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ABSTRACT

The problem of allocating a set of periodic-time-
critical tasks to processors in a multiprocessor system is
considered. A periodic-time-critical task consists of a
certain number of requests, arising periodically, each of
which has a prescribed deadline. The allocation problem is
to use a minimum number of processors subject to the
condition that the tasks allocated to any processor must be
feasibly schedulable according to some specified algorithm,
i.e. the schedule provided by the algorithm must guarantee
that the deadline of each request is honored. We first
prove that this problem is NP-hard, and then present three
heuristic algorithms and analyze their complexity and worst-
case performance. One of the algorithms presented 1is an
off-line algorithm and the other two are on-1line. Two
heuristic off-line algorithms for this  problem are
available 1in literature. The worst-case performance of our
off-line algorithm 1is shown to be better than that of the
two 'existing off-line alporithms. The on-line algorithms
presented here are the only on-line algorithms presented
for this problem to date. The time and space complexity of
the presented on-line algorithms are shown to be better
than those of the available off-line algorithms, and their

viii



worst-case performance are shown to be comparable to that
of the available off-line algorithms. Finally, it is shown
that if the set of tasks to be scheduled does not contain
any task with utilization factor in the range (21/2-1, 1/2]
then the worst-case performance of one of the on-line

algorithms will improve considerably.
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SCHEDULING PERIODIC-TIME-CRITICAL TASKS

ON MULTIPROCESSOR SYSTEMS

CHAPTER 1

INTRODUCTION

1.1 Motivation:

Computer systems are now being used to control and
monitor a wide variety of real-time processes. In many of
these real-time applications, the computer is required to
execute a certain number of time-critical control and
monitoring functions, in response to periodic external
signals. It 1is essential that each such function 1is
completely executed within a specified interval of time
following the occurrence of the signal that causes the
initiation of the function. Failure to do so may result in
an 1irreparable 1loss. Some examples of such systems
are[1,2]:

- a system to control the operation of a chemical

plant.

a system for monitoring a defense network.

a system for tracking a missile and predicting its

impact point.

a system for monitoring space flights.

1



The computers dedicated for this purpose have been
termed ‘"process control computers". A process control
computer performs a certain number of, periodically
occurring, control and monitoring functions. We call each
such function a periodic-time-critical task.

A periodic-time-critical task, in a real-time
environment, consists of an infinite sequence of requests
arising at fixed intervals of time. Associated with each
request there 1is an initiation time, a computation time,
and a deadline for the completion of its computation. The
requests of a task are initiated periodically by means of
some external signals. The computation for any request
cannot start before the occurrence of the signal that
initiates it. The deadline of each request of a task can
be no later than the initiation of the next request of the
same task. Failing to meet the deadline of a request
causes 1irreparable damage, categorizing the environment as
"hard-real-time'"[3] in contrast to "soft-real-time" where a
statistical distribution of response times is acceptable.
The pointing of an antenna to track a spacecraft in its
orbit 1is an example of such a task. 1In this example the
goal 1is to have the antenna continuously pointing at the
spacecraft, which is moving in its orbit at a known speed.
In order to accomplish this, requests to adjust the antenna
must be made periodically, one request every some fixed

interval of time. Each such request adjusts the pointing



of the antenna with respect to the previous adjustment.
Therefore, the computation of each request must finish
before the next request arrives.

Recent progress in hardware technology and computer
architecture has led to the design and construction of
computer systems that contain a large number of processors.
Because of their capability of executing several tasks
simultaneously, it 1is both of practical and theoretical
importance to investigate how to make best use of multi-
processor computing systems for the type of tasks being
coﬁsidered.

Efficient wutilization of computers in this type of
environment can only be achieved by a careful scheduling of
these periodic-time-critical tasks. This fact motivated

our interest to work on this problem.



1.2 Definition of the Problem:

A periodic-time-critical task in general can be
characterized by the quadruple (c, t, s, d), with 0 < ¢ £ d
£ t. 1In this characterization, task T makes a request for
¢ units of computation every t units of time. The first
request of task T is made at time s, and thereafter at
times s + Kt, (K=1, 2, «v. ). The deadline for the Kth
request of task T is s + (K -1)t + d.

A set of m periodic-time-critical tasks can be
characterized by the quintuple ({Ti}, {ci}, {ti} , {si}
{di} ), where each Ty (1 1 <m) is a periodic-time-critical
task.

The scheduling problem for a set of such tasks 1is to
produce a schedule according to which all requests of all
tasks in the set can be executed to meet their respective
deadlines.

The results obtained, so far, for the general problem
of scheduling periodic-time-critical tasks are mnot that
significant[4-6]1. But, an interesting variation of this
problem 1is obtained by making the assumption that d; = t;
for all 1 < i < m [7-10].

We make the following assumptions about the type of tasks
to be considered:

1. The requests of each task are periodic, with constant

intervals between requests.



2. Deadlines consist of runability constraints only,
i.e. each request must be completed before the next
request of the same task.

3. The tasks are independent in that the requests of a
task do not depend on. the initiation or the
completion of the requests of the other tasks.

4. Computation time for the requests of a task |is
constant for the task. Computation time here refers
to the time a processor takes to execute the request
without interruption.

These assumptions allow the complete characterization of a
task by two numbers: its request period and its computation
time. We will denote a task T by the ordered pair (c,t),

where ¢ is the computation time and t 1is the request

period. The ratio 1/t is called the request rate, and the

ratio c¢/t, denoted by u, is called the utilization factor

of the task.

The utilization factor of a set of periodic-time-
critical tasks is the sum of the utilization factor of all
tasks in the set, Notice that the utilization factor of a
task 1is the fraction of the processor time taken up by the
task.

Figure 1.1 shows a timing diagram representing the
schedule of the first 4 requests of a periodic-time-
critical task. This task makes a request for 2 units of

computation every 5 units of time. The deadline of each



T = (2, 5)
u= 2/5
Computation Time
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Request Period

Figure 1.1: A timing diagram representing the schedule of

a periodic-time-critical task on a single

processor



request 1is the initiation of the next request. The service
to each request can be given at any time and in any form
within the span of the period, as shown in Figure 1.1. The
request rate of this task is 1/5 and the utilization factor

of this task is 2/5.



1.3 Terminology:

A schedule for a set of tasks specifies the time
interval(s) during which the various requests of the tasks
will be executed. A schedule which meets the deadlines of
all the requests of all the tasks is called a feasible
schedule for the set of tasks. Another way of describing a
schedule 1is to spell out the rules which determine where
the requests of any task in the set will be executed. A

scheduling algorithm 1is a set of rules that determines a

schedule for any set of tasks to which the algorithm 1is
applicable. We sav that a set of tasks can be feasibly
scheduled by a scheduling algorithm(or algorithm), if the
algorithm produces a feasible schedule for the set. A set

of tasks is said to fully utilize a processor according to

a certain scheduling algorithm, if the set of tasks can be
feasibly scheduled by that algorithm and increasing the
computation time of any one of the tasks in the set would
cause the algorithm not to produce a feasible schedule for

the set. For a given algorithm, the minimum achievable

processor utilization 1is the minimum of the wutilization

factor over all task sets that fully utilize the processor.

This means that any set of tasks whose utilization factor
is 1less than or equal to the minimum achievable utilization
can always be scheduled by the corresponding algorithm.
Sets of tasks with larger utilization factor may or may not

be scheduled by the corresponding algorithm. Thus, a



possible measure of the "effectiveness" of a scheduling
algorithm is the minimum achievable processor utilization
of the algorithm. Other things being equal, an algorithm
which has higher minimum achievable processor wutilization
is naturally more effective, since it enlarges the set of
feasibly scheduleable task sets.

The problem of devising scheduling algorithm for these
type of tasks has attracted the attention of many
researchers[4-10]. Scheduling algorithms considered for

this problem have been restricted to preemptive priority

driven algorithms. In these algorithms, a currently

running task of 1lower priority will be taken off the
processor whenever there 1is a request from a higher
priority task, even though the request of the lower
priority task has not been completed. The interrupted task
is resumed 1later on. These priority driven scheduling
algorithms can be classified into two categories: static

priority algorithms, and dynamic priority algorithms. A

static(or fixed) priority algorithm is one in which
priorities are assigned to tasks first, according to some
mechanism, and then scheduling begins., During the process
of scheduling, all requests of a task of higher priority
have precedence over all requests of a task of lower
priority. To get some feeling about a static priority
algorithm, 1let wus consider an example. Suppose we have a

set of two tasks Ty and T, to be scheduled on a single-



10

processor computing system, with ci=1, ty=2, and co=2,
to=5. If we let Ty be the higher priority task, then all
requests of task T; have a priority over any request of I,.
From Figure 1.2(a) we see that such a priority assignment
is feasible. But if we let T) be the higher priority task,
then from Figure 1.2(b) we see that such a priority
assignment is not feasible.

A dynamic priority algorithm, on the other hand, is
one 1in which the priority of a task is a function of time
and hence it may vary from one request to another, and even
during different times of the same request. We will see
one such algorithm in the next Section.

As we mentioned before, each periodic-time-critical
task makes an infinite number of requests. By having this
fact in mind, how can we tell whether a particular schedule
meets the deadline of all the requests of all the tasks in
the set? In other words, how can we decide whether the
schedule produced by a particular priority algorithm 1is
feasible? Liu and Layland[7] answered this question.
Their result 1is described in Theorem 1.1. But before we
get to the theorem, let us define some terms.

The response time of the request of a task is defined

to be the time span between the time the request 1is made
and the time at which the computation of the request has

just finished. A critical instant for a task is defined to

be an instant at which the request for that task will have
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T“ = (1; 2)
T2 = (2, 5)

3
<
N\
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T2 Y 0
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(a) If Ty is the higher priority task.

ault

e
NL_—"H\

T Voo
0 1 2 3 4 5

(b)) If T, is the higher priority task.
2

Figure 1.2: Schedules for two tasks on a single processor

with different priority assignment.
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the largest possible response time. Therefore, the
schedule produced by a priority algorithm will meet the
deadline of all the requests of a task if and only if it
meets the deadline of a request made at a critical instant
of that task. |

Theorem 1.1: [7] A critical instant for any task

occurs whenever the task is requested simultaneously with

requests for all higher priority tasks.

The proof of Theorem 1.1 follows from the fact that,
in a priority driven algorithm, the processing of a request
of a task can only be delayed by requests of higher
priority tasks; Thus, the maximum delay occurs when a
request of a task is made simultaneously with a request of
all higher priority tasks.

I1f all the tasks make their first request at time
zero, then time zero will be a critical instant for all the
tasks in the set. Therefore, when all tasks make their
first request at time zero, if the schedule produced by a
priority algorithm meets the deadline of the first request
of all the tasks in the set, that schedule 1is feasible.
Because of this fact, the schedule shown in Figure 1.2(a)
will meet the deadline of all the requests of both tasks.

We call a scheduling algorithm on-line, 1if it
schedules tasks as thev arrive. 1In other words, the tasks

are available one at a time, and the algorithm schedules
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each task before the next one becomes available. In
contrast, we call a scheduling algorithm off-line, if it
has to have all the tasks available beforehand. By this
definition, all the scheduling algorithms that have to sort
the set of tasks‘ before scheduling them, are in the

category of off-line algorithms.
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1.4 Dissertation Contents:

In Chapter II we give a survey of previous work on
scheduling periodic-time-critical tasks. This Chapter
actually prepares us for presenting the results given in
chapters III and 1V. We first give a survey of the
algorithms available for scheduling this type of tasks on
single processor systems, and then talk about the problem
of scheduling this type of tasks on multiprocessor systems.
It 1is shown in this chapter that the scheduling algorithms
which worked well for single processor systems do not
perform as well for multiprocessor systems. An alternative
approach would be to first partition tasks into different
groups, and then schedule the tasks in each group on one
processor using one of the scheduling algorithms available
for single processor systems. We show that the scheduling
algorithm to be wused to schedule each group of tasks

influences the partitioning process.

In Chapter 1III we first prove that the problem of
partitioning a set of tasks with respect to the best static
priority driven algorithm, available for scheduling tasks
on single processor systems, is NP-hard. We then present
an off-line heuristic algorithm for this problem and

analyze its performance and complexity.
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In Chapter IV we present two on-line heuristic
algorithms for the same problem, and analyze their

performance and complexity.

Finally, in Chapter V we give some concluding remarks

about our work.



CHAPTER 11

A SURVEY OF PREVIOUS WORK

2.1 Scheduling Tasks on a Single-Processor System:

This problem was first studied by Liu and Layland[7]
and Serlin{8]. Liu and Layland came up with two scheduling

algorithms. One was called the rate-monotonic scheduling

algorithm which 1is a static priority algorithm. This

algorithm was referred to as intelligent fixed priority

algorithm by Serlin[8]. According to this algorithm
priorities to tasks are assigned in decreasing order of
their request rates(or in increasing order of their request
period). A task with higher request rate 1is assigned
higher priority over a task with lower re§uest rate,
regardless of their computation time. Ties are broken
arbitrarily. As an example, consider a set of three tasks
T, T2' and T3 with t1=3, t2=7, t3=5, and c1=1, c2=2, c3=1,
to be scheduled on a single-processor computing system.
Since T, makes a request every 3 units of time, T, makes a
request every 7 units of time, and T, makes a request every
5 wunits of time, therefore the priority order according to

the rate-monotonic algorithm would be (T1, T3, TZ)'

16
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A feasible schedule produced by the rate-monotonic
algorithm for this set of tasks is shown in Figure 2.1.
All of these three tasks make their first request at time
zero. Since the schedule meets the deadline of the first
request of all three tasks, therefore, by Theorem 1.1, the

schedule shown in Figure 2.1 is a feasible schedule.

Recall that the utilization factor of a task 1is the
fraction of the processor time taken by the task.
Therefore, for a set of tasks to be feasibly schedulable on
a single processor, it is necessary that 1its utilization
factor be 1less than or equal to 1. One may ask 1if this
condition 1is sufficient for the rate-monotonic algorithm to
produce a feasible schedule. Unfortunately, as the
following example shows, this is not the case. Consider a
set of two tasks Ty and Ty with c¢q=1, t4=2, and c¢y=2.5,
to=5. The total utilization factor of these two tasks 1is
1. As shown in Figure 2.2, this set of tasks is not
feasible wunder the rate-monotonic scheduling algorithm,
simply because we are not able to meet the deadline of the
first request of task T9. Thus, utilization factor of 1 is
not a sufficient condition for a set of tasks to be
feasible wunder the rate-monotonic scheduling algorithm.
What, then is the sufficient condition? Liu and Layland[7]

answered this question by the following theorem.
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T1 = (1 N 3)
T2 = (2. 7)
T3 = (1 ’ 5)

priority order: (T1, T4, TZ)

Figure 2.1: A feasible schedule of three tasks, produced

by the rate-monotonic scheduling algorithm.
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T] = (1, 2)
T2 = (2.5. S)

priority order: (T1, T2)

1 -
Weil A 7 J .
2

fault

Figure 2.2: An example of two tasks with total utilization
factor of 1 which are not feasible under the

rate-monotonic scheduling algorithm,
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Theorem 2.1: [7] A set of m periodic-time-critical

tasks can be feasibly scheduled on a single-processor
computing system by the rate-monotonic scheduling algorithm,
if the utilization factor of the set is less than or equal
to m(21/m -1), and this bound is tight in the sense that
for each m, there exists a set of m tasks with utilization

factor m(21/m -1) which fully utilizes the processor.

By Theorem A.1 of Appendix A, the value of m(21/® _1)y
approaches Ln2 when m approaches infinity. It should be
noted that Theorem 2.1 provides-only a sufficient condition
for a set of m tasks to be feasibly scheduled by the rate-
monotonic scheduling algorithm. Sets of m tasks with
utilization factor greater than m(21/m -1) may or may not
be feasibly scheduled by the rate-monotonic scheduling
algorithm. The example in Figure 2.1 shows that a 3-task
set with utilization factor greater than 3(2]/3 -1) can Dbe
scheduled feasibly, while the example in Figure 2.3 shows
that a 3-task set with utilization factor greater than

3(21/3 -1) can not be scheduled feasibly.

Liu and Layland[7] also proved the following theorem

about the static priority algorithms.
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T1 = (1, 3)
T2 = (], 4)
T3= (1.1, 5)

priority order: (Ty, T, Tj3)

[
v 7

o 1 2 3 4 5 6
12 [ k. A

o 1 2 3 4 5 6

Figure 2.3: An example of a 3-task set, with wutilization
factor greater than 3(21/3 -1), which is not

feasible under the rate-monotonic algorithm.



Theorem 2.2: [7] Among all static priority scheduling

algorithms for scheduling a set of periodic-time-critical
tasks on a single-processcr computing system, the rate-
monotonic scheduling algorithm is a best one in the sense
that if a set of periodic-time-critical tasks can be
feasibly scheduled by any static priority algorithm, then
this set can also be scheduled by the rate-monotonic

scheduling algorithm.

The other scheduling algorithm considered by Liu and

Layland[7] was called‘ the deadline driven scheduling

algorithm. This algorithm assigns priorities to requests
of tasks according to their deadlines, with the highest
priority being given to the request whose deadline is the
earliest. If several requests have the same deadlines,

then the tie is broken in an arbitrary manner.

As an example consider a set of two tasks Ty and Ty
with t1=2, t2=5, and c1=1, c2=2.5. A feasible schedule
produced by the deadline driven scheduling algorithm for
these two tasks is shown in Figure 2.4. This is the same
set of tasks which was not feasible under the rate-
monotonic scheduling algorithm, shown in Figure 2.2. The
reason it 1is feasible in this case is that when the third
reQuest of Ty arrives at time 4, its deadline 1is further

than the deadline of the first request of T,. Therefore,
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T] = (1 ’ 2)

T2 = ( 2 . 5 ’ 5)
1 ]

T 7z 7 /}'/ 7 V77

A A | B i

0 1 2 3 4 5 6
A

T2 v Bl
0 1 2 3 4 5 6

Figure 2.4: A feasible schedule of two tasks under the

deadline driven scheduling algorithm.
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at time 4, unlike in the previous case, the execution of
task T, is not interrupted. By doing so, the first request
of Ty, as well as the third request of T1, meet their
deadlines, hence making the schedule shown in Figure 2.4 a

feasible schedule.

They also came up with the following result regarding

the deadline driven scheduling algorithm.

Thoerem 2.3: [71 A set of periodic-time-critical

tasks can be feasibly scheduled on a single-processor
computing system by the deadline driven scheduling
algorithm, if and only 1if the sum of the wutilization
factors of all the tasks in the set is less than or equal
to 1.

The deadline driven scheduling algorithm is optimal
because of the fact that for a set of tasks to be feasibly
scheduled on a single processor computing system by any
scheduling algorithm, its utilization factor must be less

than or equal to 1.

The above two algorithms are the best results
obtained, so far, for the problem of scheduling periodic-

time-critical tasks on single processor computing systems.
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Although dynamic priority algorithms are in general a
more effective way of scheduling tasks than static priority
algorithms, it 1is easy to see that they are also more
difficult to implement and hence can incur higher system
overhead than static priority algorithms. Moreover, it is
possible to implement static priority algorithms at the
hardware level by the use of priority-interrupt mechanism.
Thus, the overhead involved in scheduling tasks can be

reduce almost to zero.
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2.2 Scheduling tasks on multi-processor systems:

One would naturally hope that a simple extension of
the algorithms developed for single-processor computing
systems would give satisfactory results when applied to
scheduling tasks on multi-processor computing systems.
Unfortunately, as the following example shows, this does
not turn out to be the case.

A preemptive priority driven scheduling algorithm for
a multi-processor computing system works as follows.
Priorities are assigned to requests of tasks in the set.
Any time a processor is free, it is assigned to an active
request with the highest priority, and also if a request is
made at an instance when all the processors are busy and
there are one or more requests with lower priority being
executed at that instance, then this request preempts the
request with the lowest priority. Ties are broken
arbitrarily.

As 1in the case of single-processor computing systems,
the rate-monotonic scheduling algorithm assigns higher
priorities to requests of a task with a higher request rate
over requests of a task with a lower request rate, and the
deadline driven scheduling alegorithm assigns higher
priority to a request whose deadline is the earliest. In
each case ties are broken arbitrarily.

Example: Consider a set of three tasks Ty, T, and Ty with

ci=Co=2e, cqa=1, and ti=t,=1, ta=1+e, for some 0< e <1/4, to
1752 3 17%2 3 =
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be scheduled on a 2-processor computihg system. Figure 2.5
shows that this set of tasks is not feasible on a two-
processor computing system  under the rate-monotonic
scheduling algorithm. The reasons being: At time zero when
all three tasks make their first requests, both processors
P; and P, are free. Since Ty and Ty have higher priorities
over T4, we assign their first requests to Py and P, at
time =zero, and their second requests to Py and Py at time
1. Consequently, both processors will be occupied by tasks
T4 and Ty during the time intervals [0,2e]l and [1,1+2e€},
leaving a maximum of 1-2e units of time, on each processor,
for the first request of Ty before its deadline at 1+e.
Since at any given time only one processor can be working
on a given request of a task, the deadline of the first
request of T3 cannot be met. Thus, this set of tasks 1is
not feasible on a two-processor computing system under the
rate-monotonic scheduling algorithm.

Figure 2.6 shows that this set of tasks 1is not
feasible on a two-processor computing system under the
deadline driven scheduling algorithm either. The reason
being: The first request of Ty and T,, each with deadline
1, have higher priority over the first request of T3, with
deadline 1+e. Consequently, both processors will be
occupied by tasks Ty and T, during the time interval
{0,2e], leaving a maximum of 1-e units of time, on each

processor, for the first request of T4 before its deadline
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T«] = (26, 1)
T2 = (26, 1)
T3 = (1, 1+e)

priority order: (Ty, To, T3)

A
u
1 1
R L,
P ZARA 1-2e T ;
v PN e PN
0 2e 1 14+2e
ﬁ T
VI AY ARG R
)2 T STy
2 //:/, 2"// .//// ,2'/',/ ] ’ y p——
0 2e 1 1+e

Figure 2.5: Example of a set of 3 tasks which can not be
feasibly scheduled on two processors under the

rate-monotonic scheduling algorithm.
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Figure 2.6: Example of a set of 3 tasks which can not be
feasibly scheduled on two processors under the

deadline driven scheduling algorithm.
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at 1+e. Therefore, this set of tasks is not feasible on a
2-processor computing system under the deadline driven
scheduling algorithm either.

However, if Ty is given the highest priority, then
this set of tasks can be feasibly scheduled by a static
priority algorithm, as shown in Figure 2.7.

This example shows that: (1) the rate-monotonic
scheduling algorithm, when applied to scheduling a set of
tasks on a multi-processor computing system, is no more
optimal amongst all fixed priority scheduling algorithms,
and (2) the deadline driven scheduling algorithm 1is no
more optimal amongst all scheduling algorithms when applied
to multi-processor computing systems. Therefore, it 1is
desirable to 1look for better scheduling strategies that
will lead to  more efficient use of multi-processor
computing systems.

The problem of devising optimal algorithms to schedule
a set of periodic-time-critical tasks on a fixed number of
processors turns out to be a difficult one.

An alternative to this approach is to first partition
tasks into different groups, and then schedule the tasks in
each group on one processor according to either one of the
above algorithms. The scheduling algorithm to be applied
to the individual groups in the partition will influence
the partitioning process, because each group of tasks must

be feasibly schedulable on a single processor according to
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= (2e, 1)

)
-——
I

T2 = (26, 1)
T3 = (1, 1+e)

priority order: (T3, Ty, Ty)

A

N 1+e
77 728,

Py /ﬂé/// 22
0 2e Le 1

Figure 2.7: A feasible schedule of a set of 3 tasks on two

processors under a fixed priority algorithm.
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the designated algorithm. This reduces the problem to
finding a good partitioning scheme in order to wuse a

minimum number of processors.

2.2.1 Partitioning with respect to the Deadline-Driven

Scheduling Algorithm:

Recall that if the utilization factor of a set of
tasks is less than or equal to 1, then the set can be
feasibly scheduled on a single processor computing system
according to the deadline-driven scheduling algorithm.
Hence, the problem of partitioning a set of tasks with
respect to the deadline-driven scheduling algorithm reduces
to the famous bin-packing problem[11-17]1, where it is
desired to pack a set of packages into bins of fixed size
so that the sum of the sizes of the packages in a bin does
not exceed the size of the bin. This can be seen by
imagining a task as a package of size equal to its
utilization factor and a processor as a bin of size 1.
Thus, all of the results known about .the bin-packing
problem can also be applied in this case.

The bin-packing problem has been studied extensively
since the early 1970s. Since this problem has been shown
to be NP-complete[11,12], various heuristic algorithms have
been proposed{13-17].

Let N* and N(A) denote, respectively, the number of

bins needed by an optimal algorithm and the number of bins
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needed by a heuristic algorithm A to pack a given list of
packages. Then, the worst-case performance ratio of
algorithm A is defined as limN*q_°°N(A)/N*. This ratio is
customarily used to evaluate the performance of a heuristic
bin-packing algorithm.

Table 2.1 summarizes all the results known about one-

dimensional bin-packing problem.

Table 2.1: The Results of Bin-Packing Algorithms.

(n = number of packages in the list.

W.P.R. = Worst-case Performance Ratio.)

algorithm time-complexity W.P.R.
Next-Fit [13] 0(n) 2
First-Fit [13-15] O(nlogn) 17/10
Best-Fit [13-15] O(nlogn) 17/10
First-Fit-Decreasing [13-15]} O(nlogn) 11/9
Best-Fit-Decreasing [13-15] 0O(nlogn) 11/9
Refined-First-Fit [16] O(nlogn) 5/3
Refined-First-Fit-Decreasing [16] O(nlogn) 11/9 -¢
Harmonic [17] 0(n) 1.692

Refined-Harmonic [17] 0(n) 1.636
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2.2.2 Partitioning with respect to the Rate-Monotonic

Scheduling Algorithm:

The problem of partitioning a set of tasks with
respect to the rate-monotonic scheduling algorithm is no
longer the same as the bin packing problem. The reasons
being:

(1) The total utilization factor of the set of tasks
which can be feasibly scheduled on a single
processor by the rate-monotonic scheduling
algorithm depends on the number of tasks in the
set, as well as their relative request periods.

(2) The bound in Theorem 2.1 is only a sufficient
one.

The problem of partitioning with respect to the rate-
monotonic scheduling algorithm may be considered as a bin-
packing problem where the capacity of the bin is not fixed
but varies within a certain range. In Chapter 3 we prove
that this problem is NP-hard,

The deadline driven scheduling algorithm is a dynamic
priority algorithm and, as mentioned before, the
implementation of a dynamic priority algorithm requires
more overhead than the implementation of a static priority
algorithm. Therefore, it will be interesting to
investigate 1into the performance of some "heuristic"
algorithms for the partitioning problem with respect to the

rate-monotonic scheduling algorithm, which is the best
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static priority algorithm.

Two heuristic algorithms for this problem were
considered by Dhall and Liu [10]. They called the first
one the Rate-Monotonic-Next-Fit algorithm and the second
one the Rate-Monotonic-First-Fit algorithm.

According to the Rate-Monotonic-Next-Fit algorithm,
tasks are first arranged in non-decreasing order of their
request period, and renumbered, if necessary, as T1, T2,

ees, T Then, task Ty is assigned to processor Py, and

me
for each remaining task Ty, 2<1 < m, the following
actions are taken:
Assuming that task T;_; is assigned to processor Pj,
if T; can be feasibly scheduled on Pj along with all
the tasks already assigned to Pj under the rate
monotonic scheduling algorithm, then T; is assigned
to Pj, otherwise T; is assigned to Pj+1.
They proved the following theorem concerning the Rate-

Monotonic-Next-Fit algorithm:

Theorem 2.4: [101 Let N be the number of processors

required to feasibly schedule a set of tasks by the Rate-
Monotonic-Next-Fit algorithm, and N* be the minimum number
of processors required to feasibly schedule the same set of

tasks. Then,

2.4 < 1im 4 N/NY < 2.67

—
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While partitioning tasks according to the Rate-Monotonic-
Next-Fit algorithm, only one processor is considered at a
time. Once a task cannot be placed on the processor under
consideration, that processor is not used for placing any
further task on 1it, even though some tasks may still be
feasibly scheduled on the processor. When this restriction
is removed from the Rate-Monotonic-Next-Fit algorithm, then
the result 1is a new algorithm, called the Rate-Monotonic-
First-Fit algorithm.

They proved the following theorem concerning the Rate-

Monotonic-First-Fit algorithm:

Theorem 2.5: [10] Let N be the number of processors

required to feasibly schedule a set of tasks by the Rate-
Monotonic-First-Fit algorithm, and N* be the minimum number
of processors required to feasibly schedule the same set of
tasks. Then,
2 < limN*_’ooN/N* < 213y 142173y

It was conjectured that the upper bound can be
improved to 2.

The bounds obtained in these algorithms are not very
efficient. Moreover, the upper bound in both of these
algorithms 1is not tight, in the sense that no examples are

provided which achieve these bounds.

Since these were the only two algorithms available for
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the problem of partitioning with respect to the rate-
monotonic scheduling algorithm, we decided to pursue this
problem further, in search of finding hopefully some
"better" heuristic algorithms.

In Chapter 111 we present a new algorithm which has a
better and a tight worst-case performance ratio.

The algorithms given by Dhall and Liu and the
algorithm presented in Chapter 111 are all off-line
algorithms. In Chapter IV we present two O(n)-time and
O0(1)-space on-line algorithms (n is the number of tasks in
the set of tasks to be scheduled). The worst-case
performance ratio of these algorithms are comparable to

those of the off-line algorithms.



CHAPTER III

PARTITIONING TASKS WITH RESPECT TO THE
RATE-MONOTONIC SCHEDULING ALGORITHM

3.1 Introduction:

As mentioned in Chapter 11, the scheduling algorithms
which perform well in the case of single-processor
computing systems do not necessarily work as well for multi-
processor computing systems. An alternative approach for
scheduling periodic-time-critical tasks on multiprocessor
systems would be to first partition the set of tasks into
different groups, and then schedule the set of tasks of
each group on a single processor using one of the
algorithms for single-processor systems.

The partitioning problem will depend mainly on the
type of scheduling algorithm to be used on each processor.
If it 1is desired to use the deadline-driven algorithm(a
dynamic priority algorithm) to schedule the tasks of each
group, then the partitioning problem is the same as the
famous bin-packing problem{13-17]. But, the problem of
partitioning with respect to the rate-monotonic scheduling

algorithm 1is not the same as the bin-packing problem, an

38



obvious reason being, that a set of tasks with utilization
factor of 1 may or may not be feasible on a single
processor under the rate-monotonic scheduling algorithm.
The total wutilization factor of a set of tasks that 1is
feasible wunder the rate-monotonic algorithm, depends on the
number of tasks in the set. The fact that the
implementation of a static priority algorithm requires less
overhead than the implementation of a dynamic priority
algorithm, motivated us to pursue the problem of
partitioning tasks with respect to the rate-monotonic
scheduling algorithm(the best static priority algorithm).
In the next section we will prove that this problem 1is

NP-hard.
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3.2 Proof of NP-hardness:

By the following Theorem, we prove that the problem of
partitioning with respect to the rate-monotonic scheduling

algorithm is NP-hard.

Theorem 3.1: Given a set of periodic-time-critical
tasks S = {T1, Ty «ves Tm}, with utilization factors
U = {u1, Ug, oo, um}, respectively, and a positive integer

K, the problem of partitioning this set of tasks into K
disjoint subsets S1, Sz, oo, SK so that each S; can be
feasibly scheduled on a single processor by the rate-

monotonic scheduling algorithm is NP-hard.

Proof: To prove this Theorem, we follow the technique
described in [111. We will restrict this problem to the
bin-packing problem. The bin-packing problem is known to
be NP-complete[11,12], and it is stated as follows:
Given a finite set A = {a1, as, ...,am}'of items with
sizes Ag ={s(ay), s(ap), ..., s(ap) } . respectively, a
positive integer bin capacityv B, and a positive integer
K. Is there a partition of A into disjoint sets Ay, Ajp,
«es, Ag such that the sum of the sizes of the items in
each A; is B or less.

According to Theorem 2.1, if the total utilization factors

of a set of tasks is less than or equal to Ln2, the set can

be feasibly scheduled on a single processor by the rate-

monotonic scheduling algorithm. Remember that this
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condition was only a sufficient one, meaning if the total
utilization factors of a set of tasks is greater than Ln2
and less than or equal to 1, the set may or may not be
feasible wunder the rate-monotonic algorithm. Therefore, if
the wutilization factor of the set is greater than Ln2 but
less than or equal to 1, we need to make some extra checks
to find out whether or not it is feasible.

Consider a restricted version of our problem where
0 < u; £ Ln2, for all 1 { i < m, and the feasibility test
for a set of tasks is successful if the utilization factor
of the set is less than or equal to Ln2 and it is a failure
othgrwise. This restricted version of our problem is
equivalent to the bin-packing problem by assuming A = S,
Ay = U, and B = Ln2.

Since we have shown that a restricted version of our
problem 1is equivalent to the bin-packing problem, therefore
our problem must be at least as hard as the bin-packing
problem, which 1is known to be NP-complete, Hence,
according to the definition given in [11], our problem is
NP-hard.

Q.E.D.

The class of NP-hard problems is such that if there is
a method for solving any member of the class that takes
time bounded by a polynomial in the size of the input, then

every member of the class has such a polynomial time

solution. Since problems famous for their computational



42

intractability, such as the HAMILTONIAN CIRCUIT and
TRAVELING SALESMAN problem, are members of this class, it
seems probable that in fact no member of this class can be
solved in polynomial time.

It is customary to look for heuristic algorithms for
NP-hard problems whose goal 1is only to generate near
optimal solutions. The effectiveness of these algorithms
is measured by analyzing their worst case behavior. Some
of the first work in bounding the worst case behavior of
near-optimal algorithms was done as early as 1966 by Graham
[19,20], for a different problem in multiprocessor
scheduling.

To analyze the worst case behavior of the heuristic
alporithms for this problem, we will use the following
notations:

Let N* and N(A) denote, respectively, the number of
processors needed by an optimal algorithm and the number of
processors needed by an algorithm A to schedule a given set

of tasks. Then, the worst-case performance ratio of

algorithm A, denoted by r(A), is defined as:

N(A)
r(A) = 1lim
N*—> o0 N*

As it was mentioned in Chapter II, Dhall and Liu[10]

considered two heuristic algorithms for this problem. The
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worst-case performance ratio of these algorithms were:

2.4 < r(A)  2.67, and

2 {r(a) £
(1 + 213

These bounds are not tight. In the next section we
present a new algorithm whose bound is tight and better

than the above bounds.
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3.3 The First-Fit-Decreasing-Utilization-Factor Algorithm:

According to the First-Fit-Decreasing-Utilization-
Factor (FFDUF) algorithm, the tasks are first arranged in
non-increasing order of their utilization factors. Let

these rearranged tasks be labelled as T1, T2, eee, T and

m’
imagine the set of processors as a semi-infinite sequence

Piy Py, e The assignment procedure is as follows:

1) seti=1; N=1;

2) while i < m do
set j = 1; assigned = false;
repeat

if T,

i is feasible on Pi according to the

rate-monotonic scheduling algorithm along
with all the tasks (if any) already assigned
to Pj then
assign T; to Pj;
set 1 = i+1{ N = max(N,j);
assigned = true
else
set j = j+1
until assigned
end-while;
The final value of N is the number of processors
required to schedule the given set of tasks according to

this algorithm.
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3.3.1 Worst Case Analysis of the FFDUF Algorithm:

Before we analyze the behavior of FFDUF algorithm, let
us prove the following theorem about the rate-monotonic
scheduling algorithm. This result will be wused 1in the

proof of Theorem 3.3.

Theorem 3.2: Let T1 = (c1,t1) and T2 = (c2,t2) be a

set of two tasks with utilization factors uy=cqy/ty and
ugp=cyp/ty, respectively. If ty < to and uy < (1-u1)/(1+u1),
then these two tasks can be feasibly scheduled on a single

processor by the rate-monotonic scheduling algorithm.

Proof: If Ty and T, make their first request at time
zero, then time zero will be the critical instant of T4 and
Ty, by Theorem 1.1. Therefore, if the schedule produced by
the rate-monotonic scheduling algorithm meets the deadline
of the first request of Ty and T, then, it will also meet
the deadline of all the requests of Ty and Tj.

Let ty = ntq+k.

We may have one of the following two cases:

Case 1: k < ¢q. In this case the largest possible value

of Cy 13

Coy = n(t1-c1) = nt1(1—u1)
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Co nt1(1-u1) 1 - uq
Thus, uy = = = ”
t2 nt1+k 1 +
nt1
k C1
Since k £ ¢y and n > 1, therefore, <
nt1 t1
1-U1
Thus, Uy D mmme--
1+u1
Case 2: k > c¢qy. In this case the largest possible
of cy 1is

C2 = n(t1-c1) + (k-C1) = nt1(1-u1) + (k-CI).

Lemma 3.1: If a > b > 0 and a > x > 0 then,

Proof: Since a > b and x > 0 , we have

ax > bx
(ab-bx) > (ab-ax)
b(a-x) > a(b-x)

b b-x
or —_2

value
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Since ty > c¢9p > 0 and ty > (k-cq) > 0, by Lemma 3.1, we

have:

02 C2-(k-C1)
2
t2 t2-(k-C1)

By substituting the values of ¢y and ty in the

inequality, we get

C2 nt1(1-u1) 1 - U1
t2 nt1+k—(k-c1) 1 +
nt1
¢ ¢
Since < , therefore
nt1 t1
1-u1
up 2
1+u-‘
Q.E.D.

We now proceed to analyze the behavior of

algorithm by proving the following theorem.

Theorem 3.3: r(FFDUF) = 2.

above

FFDUF
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Proof: We define a function f mapping the utilization
factors of tasks into the real interval [0,1]1. If u is the

utilization factor of a task, let

2u, 0 <u<1/2
f(u) =
1, 1/2 < u <1

Lemma 3.2: Let N* be the minimum number of processors
required to feasibly schedule a set of tasks {T1, To, eess
Tm}with utilization factors {u1 v Ug, een, um},

respectively. Then,

™m
NT > 172 ) £(uy)
i=1
Proof: Let {Trl’Tr 2 ...,Trk}be the set of
Iane— H b ’ r
tasks with wutilization factors {ur 15 Up 92, eess  Up } s
] ’ ? r

respectively, assigned to processor P,., 1{ r _<_N*. Then,

k

r K K, *
f(“r,i) < Z Zur,i =2 Z Up g 1< r <N,
i=1 i=1 i=1
Ky ky *
Since Z ur ;3 £ 1, we have z £Qup ) <2, KN
i=1 i=1
m N* kr .
Hence, Z f(uy) = Z Z f(ur,i) < 2N
i=1 r=1 i=1
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m
Which means N* >1/2 ) f(u;).
i=1

Q.E.D.
In what follows we assume the following definitions:

- Let N be the number of processors used by the FFDUF
algorithm to schedule a set of m tasks {T1, Ty, e, Tm}
with utilization factors {u1, Uy, «ee, um}, respectively.

-
- Let (Py, Py, ..., Py) be the set of processors wused by

the FFDUF algorithm.

- Let (Tr,1' Tr,2' .o, Tr,kr) be the set of tasks assigned

to processor P,., 1<r<N.

- Let a, be the utilization factor of the task with the
highest wutilization factor amongst all the tasks assigned

to processor P..



50

Lemma 3.3: Suppose N processors are used by the
FFDUF algorithm to schedule a set of m tasks. if
ay < Ln2-.5, then for each processor P, 1 { r { N-1,

we have

f<ur,i) 2_ 1.

Proof: By Theorem 2.1, as long as the wutilization
factor of a set of tasks is less than or equal to Ln2, it
can be scheduled on a single processor by the rate-
monotonic scheduling algorithm. Therefore, if there is a

task Ty 5o with uy, 4 { Ln2-.5, assigned to processor Py by

the FFDUF algorithm, then for all the processors P,

k
r

1 < r < N-1, we must have > up y > .5. Otherwise, the
i=1

task Ty 3 must have been assigned to the first processor,
’.

k
r
P., found with Z ur j £ .5. On the other hand, if for
i=1
Ky
all the processors P., 1 < r < N-1, we have Z: u. 3 > .5,
i=1

then, by the definition of function f, we must have

kr
f(up ) 21, 1< r < N-1.
=1

1
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Lemma 3.4: Suppose N processors are used by the FFDUF
alporithm to schedule a set of tasks. If Ln2-.5 < ay <

21/3—1, then for each processor P., 1 {r {N-1, we have

kr
Y OfCu ) > 1.
i=1

Proof: Since the FFDUF algorithm assigns tasks in ﬁon-
increasing order of their utilization factors, therefore,
at the time when the task with utilization factor Oy is
being assigned to processor Py, no task with wutilization
factor 1ess> than or equal to Ln2-.5 has been assigned to
any one of the processors in use. At the time when the
task with wutilization factor @y is being considered for
assignment, let a processor P. be placed in group 1 if

ap > 21/3.1, and in group 2 if a4, < 21/3_4,

For any processor P. in group 1, for which a. 2 .5, we

k
r
obviously have z: f(ur,i) > 1.
- i=1

For a processor P, in group 1, with 21731 < a. < .5,

which has at least 3 tasks assigned, we obviously have

k
> 2(2(Ln2-.5) + 21/3.1y > 1.

k
r r
f(up 1) =2 ) Ur,i

i=1 i
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We next consider those processors P, in group 1 for
which we have 21/3.1 ¢ a. < .5 and each such processor
has at most 2 tasks assigned to it.

By Theorem 2.1, if the utilization factor of a set of
3 tasks 1is less than or equal to 3(21/3-1), it can be
scheduled on a single processor by the rate-monotonic
scheduling algorithm. Since .5 +dy < 3(21/3-1), the
utilization factor of the tasks assigned to any such
processor must have been greater than .5. For otherwise,

the task with wutilization factor GN must have been

assigned to one of these processors. Therefore, for any

processor P. of this group we must have

This will exhaust group 1 processors.

We next consider group 2 processors. Since for each
task T; assigned to any processor P. of tﬁis group we have
In2-.5 < wuj £ 21/3-1 and since Ay < 21/3-1, we must have
had at least 3 tasks assigned to each processor of this
group. For otherwise, according to Theorem 2.1, the task
with wutilization factor of Uy must have been assigned to
the first processor found from this group which has two or
less tasks assigned to it. On the other hand, if we have
at least 3 tasks assigned to every processor of group 2,

then for each processor P. from this group we must have
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k k
T £y ) =2 T u ;> 2%3%(In2-.5) > 1.

Lemma 3.5: Suppose N processors are used by the
FFDUF algorithm to schedule a set of tasks. If
217329 ¢ dy < 1/3, then for each processor P,

1 {r {N-1, we have

\Er
L, £Qup ) 2 1.
i=1
Proof: Since the FFDUF algorithm assigns tasks in

non-increasing order of their utilization factors, at the
time when the task with utilization factor @y is being

assigned to processor Py, for any task T, assigned to any

i

processor P,, 1 { r < N-1, we must have u, ; > 21/3_1.

For all processors P, 1{ r < N-1, with a, > .5 we

k
obviously have Zr f(up §) > 1.

i=1

Theréfore, we are left to consider only those

processors P, 1 { r < N-1, for which we have
21739 « a. < .5. We claim that any such processor must
have at least 2 tasks assigned to it. Suppose there is a
processor P with only one task Tr,1 assigned to it. We

r

know that u,. ¢ is less than .5. Since (1-.5)/(1+.5) = 1/3
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and since ay £ 1/3, Therefore by Theorem 3.2, the task
with wutilization factor Qg must have been assigned to
processor P.. Hence, our claim is true. But if any

processor P, of this group has at least 2 tasks assigned to

it, then we obviously have:

r

b1 =

& 1/3
T f(up 1) =2 up 3 > 2%2x(21/3-1) > 1,
i=1 '

1

I

i

Q.E.D.

Corollary 3.1: Let N be the number of processors used

by the FFDUF algorithm to schedule a set of m tasks. If

GN < 1/3 then,

m
N< Y f(up) + 1.

i=1
Proof:
N-1 kr m
Since Z Z Ur < Z uj,
r=1 1i=1 i=1
N-1 kr m
therefore, Z £up §) < ) f(uy). (1)

1 i=1
But since ay £ 1/3, for any processor P., 1 { r { N-1, by

Lemmas 3.3, 3.4, and 3.5, we have

k
PYRICHINEE (2)
1=
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From equations (1) and (2) we get

Which means

m
N< 3 £(uy) + 1.
1

T

Q.E.D.

Lemma 3.6: Let N be the number of processors used by
the FFDUF algorithm to schedule a set of m tasks. Let K
be the number of tasks in the set, each with wutilization

factor greater than 1/3. 1If dy > 1/3 Then, N { K.

Proof: Since the (FFDUF) algorithm schedules tasks in
non-increasing order of their utilization factors, at the
time when the task with utilization factor Oy 1is being
assigned to processor Py» for any task Tr,i assigned to any
processor P., 1 {r {N-1, we must have Ur 4 > 1/3. This
means that at the end of the scheduling process any one of
the N processors has at least one task with a utilization
factor greater than 1/3 assigned to it. Since we have only
K of such tasks and since no task is assigned to more than
one processor, therefore, we must have N < K.

Q.E‘D.
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Proof of Theorem 3.3: We can have one of the

following two cases:

Case 1: GN < 1/3. 1f this is the case, then by corollary

3.1 we have

m
N< Y £(ug) +1,
i=1

and by Lemma 3.2 we have

m
N* > 1/2 ) £(uyg).
i=1

Therefore, we have

N
< 2.

lim
N oc N*

Case 2: Gy > 1/3. Let S be the set containing all tasks

T.

i with u.

i > 1/3, and K = ISI. Then, by Lemma 3.6 we have
N < K. Since no other algorithm can schedule more than 2

tasks in S on a single processor, we have N* > K/2.

Therefore, in this case also we have

N
£ 2.

lim "
N— OC N

Thus, so far we have shown that r(FFDUF) < 2.
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To finish the proof of Theorem 3.3, we are going to
show that for a given €)> 0, There exists an arbitrary
1arge set of tasks for which we have N/N* > 2-¢ .

For a given N, 1let us choose a set of N tasks as
follows, where the first number in each parenthesis is the
run-time of the task, and the second number is the request-

period of the task:

Ty = (1, 1+ 21/

Ty = (22/8 49, 22/N¢q + 21/N))

TN = (2(N—1)/L\' +°’ 2(N-1)/N(1 + 21/N))

Where O is such that no task has utilization fac&or greater
than 1/2.
This set of tasks when scheduled according to the
FFDUF. algorithm, will require N processors, because no
two of these tasks can be feasibly scheduled on a single
processor according to the rate-monotonic scheduling
algorithm. However, since the utilization factor of each
task in this set is less than 1/2, any pair of these tasks
can be feasibly scheduled on a single processor according
to the deadline driven scheduling algorithm. Thus, all
these tasks can be feasibly scheduled on [N/2] processors.
Thus N° = [N/2], and so N/N' = N/[N/2].  Taking N

sufficiently large, we can make the ratio N/N* > 2 -¢.
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Therefore,
N
lim —_— = 2,
*
N*~CO N

Since we had already shown that r(FFDUF) < 2, we conclude
that
r(FFDUF) = 2.

Q.E.D.

Note that the example given in the proof of Theorem

3.3 proves two facts:

(1) the bound obtained for the worst-case performance

ratio of FFDUF algorithm is a tight bound.

(2) No other partitioning scheme based on the rate-
monotonic scheduling algorithm can have a better

worst-case performance ratio.

We will analyze the time and space complexity of the

FFDUF algorithm in the next section.
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3.3.2 The Complexity of the FFDUF Algorithm:

The algorithm FFDUF is a two part algorithm. 1In the
first part it sorts the set of tasks to be scheduled in non-
increasing order of their utilization factors. In the
second ©part, for each task Ti’ 1<i<n(n= number of
tasks in the set), it searches among processors to find one
processor Pj to which T; is feasible along with all the
tasks(if any) already assigned to Pj. In the feasibility
test, when considering two tasks the result in Theorem 3.2
can be wused, and when considering more than two tasks the
result in Theorem 2.1 can be used. In either case it needs
to make only one comparison. In order to be able to wuse
the results of Theorems 2.1 and 3.2, all it needs to do is
to keep track of the number of tasks assigned to each
processor, and the total utilization factors of all the
tasks assigned to each processor.

The time compléxity of the first part(sorting) is
O(nlogn) [21].

In the second part(searching) the maximum possible
number of processors it may consider would be less than n,
the number of tasks in the set. Therefore, the time
complexity of searching for each task would be 0(n) and for

n tasks would be O(nz).

Thus, the time complexity of FFDUF algorithm is O(nz).
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The space complexity of each part is O(n). The reason
being: 1in the fist part it needs n storage spaces in order
to sort a set of n tasks, and in the second part it needs
at most n storage spaces, one for each active processor.

Therefo;e, the space complexity of the FFDUF algorithm
is 0(n).
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3.4 Summary:

In this chapter we first proved that the problem of
partitioning tasks with respect to the rate-monotonic
algorithm is NP-hard. We then presented a new algorithm
(FFDUF) and showed that its worst-case performance ratio is
2, which is an improvement over the worst-case performance
ratio of the previously known algorithms (RMNF and RMFF).
We also showed that the time complexity of FFDUF algorithm

is O(nz),

and that its space complexity is O(n).

Like the FFDUF algorithm, the RMFF algorithm is also a
two part algorithm. In the first part it sorts the set of
tasks to be scheduled in non-decreasing order of their
reqest period, and in the second part for each task it
makes a search in First-Fit manner, similar to the search
made by the FFDUF algorithm. Therefore, the RMFF algorithm

is also an O(nz)-time and O(n)-space algorithm.

The RMNF algorithm also sorts the set of tasks to be
scheduled in non-decreasing order of their request period.
Unlike the other two algorithms, it does not have the
complexity of searching. The reason being: when the
feasibility test fails on one processor, it will not
consider that processor any longer. But since it has to
sort, 1its time complexity is O(nlogn) and 1its space

complexity is 0O(n).
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All of these three algorithms have to sort the set of
tasks before scheduling them. Therefore, all of these
three algorithms are off-line algorithms. In the next
chapter we give two O(n)-time and O0(1)-space on-line

algorithms for this problem.



CHAPTER 1V

ON-LINE ALGORITHMS

4.1 Introduction:

The heuristic algorithms for the problem of
partitioning a set of tasks with respect to the rate-
monotonic scheduling algorithm given by Dhall and Liu[10]
and the one presented in the previous chapter, are all off-
line algorithms. For these algorithms to proceed, it is
necessary that all the tasks to be scheduled be available
before hand. The space complexity of these three
algorithms 1is O0O(n). Two of these algorithms have a time
complexity of O(nz), and the third one has a time
complexity of O(nlogn), where n is the number of tasks in
the set of tasks to be scheduled.

In this chapter we present two on-line algorithms. We
call these algorithms NEXT-FIT-2 and NEXT-FIT-M. An on-
line scheduling algorithm is more difficult than an off-
line algorithm because of the fact that the nature of the
arriving tasks in an on-line processing is unpredictable.
In general, The performance of an on-line algorithm is

substantially affected by the permutation of the tasks in a

63
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given set. We will show that the time complexity of these
algorithms 1is O(n) and their space complexity is 0(1). We
will also show that the worst-case performance ratio of
NEXT-FIT-2 1is 1less than 2.4143, and that the worst-case
performance ratio of NEXT-FIT-M is less than 2.2838.

In Section 4.4, we show that if the set of tasks to be
scheduled does not contain any task with utilization factor
in the range (21/2—1, 1/2], then the worst-case performance

ratio of NEXT-FIT-M would be less than 1.911.
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4.2 The Algorithm NEXT-FIT-2:

Let {T1, Ty, oo, Tn} be the set of tasks with
utilization factors {u1, Ug, oo, Uy }, respectively.
Divide this set of tasks into 2 different classes as
follows. Let any task T; belong to class-1 if uy> (21/x-1);
where x 1is a positive integer greater than 1, and 1let it

belong to class-2 if u; £ (21/X -. 1), as shown below.

class of task range of utilization factor
1 V%1, 1]
2 o, 21/%.1]

Similarly divide the set of all processors into 2 different
classes. A processor designated to process class-k tasks
exclusively is referred to as a class-k processor, 1< k 2.
For convenience, let a processor of class-k, 1< k <2, be
called "filled" if it has been used and it is not intended
to assign any more tasks to it. Let a processor be called
"active" if it is the processor to which the next class-k

task will be assigned.

Algorithm NEXT-FIT-2

/* Py 5 = the jth processor of class-k */
/* Uy = the total utilization factors of all the tasks

assigned to the active processor of class-k */
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/* mp = the number of tasks assigned to the active
processor of class-k */

1. for k = 1 to 2 do

Il

set Np
set Uy = myp = 0;
end-for;
2. set i = 1;

3. while i < n do

if u; > (21/%_1) then /* T; is a class-1 task */
set k = 1

else /* T; is a class-2 task */
set k = 2

end-if;

if U > (me+1) 2V (™) 21y~ 4. then
set Ny = Np+1;
set U = m =0
end-if;
assign T; to Pk,Nk?

set Uk = Uk + us;

[l

set my = my + 1;
set i =1 + 1
end-while;
4. if my = 0, 1<{k<2, then
set N = Np - 1;
The final values of N, 1 < k < 2, would be the number

of class-k processors used by the algorithm.
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4.2.1 The Complexity of NEXT-FIT-2:

For each task T;, 1 < i < n, this algorithm first
determines its <class by a single test, and then by an
additional test it determines whether or not it is feasible
on 'the active processor of its class. If the task is
feasible on the active processor of its «class, the
algorithm assigns it to the proéessor. Otherwise, it picks
a new processor to be the active one. Therefore by a
constant amount of computation this algorithm assigns a
task to a processor. Hence, the time complexity of NEXT-
FIT-2 is O(n).

If we consider a filled processor as the output of the
algorithm, then NEXT-FIT-2 needs only 2 storage spaces for
two active processors. Therefore, the space complexity of

NEXT-FIT-2 is 0(1).
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4.2.2 Worst-Case Analysis of NEXT-FIT-2:

The wupper bound for the worst-case performance ratio
of NEXT-FIT-2, denoted by r(NF2), is obtained in two parts.
In part I we calculate the upper bound for r(NF2) when
X = 2, and in part II we calculate the bound for x > 2.

We will assume the following definitions throughout this
section.

- Let N* and N(NF2) denote, respectively, the number
of processors needed by an optimal algorithm and the
number of processors needed by  NEXT-FIT-2 to
schedule a given set of tasks.

- Let Nl and No denote, respectively, the number of
class-1 processors and the number of class-2
processors needed by NEXT-FIT-2 to schedule the
given set of tasks.

- Let S, 91, and Sz‘denote, respectively, the sum of
the wutilization factors of all tasks, the sum of the
utilization factors of all class-1 tasks, and the
sum of the utilization factors of all class-2 tasks

in the given set.

Part I: x = 2.

S
1
Lemma 4.1: For x = 2, we have N4 h— e+ 1.
Proof: Since the utilization factor of any class-~]

task in this case is greater than (21/2-1) and since any
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filled class-1 processor must have at least one class-1

task assigned to it, we conclude that

51 51
Q.E.D.
25,
Lemma 4.2: For x =2, we have Ny < + 2.
Ln2
Proof: By Theorem A.1 of Appendix A, the value of

m(21/m-1) approaches Ln2 when m approaches infinity.
Therefore, the total wutilization factors of the tasks
assigned to any two adjacent class-2 processors must be
greater than Ln2. For otherwise, the next processor must

have been used illegally. Thus, we conclude that:

Ny So S
< < + 1
2 Ln2 Ln?2
28,
and Ny < + 2.
In2
Q.E.D.
Corollary 4.1: For x = 2, we have
2S
N(NF2) < + 2.

Ln2
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Proof:
| S 28,
N(NF2) = Ny + Ny < + + 2
(21/2_1y Ln2
254 28y
= + + 2
2¢21/2.7) Ln2
25,4 25,
< + + 2
Ln2 Ln2
28
= + 2.
Ln2
Q.E.D.
2

Theorem 4.1: For x = 2, we have r(NF2) <

Ln2

Proof: We obviously have N* > §, and by Corollary 4.1

28
we have N(NF2) < + 2. Thus,
Ln2
N(NF2) 2
r(NF2) = 1lim <
N*., co N* Ln2
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Part 11: x > 2.

Lemma 4.3: For x > 2, we have

284
N] < + 4,
(x-1) 21/ (%=1)_1y

Proof: Divide all the filled class-1 processors into
two groups as follows. Let all filled class-1 processors
which have 1less than (x-1) tasks assigned to them along
with their next immediate neighbors belong to group-1 and
the rest of filled class-1 processors belong to group-2.
The reason for this categorization will become clear
shortly. Before we continue further, let us make some
additional definitions.

- Let Si,i' 1{ i <2, denote the sum of the utilization

factors of <class-1 tasks assigned to all group-i
processors,

- and let Ny 1< i £ 2, be the number of processors

i

in group-i.

Since the utilization factor of any class-1 task 1is
greater than (21/X-1) and since each group-2 processor has

at least (x-1) class-1 tasks assigned to it, we have

$1,2
N1’2< + 1.

(x-1) (21 /%-1)
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We next consider group-1 processors. Relabel group-1
processors in 1increasing order of their index as Py, Py
cee, PN1,1' Let U; be the total utilization factors of the
tasks assigned to processor P;, 1<1X N1’1. For now let
us assume that N1’1 is an even number. If we consider
these processors as a group of N1’1/2 adjacent pairs, then,
by definition, the first processor in each pair has 1less
than (x-1) tasks assigned to it. Let P; and Pi be one
such pair, where P; has m < (x-1) tasks assigned to it.
Then, we must have Uj; + Uj4q > (m+1)(21/(m+1)-1). For
otherwise, the assignment of tasks to P;,q 1is made
illegally. Since, by Theorem A.2 of Appendix A, the value
of (m+1)(21/(m+1)-1) decreases as the value of m increases,
by substituting the maximum possible value of m in terms of
x we get U; + Ujuq > (x-1) 27/ (X=1)_1) . Since this is true

for any such pair of group-1 processors, we have

Ny S1,1
< + 1.
2 (x-1) 21/ (x=1) _qy
257 4
Therefore, Ny 1 < ' + 2.
(x-1) (217 (x=1) 1y
If N1’1 is odd then,
Nq -1 51,1 - Ung
< 2 + 1 L]
2 (x-1) (21/ (x=1) _1y
S1,1
< + 1

(x-1) (21/(x=1) _q9y
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281’1
Therefore, Ny < + 3.
(X-])(21/(X-1)—1)

We proceed to finish the proof of Lemma 4.4.

Ny =Ny ¢+ Ny

251,1 2812
< -+ + 4
(x-1) (21/(x=1) _1) (x-1) (21/%.1)
251,1 251,2
(x-1) 21/ (x=1) _q) 2(x-1) (21/%_1)

We next show that (x-1)(2V/(¥=1_1) < 2(x-1)(21/%-1).

By Theorem A.2 of Appendix A, (x-1) 21/ (X=1)_1y  has its
maximum value when x has its minimum possible value, and,
by Theorem A.3, (x-1)(21/x-1) has its minimum value when x
has its minimum possible value. Then, by substituting the
minimum possible wvalue of x, which is 3, in both sides of
the inequality the proof of our claim becomes obvious.

As a result, we have

281’1 281,2
N] < + + 4
(x-1) 21/ (x=1) _qy (x-1) 21/ (=D _py
25,
= + 4.

(x-1) (21/(x=1) _qy
Q.E.D.
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So
Lemma 4.4: For x > 2, we have Ny < + 1,
Ln2-(2V/%.1)

Proof: By Theorem A.1 of Appendix A, as long as the
utilization factors of a set of tasks is less than or equal
to Ln2 the set can be scheduled on one processor by NEXT-
FIT-2. Since any class-2 task has a utilization factor of
at most (21/X-1), the total utilization factors of the
tasks assigned to each class-2 processor must be greater
than Ln2-(21/x-1). The proof of lemma then follows from
this fact.

Q.E.D.

Corollary 4.2: For x > 2, we have

23
N(NF2) < + 5
(x-1) 21/ (x=1) [y
Proof:
N(NF2) = N1 + N2
281 82
< + + 5
(x-1) (21/(x=1) _1y Ln2-(21/%_1)
28, 25,
= + + 5
(x-1) 21/ (x=1) _q) 2(Ln2-(2'/%_1))

We next show that (x-1)(2V/(¥=1)_.1) < 2¢Ln2-(21/%-1)).
The right hand side of this inequality has its minimum

value when x has its minimum possible wvalue, and, by
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Theorem A.2 of Appendix A, the left hand side has its
maximum value also when x has its minimum possible value.
By substituting the minimum possible value of x, which is

3, in both sides we prove our claim. As a result, we have

N(NF2) < + ‘s
(x-1) 21/ (x=1) _y) (x-1) (217 (x=1) _1

28
(x_1)(21/(x-1)_1)
Q.E.D.
Theorem 4.2: For x > 2, we have
2
r(NF2) <

(x-1) 21/ (x=1) _qy

Proof: We obviously have N* > §, and by Corollary 4.2

2S
we have N(NF2) < + 5,
(x-1) 21/ (x=1) _q)

N(NF2) 2
Thus, r(NF2) = 1lim <
N*~ oo N* (x-1) (21/(x=1) 1)

Q.E.D.

The numerical values of bounds in Theorems 4.1 and 4.2
for different wvalues of x are shown in Table 4l1. By
looking at the values shown in Table 4.1, we see that the

best choice for x is 3.
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The upper bounds for worst-case
performance ratio of NEXT-FIT-2

for different Qalues of x.

X upper bound
2 2.8853...
3 2.4142.,..
4 2.5648...
5 2.6426...
6 2.6900...

co 2.8853...
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To establish a lower bound for r(NF2), let us consider
the following two examples.
Example-1:

In this example the set of tasks to be scheduled
consists of a combination of three different types of
tasks:

Type-1: tasks with utilization factors (21/2—1).

Type-2: tasks with utilization factorvanZ-(21/2-1).

Type-3: tasks with wutilization factors 1/N2, where N

is a sufficiently large integer.
The appearance of tasks in the list 1is as follows:

- N repetition of

one type-1 task

N type-3 tasks

one type-2 task
- N type-3 tasks
An optimal algorithm can schedule this set of tasks on 3N/4
processors as follows:
- N/2 processors each with
- one type-1 task
- two type-2 tasks
- 2N type-3 tasks
- N/4 processors each with
- two type-1 tasks

- 4N type-3 tasks
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When x = 2, the NEXT-FIT-2 algorithm would wuse 2N
processors as follows:
- N processoré each with
- one type-1 task
- N type-3 tasks
- N processors each with
- one type-2 task

- N type-3 tasks

N(NF2) 8

Therefore, for x = 2, we have " = = 2.6666...

N 3

When x > 2, the NEXT-FIT-2 algorithm would use N+3
processors as follows:
- N processors each with
- one type-1 task
- one type-2 task

- 3 processors for type-3 tasks.

N(NF2) 4 1

Therefore, for x > 2, we have —_— = — + .
N 3 4N

Example-2:
In this example the set of tasks to be scheduled
consists of a combination of two different types of tasks:
Type-1: tasks with utilization factors 1/2.

Type-2: tasks with utilization factors 1/3.
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The appearance of tasks in the list is as follows:
- N repetition of
- one type-1 task
- one type-2 task
An optimal algorithm can schedule this set of tasks on 5N/6
processors as follows:
- N/2 processors each with two type-1 tasks
- N/3 processors each with three type-2 tasks
When x = 2, the NEXT-FIT-2 algorithm would use 3N/2
processors as follows:
- N processors each with one type-1 task

- N/2 processors each with two type-2 tasks

N(NF2)
Therefore, for x = 2, we have —0—m—0nu = 1.8

e
w

N
When x > 2, the NEXT-FIT-2 algorithm would wuse 2N
processors as follows:
- N processors each with one type-1 task

- N processors each with one type-2 task

N(NF2)

Therefore, for x > 2 we have — = 2.4
N

The first example establishes a lower bound for r(NF2)
when x = 2, and the second example establishes a lower

bound for r(NF2) when x > 2.
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As we can see from these two examples, the best choice
of x will depend on the type of tasks to be scheduled. But
in general, when the tasks to be scheduled are not always a
specific type, then the choice of x = 3 is the best. The
lower bound and the upper bound of r(NF2) for x = 3 (from

Table 4.1 and Example-2) are: 2.4 < r(NF2) < 2.4143.

In the next section we present another on-line
algorithm, which has the same complexity as NEXT-FIT-2, but
its worst-case performance ratio is better than that of

NEXT-FIT-2.
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4.3 The Algorithm NEXT-FIT-M:

Let % Ty, Toy e, Tn} be the set of tasks with.
utilization factors {u1, Uy, oo, un} , respectively. Let
M be a positive integer greater than 2. Divide the set of
tasks into M different classes as follows. Let any task T;
belong to class-k if (21/(k+1) - 1) <y < (21/k -1, for
1<k<M, and let it belong to class-M if 0 < u; < (21/M - 1),

as shown below.

class of task range of utilization factor
1 V2.0, N
2 (21/3-9 | 21/2_9
3 (21741, 217329
M (0, 21/Mq)

Similarly divide the set of all processors into M different
classes. A processor designated to process class-k tasks
exclusively 1is referred to as a class-k processor. Note
that since the utilization factor of a task in class-k is
less than or equal to (21/k-1), by Theorem 2.1, at least k
class-k tasks can be scheduled by the rate-monotonic
scheduling algorithm on one processor. The following
algorithm assigns exactly k class-k tasks to each
processor(except possibly the last processor) wused from
class-k, for 1<k<M. The algorithm assigns class-M tasks to

class-M processors so that the total utilization factors of
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all the tasks assigned to each class-M processor does not
exceed Ln2. For convenience, let a processor of class-k,
1 < k<M, be called "filled" if it has been used and it is
not intended to assign any more tasks to it. Let a
processor be called "active" if it is the processor to
which the next class-k task will be assigned. Since NEXT-
FIT-M assigns k class-k tasks to each class-k processor and
since the utilization factor of any class-k task is greater
than (27/(k+¥1) 9y, 1 < k < M, therefore the total
utilization factors of all the tasks assigned to any filled
class-k, 1< k <M, processor is greater than k(21/(k+1)—1).
Also, since any class-M task has a utilization factor of at
most (2]/M -1), therefore the total utilization factor of
all the tasks assigned to each filled class-M processor
nmust be greater than Ln2-(2]/M-1). Another important
property of NEXT-FIT-M 1is that the number of class-k
processors, 1 < k < M, used by the algorithm is independent
of the order of arrival of the tasks. In other words,
except for class-M processors, any permutation of the tasks
in the original 1list will result in the same number of
processors used by NEXT-FIT-M. As we will see, these
properties make the analysis of the worst-case performance

of NEXT-FIT-M relatively easy.
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Algorithm NEXT-FIT-M

/* Let Py ; refer to the ith processor of class-k */

1. for k-

it

1 to M do set Ny = 1;
2. set i = 1;
3. while i < n do
if T; is a task from class-k ,1<{k<M, then
assign T; to Pk,Nk;
if Pk,Nk has currently k tasks assigned
to it then
set N = Njo + 1
end-if
else /* T; is a task from class-M */
if the total utilization factors of all the
tasks assigned to PM,NM is greater than
Ln2-u; then
set Ny = Ny + 1
end-if;
assign T; to PM,NM
end-if;
set 1 =1 + 1
end-while;
4, if Pk,Nk , 1<k<M, has no task assigned to it then

set Ny = Ny - 13

The final values of Ny, 1 < k < M, would be the number

of class-k processors used by the algorithm.
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4.3.1 The Complexity of NEXT-FIT-M:

For each task T; ,1 { i< n, this algorithm first
determines 1its class, and then it assigns the task to the
active processor of its class. Since the class of a task
can be determined in O(logM) time and there is only one
active processor in each class at any time, the time-
complexity of this algorithm is O(nlogM). As we will see
later, the worst-case performance ratio of this algorithm
is insensitive to M; a reasonable and a practical range of
M is 3 < M<K 12. Therefore M can be considered as a
constant, Hence, the time-complexity of NEXT-FIT-M is
O(n).

If we consider a filled processor as the output of the
algorithm, then the algorithm needs only M storage spaces
for M active processors. Therefore, the space complexity

of NEXT-FIT-M is O(1).
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4.3.2 Worst-Case Analysis of NEXT-FIT-M:

For a given set of tasks, the total ﬁumber of

processors used by NEXT-FIT-M, denoted by N(NFM), is

M

Z Ny, where Ny is the number of class-k processors used.
k=1

Let np, 1 < k <M, denote the number of class-k tasks in

the set of tasks to be scheduled. then,

i 12 n3 1
o = F e <[22 ][22
k=1 2 3 M-1

Let Uy denote the total utilization factors of all the
class-M tasks 1in the set of tasks to be scheduled. Since
the total utilization factors of the tasks assigned to each

filled class-M processor is greater than Ln2-(21/M-1), we

ha
ve UM
Ny <
M
Ln2-(21/M_1)
Thus,
np  nj IV Uy
N(NFM) < nq + — + — + ... + + + -1 (1)
2 3 M-1  Ln2-¢21/3.1)

The algorithm NEXT-FIT-M assigns 1 class-1 task to each
class-1 processor it uses, and it assigns k class-k tasks

to each class-k processor (except possibly the last one) it
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uses, for 2 < k < M. Therefore, asymptotically, each
class-k task costs NEXT-FIT-M 1/k processors, for 1< k <M,

and each c¢lass-M task T with utilization factor u; costs

NEXT-FIT-M at most ui/(LnZ-(21/M-1)) processors. We

therefore define a cost function f as:

1
—, if T; is a class-k task and 1<k<m

k
f(ui) = U.i

, 1f Ti is a class-M task
Ln2-(21/ M1y

Thus, in terms of the cost function f we can rewrite (1) as

n
N(NFM) < ) £(uj) + (M-1) (2)
i=1

The term (M-1) in (2) accounts for the last processors used
from class-k, 2 < k < m, for which we may not have enough
class-k tasks to assign to them.

Furthermore, 1if T; is a class-k task ,for 1 < k < M, then

we have 1/ (K1) _1y ¢ u; < (27K J1) and f(u;) = 1/k.
therefore,
f(u;) 1 1
= <
uy ku; k(21/(k+]) -1)
1
Since, by Theorem A.3 of Appendix A, is

k(21 / (k1) gy
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monotonically decreasing with k, we have the following

inequality:
< , if u; < (21/K.1) and 1<k (3)

Consider an optimal algorithm that uses N* processors
to schedule a set of n tasks. Let {Ti1' Tig, eee TitJ
be the set of tasks, with utilization factors {911’ buiz,
oo, uiti }, assigned to the ith processor by the optimal
algorithm, for 1< i{N*. Since the total utilization factors
of all the tasks assigned to each processor by any
algorithm can not exceed 1, we have
i

ups <1, 1 < i <N,
, b

N~ et

R
In terms of the cost function £, the number of processors
used by NEXT-FIT-M, for a given M, to schedule { Ti1s

Tips oee, Titi} would be

t:
1

Fi M= -Z1 f(uij), 1 < i < N*,
1=

Let T' = { T, Tlo, wee, T't} be a set of tasks with
utilization factors {u'1, u'2, e, u't }, respectively,
with the following properties:

(1) u'p>0,1<m<t

t
(2) Y u'y <1
m=
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t
(3) Fy= ) £'y) > F;y, for 1< i<
m=1

Then, we can rewrite (2) as:

N* ot
N(NFM) < ) f£(ugy) + (M-1)

i=1 j=1

£ N*Fy + (M-1)

This implies that Fy is the worst-case performance ratio of
NEXT-FIT-M since,
N(NFM)

r(NFM) = lim —— < Fy
N*. 0o N*

Therefore, we will concentrate on finding the bound on the

t
f(u'y), given Z u'n < 1.
1 m=1

number FM =

?["’]ﬁ

Since any permutation of the tasks in the original 1list
will result in the same number of class-k, 1 < k < m,
processors used by NEXT-FIT-M, we assume, without loss of

generality, that u'q > u'y > u’3 2 ees 2 Ul
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Define a sequence K;, as follows:
K1=K2=1

and to calculate K;, for i > 2, find the smallest 1integer

l 1]

S (=K;) so that the following inequality holds:

i-1
VG Ly v - Y @G Ly (4)
j=1

Some of the values of Ki so calculated are shown in table

(4.2). It is not hard to see that, for i > 2

i-1
VR 21y > 1 - T @V KD gy (5)
j=1

Table 4.2: Values of Ki in Worst-Case

Analysis of NEXT-FIT-M.

4

30

2,635
7,145,847

L]
L

oooc\m,[,\w[\)
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Theorem 4.3: For M >2 and K;< M < K;,q, Where K; is given

by (4) we have

i

t i 1 j=1
m=1 i=1 Ky Ln2 - (2'/M _q)
i
1 - Z (21/(kj+1) -1)
i 1 j=1
Proof: Let SM = Z: + ' —e .
=1 ki Ln2 - (2'/M 1)

1
The numerical values of Sy for various values of M are

listed in Table (4.3). Ve may have one of the following
three cases:

Case 1: T'y is not a class-1 task. Then, u'y < (21/2 -1),

m
1{ m <£t.
u'm
By (3) we have f(u'm) < - , 1< m <t.
2021/3 1)
t
L ou'g
t m=1
Therefore, Z f(u'py) <
m=1 2¢21/3 1)
1
<
2¢21/3 1)
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Case 2: T'] is a class-1 task but T'2 is not a class-1

task. Then,

t
Yo ouwp <1 -2y, and w < (212 21y, 2K m <t
m=2
u'y
By (3) we have f(u'y) < » 28 m <t.
2¢21/3 -1y
t
L v
t m=2
Therefore, ) f(u'p) < £(u'y) +
m=1 2(21/3 -1)

1 - (2173 _py

202173 1y
< 2.1269 < Sy

Case 3: Both T'y and T', are class-1 tasks. First,
consider the case where T'1 € class—K1, T'2 € class-KZ,

cee, T' € class-K;. Then,

t i
rouy < (1 - Y V(KD gy,

m=i+1 j=1

Since M £ Kj4q1, we have T"mE class-M for all i+t { m £ t.

Therefore,

i
1 - Z (21/(kj+1) -1)
t i 1 9=1
Fy = ». E(u'p) < ) +
m=1 i=1  kj Ln2 - (21/M 1)

we
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We next show that Fum will have its maximum value when
T; € class-Ky, for 1 < j < 1.

Suppose Tj é class-Kj for some j < i. Then we have uy; <

2"/ X5+ 1), for all j <m < t. This would reduce the
above value of Fy by 1/Ki’ and it would increase the value

of Fy by at most . We will show that
(ks+1) 2V (Ry*2) _q)

(21/(Kj+1) _1) 1

(Ry+1) (21/(K5%2) 1) K;

Since, by Theorem A.3 of Appendix A, K(21/(K+1)-1) is

monotonically increasing with K, we have
K.__](ZT/(K_.]-*-]) -1) < ((K1+1)(21/(Kj+2) -1))

If we divide both sides of the above inequality by

Ki(Ki+1)(21/(Kj+2) -1), we get

< .
(Kj+])(21/(KJ+2) _1) K

Since this 1is true for any j { i, therefore, Fy has its
maximum value when we have T; € class-K;, for all 1< j <i.

Q.E.D.



93

Table 4.3: Values of Sy in Worst-Case
Analysis of NEXT-FIT-M
M Sy

3 2.3960...
4 2.3404...

2.2920...
6 2,2900...
7 2.2888...
8 2.2879...
9 2.2873...
10 2.2868...
11 2.2864...
12 2.2860...
13 2.2858...
30 2.2841...
31 2.2837...
co 2.2837...
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By looking at the values of Foo and Fyp (Table 4.3),
we see that little improvement on performance is achieved
beyond M = 12. Therefore, the region 3 { M (¢ 12 |is

recommended in practice.

To show how close the bound in Theorem 4.3 is to a tight
bound, we consider the following example:
- Let M = Kj4¢, for some i > 2.
- Let N be an integer divisible by M, and e be a
sufficiently small quantity.
- Consider a set of tasks consisting of:
N tasks each with utilization factor

uy = V/(Ks*1) _ 1 + &), for 1 < j <i, and

N tasks each with utilization factor

1
uje = (1 - ¥ ug - de).

Since M = Kj4q, by (4) and (5) we have

(21/(M+1)_1) < ugpq < (21/M_1).
Therefore, NEXT-FIT-M assigns exactly M tasks, each with
utilization factor u;,q., to each class-M processor it uses,
and it assigns Kj tasks each with utilization factor uy to

each class-Ki processor it uses, for 1 < i < i. Thus, the

total number of processors needed by NEXT-FIT-M would be

N N
+ —

Kj M

i
N(NFM) = )
i=1
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i+1
Since Z: uy = 1, the number of processors needed by an
=1 -

optimal algorithm is N.

N(NFM) i 1 1 i+1 1
Therefore, —_— = E: —_— — = z: —
* = . j= .
N i=1 K_] M j=1 KJ
i+1 1
Let Qu = Z: ----. The numerical values of Qy for wvarious

values of M, along with those of Sy in Theorem 4.3, 1is

shown below.

M Qu Sy
3 2-2500.-- : 203960---
4 2.2500... 2.3404...
30 2.2833... 2.2841...
2635 2.2837... 2.2837...
. [] (4
6 . L]
O 2.2837--0 2-2837---

Therefore, the bound in Theorem 4.3 is very close to the
tight bound for small values of M, and it is tight for

large values of M.
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4.4 A Special Case:

In this section we show that if the set of tasks to be
scheduled does not contain any task with utilization factor
in the range of (2'/2-1 , 1/2], then r(NFM) < 1.911.

The classification of tasks in this case are:
class range of utilization factors

1 (/2 , 11
(21/3.1 , 21/2.q)

(2140, 2139

(21/5-1 , 2144y

o , 21/M_q

Zoo.bul\)

It is not hard to see that every thing we said in section
4.3.2, up to the Theorem 4.3, is also true for this case,
except the values of K; which are defined as follows:

Ky =1

Ko = 2
and to calculate Kj, for i>2, find the smallest integer

S (=K;) so that the following inequality holds:

i-1
@YD Ly a2 - Y @V RED gy (6)
=2
Some of the values of Kj so calculated are shown in table
(4.4). It is not hard to see that, for i > 2,
i-1
VR 21y > 12 - ¥ @UEFED gy (7)
j=2
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Table 4.4: Values of Ki in Worst-Case
Analysis of NEXT-FIT-M, for

the special case.

i K;
1 1
2 2
3 3
4 13
5 6,017
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Let T' be the set of tasks satisfying all the conditions
given in Section 4.3.2 for T', except that it does not
contain any task with utilization factor in the range of
(21721, 1/21.

We next prove the following Theorem:

Theorem 4.4: For M > 2 and Kj< M < Kit1s where K; is given

by (6), we have

1 i
- (21/(K1+1) -1)

t i 1 2 j=2
Fy = Z £(u'y) < Z +
m=1 j=1

K; Ln2 - (21/M 1)

21/ (Rs+1D) 1y
2

1 2 j

P~ e

Proof: Let SM =

™
+

j=1 Kj Ln2 - (21/M 1)
The numerical wvalues of SM for various values of M are

listed in Table (4.5).
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Table 4.5: Values of SM in Worst-Case
Analysis of NEXT-FIT-M, for

the special case.

M Sy
3 2.0541...
4 1.9342. ..
5 1.9267...
6 1.9224. ..
7 1.9196. ..
8 1.9177...
9 1.9163...
10 1.9152...
11 1.9143...
12 1.9136...
13 1.9130...
14 1.9104. ..

oo 1.9104...
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We may have one of the following three cases:

Case 1: T'1 € class-K, for some K > 3.
Then, u'y, < (2173 1), for all 1 < m < t.

ul

m
By (3) we have f(u') < ,», 1 <m(< t.
3(21/4 -1)
t
L U
t m=1
Therefore, Fy = Z f(u'm) <
m=1 32174 _qy
1
<
3(21/4 -1)
< 1.762
< 8-

Case 2: T4 € class-2., First, if To $ class-2 then,

u, < (2173 21), for all 2 < m < t, and

t
Y ou, <1 - 2173 21y,
m=2

u'm
By (3) we have f(u'm) < , 2
32174 _1y

I~
=]
[PaN
ct



101

t
L ou'p
t m=2
Therefore, Fy = ) f(u'y) < flu'y) +
a1 3214 _1y
1 1 - (2173 -1y
< +
y 32174 -1y
< 1.804
< Sy

" Next, if T'y also € class-2 then,

u'p <1 =223 1), and u'y < 2V% 1), 3 < m <.

3
T e

3

By (3) we have f(u'm) < , 3 <{m{( t.

Therefore,

t
Y flu'p)
m=3

t
Fy = ). £'p) < EQu'y) + £(u'y) +

1 1 1 - 2¢2'/3 _1y

2 2 4217175 1y
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Case 3: T' € class-1. Let us first consider the case

where T' € class-K , for all 1 < m <i.

t 1 i
Then, y u'p< (— - Y @V &*D) gy,
m=1+1 2 §j=2

Since M < Ki4q, we have T'm € class-M, for all i < m £ t.

By (3) we have

i
t i 1 1 m=2
Fy= L fu'p) < ¥ == —ey )
m=1 m=1 K, 2 Ln2 - (21/M 1)

- SM.

Bv an argument similar to the one given in section 4.3.2,
it is not hard to see that in this case, also, Fy will have
its maximum value when T, € class-K,, for all 1 < m < i.

Q.E.D.

To show how close the bound in Theorem 4.2 is to a tight
bound, we consider the following example:
- Let M = Kji4
- Let N be an integer divisible by M, and e be a
sufficiently small quantity.
- Consider a set of tasks consisting of:

N tasks each with utilization factor

1
U = (-— + e),
2
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N tasks each with utilization factor
u; = (21751 +e), for 2 < j < 1, and

N tasks each with utilization factor

1 i
U = — - L QUEHFD) 4 L ey,
2 =2

By (6) and (7) we have (2V/ (M1 1y ¢ u, o <« /M -1y,
Therefore, NEXT-FIT-M assigns exactly M tasks each with
utilization factor uj,q to each class-M processor it uses,
and it assigns Kj tasks to each class-Kj processor it uses,
for 1 < j i. Therefore the total number of processors

needed by NEXT-FIT-M for the above set of tasks would be

1 N N
N(NFM) = } —— + —.
i+
Since Z uy = 1, the number of processors needed by an
j=1

optimal algorithm is N.

N (NFM) i 1 1 i+1 1
Therefor, ——eme— = Z —_—t —_— =) —.
N* j=1 Ki M i=1 XK,
. ]
i+t 1

Let Qv = Z ——. The numerical values of Qy for various
j=t K

i
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values of M, along with those of Sy in Theorem 4.4, 1is

shown below.

M QM SM
3 1.8333... 2.0541...
13 1.9102... 1.9130...
6017 1.9104... 1.9104...

w 1.9104... 1.9104...

Therefore, the bound in theorem 4.4 is very close to the
tight bound for small values of M, and it 1is tight for

large values of M.
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4.5 Summary:

In this chapter we have presented two O(n)-time and
0(1)-space on-line algorithms for the problem of
partitioning a set of periodic-time-critical tasks with
respect to the rate-monotonic scheduling algorithm. These
algorithms are 1less complex than the existing off-line
algorithms, and their worst-case performance ratio are
better than that of the existing off-line algorithm RATE-
MONOTONIC-NEXT-FIT, and comparable to those of the off-line
algorithms RATE-MONOTONIC-FIRST-FIT and FIRST-FIT-
DECREASING-UTILIZATION-FACTOR.

We also showed that 1if the set of tasks to be
scheduled does not contain any task with utilization factor
in the range (21/2-1, 1/2], then the worst-case performance
ratio of NEXT-FIT-M 1is better than that of anvy existing
algorithm for this problem.

The algorithms presented in this chapter are the only

on-line algorithms known for this problem to date.



CHAPTER V

CONCLUSION

In this dissertation we studied the problem of
partitioning a set of periodic-time-critical tasks into
different groups, subject to the conditions that: i) each
group of tasks can be feasibly scheduled on a single
processor using the rate-monotonic scheduling algorithm
(which 1is the best static priority driven algorithm
available for scheduling this type of tasks on a single
processor system); and, 1ii) the number of processors

required is minimum.

In Chapter III we first proved that this problem is NP-
hard, and then presented a new heuristic off-line
algorithm, called First-Fit-Decreasing-Utilization~Factor
(FFDUF) . The time complexity of FFDUF was shown to be
O(nz), and its space complexitv was shown to be 0(n), where
n is the number of tasks in the set of tasks to be
scheduled. The worst-case performance ratio of FFDUF was
shown to be 2, which is an improvement over the worst-case

performance ratio of the two existing off-line algorithms.

106
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There exists no on-line algorithm for this problem.
Since the nature of the arriving tasks in an on-line
processing is unpredictable, an on-line scheduling
algorithm 1is expected to be more difficult than an off-line
scheduling algorithm, and in general the performance of an
on-line scheduling algorithm is substantialy affected by

the permutation of the tasks in a given set.

In Chapter IV we presented two O(n)-time and O(1)-space
on-line algorithms for this problem. We called these
algorithms NEXT-FIT-2 and NEXT-FIT-M. These algorithms are
less complex than the off-line algorithms. The worst-case
performance ratio of NEXT-FIT-2 was shown to be less than
2.4143, and the worst-case performance ratio of NEXT-FIT-M
was shown to be less than 2.2838. These ratios are
comparable to those of the existing off-line algorithms.
We further showed that if the set of tasks to be scheduled
does mnot contain any tasks with utilization factor in the
range (21/2-1, 1/2], then the worst-case performance ratio
of NEXT-FIT-M would be less than 1.911 which is better than

those of the available off-line algorithums.

Table 5.1 summarizes our results and the results of
the two previously known heuristic algorithms for this

problem.
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Table 5.1: A Summary of all the Known Results.
n = number of tasks to be scheduled.
S.C. = Space Complexity.
"T.C. = Time Complexity.
W.C.P.R. = Worst-Case Performance Ratio.
Algorithm Type S.C. T.C. W.C.,P.R.
(RMNF) off-line 0(n) 0(nlogn) 2.4 < T(RMNF) £ 2.67
(RMFF) off-line | o(m) | 0(n?2) 2 < r(RMFF) < 2.24
(FFDUF) off-line | 0O(n) 0(n?) r (FFDUF) = 2
(NF2) on-line 0(1) 0(n) r(NF2) = 2.4142...
(NFM) on-line o) 0(n) r(NFM) = 2.2837...
r(NFM) = 1.9104...%

* When the set of tasks does not con
utilization factor in the range (2

F35

el

-1,

any task with
1/2}.
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5.1 Suggestions for Future Research:

In Chapter III we showed by an example that no
partitioning algorithm with respect to the rate-monotonic
algorithm can have a better worst-case pe;formance ratio
than 2. Therefore, the bound obtained for FFDUF can not be
improved. But, one may try to look for a less complex off-
'1ine algorithm, or look for an algorithm that distributes
tasks evenly among processors.

The worst-case performance ratio of NEXT-FIT-2 is not
shown to be tight in this study. It will be interesting to
see whether this bound is really tight. 1If not, can it be
improved further? It may also be interesting to look for
other equally good or better on-line algorithms.

It would also be interesting to analyze the
performance of NEXT-FIT-2 and the off-line algorithms when
they are applied to task sets that do not contain any task
with utilization factor in the range (21/2-1, 1/21.

All of the scheduling algorithms considered for this
problem, so far, are preemptive algorithms. It would be
interesting to investigate the behavior of non-preemptive

algorithms for this problem.
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APPENDIX A

Theorem A.1: Let x be a positive integer. Then,

lim  x(2'/% 1) = Ln2

X — 00
Proof:
, 21/%_4
lim  x2'/%.1) = 1lim
X— 0O X— 00 1/x%
2k_1
= lim
k— 0 k
2%¥Ln2
= 1lim
k—0 1
= Ln2
Q.E.D.

Corollary A.1: Let x be a positive integer. Then,

lim  (x-1)2V/*.1) = 1n2.
X =00

Theorem A.2: Let x be a positive integer. Then, the value

of function f(x) = x(21/x-1) is monotonically decreasing
with x.
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Proof: We will prove this theorem in two different ways:

(I) Show that f(x) - £(x+1) > 0:

X2 X3
e¥ =1+ x + + +
21 31
21/x = o(Ln2)/x
Ln2 (Ln2) 2 (Ln2)3
=1+ + + + ..
X 21%2 31x3
(Ln2) 2 (Ln2)3
£(x) = x(21/%1) = Ln2 + + + ...
21x 3!x2
(Ln2)2 (Ln2) 3
f(x+1) = Ln2 + + + e
21 (x+1) 31 (x+1)2
(Ln2) 2 1 1
f(x) - £(x+1) = ——m— (— — ) +
21 X x+1
(Ln2)3 1 T
—( -~ ) +
31 x2 (x+1)2
> 0
(I11) Show that £'(x) < 0:
Ln2
£'(x) = 2V/%(4 Yy -1
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Since e * > 1 - x,

Ln2
2—1/X = e-—(an)/X > (1

)

Ln2

1> 2V/x(y . )

Therefore, £'(x) < 0

Theorem A.3: Let X be a positive integer. Then,the

value of function g(x) = (X-1)(21/X-1) is monotonically

increasing with x.

Proof: We will prove this theorem in two ways:
(I) Show that g(x+1) - g(x) > 0:
g(x) = (x-1)(21/%-1) = x(21/®x-1) - (21/%.9)
g(x+1) = x(21/ Dy = (x+) 2V D gy = 21/ (x4 )

From the proof of theorem A.2, we have:

Ln2 (1n2)2 (Ln2)3
(21/%.1y = + + + ...
X 2!x2 3!x3
Ln2 (Ln2)? (Ln2) 3
(21/(X+1)_1) - + + + ...
x+1 2!(x+1)2 3!(X+1)3
(Ln2)? (Ln2) 3
x(2V/%X_1) = 1n2 + + + .

21x 31x2



(Ln2)2 (1n2) 3
(x+1) (21 =T 9y = 1n2 + + + e
21 (x+1) 31 (x+1)2

g(x+1) - g(x) = (x+1) 2/ X1y _ x(21/%1)
+ (21/X_1) _ (21/(X+1)_1)

(Ln2) 2 (Ln2) 3
= + + ..
21 (x+1) 31 (x+1)2

(Ln2)?2 (Ln2)3
21x 3!x?'
Ln2 (Ln2)? (Ln2)3
* + + == + ..
X 21x2 31x3
Ln2 (Ln2)? (Ln2) 3
x+1 20(x+1)2 31(x+1)3
(Ln2)2 1 1 (Ln2)3 1 1
- (— - =) + ( - =) +
21! x+1 X 31! (x+1)2 x2
1 1 (Ln2)2 1 1
+ Ln2( - ) + (— -
X x4 21 %2 (x+1)2
1 1 Ln2
= Ln2( - ) (1 - ) +
X x+1 21
(Ln2)2 1 1 Ln?2
+ ( - y (1 - ) +
21 x? (x+1) 2 3

) + ...
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(I1) Show that g'(x) > O:

g(x) = (x-1)(21/*-1) = x(21/%-1)

Ln2 Ln2

gl (x) = 2V/¥(1 - — + —) - 1
X X
)
Since e ¥ < 1 = X + ——,
2

Ln2
2-1/X = e—(LHZ)/X <1 =

Ln2 Ln2
1< 2RO o — )

X X2

Therefore, g'(x) > 0.

Q.E.D.

- 2l/x 4y



