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ABSTRACT 

 
Coiled tubing (CT) services is one of the fastest growing oilfield technologies. 

Yet, due to the small tubing diameter, there is excessive friction in coiled tubing. The 

excessive friction pressure is also due to the effect of secondary flow which is caused 

by centrifugal forces in coiled tubing. Predicting friction pressure in coiled tubing has 

been an engineering challenge. Literature survey indicated that there are no 

correlations that can be used to properly predict friction pressure of non-Newtonian 

fluids in coiled tubing. The current study is an effort to bridge this gap.  

Following the approach of boundary layer approximation analysis taken by Ito, 

and Mashelkar and Devarajan, solutions of laminar flow of a power law fluid in 

coiled tubing were obtained for flow behavior index, n = 0.25, 0.30, …, 1.0. A new 

friction factor correlation of laminar flow in coiled tubing was developed and verified 

by comparing with Ito correlation (for n = 1) and experimental data. There was 

excellent agreement between the new correlation and experimental data. Similar 

approach was applied to turbulent flow of power law fluid in coiled tubing. 

Numerical solutions of turbulent coiled tubing flow for n = 0.25, 0.30, 0.40, …, 1.0 

were obtained. A friction factor correlation for turbulent non-Newtonian fluid flow in 

coiled tubing was also developed and verified with Ito correlation for Newtonian 

turbulent flow and also with limited experimental data. For both laminar and 

turbulent flow of non-Newtonian fluid in coiled tubing, this study not only corrected 

the errors in Mashelkar and Devarajan’s solutions for both laminar and turbulent flow 
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of non-Newtonian fluid in coiled tubing, but also extended Mashelkar and 

Devarajan’s method to wider range of flow behavior indices.  

An extensive experimental study was performed with polymer-based fluids using 

the field-scale and lab-scale flow loops which consist of an array of coiled tubing of 

½, 1, 1-1/2, 1-3/4, and 2-3/8-in. diameter and of various tubing lengths and curvature 

ratios. Polymer fluids tested in this study included: xanthan, PHPA (partially 

hydrolyzed polyacrylamide), guar, HPG (hydroxypropyl guar), and HEC 

(hydroxyethyl cellulose) fluids at various polymer concentrations. It was found that 

coiled tubing curvature increased the friction pressure significantly. The maximum 

difference in friction factor between coiled tubing and straight tubing can be as high 

as 185%, depending on the tubing size, polymer concentration, and generalized 

Reynolds number. For Newtonian fluid (water), the difference in friction factor 

between coiled tubing and straight tubing is not as significant as for polymeric fluids. 

But, the friction factor difference still can be as high as 30%. Based on friction 

pressure data of field-scale flow tests, empirical correlations of Fanning friction factor 

as functions of generalized Dean number have been developed for turbulent flow of 

polymer fluids in coiled tubing. These correlations can be used for coiled tubing 

hydraulics design.  

Data analysis of friction pressure showed that drag reduction in coiled tubing is 

lower than in straight tubing. As curvature ratio increases, the drag reduction of 

polymer fluids in coiled tubing decreases. It was also found that the onset of drag 

reduction in coiled tubing is delayed due to curvature. A new correlation for 
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maximum drag reduction (MDR) asymptote was developed based on the drag 

reduction data from the ½-in. flow loop which has curvature ratios of 0.01, 0.019, 

0.031, and 0.076. This correlation reduces to the well-known Virk’s asymptote for 

dilute polymer solutions in straight pipes. Therefore, Virk’s asymptote can be 

considered as a special case (zero curvature ratio) of the new correlation for coiled 

tubing. A new drag reduction envelope is also proposed. Examples have 

demonstrated that the new drag reduction envelope is a useful tool to analyze the drag 

reduction behavior of polymer solutions in coiled tubing.  

The CFD software FLUENT was used to simulate the Newtonian laminar and 

turbulent flow, and non-Newtonian laminar flow in a 2-3/8-in. coiled tubing. The 

simulation results revealed essential features of fluid flow in coiled pipes, such as 

secondary flow effect and shifting of high velocity region toward the outer tubing 

wall.  
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CHAPTER 1  
INTRODUCTION 

 
The coiled tubing (CT) industry is one of the fastest growing segments of the 

oilfield services sector. CT growth has been driven by attractive economics, continual 

advances in technology, and utilization of CT to perform an ever-growing list of 

oilfield operations. Coiled tubing toady is a global, multi-billion dollar industry in the 

mainstream of energy extraction technology.1 The total number of working units 

reported in February 2001 is roughly 850 units. In January 2004, slightly more than 

1050 CT units were estimated to be available worldwide. According to the rig count 

of the ICoTA (the International Coiled Tubing Association), the total CT units were 

1182 in January 2005, with the biggest increase of CT units in Canada – from 239 

units in 2004 to 311 units in January 2005. The global fleet of CT units has more than 

doubled over the past decade. In Canada, the CT market has boasted at annual growth 

rate of 25% since 1997. 2  

Coiled tubing has been gaining popularity because it has a number of advantages. 

Since coiled tubing is a continuous string of tubing, it can be run into or out of a well 

at much faster speeds than jointed tubing. This fast trip speed results in tremendous 

cost saving. In addition, fluid can be circulated through the tubing while it is being 

inserted into or drawn from the well. This capability allows for work on a pressurized 

well without the need to kill the well and risk damage to the reservoir. This feature 

becomes attractive for underbalanced drilling. Since it was first developed, coiled 
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tubing has been used for well cleaning, acid stimulation, and other conventional 

applications. Conventional CT applications such as well cleanouts are generally 

referred to as the “bread & butter” of the industry, since these applications still 

account for more than three quarters of coiled tubing revenues. More recently, CT 

drilling (CTD) and CT fracturing have emerged as two of the fastest growth areas. 

Revenues from these two CT applications have grown from almost zero a decade ago, 

to approximately 15% in recent times. The benefits of CT fracturing are significant – 

more than 20 intervals can be fractured in a single day. In general, the capabilities of 

the tubing, the CT units, and CT tools have improved tremendously over the past 

decade.  

In view of the various CT applications, it is seen that CT operations almost 

exclusively involve pumping fluids through coiled tubing – whether in CT well 

cleanouts or CT drilling or CT fracturing. In many cases, the excessive frictional 

pressure in coiled tubing string is often a limitation of CT applications. The excessive 

friction pressure is due to the small tubing diameter and the curvature effect. The 

coiled tubing diameter has to be small enough for the whole length of tubing string to 

be spooled on the reel. Mechanically, to avoid excessive stress, the tubing diameter 

can not be large. The most commonly used CT sizes are 1-1/2 in. and 2-3/8 in. These 

are much smaller than conventional tubing and pipes. When a fluid flows through 

coiled tubing, secondary flow occurs due to the effect of centrifugal forces. 

Secondary flow causes extra flow resistance. The effect of coiled tubing curvature is 

more pronounced with flow of polymer fluids such as many drilling and completion 
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fluids. The difference in friction factor of these fluids in coiled tubing and in straight 

tubing (ST) can be as high as 185%. Accurately predicting frictional pressure in 

coiled tubing has been a challenge for engineers in CT operations design. The 

available commercial CT softwares are not able to predict CT friction pressure 

satisfactorily. CT engineers have to rely on experience or add some correction factors 

to the softwares’ predictions.*  

The objective of this study is to theoretically and experimentally investigate the 

frictional pressure behavior of polymer fluids commonly used in CT applications to 

meet the industry’s need for improved hydraulics design of CT operations.  

In Chapter 2, we reviewed the coiled tubing applications in the oil and gas 

industry so that we could properly define our research content (especially 

experimental work) and experimental conditions would be representative of field 

conditions.  In the second part of Chapter 2, we reviewed the previous studies on fluid 

flow in coiled pipes. This has proved very beneficial for this research.  

In Chapter 3, we took the approach of boundary layer approximation analysis of 

Barua,3 Ito,4 and Mashelkar and Devarajan,5 and extended the work of Mashelkar and 

Devarajan to wider range of flow behavior index (n). Mashelkar and Devarajan only 

obtained solutions of boundary layer analysis for n = 0.5, 0.75, 0.9, and 1.0. We 

extended the solutions to n = 0.25, 0.30, …, 1.0. A new friction factor correlation for 

non-Newtonian laminar flow in coiled tubing was developed and verified by 

comparing with Ito correlation and with experimental data. Our new correlation not 

                                                 
* Personal communications with Mr. Bernt Olson of Cudd Pressure Control and Mr. Michael Bailey of 
Halliburton.  
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only matched the Ito correlation well, but was also in excellent agreement with 

experimental data.  

In Chapter 4, we followed the similar approach as in Chapter 3 to consider the 

turbulent flow of non-Newtonian fluid in coiled tubing. A friction factor correlation 

for turbulent flow of power law fluid was developed based on the numerical solutions 

of non-Newtonian fluid flow in coiled tubing. Comparison with Ito correlation and 

Mashelkar and Devarajan correlation as well as experimental data was also provided.  

Experimental investigation is an important part of this study. Starting from 

Chapter 5 through Chapter 7, we present results of extensive flow experiments in both 

coiled tubing and straight tubing, and rheological studies of various test fluids. More 

specifically, Chapter 5 describes the experimental setup in detail. It first describes the 

field-scale and lab-scale flow loops which include an array of coiled tubing reels, 

straight tubing sections, fluid mixing and pumping equipment as well as data 

acquisition system. Besides the equipment for flow tests, Chapter 5 also presents 

apparatuses for rheological characterization of the test fluids.  

Chapter 6 presents experimental results of systematic and extensive flow tests of 

polymer fluids in coiled tubing. Throughout the chapter, wherever possible, we tried 

to compare the flow behavior in coiled tubing and straight tubing and their 

fundamental differences. Based on the data analysis, several important observations 

have been made concerning the flow behavior of water and non-Newtonian polymeric 

fluids. Empirical friction factor correlations have been developed based on the flow 

test data from the field-scale flow loop. 
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In Chapter 7, we explored the characteristics of drag reduction phenomena in 

coiled tubing. Observations of this chapter are expected to provide some insights into 

the unique friction behavior in coiled tubing. One of the major efforts of Chapter 7 is 

the development of the maximum drag reduction (MDR) asymptote in coiled tubing 

and the proposal of the drag reduction envelope for coiled tubing. The new MDR 

asymptote can be reduced to the well-known Virk’s asymptote for straight pipes. It is 

found that drag reduction in coiled tubing is lower than in straight tubing. The larger 

the curvature ratio, the lower the drag reduction in coiled tubing. The coiled tubing 

curvature also delays the onset of drag reduction.  

In Chapter 8, we initiated the effort of simulating fluid flow in coiled tubing 

using CFD software – FLUENT. A CT model of 2-3/8-in. coiled tubing on 111-in. 

diameter reel was constructed and grid mesh was created. Solutions of Newtonian 

laminar and turbulent flow, and non-Newtonian laminar flow were obtained. Essential 

flow features in coiled tubing were observed, such as shifted velocity profiles and 

secondary flows.  

Study of complex non-Newtonian fluids such as drilling, completion, and 

stimulation fluids flowing in coiled tubing still faces many challenges and 

unanswered questions. These potential research issues will be addressed in the final 

chapter where we summarized our conclusions of the present study and 

recommendations for future research.  
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CHAPTER 2  
LITERATURE REVIEW 

 
This chapter presents literature reviews in two parts. Part 1 reviews the 

development of coiled tubing technology, CT advantages, and CT applications in the 

oil and gas industry. This will help us to identify the technical challenges and industry 

needs and make sure our research effort is of interest to the industry. Part 2 reviews 

the previous studies on fluid flow through curved or coiled pipes, both theoretical and 

experimental. This is essential for understanding the complex flow phenomenon of 

fluid flow in coiled tubing and taking the right approaches for the present study.   

2.1 CT Applications in the Oil and Gas Industry 

2.1.1 Coiled Tubing 

Coiled tubing (CT) is a continuously-milled tubular product manufactured in lengths 

that require spooling onto a take-up reel during the manufacturing process. During 

CT application, the coiled tubing is straightened prior to being inserted into the 

wellbore and is recoiled for spooling back onto the service reel. Compared with 

conventional jointed tubing, the most important feature of CT is that the whole CT 

string is continuous and has no connections.  

To run the CT into wellbore or pull it out of hole, a CT unit is required. As 

illustrated in Fig. 2.1, a typical CT unit consists of the following elements:  
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Fig. 2.1―Trailer mounted CT unit and crane.1 

• Coiled tubing reel; 

• Injector head; 

• Power pack; 

• Wellhead blowout preventer (BOP); 

• Control cabin. 

Coiled tubing reel is for storage and transport of CT string. The spooling capacity 

of CT reels depends on the CT diameter and core diameter. Single CT lengths can be 

in excess of 30,000 ft. The injector head is used to provide the surface drive force to 

run and retrieve the CT, to control the running rate, and to support the suspended 

tubing weight. The injector head is equipped with an arc roller system called tubing 

guide or gooseneck. The BOP stack consists of several hydraulically-operated rams 

and provides well pressure control. The stuffing box connected to the BOP stack 
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provides the dynamic high pressure sealing around the CT. The power pack is used to 

generate hydraulic and pneumatic power required to operate the CT unit. The control 

cabin, also called control console, includes all the controls and gauges for CT 

operators to monitor and operate the CT unit components.  

2.1.2 Brief History of CT Technology 

The modern coiled tubing technology can be traced back to the project PLUTO (Pipe 

Line Under The Ocean) by the Allied engineering teams during World War II.6 Prior 

to the Allied invasion of Normandy, British engineers developed and laid very long 

continuous pipelines across the English Channel to fuel the Allied armies. Seventeen 

pipelines of total length of 30 miles were deployed. These pipelines were spooled 

onto 40-ft diameter reels and deployed by towing the reel behind a ship. In the early 

stages of CT technology, coiled tubing units were built to perform primarily sand 

cleanouts and nitrogen jet services. Unfortunately, the success rate of coiled tubing 

was poor and a reputation for limited reliability followed the coiled tubing 

development for some years in the early 1960s. Through the late 1970s and early 

1980s, numerous revisions on equipment design and maintenance schedules were 

made for coiled tubing units built by Bowen Tools, Hydra Rig Inc., and Otis 

Engineering. These modifications were successful in improving the performance and 

reliability of surface equipment and significantly reducing equipment failure rates. 

Although surface equipment modifications increased coiled tubing reliability, the 

most dramatic improvements came as a result of new continuous tubing 

manufacturing methods and introduction of quality control.  
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Currently, there are two coiled tubing manufacturers providing all of the coiled 

tubing used by the CT service contractors worldwide.1 These companies are Quality 

Tubing, Inc. (QTI) and Precision Tube Technology (PTT), each having 

manufacturing facilities in Houston, TX. New advancements in CT technology are 

being explored by each of these pipe manufacturers. Greater strength is achieved 

through changes in steel chemistry or treatment such as quenching and tempering. CT 

material advancements will play a significant role in continued progress in many of 

the leading edge CT applications. The CT industry has continued to make technical 

advancements in every aspects – tubing design and manufacturing, CT units, and 

various reliable CT tools. The technical progress has served to make CT an even 

more appealing solution for many applications.  

2.1.3 Advantages of CT 

Compared to conventional jointed tubing and pipes, coiled tubing has many 

advantages.6 First, CT can be run in hole or pulled out of hole (RIH/POOH) easily 

and quickly. This can save a lot of workover time and therefore result in great cost 

savings. Second, when compared with conventional rig, the coiled tubing unit is 

relatively light and easy to move. Therefore, CT units are applicable to remote or 

environment sensitive situations. Third, the ability of CT to circulate fluids allows its 

use in many well workover operations such as well unloading or sand washout. In 

addition, CT has much higher tensile strength than wireline and can replace wireline 

operations in certain applications. The following is a brief list of CT advantages.  
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• Faster trip time; 

• Faster rig (CT unit) mobilization and demobilization;  

• Smaller environmental footprint; 

• Safer and more effective operations in underbalanced conditions; 

• More effective in positioning tools in horizontal wells; 

• Ability to circulate fluid while RIH/POOH; 

• Reduced crew/personnel requirement; 

• Cost may be significantly reduced; 

• Minimal well shut-in time. 

Figs. 2.2 and 2.3 show that the CT mast units can be easily rigged up and rigged 

down for mobilization.  

 

2.1.4 CT Applications in the Oil and Gas Industry 

Traditionally, CT has been used in wellbore sand or fill cleanout, well unloading,7 

stimulation (matrix acidizing), cement squeeze, CT assisted well logging and 

perforating, 8  fishing, spoolable gas lift system, and others. 9  While well 

service/workover applications still account for more than 75% of CT use, technical 

advancements have increased the utilization of CT drilling and completion 

applications. CT drilling (CTD) and CT fracturing, practically unknown a decade ago, 

now make up nearly 15% of CT revenue.2  
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Fig. 2.2―A coiled tubing mast unit is rigged up.† 

 

Fig. 2.3―A coiled tubing mast unit is rigged down.‡ 

 

2.1.4.1 Sand and Solids Washing 

One of the main applications of coiled tubing is the removal of sand or similar fill 

from a wellbore.10 - 14  Fig. 2.4 illustrates a typical process of coiled tubing sand 
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† Thanks to Mr. Michael Bailey of Halliburton for sharing this photo. 
‡ Thanks to Dr. Steven Hill of Schlumberger for sharing this photo. 



 

washing operation. Here, a sand bridge at 10,000 ft is being cleaned out. The 

operation involves circulation of a fluid through the CT to the sand face where the 

sand is picked up by the jetting action of the nozzles. The sand is then transported to 

the surface through the annulus between the CT and production tubing or casing.  

 

Fig. 2.4―Schematic of sand cleanout process using CT.6 

An important consideration in designing sand cleanout operations is the proper 

selection of the fluid and pump rate.15-17 They should be chosen so that sand can be 

effectively carried out to the surface while maintaining proper bottomhole pressure. 

Both Newtonian fluids, such as water and brines, and non-Newtonian fluids have 

been used in CT sand cleanouts. When washing sand inside casing, viscous non-

Newtonian fluids such as biopolymer or gelled oil systems may have to be used. This 

is because the velocity between CT and casing is reduced and more viscosity is 

required to suspend the sand particles in the annular flow. Since the fluid pressure 
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should not exceed the allowable working pressure of the CT, wash fluids with 

friction-reducing properties are desired.  

2.1.4.2 Well Unloading 

Using CT to unload a well with nitrogen is a quick and cost-effective method to 

regain sustained production of wells with liquid load problems. Some wells stop 

production because of the hydrostatic pressure overbalance which prevents the 

reservoir fluids from flowing into the wellbore. The liquid load can be due to 

workover fluids from workover operations or liquid produced from reservoir, such as 

water accumulation in wellbore in low pressure gas wells. In these cases, lighter 

fluids such as nitrogen (N2) can be used to unload (or kick off) these “load-up” wells.6 

The working principle of well unloading is the same as gas lift. The coiled tubing can 

be run into or out of a well at a speed of 100 to 200 ft/min. Nitrogen can be circulated 

at different depths to achieve a smooth and efficient unloading.18 For hydraulically 

fractured wells, CT conveyed nitrogen can be used to lift the fracturing fluid and 

clean out frac sand left in the wellbore. Recently, coiled tubing in conjunction with 

downhole jet pump was used to dewater gas wells.19 CT gas lift may be more cost-

effective than conventional gas lift system.20 Analysis and design of well unloading 

operations requires computer simulators to simulate the transient process. 15,21  

2.1.4.3 Coiled Tubing Drilling (CTD) 

CT drilling can be divided into two main categories: directional and non-directional 

drilling. Non-directional drilling uses a fairly conventional drilling assembly in 
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conjunction with a downhole motor. Directional drilling requires the use of an 

orienting device to steer the well trajectory. Application of CTD is especially 

attractive for drilling shallow gas wells in Canada.22 Drilling shallow gas wells with 

CT can be more efficient and economical than conventional rigs. Canada accounts for 

over 90% of worldwide CT drilling.23 Fig. 2.5 shows the annual growth of coiled 

tubing drilled wells in Canada. The most active CTD contractor is Precision Drilling 

in Canada. Comparing the minimum location size (footprint) of CT units with small 

conventional drilling rigs, CT clearly has the size advantage: well sites are only one-

quarter to one third the size of a conventionally drilled pad. Fig. 2.6 shows an 

example of CT drilling site.  Along with smaller footprints, fewer loads are required 

to deliver equipment.  

 

 

Fig. 2.5―Annual coiled tubing drilled wells.23 
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Fig. 2.6―Coiled tubing drilling wellsite.§ 

In Alaska, especially Prudhoe Bay, drilling sidetracks using coiled tubing has 

been successful drilling practice.6 Drilling sidetracks through tubing involves milling 

windows through tubing and casings. In the UK North Sea, CTD proved a viable 

sidetracking technique on platforms in mature field to recover bypassed reserves. 6 

Common tubing sizes for CTD are 2 in. and 2-3/8 in. To reduce frictional pressure in 

coiled tubing and annulus, a low-solids polymer drilling fluid is normally used. 

Coiled tubing is also useful for drilling multilaterals or re-entry drilling from existing 

wells.24 Coiled tubing is especially useful for underbalanced drilling in low pressure 

reservoirs.25 Slim-hole26 or re-entry drilling,27 microhole drilling, 22 and horizontal 

drilling24,25,28 with coiled tubing are gaining increased interest in the new technology 

development.  

                                                 
§ Source: www.technicoilcorp.com. 
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2.1.4.4 CT Fracturing 

Hydraulic fracturing through CT has become an effective stimulation technique for 

multizone oil and gas wells.29-31 Hydraulic fracturing via CT is also an attractive 

production enhancement technique for mutliseam coalbed methane wells.32 Fig. 2.7 

shows a CT unit is being used for hydraulic fracturing. 

 

Fig. 2.7―CT unit is used in hydraulic fracturing.** 

In CT hydraulic fracturing, proppant such as sand is conveyed through the 

continuous string of coiled tubing as transport conduit to fractured formation. 

Compared with conventional tubing conveyed hydraulic fracturing, CT hydraulic 

fracturing has a number of advantages. In particular, CT provides the ability to 

quickly move in the hole (or be quickly repositioned) when fracturing multiple zones 

in a single well. CT also provides the ability to fracture or accurately spot the 

treatment fluid to ensure complete coverage of the zones of interest when used in 

                                                 
** Source: www.technicoilcorp.com. 
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conjunction with appropriate bottomhole assembly tools such as straddle packers. 

This is particularly important for stimulation of multiple zones or bypassed zones or 

horizontal wellbores. At the end of the formation treating operation, CT can be used 

to remove any sand plugs used in the treating process, and to lift the well to be placed 

on production. 

2.1.4.5 CT Used in Acidizing 

Coiled tubing has been used as an effective acid injection tool for acidizing horizontal 

or highly deviated carbonate wells. 33−38  In horizontal wells or long interval carbonate 

wells, conventional bullheading of acid could result in very uneven acid coverage and 

low stimulation efficiency, since acid would follow paths of the least resistance and 

flow into areas of highest permeability. CT conveyed acidizing can provide necessary 

mechanical isolation and diversion for uniform acid coverage along wellbore. The 

process involves pumping acid through CT and pumping an inert fluid through the 

annulus between the CT and the well. While acid is being injected through the CT, 

the CT is withdrawn gradually at a withdrawal rate contingent on the stimulation fluid 

injection rate and the desired volumetric coverage. Due to the unique capability of 

“pumping while-in-motion” of CT, acid can be spotted at any specific point along the 

treatment interval. At the end of acid stimulation, the well can be unloaded with CT 

to minimize the time that spent acid remains in the well.  
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2.1.4.6 Cement Squeeze 

Coiled tubing has been successfully used to perform non-rig cement squeeze 

workovers.39-45  The motivation of using CT to squeeze cement is economics: the 

reduction in workover costs in an environment where rig mobilization and operating 

costs are becoming prohibitive. In Prudhoe Bay, CT cement squeeze can be 

performed for about 25% of the cost for an equivalent rig squeeze, and CT cement 

squeezes have been performed: (1) to shut-off unwanted gas or water production, (2) 

to repair faulty primary cement jobs, and (3) to modify injection or production 

profiles. CT cementing was also used in a platform abandonment program in North 

Sea to plug wells. 46   

2.1.4.7 Other Applications  

Logging with CT. CT is useful in conveying logging tools in highly-deviated, 

extended reach, and horizontal wells where gravity conveyed wireline logging is not 

suitable. The electric wireline can be installed during CT manufacturing or can be 

inserted into coiled tubing prior to logging. 47 One advantage of CT assisted logging is 

that it would minimize the “slip-stick” motion common to wireline-conveyed tools. 

Another advantage is that fluid such as N2 can be pumped through CT to initiate or 

promote flow for production logging.  

Fishing with CT. Compared with wireline fishing, CT fishing has advantages of high 

tensile strength and the unique capability to circulate wash fluids such as N2 and acid 

at the fish to remove sand, mud, scale or other debris off the top of the fish. 48-51 

Therefore, CT fishing is specially useful for fishing in highly-deviated and horizontal 
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wells, or fishing debris covered fish, or jarring and/or pulling a fish that is too heavy 

for wireline.  

In most of the CT applications briefly reviewed above, fluids are pumped 

through the coiled tubing string either in drilling, fracturing, or wellbore cleanouts. 

Due to the limitation of CT tubing size, fluids with less friction pressure are desired. 

These fluids such as biopolymer solutions are non-Newtonian and drag reducing. 

Therefore, investigating friction pressure of polymer fluids in coiled tubing has 

become one of the objectives of this study. 

2.2 Studies of Fluid Flow in Coiled Pipes 

2.2.1 Introduction 

Accurate prediction of frictional pressure losses when pumping fluids through coiled 

tubing has remained a challenge in hydraulics design, mainly due to the lack of 

adequate friction loss correlations and proper understanding of the complex flow 

phenomena of fluids (especially non-Newtonian fluids) in coiled tubing. Since the 

classic work of Dean,52,53 the flow of Newtonian fluids in coiled pipes has been 

extensively studied; in contrast, the flow of non-Newtonian fluid in coiled pipes has 

remained relatively unstudied.  

The objective of this part of the chapter is to review both theoretical and 

experimental studies on the flow of Newtonian and non-Newtonian fluids in coiled 

pipes. The mathematical formulation and the general characteristics of the secondary 

flow are first introduced in order to prepare for discussion of various theoretical 
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studies. The available friction factor correlations will be compared and evaluated for 

their accuracy and applicability.  

2.2.2 Flow of Newtonian Fluid in Coiled Pipe 

2.2.2.1 Governing Equations 

Fig. 2.8 shows the toroidal coordinate system that has been often used in studying 

fluid flow in coiled pipes. We denote the radius of the pipe by a and the radius of the 

coil as R. C is the center of the pipe cross section, φ is the angle that the cross-section 

makes with a fixed axial plane. OZ is the axis of the coil. The flow is assumed in the 

direction of increasing φ under a driving pressure gradient. The velocity components 

u, v, and w are in the directions of r, α, and φ respectively. 
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Fig. 2.8―Toroidal coordinate system. 

The equations of momentum and continuity52,53 are:  
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The above equations plus adequate boundary conditions define a steady flow 

problem in a coiled tube. If the flow is assumed to be fully-developed, then u, v, and 

w will be independent of φ and pressure gradient in the axial direction (φ) will be 

constant: 

Gp
R

=
∂
∂

−
φ

1  (constant)....................................................................................... (2.5) 

Obviously, Eqs. (2.1) to (2.4) form a coupled, non-linear problem and are 

difficult to be solved analytically without invoking simplifying assumptions. 

2.2.2.2 Dean’s Work and Dean Number 

The pioneering work of Dean52,53 on the theoretical aspect of the coiled tube flow has 

been of significant importance in most of the later development. By assuming that the 

curvature of the pipe is small, that is, a/R is small, and that the flow is slow motion, 

Dean simplified the governing equations, Eqs. (2.1) to (2.4), and then, using a 

successive approximation method, obtained an analytical solution which is essentially 

an approximate solution obtained through perturbation over the Poiseuille flow of 

straight pipe.  
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As for the effect of pipe curvature on the flux, Dean’s first paper52 failed to show 

that the relation between pressure gradient and the flow rate is dependent of the 

curvature. In his second paper,53 he derived the following flux expression: 

( ) ( 01195.0
576

03058.0
576

1
42
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
+



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
−=

KK
Q
Q

s

c ) , ..............................................(2.6) 

where Qc and Qs are the flow rates through coiled and straight pipes, and K is a 

dynamic similarity parameter and will be discussed below.  Eq. (2.6) is valid only for 

very small K values.  

One important contribution of the Dean’s work is the introduction of non-

dimensional parameter K which is called Dean number. According to Dean’s original 

definition, 

R
aWK 2

32
02

ν
= , ....................................................................................................(2.7) 

where W0 is the maximum axial velocity in the cross-section and ν is the kinematic 

viscosity. There have been several versions of definition of Dean number,54,55 but  

most researchers prefer the following definition: 

2
1

Re 





=

R
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where NRe is Reynolds number. It can be shown that K and NDe are related by 

  .  Another definition of Dean number( )22 DeNK = 56 is: 
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where G is axial pressure gradient, ν is kinematic viscosity, and µ is dynamic 

viscosity. Here, D and K are related by KD 4= . 

The Dean number provides a fundamental parameter in developing flow 

resistance correlations for flow in curved pipes. It has been found that at low Dean 

number, the law of resistance can be correlated with NDe only. For high Dean number, 

both NDe and curvature ratio (a/R) will be required. 

2.2.2.3 Characteristics of Secondary Flow 

The unique feature of the flow structure in coiled pipes is the secondary flow that is 

superimposed on the primary flow in the axial direction. Mathematically, the cause of 

the secondary flow is due to the two centrifugal force terms in the momentum 

equations for the r and α directions. Since the centrifugal force is perpendicular to the 

axial direction, there is no such a term in the φ momentum equation.   

Fig. 2.9 illustrates the flow lines in the cross-section of a coiled pipe from Dean’s 

solution which indicate that in the cross-section, the secondary flow streamlines form 

a pair of symmetrical vortices which have been called Dean vortices by later 

researchers. Dean52 pointed out that the secondary flows of the spiral form are 

superimposed on the axial primary flow. 
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Fig. 2.9―Streamlines of secondary flow.52 

Experimental observations of the secondary flow phenomena date back to 1910 

when Eustice 57 , 58  did experiments of water flow in curved pipes. Eustice used 

filaments of six different colors to trace the paths of secondary flow streamlines and 

observed “the extremely beautiful effects due to the interacting of the colored bands.” 

Figs. 2.10 and 2.11 show the axial velocity profiles and  contours in a cross-

section of a coiled pipe obtained by Adler.59 The curvature ratio was a/R = 1/100, and 

Reynolds number NRe = 2050. It can be seen that the maximum axial velocity was 

shifted to the outer side of the coil and the velocity profile is very different from the 

parabolic profile for straight pipe. 

Figs. 2.12 through 2.15 show the theoretical results of McConalogue and 

Srivastava,56 and Collins and Dennis60 for Dean number D = 96, 481, 2,000, and 

5,000 respectively. These results show that as Dean number increases, the secondary 

flow becomes more confined to a thin area near the pipe wall. This characteristic 

supports the basic assumption of the boundary layer approximation methods. 
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Fig. 2.10―Axial velocity profile, a/R = 0.01, NRe =2050.59 

 

Fig. 2.11―Contours of axial velocity, a/R = 0.01, NRe = 2050.59 

 

Fig. 2.12―Secondary flow streamlines and axial velocity contours (D = 96).56 
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Fig. 2.13―Secondary flow streamlines and axial velocity contours (D = 481).56 

 

Fig. 2.14―Contours of axial velocity (D = 2000).60 

 

Fig. 2.15―Contours of axial velocity (D = 5000).60 

2.2.2.4 Theoretical Methods 

The complexity of the flow geometries and the equations of fluid flow in coiled pipes 

attracted the attention of theoreticians as well as engineers. Various theoretical 

methods have been developed. These theoretical methods can be roughly grouped as 
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analytical solutions for small Dean number, numerical methods, and boundary layer 

approximation methods for large Dean number. 

Analytical solutions 

For loosely coiled tubes (a/R is small) and small Dean number, the governing 

equations can be simplified and reduced to equations about a stream-function (ψ) and 

the axial velocity (w). Since the Dean number is small (therefore the deviation from 

the straight pipe flow is expected to be slight), it is appropriate to expand the 

solutions of the stream-function and axial velocity component in power series of the 

Dean number: 

w = w0 + w1K + w2 K2 + ⋅⋅⋅,  .........................................................................(2.10) 

ψ = ψ1 K + ψ2 K2+ ⋅⋅⋅, ...................................................................................(2.11) 

where w0, w1, ψ1, ψ2, w2,… are functions of r and α. By substituting these expressions 

into the ψ and w equations and equating coefficients of the powers of K, Dean 

obtained the series solution by successively solving for w0, w1, ψ1, w2, ψ2, … Note 

that w0 is the solution for Poiseuille flow in straight pipe.  

The similar approach was followed by Jones61 for Rivlin-Reiner fluid model, and 

by Thomas and Walters62,63 for elastico-viscous liquids in a curved pipe of circular 

and elliptic cross-sections respectively. Power series was also used by Larrain and 

Bonilla,64 Topakoglu,65 and Robertson and Muller.66 
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Van Dyke54 extended the Dean’s series by computer to 24 terms. But, his result 

has caused controversies due to the fact that his correlation of friction factor ratio is 

not in agreement with other studies.67 

In addition to power series, Fourier-series development has also been used for 

series solutions. McConalogue and Srivastava’s56 results cover a range of Dean 

number of D from 96 to over 600. Dennis and Ng’s68 Fourier-series solution covers 

the range of Dean number D = 96 – 5000. It is found that for D < 956, the secondary 

flow consists of a symmetrical pair of counter-rotating vortices. For D > 956, the 

secondary flow has a four-vortex pattern consisting of two symmetrical pairs. 

Daskopoulos and Lenhoff 69  expressed their solution using Fourier series in the 

angular direction (α) and Chebychev polynominals in radius r. 

Most studies of series solutions assumed negligible pitch of coil and neglected 

the effect of torsion. But, Germano70,71 and Kao72 studied the effect of torsion as well 

as curvature ratio.  

Numerical Methods 

If the curvature ratio (a/R) is small, the flow in curved pipe depends on a single 

parameter, the Dean number. This is not the case if (a/R) is not very small. The 

Navier-Stokes equations for fluid flow in coiled pipes can be solved numerically. 

Generally, a finite difference scheme has been adopted. These studies include 

Truesdell and Adler,73 Greenspan,74 Patankar et al.,75 Collins and Dennis,60 Joseph et 

al., 76  Dennis, 77  and Hsu and Patankar, 78  etc. In these studies, the Navier-Stokes 

equations were simplified as stream-function/axial velocity or stream-
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function/vorticity forms. Soh and Berger79 used a finite-difference scheme and the 

value of curvature ratio can be arbitrary. Austin and Seader80 solved the Navier-

Stokes equations in the stream-function/vorticity form numerically using finite 

difference. A few studies have been reported for simulation of turbulent flows such as 

Patankar et al.81 and Lai et al.82 The challenges of numerical studies are accurate and 

efficient numerical scheme, grid system, and computational algorithms. 

Boundary Layer Approximation Methods 

The thickness of the boundary layer will become thinner with increasing Dean 

number. This feature has been shown by experiments59 and numerical 

simulations.60,68,77 According to the theory of the boundary layer approximation, the 

tube cross-section can be divided into two regions: the central inviscid core region 

and the thin boundary layer where the viscous effect is significant. Studies of this 

category include: Adler,59 Ito,4, 83  Barua,3 Mori and Nakayama, 84  Mashelkar and 

Devarajan,5,85,86 and Riley.87 

To use the boundary layer approximation method, order of magnitude analysis is 

carried out with the boundary layer and the forms of velocity distributions are 

assumed. The potential difficulty with this method is the boundary layer separation at 

the inner side of the coil.4 Fortunately, for the purpose of correlating flow resistance, 

the boundary layer models are probably sufficient and their accuracy has been 

verified by the experimental data. 4,83 This is probably because the contribution of the 

shear stress from the area at the inner bend is not significant to the circumferential 

averaged shear stress.   
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2.2.2.5 Experimental Studies 

Experimental investigation of fluid flow in coiled pipes began as early as 1910s. 

Eustice57,58 used colored filaments to observe the streamline flow of water in curved 

glass tubes and described the secondary flow streamlines. White88 used the Dean 

number to correlate his experimental data on pressure drop through coiled pipes.  He 

observed that the flow in curved pipe could be maintained laminar for a much higher 

Reynolds number than in straight pipes. This claim was verified by Taylor89 in his 

experiments on the criterion of turbulence in curved pipes. 

Adler59 closely examined the velocity distributions by experiments, and found 

that a velocity profile of laminar flow differs greatly from the parabolic distribution 

and a thin boundary layer was assumed. Ito83 measured the frictional pressure losses 

of turbulent flow in smooth curved pipes using water and drawn-copper tubing at 

various curvature ratios.  Mori and Nakayama84 measured velocity and temperature 

profiles of hot air in a curved pipe. 

Srinivasan et al.90 measured pressure drops of water and fuel oil in both helical 

tubes (with constant curvature) and spiral tubes (with variable curvature). 

Experimental values were used to develop equations to predict friction factors for 

laminar, transition, and turbulent regions. Equations were also given to predict critical 

Reynolds number for regime changes. 

Mishra and Gupta91 investigated pressure drop in coils of various diameters and 

pitches. Their data covered laminar flow and turbulent flows, and corresponding 

empirical correlations were proposed. 

 30



 

In addition to the gross flow experiments of measuring the flow resistance and 

flow rate, experiments were also made to understand the instability and flow regime 

transition, as discussed below. 

2.2.2.6 Flow Regime Transition 

It is a known fact that the transition from laminar to turbulent flow in coiled pipes 

occurs at a higher Reynolds number than in straight pipe. White88 found that plots of 

flow resistance coefficient versus Dean number fall on a single line predicted by the 

Dean correlation at low Dean number. But, at high Dean numbers, data points of 

different curvature ratios deviated from the Dean correlation which was based on the 

streamline motion assumption. It was concluded that a flow state that was different 

than streamline occurred with curved pipes and the onset of turbulence was delayed 

with increase of curvature. These claims were confirmed experimentally by Taylor89 

whose test result with a curved pipe of curvature ratio of 1/18 indicated that 

streamline motion persisted up to a Reynolds number of 5,830, i.e., 2.8 times 

Reynolds’ criterion for a straight pipe. 

Ito83 proposed the following empirical correlation for the critical Reynolds 

number: 

32.0

Re 000,20 
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=

R
aN c . ...................................................................................(2.12) 

This equation provided good agreement with experimental results in the range of 

15 < R/a < 8.6×102. For R/a > 8.6×102, the critical Reynolds number for a curved 
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pipe practically coincides with that for a straight pipe. Mishra and Gupta91 reported 

that Eq. (2.12) is in good agreement with their experiments. But, as pointed out by 

Srinivasan et al.,90 Ito’s83 correlation will not give NRec = 2100 for a straight tube 

where a/R = 0. Therefore, a new correlation was proposed based on the experiments 

by Srinivasan et al.90:  
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The previous observations and correlations were based on measurements of 

global parameters such as friction factor. Due to the secondary flow effect, the 

transition behavior on the plots of friction factor vs. Reynolds number is very gradual. 

Actually, it is very difficult to accurately identify when the onset of the turbulence 

occurs. If the fluid is non-Newtonian fluid, this transition would be even more 

gradual.92 

Sreenivasan and Strykowski 93  found that the characteristics of the transition 

regime was dependent on the location in the pipe cross-section. Using hot wire 

anemometers placed one quarter of the radius from the inner and outer walls, they 

found that turbulence near the inner wall emerged by the gradual superposition of 

higher order frequencies on the fundamental frequency. In contrast, near the outer 

wall, turbulence emerged by high frequency “bursts”. The sinusoidal oscillations at 

the inner wall always preceded the turbulent bursts at the outer wall. Recently, 

Webster and Humphrey94 provided quantitative time-dependent point measurements 

of velocity with a non-intrusive laser-Doppler velocimeter (LDV) and indicated that 
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the pipe curvature tends to dampen high frequency turbulent fluctuations, hence the 

manner of “transition to turbulence” in a coiled pipe is ambiguous.  

All the above experimental observations indicate that much higher Reynolds 

number is needed to maintain turbulence in coiled pipes than in straight pipes. 

2.2.2.7 Friction Factor Correlations 

Based on the literature survey, the available correlations for laminar Newtonian fluids 

in curved pipes are summarized in Table 2.1 for the reference convenience. In this 

table, fSL and fCL are Fanning friction factors for laminar flow in straight and coiled 

pipes respectively. To evaluate these correlations, we first compared the correlations 

of White,88 Srinivasan et al.,90 Hasson,95 Mishra and Gupta,91 and Majuwar and Rao96 

that were developed from experimental data. It was found that except for the Mujawar 

and Rao96 correlation, other four correlations are in excellent agreement. Therefore, it 

is appropriate to believe that the four of them are more trustful. Since the Mishra and 

Gupta91 correlation covers the widest range of NDe, it is therefore used to further 

evaluate the other theoretical correlations.  

Generally, all the boundary layer approximation methods are very close to the 

Mishra and Gupta91 correlations for large Dean number, say, NDe > 100, except 

Adler59 correlation which is significantly lower for NDe < 2000. The friction factor 

predicted by Mori and Nakayama84 correlation is slightly higher than the others.  

The Dean correlation is only valid for very small Dean number. The Topakoglu65 

correlation fails to be close to any correlation. Fig. 2.16 shows that van Dyke54 

correlation deviates from the rest when NDe > 200. Ito correlation is slightly 
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Table 2.1―Friction Factor Correlations of Laminar Newtonian Flow 
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Table 2.1―Friction Factor Correlations of Laminar Newtonian Flow (continued) 
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Fig. 2.16―Comparison of friction factor correlations of laminar Newtonian flow 
in coiled pipe. 

 

lower when NDe < 100. Interestingly, all four correlations – Ito (for NDe > 100), 

Collins and Dennis,60 Liu and Masliyah, 97  and Mishra and Gupta91 are in close 

agreement over a large range of Dean number. 

A few turbulent flow correlations are listed in Table 2.2. There is close 

agreement between them. In Table 2.2, fST and fCT are Fanning friction factors of 

turbulent flow in straight and coiled pipes respectively. NDec is the critical Dean 

number for turbulent flow in coiled pipe. 
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 Table 2.2―Friction Factor Correlations of Newtonian Turbulent Flow 

37 

    No. Authors Correlations Notes

1  Ito





























+






=

− 25.02

Re
2
1

304.0029.0
4
1

R
aN

R
afCT

 300 > 
2

Re 







R
aN > 0.034 

0.0012 < a/R < 0.067 

2 Srinivasan et al. 
2.0

2.0

084.0

De
CT

N
R
a

f








=  
NDec < NDe < 14000 

0.0097 < a/R < 0.135 

3 Mishra and Gupta 
21

0075.0 





+=

R
aff STCT ,

25.0
Re

079.0
N

f ST =  4500 < NRe < 105 
0.003 < a/R < 0.15 

 



 

2.2.3 Flow of Non-Newtonian Fluid in Coiled Pipe 

The complex rheological behavior of non-Newtonian fluids adds another dimension 

of complexity to the flow phenomena in coiled pipes. The flow of non-Newtonian 

fluids in coiled pipes has remained a much less studied area than Newtonian fluids. 

Jones61 considered the theoretical problem of the flow of a non-Newtonian, 

visco-inelastic Reiner-Rivlin fluid in a coiled tube. A number of investigators62,63,98-

100 have reported studies on the effect of elasticity on fluid flow in coiled pipes. Jones 

and Davies’s99 experiments showed that minute amounts of polymer could 

significantly delay departure of flow rate from Poiseuille flow, a phenomenon called 

“drag reduction in the laminar region”. 

Tsang and James100 noted that polymer additives caused a reduction of the 

secondary motion and tried to explain the drag reduction by estimating the cross-

sectional stresses based on Dean’s solution and several molecular models. 

Among the various studies of non-Newtonian flow in coiled pipes, those by 

Mashelkar and Devarajan5,85,86 deserve special attention. Following Ito’s4 boundary 

layer approximation approach for Newtonian fluids, Mashelkar and Devarajan 

theoretically analyzed and numerically solved the flow equations for a power-law 

fluid in both laminar and turbulent flows. An empirical correlation for laminar flow 

was developed based on the numerical solutions and another correlation for visco-

elastic fluids in terms of Weissenberg number based on data of flow tests.  

Mishra and Gupta91 have also measured friction factors of non-Newtonian fluids 

in coiled pipes and empirical correlations have been obtained. 
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In recent years, the rapid increase of coiled tubing applications in the oil and gas 

industry has driven the research activities of coiled tubing hydraulics using full-scale 

facilities. Azouz et al.101  measured frictional pressure losses of linear guar gum, 

hydroypropyl guar (HPG), and borate-crosslinked guar gum in 1-1/2-in. coiled tubing 

reels. McCann and Islas 102  generalized the Srinivasan et al.90 correlation for 

Newtonian turbulent flow to non-Newtonian fluids and compared the generalized 

correlation with the full-scale tests of six fluids prepared using bentonite and lime. 

Shah and Zhou92 discussed the characteristics of drag reduction of polymer 

solutions in coiled tubing and affecting parameters such as curvature, tubing ID, and 

polymer concentration. More recently, Shah et al.103 experimentally investigated the 

flow behavior of hydraulic fracturing slurries in coiled tubing. An empirical 

correlation of slurry friction factor as affected by sand concentration was developed. 

The possible mechanisms of tubing erosion in typical fracturing operations have been 

addressed.  

As with the case of Newtonian fluids, we have summarized the available friction 

factor correlations of non-Newtonian fluids in coiled tubing in Table 2.3. In this table, 

n is the flow behavior index of power law fluid, and NReg is the generalized Reynolds 

number. The Dean number, De is defined as:  

( ) ( ) 5.0
22

Ra
K
va

D
n

m
n

e
ρ−

= , ............................................................................ (2.14) 
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Table 2.3―Friction Factor Correlations of Non-Newtonian Fluid (Laminar and Turbulent) 

40 

    No. Authors Correlations Notes

1 Mashelkar and 
Devarajan ( ) ( )n

eCL D
R
annf 122.0768.0

5.0
2374.4438.9069.9 +−






+−=  70 < De < 400, 

0.01 < a/R < 0.135 

2 ( )[ ]0.4
2log033.01 DeSLCL Nff +=  2Re

16
N

fSL =  

3 

Mishra and Gupta 
21

0075.0 





+=

R
aff STCT  25.0

Re

079.0

d
ST N

f =  

4 McCann and Islas 
1.0

'8.0
Re

'06.1






=

R
a

N
af b
g

CT  

( )
50

93.3log
' 10 +
=

n
a  

( )
7
log75.1

' 10 n
b

−
=  

 



 

where ρ is fluid density, vm is mean velocity, and K is consistency index of fluid. NRed 

is Reynolds number based on differential viscosity and NRe2 is Reynolds number 

based on pseudoshear viscosity.91 NDe2 is defined as: NDe2 = NRe2(a/R)0.5. 

The present review shows that, compared with its counterpart of Newtonian 

fluids, the flow of non-Newtonian fluids has remained very much unstudied, either 

theoretically or experimentally. Yet, most fluids used with coiled tubing operations in 

the oil and gas industry are non-Newtonian, for example, polymer-based solutions, 

and surfactant-based solutions. Slurries and foam fluids are also used with coiled 

tubing. The available correlations are not appropriate for predicting friction pressure 

losses in these applications. Further systematic research is required. 
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CHAPTER 3  
THEORETICAL ANALYSIS OF LAMINAR FLOW 

OF POWER-LAW FLUID IN COILED TUBING 

3.1 Introduction 

When a fluid flows through a curved pipe, there exits a secondary flow by the action 

of centrifugal forces and the resultant secondary flow is in a double spiral form. 

Previous studies3,59,84 showed that when the Dean number, NDe = NRe(a/R)0.5, is large, 

the secondary flow is mainly confined to a thin layer near the tubing wall. Ito4 (1969) 

applied the approach of boundary layer approximation analysis and obtained solution 

to the laminar flow of Newtonian fluid in curved pipe. Mashelkar and Devarajan5 

extended the Ito’s method to the laminar flow of non-Newtonian fluid in coiled tube 

and obtained a friction factor correlation based on the numerical analysis. Yet, they 

only obtained numerical solutions for four values of power law flow behavior index, 

i.e., n = 0.5, 0.75, 0.9, and 1.0.  Therefore, the range of fluid properties is rather 

limited. Furthermore, as several authors78,96 have pointed out, the Mashelkar and 

Devarajan5 correlation does not match the Ito’s laminar flow correlation4 as it is 

supposed to when the flow behavior index is set to unity.  

In this study, we closely followed the approach of boundary layer approximation 

analysis taken by Ito, and Mashelkar and Devarajan, and extended the work of 

Mashelkar and Devarajan to numerical solutions of power law fluids in coiled tubing 

with much wider range of flow behavior index (n = 0.25, 0.30, …, 1.0 in steps of 
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0.05). A new friction factor correlation has been developed based on numerical 

analysis.  

The general procedures of analysis and solution are as follows. First, we apply 

the boundary layer approximation approach and order of magnitude analysis to obtain 

simplified flow equations in both the boundary layer and the core region of the tubing 

cross section. After setting the appropriate boundary conditions for the boundary 

layer, we integrated the boundary layer flow equations to obtain equations of 

boundary layer momentum integrals. The velocity profiles in the boundary layer were 

then solved numerically by assuming appropriate forms of velocity distribution across 

the boundary layer. Once the flow field was solved, the friction factor correlation can 

be derived.  

3.2 Mathematical Formulation  

3.2.1 Governing Equations  

The toroidal coordinate system, shown in Fig. 3.1, is used to represent the flow 

geometry of fluid flow in coiled tubing. Here, u, v, and w represent velocity 

components in the directions of r, θ, and φ respectively. a and R are the radii of the 

coiled tubing and the tubing reel respectively. The ratio, a/R, is called the curvature 

ratio. 

Several assumptions have been made as follows: 

a. The flow is steady and fully-developed laminar flow; 

b. The curvature ratio (a/R) is small; 
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c. The Dean number is large, and therefore, only viscous forces are important in 

a thin boundary layer near the tubing wall, and the flow outside the boundary 

layer is influenced by the inertial and pressure forces alone. 

u
v

w

P
θ

φ a O

Z

r
O´

R

 

Fig. 3.1―Toroidal coordinate system. 

d. The rheological behavior of the fluid can be described by a power law model. 

The equations of motion and continuity are as follows5: 
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C=
∂

−
φ
p∂ . ........................................................................................................  (3.5) 

where ρ is fluid density, p is pressure, and τrr, τθθ, τrθ, τrφ, and τθφ are stress terms. The 

second index of these stresses indicates the direction of stress and the first index 

indicates the plane of the stress. For example, τrφ indicates stress in the direction of φ 

on a plane that is normal to direction of r. 

The overall flow through the tubing cross-section can be divided into two 

regions: a central inviscid core and a thin boundary layer adjacent to the tubing wall, 

schematically shown in Fig. 3.2. The central part of the fluid will be driven towards 

the outer wall due to the centrifugal force. The fluid entering the boundary layer will 

be pushed back along the wall toward the inner side. This will result in the double 

vortical motion in the cross-section of the tubing.  

v
δ

y

x
θ

O A
E

C

B

D

Boundary 
Layer

Inviscid
Core  

Fig. 3.2―Flow model showing the inviscid core and boundary layer. 
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3.2.2 Flow Equations outside the Boundary Layer  

In the region outside the boundary layer, the axial velocity distribution is more 

uniform than in the boundary layer, and therefore, the secondary velocity components 

u and v may be small compared with the primary component w, i.e., u, v << w. Then,  

Eqs.   (3.1) to (3.3) reduce to: 

r
p

R
w

∂
∂

−=−
ρ

θ 1cos2
..........................................................................................  (3.6) 

θρ
θ

∂
∂

−=
p

rR
w 1sin2

...........................................................................................  (3.7) 

Rrr
u

ρθ
=

∂
+

∂
Cwvw ∂∂ .............................................................................................  (3.8) 

Noting that 

yrr ∂
∂

=
∂
∂

+
∂
∂

θ
θθ cossin .....................................................................................  (3.9) 

and if p is eliminated from Eqs. (3.6) and (3.7), we have  

0=
∂
∂

y
w ...........................................................................................................  (3.10) 

which gives 

( )xFw = , .......................................................................................................  (3.11) 

where F is an arbitrary function of x. 

From Eq. (3.4), we can introduce a stream function ψ so that  
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θ∂
Ψ∂

=
r

u 1 , 
r

v
∂
Ψ∂

−= . ......................................................................................  (3.12) 

Inserting  Eqs. (3.11) and (3.12) into Eq. (3.8) and integrating, we have 

( ) .
'

const
xRF

Cy
+=Ψ

ρ
. ......................................................................................  (3.13) 

where F′(x) = dF/dx. The function F(x) will be determined later from the condition of 

continuity of the secondary flow between the core and the boundary layer. 

3.2.3 Boundary Layer Equations  

In the boundary layer, the axial velocity component w will be reduced from a value, 

w1 (here the subscript 1 denotes the edge of the boundary layer) at the edge of the 

boundary layer to zero at the wall (no-slip boundary). Therefore, the secondary flow 

component v becomes comparable with w. In order to obtain simplified equations for 

the boundary layer, we conduct order of magnitude analysis: 

( )δOu ~     ( )1~, Owv ( )1~ −

∂
∂ δO
r

  ( )1~, O
φθ ∂
∂

∂
∂ , ............................................  (3.14) 

where δ is the boundary layer thickness. 

 Eqs.   (3.1) to (3.4) then reduce to5,104: 
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Next,  Eqs. (3.16) and (3.17) will be further simplified. Eq. (3.15) indicates that 

the pressure variation over the boundary layer is only of order δ, and can be 

neglected. Therefore, we have ( ) ( )φθφθ ,,, 1prp =  where the subscript 1 denotes the 

edge of the boundary layer. Hence, from Eq. (3.7), 
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Eq. (3.16) then becomes: 
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Further order of magnitude analysis4,5,104 shows that the first term on the right hand 

side of Eq. (3.17) can be neglected and hence Eq. (3.17) can be simplified as: 
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If a power law rheological model is assumed, Eqs. (3.20) and (3.21) can be 

written as: 
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where n and K are the flow behavior index and consistency index of the power law 

model. In Eqs. (3.22) and (3.23), we neglected the effect of ( rv ∂∂ ) on the total shear 

rate, since ( 2rv ∂∂ )  << (  for a/R << 1.  )2rw ∂∂

For boundary conditions, we shall have approximately4,5 

δ−= ar , , 0≅v 0≅
∂
∂
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δ−= ar , , 1ww = 0
1
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 ∂w ...........................................................................  (3.25) 

3.2.4 Continuity of the Secondary Flow  

In Fig. 3.2, let A and B be the points on the outer edge of the boundary layer. Using 

Eq. (3.13), the flux across a curve ACB drawn outside the boundary layer is: 

( )xRF
Cad AB

B

A '
sin

ρ
θ

=Ψ−Ψ=Ψ∫ ...............................................................................  (3.26) 

Across AE, v = 0 for reasons of symmetry. Across BD, the flux is , where  ∫
δ

ξ
0
vd

ra −=ξ . .......................................................................................................  (3.27) 

We have then 
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Considering x ≈ acosθ in the thin boundary layer, we have  
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From  Eqs. (3.28) and (3.29), it follows that 
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Considering the force balance for a cylindrical volume of length Rdφ and radius 

a, we have  
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3.2.5 Boundary Layer Momentum Integrals  

Integrating Eq. (3.22) over the boundary layer thickness δ and using  Eqs. (3.18) and 

(3.24), we have 
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Similarly from Eq. (3.23), we have 
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3.2.6 Application of the Pohlhausen Method  

The Pohlhausen’s approximation method is followed for solving the velocity 

distributions in the boundary layer. We are looking for solutions of v and w in the 

boundary layer that satisfy the following boundary conditions: 

ξ = 0: v = 0, 
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w2∂ ...................................................................................  (3.37) 

ξ = δ: w = w1, 0=
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The above conditions can be satisfied by the following velocity profiles5: 
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and 
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where,  
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( ) ( 33
2

ηηη −=k )1 .............................................................................................  (3.43) 

and  

δ
ξη = . ...........................................................................................................  (3.44) 

S can be considered as a shape factor of v-velocity component and is a function of 

angle θ. Now our task becomes solving for δ, w1, and S from the two boundary layer 

momentum integral  equations [Eqs. (3.33) and (3.34)] and the boundary layer 

continuity equation [Eq. (3.30)] as well as the boundary conditions. 

To reduce  Eqs. (3.33), (3.34) and (3.30) to non-dimensional form, the following 

dimensionless variables are defined: 
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and w10 is the value of w1 at θ = 0. N′Reg is defined as:  
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Since the specific expressions for g(η), h(η), and k(η) are already given in  Eqs. 

(3.41) to (3.43), the integrals and the terms of 0=ξθτ r  and 
0=ξφτ r  in Eqs. (3.33) and 

(3.34) can be evaluated. The final differential equations in a non-dimensional form 

are obtained as the following: 
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3.3 Solution Procedure 

The task now becomes solving for δo, wo, and So as function of θ from the coupled, 

nonlinear ordinary differential equations [Eqs. (3.50) to (3.53)]. This can be 

accomplished by integrating  Eqs. (3.50) to (3.52) with the angle θ in the range of 0 − 
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π. A Runge-Kutta scheme was used to solve the system of ordinary differential 

equations. The initial condition (at θ = 0) was determined following Ito’s approach.4 

In the neighborhood of θ = 0, let 
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Substituting these expansions into Eqs. (3.50) and (3.51) leads to two equations about 

δo0 and So1 with the flow behavior index (n) of the power law model as a parameter.  
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Therefore, for a given value of n, the initial condition can be determined by 

solving the above two equations. To evaluate α from numerical solutions of wo and 

δo, the Simpson’s rule was employed for the numerical integration in Eq. (3.53).  

Note that in order to solve for δo, wo, and So numerically, the value of α must be 

known, see Eq. (3.52). But Eq. (3.53) indicates that α depends on the solutions of δo 

and wo. Therefore, a trial-and-error method is needed. First, with an assumed value of 

α,  Eqs. (3.50) to (3.52) were numerically integrated. Then δo and wo thus determined 

were substituted into Eq. (3.53) and a new value of α was found. The calculation 

 54



 

procedure was repeated until the difference between the assumed value and the 

calculated value of α satisfied a specified convergence criterion.  

Once the solutions for dimensionless variables δo, wo, and So are obtained, the 

velocity field both in the boundary layer and the central core can be defined by using  

Eqs. (3.11) to (3.13), (3.29), (3.30), (3.39), (3.40), and (3.45) to (3.47). Friction factor 

correlations can be developed, as will be shown later. 

3.4 Results and Discussion 

3.4.1 Numerical Solutions of  Eqs. (3.50) to (3.52) 

Numerical solutions of the governing equations, Eqs. (3.50) to (3.52), were obtained 

for a wide range of flow behavior index (n) – from 0.25 to 1.0 in steps of 0.05. Figs. 

3.3 to 3.5 show the solutions for n = 1.0, 0.9, 0.7, 0.5, and 0.3 respectively. To check 

the accuracy of the calculation method, the results of the Newtonian fluid (n = 1) 

were compared with the Ito’s solution. Our results were in excellent agreement with 

Ito’s result. 

Fig. 3.6 shows the profiles of boundary layer thickness (normalized as δ/a) for 

flow behavior index n = 0.95 and 0.5, and Dean number De = 200 and 500 

respectively. It can be seen that as the Dean number increases, the boundary layer 

becomes thinner. As n decreases from 0.95 to 0.5, the boundary layer adjacent to the 

outer wall becomes thinner while it is becoming thicker at the inner side of the tubing 

wall. This implies that as the flow behavior index n decreases, the high velocity will 

shift more and more toward the outer wall, whereas the cross-sectional area near the 
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inner wall will contribute less and less to the total flux. This flow feature may have 

practical implications. For example, the faster flow velocity near the outer wall may 

cause more severe erosion at the extados of the coiled tubing than at the intrados.29 
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Fig. 3.3―Dimensionless boundary layer thickness, δo. 

3.4.2 Development of New Friction Factor Correlation  

The Fanning friction factor, f, can be defined as3-5:  
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The pressure gradient ( )φ∂∂p  is related to the flow field through Eq. (3.32). The 

following equation can be derived from Eqs. (3.59) and (3.32) (see Appendix A):  
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Fig. 3.4―Dimensionless v-velocity component factor, So. 
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Fig. 3.5―Dimensionless axial velocity at the outer edge of the boundary layer, 
wo. 
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Fig. 3.6―Effects of flow behavior index and Dean number on the profiles of the 
boundary layer thickness. 
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where α is determined from Eq. (3.53).  

Therefore, if (vm/w10) is known, the Fanning friction factor can be calculated. In 

fact, (vm/w10) can be determined from the numerical solution of fluid velocities and 

the equation for (vm/w10) can be derived as following.  

The total flow rate, Q, through the tubing cross section can be calculated by 

integrating velocity in the core region and the boundary layer region:  

( )∫ ∫∫ −−−=
−

π δ

θξ
0 0

1
22

1 22 ddwwadxxawQ
a

a

. ................................................. (3.61) 
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The mean axial velocity is expressed as4: 
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This can be written in non-dimensional form as  
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in which  

∫=
π

θθ
π

β
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2sin2 dwo ...................................................................................... (3.64) 

( ) ( ) ∫++−= θδ
π

γ
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1223 dw oo
nn

π

..............................................................................(3.65) 

Eq. (3.63) indicates that once the flow field (wo, δo, and So) are solved, the term 

(vm/w10) can be determined for a given Dean number, De, since β and γ can be 

calculated from the numerical solution. Table 3.1  shows the solutions of (vm/w10) for 

various De and n values.  

Based on Table 3.1, the following empirical correlation can be developed:  
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where c1 = 0.420946436, c2= -4.559282473, c3 = 0.215446172, c4 = 146.8544113, c5 

= -0.15279169, and c6= -4.409221412.  

Table 3.1―Values of (vm/w10) Calculated Based on Numerical Solutions 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
50 0.39843 0.40824 0.41192 0.41455 0.41589 0.41584 0.41428 0.41163

100 0.42284 0.43235 0.43662 0.43988 0.44206 0.44289 0.44256 0.44122
150 0.43308 0.44253 0.44717 0.45082 0.45347 0.45482 0.45516 0.45455
200 0.43886 0.44832 0.45321 0.45714 0.46012 0.46182 0.46261 0.46248
250 0.44262 0.45211 0.45719 0.46132 0.46455 0.46651 0.46763 0.46785
300 0.44529 0.45481 0.46004 0.46434 0.46775 0.46992 0.47129 0.47179
350 0.44729 0.45684 0.46220 0.46663 0.47020 0.47252 0.47410 0.47483
400 0.44885 0.45843 0.46390 0.46843 0.47213 0.47459 0.47635 0.47725
450 0.45011 0.45971 0.46527 0.46990 0.47371 0.47629 0.47819 0.47925
500 0.45114 0.46077 0.46641 0.47112 0.47502 0.47770 0.47973 0.48092
550 0.45201 0.46167 0.46737 0.47215 0.47614 0.47891 0.48104 0.48236
600 0.45275 0.46243 0.46819 0.47304 0.47710 0.47995 0.48218 0.48360
650 0.45339 0.46309 0.46891 0.47381 0.47794 0.48086 0.48317 0.48468

De
Flow Behavior Index 

 

Table 3.1―Values of (vm/w10) Calculated Based on Numerical Solutions (Continued) 

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
50 0.40788 0.40366 0.39835 0.39269 0.38652 0.38001 0.37311 0.36591

100 0.43893 0.43611 0.43238 0.42824 0.42361 0.41859 0.41318 0.40742
150 0.45307 0.45101 0.44817 0.44487 0.44109 0.43692 0.43235 0.42740
200 0.46154 0.46000 0.45774 0.45501 0.45180 0.44819 0.44419 0.43980
250 0.46731 0.46614 0.46431 0.46200 0.45923 0.45604 0.45246 0.44847
300 0.47155 0.47068 0.46918 0.46720 0.46476 0.46190 0.45866 0.45499
350 0.47483 0.47420 0.47298 0.47126 0.46909 0.46650 0.46352 0.46013
400 0.47746 0.47703 0.47603 0.47454 0.47259 0.47023 0.46748 0.46431
450 0.47963 0.47937 0.47856 0.47726 0.47551 0.47334 0.47079 0.46780
500 0.48145 0.48134 0.48070 0.47956 0.47798 0.47598 0.47360 0.47078
550 0.48301 0.48303 0.48254 0.48154 0.48011 0.47825 0.47603 0.47336
600 0.48437 0.48450 0.48414 0.48327 0.48197 0.48025 0.47816 0.47562
650 0.48556 0.48580 0.48555 0.48480 0.48362 0.48201 0.48004 0.47762

De
Flow Behavior Index 

 

For each value of n, an α value can be calculated through Eq. (3.53). α can then 

be correlated with n:  
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( )[ 2ln'' nba +=α ] , .......................................................................................... (3.67) 

in which a′ = 0.669734019, and b′ = -0.203276681. 

Let Y = (vm/w10), then the Fanning friction factor can be written as:  
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Since the generalized Reynolds number has been widely used for non-Newtonian 

fluids, we introduced the following generalized Dean number based on generalized 

Reynolds number:  

( ) 21
Re RaNN gDNg = ....................................................................................  (3.70) 

It can then be shown that  
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= −

4
132 13 ............................................................................  (3.71) 

where NReg is the generalized Reynolds number. Therefore, for a power law fluid with 

the rheological parameters (n and Kp) known, the Fanning friction factor through 

coiled tubing can easily be calculated using  Eqs.  (3.67) to (3.71). 
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3.4.3 Comparison with Previous Work 

3.4.3.1 Comparison with the Ito, and Mashelkar and Devarajan Correlations 
(Newtonian Fluid)  

For n = 1 (the Newtonian fluid case), the Ito4 correlation can serve as a good check 

for accuracy of the newly developed correlation.  

Ito4 correlation:  
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Mashelkar and Devarajan Correlation: 

( ) eDRannf 374.4438.9069.9 +−= ...................................  (3.73) ( ) ( )n122.0768.05.02 +−

Figs. 3.7  and 3.8 show the plots of Fanning friction factor vs. Dean number (De) 

for Ito,4 Mashelkar and Devarajan,5 and the new correlation of this study at curvature 

ratios of 0.01 and 0.03 respectively. It can be seen that there is an excellent agreement 

between the new correlation and the Ito correlation. But, the Mashelkar and 

Devarajan correlation fails to closely match the Ito correlation. The deviation between 

the Mashelkar and Devarajan correlation, and the Ito correlation is 14 to 22%. This 

discrepancy was pointed out previously by Hsu and Patankar,78 and Mujawar and 

Rao.96  

3.4.3.2 Comparison with Mashelkar and Devarajan Correlation (Non-Newtonian 
Fluid)  

Mashelkar and Devarajan5 correlation is the only available correlation based on the 

similar approach of approximate boundary layer analysis for non-Newtonian fluids 
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and it has been referenced in literature.105 Therefore, it would be useful to compare 

our result with this correlation.  
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Fig. 3.7―Comparison with Ito correlation (n = 1, a/R = 0.01). 
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Fig. 3.8―Comparison with Ito correlation (n = 1, a/R = 0.03). 
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As already pointed out earlier, the Mashelkar and Devarajan5 correlation could 

not match the Ito correlation for n = 1. As n decreases, the difference between the 

new correlation and the Mashelkar and Devarajan correlation becomes larger. Figs. 

3.9 and 3.10 compare the two correlations for n = 0.6 at curvature ratios of 0.01 and 

0.03 respectively. The increasing discrepancy between the two correlations is due to 

the fact that the Mashelkar and Devarajan correlation fails to properly describe the 

effect of the flow behavior index (n), as is shown in Fig. 3.11. Figs. 3.12 and 3.13 

show the effect of flow behavior index according to the new correlation for curvature 

ratios of 0.01 and 0.03 respectively. 

Furthermore, in their work, numerical solutions ware obtained only for four n 

values (n = 1.0, 0.9, 0.75, and 0.5). Since their correlation could not match the Ito 

correlation even for n = 1, the correlation based on the four n values is questionable.  
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Fig. 3.9―Comparison between the new correlation and the Mashelkar and 
Devarajan correlation (n = 0.6, a/R = 0.01). 
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Fig. 3.10―Comparison between the new correlation and the Mashelkar and 
Devarajan correlation (n = 0.6, a/R = 0.03). 
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Fig. 3.11―Effect of flow behavior index by Mashelkar and Devarajan 
correlation. 
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Fig. 3.12―Effect of flow behavior index by the new correlation (a/R = 0.01). 
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Fig. 3.13―Effect of flow behavior index by the new correlation (a/R = 0.03). 

Our new correlation not only matches the Ito correlation for n = 1, but it is also based 

on a much wider range of n, i.e., from 0.25 to 1.0 in steps of 0.05. 

 66



 

3.4.4 Comparison with Experimental Data 

Experiments of fluid flow in coiled tubing have been conducted using a full-scale 

coiled tubing flow loop used for a joint industry project at the University of 

Oklahoma. The flow loop includes several reels of 1-in., 1-1/2-in., and 2-3/8-in. 

coiled tubing strings and straight tubing sections. The curvature ratio values for these 

coiled tubing reels are 0.0113, 0.0165, 0.0169, and 0.0185. Fluids tested are typical 

drilling, completion, and stimulation fluids used in the industry. These fluids are 

generally non-Newtonian and can be described by a power law model within the flow 

conditions investigated. The primary measured data include the flow variables such as 

frictional pressure drops across different tubing sections at various flow rates. More 

detailed description of the experimental facility and experimental procedures is 

discussed in Chapters 5 and 6. Although the flow rates in the majority of the tests 

were high enough to result in turbulent flow, the following test data can be used to 

evaluate the newly developed friction factor correlation for laminar flow in coiled 

tubing.  

Example 1―Laminar Flow of 60 lb/Mgal HPG in 2-3/8-in. CT. A 60 lb/Mgal 

HPG (hydroxypropyl guar) gel was pumped through the 1000 ft long and 2-3/8-in. 

diameter coiled tubing reel to investigate the laminar flow behavior of non-

Newtonian fluid in coiled tubing. Rheological properties were evaluated using a 

Model 35 Fann viscometer: n = 0.314 and Kp = 0.1131 lbfsn/ft2. The experimental 

data and the predictions by our new correlation [Eq. (3.68)] are shown in Fig. 3.14. 

From the Srinivasan correlation [Eq. (2.13)], the critical Reynolds number for 
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Newtonian fluid in this coil is 5528. The critical Reynolds number for non-Newtonian 

fluids should be higher than this value.  
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Fig. 3.14―Friction factor of 60 lb/Mgal HPG in 1000 ft, 2-3/8-in. OD coiled 
tubing. 

It can be seen that the new laminar flow correlation of this study matches the 

experimental data reasonably well for the generalized Reynolds number up to 6000, 

with absolute deviation changing from 0.4% to 8.7% and an average absolute 

deviation of 4.3%. At generalized Reynolds number greater than 6000, the correlation 

begins to deviate from the experimental data points. As generalized Reynolds number 

increases from 6558 to 9349, the friction factor predicted from the correlation is 7.1 

to 17.4% less than the experimental data. Considering the high accuracies of the 

pressure transducers and the flowmeters, as will be discussed in Chapter 5, the 

random errors in measurement are much smaller than the deviations observed above 
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(7.1 – 17.4%). Therefore, the reason for the deviation of the correlation with the 

friction factor data at Reynolds number greater than 6000 is most probably because 

the flow may have been in turbulent flow regime. Since one basic assumption of the 

boundary layer approximation approach is that the Dean number should be large, the 

new correlation is not recommended for NDNg < 100. Fortunately, the flow conditions 

for field applications of coiled tubing would generally satisfy the requirement of large 

Dean number. 

Example 2―30 and 40 lb/Mgal Guar Fluids in 2-3/8-in. Coiled Tubing. Fig. 3.15 

shows the plots of Fanning friction factor vs. generalized Reynolds number for guar 

solution in 2-3/8-in. coiled tubing. It compares the experimental data and the 

predictions by the new correlation and by the Mashelkar and Devarajan correlation. 

The rheological properties of the guar fluids are: n = 0.432, Kp = 0.0243 lbfsn/ft2 for 

40 lb/Mgal guar solution, and n = 0.527, Kp = 0.0079 lbfsn/ft2 for 30 lb/Mgal guar 

solution. It can be observed that there is a good agreement between the experimental 

data and the predictions by the new correlation of this study. It is found that the 

deviations between the predicted and the experimental friction factors are generally 

within 10%. Unfortunately, the Mashelkar and Devarajan correlation is much higher 

than the experimental data in this case. 

Example 3―Oil-Based Drilling Mud in 2-3/8-in. Coiled Tubing. Fig. 3.16 

compares the experimental data of an oil-based drilling mud in 2-3/8-in. coiled tubing 

with predictions by the two correlations. The power law parameters of this oil mud 

are: n = 0.689, Kp = 0.0106 lbfsn/ft2. It is shown that the new correlation is very close 

 69



 

to the experimental data, only underestimating the friction factor by about 8%. The 

Mashelkar and Devarajan correlation overpredicts the friction factor by about 37%. 
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Fig. 3.15―Comparison between experimental data and correlations (30 and 40 
lb/Mgal guar in 1000 ft 2-3/8-in. coiled tubing). 
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Fig. 3.16―Comparison between experimental data and correlations (oil-based 
drilling mud in 1000 ft 2-3/8-in. coiled tubing). 
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3.5 Summary 

The boundary layer approximation method has been successfully applied to the 

theoretical and numerical analysis of non-Newtonian fluid flow in coiled tubing under 

laminar flow conditions and large Dean numbers. A new friction factor correlation of 

non-Newtonian laminar flow in coiled tubing has been developed based on extensive 

numerical analysis. The new correlation is expressed in an empirical form of Fanning 

friction factor as function of generalized Dean number, curvature ratio, and flow 

behavior index. There has been an excellent agreement between the new friction 

factor correlation and the experimental data obtained from experiments conducted in 

the full-scale coiled tubing flow loop. The Mashelkar and Devarajan correlation was 

also evaluated by comparing it with the experimental data, Ito correlation for n = 1 

(Newtonian fluid), and the new correlation of this study. It was found that Mashelkar 

and Devarajan correlation failed to give any acceptable agreement with either the 

experimental data or the Ito correlation. 

The present work not only corrects the errors in the Mashelkar and Devarajan 

correlation, but also extends the range of applicability of the new correlation to fluids 

with wider range of flow behavior index―n = 0.25 to 1.0 which would cover most 

fluids used in coiled tubing operations in the oil and gas industry. 
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CHAPTER 4  
THEORETICAL ANALYSIS OF TURBULENT 
FLOW OF POWER-LAW FLUID IN COILED 

TUBING 

4.1 Introduction 

Among the various approaches of investigating fluid flow in coiled pipes, the 

boundary layer approximation method is especially useful for flow at high Dean 

number. This is because the effect of secondary flow at high-Dean number is largely 

confined in a thin boundary layer adjacent to the pipe wall. Under this condition, the 

tubing cross-section can be divided into two regions: the central inviscid core and the 

thin viscous boundary layer. This leads to much simplified flow equations for high-

Dean number flows in curved geometry. This approach has been used by a number of 

researchers, for example, by Adler,59 Barua,3 Mori and Nakayama,84 and Ito4,83 for 

Newtonian fluids and by Mashelkar and Devarajan5,86 for non-Newtonian fluids.  

In the previous chapter, we applied the method of boundary layer approximation 

analysis and solved the laminar flow problem of a power law fluid in coiled tubing by 

extending the work of Mashelkar and Devarajan to fluids with wider range of flow 

behavior index. An empirical correlation of friction factor was obtained based on the 

theoretical analysis and numerical solutions. In fact, the same approach can be 

applied to the analysis of non-Newtonian turbulent flow in coiled tubing. First, the 
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flow model in coiled tubing was simplified and the tubing cross section was divided 

into inviscid core and a thin boundary layer. Then, the flow equations for the core and 

the boundary layer were simplified through order of magnitude approximations. The 

simplified momentum equations for the boundary layer were then integrated over the 

boundary layer thickness to obtain equations of momentum integrals. After assuming 

proper forms of velocity profiles for flow in the boundary layer, the equations of 

momentum integrals were converted to ordinary differential equations which could be 

solved numerically to get the solutions of velocity field. Similar to the case of non-

Newtonian laminar flow in coiled pipe, the Fanning friction factor correlation was 

then obtained. The major contribution of this study is the extension of the work of 

Mashelkar and Devarajan to wider range of flow behavior index of power law model 

and the development of the new friction factor correlation for non-Newtonian 

turbulent flow in coiled tubing. 

4.2 Mathematical Formulation 

4.2.1 Coordinate System and Governing Equations 

The difficulty in theoretical analysis of coiled tubing flow is mainly due to the 

complex flow geometry. For typical coiled tubing reels, the torsion which can be 

defined as the ratio of h/(2πR) (h is the pitch of the coil and R is the radius of the reel 

drum) is small and its effect on the friction pressure can be neglected.70,73 Therefore, 

the toroidal coordinate system, as shown in Fig. 4.1, can be used to represent the flow 

geometry of fluid flow in coiled tubing. This significantly reduces the complexity of 
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the problem. Here, u, v, and w are velocity components in the directions of r, θ, and φ 

respectively. “a” and “R” are the radii of the coiled tubing and coiled tubing reel. The 

ratio of a/R is the curvature ratio. For coiled tubing reels used in the oil and gas 

industry, the curvature ratio is in the order of 10-2 and therefore can be considered 

small.  

u
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w

P
θ

φ a O

Z

r
O´

R

 

Fig. 4.1―Toroidal coordinate system. 

In this study, we only consider the steady and fully-developed turbulent flow of a 

power law fluid in coiled tubing. The time-averaged equations of motion and 

continuity are as follows86:  
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∂

++
∂ θrrr
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where ρ is fluid density, p  is pressure, and rrτ , θθτ , θτ r , φτ r , and θφτ  are stress 

terms. The index convention of the stresses is the same as in Chapter 3. Since the 

flow is steady and fully-developed, the axial pressure gradient is constant, i.e., 

Cp
=

∂
∂

−
φ

............................................................................................................(4.5) 

The tubing cross-section is divided into two regions: the central inviscid core and 

the thin boundary layer, as shown in Fig. 4.2. In the following, simplified equations 

for each region are obtained.  

v
δ

y

x
θ

O A
E

C

B

D

Boundary 
Layer

Inviscid
Core  

Fig. 4.2―Flow model showing the inviscid core and boundary layer. 
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4.2.2 Flow Equations for the Inviscid Core 

In the central region of the coiled tubing cross section, the axial velocity distribution 

is more uniform than in the boundary layer. The secondary velocity components, u  

and v , are small compared with the axial component w , i.e., u , v  << w . Then, by 

neglecting the viscous effect, Eqs. (4.1) to (4.3) reduce to:  

r
p

R
w

∂
∂

−=−
ρ

θ 1cos2
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θρ ∂
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rR
1sinθ ∂pw 2
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Rrr
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∂
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∂
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By eliminating p  from Eqs. (4.6) and (4.7), we get 

0cossin
22

=
∂

∂
+

∂
∂

θ
θθ w

rr
w .................................................................................(4.9) 

For the coordinate systems shown in Fig. 4.1 and Fig. 4.2, the following 

relationship can be derived: 

yrr ∂
∂

=
∂
∂

+
∂
∂

θ
θθ cossin .........................................................................................(4.10) 

 
Thus, Eq. (4.9) can be written as 

0=
∂
∂

y
w .............................................................................................................(4.11) 

which indicates that w  can be an arbitrary function of x, i.e., 
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( )xFw = .......................................................................................................(4.12) 

We can write 

BxAw +=  

or  

θcosBrAw += ..............................................................................................(4.13) 

The constants A and B in Eq. (4.13) will be determined later by considering the 

continuity between the core region and the boundary layer. 

4.2.3 Flow Equations for the Boundary Layer  

In the boundary layer, the axial velocity component w  reduces drastically from a 

value ( 1w ) at the boundary layer edge to zero at the tubing wall (no-slip boundary is 

assumed). Therefore, the angular velocity component v  becomes comparable with 

w . Similar to the case of laminar flow, order of magnitude analysis is made as the 

following: 

( )δOu ~ ; ( )1~, Owv ; ( ) ; 1~ −

∂
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( )1~, O
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∂

∂
∂ ......................................................(4.14) 

where δ is the boundary layer thickness. 

Eqs. (4.1) to (4.4) then reduce to86,104: 

r
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Next, Eqs. (4.16) and (4.17) can be simplified by considering the three pressure 

gradient terms ( rp ∂∂ , θ∂∂p , and  φ∂∂p ). Eq. (4.15) indicates that the pressure 

variation over the boundary layer is only of order δ, and therefore, can be neglected. 

The pressure inside the boundary layer can be assumed to be equal to the boundary 

layer edge pressure which can be determined from the core flow equation: 
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Eq. (4.16) then becomes 
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Through further order of magnitude analysis,4,86,104 Eq. (4.17) can be simplified as 

r
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4.2.4 Continuity of the Secondary Flow  

According to Eq. (4.4), we can introduce a stream function Ψ such that 

θ∂
Ψ∂

=
r
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r
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Inserting Eqs. (4.13), (4.22), and (4.23) into Eq. (4.8) and also noting that x = rcosθ, 

we have 

θ
ρ

sinr
RB
C

=Ψ ...................................................................................................(4.24) 

In Fig. 4.2, let A and B be two points on the outer edge of the boundary layer. 

Using Eq. (4.24), the flux across a curve ACB drawn outside the boundary layer is: 
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or  
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where ξ = a – r and δ is the boundary layer thickness.  

Since rB = a - δ ≈ a, it follows that 

∫
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0
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and over the entire cross-section,  

∫
∫

=
π

δ

ξ

θθ
πρ 0

0

sin1

dv

d
R

CaB ...........................................................................................(4.28) 
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Eq. (4.28) establishes the link between the boundary layer flow and the core 

flow. Also note that at r = 0, w  = vm. Hence, from Eq. (4.13), A = vm. Thus, the 

constants A and B can be determined. 

4.2.4.1 Equations of Boundary Layer Momentum Integrals 

The following boundary conditions can be applied to the boundary layer: 

At r = a: 

0=== wvu .......................................................................................................(4.29) 

At r = a - δ: 
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where the subscript 1 refers to the boundary layer edge. Integrating Eqs. (4.20) and 

(4.21) over the boundary layer thickness (δ) and making use of Eq. (4.18), we have 
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To solve Eqs. (4.32) and (4.33), appropriate velocity distributions for v  and w  

in the boundary layer are needed. In this aspect, we follow the arguments of 
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Mashelkar and Deverajan.86,104 The assumed velocity distributions are as the 

following: 

The axial component is 
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The angular component is 
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where 1w  is the value of w at the boundary layer edge. D is the amplitude of v  and 

here it is called the characteristic angular velocity. β is one of the coefficients of the 

Dodge and Metzner106,107 friction factor correlation for turbulent flow in straight pipe:  

β
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where α and β are functions of flow behavior index of the power law fluid. 

The shear stress expressions for φτ r  and θτ r  in Eqs. (4.32) and (4.33) are 

simplified as86,104,107: 
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Inserting Eqs. (4.34), (4.35), (4.37), and (4.38) into the boundary layer momentum 

integral equations [Eqs. (4.32) and (4.33)] and integrating, we get 
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where f1(n), f2(n), f3(n), f4(n), and f5(n) are functions of flow behavior index n and are 

given as the following: 
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Note that from Eq. (4.13), the axial velocity component at the boundary layer 

edge, 1w , can be written as: 

θcos1 Bavw m += ...........................................................................................(4.47) 
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Then, the three equations [Eqs. (4.40), (4.41), and (4.47)] provide the required 

equations for the three unknowns―δ, D, and 1w . Therefore, the problem becomes 

closed. 

4.2.5 Non-Dimensionalization 

Eqs. (4.40), (4.41), and (4.47) can be written in non-dimensional form by defining the 

following dimensionless variables: 
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Eqs. (4.40), (4.41), and (4.47) then become  
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Noting that B is given in Eq. (4.28), it follows that  
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4.3 Solution Procedure 

Eqs. (4.52) to (4.54) completely defined the flow field for the boundary layer. The 

task now becomes solving the coupled, non-linear differential equations [Eqs. (4.52) 

to (4.54)] for solutions of δo, Do, and wo. This can be accomplished by integrating 

Eqs. (4.52) and (4.53) with angle θ in the range of 0 − π. In order to start the 

numerical integration, the initial condition (θ = 0) has to be determined. Ito’s 

approach4,83 is followed for this purpose. In the close neighborhood of θ = 0, δo, Do, 

and wo can be expanded as the following: 
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Inserting Eqs. (4.57) to (4.59) into Eqs. (4.52) and (4.53) and equating the terms of 

equal powers of θ, we have 
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The Runge-Kutta numerical scheme is used to solve Eqs. (4.52) to (4.54). Note 

that in order to solve for δo, Do, and wo, the value of 




 mv
Ba


  must be known. But, Eqs. 

(4.55) and (4.56) indicate that 




 mv
Ba


  itself depends on the solution of δo, Do, and wo. 

Therefore, a trial-and-error approach is needed. First, with an assumed value of 




 mv
Ba


 , 

Eqs. (4.52) to (4.54) are numerically integrated to obtain δo, Do, and wo. Then, the 

solutions of δo, Do, and wo are substituted into Eqs. (4.55) and (4.56), and a new value 

of 








mv
Ba  is found. The numerical procedure is repeated until the old and new values of 










mv
Ba  are close enough to meet the convergence criterion. In evaluating 





 mv
Ba


  in Eqs. 

(4.55) and (4.56), a Simpson numerical integration scheme is used.  

4.4 Results and Discussion 

4.4.1 Numerical Solutions of Eqs. (4.52) to (4.54) 

Numerical solutions of the three dimensionless variables − δo, Do, and wo, were 

obtained using the procedures described above for a wide range of flow behavior 

index – from 0.25 to 1.0, which would cover most fluids to be employed with coiled 

tubing operations in the oil and gas industry. By comparison, Mashelkar and 
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Devarajan86 only obtained solutions for n = 1.0, 0.9, 0.75, and 0.5. Therefore, the use 

of their results is very limited. Figs. 4.3 to 4.5 show the dimensionless quantities δo, 

wo, and Do as functions of angle θ for n = 1.0, 0.9, …, 0.3 respectively. The solutions 

of δo, Do, and wo together with Eqs. (4.48) to (4.50) and Eq. (4.13) completely define 

the velocity field in the tubing cross-section. The numerical solutions can also be used 

to deduce the friction factor correlation, as will be elaborated below. 
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Fig. 4.3―Dimensionless boundary layer thickness, δo. 
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Fig. 4.4―Dimensionless axial velocity at boundary layer edge, wo. 
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Fig. 4.5―Dimensionless characteristic angular velocity, Do. 
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4.4.2 Development of Friction Factor Correlation 

The Fanning friction factor in coiled tubing can be written as3-5: 
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Considering the force balance for a cylindrical volume of length Rdφ and radius 

a, we have  
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Substituting Eqs. (4.64) and (4.38) into Eq. (4.62), and using Eqs. (4.48) to (4.50) for 

the definitions of dimensionless variables, the following correlation can be derived 

(see Appendix B): 
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where α∗ is given in Eq. (4.56). Therefore, α∗ is a function of flow behavior index n. 

Table 4.1 lists the values of α∗ from the numerical solution of Eqs. (4.52) to (4.54) for 

a number of n values.  

 

 88



 

Table 4.1―Results of Numerical Solutions of Eqs. (4.52) to (4.54) 

n m

1.00 0.073297 0.379361
0.90 0.068524 0.370133
0.80 0.063679 0.359793
0.70 0.058728 0.347570
0.60 0.053668 0.333447
0.50 0.048454 0.316578
0.40 0.043024 0.295837
0.30 0.037259 0.269277
0.25 0.034181 0.252728  

α* Ba/v

We can get the following correlation for α∗: 

3
21

* cncc +=α , .............................................................................................(4.66) 

where c1 = 0.0152513, c2 = 0.058005016, and c3 = 0.805882557. The correlation 

coefficient R2 = 1.000. Fig. 4.6 shows the plot of α∗ vs. flow behavior index n from 

this study. 

The final friction factor correlation of turbulent flow of power law fluid in coiled 

tubing becomes:  
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where β can be read from the chart of Dodge and Metzner106 or calculated from the 

following curve-fitted correlation:  

( )5.02504.0945.11 n+=β ............................................................................(4.68) 
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Fig. 4.6―Coefficient α∗ of the new non-Newtonian turbulent flow correlation. 

4.4.3 Comparison with Previous Work 

4.4.3.1 Comparison with the Ito, and Mashelkar and Devarajan Correlations 
(Newtonian Fluid) 

Ito83 applied the concept of boundary layer approximation to the turbulent flow of 

Newtonian fluid in curved pipes. By assuming the 1/7th-power velocity distribution, 

he obtained the following friction factor correlation for curved pipe: 

( )
51

Re

1010725.0
N

Raf = ............................................................................................(4.69) 

Eqs. (4.34) and (4.35) indicate that for the Newtonian case where n = 1 and β = 

0.25, the assumed velocity distributions reduce to the 1/7th-power distributions. 

Therefore, the Ito correlation can be used to check the accuracy of our new 

correlation for the special case of n = 1.  
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Mashelkar and Devarajan did not provide any turbulent friction factor correlation 

in terms of flow behavior index n as they did for the laminar. They only obtained 

numerical solutions for n = 0.5, 0.75, 0.9, and 1.0, as shown in the following table.  

Table 4.2―Numerical Results of Mashelkar and Devarajan for Non-
Newtonian Turbulent Flow 

n β α* Ba/vm

1.00 0.250 0.07185 0.37803
0.90 0.257 0.08186 0.36988
0.75 0.269 0.06566 0.31824
0.50 0.293 0.06325 0.26894  

The friction factor can be calculated using Eq. (4.65). 

Figs. 4.7 and 4.8 compare the friction factors predicted by the Ito, the Mashelkar 

and Devarajan correlation, and the new correlation of this study for curvature ratios of 

0.01 and 0.03 respectively. The critical Reynolds numbers for turbulent flow at a/R = 

0.01 and 0.03 are 4582 and 6512 respectively from the Ito’s83 criterion: NRec = 

20000(a/R)0.32. Therefore, we only calculated friction factors for NRe > 4582 or NRe > 

6512. Figs. 4.7 and 4.8 show that there is a very close agreement between the new 

correlation and the Ito correlation, with the difference being less than 0.8%. The 

Mashelkar and Devarajan correlation also closely matches the Ito correlation, with 

deviation of about -0.9% (friction factor is just slightly underestimated). Therefore, 

practically both our new correlation and Mashelkar and Devarajan correlation are in 

close agreement with the Ito correlation.  
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Fig. 4.7―Comparison of Mashelkar and Devarajan correlation, and the new 
correlation with Ito correlation for Newtonian fluid (n = 1, a/R = 0.01).  
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Fig. 4.8―Comparison of Mashelkar and Devarajan correlation, and the new 
correlation with Ito correlation for Newtonian fluid (n = 1, a/R = 0.03). 
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4.4.3.2 Comparison with Mashelkar and Devarajan Correlation (Non-Newtonian 
Fluid) 

Figs. 4.9 and 4.10 show friction factors predicted by Mashelkar and Devarajan, and 

by the new correlation of this study for flow behavior index n = 0.5, 0.75, 0.9, and 

1.0, respectively. In these two plots, the curvature ratio is assumed as 0.02. Similar 

plots of Fanning friction factor vs. generalized Reynolds number for other curvature 

ratio values such as a/R = 0.01 and 0.03, were also made. It was found that the 

friction behavior at a/R = 0.01 and 0.03 is similar to what is shown in Figs. 4.9 and 

4.10. As indicated in Fig. 4.10, as flow behavior index decreases, the friction factor 

predicted by our new correlation is also decreased. This behavior is similar to non-

Newtonian fluid flow in straight pipe. But, Fig. 4.9 indicated that Mashelkar and 

Devarajan method does not show consistent trend as far as the effect of flow behavior 

index is concerned. It can be seen that the friction factor for n = 0.9 is higher than the 

friction factor of Newtonian fluid. This is in conflict with the well-known behavior of 

power law fluid in pipe flow. The shear-thinning property of a power law fluid should 

lead to a lower friction factor than Newtonian fluid at corresponding Reynolds 

number.106 The friction factors predicted by Mashelkar and Devarajan method for n = 

0.5 and 0.75 are lower than the Newtonian friction factor.  

Fig. 4.11 compares the friction factor predicted by the Mashelkar and Deverajan 

method and by the new correlation of this study respectively. At n = 0.5, 0.75, and 

0.9, the friction factor predicted by the Mashelkar and Devarajan method is higher 

than our new correlation by approximately 32.2, 7.1, and 19.6% respectively.  
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Fig. 4.9―Effect of flow behavior index on Fanning friction factor predicted by 
Mashelkar and Devarajan (a/R = 0.02). 
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Fig. 4.10―Effect of flow behavior index on Fanning friction factor predicted by 
the new correlation of this study. 
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Fig. 4.11―Comparison between Mashelkar and Devarajan, and the new 
correlation of  this study for non-Newtonian fluid. 

 

4.4.4 Comparison with Experimental Data 

Fig. 4.12 shows the friction factor of 35 lb/Mgal guar in 200 ft straight tubing and 

1000 ft coiled tubing respectively. The tubing outside diameter is 2-3/8 in. Obviously, 

the friction factor in coiled tubing is greater than that in straight tubing due to the 

curvature effect. The prediction of the new correlation is seen to be close to the 

experimental data. Actually, for generalized Reynolds number in the range of 10,000 

– 25,000, the match is very good. At lower Reynolds number, the correlation deviates 

from the experimental data. This is probably because at lower generalized Reynolds 

number, the flow regime does not reach fully turbulent flow.  
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Fig. 4.12―Fanning friction factor vs. generalized Reynolds number (35 lb/Mgal 
guar in 1000 ft, 2-3/8-in. CT). 

Fig. 4.13 shows the results of 25 lb/Mgal guar in 2-3/8-in. coiled tubing. In this 

case, the correlation gives good match with the generalized Reynolds number in a 

range around 9500. Yet, as the generalized Reynolds number increases, the 

correlation tends to overpredict the friction factor. Fig. 4.14 shows the comparison of 

experimental data and the new correlation for 20 lb/Mgal Xanthan in 2000 ft, 2-3/8-

in. coiled tubing. Similarly, in a range of generalized Reynolds number around 12000, 

the match is quite good. For high Reynolds number, the correlation overpredicts the 

friction factor. One reason for this overprediction might be that at high Reynolds 

number, these fluids exhibit strong drag reduction. Our theoretical analysis and 

therefore the new correlation only considered purely viscous fluids that follow the 
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power law model. Therefore, the new correlation may not closely predict the correct 

friction factors under highly drag-reducing flow conditions.  
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Fig. 4.13―Fanning friction factor vs. generalized Reynolds number (25 lb/Mgal 
guar in 1000 ft, 2-3/8-in. CT). 
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Fig. 4.14―Fanning friction factor vs. generalized Reynolds number (20 lb/Mgal 
xanthan in 2000 ft, 2-3/8-in. CT). 
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4.5 Summary 

The boundary layer approximation method has been successfully applied to solve 

the steady, fully-developed turbulent flow of a power law fluid in coiled tubing. This 

study extended Mashelkar and Devarajan’s work to fluids with wider range of flow 

behavior indices (n = 0.25, 0.3, 0.4, …, 1.0).  

A new friction factor correlation for non-Newtonian fluid flow in coiled tubing 

has been developed based on the numerical analysis. This new correlation was 

verified by comparing with the Ito correlation and Mashelkar and Devarajan 

correlation for the special case of Newtonian fluid (n = 1). There is excellent 

agreement between the new correlation of this study and the Ito correlation. For non-

Newtonian fluid, comparison was made with Mashelkar and Devarajan correlation. 

For n = 0.75, the difference between Mashelkar and Devarajan correlation and our 

new correlation is 7.1%. For n = 0.75 and 0.9, Mashelkar and Devarajan correlation is 

32.2% and 19.6% higher than the new correlation. It has been shown that the 

Mashelkar and Devarajan correlation could not properly describe the effect of flow 

behavior index on friction factor of power law fluids. The new correlation was also 

evaluated with some full-scale experimental data. Under certain flow conditions and 

at certain generalized Reynolds number, there is a good agreement between the new 

correlation and the experimental results. It should be noted that the fluid model we 

had assumed in the numerical analysis is purely viscous power law model. Therefore, 

the new friction factor correlation based on the numerical analysis may overpredict 

friction factors if the fluids exhibit strong drag-reducing properties. For these drag 
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reducing fluids, the best approach of investigation is through flow experiments. This 

will be discussed in more details in later chapters. 
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CHAPTER 5  
EXPERIMENTAL SETUP 

5.1 Introduction 

Experimental study constitutes an essential part of this research. The fluids we 

investigated in this study are polymer fluids typically used in drilling, completion, 

and stimulation applications. Their flow behavior in coiled tubing is rather 

complicated. Direct experimental measurement of fluid flow in coiled tubing is an 

effective method of investigation.  Through the Coiled Tubing Consortium (CTC), a 

full-scale coiled tubing flow test facility has been established at the Well Construction 

Technology Center (WCTC), Mewbourne School of Petroleum & Geological 

Engineering, the University of Oklahoma. The experimental setup provided us unique 

capability to conduct flow test and investigate the flow behavior of various fluids in 

coiled tubing. An array of coiled tubing reels and straight tubing sections with various 

dimensions are available to meet the needs of experimental investigation. The 

advantage of full-scale tests is that the experimental results and friction pressure 

correlations based on full-scale test data can be used directly in field applications. The 

limitation of full-scale tubing tests is their high experimental expenses. These include 

costs of large amount of materials, operation of field-size equipment, and man-power. 

For this reason, a lab-scale coiled tubing flow loop was also built. This flow loop has 

been proven to be cost-effective. Further, the ease of handling the equipment 
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associated with the lab-scale loop results in better quality control in terms of fluid 

mixing and preparation. As will be seen later, the coiled tubing reels in the lab-scale 

tests cover wider range of curvature ratio of coiled tubing and the lab-scale test results 

complement the full-scale test results.  

In addition to tubing flow experiments, characterization of the fluids’ rheological 

properties is another important aspect of the experimental investigation. Fann Model 

35 viscometers were used for rheological measurements at ambient temperatures. 

 This chapter presents the experimental flow loops, fluid mixing and pumping 

equipment, measurement instruments, data acquisition system, and rheometers. The 

functions and capabilities of various components of the experimental setup are 

described. The fluid systems and experimental procedures are also discussed. 

5.2 Full-Scale Experimental Setup 

In this research, majority of the experimental work was conducted using the full-scale 

flow loop. Fig. 5.1 shows the schematic of the coiled tubing flow loop, which is 

located at the Well Construction Technology Center. It consists of 9 coiled tubing 

reels, two 200-ft long straight tubing sections, six 30-ft straight tubing sections, fluid 

mixing and storage tanks, fluid pumping equipment, and data acquisition system. This 

flow loop was designed and built as part of the research for the joint-industry 

consortium on coiled tubing. The following describes the components of the flow 

loop.  
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Fig. 5.1―Schematic of full-scale coiled tubing flow loop. 

 



 

5.2.1 Coiled Tubing Reels 

Coiled tubing reels are the unique components of this field-scale coiled tubing test 

facility. There are total of 9 coiled tubing reels that have been used at various stages 

of the experimental work. The dimensions of these coiled tubing reels are shown in 

Table 5.1. Fig. 5.2 shows the layout of the coiled tubing reels in the coiled tubing 

flow test facility.  

Table 5.1―Dimensions of Coiled Tubing Reels in Full-Scale Flow Loop 

Reel No. OD (in.) ID (in.) Length (ft) Reel Diameter (in.)

1 1 0.81 500 48

2 1 0.81 1000 72

3 1-1/2 1.188 1000 72

4 1-1/2 1.188 2000 72

5 1-1/2 1.188 2000 72

6 2-3/8 2.063 1000 111

7 2-3/8 2.063 2039 111

8 1-3/4 1.532 797 82

9 1-3/4 1.482 797 82  

Reels 1 and 2, on the right in Fig. 5.2, have an outer diameter of 1 in. and are the 

smallest coiled tubing in the field-scale flow loop. Either reel can be put online. Or if 

both are online, pressure drop over a total length of 1500 ft can be measured. Note 

that Reel 1 and Reel 2 are spooled onto two drums of different diameters. They 

correspond to two curvature ratios – 0.0169 and 0.0113. Therefore, if fluid is pumped 

through both reels, the differential pressure measurement across both reels can 

provide a direct comparison on the effect of tubing curvature.  

 103



 

 

Fig. 5.2―Coiled tubing reels. 

Reels 3 through 5, in the middle of Fig. 5.2, have an OD of 1-1/2 in. Their reel 

drum diameters are all 72 in. The curvature ratio of these three reels is 0.0165. Reels 

6 and 7, in the upper-left corner of Fig. 5.2, have an outside diameter of 2-3/8 in. and 

are the largest tubing size in the facility. They are spooled onto reel drums of 111 in. 

diameter, corresponding to curvature ratio of 0.0185.  

The other two coiled tubing reels used in this study, Reels 8 and 9, are shown in 

Fig. 5.3.  They each have a nominal outside diameter of 1-3/4 in. and is 797 ft long. 

Reel 8 is a chrome tubing with wall thickness of 0.109 in. while Reel 9 is carbon steel 

tubing with wall thickness of 0.134 in. The original purpose of having these two 

tubing reels was to conduct slurry erosion test through these tubing reels. But before 

running extensive slurry erosion tests, water and guar gel were also pumped through 

these tubing strings to collect frictional pressure data.  
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Fig. 5.3―Chrome and carbon steel tubing reels. 

5.2.2 Straight Tubing (ST) Sections 

The purpose of including straight tubing sections in the flow loop is two-fold: (1) to 

compare frictional pressures between coiled tubing and straight tubing, and (2) to 

collect frictional pressure data of various fluids in straight tubing so that useful 

correlations of friction pressure can be developed. As indicated in Fig. 5.1, there are 

two 30-ft straight tubing sections at the upstream and downstream of CT reels for 

each tubing size of 1, 1-1/2, and 2-3/8 in. Pressure ports were made on each of these 

straight sections so that differential pressure across 20 ft can be measured.  

Two 200-ft straight tubing sections, 1-1/2 in. and 2-3/8 in. in diameter, were later 

added to the flow loop. They were installed in the yard parallel to the fence, shown in 

Fig. 5.4. It is expected that longer tubing length could lead to more accurate 

measurement of differential pressure. On the long straight tubing sections, pressure 

ports were made across 160 ft. The first pressure port for the 160-ft segment is 30 ft 
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away from the tubing entrance, therefore, it is considered free of entrance effect. The 

second pressure port in the downstream side is 12 ft away from the exit end and it is 

also believed to be long enough to avoid exit effect. Additional ports were also drilled 

across the first two 10-ft segments at the entry end. Entrance effect can be 

investigated by measuring differential pressures over these entrance segments.  

 

Fig. 5.4―200-ft long straight tubing sections. 

5.2.3 Fluid Mixing and Pumping Equipment 

Two 50-bbl capacity fluid mixing and storage tanks are located on a MX-5000 trailer 

unit, shown in Fig. 5.5. Each tank has individually-controlled hydraulically-driven 

agitator. One tank can be used to prepare and store test fluid while the other tank can 

be used to store water either for water test or to flush the system.  
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Fig. 5.5―50-bbl fluid mixing and storage tanks. 

To prepare a test fluid, polymers and additives were added to one of the tanks. 

The solution was hydrated in the tank. The mixing tanks have pneumatic control 

panels to adjust the blending paddle speed and to operate valves for diverting test 

fluid or water from each tank into the flow loop. The control panel was manned 

during experiments to maintain uninterrupted supply of test fluid to the flow loop. A 

150-bbl effluent tank is used to store the spent test fluid for later disposal.  

The high pressure pumping equipment includes a Halliburton Energy Services 

HT-400 triplex plunger pump and a Schlumberger B804 triplex plunger pump, shown 

in Figs. 5.6 and 5.7 respectively. The HT-400 triplex pump is capable of pumping 

fluids up to 5000 psi pressure and 300 gallons per minute (7.1 bbl/min) flow rate. The 

Schlumberger B804 triplex pump can pump fluid up to 10,000 psi and 290 gpm (6.9  
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Fig. 5.6―Halliburton Energy Services HT-400 triplex plunger pump. 

 

Fig. 5.7―Schlumberger B804 triplex plunger pump. 

bbl/min) flow rate. For typical fluid tests, only one pump is used. For flow tests at 

very high flow rates, two triplex pumps can be used to deliver a total flow rate of 
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about 10 bbl/min. A Galigher 4×6 centrifugal pump, shown in Fig. 5.8, is used to 

boast the suction of the triplex pump(s). It takes fluid from the mixing tank and feeds 

the triplex plunger pump(s). The centrifugal pump also serves as an aid in fluid 

mixing. 

 

 

Fig. 5.8―Galigher centrifugal pump. 

5.3 Lab-Scale Experimental Setup 

The schematic of the lab-scale flow loop is shown in Fig. 5.9. It mainly consists of 

four coiled tubing reels, one 10-ft straight tubing section, fluid mixing and pumping 

equipment, and data acquisition system. These components are parallel to those used 

in the full-scale flow loop, as discussed previously. Since the tubing size is only ½-in. 

OD, the requirements for the amount of fluid and pumping capacity are significantly 

reduced.  
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Fig. 5.9―Schematic of lab-scale flow loop. 

5.3.1 Coiled Tubing Dimensions 

Four coils of ½-in. coiled tubing, shown in Fig. 5.10, were used in this study. The 

tubing is ½-in. OD and 0.435-in. ID and is made of stainless steel. Their dimensions 

are given in Table 5.2. The coils were made by spooling straight stainless tubings 

onto drums with various diameters. Since the tubing diameter is fixed, decreasing the 

coil diameter (from Coil 1 through Coil 4) increases the curvature ratio. These four 

coils cover a wide range of curvature ratio – from 0.01 to 0.076. The typical range of 

curvature ratio encountered in the field applications is well within the range of the 
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four coils. The wide curvature ratio range of the present coils helps to investigate the 

effect of curvature ratio on friction pressure losses in coiled tubing. During flow tests, 

the four coils can be interchanged through quick connections.  

 

 

Fig. 5.10―Photograph of four ½-in. stainless coils. 

Table 5.2―Dimensions of Four ½-in. Coils 

Coil Diameter Tubing Length Curvature Ratio
(in) (ft) (a/R)

1 3.608 36.14 3 0.010
2 1.878 18.83 3 0.019
3 1.168 23.26 6 0.031
4 0.478 13.58 7 0.076

No. Number of Turns
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5.3.2 Fluid Mixing and Pumping Equipment 

Fluid mixing and storage vessels include a 1000-gal polyethylene storage tank and a 

200-gal ribbon blender. The 1000 gal storage tank serves as large volume source of 

test fluid. The 200 gal ribbon blender can be used to prepare slurry. Pumping is 

achieved by a Model 6P10 Moyno progressive cavity pump and a Model 5M Deming 

centrifugal pump. The Moyno pump with its indefinitely variable speed drive can 

deliver up to approximately 140 gpm at 600 psi. The centrifugal pump serves to boost 

the suction of the Moyno pump.  

5.4 Measurement Instruments 

The high pressure test environment required reliable and accurate measurement 

instruments. The main data collected in a flow test included: flow rate, differential 

pressures across various sections of straight and coiled tubing, fluid density, fluid 

temperature, and system pressure. The instrument used in this study included: Micro 

Motion flowmeters, Honeywell differential pressure transducers, and gauge pressure 

transducers. Auxiliary equipment also included mimiPumps that were used to purge 

the pressure lines for the differential pressure transducers and pressure gauges. The 

following describes these instruments and equipment.  

5.4.1 Micro Motion Flowmeters 

Micro Motion flowmeters work based on Coriolis effect. They are capable of making 

multi-variable measurement: mass flow rate, volumetric flow rate, density, and 
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temperature. Three Micro Motion flowmeters have been used in the research project. 

Table 5.3 summarizes their specifications.  

Table 5.3―Specifications of Micro Motion Flowmeters  

Item Flowmeter 1 Flowmeter 2 Flowmeter 3

Model DL200 S228SU DS300 S157SU CMF050M320NU

S/N 154891 251696 341151

Flow rate range, gal/min 0 - 420 0 - 840 0 - 30

Flow rate accuracy, % ± 0.15 ± 0.15 ± 0.05

Temperature accuracy, °C ± 0.1 ± 0.1 ± 1

Density accuracy, g/cm3 ± 0.0005 ± 0.0005 ± 0.0005

Operating pressure, psi 740 740 1475

Usage Full-scale flow loop Full-scale flow loop Lab-scale flow loop  

5.4.2 Differential Pressure and Gauge Pressure Transducers  

Differential pressure transducers are the most important instrument for measuring 

frictional pressures across various tubing sections. Due to the nature of the field-scale 

testing, the system pressure during a flow test is very high. This presents special 

requirement for the differential pressure transducers – they should work in high 

pressure environment and yet have enough accuracy. Furthermore, since the tubing 

lengths of various tubing sections are widely different, from 10 ft to 2000 ft, their 

pressure drops vary significantly. Therefore, differential pressure transducers with 

different measurement ranges are needed. In this research project, Honeywell 

differential pressure transducers were chosen to measure frictional pressures across 

tubing sections.  
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Table 5.4 lists the differential pressure (DP) and gauge pressure transducers used 

for pressure measurement during this study.  

5.4.3 Data Acquisition System 

The data measured by the flowmeters, pressure transducers as well as pressure gauges 

were collected and transmitted to a computer where the data was displayed and saved 

for later analysis. This task was accomplished by the Fluke Hydra data acquisition 

system (Fluke Corporation, Everett, WA, Model 2625A). The Fluke Hydra system 

contains two hydras, each having 21 analog measurement channels. The sample rate 

is up to 10 samples per second. The Hydra data logger communicates with a host 

computer via a wireless modem radio link. The wireless tool can allow up to 1200 ft 

distance between the remote logger and the receiving computer. The remote operation 

is advantageous for this field-size test loop and high pressure environment.  

The software of the data acquisition system provides the option of displaying the 

data signals graphically. This feature is useful for the operator to monitor the trends 

of measured variables and make proper decisions and adjustments during an 

experiment. By looking at the signals, the operator can determine whether the flow 

has reached steady state or when to change one flow rate to another flow rate. By 

observing the trends of the DP signals, the operator can also judge whether any 

pressure ports (or pressure lines) are blocked and need purging.  
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Table 5.4―Differential Pressure and Gauge Pressure Transducers Used in This Study 

Max Span Min Span Rating
(psi) (psi) (psi)

1 2 STD170V 0 - 3000 0 - 100 6000 ± 0.15% High pressure, field-scale CT.

2 1 STD170G 0 - 3000 0 - 100 3000 ± 0.15% Low pressure field-scale CT; 
200 ft ST

(1) STD130V
(1) YSTD130G

(3) STD130G
(1) STD130V

5 2 STG120G 0 - 14.5 0 - 1 INH2O 3000 ± 0.075% 10-ft segments in 200-ft ST

6 2 STG98LC 0 - 6000 0 - 500 9000 ± 0.10% System pressure

* expressed in percentage of calibration span.

No. Accuracy* Usage

3 2 0 - 100 0 - 5 6000 ± 0.075% Field-scale 30-ft ST sections

ModelQuantity

3000 ± 0.075% Field-scale annular sections; lab-
scale coils and ST4 4 0 - 100 0 - 5
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5.5 Rheometers 

Fann Viscometers. Fig. 5.11 shows two Fann Model 35 viscometers used in this 

study. Each viscometer consists of two cylinders: an outer cylinder, called rotor (or 

sleeve), and an inner cylinder, called bob. The annular space between the two 

cylinders contains the fluid sample to be tested. The shear is introduced by rotating 

the outer cylinder – the rotor. The torque is balanced by a helically wound precision 

spring where its deflection can be read on a calibrated dial at the top of the 

viscometer. For a given bob-rotor geometry and given torque spring, the rotational 

speed of the rotor (measured in rpm) can be converted to shear rate and the torque 

indicated by the dial reading can be converted to shear stress.  

 

Fig. 5.11―Fann Model 35 viscometers. 

The Fann viscometers used for this study have standard bob and rotor. The bob 

(B1) has a radius of 1.7245 cm and length of 3.8 cm, the rotor (R1) has a radius of 
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1.8415 cm. One of the Fann viscometers has six rotor speeds and a No. 1 torsion 

spring. The other viscometer has 12 rotor speeds and a No. 1/5th spring. For thin 

fluids, the No. 1/5th spring was used for better accuracy. Fann viscometers had been 

routinely used throughout this experimental study for rheological measurements at 

ambient temperatures. For rheological measurements at elevated temperatures, Bohlin 

CS-50 rheometer had been used.108  

5.6 Fluid Systems 

Table 5.5 shows the four types of polymer solutions tested on the field-scale flow 

loop. These are typical drilling and completion fluids suggested by the Coiled Tubing 

Consortium members. Table 5.6 lists the product name, generic description, and 

provider/manufacturer of each fluid.  

Table 5.5―List of Fluids Tested with Field-Scale Flow Loop 

No. Viscosifier/Additive Concentration 

1 Xanthan 10, 20, 40 lb/Mgal 

2 PHPA 20, 40 lb/Mgal 

3 Guar 20, 30, 40 lb/Mgal 

4 HEC 20, 30, 40 lb/Mgal 

 

 

Table 5.7 shows three polymers and their concentrations used in the experiments 

with the lab-scale flow loop.  
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Table 5.6―Product Names, Generic Descriptions, and Provider/Manufacturers 

Item Product Name Description Provider/Manufacturer 

Xanthan XANVIS® L Xanthan gum Kelco Oil Field Group 

PHPA DRILLAID PA 469 Polymerized 
acrylamide Baker Petrolite 

Guar WG-19 Guar gum Halliburton Energy Services 

HEC NATROSOL Hydroxyethyl cellulose HERCULES INC. 

Table 5.7―Rheological Parameters of Fluids Tested in the ½-in. Flow Loop 

Concentration p

lb/Mgal lbfs
n/ft2

10 0.717 0.00082
15 0.403 0.00755
20 0.365 0.01303
30 0.310 0.03104
10 0.819 0.00019
20 0.619 0.00268
30 0.482 0.01168
10 0.805 0.00036
20 0.598 0.00336
30 0.485 0.01270

HPG

Fluids n

Xanthan

Guar

K

 

A brief description of each fluid is given in the following. 

Xanthan. Xanthan gum is a high-molecular-weight biopolymer and is produced by 

bacterial fermentation of microorganism Xanthamonas compestris. 109 - 112  Xanthan 

gum solutions display remarkable shear-thinning properties. Its major application in 

drilling fluids is as a suspending agent due to its high viscosity at low shear rate. This 

shear-thinning property also makes it useful as completion and stimulation fluids. The 

xanthan polymer used in this study is Xanvis® L of Kelco Oil Field Group. It is a 

cream-colored fluid suspension.  
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PHPA. Partially hydrolyzed polyacrylamide (PHPA) is a synthetic water-soluble 

polymer. The primary benefits of synthetic polymers over natural polymers are 

increased temperature stability and contamination resistance.113 PHPA polymer has 

been widely used in drilling fluids.114 The PHPA polymer used in this study is in the 

form of white powder and was provided by Baker Petrolite.  

Guar and HPG. Guar is a long-chain natural polymer composed of manmose and 

galactose sugars.115 Guar gum comes from the endosperm of guar beans. The beans 

are removed from bean pod, processed to separate the endosperm from the bean hull 

and embryo, and ground into a powder. HPG (hydroxypropyl guar) is obtained by the 

reaction of propylene oxide with the guar molecules, creating a more temperature 

stable polymer. It was developed primarily to reduce the residue obtained from guar 

gum. Guar gum and HPG are the most widely used viscosifiers for water-based 

fracturing fluids. It is reported that over 70% of all fracturing treatments use guar or 

hydroxypropyl guar (HPG)-based aqueous fluids.115 The guar polymer tested in this 

study is a WG-19 and is a product of Halliburton Energy Services.  

HEC. Hydroxyethyl cellulose (HEC) is also a natural polymer. It is produced by 

chemically reacting ethylene oxide with cotton or wood-based cellulose. 109,116 It is 

nonionic water-soluble polymer and can be of various viscosity grades, made possible 

by changing the molecular weight of the cellulose backbone. The HEC polymer used 

in this study is a frac-grade HEC. Its viscosity is higher than those used as fluid loss 

additives. 
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5.7 Experimental Procedure 

The experimental procedure began with proper fluid preparation. The fluid mixing 

procedures recommended by the product providers/manufacturers were followed. The 

general fluid mixing procedures are given in Appendix C.  Fluid samples were taken 

and checked to ensure adequate mixing and hydration. After the fluid was prepared, 

water was pumped through the system as a system calibration check. The fluid was 

then pumped through the flow loop, and when the system was completely filled with 

gel, it was switched to recirculation. In order to reduce any heating or gel degradation 

due to extensive shearing, the test sequence used was to first pump fluid through 2-

3/8-in. coiled tubing, followed by 1-1/2-in., and finally the 1-in. tubing. During each 

test, the fluid was pumped at various flow rates until either the pump rate reached the 

maximum capacity of the triplex pump or the system pressure reached a maximum 

pressure of 5,000 psi. At each flow rate, 2−3 minutes of steady flow was allowed to 

collect quality data. In the beginning and at the end of each test, fluid samples were 

taken from a sampling port in the flow loop and submitted to the Fann Model 35 

viscometers for rheological measurements. In this way, any rheology changes due to 

heating or degradation can be taken into account during the data analysis. The 

experimental procedure for tests on the lab-scale loop is quite similar to that on the 

field-scale loop. The main difference is that once flow test was completed on one coil 

in the lab-scale flow loop, it had to be switched to another coil and repeat the same 

testing procedure with the same fluid.  
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It should be pointed out that only one fluid sampling port was constructed in the 

field-size flow loop. For safety consideration, this port was made downstream of the 

Micro Motion flowmeter. It is realized that the fluid properties could be different at 

various locations of the flow loop. For example, the property of fluid immediately 

after the pump may be different than the fluid at the downstream of the flow loop due 

to different shear histories. In the present study, Fann Model 35 viscometers were 

used. Due to the time lag between the time when the sample was taken and the time 

when the sample was tested on the viscometer, testing on the viscometer may not 

detect fluid dynamic property change. To understand the property change of fluid 

along the flow path of the flow loop, several sampling ports may be built and fluid 

properties should be measured dynamically online. This can be explored in future 

studies.  

It should also be noted that the flow tests with both field-scale and lab-scale flow 

loops were conducted at ambient temperatures. For applications where fluid 

temperature may be elevated, such as cases where fluid is re-circulated in high 

temperature wells, it is suggested that the rheological properties of fluid at elevated 

temperature should be used in the friction pressure calculation using the correlations 

developed based on the ambient flow tests. Rheological properties at elevated 

temperatures can be evaluated using Bohlin rheometer.108 In future studies, a number 

of flow tests at elevated temperatures can be performed using the lab-scale flow loop 

to verify the predictions of the friction factor correlations based on the ambient flow 

tests. 
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CHAPTER 6  
EXPERIMENTAL STUDY OF FRICTION 

BEHAVIOR OF NON-NEWTONIAN FLUID FLOW 
IN COILED TUBING 

6.1 Procedure of Data Analysis 

Data reduction and analysis involved processing and analyzing rheological data from 

measurements of Fann Model 35 viscometers and the tubing flow data of tests 

conducted with the various tubing sizes and different fluids including water and 

polymer solutions. 

6.1.1 Data Reduction and Analysis of Rheological Data 

The data reduction of Fann viscometer measurements is rather straightforward. The 

shear rate and shear stress [for standard rotor-bob (R1-B1) combination] were 

calculated using the following equations117: 

(RPMw 703.1= )γ& .............................................................................................(6.1) 

and  

iw Nθτ 01066.0= , ............................................................................................(6.2) 

where RPM is the rotational speed of the rotor in rpm (revolutions per minute); θi the 

dial reading at “i” rpm; N the spring factor (= 1 for No. 1 spring, 0.2 for 1/5th spring); 

wγ&  the shear rate at the bob surface, 1/sec; and τw the shear stress at the bob surface, 
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lbf/ft2. Once data of dial readings at various rpm were obtained, the proper rheological 

models can be chosen and model parameters can be calculated. As an example, Fig. 

6.1 shows the plot of shear stress vs. shear rate for 40 lb/Mgal xanthan fluid sample 

taken before the flow test through the 2-3/8-in. coiled tubing.  
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Fig. 6.1―Rheogram of 40 lb/Mgal xanthan sample taken before flow through 2-
3/8-in. tubing. 

Power law model can be applied to the data points to obtain flow behavior index 

(n) and consistency index (Kv). Kv is the consistency index from viscometer and can 

be converted into geometry-independent consistency index (K). Kv was also 

converted to consistency index for pipe flow, Kp, according to the following 

equation117,118:  

n

p

v

n
n

K
K









+
=

13
4 λ ,...............................................................................................(6.3) 
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in which  

bc RRs = , .......................................................................................................(6.5) 

where Rc and Rb are the radii of the cup (the rotor) and the bob.  

For certain thin fluids, the dial readings of Fann viscometer at 3 rpm and 6 rpm 

may not be accurate. Therefore, when calculating power law parameters, the data 

points at 3 rpm and 6 rpm were not included.  

In Appendix D, Tables D.1 through D.4 list the values of flow behavior index 

and consistency index for various fluids at different stages of fluid testing. The table 

items are arranged in accordance to the order of testing. Generally, fluids were tested 

first through larger tubing size and then through smaller tubing size in order to 

minimize possible shear degradation of polymers.  

6.1.2 Data Reduction and Analysis of Flow Test Data 

The data recorded in flow tests with the data acquisition system consist of flow rate, 

pressure drop across straight and coiled tubings, fluid density, and fluid temperature, 

etc. The transient data points due to flow rate change or due to purging operations 

were removed so that only the steady state data points were used for the data analysis. 

Following the traditional approach of pipe flow analysis, plots of friction factor 
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versus Reynolds number (or generalized Reynolds number for non-Newtonian fluid) 

were analyzed. 

The Fanning friction factor was calculated from the following relationship:  

2

2
1

m

w

v
f

ρ

τ
= ..........................................................................................................(6.6) 

in which the wall shear stress, τw, is calculated from: 

L
pd

w 4
∆

=τ ........................................................................................................(6.7) 

where d is the tubing inside diameter and ∆p is the frictional pressure drop over a 

tubing length of L. For Newtonian fluid, Fanning friction factor is plotted with 

Reynolds number, NRe:  

µ
ρ mdvN =Re ,....................................................................................................(6.8) 

where ρ is fluid density, µ the dynamic viscosity, and vm is the mean velocity.  

The generalized Reynolds number, NReg, is used for non-Newtonian fluids:  

1

2

Re 8 −

−

= n
p

n
m

n

g K
vdN ρ ................................................................................................(6.9) 

where n is the power law flow behavior index and Kp is the fluid consistency index 

for pipe viscometer. These values are determined using the Fann Model 35 

viscometers, as discussed previously. 
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6.2 Water Tests 

6.2.1 Objective 

One of the objectives of water tests is for system check and calibration. Water data is 

often used as a baseline to compare with frictional pressure data of other fluids. In 

this study, extensive water tests have been conducted through both straight and coiled 

tubing of various sizes and lengths. These data have been analyzed and compared 

with published correlations. 

6.2.2 Correlations Used in Water Data Analysis 

For straight tubing, the following correlations were used. 

Drew119 correlation for smooth pipe: 

32.0
Re

125.000140.0
N

f += . ....................................................................................(6.10) 

where f is the Fanning friction factor, and NRe is Reynolds number. This correlation is 

applicable in the Reynolds number range of 2100 < NRe < 3 × 106 and is for 

Newtonian turbulent flow in smooth pipes. 

Chen120 correlation for rough pipe: 
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where hr is the tubing roughness projection and  d the tubing inside diameter. The 

Chen correlation can be used for Newtonian turbulent flow in straight pipes with 

roughness. The result of the Chen correlation is almost identical to the Colebrook121 
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equation for the range of NRe from 4000 to 4 × 108 and (hr/d) from 0.05 to 5 × 10-7. 

Since the Chen equation is an explicit equation, it overcame the drawbacks of the 

Colebrook equation which is implicit and a trial-and-error method has to be used. 

For Newtonian turbulent flow in smooth coiled tubing, Srinivasan90 correlation 

can be used: 

( )
2.0

Re

1.0084.0
N

Raf = ,.........................................................................................(6.12) 

where a/R is the coiled tubing curvature ratio, and a and R are the radii of tubing and 

reel drum. Eq. (6.12) is valid for 0.0097 < a/R < 0.135. Srinivasan correlation is based 

on flow tests of Newtonian fluids (water and oil) in smooth coiled pipes. 

Analyzing water flow data of coiled tubing with roughness has been a challenge. 

This is mainly because there is no published correlation on the effect of tubing 

roughness on friction factor in coiled tubing. In this study, we propose the following 

friction factor correlation for coiled tubing with roughness:  
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where frough is the Fanning friction factor in rough coiled tubing. The above 

correlation was derived based on the assumption that the ratio of rough coiled tubing 

friction factor to the smooth coiled tubing friction factor is approximately equal to the 

corresponding ratio in straight tubing. Though the accuracy of this assumption is yet 
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to be verified, the experimental data of the present study seem to indicate that Eq. 

(6.13) can adequately describe the effect of tubing roughness on friction factor in 

coiled tubing, as will be discussed below. 

In the data analysis, the correlation of water viscosity as function of temperature 

was used to correct the water viscosity.122 

6.2.3 Water Tests in 1, 1-1/2, 1-3/4, and 2-3/8-in. Tubing 

Figs. 6.2 through 6.5 show the plots of Fanning friction factor versus Reynolds 

number of water in 1, 1-1/2, 1-3/4, and 2-3/8-in. straight and coiled tubing. Shown 

also on the plots are the Chen correlation of friction factor for straight tubing and the 

Srinivasan correlation for smooth coiled tubing. Several observations can be made 

and discussed as follows.  

First, the friction factor in coiled tubing for all tubing sizes (except the 1-3/4-in. 

tubing reels which have no corresponding straight sections) is significantly higher 

than in straight tubing. The maximum difference in friction factor can be as high as 

30%. The extra flow resistance in coiled tubing is due to the effect of secondary flow 

in curved flow geometry. Furthermore, the extent of the secondary flow effect is a 

function of curvature ratio. This is evident by comparing the friction factors of the 

500 ft and the 1000 ft 1-in. coiled tubing, as shown in Fig. 6.2. Note that the 500 ft 

CT string was spooled onto a smaller drum diameter (48 in.) than the 1000 ft CT 

string which was spooled onto a 72-in. diameter drum. The 500-ft CT reel has a 

greater curvature ratio (a/R = 0.0169) than the 1000-ft CT reel (a/R = 0.0113). The 

difference in friction factor between the 500-ft and 1000-ft CT reels can be as much 
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as 8%. Meanwhile, for the CT reels with same curvature ratios, their friction factors 

are approximately the same, as shown in Figs. 6.3 and 6.5. 
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Fig. 6.2―Fanning friction factor versus Reynolds number of water in 1-in. 
straight and coiled tubing. 
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Fig. 6.3―Fanning friction factor versus Reynolds number of water in 1-1/2-in. 
straight and coiled tubing. 
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Fig. 6.4―Fanning friction factor versus Reynolds number of water in 1-3/4-in. 
chrome and carbon steel coiled tubing. 
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Fig. 6.5―Fanning friction factor versus Reynolds number of water in 2-3/8-in. 
straight and coiled tubing. 
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Second, Figs. 6.2 and 6.5 indicate that the friction factors in the 1-in. and 2-3/8-

in. coiled tubing reels are higher than the Srinivasan correlation. Therefore, tubing 

roughness effect is evident in both CT sizes. To estimate the magnitude of possible 

tubing roughness, we applied the previously proposed correlations [Eq. (6.13)] to 

match the friction factor data of the 1-in. and 2-3/8-in. coiled tubing. Fig. 6.6 shows 

the result of the 1-in. CT reels. It is seen that the proposed correlation is able to match  
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Fig. 6.6―Friction factor versus Reynolds number of 1-in. tubing, measured and 
predicted using the proposed rough CT correlation. 

 

the friction factor data of the 500-ft and the 1000-ft coiled tubing with tubing 

roughness of 0.00012 in. and 0.00006 in. respectively. As indicated in Fig. 6.5, a 

tubing roughness of 0.00035 in. results in a very good match of the friction factor 

data with Eq. (6.13). It is encouraging to find out that these roughness values are very 
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close to the roughness data measured with Tuboscope’s Hommel Surface Roughness 

Meter on similar coiled tubing. The measured average roughness for carbon steel 

coiled tubing is between 0.000025 to 0.000149 in.††  

It is important to point out that the newly proposed correlation [Eq. (6.13)] can 

not only match the majority of the data on point-to-point basis, but, more importantly, 

also provide a good match to the trend of the data. This has been proven for both 1-in. 

and 2-3/8-in. tubing data sets, see Figs. 6.5 and  6.6 respectively. In these plots, it can 

be seen that the Srinivasan correlation has a steeper slope than those of the data points 

which exhibit flatter slopes. Recall the friction factor behavior of Newtonian fluid in 

straight pipes, such as the Moody123 diagram of friction factor. The smooth pipe flow  

or “hydraulically smooth” pipe flow is characterized by steeper slopes than rough 

pipe flow, with slope depending on the magnitude of the Reynolds number. The 

flatter lines indicate more dominance of roughness at higher Reynolds numbers. The 

newly proposed correlation [Eq. (6.13)] is shown to be able to effectively adjust the 

slope of the Srinivasan correlation to better match the experimental data of coiled 

tubing with roughness. 

In Fig. 6.3, it can be seen that the friction factor data of the 1-1/2-in. coiled 

tubing is very close to the Srinivasan correlation. But, this does not necessarily mean 

that the 1-1/2-in. CT reels are smooth. It is more likely that the inner diameter of the 

1-1/2-in. tubing had been changed due to previous usage. Prior to this research 

project, the 1-1/2-in. CT reels had been used extensively for testing fracturing 

                                                 
†† Thanks to Dr. Roderic Stanley of Quality Tubing, Inc. for providing this data and discussion. 
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slurries. These previous tests might have altered the tubing inner diameter (enlarged 

due to slurry erosion). It would be very tempting to have one parameter, either tubing 

ID or roughness measured independently so that the other parameter could be 

estimated from the water test data using the correlation we proposed, Eq. (6.13). But, 

neither measurement was available. 

It is interesting to note that the friction factor in the 1-3/4-in. chrome coiled 

tubing is lower than the 1-3/4-in. carbon steel coiled tubing. It is therefore believed 

that the chrome tubing has less roughness effect. The friction factor of the chrome 

tubing is slightly lower than the Srinivasan correlation. By using the new correlation 

[Eq. (6.13)], the roughness in the 1-3/4-in. carbon steel coiled tubing is estimated as 

0.00005 in. 

Third, the friction factor data in straight tubing of all tubing sizes can be matched 

by Chen correlation with various tubing roughnesses. For the 1-in. straight tubing, a 

roughness of hr = 0.0006 in. in Chen correlation results in good match with the data. 

In the 20-ft straight tubing of the 1-1/2-in. diameter, Chen correlation with roughness 

of 0.00006 in. matched the data well. As shown in Fig. 6.5, the data of the 20-ft 

straight tubing of 2-3/8-in. diameter show large scatter. For large tubing sizes 

(especially 2-3/8-in.), the data from tests on the 200-ft straight tubing sections are 

more reliable. This is evident from Fig. 6.7 which shows the result of friction factor 

versus Reynolds number for water in the 200-ft long and 2-3/8-in. diameter straight 

tubing section.  
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Fig. 6.7―Fanning friction factor versus Reynolds number of water in 200 ft 
straight tubing of 2-3/8-in. diameter (DP measured across 160 ft). 

6.2.4 Water Tests in ½-in. Tubing 

Fig. 6.8 presents the results of water tests in the four ½-in. coils and the 10-ft straight 

section in the lab-scale flow loop. The four coils have curvature ratios of a/R = 0.01, 

0.019, 0.031, and 0.076 respectively. It can be clearly seen that as curvature ratio 

increases, the friction factor increases. The significance of the effect of curvature on 

friction pressure is thus demonstrated. The straight tubing data have been compared 

with Drew correlation and the coiled tubing data with the Srinivasan correlation. 

Since each coil has a different curvature ratio, the Srinivasan correlation has to be 

applied separately with each curvature ratio corresponding to each coil. For example, 

the comparison in Figs. 6.9 and 6.10 (for a/R = 0.01 and 0.031 respectively) shows 

that the friction factor data of straight tubing and the coils are in close agreement with 

the Drew correlation and the Srinivasan correlation respectively. The reason for the 
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Fig. 6.8―Fanning friction factor versus Reynolds number of water in ½-in. 
straight and coiled tubing. 
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Fig. 6.9―Comparison of Fanning friction factor data of water with Drew and 
Srinivasan correlations for a/R = 0.01. 
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Fig. 6.10―Comparison of Fanning friction factor data of water with Drew and 
Srinivasan correlations for a/R = 0.031. 

 

close agreement is because the straight tubing section and the four coils were made of 

stainless tubing. Therefore, they exhibit behavior of smooth tubing. 

6.3 Flow Tests of Non-Newtonian Fluids in Field-Size Flow 
Loop 

6.3.1 Flow Tests of Xanthan Fluids 

Xanthan fluids at three polymer concentrations (10, 20, and 40 lb/Mgal) have been 

tested using the field-scale flow loop. Figs. 6.11 through 6.14 show the friction 

behavior on the traditional plots of Fanning friction factor versus generalized 

Reynolds number. On the these plots, we also plotted the Hagen-Poiseuille equation  
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Fig. 6.11―Friction factor behavior of 10, 20, and 40 lb/Mgal xanthan in 1-in. 
coiled tubing. 
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Fig. 6.12―Friction factor behavior of 10, 20, and 40 lb/Mgal xanthan in 1-in. 
straight tubing. 
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Fig. 6.13―Friction factor behavior of 10, 20, 30, and 40 lb/Mgal xanthan in 1-
1/2-in. straight and coiled tubing. 
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Fig. 6.14―Friction factor behavior of 10, 20, 30, and 40 lb/Mgal xanthan in 2-
3/8-in. straight and coiled tubing. 
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(f = 16/NReg) for straight laminar tubing flow, Srinivasan correlation for turbulent 

Newtonian flow in coiled pipe [Eq. (6.12)], and Virk’s maximum drag reduction 

asymptote for dilute polymer solutions in straight tubing flow which is given below: 

4.32Re10log0.191 −= fNf . ...................................................................(6.14) 

where f is Fanning friction factor and NRe is Reynolds number. For clarity, the 

friction factor data of xanthan fluids in 1-in. coiled tubing and straight tubing are 

plotted separately in Figs. 6.11 and 6.12. Several features can be observed from these 

plots.  

First, straight tubing versus coiled tubing. The most significant feature of coiled 

tubing flow is that its friction factor is much higher than that of straight tubing. The 

difference in friction factor can be between 20% to 170%, depending on the 

generalized Reynolds number and polymer concentration. At low polymer 

concentration, the maximum difference in friction factor is smaller than at higher 

polymer concentration.   

Second, the effect of polymer concentration on friction factor of straight and 

coiled tubing. For straight tubing (Fig. 6.12), as xanthan polymer concentration 

increases from 10 to 40 lb/Mgal, the friction factor decreases drastically. The more 

concentrated xanthan polymer solution tends to result in lower friction. The trend of 

straight tubing data approaching horizontal lines indicates that friction in 1-in. tubing 

at high Reynolds number is affected by tubing roughness. In coiled tubing, the effect 

of polymer concentration is not as important as in straight tubing except at the lowest 

 139



 

xanthan concentration of 10 lb/Mgal. At 10 lb/Mgal, the data points turn to be flat, 

implying that the roughness is playing a bigger role. 

Third, by comparing the friction factor of the 500 ft and 1000 ft CT, we can see 

that the friction factor of the 500 ft CT is consistently higher than that of the 1000 ft 

CT. The difference is due to the effect of curvature ratio and can be as much as 20%. 

Recall that the 500 ft CT reel has a larger curvature ratio, therefore, it produces 

greater friction factor than the loosely spooled 1000 ft CT reel.  

Fourth, the data points of coiled tubing in turbulent regime are all significantly 

lower than the Srinivasan correlation, indicating that the xanthan fluids exhibit 

significant drag reduction. More detailed discussion on drag reduction in coiled 

tubing will be made in Chapter 7.  

In Figs. 6.13 and 6.14, the straight tubing data were from the 200 ft long straight 

tubing sections (with 160 ft DP measurement length). In Figs. 6.13 and 6.14, we see 

that there can be regions where the difference in friction factor between coiled tubing 

and straight tubing is the most significant. At a generalized Reynolds number of about 

28,800, the friction factor in the 2-3/8-in. coiled tubing is 185% higher than that in 

straight tubing. As the generalized Reynolds number decreases, the difference in 

friction factor between coiled tubing and straight tubing becomes smaller. The flow 

of xanthan polymer solutions in straight tubing exhibits significantly extended 

laminar flow for generalized Reynolds number up to 10,000 or 20,000, see Fig. 6.14. 

Therefore, the friction factor in straight tubing is much lower than what would be 

expected for Newtonian fluid in turbulent flow at this high Reynolds number. On the 
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other hand, the friction factor of coiled tubing flow deviates early from the f = 

16/NReg line. Even at low Reynolds number, the friction factor in coiled tubing is 

higher than predicted from f = 16/NReg. This is due to the secondary flow effect in 

coiled tubing. Only in very slow motion, the secondary flow effect can be neglected. 

As Reynolds number increases, the effect of secondary flow becomes stronger, 

resulting in more flow resistance in coiled tubing. The net result of the two different 

mechanisms in straight and coiled tubing – extended laminar flow in straight tubing 

and the secondary flow effect in coiled tubing – is that the difference in friction factor 

would reach a maximum after which the difference will become smaller as the 

Reynolds number increases. This is because when the Reynolds number is high 

enough, turbulence and tubing roughness will play more important role in the flow 

resistance in both straight and coiled tubing. It is logical to believe that at very high 

Reynolds number, the difference in friction factor between coiled and straight tubing 

will be even smaller and will be mainly dominated by the roughness of the tubing. 

We have seen this behavior in water data analysis. For example, the difference in 

friction factor of water in 1-in. coiled tubing is only about 8 and 22% higher than that 

of straight tubing for the 1000 ft and 500 ft CT respectively. In the case of water flow 

in 1-in. tubing, the Reynolds number is from 90,000 to 260,000. The feature that 

xanthan fluids display most significant friction difference in certain Reynolds number 

region has significant impact on the CT hydraulics calculations because most field 

coiled tubing injection operations will be performed at similar flow rates to what we 

have investigated.  
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6.3.2 Flow Tests of PHPA Fluids 

The friction factor behavior of 20 and 40 lb/Mgal PHPA fluids in 1, 1-1/2, and 2-3/8-

in. coiled and straight tubing are shown in Figs. 6.15 to 6.17 respectively. In general, 

the friction factor behavior is similar to that of xanthan fluids. The friction factor in 

coiled tubing is seen to be significantly higher than in straight tubing. The difference 

can be more pronounced for the larger pipe size, as seen in Fig. 6.17. Due to the 

higher viscosity of PHPA fluids, the maximum Reynolds number investigated is 

lower than in the case of xanthan fluids. For the 1-in. straight tubing, the friction 

factor stays close to the Virk’s maximum drag reduction (MDR) asymptote. This is 

different from the xanthan fluids where the friction factor becomes higher than the 

Virk’s MDR asymptote when xanthan concentration is decreased from 40 lb/Mgal to 

20 and 10 lb/Mgal. This indicates that PHPA fluids can retain good drag reduction 

performance in straight tubing even at Reynolds number as high as 100,000. At 

conditions of low generalized Reynolds number, both coiled tubing and straight 

tubing approach the Hagen-Poiseuille equation, see Fig. 6.17.  

6.3.3 Flow Tests of Guar Fluids 

Figs. 6.18 to 6.21 show the plots of Fanning friction factor of guar fluids in three 

tubing sizes respectively. In Figs. 6.18 and 6.19, the maximum friction factor 

difference between coiled tubing and straight tubing can be as high as 134% for the 

500 ft CT and 53% for the 1000 ft CT. Again, the coiled tubing and straight tubing 

display quite different behavior. In coiled tubing, the effect of guar concentration is  
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Fig. 6.15―Friction factor behavior of 20 and 40 lb/Mgal PHPA in 1-in. straight 
and coiled tubing. 
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Fig. 6.16―Friction factor behavior of 20 and 40 lb/Mgal PHPA in 1-1/2-in. 
straight and coiled tubing. 
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Fig. 6.17―Friction factor behavior of 20 and 40 lb/Mgal PHPA in 2-3/8-in. 
straight and coiled tubing. 
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Fig. 6.18―Friction factor behavior of 20, 30, and 40 lb/Mgal guar in 1-in. coiled 
tubing. 
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Fig. 6.19―Friction factor behavior of 20, 30, and 40 lb/Mgal guar in 1-in. 
straight tubing. 
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Fig. 6.20―Friction factor behavior of 20, 30, and 40 lb/Mgal guar in 1-1/2-in. 
straight tubing and coiled tubing. 

 145



 

0.0001

0.001

0.01

0.1

100 1000 10000 100000 1000000

Generalized Reynolds Number, NReg

Fa
nn

in
g 

Fr
ic

tio
n 

Fa
ct

or

f = 16/NReg
Srinivasan
Virk's Asymptote
20 lb/Mgal Guar, 1000 ft CT
30 lb/Mgal Guar, 1000 ft CT
40 lb/Mgal Guar, 1000 ft CT
20 lb/Mgal Guar, 160 ft ST
30 lb/Mgal Guar, 160 ft ST
40 lb/Mgal Guar, 160 ft ST

 

Fig. 6.21―Friction factor behavior of 20, 30, and 40 lb/Mgal guar in 2-3/8-in. 
straight and coiled tubing. 

not significant on the plots of friction factor vs. generalized Reynolds number. In 

straight tubing, the friction factor of the 20 lb/Mgal guar is significantly higher than 

the 30 and 40 lb/Mgal guar. In Fig.  6.21, we see bigger effect of guar concentration 

for straight tubing than for coiled tubing. Similar to both xanthan and PHPA fluids, 

the big difference between coiled tubing and straight tubing occurs at Reynolds 

number above 1000. At very low Reynolds number, the difference between straight 

and coiled tubing is smaller.  

6.3.4 Flow Tests of HEC Fluids 

Figs. 6.22 to 6.25 show the friction factor versus generalized Reynolds number for 

HEC fluids in 1, 1-1/2, and 2-3/8-in. tubing systems. The friction factor behavior of 

coiled tubing shows similar characteristics to the other three polymer types, that is, 
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the friction factor in coiled tubing is significantly higher than in straight tubing. The 

friction factor of coiled tubing deviates early from the line of f = 16/NReg at low 

Reynolds number. As Reynolds number increases, the friction factor in coiled tubing 

keeps turning to more horizontal. The friction factor in straight tubing, on the other 

hand, first follows the extended laminar flow behavior (that is, f = 16/NReg), then at 

Reynolds number of about 20,000 (for 1-in. tubing), the friction factor takes a 

relatively sharp turn toward horizontal. This behavior is obvious in the flow data of 

the 1-in. tubing. In larger tubing sizes, the flow rate is not high enough to display the 

behavior of friction factor turning to horizontal. Note that in Fig. 6.24, the data from 

the 20-ft straight tubing were used since no tests were performed through the 200-ft 

straight tubing sections for HEC fluids.  
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Fig. 6.22―Friction factor behavior of 20, 30, and 40 lb/Mgal HEC in 1-in. coiled 
tubing. 
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Fig. 6.23―Friction factor behavior of 20, 30, and 40 lb/Mgal HEC in 1-in. 
straight tubing. 
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Fig. 6.24―Friction factor behavior of 20, 30, and 40 lb/Mgal HEC in 1-1/2-in. 
straight and coiled tubing. 
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Fig. 6.25―Friction factor behavior of 20, 30, and 40 lb/Mgal HEC in 2-3/8-in. 
coiled tubing. 

6.3.5 Development of Friction Factor Correlations 

To make the above full-scale experimental data and observations useful to the 

engineering design calculations, empirical correlations of friction factor of xanthan, 

PHPA, guar, and HEC fluids have been developed. In order to obtain such 

correlations, the friction factor data were plotted as Fanning friction factor versus 

generalized Dean number as defined previously by Eq. (3.70).  

Figs. 6.26 to 6.29 show such plots for guar, HEC, PHPA, and xanthan fluids 

respectively. In preparing these plots, only those data points whose generalized 

Reynolds number is greater than the corresponding critical Reynolds number as 

predicted by the Srinivasan correlation [Eq. (2.13)] were included. The reason is that 

the effect of curvature for laminar flow in coiled tubing is relatively small and can be 

estimated using laminar correlations such as our theoretical correlation for laminar 
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flow. In fact, the vast majority of our data points from the field-size flow loop are at 

high Reynolds number (higher than the critical Reynolds number predicted by 

Srinivasan correlation). Therefore, only very few outlying data points were excluded. 

Yet excluding these few data points would improve the correlation quality.  

Several observations can be made and will be useful for selecting the appropriate 

correlations. First, all fluids except 10 lb/Mgal xanthan show well-behaved data trend 

when plotted as Fanning friction factor versus generalized Dean number. 
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Fig. 6.26―Composite plot of Fanning friction factor vs. generalized Dean 
number for guar fluids. 
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Fig. 6.27―Composite plot of Fanning friction factor vs. generalized Dean 
number for HEC fluids. 
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Fig. 6.28―Composite plot of Fanning friction factor vs. generalized Dean 
number for PHPA fluids.  
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Fig. 6.29―Composite plot of Fanning friction factor vs. generalized Dean 
number for xanthan fluids. 

The data points of guar fluids seem to give straight lines with similar slopes over 

wide range of generalized Dean number. For other types of fluids, data points can be 

approximated as straight lines only over narrower ranges of generalized Dean 

number. If the range of the generalized Dean number is expanded to include all data 

points, the data display certain degree of curvature.  

Second, the vertical separation in these plots is largely due to difference in 

curvature ratio. For clarity, we use four different colors to identify data sets of 

different curvature ratios. We also chose consistent marker convention so that it will 

be easier to distinguish between different polymer concentrations within each data set 

of a given curvature ratio. It can be easily seen that the data sets form color bands 

representing four curvature ratios. Within each color band, the minor separation 
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between sub-sets of data indicates that the effect of polymer concentration is slight on 

these plots.  

Based on the above observations, it is concluded that a two-parameter type 

correlation such as the Srinivasan correlation for Newtonian turbulent flow in coiled 

pipe is not sufficient to describe the friction behavior of non-Newtonian fluid 

turbulent flow in coiled tubing, since a two-parameter correlation of the Srinivasan 

type can only be a straight line relationship on the log-log coordinates of f vs. NDNg. 

In this case, a three-parameter correlation of the following form will be required:  

C
N

Af B
DNg

M += ..............................................................................................(6.15) 

where fM is the friction factor of mean curve, A, B, and C are correlation constants. 

This form of correlation has been successfully used by Shah124 for obtaining friction 

factor correlation of non-Newtonian fluid flow in straight tubing. 

For each type of polymer fluids, we apply Eq. (6.15) to all data points to get a 

mean curve for all data of the polymer type. Table 6.1 summarizes the correlation 

constants A, B, and C for each type of fluids.  

Table 6.1―Correlation Constants of the Mean Curve 

Fluid A B C
Xanthan 0.32669 0.64877 0.00102
PHPA 0.43054 0.67836 0.00078
Guar 0.53349 0.70666 0.00100
HEC 1.48075 0.86895 0.00119  
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The feature of each of these mean curves is that they are more or less parallel to 

each sub-set of data for a given tubing size (and curvature ratio) and fluid 

concentration. Then, by shifting the data set of each fluid by a factor of M, we can get 

a least-square fit with the mean curve. The shift factors thus obtained are shown in 

Tables 6.2 to 6.5.  

Table 6.2―Shift Factors to Match the Mean Curve (Guar Fluids) 

Fluid n K , lb sn
p f

0.719 0.00098 0.0113 1.1670
0.686 0.00136 0.0165 1.0073
0.719 0.00098 0.0169 0.9622
0.641 0.00204 0.0185 0.8567
0.552 0.00566 0.0113 1.2316
0.537 0.00676 0.0165 1.0377
0.552 0.00566 0.0169 0.9747
0.527 0.00793 0.0185 0.9139
0.483 0.01410 0.0113 1.2442
0.454 0.01935 0.0165 1.1176
0.483 0.01410 0.0169 1.0074
0.432 0.02428 0.0185 1.0285

20 lb/Mgal Guar

30 lb/Mgal Guar

40 lb/Mgal Guar

 

/ft2 a/R M

 

Table 6.3―Shift Factors to Match the Mean Curve (HEC Fluids) 

Fluid n K , lb sn
p f

0.657 0.00211 0.0113 1.1477
0.668 0.00236 0.0165 0.9868
0.657 0.00211 0.0169 0.9095
0.599 0.00442 0.0185 0.8708
0.545 0.00847 0.0113 1.1843
0.515 0.01321 0.0165 1.0489
0.545 0.00847 0.0169 0.9341
0.494 0.01690 0.0185 0.9351
0.443 0.03036 0.0113 1.2553
0.424 0.04003 0.0165 1.1163
0.443 0.03036 0.0169 0.9873
0.420 0.04572 0.0185 0.9959

20 lb/Mgal HEC

30 lb/Mgal HEC

40 lb/Mgal HEC

 

/ft2 a/R M
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Table 6.4―Shift Factors to Match the Mean Curve (PHPA Fluids) 

Fluid n p f a/R M
0.363 0.02083 0.0113 0.9680
0.355 0.02231 0.0165 0.9955
0.363 0.02083 0.0169 0.9384
0.384 0.01978 0.0185 0.9212
0.322 0.04567 0.0113 1.2222
0.305 0.04732 0.0165 1.0539
0.322 0.04567 0.0169 0.9889
0.308 0.04659 0.0185 0.9510

20 lb/Mgal PHPA

40 lb/Mgal PHPA

K , lb sn/ft2

 

Table 6.5―Shift Factors to Match the Mean Curve (Xanthan Fluids) 

Fluid n K , lb sn
p f

0.381 0.00950 0.0113 1.1235
0.439 0.00710 0.0165 0.9931
0.381 0.00950 0.0169 0.9421
0.422 0.00818 0.0185 0.9706
0.293 0.03284 0.0113 1.1517
0.277 0.04519 0.0165 0.9949
0.293 0.03284 0.0169 0.9260
0.343 0.02682 0.0185 0.9960

20 lb/Mgal Xanthan

40 lb/Mgal Xanthan

 

/ft2 a/R M

The M factors in Tables 6.2 to 6.5 were then plotted against a/R and n for 

possible correlation. It is found that there is good correlation between M and a/R. 

Table 6.6 summarizes the correlations of shift factor M as functions of a/R and 

correlation constants. It should be noted that the behavior of the 10 lb/Mgal xanthan 

deviated remarkably from the main data trend and therefore the data of 10 lb/Mgal 

xanthan were not included in the correlation. 

The final friction factor correlation as functions of generalized Dean number 

becomes: 

M
C

N
Af B
DNg

1










+= , ....................................................................................(6.16) 

 155



 

where A, B, and C are given in Table 6.1, and M can be calculated according to Table 

6.6.  

Table 6.6―Correlation Constants for the Shift Factor 

Fluid Correlation for 
Shift Factor c0 c1 c2 

Xanthan ( )[ ] 5.02
21 RaccM +=   0.6983 7.498 × 10-5 

PHPA ( )RacnccM 210 ++= 1.8840 -1.5937 -21.304 

Guar ( )[ ] 5.0
21 RaccM +=   2.4500 -85.633 

HEC ( )[ ] 5.0
21 RaccM +=   2.3293 -80.094 

 

6.3.6 Evaluation of the New Friction Factor Correlations 

To evaluate the performance of the developed empirical correlations given in Eq. 

(6.16), the experimental friction factors were compared with the predictions of the 

above correlations. The results of this comparison are shown in Figs. 6.30 through 

6.33.  

It can be seen that the correlations could adequately match the experimental data. 

Majority of the predictions are within ±5%. The ±10% lines are drawn on the plots to 

show that only a few data points are outside the ±10% lines.  

The following examples may provide further evaluation on the accuracy of the 

above empirical correlations.  
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Fig. 6.30―Comparison between experimental and predicted friction factors of 
xanthan data. 
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Fig. 6.31―Comparison between experimental and predicted friction factors of 
guar data. 
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Fig. 6.32―Comparison between experimental and predicted friction factors of 
HEC data. 
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Fig. 6.33―Comparison between experimental and predicted friction factors of 
PHPA data. 
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Example 1―Turbulent flow of 35 lb/Mgal guar gel in 2-3/8-in. CT. 35 lb/Mgal clean 

(proppant-free) guar gel was pumped through the 1000 ft, 2-3/3-in. coiled tubing. The 

rheological properties of the guar gel were: n = 0.444 and Kp = 0.01755 lbfsn/ft2. Fig. 

6.34 compares the measured and predicted friction factors from the new empirical 

correlation for guar fluids. The agreement between the measured data and the 

predictions are reasonably good. Over the wide range of generalized Reynolds 

number (NReg = 3790 – 24,792), the deviations for majority of data points are within 

5%. Only at the highest flow rate (NReg = 24,792), the correlation underestimated the 

data by 10.5%.  
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Fig. 6.34―Comparison of measured and predicted friction factors using the new 
friction factor correlation for guar in coiled tubing – 35 lb/Mgal guar in 2-3/8-in. 
CT.  

Example 2―2 lb/bbl xanthan + 1 lb/bbl starch fluid in the 2-3/8-in. coiled tubing 

reel. Since a concentration of 2 lb/bbl is equivalent to 47.6 lb/Mgal, we first 
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compared the friction data of this xanthan + starch mixture with the friction data of 40 

lb/Mgal xanthan fluid. It was found that adding 1 lb/bbl starch to 2 lb/bbl xanthan 

does not change the general behavior of xanthan on the plot of Fanning friction factor 

vs. generalized Reynolds number. Fig. 6.35 shows the comparison between measured 

and predicted friction factors using the new empirical correlation for xanthan fluids. It 

can be seen that there is close agreement between the measured data and the 

estimated friction factors. Over the Reynolds number range of 4019 to 29,562, the 

largest deviation between correlation and data is 3.5%. The average deviation is 

1.6%.  
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Fig. 6.35―Comparison of measured and predicted friction factors using the new 
friction factor correlation for xanthan in coiled tubing – 2 lb/bbl xanthan + 1 
lb/bbl starch in 2-3/8-in. CT.  
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Comparison with data of lab-scale tests. Figs. 6.36 and 6.37 compare the friction 

factors of 20 lb/Mgal guar in the ½-in. coiled tubing with curvature ratio of 0.01 and 

0.019 with the new correlation respectively. It can be seen that generally the new 

correlation matches the data reasonably well for both cases. The biggest deviation 

between the new correlation with data is about 11% for 20 lb/Mgal guar in the coil 

with a/R = 0.01. For 30 lb/Mgal guar in the coil of a/R = 0.019, the biggest deviation 

between the correlation and the data is only 8%. The new correlation for guar fluids 

somehow underestimates the friction factor data of the ½-in. coiled tubing.  
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Fig. 6.36―Comparison of new turbulent correlation with experimental data in 
the ½-in. coiled tubing (20 lb/Mgal guar). 
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Fig. 6.37―Comparison of new turbulent correlation with experimental data in 
the ½-in. coiled tubing (30 lb/Mgal guar). 

Fig. 6.38 may be helpful to explain the possible reason for the underestimation of 

the new correlation to the ½-in. coiled tubing data. Fig. 6.38 compares friction factor 

data of 20 lb/Mgal guar in ½, 1, and 1-1/2-in. coiled tubing. Intuitively, we would 

expect higher friction in the 1-in. and 1-1/2-in. coiled tubing than in the ½-in. coiled 

tubing since the 1-in. and 1-1/2-in. coiled tubing reels have roughness and the ½-in. 

coiled tubing is made of stainless steel and is smoother than the carbon steel coiled 

tubing. One of the possible reasons for the relatively lower friction in 1 and 1-1/2-in. 

coiled tubing is due to the welding seam in these tubings. Instead of acting as an 

added roughness, the seam might have altered the turbulence spectrum by damping 
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the high turbulence frequencies and thus causing a decrease in the turbulent friction 

pressure drop. This behavior has been observed in a previous study.101  

0.001

0.01

1000 10000 100000

Generalized Reynolds Number, NReg

Fa
nn

in
g 

Fr
ic

tio
n 

Fa
ct

or

20 lb/Mgal Guar, 1/2-in. CT, a/R = 0.01, Lab

20 lb/Mgal Guar, 2000 ft, 1-1/2-in. CT, a/R = 0.0165

20 lb/Mgal Guar, 1000 ft, 1-in. CT, a/R = 0.0113

 

Fig. 6.38―Comparison of friction factors of 20 lb/Mgal guar in lab-scale ½-in. 
tubing and field-scale 1 and 1-1/2-in. tubing.  

 

6.4 Flow Tests of Non-Newtonian Fluids in Lab-Scale Flow 
Loop 

The advantage of the lab-scale flow loop is that the coils represent a wide range of 

curvature ratio – 0.01, 0.019, 0.031, and 0.076. Therefore, the effect of curvature can 

be more easily investigated. Another advantage of the lab-scale flow loop is that the 

coiled tubing and straight tubing sections are made of stainless steel. Water tests have 
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revealed that they can be treated as smooth tubing. Therefore, the effect of roughness 

can be excluded in the data analysis.  

As shown in Table 5.7, three types of polymer solutions have been tested with 

the lab-scale flow loop: 10, 15, 20, and 30 lb/Mgal xanthan; 10, 20, and 30 lb/Mgal 

guar; and 10, 20, and 30 lb/Mgal HPG.  

6.4.1 Effect of Curvature Ratio on Friction Factor  

Figs. 6.39 to 6.42 show the plots of Fanning friction factor versus generalized 

Reynolds number of 10, 15, 20, and 30 lb/Mgal xanthan solutions respectively. 

Similar plots for 10, 20, and 30 lb/Mgal HPG solutions are given in Figs. 6.43 to 6.45 

respectively.  

Several important observations can be made from these plots. The first and most 

important feature of these plots is that as the curvature ratio increases, the friction 

factor increases. This is true for all the curvature ratios including the straight tubing 

as a special case (zero curvature ratio) and for all fluids tested. Therefore, the effect 

of curvature ratio on the friction factor of coiled tubing is firmly established. 

Physically, as curvature ratio increases, the secondary flow is enhanced and therefore, 

there is more flow resistance. 

Secondly, the effect of curvature ratio on friction factor is not uniform. Unless at 

very low polymer concentration such as the 10 lb/Mgal xanthan, the friction factor 

differences between zero curvature ratio (the straight tubing) and the curvature ratio 

of 0.01, and between a/R = 0.01 and a/R = 0.019 are much larger than those between 

higher curvature ratios, such as the difference between a/R =0.031 and 0.076.  

 164



 

0.001

0.01

0.1

1000 10000 100000

Generalized Reynolds Number, NReg

Fa
nn

in
g 

Fr
ic

tio
n 

Fa
ct

or

f = 16/NReg
Srinivasan, a/R = 0.076
Virk 's Asymptote for Straight Pipe
ST
CT, a/R = 0.01
CT, a/R = 0.019
CT, a/R = 0.031
CT, a/R = 0.076

 

Fig. 6.39―Friction factor versus generalized Reynolds number of 10 lb/Mgal 
xanthan in ½-in. coiled and straight tubing. 
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Fig. 6.40―Friction factor versus generalized Reynolds number of 15 lb/Mgal 
xanthan in ½-in. coiled and straight tubing. 
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Fig. 6.41―Friction factor versus generalized Reynolds number of 20 lb/Mgal 
xanthan in ½-in. coiled and straight tubing.  
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Fig. 6.42―Friction factor versus generalized Reynolds number of 30 lb/Mgal 
xanthan in ½-in. coiled and straight tubing. 

 166



 

 

0.001

0.01

0.1

1000 10000 100000

Generalized Reynolds Number, NReg

Fa
nn

in
g 

Fr
ic

tio
n 

Fa
ct

or

f = 16/NReg
Srinivasan, a/R = 0.076
Virk 's Asymptote for Straight Pipe
ST
CT, a/R = 0.01
CT, a/R = 0.019
CT, a/R = 0.031
CT, a/R = 0.076

 

Fig. 6.43―Friction factor versus generalized Reynolds number of 10 lb/Mgal 
HPG in ½-in. coiled and straight tubing. 
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Fig. 6.44―Friction factor versus generalized Reynolds number of 20 lb/Mgal 
HPG in ½-in. coiled and straight tubing. 
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Fig. 6.45―Friction factor versus generalized Reynolds number of 30 lb/Mgal 
HPG in ½-in. coiled and straight tubing. 

The effect of curvature ratio is also dependent on the polymer concentration. At 

high concentration, the difference between coiled tubing and straight tubing is greater 

than at low concentration, for the same reason as we have discussed for the analysis 

of the field-scale flow tests. For more concentrated polymer solutions, as Reynolds 

number increases, the friction factor of straight tubing will tend to follow the 

extended line of laminar flow, whereas the friction factor of coiled tubing follows a 

curved line, gradually reaching an asymptotic value.  

6.4.2 Effect of Polymer Concentration 

To more easily investigate the effect of polymer concentration on friction factor 

behavior, we can make composite plots of friction factor at various polymer 
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concentrations for each curvature ratio. For example, Figs. 6.46 and 6.47 show such 

plots for xanthan fluids at curvature ratios of 0.01 and 0.031 respectively. Figs. 6.48 

and 6.49 show similar results for the HPG fluids at a/R = 0.01 and 0.031 respectively.  

It is interesting that at concentrations of 20 and 30 lb/Mgal, the friction factor is 

not sensitive to the concentration change. This is true for all the polymer types and for 

coiled tubing and straight tubing. The friction behavior of the low concentration, i.e., 

10 lb/Mgal, fluid is worth some discussion. From Figs. 6.46 and 6.47, it can be seen 

that the 10 lb/Mgal xanthan fluid has the lowest friction factor in coiled tubing, but 

the highest friction factor in straight tubing. In straight tubing, the friction factor of 15 

lb/Mgal xanthan is close to that of 10 lb/Mgal xanthan. At 20 and 30 lb/Mgal, the 

friction factor of xanthan fluids in straight tubing is significantly lower. This indicates 

that in straight tubing, the xanthan polymer concentration should be higher than 10 or 

15 lb/Mgal to minimize the friction pressure. But, for coiled tubing, 10 lb/Mgal 

xanthan seems to be more favorable than the 20 or 30 lb/Mgal xanthan fluid in 

reducing friction pressure.  

In this respect, the guar and HPG fluids display different behavior. The 10 

lb/Mgal guar shows  higher friction than 20 and 30 lb/Mgal guar, in both straight and 

coiled tubing. The friction factor of 10 lb/Mgal HPG is just slightly higher than that 

of 20 and 30 lb/Mgal HPG in both straight and coiled tubing, as shown in Figs. 6.48 

and 6.49. Apparently, polymers at this low concentration (10 lb/Mgal) exhibit drastic 

change in flow behavior. We have seen the significant change of flow behavior of the 

10 lb/Mgal xanthan fluid in the 1, 1-1/2, and 2-3/8-in coiled tubing, see Figs. 6.11 to  
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Fig. 6.46―Effect of polymer concentration on friction factor of xanthan fluids in 
straight and coiled tubing (a/R = 0.01). 
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Fig. 6.47―Effect of polymer concentration on friction factor of xanthan fluids in 
straight and coiled tubing (a/R = 0.031). 
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Fig. 6.48―Effect of polymer concentration on friction factor of HPG fluids in 
straight and coiled tubing (a/R = 0.01). 
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Fig. 6.49―Effect of polymer concentration on friction factor of HPG fluids in 
straight and coiled tubing (a/R = 0.031). 
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6.14 where an abnormally high friction factor has been observed for the 10 lb/Mgal 

xanthan fluid. In future research, more systematic tests at these low concentrations 

may provide more insights into the mechanisms for drastic flow change at certain low 

polymer concentrations. 

6.5 Summary 

Water tests through coiled tubing and straight tubing in both field-scale and lab-scale 

flow loops have indicated that friction in coiled tubing is significantly higher than in 

straight tubing. The difference in friction factor can be as high as 30%. For polymeric 

fluids, the difference in friction factor between straight and coiled tubing is more 

pronounced. In the range of generalized Reynolds number investigated, the biggest 

difference in friction factor can be as much as 185%. This is due to two different 

friction mechanisms for polymer fluids – extended laminar flow in straight tubing and 

secondary flow in coiled tubing.  

Friction factor correlations for turbulent flow in coiled tubing have been 

developed based on the field-scale flow tests. They can be used in the hydraulics 

design of CT operations. The test data of the ½-in. lab-scale flow loop have clearly 

shown the significant effect of curvature ratio on friction factor in coiled tubing. As 

curvature ratio is increased, the friction factor in coiled tubing increases.  
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CHAPTER 7  
CHARACTERISTICS OF DRAG REDUCTION IN 

COILED TUBING 

7.1 Introduction  

Frictional pressure in turbulent flow in straight pipes can be drastically reduced by 

adding small quantities of certain long-chain polymers to the solvent, such as water. 

This phenomenon is called drag reduction. Credit is generally given to Toms125 for 

being the first to observe this phenomenon. There have been tremendous studies of 

drag reduction in straight pipe. Several papers have provided extensive reviews on 

this topic, such as Lumley,126 Hoyt,127,128 Virk,129 and Berman.130 Although the drag 

reduction phenomena have been extensively investigated in recent decades, the 

underlying mechanisms producing drag reduction is not yet fully understood. Many 

tentative explanations have been offered to explain the phenomenon, but none of 

them is entirely convincing. Kostic131 summarized these theories or hypotheses of 

drag reduction which include: shear thinning, visco-elasticity, molecular stretching, 

decreased turbulence production, etc.  

In contrast, the information in the literature on drag reduction in coiled pipes is 

very scarce. Kelkar and Mashelkar132 ran tests of aqueous solutions of polyacrylamide 

through a single coiled tube of 1.25 cm inside diameter and proposed a correlation of 

reduced friction factor (defined as ratio of the friction factor of polymer solution and 

the friction factor of the purely viscous solvent) as a function of Deborah number. 
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Another relevant research effort was reported by Yokoyama and Tomita 133  who 

preformed tests of dilute aqueous solutions of polyethylene oxide in 360° bends with 

curvature ratios of 0.021, 0.029, and 0.053. It was found that the drag reduction was 

reduced with increase of curvature ratio.  

During the analysis of friction behavior in coiled and straight tubing in Chapter 

6, we have seen that all the polymeric fluids are highly drag-reducing fluids, i.e., their 

friction factors are much lower than what would be expected for Newtonian fluids in 

turbulent flow. For coiled tubing, friction factor of polymer fluids is lower than 

predicted by Scrinivasan correlation for Newtonian turbulent flow. For straight 

tubing, the friction factor of polymer fluids is lower than the Drew correlation.  

There are reasons to believe that the behavior of polymer solutions in coiled 

tubing may be substantially different from that in straight tubing, because there is 

secondary flow in coiled tubing which may alter the flow structure.  

In this study, we follow the original definition of Savins134 and define the drag 

reduction, DR, as the following:  

s
dl
dp

pdl
dpDR 














−=1 ,........................................................................................(7.1) 

in which (dp/dl)p and (dp/dl)s are the frictional pressure gradients for polymer 

solution and the solvent under the same flow conditions, respectively. Assuming that 

the density of the polymer solution is the same as the density of the solvent, the 

following equation is applicable:  
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sfpfDR −= 1 ,.................................................................................................(7.2) 

in which fp and fs are the Fanning friction factors of the polymer solution and the 

solvent, respectively. DR is usually expressed in percentage. The Fanning friction 

factors, fp and fs, can be calculated from the Eqs. (6.6) and (6.7). Therefore, once the 

frictional pressure drop for a certain tubing length at a pump rate is obtained from a 

flow test, the DR can be calculated with the above equations.  

Kostic  called the definition given by Eq. (7.1) as the “pressure-drop drag 

reduction,” and the definition given by Eq. (7.2) as the “friction factor drag 

reduction.” There has been confusion about these two definitions in the drag 

reduction literature.

131

128,130,131 There could be confusion if the friction factors, fs and fp, 

are calculated at the “same Reynolds number.” As pointed out by Kostic, if DR is 

calculated at the “same Reynolds number” using Eq. (7.2), the two definitions will 

not be the same unless with very dilute polymer solutions with viscosity of solutions 

equal to that of solvent. In this study, we want to stress that the definitions given by 

Eqs. (7.1) and (7.2) are consistent as long as the friction factors, fs and fp, are 

calculated at the “same flow rate.”  

In this chapter, we will mainly use the lab-scale test data to discuss the drag 

reduction behavior in coiled tubing since the lab-scale flow loop has wider range of 

curvature ratio and effect of tubing roughness can be excluded. 
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7.2 Drag Reduction and Onset of Drag Reduction in Coiled 
Tubing 

Figs. 7.1 to 7.3 show the plots of drag reduction versus generalized Reynolds number 

for 10, 20, and 30 lb/Mgal HPG solutions in the four coils and straight section of ½-

in. diameter. The effect of curvature ratio on drag reduction can be seen clearly. The 

drag reduction in straight tubing is significantly higher than in coiled tubing. The 

tighter the coil was spooled, the lower the drag reduction in that coil. In literature, we 

only found the results of Yokoyama and Tomita133 that can be compared with our 

results. Their results of drag reduction in coiled tube are shown in Fig. 7.4. The fluids 

they used were 1 ppm to 100 ppm aqueous solutions of polyethylene oxide.  They 

used a single turn (360° bend) of copper pipes of 1.4 cm inside diameter. The 

curvature ratios were a/R = 0.021, 0.029, and 0.053 or R/a = 47.3, 34.3, and 18.7. 

Their results showed that as curvature ratio (a/R) was increased, the drag reduction 

was decreased. But, compared to our results, their data is less systematic and quite 

limited.  

Another value of plots like Figs. 7.1 to 7.3 is that they can provide information 

about the onset of drag reduction. This can be understood by examining Figs. 7.2 and 

7.3. The interceptions of the data with the zero-drag reduction line should correspond 

to the generalized Reynolds number at the onset of drag reduction. Figs. 7.2 and 7.3 

clearly indicate that as curvature ratio increases, the onset of drag reduction is 

obviously delayed.  
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Fig. 7.1―Drag reduction of 10 lb/Mgal HPG in ½-in. straight and coiled tubing. 
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Fig. 7.2―Drag reduction of 20 lb/Mgal HPG in ½-in. straight and coiled tubing. 
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Fig. 7.3―Drag reduction of 30 lb/Mgal HPG in ½-in. straight and coiled tubing. 

 

 

Fig. 7.4―Effect of curvature ratio on drag reduction studied by Yokoyama and 
Tomita.133 
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In contrast, the drag reduction in straight tubing has been always present in these 

tests, even at the lowest flow rate and more concentrated polymer solutions. 

Therefore, drag reduction in straight tubing occurs much earlier than in coiled tubing. 

Table 7.1 summarizes the generalized Reynolds number at the onset of drag reduction 

for the three types of polymer solutions in the ½-in. tubing. In Table 7.1, the values of 

critical Reynolds number predicted by the Srinivasan correlation [Eq. (2.13)] for the 

Newtonian laminar-turbulent transition in coiled tubing are also included for 

comparison. It can be seen that the generalized Reynolds number at the onset of drag 

reduction is higher than the critical Reynolds number for Newtonian turbulent flow in 

coiled tubing (except 20 lb/Mgal xanthan in the coil with a/R = 0.01). Based on the 

data in Table 7.1, an empirical correlation can be obtained for the critical generalized 

Reynolds number at onset of drag reduction for flow in coiled tubing:  

( ) 5.0
2

1
*
Re Ra

ccN g −= ,........................................................................................(7.3) 

where c1 = 13172, c2 = 835.33, and a/R = curvature ratio.  

Table 7.1―Generalized Reynolds Number at Onset of Drag Reduction in ½-
in. Coiled Tubing 

0.01 0.019 0.031 0.076

20 lb/Mgal Xanthan 3700 6800 7300 9200

30 lb/Mgal Xanthan 5800 8000 9300 11500

20 lb/Mgal HPG 4800 7500 9000 11000

30 lb/Mgal HPG 5200 6400 7300 9300

20 lb/Mgal Guar 4800 7200 8500 10500

30 lb/Mgal Guar 4800 7100 8000 10000

NRec by Srinivasan 4620 5574 6537 9047

Fluid
Curvature ratio
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The above correlation for onset Reynolds number can be compared with the 

results of tests in the field-size flow loop. We choose the test data of xanthan and guar 

fluids in the 2-3/8-in. tubing for our analysis, since flow in smaller tubing sizes 

doesn’t show onset of drag reduction (drag reduction is always present even at low 

flow rates). Figs. 7.5 and 7.6 show the plots of drag reduction versus generalized 

Reynolds number for xanthan and guar solutions in the 2-3/8-in. tubing respectively. 

From the interception points of the data with the zero-drag reduction line, the onset 

Reynolds number for xanthan in this tubing size is roughly estimated as 5200 and 

5700 (corresponding to 20 and 40 lb/Mgal xanthan). These values are lower than 

what is predicted by Eq. (7.3) which gives NReg
* = 7031 for a/R = 0.0185 with the 2-

3/8-in coiled tubing. The observed values of 5200 and 5700 are actually quite close to 

the critical Reynolds number for Newtonian turbulent flow with this coiled tubing. 

Srinivasan correlation predicted the critical Reynolds number NRec = 5528 for a/R = 

0.0185. On the other hand, Fig. 7.6 indicates that the observed onset of drag reduction 

for guar fluids in the 2-3/8-in. coiled tubing occurs at NReg
* = 7900 which is close to 

7031, as predicted by Eq. (7.3). The variances in observed onset Reynolds number are 

probably due to the nature of drag reduction onset. Since drag reduction is a 

phenomenon associated with turbulence, the variance in onset Reynolds number can 

be related to the uncertainties in the laminar-turbulent flow regime transition.  
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Fig. 7.5―Drag reduction of xanthan fluids in 2-3/8-in. straight and coiled 
tubing. 
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Fig. 7.6―Drag reduction of guar fluids in 2-3/8-in. straight and coiled tubing. 
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7.3 Maximum Drag Reduction Asymptote in Coiled Tubing 

For turbulent flow of dilute polymer solutions in straight pipes, Virk et al.135 proposed 

an ultimate drag reduction asymptote as given by Eq. (6.14). This correlation is a 

mean curve of maximum drag reduction data from 9 sources with total of 235 data 

points, as shown in Fig. 7.7.  The maximum scatter of the data is ± 15%. This 

maximum drag reduction correlation has been referenced by numerous authors in 

literature on drag reduction or has been used as a reference line for friction pressure 

analysis of drag-reducing fluids.  

 

Fig. 7.7―Virk’s correlation of drag reduction ultimate asymptote on Prandtl 
coordinates, f1  versus fReN .135 

Our previous analysis of friction behavior of polymeric fluids has indicated that 

the friction factor in straight tubing can be close to or even below the Virk’s 
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asymptote. The friction factor of more concentrated polymer solutions in straight 

tubing can be below the Virk’s asymptote because they are more shear-thinning than 

the dilute polymer solutions. But, it is evident that the friction factor in coiled tubing 

has never reached the Virk’s asymptote. As a matter of fact, the friction factor in 

coiled tubing is bounded by lines that are functions of curvature ratio. These 

bounding lines are called the drag reduction asymptotes in coiled tubing. Virk’s 

asymptote is just a limiting case of the curved tubing asymptotes. In the following, we 

develop equations for these asymptotes in coiled tubing.  

Development of maximum drag reduction asymptote for coiled tubing. First, for 

each curvature ratio (corresponding to each coil in the lab-scale tests), plot the friction 

factor data of all fluids at all concentrations on the same plot of Fanning friction 

factor versus generalized Reynolds number. Then, compare the data points and 

remove those data points that show high friction factor and keep those that show the 

minimum friction factor. Repeat this procedure for each curvature ratio and four data 

sets of minimum friction factor corresponding to four curvature ratios were obtained. 

Then, these four data sets were plotted in the Prandtl-Karman coordinates, as shown 

in Fig. 7.8.  

Clearly, these data sets are straight lines which can be curve-fitted with the 

following equation:  

[ ] BfNA
f g += Relog1 ................................................................................(7.4) 

The values of correlation constants A and B are given in Table 7.2. 
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a/R = 0.01: y = 5.1651Ln(x) - 18.184
R2 = 0.992

a/R = 0.019: y = 4.3492Ln(x) - 14.544
R2 = 0.9846

a/R = 0.031: y = 3.9495Ln(x) - 12.814
R2 = 0.9991

a/R = 0.076: y = 3.5948Ln(x) - 11.115
R2 = 0.9994
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Fig. 7.8―Friction factors at maximum drag reduction for CT on Prandtl-
Karman coordinates, f1  versus fN gRe

. 

Table 7.2―Correlation Constants of the Maximum Drag Reduction 
Asymptotes in CT 

a/R A B
0 19.0 32.4

0.010 11.893 18.184
0.019 10.014 14.544
0.031 9.094 12.814
0.076 8.277 11.115  

The correlation constants of the Virk’s asymptote are also included in Table 7.2 

as a special case with a/R = 0 for straight tubing. Constants A and B have strong 

correlations with curvature ratio and can be correlated as follows:  
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where c1 = 0.053109965 and c2 = 0.29465004 with correlation coefficient R2 = 

0.9814.  
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where c3 = 0.0309447 and c4 = 0.245746 with correlation coefficient R2 = 0.9924.  

Therefore, the maximum drag reduction asymptotes for coiled tubing can be 

written as:  

[ ] 5.0Re105.0

24575.003094.0

1log
29465.005311.0

11







+

+







+

=

R
a

fN

R
af g .(7.7) 

When a/R = 0, A = 18.83 and B = 32.32. These values of A and B are very close to 

Virk’s constants of 19.0 and 32.4 respectively for straight tubing. Therefore, Eq. (7.7) 

reduces to the Virk asymptote for straight tubing.  

7.4 Drag Reduction Envelope for Coiled Tubing 

Parallel to the work of Virk et al.,135 we can construct the drag reduction envelope for 

coiled tubing as follows. Drag reduction in coiled tubing will be bounded by three 

lines – the laminar flow correlation, the maximum drag reduction (MDR) asymptote 

for CT, the zero-drag reduction line which can be represented by the Srinivasan 

correlation for Newtonian turbulent flow in coiled tubing. For laminar flow regime, 
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we choose the correlation of Liu and Masliyah97 based on its performance of 

predicting laminar friction factor in coiled tubing, as reviewed in Chapter 2.  Fig. 7.9 

shows an example of drag reduction envelope for coiled tubing.  
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Fig. 7.9―Drag reduction envelope showing the drag reduction behavior of 30 
lb/Mgal xanthan in ½-in. CT. 

It should be noted that all three bounding lines in the drag reduction envelope are 

functions of curvature ratio. This is different from the Virk’s drag reduction envelope 

where the bounding lines – Hagen-Poiseuille law, Prandtl-Karman law, and Virk 

asymptote – are fixed.  

7.5 Application of CT Drag Reduction Envelope  

7.5.1 Effect of Curvature Ratio 

As an example, Figs. 7.10 to 7.12 show the drag reduction behavior of 10, 20, and 30 

lb/Mgal HPG fluids on the drag reduction envelope of coiled tubing. In constructing 
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these envelopes, a curvature ratio of a/R = 0.019 was used with the Srinivasan 

correlation, Liu and Masliyah correlation, and the new MDR asymptote for CT. 

Several observations can be made based on Figs. 7.10 to 7.12. First, the data appear to 

be more or less straight lines. The slopes of these lines are increased slightly with 

decreasing curvature ratio. The smaller the curvature ratio, the closer the data lines 

are to the maximum drag reduction asymptote. Second, the intersection points of the 

data lines and the zero-drag reduction line represent the onset of drag reduction. It can 

be seen that increasing curvature ratio delays the onset of drag reduction. Careful 

observation of Figs. 7.10 to 7.12 indicates that the onset points from these plots are 

consistent with what were shown in Figs. 7.1 to 7.3. Similar drag reduction plots for 

xanthan fluids in the ½-in. tubing systems are shown in Figs. 7.13 to 7.16.  
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Fig. 7.10―Effect of curvature ratio on DR of 10 lb/Mgal HPG in ½-in. coiled 
tubing. 
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Fig. 7.11―Effect of curvature ratio on DR of 20 lb/Mgal HPG in ½-in. coiled 
tubing. 
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Fig. 7.12―Effect of curvature ratio on DR of 30 lb/Mgal HPG in ½-in. coiled 
tubing. 

 188



 

0

5

10

15

20

25

30

35

10 100 1000 10000 100000

NResf
1/2

f(-1
/2

)

Srinivasan
Liu and Masliyah
MDR Asymptote of CT
CT, a/R = 0.01
CT, a/R = 0.019
CT, a/R = 0.031
CT, a/R = 0.076

 

Fig. 7.13―Effect of curvature ratio on DR of 10 lb/Mgal xanthan in ½-in. coiled 
tubing. 
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Fig. 7.14―Effect of curvature ratio on DR of 15 lb/Mgal xanthan in ½-in. coiled 
tubing. 
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Fig. 7.15―Effect of curvature ratio on DR of 20 lb/Mgal xanthan in ½-in. coiled 
tubing. 
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Fig. 7.16―Effect of curvature ratio on DR of 30 lb/Mgal xanthan in ½-in. coiled 
tubing. 
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7.5.2 Effect of Polymer Concentration on Drag Reduction 

Figs. 7.17 and 7.18 show the effect of polymer concentration on the drag reduction 

behavior of HPG fluids in straight tubing and a coiled tubing with curvature ratio of 

0.019, respectively. It can be observed from Fig. 7.17 that as HPG polymer 

concentration increases, the slopes of the data also increases. This is in agreement 

with Virk’s study.129 In contrast, for coiled tubing, the slopes of the data do not seem 

to be affected by the HPG concentration. In fact, the difference in drag reduction 

behavior between straight and coiled tubing can be more clearly seen from the results 

of xanthan fluids. Figs. 7.19 and 7.20 compare the behavior of xanthan fluids in 

straight and coiled tubing respectively. Again, for xanthan fluids in coiled tubing, 

xanthan concentration has little effect on the slopes of the data lines. We only see 

slight decrease in slope in the case of a/R = 0.019. But, for flow in straight tubing, on 

the other hand, the slopes of the data lines change drastically. After 20 lb/Mgal 

concentration, further decreasing xanthan concentration reduces the slopes and the 

vertical position of the data lines of the 10 and 15 lb/Mgal xanthan solutions. This 

explains why we saw increased friction factors in Figs. 6.46 and 6.47 when the 

xanthan concentration was reduced to 10 and 15 lb/Mgal. Therefore, the drag 

reduction envelope can serve as a useful tool in selecting the optimum polymer 

concentration for drag reduction.  

 191



 

0

5

10

15

20

25

30

35

40

45

50

10 100 1000 10000 100000

NResf
1/2

f(-1
/2

)

Prandtl-Karman Law
Poiseuille's Law
Virk's Asymptote for ST
10 lb/Mgal HPG, ST
20 lb/Mgal HPG, ST
30 lb/Mgal HPG, ST

 

Fig. 7.17―Effect of HPG concentration on DR in ½-in. straight tubing. 
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Fig. 7.18―Effect of HPG concentration on DR in ½-in. coiled tubing with 
curvature ratio a/R = 0.019. 
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Fig. 7.19―Effect of xanthan concentration on DR in ½-in. straight tubing. 

0

5

10

15

20

25

30

35

10 100 1000 10000 100000

NResf
1/2

f(-1
/2

)

Srinivasan
Liu and Masliyah
MDR Asymptote of CT
10 lb/Mgal Xanthan, a/R = 0.019
15 lb/Mgal Xanthan, a/R = 0.019
20 lb/Mgal Xanthan, a/R = 0.019
30 lb/Mgal Xanthan, a/R = 0.019

 

Fig. 7.20―Effect of xanthan concentration on DR in ½-in. coiled tubing with 
curvature ratio a/R = 0.019. 
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To further illustrate the application of the drag reduction envelope, we can 

examine the friction results of xanthan fluids tested using the field-size flow loop. 

Figs. 7.21 and 7.22 show the results of 10, 20, and 40 lb/Mgal xanthan fluids in the 1-

in. and 2-3/8-in. coiled tubing respectively. For the 10 lb/Mgal xanthan in the 2-3/8-

in. tubing, the data slope is changed when (NResf1/2) is increased. At low flow rate 

(low NResf1/2), the slope is large, implying that higher drag reduction can be achieved 

by increasing flow rate. But beyond a certain value of NResf1/2, the data of the 10 

lb/Mgal xanthan turn toward the zero-drag reduction line. This behavior is even more 

pronounced in the smaller tubing size (1-in.). In the case of 1-in. coiled tubing, the 

slope of data points of the 10 lb/Mgal xanthan has been small at all flow rates. 

Therefore, there would be no further gain in drag reduction for the 10 lb/Mgal 

xanthan if flow rate is increased. The practical value of the drag reduction analysis in 

this case is that with the 10 lb/Mgal xanthan, the maximum drag reduction could not 

be reached. Higher xanthan concentration should be considered.  
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Fig. 7.21―Effect of xanthan concentration on DR in 1-in. coiled tubing with 
curvature ratio a/R = 0.0113. 
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Fig. 7.22―Effect of xanthan concentration on DR in 2-3/8-in. coiled tubing with 
curvature ratio a/R = 0.0185. 

 195



 

7.6 Summary 

The polymer fluids tested in this study displayed significant drag reduction properties 

in both straight and coiled tubing. It was found that coiled tubing curvature reduced 

the drag reduction and delayed the onset of drag reduction of polymer fluids in coiled 

tubing.  

Based on the drag reduction data of the ½-in. lab-scale flow loop which has 

wider range of curvature ratio, a new correlation of maximum drag reduction (MDR) 

asymptote for polymeric fluid fluids in coiled tubing has been developed. When 

curvature ratio is set to zero, this new correlation reduces to the Virk’s MDR 

asymptote for dilute polymer solutions in straight pipes. Therefore, this new 

correlation is more universal than the well-known Virk’s MDR asymptote for straight 

pipe. 

A new drag reduction envelope for fluid flow in coiled tubing was also proposed. 

Examples have shown that the drag reduction envelope was a useful tool for 

analyzing the drag reduction behavior of polymer fluids in coiled tubing.  
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CHAPTER 8  
CFD SIMULATION OF FLUID FLOW IN COILED 

TUBING 

8.1 Introduction 

Fluid flow in coiled tubing is featured by the secondary flow that is caused by the 

centrifugal forces in the curved geometry. As we have seen in Chapter 2, since 

Dean’s classical work, numerous studies on coiled pipe flow have been reported in 

the literature. These various studies can be categorized according to the factors 

considered in each study. These factors can be geometrical effects (curvature ratio, 

helicity, and torsion), Reynolds number, Dean number, and flow regime (laminar or 

turbulent) as well as fluid properties (Newtonian and non-Newtonian). If the 

curvature and helicity are involved, the flow in coiled pipe would become more 

complex to solve. Previous studies often simplified the coiled pipe geometry. For 

example, the curvature ratio can be assumed small or the torsion effect can be 

neglected. As far as the fluid is concerned, most previous studies investigated 

Newtonian fluids, only a few5,86,100,136 considered non-Newtonian fluids. The review 

of Chapter 2 indicates that the vast majority of previous research efforts have dealt 

with Newtonian laminar flow in small-curvature-ratio coiled pipes. The main reason 

is believed to be due to the difficulties involved for the complex geometry and 

coordinate systems. Fortunately, FLUENT, 137  as a powerful CFD software, can 
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overcome the difficulty due to the coiled pipe geometry. FLUENT is especially useful 

in simulating complex fluid flow geometries.  

The objective of the present study is to initiate an effort on CFD modeling of 

both Newtonian and non-Newtonian fluid flow in a real-size coiled tubing geometry 

and also to understand the fundamental flow behavior and frictional pressure in coiled 

tubing flow. 

8.2 About Fluent 

FLUENT is one of the state-of-the-art computational fluid dynamics softwares for 

modeling fluid flow and heat transfer in complex geometries. FLUENT provides 

complete mesh flexibility, solving flow problem with both structured and 

unstructured meshes with relative ease. The FLUENT software package includes the 

solver (FLUENT), the preprocessors (such as GAMBIT138) for geometry modeling 

and mesh generation, and translators (filters) for import of surface and volume 

meshes from CAD/CAE packages.  FLUENT solvers are based on the finite volume 

method. The flow domain is discretized into a finite set of control volumes or cells. 

The general conservation  (transport) equations for mass, momentum, energy, etc., are 

discretized into algebraic equations which are solved to render the flow field.  

8.3 Model Geometry and Grid Generation 

8.3.1 Model Geometry 

GAMBIT has been a useful tool for building the model geometry and meshing the 

model. In the present work, a 2-3/8-in. coiled tubing on a reel of 111-in. drum 
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diameter is considered. Before the simulation domain is determined, one 

consideration on the geometry is to simplify the model geometry. Notice that the 

coiled tubing has a long and thin geometry. We will model only one turn of the tubing 

string and assume that the flow will reach fully-developed flow within this turn. 

Furthermore, since the coiled tubing is tightly coiled (wall-to-wall contact between 

each turns), the pitch of the helical coil is the tubing OD, i.e., 2.375 in. This results in 

a dimensionless pitch of 0.0067 << 1. Previous studies70,73 on the torsion effect have 

shown that effects of such a small torsion can be assumed negligible. Therefore, the 

model geometry can be simplified as a torus. Notice further that flow in a torus would 

be symmetric about the central plane which is normal to the torus axis. Therefore, it is 

sufficient to model only one half of the torus. This immediately reduces the meshing 

and computational efforts significantly.  A slot is made in the half torus to form the 

inlet and outlet by cutting out a very thin slice (for example, 0.001 in. thick).  

8.3.2 Grid Generation 

FLUENT is an unstructured solver. For a 3D problem, various types of cells can be 

used – hexahedral, tetrahedral, pyramid, and wedge cells as well as hybrid cells. 

Selection of mesh type depends on the setup time, computational expenses, and 

numerical accuracy (diffusion). For complex geometries, it is advantageous to use 

unstructured grids employing triangular or tetrahedral cells for saving setup time. But, 

for the present study, our concerns are mainly computational expenses and numerical 

accuracy.  
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Considering the dimensions of coiled tubing diameter (2.063 in. ID) and its 

length (356 in.), the geometry is a long and thin duct. Therefore, the cell lengths in 

the axial direction can not be too small. Meanwhile, to model the secondary flow 

feature (anticipated for curved pipe flow), moderately fine grids are needed in the 

tubing cross-section. These considerations lead us to select a hexahedral grid. With 

hexahedral cells, when the flow is aligned with the grid, high-aspect-ratio cells can be 

used. But with tetrahedral cells, a large aspect ratio will invariably affect the 

skewness of the cells, which is undesirable as it may impede accuracy and 

convergence. Also, for the tubing geometry considered, a mesh of hexahedral cells is 

expected to result in better numerical accuracy (less diffusion) and faster 

convergence.  

Another consideration in the model meshing is the boundary layer. Finer cells are 

created near the tubing wall in order to provide more details on the secondary flow 

which is expected to occur close to the tubing wall.  

The meshing procedures are as follows. After the geometry is built, mesh the 

circular edges on the end faces with uniform intervals. Then, mesh the boundary layer 

for these edges by specifying the first row height, growth factor, and total rows for 

the boundary layer. For the circular area in the center on the two end faces, specify 

the mesh interval size and apply Quad/Pave scheme to finish the meshing of the end 

faces. Next, mesh the edges in the axial direction into uniform segments by 

specifying the number of intervals (e.g., 720). Finally, apply the Cooper scheme to 

the whole volume since the geometry is a logical cylinder with both end faces as the 
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caps (source faces) and the tubing wall and the central plane (symmetry plane) 

forming the barrel. 

For grid-independence study, several grids with different mesh sizes were 

generated. They are: 14(r) × 20(θ) × 720(φ), 23(r) × 30(θ) × 720(φ), 23(r) × 40(θ) × 

720(φ), and 16(r) × 30(θ) × 540(φ) meshes. Figs. 8.1 and 8.2 show the meshes of Grid 

3. The four grids are all non-uniform in the radial direction (r). Grid 1 has a boundary 

layer of 5 rows with the first row being 0.04 in. and a growth factor of 1.2. Both Grid 

2 and Grid 3 each have a boundary layer of 6 rows with the first row being 0.02 in. 

and the growth factor of 1.2. By comparing the key flow features of different grids, it 

was found that there is no obvious difference between Grid 2 and Grid 3. It was then 

qualitatively decided to use Grid 3 for all laminar flow simulations. For turbulence 

modeling, Grid 4 was used. Grid 4 has the same boundary layer as Grid 3, but has 

coarser grid for the central core. This is because it is expected that the changes of 

flow variables are relatively small in turbulent flow and fine grids are not needed. 

Also, a coarser grid can reduce time requirement for turbulence simulation.  

8.3.3 Simulation Procedure 

The basic procedures in a typical CFD analysis involves: (1) problem identification, 

(2) solver execution, and (3) post-processing. After the modeling goals are defined 

and the model domain is identified, the model geometry is constructed and grid or 

mesh is generated. The grid is then imported into the solver. Within the solver, 

appropriate physical models such as laminar, turbulent or multiphase flow models 

need to be selected. The properties of the materials – fluid, solid, and/or mixture, are 
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defined. The boundary conditions at all the boundary zones are specified. To start the 

solver execution (iteration), an initial solution has to be provided. The discretized 

conservation equations are solved iteratively until convergence is reached when 

changes in solution variables from one iteration to the next are negligible (within 

convergence criteria). FLUENT provides useful tools, such as residual plots, to help 

monitor the convergence process. 

 

Fig. 8.1―Grid of the tubing cross-section (Grid 3). 

 

Fig. 8.2―Inside view of the grid on the tubing wall (Grid 3). 
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To obtain converged solutions, the first order numerical scheme is generally 

selected first. The under-relaxation factors are kept small. After a number of 

iterations, increase the under-relaxation factors to speed up the convergence. Finally, 

switch to second order scheme to get more accurate solutions. Therefore, the 

solutions in this modeling study are all second order accurate. 

In the post-processing stage, the converged solutions are examined visually and 

numerically to obtain information on the overall flow patterns, key flow features and 

to extract useful engineering data. The converged solutions need to be checked for 

accuracy. Revisions to the physical models and modifications (such as grid adaption) 

to the grid may be considered. 

8.4 Results and Discussion 

8.4.1 Newtonian Laminar Flow 

Figs. 8.3 through 8.6 show the simulation results of water flow in 2-3/8-in. coiled 

tubing at flow rate of 0.5, 1, and 2 gpm (these rates perhaps are unpractically low, 

since water has low viscosity and flow rate has to be kept low for laminar regime). 

The axial velocity (in ft/s) contours reveal unique features of curved pipe flow. It can 

be observed that in all the cases, the contours are distorted from the counterparts in 

straight tubings, i.e., co-axial circles. The high velocity region is shifted toward the 

outer side of the tubing due to centrifugal forces. This will cause the secondary flow. 

It is interesting and maybe surprising to note that in cases 1  (q = 0.5 gpm) and 3 (q = 

2 gpm), there is only one maximum axial velocity value and it occurs on the axis of 

symmetry, but in case 2 (q = 1 gpm), there are twin maxima of the axial velocity 
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symmetrically placed with respect to the axis of symmetry. This result is actually in 

agreement with Dennis and Ng68 who found that for Dean number D < 956  [Here, D 

is defined as D = (2a/R)1/2 Ga3/µν, and is related to NDe by D = 24 NDe, as discussed 

in Chapter 2], only one solution (single-maximum) can be obtained. For D > 956, 

dual solutions (twin maxima) are obtained. The secondary flow of the single 

maximum solution has one pair of counter-rotating vortices, while the secondary flow 

of the dual solutions has four-vortex pattern consisting of two vortex pairs. The Dean 

numbers for these three cases are: D = 584, 1168, and 2237 respectively. Though D = 

2237 > 956 for the case 3, it has a single-maximum solution, this is contrary to 

Dennis and Ng.68 This is probably because at high Reynolds (Dean) numbers, a 

multiple vortex solution is unstable and a two-vortex solution will be re-established. 

 

 

Fig. 8.3―Contours of axial velocity (water in 2-3/8-in. CT, q = 0.5 gpm). 
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Fig. 8.4―Axial velocity profile (water in 2-3/8-in. CT, q = 0.5 gpm). 

 

 

Fig. 8.5―Contours of axial velocity (water in 2-3/8-in. CT, q = 1 gpm). 

Fig. 8.7 compares the results of friction pressure gradients by the CFD 

simulations and the Ito correlation4 which was obtained for Newtonian laminar flow 

using the boundary layer approximation method. It can be seen that the CFD result is 

in close agreement with the Ito correlation.  
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Fig. 8.6―Contours of axial velocity (water in 2-3/8-in. CT, q = 2 gpm). 
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Fig. 8.7―Frictional pressure gradient vs. mean flow velocity (water, laminar). 

8.4.2 Newtonian Turbulent Flow 

Fig. 8.8 and Fig. 8.9 show the axial velocity contours of water flow in 2-3/8-in. coiled 

tubing at rates of 30.5 and 119.2 gpm. At these flow rates the flow regime is 

turbulent. In the simulation, k-ε model was chosen as the turbulence model. From Fig. 
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8.10 it can seen that the axial velocity is more uniform than in laminar flow. The large 

axial velocity gradients only occur in a very thin layer close to the wall boundary. 

 

Fig. 8.8―Contours of axial velocity (water in 2-3/8-in. CT, q = 30.5 gpm). 

 

 

 

Fig. 8.9―Contours of axial velocity (water in 2-3/8-in. CT, q = 119.2 gpm). 
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Fig. 8.10―Axial velocity profile (water in 2-3/8-in. CT, q = 119.2 gpm). 

Fig. 8.11 compares the friction pressure gradients predicted by CFD simulation 

and the experimental data. Both Ito83 and Srinivasan et al.90 correlations are compared 

with the CFD results. The two correlations are lower than the experimental data. This 

is probably because the correlations were developed based on tests run with smooth 

pipes. In the CFD modeling, a pipe roughness of 0.0004 in. was found to match the 

experimental data well.  

8.4.3 Non-Newtonian Laminar Flow 

The flow of 40 lb/Mgal Guar fluid in 2-3/8-in. coiled tubing is modeled for flow rates 

of 30.5, 60.0, 90.4, and 119.2 gpm (these are the rates used in the experiments). 

Under these flow rates, the flow in 2-3/8-in. coiled tubing is expected to be in laminar 

regime. Rheologically, this fluid can be described by a power law model with flow 

behavior index n = 0.432 and consistency index kp = 0.0243 lbf-sn/ft2.  
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Fig. 8.11―Frictional pressure gradient vs. flow rate (water, turbulent). 

Fig. 8.12 shows the axial velocity contours of 40 lb/Mgal guar flowing through 

2-3/8-in. coiled tubing at 60 gpm. Fig. 8.13 shows the corresponding axial velocity 

profile along the tubing diameter. The feature of these contours and profile is similar 

to the case of laminar Newtonian flow, i.e., the velocity profile is distorted from the 

counterpart of straight tubing flow. 

 

Fig. 8.12―Contours of axial velocity (40 lb/Mgal guar in 2-3/8-in. CT, q = 60 
gpm). 

 209



 

 

Fig. 8.13―Axial velocity profile (40 lb/Mgal guar in 2-3/8-in. CT, q = 60 gpm). 

Fig. 8.14 evaluates the friction pressure gradient predicted by the CFD simulation 

with the experimental data. Generally, the agreement is rather good. The pressure 

gradients by the CFD modeling are slightly higher than the experimental values.  

The current version of FLUENT used in this work does not provide the capability 

of modeling non-Newtonian turbulent flow. Therefore, turbulent flow of the 40 

lb/Mgal guar fluid was not simulated in this study. 
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Fig. 8.14―Frictional pressure gradient vs. flow rate (40 lb/Mgal guar, laminar). 
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8.5 Summary 

The flow patterns revealed by the CFD simulations agree well with the previous 

theoretical and numerical studies. The axial velocity profile in coiled tubing is 

distorted from the counterpart of straight tubing flow. The high velocity region is 

shifted toward the outer side of the tubing. Flow regimes affect the axial velocity 

profiles. In laminar flow of Newtonian fluid, the velocity profile is very different 

from the parabolic one as in straight tubing; while in turbulent flow, the velocity 

profile is relatively uniform and the difference between straight and coiled tubing is 

not as significant as for laminar flow. This is because the turbulence eddies tend to 

mix the fluid and lead to more uniform flow. As the Reynolds (Dean) number 

increases, the secondary flow is largely confined to a thin boundary layer close to the 

tubing wall. Large changes of axial velocity occur mainly in the boundary layer. This 

supports the basic assumptions of the boundary layer theory for coiled pipe flow. The 

friction pressure gradients of Newtonian turbulent flow and non-Newtonian laminar 

flow predicted by the CFD modeling agree well with the flow data of full-scale coiled 

tubing experiments. The simulation result of friction pressure gradients of Newtonian 

laminar flow was also verified with the published correlations. 
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CHAPTER 9  
CONCLUSIONS AND RECOMMENDATIONS 

9.1 Conclusions 

1. Under flow conditions of high Dean number and small curvature ratio (a/R), 

viscous effect in coiled tubing is important only in a thin boundary layer near 

the tubing wall. Therefore, the boundary layer approximation method can be 

applied to the analysis of both laminar and turbulent flow of power-law fluid 

in coiled tubing. The present study not only corrected the errors in the 

Mashelkar and Devarajan’s correlation, but also extended the work of 

Mashelkar and Devarajan to wider range of fluids with flow behavior index 

from 0.25 to 1.0.  

2. There is an excellent agreement between the new friction factor correlation of 

this study for non-Newtonian laminar flow in coiled tubing and the 

experimental data from experiments using full-scale flow loop. The new 

correlation matches well with the Ito correlation for Newtonian laminar flow 

in coiled pipe. It is recommended that the new correlation for laminar flow in 

coiled tubing should be used for generalized Dean number greater than 100.  

3. A new friction factor correlation for non-Newtonian turbulent flow in coiled 

tubing has been developed based on boundary layer approximation analysis 

and numerical solutions. The new correlation was found to match 
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experimental data well under certain conditions and within certain range of 

generalized Reynolds number. But the accuracy and range of applicability of 

this new correlation should be further evaluated in future with non-drag 

reducing fluids.  

4. The frictional pressure behavior of four types of polymer fluids – xanthan, 

PHPA, guar, and HEC have been investigated using field-scale flow loop. It is 

found that friction factor of polymer solutions in coiled tubing is significantly 

higher than in straight tubing. The biggest difference in friction factor between 

coiled tubing and straight tubing can be as high as 185%. As generalized 

Reynolds number increases, the friction factors in coiled tubing and straight 

tubing were seen to diverge. This is because of two different flow mechanisms 

− extended laminar flow in straight tubing and secondary flow effect in coiled 

tubing.  

5. Empirical correlations of friction factor as functions of generalized Dean 

number for polymer solutions in turbulent flow have been developed based on 

field-scale experimental data. Evaluation of these correlations indicated that 

for most data points used for the development of the correlations, the 

deviations between correlations and the experimental data were within 5%. 

The accuracy of the correlations was also verified with experimental data 

from independent tests.  

6. Flow of polymer fluids in coiled tubing exhibits different characteristics of 

drag reduction than in straight tubing. Drag reduction in coiled tubing was 
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found significantly lower than in straight tubing. The coiled tubing curvature 

delays the onset of drag reduction. 

7. A correlation of maximum drag reduction (MDR) asymptote for coiled tubing 

has been developed. This correlation reduces to the well-known Virk’s 

asymptote for dilute polymer solutions in straight pipes. A new drag reduction 

envelope, which is composed of the new CT MDR asymptote, Liu and 

Masliyah correlation, and Srinivasan correlation, has been proposed to 

provide useful insights into the drag reduction behavior in coiled tubing. 

8. CFD simulation is an effective approach of studying fluid flow in coiled 

tubing. Simulation results of Newtonian laminar and turbulent flow, and non-

Newtonian laminar in a 2-3/8-in. coiled tubing revealed essential flow features 

in coiled tubing, such as secondary flow and shift of higher velocity toward 

the outside wall. The friction pressures from CFD simulations also match the 

correlations and experimental data well.  

9. Water tests with field-scale coiled tubing reels and the ½-in. lab-scale flow 

loop have shown that the water friction factor in coiled tubing can be higher 

than in straight tubing by as much as 30%. A new correlation of friction factor 

has been proposed for Newtonian turbulent flow in coiled tubing with 

roughness effect. Comparison with experimental data indicated that the new 

correlation could adequately describe the effect of roughness in coiled tubing.  
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9.2 Recommendations for Future Research 

1. Conduct additional flow tests with non-drag reducing fluids in coiled tubing to 

further verify the newly developed friction factor correlation for non-

Newtonian turbulent flow in coiled tubing. An example of non-drag reducing 

fluids is carbopol solutions at different concentrations.  

2. Surfactant fluids have been used in recent coiled tubing applications due to 

their unique drag reduction property. Their flow behavior in coiled tubing is 

expected to be different than polymer based fluids. It is therefore suggested to 

perform systematic tests on friction pressure of surfactant-based fluids in the 

present flow loops.  

3. Conduct flow tests of drag reducers in coiled tubing. Since over 95% CT 

operations involve pumping slick water (water with drag reducers), it would 

be of great benefits to the industry to experimentally study the drag reducing 

behavior of drag reducers. Currently, there is no correlation available to 

predict friction pressure of these fluids.  

4. Conduct further flow tests of polymer fluids at higher flow rates. In some field 

pumping operations such as CT fracturing, the pump rates can be much higher 

than the maximum flow rates we had achieved in this study. The friction 

pressure behavior at these high flow rates is not known. It is expected that at 

high enough rates, the difference in friction factor between coiled tubing and 

straight tubing should decrease and fluids may lose their drag reducing 
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properties. Additional tests are needed to investigate the friction behavior at 

higher flow rate conditions.  

5. Conduct CFD simulations on the effect of tubing roughness on friction factor. 

Since there are no available correlations to calculate roughness effect in coiled 

tubing, and physically building coiled tubing with controlled roughness is not 

practically feasible, the approach of CFD simulations should be adopted. A 

range of tubing roughness can be chosen in the simulation of water flow in 

CT. Based on the simulation results, a correlation of friction factor in coiled 

tubing with roughness is expected to be developed which should include the 

effect of curvature ratio and relative roughness.  

6. Considering the rapid increase of CT application in hydraulic fracturing, 

studies in multiphase flow in coiled tubing should be conducted. Under typical 

fracturing through CT conditions, the centrifugal acceleration in coiled tubing 

can be much higher than gravitational acceleration (say 30 g). Under the effect 

of this strong centrifugal force, phase separation would be expected. 

Experiments at various flow velocities, different curvature ratios, and different 

solid concentrations should be conducted to develop flow regime maps. These 

flow regime maps are expected to have significant potential applications in the 

multiphase flow studies in coiled tubing.  

 216



 

NOMENCLATURE 
 

 a   =  radius of coiled tubing  

 a´   = coefficient in Eq. (3.67); coefficient of McCann and Islas 

friction factor correlation in Table 2.3 

 a/R  = curvature ratio 

 A  = constant in Eq. (4.13); correlation constant in Eqs. (6.15) and 

(7.4) 

 b´   = coefficient in Eq. (3.67); coefficient of McCann and Islas 

friction factor correlation in Table 2.3 

 B  = constant in Eq. (4.13); correlation constant in Eqs. (6.15) and 

(7.4) 

 c0, c1, …, c6  = coefficients of empirical correlations used in Eqs. (3.66). (3.69), 

(4.66), (4.67), (7.3), (7.5), and (7.6), and in Table 6.6 

 C   = axial pressure gradient, Eqs. (3.5) and (4.5); correlation constant 

in Eq. (6.15) 

 CT  = coiled tubing 

 d  = inside diameter of pipe 

 D  = Dean number, Eq. (2.9); characteristic angular velocity, Eq. 

(4.35) 

 De   = for Newtonian fluid, De = ( ) 21
Re RaN ; for non-Newtonian, De = 

( )
Ra

K
va n

m
n ρ−22 , Eqs. (2.14) and (3.48) 

 Do  = dimensionless characteristic angular velocity, Eq. (4.49) 

 Do1, Do3  = expansion coefficients of dimensionless characteristic angular 

velocity (Do), Eq. (4.58) 

 DR  = drag reduction, defined in Eqs. (7.1) and (7.2) 

 f  = Fanning friction factor 
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 f1(n) to f5(n)  = functions of flow behavior index (n), defined in Eqs. (4.42) to 

(4.46) 

 fM  = Fanning friction factor of mean curve, Eq. (6.15) 

 fp  = Fanning friction factor of polymer solution 

 frough  = Fanning friction factor in rough coiled tubing 

 fs  = Fanning friction factor of solvent 

 F(x)  =  function of x, Eqs. (3.11) and (4.12) 

 F'(x)  =  dF/dx 

 g  = gravitational acceleration 

 g(η)   =  function defined in Eq. (3.41) 

 gpm  = gallon per minute 

 G  = pressure gradient, Eqs. (2.5) and (2.9)  

 h  = the pitch of the coil (the distance between axes of two adjacent 

turns of coiled tubing on the reel) 

 hr  = tubing roughness projection 

 h(η)   =  function defined in Eq. (3.42) 

 k(η)   =  function defined in Eq. (3.43) 

 K  = consistency index of power law fluid; Dean number, Eq. (2.7)  

 Kp   = consistency index of power law fluid from pipe viscometer, 

lbfsn/ft2 

 Kv   = consistency index of power law fluid from Fann Model 35 

viscometer, lbfsn/ft2 

 L  = tubing length over which the pressure drop ∆p is measured 

 M  = shift factor, Eq. (6.16) 

 MDR  = maximum drag reduction 

 n   =  flow behavior index, dimensionless 

 N  = spring factor of Fann Model 35 viscometer, Eq. (6.2) 

 NDe  = Dean number for Newtonian fluid, Eq. (2.8) 

 NDe2  =  NRe2(a/R)0.5 
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 NDNg   = generalized Dean number, Eq. (3.70) 

 NRe  = Reynolds number (=dvρ/µ) 

   = generalized Reynolds number, Eq. (3.49) '
Re gN

   = generalized Reynolds number, the same as  0
ReN 0

Re gN

 NRe2  = Reynolds number based on pseudoshear viscosity91 

   = generalized Reynolds number [=0
Re gN ( )

K
va n

m
n ρ−22 ], Eq. (4.51) 

 NRec  = critical Reynolds number, Eqs. (2.12) and (2.13) 

 NRed  = Reynolds number based on differential viscosity91 

 NReg  = generalized Reynolds number [= dnv2-nρ/(Kp8n-1)] 

 NReg
*  = generalized Reynolds number at onset of drag reduction, Eq. 

(7.3) 

 NRes  = Reynolds number based on solvent viscosity (= dvρ/µs) 

 p  = pressure 

 (dp/dl)p   = frictional pressure gradient of polymer solution 

 (dp/dl)s  = frictional pressure gradient of solvent 

 ∆p  = frictional pressure drop over tubing length of L 

 q  = flow rate 

 Q  = flow rate, Eq. (3.61) 

 Qc  = flow rate in coiled pipe, Eq. (2.6) 

 Qs  = flow rate in straight pipe, Eq. (2.6) 

 r   = radial co-ordinate 

 rB  = radius at Point B in Fig. 4.2 

 R  = radius of coiled tubing reel 

 Rb  = radius of bob of viscometer 

 Rc  = radius of cup (the rotor) of viscometer 

 RPM  = rotational speed of rotor of viscometer in revolutions per minute, 

Eq. (6.1) 

 s  = Rc/Rb, Eq. (6.5) 
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 S   = shape factor of v-velocitycomponent, Eq. (3.39) 

 So   = dimensionless form of variable S, Eq. (3.46) 

 So1, So3   = expansion coefficients of So, Eq. (3.55) 

 ST  = straight tubing 

 u   = velocity component in r direction 

 U  = total velocity scale very near to the pipe wall, Eq. (4.39) 

 v   = velocity component in θ direction of Figs. 3.1 and 4.1 (or in α 

direction of Fig. 2.8) 

 vm  = mean velocity 

 w  = velocity in  axial direction 

 W0  = maximum axial velocity in pipe cross-section, Eq. (2.7) 

 w0, w1, w2, … = series coefficients, Eq. (2.10) 

 w1   = axial velocity component at the edge of the boundary layer 

 w10   = value of w1 axial velocity component at the edge of the boundary 

layer at θ = 0 

 wo  = dimensionless axial velocity at the boundary layer edge 

(=w1/w10) 

 wo2  = expansion coefficient of dimensionless variable wo, Eq. (3.56) 

 x  = horizontal Cartesian coordinate, Figs. 3.2 and 4.2 

 y  = vertical Cartesian coordinate, Figs. 3.2 and 4.2 

 Y  = variable defined in Eq. (3.69) 

 z  = Cartesian coordinate in the direction of coil axis, Figs. 2.8, 3.1, 

and 4.1 

 

Greek Symbols 

 α   =  variable defined in Eq. (3.53); coefficient in Dodge-Metzner 

friction factor correlation, Eq. (4.36); angle, Fig. 2.8 

 α*   = variable defined in Eqs. (4.55) and (4.56)  
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 β   = variable defined in Eq. (3.64); coefficient in Dodge-Metzner 

friction factor correlation, Eq. (4.36) 

 γ   = variable defined in Eq. (3.65) 

 γ1  = n
n

n
n







 +−

4
138 1K , Eqs. (4.37) and (4.38) 

 wγ&    = shear rate at the bob, Eq. (6.1) 

 δ   = boundary layer thickness 

 δo   = dimensionless boundary layer thickness 

 δo0, δo2   = expansion coefficients of dimensionless variable δo, Eqs. (3.54) 

and (4.57) 

 η   = dimensionless coordinate (= ξ/δ ) 

 θ   = angular coordinate 

 θi   = dial reading at “i” rpm of viscometer, Eq. (6.2) 

 λ  = variable defined in Eq. (6.4) 

 µ   = dynamic viscosity 

 µs   = solvent viscosity 

 ν  = kinematic viscosity 

 ξ   = a - r 

 ρ   = density 

 τ   = shear stress 

 τw   = wall shear stress 

 φ   = angular coordinate in axial direction 

 ψ   = stream function 

 ψ1, ψ2, …  = series coefficients, Eq. (2.11) 

 

Overline: 

 −  = time-averaged 
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Subscripts 

 1   = at the edge of the boundary layer  

 A  = at Point A of Figs. 3.2 and 4.2 

 B  = at Point B of Figs. 3.2 and 4.2 

 CL  = laminar flow in coiled pipe 

 CT  =  turbulent flow in coiled pipe 

 o   = dimensionless 

 p  = polymer solution 

 rr   = in r direction in plane normal to r 

 rθ   = in θ direction in plane normal to r 

 rφ   = in φ direction in plane normal to r 

 s  = solvent 

 SL  = laminar flow in straight pipe 

 ST  = turbulent flow in straight pipe 

 w  = at pipe wall 

 θθ   = in θ direction in plane normal to θ 

 
 

 222



 

REFERENCES 

1. ICoTA: “An Introduction to Coiled Tubing: History, Applications, and 
Benefits,” www.icota.com /publications/. 

2. Lang, K.: “Coiled Tubing Reaches for Areas of Growth,” Petroleum 
Technology Transfer Council Network News (2002) 8, No. 2, pp. 7–9. 

3. Barua, S.N.: “On Secondary Flow in Stationary Curved Pipes,” Q. J. Mech. 
Appl. Math.(1963) 16, pp. 61–77. 

4. Ito, H.: “Laminar Flow in Curved Pipes,” Z. Angew. Math. Mech.(1969) 49, pp. 
653–63. 

5. Mashelkar, R. A. and Devarajan, G. V.: “Secondary Flows of Non-Newtonian 
Fluids: Part I – Laminar Boundary Layer Flow of a Generalized Non-
Newtonian Fluid in a Coiled Tube,” Trans. Instn. Chem. Eng. (1976) 54, pp. 
100–107. 

6. Wright, T. R. Jr. and Sas-Jaworsky II, A.: Coiled Tubing Handbook, 3rd edition, 
World Oil, Gulf Publishing Company, Houston, Texas (1998). 

7. Sas-Jaworsky II, A.: “Coiled Tubing … Operations and Services, Part 5, 
Unloading Wells with Lighter Fluids,” World Oil's Coiled Tubing Handbook, 
1993, pp. 36–43. 

8. Sas-Jaworsky II, A.: “Coiled Tubing … Operations and Services, Part 6, Tubing 
Assisted Logging and Perforating,” World Oil’s Coiled Tubing Handbook, 
1993, pp. 45–50. 

9. Adams , L.S. and Marsili, D.L.: “Design and Installation of a 20,500 ft Coiled 
Tubing Velocity String in the Gomez Field, Pecos County, Texas,” paper SPE 
24792 presented at the 1992 SPE Annual Technical Conference and Exhibition, 
Washington, DC, Oct. 4–7. 

10. Sas-Jaworsky II, A.: “Coiled Tubing … Operations and Services, Part 4, Sands 
and Solids Washing,” World Oil’s Coiled Tubing Handbook, 1993, pp. 28–33. 

11. Anderson, G.W. and Hutchinson, S.O.: “How to Efficiently Wash Sand from 
Deviated Wellbores,” World Oil (December 1978) 187, No. 7, pp. 75-84. 

12. Pursell, J.C. and Moore, B.K.: “How to Wash Large Tubulars with Coiled 
Tubing,” Petroleum Engineer International (August 1992), pp. 42–45. 

 223



 

13. Appah, D. and Ichara, M.: “Empirical Model Determines Energy Required to 
Clean Sand from Wellbore,” Oil and Gas Journal (February 28, 1994) 92, No. 
9, p. 36. 

14. Walton, I.C.: “Computer Simulator of Coiled Tubing Wellbore Cleanouts in 
Deviated Wells Recommends Optimum Pump Rate and Fluid Viscosity,” paper 
SPE 29491 presented at the 1995 SPE Production Operations Symposium, 
Oklahoma City, OK, April 2–4, 1995. 

15. Gu, H. and Walton, I.C.: “Development of a Computer Wellbore Simulator for 
Coiled Tubing Operations,” paper SPE 28222 presented at the SPE Petroleum 
Computer Conference held in Dallas, Texas, USA, 31 July–3 August 1994. 

16. Gary, S.C., Walton, I.C., and Gu, H.: “Two New Design Tools Maximize Safety 
and Efficiency for Coiled Tubing Pumping Treatments,” paper SPE 29267 
presented at the SPE Asia pacific Oil & Gas Conference held in Kuala Lumpur, 
Malaysia, 20–22 March 1995.  

17. Bhalla, K. and Walton, I.C.: “The Effect of Fluid Flow on Coiled Tubing 
Reach,” paper SPE 36464 presented at the 1995 SPE Annual Technical 
Conference held in Denver, Colorado, USA, 6–9 October 1996. 

18. Gu, H.: “Transient Aspects of Unloading Oil and Gas Wells with Coiled 
Tubing,” paper SPE 29541 presented at the SPE Production Operations 
Symposium held in Oklahoma City, OK, 2–4 April, 1995. 

19. Misselbrook, J. and Falk, K.: “A Novel Method Using Coiled Tubing for 
Dewatering Gas Wells,” paper SPE presented at the 2005 SPE/ICoTA Coiled 
Tubing Conference and Exhibition held in the Woodlands, TX, 12–13 April 
2005. 

20. Moore, B.K. et al.: “Rigless Completions: A Spoolable Coiled Tubing Gas-lift 
System,” paper OTC 7321 presented at the 25th Annual OTC in Houston, 
Texas, USA, 3–6 May 1993. 

21. Misselbrook, J., Wilde, G., and Falk, K.: “The Development and Use of a 
Coiled Tubing Simulation for Horizontal Applications,” paper SPE 22822 
presented at 66th Annual Conference and Exhibition of SPE held in Dallas, TX, 
October 6–9, 1991.  

22. “Coiled Tubing: State of the Industry and Role for NETL,” Topical Report 
prepared for U.S. Department of Energy by National Energy Technology 
Laboratory, Contract No. DE-AD26-00NT00612, June 2005.  

 224



 

23. Snyder, R.E.: “US Firms Could Follow Canada’s Lead in Coiled Tubing 
Drilling,” World Oil (February 2005) 226, No. 2, 
www.worldoil.com/magazine/. 

24. “Introduction to Coiled Tubing Drilling,” LEAding Edge Advantage 
International Ltd., 2002, www.lealtd.com/pdfs/. 

25. Williams, T., Deskins, G., Ward, S.L., and Hightower, M.: “Sound Coiled-
Tubing Drilling Practices,” Final Report to DOE National Energy Technology 
Laboratory and U.S. Department of the Interior Minerals Management Service, 
DOE/NETL-2002/1170, ww.maurertechnology.com/NewsEvents/publications/. 

26. Courville, P.W. and Maddox, S.D.: “Rigless Slimhole Drilling,” paper OTC 
7331 presented at the 25th Annual OTC in Houston, Texas, 3–6 May 1993. 

27. Ramos Jr. A.B. et al.: “Horizontal Slim-hole Drilling with Coiled Tubing: An 
Operator’s Experience,” paper SPE 23875 presented at the 1992 IADC/SPE 
Drilling Conference held in New Orleans, Feb. 18–21. 

28. Wu, J. and Juvkam-Wold, H.C.: “Drilling and Completing Horizontal Wells 
with Coiled Tubing,” paper SPE 26366 presented at the 68th Annual Technical 
Conference and Exhibition of SPE held in Houston, Texas, Oct. 3 – 6, 1993. 

29. Gavin, W.G.: “Fracturing though Coiled Tubing – Recent Developments and 
Case Histories,” paper SPE 60690 presented at the 2000 SPE/ICoTA Coiled 
Tubing Roundtable, Houston, TX, USA, 5–6 April 2000. 

30. Spady, D.W., Udick, T.H., and Zemlak,, W.M.: “Enhancing Production in 
Multizone Wells Utilizing Fracturing through Coiled Tubing,” paper SPE  
57435 presented at the 1999 SPE Eastern Regional Meeting held in Charleston, 
West Virginia, USA, 21–22 October. 

31. Gulrajani, S.N., and Olmstead, C.C.: “Coiled Tubing Conveyed Fracture 
Treatments: Evolution, Methodology, and Field Application,” paper SPE  57432 
presented at the 1999 SPE Eastern Regional Meeting, Charleston, West 
Virginia, USA, 21–22 October. 

32. Rodvelt, G., Toothman, R., and Willis, S.: “Multiseam Coal Stimulation Using 
Coiled-tubing Fracturing and a Unique Bottomhole Packer Assembly,” paper 
SPE 72380 presented at the SPE Eastern Regional Meeting, Canton, OH, USA, 
17–19 October 2001. 

33. Economides, M.J., Ben-Naceur, K., and Klem, R.C.: “Matrix Stimulation 
Method for Horizontal Wells,” paper SPE 19719 presented at the 64th Annual 

 225



 

Technical Conference and Exhibition of SPE held in San Antonio, TX, October 
8–11, 1989. 

34. Thomas, R.L. and Milne, A.: “The Use of Coiled Tubing during Matrix 
Acidizing of Carbonate Reservoirs,” paper SPE presented at SPE Asia Pacific 
Oil & Gas Conference held in Kuala Lumpur, Malaysia, 20–22 March 1995. 

35. Frick, T.P. and Economides, M.J.: “State of the Art in the Matrix Stimulation of 
Horizontal Wells,” paper SPE 26997 presented at the Latin American Petroleum 
Engineering Conference held in Buenos Aires, Argentina, 27–29 April 1994. 

36. Mauro Tambini: “An Effective Matrix Stimulation Technique for Horizontal 
Wells,” paper SPE 24993 presented at the European Petroleum Conference held 
in Cannes, France, 16–18 November 1992. 

37. Bunnell, F.D. and Daud, M.M.: “Coiled Tubing Stimulations Eliminate Hole 
Failures & Condensate Losses in Arun Field,” paper SPE 30681 presented at the 
SPE Annual meeting in Dallas, USA, 22–25 October 1995. 

38. Pleasants, C.W., Head, D.W., and de Ruiter, J.: “Design, Testing, and Field Use 
of a New Selective Reeled Tubing Well Stimulation System,” paper SPE 22826 
presented at the 66th Annual Technical Conference and Exhibition of SPE held 
in Dallas, TX, USA, October 6–9, 1991. 

39. Loveland, K.R. and Bond, A.J.: “Recent Applications of Coiled Tubing in 
Remedial Wellwork at Prudhoe Bay,” paper SPE 35587 presented at the SPE 
Western Regional Meeting held in Anchorage, Alaska, 22–24 May 1996. 

40. Mirza, T., Budiman, M., Cannan, W.L., and Bordelon, T.P.: “Coiled Tubing 
Workovers in Deep, Hot Wells,” paper SPE 20427 presented at the 65th Annual 
Technical Conference and Exhibition of the Society of Petroleum Engineers 
held in New Orleans, LA, September 23–26, 1990.  

41. Vidick, B., Nash, F.D. and Hartley, I.: “Cementing Through Coiled Tubing and 
Its Influence on Slurry Properties,” paper SPE 20959 presented at Europec 90, 
the Hague, Netherlands, 22–24, October, 1990. 

42. Harrison, T.W. and Blount, C.G.: “Coiled Tubing Cement Squeeze Technique 
at Prodhoe Bay, Alaska,” paper SPE 15104 presented at the 1986 California 
Regional Meeting of the SPE, Oakland, April 2–4. 

43. Hornbrook, P.R. and Mason, C.M.: “Improved Coiled Tubing Squeeze 
Cementing Techniques at Prodhoe Bay,” paper SPE 19543 presented at the 
1989 Annual Technical Conference and Exhibition of the SPE, San Antonio, 
Oct. 8–11.  

 226



 

44. Carpenter, R.B.: “New Technologies Address the Problem Areas of Coiled 
Tubing Cementing,” paper SPE 20426 presented at the 1990 SPE Annual 
Technical Conference and Exhibition, New Orleans, Sept. 23–26. 

45. Nowak, T.W., Patout, T.S., and Buzarde, C.B.: “Rigless Multi-zone 
Recompletion Using a Cement Packer Placed with Coiled Tubing: A Case 
History,” paper SPE 35613 presented at the Gas Technology Conference held in 
Calgary, Alberta, Canada, April 28 – May 1, 1996. 

46. Hoyer, C.W.J., Chassagne, A., Vidick, B., and Hartley, I.P.: “A Platform 
Abandonment Program in the North Sea Using Coiled Tubing,” paper SPE 
23110 presented at the Offshore Europe Conference held in Aberdeen, 3–6 
September 1991.  

47. Newman, K. R., Haver, N. A., Stone, L. R., and Tong, D.: “Development of a 
Coiled Tubing Cable Installation System,” paper SPE 30679 presented at the 
SPE Annual Technical Conference and Exhibition held in Dallas, Oct. 22 – 25, 
1995. 

48. Hilts, R.L., Fowler Jr., S.H., and Pleasants, C.W.: “Fishing with Coiled 
Tubing,” paper SPE 25499 presented at the Production Operations Symposium 
held in Oklahoma City, OK, USA, March 21–23, 1993. 

49. Mullin, M. A., McCarty, S. H., and Plante, M. E.: “Fishing with 1.5 and 1.75 
inch Coiled Tubing at Western Prudhoe Bay, Alaska,” paper SPE 20679 
presented at the International Arctic Technology Conference, Anchorage, AK, 
May 29 – 31, 1991. 

50. Welch, J. L. and Stephens, R. K.: “Coiled Tubing … Operations and Services, 
Part 9 − Fishing,” World Oil’s Coiled Tubing Handbook, 1993, pp. 67-71. 

51. Stadwiser, J., Best, J., and Wilson, D., and Bloor, B.: “Coiled Tubing Fishing 
Operation on a Deep, High Pressure, Sour Gas Well,” J. Cdn. Pet. Tech. (Jan. 
1994), pp.16–21. 

52. Dean, W.R.: “Note on the Motion of Fluid in a Curved Pipe,” Philos. Mag. 
(July 1927) 20, pp. 208–23. 

53. Dean, W.R.: “The Streamline Motion of Fluid in a Curved Pipe,” Philos. Mag. 
(April 1928) 30, pp. 673–93. 

54. Van Dyke, M.: “Extended Stokes Series: Laminar Flow through a Loosely 
Coiled Pipe,” J. Fluid Mech. (1978) 86, part 1, pp.129–145. 

 227



 

55. Berger, S.A., Talbot, L., and Yao, L.S.: “Flow in Curved Pipes,” Ann. Rev. 
Fluid Mech. (1983) 15, pp. 461–512. 

56. McConalogue, D.J. and Srivastava, R.S.: “Motion of a Fluid in a Curved Tube,” 
Proc. Roy. Soc. A. (1968) 307, pp. 37–53. 

57. Eustice, J.: “Flow of Water in Curved Pipes,” Proc. Roy. Soc. London Ser. A 
(June 1910) 84, pp. 107–18. 

58. Eustice, J.: “Experiments of Streamline Motion in Curved Pipes,” Proc. Roy. 
Soc. London Ser. A (February 1911) 85, pp. 119–31. 

59. Adler, M.: “Flow in Curved Pipes,” Z. Angew. Math. Mech.(October 1934) 14, 
pp. 257–75. 

60. Collins, W.M. and Dennis, S.C.R.: “The Steady Motion of a Viscous Fluid in a 
Curved Tube,” Q. J. Mech. Appl. Math. (1975) 28, pp. 133–56. 

61. Jones, J.R.: “Flow of a Non-Newtonian Liquid in a Curved Pipe,” Q. J. Mech. 
Appl. Math. (1960) 13, pp. 428–43. 

62. Thomas, R.H. and Walters, K.: “On the Flow of an Elastico-viscous Liquid in a 
Curved Pipe under a Pressure Gradient,” J. Fluid Mech. (1963) 16, pp. 228–
242. 

63. Thomas, R.H. and Walters, K.: “On the Flow of an Elastico-viscous Fluid in a 
Curved Pipe of Elliptic Cross-section under a Pressure Gradient,” J. Fluid 
Mech.(1965) 21, pp. 173–82. 

64. Larrain, J. and Bonilla, C.F.: “Theoretical Analysis of Pressure Drop in the 
Laminar Flow of Fluid in a Coiled Pipe,” Trans. Soc. Rheol. (1970) 14, pp. 
135–47. 

65. Topakoglu, H.C.: “Steady laminar Flows of an Incompressible Viscous Fluid in 
Curved Pipes,” J. Math. Mech.(1967) 16, No. 12, pp. 1321–1337. 

66. Robertson, A.M. and Muller, S.J.: “Flow of Oldroyd-B Fluids in Curved Pipes 
of Circular and Annular Cross-section,” Int. J. Non-Linear Mech.(1996) 31, No. 
1, pp. 1–20. 

67. Jayanti, S. and Hewitt, G.F.: “On the Paradox Concerning Friction Factor Ratio 
in Laminar Flow in Coils,” Proc. R. Soc. Lond. A.(1991) 432, pp. 291–99. 

68. Dennis, S.C.R. and Ng, M.: “Dual Solutions for Steady Laminar Flow through a 
Curved Tube,” Q. J. Mech. Appl. Math. (1982) 35, pp. 305–324. 

 228



 

69. Daskopoulos, P. and Lenhoff, A.M.: “Flow in Curved Ducts: Bifurcation 
Structure for Stationary Ducts,” J. Fluid Mech. (1989) 203, pp.125–148. 

70. Germano, M.: “On the Effect  of Torsion on a Helical Pipe,” J. Fluid 
Mech.(1982) 125, pp. 1–8. 

71. Germano, M.: “The Dean Equations Extended to a Helical Pipe Flow,” J. Fluid 
Mech. (1989) 203, pp. 289–305. 

72. Kao, H.C.: “Torsion Effect on Fully Developed Flow in a Helical Pipe,”  J. 
Fluid Mech. (1987) 184, pp. 335–356. 

73. Trusedell, L.C., Jr. and Adler, R.J.: “Numerical Treatment of Fully Developed 
Laminar Flow in Helically Coiled Tubes,” AIChE J. (November 1970), pp. 
1010–1015. 

74. Greenspan, D.: “Secondary Flow in a Curved Tube,” J. Fluid Mech. (1973) 57, 
pp. 167–76. 

75. Patankar, S.V., Pratap, V.S., and Spalding, D.B.: “Prediction of Laminar Flow 
and Heat Transfer in Helically Coiled Pipes,” J. Fluid Mech. (1974) 62, part 3, 
pp. 539–551. 

76. Joseph, B., Smith, E.P., and Adler, R.J.: “Numerical Treatment of Laminar 
Flow in Helically Coiled Tubes of Square Cross Section. Part I. Stationary 
Helically Coiled Tubes,”  AIChE J. (September 1975) 21, pp. 965–74. 

77. Dennis, S.C.R.: “Calculation of the Steady Flow through a Curved Tube Using 
a New Finite-Difference Method,” J. Fluid Mech. (1980) 99, pp. 449–467. 

78. Hsu, C.F. and Patankar, S.V.: “Analysis of Laminar Non-Newtonian Flow and 
Heat Transfer in Curved Tubes,” AIChE J. (July 1982) 28, pp. 610–616. 

79. Soh, W.Y. and Berger, S.A.: “Fully Developed Flow in a Curved Pipe of 
Arbitrary Curvature Ratio,” Intl. J. Num. Meth. Fluids (1987) 7, pp. 733–755. 

80. Austin, L.R. and Seader, J.D.: “Fully Developed Viscous Flow in Coiled 
Circular Pipes,” AIChE J. (January 1973) 19, No. 1, pp. 85–94. 

81. Patankar, S.V., Pratap, V.S., and Spalding, D.B.: “Prediction of Turbulent Flow 
in Helically Coiled Pipes,” J. Fluid Mech. (1975) 67, part 3, pp. 583–595. 

82. Lai, Y.G., So, R.M.C., and Zhang, H.S.: “Turbulence-Driven Secondary Flows 
in a Curved Pipe,” Theoret. Comput. Fluid Dynamics (1991) 3, pp. 163–180. 

 229



 

83. Ito, H.: “Friction Factors for Turbulent Flow in Curved Pipes,” J. Basic Eng. 
(June 1959), pp. 123–134. 

84. Mori, Y. and Nakayama, W.: “Study on Forced Convective Heat Transfer in 
Curved Pipes (1st Report),” Int. J. Heat Mass Transfer (1965) 8, pp. 67–82. 

85. Mashelkar, R. A. and Devarajan, G. V.: “Secondary Flows of Non-Newtonian 
Fluids: Part II Frictional Losses in Laminar Flow of Purely Viscous and 
Viscoelastic Fluids through Coiled Tubes,” Trans. Instn. Chem. Eng. (1976) 54, 
pp. 108–114. 

86. Mashelkar, R. A. and Devarajan, G. V.: “Secondary Flows of Non-Newtonian 
Fluids: Part III – Turbulent Flow of Visco-inelastic Fluids in Coiled Tubes: A 
Theoretical Analysis and Experimental Verification,” Trans. Instn. Chem. Eng. 
(1977) 55, pp. 29–37. 

87. Riley, N.: “Unsteady Fully-developed Flow in a Curved Pipe,” J. Engineering 
Mathematics (1998) 34, pp. 131–141. 

88. White, C.M.: “Streamline Flow through Curved Pipes,” Proc. Roy. Soc. London 
Ser. A (February 1929) 123, pp. 645–63. 

89. Taylor, G.I.: “The Criterion for Turbulence in Curved Pipes,” Proc. Roy. Soc. 
London Ser. A (1929) 124, pp. 243–49. 

90. Srinivasan, P. S., Nandapurkar, S.S., and Holland, F.A.: “Friction Factors for 
Coils,” Trans. Instn. Chem. Engr. (1970) 48, pp. T156–T161. 

91. Mishra, P. and Gupta, S.N.: “Momentum Transfer in Curved Pipes. I. 
Newtonian Fluids, II. Non-Newtonian,” Ind. Eng. Chem. Process Des. Dev. 
(1979) 18, pp. 130–42. 

92. Shah, S.N. and Zhou, Y.: “An Experimental Study of Drag Reduction of 
Polymer Solutions in Coiled Tubing,” Journal of SPE Production & Facilities 
(November 2003) 18, No. 4, pp. 280–287. 

93. Sreenivasan, K.R. and Strykowski, P.J.: “Stabilization Effects in Flow through 
Helically Coiled Pipes,” Experiments in Fluids (1983) 1, pp. 31–36. 

94. Webster, D.R. and Humphrey, J.A.C.: “Experimental Observations of Flow 
Instability in a Helical Coil,” Trans., ASME (September 1993) 115, pp. 436–
443. 

95. Hasson, D.: “Streamline Flow in Coils,” Res. Corresp. (1995) 1, pp. S1. 

 230



 

96. Mujawar, B.A. and Rao, M.R.: “Flow of Non-Newtonian Fluids through Helical 
Coils,” Ind. Eng. Chem. Process Des. Dev. (1978) 17, No. 1, pp. 22–27. 

97. Liu, S. and Masliyah, J.H.: “Axially Invariant Laminar Flow in Helical Pipes 
with a Finite Pitch,” J. Fluid Mech. (1993) 251, pp. 315–353. 

98. Barnes, H.A. and Walters, K.: “On the Flow of Viscous and Elastico-Viscous 
Liquids through Straight and Curved Pipes,” Proc. Roy. Soc. A. (1969) 314, pp. 
85–109. 

99. Jones, W.M. and Davies, O.H.: “The Flow of Dilute Aqueous Solutions of 
Macromolecules in Various Geometries: III. Bent Pipes and Porous Materials,” 
J. Phys. D: Appl. Phys. (1976) 9, pp. 753–770. 

100. Tsang, H.Y. and James, D.F.: “Reduction of Secondary Motion in Curved 
Tubes by Polymer Additives,” J. Rehol. (1980) 24, pp. 589–601. 

101. Azouz, I., Shah, S.N., Vinod, P.S., and Lord, D.L.: “Experimental Investigation 
of Frictional Pressure Losses in Coiled Tubing,” paper SPE 37328 presented at 
the 1996 SPE Eastern Regional Meeting held in Columbus, Ohio, 23–25 
October 1996. 

102. McCann, P.C. and Islas, C.G.: “Frictional Pressure Loss during Turbulent Flow 
in Coiled Tubing,” paper SPE 36345 presented at the SPE/ICoTA North 
American Coiled Tubing Roundtable held in Montgomery, Texas, 26–28 
February 1996. 

103. Shah, S.N., Zhou, Y., and Goel, N.: “Flow Behavior of Fracturing Slurries in 
Coiled Tubing,” paper SPE 74811 presented at the SPE/ICoTA Coiled Tubing 
Conference held in Houston, TX, 9–10 April 2002. 

104. Devarajan, G.V.: “Secondary Flows of Non-Newtonian Fluids,” PhD 
Dissertation, University of Salford, Salford, UK (1975).  

105. Perry, R.H.: Perry’s Chemical Engineers’ Handbook, 7th edition, McGraw-Hill, 
New York (1997), Chapter 5. 

106. Dodge, D. W. and Metzner, A. B.: “Turbulent Flow of Non-Newtonian 
Systems,” AIChE J. (June 1959) 5, pp. 189–204. 

107. Skelland, A.H.P.: Non-Newtonian Flow and Heat Transfer, John Wiley & Sons, 
Inc., New York, 1967.  

 231



 

108. Zhou, Y. and Shah, S.N.: “Rheological Properties and Frictional Pressure Loss 
of Drilling, Completion, and Stimulation Fluids in Coiled Tubing,” Journal of 
Fluids Engineering (2003) 126, No. 2, pp. 153-161. 

109. Lipton, D. and Burnett, D.B.: “Comparisons of Polymers Used in Workover and 
Completion Fluids,” paper SPE 5872 presented at the 46th Annual California 
Regional Meeting of SPE, April 8–9, 1976. 

110. Whitcomb, P.J. and Macosko, C.W.: “Rheology of Xanthan Gum,” Journal of 
Rheology (1978) 22, No. 5, pp. 493–505.  

111. Rochefort, W.E. and Middleman, S.: “Rheology of Xanthan Gum: Salt, 
Temperature, and Strain Effects in Oscillatory and Steady Shear Experiments,” 
Journal of Rheology (1987) 31, No. 4, pp. 337–369. 

112. Garcia-Ochoa, F., Santos, V.E., Casas, J.A., and Gomez, E.: “Xanthan Gum: 
Production, Recovery, and Properties,” Biotechnology Advances (2000) 18, pp. 
549–579. 

113. Chillingarian, G.V. and Vorabutr, P.: Drilling and Drilling Fluids, Elsevier 
Scientific Publishing Company, Amsterdam (1981). 

114. Kadaster, A.G., Gulld, G.J., Hanni, G.L., and Schmidt, D.D.: “Field 
Applications of PHPA Muds,” SPEDE (1992) 7, No. 3, pp. 191–199. 

115. Economides, M.J. and  Nolte, K.G.: Reservoir Stimulation, New York, John 
Wiley & Sons Ltd, 2000 

116. Naik, S.C., Pittman, J.F.T., and Richardson, J.F.: “The Rheology of 
Hydroxyethyl Cellulose Solutions,” Journal of Rheology (1976) 20, No. 4, pp. 
639–649. 

117. API RP39, Standard Procedures for Evaluation of Hydraulic Fracturing Fluids, 
American Society of Institute, Washington, D.C. (1983). 

118. Shah, S.N.: Lecture Note for Non-Newtonian Fluid Mechanics, University of 
Oklahoma, Norman, USA, 1998. 

119. Drew, T.B., Koo, E.C., and McAdams, W.H.: “The Friction Factor for Clean  
Round Pipes,” Trans. AIChE (1932) 28, pp. 56–72. 

120. Chen, N.H.: “An Explicit Equation for Friction Factors in Pipe,” Ind. Eng. 
Chem. Fundam. (1979) 18, No. 3, 296. 

 232



 

121. Colebrook, C.F.: “Turbulent Flow in Pipes, with Particular Reference to the 
Transition Region between the Smooth and Rough Pipe Laws,” Journal of the 
Institution of Civil Engineers (1938–1939) 11, p133–156. 

122. Yaws, C.L.: Chemical Properties Handbook, 1999, p501.  

123. Moody, L.F.: “Friction Factors for Pipe Flow,” Trans. ASME (November 1944) 
66, pp. 671–684.  

124. Shah, S.N.: “Correlations Predict Friction Pressures of Fracturing Gels,” Oil & 
Gas Journal (Jan. 16, 1984) 82, No. 3, pp. 92–98. 

125. Toms, B. A.: “Some Observations on the Flow of Linear Polymer Solutions 
through Straight Tubes at Large Reynolds Numbers,” Proc. First Intern. Congr. 
On Rheology, Vol. II, pp. 135–141, North Holland, Amsterdam (1948). 

126. Lumley, J.L.: “Drag Reduction by Additives,” Annual Review of Fluid 
Mechanics (1969) 1, pp. 367–384, Annual Reviews Inc., Palo Alto, Calif. 

127. Hoyt, J.W.: “The Effect of Additives on Fluid Friction,” ASME Journal of Basic 
Engineering (1972) 94, No. 2, p. 258. 

128. Hoyt, J.W.: “Drag Reduction by Polymers and Surfactants,” Viscous Drag 
Reduction in Boundary Layers, D.M. Bushnell and J.N. Hefner (eds.), American 
Institute of Aeronautics and Astronautics, Washington, D.C. (1990). 

129. Virk, P. S.: “Drag Reduction Fundamentals,” AIChE J. (July 1975) 21, No. 4, 
pp. 625–656. 

130. Berman, N.S.: “Drag Reduction by Polymers,” Annual Review of Fluid 
Mechanics (1978) 10, pp. 47–64, Annual Reviews Inc., Palo Alto, Calif. 

131. Kostic, M.: “On Turbulent Drag and Heat Transfer Reduction Phenomena and 
Laminar Heat Transfer Enhancement in non-Circular Duct Flow of Certain non-
Newtonian Fluids,” Int. J. Heat Mass Transfer (1994) 37, Suppl. 1, pp. 133–
147.  

132. Kelkar, J.V. and Mashelkar, R.A.: “Drag Reduction in Dilute Polymer 
Solutions,” Journal of Applied Polymer Science (1972) 16, pp. 3047–3046. 

133. Yokoyama, T. and Tomita, Y.: “Flow of Dilute Polymer Solutions through 
Curved Bends,” Bulletin of JSME (June 1986) 29, No. 252, pp. 1740–1745. 

134. Savins, J.G.: “Drag Reduction Characteristics of Solutions of Macromolecules 
in Turbulent Pipe Flow,” SPEJ (September 1964) 203; Trans., AIME, 231.  

 233



 

135. Virk, P.S., Mickley, H.S., and Smith, K.A.: “The Ultimate Asymptote and Mean 
Flow Structure in Tom’s Phenomenon,” ASME Journal of Applied Mechanics 
(June 1970) 37, pp. 488–493.  

136. Fan, Y., Tanner, R.I., and Phan-Thien, N.: “Fully Developed Viscous and 
Viscoelastic Flows in Curved Pipes,” J. Fluid Mech. (2001) 440, pp. 327–357.  

137. FLUENT 6.0 Users Guide, Fluent Inc. (December 2001). 

138. “Modeling Guide, GAMBIT 2.0 Documentation,” Fluent Inc. (December 
2001). 

 234



 

APPENDIX A  

DERIVATION OF FRICTION FACTOR OF NON-
NEWTONIAN LAMINAR FLOW IN COILED 

TUBING 
From Eqs. (3.59)  and (3.32), we have 
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For power-law fluid,  
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From Eq. (3.40), we can have 
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Therefore, Eq. (A.2) can be written as:  
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Using Eqs. (3.45) and (3.47), we can have 
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Therefore, Eq. (A.1) becomes 
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If De is defined as:  
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Eq. (A.8) then becomes:  
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Eq. (A.11) is the same as Eq. (3.60). 
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APPENDIX B 

DERIVATION OF FRICTION FACTOR OF NON-
NEWTONIAN TURBULENT FLOW IN COILED 

TUBING 
The Fanning friction factor is defined as:  
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The pressure gradient, C is already derived as:  
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Inserting Eq. (4.64) into Eq. (4.62) gives:  

∫ =
=

π

ξφ θτ
ρπ 0

0

12 d
v

f r
m

......................................................................................... (B.1) 

From Eq. (4.38), we can approximately have  

( ) ( )
( )nn

n

n

r w −−−−
+

−−

=
≈ 22

1
1

11

22

0 2
817.0 ββββ

β

β

ξφ δργατ  

          ( ) ( )
( nn

n
n

n

n

wK
n

n −−−−−
+

−−


















 +

= 22
1

11
1

22

4
138

2
817.0 ββββ

β

β

β

δρα ) .................................. (B.2) 

Inserting Eq. (B.2) into Eq. (B.1) gives:  

( ) ( )
( )∫ −−−

−
−

+

−−


















 +

=
π ββ

ββ
β

β

β

θδ
ρ

ρα
0

22
12

1
1

1

22

4
138

2
817.0 dw

v
K

n
nf nn

m

n
n

n

n
 

or  

( ) ( )∫ −−−
−

=
π ββ

ββ

θδρ
π 0

22
125

2 dw
v

Knff nn

m

................................................................... (B.3) 

 237



 

where 

( ) ( ) ( ) β

β

βα


















 +
= −

+

−− n
n

n

n

n
nnf
4

138
2

817.0 1
1

22

5 .....................................................................(4.46) 

Replacing δ and 1w  with δo and wo through Eqs. (4.48) and (4.50), we have  
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0
Re gN  and the generalized Reynolds number, NReg are related by the following 

equation:  
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Therefore, Eq. (B.4) becomes:  
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Eq. (B.6) is the same as Eq. (4.65).  
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APPENDIX  C                                         
FLUID MIXING PROCEDURES 

 

In preparing the test fluids, the procedures from the material provider have been 

followed. The following briefly describes the general procedure for each category of 

fluids.  

Mixing Procedure for Guar: 

• Fill water to the desired level for the amount of guar needed.  

• Add Biocide and mix. 

• Add caustic and mix. This should raise the pH to 9. 

• Add guar and mix till homogeneous. 

• Add fumaric acid. This will cause guar to hydrate. (lower pH to 7). 

• Add D-air after mixture has begun to hydrate. 

• Mixture needs to hydrate for at least one hour. Measure rheology. 

Mixing Procedure for Xanthan: 

• Add 1 gallon household bleach per 100 bbl of water 

• Add Xanvis to the desired concentration. 

• Add biocide. 

• Circulate tank for 1 hour. Check rheology. 

• Allow to stand overnight. 

• Circulate tank for 15 minutes. Check rheology. 
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Mixing Procedure for HEC: 

• Lower mixing water pH to 4 with HCl (@ 0.5 gal 15% HCl). 

• Mix in HEC, similar to Guar or HPG. 

• Allow to mix for a few minutes. Then use caustic to adjust pH to 9. 
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   APPENDIX  D                                       
POWER LAW PARAMETERS FROM FANN 

VISCOMETERS 
 

Table D.1―Rheological Properties of Xanthan Fluids Based on Fann Viscometers 

K K Kv p

lbfs
n/ft2 lbfs

n/ft2 lbfs
n/ft2

40 lb/Mgal Xanthan before 3000 ft 2-3/8-in. CT 0.308 2.81E-02 2.93E-02 3.22E-02

40 lb/Mgal Xanthan after 3000 ft 2-3/8-in. CT 0.344 2.35E-02 2.45E-02 2.69E-02

40 lb/Mgal Xanthan after 2000 ft 2-3/8-in. CT 0.355 2.18E-02 2.27E-02 2.49E-02

40 lb/Mgal Xanthan after 1000 ft 2-3/8-in. CT 0.364 2.03E-02 2.12E-02 2.32E-02

40 lb/Mgal Xanthan before  1-1/2-in. CT test 0.256 4.91E-02 5.15E-02 5.65E-02

40 lb/Mgal Xanthan after  1-1/2-in. CT test 0.285 3.79E-02 3.97E-02 4.36E-02

40 lb/Mgal Xanthan before  1500 ft 1-in. CT 0.293 2.94E-02 3.07E-02 3.38E-02

40 lb/Mgal Xanthan after  1500 ft 1-in. CT 0.282 3.09E-02 3.23E-02 3.55E-02

40 lb/Mgal Xanthan after  1000 ft 1-in. CT 0.287 2.93E-02 3.07E-02 3.37E-02

20 lb/Mgal Xanthan before 3000 ft 2-3/8-in. CT 0.396 8.24E-03 8.56E-03 9.37E-03

20 lb/Mgal Xanthan after 3000 ft 2-3/8-in. CT 0.431 6.87E-03 7.12E-03 7.77E-03

20 lb/Mgal Xanthan after 2000 ft 2-3/8-in. CT 0.434 6.80E-03 7.05E-03 7.69E-03

20 lb/Mgal Xanthan after 1000 ft 2-3/8-in. CT 0.428 6.98E-03 7.24E-03 7.90E-03

20 lb/Mgal Xanthan after 3000 ft 1-1/2-in. CT 0.391 9.24E-03 9.60E-03 1.05E-02

20 lb/Mgal Xanthan before 1500 ft 1-in. CT 0.386 8.20E-03 8.52E-03 9.33E-03

20 lb/Mgal Xanthan after 1500 ft 1-in. CT 0.383 8.29E-03 8.62E-03 9.44E-03

20 lb/Mgal Xanthan after 1000 ft 1-in. CT 0.368 8.81E-03 9.17E-03 1.00E-02

20 lb/Mgal Xanthan after 500 ft 1-in. CT 0.386 8.08E-03 8.40E-03 9.19E-03

10 lb/Mgal Xanthan before 3000 ft 2-3/8-in. CT 0.503 2.32E-03 2.40E-03 2.60E-03

10 lb/Mgal Xanthan after 3000 ft 2-3/8-in. CT 0.482 2.66E-03 2.75E-03 2.98E-03

10 lb/Mgal Xanthan after 2000 ft 2-3/8-in. CT 0.471 2.72E-03 2.81E-03 3.06E-03

10 lb/Mgal Xanthan after 1000 ft 2-3/8-in. CT 0.499 2.32E-03 2.39E-03 2.59E-03

10 lb/Mgal Xanthan before  3000 ft 1-1/2-in. CT 0.489 2.61E-03 2.70E-03 2.92E-03

10 lb/Mgal Xanthan before 1500 ft 1-in. CT 0.483 2.40E-03 2.48E-03 2.69E-03

10 lb/Mgal Xanthan after 1500 ft 1-in. CT 0.480 2.45E-03 2.54E-03 2.75E-03

10 lb/Mgal Xanthan after 1000 ft 1-in. CT 0.462 2.67E-03 2.76E-03 3.01E-03

10 lb/Mgal Xanthan after 500 ft 1-in. CT 0.462 2.67E-03 2.76E-03 3.01E-03

Fluid Sample for Test with Fann Model 35 n
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Table D.2―Rheological Properties of PHPA Fluids Based on Fann Viscometers 

K K Kv p

lbfs
n/ft2 lbfs

n/ft2 lbfs
n/ft2

40 lb/Mgal PHPA before 3000 ft 2-3/8-in. CT 0.401 2.20E-02 2.28E-02 2.50E-02

40 lb/Mgal PHPA after 3000 ft 2-3/8-in. CT 0.375 2.77E-02 2.88E-02 3.15E-02

40 lb/Mgal PHPA after 2000 ft 2-3/8-in. CT 0.374 2.79E-02 2.90E-02 3.18E-02

40 lb/Mgal PHPA after 1000 ft 2-3/8-in. CT 0.366 2.82E-02 2.94E-02 3.22E-02

40 lb/Mgal PHPA before 3000 ft 1-1/2-in. CT 0.376 2.82E-02 2.93E-02 3.21E-02

40 lb/Mgal PHPA after 3000 ft 1-1/2-in. CT 0.355 3.04E-02 3.17E-02 3.47E-02

40 lb/Mgal PHPA after 2000 ft 1-1/2-in. CT 0.351 3.11E-02 3.24E-02 3.55E-02

40 lb/Mgal PHPA after 1000 ft 1-1/2-in. CT 0.329 3.46E-02 3.60E-02 3.96E-02

40 lb/Mgal PHPA before 1500 ft 1-in. CT 0.514 1.55E-02 1.60E-02 1.73E-02

40 lb/Mgal PHPA after 1500 ft 1-in. CT 0.358 2.96E-02 3.08E-02 3.38E-02

40 lb/Mgal PHPA after 1000 ft 1-in. CT 0.352 3.14E-02 3.27E-02 3.59E-02

40 lb/Mgal PHPA after 500 ft 1-in. CT 0.343 3.26E-02 3.40E-02 3.73E-02

20 lb/Mgal PHPA before 3000 ft 2-3/8-in. CT 0.551 6.93E-03 7.13E-03 7.68E-03

20 lb/Mgal PHPA after 3000 ft 2-3/8-in. CT 0.437 1.26E-02 1.30E-02 1.42E-02

20 lb/Mgal PHPA after 2000 ft 2-3/8-in. CT 0.444 1.18E-02 1.22E-02 1.33E-02

20 lb/Mgal PHPA after 1000 ft 2-3/8-in. CT 0.423 1.29E-02 1.34E-02 1.46E-02

20 lb/Mgal PHPA before 3000 ft 1-1/2-in. CT 0.416 1.38E-02 1.43E-02 1.56E-02

20 lb/Mgal PHPA after 3000 ft 1-1/2-in. CT 0.404 1.45E-02 1.50E-02 1.64E-02

20 lb/Mgal PHPA after 2000 ft 1-1/2-in. CT 0.391 1.56E-02 1.62E-02 1.78E-02

20 lb/Mgal PHPA after 1000 ft 1-1/2-in. CT 0.389 1.56E-02 1.62E-02 1.77E-02

20 lb/Mgal PHPA before 1500 ft 1-in. CT 0.400 1.46E-02 1.51E-02 1.66E-02

20 lb/Mgal PHPA after 1500 ft 1-in. CT 0.391 1.53E-02 1.59E-02 1.75E-02

20 lb/Mgal PHPA after 1000 ft 1-in. CT 0.395 1.51E-02 1.57E-02 1.71E-02

20 lb/Mgal PHPA after 500 ft 1-in. CT 0.397 1.48E-02 1.54E-02 1.68E-02

Fluid Sample for Test with Fann Model 35 n

 

 243



 

 

Table D.3―Rheological Properties of Guar Fluids Based on Fann Viscometers 

K K Kv p

lbfs
n/ft2 lbfs

n/ft2 lbfs
n/ft2

40 lb/Mgal Guar before 3000 ft  2-3/8-in. CT 0.427 2.18E-02 2.26E-02 2.47E-02

40 lb/Mgal Guar after 3000 ft  2-3/8-in. CT 0.428 2.22E-02 2.30E-02 2.51E-02

40 lb/Mgal Guar after 2000 ft  2-3/8-in. CT 0.432 2.14E-02 2.22E-02 2.42E-02

40 lb/Mgal Guar after 1000 ft  2-3/8-in. CT 0.442 2.05E-02 2.12E-02 2.31E-02

40 lb/Mgal Guar before 3000 ft  1-1/2-in. CT 0.453 1.78E-02 1.84E-02 2.01E-02

40 lb/Mgal Guar after 3000 ft  1-1/2-in. CT 0.449 1.77E-02 1.84E-02 2.00E-02

40 lb/Mgal Guar after 2000 ft  1-1/2-in. CT 0.455 1.70E-02 1.76E-02 1.92E-02

40 lb/Mgal Guar after 1000 ft  1-1/2-in. CT 0.461 1.61E-02 1.67E-02 1.82E-02

40 lb/Mgal Guar before 1500 ft  1-in. CT 0.482 1.28E-02 1.32E-02 1.43E-02

40 lb/Mgal Guar after 1500 ft  1-in. CT 0.481 1.29E-02 1.33E-02 1.45E-02

40 lb/Mgal Guar after 1000 ft  1-in. CT 0.484 1.24E-02 1.28E-02 1.39E-02

40 lb/Mgal Guar after 500 ft  1-in. CT 0.485 1.22E-02 1.26E-02 1.37E-02

30 lb/Mgal Guar before 3000 ft  2-3/8-in. CT 0.514 7.90E-03 8.14E-03 8.81E-03

30 lb/Mgal Guar after 3000 ft  2-3/8-in. CT 0.514 7.90E-03 8.14E-03 8.81E-03

30 lb/Mgal Guar after 2000 ft  2-3/8-in. CT 0.527 7.12E-03 7.34E-03 7.93E-03

30 lb/Mgal Guar after 1000 ft  2-3/8-in. CT 0.528 6.94E-03 7.15E-03 7.72E-03

30 lb/Mgal Guar before 3000 ft  1-1/2-in. CT 0.534 6.46E-03 6.66E-03 7.18E-03

30 lb/Mgal Guar after 3000 ft  1-1/2-in. CT 0.536 6.13E-03 6.32E-03 6.81E-03

30 lb/Mgal Guar after 2000 ft  1-1/2-in. CT 0.540 5.90E-03 6.07E-03 6.54E-03

30 lb/Mgal Guar after 1000 ft  1-1/2-in. CT 0.537 5.84E-03 6.02E-03 6.49E-03

30 lb/Mgal Guar before 1500 ft  1-in. CT 0.563 4.86E-03 5.00E-03 5.37E-03

30 lb/Mgal Guar after 1500 ft  1-in. CT 0.542 5.40E-03 5.56E-03 6.00E-03

30 lb/Mgal Guar after 1000 ft  1-in. CT 0.546 5.31E-03 5.47E-03 5.89E-03

30 lb/Mgal Guar after 500 ft  1-in. CT 0.554 4.86E-03 5.00E-03 5.38E-03

20 lb/Mgal Guar before 3000 ft  2-3/8-in. CT 0.634 2.01E-03 2.05E-03 2.19E-03

20 lb/Mgal Guar after 3000 ft  2-3/8-in. CT 0.645 1.84E-03 1.88E-03 2.00E-03

20 lb/Mgal Guar after 2000 ft  2-3/8-in. CT 0.637 1.90E-03 1.95E-03 2.07E-03

20 lb/Mgal Guar after 1000 ft  2-3/8-in. CT 0.650 1.75E-03 1.79E-03 1.90E-03

20 lb/Mgal Guar before 3000 ft  1-1/2-in. CT 0.708 1.18E-03 1.20E-03 1.27E-03

20 lb/Mgal Guar after 3000 ft  1-1/2-in. CT 0.684 1.26E-03 1.29E-03 1.36E-03

20 lb/Mgal Guar after 2000 ft  1-1/2-in. CT 0.684 1.26E-03 1.29E-03 1.36E-03

20 lb/Mgal Guar after 1000 ft  1-1/2-in. CT 0.667 1.34E-03 1.37E-03 1.45E-03

Fluid Sample for Test with Fann Model 35 n
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Table D.4―Rheological Properties of HEC Fluids Based on Fann Viscometers 

K K Kv p

lbfs
n/ft2 lbfs

n/ft2 lbfs
n/ft2

40 lb/Mgal HEC, Initial Sample 0.410 4.50E-02 4.67E-02 5.11E-02

40 lb/Mgal HEC, after 3000 ft 2-3/8-in. 0.429 3.78E-02 3.92E-02 4.28E-02

40 lb/Mgal HEC, after 2000 ft 2-3/8-in CT 0.411 4.37E-02 4.54E-02 4.96E-02

40 lb/Mgal HEC, after 1000 ft 2-3/8-in CT 0.401 4.42E-02 4.59E-02 5.02E-02

40 lb/Mgal HEC, before 3000 ft 1-1/2-in. CT 0.420 3.85E-02 3.99E-02 4.35E-02

40 lb/Mgal HEC, after 3000 ft 1-1/2-in. CT 0.424 3.48E-02 3.61E-02 3.94E-02

40 lb/Mgal HEC, after 2000 ft 1-1/2-in. CT 0.434 3.20E-02 3.32E-02 3.62E-02

40 lb/Mgal HEC, after 1000 ft 1-1/2-in. CT 0.418 3.61E-02 3.75E-02 4.09E-02

40 lb/Mgal HEC, after 1500 ft 1-in. CT 0.443 2.69E-02 2.79E-02 3.04E-02

40 lb/Mgal HEC, after 1000 ft 1-in. CT 0.459 2.59E-02 2.68E-02 2.91E-02

40 lb/Mgal HEC, after 500 ft 1-in. CT 0.466 2.36E-02 2.44E-02 2.65E-02

30 lb/Mgal HEC, before 3000 ft 2-3/8-in. CT 0.503 1.37E-02 1.42E-02 1.53E-02

30 lb/Mgal HEC, after 3000 ft 2-3/8-in. CT 0.486 1.54E-02 1.59E-02 1.73E-02

30 lb/Mgal HEC, after 2000 ft 2-3/8-in. CT 0.499 1.44E-02 1.49E-02 1.62E-02

30 lb/Mgal HEC, after 1000 ft 2-3/8-in. CT 0.531 1.18E-02 1.22E-02 1.32E-02

30 lb/Mgal HEC, before 3000 ft 1-1/2-in. CT 0.507 1.30E-02 1.34E-02 1.45E-02

30 lb/Mgal HEC, after 3000 ft 1-1/2-in. CT 0.507 1.30E-02 1.34E-02 1.45E-02

30 lb/Mgal HEC, after 2000 ft 1-1/2-in. CT 0.527 1.04E-02 1.08E-02 1.16E-02

30 lb/Mgal HEC, after 1000 ft 1-1/2-in. CT 0.518 1.09E-02 1.13E-02 1.22E-02

30 lb/Mgal HEC, before 1500 ft 1-in. CT 0.530 9.26E-03 9.54E-03 1.03E-02

30 lb/Mgal HEC, after 1500 ft 1-in. CT 0.545 7.64E-03 7.86E-03 8.47E-03

30 lb/Mgal HEC, after 1000 ft 1-in. CT 0.562 6.73E-03 6.92E-03 7.44E-03

30 lb/Mgal HEC, after 500 ft 1-in. CT 0.567 6.31E-03 6.49E-03 6.97E-03

20 lb/Mgal HEC, before 3000 ft 2-3/8-in. CT 0.592 4.21E-03 4.32E-03 4.62E-03

20 lb/Mgal HEC, after 3000 ft 2-3/8-in. CT 0.599 4.03E-03 4.13E-03 4.42E-03

20 lb/Mgal HEC, after 2000 ft 2-3/8-in CT 0.631 3.28E-03 3.36E-03 3.58E-03

20 lb/Mgal HEC, after 1000 ft 2-3/8-in CT 0.629 3.23E-03 3.31E-03 3.52E-03

20 lb/Mgal HEC, before 3000 ft 1-1/2-in. CT 0.608 3.49E-03 3.57E-03 3.82E-03

20 lb/Mgal HEC, after 3000 ft 1-1/2-in. CT 0.672 2.22E-03 2.27E-03 2.40E-03

20 lb/Mgal HEC, after 2000 ft 1-1/2-in. CT 0.672 2.22E-03 2.27E-03 2.40E-03

20 lb/Mgal HEC, after 1000 ft 1-1/2-in. CT 0.661 2.11E-03 2.16E-03 2.28E-03

20 lb/Mgal HEC, before 1500 ft 1-in. CT 0.648 2.26E-03 2.31E-03 2.45E-03

20 lb/Mgal HEC, after 1500 ft 1-in. CT 0.657 1.95E-03 1.99E-03 2.11E-03

20 lb/Mgal HEC, after 1000 ft 1-in. CT 0.659 1.85E-03 1.89E-03 2.01E-03

20 lb/Mgal HEC, after 500 ft 1-in. CT 0.684 1.52E-03 1.55E-03 1.64E-03

Fluid Sample for Test with Fann Model 35 n
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