STABILITY ANALYSIS OF RECURRENT
NEURAL-BASED CONTROLLERS

By
REZA JAFARI

Master of Science in Mechatronics
American University of Sharjah
Sharjah
2005

Master of Science in Mathematics
Oklahoma State University
Stillwater, Oklahoma
2011

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfilment of
the requirements for
the Degree of
DOCTOR OF PHILOSOPHY
May, 2012



STABILITY ANALYSIS OF RECCURRENT

NEURAL-BASED CONTROLLERS

Dissertation Approved:

Dr. Martin Hagan

Dissertation Adviser

Dr. Carl D. Latino

Dr. George Scheets

Dr. Anthony Kable

Dr. Sheryl A. Tucker

Dean of the Graduate College



TABLE OF CONTENTS

I INTRODUCTION ..ottt ettt ettt sse e enaesnee e 1-1
OVETVIEW ...ttt ettt ettt et ettt e et e st e e beessbeesbeessaeenseesabeenseessseensaenaseenne 1-1
ODBJECLIVES ..vieeuiiieeiiieeieeetteeeteeeette e et e e e teeesbaeessseeessbeaessseeessseeessseeennseeensseeans 1-3
(@ 1012115 T TSRS 2-3
2 GENERAL NON-LINEAR SYSTEMS ..ottt 2-1
State-Space Model to I/O Model .........coooveeviieiiiiiiiieeeeeeeee e 2-2
Conditions for Conversion (Controllability-Observability) ................... 2-2
Relative DEGIEE ...vveeeiieeiieciee ettt 2-9
NARMAGLL .ottt 2-12
I/O Model to State-Space Model (Realization) ...........ccoeeeeevienienieeneennen. 2-14
Observable State Space Input Output Map (OSSIOM) .......cccceeuveenneee. 2-16
(07073162 10 S 10+ USRS 2-24
3 NEURAL NETWORK MODEL OF NONLINEAR SYSTEM.......c.cccceeueeee. 3-1
Modeling of Recurrent Neural Network (RNN).......ccccoeviieviiieniiiiniieeiee 3-1
Barabanov-Prokhorov (BP) RNN Framework ...........cccccceveiiiiieniiennnn. 3-2
NLG RNN Framework ......c..coccveeiiiieiiieeiieeeieeceeeee e 3-3
Generalized Lur’e Model .........ooooviiiiiiiiiiieieecee e 3-4
State Space Extension Method [BaPrO2].........cccovovieiieniieniiniieieeieeeeee, 3-7
(07073162 10 S 10 s USRS 3-10
4 SECTOR CONDITIONS AND QUADRATIC FORM.....cccccoeviiiiieiieinee. 4-1
SeCtOr CONAILION ...eeeivieeiiiieiie ettt et e e e eeseeenee 4-2
Sector Condition CONSLIAINE ......ccvveervieeriieeiieeerieeecieeeeeeeieeeereeeeaee e 4-3
Quadratic Form and Vector Case...........cccuveeeuvieeiiieecieeeeiee e 4-16
(07073162 10 53 10 o PSPPSR 4-18
5 ABSOLUTE STABILITY ANALYSIS ..ottt 5-1
Definitions of Stability.......cccocuiieiiiieiiieeie e 5-2
Stability ThEOTEMS .......eeiiiieiiieciieece e e e 5-7
Lyapunov Stability Theorem ..........ccccceeeuierienieniieienieeee e 5-7
S-procedure [BOFEI4] ......oooviiiiiieieeeeeeeee e 5-11
Absolute Stability Criterion for BPRNNS .......ccoooiiiiiiiiiiieeeeceeee e, 5-12

CONCIUSION ..ottt ettt et e st e et e s aaeenbeesnneensaens 5-18

IMLAIIN L.ttt b e et sttt st b ettt s bt e bt et saeenne s 6-1
Global Asymptotic Stability using CMT ........c.ccoovvviviiieeiiecee e 6-2
Contraction Mapping Theorem ...........cccccceeeviieriiieeriieeeiie e e 6-3



Global Stability Analysis of Neural Network Model ..........c.cccccvveennnenn. 6-5

Global Stability Analysis Using RODD-LB1.........ccccceeviiiiniiiieiieeieeeee. 6-13
Reachable Set .......ooouiiiiiiiieiiee e 6-13
Approximate Reachable Set ..........cccooovieeiiieiiiiieeee e, 6-16
RODD-LBI[BaPr03] ....ccoeoieiieieeieiceeeeeeee ettt 6-17
ALGOTIRIM .o 6-27

CONCIUSION ..ttt ettt ettt esaee e 6-35

DIOMAIN ...ttt ettt et st esteesaesatebeeneeeneenseeneenneensens 7-1
Global Asymptotic Stability Using RODD-LB2 Method...........c.cccvvrennnen.n. 7-2
RODD-LB2 ...ttt 7-2
RODD-LB2 AIZOTIthim ......cooviiiiiiiieeiieecieeeee et 7-4
Global Asymptotic Stability Using RODD-EB Method...........ccccovvvrennnennn. 7-8
RODD-EB ..ottt e 7-8
RODD-EB AIZOTItRM ....c.eviiiiiieeiiieciie et 7-10
Global Asymptotic Stability Using RODD-Hybrid Method ....................... 7-18
RODD-HYDIIA ..ot 7-19
RODD-Hybrid Algorithm .........cccovvieiiieiiiieieeee e 7-19
Comparison of RODD Methods ..........ccoovieiiiiiniiieiieeeeeeeeee e 7-26
CONCIUSION ...ttt ettt ettt et e s e et esabeenbeesaneensaens 7-30

8 TEST PROBLEMS ...ttt 8-1
Stable Dynamical SYStemS.........cceeviieriieriiriieiieeieeee e 8-2
Lure MOdE] ..o e 8-2
Non-Lure Model .......coovieiiiiiiieee e 8-11
Unstable Dynamical SYSteMS .........ccceeviiriieiiieniienieeiieeie e 8-21
Lure MOdel .....ooeiiieeeeeeeee e e 8-21
Non-Lure Model ........ooovieiiiiiiieeeeeeeeee e 8-24
CONCIUSION ...ttt et ettt et e st e et e sabeenbeesnseensaens 8-31

9 CONTROL PROBLEMS ...ttt 9-1
Chapter OVETVIEW ....cccuviiiiiiieeiieeiieeie et e siee ettt e et esaeeeseesabeesbeessaeenseesaseenne 9-1
Model Reference Adaptive Control.........cc.eeeevveeeiieeiiieeiieeeie e 9-2
Neural Network Model of MRAC ........coovieeiiieieeeee e, 9-2
Robot Arm Problem .........cccccooviiiiiiiiiiiiieeecee e 9-7
NARMA-L2 CONLIOL..c..uiiieiieiieiieieeeieie ettt 9-16
Neural Network Model of NARMA-L2 Control ..........ccccoveeeeveeennneennne. 9-17
Magnetic Levitation Problem ...........cccoceeviiiiiiniiiiiiiiiceeeeeeee 9-22
(07073162 103 10 s USRS 9-31

10 CONCLUSIONS ..ottt ettt 10-1
IMOTIVALION....ceiiiieeiiee et et e et et e et e e beeetaeeeaaeeesseeessseeesnseeennseeenssens 10-1
SUMMATY ..ot e e s e e e st e e e e naaeeeesnneeeas 10-2

ii



Future Work .....oo.ooii e
Maintaining Stability During RNN Training .........cccccceeevveevciveencieeennnen. 10-4
Approximation of Region of Attraction .........c.ccecceveeverienienennieneenns 10-4

APPENDIX A .ottt ettt A-1

NARMA-CLT .ttt A-1

REFERENCES ... .ottt ettt s enae s R-1

iii



LIST OF FIGURES

Figure (3.1) Schematic view of SYStem (3.1).....cecciiieriiiieiiieeiie e 3-3
Figure (3.2) Generalized LUr’e SySteM ........ccccuieiieriieiiieiie et 3-6
Figure (3.3) Simplified view of Generalized Lur’e system.........cccceeevveevvieerveecnveeennnn. 3-7
Figure (3.4) Extended SyStem (3.7) ..ocouieeiiiieieeeiie ettt e et e 3-8
Figure (4.1) Linear Sector CONdition..........cceccveecuierieiiienieeiieee et 4-2
Figure (4.2) Hyperbolic tangent function ...........ccceeeevieeeiieeiiie e 4-4
Figure (4.3) tanh(s) and its sector bound............cceeeevieeriieeciie e 4-5
Figure (4.4) a(s) and its sector bound when ¢ = 1 ...ccoooiiiiiiiiiiiiiiniecee e, 4-6
Figure (4.5) Illustration of the sector CONAItioN .........c.ceevvieeriieeiiieeie e 4-7
Figure (4.6) f] and f, when ¢ = 0 ... 4-10
Figure (4.7) fy and £, when ¢ = 1 ... 4-12
Figure (4.8) Lower sector bound Of @(i§) ....cccveeeviieeriiieeciieeiee e 4-15
Figure (5.1) Stable Equilibrium point but not Asymptotically stable............c.cccccvveneee.. 5-4
Figure (5.2) Globally Attracting but not Stable...........c.ccccveveiieniiiiiiinieeieeeeeeee 5-5
Figure (5.3) Suitable Form for Absolute Stability Analysis........ccccceeveeviieeniiecrieeennen. 5-6
Figure (5.4) Absolute Stability of a BPRNN with non-zero Equilibrium point............ 5-17
Figure (5.5) Absolute Stability of BPRNN with zero Equilibrium point...................... 5-18
Figure (6.1) BPRNN with GAS Equilibrium point .........c.cccccveeeieencieeniieeiee e, 6-10
Figure (6.2) Network Respond after 100 iterations ...........ccccveeeveieerciieencieeeniee e, 6-11
Figure (6.3) Phase Plane ..........cccooiieiiiiiiiiiiiciiece ettt 6-12
Figure (6.4) Reachable Set.........coooiiiiiiieiiieieeeee et e 6-14
Figure (6.5) Sequence of Reachable Sets ..........cccvieviiieiiiiiiiieceeeeeee e 6-15
Figure (6.6) Approximate Reachable Set ..........cccoeviiriiiiiiiiiiiiieeceeeeee e, 6-16
Figure (6.7) Better Approximation of Reachable Set...........ccccoeeviiviiiiniiiiniieieee, 6-17
Figure (6.8) Hyperplane separating a point from a conveX Set.........ccceevcveeerreeereveennnee. 6-25
Figure (6.9) Typical Example of RODD-LB1 Step ©......ccccovoiiviiniiniiniiiiiicnecieeeee, 6-28
Figure (6.10) Additional Linear Boundaries.............cccoveeviieeriieeniieeiee e 6-30
Figure (6.11) RODD-LB1 AlOTithim ......c.ccceouiieiiiieiieeciie e 6-32
Figure (6.12) Evolution of linear constraints 4 for 2-D example ..........cccccceeevuiennennen. 6-33
Figure (6.13) CONVEIZENCE ...ccuvvieeiiiieeiieeeiieeeieeeeiteeesiaeeesireeeaaeeeseeesssaeesnseeessseeessseeenssens 6-33
Figure (7.1) Operation Of STEP 2 .....vieeeiieiiieeiieeeite ettt et etee e e e sbeeesareeesaseeens 7-4
Figure (7.2) RODD-LB2 AIgOTithim ........cccoeiiiiiiiiiiieiieiie et 7-5
Figure (7.3) Evolution of linear constraints /# for 2-D example (RODD-LB2).............. 7-6
Figure (7.4) Convergence with RODD-LB2 method ..........cccooviiiiniiiiiiiiicieeee e 7-7
Figure (7.5) Minimum Bounded & Enlarged Bounded Ellipse..........ccccccvevieriienennee. 7-11
Figure (7.6) Typical example of system trajectory in step 1 .......ccceeeevveevvieerveeennveennnen. 7-13
Figure (7.7) Optimal Orientation Of .........c.ccccovieeiiiiiiiiecee e 7-15
Figure (7.8) Optimal versus Potential ............ccoccveiiiiiiiiiiiniieieieeeeee e 7-16
Figure (7.9) Typical example Of StEP 2...ccviieeiieeiiiecieeeie e 7-17
Figure (7.10) RODD-EB AlOrithm ........cccoooiiiiiiiiiiiieceeeceeeee e 7-18

iv



Figure (7.11) RODD-EB Mode of RODD-Hybrid Algorithm ...........ccoccvvvvieeenieeennnen. 7-21

Figure (7.12) Bounding POlyZOn ........c.cooouiiiiiiieiiieeceeeee et 7-22
Figure (7.13) RODD-LB2 Mode of RODD-Hybrid Algorithm ...........cccceevieriienennen. 7-23
Figure (7.14) RODD-LB2 to RODD-EB Transition Mode...........cccccveeviviienciieeniieennnen. 7-26
Figure (7.15) Square Reachable Set.........ccceeviieriiieiiieeiie e 7-28
Figure (7.16) Elliptical Reachable Set............cccoeriieiiiiiiieiiiieciiececeece e 7-28
Figure (8.1) SysStem RESPONSE ....ccuvvieiiiiiiiieciieeeiie ettt ee et eaaee e 8-3
Figure (8.2) Original Data ..........cccviiiiiiiiiiiieieecee ettt 8-4
Figure (8.3) Original Data Updated one Time Step.........ccceeeeeriiriiinieiiiieieeieeie e 8-4
Figure (8.4) Graph of B, for RODD-LB2..........ccocoiiiiiiiiiccecce, 8-5
Figure (8.5) Graph of B, for RODD-Hybrid...........ccooooiiiiiiii, 8-5
Figure (8.6) Original Data ...........ccceeeiiriiiiiieiie ettt 8-7
Figure (8.7) Original Data Updated One Time Step........ccceevveeeviieeiieeeiieeeieeeeiee e 8-8
Figure (8.8) SysStem RESPONSE .....c.veeeeviiiiiieeiie ettt e 8-8
Figure (8.9) Graph of B, for RODD-LB2..........cccocoiiiiiiiiiiiiiiccccccce, 8-9
Figure (8.10) Graph of B, for RODD-EB..........ccccocooiiiiiiiiiec, 8-9
Figure (8.11) Graph of B, for RODD-Hybrid...........ccoooiiiiiiii 8-10
Figure (8.12) Double Pendulum ...........cccoooiiiiiiiiiiiieiiice e 8-12
Figure (8.13) Network RESPONSE ......cccveieiiieeiieeciie ettt 8-12
Figure (8.14) RNN Model of Double Pendulum ............cccoeeevieeiiiiniiiieieecee e, 8-13
Figure (8.15) RNN Model of Double Pendulum After Training............cccoecveeveenenennnen. 8-14
Figure (8.16) Graph of B, for RODD-LB2.........cccoccooiiiiiiiiiiccc 8-16
Figure (8.17) Graph of 3, for RODD-EB and RODD-Hybrid ...........cccooooviiiniinnn 8-16
Figure (8.18) Original Data .........cccoeiiieiiiiiiieiieieeeee et 8-18
Figure (8.19) Original Data Updated One Time Step.......ccceevuveervveeriieeriieeriee e 8-19
Figure (8.20) System ReSPONSE .......ccecuiieiiiieiiiieeiiiecee et evee e e eaae e 8-19
Figure (8.21) Graph of B, for RODD-LB2.........cccccceoiiiiiiiiiiiiiicicccc 8-20
Figure (8.22) Graph of B, for RODD-Hybrid...........ccoooiiiiiiii 8-20
Figure (8.23) Network RESPONSE ......cccueeeiiiiieiiieeiiecee et 8-23
Figure (8.24) Graph of B, for RODD-Hybrid............ccccooviiiiiiiiiiiiiicce 8-23
Figure (8.25) Network RESPONSE ......cccuvieiiiieeiiieeiiieee et e 8-25
Figure (8.26) RNN Model of Double Pendulum After Training...........cccceevveeeruveennee. 8-26
Figure (8.27) Graph of B, for the RODD-Hybrid............ccoooiiiiiiiiiiii 8-28
Figure (8.28) Network RESPONSE ......cccueieiiiieeiieeiieeee e 8-30
Figure (8.29) Graph of B, for RODD-Hybrid...........ccoooiiiiiiii 8-31
Figure (9.1) MRAC ATChItECTUIE. ....c.vieiiieiieriieetieeiie ettt ettt ettt e 9-2
Figure (9.2) Neural Network Model of MRAC .........cooooiiiiiiiieieeeeeee e 9-3
Figure (9.3) Robot Arm [BEHA12] ..cccviiiiiieieeeeeeeeee et e 9-7
Figure (9.4) NARX Model 0f RODOt AT .....c..ooviiiiiiiiieiieeiieieeee et 9-8
Figure (9.5) Training Data Set.......c.cceviiiiiiieeiiieeiee et see et eaaee s 9-9
Figure (9.6) Network Response and Target after Training..........c.ccceevveeviveeriieenveeenee. 9-11
Figure (9.7) Error between Target and Network Response After Training................... 9-11
Figure (9.8) Reference Input and Output...........cocovvieeiiieeiiieeiiieeiee e 9-13
Figure (9.9) Reference Signal versus Network Response After Training..................... 9-14



Figure (9.10) MRAC Response After Training.........c.cceceveeeeveeeiveencieeniieeeieeeevee e 9-15

Figure (9.11) Graph of B, for RODD-LB2.........cccocooiiiiiiiiiice 9-15
Figure (9.12) NARMA-L2 Controller ........c.cccveriiiiiiiiiieiieie ettt 9-17
Figure (9.13) RNN-Based NARMA-L2 Model........cccccovviiiciiiniiecieeceeeee e, 9-18
Figure (9.14) NARMA-L2 Controller and NARX Plant.........cccccceeveiveviiienciieeeieeenen. 9-19
Figure (9.15) Magnetic Levitation [BeHal2] ........ccccoviiiiiiiniiiiiiieiceieeeeeeeeeen 9-22
Figure (9.16) NARX Model of Magnetic Levitation............ccceeeeveerciieenciieeniieeeiee e, 9-23
Figure (9.17) Sample Input and Output Signals for Identification..........c.cccccueeeruneennnee. 9-24
Figure (9.18) Network Response versus Target After Training ............cccoeeveeveeninennen. 9-24
Figure (9.19) Network RESPONSE ......ccvieeiiieiiieeciie et 9-26
Figure (9.20) Graph of B, for RODD-LB2.........cccocoooiiiiiiiiic 9-26
Figure (9.21) NARMA-L2 Model of Magnetic Levitation ............ccceceevveeriienieeneennen. 9-27
Figure (9.22) Network RESPONSE ......ccveieiiieeiieeciie ettt 9-29
Figure (9.23) Graph of for RODD-LB2.......ccciiiiiiieiieeieeceecee e 9-30
Figure (9.24) Reference Signal versus Network Response .........ccccceeveeviieiienieenieennen. 9-30
Figure (A.1) g.(s)divided into four regions .............ccoeeiiiiiiiiiciiecccecce, A-7
Figure (A.2) tanh(s) is concave down for § > 0 ...ccccoevviiieiiiieiiiieeieeeeece e A-8
Figure (A.3) Geometric representation of g.(s) and f'(s) for s € [—¢, ¢'] .cccueene. A-10
Figure (A.4) When ¢ = 0, f5(5) <0 for Vs € R, A-13

vi



LIST OF TABLES

Table (7.1) Comparison of RODD methods ..........ccccovveeeiiiiniieeiiecieeeeeeeeee e 7-6
Table (7.2) Comparison of RODD methods .........cccoevieriiiiiieniieieieceeeeeee e, 7-29
Table (8.1) Comparison of LMI and RODD Methods .......c.cccccevviiiiniiieniiiecie e 8-6
Table (8.2) Comparison of LMI and RODD Methods .........ccccceeviiieiiiieiiiieiiieeeies 8-10
Table (8.3) Comparison RODD Methods ..........ccoeoiieiiiiiiiiiiiiiiieiecceeeee e 8-17
Table (8.4) Comparison RODD Methods .........cccceeiiiiiiiiiiniieecieeeee e 8-21
Table (8.5) Comparison of LMI and RODD Methods .........ccccceeviiiiiiiieniiieeieeeies 8-24
Table (8.6) Comparison RODD Methods ..........cccoecvieiiiniiiiiieiieiieieeeee e 8-28
Table (8.7) Comparison RODD Methods .........cccceeevuiiiiiiiieniieecieeeeeeeeee e 8-31
Table (9.1) Comparison of RODD Methods .........cccovveeiiieiiiieiieeieeeeeeeeee e 9-14
Table (9.2) Comparison of RODD Methods ..........ccoeoiiviiiiieniiiiicieceeieeeeeeeen 9-31

vii



1 INTRODUCTION

COIVEIVIEW ..ot e e e e e e e e e e e e e e e e e e e e e e aeee e e e e e aaaeeeeeeeeaananaas 1-1
L0 0} 15107 5 APPSR 1-3
COULLITIE e e 1-3

Overview

In the last two decades, more attention has been given to Recurrent Neural Net-
works (RNNs) and their applications. The ability of RNNs to solve complex problems in
control, system identification, signal processing, communication, pattern recognition, etc.
is well understood, and more research is taking place in this area. Although RNNs are more
powerful than feedforward networks, this comes at the expense of more difficult training
and the potential for instabilities. It has become more and more important to have efficient
methods for determining the stability of RNNs.

RNNS are capable of handling severe nonlinearities, and their feedback connections
bring memory to the network and empower RNNs to solve complex nonlinear control prob-
lems. Many studies have been devoted to the application of RNNs to solving control prob-
lems. Hagan ef al [HaDe02] designed a NARMA-L2 controller, which is an RNN-based
controller, for a magnetic levitation system. Magnetic levitation is an example of a highly
nonlinear system, and the NARMA-L2 controller obtained excellent performance for this

system. The performance of the NARMA-L2 controller has been verified through various
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simulations for the magnetic levitation system. Despite the good performance, the potential
instability of the overall closed-loop with a NARMA-L2 controller is the main disadvan-
tage. The potential instability of RNNs also makes the training phase of RNNs challenging.
The spurious valleys in the training error surface, which were studied in [JeHa09], are an
immediate consequence of the potential instability of RNNs.

The problem of stability in RNNs has been studied by several other researchers.
Wang and Xu [WaZo06] presented a set of sufficient and necessary conditions for Global
Exponential Stability (GES) of a class of generic discrete-time RNNs. Fang and Kincaid
[FaKi96] obtained sufficient conditions for local exponential stability of neural networks
using the matrix measure technique. Suykens et al/ [SuVa96], [SuVa97-1] and [SuVa97-2]
offered a new approach to the stability analysis of RNNs. They analyzed a specific form of
RNN, which they called NLg. They derived a criteria for demonstrating the global stability
of the origin. Their method, which is a Lyapunov based method, does not cover the case
when an RNN has nonzero biases. Setting biases to zero severely limits the mapping capa-
bilities of the RNN and also limits the stable ranges for the network weights. Another ap-
proach for the stability analysis of RNNs was introduced by Tanaka [Tana96]. Tanaka
proves Global Asymptotic Stability (GAS) of the origin via Linear Matrix Inequalities
(LMlIs). Barabanov and Prokharov [BaPr02] also demonstrated GAS of the origin using
LMIs. They claimed that the stability criteria derived in [SuVa97-2] and [Tana96] are spe-
cial cases of their method. Liu [Liu07] derived a sufficient condition for stability of De-
layed Standard Neural Network Model (DSNNM), which is more general than the model

considered in [BaPr02].



The stability or instability of equilibrium points of RNNs depends on the network
parameters: weights and biases. Denote M as a space of stability for a specific RNN archi-
tecture, and let it be defined as the set of all parameter values for which a given RNN is

stable. The best stability analysis method would be the one that can identify the largest pos-
sible subset of M. Except in special cases, the exact determination of the full set M is not

possible.

We will say that a stability criterion is restrictive, or conservative, to the extent that
it does not identify the full set M. The criteria derived in all the existing methods are con-
servative, because many stable systems can be found where none of these criteria can be
satisfied. To the best of our knowledge, the method of Reduction of Dissipativity Domain
(RODD) introduced in [BaPr03] has the potential to provide the least restrictive stability
criterion. Due to the importance of the RODD method, we devote Chapter 6 and Chapter 7
of this study to describing this method and to explaining how it might be modified.

Next, we will briefly explain the main objectives of this research.

Objectives

The main contribution of this research is to develop a new stability analysis method
that can identify the largest possible subset of M in the shortest possible time, and then to
design stable control systems with the developed methods.

The outline of this study is given in the following section.

Outline
This research can be divided into three phases: 1) Modeling, 2) Stability Analysis

and 3) Testing. Chapter 2, Chapter 3 and Chapter 4 are devoted to the modeling phase,



Chapter 5, Chapter 6 and Chapter 7 are devoted to the stability analysis phase and Chapter
8 and Chapter 9 investigate the efficiency of the proposed algorithm with some problems.
In Chapter 2, we introduce the most general dynamical system representations: the
state-space representation and the I/O representation. The choice of representations de-
pends on the application. In this chapter, the necessary and sufficient conditions for the
transformation of an observable state-space model to an I/O model will be derived.
In Chapter 3, we concentrate on the modeling of RNNs for the purpose of stability

analysis. The state-space model is a suitable representation for stability analysis, hence we

introduce different models that are examples of the state-space model, i.e. the NL q and

Lur’e models. After that, the BPRNN [BaPr02] will be introduced as a special type of RNN.
This network will be the main topic of Chapter 4 and Chapter 5 in the derivation of the ab-
solute stability criteria. The BPRNN is not in state-space form, so it will be transferred to
the Lur’e model form using a special technique called the state-space extension method.

In Chapter 4, we prove that the transformed BPRNN is in the Lur’e model form by
showing that it consists of a linear part in the forward path and a nonlinear part in the feed-
back path. We also demonstrate that the nonlinear part has a finite sector bound and satis-
fies a sector condition. After showing that the BPRNN model is in the Lur’e model form,
we then study the absolute stability.

In Chapter 5, the results from the previous two chapters will be merged together to
derive the final criteria for the absolute stability of the BPRNN. The final criteria, which is
a Lyapunov based criteria, will be derived using the S-procedure method. The Lyapunov

condition and the sector condition from Chapter 4 are merged together using the S-proce-
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dure method. The derived criteria in this chapter is conservative, and there is a need to de-
rive a less conservative criteria. This will be addressed in the next chapter.

In Chapter 6, we introduce a new approach for the stability analysis of RNNs
([BaPr03]). The RODD-LB1 method, which is believed to approximate the largest possible
space of stable parameters, will be investigated in this chapter. The RODD-LB1 method
gives a less conservative stability criteria, but it suffers from a slow rate of convergence.
This makes the algorithm impractical for large networks. Hence, there is a need to fix this
problem and develop a more efficient algorithm.

In Chapter 7, the RODD-LB2 method, which is an extension to the RODD-LB1
method, is developed. The RODD-LB2 method fixes the slow rate of convergence in the
RODD-LB1 method by introducing a more accurate optimization. RODD-LB?2 is an effi-
cient version of RODD-LBI1 that can detect stability in a shorter time. Both RODD-LBI
and RODD-LB?2 use a linear approximation to the reachable sets. However, the reachable
sets can also be approximated by quadratic functions. In the second section of this chapter,
RODD-EB, which uses a quadratic approximation to the reachable sets, will be introduced.
RODD-EB is an efficient algorithm in detecting stability for any dynamical system with
elliptical reachable sets. In the third section of this chapter, RODD-Hybrid, which is a com-
bination of RODD-LB2 and RODD-EB, will be proposed as the most efficient algorithm.
The factors which affect the efficiency of RODD-EB are given at the end of this chapter.

In Chapter 8, several test problems will be given to investigate the performance of

the proposed RODD algorithms from Chapter 7. The test problems are divided into stable
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and unstable groups. In each group, we provided some systems in Lure form and some sys-
tems in non-Lure form.

In Chapter 9, two RNN-based controllers, MRAC and NARMA-L2, will be inves-
tigated. The RNN-based plant model and RNN-based controllers are cascaded together and
make a closed loop system. The stability of the overall closed loop system will be investi-
gated using the proposed methods from Chapter 7.

In Chapter 10, a summary of the research and potential future work are presented.
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2 GENERAL NON-LINEAR SYSTEMS

*State-Space Model to /O Model.........c.cooveiiieiiiiniiiiieieeeee e 2-2
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*RElatiVe DEGIEE ...oeeeiiieiiieeieeee e 2-9
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*I/O Model to State-Space Model ..........cccceevieiiieriiiniieieeeeee e 2-14
*Observable State-Space [/O Map ......ccccveeieeeeiieeiieecieceee e 2-16

SCONCIUSION ...ttt st 2-24

In this chapter we will introduce the most common system representations: the
state-space representation and the Input Output (I/O) representation. One may choose ei-
ther model, depending on the application. In this study, we focus our attention on systems
that are nonlinear, discrete-time, deterministic, time-invariant and have finite dimension.
Choosing the right system representation will ease the job of stability analysis. The neces-
sary and sufficient conditions for going back and forth between the state-space model and
the I/O model will be described in this chapter.

The state-space representation is one of the important system representations. A
Single-Input-Single-Output (SISO) discrete-time, deterministic, time-invariant, finite di-

mensional nonlinear state space model can be expressed as



x(k+1) = fix(k), u(k))

2.1
y(k) = h(x(k)) D

where x(k) € R" is the state of the system, u(k) € R is the system input, y(k) € R is the

systemoutput, / : R"xR—>R", # : R" >R,/ and & belongto C* and are smooth
functions. It is also assumed that (0, 0) is an equilibrium point of (2.1), hence f(0,0) = 0,

and 2(0) = 0. If the origin is not the equilibrium point of the system above, then without
loss of generality we can always transfer the non-zero equilibrium point to the origin via a
change of variable.

A second standard system model is the Input-Output (I/O) map. A discrete-time de-

terministic, time-invariant, finite dimensional I/O map model has the form
y(ktd) = gy(k),y(k—=1), ...y(k—n+1),u(k),u(k—1), ..., u(k—n+1)) (2.2)

where g : R” 5 R.

In the following sections we will derive the conditions under which the state space
model is equivalent to the I/O model.
State-Space Model to I/0O Model

In this section we will show that under certain conditions an I/O model can be de-
rived directly from a state space model.
Conditions for Conversion (Controllability-Observability)

An I/0 model can be derived by eliminating states of the state model given in (2.1).

The difficult part of this elimination is the nonlinearity involved in the state model. In the



general case, the conversion can be made by applying the implicit function theorem. The
theorem is stated as follows.
Theorem 2.1: (Implicit function Theorem): Let n, m be positive integer and

n+m

Y., ...,¥, bedifferentiable functions ¥ : R — R" on a neighborhood of the point

T n+m .
(o) = [020 000 0 <R

1 %2 m
Y, (x4,zy) = 0
Y, (x(,zy) = 0 23)
¥, (xp,25) = 0
If the n x n matrix

o o, ox

oY, 0¥, ovY,

&, ox, ox, (2.4)

oY, o¥, ovY,

o o, ox

is non-singular at (X,z,)), then there is a neighborhood U of the point z in R", there is

a neighborhood V of the point X, in R" and there is a unique mapping ¢ : U — V such
that x, = ¢(z,) and

¥i(e((2),2)) = 0

¥,(0((2),2)) = 0 2.5)

¥, (0((2),2)) = 0



forall z in U. Further more, ¢ is differentiable. In other words if

T
o(z) = [gl(z) g,(2) ... gn(z)} where gy, ..., g, are differentiable functions on U,

then

x, = gz ..052,)
(2.6)

x, = g,z ..., 2,)
is the unique solution to the system (2.5) which satisfies X, = ¢(z,) near z,. Equation

(2.6) can be rewritten in matrix format as follow
x = ¢(z) 2.7)
In order to derive the I/O map from the state model, we need to evaluate system
(2.1) sequentially for different time steps. The procedures are as follow

X(k+ 1) = fx(k), u(k))
x(k+2) = fix(k+ 1), u(k+1))

= fU(x(k), u(k)), u(k+ 1))

= £ (x(k), u(k), u(k+ 1)) (2.8)

x(k+n) = f(x(tk+n-1),u(k+n-1))
= ff...(f(x(k), u(k)), u(k+ 1)), ..., u(k+n—=2)), u(k+n-1))
=" (x(k), u(k), u(k+1), .., u(k+n-2), u(k+n-1))

T
where x(k) = [x L) x5 (k) .o x ( k)} . By defining new variable

v(k) = [u(k) w(k+1y ... u(k+n— 1):|T equation (2.8) can be written in closed form as

follows



x(k+n) = £'(x(k), v(k)) (2.9)

where f is a vector function with the ;" element

£x((k), (k) = ff...(F(x(k), u(k)), u(k+ 1)), .., u(k+i—1)),1<i<n

%,_/

Similarly, by evaluating the output equation y(k) in (2.1) for different time steps the out-

come is
y(k) = h(x(k))
yv(k+1) = h(x(k+1))

= h(f' (x(k), u(k))
y(k+2) = h(f(x(k+1),u(k+1))
= h(AAx(K), u(k)), u(k+ 1)) (2.10)

= h(f* (x(k), u(k), u(k+ 1))

y(k+n—1) = h(f(x(k+n-2),u(k+n-2))
= (" (x(k), u(k), u(k + 1), ..., u(k+n—2))
Stacking all the outputs at different time steps together and defining new variable

w(k) = [y(k) yk+1) ... y(k+n— 1)]T we may rewrite (2.10) in a matrix format as fol-

lows

) h(x(k))
yk+1) | _ h(f (x(k), u(k)) @.11)

YO =DF n (™ (x(k), uCh), uk+ 1), ..o, u(k+n—2))

which can be rewritten in closed form as

w(k) = h"(x((k), v(k))) (2.12)
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Let us take into consideration the equation (2.10) again and move all the terms on

the right hand side to the left hand side. Then

y(k)—h(x(k)) = 0
y(k+1)-h(x(k+ 1)) = y(k+ D)-h(f(x(k), u(k))) = 0
y(k+2)-h(x(k+2)) = y(k+2)-h(fix(k+ 1), u(k+1)))

= y(k+2)-h(f(f(x(k), u(k)), u(k+1))) = 0
(2.13)

yik+n—-1)-h(x(k+n—-1)) = y(k+n-1)-h(f(x(k+n-2),u(k+n-2)))

= y(k+n-=1)-h(f(f... f(x(k), u(k)), u(k+1)),...
utk+n-3)),u(k+n-2)))
=0

Denote the left hand side of the above equations with the new functions ¥, ¥,, ..., ¥

n

where ¥, : R > R. Considering the new notation, the system of equations given in

(2.13) can be rewritten as follow:

W, (e (k), o x, (k) u(k), ..., u(k+n—1),y(k),...,y(k+n-1)) =0
WYy(xy(k), ..., x, (k),u(k), ..., u(k+n—1),y(k), ..., y(k+n-1)) =0 (2.14)

¥, (x(k), ..., x, (k),u(k), ..., u(k+n-1),y(k), ..., y(k+n-1)) =0

The critical question here is if (2.14) can be solved for x(k) in terms of w(k). This ques-
tion will be answered by applying Implicit function theorem. In order to apply the implicit
function theorem, a definition of nominal point is needed. Consider the nominal point as

the equilibrium point of system (2.1) given by



r T
0 = [0 oy ] 0

0 T
VO = [0 Lk 1) 1) =0 (2.15)

0 T T
W = [0 1y e n—1)
Considering the assumptions (0, 0) = 0, 2(0) = 0and evaluating system (2.1) at
the nominal point we will get
0 0
y (k) = h(x'(k)) = h(0) =0
0 0
y(k+1)=h(x(k+1)) = h(0) =0 (2.16)
Vk+n-1) = h(x’(k+n-1)) = h(0) = 0
The equation above shows that the nominal point given in (2.15) satisfies the system of

equation (2.14). In other words,

v, (x" (k) v k), w(k)) = 0

W, (x" (k) v (k), w'(k)) = 0 2.17)
¥ (x (k) k), w(k)) = 0

. D . . 0 r
This equation is identical to (2.3) considering z= = [Vo (k) w’ ( k)} , hence, the first con-

dition of the implicit function theorem has been satisfied. The second condition that needs

to be satisfied is the non singularity of (2.4), evaluated at the nominal point (2.15). Then by

applying the implicit function theorem, there is a neighborhood U of the points

(Vo(k), wo(k)) in R* , there is neighborhood V of the points xo(k) in R" and there is



unique mapping ¢ : U — V such that Xo(k) = (p(vo(k), wo(k)) and

vi(e((v,w),v,w)) =0

Yo (((v, W), v, w)) = 0 (2.18)

v, (@((V, W), v, w)) = 0
which means that (2.12) can be solved for x(k) in terms of w(k) and v(k) . In other words,
w(k) = h"(@(w(k), v(k)), v(k)) (2.19)
Equation (2.19) is the solution of block output equations of system (2.1) for x(k)
in terms of future input and future output. Similarly, solving x(k) in terms of v(k) and

w(k) in the first equation of system (2.1) yields,

x(k+n) = £'(p(w(k), v(k)), v(k)) (2.20)

gy(k), ..., v(k+n-1),u(k),..u(k+n-1))

where g : R*" = R" is a smooth vector function. Evaluating the output equation given in

(2.1) at k+n and (2.1) and the substitution x(k + n) derived in (2.20) the following input-

output model is formed,

vik+n) = h(gyk),...,y(k+n—-1),u(k),..u(k+n-1)))

By changing the time index we will get
y(k) = gy(k=n),y(k=n+1), .., y(k=1), u(k—n),u(k—n+1),..u(k-1)) (2.21)

where g : R”" -5 R is a scalar function which is the composition function hog( e )
Equation (2.21) can either be called the I/O model representation or the Non-linear-Auto-

Regressive with eXogenous inputs (NARX) model. The NARX model given in (2.21) is an



exact representation of the system (2.1) in a neighborhood of origin. This model is derived

under the condition that rank(%") = n around the neighborhood of the origin. This con-
X

dition guarantees the solvability of (2.12) for x(k) in terms of w(k) and v(k) in the neigh-
borhood of the origin. In fact, a system with this property is called locally first-order
observable. Therefore, any locally first-order observable system with the state model given
in (2.1) is guaranteed to have an I/O representation (2.21) in the neighborhood of the origin.
Relative Degree

An important concept for system model is relative degree. Relative degree is de-
fined as follows:

Definition 2.1: Relative Degree[CaNa95] Let consider f, denote the state dynam-
ics f(_ - ,0) and f; the i-times iterated composition of f,, for the system (2.1). The system
has relative degree d at (x,u) = (0, 0) ifthere exists a neighborhood y;x U,y x U
of the equilibrium state (0, 0) for which the following conditions are satisfied

(hof of(x, u))
ou

o(hoft ' of(x, u))
ou ”

=0 for 0<k<d-2
(2.22)

0

where ho]le(of(x, u) is in fact the output of system (2.1) at the time k+ 1. If

d(hof of(x, u))
ou

= 0 for all k in some neighborhood vy, x U,y x U we say that the

relative degree of (2.1) at (0,0) is + 0. If there exists a k> 1 and a neighborhood



Y XU ,cyxU such that

d(hoftof(x, u))

ou =0

0.0 (2.23)

d(hoffof(x, u))
ou

0, (x,u)ey ., xU ,—{(0,0)}

we say that the relative degree of (2.1) at (0, 0) does not exist, or equivalently, that (2.1)
doesn’t have a well-defined relative degree at (0, 0).

Qualitatively, relative degree implies that an input at instant & with the initial con-
dition in the neighborhood of the equilibrium state affects the output only d units of time
later. Consequently, when the relative degree is defined, it represents the delay of the sys-

tem (2.1) between input u(k) and output y(k).
It was shown that if the state space model of a system given in (2.1) is first order

observable, then the I/O representation can be derived as in (2.21). If system (2.1) has rel-

ative degree 1(d = 1), then by the definition of relative degree

O(hofoof (X (), u(k)  a(y(k+ 1))

Bu(k) 2u(h) # 0. Furthermore y(k+ 1) does locally depend on

u(k).1fd= 1 then % — 0 which means that y(k + 1) does not depend on u(k)

around the neighborhood of the origin. For the case when d#1 we may eliminate u(k)
in the input argument of (2.21) and rewrite it like the following equation

yk+1) = g, (vk),yk=1), ...,ytk=n+ 1), u(k—1), u(k-2), ..u(k—n+1))
(2.24)
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where g, : R* ' 5 R. This elimination is only valid locally around the neighborhood

of the origin. Another iteration in (2.24) yields,

y(k+2) = g (yk+1),yk), ....y(k—n+2),u(k),u(k-1), ...u(k—n+2))
(2.25)

Substitute y(k + 1) in (2.24) into (2.25) and the outcome will be as follows

y(k+2) = g(g k), y(k=1), ..., y(k=n+1)), y(k), ..., y(k—n+2), u(k),
u(tk=1), .., u(k—n+2))

(2.26)

which can be rewritten as

v(k+2) = g,(y(k),y(k=1), .., y(k—n+1),u(k), u(k-1), ..u(k—n+1)) (2.27)

where g, : R” > R.Ifd = 2 then Ok +2)) # 0 . These guarantee the dependency
2 ou(k)

of y(k+2) on u(k).Otherwise, if d# 2 ,then %(;)2)): 0. In this case, when d # 2,
u

we may eliminate u(k) in the input argument of (2.27) and rewrite it as the following
y(k+2) = g(k),y(k=1), ...,y(k—n+1),u(k=1),u(k=2), ...u(k—n+1))
where g, : R” 'S R. Again this elimination is only valid locally around the neighbor-

hood of the origin. Continuing in the same manner and assuming that the system (2.1) has

a finite relative degree d, the output at time k + d is written as

yk+d) = g,(y(k),y(k=1), .., y(k—n+1),u(k),u(k-1), .. u(k—n+1)) (2.28)
where g, : R™ > R and okt d)) #0 . The relative degree of d for the system (2.1)

Bu(k)

guarantees the dependency of y(k + d) on u(k) in (2.28). In the following section the I/O
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model given in (2.28) will be used to derive the NARMA-L1 and NARMA-L2 models.
The I/0 model given in (2.28) is not convenient for the sake of control because of
non-linear dependence of all past input control signals on the desired reference signal. (For
the case when the non-linear functions are too complex, computation of control signal will
be tedious.) For the same reason, Narendra [NaMu97] proposed two approximations to the
NARX model called NARMA-L1 and the NARMA-L2 models. The main feature of these
models is that the control input u(k) occurs linearly in the input-output model. Hence, the
control signal can be solved in terms of the previous inputs and the reference signal. For the
derivation of NARMA-L1, check .
NARMA-L2
The NARMA-L2 model is an approximation of the NARX model using Taylor se-
ries expansion. Denote

— T 2n—1
m(k) = [y(k) y(k—1) ... y(k—n+1) u(k—1) u(k—2) ... u(k—n+1)] €R

(2.29)

then (2.28) may be rewritten as
y(k+d) = g (m(k), u(k)) (2.30)
Expanding (2.30) using the Taylor series about the nominal point u(k) = 0 yields

o
ou(k)

y(k+d) = g,(m((k),0)) + g (m(k), u(k)) u(k) + Ry(m(k), u(k)) (2.31)

u(k) =0
The second term on the right hand side of (2.31) is guaranteed to be non-zero. This is due

to the fact that system (2.1) with I/O representation derived in (2.28) is assumed to have the
relative degree d . By the Taylor Remainder theorem [Buck78], the last term on the right
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hand side of (2.31), R;(m(k), u(k)), yields

2 uz(k)

2

0

R (m(k), u(k)) = ———ga(m(k), u(k))| = x
ou’ (k) u(k) =t

(2.32)

where 1 1s an appropriately chosen point between 0 and u(k). Let M, be the maximum

2
value of

g(m(k), u(k))| ., __;therefore we may rewrite equation (2.32) as the
01> (k) u(k) =t

following inequality

M,u(k)’

R, (m(k), u(k))| < ==

(2.33)

Since a continuous function attains a maximum in a compact set, the value of A, is bound-

ed so the approximation can be made as accurately as desired by decreasing the amplitude
of the input u(k) . This magnitude can be large, but in practice the magnitude of

a2

ou” (k)

g(m(k), u(k)) is usually small. Considering a small upper bound for the remain-

der, (2.31) may be approximated as follows,

yk+d)y=fo(y(k),y(k=1), ..,y(k—n+1)+u(k-1), .., u(k—n+1))

(2.34)
+go(k), .., y(k—n+1),u(k-1), .., u(k—n+1))u(k)

2n —

where f), g, : R 'LR. Equation (2.34) is an approximation of the NARX model that

is called the NARMA-L2 model. The advantage of this model over the original NARX
model is that the control signals at each time step can be solved linearly with respect to the

reference points. Similar to NARMA-L1(see Appendix A), the NARMA-L2 model is a
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good approximation of the NARX model only about the origin ( #(k) = 0 ). For the cases
where system (2.1) is not operating around the origin, a different method may be used to
approximate the NARX model.

I/O Model to State-Space Model (Realization)

The previous section described how to develop an I/O model from a state-space
model. This section will describe the reverse operation developing a state-space model
from an I/O model which is called the Realization problem.

In this section, we will investigate an algorithm by Sadegh [NadeO1] to derive the
necessary and sufficient conditions for existence of a locally observable state-space repre-
sentation of the I/O map in (2.21).

Consider the following state model given in (2.1) which is locally observable
around the neighborhood of the origin. In (2.9) and (2.12) it is shown that the block state
space representation can be derived as

x(k+n) = £'(x(k), v(k))
w(k) = h"(x(k), v(k))

(2.35)

where v(k) is the future input vector and w(k) is the future output vector. For the case
when the state model is locally observable around the neighborhood of the origin, the con-
ditions of the implicit function theorem will be satisfied. Hence, the output equation in

(2.35) can be solved for x(k) in terms of w(k) and v(k) (equation. (2.19)). Substituting

(2.19) for x(k) into the first equation of (2.35) yields

x(k+n) = £'(o(w(k), v(k)), v(k)) (2.36)

O(w(k), v(K))
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Substituting x(k) in (2.36) (by changing of the time index form k + n — k) into the output

equation in (2.35) yields,

h"(x(k), v(k))
h'(O(w(k—n), v(k—n)), v(k))

w(k) (2.37)

The above equation presents the block I/O map of the state model given in (2.1) under the
condition that the state model is locally observable.
The other way to construct the block I/0O model is to begin with NARX model de-

rived in (2.21). Write this equation as

vik) = gly(k—n),y(k—n+1),..,y(k—1),u(k—n),u(k—n+1),...u(k—1))

(2.38)
g (w(k—n),v(k—n), v(k))

By iterating one step ahead in the above equation, y(k + 1) may be derived as

vik+1) =gy(k—n+1),y(k—n+2),..,yk),u(k—n+1),u(k—n+2),..u(k))
= gy(w(k—n),v(k—n), v(k))
(2.39)

Substituting y(k) in (2.38) with (2.39) proves that y(k + 1) is a function of w(k—n),
v(k—n) and v(k).(y(k+ 1) dependson y(k),and y(k) dependson w(k—n), v(k—n)
and v(k)). By iterating one step ahead in (2.39), y(k +2) can be derived as

vk+2) =gk-n+2),y(k—n+3),..,y(k+ 1), u(k—n+2),u(k—n+3),.. u(k+1))
= g3(W(k—n), v(k—n), v(k))
(2.40)

y(k+2) is function of w(k—n), v(k—n) and v(k) because y(k) and y(k+ 1) are func-
tions of w(k—n), v(k—n) and v(k). Similarly, the output sequence at the time k +n — 1

can be derived as
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vk+n-1) = gly(k=1),y(k), ... v(k+n-2),u(k—1), u(k), ... u(k+n-2))

g, (W(k=n),v(k—n),v(k))

(2.41)

By stacking all the output sequences together, the following block I/O map will be formed

W0 2y (k= m), ¥(k =), V()
V1) | | (W Ok =), v n), V() 242)

y(k+“1; —-1) _gn(w(k—n),.\".(k—n), V(k))_
which can be rewritten in matrix format as
w(k) = G(w(k—n), v(k—n), v(k)) (2.43)
where g : Rzn—>R, g R” >R for1<i<n G : R” - R"and the i"" row of
(2.43) denoted by

g(wlk—n),v(k—n),v(k)) = giy(k—n+i-1),y(k—n+i),...,y(k-1),
g (W(k—n),v(k—n),v(k)), g,(w(k—n),v(k—n), v(k)), ...

g (w(k=n),v(k—n),v(k)),u(k—n+i-1),u(k—n+i), ...

u(k=1), oo u(k), u(k+ 1), ..., u(k+i—2))

By iterating one step ahead in (2.41) the y(k + n) can be derived as follows

gy(k),y(k+ 1), ...,v(k+n—-1),u(k),u(k+1),.. u(k+n-1))
= g, +1(W(k—n),v(k—n), v(k))

y(k+n)

(2.44)
Observable State Space Input Output Map (OSSIOM)
In this section we carefully define the conditions under which an I/O map model and

a state variable model are equivalent.

Definition 2: The I/0 map
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v(k)y = gy(k—n),...,yv(k—=1),u(k—n), ...u(k—1)) is said to be Observable State
Space I/O Map (OSSIOM) if it has an equivalent n dimensional observable state space re-
alization.

Lemma 2.1: Let G in (2.43) be a block OSSIOM. Then
Dw(k_n)G(w(k —n), v(k—n), v(k)) is non-singular and
{Dw(kf n)G(w(k —n),v(k—n), v(k)) }71 {Dv(kf n)G(w(k —n),v(k—n),v(k))} isinde-
pendent of the third variable v(k) on a neighborhood of the origin.

Proof: Let

X(k+ 1) = fx(k), u(k)) 2.45)
y(k) = h(x(k))

be an equivalent observable state space realization of an I/O map

v(k) = gly(k—n), ....,y(k—=1),u(k—n),...u(k—1)). Then the block I/O map (2.37)

derived from the block state equation and the block I/O map derived in (2.43) are identical.

Hence,
w(k) = G(w(k—n),v(k—n), v(k)) = h"(O(W(k—n),v(k—n)),v(k))  (2.46)
Differentiating the above equation with respect to w(k — n) and using the chain rule yields

0 _ 0 0
—aw(k_n)G(w(k—n), v(k=m), v(k) = == (k)h (x(k), V(k))—aw(k—n)x(k) 2.4

= D, 0" (x(0), V(K)) D, 4 y@(W(k — 1), v(k — 1))

Similarly, differentiating (2.46) with respect to v(k—n) yields,

0 _ 0 gn 0
mG(w(k—n}, v(k—n),v(k)) = mh (x(k), V(k))mX(k) (2.48)

= Dx(k)hn(x(k)a V(K)D, - O (W(k—n), v(k—n))
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Rewriting (2.19) for the time index & — n and differentiating both sides with respect

to w(k —n) will be as follows

& on 0
v Gy UV s eIV )

= Dx(kfn)hn(x(k —n),V(k=n))D,,_o(W(k—n), v(k—n))

~
I

Differentiating (2.36) with respect to w(k —n) yields

Dy m@W(k—n), v(k—n)) = Dx(kfn)f"(x(k—n), v(k—n))
Dy my®(W(k—n), v(k—n))

(2.50)

By the lemma assumption, the state equation needs to be observable, so
Dx(k)hn(x(k), v(k)) is non-singular. By (2.49), Dy n)(p(w(k —n), v(k—n)) should be
an invertible matrix. Also, assuming that the state equation is invertible guarantees non-sin-

gularity of D k- n)fn(x(k —n), v(k—n)). Then the two pieces on the right hand side of
(2.50) are invertible, as is their product. This is enough to say that

D, k- @ (W(k —n), v(k—n)) is non-singular. Similarly, the two pieces on the right hand
side of (2.47) will be non-singular so Dw(kfn)(G(w(k —n),v(k—n), v(k))) is also non-

singular. Solving Dy k)hn(x(k), v(k)) in (2.47) and substituting in (2.48) yields

Dy myG(W(k=n), v(k=n),v(k)) = D,y G(W(k —n), v(k—n),v(k))

(D4 m@W(k =), v(k—1))} "D,y @(W(k —n), v(k—n))

Rearranging the above equation yields
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{Dw(kfn)G(w(k— n), v(k—n), V(k))}_le(kfn)G(w(k— n),vik—n),v(k)) = 2.51)
(D - @ Wk =), v(k=1))} " Dy @(W(k—n), v(k—n))

The lemma is proved, because the right hand side of the above equation is independent of
v(k). O

The above lemma proves the sufficient conditions for an I/O map to be OSSIOM.
After defining the state vector, the necessary conditions will be stated in lemma 2.

Let the state vector candidate be defined as

x(k) = G(w(k—n),v(k—n),0) (2.52)

This means that the future inputs, v(k), should set equal to zero in the block I/O map. Iter-

ate the state vector candidate one step ahead of time

x(k+1) = G(W(k—n+1),v(k—n+1),0)

(2.53)
=G (W(k—n), v(k—n), v¥(k))

where

Gy = (820 ). g5( Lo gyir( D'

vE(k) = (u(k),0, ..., 0)

(2.54)

From the definition of the output and previous input vector, the last element of
w(k—n+1) and v(k—n+1) is y(k) and u(k) accordingly. Also by (2.21) the output
y(k) depends on w(k—n) and v(k—n), so (2.53) can be rewritten in terms of new func-

tion called G, that depends on w(k —n),v(k—n) and u(k). Assuming that the derivative

of G with respect to w(k —n) is non-singular around in the neighborhood of the origin,
then by the implicit function theorem there exists a unique function G;Vl such that
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w(k—n) can be written in terms of x(k) and v(k —n). Let’s rewrite (2.53) with the in-

) -1
verse function G, as follows

x(k+1) = GI(G;I(x(k), v(k—n),0),v(k—n), v¥(k)) (2.55)
Lemma 2.2: Suppose that the block I/O map (2.43) is such that
Dw(kfn)G(w(k —n), v(k—n), v(k)) is non-singular and
{Dw(k_ n)G(w(k —n),v(k—n), v(k)) }_1 {Dv(k_ n)G(w(k —n),v(k—n),v(k))} isinde-
pendent of the third variable v(k) on a neighborhood of the origin. Defining the state vec-
tor x(k) = G(w(k—n),v((k—n),0)) then

x(k+1) = flx(k), u(k)) = G,(G,, (x(k), 0, 0), 0, v*(k))
y(k) = h(x(k)) = x,(k)

(2.56)

Proof: The equation given in (2.55) is the state equation equivalent to (2.43) if we
could prove that the right hand side does not depend on v(k — »). In the other words, it

needs to be proved that

ﬁx(k +1) = %Gl(w(l{— n), v(k—n), v*(k))%Gwl(x(k), v(k—n),0)
T %Gl(w(le— n), v(k—n), v*(k))
=0
Ignore the time index in (2.52) and rewrite it as follows
x = G(w,u,vV) (2.57)

where w, u and v are the place holders for previous outputs, previous inputs and future

inputs. Notice that for the case when v = 0 (2.57) is identical to the state vector. Since the
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derivative of G with respect to w is assumed to be non-singular in the neighborhood of the

origin, then applying the implicit function theorem yields
x = G(G, ' (x,u,v),u,v) (2.58)
Differentiating both sides with respect to u yields,

ox -1
i D,G(w,u,v)D G, (x,u,v)+D G(w,u,v)

Both the left hand side and the right hand side are independent of u . Solving for DMG;1
yields

D,G, (x,u,v) = —{D G(w,u,v)} ' D (G(w,u,v)) (2.59)
By the second condition of the lemma, the right hand side of above equation is independent

of v, and so is the left hand side. Since DMG;1 is independent of v the following equation

is corrected
D,G, (x,u,v) = DG (x,u,0) (2.60)
By the definition of G| (2.53) may be written in terms of place holder as follows
GI(G;}I(X, W,v),w,v) = (x5, x3,...,8,, (X, V) (2.61)
Since the above equation does not depend on u, its derivative with respect to u is zero.

D, G (w,u, V)DMG;VI(X, u,v)+D G(w,u,v) =0

Substituting (2.60) in above equation for DuG;V1 (x, u, v) yields

D,G,(G, (x,u,0),u,v) = 0 (2.62)
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Since the derivative of above equation with respect to previous inputs is equal to zero,
G,(G,'(x,u,0),u,v) = G,(G, (x,0,0),0,v) (2.63)
Comparing (2.55) and (2.63) yields

x(k+1) = fx(k), u(k) = G(G, (x(k), 0,0), 0, v*(k))
y(k) = x,(k)

(2.64)

This proves the first part of the lemma. Considering that y(k) only depends on previous

outputs and previous inputs, and by the definition of the state vector, the output is always
identical to the first element of the state vector. For the second part of the lemma, it needs
to be proven that (2.64) is the first order observable state space equation. The block state

space equation is equivalent to the block I/O map given in the lemma
w(k) = G(w(k—n),v(k—n),v(k)) = h"(x(k), v(k))
Considering the definition of the state vector one will get
x(k) = G(w(k—n),v(k—n),0) = h"(x(k), 0) (2.65)

Differentiating both sides with respect to x(k) around the neighborhood of the origin yields

an
I, = gh(O, 0)
which guarantees the absorbability condition.
In the following example, we will demonstrate the conversion of the I/O maps to

state-space models.

Example 3.1 Consider the following I/O map

(k) = Y (k—2)+ulk—1)+u*(k-2). (2.66)
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The first step is to find the block I/O map. Iterating one step ahead in the above equation

yields

yk+1) = 2k + 1) +u(k) +u’(k+1)

Furthermore, the block I/O map is

[Vy(k) } _ WA= v uth— 1)+ dP-2) (2.67)
(k+1) V2 (k— 1)+ u(k) + u(k—1)

By (2.52) the state equation is

[xl(k)] _ [yz(k2)+u(k1)+u2(k2) (2.68)

x5 (k) V- +u*(k—1)

The next step is to find G| by iterating one step ahead in (2.68).

[x1(k+1)] _ V(= 1)+ u(k) +u’ (k1) (2.69)
xy(k+1) {yz(k—2)+u(k—1)+u2(k—2)}2+uz(k)

where we plug (2.66) for y(k) in the above equation. Also, GW71 needs to be found, where

(2.68) should be solved for y(k—1) and y(k—2) in terms of the other variables. Consid-

ering (2.56), y(k—1) and y(k—2) are given by

y(k=2) = £/x,(k)
y(k—1) = £, [x,(k)

Using lemma 2 to derive the state equation, we need to plug (2.70) in to (2.69) by ignoring

(2.70)

the inputs except the current input. Consequently, the following equation is formed
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x(k+1) = xy(k) +u(k)
xy(k+ 1) = x1(k) + 1’ (k) (2.71)
y(k) = x,(k)
This is the state-space equivalent of the I/O map of (2.66).
Conclusion
In this chapter, two major system representations, the state-space model and the I/

O model, were discussed. We showed that under certain conditions these two models are
identical. The modelling of a physical system is an important process, because the form of
amodel can ease its analysis. Since the two models are identical, we can study the behavior
of a system under the model that is easier to analyze. In Chapter 4, we will show that the
Barabanov-Prokharov model is not easy to use for stability analysis, hence the equivalent
state-space model will be used.

In the next chapter, different models of recurrent neural networks will be studied.
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3 NEURAL NETWORK MODEL OF NONLINEAR SYSTEM
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*Barabanov-Prokhorov (BP) RNN Framework ...........cccccoevviiiiiniennnnnn. 3-2
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SCONCIUSION ...ttt et ettt et e s 3-10

In the previous chapter two different representations (state-space model and input-
output model) of non-linear dynamic systems were derived. The previous chapter was
mainly devoted to finding the sufficient conditions for going from a state model to an I/O
model and back. The subject of this chapter is to introduce different Recurrent Neural Net-
work (RNN) models and to investigate a method of transforming the original network to
another equivalent network which is convenient for stability analysis. The state model in-
troduced in the previous chapter will be used as a convenient form for the stability analysis
of certain types of RNNs.

Modeling of Recurrent Neural Network (RNN)

RNNSs are examples of non-linear dynamic systems. The inherent feedback proper-

ties of RNNs, make these type of dynamic networks more difficult to analyze than static

neural networks. The RNN has memory, which makes it more powerful than static net-
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works. RNNs are widely used in different areas of engineering such as control, pattern rec-
ognition, signal processing, etc. The main concern when applying an RNN for any
application is stability. The stability analysis of the RNN will be addressed in detail in this
research.

Generally a neural network which has a feedback connection is an RNN. There is
no single standard representation for these type of networks. However, they could be cate-
gorized as fully-connected RNNs or semi-connected RNNs. In fully-connected RNNs,
each neuron is connected to every neuron (including itself) through a delay. In semi-con-
nected RNNs, some of these connections are missing. The following sections will present
some standard RNN frameworks, for semi-connected RNNSs.

Barabanov-Prokhorov (BP) RNN Framework

One special type of semi-connected RNN model was introduced by Barabanov and
Prokhorov in [BaPr03]. The Barabanov-Prokhorov (BP) RNN model is a network with glo-
bal feedback connections. The BPRNN model can be represented by

a'(k+1) = £ (@Lw"a'o)+Lw"aY(k) + b

a’(k+1) = FLW 22 (h)+ LW 'a' (k + 1) + b?)
a’(k+1) = £(LW” 2> (k) + LW 2a’(k+ 1) + b°) (3.1)

a”(k+1) = £7@ww” Ma" (k) + LW 1M

(k+1)+bM)

In this model M is the number of layers, S ; is the number of neurons in layer j,

: S. S. : S.
f/: R” — R is the vector of activation functions for the layer j, a’(k) € R” for all

$;xS

j = 1,..., M is the output vector of layer j at time step k, LW * ¢ R”” ™ is a constant
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. i S; . .
matrix of weights connecting layer & to layer j, and b’ € R™ is a fixed vector of biases.
The schematic view of the network (3.1) is shown in Figure (3.1). The figure illustrates that
every layer of this network is has a local feedback connection. In Chapter 5, the sufficient

condition for the absolute stability of this network will be derived.

2,2

—{LW " |«{Dl=— —{LW " [<{Dl=— — Lw""j<{Dle—
b' L ‘ f1|a1(k+1) W g I altt) | w0 I a'(k+1)
b’ b"
ILWLMI E

Figure (3.1) Schematic view of system (3.1)

NLq RNN Framework

Another general framework that has been proposed for RNNs is the NLq system.
NLq neural networks are discrete time nonlinear dynamic systems in the state space form
that contain ¢ layers with alternating linear and nonlinear operators satisfying a sector con-
dition (The sector condition will be introduced in Chapter 4). The NLq system concept was

first introduced in [SuVa96]. The NLq system with constant external inputs can be repre-

sented as

a(k+1) = f,(LW £,(LW,...f,(LW,a(k)+B,,)... + B,) + B)) (3.2)

where a(k) R" is the state vector at time step &, LW, are constant matrices

j=1,....,M and f; is a vector function consisting of activation functions for layer j. All
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the elements of vector function fj are defined by the identity map,1(s) = s, except the

M —j+ 1 element, which is defined by and f . The system (3.1) can be transformed into

the form of (3.2) using the following matrices:

I 0 Lwh! o LwhM
0 0 0 10 0
LW, = ,...LW,, =
0 | 0 0 I
0 Lw" Mt pwt Y 0 1|

(3.3)

Suykens derived sufficient conditions for global asymptotic stability of system (3.2)
when the biases are assumed to be zeros. The derived criterion by Suykens was not practical
because of the lack of consideration of the biases. Ignoring the biases not only severely lim-
its the mapping capabilities of neural networks but also makes the stability criterions more
difficult to be satisfied. The stability analysis of a general case when the biases are non-zero
will be investigated in Chapter 5.
Generalized Lur’e Model

Another general framework that can represent certain types of RNNs is called the
Generalized Lur’e Model. For instance, the BPRNN model given in (3.1) can be trans-
formed into a generalized Lur’e model. This transformation can be done using the state
space extension method (explained in the next section). The generalized Lur’e model can

be represented as



y(k+1) = Ay(k)+ Bn(k)
n(k) = Wy +b = [, (6), ny(h) .. n(k)| (3.4)
n(k) = f(n(k)

nxs sXn

where y(k) e R", (k) e R*, AcR""" BecR""*  WeR™ beR' neR’ and

f;(s) is assumed to be tanh(s) for all the activation functions (# is the number of states,

s is the number of inputs and outputs).
Transformation of the BPRNN model into the generalized Lur’e model requires A ,

B, W and b to follow certain structures. This transformation can be done using the state
space extension method. The state space extension method converts the BPRNN model to
a higher order generalized Lur’e model that is equivalent in terms of stability. Both systems
are equivalent in terms of stability because the solution set of the BPRNN is the sub-sam-
pled solution of the generalized Lur’e model.

The equilibrium point of (3.4) is not necessarily located at the origin, because the
vector b is not necessarily zero. To be consistent, we always transfer make a change of
variable that transfer the non-zero equilibrium point to the origin. We can then derive the
stability criterion for the origin. Consider (3.4), where b # 0 and z is the equilibrium point,
then the equilibrium point equation can be rewritten as

z = Az+ Btanh(Wz+Db) (3.5)
Consider the affine transformation x = y —z and denote ¢ = Wz + b, then we may re-

write (3.4) with the new variable as follows



x(k+1) = Ax(k) +Ba(k)
o(k) = Wx(k) (3.6)
a(k) = f(o(k)) = tanh((o(k)) + ¢) — tanh(ec)

where the origin is the equilibrium point. Transforming of the non-zero equilibrium point
of system (3.4) to a zero equilibrium point of a system given in (3.4) changes the activation

function from tanh(s) to tanh(s + ¢) — tanh(c). We will derive the sector bound of the

new activation function in Chapter 4.

TDL

Non-Linear Part

Figure (3.2) Generalized Lur’e system
Figure (3.2) is the block diagram representation of system (3.6). This system con-
sists of a linear part and a non-linear part. The linear part, which is located in the feed-for-

ward path, has the following transfer function

S(2) - w(z1-A)'B

a(z)
If the nonlinear part, which is located in the feedback path of system (3.6), satisfies certain
sector conditions, then this system can be analyzed using the theory of absolute stability. A

special class of functions which satisfy sector conditions will be discussed in detail in the

following chapter, and the absolute stability criterion will be derived in Chapter 5. The



schematic view of the generalized Lur’e model is given in Figure (3.3).

-1

W(zI-A) B

Linear Part

a(.)

Non-Linear Part

Figure (3.3) Simplified view of Generalized Lur’e system

In the following section, we will present a method of transferring system (3.1) into
an equivalent system which is convenient for stability analysis. The equivalent model is in
the form of system (3.4). The relationship between the solutions of the original model and
the equivalent model will also investigated.

State Space Extension Method [BaPr02]

The state space extension method is a technique we can use to transform the
BPRNN model (3.1) into a generalized Lur’e model. The solutions of the transformed sys-
tem are just repetitions of the solutions of the original system with some time delays. So,
convergence of the solutions of the transformed system guarantees the convergence of so-
lutions of the original system. In other words, both systems are equivalent in terms of sta-
bility.

Consider the BPRNN given in (3.1). Applying the state space extension method to
this system will transform system (3.1) into a new system. The dynamics of the /" layer of

the new system can be represented by



l Il 1 Li-1 [-1 l
yi(k+ 1) = £LW 'y, () + LWy (k) + b

ylz(k+ 1) = yll(k) I=1,...M
vi(k+1) = yh(k) (3.7)

vkt 1) = yh (k)

Writing (3.7) for all layers gives a generalized Lur’e system (3.4) with
s=8+8,+...+8,andn = M-s where f: R* 5> R, f = [fl o fM:|,
RS Sg _ | oA ;

/. RY >R f [f{fé---fé] fILRSR, (1<d<s, 1<j<M)

By comparing the original system, Figure (3.1), and the transformed system, Figure

(3.4), it can be observed that the transformed system has M — 1 more delays in every layer.

M-1 delays

M-1 delays M-1 delays

22 |
o e s

Figure (3.4) Extended system (3.7)
In the following example we will illustrate the special structure of the matrices A,
B,Wandb.

Example 3.1 Consider the two-layer BPRNN given in (3.1) with three neurons in

each layer (M = 2,8, = 2,8, = 3). This network can be represented by



a'(k+1) = £'(LW" " a' (b)) + LW"?a’(k) + b") 3.5

a’(k+1) = £(LW>2a’(k) +LW> 'a' (k+ 1) + b%)

By rewriting (3.7) for / = 1, 2 the following new system will be formed

L1 1 1,2 2

yi(k+1) = £ (LW" 'yl (k) + LWy (k) +b')

va(k+1) = y (k)
yi(k+1) = FLW y5(k) + LW 'y (k) + b°)

alk+1) = yi(k)

(3.9)

Then (3.9) can be rewritten in the generalized Lur’e form as follows

- i S
k+1 k
Vitkr D ooooyl() I0

1 1
Y2+ D _ 1000 |Y2(0] , |00 |v'(k

2 2 2
yiGe+ Dl (0000 20 10TV (k)
, 0010/, 00
_yz(k+ 1)_ _yz(k)_

(3.10)

v, (k)

1
n'®f - | o Lwh'Lw"? o |[|[v2(0], b
(k)] lLw*' o 0 LW”’||yi(o| [b’

¥2(0)

T 10x1 FoRS!
where y(k) = [)’i(k) y;(k) y%(k) y%(k)i| eR s a(k) = |:V1(k) Vz(k)i| e R 5

nhy = [ 1 2 1 eR b= [0 o] e R%*! and v'(k), v’(k) are defined
n' (k) n2(k) b= [y e ,

by



1 1
a(k) = fn(by) = [V O = [T ¢ g2 LR £ .RPLR Gl
Vi) |[Fm’)

The solution of the original network (3.1) is a sub-sampled version of the solution
of the extended network (3.4). This is enough to say that convergence of the solutions of
(3.4) guarantee the convergence of the solutions of (3.1). In other words, the two systems
are equivalent in the sense of stability.

Conclusion

This chapter was devoted to introducing some existing frameworks for representing
RNNs. Advantages and disadvantages of certain architectures for representing RNNs were
also discussed. We introduced a transformation technique to convert BPRNN models into
generalized Lur’e models through the state space extension method. The Lur’e model has
been chosen as a convenient form for stability analysis. In the following chapter the sector
condition and quadratic form will represented. These are required for the derivation of the

absolute stability criterion for the system (3.1), which will be investigated in Chapter 5.
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In the previous chapter we showed that, by the state space extension method, the
BPRNN model could be converted to a generalized Lur’e model, which is more convenient
for stability analysis. The two models proved to be equivalent in the sense of stability. After
the transformation, the new model with a non-zero equilibrium point could be converted to
another model with zero equilibrium point through a change of variable. The process of
transforming the non-zero equilibrium point to a zero equilibrium point changes the acti-
vation function. The original model (3.1) has the tangent hyperbolic activation function,
while the transformed model with zero equilibrium point has the transfer function given in
(3.6). The new transfer function belongs to a class of functions which satisfy a certain con-
dition called the sector condition.

The main contribution of this chapter is to define the sector condition and derive
quadratic forms for the activation function of the transformed system given in (3.6). These

quadratic forms will be used in the next chapter to derive a criterion for stability of the
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BPRNN model. In the following section, the definition of the sector condition will be given
in more detail.
Sector Condition

In general, activation functions of standard neural networks are infinitely differen-
tiable and bounded. They can be categorized as a special class of functions, if they satisfy
a certain condition called the sector condition. Let a : R — R be a bounded smooth func-

tion satisfying the following condition

1<) <y se(mw), s#£0, LueR @.1)
S

Then a(s) is said to belong to the sector [/, u] where the / is the lower sector bound and

u is the upper sector bound. An example of a function that belongs to the sector [/, u] is

illustrated schematically in Figure (4.1).

Figure (4.1) Linear Sector Condition
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Sector Condition Constraint

The sector condition given in (4.1) can be decomposed into two separate inequali-
ties. Multiply both sides of the inequality (4.1) by s > 0, which will be

Is<a(s)<us

and for s <0

Is>a(s)>us

If s > 0 then
a(s)—1s=>0 and wus—a(s)=>0 (4.2)
and if s <0 then
Is—a(s)>0 and a(s)-us>0 (4.3)
The condition (4.2) or (4.3) imply the following inequality
[a(s)—Is][us—a(s)]=0 (4.4)
The inequality given in (4.4) is a sufficient condition that (4.1) be true, but it is not a nec-
essary condition.
The network under investigation for stability (3.1) uses tanh(s) as an activation
function for all the layers, so it is important to study the behavior of this function. It is easy

to show that f(s) = tanh(s) satisfies the following conditions

1. f is a of class c’
2. f is an odd function, which means f(—s) = —f(s) and f{0) = 0

3. limf(s) = 1 and lim f(s) = -1

§—> ™

4.1'(s)>0 for s € R
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positive ; s<0
5.1"(s)y negative ; s>0
0 ;05 =0

To determine the sector that tanh(s) belongs to, we must investigate tanh(s) . By inspec-
s

tanh(s)
s

tion of Figure (4.2), we can see that is bounded and lies in the interval [0, 1].

-2k

-3+ 4

-4 4

Figure (4.2) Hyperbolic tangent function

In other words

0 < tanh(s) o (4.5)
s
This result is also shown in Figure (4.3). As s & —© or s —> ©, tanh(s) goes to zero, be-
s

cause the denominator becomes extremely large while the numerator is bounded. Since the
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maximum slope of tanh(s) occurs at the origin and is equal to one, so the maximum of

tanh ()
s

occurs at the origin and is equal to one.

tanh(s)/s

Figure (4.3) tanh(s) and its sector bound
The affine transformation x = y —z transformed model (3.4) with non-zero equi-
librium point into a new model (3.6) with zero equilibrium point. Moreover, the activation
function changed from tanh(s) to tanh(s + ¢) — tanh(c) for ¢ # 0. For the absolute stabil-
ity analysis of (3.6) (explained in the next chapter) it is crucial to show that
a(s) = tanh(s +¢)— tanh(c) (4.6)
has a finite sector bound. Figure (4.3) illustrates the largest sector width, 1, which occurs
when ¢ = 0. Figure (4.4) illustrates a case when ¢ # 0, where the width of the sector is

less than unity



0.5 b

(tanh(s+c)-tanh(c) )/

tanh(s+c) — tanh(c)

-15

Figure (4.4) a(s) and its sector bound when ¢ = 1
The function a(s) defined in (4.6) becomes the effective activation function for

neural networks with non-zero biases. The sector of a(s) is defined by

tanh(s + ¢) — tanh(c)
g.(s) = § (4.7)
1 — tanh*(¢) s=0

The upper and lower limits for g.(s) will define the sector for a(s). Define s' = s +c.

Then a shifted version of g.(s) would be

tanh(s") — tanh(c) '
g'(s) = g.(s'~¢) = s'—¢ (48)
1- tanhz(c) s'=c

The upper and lower limits of this function are the same as those of g.(s), and can also be



used to define the sector of a(s). Now consider Figure (4.5), which shows a plot of
tanh(s") . The slope of the chord shown in the figure is equal to gih(s') . The figure shows

the s' = s* location that corresponds to the maximum slope, and therefore the upper limit
of the sector of a(s). From the figure, we can see that this slope can not be larger that 1,

and it would only be equal to 1 for ¢ = 0.

tanh(s")

g

tanh(c)

Figure (4.5) Illustration of the sector condition

In the next theorem we will list some of the important properties of the function gih ,

which will be used later in this section.

Theorem 4.1 The function g‘zh in (4.8) satisfies the following properties:

1. g‘zh(s) is of class C' .
2. lim g"(s) = lim g”"(s) = 0
§ —> —00 S —> ©

3. There exists unique ¢’ € [—c, 0] such that g‘zh(c') =1- tanhz(c')



sh
dg'(s)

0 ; s<c
ds
d sh
4. g (5) <0 ; s>c
ds
sh
dgz (s) =0 ; s=c
ds ’
Proof See Appendix A.

The length of the sector of a(s) (which is the difference between the upper and low-
er sector bound) plays an important role in the stability of the BPRNN. As we will show in

the next chapter, the shorter the length of the sector of a(s), the easier the stability criterion

can be satisfied. The maximum upper bound of the sector a(s) can be derived by finding

the root of the numerator of di(@) . This is because a(s) has a unique maximum.
s\ s s

Theorem 4.2 (Sector Upper Bound) Let a :R — R be defined by (4.6), where
c € R is a constant, then a(s) has a unique maximum.
s
Proof: This theorem can be proved by showing how the derivative of a(s) will

N

change sign for different values of c¢. Differentiating a(s) with respect to s yields,
s

i(a(s)) _ s[1- tanhz(s +c¢)] - [tanh(s + ¢) — tanhc] (4.9)
ds\ s =
Define new functions /; : R—>R, f, : R—>R and f; : R—>R as
£i(s)= tanh(s + ¢) — tanh(c¢)
1 - ’
(4.10)

£,(s)=1— tanh’(s + ¢),
f3(s) = f2(s)—f1(s)
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Using the new functions defined in (4.10), the derivative in (4.9) can be rewritten as

4.11)

i(a(s)) _ () =fi(s)

ds\ s S

The derivative in (4.9) at the point s = 0 is not defined. Using L’HOpital’s rule yields

. i((a(s))) _ 1—tanh (s +¢)— 2stanh(s + ©)[ 1 — tanh’(s + )] - [1 — tanh’(s + ¢)]
s—0ds 2s

N

StanhS(s + ¢)—stanh(s +¢)
s

(4.12)
Since the right hand side of (4.12) is still not defined at s = 0, applying L’HOpital’s rule

again yields

lim i((‘%s))) — tanh>(¢) — tanh(c) (4.13)

s—>0ds
The constant ¢ can have three possible cases:
. . .. d a(s)) . .
Case 1: ¢ = 0. In this case the derivative T\ is equal to zero at the point
s\ s

s = 0. This is the only point where the derivative is equal to zero, because f| and f, never

cross at any other point. This is because f; never changes sign:
fi(s) = 1 tanh’(s) - B (g vser (4.14)
s
[For the proof of (4.14) check Corollary A.1, Figure (A.4)]. Hence the origin is the unique

critical point of a(s) . This unique critical point is the maximum point because
s



~ tanh*(s) -

tanh(s)
s >0 ;s<0

4.15
s <0 ;>0 ( )

1
S

In other words, a(s) is monotonically increasing for negative s and monotonically de-
s

creasing for positive s ; hence, the origin must be the maximum point. Figure (4.6) illus-

trates the above argument.

f1 and fz when ¢=0

Figure (4.6) f, and f, when ¢ = 0
Case 2: ¢ > 0 (The case ¢ < 0 would be similar) In this case, /| and f, do not cross
at the origin, because f5(0) # 0. In order to find where f; changes sign, we will evaluate

/5 at two separate points s = —c and s = —2c¢, as follows:
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h
fi-e) = 1- 20 e
tanh(c) 16)

c

fi(=2¢) = 1—tanh’c -

tanh(c)
c

f3(=¢) >0 because 0 < <1.Also, f3(-2¢) <0 [Check , Figure (A.4) for the

proof]. Since f;(s) is a continuous function, by the intermediate value theorem, there exists

s, € [-2¢,—c] such that f3(s,;) = 0.So f; and f, crossats = s, and the derivative
4 als))
ds\ s

changes sign from negative to positive in the interval [-2¢, —].

= 0. This point is the maximum of a(s) , because the derivative of a(s)
s s

s =15

2
1 —tanh ¢ - tanhe
i(@) ¢ >0
st s 7|, ~2c 4.17)
i(@) _ —cttanhc
ds\ s 6’2
—C

Figure (4.7) shows an example of the case when ¢ = 1 and the maximum of the sector of

a(s) occurs at the point s, € [-2¢, —].
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Figure (4.7) f, and f, when ¢ = 1

To show the uniqueness of the maximum point s, , it needs to be proven that s, is the only

point where the derivative of a(s) is zero. According to the proof given in , Lemma A.2
s

the sign of f3(s) changes as follows:

f3(5)<0 5 —o<s<s,
f3(5)>0 5  s5,<5<0 (4.18)
f3(5)<0; O<s<oo

The manner in which the sign of (4.18) changes in different regions is illustrated in Figure

(4.7). According to (4.14), s = s, and s = 0 are the only roots of f;(s). Since at s = 0

the derivative is not zero, hence the point 5, € [-2¢, —c] is the unique maximum point of
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as) o

s

For the derivation of the length of the sector of a(s), the lower sector bound also
needs to be calculated. Considering the range of s to be (—o0, ), the minimum lower
bound of the sector is always zero, because

lim tanh(s + c¢) — tanh(c) _ lim tanh(s + c¢) — tanh(c) _ 0 (4.19)

§—> 0 S § —> —0 S

However, the operating range of a BPRNN is a compact subset of R”, which needs to be
calculated to obtain an exact derivation of the lower sector bound. The derivation of lower

sector bound of a(s) is given in Theorem 4.3.
The exact operation range of a BPRNN can be calculated by the affine transforma-
tion x = y—z and defining ¢ = Wz + b in system (3.6) as follows:
lo+c| = |WTX +wlz+ b|

= |wl(x+2)+b| (4.20)

= W'y -+
The above equality can be written for every neuron of a BPRNN. According to (3.4) and
the particular structure of A and B, the absolute value of each coordinate of the vector
y(k) is less than or equal to one. This is because every element of y(k) is the output of the

hyperbolic tangent function. This will assure the existence of a sector upper bound for

(4.20), and we can convert it to the following inequality:
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n
o +c| < z |wk| + |b|

= (4.21)

=r
In the following theorem, the exact lower bounds of the sector a(s) will be calculated

based on the sector upper bound given in (4.21).

Theorem 4.3 (Sector Lower Bound) Let a : R — R be defined in (4.6) where

tanh () — tanh|c|
r—|c

c is a real number. If sup (s +c) = r then is the lower bound of the
s

sector of a(s).

Proof: For the proof of this theorem we will consider two cases, as follows:

Case 1: ¢ = 0. Asproved in Theorem 4.2, s = 0 is the unique maximum point of

a(s) , which is monotonically increasing for s < 0 and monotonically decreasing for s > 0.
s

Furthermore, for —» < s < r the following inequality can be written

tanhs S tanhr (4.22)

S r

which proves the theorem for the case when ¢ = 0.

Case 2: ¢ > 0 (The case ¢ <0 would be similar) and ¢ < r. Consider the point
s = s, as the point where the upper bound of the sector a(s) occurs (defined in Theorem
4.2). In order to prove the theorem for this case, we define two separate regions. Denote

M, as aregion where s € [-r—c, s;] and M, as aregion where s € [s|,7—c]. We will
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calculate the lower bound of the sector for the region M, and M, separately. Figure (4.8)

illustrates the regions M, and M, as well as the critical point s, .

-5 -4 -3 -2 -1 0 1 2 3 4 5

-r-c -C r=c

Figure (4.8) Lower sector bound of a(s)

In the region M, the function a(s) 1s monotonically increasing. According to (4.18),
s

f5(s) <0, and s, is the unique maximum point over the whole domain. Since a(s) is
s

monotonically increasing for s € [-r—c, 5], the minimum of a(s) occurs at the lower
s

bound, which is s = —r—¢. In other words,

tanh (s + ¢) — tanh(c) | tanh(—r—c+¢) — tanh(c)
s B —r—c
> tanh(7) + tanh(c)
r+c

(4.23)
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Considering the results derived in Appendix A , Lemma A.1,

tanhr + tanhc _ tanh(r) — tanhc (4.24)
r+c r—c

which proves the theorem for the interval s € [-r—c, s,]. In the region M, , the function

/5(s) becomes zero at s = 0, by (4.18). However, the derivative of a(s) at this point is
s

non-zero, by (4.13). This means that a(s) is monotonically decreasing for the interval
s

s € [s, r—c]. Consequently, the minimum occurs at the lower bound, whichis s = r—c.

In other words,

tanh(s + ¢) — tanhc  tanh(r —c +¢) — tanhc

S r—=«c¢

(4.25)
> tanhr — tanhc

r—c
This proves the theorem for the interval s € [s,  — ¢] . Combining the result for M,

(4.24), and the result for M, , (4.24), the theorem is proven. |

In the following section, the quadratic forms based on the sector condition will be
derived for the activation function given in (4.6).
Quadratic Form and Vector Case

In the previous section, we proved that (4.6) has unique lower bound and upper
bound. In this section, we will use these lower and upper sector bounds to derive quadratic
forms. For every neuron in the BPRNN we will derive a quadratic form, and we will use all

these quadratic forms in Chapter 5 to derive the final stability criterion.

4-16



For every neuron in the BPRNN, the nonlinearity can be written as a; = f;( l-WTX) .
If f; 1s assumed to be a tangent hyperbolic function, then by Theorem 4.2 and Theorem 4.3

a; has finite sector bounds. Denote the lower and upper sector bound of a; by /; and u; .

Hence,

< <y, i=1,2,...,m (4.26)

where m is the total number of neurons in the BPRNN, inx #0 and x € R". According

to (4.4), the inequality (4.26) implies the following inequality,
T T
(a; =1, iw x)(u; iw x—a;)=0 (4.27)

Expanding the left hand side of the inequality (4.27) yields

T 2 T T T
a;u; iw x—(a;) —x whu, wx+ x wla; 20

2. 1, T T r
—(a;) —x (W Lu; w)x+a;(u; w )x+x (I, w)a; 20

T
W (u; 1)

1 i )
[ai XT} 2 a1 >0

Ll Y Ju WawW
2 17111

(4.28)

The quadratic inequality derived in (4.28) is the quadratic form derived from the sector con-

.. th T
dition for the ;" neuron. Define z = [aT XT} where a = [

! R” and
(S an
Aqs Ays veny am}

rewrite (4.28) in terms of z:
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T, T
g(z) = 2" |" 1 2z20 (4.29)

T
T [Ts
In above equation, T, = diag(0, ...,0,-1,0,...,0) isan m x m block diagonal matrix

T

T
T T W (ul‘+li) T Tl .
_  —0,...,0 isan m x n

(=1 isin the ith diagonal entry), T, = [0, ...,0", 3

u;+1,)

i . . T.
block matrix (* is a row vector located at the i row)and T, = —u;l; ,w,w" is

an n x n block matrix.

The quadratic form in (4.29) will be used in Chapter 5 for the derivation of the final
stability criterion.
Conclusion

The main contribution of this chapter was the derivation of sector conditions for a
certain class of functions. Some important theorems were given that described the behavior
of the sector width for zero biases and non-zero biases. We showed here that the bias affects
the width of the sector. When the biases are zero, the sector has the maximum width. In the
following chapter we will show that the width of the sector has a direct affect on stability.
We will also show how the quadratic forms derived in (4.29) and the Lyapunov theorem
can be used to derive the final criterion for stability of the Barabonov-Prokharov model giv-

enin (3.1).
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Stability analysis plays an important role in control system theory. There are differ-
ent types of stability analysis that can be studied for different types of dynamical systems.
The main focus of this chapter is devoted to the absolute stability analysis of a special kind
of RNN.

In this chapter, the basic definition of stability for dynamical systems will be intro-
duced. Moreover, the most famous definitions of stability will be reviewed briefly. In the
second part, important stability theorems will be investigated. The final section is devoted
to a derivation of sufficient conditions for the absolute stability of the BPRNN given in
(3.1). These conditions will be derived by merging the sector condition derived in (4.29)
and the Lyapunov theorem. The final criterion will be given in terms of a Linear Matrix

Inequality (LMI). The feasibility of the solution to this LMI guarantees the absolute stabil-



ity of the equilibrium point of the BPRNN. The derived criterion will be verified through a
numerical example.

Definitions of Stability

Let X c R". A discrete dynamical system on X can be defined by a continuous

function f : X — X. Such a system is represented by
x(k+1) = f(x(k)) (5.1)

where x(k) is the state of the system at time step k. One main topic of interest in studying
dynamical systems (5.1) is the behavior of the trajectories with respect to the equilibrium
point, since this describes the long term behavior of the physical system that is being rep-
resented. The equilibrium point of a dynamical system is defined bellow.

Definition 5.1 /Elya98] A point x* is said to be an equilibrium point of the dynam-
ical system (5.1) if x* = f(x*).

In general, stability is defined for a specific equilibrium point. When we say a dy-
namical system (5.1) is stable, it means that it has only one equilibrium point and that equi-
librium point is stable. In other words, system trajectories starting from arbitrary initial

conditions will converge to the stable equilibrium point. The stability of the equilibrium

point x* for system (5.1) can be defined as follows:
Definition 5.2 [Elya98] The equilibrium point xX* is said to be stable if Ve >0,
36 > 0 such that ||x0 — x*” < 0 implies ||xk— x*” <¢ forall k> 0. This definition is also

called stability In the Sense of Lyapunov (ISL).
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Definition 5.2 becomes the definition of uniform stability if & only depends on ¢

(0 = 08(¢g)). The equilibrium point of dynamical system (5.1) is unstable if it is not stable.

The equilibrium point of system (5.1) can always be shifted to the origin, hence
without loss of generality we will consider only the stability of the origin.

Another important technical term in the theory of stability analysis is attraction. The
attracting equilibrium point of system (5.1) can be defined as follows:

Definition 5.3 [Elya98] The equilibrium point x* is attracting if An > 0 such that
X — x*|| < n implies kli_r)nooxk = x*_If kli_r)nooxk = Xx* forall x,, then x* is called globally
attracting.

The other type of stability for the equilibrium point of (5.1) can be defined by com-
bining Definition 5.2 and Definition 5.3.

Definition 5.4 [Elya98] The equilibrium point x* is asymptotically stable if it is
stable and attracting. The equilibrium point x* is Globally Asymptotically Stable (GAS)
if it is stable and globally attracting.

If the origin of system (5.1) is uniformly stable and attracting then the origin is uni-
formly asymptotically stable. GAS is the strongest type of stability, and it is usually an
objective in the design of control systems. If a dynamical system has a GAS equilibrium
point, then system trajectories starting from arbitrary initial conditions converge to the
same equilibrium point. In the Chapter 6 and Chapter 7, we will develop stability criteria
that will be used in Chapter 9 to design a system with RNN controller and RNN emulator.

By Definition 5.4, asymptotic stability implies stability whereas the opposite impli-

cation is not true. An example of a system that illustrates this, is a ball rolling inside a cup
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without friction. The graphical representation of this system is shown in Figure (5.1). In this
example, the ball oscillates between points 4 and B and never converges to the equilibri-
um point C. By Definition 5.2, the point C is stable ISL, but it is not asymptotically stable,

because it is not an attracting point.

C

Figure (5.1) Stable Equilibrium point but not Asymptotically stable
The distinction between a globally attracting point and stable point is subtle. The
following example shows a dynamical system with a globally attracting equilibrium point
that is not stable.

Example 5.1 [Elya98] Consider a dynamical system defined on the unit circle as
0(k+1) = J2m0(k), VO(k) € [0, 27) (5.2)
The solution of the above difference equation is
0k) = 2m)' 2 0(0)% (5.3)
Vk>0. The equilibrium point of system (5.2) can be derived by finding the limit of (5.3)
as k — oo. It turns out that the point 0% = 0 is the equilibrium point. Since

0(k+1)>0(k), any trajectories that start on the unit circle (excluding the equilibrium
point) converge to the equilibrium point in the counter clockwise direction. The point

54



0* = 0 is not stable because & > 0 such that ¥V > 0 there is some 0(0) in the o -neigh-

borhood of 0* such that 0(k) leaves the & -neighborhood. This is the negation of Defini-
tion 5.2. However, by Definition 5.3 the equilibrium point is globally attracting because all
trajectories that start on the unit circle converge to the equilibrium point. The behavior of
system (5.2) for initial conditions A,B and C is illustrated in Figure (5.2). For more detail

about the characteristics of systems with globally attracting points see [Jafarll]

Figure (5.2) Globally Attracting but not Stable
Next, we will define absolute stability. This definition will be used later in this
chapter to derive a sufficient condition for the absolute stability of BPRNNS.
Consider system (3.6), with block diagram given in Figure (3.2), which satisfies the
sector condition given in (4.1). The problem of interest in absolute stability is to study the
stability of the origin, not for one particular nonlinearity, but rather for a special class of

nonlinearity. Considering this, we will define absolute stability as follows:



Definition 5.5 /Khal01]: Consider the system (3.6), where f satisfies a sector con-
dition (4.1). The system is absolutely stable if the origin is asymptotically stable for any
nonlinearity in the given sector. It is absolutely stable with a finite domain if the origin is
uniformly asymptotically stable.

In order to check the absolute stability of the equilibrium point of a system, the sys-
tem needs to be put in a special form. This form should consist of a linear part in the forward

direction and a nonlinear part in the feedback direction. Moreover, the nonlinearity needs

to satisfy a sector condition as well. The form is illustrated in Figure (5.3). G(s) represents

the linear part, and a(.) represents the nonlinearity.

r 4 G(s) -

a(.) =

Figure (5.3) Suitable Form for Absolute Stability Analysis
The transformation of the BPRNN given in (3.1) to its equivalent model (3.6) in
Chapter 3, and the demonstration that f satisfies sector conditions in Chapter 4, laid the
groundwork for the derivation of the absolute stability criterion in this chapter. Now that
the problem is represented in a suitable form, we will use the Lyapunov theorem and the S-

procedure to derive a criterion for absolute stability of the origin of BPRNNSs.



Stability Theorems

There are several different theorems available in the literature for stability analysis
of closed-loop dynamical systems, i.e. the Lyapunov theorem, LaSalle’s theorem, the Pop-
ov criterion (frequency approach), the Circle criterion (frequency approach), etc. In this
section, we will use the main stability theorem, the Lyapunov theorem, to derive an abso-
lute stability criterion for the BPRNN given in (3.6).

Lyapunov Stability Theorem

The Lyapunov stability theorem is the most famous theorem in stability analysis.
The direct Lyapunov theorem states that if a Lyapunov function exists, then the equilibrium
point of a system is either stable or asymptotically stable. The converse Lyapunov theorem
states that if the equilibrium point of a dynamical system is stable ISL or GAS, then there
exists a Lyapunov function. (Theorem 6.5 will be proved by the converse theorem.) The
main difficulty with the Lyapunov theorems is the fact that they are not constructive, and
finding a Lyapunov function could be challenging. (For the proof of direct and converse
Lyapunov theorem see [Jafar11].) In Chapter 7, we will introduce a method which can nu-
merically approximate a Lyapunov level surface (the region where the Lyapunov function
is constant).

Since the main goal in this section is to derive sufficient conditions for the stability
of system (3.6), we will use the direct Lyapunov theorem. Before stating the direct
Lyapunov theorem, we will introduce the following definitions:

Definition 5.6 [Jafar11] Let x* € X< R" and V be a function on X with values in

R. Then we will say that V satisfies the annulus condition with respect to x* if



1. V(x*) = 0,
2. There is a number o. > 0 such that if 0 <3 < o then
inf{V(x)|xeX,6<|x—x*|<al>0. (5.4)

Definition 5.7 [Jafar11] We say that real-valued function V is positive definite at
x* if

1. V(x*) = 0,

2. V(x)>0 forall x € B(x*, a),x #x* forsome o> 0.
where in the Definition 5.7, B(x*, a) is a ball centered at x* with radius o . Note that the
annulus condition says that V" has a positive lower bound at x € X lying on the annulus. If
V' satisfies the annlus condition with respect to x*, then V' is positive definite at x* . The

opposite direction is not necessary true, unless } is continuous and X is closed.

Using Definition 5.6 and Definition 5.7, the direct Lyapunov theorem can be stated
as follows:

Theorem 5.1 [Jafar11] (Direct Lyapunov Theorem) Let X = R" be a closed set for
system (5.1) with an equilibrium point x* € X. Suppose that there is a function

V:X—>]0,0) such that
1. V satisfies annlus condition with respect to x* ,
2. Forall x e X— {x*}, V(f(x)) < V(x),
3. V' is continuous,

4.Forall Ce[0,0),theset {z € X| V((z)<C)} is bounded,



then x* is GAS.

In Theorem 5.1 if for all x € X— {x*}, V(f(x)) < V(x) then x* is stable. For the
proof of Theorem 5.1 see [Jafarl1].

There are many systems for which the equilibrium point is GAS, but for which it is
not easy to derive a Lyapunov function. It is common to restrict considerations to Lyapunov
functions from some multi-parametric class (i.e a class of quadratic forms). With such re-
strictions, the problem of obtaining effective necessary and sufficient conditions for the ex-
istence of a Lyapunov function become solvable. This is because it turns into a pure
algebraical problem. Although a solution of such problems leads only to sufficient condi-
tions for stability, these sufficient conditions are usually general enough, because they em-
brace all the conditions that can be obtained by using Lyapunov functions from the class
selected. The wider the class of Lyapunov functions, the more complicated the correspond-
ing conditions, and the more information about the system they require. Therefore it may
be unreasonable to take too wide a class of Lyapunov functions [YaLe04].

As proved in the previous chapter, the original system (3.1) and the transformed

system (3.6) are equivalent in terms of stability. Consider the transformed system, and
choose a candidate Lyapunov function to be V(x(k)) = XT(k)HX(k) , Where

H=H cR"isa positive definite matrix. Then by Theorem 5.1, and without loss of
generality, the origin of system (3.6) is GAS if there exists H = H' >0 such that

x (k+ DHx(k+ 1) —x" (k)Hx(k) < 0 (5.5)

By substituting x(k+ 1) = Ax(k)+ Ba(k) into inequality (5.5) and removing & (time in-



dex) for simplicity, we have
(Ax+Ba) H(Ax +Ba) - x Hx <0 (5.6)
Expanding the above inequality yields

X ATHAx+x A’THBa+a ' B'HAx+a’B'HBa —x Hx <0

a’(B'HB)a+x (ATHA - H)x +2a’ (B"HA)x <0
(5.7)

T T
o7 7][BHB BHA Hw
a x r r <
A"HB ATHA-H

Denote the above inequality as g,(z), and rewrite it in terms of the variable z, as follows:

qo(z) = ZTTOZ <0 (5.8)

T T
T,= |BHB BHA Iy Ac R, Be R,
ATHB ATHA-H

If there exists H = H' > 0 such that q¢(z) <0, then xT(k)Hx(k) is a Lyapunov

function, and the origin of system (3.6) is GAS. These are the most general results that can
be obtained for the convergence of all the solutions of system (3.6). This is because the con-
dition was derived without considering any constraint on the nonlinear function. Unfortu-
nately, inequality (5.6) does not always have a feasible solution for H, in which case
nothing can be said about the stability of system (3.6). Infeasibility of inequality (5.6) does
not confirm instability, because we are searching for Lyapunov functions only inside the
quadratic class of functions. However, the equilibrium point might be demonstrated as

GAS with a non-quadratic Lyapunov function.

5-10



The nonlinear function a(k) in (5.6) belongs to a class of functions that satisfies the

sector condition derived in (4.29). Considering the fact that a(k) belongs to special class
of function, makes the search for a Lyapunov function easier. Yakubovich et a/ [YalLe04]
proved theoretically that consideration of the sector conditions changes inequality (5.6) in
such a way that the inequality becomes easier to solve.

The sector condition in quadratic form (4.29) is derived for single neurons of a
BPRNN. Considering all the neurons in (3.6), we will have numbers of single inequalities.
In the following, a special technique will be introduced to merge several inequalities into a
single inequality.

S-procedure [BoFe94]

A special method, called the S-procedure, is used in a large number of nonlinear
control problems. The S-procedure method simply gives us a method for converting a set
of inequalities into single inequality.

Let g,(z) =0, q,(z) 20, ..., q,(2z) 20 be the sector conditions in quadratic form

derived for every neuron of the BPRNN and —¢,(z) > 0 be the Lyapunov inequality de-

rived in (5.8). The sector condition inequalities and the Lyapunov inequality need to be true

at the same time. By the S-procedure method, these inequalities can be converted to a single

inequality if there existst, 20,1, 20, ..., t,, = 0 such that
S(t,z) = —qo(z) —1,9,(2)-1,9,(2) - ... —7,49,,(2) >0 (5.9
wherez e R" " andt = [r LTy e Tm} . The S-procedure method only gives a sufficient

condition for converting a set of inequalities into a single inequality. Hence any further cri-
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terion which is derived based on this method will only be a sufficient condition for stability.
In the next section, we will use the S-procedure method to derive a criterion for absolute
stability of BPRNNs.
Absolute Stability Criterion for BPRNNs

In order to derive the absolute stability criterion for system (3.6), the Lyapunov in-
equality (5.8) and all sector conditions for all neurons of the BPRRN (4.29) need to be sat-

isfied at the same time. In other words,

qo(z)<0 forall g(z) =20 1<i<m (5.10)
Since gy(z) and g,(z) are both quadratic functions of z, by applying the S-procedure

method, the m + 1 inequalities given in (5.10) can be converted into a single inequality if
there existst, 20,1, >0, ..., T, > 0 such that
m
—q(z) - z 7,49,(2z) >0 (5.11)
i=1
By substituting ¢ (z) and g;(z) from (5.8) and (4.29) into (5.11) and multiplying —1 times

both sides of inequality (5.11), we will get the following inequality:

T T T, .T T, T
ZTBHB B HA Z+’CIZT1 ITI 2z+...+1:szm ITSZZ<0
A'HB ATHA-H T T, I PN
T T . (;T)+...+z.(T) t,(,;T,)+...+7 T
J|B'HB  B'HA |, 701G ;) e 1T) 1(T,) n(nTD)|
A'HB ATHA-H T, (( T+ ... +1,(Ty) 1,(;T3) + ... +71,,(,,T3)
(5.12)
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Let M be the matrix of lower bounds, M = diag(l,, [, ...,1,) € R" Xm, let N

be the matrix of upper bounds, N = diag(u, u,, ...,u, ) € R" ™™ and let

mxXm

I' = diag(t,...,7,) €R . Then (5.12) may be rewritten as

] i ]
W (ul + ll)'cl
2
r/B'THB B'HA T o
z Z+1Z T Z<0
ATHB A’HA - H W Gt )
o 2
W, +1)r W(u +1 )t b
12 1 1 S 52 mn n — Z Tl-ll-ui [W[W
L 1<i<m i

(5.13)
The second matrix in the above inequality contains block matrices that could be rewritten

in a simpler form considering

T
W (uy )Ty
2

T
W (u,+1,)1
| = %F(M+N)W (5.14)

Wy 1)t Wy + 1)t Wy )T, = %WT(M +N)I  (5.15)
5 5 5

S tlu, ww' = W MINW (5.16)

[ A R AR
1<i<m
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In consideration of (5.14), (5.15) and (5.16), the inequality (5.13) may be rewritten as fol-

lows

r T T r - 11"(M +N)W
,/|BHB BHA | ., 2 2<0
A"HB A’THA - H %WT (M+N)I' ~-W/ MI'NW
) B (5.17)
T T 1
r B'HB - T BHA+EF(M+N)W
z z<0
T 1T T T
AHB+EW (M+N)I A HA -H- W MI'NW
T
Substituting z = [a x] in above inequality yields
T T 1
T B HB-T BHA+EF(M+N)W
[a x] H <0 (5.18)
T 1,7 T T X
AHB+EW (M+N)I A" HA-H- W MI'NW

Expanding the above inequality will produce the following:
a'(B'HB - T)a+x (A'HA - H- W MT'NW)x + aT(BTHA + %F(M + N)W)x

+XT(ATHB + %WT(M+N)F)a<O

(5.19)
A further expansion produces
x (A'THA)x +x (A"HB) a+a’(B'HA)x +a’ (B'HB)a — x’ (H)x (520,
—a'Ta— (x W)MIN(Wx) +a’B"HA + a'TN(Wx) + (x’ W)MTa <0
Finally, the above inequality can be rearranged as
(Ax+Ba) H(Ax + Ba) - x Hx + (a— MWx) T(NWx —a) <0 (5.21)
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Inequality (5.21) is linear with variable H and I". Since it is an inequality in matrix form,
it is called a Linear Matrix Inequality (LMI). If this inequality has a feasible solution for
H>0 and I"'> 0 (or better if I" > 1), then the equilibrium point of (3.6) or, equivalently,
(3.1) will be absolutely stable. (The origin is globally assymtotrically stable for any nonlin-
earity in the given sector.) If inequality (5.21) does not have feasible solution for H > 0 and
I > 0, then nothing can be said about the stability of the system. However, a better stability
criterion may be needed to verify the stability of the system.

The LMI derived in (5.21) has more terms than the LMI derived in (5.6). The addi-
tional terms are due to the consideration of the sector conditions. Yakubovich et al
[YaLe04] proved that the inequality (5.21) is more likely to have a feasible solution than
(5.6).

The effect of biases in the BPRNN can be seen in (5.21). Consider the case / when
b = 0 and the case // when b # 0. We proved in Chapter 4 that for case / the sector has
the longest length, with M = 0 and N = I (I represents the identity matrix). In case /7,

M >0 and N < I. It can observed that (5.21) 1s more difficult to satisfy in case / than in

case //. Finally, we can conclude that the consideration of the biases makes the stability
criterion less conservative.
In the following example, we will demonstrate the derived criterion in (5.21)

through a numerical example.

Example 5.2 Consider Example 3.1 in Chapter 3. The BPRNN given in (3.8) where
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-2.42 0.13

L1 _ 1-0.42 -0.23 1,2 _ 1-0.62 -1.01 -1.17 2,1 _
LW~ = ,LW"" = , LW7™ = 1026 —2.41|>
0.32 0.38 0.03 0.79 —-0.70
2.27 0.83
- -04 0.3 0.01 . 5 2.42
LW~" = _0.48 —0.53 0.57 b = |:_1'66i| b™ = 0 and the extended BPRNN is
1.66
0.16 0.52 048 2.42
00 0 0 L, 0
given in (3.9) where A = Lxy 000 g=-|0 0]
00 0 0 0 I,
0 01,50 0 0
wo| 0 LwhiLwh? o | [ _ b
Lw>! 0 0 LW b’

M = diag(0.005, 0.063, 0.001, 0.12, 0.02) and N = diag(0.51,0.77, 0.28, 0.91, 0.75)

The LMI given in (5.21), solved by the Matlab LMI toolbox, has a feasible solution for this

example where

0.04 —0.02

-0.02 0.04 24 04
—0.04 -0.02 04 3.06 0.08

H = 10°x |-0.01 —0.04 1.63 0.08

-0.1 -0.17 0.43

—-0.04 -0.17 -0.37 0.63

_8.91 0.83 -0.02 -0.04 —0.01 —-0.17 -0.08 0.56 1.53 2.42_
08 7.1

-0.1 0.37

1.63 0.43 -0.8 -0.02 —0.07 -0.03

37 0.74 032 0.01

5-16

1.92 -0.72 -0.01 -0.05 -0.11

0.03 —0.02

1.92 0.74 3.63 -0.01 —0.05 -0.01 -0.03
—-0.08 -0.37 -0.8 —0.72 0.32 -0.01 4.72 -0.01 -0.01 —0.07
0.56 0.63 -0.02 -0.01 0.01 -0.05 -0.01 1.66 0.36 0.24
1.53 -0.1 -0.07 -0.05 0.03 -0.01 -0.01 0.36
1242 037 -0.03 -0.11 -0.02 -0.03 —0.07 0.24 0.27 2.28 |

1.37 0.27

(5.22)



229 0 0 0 O
0 075 0 0 0
F=10"x1 9 0 25 0 o0 (5.23)
0 0 0 011 0
0

0 0 0 040

Since there exists H and T" both positive definite such that (5.21) is negative definite, the
equilibrium point of the system must be GAS. The BPRNN response to a random initial con-
dition is illustrated in Figure (5.4). The figure demonstrates the stability of the equilibrium
point. Figure (5.5) shows the response of the equivalent system under an affine transfor-

mation to make the origin the equilibrium point.

BPRNN Response with Non-zero IC

1 1
100 150 200 250 300
Samples

o
a
o

Figure (5.4) Absolute Stability of a BPRNN with non-zero Equilibrium point
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BPRNN with zero equilibrium point
1 T T T

0.6 h

0.4 4

Mag

0.2 h

=

50 100 150 200 250 300
Samples

Figure (5.5) Absolute Stability of BPRNN with zero Equilibrium point

Conclusion

The chapter was devoted to the derivation of an absolute stability criterion for the
BPRNN given in (3.1). The model of the BPRNN was introduced in Chapter 3, and the sec-
tor conditions were derived in Chapter 4. In this chapter, the sector conditions and the
Lyapunov conditions were merged together to produce the final criterion for the absolute
stability of the BPRNN.

The theory of absolute stability is a useful technique for the derivation of a criterion
that guarantees global asymptotic stability of the equilibrium point for systems satisfying a
sector condition, but this technique does not give a complete solution to the stability ques-
tion. There are many systems with a globally asymptotically stable equilibrium point where
(5.21) does not have a feasible solution. This is because the method considers only the qua-
dratic class of Lyapunov functions.
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In the next two chapters, we are going to introduce another stability technique,

which will give a more complete answer to the stability question.
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The Reduction Of Dissipativity Domain (RODD) method is one of the most practi-
cal techniques for stability analysis of dynamical systems. The reason why this method is
more practical than other stability analysis methods is because the stability criterion de-
rived by this method is less conservative (restrictive) compared to many existing stability
analysis methods. The conservativeness of a stability criterion can be defined as follows:
Denote M as a space of stability for a specific RNN architecture, and let it be defined as

the set of all parameter values for which a given RNN is stable. The best stability analysis

method would be the one that can identify the largest possible subset of M. Except in spe-

6-1



cial cases, the exact determination of the full set M is not possible. We will say that a sta-

bility criterion is conservative to the extent that is does not identify the full set M. For
example stability criteria developed by the Contraction Mapping Theorem (CMT) method
(explained in the next section) are believed to be more conservative than stability criteria
developed by the RODD method, because several stable systems have been found that the
RODD method can demonstrate are stable, but CMT can not.

We divided the RODD method into two categories: RODD-LB and RODD-EB.
RODD-LB is based on linear approximation of reachable sets (will be mainly explained in
this chapter) and RODD-EB is based on quadratic approximation of reachable sets (will be
explained in chapter 7). The RODD-LB method can be divided into two methods, RODD-
LB1 and RODD-LB2. Both versions are based on linear boundaries, with the difference
that RODD-LB2 is more efficient in terms of convergence compared to RODD-LB2.
RODD-LB1 will be introduced in this chapter, and RODD-LB2 will be introduced in chap-
ter 7. All the RODD methods use the concept of CMT for determination of Global Asymp-
totic Stability (GAS) of the equilibrium point. Due to the importance of CMT method in
stability analysis, the first part of this chapter is devoted to the determination of stability
using the CMT method.

Global Asymptotic Stability using CMT

The stability analysis for a given dynamical system can be verified via several
methods e.g., the Lyapunov theorem, LasSalle’s theorem, etc. The CMT method, which is
one of these techniques, is easy to implement, but it is conservative. This is because the

space of stable parameters derived from the CMT method is usually smaller than those pro-

6-2



duced by other methods. Unlike the CMT criterion, the RODD method, for example, is dif-
ficult to implement, but it is less conservative.
Contraction Mapping Theorem

Because the RODD methods are related to the contraction mapping theorem, the
CMT will be explained in detail in this section. We will begin with some preliminary def-
initions.

Definition 6.1: Let X c R". 4 semi-metric on X is a function d : X x X > R
such that

1.1.d(x,y)>0,d(x,x) = 0

22.d(x,y) = d(y, x)

33.d(x,y)<d(x,z)+d(z,y)
foreach x,y,z € X. Ifin addition d(x,y) = 0 implies x = y then d is called a metric.

Definition 6.2: Let (X, d) be a metric space. A mapping f: X — X is a contrac-
tion mapping if there exists a constant c, with 0 < c < 1 such that

d(f(x), f(y)) <cd(x,y) Vx,yeX (6.1)

By the contraction mapping definition, if the map contracts, then the image of a set
under the map will shrink by a factor ¢ < 1. This is the basic concept behind the RODD
stability analysis method. The method will be explained in detail later in this chapter.

Definition 6.3: 4 point x* is said to be an equilibrium point of dynamical system
XX ifx* = f(x*) [Elya98].

Now by knowing the definition of metric space and equilibrium point we can pro-

ceed to introduce the contraction mapping theorem.
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Theorem 6.1 Let X be a complete metric space and f/: X — X be a map such that

d(f(x), f(y)) < cd(x, y) (6.2)

forall x,y € X and 0<c< 1. Then f has a unique equilibrium point in X. For any

x, € X the sequence of iterates x, f(x,), f(f(x,)), ... converges to the equilibrium point

of f.
Proof: For the proof of the theorem refer to [Bana22].
As explained in chapter 2, the state space representation is one way of representing
dynamical systems. Let’s consider an RNN, which is an example of a dynamical system, to

be represented by a state space equation as follows

x(k+ 1) = f(x(k)) (6.3)

where f : R” > R” and x € R". The objective here is to derive a criterion which guaran-
tees that the origin of system (6.3) is GAS. If the origin is not the equilibrium point of sys-
tem (6.3), then an affine transformation can shift the non-zero equilibrium to the origin
without loss of generality. In order to proceed with the derivation of the stability criterion
there is a need to introduce the Mean Value Theorem (MVT).

Theorem 6.2 Mean Value Theorem (MVT)[Buck78]: Let f € C' in an open con-
vex set X in n space. Then for any point p; and p, in X there is a point p* lying on the

segment joining them such that

fipy) —f(py) = DA (P2 —P1) (6.4)

where D is a Jacobian Matrix.
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In order to derive a general criterion for global stability of (6.3) we will merge the
CMT and the MVT. If the vector function f € C’, then by the MVT there exists z lying on

the segment joining x and y such that
f(x)-1(y) = Df|z (x-y) (6.5)

Taking the norm of both sides of the above equation, and considering the Cauchy-Schwarz

inequality, yields

I1£(x) — £(y)ll < HDf| H x =yl (6.6)
z
If ”Df| ” <1 then we can chose ¢ = max{ HDf| H} and by the CMT the origin of system
z z

(6.3) will be GAS, and all the system trajectories starting from arbitrary initial conditions

converge to the origin. The criterion ”D f| H < 1 is a sufficient condition, but not a necessary
z

condition, for stability.

In the following section the same method will be used to derive a criterion for global
asymptotic stability of the Lur’e model explained in chapter 3. The Lur’e model has been
chosen for stability analysis, because, as we will explain in chapter 8, the overall model of
an RNN controller and an RNN emulator in the Model Reference Control system can be
put in the Lur’e model form.

Global Stability Analysis of Neural Network Model

In this section, the contraction mapping stability criterion developed in the previous

section will be applied to two models introduced in Chapter 3: the Lur’e model and the

BPRNN model.



The Lur’e model (3.4) can be represented by

x(k+1) = f(x(k))

(6.7)
= Ax(k)+ B{f(Wx(k)+c)—1f(c)}
From MVT there exists z lying on the segment joining x and y such that
Ax(k)+Bf(Wx(k)+c)—Bf(c)— Ay(k) - Bf(Wy(k) +¢)—Bf(c)
= Df (x—y) (6.8)

z
Taking the norm of both sides of (6.8) and canceling Bf(¢) from the left hand side yields
|AX(k) + BE(Wx(k) +¢) — Ay(k) - BE(Wy(k) + ¢)|| = HDf‘Z (x - y)”
Applying the Cauchy-Schwarz inequality to the above equation yields

lAx(k) + BE(Wx(k) + ¢) — Ay(k) - BE(Wy(k) + o)]| < HDf‘ I(x =yl (6.9)
V4

By designing the network parameters in (6.7) such that < 1, we can guaran-

Df’Z

tee that the origin of the system is GAS, because we can always chose ¢ in the contraction

mapping theorem to be ¢ = max{ }, hence the equilibrium point of f will be GAS.

Df‘z

The other neural network model which will be investigated for stability analysis is
the BPRNN model introduced in (3.1). The network behavior at the steady state can be
written as

z = f(z)
tanh(Wz +b)

(6.10)

where



Lw"' o0 o Lw'¥
2,1 2,2
w = |[LW” LW 0 0 (6.11)
N 0
0 0 Lw M pwt M

In order to show the equilibrium point of the BPRNN is GAS using CMT, we need

to show that ||[D f‘
z

< 1. Since the dynamics of the BPRNN model is known, the Jacobian

matrix can be derived analytically as follows

Dy = AW (6.12)
Z
where
1 — tanh(TI,)° 0 0
2
A = 0 1 - tanh(l_[z) 0 (613)
0 0 ... 1- tanh(TT,)’

m, = LW" 'z + Lw" Y+ p!

2 2

I, = LW’ 2 +LW>'z' +b

HM _ L“]M,MZM_i_L‘VM,Mflefl_i_bM
(6.14)

In the following theorem, we will show that the upper bound of depends on the

Df‘z

BPRNN parameters.



Theorem 6.3 If Df’ is defined in (6.12), then max{HDf‘ H } < |W|| where
V4 “lz*

Z*:

T
[z*l 72 Z*M} is defined such that IT; = IT, = ... = II;, = 0.

Proof Take the /, norm of both sides of (6.12), then by [Meye00]
HDf| ” = [AW],
“lz||2

(6.15)
<[IAll, Wl

so if we can show that |A], < 1, then Df| H < |WIJl,. Rewrite A, defined in (6.13), as
z|2

@, 0 ... 0]
A= |00 0 (6.16)
0 0 ..0q,

where a; = 1 - tanh(l'[l)z, o, = 1 - tanh(l'[z)z, o, = 1 - tanh(l'[n)z. Then con-

sider an arbitrary x € R” and construct Ax . Considering the definition of the [, norm,

|AX] 2 .
———=| can be written as
I,

(IleIIZ)Z (ox) H (0px,) o (o)

6.17
||X||2 (x1)2+(x2)2+ -l-()cn)2 ( )

Ax| 2
Define x* = arg max(%) . The equation given in (6.17) is a weighted average of
X Xl
2

(a;)", hence

AX| )2
(o)’ = max{(a)’} z(%} > min{(o,)"} (6.18)

Xl



IAX]| 2)2

where oLy, 2O fori = 1,2, ..., n. The maximum of( H
X
2

occurs when x*, = 1

and x*; = 0 for i # i* and by the definition of the induced norm

A
a1 = maxt (I3 e
VT,

(6.19)
<1 From the definition of

The inequality derived in (6.19) proves the theorem. [J
By Theorem 6.3 the origin of the BPRNN given in (3.1) is GAS whenever the norm

of W givenin (6.11)is less than 1. When |W/| < 1, then by Theorem 6.3 ”Df‘ <1,and
z

the map f given in (6.10) will be a contraction mapping with ¢ = max{ HDf‘ H } In the
lz

following example, we will demonstrate this result.
Example 6.1 Consider a BPRNN defined in (3.1) with two layers (M = 2), with
2 neurons in the first layer and 3 neurons in the second layer. The network dynamics can

be written as follows

a'(k+1) = tanh(LW"'a' () + LW 2’ (k) +b') (6.20)

a’(k+1) = tanh(LW>?a’(k) + LW> 'a' (k+ 1) + b?)
We would like to design a BPRNN with GAS equilibrium point. This network at the steady

state can be written in the form of (6.10), where



1,1 1,2
w = LW LW _ 2| p -

1
b (6.21)
Lw>! Lw?? z b>

According to the CMT criterion, the equilibrium point of (6.20) is GAS if we choose the

network parameters such that |[W]|| < 1. This condition satisfied with

- 0.17 ~0.57
Lwh! = 031 0'13},LW1’2 _ [0.11 0.25 0'09},LW2’1 ~ o2s 04|, and
02 0.5 039 ~0.25 ~0.44
- 031 -043

L, |01 ~0.09 053
LW”" = |_911 043 0.14 |- Considering these values, [W| = 0.95. Figure (6.1) il-

| 0.44 0.07 045

lustrates the system (6.20) response for a random initial condition. The figure shows that

the equilibrium point

z = [0.85 -0.61 0.85 ~0.61 0.99 —0.25—0.95 0.99 —0.25 —0.95] is GAS.
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BPRNN with GAS equilbrium point

0 5 10 15 20 25 30 35 40
Sample

Figure (6.1) BPRNN with GAS Equilibrium point
The main problem with the criterion derived using CMT is the fact that it does not
produce the most complete results. This is because the space of stable parameters derived
by this method is too small. The following example demonstrates a stable system for which
the contraction mapping theorem fails to detect stability.

Example 6.2 Consider a simple 2-D system

x(k+1) = Wtanh(x(k)) where W = [ 1.8 0-95} (6.22)
095 0
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Figure (6.2) Network Respond after 100 iterations

Phase Plane
0.3 T

0.1

0.5

Figure (6.3) Phase plane

The origin of the network in this example is GAS, but the CMT method fails to determine
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stability because

W[, = 2.2086 > 1 (6.23)

The above example shows that the space of stable parameters derived by the con-
traction mapping theorem is not complete. In the following section the RODD-LB1 method
[BaPr03] will be introduced as an alternative technique that discovers a larger space of sta-
ble parameters.

Global Stability Analysis Using RODD-LB1

The RODD-LB1 method, which will be introduced in detail in this section, not only
derives a larger space of stable parameters, but it can also be applied to a wider class of sys-
tems. The only constraint for applying this method is that the system needs to be differen-
tiable and bounded.

Before explaining the RODD-LB1 method, we will define reachable sets and ap-
proximate reachable sets.

Reachable Set

Consider a dynamical system given by

x(k+1) = f(x(k)) (6.24)
where f : R" > R" x € R" (x is the state of the system) and assume that f = col i)
consists of known smooth bounded functions for i = 1, 2, ..., n. For each initial condition
x(0) € R” there exists a trajectory of system (6.24). The system trajectories at time step k

under all possible initial conditions x(0) € R” make up a set called the reachable set

[Cher93] and denoted by D, *. The reachable sets are fundamental characteristics of dy-
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namical systems. To determine the reachable set, system (6.24) can be solved recursively

as follows:

x(1) = f(x(0))
x(2) = f(x(1)) = f(f(x(0))) = £(x(0)) (6.25)
x(k) = £(x(0))

The reachable set D*, , | is the image of the set of initial conditions R” under the

mapping . The graphical representation of the reachable set is given in Figure (6.4)

v x(0) € R f D*k+1

Figure (6.4) Reachable Set
The exact knowledge of the reachable sets plays an important role in control theo-
rey. Many basic problems of this theory can be solved in terms of reachable sets. For ex-
ample, we can determine the stability or instability of system (6.24) based on the definition
of the reachable set. Ideally when the exact knowledge of the reachable set is available, we

will have the following equality
D*, | = f(D*}) (6.26)
In order to prove that the origin of system (6.24) is GAS, it is enough to show that
D*, — 0 as kK — . This means that regardless of the initial conditions, all possible trajec-
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tories converge to the origin. This is the definition of GAS for a dynamical system

[KhalO1]. Figure (6.5) shows an example of a reachable set that shrinks forward in time.

Figure (6.5) Sequence of Reachable Sets

Similarly, we can prove the lack of global stability of the origin for dynamical sys-

tems by showing that
D*,cD*, (6.27)

In this work we will focus on systems with reachable sets that are convex. This will
be the case when system (6.24) is a state space representation of a general type of RNN with
activation function satisfying sector conditions (the sector conditions explained in chapter
4). However, the shape of reachable sets for general dynamical systems could be more com-
plex.

The main difficulty with using reachable sets to determine stability is the fact that
they cannot generally be derived exactly. For this reason, there is a need for an approxima-
tion. Several methods for approximating reachable sets are available, and they will be ex-

plained in detail in the following section.
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Approximate Reachable Set

The approximation of convex reachable sets can be accomplished through a variety
of different methods. The RODD-LB1 method approximates convex reachable sets by us-
ing a set of linear boundaries. In the next chapter, we will introduce a new method which

approximates reachable sets by using quadratic functions.

For a good approximation of a reachable set, there is a need to produce a set D, that

contains all the system trajectories starting from arbitrary initial conditions. In the other

words,
f(D*) = D*, D, (6.28)
The approximate reachable set D, must contain the true reachable set D*; so that if

D,} — 0 as k — o then it guarantees that {D*;} — 0, which proves that the origin of
k k

(6.24) is GAS.
An example of using linear boundaries to approximate a convex reachable set is
shown in Figure (6.6). The linear approximation has the advantage that increasing the num-

ber of linear boundaries will increase the accuracy. If the number of linear boundaries goes

to infinity then D, , | — f(D*;)
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Figure (6.6) Approximate Reachable Set
Figure (6.7) illustrates how the accuracy of the approximation of the convex reach-

able set can be increased by increasing the number of linear boundaries.

Figure (6.7) Better Approximation of Reachable Set
In the following section we will explain the RODD-LB1 method, which uses linear
boundaries for approximating the reachable set and detecting the stability of the origin for
system (6.24)
RODD-LBI1[BaPr03]
The method of reduction of dissipativity domain is a computational technique to

prove global stability of the origin. The efficiency of the method depends on how accurate-

ly the reachable set can be approximated. The approximate reachable set at time step & + 1
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(D, ;) will be compared against the approximate reachable set at the previous time step
k (D) to check for a reduction in size. The continuous shrinkage of the reachable set to

{0} is an indication of the asymptotic stability of the origin, whereas the enlargement of
the reachable set may be an indication of instability. It is possible that the system could be
GAS even though the approximate reachable set does not shrink. The enlargement could be
due to an approximation error between the actual reachable set and the approximate reach-
able set. In other words, the RODD-LB1 method cannot prove instability, due to potential
approximation errors in the reachable set.

The concept of the RODD-LB1 method is based on the CMT. We intend to con-

struct a sequence of sets { D, } suchthat D, , ; < D,. Also, it is important that at every step
k the set D, contains the set D*; (all the system trajectories at time step k& starting from
arbitrary initial conditions). One way to keep all system trajectories inside the set D, is to
define the set D, as

Dy = {x: |x| <max{|f,(x)]} xeR"} fori=1,2,..,n (6.29)
By the Extreme Value Theorem (EVT) the maximum of f; can be achieved because the
function is assumed to be continuous and the set R” is bounded. The set D, contains all
possible system trajectories after one time step starting from arbitrary initial conditions
chosen from the set R” . In fact, the set D, is a rough approximation for the set fi (R").In

order to define the set D, , ; for k>0 we need to consider a set of continuous functions
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{hk’ 1> hk’ 2 s hk’mk} , Where hk’j - R" > R . Denote
Ve = max{hk’j(f(x)) :xeD,} (6.30)
Knowing & ; and y; ; we can define the set D, | as
D,., = {xe D;: hk,j(x)éyk’j Vi=1,2,...,m} (6.31)
The functions A j and f; are continuous and D, is a closed and bounded set (compact).

By the EVT, a continuous real valued function on a compact set obtains its maximum so,

Vi is computable. The definition for D, , ; given in (6.31) is constructive if the set of

functions /1, ; are known. The key factor in the effectiveness and applicability of this meth-
od depends strongly on the choice of 7 It There are several possibilities for the choice of
hy, It Linear 7 j functions will be presented in this chapter. In the next chapter a set of qua-

dratic &, j will be discussed as an alternative to the current method.

Theorem 6.4 Consider the definition for D, , | in (6.31). Show that
f(D,)cD,,,cD,.
Proof: The proof of this theorem can be divided into three parts. These parts can

be listed as follows:

4.1.f(D,)cD,,
52.D,,,<D,,

63.f(D) D, .
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We will prove part 1 by induction. Let y € f(D,) where y € f(x) for some

x € D. Thus

|y,~| = |f,~(X)| < max [fl-(z)|£ max |fl.(z)| (6.32)
zeD, ze R

Thus y € D,. This implies that f(D) = D,,. For the case when & > 0, we need to show if
f(D,_,) =D, _, then f(D,) < D,. In order words we need to show that if x € D, then

f(x) € D,. According to (6.31) the set D, _, and D, can be written as

D, , = {xe Dkfzihkfz,j(x)Skaz,j Vi=1,2,...,m} 6.33)
D, = {xe Dkflzhkfl’j(x)ﬁykfl’j Vi=1,2,...,m}
Assume x € D, thenby (6.33) x € D, _, and by induction hypothesis f(x) € D, _, . Note

that v, _ L= max{h, _ 1’j(f(t)) : te D, _,} and considering the assumption

x € D, _, we will have the following inequality

i (O < P By (1) (6.34)

The inequality (6.34) is valid because x € D, _, and the left hand side is an element of the
set {hkfl’j(f(x)) : te D, _,}.Inequality (6.34) and f(x) € D, _, implies that
f(x) € D, . In other words f(D,) = D, .

The proof to part 2 can be derived by inspection through the definition of D, , ,

given in (6.31).
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In order to prove part 3, we need to show that f(D,) = D, , ;. Suppose u € f(D,),
we need to show u € D, , | . In other words, we need to show if w € D, then

f(w) e D, , ;. Suppose w € D, then by the 1, f(w) € D, and the following inequality

holds,
Iy (V) < 1198 Iy (8(0) (6.35)

because w € D, and the left side of inequality (6.35) searches for t € D, . Considering the
definition of D, , | in(6.31), f(w) € D, and inequality (6.35) implies f(w) € D, , ,,asit
is required. This proves part 3. |

The choice of the set of continuous functions 7, j is important for approximating

reachable sets. The following theorem proves the existence of functions 4, ; for systems

with a GAS equilibrium point.
Theorem 6.5 [BaPr03] Assume that the origin is the equilibrium point of system
(6.24) and it is GAS. Then there exists a function % such that {D,} — {0} as k — .
Proof: The equilibrium point of system (6.24) is GAS, so by the converse the-

orem [Khal01] there exists a continuous function 7:R"” — R such that
7.1. V(x)>0 Vx#0,
82.V(0) =0,
9.3. AV(x) = V(f(x))-V(x)<0.

Let h= V. Considering (6.30), y, can be written as
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Ve = max{V(f(x)) : x e D} (6.36)
and so y, = V(f(p,)) for some p, € D,, since the sets D, are all compact, and V" and f
are continuous. By definition of D, V(f(p;)) <7, _; and it follows that

Y = VE(P)) < V(P <754 (6.37)
That is, v, is a decreasing sequence of real numbers. Since y, > 0 for all &, it follows that
Y, — T forsome 1>0.

We wish to show that t = 0. Suppose t > 0. By the continuity of /" at the origin,

thereisa 8 > 0 such that if [x|| < & then V(x) <t.Theset C = D,—B(0, 3) is closed and
bounded and, therefore, compact. The function AV is continuous and strictly negative on
C, and hence there is a p > 0 such that AV(x) <—p for x € C. Forall £ >0 we have
V(p,) 2y, =7 and so p, € B(0,0). Thus p, € C for all k£, and we may improve the
above inequality to
Ve = VAP <V(p) —p<vi_1—p (6.38)

foreach k> 1. However, if v, decreases by at least a fixed positive amount each time, then
it will eventually become negative. This contradiction shows that T = 0 so that y, — 0.

Now let &€ > 0. We wish to show that there is some M such that D, < B(0, €) for

k> M . The function V" achieves a minimum value on the set D, — B(0, €), and this mini-

mum value is positive. Call it o > 0. By the previous step, we may find some M such that

Y, <o forall k=M —1. Suppose that y € D, with k=M .Theny € D, and
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V(y)<v;_,; <a.ltfollows that y ¢ D, —B(0,€),and so y € B(0, ¢). That is,
D, = B(0, ¢) forall k> M. This concludes the proof.

The above theorem shows the existence of a continuous function / for systems with
GAS equilibrium point. However, the method is not constructive. The accuracy of RODD-
LB1 depends on the right choice for /4 . If we chose the right /4, then the boundaries of the
sets {X : hy j(x) <V s Vj=1,2,...,m;} approximate the reachable set at every time
step k. The RODD-LB1 method with a sufficient number of linear boundaries can approx-

imate exact reachable sets with sufficiently small errors. The relationship between increas-

ing the number of linear boundaries and decreasing the errors is shown in Figure (6.7).

Theorem 6.5 shows that if the origin of system (6.24) is GAS, then the set D, is

contained in a ball of radius € (where € is a small positive number) centered at the origin

(D, =B, ) as k— co. However, it is possible that the origin of system (6.24) could be
GAS even though the set D, stabilizes as k — oo and does not shrink. This is because D,
is an approximation to the set f(D*; _ ), and there are errors associated with any approx-
imation. The following theorem shows how to add additional linear boundaries (to better
approximate f(D*; _)) when D, = D, , , . Increasing the number of linear boundaries
makes the approximation more accurate and in most cases enables the set D, to shrink to

the origin.
Lemma 6. 1: Consider dynamical system (6.24) with 0 as a globally asymptotical-

ly stable equilibrium point and convex Lyapunov function V. If we are given a compact,
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convex, invariant set other than {0}, we may construct a proper convex, compact invari-
ant set by adding a linear inequality.
Proof: Let D be a convex, compact invariant set that does not just contain 0 . If

f(D) = {0} then x, € D— {0} and consider the set
{y eD: xgy < %xgxo}. (6.39)

This setis closed in D and hence compact. It is invariant, because it contains 0. It is proper,
because it does not contain x,,. It is convex, because D is convex and adding a linear ine-

quality intersects the set with a half space and hence preserves convexity. This deals with

the case where f(D) = {0} .

Now suppose that f(D) = {0} . Let
x = arg max V(f(z)) (6.40)
zeD

and note that x # 0, since f(D) # {0} . Define

D' ={yeD:V(y)<V(f(x))} (6.41)
Note that D' is the intersection of the convex set D and the convex set
{y e R" :V(y) < V(f(x))}, thus D’ is convex. Moreover D’ is closed in D and hence is
compact. If w € D then f(w) € D, since D is invariant, and V(f(w)) < V(f(x)) by

(6.40). Consequently, f(w) € D' by (6.41). This shows that f(D) = D’.
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We have V(x) > V(f(x)) by the definition of Lyapunov function, and so x ¢ D".
By the Separating Hyperplane Theorem [GoYa02], there is some h € R” — {0} and some
¢ € R such that h'x > ¢ and hTy <c forall y € D'. Define
y = max{hTy :yef(D)} (6.42)
and
D" = {yeD:h'y<y} (6.43)
Since D" is the intersection of D with a half space, D" is convex. Since D" is closed in

D, D" is compact. We have seen that f(D) < D' and hence hTy <c forally € f(D).

Thus y < ¢, and it follows that x ¢ D" . Finally, if w € D" then w € D and so

f(w) € f(D). Thus sz(w) <v,and so f(w) € D" from (6.42). This shows that
f(D") < D". This construction shows that if D is a compact, convex, invariant set other

than {0} then we may construct D", a proper convex, compact, invariant subset of D by
adding a linear inequality. This proves the lemma. The graphical representation of the proof

is given in Figure (6.8) |
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Figure (6.8) Hyperplane separating a point from a convex set

We will use Lemma 6. 1: to prove the following theorem.

Theorem 6.6 [BaPr03] Assume that there exists a convex Lyapunov function V
for system (6.24). Then for any step & either there is some k£ such that D, = {0} or there
exists a linear function %, such that the set
D,., = {xe D,:hy(x)<max{h,(f(x)) : xeD,}} isapropersubsetoftheset D, .

Proof: Let prove the theorem by induction. Initially, we need to show that
D, cD,. The set D defined in (6.29) is bounded and closed, thus it is compact. By the
way D constructed, it is also convex. Moreover, by Theorem 6.4 the set D, is invariant.
Hence, by Lemma 6. 1:, there exists a proper convex, compact, invariant set D, . The set

D in Lemma 6. 1: can be consider as the set D, and the set D" can be considered as D, .

Similarly, we can show thatif D, c D, _,,then D, , ; = D, . This will conclude the

proof of the theorem. |
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In the following section we will put all the definitions and theorems together to in-
troduce a systematic way of implementing the RODD-LB1 method.
Algorithm

In this section we will explain the implementation of the RODD-LB1 method. The
implementation is based on the definitions and theorems which have been introduced and
proved in the previous section. The RODD-LBI algorithm consists of three main steps.

These steps are given as follows:

Step 0
In this step the initial approximate reachable set D, will be defined using the limits

of the functions f = col{f;} . The initial set may be defined as a hypercube:
D, = {x: |x|<max{|f,(x)|} xeR"}fori=1,2..n (6.44)

The set D, is a crude approximation of the initial reachable set D*,.

Step 1
At each subsequent iteration, the set D, needs to be updated. Consider a set of linear

functions {h; |, hy 5, ..., hy mk} where hkj - R” > R , and then define a real value

Vi, 8s
Ve = max{hk’j(f(x)) :xeD,} (6.45)
wherej = 1,2,...,m and m = 2n. By the EVT, the maximization in (6.45) always has a

solution and y, j exists. This is because D, is a compact set, and 7/, j(f(x)) is a continuous
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function. Moreover, we showed inside the proof of Theorem 6.5 that vy, j is a cauchy se-

quence. Knowing that y, j is always computable, the set D, , ; can be defined as follows
D,., = {xe D;: hk’j(x)ﬁyk’j Vi=1,2,...,m} (6.46)

The set D, , | 1s defined in such a way that all of the linear boundaries of the set D, , | are

tangent to the surface of f(D,) (see the right side of Figure (6.9)). The maximization in

(6.45) will guarantee this. At the point where all of the linear boundaries are tangent to the

surface of f(D,), we will decide whether or not to add additional linear boundaries. De-

pending on the need for adding additional boundaries, the algorithm will either repeat step

1 or go to step 2.

If the set D, , | shrinks sufficiently in size relative to the set D, then there is no
need for adding additional linear boundaries. In this case, the set D, , | is a good approxi-
mation of f(D*,), and there is no need to improve the approximation. However, if the po-
tential approximate reachable set D, , ; does not shrink relative to D, , then there is a need

to increase the accuracy of the set D, , ; by adding additional linear boundaries. In this
case, the algorithm moves to Step 2.
Step 2

If the set D, , | does not shrink sufficiently in size relative to the set D, , then the
origin is either unstable or the set D, , | is not a good approximation of the original reach-
able set f(D*;). The former conclusion cannot be definitely made, because there always
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exist errors associated with the approximation of the reachable set. For the latter conclu-
sion, the reachable set D, needs to be modified in order to be more accurate. The approx-
imation error can be decreased by adding extra linear boundaries. The new boundaries will

be added to the existing boundaries and they should be placed in locations where they will

remove the most area that is not part of the true reachable set.

Figure (6.9) Typical Example of RODD-LB1 Step 1

In order to find the optimal location for a new boundary, the algorithm finds a unit
vector q (which will be orthogonal to the resulting linear boundary) that maximizes the fol-

lowing difference:

q'x*— max {q f(x)} (6.47)
xeD,

where x* is the point where the function qTf( X) is maximized, and its image f(x*) is lo-

cated somewhere on the boundary of f(D,) . The process is depicted for a simple example

on the left side of Figure (6.10). (The right side of Figure (6.10) represents how D, , ;| is

computed if only Stepl is performed.) The dashed lines represent the contour lines of the
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. T : . . .
function q x. The contour line that is tangent to f(D,) will become the new linear bound-
ary. The interior maximization in (6.47) will locate the x* that on the next iteration of

(6.24) will have the largest value of qTf (x) . Thus, f(x*) will be on the boundary of f(D,)

at a point that is tangent to a contour line of qTx . The exterior optimization in (6.47) will
then determine the direction q that produces the largest difference between qTf (x*) and
qTx* , and therefore would produce the largest movement in this boundary line from D, to

D, . ;. The new linear boundary will be located tangent to f(D,) at the point f(x*). This

boundary should remove the most unwanted area from the approximation to the reachable

set.

If No Additional Boundary

Figure (6.10) Additional Linear Boundaries
In the RODD-LBI algorithm, the interior optimization from (6.47) is not performed

over all x, but only over those points that represent the arguments of the optimizations that

occurred in (6.45), which will be tangent points of the boundaries with f(D, _ ). This sim-
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plifies the optimization significantly, but at the potential expense of the optimality of the

new boundary. The optimization in is written as follows:

q; = arg max {max{qTx*—max{qTf(xi) = 1,2, ...,m}}} (6.48)
lq= 11 x* X;
where X;, j = 1,2, ..., m represent the arguments of the optimizations that occurred in

(6.45), which will be tangent points of the boundaries with f(D, ).

There are three reasons why limiting the interior optimization in (6.48) can limit the

optimality of the new boundary. First, if f(D, _ ) had linear boundaries (like those shown

for f(D,) in Figure (6.10)) then tangent points for the m current boundaries of D, will al-

ways occur at the vertices. However, the set of tangent points for the m current boundaries

does not include all of the vertices. Second, even if we were to include all of the vertices,

X;, of D, in the inner optimization of (6.48), there is no guarantee that the points f(x j) will
be vertices of f(D,) . Finally, even though D, has linear boundaries, there is no guarantee

that f(D,) will have linear boundaries. In the next chapter, we will suggest a modification

to (6.48) that we have found to speed up the convergence of the algorithm.

After finding the q; forj = 1,2, ..., m in(6.48),the RODD-LB1 algorithm selects
the q; that have the largest values of

(6.49)

where
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0,

g m)c(zx{qux :xe D} (6.50)

0,

= m;zx{quf(x) :xeDy) 6.51)

After the new boundaries have been added, and D, , ; has been obtained (using (6.45) with

the new boundaries included), the algorithm checks again to verify that there has been suf-
ficient reduction in size from D, to D, , , . If the more accurate approximate reachable set
does not shrink enough, then no conclusion can be made about the stability or instability of

the origin. In this case the method is inconclusive, and the algorithm stops.

If a sufficient reduction in size is obtained, then the algorithms tests to see if the size

of D, , | is essentially zero, in which case stability has been shown, and the algorithm

stops. Otherwise, the algorithm continues with Step 1.
All the steps mentioned above are summarized in the flow chart given in Figure

(6.11). The details of every steps will be discussed in the following section.
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Initialization St 0
Construct D, ep
Shrink Dk to form|
Step 1

potential Dk+1

Dy+1 = Potential Dy, 4

Step 2

Add new bounding
lines to Dy (using 6.49)
to form poetential Dy 44

Y
Did Dk+1 shrink
enough?

Figure (6.11) RODD-LB1 Algorithm

small enoug

| System is GAS |

Let us consider again the stable network in Example 6.2, where the CMT method
fails to detect the stability. Unlike the contraction mapping stability analysis technique, the
RODD-LB1 method detects the GAS of the origin. Since the RODD-LB1 method is a com-
putational technique for stability analysis, a Matlab program was written based on the al-
gorithm. The graphical results of the simulation are given in Figure (6.12) and Figure

(6.13). It is interesting to compare the phase plane representation given in Figure (6.3) and

the evolution of the set D, in Figure (6.12). At every time step k the set D, contains all

the possible system trajectories starting from different initial conditions. That is why Figure

(6.3) and Figure (6.12) both have the same orientation.
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Evolution of linear constraints h for 2-D example
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Figure (6.12) Evolution of linear constraints /4 for 2-D example
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Figure (6.13) Convergence



Conclusion

Two methods of stability analysis have been discussed in this chapter. The first
method is based on CMT, and the second method is based on reduction of dissipativity do-
main. We showed that the first method was not as useful, because the stability criterion was
very conservative. However, the RODD-LB1 method solved this problem by expanding the
space of stable parameters. Even though the second method is an improvement, it is still
not practical for large systems. The main drawback of the second method is slow conver-
gence.

In the next chapter we will propose two methods to overcome the problem of slow
convergence. It will be shown that an extension to the current method increases the meth-
ods efficiency. Also, the quadratic approximation of reachable sets will be discussed in de-

tail as a faster stability analysis method.
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In the previous chapter, two methods of stability analysis were developed for the

following dynamical system

x(k+ 1) = f(x(k)) (7.1)

where f : R” > R" and x € R". The CMT method and the RODD-LB1 method can be

used to analyze the stability of the origin of system (7.1). The CMT method is usually more
conservative than the RODD-LB1 method. In other words, the RODD-LB1 method usually
identifies a larger space of stable parameters for a given RNN compared to the CMT meth-

od. Although the RODD-LB1 method derives a less conservative stability criterion, the



method suffers from a slow rate of convergence. The slow convergence for large networks
makes the method almost impractical. In this chapter, we will address this problem and in-
troduce three alternative methods that fix the drawbacks of the RODD-LB1 method.

In the first section of the chapter, we will propose an improved version of the algo-
rithm explained in the previous chapter. RODD-LB2, which is an improved version of
RODD-LBI, is more efficient than the existing algorithm. In the second section of the
chapter, we will introduce the RODD-EB method as an efficient algorithm for dynamical
systems with elliptical reachable sets. Finally, we will introduce RODD-Hybrid as the most
efficient algorithm, which is a combination of RODD-LB2 and RODD-EB.

The chapter will concluded with an explanation of how the shape of the reachable
sets will affect the efficiency of the RODD methods.
Global Asymptotic Stability Using RODD-LB2 Method

In this section, we will introduce an extension to RODD-LBI1, called RODD-LB2,
that produces a more accurate approximation to the reachable set. The efficiency of the
RODD-LB2 method compared to the RODD-LB1 method will be verified through numer-
ical examples.

RODD-LB2
A potential area for improvement in the RODD-LB1 method is the maximization in

Step 2 (explained in chapter 6). The inner maximization given in (6.48) is not searching for

the optimum x over the entire domain D, but only among points that are the arguments

of the maximizations in (6.45). Limiting the search space enables the maximization to be

done quickly, but it may fail to produce an optimal boundary, with maximum reduction in
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the size of the approximate reachable set. Our objective is to increase somewhat the search
space. This will require a somewhat larger computational burden at each iteration, but the
improved boundaries for the approximate reachable set may allow the algorithm to con-
verge in fewer iterations. In the next section we will test this on several sample problems.
In order to improve the inner optimization of (6.48), instead of searching for the op-

timal x only among the set of all points provided by (6.45), we will add all of the vertices

of D, to the existing search space. We found out that providing more points (vertices of the

D, ) make RODD-LB1 more efficient and even faster in higher dimensions.

Based on the discussion above, the optimization in (6.48) may be reformulated as
follows

T T
q = arg  max {q X~ max 1q'f(x,) }} (7.2)
lql= 1 x; € Q

where Q is a set containing all the vertices of the set D, and where x; € Q.

J

The concept of RODD-LB2 is illustrated with the 2-D example shown in Figure

(7.1).
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Figure (7.1) Operation of Step 2
The left graph (A) used the RODD-LB1 method to approximate the reachable set,
whereas the right graph (B) used the RODD-LB2 method. It can be observed from the right
graph that providing more search points for the inner maximization given in (7.2) results in

removing more unwanted area from the approximate reachable set. The vertices at the top

right and bottom left of D, were the only vertices that were arguments of the maximiza-

tions in (6.45). However, if they were the only X; used in the inner optimization of (6.48),

then very little reduction in the size of the approximate reachable set is obtained. By includ-
ing all of the vertices of D, , a more accurate reachable set is achieved.
RODD-LB?2 Algorithm

The steps of RODD-LB2 are identical to the steps of RODD_LB1, except for the

difference in step 2. The flow chart of the RODD-LB2 method is shown in Figure (7.2).
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Figure (7.2) RODD-LB2 Algorithm

In the following section, the efficiency of RODD-LB2 will be compared with
RODD-LBI1 through numerical example.

Example 7.1 Consider Example 6.1, which is repeated here

x(k+ 1) = Wtanh(x(k)) where W = [ 1.8 0'95} (7.3)
—095 0

We know that the origin of system (7.3) is GAS, but as we showed in the previous chapter,
the CMT method failed to determine stability of the origin. This is because the norm

[W| = 2.208 > 1 which violates the condition for the CMT method. The RODD-LBI
method can prove the stability of the origin for the above example, but the algorithm suffers
from a slow rate of convergence. However, the RODD-LB2 method introduced in this
chapter overcomes the slow rate of convergence. In order to verify the efficiency of the

RODD-LB2 method, the above example was tested under same conditions as in the previ-
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ous chapter with the RODD-LB2 method. The simulation results are given in Table (7.1).
We have observed that the RODD-LB2 method is 55% to 75% faster than the RODD-LBI1

method. The modifications in the optimization in step 2 make the algorithm more efficient
by more accurately approximating the reachable set D, * . The simulation results are given

graphically in Figure (7.3) and Figure (7.4).

RODD-LBI1 RODD-LB2
Number of iterations 898 598
Time(sec) 203 103
Number of edges of D, 24 16

Table (7.1) Comparison of RODD methods

Evolution of linear constraints h for 2-D example

0.8
0.6
0.4

0.2

Figure (7.3) Evolution of linear constraints /# for 2-D example (RODD-LB2)
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Figure (7.4) Convergence with RODD-LB2 method

The accuracy and efficiency of RODD-LB1 and RODD-LB2 depend not only on
the optimization, but also on the choices of the set of functions {/; j} . The RODD-LBI
and RODD-LB2 methods are using a set of linear functions to approximate the reachable
sets. However, {/; j} can be chosen to be an arbitrary set of continuous functions. Conse-
quently, the RODD-LB1 and RODD-LB2 methods could also works with other choices of
{hy, j} , 1.e. quadratic functions, cubic functions, etc. In the following section we will
choose a set of nonlinear functions {/, j} for a faster approximation of reachable sets. It

will be shown that the RODD method with a set of quadratic functions performs faster than
to the RODD method with linear functions. This is only true for systems with convex reach-

able sets.



Global Asymptotic Stability Using RODD-EB Method

The RODD-EB method is a stability analysis technique based on the method of re-

duction of dissipativity domain with quadratic functions for { 4, j} . The main difference be-

tween RODD-LB (RODD-LB1 and RODD-LB2) and RODD-EB is the choice for {7 j}.

The RODD-LB methods use linear functions to approximate reachable sets whereas
RODD-EB uses quadratic functions to approximate reachable sets.

In this section, we will show experimentally that the RODD-EB method is one of
the most efficient of the algorithms we have studied in detecting stability for stable systems
with elliptical reachable sets. There are many systems whose reachable sets are convex. For
example, certain types of RNNs fall into this category. The stability analysis of the model
reference adaptive control system, with RNN emulator and RNN controller, can be effi-
ciently be investigated by the RODD-EB method. This will be discussed in Chapter 9.

In the following section, we will explain the RODD-EB method in detail.
RODD-EB

Since the RODD-EB method is based on the elliptical approximation of reachable

sets, we will start the section with the definition of the ellipse. A closed ellipsoidal set in

n -dimensional Euclidean space can be defined by the following inequality[Mosh05]
Z={xeR"|x-¢)E(x-c)<1} (7.4)

where ¢ € R” is the center of the ellipse =, and E > 0. The volume of = is given by

1
VO —1 z
= vodet(E ) (7.5)

Jdet(E)

Vol(E) =



where v, is the volume of the unit hypersphere in dimension 7. The volume of an ellipse

is important, since it is a measure of the size of an ellipse. However, the calculation of vol-

ume in high dimensions is very expensive. For this reason, we use another method to com-

pare the size of D, and D, ., ;. This method will be explained in the algorithm. Next, we

will explain the concept of the RODD-EB method.
RODD-EB is a stability analysis technique based on the reduction of dissipativity

domain. Similar to the RODD-LB1 and RODD-LB2 methods, the RODD-EB method is

based on the concept that the approximate reachable set D, , | must always contain the

reachable set f(D*;) . In the RODD-EB method, the set of functions {7 j} are quadratic,

and the approximate reachable sets D, are ellipses.

The RODD-EB algorithm starts with R” as a set containing arbitrary initial condi-

tions and derives the set D, as an approximation to the set f(R") . In this method, the set

D, is anellipse (E, 0) that contains f(R") . Without loss of generality, we can centralize

the initial ellipse at the origin, because it is always assumed that the system under investi-
gation has an equilibrium point at the origin. If the origin is not the equilibrium point, then

the system can be modified so that the origin is the equilibrium point.

The algorithm will always calculate the set D, , | from the set D, by solving the
optimization problem explained in the next section. The approximate reachable set at time
step k+ 1 (D, ;) will be compared against the approximate reachable set at the previous
time step k& (D, ) to check for a reduction in size. Since D, , | is an approximation for
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f(D*,), the continuous shrinkage of the approximate reachable setto {0} is an indication

of the global asymptotic stability of the origin. The enlargement of the reachable set D,

may be an indication of instability. However, it is possible that the equilibrium point of a
system is GAS, even though the approximate reachable set does not shrink. The enlarge-
ment could be due an approximation error between the actual reachable set and the approx-
imate reachable set.
RODD-EB Algorithm

In this section, we will explain the implementation of the RODD-EB method. The

RODD-EB algorithm can be divided into three steps. These steps are given as follows:
Step 0

To initialize the RODD-EB method, a finite number of points in R” need to be gen-
erated. These points will be updated one time step using (7.1). Then, an initial bounding

ellipse (E, 0) is computed using the method in [Mosh05] which finds the minimum vol-

ume ellipse enclosing a finite number of points. Since the method of finding the minimum

volume bounding ellipse is a numerical method so there always exists numerical error. Be-

cause of potential numerical errors, the initial ellipse (E, 0) is enlarged by a factor greater

than 1. This will guarantee that (E, 0) contains the entire set f (R"). In this research, we

used the factor 1.2 (20 % larger than the optimal ellipse) for all the simulations. Figure

(7.5) shows the minimum bounding ellipse and the enlarged bounding ellipse (20 % larger).
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Minimum Bounding Ellipse verses Enlarged Ellipse
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Figure (7.5) Minimum Bounded & Enlarged Bounded Ellipse

Step 1

In this step, the set D, , | will be constructed from the set D, . The update involves

the following maximization process:

Yes1 = m;x{f(x(k))TEkﬂx(k)) 1x(k) € D}
& (7.6)
k+l Yi+1

where D, = {x e R" | x(k)TE «X((k)< 1)} . The maximization in (7.6) searches for an

optimum point x* to maximize x(k + I)TE «X(k+ 1) over the set D, . This maximization
has a solution and vy, , ; is computable, because the set D, is compact (bounded and

closed), and the function f is continuous.
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In order to be consistent with the definition of D, , we normalize E, by vy, , ;. Then,
ify, ., <1,theset D, , | shrinks compared to D, . The set D, derived in this step is a po-
tential D, , because if D, , | does not shrinking compared to D, , then D, needs to be

changed.

The shrinkage of D, , ; compared to D, means that all the system trajectories at

time step kK + 1 stay inside the set D, , ; < D, . This means that the set D, , , is a good ap-

proximation of the set f(D*,), and there is no need for a change of orientation of the ellipse

E,.If D, | does not shrink compared to D, , then the algorithm moves to step 2. This is

the case when the orientation of E, needs to be changed.
Figure (7.6) illustrates a typical 2-D example of a system with GAS equilibrium

point, for which f(D*;) = D, , , . If the equilibrium point of a system is GAS, and if E, is
oriented correctly, then xT(k)E «X(k) <y, 1s a good approximation of the reachable set.

For stable linear systems, there always exists an elliptical reachable set xT(k)E X(k) <y, .

For nonlinear systems with stable equilibrium point, a correct choice for E; can make

XT(k)E «X(k) <y, agood approximation to the reachable set.
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f(x)"E, fx) =7,
Figure (7.6) Typical example of system trajectory in step 1
Step 2
If the set D, , ; does not shrink sufficiently in size relative to the set D, , then the

equilibrium point is either unstable or the set D, , ; isnot a good approximation of f(D*,).

The former reason is not something we can determine, because there always exists approx-

imation errors in the RODD-EB method. The latter reason could be possible, because the

ellipse E; may not be optimally orientated. In this case, the orientation of the ellipse E
needs to be changed, in order to make D, , ; a better approximation of f(D*;). Define
T T
AV = x Ex—f(x) Ef(x) (7.7)

Ideally, we would like to find an ellipse E that would maximize AV for all x . Practically,

this is not possible, because for every x we will get a different E . An optimal solution to
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this problem is to maximize the worst case over x (the worst case over x is the case when

the x' Ex — f(x)TEf(x) is minimum for fixed E ). This can be formulated as follows:

nl;ﬂax {Xﬂelii’l)k xTEx—f(x)TEf(x)} (7.8)

If the maximum of the worst case over x is positive, then it is guaranteed that the set D, , |,
which is constructed based on the new E, contains all the system trajectories at time step

k+1, and the new E will be in an optimal location. In this case, D, , ; is a good approx-

imation for f(D*;) and the algorithm will be continued with new E in step 1.

Figure (7.7) explains the max-min optimization in (7.8) graphically. The dashed el-

lipses are contour lines of the potential E . For the potential E, AV > 0 for the point x; and
AV <0 for the point X, . The contour lines for the optimal E are shown by the solid lines,

where for all x € D, the AV >0.
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Figure (7.7) Optimal Orientation of E

Figure (7.8) shows the direction field for a stable 2-D example. In this figure, the
solid lines represent an approximate reachable set that is not a good approximation of the
reachable set, and the dashed ellipses represent a good approximation of the reachable set.

The solid ellipses are not a good approximation of the reachable set, because AV is not pos-
itive for all x € D, . By inspection of Figure (7.8), it can be observed that some trajectories

are going out of the solid ellipses. However the dashed ellipses represent a good approxi-

mation of the reachable set because AV is positive for all x € D, . (All trajectories are mov-

ing inside the dashed ellipses.)
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The method for finding the optimal ellipse E, can be formulated as follows:

NS0
gl e ()
e mE?X{f(X)TEkf(X) xXE,x<1} (7.9)
Ek
E, =
k T

The inner minimization in (7.9) minimizes AV over x € D, for fixed E whereas the outer
maximization finds the optimal E to maximize the minimum value of AV when x is fixed.
The inner minimization is constrained by XTE «_1X<1,because x needs to be picked from
the set D, , and the outer maximization is constrained by min(eig(E)) > 0 and

max(eig(E)) < 1. The minimum eigenvalue of E is forced to be positive, because E
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needs to be positive definite, and the maximum eigenvalue of E is forced to be less than 1
to normalize E and to make sure that AV will not go to infinity. As in step 1, we always
normalize E; by y,.If y, <1, then D, has shrunk relative to D, _, . If D, does not shrink
enough, then no conclusion can be made about the stability or instability of the origin. In
this case the method is inconclusive, and the algorithm stops.

If a sufficient reduction is obtained, then the algorithm tests to see if the size of D,
is essentially zero, in which case stability has been shown, and the algorithm stops. Other-

wise, the algorithm continues with step 1.

f(xk) T Ejce1f(xk)<1

\
1
|
]
1
1
i
1
]

Figure (7.9) Typical example of step 2

Figure (7.9) shows a typical example of step 2. This figure shows that the potential

set D7+ 1 (EOptk+ 1) does not shrink relative to the set D, (E, ). This is because E; is

not correctly oriented. However, by solving the optimization given in (7.9), the optimal
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E, ., canbe calculated. The E; , | is correctly oriented, because it contains all the system

trajectories at time step K+ 1. The E; , ; is shown with dashed lines in Figure (7.9).

The steps of the RODD-EB method are summarized in the flow chart in Figure

(7.10).

Find Initial
Bounding Ellipse
E, to construct D, Step 0

>¢<

Shrink Dk to form

potential Dk+1

Yes No
Dy+1 = Potential Dy 4
Step 2

Change the
orientation of E to
shrink Dy

D41
small enough?

System is GAS

Figure (7.10) RODD-EB Algorithm
Global Asymptotic Stability Using RODD-Hybrid Method

The RODD-Hybrid method is a stability analysis technique based on the method of
reduction of dissipativity domain with both linear and quadratic functions {4, j} . The

RODD-Hybrid method uses a combination of linear and quadratic functions to approximate

reachable sets.

The following section will explain the RODD-Hybrid method in detail.
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RODD-Hybrid

The RODD-LB1 and RODD-LB2 methods approximate reachable sets with a set of
linear boundaries. These methods are guaranteed to detect global asymptotic stability of
any stable dynamical systems, if a sufficient number of linear boundaries issued, because
any reachable set can be well approximated with enough linear boundaries. The main draw-
back of these methods is the slow rate of convergence, because it may require many linear
boundaries to adequately approximate the reachable set, and adding linear boundaries in-
creases the number of calculations. On the other hand, the RODD-EB method is an algo-
rithm with a fast rate of convergence, if the reachable set is approximately quadratic. This
is generally true near the equilibrium point, but may not be true at the early iterations of the
algorithm. The flexibility of linear boundaries might be useful at certain stages of the algo-
rithm, while the efficiency of elliptical boundaries could provide better performance at oth-
er stages.

The need for an accurate and fast algorithm for proving global asymptotic stability
of dynamical systems leads us to develop a new algorithm based on a combination of the
RODD-LB2 and RODD-EB. RODD-Hybrid is an efficient algorithm which combines
RODD-LB2 and RODD-EB by switching them at various iterations of the algorithm.

In the following section, we will explain the RODD-Hybrid algorithm in detail.
RODD-Hybrid Algorithm

The main goal in the RODD-Hybrid method is to get an accurate approximation of
reachable sets with the fastest rate of convergence. In order to accomplish this goal, the

RODD-Hybrid algorithm is divided into three main modes, RODD-LB2, RODD-EB and

7-19



transition mode. The RODD-Hybrid method could start either with RODD-LB2 or RODD-
EB mode. Assume that the algorithm starts in the RODD-EB mode (in either case, the ini-
tialization would remain the same, see the step 0 of RODD-LB2 or RODD-EB). After the
initial phase, the algorithm continues in RODD-EB mode and switches to the RODD-LB2
mode when certain conditions are satisfied. The preparation of the algorithm to switch from
one mode to the other mode occurs in the transition mode. The algorithm alternates be-

tween the two modes until the algorithm stops. The detail of each mode is given in the flow-

ering sections:

RODD-EB Mode

Consider that the RODD-Hybrid method starts with the elliptical approximation of
the initial reachable set (f(R")). In this case, the RODD-Hybrid algorithm uses (7.6) to de-
rive D, , ;. The shrinkage of D, , | compared to D, means that all the system trajectories
at time step kK + 1 stay inside the set D, , ; = D, . This means that the set D, , | is a good

approximation of the set f(D*;).If D, . ; does not shrink compared to D, then the algo-

rithm uses (7.9) to find a better approximation of the reachable set. Unlike the RODD-EB

algorithm, the RODD-Hybrid algorithm only allows one re-orientation of D, . If the re-ori-

ented D, does not make D, , , shrink compared to D, then the algorithm switches to

RODD-LB2. The transition from RODD-EB to the RODD-LB2 will be explained in the

transition mode section.
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Figure (7.11) graphically illustrates the RODD-EB mode of the RODD-Hybrid al-

gorithm. If the set D, , ; does not shrink compared to D, . ,, then the algorithm switches

to the RODD-LB2 mode.

Dkz D+ D\ D
k+2
Dy.s

Dk+2

Figure (7.11) RODD-EB Mode of RODD-Hybrid Algorithm

RODD-LB2 Mode
The RODD-LB2 mode of RODD-Hybrid will take over when one re-orientation of
the set D, does not make D, , ; to shrink compared to D, . In this mode, the set D, from

the RODD-EB mode will be approximated by a set of linear boundaries. These set of linear

boundaries will be calculated to enclose the ellipsoid E, (D, ).
The bounds of the optimum bounding polytope will be derived through the follow-
ing optimization:
Y = max{vTx : XTEkX< 1} (7.10)
where v = {v,v,, ..., v, } arethe eigenvectors of E, . The sides of the bounding polytope

are orthogonal to the eigen vectors v, and the optimization (7.10) derives the bound such

that the sides will be tangent to E, . From this point, the reachable set will be approximated
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by the bounding polytope D, .

Figure (7.12) shows the bounding polygon (n = 2) derived through the optimiza-

tion given in (7.10).

Figure (7.12) Bounding Polygon

In this mode, D, , , is derived through (6.45) and (6.46). If the set D, , | shrinks in
size relative to the set D, , then there is no need for adding additional linear boundaries.

However, if the potential approximated reachable set D, , ; does not shrink relative to D, ,
then there is a need to add additional linear boundaries. The additional linear boundaries
will be calculated through the optimization given in (6.48). If the additional linear bound-
aries do not make D, , , shrink relative to D, then algorithm is inconclusive and will stop.
Otherwise the algorithm will continue until the number of additional linear boundaries ex-
ceeds the maximum allowable number. According to several experiments, we found that 2
times the initial dimension is a working upper bound for the maximum number of linear

boundaries. If D, does not get small enough, and the algorithm exceeds the maximum
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number of linear boundaries, then the algorithm will switch to the RODD-EB mode. The
transition from RODD-LB2 to RODD-EB will be explained in the transition mode section.

Figure (7.13) graphically illustrates the RODD-LB2 mode of the RODD-Hybrid

Algorithm. If the set D, , , does not shrink compared to D, , | then the algorithm will

switch to the RODD-EB mode using the bounding ellipse E, | | .

f Ejsq
D,

Ek I:)k+1 Dk+1

Figure (7.13) RODD-LB2 Mode of RODD-Hybrid Algorithm

Transition Mode

The transition mode is the mode when the algorithm switches from one mode to the
other mode. The possible transition modes are as follows:
RODD-EB to RODD-LB2: This is the case when the algorithm switches from the

quadratic approximation (RODD-EB) to the linear approximation (RODD-LB2). In this

case, the last D, in the RODD-EB method will be used to derive the first D, in the RODD-

LB2 mode. After that, the set D, , ; will be derived from D, using the RODD-LB2 mode.

RODD-LB2 to RODD-EB: This is the case when the algorithm switches from the

linear approximation to the quadratic approximation of reachable sets. In this case a bound-
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ing ellipse will be calculated to enclose the final set D, in the RODD-LB2 mode. The cal-

culation of the bounding ellipse in higher dimensions using a convex hull is very expensive.

We proposed a less expensive method, which is described below. The main idea of this ap-

proach is to find a set of points on the boundary of D, and then to find out how these points

are distributed. These points will be on the vertices of the linear boundaries and at certain
locations in the middle of the boundaries.

For each decision linear boundary, there is a unit vector that is orthogonal to the
th .
boundary. Denote that vector by p,. In other words, the i boundary is defined as those

points x such that
p ,T X<y (7.11)
The point x = y,p; will be on the i"™ linear boundary, because it satisfies (7.11). Some of

these points may not fall on the edge of D, , because the set D, in RODD-LB2 may be the

interior of several linear boundaries. The set D, is defined as follows:

D, = {xeR"|p,/x<y,:i= 1,2,....0} (7.12)

In order to get a point on the edges of D, , we take the inner product of each p; with all of

the p s including p;, and divide by T Then we find the maximum of I% . Say that the
J

maximum occurs for p,, . Then Y,;_p, is a point on the m' edgeof D, .
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The next step is to find the vertices of D, (This can be done using the method de-

scribed in [con2ver]). Then we form the Z as follows:
Z =[V,M] (7.13)

where V contains all the vertices and M contains all previously described points on the

edges of D, . Then construct the approximate covariance matrix A = ZZ" . The expres-

sion X' A'x = y gives a reasonably good orientation of the bounding ellipse. The correct

value for y can be found by the optimization in (7.6), where the constraint is the final D,

in the RODD-LB2 mode. After y is found, the set D, , ; will be derived from D, using

RODD-EB. The transition from RODD-LB2 to RODD-EB saves many calculations, be-
cause the optimization in RODD-LB?2 is time consuming. The optimization becomes more
involved as the number of linear boundaries increases. However, the RODD-EB method is

more efficient in this case.
Figure (7.14) illustrates the transition mode from RODD-LB2 to RODD-EB mode

for a specific 2D example.

7-25



-1
& A " halmie ahdimbn s
A" atter g

ahrinkage

! ExLroviwe p;;-inl:.:_ .

! Firal I.‘.|I= i
RODD-LB2 mode

Figure (7.14) RODD-LB2 to RODD-EB Transition Mode

In the following section the RODD methods will be compared
Comparison of RODD Methods

The RODD methods can identify a larger subset of the space of stable parameters
than many existing methods. The method is designed to determine stability for systems
with convex reachable sets. The efficiency of this method depends on how accurate and
how fast the reachable sets can be approximated. In this research, three methods of approx-
imating the reachable sets were introduced. RODD-LBI1[BaPr03] and RODD-LB2 use lin-
ear approximations of the reachable sets, RODD-EB uses quadratic approximations of the
reachable sets and RODD-Hybrid uses combination of linear and quadratic approximation
of reachable sets. The speed of convergence will depend on the shape of the reachable sets.
For example, if a reachable set has a square shape, then the reachable set is better approxi-
mated by set of lines. In this case, the RODD-LB method converges faster than the RODD-
EB method. On the other hand, if a reachable set has a shape similar to an ellipse, then it is
better approximated by quadratic functions. In this case, RODD-EB converges faster than
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RODD-LB. We have found that the RODD-Hybrid method is the most efficient method of
detecting stability, because it uses both linear and quadratic approximations of reachable
sets. However, RODD-Hybrid cannot detect global asymptotic stability in all cases. There
might be some systems with very complex reachable sets for which the RODD-Hybrid
method may fail to detect stability.

Figure (7.15) and Figure (7.16) compare the first few iterations of the RODD-LB
and RODD-EB methods for two different reachable sets (the reachable sets are approximat-
ed by a finite number of points). Figure (7.15) shows a case where the shape of the reach-
able set is square. In this case, the RODD-LB method can develop a good approximation
of the reachable set in few iterations. However, the RODD-EB method is not able to devel-
op the approximate reachable set with the same precision.

Figure (7.16) shows a case where the reachable set is elliptical. In this case, the
RODD-EB method can develop a good approximation of the reachable set in few iterations,
whereas the RODD-LB method is not able to develop the approximate reachable set with
the same precision (within the same number of iterations).

In practice, the shape of the reachable sets are unknown and could be complex,
hence we may need to try both methods (RODD-LB and RODD-EB) to find out which
method converges faster. For this reason, the RODD-Hybrid method has been introduced.
In our experiments on RNN systems, we have found that RODD-Hybrid converges faster

than all the previous methods.
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All the RODD methods conclude global asymptotic stability when the set D, be-

comes small enough. To be able to compare the speed of convergence, the same measure-

ment has been used for all RODD methods. The size of the set D, is measured by the

following optimization:
By = max{”x—x*”2 :xeD.} (7.14)

where D, defined by linear or quadratic boundaries. The parameter 3, will be checked at

every iteration. For 3, < 10~ the algorithm will stop conclude global asymptotic stability.

In the following section, the RODD-LB1, RODD-EB2, RODD-EB and RODD-Hy-
brid methods will be compared for a simple 2-D example.

Example 7.2 Consider Example 6.1:

x(k+1) = Wtanh(x(k)) where W = [ 1.8 0-95} (7.15)
~0.95 0

Unlike the CMT method, all of the RODD methods (RODD-LB1, RODD-LB2, RODD-EB
and RODD-Hybrid) are able to determine the stability of the origin for the above example,
but as shown in Table (7.2) (the simulation results of system (7.15)) RODD-Hybrid has the

fastest rate of convergence.

Method LB1 LB2 EB Hybrid
Time(sec) 203 103 89 54

Table (7.2) Comparison of RODD methods
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Conclusion

In this chapter, three methods of stability analysis for RNNs were developed:
RODD-LB2, RODD-EB and RODD-Hybrid. The RODD-LB2 method, which is an exten-
sion to the existing RODD-LB1 method [BaPr03] (explained in Chapter 6), uses linear ap-
proximations of the reachable sets, and RODD-EB uses quadratic approximations of the
reachable sets. RODD-LB2 is more efficient than RODD-LB1, because it uses a more ac-
curate optimization. The accuracy in the optimization allows the RODD-LB2 method to de-
tect stability in fewer iterations.

The RODD-EB method uses an elliptical approximation of the reachable sets. We
found in our experiments that for dynamical systems with elliptical reachable sets, the
RODD-EB method converges faster than RODD-LB1 and RODD-LB?2.

The need for an accurate and fast converging method for detecting stability, leads
us to propose a new algorithm. The RODD-Hybrid method, which is a combination of
RODD-LB2 and RODD-EB, has been proposed as the most efficient algorithm.

In Chapter 8, we will use the RODD methods to detect global asymptotic stability
for different test problems. The efficiency of the each algorithm will be investigated in that

chapter.
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The previous chapters investigated different methods for detecting stability of
RNNs. We proposed three new algorithms: RODD-LB2, RODD-EB and RODD-Hybrid.
The next step is to investigate the performance of the proposed algorithms for different dy-
namical systems. This is the subject of the following two chapters.

The proposed algorithms either detect stability or are inconclusive. When a result is
inconclusive, this does not directly imply instability of the equilibrium point. An equilibri-
um point could be GAS even though the proposed methods fail to detect stability. This is
because all the proposed methods use the approximations of the reachable sets, and there

always exist errors in any approximation.



In this chapter, several test problems have been collected. They are separated into
a stable group and an unstable group. The proposed methods will be applied to both groups
of systems.
Stable Dynamical Systems

In order to investigate the performance of the proposed algorithms, several test
problems have been collected. Some of these test problems are in the Lure model from, and
some are not. In the following section, the efficiency of the proposed algorithms will be
tested on stable systems in the Lure model form.
Lure Model

The Lure model (3.5) is the state space representation which is most suitable for sta-
bility analysis with RODD methods. In addition, all systems in the Lure model from can be
analyzed stability with the LMI analysis shown in (5.21). In the following examples, sta-
bility analysis will be performed with LMI, RODD-LB2, RODD-EB and RODD-Hybrid
methods.

Example 8.1 Consider the following system

x(k+ 1) = Btanh(Wx(k) + b) (8.1)

where W = [0.7133 0.5571| g — |-0.0176 1.4660| {, — |—0.1768
0.7637 0.5651 —1.9825 -0.325 1.5514

This is an example of a system with GAS equilibrium point z = [l 4176 —0.9396] T.This

can be verified in Figure (8.1), which shows the response of the system for an arbitrary ini-
tial condition. LMI and RODD-EB failed to detect stability of the equilibrium point, where-

as RODD-LB2 and RODD-Hybrid detected stability of the equilibrium point. The LMI
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criterion was not satisfied, because it is a conservative method of checking stability. The
RODD-EB method also failed, due to the shape of the reachable set. To understand the

shape of the reachable set in this system, consider Figure (8.2) and Figure (8.3). Figure (8.2)

shows a set of points randomly scattered in the initial reachable set D, . Figure (8.3) shows
the same points that have been updated on time step. They represent the shape of (D)),

which could be D in the ideal case. It can be seen that the reachable set does not have an

elliptical shape, hence it is very difficult for RODD-EB to detect stability. In this case

RODD-LB2 is more efficient. Moreover, the RODD-Hybrid was able to detect stability and

improved the speed of convergence 1.5 times compared to RODD-LB2.

Network Response
0.6 T T T

Magnitude
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0 20 40 60 80 100 120 140 160 180 200
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Figure (8.1) System Response
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Figure (8.4) and Figure (8.5) shows the graph of 8, in the RODD-LB2 and RODD-Hybrid
method. In the RODD-Hybrid, the transition from RODD-EB to RODD-LB2 occurred at
k = 29 where there is a jump. This is due to the change of D, in (7.14) from an ellipsoid

to a polytope. The reason for this jump explained graphically in (7.13). Table (8.1) illus-
trates the stability analysis result for this example. RODD-Hyrbid has the fastest speed of
convergence. RODD-Hybrid detected the GAS of the equilibrium point 1.5 times faster

than RODD-LB2.

LMI LB2 EB Hybrid
Result Fail Pass Fail Pass
Runtime(sec) NA 80 837 57
Improvement NA 1.5x NA Base

Table (8.1) Comparison of LMI and RODD Methods

In the following example, another Lure form system (higher dimensional) with
GAS equilibrium point will be tested.
Example 8.2 Consider the following system
x(k+1) = Btanh(Wx(k)+b) (8.2)

where

B = _—0.144 —0.192 -0.224 0.534 0.231 0.810 0.214 -0.304 0.726 0.249
| 1.284 0.706 0.686 —0.857 1.233 —1.118 —0.649 —0.886 0.584 1.332

r T
w = |0.082 -0.654 —0.151 -0.617 —1.132 0.515 0.568 -2.823 —0.066 0.265
1—0.558 -0.362 —1.439 -0.494 —0.595 0.377 —-0.400 —-1.158 0.162 0.521

T
b = [0.859 —0.177 -0.658 0.204 1.445 —0.458 0.213 1.527 0.161 —0.233:|



This is an example of two-layered RNN with 10 neurons in the hidden layer. This system

has the GAS equilibrium point z = [0.8248 0.7799] T. The LMI failed to detect the GAS

of the equilibrium point, whereas all the RODD methods were able to detect stability.

RODD-LB2 has the fastest speed of convergence for this example, which is due to the

shape of reachable sets. The set D, and f(D,,) are represented in Figure (8.6) and Figure

(8.7). In this case, linear boundaries can approximate the reachable set better than elliptical
boundaries. Hence RODD-LB?2 has the fastest speed of convergence. Although RODD-EB
could detect the GAS of the equilibrium point, due to the shape of the reachable sets, this

method is not as fast as RODD-LB2. RODD-Hybrid does not have the fastest speed of con-
vergence for this example, because it starts with the RODD-EB mode, and that affects the

overall speed of RODD-Hybrid method.

2L

-25 -2 -15 -1 -0.5 0 0.5 1 1.5 2 25

Figure (8.6) Original Data
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RODD-Hybrid
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Figure (8.11) Graph of 3, for RODD-Hybrid
The graph of B, for RODD-LB2, RODD-EB and RODD-Hybrid illustrated in Figure (8.9),
Figure (8.10) and Figure (8.11). Note that for RODD-EB the graph of 3, is not always de-

creasing. This is because of the change of orientation of the D, . Table (8.2) illustrates the

stability results for this example. RODD-LB2 has the fastest speed of convergence for this
example. RODD-LB?2 detects the GAS of the equilibrium point 6.8 times faster than

RODD-EB and 1.1 times faster than RODD-Hybrid.

LMI LB2 EB Hybrid
Result Fail Pass Pass Pass
Runtime(sec) NA 35 241 40
Improvement NA Base 6.8x I.1x

Table (8.2) Comparison of LMI and RODD Methods
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In the following section, some systems with GAS equilibrium points will be provid-
ed that are not in the Lure form.
Non-Lure Model

The non-Lure models cannot be analyzed for stability with the LMI method. How-
ever, they can be represented in the state space form (5.1), and they can be analyzed with
all the RODD methods. One of the main advantages of the RODD methods over the LMI
method, is the flexibility of the these methods to study stability for a wider range of sys-
tems. The RODD methods require a system to be represented in state space form, and, as
explained in chapter 2, the state space representation is one of the most general forms of
system representation. We will show in the next chapter that MRAC and NARMA-L2 con-
trol problems cannot be modeled to be in Lure form, and their stability analysis will be done
through RODD methods.

In the following examples, stability analysis will be investigated using RODD-LB?2,
RODD-EB and RODD-Hybrid.

Example 8.3 Consider a double pendulum system shown in Figure (8.12). In this ex-
ample, we considered a double pendulum system with viscous friction. This is an example
of a dynamical system with GAS equilibrium point. A response can be seen in Figure
(8.13), which shows the state space simulation of this system for an arbitrary initial condi-

tion.
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Figure (8.13) Network Response
In order to check the performance of proposed stability methods, we need to model
the double pendulum system with an RNN model. Then the proposed stability analysis
methods will be applied to the RNN model. The block diagram of this model is illustrated
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in Figure (8.14). In this model, we used four output delays, 20 neurons in the hidden layer,

with a hyperbolic tangent activation function. For the training data set, we generated 20
sequences with random initial conditions in Matlab/Simulink. The RNN model has been

trained with the two measured outputs, angular position 0, and 0,, and 10000 data points.

The training was done with the neural network toolbox in Matlab ([BeHal2]).

b —>> L\NM_*
f @_’ //
)

b4

3.4

ro-

LW

Figure (8.14) RNN Model of Double Pendulum
The network response after training, and the error between the target and the net-

work response, are shown in Figure (8.15).
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Figure (8.15) RNN Model of Double Pendulum After Training

The trained RNN, which is now equivalent to the double pendulum, can be written

in state space form as follows:

x(k+1) =

LW* tanh (LW *x(k) + by) + b,
x1 (k)
xz(k)
x3(k)

(8.3)

T
where x(k) = [x (k) xy(k) x5(k) x 4(k)] (x, and x, are the angular positions of the first

and the second pendulum, x; and x, are the angular velocities of the first and the second

pendulum) and
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~0.12 =0.10 —0.01 0.09 ~0.66]" ~0.00
~0.02 —0.08 —0.05 —0.11 ~0.61 ~0.07
~0.14 —0.14 —0.18 0.03 ~0.22 ~0.27
~0.14 =0.10 0.12 0.07 ~0.03 0.02
0.08 —0.01 0.09 0.00 ~1.04 ~0.00
~0.26 0.08 —0.07 0.01 ~1.02 0.00
~0.04 —0.03 0.05 0.05 0.76 ~0.05
0.03 —0.03 0.11 0.02 -0.92 0.02
0.06 0.14 —0.00 —0.07 ~0.74 ~0.05
Lw>4 = | 020 ~0.07 -0.05 ~0.07| w34 _ | 099 | p _ 000 — 01
~0.09 0.10 —0.21 0.03 1.24 ~0.01
~0.12 =0.09 0.15 0.06 —0.45 0.15
0.18 0.19 —0.15 —0.01 0.42 ~0.04
~0.06 0.00 —0.10 —0.00 1.01 0.14
0.14 0.07 —0.09 —0.03 0.35 0.00
0.16 0.15 —0.13 —0.06 0.00 ~0.03
0.10 0.03 —0.07 —0.09 ~0.29 0.08
~0.08 —0.03 0.07 0.00 ~0.97 0.09
~0.06 —0.09 —0.04 —0.00 ~0.06 0.03
1 0.12 022 —0.12 —0.04] —0.01] —0.13]

The proposed stability methods can now be applied to the state equation given in

(8.3). Figure (8.16) and Figure (8.17) show the graphs of B, for RODD-LB2 and RODD-

Hybrid. All the RODD methods were able to detect stability of the equilibrium point for

this example. In this example, RODD-EB and RODD-Hybrid have the same graph for the

B - This is because RODD-Hybrid starts with the RODD-EB mode, and, for this example

RODD-Hybrid never goes to the RODD-LB2 mode.
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Figure (8.17) Graph of 3, for RODD-EB and RODD-Hybrid
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Table (8.6) illustrates the result of the stability analysis for different methods. RODD-EB

(RODD-Hybrid) is more efficient in detecting stability of the equilibrium point compared

to RODD-LB2. For this example RODD-EB (RODD-Hybrid) is 1.07 times faster than

RODD-LB2.
LB2 EB Hybrid
Result Pass Pass Pass
Runtime(sec) 302 282 282
Improvement 1.07x Base Base

Table (8.3) Comparison RODD Methods

Example 8.4 Consider the following system

4,3 3,4 3,2
[x(kﬂ)} _ |LW" tanh (LW "z(k) + LW “x(k) + b3) + b, 8.4)

2+ D] LW Hanh (LW 22(k) + LW *x (k) + b)) + b,

where
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4,3
LW"" = [12115 0.462 ~2.459 —0.304 0.3982 —1.705 0.759 0.203 0.958 0.486]
21
LW™" = 10297 ~0.71 ~0.687 0.572 0.445 —1.326 —1.499 1.016 —0.027 —0.16]
Lw>?* = r
= [0.1319 ~0.999 ~0.354 0.1056 0.955 0.464 0.266 —1.423 0.111 1.172]
3,4 T
LW™" = [0378 ~0.107 0.212 0.468 —1.616 0.014 —0.037 0.403 0.305 —1.243)]
L2 T
LW"" = [ 0794 ~0.227 1.593 0.155 0.178 ~0.337 —1.525 —0.709 —0.866 0.071]
1,4 T
LW"" = 0,155 ~0.182 0.731 ~0.347 0.234 —0.867 —0.982 —0.293 0.824 0.194]
T
by = [10.924 ~0.72 0.833 —0.566 —0.999 0.641 —0.254 —1.121 1.647 —0.306]
T
by = [10.445 0.325 —0.02 ~1.888 0.338 0.337 0.424 0.112 ~0.118 —2.686)
by = 1.548

This is an example of a system in the state space form with GAS equilibrium point
z= [_0.959 0. 565] ! (we will show in the next chapter that this is an example of MRAC

Control). Since (8.4) is not directly in the Lure form, the LMI method cannot be used to
investigate the stability of the equilibrium point, whereas this form is suitable for all of the
RODD methods.

Due to the shape of the reachable sets, which are less elliptical and not symmetric,
RODD-EB could not detect the GAS of the equilibrium point of this system. However,

RODD-LB2 and RODD-Hybrid successfully detected the GAS of the equilibrium point

with a fast rate of convergence. The set D, and f(D)) are represented in Figure (8.18) and

Figure (8.19). The fact that f(D) does not have an elliptical shape indicates that RODD-

EB may have some difficulties.
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Network Response

Figure (8.21) Graph of 3, for RODD-LB2
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RODD-Hybrid
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Figure (8.22) Graph of 3, for RODD-Hybrid

Table (8.4) illustrates the stability results for this example. RODD-Hybrid has the

fastest speed of convergence for this example. In this example, RODD-Hybrid detects the

GAS of the equilibrium point 1.5 times faster than RODD-LB2.

LB2 EB Hybrid
Result Pass Fail Pass
Runtime(sec) 130 5495 83
Improvement 1.5x NA Base

Table (8.4) Comparison RODD Methods

Unstable Dynamical Systems
In the second category, the proposed method will be applied to some dynamical sys-
tems with unstable equilibrium points. Some of these test problems are in the Lure model

form, and some are not. In the following section, the systems are in Lure model form.
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Lure Model
As explained in Chapter 6, RODD methods can only confirm the GAS of the equi-
librium point; they cannot confirm instability. This is due to the approximation errors in the
reachable sets. In the following examples, we will apply the proposed stability method to
some systems in the Lure form with unstable equilibrium points.
Example 8.5 Consider the following system
x(k+1) = Btanh(Wx(k) +b) (8.5)

where

—0.885 -0.077 0.344 —-1.051 -0.256 0.847 1.431 0.840
0.380 2.226 -1.409 0.675 —1.354 —0.335 -0.035 —-1.650
B = 1.0.158 —2.163 —0.452 1.487 0.335 0.387 —0.061 1.648
—0.300 —-0.788 0.327 1.198 —0.133 —0.219 -0.262 0.442
| 3.110 0.931 0.528 0.358 —1.447 0.061 —0.154 —1.352]

-0.693 -0.716 0.724 —1.444 0.681 0.251 -1.625 —0.073
0.113 -1.317 -0.610 —0.126 —-0.467 0.585 1.034 1.043
W = 10453 —1.015 0.186 —0.427 —1.414 0.148 —1.251 —0.313
—-0.148 -0.166 —0.319 0.510 -1.672 -2.141 —0.418 0.731
1 0.240 0.783 0.813 -0.798 —1.062 1.679 0.420 —0.353]

T

b = [—0.508 0.483 1.464 —0.786 —0.929 0.884 —1.405 0.245:|

This is an example of a system with an unstable equilibrium point. As expected, all the
methods, LMI, RODD-LB2, RODD-EB and RODD-Hybrid, fail to detect the GAS of the
equilibrium point. Figure (8.23) shows the network response for an arbitrary initial condi-

tion. This is enough to confirm instability of the equilibrium point for this system.
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The graph of 8, is shown in Figure (8.24) for the RODD-Hybrid. At £ = 3, the
algorithm, switches from RODD-EB to RODD-LB2. Due to the instability of the equilib-
rium point, f3, failed to continue to decrees, and the algorithm stops because additional lin-
ear boundaries in RODD-LB2 can not make D, , | smaller than D, .

Table (8.5) illustrates the results of stability analysis for different methods. The

RODD-Hybrid method is more efficient in failing to confirm stability of the equilibrium

point compared to the other RODD methods. RODD-Hybrid failed 31.6 times faster than

RODD-LB2 and 2.5 times faster than RODD-EB.

LMI LB2 EB Hybrid
Result Fail Fail Fail Fail
Runtime(sec) NA 14450 1173 457
Improvement NA 31.6x 2.5x Base

Table (8.5) Comparison of LMI and RODD Methods

In the following section, some systems with unstable equilibrium points will stud-

ied that are not in the Lure form.

Non-Lure Model

As we explained in the previous section, the non-Lure model cannot be studied with

LMI methods, whereas all the RODD methods can be used if the system can be written in

state space form (5.1).

In the following example, stability analysis will be investigated with RODD-LB2,
RODD-EB and RODD-Hybrid.

Example 8.6 Consider again the double pendulum system shown in Figure (8.12).
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This time, we considered a double pendulum system without viscous friction. This system
exhibits rich dynamic behavior with strong sensitivity to initial conditions. This is an ex-
ample of a dynamical system with unstable equilibrium point. Figure (8.25) shows the net-

work response for an initial condition which confirms the instability of the equilibrium

point.

Network Response
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Figure (8.25) Network Response

In order to check the performance of the proposed stability methods, we modelled
double pendulum system with an RNN model. The proposed methods will be applied to the

RNN model. We used the same RNN model shown in Figure (8.14). In this model, we used
four output delays, 20 neurons in the hidden layer, with hyperbolic tangent activation func-
tion. For the training data set, we generated 20 sequences with random initial conditions in

Matlab/Simulink. The RNN model was trained with 40000 points. The training was done
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with neural network toolbox in Matlab ([BeHal2]). Figure (8.26) shows the response of the
RNN model after training and the error between the target and the network response. Al-
though the RNN response does not perfectly match the true response, it has a similar chra-

cteristics. This is sufficient for testing our algorithms.

Network Response and Target
10 T T T T

=== RNN Response
m—— Target

Mag

0 50 100 150 200 250 300
Points

Figure (8.26) RNN Model of Double Pendulum After Training

The trained RNN double pendulum model can be written in state space form as fol-

lows:

LW tanh (LW *x(k) + b3) + b,

x(k+1) = XIEZ; (8.6)
X

x3(k)

T
where x(k) = [x (k) x5 (k) x5(k) x 4(kﬂ (x; and x, are the angular positions of the first
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and the second pendulum, x; and x, are the angular velocities of the first and the second

pendulum) and

LW3, 4

1.47 249 0.83 -0.31
-1.17 -2.29 -0.38 —0.83
-0.27 242 —-0.01 —-1.19
-0.91 1.97 -0.22 -1.90
1.78 1.18 -2.94 —1.35
0.05 -1.41 -0.79 0.56
0.89 -0.25 -2.20 1.77
298 -145 -0.24 -1.30
470 3.82 -3.29 -5.24
-1.45 0.12 0.26 -2.25
—0.95 0.67 -1.75 -1.04
—2.38 -0.00 2.41 1.99
5.53 -0.92 -0.42 -4.17
—4.34 -1.04 -0.12 -3.73
1.76 -2.88 —0.34 —0.72
-0.91 2.64 -0.10 0.26
227 230 214 247
—4.29 0.01 -0.39 3.06
—0.55 -2.93 -4.52 —-1.12

200 1.73 1.74 0.51 |

0.00
0.00
-0.19
0.43
-0.25
-0.75
1.35
-3.34
—-1.55
0.21
—-0.31
0.53
3.59
—-0.86
-0.17
0.17
-1.84
-0.12
-0.97

-0.66)

-2.79
2.30
-2.63
1.51
-1.73
2.06
—-0.27
—-0.02
—0.01
—0.10
—0.10
—2.35
—0.01
-3.63
1.01
1.00
3.60
-2.01
-3.58

-2.46

b, =—0.03

The graph of 8, for RODD-Hybrid is shown in Figure (8.27). At k = 123 the al-

gorithm switches from RODD-EB to RODD-LB2. Due to the instability of the equilibrium

point, B, would not get small enough to confirm stability; additional linear boundaries in

RODD-LB2 cannot make D, , ; smaller than D, .
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RODD-Hybrid

RODD-LB2 Mode

ol RODD-EB Mode
e

2 I I I
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Figure (8.27) Graph of 3, for RODD-Hybrid

Table (8.6) illustrates the result of the stability analysis for different methods. The
RODD-LB2 method is more efficient in failing to verify stability of the equilibrium point
compared to the other RODD methods. For this example, RODD-EB takes longer to stop,
which affects the speed of RODD-Hybrid. This is because RODD-Hybrid always starts

with RODD-EB.

LB2 EB Hybrid
Result Fail Fail Fail
Runtime(sec) 8165 14400 13218
Improvement Base 1.7x 1.6x

Table (8.6) Comparison RODD Methods

In the following example, another system in non-Lure form with unstable equilib-

rium point will be studied.
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Example 8.7 Consider the following system:

LW* tanh (LW *2(k) + LW> *x(k) + b3) + b,

x(k+1)| = 2,1 1,2 1,4 8.7
L(kﬂ)} LW 'tanh(LW" 2(k) + LW" x(k) + b ) + b, (8.7)
z(k)
where z(k) = [Zl(k) Zz(k)}
43
LW”" = [—1.349 3.034 0.725 —0.063 0.714 —0.205 —0.124 1.489 1.409 1.417:|
21
LW”" = |:0.537 1.833 —2.258 0.862 0.318 —1.307 —0.433 0.342 3.578 2.769:|
3,4 T
LW = [0.1319 —0.999 —0.354 0.1056 0.955 0.464 0.266 —1.423 0.111 1.172:|

T
Lw>4 = [0.671 —1.207 0.717 1.630 0.488 1.0347 0.726 —0.303 0.293 —0.787
10.888 —1.147 —1.068 —0.809 —2.944 1.438 0.325 -0.754 1.370 —1.711

Lwh? = _—0.102 —0.241 0.319 0.312 -0.864 —0.030 —0.164 0.627 1.093 1.109_
1—-0.863 0.077 -1.214 —-1.113 -0.006 1.532 —-0.769 0.371 —0.225 1.117|

Lwh?* = _—1.089 0.032 0.552 1.100 1.544 0.085 —-1.491 -0.742 —1.061 2.305_
1—-0.615 0.748 —0.192 0.888 —0.764 —1.402 —1.422 0.488 —0.177 —0.196/

T

by = [—0.839 1.354 —1.072 0.961 0.124 1.436 —1.960 —0.197 —1.207 2.908:|
T

b, = [0.840 —0.888 0.100 —0.544 0.303 —0.600 0.490 0.739 1.711 —0.194:|

-2.138

0.825

s> o
~ [\
| |

This is an example of a system in state space form with unstable equilibrium point.
As we will show in the next chapter, this is an example of MRAC Control. Since (8.7) is
not directly in the Lure form, the LMI method cannot be used to investigate the stability of
the equilibrium point, whereas this form is suitable for all of the RODD methods. As ex-

pected, all the stability methods, RODD-LB2, RODD-EB and RODD-Hybrid, fail to detect
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the GAS of the equilibrium point. A typical response of this system is shown in Figure
(8.28).

Figure (8.29) shows the graph of 3, for RODD-Hybrid. Due to the instability of the

equilibrium point, 3, would not get small enough to prove the stability of the equilibrium

point. The algorithm stops when additional linear boundaries in RODD-LB2 can not make
D, ., | smaller than D, . Table (8.7) illustrates the results of the stability analysis with dif-
ferent methods. RODD-Hybrid method is more efficient in failing to show stability of the
equilibrium point compared with the other RODD methods. RODD-Hybrid failed to verify

stability 13.4 times faster than RODD-LB2 and 11.1 times faster than RODD-EB.

Network Response
20 T T T
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Figure (8.28) Network Response
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RODD-Hybrid

oo 0% E
103;» 4
102; 3
10 0 1‘0 2‘0 3‘0 4‘0 5‘0 éO 7‘0 f;O S;O 100
Epochs
Figure (8.29) Graph of 3, for RODD-Hybrid
LB2 EB Hybrid
Result Fail Fail Fail
Runtime(sec) 5249 4357 391
Improvement 13.4x 11.1x Base
Table (8.7) Comparison RODD Methods

Conclusion

In this chapter, several test problems are used to investigate the performance of our

The main reason to provide systems in non-Lure form is to show that the LMI meth-
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proposed algorithms. The test problems are divided into stable and unstable groups. In each

group, we provided some systems in Lure form and some systems in non-Lure form.

od cannot investigate the stability of these systems, whereas RODD methods can investi-




gate the stability of any system in state space form. This shows that RODD methods can be
applied to a wider range of systems.

The tests described in this chapter demonstrate that the RODD-Hybrid method pro-
vides the most efficient operation. Often, at the initial steps of the algorithm, the reachable
set is not well-approximated by elliptical contours. The hybrid method is able to switch to
LB2 mode in these cases. In later stages, as the algorithm approaches the equilibrium point,
the reachable set for many dynamical systems become approximately elliptical. At these
points the hybrid method can switch to the EB mode.

In the next chapter, we will demonstrate the performance of RODD methods on

MRAC and NARMA-L2 control systems which are not in Lure form.
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Chapter Overview

The previous chapters investigated different methods for stability analysis of

RNNs. We developed three algorithms, RODD-LB2, RODD-EB and RODD-Hybrid, for

detecting stability. In Chapter 8, the proposed methods have been applied to some test prob-

lems to check the efficiency of each algorithm. In this chapter, the proposed methods will

be used to design stable RNN controllers for some real systems.

RNNSs have been applied successfully in the system identification and control of dy-

namical systems ([HaDe99], [HuSb92], [HaDe02]). Rather than attempt to analyze many

different neural network based controllers, we will concentrate on Model Reference Adap-

tive Control [NaPa90] and NARMA-L2 Control [NaMu97].
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These controllers will be used to design a stable control systems, and stability will be in-
vestigated using the proposed algorithms.
Model Reference Adaptive Control

The Model Reference Adaptive Control (MRAC) system is shown in Figure (9.1).
The neural network plant model is trained to match the plant response. Then the neural net-
work controller is trained so that the closed loop system response matches the response of

the reference model.

_ | Reference ;
o Model o d_
+ 4 Control
NN Error
Plant Model Model
+ Error
Command Plant
Input - Output
NN Plant o ——>»
| Controller
- Control

Input

Figure (9.1) MRAC Architecture
In order to study the stability of the MRAC system, it is required that the overall
system be represented in state space form.
In the following section, we will model the MRAC system in the state space form.
Then we will apply the RODD methods to study the stability of the overall system.
Neural Network Model of MRAC
To perform stability analysis using RODD methods, the neural network model of

the MRAC structure shown in Figure (9.2) needs to be converted into the state space form.
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There are three signals that are input to Tapped Delayed Lines (TDL) in Figure
(9.2). The first one is the reference signal »(¢), the second one is the input u(#) and the

third one the output y(¢).

S

Neural Network Controller Neural Network Plant Model

Figure (9.2) Neural Network Model of MRAC

Let m_ be the number of neurons in the RNN controller, m p be the number of neu-
rons in the RNN plant identifier, 7, be the maximum number of delays for the reference
signal, n,, be the maximum number of input delays, n, be the maximum number of output

delays, n, be the number of reference signals, n; be the number of inputs and 7, be the

number of outputs.
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T
Define T(k) = [tl(k) ty(k) ... t, (k)} as the state vector for the reference sig-

nal. The state vector for the reference signal can be written in terms of previous reference

signals as follows:
t, (k) = r(k-1)
t,(k) = r(k-2)

t,(k) = r(k—n,)

x 1 . ) .
where r(k) € R"" " The state space representation of the reference signal can be written

as

r(k)
r(k—1)
T(k+1) = | r(k-2) 9.1)

r(k—n,+1)

T
Similarly, define Z(k) = [zl(k) z,(k) ... z, (k)} as the state vector of the RNN

controller. The state vector for the RNN controller can be written in terms of previous in-

puts as follows

z,(k) = u(k-1)
z,(k) = u(k-2)

znu(k) = u(k—n,)

According to Figure (9.2), and considering (9.1), the state space representation of the RNN

controller can be written as



uy
u(k—1)
Zk+1) = | wu(k-2)
u(k—n,+1)
- - (9.2)
LW tanh(LW"?Z(k) + LW"*X (k) + IW" ' T(k) + b') + b’
z,(k)
- z,(k)
L Znu—l(k) |
where u(k) e R 1, LWh2 e R" ™ Lw?! e Rch(n,-nu)’ Lwh? e R (nyno),

x 1 x 1
b,eR™" andb, eR"" .

T
Similarly, define X (k) = [x (0 (k) ... x,, ( k)} as the state vector of the RNN

plant model. The state vector for the RNN plant model can be written in terms of previous

outputs as follows

X, (k) = y(k-1)
X, (k) = y(k-2)

x, (k) = y(k-n,)

Hence the state space representation of the RNN plant model can be written as



X(k+1) =

%1
where y(k) e R"™, LW"> e R™™"™, LW>? ¢ R™

x 1 X
b, e R andb, e R"" .

y(k)
y(k-1)
y(k-2)

y(k=n,+ 1)

LW tanh (LW *Z(k) + LW *X(k) + b’ ) + b"
X, (k)
Xz(k)

Xny— l(k)

m, x (n;n,)

LW eR

9.3)

m, x (n,n,)

2

The augmentation of (9.1), (9.2) and (9.3) is the state space representation of the

overall system. The overall state space representation can be written as

T(k+1)
X(k+1)
Z(k+1)

LW*  tanh (LW *Z (k) + LW 2X(k) + b’ ) + b*

LW” 'tanh (LW 2Z (k) + LW" *X (k) + IW" 'T(k) + b') + b

r(k)
t, (k)
t,(k)

t, (k)

X, (k)
X, (k)

Xy, 1()

z,(k)
z,(k)

2, (k)

(9.4)



Equation (9.4) is the state space representation of the MRAC. This is suitable for
stability analysis with RODD methods. In the following example, stability of the MRAC
for a robot arm problem will be investigated using RODD methods.

Robot Arm Problem

Consider the robot arm shown in Figure (9.3). The objective is to design a stable
RNN based control system so that the robot arm will follow a certain trajectory. In order to
accomplish this goal, we first need to model the robot arm system using an Nonlinear-Auto-
Regressive with Exogenous input (NARX) model. Then, an RNN controller needs to be de-

signed. The stability of the overall system will be confirmed by the RODD methods.

Figure (9.3) Robot Arm [BeHal2]

The NARX model shown in Figure (9.4) is used to model the robot arm. In this
model, we used two input delays, two output delays, 10 neurons in the hidden layer, with
a hyperbolic tangent activation function. For the training data set, we generated a sequence

with 1463 data points using Matlab/Simulink. The training was done with the neural net-



work toolbox in Matlab ([BeHal2]). Figure (9.5) shows the input and target data that was
used to train the network. The input is the voltage (between —10 and 10 volts) and the tar-

get is the angular position.

Input

3,2

b’ B
/
1 esT

3.4

Figure (9.4) NARX Model of Robot Arm



Plant Input

1
500 1000 1500

Plant Target

0 500 1000 1500

Figure (9.5) Training Data Set
Figure (9.6) and Figure (9.7) show the response of the network versus the target
and the error between them after training. The trained network, which is now equivalent to

the robot arm, can be written in state space form (derived in (9.3)) as follows:

X(k+1) = | 70 | = [LW" tanh(IW”Z(k) + IW X (H) + b)) + 87 (g5
1) xy (k)

where



4,3
LW"" = [0.82 ~1.64 ~3.90 0.00 —0.00 —2.36 ~1.02 ~0.73 1.12 0.00]

Tw>? = _—0.45 —-0.35 -0.48 0.28 —0.64 —0.26 —0.58 —0.65 0.70 0.27_
—0.00 —0.02 0.26 —-0.82 -0.20 0.04 0.37 —0.33 —-0.43 0.55]

B a7
w2 — |-0.00 ~0.00 ~0.00 —0.06 0.06 ~0.00 ~0.00 0.00 0.00 —0.00| )
-0.00 ~0.00 ~0.00 0.00 ~0.36 0.25 —0.00 —0.00 0.00 0.00

3 T
b” = [1.53 1.31 0.75 1.29 0.06 —0.75 —0.48 —0.86 1.80 —0.39]

4

b —-0.39

After deriving the RNN model of the robot arm in (9.5), an RNN controller needs
to be designed. The RNN controller is another NARX model. The RNN controller and the
RNN robot arm will cascade to form a four layer network as shown in Figure (9.2). (The
weight of the RNN robot arm will not be adjusted during the training of the RNN control-

ler.) For the training of the RNN controller, we used one delay for the reference input

n, = 2, one delay for the control signal n, = 2, two output delays n, = 2, 10 neurons

in the hidden layer, with hyperbolic tangent activation function. The overall network has

been trained with 2200 data points.
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Network Response versus Target

3 ] T T
= Network Response
= @ = Traget

0 500 1000 1500

Figure (9.6) Network Response and Target after Training

Error between Network Response and Target
0.12 T T

0.1 4

0.04 4

0.02 h

-0.02 4

-0.04

1
0 500 1000 1500

Figure (9.7) Error between Target and Network Response After Training

The target data has been generated in Matlab/Simulink using a first order reference model.
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Figure (9.8) illustrates the reference input and reference output that have been used to train

the RNN controller. The training was done with the neural network toolbox in Matlab

([BeHal2]). The network response after training is shown in Figure (9.9).

According to (9.4) the overall RNN system can be written as

T(k+1)

X(k+1)| ~

Z(k+1)

r(k)
t (k)

LW*  tanh (IW? 2Z (k) + TW> *X (k) + b°) + b
x1(k)

zy (k)

where T(k) = [,k 1) r(k—2)]T’ X(k) = [pk-1) y(k—2)]T’

Z(K) = [s(k—1) 2(k—2)] and

LWZ, I _

L1

0.04
—-10.21
—17.08
—23.79

21.59
25.95
—-19.50
0.04
-17.12

| —0.05 |

= 4.76

, LW

1,2

-2.22 -0.94
0.01 0.01
8.45 7.60
0.02 0.00
—-0.03 -0.00
—-0.02 -0.01
0.01 0.00
1.76 091
—8.38 -7.51

, LW

141 447

9-12

1,4

241 1.12
-0.23 -1.10
791 -7.96
5.20 -5.06
-5.07 4.88
-5.95 5.69
-2.63 2.40
—-0.86 —-1.19
6.94 -7.05

| 0.77 -1.68]

LW tanh(LW" 2Z (k) + LW" *X (k) + IW" 'T(k) + b") + b*

r T
4.46 -0.30 0.06 —0.66 0.58 0.54 —0.29 —0.98 —0.03 —5.83
19.92 0.10 -0.80 0.18 -0.21 -0.17 -0.01 -1.05 -0.79 -7.57

(9.7)

-11.26
0.00
—-0.62
1.37
1.15
—-0.05
0.00
9.85
0.62

| 637 |



and LW4’ 3 , LW3’ 4 , IW3’ 2 , b3 and b4 are the parameters of the robot arm model, which
are not adjusted during the RNN controller training.

The state space representation shown in is suitable for stability analysis using
RODD methods. The response of the overall system, RNN controller and RNN robot arm,
after training is shown in Figure (9.10). This figure shows the response of the state space
equation for an arbitrary initial condition without reference input. All the states converge

to the origin. In order to confirm stability of the equilibrium point of , RODD methods need

to be applied to this equation. Figure (9.11) shows the graph of 3, for RODD-LB2. Since

the equilibrium point of this system is stable, the graph of 3, could become small enough

to stop the algorithm.

Reference Model Input

—0.8L I I I I I I I I I I
200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Reference Model Output

o 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Figure (9.8) Reference Input and Output
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Figure (9.9) Reference Signal versus Network Response After Training

In this example, it is important to mention that the initial set D, in all of the RODD

methods needs to be placed in region in which the network has been trained. Otherwise, the
stability results would not be accurate. Table (9.1) illustrates the result of the stability anal-
ysis for different methods. Neither RODD-EB nor RODD-Hyrbid were able to confirm sta-
bility of the equilibrium point. This might be due to the non-elliptical shape of the reachable
set. RODD-LB2 is more efficient in detecting stability of the equilibrium point compared

to RODD-EB and RODD-Hybrid..

LB2 EB Hybrid
Result Pass Fail Fail
Runtime(sec) 2020 14400 1115
Improvement Base NA NA

Table (9.1) Comparison of RODD Methods
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Network Response

Figure (9.11) Graph of 3, for RODD-LB2

9-15

6 T T T
— f1
— f2
5 — ]
Y2
4 Yl
Yy
3 4
)
o
2
o)
: Vh
it |
w V”V“v”v”w Aose~MA
0 Viviesy v,v\0voh/vﬂ'-\*vh..»,..»_‘-o--, —
- ]
-2 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 ) 100
Points
Figure (9.10) MRAC Response After Training
RODD-LB2
10* T T
10° 5
107 5
ot 10° 3
10° 3
107 E
10’2 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80
Epochs



The following section discusses the RNN-based NARMA-L2 controller. The sta-
bility of this controller will be investigated using RODD methods.
NARMA-L2 Control

The NARMA-L2 model is an approximation of the NARX model explained in
Chapter 2 and derived in (2.34). This model is very useful in control, since the control sig-
nals at each time step can be solved linearly with respect to the reference signal. The first
step in using NARMA-L2 control is to identify the system to be controlled. The NARMA -

L2 approximate model is given by

vik+d) = fyk),y(k=1), ...y(k—n+ 1), u(k=1), .., u(k—m+ 1))+
g(k),y(k=1), ..oy(k—n+ 1), u(k—1), .., u(k—m+ 1))u(k)

(9.8)
where f and g are nonlinear functions. Once the NARMA-L2 model of the plant is derived,
the NARMA-L2 controller is just a rearrangement of the NARMA-L2 model. This is be-

cause of (9.8) where the control signal can be solved linearly with respect to the reference
input. The control signal should be calculated such that the system response follows the ref-

erence input.

Let r(k) be the reference input. Considering the NARMA-L2 model (9.8), the

control system u(k) can be derived as

_rk+ ) —f(k),y(k=1), ...ov(k—n+1),u(k-1),...,u(k—n+1))
u(k) = gy(k), y(k—=1), .. oy(k—n+1),u(k—1), ..., u(k—n+1)) ©-9)

This control signal u(k) will guarantee to make the system response follow the desired tra-
jectory r(k) if the exact knowledge of f and g are available. However, this knowledge is

not available, and so we must approximate f and g. Figure (9.12) illustrates the block dia-
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gram of the NARMA-L2 control scheme.

r Y
Reference
Model T
n Controller u
+ }(/2 *—p Plant
A g
T
D (¢
L T
D [¢—
L

Figure (9.12) NARMA-L2 Controller

In the following section, we will use neural network approximations for f and g.
The RNN-based NARMA-L2 controller will be represented in state space form, which is
suitable for stability analysis using RODD methods.
Neural Network Model of NARMA-L2 Control

The nonlinear functions f and g in (9.9) can be approximated by neural networks.
An RNN-based NARMA-L2 model is illustrated in Figure (9.13). Since the NARMA-L2
controller is just a rearrangement of the plant model, controlling the NARMA-L2 model of
the plant gives a perfect result. To avoid this, and, to verify the performance of the NAR-
MA-L2 control, the plant will be modeled using a NARX model. The error between the ac-

tual plant and the NARX model can verify the performance of the NARMA-L2 controller.

In order to model the RNN-based controller and RNN-based plant, let m_ be the
number of neurons in the RNN-based NARMA-L2 controller, m D be the number of neu-
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rons in the RNN-based NARX plant, n, be the maximum number of input delays and n,
be the maximum number of output delays. Unlike the MRAC, which is a multi-input-multi-
output controller, the NARMA-L2 control is a single-input-single-output control. Figure

(9.14) shows the block diagram of the NARMA-L2 controller with the NARX model of the

plant.

Neural Network Approximation of g()

- N
ai(r) 2(1)
oSk, | >
© ort%
S e

w y(t+l)

»(®

Neural Network Approximation of /()

Figure (9.13) RNN-Based NARMA-L2 Model
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Figure (9.14) NARMA-L2 Controller and NARX Plant

T
Define z(k) = [Z (k) zy(k) ... z, (k)} as the state vector of the RNN controller and

T
x(k) = [x (k) x5(k) ... x, (k)} as the state vector of the RNN plant model. The state

vector for the RNN controller can be written in terms of previous inputs as follows:

z,(k) = u(k-1)

2y(k) = u(k-2) .10

z, (k) = u(k—n,)

and the state vector for the RNN plant model can be written in terms of previous outputs as

follows:
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xi (k) = y(k—1)
xy(k) = y(k-2) o)
x, (k) = y(k—n,)

According to (9.10) the state space representation of the RNN controller can be written as:

u(k)
u(k—1)
z(k+1) = | wk-2) | =

u(tk—n,+1)

2,1
r(F)-LW>2(LW™ tanh(IW"z(k) + IW" 'x (k) + by + p7)| 12

LWO LW anh (W '2(k) + TW> 2x(k) + b°) + b*)
= z,(k)
Zz(k)

2, 1K)

1 m m,Xn

where r(k) e R, LW > e R, LW e R~ W' e R™ ™™, W ! e R™™

5

1 1

b

LW e R, LW e R ™ W e R™ ™ IW» 2 e R™™, b' ¢ R™”

3 m

b>eR™ ' b cRand p* e R

According to (9.11) the state space representation of RNN plant identifier can be

written as:
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v | LW Tanh (AW z(h) + IWE Tx(h) b £
yE=1) x, (k)
x(k+1) = y(k-2) = x,(k) (9.13)
| Y1 (8) _

1 1

where y(k) e R, LW* e R " IW " e R "™ TW* " c R™™™ b’ e R™”

and b° € R.
The augmentation of (9.12) and (9.13) derives the state space representation of the

overall system. The overall state space representation can be written as

LW® Ttanh (AW " °z(k) + TW™ "x (k) + b ) + b°
x1(k)

xz(k)

xnu— l(k)

K+ 1) _
{X( H)} = L r)-LW LW anh (IW" 'z(k) + TW " x (k) + b1y + 57| O-19)

2(k+1) 6,4 4,3 3,1 3,2 3 4
LW” (LW tanh(IW” z(k) +IW”"x(k)+b ) +b")

Z1(k)

z,(k)

z,, (k)

Equation (9.14) is the state space representation of the RNN-based NARMA-L2
controller with an RNN-based plant. This is suitable for stability analysis using RODD
methods. In the following example, a NARMA-L2 control will be designed for a magnetic

levitation problem and the stability will be investigated using RODD methods.
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Magnetic Levitation Problem

Magnetic levitation is a system which is used to levitate a magnet using the electro-
magnetic force generated by an electromagnet. The objective is to design a stable RNN-
based NARMA-L2 controller that levitates the magnet and makes it track a specified posi-
tion trajectory. The input to this system is the electromagnet current and the output is the
position of the magnet. The schematic view of the magnetic levitation problem is illustrated

in Figure (9.15).

N
| S |

(-]
+

y(tI
4

g

Figure (9.15) Magnetic Levitation [BeHal2]
In order to accomplish this goal, the magnetic levitation dynamics need to be mod-
elled using an RNN. Then, an RNN-based NARMA-L2 controller needs to be designed.
The stability of the overall system will be confirmed using RODD methods.

For the modeling of the magnetic levitation, we used the NARX model shown in

Figure (9.16). In this model, we used two input delays, two output delays, 10 neurons in
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the hidden layer, with a hyperbolic tangent activation function. For the training data set, we
combined 4 sequences with different frequencies. The combination of sequences with low,
high and middle frequencies enables us to derive a model which is valid for a wider oper-
ating range. Each sequence has been generated for a duration of 50 seconds with a sam-

pling rate of 50 milliseconds The training data has been generated in Matlab/Simulink and

the training has been done with the neural network toolbox in Matlab ([BeHal2]). Figure

(9.17) shows the input and the target data which have been used to train the network.

Input

7,6

8,7

-
f J@"/

7,8

Figure (9.16) NARX Model of Magnetic Levitation
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Figure (9.17) Sample Input and Output Signals for Identification
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Figure (9.18) Network Response versus Target After Training
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Figure (9.18) shows the response of the network versus the target and the error be-
tween them after training. The trained network, which is now equivalent to the magnetic

levitation system, can be written in state space form as follows:

xh+1) = | ¥0 | = LW anh(0W" 206 + TW " Sx(l) + b)) +8°| (g 15y
(k1) x, (k)
where

8,7 _
LW™" = 10,50 ~1.04 0.75 0.29 0.00 0.00 57.10 —0.01 15.38 —7.25]

r T
w’?® = |-13.11 1.75 44.00 1496 15.28 7.99 -0.07 17.80 0.18 -0.23
| 81.93 -8.62 —140.30 —15.33 19.39 5.93 0.08 —-7.37 -0.17 0.21

B T
[wh6 _ | 144 094 —03850.06 ~18.57 ~11.43 001 227 -0.03 005| 160
-0.58 —1.67 0.70 0.01 ~7.08 036 —0.02 -337 0.06 —0.09

T
b" = 10.79 ~0.46 3.13 ~0.06 ~16.02 ~6.92 6.60 —2.10 ~5.85 1.17]

()
Il

4.67

We also verified that the derived RNN model of the magnetic levitation system is
stable. The response of this model for an arbitrary initial condition without input can been
seen in Figure (9.19). The confirmation of the stability of this model is achieved by apply-

ing RODD-LB2 to the state space equation of the magnetic levitation problem derived in

(9.15). Figure (9.20) shows the graph of 3, for RODD-LB2. Since the equilibrium point of

this system is stable, B, could become small enough to stop the algorithm.

9-25



Magnitude

0.4

0.3

0.2

0.1

Network Response

1

1

5 10 15 20 25 30 35 40 45 50
Time (sec)
Figure (9.19) Network Response
RODD-LB2
\_, ?
50 410 éO gO 1 60 1 éO 140
Epochs

Figure (9.20) Graph of 3, for RODD-LB2

9-26



The next step is designing an RNN-based NARMA-L2 controller. This can be done
by finding the NARMA-L2 model of the magnetic levitation system. The rearrangement of
this model gives the NARMA-L2 controller. Figure (9.21) shows the block diagram of the
NARMA-L2 model which has been used to model the magnetic levitation system. In this
model, we used two input delays, five output delays, 10 neurons in the hidden layers, with
a hyperbolic tangent activation function. For the training data set, we used the same data

shown in Figure (9.17). The training was done with neural network toolbox in Matlab

([BeHal2]).

=R

u(t) T_>

W e I
b %»@ - LW

IW1,2 b?

[

Y
[Fo=]
Y

y(t+1)

T 31
»| pj>{IW" a’(t
L 1 ( ) LW* a4(t)
b3 ?}E’ v
LW~
y(t) .—» IW** b*

Figure (9.21) NARMA-L2 Model of Magnetic Levitation

After deriving the RNN-based NARMA-L2 model of magnetic levitation, the over-
all closed loop control system with NARX plant model (shown in Figure (9.14)) can be

written in the state space form as follows:
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LW Ttanh (AW " °z(k) + IW™ "x (k) + b ") + b°
x; (k)
xz(k)
k
x(k+1)| _ *3(k) 9.17)
z(k+1) x4(k)
5,2 2,1 1,1 1,3 1 2
r(k)-LW7> (LW  tanh(IW "~ z(k) +IW "x(k)+b )+5b")
6, 4 4,3 3,1 3,2 3 4
LW (LW “tanh(TW” 'z(k) + IW> *x(k) + b°) + b")
zy(k)

where

2,1

LW”" = [0.81 ~0.20 1.70 -0.00 —1.53 —0.00 0.16 —2.10 0.02 0.00|
4,3

IW™" = 10,92 0.67 0.45 0.90 0.50 —0.07 0.09 ~0.59 0 — 1.07 —0.06]

0.24 -0.52 -0.07 138 -0.10 3.18 0.21 -0.01 0.43 0.50

L3 -0.05 0.14 -0.00 1.75 0.01 -0.56 —-0.10 —-0.01 —1.00 1.24
IW"" = 1058 036 081 —1.41 —0.38 —0.57 —0.47 —0.63 —0.63 1.17
-0.68 —0.59 -0.51 -0.12 -0.29 -1.72 —-1.13 1.12 —-1.38 1.18
1 0.74 0.68 -0.80 0.24 1.59 —I1.15 -1.05 0.30 0.44 1.03]

1.47 097 030 1.57 -0.22 0.08 —0.30 -0.29 -0.24 0.97

- -0.67 —0.10 1.08 -0.33 0.63 —-1.90 0.82 —0.09 1.27 —1.32
IW"" = 10.68 —0.98 1.37 —0.96 —0.97 —0.12 —1.57 —0.53 —0.72 1.19
1.19 -0.16 1.03 -1.27 —-1.60 0.07 1.22 1.34 1.04 -0.82
—0.83 1.78 0.19 -0.07 0.92 1.09 0.28 —1.64 -1.07 0.37 |

T
b = [2.38 1.99 ~0.91 ~2.48 ~0.23 0.47 ~0.78 0.36 —0.51 0.76]

3 T
b” = [221 ~1.85 ~1.34 0.77 0.21 —0.16 0.82 —1.53 —1.65 2.17]

LW % = 032

LwW™* = 7.76¢°
b* = —0.86
b* = 0.88
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wh L Iw? ! = 0 and LWY 7 IW" %, IW® 7, b", b° are given in (9.16).

The NARMA-L2 control signal could become unbounded due to the term in the de-
nominator (see (9.9)). This will affect the stability analysis, because RODD methods can
only be applied to state equations which are bounded. For this reason, we constrain the de-
nominator. The constraint block shown in Figure (9.14) ignores the denominator for small
control signal [—¢, €] (¢ = 0.1 has been chosen for this example).

The state space representation derived in (9.17) is suitable for stability analysis us-
ing RODD methods. Figure (9.22) shows the response of the state equation of (9.17) for an

arbitrary initial condition without reference input. All the states converge to the origin.

Network Response
3 T T T

25 — X

Magnitude

0.5 bl

I
5 10 15 20 25 30 35 40

Epochs

Figure (9.22) Network Response
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Figure (9.24) Reference Signal versus Network Response
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In order to confirm stability of the equilibrium point of (9.17), RODD-LB2 has been

applied to this equation. Figure (9.23) shows the graph of 3, for RODD-LB2. Since the

equilibrium point of this system is stable, the graph of B, could become small enough to

stop the algorithm. Figure (9.24) shows the performance of the NARAM-L2 in following
a reference signal.

The initial set D, is placed in the region for which the network has been trained.

Table (9.2) illustrates the result of the stability analysis for different methods. Neither
RODD-EB nor RODD-Hyrbid were able to confirm stability of the equilibrium point. This
might be due to the non-elliptical shape of reachable set. RODD-LB2 is more efficient in

detecting stability of the equilibrium point compared to RODD-EB and RODD-Hybrid.

LB2 EB Hybrid
Result Pass Fail Fail
Runtime(sec) 271 14400 14400
Improvement Base NA NA

Table (9.2) Comparison of RODD Methods

Conclusion

In this chapter, two RNN-based controllers, MRAC and NARMA-L2, have been in-
vestigated. We picked two examples, robot arm and magnetic levitation problems, to check
the performance of these controllers. In both cases, the RODD-LB2 method was able to

demonstrate stability.
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The objective of this research was to develop an efficient algorithm to detect global
asymptotic stability of RNNs and then to use the stable RNNs for the purpose of control
and system identification. Several methods exist for stability analysis of RNNs, but they are
either conservative or suffer from a slow rate of convergence. In this study, we developed
three algorithms which address these problems.

In the first section of this chapter, we will discuss the motivation behind this study
and then will present a summary of the research. Finally, we will conclude the chapter by
describing future work.

Motivation

The main motivation behind this research originated from the previous study by
Hagan ef al [HaDe02], in which they designed a NARMA-L2 controller for magnetic lev-
itation. Magnetic levitation is an example of a highly nonlinear system for which the NAR-

MA-L2 controller obtained excellent performance. NARMA-L2 is an RNN-based
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controller that is capable of dealing with severe process nonlinearity. The performance of
this controller has been verified through various simulations and generally demonstrates
good performance. However, the NARMA-L2 controller occasionally becomes unstable.
For this reason, we focused our efforts to derive an efficient algorithm to determine the
largest space of stable parameters for a given RNN. In order to achieve this goal, we divided
the study into two phases. The first phase of the research was devoted to the modeling of
RNNs, and the second phase of the research was devoted to stability analysis.
Summary

In the modeling phase, we started with the most general system representations:
State-space and I/0. A discrete-time dynamical system can either be represented by a state-
space model or an I/O model. One may choose either model, depending on the application.
The state-space model and the I/O model are equivalent under certain conditions. These
conditions and the procedure for transforming the state-space model into the I/O model and
back were presented in Chapter 2.

After studying the most general dynamical system representations, we concentrated
on the stability analysis of RNN models. In our research, we found that the state-space

model was convenient for the stability analysis of RNNs. Different examples of state-space
models were introduced, e.g., NL q and the Lur’e model. Then the BPRNN network was
introduced as a special type of RNN that was neither in the state-space form nor in the I/O
form. Hence, the BPRNN was transformed to the Lur’e model through a special technique
called the state-space extension method. The Lur’e model consists of a linear part and a

nonlinear part that satisfies certain sector conditions.
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The transformation of the BPRNN to the Lur’e model, and the demonstration that
the transformed BPRNN model satisfies the sector condition, laid the groundwork for the
derivation of the absolute stability criterion for the BPRNN. After several experiments, we
found that the stability criteria derived for absolute stability is conservative, and there is a
need to derive a better criterion.

A less conservative stability criterion was then investigated in Chapter 6. The
RODD-LB1 method can approximate a larger space of stable parameters for a given RNN.
Although the RODD-LB1 method gives a less conservative stability criterion, it suffers
from a slow rate of convergence. We then developed an extension to RODD-LB1, RODD-
LB2. The RODD-LB2 method is an efficient version of RODD-LBI1 and can detect stabil-
ity in less time. Both RODD-LB1 and RODD-LB?2 use a linear approximation of the reach-
able sets. However, the reachable sets can also be approximated by quadratic functions.
Next, we developed RODD-EB, which uses a quadratic approximation of the reachable
sets. We found in our experiments that for dynamical systems with elliptical reachable sets,
the RODD-EB method converges faster than RODD-LB1 and RODD-LB2. The need for
an accurate and fast converging method for detecting stability for reachable sets with arbi-
trary shapes leads us to propose a new algorithm, the RODD-Hybrid method, which is a
combination of RODD-LB2 and RODD-EB. All the new RODD algorithms were de-
scribed in Chapter 7. The manner in which the efficiency of the RODD algorithms depends
on the shape of the reachable sets is discussed at the end of Chapter 7.

Chapter 8 and Chapter 9 were devoted to some examples verifying the efficiency of

the proposed algorithms. The test problems in Chapter 8 consisted of stable and unstable
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systems in a variety of forms. The control problems in Chapter 9 were used to check if the
proposed methods can detect the stability of control systems with RNN-based controllers
and RNN-based plant models.

In the following section, we will discuss the future work for this research.
Future Work

In this research, different methods for the stability analysis of RNNs were investi-
gated. We developed three efficient algorithms for detecting stability: RODD-LB2,
RODD-EB and RODD-Hybrid. The proposed methods opened up many interesting theo-
retical and practical research possibilities. The methods which we developed in this work
can be applied to solve interesting problems. In the following section, some of the these
problems are listed.
Maintaining Stability During RNN Training

One of the main challenges with RNNSs is training. The potential instability of
RNNSs complicates their training. The spurious valleys in the training error surface that
were studied in [JeHa09] are an immediate consequence of the potential instability. How-
ever the new efficient stability algorithms open up the possibility of maintaining stability
during RNN training. This will guarantee smoothness of the error surface and improve
training performance.

Approximation of Region of Attraction

One of the great feature of the RODD methods is the fact that the initial set D, can

be selected arbitrarily. Moreover, this set can be placed at any desired location. In this re-

search work, we were looking for GAS equilibrium points. However, RODD methods can
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be applied to nonlinear systems with multiple stable equilibrium points. In this case, each

stable equilibrium point has a region of attraction. By changing the size and location of D,

we could use RODD methods to approximate the region of attraction of selected equilibri-

um points.
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APPENDIX A

NARMA-L1
NARMA-LI is an approximation of the NARX model using the Taylor series ex-

pansion. Let’s rewrite (2.21) as

y(k+1) = F(Y,(k),U,(k)) (A.1)

where Y, (k) = [y(k),y(k—1),...,y(k—n+1)],

U, (k) = [u(k),u(k—1),..,u(k—n+1)] and F' = hog : R™ = R .Using the Taylor
series expansion we can expand (A.1) about the operating point

(k) y(k=1), ..., y(k—n+1),0, ...,0) = (Y,(k),0) as follows:

_ 0
y(k+1) = F(Y,(k),0) +mF(Yn(k), U”(k))|Un(k) . u(k) +

0
Fu(i=1) I)F(Yn(k), Un(k))|Un(k) L uk=1) (A.2)
0

sat w71y, Yl U]y g ulk=n 1)+ Ry(Y, (k). U, (k)

where R (Y, (k), U,(k)) is the remainder with the following upper bound

M|, )’ A3
2

R, (Y, (k), U, (k)<

T
M, is the maximum matrix norm of the Hessian matrix %(%) when evaluated over
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the compact domain Ky x K, R” x R". By the right choice of U, (k) we can make the

upper bound in (A.3) very small. For example, if the objective is to have the remainder to

be less than ¢ then |u(k)| must be chosen less than & such that § < % . Considering a
1

small upper bound for the remainder and denoting

0 : .
. = <i<n- -
g.(Y (k) Sk l,)F(Yn(k), U”(k))|U,,(k) o 0<i<n-1,(A.2) may be approxi
mated by
u(k)
u(k—1)

YU+ 1) = F(Y, (0, 0)+ [go(Y,,(k)) g1(Y,, (k) .. g,_ (Y, (k)

u(k—n+1)| (A.4)
y(k+ 1) = F(y(k), y(k=1), ..., y(k—n+1))

n—1

+ Zfl.(y(k),y(k— ), ...,y(k—n+1)u(k—1i)

i=0
where F, f; : R" >R

Equation (A.4) is the approximation of the NARX model given in (2.21), which is called
the NARMA-L1 model. This model has the advantage that the output depends linearly on
the control signals. So, control signals can easily be calculated at each time step from the
reference point. Although the approximation error can always be made small by the right
design of a controller, the NARMA-L1 model derived in (A.4) is only a good approxima-
tion if the operating point of the NARX model does not change from the origin. In this case
the approximation will not be good, and a different method for calculating the control sig-

nals will need to be used.



Lemma A.1 Let 0 <c <r and r be as defined in (4.21),then

tanhr + tanhc _ tanh(r) — tanhc

r+c r—c

tanh(s)
s

Proof: As proven in chapter 4

half plane. Hence, for ¢ € [0, 7]

tanhc¢ S tanhr

C r

Multiplying both sides of the above inequality by 2rc¢ yields

2rtanhc > 2ctanhr
rtanhc + rtanhc > ctanhr + ctanhr

rtanhc—ctanhr > ctanhr — rtanhc
Adding rtanhr — ctanhc to both sides of (A.7) yields,

rtanhc—ctanhr + rtanhr — ctanhc > ctanhr — rtanhc + rtanhr — ctanhc
(r—c)tanhc + (r — c)tanhr > ( + ¢)tanhr — (r + ¢) tanhc
(r—c)[tanhr + tanhc] > (» + ¢)[ tanh7 — tanhc]

Dividing both sides of (A.8) by (» —¢)(r + ¢) proves the lemma.

Theorem A.1 Pick ¢ >0 and define a new function g, : R—> R as

OB R
g.(s) = s—c
f'(c) s—c =20

where f(s) = tanh(s), then g_ satisfies the following conditions
1.g. is of class c'

2. Iim g.(s) = limg.(s) =0
s —> ©

§— —o0

(A.5)

is amonotonically increasing in the right

(A.6)

(A.7)

(A.8)

(A.9)



3.There exists unique ¢’ € [—c,0](c>0) such that g.(c') = 1 - tanh’c’

g/ (s)>0 ; s<c
4.9 g/(s)<0 ; s>c
g/(s)=0 ; s=¢

Proof: The proof includes the following sections:

1. To show that g is of class C ! , it is required to prove that g '(s) exists and it is
continuous. By the definition of the derivative,

. 8(s5)—g.(c)
m=—-_"-° °

g'(s) = h
s—>c N &
LIS _ e
= lim
s—>c §—cC
i[9 =)~ (= O)f (e)
s—>c (S _ 6)2

Applying L’HOpital’s rules rule yields
N O A
g:(s) = Im=—"—13

Since the above equation is not defined when s — ¢, so another L’HOpital’s rule yields
, n S
gl(s) = % (A.10)

The above equation guarantees the existence of g.'(s) . The next step is to show that g '(s)

is continuous. To show the continuity of g '(s) , it is enough to show the following equation

1S true



g (¢c) = limg'(s)

— lim =) '(0) ~ [A(s) —fle)] (A.11)
s—>c (S—c)2

By the definition, the derivative of g, at ¢ is defined as

. g.(s)—g.(c)
m —-— -

g/(c) = 1li
s—>c sS—C
- vli—l;nch(Sz':fC(C) (A.lz)
i [ =) = (s = o)f '(e)
s—>c (S _ 0)2

By applying the L’HOpital’s rule to above equation twice, g,'(¢) will be derived as follows

g/(c) = (A.13)

By applying L’HOpital’s rule to the right hand part of (A.11) the following equation will

be derived

i GO ()~ [() ~AO)] _ i (5= () +1"(5)~f(5)

s—>c (S—C)2 s—>c 2(S—C)

1)
2

(A.14)

Equation (A.13) and (A.14) prove (A.11). This is enough to say that g _'(s) is continuous

at s = c. Since ¢ can be any number in the domain, g _'(s) is a continuous function in the

entire domain.
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2. The proof to this part can be achieved by inspection. The function g_(s) goes to

zero as s — —o because the numerator is bounded and the denominator goes to —oo . There-
fore, the quotient goes to zero. The case when s — oo can be proven similarly.

3. The function f{s) = tanh(s) is concave up for s < 0. This is enough to say that
the slope of the tangent line at s = —c is less than the slope of the cord connecting two
points(c, f(c)) and (—c, —f(c)) . In other words,

f'(=¢) <g.(-c) (A.15)
Also the slope of the tangent line at the origin is greater than the slope of all the cords piv-
oted at (c, f(c)) . Furthermore,
£'(0) > £,(0) (A.16)
Since both f and g, are continuous functions, and /"' — g_. changes sign in the interval
[—c, 0], by the Intermediate Value Theorem (IVT), there is a point ¢' € [—c, 0] such that
g.(c") = f'(c) (A.17)

Equation (A.17) proves this part of the theorem.

4. This part of the proof is more important than the previous parts, because the re-

sults will be used directly to prove Lemma A.2. The derivative of g_'(s) at s —c # 0 is de-
fined as

e ) AN

(s—c) (A.18)
_J'(5)—g.(s)

s§—=cC

g/(s) =
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Figure (A.1) shows the graph of g (s) for a positive c. It can be observed from the graph

that the entire domain can be divided into four regions.

[-c,tanh(c)/c]/

Figure (A.1) g.(s) divided into four regions

Region A: In this region, s > ¢ and the function f{s) = tanh(s) is concave down.
As can be observed from Figure (A.2), the slope of the tangent line at any point in this re-
gion is always less than the slope of the cords pivoted at (¢, f(¢)). In other words,
f'(s) <g.(s). So the numerator of (A.18) is negative and the denominator is positive.
Moreover

g/ (s)<0 (A.19)
Region B: In this region 0 < s < ¢ and the function f(s) = tanh(s) is concave

down. The difference between this case and previous case is that s lies on the left side of



c. As can be observed from Figure (A.2), the slope of the tangent line to the function at any
point in this region is always greater than any cords pivoted at (¢, f(c)). In other words,
f'(s)>g.(s). So, the numerator of (A.18) is positive and the denominator is negative.

Therefore

g.(s)<0 (A.20)

(c.f(c))

Figure (A.2) tanh(s) is concave down for s > 0

Region C: In this region, -c¢ < s < 0. Since the argument to define the sign of g’ in

theregion s € [—c, ¢'] and s € [¢', 0] is similar, the proofis only given for the case when
s € [—c, ¢']. Denote point A on the graph of f at (c, f(c)) by (a, b) . Consider a point, B,
in the assumed interval on the graph of / and denote it as (¢, d) . The line BC is the tangent
line at a point in the interval. This line crosses the cord with one end at (¢, f(c)) and the

other end at (c¢', f(c")) . Denote the cross point as C. In order to simplify the proof, let us

shift the coordinate to the point C. The slope of the line AB is equal to
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2.y ~ O
A21
_b-d ( )

a—=c¢

The slope of the tangent line, BC, at s in the interval is equal to c-i The claim here is as
c

follows

(A.22)

SN ESW
>~
|
S

Q
|
)

The line AC has the following equation
b
y(s) = =5
a

Because of the location of the point B, d — lzc > 0. Due to the location of the points A, B
a

and C and the reason that f is monotonically increasing, the following inequalities can be
derived

c<a
d<b
c<0 (A.23)
d<0
a>0

Beginning with d — l—)c > 0 and considering (A.23) the following inequalities are always
a

valid
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d>l-)c

a
ad>bc
ad—cd>bc—cd (A.24)
dla—c)>c(b-d)
é<b—d

c a—c¢

The final inequality in (A.24) proves the claim in (A.22).

f(s) A
[c.f(c)I=[a,b]

B Vi
/7
[s.f(s)I=[c.d] e

7
7
7
7

Figure (A.3) Geometric representation of g.(s) and f'(s) for s € [—c, ¢']

Region D: In this region, s < —c, the function f is concave up. Similar to the graph-
ical representation given in Figure (A.2), it can be observed that the tangent line to the func-
tion at any point in this region is below the cord with one end pivoted at (c, f(c)) and the
other end at (s, f(s)) . In other words, f'(s) < g.(s) . Moreover, the numerator of (A.18) is
negative and the denominator is negative as well. Furthermore

g./(s)>0 (A.25)
Merging the results from the four regions proves the final part of the theorem.
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Lemma A.2 Let 0 < c <r and r to be defined in (4.21). Defining the new functions

tanh(s + ¢) — tanh(c)

fi(s)=
fr(s)=1- tanhz(s +¢) (A.26)
f3(s) =f2(S)—f1(S)

If |s +c| <r for Vs € R then
f(8)<0 5 —r—c<s<s,
f3(s)>0 ; §,<s5<0 (A.27)
f(s)<0 ;5 O<s<r+c

where s is the unique maximum point of f; .

Proof: According to (A.18), there is a relationship between f; and g_. For the

case when s — ¢ # 0 the relationship can be written as follows

tanh (s + ¢) — tanh(c)
S (A.28)
= fi(s)

g(stc) =

In Theorem A.1 part 4 it has been proved that ¢’ is the unique maximum point of g_.(s) .
Equivalently, ¢’ — ¢ would be the unique maximum point of g (s + ¢) for Vc > 0. By the
lemma assumption, s, is the unique maximum point of £, (s) .Additionally since

g.(s+c) = fi(s) for s —c # 0, the two maximum points should be identical. In other

words
c'—c =35 (A.29)

There is another relationship between g_.'(s + ¢) and f5(s) . The relationship can be derived
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by evaluating (A.18) at s + ¢. So

tanh(s) — tanh(c)
s—c
s (A.30)

2
Il —tanh (s+c¢) -

g/(s+c) =

The sign of f5(s) depends on the sign of g.'(s + ¢) and s. Consider the following three
cases:

1. For s < ¢' — ¢, the derivative of function g (s + ¢) is greater than zero because
¢’ —c is the unique maximum point for g.'(s + ¢) . The function g (s + ¢) is continuous

so its derivative on the left side of the maximum point must be positive. Furthermore, by

(A.30)

f3(s)<0 fors<c'—c (A.31)
2. For ¢" — ¢ <s <0 the derivative of function g.(s + ¢) is less than zero. The rea-
son for this is similar to case 1. The function g (s + ¢) is a continuos function and the de-
rivative on the right hand side of the maximum point is negative. Hence,
f3(s)>0 forc'—c<s<0 (A.32)
3. For 5 > 0 the derivative of function g (s + ¢) is still less than zero for the same
reason given in case 2. In other words
f3(s)<0 fors>0 (A.33)
Theresultsderivedin(A.31),(A.32),(A.33) plusthe equality in (A.29) proves the lemma.

O
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Corollary A.1 When ¢ = 0, f5(s)<0 for Vs e R.

f1 and f2 when ¢c=0

0.9 4
0.8 1 h
0.7 h

0.6 i

Mag
=}
[$)]

T
N
Il

0.3 i

0.2 b

0.1 b

Figure (A.4) When ¢ = 0, f5(s) <0 for Vs € R.

Proof: The proof'is exactly the same as the proof given for the Lemma A.2 with
the difference that when ¢ = 0 then s; = 0. According to (A.27), f5(s) <0 for Vs € R.

O
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