ahmed, Tarek Hussein

AN EXPERIMENTAL STUDY OF CRUDE OIL RECOVERY BY HIGH PRESSURE NITROGEN INJECTION

Copyright 1980

by
Ahmed, Tarek Hussein
All Rights Reserved

PLEASE NOTE：
In all cases this material has been filmed in the best possible way from the available copy．Problems encountered with this document have been identified here with a check mark \qquad

1．Glossy photographs \qquad
2．Colored illustrations \qquad
3．Photographs with dark background \qquad
4．Illustrations are poor copy \checkmark

5．Print shows through as there is text on both sides of page \qquad
6．Indistinct，broken or small print on several pages \qquad

7．Tightly bound copy with print lost in spine \qquad
8．Computer printout pages with indistinct print \qquad
9．Page（s） \qquad lacking when material received，and not available from school or author

10．Page（s） \qquad seem to be missing in numbering only as text follows

11．Poor carbon copy \qquad
12．Not original copy，several pages with blurred type \qquad
13．Appendix pages are poor copy \qquad
14．Original copy with light type \qquad
15．Curling and wrinkled pages \qquad
16．Other \qquad

AN EXPERIMENTAI STUDY OF CRUDE OIL RECOVERY BY HIGH PRESSURE NITROGEN INJECTION

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTV
in partial fulfillment of the recuiremerts for the degree of
DOCTOR OF PHILOSOPHY

BY
TAREK I. AHMED
Normar, Oklahoma
1980

AN EXPERIMENTAL STUDY OF CRUDE OIL RECOVERY BY HIGH PRESSURE NITROGEN INJECTION

APPROVED BY

AN EXPERIMENTAL STUDY OF CRUDE OIL RECOVERY

BY HIGH PRESSURE NITROGEN INJECTION
BY: Tarek H: Ahmed
MAJOR PROFESSOR: Dr. Donald E. Menzie

ABSTRACT

AN EXPERIMENTAL STUDY OF CRUDE OIL RECOVERY
BY HIGH PRESSURE NITROGEN INJECTION

The objectives of this study were to investigate the:

1. Compositional changes taking place during the displacing of crude oil by continucus high pressure nitrogen injection.
2. Changes in the properties of the liquid and vapor phases.
3. Miscible pressures for nitrogen displacement.
4. Distance from the injection point at which the miscibility will be achieved.

The experiments were conducted in a low permeability, consolidated, sand-packed, stainless steel tube 125 feet long and 0.45 inches in diameter. Five sampling points were located at equal intervals along the length of the linear core. Vapor samples were collected periodically from the sampling valves and analyzed by the gas chromatograph.

The results of this experimental investigation showed the compositional distribution of the vapor phase throughout the core during the nitrogen injection process. The mechanism of the nitrogen displacement process was analyzed and the fronts formed during the oil recovery experiments were recorded and studied in order to better understand the overall recovery mechanism.

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to the many people who helped make this work possible. Special appreciation is given to Dr. D. E. Menzie, who served as an advisor in this research, for his continued support, interest and guidance in the completion of this effort.

Appreciation is also extended to the members of my doctoraI committee; Dr. H. B. Crichlow, Dr. F. M. Townsend, Dr. B. Foote, and Dr. A. W. McCray.

Special thanks is extended to Mr. N. S. Knight for his help and superb craftsmanship in the design and construction of certain specialized equipment.

I also wish to express my thanks to Mrs. Carol Wedel for her superb typing ability.

Thanks is given to Patrick, Susan and Shanna for their help, and appreciation is also expressed to the Egyptian Government, Tenneco Oil Company, and the E.R.C.

Finally, and most importantly, I would like to express my appreciation to my Father, General fussein Ahmed, IOI his continued encouragement, understanding and support throughout the entire program of advanced study leading to this work.

TABLE OF CONTENTS

Page
LIST OF TABLES viii
IIST OF FIGURES ix
Chapter
I. INTRODUCTION 1
II. STATEMENT OF THE PROBLEM 5
III. LITERATURE REVIEW 7
High Pressure Gas Injection 7
Laboratory Studies 7
High Pressure Projects 10
Condensing Gas-Drive Process (Enriched Gas Drive) 11
Laboratory Studies 11
Condensing Gas-Drive Projects 14
Liquid Petroleum Gas (IPG) Slug Drive 15
Laboratory Studies 15
LPG Slug Drive Projects 16
Carbon Dioxide Injection 16
Laboratory Studies 16
Carbon Dioxide Injection Projects 13
IV. MISCIBILITY RELATIONSHIPS IN THE DISPLACEMENT OF OIL. BY NITROGEN 19
Representation of Miscible Displacement by Nitrogen on Triangular Diagram 19
V. CALCULATION OF FLUID PROPERTIES 32
Densities of Gas and Oil 32
Gas Density 32
Liquid Density 34
Molecular Weight of Liquid Hydrocarbon Mixture 35
Surface Tension 39
Physical and Critical Properties of Hexane and Heavier Fraction 42

TABLE OF CONTENTS (continued)

Chapter Page
Viscosities of Gas and Oil 45
Gas Viscosity 45
Liquid Viscosity 47
K-Values and Convergence Pressure in Equilibrium Calculations 49
Convergence Pressure 50
VI. TECHNIQUES OF CHROMATOGRAPHIC ANALYSES 53
Apparatus 54
Flow System 54
Columns 54
Detectors 56
Calibration of Gas Chromatograph 63
Gas Analysis 64
VII. EXPERIMENTAL APPARATUS AND MATERIALS 67
Apparatus 67
Injection System 67
Laboratory Oil Reservoir Model 71
Materials 76
VIII. EXPERIMENTAL PROCEDURE 84
Recombination Process 84
Saturating and Displacing Process 86
Saturation Process 86
Displacement Process 87
Recording and Sampling Analysis Process 89
IX. PRESENTATION AND DISCUSSION OF RESULTS 91
First Run 91
Second Run 124
Third Run 145
Fourth Run 145
Fifth and Sixth Run 156
Seventh Run 168
Recoveries 168
X. CONCLUSIONS 179
XI. RECOMMENDATIONS FOR FURTHER NORK 181
NOMENCLATURE 183
BIBLIOGRAPHY 185

TABLE OF CONTENTS (continued)

Chapter Page
APPENDICES 191
A. Data and Results of Run No. 1 192
B. Data and Results of Run No. 2 257
C. Data and Results of Run No. 292
D. Oil Displacements Tests 341

LIST OF TABLES

Table Page
5-1 Parachors of Pure Substance 40
5-2 Values for b-Function for Pure Hydrocarbon Components 44
6-1 Samples Volumes for Different Colums 63
7-1 Properties of Oil 81
7-2 Analysis of Natural Gas 83
9-1 Results of Oil Displacement by Nitrogen and Water Injection 92
9-2 Molar Composition of the Collected Samples 93
9-3 Molar Composition of the Generated Slug 99
9-4 Calculated Liquici and Gas Viscosity 118
9-5 Molar Composition of the Collected Samples 132
9-6 Summary of the Results of the First and Second Run 133
9-7 Oil Displacement Recovery - Run Numbers 5 and 6 170
9-8 Data and Results of the Conducted Runs 171

LIST OF FIGURES

Figure Page
3-1 Effect of Oil Swelling on Oil Recovery 12
4-1 Three-Component Presentation of Multi-Component System, Temperature and Pressure Constant 20
4-2 Triangular Graph Showing Changes in Composition of Crude Oil 23
4-3 Triangular Graph Showing Changes in Composition of Nitrogen 25
4-4 Triangular Diagram Showing the Effect of Pressure on the Phase Envelope 26
4-5 Initial Crude Composition vs. Phase Envelope 27
4-6 Effect of Pressure on Recovery 31
5-1 Density Correction for Compressibility of Liquids 36
5-2 Density Correction for Thermal Expansion of Liquids 37
5-3 Eykman Molecular Refraction (EMR) Versus ρ^{2} 38
5-4 Parachors for Hydrocarbons vs. Molecular Weight 41
5-5 Correlation of $M \cdot V_{C}$ vs. $b\left(\frac{1}{T_{b}}-\frac{1}{T}\right)$ to DetermincV_{c} Values for Heavier Components43
5-6 Viscosity Ratio Versus Pseudo-Reduced Temperature 46
5-7 Convergence Pressure for Binary Hydrocarbon Mixture 52
6-1 Schematic Drawing of a Gas Chromatograph System 55

LIST OF FIGURES (continued)

Figure Page
6-2 Flow Rate vs. HETP 61
6-3 Calculation of the Theoretical Plates il
6-4 Cell Temperature vs. Bridge Current 62
6-5 Side View of the Gas Chromatograph and Strip Chart Recorder 65
7-1 Schematic of Displacement Apparatus 68
7-2 Experimental Equipment Used in the Investigation 69
7-3 Front View of the Mercury Pump 70
7-4 Side View of the Recombine Cell 72
7-5 Side View of the Natural Gas Pump 73
7-6 Front View of the High Pressure Nitrogen Cylinder 74
7-7 Side View of the Inlet of the Core 75
7-8 Back View of the Sampling Valve 77
7-9 Side View of the Outlet End of the Core 78
7-10 Front View of the Back Pressure Regulator 79
7-11 Front View of the Gas Chromatograph 80
8-1 Schematic Diagram of the Recombine Cell 85
8-2 Schematic Diagram of the Inlet of the Core 88
9-1 Composition of Vapor Fhase Samples Taken from Sampling Point "A" vs. Pore Volumes N_{2} Injected 94
9-2 Composition of Vapor Phase Samples Taken from Sampling Point "B" vs. Pore Volumes N_{2} Injected 95
9-3 Composition of Vapor Phase Samples Taken from Sampling Point "C" vs. Pore Volumes N_{2} Injected 96
9-4 Composition of Vapor Phase Samples Taken from Sampling Point "D" vs. Pore Volumes N_{2} Injected 97

Figure
Page
9-5 Compositional Distribution of Vapor Phase
Throughout the Core vs. Pore Volumes N_{2} Injected 101
9-6 Overall Composition of $\left(C_{2}-C_{6+}\right)$ in Vapor Phase Throughout the Core vs. Pore ${ }_{\text {Volumes }} \mathrm{N}_{2}$ Injected 102
$\begin{array}{ll}\text { 9-7 Triangular Diagram Showing Changes in } \\ & \text { Composition of Vapor and Liquid Phase "A". . . . } 104\end{array}$
9-8 Triangular Diagram Showing Changes in
Composition of Vapor and Liquid Phase "B". . . . 105
9-9 Triangular Diagram Showing Changes in
Composition of Vapor and Liquid Phase "C". . . 106
$\begin{array}{ll}\text { 9-10 Triangular Diagram Showing Changes in } \\ & \text { Composition of Vapor and Liquid Phase "D". . . . } 107\end{array}$
9-11 Calculated Vapor and Liquid Phase Density of
Samples Taken from Sampling Point "A" vs. Pore
Volumes N_{2} Injected110

9-12 Calculated Vapor and Liquid Phase Density of
Samples Taken from Sampling Point "B" Vs. Pore
Volumes N_{2} Injected 111
9-13 Calculated Vapor and Iiquid Phase Density of Samples Taken from Sampling Point "C" vs. Pore
Volumes N_{2} Injected
$\begin{array}{ll}\text { 9-14 } & \text { Calculated Vapor and Liquid Phase Density of } \\ & \text { Samples Taken from Sampling Point "D" Vs. Pore } \\ & \text { Volumes } N_{2} \text { Injected } 113\end{array}$
9-15 Calculated Liquid and Vapor Phase Density Distribution Throughout the Core vs. Pore Volumes N_{2} Injected114

9-16 Liquid and Vapor Density Profile Throughout
the Core after Injection of 0.335 P.V. N_{2}.
115

9-17 Liquid and Vapor Density Profile Throughout
the Core after Injection of $0.53 \mathrm{~B} . \mathrm{V} . \mathrm{N}_{2} \cdot \operatorname{~e~} 116$
$\begin{array}{ll}\text { 9-18 Calculated Liquid and Vapor Phase Viscosity } \\ & \text { of Samples Taken from Sampling Point "A" vS. } \\ \text { Pore Volumes } \mathrm{N}_{2} \text { Injected } 119\end{array}$
Figure Page
9-19 Calculated Liquid and Vapor Phase Viscosity of Samples Taken from Sampling Point "B" vs. Pore Volumes N_{2} Injected 120
9-20 Calculated Liquid and Vapor Phase Viscosity of Samples Taken from Sampling Point "C" vs. Pore Volumes N_{2} Injected 121
9-21 Calculated Liquid and Vapor Phase Viscosityof Samples Taken from Injection Doint "D" vs.Pore Volumes N_{2} Injected122
9-22 Calculated Liquid and Vapor Viscosity Distribution Throughout the Core vs. Pore Volumes N_{2} Injected 123
9-23 Calculated Surface Tension of Samples Taken from Sampling Point "C" vs. Pore Volumes N_{2} Injected 125
9-24 Composition of Vapor Phase Samples Taken from Sampling Point "A" vs. Pore Volumes N_{2} Injected 127
9-25 Composition of Vapor Phase Samples Taken from Sampling Point "B" vs. Pore Volumes N_{2} Injected 128
9-26 Composition cf Vapor Phase Samples Taken from Sampling Point "C" vs. Pore Volumes N_{2} Injected 129
9-27 Compositional Distribution of Vapor Phase Throughout the Core vs. Pore Volumes N_{2} Injected 130
9-28 Overall Composition of $C_{2}-C_{6+}$ in Vapor Phase Throughout the Core vs. Pore Volumes N_{2} Injected 131
9-29 Triangular Diagram Showing Changes in Composition of Vapor and Liquid Phase "A" 135
9-30 Triangular Diagram Showing Changes inComposition of Vapor and Liquid Phase "B" . . . 1369-31 Triangular Diagram Showing Changes inComposition of Vapor and Liquid Phase "C" . . . 137
Figure Page
9-32 Calculated Vapor and Liquid Density of Samples Taken from Sampling Point "A" vs. Pore Volumes N_{2} Injected 138
9-33 Calculated Vapor and Liquid Density Taken from Sampling Point "B" vs. Pore Volumes N_{2} Injected 139
9-34 Calculated Vapor and Liquid Density of Samples Taken from Sampling Point "C" vs. Pore Volumes N_{2} Injected 140
9-35 Calculated Vapor Phase Density Distribution Throughout the Core vs. Pore Volumes N_{2} Injected 141
9-36 Calculated Liquid and Vapor Viscosity of Samples Taken from Sampling Point "A" vs. Pore Volumes N_{2} Injected 142
9-37 Calculated Liquid and Vapor Viscosity of Samples Taken from Sampling Point "B" vs. Pore Volumes N_{2} Injected 143
9-38 Calculated Liquid and Vapor Viscosity of Samples Taken from Sampling Point "C" vs. Pore Volumes N_{2} Injected 144
9-39 Composition of Vapor Samples Taken from Sampling Point "A" vs. Pore Volumes N_{2} Injected 146
9-40 Composition of Vapor Phase Samples Taken from Sampling Point "B" vs. Pore Volumes N_{2} Injected 147
9-41 Composition of Vapor Phase Samples Taken from Sampling Point "C" vs. Pore Volumes N_{2} Injected 148
9-42 Composition of Vapor Phase Samples Taken from Sampling Point "D" vs. Pore Volumes N_{2} Injected 149
9-43 Compositional Distribution of Vapor Phase Throughout the Core vs. Pore Volumes N_{2} Injected 150
9-44 Triangular Diagram Showing Changes in Composition of Vapor and Liquid Phase "A". 152

LIST OF FIGURES (continued)

Figure Page9-45 Triangular Diagram Showing Changes inComposition of Vapor and Liquid Phase "B". . . . 153
9-46 Triangular Diagram Showing Changes inComposition of Vapor and Liquid Phase "C"154
9-47 Triangular Diagram Showing Changes in Composition of Vapor and Liquid Phase "D" 155
9-48 Calculated Liquid and Vapor Phase Viscosity of Samples Taken from Sampling Point "A" vs. Pore Volumes N_{2} Injected 157
9-49 Calculated Liquid and Vapor Phase Viscosity of Samples Taken from Sampling Point "B" vs. Pore Volumes N_{2} Injected 158
9-50 Calculated Liquid and Vapor Phase Viscosity of Samples Taken from Sampling Point "C" vs. Pore Volumes N_{2} Injected 159
9-51 Calculated Liquid and Vapor Viscosity of Samples Taken from Sampling Point "D" vs. Pore Volumes N_{2} Injected 160
9-52 Calculated Vapor and Liquid Density of Samples Taken from Sampling Point "A" vs. Pore Volumes N_{2} Injected 161
9-53 Calculated Vapo: and Liquid Density of Samples Taken from Sampling Point "B" vs. Pore Volumes N_{2} Irjected 162
9-54 Calculated Vapor and Liquid Density of Samples Taken from Sampling Point "C" vs. Pore Volumes N_{2} Injected 1.63
9-55 Calculated Vapor and Liquid Density of Samples Taken from Sampling Point "D" vs. Pore Volumes N_{2} Injected 164
9-56 Liquid and Vapor Density Distribution Throughout the Core after Injection of 0.68 Pore Volume of N_{2} 165
9-57 Calculated Surface Tension vs. Pore Volumes N_{2} Injected 166

LIST OF FIGURES (continued)

Figure Page
9-58 Calculated Surface Tension vs. Pore Volumes N_{2} Injected 167
9-59 Percent of the Oil Recovery vs. Oil Saturation 169
9-60 Percent of the Oil Recovery vs. Solution G.O.R. 172
9-61 Effect of Pressure on Oil Recovery 173
9-62 Producing G.O.R. vs. Percent of the Oil Recovery 175
9-63 Producing G.O.R. vs. Percent of the Oil Recovery 176
9-64 Producing G.O.R. vs. Fercent of the Oil Recovery 177
9-65 Producing G.O.R. vs. Percent of the Oil Recovery 178

AN EXPERIMENTAL STUDY OF CRUDE OIL RECOVERY BY HIGH PRESSURE NITROGEN INJECTION

CHAPTER I

INTRODUCTION

Petroleum engineers are frequently faced with the problem of predicting what will happen if a dry or rich gas is injected into a reservoir. One aspect of this problem is predicting the phase changes taking place during the displacing process.

The high pressure gas injection process was first proposed by Whorton, et ai., ${ }^{l}$ and was one of several miscible displacement processes developed for the purpose of displacing all of the oil contained within the contacted area of a reservoir.

One method which has been used to increase oii recovery is the maintenance of reservoir pressure by the injection of gas. Part of the beneficial effect resulting from this gas injection was to prevent evolution of the gas which was disolved in the reservoir oil. This evolution would cause the oil to shrink and become more viscous, thereby adversely affecting oil recovery. In dealing with multiphase systems, it is necessary to consider the effect of the forces acting
at the interface when two immiscible fluids are in contact. When these two fluids are liquid and gas, the interface is normally referred to as the liquid surface. ${ }^{2}$ All molecules are attracted one to the other in proportion to the product of their masses and inversely as the square of the distance between them. Considering water and oil, fluids commonly found in petroleum reservoirs, it is found that an interfacial tension always exists between the fluids. A molecule at the interface has a force acting upon it from the oil lying immediately above the interface and water molecules lying below the interface. The resulting forces are unbalanced and give rise to interfacial tension. A certain amount of work is required to move a water molecule from within the body of the liquid through the interface. This work is frequently referred to as the free surface energy of the liquid. Free surface energy may be defined as the work necessary to create a unit area of new surface.

The interfacial tension is the force per unit length required to create a new surface. The combination of all the active surface forces determines the wettability and capillary pressure of a porus rock. The distribution of the liquid in a porous system is dependent upon the wetting characteristics. The wetting fluid tends to occupy the smaller interstics of the rock and the nonwetting fluid occupies the more open channels. Reservoir engineers and scientists have long recognized the importance of the role that capillary and interfacial forces play in controlling the efficiency of
recovery mechanisms. These forces cause the retention of oil in the reservoir matrix and they control fluid movement.

A residual oil saturation remains in the rock during displacement by water or gas was studied in detail by Clark, et al. ${ }^{2}$ They showed that water drive recovery is expected to be greater than gas drive recovery when reservoir conditions are the same. The expected recuvery by water drive ranges from 60 to 80 per cent while recovery by gas drive ranges from 30 to 80 per cent. Displacement of oil by gas differs considerably from displacement by water. Gas has a lower viscosity than oil and exists in pore spaces as a nonwetting phase. It tends to move ahead of the oil in the center of the pore channel, leaving behind droplets of oil as residual saturation. The wide range of gas drive recovery expectancy results from variations in such factors as sand permeability, oil viscosity, and injection pressure.

Recognizing that 100 per cent displacement efficiency requires the elimination of the interfacial forces between the displacing and displaced fluids, researchers studied various approaches to the achievement of miscible displacement. One can group the various miscible displacement processes into two natural divisions: those processes in which miscibility already exists between the displaced and displacing fluids and those in which the injected fluid is not miscible wi.th the oil, but by some process in the reservoir it develops the required miscible displacement. The propane or miscible slug process ${ }^{3,4}$ is an
example of the former.
Propane as a liquid is already miscible with the reservoir oil. The high pressure gas process ${ }^{5-9}$ and the enriched gas drive ${ }^{10,11}$ are members of the second class of processes. In these latter processes the gas injected is not miscible with the reservoir oil, but when it is brought into intimate contact with the oil in the reservoir pores, a miscible displacement will be developed under certain injection pressure.

The object of this study was to conduct an experimental investigation directed toward a relatively new process of oil recovery by high pressure nitrogen injection.

CHAPTER II

STATEMENT OF THE PROBLEM

Miscible displacement processes have generally been recognized by the petroleum industry as an important enhanced oil recovery method. Very recently, ${ }^{7,8}$ nitrogen flooding has become an attractive material for economically enhancing oil recovery. No previous studies have been undertaken to directly observe miscibility conditions during their development in an oil reservoir. The primary objective of this work was to initiate an experimental investigation of the mechanisms through which miscibility could be achieved in a reservoir model undergoing high pressure nitrogen injection.

Other objectives of this study were to investigate the:

1. Compositional changes taking place during displacing of crude oil by continuous high pressure nitrogen injection.
2. Change in properties of the liquid and vapor phases during the nitrogen injection.
3. Miscible pressures for nitrogen displacement.
4. Distance from the injection point at which the miscibility would be achieved.

In order to accomplish these objectives, the experiments were conducted in a low permeability, consolidated, sand-packed
stainless steel tube 125 feet long and . 435 inches in diameter. Five sampling points were located at equal intervals along the length of the linear core. The design of these sampling points enables one to take samples of vapor under high pressure for analysis by the gas chromatograph.

The results of this experimental investigation showed the compositional distribution of the vapor phase throughout the core during the nitrogen injection process. The mechanism of the nitrogen displacement process was analyzed and the fronts formed during the oil recovery experiments were recorded and studied in order to better understand the overall recovery mechanism.

CHAPTER III

LITERATURE REVIEW

High Pressure Gas Injection

Laboratory Studies
The reinjection of natural gas was probably the first process suggested for improving the recovery of oil. There are records indicating that gas injection was employed for this purpose prior to 1900. 12,13

These early applications were designed to increase the immediate productivity and so should be classified as pressure maintenance projects. Growth in the technology of gas injection has relied on developments in miscible flooding by high pressure gas displacement.

Slobod, et al., ${ }^{5}$ divided the high-pressure gas sweeps into two basic processes:
i) Displacement in which the phases in equilibrium at the front were essentially immiscible (type I).
ii) Displacement in which the injected gas became sufficiently enriched that, at the front, it was completely miscible with the reservoir fluid (type M).

Whether a given case was type I or type M would depend mainly upon the composition of reservoir fluid and the injection
pressure. They concluded that the intermediates (largely C_{2} through C_{6}) were the main materials involved in this exchange of hydrocarbon between the injected gas and the reservoir fluid, which in turn worked in the direction of making the displacing and displaced phase more alike, and results in a more efficient displacement.

Whorton, et al., ${ }^{l}$ conducted an experimental investigation on sandstone cores to study the mechanism of displacing reservoir fluids by high pressure gas injection. The authors reported a recovery up to approximately 90 percent of the oil in place could be obtained. The authors illustrated that recoveries were improved by:

1. high injection pressures,
2. high concentration of intermediates in the injected gas or the displaced oil, and
3. undersaturation of the reservoir oil at the pressure of displacement. The authors concluded that the displacement mechanism was controlled by the higher mutual solubility of the phases at the higher pressures vith the attendant effect of reduction in the difference in viscosity between the displaced and the displacing phase.

Koch, et al., ${ }^{14}$ investigated the misible flooding by high pressure gas injection. The authors discussed the process in which miscibility was developed at the displacement front by the evaporation of intermediates from the oil phase into the
gas phase. The authors also reached the conclusion that the recovery at breakthrough was a function of pressure only up to the miscibility pressure. Once miscibility was reached, no noticeable increase in breakthrough recovery was achieved by increasing the pressure. They also stated that the high pressure miscible gas process was applicable only with reservoir fluids which contain a high concentration of intermediates.

Rutherford ${ }^{20}$ pointed out that asphaltene deposition had no important effect on the result of his experimental displacement of oil by light hydrocarbons.

Koch ${ }^{15}$ indicated that reservoir fluids having over 30 percent $\left(C_{2}-C_{6}\right)$ and a C_{7+} fraction whose molecular weight $\frac{15}{}$ less than 240 should be a good prospect for high pressure miscible gas displacement. The author also pointed out that the reservoir fluid should be undersaturated in order to achieve a proper exchange of $\mathrm{C}_{2}-\mathrm{C}_{6}$ components with the injected gas.

Cook, et al., ${ }^{18}$ conducted an experimental investigation on the recovery of oil by the cycling of natural gas. The authors stated that the amount of oil vaporized during the injection process was a function of the pressure, temperature, volatility of the oil (as indicated by oil gravity), and the amount of gas cycled. They also found that any increase in each of these conditions was accompanied by an increase in the volume of the vaporized oil, and concluded that vaporization could play an important role in a high percentage of oil recovery.

Blackwell, et al., ${ }^{17}$ studied the factors influencing the efficiency of miscible displacement. They found the formation of channels in their reservoir models was mainly due to viscous fingering, gravity segregation, and variation in permeability. The authors also pointed out that with adverse mobility ratios, the diffusion would not be effective in preventing the channels and growth of fingers, even in homogeneous sand.

High Pressure Gas Projects
Two of the largest field applications of high pressure gas injection have been at University Block 31 , in Texas, and the Hassi-Messaoud in Algeria.

A high-pressure miscible injection project was initiated in Block 31 field, Texas, in 1949. 24,25 In 1969, it was estimated that 60 per cent of the oil-in-place would be recovered by this project. Several factors contributed to the success of the project:

1. The project was begun early in the life of the reservoir.
2. The formation rock was continuous and homogeneous.
3. Close engineering control over the project ensured
miscible displacement and maximum sweep efficiency.
The Hassi-Messaoud ${ }^{26}$ high-pressure gas injection project in Algeria is the only reported miscible flood outside North America. The project commenced in 1964 and entails maintaining the reservoir pressure at about 4500 psi in part of the pool
by the injection of produced solution gas which was found to be miscible with the reservoir oil when contacted with it at a pressure above 3700 psi.

By January $1970,330 \times 10^{9}$ scf of gas was injected, sweeping an estimated 13 per cent pore volume of the pool and 20 per cent pore volume of the area enclosed by drilled wells. The significance of this project is the successful use of high pressure gas miscibility to improve recovery from a very complex reservoir of highly variable permeability.

Condensing Gas-Drive Process

(Enriched Gas Drive)
Laboratory Studies
Laboratory studies have shown that extremely high recoveries, sometimes approaching 100 per cent, can be obtained by using a condensing gas as the injected fluid. A condensing gas is defined as a gas which is appreciably soluble in the reservoir oil. The reservoir oil volume is increased considerably by the condensing gas phase going into solution in the oil, which materially increases the effective oil permeability.

Stone and Crump ${ }^{16}$ studied the effect of gas composition upon oil recovery while holding the reservoir pressure constant. Their experimental results are snown in Figure 3-1. Stone and Crump ${ }^{3}$ stated that the use of a condensing gas drive to displace oil from a reservoir would result in a greater oil recovery than an equilibrium gas drive. The authors believed that the

Figure 3-1. EFFECT OF OII SWELIING ON OIL RECOVERY (After Stone, et al. ${ }^{16}$ courtesy of the SPE of AIME)
increased recovery was a result of a solution of the injected gas both at the invading gas front and behind this front. They explained that the gas condensation at the front tends to retard invasion of the oil-saturated portion of the reservoir by the displacing gas, since it swells the oil phase at that point, and also dissolves the leading fingers of the gas phase. At the same time the swelling of the oil lowers the viscosity of that phase, and this effect favors more efficient displacement of the oil.

Benham, et al., ${ }^{3}$ found that the controlling factors for attainment of miscibility were the C_{2+} content of the reservoir fluid and the C_{5+} content of the displacing fluid. Wilson ${ }^{19}$ conducted a combination of flow experiments and equilibrium phase-behavior measurements on miscible displacement by enriched gas. The author concluded that the ternary phase diagram was a reliable guide for predicting the conditions required for miscibility in a flowing system of considerable complexity.

Arnold, et al., ${ }^{21}$ reported that a small bank of an oilmiscible gas driven by methane could displace all of the oil contacted in a piston-like manner. The authors concluded that the displacement with an oil-miscible bank offered the following advantages over displacement oil with an immiscible bank: (a) oil recovery was greater, (b) total gas injection for ultimate recovery was less, and (c) in long flow systems, smaller minimum bank size and smaller quantities of enriching materials were required.

Condensing Gas Drive Projects

The Seeligson (zone 20B-07) ${ }^{28}$ enriched gas project was intiated in 1957. The pool is a thin stratified sand encountered at approximately 6,000 feet. It contains approximately 877 productive acres and has 16 wells. The average sand thickness is about 12 feet with a maximum thickness of 42 feet in the center of the field.

Reservoir oil was saturated at the original reservoir pressure of 3,010 psi. Gravity of the produced crude oil is $40^{\circ} \mathrm{API}$. The field originally contained 7.4 million STB. The injected gas is composed of 44.5% methane, 4% ethane, and 50.5% propane with the rest being butane and heavier components. The mobility ratio was twelve. About 50% of the original oil was recovered, compared with an expected 22% for primary and about 45% for a water flood.

It was concluded that the displacement efficiency was 100% in the swept zones but the vertical and areal conformance was below that expected owing to reservoir heterogeneity, gravity override and viscous fingering.

The Ante Creek Field in Alberta, ${ }^{29}$ Canada, is an 11,000 foot deep pool containing originally 37 million STB of oil.: The most notable reservoir properties are a low viscosity of 0.13 cp and a high initial pressure of 5170 psi.

A miscible recovery project was initiated in June 1968. Plant residue gas containing approximately 67 per cent methane plus nitrogen and 33 per cent $\left(C_{2}-C_{6}\right)$ fraction was injected
into three wells, essentially all components were miscible at pressures above 3900 psi. The estimated recovery was 61 per cent.

Liquid Petroleum Gas (LPG) Slug Drive

Laboratory Studies
In miscible slug injection, a slug or bank of LPG or propane is driven by dry gas or water through the reservoir. This slug miscibly displaces the reservoir oil from the swept portions of the reservoir. At pressures above 1100 psi, the LPG is also miscible with the driving gas. ${ }^{30}$

The quantity of LPG required to maintain miscibility conditions is an important factor in the economics of miscible flooding. In the case of low solvent (LPG) content, miscibility is lost when the bank of LPG deteriorates. At that point, the displacement will become immiscible rather than miscible, and recovery will drop accordingly.

Hutchinson, et al., ${ }^{6}$ stated that miscibility cannot be regenerated once it is lost through the breakdown of the slug from dispersion.

Craig, et al., ${ }^{30}$ found that factors such as: (1) rock permeability, (2) displacement rate, (3) reservoir viscosity, (4) distance between the injection and producing well, and (5) diffusion rate would determine the extent of mixing at solvent-crude oil interface and the solvent-driving gas interface. The authors also stated that the mixing would tend to occur longitudinally in the direction of flow.

Koch, et al., ${ }^{31}$ pointed out that factors controlling the size of the LPG slug were: (1) reservoir length, (2) reservoir fluid composition, and (3) reservoir pressure at the displacement front.

Lacey, et al., ${ }^{32}$ claimed that small banks of LPG (5 per cent HPV or less) were not effective in increasing oil recovery in horizontal reservoirs. Instead, where small banks were used, the driving gas quickly penetrates the IPG bank because of fingering and channeling, and from this point on, the process behaved essentially as an immiscible gas-injection project. The authors also claimed that their conclusion was substantiated by: (1) laboratory studies of the effect of rate, model size and mobility ratio on miscible displacement in areal models, and (2) calculation of field recovery, which compared closely with actual field recovery.

LPG Slug Drive Projects
In 1957, a miscible slug project was started in
Parks Field, Texas, in the Pennsylvanian Bend reservoir. ${ }^{33}$ A slug of propane (4 per cent of the total hydrocarbon pore volume) was injected followed by dry gas. In 1961, Marrs 35 estimated that 17 per cent by primary means wouid be increased to 55 per cent.

Carbon Dioxide Injection

Laboratory Studies
Carbon dioxide is known to be highly soluble in crude oils, and in water at reservoir pressures and temperatures,
which causes a (1) reduction in oil viscosities, and (2) an appreciable swelling of crude oil. Both of these factors will increase oil recovery.

Carbon dioxide flooding can be carried out in one of three ways:

1. injection of carbonated water,
2. injection of a small slug of pure liquid CO_{2} followed by water, and
3. miscible CO_{2} flooding.

Holm ${ }^{34}$ showed that water driven CO_{2} banks or carbonated water could improve the oil recovery by a factor of 50 per cent to 100 per cent when compared to water flood and immiscible gas injection. Holm concluded from long core displacement tests that a CO_{2} bank of about 5 per cent HPV followed by water would give a more favorable oil recovery than would the same volume of CO_{2} dissolved in a water bank.

Simon, et al., ${ }^{35}$ claimed that injection of CO_{2} with a pressure of 800 psi in their reservoir model caused 20 to 90 per cent reduction in oil viscosities and swelling up to 50 per cent of the crude oil.

Menzie, et al., ${ }^{37}$ found that the injected carbon dioxide could reach equilibrium conditions within a short time and that condensate was recovered by vaporization.

Holm ${ }^{34}$ reported that a bank of light hydrocarbons (vaporization of crude oil) was formed by the CO_{2}-carbonated water flood. Beeson ${ }^{36}$ and Holm ${ }^{34}$ claimed that significant
swelling and viscosity reduction would not be achieved unless the injection pressure was above 800 psi.

Carbon Dioxide Injection Projects
The Mead-Strawn Field ${ }^{38}$ pilot project was conducted to test the effectiveness of carbon dioxide as an oil recovery agent in a primary-depleted reservoir. The process consisted of injection of a small slug of CO_{2} (4 per cent $\mathrm{p} . \mathrm{v}$), followed by a slug of carbonated water (12 per cent $p . v$), and then brine. Prior to CO_{2} injection, water was injected to raise the reservoir pressure in the test area from about 115 to 850 psi; the objective was to maintain the average reservoir pressure at a minimum of 850 psi throughout the test to ensure maximum effectiveness of the CO_{2}. . The formation volume factor and oil viscosity were 1.12 and 1.3 cp , respectively, at the start of the CO_{2} flood. Carbonation changed these values to 1.25 and 0.58 cp .

The Mead-Strawn test flood showed that over 50 per cent more oil was produced by the CO_{2}-carbonated water flood than by the conventional water flood, confirming results obtained from laboratory studies of the oil-recovery process.

CHAPTER IV

MISCIBILITY RELATIONSHIPS IN THE DISPLACEMENT OF OIL BY NITROGEN

Miscibility exists when two fluids are able to mix in all proportions without any interface forming between them. Miscibility is controlled by the pressure and temperature, the composition of the oil, and the composition of the displacing fluid. The triangular phase diagram is often used as an aid in understanding the miscibility process for complex hydrocarbon mixtures.

Representation of Miscible Displacement by Nitrogen on Triangular Diagram

A triangular diagram was first proposed by J. Willard Gibbs ${ }^{39}$ to present phase relations of a three pure-component system. Since then, it has been used extensively for liquidliquid, liquid-solid, and gas-liquid systems.

As it was reviewed by Slobod, et al., ${ }^{5}$ let us examine briefly the information which is given on a triangular diagram such as shown in Figure 4-1. Any point within the triangle represents a system with a specific composition made up of definite amounts of N_{2} (nitrogen), C_{m} (intermediates, mainly methane through hexane), and C_{7+} (heptanes and heavior hydrocarbons).

Figure 4-1. THREE-COMPONENT PRESENTATION OF MULTI-COMPONENT SYSTEM, TEMPERATURE AND PRESSURE CONSTANT

The phase boundary curve ACB on the diagram separates the single-phase and two-phase regions. At the pressure and temperature given, any system of the three components whose composition is inside this curve will form two phases. Any system outside this curve will be in a single phase at equilibrium.

The lower part of the curve is the bubble point line $A C$ and gives the liquid phase composition of any two phase system. The upper part of the curve is a dew-point line $C B$ and gives the gas phase composition of the two-phase system.

The lines that connect gas- and liquid-phase composition that are in equilibrium with each other are called tie lines. Any system composition along a tie line will break into two phase with composition given by the ends of that tie line. The bubble and dew points meet at the plait point, C, where the liquid and gas phases become identical.

With this diagram one needs only to know the compositions of the displacing and the displaced phase to define the initial type of displacement. If a line is drawn between the points representing the composition of the two phases and passes through the two phase region, the gas and reservoir oil will not be miscible.

Available published information on oil displacement by nitrogen injection is limited to five papers. ${ }^{7-9,14,40}$

Figures 4-2 through 4-5 show ternary composition diagrams from the work of Rushing, et al. ${ }^{7-9}$ The three-
component system shown consists of nitrogen $\left(\mathrm{N}_{2}\right)$, the intermediates $\left(C_{1}\right.$ through $\left.C_{6}\right)$ and all hydrocarbons heavier than $c_{6}\left(C_{7+}\right)$.

The stepwise process of oil displacement by continuous nitrogen injection can be shown in Figure 4-2. As nitrogen is injected and comes in contact with crude oil, a mass exchange of components in the gas and oil occurs as the two phases tend to come to equilibrium (point R_{1}) in the presence of each other.

This point which is lying in the two phase region represents the overall composition of the liquid and gas phase in contact. Assuming equilibrium occurs, the oil composition changes to composition L_{1}, and the gas composition changes to composition G_{1}. It can be seen that crude oil has lost both in intermediate components $\left(C_{1}-C_{6}\right)$ and heaviy components (C_{7+}) while nitrogen has absorbed these components. More nitrogen, coming from behind, contacts the remaining oil (with composition L_{1}) in the displacement process, and, when equilibrium occurs, at point R_{2}, this oil- L_{1} composition changes to L_{2} composition and the displacing phase to G_{2} composition.

After several consecutive steps of nitrogen contacting the remaining oil, additional oil components vaporize until the oil composition becomes L_{5} and the displacing nitrogen becomes G_{5} when equilibrium occurs.

Because of the high mobility of gas, gas of composition
G_{1} (which is rich in the intermediate components) formed by

Figure 4-2. TRIANGULAR GRAPH SHOWING CHANGES IN COMPOSITION OF CRUDE OTL
(After Rushing, et al., SPE of AIME)
contact of nitrogen and virgin oil, moves ahead and contacts more of the original oil in place. As it is seen in Figure 4-3, an equilibrium point R_{2} is established. Again, gas with composition G_{2} moves faster than the formed oil of composition L_{2} and contacts more virgin oil, as a result, a new equilibrium point R_{3} is established. The quantity of intermediate and heavy components in the gas varies and gets greater as the gas moves further into the oil in the displacement process. This enrichening process causes the oil to get leaner of intermediates in the areas through which most gas has moved.

Figure 4-4 is similar to Figure 4-3 but contains a family of curves representing the effect of pressure on miscibility in high pressure nitrogen injection. Phase boundary curves for pressures P_{1}, P_{2}, and P_{3} are labeled. As shown in Figure 4-3, at higher pressures, the boundary curves move to the left so that at pressure P_{3} the composition of crude oil is such that a miscible displacement will occur.

The importance of the crude oil composition can be shown in Figure 4-5. Crude B is more favorable for miscible type displacement than crude A since it contains more intermediate components and is closer to the critical point. A faster establishment of miscible displacement occurs with crude B than with crude A.

It is important now to review briefly the results of the experiments conducted by Rushing, et al., ${ }^{7-9}$ McNeese, ${ }^{40}$ and Koch, et al. ${ }^{14}$

Figure 4-3. TRIANGULAR GRAPH SHOWING CHANGES IN COMPOSITION OF NITROGEN (After Rushing, et al., ${ }^{-9}$ courtesy of the SPE of AIME)

Figure 4-4. TRIANGULAR DIAGRAM SHOWING THE EFFECT OF PRESSURE ON THE PHASE ENVELOPE (After Rushing, et al., ${ }^{7-9}$ courtesy of the SPE of AIME)

Figure 4-5. INITIAL CRUDE COMPOSITION VS. PHASE ENVELOPE (After Rushing, et al..7-9 courtesy of the SPE of AIME)

Research of Rushing, et al. ${ }^{7-9}$
The authors conducted an experimental investigation to study mainly the pressure on oil recovery by nitrogen flooding. Their reservoir model was a 40 foot stainless steel tube of 0.2 inch inside diameter. The coiled tube was packed with 140-200 mesh sieved manufactured glass beads. Tests were made on a 54.4 gravity crude containing 700 scf/bbl. Oil recovery ranged from 65 per cent of oil originally in place at 3000 psig to 92.8 per cent of oil originally in place at a run pressure of 5000 psig. They concluded that nitrogen could be used for miscible displacement in oil reservoirs.

Research of Koch and Hutchinson

Koch and Hutchinson ${ }^{14}$ reported a number of laboratory tests on displacement of oil by nitrogen, natural gas and some mixtures of nitrogen and natural gas. Table 4-1 shows the results of Koch, et al. ${ }^{14}$

The authors conducted their experiments on a 143 foot unconsolidated sand packed column as their reservoir model. Four gases of different composition were used, mainly 100 per cent nitrogen, 100 per cent lean gas (85 per cent C_{1}, 15 per cent C_{2}), and two mixtures of the foregoing gases lone 15 per cent nitrogen, the other 66 per cent nitrogen). They reported the miscibility pressure for 100 per cent nitrogen was found to be 3,870 psi. This was only 370 psi greater than the 3,500 psi miscibility pressure determined for 100 per cent lean gas. They also claimed that the miscibility pressure only increased

TABLE 4-1

THE EXPERIMENTAL RESULTS OF KOCH, et al. ${ }^{14}$

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	```Injection Gas Composition % N2```	Injection Pressure\qquad	Stock Tank Oil Recovery \% of OIP Initially	
			At Breakthrough	Ultimate
L-44	15	3500	68.0	77.5
L-45	15	3600	74.0	82.9
L-46	15	3700	80.4	86.0
I-42	66	3500	67.3	76.5
L-41	66	3700	77.9	87.3
L-40	100	2900	49.2	59.6
L-38	100	3500	67.2	69.4
L-37	100	3800	77.6	83.6
L-39	100	4000	80.6	83.2
L-32	100	4300	80.6	84.7

from 3,700 psi to 3,730 psi when the nitrogen content of the injected gas was increased from 15 per cent to 66 per cent. Their data suggests that dilution of nitrogen with relatively small amounts of hydrocarbon gas could be helpful in reducing the miscibility pressure.

They ${ }^{14}$ also found that the displacement efficiency in the first 123 feet of this column was 83.2 per cent for nitrogen sweep as compared to 95 per cent for lean gas sweep. In the final 20 feet of the 143 foot sand column the ultimate displacement efficiency had increased to 94 per cent with nitrogen injection, which compares favorably to the 95.3 per cent obtained by use of lean gas in this length core.

Research of McNeese

McNeese ${ }^{40}$ conducted four (I, II, III, and IV) tests on a reservoir model 143 feet long. All four tests were performed at pressures in excess of that required to achieve a miscible displacement using flue gas (88 per cent nitrogen). His results, as reproduced and shown in Figure 4-6, indicated that miscibility was obtained during all tests except number I. The author concluded that the miscibility pressure was essentially independent of the composition of the displacing phase and that some finite displacement length was required before miscibility could be achieved.

Figure 4-6. EFFECT OF PRESSURE ON RECOVERY (After McNeese ${ }^{40 \text {) }}$

CHAPTER V

CALCULATION OF FLUID PROPERTIES

In a displacement of crude oil by nitrogen, there will be a continuous change in the composition of both the displaced and the displacing phase as a result of an exchange of components between the oil and gas.

Liquid and vapor phase properties such as surface tension, viscosity and density are considered to be a function of composition, temperature, as well as pressure in each phase.

There are several published techniques for calculating viscosities, densities, molecular weights, and surface tensions of hydrocarbon mixtures from their compositional information. From these techniques, we have selected those methods which have been most widely used by other investigators.

Densities of Gas and Oil
Gas Density
The density of the vapor phase is found by using the law of corresponding stated as follows:

$$
\begin{equation*}
\rho_{v}=\frac{\bar{M} \cdot P}{Z R T} \quad 1 b / f t^{3} \tag{5-1}
\end{equation*}
$$

where:

$$
\begin{aligned}
\overline{\mathrm{M}}= & \text { average molecular weight, and can be defined } \\
& \text { mathematically as: }
\end{aligned}
$$

$$
\begin{equation*}
\bar{M}=\sum_{i=1}^{n} y_{i} M_{i} \tag{5-2}
\end{equation*}
$$

$y_{i}=$ mole fraction of i th component in vapor phase
$M_{i}=$ molecular weight of i th component
P = absolute pressure of the system, psi
$T=$ absolute temperature ${ }^{\circ} \mathrm{R}$
$R=$ gas constant $=10.72 \mathrm{psi} \cdot \mathrm{ft}^{3} / \mathrm{lb}$ mole ${ }^{\circ} \mathrm{R}$
The gas deviation factor, Z, is a function of the reduced pressure and reduced temperature.

$$
\begin{equation*}
Z=f\left(P_{r}, T_{r}\right) \tag{5-3}
\end{equation*}
$$

The pseudo-reduced pressure and temperature are defined mathematically as:

$$
\begin{align*}
& P_{r}=\frac{P}{\sum_{i=1}^{n} Y_{i} P_{C_{i}}} \tag{5-4}\\
& T_{r}=\frac{T}{\sum_{i=1}^{n} Y_{i} T_{C_{i}}} \tag{5-5}
\end{align*}
$$

where:

$$
\begin{aligned}
{ }^{{ }^{{ }^{C_{i}}}}= & \text { critical pressure of the } i \text { th component in the } \\
& \text { vapor phase, psi } \\
{ }^{T_{c_{i}}}= & \text { critical temperature of ith component, }{ }^{\circ} R \\
P= & \text { current pressure, psi }
\end{aligned}
$$

$T=$ prevailing temperature, ${ }^{\circ} R$
The gas derivation factor for natural gas was correlated ${ }^{49}$ using pseudo-reduced properties, and may be obtained from Brown, et al. ${ }^{49}$

Liquid Density
The density of any complex mixtures in the liquid state can be computed from the composition of the mixtures and the density of their components.

The procedure for calculating the liquid densities follows the method published by Standing. 50

$$
O_{L}=\frac{\sum_{\substack{i=1 \\ i \neq c_{6+}}}^{n} x_{i} M_{i}+x_{c_{6+}} M^{M_{c}} c_{6+}}{\sum_{\substack{i=1 \\ i \neq c_{6+}}} x_{i} M_{i} V_{i}+x_{c_{6+}} M_{c_{6+}} V_{c_{6+}}}
$$

$O_{L}=$ liquid density at standard pressure and temperature, $\mathrm{lb} / \mathrm{ft}^{3}$
$x_{i}=$ mole fraction of ith component in the mixture
$\mathrm{x}_{\mathrm{C}_{6+}}=$ mole fraction of hexane and heavier in the liquid phase
${ }^{M} c_{\sigma_{6+}}=$ molecular weight of hexane and heavier
$\mathrm{V}_{\mathrm{i}}=$ specific volume of the i th component, $\mathrm{f} \mathrm{t}^{3} / \mathrm{lb}$
$\mathrm{V}_{\mathrm{c}_{6+}}=$ specific volume of hexane and heavier, $f t^{3} / 1 \mathrm{~b}$

The specific volumes and molecular weights of any component can be obtained from NGAA data book. 49 For hexane and heavier, $V_{c_{6+}}$ and $M_{c_{6+}}$ can be determined in the laboratory.

Extensive data are available in the literature on the effects of pressure and temperature on the density of hydrocarbon mixtures. Standing and Katz, ${ }^{50}$ correlated the available data in the form of "density-correction curves." These curves, reproduced here in Figure 5-1 and Figure 5-2, can be used to correct the density of mixture to our desired pressure and temperature. (For more details consult Standing. ${ }^{50}$)

Molecular Weight of Liquid Hydrocarbon Mixtures
The molecular weight of any hydrocarbon mixture can easily be calculated by a method developed by McLeod. ${ }^{52}$ His excellent experimental investigation showed that the Eykman Molecular Refraction (EMR) bears a linear relationsnip with molecular weight for any complex hydrocarbon mixture.

The straight line equation for the EMR-molecular weight relationship is:

$$
\begin{equation*}
M=-2.97+1.3591 E M R \tag{5-7}
\end{equation*}
$$

where, $M=$ molecular weight of the hydrocarbon mixture. Knowing the density of the mixture, the Eykman Molecular Refraction (EMR) can be estimated by utilizing Figure 5-3. For further details see McLeod. ${ }^{52}$

Figure 5-1. DENSITY CORRECTION FOR COMPRESSIBILITY OF LIQUIDS (From Standing ${ }^{50}$)

Figure 5-3. EYKMAN MOLECULAR REFRACTION (EMR) VERSUS ρ^{2} (From the work of McLeod ${ }^{52 \text {) }}$

Surface Tension

Surface tension is the stress at the surface between a liquid and a vapor caused by the differences between the molecular forces in the vapor and those in the liquid and by the imbalance of these forces at the interface.

Early work on the surface tension of mixtures of hydrocarbons was investigated experimentally by Katz, et al. ${ }^{53}$ who, from the experimental data, developed a procedure for calculating surface tension. The method based on the parachor and the equation proposed by Sugden ${ }^{54}$ related the surface tension to the properties of the liquid and vapor phases.

Parachors for pure hydrocarbons, nitrogen, and carbon dioxide are given in Table 5-1. A correlation of the parachor with molecular weight is presented in Figure 5-4. For a mixture the surface tension is defined ${ }^{53}$ by the following relation:

$$
\begin{equation*}
\sigma^{\frac{1}{4}}=\sum_{i=1}^{n} P_{\operatorname{chi}}\left(\dot{x}_{i} \frac{\rho_{L}}{M_{L}}-y_{i} \frac{\rho_{v}}{M_{v}}\right) \tag{5-8}
\end{equation*}
$$

where $P_{c h i}=$ parachor of ith component
x_{i} and $y_{i}=$ mole fractions of ith component in liquid and vapor phase respectively
ρ_{L} and $M_{L}=$ density in $\mathrm{gm} / \mathrm{cm}^{3}$ and molecular weight, respectively, of liquid phase
o_{v} and $M_{v}=$ density in $g m / \mathrm{cm}^{3}$ and molecular weight, respectively, of vapor phase.
TABLE 5-1
PARACHORS OF PURE SUBSTANCES(From Katz, et al. ${ }^{53 \text {) }}$
COMPONENT PARACHOR
Methane 77.0
Ethane 108
Propane 150.3
i-Butane 181.5
n-Butane 190.0
i-Pentane 225
n-Pentane 232
n-Hexane 271
Nitrogen 41
Carbon Dioxide 78

Figure 5-4. PARACHORS FOR HYDROCARBONS VS.
MOLECULAR WEIGHT
(From Katz, et al. ${ }^{53 \text {) }}$

Physical and Critical Properties of Hexane and Heavier Fraction

The critical pressure, temperature, and boiling point of hexane and heavier used in this study was estimated from the published charts developed by Standing ${ }^{50}$ and Clark. ${ }^{58}$

One of the problems which the author faced was to estimate the critical volume (V_{C}) for hexane-plus. We found that a plot of $\log \left(M_{i} \cdot v_{c_{i}}\right)$ versus $b\left(\frac{1}{T_{b}}-\frac{1}{T}\right)$ is a reasonably smooth curve which permits $\left(V_{c}\right) c_{6+}$ to be correlated as shown in Figure 5-5. The value for the constant b for each component is determined by the following relation:

$$
\begin{equation*}
b=\frac{\left(\log P_{c}-\log 14.7\right)}{\left(\frac{1}{T_{b}}-\frac{1}{T_{c}}\right)} \tag{5-9}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{b}= & \text { constant characteristic of the particular } \\
& \text { hydrocarbon } \\
\mathrm{P}_{\mathrm{C}}= & \text { critical pressure, psia } \\
\mathrm{T}_{\mathrm{C}}= & \text { critical temperature },{ }^{\circ} \mathrm{R} \\
\mathrm{~T}_{\mathrm{b}}= & \text { boiling point, }{ }^{\circ} \mathrm{R} \\
\mathrm{~T}= & \text { prevailing temperature of the system, }{ }^{\circ} \mathrm{R}
\end{aligned}
$$

Values for b for the various pure components through decane are given in Table 5-2.

Figure 5-5. $\begin{aligned} & \text { CORRELATION OF } M \cdot v_{c} \text { vs. } b\left(\frac{1}{T_{b}}-\frac{1}{T}\right) \text { TO DETERMINE } v_{c} \text { VALUES FOR HEAVIER } \\ & \text { COMPONENTS }\end{aligned}$

TABLE 5-2

VALUES FOR b FUNCTION FOR PURE HYDROCARBON COMPONENTS (After Clark ${ }^{58}$)

Component	b-value		Component	
Methane	808		N-value	
Ethane	1415		Hexane	2473
Propane	1792		Heptane	2780
I-Butane	2045	Octane	3061	
N-Butane	2129	Nonane	3333	
I-Pentane	2375	Decane	3602	
			3847	

Viscosities of Gas and Oil

Gas Viscosity

Herning and Zipperer ${ }^{55}$ proposed the following mixture rule for the viscosity of a mixture of gases under atmospheric pressure and the temperature of interest:

$$
U_{1}=\frac{\sum_{i=1}^{n}\left(y_{i} U_{i}^{*} M_{i}^{\frac{1}{2}}\right)}{\sum_{i=1}^{n}\left(y_{i} M_{i}^{\frac{1}{2}}\right)}
$$

where:

$$
\begin{aligned}
U_{i}^{*}= & \text { viscosity of component } i \text { at atmospheric } \\
& \text { pressure, cp } \\
Y_{i}= & \text { mole fraction of } i \text { component in vapor phase } \\
M_{i}= & \text { molecular weight of } i \text { component } \\
U_{1}= & \text { viscosity of gas mixture at atmospheric } \\
& \text { pressure, } c p
\end{aligned}
$$

Values of U_{i}^{*} and M_{i} may be obtained from NGAA Data Book. 48

Carr and coworkers ${ }^{56}$ presented an experimentally established correlation, Figure 5-6, for correcting the atmospheric viscosity of hydrocarbons to the desired pressure. The correlation of Carr was based on the association of the viscosity ratio $\frac{U}{U_{1}}$ with pseudo-reduced pressure and temperature, where U is the viscosity of the mixture at the prevailing conditions and U_{1} is the viscosity of the mixture at atmospheric pressure and system temperature.

Figure 5-6. VISCOSITY RATIO VERSUS PSEUDO-REDUCED TEMPERATURE (From Carr, et al. ${ }^{56 \text {) }}$

The pseudo-reduced pressure and temperature required for entry into Figure 5-6 can be obtained through the use of Equations (5-4) and (5-5). For more details see Carr, et al. 56

Liquid Viscosity

The procedure for calculating the liquid viscosity follows the method proposed by Lohrenz, et al. ${ }^{57}$ The technique is illustrated in the following steps.
a) Calculate the atmospheric viscosity at the composition and temperature of the phase

$$
U_{1}=\frac{\sum_{\substack{i=1 \\ i \neq c_{6+}}}^{n}\left[x_{i} U_{i}^{*} M_{i}^{\frac{1}{2}}\right]+\left[x_{c_{6+}} U_{C_{6+}^{*}}^{U_{6+}} M_{c_{6+}}^{M^{\frac{2}{2}}}\right]}{\substack{i=1 \\ i \neq c_{6+}}}\left(x_{i} M_{i}^{\frac{1}{2}}\right)+x_{c_{6+}} M_{c_{6+}}^{\frac{1 / 2}{2}}
$$

where U_{1} is the atmospheric viscosity of liquid phase, cp. The other parameters were defined in the previous sections.
b) Calculate the reduced density as it was defined by Lohrenz:

$$
\begin{equation*}
\rho_{r}=\frac{\rho_{L}}{\sum_{\substack{i=1 \\ i \neq c_{6+}}}^{n} \quad x_{i} v_{c_{i}}+x_{c_{6+}} v_{c_{c}}} \tag{5-12}
\end{equation*}
$$

where:

$$
\begin{aligned}
\rho_{r} & =\text { reduced density } \\
V_{c_{6+}} & =\text { critical volume of } c_{6+}, f t^{3} / 1 b-m o l e
\end{aligned}
$$

$$
\begin{aligned}
\rho_{L} & =\text { liquid density, } 1 b / f t^{3} \\
x_{i} & =\text { mole fraction of } i \text { component } \\
v_{c_{i}} & =\text { critical volume of } i \text { component, } f t^{3} / 1 b-m o l e
\end{aligned}
$$

c) Estimate the mixture viscosity parameter: ${ }^{57}$

$$
E=\frac{\left.\left.\sum_{\substack{i=1 \\ i \neq c_{6+}}}^{n} x_{i} T_{c_{i}}+x_{c_{6+}}{ }^{T_{c_{c}}}{ }_{c_{6+}}\right]_{\substack{1 / 6 \\ i=1 \\ i \neq c_{6+}}}^{n} x_{i} M_{i}+x_{c_{6+}} M_{c_{6+}}\right]^{\frac{1}{2}}\left[\sum_{\substack{n=1 \\ i \neq c_{6+}}}^{n} x_{i} P c_{i}+x_{c_{6}}+P_{c_{c}}\right]^{2 / 3}}{\sum_{6+}}
$$

where:

$$
\begin{aligned}
& E=\text { mixture viscosity parameter } \\
& { }^{P_{C_{i}}},{ }^{P_{C}} C_{C_{6+}}=\text { critical pressure of } i \text { component and } \\
& \quad \text { hexane-plus respectively, psi } \\
& T_{C_{i}},{ }^{T} C_{C_{6+}}=\text { critical temperature of } i \text { component } \\
& \text { and hexane-plus respectively, }{ }^{\circ} R
\end{aligned}
$$

d) Solve the following equation for the viscosity U.

$$
\begin{align*}
{\left[\left(U-U_{1}\right) E+10^{-4}\right]^{\frac{1}{4}}=} & 0.1023+0.023364 \rho_{r}+0.058533 \rho_{r}^{2}- \\
& 0.040758 \rho_{r}^{3}+0.009332 \rho_{r}^{4} \tag{5-14}
\end{align*}
$$

where, $\mathrm{U}=$ liquid viscosity at the prevailing pressure and temperature, cp .

K-Values and Convergence Pressures

in Equilibrium Calculations

K-Values for Light Hydrocarbon Components
The idea of using the equilibrium constant K in phase behavior calculations is sound, requiring only that appropriate K-values be known for components of the material within the range of temperatures and pressures covered by the particular investigation. Equilibrium ratios which are sometimes called vaporization equilibrium constants can be defined as:

$$
k_{i}=\frac{y_{i}}{x_{i}}
$$

where:

$$
\begin{aligned}
Y_{i}= & \text { mole fraction of any component in the vapor phase } \\
x_{i}= & \text { mole fraction of the same component in the liquid } \\
& \text { phase }
\end{aligned}
$$

However, the difficulty in obtaining the proper Kvalues for any individual component arises from the fact that the values vary not only with temperature and pressure changes, but also with changes in the composition of the mixture; thus, a K-value for a given component actually changes each time the mixture in which the component exists changes.

The K-values used in this study were obtained from the published correlation in NGAA Engineering Data Book. 59

K-values for Heaviest Fraction

The K-values of hexane and heavier used in this study were calculated by the method developed by clark. 58 In this
procedure, the best K-values obtainable for the light components, together with their b-values from Table 5-2, are first plotted as $\log \mathrm{K}$ vs. b. The line is extrapolated to a b-value calculated by Equation (5-9) for hexane-plus.

Convergence Pressure
The problem of incorporating composition into general K correlations has been an arduous one. The most common approach has been the use of the "convergence pressure" concept. Convergence pressure, P_{k}, is that pressure at which the K values of all components in the system converge at a value of $K=1.0$, at system temperature. For multicomponent systems, convergence pressure depends on both temperature and system composition.

NGPA ${ }^{59}$ proposed a method for calculating the convergence pressure which embodies the following main steps:

Step 1 - Assume a convergence pressure.
Step 2 - Read K-values from the charts for the convergence pressure close to the assumed value.

Step 3 - Calculate the flash liquid using these K-values $\frac{y_{i}}{K_{i}}$
Step 4 - For the computed liquid phase omit the lightest component (in this study, nitrogen was considered to be the lightest component).

Step 5 - Calculate the weight average critical temperature and pressure for the remaining material.

$$
\begin{aligned}
& i \neq C_{6+} \\
& \sum_{i=2}^{n} \quad x_{i} M_{i} P_{c_{i}}+x_{c_{6+}}{ }^{M} c_{6+}{ }^{P} c_{6+} \\
& \text { Weight average } P_{c}=\frac{i \neq c_{6+}}{\sum_{\substack{i=2 \\
i \neq c_{6+}}}^{n} x_{i} M_{i}+x_{c_{6+}} M_{c_{6+}}}
\end{aligned}
$$

This is the critical point of the hypothetical heavy component.

Step 6 - Locate this critical point in Figure 5-7.
Sketch the binary critical locus for a binary mixture consisting of the lightest component (nitrogen) and the hypothetical heavy component. The intersection of the system temperature and the interpolated curve is the convergence pressure.

Step 7 - Repeat steps 2 through 7 until the assumed and calculated convergence pressures check within an acceptable tolerance.

The previous method was used throughout this study.

Convergence Piestures for Binary Hydrocarbon Mixtures.

Figure 5-7. CONVERGENCE PRESSURE FOR BINARY HYDROCARBON MIXTURE (Engineering Date Book ${ }^{59}$ 9th Edition, NPGA, 1972)

CHAPTER VI

TECHNIQUES OF CHROMATOGRAPHIC ANALYSES

This chapter is meant to assist anyone, who in the future, may work with the techniques of gas chromatography.

Chromatography is the physical process of separating the components of a mixture in which the materials to be separated are partitioned between two phases. One phase is stationary and the other (mobile phase) is passed through the stationary phase.

If the stationary phase is a solid, we speak of GasSolid Chromatography. This depends upon the adsorptive properties of the column packing to separate samples, primarily gases. Common packing used are silica gel, molecular sieve, and charcoal.

If the stationary phase is a liquid, we speak of Gas-Liquid Chromatography.

The liquid is spread as a thin film over an inert solid and the basis for separation is the partitioning of the sample in and out of the liquid film. Several articles have been written on the subject. ${ }^{41-43}$

Apparatus

The chromatograph consists of three basic sections: flow system, column, and dectector. See Figure 6-1.

Flow System

- Carrier Gas: The mobile phases or carrier gases, such as helium, hydrogen, nitrogen, and carbon dioxide, are supplied to the chromatograph by a high pressure gas cylinder. A two stage pressure regulator is used to assure a uniform pressure to the column inlet.
- Injection Part: The sample injection system provides a means of introducing the sample, as a "plug" into the carrier gas upstream of the column. Gases are usually introduced by gas-tight syringes.

Columns
The columns, on which the samples are to be separated, constitute the heart of chromatographic processing. There are two general classifications for columns, the "filled" or packed column and the "open tubular" column.

- Packed columns usually consist of $1 / 4$ " or $1 / 8 "$ tubing filled with some type of granular adsorption material. The separations performed are determined by the proper selection of stationary placed in the column; thus, two variations of packed columns are the adsorption and partitioning. Adsorption columns use silica gel, charcoal, or mole sieve which are materials having the ability to adsorb gases on their

Figure 6-1. SCHEMATIC DRAWING OF A GAS CHROMATOGRAPH SYSTEM (After Hendricks ${ }^{41}$)
surfaces. These columns separate light gases such as oxygen, nitrogen, helium, and methane. Partition columns are packed with inert granular support solids which are coated with a liquid (stationary) phase. Two prominent partition columns are the silicon 200/500 and the BMEE. Both give a good separation of hydrocarbons, through pentanes and have a long life relative to their usage.

- Open tubular columns, referred to as capillary columns, are constructed of a very long tube having a capillary size internal diameter. These columns may or may not be coated with a stationary liquid phase. The mechanics of separation are essentially the same as packed columns.

The ability of a column to separate or resolve the components of a mixture is affected by the following column conditions:

- Column length
- Operating temperature
. Gas flow rate
These parameters should be held constant during sample and corresponding standard reference runs. In order to keep the columns at a constant temperature, they are housed in chromatographic ovens where a temperature variation of no more than 0.3 degrees centigrade is maintained.

Detectors

After the separations have been made by the column, each pure component is passed to a detector where a
quantitative measure is made of the amount in the carrier gas. The most widely used detector for gas chromatography is thermal conductivity (TC), since it meets almost all the characteristics of the ideal detector. Characteristics desirable in a detector are stability, sensitivity, and rapid response to changes. Basically the TC cell is a hot wire filament suspended inside a metal block or tube through which gas is passing. An electrical current is applied to the filament causing its temperature to rise to some constant value. At the same time, the detector block housing the filament is held at a constant temperature below that of the filament. The temperature attained by the filament is now dependent not only on the current, but also the block temperature and the thermal conductivity of the passing gaseous medium surrounding the filament. As a result, filament resistance and subsequently the current through-put is related to the rate at which heat is conducted away from the filament through the gas medium to the cell block.

Placing the cell block in a constant temperature detector oven eliminates significant temperature variations. Assuming the flow rate is constant, any change in current output of the filament is dependent only on the thermal conductivity of the gas in the cell.

Expanding the single filament detector theory, it is quite simple to construct a thermal conductivity differential detector. A metal block containing two pairs of filaments,
(each pair isolated in a separate gas chamber) one pair of filaments constitutes a reference side, seeing only the carrier gas, while the other filaments serving as the sample side, see any effluents in the carrier gas eluted from the separation column.

A 1 millivolt strip chart recorder is connected to the detector output. When pure carrier gas is passing through both sides of the detector, the output of the bridge is constantly giving a baseline recording on the chart. As effluents from the column are detected, the bridge output will drive the chart pen from the baseline. A strip chart recording of the components in the sample is obtained.

There are many things about the process of gas chromatography that can only be learned by working with a gas chromatograph instrument.

The gas chromatograph is an essential and valuable part of any experimental gas injection research. One must become familiarized with the instrument before using it. The following section deals with the observations and procedures used in this investigation.

Before attempting to use the instrument, one must be able to:

1. Choose the right column for the purpose of gas components separations.
2. Identify the various separated peaks (each peak represents a different gas component).
3. Determine column temperature.
4. Estimate detector temperature.
5. Calculate the flow rate of the carrier gas.
6. Magnitude of the bridge current.
7. Estimate the size of gas sample to be analyzed.
8. Calibrate the gas chromatograph.

The column is the heart of the chromatograph. The
actual separation of sample components is achieved in the column. Consequently, the success or failure of a particular separation will depend to a large extent upon the choice of column (consult Dewar, et al. ${ }^{45}$ and Bendnas, et al. ${ }^{46}$ for column selection).

One of the problems currently facing chromatographic workers is the positive identification of the numerous peaks emerging from gas chromatograph columns. Under constant pressure conditions, the flow rate is linear with time and one could also speak of retention time.* This retention time is characteristic of the sample and the liquid phase, and can therefore be used to identify the sample. Identification is then based on a comparison of the rentention time of the unknown component with that obtained from a known compound analyzed under identical conditions.

The column temperature should be high enough so that the analysis is accomplished in a reasonable length of time.

[^0]According to a simple approximation made by Giddings, ${ }^{47}$ the retention time doubles for every 30° decrease in column temperature. For more details consult Giddings. 47

The influence of temperature on the detector depends considerably upon the type of detector employed. As a general rule, however, it can be said that the detector and connections from the column exit to detector must be hot enough so that condensation of the sample does not occur. Peak broadening and loss of component peaks are characteristic of condensation.

Column efficiency depends upon choosing the proper flow rate of carrier gas. The optimum flow rate can be easily determined experimentally by making a simple Van Deemter ${ }^{47}$ plot of HETP vs, gas flow rate (see Figure 6-2). The mosi efficient flow-rate is at the minimum of HETP. The height equivalent to a theoretical plate (HETP), is defined by the following equation:

HETP $=\mathrm{L} / \mathrm{N}$
where L is the length of the chromatographic column, cm. and $N=$ number of theoretical plates $=16\left(\frac{x}{y}\right)^{2}$, where " y " is the length of the baseline cut by the two tangents (Figure 6-3), and " x " is the distance from injection to peak maximum.

Figure 6-4 shows the maximum bridge current for specific cell temperature (detector temperature) and carrier gases helium, nitrogen and argon. These should not be exceeded. The sample should be introduced instantaneously as a "plug" onto the column. Gases are usually introduced by gas-

Flow Rate

Figure 6-2. FLOW RATE vs. HETP (After McNair, et al. ${ }^{42}$)

Figure 6-3. CALCULATION OF THE THEORETICAL PLATES

Figure 6-4. CELL TEMPERATURE vs. BRIDGE CURRENT (After Miller ${ }^{43}$)
tight syringes. Table 6-1 shows sample sizes for different columns.

TABLE 6-1

SAMPLE VOLUMES FOR DIFFERENT COLUMNS

From the work of McNair and Bonelli ${ }^{42}$

The area produced for each peak is proportional to that peak's concentration. This can be used to determine the exact concentration of each component. Once the numbers representing the area are obtained, they must be related to the composition of the sample. This is discussed separately in the next section.

Calibration of Gas Chromatograph

The following standard procedure is proposed by the Natural Gas Processors Association (NGPA). 48

1. Response factors for each component are calculated from the reference standard chromatogram using the peak height or peak area. The response factor (RF) is determined by the
relationship:

$$
\mathrm{RF}=\mathrm{M} / \mathrm{H}
$$

where:
$M=$ mole per cent of each component in the reference standard.

H = corresponding peak height or area.
2. Peak heights or areas are measured on the chromatogram of the unknown sample.
3. The mole per cent of unknown is calculated by the relationship:
mole \% of unknown $=\mathrm{RF} \times \mathrm{A}$
where:
RF = response factor for each component
$\mathrm{A}=$ corresponding peak height or area of unknown

Gas Analysis
In this investigation, a Gow-Mac temperature programmable gas chromatcgraph, model 550p (thermal conductivity), was used to analyze the following gases: Nitrogen, Methane, Ethane, Propane, Butane, Pentane, and Hexane-plus. The output from the thermal conductivity was monitored on Gow-Mac integrating strip chart recorder, model 70-750. Figure 6-5 shows a pictorial representation of the instruments.

The column used on the gas chromatograph was: stainlesssteel $30^{\prime} \mathrm{x} \mathrm{I/8"} 30 \% \mathrm{DC}-200 / 500$ on Chromosorb P.A.F. 60-80. The gas chromatograph was fitted with "Backflush to Detector Valve." The instrument was operated under the following conditions:

Figure 6-5. SIDE VIEW OF THE GAS CHROMATOGRAPH AND STRIP CHART RECORDER

Helium flow rate	$50 \mathrm{cc} / \mathrm{min}$
Column temperature	$70^{\circ} \mathrm{C}$
Detector temperature	$250^{\circ} \mathrm{C}$
Bridge current	170 MA
Sample size	4 CC
Recorder	1 mv

The calibration gas used in this study was a Scott analyzed gas with the following volume percentage composition:

$\mathrm{N}_{2}=10 \%$	
CH_{4}	69%
$\mathrm{C}_{2} \mathrm{H}_{6}$	9%
$\mathrm{C}_{3} \mathrm{H}_{8}$	6%
$\mathrm{C}_{4} \mathrm{H}_{10}$	3%
$\mathrm{C}_{5} \mathrm{H}_{12}$	2%
$\mathrm{C}_{6} \mathrm{H}_{14}$	1%

CHAPTER VII

EXPERIMENTAL APPARATUS AND MATERIALS

Apparatus

The laboratory equipment was designed to study:

1. vaporization of oil by high pressure nitrogen
injeation,
2. mechanisms of nitrogen multiple contact miscibility displacement, and
3. compositional changes which take place between nitrogen and cil-in-place during the test.

A schematic diagram and pictorial representation of the equipment used to perform the experimental study are shown in Figures 7-1 and 7-2 respectively. For purposes of description, the experimental apparatus may be divided into three main parts: an injection system, a simulated one-dimensionai oil reservoir and a production and analytical system.

Injection System
The injection system consistad of:

1. Constant rate positive displacement mercury pump. The mercury pump (Figure 7-3) was connected through $1 / 8$ inch stainless-steel tubing to the bottom of a recombine cell

Figure 7-2. EXPERIMENTAL EQUIPMENT USED IN THE INVESTIGATION

Figure 7-3. FRONT VIEW OF THE MERCURY PUMP
(Figure 7-4). The top of the cell was in turn connected to a sand-packed stainless-steel tube representing an oil-reservoir model.
2. Natural gas pump. For the recombining purpose, a high pressure natural gas pump (Figure 7-5) was utilized. The inlet was connected to a natural gas cylinder, and the outlet to the bottom of the recombine cell through $1 / 8$ inch stainlesssteel tubing. Various valves were placed between the pump and the recombine cell to facilitate the recombing process.
3. High pressure nitrogen cylinder. A special high pressure nitrogen cylinder (Figure 7-6) was used for the displacement process. The cylinder contained 494 ft. ${ }^{3}$ nitrogen of purity 99.999 per cent under 6000 psi. A high pressure stainless-steel regulator with high load needle bearing was used to achieve excellent pressure selection sensitivity. The regulator was connected to the reservoir inlet (Figure 7-7) through 1/4 inch stainless-steel tubing.

Laboratory Oil Reservoir Model
A one-dimensional oil reservoir was represented by a loop of stainless-steel tubes packed with consolidated sand.

The tube was approximately 125 feet long and had an inside diameter of .435 inch. The sand contained approximately 900 ml of voids, had a porosity of 29 per cent, and an average permeability to nitrogen of 0.93 darcies.

Five sampling valves (Figure 7-8) were located at equal intervals along the length of the reservoir model. The design

Figure 7-4. SIDE VIEW OF THE RECOMBINE CELL

Figure 7-5. SIDE VIEW OF THE NATURAI GAS PUMP

Figure 7-6. FRONT VIEW OF THE HIGH PRESSURE NITROGEN CYLINDER

Figure 7-7. SIDE VIEW OF THE INLE'T OF THE CORE
of these sampling points enable one to take samples of vapor under pressure during the displacement process.

Various valves and gages were placed in the reservoir model system at appropriate points to allow pressure measuring, flow control, sampling, etc.

Production and Analytical System
Figure 7-9 shows the outlet flow arrangement of the reservoir model. Back pressure on the system was held constant by the use of a spring controlled back pressure regulator (Figure 7-10).

The produced licuid was collected in a graduated cylincer. Produced gas was metered by a wet test gas meter after passing through a silica gel.

Analysis of the collected vapor samples was facilitated by the use of temperature programmable gas chromatograph (Figure 7-11). A 5 sc sample was injected (using helium as a carrier gas) into a 30^{\prime} x l/8" column packed with 30\% DC 200/500 on Chromosorb P.A.W. 60-80.

Materials

The porous medium was clean Oklahoma sand numbe. 1 with 100 mesh size. The oil utilized on each of the experiment runs was a light crude oil with a stock tank gravity of $40^{\circ} \mathrm{API}$. The natural gas and crude oil used in this investigation was produced from South Lone Elm Cleveland Sand Unit, Nobel County, Oklahoma, operated by Tenneco Oil Company

Figure 7-8. BACK VIEW OF THE SAMPLING VALVE

Figure 7-9. SIDE VIEW OF THE OUPLET ENI) OF THE CORE

Figure 7-10. FRONT VIEW OF THE BACK PRESSURE REGULATOR

Figure 7-11. FRONT VIEW OF THE GAS CHROMATOGRAPH
(Figure 7-12). Other periinent properties of this oil and analysis of natural gas used are shown in Table 7-1 and Table 7-2, respectively.

TABLE 7-1

PRORERTIES OF OIL

1. Stock Tank Oil Gravity
$43^{\circ} \mathrm{API}$
2. Viscosity of Oil at $70^{\circ} \mathrm{F}$ and 14.7 psi
3. Saturation Pressure

1700 psi
4. Solution Gas-Oil Ratio

575 scf/STB
5. Formation Volume Factor at 2000 psi and $70^{\circ} \mathrm{F}$
6. Molecular Weight of Stock Tank Oil

FIGURE 7-12

TABLE 7-2

ANALYSIS OF NATURAL GAS ${ }^{1}$

Component	Mole \%
Methane	.656
Ethane	.155
Propane	.133
Butane	.024
Pentane	.035

Mol. wt. of gas $=24.97$
Gas gravity $=.862$
$1_{\text {South }}$ Ione Eim Field

CHAPTER VIII

EXPERIMENTAL PROCEDURE

For purposes of illustration, the experimental procedure may be divided into the three steps:

- Recombination process
- Saturating and displacing process, and
- Recording and sampling analysis process

Recombination Process
The preparation of reservoir oil samples used in this experimental investigation began with the recombination of the stock tank oil with a natural gas sample. A high pressure cell (Figure $8-1$) of $400 \mathrm{~cm}^{3}$ was used to facilitate the recombination. In reference to Figure $\hat{0}-1$, the top of the recombine cell was connected to the water pump, oil graduated cylincer, and the inlet of the reservoir model through $1 / 8$ inch stainless-steel tubing. The tubing was fitted with three ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) $1 / 8$ inch Hoke needle valves.

The bottom of the recombine cell was connected to a mercury, vacuum, and gas pumps through $1 / 8 "$ stainiess-steel tubing fitted with three $1 / 8$ " valves (D, E, F).

Figure 8-1. SCHEMATIC DIAGRAM OF THE RECOMBINE

As standard procedure, the recombination was accomplished as follows:

1. Before each recombination run, a vacuum was pulled in the cell for 20 minutes, after which the bottom valve, F, was closed and the vacuum pump turned off.
2. The top valve, B, was then opened until the cell was charged with 120 cc stock tank oil.
3. The natural gas was then injected into the cell by turning on the gas pump and opening the bottom valve, E.
4. Valve E was then closed and the gas pump turned off when the pressure inside the cell reached 600 psi.
5. Oil and gas mixture was then pressurized by mercury to 2000 psi from the mercury pump (notice that the saturation pressure was 1700 psi). By following the previous standard procedure, the estimated initial solution gas-oil ratio was 575 scf/STB.

Saturating and Displacing Process

Saturation Procedure
In preparation for each run, the reservoir was thoroughly cleaned and then charged with water followed by the recombined sample at the desired displacement pressure. The following standard steps (proposed by Rushing ${ }^{7-9}$ and modified by the author) were used:

1. The oil reservoir model was cleaned by injection of naphtha into the core.
2. The naphtha was then displaced from the core by nitrogen injection.
3. The core placed on a vaccum for 24 hours. The core was considered clean after these previous steps.
4. Prior to injection of the recombined sample into the reservoir, the recombine cell was charged with water.
5. Water was then displaced into the core by means of mercury pump at the desired run pressure.
6. Pore volume was calculated.
7. With the core now saturated with water, the recombine sample was compressed to run pressure by injected mercury into the base of the recombine cell.
8. The recombine sample was then charged slowly into the reservoir through a vaive, H, located at the core inlet (Figure 8-2).
9. Water was bled from the outlet end of the tube as the recombine oil was admitted into the model.
10. The amount of water collected after saturating the core with oil would indicate the valve of the residual water saturation as well as the oil saturation of the core

Displacement Process
Nitrogen, contained in a special high pressure cylinder under 6000 psi, was used for the displacement process. The desired injection pressure for each run was regulated and held constant by a special high pressure gas regulator. The displacement procedure was as follows:

Figure 8-2. $\begin{aligned} & \text { SCHEMATIC DIAGRAM OF THE INLET OF } \\ & \text { THE CORE }\end{aligned}$

1. By setting the nitrogen cylinder regulator to the desired displacing pressure, the nitrogen was injected into the core through valve, G, placed at the inlet of the core (Figure 8-2).
2. A back pressure of 2000 psi was held constant by the backpressure regulator placed at the outlet end of the core.
3. The produced liquid was collected in a graduated cylinder.
4. Nitrogen injection into the reservoir was
continued until breakthrough.

Recording and Sampling Analysis Process
The following parameters were recorded during each run:

- Initial oil saturation
- Residual water saturation
- Injection pressure
- Temperature
- Barometric pressure
- Pressure drop
- Time and amount of liquid collected
- Time of breakthrough
- Frontal advance

During the displacement process, vapor samples were taken from five sampling valves located at equal intervals of 24 feet along the length of the reservoir.

The samples were analyzed by means of temperature programmable gas chromatograph. Chapter VI contains a discussion of chromatographic analysis techniques used in this study.

CHAPTER IX

PRESENTATION AND DISCUSSION OF RESULTS

A total of seven runs were conducted primarily to establish and study the compositional changes which take place during the displacing of crude oil by continuous high pressure nitrogen injection.

The results of the flow studies are summarized in Table 9-1. This table identifies the injection pressure, types of displacing Eluid, fluid saturations at the start of the runs, and a summary of the production data are also indicated.

First Run

This run was performed at an injection pressure of 4000 psi. During the displacement process, samples of the displacing phase were collected periodically from five sampling points (designated by A, B, C, D and E) and located at equal intervals (24 feet) along the length of the linear core. These samples were analyzed by means of a gas chromatograph. Summary of the analysis is given in Table 9-2.

1) Experimental Composition Profiles

Figures 9-1 through 9-4 show the compositional profiles

TABLE 9-1
results of Oil displacement by nitrogen and water injection

Run No.	Type of Displ. Fluid	Injection Pressure, psi	Solution G.O.R. SCFISTB	Initial Oil Saturation	Initial Water Saturation	Initial Stock Tank in Place CC	0il Recovery at B.T., \% of Stock Tank I.O.I.P.
1	$\mathrm{~N}_{2}$	4000	575	.756	.244	698	80
2	$\mathrm{~N}_{2}$	5000	575	.75	.25	692	86
3	$\mathrm{~N}_{2}$	3000	575	.732	.268	676	54
4	$\mathrm{~N}_{2}$	3700	575	.743	.257	686	72
5	$\mathrm{H}_{2} 0$	variable	575	.76	.24	702	65
6	$\mathrm{~N}_{2}$	4000	575	.266	.734	246	13
7	$\mathrm{~N}_{2}$	5000	0	.75	.25	900	59

TABLE 9-2
holar composition of the coliecteo samples

$\underset{\substack{\text { P.V. } \\ \text { inj. }}}{ }$	Sampling Point A		Sampling point B				Sanimling Point C					Sampling Point D			
	. 14	. 29	. 33	. 42	. 46	. 57	. 53	. 57	. 62	. 64	. 70	. 72 to . 8	. 815	. 83	. 9
N_{2}	50.5	85	35.8	47	56	96.2	20.5	22.8	26.04	38.8	84.8	7.2	21	34.05	85.35
c_{1}	35.2	10.8	40.0	30.6	23	3.0	45.5	44	41.6	35	5	55	47	40	9.5
c_{2}	5.4	1.6	10.2	9.8	9.55	. 5	11.9	11.8	11.68	9.9	3.75	13	11.45	9.7	2.95
c_{3}	3.9	1.3	6.95	6.9	6.8	. 1	9.45	9.38	9.3	7.7	1.7	10.9	9.25	7.7	1.6
C_{4}	. 9	. 1	1.15	6.9	. 25	0	2.0	1.7	1.92	. 7	0	2.1	1.45	. 8	0
C_{6}	1.5	. 3	1.9	1.1	. 5	0	2.6	2.35	2.1	1.4	0	2.9	2.3	1.65	0
c_{61}	2.6	. 9	4.0	3.9	3.9	.2	8.05	7.97	7.86	6.5	. 75	8.9	7.55	6.1	0

Figure 9-1. Composition of vapor phase samples taken from sampling point "A"

RUN \#1

Figure 9-2. Composition of vapor phase samples taken from sampling point "B"

RUN \#1

Figure 9-3. Composition of vapor phase samples taken from sampling point "C" vs. pore volumes N_{2} injected

RUN \#1

Figure 9-4. Composition of vapor phase samples taken from sampling point "D"
for each component of the displacing phase as a function of the distance from the injection point and pore volumes nitrogen injected.

Analysis of the figures show that:
a) The primary displacement mechanism or mass transfer was a stripping (vaporization) process. A clear indication of vaporization can be obtained by observing the continuous enrichment of nitrogen with the intermediate components $\left(C_{1}-C_{5}\right)$ and C_{6+}.
b) The maximum composition of these components occurred at the flood front, which indicated that if miscibility was to develop it would do so at this point.
c) By the time the injected nitrogen reached sampling point "D" at a distance of 96 feet from the injection point, it developed a "SLUG" of enriched gas (as it is shown in Figure 9-4). The total volume of this siug was approximately 8 percent of the pore volume with the composition shown in Table 9-3.
d) All curves of the compositional profiles are characterized by two distinct phases:
i) The initial phase is indicated by the section of the plots with a lower slope. This phase represented a "slug build-up process." This process was continued until there was no change in the composition of the slug as it reached sampling point D at a distance of

96 feet from the injection point.
ii) The second phase is the steep section of the

TABLE 9-3

MOLAR COMPOSITION OF THE GENERATED SLUG

COMPONENT	COMPOSITION MOLE $\frac{9}{3}$
$\mathrm{~N}_{2}$	8.6
C_{1}	55
C_{2}	12.8
C_{3}	10.7
C_{4}	2.0
C_{5}	2.8
C_{6+}	8.9

curves. This section represented a "transition zone" which consisted of gases ranging from very rich gas to pure nitrogen. Figure 9-5 shows the compositional distribution of the displacing phase throughout the core. It is recognizable by examining this figure that the displacing phase (nitrogen) was continually enriched by stripping intermediate components from the liquid phase. This enrichment of the vapor continued until miscibility (critical composition) was reached. This critical composition was formed in the region of 72% to $80 \% \mathrm{~N}_{2}$ (as it is indicated by the flat section of the curves).

Figure 9-6 shows the total enrichment process of the vapor phase with $\left(C_{2}-C_{6+}\right)$ components as it progressed in the reservoir. Notice that the rate of enrichment decreased as the composition of the displacing phase moved closer to the critical composition.

2) Composite Ternary Diagram

One purpose of this investigation was to see if the ternary phase diagram could be used to predict with reasonable accuracy the conditions necessary for miscible displacements with actual reservoir systems.

In this study the complex, multicomponent hydrocarbon systems were arbitrarily divided into three groups: N_{2}, C_{1} through C_{5}, and C_{6+}. This division was practical from an analytical point of view and also showed the importance of the intermediate components C_{1} through C_{5}, and C_{6+} in the high pressure nitrogen injection process.

RUN \#1

Figure 9-5. Compositional distribution of vapor phase throughout the core vs. pore volumes N_{2} injected

Figure 9-6. Overall composition of $\left(C_{2}-C_{6+}\right)$
vs. pore volumes N_{2} injected vs. pore volumes N_{2} injected

Through the repeated contacts of the displacing phase and native reservoir fluid, the equilibrium properties of these two phases were continually changed. Since the change in the composition of the displacing phase was regularly monitored, it was possible to determine the composition of the liquid phase by using the k-values.

To construct the ternary diagrams (figures 9-7 through 9-10), three types of data were needed.
(i) Compositions of the displacing phase as a function of: location from the injection point, pressure, and cumulative injected volume of N_{2}.
(ii) Equilibrium vaporization constants (K-values).
(iii) Compositions of the equilibrium liquid (in
contact with the displacing phase).
The first type of data was obtained by collecting and analyzing vapor samples from the five different sampling locations.

The second type of data (K-values) was determined by the method described in Chapter v.

The third type of data (composition of liquid phase) needed to construct the ternary diagrams was estimated by utilizing the following equilibrium relation:

$$
\begin{equation*}
x_{i}=\frac{y_{i}}{K_{i}} \tag{9-1}
\end{equation*}
$$

where, $y_{i}=$ mole fraction of i th component in the gas phase. $K_{i}=$ equilibrium ratio for ith component.

RUN \#1

Figure 9-7. Triangular diagram showing changes in composition of vapor and liquid phase

RUN \#1

Figure 9-8. Triangular diagram showing changes in composition of vapor and liquid phase

RUN
\# 1

Figure 9-9. Triangular diagram showing changes in composition

Figure 9-10. 'rriangular diagram showing changes in composition of vapor and liquid phase
$x_{i}=$ mole fraction of ith component in the liquid phase. After repeating several vapor phase sample analyses, a series of equilibrium vapor and liquid compositions were obtained (summary of the results are given in tables A-59 through A-64, Appendix A) and each resultant equilibrium composition was plotted on the ternary diagram as a point. By joining the points representing the equilibrium liquiās, the calculated bubble point line was obtained. Then by connecting the points representing the equilibrium gas, the dew point line was constructed.

Point G_{1}, in Fisure 9-7, shows the composition of the vapor phase at the leading edge as it approached sampling point A. As the leading edge, G_{1}, progressed toward sampling point B, an exchange of the intermediate components between the leading edge and the virgin oil occurred, causing a change in the vapor phase composition (see point G_{2} in Figure 9-8).

The previous process was continued until the compositions of the phases in equilibrium at the front approached each other (Figure 9-10) at the critical point* C. At this point a miscible phase displacement was achieved.

3) Vapor and Liquid Phase Properties

with liquid and vapor composition data available, methods discussed in Chapter V were used to calculate the density and viscosity profiles of the displacing and displaced phase.

[^1]With the density of the liquid and vapor phase being dependent upon their compositions, it was expected that at every step when a change in composition occurred, the density of the two phases would also change.

Results of density calculations are given in tables A-1 through A-27, Appendix A, and shown in figures 9-11 through 9-15. By examining the figures closely, the author proposes that two processes would occur during the displacement mechanism:
(i) In the generated slug, which has a higher concentration of the intermediate components, it is possible that a phase transfer of the light end components from the slug to the liquid (causing a decrease in the liquid density) can occur. On the other hand, the slug becomes richer in condensable ends which causes an increase in the density of the displacing phase.
(ii) Behind the generated slug, a stripping process could occur in which intermedia亡e components of the liquid phase are transferred to the gas phase. This process was characterized by a sharp break in the liquid and vapor density curves.

The previous process was continued as the slug advanced in the reservoir model until the liquid and vapor density converged at the critical point C (figures 9-14 and 9-15). Figures 9-16 and 9-17 are plots of the calculated liquid and vapor densities as a function of the distance from the injection

Figure 9-11. Calculated vapor and liquid phase density of samples taken from sampling point "A" vs. pore volumes N_{2} injected

RUN \#1

Figure 9-12. Calculated vapor and liquid phase density of samples taken from sampling point "B" vs. pore volumes N_{2}

Figure 9-13. Calculated vapor anco liquid density of samples taken from sampling point "C" vs. pore volumes N_{2} injected

RUN \#1

Pigure 9-14. Calculated vapor and liquid phase density of samples taken from sampling point " D " vs. pore volumes N_{2} injected

RUN \#l

RUN \#1

Figure 9-16. Liquid and vapor density profile throughout the core after injection of 0.335 P.V. N 2

RUN \# 1

Figure 9-17. Liquid and vapor density profile throughout the core after injection of 0.53 P.V. N_{2}
point. It shows that miscibility was achieved at approximately 82 feet from the injection point.

The density calculations were followed by a calculation of the viscosity for each composition of the displacing and displaced phase. Methods discussed in Chapter V were used to estimate the viscosities on the basis of knowledge of the composition of the oil and gas phase. Results of the viscosity calculations are given in Table 9-4 and shown in figures 9-18 to 9-22, while a summary of all their results is given in Table A-28 through Table A-54, Appendix A.

Analysis of figures 9-18 to 9-22 show that:
(i) As the critical point was approached along the dew-point curve, the viscosity of the displacing phase was progressively increasing.
(ii) As the critical point was approached along the bubble-point curve, the viscosity of the liquid was continually decreasing, approaching the same value as the displacing phase at the critical point.

These observations again support the author's claim that there exists two combined mechanisms by which the miscibility could be achieved:
(a) In the generated slug, a mutual phase transfer process will occur between the displacing and displaced phase.
(b) Behind the generated slug, a stripping process takes place where the intermediate components are transferred from the liquid phase to the vapor phase.

TABLE 9-4
calculated liquid and gas viscosity

SAMPling point	A		B				C					D		
N. Volume Injected,学p. v.	. 14	. 29	. 33	. 42	.96	. 57	. 53	. 57	. 62	. 64	. 7	. 815	. 83	. 9
(ias Viscosity, ${ }^{\text {c }}$ \%	. 03	. 016	. 0.34	. 033	. 0316	. 026	. 049	. 039	. 385	. 38	. 024	. 042	. 04	. 0231
l.iguid Viscosity, cp	3.12	2.79	2.36	2.8	2.82	3.09	1.44	1.7	1.86	2.64	3.1	1.06	1.98	3.12

Figure 9-18. Calculated liquid and vapor phase viscosity of samples taken from sampling point "A" vs. pore volumes N_{2} injected

RUN \#1

Figure 9-19. Calculated liquid and vapor phase viscosity of samples taken from sampling point "B" vs. pore volumes N_{2} injected

RUN \#1

Figure 9-20. Calculated liquid and vapor phase viscosity of samples taken from sampling point "C" vs. pore volumes N_{2} injected

RUN \#1

Figure 9-21. Calculated liquid and vapor phase viscosity of samples taken from injection point "D" vs. pore volumes N_{2} injected

RUN \#1

Finally, an attempt was made to calculate and monitor the magnitude of the surface tension between the fluids involved in the displacing process. The importance and effect of the surface tension on the ultimate oil recovery by gas injection was investigated by many research workers. 53,60 They agreed that the unrecoverable oil during any immiscible flooding is retained (or trapped) in the porous media by the capillary forces (which is a function of surface tension).

In this study, the results of the surface tension calculations by the available correlations (discussed in Chapter 5) are shown in Figure 9-23, while a summary of these calculations is given in tables A-55 through A-58, Appendix A.

Second Rin

The decision was made to perform another run under higher pressure (5000 psi) to further the study of miscible displacement by nitrogen injection and to investigate the effect of pressure on the:
(a) size of the generated slug,
(b) critical composition of the formed rich gas slug,
(c) compositional profiles of the displacing piase, and
(d) distance from the injection point at which the miscibility will be achieved.

Following the same analysis procedure used in the first run, samples of the displacing phase were taken regularly from the sampling points (A, B, C, D, and E) and recorded as a function of pressure and cumulative volume injected. analysis

Figure 9-23. Calculated surface tension of samples taken from sampling point "C" vs. pore volumes N_{2} injected
of the vapor samples were used to construct the ternary diagrams and to study the changes in the compositions and properties of the displacing and displaced phase.

The experimentally determined compositional profiles are shown in figures 9-24 through 9-28, while a summary of the vapor phase analysis is given in Table 9-5. Notice that the compositional profiles are similar to those of run number one.

At this point of the study significant observations should be mentioned:
(a) The author proposes that an increase in the pressure, above that of the minimum miscibility pressure, will not produce any substantial increases in the cumulative vaporization. Table 9-6, which sumarizes the results of the first and second runs, shows no tangible changes in the critical compositions of the generated slug as the pressure was increased from 4000 to 5000 psi.
(b) For the pressure ranges studied, an increase in pressure resulted in substantial decreases in the generated rich gas slug size. This occurrence can be justified by the fact that the increase in pressure accounts for increased retrograde evaporation* which in turn leads to a rapid buildup of the slug's critical composition.
(c) Concentration of the intermediate components behind the slug decreases more rapidly as the injection pressure

[^2]

Figure 9-25. Composition of vapor phase samples taken from sampling point "B" vs. pore volumes N_{2} injected

Figure 9-26. Composition of vapor phase samples taken from sampling point "C" vs. pore volumes N_{2} injected

RUN \#2

Figure 9-28. Overall composition of $C_{2}-C_{6+}$ in vapor phase throughout the

TABLE 9-5

hular composiliun of the eollectled samples

TABLE 9-6

SUMMARY OF THE RESULTS OF THE FIRST AND SECOND RUN

PARAMETER	FIRST RUN	SECOND RUN
Injection pressure	4000	5000
Type of displacement	Miscible	Miscible
Oil recovery at breakthrough	80\%	86\%
Size of the generated slug, o p.v.	8	5
Critical compositons:		
N_{2}	8.6\%	10.9\%
C_{1}	55.0\%	50.0\%
C_{2}	12.9%	13.4\%
C_{3}	10.7\%	10.7\%
C_{4}	2.0\%	2.2\%
C_{5}	2.8\%	2. 8 \%
C_{6+}	8.9\%	10.0\%
Distance from the injection point at which miscibility was achieved, ft.	82	between 48 and 72
Solution gas-oil ratio	$575 \mathrm{Scf} / \mathrm{STB}$	$575 \mathrm{Scf} / \mathrm{STB}$
Oil gravity	$43^{\circ} \mathrm{API}$	$43^{\circ} \mathrm{API}$

increases. Ternary diagrams, as presented in figures 9-29 through 9-31, show the step-by-step procedure by which the miscible front was formed. This process can be summarized as follows: As the injected pure nitrogen vaporizes some of the intermediate components from the oil, this partially enriched nitrogen moves forward and contacts new oil and vaporizes the more intermediate components, thereby enriching the gas further. After multiple contacts, the leading edge of the gas front becomes so enriched that it is miscible with the reservoir oil (point C in Figure 9-31). When this occurs, the interface between the oil and gas disappears and fluids blend into each other.

In moving outward from the injection point, the nitrogen may travel up to 90 feet before the miscible front forms. The distance varies depending upon pressure, oil composition, and oil saturation.

Figures 9-32 through 9-38 show the calculated density and viscosity of the displacing and displaced phase. A complete sumary of the calculations are given in tables $\mathrm{B}-1$ through $\mathrm{B}-34$, Appenđix B.

There appears to be three important factors which govern and control the miscible displacement mechanism:
(i) The mutual solubility effects at the generated slug portion, which in their simplest forms can be looked upon as merely an evaporation of the oil into the gas and solubility of some light end components $\left(N_{2}, C_{1}\right)$ into the contacted oil.

RUN \#2

INJECTION PRESSURE 5000 PSI

SAMPLING POINT "A"

Figure 9-29. Iriangular diagram showing changes in composition of vapor and liquid phase

INJECIION PRESSURE 5000 PSI

SAMPJING POINT "B"

Figure 9-30. Triangular diagram showing changes in composition of vapor and liquid phase

RUN \#2

INJECTION PRESSURE 5000 PSI

Figure 9-31. Iriangular diagram showing changes in composition of vapor and liquid phase

Figure 9-32. Calculated vapor and liquid density of samples taken from sampling point "A" vs. pore volumes N_{2} injected

RUN \#2

Figure 9-33. Calculated vapor and liquid density taken from sampling point "B" vs. pore volumes N_{2} injected

Figure 9-35. Calculated vapor phase density distribution throughout the core vs. pore volumes N_{2} injected

Figure 9-36. Calculated liauid and vapor viscosity of samples taken from sampling point "A" vs. pore volumes N_{2} injected

RUN \#2

Figure 9-37. Calculated liquid and vapor viscosity of samples taken from sampling point "B" vs. pore volumes N_{2} injected

RUN \#2

Figure 9-38. Calculated liquid and vapor viscosity of samples taken from sampling point "C" vs. pore volumes N_{2} injected
(ii) A stripping process behind the formed rich gas slug
(iii) The viscosity and density effect, which would make the two phases in proportion more favorable to liquid production because of the decrease of liquid and the increase of gas viscosities.

Third Run

In order to further the understanding of the dispiacement mechanism by nitrogen, the decision was made to perform a run under low pressure (3000 psi). The run represented a conventional low pressure gas displacement operation.

Samples of the displacing phase were collectea and analyzed as discussed before. The analysis showed traces of methane, however the $\left(C_{2}-C_{6+}\right)$ components were absent. This observation led to the concept of "Minimum Evaporation Pressure" which is defined as the minimum pressure at which evaporation of intermediate components occurs.

The run was terminated at the nitrogen breakthrough which occurred at 54 percent oil recovery.

Fourth Run

This test was performed at an injection pressure of 3700 psi. A summary of the analysis results are presented in figures 9-39 to 9-43.

Following the usual procedure of analysis, the experimentally determined compositional profiles were used to

Figure 9-39. Composition of vapor samples taken from sampling point "A" vs. pore volumes N_{2} injected

Figure 9-40. Composition of vapor phase samples taken from sampling point "B" vs pore volumes N_{2} injected

RUN \#4

Figure 9-41. Composition of vapor phase samples taken from sampling point "C" vs. pore volumes N_{2} injected

RUN \#4

Figure 9-42. Composition of vapor phase samples taken from sampling point "D" vs. pore volumes N_{2} injected

construct the ternary diagrams and calculate the changes in both phase properties during the displacement process. Some resuits of the calculations are shown in figures 9-44 through 9-58, while a complete summary of the calculations is given in tables C-l through C-48, Appendix C.

The ternary diagram in Figure 9-47 shows that the composition of the displacing phase did not approach the critical composition. This means that while the vapor compositions (dew point curve) were being enriched, the mixture lying on an equilibrium tie line was reached before miscibility (critical composition) is reached. This is in agreement with the prediction by Hutchinson and Braun ${ }^{6}$ for an immiscible vapcrization process.

The system of curves given in Figure 9-43 illustrates the stripping process of the intermediate components from the oil in place. Notice that the formed gas slug was developed at a later stage of the displacement process. This stage was recognizable by the distinct sharp break in the compositional curves.

The oil recovery obtained in this run (72 percent at B.T.) is substantially higher than that of the third run (54 percent). This improvement is the result of:
(i) A decrease in the viscosity ratio:

$$
\frac{\text { viscosity of oil }}{\text { viscosity of the displacing phase }}
$$

This ratio decreases largely because the displacing gas has

RUN \#4

INJECTION PRESSURE 3700 PSI

SAMPI,ING POINT "A"

Figure 9-44. Triangular diagram showing changes in composition of vapor and liquid phase

RUN \#4

INJECTION PRESSURE 3700 PSI SAMPLING POINT "B"

Figure 9-47. Triangular diagram showing changes in composition of vapor and liquid phase
become more viscous and, consequently, is a better displacing agent. See figures 9-48 through 9-51.
(ii) Swelling of the oil in place resulting from solution of enriched injected gas.
(iii) Improvement of the surface tension between the displacing and displaced phase (figures 9-57 and 9-58) as the injected nitrogen strips the oil from its intermediates.

Fifth and Sixth Run

The determination of the amount and distribution of the oil remaining in a reservoir is a critical prerequisite in the selection, design and evaluation of the economics of any tertiary oil method.

In the small pore spaces of the reservoir rock, oilwater interfacial tension forces tend to retain the oil, leading to the entrapment of oil by water during the immiscible wateroil displacement. Much of the oil remains distributed throughout the porous medium as isolated oil droplets. The ideal tertiary oil recovery process must reconnect or mobilize these residual oil droplets and prevent the re-entrapment of the oil before it can be flushed from the porous medium.

So, the fifth run was designed and conducted to simulate the condition for tertiary recovery process by nitrogen displacement (run number 6). The following combinations of flooding systems were used:

Run number 5 - Conventional waterflood, followed by
Run number 6 - Nitroger displacement process at an injection pressure of 4000 psi.

Figure 9-48. Calculated liquid and vapor phase viscosity of samples taken from sampling point "A" vs. pore volumes N_{2} injected

RUN \#4

Figure 9-49. Calculated liquid and vapor phase viscosity of samples taken from sampling point "B" vs. pore volumes N_{2} injected

RUN \#4

Figure 9-50. Calculated liquid and vapor phase viscosity of samples taken from sampling point "C"
vs. pore volumes N_{2} injected

Figure 9-51. Calculated liquid and vapor viscosity of samples taken from sampling point "D" vs. pore volumes N_{2} injected

RUN \# 4

Figure 9-52. Calculated vapor and liquid density of samples taken from sampling point " A " vs. pore volumes N_{2} injected

Figure 9-53. Calculated vapor and liquid density of samples taken from sampling point "B" vs. pore volumes N_{2} injected

RUN \#4

Figure 9-54. Calculated vapor and liquid density of samples taken from sampling point "C" vs. pore volumes N_{2} injected

RUN \#4

DISTANCE FROM INJECTION POINT, FT.
Figure 9-56. Liquid and vapor density distribution throughout the core after injection of 0.68 pore volume of N_{2}

RUN \#4

Figure 9-57. Calculated surface tension vs. pore volumes N_{2} injected

Figure 9-58. Calculated surface tension vs. pore volumes N_{2} injected

A summary of the results is given in Table 9-7. Figure 9-59 shows the oil recovery results of run number 6 and 1 as a function of oil saturation. Examining Figure 9-59 leads to the conclusion that to achieve a miscible type displacement by nitrogen, a certain minimum oil saturation must exist before miscibility could occur. The low reported recovery (13 percent) shows that the type of displacement mechanism by nitrogen is a strong function of oil saturation.

Seventh Run

This run was performed on a stock tank oil (dead oil) of $43^{\circ} \mathrm{API}$. The crude oil was brought into contact with natural gas to produce recombined samples whose solution gas-oil ratios were 0 and 575 Scf/STB. Figure $9-60$ shows oil recovery as a function of gas-oil ratios. Displacement pressure was 5000 psi and system temperature was $70^{\circ} \mathrm{F}$. Eighty-six percent recovery of oil in place was obtained for the higher gas-oil ratio run, and 59 percent was observed for the dead oil run.

It appears by examining Figure $9-60$ that the resulting type of displacement mechanism is strongly related to the amount of gas in solution (G.O.R.).

Recoveries

Table 9-8 summarizes the pertinent data for all the runs described. A convenient review of the runs is presented in Figure 9-61, in which the percent recoveries are presented as a function of the operating pressures.

Figure 9-59. Percent of the oil recovery vs. oil saturation

TABLE 9-7

OIL DISPLACEMENT RECOVERY - RUN NUMBERS 5 AND 6

Run \#	Type of Displacing Phase	Inj. Pressure psi	Initial 0il Saturation Fraction	Initial Water Saturation Fraction	```Initial S.T.O. in Place CC```	$0 i 1$ Recovery at Breakthrough $\%$ of I.O.I.P.	Type of Displacing Mechanism
5	Water	Variable	. 76	. 24	702	65	Immiscible
6	Ni trogen	4000	. 266	. 734	246	13	Immiscible

TABLE 9-8
data mido results of the conoucted runs

Runi No.	Type of Displacing Fluid	```Inj. Pressure psi```	$\begin{aligned} & \text { Solution } \\ & \text { G.0.R. } \\ & \text { Scf/STB } \end{aligned}$	Type of Displacement.	$\begin{gathered} \text { Initial } \\ 0 i l \\ \text { Sạturation } \end{gathered}$	Initial Water Saturation	$\begin{gathered} \text { Initial } \\ \text { s.T.0. in } \\ \text { Place CC } \end{gathered}$	Cum. 0 il Produced at B.T. CC	$0 i 1$ Recovery, \% of 1.0.1.P.
1	N_{2}	4000	575	Miscible	. 756	. 244	698	558	80
2	H_{2}	5000	575	Hiscible	. 75	. 25	692	595	86
3	N_{2}	3000	575	Juniscible	. 732	. 268	676	365	54
1	N_{2}	3700	575	Immiscible	. 74.3	. 257	686	194	72
5	$\mathrm{H}_{2} \mathrm{O}$	variable	575	Imaiscible	. 76	. 24	702	456	65
6	N_{2}	4000	575	lumiscible	. 266	. 739	296	32	13
7	N_{2}	5000	0	Innuiscible	. 75	. 25	900	531	59

Figure 9-60. Percent of the oil recovery vs. solution G.O.R.

Figure 9-61. Effect of pressure on oil recovery
A. miscible displacement should recover 100 percent of the oil in place. The fact that this was not quite reached in the miscible displacement runs (run numbers 1 and 2) is attributed to the fact that the gas must travel some distance through the porous medium before miscibility is achieved. Some of the reservoir liquid at the injection end of the system is unrecoverable. This is the oil that has been denuded of the intermediates by the injected nitrogen in the process of enriching it.

Figure 9-61 shows a sharp increase in recovery as the pressure is increased to 4000 psi. It appears that the minimum mescibility pressure is in the range of 3700 to 4000 psi.

Finally, Eigures $9-62$ through $9-65$ show the cumulative gas-oil ratio during displacement by nitrogen. Cumulative produced gas-oil ratios were seen to remain constant until nitrogen breakthrough. Nitrogen breakthrough was determined experimentally by observing the gas-oil ratio, the produced fluids and by continually monitoring the composition of the produced gases. A complete detailed analysis of the production history of the runs are tabulated in Appendix D.

Figure 9-62. Producing G.O.R. vs. percent of the oil recovery

Figure 9-63. Producing G.O.R. vs. percent of the oil recovery

Figure 9-64. Producing G.O.R. vs. percent of the oil recovery

\% oll Recovery
Figure 9-65. Producing G.O.R. vs. percent of the oil recovery

CHAPTER X

CONCIUSIONS

The following conclusions, while based on the data from this work and apply only to the porous medium, fluids, and displacement conditions used in this work, can be indicative of results and conclusions for a similar system. 1. An analysis of the vapor phase formed in the third run (injection pressure 3000 psi) did not show any traces of the intermediate components $\left(C_{2}-C_{6+}\right)$ which led to the concept of "Minimum Evaporization Pressure."
2. The results show that a rich gas slug, followed by a transition zone, will be developed in the reservoir model (runs number 1, 2, and 4) at pressures greater than the minimum evaporization pressure.
3. An increase in the nitrogen injection pressure, above that of the minimum miscibility pressure, will not produce a substantial increase in the final mole fraction of intermediate components in the generated rich gas slug.
4. For pressure ranges studied, a decrease in the size of the formed slug occurs when the pressure increases.
5. The results indicated that two processes would occur during the nitrogen displacement:
a. In the generated slug, a mutual solubility of the phases
at the higher pressure with the attendant effect of reduction in the difference in viscosity between the displaced and displacing phases.
b. Behind the generated slug (transition zone), a stripping process would occur.
6. Concentration of the intermediate components benind the generated slug decreases more rapidly as the injection pressure increases.
7. This study confirms the importance of the ternary diagram as a reliable guide for predicting the conditions required for miscibility in a flowing system of consiaerable complexity.
8. Surface tension at the interface between the liquid phase and the generated rich gas slug for runs 1 and 2 was far below 1.0 dynes/cm.
9. This investigation shows that the oil saturation and solution gas-oil ratio are important parameters in obtaining miscible behavior.
10. The higher the pressure the shorter the transition zone.
11. The criterion for determining miscibility is established by the shape of the compositional profiles of the displacing phase in the reservoir model. When a plateau section of the compositional profiles develops, it is a clear indication of the presence of miscibility.

RECOMMENDATIONS FOR FURTHER WORK

1. The author would recommend that data from such experiments be employed in calibrating phase behavior models used in detailed nitrogen flooding simulations. The model can be developed as follows:
a. Model Description: Eriefly, the model should include fluid flow by Darcy's Law and mass transfer of components between phases. The mass transfer of components can be simulated through the use of the Redich-Kwong equation of state. On the other hand, the phase properties can be simulated by using the methods described in Chapter V.
b. Input Variables: Input to the model describes the test conditions for each displacement run. These include core properties, injection rate, fluid properties, initial system pressure, and temperature.
c. Adjustable Variables: Only two variables can be easily adjusted if the input data are to describe a specific displacement. These are the number of grid blocks (or size of grid block) used to discretize the simulated 125 foot core and time steps.
d. Criteria for Matching: The criteria for achieving an acceptable match of a laboratory displacement by model simulation is to predict the experimentally determined oil recovery and the compositional profiles for each component as a function of pore volumes injected. Requirements for a good match of compositional profiles are the slope and shape of the predicted curves.
2. It is important to investigate the effects of oil saturation, solution gas-oil ratios, and temperatures on the behavior of the miscible displacement by nitrogen injection.

NOMENCLATURE

$\bar{M}=$ Average molecular weight
$y_{i}=$ Mole fraction of ith component in vapor phase
$M_{i}=$ Molecular weight of ith component
P = Absolute pressure of the system, psi
$T=$ Absolute temperature ${ }^{\circ} R$
$R=$ Gas constant $=10.72 \mathrm{psi} \mathrm{ft}^{3} / \mathrm{lb}$ mole ${ }^{\circ} \mathrm{R}$
$z=$ Gas deviation factor
$P_{r}=$ Pseudo-reduced pressure, dimensionless
$T_{r}=$ Pseudo-reduced temperature, âmensionless
${ }^{D_{C i}}=$ Critical pressure of the ith component, psi
$T_{c_{i}}=$ Critical temperature of the ith component, ${ }^{\circ} R$
$p_{v}=$ Vapor density, lb/ft t^{3}
$x_{i}=$ Mole fraction of ith component in liquid phase
$\rho_{\mathrm{I}}=$ Liquid density, $\mathrm{lb} / \mathrm{ft}^{3}$
$v_{i}=$ Specific volume of the ith component, $f t^{3} / \mathrm{lb}$
$\mathrm{V}_{\mathrm{c}_{6+}}=$ Specific volume of hexane and heavier, $\mathrm{ft} \mathrm{t}^{3} / \mathrm{lb}$
EMR = Eykman Molecular Refraction
$\mathrm{P}_{\text {chi }}=$ Parachor of i th component
$\sigma=$ Surface tension, dynes/cm
b = Constant characteristic of a particular hydrocarbon
$T_{b}=$ Boiling point, ${ }^{\circ} R$
$\mathrm{U}_{1}=$ Viscosity of gas mixture at atmospheric pressure, $c p$
$U_{i}^{*}=$ Viscosity of component i at atmospheric pressure, cp
$\mathrm{V}_{\mathrm{c}_{i}}=$ Critical volume of i component, $\mathrm{ft} \mathrm{t}^{3} / \mathrm{lb}$-mole
E = Mixture viscosity parameter
$\mathrm{F}_{\mathrm{r}}=$ Reduced density, dimensionless
$K_{i}=$ Equilibrium vaporization ratio for an oil fraction "i"
$P_{k}=$ Convergence pressure, psi
HETP $=$ Height equivalent to a theoretical plate
$\mathrm{N}=$ Number of theoretical plates
$\mathrm{RF}=$ Response factor
$A=$ Peak height, cm^{2}
B.T. $=$ Breakthrough
P.V. = Pore volume

BIBLIOGRAPHY

1. Whorton, L. P. and Kieschnick, W. F., "A Preliminary Report on Oil Recovery by High-Pressure Gas Injection," Drilling and Production Practice, 247 (1950).
2. Clark, Norman J.; Schultz, W. P. and Shearin, H. M., "Miscible Displacement by Gas Drive," J. Petroleum Tech. (June 1958), p. 11.
3. Koch, H. A., Jr., and Slobod, R. L., Trans. Am. Inst. Mech. Engrs. (1957), p. 40.
4. Hall, H. N., and Geffen, T. M., ibid., p. 48.
5. Slobod, R. L., and Koch, H. A., Jr., "High-Pressure Gas Injection Mechanism of Recovery Increase," API Drilling and Production Practice (1953), p. 83.
6. Hutchinson, C. A., Jr., and Braun, P. H., "Phase Relation of Miscible Displacement in Oil Recovery," A. I. Ch. E. Journal, vol. 7, no. 1 (March 1961), p. 64.
7. Rushing, M. D.; Thomasson, B. C., Reynolds, B.; and Crawford, P. B., "High Pressure Air Injection," Petroleum Engineer, Nov. 1976.
8. Rushing, M. D.; Thomasson, B. C.; Reynolds, B.; and Crawforaj, P. B., "Miscible Displacement with Nitrogen," Petroleum Engineer, Nov. 1977.
9. Rushing, M. D.; Thomasson, B. C.; Reynolds, B.; and Crawford, P. B., "High Pressure Nitrogen or Air May be used for Miscible Displacement in Deep, Hot Oil Reservoir," 24th Annual Southwestern Petroleum Short Course Ass. Mtg. Proc. (1977), p. 119.
10. Corkeville, J.; Van Quy, N. and Simandox, P., "A Numerical and Experimental Study of Miscible or Immiscible Fluid Flow in Porous Media with Interphase Mass Transfer," Paper SPE 3481 Presented at SPE-AIME 46th Annual Fall Meeting, New Orleans.
11. Yarborough, L, and Smith, L. R., "Solvent and Driving Gas Composition for Miscible Slug Displacement," Soc. Pet. Eng. J. (Sept. 1970), pp. 298-310, Trans., AIME, vol. 249.
12. Craft, B. C., and Hawkins, M. F., Applied Petroleum Reservoir Engineering, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1959), pp. 355-408.
13. Frick, T. C., Petroleum Production Handbook, vol. II, McGraw Hill Book Co., Inc., N.Y. (1962).
14. Koch, H. A., Jr., and Hutchinson, C. A., Jr., "Miscible Displacement of Reservoir Oil Using Flue Gas," Trans. AIME, vol. 231 (1958), p. 7.
15. Koch, H. A., Jr., "High Pressure Gas Injection is a Success," World Oil (Oct. 1956), p. 260.
16. Stone, H. L., and Crump, J. S., "The Effect of Gas Composition upon Oil Recovery by Gas Drive," Trans. AIME, vol. 207 (1956), p. 105.
17. Blackwell, R. J.; Rayne, J. R.; and Terry, W. M., "Factors Influencing the Efficiency of Miscible Dispiacement," Trans. AIME, vol. 217 p. 1.
18. Cook, Alton B.; Johnson, S. F. and Spencer, G. B., "Effects of Pressure, Temperature and Type of Oil on Vaporization of Oil During Gas Cycling," USBM RI7278 (July 1969).
19. Wilson, J. F., "Miscible Displacement - Flow and Phase Relationships for a Partially Depleted Reservoir," Trans. AIME, vol. 219 (1960), p. 223.
20. Rutherford, W. M., "Miscibility Relationships in the Displacement of Oil by Light-Hydrocarbons," Soc. Petro. Eng. Journal (Dec. 1962), p. 310.
21. Arnold, C. W.; Stone, H. L.; and Luffel, D. L., "Displacement of Oil by Rich Gas Bank," Trans. AIME (1960), vol. 219, p. 305.
22. Cook, A. B.; Walker, C. J.; and Spencer, G. B., "Realistic $K-V a l u e s$ of C_{7+} Hydrocarbons for Calculating Oil Vaporization During Gas Cycling at High Pressures," Journal of Petroleum Tech. (July 1969), p. 901.
23. Hall, H. N., and Geffen, T. M., "A Laboratory Study of Solvent Flooding," Trans. AIME (1957), 210, p. 48.
24. Bleakley, W. B., "Miscible Flood Hikes Block 3l's Oil Output," Oil and Gas Journal (Oct. 27, 1969), p. 67.
25. Herbeck, E. F., and Blanton, J. R., "Ten Years of Miscible Displacement in Block 31 Field," Journal of Petroleum Tech. (June 1961), 13, p. 543.
26. Pottier, J.; Delclaud, C.; Leduc, J.; d'Herbes, J. and Thomere, R., "Injection de Gas Miscible a Haute a HassiMessaoud', Proceedings of the 7th World Petroleum Congress (1967), 3, p. 517.
27. Benham, A. L.; Dowden, W. E. and Kunzman, W. J., "Miscible Fluid Displacement - Prediction of Miscibility," Trans., AIME (1960), 219, pp. 229-237.
28. Walker, J. W., and Turner, J. L., "Performance of Seeligson Zone 20B-07 Enriched-Gas Drive Project," Journal of Petroleum Tech. (April 1968), 20, p. 369.
29. Griffith, J. D.; Baiton, N. and Steffensen, R. J., "Ante Creek - A Miscible Flood Using Separator Gas and Water Injection," Journal of Petroleum Technology (Oct. 1970), 22, p. 1232 .
30. Craig, F. F., and Owens, W. W., "Miscible Slug Flooding A Review," J. Pet. Tech. (April, 1960), pp. 11-16.
31. Koch, H. A., Jr. and Slobod, R. L., "Miscible Slug Process," Trans., AIME (1957), 213, p. 7.
32. Lacey, J. W.; Faris, F. E. and Brinkman, F. H., "Effect of Bank Size on Oil Recovery in the High Pressure Gas-Driven LPG-Bank Process," Jour. Pet. Tech. (Aug. 1961), p. 806.
33. Marrs, D. G., "Field Results of Miscible-Displacement Program Using Liquid Propane Drive by Gas," J. Pet. Tech. (April 1961), pp. 327-332.
34. Holm, L. W., CO_{2} Requirements in CO_{2} Slug and Carbonated Water Oil Recovery Process," Producers Monthly (Sept. 1963), 27, p. 6.
35. Simon, R., and Graue, D. J., "Generalized Correlations for Prediction Solubility, Swelling and Viscosity Behavior of CO_{2} - Crude Oil Systems," Trans. AIME (1965), 234, p. 102.
36. Beeson, D. M., and Ortloff, G. D., "Laboratory Investigation of Water-Drive CO_{2} Process for Oil Recovery," Trans. AIME (1959), 216, p. 388.
37. Menzie, D. E., and Nielsen, R. F., "A Study of the Vaporization of Crude Oil by Carbon Dioxide Depressuring," Trans., AIME (1963), 228, p. 1247.
38. Holm L. W., and O'Brien, L. J., "Carbon Dioxide Test at the Mead-Strawn Field," Journal of Petroleum Technology (April 1971), 23 p. 431.
39. Glasston, Samuel, Textbook of Physical Chemistry, 2ed. p. 791, Van Nostrand, N.Y. (1946).
40. McNeese, C. R., "The High Pressure Gas Process and the Use of Flue Gas," patent no. 2,623,596.
41. Hendricks, D. R., "Gas Chromatography," Florida Gas Transmission Company, Zachary, Louisiana.
42. McNair, $\mathrm{H} . \mathrm{M}_{\mathrm{A}}$, and Bonelli, E. J., "Basic Gas Chromatography," Varian Instrument Company.
43. Miller, A. J., "Gas Chromatography," The Oil and Gas Journal, December 17, 1936, p. 126.
44. Lederer, E., and Lederer, M., Chromatography, A Review of Principles and Applications, Elsevier Publishing Company, Houston, Texas, 1953.
45. Dewar, M. J. S., and Schroeder, J. P., J. Am. Chem. Soc., 36, 5235 (1964).
46. Bednas, M. E., and Russell, D. S., Can. J. Chem., 36, 1272 (1958).
47. Giddings, J. C., J. Chem. Ed., 39, no. 11, 569-573 (1962).
48. NGPA, "Method for Analysis of Natural Gas Liquid Mixture by Gas Chromatography," GPA Publication \#2165-75.
49. Brown, G. G.; Katz, D. L.; Oberfell, G. G. and Allen, R. C., "Natural Gasoline and the Volatile Hydrocarbons," N.G.A.A., Tulsa, Oklahoma, 1948.
50. Standing, M. B., "Volumetric and Phase Behavior of Oil Field Hydrocarbon Systems," Reinhold Publishing Corp., N.Y., 1952.
51. Standing, M. B., and Katz, D. L., "Density of Natural Gases," Trans., AIME, v. 147, 140 (1942).
52. McLeod, w. R., Ph.D. Thesis, University of Oklahoma (1968).
53. Katz, D. L.; Monroe, R. R. and Trainer, R. R., "Surface Tension of Crude Oils Containing Dissolved Gases," Petroleum Technology, September 1943.
54. Sugden, J. Chem. Soc., vol. 125, 1924.
55. Herning, F., and Zipperer, L., "Calculation of the Viscosity of Technical Gas Mixtures from the Viscosity of the Individual Gases," Gas U. Wasserfoch (1936), v. 79, p. 69.
56. Carr, N. L.; Kobayashi, R. and Burrows, D. B., "Viscosity of Hydrocarbon Gases Under Pressure," Trans. AIME (1954), p. 201.
57. Lohrenz, J.; Bray, B. G., and Clark, C. R., "Calculating Viscosity of Reservoir Fluids from their Composition," J. Pet. Tech. (1964), pp. 1171-1176.
58. Clark, N. J., "Theoretical Aspects of Oil and Gas Equilibrium Calculation," J. P. T., April 1962, p. 369.
59. Engineering Data Book, Ninth Edition, N.G.P.A., 1972.
60. Katz, D. L., Monroe, R. R., and Trainer, R. R., "Surface Tension of Crude Oils Containing Dissolved Gases," Petroleum Tech., September 1943.

APPENDIX A

DATA AND RESULTS OF THE FIRST RUN

TABLE: A-1

GAS DENSTI'Y
Sampling Point A
Sampling Point A
Cum. N_{2} Inj.
Pressure at sampling point $=3600$ psi.

Comp .	Mole Eraction qas, y_{i}	$\begin{gathered} \text { Critical } \\ \text { temp. } \\ T_{C^{\prime}}{ }^{\prime} \mathrm{R} \end{gathered}$	Critical pressure, $\mathrm{P}_{\mathrm{c}}, \mathrm{psi}$	```Molecular weight Mi```	$Y_{i}{ }^{T}{ }^{\prime}{ }_{i}$	$Y_{i}{ }^{\mathbf{P}}{ }_{c}$	$Y_{i} M_{i}$
N_{2}	. 505	227	492.2	28.016	114.635	248.561	14.147
C_{1}	. 352	343.2	673.1	16.068	120.806	236.931	5.647
C_{2}	. 054	549.2	708.3	30.068	29.657	38.248	1.624
C_{3}	. 039	666	617.4	44.094	25.974	24.079	1.72
C_{4}	. 009	765.7	550.1	58.12	6.891	4.951	0.523
C_{5}	. 015	846.2	489.8	72.124	12.693	7.347	1.082
C_{6+}	. 026	$1073+$	$334+$	128.0	27.898	8.684	3.335
${ }^{+}$From	lark 58				339	569	28.077

Gas Density $=20.03 \mathrm{lb} / \mathrm{Et}^{3}$

TABLE A-2

GAS DENSI'Y
Sampling Point A
Cum. N_{2} Inj. $\quad=.29 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3600$ psi

Comp.	Mole fraction gas, Y_{i}	```Critical temp., Tc' }\mp@subsup{}{}{\circ}\textrm{R```	Critical pressure, $P_{c}, p s i$	Molecular weight M_{i}	$y_{i} \mathrm{P}_{\mathrm{C}_{i}}$	$y_{i}{ }^{\mathbf{P}} \mathrm{c}_{\mathrm{i}}$	$\mathrm{Y}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$.
N_{2}	. 85	227	492.2	28.016	192.95	418.37	23.811
C_{1}	. 108	343.2	673.1	16.068	37.066	72.695	1.7326
C_{2}	. 016	549.2	708.3	30.068	8.787	11.333	0.0481
C_{3}	. 0134	666	617.4	44.094	8.924	8.273	0.5909
C_{4}	. 00.1	765.7	550.1	58.12	0.766	0.5501	0.0581
C_{5}	. 003	846.2	489.8	72.124	2.539	1.469	0.2165
C_{6+}	. 009	1073 t	$334+$	128.0	9.657	3.006	1.154
${ }^{+}$From	ark ${ }^{58}$				261.0	515.7	28.045

$$
\text { Gas Density }=17.42 \mathrm{lb} / \mathrm{ft}^{3}
$$

'IABLE A-3

GAS DENSTTTY

Sampling Point B
$\begin{array}{ll}\text { Cum. } \mathrm{N}_{2} \text { Inj. } & =-33 \mathrm{p} . \mathrm{v} . \\ \text { Pressure at sampling point } & =3200 \mathrm{psi}\end{array}$
Pressure at sampling point $=3200$ psi

Comp.	Mole fraction gas, Y_{i}	```Critical temp., Tc' }\mp@subsup{}{}{\circ}\textrm{R```	Critical pressure, $\mathrm{P}_{\mathrm{c}}, \mathrm{psi}$	Molecular weight M_{i}	$Y_{i \underline{i}} \mathrm{~T}_{\mathrm{c}_{i}}$	$Y_{i} \quad^{P}{ }_{c}$	$Y_{i} M_{i}$
N_{2}	. 358	227	492.2	28.016	81.266	176.208	10.03
C_{1}	. 40	343.2	673.1	16.068	137.28	269.24	6.427
C_{2}	. 102	549.2	708.3	30.068	56.0184	72.247	3.067
C_{3}	. 0695	666	617.4	44.094	46.287	42.9093	3.065
C_{4}	. 0115	765.7	550.1	58.12	8.806	6.326	0.668
C_{5}	. 019	846.2	489.8	72.124	16.078	9.306	1.370
C_{6+}	. 04	1073+	$334+$	128.0	42.92	13.36	5.12
${ }^{+} \text {From }$	lark^{58}				389	589.6	29.747

$$
\text { Gas Density }=21.64 \mathrm{lb} / \mathrm{ft}^{3}
$$

TABLE A-4

GAS DENSITY
Sampling Point B
Cum. N_{2} Inj. $=0.42 \mathrm{p} . \mathrm{V}$.
Pressure at sampling point $=3200$ psi

Comp .	Mole fraction gas, Y_{i}	$\begin{gathered} \text { Critical } \\ \text { temp. } \\ \mathrm{T}_{C}^{\prime}{ }^{\circ} \mathrm{R} \\ \hline \end{gathered}$	Critical pressure, $\mathrm{P}_{\mathrm{c}}, \mathrm{psi}$	Molecular weight M_{i}	$y_{i} \mathrm{~T}_{\mathrm{C}_{i}}$	$\mathrm{y}_{\mathrm{i}} \mathrm{P}_{\mathrm{C}_{\mathrm{i}}}$	$Y_{i} M_{i}$
N_{2}	. 47	227	492.2	28.016	106.67	231.334	13.168
C_{1}	. 306	343.2	673.1	1.6.068	105.019	201.969	4.917
C_{2}	. 098	549.2	708.3	30.068	53.89	69.413	2.947
C_{3}	. 069	666	617.4	44.094	45.954	42.601	3.042
C_{4}	. 0069	765.7	550.1	58.12	5.283	3.796	0.401
C_{5}	. 011	846.2	489.8	72.1.24	9.308	5.388	0.793
C_{6+}	. 0391	$1.073+$	$334+$	128.0	42.0	13.06	5.005
${ }^{+} \text {From }$	Clark 58				368.1	571.56	30.272

$$
\text { Gas Density }=21.58 \mathrm{lb} / \mathrm{Et}^{3}
$$

TABLE A-5

GAS DENSITY
Sampling Point B
Cum. N_{2} Inj. $=.460 \mathrm{P} . \mathrm{V}$.
Pressure at sampling point $=3200$ psi

Comp.	Mole fraction gas, y_{i}	```Critical temp., Tc' }\mp@subsup{}{}{\circ}\textrm{R```	Critical pressure, $\mathrm{P}_{\mathrm{C}}, \mathrm{psi}$	Molecular weight M_{i}	$\mathrm{Y}_{\mathrm{i}} \mathrm{T}^{\prime}{ }_{\text {c }}$	$y_{i} \mathrm{P}_{c_{i}}$	$Y_{i} M_{i}$
N_{2}	. 56	227	492.2	28.016	127.12	275.632	15.689
C_{1}	. 23	343.2	673.1	16.068	78.936	154.613	3.696
C_{2}	. 0955	549.2	708.3	30.068	52.515	67.643	2.871
C_{3}	. 068	666	617.4	44.094	45.288	41.983	2.998
C_{4}	. 0025	765.7	550.1	58.12	1.914	1.375	0.1453
C_{5}	. 005	846.2	489.8	72.124	4.231	2.449	0.361
C_{6+}	. 039	1073+	334 t	128.0	42	13.026	4.992
${ }^{+} \text {From }$	lark 58				352	556.921	30.752

Gas Density $=21.09 \mathrm{lb} / \mathrm{ft}^{3}$

TABLE: A-6
GAS DENSITY

Sampling Point B
Cum. N_{2} Inj. $=0.48 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3200$ psi

Comp.	Mole fraction gas, Y_{i}	$\begin{gathered} \text { Critical } \\ \text { temp. } \\ \mathrm{T}_{\mathrm{c}^{\prime}} \mathrm{o}_{\mathrm{R}} \end{gathered}$	Critical pressure, $P_{c}, p s i$	Molecular weight M_{i}	$Y_{i} \mathrm{~T}^{\prime} \mathrm{c}_{\mathrm{i}}$	$y_{i}{ }^{P}{ }_{c}{ }_{i}$	$Y_{i} M_{i}$
N_{2}	. 602	227	492.2	28.016	136.654	296.304	16.866
C_{1}	. 21	343.2	673.1	16.068	72.072	141.351	3.374
C_{2}	. 08	549.2	708.3	30.068	43.992	56.664	2.405
C_{3}	. 056	666	617.4	44.094	37.296	34.574	2.469
C_{4}	. 001	765.7	550.1	58.12	0.766	0.5501	0.058
C_{5}	. 003	846.2	489.8	72.124	2.539	1.469	0.216
C_{6+}	. 034	1073+	$334+$	128.0	36.482	11.356	4.352
${ }^{+} \text {Prom }$	lark 58				330.08	542.268	29.74

$$
\text { Gas Density }=19.14 \quad \mathrm{lb} / \mathrm{ft}^{3}
$$

I'ABLE A-7

GAS DENSITY
Sampling Point B
Cum. N_{2} Inj.
$=.56 \mathrm{p.v}$.
pressure at sampling point $=3200 \mathrm{psi}$

Comp.	Mole fraction gas, Y_{i}	```Critical temp., Tc```	Critical pressure, $P_{c}, p s i$	Molecular weight M_{i}	$Y_{i}{ }^{T}{ }_{c}{ }_{i}$	$Y_{i}{ }^{P} \mathrm{c}_{\mathrm{i}}$	$Y_{i} M_{i}$
N_{2}	. 881	227	492.2	28.016	199.988	433.628	24.682
C_{1}	. 085	343.2	673.1	16.068	29.172	57.214	1.366
C_{2}	. 0175	549.2	708.3	30.068	9.623	12.395	0.526
C_{3}	. 01	666	617.4	44.094	6.66	6.173	0.441
C_{4}	0	765.7	550.1	58. 3.2	0	0	0
C_{5}	0	846.2	489.8	72.124	0	0	0
C_{6+}	. 0065	$1073+$	$334+$	128.0	8.255	1.658	0.832
${ }^{+}$From	lark 58				253.697	511.067	27.847

Gas Density $=14.52 \mathrm{lb} / \mathrm{ft}^{3}$

TABLE A-8

GAS DENSTTY
Sampling Point B
Cum. N_{2} Inj. $=.58 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3200$ psi

Comp	Mole fraction gas, Y_{i}	```Critical temp., TC' }\mp@subsup{}{}{\circ}\textrm{R```	Critical pressure, $P_{c}, p s i$	Molecular weight M_{j}.	$Y_{\text {i. }} \mathrm{T}_{\mathrm{C}}^{\mathrm{i}}$	$\mathrm{y}_{\mathrm{i}} \mathrm{P}_{\mathrm{c}_{\mathrm{i}}}$	$\mathrm{Y}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$
N_{2}	. 962	227	492.2	28.016	218.374	473.496	26.95
C_{1}	. 03	343.2	673.1	16.068	20.592	40.386	0.964
C_{2}	. 005	549.2	708.3	30.068	2.75	3.542	0.150
C_{3}	. 001	666	617.4	44.094	0.666	0.6174	0.044
C_{4}	0	765.7	550.1.	58.12	0	0	0
C_{5}	0	846.2	489.8	72.124	0	0	0
c_{6+}	. 002	1073+	$334+$	128.0	2.54	0.51	0.256
${ }^{+} \text {From }$	lark^{58}				244.922	518.551	28.366

$$
\text { Gas Density }=14.26 \mathrm{lb} / \mathrm{ft}^{3}
$$

TABLE A-9

GAS DENSITY
Sampling Point C
Cum. N_{2} Inj. . $\quad=.527 \mathrm{p} . \mathrm{V}$.
Pressure at sampling point $=2800 \mathrm{psi}$

Comp.	Mole fraction gas, Y_{i}	```Critical temp., Tc' }\mp@subsup{}{}{\circ}\textrm{R```	Critical pressure, $P_{c}, p s i$	Molecular weight M_{i}	$Y_{i}{ }^{\prime} \mathrm{P}_{\boldsymbol{c}}$	$Y_{i}{ }^{\mathrm{P}} \mathrm{c}_{\mathrm{i}}$	$y_{i} M_{i}$
N_{2}	. 205	227	492.2	28.016	46.535	100.901	5.743
C_{1}	. 455	343.2	673.1	16.068	156.156	306.261	7.311
C_{2}	. 1119	549.2	708.3	30.068	65.438	84.288	3.578
C_{3}	. 0945	666	617.4	44.094	62.937	58.344	4.167
C_{4}	. 02	765.7	550.1	58.12	15.314	11.002	1.162
C_{5}	. 026	846.2	489.8	72.124	22.001	12.735	1.875
C_{6+}	. 0805	$1073+$	$334+$	128.0	102.235	20.5275	10.304
${ }_{\text {trom }}$	1 ark 58				470.616	594.059	34.14

Gas Density $=28.88 \mathrm{lb} / \mathrm{ft}^{3}$

'I'ABLE A-10

GAS DENSITY

Sampling Point C

Cum. N_{2} Inj. $=\quad .57 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=2800$ psi

Comp .	Mole fraction gas, Y_{i}	```Critical temp., Tc, 回```	Critical pressure, P_{c}, psi	Molecular weight M_{i}	$Y_{i}{ }^{T} c_{i}$	$Y_{j} . P_{c}{ }_{\mathbf{i}}$	$\mathbf{y}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$
N_{2}	. 228	227	492.2	28.016	51.756	112.222	6.386
C_{1}	. 44	343.2	673.1	16.068	151.008	296.164	7.070
C_{2}	. 118	549.2	708.3	30.068	64.888	83.579	3.548
C_{3}	. 0938	666	617.4	44.094	62.471	57.912	4.136
C_{4}	. 017	765.7	550.1.	58.12	13.017	9.352	0.988
C_{5}	. 0235	846.2	489.8	72.124	19.886	11.510	1.695
C_{6+}	. 0797	1073+	$334+$	128.0	101.219	20.324	10.202
$+_{\text {From }}$	ark 58				464.245	591.063	34.025

[^3]
'1ABLE A-11

GAS DENSITY
Sampling Point C
Cum. N_{2} Inj. $=-.62 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=2800 \mathrm{psi}$

Comp.	Mole fraction gas, Y_{i}	```Critical temp., 'T```	Critical pressure, $P_{c}, p s i$	Molecular weight M_{i}	$y_{i}{ }^{T}{ }_{c}$	$Y_{i}{ }^{P}{ }_{c}{ }_{i}$	$\mathrm{Y}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$
N_{2}	. 2604	227	492.2	28.016	59.111	128.169	7.295
C_{1}	. 416	343.2	673.1	16.068	142.771	280.01	6.684
C_{2}	. 1168	549.2	708.3	30.068	64.228	82.729	3.512
C_{3}	. 093	666	617.4	44.094	61.938	57.418	4.1
C_{4}	. 0142	765.7	550.1	58.12	10.873	7.811	0.825
C_{5}	. 021	846.2	489.8	72.124	17.770	10.286	1.515
C_{6+}	. 0786	$1073+$	$334+$	128.0	99.822	20.043	10.061
${ }^{+} \text {From }$	lark 58				446.513	586.466	33.992

$$
\text { Gas Density }=25.3 \quad 1 \mathrm{~b} / \mathrm{ft}^{3}
$$

TABLE $A-12$

GAS DENSITY
Sampling Point C
Cum. N_{2} Inj. $=\quad .71 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=2800 \mathrm{psi}$

Comp.	Mole fraction gas, y_{i}	```Critical temp., TC, a}```	Critical pressure, $P_{c}, p s i$	Molecular weight M_{i}	$Y_{i}{ }^{\prime} \mathrm{C}_{\mathrm{i}}$	$\mathrm{Y}_{\mathrm{i}} \mathrm{P}_{\mathrm{c}_{\mathrm{i}}}$	$\mathrm{X}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$
N_{2}	. 888	227	492.2	28.016	201.576	437.074	24.818
C_{1}	. 05	343.2	673.1	16.068	17.16	33.655	0.8034
C_{2}	. 0375	549.2	708.3	30.068	20.621	26.561	1.128
C_{3}	. 017	666	617.4	44.094	11.322	10.496	0.75
C_{4}	0	765.7	550.1	58.12	0	0	0
C_{5}	0	846.2	489.8	72.124	0	0	0
C_{6+}	. 0075	$1073+$	$334+$	128.0	9.525	1.913	0.96
$+_{\text {From }}$	lark 58				260.204	509.699	28.519

[^4]
TMBLE A-13

GAS DENSITY

Sampling Point D
Cum. N_{2} Inj. $=.71$ to $.8 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=2400$ psi

Comp .	Mole fraction gas, y_{i}	```Critical temp., Tc' }\mp@subsup{}{}{\circ}\textrm{R```	Critical pressure, $\mathrm{P}_{\mathrm{C}}, \mathrm{psi}$	Molecular weight M_{i}	$Y_{i}{ }^{T} C_{i}$	$Y_{i} \mathrm{P}_{\mathbf{c}_{\mathbf{i}}}$	$Y_{i} M_{i}$
N_{2}	. 072	227	492.2	28.016	16.344	35.4	2.017
C_{1}	. 55	343.2	673.1	16.068	188.76	370.2	8.837
C_{2}	. 13	549.2	708.3	30.068	71.396	92.08	3.9
C_{3}	. 109	666	617.4	44.094	72.59	67.286	4.8
C_{4}	. 021	765.7	550.1	58.12	16.1	11.552	1.2
C_{5}	. 029	846.2	489.8	72.124	24.54	14.204	2.09
C_{6+}	. 089	1073+	$334+$	128.0	95.5	29.72	11.39
$+_{\text {From }}$	clark 58				485.211	620.5	34.27

$$
\text { Gas Density }=26.6 \quad 1 \mathrm{~b} / \mathrm{ft}^{3}
$$

INBLEE A-14

GAS DENSTTY
Sampling Point D
$\begin{array}{ll}\text { Cum. } \mathrm{N}_{2} \text { Inj. } & =.831 \mathrm{p} \cdot \mathrm{v} . \\ \text { Pressure at sampling point } & =2800 \mathrm{psi}\end{array}$

Comp.	Mole fraction gas, Y_{i}	```Critical temp., 'rc' }\mp@subsup{}{}{\circ}\textrm{R```	Critical pressure, $\mathrm{P}_{\mathrm{c}}, \mathrm{psi}$	Molecular weight M_{i}	$\mathrm{y}_{\mathrm{i}} \mathrm{T}^{\mathbf{c}}{ }_{\mathbf{i}}$	$y_{i .} \mathrm{P}_{\mathrm{c}_{\mathrm{i}}}$	$Y_{i}{ }^{\text {i }} \mathrm{M}_{\mathbf{i}}$
N_{2}	. 3405	227	492.2	28.016	9.539	77.294	167.594
C_{1}	. 4	343.2	673.1	16.068	6.427	137.28	269.24
C_{2}	. 097	549.2	708.3	30.068	2.917	53.272	68.705
C_{3}	. 077	666	617.4	44.094	3.394	51.282	47.54
C_{4}	. 008	765.7	550.1	58.12	0.465	6.126	4.401
C_{5}	. 0165	846.2	489.8	72.124	1.19	13.962	8.082
C_{6+}	. 061	1073+	$334+$	128.0	7.808	65.453	20.374
${ }^{+} \text {From }$	ark 58				31.74	404.669	585.936

$$
\text { Gas Density }=20.11 \mathrm{~b} / \mathrm{ft}^{3}
$$

IABI,E A-15

GAS DENSITY

Sampling Point D
Cum. N_{2} Inj.
$=\quad .9 \mathrm{p} . \mathrm{V}$.
Pressure at saripling point $=2800$ psi

Comp .	Mole fraction gas, Y_{i}	$\begin{gathered} \text { Critical } \\ \text { temp:ó } \\ \mathrm{T}_{\mathrm{C}^{\prime}}{ }^{\circ} \mathrm{R} \end{gathered}$	Critical pressure, $\mathrm{P}_{\mathrm{c}^{\prime}} \mathrm{psi}$	Molecular weight M_{i}	$Y_{i} \mathrm{I}_{\mathrm{c}_{i}}$	$y_{i} \mathrm{P}_{\mathrm{c}_{\mathrm{i}}}$	$Y_{i}{ }^{M}{ }_{\mathbf{i}}$
N_{2}	. 8535	227	492.2	28.016	23.912	193.745	420.093
C_{1}	. 095	343.2	673.1	16.068	1.526	32.604	63.945
C_{2}	. 0295	549.2	708.3	30.068	0.887	16.201	20.895
C_{3}	. 016	666	617.4	44.094	0.706	10.656	9.878
C_{4}	0	765.7	550.1	58.12	-	-	-
C_{5}	0	846.2	489.8	72.124	-	-	-
C_{6+}	. 006	$1.073+$	$334+$	128.0	0.768	6.438	2.004
${ }^{+} \mathrm{From}$	lark 58				27.799	259.644	516.815

[^5]TABLE A-16

LIQUID DENSI'IY
Sampling point A
Cum. N_{2} Inj. $=.14 \mathrm{p} . \mathrm{v}$.
Pressure at the sampling point $=3600 \mathrm{psi}$

Comp .	Mole fraction liquid; X_{i}	Molecular weigint M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	Specific volume $v_{i}, f t^{3 / 1 b}$	$\mathrm{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}} \quad \mathbf{v}_{\mathbf{i}}$
N_{2}	18.43	28.016	5.16	. $01983+$	0.1 .0232
C_{1}	22.28	16.068	3.58	. 0535	0.18725
C_{2}	6.43	30.068	1.93	. 043	0.08299
C_{3}	6.34	44.094	2.81	. 0316	0.08848
C_{4}	1.96	58.12	1.14	. 0275	0.03135
C_{5}	4.72	72. 124	3.4	. 0254	0.08636
C_{6+}	39.84	214.5	85.40	. 01976	1.68869
${ }_{\text {Fron }}$	G.P.A. ${ }^{59}$		103.47		2.26744

$\begin{array}{ll}\text { Stock tank density } & =45.63 \mathrm{lb} / \mathrm{ft}^{3} \\ \text { Density at current pressure and temperature } & =46.83 \mathrm{lb} / \mathrm{ft}^{3}\end{array}$

TABLE A-17

LIQUID DENSITY

Sampling point A
Cum. N_{2} Inj. $\quad=8.29 \mathrm{p} . \mathrm{v}$.
Pressure at the sampling point $=3600 \mathrm{psi}$

Comp .	```Mole fraction liquid, xi```	Molecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	Specific volume $v_{i}, \mathrm{ft}^{3} / \mathrm{lb}$	$\mathbf{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}} \mathrm{V}_{\mathbf{i}}$
N_{2}	26.6	28.016	7.452	. $01983+$	0.14778
C_{1}	6.43	16.068	1.03	. 0535	0.05511
C_{2}	1.96	30.068	0.59	. 043	0.02537
C_{3}	2.24	44.094	0.99	. 0316	0.03128
C_{4}	0.24	58.12	0.14	. 0275	0.00385
C_{5}	1.07	72.124	0.77	. 0254	0.01956
C_{6+}	61.46	214.5	131.8	. 01976	2.604
${ }^{+}$From	N.G.P.A. 59		142.772		2.8873
	Stock tank Density at	density current pre	sure and	mperature $=$	$\begin{array}{ll} 49.45 & 1 \\ 50.28 & 1 \end{array}$

TABLE A-18

LIQUID DENSITY

Sampling point B
Cum. N_{2} Inj. $=.33 \mathrm{p} . \mathrm{v}$.
Pressure at the sampling point $=3200 \mathrm{psi}$

Comp .	Mole fraction liquid, x_{i}	Molecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i}, f t^{3} / 1 b \end{gathered}$	$\mathbf{x}_{\mathbf{i}} M_{\mathbf{M}} \mathrm{V}_{\mathbf{i}}$
N_{2}	13.26	28.016	3.715	. $01983+$	0.07367
C_{1}	25.81	16.068	4.15	. 0535	0.222
C_{2}	12.14	30.068	3.65	. 043	0.15695
\dot{C}_{3}	11.78	44.094	5.19	. 0316	0.164
C_{4}	2.8	58.12	1.63	. 0275	0.0448
C_{5}	7.31	72.124	5.27	. 0254	0.13386
C_{6+}	26.9	214.5	5.77	. 01976	1.1401
${ }^{\text {From N.G.P.A. }}{ }^{59}$		81.305			1.9354
	Stock tank Density at	density	sure and	mperature $=$	$\begin{aligned} & 42.01 \\ & 43.31 \end{aligned}$

IABLE A-19

LIQUID DENSI'PY
Sampling point B
Cum. N_{2} Inj.
B
Cum. N_{2} Inj. $=.42 \mathrm{p} . \mathrm{v}$.
Pressure at the sampling point $=3200 \mathrm{psi}$

Comp.	$\begin{gathered} \text { Mole } \\ \text { fraction } \\ \text { liquid, } x_{i} \end{gathered}$	Molecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i}, f t^{3} / 1 b \end{gathered}$	$\mathrm{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$
N_{2}	14.93	28.016	4.183	. 01983 t	0.0829
C_{1}	13.96	16.068	2.243	. 0535	0.12
C_{2}	12.09	30.068	3.635	. 043	0.1563
C_{3}	12.83	44.094	5.657	. 0316	0.1788
C_{4}	0.68	58.12	0.395	. 0275	0.0109
C_{5}	2.19	72.124	1.58	. 0254	0.0401
C_{6+}	43.32	214.5	92.92	. 01976	1.861
${ }^{+}$From	N.G.P.A. ${ }^{59}$		110.613		2.45
	Stock tank Density at	density current pre	sure and	mperature $=$	$\begin{aligned} & 45.15 \\ & 46.2 \end{aligned}$

TABLE A-20

LIQUID DENSI!'Y

TABLE•A-21

LIQUID DENSI'IY

LIQUID DENSTITY

Sampling point C
Cum. N_{2} Inj. $=.57 \mathrm{p} \cdot \mathrm{v}$.
Pressure at the sampling point $=2800$ psi.

Comp.	```Mole fraction liquid, xi```	Molecular weight M_{i}	$\mathrm{X}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i} \quad f t^{3} / l b \end{gathered}$	$\mathrm{X}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$
N_{2}	8.44	28.016	2.365	. $01983+$	0.0469
C_{1}	27.85	16.068	4.475	. 0535	0.2394
C_{2}	14.57	30.068	4.381	. 043	0.1884
C_{3}	16.75	44.094	7.385	. 0316	0.2334
C_{4}	4.86	58.12	2.825	. 0275	0.0777
C_{5}	10.22	72.124	7.371	. 0254	0.1872
C_{6+}	17.49	214.5	37.516	. 01976	0.7413
+rrom N.G.P.A. 59			66.318		1.714
	Stock tank Density at	ensity urrent pre	ure and	mperature	$\begin{aligned} & 38.69 \\ & 40.14 \end{aligned}$

TABLE A-23

IIQUID DENSI'IY
Sampling point C
Cum. N_{2} Inj. $=-62 \mathrm{p} . \mathrm{v}$.
Pressure at the sampling point $=2800$ psi

TABLE A-24

I.IQUID DENSITY

Sampling point C
Cum. N_{2} Inj. $=.64 \mathrm{p} . \mathrm{v}$.
Pressure at the sampling point $=2800$ psi

Comp.	```Mole fraction liquid, xi```	Molecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathbf{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i}, f t^{3} / l b \end{gathered}$	$\mathrm{X}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$
N_{2}	10.42	28.016	2.919	. $01983+$	0.0579
C_{1}	20.2	16.068	3.246	. 0535	0.1737
C_{2}	12.63	30.068	3.798	. 043	0.1633
C_{3}	15.25	44.094	6.724	.0316	0.2125
C_{4}	2.2	58.12	0.97	. 0275	0.0267
C_{5}	7.49	72. 124	5.402	. 0254	0.1372
C_{6+}	31.81	214.5	68.232	. 01976	1.3483
${ }^{+}$From N.G.P.A. ${ }^{59}$			91.291		2.1196
	Stock tank Density at	ensity	sure and	mperature $=$	$\begin{aligned} & 43.07 \\ & 44.17 \end{aligned}$

LIQUID DENST'IY

Sampling point C
$\begin{aligned} \text { Cum. } \mathrm{N}_{2} \text { Inj. } & =.70 \mathrm{p} . \mathrm{v} . \\ \text { Pressure at the sampling point } & =2800 \mathrm{psi}\end{aligned}$

Comp.	```Mole fraction liquid, xi```	Molecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i}, f t^{3} / 1 b \end{gathered}$	$\mathrm{X}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}} \mathrm{V}$
N_{2}	19.67	28.016	5.455	. $01983+$	0.1082
C_{1}	2.78	16.068	0.4467	. 0535	0.0239
C_{2}	4.99	30.068	1.5	. 043	0.0645
C_{3}	3.57	44.094	1.574	. 03.16	0.0497
C_{4}	0	58.12	0	. 0275	0
C_{5}	0	72.124	0	. 0254	0
C_{6+}	69.19	214.5	148.412	. 01976	2.9326
${ }^{+}$From	N.G.P.A. ${ }^{59}$		157.3877		3.1789
	Stock tank Density at	ensity urrent pre	sure and	mperature $=$	$\begin{aligned} & 49.51 \\ & 50.51 \end{aligned}$

TABLE A-26

LIQUID DENSETY

Sampling point D

Cum. N_{2} Inj.	$=.815 \mathrm{p} . \mathrm{v}$.
Pressure at the sampling point	$=2400 \mathrm{psi}$

Comp .	```Mole fraction liquid, xi```	```Molecular weight Mj.```	$x_{i} M_{i}$	Specific volume $v_{i}, f t^{3} / 1 b$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$
N_{2}	. 068	28.016	1.90	. $01983+$. 038
C_{1}	. 2764	16.068	4.44	. 0535	. 238
C_{2}	. 1487	30.068	4.5	. 043	. 192
C_{3}	. 1927	44.094	8.497	. 0316	. 269
C_{4}	. 0518	58.12	3.01	. 0275	. 083
C_{5}	. 1437	72.124	10.36	. 0254	. 263
C_{6+}	. 1187	214.5	25.46	. 01976	. 503
+From N.G.P.A. 59			58.15		1.585
	Stock tank Density at	density current pre	ure and	mperature $=$	$\begin{aligned} & 36.68 \\ & 38.08 \end{aligned}$

「ABLE A-27

LIQUID DENSIIY

Sampling point D
Cum. N_{2} Inj. $=-830 \mathrm{p} . \mathrm{v}$.
Pressure at the sampling point $=2400 \mathrm{psi}$

Comp.	Mole Eraction liquid, x_{i}	Molecular weight ${ }^{M}$.	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i}, f t 3 / 1 b \end{gathered}$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathbf{i}}$
N_{2}	. 1427	28.016	3.9979	. $01983+$. 079
C_{1}	. 0447	16.068	. 718	. 0535	. 038
C_{2}	. 0407	30.068	1.22	. 043	. 053
C_{3}	. 0399	44.094	1.76	. 0316	. 056
C_{4}	0	58.12	0	. 0275	0
C_{5}	0	72.124	. 0	. 0254	0
C_{6+}	. 732	214.5	157.01	. 01976	3.102
${ }^{+}$From	N.G.P.A. ${ }^{59}$		164.7		3.33
	Stock tank Density at	density current pre	ssure and	mperature $=$	$\begin{aligned} & 49.48 \\ & 50.18 \end{aligned}$

TABLE A-28

GAS VISCOSITY
Sampling point A
Cum. N_{2} Inj. $=3.14 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3600$ psi

Comp	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$\mathrm{M}_{1}^{1}{ }_{\text {i }}$	$Y_{i} M^{1}{ }^{1}{ }_{\text {i }}$	```Atmospheric viscosity u*i```	$\mathbf{u}_{\dot{i}}^{*} Y_{i} M_{i}^{\frac{1}{2}}$
N_{2}	0.505	28.016	5.29	2.673	. 01764	0.0470
C_{1}	0.352	16.068	4.01	1. 411	. 0108	0.01524
C_{2}	0.054	30.068	5.48	0.2961	. 0102	0.00302
C_{3}	0.039	44.094	6.64	0.2589	. 0082	0.00212
C_{4}	0.009	58.12	7.62	0.06861	. 0073	0.0005
C_{5}	0.015	72.124	8.5	0.1374	. 0065	0.00083
C_{6+}	0.026	128	11.31.	0.2942	. 005	0.0015
From	ctal. 5			5.12921		0.07021

Mixture atmospheric viscosjity $=u^{*}=.013 \mathrm{cp}$
Mixture viscosity at the system temperature
and pressure $=u=.031 \mathrm{cp}$

TABIE A-29

GAS VISCOSIIY
Sampling point A
Cum. N_{2} Inj. $=.29$ p.v.
Pressure at sampling point $=3600$ psi

Comp .	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$Y_{i} M_{i}^{\frac{3}{2}}$	```Atmospheric viscosity u_, c, Cp```	$u_{i}^{*} y_{i} M_{i}^{\frac{1}{2}}$
N_{2}	0.85	28.016	5.29	4.4991	$.0176+$	0.07918
C_{1}	0.108	16.068	4.01	0.43292	. 0108	0.00468
C_{2}	0.010	30.068	5.48	0.08773	. 0102	0.000895
C_{3}	0.0134	44.094	6.64	0.08895	. 0082	0.000729
C_{4}	0.001	58.12	7.62	0.006638	. 0073	0.0000485
C_{5}	0.003	72.124	8.5	0.02548	. 0065	0.000166
C_{6+}	0.009	128	11.31	0.10182	. 005	0.000509 .1
From	r et al.			5.242638		0.08621

Mixture atmospheric viscosity $=u^{*}=.016 \mathrm{cp}$
Mixture viscosity at the system temperature
and pressure $=u=.026 \mathrm{cp}$

TABLE A-30

GAS VISCOSTIY
Sampling point B
$\begin{array}{ll}\text { Cum. } N_{2} \text { Inj. } & =33 \mathrm{p} . \mathrm{v} . \\ \text { Pressure at sampling point } & =3200 \mathrm{psi}\end{array}$

Comp.	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{1 / 2}$	$Y_{i} M_{i}^{\frac{1}{2}}$	```Atmospheric viscosity u*i, CP```	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$
N_{2}	0.358	28.016	5.29	1.895	. $01.76+$	0.03335
C_{1}	0.4	16.068	4.01	1.603	. 0.108	0.01731
C_{2}	0.102	30.068	5.48	0.5593	. 0102	0.0057
C_{3}	0.0695	44.094	6.64	0.4614	. 0082	0.00378
C_{4}	0.0115	58.12	7.62	0.08767	. 0073	0.00064
C_{5}	0.019	72.124	8.5	0.16136	. 0065	0.0010
C_{6+}	0.04	128	11.31	0.4525	.005	0.00226
From	r et al. ${ }^{5}$			5.2202		0.06404

Mixture atmospheric viscosity $=u^{*}=.012 \mathrm{cp}$ Mixture viscosity at the system temperature

TABLE A-31

GAS VISCOSI'IY

Sampling point B
Cum. N_{2} Inj. $=.42 \mathrm{P} . \mathrm{V}$.
Pressure at sampling point $=3200$ psi

Comp	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{1 / 2}$	$Y_{i} M_{i}^{\frac{1}{2}}$	```Atmospheric viscosity ui```	$u_{i}^{*} Y_{i} M_{i}^{\prime 2}$
N_{2}	0.47	28.016	5.29	2.48772	. $0176+$	0.043784
C_{1}	0.306	16.068	4.01.	1.2266	. 0108	0.01325
C_{2}	0.098	30.068	5.48	0.53738	. 0102	0.00548
C_{3}	0.069	44.094	6.64	0.45805	. 0082	0.003756
C_{4}	0.0069	58.12	7.62	0.052603	. 0073	0.000384
C_{5}	0.01	72.124	8.5	0.0849	. 0065	0.000552
C_{6+}	0.0391	128	11.31	0.44237	. 005	0.002212
From Carr et al. 56 . 5.2901						0.069418
Mixture atmospheric viscosity $=u^{*}=.0131 \mathrm{cp}$ Mixture viscosity at the system temperature and pressure $=\mathbf{u}=.0335 \mathrm{cp}$						

IABLE A-32

GAS VISCOSITY
Sampling point B
$\begin{array}{ll}\text { Cum. } \mathrm{N}_{2} \text { Inj. } & =.46 \mathrm{p} \cdot \mathrm{v}: \\ \text { Pressure at sampling point } & =3200 \mathrm{psi}\end{array}$

Comp.	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$\mathrm{M}_{\text {i }}^{\frac{1}{2}}$	$Y_{i} M_{i}^{\frac{1}{2}}$	```Atmospheric viscosity u*i, cp```	$u_{i}^{*} y_{i} M_{i}^{1 / 2}$
N_{2}	. 56	28.0 .16	5.29	2.9641	. $0176+$	0.0522
C_{1}	. 23	16.068	4.01	0.922	. 0108	0.00996
C_{2}	. 0955	30.068	5.48	0.5237	. 01.02	0.0053
C_{3}	. 068	44.094	6.64	0.4514	. 0082	0.0037
C_{4}	. 0025	58.12	7.62	0.01906	. 0073	0.00014
C_{5}	0.005	72.124	8.5	0.0425	. 0065	0.00028
C_{6+}	0.039	128	11. 31	0.4412	. 005	0.00221
From	r et al.			5.36396		0.07379

Mixture atmospheric viscosity $=u^{*}=.0137 \mathrm{cp}$

TABLE A-33

GAS VISCOSIIY
Sampling point B
Cum. N_{2} Inj. $=.57 \mathrm{P} . \mathrm{V}$
Pressure at sampling point $=3200$ psi

Comp.	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$H_{i}^{1 / 2}$	$Y_{i} M_{i}^{\frac{1}{2}}$	```Atmospheric viscosity u_N, Cp```	$u_{i}^{*} y_{i} M_{i}^{\frac{1}{2}}$
N_{2}	0.962	28.016	5.29	5.0919	. $0176+$	0.08962
C_{1}	0.06	16.068	4.01	0.24051	. 0108	0.0025975
C_{2}	0.005	30.068	5.48	0.02742	. 0102	0.0002797
C_{3}	0.001	44.094	6.64	0.006638	. 0082	0.0000544
C_{4}	0	58.12	7.62	0	. 0073	0
C_{5}	0	72.124	8.5	0	. 0065	0
C_{6+}	0.002	128	11.31	0.02263	. 005	0.0001132
From	r et al.			5.3891		0.092665

Mixture atmospheric viscosity $=u^{*}=.0172 \mathrm{cp}$

Mixture viscosity at the system temperature
and pressure $=\mathbf{u}=.026 \mathrm{cp}$

TABLE A-34

GAS VISCOSI'IY
Sampling point C

Cum. N_{2} Inj.	$=.57 \mathrm{P} . \mathrm{v}$.
Pressure at sampling point	$=2800 \mathrm{psi}$

Mixture atmospheric viscosity $=u^{*}=.0089 \mathrm{cp}$
Mixture viscosity at the system temperature
and pressure $=u=.039 \mathrm{cp}$

TABLE A-35

GAS VISCOSIIY

Sampling point C
Cum. $\mathrm{N}_{2} \mathrm{Ir}_{\mathrm{r}} \mathrm{j}$.
$=.62 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=2800$ psi

Comp.	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$y_{i} M_{i}^{\frac{1}{2}}$	Atmospheric viscosity $u_{i}^{*}, ~$	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$
N_{2}	0.2604	28.016	5.29	1.3783	$.0176+$	0.0242581
C_{1}	0.416	16.068	4.01	1.66753	.0108	0.0180093
C_{2}	0.1168	30.068	5.48	0.640465	.0102	0.0065327
C_{3}	0.093	44.094	6.64	0.6175228	.0082	0.0050637
C_{4}	0.0142	58.12	7.62	0.1082558	.0073	0.00079027
C_{5}	0.021	72.124	8.5	0.1783443	.0065	0.00115924
C_{6+}	0.0780	128	11.31	0.8892575	.005	0.00444629

Mixture atmospheric viscosity $=u^{*}=.011 \mathrm{cp}$
Mixture viscosity at the system temperature
and pressure $=u=.046 \mathrm{cP}$

IABLE A-36

GAS VISCOSITY

Sampling point C
Cum. N_{2} Inj. $=.64 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=2800$ psi

Comp.	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$Y_{i} M_{i}^{\frac{1}{2}}$	```Atmospheric viscosity ui```	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$
N_{2}	0.388	28.016	5.29	2.05369	. $01.76+$	0.036145
C_{1}	0.35	16.068	4.01	1.402972	.0108	0.0151521
C_{2}	0.099	30.068	5.48	0.54286	. 0102	0.0055372
C_{3}	0.077	44.094	6.64	0.511282	. 0082	0.004193
C_{4}	0.007	58.12	7.62	0.0533655	. 0073	0.00039
C_{5}	0.014	72.124	8.5	0.1189	. 0065	0.000773
C_{6+}	0.065	128	11.31	0.735391	. 005	0.003677
From Carr et al. 56						0.0658673
Mixture atmospheric viscosity $=u^{*}=.012 \mathrm{cp}$ Mixture viscosity at the system temperature and pressure $=u=.038 \mathrm{cp}$						

and pressure $=u=0.038 \mathrm{cp}$

TABLE A-37

GAS VISCOSITY
Sampling point C
Cum. N_{2} Inj. $=2.7 \mathrm{P} \cdot \mathrm{V}$
Pressure at sampling point $=2800$ psi

Comp	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$Y_{i} M_{i}^{\frac{1}{2}}$	```Atmospheric viscosity u*```	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$
N_{2}	0.888	28.016	5.29	4.7002	. $01.76+$	0.082723
C_{1}	0.05	16.068	4.0 .1	0.200425	. 0108	0.002165
C_{2}	0.0375	30.068	5.48	0.205629	. 0102	0.00297
C_{3}	0.017	44.094	6.64	0.1128805	. 0082	0.0009256
C_{4}	0	58.12	7.62	0	. 0073	0
C_{5}	0	72.124	8.5	0	. 0065	0
C_{6+}	0.0075	128	11.31	0.084853	. 005	0.0004243
From	et al			5.30399		0.0892079

Mixture atmospheric viscosity $=u^{*}=.017 \mathrm{cp}$ Mixture viscosity at the system temperature
and pressure $=u=.024 \mathrm{cp}$

PABLE: A-38

GAS VISCOSITY
Sampling point D
Cum. N_{2} Inj. $\quad=.815 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=2400$ psi

Comp.	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$\mathrm{M}_{i}^{\frac{1}{2}}$	$Y_{i} M_{i}^{\frac{1}{2}}$	```Atmospheric viscosity u*, cp```	$\mathrm{u}_{i}^{*} Y_{i} \mathrm{M}_{i}^{\frac{1}{2}}$
N_{2}	. 21	28.016	5.29	1.11153	. $0176+$. 0195
C_{1}	. 47	16.068	4.01	1.88	. 0108	. 0204
C_{2}	. 11.45	30.068	5.48	. 628	. 01.02	. 006
C_{3}	. 0925	44.094	6.64	. 614	. 0082	. 005
C_{4}	. 0145	58.12	7.62	. 1105	. 0073	. 0008
C_{5}	. 023	72.124	8.5	. 195	. 0065	. 0013
C_{6+}	. 0755	128	11.31	. 854	. 005	. 004
From	et al.			5.397		. 0577

Mixture atmospheric viscosity $=u^{*}=.0107 \mathrm{cp}$
Mixture viscosity at the system temperature
and pressure $=\mathbf{u}=.041 \mathrm{cp}$

TABLE A-39

GAS VISCOSITY

Sampling point D
Cum. N_{2} Inj.
$=.83 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=2400 \mathrm{psi}$

Comp.	Mole fraction gas, Y_{i}	```Molecular weight Mi```	$M_{i}^{\frac{1}{2}}$	$Y_{i} M_{i}^{\frac{1}{2}}$	```Atmospheric viscosity u_i, cp```	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$
N_{2}	. 3405	28.016	5.29	1.62	. $01.76+$. 028
C_{1}	. 4	16.068	4.01	1.63	. 0108	. 017
C_{2}	. 097	30.068	5.48	. 532	. 0102	. 0054
C_{3}	. 077	44.094	6.64	. 511	. 0082	. 0042
C_{4}	. 008	58.12	7.62	. 061	. 0073	. 00044
C_{5}	. 0165	72.124	8.5	.140	. 0065	. 0009
c_{6+}	. 061	128	11.31	. 69	. 005	. 0035
From Carr et al. 56				5.14		. 05994
	Mixture Mixture and pr	mospheric scosity at ssure $=\mathbf{u}$	scosit the sys .0455	$\begin{aligned} & =u^{\star}= \\ & \text { em temp } \end{aligned}$	$01166 \mathrm{cp}$ ature	

ixture viscosity at the system temperature

TABLE: A-40

GAS VISCOSITY

Sampling point D
Cum. N_{2} Inj. $\quad=\quad .9 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=2400 \mathrm{psi}$

'INBIIF A-41
hIUUID VISCOSITY

Comp.	x_{i}	${ }^{\prime \prime}$	$M_{i}^{1 / 2}$	$\mathbf{u}_{\mathbf{i}}^{*}$ cp	$x_{i} M_{i}^{1 / 2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathbf{i}}^{*} \mathrm{~m}_{\mathrm{i}}^{\frac{1}{2}}$	```Critical volume vei 9m/cm```	${ }^{\mathbf{i}} \mathbf{i}^{\mathbf{v}} \mathbf{c}_{\mathbf{i}}$	$\boldsymbol{x}_{\mathbf{i}} \mathrm{M}_{\mathrm{i}}$	$\mathrm{r}_{\mathrm{c}} \mathrm{m}{ }^{\text {c } K}$	Pc^{\prime} atm	$\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{r}} \mathbf{c}_{\mathbf{i}}$	$\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{p}} \mathrm{c}_{\mathrm{i}}$
N_{2}	. 1843	29.016	5.29	. 0176	. 9755	. 01717	$3.215+$. 5925	5.1633	126.2	33.5	23.2587	6.1743
c_{1}	. 2228	16.068	4.01	. 0108	. 8931	. 0096	6.173	1.375	3.58	191.1	45.18	42.5771	10.204
C_{2}	. 0643	30.068	5.48	. 0102	. 3526	. 0036	4.926	.3167	1.9334	305.5	48.2	19.6437	3.0993
C_{3}	. 0634	44.094	6.64	. 0002	. 421	. 00345	4.545	. 2882	2.7956	370	42.	23.458	2.663
C_{4}	. 0196	50.12	7.62	. 0073	. 1494	. 00109	4.386	. 086	1.1392	425.2	37.5	8.334	. 735
c_{5}	. 0472	72.124	8.49	. 0065	. 401	. 0026.1	4.31	. 2034	3.4043	469.8	33.3	22.1746	1.5718
C_{6+}	. 3984	214.5	14.65	3.0	5.835	17.505	3.551	1.415	05.4568	705.4	17.347	281.0314	6.911
+rinom	N.G.P.				9.0276	17.5425		4.277	103.4726			420.478	31.358

LYQUII VISCOSITY
Sampling Point A
Cum. $\mathrm{N}_{2} \mathrm{Inj}$.
Pressure at sampling point $=3600 \mathrm{psi}$

Comp.	$\mathbf{x}_{\text {i }}$	M_{i}	$M_{i}^{1 / 2}$	\mathbf{u}_{i}^{*} Cp	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}^{1 / 2}$	$x_{i} u_{i}^{*} M_{i}^{3}$	```Critical. volume vci ym/0m3```	${ }^{*}{ }_{i} v^{\prime} c_{i}$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathbf{i}}$	${ }^{T} c^{\text {In }}{ }^{0} \mathrm{~K}$	${ }^{\prime} c^{\prime}$ atm	${ }^{x}{ }^{\prime}{ }^{\prime} \mathbf{c}_{j}$	${ }^{\mathbf{x}}{ }^{\text {p }} \mathbf{c}_{\text {i }}$
N_{2}	. 266	28.016	5.29	. 0176	1.108	. 02478	3.2151	. 8552	7.452	126.2	33.5	33.569	8.911
C_{1}	. 0643	16.068	4.01	. 0108	. 2577	. 00278	6.173	.3969	1.033	191.1	45.8	12.288	2.915
c_{2}	. 0196	30.068	5.48	. 0102	. 1075	. 0011	4.926	. 0965	. 589	305.5	48.2	5.988	. 945
C_{3}	. 00224	44.094	6.64	. 0082	. 1487	. 00122	4.545	. 1018	.988	370	42.	8.288	.941
C_{4}	. 0024	58.12	7.62	. 0073	. 0183	. 00013	4. 386	. 0105	. 139	425.2	37.5	1.020	. 09
C_{5}	. 0107	72.124	8.49	. 0065	.0909	. 00059	4.31	. 0463	. 772	469.8	33.3	5.027	. 356
C_{6+}	. 6146	214.5	14.65	3.0	9.0013	27.004	3.551	2.1824	131.83	705.4	17.347	433.54	10.661
+From	N.G.P.A.				11.0324	27.0340		3.6494	1.42 .803			449.72	24.849

TABIE A-43
LIQUID VISCOSIMY
Sampling Foint B
Cum. $\mathrm{N}_{2} \mathrm{Inj}$.
$=.33 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3200$ psi

Comp.	$\boldsymbol{x}_{\mathbf{i}}$	M_{i}	$M_{i}^{1 / 2}$	UH_{i}^{*} CP	$x_{i} M_{i}^{\frac{1}{2}}$	$x_{i} u_{i 1}^{*} M_{i}^{\prime \frac{1}{2}}$	```Crjtical volume v ym/Cm3```	${ }^{x_{i}}{ }^{v_{c}}$	$\mathbf{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$	${ }^{1} c^{\prime \prime \prime}{ }^{\circ} \mathrm{K}$	${ }^{1} c^{\prime}$, atm	$x_{i} \quad{ }^{\prime \prime} c_{i}$	$\mathrm{X}_{\mathbf{i}} \mathrm{P}_{\mathbf{c}_{\mathbf{i}}}$
N_{2}	. 1326	28.016	5.29	. 0176	. 7019	. 0124	3.2151	. 426	3.715	126.2	33.5	16.734	4.442
C_{1}	. 2581	16.068	4.01	. 0108	1.035	. 0112	6.173	1.593	4.147	191.1	45.8	49.323	11.82 .1
c_{2}	. 1214	30.068	5.48	. 0102	. 6657	. 0068	4.926	. 598	3.650	305.5	40.2	37.088	5.851
C_{3}	. 1178	44.094	6.64	. 0002	. 7822	. 0064	4.545	. 535	5.194	370	42.	43.586	4.948
C_{4}	. 028	58.12	7.62	. 0073	. 2135	. 0016	4.386	.123	1.627	425.2	37.5	11.906	1.05
C_{5}	. 0731	72.124	8.49	. 0065	. 6208	. 0040	4.31	. 315	5.272	469.8	33.3	34.342	2.434
C_{6+}	. 269	214.5	14.65	3.0	3.94	11.819	3.551	. 955	57.7	705.4	17.347	189.753	4.666
+From	N.G.P.A				7.9591	11.8614		4.545	81.305			302.732	35.212

$\mathbf{u}=2.36 \mathrm{cp}$

TABLE \quad-44

LIQUID VISCOSTYY

Sampling point B
Cum. $\mathrm{N}_{2} \mathrm{Inj}$.
B
pressur ${ }^{2}=.42 \mathrm{p} . \mathrm{v}$.

Comp.	${ }^{x_{i}}$	M_{i}	$M_{i}^{3 / 2}$	" cp	$\mathrm{x}_{i} \mathrm{M}_{i}^{1 / 2}$	$x_{i} u_{i}^{*} M_{i}^{1 / 2}$	$\begin{gathered} \text { Critical } \\ \text { volume } \\ \text { vci } \\ \text { gm/cm } \end{gathered}$	${ }^{x_{i}}{ }^{v} c_{i}$	$\boldsymbol{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$	$\mathrm{T}_{\mathrm{C}} \mathrm{m}^{\circ} \mathrm{K}$	$\mathrm{P}_{\text {c }}$, atm	$\mathbf{x}_{i} \mathrm{~T}_{c_{i}}$	$\mathrm{x}_{1} \mathrm{P}_{\boldsymbol{c}_{i}}$
N_{2}	. 1446	28.016	5.29	. 0176	. 765	. 0135	3.2151	. 465	4.051	126.2	33.5	18.249	4.844
C_{1}	. 1913	16.068	4.01	. 0108	. 7668	. 0083	6.173	1.181	3.074	191.1	45.8	36.557	8.762
c_{2}	. 121	30.068	5.48	. 0102	. 663	.0068	4.926	. 596	5.335	305.5	48.2	36.966	5.832
C_{3}	. 1234	44.094	6.64	. 0002	. 819	. 0067	4.545	. 561	5.141	370	42.	45.658	5.183
C_{4}	. 018	58.12	7.62	. 0073	. 137	. 001	4.396	. 079	1.046	425.2	37.5	7.654	0.675
C_{5}	.0482	72.124	8.49	. 0065	.4093	. 0027	4.31	. 208	3.476	169.8	33.3	22.644	1. 605
C_{6+}	. 3555	214.5	14.65	3.0	5.207	15.62	3.551	1.262	76.255	705.4	17.347	250.770	6. 167
H'r	G P	59			8.7671	15.659		4.352	90.678			418.498	33.068

$u=2.5$
[IMBIEE A-45
LIQUIU VISCOSITY
Sampling point B
Cum. N_{2} Inj. $=.46 \mathrm{p} . \mathrm{v}$
pressure at sampling point $=3200$ psi

Comp.	x_{i}	M_{i}	$M_{i}^{1 / 2}$	$\begin{aligned} & u_{1}^{*} \\ & c p \end{aligned}$	$x_{i} M_{i}^{1 / 2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{u}_{i}^{*} \mathrm{M}_{i}^{\frac{1}{2}}$	```Critical volume VCj gin/cmil```	$\mathrm{x}_{\mathrm{i}} \mathrm{v}_{c_{i}}$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\mathrm{Tr}_{\mathrm{c}} \mathrm{mm}{ }^{\circ} \mathrm{K}$	P_{c}, atin	$\mathrm{x}_{\mathrm{i}}{ }^{\prime \prime} \mathbf{\prime}^{\prime} \mathbf{i}_{\mathbf{i}}$	$\mathrm{x}_{\mathrm{i}} \mathrm{P}_{\mathrm{c}_{i}}$
N_{2}	.1493	23.016	5.29	. 0176	. 7902	. 0139	$3.215+$. 4800	4.183	126.2	33.5	18.842	5.002
C_{1}	.1396	16.068	4.01	. 0108	. 5596	. 006	6.173	. 8618	2.243	191.1	45.8	26.678	6.394
C_{2}	.1209	30.068	5.48	. 0102	. 6629	. 0068	4.926	. 5956	3.635	305.5	48.2	36.935	5.827
C_{3}	. 1283	44.094	6.64	. 0082	. 852	. 007	4.545	. 5831	5.657	370	42.	47.471	5.389
C_{4}	. 0068	58.12	7.62	. 0073	. 0518	. 0004	4.386	. 0298	. 3952	425.2	37.5	2.891	0.255
C_{5}	. 0219	72.124	8.49	. 0065	. 186	. 0012	4.31	. 0944	1.5795	469.8	33.3	10.289	0.729
C_{6+}	. 4332	214.5	14.65	3.0	6.345	19.034	3.551	1.5303	92.9214	705.4	17.347	305.579	7.515
+Erom	N.G.P.	59			9.4475	19.0693		4.183	110.6141			448.685	31.111

$$
u=2.827 \mathrm{cp}
$$

'UnBLF: $\boldsymbol{n - 4 G}$
LIQU11) VISCOSITY

comp.	x_{i}	M_{i}	$M_{i}^{\frac{1}{2}}$	$\mathbf{u}_{\text {í }}^{*}$ Cl	$\mathrm{x}_{i} \mathrm{M}_{i}^{\mathrm{l}_{2}}$	$\mathrm{x}_{\mathrm{i}} \mathrm{u}_{i}^{*} \mathrm{M}_{\mathbf{i}}^{1 / 2}$	```Critical volume * ci ym/Cm3```	${ }^{\text {i }}{ }^{\mathbf{v}} \mathbf{c}_{i}$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathbf{i}}$	$\mathrm{P}^{\mathrm{m}}{ }^{\circ} \mathrm{K}$	$\mathrm{P}_{\mathrm{c}}, \mathrm{atm}$	$\mathrm{x}_{\mathrm{i}}{ }^{\prime} \mathbf{F}_{\mathbf{c}}$	${ }^{\mathbf{x}}{ }^{p}{ }_{c}{ }_{i}$
N_{2}	. 2318	28.016	5.29	. 0176	1.2269	. 0216	$3.215 t$. 7452	6.494	126.2	33.5	29.25	7.765
C_{1}	. 0357	16.068	4.01	. 0108	. 1431	. 0015	6.173	. 2204	. 574	191.1	45.8	6.822	1.635
c_{2}	. 0065	30.068	5.48	.0102	. 0356	. 0004	4.926	. 0320	. 195	305.5	48.2	1.986	. 313
C_{3}	. 002	44.094	6.64	. 0082	. 01.33	. 0001	4.545	. 0091	. 088	370	42.	0.74	. 084
C_{4}	0	58.12	7.62	. 0073	0	0	4.386	0	0	425.2	37.5	0	0
C_{5}	0	72.124	8.49	. 0065	0	0	4.31	0	0	469.8	33.3	0	0.
c_{6+}	. 724	214.5	14.65	3.0	10.604	31.811	3.551	2.5709	155.298	705.4	17.347	510.71	12.559
+Froin	N.G.P.A	59			12.0229	31.8346		3.5776	162.649			549.508	22.356

[^6]

PABIEE A－48

LIQUID VISCOST＇IY

Sampling point C
Cum．N_{2} Inj．
Pressure at sampling point $=2.57 p . v$.

Comp ．	$\boldsymbol{x}_{\mathbf{i}}$	M_{i}	M_{i}^{3}	$\begin{aligned} & \mathbf{u}_{i}^{*} \\ & \mathrm{cp} \end{aligned}$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathbf{i}}^{1 / 2}$	$x_{i} u_{i}^{*} M_{i}^{\frac{1}{2}}$	```Critical volume v ym/\mp@subsup{\textrm{cm}}{}{3}```	$\mathrm{x}_{\mathbf{i}} \mathbf{v}_{\mathbf{c}_{i}}$	$\mathbf{x}_{\mathbf{i}}{ }^{\mathbf{M}} \mathbf{i}$	${ }^{\text {q }} \mathrm{c}^{\text {an }}{ }^{0} \mathrm{~K}$	${ }^{1} c_{c}{ }^{\prime}$ atim	$\mathrm{x}_{\mathbf{i}}{ }^{\mathbf{T}} \mathbf{c}_{\mathbf{i}}$	$\mathrm{x}_{\mathrm{i}} \mathrm{P}_{\mathrm{c}_{i}}$
N_{2}	． 844	28.016	5.29	． 0176	． 4467	． 0079	3.2151	． 27.13	2.36	126.2	33.5	10.65	2.83
c_{1}	． 2785	16.068	4.01	． 0108	1.1164	． 0121	6.173	1.719	4.47	191．1	45.8	53.22	12.76
C_{2}	.1457	30.068	5.48	． 0102	.7989	． 0081	4.926	.71 .77	4.38	305.5	48.2	44.51	7.02
c_{3}	． 1675	44.094	6.64	． 0082	1． 1122	． 0091	4.545	． 7613	7.39	370	42.	61.98	7.04
C_{4}	． 0486	58.12	7.62	． 0073	． 3705	． 0027	4.386	． 2132	2.82	425.2	37.5	20.66	1.82
C_{5}	． 1022	72.124	8.49	． 0065	． 8679	． 0056	4.31	． 4405	7.37	469．8	3.3 .3	48.01	3.40
c_{6+}	． 1.749	214.5	14.65	3.0	2.562	7.685	3.551	． 6211	37.52	705.4	17.347	123.37	3.03
triom	N．G．P．A	）			7.2746	7.7305		4.1441	66.31			362.1	37.9

[^7]TNDLE $n-19$
HIQUID VISCOSITY

Sampl Cum. press	$\begin{aligned} & \text { ng loir } \\ & \text { 2 Inj. } \\ & \text { ire at. } \end{aligned}$	$t \mathrm{c}$ ampling p	$\begin{aligned} & = \\ \text { oint } & = \end{aligned}$	$\begin{array}{r} 6,62 \\ 2800 \end{array}$									
Comp.	$\mathrm{x}_{\mathbf{i}}$	M_{i}	$M_{i}^{1 / 2}$	$\begin{aligned} & \mathbf{u}_{\mathbf{i}}^{*} \\ & \mathrm{cp} \end{aligned}$	$x_{i} M_{i}^{1 / 2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathbf{i}}^{*} \mathrm{M}_{\mathrm{i}}^{\frac{1}{2}}$	```Critical volume * ym/Cm3```	${ }^{\text {i }}{ }^{\prime}{ }^{\prime} c_{i}$	$\mathbf{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$	${ }^{\mathbf{T}} \mathbf{c}^{\text {It }}{ }^{\text {a }} \mathrm{K}$	${ }^{\prime} c^{\prime}$ atm	$\mathrm{x}_{\mathrm{i}}{ }^{\prime \prime}{ }^{\prime} \mathrm{c}_{i}$	$\mathbf{x}_{\mathbf{i}}{ }^{\mathbf{p}} \mathbf{c}_{\mathbf{i}}$
N_{2}	. 0883	22.016	5.29	. 0176	. 4674	. 0082	$3.215+$.2839	2.47	126.2	33.5	11.143	2.96
c_{1}	.2560	16.068	4.01	. 0108	1.029	. 0111	6.173	1.585	4.13	191.1	45.8	49.07	11.76
c_{2}	. 1446	30.068	5.48	. 0102	. 7929	. 0081	4.926	.712	4.35	305.5	48.2	44.18	6.97
C_{3}	. 1703	44.094	6.64	. 0082	1.1308	. 0093	4.545	. 774	7.51	370	42.	63.01	7.15
C_{4}	.048]	58.12	7.62	. 0073	. 3187	. 0023	4.38G	. 183	2.43	425.2	37.5	17.77	1.57
C_{5}	. 0968	72.124	0.49	.0065	. 8221	. 0053	4.31	. 11%	6.98	469.8	33.3	45.48	3.22
c_{6+}	. 2014	214.5	14.65	3.0	2.95	8.849	3.551	. 715	43.2	705.4	17.347	142.0%	3.49
+From	N.G.P.				7.5109	8.8933		4.6699	71.07			372.723	37.12

$u=1.86 \mathrm{cp}$

TABLE A-50

LIQUID VISCOSIIY

Sampl Cum. Press	$\begin{aligned} & \text { ing roi } \\ & N_{2} \text { inj. } \\ & \text { ure at: } \end{aligned}$	ampling	$\begin{array}{r} = \\ = \\ \operatorname{aint}= \end{array}$	$\begin{array}{r} 64 \mathrm{p} \\ 2800 \end{array}$									
Comp.	x_{i}	M_{i}	$\mathrm{Mi}^{\frac{1}{2}}$	\mathbf{u}_{i}^{*} Cl	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}^{\mathbf{1}}$	$\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathbf{i}}^{*} \mathrm{M}_{\mathbf{i}}^{\mathbf{1}}$	```Critical volume vei ym/cm```	${ }^{x}{ }_{i}{ }^{v} c_{i}$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	${ }^{\mathbf{T}} \mathrm{C}^{\mathbf{1 \prime \prime}}{ }^{\text {o }} \mathrm{K}$	P_{6}, atm	$\mathbf{x}_{\mathbf{i}}{ }^{\prime \prime} \mathbf{c}_{\mathbf{i}}$	$x_{i}{ }^{\mathrm{r}} \mathrm{c}_{\mathrm{i}}$
N_{2}	. 1042	28.016	5.29	. 0176	. 5515	. 0097	$3.215+$. 335	2.919	126.2	33.5	13.15	3.49
c_{1}	. 202	16.068	4.01	. 0108	. 8097	.0143	6.173	1.247	3.246	191.1.	45.8	38.6	9.25
C_{2}	. 1263	30.068	5.48	. 0102	. 6926	.0073	4.926	. 622	3.798	305. 5	48.2	38.58	6.09
C_{3}	. 1525	44.094	6.64	. 0082	1.013	. 0083	4.545	. 693	6.724	370	42.	56.43	6.4
C_{4}	. 022	58.12	7.62	. 0073	. 1677	. 0012	4.386	. 096	1.279	425.2	37.5	9.35	. 825
C_{5}	. 0749	72.124	8.49	. 0065	. 6361	. 0041	4.31	. 323	5.402	469.8	3.3 .3	35.19	2.49
C_{6+}	.3181	214.5	14.65	3.0	4.6588	13.9765	3.551	1.1 .3	G8. 23	705. 4	17.347	224.39	5. 518
+From	N.G.P.				8.2294	14.0212		4.446	91.598			415.69	34.063

PABIE: $n-51$

LIQUIU VISCOSIIY
Sampling Point C
Cum. N_{2} Inj.
Pressure at sampling point $=2800 \mathrm{psi}$

Comp.	x_{i}	M_{i}	$M_{i}^{\frac{1}{2}}$	$\mathbf{u}_{\mathbf{i}}^{\boldsymbol{*}}$ CP	$x_{i} M_{i}^{1 / 2}$	$\mathrm{x}_{i} \mathrm{u}_{i}^{*} \mathrm{M}_{\mathrm{i}}^{1 / 2}$	```Critical volmme * Ci gm/\mp@subsup{\textrm{cm}}{}{3}```	${ }^{x}{ }_{i}{ }^{\prime} c_{i}$	$\mathrm{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$	${ }^{\prime} \mathrm{c}^{\text {m }}$ [${ }^{\circ} \mathrm{K}$	p_{c}, atm	$\mathrm{x}_{\mathrm{i}}{ }^{\prime \prime} \mathbf{c}_{\mathbf{i}}$	${ }^{\mathbf{x}}{ }^{p}{ }^{\prime} \mathbf{c}_{\mathbf{i}}$
N_{2}	. 1947	28.016	5.29	. 0176	1.031	. 0181	3.215%	. 626	5.454	126.2	33.5	24.57	6.52
C_{1}	. 278	16.068	4.01	. 0108	. 1114	. 0012	6.173	. 1716	.447	191.1	15.8	5.31	1.27
c_{2}	. 0499	30.068	5.48	. 0102	. 2736	. 0028	4.926	. 246	1.5	305.5	18.2	15.24	2.41.
C_{3}	. 0357	44.094	6.64	. 0082	. 2371	. 0019	4.545	. 1623	1.57	370	42.	13.31	1.5
C_{4}	0	58.12	7.62	. 0073	0	0	4.386	0	0	425.2	37.5	0	0
c_{5}	0	72.124	8.49	.0065	0	0	4.31.	0	0	469.8	33.3	0	0
C_{6}	. 6919	214.5	14.65	3.0	10.1334	30.4	3. 551	2.4569	148.41	705.1	17.317	480.07	12.00
+r'rom	G. P.	59			11. 7865	30.424		3.6628	15\%.381			546.4	23.7

$u=3.088 \mathrm{cp}$

TNB1,E A-52
LIQUID VISCOSTIY

Comp.	x_{i}	M_{i}	$M_{i}^{\frac{1}{2}}$	$\mathbf{u}_{\mathbf{i}}^{*}$ cp	$x_{i} \mathrm{~N}_{\mathbf{i}}^{1 / 2}$	$\mathrm{x}_{\mathrm{i}} \mathbf{u}_{\mathbf{i}}^{\boldsymbol{H}} \mathrm{M}_{\mathbf{i}}^{1 / 2}$	```Critical volume vci gm/Cm```	$\mathbf{x}_{\mathbf{i}}{ }^{\boldsymbol{v}} \mathbf{c}_{\mathbf{i}}$	$\mathbf{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$	$\mathrm{T}^{\text {ciI }}{ }^{\circ} \mathrm{K}$	$P^{\prime \prime}$ atin	$\mathrm{x}_{\mathrm{i}}{ }^{\prime \prime} \mathrm{c}_{\mathrm{i}}$	$\mathrm{x}_{\mathrm{i}} \mathrm{P}^{\mathbf{c}} \mathbf{i}$
N_{2}	. 068	28.016	5.29	. 0176	. 36	.0063	3.2151	. 2186	1.905	126.2	33.5	0.58	2.28
C_{1}	. 2764	16.068	4.01	. 0108	1.108	. 012	6.173	1.7062	4.44	191.1	45.8	52.85	12.66
C_{2}	. 1487	30.068	5.40	. 0102	. 8154	. 0083	4.926	. 7325	4.47	30.5 .5	48.2	45.43	7.17
C_{3}	. 1927	44.094	6.64	. 0082	1.28	. 0105	4.545	. 8758	8.5	370	42.	55.02	8.09
C_{4}	. 0518	58.12	7.62	. 0073	. 3949	. 0029	4.386	. 2272	3.01	425.2	37.5	22.03	1.94
C_{5}	. 1437	72.124	8.49	. 0065	1.220	. 0079	4.31	. 6193	10.36	469.8	33.3	67.51	4.79
C_{64}	. 11187	214.5	14.65	3.0	1.7384	5.2154	3.551	. 4215	25.46	705.4	17.347	83.73	2.06
+From	N.G.P.A				6.9167	5.2633		4.8011	5B. 145			335.12	38.99

TNBLE $n-53$
LIQUID VISCOSITY
Sampling Point D
Cum. N_{2} Inj.
.83 p.v.
Pressure at sampling point $=2400$ psi.

Comp.	$\mathbf{x}_{\boldsymbol{i}}$	Mi_{1}	$M_{i}^{3 / 2}$	$\mathbf{u}_{\mathrm{i}}^{*}$ cp	$\mathrm{X}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}^{1 / 2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathbf{i}}^{*} \mathrm{M}_{\mathbf{i}}^{1 / 2}$	```Critical volume vci gm/\mp@subsup{Mm}{}{3}```	$x_{i}{ }^{v} c_{i}$	$\mathbf{x}_{\mathbf{i}} \mathbf{M}_{\mathbf{i}}$	$\mathrm{c}^{\prime \prime \prime}{ }^{\prime \prime}{ }^{\circ} \mathrm{K}$	$\mathrm{P}_{\text {c }}$, atin	$\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{T}} \mathrm{c}_{i}$	
N_{2}	. 0782	28.016	5.29	. 0176	. 4139	. 0073	$3.215+$. 2514	2.191	126.2	33.5	9.87	2.62
c_{1}	. 2162	16.068	4.01	. 0108	. 8666	. 0094	6.173	1.3346	3.474	1.91 .1	45.8	41.32	9.9
c_{2}	. 1276	30.068	5.48	. 0102	. 7	. 0071	4.926	. 6286	3.837	305.5	48.2	38.98	6.15
C_{3}	. 1711	44.094	6.64	. 0082	1.1753	. 0096	4.545	. 7776	7.544	370	42.	63.31	7.19
C_{4}	. 03.1	58.12	7.62	. 0073	. 2363	. 0017	4.386	. 136	1.801	425.2	37.5	13.18	1.16
C_{5}	. 1222	72.124	8.49	. 0065	1.038	. 0067	4.31	. 5267	0.81	469.8	33.3	5\%.11	4.07
C_{6+}	. 253%	214.5	14.65	3.0	3.716	11.147	3.551	. 901	54.42	705.4	17.347	178.96	4.4
+Froil	G.P	59			8.1461	11.1880		4.5569	42.077			403.03	35.49

$u=1.983 \mathrm{cp}$

LIQUID VISCOSITY

```
Sampling Point.
Cun. N N2 Inj. 
```

Comp.	x_{i}	M_{i}	$\mathrm{Mi}^{\frac{1}{2}}$	$\begin{aligned} & u_{i}^{*} \\ & \mathrm{cp} \end{aligned}$	$x_{i} M_{i}^{\text {/2, }}$	$x_{i} u_{i}^{*} M_{i}^{1 / 2}$	$\begin{gathered} \text { Critical } \\ \text { volume } \\ \text { vei }^{\prime} \\ \text { ym/cmi } \\ \hline \end{gathered}$	$\mathrm{x}_{\mathrm{i}}{ }^{\mathrm{v}} \mathrm{c}_{\mathrm{i}}$	$\mathbf{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$	${ }^{\prime \prime} \mathrm{c}^{\prime \prime \prime}{ }^{\circ} \mathrm{K}$	${ }^{\text {P }}$ c ${ }^{\text {atm }}$	${ }^{*}{ }^{\prime}{ }^{\prime} \mathbf{c}_{i}$	
N_{2}	. 1427	28.016	5.29	. 0176	. 7553	. 0.133	$3.215+$. 4588	4.00	126.2	33.5	18.01	4.78
c_{1}	. 0447	16.068	4.01	. 0108	. 1792	. 0019	6.173	. 276	. 718	191.1	45.8	8.54	2.05
c_{2}	.0407	30.068	5.48	. 0102	. 2232	. 0023	4.926	. 2005	1.224	305.5	48.2	12.15	1.96
C_{3}	. 0399	44.094	6.64	. 0082	. 2649	. 0022	4.545	. 1813	1.759	370	42.	14.763	1.68
c_{4}	0	58.12	7.62	. 0073	0	0	4.306	0	0	425.2	37.5	0	0
c_{5}	0	72.121	8.49	. 0065	0	0	4.31	0	0	469.8	33.3	0	0
c_{6+}	. 732	214.5	14.65	3.0	10.721	32.162	3.551	2.599	157.01	705.4	17.347	516.35	12.7
+From	N.G.p.				12.1436	32.1817		3.7156	164.711			570.093	23.17

[^8]TABCIE A-55

SURFACE I'ENSION
Sampling point C
Cum. N_{2} Inj. $==.53 \mathrm{P} . \mathrm{V}$.
Pressure at sampling point $=2800$ psi

(1) Comp	(2) x_{i}	(3) Y_{i}	$\mathrm{x}_{\mathrm{i}} \stackrel{\mathrm{~F}^{(4)} \mathrm{I}_{\perp}}{\mathrm{M}_{\mathrm{L}}}$	$y_{i} \frac{\rho_{v}}{M_{v}}$	$\begin{gathered} (6) \\ (4)-(5) \end{gathered}$	```(7) Parachor P```	$\begin{gathered} (8) \\ (6) \times(7) \end{gathered}$
N,	. 0759	. 205	. 0005	. 6023	-. 0018	41^{+}	-. 0752
Cl_{1}	. 288	. 455	. 002	. 0052	$-.003$	77	-. 249
C,	. 1463	. 1185	. 001	. 0014	$-.00036$	108	-. 0388
C_{3}	.1688	. 0945	. 0011	. 0011	. 000068	150	. 0102
C_{4}	. 0571	. 02	. 0003	. 00023	. 000016	190	. 0304
C_{5}	. 113	. 026	. 00077	. 000297	. 00047	232	. 11
C_{6+}	. 1539	. 0805	. 0010	. 0009	. 00013	548.2	. 07
+l'rom	atze	$1 .^{53}$.144

Surface tension $=.0004$ dynes $/ \mathrm{cm}$.

TABLE: A-56

SURFACE TENSION
Sampling point C
$\begin{array}{ll}\text { Cum. } N_{2} \text { Inj. } & =662 \mathrm{p} . \mathrm{v} . \\ \text { Pressure at sampling point } & =2800 \mathrm{psi} .\end{array}$

(1) Comp.	(2) x_{i}	(3) Y_{i}	$\begin{gathered} \quad(4) \\ x_{i} . \\ { }^{\left[\mathrm{P}_{1}\right.}{ }_{1} \end{gathered}$	$y_{i} \frac{\rho_{v}}{M_{v}}$	$\begin{gathered} (6) \\ (4)-(5) \end{gathered}$	(7) Parachor ${ }^{P}$ chi.	$\begin{gathered} (8) \\ (6) \times(7) \end{gathered}$
N_{2}	. 0883	. 2604	. 00058	. 003	-. 0024	41^{+}	-. 0996
c_{1}	. 2568	. 416	. 00016	. 005	$-.003$	77	-. 24
C_{2}	.1446	. 1168	. 001	. 00.13	-. 0004	3.08	-. 043
C_{3}	. 1703	. 093	. 0011	. 001	$-.00004$	150	. 0064
C_{4}	. 0418	. 0142	. 00027	. 0002	. 00011	190	. 021
C_{5}	. 0968	. 021	. 0006	. 0002	. 0004	232	. 091
C_{6+}	. 2014	. 0786	. 0013	. 001	. 00041	548.2	. 227
+6rom	atz et	1.53					. 1817

Surface tension $=.001$ dynes $/ c m$.
'IABLE A-57

SURFACE THNSTION
Sampling point C
Cunt. N_{2} Inj. $\quad=.64 \mathrm{p} \cdot \mathrm{v}$.
pressure at sampling point $=2800$ psi

(1) comp.	(2) x_{i}.	(3) y_{i}.	$\mathrm{x}_{\mathrm{i}} \stackrel{(4)}{\stackrel{\rho}{\mathrm{I}}^{M_{\mathrm{S}}}}$	$\begin{gathered} \quad \begin{array}{c} (5) \\ Y_{i} \\ M_{v}^{M} \end{array} \end{gathered}$	$\begin{gathered} (6) \\ (4)-(5) \end{gathered}$	(7) Parachor ${ }^{P_{c h i}}$	$\begin{gathered} (8) \\ (6) \times(7) \end{gathered}$
N_{2}	. 1176	. 388	. 0007	. 0042	-. 0035	41^{+}	-. 1429
C_{1}	. 2059	. 35	. 0012	. 0038	-. 00256	77	-. 1968
C_{2}	. 1238	. 099	. 0007	. 0011	-. 00034	108	-. 0363
C_{3}	.1481	. 077	. 00087	. 00083	. 00004	150	. 00657
C_{4}	. 0215	. 007	. 00013	. 000075	. 00005	190	. 00976
C_{5}	. 0718	. 014	. 00042	. 00015	. 0003	232	. 006322
$\mathrm{C}_{6 \%}$. 3113	. 065	. 0018	. 0007	. 00114	548.2	. 6223

[^9]
TABLE A-58
 SURPACE TENSION

'IABLE A-59

K-VALUES

Sampling point A
Cum. N_{2} Inj. $\quad=.14 \mathrm{P} . \mathrm{v} . \quad \mathrm{P}_{\mathrm{K}}=6000 \mathrm{psi}$
Pressure at sampling point $=3600$ psi

$$
\mathrm{P}_{\mathrm{K}}=6000 \mathrm{psi}
$$

Comp.	$\mathrm{MW}_{\mathbf{i}}$	b	${ }^{T}$	P^{\prime}	Y_{i}	K_{i}	x_{i}	$\mathrm{x}_{\mathrm{i}}{ }^{\text {MWJ }}{ }_{i}$	$\mathrm{T}_{\mathrm{c}}\left(\mathrm{X}_{\mathrm{i}} \cdot \mathrm{MW} \mathrm{i}^{\prime}\right)$	$\mathrm{P}_{\mathrm{C}}\left(\mathrm{X}_{\mathrm{i}} \cdot \mathrm{MW} \mathrm{i}_{\mathrm{i}}\right)$
N_{2}	28.016	552.05	-	-	50.5	-	18.63	-	-	-
Cl_{1}	16.068	808	-116.7	667.8	35.2	1.58	22.28	3.58	-417.79	667.8
C_{2}	30.068	1415	90.09	707.8	5.4	. 840	6.43	1.93	173.87	1366.054
C_{3}	44.096	1792	206	616.3	3.9	. 615	6.34	2.8	576.8	1725.64
C_{4}	58.12	2129	305.65	550.7	0.9	. 46	1.96	1.14	348.44	627.798
C_{5}	72.124	2473	385.7	488.6	1.5	. 318	4.72	3.4	1311.38	1661.24
C_{6-1}	214.5	4428	81.0	255	2.6	. 6653	39.84	85.46	69222.6	21792.3

'IABLE A-60

K-VALums

Sampling point A
$\begin{array}{lll}\text { Cum. } \mathrm{N}_{2} \text { Inj. } & =.29 \mathrm{p} \cdot \mathrm{V} . & \mathrm{P}_{\mathrm{K}}=7000 \mathrm{psi} \\ \text { Pressure at sampling point } & =3600 \text { psi }\end{array}$
Pressure at sampling point $=3600$ psi

comp.	$M W_{i}$	b	I_{C}	P_{c}	Y_{i}	K_{i}	x_{i}	$\mathrm{x}_{\mathrm{i}} \cdot \mathrm{MW}_{\mathbf{i}}$	$T_{c}\left(x_{i} \cdot M W_{i}\right)$	$\mathrm{P}_{\mathrm{C}}\left(\mathrm{x}_{\mathrm{i}} \cdot \mathrm{MW}_{\mathrm{i}}\right)$
N_{2}	28.016	552.05	-	-	85.0	-	26.6	-	-	-
C_{1}	16.068	808	-116.7	667.8	10.8	1.68	6.43	1.03	-120.20	687.834
C_{2}	30.068	1415	90.09	707.8	1.6	. 817	1.96	0.59	53.15	417.602
Cl_{3}	44.096	1792	206	616.3	1.3	. 58	2.24	0.99	203.94	610.137
C_{4}	50.12	2129	305.65	550.7	. 1	. 418	. 24	. 14	42.79	77.098
C_{5}	72.124	2473	385.7	488.6	. 3	. 28	1.07	. 77	297	376.222
$\mathrm{C}_{6}{ }^{+}$	214.5	4428	810	255	. 9	. 015	61.46	131.8	106758	33609

TABLE A-61

K-VALUES

Sampling point B
Cum. N_{2} Inj. $=.33 \mathrm{P} . \mathrm{V}$.
Pressure at sampling point $=3200 \mathrm{psi}$.

comp	MW_{1}	b	${ }^{1}$	${ }^{p}$	y_{i}	K_{i}	$\mathbf{x}_{\mathbf{i}}$	$\mathrm{x}_{\mathrm{i}} \cdot \mathrm{MW}_{\mathrm{i}}$	${ }^{\prime} \mathrm{I}_{\mathrm{c}}\left(\mathrm{X}_{\mathrm{i}} \cdot \mathrm{MW} \mathrm{S}_{\mathrm{i}}\right)$	$\mathrm{P}_{\mathrm{C}}\left(\mathrm{x}_{\mathrm{i}} \cdot \mathrm{MW} \mathrm{i}_{\mathrm{i}}\right)$
N_{2}	28.016	552.05	-	-	35.8	2.7	13.26	-	-	-
C_{1}	16.068	808	-116.7	667.8	40	1.55	25.81	4.15	-484.31	2771.37
C_{2}	30.068	1415	90.09	707.8	10.2	. 84	12.14	3.65	328.83	2583.47
C_{3}	44.096	1792	206	61.6 .3	6.95	. 59	11.78	5.19	1069.14	3198.6
C_{4}	58.12	21.29	305.65	550.7	1.15	. 41	2.8	1.63	498.21	897.64
C_{5}	72.124	2473	385.7	488.6	1.9	. 26	7.31	5.27	2032.64	2574.92
C_{6+}	214.5	4428	810	255	4	. 1487	26.9	57.7	46737	14713.5

TABLE A-62

K-VALUES

Comp.	$\mathrm{MW}_{\mathbf{j}}$	b	${ }^{1}$	P_{C}	Y_{i}.	K_{i}	x_{i}	$\mathrm{x}_{\mathrm{j}} \cdot \mathrm{MW}_{\mathrm{i}}$	$\mathrm{T}_{\mathrm{C}}\left(\mathrm{X}_{\mathrm{i}} \cdot \mathrm{MW} \mathrm{i}_{\mathrm{i}}\right)$	${ }^{P} c_{c}\left(x_{i} \cdot M W_{i}\right)$
N_{2}	28.016	552.05	-	-	47	3.25	14.46	-	-	-
Cl_{1}	16.068	808	-116.7	667.8	30.6	1.6	19.13	3.07	-358.27	2050.15
C_{2}	30.068	1415	90.09	707.8	9.8	. 81	12.1	3.64	327.93	2576.39
C_{3}	44.096	1792	206	616.3	6.9	. 559	12.34	5.44	1120.64	3352.67
C_{4}	58.12	21.29	305.65	550.7	. 69	. 383	1.8	1.05	320.93	578.24
C_{5}	72.124	2473	385.7	488.6	1.1	. 238	4.62	3.33	1284.38	1627.04
$\mathrm{C}_{6} \mathrm{H}$	214.5	4428	810	255	3.91	. 11	35.55	76.25	61762.5	19443.75
								92.78	64458	29628

TABLE A-63

K-VALUES

Sampling point D
Cun. N_{2} Tnj. $=0.83 \mathrm{P} . \mathrm{V} . \quad \mathrm{P}_{\mathrm{K}}=5000 \mathrm{psi}$
Pressure at sampling point $=2400 \mathrm{psi}$

Comp	MW_{i}	b	T_{c}	P_{C}	Y_{i}	K_{i}	x_{i}.	$\mathrm{x}_{\mathrm{i}} \cdot \mathrm{MW}_{\mathbf{i}}$	${ }^{\prime} \mathrm{c}_{\mathrm{c}}\left(\mathrm{X}_{\mathrm{i}} \cdot \mathrm{MW} \mathrm{S}_{\mathrm{i}}\right)$	$P_{C}\left(X_{i} \cdot M W_{i}\right)$
N_{2}	28.016	552.05	-	-	. 3405	4.3	0.0782	-	-	-
C_{1}	16.068	808	-116.7	667.8	. 40	1.85	. 2162	3.47	-404.95	2317.27
C_{2}	30.068	1415	90.09	707.8	0.097	. 76	. 1276	3.837	345.68	2715.83
C_{3}	44.096	1792	206	616.3	. 077	. 45	. 1711	7.544	1554.06	4649.37
C_{4}	58.12	2129	305.65	550.7	. 008	. 26	0.031	1.802	550.78	992.36
C_{5}	72.124	2473	385.7	488.6	. 0165	. 135	. 1222	8.814	3399.56	4306.52
C_{6-1}	214.5	4428	8.10	255	0.061	-	. 25.37	54.419	44079.39	13876.84

CABLE A-64

K-VALUES

Sampling point D
Cun. N_{2} Inj.
$\begin{aligned} & =9 \mathrm{p} . \mathrm{V} . \quad \quad \mathrm{P}_{\mathrm{K}}=7000 \text { psi }\end{aligned}$
Pressure at sampling point $=2400$ psi

Comp	MW_{i}	b	${ }^{1}$	${ }^{P}$	Y_{i}	K_{i}.	${ }_{\text {x }}$	$\mathrm{x}_{\mathrm{i}} \cdot \mathrm{MW}_{\mathbf{i}}$	$\mathrm{T}_{\mathrm{C}}\left(\mathrm{X}_{\mathbf{i}} \cdot M W_{j}\right)$	$\mathrm{P}_{\mathrm{C}}\left(\mathrm{x}_{\mathrm{i}} \cdot \mathrm{MW} \mathrm{i}_{\mathrm{i}}\right)$
N_{2}	28.016	552.05	-	-	. 8535	-	. 1427	-	-	-
C_{1}.	16.068	808	-116.7	667.8	. 095	2.125	. 0447	0.718	-83.791	479.48
C_{2}	30.068	1415	90.09	707.8	. 0295	. 725	0.0407	1.224	110.27	866.367
C_{3}	44.096	1792	206	616.3	0.016	. 401	0.0399	1.759	362.354	1084.072
C_{4}	58.12	2129	305.65	550.7	0	. 235	0	0	0	0
C_{5}	72.124	2473	385.7	488.6	0	. 125	0	0	0	0
C_{61}	214.5	4428	810	255	0.006	0.0082	. 732	157.014	127181.34	40038.57

APPENDIX B

DATA AND RESULTS OF THE SECOND RUN

TABLE B-1

GAS DENSITY

Sampling Point A
$\begin{array}{ll}\text { Cum. } \mathrm{N}_{2} \text { Inj. } & =.172 \mathrm{p} . \mathrm{v} \\ \text { Pressure at sampling point } & =4400 \mathrm{psi}\end{array}$
Pressure at sampling point $=4400$ psi

Comp.	Mole fraction gas, Y_{i}	```Critical temp., TM, 趷```	Critical pressure, $\mathrm{P}_{\mathrm{c}}, \mathrm{psi}$	```Molecular weight Mi```	$Y_{i}{ }^{\prime \prime}{ }^{\prime}{ }_{i}$	$Y_{i}{ }^{P}{ }_{c}$	$Y_{i} M_{i}$
N_{2}	. 4245	227	492.2	28.016	96.3615	208.939	11.893
C_{1}	. 40	343.2	673.1	16.068	137.28	269.24	6.4272
C_{2}	. 066	549.2	708.3	30.068	36.247	46.7478	1.9845
C_{3}	. 047	666	617.4	44.094	31.302	29.018	2.0724
C_{4}	. 0115	765.7	550.1	58.12	8.8056	6.326	. 6684
C_{5}	. 019	846.2	489.8	72.124	16.078	9.306	1.3704
C_{6+}	. 032	1073+	$334+$	128.0	34.336	10.688	4.096
${ }^{+} \mathrm{From}$	lark 58				360.4	580.26	28.5119

```
Gas Density = 23 1b/ft }\mp@subsup{}{}{3
```


PABLE B-2

GAS DENSITY

Sampling Point A
Cum. N_{2} Inj. $=.26 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=4400 \mathrm{psi}$

Comp .	Mole fraction gas, Y_{i}	```Critical temp., TG```	Critical pressure, $\mathrm{P}_{\mathrm{C}}, \mathrm{psi}$	Molecular weight M_{i}	$Y_{i} \mathbf{T}_{c_{i}}$	$y_{i} \mathrm{P}_{\mathrm{c}_{\mathrm{i}}}$	$Y_{i} M_{i}$
N_{2}	. 65	227	492.2	28.016	147.55	319.93	18.2104
C_{1}	. 23	343.2	673.1	16.068	79.936	154.813	3.696
C_{2}	. 051	549.2	708.3	30.068	28.009	36.123	1.533
C_{3}	. 036	666	617.4	44.094	23.976	22.226	1.587
C_{4}	. 002	765.7	550.1	58.12	1.531	1.10	. 116
C_{5}	. 011	846.2	489.8	72.124	9.308	5.388	. 793
C_{6+}	. 02	$1073+$	$334+$	128.0	21.46	6.65	2.56
${ }^{+} \mathrm{From}$	lark 58				311.77	546.23	28.4954

TABLE B-3

GAS DENSITY
Sampling Point A
Cum. N_{2} Inj. $=.3 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=4400$ psi

Comp .	Mole fraction gas, Y_{i}	```Critical temp.,```	Critical pressure, P_{c}, psi	Molecular weight M_{i}	$Y_{i}{ }^{T} \mathrm{c}_{\mathrm{i}}$	$Y_{i} \mathrm{P}_{\mathrm{c}_{\mathrm{i}}}$	$Y_{i} M_{i}$
N_{2}	. 95	227	492.2	28.016	215.05	467.59	26.615
C_{1}	. 04	343.2	673.1	16.068	13.728	26.924	. 6427
C_{2}	. 006	549.2	708.3	30.068	3.295	4.25	0.1804
C_{3}	. 002	666	617.4	44.094	1. 332	1.235	. 0882
C_{4}	0	765.7	550.1	58.12	0	0	0
C_{5}	0	846.2	489.8	72.124	0	0	0
C_{6+}	. 002	10734.	$334+$	128.0	2.1 .46	0.668	. 256
+rrom	lark 58				236.151	501	27.7823

$$
\text { Gas Density }=19.47 \quad 1 \mathrm{~b} / \mathrm{Et}^{3}
$$

TABLE B-4

GAS DENSITY
Sampling Point B
Cum. N_{2} Inj. $\quad=.359 \mathrm{P} . \mathrm{v}$.
Pressure at sampling point $=3800 \mathrm{psi}$

Comp .	Mole fraction gas, Y_{i}	```Critical temp., Tc, 'or```	Critical pressure, $\mathrm{P}_{\mathrm{c}}, \mathrm{psi}$.	Molecular weight M_{i}	$Y_{i}{ }^{T}{ }_{c}{ }_{i}$	$Y_{i}{ }^{P}{ }_{c}{ }_{i}$	$Y_{i} M_{i}$
N_{2}	. 265	227	492.2	28.016	97.61	130.433	7.424
C_{1}	. 43	343.2	673.1	16.068	147.576	289.433	6.909
C_{2}	. 123	549.2	708.3	30.068	67.552	87.121	3.698
C_{3}	. 084	666	617.4	44.094	55.944	51.862	3.704
C_{4}	. 015	765.7	550.1	58.12	11.486	8.252	. 8718
C_{5}	. 023	846.2	489.8	72.124	19.463	11.265	1.659
C_{6+}	. 06	$1073+$	$334+$	128.0	64.38	20.04	7.68
${ }_{\text {From Clark }}{ }^{8}$					464	598.4	31.9458

$$
\text { Gas Density }=25.9 \quad \mathrm{lb} / \mathrm{ft}^{3}
$$

TABLE B-5

GAS DENSITY

Sampling Point B
Cum. $\mathrm{N}_{2} \operatorname{Inj}$.
$=.44$ P.v.
Pressure at sampling point $=3800 \mathrm{psi}$

Comp.	Mole fraction gas, Y_{i}	```Critical temp., T```	Critical pressure, $\mathrm{P}_{\mathrm{c}}, \mathrm{psi}$	Molecular weight M_{i}	$Y_{i} \mathrm{~T}_{\mathrm{C}_{i}}$	$Y_{i} \mathrm{P}_{\mathrm{c}_{\mathrm{i}}}$	$y_{i}{ }^{M}{ }_{i}$
N_{2}	. 359	227	492.2	28.016	81.493	176.7	10.058
C_{1}	. 37	343.2	673.1	16.068	126.984	249.047	5.945
C_{2}	. 116	549.2	708.3	30.068	63.707	82.163	3.488
C_{3}	. 078	666	617.4	44.094	51.948	48.157	3.439
C_{4}	. 007	765.7	550.1	58.12	5.36	3.651	0.407
C_{5}	. 015	846.2	489.8	72.124	12.693	7.347	1.082
C_{6+}	. 055	1073+	$334+$	128.0	59.015	18.37	7.04
${ }^{+} \mathrm{From}$	ark 58				401.2	585.6	31.459

Gas Density $=24.69 \mathrm{lb} / \mathrm{ft}^{3}$

```
TABLEE B-6
```


GAS DENSITY

Sampling Point B

Cum. N_{2} Inj. $=.454 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3800 \mathrm{psi}$

Comp.	Mole fraction gas, Y_{i}	$\begin{gathered} \text { Critical } \\ \text { temp: } \\ \text { ' }_{c^{\prime}}{ }^{\prime}{ }^{\prime} \end{gathered}$	Critical pressure, $\mathrm{P}_{\mathrm{c}}, \mathrm{psi}$	Molecular weight M_{i}	$\mathrm{Y}_{\mathrm{i}} \mathrm{T}^{\mathrm{c}} \mathrm{i}_{\mathrm{i}}$	$\mathrm{Y}_{\mathbf{i}}{ }^{\mathrm{P}} \mathrm{c}_{\mathrm{i}}$	$Y_{i}{ }^{M}{ }_{i}$
N_{2}	. 496	227	492.2	28.016	112.592	244.13	13.896
C_{1}	. 29	343.2	673.1	16.068	99.528	195.2	4.66
c_{2}	. 101	549.2	708.3	30.068	55.47	71.54	3.037
c_{3}	. 063	666	617.4	44.094	41.958	38.9	2.778
C_{4}	0	765.7	550.1	58.12	0	0	0
C_{5}	0.006	846.2	489.8	72.124	5.077	2.939	0.433
C_{6+}	0.044	1073+	$334+$	128.0	47.212	14.696	5.632
${ }^{\text {From }}$	clark 58				361.8	567.4	30.436

Gas Density $=24.09 \mathrm{lb} / \mathrm{ft}^{3}$

TABLE B-7

GAS DENSI'TY
Sampling Point B
Cum. N_{2} Inj. $=.47 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3800$ psi

Comp .	Mole fraction gas, y_{i}	```Critical temp., 'Tc' }\mp@subsup{}{}{\circ}\textrm{R```	Critical pressure, $P_{C}, p s i$	```Molecular weight Mi```	$Y_{i} T_{C_{i}}$	$Y_{i} \mathrm{P}_{\mathrm{C}_{\mathbf{i}}}$	$Y_{i} M_{i}$
N_{2}	. 632	227	492.2	28.016	143.46	458.7	17.706
C_{1}	. 2	343.2	673.1	. 16.068	68.64	134.62	3.2136
C_{2}	. 087	549.2	708.3	30.068	47.78	61.622	2.616
C_{3}	. 05	666	617.4	44.094	33.3	30.87	2.205
C_{4}	0	765.7	550.1	58.12	0	0	0
C_{5}	0	846.2	489.8	72.124	0	0	0
C_{6+}	. 031	1073+	$334+$	128.0	33.263	10.354	3.968
+From	lark ${ }^{58}$				326.4	696.2	29.7086

$$
\text { Gas Density }=22.97 \mathrm{lb} / \mathrm{ft}^{3}
$$

TABLE B-8

GAS DENSI'IY
Sampling Point C
Cum. N_{2} Inj.
$=.612 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3200 \mathrm{psi}$

Comp.	Mole fraction gas, Y_{i}	$\begin{gathered} \text { Critical } \\ \text { temp. } \\ \text { T }_{c^{\prime}}{ }^{\circ} \mathrm{R} \end{gathered}$	Critical pressure, $P_{c}, p s i$	```Molecular weight Mi```	$Y_{i}{ }^{\mathbf{T}} \mathbf{C}_{\mathbf{i}}$	$Y_{i}{ }^{p}{ }_{C i}$	$\mathrm{Y}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$
N_{2}	. 2765	227	492.2	28.016	62.766	136.09	7.746
C_{1}	. 4	343.2	673.1	16.068	137.28	269.24	6.427
C_{2}	. 117	549.2	708.3	30.068	64.26	82.87	3.518
C_{3}	. 094	666	617.4	44.094	62.604	58.04	4.145
C_{4}	. 011	765.7	550.1	58.12	8.423	6.051	0.639
C_{5}	. 0185	846.2	489.8	72.124	15.655	9.061	1.334
c_{6+}	. 083	$1073+$	$334+$	128.0	89.06	27.722	10.624
${ }^{+} \mathrm{From}$	lark 58				440.0	589.1	34.433

[^10]TABLE B-9

GAS DENSTTY
Sampling Point C
Cum. N_{2} Inj.
Pressure at sampling point $=3200$ psi.

Comp .	Mole fraction gas, Y_{i}	```Critical temp., 'I',' }\mp@subsup{}{}{\circ}\textrm{R```	Critical pressure, $P_{c}, p s i$	Molecular weight M_{i}	$Y_{i} \mathrm{~T}_{\mathrm{c}_{\mathrm{i}}}$	$Y_{i}{ }^{P} c_{i}$	$Y_{i} M_{i}$
N_{2}	. 583	227	492.2	28.016	188.41	286.95	16.333
C_{1}	. 22	343.2	673.1	16.068	75.504	148.082	3.535
C_{2}	. 08	549.2	708.3	30.068	43.936	56.664	3.528
C_{3}	. 062	666	617.4	44.094	41.292	38.28	2.734
C_{4}	0	765.7	550.1	58.12	0	0	0
C_{5}	0	846.2	489.8	72.124	0	0	0
C_{6+}	0.055	$1073+$	$334+$	128.0	59.015	18.37	7.04
${ }^{\text {From }}$	lark 58				408.15	548.3	33.17

Gas Density $=23.64 \quad 1 \mathrm{~b} / \mathrm{ft}^{3}$

TABLE B-10

LIQUID DENSI'IY

Sampling point A
Cum. N_{2} Inj. $=.172 \mathrm{p} . \mathrm{v}$.
Pressure at the sampling point $=4400 \mathrm{psi}$

Comp.	Mole fraction liquid, x_{i}	Molecular weight M_{i}.	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i}, f t 3 / 1 b \end{gathered}$	$\mathrm{x}_{\mathbf{i}} \quad \mathrm{M}_{\mathrm{i}} \quad \mathrm{V}_{\mathbf{i}}$
N_{2}	. 257	28.016	7.2	. 01983 +	. 1428
C_{1}	. 329	16.068	5.286	. 0535	. 2828
C_{2}	. 073	30.068	2.195	. 043	. 0944
C_{3}	. 06	44.094	2.6456	. 0316	. 0836
C_{4}	. 017	58.12	. 988	. 0275	. 0272
C_{5} -	. 032	72.124	2.308	. 0254	. 0586
C_{6+}	. 232	214.5	49.764	. 01976	. 9833
${ }^{+} \mathrm{FrOn}$	G.P.A. ${ }^{59}$		70.3866		1.6727

$\begin{array}{lll}\text { Stock tank densi.ty } & =42.08 & \mathrm{lb} / \mathrm{ft}_{3}^{3} \\ \text { Density at current pressure and temperature } & =43.78 \quad \mathrm{lb} / \mathrm{ft}^{3}\end{array}$

TABLE B-11

LIQUID DENSITY

Sampling point A
$\begin{aligned} \text { Cum. } \mathrm{N}_{2} \text { Inj. } & =.26 \mathrm{p} . \mathrm{v} . \\ \text { Pressure at the sampling point } & =4400 \mathrm{pi}\end{aligned}$
Pressure at the sampling point $=4400$ psi

Comp.	```Mole fraction liquid, x ```	Molecular weight M_{i}	$\mathrm{X}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i}, f t^{3} / 1 b \end{gathered}$	$\mathbf{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}} \quad \mathrm{V}_{\mathbf{i}}$
N_{2}	. 342	28.016	9.5815	. $01983+$. 19
C_{1}	. 153	16.068	2.4584	. 0535	. 1315
C_{2}	. 0593	30.068	1.783	. 043	. 07667
C_{3}	. 05	44.094	2.2047	. 0316	. 06967
C_{4}	. 003	58.12	. 1744	. 0275	. 0048
C_{5}	. 022	72. 124	1.5867	. 0254	. 0403
C_{6+}	. 3707	214.5	79.515	.01976	1.5712
${ }^{+}$From N.G.P.A. ${ }^{59}$			97.3037		2.08414
	Stock tank Density at	density current pre	re and	mperature $=$	$\begin{array}{lll} 46.687 & 1 \\ 48.287 & 1 \end{array}$

TABLE B-12

LIQUID DENSITY

Sampling point A
Cum. N_{2} Inj. $=0.3 \mathrm{p} . \mathrm{v}$.
Pressure at the sampling point $=4400$ psi

Comp.	Mole fraction liquid, x_{i}	Molecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i}, f t^{3} / 1 b \end{gathered}$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$
N_{2}	. 452	28.016	12.663	. $01983+$. 2511
C_{1}	. 025	16.068	. 4017	. 0535	. 0215
C_{2}	. 007	30.068	. 2105	. 043	. 0091
C_{3}	. 003	44.094	. 1323	. 0316	. 0042
C_{4}	0	58.12	0	. 0275	0
C_{5}	0	72.124	0	. 0254	0
C_{6+}	. 513	214.5	110.04	. 01976	2.1744
${ }^{+}$From N.G.P.A. ${ }^{59}$			123.4475		2.4603
	Stock tank Density at	density current pre	ure and	mperature $=$	$\begin{aligned} & 50.176 \\ & 51.18 \end{aligned}$

TABLE B-13

IIQUID DENSITY

Sampling point B
Cum. N_{2} Inj.
$=.359 \mathrm{p} \cdot \mathrm{v}$.
Pressure at the sampling point $==3800 \mathrm{psi}$

Comp .	```Mole fraction liquid, xi```	Molecular weight ${ }^{M}$.	$\mathrm{x}_{\mathbf{j}} \mathrm{M}_{\mathbf{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i}, f t^{3} / 1 b \end{gathered}$	$\mathrm{x}_{\mathbf{i}} \mathrm{M}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}$
N_{2}	0.1325	28.016	3.712	. $01983+$. 0736
C_{1}	. 307	16.068	4.9329	. 0535	. 26391
C_{2}	. 14	30.068	4.2095	.043	. 181
C_{3}	. 115	44.094	5.071	. 0316	. 16024
C_{4}	. 026	58.12	1.5111	. 0275	. 0416
C_{5}	. 055	72.124	3.967	. 0254	. 1008
C_{6+}	. 2245	214.5	48.155	. 01976	. 9515
${ }^{+}$From N.G.P.A. ${ }^{59}$			71.5585		1.77265
	Stock tank Density at	density current pre	ure and	mperature $=$	$\begin{array}{ll} 40.37 & 11 \\ 42.088 & 11 \end{array}$

TABLE B-14

LIQUID DENSITY

Comp.	Mole fraction licquid, x_{i}	Molecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	Specific volume $v_{i}, f t^{3} / 1 b$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}} \mathrm{v}_{\mathbf{i}}$
N_{2}	. 138	28.016	3.866	. $01983+$. 07667
C_{1}	. 255	16.068	4.097	. 0535	. 2192
C_{2}	. 136	30.068	4.089	. 043	. 1758
C_{3}	. 117	44.094	5.159	. 0316	. 1630
C_{4}	. 013	58.12	.7556	. 0275	. 0208
C_{5}	. 042	72.124	3.029	. 0254	. 07694
C_{6+}	. 299	214.5	64.136	. 01976	1.2673
${ }^{+}$From	N.G.P.A. ${ }^{59}$		85.1316		1.99971
Stock tank densityDensity at current pressure and temperature					$\begin{aligned} & 42.57 \\ & 44.172 \end{aligned}$

'PABLE B-15

LIQUID DENSITY

Sampling point B
Cum. N_{2} Inj. $\quad=.454 \mathrm{p} . \mathrm{v}$.
Pressure at the sampling point $=3800$ psi

Comp .	```Mole fraction liquid, xi```	Molecular weight M_{i}	$\mathrm{X}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i}, f t^{3} / 1 b \end{gathered}$	$\mathrm{X}_{\mathbf{i}} \mathrm{M}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}$
N_{2}	. 16	28.016	4.483	. $01983+$. 0889
C_{1}	. 193	16.068	3.101	. 0535	. 1659
C_{2}	. 123	30.068	3.6984	. 043	. 1590
C_{3}	. 102	44.094	4.4976	. 0316	. 14212
C_{4}	0	58.12	0	. 0275	0
C_{5}	. 019	72.124	1.3704	. 0254	. 03481
C_{6+}	. 403	214.5	86.444	. 01976	1.7081
${ }^{+}$From	N.G.P.A. ${ }^{59}$		103.5944		2.29883
	Stock tank Density at	density current pre	sure and	nperature $=$	$\begin{array}{ll} 45.06 & 11 \\ 46.354 & 11 \end{array}$

TABLE \quad B-16

LIQUID DENSITY

Sampling point B
$\begin{aligned} \text { Cum. } \mathrm{N}_{2} \operatorname{Inj} . & =.47 \mathrm{p} . \mathrm{v} . \\ \text { Pressure at the sampling point } & =3800 \mathrm{psi}\end{aligned}$

TABLE B-17

LIQUID DENSIPY
Sampling point C
Cum. N_{2} Inj. $=.612 \mathrm{p} . \mathrm{v}$.
Pressure at the sampling point $=3200 \mathrm{psi}$

Comp.	Mole fraction liquid, x_{i}	Molecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i}, f t 3 / 1 b \end{gathered}$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}$
N_{2}	. 102	28.016	2.8576	. $01983+$. 05667
C_{1}	. 258	16.068	4.1455	. 0535	. 2218
C_{2}	. 139	30.068	4.1795	. 043	. 1797
c_{3}	. 157	44.094	6.9228	. 0316	. 21876
C_{4}	. 026	58.12	1.5111	. 0275	. 04156
C_{5}	. 071	72.124	5.1208	. 0254	. 13007
c_{6+}	. 247	214.5	52.982	. 01976	1.0469
${ }^{+} \mathrm{From}$	N.G.P.A. ${ }^{59}$		77.7173		1.89546
	Stock tank Density at	density	ssure and	mperature $=$	$\begin{array}{ll} 41.0 & 1 \\ 42.4 & 1 \end{array}$

TABLE B-18

LIQUID DENSIMY

Sampling point C
Cum. N_{2} Inj. $=.638 \mathrm{p} . \mathrm{v}$.
Pressure at the sampling point $=3200$ psi

Comp .	Mole fraction liquid, x_{i}	Molecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	Specific volume $v_{i}, f t^{3} / l b$	$\mathrm{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}} \mathrm{v}_{\mathbf{i}}$
N_{2}	. 106	28.016	2.9697	. $01983+$. 05889
C_{1}	. 134	16.068	2.1531	. 0535	. 1152
C_{2}	. 101	30.068	3.0369	. 043	. 1306
C_{3}	. 115	44.094	5.0708	. 031.6	. 1602
C_{4}	0	58.12	0	. 0275	0
C_{5}	0	72. 124	0	. 0254	0
C_{6+}	. 544	214.5	116.688	. 01976	2.3058
${ }^{+}$From	.G.P.A. ${ }^{59}$		129.9185		2.77069

[^11]
TABLE B-19

GAS VISCOSITY

Sampling point A
Cum. N_{2} Inj. $\quad=.172 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=4400$ psi

	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$Y_{i} M_{i}^{\frac{1}{2}}$	ntmospheric viscosity $u_{i}^{*}, ~$	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$

[^12]TABLE B-20
GAS VISCOSITY
Sampling point A
Cum. N_{2} Inj. $=.26 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=4400$ psi

From Carr et al. ${ }^{56}$

TABLE B-21

GAS VISCOSI'IY

Sampling point A
Cum. N_{2} Inj. $=4 \mathrm{~B}^{3} \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=4400$ psi

Comp .	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$y_{i} M_{i}^{\frac{1}{2}}$	```Atmospheric viscosity u*, cp```	$u_{i}^{*} y_{i} M_{i}^{\frac{1}{2}}$
N_{2}	. 95	28.016	5.29	5.0284	. $0176+$. 0885
C_{1}	. 04	16.068	4.01	. 16034	. 0108	. 00173
C_{2}	. 006	30.068	5.48	. 0329	. 0102	.60034
C_{3}	. 002	44.094	6.64	. 01328	. 0082	. 00011
C_{4}	0	58.12	7.62	0	. 0073	0
C_{5}	0	72.124	8.5	0	. 0065	0
C_{6+}	. 002	128	11.31.	. 02263	. 005	. 000113
From	r et al. 5			5.25755		. 090793

Mixture atmospheric viscosity $=u^{*}=.0173 \mathrm{cp}$

TABLE B-22

GAS VISCOSITY

Sampling point B
Cum. N_{2} Inj. $\quad=.359 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3800$ psi

Comp	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{1 / 2}$	$y_{i} M_{i}^{\frac{1}{2}}$	Atmospheric viscosity $u_{i}^{*}, ~ C p$	$u_{i}^{*} y_{i} M_{i}^{\frac{1}{2}}$
N_{2}	. 265	28.016	5.29	1.4026	. $0176+$. 02469
C_{1}	. 43	16.068	4.01	1.72365	. 0108	. 018615
C_{2}	. 123	30.068	5.48	. 67446	. 0102	. 00688
C_{3}	. 084	44.094	6.64	. 55779	. 0082	. 00457
C_{4}	. 015	58.12	7.62	. 11435	. 0073	. 00083
C_{5}	. 023	72.124	8.5	. 19533	. 0065	. 00127
C_{6+}	. 06	128	11.31	. 67882	. 005	. 00339
From Carr et al. 56				5.347		. 060245
Mixture atmospheric viscosity $=u^{*}=.0113 \mathrm{cp}$ Mixture viscosity at the system temperature and pressure $=u=.0486 \mathrm{cp}$						

TABLE B-23

GAS VISCOSITY

Sampling point B
Cum. N_{2} Inj. $=.44 \mathrm{p} \cdot \mathrm{v}$.
Pressure at sampling point $=3800$ psi

Comp.	Mole fraction gas. Y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$y_{i} M_{i}^{\frac{1}{2}}$	```Atmospheric viscosity u*i, cp```	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$
N_{2}	. 359	28.016	5.29	1.9002	. $0176+$. 03344
C_{1}	. 37	16.068	4.01	1.4831	. 0108	. 01602
C_{2}	. 116	30.068	5.48	. 6361	. 0102	. 0065
C_{3}	. 078	44.094	6.64	. 51795	. 0082	. 00425
C_{4}	. 007	58.12	7.62	. 05337	. 0073	. 00039
C_{5}	. 015	72.124	8.5	. 1274	. 0065	. 00083
C_{6+}	. 055	128	11.31.	. 6223	. 005	. 00311
From Carr et al. 56						. 06454
Mixture atmospheric viscosity $=u^{*}=.0121 \mathrm{cp}$ Mixture viscosity at the system temperature and pressure $=u=.0411 \mathrm{cp}$						

IABLE B-24

GAS VISCOSITY

Sampling point B
Cum. N_{2} Inj.
Pressure at sampling point $=3800 \mathrm{p} \cdot \mathrm{v}$.

Comp.	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$Y_{i} M_{i}^{\frac{1}{2}}$	```Atmospheric viscosity u*ic```	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$
N_{2}	. 496	28.016	5.29	2.625	$.0176+$. 04621
C_{1}	. 29	16.068	4.01	1.1625	. 0108	. 01255
C_{2}	. 101	30.068	5.48	. 5538	. 0102	. 00565
C_{3}	. 063	44.094	6.64	. 4183	. 0082	. 00343
C_{4}	0	58.12	7.62	0	. 0073	0
C_{5}	. 006	72.124	8.5	0.051	. 0065	. 00033
C_{6+}	. 044	128	11.31	. 4978	. 005	. 0025
From	et al.			5.3084		. 07067

Mixture atmospheric viscosity $=u^{*}=.0133 \mathrm{cp}$
Mixture viscosity at the system temperature
and pressure $=u=.0353 \mathrm{cp}$

TABLE B-25

GAS VISCOSITY
Sampling point B
Cum. N_{2} Inj. $=.47 \mathrm{p} . \mathrm{V}$.
Pressure at sampling point $=3800 \mathrm{psi}$

Comp .	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$Y_{i} M_{i}^{\frac{1}{2}}$	```Atmospheric viscosity u*i```	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$
N_{2}	. 632	28.016	5.29	3.3452	. $0176+$. 05888
C_{1}	. 2	16.068	4.01	. 8017	. 0108	. 60866
C_{2}	. 087	30.068	5.48	. 4771	. 0102	. 00487
C_{3}	. 05	44.094	6.64	. 33202	. 0082	. 0027
C_{4}	0	58.12	7.62	0	. 0073	0
C_{5}	0	72.124	8.5	0	. 0065	0
C_{6+}	. 031	128	11.31	. 3507	. 005	. 00175
From	r et al.			5.30672		. 07686

Mixture atmospheric viscosity $=u^{*}=.01448 \mathrm{cp}$
Mixture viscosity at the system temperature and pressure $=\mathrm{u}=.0268 \mathrm{cp}$

TABLE B-26

GAS VISCOSITY
Sampling point C
Cum. N_{2} Inj. $=.612 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3200$ psi

Comp.	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{1 / 2}$	$Y_{i} M_{i}^{\frac{1}{2}}$	Atmospheric viscosity $u_{i}^{*}, ~$	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$

Mixture atmospheric viscosity $=u^{*}=.0111 \mathrm{cp}$ Mixture viscosity at the system temperature

TABLE B-27

GAS VISCOSITY
Sampling point C
Cum. N_{2} Inj. $=.638 \mathrm{P} . \mathrm{v}$.
Pressure at sampling point $=3200$ psi

Comp.	Mole fraction gas, y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$Y_{i} M_{i}^{3 / 2}$	```Atmospheric viscosity u_i, cp```	$\mathrm{u}_{i}^{*} y_{i} M_{i}^{1 / 2}$
N_{2}	. 583	28.0 .16	5.29	3.08583	. $0176+$. 05431
C_{1}	. 22	16.068	4.01	. 8819	.0108	. 0095
C_{2}	. 08	30.068	5.48	. 4387	. 01.02	. 0045
C_{3}	. 062	44.094	6.64	. 4117	. 0082	. 00338
C_{4}	0	58.12	7.62	0	. 0073	0
C_{5}	0	72.124	8.5	0	. 0065	0
C_{6+}	. 055	128	11.31	. 6223	. 005	. 00311
From	r et al.			5.4404		0.0748

Mixture viscosity at the system temperature and pressure $=u=.0467 \mathrm{cp}$

JADLF [B-28

LIQUID VISCOSTITY

Sampling Point A
Cum. N_{2} Inj.
Pressure at sampling point $=4400 \mathrm{p} \cdot \mathrm{v}$.

Comp.	x_{i}	M_{i}	$\mathrm{Mi}^{\frac{1}{2}}$	$\mathbf{u}_{1}^{\text {T}}$ cp	$x_{i} M_{i}^{1 / 2}$	$x_{i} u_{i}^{*} M_{i}^{1 / 2}$	```Critical volune VCi gin/cm}\mp@subsup{}{}{3```	${ }^{x}{ }_{i}{ }^{v} c_{i}$	$\mathbf{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$	$T c^{\text {m }}{ }^{0} \mathrm{~K}$	$\mathrm{P}_{\mathrm{c}}, \mathrm{atm}$	$x_{i}{ }^{\prime \prime} c_{j}$	$\mathbf{x}_{\mathbf{i}} \mathbf{p}_{\mathrm{c}_{\mathbf{i}}}$
N_{2}	. 257	28.016	5.29	. 0176	1.3603	. 0239	3.215%	. 8263	7.2	126.2	33.5	32.43	8.61
C_{1}	. 329	16.068	4.01	. 0108	1.3188	. 0124	6.173	2.0319	5.2864	191.1	45.8	62.9	15.1
C_{2}	. 073	30.068	5.48	. 0102	. 4003	. 0041	4.926	. 3596	2.195	305.5	48.2	22.3	3.5
C_{3}	. 06	44.094	6.64	. 0082	. 3984	. 0033	4.545	. 2727	2.6456	370	42.	22.2	2.52
C_{4}	. 017	58.12	7.62	. 0073	. 1296	. 0009	4.306	. 0746	. 988	425.2	37.5	7.228	. 630
C_{5}	. 032	72.124	8.49	. 0065	. 2718	. 0018	4.31	. 1379	2. 308	469.8	33.3	15.03	1.07
C_{6+}	. 232	214.5	14.65	3.0	3.398	10.193	3.551	. 8238	49.764	705.4	17.347	163.65	4.02
+From	G.P.	59			7.2772	10.2394		4.5258	70.387			325.648	35.458

$u=2.374 \mathrm{cp}$

LYQUID VISCOSITY
Sampling Point A
Cuin. N_{2} lnj. $=-.26 \mathrm{p.v}$.
Pressure at sampling point $=4400 \mathrm{psi}$

Comp.	x_{1}	M_{i}	$M_{i}^{1 / 2}$	\mathbf{u}_{1}^{*} CP	$\mathrm{x}_{i} \mathrm{M}_{\mathbf{i}}^{1 / 2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathbf{i}}^{*} \mathrm{M}_{\mathrm{i}}^{1 / 2}$	$\begin{gathered} \text { Critical } \\ \text { vglume } \\ v_{c i} \\ \text { gm/cm } \end{gathered}$	$x_{i}{ }^{v} c_{i}$	$\mathbf{x}_{\mathbf{i}}{ }^{\mathbf{M}} \mathbf{i}$.	$\mathrm{T}_{\mathrm{c}} \mathrm{m}^{\circ} \mathrm{K}$	P_{c}, atin	$\mathrm{x}_{\boldsymbol{i}}{ }^{\mathbf{1}} \mathrm{C}_{\mathbf{i}}$	${ }^{\prime}{ }^{1}{ }^{p} c_{i}$
N_{2}	. 342	28.016	5.29	. 0176	1.81	. 0319	$3.215+$	1.042	9.581	126.2	33.5	43.1604	11.457
C_{1}	.153	16.068	4.01	. 0108	. 6133	. 0066	6.173	. 9445	2.458	191.1	45.0	29.238	7.01
c_{2}	. 0593	30.068	5.48	. 0102	. 3252	. 0033	4.926	. 2921	1.783	305.5	48.2	18.116	2.858
C_{3}	. 05	44.094	6.64	. 0082	. 3320	. 0027	4.545	. 2273	2.205	370	42.	18.5	2.1
C_{4}	. 003	58.12	7.62	. 0073	. 0229	. 0002	4.386	. 0132	. 1744	425.2	37.5	1. 276	. 1125
C_{5}	. 022	72.124	8.49	. 0065	. 1868	. 0012	4.31	. 0948	1.5867	169.8	33.3	10.336	.7326
c_{6+}	. 3707	214.5	14.65	3.0	5.4292	16.288	3.551	1.3164	79.515	705.4	17.347	261.49	6.431
+rrom	G.P	59			8.7194	16.3339		3.9303	97.3031			382.1164	30.7011

[^13]TABISE B-30

LIQU1D VISCOSITY

Sampling Point A
$\begin{aligned} & \text { Cum. } N_{2} \text { Inj. } \\ & \text { pressure at sampling point }\end{aligned}=4400^{3} \mathrm{p} . \mathrm{v}$.

Comp.	$\mathbf{x}_{\mathbf{i}}$	Mi_{1}	$M_{i}^{\frac{1}{2}}$	$\begin{aligned} & \mathbf{u}_{\mathbf{i}}^{*} \\ & \mathbf{c p} \end{aligned}$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}^{1 / 2}$	$x_{i} u_{i}^{*} M_{i}^{\frac{1}{2}}$	```Critical volume vci ym/Cm}\mp@subsup{}{}{3```	$x_{i} v_{c_{i}}$	$\mathbf{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$	${ }^{\prime \prime} \mathbf{c}^{\text {m }}$ (${ }^{\circ} \mathrm{K}$	$\mathrm{p}_{\mathrm{c}}{ }^{\prime}$ atin	$\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{T}} \mathrm{c}_{\mathrm{i}}$	$x_{i} p_{c_{i}}$
N_{2}	. 452	28.016	5.29	. 0176	2.392	. 0421	$3.215 t$	1.453	12.663	126.2	33.5	57.04	15.142
c_{1}	. 025	16.068	4.01	. 0108	. 1002	. 00108	6.173	. 1543	. 4017	191.1	45.8	4.78	1.145
c_{2}	. 007	30.068	5.48	. 0102	. 0384	. 0004	4.92 .6	. 0345	. 2105	305.5	40.2	2.139	. 3374
c_{3}	. 003	44.094	6.64	. 0082	. 020	. 0002	4.545	. 0136	. 1323	370	42.	1.11	. 126
c_{4}	0	58.12	7.62	. 0073	0	0	4.386	0	0	425.2	37.5	0	0
c_{5}	0	72.124	8.49	. 0065	0	0	4.31	0	0	469.8	33.3	0	0
c_{6+}	. 513	214.5	14.65	3.0	7.5133	22.54	3.551	1.822	110.04	705.4	17.347	361.87	8.9
+From	N.G.P	59			10.0639	22.58378		3.4774	123.4475			426.939	25.6504

[^14]Sampling Point B
Cum. N_{2} Inj.
Pressure at sampling point $=3800 \mathrm{psi}$

Comp.	$\mathbf{x}_{\boldsymbol{i}}$	M_{i}	$M_{i}^{\frac{1}{2}}$		$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathbf{i}}^{1 / 2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{u}_{i}^{*} \mathrm{M}_{i}^{\frac{1}{2}}$	```Critical volune vci gm/Cm```	$x_{i} v_{c}$	$\mathbf{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$	${ }^{\prime \prime} c^{\prime \prime \prime}{ }^{\circ} \mathrm{K}$	$\mathrm{P}_{\text {c }}$, atim	$\mathrm{x}_{i}{ }^{\prime \prime} \mathrm{C}_{i}$	$\mathbf{x}_{\boldsymbol{i}} \mathrm{P}_{\mathbf{c}_{i}}$
N_{2}	. 130	28.016	5.29	. 0176	. 7304	. 0129	3.2151	. 4437	3.87	126.2	33.5	17.42	4.62
c_{1}	. 255	16.068	4.01	.0108	1.022	. 011	6.173	1.514	4.1	191.1	45.8	48.73	11.68
C_{2}	.136	30.068	5.48	. 0102	. 7457	. 0076	4.926	.6\%	4.1	305.5	48.2	41.55	6.56
c_{3}	. 117	44.094	6.64	. 0082	. 7769	. 0064	4.545	. 5318	5.16	370	42.	43.29	4.91
C_{4}	. 013	58.12	7.62	. 0073	. 0991	. 0007	4.386	.05\%	. 76	425.2	37.5	5.53	.49
C_{5}	. 042	72.124	0.49	. 0065	.3567	. 0023	4.31	. 181	. 181	169.0	33.3	19.73	1.4
C_{6+}	. 299	214.5	14.65	3.0	4.379	13.137	3.551	1.0617	64.14	705.4	17.347	210.9	5.19

+From N.G.P.A. $59 \quad 8.1098 \quad 13.1779 \quad 4.51928 .85$ $u=2.722 c p$

TADLE $11-32$
HIQUID VISCOSITY
Sampling Point B
Cum. N_{2} Inj.
Pressure at sampling point $=3800 \mathrm{p} . \mathrm{v}$.

Colup.	$\mathbf{x}_{\mathbf{i}}$	M_{i}	$\mathrm{M}_{\mathrm{i}}^{\frac{1}{2}}$	$\mathbf{u}_{\mathbf{i}}^{\star}$ CP	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}^{1 / 2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathbf{i}}^{\mathrm{i}} \mathrm{M}_{\mathbf{i}}^{\frac{1}{2}}$	```Critical volume * Cj gm/cm```	$\boldsymbol{x}_{\boldsymbol{i}} \mathbf{v}_{\mathbf{c}_{i}}$	$\mathbf{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$	$\mathrm{c}^{\mathrm{ln}}{ }^{\circ} \mathrm{K}$	p_{c}, atim	$\mathrm{x}_{\mathrm{i}} \mathrm{T}^{\mathbf{c}} \mathrm{i}$	$\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{p}} \mathrm{c}_{\mathrm{i}}$
N_{2}	. 178	28.016	5.29	. 0176	. 942	. 0166	$3.215+$. 572	4.99	126.2	33.5	22.46	5.96
c_{1}	.13	16.068	4.01	. 0108	. 5211	. 0056	6.173	. 802	2.09	191.1	45.8	24.84	5.95
C_{2}	. 109	30.068	5.48	. 0102	. 5977	. 0061	4.926	. 537	3.28	305.5	$4 \mathrm{B}$.	33.3	5.25
c_{3}	. 086	44.094	6.64	. 0082	. 5711	. 0047	4.545	. 391	3.79	370	42.	31.82	3.61
C_{4}	0	58.12	7.62	. 0073	0	0	4.386	0	0	425.2	37.5	0	0
c_{5}	0	72.124	8.49	. 0065	0	0	4.31	0	0	469.8	33.3	0	0
C_{6+}	.507	214.5	14.65	3.0	7.425	22.28	3.551	1. 9	108.75	705.4	17.347	357.64	8.79

+Froin N.G.P.A. 59 20.0569 $22.313 \quad 4.10240 .06$

$$
u=3.217 \mathrm{cp}
$$

PABLE B-33

LIQUID VISCOSISY
Sampling Point C
Cum. N_{2} Inj. $=612$ p.v.
pressure at sampling point $=3200$ psi

Comp.	x_{i}	M_{i}	$M_{i}^{1 / 2}$	$\mathbf{u}_{\mathbf{i}}^{\boldsymbol{i}}$ cp	$x_{i} M_{i}^{1 / 2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathbf{i}}^{\hat{i}} \mathrm{~m}_{\mathbf{i}}^{\frac{1}{2}}$	```Critical volune v gm/cm}\mp@subsup{}{}{3```	${ }^{*}{ }^{*}{ }^{c}{ }_{j}$	$\mathbf{x}_{\mathbf{i}} \mathbf{M}_{\mathbf{i}}$	$\mathrm{T}_{\mathrm{c}} \mathrm{Cl} \mathrm{\prime}^{\circ} \mathrm{K}$	$\mathrm{F}^{\prime}{ }^{\prime}$ alan	${ }^{\mathbf{x}}{ }^{\mathbf{T}} \mathbf{c}_{\mathbf{i}}$	${ }^{\text {i }}{ }^{\text {P }} \mathrm{C}_{\mathrm{i}}$
N_{2}	. 102	28.016	5.29	. 0176	. 5399	. 0095	3.215 t	. 328	2.86	126.2	33.5	12.87	3.417
C_{1}	. 258	16.068	4.01	. 0108	1.034	. 0112	6.173	1.593	4.15	191.1	45.8	49.3	11.82
C_{2}	. 139	30.068	5.48	. 0102	. 7622	. 0078	4.926	. 685	4.18	305.5	48.2	42.46	6.7
C_{3}	. 157	44.094	6.64	. 0082	1.043	. 0085	4.545	. 714	6.92	370	42.	58.09	6.59
C_{4}	. 026	58.12	7.62	. 0073	. 1982	. 0014	4.386	. 114	1.51	425.2	37.5	11.06	. 98
c_{5}	. 071	72.124	8.49	. 0065	. 603	. 0039	4.31	. 306	5.12	469.8	33.3	33.36	2.36
C_{6+}	. 247	214.5	14.65	3.0	3.614	10.853	3.551	. 8771	52.98	705.4	17.347	174.23	4.28
+Prom	N.G.P	59			7.7983	10.8953	-	4.6171	77.72			381.37	36.147

$u=2.28 \mathrm{cp}$

TNBIE B-34

L.IQUID VISCOSITX

Sampling Point C
Cum. N_{2} Inj.
Pressure at sampling point $=$
$=3200 \mathrm{p} . \mathrm{vi}$.

Comp.	x_{1}	M_{i}	$M_{i}^{1 / 2}$	$\mathbf{u}_{\mathbf{i}}^{*}$ cp	$\mathrm{K}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}^{\frac{1}{2}}$	$x_{i} u_{i}^{*} M_{i}^{1}$	```Critical volume VCi gm/cm3```	$\mathrm{x}_{\mathrm{i}} \mathrm{V}^{\prime}{ }_{i}$	$\mathbf{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$	$\mathrm{T}^{\mathbf{m}}{ }^{\text {o }} \mathrm{K}$	$\mathrm{P}_{\text {c }}$, atim	$\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{T}} \mathbf{c}_{\mathbf{j}}$	$\mathrm{x}_{\mathrm{i}} \mathrm{P}_{\mathrm{c}_{\mathrm{i}}}$
N_{2}	.106	28.016	5.29	. 0176	. 561	. 01	3.2154	. 341	2.97	126.2	33.5	13.38	3.55
c_{1}	. 134	16.068	4.01	. 0108	. 537	. 006	6.173	. 827	2.153	191.1	45.8	25.61	6.14
C_{2}	. 101	30.060	5.48	. 0102	. 554	. 0056	4.926	. 498	3.037	305.5	48.2	30.86	4.87
C_{3}	. 115	44.094	6.64	. 0082	. 7636	. 0063	4.545	. 523	5.071	370	42.	42.55	4.83
C_{4}	0	58.12	7.62	. 0073	0	0	4.386	0	0	425.2	37.5	0	0
c_{5}	0	72.124	8.49	. 0065	0	0	1.31	0	0	469.8	33.3	0	0
$\mathrm{C}_{6 .}$. 541	214.5	14.65	3.0	7.967	23.90	3.551	1.932	116.69	705.1	17.347	383.74	9.44
+From	. G.P	59			10.3026	23.9279		4.121	129.921			496.14	28.83

$\mathbf{u}=3.343 \mathrm{cp}$

APPENDIX C

DAtA And RESULTS OF THE FOURTH RUN

IABLE C-1

GAS DENSITY
Sampling Point A
Cum. N_{2} Inj.
$=.17 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3360 \mathrm{psi}$

Comp .	Mole fraction gas, Y_{i}	```Critical temp., Tc```	Critical pressure, $P_{c}, p s i$	Molecular weight M_{i}	$Y_{i} \quad \mathrm{I}_{\mathrm{C}_{\mathbf{i}}}$	$Y_{i} \mathrm{P}_{\mathrm{c}_{\mathbf{i}}}$	$\mathrm{Y}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$
N_{2}	. 631	227	492.2	28.016	143	311	17.678
C_{1}	. 27	343.2	673.1	16.068	93	182	4.338
C_{2}	. 037	549.2	708.3	30.068	20	26	1.113
C_{3}	. 033	666	617.4	44.094	22	20	1.455
C_{4}	. 005	765.7	550.1	58.12	4	3	. 291
C_{5}	. 009	846.2	489.8	72.124	8	4	. 649
C_{6+}	. 015	1073+	$334+$	128.0	16	5	2.048
${ }^{+} \mathrm{From}$	lark 58				306	551	27.572

$$
\text { Gas Density }=17.53 \mathrm{lb} / \mathrm{ft}^{3}
$$

TABLE: C-2

GAS DENSIIIY
Sampling Point A
Cum. N_{2} Inj. $=.34 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3360$ psi.

Comp.	Mole fraction gas, Y_{i}	```Critical temp., Tc' }\mp@subsup{}{}{\circ}```	Critical pressure, $P_{c}, p s i$	Molecular weight M_{i}	$Y_{i} T_{c_{i}}$	$Y_{i}{ }^{P}{ }_{c}$	$\mathbf{Y}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$
N_{2}	. 841	227	492.2	28.016	191	413.9	23.561
C_{1}	. 12	343.2	673.1	16. 2668	41.	80.8	1.928
C_{2}	. 015	549.2	708.3	30.068	8	10.6	. 451
C_{3}	. 009	666	617.4	44.094	6	5.6	. 397
C_{4}	. 002	765.7	550.1	58.12	1.5	1.1	. 116
C_{5}	. 004	846.2	489.8	72.124	3.4	2.0	. 288
C_{6+}	. 009	1073+	$334+$	128.0	9.7	3.0	1.152
${ }^{+} \text {From }$	lark^{58}			260.6	517		27.893

Gas Density $=16.46 \quad \mathrm{lb} / \mathrm{ft}^{3}$

PABLE C-3

GAS DENSITY

Sampling Point B
Cum. N_{2} Inj. $=.34 \mathrm{p} . \mathrm{v}$
Pressure at sampling point $=3020 \mathrm{psi}$

Comp .	Mole fraction gas, Y_{i}	```Critical temp., Tc' }\mp@subsup{}{}{\circ}\textrm{R```	Critical pressure, P_{c}, psi	```Molecular weight Mi```	$y_{i}{ }^{\prime} \mathrm{F}_{C_{i}}$	$y_{i}{ }^{P}{ }_{c}$	$\mathrm{y}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$
N_{2}	. 5365	227	492.2	28.016	121.8	264.1	15.031
C_{1}	. 34	343.2	673.1	16.068	116.7	228.9	5.463
C_{2}	. 041	549.2	708.3	30.068	25.5	29.0	1.233
C_{3}	. 0375	666	617.4	44.094	25	23.2	1.654
C_{4}	. 008	765.7	550.1	58.12	6.1	4.4	. 465
C_{5}	. 015	84.6 .2	489.8	72.124	12.7	7.3	1.082
C_{6+}	. 022	1073+	$334+$	128.0	23.6	7.3	2.816
${ }^{+}$From	lark 58				331.4	564.2	27.744

gAS DENSTITY

Sampling Point B
Cum. N_{2} Inj. $=.5 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3020$ ps.i

Comp.	Mole fraction gas, Y_{i}	$\begin{gathered} \text { Critical } \\ \text { temp. } \\ \text { T }_{\mathrm{c}^{\prime}}{ }^{\circ}{ }_{\mathrm{R}} \\ \hline \end{gathered}$	Critical pressure, $\mathrm{P}_{\mathrm{c},} \mathrm{psi}$	$\begin{gathered} \text { Molecular } \\ \text { weight } \\ M_{j} \\ \hline \end{gathered}$	$\mathrm{Y}_{\mathbf{i}}{ }^{\text {T }} \mathrm{c}_{\mathbf{i}}$	$y_{i}{ }^{P} c_{i}$	$\mathrm{y}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$
N_{2}	. 682	227	492.2	28.016	154.8	335.7	19.107
c_{1}	. 24	343.2	673.1	16.068	82.4	161.5	3.856
C_{2}	. 031	549.2	708.3	30.068	17.0	22	. 932
c_{3}	. 024	666	617.4	44.094	16	14.8	1.058
C_{4}	. 003	765.7	550.1	58.12	2.3	1.7	. 174
C_{5}	. 005	846.2	489.8	72.124	4.2	2.4	. 361
c_{6+}	. 015	1073+	$334+$	128.0	16.1	5.0	1.92
${ }^{\text {From }}$	lark ${ }^{58}$				292.8	543.1	27.408

[^15]TABLE C-5

GAS DENSITY
Sampling Point B
Cum. N_{2} Inj.
$=.58 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3020$ psi

Comp.	Mole fraction gas, y_{i}	```Critical temp., 'I', '0```	Critical pressure, $\mathrm{P}_{\mathrm{c}}, \mathrm{ps}$.	Molecular weight M_{i}	$\mathbf{Y}_{\mathbf{i}} \mathrm{T}_{\mathbf{C}_{\mathbf{i}}}$	$Y_{i}{ }^{P}{ }_{c}$	$Y_{i} M_{i}$
N_{2}	. 799	227	492.2	28.016	181. 4	393.3	22.385
C_{1}	. 15	343.2	673.1	16.068	51.5	101	2.410
C_{2}	. 023	549.2	708.3	30.068	12.6	16.3	. 692
C_{3}	. 018	666	617.4	44.094	12	11.1	. 794
C_{4}	0	765.7	550.1	58.12	0	0	0
C_{5}	0	846.2	489.8	72.124	0	0	0
C_{6+}	. 01	1073+	$334+$	128.0	10.73	3.3	1.28
${ }^{+}$From	lark ${ }^{58}$			-	256.23	525	27.561

Gas Denisity $=14.8711 \mathrm{~b} / \mathrm{ft}^{3}$

TABLE C-6

GAS DENSIIY

Sampling Point C
Cum. N_{2} Inj. $\quad=\quad .51 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=2680$ psi

Comp .	Mole fraction gas, Y_{i}	```Critical temp., IG' }\mp@subsup{}{}{\circ}\textrm{R```	Critical pressure, $\mathrm{P}_{\mathrm{c}}, \mathrm{psi}$	Molecular weight M_{i}	$Y_{i} \mathrm{~T}_{\mathbf{c}_{\mathbf{i}}}$	$\mathrm{Y}_{\mathrm{i}}{\stackrel{\mathrm{P}}{\mathrm{C}_{\mathbf{i}}} \text { }}$	$\mathrm{Y}_{\mathrm{i}} \mathrm{M}_{\mathbf{i}}$
N_{2}	. 412	2.27	492.2	28.016	93.5	202.8	11.543
C_{1}	. 4	343.2	673.1	16.068	137.3	269.2	6.427
C_{2}	. 062	549.2	708.3	30.068	34.1	43.9	1.864
C_{3}	. 052	666	617.4	44.094	34.6	32.1	2.293
C_{4}	. 017	765.7	550.1	58.12	13.0	9.4	. 988
C_{5}	. 022	846.2	489.8	72.124	18.6	10.8	1.587
C_{6+}	. 035	$1073+$	$334+$	128.0	37.6	11.7	4.48
${ }^{+}$From	$1 . a r k 58$				368.7	579.9	29.182

TABLE C-7

GAS DENSTTY
Sampling Point C
Cum. N_{2} Inj.
$=.64 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=2680$ psi

Comp.	Mole fraction gas, Y_{i}	```Critical temp., Tc' }\mp@subsup{}{}{\circ}\textrm{R```	Critical pressure, $\mathrm{P}_{\mathrm{c}}, \mathrm{psi}$	```Molecular weight Mi```	$Y_{i} \mathrm{~T}_{c_{i}}$	$\mathrm{Y}_{\mathrm{i}} \mathrm{P}_{\mathrm{c}_{\mathrm{i}}}$	$Y_{i} M_{i}$
N_{2}	. 678	227	492.2	28.016	153.9	333.7	18.995
C_{1}	. 22	343.2	673.1	1.6 .068	75.5	148.1	3.535
C_{2}	. 0385	549.2	708.3	30.068	21.1	27.3	1.158
C_{3}	. 029	666	617.4	44.094	19.3	17.9	1.279
C_{4}	. 0065	765.7	550.1	58.12	5.0	3.6	. 378
C_{5}	. 01.	846.2	489.8	72.124	8.5	4.9	. 721
C_{6+}	. 98	1073+	$334+$	128.0	19.3	6.0	2.304
${ }^{+}$From	lark ${ }^{58}$				302.6	541.5	28.37

table c-8

GAS DENSITY
Sampling Point C
Cum. N_{2} Inj. $=.68 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=2680 \mathrm{psi}$

Comp.	Mole fraction gas, Y_{i}	$\begin{gathered} \text { Critical } \\ \text { temp: } \\ \text { T }_{C^{\prime}}{ }^{\prime} \mathrm{R} \end{gathered}$	Critical pressure, $\mathrm{P}_{\mathrm{c}}, \mathrm{psi}$	Molecular weight M_{i}	$\mathrm{Y}_{\mathrm{i}} \mathrm{T}_{\mathrm{c}_{\mathrm{i}}}$	$Y_{i}{ }^{P} \mathrm{c}_{\mathrm{i}}$	$\mathbf{y}_{\mathbf{i}} \mathrm{M}_{\mathrm{i}}$
N_{2}	. 7635	227	492.2	28.016	173.3	375.8	21.390
c_{1}	. 162	343.2	673.1	16.068	55.6	109	2.603
c_{2}	. 0305	549.2	708.3	30.068	16.8	21.6	. 917
C_{3}	. 023	666	617.4	44.094	15.3	14.2	1.014
C_{4}	. 002	765.7	550.1	58.12	1.5	1.1	. 116
C_{5}	. 007	846.2	489.8	72.124	5.9	3.4	. 505
C_{6+}	. 012	1073+	$334+$	128.0	12.9	4.1	1.536
${ }^{+}$From	clark ${ }^{58}$				281.3	529.2	28.081

$$
\text { Gas Density }=14.16 \mathrm{lb} / \mathrm{ft}^{3}
$$

TABLE C-9

GAS DENSITY

Sampling Point D
Cum. N_{2} Inj.
Pressure at sampling point $=2340$ p.v.

Comp.	Mole fraction gas, Y_{i}	$\begin{gathered} \text { Critical } \\ \text { temp. } \\ \mathrm{T}_{\mathrm{C}}{ }^{\prime}{ }^{\circ} \mathrm{R} \end{gathered}$	Critical pressure, $P_{c}, p s i$	Molecular weight M_{i}	$Y_{i} \mathrm{~T}_{\mathrm{C}_{\mathbf{i}}}$	$Y_{i}{ }^{P}{ }_{c}{ }_{\mathbf{j}}$	$Y_{i} M_{i}$
N_{2}	. 344	227	492.2	28.016	78.1	169.3	9.638
C_{1}	. 42	343.2	673.1	16.068	144.1	282.7	6.749
C_{2}	. 081	549.2	708.3	30.068	44.5	57.4	2.436
C_{3}	. 066	666	617.4	44.694	44.0	40.7	2.910
C_{4}	. 017	765.7	550.1	58.12	13.0	9.4	. 988
C_{5}	. 027	84.6	489.8	72.124	22.8	13.2	1.947
C_{6+}	. 045	1073+	$334+$	128.0	48.3	15.0	5.76
${ }^{\text {From }}$	lark 58				394.8	58.77	30.328

Gas Density $=18.233 \mathrm{lb} / \mathrm{ft}^{3}$

TABLE C-10

GAS DENSITY
Sampling Point D
Cum. N_{2} Inj. $=.82 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=2340$ psi

Comp.	Mole firaction gas, Y_{i}	```Critical```	Critical pressure, $P_{c}, p s i$	Molecular weight M_{i}	$Y_{i} \mathrm{~T}_{\mathrm{c}_{\mathbf{i}}}$	$Y_{i} \mathrm{P}_{\mathrm{C}_{\mathbf{i}}}$	$Y_{i} M_{i}$
N_{2}	. 652	227	492.2	28.016	148	320.9	18.266
C_{1}	. 22	343.2	673.1	16.068	75.5	148.1	3.545
C_{2}	. 051	549.2	708.3	30.068	28	36.1	1.533
C_{3}	. 035	666	.617.4	44.094	23.3	21.6	1.543
C_{4}	. 008	765.7	550.1	58.12	6.1	4.4	. 465
C_{5}	. 013	846.2	489.8	72.124	11	6.4	. 938
C_{6+}	. 021	1073+	$334+$	128.0	22.5	7.0	2.688
${ }^{+}$From	lark ${ }^{58}$				314.4	544.5	28.978

$$
\text { Gas Density }=28.978 \mathrm{lb} / \mathrm{ft}^{3}
$$

TABLE C-11

GAS DENSITY

Sampling Point D
$\begin{array}{ll}\text { Cum. } \mathrm{N}_{2} \text { Inj. } & =.88 \mathrm{p} . \mathrm{v} . \\ \text { Pressure at sampling point } & =2340 \mathrm{psi}\end{array}$

Comp.	Mole fraction gas, Y_{i}	```Critical temp., TC```	Critical pressure, $P_{c}, p s i$	Molecular weight M_{i}	$\mathbf{Y}_{\mathbf{i}}{ }^{\mathbf{T}} \mathrm{C}_{\mathbf{i}}$	$Y_{i}{ }^{P}{ }_{c}$	$\mathbf{Y}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$
N_{2}	. 838	227	492.2	28.016	190.2	412.5	23.477
C_{1}	. 11	343.2	673.1	16.068	37.8	74.0	2.767
C_{2}	. 026	549.2	708.3	30.068	14.3	18.4	. 782
C_{3}	. 016	666	617.4	44.094	10.7	9.9	.706
C_{4}	0.0	765.7	550.1	58.12	0	0	0
C_{5}	. 003	846.2	489.8	72.124	2.5	1.5	. 216
C_{6+}	. 007	$1073+$	$334+$	128.0	7.5	2.3	. 896
${ }^{\text {trom }}$	1 ark 58				263	518.6	27.844

Gas Density $=12.07 \mathrm{lb} / \mathrm{ft}^{3}$

```
    TABLE C-12
```


LIQUID DENSITY

Comp.	```Mole fraction liquid, x```	Molecular weight M_{i}	$\mathrm{X}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i}, f t^{3} / 1 b \end{gathered}$	$\mathbf{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}} \mathrm{V}_{\mathrm{i}}$
N_{2}	. 1353	28.016	3.7906	. $01983+$. 07517
C_{1}	. 174	16.068	2.79583	. 0535	. 14958
C_{2}	. 046	30.068	1.383	. 043	. 05947
C_{3}	. 058	44.094	2.557	. 0316	. 08082
C_{4}	. 013	58.12	. .756	. 0275	. 02078
C_{5}	. 0367	72. 124	2.647	. 0254	.06723
c_{6+}	. 536	214.5	114.972	. 01976	2. 272
${ }^{+}$From	N.G.P.A. ${ }^{59}$		128.901		2.725
	Stock tank Density at	ensity urrent pre	ssure and	mperature $=$	$\begin{aligned} & 47.303 \\ & 48.253 \end{aligned}$

TABLE C-13

I.IQUID DENSITY

```
Sampling point A
Cum. N2 Inj. = .34 p.v.
Pressure at the sampling point = 3360 psi
```

Comp.	$\begin{gathered} \text { Mole } \\ \text { fraction } \\ \text { liquid, } x_{i} \end{gathered}$	Molecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\begin{aligned} & \text { Specific } \\ & \text { volume } \\ & v_{i}, f^{3 / 1 b} \end{aligned}$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}$
N_{2}	. 3202	28.016	8.971	.01983+	. 1779
c_{1}	. 075	16.068	1.205	. 0535	. 0645
C_{2}	. 0192	30.068	. 577	. 043	. 0248
c_{3}	. 0167	44.094	. 736	. 0316	. 023
C_{4}	. 0057	58.12	. 331	. 0275	. 0091
C_{5}	. 0182	72.124	1.313	. 0254	. 0333
C_{6+}	. 692	214.5	148.434	. 01976	2.9331
${ }^{+}$From	G.P.A. ${ }^{59}$		161.567		3.2657

[^16]TABLE C-14

SIQUID DENSITY
Sampling point B
$\begin{aligned} \text { Cum. } N_{2} \text { Inj. } & =.34 & \text { p.v. } \\ \text { Pressure at the sampling point } & =3020 & \text { psi. }\end{aligned}$

Comp .	Mole fraction liquid, x_{i}	Molecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i}, f t^{3} / 1 b \end{gathered}$	$\mathrm{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$
N_{2}	. 099	28.016	2.774	. $01983+$. 055
C_{1}	. 206	16.068	3.31	. 0535	. 1771
C_{2}	. 052	30.068	1.564	. 043	. 0672
C_{3}	. 071	44.094	3.131	. 0316	. 0989
C_{4}	. 023	58.12	1.337	. 0275	. 0368
C_{5}	. 071	72. 124	5.121	. 0254	. 1301
C_{6+}	. 478	214.5	102.531	. 01976	2.026

TABLE C-15

LIQUID DENSITY

TABLE C-16

LIQUID DENSI'I'Y

Sampling point B

Cum. N_{2} Inj. $\quad=\quad .58 \mathrm{p} . \mathrm{v}$.
Pressure at the sampling point $=3020$ psi

Comp .	```Mole fraction liquid, x```	Molecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	```Specific volume vi,ft3/lb```	$\mathrm{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$
N_{2}	. 132	28.016	3.698	. $01983+$. 0733
C_{1}	. 087	16.068	1. 398	. 0535	. 0748
C_{2}	. 03	30.068	. 902	. 043	. 0388
C_{3}	. 037	44.094	1.631	. 0316	. 0516
C_{4}	0	58.12	0	. 0275	0
C_{5}	0	72.124	0	. 0254	0
C_{6+}	. 714	214.5	153.153	. 01976	3.0263
${ }^{+}$From N.G.P.A. ${ }^{59}$			160.782		3.2648
	Stock tank Density at	density current pre	ssure and	mperature $=$	$\begin{aligned} & 49.247 \\ & 50.137 \end{aligned}$

```
TABLE C-17
```


LIQUID DENSTTY

Sampling point C

Cum. N_{2} Inj.	$=-51$	p.v.
Pressure at the sampling point	$=2680 \quad$ psi.	

Comp.	```Mole fraction liquid, xi```	Molecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i}, f t^{3} / 1 b \end{gathered}$	$\mathrm{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}} \mathrm{V}_{\mathbf{i}}$
N_{2}	. 116	28.016	3.25	. $01983+$. 0644
C_{1}	. 229	16.068	3.68	. 0535	. 1969
C_{2}	. 078	30.068	2.345	.043	. 1009
C_{3}	. 104	44.094	4.586	. 0316	. 1449
C_{4}	. 055	58.12	3.197	. 0275	. 0879
C_{5}	. 116	72.124	8.366	. 0254	. 213
C_{6+}	. 302	214.5	64.779	. 01976	1.28
${ }^{\text {From N.G.P.A. }}{ }^{59}$			90.203		2.088
Stock tank densityDensity at current prest			ure and	mperature $=$	$\begin{aligned} & 43.20071 \\ & 44.35071 \end{aligned}$

TABLE C-18

LIQUID DENSIIY

Comp.	Mole fraotion liquid, x_{i}	Molecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i}, f t^{3} / 1 b \end{gathered}$	$\mathrm{X}_{\mathrm{i}} \mathrm{M}_{\mathbf{i}}$
N_{2}	. 125	28.016	3.502	. $01983+$. 0694
C_{1}	. 121	16.068	1.944	.0535	. 104
C_{2}	. 05	30.068	1.503	. 043	. 0647
C_{3}	. 062	44.094	2.734	. 0316	. 0864
C_{4}	. 023	58.12	1.337	. 0275	. 0368
C_{5}	. 059	72. 124	4.255	. 0254	. 1081
C_{6+}	. 56	214.5	120.12	. 01976	2.3736
${ }^{+}$From N.G.P.A. ${ }^{59}$			135.395		2.843
	Stock tank Density at	density	ure and	mperature $=$	$\begin{aligned} & 47.624 \\ & 48.524 \end{aligned}$

TABLE C-19

LIQUID DENSTIY

Sampling point C
Cum. N_{2} Inj. $\quad=.68 \mathrm{p} . \mathrm{v}$.
Pressure at the sampling point $=2680$ psi

Comp.	Mole fraction liquid, x_{i}	Mol.ecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	Specific volume $v_{i}, f t^{3} / 1 b$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}$
N_{2}	. 125	28.016	3.502	. $01.983+$. 0694
C_{1}	. 087	16.068	1.398	. 0535	. 0748
C_{2}	. 041	30.068	1.233	. 043	. 053
C_{3}	. 051	44.094	2.249	. 0316	. 071
C_{4}	. 007	58.12	. 407	. 0275	. 0112
C_{5}	. 044	72.124	3.173	. 0254	. 0806
C_{6+}	. 645	214.5	138.353	. 01976	2.734
${ }^{+}$From	N.G.P.A. 59		150.315		3.094
	Stock tank Density at	urrent pre	sure and	mperature $=$	$\begin{aligned} & 48.5827 \\ & 49.432 \end{aligned}$

TABLE C-20

LIQUID DENSI'IY

Sampling point D
Cum. N_{2} Inj.
Pressure at the sampling point $=2.68 \mathrm{p} \cdot \mathrm{v}$.

Comp .	Mole fraction liquid, x_{i}	Molecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	Specific volume $v_{i}, f t^{3} / 1 b$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}} \mathbf{V}$
N_{2}	. 101	28.016	2.83	. $01983+$	$.0561$
C_{1}	. 233	16.068	3.744	. 0535	. 2003
C_{2}	. 104	30.068	3.127	. 043	. 1345
C_{3}	. 137	44.094	6.041	. 0316	. 1909
C_{4}	. 059	58.12	3.429	. 0275	. 0943
C_{5}	. 15	72.124	10.819	. 0254	. 2748
C_{6+}	. 216	214.5	46.332	. 01976	. 9155
${ }^{\text {From N.G.P.A. }}{ }^{59}$			76.322		1.8664
	Stock tank Density at	density urrent pres	ure and	mperature	$\begin{aligned} & 40.8926 \\ & 41.89 \end{aligned}$

TABLE C-21

LIQUID DENSITY

Sampling point D
$\begin{aligned} \text { Cum. } N_{2} \text { Inj. } & =882 \mathrm{p} \cdot \mathrm{v} \\ \text { Pressure at the sampling point } & =2340 \text { psi }\end{aligned}$

Comp.	```Mole fraction liquid, x```	Molecular weight M_{i}	$\mathrm{x}_{\mathbf{i}} \mathrm{M}_{\mathrm{i}}$	Specific volume $v_{i}, f t^{3} / 1 b$	$\mathrm{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$
N_{2}	. 125	28.016	3.502	. $01983+$. 0694
C_{1}	. 113	16.068	1.816	. 0535	. 0971
C_{2}	. 068	30.068	2.045	. 043	.0879
C_{3}	. 081	44.094	3.572	. 0316	. 1129
C_{4}	. 033	58.12	1.918	. 0275	. 0527
C_{5}	. 1	72.124	7.212	. 0254	. 1832
C_{6+}	. 68	214.5	102.96	. 01976	2.0345
+ From	$\text { N.G.P.A. } 59$		123.025		2.6377
	Stock tank Density at	density current pre	sure and	mperature $=$	$\begin{aligned} & 46.64 \\ & 47.49 \end{aligned}$

```
    TABLE C-22
LIQUID DENSITY
```

Sampling point D
Cum. N_{2} Inj. $=.88 \mathrm{p} . \mathrm{v}$.

Pressure at the sampling point $=2340 \mathrm{psi}$

Comp.	Mole fraction liquid, x_{i}	Molecular weight M_{i}	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\begin{gathered} \text { Specific } \\ \text { volume } \\ v_{i}, f t^{3} / 1 b \end{gathered}$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}$
N_{2}	. 139	28.016	3.894	. $01983+$. 0772
C_{1}	. 055	16.068	. 884	. 0535	. 0473
c_{2}	. 035	30.068	1.052	. 043	. 0453
C_{3}	. 038	44.094	1.676	. 0316	. 053
C_{4}	0	58.12	0	. 0275	0
C_{5}	. 024	72.124	1.731	. 0254	. 044
c_{6+}	. 709	214.5	152.081	. 01976	3.0051
${ }^{\text {From }}$	N.G.P.A. ${ }^{59}$		161.318		3.2719

[^17]'IABLE C-23

SURPACE TLENSION
Sampling point A
Cuil. N_{2} Inj. $\quad=\quad .17 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3360$ psi

(1) Comp.	(2) x_{i}	(3) Y_{i}	$\mathrm{x}_{\mathrm{i}} \frac{(4)}{\rho_{\mathrm{L}}}{ }_{\mathrm{M}_{\mathrm{L}}}$	(5) $Y_{i} \frac{\rho_{v}}{M_{V}}$	$\begin{gathered} (6) \\ (4)-(5) \end{gathered}$	(7) Parachor ${ }^{P_{\text {chi }}}$	$\begin{gathered} (8) \\ (6) \times(7) \end{gathered}$
N_{2}	.1353	. 631	. 0005714	. 006426	-. 00585	$41 .+$	-. 24
C_{L}	. 174	. 27	. 000735	. 00275	-. 00201	77	-. 15514
C_{2}	. 046	. 037	. 000194	. 000377	-. 0001825	108	-. 01971
C_{3}	. 058	. 033	. 000245	. 00034	-. 00009	150	-. 013695
C_{4}	. 013	. 005	. 000055	. 000051	0.000004	190	. 00076
C_{5}	. 0367	. 009	. 000155	. 000092	0.000063	232	. 0147
$\mathrm{C}_{6.4}$. 536	. 015	. 002264	. 000153	. 002111	548.2	1.1573

'IABLE C-24
 SURFACE TENSION

Sampling point A
Cum. N_{2} Inj. $=.34 \mathrm{P} . \mathrm{v}$
Pressure at sampling point $=3360$ psi

(1) comp.	(2) x_{i}	(3) y_{i}	$\mathrm{x}_{\mathrm{i} .} \frac{(4)}{\rho_{\mathrm{I}_{\mathrm{S}}}}$	$Y_{i}{\stackrel{\rho_{v}}{M_{V}}}_{(5)}$	$\begin{gathered} (6) \\ (4)-(5) \end{gathered}$	```(7) Parachor P```	$\begin{gathered} (8) \\ (6) \times(7) \end{gathered}$
N_{2}	. 3202	. 841	. 00119	. 00795	-. 00676	41^{+}	. 2771
c_{1}	. 075	. 12	. 00028	. 00113	-. 00085	77	-. 0658
C_{2}	. 0192	. 015	. 00007	. 000142	$-.00007$	108	-. 00759
C_{3}	. 0167	. 009	. 00006	. 000085	-. 000023	150	-. 00344
C_{4}	. 0057	. 002	. 000021	. 00002	.00000233	190	. 000443
C_{5}	. 0182	. 004	. 0000678	. 000038	. 00003	232	. 00696
C_{6+}	. 692	. 009	. 00258	. 000085	. 00249	548.2	1. 3668

PABLE C-25

SURFACE TENSION
Sampling point B
Cum. $\mathrm{N}_{2} \operatorname{Inj} . \quad=\quad .5 \mathrm{p} . \mathrm{V}$.
Pressure at sampling point $=3020$ psi

(1) comp.	(2) x_{i}	(3) Y_{i}	$\mathrm{x}_{\mathrm{i}} \frac{(4)}{\mathrm{P}_{\mathrm{L}}} \mathrm{M}_{\mathrm{L}}$	$y_{i} \frac{(5)}{\rho_{v}}$	$\begin{gathered} (6) \\ (4)-(5) \end{gathered}$	$\begin{gathered} (7) \\ \text { Parachor } \\ \mathrm{P}_{\text {chi }} \end{gathered}$	$\begin{gathered} (8) \\ (6) \times(7) \end{gathered}$
N_{2}	. 112	. 682	. 00045	. 00624	$-.0058$	41^{+}	-. 2375
c_{1}	.141	. 24	. 00057	. 0022	-. 00163	77	-. 1256
C_{2}	. 04	. 031	. 00016	. 000284	$-.00012$	108	-. 0133
C_{3}	. 047	. 024	. 00019	. 00022	-. 000031	150	$-.00467$
C_{4}	. 009	. 003	. 000036	. 00003	. 000009	190	. 00164
C_{5}	. 026	. 005	. 0001	. 0000457	. 000059	232	. 01359
C_{6+}	. 625	. 015	. 00251	. 000137	. 00237	548.2	1.2996

TABLE C-26

SURFACE TENSION

Sampling point B
Cum. N_{2} Inj. $=\quad .58 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3020 \mathrm{psi}$

(1) Comp.	(2) x_{i}	(3) y_{i}	$\begin{gathered} \text { (4) }{ }^{\rho_{\mathrm{I}}} \frac{\rho_{\mathrm{I}}}{M_{\mathrm{L}_{1}}} \end{gathered}$	$Y_{i}^{(5)^{(5)}} \frac{\rho_{V}}{M_{V}}$	$\begin{gathered} (6) \\ (4)-(5) \end{gathered}$	(7) Parachor ${ }^{P}$ chi	$\begin{gathered} (8) \\ (6) \times(7) \end{gathered}$
N_{2}	. 132	. 799	. 0005	. 003448	-. 002947	41^{+}	-. 1208
C_{1}	. 087	. 15	. 00033	. 0013	. 00097	77	-. 0744
C_{2}	. 03	. 023	. 000114	.000199	$-.000085$	108	-. 0092
C_{3}	. 037	. 018	. 00014	. 000156	-. 000015	150	-. 0023
C_{4}	0	0	0	0	0	190	0
C_{5}	0	0	0	0	0	232	0
C_{6+}	. 714	. 01	. 002711	. 1000086	. 002625	548.2	1.439

[^18]TABLE C-27

GAS VISCOSI'RY
Sampling point A
$\begin{array}{ll}\text { Cum. } N_{2} \text { Inj. } & =.17 \mathrm{p} . \mathrm{v} . \\ \text { Pressure at sampling point } & =3360 \mathrm{psi}\end{array}$

Comp.	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$Y_{i} M_{i}^{\frac{1}{2}}$	Atmospheric viscosity $u_{i}^{*}, ~$	$u_{i p}^{*} Y_{i} M_{i}^{\frac{1}{2}}$

Mixture atmospheric viscosity $=u^{*}=.0148 \mathrm{cp}$ Mixture viscosity at the system temperature

TABLE C-28

GAS VISCOSTTY

Sampling point A
Cum. N_{2} Inj. $=.34 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3360$ psi

Comp .	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$y_{i} M_{i}^{\frac{1}{2}}$	```Atmospheric viscosity u*, cp```	$u_{i}^{*} Y_{i} M_{i}^{1 / 2}$
N_{2}	. 841	28.016	5.29	4.4514	. $0176+$. 0783
C_{1}	. 12	16.068	4.01	. 4810	. 0108	. 0052
C_{2}	. 015	30.068	5.48	. 0823	. 0102	. 0008
C_{3}	. 009	44.094	6.64	. 0598	. 0082	. 0005
C_{4}	. 002	58.12	7.62	. 0152	. 0073	. 0001
C_{5}	. 004	72.124	8.5	. 034	. 0065	. 0002
C_{6+}	. 009	128	11.31	. 1018	. 005	. 0005
From Carr et al. ${ }^{\text {c }}$ (5.2255 . 0856						
Mixture atmospheric viscosity $=u^{*}=.0164 \mathrm{cp}$ Mixture viscosity at the system temperature and pressure $=u=.0254 \mathrm{cp}$						

TABLE C-29

GAS VISCOSI'TY

Sampling point B
Cum. N_{2} Inj. $=.34 \mathrm{p} . \mathrm{V}$.
Pressure at sampling point $=3020 \mathrm{psi}$

	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$Y_{i} M_{i}^{\frac{1}{2}}$	Atmospheric viscosity $u_{i}^{*}, ~$	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$

Mixture atmospheric viscosity $=u^{*}=.014 \mathrm{cp}$ Mixture viscosity at the system temperature
and pressure $=u=.0266 \mathrm{cp}$

TABLE C-30

GAS VISCOSITTY
Sampling point B
$\begin{array}{ll}\text { Cum. } N_{2} \text { Inj. } & =\quad .5 \mathrm{p} . \mathrm{v} . \\ \text { Pressure at sampling point } & =3020 \mathrm{psi}\end{array}$

Comp.	Mole fraction gas, y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$Y_{i} M_{i}^{\frac{1}{2}}$	Atmospheric viscosity $u_{i}^{*}, ~$	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$

Mixture atmospheric viscosity $=u^{*}=.0152 \mathrm{cp}$
Mixture viscosity at the system temperature

TABLE C-31

GAS VISCOSITY
Sampling point B
Cum. N_{2} Inj.
$=.58 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3020$ psi

Comp.	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1 / 2}{2}}$	$Y_{i} M_{i}^{\frac{1 / 2}{2}}$	Atmospheric viscosity $u_{i}^{*}, ~$	$u_{i}^{*} Y_{i} M_{i}^{M_{i}^{\prime 2}}$

Mixture atmospheric viscosity $=u^{*}=.0161 \mathrm{cp}$
Mixture viscosity at the system temperature and pressure $=u=.02254 \mathrm{cp}$

TABLE C-32

GAS VISCOSITY
Sampling point C
Cum. N_{2} Inj. $=.51 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=2680 \mathrm{psi}$

Comp.	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$\mathrm{M}_{i}^{\frac{2}{2}}$	$Y_{i} M_{i}^{\frac{1}{2}}$	```Atmospheric viscosity u_k, cp```	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$
N_{2}	. 412	28.016	5.29	2.1807	. $0176+$. 0384
C_{1}	. 4	16.068	4.01	1.6034	. 0108	. 0173
C_{2}	. 062	30.068	5.48	. 34	. 0102	. 0035
C_{3}	. 052	44.094	6.64	. 3453	. 0082	. 0028
C_{4}	. 017	58.12	7.62	. 1296	. 0073	. 0009
C_{5}	. 022	72.124	8.5	. 1868	. 0065	. 0012
C_{6+}	. 035	128	11.31	. 396	. 005	. 002
From	et al.			5.1818		. 0661

Mixture atmospheric viscosity $=u^{*}=.0128 \mathrm{cp}$
Mixture viscosity at the system temperature and pressure $=u=.0273 \mathrm{sp}$

TABLE C-33
GAS VISCOSITY
Sampling point C
Cum. N_{2} Inj. $=.64 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=2680$ psi.

	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{1 / 2}$	$Y_{i} M_{i}^{\frac{1}{2}}$	Atmospheric viscosity $u_{i}^{*}, ~ c p$	$u_{i}^{*} Y_{i} M_{i}^{\frac{3}{2}}$
N_{2}	.678	28.016	5.29	3.5887	$.0176+$.0632
C_{1}	.22	16.068	4.01	.8819	.0108	.0095
C_{2}	.0385	30.068	5.48	.2111	.0102	.0022
C_{3}	.029	44.094	6.64	.1926	.0082	.0016
C_{4}	.0065	58.12	7.62	.0496	.0073	.0004
C_{5}	.01	72.124	8.5	.0849	.0065	.0006
C_{6+}	.018	128	11.31	.636	.005	.001

From Carr et al. ${ }^{56}$
Mixture atmospheric viscosity $=u^{*}=.015 \mathrm{cp}$ Mixture viscosity at the system temperature
and pressure $=\mathbf{u}=.023 \mathrm{cp}$

TABLE C-34

GAS VISCOSITY
Sampling point C
Cum. N_{2} Inj. $=-.68 \mathrm{p.v}$.
Pressure $a t$ sampling point $=2680$ psi

Comp.	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$Y_{i} M_{i}^{\frac{1}{2}}$	Atmospheric viscosity $u_{i}^{*}, ~$	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$
$\mathrm{~N}_{2}$.7635	28.016	5.29	4.0412	$.0176+$.0711
C_{1}	.162	16.068	4.01	.6494	.01 .08	.007
C_{2}	.0305	30.068	5.48	.1672	.0102	.0017
C_{3}	.023	44.094	6.64	.1527	.0082	.0013
C_{4}	.002	58.12	7.62	.0152	.0073	.0001
C_{5}	.007	72.124	8.5	.0594	.0065	.0004
C_{6+}	.012	128	11.31	.1358	.005	.0007

From Carr et al. 56
Mixture atmospheric viscosity $=\mathbf{u}^{*}=.0158 \mathrm{cp}$
Mixture viscosity at the system temperature
and pressure $=u=.023 \mathrm{cp}$

IIABLE C-35

GAS VISCOSITY

Sampling point D
Cum. N_{2} Inj. $=.68 \mathrm{P} . \mathrm{V}$.
Pressure at sampling point $=2340$ psi

Comp.	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{1 / 2}$	$Y_{i} M_{i}^{\frac{1}{2}}$	```Atmospheric viscosity u*```	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$
N_{2}	. 344	28.016	5.29	1.8208	. 01.76 t	. 0320
C_{1}	. 42	16.068	4.01	1.6836	. 0108	. 0182
C_{2}	. 081	30.068	5.48	. 4442	. 01.02	. 0045
C_{3}	. 066	44.094	6.64	. 4383	. 0082	. 0036
C_{4}	. 017	58.12	7.62	. 1296	. 0073	. 0009
C_{5}	. 027	72.124	8.5	. 2293	. 0065	. 0015
C_{6+}	. 045	128	11.31	. 5091	. 005	. 0025
From	r et al.			5.2549		. 0632

Mixture atmospheric viscosity $=u^{*}=.012 \mathrm{cp}$
Mixture viscosity at the system temperature

TABLE C-36

GAS VISCOSI'TY

Sampling point D
Cum. N_{2} Inj. $=.82$ p.v.
Pressure at sampling point $=2340$ psi

Comp.	Mole fraction gas, Y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$Y_{i} M_{i}^{\frac{1}{2}}$	Atmospheric viscosity $u_{i}^{*}, ~$	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$

Mixture atmospheric viscosity $=u^{*}=.0147 \mathrm{cp}$ Mixture viscosity at the system temperature and pressure $=u=0.022 \mathrm{cp}$

TABLE C-37

GAS VISCOSI'TY

Sampling point D

```
Cum. N2 Inj. Nin = . . 88 p.v
```

Pressure at sampling point $=2340$ psi.

Comp.	Mole fraction gas, y_{i}	Molecular weight M_{i}	$M_{i}^{\frac{1}{2}}$	$Y_{i} M_{i}^{\frac{1 / 2}{2}}$	```Atmospheric viscosity u_i, cp```	$u_{i}^{*} Y_{i} M_{i}^{\frac{1}{2}}$
N_{2}	. 838	28.016	5.29	4.4355	. $01.76+$. 0781
C_{1}	. 11	16.068	4.01	. 4409	. 0108	. 0048
C_{2}	. 026	30.068	5.48	. 1426	. 0102	. 0015
C_{3}	. 016	44.094	6.64	. 1062	. 0082	. 0009
C_{4}	0.0	58.12	7.62	0	. 0073	0
C_{5}	. 003	72.124	8.5	. 0255	. 0065	. 0002
C_{6+}	. 007	128	11.31.	. 0792	. 005	. 0004
From	r et al.			5.2299		. 0859

Mixture atmospheric viscosity $=u^{*}=.0164 \mathrm{cp}$ Mixture viscosity at the system temperature and pressure $=u=.022 \mathrm{cp}$

Sampling Point A
Cum. $\mathrm{N}_{2} \mathrm{Inj}$.
Pressure at sampling point $=4400 \mathrm{pgi}$

Comp.	$\mathbf{x i}_{\boldsymbol{i}}$	M_{i}	$M_{i}^{\frac{1}{2}}$	$\begin{aligned} & u_{i}^{*} \\ & c p \end{aligned}$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\boldsymbol{i}}^{\frac{1}{2}}$	$\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}^{*} \mathrm{M}_{\mathrm{i}}^{1 / 2}$	```Critical volume v gm/\mp@subsup{cm}{}{3}```	$\mathrm{x}_{\mathrm{i}} \mathrm{v}_{c_{i}}$	$\mathbf{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$	${ }^{1} c^{m}{ }^{\circ} \mathrm{K}$	$\mathrm{P}_{\text {c }}$, atim	$\mathbf{x}_{i} \mathrm{~T}_{c_{i}}$	${ }^{*}{ }^{P} \mathrm{c}_{i}$
N_{2}	. 1353	28.016	5.29	. 0176	. 7156	. 0126	$3.215+$. 4350	3.7906	126.2	33.5	17.1	4.5
c_{1}	. 174	16.068	4.01	. 0108	. 6975	. 0075	6.173	1.0741	2.7958	191.1	45.8	33.3	8.0
c_{2}	. 046	30.068	5.48	. 0102	. 2522	. 0026	4.926	. 2266	1.3831	305.5	40.2	14.1	2.2
C_{3}	. 058	44.094	6.64	. 0082	. 3851	. 0032	4.545	.2636	2.557	370	42.	21.5	2.4
c_{4}	. 013	58.12	7.62	. 0073	. 0991	. 0007	4.386	. 057	. 7556	425.2	37.5	5.5	. 49
C_{5}	. 0368	72.124	8.49	. 0065	. 3125	. 002	4.31	.1586	2.647	469.8	33.3	17.3	1.2
C_{6+}	. 536	214.5	14.65	3.0	7.8502	23.5505	3.551	1.9033	114.972	705.4	17.347	378.1	9.3
+From	N.G.P.				10.3122	23.5791		4.1182	128.9011			486.9	28.09

$$
\mathbf{u}=3.37 \mathrm{cp}
$$

LIQUID VISCOSITY
Sampling point Λ
Cum. N_{2} Inj.
Pressure at sampling point $=9.34 \mathrm{p.v}$

Comp.	$\mathbf{x}_{\mathbf{i}}$	M_{i}	$M_{i}^{1 / 2}$	$\mathbf{u t i}_{i}^{*}$ Cp	$x_{i} M_{i}^{1 / 2}$	$\mathbf{x}_{i} \mathbf{u}_{\mathbf{i}}^{*} \mathrm{M}_{\mathbf{i}}^{\frac{1}{2}}$	```Critical volume VCl gm/Cm```	$\mathbf{x}_{\mathbf{i}} \mathbf{v}_{\mathbf{c}_{\boldsymbol{i}}}$	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathbf{i}}$	${ }^{\prime \prime} c^{\text {mi }}{ }^{\circ} \mathrm{K}$	$\mathrm{P}_{\text {c }}{ }^{\prime}$ atm	${ }^{\mathbf{x}}{ }^{\mathbf{T}} \mathbf{c}_{\mathbf{i}}$	$\mathrm{x}_{\mathrm{i}}{ }^{P} \mathrm{c}_{\mathrm{i}}$
N_{2}	. 3202	28.016	5.29	. 0176	1.6948	. 0298	$3.215+$	1.0294	8.971	126.2	33.5	40.4	10.7
C_{1}	. 075	16.068	4.01	. 0108	. 3006	. 0032	6.173	.463	1.2051	191.1	45.8	14.3	3.4
C_{2}	. 0192	30.068	5.48	. 0102	. 1053	. 0011	4.926	. 0946	. 5773	305.5	48.2	5.9	. 93
C_{3}	. 0167	44.094	6.64	. 0082	. 1109	. 0009	4.545	. 0759	. 7364	370	42.	6.2	. 70
C_{4}	. 0057	50.12	7.62	. 0073	. 0435	. 0003	4.386	. 025	. 3313	425.2	37.5	2.4	. 21
C_{5}	. 0182	72.124	8.49	. 0065	. 1546	. 001	4.31	. 0784	1.3127	469.8	33.3	8.6	.6]
C_{6+}	. 692	214.5	14.65	3.0	10.135	30.4047	3.551	2.4573	148.474	705.4	17.347	488.1	12.0
+From	N.G.P.	59			12.5447	30.441		4.2236	161.567			565.9	28.55

$u=3.514 \mathrm{cp}$

TABLE C-40.

LIQUID VISCOSI'Y
Sampling Point B
Cum. N_{2} Inj. $\quad=.34 \mathrm{p} \cdot \mathrm{V}$
pressure at sampling point $=3800 \mathrm{psi}$

Comp.	$\mathrm{x}_{\mathbf{i}}$	M_{i}	$M_{1}^{1 / 2}$	\mathbf{u}_{i}^{*} CD	$\mathrm{xi}_{\mathrm{i}} \mathrm{M}_{1}^{\frac{1}{2}}$	$\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathbf{i}}^{*} \mathrm{M}_{\mathrm{i}}^{1 / 2}$	```Critical volume vci gm/cm```	$\mathrm{x}_{\mathrm{i}} \mathrm{v}_{c_{i}}$	$\mathbf{x}_{\mathbf{i}} \mathbf{M}_{\mathbf{i}}$	${ }^{\prime \prime} c^{\prime \prime \prime}{ }^{\circ} \mathrm{K}$	${ }^{\prime} c^{\prime}{ }^{\text {atin }}$	${ }^{\mathbf{x}}{ }^{\mathbf{T}} \mathbf{c}_{\mathbf{c}}$	$x_{i}{ }^{!} c_{i}$
N_{2}	. 099	28.016	5.29	. 0176	. 524	. 0092	$3.215+$. 3183	2.774	126.2	33.5	12.5	3.3
c_{1}	. 206	16.068	4.01	.0108	. 8257	. 0089	6.173	1.2716	3.31	191.1	45.8	39.4	9.4
C_{2}	. 056	30.068	5.48	. 0102	. 2851	. 0029	4.926	. 2562	1.5635	305.5	48.2	15.9	2.5
c_{3}	. 071	44.094	6.64	. 0002	. 4715	. 0039	4.545	. 3227	3.1307	370	12.	26.3	3.0
C_{4}	. 023	58.12	7.62	. 0073	. 1753	. 0013	4.386	. 1009	1.3368	425.2	37.5	9.8	. 86
C_{5}	. 071	72.124	8.49	. 0065	.603	. 0038	4.31	. 306	5.121	469.8	33.3	33.4	2.4
C_{6+}	. 478	214.5	14.65	3.0	7.0007	21.0021	3.551	1.6974	102.531	705.4	17.347	337.2	6.3

+From N.G.P.A. ${ }^{59}$
9.885321 .0321
4.2731119 .767
474.5
29.76
$\mathrm{u}=3.11 \mathrm{cp}$

TABLE C-41

LIQUID VISCOSITY

Sampling Point B
Cum. $\mathrm{N}_{2} \mathrm{Inj}$.
Pressure at sampling point $=3800 \mathrm{psi}$

comp.	\boldsymbol{x}_{1}	M_{i}	$\mathrm{M}^{\frac{3}{2}}$	$\mathbf{u}_{\mathbf{i}}^{*}$ Cp	$\mathrm{x}_{\mathrm{i}} \mathrm{m}_{i}^{1 / 2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}^{*} \mathrm{M}_{\mathrm{i}}^{1 / 2}$	```Critical volume vci ym/Cm```	$\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{v}} \mathrm{c}_{\mathrm{i}}$	$x_{i} M_{i}$	${ }^{19} c^{\prime \prime \prime}{ }^{\circ} \mathrm{K}$	P_{c}, atm	$\mathrm{x}_{\mathrm{i}}{ }^{\prime \prime}{ }^{\prime \prime} c_{i}$	${ }^{x_{i}} p_{c_{i}}$
N_{2}	. 112	28.016	5.29	. 0176	. 5928	. 0104	3.215 t	.3601	3.138	126.2	33.5	14.1	3.8
c_{1}	. 141	16.068	4.01	. 0108	. 5652	. 0061	6.173	. 8704	2.2656	191.1	45.8	26.9	6.5
c_{2}	. 04	30.068	5.48	.,0102	. 2193	. 0022	4.926	. 197	1.2027	305.5	48.2	12.2	1.9
c_{3}	. 047	44.094	6.64	. 0082	. 3121	. 0026	4.545	. 21.36	2.0724	370	42.	17.4	2.0
C_{4}	. 009	58.12	7.62	. 0073	. 0686	. 0005	4.386	. 0395	. 52308	425.2	37.5	3.80	. 34
c_{5}	. 026	72.124	8.49	.0065	. 2208	. 0014	4.31	. 1121	1.8752	469.8	33.3	12.2	. 87
$c_{G t}$. 625	214.5	14.65	3.0	9.1536	27.461	3.551	2.21 .94	134.063	705.1	17.347	440.9	10.8
+From	N. G.P.				11.1324	27.4842		4.0121	145.139			527.5	26.21

TABLE C-42

LIQUID VISCOSITX

$u=3.64 \mathrm{cp}$

PABIE: C-43
LIQUID VISCOSI'IY
Sampling Point C
Cum. N_{2} Inj.
Cum. N_{2} Inj.
Pressure at

Comp.	$\mathbf{x}_{\boldsymbol{i}}$	M_{i}	$M_{i}^{1 / 2}$	$\mathbf{u}_{\hat{i}}^{\boldsymbol{i}}$ cp	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}^{\frac{1}{2}}$	$\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathbf{i}}^{\boldsymbol{1}} \mathrm{M}_{\mathbf{i}}^{\mathbf{1}}$	```Critical volume vci gm/cm```		$\mathbf{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$	$\mathrm{F}^{\text {c }}{ }^{\circ}{ }^{\circ} \mathrm{K}$	P_{c}, atm	$\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{T}} \mathrm{c}_{\mathrm{i}}$	$\mathbf{r}_{\mathbf{i}}{ }^{\mathbf{p}} \mathbf{c}_{\mathbf{i}}$
N_{2}	. 116	28.016	5.29	. 0176	. 614	. 0108	3.215%	. 3729	3.25	126.2	33.5	14.6	3.9
c_{1}	. 229	16.068	4.01	.0108	. 9179	. 0094	6.173	1.4136	3.6796	191.1.	45.8	43.8	10.5
C_{2}	. 078	30.068	5.48	. 0102	. 4277	. 0044	4.926	. 3842	2.3453	305.5	48.2	23.8	3.8
C_{3}	. 104	44.094	6.64	. 0082	. 6906	. 0057	4.545	. 4727	4.5858	370	42.	38.5	4.4
C_{4}	. 055	58.12	7.62	. 0073	. 4193	. 0031	4.386	. 2412	3.1966	425.2	37.5	23.4	2.1
c_{5}	. 116	72.124	8.49	. 0065	. 9851	. 0062	4.31	. 5	8.3664	469.8	33.3	54.5	3.9
C_{6+}	. 302	214.5	14.65	3.0	4.423	13.2691	3.551	1.0724	64.779	705.4	17.347	213.0	5.2
+From	G.P.	9			8.4776	13.3087	4.457	90.2027				411.6	33.8

$u=2.568 \mathrm{cD}$

TABIE C-44
LIQULD VISCOSITY
Sampling Point C
Cum. $\mathrm{N}_{2} \mathrm{Inj}$
Pressure at sampling point $=3200 \mathrm{p} \cdot \mathrm{V}$

Comp.	x_{i}	M_{i}	$M_{i}^{\frac{1}{2}}$	$\mathbf{u}_{\mathbf{i}}^{\boldsymbol{i}}$ cp	$x_{i} M_{i}^{\frac{1 / 2}{2}}$	$x_{i} u_{i}^{*} M_{i}^{1}$	```Critical volume vci gm/cm}\mp@subsup{}{}{3```	$\mathrm{x}_{\mathrm{i}} \mathbf{v}_{c_{i}}$	$\mathbf{x}_{\mathbf{i}} \mathrm{M}_{\mathrm{i}}$	$\mathrm{T}_{\mathrm{c}} \mathrm{m}^{0} \mathrm{~K}$	$\mathrm{P}_{\mathrm{c}}, \mathrm{atm}$	$\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{T}} \mathrm{c}_{\mathrm{i}}$	$\mathrm{x}_{\mathrm{i}} \mathrm{P}_{c_{i}}$
N_{2}	. 125	28.016	5.29	. 0176	. 6616	.0116	$3.215+$. 4019	3.502	126.2	33.5	15.8	4.2
c_{1}	. 121	16.068	4.01	. 0108	. 485	. 0052	6.173	. 7469	1.9442	191.1	45.8	23.1	7.1
c_{2}	. 05	30.068	5.48	. 0102	. 2742	. 0028	4.926	. 2463	1.5034	305.5	48.2	15.3	2.4
C_{3}	. 062	44.094	6.64	. 0082	. 4117	. 0034	4.545	. 2818	2.7338	370	42.	22.9	2.6
C_{4}	. 023	58.12	7.62	. 0073	. 1753	.0013	4.386	. 1009	1.3368	425.2	37.5	9.8	. 86
C_{5}	. 059	72.124	8.49	. 0065	. 5011	. 0032	4.31	. 2543	4.255	469.8	33.3	27.7	2.0
c_{6+}	. 56	214.5	14.65	3.0	8.2017	24.605	3.551	1.9886	120.12	705.4	17.347	395	9.7
+Froin	.G.P.				10.7106	24.6325		4.0207	135.3952			509.6	28.86

UABLE C-45
LIQUID VISCOSI'Y
Sampling Point C
Cum. N_{2} Inj. $=.68 \mathrm{p} . \mathrm{v}$.
Pressure at sampling point $=3200 \mathrm{psi}$

Conip.	$\mathrm{x}_{\mathbf{i}}$	M_{i}	$M_{i}^{\frac{1 / 2}{2}}$	\mathbf{u}_{i}^{*} cp	$\mathrm{x}_{1} \mathrm{M}_{\mathrm{i}}^{1 / 2}$	$\mathrm{x}_{i} \mathrm{u}_{\mathbf{i}}^{\boldsymbol{k}} \mathrm{M}_{\mathbf{i}}^{1 / 2}$	```Critical volume vi gm/\mp@subsup{\textrm{cm}}{}{3}```		$\mathbf{x}_{\mathbf{i}} \mathbf{M}_{\mathbf{i}}$	${ }^{\mathbf{F}} \mathrm{c}^{\mathrm{m}}{ }^{\circ} \mathrm{K}$	P_{c}, atm	$\mathrm{x}_{\mathbf{i}}{ }^{\prime \prime} \mathbf{c}_{\mathbf{i}}$	$\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{p}} \mathrm{c}_{\mathrm{i}}$
N_{2}	. 125	28.016	5.29	. 0176	. 6616	. 0116	$3.215+$. 4019	3.502	126.2	33.5	15.8	4.2
c_{1}	. 087	16.068	4.01	.0108	. 3487	. 0038	6.173	. 5371	1.39792	191.1	45.8	16.6	4.0
C_{2}	. 041	30.068	5.48	. 0102	. 2248	. 0023	4.926	. 2020	1. 2328	305.5	48.2	12.5	2.0
c_{3}	. 051	44.094	6.64	. 0082	.3387	. 0028	4.545	. 2318	2.2488	370	42.	18.9	2.1
C_{4}	. 007	58.12	7.62	. 0073	. 0534	. 0004	4.386	.0307	. 40684	425.2	37.5	3	. 26
C_{5}	. 044	72.124	8.49	. 0065	. 3737	. 0024	4.31	. 1896	3.1735	469.9	33.3	20.7	1.5
c_{6+}	. 645	214.5	14.65	3.0	9.4466	28.3397	3.551	2.2904	138.353	705.4	17.347	455	11.9
+From	G.P.	9			11.4475	28.363		3.8835	150.3144			542.5	25.96

$u=3.23 \mathrm{cp}$

Sampling Point D
Cun. N_{2} Inj. $=.68$ p.v.
Pressure at sampling point $=2600 \mathrm{psi}$

TABLE C-47

LIQUID VISCOSITY
Sampling Point D
Cump. N_{2} Inj.
$\begin{array}{ll}\text { Cun. } \mathrm{N}_{2} \text { Inj. } & =.82 \mathrm{p.v} .\end{array}$
Pressure at sampling point $=2660 \mathrm{psi}$

Comp.	x_{i}	$\mathbf{M i}_{\mathbf{i}}$	$M_{i}^{1 / 2}$	$\mathbf{u}_{\mathbf{i}}^{*}$ CP	$\mathrm{x}_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}^{1 / 2}$	$x_{i} u_{i}^{*} \mathrm{~m}_{\mathbf{i}}^{\mathbf{1}}$	```Critical volume * Ci gm/cm3```	$x_{i}{ }^{\prime}{ }_{c}$	$\mathbf{x}_{\mathbf{i}} \mathbf{M}_{\mathbf{i}}$	$\mathbf{T c}^{\mathbf{m}}{ }^{\circ} \mathrm{K}$	$\mathrm{P}_{c^{\prime}}$ atil	$x_{i}{ }^{\prime \prime} c_{i}$	$x_{i}{ }^{p}{ }^{\prime}{ }_{i}$
N_{2}	. 125	28.016	5.29	. 0176	. 6616	.0115	$3.215+$. 4019	3.502	126.2	33.5	15.8	4.2
C_{1}	.113	16.068	4.01	. 0108	. 453	. 0049	6.173	. 6975	1.8157	191.1	45.8	21.6	5.2
c_{2}	. 068	30.068	5.48	. 0102	. 3729	. 0038	4.926	. 335	2.0446	305.5	40.2	20.8	3.3
C_{3}	. 081	44.094	6.64	. 0082	. 5379	. 004	4.545	. 3681	3.5716	370	42.	30	3.4
c_{4}	. 033	58.12	7.62	. 0073	. 2516	. 0018	4. 386	. 1447	1.918	425.2	37.5	14.0	1.2
C_{5}	. 1	72.124	8.49	. 0065	. 8493	. 0054	4.31	. 431	7.2124	469.8	33.3	46.98	3.33
c_{6+}	. 48	214.5	14.65	3.0	7.03	21.09	3.551	1.7045	102.96	705. 4	17.347	338.6	8.3
+From	.G.P.				10.1563	21.1219		4.0827	123.022			487.78	28.93

$u=2.909 \mathrm{cP}$

4NBIE C-48

L1QUID VISCOSTMY
Sampling Point D
Cum. N_{2} Inj.
Pressure at sampling point $=8608 \mathrm{p} . \mathrm{v}$.

Comp.	x_{i}	M_{i}	$M_{i}^{1 / 2}$	$\mathbf{u}_{\mathbf{i}}^{\star}$ Cl	$\mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}^{3 / 2}$	$\mathrm{x}_{\mathrm{i}} \mathrm{u}_{i}^{*} M_{i}^{3 / 2}$	```Critical volume VCi gm/1/cm}```	$x_{i} v_{c}$	$\mathbf{x}_{\mathbf{i}} \mathrm{M}_{\mathbf{i}}$	${ }^{\prime} c^{m}{ }^{0} \mathrm{~K}$	$P_{c}{ }^{\prime}$ atm	$x_{i}{ }^{\prime \prime} c_{i}$	$\mathrm{x}_{\boldsymbol{i}}{ }^{\mathbf{P}} \mathbf{c}_{\mathbf{i}}$
N_{2}	. 139	28.016	5.29	. 0176	. 7357	. 0129	3.2151	. 4469	3.894	126.2	33.5	17.5	4.7
c_{1}	. 055	16.068	4.01	. 01.08	. 2205	. 0024	6.173	. 3395	. 88374	191.1	45.8	10.5	2.5
C_{2}	. 035	30.068	5.48	. 0102	. 1919	. 002	4.926	. 1724	1.0524	305.5	48.2	10.7	1.7
C_{3}	. 038	44.094	6.64	. 0082	. 2523	. 0021	4.545	. 1727	1.67557	370	42.	14.1	1.6
C_{4}	0	58.12	7.62	. 0073	0	0	4.386	0	0	425.2	37.5	0	0
C_{5}	. 024	72.124	8.49	. 0065	. 2038	.0013	4.31	. 1034	1.731	469.8	3.3 .3	11.3	. 8
C_{6+}	. 709	214.5	14.65	3.0	10.3839	31.1517	3.551	2.5177	152.081	705.4	17.317	500.1	12.3
+riom	N.G.P.				11.9881	31.1724		3.7526	16.1.317			564.2	23.6

APPENDIX D

OIL DISPLACEMENT TESTS
DATA AND RESULTS

TABLE D-1

RUN NUMBER 1

Barometric Pressure 29.92" Hg Oil Saturation . 756
Room Temperature $70^{\circ} \mathrm{F}$ Water Saturation . 244
Injection Pressure 4000 psi Stock Tank Oil-in-Place 698cc Solution G.O.R. 575 scf/STB Oil Gravity $43^{\circ} \mathrm{API}$ Rate of Advance $.068 \mathrm{~cm} / \mathrm{sec}$

$\begin{aligned} & \text { Time } \\ & \text { Min. } \end{aligned}$	$\begin{gathered} \text { Cumulative } \\ \text { Oil Prod. } \\ \text { cc } \end{gathered}$	$\begin{gathered} \text { Recovery } \\ \text { \% I.O.I.P. } \end{gathered}$	$\begin{gathered} \text { Cum. } \\ \text { Gas } \\ \text { Prod. } \\ \text { scf } \end{gathered}$	Back Pressure, psi
15	17	2.4	. 06	2000
30	34	4.8	. 12	1870
45	40	5.7	. 13	2000
60	53	7.6	. 14	2100
75	70	10.02	. 21	2000
90	75	10.7	. 28	2000
105	95	13.6	. 34	2000
120	110	15.7	. 39	1920
135	123	17.6	. 40	1980
150	125	17.9	. 48	2000
180	143	20.5	. 52	2000
200	170	24.3	. 66	2100
220	185	26.5	. 67	2000
240	203	29.1	. 78	1990
260	222	31.8	. 8	2200
280	243	34.8	. 87	2100
300	262	37.5	. 95	2000
320	283	40.5	1.0	2000
350	310	44.4	1.1	2000
380	340	48.7	1.2	2000
410	368	52.7	1.3	1890
430	381	54.5	1.4	1900
450	403	57.7	1.5	1950
510	458	65.6	1.6	2000
530	478	68.5	1.7	2115
550	496	71.1	1.8	2050
570	510	73.1	1.8	2000
590	532	. 762	1.9	2000
611	558	. 8	2.0	2000

TABLE D-2
RUN NUMBER 2

Barometric Pressure	$29.09 " \mathrm{Hg}$	Oil Saturation	.75
Room Temperature	$72 \circ \mathrm{~F}$	Water Saturation	.25
Injection Pressure	5000 psi	Stock Tank Oil-in-Place	595 cc
Solution G.O.R.	575 scf/STB	Oil Gravity	$43^{\circ} \mathrm{API}$
	Rate of Advance		$.12 \mathrm{~cm} / \mathrm{sec}$

Time Min.	Cumulative Oil Prod. cc	$\begin{gathered} \text { Recovery } \\ \text { \% I.O.I.P. } \end{gathered}$	$\begin{aligned} & \text { Cum. } \\ & \text { Gas } \\ & \text { Prod. } \\ & \text { scf } \end{aligned}$	$\begin{gathered} \text { Back } \\ \text { Pressure, } \\ \text { psi } \end{gathered}$
10	15	2.2	. 05	2000
20	25	3.6	. 09	2000
25	30	4.3	. 11	1920
30	32	4.6	. 12	1900
40	45	6.5	. 13	1950
50	55	7.9	. 15	2000
70	75	10.8	. 28	2000
90	80	11.6	. 3	2110
110	112	16.2	. 41	2000
125	127	18.3	. 43	2000
150	155	22.4	. 58	2050
180	189	27.3	. 61	2000
195	207	29.9	. 69	1955
210	225	32.5	. 81	2000
220	230	33.2	. 83	2000
235	255	36.8	. 92	2000
245	265	38.3	. 96	2200
255	280	40.5	1.00	2000
310	350	50.6	1.10	2000
330	370	53.5	1.40	2060
345	390	56.3	1.50	1950
400	450	65.0	1.60	2000
420	475	68.6	1.70	2000
430	485	70.0	1.90	2000
445	500	72.3	1.90	2000
500	570	82.6	2.10	2000
529	595	86.0	2.20	2000

TABLE D-3

RUN NUMBER 3

Barometric Pressure $28.8^{\prime \prime} \mathrm{Hg}$	Oil Saturation	.732	
Room Temperature	$70^{\circ} \mathrm{F}$	Water Saturation	.268
Injection Pressure	3000 psi	Stock Tank Oil-in-Place 676 cc	
Solution G.O.R.	$575 \mathrm{scf} / \mathrm{STB}$	Oil Gravity	$43^{\circ} \mathrm{API}$

$\begin{aligned} & \text { Time } \\ & \text { Min. } \end{aligned}$	Cumulative Oil Prod. cc	$\begin{gathered} \text { Recovery } \\ \% \text { I.O.I.P. } \end{gathered}$	$\begin{gathered} \text { Cum. } \\ \text { Gas } \\ \text { Prod. } \\ \text { scf } \end{gathered}$	$\begin{gathered} \text { Back } \\ \text { Pressure, } \\ \text { psi } \end{gathered}$
30	8	1.2	. 03	2000
60	25	3.7	. 11	2000
80	32	4.7	. 13	2050
90	38	5.6	. 17	2050
120	45	6.6	. 17	1950
140	53	7.8	. 21	1940
180	65	9.6	. 22	1870
200	75	11.1	. 25	2000
225	83	12.3	. 30	2000
250	92	13.6	. 40	2000
270	103	15.2	. 40	2000
300	115	17.0	. 45	2010
330	124	18.3	. 50	2000
350	130	19.2	. 50	2000
360	140	20.7	. 60	2050
390	150	22.2	. 60	2000
430	164	24.3	. 65	2000
470	181	26.8	. 71	2010
500	192	28.4	. 80	1990
540	210	31.1	. 83	1980
590	230	34.0	. 90	1990
650	254	37.6	1.00	2000
730	283	41.9	1.10	2000
750	290	42.9	1.10	2000
810	312	46.2	1.20	2000
840	323	47.8	1.30	2010
900	350	51.8	1.40	2000
915	355	52.5	1.40	2000
934	365	54.0	1.40	2100

TABLE D-4

RUN NUMBER 4

Barometric Pressure $28.95 " \mathrm{Hg}$	Oil Saturation	.743	
Room Temperature	$71^{\circ} \mathrm{F}$	Water Saturation	.257
Injection Pressure	3700 psi	Stock Tank Oil-in-Place 686 cc	
Solution G.O.R.	$575 \mathrm{scf} / \mathrm{STB}$	Oil Gravity	$43^{\circ} \mathrm{API}$
	Rate of Advance $.097 \mathrm{~cm} / \mathrm{sec}$		

Time Min.	$\begin{gathered} \text { Cumulative } \\ \text { Oil Prod. } \\ \text { cc } \end{gathered}$	Recovery \% I.O.I.P.	$\begin{aligned} & \text { Cum. } \\ & \text { Gas } \\ & \text { Prod. } \\ & \text { scf } \end{aligned}$	Back Pressure, psi
20	13	1.9	. 05	2000
40	27	3.9	. 06	2000
60	38	5.5	. 14	1990
100	65	9.5	. 23	1980
130	86	12.5	. 30	1990
155	105	15.3	. 30	2000
190	130	18.9	. 40	2000
230	160	23.3	. 49	2010
250	175	25.5	. 63	2030
320	238	34.7	. 86	2000
350	250	36.4	. 90	2000
370	270	39.4	. 97	1870
395	290	42.3	1.00	1870
420	307	44.7	1.00	1990
445	325	47.4	1.20	2000
470	345	50.3	1.20	2000
500	378	55.1	1.30	2000
515	380	55.4	1.40	2000
530	395	57.6	1.40	2110
545	407	59.3	1.50	2110
570	425	61.9	1.50	2050
590	440	64.1	1.60	2000
610	450	65.6	1.60	2000
630	470	68.5	1.70	2010
658	494	72.0	1.80	2000

TABLE D-5

RUN NUMBER 7

Barometric Pressure 28.9" Hg Oil Saturation . 75
Room Temperature $70^{\circ} \mathrm{F}$ Water Saturation .25
Injection Pressure 5000 psi Stock Tank Oil-in-Place 900cc
Solution G.O.R. 0 scfi/STB Oil Gravity $43^{\circ} \mathrm{API}$ Rate of Advance $.11 \mathrm{~cm} / \mathrm{sec}$

$\begin{aligned} & \text { Time } \\ & \text { Min. } \end{aligned}$	Cumulative Oil Prod. cc	$\begin{gathered} \text { Recovery } \\ \text { \% I.O.I.P. } \end{gathered}$	Back Pressure psi
15	16	1.8	2000
30	26	2.9	2000
45	40	4.4	2000
60	54	6.0	2010
80	70	7.7	2000
100	90	7.7	2000
130	115	10.0	2000
160	145	16.1	1990
180	165	18.3	2000
200	185	20.5	1990
225	207	23.0	2000
240	221	24.6	2000
260	244	27.1	2000
280	260	28.9	2000
300	280	31.1	2015
320	319	35.4	2015
350	320	35.6	2000
380	350	38.9	1980
400	355	39.4	2000
415	380	42.2	2000
430	392	43.5	1990
460	423	47.0	1980
490	449	49.9	1990
510	466	51.8	2000
525	480	53.3	2000
540	495	55.0	1985
577	531	59.0	2000

[^0]: The time required to elute a compound from the G. C. Column is called the retention time.

[^1]: *Critical point is defined as the point at which the vapor and liquid phases become continuously identical.

[^2]: *Retrograde evaporation can be defined by the process in which vapor is formed upon increasing the pressure at constart temperature.

[^3]: Gas Density $=25.6 \quad 1 \mathrm{~b} / \mathrm{Et}^{3}$

[^4]: Gas Density $=14.49 \mathrm{lb} / \mathrm{ft}^{3}$

[^5]: Gas Density $=12.4 \mathrm{lb} / \mathrm{ft}^{3}$

[^6]: $u=3.09 \mathrm{cp}$

[^7]: $u=1.7 \mathrm{cp}$

[^8]: $\mathrm{u}=3.12 \mathrm{cp}$

[^9]: Surface tension $=.0113$ dynes $/ \mathrm{cm}$.

[^10]: Gas Density $=26.24 \mathrm{lb} / \mathrm{ft}^{3}$

[^11]: Stock tank density
 $=46.9$ Density at current pressure and temperature $=47.94 \mathrm{lb} / \mathrm{ft}^{3}$

[^12]: Mixture atmospheric viscosity $=u^{*}=.013 \mathrm{cp}$
 Mixture viscosity at the system temperature
 and pressure $=u=0.0364 \mathrm{cp}$

[^13]: $u=2.5165 \mathrm{cp}$

[^14]: $u=2.594 \mathrm{cp}$

[^15]: Gas Density $=15.663 \mathrm{lb} / \mathrm{ft}^{3}$

[^16]: Stock tank density
 Density at current pressure and temperature $=49.474 \quad \mathrm{lb} / \mathrm{ft}^{3}$
 $=50.474 \quad \mathrm{lb} / \mathrm{ft}^{3}$

[^17]: Surface tension $=.306$ dynes $/ \mathrm{cm}$.

[^18]: Surface tension $=2.31$ dynes/cm.

