coordinate Measuring Machine,” Int. J. o f Production Research,
Vol. 31, No. 9, pp. 2079-2086.

15. Chen, M.-C. and Tsai, D.-M., 1996, “Simulation Optimization through Direct Search
for Multi-Objective Manufacturing Systems,” Production Planning & Control, Vol.
7, No. 6, pp. 554-565.

16. Cochran, W.G., 1977, Sampling Techniques, 3"̂ ed, John Wiley & Sons, Inc., New
York, NY.

17. Coy, J., 1990, “Sampling Error for Co-ordinate Measurement,” Proceedings o f the
2 ^ Int. Matador Conf, Manchester, UK, pp. 481-489.

18. Damodaran, P., Fernando, S., and Anand, S., 1996, “A Comparative Evaluation of
Algorithms Used for the Determination of Roundness Tolerance,” HE 5'* Industrial
Engineering Research Conf. Proceedings, Minneapolis, May 18-20, pp. 339-344.

19. Damodarasamy, S. and Anand, S., 1999, “Evaluation of Minimum Zone for Flatness
by Normal Plane Method and Simplex Search,” HE Transactions, Vol. 31, No. 7, pp.
617-626.

20. Devor, R.E., Kline, W.A., and Zdeblick, W.J., 1980, “A Mechanistic model for the
Force System in End Milling with Application to Machining AirAame Structures,”
Manufacturing Engineering Transactions, Vol. 8, (8* North American Mfg. Research
Conf. Proceedings, May 18-21), pp. 297-303.

21. Dowling, M.M., GrifBn, P.M., Tsui, K.-L., and Zhou, C., 1995, “A Comparison of
the Orthogonal Least Squares and Minimum Enclosing Zone Methods for Form Error
Estimation,” ASME Manufacturing Review, Vol. 8, No. 2, pp. 120-138.

22. Dowling, M.M., Griffin, P.M., Tsui, K.-L., and Zhou, C., 1997, “Statistical Issues in
Geometric Feature Inspection Using Coordinate Measuring Machines,” ASA &
ASQC Technometrics, Vol. 39, No. 1, pp. 3-17.

23. Drozda, T.J. and Wick, C., 1983, Tool & Manufacturing Engineers Handbook, Vol.l
Machining, 4* edn, SME, Dearborn, MI.

24. Edgeworth, R. and Wilhelm, R.G., 1996, “Uncertainty Management for CMM Probe
Sampling of Complex Surfaces,” ASME Manufacturing Science and Engineering,
MED-Vol. 4, pp. 511-518.

25. Elmaraghy, W.H., Elmaraghy, H.A., and Wu, Z., 1990, “Determination of Actual
Geometric Deviations Using Coordinate Measuring Machine Data,” ASME
Manufacturing Review, Vol. 3, No.l, pp. 32-38.

26. Etesami, F., 1988, “Tolerance Verification through Manufactured Part Modeling,” J.
o f Manufacturing Systems, Vol. 7, No. 3, pp. 223-232.

27. Etesami, F., 1990, “Analysis o f Two-Dimensional Measurement Data for Automated
Inspection,” V! o f Manufacturing Systems, Vol. 9, No. 1, pp. 21-34.

109

28. Fu, H.J., DeVor, R.E., and Kapoor, S.G., 1984, “A Mechanistic Model for the
Prediction o f the Force System in Face Milling Operations,” ASME J. o f Engineering
fo r Industry, Vol. 106, No. 1, pp. 81-88.

29. Fukuda, M. and Shimokohbe, A., 1984, “Algorithms for Form Error Evaluation -
Methods o f the Minimum Zone and the Least Squares,” Proceedings o f the Int. Symp.
On Metrology fo r Quality Control in Production, Tokyo, Japan, pp. 197-202.

30. Glover, F. and Laguna, M., 1993, ‘Tabu Search,” M odem Heuristic Techniques for
Combinatorial Problems, C.R. Reeves (ed.), John Wiley & Sons, Inc., New York,
NY, pp. 70-150.

31. Glover, F. and Laguna, M., 1997, Tabu Search, Kluwer Academic Publishers,
Boston, MA.

32. Glover, F., 1989, ‘Tabu Search - Part I,” ORSA J. on Computing, Vol. 1, No. 3, pp.
190-206.

33. Glover, F., 1990a, “Tabu Search - Part II,” CREA J. on Computing, Vol. 2, No. 1, pp.
4-32.

34. Glover, F., 1990b, ‘Tabu Search: A Tutorial,” /w /e^cej. Vol. 20, No. 4, pp. 74-94.

35. Gu, F., Melkote, S.N., Kapoor, S.G., and DeVor, R.E., 1997, “A Model for the
Prediction of Surface Flatness in Face Milling,” ASME J. o f Manufacturing Science
and Engineering, Vol. 119, Nov., pp. 476-484.

36. Hocken, R.J., Raja, J., and Babu, U., 1993, “Sampling Issues in Coordinate
Metrology,” ASME Manufacturing Review, Vol. 6, No. 4, pp. 282-294.

37. Hopp, T.H., 1993, “Computational Metrology,” ASME Manufacturing Review, Vol.
6, No. 4, pp. 295-304.

38. Huber, P.J., 1996, Robust Statistical Procedures, 2"*' edn, SIAM, Philadelphia, PA.

39. Hulting, F.L., 1992, “Methods for the Analysis of Coordinate Measurement Data,”
Computing Science and Statistics, Vol. 24, pp. 160-169.

40. Hulting, F.L., 1995, “Comment: An Industry View of Coordinate Measurement Data
Analysis,” Statistica Sinica, Vol. 5, pp. 191-204.

41. Hurt, J.J., 1980, “A Comparison of Several Plane Fit Algorithms,” Annals o f the
CIRP, Vol. 29, No. 1, pp. 381-384.

42. Ismail, F., Elbestawi, M.A., Du, R., and Urbasik, K., 1993, “Generation of Milled
Surfaces Including Tool Dynamics and Wear,” ASME J. o f Engineering fo r Industry,
Vol. 115, No. 2, pp. 245-252.

43. Kalpakjian, S., 1995, Manufacturing Engineering and Technology, 3”* edn, Addison-
Wesley, New York, NY.

44. Kanada, T. and Suzuki, S., 1993, “Evaluation of Minimum Zone Flatness by Means
of Nonlinear Optimization Techniques and Its Verification,” Precision Engineering,
Vol. 15, No. 2, pp. 93-99.

110

45. Kim, H.S. and Ehmann, K.F., 1993, “A Cutting Force Model for Face Milling
Operations,” //»/. J. o f Machine Tools & Manufacture, Vol. 33, No. 5, pp. 651-673.

46. Kim, W.-S. and Raman, S., 2000, “On the Selection of Flatness Measurement Points
in Coordinate Measuring Machine Inspection,” Int. J. o f Machine Tools &
Manufacture, Vol. 40, pp. 427-443.

47. Kim, W.-S., 1998, “An Investigation of Sampling Strategies in Flamess Inspection,”
MS Thesis (Advisor Shivakumar Raman), Univ. of Oklahoma, Norman, OK.

48. Kline, W. A., DeVor, R.E., and Shareef, I.A., 1982, “The Prediction of Surface
Accuracy in End Milling,” ASME J. o f Engineering fo r Industry, Vol. 104, No. 3, pp.
272-278.

49. Kolahan, F. and Liang, M., 2000, “Optimization of Hole-Making Operations: a Tabu-
search Approach,” Int. J. o f Machine Tools & Manufacture, Vol. 40, No. 12, pp.
1735-1753.

50. Kunzmann, H. and Waldele, F., 1988, “Performance o f CMMs,” Annals o f the CIRP,
Vol. 37, No. 2, pp. 633-640.

51. Kurfess, T.R. and Banks, D.L., 1995, “Statistical Verification of Conformance to
Geometric Tolerance,” Computer-Aided Design, Vol. 27, No. 5, pp. 353-361.

52. Lee, G., Mou, J., and Shen, Y., 1997, “Sampling Strategy Design for Dimensional
Measurement of Geometric Features Using Coordinate Measuring Machine,” Int. J.
o f Machine Tools & Manufacture, Vol. 37, No. 7, pp. 917-934.

53. Lewis, R.M. and Torczon, V., 1999, ‘Tattem Search Algorithms for Bound
Constrained Minimization,” SIAM J. on Optimization, Vol. 9, No. 4, pp. 1082-1099.

54. Lewis, R.M. and Torczon, V., 2000, “Pattem Search Methods for Linearly
Constrained Minimization,” SIAM J on Optimization, Vol. 10, No. 3, pp. 917-941.

55. McKay, M.D., Beckman, R.J., and Conover, W.J., 1979, “A Comparison of Three
Methods for Selecting Values o f Input Variables in the Analysis of Output fi-om a
Computer Code,” ASA & ASQC Technometrics, Vol. 21, No. 2, pp. 239-245.

56. Menq, C.-H., Yau, H.-T., Lai, G. Y., and Miller, R.A., 1990, “Statistical Evaluation
of Form Tolerances Using Discrete Measurement Data,” ASME Advances in
Integrated Product Design and Manufacturing, P H. Cohen and S.B. Joshi, ed, PED-
Vol. 47, pp. 135-149.

57. Montgomery, D. and AJtintas, Y., 1991, “Mechanism of Cutting Force and Surface
Generation in Dynamic Milling,” ASME J. o f Engineering fo r Industry, Vol. 113, No.
2, pp. 160-168.

58. Montgomery, D C., 1991, Design and Analysis o f Experiments, 3”* edn, John Wiley &
Sons, Inc., New York, NY.

59. Murthy, T.S.R. and Abdin, S.Z., 1980, “Minimum Zone Evaluation of Surfaces,” Int.
J. o f Machine Tool Design & Research, Vol. 20, No. 2, pp. 123-136.

60. Myers, R.H. and Montgomery, D C., 1995, Response Surface Methodology: Process

111

and Product Optimization Using Designed Experiments, John Wiley & Sons, Inc.,
New York, NY.

61. Namboothiri, V.N.N. and Shunmugam, M.S., 1998a, “Form Error Evaluation Using
Li - Approximation,” Computer Methods in Applied Mechanics and Engineering,
Vol. 162, No. 1-4, pp. 133-149.

62. Namboothiri, V.N.N. and Shunmugam, M.S., 1998b, “Function-Oriented Form
Evaluation of Engineering Surfaces,” Precision Engineering, Vol. 22, No. 2, pp. 98-
109.

63. Namboothiri, V.N.N. and Shunmugam, M.S., 1999, “On Determination of Sample
Size in Form Error Evaluation Using Coordinate Metrology,” Int. J. o f Production
Research^ Vol. 37, No. 4, pp. 793-804.

64. Orady, E., Li, S., and Chen, Y., 1996b, “A Fitting Algorithm for Determination of
Minimum Zone Form Tolerances,” SAE Transactions, Vol. 105, Sec. 6, pp. 1502-
1508.

65. Orady, E.A., Li, S., and Chen, Y., 1996a, “Evaluation o f Minimum Zone Straighmess
by Nonlinear Optimization Method,” ASME Manufacturing Science and
Engineering, MED-Vol. 4, pp. 413-423.

66. Pham, T.D. and Karaboga, D., 2000, Intelligent Optimisation Techniques, Springer-
Verlag, London, UK.

67. Prakasvudhisam, C., 2002, “Dimensional Measurement o f Conical Features Using
Coodinate Metrology,” PhD Dissertation (Advisor: Shivakumar Raman), Univ. of
Oklahoma, Norman, OK.

68. Radulescu, R., Kapoor, S.G., and DeVor, R.E., 1997, “An Investigation of Variable
Spindle Speed Face Milling for Tool-Work Structures With Complex Dynamics, Part
2: Physical Explanation,” ASME J. o f Manufacturing Science and Engineering, Vol.
119, No. 3, pp. 273-280.

69. Rayward-Smith, V.J., Osman, I.H., Reeves, C.R., and Smith, G.D., 1996, Modem
Heuristic Search Methods, John Wiley & Sons Ltd, Chichester, UK.

70. Reklaitis, G.V., Ravindran, A., and Ragsdell, K.M., 1983, Engineering Optimization:
Methods and Applications, John Wiley & Sons, Inc., New York, NY.

71. Requicha, A.A.G., 1993, “Mathematical Definition of Tolerance Specifications,”
ASME Manufacturing Review, Vol. 6, No. 4, pp. 269-274.

72. Roy, U. and Xu, Y., 1994, “Form and Orientation Tolerance Analysis for Cylindrical
Surfaces in Computer Aided Inspection,” HE 3'^ Industrial Engineering Research
Conf Proceedings, Atlanta, May 18-19, pp. 46-51.

73. Roy, U. and Zhang, X., 1992, “Establishment o f a Pair o f Concentric Circles with the
Minimum Radial Separation for Assessing Roundness Error,” Computer-Aided
Design, Vol. 24, No. 3, pp. 161-168.

74. Roy, U., 1995, “Computational Methodologies for Evaluating form and Positional

112

Tolerances in a Computer Integrated Manufacturing System,” The Int. J. o f Adv.
Manufacturing Technology, Vol. 10, pp. 110-117.

75. Shao, J. and Tsui, K.-L., 1996, ‘Torm Tolerance Estimation Using Jackknife
Methods,” ASME Manufacturing Science and Engineering, MED-Vol. 4, pp. 433-
445.

76. Shen, Y. and Duffie, N.A., 1995, “An Uncertainty Analysis Method for Coordinate
Referencing in Manufacturing Systems,” ASME J. o f Engineering fo r Industry, Vol.
117, No. 1, pp. 42-48.

77. Shunmugam, M.S., 1986, “On Assessment of Geometric Errors,” Int. J. o f Production
Research^ Vol. 24, No. 2, pp. 413-425.

78. Shunmugam, M.S., 1987a, “Comparison of Linear and Normal Deviations of Forms
of Engineering Surfaces,” Precision Engineering, Vol. 9, No. 2, pp. 96-102.

79. Shunmugam, M.S., 1987b, “New Approach for Evaluating Form Errors of
Engineering Surfaces,” Computer-Aided Design, Vol. 19, No. 7, pp. 368-374.

80. Shunmugam, M.S., 1991a, “Criteria for Computer-Aided Form Evaluation,” ASME
J. o f Engineering fo r Industry, Vol. 113, No. 2, pp. 233-238.

81. Shunmugam, M.S., 1991b, “Establishing Reference Figures for Form Evaluation of
Engineering Surfaces,” / o f Manufacturing Systems, Vol. 10, No. 4, pp. 314-321.

82. Skorin-Kapov, J., 1990, “Tabu Search AppUed to the Quadratic Assignment
Problem,” ORSA J. on Computing, Vol. 2, No. 1, pp. 33-45.

83. Stein, M., 1987, “Large Sample Properties of Simulations Using Latin Hypercube
Sampling,” ASA & ASQC Technometrics, Vol. 29, No. 2, pp. 143-151.

84. Sutherland, J.W. and DeVor, R.E., 1986, “An Improved Method for Cutting Force
and Surface Error Prediction in Flexible End Milling Systems,” ASME J. o f
Engineering fo r Industry, Vol. 108, No. 4, pp. 269-279.

85. Sweet, A.L., Noller, D., and Lee, S.-H., 1985, “Statistical Design for the Location of
Planes and Circles When Using a Probe,” Precision Engineering, Vol. 7, No. 4, pp.
187-194.

86. Torczon, V., 1997, “On the Convergence of Pattern Search Algorithms,” SIAM J. on
Optimization, Vol. 7, No. 1, pp. 1-25.

87. Traband, M.T., Joshi, S., Wysk, R.A., and Cavalier, T.M., 1989, “Evaluation of
Straightness and Flatness Tolerances Using the Minimum Zone,” ASME
Manufacturing Review, Vol. 2, No. 3, pp. 189-195.

88. Wang, Y., 1992, “Minimum Zone Evaluation of Form Tolerances,” ASME
Manufacturing Review, Vol. 5, No. 3, pp. 213-220.

89. Weckenmann, A., Eitzert, H., Garmer, M., and Weber, H., 1995, ‘Timctionality-
Oriented Evaluation and Sampling Strategy in Coordinate Metrology,” Precision
Engineering, Vol. 17, No. 4, pp. 244-252.

113

90. Weckenmann, A., Heinrichowski, M., and Mordhorst, H.-J, 1991, “Design of Gauges
and Multipoint Measuring Systems Using Coordinate-Measuring-Machine Data and
Computer Simulation,” Precision Engineering, Vol. 13, No. 3, pp. 203-207.

91. Woo, T.C. and Liang, R., 1993, “Dimensional Measurement o f Surfaces and Their
Sampling,” Computer-Aided Design, Vol. 25, No. 4, pp. 233-239.

92. Woo, I .e ., Liang, R., and Pollock, S.M., 1993, “Hammersley Sampling for Efficient
Surface Coordinate Measurements,” Proceedings o f the 1993 NSF Design and
Manufacturing Systems Conf, Charlotte, NC, Jan 6-8, pp. 1489-1495.

93. Woo, I .e ., Liang, R., Hsieh, C.C., and Lee, N.K., 1995, “Efficient Sampling for
Surface Measurements,” /. o f Manufacturing Systems, Vol. 14, No. 5, pp. 345-354.

94. Yau, H.-T. and Menq, C.-H., 1992, “An Automated Dimensional Inspection
Environment for Manufactured Parts Using Coordinate Measuring Machines,” Int. J.
o f Production Research, Vol. 30, No. 7, pp. 1517-1536.

95. Yau, H.-T. and Menq, C.-H., 1996, “A Unified Least-Squares Approach to the
Evaluation of Geometric Errors Using Discrete Measurement Data,” Int. J. o f
Machine Tools & Manufacture, Vol. 36, No. 11, pp. 1269-1290.

96. Yau, H.-T., 1998, “Uncertainty Analysis in Geometric Best Fit,” Int. J. o f Machine
Tools & Manufacture, Vol. 38, No. 10-11, pp. 1323-1342.

97. You, S.J. and Ehmann, K.F., 1991, “Synthesis and Generation of Surfaces Milled by
Ball Nose End Mills Under Tertiary Cutter Motion,” ASME J. o f Engineering fo r
Industry, Vol. 113, No. 1, pp. 17-24.

98. Zhang, G.M. and Kapoor, S.G., 1991a, “Dynamic Generation of Machined Surfaces,
Part 1: Description o f a Random Excitation System,” ASME J. o f Engineering fo r
Industry, Vol. 113, No. 2, pp. 137-144.

99. Zhang, G.M. and Kapoor, S.G., 1991b, “Dynamic Generation o f Machined Surfaces,
Part 2: Construction o f Surface Topography,” ASME J. o f Engineering fo r Industry,
Vol. 113, No. 2, pp. 145-153.

100. Zhang, Y.F., Nee, A.Y.C., Fuh, J.Y.H., Neo, K.S., and Loy, H.K., 1996, “A
Neural Network Approach to Determining Optimal Inspection Sampling Size for
CMM,” Computer-Integrated Manufacturing Systems, Vol. 9, No. 3, pp. 161-169.

101. Ehmann, K.F., Kapoor, S.G., DeVor, R.E., and Lazoglu, I., 1997, “Machining
Process Modeling: a Review,” ASME J. o f Manufacturing Science and Engineering,
Vol. 119, pp. 655-663.

102. Tsai, J.-S. and Liao, C.-L., 2000, “Dynamic Finite Element Modeling of Surface
Errors in Peripheral Milling o f Thin-Walled Workpieces,” J. o f the Chinese Society o f
Mechanical Engineers, Vol. 21, No. 3, pp. 265-282.

114

APPENDIX A

POPULATION DATA

A 1 Straightness

A.1.1 End Milling

Table A.1.1.1: Plate #4 (For the population, N= 121, h = -0.001030, zo = -14.84799, h, =

0.005475 inch).

n X z n X z n X z
0 4.0 -14.85459 1 4.05 -14.85511 2 4.1 -14.85474
3 4.15 -14.85458 4 4.2 -14.85446 5 4.25 -14.8544
6 4.3 -14.85416 7 4.35 -14.85468 8 4.4 -14.85376
9 4.45 -14.85455 10 4.5 -14.85415 11 4.55 -14.85374
12 4.6 -14.85363 13 4.65 -14.85358 14 4.7 -14.85376
15 4.75 -14.85404 16 4.8 -14.85352 17 4.85 -14.85417
18 4.9 -14.85422 19 4.95 -14.85383 20 5 -14.85385
21 5.05 -14.85348 22 5.1 -14.8538 23 5.15 -14.85329
24 5.2 -14.85333 25 5.25 -14.85341 26 5.3 -14.8536
27 5.35 -14.85407 28 5.4 -14.85337 29 5.45 -14.85333
30 5.5 -14.85295 31 5.55 -14.85303 32 5.6 -14.85365
33 5.65 -14.85361 34 5.7 -14.85324 35 5.75 -14.85325
36 5.8 -14.85285 37 5.85 -14.85357 38 5.9 -14.85348
39 5.95 -14.85349 40 6 -14.85361 41 6.05 -14.85302
42 6.1 -14.85355 43 6.15 -14.85335 44 6.2 -14.8534
45 6.25 -14.85307 46 6.3 -14.85363 47 6.35 -14.85297
48 6.4 -14.85358 49 6.45 -14.8531 50 6.5 -14.85378
51 6.55 -14.85346 52 6.6 -14.85303 53 6.65 -14.85306
54 6.7 -14.85376 55 6.75 -14.85343 56 6.8 -14.85405
57 6.85 -14.85302 58 6.9 -14.85371 59 6.95 -14.854
60 7 -14.85396 61 7.05 -14.85343 62 7.1 -14.85431
63 7.15 -14.85431 64 7.2 -14.85365 65 7.25 -14.85368
66 7.3 -14.85398 67 7.35 -14.85377 68 7.4 -14.85426
69 7.45 -14.85397 70 7.5 -14.85463 71 7.55 -14.85395
72 7.6 -14.85392 73 7.65 -14.8551 74 7.7 -14.8552
75 7.75 -14.85435 76 7.8 -14.85494 77 7.85 -14.85439
78 7.9 -14.85479 79 7.95 -14.85546 80 8 -14.85552
81 8.05 -14.85496 82 8.1 -14.85526 83 8.15 -14.85504
84 8.2 -14.85554 85 8.25 -14.856 86 8.3 -14.85545
87 8.35 -14.85619 88 8.4 -14.85633 89 8.45 -14.85672
90 8.5 -14.8556 91 8.55 -14.85644 92 8.6 -14.8568
93 8.65 -14.85645 94 8.7 -14.85659 95 8.75 -14.85705

115

96 8.8 -14.85733 97 8.85 -14.85688 98 8.9 -14.85733
99 8.95 -14.85806 100 9 -14.85741 101 9.05 -14.85778
102 9.1 -14.85791 103 9.15 -14.85778 104 9.2 -14.85873
105 9.25 -14.85769 106 9.3 -14.85808 107 9.35 -14.85885
108 9.4 -14.85963 109 9.45 -14.85933 110 9.5 -14.85973
111 9.55 -14.85938 112 9.6 -14.85945 113 9.65 -14.86033
114 9.7 -14.85967 115 9.75 -14.8607 116 9.8 -14.8607
117 9.85 -14.86047 118 9.9 -14.86091 119 9.95 -14.86115
120 10 -14.86174

Table A. 1.1.2: Plate #12 (A = 121,/o = -0.000979, zo = - 14.8273, A, = 0.005333).

n X z n X z n X z
0 4.0 -14.83429 1 4.05 -14.83445 2 4.1 -14.83432
3 4.15 -14.83436 4 4.2 -14.83333 5 4.25 -14.834
6 4.3 -14.83382 7 4.35 -14.83359 8 4.4 -14.83285
9 4.45 -14.83349 10 4.5 -14.83379 11 4.55 -14.83354
12 4.6 -14.83277 13 4.65 -14.83324 14 4.7 -14.83243
15 4.75 -14.83258 16 4.8 -14.83306 17 4.85 -14.8332
18 4.9 -14.8325 19 4.95 -14.83296 20 5 -14.83222
21 5.05 -14.8326 22 5.1 -14.83218 23 5.15 -14.83273
24 5.2 -14.83236 25 5.25 -14.83243 26 5.3 -14.8319
27 5.35 -14.83189 28 5.4 -14.83245 29 5.45 -14.83246
30 5.5 -14.83187 31 5.55 -14.83228 32 5.6 -14.83271
33 5.65 -14.83177 34 5.7 -14.83219 35 5.75 -14.83234
36 5.8 -14.83236 37 5.85 -14.83224 38 5.9 -14.83246
39 5.95 -14.83167 40 6 -14.83232 41 6.05 -14.83255
42 6.1 -14.83226 43 6.15 -14.83197 44 6.2 -14.83193
45 6.25 -14.83173 46 6.3 -14.83195 47 6.35 -14.83194
48 6.4 -14.83247 49 6.45 -14.83237 50 6.5 -14.83189
51 6.55 -14.83209 52 6.6 -14.83224 53 6.65 -14.83199
54 6.7 -14.83258 55 6.75 -14.83263 56 6.8 -14.8326
57 6.85 -14.83272 58 6.9 -14.83204 59 6.95 -14.83283
60 7 -14.83257 61 7.05 -14.83312 62 7.1 -14.83324
63 7.15 -14.83258 64 7.2 -14.83246 65 7.25 -14.83225
66 7.3 -14.83307 67 7.35 -14.83276 68 7.4 -14.83316
69 7.45 -14.83371 70 7.5 -14.83372 71 7.55 -14.83336
72 7.6 -14.83396 73 7.65 -14.83386 74 7.7 -14.83353
75 7.75 -14.83338 76 7.8 -14.83408 77 7.85 -14.83394
78 7.9 -14.83445 79 7.95 -14.83358 80 8 -14.83388
81 8.05 -14.83423 82 8.1 -14.835 83 8.15 -14.83491
84 8.2 -14.835 85 8.25 -14.8347 86 8.3 -14.83494
87 8.35 -14.83551 88 8.4 -14.8348 89 8.45 -14.83526
90 8.5 -14.83557 91 8.55 -14.83613 92 8.6 -14.83552
93 8.65 -14.83516 94 8.7 -14.83533 95 8.75 -14.83609
96 8.8 -14.83634 97 8.85 -14.83621 98 8.9 -14.83604

116

00 00 00 00 00 00 00 '-J ~4 ~4 -4 ~4 ON pN ON On On ON LA LA LA LA LA LA LA 4̂ 4̂ 4̂ 4̂ 4̂is bo s; LA w
LA

NJ s vo bî b\ &LU
LA

bo
LA

LA
LA

k>
LA ̂is bo &LA LU

LA
k) O

LA
kl
LA

O n b: w
LA

O

^ 4̂ I—■
4^ 4^ 4^ 4^ 4k 4k 4k 4k 4k 4k 4k 4k

oo 00 bo bo bo bo bo bo bo bo bo bo bo bo
La LA LA LA LA LA LA LA LA LA LA LA LA LA00 00 ' J ~4 ON ON ON O n ON O n LA LA
O p W W w t o 00 LA 00 N) 4k O 00 00

K> 4^ ON --J W NO O n ~4 NO 00 LA O n

A 4:»̂

-J -J

1—‘ 1—*
4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k
bo 00 bo bo bo bo bo bo bo 00 bo bo bo 00 bo boLA La LA LA LA LA LA LA LA LA LA LA LA LA LA LALA La LA LA LA LA LA LA LA O n O n ON O n O n O n -~4
Ng NP ON ' J LA NO O n 00 w W O - 4 O n --J O
NO 4k ■U W W W O n 00 ON LA I— * NO NO - J

§ iS VO 00
00

00
en 8 ô w

ON
- J S ON LA

00
LA
LA

LA
N) è 6 è e u

'- J
eu eu N)

00
K>
e n 8 NO O n w O

- J 4k

NO 00 00 00 00 00 00 ' J - J - J - J " J O n O n ON O n O n ON o\ en en en en en LA 4k 4k 4k 4k 4k 4k 4k
bo
en

k l Ln
e n

k)
e n

1—• is bo s: LA W
LA

k»S W L)
LA

ON 6 W
LA

bo
e n

kl e n
e n

k)
en LA

bo O n
LA

LA w
LA

N> O
LA

►—» I—• >—•
4k 4^ 4^ 4^ 4^ 4^ 4^ 4^ 4:k 4^ 4^ 4^
bo boLA LA LA LA LA LA LA LA LA LA LA LA LA la LA LA LA LA LA LA LA LA LA en en en en en en en en en en en
\o 00 P 0 0 00 ' j 'J -4 'J ON O n ON LA O n ON LA ON LA LA LA LA LA LA O n en en O n en O n O n -kl Os O nLA 00 N> W LA NO y P OLA - J W NO w W NO O4k LA K>- J Lk» o en N) VO 00 o NO vo00 LA 00 00 LA 4k LA LA W w Lk> 4k NO Lk> ~4 4^ N) 00 00 en e»j eu en 4^ I-—

O vo00 voen s
00
vo

00
ON

00eu 00o -kl -u ON00 & S
LA
NO

LA
O n

LA
W

LA
O 4 k

è
4 k eu00 euen eu

K l
K l
VO

N)
Lk)

wo -J 4 k : : 00 LA

vo o o 00 oo 00 OO oo oo ~-l -kl O n ON ON ON O n ON ON en en en en LA y » LA 4 k 4 k 4 k 4k 4 k

S en O n û. Lu en boen ’' - i Lnen 4^ w
LA

NO
LA

bo O n
LA

LA W
LA

k> S
vo L ien ON i5: W

LA
bo
LA

k) LA
LA

4k k)
LA

1—* I— * >—• I— * 1—•
4k 4k

00 0 0 0 0 bo bo bo 00 bo bo 00 bo 00 boLA LA LA LA LA LA LA LA LA LA LA LA LA la LA00 00 ■kj 00 - J -1 y O n ON O n ON O n O n O n LA LA LA O n LA LA LA LA LA O n LA On O n O n O n O n ON k J
4k N) NO LA 00 P S 4k -kl 4k N) ts) M NO -kl 00 ON ON L»1 LA LA O 00 N) L>1 NI 00 00 O n I— *' J LA Lkl LA On NO - k l K) ■ k j Lk> La 4k O n - 1 K) 4k 4k NO K) 4k K) N) O n 4k NO W 00 ON W

icT
>

w
MO

I
$

II
W

I
00wy \

I

00
LA

S

0

1

H— 1— NO
NI O O O NO
O k J 4k 00 e n N)

NO p NO NO vo NO 00
O bo

LA
LA
LA

4k
K

k—- NO
LA

1J—» 1 1 1 11—k 1 1 1 k—* 1—>
4k 4k 4k 4k
bo bo 00 bo 00 bo 00 00
4k w w w Lkl Lkl Lkl Lkl
O 00 NO -kl 00 -kl O n laK)

S
K>
ON

Lkl
2

to NO
4k

O o o o
00 LA tk) NO O n Lkl o

vo NO NO NO NO p NO

LA
O n h Lkl

LA

1 1 1
►—> 1I—* 1 1 1

k—* k—•
4k 4k

bo bo 00 bo bo 0 0 00
e u w w e u UJ Lkl Lkl
vo NO 00 •-4k j k J On

(g
NO e n-4È

o o
•kl NO

»—> (—•
>—• 1—k o 22NO O n Lkl o -kl

NO NO NO vo NO NO NO

is bo
%

e n Lkl
LA

to o
LA

1 1M"* 1 1 t—à k—*
4k 4k 4^
bo bo 00 bo 00 00 00
4k w w eu Lkl Lkl Lkl
O 00 NO 00 k J O n O n

00
k j

O en LA
00

102 9.1 -14.85967 103 9.15 -14.85973 104 9.2 -14.85979
105 9.25 -14.86012 106 9.3 -14.8598 107 9.35 -14.86039
108 9.4 -14.86033 109 9.45 -14.86085 110 9.5 -14.86039
111 9.55 -14.86088 112 9.6 -14.86113 113 9.65 -14.86116
114 9.7 -14.86108 115 9.75 -14.86153 116 9.8 -14.86153
117 9.85 -14.86219 118 9.9 -14.86146 119 9.95 -14.86196
120 10 -14.86207

Table A. 1.1.4: Plate #2 (N= 121, lo = -0.00116, Zo = -14.64718, ht = 0.005188).

n X z n X z n X z
0 4.0 -14.65411 1 4.05 -14.65425 2 4.1 -14.65396
3 4.15 -14.65415 4 4.2 -14.65453 5 4.25 -14.65381
6 4.3 -14.65411 7 4.35 -14.65371 8 4.4 -14.65398
9 4.45 -14.65405 10 4.5 -14.65376 11 4.55 -14.65388
12 4.6 -14.65397 13 4.65 -14.65338 14 4.7 -14.65413
15 4.75 -14.65388 16 4.8 -14.65348 17 4.85 -14.65325
18 4.9 -14.6538 19 4.95 -14.6533 20 5 -14.65378
21 5.05 -14.65333 22 5.1 -14.65372 23 5.15 -14.65352
24 5.2 -14.65313 25 5.25 -14.65311 26 5.3 -14.6528
27 5.35 -14.65296 28 5.4 -14.65343 29 5.45 -14.65298
30 5.5 -14.65295 31 5.55 -14.65369 32 5.6 -14.65276
33 5.65 -14.65355 34 5.7 -14.65335 35 5.75 -14.65354
36 5.8 -14.65311 37 5.85 -14.65264 38 5.9 -14.65263
39 5.95 -14.65335 40 6 -14.65261 41 6.05 -14.65311
42 6.1 -14.65315 43 6.15 -14.65357 44 6.2 -14.65331
45 6.25 -14.6536 46 6.3 -14.65342 47 6.35 -14.65383
48 6.4 -14.65344 49 6.45 -14.65373 50 6.5 -14.65403
51 6.55 -14.65377 52 6.6 -14.6533 53 6.65 -14.65413
54 6.7 -14.65397 55 6.75 -14.65322 56 6.8 -14.65362
57 6.85 -14.654 58 6.9 -14.65354 59 6.95 -14.6535
60 7 -14.65434 61 7.05 -14.65379 62 7.1 -14.65393
63 7.15 -14.65285 64 7.2 -14.65399 65 7.25 -14.65442
66 7.3 -14.65406 67 7.35 -14.65493 68 7.4 -14.65509
69 7.45 -14.65435 70 7.5 -14.65451 71 7.55 -14.65418
72 7.6 -14.65471 73 7.65 -14.6551 74 7.7 -14.65473
75 7.75 -14.65535 76 7.8 -14.65567 77 7.85 -14.65496
78 7.9 -14.6548 79 7.95 -14.65583 80 8 -14.65599
81 8.05 -14.6557 82 8.1 -14.65524 83 8.15 -14.6562
84 8.2 -14.65584 85 8.25 -14.65609 86 8.3 -14.65571
87 8.35 -14.65626 88 8.4 -14.65681 89 8.45 -14.65689
90 8.5 -14.65627 91 8.55 -14.65691 92 8.6 -14.65736
93 8.65 -14.65759 94 8.7 -14.65705 95 8.75 -14.65818
96 8.8 -14.65783 97 8.85 -14.65796 98 8.9 -14.65815
99 8.95 -14.65787 100 9 -14.65777 101 9.05 -14.65819
102 9.1 -14.65857 103 9.15 -14.65829 104 9.2 -14.65841

118

105 9.25 -14.65911 106 9.3 -14.65964 107 9.35 -14.6589
108 9.4 -14.65935 109 9.45 -14.65984 110 9.5 -14.65989
111 9.55 -14.6599 112 9.6 -14.65984 113 9.65 -14.65997
114 9.7 -14.65987 115 9.75 -14.66017 116 9.8 -14.6609
117 9.85 -14.66117 118 9.9 -14.6605 119 9.95 -14.66055
120 10 -14.66031

A. 1.2 Face Milling

Table A.1.2.1: Plate #3 (A^= 56,/o = -0.000039, zo = -14.15268, hi = 0.00241).

n X z n X z n X z
0 2.00 -14.15425 1 2.05 -14.15435 2 2.10 -14.1543
3 2.15 -14.15409 4 2.20 -14.15403 5 2.25 -14.15413
6 2.30 -14.154 7 3.40 -14.15262 8 3.45 -14.15272
9 3.50 -14.15265 10 3.55 -14.15255 11 3.60 -14.15265
12 3.65 -14.15257 13 3.70 -14.1525 14 3.75 -14.15248
15 3.80 -14.15243 16 3.85 -14.15235 17 3.90 -14.15233
18 3.95 -14.15224 19 4.00 -14.15223 20 4.05 -14.15234
21 4.10 -14.15228 22 4.15 -14.1523 23 4.20 -14.15219
24 4.25 -14.15207 25 4.30 -14.15209 26 4.35 -14.15203
27 4.40 -14.15211 28 5.60 -14.15216 29 5.65 -14.15224
30 5.70 -14.15218 31 5.75 -14.15214 32 5.80 -14.15218
33 5.85 -14.15232 34 5.90 -14.15232 35 5.95 -14.15231
36 6.00 -14.15231 37 6.05 -14.15239 38 6.10 -14.15243
39 6.15 -14.15234 40 6.20 -14.15256 41 6.25 -14.15234
42 6.30 -14.1526 43 6.35 -14.15266 44 6.40 -14.15258
45 6.45 -14.15257 46 6.50 -14.15292 47 6.55 -14.15296
48 6.60 -14.15287 49 7.70 -14.15428 50 7.75 -14.15427
51 7.80 -14.15433 52 7.85 -14.1544 53 7.90 -14.15437
54 7.95 -14.15454 55 8.00 -14.15457

Table A. 1.2.2: Plate #1 (N= 56, lo = 0.000041, zo = -14.15048, A,== 0.001404).

n X z n X z n X z
0 2.00 -14.15101 1 2.05 -14.151 2 2.10 -14.15105
3 2.15 -14.15095 4 2.20 -14.15076 5 2.25 -14.1509
6 2.30 -14.15101 7 3.40 -14.15042 8 3.45 -14.15036
9 3.50 -14.15033 10 3.55 -14.15025 11 3.60 -14.1503
12 3.65 -14.15033 13 3.70 -14.15019 14 3.75 -14.15013
15 3.80 -14.1501 16 3.85 -14.15013 17 3.90 -14.15033
18 3.95 -14.15011 19 4.00 -14.15016 20 4.05 -14.15006
21 4.10 -14.15009 22 4.15 -14.15012 23 4.20 -14.15028
24 4.25 -14.15006 25 4.30 -14.15001 26 4.35 -14.15002
27 4.40 -14.14999 28 5.60 -14.15002 29 5.65 -14.1499

119

30 5.70 -14.1499 31 5.75 -14.14978 32 5.80 -14.14988
33 5.85 -14.14973 34 5.90 -14.14995 35 5.95 -14.15015
36 6.00 -14.14988 37 6.05 -14.14972 38 6.10 -14.15012
39 6.15 -14.1498 40 6.20 -14.15004 41 6.25 -14.14988
42 6.30 -14.14993 43 6.35 -14.14994 44 6.40 -14.1499
45 6.45 -14.15013 46 6.50 -14.14996 47 6.55 -14.15
48 6.60 -14.15007 49 7.70 -14.15089 50 7.75 -14.15082
51 7.80 -14.15105 52 7.85 -14.15105 53 7.90 -14.15075
54 7.95 -14.15086 55 8.00 -14.15095

Table A.1.2.3: Plate #11 (N = 56, lo = -0.000041, Zo = -14.14394, h, = 0.002382).

n X z n X z n X z
0 2.00 -14.14548 1 2.05 -14.14553 2 2.10 -14.14554
3 2.15 -14.14548 4 2.20 -14.14529 5 2.25 -14.14518
6 2.30 -14.14524 7 3.40 -14.14415 8 3.45 -14.14398
9 3.50 -14.14399 10 3.55 -14.14421 11 3.60 -14.14367
12 3.65 -14.14369 13 3.70 -14.1437 14 3.75 -14.14354
15 3.80 -14.14353 16 3.85 -14.1435 17 3.90 -14.14362
18 3.95 -14.14354 19 4.00 -14.14366 20 4.05 -14.14341
21 4.10 -14.14341 22 4.15 -14.14331 23 4.20 -14.14341
24 4.25 -14.14336 25 4.30 -14.14337 26 4.35 -14.14325
27 4.40 -14.14344 28 5.60 -14.1436 29 5.65 -14.14348
30 5.70 -14.14357 31 5.75 -14.14348 32 5.80 -14.14362
33 5.85 -14.14353 34 5.90 -14.14363 35 5.95 -14.14368
36 6.00 -14.14364 37 6.05 -14.14372 38 6.10 -14.14372
39 6.15 -14.14372 40 6.20 -14.14387 41 6.25 -14.14393
42 6.30 -14.14393 43 6.35 -14.14389 44 6.40 -14.14412
45 6.45 -14.1442 46 6.50 -14.14414 47 6.55 -14.14428
48 6.60 -14.14418 49 7.70 -14.14539 50 7.75 -14.14536
51 7.80 -14.14536 52 7.85 -14.14555 53 7.90 -14.14557
54 7.95 -14.14562 55 8.00 -14.14568

Table A. 1.2.4: Plate #7 (N= 56, lo = -0.000022, zo = -14.1446, A, = 0.001418).

n X z n X z n X z
0 2.00 -14.14549 1 2.05 -14.14549 2 2.10 -14.14531
3 2.15 -14.14552 4 2.20 -14.14528 5 2.25 -14.14531
6 2.30 -14.14537 7 3.40 -14.14467 8 3.45 -14.14469
9 3.50 -14.14457 10 3.55 -14.14443 11 3.60 -14.14451
12 3.65 -14.1446 13 3.70 -14.1446 14 3.75 -14.14441
15 3.80 -14.14428 16 3.85 -14.14438 17 3.90 -14.14439
18 3.95 -14.14438 19 4.00 -14.14432 20 4.05 -14.14422
21 4.10 -14.14423 22 4.15 -14.14431 23 4.20 -14.14435
24 4.25 -14.14427 25 4.30 -14.14431 26 4.35 -14.14415

120

27 4.40 -14.14437 28 5.60 -14.1444 29 5.65 -14.1445
30 5.70 -14.14439 31 5.75 -14.14443 32 5.80 -14.1446
33 5.85 -14.14446 34 5.90 -14.14452 35 5.95 -14.14448
36 6.00 -14.14451 37 6.05 -14.14446 38 6.10 -14.14467
39 6.15 -14.14456 40 6.20 -14.14466 41 6.25 -14.14471
42 6.30 -14.14461 43 6.35 -14.14453 44 6.40 -14.14466
45 6.45 -14.14467 46 6.50 -14.1447 47 6.55 -14.14474
48 6.60 -14.14462 49 7.70 -14.14549 50 7.75 -14.14533
51 7.80 -14.1453 52 7.85 -14.14544 53 7.90 -14.14531
54 7.95 -14.14548 55 8.00 -14.14549

A.2 Flatness

A.2.1 End Milling

Table A.2.1.1: Plate #10 (For the population, A^= 651, lo = -0.001607, mo = 0.001907, zo

= -14.85619, h, = 0.007936 inch).

y n X z X z X z
5.0 0 5.0 -14.85583 5.1 -14.85683 5.2 -14.85633

3 5.3 -14.85633 5.4 -14.85633 5.5 -14.85633
6 5.6 -14.85558 5.7 -14.85558 5.8 -14.85488
9 5.9 -14.8561 6 -14.8561 6.1 -14.8561
12 6.2 -14.8561 6.3 -14.8591 6.4 -14.86051
15 6.5 -14.8615 6.6 -14.86145 6.7 -14.85607
18 6.8 -14.85688 6.9 -14.85679 7 -14.85694
21 7.1 -14.85706 7.2 -14.86021 7.3 -14.86046
24 7.4 -14.86046 7.5 -14.86074 7.6 -14.86074
27 7.7 -14.86014 7.8 -14.86034 7.9 -14.86123
30 8 -14.86234

5.1 31 5 -14.85484 5.1 -14.85771 5.2 -14.85722
34 5.3 -14.85748 5.4 -14.85761 5.5 -14.8548
37 5.6 -14.8548 5.7 -14.85767 5.8 -14.85736
40 5.9 -14.85643 6 -14.85534 6.1 -14.85726
43 6.2 -14.85726 6.3 -14.85515 6.4 -14.85805
46 6.5 -14.85818 6.6 -14.85818 6.7 -14.85716
49 6.8 -14.85827 6.9 -14.85888 7 -14.85931
52 7.1 -14.85931 7.2 -14.85955 7.3 -14.85955
55 7.4 -14.85761 7.5 -14.85769 7.6 -14.8586
58 7.7 -14.86047 7.8 -14.85807 7.9 -14.86176
61 8 -14.86074

5.2 62 5 -14.85422 5.1 -14.85584 5.2 -14.85584
65 5.3 -14.8528 5.4 -14.85405 5.5 -14.85458
68 5.6 -14.85463 5.7 -14.85463 5.8 -14.85463
71 5.9 -14.85463 6 -14.85463 6.1 -14.85626

121

74 6.2 -14.85309 6.3 -14.85313 6.4 -14.85495
77 6.5 -14.85436 6.6 -14.85414 6.7 -14.8569
80 6.8 -14.8569 6.9 -14.85621 7 -14.85494
83 7.1 -14.85494 7.2 -14.85494 7.3 -14.85494
86 7.4 -14.85555 7.5 -14.85555 7.6 -14.85864
89 7.7 -14.85643 7.8 -14.85819 7.9 -14.85819
92 8 -14.85736

5.3 93 5 -14.85484 5.1 -14.85257 5.2 -14.85257
96 5.3 -14.85257 5.4 -14.85282 5.5 -14.85465
99 5.6 -14.85475 5.7 -14.85441 5.8 -14.85441
102 5.9 -14.85304 6 -14.85468 6.1 -14.85242
105 6.2 -14.85267 6.3 -14.85267 6.4 -14.853
108 6.5 -14.853 6.6 -14.85551 6.7 -14.85551
111 6.8 -14.85563 6.9 -14.85563 7 -14.85642
114 7.1 -14.85623 7.2 -14.85623 7.3 -14.85726
117 7.4 -14.85743 7.5 -14.85743 7.6 -14.85649
120 7.7 -14.85617 7.8 -14.85821 7.9 -14.85736
123 8 -14.85869

5.4 124 5 -14.85527 5.1 -14.85517 5.2 -14.85498
127 5.3 -14.85498 5.4 -14.85293 5.5 -14.85511
130 5.6 -14.85298 5.7 -14.85481 5.8 -14.85481
133 5.9 -14.85297 6 -14.8529 6.1 -14.85522
136 6.2 -14.85522 6.3 -14.85542 6.4 -14.85542
139 6.5 -14.8537 6.6 -14.8537 6.7 -14.8537
142 6.8 -14.85602 6.9 -14.85399 7 -14.85674
145 7.1 -14.85726 7.2 -14.85726 7.3 -14.855
148 7.4 -14.855 7.5 -14.8581 7.6 -14.8581
151 7.7 -14.85887 7.8 -14.85889 7.9 -14.8593
154 8 -14.85774

5.5 155 5 -14.85292 5.1 -14.85345 5.2 -14.85342
158 5.3 -14.85352 5.4 -14.85462 5.5 -14.85315
161 5.6 -14.85481 5.7 -14.85481 5.8 -14.85481
164 5.9 -14.85481 6 -14.8556 6.1 -14.8556
167 6.2 -14.85585 6.3 -14.85585 6.4 -14.85555
170 6.5 -14.85576 6.6 -14.85576 6.7 -14.85672
173 6.8 -14.85452 6.9 -14.85449 7 -14.85449
176 7.1 -14.85761 7.2 -14.8577 7.3 -14.8582
179 7.4 -14.85546 7.5 -14.85546 7.6 -14.85915
182 7.7 -14.85915 7.8 -14.8596 7.9 -14.85697
185 8 -14.85795

5.6 186 5 -14.85342 5.1 -14.85342 5.2 -14.8551
189 5.3 -14.8551 5.4 -14.85537 5.5 -14.85332
192 5.6 -14.85332 5.7 -14.85332 5.8 -14.85332
195 5.9 -14.85332 6 -14.85383 6.1 -14.85383
198 6.2 -14.85341 6.3 -14.85341 6.4 -14.85373
201 6.5 -14.85373 6.6 -14.85373 6.7 -14.85663

122

204 6.8 -14.85645 6.9 -14.85645 7 -14.85549
207 7.1 -14.85549 7.2 -14.85549 7.3 -14.85549
210 7.4 -14.85797 7.5 -14.85832 7.6 -14.85832
213 7.7 -14.85882 7.8 -14.85673 7.9 -14.85966
216 8 -14.85794

5.7 217 5 -14.85531 5.1 -14.85374 5.2 -14.85291
220 5.3 -14.85301 5.4 -14.85541 5.5 -14.85541
223 5.6 -14.85541 5.7 -14.85541 5.8 -14.85284
226 5.9 -14.85353 6 -14.85572 6.1 -14.85572
229 6.2 -14.85539 6.3 -14.85568 6.4 -14.85365
232 6.5 -14.85365 6.6 -14.85365 6.7 -14.85365
235 6.8 -14.8568 6.9 -14.8568 7 -14.85751
238 7.1 -14.85719 7.2 -14.85741 7.3 -14.85741
241 7.4 -14.85775 7.5 -14.85797 7.6 -14.85636
244 7.7 -14.85683 7.8 -14.8592 7.9 -14.85768
247 8 -14.85953

5.8 248 5 -14.85522 5.1 -14.85522 5.2 -14.85522
251 5.3 -14.85523 5.4 -14.85542 5.5 -14.85301
254 5.6 -14.85466 5.7 -14.85509 5.8 -14.85318
257 5.9 -14.85318 6 -14.8531 6.1 -14.8531
260 6.2 -14.85299 6.3 -14.85299 6.4 -14.85586
263 6.5 -14.85586 6.6 -14.85382 6.7 -14.85657
266 6.8 -14.85427 6.9 -14.85444 7 -14.85729
269 7.1 -14.85524 7.2 -14.85524 7.3 -14.85524
272 7.4 -14.85632 7.5 -14.85632 7.6 -14.85795
275 7.7 -14.8589 7.8 -14.8589 7.9 -14.85964
278 8 -14.85737

5.9 279 5 -14.85354 5.1 -14.85292 5.2 -14.8533
282 5.3 -14.85532 5.4 -14.85307 5.5 -14.85539
285 5.6 -14.85558 5.7 -14.85558 5.8 -14.85572
288 5.9 -14.85555 6 -14.85555 6.1 -14.85363
291 6.2 -14.85557 6.3 -14.85587 6.4 -14.85587
294 6.5 -14.85547 6.6 -14.85547 6.7 -14.8568
297 6.8 -14.8568 6.9 -14.85677 7 -14.85677
300 7.1 -14.85677 7.2 -14.85677 7.3 -14.85595
303 7.4 -14.85595 7.5 -14.85816 7.6 -14.85816
306 7.7 -14.85816 7.8 -14.85816 7.9 -14.85748
309 8 -14.85772

6 310 5 -14.85373 5.1 -14.85373 5.2 -14.85373
313 5.3 -14.85373 5.4 -14.85599 5.5 -14.854
316 5.6 -14.85582 5.7 -14.85582 5.8 -14.85563
319 5.9 -14.85539 6 -14.85646 6.1 -14.85646
322 6.2 -14.85646 6.3 -14.85614 6.4 -14.85614
325 6.5 -14.85461 6.6 -14.85461 6.7 -14.85461
328 6.8 -14.85461 6.9 -14.85765 7 -14.85765
331 7.1 -14.85626 7.2 -14.85775 7.3 -14.85755

123

334 7.4 -14.85851 7.5 -14.85851 7.6 -14.85898
337 7.7 -14.85898 7.8 -14.85954 7.9 -14.85834
340 8 -14.86018

6.1 341 5 -14.85418 5.1 -14.8551 5.2 -14.8554
344 5.3 -14.8554 5.4 -14.8536 5.5 -14.85487
347 5.6 -14.85344 5.7 -14.85344 5.8 -14.85344
350 5.9 -14.85525 6 -14.85551 6.1 -14.85551
353 6.2 -14.85535 6.3 -14.85385 6.4 -14.85435
356 6.5 -14.85367 6.6 -14.85367 6.7 -14.85367
359 6.8 -14.85577 6.9 -14.85577 7 -14.85738
362 7.1 -14.85591 7.2 -14.85591 7.3 -14.85796
365 7.4 -14.85796 7.5 -14.85796 7.6 -14.85732
368 7.7 -14.85965 7.8 -14.85996 7.9 -14.85787
371 8 -14.85787

6.2 372 5 -14.85314 5.1 -14.85332 5.2 -14.85505
375 5.3 -14.85505 5.4 -14.85314 5.5 -14.85314
378 5.6 -14.8549 5.7 -14.85324 5.8 -14.85512
381 5.9 -14.85512 6 -14.85558 6.1 -14.85332
384 6.2 -14.85565 6.3 -14.85565 6.4 -14.85383
387 6.5 -14.85355 6.6 -14.85641 6.7 -14.85666
390 6.8 -14.85695 6.9 -14.85695 7 -14.85695
393 7.1 -14.85695 7.2 -14.85581 7.3 -14.85807
396 7.4 -14.85807 7.5 -14.85837 7.6 -14.85853
399 7.7 -14.85903 7.8 -14.85931 7.9 -14.86006
402 8 -14.85828

6.3 403 5 -14.853 5.1 -14.85346 5.2 -14.85277
406 5.3 -14.85277 5.4 -14.85277 5.5 -14.85277
409 5.6 -14.8542 5.7 -14.85301 5.8 -14.85301
412 5.9 -14.85301 6 -14.85473 6.1 -14.85485
415 6.2 -14.85485 6.3 -14.85509 6.4 -14.85509
418 6.5 -14.85383 6.6 -14.85609 6.7 -14.8544
421 6.8 -14.8544 6.9 -14.85478 7 -14.85478
424 7.1 -14.85712 7.2 -14.85712 7.3 -14.85764
427 7.4 -14.85764 7.5 -14.85732 7.6 -14.85732
430 7.7 -14.85721 7.8 -14.859 7.9 -14.85772
433 8 -14.85952

6.4 434 5 -14.85263 5.1 -14.85236 5.2 -14.85489
437 5.3 -14.85463 5.4 -14.85463 5.5 -14.85463
440 5.6 -14.85416 5.7 -14.85416 5.8 -14.85472
443 5.9 -14.85472 6 -14.85276 6.1 -14.85276
446 6.2 -14.85276 6.3 -14.85276 6.4 -14.85353
449 6.5 -14.85583 6.6 -14.85509 6.7 -14.85344
452 6.8 -14.85604 6.9 -14.85626 7 -14.85618
455 7.1 -14.85618 7.2 -14.85485 7.3 -14.85485
458 7.4 -14.85721 7.5 -14.85573 7.6 -14.85835
461 7.7 -14.85835 7.8 -14.85884 7.9 -14.85747

124

464 8 -14.85747
6.5 465 5 -14.85226 5.1 -14.85435 5.2 -14.85225

468 5.3 -14.85177 5.4 -14.85429 5.5 -14.85429
471 5.6 -14.8522 5.7 -14.85209 5.8 -14.85209
474 5.9 -14.85279 6 -14.85279 6.1 -14.85459
477 6.2 -14.85459 6.3 -14.85459 6.4 -14.85455
480 6.5 -14.85455 6.6 -14.85294 6.7 -14.85389
483 6.8 -14.85389 6.9 -14.85389 7 -14.85426
486 7.1 -14.85426 7.2 -14.85716 7.3 -14.85716
489 7.4 -14.85721 7.5 -14.85732 7.6 -14.85732
492 7.7 -14.85732 7.8 -14.85669 7.9 -14.85669
495 8 -14.85884

6.6 496 5 -14.8514 5.1 -14.8514 5.2 -14.85177
499 5.3 -14.85371 5.4 -14.85371 5.5 -14.85386
502 5.6 -14.85193 5.7 -14.85193 5.8 -14.85395
505 5.9 -14.85395 6 -14.85447 6.1 -14.85447
508 6.2 -14.85199 6.3 -14.85427 6.4 -14.8531
511 6.5 -14.8531 6.6 -14.85491 6.7 -14.85491
514 6.8 -14.85491 6.9 -14.85491 7 -14.85545
517 7.1 -14.85545 7.2 -14.85545 7.3 -14.85464
520 7.4 -14.85481 7.5 -14.85682 7.6 -14.85657
523 7.7 -14.85788 7.8 -14.85833 7.9 -14.85586
526 8 -14.85586

6.7 527 5 -14.85136 5.1 -14.85126 5.2 -14.85099
530 5.3 -14.85099 5.4 -14.85359 5.5 -14.85359
533 5.6 -14.85286 5.7 -14.85286 5.8 -14.85286
536 5.9 -14.85286 6 -14.85328 6.1 -14.85336
539 6.2 -14.85391 6.3 -14.85216 6.4 -14.852
542 6.5 -14.85446 6.6 -14.85446 6.7 -14.85446
545 6.8 -14.8552 6.9 -14.8552 7 -14.85498
548 7.1 -14.85498 7.2 -14.85407 7.3 -14.85565
551 7.4 -14.85565 7.5 -14.8549 7.6 -14.85679
554 7.7 -14.85679 7.8 -14.85821 7.9 -14.85586
557 8 -14.85624

6.8 558 5 -14.8529 5.1 -14.8529 5.2 -14.85291
561 5.3 -14.85233 5.4 -14.85233 5.5 -14.85124
564 5.6 -14.85091 5.7 -14.85264 5.8 -14.85264
567 5.9 -14.85359 6 -14.85359 6.1 -14.85359
570 6.2 -14.85359 6.3 -14.85388 6.4 -14.85388
573 6.5 -14.85335 6.6 -14.85245 6.7 -14.85245
576 6.8 -14.85245 6.9 -14.85471 7 -14.85471
579 7.1 -14.85501 7.2 -14.8553 7.3 -14.85384
582 7.4 -14.85608 7.5 -14.85449 7.6 -14.85449
585 7.7 -14.85661 7.8 -14.85506 7.9 -14.85677
588 8 -14.8583

6.9 589 5 -14.85189 5.1 -14.8496 5.2 -14.85211

125

592 5.3 -14.85196 5.4 -14.84949 5.5 -14.84949
595 5.6 -14.84979 5.7 -14.85229 5.8 -14.84934
598 5.9 -14.84991 6 -14.85032 6.1 -14.85228
601 6.2 -14.85042 6.3 -14.85042 6.4 -14.85036
604 6.5 -14.85036 6.6 -14.85173 6.7 -14.85173
607 6.8 -14.85152 6.9 -14.85152 7 -14.85208
610 7.1 -14.85234 7.2 -14.85451 7.3 -14.85405
613 7.4 -14.85253 7.5 -14.85253 7.6 -14.85601
616 7.7 -14.85296 7.8 -14.85468 7.9 -14.85407
619 8 -14.85407

7 620 5 -14.84942 5.1 -14.84965 5.2 -14.84945
623 5.3 -14.85102 5.4 -14.85144 5.5 -14.85103
626 5.6 -14.85149 5.7 -14.85167 5.8 -14.8497
629 5.9 -14.85167 6 -14.85041 6.1 -14.85037
632 6.2 -14.8515 6.3 -14.85252 6.4 -14.85234
635 6.5 -14.85025 6.6 -14.85032 6.7 -14.8537
638 6.8 -14.8537 6.9 -14.85137 7 -14.85307
641 7.1 -14.85141 7.2 -14.85206 7.3 -14.8541
644 7.4 -14.85393 7.5 -14.85398 7.6 -14.85235
647 7.7 -14.85566 7.8 -14.85566 7.9 -14.85593
650 8 -14.85408

Table A.2.1.2: Plate #5 (N = 651, lo = -0.001266, ma = 0.002185, zq = -14.86072, h, =

0.005959).

X z X z X z X z
y = 5.0
5.0 -14.85722 5.1 -14.85807 5.2 -14.85718 5.3 -14.85781
5.4 -14.85853 5.5 -14.85736 5.6 -14.8585 5.7 -14.85892
5.8 -14.85653 5.9 -14.85653 6 -14.85653 6.1 -14.85734
6.2 -14.85745 6.3 -14.85808 6.4 -14.8585 6.5 -14.85881
6.6 -14.85881 6.7 -14.86032 6.8 -14.86032 6.9 -14.86041
7 -14.85897 7.1 -14.85897 7.2 -14.86038 7.3 -14.8595
7.4 -14.85952 7.5 -14.86206 7.6 -14.86191 7.7 -14.85953
7.8 -14.86252 7.9 -14.86151 8 -14.86218
)/ = 5.1
5 -14.85535 5.1 -14.85752 5.2 -14.85621 5.3 -14.85671
5.4 -14.85721 5.5 -14.85541 5.6 -14.85751 5.7 -14.85577
5.8 -14.85667 5.9 -14.85667 6 -14.85564 6.1 -14.85564
6.2 -14.85734 6.3 -14.85761 6.4 -14.85812 6.5 -14.85812
6.6 -14.85828 6.7 -14.85829 6.8 -14.85829 6.9 -14.85835
7 -14.85737 7.1 -14.85737 7.2 -14.85764 7.3 -14.85764
7.4 -14.85939 7.5 -14.86001 7.6 -14.86009 7.7 -14.85854
7.8 -14.86184 7.9 -14.85952 8 -14.86014
y = 5.2

126

5 -14.85466
5.4 -14.85581

5.1
5.5

-14.85567
-14.85441

5.2
5.6

-14.85438
-14.85469

5.3
5.7

-14.85677
-14.85668

5.8 -14.85668 5.9 -14.85668 6 -14.85668 6.1 -14.85668
6.2 -14.85665 6.3 -14.85665 6.4 -14.85482 6.5 -14.85549
6.6 -14.85779 6.7 -14.85487 6.8 -14.85487 6.9 -14.85738
7 -14.85613 7.1 -14.85579 7.2 -14.85638 7.3 -14.85638
7.4 -14.85651 7.5 -14.85833 7.6 -14.85858 7.7 -14.8592
7.8 -14.85967 7.9 -14.85907 8 -14.85958
_y = 5.3
5 -14.85447 5.1 -14.85454 5.2 -14.85454 5.3 -14.85454
5.4 -14.85426 5.5 -14.85447 5.6 -14.85591 5.7 -14.85591
5.8 -14.8547 5.9 -14.8547 6 -14.85464 6.1 -14.85464
6.2 -14.85443 6.3 -14.85443 6.4 -14.857 6.5 -14.8571
6.6 -14.85684 6.7 -14.8548 6.8 -14.85739 6.9 -14.85596
7 -14.85736 7.1 -14.85655 7.2 -14.85574 7.3 -14.85801
7.4 -14.8585 7.5 -14.85738 7.6 -14.85738 7.7 -14.85722
7.8 -14.858 7.9 -14.8586 8 -14.85797
y = 5.4
5 -14.85603 5.1 -14.85468 5.2 -14.85468 5.3 -14.85456
5.4 -14.85387 5.5 -14.85664 5.6 -14.85641 5.7 -14.85438
5.8 -14.85438 5.9 -14.85658 6 -14.85658 6.1 -14.85658
6.2 -14.85479 6.3 -14.85479 6.4 -14.85638 6.5 -14.85584
6.6 -14.85584 6.7 -14.85572 6.8 -14.85572 6.9 -14.85572
7 -14.85655 7.1 -14.85829 7.2 -14.85616 7.3 -14.85628
7.4 -14.85742 7.5 -14.85742 7.6 -14.85775 7.7 -14.85972
7.8 -14.85851 7.9 -14.85851 8 -14.85841
y = 5.5
5 -14.85468 5.1 -14.8565 5.2 -14.8565 5.3 -14.85635
5.4 -14.85487 5.5 -14.85487 5.6 -14.85475 5.7 -14.85475
5.8 -14.85475 5.9 -14.85475 6 -14.85475 6.1 -14.85475
6.2 -14.85475 6.3 -14.85559 6.4 -14.85559 6.5 -14.85546
6.6 -14.85546 6.7 -14.85725 6.8 -14.85725 6.9 -14.85725
7 -14.85725 7.1 -14.85725 7.2 -14.85868 7.3 -14.85868
7.4 -14.85715 7.5 -14.85958 7.6 -14.85958 7.7 -14.8582
7.8 -14.85853 7.9 -14.85854 8 -14.85854
y = 5.6
5 -14.85459 5.1 -14.85487 5.2 -14.85478 5.3 -14.85489
5.4 -14.855 5.5 -14.855 5.6 -14.85504 5.7 -14.85504
5.8 -14.85638 5.9 -14.85638 6 -14.85638 6.1 -14.85521
6.2 -14.8556 6.3 -14.85555 6.4 -14.85555 6.5 -14.85762
6.6 -14.85762 6.7 -14.85638 6.8 -14.85638 6.9 -14.85656
7 -14.85656 7.1 -14.85696 7.2 -14.85696 7.3 -14.85705
7.4 -14.85705 7.5 -14.85705 7.6 -14.85705 7.7 -14.85839
7.8 -14.85839 7.9 -14.85966 8 -14.8592
y = 5.1
5 -14.85478 5.1 -14.85478 5.2 -14.85478 5.3 -14.85605

127

5.4 -14.85487 5.5 -14.85487 5.6 -14.85475 5.7 -14.85665
5.8 -14.85636 5.9 -14.85636 6 -14.85539 6 .1 -14.85539
6.2 -14.85521 6.3 -14.8558 6.4 -14.85701 6.5 -14.85706
6 . 6 -14.85594 6.7 -14.85594 6 . 8 -14.85825 6.9 -14.85825
7 -14.85821 7.1 -14.85666 7.2 -14.85752 7.3 -14.85752
7.4 -14.85821 7.5 -14.85778 7.6 -14.85778 7.7 -14.85827
7.8 -14.85827 7.9 -14.86033 8 -14.85819
>> = 5.8
5 -14.85487 5.1 -14.856 5.2 -14.85494 5.3 -14.8548
5.4 -14.85664 5.5 -14.85664 5.6 -14.85452 5.7 -14.85636
5.8 -14.85474 5.9 -14.85474 6 -14.85474 6 .1 -14.85474
6.2 -14.8558 6.3 -14.85558 6.4 -14.85562 6.5 -14.85562
6 . 6 -14.85577 6.7 -14.85598 6 . 8 -14.85598 6.9 -14.85766
7 -14.85649 7.1 -14.85649 7.2 -14.85841 7.3 -14.85841
7.4 -14.85712 7.5 -14.85876 7.6 -14.85876 7.7 -14.85876
7.8 -14.85876 7.9 -14.85847 8 -14.85847
>> = 5.9
5 -14.85499 5.1 -14.85487 5.2 -14.85487 5.3 -14.8562
5.4 -14.85706 5.5 -14.85706 5.6 -14.85706 5.7 -14.85525
5.8 -14.85525 5.9 -14.85488 6 -14.85669 6 .1 -14.85669
6.2 -14.85554 6.3 -14.85751 6.4 -14.85751 6.5 -14.85513
6 . 6 -14.85513 6.7 -14.85794 6 . 8 -14.85613 6.9 -14.8561
7 -14.85714 7.1 -14.85714 7.2 -14.85641 7.3 -14.85641
7.4 -14.8575 7.5 -14.85703 7.6 -14.85809 7.7 -14.85786
7.8 -14.85819 7.9 -14.85819 8 -14.85809
>> = 6
5 -14.85472 5.1 -14.85474 5.2 -14.85474 5.3 -14.85467
5.4 -14.85526 5.5 -14.85567 5.6 -14.85559 5.7 -14.85686
5.8 -14.85686 5.9 -14.85694 6 -14.85694 6 .1 -14.85554
6.2 -14.85554 6.3 -14.85578 6.4 -14.85578 6.5 -14.85731
6 . 6 -14.85731 6.7 -14.85581 6 . 8 -14.85606 6.9 -14.85804
7 -14.85804 7.1 -14.85679 7.2 -14.85846 7.3 -14.85846
7.4 -14.85712 7.5 -14.85753 7.6 -14.85931 7.7 -14.86022
7.8 -14.86022 7.9 -14.85815 8 -14.85913
>/ = 6 .1

5 -14.85494 5.1 -14.85487 5.2 -14.85573 5.3 -14.85573
5.4 -14.85567 5.5 -14.85567 5.6 -14.85591 5.7 -14.85591
5.8 -14.85551 5.9 -14.85551 6 -14.85441 6 .1 -14.85441
6.2 -14.85441 6.3 -14.85441 6.4 -14.85441 6.5 -14.85441
6 . 6 -14.85581 6.7 -14.85684 6 . 8 -14.85684 6.9 -14.85778
7 -14.85778 7.1 -14.85684 7.2 -14.85684 7.3 -14.85801
7.4 -14.85801 7.5 -14.85785 7.6 -14.85785 7.7 -14.85887
7.8 -14.85887 7.9 -14.86024 8 -14.85851
>> = 6 . 2

5 -14.85387 5.1 -14.85519 5.2 -14.85437 5.3 -14.85437
5.4 -14.8547 5.5 -14.8547 5.6 -14.8547 5.7 -14.85597

128

5.8 -14.85597 5.9 -14.85441 6 -14.85464 6 .1 -14.85536
6.2 -14.855 6.3 -14.855 6.4 -14.85645 6.5 -14.85645
6 . 6 -14.85545 6.7 -14.85545 6 . 8 -14.85545 6.9 -14.85709
7 -14.85709 7.1 -14.85731 7.2 -14.85783 7.3 -14.85632
7.4 -14.85632 7.5 -14.85854 7.6 -14.85854 7.7 -14.85723
7.8 -14.85767 7.9 -14.85829 8 -14.85913
y = 6.3
5 -14.8535 5.1 -14.85498 5.2 -14.85394 5.3 -14.85506
5.4 -14.85533 5.5 -14.85555 5.6 -14.85456 5.7 -14.85456
5.8 -14.85578 5.9 -14.85578 6 -14.85404 6 .1 -14.85632
6.2 -14.85632 6.3 -14.85632 6.4 -14.85668 6.5 -14.85668
6 . 6 -14.85488 6.7 -14.85712 6 . 8 -14.8555 6.9 -14.85595
7 -14.8561 7.1 -14.85783 7.2 -14.85553 7.3 -14.85779
7.4 -14.85663 7.5 -14.85808 7.6 -14.85808 7.7 -14.85808
7.8 -14.85808 7.9 -14.85841 8 -14.85755
y = 6.4
5 -14.85379 5.1 -14.85387 5.2 -14.85391 5.3 -14.85391
5.4 -14.85407 5.5 -14.85407 5.6 -14.85407 5.7 -14.85407
5.8 -14.85407 5.9 -14.85404 6 -14.85433 6 .1 -14.85445
6.2 -14.85627 6.3 -14.85627 6.4 -14.8545 6.5 -14.8545
6 . 6 -14.8545 6.7 -14.85505 6 . 8 -14.85505 6.9 -14.85505
7 -14.85566 7.1 -14.85566 7.2 -14.85566 7.3 -14.85566
7.4 -14.85566 7.5 -14.85667 7.6 -14.85667 7.7 -14.85709
7.8 -14.85709 7.9 -14.85885 8 -14.85725
y = 6.5
5 -14.85459 5.1 -14.85379 5.2 -14.85379 5.3 -14.85364
5.4 -14.85356 5.5 -14.85356 5.6 -14.8536 5.7 -14.85489
5.8 -14.85338 5.9 -14.85338 6 -14.85442 6 .1 -14.85542
6.2 -14.85419 6.3 -14.8547 6.4 -14.85616 6.5 -14.85451
6 . 6 -14.85451 6.7 -14.8548 6 . 8 -14.8548 6.9 -14.85658
7 -14.85658 7.1 -14.85662 7.2 -14.85506 7.3 -14.85576
7.4 -14.85563 7.5 -14.85629 7.6 -14.85648 7.7 -14.85648
7.8 -14.85746 7.9 -14.8575 8 -14.85875
y = 6 . 6

5 -14.85461 5.1 -14.85459 5.2 -14.85252 5.3 -14.85341
5.4 -14.85256 5.5 -14.8549 5.6 -14.85482 5.7 -14.8535
5.8 -14.8535 5.9 -14.85391 6 -14.85391 6 .1 -14.85359
6.2 -14.85502 6.3 -14.85373 6.4 -14.85373 6.5 -14.85487
6 . 6 -14.85487 6.7 -14.85592 6 . 8 -14.85592 6.9 -14.85592
7 -14.85592 7.1 -14.85538 7.2 -14.85508 7.3 -14.85557
7.4 -14.85659 7.5 -14.85611 7.6 -14.85559 7.7 -14.85617
7.8 -14.85617 7.9 -14.85624 8 -14.85648
y = 6.7
5 -14.85349 5.1 -14.85301 5.2 -14.85344 5.3 -14.85373
5.4 -14.8535 5.5 -14.8535 5.6 -14.8535 5.7 -14.85311
5.8 -14.85311 5.9 -14.85448 6 -14.85458 6 .1 -14.85409

129

6 . 2 -14.85409 6.3 -14.85482 6.4 -14.85415 6.5 -14.85415
6 . 6 -14.85415 6.7 -14.85453 6 . 8 -14.85453 6.9 -14.85412
7 -14.85538 7.1 -14.85436 7.2 -14.85671 7.3 -14.85671
7.4 -14.85435 7.5 -14.85527 7.6 -14.85541 7.7 -14.85692
7.8 -14.85457 7.9 -14.85552 8 -14.85622
y = 6 . 8

5 -14.85156 5.1 -14.85303 5.2 -14.85171 5.3 -14.85297
5.4 -14.84995 5.5 -14.85201 5.6 -14.85287 5.7 -14.85223
5.8 -14.85186 5.9 -14.85186 6 -14.85261 6 .1 -14.85217
6 . 2 -14.85308 6.3 -14.85361 6.4 -14.85229 6.5 -14.85229
6 . 6 -14.85229 6.7 -14.85353 6 . 8 -14.85353 6.9 -14.85441
7 -14.85462 7.1 -14.85418 7.2 -14.85497 7.3 -14.85518
7.4 -14.85415 7.5 -14.85381 7.6 -14.85381 7.7 -14.85526
7.8 -14.85526 7.9 -14.85538 8 -14.8561
y = 6.9
5 -14.8518 5.1 -14.85355 5.2 -14.85153 5.3 -14.85145
5.4 -14.85139 5.5 -14.85153 5.6 -14.85153 5.7 -14.85155
5.8 -14.85155 5.9 -14.85106 6 -14.85267 6 .1 -14.85143
6 . 2 -14.85321 6.3 -14.85238 6.4 -14.85183 6.5 -14.85405
6 . 6 -14.85405 6.7 -14.85296 6 . 8 -14.85296 6.9 -14.85296
7 -14.85296 7.1 -14.85497 7.2 -14.85327 7.3 -14.85505
7.4 -14.85505 7.5 -14.85427 7.6 -14.85427 7.7 -14.85427
7.8 -14.85454 7.9 -14.85454 8 -14.85436
y = 7
5 -14.85122 5.1 -14.8516 5.2 -14.85132 5.3 -14.85132
5.4 -14.85143 5.5 -14.85143 5.6 -14.85157 5.7 -14.85157
5.8 -14.85157 5.9 -14.85267 6 -14.85143 6 .1 -14.85205
6 . 2 -14.85195 6.3 -14.85195 6.4 -14.85195 6.5 -14.85195
6 . 6 -14.85195 6.7 -14.8526 6 . 8 -14.8526 6.9 -14.8526
7 -14.8526 7.1 -14.85327 7.2 -14.85327 7.3 -14.85327
7.4 -14.85371 7.5 -14.85371 7.6 -14.85371 7.7 -14.85383
7.8 -14.85411 7.9 -14.85411 8 -14.85411

Table A.2.1.3: Plate #7 (Â = 651, lo = -0.001212, ma = 0.000789, zq = -14.85619, h, =

0.006047).

X z X z X z X z
y = 5
5 -14.86073 5.1 -14.86078 5.2 -14.86078 5.3 -14.85988
5.4 -14.86013 5.5 -14.8591 5.6 -14.8591 5.7 -14.8591
5.8 -14.8591 5.9 -14.8591 6 -14.8591 6 .1 -14.8591
6 . 2 -14.8591 6.3 -14.8591 6.4 -14.86075 6.5 -14.86075
6 . 6 -14.86116 6.7 -14.86116 6 . 8 -14.86116 6.9 -14.86156
7 -14.86156 7.1 -14.86156 7.2 -14.86156 7.3 -14.86232
7.4 -14.86232 7.5 -14.86232 7.6 -14.86232 7.7 -14.86232
7.8 -14.86356 7.9 -14.86325 8 -14.86396

130

y = 5.1
5 -14.85968 5.1 -14.86051 5.2 -14.85997 5.3 -14.85857
5.4 -14.8596 5.5 -14.86011 5.6 -14.86011 5.7 -14.85995
5.8 -14.85956 5.9 -14.85881 6 -14.85945 6 . 1 -14.86005
6.2 -14.86005 6.3 -14.85974 6.4 -14.85947 6.5 -14.85947
6 . 6 -14.86026 6.7 -14.85996 6 .8 -14.86078 6.9 -14.8607
7 -14.8607 7.1 -14.85983 7.2 -14.86137 7.3 -14.86072
7.4 -14.86116 7.5 -14.86263 7.6 -14.86203 7.7 -14.86278
7.8 -14.86354 7.9 -14.86354 8 -14.86345
y = 5.2
5 -14.85777 5.1 -14.85777 5.2 -14.85771 5.3 -14.85796
5.4 -14.8576 5.5 -14.8575 5.6 -14.85822 5.7 -14.85822
5.8 -14.85822 5.9 -14.85822 6 -14.85822 6 . 1 -14.85765
6.2 -14.85765 6.3 -14.85765 6.4 -14.85765 6.5 -14.85765
6 . 6 -14.8586 6.7 -14.8586 6 . 8 -14.8586 6.9 -14.85855
7 -14.85855 7.1 -14.85925 7.2 -14.85925 7.3 -14.85935
7.4 -14.86058 7.5 -14.86051 7.6 -14.86051 7.7 -14.86044
7.8 -14.86042 7.9 -14.86117 8 -14.86117
y = 53
5 -14.85828 5.1 -14.85748 5.2 -14.85748 5.3 -14.8583
5.4 -14.85774 5.5 -14.85774 5.6 -14.85749 5.7 -14.8582
5.8 -14.8582 5.9 -14.85751 6 -14.85751 6 . 1 -14.85775
6.2 -14.85775 6.3 -14.85817 6.4 -14.85817 6.5 -14.85767
6 . 6 -14.85856 6.7 -14.85856 6 . 8 -14.85801 6.9 -14.859
7 -14.859 7.1 -14.85968 7.2 -14.85968 7.3 -14.85929
7.4 -14.85953 7.5 -14.85953 7.6 -14.86009 7.7 -14.86009
7.8 -14.86023 7.9 -14.86142 8 -14.86067
y = 5.4
5 -14.85792 5.1 -14.8581 5.2 -14.8583 5.3 -14.85854
5.4 -14.85809 5.5 -14.85809 5.6 -14.85814 5.7 -14.85784
5.8 -14.85826 5.9 -14.85826 6 -14.85835 6 .1 -14.85835
6.2 -14.8583 6.3 -14.8583 6.4 -14.85886 6.5 -14.85881
6 . 6 -14.85881 6.7 -14.85872 6 . 8 -14.85939 6.9 -14.85939
7 -14.85918 7.1 -14.85925 7.2 -14.85957 7.3 -14.85957
7.4 -14.86045 7.5 -14.86045 7.6 -14.86045 7.7 -14.86105
7.8 -14.86105 7.9 -14.86148 8 -14.86142
_y = 5.5
5 -14.85824 5.1 -14.85824 5.2 -14.8582 5.3 -14.8582
5.4 -14.85817 5.5 -14.85817 5.6 -14.85817 5.7 -14.85835
5.8 -14.85872 5.9 -14.85872 6 -14.85872 6 . 1 -14.85796
6.2 -14.85796 6.3 -14.85883 6.4 -14.85883 6.5 -14.85868
6 . 6 -14.85868 6.7 -14.85868 6 . 8 -14.85934 6.9 -14.85934
7 -14.85901 7.1 -14.85983 7.2 -14.86024 7.3 -14.86071
7.4 -14.86071 7.5 -14.86063 7.6 -14.86063 7.7 -14.86063
7.8 -14.86063 7.9 -14.86063 8 -14.86063
> = 5.6

131

5
5.4

-14.85853
-14.85868

5.1
5.5

-14.85888
-14.85821

5.2
5.6

-14.85873
-14.85821

5.3
5.7

-14.85803
-14.85827

5.8 -14.858 5.9 -14.858 6 -14.86178 6 .1 -14.85869
6 . 2 -14.85842 6.3 -14.85842 6.4 -14.85842 6.5 -14.85842
6 . 6 -14.8595 6.7 -14.8595 6 .8 -14.85931 6.9 -14.85931
7 -14.86001 7.1 -14.86001 7.2 -14.86038 7.3 -14.86038
7.4 -14.85998 7.5 -14.86072 7.6 -14.86073 7.7 -14.86073
7.8 -14.86127 7.9 -14.86148 8 -14.86148
y = 5.1
5 -14.85837 5.1 -14.85823 5.2 -14.85811 5.3 -14.85811
5.4 -14.85818 5.5 -14.85818 5.6 -14.85814 5.7 -14.85812
5.8 -14.8584 5.9 -14.85885 6 -14.85885 6 .1 -14.85864
6 . 2 -14.85864 6.3 -14.85864 6.4 -14.85912 6.5 -14.85912
6 . 6 -14.85877 6.7 -14.85938 6 .8 -14.85938 6.9 -14.85961
7 -14.85961 7.1 -14.85961 7.2 -14.85984 7.3 -14.85984
7.4 -14.8606 7.5 -14.8606 7.6 -14.8613 7.7 -14.8613
7.8 -14.86128 7.9 -14.86151 8 -14.86168
y = 5.8
5 -14.85801 5.1 -14.85801 5.2 -14.85801 5.3 -14.85801
5.4 -14.85801 5.5 -14.85766 5.6 -14.85766 5.7 -14.85804
5.8 -14.85853 5.9 -14.85814 6 -14.85814 6 .1 -14.85897
6 . 2 -14.8584 6.3 -14.85872 6.4 -14.85872 6.5 -14.85926
6 . 6 -14.85926 6.7 -14.85859 6 .8 -14.85859 6.9 -14.85891
7 -14.85944 7.1 -14.85975 7.2 -14.86037 7.3 -14.8607
7.4 -14.8607 7.5 -14.86104 7.6 -14.8612 7.7 -14.86194
7.8 -14.86194 7.9 -14.86151 8 -14.86151
y = 5.9
5 -14.85868 5.1 -14.85868 5.2 -14.85772 5.3 -14.85772
5.4 -14.8585 5.5 -14.859 5.6 -14.859 5.7 -14.85909
5.8 -14.85909 5.9 -14.85862 6 -14.85862 6 .1 -14.85887
6 . 2 -14.85887 6.3 -14.85934 6.4 -14.85934 6.5 -14.85934
6 . 6 -14.85974 6.7 -14.85974 6 .8 -14.85955 6.9 -14.85972
7 -14.85972 7.1 -14.86063 7.2 -14.86063 7.3 -14.86032
7.4 -14.86032 7.5 -14.86032 7.6 -14.86136 7.7 -14.86136
7.8 -14.86193 7.9 -14.86193 8 -14.86193
y — Q
5 -14.85858 5.1 -14.85858 5.2 -14.85923 5.3 -14.85923
5.4 -14.85844 5.5 -14.85844 5.6 -14.85844 5.7 -14.85891
5.8 -14.85995 5.9 -14.85951 6 -14.85951 6 .1 -14.8599
6 . 2 -14.8599 6.3 -14.8599 6.4 -14.8599 6.5 -14.8599
6 . 6 -14.8599 6.7 -14.8599 6 .8 -14.86105 6.9 -14.86105
7 -14.86015 7.1 -14.86029 7.2 -14.86029 7.3 -14.86099
7.4 -14.86099 7.5 -14.86138 7.6 -14.86138 7.7 -14.86174
7.8 -14.86174 7.9 -14.86174 8 -14.86174
y = 6 .
5

1

-14.85942 5.1 -14.85927 5.2 -14.85951 5.3 -14.85951

132

5.4 -14.85949 5.5 -14.85949 5.6 -14.8592 5.7 -14.8592
5.8 -14.85907 5.9 -14.85907 6 -14.85956 6.1 -14.85983
6.2 -14.85996 6.3 -14.85996 6.4 -14.8601 6.5 -14.85993
6.6 -14.86044 6.7 -14.86044 6.8 -14.86068 6.9 -14.86068
7 -14.86029 7.1 -14.86069 7.2 -14.86043 7.3 -14.8611
7.4 -14.8611 7.5 -14.86217 7.6 -14.86194 7.7 -14.86193
7.8 -14.86276 7.9 -14.86292 8 -14.8627
y = 6.2
5 -14.85925 5.1 -14.85925 5.2 -14.85925 5.3 -14.85925
5.4 -14.85851 5.5 -14.85858 5.6 -14.85858 5.7 -14.8588
5.8 -14.8588 5.9 -14.8594 6 -14.85928 6.1 -14.85928
6.2 -14.85928 6.3 -14.85996 6.4 -14.85996 6.5 -14.85996
6.6 -14.85996 6.7 -14.86033 6.8 -14.86033 6.9 -14.86054
7 -14.86056 7.1 -14.86124 7.2 -14.86124 7.3 -14.86108
7.4 -14.86105 7.5 -14.86234 7.6 -14.86234 7.7 -14.86181
7.8 -14.86181 7.9 -14.86181 8 -14.86181
}/ = 6.3
5 -14.8587 5.1 -14.85909 5.2 -14.85909 5.3 -14.85849
5.4 -14.85871 5.5 -14.85871 5.6 -14.859 5.7 -14.859
5.8 -14.859 5.9 -14.859 6 -14.859 6.1 -14.85944
6.2 -14.85917 6.3 -14.85917 6.4 -14.85917 6.5 -14.85917
6.6 -14.85934 6.7 -14.85934 6.8 -14.85934 6.9 -14.86043
7 -14.86043 7.1 -14.86043 7.2 -14.8607 7.3 -14.8607
7.4 -14.8614 7.5 -14.86121 7.6 -14.862 7.7 -14.86219
7.8 -14.8616 7.9 -14.8616 8 -14.8616
y = 6.4
5 -14.85901 5.1 -14.85929 5.2 -14.85929 5.3 -14.85929
5.4 -14.85812 5.5 -14.85856 5.6 -14.85856 5.7 -14.85877
5.8 -14.85877 5.9 -14.85894 6 -14.85835 6.1 -14.85959
6.2 -14.85959 6.3 -14.8597 6.4 -14.8597 6.5 -14.8597
6.6 -14.85982 6.7 -14.85982 6.8 -14.8597 6.9 -14.8597
7 -14.86014 7.1 -14.86014 7.2 -14.86139 7.3 -14.86139
7.4 -14.86102 7.5 -14.86109 7.6 -14.86193 7.7 -14.8613
7.8 -14.86213 7.9 -14.86213 8 -14.86213
jy = 6.5
5 -14.85784 5.1 -14.85792 5.2 -14.85792 5.3 -14.85869
5.4 -14.85823 5.5 -14.85889 5.6 -14.85777 5.7 -14.85834
5.8 -14.85834 5.9 -14.85809 6 -14.85809 6.1 -14.8592
6.2 -14.85906 6.3 -14.85936 6.4 -14.85885 6.5 -14.85939
6.6 -14.85939 6.7 -14.85939 6.8 -14.85939 6.9 -14.86006
7 -14.86006 7.1 -14.86092 7.2 -14.86092 7.3 -14.86098
7.4 -14.86098 7.5 -14.86149 7.6 -14.86183 7.7 -14.86183
7.8 -14.86206 7.9 -14.86153 8 -14.86153
y = 6.6
5 -14.85791 5.1 -14.85791 5.2 -14.85791 5.3 -14.85809
5.4 -14.85809 5.5 -14.85775 5.6 -14.85775 5.7 -14.85775

133

5.8 -14.85775 5.9 -14.85775 6 -14.85775 6 .1 -14.85848
6 . 2 -14.85899 6.3 -14.85854 6.4 -14.85854 6.5 -14.85935
6 . 6 -14.85935 6.7 -14.85935 6 .8 -14.85935 6.9 -14.85997
7 -14.85997 7.1 -14.85996 7.2 -14.86055 7.3 -14.86055
7.4 -14.86026 7.5 -14.86026 7.6 -14.86124 7.7 -14.86138
7.8 -14.86138 7.9 -14.86202 8 -14.86202
y = 6.1
5 -14.85725 5.1 -14.85725 5.2 -14.85729 5.3 -14.85769
5.4 -14.85717 5.5 -14.85729 5.6 -14.85807 5.7 -14.85807
5.8 -14.8574 5.9 -14.8574 6 -14.8574 6 .1 -14.85827
6 . 2 -14.85827 6.3 -14.85827 6.4 -14.85827 6.5 -14.85876
6 . 6 -14.85876 6.7 -14.85858 6 .8 -14.85858 6.9 -14.85946
7 -14.85959 7.1 -14.85959 7.2 -14.85964 7.3 -14.86004
7.4 -14.86004 7.5 -14.86035 7.6 -14.86035 7.7 -14.86069
7.8 -14.85982 7.9 -14.86091 8 -14.86091

= 6 . 8

5 -14.85693 5.1 -14.85693 5.2 -14.85693 5.3 -14.85693
5.4 -14.85654 5.5 -14.85654 5.6 -14.85673 5.7 -14.85643
5.8 -14.85643 5.9 -14.85716 6 -14.85716 6 .1 -14.85716
6 . 2 -14.85758 6.3 -14.85758 6.4 -14.85758 6.5 -14.85758
6 . 6 -14.85758 6.7 -14.85758 6 .8 -14.8582 6.9 -14.85847
7 -14.85861 7.1 -14.85861 7.2 -14.85888 7.3 -14.859
7.4 -14.85957 7.5 -14.85906 7.6 -14.85968 7.7 -14.86018
7.8 -14.86018 7.9 -14.85996 8 -14.85996
y = 6.9
5 -14.85631 5.1 -14.85586 5.2 -14.8563 5.3 -14.85589
5.4 -14.85589 5.5 -14.85638 5.6 -14.85638 5.7 -14.85611
5.8 -14.85619 5.9 -14.85627 6 -14.85623 6 .1 -14.857
6 . 2 -14.85659 6.3 -14.85659 6.4 -14.85709 6.5 -14.85709
6 . 6 -14.85728 6.7 -14.85688 6 .8 -14.85751 6.9 -14.85751
7 -14.85761 7.1 -14.85794 7.2 -14.85853 7.3 -14.85855
7.4 -14.85875 7.5 -14.85934 7.6 -14.85811 7.7 -14.85957
7.8 -14.85957 7.9 -14.86006 8 -14.86006
3̂ = 7
5 -14.85638 5.1 -14.85494 5.2 -14.85577 5.3 -14.85577
5.4 -14.8563 5.5 -14.8563 5.6 -14.8563 5.7 -14.85652
5.8 -14.85652 5.9 -14.85641 6 -14.85641 6 .1 -14.85641
6 . 2 -14.85641 6.3 -14.85715 6.4 -14.85715 6.5 -14.85715
6 . 6 -14.85744 6.7 -14.85759 6 .8 -14.85774 6.9 -14.85742
7 -14.85794 7.1 -14.85794 7.2 -14.85816 7.3 -14.85821
7.4 -14.85818 7.5 -14.85923 7.6 -14.85923 7.7 -14.85923
7.8 -14.85681 7.9 -14.85993 8 -14.85919

134

Table A.2.1.4: Plate #4 (N

0.008214).

= 651, lo = -0.001013, mo = 0.001365, zo = -14.8597, h, =

X
y = 5

z X z X z X z

5 -14.85969 5.1 -14.86062 5.2 -14.85885 5.3 -14.85926
5.4 -14.86033 5.5 -14.86036 5.6 -14.85898 5.7 -14.85898
5.8 -14.85922 5.9 -14.85922 6 -14.86065 6 . 1 -14.85941
6 . 2 -14.85941 6.3 -14.85954 6.4 -14.85954 6.5 -14.85954
6 . 6 -14.85954 6.7 -14.86056 6 .8 -14.86056 6.9 -14.86056
7 -14.86056 7.1 -14.86078 7.2 -14.86078 7.3 -14.86122
7.4
7.8
3; = 5.1

-14.86283
-14.86469

7.5
7.9

-14.86118
-14.86263

7.6
8

-14.86207
-14.86323

7.7 -14.86207

5 -14.86048 5.1 -14.85857 5.2 -14.85808 5.3 -14.85808
5.4 -14.85857 5.5 -14.85842 5.6 -14.85893 5.7 -14.86054
5.8 -14.86054 5.9 -14.85904 6 -14.85888 6 .1 -14.85888
6 . 2 -14.85935 6.3 -14.85935 6.4 -14.85917 6.5 -14.85917
6 . 6 -14.858 6.7 -14.85874 6 .8 -14.86148 6.9 -14.86148
7 -14.86009 7.1 -14.86009 7.2 -14.85887 7.3 -14.86124
7.4
7.8
3/= 5.2

-14.86063
-14.86102

7.5
7.9

-14.85984
-14.86249

7.6
8

-14.86096
-14.86387

7.7 -14.86102

5 -14.85809 5.1 -14.85658 5.2 -14.85641 5.3 -14.85597
5.4 -14.85788 5.5 -14.85774 5.6 -14.85588 5.7 -14.85605
5.8 -14.85622 5.9 -14.85612 6 -14.85612 6 .1 -14.85615
6 . 2 -14.85634 6.3 -14.85634 6.4 -14.85694 6.5 -14.85694
6 . 6 -14.85768 6.7 -14.85634 6 .8 -14.85634 6.9 -14.85874
7 -14.85874 7.1* -14.85731 7.2 -14.85752 7.3 -14.85825
7.4
7.8

3/ = 5.3

-14.85925
-14.85905

7.5
7.9

-14.85925
-14.85975

7.6
8

-14.85905
-14.85975

7.7 -14.85905

5 -14.85652 5.1 -14.85659 5.2 -14.8579 5.3 -14.85604
5.4 -14.85642 5.5 -14.85642 5.6 -14.85604 5.7 -14.85636
5.8 -14.85669 5.9 -14.85669 6 -14.85804 6 .1 -14.85697
6 . 2 -14.85697 6.3 -14.85641 6.4 -14.85641 6.5 -14.85842
6 . 6 -14.85741 6.7 -14.85706 6 .8 -14.85718 6.9 -14.85891
7 -14.85785 7.1 -14.85785 7.2 -14.86033 7.3 -14.86033
7.4
7.8
y = 5.4

-14.86033
-14.85895

7.5
7.9

-14.86033
-14.85905

7.6
8

-14.86033
-14.8616

7.7 -14.85902

5 -14.85707 5.1 -14.8589 5.2 -14.8589 5.3 -14.85693
5.4 -14.85651 5.5 -14.85651 5.6 -14.85853 5.7 -14.85667
5.8 -14.85636 5.9 -14.85856 6 -14.85685 6 .1 -14.85685
6 . 2 -14.85685 6.3 -14.85685 6.4 -14.85742 6.5 -14.85742
6 . 6 -14.8569 6.7 -14.85673 6 . 8 -14.85673 6.9 -14.85793

1 3 5

7 -14.85793 7.1 -14.85816 7.2 -14.85816 7.3 -14.85891
7.4 -14.85891 7.5 -14.85922 7.6 -14.85922 7.7 -14.86134
7.8 -14.86182 7.9 -14.86003 8 -14.86031
y = 5.5
5 -14.85707 5.1 -14.85769 5.2 -14.85742 5.3 -14.85669
5.4 -14.85658 5.5 -14.85658 5.6 -14.85689 5.7 -14.85689
5.8 -14.857 5.9 -14.85706 6 -14.85709 6 .1 -14.85709
6.2 -14.85726 6.3 -14.85751 6.4 -14.85751 6.5 -14.85928
6 . 6 -14.85928 6.7 -14.85975 6 . 8 -14.85975 6.9 -14.85997
7 -14.85997 7.1 -14.85997 7.2 -14.85871 7.3 -14.85871
7.4 -14.85938 7.5 -14.85938 7.6 -14.85938 7.7 -14.85965
7.8 -14.8606 7.9 -14.86164 8 -14.86084
y = 5.6
5 -14.85941 5.1 -14.85941 5.2 -14.8571 5.3 -14.85738
5.4 -14.85747 5.5 -14.85748 5.6 -14.85748 5.7 -14.85926
5.8 -14.85926 5.9 -14.85693 6 -14.85693 6 .1 -14.85765
6.2 -14.85765 6.3 -14.85717 6.4 -14.85764 6.5 -14.85818
6 . 6 -14.85792 6.7 -14.85782 6 . 8 -14.85782 6.9 -14.8584
7 -14.8584 7.1 -14.85998 7.2 -14.85841 7.3 -14.85841
7.4 -14.85865 7.5 -14.86081 7.6 -14.86081 7.7 -14.86081
7.8 -14.8601 7.9 -14.8601 8 -14.8606
y = 5.7
5 -14.85734 5.1 -14.8571 5.2 -14.85717 5.3 -14.85726
5.4 -14.8571 5.5 -14.85723 5.6 -14.85894 5.7 -14.85707
5.8 -14.85707 5.9 -14.85906 6 -14.85906 6 .1 -14.85718
6.2 -14.85718 6.3 -14.85768 6.4 -14.85937 6.5 -14.85937
6 . 6 -14.85818 6.7 -14.85818 6 . 8 -14.85842 6.9 -14.85842
7 -14.85842 7.1 -14.85842 7.2 -14.85883 7.3 -14.85865
7.4 -14.86087 7.5 -14.86087 7.6 -14.86195 7.7 -14.86195
7.8 -14.856056 7.9 -14.86195 8 -14.856056
y = 5.8
5 -14.85726 5.1 -14.85742 5.2 -14.85758 5.3 -14.85709
5.4 -14.85877 5.5 -14.85877 5.6 -14.85742 5.7 -14.85855
5.8 -14.85724 5.9 -14.85763 6 -14.85763 6 .1 -14.85907
6.2 -14.85756 6.3 -14.85811 6.4 -14.85811 6.5 -14.85756
6 . 6 -14.85756 6.7 -14.85756 6 . 8 -14.85842 6.9 -14.85842
7 -14.85842 7.1 -14.85849 7.2 -14.86044 7.3 -14.85897
7.4 -14.85918 7.5 -14.85918 7.6 -14.86052 7.7 -14.86052
7.8 -14.86052 7.9 -14.86016 8 -14.86016
y = 5.9
5 -14.85752 5.1 -14.85881 5.2 -14.85761 5.3 -14.85779
5.4 -14.85779 5.5 -14.85931 5.6 -14.85931 5.7 -14.85931
5.8 -14.85743 5.9 -14.85739 6 -14.85739 6 .1 -14.8576
6.2 -14.85798 6.3 -14.8581 6.4 -14.8581 6.5 -14.8581
6 . 6 -14.85843 6.7 -14.85843 6 . 8 -14.85843 6.9 -14.85841
7 -14.85841 7.1 -14.8606 7.2 -14.8606 7.3 -14.85993

136

7.4 -14.85993 7.5 -14.85993 7.6 -14.85993 7.7 -14.85993
7.8 -14.85993 7.9 -14.85993 8 -14.85993
_y = 6
5 -14.85777 5.1 -14.85777 5.2 -14.85772 5.3 -14.85772
5.4 -14.85772 5.5 -14.85772 5.6 -14.85772 5.7 -14.85772
5.8 -14.85772 5.9 -14.85777 6 -14.85777 6 .1 -14.85717
6.2 -14.85767 6.3 -14.85998 6.4 -14.85998 6.5 -14.85998
6 . 6 -14.85903 6.7 -14.85903 6 . 8 -14.85903 6.9 -14.85903
7 -14.8589 7.1 -14.8589 7.2 -14.85915 7.3 -14.85909
7.4 -14.85909 7.5 -14.86133 7.6 -14.85989 7.7 -14.86176
7.8 -14.86095 7.9 -14.8607 8 -14.86272
y = 6.1
5 -14.858 5.1 -14.85979 5.2 -14.85911 5.3 -14.85928
5.4 -14.85928 5.5 -14.85774 5.6 -14.85774 5.7 -14.85774
5.8 -14.85774 5.9 -14.86003 6 -14.86003 6 .1 -14.85792
6.2 -14.85792 6.3 -14.85786 6.4 -14.85811 6.5 -14.85811
6 . 6 -14.85992 6.7 -14.85979 6 . 8 -14.85852 6.9 -14.85889
7 -14.85924 7.1 -14.85924 7.2 -14.86116 7.3 -14.86053
7.4 -14.856035 7.5 -14.856035 7.6 -14.85986 7.7 -14.86051
7.8 -14.86286 7.9 -14.86286 8 -14.86286
y = 6.2
5 -14.85933 5.1 -14.85698 5.2 -14.85776 5.3 -14.85776
5.4 -14.85729 5.5 -14.85729 5.6 -14.857 5.7 -14.85729
5.8 -14.85678 5.9 -14.85678 6 -14.85678 6 .1 -14.85716
6.2 -14.85722 6.3 -14.85764 6.4 -14.85686 6.5 -14.85686
6 . 6 -14.85979 6.7 -14.85827 6 . 8 -14.85827 6.9 -14.85827
7 -14.85827 7.1 -14.85827 7.2 -14.86053 7.3 -14.85911
7.4 -14.85911 7.5 -14.85982 7.6 -14.85985 7.7 -14.8602
7.8 -14.8602 7.9 -14.86013 8 -14.8602
y = 6.3
5 -14.85677 5.1 -14.85677 5.2 -14.8567 5.3 -14.85683
5.4 -14.85685 5.5 -14.85685 5.6 -14.85685 5.7 -14.85643
5.8 -14.85643 5.9 -14.85729 6 -14.8588 6 .1 -14.8588
6.2 -14.85891 6.3 -14.85688 6.4 -14.85718 6.5 -14.85718
6 . 6 -14.85776 6.7 -14.85776 6 . 8 -14.85776 6.9 -14.85776
7 -14.85776 7.1 -14.85798 7.2 -14.85846 7.3 -14.85866
7.4 -14.85934 7.5 -14.86057 7.6 -14.85885 7.7 -14.85946
7.8 -14.85946 7.9 -14.85961 8 -14.85962
y = 6.4
5 -14.85703 5.1 -14.85703 5.2 -14.85685 5.3 -14.85628
5.4 -14.85723 5.5 -14.85874 5.6 -14.85874 5.7 -14.85673
5.8 -14.85725 5.9 -14.85697 6 -14.85676 6 .1 -14.85676
6.2 -14.85743 6.3 -14.85743 6.4 -14.85732 6.5 -14.85927
6 . 6 -14.85797 6.7 -14.85797 6 . 8 -14.85797 6.9 -14.85787
7 -14.85972 7.1 -14.85841 7.2 -14.85824 7.3 -14.86029
7.4 -14.85892 7.5 -14.85892 7.6 -14.85892 7.7 -14.85907

137

7.8 -14.85952 7.9 -14.85981 8 -14.85981
y = 6.5
5 -14.85657 5.1 -14.85651 5.2 -14.85651 5.3 -14.85651
5.4 -14.85651 5.5 -14.85651 5.6 -14.85673 5.7 -14.85693
5.8 -14.85656 5.9 -14.8586 6 -14.85677 6 .1 -14.8591
6.2 -14.8591 6.3 -14.85693 6.4 -14.85736 6.5 -14.85845
6 . 6 -14.85698 6.7 -14.85764 6 . 8 -14.85764 6.9 -14.85729
7 -14.86 7.1 -14.86 7.2 -14.86 7.3 -14.86
7.4 -14.85846 7.5 -14.8592 7.6 -14.8592 7.7 -14.85907
7.8 -14.86063 7.9 -14.85966 8 -14.85966
y = 6.6
5 -14.85626 5.1 -14.85626 5.2 -14.85638 5.3 -14.85591
5.4 -14.85627 5.5 -14.85589 5.6 -14.85589 5.7 -14.85662
5.8 -14.85654 5.9 -14.85639 6 -14.85843 6 .1 -14.85843
6.2 -14.85843 6.3 -14.85736 6.4 -14.85684 6.5 -14.85684
6 . 6 -14.85698 6.7 -14.85698 6 . 8 -14.85719 6.9 -14.85719
7 -14.85719 7.1 -14.85719 7.2 -14.85815 7.3 -14.85785
7.4 -14.8583 7.5 -14.85827 7.6 -14.85903 7.7 -14.85897
7.8 -14.85916 7.9 -14.85901 8 -14.85906
y = 6.1
5 -14.85637 5.1 -14.8563 5.2 -14.85612 5.3 -14.85612
5.4 -14.85818 5.5 -14.85818 5.6 -14.85566 5.7 -14.85566
5.8 -14.85584 5.9 -14.85584 6 -14.85584 6 .1 -14.85603
6.2 -14.85603 6.3 -14.85603 6.4 -14.85689 6.5 -14.85689
6 . 6 -14.85641 6.7 -14.85641 6 . 8 -14.8574 6.9 -14.85641
7 -14.85719 7.1 -14.85695 7.2 -14.85695 7.3 -14.85799
7.4 -14.85773 7.5 -14.85978 7.6 -14.85741 7.7 -14.85877
7.8 -14.85877 7.9 -14.85863 8 -14.86035
y = 6.%
5 -14.85548 5.1 -14.85483 5.2 -14.85568 5.3 -14.85568
5.4 -14.85568 5.5 -14.85568 5.6 -14.85664 5.7 -14.85664
5.8 -14.85664 5.9 -14.85664 6 -14.85664 6 .1 -14.85664
6.2 -14.85641 6.3 -14.85549 6.4 -14.85549 6.5 -14.85805
6 . 6 -14.85805 6.7 -14.85594 6 . 8 -14.85666 6.9 -14.85639
7 -14.85639 7.1 -14.85671 7.2 -14.85671 7.3 -14.85691
7.4 -14.85699 7.5 -14.85815 7.6 -14.85815 7.7 -14.85815
7.8 -14.85815 7.9 -14.85815 8 -14.85815
y = 6.9
5 -14.85495 5.1 -14.85498 5.2 -14.85543 5.3 -14.85679
5.4 -14.85495 5.5 -14.85453 5.6 -14.85499 5.7 -14.85488
5.8 -14.85488 5.9 -14.8553 6 -14.8553 6 .1 -14.85476
6.2 -14.85698 6.3 -14.85578 6.4 -14.85577 6.5 -14.85548
6 . 6 -14.85519 6.7 -14.85555 6 . 8 -14.85606 6.9 -14.85719
7 -14.8562 7.1 -14.8562 7.2 -14.85809 7.3 -14.85622
7.4 -14.85622 7.5 -14.85674 7.6 -14.85674 7.7 -14.85889
7.8 -14.85685 7.9 -14.85695 8 -14.85695

138

y — 1
5 -14.85457 5.1 -14.85491 5.2 -14.85529 5.3 -14.85658
5.4 -14.85427 5.5 -14.85509 5.6 -14.85509 5.7 -14.85499
5.8 -14.85499 5.9 -14.85455 6 -14.85455 6 .1 -14.85519
6 . 2 -14.85443 6.3 -14.85613 6.4 -14.85655 6.5 -14.85452
6 . 6 -14.85253 6.7 -14.85552 6 . 8 -14.85694 6.9 -14.85694
7 -14.85694 7.1 -14.85595 7.2 -14.85595 7.3 -14.85595
7.4 -14.85818 7.5 -14.85658 7.6 -14.85638 7.7 -14.85584
7.8 -14.85696 7.9 -14.85642 8 -14.85642

A.2.2 Face Milling

Table A.2.2.1: Plate #2 (For the population, A = 410, lo = 0.000021, mo = 0.000857, zq ■

14.15217, A, = 0.001866 in).

X z X z X z X z
y = 1 .0

2.0 -14.15171 2 .1 -14.15163 2 . 2 -14.15158 2.3 -14.15158
7.7 -14.15151 7.8 -14.15169 7.9 -14.15169 8 . 0 -14.15177
y = 1 .1

2.0 -14.15164 2 .1 -14.15171 2 . 2 -14.1515 2.3 -14.1515
7.7 -14.15148 7.8 -14.15144 7.9 -14.15147 8 . 0 -14.15177
y= 1 .2

2.0 -14.15163 2 .1 -14.15152 2 . 2 -14.15148 2.3 -14.15148
7.7 -14.15132 7.8 -14.15144 7.9 -14.15144 8 . 0 -14.1518
y= 1.3
2.0 -14.15136 2 .1 -14.15147 2 . 2 -14.15139 2.3 -14.15139
7.7 -14.15118 7.8 -14.15138 7.9 -14.1512 8 . 0 -14.15165
y= 1.4
2.0 -14.15139 2 .1 -14.15124 2 . 2 -14.15126 2.3 -14.15126
7.7 -14.15115 7.8 -14.1512 7.9 -14.15112 8 . 0 -14.15162
y= 1.5
2.0 -14.15128 2 .1 -14.15125 2 . 2 -14.15131 2.3 -14.15125
3.4 -14.15081 3.5 -14.15063 3.6 -14.1506 3.7 -14.15067
3.8 -14.15055 3.9 -14.15079 4.0 -14.15079 4.1 -14.15043
4.2 -14.15043 4.3 -14.15043 4.4 -14.15043 5.6 -14.15047
5.7 -14.15051 5.8 -14.15025 5.9 -14.15025 6 . 0 -14.15027
6.1 -14.1503 6 . 2 -14.1502 6.3 -14.15043 6.4 -14.15024
6.5 -14.15039 6 . 6 -14.15044 7.7 -14.15097 7.8 -14.15135
7.9 -14.15113 8 . 0 -14.15171
y= 1 .6

2.0 -14.15123 2 .1 -14.15107 2 . 2 -14.15125 2.3 -14.15125
3.4 -14.1507 3.5 -14.15063 3.6 -14.15068 3.7 -14.15035
3.8 -14.15045 3.9 -14.15052 4.0 -14.15048 4.1 -14.15038
4.2 -14.15037 4.3 -14.15042 4.4 -14.15043 5.6 -14.15034

139

5.7 -14.15046 5.8 -14.15041 5.9 -14.15022 6 . 0 -14.15027
6.1 -14.15036 6 . 2 -14.15032 6.3 -14.1504 6.4 -14.15022
6.5 -14.15039 6 . 6 -14.15057 7.7 -14.15084 7.8 -14.1511
7.9 -14.15125 8 . 0 -14.15151
y = 1.7
2.0 -14.15134 2 .1 -14.1511 2 .2 -14.15097 2.3 -14.15112
3.4 -14.15072 3.5 -14.15039 3.6 -14.15054 3.7 -14.15036
3.8 -14.15034 3.9 -14.15046 4.0 -14.15037 4.1 -14.15037
4.2 -14.15041 4.3 -14.15041 4.4 -14.15042 5.6 -14.15029
5.7 -14.15031 5.8 -14.15019 5.9 -14.1502 6 . 0 -14.1502
6.1 -14.15018 6 . 2 -14.15017 6.3 -14.15028 6.4 -14.1501
6.5 -14.15031 6 . 6 -14.15044 7.7 -14.15089 7.8 -14.15111
7.9 -14.15118 8 . 0 -14.15164
y = L 8

2.0 -14.15119 2 .1 -14.15092 2 .2 -14.15107 2.3 -14.15089
3.4 -14.15053 3.5 -14.15022 3.6 -14.15035 3.7 -14.1501
3.8 -14.15046 3.9 -14.1504 4.0 -14.15046 4.1 -14.15028
4.2 -14.15025 4.3 -14.15025 4.4 -14.15045 5.6 -14.15002
5.7 -14.15013 5.8 -14.14978 5.9 -14.15001 6 . 0 -14.14995
6.1 -14.15017 6 . 2 -14.14988 6.3 -14.15007 6.4 -14.14994
6.5 -14.15024 6 . 6 -14.15036 7.7 -14.15105 7.8 -14.15089
7.9 -14.15105 8 . 0 -14.15138
y = 1.9
2.0 -14.15101 2 .1 -14.15095 2 . 2 -14.15101 2.3 -14.15105
3.4 -14.15042 3.5 -14.15003 3.6 -14.15039 3.7 -14.15001
3.8 -14.15042 3.9 -14.15011 4.0 -14.15033 4.1 -14.15015
4.2 -14.15012 4.3 -14.15028 4.4 -14.15032 5.6 -14.1499
5.7 -14.15025 5.8 -14.14973 5.9 -14.14973 6 . 0 -14.15015
6.1 -14.15012 6 . 2 -14.14964 6.3 -14.14993 6.4 -14.14987
6.5 -14.1503 6 . 6 -14.15015 7.7 -14.15082 7.8 -14.15075
7.9 -14.15075 8 . 0 -14.15119

= 2 . 0

2.0 -14.15109 2 .1 -14.15105 2 . 2 -14.15076 2.3 -14.1509
3.4 -14.1503 3.5 -14.14993 3.6 -14.15019 3.7 -14.14999
3.8 -14.15013 3.9 -14.15033 4.0 -14.15016 4.1 -14.15009
4.2 -14.15009 4.3 -14.15006 4.4 -14.15025 5.6 -14.14968
5.7 -14.15002 5.8 -14.14988 5.9 -14.14988 6 . 0 -14.14995
6.1 -14.1498 6 . 2 -14.14979 6.3 -14.15004 6.4 -14.14976
6.5 -14.1499 6 . 6 -14.15013 7.7 -14.1508 7.8 -14.15086
7.9 -14.15086 8 . 0 -14.15095
y = l . \
2.0 -14.15086 2 .1 -14.15092 2 . 2 -14.15065 2.3 -14.15065
3.4 -14.15036 3.5 -14.14972 3.6 -14.15013 3.7 -14.14974
3.8 -14.15021 3.9 -14.15021 4.0 -14.14999 4.1 -14.15002
4.2 -14.15002 4.3 -14.1498 4.4 -14.15022 5.6 -14.14956
5.7 -14.1499 5.8 -14.14953 5.9 -14.14953 6 . 0 -14.14988

140

6.1 -14.14969 6 .2 -14.1496 6.3 -14.14968 6.4 -14.14965
6.5 -14.14975 6 .6 -14.14996 7.7 -14.15053 7.8 -14.15079
7.9 -14.15079 8 .0 -14.15088
y = 1.2
2.0 -14.1509 2 .1 -14.15095 2 . 2 -14.15046 2.3 -14.15046
3.4 -14.15033 3.5 -14.14969 3.6 -14.15009 3.7 -14.14963
3.8 -14.15006 3.9 -14.15002 4.0 -14.15006 4.1 -14.15008
4.2 -14.14985 4.3 -14.14973 4.4 -14.15001 5.6 -14.14947
5.7 -14.14975 5.8 -14.14953 5.9 -14.14969 6 . 0 -14.14972
6.1 -14.14975 6 .2 -14.14965 6.3 -14.1496 6.4 -14.14965
6.5 -14.14972 6 .6 -14.15 7.7 -14.1504 7.8 -14.15082
7.9 -14.15085 8 .0 -14.15089
y = 2.1
2.0 -14.15075 2 .1 -14.15073 2 . 2 -14.15026 2.3 -14.15072
3.4 -14.15009 3.5 -14.14958 3.6 -14.15013 3.7 -14.14955
3.8 -14.14955 3.9 -14.14989 4.0 -14.14986 4.1 -14.14985
4.2 -14.14964 4.3 -14.14962 4.4 -14.14999 5.6 -14.14932
5.7 -14.14969 5.8 -14.14936 5.9 -14.14963 6 . 0 -14.14966
6.1 -14.14968 6 .2 -14.14932 6.3 -14.14961 6.4 -14.1495
6.5 -14.14959 6 .6 -14.14974 7.7 -14.15057 7.8 -14.15065
7.9 -14.15083 8 .0 -14.15072
y = 2.4
2.0 -14.15054 2 .1 -14.15066 2 . 2 -14.15001 2.3 -14.15059
3.4 -14.15011 3.5 -14.14983 3.6 -14.15001 3.7 -14.14961
3.8 -14.15004 3.9 -14.14984 4.0 -14.14962 4.1 -14.14962
4.2 -14.14958 4.3 -14.14957 4.4 -14.14995 5.6 -14.14936
5.7 -14.14925 5.8 -14.14924 5.9 -14.14927 6 . 0 -14.14924
6.1 -14.14927 6 .2 -14.14925 6.3 -14.14953 6.4 -14.14936
6.5 -14.14966 6 .6 -14.14944 7.7 -14.15049 7.8 -14.15049
7.9 -14.15053 8 .0 -14.15078
y = 2.5
2.0 -14.15047 2 .1 -14.15071 2 . 2 -14.15042 2.3 -14.15056
3.4 -14.14977 3.5 -14.14967 3.6 -14.14963 3.7 -14.1496
3.8 -14.14962 3.9 -14.14972 4.0 -14.14961 4.1 -14.14967
4.2 -14.14943 4.3 -14.14941 4.4 -14.14982 5.6 -14.14931
5.7 -14.14929 5.8 -14.14919 5.9 -14.14926 6 . 0 -14.14936
6.1 -14.14934 6 .2 -14.1492 6.3 -14.14925 6.4 -14.14931
6.5 -14.14919 6 .6 -14.14941 7.7 -14.1502 7.8 -14.15047
7.9 -14.15061 8 .0 -14.15064
y = 2 . 6

2.0 -14.15057 2 .1 -14.15041 2 . 2 -14.15025 2.3 -14.15049
7.7 -14.15022 7.8 -14.15039 7.9 -14.15059 8 .0 -14.15045
y = 2.7
2.0 -14.15027 2 .1 -14.15021 2 . 2 -14.15039 2.3 -14.15039
7.7 -14.15002 7.8 -14.1503 7.9 -14.15037 8 . 0 -14.15047
y = 2 . 8

141

2.0 -14.15023 2 .1 -14.15041 2 . 2 -14.15029 2.3 -14.15029
7.7 -14.14989 7.8 -14.15035 7.9 -14.15038 8 . 0 -14.15042
y = 2.9
2.0 -14.15025 2 .1 -14.15013 2 . 2 -14.15008 2.3 -14.15008
7.7 -14.14997 7.8 -14.15029 7.9 -14.15016 8 . 0 -14.15019
y = 3.0
2.0 -14.15011 2 .1 -14.14989 2 . 2 -14.14999 2.3 -14.14993
7.7 -14.14992 7.8 -14.15011 7.9 -14.15017 8 . 0 -14.15013

Table A.2.2.2: Plate #9 (# — 410, Iq — 0.000022, nio — -0.000467, zo —-14.14393, h, =

0.001707).

X z X z X z X z
y= 1 .0

2.0 -14.1451 2 .1 -14.14488 2 .2 -14.14494 2.3 -14.14483
7.7 -14.14523 7.8 -14.14523 7.9 -14.14547 8 . 0 -14.1453
y = 1 .1

2.0 -14.14511 2 .1 -14.14497 2 . 2 -14.14491 2.3 -14.1449
7.7 -14.14517 7.8 -14.14513 7.9 -14.1455 8 . 0 -14.14557
y = 1 .2

2.0 -14.14516 2 .1 -14.14518 2 . 2 -14.14524 2.3 -14.14504
7.7 -14.14524 7.8 -14.14524 7.9 -14.14548 8 . 0 -14.14527
y = 1.3
2.0 -14.14504 2 .1 -14.14507 2 . 2 -14.14497 2.3 -14.14497
7.7 -14.14521 7.8 -14.14521 7.9 -14.14556 8 . 0 -14.14526
y = 1.4
2.0 -14.14535 2 .1 -14.14507 2 . 2 -14.14518 2.3 -14.14498
7.7 -14.14526 7.8 -14.14526 7.9 -14.14542 8 . 0 -14.14537
y = 1.5
2.0 -14.14525 2 .1 -14.14528 2 . 2 -14.14502 2.3 -14.14497
3.4 -14.1442 3.5 -14.14419 3.6 -14.14412 3.7 -14.14414
3.8 -14.14411 3.9 -14.14411 4.0 -14.14413 4.1 -14.14422
4.2 -14.14408 4.3 -14.1441 4.4 -14.14416 5.6 -14.14408
5.7 -14.14411 5.8 -14.1442 5.9 -14.14421 6 . 0 -14.14435
6.1 -14.14435 6 . 2 -14.14436 6.3 -14.14436 6.4 -14.14436
6.5 -14.14434 6 . 6 -14.14448 7.7 -14.14544 7.8 -14.14553
7.9 -14.1456 8 . 0 -14.14573
y = 1 .6

2.0 -14.14525 2 .1 -14.14509 2 . 2 -14.14532 2.3 -14.14513
3.4 -14.14433 3.5 -14.14426 3.6 -14.14424 3.7 -14.14418
3.8 -14.14434 3.9 -14.1442 4.0 -14.14438 4.1 -14.14438
4.2 -14.14419 4.3 -14.14415 4.4 -14.14415 5.6 -14.14433
5.7 -14.14428 5.8 -14.14431 5.9 -14.14432 6 . 0 -14.14448
6.1 -14.14448 6 . 2 -14.14451 6.3 -14.14451 6.4 -14.14451
6.5 -14.14467 6 . 6 -14.14467 7.7 -14.14555 7.8 -14.14558

142

7.9 -14.1456 8 . 0 -14.14546
y = 1.7
2.0 -14.14538 2 .1 -14.14528 2 . 2 -14.14526 2.3 -14.14537
3.4 -14.14457 3.5 -14.1446 3.6 -14.1446 3.7 -14.14428
3.8 -14.14438 3.9 -14.14432 4.0 -14.14432 4.1 -14.14423
4.2 -14.14406 4.3 -14.14417 4.4 -14.14437 5.6 -14.1444
5.7 -14.1445 5.8 -14.14443 5.9 -14.14443 6 . 0 -14.14446
6.1 -14.14456 6 . 2 -14.14453 6.3 -14.14453 6.4 -14.14453
6.5 -14.14466 6 . 6 -14.14462 7.7 -14.14533 7.8 -14.14526
7.9 -14.1455 8 . 0 -14.14553
y = 1 .8

2.0 -14.14549 2 .1 -14.14531 2 . 2 -14.14526 2.3 -14.14537
3.4 -14.14443 3.5 -14.14469 3.6 -14.14441 3.7 -14.14439
3.8 -14.14439 3.9 -14.14439 4.0 -14.14431 4.1 -14.14431
4.2 -14.14412 4.3 -14.14435 4.4 -14.14427 5.6 -14.14439
5.7 -14.14439 5.8 -14.1446 5.9 -14.14452 6 . 0 -14.14451
6.1 -14.14459 6 . 2 -14.14488 6.3 -14.14488 6.4 -14.14488
6.5 -14.14488 6 . 6 -14.14488 7.7 -14.1453 7.8 -14.14531
7.9 -14.14573 8 . 0 -14.14575
y = 1.9
2.0 -14.14549 2 .1 -14.14561 2 . 2 -14.14531 2.3 -14.14548
3.4 -14.14451 3.5 -14.1448 3.6 -14.1446 3.7 -14.14448
3.8 -14.14448 3.9 -14.14448 4.0 -14.14448 4.1 -14.14448
4.2 -14.14431 4.3 -14.14431 4.4 -14.14431 5.6 -14.14459
5.7 -14.14467 5.8 -14.14446 5.9 -14.14467 6 . 0 -14.14466
6.1 -14.1446 6 . 2 -14.14467 6.3 -14.14461 6.4 -14.1447
6.5 -14.1447 6 . 6 -14.14474 7.7 -14.14549 7.8 -14.14548
7.9 -14.14549 8 . 0 -14.14535
3/= 2 . 0

2.0 -14.14555 2 .1 -14.14534 2 . 2 -14.1454 2.3 -14.14534
3.4 -14.1446 3.5 -14.1448 3.6 -14.14452 3.7 -14.14455
3.8 -14.14452 3.9 -14.14442 4.0 -14.14442 4.1 -14.14454
4.2 -14.1444 4.3 -14.14443 4.4 -14.1444 5.6 -14.14459
5.7 -14.14455 5.8 -14.1446 5.9 -14.14453 6 . 0 -14.14453
6.1 -14.14473 6 . 2 -14.14473 6.3 -14.14471 6.4 -14.14473
6.5 -14.14465 6 . 6 -14.14479 7.7 -14.14534 7.8 -14.14564
7.9 -14.14575 8 . 0 -14.14575
}/ = 2 .1

2.0 -14.14552 2 .1 -14.14555 2 . 2 -14.1454 2.3 -14.14555
3.4 -14.14472 3.5 -14.14472 3.6 -14.14465 3.7 -14.14472
3.8 -14.14472 3.9 -14.14458 4.0 -14.14445 4.1 -14.14445
4.2 -14.14446 4.3 -14.14457 4.4 -14.14446 5.6 -14.14467
5.7 -14.14459 5.8 -14.14468 5.9 -14.1447 6 . 0 -14.1447
6.1 -14.14477 6 . 2 -14.14474 6.3 -14.1447 6.4 -14.14483
6.5 -14.14492 6 . 6 -14.14484 7.7 -14.14561 7.8 -14.14539
7.9 -14.14571 8 . 0 -14.14547

143

y = 2 . 2
2 . 0 -14.14574 2 .1 -14.14557 2 . 2 -14.14559 2.3 -14.14551
3.4 -14.14471 3.5 -14.14486 3.6 -14.14464 3.7 -14.14466
3.8 -14.14466 3.9 -14.14466 4.0 -14.14457 4.1 -14.14457
4.2 -14.14458 4.3 -14.14458 4.4 -14.14458 5.6 -14.14477
5.7 -14.14473 5.8 -14.14468 5.9 -14.14458 6 . 0 -14.14463
6 .1 -14.14474 6 . 2 -14.14491 6.3 -14.1449 6.4 -14.14487
6.5 -14.14485 6 . 6 -14.14507 7.7 -14.14531 7.8 -14.14569
7.9 -14.14542 8 . 0 -14.14542
y = 2.3
2 . 0 -14.14566 2 .1 -14.14557 2 . 2 -14.14565 2.3 -14.14551
3.4 -14.14493 3.5 -14.14483 3.6 -14.14474 3.7 -14.14475
3.8 -14.14478 3.9 -14.1447 4.0 -14.1447 4.1 -14.1449
4.2 -14.14476 4.3 -14.14468 4.4 -14.14468 5.6 -14.14485
5.7 -14.14485 5.8 -14.14476 5.9 -14.14477 6 . 0 -14.1448
6 .1 -14.14491 6 . 2 -14.14488 6.3 -14.14491 6.4 -14.14495
6.5 -14.14495 6 . 6 -14.14495 7.7 -14.14546 7.8 -14.14566
7.9 -14.14556 8 . 0 -14.14579
y = 2.4
2 . 0 -14.14586 2 .1 -14.14574 2 . 2 -14.14564 2.3 -14.14553
3.4 -14.14499 3.5 -14.14506 3.6 -14.145 3.7 -14.14489
3.8 -14.14486 3.9 -14.14484 4.0 -14.14484 4.1 -14.14486
4.2 -14.14472 4.3 -14.14478 4.4 -14.14472 5.6 -14.1449
5.7 -14.14476 5.8 -14.14492 5.9 -14.14496 6 . 0 -14.14477
6 .1 -14.14493 6 . 2 -14.14498 6.3 -14.14507 6.4 -14.14491
6.5 -14.14503 6 . 6 -14.14503 7.7 -14.1456 7.8 -14.14554
7.9 -14.14589 8 . 0 -14.14551
)/ = 2.5
2 . 0 -14.14595 2 .1 -14.14572 2 . 2 -14.14595 2.3 -14.14567
3.4 -14.14505 3.5 -14.14502 3.6 -14.1448 3.7 -14.14495
3.8 -14.14475 3.9 -14.14476 4.0 -14.14476 4.1 -14.14477
4.2 -14.14474 4.3 -14.14476 4.4 -14.14487 5.6 -14.14491
5.7 -14.14494 5.8 -14.14502 5.9 -14.14491 6 . 0 -14.14498
6 .1 -14.14487 6 . 2 -14.14494 6.3 -14.14502 6.4 -14.14493
6.5 -14.14519 6 . 6 -14.14511 7.7 -14.14575 7.8 -14.14585
7.9 -14.14555 8 . 0 -14.14589
y = 2 . 6

2 . 0 -14.14583 2 .1 -14.1459 2 . 2 -14.14582 2.3 -14.1459
7.7 -14.14558 7.8 -14.14584 7.9 -14.1456 8 . 0 -14.1456
y = 2.1
2 . 0 -14.14596 2 .1 -14.14592 2 . 2 -14.14572 2.3 -14.14589
7.7 -14.14575 7.8 -14.14577 7.9 -14.14566 8 . 0 -14.1459
y = 2 . 8

2 . 0 •14.14595 2 .1 -14.14606 2 . 2 -14.14595 2.3 -14.14582
7.7 •14.14551 7.8 -14.14546 7.9 -14.14592 8 . 0 -14.14592
y = 2.9

144

2.0 -14.14607
7.7 -14.14574
y = 3.0
2.0 -14.14604
7.7 -14.14566

2 .1
7.8

2 .1

7.8

-14.1461
-14.14562

-14.14597
-14.14557

2 .2
7.9

2 .2

7.9

-14.1458
-14.14581

-14.14581
-14.14588

2.3
8 . 0

2.3
8 . 0

-14.14596
-14.14562

-14.14579
-14.14587

Table A.2.2.3: Plate #11 (TV

0.002758).

= 410, lo = -0.000028 ma = -0.000086, zq = -14.14412, ht =

X z
y = 1 .0

X z X z X z

2.0 -14.14519 2 .1 -14.14524 2.2 -14.14508 2.3 -14.14501
7.7 -14.14543
y = 1 .1

7.8 -14.14543 7.9 -14.14563 8 . 0 -14.14588

2.0 -14.14523 2 .1 -14.14498 2 .2 -14.14513 2.3 -14.14499
7.7 -14.14553
y = 1 .2

7.8 -14.14553 7.9 -14.14559 8 . 0 -14.1458

2.0 -14.1453 2 .1 -14.1453 2 .2 -14.14517 2.3 -14.14507
7.7 -14.14551
y = 1.3

7.8 -14.14551 7.9 -14.14563 8 . 0 -14.14578

2.0 -14.14517 2 .1 -14.14512 2 .2 -14.14512 2.3 -14.14512
7.7 -14.14553
y = 1.4

7.8 -14.14553 7.9 -14.14577 8 . 0 -14.14577

2.0 -14.14534 2 .1 -14.14534 2 .2 -14.14534 2.3 -14.14505
7.7 -14.14544
y = 1.5

7.8 -14.14544 7.9 -14.14584 8 . 0 -14.14584

2.0 -14.14539 2 .1 -14.14539 2 .2 -14.14518 2.3 -14.14514
3.4 -14.14388 3.5 -14.14368 3.6 -14.144 3.7 -14.14361
3.8 -14.14361 3.9 -14.14361 4.0 -14.14361 4.1 -14.14333
4.2 -14.14333 4.3 -14.14333 4.4 -14.14322 5.6 -14.14333
5.7 -14.14352 5.8 -14.14347 5.9 -14.14343 6 . 0 -14.14343
6.1 -14.1437 6 . 2 -14.1437 6.3 -14.1438 6.4 -14.14398
6.5 -14.14394
7.9 -14.1456
y = 1 .6

6 . 6

8 . 0

-14.14394
-14.14572

7.7 -14.14556 7.8 -14.14556

2.0 -14.1439 2 .1 -14.1439 2 .2 -14.1439 2.3 -14.14342
3.4 -14.14353 3.5 -14.14338 3.6 -14.14346 3.7 -14.14335
3.8 -14.14335 3.9 -14.14317 4.0 -14.1434 4.1 -14.1454
4.2 -14.14534 4.3 -14.14507 4.4 -14.14507 5.6 -14.14342
5.7 -14.14337 5.8 -14.14358 5.9 -14.14346 6 . 0 -14.14364
6.1 -14.14364 6 . 2 -14.14378 6.3 -14.14379 6.4 -14.14374
6.5 -14.14398
7.9 -14.14557
y =1.7

6 . 6

8 . 0

-14.14406
-14.14579

7.7 -14.14546 7.8 -14.14546

2.0 -14.14514 2 .1 -14.14518 2 .2 -14.14518 2.3 -14.14518

145

3.4 -14.14405 3.5 -14.14405 3.6 -14.14365 3.7 -14.14365
3.8 -14.1435 3.9 -14.14345 4.0 -14.14345 4.1 -14.14339
4.2 -14.14339 4.3 -14.14339 4.4 -14.14327 5.6 -14.14347
5.7 -14.14355 5.8 -14.14347 5.9 -14.14347 6 . 0 -14.14377
6.1 -14.14378 6 . 2 -14.14378 6.3 -14.1438 6.4 -14.14406
6.5 -14.14406 6 . 6 -14.14407 7.7 -14.14557 7.8 -14.14557
7.9 -14.14552 8 . 0 -14.1457
y = 1 .8

2.0 -14.14548 2 .1 -14.14548 2 . 2 -14.14538 2.3 -14.14523
3.4 -14.144 3.5 -14.144 3.6 -14.14372 3.7 -14.14372
3.8 -14.14362 3.9 -14.14344 4.0 -14.14339 4.1 -14.14339
4.2 -14.14339 4.3 -14.14339 4.4 -14.14324 5.6 -14.14341
5.7 -14.14341 5.8 -14.14341 5.9 -14.14352 6 . 0 -14.14392
6.1 -14.14392 6 . 2 -14.14392 6.3 -14.14381 6.4 -14.14427
6.5 -14.14427 6 . 6 -14.1443 7.7 -14.14528 7.8 -14.14542
7.9 -14.1456 8 . 0 -14.1456
y= 1.9
2.0 -14.14548 2 .1 -14.14548 2 . 2 -14.14529 2.3 -14.14521
3.4 -14.14401 3.5 -14.14401 3.6 -14.14401 3.7 -14.14401
3.8 -14.1437 3.9 -14.14348 4.0 -14.14331 4.1 -14.14331
4.2 -14.14331 4.3 -14.14327 4.4 -14.14325 5.6 -14.1436
5.7 -14.14357 5.8 -14.14368 5.9 -14.14372 6 . 0 -14.14372
6.1 -14.14372 6 . 2 -14.14393 6.3 -14.14393 6.4 -14.14529
6.5 -14.14529 6 . 6 -14.14539 7.7 -14.14539 7.8 -14.14541
7.9 -14.14557 8 . 0 -14.14568
y = 2 . 0

2.0 -14.14553 2 .1 -14.14553 2 . 2 -14.14553 2.3 -14.14524
3.4 -14.14415 3.5 -14.14415 3.6 -14.14415 3.7 -14.14369
3.8 -14.14354 3.9 -14.14354 4.0 -14.14341 4.1 -14.14341
4.2 -14.14341 4.3 -14.14344 4.4 -14.14335 5.6 -14.14348
5.7 -14.14362 5.8 -14.14353 5.9 -14.14364 6 . 0 -14.14378
6.1 -14.14382 6 . 2 -14.14393 6.3 -14.14393 6.4 -14.14393
6.5 -14.14412 6 . 6 -14.14428 7.7 -14.14536 7.8 -14.14536
7.9 -14.14562 8 . 0 -14.14554
3 ̂= 2 .1

2.0 -14.14554 2 .1 -14.14554 2 . 2 -14.14551 2.3 -14.14542
3.4 -14.14398 3.5 -14.14421 3.6 -14.14421 3.7 -14.14367
3.8 -14.14354 3.9 -14.14354 4.0 -14.14341 4.1 -14.14341
4.2 -14.14341 4.3 -14.14337 4.4 -14.14329 5.6 -14.14348
5.7 -14.14361 5.8 -14 14363 5.9 -14.14372 6 . 0 -14.14372
6.1 -14.14372 6 . 2 -14.14381 6.3 -14.14381 6.4 -14.14389
6.5 -14.14414 6 . 6 -14.14418 7.7 -14.14536 7.8 -14.14536
7.9 -14.14548 8 . 0 -14.1456
3; = 2 .2

2.0 -14.1455 2 .1 -14.1455 2 . 2 -14.14551 2.3 -14.14528
3.4 -14.14406 3.5 -14.14399 3.6 -14.14399 3.7 -14.14373

146

3.8 -14.14366 3.9 -14.14349 4.0 -14.14346 4.1 -14.14349
4.2 -14.14336 4.3 -14.14341 4.4 -14.14337 5.6 -14.14356
5.7 -14.14359 5.8 -14.14369 5.9 -14.1436 6 . 0 -14.14387
6.1 -14.14387 6 . 2 -14.14393 6.3 -14.14393 6.4 -14.1442
6.5 -14.1442 6 . 6 -14.14421 7.7 -14.1453 7.8 -14.1453
7.9 -14.14555 8 . 0 -14.14567
y = 2.3
2.0 -14.14552 2 .1 -14.14552 2 . 2 -14.14558 2.3 -14.14538
3.4 -14.14423 3.5 -14.14423 3.6 -14.14423 3.7 -14.14372
3.8 -14.14353 3.9 -14.14346 4.0 -14.14361 4.1 -14.14346
4.2 -14.14334 4.3 -14.14345 4.4 -14.14323 5.6 -14.14353
5.7 -14.14352 5.8 -14.1436 5.9 -14.14358 6 . 0 -14.14381
6.1 -14.14381 6 . 2 -14.14387 6.3 -14.14387 6.4 -14.14407
6.5 -14.14407 6 . 6 -14.14438 7.7 -14.1453 7.8 -14.14531
7.9 -14.14556 8 . 0 -14.14556
y = 2.4
2.0 -14.1457 2 .1 -14.1457 2 . 2 -14.14553 2.3 -14.14542
3.4 -14.14408 3.5 -14.14414 3.6 -14.14414 3.7 -14.14368
3.8 -14.14381 3.9 -14.14349 4.0 -14.14349 4.1 -14.14337
4.2 -14.14337 4.3 -14.14348 4.4 -14.14336 5.6 -14.14366
5.7 -14.14368 5.8 -14.14358 5.9 -14.14372 6 . 0 -14.14375
6.1 -14.14374 6 . 2 -14.14392 6.3 -14.14392 6.4 -14.1441
6.5 -14.1441 6 . 6 -14.14443 7.7 -14.14523 7.8 -14.14536
7.9 -14.1456 8 . 0 -14.1456
y = 2.5
2.0 -14.14569 2 .1 -14.14569 2 . 2 -14.1455 2.3 -14.14548
3.4 -14.14404 3.5 -14.14397 3.6 -14.14371 3.7 -14.14373
3.8 -14.14364 3.9 -14.1434 4.0 -14.14364 4.1 -14.1434
4.2 -14.14354 4.3 -14.14337 4.4 -14.1433 5.6 -14.14352
5.7 -14.14366 5.8 -14.14371 5.9 -14.14374 6 . 0 -14.14372
6.1 -14.14374 6 . 2 -14.14384 6.3 -14.14388 6.4 -14.14387
6.5 -14.1441 6 . 6 -14.14436 7.7 -14.14533 7.8 -14.14538
7.9 -14.14537 8 . 0 -14.14552
y = 2.6
2.0 -14.14571 2 .1 -14.14571 2 . 2 -14.14557 2.3 -14.1455
7.7 -14.14536 7.8 -14.14536 7.9 -14.14539 8 . 0 -14.1454
y = 2.1
2.0 -14.14572 2 .1 -14.14572 2 . 2 -14.14551 2.3 -14.1455
7.7 -14.14525 7.8 -14.14525 7.9 -14.1454 8 . 0 -14.14545
y = 2 . 8

2.0 -14.14575 2 .1 -14.1456 2 . 2 -14.14564 2.3 -14.14546
7.7 -14.14524 7.8 -14.14524 7.9 -14.14534 8 . 0 -14.14556
y = 2.0
2.0 -14.14587 2 .1 -14.14587 2 . 2 -14.1456 2.3 -14.14555
7.7 -14.14522 7.8 -14.14522 7.9 -14.14527 8 . 0 -14.14549
}/ = 3.0

147

2.0 -14.14598
7.7 -14.14507

2 .1
7.8

-14.14579
-14.14523

2 . 2
7.9

-14.14561
-14.14531

2.3
8 . 0

-14.14543
-14.14547

Table A.2.2.4: Plate #5 (N

0.002863).

= 410, lo = -0.000055, ma = 0.000130, zq = -14.15313, ht =

X z
y = 1 .0

X z X z X z

2.0 -14.15414 2 .1 -14.15415 2 . 2 -14.15394 2.3 -14.15382
7.7 -14.15452
y = 1 .1

7.8 -14.15457 7.9 -14.15478 8 . 0 -14.1549

2.0 -14.15425 2 .1 -14.15413 2 . 2 -14.15405 2.3 -14.15397
7.7 -14.15471
y= 1 .2

7.8 -14.15469 7.9 -14.15469 8 . 0 -14.1549

2.0 -14.15422 2 .1 -14.15411 2 . 2 -14.15411 2.3 -14.15387
7.7 -14.15459
y = 1.3

7.8 -14.15459 7.9 -14.155 8 . 0 -14.155

2.0 -14.15418 2 .1 -14.15409 2 . 2 -14.15401 2.3 -14.15402
7.7 -14.15443
y = 1.4

7.8 -14.15443 7.9 -14.1547 8 . 0 -14.15484

2.0 -14.15412 2 .1 -14.15411 2 . 2 -14.15403 2.3 -14.15388
7.7 -14.15437
3;= 1.5

7.8 -14.15446 7.9 -14.15446 8 . 0 -14.15482

2.0 -14.15425 2 .1 -14.15403 2 . 2 -14.15399 2.3 -14.15396
3.4 -14.15272 3.5 -14.15261 3.6 -14.15241 3.7 -14.15221
3.8 -14.15226 3.9 -14.15213 4.0 -14.15208 4.1 -14.15206
4.2 -14.15204 4.3 -14.1519 4.4 -14.152 5.6 -14.15216
5.7 -14.15231 5.8 -14.15236 5.9 -14.15227 6 . 0 -14.15228
6.1 -14.15251 6 . 2 -14.15243 6.3 -14.15267 6.4 -14.15276
6.5 -14.15289
7.9 -14.15461
y = 1 .6

6 . 6

8 . 0

-14.15306
-14.15484

7.7 -14.15434 7.8 -14.15461

2.0 -14.1542 2 .1 -14.1542 2 . 2 -14.15409 2.3 -14.15403
3.4 -14.15276 3.5 -14.15241 3.6 -14.15241 3.7 -14.15225
3.8 -14.15232 3.9 -14.15226 4.0 -14.15205 4.1 -14.15211
4.2 -14.15213 4.3 -14.152 4.4 -14.15199 5.6 -14.1522
5.7 -14.1523 5.8 -14.15236 5.9 -14.15239 6 . 0 -14.15235
6.1 -14.15247 6 . 2 -14.15246 6.3 -14.15276 6.4 -14.15276
6.5 -14.15278
7.9 -14.15484
y = 1.7

6 . 6

8 . 0

-14.15293
-14.15488

7.7 -14.1543 7.8 -14.15456

2.0 -14.15433 2 .1 -14.15419 2 . 2 -14.15402 2.3 -14.1539
3.4 -14.15256 3.5 -14.15256 3.6 -14.15243 3.7 -14.1523
3.8 -14.15223 3.9 -14.15232 4.0 -14.15216 4.1 -14.15214
4.2 -14.15211 4.3 -14.15219 4.4 -14.15203 5.6 -14.15229
5.7 -14.15229 5.8 -14.15229 5.9 -14.15232 6 . 0 -14.1525

148

6.1 -14.15238
6.5 -14.15278

6 . 2
6 . 6

-14.15259
-14.15302

6.3
7.7

-14.15268
-14.15433

6.4
7.8

-14.15268
-14.15439

7.9 -14.15456 8 . 0 -14.15491
y = 1 .8

2.0 -14.15435 2 .1 -14.15418 2 . 2 -14.15403 2.3 -14.15391
3.4 -14.15278 3.5 -14.15265 3.6 -14.15272 3.7 -14.15243
3.8 -14.1523 3.9 -14.15229 4.0 -14.15221 4.1 -14.15217
4.2 -14.15206 4.3 -14.15199 4.4 -14.15204 5.6 -14.1521
5.7 -14.1522 5.8 -14.15224 5.9 -14.15224 6 . 0 -14.15246
6.1 -14.15252 6 . 2 -14.15252 6.3 -14.15256 6.4 -14.15293
6.5 -14.15293 6 . 6 -14.15293 7.7 -14.15434 7.8 -14.15434
7.9 -14.15457 8 . 0 -14.15462
y = 1.9
2.0 -14.15425 2 .1 -14.15417 2 . 2 -14.1541 2.3 -14.15413
3.4 -14.15273 3.5 -14.15257 3.6 -14.15241 3.7 -14.15242
3.8 -14.15242 3.9 -14.15223 4.0 -14.1523 4.1 -14.15217
4.2 -14.15215 4.3 -14.15209 4.4 -14.15213 5.6 -14.15216
5.7 -14.15218 5.8 -14.15229 5.9 -14.15231 6 . 0 -14.15231
6.1 -14.15256 6 . 2 -14.15245 6.3 -14.15258 6.4 -14.15281
6.5 -14.15281 6 . 6 -14.15296 7.7 -14.15442 7.8 -14.15442
7.9 -14.15437 8 . 0 -14.15473
y = 2 . 0

2.0 -14.15418 2 .1 -14.15418 2 . 2 -14.15405 2.3 -14.154
3.4 -14.1527 3.5 -14.15255 3.6 -14.1525 3.7 -14.15233
3.8 -14.15233 3.9 -14.15224 4.0 -14.15228 4.1 -14.15219
4.2 -14.15206 4.3 -14.15203 4.4 -14.15211 5.6 -14.15218
5.7 -14.15224 5.8 -14.15232 5.9 -14.15232 6 . 0 -14.15239
6.1 -14.15234 6 . 2 -14.15256 6.3 -14.1526 6.4 -14.1526
6.5 -14.15258 6 . 6 ^ -14.15287 7.7 -14.15428 7.8 -14.15441
7.9 -14.15454 8 . 0 -14.15466
y = 2 .1

2.0 -14.1543 2 .1 -14.15434 2 . 2 -14.15409 2.3 -14.15416
3.4 -14.15265 3.5 -14.15265 3.6 -14.15248 3.7 -14.15235
3.8 -14.15233 3.9 -14.15234 4.0 -14.15224 4.1 -14.15207
4.2 -14.15204 4.3 -14.15213 4.4 -14.15197 5.6 -14.15212
5.7 -14.15218 5.8 -14.1521 5.9 ' -14.15214 6 . 0 -14.15243
6.1 -14.15243 6 . 2 -14.15234 6.3 -14.15266 6.4 -14.15266
6.5 -14.15257 6 . 6 -14.15285 7.7 -14.15427 7.8 -14.1544
7.9 -14.15451 8 . 0 -14.15454
y = 2 . 2

2.0 -14.15424 2 .1 -14.15424 2 . 2 -14.15407 2.3 -14.15414
3.4 -14.15266 3.5 -14.15259 3.6 -14.15243 3.7 -14.15241
3.8 -14.15229 3.9 -14.15229 4.0 -14.1522 4.1 -14.15218
4.2 -14.15218 4.3 -14.15209 4.4 -14.15203 5.6 -14.15208
5.7 -14.15223 5.8 -14.15216 5.9 -14.15227 6 . 0 -14.15223
6.1 -14.15234 6 . 2 -14.15234 6.3 -14.15254 6.4 -14.15254

149

6.5 -14.15282 6 . 6 -14.15293 7.7 -14.15433 7.8 -14.15456
7.9 -14.15456 8 . 0 -14.15451
y = 2.3
2.0 -14.15431 2 .1 -14.15424 2 . 2 -14.15418 2.3 -14.15403
3.4 -14.15271 3.5 -14.15264 3.6 -14.15245 3.7 -14.15242
3.8 -14.15227 3.9 -14.15227 4.0 -14.15222 4.1 -14.15216
4.2 -14.15216 4.3 -14.15214 4.4 -14.15216 5.6 -14.15223
5.7 -14.15219 5.8 -14.15217 5.9 -14.15217 6 . 0 -14.15221
6.1 -14.15231 6 . 2 -14.15231 6.3 -14.15234 6.4 -14.15247
6.5 -14.15248 6 . 6 -14.15273 7.7 -14.154 7.8 -14.15439
7.9 -14.15443 8 . 0 -14.15454
3; = 2.4
2.0 -14.1544 2 .1 -14.15436 2 . 2 -14.15424 2.3 -14.15407
3.4 -14.1526 3.5 -14.1526 3.6 -14.15243 3.7 -14.15251
3.8 -14.15227 3.9 -14.15227 4.0 -14.15214 4.1 -14.15209
4.2 -14.15209 4.3 -14.15194 4.4 -14.15204 5.6 -14.15215
5.7 -14.15223 5.8 -14.15216 5.9 -14.15216 6 .0 -14.15214
6.1 -14.15214 6 . 2 -14.15228 6.3 -14.15242 6.4 -14.15246
6.5 -14.15244 6 . 6 -14.15269 7.7 -14.15391 7.8 -14.15433
7.9 -14.15433 8 . 0 -14.15433
y = 2.5
2.0 -14.15423 2 .1 -14.15424 2 . 2 -14.15417 2.3 -14.15408
3.4 -14.15262 3.5 -14.15243 3.6 -14.1524 3.7 -14.15243
3.8 -14.15231 3.9 -14.15227 4.0 -14.15218 4.1 -14.15211
4.2 -14.152 4.3 -14.15198 4.4 -14.15206 5.6 -14.15203
5.7 -14.15201 5.8 -14.15214 5.9 -14.15217 6 .0 -14.1521
6.1 -14.15202 6 . 2 -14.15221 6.3 -14.1523 6.4 -14.15232
6.5 -14.15245 6 . 6 -14.15267 7.7 -14.15409 7.8 -14.15446
7.9 -14.15446 8 . 0 -14.15442
y = 2.6
2.0 -14.15435 2 .1 -14.15435 2 . 2 -14.15413 2.3 -14.15414
7.7 -14.15415 7.8 -14.15415 7.9 -14.15447 8 .0 -14.15452
y = 2.1
2.0 -14.15433 2 .1 -14.15433 2 . 2 -14.15416 2.3 -14.15404
7.7 -14.15385 7.8 -14.15405 7.9 -14.1543 8 .0 -14.15451
y = 2.Z
2.0 -14.15423 2 .1 -14.15423 2 . 2 -14.15407 2.3 -14.15393
7.7 -14.15378 7.8 -14.15406 7.9 -14.1543 8 .0 -14.15439
>̂ = 2.9
2.0 -14.15428 2 .1 -14.15413 2 . 2 -14.1541 2.3 -14.15392
7.7 -14.15388 7.8 -14.1539 7.9 -14.15429 8 .0 -14.15429
>̂ = 3.0
2.0 -14.15424 2 .1 -14.1543 2 . 2 -14.15407 2.3 -14.15391
7.7 -14.1539 7.8 -14.15392 7.9 -14.15425 8 .0 -14.15423

150

APPENDKB

JAVA CODES

B.1 Least Squares Line

/* Least Squares Fit Line
* This program uses a class containing 3 instance variables 10, yO, & r, and
* method calcLine that returns an object o f that class. The method is returning
* a single object, but it is actually calculating & returning all 3 values.
♦/

import chapman.io.*;
class LSquaresLine {

//declare variables
private double 10, yO, r;
// Constructor that does nothing
public LSquaresLineO {
}
// Method to get slope
public double getSlopeQ{

return 1 0 ;
}
// Method to get intercept
public double getlnterceptQ {

return yO;
}
// Method to get correlation coefGcient
public double getCorrelationQ{

return r;
}

// Method calcLine
public LSquaresLine calcLine(double x[], double y[], int nval) {

double sumX = 0.0, sumY = 0.0;
double sumX2 = 0.0, sumXY = 0.0, sumY2 = 0.0;
double xbar, ybar, term;
LSquaresLine result = new LSquaresLineQ;

for (int i = 0 ; i < nval; i++) {
sumX += x[i]; sumY += y[i];
sumX2 += x[i] * x[i];
sumXY += x[i] * y[i];

151

sumY2 += y[i] * y[i];
}

xbar = sumX / nval;
ybar = sumY / nval;
10 = (sumXY - sumX*ybar)/(sumX2 - sumX*xbar);
yO = ybar - 10*xbar,
term = (nval*sumX2 - sumX*sumX)*(nval*sumY2 - sumY*sumY);
r = (nval*sumXY - sumX*siunY)/Math.sqrt(term);
return result;

} //end method calcLine
}//end class LSquaresLine

public class LeastSquaresLine {
public static void main(String[] args) {

final int MAXVAL = 150; //max array size

//Variables Declaration
double x[] = new double[MAXVAL], y[] = new double[MAXVAL];//data arrays
String fileNamel; //input file name
int j = 0 ; //index
int n;//number of data points

Stdin in = new StdlnQ; //creates a Stdin object (Chapman.io)

//Get input file name
System.out.print("Enter data file name under forte4j dir: ");
fileNamel = in.readStringO;
System.out.println(fileName 1);

//Open file (Chapman.io package)
Filein ini = new Fileln(fileNamel);

//check for valid data file open
if(inl.readStatus != inl.FILE_NOT_FOUND) {

//Read numbers into array
while (inl.readStatus != ini.EOF) {

j = inl.readlnt0 ;
x[j] = inl.readDoubleO;
yOi = inlreadDoubleO;

}//end while
n = j + 1 ;
ini closeOy/Close data file

LSquaresLine Is = new LSquaresLineQ; //Create a LSquaresLine object
ls.calcLine(x, y, n);//invoke method calcLine

152

//Write the results in the format specified
System.out.printIn(''data points = "+ n);
Fmt.printf("The slope 10 = %9.6f\n", Is.getSlopeQ);
Fmt.printf("The intercept zO = %9.5f\n" , Is.getlnterceptQ);
Fmt.printf("The correlation coefficient r = %6.3f\n", Is.getCorrelationO);

} //end if
else {//data file not found

System.out.println("File " + fileNamel + " not found!");
}

} //end main method
} //end class LeastSquaresLine

B.2 Least Squares Plane

/* Least Squares Fit Plane
* This program uses a class containing 3 instance variables 10, mO, & zO, and
* method calcPlane that returns an object o f that class. The method is returning
* a single object, but it is actually calculating & returning all 3 values.
♦/

import chapman.io.*;
class LSquaresPlane {

//declare variables
private double 10, mO, zO;
// Constructor that does nothing
public LSquaresFlaneQ {
}
// Method to get slopex
public double getSlopexQ{

return 1 0 ;
}
// Method to get slopey
public double getSlopeyO{

return mO;
}
// Method to get intercept
public double getlnterceptQ {

return zO;
}
// Method calcPlane
public LSquaresPlane calcPlane(double x[],double y[],double z[],int nval) {

153

double sumX = 0.0, sumY = 0.0, sumZ = 0.0;
double sumX2 = 0.0, sumXY = 0.0, sumXZ = 0.0;
double sumY2 = 0.0, sumYZ = 0.0;
double term, terml, term2, tenn3;
LSquaresPlane result = new LSquaresFlaneQ;

for (int i = 0 ; i < nval; i++) {
sumX += x[i]; sumY += y[i];
sumZ += z[i]; sumX2 += x[i] * x[i];
sumXY += x[i] * y[i]; sumXZ += x[i] * z[i];
sumY2 += y[i] * y[i]; sumYZ += y[i] * z[i];

}
term = nval*sumX2 - sumX*sumX;
terml = (nval*sumXZ - sumX*sumZ)*(nval*sumXY - sumX*sumY)/term;
term2 = Math.pow((sumX”‘sumY - nval*sumXY),2)/(nval*sumX2 - sumX*sumX);
mO = (terml + sumY*sumZ - nval*sumYZ)/(term2 + sumY*sumY - nval*sumY2);
term3 = mO*(sumX*sumY - nval*sumXY) + nval*sumXZ - sumX*sumZ;
10 = term3/(nval*sumX2 - siunX*sumX);
zO = (sumZ - 10*sumX - mO*sumY)/nval;

return result;
} //end method calcPlane

}//end class LSquaresPlane

public class LeastSquaresPlane {
public static void main(String[] args) {

final int MAXVAL = 700; //Array size

//Variables Declaration
double x[] = new double[MAXVAL];
double y[] = new double[MAXVAL];
double zQ = new double[MAXVAL];
String fileNamel; //input file name
int i = 0; //Array index
int p, q;//row & col index in the data file
int n;//number of data points

Stdlh in = new StdlnQ; //creates a Stdin object (Chapman.io)

//Get input file name
System.out.print("Enter data file name under forte4j dir: ");
fileNamel = in.readStringQ;
System.out.println(fileName 1) ;

//Open file (Chapman.io package)
Filein ini = new Fileln(fileNamel);

154

//check for valid data file open
if (inLreadStatus != inl.FILE_NOT_FOUND) {

//Read numbers into array
while (inLreadStatus != inLEOF) {

p = inLreadlntO; q = ini .readlntQ;
x[i] = inlreadDoubleO;
y[i] = inlreadDoubleO;
z[i] = inLreadDoubleO;
i+= 1 ;

}//end while
n = i;
inl.closeO;//Close data file

LSquaresPlane Is = new LSquaresPIaneO; //Create a LSquaresPlane object
ls.calcPlane(x, y, z, n);//invoke method calcPlane

//Write the results in the format specified
System.out.printlnO;
Fmt.printf("The slope 10 = %9.6f\n", Is.getSlopexO);
Fmt.printf("The slope mO = %9.6f\n", Is.getSlopeyO);
Fmt.printf("The intercept zO = %9.5f\n", Is.getlnterceptO);

} //end if loop
else {//data file not found

System.out.println(”File " + fileNamel + " not found!");
}

} //end main method
} //end class LeastSquaresPlane

B.3 Region Elimination Search

/* This program finds solution point corresponding to emax(-ve direction) and
* emax(+ve dir) using region elimination (RE) search method.
* Arrays to hold (x,y) data points o f the population.
* File access to read data fî om & write to files
* /

import chapmanio.*;
public class RESearch {

public static void main(String[] args) {
final int MAXVAL = 150; //Array size
final double err = le-5;
final double XLL = 4.0 - err, XUL = 10.0 + err; //boundary points
final double 10 = -0.000773, yO = -14.82977; //LS line

155

//Variables Declaration
double xQ = new double[MAXVAL], y[] = new double[MAXVAL];
String infile = "dataStAlPlate 12End.txt"; //data file name
String outfile = "outRE.txt"; //output file name
int i=0 ; //index
int N; //Number of data values
double delta = 0.05; //step size for population data file
double xnow, xopt, enow, emaxNeg;
double xl, yl, xu, yu, el, eu;
char reply;

//Instantiate objects from the classes in chapman io package
Stdin in = new StdlnQ; //To read from keyboard
Filein ini = new FileIn(infile);//Opens data file
FileOut outl = new FileOut(outfile);//Opens output file

//check for valid data file open
if (inLreadStatus !=inl.FILE_NOT_FOUND) {

//Read points into arrays
while (inLreadStatus != inLEOF) {

i = inLreadlntO;
x[i] = inl.readDoubleO;
y[i] = inl.readDoubleO;

} //end while
N = i+1;
inl.closeO;//Close data file

} //end if
else {

System.out.printIn("File " + infile + " not found!");
}

//Finding a point with an optimum value of emax(-)
System.out.println("Search for a solution with emax(-)");

do {
int p, k = 4; //k = 16, 8 ,4 (depending on the step size to be used)
System.out.println("Enter the index [p] of the start point: ");
p = in.readlnt0 ;
System.out.println("Enter the value of e: ");
enow = in.readDoubleO;
xnow = x[p];
out 1 .printf(" % 2 1 s\n", infile);
outl.printf("%36s", "Starting point to find emax(-) was: ");
outl.printf("x = % 4.2f, xnow);
outl.printf(" with e = %9.6f\n", enow);

156

fo r(in tj= 0 ;j< 3 ;j+ +) {
if ((xnow - k*delta) >= XLL) {//within the boundary

xl = x[p-k];yl = y[p-k];
el = yl - (yO + 10*xl);

}//end if
else (//outside the boundary

xl = 1 0 0 .0 ; el = 1 0 0 .0 ; //a hypothetical value
} //end else

if ((xnow + k*delta) <= XUL) {//within boundary
XU = x[p+k]; yu = y[p+k];
eu = yu - (yO + 10*xu);

}//end if
else {//outside the boundary

XU = 1 0 0 .0 ; eu = 1 0 0 .0 ; //a hypothetical value
} //end else

//Compare e vlues
if (el < enow) {

if (el <= eu) {
enow = el;
xnow = xl; p = p - k;
}
else {

enow = eu;
xnow = xu; p = p + k;

} //end inner i^else
} // outer if
else {

if (eu < enow) {
enow = eu;
xnow = xu; p = p + k;

}
}//end outer ifi'else

//Write in output file
outl.print£("xl = % 4.2f, xl);
outl.printf(" el = % 9.6f, el);
outl.printf(", xu = %4.2f', xu);
outl.printf(" eu = % 9.6f, eu);
outl.printf(", xnow = % 4.2f, xnow);
outl.printf(” enow = %9.6f\n", enow);

k = k/2 ;
} //end for loop

1 5 7

xopt = xnow;
emaxNeg = enow;
outl.printf("%23s\n", "Hence, the solution is:");
outl.printf("xopt = % 4.2f, xopt);
outl.printf(" emax(-) = %9.6f\n", emaxNeg);

System.out.printIn("Another starting point? Y/N");
reply = in.readCharO;

} while (reply = Y*); //end do/while loop

//Finding a point with an optimum value of emax(+)
System.out.println("Search for a solution with emax(+)");

do {
int p, k = 4;
System.out.println("Enter the index [p] of the start point: ");
p = in.readlnt0 ;
System.out.println("Enter the value o f e; ");
enow = inreadDoubleQ;
xnow = x[p];
outl.printf("%30s\n", "--------------------------------");
outl.printf("%36s", "Starting point to find emax(+) was: ");
outl.printf("x = % 4.2f, xnow);
outl.printf(" with e = %9.6£\n", enow);

for(intj = 0;j <3;j++) {
if ((xnow - k*delta) >= XLL) {

xl = x[p-k];
yl = y[p-kj;
el = yl - (yO + 10*xl);

}
else {//outside the boundary

xl = 1 0 0 .0 ; el = - 1 0 0 .0 ; //a hypothetical value
} //end ifi'else

if ((xnow + k*delta) <= XUL) {
xu = x[p+k];
yu = y[p+kj;
eu = yu - (yO + 10*xu);

}
else {//outside the boundary

xu = 1 0 0 .0 ; eu = - 1 0 0 .0 ; //a hypothetical value
} //end ifelse

//Compare e vlues

158

if (el > enow) {
if(el>=eu) {
enow = el;
xnow = xl; p = p - k;
}
else {

enow = eu;
xnow = xu; p = p + k;

} //end inner i^else
} // outer if
else {

if (eu > enow) {
enow = eu;
xnow = xu; p = p + k;

}
}//end outer i f else

//Write in output file
outl.printf("xl = % 4.2f, xl);
outl.printf(" el = % 9.6f, el);
outl.printf(", xu = % 4.2f, xu);
outl.printf(" eu = %9.6F', eu);
outl.printf(", xnow = % 4.2f, xnow);
outl.printf(" enow = %9.6f\n", enow);

k = k/2 ;
} //end for loop

xopt = xnow;
emaxNeg = enow;
outl.printf("%23s\n", "Hence, the solution is:");
outl.printf("xopt = % 4.2f, xopt);
outl .printf(" emax(+) = %9.6f\n", emaxNeg);

System.out.println("Another starting point? Y/N");
reply = in.readCharO;

} while (reply = Y*); //end do/while loop

outl.closeO;//Close output file

} //end main method
} //end RESearch class

159

B.4 Tabu Search

/* This program finds solution points corresponding to emax(-ve direction) and
* emax(+ve dir) using Tabu search method.
* Arrays to hold (x,y,z) data points o f the population.
* File access to read data fi’om & write to files
*/

import chapman.io.*;
public class TabuSearch {

pubUc static void main(String[] args) {
final int MAXVAL = 31; //Array size
final double err = l.Oe-5;
final double XLL = 5. - err, XUL = 8 . + err, //boundary in x-direction
final double YLL = 5. - err, YUL = 7. + err; //boundary in y-direction
final double 10 = -0.00187, mO = 0.000193, zO = -14.84665; //LS Plane

//Variables Declaration
double xQQ = new double[MAXVAL] [MAXVAL];
double y[][] = new double[MAXVAL][MAXVAL];
double z[][] = new double[MAXVAL] [MAXVAL];
String infile = "dataFlAlPlate4.txt"; //input file name
String outfile = "outTS.txt"; //output file name
int p = 0 , q = 0 ; //row & col index
int pmin, pmax, qmin, qmax^/to track search area
int iter, itermax = 35; /*iteration max includes intensification iter,
which results no move bee' either bad or outside the boundary */

int N; //Number of data values = # of row ♦ # of col
int badmove, badmovemax = 1 ;
int direc[] = new int[itermax];/* direction of move in each iteration
= 1 (+x), 2 (+y), 3 (-x), 4 (-y), 0 (no move) */

double tabux, tabuy, //x & y value o f tabu point
double x l = 0 .0 , yl = 0 .0 , z l = 0 .0 , x2 = 0 .0 , y2 = 0 .0 , z2 = 0 .0 ;
double x3 = 0.0, y3 = 0.0, z3 = 0.0, x4 = 0.0, y4 = 0.0, z4 = 0.0;
double e l, e2, e3, e4;
double delta = 0 .1 ; //step size
double xnow, ynow, znow, xopt = 0 .0 , yopt = 0 .0 , zopt = 0 .0 ;
double xtemp = 0 .0 , ytemp = 0 .0 , ztemp = 0 .0 , etemp = 0 .0 ;
double enow, ebest;
char reply = "N"; //Re-start for the search: Y/N

//histantiate objects from the classes in chapman.io package
Stdin in = new StdlnQ; //To read firom keyboard
Filein ini = new FileIn(infile);//Opens data file
FileOut outl = new FileOut(outfile)y/Opens output file

//check for valid data file open

160

if (inLreadStatus != inl.FILE_NOT_FOUND) {
//Read points into arrays
while (inLreadStatus != inLEOF) {

p = inLreadlntO;
q = inLreadlntO;
x[p][q] = inl.readDoubleO;
y[p][q] = inl.readDoubleO;
z[p][qj = inlreadDoubleO;

} //end while
N = (p+l)*(q+l);
ini .closeOy/Close data file

} //end if
else {

System.out.println("File " + infile + " not found!");
}

//Write a note in the output file
outl.printf("%5s\n", "Note:");
outl.printf("%46s", "1. From iteration, subtract the iteration for ");
outl.printf("%44s\n", "which intensification was not good/feasible.");
outl.printf("%50s", "2. Iter starts w/ 0. If stopped bee’ o f badmovemax");
outl.printf("%42s\n", ", the last iteration point is not visited.");
outl.printf("%53s\n", "Either case, points visited = iter - failed intensif.");
outl.printf("%55s\n", "Sampled points = visited in emax (-& +) + initial set.");

//Finding a point with an optimum value of emax(-)
System.out.println("Search for a solution for emax(-)r ");
//initial values
ebest = 1 0 0 .0 ; tabux = 1 0 0 ,0 ; tabuy = 1 0 0 .0 ;
pmin = 20; pmax = 0; qmin = 30; qmax = 0;

do {
badmove = 0 ;
System.out.println("Enter row index [p] of the start point: ");
p = in.readlnt0 ;
System.out.println("Enter column index [q] of the start point: ");
q = inreadlntO;
if((p <= pmax && p >= pmin) && (q <= qmax && q >= qmin)) {
System.out.println("Enter a point outside p = " + pmin + " to " + pmax

+ " & q = " + qmin + " to " + qmax);
continue;//do loop
}
System.out.println("Enter e value of the start point: ");

enow = in.readDoubleO;
xnow = x[p][q]; ynow = y[p][q]; znow = z[p][q];
outLprintf("%2 s\n", " ");

161

outl.printf(”%35s\n", "Starting point to find emax(-) was ");
outl.printf("x = % 4.1f, xnow);
outl.printf(", y = % 4.1f’, ynow);
outl.printf(", z = % 9.5f, znow);
outl.printfi[" with e = %9.6f\n", enow);
if (p < pmin) pmin = p;
if (p > pmax) pmax = p;
if (q < qmin) qmin = q;
if (q > qmax) qmax = q;
if (enow < ebest) {

ebest = enow; xopt = xnow;
yopt = ynow; zopt = znow;

}

for (iter = 0 ; iter < itermax; itei++) {
if (iter <= 1 || (direc[iter - 1] != direc[iter - 2])) {

//Neighborhood search
if ((xnow + delta) <= XUL) {

yl = ynow; x l = x[p][q+l];
if ((Math.abs(xl - tabux) <= O.le-5) && (Math.abs(yl - tabuy) <= O.le-5))

el = 1 0 0 .0 ; //tabu
else {

zl =z[p][q+l];
el = zl - (zO + 10*xl + mO*yl);

}
}
else el = 1 0 0 .0 ;//outside the boundary

if ((ynow + delta) <= YUL) {
x2 = xnow; y2 = y[p+l][q];
if ((Math.abs(x2 - tabux) <= O.le-5) && (Math.abs(y2 - tabuy) <= O.le-5))

e2 = 1 0 0 .0 ; //tabu
else {

z2 = z[p+l][q];
e2 = z2 - (zO + 10*x2 + m0*y2);

}
}
else e2 = 1 0 0 .0 ;//outside the boundary

if ((xnow - delta) >= XLL) {
y3 = ynow; x3 = x[p][q-l];
if ((Math.abs(x3 - tabux) <= O.le-5) && (Math.abs(y3 - tabuy) <= O.le-5))

e3 = 100.0; //tabu
else {

z3 = z[p][q-l];

162

e3 = z3 - (zO + I0*x3 + mO*y3);
}

}
else e3 = lOO.Oy/outside the boundary

if ((ynow - delta) >= YLL) {
x4 = xnow; y4 = y[p-l][q];
if ((Math.abs(x4 - tabux) <= O.le-5) && (Math.abs(y4 - tabuy) <= O.le-5))

e4 = 100.0; //tabu
else {

z4 = z[p-l][q];
e4 = z4 - (zO + 10*x4 + mO*y4);

}
}
else e4 = 100.0;//outside the boundary

if (el <=e2){
if (el <= e3) {

if (el <= e4) {
etemp = el; xtemp = xl;
ytemp = y l; ztemp = zl;
q = q + 1 ; direc[iter] = 1 ;

}//end if el <= e4
else {

etemp = e4; xtemp = x4;
ytemp = y4; ztemp = z4;
p = p - 1 ; direc[iter] = 4;

}//end else
}//end if el <= e3
else {

if (e3 <= e4) {
etemp = e3 ; xtemp = x3 ;
ytemp = y3; ztemp = z3;
q = q - 1 ; direc[iter] = 3;

}//end if e3 <= e4
else {

etemp = e4; xtemp = x4;
ytemp = y4; ztemp = z4;
p = p -1 ; direc[iter] = 4;

}//end else
}//end else el > e3

}//end if e l <= e2

else {
if(e2< = e3) {

if (e2 <= e4) {
etemp = e2 ; xtemp = x2 ;

163

ytemp = y2 ; ztemp = z2 ;
p = p + 1 ; direc[iter] = 2 ;

}//end if e2 <= e4
else {

etemp = e4; xtemp = x4;
ytemp = y4; ztemp = z4;
p = p -1 ; direc[iter] = 4;

}//end else
}//end if e2 <= e3
else {

if (e3 <= e4) {
etemp = e3; xtemp = x3
ytemp = y3; ztemp = z3
q = q - 1; direc[iter] = 3

}//end if e3 <= e4
else {

etemp = e4; xtemp = x4
ytemp = y4; ztemp = z4
p = p - 1 ; direc[iter] = 4

}//end else e3 > e4
}//end else e2 > e3

}//end else el > e2

if (etemp > enow) {//bad move
badmove = badmove + 1 ;
if (badmove > badmovemax) {

outl .printi("%32s\n", "Bad moves exceeded the max limit");
break;

}//exit from the for loop
}

} //end if iter <= 1 or direc[iter-l] != direc[iter-2]

else {// No need to check for tabu as moving ahead in the direction
// o f the 2 prev moves (intensification)

if (direc[iter-l] = 1) {
if ((xnow + delta) <= XUL) {

ytemp = ynow;
xtemp = x[p][q+l];
ztemp = z[p][q+lj;
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp < enow) {//good move

direc[iter] = 1 ;
q = q + 1 ;

}
else {

direc[iter] = 0 ;

164

outl.printi("Iteradon %2i”, iter);
outl.print£("%30s\n", Intensification not good!");
continue; //for loop

}
}
else {//outside the boundary

direc[iter] = 0 ;
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", Intensification not feasible!");
continue; //for loop

}
}
else if (direc[iter-l] = 2) {

if ((ynow + delta) <= YUL) {
xtemp = xnow;
ytemp = y[p+l][q];
ztemp = z[p+l][qj;
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);

if (etemp < enow) {//good move
direc[iter] = 2 ;
p = p + 1 ;

}
else {

direc[iter] = 0 ;
outl.printf("Iteration%2i", iter);
outl.printf("%30s\n", Intensification not good!");
continue; //for loop

}
}
else {//outside the boundary

direc[iter] = 0 ;
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", Intensification not feasible!");
continue; //for loop

}
}
else if (direc[iter-l] = 3) {

if ((xnow - delta) >= XLL) {
ytemp = ynow;
xtemp = x[p][q-l];
ztemp = z[p][q-l];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp < enow) {//good move

direc[iter] = 3;
q = q - 1 ;

}

165

else {
direc[iter] = 0 ;
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", Intensification not good!");
continue; //for loop

}
}
else {//outside the boundary

direc[iter] = 0 ;
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", Intensification not feasible!");
continue; //for loop

}
}
else if (direc[iter-I] = 4) {

if ((ynow - delta) >= YLL) {
xtemp = xnow;
ytemp = y[p-l][qj;
ztemp = z[p-l][qj;
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp < enow) {//good move

direc[iter] = 4;
p = p - 1 ;

}
else {

direc[iter] = 0 ;
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", ": Intensification not good!");
continue; //for loop

}
}
else {//outside the boundary

direc[iter] = 0 ;
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", Intensification not feasible!");
continue; //for loop

}
}

}//end else, i.e. direc[iter-l] = direc[iter-2]

tabux = xnow; tabuy = ynow;
enow = etemp; xnow = xtemp;
ynow = ytemp; znow = ztemp;
if (p < pmin) pmin = p;
if (p > pmax) pmax = p;
if (q < qmin) qmin = q;

166

if (q > qmax) qmax = q;
if(enow<ebest) {

ebest = enow; xopt = xnow;
yopt = ynow; zopt = znow;

}

} //end for loop

//Write in output file
outl.printf("%35s", "Hence, the solution obtained after ");
outl.printf("iteration %2 i", iter);
outl.printf("%ls\n",
outl.printf("x = %4.1f', xopt);
outl.printf(", y = %4.1f’, yopt);
outl.print£(", z = % 9.5f, zopt);
outl.print£(" with emax(-) = %9.6f\n", ebest);
outl.printfi["%36s\n", "Plate is divided in 21 row x 31 col.");
outl.printf("%15s", "Area searched: ");
outl.printf(" row = %2 i", pmin+1);
outl.printf(" to row = %2 i", pmax+1);
outl.printf(" and col = %2 i", qmin+1);
outl.printf(" to col = %2 i\n", qmax+1);

System.out.println(" Another starting point for emax(-)? Y/N");
reply = in.readCharO;

} wWle (reply = Y*); //end do/while loop

//Finding a point with an optimum value of emax(+)
System.out.println("Search for a solution with emax(+)");
ebest = - 1 0 0 .0 ; tabux = 1 0 0 .0 ; tabuy = 1 0 0 .0 ;
pmin = 20; pmax = 0; qmin = 30; qmax = 0;

do {
badmove = 0 ;
System.out.println("Enter row index [p] o f the start point: ");
p = in.readlnt0 ;
System.out.println("Enter column index [q] of the start point: ");
q = inreadlntQ;
if((p <= pmax && p >= pmin) && (q <= qmax && q >= qmin)) {
System.out.println("Enter a point outside p = " + pmin + " to " + pmax

+ " & q = " + qmin + " to " + qmax);
continue;//do loop
}
System.out.println("Enter e value of the start point: ");

enow - in.readDoubleO;
xnow = x[p][q];

167

ynow = y[p][q];
znow = z[p][q];
outl.print£("%30s\n", "------------------------------ ");
outl.printf("%35s\n”, "Starting point to find emax(+) was ");
outl.printf("x = % 4.1f, xnow);
outl.printf(", y = % 4.1f, ynow);
outl.printf(", z = % 9.5f, znow);
outl.print£(" with e = %9.6f\n", enow);
if (p < pmin) pmin = p;
if ̂ > pmax) pmax = p;
if (q < qmin) qmin = q;
if (q > qmax) qmax = q;
if (enow > ebest) {

ebest = enow; xopt = xnow;
yopt = ynow; zopt = znow;

}

for (iter = 0 ; iter < itermax; iterf+) {
if (iter <= 1 || (direc[iter - 1] != direc[iter - 2])) {

//Neighborhood search
if ((xnow + delta) <= XUL) {

yl =ynow; x l =x[p][q+l];
if ((Math.abs(xl - tabux) <= O.le-5) && (Math.abs(yl - tabuy) <= O.le-5))

el = - 1 0 0 .0 ; //tabu
else {

zl = z[p][q+i];
el = z l - (zO + 10*xl + mO*yl);

}
}
else el = - 1 0 0 .0 ;//outside the boundary

if ((ynow + delta) <= YUL) {
x2 = xnow; y2 = y[p+l][q];
if ((Math.abs(x2 - tabux) <= O.le-5) && (Math.abs(y2 - tabuy) <= O.le-5))

e2 = - 1 0 0 .0 ; //tabu
else {

z2 = z[p+l][q];
e2 = z2 - (zO + 10*x2 + mO*y2);

}
}
else e2 = - 1 0 0 .0 ;//outside the boundary

if ((xnow - delta) >= XLL) {
y3 = ynow; x3 = x[p][q-l];
if ((Math.abs(x3 - tabux) <= O.le-5) && (Math.abs(y3 - tabuy) <= O.le-5))

168

e3 = -100.0; //tabu
else {

z3=z[p][q-l];
e3 = z3 - (zO + I0*x3 + mO*y3);

}
}
else e3 = -lOO.Oy/outside the boundary

if ((ynow - delta) >= YLL) {
x4 = xnow; y4 = y[p-l][q];
if ((Math.abs(x4 - tabux) <= O.le-5) && (Math.abs(y4 - tabuy) <= O.le-5))

e4 = -100.0; //tabu
else {

z4 = z[p-l][q];
e4 = z4 - (zO + I0*x4 + m0*y4);

}
}
else e4 = -100.0;//outside the boundary

if (el > =e2){
if (el >=e3) {

if (el >= c4) {
etemp = el ; xtemp = xl ;
ytemp = yl ; ztemp = zl ;
q = q + 1 ; direc[iter] = 1 ;

}//end ifel >=e4
else {

etemp = e4; xtemp = x4;
ytemp = y4; ztemp = z4;
p = p -1; direc[iter] = 4;

}//end else el < e4
}//end if el >= e3
else {

if (e3 >= e4) {
etemp = e3; xtemp = x3
ytemp = y3; ztemp = z3
q = q - 1; direc[iter] = 3

}//end if c3 >= e4
else {

etemp = e4; xtemp = x4;
ytemp = y4; ztemp = z4;
p = p -1 ; direc[iter] = 4;

}//end else e3 < e4
}//end else el < e3

}//end if e l >= e2

else {//el < e2

169

if(e2>=e3) {
if (e2 >= e4) {

etemp = e2 ; xtemp = x2 ;
ytemp = y2 ; ztemp = z2 ;
p = p + 1 ; direc[iter] = 2 ;

}//end if e2 >= e4
else {

etemp = e4; xtemp = x4;
ytemp = y4; ztemp = z4;
p = p -1 ; direc[iter] = 4;

}//end else e2 < e4
}//end if e2 >= e3
else {

if (e3 >= e4) {
etemp = e3; xtemp = x3
ytemp = y3; ztemp = z3
q = q -1 ; direc[iter] = 3

}//end if e3 >= e4
else {

etemp = e4; xtemp = x4
ytemp = y4; ztemp = z4
p = p - 1 ; direc[iter] = 4

}//end else e3 < e4
}//end else e2 < e3

}//end else el < e2

if (etemp < enow) {//bad move
badmove = badmove + I ;
if (badmove > badmovemax) {

outl.printf("%32s\n", "Bad moves exceeded the max limit");
break;

}//exit from the for loop
}

} //end if iter <= 1 or direc[iter-I] != direc[iter-2]

else {// No need to check for tabu as moving ahead in the direction
// of the 2 prev moves (intensification)

if (direc[iter-l] = 1) {
i f ((xnow + delta) <= XUL) {

ytemp = ynow;
xtemp = x[p][q+l];
ztemp = z[p][q+l];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp > enow) (//good move

direc[iter] = 1 ;
q = q + 1 ;

170

}
else {

direc[iter] = 0 ;
outl.printf("Iteration %2i", iter);
outl.printf|["%30s\n", Intensification not good!");
continue; //for loop

}
}
else {//outside the boundary

direc[iter] = 0 ;
outl.printf("Iteration %2i", iter);
outl.printfi["%30s\n", Intensification not feasible!");
continue; //for loop

}
}
else if (direc[iter-l] = 2) {

if ((ynow + delta) <= YUL) {
xtemp = xnow;
ytemp = y[p+l][q];
ztemp = z[p+l][q];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);

if (etemp > enow) {//good move
direc[iter] = 2 ;
p = p + 1 ;

}
else {

direc[iter] = 0 ;
outl.printf("Iteration %2 i", iter);
outl.printf("%30s\n", Intensification not good!");
continue; //for loop

}
}
else {//outside the boundary

direc[iter] = 0 ;
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", Intensification not feasible!");
continue; //for loop

}
}
else if (direc[iter-l] = 3) {

if ((xnow - delta) >= 5ŒL) {
ytemp = ynow;
xtemp = x[p][q-l];
ztemp = z[p][q-l];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp > enow) {//good move

171

direc[iter] = 3;
q = q - 1 ;

}
else {

direc[iter] = 0 ;
outl.printf("Iteration %2i", iter);
outl,print£("%30s\n", Intensification not good!");
continue; //for loop

}
}
else {//outside the boundary

direc[iter] = 0 ;
outl.printf("Iteration%2i", iter);
outl.printf("%30s\n", Intensification not feasible!");
continue; //for loop

}
}
else if (direc[iter-l] = 4) {

if ((ynow - delta) >= YLL) {
xtemp = xnow;
ytemp = y[p-l][q];
ztemp = z[p-l][q];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp > enow) {//good move

direc[iter] = 4;
p = p - 1 ;

}
else {

direc[iter] = 0 ;
outI.printf("Iteration %2i", iter);
outl.printf("%30s\n", Intensification not good!");
continue; //for loop

}
}
else {//outside the boundary

direc[iter] = 0 ;
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", Intensification not feasible!");
continue; //for loop

}
}

}//end else, i.e. direc[iter-l] == direc[iter-2]

tabux = xnow; tabuy = ynow;
enow = etemp; xnow = xtemp;
ynow = ytemp; znow = ztemp;

1 7 2

if (p < pmin) pmin = p;
if (p > pmax) pmax = p;
if (q < qmin) qmin = q;
if (q > qmax) qmax = q;
if (enow > ebest) {

ebest = enow; xopt = xnow;
yopt = ynow; zopt = znow;

}

} //end for loop

//Write in output file
out 1 .printf("%35s", "Hence, the solution obtained after ");
out 1 printf("iteration %2 i", iter);
outl.printf("%ls\n", ":");
outl.printf("x = % 4.1f, xopt);
outl.printf(", y = % 4.1f, yopt);
outl.printf(", z = % 9.5f, zopt);
outl.printf(" with emax(+) = %9.6f\n", ebest);
outl.printf("%36s\n", "Plate is divided in 21 row x 31 col.");
outl.printf("%15s", "Area searched: ");
outl.printf(" row = %2 i", pmin+1);
outl.printf(" to row = %2 i", pmax+1);
outl.printf(" and col = %2 i", qmin+1);
outl.printf(" to col = %2 i\n", qmax+1);

System.out.println(" Another starting point for emax(+)? Y/N");
reply = in.readCha^;

} while (reply = Y*); //end do/while loop

outl.cIoseO;//Close output file

} //end main method
} //end TabuSearch class

B.5 Hybrid Search

/* This program finds solution points corresponding to emax(-ve direction) and
* emax(+ve dir) using Hybrid search method.
* Arrays to hold (x,y,z) data points o f the population.
* File access to read data fijom & write to files

♦/
import chapman.io.*;
public class HybridSearch {

public static void main(String[] args) {

173

final int MAXVAL = 31; //Array size
final double err = l.Oe-5;
final double XLL = 5. - err, XUL = 8 . + err; //boundary in x-direction
final double YLL = 5. - err, YUL = 7. + err, //boundary in y-direction
final double 10 = -0.00187, mO = 0.000193, zO = -14.84665; //LS Plane

//Variables Declaration
double x[][] = new double[MAXVAL] [MAXVAL];
double y[][] = new double[MAXVAL] [MAXVAL];
double zQQ = new double[MAXVAL][MAXVAL];
String infile = "dataFlAIPlate4.txt"; //data file is same as in Tabu search.
String outfile = "outHS.txt"; //output file name
int p = 0 , q = 0 ; //row & col index
int pmin, pmax, qmin, qmax^/to track search area
int iter, itermax = 35; /‘ iteration max includes intensification iter,
which results no move bee' either bad or outside the boundary •/
int N; //Number o f data values = # of row * # o f col
int badmove, badmovemax = 1 ;
int direc[] = new int[itermax+l];/‘ direction o f move in each iteration
= 1 for (1,0), 2 (1,1), 3 (0,1), 4 (-1,1), 5 (-1,0), 6 (-1,-1),
7(0,-1), or 8 (1,-1). The elements are direc[0] to direc[itermax].
Iter starts w /1 in ‘for’ loop, so we need to define direc[0] to avoid
out of bound error. But direc[0] is not used in the program */
direc[0] = 0 ;
double tabux, tabuy; // x & y value of tabu point
double x l = 0 .0 , y l = 0 .0 , z l = 0 .0 , x2 = 0 .0 , y2 = 0 .0 , z2 = 0 .0 ;
double x3 = 0.0, y3 = 0.0, z3 = 0.0, x4 = 0.0, y4 = 0.0, z4 = 0.0;
double x5 = 0.0, y5 = 0.0, z5 = 0.0, x6 = 0.0, y6 = 0.0, z6 = 0.0;
double x7 = 0.0, y l = 0.0, z7 = 0.0, x8 = 0.0, y8 = 0.0, z8 = 0.0;
double el, e2, e3, e4, e5, e6 , e7, e8 , ebest;
double delta = 0 .1 ; //step size
double e[] = new double[itermax+ 1]y/ enow of each iteration,

//for starting point it's e[0] and then e[l] to e[itermax]
double xnow, ynow, znow, xopt = 0 .0 , yopt = 0 .0 , zopt = 0 .0 ;
double xtemp = 0 .0 , ytemp = 0 .0 , ztemp = 0 .0 , etemp = 0 .0 ;
char reply = "N'; //Re-start for the search: Y/N

//Instantiate objects firom the classes in chapman.io package
Stdin in = new StdJnQ; //To read from keyboard
Filein ini = new FileIn(infile);//Opens data file
FileOut outl = new FileOut(outfile);//Opens output file

//check for valid data file open
if(inl readStatus != inl.FILE_NOT_FOUND) {

//Read points into arrays
while (ini.readStatus != ini.EOF) {

174

p = inLreadlntO;
q = inLreadlntO;
x[p][q] = inLreadDoubleO;
y[p][q] = inLreadDoubleO;
z[p][q] = inLreadDoubleO;

} //end while
N = (p+l)*(q+l);
ini .closeOy/Close data file

} //end if
else {

System.out.println("FiIe " + infile + " not found!");
}

//Write a note in the output file
outl.printf("%5s\n", "Note: ");
outLprintf("%46s", "1. From iteration, subtract the iteration for ");
outl.printf("%41s\n", "which pattern move was not good/feasible.");
outl.printf("%47s", "2. Iter starts w/ 1; if stopped bee' o f itermax");
outl.printf("%13s\n", ", subtract 1.");
outLprintfl["%34s", "3. If stopped bee' of badmovemax, ");
out 1 .printf("%41 s\n", "the last iteration point is not visited");
outl.printf("%51s\n", "Both case, points visited = (iter-1) - failed iter.");
outLprintf("%55s\n", "Sampled points = visited in emax (-& +) + initial set.");

//Finding a point with an optimum value of emax(-)
System.out.println("Search for a solution for emax(-): ");
//initial values
ebest = 1 0 0 .0 ; tabux = 1 0 0 .0 ; tabuy = 1 0 0 .0 ;
pmin = 20; pmax = 0; qmin = 30; qmax = 0;

do {
badmove = 0 ;
System.out.println("Enter row index [p] of the start point: ");
p = in.readlnt0 ;
System.out.println("Enter column index [q] o f the start point: ");
q = in.readlnt0 ;
if((p <= pmax && p >= pmin) && (q <= qmax && q >= qmin)) {
System.out.println("Enter a point outside p = " + pmin + " to " + pmax

+ " & q = " + qmin + " to " + qmax);
continue;//do loop
}
System.out.println("Enter e value of the start point: ");

e[0] = in.readDoubleO;
xnow = x[p][q];
ynow = y[p][q];
znow = z[p][qj;

175

outl.printf("%2 s\n", " ");
outl.printf("%35s\n", "Starting point to find emax(-) was ");
outl.print£("x = % 4.1f, xnow);
outl.printfl[", y = % 4.1f, ynow);
outl.printf(", z = % 9.5f, znow);
outl.printfl[" with e = %9.6f\n", e[0]);
if (p < pmin) pmin = p;
if (p > pmax) pmax = p;
if (q < qmin) qmin = q;
if (q > qmax) qmax = q;
if (e[0] < ebest) {

ebest = e[0]; xopt = xnow;
yopt = ynow; zopt = znow;

}

for (iter = 1 ; iter <= itermax; iter++) {
if (iter <2\\ (e[iter - 1] >= e[iter - 2])) {

//Coordinate search exploratory move
if ((xnow + delta) <= XUL) {//within boundary

xl = x[p][q+l]; yl = ynow;
if ((Math.abs(xl - tabux) <= O.le-5) && (Math.abs(yl - tabuy) <= O.le-5))

e l = 1 0 0 .0 ; //tabu
else {

z l = z[p][q+l];
el = zl - (zO + 10*xl + mO*yl);

}//end else
}//end if w/in boundary
else el = 1 0 0 .0 ;//outside the boundary

if (el < e[iter-l]) {//good
if ((yl + delta) <= YUL) {//within boundary

x2 = x l; y2 =y[p+l][q+l];
if ((Math.abs(x2 - tabux) <= O.le-5) && (Math.abs(y2 - tabuy) <= O.le-5))

e2 = 1 0 0 .0 ; //tabu
else {

z2 = z[p+l][q+l];
e2 = z2 - (zO + 10*x2 + m0*y2);

}//end else
}//end if w/in boundary
else e2 = 1 0 0 .0 ;//outside the boundary

if(e2 < e l) {
etemp = e2 ; xtemp = x2 ; ytemp = y2 ; ztemp = z2 ;
p = p + l ; q = q + l ; direc[iter] = 2 ;

}

176

else {//e2 >= el
if ((yl - delta) >= YLL) {//within boundary
x8 = x l ; y 8 =y[p-l][q+l];
if ((Math.abs(x8 - tabux) <= O.le-5) && (Math.abs(y8 - tabuy) <= O.le-5))

e8 = 1 0 0 .0 ; //tabu
else {
z8 = z[p-l][q+l];
e8 = z8 - (zO + 10*x8 + mO*y8);

}//end else
}//end if w/in boundary
else e8 = lOO.Oy/outside the boundary

if (e8 < e l) {
etemp = e8 ; xtemp = x8 ; ytemp = y8 ; ztemp = z8 ;
p = p - l ; q = q+ l; direc[iter] = 8 ;

}
else {//e8 >= el (already e2 >= e l)
etemp = el; xtemp = x l; ytemp = y l; ztemp = zl;
q = q + 1 ; direc[iter] = 1 ; //p not changed

}//end else e8 >= el
}//end else e2 >= el

}//end if el < e[iter-l]
else {//el >= e[iter-l]

if ((xnow - delta) >= XLL) {//within boundary
x5 = x[p][q-l]; y5 = ynow;
if ((Math.abs(x5 - tabux) <= O.le-5) && (Math.abs(y5 - tabuy) <= O.le-5))

e5 = 100.0; //tabu
else {

z5 = z[p][q-l];
e5 = z5 - (zO + I0*x5 + m0*y5);

}//end else
}//end if w/in boundary
else e5 = 100.0;//outside the boundary

if (e5 < e[iter-l]) {//good
if ((y5 + delta) <= YUL) {//within boundary
x4 = x5; y4 = y[p+l][q-l];
if ((Math.abs(x4 - tabux) <= O.le-5) && (Math.abs(y4 - tabuy) <= O.le-5))

e4 = 100.0; //tabu
else {

z4 = z[p+l][q-l];
e4 = z4 - (zO + 10*x4 + mO*y4);

}//end else
}//end if within boundary
else e4 = 100.0;//outside the boundary

177

if(e4< e5) {
etemp = e4; xtemp = x4; ytemp = y4; ztemp = z4;
p = p + l ; q = q - l; direc[iter] = 4;

}
else {//e4 >= e5

if ((y5 - delta) >= YLL) {//within boundary
x6 = x5;y6 = y[p-l][q-l];
if ((Math.abs(x6 - tabux) <= O.le-5) && (Math.abs(y6 - tabuy) <= O.le-5))

e6 = 1 0 0 .0 ; //tabu
else {
z6 = z[p-l][q-l];
e6 = z6 - (zO + I0*x6 + mO*y6);

}//end else
}//end if within boundary
else e6 = 1 0 0 .0 ;//outside the boundary

if(e6< e5) {
etemp = e6 ; xtemp = x6 ; ytemp = y6 ; ztemp = z6 ;
p = p - 1 ; q = q - 1 ; direc[iter] = 6 ;

}
else {//e6 >= e5, already e4 >= e5

etemp = e5; xtemp = x5; ytemp = y5; ztemp = z5;
q = q -1 ; direc[iter] = 5;

}//end else e6 >= e5
}//end else e4 >= e5

}//end if e5 < e[iter-l]
else {//e5 >= e[iter-l]

if ((ynow + delta) <= YUL) {//within boundary
x3 = xnow;
y3 = y[p+l][qj;
if ((Math.abs(x3 - tabux) <= O.le-5) && (Math.abs(y3 - tabuy) <= O.le-5))

e3 = 100.0; //tabu
else {

z3 = z[p+l][qj;
e3 = z3 - (zO + 10*x3 + mO*y3);

}//end else
}//end if within boundary
else e3 = 100.0;//outside the boundary

if (e3 < e[iter-l]) {//good
etemp = e3; xtemp = x3; ytemp = y3; ztemp = z3;
p = p + 1; direc[iter] = 3;

}
else {//e3 >= e[iter-l]

if ((ynow - delta) >= YLL) {//within boundary
x7 = xnow;

178

y7 = y[p-l][q];
if ((Math.abs(x7 - tabux) <= O.le-5) && (Math.abs(y7 - tabuy) <= O.le-5))

e7 = 100.0; //tabu
else {

z7 = z[p-l][q];
e7 = z7 - (zO + 10*x7 + mO*y7);

}//end else
}//end if within boundary
else e7 = 100.0;//outside the boundary

if (e7 < e[iter-l]) {//good
etemp = e7; xtemp = x7; ytemp = y7; ztemp = z7;
p = p -1 ; direc[iter] = 7;

}
else {// e7 >= e[iter-l], e l, e5, e3 are already bad. If el is
// bad, e2 & e8 are not computed. If e5 is bad, e4 & e6 are not
// computed. So, choose the least bad from el, e3, e5, e7.

if (el <=e3){
if (el <=e5) {

if (el <= e7) {
etemp = el; xtemp = xl;
ytemp = yl; ztemp = zl;
q = q + 1 ; direc[iter] = 1 ;

}//end if el <= e7
else {//el > e7

etemp = e7; xtemp = x7;
ytemp = y7; ztemp = z7;
p = p -1; direc[iter] = 7;

}//end else el > e7
}//end if el <= e5
else {// el > c5

if(e5<=e7) {
etemp = e5; xtemp = x5
ytemp = y5; ztemp = z5
q = q -1 ; direc[iter] = 5

}//end if e5 <= e7
else {//e5 > e7

etemp = e7; xtemp = x7;
ytemp = y7; ztemp = z7;
p = p - 1; direc[iter] = 7;

}//end else e5 > e7
}//end else el > e5

}//end if e l <= e3
else {//el > e3

if (e3 <= e5) {

179

if(e3<=e7) {
etemp = e3; xtemp = x3;
ytemp = y3; ztemp = z3;
p = p + 1 ; direc[iter] = 3;

}//endife3 <=e7
else {//c3 > e7

etemp = e7; xtemp = x7
ytemp = y7; ztemp = z7
p = p - 1 ; direc[iter] = 7

}//end else e3 > e7
}//end if e3 <= e5
else {// e3 > e5

if (e5 <= e7) {
etemp = e5; xtemp = x5;
ytemp = y5; ztemp = z5;
q = q - 1; direc[iter] = 5;

}//end if e5 <= e7
else {//e5 > e7

etemp = e7; xtemp = x7;
ytemp = y7; ztemp = z7;
p = p -1 ; direc[iter] = 7;

}//end else e5 > e7
}//end else e3 > e5

}//end else e l > e3
}//end else e7 >= e[iter-l]

}//end else e3 >= e[iter-l]
}//end else e5 >= e[iter-l]

}//end else el >= e[iter-l]

if (etemp > e[iter-l]) { //bad move
badmove = badmove + 1 ;
if (badmove > badmovemax) {

outl.printf("%32s\n", "Bad moves exceeded the max limit");
break;

}//exit from the for loop
}

}//end if iter < 2 or e[iter-l] >= e[iter-2]
else { // iter > = 2 and e[iter-l] < e[iter-2]
//Check for HJ pattern move in the direction of the prev move.
//No need to check for tabu as it is not returning to prev point,

if (direc[iter-l] = 1) {
if ((xnow + delta) <= XUL) {//within boundary

ytemp = ynow;
xtemp = x[p][q+l];
ztemp = z[p][q+l];

180

etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp < e[iter-l]) {//good move

direc[iter] = 1 ;
q = q + l ;

}
else {

e[iter] = e[iter-l];
outl.print£("Iteration %2i", iter);
outl.printf("%30s\n'', pattern move not good!");
continue; //for loop

}
}//end if w/in boundary
else {//outside the boundary

e[iter] = e[iter-l];
out 1 .printf("Iteration %2i", iter);
outl.print£("%30s\n", pattern move not feasible!");
continue; //for loop

}
}
else if (direc[iter-l] = 2) {

if ((xnow + delta <= XUL) && (ynow + delta <= YUL)) {
xtemp = x[p+l][q+l];
ytemp = y[p+l][q+l];
ztemp = z[p+l][q+l];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp < e[iter-l]) {//good move

direc[iter] = 2 ;
p = p + l ;q = q + 1 ;

}
else {

e[iter] = e[iter-l];
out 1 .printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not good!");
continue; //for loop

}
}//end if w/in boundary
else {//outside the boundary

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", ": pattern move not feasible!");
continue; //for loop

}
}
else if (direc[iter-l] = 3) {

if ((ynow + delta) <= YUL) {//within boundary
xtemp = xnow;

181

ytemp = y[p+l][q];
ztemp = z[p+l][q];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp < e[iter-l]) {//good move

direc[iter] = 3;
p = p + 1 ;

}
else {

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not good!");
continue; //for loop

}
}//end if w/in boundary
else {//outside the boundary

e[iter] = e[iter-l];
outl.printf("Iteration %2 i", iter);
outl.printf("%30s\n", pattern move not feasible!");
continue; //for loop

}
}
else if (direc[iter-l] = 4) {

if ((xnow - delta >= XLL) && (ynow + delta <= YUL)) {
xtemp = x[p+l][q-l];
ytemp = y[p+l][q-l];
ztemp = z[p+l][q-l];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp < e[iter-l]) {//good move

direc[iter] = 4;
p = p + l ; q = q - 1 ;

}
else {

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", ": pattern move not good!");
continue; //for loop

}
}//end if w/in boundary
else {//outside the boundary

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not feasible!");
continue; //for loop

}
}
else if (direc[iter-l] = 5) {

182

i f ((xnow - delta) >= XLL) {//within boundary
ytemp = ynow;
xtemp = x[p][q-l];
ztemp = z[p][q-I];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp < e[iter-I]) {//good move

direc[iter] = 5;
q = q - l ;

}
else {

e[iter] = e[iter-l];
outl.printf{"Iteration %2i", iter);
outl.printf("%30s\n", pattern move not good!");
continue; //for loop

}
}//end if w/in boundary
else {//outside the boundary

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not feasible!");
continue; //for loop

}
}
else if (direc[iter-l] = 6) {

if ((xnow - delta >= XLL) && (ynow - delta >= YLL)) {
xtemp = x[p-l][q-l];
ytemp = y[p-l][q-lj;
ztemp = z[p-l][q-l];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp < e[iter-l]) {//good move

direc[iter] = 6 ;
p = p - l ;q = q - 1 ;

}
else {

e[iter] = e[iter-l];
out 1 .printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not good!");
continue; //for loop

}
}//end if w/in boundary
else {//outside the boundary

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not feasible!");
continue; //for loop

}

183

}
else if (direc[iter-l] = 7) {

if ((ynow - delta) >= YLL) {//within boundary
xtemp = xnow;
ytemp = y[p-I][q];
ztemp = z[p-l][q];
etemp = ztemp - (zO + IO*xtemp + mO*ytemp);
if (etemp < e[iter-l]) {//good move

direc[iter] = 7;
p = p - l ;

}
else {

e[iter] = e[iter-l];
outl.print£("Iteration %2 i", iter);
outl.print£("%30s\n", pattern move not good!");
continue; //for loop

}
}//end if w/in boundary
else {//outside the boundary

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not feasible!");
continue; //for loop

}
}
else {//direc[iter-l] = 8

if ((xnow + delta <= XUL) && (ynow - delta >= YLL)) {
xtemp = x[p-l][q+l];
ytemp = y[p-l][q+l];
ztemp = z[p-l][q+l];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp < e[iter-l]) {//good move

direc[iter] = 8 ;
p = p - l ; q = q + 1 ;

}
else {

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", ": pattern move not good!");
continue; //for loop

}
}//end if w/in boundary
else {//outside the boundary

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", ": pattern move not feasible!");

184

continue; //for loop
}

}

}//end else, iter >= 2 and e[iter-l] < e[iter-2]

tabux = xnow; tabuy = ynow;
e[iter] = etemp; xnow = xtemp;
ynow = ytemp; znow = ztemp;
if (p < pmin) pmin = p;
if (p > pmax) pmax = p;
if (q < qmin) qmin = q;
if (q > qmax) qmax = q;
if (e[iter] < ebest) {

ebest = e[iter]; xopt = xnow;
yopt = ynow; zopt = znow;

}

} //end for loop

//Write in output file
outl.printf|["%35s", "Hence, the solution obtained after ");
out 1 .printfC'iteration %2 i", iter);
outl.printf("%ls\n", ":");
outl.print£("x = % 4.1f, xopt);
outl.printf(", y = %4.1f', yopt);
outl.printf(", z = % 9.5f, zopt);
outl.printfi[" with emax(-) = %9.6£\n", ebest);
outl.printf("%36s\n", "Plate is divided in 21 row x 31 col.");
outl.printf("%15s", "Area searched: ");
outl.printf(" row = %2 i", pmin+1);
outl.printf(" to row = %2 i", pmax+1);
outl.printf(" and col = %2 i", qmin+1);
outl.printfC to col = %2 i\n", qmax+1);

System.out.println(" Another starting point for emax(-)? Y/N");
reply = in.readCharO;

} while (reply = Y*); //end do/while loop

//Finding a point with an optimum value of emax(+)
System.out.println("Search for a solution with emax(+)");
//initial values
ebest = - 1 0 0 .0 ; tabux = 1 0 0 .0 ; tabuy = 1 0 0 .0 ;
pmin = 20; pmax = 0; qmin = 30; qmax = 0;

do {

185

badmove = 0 ;
System.out.println("Enter row index [p] of the start point; ");
p = inreadlntO;
System.out.println("Enter column index [q] of the start point: ");
q = inreadlntO;
if((p <= pmax && p >= pmin) && (q <= qmax && q >= qmin)) {
System.out.printlnÔ'Enter a point outside p = " + pmin + " to " + pmax

+ " & q = " + qmin + " to " + qmax);
continueÿ/do loop
}
System.out.println("Enter e value of the start point: ");

e[0] = in.readDoubleQ;
xnow = x[p][q];
ynow = y[p][q];
znow = z[p][q];
outl.printf("%2 s\n", " ");
outl.printf("%35s\n", "Starting point to find emax(+) was ");
outl.printf("x = % 4.1f, xnow);
outl.printf(", y = % 4.1f, ynow);
outl.printf(", z = % 9.5f, znow);
outl.print^" with e = %9.6f\n", e[0]);
if (p < pmin) pmin = p;
if (p > pmax) pmax = p;
if (q < qmin) qmin = q;
if (q > qmax) qmax = q;
if (e[0] > ebest) {

ebest = e[0]; xopt = xnow;
yopt = ynow; zopt = znow;

}

for (iter = 1 ; iter <= itermax; iterH-) {
if (iter < 2 1| (e[iter - 1] <= e[iter - 2])) {

//Coordinate search exploratory move
if ((xnow + delta) <= XUL) (//within boundary

xl =x[p][q+l]; yl = ynow;
if ((Math.abs(xl - tabux) <= O.le-5) && (Math.abs(yl - tabuy) <= O.le-5))

el = -1 0 0 .0 ; //tabu
else {

zl = z[p][q+l];
el = zl - (zO + 10*xl + mO*yl);

}//end else
}//end if w/in boundary
else el = -1 0 0 .0 ;//outside the boundary

if (el > e[iter-l]) {//good

186

if ((yl + delta) <= YUL) {//within boundary
x2 = x l; y2 = y[p+l][q+l];
if ((Math.abs(x2 - tabux) <= O.le-5) && (Math.abs(y2 - tabuy) <= O.le-5))

e2 = - 1 0 0 .0 ; //tabu
else {

z2 = z[p+l][q+l];
e2 = z2 - (zO + 10*x2 + m0*y2);

}//end else
}//end if w/in boundary
else e2 = - 1 0 0 .0 ;//outside the boundary

if(e2 > e l) {
etemp = e2 ; xtemp = x2 ; ytemp = y2 ; ztemp = z2 ;
p = p + l ; q = q + l ; direc[iter] = 2 ;

}
else {//e2 <= el

if ((yl - delta) >= YLL) {//within boundary
x8 = x l ; y 8 = y[p-l][q+l];
if ((Math.abs(x8 - tabux) <= O.le-5) && (Math.abs(yS - tabuy) <= 0.1 e-5))
e8 = - 1 0 0 .0 ; //tabu

else {
z8 = z[p-l][q+l];
e8 = z8 - (zO + 10*x8 + mO*y8);

}//end else
}//end if w/in boundary
else e8 = - 1 0 0 .0 ;//outside the boundary

if(e 8 > e l) {
etemp = e8 ; xtemp = x8 ; ytemp = y8 ; ztemp = z8 ;
p = p - l ; q = q + l ; direc[iter] = 8 ;

}
else {//e8 <= el (already e2 <= el)

etemp = e l; xtemp = xl; ytemp = yl; ztemp = z l;
q = q + 1 ; direc[iter] = 1 ; //p not changed

}//end else e8 <= el
}//end else e2 <= el

}//end ife l > e[iter-l]
else {//el <=e[iter-l]
if ((xnow - delta) >= XLL) {//within boundary

x5 = x[p][q-l]; y5 = ynow;
if ((Math.abs(x5 - tabux) <= O.le-5) && (Math.abs(y5 - tabuy) <= O.le-5))

e5 = -100.0; //tabu
else {

z5 = z[p][q-l];
e5 = z5 - (zO + 10*x5 + mO*y5);

}//end else

187

}//end if w/in boundary
else e5 = -lOO.Oy/outside the boundary

if (e5 > e[iter-l]) {//good
if ((y5 + delta) <= YUL) {//within boundary
x4 = x5; y4 = y[p+l][q-l];
if ((Math.abs(x4 - ttd)ux) <= 0.1 e-5) && (Math.abs(y4 - tabuy) <= 0. le-5))

e4 = -100.0; //tabu
else {

z4 = z[p+l][q-l];
e4 = z4- (zO + 10*x4 + m0*y4);

}//end else
}//end if within boundary
else e4 = -100.0;//outside the boundary

if(e4> e5) {
etemp = e4; xtemp = x4; ytemp = y4; ztemp = z4;
p = p + 1; q = q - 1; direc[iter] = 4;

}
else {//e4 <= e5

if ((y5 - delta) >= YLL) {//within boundary
x6 = x5; y6 = y[p-l][q-l];
if ((Math.abs(x6 - tabux) <= 0.1 e-5) && (Math.abs(y6 - tabuy) <= 0.1 e-5))

e6 = -1 0 0 .0 ; //tabu
else {

z6 = z[p-l][q-l];
e6 = z6 - (zO + 10*x6 + m0*y6);

}//end else
}//end if within boundary
else e6 = - 1 0 0 .0 ;//outside the boundary

if (e6 > e5) {
etemp = e6 ; xtemp = x6 ; ytemp = y6 ; ztemp = z6 ;
p = p - 1 ; q = q - 1 ; direc[iter] = 6 ;

}
else {//e6 <= e5, already e4 <= e5

etemp = e5; xtemp = x5; ytemp = y5; ztemp = z5;
q = q -1 ; direc[iter] = 5;

}//end else e6 <= e5
}//end else e4 <= e5

}//end if e5 > e[iter-l]
else {//e5 <= e[iter-l]

if ((ynow + delta) <= YUL) {//within boundary
x3 = xnow;
y3 = y[p+l][q];
if ((Math.abs(x3 - tabux) <= 0.1 e-5) && (Math.abs(y3 - tabuy) <= 0.1 e-5))

188

e3 = -100.0; //tabu
else {

z3 = z[p+l][q];
e3 = z3 - (zO + 10*x3 + mO*y3);

}//end else
}//end if within boundary
else e3 = -lOO.Oy/outside the boundary

if (e3 > e[iter-l]) {//good
etemp = e3; xtemp = x3; ytemp = y3; ztemp = z3;
p = p + 1; direc[iter] = 3;

}
else {//e3 <= e[iter-l]

if ((ynow - delta) >= YLL) {//within boundary
x7 = xnow;
y7 = y[p-l][q];
if ((Math.abs(x7 - tabux) <= O.le-5) && (Math.abs(y7 - tabuy) <= 0.1 e-5))
e7 = -100.0; //tabu

else {
z7 = z[p-l][q];
e7 = z7 - (zO + 10*x7 + m0*y7);

}//end else
}//end if within boundary
else e7 = -100.0;//outside the boundary

if (e7 > e[iter-l]) {//good
etemp = e7; xtemp = x7; ytemp = y7; ztemp = z7;
p = p - 1; direc[iter] = 7;

}
else {// e7 <= e[iter-l], e l, eS, e3 are already bad. If el is
//bad, e2 & e8 are not computed. If e5 is bad, e4 & e6 are not
//computed. So, choose the least bad from el, e3, eS, e7.

if (el >=e3){
if (el >= eS) {
if(e l> = e7) {

etemp = el; xtemp = xl;
ytemp = yl; ztemp = zl;
q = q + 1 ; direc[iter] = 1 ;

}//end if e l >= e7
else {//el < e7

etemp = e7; xtemp = x7;
ytemp = y7; ztemp = z7;
p = p -1 ; direc[iter] = 7;

}//end else el < e7
}//end if e l >= e5

189

else {// el < e5
if (e5 >= e7) {

etemp = e5; xtemp = x5
ytemp = y5; ztemp = z5
q = q -1; direc[iter] = 5

}//end if e5 >= e7
else {//e5 < e7

etemp = e7; xtemp = x7;
ytemp = y7; ztemp = z7;
p = p -1 ; direc[iter] = 7;

}//end else e5 < e7
}//end else el < e5

}//end if el >= e3
else {//el < e3

if (e3 >= e5) (
if (e3 >= e7) {

etemp = e3; xtemp = x3;
ytemp = y3; ztemp = z3;
p = p + 1; direc[iter] = 3;

}//end if e3 >= e7
else {//e3 < e7

etemp = e7; xtemp = x7;
ytemp = y7; ztemp = z7;
p = p -1; direc[iter] = 7;

}//end else e3 < e7
}//end if e3 >= eS
else {// e3 < e5

if (e5 >= e7) {
etemp = e5; xtemp = x5;
ytemp = y5; ztemp = z5;
q = q -1 ; direc[iter] = 5;

}//end if e5 >= e7
else {//e5 < e7

etemp = e7; xtemp = x7;
ytemp = y7; ztemp = z7;
p = p -1; direc[iter] = 7;

}//end else eS < e7
}//end else e3 < e5

}//end else el < e3
}//end else e7 <= e[iter-l]

}//end else e3 <= e[iter-l]
}//end else e5 <= e[iter-l]

}//end else el <= e[iter-l]

if (etemp < e[iter-l]) { //bad move
badmove = badmove + 1 ;

190

}

if (badmove > badmovemax){
outl.printf("%32s\n", "Bad moves exceeded the max limit");
break;

}//exit ftom the for loop

}//end if iter < 2 or e[iter-l] <= e[iter-2]
else {// iter > = 2 and e[iter-l] > e[iter-2]
//Check for HJ pattern move in the direction of the prev move.
//No need to check for tabu as it is not returning to prev point.

if(direc[iter-l] = = 1){
if ((xnow + delta) <= XUL) {//within boundary

ytemp = ynow;
xtemp = x[p][q+l];
ztemp = z[p][q+l];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp > e[iter-l]) {//good move

direc[iter] = 1 ;
q = q + 1 ;

}
else {

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not good!");
continue; //for loop

}
}//end if w/in boundary
else {//outside the boundary

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not feasible!");
continue; //for loop

}
}
else if (direc[iter-l] = 2) {

if ((xnow + delta <= J^JL) && (ynow + delta <= YUL)) {
xtemp = x[p+l][q+l];
ytemp = y[p+l][q+l];
ztemp = z[p+l][q+l];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp > e[iter-l]) {//good move

direc[iter] = 2 ;
p = p + l ; q = q + 1 ;

}
else {

e[iter] = e[iter-l];

191

outl.print£("Iteration %2i”, iter);
outl.print£("%30s\n", pattern move not good!");
continue; //for loop

}
}//end if w/in boundary
else {//outside the boundary

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not feasible!");
continue; //for loop

}
}
else if (direc[iter-l] = 3) {

if ((ynow + delta) <= YUL) {//within boundary
xtemp = xnow;
ytemp = y[p+l][q];
ztemp = z[p+l][q];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp > e[iter-l]) {//good move

direc[iter] = 3;
p = p + l;

}
else {

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not good!");
continue; //for loop

}
}//end if w/in boundary
else {//outside the boundary

e[iter] = e[iter-l];
out 1 .printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not feasible!");
continue; //for loop

}
}
else if (direc[iter-l] = 4) {

if ((xnow - delta >= XLL) && (ynow + delta <= YUL)) {
xtemp = x[p+l][q-l];
ytemp = y[p+l][q-l];
ztemp = z[p+l][q-l];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp > e[iter-l]) {//good move

direc[iter] = 4;
p = p + l ;q = q - 1 ;

}

192

else {
e[iter] = e[iter-l];
outI.printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not good!");
continue; //for loop

}
}//end if w/in boundary
else {//outside the boundary

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not feasible!");
continue; //for loop

}
}
else if (direc[iter-l] = 5) {

if ((xnow - delta) >= XLL) {//within boundary
ytemp = ynow;
xtemp = x[p][q-l];
ztemp = z[p][q-l];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp > e[iter-l]) {//good move

direc[iter] = 5;
q = q - 1 ;

}
else {

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not good!");
continue; //for loop

}
}//end if w/in boundary
else {//outside the boundary

e[iter] = e[iter-l];
out 1 .print^"Iteration %2i", iter);
outl.printf("%30s\n", pattern move not feasible!");
continue; //for loop

}
}
else if (direc[iter-l] = 6) {

if ((xnow - delta >= XLL) && (ynow - delta >= YLL)) {
xtemp = x[p-l][q-l];
ytemp = y[p-l][q-l j;
ztemp = z[p-l][q-l];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp > e[iter-l]) {//good move

direc[iter] = 6 ;

193

p = p - l ;q = q - 1 ;
}
else {

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not good!");
continue; //for loop

}
}//end if w/in boundary
else {//outside the boundary

e[iter] = e[iter-l];
outl.printfj["Iteration %2i", iter);
outl.printf("%30s\n", pattern move not feasible!");
continue; //for loop

}
}
else if (direc[iter-l] = 7) {

if ((ynow - delta) >= YLL) {//within boundary
xtemp = xnow;
ytemp = y[p-l][qj;
ztemp = z[p-l][q];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);
if (etemp > e[iter-l]) {//good move

direc[iter] = 7;
p = p - l ;

}
else {

e[iter] = e[iter-l];
outl.printf("Iteration %2 i", iter);
outl.printf("%30s\n", pattern move not good!");
continue; //for loop

}
}//end if w/in boundary
else {//outside the boundary

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", ": pattern move not feasible!");
continue; //for loop

}
}
else {// direc[iter-l] = 8

if ((xnow + delta <= XUL) && (ynow - delta >= YLL)) {
xtemp = x[p-l][q+l];
ytemp = y[p-l][q+l];
ztemp = ztp-l][q+l];
etemp = ztemp - (zO + 10*xtemp + mO*ytemp);

194

if (etemp > e[iter-l]) {//good move
direc[iter] = 8 ;
p = p - l ; q = q + 1 ;

}
else {

e[iter] = e[iter-l];
outl.print£("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not good!");
continue; //for loop

}
}//end if w/in boundary
else {//outside the boundary

e[iter] = e[iter-l];
outl.printf("Iteration %2i", iter);
outl.printf("%30s\n", pattern move not feasible!");
continue; //for loop

}
}

}//end else, iter >= 2 and e[iter-l] > e[iter-2]

tabux = xnow; tabuy = ynow;
e[iter] = etemp; xnow = xtemp;
ynow = ytemp; znow = ztemp;
if (p < pmin) pmin = p;
if (p > pmax) pmax = p;
if (q < qmin) qmin = q;
if (q > qmax) qmax = q;
if (e[iter] > ebest) {

ebest = e[iter]; xopt = xnow;
yopt = ynow; zopt = znow;

}

} //end for loop

//Write in output file
outl.printf("%35s", "Hence, the solution obtained after ");
outl.printf("iteration %2 i", iter);
outl.printf("%ls\n", ":");
outl.printf("x = % 4.1f, xopt);
outl .printf(", y = %4.1 f ', yopt);
outl.printf(", z = % 9.5f, zopt);
outl.printf(" with emax(+) = %9.6f\n", ebest);
outl.printf("%36s\n", "Plate is divided in 21 row x 31 col.");
outl.printf("%15s", "Area searched; ");
outl.printf(" row = %2 i", pmin+1);

195

outl .printf(" to row = %2 i”, pmax+I);
outl.printf(" and col = %2 i", qmin+1);
outl.printf(" to col = %2 i\n", qmax+1);

System.out.println(" Another starting point for emax(+)? Y/N");
reply = in.readCharO;

} wldle (reply = Y*); //end do/while loop

outl .closeOy/Close output file

} //end main method
} //end Hybrids earch class

196

APPENDIX C

SAS FILES

C .l Straightness

C.1.1 Code

Title '3-Factor Nested-Factorial Design for Straightness';
data Straightness;
input mfg$ plate$ step i
do i=l to 4;

input point p_error i
output;

end;
cards;
end al4 0.05 8 6.1 7 0.0 7 0.0 7 6.9
end all2 0.05 7 6.75 7 11.4 6 3.25 4 0.61
end al9 0.05 5 4.7 6 2.0 7 2.04 3 9.6
end al2 0.05 6 9.58 5 9.84 6 15.17 8 3.76
end al4 0.1 7 12.8 60.14 6 7.2 6 8.2
end all2 0.1 7 6.75 5 6.08 5 2.69 4 0.61
end al9 0.1 4 4.7 7 2.0 7 4.2 4 3.8
end al2 0.1 4 21.86 5 9.84 5 14.53 8 2.43
end al4 0.2 7 14.7 6 10.2 4 20.9 4 19.7
end all2 0.2 5 14.23 4 6.97 5 5.82 4 0.61
end al9 0.2 3 13.3 6 0.0 5 2.6 4 8.26
end al2 0.2 4 19.05 4 3.54 5 24.9 5 30.62
face ci3 0.05 11 7.35 9 8.6 11 6.74 10 1.24
face cil 0.05 9 6.3 11 3.9 9 18.4 9 0.85
face cil 1 0.05 11 9.4 10 12.0 13 4.2 9 2.9
face cl7 0.05 10 4.65 8 4.17 6 7.93 10 2.7
faceci3 0.1 8 11.078.699.86 120.31
face cil 0.1 8 2.0 8 13.9 10 13.56 7 13.75
face cil 1 0.1 10 4.0 9 12.0 7 4.4 9 0.5
face ci7 0.1 6 0.03 7 4.17 7 7.93 7 0.65
face ci3 0.2 6 2.7 6 6.06 6 2.33 9 0.48
face cil 0.2 6 2.0 7 13.9 7 25.2 6 16.0
face cil 1 0.2 7 6.2 6 3.9 6 5.7 8 2.3
face ci7 0.2 6 0.03 7 4.17 6 7.93 5 11.14

proc ghn;
class mfg plate step;
model point p_error=mfg plate(mfg) step mfg'*step step*plate(mfg);
test h=mfg e=plate(mfg);
test h=step mfg*step e=step*plate(mfg);
means mfg plate(mfg) step mfg*step/tukey;
output out=Strout p=pred r=resid;

197

proc print data=Strout;
proc univariate plot normal;

var resid;
run;

C.l.2 Output

3-Factor Nested-Factorial Design for Straightness
13:11 Thursday, May 30,2002

Class Level Information

Class Levels Values
mfg 2 end face
plate 8 all2 al2 al4 al9 cil cil 1 ci3 ci7
step 3 0.05 0.10.2

Number of observations 96

The GLM Procedure

Dependent Variable: point

Sum of
Source DF Squares Mean Square F Value P r>F

Model 23 308.2395833 13.4017210 8.06 < 0 0 0 1

Error 72 119.7500000 1.6631944
Corrected Total 95 427.9895833

R-Square CoeffVar Root MSB point Mean
0.720203 18.90173 1.289649 6.822917

Source DF Type ISS Mean Square F Value P r>F

mfg 1 168.0104167 168.0104167 1 0 1 . 0 2 < 0 0 0 1

plate(mfg) 6 30.8958333 5.1493056 3.10 0.0094
step 2 90.5833333 45.2916667 27.23 < .0 0 0 1

mfg*step 2 12.3333333 6.1666667 3.71 0.0293
plate*step(mfg) 1 2 6.4166667 0.5347222 0.32 0.9832

Source DF Type m SS Mean Square F Value P r>F
mfg 1 168.0104167 168.0104167 1 0 1 . 0 2 < 0 0 0 1

plate(mfg) 6 30.8958333 5.1493056 3.10 0.0094
step 2 90.5833333 45.2916667 27.23 < 0 0 0 1

mfg*step 2 12.3333333 6.1666667 3.71 0.0293
plate*step(mfg) 1 2 6.4166667 0.5347222 0.32 0.9832

198

Tests of Hypotheses Using the Type m MS for plate(mfg) as an Error Term
Source DF Type HISS Mean Square F Value P r > F
mfg 1 168.0104167 168.0104167 32.63 0.0012

Tests o f Hypotheses Using the Type m MS for plate*step(mfg) as an Error Term
step
mfg*step

2
2

90.5833333
12.33333333

45.2916667
6.16666667

84.70
11.53

<.0001
0.0016

Dependent Variable: p error

Sum of
Source DF Squares Mean Square F Value P r > F
Model 23 1728.497233 75.152054 2.53 0.0015
Error 72 2134.538500 29.646368
Corrected Total 95 3863.035733

R-Square CoeffVar Root MSE perror Mean
0.447445 73.31483 5.444848 7.426667

Source DF Type I SS Mean Square F Value P r > F
mfg 1 61.6001042 61.6001042 2.08 0.1538
plate(mfg) 6 894.4222458 149.0703743 5.03 0 . 0 0 0 2

step 2 222.5879396 111.2939698 3.75 0.0281
mfg*step 2 169.0385021 84.5192510 2.85 0.0643
plate*step(mfg) 1 2 380.8484417 31.7373701 1.07 0.3974

Source DF Type m SS Mean Square F Value P r > F
mfg 1 61.6001042 61.6001042 2.08 0.1538
plate(mfg) 6 894.4222458 149.0703743 5.03 0 . 0 0 0 2

step 2 222.5879396 111.2939698 3.75 0.0281
mfg*step 2 169.0385021 84.5192510 2.85 0.0643
plate*step(mfg) 1 2 380.8484417 31.7373701 1.07 0.3974

Tests o f Hypotheses Using the Type HI MS for plate(mfg) as an Error Term
Source DF Type El SS Mean Square F Value Pr > F
mfg 1 61.60010417 61.60010417 0.41 0.5441
Tests of Hypotheses Using the Type IE MS for plate*step(mfg) as an Error Term
step 2 222.5879396 111.2939698 3.51 0.0632
mfg*step 2 169.0385021 84.5192510 2.66 0.1104

Tuke/s Studentized Range (HSD) Test for point

NOTE: This test controls the Type I experimentwise error rate, but it generally has a
higher Type II error rate than M GW Q.

Alpha 0.05

199

Error Degrees of Freedom 72
Error Mean Square 1.663194
Critical Value of Studentized Range 2.81929
Minimum Significant Difference 0.5248

Means with the same letter are not significantly different.

Tukey Grouping Mean N mfg
A 8.1458 48 face
B 5.5000 48 end

The GLM Procedure
Level of Level of ———- --p error—
plate mfg N Mean Std Dev Mean Std Dev
a ll2 end 1 2 5.250000 1.215431 5.480833 4.27931698
al2 end 1 2 5.41666667 1.37895437 13.7600000 8.97246698
al4 end 1 2 6.25000000 1.21543109 8.9033333 7.14497577
al9 end 1 2 5.08333333 1.50504203 4.7666667 3.81153592
cil face 1 2 8.08333333 1.56427929 10.8133333 7.68375185
c i l l face 1 2 8.75000000 2.09436473 5.6250000 3.68982015
ci3 face 1 2 8.66666667 2.10338832 5.4391667 3.83621371
ci7 face 1 2 7.08333333 1.56427929 4.6250000 3.53643760

Tukey's Studentized Range (HSD) Test for point

Alpha 0.05
Error Degrees o f Freedom 72
Error Mean Square 1.663194
Critical Value of Studentized Range 3.38440
Minimum Significant Difference 0.7716

Means with the same letter are not significantly different.

Tukey Grouping
A
B
C

Mean N step
7.9688 32 0.05
6.9063 32 0.1
5.5938 32 0.2

The GLM Procedure
Level of Level of ——-------p error
mfg step N Mean Std Dev Mean Std Dev

end 0.05 16 6.18750000 1.37689264 5.7312500 4.47959503
end 0 .1 16 5.62500000 1.31021627 6.7393750 5.75181649
end 0 . 2 16 4.68750000 1.01447852 12.2125000 9.05145255
face 0.05 16 9.75000000 1.57056253 6.3331250 4.43464349

200

face
face

0.1
0.2

16
16

8.18750000
6.50000000

1.55857841
0.96609178

6.6662500
6.8775000

5.23899975
6.71777294

Dependent Variable: point

Obs Residual Obs Residual Obs Residual Obs Residual
1 0.75 2 -0.25 3 -0.25 4 -0.25
5 1 .0 0 6 1 .0 0 7 0 . 0 0 8 -2 . 0 0

9 -0.25 1 0 0.75 11 1.75 1 2 -2.25
13 -0.25 14 -1.25 15 -0.25 16 1.75
17 0.75 18 -0.25 19 -0.25 2 0 -0.25
2 1 1.75 2 2 -0.25 23 -0.25 24 -1.25
25 -1.50 26 1.50 27 1.50 28 -1.50
29 -1.50 30 -0.50 31 -0.50 32 2.50
33 1.75 34 0.75 35 -1.25 36 -1.25
37 0.50 38 -0.50 39 0.50 40 -0.50
41 -1.50 42 1.50 43 0.50 44 -0.50
45 -0.50 46 -0.50 47 0.50 48 0.50
49 0.75 50 -1.25 51 0.75 52 -0.25
53 -0.50 54 1.50 55 -0.50 56 -0.50
57 0.25 58 -0.75 59 2.25 60 -1.75
61 1.50 62 -0.50 63 -2.50 64 1.50
65 - 1 .0 0 6 6 -2 . 0 0 67 0 . 0 0 6 8 3.00
69 -0.25 70 -0.25 71 1.75 72 -1.25
73 1.25 74 0.25 75 -1.75 76 0.25
77 -0.75 78 0.25 79 0.25 80 0.25
81 -0.75 82 -0.75 83 -0.75 84 2.25
85 -0.50 8 6 0.50 87 0.50 8 8 -0.50
89 0.25 90 -0.75 91 -0.75 92 1.25
93 0 . 0 0 94 1 .0 0 95 0 . 0 0 96 - 1 . 0 0

The UNIVARIATE Procedure
Variable: resid

N
Mean
Std Deviation
Skewness
Uncorrected SS
Coeff Variation

Moments
96
0
1.12273163
0.28200601
119.75

Sum Weights
Sum Observations
Variance
Kurtosis
Corrected SS
Std Error Mean

96
0
1.26052632
-0.1737485
119.75
0.11458832

Basic Statistical Measures
Location Variability

Mean 0.00000 Std Deviation
Median -0.25000 Variance

1.12273
1.26053

201

Mode -0.25000 Range 5.50000
Interquartile Range 1.50000

Tests for Location: Mu0=0
Test -Statistic- p Value-----
Student's t t 0 Pr> |t| 1.0000
Sign M -4.5 Pr>=|M | 0.4119
Signed Rank S -89 Pr >= |S| 0.7429

Tests for Normality
Test —Statistic— ---- p Value-—

Shapiro-Wilk W 0.981755 P r < W 0.2028
Kolmogorov-Smiraov D 0.129771 P r> D <0 . 0 1 0 0

Cramer-von Mises W-Sq 0.150828 Pr>W -Sq 0.0232
Anderson-Darling A-Sq 0.775651 Pr > A-Sq 0.0438

Quantiles (Definition 5)
Quantile Estimate
100% Max 3.00
99% 3.00
95% 1.75
90% 1.50
75% Q3 0.75
50% Median -0.25
25% QI -0.75
10% -1.50
5% -1.75
1% -2.50
0% Min -2.50

Extreme Observations
 Lowest— — Highest—
Value Obs Value Obs
-2.50 63 1.75 33
-2.25 12 2.25 84
-2.00 6 6 2.25 59
-2.00 8 2.50 32
-1.75 75 3.00 6 8

202

stem Leaf Boxplot
3 0 1
2 5 1
2 22 2
1 55555588888 11
1 00022 5
0 5555555888888 13
0 00002222222 11

-0 22222222222222 14
-0 88888885555555555555 20
-1 22222200 8
-1 885555 6
-2 200 3
-2 5 1

 + + + +

+........+
1 + I
++

I
I
I
I

Normal Probability Plot
3.25+

• • + + +

0.25+ +

• • • + +

•••*••+
••*•++

I • + •+ + +

-2.75++++
+----- +----+------+-----+----- + +------+----+------ +-----+

-2 -1 0 +1 +2

C.2 Flatness

C.2.1 Code

Title '4-Factor Nested-Factorial Design for Flatness';
data Flatness;
input mfg$ plateS algorithms strategyS @@;
do i=l to 4;

input point p error @@;
output;

end;
cards;
end alio ts rsObml 10 34.8 8 21.8 11 46.1 8 35.2
end alio ts rsObm3 16 33.7 15 26.7 18 41.9 15 32.8
end alio ts rsObm5 26 33.7 22 26.7 24 41.9 25 32.8
end alio ts rslbml 15 34.8 14 21.8 17 21.8 17 16.6
end alio hs rsObml 9 33.7 8 21.8 10 46.1 8 35.2

203

end alio hs rsObmS 14 33.7 31 21.8 19 46.1 15 35.2
end alio hs rsObm5 23 33.7 19 21.8 31 46.1 29 35.2
end alio hs rslbml 14 33.7 16 173 16 16.3 12 24.7
end al5 ts rsObml 10 24.3 15 10.4 12 46.9 10 44.1
end al5 ts rsObm3 20 26.9 24 10.4 20 48.1 18 44.1
end al5 ts rs0bm5 28 26.9 35 10.4 30 4.8 26 44.1
end al5 ts rslbml 15 24.2 21 10.4 17 30.0 18 37.7
end al5 hs rsObml 13 30.0 11 10.4 12 44.1 10 44.1
end al5 hs rsObm3 21 30.0 16 10.4 22 44.1 17 44.1
end al5 hs rsObm5 28 30.0 26 10.4 32 44.1 25 44.1
end al5 hs rslbml 18 30.0 19 10.4 16 31.2 15 37.7
end al7 ts rsObml 12 40.8 17 35.3 19 33.3 12 49.6
end al7 ts rsObm3 20 41.2 21 35.3 29 33.3 19 49.6
end al7 ts rsObm5 32 41.2 30 36.4 41 33.3 29 38.6
end al7 ts rslbml 15 40.8 31 30.7 22 33.3 16 47.4
end al7 hs rsObml 10 40.0 16 35.3 16 42.9 12 49.6
end al7 hs rsObm3 17 40.8 21 35.3 23 42.9 19 49.6
end al7 hs rs0bm5 26 41.2 30 36.4 31 42.9 27 49.8
end al7 hs rslbml 14 40.0 28 30.7 19 42.9 17 47.4
end al4 ts rsObml 13 57.1 14 51.6 13 41.8 10 21.8
end al4 ts rsObm3 19 57.1 22 51.6 22 24.1 17 21.8
end al4 ts rsObm5 27 57.1 32 41.1 27 24.1 23 21.8
end al4 ts rslbml 18 48.3 22 38.2 18 29.5 21 8.0
end al4 hs rsObml 15 50.9 14 51.6 12 58.7 10 21.8
end al4 hs rsObm3 21 50.9 21 51.6 18 58.7 16 21.8
end al4 hs rsObm5 27 50.9 29 46.9 26 58.7 21 21.8
end al4 hs rslbml 20 48.3 21 38.2 16 29.5 18 21.8
face CÎ2 ts rsObml 11 29.2 13 17.6 13 13.8 12 28.2
face ci2 ts rsObm3 20 30.9 21 7.1 19 10.5 21 28.2
face ci2 ts rs0bm5 27 24.2 27 7.1 25 10.5 29 23.8
face ci2 ts rslbml 19 11.5 19 17.6 17 13.8 21 28.2
face CÎ2 hs rsObml 931.6 11 17.6 13 14.2 13 27.1
face ci2 hs rsObm3 17 31.3 20 6.1 18 10.8 23 22.6
face ci2 hs rsObm5 26 31.9 24 6.1 27 10.8 29 21.5
face CÎ2 hs rslbml 16 11.5 17 17.6 17 14.2 22 12.2
face ci9 ts rsObml 12 7.4 11 9.4 9 17.4 13 7.9
face ci9 ts rsObm3 19 7.3 17 9.4 17 17.4 19 8.1
face ci9 ts rsObm5 24 7.3 24 9.4 25 17.4 29 16.3
face ci9 ts rslbml 21 7.4 16 9.4 15 8.3 23 7.9
face ci9 hs rsObml 10 7.4 11 9.4 10 15.7 9 8.9
face ci9 hs rsObm3 15 7.4 17 9.4 18 17.4 16 8.9
face ci9 hs rs0bm5 22 7.4 23 9.4 26 17.4 20 8.9
face ci9 hs rslbml 18 7.4 16 9.4 14 5.9 18 4.6
face cil 1 ts rsObml 13 2.8 12 9.9 16 11.6 16 0.26
face cil 1 ts rsObm3 24 2.8 21 9.3 29 11.6 25 0.26
face cil 1 ts rsObm5 34 2.8 28 9.3 41 11.6 33 0.26
face cil 1 ts rslbml 25 11.8 22 9.9 27 11.6 26 0.26
face cil 1 hs rsObml 11 3.4 10 10.2 14 10.5 14 0.65
face cil 1 hs rsObm3 20 2.6 17 9.0 21 10.5 20 0.65
face cil 1 hs rsObm5 25 2.6 24 9.0 27 10.5 26 0.65
face cil 1 hs rslbml 21 8.5 18 10.2 26 7.0 21 2.8
face ci5 ts rsObml 13 6.0 15 4.8 13 9.3 8 15.3
face ci5 ts rsObm3 21 6.0 22 4.8 25 9.3 16 15.3
face ci5 ts rsObmS 29 6.0 29 4.8 37 9.3 24 15.3
face ci5 ts rslbml 21 6.0 26 4.8 20 8.6 15 14.4
face ci5 hs rsObml 13 6.0 13 4.8 14 9.3 8 15.3

204

face ci5 hs rsObmS 20 6.0 18 4.8 23 9.3 15 15.3
face ci5 hs rs0bm5 27 6.0 24 4.8 32 9.3 21 15.3
face ci5 hs rslbml 19 6.0 19 4.8 24 8.6 16 19.7

proc glm;
class mfg plate strategy algorithm;
model point p error = mfg plate(mfg) strategy algorithm mfg*strategy

mfg*algorithm strategy*plate(mfg) strategy*algorithm algorithm*plate(mfg)
mfg*strategy*algorithmstrategy*algorithm*plate(mfg);

test h=mfg e=plate(mfg);
test h=strategy mfg*strategy e=strategy*plate(mfg);
test h=algoritbm mfg*algorithm e=algorithm*plate(mfg);
test h=strategy*algorithm mfg*strategy*algorithm e=strategy*algorithm*plate(mfg);
means mfg plate(mfg) strategy algorithm mfg*strategy

mfg*algorithm strategy* algorithm mfg*strategy*algorithin/tukey;
output out=Flatout p=pred r=iesid;
proc print data=Flatout;
proc univariate plot normal;

var resid;
run;

C.2.2 Output

4-Factor Nested-Factorial Design for Flatness
13:11 Thursday, May 30, 2002

Class Level Information
Class Levels Values
mfg 2 end face
plate 8 alio al4 alS al7 cil 1 ci2 ci5 ci9
strategy 4 rsObml rs0bm3 rsObmS rslbml
algoritW 2 hs ts

Number of observations 256

The GLM Procedure

Dependent Variable: point

Source DF
Sum of
Squares

Model 63
Error 192
Corrected Total 255

9044.21484
1949.75000
10993.96484

Mean Square F Value Pr > F

143.55897 14.14 <0001
10.15495

R-Square CoeffVar Root MSE point Mean
0.822653 16.35179 3.186683 19.48828

205

Source DF Type I SS Mean Square F Value P r > F
mfg 1 10.160156 10.160156 1 . 0 0 0.3184
plate(mfg) 6 743.710938 123.951823 1 2 .2 1 < 0 0 0 1

strategy 3 7715.386719 2571.795573 253.26 < . 0 0 0 1

algorithm 1 164.160156 164.160156 16.17 < 0 0 0 1

mfg*strategy 3 51.011719 17.003906 1.67 0.1739
mf^algoritbm 1 32.347656 32.347656 3.19 0.0759
plate*strategy(mfg) 18 99.070313 5.503906 0.54 0.9349
strategy*aIgorithm 3 34.449219 11.483073 1.13 0.3378
plate*aigorithm(mfg) 6 116.023438 19.337240 1.90 0.0820
mfg*strateg*algorith 3 8.761719 2.920573 0.29 0.8343
plat*stra*algor(mfg) 18 69.132813 3.840712 0.38 0.9904

Source DF Type HI SS Mean Square F Value P r > F
mfg 1 10.160156 10.160156 1 .0 0 0.3184
plate(mfg) 6 743.710938 123.951823 1 2 .2 1 < 0 0 0 1

strategy 3 7715.386719 2571.795573 253.26 < 0 0 0 1

algorithm 1 164.160156 164.160156 16.17 < 0 0 0 1

mfg*strategy 3 51.011719 17.003906 1.67 0.1739
mfg*algorithm 1 32.347656 32.347656 3.19 0.0759
plate*strategy(mfg) 18 99.070313 5.503906 0.54 0.9349
strategy* algorithm 3 34.449219 11.483073 1.13 0.3378
plate*algorithm(mfg) 6 116.023438 19.337240 1.90 0.0820
mfg*strateg*algorith 3 8.761719 2.920573 0.29 0.8343
plat*stra*algor(mfg) 18 69.132813 3.840712 0.38 0.9904

Tests o f Hypotheses Using the Type HI MS
Source DF Type HI SS
mfg 1 10.160156
Tests of Hypotheses Using the Type HI MS
strategy 3 7715.386719
mfg*strategy 3 51.011719
Tests of Hypotheses Using the Type HI MS
algorithm 1 164.1601563
mfg*algorithm 1 32.3476563
Tests o f Hypotheses Using the Type HI MS
strategy*algorithm 3 34.^921875
mfg*strateg*algorith 3 8.76171875

for plate(mfg) as an Error Term
Mean Square F Value Pr > F
10.160156 0.08 0.7843

for plate*strategy(mfg) as an Error Term
2571.795573 467.27 <0001
17.003906 3.09 0.0533

for plate*algorithm(mfg) as an Error Term
164.1601563 8.49 0.0269
32.3476563 1.67 0.2434

for plat*stra*algor(mfg) as an Error Term
11.48307292 2.99
2.92057292 0.76

0.0584
0.5308

Dependent Variable: p_error

Sum of
Source DF Squares Mean Square F Value P r > F
Model 63 45910.43629 728.73708 7.61 < 0 0 0 1

Error 192 18386.56092 95.76334

206

Corrected Total 255 64296.99721

R-Square CoeffVar Root MSE perror Mean
0.714037 42.38036 9.785874 23.09059

Source DF Type I SS Mean Square F Value P r> F
mfg 1 37713.88275 37713.88275 393.82 < . 0 0 0 1

plate(mfg) 6 5682.93981 947.15664 9.89 < . 0 0 0 1

strategy 3 803.05581 267.68527 2.80 0.0415
algorithm 1 94.46625 94.46625 0.99 0.3219
mfg*strategy 3 359.35550 119.78517 1.25 0.2926
mfg*algoritbm 1 181.05384 181.05384 1.89 0.1707
plate*strategy(mfg) 18 692.18393 38.45466 0.40 0.9864
strategy*algorithm 3 71.98487 23.99496 0.25 0.8609
plate*^gorithm(mfg) 6 129.72066 21.62011 0.23 0.9680
mfg*strateg*algorith 3 57.32753 19.10918 0 . 2 0 0.8966
plat*stra*algor(mfg) 18 124.46533 6.91474 0.07 1 . 0 0 0 0

Source DF Type HI SS Mean Square F Value P r > F
mfg 1 37713.88275 37713.88275 393.82 < . 0 0 0 1

plate(mfg) 6 5682.93981 947.15664 9.89 < 0 0 0 1

strategy 3 803.05581 267.68527 2.80 0.0415
algorithm 1 94.46625 94.46625 0.99 0.3219
mfg*strategy 3 359.35550 119.78517 1.25 0.2926
mfg*algoritbm 1 181.05384 181.05384 1.89 0.1707
plate*strategy(mfg) 18 692.18393 38.45466 0.40 0.9864
strategy*algorithm 3 71.98487 23.99496 0.25 0.8609
plate*algorithm(mfg) 6 129.72066 21.62011 0.23 0.9680
mfg*strateg*algorith 3 57.32753 19.10918 0 . 2 0 0.8966
plat*stra*algor(mfg) 18 124.46533 6.91474 0.07 1 . 0 0 0 0

Tests of Hypotheses Using the Type HI MS for plate(mfg) as an Error Term
Source DF Type HI SS Mean Square F Value P r> F
mfg 1 37713.88275 37713.88275 39.82 0.0007
Tests of Hypotheses Using the Type HI MS for plate*strategy(mfg) as an Error Term
strategy 3 803.0558105 267.68527 6.96 0.0026
mfg*strategy 3 359.3554980 119.785166 3.11 0.0521
Tests o f Hypotheses Using the Type HI MS for plate*aigorithm(mfg) as an Error Term
algorithm 1 94.4662504 94.4662504 4.37 0.0816
mfg*algorithm 1 181.0538441 181.0538441 8.37 0.0276
Tests o f Hypotheses Using the Type HI MS for plat*stra*algor(mfg) as an Error Term
strategy* algorithm 3 71.98487305 23.99495768 3.47 0.0379
mfg*strateg*algorith 3 57.32752930 19.10917643 2.76 0.0720

207

Tukey's Studentized Range (HSD) Test for p error

Alpha 0.05
Error Degrees of Freedom 192
Error Mean Square 95.76334
Critical Value of Studentized Range 2.78939
Minimum Significant Difference 2.4127

Means with the same letter are not significantly different.

Tukey Grouping Mean N mfg
A 35.228 128 end
B 10.953 128 face

The GLM Procedure
Level o f Level — — — — p
Plate o f mfg N Mean Std Dev Mean Std Dev
alio end 32 16.7187500 6.69730025 31.4218750 8.9609812
al4 end 32 19.4687500 5.51235782 39.9093750 15.1186994
al5 end 32 19.3750000 6.71901490 29.3375000 14.2581669
al7 end 32 21.5937500 7.41341145 40.2437500 5.9050518
ci l l face 32 22.0937500 7.05443981 6.3996875 4.4574906
ci2 face 32 19.2500000 5.63972088 18.4156250 8.5416667
ci5 face 32 2 0 . 0 0 0 0 0 0 0 6.72501349 8.9156250 4.3830398
ci9 face 32 17.4062500 5.30890533 10.0812500 3.8883978

Tukey's Studentized Range (HSD) Test for point

Alpha 0.05
Error Degrees of Freedom 192
Error Mean Square 10.15495
Critical Value of Studentized Range 3.66520
Minimum Significant Difference 1.46
Means with the same letter are not significantly different.

Tukey Grouping Mean N strategy
A 27.4219 64 rs0bm5
B 19.6875 64 rs0bm3
B 18.9219 64 rslbm l
C 11.9219 64 rsObml

Tukey's Studentized Range (HSD) Test for p error

Alpha
Error Degrees of Freedom
Error Mean Square

0.05
192
95.76334

208

Critical Value of Studentized Range 3.66520
Minimum Significant Difference 4.4834
Means with the same letter are not significantly different.

:ey Grouping Mean N strategy
A 24.906 64 rsObml

B A 24.155 64 rs0bm3
B A 23.060 64 rsObmS
B 20.242 64 rslbm l

Tukey's Studentized Range (HSD) Test for point

Alpha 0.05
Error Degrees of Freedom 192
Error Mean Square 10.15495
Critical Value of Studentized Range 2.78939
Minimum Significant Difference 0.7857

Means with the same letter are not significantly different.

Tukey Grouping
A
B

Mean
20.2891
18.6875

N algorithm
128 ts
128 hs

The GLM procedure
Level of Level of ------------point- ----------- perror- ----------
mfg strategy N Mean Std Dev Mean Std Dev
end rsObml 32 11.8750000 2.79111494 37.8468750 12.5420579
end rsObm3 32 19.5625000 3.76689741 37.3625000 12.5077718
end rsObm5 32 27.7187500 4.28978062 35.2781250 12.9617983
end rslbml 32 18.0000000 3.92674863 30.4250000 11.3599182
face rsObml 32 11.9687500 2.11727724 11.9659375 8.0596025
face rsObm3 32 19.8125000 3.18704535 10.9471875 7.9145453
face rsObm5 32 27.1250000 4.47754253 10.8409375 7.2008971
face rslbml 32 19.8437500 3.64655715 10.0581250 5.4560989

Level of Level of ------------point- ----------- perror-
mfg algorithm N Mean Std Dev Mean Std Dev
end hs 64 18.8437500 6.49351019 36.6765625 12.4528793
end ts 64 19.7343750 7.05588168 33.7796875 12.5989692
face hs 64 18.5312500 5.57764458 10.7195312 7.1214443
face ts 64 20.8437500 6.94014947 11.1865625 7.2840692

Level of Level of ------------point- —— *p error——
strategy algorithm N Mean Std Dev Mean Std Dev
rsObml hs 32 11.5312500 2.28578179 25.2578125 17.1317245

209

rsObml ts 32 12.3125000 2.59574714 24.5550000 16.5597265
rsObm3 hs 32 19.0312500 3.35515372 24.6578125 17.5515421
rsObmS ts 32 20.3437500 3.49755099 23.6518750 16.4512667
rsObmS hs 32 26.0312500 3.39339372 24.5484375 17.3948337
rsObmS ts 32 28.8125000 4.80884602 21.5706250 14.8635167
rslbm l hs 32 18.1562500 3.47441687 20.3281250 13.9159744
rslbm l ts 32 19.6875000 4.14602414 20.1550000 13.3881373

Level of Level of Level o f -------— point--------- --------------perror---------
mfg strategy algorithm N Mean Std Dev Mean Std Dev
end rsObml hs 16 11.6250000 2.60448331 38.5125000 12.8127996
end rsObml ts 16 12.1250000 3.03040151 37.1812500 12.6483316
end rsObmS hs 16 19.4375000 4.08197256 38.5625000 12.8205499
end rsObmS ts 16 19.6875000 3.55375388 36.1625000 12.4851846
end rsObmS hs 16 26.8750000 3.63088603 38.3750000 12.5562999
end rsObmS ts 16 28.5625000 4.83002761 32.1812500 13.0037030
end rslbml hs 16 17.4375000 3.68725282 31.2562500 11.1045918
end rslbm l ts 16 18.5625000 4.19473877 29.5937500 11.9127086
face rsObml hs 16 11.4375000 1.99895806 12.0031250 8.2214449
face rsObml ts 16 12.5000000 2.16024690 11.9287500 8.1639303
face rsObmS hs 16 18.6250000 2.50000000 10.7531250 7.7346292
face rsObmS ts 16 2 1 . 0 0 0 0 0 0 0 3.42539535 11.1412500 8.3397377
face rsObmS hs 16 25.1875000 3.01592993 10.7218750 7.7352649
face rsObmS ts 16 29.0625000 4.93246051 10.9600000 6.8773638
face rslbml hs 16 18.8750000 3.20156212 9.4000000 4.7048911
face rslbml ts 16 20.8125000 3.90245649 10.7162500 6.2018243

Dependent Variable: point

Obs Residual Obs Residual Obs Residual Obs Residual
1 0.75 2 -1.25 3 1.75 4 -1.25
5 0 . 0 0 6 - 1 . 0 0 7 2 . 0 0 8 - 1 .0 0

9 1.75 1 0 -2.25 11 -0.25 1 2 0.75
13 -0.75 14 -1.75 15 1.25 16 1.25
17 0.25 18 -0.75 19 1.25 2 0 -0.75
2 1 -5.75 2 2 11.25 23 -0.75 24 -4.75
25 -2.50 26 -6.50 27 5.50 28 3.50
29 -0.50 30 1.50 31 1.50 32 -2.50
33 -1.75 34 3.25 35 0.25 36 -1.75
37 -0.50 38 3.50 39 -0.50 40 -2.50
41 -1.75 42 5.25 43 0.25 44 -3.75
45 -2.75 46 3.25 47 -0.75 48 0.25
49 1.50 50 -0.50 51 0.50 52 -1.50
53 2 . 0 0 54 -3.00 55 3.00 56 -2 . 0 0

57 0.25 58 -1.75 59 4.25 60 -2.75
61 1 .0 0 62 2 . 0 0 63 - 1 .0 0 64 -2 . 0 0

210

65 -3.00 6 6 2 . 0 0 67 4.00 6 8 -3.00
69 -2.25 70 -1.25 71 6.75 72 -3.25
73 -1 .0 0 74 -3.00 75 8 . 0 0 76 -4.00
77 -6 . 0 0 78 1 0 . 0 0 79 1 .0 0 80 -5.00
81 -3.50 82 2.50 83 2.50 84 -1.50
85 -3.00 8 6 1 . 0 0 87 3.00 8 8 - 1 . 0 0

89 -2.50 90 1.50 91 2.50 92 -1.50
93 -5.50 94 8.50 95 -0.50 96 -2.50
97 0.50 98 1.50 99 0.50 1 0 0 -2.50
1 0 1 -1 . 0 0 1 0 2 2 . 0 0 103 2 . 0 0 104 -3.00
105 -0.25 106 4.75 107 -0.25 108 -4.25
109 -1.75 1 1 0 2.25 1 1 1 -1.75 1 1 2 1.25
113 2.25 114 1.25 115 -0.75 116 -2.75
117 2 . 0 0 118 2 . 0 0 119 -1 .0 0 1 2 0 -3.00
1 2 1 1.25 1 2 2 3.25 123 0.25 124 -4.75
125 1.25 126 2.25 127 -2.75 128 -0.75
129 -1.25 130 0.75 131 0.75 132 -0.25
133 -0.25 134 0.75 135 -1.25 136 0.75
137 -0 . 0 0 138 -0 . 0 0 139 -2 . 0 0 140 2 . 0 0

141 0 . 0 0 142 0 . 0 0 143 -2 . 0 0 144 2 . 0 0

145 -2.50 146 -0.50 147 1.50 148 1.50
149 -2.50 150 0.50 151 -1.50 152 3.50
153 -0.50 154 -2.50 155 0.50 156 2.50
157 -2 . 0 0 158 - 1 . 0 0 159 -1 .0 0 160 4.00
161 0.75 162 -0.25 163 -2.25 164 1.75
165 1 .0 0 166 - 1 . 0 0 167 - 1 .0 0 168 1 . 0 0

169 -1.50 170 -1.50 171 -0.50 172 3.50
173 2.25 174 -2.75 175 -3.75 176 4.25
177 0 . 0 0 178 1 . 0 0 179 0 . 0 0 180 - 1 .0 0

181 -1.50 182 0.50 183 1.50 184 -0.50
185 -0.75 186 0.25 187 3.25 188 -2.75
189 1.50 190 -0.50 191 -2.50 192 1.50
193 -1.25 194 -2.25 195 1.75 196 1.75
197 -0.75 198 -3.75 199 4.25 2 0 0 0.25
2 0 1 0 . 0 0 2 0 2 -6 . 0 0 203 7.00 204 - 1 . 0 0

205 0 . 0 0 206 -3.00 207 2 . 0 0 208 1 . 0 0

209 -1.25 2 1 0 -2.25 2 1 1 1.75 2 1 2 1.75
213 0.50 214 -2.50 215 1.50 216 0.50
217 -0.50 218 -1.50 219 1.50 2 2 0 0.50
2 2 1 -0.50 2 2 2 -3.50 223 4.50 224 -0.50
225 0.75 226 2.75 227 0.75 228 -4.25
229 0 . 0 0 230 1 . 0 0 231 4.00 232 -5.00
233 -0.75 234 -0.75 235 7.25 236 -5.75
237 0.50 238 5.50 239 -0.50 240 -5.50
241 1 .0 0 242 1 . 0 0 243 2 . 0 0 244 -4.00
245 1 .0 0 246 - 1 . 0 0 247 4.00 248 -4.00

211

249
253

1.00
-0.50

250
254

- 2.00
-0.50

251
255

6.00
4.50

252
256

-5.00
-3.50

The UNIVARIATE Procedure
Variable: resid

N
Mean
Std Deviation
Skewness
Uncorrected SS
Coeff Variation

Moments
256
0
2.76515432
0.62721531
1949.75

Sum Weights
Sum Observations
Variance
Kurtosis
Corrected SS
Std Error Mean

256
0
7.64607843
1.58732994
1949.75
0.17282215

Basic Statistical Measures
Location Variability

Mean 0.00000 Std Deviation 2.76515
Median -0.25000 Variance 7.64608
Mode -1.00000 Range 17.75000

Interquartile Range 3.25000
Tests for Location: Mu0=0

Test -Statistic- ---- p Value-
Student's t t 0 Pr>|t | 1.0000
Sign M -7 Pr>=|M| 0.4091
Signed Rank S -655.5 Pr>=|S| 0.5631

Tests for Normality
Test -Statistic— ——p Value——
Shapiro-Wilk W 0.971725 P r < W
Kolmogorov-Smimov D 0.078502 P r > D
Cramer-von Mises W-Sq 0.20386 Pr>W -Sq
Anderson-Darling A-Sq 1.367397 Pr > A-Sq

Quantiles (Definition 5)
Quantile Estimate
100% Max 11.25
99% 8.50
95% 4.50
90% 3.25
75% Q3 1.50
50% Median -0.25
25% Ql -1.75
1 0 % -3.00
5% -4.25
1 % -6 . 0 0

0%Min -6.50

< 0.0001
< 0.0100
<0.0050
<0.0050

212

Extreme Observations
— Lowest— — Highest-
Value Obs Value Obs
-6.50 26 7.25 235
-6.00 202 8.00 75
-6.00 77 8.50 94
-5.75 236 10.00 78
-5.75 21 11.25 22

Stem Leaf
11 2
10 0

9
8 05
7 02
6 08
5 255
4 0000222558
3 0022225555
2 000000000000222255558
1 00000000000022222225555555555558888888
0 0000000000222222225555555555888888888

-0 888888888885555555555555555222222
-1 888888855555555222222200000000000000
-2 8888885555555555522222000000
-3 888555200000000
-4 8822000
-5 8855000
-6 500

 + + + + + + +---

Boxplot
1 0
1 0

2 0
2 0
2 0
3 1

10 1
10 1
21 1
38 +..........+
37 1 + 1
33
36 +------- +
28 1
15 1
7 1
7 1
3 1

Normal Probability Plot
11.5+

2.5+

* * + + +

+ ***

- 6 . 5+ * + + +

2 +1 +2

213

