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ABSTRACT

The optimum configurations of cone-~derived waveriders having
maximum lift-to-drag ratios subject to a suitable constraint, such as
fixed lift, are investigated. Analytic results from inviscid hyperson-
ic small-distrubance theory for non-axisymmetric conical flow past a
nearly circular cone are used, and results are valid for all values of
K§ = Mo8, where § is the semivertex angle of the basic circular cone.
The special case of the configurations generated from axisymmetric con-
ical flow is compared extensively with other configqurations to give in=-
sight on the effects of the pertinent parameters. The inviscid analy-
sis accounts for wave drag only, but the effect of viscous drag is dis-
cussed. The results are analytic in nature and particularly suitable
for studying the various trade-offs that are involved in missile
design., Comparison of the results with other types of lifting-bodies
suggest that properly selected waveriders are among the best producers

of large lift-to-drag ratios.
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SECTION I
INTRODUCTION

Recent progress in technology has made flight at hypersonic
speeds possible. As a consequence, the identification of high-lift
confiqurations with low drag and good control effectiveness in this
speed range has attracted considerable attention. Lifting bodies
having non-circular cross-section are of current interest as a means
for obtaining high-performance missile characteristics.

The use of digital computers greatly facilitates the calcula-
tion of general three dimensional hypersonic flows, but the complexity
and expense of these calculations do not lend themselves to parametric
studies or the basic urderstanding desirable for missile design consid-
erations., Thus, special confiqurations from which the flow fields are
simple and well known become particularly suitable for delineating var-
ious trade-offs that are involved in missile design.

Waverider confiqurations are derived from the general princi-
ple that any streamline of an inviscid flow can be viewed as part of a

solid boundary of the flow. A general discussion of waverider config-

urations of this kind is given by Kuchemann {1]. The variety of exact
waverider confiqurations available now is, therefore, limited by the
number of exact flow field solutions from which the streamlines can be

determined.



The simplest flow field of them all is a flow past a two-
dimensional wedge and has been used by Nonweiler [2] to describe the
flow past caret-shaped waveriders and many experimental investigations
of the caret waverider are now available [3].

The next simple exact flow field solution is the flow past a
circular cone with zero angle of attack. This conical flow field is
well known and documented [4]. Jones [5] has used the circular-cone
solution to describe the flow past a near-delta planform wing with an
underbody which is a portion of a circular cone. Maikapar (6] has used
the circular cone solution to produce a star shaped waverider by using
the intersecti&n of circular shocks, and more general waveriders has
been generated by Baron [7] using Maikapar's method.

The exact solutions of more complex flow fields, such as a
flow field past an inclined cone [8], an elliptic cone [9], and a coni-
cal body with nearly circular cross-section [10] have been developed
recently and have heen used to generate waveriders [11].

While such results are very useful, there are infinite number
of possibilities for such waverider configurations. The problem of
missile design is concerned with possible optimized configqurations.
Most previous works dealing with optimization of confiqurations in
hypersonic flow have assumed the surface pressure to be given by New-
tonian theory. Pertinent examples are those of Lusty and Miele [12]
and Huang [13]. They have found that optimum shape for high lift-
to-drag ratio is a conical body which has diamond shaped cross-section.
At best, these works are applicable strictly to the limit when K§ = Mw§

tends to infinity, where § is a pertinent f£low-direction angle.



Further, the flow field structure ard shock shape are not accounted for
as part of the analysis.

Hypersonic small disturbance theory [14] has been used by Cole
and 2ien [15] to produce optimum waverider configurations from the flow
field past a power-law body. However, the work was done by using digi-
tal computer and the results were good when K§ = ® only. Hypersonic
small disturbance theory results were also used by Kim et al. [16] to
produce optimum waverider configurations from the flow field past a
circular cone with zero incidence. The work was analytic and the
results were valid for all Kg values.

So far none of waverider configurations has been optimized
from a non-axisymmetric flow field analytically. This paper is a gen-
eralization of the work of Kim et al. [16] and discusses optimization
of waverider configurations derived from nearly axisymmetric conical
flow fields. The specific problem is to maximize the lift-to-drag
ratio of waveriders when lift is fixed, however, such factors as cone
angle, Mach number, body volume, base area and planform area of wave-
riders also can be used as constraints with the analysis.

The analysis is akin to that of Cole and Zien [15]}. It lies
within the framework of hypersonic small disturbance theory, and the
results are valid for arbitrary values of the similarity parameter Kg.
The results for the special case in which the waverider configqurations
generated from the circular cone flow have been compared extensively
with the idealized waverider and other results to give insight of the

effect of the concerned parameters.



SECTION II
FORMULATION

2.1 General Results
Consider a waverider confiqguration in a Cartesian coordinate

system x, y and z as shown in Fig. 2.1, with the free stream velocity

3, pointing in the z direction. We assume that the waverider configu-
ration is comprised.of three surfaces:

1) A compression strean surface, which is the bottom surface
of the waverider and the surface, is generated by a sheet of stream-
lines which originate from a known flow field. The shock wave due to
the compression stream surface is, therefore, the portion of the origi-
nal shock wave of the known flow field. The intersection between the
original shock surface and the compression stream surface becomes the
leading edge of the compression stream surface.

2) A free stream surface is the upper surface of the wave-

rider. The surface is parallel to the free stream velocity 3, and
intersects the compression stream surface on the shock surface. The
intersection line becomes the leading edge of both the free stream sur-
face and the compression stream surface.

3) A base plane surface, which is perpendicular to the free
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A Waverider Configuration in Cartesian Coordinate System.



stream at z = &, is the rear surface of the waverider. The base plane
surface pressure is assumed equal to the free stream pressure which is
tantamount to omitting the base drag in the ensuing analysis.

In the region bounded by the shock surface and the compression
stream surface, the original known flow field will remain unchanged.
Therefore, the forces acting on a waverider in steady supersonic flow
can be determined by means of the integral equations of inviscid gas-
dynamics and the known flow field solutions. Let the shock layer
region of the waverider be enclosed by a combination of three surfaces:

1) A surface Sg embracing the upstream side of the shock

surface,

2) the compression stream surface of the waverider, S,

and,

3) a shock layer base plane, S, perpendicular to the

free stream at z = 4 and which intersects the shock
surface Sg and the compression stream surface Sg.

Then the application of the laws of conservation of mass and
momentum to the fluid inside this control volume surrounded by the

three surfaces gives the following equations.

+ -
ff pV * n ds
s

i
o
-

(2.1)

>> a
ff(pVV'n + pn)ds
s

1)
o

(2.2)

<>
where S = Sg + So + Sp, V is the fluid velocity, p the pressure, p the

density, and n the normal unit vector directed outward. Since we have

ff Pw nds =0 '
s



we can also write the momentum equation, Eg. (2.2), as

>, A
ff{pvv-n + (p-pw)n} ds = 0 . (2.3)
s
By noting that
on Sp ﬁ = az
* -~ ~ ~
on 5¢ ; Ven =0, n=ng
> > - a
onSg ; V=Vo, P=Dpuy P =Pwr N = Ng
we can write the Eqs. (2.1) and (2.3) as
+ ~ .’ ~
/| poVeorngds + [[ pVee,ds =0, (2.4)
Sg Sp
~ » A ~
[/ (p-pm)ngds + [[{pVVee, + (p-po)e,lds
S¢ Sp
> >
+ ff ngng°nst =0 . (2.5)
Ss
By means of Eq. (2.4), Eg. (2.5) can be rewritten
- > > > . -
[[tp-pmingds = = [[{p(V-Ve)(Vee,) + (p-pmléylds (2.6)

S¢ Sp
The left hand side of Eq. (2.6) is the force acting on the waverider
stemming from the excess pressure on the compression stream surface.
We assume that the flow is symmetric about the x-z plane such that the
side force in the y direction vanishes. The force can thus be resolved
into a lift component in the negative x direction and a drag component

in the z direction as

L Z-e;* [[(p-peing ds
SC
R (2.7)
~ + ~
= [[ p(Veey)(Vee,)ds '
b
D E - 32 . ff(p-pm)ﬁc ds

S¢



= ff{p<3-éz-v,))(\7-§z) + (p~pw)}ds (2.8)
Sp
2.2 Non-Axisymmetric Flow Field
Let us consider the case that the compression stream surface
is generated from a flow of a conical body, its cross-section slightly
deviating from a circle. Such body and corresponding shock can be

expressed in spherical polar coordinate system as shown in Fig. 2.2,

8y, = § + €, cosn¢ (2.9)
8 = B + €pgpcosng (2.10)
where €, = small perturbation parameter,
§ = semi-vertex angle of the basic circular cone,
B = semi-vertex angle of the circular shock,
gn = ratio between perturbation of the shock and

perturbation of the body.
When n = 0, Eq. (2.9) and Eq. (2.10) represents another circular cone,
the n = 1 case represents an inclined cone, and the n = 2 case is an
elliptic-cone case.

The flow variables are expanded in powers of €, as

V= ep + v eg +w §¢
= (ug(8) + € uy(8) cosnd) e,
+ (vo(8) + eqvp(@)cosnd) eg (2.11)
+ (epwn(8) sinng)ey + 0(ey?)

P = Pol8) + €,pp cosnd + 0(e,2)

P E pgll)

where uy,Vy, and p, are the components of the velocity in spherical



8s = B + epgncosng

Fig. 2.2 A Non-Axisymmetric Body and Shock in Spherical Polar

Coordinate System.
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polar coordinates and the pressure of the zeroth order solution which
is the solution of a circular cone flow. The subscript n indicates the
first-order solutions of case n. The analytic approximate solutions
for the first order are available from the papers [8,9,10] and are
shown good agreement with experiments when €, is small. Those
solutions are given in Appendix A in this paper.

The shock layer base area S, also can be divided into two
areas in similar manner as

Sh = Sho * Spn (2.12)

Where Sp, is the shock layer base area between the trailing edge of the
compression stream surface and the circular shock 85 = B in the base
plane, the area Sp, which is much smaller than Sp, is the area
surrounded by the circular shock 85 = B and non-circular shock 85 = B +
€pgncosn¢d and the trailing edge of the compression stream surface as
shown in Fig. 2.3.

Substituting Eq. (2.11) and (2.12) into Eq. (2.7) and (2.8)

and by using the relations between unit vectors

~ ~ N ~ . . ~" e

ey = ey sinfcos¢ + ey sin® sin$ + e, cos ’

~ -~ A . -~ .

eg = ey cosbcos¢ + ey cos@ sinp - e, sind ’ (2.13)
-~ ~ N ~

ey = =eyx sing + ey cosé ¢

We can get

L = [[ pocosd(uysind® + vycosB)(ugcos® - vosind) ds
Sbo*Sbn

+ e/ (pol(uysin® + v,cos8)cosnpcosd - wpsinngsing}
Sbo (2.14)

* (ugcos® - v, sind)
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€ =1 + Epcosng

§ = g+E,gpcosng

Sbn

TRAILING EDGE OF THE
COMPRESSION STREAM SURFACE, § = R{¢)

Fig. 2.3 The End View of Trailing Edge of a Compression Stream
Surface (§ = 8/8 , Ep = €n/8)e
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+ (ugsin + vocos8)(upcos® - vpsind)cosndcosé] ds

+ 0(eq2)

D = =[[{(Po=Pw) + Pglugcosd - vosinB=Vy)(u cosd-v,sind)}ds
Spo*Spn

- enf/ {p, + 2po(ugcos® - vysind)(u,cos® - vpsingd)
Sbo ' (2.15)

- PoVm(upcost = v,sind)} cosng ds

+ 0(ep2)

2.3 Approximate Solutions for Hypersonic Flow
Consider the flow field past a slender body at very high speed
such that 6+0 and Mw** but the combination K§ = Mpx8 remains finite. 1In

this hypersonic flow the basic circular cone flow can be approximated

by
Uy 8 g2 32
Vo - | 2 {52 * zn(ezJ}
Vo 52
-‘-,: z -9(1 - e—z
E’_o_:'. Y x:2 PolB) .63 8_2
=1 - 7Kg [+ + — (1 - o3 * 0 62)]
TO - Y"1 2 62 52
'-r:=1-—2—!(5(2-e—2~+2.n;2-)
Po po(B)r KSZ §2 §2 32
P P ‘ 2(T°/T¢)) (32 - 92 * in 62)] (2.16)
: PolB) a2
where =
P qz-‘]
SE L xm, 1 41/2
and ozg=(5+ EE:J

The approximate first order solutions up, vn, wp and p, are
given in Appendix A. The density term inside the lift and drag

integrals can be approximated as po = po{B) since the hypersonic
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approximate solutions are obtained by using the constant-density
approximation which leads to very accurate results. Substituting the

hypersonic approximate zeroth order and first order solutions into Eq.
82
(2.14) and Eqg. (2.15) and using sin 6 2 8, cosb = 1 - ‘e and ds =

2204044, we can get to the lowest order in 8 as

L = lzpo(ﬁ)ff Vw262c0s9d0dd
Spbo*Sbn

+ enzzpo(B)ff Vo (Vpcosn¢cosd-wysinndsing)6d6d¢ (2.17)
Spo

and

D = 220,(8) [ {82va(14nd) - (po=pe)/po(B)}6a0as
SpotSbn

+ €220, (8) [[ {Valvy®-ug) - pp/po(B)} cosnBabds (2.18)
Spo

The first order pressure term in Eg. (2.18) can be replaced by

velocity terms by using p, solution in Appendix A
Pn = —Polugup + vovp + £1) (2.19)

where f, = BVe2g,(1-Pw/Po(B))2. The result is
§2
Vo(vp8=up) = pp/po(B) =g— vy + £ (2.20)

It is useful to write Eq. (2.17) and Eq. (2.18) in

dimensionless form by using following new variables

£ =08/8 v Ep =¢€n/8 '
Up = up/(6Ve) v Vnp = vp/Ve ’
Wy = Wn/Veo v Fp = £,/(8Ve2)
Cpo = 2(Pg=Pw)/(PaVee?) s (2.21)
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Using Eq. (2.20) and Eq. (2.21), the lift and drag can be rewritten as

352
-ELE- 620 ff cos¢ d&d¢d
2a4% 9% SpetSpn

End302
+ == éf [Vh(E)cosngcosd - W,(E)sinndsinglEdEdd (2.22)
02-1 Sho
442 2,72
D > = 620 o +§ dEdo
2g gc=1 sb°+sbn 280
+ Eﬂéﬁgi f (Va(E) + & FPplcosnedEde (2.23)
a2-1 Séo n n )
where q = %-pgvsz
Cpol8) Po(B) 52 2
—Bo.___ _ o - 8c B<
and 52 1+ o (1 >+ An 62) '
po(B) a2
pm B 02_1
are used.

2.4 Trailing Edge Function

Let the trailing edge of the compression stream surface be
denoted by § = R(¢) in the shock layer base plane where R(¢) is arbi-
trary function of ¢ only. We assume that the compression stream sur-
face intersects the circular shock at ¢ = ¢y, say ¢ = R(¢g), as shown
in Fig. 2.3. Since we have assumed that the waverider configquration is
symmetric about x-z plane, the surface integrals over the shock layer

base area can be written in terms of R{¢) as

i =2

Spo 0 R(9)

' (2.24)

¢y O0+Epgpcosnd .

I[ =2 (2.25)
Sbn 0 0
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Finally the lift and drag become

2 4
L = 4g82 83 2 [ 1{o=R($)} cosé
02-1 0
.
+ Enf E{V,(E)cosndcosd-Wy(E)sinngsingl}dg
R(9)
+ Epgnpcosngcosd) dé (2.26)
D = aqe? 64 2 f“’%[{az-ﬁ(g) o1 RO
02-1 0 402 2 c
g
+ Enf  {Vp(E)+ E Pp} cosng dE
R{¢)
+ L cosn¢] d¢ . (2.27)

Therefore, whenever we know the free stream condition q,
slenderness factor §, length £ and dihedral angle ¢g, and the trailing
edge function R(¢$) of the waverider configuration, we can determine the

geometry and aerodynamic forces of the waverider completely.



SECTION III
THE OPTIMIZATION PROBLEM

3.1 Maximum Lift-to-Drag Ratio

It has been shown that a waverider can be constructed from a
known flow field by specifying the trailing edge function R{¢) which in
turn completely determines the aerodynamic properties such as lift and
drag. A practical question naturally arises as to the feasibility of
obtaining in a specific flow field, a particular waverider which has
optimum aerodynamic properties.

There are several variational problems pertaining to optimum
shapes of waveriders according to what property of a waverider is
specified. One of the properties is the lift-to-drag ratio. The L/D
ratio is one of the most important factors related to the range and
fuel efficiency of a waverider. Therefore, the variational problem of
maximizing the the L/D ratio subject to an appropriate constraint
condition such as fixed 1lift, drag, volume, or project planform area of
the waverider, seems to be the most interesting and useful from a

practical point of view.

3.2 Variational Problem

Let 1lift and drag and constraint functionals be in the form

16
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2 0
L = 4q2283 —‘2’——[ Fy(R($),¢; 0, Ey) ¢ ,
g4=-1 0
2 9z
D = 42284 —— [ "F4(R($),4; o0, Ey) b ,
02-1 0
b2
G = g(q,2,8,0) [ Fg(R($),R'($),9; 0, Ep) d¢ (3.1)
0 ‘

where G is a constraint functional and R'(¢) denotes the first deriva-
tive of R(¢$) with respect to ¢. Notice that the lift and drag func-
tionals do not have the first derivative of the trailing edge function
R(¢). If other parameters are all fixed, the variational problem is to
determine the function R(¢), the associated value of dihedral angle ¢y,
and the thickness ratio § which serve the purpose.

Following the standard calculus of variational scheme, we form
the functional

H=L/D + AG (3.2)

where A is a Language multiplier and L, D, and G are given in Eq.
(3.1)¢ In order to get the solution, the following variational opera=-

tion must be satisfied:

80 =0 (3.3)
which leads to
1 - IE -
5 [8zg - Lt AégIg 81g] = 0 (3.4)
where
(7
I = / Fy(R,$;0,E,) d¢ ’
0
7

1q = fo Fa[R,¢:0,E;) db ,
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7]
Ig = Io FglR/R',$;0,En) d¢ .

and § is variational operator.
Since Fg and Fq do not depend on R'(¢), the vanishing of the

terms in brackets leads to the Euler-Lagrange equation

3Fy Iy 3Fg

aF oF
el e el =9 .4 Z9y _
TRt el §Ag Ig( =0 (3.5)

9R  d¢ oR'
The associated transversality condition for the variable end point at ¢

= ¢g is [17]

.y 32 o
LFg - I_d Fq + 5XgId(Fg - R 3R‘)]¢=¢g‘ =0 (3.6)

In addition to Eq. (3.5) and Eq. (3.6), we impose additional
requirements for R(¢) as follows:
a) The trailing edge function R(¢) is symmetric with

respect to ¢ = 0 as we assumed earlier.

b) fThe azimuthal dimension of the surface is within the
. T
regz.on0<¢<-2-.

c) The trailing edge curve lies in the shock layer, 1 <
R(9) € ¢ for 0 < ¢ < ¢g.

The cases where R(¢) < 1 are not permissible since a shock layer stream
surface can not lie inside the surface of the basic body itself.

It thus transpires that there are two classes of solutions:
one in which the condition 1 < R(¢) € o is valid for all ¢ in
0 € ¢ € ¢g; and in which 1 < R(¢) € o in the range ¢g < ¢ < ¢y, where
R(¢g) = 1, and the remaining part of compression stream surface is the

basic body itself R(¢) = 1. The latter is referred to as class A and
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the former as class B as shown in Fig. 3.1.

At this stage, the waverider configuration is said to be semi-
optimized. 1In addition, we wish to vary §, hence we have the usual
method of differential calculus as

3H _
3% = o . (3.7)

After the final imposition of this condition, the waverider configura-

tion is said to be fully optimized.

3.3 Lift-Fixed Constraint
For the special case of constraint condition, lift-fixed, we
set G = L and hence

g2

g = 4qe? §3
g2-1

and Fg = Fy. The Lagrange equation of Eg. (3.5) becomes

2 (Fg + Arrg) =0 (3.8)
n A 1 + dAqlg
wnex S e e—— —
¢ I/1g

and the transversality condition of Eg. (3.6) becomes

[Pq + X*F£]¢=¢2 =0 . (3.9)
The other condition, Egq. (3.7) becomes

L [D + A*L] =0 ° (3.10)

38

For this case, the variational problem also can be interpreted as find-
ing the minimum drag configuration for a fixed amount of lift since Eq.
(3.8), (3.9), and (3.10) can be obtained by setting new functional as H
= D + A*L, In the following sections, we will determine the function

R{(¢) which minimizes the drag with a fixed lift for each value of n.
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CLASS A

CLASS B

Fig. 3.1 The Trailing Edge of the Compression Stream Surface of
Class-A and Class~B Configurations.



SECTION IV

WAVERIDER CONFIGURATIONS OF Ep = O CASE

4,1 Semi-Optimized Configurations
Let us consider the problem of optimization that determines the
function R(¢) which minimize drag with a fixed lift when Ep = 0. This

is the case that the waverider configuration is generated from the

axisymmetric flow past a circular cone. After setting Eh = 0 in Eq.

(2.26) and (2.27), the lift and drag are written as

[
]

3 %
4q263 g f (1 - Bﬁila cos ¢ do ‘ (4.1a)

¢%=1 ¢

2 % s2.p2 2
D =qe26¢ I [ 2 RO _ 4n E.iilq a , (4.1b)
a2-1 79 a2 02

where q and £ are assumed fixed.
Taking variations of the functional
H=D 4+ AL (4.2)

where A is a lLagrange multiplier, we can get the Euler-Lagrange equation

2
R2(¢) + 22“ cos¢R($) + 02 = 0 (4.3)

and the transversality condition as

2.p2
g<=R 401
s o gn 1 = = =0 R (4.4)
[ ARGy
Enforcing the boundary condition R{¢g) = 0, we can get

21
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8
A= —W (4.5)

from Eq. (4.3), and Eq. (4.4) is automatically satisfied. By substi-

tuting Eq. (4.5) into Eq. (4.3), we get

R2 - 20 S50 p L 62 = 0 (4.6)
cosdy

which is algebraic equation to be solved easily and the solution is

g

R($) = cosdy

[cosd % (cos?p - cosz¢g)1/2] ' (4.7)

For ¢ = 0, R(¢) becomes

[+

R(0) = cosdy

(1 * singy) . (4.8)

If the plus sign is used, we get R(0) > 0., which is improper with the
real waverider which is 1 € R{¢$) < 9. Then using the minus sign only,
we finally get

[+]
cosdy

R(¢) = {cos$ - (cos?p - cos2¢z)1/2] . (4.9)

The critical value of ¢y, denoted by ¢y, occurs when R(0) = 1.
The value of ¢y, can be determined from Eq. (4.9) to be

g2-1
02+1

sinpg. = . (4.10)

and plotted in Fig. 4.1 as a function of kg. When ¢y is greater than
$gcr the function R($) in Eq. (4.9) cannot satisfy the condition 1 <
R(¢) € o for all values of ¢ in the range 0 < ¢ < ¢g. The cases where
R{¢$) < 1 are not permissible since a shock layer stream surface cannot
lie inside the surface of the original cone itself. Therefore, when ¢y
> $2cr we have class A waverider instead of class B waverider and the
optimum function R(¢) has to be obtained by the following approach.
Suppose the trailing edge of the compression stream surface

consists of two curves
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Kg =Mg$6

A Critical Dihedral Angle for Semi-Optimized Waverider
(Y=1o4)o *
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13

1 for 0 < ¢ < ¢g
(4.11)
13

R($) for ¢g < ¢ < ¢y

]

where ¢g satisfies R(¢g5) = 1. Then the lift and drag functionals are

3 $s by
L = 4qe263 ——[[ (1 - 2) cosp @b + [ (1 - ) cos¢as] (4.12a)
g%=1 0 ¢6
95 42 94 52_g2 2
- ag284 92 921 2 o2-r2 _, R%
D = qa24 —— [fo(q2 +zno)a¢+£6( = 2n02)d¢].

(4.12b)
By taking variations of the functional H = D + AL we can get
the same Euler-Lagrange equation as in Eq. (4.3) and transversality

conditions are

g2-Rr2 R2  4ag) R
[_.?2.__2,1;54.__6__(1 _-EJ]¢=¢2 =0 (4.13)
and
[02_1 + ino2 R2 40X (R 1
=3 ng< + &n ) + =5 (F - ?)]¢=4’6 =0 (4.14)

Both Eq. (4.13) and Eq. (4.14) are automatically satisfied since R(¢g) =

¢ and R(¢g) 1. The solution for R(¢) is again

1 for 0 < ¢ < ¢g
R(¢) = (4.15)

o
costy lcosd - (cos?¢ - cos?9y)1/2] for ¢5 < & < ¢

where ¢g > ¢3.. The value ¢5 can be determined from the condition R(¢g)

= 1 and the result is

for ¢g > ¢5¢ (4.16)

The solutions for R(¢), Eq. (4.9) for class B and Eq. (4.15) for class

A, are called semi-optimized solutions because we only apply the condi-

tion 6H = 0 but not 3H/3§ = O.



25

4.2 Geometry of the Semi-Optimized Configurations

4.2.1 Free Stream Surfaces and Compression Stream Surfaces

Whenever the trailing edge of the compression stream surface is
obtained, we can construct the corresponding compression stream surface
and the free stream surface by using the streamline equations of a flow
past a circular cone. The streamlines in the shock-layer are described

by

Vvxds =0 (4.17)

> >
where V is velocity and ds is infinitesimal segment of the streamline.

Eqe. (4.17) can be rewritten in spherical polar coordinate system as

dr _xd® and ¢ = constant (4.18)
Y% Vo

where u, and v, are two velocity components of the flow field past a

circular cone. By using approximations for uy and v, in Eq. (2.16), we

can get one family of arbitrary stream surface as

82-52,1/2
r (EE:EE- = rg($) (4.19)

where rg(¢) is an arbitrary function of ¢. It is useful to interprete
rg(¢) as an arbitrary line drawn on the shock surface, and thus Eq.
(4.19) describes the shock layer stream surface starting on the line r =
rg{$) on the shock.

The function rg(¢) can also be determined in terms of the
trailing edge function R(¢). By setting

8 = R($)S (4.20)
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and
r = £ sec(R(¢$)S) = &

in Eq. (4.19), we obtain

2(4)=1,1/2
ro(9) = 2(8 (2)1') 2 (4.21)
0é-

Thus when R(¢) is specified as Eq. (4.9) and Eq. (4.15), the intersec-
tion of the compression stream surface with the shock is determined,
along the complete compression stream surface itself from Eg. (4.19).

An arbitrary cylindrical surface parallel to the free=-stream
can be expressed as r sinf = £(¢) where £(¢) is an arbitrary function of
¢. Thus for small angle of 8, the free stream surface, which is upper
surface of the waverider parallel to the freestream, intersecting the

shock at rg(¢) is given by

ré = rg(9)B (4.22a)
or
8 _ ,(R2($)=1y1/2
rg= 2(——02_1 ) . (4.22b)

Correspondingly, the trailing edge of the free stream surface in the

base plane is obtained as

Be(d) 2 -1.1/2
Reg(9) = = = o (5—“,%11—‘) (4.23)

by setting r = £ and 8 = O¢5 in Eq. (4.22). Thus when R(¢) is speci-
fied, the complete shape of the waverider can be determined as well as
lift and dragqg.

In Fig. 4.2, examples of the trailing edge curves of both free
stream surface and compression stream surfaces of the semi-optimized
waverider configuration are shoﬁn for K§ = 0.5, 1.0, and 5.0. For each

Kg, there are shown class A shapes having pointed noses since stream-
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c

Fig. 4.2 Semi-Optimized Waverider Base Shapes Kg§=0.5, 1.0 and 5.0.
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lines on the surface of the circular cone originate at the vertex. The
class B has round noses with sharp lips since streamlines in the shock
layer originate at some point on the shock surface.

Fige. 4.3 shows the end views, top views and side views of the
waveriders for Kg = 1.0. The free stream surfaces are determined by
means of Eg. (4.22). The class B shapes are not conical since the
cross-sections are not similar as z varies. The winglets on the class A
waveriders are not conical, a;though the cone segment of the compression
stream surface for 0 ¢ ¢ < ¢5 of course is conical since it is part of

the original conical cone body.

4.2.2 Non-Optimized Configurations

Along with the semi-optimized configurations, we consider non-
optimized configurations for later use for comparison. The first exam-
ple is waveriders with flat top surface as shown in Fig. 4.4. It has a
flat free stream surface and its leading edge is a parabolic curve on
the shock. Since the trailing edge of the free stream surface is a
straight line in the base plane, the equation of the trailing edge of

the free stream surface is

ocosdy

£s = Goss (4.24)

and by using Eq. (4.23), the trailing edge of the compression stream

surface of the flat top waverider is represented by

cosz¢z 1/2

R($) = [(02-1) + 1) . (4.25)

cos2¢
Notice that the original cone body does not become a part of the com-

pression stream surface except for ¢; = 90° since R(¢$) is always greater
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TOP VIEW
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SIDE  VIEW END VIEW be

10°

22°

59°

80°

Figo 4.3

Three Views of Semi-Optimized Waverider for Kg=1.0.
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S:— FREE STREAM SURFACE

COMPRESSION STREAM
SURFACE

FREE STREAM SURFACE

COMPRESSION STREAM
SURFACE

Fige 4.4 End View of a Non-Optimized Waverider Configuration with
Flat Top Free Stream Surface.
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than unity for 0 € ¢ < ¢g.

The second example of non-optimized body is the waverider in
which its trailing edge of the compression stream surface is a straight
line as shown in Fig. 4.5. The equation for the trailing edge in base

plane is

gcosdy

R(¢) = ’ (4.26a)

cosé
for class-B type and

1 for 0K ¢ < ¢§ .
R(¢) = (4.26b)

gcoséyg
Wfor¢5<¢<¢2 ’

for class-A type where

cos™1 (ocosdy) ,

95
(4.27)

opc = cos™1(1/0) .
The trailing edge of the free stream surface is then obtained
by using Eq. (4.23) as

¢ ,0%cos2py - cos2p

)1/2
R =
fs ~ cosp a2-1

(4.28)

for 95 € ¢ < ¢y where ¢5 = O for class B and ¢g in Eq. (4.27) for class
A,

The lift and drag for these non-optimized configurations can be
calculated by using Eq. (4.1) and Eq. (4.12) for each class. These
confiqurations are not optimized, so their L/D ratio should be less than

the optimized body for given lift.

4.2.3 Other Geometric Variables
When the waverider configuration is known as a function of
R(¢), other geometric variables of interest also can be determined.

Among the variables of interest are the base area Ap, the volume V,
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CLASS - A /-— FREE STREAM SURFACE

— COMPRESSION STREAM SURFACE

CLASS - B

FREE STREAM SURFACE

¢, =40°

COMPRESSION STREAM SURFACE

Fig. 4.5 Non-Optimized Waverider Configurations of Eq. (4.26).
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projected planform area Sp onto y-z plane and wetted area S, which is
sum of two surface area of the compression stream surface and free

stream surface. The variables can be determined by the following

integrals.
1) -
ap = 2262 [ (1 - XY g
f 2 2 2
V‘£352I1 R-1+-2'(R-1)2]d¢
0 02-1 3 “g2- (4.29)
o o 2% I¢2R'g5 ined
p = 021 as sin¢dé
25 (™ 2y(_R%R"2 22y 4 [ R%R'2 o 2 z
Sy = 2228 1=-22) (————m—— R -1)“azla
N Io lo61-2 (22(02-1)2 s ) - ]z(t#a) R2352.1 © T C Vac]as
where
1
. = (R2-1 2
02-1

As for the lift and drag functionals, these integrals also are functions
of R(9).

As basis for comparison with above variables, it is useful to
consider a simple confiquration that is a special case of non-optimized
configurations and easy to visualize. This idealized waverider configu-
ration is conical in shape with infinitesimally thin delta winglets as
illustrated in Fig. 4.6. The particular results for all the geometric
variables come from setting R(¢) = 1 in all the integrals in Eq. (4.29)
then we get

Ap* = 2282¢ (4.30a)

vr = 2382¢9/3 (4.30b)
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S*

2280vsingy (4.30¢)

228 (20 + ¢g-1) (4.304d)
where the star denotes the idealized cone waverider case.

The base area, volume, projected planform area and wetted area
for the semi-optimized configurations, ratioced with the corresponding
values of the idealized cone waverider dre shown in Fig. 4.7 through
Fig. 4.10 as a function of dihedral angle ¢y for various values of Kg.
For large values of Kg, the idealized cone waverider provides a good
approximation for the semi-optimized configurations, except for small
dihedral angle ¢g.

Out of the dimensional variables, there are two independent
dimensionless combinations. One combination is v2/3/sp which is re-
garded as a measure of volume and another combination is Ab/sp which
can be regarded as a measure of slenderness. For the semi-optimized
configurations, these two combinations, in ratio with their counter-
parts for the idealized cone waverider, are shown in Fig. 4.11 and Figq.
4.12 as a function of ¢y for various values of Kg. For the class A con-
figurations, the ratio V/SP is smaller than its counterpart for the
idealized cone waverider by less than ten percent. The effective slen-
derness ratio Ab/sp is only slightly smaller for all conditions than

its counterpart for the idealized cone waverider.

4,3 Lift and Drag of Semi-Optimized Configurations
The lift and drag of the semi-optimized configqurations can be
obtained by performing integration for the integrals in Eq. (4.12) for

class A and Eq. (4.1) for class B. By substituting the solution R{¢)
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10 30 50 70 90°

Fig. 4.7 Base Area of Semi-Optimized Waverider as a Function of
Dihedral Angle.
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Fige 4.8 Volume of Semi-Optimized Waverider as a Function of
Dihedral Angle.
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10 30 50 70 80°

Fig. 4.9 Projected Planform Area of Semi-Optimized Waverider as
a Function of Dihedral Angle.
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Fig. 4.10 Wetted Area of Semi-Optimized Waverider as a Function of
Dihedral Angle.
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Fig. 4.11 Volume Ratio for Semi-Cptimized Waverider as a Function of
Dihedral Angle.
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in Eq. (4.15) into Eq. (4.12), we have lift and drag for class A as

3 sindg 1
= 263 9 ; - - -
L = 4q226 = [singg = Zoosty {2(¢g-95)
+ sin2¢y - sin2¢g - sin2¢g (T-2¢-sin2y)}] , (4.31a)
5 < 02 1

2
= qu2§4 2 =1 4+ 2ne? + ———— {(4c0s2¢5-2) ($p=b3)
4 02-1 ( a2 " ) ¥ 2cosz¢£ b #2908

- sin2¢; + sin2¢g + sin2¢; (w-2¢-sin2y)}

,  (4.31b)

where § = sin“(sin2¢5/sin2¢z) and the integral part in Eq. (4.31b)
should be carried out numerically.

The lift and drag of the class B confiqurations are obtained

by using Eq. (4.1) and Eq. (4.9) as

o3 ¢y n sinZy

= 2 3 i - —— ———

L = 29828 = (singg cost, * 2 Sosty ) . (4.32a)
2

- 254 9% 1 24, - ai

D = 4q&<8 2 [Bcosz¢£ {(4cos4py-2)9y - sin2dy (4.32b)
7 <l
. 1
+nosintygl - g [ (35 - Somr- - 1)a]

The lift and drag of the semi-optimized configurations are
plotted in Fig. 4.13 in forms of D/q%26%¢ and L/q42§3¢ with Kg used as
a parameter., The origin of the curves corresponds to ¢y = 0° and the
end of the curves corresponds to ¢3 = 90°. The solid-circle point
presents ¢3, of each Kg. For a given lift when ¢, 2, § is fixed, the
drag for the non-optimized configuration is always greater than the
semi~-optimized configurations as shown in Fig. 4.14 and Fig. 4.15 for

two cases of non-optimized configurations.
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Fig. 4.16 shows the ratio (L§)/(Do) as a function of ¢y for
various values of Kg for the semi-optimized configurations. All curves
for various Kg stem from a common curve, the point of tangential depar-
ture being ¢go. The ratio (LS)/(Dg) increases as K§ increases. The
dashed curves are for the idealized cone waverider for Kg = 0.1 and 0.5
for comparison. The lift and drag of the idealized cone waveriders. can
be obtained by setting R(¢) = 1 in the integrals in.Eq. (4.1) and

results are

402y .
L = q1263 (m) singy ' (4.33a)
244 g? 2
D=q£6(1+212na)¢1 . (4.33b)
a -

The values of (L§)/(Dg) for the idealized cone waverider gives smaller
values than the corresponding semi-optimized shapes for K§ = 0.1 and
0.5, as should be expected, but for larger K5, the idealized cone
waverider gives a better approximation being nearly indistinguishable
from the semi-optimized configurations at K§ = ®. For given value of
Kg, the class B configurations have larger values of (L§)/(Dg) than

class A.

4.4 Fully-Optimized Configqurations

When dH/38 = 0 in Eq. (3.7) enforced, the semi-optimized
shapes are restricted by a relation between ¢y and Kg. Since other
variables q and £ are independent on §, performing the differentiation

of the functional H with respect to § leads

3_ (5402 483¢3 I ) _
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Using the relations

90 _ 1
38 =~ Kazes (4.35)
and
3Ty 0 ’ class A
- = . (4-36)
3¢ 53929 ’ class B
o‘
314 0 ’ class A
= 2 (4.37)
3¢ 2(1+0°) s class B
o
and accounting A = -8/(0coség) leads to the equation
s I 402k52 + 2/(0 =1) -;_:_j‘_
cos¢g Ig 4 (4.38)

302Kg2 - (02-3)/(a2-1) - i;—;%&

For class A bodies, the integrals Iy and Ig depend both on ¢y and o,
where as for the class B bodies, they depend only on ¢y. The relation
between ¢y and Kg generated by Eq. (4.38) is shown in Fig. 4.17 with
$gce For small Kg, the fully-optimized lift-fixed bodies are of class
B, and ¢pg*72.3° as Kg*0. As K§ increases above Kg = 0.17, the fully-
optimized bodies are of class A and ¢po*49° as Kg+. This asymptotic
hypersonic limit result is in very close agreement with numerical
result of Cole and Zien [15] for Kg = =.

Fully-optimized values of (L§)/(Do) are shown in Fig., 4.18 as
a functionof Kg, together with the corresponding fully-optimized
results for the idealized cone waverider [21]. For larger values of
Kg, the two results become closer. Note that since 0 becomes larger as
K§ becomes smaller, the actual value of L§/D tends to increase as Kg

becomes smaller. The circle shows the location which separates the



DIHEDRAL ANGLE, ¢bg

90°

70

n
o

w
o

10

49

OPTIMUM FOR
FIXED LIFT, #l o

Fige 4.17 Dihedral Angle for Fully-Optimized Waveriders.



Lé
D¢

50

1.0
0 FULLY OPTIMIZED WAVERIDER

| ap—— IDEALIZED CONE WAVERIDER 21

|
|
N
|
|
b
)
2F
l | ul 1 —
0 1 2 3 A 5
Ks

Fige 4.18 Lift-to-Drag Ratio as a Function for K§ for Fully-
Optimized Waveriders.



51

class B (small Kg) from the class A (large K§) configurations.

Fige 4.19 shows the actual values of L/D for the
fully-optimized waveriders as a function of § for Ms = 3, 4, 5 and 6.
All these curves represent the class A configurations since the class B
correspond to large values of L/D and small § thus off the scale of
Fig. 4.19. For a fixed 8§, the values of L/D decrease as Ms increases.
the solid circle data point represents the on-design elliptic cone
waverider of Ref. 18, (Mo = 4, § = 18.6°), which is slightly under the
curve for My = 4 for the fully-optimized waverider. The square data
point represents the conical lifting body of Schindel [19] (Mo = 6, § =
13°), which produces less L/D than the fully-optimized waveriders. The
experimental results include the friction drag on the forebody whereas
the theory ignores friction drag.

Fig. 4.20 shows L/D for the fully-optimized waveriders as a
function of V2/3/Sp for Mgy = 3, 4, and 5. For a fixed V2/3/Sp the L/D
increases as Mo increases. Fig. 4.21 shows L/D for the fully-optimized
waveriders as a function of Ab/sp for Mo = 3,5. For large mach num-
bers, this representation is nearly independent of Mw. The curves in
both Fig. 4.20 and Fig. 4.21 represent only the class A configurations
since the results for the class B are off scale (large L/D). The solid
circle data point in both figqures represents the on-design elliptic
cone waverider of Ref., 18 and it falls slightly under the curves for
the present optimized waveriders. The square data point in both
figures represents the experimental maximum L/D (at Mw = 6) for the
lifting body of Schindel {19] which falls below the curves for the pre-

sent optimized waveriders. The shaped trapezoidal area represents the
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data range of "aerodynamic confiqured" missiles discussed by Krieger
120), which also have less L/D than the present optimized waveriders
except in the low Mach number range. The results of Krieger as a func-
tion of Ab/sp were not available.

Since experimental results include friction drag, it is rea-
sonable to calculate friction drag of the forebody of the present op-
timized waverider and compare with the experimental results. The
viscous or friction drag for the fore body of a waverider can be repre-
sented by Dg = q S, C¢ where S, is the wetted area of the body, given
by Eq. (4.29), and Cg is an appropriately averaged coefficient of fric-
tion. The drag can now be written as Dy + Dy where D, is the drag used
previously.

The value of C¢ must be estimated for a given configuration
and range of flight conditions. It depends on Reynolds number, Mach
number, laminar or turbulent flow, transition, wall heating, and
effects of corner flow. For laminar flow on a flat plate, Cg is
approximated by Cg = 1.328 £(Ms)/YRe, where Re = peVual/He is the free
stream Reynolds number based on the length, and f(Me) is a function of
Mach number depending on the nature of the viscousity-temperature
relation, being somewhat less than unity. Based on expressions such as
this, modified for conical flow and turbulence, possible values of C¢
of interest were taken to lie in the range 0.001 < Cg < 0.003.

Fige 4.22 is a redrawing of Fig. 4.20 for Ms = 4 showing the
effect of friction drag. The figure shows that friction drag becomes
more significant when the body is more slender, that is, the smaller

that §, V/sp, and Ab/sp become. It can be seen that there is another
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optimum for L/D that involves the friction drag, since the curves for
for nonzero values of Cs shows maximum values. The experimental

results all contain friction drag, and only the curve for C¢ = 0 is

frictionless.



SECTION V

WAVERIDER CONFIGURATIONS OF N =1 CASE

The body and shock expressions in Eq. (2.9) and Eq. (2.10) can

be written for n = 1 case as

Bpody = §(1 + Eq cosp) (5.1)

9shock = 6(0 + Eygqcosé) (5.2)
in spherical coordinate system when Ej = €4/ is a small parameter and
§ and B are semi-vertex angle of body and shock respectively of a cir-
cular cone. Since Eq. (5.1) describes a circular cone body with angle
of attack within error of 0(E12), the optimization problem of n = 1
case is to obtain optimum configurations from flow past an inclined
cone.

The lift and drag in Eq. (2.26) and Eq. (2.27) for n = 1 case

are written as

2 92
L = 4q223§3 ‘2’ [ "Fy (R(), 05 0,Eq)d (5.3)
o%-1 o
2 b2
D = 4q2284 —— [ "Fq (R($), 65 0,E;)d¢ (5.4)
g<=1 0 :
where
o4
Fy = {0-R(¢)}cosp + E, f E{Vy(E) cos?p - Wy (E)sinp}dE + Eqgicos2¢
R(¢)

(5-5)

58
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202 [+] Es g
Fg = gZ-RC9) 1 o R(4) E [ {v4(8) + EF4} cos¢dE + L
402 2 o R($)

cosd
{5.6)
where R(¢) is the trailing edge function of the compression stream

surface and is to be determined in following sections.

5.1 sSemi-Optimized Configurations

When other éarameters q, 4, and Me are fixed, following the
same procedure outlined in the previous chapters, the variational
problem of minimizing drag with fixed lift reduces the problem to that
of minimizing functional

H=D+ AL

where L and D are given in Eq; (5.3) and (5.4), and A is a Lagrange
multiplier,

After taking variations of H with respect to R($) we get the
Euler-Lagrange equation as

RZ2+g2

+
— ) + By (Vv (R) + RF1) cos¢

%-{cos¢ + EJR(Vq(R)cos2¢ - Wy(R)sin2$)} = 0 (5.8)
and the transversality condition as

A -
[Fd + 3 Fg‘]¢=¢2 =0 . (5.9)

The A/8 term can be replaced after applying the boundary
condition
R(¢g) =0 (5.10)

to Eq. (5.8) and the result is
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A 1/0+ E{(V4(0) + OFy)coség (5.11)
§ - cosdy + Eq0(Vy(c)cos2dg- wy(o)sin2py) )

>t
n

With the values

__4 o _ 9
V](O‘) = ] - L W1(0’) = 62 ’ Fq = 3
Egq. (5.11) yields
4 1
- 1+ Bg10(57 + o2)
3= - Yl o (5.12)

4 1 ,
gcosdy + E1g1°2(?IT cosz¢2 - ;5 smn2¢z)

Notice that By = 0 case of Eq. (5.11) leads to

S __
gcosdy

which is the same result as Eq. (4.5) for Eq = 0 case.
If the denominator of Eg. (5.12) becomes zero, the value of A

becomes infinity. We can get approximate value of $p where A+= by

setting the denomenator equal to zero,

2
E1g1($%7 + 1)cos2¢y + ocosdy ~ Eygq = O (5.13)

and the approximate solution is

Eq94

cospgn & p- (5.14)

If ¢y is larger than ¢gp, the lift no longer increases as ¢y increases,
therefore, we are not interested in the value of ¢y which is greater
than ¢y, The special case value for ¢p, is 90° when Eq = O. Also
$gn*90° when Kg+0 since o+» as K&+0.

By using the boundary condition of Eq. (5.10), the
transversality condition becomes

E19,

+ AE4gy cos¢g = 0 (5.15)
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which is automatically satisfied since we can write A as

3 1
A—-mi-O(E")

then Eq. (5.15) becomes of order of O(E;2) which is ignored in our
analysis.

The Euler-Lagrange eguation, Eg. (5.8), which is a gquadratic

equation for cos(¢) can be written as

A(R) cos?¢ + B(R) cosd + C(R) = O (S.16a)
where
A(R) = E{AR(V{(R) + Wy(R))
B(R) = A + Ey(Vq(R) + RFy)) (5.16b)
2,42 -
c(r) = BZEET EqA RW(R) '
2Rg2

can be solved easily for cos(4) as

-B(R) % ¥B4(R) = 4A(R)C(R)

cos¢ = 2A(R)

(5.17)

The solution is an inverse one because the solution for R(¢) cannot be
obtained explicitly.
For ¢ = 0, if we take a limit Ey»0, Eg. (5.15) yields

1 1

= i L]
gcosgy gcosdy (5.18)
so the minus sign should be used to satisfy the above equation.
Finally, we get the solution as
= eac=1 [ =B(R) = ¥B4(R) - 4A(R)C(R)
¢ = cos™! | 25(R) ] (5.19)
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The solution to Eq. (5.19) can be obtained by using a
different approach. 1Instead of using an unknown function R{(¢) for the
trailing edge of the compression surface, we use an unknown function

9(£). Then from Eg. (2.22), the lift and drag become

a2 sin2
L = 4q2.253 2 [f F£ (¢, §; o, Eq)4E + E19q (;E-.g._‘iig.'.)] ,
g EO
g . B '
D = 4q2.264 [f Fq (¢, & o, Eq)dE +—;El.sln2¢£] , (5.20)
gé= EO
where
Fy = sind(§) + EqEvy(g) (25l 4 S2n28E),
_ €E1w1(£){0(§) - sinZZ(E)} ,
Fg = (E +o? )6 (E) + E1{V4(E) + EFq) sin®(§) .

2£g2 N
Then the Euler-Lagrange equation from dH = 0 yields

A(E)cos2¢(E) + B(E)cos®(E) + C(§) =0 (5.21)
where A(£), B{§), and C(E) have the forms in Eq. (5.16b) except §

appears instead of R. The transversality condition for free end point

Eo is

CA
[E‘d + 3 Fg] at £ = £ =0 (5.22)

is automatically satisfied since $(£3) = 0. Then the solution for ¢(§)

is

- - Z -
8(E) = cos=! [ =BLE) /B2(E) - 4A(E)C(E) ]

28(5) (5.23)

which is the same solution as in Eq. (5.19).

The critical value, ¢y., for n = 1 case can be obtained by

using the condition
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R(0) =1 at ¢g = ¢g¢ (5.24)

The value A for ¢y = ¢35, denoted by A,, is obtained by applying the

condition Eg. (5.24) to the Lagrange equation, Egq. (5.8) as

(0241) /202 + E4(V4(1) + Fq)
T + Byvq(1)

Ao = - (5.25)

Equating above equation with Eq. (5.11) for ¢g = ¢g, we have

~B*(g) = VB 2(g) - 4A*(c)?(o)]

costge = | 2A%(0)

where A*(g), B*(0) and C*(0) are in forms as Eq. (5.16b) except Ag

instead of A. The values of ic is given in Eq. (5.25).

In Fig. 5.1, the values of ¢g. are plotted as a function of Kg
for various values of Ey. As E; decreases, ¢y, decreases for given Kg
value. For certain value of K§ and E¢, there are only class A
configurations available. For example, if Eq = -0.05 and K§ is greater
than 3.0, there is no class B confiqurations in that range. However,
the range is not acceptable since we assumed that the perturbed shock
layer base area Sp, is much smaller than Spq in Eg. (2.19), in other
words, the absolute value of Ej is much smaller than the thickness of
the shock layer, (o-1), which is a function of Kg. As Kg+*0, ¢go>90°
for all Eq values and ¢y, values for E4=0 case are same as that in Fig.
4.1,

When ¢g is greater than ¢y, we have class A configurations
and the trailing edge of the compression stream surface should be

written as

w
L}

1 + Eq cos¢ for 0 < ¢ < ¢4 ‘
(5.27)

oY
]

R(¢) for ¢ < ¢ < ¢y '
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where ¢5 satisfies the condition R($g) = 1. Substituting Eq. (5.27)

into Egq. (5.3) through Eq. (5.6) and neglecting higher order terms, we

can get
2 98 73
L =4q2263 —2— [[ Fyq a¢ + [ Fyp 4] (5.28)
g4=1 0 ¢5
2 ¢s L7}
D = 4a8284 —2— [[ "Fqy a0 + [ Fap a0] (5.29)
o4=1 0 ¢6
where

o
Fgq = (o-1)cos¢ + E; [ §{V{(E)cos2p
1

- Wi (E) sin%¢} dE + Eq(gq-1)cos2¢ ’ (5.30a)

g
Fgp = (0=R)cos¢ + Eq J E{V1(E)cos?p

R
- Wy (£) sin2¢} dE + Eygqcos?e . (5.30b)
02-1 1 ‘
F31 = Y= + -2- ingo + E1f1 {V](E) + €F1} cos$ 4
E191 Ey 1
+ = cos¢ - T (1 + ;5) cos¢ ’ (5.30¢)
2_Rr2 0
Faz = TR vl 2 E [ {vq(E) + EF} cos¢ ag
402 2 R R
Eqg
+ 191 C°S¢ . (5.304)

By using new lift and drag functionals, the variation of H = D
+ AL leads to the same Euler-Lagrange equation as Eq. (5.8) and the

transversality conditions are

[Faz + % Fzz]q,:% =0 (5.31)



€€

and

' A
(Fq1=-Fg2) + = (Pgq = Fgo) =0 (5.32)
[ d17%d2 I3 21 22 ]¢=¢5
In a similar way of class B configuration cases, Eg. (5.31) is
satisfied automatically by the boundary condition R(¢y) = 0. Eq.
(5.32) can be written by applying the condition R(¢g) = 1 as
Eq 1 A
SRR LY (559

Then by using the relation

1

A
3" W + 0(31) (5.34)
and
cos 2
b _ o1, 0(Eq) (5.35)

cospy 20
from Eq. (4.10) and Eq. (4.16), Eq. (5.33) is also satisfied since
0(E42) is neglected in this analysis.

Finally the solution for R(¢) for the class A configurations
is also given in the form of an inverse function as

£ =1+ Eq cosd for 0< ¢ < ¢g

-B(R) - VBZ(R) - 4A(RIC(R) (5.36)

2A(R) ]for $5<o<dg

$ = cos™! [

where A(R), B(R) and C(R) are given in eq. (5.16b) and i given in Eq.
{(5.11). The value for ¢5 can be obtained from Eq. (5.36) by using R =
1.

In Fig. 5.2, 5.3, and 5.4, the trailing edges of the semi-
optimized configurations are shown for Kg§ = 0.5, 1.0, 5.0 for various
values of ¢y which are 20° to 80° with 20° interval. Therefore, there

are four trailing edges shown for given Kg§ and Ei. For each Kg, the
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Fige 5.2 Trailing Edge of the Compression Stream Surface for
Semi-Optimized Waverider in n=1 Case(Kg=0.5).
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Fig.e 5.3 Trailing Edge of the Compression Stream Surface for
Semi~Optimized Waverider for n=1 Case (Kg=1.0).
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Fige 5.4 Trailing Edge of the Compression Stream Surface for
Semi-Optimized Waverider for n=1 Case (Kg§=5.0).
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trailing edges for Eq = O case are also shown in order to show the ef-
fect of Ey. Also ¢y, is plotted to distinguish class A configurations
from class B. When Eq is positive, the angle ¢ of the trailing edges
decreases more rapidly as § decreases than E; = O case so the shock
layer base plane area of the positive E; case is smaller than that of
Eq = 0 case for given K§ and ¢5.

The lift and drag of the semi-optimized configurations are
calculated by using a numerical integration method and plotted in Fig.
5.5 for various values of Kg and Eqi. The curves for E; = 0 case for
each Kg, are exactly the same as those in Fig. 4.13. As E; decreases
for given Kg§ and lift, the drag decreases except the region near ¢y =
90°, The solid circle and triangle indicates each value ¢y, for given
Eq and Kg. At small Kg value, the effect of Eq is smaller than large
K¢ value. This means small deviation from a circular cone changes lift

and drag more for large K§ than for small Kg.

5,2 Fully-Optimized Configqurations
Performing the differentiation of the functional H with

respect to § leads

3 (6402 §302 _
ﬁ(ozq Ig + 2 5 ) =0 , (5.37)
where
92
f Fg d¢ R for class B
o}
Ig =
$s 7]

/ F31 dd + / Fgo d¢ , for class A
0 bs



1
0.02
3r 0.0 ¢.Ct:
-0.02 0.05 A WHEN E>0
0.0 ® WHEN E1=0
/-0.05 0.1 ¥ WHEN E O
0.0
21 0.1
D
q Q8%
E
1
05 / 0.1
1t 0.0
-0.1
0.1
¢/ " N |
0 - 1
0 1 2 3 4
L
q*g’r
Fig. 5.5

Drag as a Function of Lift for Semi-Optimized Waveriders
of n=1 Case.

I



72

7
[ Py dd , for class B
Q
Iy =
¢35 73
] Fgq 86+ ] Fyp d¢ , for class A
0 95
Using the relations
il G .
3 Kgead -
and
3K§ 3
30 -~ %
Eq. (5.37) can be written as
3Ig
- (40252 + ) 1g + 02 Kg3 =4
52_1 3K5
(302xg2 + 02-1) I; + o2Kg 32%

where X is given in Eq. (5.12).

Because Ig and Iy involve complex functions of Kg and ¢y, it
is impossible to solve the equation analytically. Therefore, a
numerical scheme of the finite difference for calculating the

derivatives in Egq. (5.38) is used as

ar _ I(¢p.,K§ + AKg) - I(¢y, Kg - AKg)
IKg 2AKg

(5.39)

where AK§ is a small value and I is either Ig or Iy.

Fig. 5.6 shows the optimum values of ¢y, denoted by ¢gq, as
functions of Kg for various values of E;. As Eq increases, ¢jg
decreases for given value of Kg except Kg is very small Kg where ¢go*
72.4° as Kg+0 and ¢9o*49° as Kg*®. The curve for E; = 0 case is
identical to that of Fig. 4.17 that confirms the accuracy of the

numerical calculation.
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In Fig. 5.7, the lift and drag ratio of the fully optimized
configurations are shown in forms of (L§)/(Do) as functions of Kg for
various Ey values. As we expected, the negative value of E; case has
higher lift-to-drag ratio than positive Eq case.

Fig. 5.8 shows actual value of L/D ratio of the fully
optimized confiqurations for Ms = 4.0 as a function of § for various
values of Eq. Again, negative values of E; case shows higher L/D ratio

than positive Eq case,

5.3 Free Stream Surfaces
The streamlines of the flow field of n = 1 case can be

determined from the solution of

> +

Vxds =0 (5.40)
>

where s is a vector giving position along the streamline and

ES
v

[ug(8) + €quq(8) cospl é,_.

+

[ve(8) + £9v;(8) cosd] eg

+

[€4w1(8) sing] & .

In spherical polar coordinates, Eg. (5.40) can be reduced to

dr - rdd - rsin® d¢ (5.41)
ug+Equqcosd Vo+EqVcoSd €ywysing )

To the lowest order, Eq. (5.41) becomes

u
ar _ 20 46 (5.42)
r Vo

"1 d¢
vosin®  €qsin¢

(5.43)

Eq. (5.42) can be integrated by using approximations for ug and vg in

Eq. (2.16) to give
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2.52 1/2
(8282 )V (5.44)

Ig = —
352_52
where rg and 85 are constants of integration and correspond to the

streamline passing through the point at (rg,85.¢5) on the shock.

Eg. (5.43) can be integrated to give

8
tan(§§J = tan(d) exp [fes :l:‘ ae] (5.45)

where ¢5 and 65 are cdnstants of integration. Ed. (5.45) can be
integrated approximately, however, in this paper, Eg. (5.45) is
integrated numerically.

The trailing edge of the compression stream surface which
orginates from the leading edge at (rg,05,0g) on the shock can be

obtained by setting 0=6p, and r=% in Eq. (5.44) and Eq. (5.45) and we

get
8,282, 1/2
= g (—— (5.46)
s 952_52
and
s b Os ey
tan(3—J = tan(—) exp [[ ae] (5.47)

where the point (%,8p,¢p) in the shock layer base plane is on the same
streamline which passing through the point at (rg,8g,¢g) at the shock.
The free stream surface intersecting the leading edge of the
compression stream surface is given by
rd =8 and ¢ = ¢g (5.48)
and the corresponding trailing edge of the free stream surface in the

shock layer base plane can be obtained by setting r = § and 8=8f5 in
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Eq. (5.48) as
Ogg = E—»es and ¢ = ¢g (5.49)

By using Eq. (5.46), it can be written as

o 8,282, 1/2
bgs = 85 (952-52 and ¢ = ¢g (5.50)
Noticing 6,/ = R(¢p) we can get
R (1:"2(¢"°)”1)1/2 d ¢=29¢ (5.51)
=g (————— an = .
fs 02_1 S
where the relation between ¢y and ¢g is
o EqW
tan(;EJ = tan(%EJ expl [ «E%—L d&] (5.52)
R(¢p)="0

Therefore the trailing edge of the free stream surface can be
determined from given trailing edge of the compression stream surface.
The free stream surface and compression stream surface of the
fully-optimized configurations for given E; and K§ are shown in Fig.
5.9, 5.10, and 5.11 for Kg = 0.5, 1.0, 5.0, Two semi-optimized config-
urations are also shown in the figures. For positive Eq case, the base

plane of the configuration is thinner than the negative Eq case.
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SECTION VI
WAVERIDER CONFIGURATIONS OF N = 2 CASE

The body and shock expressions in Eq. (2.9) and Eq. (2.10) for
n = 2 case become
bpody = §(1 + Ey cos2¢) (6.1)
Bshock = 6({0 + Ezgp cos2¢) (6.2)
in spherical polar coordinates, where E; = €3/8 is a small parameter
and § and B are semi-vertex angle of body and shock of a circular cone.
Since Eq. (6.1) represents an elliptic cone body with an error of
O(Ezz), the optimization problem of n = 2 case is to obtain optimum
shapes from the flow past an elliptic cone with zero angle of attack.
The lift and drag expressions of Egq. (2.26) for n = 2 case

then become

2 92
L = 4q2253 _%_T ] Fe(R($), ¢; 0,Ep) do (6.3)
=1 o
2 b2
D = 4qe284 3%_7 ] Fa(R($), ¢; o,Ep) ¢ (6.4)
- 0

where

: g
Fg = {0-R(¢)} cosp + E; |  E{Vo(E) cos2¢ cosd
R(¢)

- Wa(E) sin2¢ sing} A + Epg, cos2 cosé (6.5)

82
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_ 92-R2(¢) _ 1, R($) ?
= _—;;E——— -3 &n. S + Ep f {Vz(a) + EFz} cos2¢ d§

R(¢)

E29
+

2 cos2¢ (6.6)

where R(¢) is the trailing edge function of the compression stream

surface to be optimized in the next sections.

6.1 Semi-Optimized Configurations
When the parameters g, £, Mes are fixed, following the same
procedure in the previous chapters, the variational problem becomes the
problem to that of minimizing functional
H=D4+ AL - (647)
where L and D are given in Eg. (6.3) and Eq. (6.4), respectively.

The Euler-Lagrange equation can be obtained as

R2+02
2R02

+ Ep{Vy(R) + RFy} cos2¢

+ %{cos¢ + EpR(V3(R) cos2¢cosp - Wy(R) sin2¢sing)} = 0 (6.8)

and the transversality condition as

A
Fa 4+ =F =0 (6.9)
[ d™T £]¢=¢2
The A/§ term can be replaced by applying the boundary condition

R(¢£) =0 (6.10)
to Eq. (6.8) and the result is

1/6 + Ep(Vy(0o) + agFy)cos2dg

A cosdy + Epa{V,(a)cos2pgcospy-W,(a)singgsin2gy}t (6.11)

Al
3

where the values of V5(0), Wo(0) and F, can be obtained from Appendix A

as
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4 92
Va(o) = Py g3 o, Wylo) = ;3 ¢ Fp=—

When E; = 0, Eq. (6.11) becomes

. N
gcosdy

which is the same result as Eq. (4.5) for E, = 0 case.

By using Eq. (6.10), the transversality condition becomes

£292

P + A Ep93 COSZ¢2 =0 (6.12)

which is automatically satisfied since we can write A as

3 1

)\=-U—co-;¢-;+0(32)

then Eq. (6.12) becomes in order of 0(E;2) which is neglected in this

paper.
Eg. (6.8) can be rewritten as

cos3¢ + A(R)cos?¢ + B(R)cos$ + C(R) = 0 (6.13a)
where

A(R) = 2E5{V3(R) + RF3}/D(R)

B(R) = [A - AE;R{VR(R) + 2Wp(R)}1/D(R)

C(R) = R2+gz - Eo{V5(R) + RF,}1/D(R)

2R0?

and

D(R) = 2XE2R{VZ(R) + Wa(R)} (6.13b)

The Eq. (6.13), which is a cubic equation for cos(¢$), can be solved
analytically and the solutions are also in inverse form as the n = 1

case. The result is
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cos=1{- %— + V3 4 (- % -3 5—;—& (6.14)
where
a =-%7 {283(R) - 9 A(R)B(R) + 27C(R)}
2 3
Y- S ~hd
b=7"+33
c =-% {3B(R) - A2(R)}

The critical value, ¢3-, for n = 2 case can be obtained by

using the condition

R(0O) = 1 at ¢y = ¢3¢0 (6.15)

The value A for ¢y = ¢g., denoted by A,, is obtained by applying Eq.

(6.15) to Eg. (6.8) as

(02+41) /202 + Ex{vy(1) + Fp}
1 + EpVqy(1)

Equating Eq. (6.16) and Eq. (6.11), we can get the equation for ¢go as

cos3¢g. + A¥(0)coshy. + B*(0)cospyg + C*(0) =0 (6.17)

where A*(0), B*(¢) and C*(0o) have forms as those in Eg. (6.13b) but ic
instead of A. Eq. (6.17) can be solved for cos(¢y.) and plotted as a
function of Kg for various values of E; in Fig. 6.1. The curves are
very similar to those of n = 1 case.
When ¢y > ¢y we have class A configurations and the function
R(¢) consists of two curves
13
g

1 + Ejcos2¢ for 0 < ¢ < ég
(6.18)

R(¢) for ¢g < ¢ < ¢y

where ¢g satisfies the condition R($§) = 1. Substitute Eq. (6.18) into
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Eq. (6.3) through Eq. (6.6) and neglecting lower order terms, we have

~

2 % 92
L = 492283 —— [ "Fyqa0 + | "Fyp d¢] (6.19)
g4-1 0 95
2 . 9 92
D = 4q2264 —T— [[ "Fqqa6 + [ Fgy a9] (6.20)
ge=-1 0 98
where
o
Fgqy = {0=1)cosp + Ey [ E{Vy(§) cos2¢ cos¢ - Wp(E)sin2¢sing}dE
1
+ Ep(gy-1) cos2¢ cosé (6.21a)
. ]
Fgo = {0-R)cos¢ - By [ E{V,(E) cos2¢ cosp - Wy(E)sin2¢sing}dE
R
+ Epgp cos2¢ cosé (6.21b)
0%-1 1 g
Fqq = 202 + > 4ng + E2f1{V2(E) + EFz} cos2¢ &g
E292 E2 1
+ —5— cos2¢ - 3-(1 + ;EJ cos2¢ (6421c)
a2-r2 1 R H
Fd2 = 402 - 3 n ‘; + Esz{Vz(E) + EFz} cos2¢ d§
2
+ cos2¢ (6.214)

By using the new lift and drag functionals, the variation of H = D + AL
leads to the same Euler-Lagrange equation in Eq. (6.8) and the trans-

versality conditions are

A
[Fa2 - 3 Fzz]¢=¢£ =0 (6.22)

and

[(Fay - Fa2) +% (Fgq - Fzz’]¢=¢2 =0 (6.23)
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Eq. (6.22) again satisfied automatically with the condition R(¢g) = o.
Eq. (6.23) can be written by applying the condition R(¢g) = 1 as

22 (1 +-1—-) +Xg cospgcos2pgy = O (6.24)
2 g2’ T8 72 8 8 .

Then by the relation

A 1
i —W-O- O(Ez) (6.25)

and

cosds  g241
cospy 20

+ O(E3) (6.26)

from Eg. (4.10) and Eq. (4.16), Eq. (6.24) is also satisfied automat-
ically since O(Ezz) is neglected in the analysis.

The.solution for R(¢) is also given in inverse form as
Eq. (6.14). The value of ¢5 can be obtained from solving the equation
for R = 1.

In Pigs. 6.2, 6.3, and 6.4, the trailing edges of the semi-
optimized configurations are shown for Kg = 0.5, 1.0, and 5.0 for vari-
ous values of E;. The values of ¢y are from 20° to BO® with 20° inter-
vals for each figure. The trailing edges of E; = 0 case are shown
again to show the effect of E;. The value of ¢y, is plotted for each
figure to distinguish class A configurations from class B.

The 1lift and drag of the semi-optimized configqurations are
calculated by using numerical integration methods and plotted in Fig.
6.5 in terms of L/(q2283ag) and D/(qe28%0) for K§ = 0.1, 0.5, 1.0, and
5.0. As n = 1 case, the negative value of E; has less drag than

positive Ep case for given Kg and lift,
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6.2 Fully Optimized Configurations

Performing the differentiation of the functional H with

respect to § leads

3 642 §3g2
3T Ig + A Ip) =0 (6.26)
38 (02-1 d 02-1 t)
where
g
J Fg d¢ ' for class B
0
Ig =
48 17
] Fqy a0+ [ Fgp as, for class A
0 s
2
f Py d¢ ’ for class B
0
Ip =
s 92
/ Fpq 49 + f Fpo 49 , for class A
0 $8
Using the relations
80 _ __1
38 ~ ~ KgZob
and
%%i = - gKé3
we get
oI
- (402K52 + 2 ) Ig + a2 K53 =4
q2=1 K3
(302kg2 + 02-1) Iy + o2g —Lax‘;

where i is given in Eq. (6.11). Eg. (6.28) can be solved by using the
same numerical scheme in section V and the results for ¢35 are shown in
Fig. 6.6 as' a function of K§ for various values of E;. The curves are
very similar to those of Fig. 5.6 of n = 1 case. Again ¢gg*72.4° as

Kg+0 and ¢gp+ 49° as Kgm,

»
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In Fig. 6.7, the 1lift and drag ratio of the fully optimized
configurations are shown in forms of (L§)/(Dc) as functions of Kg for
various E; values. As we expected, the negative value of E; case has
higher lift-to-drag ratio than positive E; case.

Fig. 6.8 shows the actual value of L/D ratio of the fully
optimized configurations for Ms = 4.0 as a function of § for various
values of E;. Again negative values of E; case show higher L/D ratios

than the positive E; case.

6.3 Free Stream Surfaces

> >
The streamline equation V x ds = 0 of the n = 2 case, can be

written as

dr - rdé - rs1n6_d2 (6.29)
ug+Equycosd Vot€avycosd €pWysing

in the spherical polar coordinate system. To the lowest order, Eq.

{6.29) becomes

u,
ar _ 20 48 (6.30)
r Vo

w2 dé
vpsin®  e,sinjd

{6.31)

The solution of Eq. (6.30), which is the same solution as that of the n
= 1 case, is

2.2 .1/2
rg =1 (%%53) (6.32)
S2-

and the solution of Eq. (6.31) is

S €w
e2 2 de]
Vo

]
tan(¢g) = tan(¢) exp [2f (6.33)
]
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where rg,05,¢g are constants of integration.
The trailing edge of the compression stream surface which
originates from the leading edge at (rg,0g,$5) on the shock can be

obtained by setting § = 6, and r = £ in Eq. (6.32) and Eq. (6.33) and

we get
8p2.82  1/2
rg = & (;—2:6—2- (6.34)
S
and
eS €W
tan(¢g) = tan(dy) exp [2] 9302 as] (6.35)
®p

where the point (%,8p, 8p) in the shock layer base plane is on the same
streamline which passes through the point (rg,0g.¢g) at the shock.
The training edge of the free stream surface can be obtained

by using Eq. (5.49) and Eg. (6.34) as

beg = 8y (B V2 g b (6.36)
= —_— an = .
fs S 932'62 ¢ ]
or
(Rz(%)-1 2 pa b =0 (6.37)
Rgg = 0 (—m5— an = .
s 021 s
where the relation between ¢y and ¢g is given by
9 BW
tan(¢g) = tan(¢y)exp[2/ E%—i a] (6.38)
R($p)° 0

The trailing edges of both compression stream surface and free stream

surface of the fully optimized waverider for given E; and Kg are shown
in Figs. 6.9, 6.10, and 6.11 for Kg = 0.5, 1.0, and 5.0. Two examples
of semi-optimized waveriders are also shown in each figure. Similar to

those waveriders of n = 1 case, n = 2 case waveriders also show that
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the base plane is thinner when E; is positive than when E; is negative.
However, there is very little difference between fully-optimized

waveriders of different E5 values when Kg is very large.



SECTION VII
CONCLUDING REMARKS

The variational problem of maximizing lift-to-drag ratio of
waveriders subject to general constraint condition is formulated and
solved for fixed lift constraint case. Approximate analytic solutions
for flow variables are used to calculate 1lift and drag. The results
are valid for all values of Kg.

For each case of E,, there are two classes of waveriders,
class A, a pointed-nose waverider with discrete winglet and a cone
segment underbody, for small K§ and class B, a rounded-nose sharp-lip
waverider with a curved concave underbody.

When E, is negative, waveriders of n = 1 and n = 2 cases
give a higher lift-to-drag ratio than E, = 0 case. Since the E, = 0
case waverider is compared with other lifting bodies and it is shown
that the E, = 0 case waverider has higher lift-to-drag ratio, negative
Ep case waveriders are the best producers of large lift-to-drag ratios.
Those are waveriders generated from flows past a circular cone with
negative angle of attack or generated from flows past an elliptic cone

its horizontal axis is longer than its vertical axis.

103
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However, we assumed the perturbation of the shock layer are to
be much smaller than the circular cone shock layer and that there is
maximum value of lEnl. In this paper, the results are in the range of

IEnl < 0.2 (0-1)0



APPENDIX A

The first order solutions for flow variables of n = 1 case are
given by

S W o . 3(r2-1)1/2
IR A I S v RS TV

2 2.13)1/2 A
2re+1 o (SHlec=1) / )} +—-1-+B1r
4r(g2-1)1/2 r + (r2-1)1/2 r

A {- 9 (r2-1)1/2
VU Ve VY 42 T 4p(e2-1)1/2
2. 2_4y1/2 A
2r<=1 o (Sl ny/ ) —l+B1
4r2(g2-1)1/2 r + (r2-1)1/2 r2
W
W, EV:I= - (FqH + Uy)/r
- P Po 0 Vo
Py == - = () U+ (Fdw + B}
Sp v
vwhere r =8/8
91 492
A= - 7+1)
91 4a2
Br = -2 3" y+1)
Fy = 0gq(1-§q)2
1 = 99 0
Peo
%0 = 5o1B)
2.131/2
geq o Lx=0l
(02-1)1/2

105



106

2n(0+(oz-1)1/2)

3 + 202(3-4(02+1)/(y+1)) -

=1- g(oé-1)"/4
" 2n(o+(02-1)1/2)
5 = 20BN (1440?/(y1)) - g(gé=1)1/2
The first order solutions for flow variables of n = 2 case are
given by
s 2 - g2 1 5 14 (r2-1)1/2
Eigr=fl+=—Z+—+ [6 s B ey
6r 3r 3r (02-1)
2 A
PYPERAEVF) - - cos™! 22 2
+ S (o217173 (cos™'(1/0) -~ cos™1(1/2))} + = + Bor
Vo 22 g {a1 4 2, (r2e2)(r2e1)1/2
2 = Voo 2 31‘3 3r3 31,3(0,2_1)1/2
2
— -1 - cos=! _ A2
+ 5210172 (cos (1/0) cos™'(1/r)) ;:;_ + 2B,r
=92 _
W 25 = - 2(FpH + Up)/r
= P2 Po up vo
S e 2 o — - + +
i Spmym2 re 1(T0) U2 (“"5%)"2 Fa}
where r =6/8
920 202
AZ =- 2 (1 + -YT"-)
By = - P (1- Y+1)
Fa = 092(1"50)2
2.1y1/2
g o= o Axs=1) /
(02-1)1/2

= 3cos=1(1/0) 6 6.2 4>
~ 60 [(02-1)1/2 * Ja7 (0°409) + 30%-0 5]

[Te ) Bod
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