
UNIVERSITY OF OKLAHOMA 

 

GRADUATE COLLEGE 

 

 

 

 

 

 

 

 AGILE: ARBITRARY GRID LOGISTIC REGRESSION USING  

INTEL SOFTWARE GUARD EXTENSIONS 

 

 

 

 

 

 

A THESIS 

 

SUBMITTED TO THE GRADUATE FACULTY 

 

in partial fulfillment of the requirements for the 

 

Degree of 

 

MASTER OF SCIENCE IN TELECOMMUNICATIONS ENGINEERING 

 

 

 

 

 

 

 

 

 

By 

 

CHAO JIANG 

 Norman, Oklahoma 

2016 

  



 

 

 

 

 

AGILE: ARBITRARY GRID LOGISTIC REGRESSION USING  

INTEL SOFTWARE GUARD EXTENSIONS 

 

 

A THESIS APPROVED FOR THE 

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BY 

 

 

 

______________________________ 

Dr. Kam Wai Clifford Chan, Chair 

 

 

______________________________ 

Dr. Pramode Verma 

 

 

______________________________ 

Dr. Samuel Cheng 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by CHAO JIANG 2016 

All Rights Reserved. 



iv 

Acknowledgements 

Foremost, I would like to express my sincere gratitude to my thesis advisor Dr. 

Shuang Wang for his support of this research, for his patience, motivation, and immense 

knowledge. Without his guidance and support, I would not have been able to complete 

this dissertation. 

Besides my advisor, I would also like to thank my thesis committee members: 

Dr. Kam Wai Clifford Chan, Dr. Pramode Verma, and Dr. Samuel Cheng for their 

encouragement, insightful comments and suggestions.  

My sincere thanks also goes to Dr. Xiaoqian Jiang for offering me the summer 

internship opportunities in his groups. Also I thank my lab mates at iDASH: Feng Chen, 

Chenwei Xie, Sijie Ding, Yao Lu, Dong Han for their advice and support of my thesis.  

Last, but not least, I would like to thank my parents, Xiaochun Jiang and Xiaoyu 

Liu, for giving birth to me and supporting me throughout my life. 



v 

Table of Contents 

List of Tables .................................................................................................................. vii 

List of Figures ................................................................................................................ viii 

Abstract ............................................................................................................................ ix 

Chapter 1: Introduction ..................................................................................................... 1 

1.1 Motivation ............................................................................................................ 1 

1.2 Objectives ............................................................................................................. 2 

1.3 Organization of the Thesis .................................................................................... 2 

Chapter 2: Intel® SGX ..................................................................................................... 3 

2.1 Intel® SGX Overview .......................................................................................... 3 

2.2 Enclave Identity .................................................................................................... 4 

2.3 Attestation ............................................................................................................. 4 

2.3.1 Local Enclave Attestation ............................................................................ 5 

2.3.2 Remote Enclave Attestation ........................................................................ 6 

2.4 Diffie-Hellman key exchange ............................................................................... 7 

2.5 Summary of Intel® SGX ...................................................................................... 8 

Chapter 3: Grid Logistic Regression ................................................................................ 9 

3.1 Logistic Regression (LR) ..................................................................................... 9 

3.2 Grid Binary Logistic Regression (GLORE) ....................................................... 10 

3.3 Vertical gird logistic regression (VERTIGO) .................................................... 12 

3.4 Summary of GLORE and VERTIGO ................................................................. 14 

Chapter 4: Secure Multi-Party Logistic Regression ....................................................... 15 

4.1 Garbled circuit .................................................................................................... 15 



vi 

4.2 GLORE on garbled circuits ................................................................................ 16 

4.2.1 Matrix Multiplication ................................................................................ 16 

4.2.2 The First Derivative of the Maximum Likelihood Function ..................... 17 

4.3 GLORE, VERTIGO and AGILE on Intel® SGX .............................................. 19 

Chapter 5: Results and Conclusions ............................................................................... 21 

5.1 Environment ....................................................................................................... 21 

5.2 Experiment ......................................................................................................... 22 

5.2.1 GLORE on Garbled circuits and Intel® SGX ........................................... 22 

5.2.2 GLORE, VERTIGO and AGILE on Edinburgh ........................................ 23 

5.2.3 GLORE, VERTIGO and AGILE on Genome ........................................... 24 

5.3 Conclusions ........................................................................................................ 26 

References ...................................................................................................................... 27 

  



vii 

List of Tables 

Table 1 GLORE algorithm ............................................................................................. 11 

Table 2 VERTIGO Algorithm ........................................................................................ 14 

Table 3 AGILE Algorithm ............................................................................................. 20 

Table 4 Alignment Algorithm ........................................................................................ 20 

Table 5 Average running time for GLORE on Intel® SGX and GC ............................. 22 

Table 6 Performance comparison among different implementation of GLORE ........... 22 

Table 7 Estimation error, iterations of convergence and time costs for AGILE, GLORE 

and VERTIGO ................................................................................................................ 24 

Table 8 Estimation error, iterations of convergence and time costs for GLORE and 

VERTIGO ....................................................................................................................... 25 



viii 

List of Figures 

Fig. 1 SGX overview ........................................................................................................ 3 

Fig. 2 Local attestation ..................................................................................................... 5 

Fig. 3 Remote attestation .................................................................................................. 7 

Fig. 4 GLORE ................................................................................................................ 10 

Fig. 5 An example of a garbled circuit ........................................................................... 16 

Fig. 6 Framework of AGILE using SGX ....................................................................... 19 

Fig. 7 Data partition for different models ....................................................................... 21 

Fig. 8 Converge time for different Models in Edinbugh dataset .................................... 23 

Fig. 9 Converge time for different Models in Genome dataset ...................................... 25 



ix 

Abstract 

Biomedical data are often collected and stored at different sites. How to take the most 

advantage of the data to provide better health care for patients and to contribute to 

academic research becomes more and more important and challenging considering the 

privacy regulations association with the data. There are several barriers to sharing and 

exchanging information, such as complex of data formats, information leakage during 

the data transmission, and big data issues. In this thesis, I focus on how to conduct 

integrated data analysis while ensuring data privacy and security during both data 

transmission and integration. Through a small experiment of GLORE[1] implemented 

on both garbled circuits[2] and Intel® Software Guard Extensions (Intel® SGX), I  

found that Intel® SGX performed better than garbled circuits in time consuming. So I 

believe that Intel® SGX has the potential to make great progress in security multiparty 

computation. By applying Intel® SGX, I not only built a framework but also devised a 

more flexible model that lets participants more freely cooperate with each other. My 

model AGILE leverages Intel® SGX to deliver trustworthy computations, a feature that 

is unlike the existing models like GLORE and VERTIGO[3] that address the integration 

problem when data is either horizontally or vertically partitioned. AGILE deals with 

data that is arbitrarily partitioned. Furthermore, to demonstrate AGILE’s performance, I 

evaluated the model using two real datasets. The experimental results show that AGILE 

provides secure and accurate computation much faster than GLORE and VERTIGO. 
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Chapter 1: Introduction 

Biomedical data sharing and integration are vital for improving the quality of 

healthcare, accelerating new discoveries in research area. For example, by integrating 

data from different research centers like the Mobile-sensor Data-to-Knowledge 

(MD2K) Center, Informatics for Integrating Biology and Bedside (i2b2), and Global 

Alliance for Genomics and Health (GA4GH), physicians can make more informed 

decisions on disease prediction and treatment for each patient. A big challenge in 

integrating data from different institutions is the securing patient privacy. Information 

leakage of the data may cause problems for participants in the data exchange 

considering that an attacker can identify those participants by utilizing this kind of 

sensitive information. Many frameworks or protocols were proposed such as Yao’s 

Garbled Circuits (GC), the protocol of Goldriech-Micali-Wigderson developed by 

Choi[4] (GMW) to provide secure communication between two or more participants. 

The approach documented in this thesis was to take Intel® SGX to implement an 

alternative framework for security multi-partition computation. By taking logistic 

regression as an example, experiment proved that it costs less time to run an algorithm 

on Intel® SGX compared to running it with GC. Also the proposed model is more 

flexible and efficient than previous model GLORE and VERTIGO models. 

1.1 Motivation  

In the era of big data, out the security and privacy of personal data is a major 

concern, especially data related to one’s health. In order to encourage people to share 

their data for the purpose of research, an efficient, reliable, and adoptable framework for 

data exchange needs to be built. Existing software-based protection strategies like 
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GMW and GC will be costly and time consuming. Hardware-based data protection 

techniques have made great progress. One popular method for improving the efficiency 

of data sharing is to use powerful hardware-based security solutions such as trusted 

execution environments (TEEs)[5]. Thus, my model took advantage of Intel® SGX.  

1.2 Objectives 

The goal of this thesis is to provide secure data sharing and analysis across 

different institutions by using Intel® SGX. In order to demonstrate my assumption, I 

implemented the same algorithms on Intel® SGX as was implemented on GC. Also, I 

introduced a more flexible model, AGILE, for data sharing as compared with previous 

models such as GLORE and VERTIGO. Any participant can share and send its data to 

the server without having to adhere to a strict format.  

1.3 Organization of the Thesis 

This thesis is organized as follows. Chapter 2 starts with a brief introduction of 

Intel® SGX emphasizing the relevant features that apply in my AGILE model. Chapter 

3 begins with an overview of standard logistic regression. Then I present an explanation 

of two previous popular models, GLORE and VERTIGO, based on logistic regression. 

Chapter 4 describes the implementation of three models GLORE, VERTIGO, and 

AGILE on the Intel® SGX and compares the model GLORE that operated between GC 

and Intel® SGX. Chapter 5 shows some conclusions based on the experimental results.  



3 

Chapter 2: Intel® SGX 

This chapter describes Intel® SGX briefly, then goes on to describe the key 

features of Intel® SGX related to the design of the experimental models, i.e., local 

attestation and remote attestation. More details are described in Intel® SGX white 

paper[6].  

2.1 Intel® SGX Overview 

Intel® SGX is a set of new instructions and mechanisms[7] that enables 

applications to allocate private regions of memory, called enclaves. Enclaves provide a 

secure environment where code or data within enclaves cannot be accessed by other 

applications or privileged system software, such as the operating system (OS), 

hypervisor, and BIOS. Fig. 1 shows the framework of Intel® SGX. The application has 

two parts, one is untrusted part which can create an enclave. The communication 

between these two parts is through ECALL and OCALL part of the Enclave Definition 

Language (EDL). 

 

Fig. 1 SGX overview 

In order to know how Intel® SGX can supply a service to more friendly 
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implement secure multi-partitions computing, one must know more about the enclave 

and attestation service. 

2.2 Enclave Identity  

An enclave created by an application is identified by the value MRENCLAVE, 

which is a SHA-256[8] digest of an internal logbook that archives all the activity 

performed while the enclave is made[9]. After the initialization of the enclave through 

the EINIT instruction, no more updates can be made to MRENCLAVE. This SHA-256 

digest identifies cryptographically the code, data, and stack placed inside the  enclave, 

the order and position in which the enclave’s pages were placed, and the security 

properties of each page. Once changes for these variables are complete, the value of 

MRENCLAVE is also modified.  

Another identity of the enclave is “Sealing Identity” used for data protection. It 

contains a “Sealing Authority,” a product ID and a version number. The function of 

“Sealing Authority” is signing the enclave prior to distribution. Then the hardware can 

check the signature. After passed the check, a hash of the public key of the Sealing 

Authority stores in the MRSIGNER register. 

2.3 Attestation 

To exchange information, the identification must be attested first. In Intel® SGX, 

attesting means checking that an application has been properly instantiated on the 

platform. Another party can believe that only exact software is running within an 

enclave on a support host. For attestation, Intel® SGX architecture produces an 

attestation assertion that contains the identification of the software environment, the 
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detail of any non-measureable state, and the data associated with the environment. The 

last one is a cryptographic binding with the host. 

Two mechanisms are used for authentication: One is for two enclaves running 

on the same platform (local attestation); another one is for attestation on different 

platforms (remote attestation).  

2.3.1 Local Enclave Attestation 

We start to portray the process of two enclaves, A and B running on the same 

Intel® SGX enable host, verify the identity of the other as Fig. 2 shows. 

 

Fig. 2 Local attestation 

1. First, an unsecured communication path was established between enclave A 

and B. Enclave A obtains the identity of B.  

2. Then, enclave A uses the EREPORT instruction to produce a REPORT data 

structure that consists of the hash value of both two enclaves (enclave 

identities), the signed identity of enclave A, the public key of the signer, 

some user data, and a message authentication code (MAC) over the data 

structure. The MAC is constructed with a report key, known only to the 

target enclave and the EREPORT instruction on the same device. After that, 
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enclave A sends its REPORT to enclave B via an untrusted communication 

path.  

3. After receiving the REPROT from enclave A, enclave B can retrieve its 

report key to re-compute the MAC over the REPORT structure and 

authenticates that the REPORT is valid to ensure that they are running on the 

same host. It then validates the identity of A (i.e., its content is not tainted). 

Finally, enclave B reciprocates this process for mutual verification.  

2.3.2 Remote Enclave Attestation 

Different from local attestation that uses a symmetric key system where only 

enclave B and the EREPORT instruction of enclave A have access to the authentication 

key, remote attestation needs an asymmetric cryptography to identify a specific 

platform outside the host. Here Intel introduced an extension to the Direct Anonymous 

Attestation scheme used by the TPM[10], [11] called Intel® Enhanced Privacy ID[12] 

(EPID) to sign enclave attestation. This attestation will be certified by an EPID backend 

infrastructure. In order to make sure that the signed enclave actually resides in the 

platform, Intel® SGX designed a particularly provisioned enclave, named quoting 

enclave, which will verify the enclave as local attestation. After that, quoting enclave 

signs it with the EPID key. Considering that EPID key is bound to the version of the 

processor’s firmware, the quoting enclave can present the processor itself. A shared key 

will be created after the procedure of remote attestation by taking the method Diffie-

Hellman key exchange.  
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Fig. 3 Remote attestation 

Fig. 3 shows an illustration of how a service provider requests remote attestation 

from an outsider platform. 

1. A remote attestation request arrives from a challenger enclave. 

2. Application passes the provider’s challenge to its enclave. 

3. Enclave creates a REPORT that includes the response to the challenge. This 

response usually is used for building the secret key. 

4. The application forwards the REPORT to Quoting Enclave for signing. 

5. Quoting Enclave veriies that it’s the enclave created by this platform and 

signs it with its EPID key. 

6. The application sends the QUOTE to the service challenger. 

7. The challenger requests attestation verification service to validate the 

signature over the Quote. The challenger enclave then checks the response 

information to get the secret key. 

2.4 Diffie-Hellman key exchange 

Diffie-Hellman protocol[13] is a method of securely exchanging cryptographic 

keys over a public channel for two computer users. I used an example to explain how 
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the algorithm works. Assume that Alice and Bob want to share private key. First, they 

agree on two prime number 𝑔 and 𝑝, where 𝑝 is usually very large and 𝑔 is a primitive 

root modulo 𝑝. These two numbers are public to other users. Now, Alice chooses a large 

random number 𝑎 as her private key, and Bob takes 𝑏 as his private key. Then Alice 

computes 𝐴 = 𝑔𝑎(𝑚𝑜𝑑 𝑝) ; Bob computes 𝐵 =  𝑔𝑏(𝑚𝑜𝑑 𝑝) . After sending the 

computed A and B to each other, they can compute their shared key 𝐾 = 𝑔𝑎𝑏(𝑚𝑜𝑑 𝑝). 

If any potential eavesdropper (Eve) wants to know that share key, she needs to get 𝑎 

from 𝐴 = 𝑔𝑎(𝑚𝑜𝑑 𝑝) and 𝑏 from 𝐵 =  𝑔𝑏(𝑚𝑜𝑑 𝑝). But she cannot get 𝑎 and 𝑏 from 

𝐴 𝑎𝑛𝑑 𝐵 as that is the discrete logarithm problem. 

2.5 Summary of Intel® SGX  

By getting an outline of Intel® SGX through the above explain of Intel® SGX, I 

can implement the authentication of remote users. What is more, data transmitted are all 

encrypted. Only the correct enclave can decrypt the data. Thus, Intel® SGX enables 

service providers to transmit privacy data over the air and to know with confidence that 

their data are properly protected.  
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Chapter 3: Grid Logistic Regression 

This chapter begins with logistic regression (LR). Then I explain two logistic 

regression models (GLORE and VERTIGO). In the remainder of this thesis, I use 

regular symbols as scalar variables and bold symbols as vectors or matrices. 

3.1 Logistic Regression (LR) 

LR is a very common model applied in biomedical data analysis. The 

assumption is that there is a training dataset 𝒟 =  {(𝑿, 𝒚)} of 𝑚 records for patients, 

where 𝑿  is a matrix with dimension of 𝑚 × 𝑛 , 𝑤ℎ𝑒𝑟𝑒 𝑛  represents the number of 

features and 𝒚 is the observed binary outcome for each records. In the LR model, the 

likelihood function of 𝑦𝑖 = 1 given 𝒙𝑖 can be stated as follows: 

𝑃(𝑦𝑖 = 1|𝒙𝑖 , 𝜷) =  
1

1 + 𝑒−𝜷𝑇𝒙𝑖
, (1) 

where 𝜷 is a weight vector that measures the relationship between the response variable 

𝑦𝑖  and covariates  𝒙𝑖 . Note that 𝑃(𝑦𝑖 = 0|𝒙𝑖, 𝜷) = 1 − 𝑃(𝑦𝑖 = 1|𝒙𝑖, 𝜷)  for binary 

response variable 𝑦𝑖. Given the training dataset 𝒟, 𝜷 can be estimated by maximizing 

the following log likelihood function.  

𝜷̂ = argmax
𝜷

(𝑙(𝜷) = ∑ 𝑦𝑖𝑃(𝑦𝑖 = 1|𝒙𝑖, 𝜷) + (1 − 𝑦𝑖)(1 − 𝑃(𝑦𝑖 = 1|𝒙𝑖 , 𝜷))

𝑛

𝑖=1

) (2) 

Here, I used l(𝛃) to represent the log-likelihood function. Because there is no closed-

form solution for 𝛃, iterative numerical solutions are required to obtain the optimal 

parameters. In a centralized model, the Newton-Raphson method is broadly used to 

find 𝛃̂. The iterative maximization is accomplished by calculating the first and second 

derivatives of the log-likelihood function  l(𝛃) . In the  t -th iteration, the current 

estimation 𝛃(t) is updated by 
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𝜷(𝑡+1) = 𝜷(𝑡) − [𝑙′′(𝜷(𝑡))]
−1

𝑙′(𝜷(𝑡)) (3) 

3.2 Grid Binary Logistic Regression (GLORE) 

The model GLORE, proposed by Yuan in 2012, iterates the parameters in a 

distributive fashion, which is unlike the classical LR model that has limitations 

operating on federated data sets or on distributed data because  is necessary to receive 

all the data from participants before training the model. By integrating intermediary 

aggregated information from locally hosted databases, servers can get the same result as 

normal without losing any information during this process.  

 

Fig. 4 GLORE 

Fig. 4 shows the diagram of GLORE’s workflow. The represented process  

supposes that I have three different institutions, each with its own database. The 

database record has the same attributions of a patient. Each inistitution can compute the 

intermediary results based on its own data and send the results to a central server. After 

receiving all the data from the institutions, the central server updates the training 

parameters and sends that data to all the institutions.  
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Table 1 GLORE algorithm 

Input: Each party 𝑝𝑗 provides encrypted data 𝑿𝑗. 

Output: Learned model coefficients 𝜷  

1. Initialize 𝜷 (𝑠), 𝑠 = 0 as an all-zero vector on both server and local 

2. Repeat steps 3-6 until the parameters converge  

3. Local party 𝑖: Compute a local Hessian matrix 𝐻 𝑖 and first derivative 𝐷𝑖 . Then send them to 

the server. 

4. Server: After receiving data from all local parties, calculate the inverse of global Hessian 

matrix𝐻−1 and global first derivative 𝑫. Then update 𝜷 based on Equation (3) 

5. Send the new 𝜷 𝑠+1 to all local parties. 

6. 𝑠 = 𝑠 + 1  

 

Table 1 shows the procedure for GLORE.  The following equations explain how 

GLORE works. Supposing that I have 𝑙 institutions. 

 𝜷(𝑡+1) = 𝜷(𝑡) − [𝑙′′(𝜷(𝑡))]
−1

𝑙′(𝜷(𝑡))                                      

          = 𝜷(𝑡) + [𝑿̅𝑇𝑾(𝑿̅, 𝜷(𝑡)𝑿̅)]
−1

𝑿̅𝑇[𝒀̅ − 𝑃(𝑿̅, 𝜷(𝑡))] 

                                        = 𝜷(𝑡) + [∑ 𝑿̅𝒕
𝑻𝑾𝒕(𝑿̅𝒕, 𝜷(𝑡)𝑿̅𝑡)𝑙

𝑡=1 ]
−1

∙ {∑ 𝑿̅𝒕
𝑻𝑙

𝑡=1 [𝒀̅𝑡 − 𝑃(𝑋̅𝑡 , 𝜷(𝑡))]} 

(4) 

where 𝜷 is the weight vector, 𝑾 is a diagonal matrix made up of elements calculated 

from probabilities. 

Equation (4) shows that the computation can be decomposed at each iterative 

step. In other words, the first and second derivatives of the log likelihood function can 

be calculated separately for a subset of observations and then combined with the same 

result as if they were calculated on the complete set. So combining intermediary results 

from all local sites can finish the update step of GLORE. Due to the intermediary results 

from individual sites without losing any information, GLORE can still get the accurate 

estimation of parameters through summation. GLORE provides the advantage that data 

are transmitted as aggregated, intermediary results, rather than the raw data; hence, 

GLORE preserves data privacy. 
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3.3 Vertical gird logistic regression (VERTIGO) 

Another grid logistic regression is VERTIGO that corresponds to vertically 

partitioned databases. It also does not need to transmit the patient data to server 

VERTIGO works by taking the standard LR model’s format as a primal and solving the 

decomposable dual format. The following is a description of a brief proof [14] of dual 

problem of logistic regression. 

Given a training dataset {yi, xi}, i = 1, ⋯ , m, xi ∈ Rn×1 , the MLE parameter 

solution β of the logistic regression model can be derived by maximizing the following 

penalized likelihood function: 

𝑙(𝜷) = ∑ log 𝑝(𝑦𝑖|𝑧𝑖) −
𝜆

2
𝜷𝑻𝜷

𝑚

𝑖=1

 (5) 

where zi = 𝛃Txi , p(yi|zi) = τ(yi𝛃
Txi) = 1/(1 + exp (−yi𝛃

Txi)) , and λ  is a 

regularization parameter which is the weight of penalty for over fitting. The item in the 

covariance matrix is Cov = xi
Txj , and the solution 𝛃  is unique since l(𝛃)  is strictly 

concave in 𝛃 . With ηi = yizi , it can be proved that log p(yi|zi)  is a concave, 

continuous, differentiable function of ηi .  According to the Legendre transformation 

[15], there exists a function L(αi) such that the following two equations hold: 

log 𝜏(𝜂𝑖) = min
𝛼𝑖

{𝛼𝑖𝜂𝑖 − 𝐿(𝛼𝑖)} (6) 

 

𝐿(𝛼𝑖) = min
𝜂𝑖

{𝛼𝑖𝜂𝑖 − log 𝜏(𝜂𝑖)} (7) 

The function L (αi) is known as the conjugate function. The next step is to get the 

derived L (𝛂) to compute the minimum value of L (𝛂).  The first step is to take the 

derivative with respect to ηi and equate it to zero: 
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𝛼𝑖 −
1

exp(𝜂𝑖) + 1
= 0  

Then 

𝜂𝑖 = log (
1

𝛼𝑖

− 1) , 0 < 𝛼𝑖 < 1   

Substituting ηi back into Eq. (7), I have: 

𝐿(𝛼𝑖) = 𝛼𝑖 log (
1

𝛼𝑖

− 1) − log(1 − 𝛼𝑖) = −𝛼𝑖 log(𝛼𝑖) − (1 − 𝛼𝑖) log(1 − 𝛼𝑖) (8) 

Therefore, we get the new objective function by combine Eq. (1) and Eq. (2), 

𝑙(𝜷, 𝜶) = ∑{𝛼𝑖𝑦𝑖𝜷
𝑻𝒙𝒊 − 𝐿(𝛼𝑖)} −

𝜆

2
𝜷𝑻𝜷

𝑚

𝑖=1

  (9) 

It can be demonstrated that maxβminαl(𝛃, 𝛂) = minαmaxβl(𝛃, 𝛂) , and J(𝛂) =

max
β

l (𝛃, 𝛂). Recall that zi = 𝛃𝐓xi, which indicates that for any fixed setting of 𝛂, Eq. 

(9) is a quadratic function of the parameter 𝛃. Thus by taking the derivative of Eq. (9) 

with respect to 𝛃 and equate it to zero, I can get the maximization of 𝛃:  

∑{𝛼𝑖𝑦𝑖𝒙𝒊 − 0} − 𝜆𝜷 = 0

𝑚

𝑖=1

 (10) 

Therefore, 𝛃 = λ−1 ∑ αiyixii  and substituting 𝛃 back into l(𝛃, 𝛂), I derive the dual 

problem: 

min
𝜶

 𝐽(𝜶) =
1

2𝜆
∑ 𝛼𝑖  𝛼𝑗  𝑦𝑖  𝑦𝑗  𝒙𝒋

𝑻 𝒙𝒊

𝑖,𝑗

− ∑ 𝐿(𝛼𝑖)

𝑖

 (11) 

Table 2 is the detailed procedure of the algorithm of VERTIGO. The variable 𝐸 

in Table 2 is computed by 𝐸𝑖 = 𝑌𝛽𝑖(𝛼𝑠)𝑋,𝑖 where the variable 𝜶 is the dual parameter.   

Because our dataset has more features compared with the sample size, I implemented a 

regularized logistic regression to avoid over fitting. If I do not need the effect of 

regularization, just let 𝜆 be enough smaller when running the algorithm.  
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Table 2 VERTIGO Algorithm  

Input: Local data in each party 𝑋𝑖 , 𝑌𝑖 

Output: Learned model coefficients 𝜷  

1. Initialize dual solution at server and local parties with 𝛼𝑠, 𝑠 = 0 and parameter 𝜆. 

2. Local party 𝑖 : compute a local linear kernel matrix 𝐾𝑖 = 𝑋𝑖𝑋𝑖′
 then send them to 

Server. 

3. Server: calculate the global gram matrix 𝐾which is necessary to compute the first 

derivative of the dual likelihood function 𝐽 (𝜶). 

4. Repeat steps 5-8 until the parameters converge 

5. Local party 𝑖: compute 𝐸𝑖, and then send it to Server. 

6. Server: after receiving data from all local parties, calculating the inverse of hessian 

matrix 𝐻−1 and global first derivative 𝐷,  

7. Then update 𝜶 based on Equation (3), and send the new 𝜶 𝑠+1 to all local parties. 

8.  𝑠 = 𝑠 + 1 

9. 𝜷 = 𝝀−𝟏 ∑ 𝜶𝒊𝒙𝒊𝒚𝒊𝒊  

 

3.4 Summary of GLORE and VERTIGO 

After knowing how GLORE and VERTIGO work, it is obvious that only data 

partitioned horizontally or vertically can be used. In practice, there are many other 

situations that require a more flexible method can handle any partitioned data. In this 

case, there is no guarantee that some algorithm can deliver the same advantage of only 

aggregated intermediary result needed be passed to the server. So we came up with a 

more simple idea that aligning all the data at the server after receiving all the data from 

clients with more information about the position in the whole database. At the same 

time, the security is promised by implementing it on Intel® SGX.  
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Chapter 4: Secure Multi-Party Logistic Regression 

For secure multiparty computation, Yao’s garbled circuit that was proposed in 

1986 is an example. I will first introduce the basic concept of garbled circuits and how 

GLORE was implemented on it. Finally, I will explain how to transfer all the models to 

Intel® SGX will be described. 

4.1 Garbled circuit 

The key idea of circuit-based computation is based on the fact that operations in 

almost all modern digital computers are implemented by circuits combining basic logic 

gates such as AND, OR, NOT etc., where inputs and outputs of a gate may be TRUE or 

FALSE for certain propositions. Then, one can design a garbled circuit counterpart [16] 

to protect the data and the computation. Fig. 5 shows an example of diagnosing 

gestational diabetes based on blood glucose level (BGL) in a standard circuit 

representation, which consists of three gates (i.e., Gi with i = 1, 2, 3) and six wires (i.e., 

wj with j = 1, 2, … , 6). Using Boolean algebra [17] and truth tables of the three basic 

gates shown in the figure, the circuit can calculate (gestational diabetes) = (NOT (non-

pregnant women)) AND ((fasting BGL ≥ 95 mg/dl) OR (1 hour BGL≥ 180 mg/dl)). In 

theory, one can build circuits of any complexity using basic logical gates to evaluate 

functions (e.g., secure distributed logarithm, exponent, etc.) or algorithms (e.g., secure 

distributed logistic regression models in this section). A garbled circuit [18], [2] is a 

specially designed circuit, which enables two (or more) parties to securely compute a 

function 𝑓(𝑥𝐴, 𝑥𝐵)  without exposing their private secrets (e.g., 𝑥𝐴  and 𝑥𝐵  are inputs 

from party A and party B, respectively). All parties here are assumed to be semi-honest 
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collaborators, which means that they follow the protocol honestly but may try to deduce 

additional information from the received messages during the protocol execution.  

 

Fig. 5 An example of a garbled circuit 

4.2 GLORE on garbled circuits 

4.2.1 Matrix Multiplication 

I transferred the matrix inversion problem into an iterative procedure of matrix 

multiplication and addition. Optimizing the implementation of matrix multiplication 

would definitely improve the efficiency of the proposed framework. In this subsection, I 

adopted the Strassen algorithm for matrix multiplication. 

Let us denote  A and  B two square  n × n matrices and C = AB  their matrix 

product. Here, n is suggested to be a power of 2, namely n = 2k, k ∈ ℕ. A, B, and C can 

be partitioned into equally sized block matrices as 

𝑨 = [
𝑨1,1 𝑨1,2

𝑨2,1 𝑨2,2
] , 𝑩 =  [

𝑩1,1 𝑩1,2

𝑩2,1 𝑩2,2
] , 𝑪 =  [

𝑪1,1 𝑪1,2

𝑪2,1 𝑪2,2
], (12) 

where Ai,j, Bi,j, and Ci,j are all (n 2⁄ ) × (n 2⁄ ) matrices. According to the definition of 

block matrix multiplication, Ci,j can be represented by Ai,j and Bi,j for i, j = 1,2. 

𝑪1,1 = 𝑨1,1𝑩1,1 + 𝑨1,2𝑩2,1,   𝑪1,2 = 𝑨1,1𝑩1,2 + 𝑨1,2𝑩2,2, 

𝑪2,1 = 𝑨2,1𝑩1,1 + 𝑨2,2𝑩2,1,   𝑪2,2 = 𝑨2,1𝑩1,2 + 𝑨2,2𝑩2,2. 
(13) 
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According to (13), the calculation of 𝐶 requires the same number of multiplications as 

the standard definition of matrix multiplication  C = AB . To reduce the number of 

multiplications, I introduced the Strassen algorithm, which defines some new matrices 

based on Ai,j and Bi,j.  

𝑴1 = 𝑨1,1(𝑩1,2 − 𝑩2,2),   𝑴2 = (𝑨1,1 + 𝑨1,2)𝑩2,2,  

𝑴3 = (𝑨2,1 + 𝑨2,2)𝑩1,1,   𝑴4 = 𝑨2,2( 𝑩2,1 − 𝑩1,1), 

𝑴5 = ( 𝑨1,1 + 𝑨2,2)( 𝑩1,1 + 𝑩2,2),   𝑴6 = ( 𝑨1,2 − 𝑨2,2)( 𝑩2,1 + 𝑩2,2), 

 𝑴7 = (𝑨1,1 − 𝑨2,1)( 𝑩1,1 + 𝑩1,2) 

(14) 

Equation (14) requires only 7 matrix multiplications between (n 2⁄ ) × (n 2⁄ ) square 

matrices (one for each Ml, l = 1, ⋯ , 7) to calculate C = AB, which reduces the number 

of multiplications by n3 8⁄ . The product C can be recovered from Ml, l = 1, ⋯ ,7 by 

𝑪1,1 = 𝑴5 + 𝑴4 − 𝑴2 + 𝑴6,   𝑪1,2 = 𝑴1 + 𝑴2, 

𝑪2,1 = 𝑴3 + 𝑴4,   𝑪2,2 = 𝑴5 + 𝑴1 − 𝑴3 − 𝑴7. 
(15) 

The matrices can be iteratively partitioned k times, when n = 2k. Thus, the Strassen 

algorithm can reduce the complexity of matrix multiplication from O(n3) to O (n2.8).  

In this work, the Strassen algorithm is implemented for matrix inversion, which has a 

significant effect on computational complexity. For other ordinary matrix 

multiplications, I still used the standard method. However, it is also possible to extend 

the Strassen algorithm to employ it in ordinary matrix multiplication, e.g. multiplication 

between non-square matrices.  

4.2.2 The First Derivative of the Maximum Likelihood Function 

In the t-th iteration, the first derivative l′(𝛃) of the maximum likelihood function 

has to be updated with current 𝛃(t) . The k-th element of l′(𝛃) can be obtained in a 

distributed manner.  



18 

𝜕𝑙

𝜕𝛽(𝑘)
|

𝜷=𝜷(𝑡)

=  ∑ ∑ (𝑦𝑖
𝑗

− 𝑃(𝒙𝑖
𝑗
, 𝜷(𝑡))) 𝑥𝑖

𝑗
(𝑘)

𝑛𝑖

𝑖=1

ℎ

𝑗=1

, (16) 

where xi
j
(k) and β (k) are the k-th element of xi

j
 and β(t), respectively. Equation (13) 

shows that I can allow each party to separately compute its own part of the first 

derivative based on local data, and I add these results [1]. However, such an approach 

will leak the information of β(t) at each iteration. Therefore, I need to securely evaluate 

(16) without releasing any intermediary β(t). As a result, I need to securely evaluate the 

exponential function ex in the garble circuits. In the proposed framework, I used the 

Taylor series to approximate the evaluation of e,x  such that I only need to handle 

multiplication and addition operations.  

𝑒𝑥 = ∑
𝑥𝑛

𝑛!

∞

𝑖=1

= 1 + 𝑥 +
𝑥2

2!
+  

𝑥3

3!
+

𝑥4

4!
+ ⋯ (17) 

To simplify the computation and avoid overflow, I set a filter to bound the 

exponential within the interval between -5 and 5. When the exponentials are greater 

than 5 or smaller than -5, the evaluation results of the logit function (i.e., 1 (1 + ex)⁄ ) 

would be smaller than 6.7 × 10−2 according to (1). Thus, I will not lose considerable 

accuracy by using this bound. 

Simulations in MATLAB show that the Taylor series could achieve an 

approximated result with an error less than 10,−2  when the maximal order for the 

expansion is set to 15. To reduce the number of multiplications, I transformed the 

Taylor series to a recursion algorithm. 

𝑒𝑥 ≈ 1 + 𝑥 (1 +
𝑥

2
(… (1 +

𝑥

14
(1 +

𝑥

15
)))). (18) 
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I also built a look-up table storing the inversion of integers from 1 to 15 to avoid 

divisions and to speed up the calculation. For the other divisions involved in the logistic 

function, I treated them as a matrix with size 1. 

It is worth mentioning that all the above computations in this section are carried 

out in a customized Boolean circuit, where the OT protocol and the garbled circuits 

protect all the inputs and intermediary information exchange. The only outputs in 

plaintext are the learned model parameter β in the proposed SMAC-GLORE. 

4.3 GLORE, VERTIGO and AGILE on Intel® SGX 

I developed a distributed system based on Intel® SGX by implementing logistic 

regression as a demonstration. By designing three forms of data construction, one is 

assuming that the data are divided horizontally, consistent with the GLORE model. 

Another form is dividing whole data vertically, consistent with the VERTIGO. The last 

framework considers that data can be partitioned horizontally and vertically. That is my 

AGILE model. The primary data set used to validate the methods AGILE, GLORE, and 

VERTIGO is the Edinburgh database; more detail is presented in the next section.  

 
Fig. 6 Framework of AGILE using SGX 
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Fig. 6 shows the AGILE framework using Intel® SGX. Suppose that three 

clients have their own privacy data. Now they want to contribute their data for research. 

Data encrypted before transmission can only be decrypted within an enclave in the 

UCSD hub. All data and algorithm are stored and executed within the protected 

memory, so security is promised.  

Table 3 AGILE Algorithm 

Input: Local data in each party 𝑋𝑖 , 𝑌𝑖 

Output: Learned model coefficients 𝜷    

1. Initialize solution at server and local parties with 𝜷𝑠, 𝑠 = 0. 

2. Local party 𝑖: send data 𝑋𝑖 with observation id and max, min of attribute number to 

Server. 

3. Server: scan all received data to get the dimension of the whole data then filling the 

data matrix with received data from local party through side information 

4. Repeat steps 5-7 until the parameters converge 
5. Server: after receiving data from all local parties, calculating the inverse of hessian 

matrix 𝐻−1 and global first derivative 𝐷,  

6. Then update 𝜷 based on Equation (3) 

7. 𝑠 = 𝑠 + 1 

8. Send 𝜷 to all local parties 

The other two models are implemented the same as AGILE. Putting all the 

sensitive data and code within the enclave and all the intermediary result transmitted 

outside the enclave is encrypted. Table 3 contains the algorithm procedure for AGILE 

where the alignment algorithm will be more specifically stated below as Table 4 shows. 

Table 4 Alignment Algorithm 

Input: Data with side information from each participant (Client)  

Output: Whole data matrix 

1. Iterative all clients to get the dimension of whole data and initialize the four variables: 

𝑚𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑙𝑎𝑏𝑒𝑙, 𝑚𝑎𝑥_𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑙𝑎𝑏𝑒𝑙, 𝑚𝑖𝑛_𝑝𝑎𝑡𝑖𝑒𝑛𝑡_𝑖𝑑, 𝑚𝑎𝑥_𝑝𝑎𝑡𝑖𝑒𝑛𝑡_𝑖𝑑. These will be 

used to locate the position of the data in the whole data matrix. 

2. Iterative each client with 𝑘  

3.        Iterative each element in client with (i, j) 

4.        Row = clients [𝑘]->feature_label [𝑖] - min_feature_label 

5.        Column = clients [𝑘]->patient_id [𝑗] – min_patient_id  

6.        Whole [row][column]=client [𝑖][𝑗] 

7. End 
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Chapter 5: Results and Conclusions 

In this section, we will conduct our experiments on GLORE, VERTIGO and 

AGILE for two different real datasets separately by implementing all of these three 

models based on Intel® SGX. 

5.1 Environment 

Our server is hosted on UCSD-DBMI with a Windows 2012 operating system, 

an SGX-capable 3.60 GHz Xeon CPU and 64GB memory. Local party are simulated by 

using Amazon EC2 instances with the type of t2.micro, where these sites are located at 

California, Virginia, Ireland, Singapore, and San Paulo.  Below is the data partition 

pattern for our three models; the horizontally partitioned data corresponding to GLORE, 

for the model of VERTIGO, the vertically partitioned data will be used; the last three 

scenes are designed for our own model AGILE which stand for any partition of the data.   

 
Fig. 7 Data partition for different models 
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5.2 Experiment 

5.2.1 GLORE on Garbled circuits and Intel® SGX 

This purpose of this experiment is to demonstrate that at the same settings, 

running time of GLORE is considerably different on two platforms as Table 5 shows. 

The dataset of this experiment was Edinburgh dataset whose outcome is binary. This 

dataset totally has 48 features and 1253 records, 3 features (T wave inversion, Sweating 

and Pain in right arm) plus one bias feature which are the same as our previous work 

(SMAC-GLORE) were selected in current experiment.  

Table 5 Average running time for GLORE on Intel® SGX and GC 

Method 

Number of Parties 

2 parties 3 parties 4 parties 

GC 3545.36(sec.) 5954.16(sec.) 12029.76(sec.) 

Intel® SGX 17.607(sec.) 19.091(sec.) 23.13(sec.) 

 

As Table 5 shows, the time increased faster in GC than in Intel® SGX. Also 

Intel® SGX has an overwhelming advantage over GC in time and cost. Moreover, 

memory allocation and estimation error were considered in our next experiment. Table 

6 shows that my Intel® SGX-based GLORE has less memory cost and error compared 

with GC. The baseline of the model I ran on MATLAB. 

Table 6 Performance comparison among different implementation of GLORE 

 GLORE  SMAC-GLORE SGX-GLORE 

Run Time (seconds) 0.516 12029.760 0.500 

Memory 0.012MB 43GB 0.018MB (enclave only) 

Estimation error (SAD) 0 5.100x10E-04 1.342x10E-05 
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5.2.2 GLORE, VERTIGO and AGILE on Edinburgh 

I evaluated the algorithms on Edinburgh dataset with different numbers of 

participants. Nine non-redundant features in this data set are selected by using methods 

described in Kennedy et al. [19]. By setting the same converge threshold as 10−8 and 

initial parameter with 10−6 , I tested the algorithms without regularization about 30 

times to get the average running time. The result is stated as Fig. 8. Each box 

corresponds to a model.  showing the running time of AGILE in three different common 

scenes. In the middle of FIG. 8 is the running result of the GLORE model. The 

VERTIGO box shows the algorithm in different participants such as 1, 3, and 5. 

VERTIGO performance is evaluated at the same setting as GLORE. 

 
Fig. 8 Converge time for different Models in Edinbugh dataset 

To delve into the result of these three models in one situation, I took 3 

participants of AGILE, GLORE and VERTIGO. For the evaluation, the estimated 

model parameters 𝛽  were compared with their centralized counterpart 𝛽  using the 
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summation of the absolute difference (SAD) ∑ |𝛽̂(𝑚) − 𝛽 (𝑚)|𝑀
𝑚=1 , where m=1, M 

corresponds to the index of different covariates. Except for SAD, I got the iterations of 

convergence and average running time for each model as Table 7 shows. The 

centralized model is the MATLAB built-in LR function. My proposed model 

outperformed efficiency in both time cost, and accuracy. On average, my model is 6 

times faster than GLORE and 100 times faster than VERTIGO.  

Table 7 Estimation error, iterations of convergence and time costs for AGILE, GLORE 

and VERTIGO 

Dataset Methods 
Iterations of 

Convergence 

Estimation error 

(SAD) 

Time Cost 

(second) 

Edinburgh 

Centralized 8 0 0.361789 

AGILE 8 2.610 × 10−4 1.0991 

GLORE 8 2.6510 × 10−4 5.7156 

VERTIGO 14 8.3510 × 10−4 98.6286 

 

5.2.3 GLORE, VERTIGO and AGILE on Genome 

Another dataset I used to analyze the model is Genome data GSE3494. By 

removing 15 patients whose survival status was unknown, I took 236 patients; each had 

222283 gene expression features on platform GPL96 and 22654 gene expression 

features on platform GPL97. Picking top 15 features based on the ranking of their P 

values (t test), as suggested by Osl[20] from each platform, I had 41 features by adding 

10-dimensional phenotype features. Considering that the 41 features with only 236 

patients, I ran the algorithm with regularization by taking 𝜆 = 2.0. Fig. 9 shows the 

results of my applying the same running environment as Edinburgh does. Also, on 

average, AGILE is the best among these models when considering converge time. The 

reason why the time cost between model GLORE and VERTIGO is not as big as 

previous experiments is because of the different dimension of the dataset. The time cost 
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for both models heavily depends on the time of operating matrix inversion. Also, the 

matrix size depends on the number of features on GLORE, rather than on VERTIGO 

whose matrix size is decided by the number of observations. So the size of matrix in the 

Edinburgh dataset is 1253 × 1253, where the size in the genome dataset is 236 × 236. 

 
Fig. 9 Converge time for different Models in Genome dataset 

As established in the previous experiment that AGILE will get the same result as 

the centralized model. This time I estimated the error based on AGILE. As Table 8 

shows, the error and time cost are similar for GLORE and VERTIGO even though there 

is a big difference in iteration of convergence. 

Table 8 Estimation error, iterations of convergence and time costs for GLORE and 

VERTIGO  

Dataset Methods 
Iterations of 

convergence 

Estimation error vs. 

AGILE (SAD) 

Time Cost 

(second) 

Genome 

GLORE 8 2.610-6 6.0252 

VERTIGO 16 2.610-6 7.2342 
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5.3 Conclusions 

Methods implemented both on GC and Intel® SGX have their own advantage. 

Although GC cost more time on running the same models GLORE, VERTIGO and 

AGILE, it does not need any specific hardware support such as the Intel® SGX enabled 

platform. Also GLORE and VERTIGO did not share the patient-level data when 

training the model compared with AGILE; however, my model is more flexible in data 

organization. Also by taking advantage of Intel® SGX, security is promised. But the 

enclave memory usually has limited size, typically 64𝑀𝐵 or 128𝑀𝐵 for now. In the 

future, a more extensible environment for trustworthy multi participants’ computation 

can be built. By implementing more common practical models such as decision trees, 

EM algorithm, Cox model, etc. on Intel® SGX, users can more quickly and easily set 

up a practical model across different participants. 
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