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Abstract

Over the past decade, storage channels have undergone a steady increase in capac-

ity. With the prediction of achieving 10 Tb/in2 areal density for magnetic record-

ing channels in sight, the industry is pushing towards di�erent technologies for

storage channels. Heat-assisted magnetic recording, bit-patterned media, and two-

dimensional magnetic recording (TDMR) are cited as viable alternative technolo-

gies to meet the increasing market demand. Among these technologies, the two-

dimensional magnetic recording channel has the advantage of using conventional

medium while relying on improvement from signal processing. Capacity approach-

ing codes and detection methods tailored to the magnetic recording channels are

the main signal processing tools used in magnetic recording. The promise is that

two-dimensional signal processing will play a role in bringing about the theoretical

predictions.

The main challenges in TDMR media are as follows: i) the small area allocated

to each bit on the media, and the sophisticated read and write processes in shin-

gled magnetic recording devices result in signi�cant amount of noise, ii) the two-

dimensional inter-symbol interference is intrinsic to the nature of shingled magnetic

recording. Thus, a feasible two-dimensional communication system is needed to

combat the errors that arise from aggressive read and write processes.

In this dissertation, we present some of the work done on signal processing aspect

for storage channels. We discuss i) the nano-scale model of the storage channel,

ii) noise characteristics and corresponding detection strategies, iii) two-dimensional

signal processing targeted at shingled magnetic recording.

x



1 Preliminaries

1.1 Introduction

The ubiquitous presence of digital information and rapid growth of digital data

generation have been a paradigm shift at the beginning of this millennium. The

rate of data generation has been expanding at an astounding pace, and the trend

won't stop anytime soon. The data generation rate has taken a faster pace than

Moore's law; data production is doubling every two years [1]. New frontiers to use

the accumulated data have been discovered in many disciplines: national security,

medicine, agriculture, advertising, etc.

Storage units are at the core of data infrastructures. Magnetic recording is an

available technology for data storage. Magnetic recording devices provide a cost

e�ective, reliable, high speed, non-volatile - maintaining the stored data with no

power - and high capacity solution to the data storage units. These attributes have

made magnetic devices relevant for personal use as well as the primary choice for

the big data industry.

Storage devices have gone through incessant and often revolutionary changes since

the invention of the �rst commercial hard drives by IBM [2]. Today, there are

alternative technologies available to store information, for example solid state drives.

The research on other technologies such as magnetoresistive random-access memory
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(MRAM), is under way too. However, the magnetic recording devices persist as the

dominant storage devices to store digital information.

The capacity of hard-disc drives is determined by the areal density. Areal density

is the number of information bits on a given surface area and is stated in bits per

square inch units. The current achievable areal density is slightly above 1 Tb/in2

[3]. The increase in areal density is the result of several factors: better head design

such as tunnel magneto-resistance read sensors, scaling of geometry of mechanical

parts, superior materials for higher performing media, and improvement on signal

processing techniques.

Magnetic recording channels are a baseband communication system. The basic

components of the baseband communication system are: encoder, equalizer, detec-

tor, and decoder. The role of each component will be discussed in this chapter. For

magnetic recording channels, stream of data is transferred over the channel in time,

as opposed to space (in channels such as Ethernet.)

Signal processing improvements have been essential to increase capacity. The ad-

vent of partial response equalizers and advanced error control coding have had a

huge impact on the current areal density. The implementation of such techniques

has been made possible due to advances in semiconductor technology. However,

reaching higher areal densities faces new challenges. Currently, the most promis-

ing technologies to increase the areal density beyond the current limit of 1 Tb/in2

are heat assisted magnetic recording (HAMR) [4], bit patterned magnetic record-

ing (BPMR) [5], and shingled magnetic recording for continuous medium [6]. All

the possible candidates more or less encounter the same problem, namely, they

require two-dimensional (2-D) signal processing [7]. The interference is two- dimen-

sional; not only down-track signals interfere with each other but also the side tracks

contribute to interference. This inter-track interference (ITI) introduces a new di-
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mension to the problem which has its own implication from the signal processing

perspective.

1.2 High Density Data Storage

A magnetic recording device has three basic components: the media, the write and

read heads, and the signal processing unit. Digital information is stored by mag-

netization on the disc in di�erent directions. For perpendicular magnetic discs, the

magnetization directions are upwards and downwards, oriented perpendicular to the

surface of disc, as depicted in Fig. 1.1. The magnetization directions and therefore

the data is retained on the surface of the recording disc and can be recovered later

on.

The head which carries write and read sensor �ies over the disc at a close distance.

The write sensor consists of a coil which translates the applied current provided by

the write circuit to magnetic �eld. The magnetic �ux circles through the permeable

core of the head and then the layers of soft and hard magnets of the disc and

closes at the the other end of the head. The head �ies at a strategic distance to

the surface of the magnetic disc. The gap between the head and the magnetic

material is small enough to allow a high intensity of magnetic �ux. The magnetic

�eld saturates the ferromagnetic layer of the underlying media to write a binary

symbol. The read sensor senses the magnetization direction written on the disc.

The magnetization direction changes the impedance of the read sensor which is

measured by the sampling circuit. The phenomenon that describes the changes in

the impedance of read sensor is known as the megnetoresistance e�ect.

We discuss in detail each component of a magnetic device in this section. Devel-

opment of higher user density magnetic devices is a�ected by the following factors;
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Figure 1.1: Components of magnetic recording device and magnetized cells in the
media.

shrinking head dimensions, increasing sensitivity of read sensors, high resolution

recording media, and advanced signal processing [8].

1.2.1 Media

Magnetic recording started a century ago and since then has gone through several

breakthroughs. Hard drives remain the essential data storage device. The magnetic

recording material used in the hard-disc drives is a thin �lm of ferromagnetic metal

alloys. One of the properties of the quantum mechanical spin of electron is that it

acts as a magnetic dipole. When a magnetic �eld is applied to a material, the mag-

netic dipoles are aligned to the direction of magnetic �eld. The magnetic moment

is the result of microscopic current, change in the spin of electrons, and in smaller

amounts the orbital angular moment of electrons around the nucleus. Magnetization

is de�ned as a change in magnetic moment per unit volume.

The hysteresis curve shows the relation between magnetizationM and the applied
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Figure 1.2: Magnetic hysteresis curve in ferromagnetic material.

magnetic �eld H (Fig. 1.2). For ferromagnetic materials, once the �eld is strong

enough to reach the saturation level on the hysteresis curve, the direction of magne-

tization is preserved even after the magnetic �eld is removed. After magnetization,

according to the hysteresis curve, extra energy is needed to demagnetize a ferromag-

netic material, usually through an opposite magnetic �eld. We use the preserved

magnetized directions to store information. On the other hand, the magnetic �eld

is not the only source of energy that can change the magnetization. Thermal �uctu-

ations also work against the magnetization direction and may switch the direction

of magnetization.

The continuous medium is made of hard and soft layers on top of a substrate.

The soft magnetic under-layer (SUL) is made of magnetically permeable material.

This means it acts as a mirror and we can assume the image of the recording head

or the read head is present in the SUL. The design factor in choosing the SUL

are the thickness and magnetic moment requirement. The hard layer is made of a

ferromagnetic alloy and has granular structure. Thin �lm poly-crystalline materials

have been the primary choice for perpendicular devices. The thin �lm is deposited

by sputtering in vacuum. The grains are made to form an isolated island on the
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substrate which reduces the demagnetization e�ect.

High density media are perpendicular media. Perpendicular refers to the angle of

magnetization direction with respect to the media surface [9]. The reason behind

the use of perpendicular media is the demagnetization e�ect from the neighboring

grains. The magnetized neighbors produce a magnetic �eld which could demagnetize

the grain. Using the perpendicular media reduces the demagnetization e�ect. This

is particularly important for higher density media. Another factor that play a role

in higher densities is the thermal stability [6]. As discussed, the thermal �uctuation

could change the magnetization. Unfortunately, thermal stability is a function of

grain size and becomes an impending problem in practice for high areal densities .

1.2.2 Recording Process

Here, we give a sketch of what happens in the recording process. The aim of the

recording process is to magnetize grains using the recording head. The recording

head needs to produce a strong magnetic �eld to saturate the grains. The �eld

also should be localized for narrow tracks and sharp transitions. In hard drives the

recording head and read head are separated. The recording head is a single pole.

The current in wire coiled around the pole produces a magnetic �eld. Therefore,

the main pole and auxiliary pole tips form a magnetic �eld loop that goes through

the SUL [10]. The recording pole is surrounded by shields. The role of shields is to

improve the �eld gradient. The schematic is shown in Fig. 1.3.

For higher densities, the recording head needs to keep up with the size of grains;

smaller recording heads are physically incapable of writing in downsized scale. The

recording head size limits the magnetic �eld produced by the head. To overcome the

issue the shingled recording process was introduced [6]. In this process the magnetic

�eld is concentrated on a corner of the recording pole. After the information is
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Figure 1.3: Write head for magnetic recording device [11].

written down on the track, the head moves to the next one. However, the written

tracks partially overlap each other. The outcome of writing over a patch would look

the same as shingles on the rooftop. The remnant of each track that has not been

covered by the consequent tracks form bit-cells. A read head which is smaller in

size, can read these bit-cells.

1.2.3 Read-back Process

Read sensor technology is based on the giant magnetoresistive (GMR) e�ect [12].

The GMR e�ect is the change in the resistance of connected layers of ferromagnetic

and non-magnetic metals due to an external magnetic �eld. Current-perpendicular-

to-plane (CPP)-GMR read heads are common read sensors in perpendicular record-

ing. The CPP-GMRs have a small resistance and maintain a high magneto-resistance

ratio. The small resistance reduces the thermal noise. These properties are appeal-
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Figure 1.4: Sample of playback waveform for perpendicular recording [10].

ing for high areal density and have been the subject of many studies. A typical

waveform at the output of a read sensor is shown in Fig. 1.4.

The GMR e�ect is related to electrons spins. According to the Mott model [13], in

metals electrons mostly conserve their spin after scattering. Furthermore, in ferro-

magnetic metals the scattering coe�cients are di�erent for down and up spins. This

is the basis for spin dependent resistance in ferromagnetic metals. We assume the

scattering is stronger for electrons with spin opposite to the magnetization direction

and weaker for parallel spins.

To explain the GMR e�ect, imagine electrons passing through layers of magne-

tized ferromagnetic metals each enveloped in layers of non-magnet metals. The

interface between non-magnetic and ferromagnetic metal magni�es the spin depen-
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Figure 1.5: Giant magneto-resistive e�ect in read sensor of Nb/Co/Nb [14].

dency scattering. For two di�erent magnetic �elds in the opposite direction, the

down and up spins experience the same amount of resistance as one of the layers

lets them go through and the other one scatters them. On the other hand, for

the magnetic �elds in the aligned direction, either the up or down spin electrons

are passing through the parallel magnetic �eld with ease and little scattering, and

therefore the total resistance is much smaller. The magneto resistance ratio is sim-

ply the normalized di�erence between the two observed resistances for the aligned

and opposite magnetization direction.

A variation of the read head sensor, the tunneling magneto-resistive (TMR) sen-

sor, uses a thin insulator in between ferromagnetic metals. Electrons tunnel through

the insulator barrier which is explained as a quantum mechanic phenomenon. In this

case, the tunneling occurs with higher probability if the magnetic �elds are aligned.

This results in the magnetoresistive e�ect. The TMR usually shows a higher resis-
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Figure 1.6: Components of baseband communication system: magnetic recording
channel, partial response equalizer, channel detector, encoder and de-
coder.

tance and magneto-resistance ratio with respect to CPP-GMR. The TMR sensors

are currently used in higher areal density disk drives.

1.3 Communication System Model

The components of a baseband communication system are explained in this section.

The information is presented in binary format. The zeros and ones are turned

into bipolar bits and go through an encoder. The encoder adds redundancy to the

message to ensure that the message can be retrieved with no error at the other end

of the communication link. The encoded message is written on the disc. Although

the information is in binary format, the read out is an analog signal. The read

out signals are sampled at baud rate. These samples are collected at the matched

�lter output to maximize the signal-to-noise ratio (SNR). The output goes through

another �lter called the equalizer. The role of the equalizer is to shorten the pulse

response of the channel. The outputs of equalizer are then fed into the detector.

The detector decides on what to make of the noisy outputs of the channel, and

these decisions are handed to the decoder to decipher the original message. These

components are considered the most basic elements of any communication systems.

A brief explanation is given here as a reference for the other chapters.
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1.3.1 Channel Characteristics

Although the read-back process was explained in Section 1.2.3, we would like to

have the characteristics of the channel model in simple mathematical form. In this

manner, the channel model can be used in simulations or to help our understanding

of the channel. The more detailed version of noise characteristics in the read back

channel is explained in Section 1.4.

A sequence of input bits xn ∈ {−1, 1}, are written on the disc. However, the

read sensor only responds to transitions of magnetization directions. To express the

read out signal we de�ne the transition sequence: the transition sequence bn are the

bipolar input bits that has gone through 1− D �lter (D is the delay operator)

bn = xn − xn−1. (1.1)

At the output of read sensor after K consecutive read outs we can write the output

as

r(t) =
K∑
k=1

bks(t− kT ) + n(t). (1.2)

The n(t) represent the additive white Gaussian noise (AWGN). The function s(t) is

the step response of the channel that is to say the response of channel to a single

isolated transition. An example of a step response for perpendicular recording is

s(t) = V tanh

(
ln 3

T50

t

)
, (1.3)

where T50 is the time that response reaches 75% of its maximum, and V is the

magnitude of pulse response. To write the output signal in terms of input values we

use the pulse response h(t) de�ned as

11



Figure 1.7: Pulse response and step response of perpendicular recording channel.

h(t) = s(t)− s(t− T ), (1.4)

which is the response of channel to two magnetic transitions in opposite directions.

Then we are able to write the output function in terms of input values,

r(t) =
K∑
k=1

xkh(t− kT ) + n(t). (1.5)

The pulse response and step response of a perpendicular magnetic recording is

illustrated in Fig 1.7.

The output of the channel is further fed into a matched �lter, de�ned as h(−t).

Then sampled at baud rate T . If the output of the matched �lter is de�ned as y(t),

12



the convolution of r(t) and matched �lter r(t) ? h(−t), then y(kT ) are the collected

samples, ȳk's. These samples would go through a �nite impulse response (FIR) �lter

known as the equalizer.

1.3.2 Equalizer and Partial Response

A very basic issue with magnetic recording channels is the presence of intersymbol

interference (ISI). The moving read head scan over bit-cells and collects samples.

The channel response has a long tail. The long tail increases the computational

complexity of the detection algorithm prohibitively. To get rid of channel's long ISI,

the common practice is to �lter the output to either no ISI (full response equalizer)

or reduced ISI (partial response equalizer).

The detector operates on the linear �ltered response of the channel. The linear

�lter used is called the equalizer. The role of the equalizer is to shape the response of

the channel and make it shorter. The combined output of the equalizer and channel

is described by a polynomial and is called the target. The goal is to design the

target as close as possible to the channel response. Also, the target - the short span

polynomial describing the ISI in the channel - helps to �nd the parameters of the

detection algorithm.

Examples of targets that have been used in the beginning era of magnetic record-

ing channels are PR4 and EPR4. The polynomial describing a PR4 channel is

(1− D2), and for EPR4 (1− D)(1 + D)2. The modern targets use polynomial with

real coe�cients, generalized partial response (GPR) [15].

Let the equalizer be a polynomial of order M and the target have ξ+ 1 elements.

The steps to derive an equalizer are as follows

� Choose the suitable size for equalizer and target fM1 ,gξ1

13



� De�ne ek = f [yk+1, ..., yk+M ]T − g[xk−ξ, ..., xk]
T

� Minimize the best linear estimator's mean squared error, E[e2
i,j|f ,g] with re-

spect to constraint g1 = 1 to �nd f ,g.

1.3.3 Detection

At the receiver the decision on received samples is made by minimizing the risk which

in turn is an optimization problem. In the presence of ISI, each sample depends on

more than one input and therefore the solution to the optimization problem is the

sequence that comes closest to the transmitted message in our search space. In

choosing a detector, the pertinent criterion besides performance is computational

complexity. There are two e�cient algorithms available: The Viterbi algorithm [16]

and the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [17]. These two algorithms

under the AWGN assumption would �nd the optimum solution. They have a linear

computational complexity with respect to number of transmissions and exponential

with respect to the number of states on the trellis diagram.

Both BCJR and Viterbi algorithms use the trellis diagram to �nd the optimum

solution in channels with memory. The trellis diagram is the manifestation of the

underlying �nite state machine through the passage of time. At each step, the

system is at one of the possible states in �nite state machine. For example, a �nite

state machine with two memory bits has four states (00), (01), (10), (11). The

trellis structure is shown in Fig. 1.8. The current state represents the content of

the memory. The new incoming bits advance the system forward in time into a

new state. In this manner, the detector uses the diagram to traverse on all possible

paths.
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Figure 1.8: Structure of trellis for a channel with memory.

Maximum Likelihood Sequence Detection

The maximum likelihood sequence detection (MLSD) of input data given the re-

ceived samples is stated as

x̂ML = arg max
x

fY |X(y|x), (1.6)

where the elements of y is the observation and x is the message which belongs to

{−1, 1}Kx . Suppose the message has Kx elements and xi = 0 for i < 0. Assuming

the causality the conditional distribution can be written as

fY |X(y|x) =
Kx∏
i=1

fY |X(yi|yi−1
1 ,xi1) =

Kx∏
i=1

fY |X(yi|xii−ξ), (1.7)

where yi represent an element in R identi�ed by f [yi+1, ..., yi+M ]T . The second equal-

ity is by conditional independence. The conditional distribution term for AWGN

channel can be written as
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Algorithm 1.1 Viterbi Algorithm
� Initialize the state values

� Do the following steps for all received signals (i = 1, ..., Kx) on trellis diagram

� Calculate the branch metrics as given in (2.15)

� Add the state values at time i and outgoing branch metrics

� Assign the smallest incoming branch values to the state values i+ 1

� Starting from the last time, choose the smallest state values at each step as
the survivor path

� Report back the survivor path's branch labels as the detected message

fY |X(yi|xii−ξ) = (2πσ2
e)
−1/2exp

[
−
[
yi − g[xi−ξ, ...xi]

T
]2

2σ2
e

]
, (1.8)

where σ2
e is the variance of the white noise. The branch metrics on the trellis

is de�ned by − ln fY |X(yi|xii−ξ). The Viterbi algorithm use the log of conditional

distribution to solve

x̂ML = arg min
x

Kx∑
i=1

[
yi − g[xi−ξ, ...xi]

T
]2
. (1.9)

The answer to the optimization problem (2.15) is given through the Viterbi al-

gorithm on the trellis diagram depicted in Fig. 1.8. On the trellis, the xii−ξ de�nes

the states at each time i and xi indicate the branch labels. The number of states

at each step is 2ξ with 2 outgoing/incoming branches to each state. The Viterbi

algorithm implementation is given in Algorithm 1.1.

The Viterbi algorithm is simply based on Bellman Principle of Optimality: �An

optimal policy has the property that what ever the initial state and initial decision

are the remaining decision must constitute an optimal policy with regard to the

state resulting from the �rst decision.�
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The Maximum A-posteriori Detection

The alternative algorithm to solve the sequence detection is to use the maximum

a-posteriori (MAP) formulation. The complexity of the algorithm is in the same

order as the Viterbi algorithm. However, the BCJR algorithm is a symbol-by-symbol

algorithm unlike the Viterbi algorithm. The decoded message at the output of the

Viterbi algorithm is a sequence of bits. The symbol-by-symbol nature of BCJR

has its own advantages: the estimated bits can be expressed in terms of each bit

independent of the sequence. These outputs are in form of soft values meaning that

its magnitude shows our con�dence in the estimated bit. The exact mathematical

term for the soft value is the log-likelihood ratio (LLR) and de�ned as

Lk , log
p(xk = 1|y)

p(xk = −1|y)
. (1.10)

It is easy to turn the soft values into the decoded message; we simply look at the

signs of LLR's for each bit. Before getting into an explanation of the algorithm we

give the MAP formulation as

x̂MAP = arg max
x

f(x,y). (1.11)

The estimation can be further simpli�ed under Markovian property of input values

and conditional independence as

fY,X(y,x) = fY |X(y|x)fX(x) =
Kx∏
i=1

fX(xi|xi−1)
Kx∏
i=1

fY |X(yi|xii−ξ), (1.12)

The conditional distribution is the same as given in (1.8).

On the trellis diagram, s is the current state, and s′ indicates the previous state. The

numerator sums over all the transitions that pin down ak = 1, and the denominator
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for ak = −1. On the trellis diagram Lk can be written as

Lk = log

∑
ak=1

p(sk−1 = s′, sk = s,y)p(y)∑
ak=−1

p(sk−1 = s′, sk = s,y)p(y)
+ log

p(ak = 1)

p(ak = −1)
, (1.13)

where the �rst term is called extrinsic information and the second term is a priori

LLR. The joint probability p(sk−1 = s′, sk = s,y) is then expanded into three

independent probabilities

p(sk−1, sk,y) =

αk−1(s′)︷ ︸︸ ︷
p(s′,yk1)

γk(s′,s)︷ ︸︸ ︷
p(yk, s|s′)

βk(s)︷ ︸︸ ︷
p(yKk+1|s), (1.14)

To write the equation in a format useful for the BCJR algorithm we need to rewrite

γk as follows

γk = p(s|s′)p(yk|s′, s). (1.15)

On a given branch it is feasible to calculate the probability p(yk|s′, s) for the branch

label. For binary inputs, the conditional probability p(s|s′) depends on the ak being

−1 or 1. Once available, in iterative detection, the value for p(s|s′) can be found

through a priori LLR's. In absence of such information we assume a priori LLRs

are zero, i.e. p(s|s′) = 1. The description of BCJR algorithm is given in Algorithm

1.2.

State of the Art Detection in Magnetic Recording

The current magnetic recording systems use a GPR channel using partial response

equalization. The number of states on the trellis diagram is determined by the ISI

length. For current densities, the BCJR algorithm is a feasible algorithm. The soft

values at the output of the detector are fed into a decoder. Some systems use extra
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Algorithm 1.2 BCJR Algorithm
� Initialize the initial state values

� Do the following steps for all received signals (i = 1, ..., Kx) on the trellis
diagram

� Calculate the branch metrics γk(s, s
′) as given in (2.15)

� Recursively calculate αk =
∑

s′∈S αk−1(s′)γk(s
′, s) for k = 1, ..., K

� Also �nd βk−1(s′) =
∑

s′∈S βk(s
′)γk(s, s

′) for all states k = K, .., 1

� Assign the log likelihood ratio Lk for each time k on the trellis

� Detect message âk by setting ak equals to 1 or 0 according to the sign of Lk.

iterations of detection and decoding provided that error control coding updates the

a-priori information on each bit which results in performance gain of the overall

system. The described turbo equalized system is described in [18].

We assumed, in implementing the detector so far, that the noise at the output

of the equalizer is white. However, the white assumption is not true in the phys-

ical channel. The improvement over performance of the available detectors in the

magnetic recording channel comes from noise correlation. The assumption is that

the noise is self correlated and also correlated to the input signal. The pattern

dependent noise predictive (PDNP) Viterbi algorithm was �rst introduced in [19].

The noise is assumed to be an auto-regressive process and signal dependent. The

characteristics of the noise are detailed in Section 1.4. Essential to the optimum

solution is that the noise has the following description

ni = b1(xii−ξ)ni−1 + · · ·+ bν(x
i
i−ξ)ni−ν + σ(xii−ξ)wi, (1.16)

where b = [b1(xii−ξ), ..., bν(x
i
i−ξ)] represents the coe�cients of auto-regressive �lter.

The noise is modeled as Gauss-Markov process of length ν. For brevity, let s(xii−ξ) =

g[xi−ξ, ...xi]
T . Then the output of channel is expressed as
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yi = s(xii−ξ) + ni. (1.17)

We skip the full derivation of the algorithm as it is given in [20]. The branch

metrics for MLSD is updated as follows

x̂ML = arg min
x

K∑
i=1

log σ2(xii−ξ) +

(
[−bT , 1]

(
yii−ν − s(xii−ξ−ν)

))2

σ2(xii−ξ)
. (1.18)

The log-likelihood given in (1.18) de�nes the branch metrics on the extended states

trellis. The Viterbi algorithm as described in Algorithm 1.1 with the new branch

metrics �nds the optimum solution to the auto-regressive correlated noise problem.

1.3.4 Error Correcting Coding

Error control coding consists of encoding and decoding methods which try to achieve

reliable and e�cient data transmission through an unreliable channel with the aim

to reach rates close to the Shannon's limit. This limit shows the ultimate amount

of information that can be transferred through a communication channel while the

integrity of information remains intact. The limit has been known for long since the

original paper was published in 1949 [21], but there were no algorithms available to

get close to the capacity until the 1990's.

Since the rediscovery of low-density parity-check (LDPC) codes [22] by MacKay

[23] as a class of capacity approaching codes, they have found di�erent applications

in various digital standards and technologies. Over the past decade, a great deal of

research has been made on design, construction, encoding, decoding, performance

analysis, generalization and applications of these codes.

LDPC codes are linear block codes that are constructed by designing a sparse
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parity-check matrix and achieve good error performance close to the Shannon limit

[24]. Various methods for constructing LDPC codes have been proposed with a

great deal of research into their design and construction.

A regular binary LDPC code C is given by the null space of a sparse parity-check

matrix H over GF (2) for which each column has weight γ and each row has weight

ρ, where γ and ρ are small compared to the code length [25]. Such an LDPC code is

said to be (γ, ρ)-regular. If H is an array of sparse circulants of the same size over

GF (2), then the null space of H gives a quasi-cyclic (QC)-LDPC code. If H consists

of a single sparse circulant or a column of sparse circulants, then the null space of H

gives a cyclic LDPC code. Detailed explanation of the LDPC constructions listed

above has been omitted to avoid repetition of the content of the respective papers

from which the construction are based.

There are various methods for decoding LDPC codes. The sum-product algorithm

(SPA) decoding gives the best error performance out of all methods and is practically

implementable providing near-optimal performance [26].

The SPA algorithm determines the a posterior probability of each message sym-

bol as a function of the parity-check equations and the channel characteristics which

are conveniently described using a Tanner graph [27]. A Tanner graph is a bipartite

graph consisting of factor nodes and symbol nodes. On the Tanner graph, the con-

straints under which the codewords are constructed de�nes the factors. Each symbol

node dj send to each of its children factor nodes hi an estimate of the probability

that the parity-check node is in state x, based on the information provided by the

other children nodes of that symbol node. On the other hand, each factor node hi

send to each of its parents symbol nodes dj an estimate of the probability that the

parity check equation i related to the factor node hi is satis�ed, if the symbol or

parent node is in state x, as illustrated in Figure 1.9. This is an iterative process
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Figure 1.9: A Tanner graph linking symbol and factor nodes.

of interchanging information between the two types of nodes on the Tanner graph.

The iterative process �nishes after successfully calculating the syndrome condition

over the estimated decoded vector, or halted when it reaches a given predetermined

number of iterations. Under certain circumstances the convergence to exact solution

is guaranteed [28].

There are several other capacity approaching error control coding methods avail-

able today; polar codes [29], repeat and accumulate codes [30], and turbo codes

[31]. These codes are designed for memory-less channels. The research on a more

comprehensive construction that covers a channel with memory is still on going.

1.4 Noise Characteristics

An accurate description of characteristics of the noise can have a considerable im-

pact on the performance of the communication system. The idea is to model the

sophisticated underlying physics in a simple mathematical form to capture the com-

plex behavior of the system. On one hand simplicity is required to assure that other

components of the communication systems is adapted to the new model. On the

other hand, the model should be descriptive of physical phenomena that happen in
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the physical channel. In this section, we explain the known useful models and give

a brief description.

1.4.1 Markov and non-Markov noise

From the perspective of detection the independent noise characteristics is ideal.

The computational complexity of such a detector reduces signi�cantly. However,

in practice, the independent assumption rarely matches the physical channel noise.

One of the concepts that helps us de�ne alternative characteristics is the Markov

property [32]. Let {Ni} be a sequence of random variables for i = 1, ..., K. We

assume collected noise samples are correlated. Provided that the sequence has a

Markov property, the joint density of the noise samples can be factored as follows

fN (n) =
K∏
i=1

fNi(ni|ni−1
i−p), (1.19)

with Markovian noise of order p. Knowing the value of p previous samples tells

us about the characteristics of current sample as much as if we had the complete

sequence.

We give two sequences generated by MA and AR �lter as an example. Let wi's

being the independent random variables and the relation between discrete random

variables Ni's be expressed as

ni = a1ni−1 + · · ·+ aνni−ν + wi, (1.20)

where a = [a1, ..., aν ] is the coe�cient of AR process with �nite degree. Given that

wi is AWGN noise with mean µ and variance σ2
w, we can write
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fN (ni|ni−1
i−p) =

1√
2πσ2

w

exp

(
−

(ni − µ− aTnii−p)
2

2σ2
w

)
. (1.21)

The sum of random variables that de�nes ni are jointly Gaussian. Therefore, the

sequence is described by Gauss-Markov process.

We de�ne the sequence as MA with following description

ni = a1wi−1 + · · ·+ aνwi−ν + wi. (1.22)

The sequence {Ni} does not admit a Markovian property. By Bayes' law we have

fN (n) =
K∏
i=1

fNi(ni|ni−1
1 ). (1.23)

Note that the indices on the condition parameters starts from the beginning of the

sequence this time.

1.4.2 Pattern Dependency

In the previous section we assumed a rather linear model to de�ne the correlation

of noise terms. The linear model was described by constant coe�cients. A more

elaborate model may assume these coe�cients could change with time or according

to another parameter available in the system. In magnetic recording the third

parameter is the input signal. In other words, the received noise characteristics

di�er based on the pattern of the written bits.

Unlike the MA and AR correlated noise, the covariance of the noise is not constant

anymore. Since the pattern of written data changes, the correlation is also modi�ed

over time. This means that the noise covariance matrix is dependent on time and

hence the process is non-stationary.
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Let us give an example by de�ning the noise term ni ∼ N (0, σ(xi)) as follows

E[n2
i ] = σ2(xi), (1.24)

and for signal dependent MA model in (1.22) we have

ni(x
i
i−ν) = a1(xi−1)wi−1 + · · ·+ aν(xi−ν)wi−ν + a0(xi)wi. (1.25)

Then, for wi ∼ N (0, 1) the elements of covariance matrix are given by

E[ninj] =

i,j∑
k=i−ν,l=j−ν

ai−l(xl)aj−k(xk)δ[l − k]. (1.26)

1.4.3 Jitter Noise

To model the timing errors or grain boundary e�ects we use the jitter noise model.

The timing error stems from asynchronous head positioning. The guide bits written

on the media try to station the head sensor on the exact location on its attempt

to read the information. Despite the e�orts the exact positioning is not always

possible. On the other hand, the bit cell boundaries do not always match the grain

boundaries. The grains on amorphous media have fuzzy boundaries which result in

an extra disturbance experienced at read out.

Here, we give the currently used jitter noise model. The transition sequence goes

through the channel with the same step response s(t). However, the jitter moves the

step response from its origin. The jitter values are random variables with Gaussian

distribution with zero mean and variance σ2
j . The received signal in (1.2) is updated

as follows

25



y(t) =
K∑
k=1

bks(t− kT + jk) + n(t). (1.27)

The jitter values are changing the response of channel. The jk terms are nonlinear

terms in the pulse response. The conventional way of dealing with jitter is to use

the Taylor series as an approximation of the step response. The Taylor expansion

of s(t) is

s(t+ j) = s(t) + js′(t) +
j

2

2

s(t) + · · · (1.28)

provided that the jitter values are small, the �rst two terms gives a good enough

approximation

s(t+ j) ' s(t) + js′(t). (1.29)

Let us name the s(t+ j) approximation the ��rst order jitter� model. Replacing the

�rst order jitter in (1.27) we get

y(t) =
K∑
k=1

bks(t− kT ) +
K∑
k=1

bkjks
′(t− kT ) + n(t). (1.30)

The �rst term corresponds to signal, second term is the jitter noise, and n(t) repre-

sent the electronic noise and magnetic noise available in magnetic recording channel.
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1− D s(t− kT − jk)

jk

+

n(t)

xk bk r(t)

Figure 1.10: Magnetic recording channel in the presence of jitter.
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2 Vector Noise Predictive Viterbi

Algorithm

2.1 Introduction

State-of-the-art sequence detectors for hard-disc drives are capable of dealing with

a pattern dependent Markovian noise model. This model is the de facto standard in

the industry and proved useful in improving the performance of the system. We have

given the description of the model in Chapter 1. Speci�cally, the pattern dependent

model is advantageous over the simple Markov noise model as characteristics of noise

depends on the written bits.

We brie�y discuss the channel and noise model for magnetic recording. We show

that the noise model exhibits regressive characteristics. The noise model is impor-

tant for derivation of the sequence detector. If the correlated noise is Gauss-Markov,

the optimal MLSD detector has been derived in [20]. In contrast, we present a vari-

ation of the noise predictive Viterbi algorithm noise predictive algorithm that is

tailored to the linear regressive noise model. The vector noise predictive (VNP)

Viterbi algorithm introduced here is the generalization of the noise predictive algo-

rithm in [33] with extended states on the trellis diagram. The vector noise predictive

(VNP) Viterbi algorithm uses a modi�ed block LDL decomposition to factorize the
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noise covariance matrix and hence obtain the likelihood metrics. We further ex-

tend the algorithm for regressive noise where the correlation with the input signal

is modeled by the signal dependent regression coe�cients.

2.2 Channel Model

First, let us establish some notation. We use uppercase letters for matrices. Vectors

are lower case bold, and underline designates that the vector or matrix is formed of

building sub-blocks. Given vectors xi, ...,xi+k, x
i+k
i is de�ned as a vector consisting

of all elements of xi up to xi+k. We let X0, ..., Xq and Y1, ..., Yq be matrices of

the same size, and the block Toeplitz matrix T, by enumeration of its elements

T = [X0, ...Xq;Y1, ..., Yq], represents

T =



X0 X1 X2 Xq

Y1 X0 X1

Y2 Y1 X0

...
. . .

Yq X0


. (2.1)

For a magnetic recording channel, given the step response s(t) as discussed in

Chapter 1, the received signal can be stated as

y(t) =
K∑
k=1

(xk − xk−1)s(t− kT + jk) + n(t). (2.2)

where xk are binary input values, jk are jitter values with Gaussian distribution

with zero mean and variance σ2
j and n(t) is the additive noise term. The �rst order

jitter model can be described as
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y(t) w
K∑
k=1

(xk − xk−1)s(t− kT ) +
K∑
k=1

(xk − xk−1)jks
′(t− kT ) + n(t). (2.3)

This approximation is accurate for small values of jitter noise variance with respect

to pulse's width T50. Therefore (2.2) can be written as

n̄(t) =
K∑
k=1

(xk − xk−1)jks
′(t− kT ) + n(t). (2.4)

where we assumed n̄(t) contains the additive and jitter elements from (2.3). The

boundary values are x0, xK = −1. We sample the signal at half the transmission

period, i.e., t = T/2 +mT , and after rearranging we have

y(T/2+mT ) =
∑
l≥0

(xm−l−xm−l−1−xm+l+1+xm+l) (s (T/2 + lT ))+n̄(T/2+mT ). (2.5)

For hyperbolic tangent, 1 − s(t) decays exponentially. Indeed, if the following in-

equality holds

1− s (3T/2)

1− s (T/2)
� 1 (2.6)

the following three terms (i.e., for l = 0) su�ciently express the discrete response of

the channel [34]

ym = y(T/2 +mT ) = −xm−1s(T/2) + 2xms(T/2)− xm+1s(T/2). (2.7)

For T50 = 0.5, the left-hand side of (2.6) is less than 0.015. Going over the same

steps for the �rst-order jitter model, we get the following for noise term
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Figure 2.1: Signal dependent regressive noise where the proposed detection algo-
rithm is e�ective.

n̄(T/2 +mT ) = (xm+1−xm)jk+1s
′ (T/2) + (xm−xm−1)jks

′ (T/2) +n(T/2 +mT ). (2.8)

The model introduced in (2.7) and (2.8) helps us to develop the detector. The

channel has an in�nite impulse response (IIR). Since the complexity of the Viterbi

algorithm depends on the ISI length, we curtailed the ISI length in (2.7). However,

the noise at the output is colored. The derived noise model is regressive and does not

admit a Gauss-Markov form. Furthermore, this noise model cannot be approximated

by an autoregressive model as its parameters depend on the signal. The model is

depicted in Fig. 2.1, where D is the delay operator and additive zero mean white

Gaussian noise, wj, goes through a signal dependent �lter b(D) to represent the

colored noise. The output of the channel is fed into the sequence detector. The

derivation of the VNP detector is given next.
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2.3 Problem Statement

Let the output of a partial-response channel be expressed as

yi =
r∑
j=0

ajxr+i−j + ni, (2.9)

where the noise ni is Gaussian (colored) with zero mean, aj's are the known discrete

channel response of ISI length r, and xi belongs to alphabet set X = {−1, 1}. Let

us rewrite (2.9) as

yk =


ar · · · a0

. . .

ar · · · a0



x(k−1)m

...

xkm+r−1

+


n(k−1)m

...

nkm−1

 , (2.10)

where yk , [y(k−1)m, ..., ykm−1]T = Axk + nk. The matrix A is of size m × (m + r)

and column vector xk has m + r elements. Note the vector xk shares m elements

with xk+1 and so forth. The vectors yk,nk, Axk are each a column vector of size

m and the counter is updated as k = 1, ..., p. The indices start from 1 for vectors

yk,nk,xk so that the notation is consistent.

The problem is to �nd an e�cient algorithm for the MLSD expressed as

x̂ML = arg max
X pm+r

f(y|x), (2.11)

where f(y|x) is the conditional distribution of all blocks of received signal y =

[yT1 , ...,y
T
p ]T , which has length pm, given the input values x = [x0, ..., xpm+r−1]T .

The set X k indicates the k-th Cartesian product of X .
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2.4 Vector Noise Predictive Viterbi Algorithm

2.4.1 Colored Noise

We derive the VNP Viterbi algorithm for a multivariate moving average noise model

de�ned as

nk = Θqwk−q + ...+ Θ0wk, (2.12)

for some q, where Θi's are known m × m matrices and the wi's are m × 1 white

Gaussian noise vectors. The noise is a discrete time stationary process and its

covariance matrix has a block Toeplitz structure [35]. We let T, the covariance

matrix of Gaussian noise, be expressed in the following block Toeplitz form T =[
B1, ..., Bp;B

T
2 , ..., B

T
p

]
, where the Bi's are m×m matrices. The covariance matrix

is de�ned as the expectation of noise terms in (2.12) and matrices Bi's are de�ned

as Bi = E[nknk−i+1] and directly calculated from Θi's. Since the covariance matrix

is a Toeplitz matrix, its inverse can be written as [36]

T−1 = LT1 D
−1L1 − LT2 D

−1L2, (2.13)

with block diagonal D = diag [Dp, ..., Dp] and upper block triangular matrices LT1 =

[I, R2, ..., Rp; 0, ...,0], and LT2 = [0, JRp, ..., JR2; 0, ...,0], where R2, ..., Rp, Dp are

calculated o�ine directly from the Bi's, and matrix J is the anti-identity matrix.

This factorization is a variation of the celebrated Gohberg-Semencul decomposition

[37]. The derivation is given in Appendix A.

Without loss of generality, let the monic polynomial Θ(z) = I + Θ−1
0 Θ1z

−1 + ...+

Θ−1
0 Θqz

−q be the description of a multivariate moving average �lter where z is a

complex value. As long as the zeros of det Θ(z) lie strictly inside the unit circle,

the whitening �lter matrices Ri's norms decay exponentially with respect to i [38].

33



Recall that the Ri's are in reverse order in the de�nition of L2. Under the aforemen-

tioned circumstances, one can show that T−1 and LT1
[
D−1

]
L1 are asymptotically

equivalent. Proof is given in Appendix B. Hence, we use the LT1
[
D−1

]
L1 as an ap-

proximation of the inverse of the covariance matrix. The rapid decrease in norm of

the Ri's guarantees that the approximation has a negligible e�ect on the detection

outcome. Similar approximations for the likelihood function are used in [35].

In order to derive the likelihood function, let us use the approximation of the

inverse of the covariance matrix to express the conditional distribution in (3.4) as

f(y|x) ' (2π)−(pm+r)/2 det(T)−1/2 exp

{
−1

2

(
y − Ax

)T [
LT1 D

−1L1

] (
y − Ax

)}
.

(2.14)

The logarithm is a strict monotonic function, which allows us to replace the objective

function in (3.4) with the minimization of the following

− 2 ln f(y|x) ' (pm+ r) ln(2π) + ln det(T ) + (y− Ax)T LT1
[
D−1

]
L1 (y− Ax) .

(2.15)

In our calculation of the branch metrics, we skip the �rst term since the constant

term does not change the outcome of the minimization. The determinant in (2.15)

does not depend on x and therefore the second term is a constant too. We write the

branch metrics as follows: Given LT1
[
D−1

]
L1, we simply multiply the noise vector

[y− Ax]T by the upper triangular matrix LT1 in (2.15). Since the inverse of matrix

D is block diagonal, the sum of the branch metrics is given by
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p∑
k=1

((yk − Axk) + n̂k)
T D−1

p ((yk − Axk) + n̂k) , (2.16)

and the predicted noise term n̂k in the branch metric at time k is

n̂k =
k−1∑
j=1

RT
j+1 (yk−j − Axk−j) . (2.17)

This formulation dictates the following changes to the trellis diagram implemen-

tation: i) there are 2m branches leaving/entering each state, and the number of

states remains 2r (for r ≥ m); ii) there is a possibility of some branches overlapping.

The prediction term n̂k is estimated by the tentative decisions on the trellis diagram

(see [33] and [39] for details.) The VNP Viterbi algorithm is sub-optimal since the

decisions are made based on a �nite number of states. In practice, we approximate

the sum in (2.17) by its �rst few terms: the iterator j starts from max{k − l, 1} for

a �xed number l, which is the number of predictor taps.

2.4.2 Pattern Dependent Colored Noise

We would like to extend our results to signal dependent noise. Unfortunately, the

problem does not conform to a symmetric Toeplitz structure and therefore we are

unable to use the Gohberg-Semencul decomposition. In this section, we present

a practical way of incorporating the noise predictor in the Viterbi algorithm for

linear regressive noise with signal dependent coe�cients. To do so, we present an

alternative decomposition, which allows us to write the branch metrics. The data

dependency can have di�erent formulations. We let the noise model nk in (2.10) be

de�ned by its elements as

nk = Θq(x
k
k−q)wk−q + ...+ Θ0(xkk−q)wk, (2.18)
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where each matrix Θi depends on xkk−q and wi are white Gaussian noise vectors of

size m× 1.

First, we give a factorization of the inverse of the signal dependent covariance

matrix. Based on this factorization, we derive a signal dependent VNP Viterbi

algorithm. Let T be a block matrix with its LDU decomposition [36]

L =



L1,1

L2,2 L1,2

... L2,3
. . .

Lq,q
...

. . .

Lq,q+1

L1,p


, (2.19)

U =



U1,1 U2,2 · · ·Uq,q

U1,2
. . . Uq,p

U1,3
. . .

...

. . . U2,p

U1,p


, (2.20)

and D = diag
[
D̃1, ..., D̃p

]
. For m × m matrices Li,j and Ui,j, the �rst subscript

i is an indicator of the distance from the matrix diagonal and second subscript is

the row. Given that all leading principal minors D̃i, i = 1, ..., p are non-singular, we

introduce a factorization for the signal dependent covariance matrix of a regressive

model. Based on this factorization, the result in Section 2.4.1 is generalized for

signal dependent noise. We write the block UDL decomposition of the inverse as in

the following lemma.

Lemma 2.1. A banded block matrix T with its UDL decomposition is invertible if
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the following equations are solvable

i∑
k=1

Rj+k−i
k Ui−k+1,j = Iδ[i− 1], i = 1, ..., j, j = 1, ..., p, (2.21)

i∑
k=1

Li−k+1,jW
j+k−i
k = Iδ[i− 1], i = 1, ..., j, j = 1, ..., p, (2.22)

and D̃i is invertible for all j = 1, ..., p. Furthermore, the inverse can be written as

T−1 =



R1
1 R2

2 R3
3 · · · Rp

p

R2
1 R3

2

R3
1

. . .
...

. . . Rp
2

Rp
1


D−1



W 1
1

W 2
2 W 2

1

. . . . . .

... W p−1
1

W p
p · · · W p

2 W p
1


. (2.23)

For m×m matrices Rj
i and W

j
i , the �rst subscript i is an indicator of the distance

from the matrix diagonal and superscript is the row. The decomposition is simply

a variation of the Cholesky decomposition. Proof is given in Appendix C.

We derive the branch metrics for q = 1, generalization to other values is straight-

forward. Let the linear regression covariance matrix of the pattern dependent noise

be expressed as C(x) = L(x)D(x)U(x) where D(x) = diag[C0(x1), ..., C0(xp)] and

L(x) =



I

L2,2(x1,x2) I

. . .

L2,p(xp−1,xp) I


, (2.24)
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U(x) =



I U2,2(x1,x2)

I

. . . U2,p(xp−1,xp)

I


, (2.25)

where we assume U1,i = L1,i = I. To emphasize that the covariance sub-matrices de-

pend on the input signal, we denote each as a function of vectors xk. Each element of

the the covariance matrix of noise can be written asE[nkn
T
k ] =

∑1
i=0 Θi(x

k
k−1)Θi(x

k
k−1)T

and E[nkn
T
k−1] = Θ1(xkk−1)Θ0(xk−1

k−2)T . The noise model nk in (2.18) has an LDU

decomposition in the form of (2.24) and (2.25). This can be seen as a block tridiag-

onal decomposition of the covariance matrix [40]. The matter is best explained by

an example, as given below.

Once the noise covariance matrix is in LDU form, we solve (2.21) and (3.14) to

�nd R,W 's. We recall that the set of equations in (2.21) is in reduced echelon form.

Therefore, from (2.21), for i = 1, we have Rj
1 = I for all j = 1, ..., p. We use the

matrices Rj
1's to �nd Rj

2's. The dependency of Rj
2's on xjj−1 becomes apparent by

setting i = 2, for j = 2, ..., p, i.e., Rj−1
1 U2,j(x

j
j−1) + Rj

2 = 0. Iterating over the

remaining equations we �nd out that Rj
k is dependent on xjj−k+1. The same result

holds for W k
j .

The sum of branch metrics in the VNP Viterbi algorithm (2.16) can be updated

as

p∑
k=1

Λ(yk, x
k
1) =

p∑
k=1

[ln detC0(xk)+

((yk −Akxk) + n̂k)T C0(xk)
−1 ((yk −Akxk) + ñk)

]
, (2.26)
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since the determinants of U and L are both 1. The predicted noise becomes

n̂k =
k−1∑

j=max{k−l,1}

Rk
j+1(xkk−j)

T (yk−j − Axk−j) , (2.27)

ñk =
k−1∑

j=max{k−l,1}

W k
j+1(xkk−j) (yk−j − Axk−j) . (2.28)

The predictor coe�cients depend on the input data, and therefore the states are

further extended to account for di�erent choices of R and W . These matrices,

which carry data dependent prediction parameters, are calculated o�ine.

Example 2.1. Assuming σ2
w = 1 and a (1-D) partial response channel, let the linear

regressive model for noise be expressed as

ni = b0(xii−1)wi + b1(xii−1)wi−1. (2.29)

where bi(x
i
i−1)'s are non-linear functions of input values. Then elements of the

covariance matrix are E[nini] = b2
0(xii−1)+ b2

1(xii−1), E[nini−1] = b0(xi−1
i−2)b1(xii−1). In

matrix block form we can write the Θi's as

Θ0 =

 b0(xii−1)

b1(xi+1
i ) b0(xi+1

i )

 ,Θ1 =

 b1(xii−1)

 . (2.30)

Since the linear regression is of order two we pick m = 2. In the matrix form if we

de�ne matrix L′(x) as

L′(x) =



b0(x1
0)

b1(x2
1) b0(x2

1)

b1(x3
2)

. . .

b1(xnn−1) b0(xnn−1)


, (2.31)
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the covariance matrix is

C(x) = E[nnT ] = L′(x)E[wwT ]L′(x)T . (2.32)

The �rst equality follows from the de�nition of covariance matrix and the second

equality comes from the linearity of expectation.

In a block form, to get the L(x) in LDU decomposition, we simply multiply the

L′(x) with the the inverse of diag[B0(x1), ..., B0(xp)], where B0(xi) is de�ned as

B0(xi) =

 b0(xii−1)

b1(xi+1
i ) b0(xi+1

i )

 . (2.33)

Therefore, we can rewrite the LDU decomposition as

L(x) =



I

L2,2(x1,x2) I

L2,3(x2,x3) I

. . . . . .


, (2.34)

in which L2,i(xi−1,xi)'s are as follows

L2,i(xi−1,xi) = B−1
0 (xi−1)

 0 b1(xii−1)

0 0

 , (2.35)

and C0(xi) = B0(xi)B0(xi)
T and so on. We derive the R,W 's by solving (2.21),

(3.14).

2.5 Simulations and Discussion

We evaluate the performance of the proposed algorithms with an additive Gaussian

noise with known correlation.
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First, we use a channel with ISI memory r = 2, with a = [1, 0.5, 0.2], and MA

noise model with coe�cients b = [1, 0.6, 0.4]. The noise is of order m = 3. Let

‖·‖ indicate the norm, then the SNR is de�ned as the signal power, i.e., ‖a‖2,

over the noise variance σ2
n = σ2

w ‖b‖
2. We change the value of the noise variance,

σ2
w, to achieve di�erent SNR's. We show the bit-error rate (BER) performance for

di�erent detectors in Fig. 2.2. The curve marked as Euclidean Viterbi represents

the conventional Viterbi algorithm that computes the Euclidean distance of the

received noise. This con�guration does not consider any compensation for the noise

correlation. We also show the noise predictive maximum likelihood (NPML) [33]

performance. The trellis has four states for both algorithms, but the VNP algorithm

requires 25 × 14 multiplications at each step while NPML only needs 24. Although

the NPML algorithm uses the predicted noise to improve the performance, the error

propagation degrades the result. The analysis of the phenomenon is given in [41].

The VNP algorithm label denotes the algorithm derived in (2.16) with l prediction

taps. If we let l = 0, the algorithm reduces to Altekar and Wolf's [39]. For l = 2,

we did not observe a signi�cant improvement over the one tap predictor. At a BER

of 10−3, the proposed detector shows a 1 dB improvement over Altekar and Wolf's

algorithm which is itself 1.25 dB away from the Viterbi detector. The matched �lter

lower bound for the probability of error is given by [42]

Pe ≥ Q

(
dmin ‖b‖

σn

)
, (2.36)

where the function Q(u) is the probability of a normal random variable being greater

than u. The dmin is the adjusted minimum distance for the channel response �ltered

through the whitening �lter.

To test the pattern dependent VNP algorithm, we used a channel with r =
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Figure 2.2: Noise predictive Viterbi algorithms for an ISI channel with MA noise.

1, namely, a = [1,−1], and the parameters that are given in Table 2.1. Noise

power changes over time depending on which data has been transmitted: σ2
n(x) =

σ2
w ‖b(x)‖2 for each row in Table 2.1. Since we assume the input bits are equi-

probable, the SNR is the signal power over the average of these noise powers, σ2
n.

The known correlation coe�cients generate the prediction block matrices R and W

which have been computed o�-line. In all noise predictive Viterbi algorithms, the

predictor was restricted to one tap, l = 1. Since the regressive noise is of order

two, m = 2, we build the trellis with 8 states at each step with 4 branches leav-

ing/entering each state. The branch metrics are as given in (2.26) with one tap

predictor, l = 1. The detector uses 64 additions and 32 × 5 vector multiplications

at a time. The performance of the detector is compared to a pattern dependent
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noise predictive maximum likelihood (PDNP-ML) algorithm described in [20]. The

PDNP-ML algorithm has the same number of states on the trellis diagram and 32

multiplication at each stage. The noise parameter given here does not match a

Markovian description, but, for the purpose of comparison, we use the output of the

channel to estimate the parameters of a pattern dependent Markov noise model of

order 3. In our simulations the VNP algorithm performed as well as or better than

the PDNP-ML algorithm depending on the noise characteristics. For the channel

given in Table 2.1 we show the results in Fig. 2.3. At 10−3, the proposed detector

shows almost 1 dB improvement over the Viterbi algorithm and 0.5 dB improvement

over the PDNP-ML algorithm. The poor performance of the PDNP-ML algorithm

is mostly rooted in the Markovian assumption: the mismatch between the actual

noise and the Markov model degrades its performance.

A genie aided detector that knows a-priori the two possible candidates for the

transmitted signal provides a lower bound for our detector. Assume one candidate

is the transmitted signal x and the other candidate has a single bit error. For each

transmitted signal x, we determine the minimum distance. That is to �nd the errors

that are most probable. The derivation of dmin is explained in [43],[20]. We scale

dmin by ‖b(x)‖ for which the erroneous bit has occurred. Once we �nd dmin for each

transmitted signal then the probability of error is bounded by [44]

Pe ≥
∑
x
P (x)Q

(
dmin(x) ‖b(x)‖

σn

)
. (2.37)

We have kept the length of vector x small enough to be able to run the simulations.

The comparison shows our algorithm is less e�ective when larger number of errors

are present at lower SNRs. A more elaborate error analysis, although possible, is

beyond the scope of this dissertation.
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Table 2.1: Partial response channel with pattern dependent regressive Gaussian
correlated noise with known coe�cients b.

x y b(x)

00 0.0 [-0.5,1.2]
01 2.0 [0.5,1.0]
10 -2.0 [0.2,1.0]
11 0.0 [-0.5,1.2]

Appendices

A. Derivation of (2.13)

We designate a column or row of matrices in uppercase bold. The m×m matrices

R2, ..., Rp and D1, ..., Dp can be retrieved from B1, ..., Bp through a recursive Trench-

like algorithm [44]. Let the anti-identity matrices J and Jk, i.e., matrices with ones

on the diagonal connecting opposite vertices of leading diagonal, be of sizem×m and

(k−1)m×(k−1)m, respectively. The block column matrix Γk = col[B2, ..., Bk]km×m

consists of the input elements up to step k. We want to show that the last column

Rk = col[R2, ..., Rk] updates the next level Rk+1 through


R2

...

Rk

 =

 Rk + JkRkdiag
[
D−1
k (RT

kΓk +Bk+1)
]

J ×D−1
k (RT

kΓk +Bk+1)

 , (2.38)

and the diagonal elements at step k are Dk = B1 + [RT
2 , ..., R

T
k ]JkΓk. We derive

(2.38) by following the steps in [45]: suppose the LDL decomposition of Tk+1 =[
B1, ..., Bk;B

T
2 , ..., B

T
k

]
is written as

Tk+1 =

 I

−RT
k I


 Tk

Dk


 I −Rk

I

 , (2.39)
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Figure 2.3: Pattern dependent Viterbi algorithms for an ISI channel with signal
dependent regressive noise.

which reveals the following decomposition for the inverse of Tk+1 as

 I Rk

I


 T−1

k

D−1
k


 I

RT
k I

 = T−1
k+1, (2.40)

since the product of (5.7) and (5.8) is the identity.

Solving the equality in (5.7) for Dk and Γk, we have −TkRk = JkΓk, and Dk =

B1 + RT
k JkΓk. Let us rewrite the equation for the next iteration k + 1; Rk+1 =

−T−1
k+1JkΓk+1 = −JkT−1

k+1Γk+1 where we used the per-symmetric property for the

second equality [45]. By substituting T−1
k+1 with the left-hand side of (5.8) we get

(2.38).
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B. Proof of asymptotic equivalence

The Frobenius norm is denoted as ‖. ‖F , and |A| indicates 1√
n
‖A‖F for matrix A

of size n× n. To show that the two matrices are asymptotically equivalent we need

to show that limp→∞
∣∣L2D

−1L2

∣∣ = 0.

We know that we can bound the norm by the product of the norms of each matrix

[46]

∣∣LT2 DL2

∣∣ ≤ ∥∥LT2 ∥∥2
|DL2| ≤ ‖L2‖2 ‖D‖2 |L2| . (2.41)

The norm is bounded below and therefore we only need to show that limp→∞ |L2| = 0.

In addition, the Frobenius norm of a block matrix can be stated in terms of the norm

of each block

‖L2‖
2
F =

p∑
i,j=1

∥∥Li,j2

∥∥2

F
=

(
p−1∑
i=1

i ‖Ri+1‖2
F

)
, (2.42)

|L2|
2 =

1

pm+ r

pm+r∑
i,j=1

a2
i,j =

1

pm+ r

p−1∑
i=1

i ‖Ri+1‖2
F . (2.43)

As expressed in [38] if the zeros of det Θ(z) are strictly inside the unit circle, the

Ri's decay exponentially and therefore

lim
i→∞

i ‖Ri+1‖2
F = 0. (2.44)

Then, by the Cesaro mean convergence theorem [47], we have

lim
p→∞
|L2|

2 = 0. (2.45)
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C. Proof of Lemma 2.1

Assume (14) is solvable, we want to show Ker(U) = {ϕ|Uϕ = 0} contains only the

zero element. Suppose Uϕ = 0. From (14), for j = k we have

[..., Rk
1 , ..., R

p
p−k+1]



U1,1 · · ·Ul,l

U1,2
. . . Ul,p

. . .
...

U1,p


=


I



T

, (2.46)

where the identity matrix in (2.46) sits on the k-th block row. In addition, we know

that

0 = [0, .., Rk
1 , R

k+1
2 ..., Rp

p−k+1]Uϕ =

 I


T

ϕ. (2.47)

Since (2.47) is true for all k = 1, ..., p, therefore ϕ = 0. Similarly, given (15) is

solvable, we can show that L is invertible. Elements of D are each invertible and this

proves that matrix T is invertible. From (2.47) and the fact that U is upper trian-

gular we deduce U−1 is the juxtaposition of all matrices [0, .., Rk
1 , R

k+1
2 · · · , Rp

p−k+1] ,

for k = 1, ..., p. Equation (16) is the result of multiplying the inverse of each matrix

in the opposite direction.
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3 Sequence Detection in the

Presence of Jitter Nuisance

Parameter

3.1 Introduction

This chapter presents a sequence detector in the presence of a random nuisance

parameter with a continuous distribution. The nuisance parameter that caused by

deviation or displacement of signal pulses known as jitter a�ects the performance of

the communication system. Conventionally, the e�ect of jitter is considered an extra

source of noise in the system. In the previous chapter, we discussed the sequence

detectors that handle colored noise. Here, we opt for a di�erent approach for jitter

contaminated channel. Due to jitter, the channel response is random in nature. In

this context several papers have observed a bene�t of oversampling empirically. In

magnetic recording, Victora et al. [48, 49] found that twice sampling will result in

better detection and decoding performance. Using a �rst order Taylor approxima-

tion of pulse response, Pighi et al. [50] proposed a linear predictive algorithm which

requires a bank of �lters to sample the received signal. Our approach in this chapter

does not rely on approximation of channel response. The formulation given enable
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us to work out a sequence detector that handle the random jitter noise present at

the channel response directly. It is worthy to note the jitter is a common issue

in many other applications, such as optical recording [51], Ethernet [52], wireless

communication [53].

Our �rst contribution is the derivation of a Viterbi like detector for sequence

detection in presence of random jitter. We propose the layout of over-sampling

communication system, and derive a detection algorithm based on the Gauss-Markov

assumption. We also derive a genie aided bound for the detector. Our second

contribution is to study our detector in the context of faster-than-Nyquist signaling

[54]. We found that the nuisance parameter is closely related to the concept of faster-

than-Nyquist signaling. In the presence of jitter nuisance parameter the amount of

ISI changes for each symbol despite the �xed transmission rate. The faster-than-

Nyquist signaling achieve only 20% percent increase in transmission rate and in

many applications that is not enough to justify the excess complexity. In contrast,

in physical channels where noise is described by a nuisance parameter the gain in

performance can be signi�cant. Our aim here is to show the bene�t of exploiting

the nuisance parameter in boosting the performance of the system.

In this chapter, it is �rst shown that observations twice the number of transmitted

symbols are the minimum number of points required for detection. To collect these

samples we need sampling kernels. We have discussed di�erent sampling kernels.

These sampling kernels are particularly important in the sense that the subspace

spanned by sampling kernels con�nes the search region which contains the solu-

tion. Our take on nuisance parameter estimation techniques is explained brie�y

for Gaussian shaped pulses. The derivation of the nonlinear optimum detector is

highly complex and computationally prohibitive. Therefore, a Viterbi-like sequence

detector is proposed. Finally, the BER bounds, decision boundaries and minimum
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distance are discussed and the simulation results for the detector are presented.

3.2 Formulation of the Problem

We used the following notation throughout the chapter. We use uppercase letters

for random variables and lower case for their realization. Matrices are shown in

underlined bold uppercase letters and vectors are designated either in bold lowercase

letters, e.g., x, or through enumeration of their elements, xK1 = [x1, x2, ...xK ] where

xi is the i-th element of vector x. Given a map A, we show the restriction of a map

to a subset S of its original domain by A|S. For brevity, we later use pk(t) as a

k−translation of p(t), i.e., p(t − kT ). Symbols ‖.‖2 , ‖.‖H represent the Euclidean

and L2 norm. The norm induced by matrix C is indicated by‖x‖C =
√

xTCx, where

xT is the transpose of vector x.

Consider the signal at the receiver after �xed �nite K successive transmissions as

being given by

y(t) =
K∑
k=1

xkp(t− kT + jk) + n(t), (3.1)

where p(t) is the pulse response of the channel where each binary information input

Xk ∈ {−1, 1} has a Bernoulli distribution. We assume the additive noise term is

AWGN with auto-correlation function N0

2
δ(t). Random variables Jk are the dis-

placement of the channel response with respect to the sampler and are restricted to

half the sampling interval, Jk ∈ (−T
2
, T

2
).

A single pulse p(t + jk) along with a sequence of modulated signals is depicted

in Fig. 3.1. The solid line shows the dislocated Gaussian-shaped pulse and dash

lines are Gaussian-shaped pulses without jitter. The dashed lines also represent the

position of three matched �lters sampling the incoming signals. The jitter nuisance
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Figure 3.1: Sequence of modulated signals (dashed line) and a randomly dislocated
response (solid line) for Gaussian-shaped pulses.

parameter shifts the channel response from the matched �lter centered at the origin.

In this paper, we only consider the jitter nuisance parameter on the abscissa axis,

which is the dislocation of the channel response from its origin.

Our problem is to �nd the maximum likelihood (ML) estimate of vector xK1 given

the observation y(t). In the absence of jitter noise, (3.1) can be fully expressed

in a subspace of a Hilbert space with an orthonormal basis {ϕi(t)}, which can be

generated through the Gram-Schmidt algorithm. But in the presence of jitter noise,

the orthogonalization is not as e�cient in the sense that there is no �nite set of

ϕi(t)'s that would span the whole signal subspace.
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3.2.1 Su�cient Statistic

Let signal s(t) be the received signal excluding the additive noise term. Suppose an

invertible transform T exists such that T maps the signal into its representation as

follows

K∑
k=1

xkp(t− kT + jk)
T7→

N∑
i=1

x̂i(j
K
1 ,x

K
1 )q(t− iT ′), (3.2)

for some N ∈ N. Let us name q(t) which belongs to Hilbert space a sampling kernel.

Note that the sampling rate, i.e., 1/T ′, is not the same as the transmission rate. With

this setup, the jitter noise will be implicit in x̂i(j
K
1 ,x

K
1 ) ∈ R. The purpose of the

transform is to con�ne the search region. This is done by expressing the signal in

union of subspaces de�ned as follows [55];

De�nition 3.1. Let H be a Hilbert space. The signal s(t) ∈ H is in a union of

subspaces

χ =
⋃

(j1,...,jK)∈RK
S(j1,...,jK), (3.3)

if and only if there is some �xed (j1, ..., jK) ∈ (−T
2
, T

2
)K such that s(t) ∈ S(j1,...,jK).

The S(j1,...,jK)'s are subspaces of H spanned by orthogonal functions δk(jk)'s.

Note in the de�nition each subspace has a �nite basis, but the union is over in�nite

set. The choice of Dirac delta functions in our de�nition of union of subspaces is

necessary since the index set for jitter elements cover the whole period (−T
2
, T

2
).

Next, we express our signal in union of subspaces. Eq. (3.1) can be adapted to the

de�nition as follows: channel is time invariant, and the pk(t)'s are k-translations of

the same pulse response p(t) and therefore we may as well assume that the sampled

points are given by (for i = 1, ..., N)
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si =
K∑
k=1

xk 〈pk(t+ jk), qi(t)〉 =
K∑
k=1

xk

〈
δk(t+ jk),

(
p(τ) ∗ qi(−τ)

)
(t)
〉
, (3.4)

where ∗ stands for convolution of two functions, 〈·, ·〉 is the inner product, and q(t)

is the complex conjugate of q(t). Eq. (3.4) shows that our signal s(t) belongs to a

union of subspaces. On the other hand, we achieve our representation in (3.2) by

replacing x̂i(j
K
1 ,x

K
1 ) =

∑K
k=1 xk 〈pk(t+ jk), qi(t)〉, where the coe�cients x̂i's absorb

the e�ect of the jitters. Next step is to show transform T is invertible. Since our

signal belongs to union of subspaces, we need to show that transform T is invertible

in the union of subspaces. The following lemma considered here has been proved in

[55].

Lemma 3.1. Given a linear transformation T : χ → T(χ) ⊆ RN , T is invertible

for any s̃ ∈ χ if and only if T|Sγ+Sθ : Sγ + Sθ → T|Sγ+Sθ(Sγ + Sθ) is invertible

for any γ = (j1, ..jK) ∈ (−T
2
, T

2
)K , θ = (j

′
1, ..., j

′
K) ∈ (−T

2
, T

2
)K where Sγ + Sθ =

{αs̃1 + βs̃2|s̃1 ∈ Sγ, s̃2 ∈ Sθ, α, β ∈ R}.

Proof. Proof is given in Appendix A.

This lemma simply says that if the transform is invertible for any 2K delta func-

tions, then it is invertible for χ. The immediate corollary of the lemma is that if we

let q̄ = {q̄n(t)}Nn=1 be a set of sampling kernels and Φγ,θ = {δ(t+ jk)}2K
k=1 be a basis

for Sγ + Sθ, then q̄ provides an invertible sampling operator for χ if and only if the

Gram matrix Gγ,θ de�ned as
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Gγ,θ ,



〈δ(t+ j1), q̄1(t)〉 〈δ(t+ j2), q̄1(t)〉 . . . 〈δ(t+ j2K), q̄1(t)〉

〈δ(t+ j1), q̄2(t)〉 〈δ(t+ j2), q̄2(t)〉 . . . 〈δ(t+ j2K), q̄2(t)〉
...

...
. . .

...

〈δ(t+ j1), q̄N(t)〉 〈δ(t+ j2), q̄N(t)〉 . . . 〈δ(t+ j2K), q̄N(t)〉


N×2K

,

(3.5)

has full column rank for every γ = (j1, ..jK) ∈ RK , θ = (j
′
1, ..., j

′
K) ∈ RK , because

Gγ,θ is obtained by a change of basis between two subspaces. Note that the smallest

number for N so that the Gram matrix has full column rank is twice the number of

transmissions, i.e., N ≥ 2K. Therefore, we keep N as a �xed number greater than

2K for the rest of the paper. The easiest way to build such a matrix is to use the

Vandermonde matrix with Dirac delta functions as our orthogonal basis {δ(t+ ji)}

which has expressed in [56].

Example 3.1. Assume that p(t) = δ(t) in (3.1). Then the Gram matrix can be

expressed as

Gγ =


q1(j1) · · · qN(j1)

...
. . .

...

q1(j2K) · · · qN(j2K)

 . (3.6)

For qn(t) = tn−1, the matrix Gγ for γ = (j1, ...j2K), which is the Vandermonde

matrix, is an invertible matrix if det(Gγ) 6= 0. Matrix Gγ has full rank for all

j1 6= j2 · · · 6= j2K . Any system with some q(t) that has nonzero determinant for the

entire set {ji}2K
i=1 such that j1 6= j2 · · · 6= j2K is called a Chebychev system [57].

Remark 3.1. To show that the transform T in (3.2) is invertible we substitute q̄(t) =(
pk(τ) ∗ qn(−τ)

)
(t) and write the Gram matrix as in (3.5).
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Due to the additive noise term, our received signal y(t) does not belong to the

union of subspaces in general, but we can show that the projection of y(t) onto our

sampling subspace is what really matters to the estimation problem.

Proposition 3.1. Suppose y(t) de�ned as in (3.1) belongs to a Hilbert space. Given

an invertible map T de�ned by a set of sampling kernels {qn(t)}Nn=1, the samples

present a su�cient statistic for the ML estimation of {Xk}Kk=1.

Proof. Proof is given in Appendix B.

Similarly, one can show that the set of {〈y, qi〉}Ni=1 is also a su�cient statistic for the

jitter noise estimation.

3.3 Sampling Strategies

The set of su�cient statistic is not unique. The next step in the design of our detec-

tor is to choose the appropriate sampling kernels. The sampling kernels are chosen

according to an additional criterion to ful�ll the requirement of the particular ap-

plication. In the absence of jitter noise, the conventional detector, the criterion is

to maximize the SNR, and the sampling kernel is matched to the pulse response of

the channel. But in the presence of jitter we know from Section 3.2, that the mini-

mum number of sampling kernels must be at least twice the number of transmitted

symbols.

In this section we discuss di�erent approaches to choose the sampling kernels.

Since uniform sampling is desired, changing the sampling period to T/2 is one

way of building the 2K sampling kernels. Using two di�erent sampling kernels q

and q̃, which could be realized through two �lter banks with sampling period T

for each, may achieve the maximum SNR as long as the conditions discussed in
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the Section 3.2 are satis�ed. However, if the detection strategy is based on the

practical implementation of detector, the uniform sampling kernels may suit better

the purpose of sequence detection.

3.3.1 Sampling Kernels Matched to Pulse Response

Let us de�ne the SNR as

SNR =
EJ

[(∫
p(t+ J)h(−t)dt

)2
]

EN
[(∫

N(t)h(−t)dt
)

2
] =

EJ

[∫∞
−∞

∫∞
−∞ p(v + J)p(u+ J)h(−u)h(−v)dudv

]
N0

2

∫ ∫
h(−u)h(−v)dvdu

. (3.7)

We want to choose the function h(t) that maximizes the expected received signal

power over noise power. From the generalized Hölder's inequality we have

∫ ∞
−∞

∫ ∞
−∞
|EJ [p(v + J)p(u+ J)]h(−u)h(−v)dudv| ≤(∫ ∞

−∞

∫ ∞
−∞
|EJ [p(v + j)p(u+ j)]|2dudv

)1/2

×
(∫ ∞
−∞

∫ ∞
−∞
|h(−u)h(−v)|2dudv

)1/2

, (3.8)

and equality holds [58] if and only if there exist q, q̃ ∈ H such that for some λ1, λ2 ∈

R,

a) EJ [p(u+ J)p(v + J)] = q(u)q̃(v),

b)|q(u)| = λ1|h(−u)| and |q̃(v)| = λ2|h(−v)|.

An example is given next to elaborate on the matter. The nuisance parameter has
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a discrete distribution. This case is interesting since the resulting sampling kernels

matched to the channel response agree with the intuition.

Example 3.2. Let p(t) = e−t
2
and J be a discrete random variable with equal

probability of taking values in{+ε,−ε}. To �nd the matched �lter, for (a) we have

EJ [p(t+ J)p(τ + J)] = 1
2
[p(t+ ε)p(τ + ε) + p(t− ε)p(τ − ε)]. Suppose q, q̃ exist such

that 1
2
[p(t+ ε)p(τ + ε) + p(t− ε)p(τ − ε)] = q(t)q̃(τ), then

q(t)q̃(τ) =
1

2
[e−(t+ε)2e−(τ+ε)2 + e−(t−ε)2e−(τ−ε)2 ]. (3.9)

Since p(t) is symmetric

q(t)q̃(τ) =
1

2
[e−(t+ε)2e−(τ−ε)2 + e−(t+ε)2e−(τ−ε)2 ] = e−(t+ε)2e−(τ−ε)2 ,

and therefore the matched �lters are e−(t+ε)2 and e−(t−ε)2 .

It should be noted that it is not always possible to analytically �nd the exact

matched �lters.

3.3.2 Uniform Sampling

Uniform sampling is de�ned by collection of �nite samples at sample points with

a uniform distribution, i.e., equally spaced in time or space. This approach is par-

ticularly appealing to practical applications. In our setup, the sampling is done by

multiplying the received signal by sampling kernels as shown in Fig. 3.2. Then

integrated to form the inner product expressed in (3.4) for each sample.

For uniform sampling the two sampling kernels q, q̃ are chosen from the same

function, q̃ is o�set by T/2. The two similar sampling kernels eliminate the need

for extra �lter by speeding up the sampling to twice the baud rate. This can be

achieved by higher rate sampler while keeping the matched �lter intact. Here and
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Figure 3.2: Over-sampling layout.

for the rest of the paper, by matched �lter we mean the �lter that is matched to

the pulse response in absence of jitter.

Note that according to the requirement of Proposition 3.1 for the continuous

signal at the receiver, the proposed setup is not the only possible scenario. For

instance, the derivative of Gaussian function as second sampling kernel also satisfy

the proposition. Using derivative of a Gaussian �lter has already been used in [50].

But we have only considered uniform sampling in this paper.

3.4 Recovering Jitter Values

The pulse response and sampling kernels are required to have certain properties to

enable us estimate the jitter noise in our framework. These properties have been

discussed in previous sections. In this section, we further examine those for our pulse

response of interest, the Gaussian shaped pulse response, but most of the material

can be extended to any function that is a Chebychev system.

Let p(t) = N (t, σ2
s) = (2πσ2

s)
−1/2e

− (t)2

2σ2s where N is the normal distribution.

Choose the sampling kernel q(t) = (2πσ2
s)
−1/2e

− t2

2σ2s matched to the pulse response.

Solve the Fredholm integral equation of �rst kind
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∫ ∞
−∞

q̃(t)N (t− τ, σ2
s)dt = τN (τ, 2σ2

s), (3.10)

to �nd the second sampling kernel. Solution to the above problem can be obtained

by means of Weierstrass's integral equation [59]or an integral table as

q̃(t) = (2πσ2
s)
−1/2te

− t2

2σ2s . (3.11)

Therefore, the sampled data for each sampling kernel q(t), q̃(t), for sampling points

n = T, ...,KT , are expressed as

an = (4πσ2
s)
−1/2

K∑
k=0

xke
− (jk−(n−k)T )2

4σ2s ,

bn = (4πσ2
s)
−1/2

K∑
k=0

xk(jk − (n− k)T )e
− (jk−(n−k)T )2

4σ2s . (3.12)

Our aim is to show that the Gram matrix is invertible for any choice of jitter and

further �nd an estimate of jitter values. De�ne ãn = ane
(nT )2

4σ2s and b̃n = bne
(nT )2

4σ2s then

ãn =
K∑
k=1

xke
− (jk+kT )2

4σ2s e
(jk+kT )nT

2σ2s ,

b̃n − nãn =
K∑
k=1

xk(jk + kT )e
− (jk+kT )2

4σ2s e
(jk+kT )nT

2σ2s . (3.13)

The Gram matrix as in (3.5), for the sampling kernels is given (3.14).
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

e
− (j1+T )2

4σ2s e
(j1+T )T

2σ2s (j′1 + T )e
− (j′1+T )2

4σ2s e
(j2+T )T

2σ2s · · · (j′K +KT )e
− (j′k+KT )2

4σ2s e
(j′k+KT )T

2σ2s

e
− (j1+T )2

4σ2s e
(j1+T )2T

2σ2s (j′1 + T )e
− (j′1+T )2

4σ2s e
(jk+T )2T

2σ2s · · · (j′K + T )e
− (j′k+KT )2

4σ2s e
(j′k+KT )2T

2σ2s

...
. . .

...

e
− (j1+T )2

4σ2s e
(j1+T )KT

2σ2s (j′1 + T )e
− (j′1+T )2

4σ2s e
(jk+T )KT

2σ2s · · · (j′K + T )e
− (j′k+KT )2

4σ2s e
(j′k+KT )KT

2σ2s


K×2K

.

(3.14)

The determinant of such a matrix is nonzero as long as j1 +T 6= j2 +2T 6= ... 6= jK +

KT and j′1 +T 6= j′2 +2T 6= ... 6= j′K +KT , or equivalent condition, jk, j
′
k ∈ (−T

2
, T

2
).

We omit the proof as it is given in [57].

Next step is to �nd an explicit estimate of the jitter vector. To have an estimation

of the jitter we need more than 4K samples. Let anand bn be as de�ned in (3.12),

but this time sampled at n = T
2
, T, 3T

2
, .... Build Hankel matrices H0 and H1 from

ãn and b̃n's sampled at T
2
as follows

H0 =



ã1 ã2 · · · ãK

ã2 ã3 ãK+1

...
. . .

ãK ãK+2 · · · ã2K−1


K×K

, (3.15)

H1 =



b̃1 b̃2 · · · b̃K

b̃2 b̃3 b̃K+1

...
. . .

b̃K b̃K+2 · · · b̃2K−1


K×K

(3.16)

The Vandermonde decomposition of Hankel matrices can be written Hi = V DiV
T ,

where V is the Vandermonde matrix of power functions of e
(jk+T )nT

2σ2s ,
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V =



e
(τ1+T )T

4σ2s e
(τ2+2T )T

4σ2s · · · e
(τK−KT )T

4σ2s

e
(τ1+T )2T

4σ2s e
(τ2+2T )2T

4σ2s e
(τK−KT )2T

4σ2s

...
. . .

...

e
(τ1+T )KT

4σ2s e
(τ2+2T )KT

4σ2s · · · e
(τK−KT )KT

4σ2s


, (3.17)

and D0 and D1 are the diagonal matrices �lled with elements e
− (ji+iT )2

4σ2s and (ji +

iT )e
− (ji+iT )2

4σ2s for i = 1, ..., K, respectively. Since both H0,H1 are symmetric the

generalized eigenvalues are real [36]. With this formulation, jitter values are the

generalized eigenvalues of H0, H1,

H0vi = jiH1vi, (3.18)

where vi's are the generalized eigenvectors.

Remark 3.2. Estimation of generalized eigenvalues of Hankel matrices is numerically

unstable. The numerical solution becomes unstable since the Hankel matrices of

higher size regardless of the values of the elements are ill conditioned. This is due

to the nature of the Vandermonde matrices [11].

Remark 3.3. Since generalized eigenvalues of Hankel matrices H0,H1 is j, our trans-

form T is one-to-one and onto.

3.5 Detection Based on Gauss-Markov Assumption

In the presence of jitter, when signals are not T -orthogonal and transmitted symbols

are interfering with each other, the collected samples are fed into a sequence detector.

Derivation of an optimal sequence detector is complex in the presence of jitter.

The computational complexity of such an optimal detector is also prohibitive. In
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this section we use Gauss-Markov assumption for likelihood function to derive a

suboptimal sequence detector for oversampled received signal. Let vectors a, b be

the matched �lter output at T intervals starting from 0, 1/2T . Since a, b are two

vectors which are a su�cient statistic for detection, then the ML detection of x is

stated as

x̂ML = arg max
x

fA,B|X(a, b|x), (3.19)

where fA,B|X is the conditional distribution of received signals given the input values.

The collected samples a, b depend on jitter values and fA,B|X is only the marginal

distribution. The marginal distribution fA,B|X does not have a closed form unless

the distribution fA,B,J |X is jointly Gaussian. However, using the Gauss-Markov

assumption, we can derive a sequence detection algorithm. This assumption results

in a sub-optimal detector. The Viterbi algorithm for Gauss-Markov is thoroughly

described in [20] and the BCJR equivalent is given in [60]. These algorithms apply to

signal-dependent covariance matrices. Let us, �rst, brie�y highlight the di�erences

between our algorithm and the conventional sequence detection for Gauss-Markov

noise. Instead of having an AR model to describe the noise characteristic, we resort

to a multivariate AR model. In this case, the parameter estimation is done through

multivariate Yule-Walker equations [61]. To derive the branch metrics we assume

Markovianity of �nite order ν. The full derivation of the algorithm is given below.

Using the chain rule factorization and the Markovianity of order ν we could expand

the the joint distribution as follows

fA,B|X(a, b|x) =
K∏
k=1

fA,B|X(ak, bk|ak−1
k−ν ,b

k−1
k−ν ,x

k
k−ν−ξ), (3.20)

where ξ is the ISI length. Next, we use the Bayes rule to rewrite (3.20) as follows
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fA,B|X(a, b|x) =
∏ f(akk−ν ,b

k
k−ν |xkk−ν−ξ)

f(ak−1
k−ν ,b

k−1
k−ν |xkk−ν−ξ)

. (3.21)

The log likelihood function can be expressed as sum of branch metrics as

x̂ML = arg min
x

K∑
k=1

Λ(akk−ν ,b
k
k−ν ,x

k
k−ν−ξ), (3.22)

where ML branch metrics are

Λ(akk−ν ,b
k
k−ν ,x

k
k−ν−ξ) = − log

f(akk−ν ,b
k
k−ν |xkk−ν−ξ)

f(ak−1
k−ν ,b

k−1
k−ν |xkk−ν−ξ)

. (3.23)

The ML estimate of input sequence can be found through (3.22). However, the

marginal distribution given in the numerator and denominator of (3.23) is quite

complicated to calculate in the presence of the nuisance parameter. At this point,

we use the �rst and second order statistics of the process to approximate the marginal

distribution with a normal distribution given as

fA,B|X(akk−ν ,b
k
k−ν |xkk−ν−ξ) ∼

N
([

skk−ν(x
k
k−ν−ξ), s̃

k
k−ν(x

k
k−ν−ξ)

]
,C(xkk−ν−ξ)

)
. (3.24)

The denominator also is a marginal distribution and has a normal distribution with

mean
[
sk−1
k−ν(x

k−1
k−ν−ξ), s̃

k−1
k−ν(x

k−1
k−ν−ξ)

]
, and upper 2ξ×2ξ principal minor of C(xkk−ν−ξ),

named C(xk−1
k−ν−ξ), as the covariance. For brevity, we drop the signal dependency

whenever its clear from the context. For instance, we abbreviate matrices C(xkk−ν−ξ),

C(xk−1
k−ν−ξ) as C and C, respectively. Substituting the normal distribution in (3.23)

and canceling the common terms, we are left with the following expression for sum

of branch metrics
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Λ(akk−ν ,b
k−1
k−ν ,x

k−ν
k−ν−ξ) = log

det C

det C
+

+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



ak−ν − sk−ν(xk−νk−ν−ξ)

bk−ν − s̃k−ν(xk−νk−ν−ξ)

...

ak − sk(xkk−ξ)

bk − s̃k(xkk−ξ)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

C

−

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



ak−ν − sk−ν(xk−νk−ν−ξ)

bk−ν − s̃k−ν(xk−νk−ν−ξ)

...

ak−1 − sk−1(xkk−ξ)

bk−1 − s̃k−1(xkk−ξ)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

C

. (3.25)

For the full description the reader should refer to [20]. The branch metrics given

in (3.25) can be further simpli�ed. To that extent, we invoke the matrix inversion

lemma [20]

C−1 =

 C U(xkk−ν−ξ)

UT (xkk−ν−ξ) V(xkk−ν−ξ)


−1

=

 C
−1

0

0 0

+ W(xkk−ν−ξ)Γ
−1(xkk−ν−ξ)W(xkk−ν−ξ)

T , (3.26)

where Γ(xkk−ν−ξ) = V(xkk−ν−ξ) − U(xkk−ν−ξ)
TC
−1

U(xkk−ν−ξ), and W(xkk−ν−ξ) is

de�ned as

W(xkk−ν−ξ) =

 −C−1U

I2×2

 =



−BT
ν (xkk−ν−ξ)

...

−BT
1 (xkk−ν−ξ)

I2×2


. (3.27)
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The Bi(x
k
k−ν−ξ) 's and Γ(xkk−ν−ξ) are 2×2 matrices and de�ne a multivariate FIR �l-

ter [61]. They are determined by the solution to multivariate Yule-Walker equations

[61]. On the other hand, from de�nition of Γ(xkk−ν−ξ) it can be shown that

det C
(
xkk−ν−ξ

)
det C(xkk−ν−ξ)

= det(Γ(xkk−ν−ξ)). (3.28)

Thus, the branch metrics are given by

Λ(akk−ν ,b
k
k−ν ,x

k
k−ν−ξ) = ln(det(Γ(xkk−ν−ξ)))

+

∥∥∥∥∥∥∥
 ak − sk(xkk−ξ)− uk

bk − s̃k(xkk−ξ)− ũk


∥∥∥∥∥∥∥

2

Γ−1(xkk−ν−ξ)

, (3.29)

where the predicted noise terms uk, ũk are de�ned as

 uk(x
k−1
k−ν−ξ)

ũk(x
k−1
k−ν−ξ)

 =
ν∑
i=1

Bi(x
k
k−ν−ξ)

 ak−i − sk−i(xk−ik−ξ−i)

bk−i − s̃k−i(xk−ik−ξ−i)

 . (3.30)

The prediction �lter matrices Bi's are calculated o�ine, see Appendix C. To im-

plement the Viterbi algorithm, the states on the trellis diagram at each step are

extended to include all possible symbols xkk−ν−ξ. Then, the branch metrics are cal-

culated for each branch considering the two incoming values ak, bk at a time. At

the end, the path that minimizes the log likelihood over all di�erent x's is chosen

as the output of the detector. Note that all along we assumed s and s̃ depends on

the same input signals. The generalization to the case where they are dependent on

di�erent number of x's is straightforward.
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Figure 3.3: Decision boundaries for x ∈ {[1, 1], [−1, 1], [−1, 1], [−1,−1]} where
s(x), s̃(x) are designated with square dots. The axes indicate the three
samples' values. The decisions are made based on the region to which
the received vector belongs. The ratio of sampling period to standard
deviation of pulse response is 1/

√
2.

3.5.1 How Good Is the Gauss Markov Assumption?

In this section, we are interested in determining the validity of the Gauss-Markov

assumption. Decision boundaries for single shot transmission provide us with visu-

alization for binary hypothesis testing. In the presence of jitter, we put the Gauss

Markov assumption to the test by drawing three dimensional decision boundaries

for two input values. We sketch the decision boundaries for binary transmission

of vector [x1, x2]. We assume the channel is Gaussian-shaped and samples are col-

lected through a matched �lter at times 0, 1/2T, T . The optimum decision is given

by solving the following
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Figure 3.4: Decision boundaries for x ∈ {[1, 1], [−1, 1], [−1, 1], [−1,−1]}. The axes
indicate the three samples' values. The top left region wrapped by the
red surface indicates decision x = [−1, 1]. The ratio of sampling period
to standard deviation of pulse response is 1/

√
2.

arg max
x1,x2

f(y1, y2, y3|x1, x2) =

arg max
x1,x2

∫
f(y1, y2, y3|j1, j2x1, x2)f(j1, j2)dj1dj2. (3.31)

The integral on the right hand side of (3.31) can be calculated numerically. The sam-

pled points (y1, y2, y3) contain three values that can be shown on a three dimensional

plot. The decision boundaries are designated through three surfaces. As depicted

in Fig. 3.3, the surfaces are hyperplanes in three dimensions. These boundaries are

equivalent to the decision boundaries in the case of a Gauss-Markov distribution

[62]. However, when α increases, the decision boundaries get more complicated. As

the corresponding points to [1,−1] and [−1, 1] get farther away from each other, the

hyperplane caves in and the boundary surfaces change shape (See Fig. 3.4.)
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3.6 Discussion

This section discusses lower bounds for performance of sequence detection in the

presence of jitter. The �rst idea is to derive a genie-aided bound where the jitter

values are revealed to the detector. Another approach is to �nd the lower bound for

probability of error through minimum distance.

3.6.1 Genie Aided Detector

Since a, b are two vectors which are a su�cient statistic for detection then there

exists an ML detection of x stated as

x̂ML = arg max
x

fA,B|X(a, b|x). (3.32)

There have been reports of detectors that deal with discrete distributed jitter

noise in the literature [63, 64]. Basically, if the distribution of the jitter noise is

discrete, a joint estimation of jitter and information can be performed on a single

trellis as in [63]. But in the case of continuous jitter random variables, (3.32) can

be expressed in an integral form using Bayes' rule

x̂ML = arg max
x

∫
J
fA,B|X,J(a, b|x, j)fJ(j)d(j). (3.33)

Our approach is based on approximating the marginal distribution in (5.7). As-

suming jitter displacements are identically independently Gaussian distributed with

zero mean, we can write
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x̂ML = argmax
x

(2πσj)
−Kdet(R)−1/2∫
exp

(
−1

2

[∥∥a− sK1 , b− s2K
K+1

∥∥2

R−1 +
1

σ2
j

‖j‖2

])
dj, (3.34)

where R is the covariance matrix for correlated noise in received samples, and s =

[〈s(t), q1(t)〉 , 〈s(t), q2(t)〉 , ..., 〈s(t), q2K(t)〉] .

Let Q(xK1 , j
K
1 ) = [a−sK1 , b−s2K

K+1]R−1[a−sK1 , b−s2K
K+1]T and p be a smooth function.

Then, we de�ne gT∂Pk and g∂2Pkto be the sum of k, and K + k-th column of Gram

matrix for the �rst and second partial derivative of the channel response with respect

to jk respectively, e.g., the i-th element ofg∂Pk is given by
∫ ∂p(t−kT+jk)

∂jk
[qi(t)]dt. If

our transform T is onto, we can choose jitter vector j∗ ideally such that ai − si =

0, bi−sK+i = 0 for all 1 ≤ i ≤ K. Then, writing the Taylor series expansion around

the extrema of exponents, i.e., j∗, �rst partial derivatives of Q(xK1 , j
K
1 ) with respect

to jk's are zero,

∂Q(xK1 , j
K
1 )

∂jk

∣∣∣∣
j∗k

=
(
−2[xkg∂Pk ]R

−1[a− sK1 , b− s2K
K+1]T

)∣∣
j∗k

= 0.

Therefore, by the saddle-point approximation [65], the approximate marginal dis-

tribution is given by

∫
fA,B|J,X(a, b|x, j)fJ(j)dj '

(2πσj)
−Kdet(R)−1/2exp

(
−Q(xK1 , j

∗K
1 )
)∫

exp

(
− 1

2σ2
j

{
(j− j∗)(σ2

jB
−1)(j− j∗)T + jjT

})
dj. (3.35)
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where matrix B is de�ned by its elements Bk,m =
∂2Q(xK1 ,j

K
1 )

∂jk∂jm
, through

∂2Q(xK1 , j
K
1 )

∂j2
k

∣∣∣∣
j∗k

=
(
−2[xkg∂Pk ]R

−1[xkg∂Pk
)∣∣
j∗k

+
(
−2[xkg∂2Pk ]R

−1[a− sK1 + b− s2K
K+1]T ]T

)∣∣
j∗k

= −2[g∂Pk ]R
−1[g∂Pk ]

T
∣∣
j∗k
, (3.36)

∂2Q(xK1 , j
K
1 )

∂jk∂jm

∣∣∣∣
j∗k ,j
∗
m

= 2xkxm [g∂Pk ] R
−1 [g∂Pm ]

∣∣
j∗k ,j
∗
m
. (3.37)

Finally, we can put the integrand into the quadratic form of a normal distribution

by replacing the mean value of the exponential term j∗, by j∗(σ2
jB
−1(I +σ2

jB
−1)−1).

Hence (5.8) reduces to

(2πσj)
−K(2π)K/2det(σ2

jB
−1 + I)exp

(
−1

2
Q(xK1 , j

∗K
1 )

)
exp

(
−
σ2
j

2
(j∗)(σ2

jB + B2)−1(j∗)T
)
. (3.38)

We know by de�nition, B is a symmetric matrix where diagonal elements of

B, and also any powers of B, do not depend on xk's, for k = 1, ..., K. Since

the determinant of a matrix can be expressed in terms of traces of powers of that

matrix [66, Thm. 1], the determinant of matrix B does not depend on the xk's . Nor

does the determinant of det(σ2
jB
−1 + I). The the covariance matrix for the second

exponential in (3.38) cane be approximated as σ2
j (σ

2
jB + B2)−1 ' σ2

jB
−2 +σ4

jB
−2 +

O(σ6
j ), using matrix inversion lemma[67]. For small values of jitter variance this

term may be neglected. In this manner, given the optimum values of jitter noise,
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the ML values are dependent on Q(xK1 , j
∗K
1 ) which is expressed as

x̂ML = arg max
x

det(R)−1/2exp

{
−1

2

∥∥[a− s∗K1 , b− s∗2KK+1]
∥∥2

R−1

}
,

where s∗ is the vector s evaluated at j∗. The jitter values can be recovered for

Gaussian pulses as explained in Section 3.4. No prior knowledge of input values are

needed for such a recovery.

3.7 Simulation Results

In this section, we give a setup of communication system, using the sampler, detec-

tor, and etc. together to exploit the bene�t of such a system in presence of jitter.

This is the motivation for this section.

In the absence of jitter, the detection layout depends on the transmission rate.

Symbol-by-symbol detection is optimum for a band-limited channel with T -orthogonal

pulse response, if the data transmission rate is 1/T [68]. By T -orthogonal pulses

we mean that the inner product of two distinct integer T -shifted signals is zero.

An example of such pulses is sinc(t/T ). Mazo [54] showed that sinc pulses can be

transmitted at a rate faster than 1/T without loss in performance. The scheme is

called faster-than-Nyquist (FTN) signaling. For FTN signaling, the presence of ISI

in channel requires a detector of some sort [69].

With jitter dislocations, we cannot claim that the transmission is ISI free at

any transmission rate. However, the FTN serves as a lower bound for the jitter

contaminated channel and we also observe that for jitter with Gaussian distribution,

transmission rate has an important role in the performance of the system. In the

remainder of the section, we discuss uniform sampled receivers for Gaussian and

sinc-shaped pulses and give di�erent setups for the equalizer and the receiver.
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3.7.1 Transmission Pulses

In many applications it is common to model the physical channel as Gaussian-

shaped. In this section we consider a Gaussian model of the following form

y(t) =
K∑
k=1

xk exp

(
−(t− kτT + jk)

2

2σ2
s

)
+ n(t). (3.39)

In (3.39), σ2
s is the the variance of the signal, and 1/τT indicates the signaling rate.

The jitter value, jk, is a random variable with a truncated Gaussian distribution that

captures the e�ect of inaccuracy in timing or positioning. We also de�ne a parameter

α as the normalized transmission rate over Gaussian signal variance α =
√

2 τT
σs
. The

normalized standard deviation of jitter is σj/σs. AWGN noise of -30dB is added to

the signal. The signal y(t) is sampled using a matched �lter at twice the baud rate.

For ISI free transmission over a bandlimited AWGN channel, sinc-shaped func-

tions are a common choice. In this section, we study the sinc pulses transmitted at

a higher rate than the Nyquist Criterion where random jitter is also present. Our

sinc-function transmission model is given by

y(t) =
K∑
k=1

xksinc (t− τkT + jk) + n(t). (3.40)

For T = 1, if we indicate the signaling rate as 1/τ , then for faster than the Nyquist

signaling transmission we have τ < 1. The other parameters are kept the same as in

the model for Gaussian pulses. To calculate the SNR, we estimate the noise power

at the output due to the jitter. Then, the SNR is de�ned as signal power over the

total output noise power for di�erent variances of random jitter.

The asymptotic performance of the detector is determined by its minimum dis-

tance. For transmission above the Mazo limit, the performance is hindered by the

loss in dmin. The numerical calculation of the minimum distance is given in [69].
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For sinc functions the Mazo limit is τ = 0.8, and for Gaussian pulses our simulation

results show that the Mazo limit corresponds to α = 0.85.

The main source of noise is assumed to be induced by jitter displacements. Given

that the displacements have a truncated Gaussian distribution, to calculate the

SNR, we estimate the noise power at the output due to the random jitter. Then,

the SNR is de�ned as signal power over the total output noise power for di�erent

variances of random jitter

SNR = 10 log

∫
|p(t)|2 dt
M0 +N0

, (3.41)

where M0 = E
J

[∫
|p(t+ j)|2 − |p(t)|2 dt

]
and N0 is single sided power spectral

density due to the AWGN noise.

3.7.2 Minimum Distance

Consider the original transmitted signal given in (3.1). The ML detector for such

a transmission with ISI provides the minimum probability of error. Although, a

computationally feasible implementation of ML detector is not possible in case of

jitter, the probability of error of such a system is bounded below by the minimum

distance. The minimum distance depend on the pulse response and therefore is a

function of jitter values, however, as a measure of performance we derive the dmin for

jitter free system. The distance between transmission of two di�erent input vectors

x∗, x̂ is given by

d2(x∗, x̂) =

∫ ∞
−∞

[sx∗(t)− sx̂(t)]2dt, (3.42)

where s(t) is the signal in (3.1) minus the AWGN noise. The system is linear with

respect to input values and therefore can be expressed in terms of error sequence
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e = x∗ − x̂, where ek ∈ {0,±2}, as follows

d2(e) =
∑
l

∑
k

ekel[p(t− kT ) ∗ p(−t+ lT )]. (3.43)

The expression in (3.43) can be calculated numerically for di�erent error sequences.

Over all possible sequences, there exists an error sequence that minimizes the dis-

tance. The normalized minimum distance dmin is de�ned as [54]

d2
min = min

e 6=0

d2(e)

4
∫
|s(t)|2 d(t)

. (3.44)

The parameter dmin is an indicator of the optimum detector's performance. The

results for sinc and Gaussian pulses are shown in Fig. 3.5. The error events that

cause loss in minimum distance are long blocks of alternating error sequences as

reported in several papers [69, 70, 54].

3.7.3 Truncated Equalizer

The Gaussian pulse has an in�nite support, however at both ends the pulse decays

exponentially fast. We truncate the pulse to values greater than 10−3. We set the

variance of AWGN noise to zero. In this manner, there are two sources of noise in

the channel: i) Due to jitter, the observed signal will di�er from the nominal signal;

ii) We assume that the residual ISI resulted from the truncation behaves as additive

Gaussian noise. Since there is no additive noise, the output of the matched �lter

can be used directly on the detection algorithm. Note that in the case of AWGN

noise, a modi�ed version of the Viterbi algorithm can still be used for the truncated

equalizer [71]. Fig. 3.6 shows the performance of the Viterbi algorithm on the output

of jitter translated Gaussian shaped signal once it goes through a matched �lter.

We also truncate the tail of Gaussian pulses and use the oversampled signals for the
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(a)

(b)

Figure 3.5: Minimum Euclidean distance for di�erent transmission rates.
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Figure 3.6: Comparison of Viterbi algorithm for baud rate and twice baud rate sam-
pling versus the genie aided bound.
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Figure 3.7: Communication system used for twice the baud rate sampling.

calculation of branch metrics to compare with the baud rate sampling. The branch

metrics for twice the baud rate sampling are calculated simply as the squared sum

of each metric‖[ai − si, bi − s̃i]‖2at step i. In another experiment, we truncate the

the same signal that was used to calculate the performance of the Viterbi algorithm

but this time the jitter values are revealed to the detector. The details of the genie-

aided detector was explained in Section 3.5. The di�erence between the two Viterbi

curves shows that the minimum distance has changed. For higher variance of jitter

the Viterbi results are farther away from the genie bound.

3.7.4 Partial Response Equalization

In order to evaluate the performance of our sampling strategy we need a practical

detection algorithm with feasible computational complexity. We use a modi�ed

version of the PDNP algorithm [60] adapted for the oversampled channel. For

simulations, AWGN noise of -30dB is added to the signal. We have purposefully

chosen a small value for AWGN noise to examine the e�ect of jitter. To use the

detector, we need a �nite support channel response. It is common to use an equalizer

to curtail the tail of a in�nite support response. In our simulations, two equalizers

are used to �nd the targets of length 2, one o�set by T/2. The noise at the output

of the equalizers is used to �nd the parameters of the multivariate AR model. The
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number of predictive taps in the detector is 1. After the equalizers and targets are

�tted to the channel response, we used the target as the description of the channel

to de�ne the branch metrics. Since the target is �nite, we are able to utilize the

PDNP detector. The diagram of the transmission system is depicted in Fig. 3.7.

Fig. 3.8 shows the simulation results for di�erent transmission rates. The σs is

an indicator of the bandwidth required for transmission over the channel. For a

�xed bandwidth, namely �xing σs, the lower α simply means faster transmission

rate. As we expect, higher transmission rate results in loss of performance for

the conventional detector. Interestingly, the extra samples taken from the received

signal compensate for the loss. The conventional PDNP detector with baud rate

sampling uses only one of the equalizers depicted in Fig. 3.8. The proposed sequence

detector proves resilient to lower values of α. As explained in Section 3.6, lower α

makes boundary decisions more complicated and therefore result in a sub-optimal

detector. We conjecture that the relatively small loss in the performance for higher

transmission rates is due to the sub-optimality of our detector. The gain in the

performance is signi�cant compared to the baud-rate sampling.

Fig. 3.9 shows the performance of the communication system for faster-than-

Nyquist signaling. In this setup, we used the symbol-by-symbol detection for or-

thogonal Nyquist signals in the presence of random jitter. The performance reveals

the optimum bit-error rate for di�erent variances of the jitter random variable. The

jitter accounts for most of the noise in the system as the AWGN noise is limited

to -30dB in the channel. The matched �lter output is sampled at twice the trans-

mission rate, then samples are fed into the modi�ed PDNP algorithm. The length

of the target is 2, which limits the computational complexity. The number of pre-

dictor taps is kept constant as 1. As shown in the �gure, the bit-error rate for the

Mazo limit remains close to optimum. However, the performance degrades for data
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Figure 3.8: Comparison of pattern dependent noise predictive algorithm for baud
rate (labeled as 1X) and twice baud rate sampling (labeled as 2X).
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Figure 3.9: Comparison of performance of proposed communication system at higher
rate to an ISI free transmission (fater-than-Nyquist signaling).
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transmitted at higher rates. This can be associated with the sub-optimal equalizer

and detector, as well as loss in dmin. We observed the same gap as in the Gaussian

case between the baud-rate sampling and the proposed algorithm.

Appendices

A. Proof of Lemma 4.1

Proof. Suppose T is invertible. For any s1, s2 ∈ χ by de�nition there exists γ0, θ0

such that s1 ∈ Sγ0and s2 ∈ Sθ0 . Since Sγ + Sθ is a subspace then T|Sγ+Sθ is also

linear and we only need to show its kernel is zero, i.e., ker(T|Sγ+Sθ) = 0. From the

hypothesis we know that s1 = s2 if and only if Ts1−Ts2 = 0. But s1−s2 ∈ Sγ0 +Sθ0

and hence T|Sγ∪Sθ(s1 − s2) = T|Sγ∪Sθs1 − T|Sγ∪Sθs2 = Ts1 − Ts2 = 0.

Conversely, we want to show Ts1 = Ts2 if and only if s1 = s2. By hypothesis T is

linear. If T(s1 − s2) = 0 then s1 − s2 belongs to some Sγ1 + Sθ1 . But we know the

restriction of T to such a subspace is invertible. Therefore T|Sγ1+Sθ1
s1 = T|Sγ1+Sθ1

s2

which implies s1 = s2.

B. Proof of Proposition 4.1

Proof. If we sample the received signal with {q1(t), ..., qN(t)} to get the vector r =

[r1, ..., rN ], then, the MLSD strategy can be stated as

x̂ML = arg max
x

fR|X(r|x), (3.45)

where fR|X(r|x) is the conditional distribution of sampled vector r given the in-

formation vector x. Since T is invertible, due to invariance-to-data-transformation

property [66], the likelihood is unchanged - with respect to the likelihood of receiving
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y(t) given x. The likelihood function can be expanded for di�erent values of jitter

noise through the Bayes rule

fR|X(r|x) =

∫
ג
fR|X,J(r|x, j)fJ|X(j|x)dj, (3.46)

where we assumed the Jk's are independent of Xk's for any k, i = 1, ..., K .

There exists a set of orthonormal basis {ψi(t)}Mi=1 that we choose, for some

M ∈ N, to express sampling kernels {q1(t), ..., qN(t)} so that the representation

of signal s(t) and channel output can be projected onto the subspace of sam-

pling kernels by the vector s = [〈s(t), ψ1(t)〉 , 〈s(t), ψ2(t)〉 , ..., 〈s(t), ψM(t)〉] and y =

[〈y(t), ψ1(t)〉 , 〈y(t), ψ2(t)〉 , ..., 〈y(t), ψM(t)〉], respectively. We write the conditional

distribution in terms of vector y, noting that the y is a linear transformation of r,

y = Ψr, and the distributions are translated into each other by a Jacobian matrix.

Since the noise present in the channel is AWGN, fY|X,J(y|x, j) is a jointly normal

distribution with mean s and we have

fY|X,J(y|x, j) = (πN0)−M/2exp

(
− 1

N0

M∑
i=1

(yi − si)2

)
. (3.47)

We expand the quadratic term and by de�nition of s we have

fY|X,J(y|x, j) = (πN0)−M/2exp

(
− 1

N0

[
M∑
i=1

(y2
i + s2

i )− 2

(∫
s(t)

M∑
i=1

yiψi(t)dt

)])
.

(3.48)

Next, we let s(t) =
∑N

l=1 x̂l(j
K
1 ,x

K
1 )ql(t) be the representation of our signal in the

subspace spanned by {ψi}Mi=1, then we have

82



fY|X,J(y|x, j) = (πN0)−M/2exp

(
− 1

N0

[
N∑
i=1

(y2
i + s2

i )

−2
N∑
i=1

x̂i(j
K
1 ,x

K
1 )

(∫
y(t)qi(t)dt

)])
. (3.49)

where we used orthogonality of the basis' elements. But by de�nition, a basis

obtained through the Gram-Schmidt algorithm is a linear combination of the original

functions qi's for some weights wi,k, that is ψi(t) =
∑N

k=1wi,kqk(t). Then (3.49)

becomes a function of collected samples,

fY|X,J(y|x, j) = (πN0)−M/2exp

(
− 1

N0

[
N∑
i=1

(y2
i + s2

i )

−2
M∑
i=1

N∑
k=1

wi,kx̂i(j
K
1 ,x

K
1 )

(∫
y(t)qk(t)dt

)])
. (3.50)

The term
∑M

i=1(y2
i ) is an energy term and does not depend on {Xi}Ki=1, and can be

written in terms of sampled values. We deduct the likelihood fR|X(r|x) is only a

function of our sampled points
∫
y(t)qk(t)dt for k = 1, ..., N and vector x. Hence,

by the factorization theorem [66], the samples are su�cient statistic for{Xi}Ki=1.

C. Multivariate Yule-Walker Equations

The di�erence between the proposed detection algorithm and the conventional se-

quence detection for Gauss-Markov noise is that instead of having an AR model to

describe the noise characteristic, we have a multivariate AR model. In this case, the

parameter estimation is done through multivariate Yule-Walker equations [61]. We

�x the input bits xkk−ν−ξ to estimate the parameters of W,Γ. Let the RT
j be the

covariance matrix of collected samples de�ned as
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RT
j = E


 ak − sk(xkk−ν)

bk − s̃(xkk−ν)

[ak−j − s(xk−jk−j−ν), bk−j − s̃(x
k−j
k−j−ν)

] , (3.51)

One can recognize the multivariate Yule-Walker equations in estimation of pa-

rameters



Rν

...

R1


︸ ︷︷ ︸

U

=



R0 R1 Rν−1

R1 R0 Rν−2

...
. . .

...

Rν−1 R0


︸ ︷︷ ︸

C̄



BT
ν

...

BT
1


︸ ︷︷ ︸

B

. (3.52)

where C̄ is a full rank matrix provided that R0 is invertible. The estimate of

parameters B are given through

B̂ = C̄−1U. (3.53)

And for Γ we have

Γ = R0 −UT C̄−1U. (3.54)
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4 Storage Channel Model

4.1 Introduction

Steady increase in storage density in the past decade has driven magnetic recording

to the limits of current technology. The state of the art hard-disk drives operate

at 1 Tb/in2. The underlying driver for higher densities has been the down scaling

of the grain size. At the current limit, shrinking grain size is no longer viable due

to thermal instability [6]. The storage industry is looking at alternative approaches

to increase the recording density. To keep with the current market demands, hard-

disk drives need to go through fundamental changes. There are several competing

technologies available today. In BPMR, the magnetic area is etched into the media

using lithography. The resulting islands can be magnetized by the writing head.

HAMR uses energy to heat up grains through the writing process. This sophisti-

cated process achieves high density that ensures thermal stability. Two-dimensional

magnetic recording (TDMR) utilizes conventional media and data are stored on

smaller regions. Theoretically, on conventional media each bit can be saved on one

single grain, which means it can achieve capacity up to 10 Tb/in2.

To discuss the challenges of data storage, a comprehensive channel model is

needed. In current state-of-the-art magnetic recording the bit size is on the scale of

the grain size, resulting in irregular bit boundaries. These irregularities are captured
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Figure 4.1: Various data storage channel models [73].

by the read head sensor as dominant source of noise. An accurate modeling of the

phenomenon can be very e�ective in our understanding of the physical model and

also in designing new signal processing methods. The available models range from

mathematical models to micromagnetic modeling. The simple mathematical mod-

els are used to calculate the capacity of channel. The micromagnetic model follows

physical rules that form the medium and represent a realistic model. This model is

highly complex and may not be used for performance evaluation of signal processing

algorithms. Fig. 4.1 shows models in di�erent degrees of accuracy and complexity.

In this chapter, we study the Voronoi model that has been developed and studied

in [72]. The Voronoi provides a trade o� between complexity and accuracy and will

be used for evaluation of our detection and error control coding algorithms.
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Figure 4.2: Three centers, Delaunay triangulation (solid lines), and Voronoi diagram
(dashed line) using bisections [74].

4.2 Voronoi Model

Hard-disk drives use magnetic material to store data. The equally spaced tracks ac-

commodate the data on the disk. The direction of magnetization indicates a binary

sequence of zeros and ones on each track. The actual process in the physical chan-

nel is more complicated. The media is amorphous; nanometer grains are randomly

distributed and shaped. An accurate model would express these characteristics and

manifest similar properties of the magnetic media. We use the Voronoi model for

the magnetic recording channel. The Voronoi model is an e�ective way of tessella-

tion in many applications, including graphic processing units (GPU), �nite element

models, �exible mesh generation, etc. To explain the details of the Voronoi model,

we �rst need to lay out the basics of the model.

Tessellation Given an open set Ω ⊂ R2, the �nite set{Ai} is called a tessellation

of the open subset Ω if i) for all i's Ai ⊂ Ω. ii) Ai ∩ Aj = ∅ for all i 6= j. iii)

∪Āi = Ω̄.

Voronoi Region Let S be the set of points on a Euclidean plane as centers. Voronoi

region of v ∈ S, As, is the set of all points on the plane that are closer to v
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than any other points in S.

The set {Ai} is the Voronoi diagram of the disc and generating points ν ∈ S describe

the grain centers.

One of closely related subjects to Voronoi diagram is Delaunay triangulation.

We de�ne the empty circle property for a circle that goes through three vertices

and circumferencing a region that does not contain any other vertices inside. By

Delaunay triangulation we mean a collection of edges that satisfy the empty circle

property.

There are several algorithms available to construct the Voronoi diagram with

di�erent computational complexities. One easy way is the construction through

Delaunay triangulation. The gradual construction is done by adding one new vertex

at a time. Then, we search for any existing triangle that contains the new vertex. If

the triangle existed, we split the triangle in three such that remaining edges satisfy

the empty circle property. The complexity of such an algorithm is of order O(n2).

Since the Delaunay triangulation problem is the dual of Voronoi diagram, a solution

for one can translate to the other. We give an example for three points. The Voronoi

diagram for three points is shown in Fig. 4.2. To draw the Voronoi diagram, we �nd

the Delaunay triangulation of the dual graph, i.e., the three points triangle. The

bisectors of each side collide at the center of a circle that passes through the three

points, and represents the Voronoi diagram.

The Voronoi region each represents a grain which can be magnetized. These

grains in the Voronoi diagram are indicated by their centers, i.e., grain nuclei. The

number of grains on the media can be calculated by knowing the media density and

average grain size. However, the initial uniformly generated set of grain nuclei does

not produce the desired statistics. The following steps are taken to readjust the

randomly generated center set: i) Replacing the too small grains; ii) Breaking up
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(a) (b)

Figure 4.3: Voronoi regions for centers placed (a) equally distanced placed, (b) and
randomly shifted version [75].

the too big grains by adding extra points; iii) Shrinking the grain size to account

for non-magnetic boundaries of each grain.

After the grains are structured on the virtual media with the desired statistics

through re�ned Voronoi diagram, the next step is to assign the bit cells. Each bit

cell indicates the grains that belong to one bit of information, as depicted in Fig.

4.4. The associated grains for each bit are assigned randomly with respect to the

center of grain by an indicator function - zero if outside the bit cell and one if inside

the bit cell. The aspect ratio of the rectangle that encompasses the bit cell is known

as bit aspect ratio (BAR).

TDMR is composed of two techniques: shingled writing and 2-D signal processing.

Several papers in the literature [76, 72, 6] have emphasized the importance of the

Voronoi model for TDMR signal processing. We note that although the models

for emerging magnetic recording devices do not share the same physics, they all

su�er from the same signal processing issue, namely the 2-D detection problem.

The higher areal density inevitably brings the tracks closer together. Therefore,

interference from side tracks, which corresponds to 2-D ISI, will complicate the
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Figure 4.4: Simulated grains with their centers as green dots and shingled writing
boundaries as yellow indicating each bit [72].

detection. In the next section, we explain the read and write processes which store

and retrieve the data on the media.

4.2.1 Write Process (Shingled Magnetic Recording)

The write process consists of a moving head magnetizing the ferromagnetic material

on the underlying substrate. On a magnetic disc a thin layer of ferromagnetic

material (e.g., CoCr of 15 nm thickness) is deposited on top of SUL, (e.g., NiFe of

80 nm thickness) [77]. The ferromagnetic layer is grown by a sputtering process

which results in random grain size and shapes. Fig. 4.5 shows a STEM (scanning

transmission electron microscopy) image of the grains on the surface of magnetic

recording substrate.

To write each bit, the magnetic �eld emanating from the write pole must be

strong enough to �ip the polarization of grains, penetrating through thickness of

ferromagnetic medium. The magnetic permeable SUL acts as a magnetic image

which allows a single pole head to record the data on the ferromagnetic layer. Smaller
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Figure 4.5: STEM view of grains in CoCrPt:Sio2 thin layer [78].

Figure 4.6: Writing process on a shingled magnetic recording disc [6].

size of grains will lead to thermal instability. The challenge is that at smaller scales

the local thermal �uctuations may end up de-magnetizing the stored data. The

shingled writing process manages to maintain the higher magnetic �eld by keeping

the larger size of write head while preserving the thermal stability. Shingled writing

empowers the higher magnetizing �ux on the write corner by writing overlapped

data on top of each other. In this con�guration, the tracks are written sequentially

towards the center. These write tracks overlap each other, so when the next track

is written the narrow part that is left behind from the previous track represents the

data. The process is shown in Fig (4.6).
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Figure 4.7: Illustration of write and read processes on the magnetic media [73].

4.2.2 Readback Modeling (Voronoi Model)

In this section, the focus is on the modeling of the nature of the readback process.

Unlike the write head, the readback sensor can be made signi�cantly small (e.g.,

3nm×4nm [6]). The grains' development on the surface is a factor in our model in

addition to readback sensor's characteristics.

The statistical model for grain distribution is generated using Voronoi regions;

with known average grain area and its standard deviation, the random grains are

distributed over a Euclidean plane. An example of such a simulated plane is il-

lustrated in Fig. 4.4. Once a web of random grains is created, the probability of

a given grain being magnetized to the value of bit s on track r (bits indicated by

yellow boundaries in Fig. 4.4) is given by

pvr,sm (x, y) = I{(x,y)∈Avr,s ∗G(x, y)
∣∣∣
vr,s

, (4.1)

where I is the indicator function for point (x, y) being in Voronoi region of point s

and G is a 2-D Gaussian function centered at s.

The readback response model is captured by convolution of magnetization func-
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tion m(x, y) and head response h(x, y). The m(x, y) describes the magnetization

value of the grain to which point x, y belongs. The head response is de�ned as

h(x, y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)]
− 1

2πlxly
K0

(
x

l2x
+
y

l2y
+ ε

)
, (4.2)

where K0 is the Bessel function and lx, ly indicates the width of undershoot in head

response (the small amount ε is added to avoid singularity of Bessel function). The

parameter σx, σy are responsible for bulk of Gaussian shape of head response.

During the readback, the read head captures the magnetic in�ux from neighboring

bit cells. These interferences come from downtrack bit cells as well as side tracks bit

cells. The results of readback are depicted in Fig. 4.8 for di�erent densities. The

�gures shows that the blurring e�ect of the readback sensor for higher densities is

pronounced. This amounts to higher 2-D ISI from both directions, which makes the

detection more complicated.

4.3 Other Technologies

4.3.1 Bit Patterned Magnetic Recording

An alternative competing technology for magnetic storage devices is the BPMR. On

the surface of the disc, the data is stored on separated islands, which are fabricated

with the help of lithography. As a result, the BPMR does not su�er from transi-

tion noise due to irregular boundaries for higher densities. The thermal stability

is less of a problem as the whole island switches magnetization as opposed to each

grain in conventional medium. However, the traditional lithography does not pro-

vide adequate density for BPMR. For island sizes of less than 20nm electron beam
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lithography is required. The currently available electron beam lithography does not

yield enough accuracy. The variation in island position and size are common prob-

lem at higher densities. These variations will steer any small mis-synchronization

or �uctuation to a writing error. At higher densities the ITI and ISI will be still

present in BPMR due to the close proximity of islands.

4.3.2 Heat Assisted Magnetic Recording

Another technology to help alleviate the concerns with thermal instability of medium

is HAMR. In HAMR the grains are heated locally to facilitate the writing process.

For a highly anisotropic magnetic material, the temperature is raised on the speci�c

grains so that the magnetization switching happens at a lower magnetic �eld. After

writing process, the grains cool down quickly and the data is stored on the medium.

The heating process can be done by means of a guided laser beam and it can happen

in the scale of a nanosecond. The remaining parts of the read and write heads will

be the same as perpendicular magnetic recording. The challenges facing HAMR are

the medium with thermal and magnetic stability for repeated heating process, and

integration of optical and magnetic head resistant to high temperature.
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(a) Voronoi model normalized output and input data at 1Tb, BAR=3.

(b) Voronoi model normalized output and input data at 4Tb, BAR=3.

(c) Voronoi model normalized output and input data at 7Tb, BAR=3.

(d) Voronoi model normalized output and input data at 10Tb, BAR=3.

Figure 4.8: Readback sensor output of Voronoi diagram and input data for di�erent
densities.
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5 Two-Dimensional Detection

5.1 Introduction

The MLSD for channels with ISI has an important role in digital communications

[79]. Digital data is mapped to analog signals before transmission or storage. The

received signal is converted back to digital with the help of a detector. The detector

makes a great impact on the overall performance of the system. At the detector

the decisions are made based on minimizing the risk and therefore reducing the

probability of error. The objective is to �nd an MLSD for a channel with a 2-D

pulse response. In short, the answer in polynomial time is not available to-date

[56]. Nonetheless, the interest in 2-D detection encourages us to seek sub-optimal

solutions with manageable complexity.

In this chapter, a 2-D communication system and its components are described.

The challenges of a 2-D storage channel are discussed. A Voronoi model that closely

approximates a magnetic recording channel is simulated. The random outputs of

the model simulations are used to determine the equalizer's coe�cients, target, and

performance of a 2-D detector. Our contribution is to show the improvement on the

performance by means of 2-D detection. For higher densities, the performance of

the detector degrades. This is not only due to signi�cant amount of noise, but also

due to spatial band-limitedness of this magnetic recording channel; the violation of
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the 2-D Nyquist ISI criterion leads to poor performance.

5.2 Two-Dimensional Channel Model

The following notation is used through out this chapter. We use uppercase letters

for random variables and lower case for their realization. Matrices are shown in

underlined bold uppercase letters and vectors are designated either in bold lowercase

letters, e.g., x, or through enumeration of their elements, xK1 = [x1, x2, ...xK ] where

xi is the i-th element of vector x. The 〈·, ·〉 shows the inner product. The parentheses

represent a function, e.g., f(·).

One of the major disturbance is ISI and ITI: The pulse responses of a band-limited

channel overlap, meaning the received signal not only depends on the transmitted

data at the current state of time but also on other transmitted data. How the

interference occurs plays an important role in deciphering the original message.

Suppose the stream of binary data ai,j ∈ {−1, 1} are stored. Given a 2-D pulse

response, p(x, y) ∈ L2(R2), the interference from adjacent input data can be modeled

as

y(x, y) =
Kx∑
m=1

Ky∑
n=1

ar−m,s−np(x− nT, y −mT ) + n(x, y), (5.1)

where n(x, y) is AWGN with auto-correlation function σ2
nδ(x, y). The received sam-

ple at location r, s is given by (for p(x, y) having �nite support)

yr,s =
J∑

j=−J

I∑
i=−I

ar−j,s−ip(x− iT, y − jT ) ∗ h(x− sT, y − rT ) + nr,s, (5.2)

where h(x, y) ∈ L2(R2) is the matched �lter output and ∗ represent the 2-D convo-
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Figure 5.1: a) The normalized 2-D pulse response of a channel with respect to its
parameters x, y. b) Overlapping 2-D pulse responses of a channel shows
ISI in both directions.

lution operator evaluated at origin. The last terms n̄r,s represent the AWGN with

variance σ2
n.

Alternatively, we derive the equivalent formulation in vector form by concatenat-

ing rows of input data and received samples

a , [a1,1...aKy ,1, a1,2, ...aKy ,2, ...a1,Kx , ..., aKy ,Kx ]
T , (5.3)

y , [y1,1...yKy ,1, y1,2, ...yKy ,2, ...y1,Kx , ..., yKy ,Kx ]
T , (5.4)

which result in a form similar to the one dimension (1-D) problem


y1

...

yN

 = H


a1

...

aN

+


n1

...

nN

 , (5.5)

with matrix H consisting of elements hi,j de�ned as p(x, y) ∗ h(x− iT, y − jT ),

98





h−J,−I . . . 01×Ky−2J
h−J,−I . . . hJ,−I ,01×Ky−2J

h−J,I · · ·hJ,I

h−J,−I . . . hJ,−I 01×Ky−2J
· · ·

. . .

h−J,−I . . . hJ,−I ,0 h−J,−I . . . hJ,−I · · ·hJ,I


.

(5.6)

5.3 Two-Dimensional Equalizer

In practice, the pulse response of a channel has a long tail which in turn results in

higher complexity for the detector. To combat the problem the channel response is

shaped into the desired structure using an equalizer.

Let I i,j, J i,j be the �nite sequence of ordered pair that represent a window centered

at i, j of size K and M respectively. The notation simpli�es the equalizer to 1-D

counterpart [80]. The steps to derive an equalizer are as follows

� Choose the suitable size for vectors fM1 ,gK1

� De�ne ei,j = f [yIi,j1
, ..., yIi,jM

]T − g[aJi,j1
, ..., aJi,jK

]T

� Minimize the best linear estimator's mean squared error, E[e2
i,j|f ,g] with re-

spect to constraint gdK/2e = 1 to �nd f ,g.

The constraint is to prevent the trivial answer. The solution to the optimization

problem is given by the Lagrange method,

σ2
e = E[e2

i,j|f ,g]+λ(pgT−1) = fE[ỹT ỹ]fT+gE[ãT ã]gT−2fE[ỹT ã]gT+−λ(pgT−1),

(5.7)
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where ỹ = [yIi,j1
, ..., yIi,jM

], ã = [aJi,j1
, ..., aJi,jK

], and p = [0, ...0, 1, 0, ...0]. To �nd the

vector f ,g we set ∂
∂f
σ2
e = 0,

(E[ỹT ỹ]T + E[ỹT ỹ])fT − 2E[ỹT ã]gT = 0. (5.8)

Replacing f from (5.8) into (5.7) and taking the derivative with respect to g we

�nd

2E[ỹT ã]TE[ỹT ỹ]−1E[ỹT ã]gT+2E[ãT ã]gT−4E[ỹT ã]TE[ỹT ỹ]−1E[ỹT ã]gT+λpT = 0,

(5.9)

and further setting ∂
∂g
σ2
e = 0 leaves us

gT = 0.5
(
E[ãT ã]− E[ỹT ã]TE[ỹT ỹ]−1E[ỹT ã]

)−1
λpT , (5.10)

and therefore

λ = 2/
[
p
(
E[ãT ã]− E[ỹT ã]TE[ỹT ỹ]−1E[ỹT ã]

)−1
pT
]
. (5.11)

Now, we can replace hi,j in (5.5) with the corresponding elements of the target, i.e.,

vector g and the received samples are the output of the equalizer. The equalized

signal has the desired properties of the channel which is forced on the target by

means of constraints and size.

5.3.1 Implementation

Table 5.1 shows the pattern dependency of the noise for 1.2Tb/in2 and BAR=4.

Also we see the e�ect of head size on the noise. The head size of 15 nm shows better

performance on the chosen areal density. The size of the head has two e�ects: i)
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σx/pattern 0 1 2 3 4 5 6 7

1nm 0.29 0.24 0.52 0.50 0.51 0.52 0.21 0.30
2nm 0.29 0.24 0.49 0.48 0.48 0.49 0.22 0.30
5nm 0.25 0.21 0.33 0.34 0.34 0.33 0.20 0.25
10nm 0.20 0.17 0.25 0.25 0.25 0.25 0.17 0.20
15nm 0.18 0.15 0.25 0.26 0.26 0.25 0.15 0.18
18nm 0.19 0.15 0.28 0.29 0.29 0.28 0.15 0.19

Table 5.1: Variance of noise at the output of equalizer for di�erent head sizes (σx =
σz) 1.2Tb/in

2, BAR=4.

the smaller read head size would make the response more sensitive to the fuzzy

boundaries of grains; ii) read head size determines the amount of interference in the

channel response.

5.4 Areal Density and Nyquist ISI Criterion

This section discusses the limits and bene�ts of 2-D signal processing for shingled

magnetic recording devices. The minimum size for grains that ensures the thermal

stability dictates the areal density of the magnetic medium. However, we would like

to discuss the shapes of the bit cells for higher densities which a�ects the signal

processing. The magnetization of these bit cells is captured through a read head

sensor. The shape of the read head response is spatially band-limited. With shrink-

ing size of bit cells, for higher areal density, the spatial bandlimited response of the

channel results in poor performance of the signal processing unit. We aim to study

the e�ect of such a matter on shingled magnetic recording devices.

The goal of currently available signal processing methods is to seek suboptimal

solutions in a channel with 2-D pulse responses with manageable complexity. The

interest in 2-D detection encourages us to seek the bene�ts of such a detector. Our

methodology enables us to answer the following questions:
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1. What is the best read head layout?

2. How the performance of the system is a�ected by shrinking the tracks closer

together?

In this section, the focus is on the modeling of the readback process. Unlike

the write-head, the readback sensor can be made signi�cantly small (e.g., 3nm Ö

4nm [81]). The head response is de�ned as 2-D Gaussian function and a Bessel

function which indicates the width of undershoot in head response. If we consider

the undershoot negligible the received signal from reading a plane is given by

s(x, y) =
N∑
m=1

K∑
k=1

ak,m exp

[
−1

2

(
(x− m/α)2

σ2
x

+
(y − k/β)2

σ2
y

)]
+ n(x, y), (5.12)

where ak,m's are chosen from a binary alphabet and n(x, y) is the observed noise.

The parameters σx, σy are responsible for the bulk of the Gaussian shape of the head

response, and α, β are measures of distance between centers of the bit cells from one

another in each direction. The higher values of α, β indicate shrinking in the x or y

direction, respectively.

Using the simple model in (5.12) we are able to numerically calculate the normal-

ized minimum distance over pulse energy for di�erent head parameters [69]. The

minimum distance gives us the lower bound for the probability of error. The result

of our simulations with symmetric head size for di�erent values of α, β is shown in

Fig. 5.2. For the �xed head response, shrinking of bit cell size or squeezing the

tracks closer together will lead to loss in performance of the detector. As depicted

in our model (5.12), the degradation in performance occurs regardless of the noise

characteristics. The result also shows that ITI does not necessarily degrade the

performance of the system. Also, the number of erroneous bits for corresponding
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Figure 5.2: Normalized minimum distance for di�erent parameters of the channel
pulse response.

error events is given in Table 5.2. These errors are particularly interesting in the

design of suboptimal 2-D detectors which process stripes of rows or columns at a

time; the 3x3 mask for the 2-D detector would be able to observe the error events

of size 9, however, for higher number of error bits a larger mask is needed which

itself increases the complexity of the detector signi�cantly. Next, we run the simula-

tions on a Voronoi model of a shingled magnetic recording at di�erent densities over

1Tb/in2 for di�erent readback sensor head sizes. The results are shown in Table

5.3. The performance of a PDNP detector degrades for higher densities. This can

be associated with loss in minimum distance as well as higher noise variance.
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α/β 2 1.8 1.6 1.4 1.2 1.0

2.0 9 9 9 49 121 1
1.8 9 9 9 169 81 1
1.6 9 9 25 25 81 1
1.4 49 169 25 25 1 1
1.2 121 81 81 1 1 1
1.0 1 1 1 1 1 1

Table 5.2: Number of erroneous bits for minimum distance events.

Density BAR Noise Bit-cell Track Read Head BER
(Tb/in2) Variance Width (nm) Pitch (nm) Size (nm2)

1.5 4 0.5719 10.37 41.48 2× 2 0.229
1.5 4 0.3710 10.37 41.48 7× 7 0.164
1.5 4 0.3442 10.37 41.48 12× 12 0.170
1.5 4 0.4033 10.37 41.48 18× 18 0.249
1.2 4 0.5061 11.59 46.37 2× 2 0.2114
1.2 4 0.3409 11.59 46.37 5× 5 0.1511
1.2 4 0.2688 11.59 46.37 10× 10 0.1094
1.2 4 0.2817 11.59 46.37 15× 15 0.1447
1 3 0.2076 14.66 43.99 6.48× 6.48 0.061

Table 5.3: Simulation results for shingled Voronoi model.
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5.5 Two-Dimensional Detector

In this section we discuss the performance of a 2-D detector on a Voronoi model

of a shingled magnetic recording channel. Several suboptimal 2-D detectors have

been proposed in the literature. We here brie�y go over the currently available 2-D

detectors. The ITI canceling equalizer can turn the 2-D problem into one dimension

[82]. Wu et al. [83] imposed a constraint on the channel characteristics to derive a

separable 2-D detector. The assumed separable channel has the property that the

channel response can be written as a product of two vectors. With this con�guration

in place, it was shown that two 1-D detectors can be used on rows and columns; the

�rst detector to handle the ITI is a non-binary detector concatenated with a second

binary MAP detector. These detectors iteratively exchange soft values to achieve

close to optimum performance. The exchange of soft values can be seen from a belief

propagation (BP) perspective too. The BP algorithm gives an exact solution on a

tree factor graph, but becomes suboptimal in a loopy factor graph which stands for

our channel with memory [84, 85]. Lehmann [86, 87] designed a BP Kalman �lter to

estimate the signal with a considerable low complexity. However, the performance

of such a detector is inferior to trellis based detectors. In [88], Khatami and Vasic

used the idea of BP and suggested to bundle the graph nodes. These bundles based

on the local constraints form an opinion and exchange information with other nodes

by sending messages to achieve a consensus on the estimation of the transmitted

signal.

We use a row and column detector. The basic idea is that two detectors sweep

stripes of data for each column or row and soft values are exchanged at the output

of each individual detector. In fact, each detector assumes the data is laid in a

narrow long ribbon band where data on column/row is boxed into one symbol.
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These symbols overlap as the detector moves forward to the next symbol. There

are several variations of such a detector. Authors in [89] introduced a reduced state

detector. Cheng et al. [90] added a soft decision feedback from adjacent side tracks

and considered di�erent sweeping combinations such as zig-zag iterations [91]. We

stick to the basic row and column detector with mask size of 3 × 3. Our goal here

is not to compare di�erent 2-D detectors, but to assess the performance of a 2-D

detector on a Voronoi model of a shingled magnetic recording channel. We are

speci�cally interested in examining the e�ect of ITI at the output of the detector.

We run the Voronoi model to generate 20 batches of 8 tracks each containing

16384 bits. We choose 1.5 and 1.2 Tb/in2 as the areal density for our simulations.

The 1.5 Tb/in2 has 6.67 grains in each bit cell on average and 1.2 Tb/in2 has 8.33

grains. The head size is kept constant at 10×10nm2 for 1.2Tb/in2 and 7×7nm2 for

1.5 Tb/in2. Our aim here is to investigate the e�ect of squeezing the tracks closer

together. By squeezing the tracks we increase the ITI from side tracks. At the

same time, the change in the layout of grains on the surface could change the noise

variance at the output of equalizer. For BAR greater than 3 the ITI in the channel

is very small. For a �xed density, the performance of the detector is determined by

the minimum distance and SNR. Interestingly, for 1.2 Tb/in2 we see that number

of errors are halved for BAR=3 and BAR=1. The BAR=3 corresponds to less ITI

and BAR=1 represents the same density but more interference with side-tracks. The

SNR for both BARs is almost the same. The only explanation for such improvement

is a minimum distance increase. The ITI from side-tracks helps to achieve a better

performance. However, as we observed in Fig. 5.2, further increasing the ITI lead

to poorer performance as seen for BAR=0.5. As we increase the density to 1.5

Tb/in2, the probability of error increases. This is partially due to lower SNR at

higher densities.
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Density BAR Noise SNR Bit-cell Track BER
(Tb/in2) Variance (dB) Width (nm) Pitch (nm)

1.5 0.5 0.4707 4.14 29.32 14.66 0.2077
1.5 1 0.3551 5.46 20.73 20.73 0.1522
1.5 4 0.3671 5.15 10.36 41.47 0.1821
1.2 0.5 0.3483 5.59 31.07 17.29 0. 1627
1.2 1 0.2187 7.22 23.18 23.18 0.0715
1.2 3 0.2432 7.16 13.38 40.16 0.1410
1.2 4 0.2650 6.77 11.59 46.37 0.1510

Table 5.4: Simulation results for shingled Voronoi model.
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6 Conclusion

In this dissertation, advanced signal processing techniques for shingle magnetic

recording are investigated, and novel detection methods are proposed. This chapter

outlines the contributions of this dissertation.

Chapter 2 proposes a noise predictive detection algorithm for ISI channels with

linear regressive noise. The MLSD algorithm for ISI channels with correlated noise

has been known for Gauss-Markov noise and is widely used for magnetic recording

channels. Our contribution is the derivation of a noise predictive algorithm that

is tailored to the linear regressive noise model. A block factorization of the co-

variance matrix of the linear regressive Gaussian noise is used to derive the branch

metrics. This algorithm is tested on a partial response channel and exhibits near

optimal performance. A generalization of this algorithm to signal dependent linear

regressive noise is also presented and its performance improvement over conventional

algorithms with comparable complexity is shown using simulation results.

Chapter 3 proposes a layout of a communication system that deals with a nui-

sance parameter. This chapter presents a sequence detector in the presence of a

random nuisance parameter with a continuous distribution. Conventionally, the

nuisance parameter assumed to contribute to the observed noise at the receiver and

therefore degrades the performance of the system. We show that with the right

setup the disturbance from the nuisance parameter in the received signal can be
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alleviated. Our �rst contribution is the derivation of a Viterbi like detector for

sequence detection in the presence of random jitter with polynomial time computa-

tional complexity. We propose the layout of an over-sampling communication system

including sampling, equalization, and detection; derive a detection algorithm based

on the Gauss-Markov assumption. We also derive a genie-aided bound for the de-

tector. Our second contribution is to study the performance of our detector with

respect to minimum distance. The performance of the detector is a function of the

minimum distance of the channel which is subject to changes due to the random

parameter. Our aim is to show the bene�t of exploiting the nuisance parameter in

boosting the performance of the system, especially once the system performs at the

boundaries of the Nyquist ISI criterion. The proposed system is tested for Gaussian

and sinc-shaped pulses. The detector exhibits a performance gain over conventional

detectors. These gains are magni�ed at higher transmission rates. The simulation

results for Gaussian pulses and sinc pulses show that despite the sub-optimality of

our detection, the bit-error probability remains relatively close to optimum.

In Chapters 4 and 5, we explore the challenges of signal processing for a storage

channel. In Chapter 4, we present the micro-magnetic model of hard-disk drives

and discuss the basics of the Voronoi model. We study the detailed parameters of

the Voronoi model and their e�ects on the channel output. This model gives an

accurate imitation of the storage channel and is used for evaluating the performance

of detection methods. Chapter 5 is dedicated to the discussion of 2-D signal pro-

cessing techniques on a storage channel. We give an overview of each component of

a 2-D communication system, 2-D channel model, 2-D channel equalizers, and 2-D

detection. Our contribution in this chapter is to show the e�ectiveness and limits of

2-D detection on a storage channel. We provide an analytical relation between the

performance of a 2-D detector and minimum distance of the channel response. We
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also illustrate the improved performance of a 2-D detector for the Voronoi model at

an areal density that is beyond the current standard in the industry.
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