
PERFORMANCE EVALUATIONS FOR MULTICORE

PROCESSORS

 By

JULIUS JONGGARA R. HOT MARISI MARPAUNG

 Bachelor of Science in Electrical and Computer

Engineering

Oklahoma State University

Stillwater, OK

2003

 Master of Science in Electrical and Computer

Engineering

Oklahoma State University

Stillwater, OK

2006

 Submitted to the Faculty of the

Graduate College of the

Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

DOCTOR OF PHILOSOPHY

 May, 2012

ii

PERFORMANCE EVALUATIONS FOR MULTICORE

PROCESSORS

Dissertation Approved:

Dr. Louis G. Johnson

Dissertation Adviser

Dr. R. G. Ramakumar

Dr. George Scheets

Dr. Blayne Mayfield

 Outside Committee Member

Dr. Sheryl A. Tucker

 Dean of the Graduate College

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

II. LITERATURE REVIEW ..3

 2.1 Uniprocessor‟s Cache Model ...3

 2.2 Multiprocessor‟s Cache Models ..4

 2.2.1 Multiport Approach ..5

 2.2.2 Multibank Approach ...8

 2.2.3 Shared L2 and L3 Cache ...9

 2.2.4 Ring Topology ..11

 2.3 Cache Architecture Performance Evaluation Tools ...11

III. ABAKUS AND VALIDATION..13

 3.1 Using Abakus ...13

 3.2 Validation ...14

IV. PERFORMANCE LIMITATION OF SHARED BUS MULTICORE21

 4.1 Dual-Core Shared L2 ...21

 4.2 Quad-Core Shared L2 ..25

 4.3 Octal-Core Shared L2 ..28

 4.4 16-Core Shared L2 ...32

iv

Chapter Page

 4.5 Dual-Core Shared L3 ...35

 4.6 Quad-Core Shared L3 ..38

 4.7 Octal-Core Shared L3 ..41

 4.8 16-Core Shared L3 ...44

 4.9 Quad-Core Hierarchy ...47

 4. 10 Octal-Core Hierarchy ..50

 4.11 16-Core Hierarchy ...53

 4.12 Performance Comparison ...56

V. FUTURE WORK ...61

VI. CONCLUSION..63

REFERENCES ..64

APPENDICES ...69

 APPENDIX A. INSTALLING MIPS CROSS COMPILER AND CROSS

COMPILING SPEC CPU 2006 BENCHMARKS TO MIPS69

 APPENDIX B. EXAMPLES IN USING ABAKUS TO CREATE A

 QUAD-CORE ARCHITECTURE USING A PRIVATE 32KB L1 CACHE

 FOR EACH PROCESSOR AND A SHARED L2 2MB CACHE72

v

LIST OF FIGURES

Figure Page

 1. Uniprocessor Model ..3

 2. An example of a cache ..4

 3. Multiport cache ...5

 4. Multiport Architecture ..5

 5. Full-map directory scheme ...7

 6. Ports vs chip size for multiport memory cell approach ..7

 7. Multibank cache ..8

 8a. Shared L2 bus ..10

 8b. Shared L3 bus ...10

 9. Ring Topology ..11

 10. Total Number of Instructions for some benchmarks ..14

 11. Various setups for simulation ...15

 12. Comparison of L1 Data Cache Performance between Abakus, Li, Arun,

 and Bird ...15

 13. Comparison of L2 Cache Performance between Abakus, Arun, and Bird16

 14. Number of misses per program constructed from Jaleel and Abakus

 for Sjeng ..17

 15. Number of misses per program constructed from Jaleel and Abakus

 for Bzip ...17

 16. Number of misses per program constructed from Jaleel and Abakus for

 Specrand ..18

 17. Number of misses per program constructed from Jaleel and Abakus

 for MCF on a logarithmic scale ..18

 18. Number of misses per program constructed from Jaleel and Abakus

 for Libquantum on a logarithmic scale ...19

vi

Figure Page

 19. Number of clock cycles for Shared L2 and L3 architectures20

 20. Dual-Core Shared L2 Architecture ...22

 21. Average IPC for Dual-Core Shared L2 ...22

 22. L2 Miss Rate for Dual-Core Shared L2 ..23

 23. Bus 1 Busy Rate for Dual-Core Shared L2 ...23

 24. Bus 1 Wait Rate for Dual-Core Shared L2 ...24

 25. Bus 2 Busy Rate for Dual-Core Shared L2 ...24

 26. Quad-Core Shared L2 Architecture ..25

 27. Average IPC for Quad-Core Shared L2 ..26

 28. L2 Miss Rate for Quad-Core Shared L2 ...26

 29. Bus 1 Busy Rate for Quad-Core Shared L2 ..27

 30. Bus 1 Wait Rate for Quad-Core Shared L2 ..27

 31. Bus 2 Busy Rate for Quad-Core Shared L2 ..28

 32. Octal-Core Shared L2 Architecture ..29

 33. Average IPC for Octal-Core Shared L2 ..29

 34. L2 Miss Rate for Octal-Core Shared L2 ...30

 35. Bus 1 Busy Rate for Octal-Core Shared L2 ..30

 36. Bus 1 Wait Rate for Octal-Core Shared L2 ..31

 37. Bus 2 Busy Rate for Octal-Core Shared L2 ..31

 38. 16-Core Shared L2 Architecture ...32

 39. Average IPC for 16-Core Shared L2 ..33

 40. L2 Miss Rate for 16-Core Shared L2 ..33

 41. Bus 1 Busy Rate for 16-Core Shared L2 ..34

 42. Bus 1 Wait Rate for 16-Core Shared L2 ...34

 43. Bus 2 Busy Rate for 16-Core Shared L2 ..35

 44. Dual-Core Shared L3 Architecture ...36

 45. Average IPC for Dual-Core Shared L3 ...36

 46. L2 Miss Rate for Dual-Core Shared L3 ..37

 47. Bus 2 Busy Rate for Dual-Core Shared L3 ...37

 48. Bus 2 Wait Rate for Dual-Core Shared L3 ...38

 49. Quad-Core Shared L3 Architecture ..39

 50. Average IPC for Quad-Core Shared L3 ..39

 51. L2 Miss Rate for Quad-Core Shared L3 ...40

 52. Bus 2 Busy Rate for Quad-Core Shared L3 ..40

 53. Bus 2 Wait Rate for Quad-Core Shared L3 ..41

 54. Octal-Core Shared L3 Architecture ..42

 55. Average IPC for Octal-Core Shared L3 ..42

 56. L2 Miss Rate for Octal-Core Shared L3 ...43

 57. Bus 2 Busy Rate for Octal-Core Shared L3 ..43

 58. Bus 2 Wait Rate for Octal-Core Shared L3 ..44

vii

Figure Page

 59. 16-Core Shared L3 Architecture ...45

 60. Average IPC for 16-Core Shared L3 ..45

 61. L2 Miss Rate for 16-Core Shared L3 ..46

 62. Bus 2 Busy Rate for 16-Core Shared L3 ..46

 63. Bus 2 Wait Rate for 16-Core Shared L3 ...47

 64. Quad-Core Hierarchy Architecture ...48

 65. Average IPC for Quad-Core Hierarchy ..48

 66. L2 Miss Rate for Quad-Core Hierarchy..49

 67. Bus 1 Busy Rate for Quad-Core Hierarchy ..49

 68. Bus 2 Busy Rate for Quad-Core Hierarchy ..50

 69. Octal-Core Hierarchy Architecture ...51

 70. Average IPC for Octal-Core Hierarchy ..51

 71. L2 Miss Rate for Octal-Core Hierarchy..52

 72. Bus 1 Busy Rate for Octal-Core Hierarchy ..52

 73. Bus 2 Busy Rate for Octal-Core Hierarchy ..53

 74. 16-Core Hierarchy Architecture ...54

 75. Average IPC for 16-Core Hierarchy ...54

 76. L2 Miss Rate for 16-Core Hierarchy ..55

 77. Bus 1 Busy Rate for 16-Core Hierarchy ...55

 78. Bus 2 Busy Rate for 16-Core Hierarchy ...56

 79. Average IPC performance per processor running all benchmarks57

 80. Average IPC performance for all processors on a chip running all

 benchmarks ...57

 81. L2 miss rate for Shared L2, Shared L3, and Hierarchical cache architectures ...58

 82. Shared L2 Performance...58

 83. Shared L3 Performance...59

 84. Average L2 miss rate vs L2 cache size for single program59

 85. Performance Loss per processor vs Number of Processors60

1

CHAPTER I

INTRODUCTION

A significant amount of computer architecture research focuses on reducing the performance gap

between processors and memories. A large main memory cannot provide instructions and data as

fast as the clock speed of the processors. This has led to several innovative ideas to reduce the

access time of instructions and data from the main memory to processors.

Cache is a temporary storage space used to fetch instructions and data from a main memory

which is accessed frequently by processors in order to minimize the access time. As chip

manufacturing technology improves, more transistors can be placed on a single chip. This enables

hardware designers to place more processors and a hierarchy of bigger caches on a single chip

while sharing a common external main memory. Several strategies for cache hierarchies have

been proposed for these multi-core chips. A multi-level cache memory hierarchy with one of the

levels shared by all the processors is widely used in commercial processors because it is the

simplest way for processors to access the shared external memory.

2

A multi-core chip is typically defined as a system that has more than one processor. Sharing level 1,

L1, caches is difficult because the L1 response time must be fast enough to keep up with the

processors‟ clock speed. Sharing level 2, L2, caches among processors is more desirable because it

enables processors to communicate with each other in a fairly short amount of time but without

slowing the processors‟ clock speed. A multi-core chip with a single-shared L2 cache is the bsic

configuration that will be studied in this dissertation. Other configurations will also be studied to

determine whether better performance might be possible.

The goal of my dissertation is to use and improve a new simulation tool, Abakus, to study different

cache hierarchies and configurations. Abakus can be used to evaluate the performance of any chosen

processor and cache configurations. A significant part of this dissertation is devoted to validating the

existing multi-core chips models that have already been developed within Abakus.

This dissertation is divided into 6 chapters. Chapter 2 discusses the literature review. Chapter 3

discusses the validation of our simulation tool, Abakus. Chapter 4 discusses the performance of

shared bus multicore processors with several different cache memory configurations. Chapter 5

discusses the future work. Chapter 6 concludes the dissertation.

3

CHAPTER II

LITERATURE REVIEW

2.1 Uniprocessor’s Cache Model

Figure 1 illustrates the connection between a processor with a L1 and L2 cache, and a main

memory. Figure 2 shows the meaning of the cache symbols that will be used in cache memory

system connection diagrams.

Figure 1. Uniprocessor Model

P1

L1 Cache

L2 Cache

Main Memory

4

Figure 2. An example of a cache

In general, a cache has a read/write port to communicate with a lower level cache/processor and a

fill port to communicate with a higher level cache or main memory. In a uniprocessor model, a

processor will not share its data or instructions with any other processors; hence if the data or the

instructions are not available in L1 cache, they can be fetched from the L2 cache or the main

memory. Some exotic L1 cache models have been proposed to improve the performance of L1

cache [1 - 3] and they are out of the scope of this dissertation.

2.2 Multiprocessor’s Cache Models

This subsection discusses various design alternatives for multiprocessor caches. These design

alternatives have been used and are currently used in a multiprocessor system. As the number of

processor that can be placed on a single chip increases, the cache architecture must be able to

accommodate the processors by increasing the instruction and data bandwidth between the

processors and the memory system.

Cache

Memory
Bus

read / write
port

fill port

5

2.2.1 Multiport Approach

In a multiport approach, a cache can have multiple ports to allow simultaneous read/write from

upper level caches/processors. Figure 3 shows an example of a multiport cache.

Figure 3. Multiport cache

Figure 4 shows the connection between four processors with their private L1 cache and a shared

L2 cache.

Figure 4. Multiport Architecture

Cache

read / write
port 1

read / write
port 2

read / write
port 3

read / write
port n

fill port

P1

L1 Cache

L2 Cache

Main Memory

P2

L1 Cache

Pn

L1 Cache

6

In a uniprocessor model, one processor only needs one port/data or instruction bus line to access

the data or instruction; hence you can only access one address at a time. In a multiport model, we

want the processors to have the ability to access multiple numbers of ports in order to be able to

read and write to different addresses at the same time. The problem comes when two or more

processors try to access the same address. If one processor tries to write to it while the other one

tries to read from it, which one should go first? Often time, designers use a directory-based

coherence protocol to handle this issue. Snooping cannot be used in a multiport environment

because there is not a single shared bus that can be snooped. A full map directory-based protocol

is a cache coherence protocol that uses a presence vector, which is a vector of bits denoting where

the cached copies reside [4]. This method reduces the time it takes to find a valid copy of data

needed by a processor from other processors. The downsides of using this method are the amount

of overhead storages needed as the number of processor goes up and the possibility of being a

bottleneck as processors need to access it regularly. The full-map directory scheme of Maa et al

[4] is presented in Figure 5. Two main disadvantages of using multiport memory approach are

increase in the size of the chip with the number of ports and the significant power it consumes

[5].

7

Figure 5. Full-map directory scheme [4]

Mattausch et al [5] also present a graph of the chip size vs the number of memory ports

implemented in Hitachi Hokkai Semiconductor CMOS 0.5 μm process technologies in

logarithmic scale as shown in Figure 6 that shows the multiport memory cell approach suffers

from a scalability issue.

Figure 6. Ports vs chip size for multiport memory cell approach [5]

8

Researchers have spent an enormous effort in perfecting the multiport method [6-8]. One conflict

that keeps arising is when multiple processors try to access the same address at the same time.

Coming up with a way to fix the problem has been proven to be complicated and requires extra

hardware. Cache designers then come up with an idea of using “banks” to remedy the problem.

2.2.2 Multibank Approach

From the outside, a multibank cache looks like a multiport cache. Each bank contains a unique

address subset/partition of the whole L2 cache. Figure 7 shows an example of a multibank cache.

Figure 7. Multibank cache

Port 0 Port 1 Port n

Bank 0

Bank 1

Bank 0

Bank mCrossbar

Each Bank
has an arbiter

9

The multibank approach also allows each processor to write and read to different ports at the

same time, hence it is a relatively cheap and practical way to implement a multiport cache. The

problem arises when two or more ports try to access one bank simultaneously and it is called

bank conflict. It is possible to increase the number of banks to reduce bank conflicts but doing so

will increase the chip size [5]. Recent research in multibank focuses on bank conflict avoidance

and bank conflict resolution using scheduling, bank predictors, and queuing technique [9-18] and

they are out of the scope of this dissertation.

Researchers and chip manufacturers often time use the idea of crossbar, and ring topology for

connection among processors and caches [19 - 29]. A crossbar interconnection system is typically

used in an environment where processors share L2 cache banks. It allows multiple core ports to

launch operations to the L2 subsystem and receiving data or getting invalidates from L2 in the

same cycle [19]. In general, a crossbar has three busses: Address Bus, Data in bus and Data out

bus. Data out bus is used for writebacks from each core to the banks and data in bus is used for

data reload and to invalidate addresses from all L2 banks to the cores.

2.2.3 Shared L2 and L3 Cache

In a shared L2 cache architecture, each processor has its own private L1 cache sharing an L2

cache as shown in Figure 8a. In a shared L3 bus architecture, each processor has its own private

L1 and L2 cache sharing an L3 cache as shown in Figure 8b.

10

Figure 8a. Shared L2 bus

Figure 8b. Shared L3 bus

These architectures are widely used in industries due to the ease of implementation. A bus arbiter

is needed to satisfy all requests between L1 caches and the L2 cache for the shared L2

configuration and between L2, and L3 caches for the shared L3 configuration. As the number of

processor increases, the bus leading to the shared L2 and L3 caches will get more congested,

hence reducing the performance of the overall system. These architectures are evaluated in

Chapter 3 and 4.

P1

L1 Cache

Main Memory

P2

L1 Cache

L2 Cache

Pn

L1 Cache

Bus Arbiter
is needed

P1

L1 Cache

L2 Cache

L3 Cache

P2

L1 Cache

L2 Cache

Pn

L1 Cache

L2 Cache

Main Memory

Bus arbiter is
needed

11

2.2.4 Ring Topology

Ring topology consists of placing caches in a ring shaped manner. The idea behind a ring

topology is to reduce message passing on a shared bus while maintaining cache coherency by

passing messages from one core to another in a systematic way. Recent processor researchers use

these ideas to come up with better and faster multiprocessors [30-32]. Figure 9 shows the Ring

topology in general.

Figure 9. Ring Topology

2.3 Cache Architecture Performance Evaluation Tools

From the early 1990s until today, researchers have been trying to find the best cache architecture

that delivers the best overall performance (higher hit rate and lower miss rate) for multiprocessor

[33 - 44]. As the number of processor increases, the cache architecture can become very complex.

Cache architectures such as single shared L2 bus, hierarchical bus, and ring-shaped architecture

are widely known and studied independently [33 - 45]. The lack of any publicly available tools to

evaluate the performance of these various cache architectures has prompted the development of a

P1

L1 Cache

P2

L1 Cache

Pn

L1 Cache

L2 Cache

12

new simulation tool, Abakus, which can be used to emulate and study different cache hierarchies

and configurations. There a three simulation tools that are used in academia as of January 2012

and they are: SimpleScalar, Simics and SystemC. We choose not to use SimpleScalar because it

lacks the ability to handle cache arbitration, and multithreading for future development. Simics

does not provide users the ability to edit some of the configuration files. SystemC is recognized

by IEEE as a standard for system-level modeling, design and verification. SystemC has a close

resemblance to Verilog/VHDL, a hardware language; hence it can be used to model any hardware

unlike SimpleScalar that focuses on one specific class of hardware architecture and a major

reason why we choose SystemC.

Examples on how to emulate a cache hierarchy and configuration using Abakus may be found in

Appendix B. Dr. Louis Johnson is the creator and in charge of updating and maintaining Abakus.

Julius Marpaung is in charge of cross compiling benchmarks to MIPS that are used by Abakus,

running the benchmarks and checking the results to make sure that they are consistent with the

output reference provided by SPEC CPU2006. As of April 2012, Abakus does not have the

ability to run multithreaded benchmarks hence no coherency or consistency model needs to be

developed for processors to interact with each other.

13

CHAPTER III

ABAKUS AND VALIDATION

3.1 Using Abakus

Abakus uses SystemC 2.2.0 from http://www.accellera.org that is widely used to model hardware.

The current processor model used in Abakus is a MIPS scalar processor; hence it runs on the

MIPS instruction set. To cross compile any C/C++ based benchmarks to MIPS using Crosstool

from http://www.kegel.com/crosstool, please refer to Appendix A. Alternatively, you can also use

uClibc from http://uclibc.org but the procedure will not be covered in this dissertation. As of

January 2012, Crosstool and uClibc are widely used in academia, but they do not have the ability

to fully support multithreading with OpenMP yet, so the older pthreads library must be used. The

system calls for pthreads have not been added to abacus so that only single threaded benchmarks

can be run with abacus. The standard linux system calls from SimIt-MIPS have been added to

Abakus in order to work with SPEC CPU2006 benchmarks. We also add to SimIt-MIPS the

capability to generate an instruction trace file.

http://www.accellera.org/
http://www.kegel.com/crosstool
http://uclibc.org/

14

In order to verify whether or not Abakus is correctly executing the program/benchmark, Abakus

compares the instructions it executes and the register contents with the trace file. Instructions on

how to use and download SimIt-MIPS may be found at http://simit-mips.sourceforge.net.

3.2 Validation

SPEC CPU2006 benchmark papers [46 – 53] are used as a guideline to validate the performance

of our simulation, Abakus. These papers use the Intel and AMD instruction set while Abakus uses

MIPS instruction set. The difference between Intel, AMD and MIPS instruction set is beyond the

scope of this dissertation and will not be discussed. Figure 10 shows the discrepancies in the total

number of instructions to run the full simulation using various processor configurations and

simulation tools shown in Figure 11. Some discrepancies/differences are expected when

comparing the performance of the non MIPS architecture to MIPS architecture; however, even

discrepancies/differences are found when comparing the results among Intel processors as shown

in Figure 12 and 13 where MPKI stands for Misses Per Kilo Instructions. All simulations done

using Abakus in this dissertation are limited to 1 billion instructions due to the amount of time

needed to run those simulations, hence that is another reason why there are some discrepancies

between the results from Abakus and others [49-56]. There are five benchmarks that can be cross

compiled into MIPS from SPEC CPU2006 and they are sjeng, bzip, mcf, libq, and specrand.

Figure 10. Total Number of Instructions for some benchmarks

http://simit-mips.sourceforge.net/

15

Figure 11. Various setups for simulation

Figure 12.Comparison of L1 Data Cache Performance between Abakus, Li, Arun, and Bird

0

20

40

60

80

100

120

140

160

Bzip Libq MCF Sjeng

MPKI

Benchmark

L1 Data Cache Performance

Abakus - L1 32 KB

Abakus - L1 64 KB

Li - Intel L1 32KB

Li - AMD L1 64 KB

Arun

Bird

16

Figure 13.Comparison of L2 Cache Performance between Abakus, Arun, and Bird

Jaleel[49] configures his simulation to support the following data and instruction cache

configurations: 1-way 32KB, 2-way 64KB, 4-way 128KB, 8-way 256KB up to 2048-way

128MB; using 8-way 256KB L2 cache. Jaleel shows that any instruction cache from 32KB and

beyond will result in virtually zero miss rates for the instruction. To compare the results shown by

Jaleel with Abakus, we need to use the following formula:

(# of misses / # of simulated instructions) x total # of instruction = # of misses / program [1]

Figure 14 – 18 show the reconstructed number of misses per program from Jaleel and Abakus for

sjeng, bzip, mcf, libq, and specrand using 32 KB instruction cache, 32KB to 128 MB data cache

and 8-way 256KB L2 cache.

0

10

20

30

40

50

60

70

Bzip Libq MCF Sjeng

MPKI

Benchmark

Abakus - L2 2MB

Arun

Bird

17

Figure 14. Number of misses per program constructed from Jaleel and Abakus for Sjeng

Figure 15. Number of misses per program constructed from Jaleel and Abakus for Bzip

0.000E+00

5.000E+09

1.000E+10

1.500E+10

2.000E+10

2.500E+10

3.000E+10

3.500E+10

4.000E+10

of Misses per
program

L1 Data Cache Configuration

Abakus

Jaleel

0.000E+00

5.000E+08

1.000E+09

1.500E+09

2.000E+09

2.500E+09

3.000E+09

3.500E+09

4.000E+09

4.500E+09

5.000E+09

of Misses per
program

L1 Data Cache Configuration

Abakus

Jaleel

18

Figure 16. Number of misses per program constructed from Jaleel and Abakus for Specrand

Figure 17. Number of misses per program constructed from Jaleel and Abakus for MCF on a logarithmic

scale

0.000E+00

2.000E+02

4.000E+02

6.000E+02

8.000E+02

1.000E+03

1.200E+03

of Misses per
program

L1 Data Cache Configuration

Abakus

Jaleel

0.1

1

10

100

of Misses
per program

L1 Data Cache Configuration

Abakus

Jaleel

19

Figure 18. Number of misses per program constructed from Jaleel and Abakus for Libquantum on a

logarithmic scale

As expected and shown in Figure 14 – 18, we have some discrepancies between the results from

Abakus and Jaleel due to the difference in the instruction set and the number of instructions

executed.

Lu Peng et all [48] published a paper regarding the execution time for SPEC CPU2006

benchmarks. They used a dual-core processor to run the benchmarks without using any

simulation tools. Their Intel Core 2 results are compared with our dual-core shared L2 results,

and their Pentium D 830 and AMD Athlon 64 results are compared with our dual-core shared L3

results due to the cache configuration for the processors. In order to find Lu Peng‟s number of

clock cycles needed to run their benchmarks into full completion, we need to multiply the amount

of execution time in seconds by the processor clock frequency. In order to estimate the number of

clock cycles needed to run our benchmarks into full completion we need to divide the total

number of instructions for each benchmark by 1 billion instructions and multiply the result by the

0.001

0.01

0.1

1

10

100

of Misses
per program

L1 Data Cache Configuration

Abakus

Jaleel

20

number of recorded clock cycles for 1 billion instructions. Figure 19 shows the comparison of the

number of clock cycles to run benchmarks to full completion between Abakus‟ and Lu Peng‟s.

Figure 19. Number of clock cycles for Shared L2 and L3 architectures

As shown in Figure 19, our results are similar to Lu Peng‟s with differences due to the difference

in instruction set and processor model used to run the benchmarks.

0

1E+12

2E+12

3E+12

4E+12

5E+12

6E+12

7E+12

8E+12

9E+12

1E+13

of Clock
Cycles Abakus L2

Abakus L3

Lu Peng's Intel Core 2 Duo

Lu Peng's Pentium D

Lu Peng's Ahtlon 64 X2

21

CHAPTER IV

PERFORMANCE LIMITATION OF SHARED BUS MULTICORE

In this chapter, we discuss the performance of the following multi-core architectures: Dual-Core

Shared L2, Quad-Core Shared L2, Octal-Core Shared L2, 16-Core Shared L2, Dual-Core Shared

L3, Quad-Core Shared L3, Octal-Core Shared L3, 16-Core Shared L3, Quad-Core Hierarchy,

Octal-Core Hierarchy, and 16-Core Hierarchy. Four SPEC CPU 2006 benchmarks are used: Bzip,

MCF, Libq, and Sjeng.

4.1 Dual-Core Shared L2

The Dual-Core Shared L2 architecture is shown in Figure 20. The recorded Average IPC, L2

Miss Rate, Bus 1 Busy Rate, Bus 1 Wait Rate, Bus 2 Busy Rate for mixed program (Bzip –

Others, Sjeng – Others, MCF – Others and Libq – Others) and single program (Bzip – Do

Nothing, Sjeng – Do Nothing, MCF – Do Nothing and Libq – Do Nothing) shown in Figure 21 –

25 are determined over the number of clock cycles for the named benchmark run to 1 billion

instructions.

22

Figure 20. Dual-Core Shared L2 Architecture

Figure 21. Average IPC for Dual-Core Shared L2

P1

L1 Cache

L2 Cache

P2

L1 Cache

Main Memory

Bus 1

Bus 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 32 KB + 32
KB, L2 2 MB,
8-way, 64 B

L1 64 KB + 64
KB, L2 2 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 4 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 4 MB,
16-way, 64 B

Average
IPC

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

23

Figure 22. L2 Miss Rate for Dual-Core Shared L2

Figure 23. Bus 1 Busy Rate for Dual-Core Shared L2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 32 KB + 32
KB, L2 2 MB,
8-way, 64 B

L1 64 KB + 64
KB, L2 2 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 4 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 4 MB,
16-way, 64 B

L2 Miss
Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

0

0.05

0.1

0.15

0.2

0.25

0.3

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4

MB, 16-way,
64 B

Bus 1
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

24

Figure 24. Bus 1 Wait Rate for Dual-Core Shared L2

Figure 25. Bus 2 Busy Rate for Dual-Core Shared L2

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4

MB, 16-
way, 64 B

Bus 1
Wait Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4

MB, 16-way,
64 B

Bus 2
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

25

The L2 miss rate is defined as the number of misses per access in L2. The bus 1 and bus 2 busy

rate is defined as the probability that a request has been granted in a given clock cycle on bus 1

and bus 2 respectively. Bus 1 wait rate is defined as the probability that a processor has ungranted

requests in a given clock cycle on bus 1.

As shown in Figure 21 - 25, doubling the size of L1 or L2 cache does not significantly increase

the average IPC (Instructions Per Cycle), and reduce the L2 miss rate, bus 1 busy rate, bus 1 wait

rate and bus 2 busy rate. As expected, the bus 2 contention is fairly low because bus 2 only needs

to handle 2 processors. Chapter 4.2 will discuss the impact of using four processors using a

shared L2 cache.

4.2 Quad-Core Shared L2

The Quad-Core Shared L2 architecture is shown in Figure 26. The recorded Average IPC, L2

Miss Rate, Bus 1 Busy Rate, Bus 1 Wait Rate, Bus 2 Busy Rate for mixed program (Bzip –

Others, Sjeng – Others, MCF – Others and Libq – Others) and single program (Bzip – Do

Nothing, Sjeng – Do Nothing, MCF – Do Nothing and Libq – Do Nothing) shown in Figure 27 –

31 are determined over the number of clock cycles for the named benchmark run to 1 billion

instructions.

Figure 26. Quad-Core Shared L2 Architecture

P1

L1 Cache

L2 Cache

P2

L1 Cache

Main Memory

P3

L1 Cache

P4

L1 Cache

Bus 1

Bus 2

26

Figure 27. Average IPC for Quad-Core Shared L2

Figure 28. L2 Miss Rate for Quad-Core Shared L2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 32 KB + 32
KB, L2 4 MB,
8-way, 64 B

L1 64 KB + 64
KB, L2 4 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 8 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 8 MB,
16-way, 64 B

Average
IPC

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L1 32 KB +
32 KB, L2 4
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 4
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 8
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 8

MB, 16-way,
64 B

L2 Miss
Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

27

Figure 29. Bus 1 Busy Rate for Quad-Core Shared L2

Figure 30. Bus 1 Wait Rate for Quad-Core Shared L2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

L1 32 KB +
32 KB, L2 4
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 4
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 8
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 8

MB, 16-way,
64 B

Bus 1
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

L1 32 KB +
32 KB, L2 4
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 4
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 8
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 8

MB, 16-way,
64 B

Bus 1
Wait Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

28

Figure 31. Bus 2 Busy Rate for Quad-Core Shared L2

As shown in Figure 27 - 31, doubling the size of L1 or L2 cache does not significantly increase

the average IPC (Instructions Per Cycle), and reduce the L2 miss rate, bus 1 busy rate, bus 1 wait

rate and bus 2 busy rate. The bus 1 and 2 contentions in general are almost doubled compared to

the Dual-Core shared L2 result. Compared to the Dual-Core Shared L2 result, the L2 miss rate

does not change that much. The issue that needs to be addressed later in the chapter is how many

processors a shared L2 bus can handle before the bus 1 and 2 contentions go to 100%. Chapter

4.3 will discuss the impact of using eight processors using a shared L2 cache.

4.3 Octal-Core Shared L2

The Octal-Core Shared L2 architecture is shown in Figure 32. The recorded Average IPC, L2

Miss Rate, Bus 1 Busy Rate, Bus 1 Wait Rate, Bus 2 Busy Rate for mixed program (Bzip –

Others, Sjeng – Others, MCF – Others and Libq – Others) and single program (Bzip – Do

Nothing, Sjeng – Do Nothing, MCF – Do Nothing and Libq – Do Nothing) shown in Figure 33 –

0

0.05

0.1

0.15

0.2

0.25

0.3

L1 32 KB +
32 KB, L2 4
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 4
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 8
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 8

MB, 16-way,
64 B

Bus 2
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

29

37 are determined over the number of clock cycles for the named benchmark run to 1 billion

instructions.

Figure 32. Octal-Core Shared L2 Architecture

Figure 33. Average IPC for Octal-Core Shared L2

P1

L1 Cache

L2 Cache

P2

L1 Cache

Main Memory

P3

L1 Cache

P4

L1 Cache

P5

L1 Cache

P6

L1 Cache

P7

L1 Cache

P8

L1 Cache

Bus 1

Bus 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 32 KB + 32
KB, L2 8 MB,
8-way, 64 B

L1 64 KB + 64
KB, L2 8 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 16

MB, 8-way,
64 B

L1 32 KB + 32
KB, L2 16

MB, 16-way,
64 B

Average
IPC

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

30

Figure 34. L2 Miss Rate for Octal-Core Shared L2

Figure 35. Bus 1 Busy Rate for Octal-Core Shared L2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L1 32 KB +
32 KB, L2 8
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 8
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 16
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 16
MB, 16-way,

64 B

L2 Miss
Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 32 KB +
32 KB, L2 8
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 8
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 16
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 16
MB, 16-way,

64 B

Bus 1
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

31

Figure 36. Bus 1 Wait Rate for Octal-Core Shared L2

Figure 37. Bus 2 Busy Rate for Octal-Core Shared L2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

L1 32 KB +
32 KB, L2 8
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 8
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 16
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 16
MB, 16-way,

64 B

Bus 1
Wait Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

0

0.1

0.2

0.3

0.4

0.5

0.6

L1 32 KB +
32 KB, L2 8
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 8
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 16
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 16
MB, 16-way,

64 B

Bus 2
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

32

As shown in Figure 33 - 37, doubling the size of L1 or L2 cache does not significantly increase

the average IPC (Instructions Per Cycle), and reduce the L2 miss rate, bus 1 busy rate, bus 1 wait

rate and bus 2 busy rate. The bus 1 and 2 contentions in general are almost doubled compared to

the Quad-Core shared L2 result. Compared to the Quad-Core Shared L2 result, the L2 miss rate

does not change. Chapter 4.4 will discuss the impact of using sixteen processors using a shared

L2 cache.

4.4 16-Core Shared L2

The 16-Core Shared L2 architecture is shown in Figure 38. The recorded Average IPC, L2 Miss

Rate, Bus 1 Busy Rate, Bus 1 Wait Rate, Bus 2 Busy Rate for mixed program (Bzip – Others,

Sjeng – Others, MCF – Others and Libq – Others) and single program (Bzip – Do Nothing, Sjeng

– Do Nothing, MCF – Do Nothing and Libq – Do Nothing) shown in Figure 39 – 43 are

determined over the number of clock cycles for the named benchmark run to 1 billion

instructions.

Figure 38. 16-Core Shared L2 Architecture

P1

L1 Cache

L2 Cache

P2

L1 Cache

Main Memory

P3

L1 Cache

P4

L1 Cache

P5

L1 Cache

P6

L1 Cache

P7

L1 Cache

P8

L1 Cache

Bus 2

P9

L1 Cache

P10

L1 Cache

P11

L1 Cache

P12

L1 Cache

P13

L1 Cache

P14

L1 Cache

P15

L1 Cache

P16

L1 Cache

Bus 1

33

Figure 39. Average IPC for 16-Core Shared L2

Figure 40. L2 Miss Rate for 16-Core Shared L2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 32 KB + 32 KB, L2 16 MB, 8-way, 64 B

Average
IPC

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

0

0.1

0.2

0.3

0.4

0.5

0.6

L1 32 KB + 32 KB, L2 16 MB, 8-way, 64 B

L2 Miss
Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

34

Figure 41. Bus 1 Busy Rate for 16-Core Shared L2

Figure 42. Bus 1 Wait Rate for 16-Core Shared L2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 32 KB + 32 KB, L2 16 MB, 8-way, 64 B

Bus 1
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

0

0.1

0.2

0.3

0.4

0.5

0.6

L1 32 KB + 32 KB, L2 16 MB, 8-way, 64 B

Bus 1
Wait Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

35

Figure 43. Bus 2 Busy Rate for 16-Core Shared L2

The bus 1 contention is virtually 100% hence it is not desirable to use a shared L2 architecture to

handle 16 processors or more. The bus 2 contention is well over 60% and it is higher compared to

the result from Octal-core Shared L2. Compared to the Octal-Core Shared L2 result, the L2 miss

rate does not change. Chapter 4.5 will discuss the impact of using two processors using a shared

L3 cache and we hope that the results are better than using a dual-core shared L2 architecture.

4.5 Dual-Core Shared L3

The Dual-Core Shared L3 architecture is shown in Figure 44. The recorded Average IPC, L2

Miss Rate, Bus 2 Busy Rate, Bus 2 Wait Rate for mixed program (Bzip – Others, Sjeng – Others,

MCF – Others and Libq – Others) and single program (Bzip – Do Nothing, Sjeng – Do Nothing,

MCF – Do Nothing and Libq – Do Nothing) shown in Figure 45 – 48 are determined over the

number of clock cycles for the named benchmark run to 1 billion instructions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L1 32 KB + 32 KB, L2 16 MB, 8-way, 64 B

Bus 2
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

36

Figure 44. Dual-Core Shared L3 Architecture

Figure 45. Average IPC for Dual-Core Shared L3

P1

L1 Cache

P2

L1 Cache

L3 Cache

Bus 1a

Bus 2

L2 Cache L2 Cache

Bus 1b

Main Memory

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 32 KB + 32
KB, L2 1 MB,
8-way, 64 B

L1 64 KB + 64
KB, L2 1 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 2 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 2 MB,
16-way, 64 B

Average
IPC

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

37

Figure 46. L2 Miss Rate for Dual-Core Shared L3

Figure 47. Bus 2 Busy Rate for Dual-Core Shared L3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 32 KB + 32
KB, L2 1 MB,
8-way, 64 B

L1 64 KB + 64
KB, L2 1 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 2 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 2 MB,
16-way, 64 B

L2 Miss
Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

L1 32 KB +
32 KB, L2 1
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 1
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 2

MB, 16-way,
64 B

Bus 2
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

38

Figure 48. Bus 2 Wait Rate for Dual-Core Shared L3

As shown in Figure 45 - 48, doubling the size of L1 or L2 cache does not significantly increase

the average IPC (Instructions Per Cycle), and reduce the L2 miss rate, bus 2 busy rate, and bus 2

wait rate due to the fairly low bus contention. There is no significant improvement in

performance between a dual-core shared L2 and L3 architecture. Chapter 4.6 will discuss the

impact of using four processors using a shared L3 cache.

4.6 Quad-Core Shared L3

The Quad-Core Shared L3 architecture is shown in Figure 49. The recorded Average IPC, L2

Miss Rate, Bus 2 Busy Rate, Bus 2 Wait Rate for mixed program (Bzip – Others, Sjeng – Others,

MCF – Others and Libq – Others) and single program (Bzip – Do Nothing, Sjeng – Do Nothing,

MCF – Do Nothing and Libq – Do Nothing) shown in Figure 50 – 53 are determined over the

number of clock cycles for the named benchmark run to 1 billion instructions.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

L1 32 KB +
32 KB, L2 1
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 1
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 2

MB, 16-
way, 64 B

Bus 2
Wait Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

39

Figure 49. Quad-Core Shared L3 Architecture

Figure 50. Average IPC for Quad-Core Shared L3

P1

L1 Cache

P2

L1 Cache

L3 Cache

Bus 1a

Bus 2

L2 Cache L2 Cache

Bus 1b

Main Memory

P3

L1 Cache

P4

L1 Cache

Bus 1c

L2 Cache L2 Cache

Bus 1d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 32 KB + 32
KB, L2 1 MB,
8-way, 64 B

L1 64 KB + 64
KB, L2 1 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 2 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 2 MB,
16-way, 64 B

Average
IPC

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

40

Figure 51. L2 Miss Rate for Quad-Core Shared L3

Figure 52. Bus 2 Busy Rate for Quad-Core Shared L3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

L1 32 KB +
32 KB, L2 1
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 1
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 2

MB, 16-way,
64 B

L2 Miss
Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

0

0.05

0.1

0.15

0.2

0.25

L1 32 KB +
32 KB, L2 1
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 1
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 2

MB, 16-way,
64 B

Bus 2
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

41

Figure 53. Bus 2 Wait Rate for Quad-Core Shared L3

As shown in Figure 50 - 53, doubling the size of L1 or L2 cache does not significantly increase

the average IPC (Instructions Per Cycle), and reduce the L2 miss rate, bus 2 busy rate, and bus 2

wait rate. Compared to the Quad-Core Shared L2 result, the L2 miss rate does not change that

much. On average, the bus 2 busy rate for quad-core shared L3 is lower than quad-core shared

L2. We are hoping to see more of this phenomenon in Chapter 4.7. Chapter 4.7 will discuss the

impact of using eight processors using a shared L3 cache.

4.7 Octal-Core Shared L3

The Octal-Core Shared L3 architecture is shown in Figure 54. The recorded Average IPC, L2

Miss Rate, Bus 2 Busy Rate, Bus 2 Wait Rate for mixed program (Bzip – Others, Sjeng – Others,

MCF – Others and Libq – Others) and single program (Bzip – Do Nothing, Sjeng – Do Nothing,

MCF – Do Nothing and Libq – Do Nothing) shown in Figure 55 – 58 are determined over the

number of clock cycles for the named benchmark run to 1 billion instructions.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

L1 32 KB +
32 KB, L2 1
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 1
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 2

MB, 16-
way, 64 B

Bus 2
Wait Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

42

Figure 54. Octal-Core Shared L3 Architecture

Figure 55. Average IPC for Octal-Core Shared L3

P1

L1 Cache

P2

L1 Cache

L3 Cache

Bus 1a

Bus 2

L2 Cache L2 Cache

Bus 1b

Main Memory

P3

L1 Cache

P4

L1 Cache

Bus 1c

L2 Cache L2 Cache

Bus 1d

P5

L1 Cache

P6

L1 Cache

Bus 1e

L2 Cache L2 Cache

Bus 1f

P7

L1 Cache

P8

L1 Cache

L2 Cache L2 Cache

Bus 1hBus 1g

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 32 KB + 32
KB, L2 1 MB,
8-way, 64 B

L1 64 KB + 64
KB, L2 1 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 2 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 2 MB,
16-way, 64 B

Average
IPC

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

43

Figure 56. L2 Miss Rate for Octal-Core Shared L3

Figure 57. Bus 2 Busy Rate for Octal-Core Shared L3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

L1 32 KB +
32 KB, L2 1
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 1
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 2

MB, 16-way,
64 B

L2 Miss
Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L1 32 KB +
32 KB, L2 1
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 1
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 2

MB, 16-way,
64 B

Bus 2
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

44

Figure 58. Bus 2 Wait Rate for Octal-Core Shared L3

As shown in Figure 55 - 58, doubling the size of L1 or L2 cache does not significantly increase

the average IPC (Instructions Per Cycle), and reduce the L2 miss rate, bus 2 busy rate, and bus 2

wait rate. Compared to the Octal-Core Shared L2 result, the L2 miss rate does not change that

much. On average, the bus 2 busy rate for octal-core shared L3 is lower than octal-core shared

L2. Chapter 4.8 will discuss the impact of using sixteen processors using a shared L3 cache.

4.8 16-Core Shared L3

The 16-Core Shared L3 architecture is shown in Figure 59. The recorded Average IPC, L2 Miss

Rate, Bus 2 Busy Rate, Bus 2 Wait Rate for mixed program (Bzip – Others, Sjeng – Others,

MCF – Others and Libq – Others) and single program (Bzip – Do Nothing, Sjeng – Do Nothing,

MCF – Do Nothing and Libq – Do Nothing) shown in Figure 60 – 63 are determined over the

number of clock cycles for the named benchmark run to 1 billion instructions.

0

0.005

0.01

0.015

0.02

0.025

L1 32 KB +
32 KB, L2 1
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 1
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 2

MB, 16-
way, 64 B

Bus 2
Wait Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

45

Figure 59. 16-Core Shared L3 Architecture

Figure 60. Average IPC for 16-Core Shared L3

P9

L1 Cache

P10

L1 Cache

L3 Cache

Bus 1i

Bus 2

L2 Cache L2 Cache

Bus 1j

Main Memory

P11

L1 Cache

P12

L1 Cache

Bus 1k

L2 Cache L2 Cache

Bus 1l

P13

L1 Cache

P14

L1 Cache

Bus 1m

L2 Cache L2 Cache

Bus 1n

P15

L1 Cache

P16

L1 Cache

L2 Cache L2 Cache

Bus 1pBus 1o

P1

L1 Cache

P2

L1 Cache

Bus 1a

L2 Cache L2 Cache

Bus 1b

P3

L1 Cache

P4

L1 Cache

Bus 1c

L2 Cache L2 Cache

Bus 1d

P5

L1 Cache

P6

L1 Cache

Bus 1e

L2 Cache L2 Cache

Bus 1f

P7

L1 Cache

P8

L1 Cache

L2 Cache L2 Cache

Bus 1hBus 1g

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 32 KB + 32 KB, L2 1 MB, 8-way, 64 B

Average
IPC

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

46

Figure 61. L2 Miss Rate for 16-Core Shared L3

Figure 62. Bus 2 Busy Rate for 16-Core Shared L3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L1 32 KB + 32 KB, L2 1 MB, 8-way, 64 B

L2 Miss
Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 32 KB + 32 KB, L2 1 MB, 8-way, 64 B

Bus 2
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

47

Figure 63. Bus 2 Wait Rate for 16-Core Shared L3

Compared to the Octal-Core Shared L2 result, the L2 miss rate does not change that much. The

bus 2 busy rate is really close to 100% hence it is not desirable to use a shared L3 architecture to

handle 16 processors or more. Chapter 4.9 will discuss the impact of using four processors using

a hierarchical architecture and we hope that the results are better than using a quad-core shared

L2 and L3 architecture.

4.9 Quad-Core Hierarchy

The Quad-Core Hierarchy architecture is shown in Figure 64. The recorded Average IPC, L2

Miss Rate, Bus 1 Busy Rate, Bus 2 Busy Rate for mixed program (Bzip – Others, Sjeng – Others,

MCF – Others and Libq – Others) and single program (Bzip – Do Nothing, Sjeng – Do Nothing,

MCF – Do Nothing and Libq – Do Nothing) shown in Figure 65 – 68 are determined over the

number of clock cycles for the named benchmark run to 1 billion instructions.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L1 32 KB + 32 KB, L2 1 MB, 8-way, 64 B

Bus 2
Wait Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

48

Figure 64. Quad-Core Hierarchy Architecture

Figure 65. Average IPC for Quad-Core Hierarchy

P1

L1 Cache

L2 Cache

P2

L1 Cache

Main Memory

Bus 1a

Bus 2

P3

L1 Cache

L2 Cache

P4

L1 Cache

Bus 1b

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 32 KB + 32
KB, L2 2 MB,
8-way, 64 B

L1 64 KB + 64
KB, L2 2 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 4 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 4 MB,
16-way, 64 B

Average
IPC

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

49

Figure 66. L2 Miss Rate for Quad-Core Hierarchy

Figure 67. Bus 1 Busy Rate for Quad-Core Hierarchy

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4

MB, 16-way,
64 B

L2 Miss
Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

0

0.05

0.1

0.15

0.2

0.25

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4

MB, 16-way,
64 B

Bus 1
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

50

Figure 68. Bus 2 Busy Rate for Quad-Core Shared L3

As shown in Figure 65 - 68, doubling the size of L1 or L2 cache does not significantly increase

the average IPC (Instructions Per Cycle), and reduce the L2 miss rate, bus 2 busy rate, and bus 2

wait rate. On average, the IPC performance for Hierarchy falls between the quad-core shared L2

and L3 but the bus 2 busy rate is not significantly better than a shared L2 architecture. The bus 1

busy rate for hierarchy is lower than a quad-core shared L2 architecture. Chapter 4.10 will discuss

the impact of using eights processors using a hierarchical architecture.

4.10 Octal-Core Hierarchy

The Octal-Core Hierarchy architecture is shown in Figure 69. The recorded Average IPC, L2

Miss Rate, Bus 1 Busy Rate, Bus 2 Busy Rate for mixed program (Bzip – Others, Sjeng – Others,

MCF – Others and Libq – Others) and single program (Bzip – Do Nothing, Sjeng – Do Nothing,

MCF – Do Nothing and Libq – Do Nothing) shown in Figure 70 – 73 are determined over the

number of clock cycles for the named benchmark run to 1 billion instructions.

0

0.05

0.1

0.15

0.2

0.25

0.3

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4

MB, 16-way,
64 B

Bus 2
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

51

Figure 69. Octal-Core Hierarchy Architecture

Figure 70. Average IPC for Octal-Core Hierarchy

P1

L1 Cache

L2 Cache

P2

L1 Cache

Main Memory

Bus 1a

Bus 2

P3

L1 Cache

L2 Cache

P4

L1 Cache

Bus 1b

P5

L1 Cache

L2 Cache

P6

L1 Cache

Bus 1c

P7

L1 Cache

L2 Cache

P8

L1 Cache

Bus 1d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 32 KB + 32
KB, L2 2 MB,
8-way, 64 B

L1 64 KB + 64
KB, L2 2 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 4 MB,
8-way, 64 B

L1 32 KB + 32
KB, L2 4 MB,
16-way, 64 B

Average
IPC

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

52

Figure 71. L2 Miss Rate for Octal-Core Hierarchy

Figure 72. Bus 1 Busy Rate for Octal-Core Hierarchy

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4

MB, 16-way,
64 B

L2 Miss
Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

0

0.05

0.1

0.15

0.2

0.25

0.3

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4

MB, 16-way,
64 B

Bus 1
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

53

Figure 73. Bus 2 Busy Rate for Octal-Core Hierarchy

As shown in Figure 71 - 73, doubling the size of L1 or L2 cache does not significantly increase

the average IPC (Instructions Per Cycle), and reduce the L2 miss rate, bus 2 busy rate, and bus 2

wait rate. On average, the IPC performance for Hierarchy falls between the octal-core shared L2

and L3 but the bus 2 busy rate is not significantly better than a shared L2 architecture. The bus 1

busy rate for hierarchy is lower than an octal-core shared L2 architecture. Chapter 4.11 will

discuss the impact of using sixteen processors using a hierarchical architecture.

4.11 16-Core Hierarchy

The 16-Core Hierarchy architecture is shown in Figure 74. The recorded Average IPC, L2 Miss

Rate, Bus 1 Busy Rate, Bus 2 Busy Rate for mixed program (Bzip – Others, Sjeng – Others,

MCF – Others and Libq – Others) and single program (Bzip – Do Nothing, Sjeng – Do Nothing,

MCF – Do Nothing and Libq – Do Nothing) shown in Figure 75 – 78 are determined over the

number of clock cycles for the named benchmark run to 1 billion instructions.

0

0.1

0.2

0.3

0.4

0.5

0.6

L1 32 KB +
32 KB, L2 2
MB, 8-way,

64 B

L1 64 KB +
64 KB, L2 2
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4
MB, 8-way,

64 B

L1 32 KB +
32 KB, L2 4

MB, 16-way,
64 B

Bus 2
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

54

Figure 74. 16-Core Hierarchy Architecture

Figure 75. Average IPC for 16-Core Hierarchy

P9

L1 Cache

L2 Cache

P10

L1 Cache

Main Memory

Bus 1e

Bus 2

P11

L1 Cache

L2 Cache

P12

L1 Cache

Bus 1f

P13

L1 Cache

L2 Cache

P14

L1 Cache

Bus 1g

P15

L1 Cache

L2 Cache

P16

L1 Cache

Bus 1h

P1

L1 Cache

L2 Cache

P2

L1 Cache

Bus 1a

P3

L1 Cache

L2 Cache

P4

L1 Cache

Bus 1b

P5

L1 Cache

L2 Cache

P6

L1 Cache

Bus 1c

P7

L1 Cache

L2 Cache

P8

L1 Cache

Bus 1d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L1 32 KB + 32 KB, L2 2 MB, 8-way, 64 B

Average
IPC

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

55

Figure 76. L2 Miss Rate for 16-Core Hierarchy

Figure 77. Bus 1 Busy Rate for 16-Core Hierarchy

0

0.1

0.2

0.3

0.4

0.5

0.6

L1 32 KB + 32 KB, L2 2 MB, 8-way, 64 B

L2 Miss
Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L1 32 KB + 32 KB, L2 2 MB, 8-way, 64 B

Bus 1
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

56

Figure 78. Bus 2 Busy Rate for 16-Core Hierarchy

Compared to the Octal-Core Hierarchical result, the L2 miss rate does not change that much due

to the fairly high bus contention. The bus 2 busy rate is really close to 100% hence it is not

desirable to use a Hierarchical architecture to handle 16 processors or more. Chapter 4.12 will

summarize our findings.

4.12 Performance Comparison

Using the data in Chapter 4.1 to 4.11, we can plot the performance for single, dual, quad, octal

and 16 core shown in Figure 79 - 84. Figure 79 shows the average IPC performance per processor

running all benchmarks. Figure 80 shows the average IPC performance for all processors on a

chip running all benchmarks. Figure 81 shows the L2 miss rate for Shared L2, Shared L3 and

Hierarchical architecture for mixed program. Figure 82 shows the performance of a Shared L2

architecture vs number of processors. Figure 83 shows the performance of a Shared L3

architecture vs number of processors. Figure 84 shows the average L2 miss rate vs number of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 32 KB + 32 KB, L2 2 MB, 8-way, 64 B

Bus 2
Busy Rate

Bzip - Others

Bzip - Do Nothings

Sjeng - Others

Sjeng - Do Nothings

MCF - Others

MCF - Do Nothings

Libq - Others

Libq - Do Nothings

57

processors for single program using a shared L2 cache. Figure 85 shows the performance loss vs

number of processors.

Figure 79. Average IPC performance per processor running all benchmarks

Figure 80. Average IPC performance for all processors on a chip running all benchmarks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 4 8 12 16 20

IPC

Number of processors

Average IPC per processor

Shared L2

Shared L3

Hier

0

1

2

3

4

5

6

7

8

9

0 4 8 12 16 20

IPC

Number of processors

Average IPC per chip

Shared L2

Shared L3

Hier

58

Figure 81. L2 miss rate for Shared L2, Shared L3, and Hierarchical cache architectures

Figure 82. Shared L2 Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 4 8 12 16 20

Miss
Rate

Number of processors

L2 Miss Rate for Mixed Program

Shared L2

Shared L3

Hier

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 4 8 12 16 20

Number of processors

Shared L2

Bus 1 Busy Rate

Bus 1 Wait Rate

Bus 2 Busy Rate

59

Figure 83. Shared L3 Performance

Figure 84. Average L2 miss rate vs L2 cache size for single program for Shared L2 cache

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 4 8 12 16 20

Number of processors

Shared L3

Bus 2 Busy Rate

Bus 2 Wait Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 4 8 12 16 20

L2 cache size in MB

L2 Miss Rate for Single Program

L2 Miss Rate

60

Figure 85. Performance Loss per processor vs Number of Processors

As shown in Figure 80, the rate of which Shared L2 declines is faster than Shared L3 and

Hierarchical, hence sharing a L2 cache may not be the best way to handle a large number of

processors. In Figure 81, one would expect that we would double the IPC as we double the

number of processors; but as the number of processors increases we get less than we hope for. In

Figure 82, one can see it is not desirable to use a shared L2 architecture to handle 16 processors

or more due to the very high bus contention. In Figure 83, it is also not desirable to use a shared

L3 architecture to handle 16 processors or more due to the very high bus contention but a

processor waits about half of the time to get requests granted. Figure 84 emphasizes our findings

that increasing the size of shared L2 cache does not solve the high bus contention problem. A

more exotic approach needs to be explored and researched in order to reduce bus contention to

handle 16 processors or more. Figure 85 shows that we have a bigger loss of performance as we

increase the number of processors.

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20

% of
Performance

Loss

Number of processors

Performance Loss per processor

Shared L2

Shared L3

Hier

61

CHAPTER V

FUTURE WORK

For future work, we are interested in doing a cache performance evaluation for ring topology and

multibank cache to compare with the shared L2 and L3 cache, and hierarchical cache architecture

we have obtained. We are also interested in finding how many levels of unshared cache are

necessary as the number of processor increases to see whether or not we can justify the cost of

adding more memory and levels of memory to maintain performance. We also like to study the

cache performance using multithreaded benchmarks by varying the cache size and set

associativity as multithreaded benchmarks in general require more memory bandwidth compared

to single threaded benchmarks, hence they should be more sensitive to an increase in cache size

and set associativity. We will also look into using a split transaction bus technique as we believe

that we can improve the overall performance compared to the results from Chapter 4 using a

single bus. In a split transaction bus, a transaction is split into two transactions: request and reply.

62

A processor can request something and releases the bus when it is stalled so that others can use it

and receive the response later, hence more memory bandwidth for the system and hopefully better

bus utilization. The design will be more complex than non-split bus architecture but we hope that

we would get a significant performance boost to justify the complexity of the design.

63

CHAPTER VI

CONCLUSION

This dissertation has provided a study on the effect of increasing the number of processors to a

shared bus. In sharing a bus, two factors determine the overall processor and cache performance

and they are bus contention and memory thrashing. Based on our research, we have concluded

that by keeping a constant ratio between the numbers of processors to the shared cache size, we

have prevented memory thrashing from causing significant performance loss. The bus contention

however cannot be prevented and interferes with the overall performance. Sharing a L2 cache is

less desirable compared to sharing a L3 cache or using hierarchical architecture because the

performance drops at a higher rate as the number of processors increases. Abakus uses a scalar

processor while commercial processors use superscalar with higher memory bandwidth required

per processor, hence we expect that the shared bus contention may hit 100% well before sharing a

L2 cache with sixteen superscalar processors. A more exotic architecture needs to be researched

and developed to handle the contention on a shared bus.

64

REFERENCES

[1] Z. Chuanjun, "Balanced instruction cache: reducing conflict misses of direct-mapped caches

through balanced subarray accesses," Computer Architecture Letters, vol. 5, pp. 2-5, 2006.

[2] A. Agarwal and S. D. Pudar, "Column-associative Caches: A Technique For Reducing The

Miss Rate Of Direct-mapped Caches," in Computer Architecture, 1993, Proceedings of the

20th Annual International Symposium on, 1993, pp. 179-190.

[3] N. P. Jouppi, "Improving direct-mapped cache performance by the addition of a small fully-

associative cache and prefetch buffers," in Computer Architecture, 1990. Proceedings., 17th

Annual International Symposium on, 1990, pp. 364-373.

[4] Y.C. Maa, D. K. Pradhan, and D. Thiebaut, "Two economical directory schemes for large-

scale cache coherent multiprocessors," SIGARCH Comput. Archit. News, vol. 19, p. 10,

1991.

[5] T. Sasaki, T. Inoue, N. Omori, T. Hironaka, H. J. Mattausch, and T. Koide, "Chip size and

performance evaluations of shared cache for on-chip multiprocessor," Syst. Comput. Japan,

vol. 36, pp. 1-13, 2005.

[6] Z. Wang, Q. Zuo, and J. Li, "An Intelligent Multi-Port Memory," in Intelligent Information

Technology Application Workshops, 2008. IITAW '08. International Symposium on, 2008,

pp. 251-254.

[7] L. Caixia, L. Jiaxin, Z. Hongli, and Z. Qi, "HHMA: A Hierarchical Hybrid Memory

Architecture Sharing Multi-Port Memory," in Young Computer Scientists, 2008. ICYCS

2008. The 9th International Conference for, 2008, pp. 1320-1325.

[8] J. Weixing, S. Feng, Q. Baojun, and S. Hong, "Multi-port Memory Design Methodology

Based on Block Read and Write," in Control and Automation, 2007. ICCA 2007. IEEE

International Conference on, 2007, pp. 256-259.

[9] S. Shiratake, K. Tsuchida, H. Toda, H. Kuyama, M. Wada, F. Kouno, T. Inaba, H. Akita, and

K. Isobe, "A pseudo multi-bank DRAM with categorized access sequence," in VLSI

Circuits, 1999. Digest of Technical Papers. 1999 Symposium on, 1999, pp. 127-130.

65

[10] Y. Mukuda, K. Aoyama, K. Johguchi, H. J. Mattausch, and T. Koide, "Access Queues for

Multi-Bank Register Files Enabling Enhanced Performance of Highly Parallel Processors,"

in TENCON 2006. 2006 IEEE Region 10 Conference, 2006, pp. 1-4.

[11] D. Kaseridis, J. Stuecheli, and L. K. John, "Bank-aware Dynamic Cache Partitioning for

Multicore Architectures," in Parallel Processing, 2009. ICPP '09. International Conference

on, 2009, pp. 18-25.

[12] J. H. Tseng and K. Asanovic, "Banked multiported register files for high-frequency

superscalar microprocessors," in Computer Architecture, 2003. Proceedings. 30th Annual

International Symposium on, 2003, pp. 62-71.

[13] T. Hironaka, M. Maeda, K. Tanigawa, T. Sueyoshi, K. Aoyama, T. Koide, H. J. Mattausch,

and T. Saito, "Superscalar processor with multi-bank register file," in Innovative

Architecture for Future Generation High-Performance Processors and Systems, 2005, 2005,

p. 10 pp.

[14] S. Cho, "I-cache multi-banking and vertical interleaving," presented at the Proceedings of the

17th ACM Great Lakes symposium on VLSI, Stresa-Lago Maggiore, Italy, 2007.

[15] S. Bieschewski, J. M. Parcerisa, and A. Gonzalez, "Memory bank predictors," in Computer

Design: VLSI in Computers and Processors, 2005. ICCD 2005. Proceedings. 2005 IEEE

International Conference on, 2005, pp. 666-668.

[16] J. Koh, A. Ken-ichi, S. Tetsuya, M. Hans Jurgen, K. Tetsushi, M. Moto, H. Tetsuo, and T.

Kazuya, "Multi-Bank Register File for Increased Performance of Highly-Parallel

Processors," in Solid-State Circuits Conference, 2006. ESSCIRC 2006. Proceedings of the

32nd European, 2006, pp. 154-157.

[17] T. Saito, M. Maeda, T. Hironaka, K. Tanigawa, T. Sueyoshi, K. Aoyama, T. Koide, and H. J.

Mattausch, "Design of superscalar processor with multi-bank register file," in Circuits and

Systems, 2005. ISCAS 2005. IEEE International Symposium on, 2005, vol. 4, pp. 3507-

3510.

[18] T. Yamauchi, L. Hammond, and K. Olukotun, "The hierarchical multi-bank DRAM: a high-

performance architecture for memory integrated with processors," in Advanced Research in

VLSI, 1997. Proceedings., Seventeenth Conference on, 1997, pp. 303-319.

[19] R. Kumar, V. Zyuban, and D. M. Tullsen, "Interconnections in multi-core architectures:

understanding mechanisms, overheads and scaling," in Computer Architecture, 2005. ISCA

'05. Proceedings. 32nd International Symposium on, 2005, pp. 408-419.

[20] J. C. Villanueva, J. Flich, J. Duato, H. Eberle, N. Gura, and W. Olesinski, "A performance

evaluation of 2D-mesh, ring, and crossbar interconnects for chip multi-processors," in

Network on Chip Architectures, 2009. NoCArc 2009. 2nd International Workshop on, 2009,

pp. 51-56.

[21] S. Murali, L. Benini, and G. De Micheli, "An Application-Specific Design Methodology for

On-Chip Crossbar Generation," Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 26, pp. 1283-1296, 2007.

66

[22] K. Johguchi, Z. Zhu, T. Hirakawa, T. Koide, T. Hironaka, and H. J. Mattausch, "Distributed

crossbar architecture for area-efficient combined data/instruction caches with multiple

ports," Electronics Letters, vol. 40, pp. 160-162, 2004.

[23] Y. Aridor, T. Domany, O. Goldshmidt, Y. Kliteynik, E. Shmueli, and J. E. Moreira,

"Multitoroidal Interconnects For Tightly Coupled Supercomputers," Parallel and Distributed

Systems, IEEE Transactions on, vol. 19, pp. 52-65, 2008.

[24] C. Shu-Hsuan, C. Chien-Chih, W. Chi-Neng, C. Yi-Chao, C. Tien-Fu, W. Chao-Ching, and

W. Jinn-Shyan, "No cache-coherence: A single-cycle ring interconnection for multi-core L1-

NUCA sharing on 3D chips," in Design Automation Conference, 2009. DAC '09. 46th

ACM/IEEE, 2009, pp. 587-592.

[25] H. Gang, R. H. Klenke, and J. H. Aylor, "Performance modeling of hierarchical crossbar-

based multicomputer systems," Computers, IEEE Transactions on, vol. 50, pp. 877-890,

2001.

[26] Z. Ying Ping, J. Taikyeong, C. Fei, W. Haiping, R. Nitzsche, and G. R. Gao, "A study of the

on-chip interconnection network for the IBM Cyclops64 multi-core architecture," in Parallel

and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, 2006, pp. 10.

[27] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, "A 5-GHz Mesh Interconnect for

a Teraflops Processor," Micro, IEEE, vol. 27, pp. 51-61, 2007.

[28] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, B.

Liewei, J. Brown, M. Mattina, M. Chyi-Chang, C. Ramey, D. Wentzlaff, W. Anderson, E.

Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook, "TILE64 -

Processor: A 64-Core SoC with Mesh Interconnect," in Solid-State Circuits Conference,

2008. ISSCC 2008. Digest of Technical Papers. IEEE International, 2008, pp. 88-598.

[29] P. Cheolmin, R. Badeau, L. Biro, J. Chang, T. Singh, J. Vash, W. Bo, and T. Wang, "A 1.2

TB/s on-chip ring interconnect for 45nm 8-core enterprise Xeon®processor," in Solid-State

Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, 2010,

pp. 180-181.

[30] S. Murali, L. Benini, and G. De Micheli, "An Application-Specific Design Methodology for

On-Chip Crossbar Generation," Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 26, pp. 1283-1296, 2007.

[31] K. Johguchi, Z. Zhu, T. Hirakawa, T. Koide, T. Hironaka, and H. J. Mattausch, "Distributed

crossbar architecture for area-efficient combined data/instruction caches with multiple

ports," Electronics Letters, vol. 40, pp. 160-162, 2004.

[32] Y. Aridor, T. Domany, O. Goldshmidt, Y. Kliteynik, E. Shmueli, and J. E. Moreira,

"Multitoroidal Interconnects For Tightly Coupled Supercomputers," Parallel and Distributed

Systems, IEEE Transactions on, vol. 19, pp. 52-65, 2008.

[33] Deborah A.Wallach, "PHD: A Hierarchical Cache Coherent Protocol", master thesis, MIT,

September 1992 .

[34] C. Anderson and J. L. Baer, "A multi-level hierarchical cache coherence protocol for

multiprocessors," in Parallel Processing Symposium, 1993., Proceedings of Seventh

International, 1993, pp. 142-148.

67

[35] B. Nitzberg and V. Lo, "Distributed shared memory: a survey of issues and algorithms,"

Computer, vol. 24, pp. 52-60, 1991.

[36] Q. Yang, "Performance analysis of a cache-coherent multiprocessor based on hierarchical

multiple buses," in Databases, Parallel Architectures and Their Applications, PARBASE-90,

International Conference on, 1990, pp. 248-257.

[37] G. Dewan and P. Biswas, "A snooping cache coherency protocol for hierarchically organized

multiprocessors," Microprocess. Microprogram., vol. 31, pp. 105-111, 1991.

[38] J.S. Vitter and E.A.M. Shriver, “Algorithms for Parallel Memory II: Hierarchical Multilevel

Memories,” Algorithmica, vol. 12, pp. 148-169, 1994.

[39] Lioupis, D., and Milios, S. Exploring cache performance in multithreaded processors,

Microprocessors and Microsystems, vol.20, no.10, Jun. 1997.

[40] J.-L. Baer and W.-H. Wang, "Multilevel cache hierarchies: organizations, protocols, and

performance," J. Parallel Distrib. Comput., vol. 6, pp. 451-476, 1989.

[41] M. K. Vernon, R. Jog, and G. S. Sohi, "Performance analysis of hierarchical cache-

consistent multiprocessors," Perform. Eval., vol. 9, pp. 287-302, 1989.

[42] J. Bertoni, J.-L. Baer, and W.-H. Wang, "Scaling shared-bus multi-processors with multiple

buses and shared caches: a performance study," Microprocess. Microsyst., vol. 16, pp. 339-

350, 1992.

[43] C. Anderson and J. L. Baer, "Two techniques for improving performance on bus-based

multiprocessors," in High-Performance Computer Architecture, 1995. Proceedings., First

IEEE Symposium on, 1995, pp. 264-275.

[44] F. N. Sibai, "On the performance benefits of sharing and privatizing second and third-level

cache memories in homogeneous multi-core architectures," Microprocess. Microsyst., vol.

32, pp. 405-412, 2008.

[45] P. Jin Young and L. Choi, "RING-DATA ORDER: A new cache coherence protocol for

ring-based multicores," in High Performance Computing & Simulation, 2009. HPCS '09.

International Conference on, 2009, pp. 82-88.

[46] A. Jaleel, "Memory Characterization of Workloads Using Instrumentation-Driven

Simulation," http://www.glue.umd.edu '~ajaleel/workload, 2007.

[47] A. Jaleel, R. S. Cohn, C. K. Luk, B. L. Jacob. “CMP$im: Using PIN to Characterize

Memory Behavior of Emerging Workloads on CMPs”, Technical Report - UMD-SCA-

2006-01.

[48] P. Lu, P. Jih-Kwon, T. K. Prakash, C. Yen-Kuang, and D. Koppelman, "Memory

Performance and Scalability of Intel's and AMD's Dual-Core Processors: A Case Study," in

Performance, Computing, and Communications Conference, 2007. IPCCC 2007. IEEE

Internationa, 2007, pp. 55-64.

[49] T. K. Prakash, "Performance Analysis of Intel Core 2 Duo Processor," Master's thesis,

Louisiana State University, 2007.

68

[50] K. Ganesan, D. Panwar, and L. K. John, "Generation, Validation and Analysis of SPEC

CPU2006 Simulation Points Based on Branch, Memory and TLB Characteristics," presented

at the Proceedings of the 2009 SPEC Benchmark Workshop on Computer Performance

Evaluation and Benchmarking, Austin, TX, 2009.

[51] L. Shengmei, Q. Lin, T. Zhizhong, C. Buqi, and G. Xingyu, "Performance Characterization

of SPEC CPU2006 Benchmarks on Intel and AMD Platform," in Education Technology and

Computer Science, 2009. ETCS '09. First International Workshop on, 2009, pp. 116-121.

[52] A. A. Nair and L. K. John, "Simulation points for SPEC CPU 2006," in Computer Design,

2008. ICCD 2008. IEEE International Conference on, 2008, pp. 397-403.

[53] S. Bird, A. Phansalkar, L. K. John, A. Mericas, and R. Indukuru, "Performance

characterization of SPEC CPU benchmarks on Intel's core microarchitecture based

processor," in SPEC Benchmark Workshop, 2007.

69

APPPENDICES

APPENDIX A. INSTALLING MIPS CROSS COMPILER AND CROSS COMPILING

SPEC CPU 2006 BENCHMARKS TO MIPS

A.1 Installing MIPS Cross Compiler

1. You need to be in bash ($) and 'bison' and 'flex' are pre-requisites

2. Do $ mkdir mycrosstoolbuild

3. Do $ cd mycrosstoolbuild

4. Do $ wget http://kegel.com/crosstool/crosstool-0.43.tar.gz

5. Do $ tar xzvf crosstool-0.43.tar.gz

6. Do $ cd crosstool-0.43

7. Edit demo-mipsel.sh to reflect the following (Adjust PARALLELMFLAGS to reflect the

number of CPUs on the build system):

set -ex

TARBALLS_DIR=$HOME/downloads

RESULT_TOP=$HOME/crosstool

export TARBALLS_DIR RESULT_TOP

GCC_LANGUAGES="c,c++"

export GCC_LANGUAGES

PARALLELMFLAGS="-j4"

export PARALLELMFLAGS

8. Do $ vi gcc-3.4.5-glibc-2.3.6-tls.dat

9. Update GLIBC_EXTRA_CONFIG to

GLIBC_EXTRA_CONFIG="$GLIBC_EXTRA_CONFIG --with-tls --with-__thread --

without-fp --enable-kernel=2.4.18"

10. Do $ vi mipsel.dat (Do $ vi mips.dat if you want to have big endian)

70

11. Update GCC_EXTRA_CONFIG to

GCC_EXTRA_CONFIG="$GCC_EXTRA_CONFIG --with-float=soft"

12. Download glibc-2.3.6-csuMakefile-patch from

https://eng.ucmerced.edu/root01/SoE_April_07/ComputingSupport/il/collaboratory/colla

b-software/compilers-and-interpreters/glibc-2.3.6-csuMakefile.patch

13. Place the patch into: ~/yourusername/mycrosstoolbuild/crosstool/patches/glibc-2.3.6

14. Go back to ~/yourusername/mycrosstoolbuild/crosstool

15. Do $ bash

16. Do $ unset LD_LIBRARY_PATH (everytime you want to build something new,

ALWAYS do unset)

17. Do $ sh demo-mips.sh (to run the script as this will take a while)

18. Now go to your /home/yourusername/crosstool (Do $ cd followed by $ cd crosstool)

19. Do $ mkdir ccmipsel

20. Do $ mv gcc-3.4.5-glibc-2.3.6/mips-unknown-linux-gnu ccmipsel

21. Do $ rm –r gcc-3.4.5-glibc-2.3.6

22. Do $ export PATH=${PATH}:/home/yourusername/crosstool/ccmipsel/mipsel-

unknown-linux-gnu/bin

(You MUST do this on every new console/session you use/have)

23. Example: $ mipsel-unknown-linux-gnu-gcc -O2 -static -msoft-float -o mybinary

mybinary.c -lm

24. Example: $ file mybinary

25. Example: $ mipsel-unknown-linux-gnu-objdump -D mybinary > mybinary.txt

Sources:

http://www.kegel.com/crosstool/

https://eng.ucmerced.edu/root01/SoE_April_07/ComputingSupport/il/collaboratory/collab-

software/compilers-and-interpreters/mips-cross-compiler-package

https://eng.ucmerced.edu/root01/SoE_April_07/ComputingSupport/il/collaboratory/collab-software/compilers-and-interpreters/glibc-2.3.6-csuMakefile.patch
https://eng.ucmerced.edu/root01/SoE_April_07/ComputingSupport/il/collaboratory/collab-software/compilers-and-interpreters/glibc-2.3.6-csuMakefile.patch
http://www.kegel.com/crosstool/
https://eng.ucmerced.edu/root01/SoE_April_07/ComputingSupport/il/collaboratory/collab-software/compilers-and-interpreters/mips-cross-compiler-package
https://eng.ucmerced.edu/root01/SoE_April_07/ComputingSupport/il/collaboratory/collab-software/compilers-and-interpreters/mips-cross-compiler-package

71

A.2 Cross Compile Spec 2006 Benchmarks to MIPS:

1. Install Spec 2006 in /home/yourusername/SPEC2006/

2. If you are using Unix/Linux go to : /home/yourusername/SPEC2006/ and type in bash

$. ./shrc (yes, it is dot then space then dot then forward slash then shrc)

3. Check the following website for the list of Spec 2006 benchmark:

http://www.spec.org/cpu2006/Docs/

4. Do $ cd /home/yourusername/SPEC2006/config

5. Do $ vi linux32-i386-gcc42.cfg (if you have vim, use it)

6. Edit it so it looks like the following (assuming you want to disable floating point):

CC = /home/yourusername/crosstool/ccmipsel/mipsel-unknown-linux-gnu/bin/mipsel-

unknown-linux-gnu-gcc

CXX = /home/yourusername/crosstool/ccmipsel/mipsel-unknown-linux-gnu/bin/mipsel-

unknown-linux-gnu-g++

FC = /usr/local/gcc42-0715-32/bin/gfortran

COPTIMIZE = -O2 -static -msoft-float

CXXOPTIMIZE = -O2 -static -msoft-float

FOPTIMIZE = -O2

7. Do $ cd /home/yourusername/SPEC2006/bin

8. Do $ runspec --config= linux32-i386-gcc42.cfg --action=build --tune=base bzip2

Or you can also type in the benchmark number, in this case replace bzip2 with 401

9. Get your binary in /home/yourusername/SPEC2006/benchspec/CPU2006/401.bzip2/run/

If this is your first time doing it, it should be in:

/home/yourusername/SPEC2006/benchspec/CPU2006/401.bzip2/run/build_base_i386-

m32-gcc42-nn.0000

Source: http://gem5.org/SPEC2006_benchmarks

Check out the following links should you encounter an error:

http://www.spec.org/cpu2006/Docs/runspec.html#section2.4

http://www.spec.org/cpu2006/Docs/faq.html

(take out -msoft-float if

you want to have floating

point number)

http://www.spec.org/cpu2006/Docs/
http://gem5.org/SPEC2006_benchmarks
http://www.spec.org/cpu2006/Docs/runspec.html#section2.4
http://www.spec.org/cpu2006/Docs/faq.html

72

APPENDIX B. EXAMPLES IN USING ABAKUS TO CREATE A QUAD-CORE

ARCHITECTURE USING A PRIVATE 32KB L1 CACHE FOR EACH PROCESSOR

AND A SHARED L2 2MB CACHE

Download Abakus and untar it to a folder using tar –zxvf command. Get in to the folder and type

„make‟; this will build Abakus. Once done, go to the ~/src/examples/dual_mips_shared_l2 folder

and change the mips_l1.cpp, dual_mips_shared_l2.cpp, dual_mips_shared_l2.h, and

testbench.cpp file as shown in Appendix B1 and B2. Go back to the main Abakus directory and

type „make‟. You will find your executable in ~/src/examples/dual_mips_shared_l2.

B.1 Instructions To Create a Quad-Core Using a Shared L2 Bus

Open your mips_l1.cpp and find the following 2 – 3 lines:

icache("icache", 1, mem_manager, 1L << 15, 8L, 8),

dcache("dcache", 1, mem_manager, 1L << 15, 8L, 8,

 2.0*1.0, 2.0*1.0, ab_time_unit),

“1L << 15” means that you are creating an L1 cache with a size of 2^ 15 = 32KB.

“8L” means that you are going to have 8 lines for your cache, and the last “8” means 8 way.

Make your changes to mips_l1.cpp, save it and open dual_mips_shared_l2.cpp and find any

lines that deals with p0 or p1 and expands them to p2 or p3, for example:

The lines:

p0_req12i("p0_req12i"),

p0_grant12i("p0_grant12i"),

p0_req12d("p0_req12d"),

p0_grant12d("p0_grant12d"),

p1_req12i("p1_req12i"),

p1_grant12i("p1_grant12i"),

p1_req12d("p1_req12d"),

p1_grant12d("p1_grant12d"),

need to be expanded to:

73

p0_req12i("p0_req12i"),

p0_grant12i("p0_grant12i"),

p0_req12d("p0_req12d"),

p0_grant12d("p0_grant12d"),

p1_req12i("p1_req12i"),

p1_grant12i("p1_grant12i"),

p1_req12d("p1_req12d"),

p1_grant12d("p1_grant12d"),

p2_req12i("p2_req12i"),

p2_grant12i("p2_grant12i"),

p2_req12d("p2_req12d"),

p2_grant12d("p2_grant12d"),

p3_req12i("p3_req12i"),

p3_grant12i("p3_grant12i"),

p3_req12d("p3_req12d"),

p3_grant12d("p3_grant12d"),

Make your changes to dual_mips_shared_l2.cpp, save it and open dual_mips_shared_l2.h and

find any lines that deals with p0 or p1 and expands them to p2 or p3, for example:

The lines:

ab_signal<bool> p0_req12i;

ab_signal<bool> p0_grant12i;

ab_signal<bool> p0_req12d;

ab_signal<bool> p0_grant12d;

ab_signal<bool> p1_req12i;

ab_signal<bool> p1_grant12i;

ab_signal<bool> p1_req12d;

ab_signal<bool> p1_grant12d;

74

need to be expanded to:

ab_signal<bool> p0_req12i;

ab_signal<bool> p0_grant12i;

ab_signal<bool> p0_req12d;

ab_signal<bool> p0_grant12d;

ab_signal<bool> p1_req12i;

ab_signal<bool> p1_grant12i;

ab_signal<bool> p1_req12d;

ab_signal<bool> p1_grant12d;

ab_signal<bool> p2_req12i;

ab_signal<bool> p2_grant12i;

ab_signal<bool> p2_req12d;

ab_signal<bool> p2_grant12d;

ab_signal<bool> p3_req12i;

ab_signal<bool> p3_grant12i;

ab_signal<bool> p3_req12d;

ab_signal<bool> p3_grant12d;

Make your changes to dual_mips_shared_l2.h, save it and open testbench.cpp and find any

lines that deals with p0 or p1 and expands them to p2 or p3, for example:

The lines:

top.p0.dump(dumpfile);

top.p1.dump(dumpfile);

need to be expanded to:

top.p0.dump(dumpfile);

top.p1.dump(dumpfile);

top.p2.dump(dumpfile);

top.p3.dump(dumpfile);

Appendix B.2 contains all the changes needed to create a quad-core architecture.

75

B.2Quad-Core Using a Shared L2 Bus

Replace your mips_l1.cpp with the following

#include "mips_l1.h"

#include <fcntl.h>

#include <unistd.h>

mips_l1::mips_l1(sc_module_name name,

 ab_host_mem_manager *mem_manager_,

 int pid,

 addr_t ptag_inst,

 addr_t ptag_data

):

 sc_module(name),

 mem_manager(mem_manager_),

 //local channel initialization

 inst_stall("inst_stall"),

 data_stall("data_stall"),

 dreq("dreq"),

 dgrant("dgrant"),

 dbus("dbus", 4),

 //sub-module instance initialization

 p("p", pid, ptag_inst, ptag_data),

 inst_stall_length("inst_stall_length"),

 data_stall_length("data_stall_length"),

 icache("icache", 1, mem_manager, 1L << 15, 8L, 8),

76

 icache_miss_count("icache_miss_count"),

 dcache_cpu("dcache_cpu"),

 dcache_access_count("dcache_access_count"),

 dcache_miss_count("dcache_miss_count"),

 dcache("dcache", 1, mem_manager, 1L << 15, 8L, 8,

 2.0*1.0, 2.0*1.0, ab_time_unit),

 interactive(0)

{

 //sub-module connections

 p.clk(clk);

 p.inst_mem(icache);

 p.inst_stall(inst_stall);

 p.data_mem(dcache_cpu);

 p.data_stall(data_stall);

 inst_stall_length.start(inst_stall);

 inst_stall_length.stop(inst_stall);

 data_stall_length.start(data_stall);

 data_stall_length.stop(data_stall);

 icache.stall(inst_stall);

 dcache_cpu.stall(data_stall);

 dcache_cpu.client_port_con(dbus.con);

 dcache_cpu.client_port(dbus);

 dcache_cpu.req(dreq);

 dcache_cpu.grant(dgrant);

 icache_miss_count.clk(icache.miss);

 icache_miss_count.cond(icache.miss);

77

 dcache_access_count.clk(dreq);

 dcache_access_count.cond(dreq);

 dcache_miss_count.clk(dcache.miss);

 dcache_miss_count.cond(dcache.miss);

 dcache.master_port_con(dbus.con);

 dcache.master_port(dbus);

 dcache.master_req(dreq);

 dcache.master_grant(dgrant);

 icache.client_port_con(mem_bus_con);

 dcache.client_port_con(mem_bus_con);

 icache.client_port(mem_bus);

 dcache.client_port(mem_bus);

 icache.client_req(req12i);

 dcache.client_req(req12d);

 icache.client_grant(grant12i);

 dcache.client_grant(grant12d);

}

void mips_l1::initialize(ab_main_mem *main_mem,

 int argc, char* *argv, char* *envp)

{

 addr_t pc_init_value = 0; //just in case its not initialized by loader

 addr_t brk_point = 0;

 if (argc > 0) {

 //argv should point to program name to load

 main_mem->mem.load(argv[0], p.ptag_inst, pc_init_value, brk_point);

78

 }

 p.initialize(pc_init_value, brk_point);

 //redirect io

 bool change = 1;

 while (change) {

 change = 0;

 int i = argc - 2;

 if (argv[i][0] == '<') { //redirect stdin

 int fd = open(argv[i+1], O_RDONLY);

 if (fd < 0) {

 cout << "could not open file " << argv[i+1] << endl;

 }

 p.except_handler.ioredirect[0] = fd;

 argc = i;

 change = 1;

 cout << name() << " redirecting input to " << argv[i+1] << endl;

 }

 if (argv[i][0] == '>') { //redirect stdout

 int fd = open(argv[i+1], O_WRONLY | O_CREAT, 00644);

 if (fd < 0) {

 cout << "could not open file " << argv[i+1] << endl;

 }

 p.except_handler.ioredirect[1] = fd;

 argc = i;

 change = 1;

79

 cout << name() << " redirecting output to " << argv[i+1] << endl;

 }

 }

 //initialize stack

 addr_t stack_ptr = mips32int::STACK_BASE - mips32int::MAX_ENVIRON;

 p.gpr.chan.write(29, stack_ptr); //sp (stack pointer)

 /*write argc to stack*/

 paddr_t ptag = ((paddr_t) p.ptag_inst) << 56;

 main_mem->mem.write_mem(0, ptag + ((paddr_t) stack_ptr),

 sizeof(addr_t), (cblock_t) &argc, sizeof(addr_t));

 p.gpr.chan.write(4, argc);

 stack_ptr += sizeof(addr_t);

 /*skip stack_ptr past argv pointer array*/

 addr_t argAddr = stack_ptr;

 p.gpr.chan.write(5, argAddr);

 stack_ptr += (argc+1)*sizeof(addr_t);

 /*skip env pointer array*/

 addr_t envAddr = stack_ptr;

 for (int i=0; envp[i]; i++)

 stack_ptr += 4;

 stack_ptr += 4;

80

 /*write argv to stack*/

 for (int i=0; i<argc; i++) {

 main_mem->mem.write_mem(0, ptag + ((paddr_t) (argAddr+i*sizeof(addr_t))),

 sizeof(addr_t), (cblock_t) &stack_ptr, sizeof(addr_t));

 for (int j = 0; argv[i][j] != '\0'; j++)

 main_mem->mem.write_mem(0, ptag + ((paddr_t) (stack_ptr+j)),

 1, (cblock_t) &argv[i][j], 1);

 /*0 already at the end of the string as done by initialization*/

 stack_ptr += strlen(argv[i])+1;

 }

 /*0 already at the end argv pointer array*/

 /*write env to stack*/

 for (int i=0; envp[i]; i++) {

 main_mem->mem.write_mem(0, ptag + ((paddr_t) (envAddr+i*sizeof(addr_t))),

 sizeof(addr_t), (cblock_t) &stack_ptr, sizeof(addr_t));

 for (int j = 0; envp[i][j] != '\0'; j++)

 main_mem->mem.write_mem(0, ptag + ((paddr_t) (stack_ptr+j)),

 1, (cblock_t) &envp[i][j], 1);

 /*0 already at the end of the string as done by initialization*/

 stack_ptr += strlen(envp[i])+1;

 }

 /*stack overflow*/

81

 if (stack_ptr+sizeof(addr_t)>=p.STACK_BASE) {

 cout << "Environment overflow for processor " << p.pid

 << ". Need to increase MAX_ENVIRON.\n";

 SC_REPORT_ERROR("abakus", name());

 }

}

void mips_l1::evaluate() {

 p.evaluate();

}

void mips_l1::evaluate_end() {

 p.evaluate_end();

 inst_stall_length.evaluate_start();

 inst_stall_length.evaluate_stop();

 //performance measures

 if (p.controller.stall_if_chan.read() == 1)

 if_stall_count += 1;

 else {

 if ((p.controller.pc_inst_reg.chan.read())->icode == 0)

 if_nop_count += 1;

 else

 if_icount++;

 }

 if (p.controller.stall_wr_back_chan.read() == 1)

82

 wb_stall_count += 1;

 else {

 if ((p.controller.mem_wb_inst_reg.chan.read())->icode == 0)

 wb_nop_count += 1;

 else

 icount++;

 }

 if (inst_stall.read()) inst_stall_count++;

 if (data_stall.read()) data_stall_count++;

 if (inst_stall.read() && data_stall.read()) inst_data_stall_count++;

 if (interactive) {

 instruction *inst = p.controller.mem_wb_inst_reg.chan.read();

 addr_t addr = inst->iaddr;

 icode_t code = inst->icode;

 debug_monitor(addr, code);

 }

}

void mips_l1::perf_sum() {

 cout << endl;

 cout << "processor " << p.pid << " performance summary" << endl;

 cout << "write back NOP count: " << wb_nop_count << endl;

 cout << "write back stall count: " << wb_stall_count << endl;

 cout << "instruction count: " << icount << endl;

 cout << "IPC: " << ((float) icount)/((float) ab_clk_count) << endl;

83

 cout << "fetch NOP count: " << if_nop_count << endl;

 cout << "fetch stall count: " << if_stall_count << endl;

 cout << "fetch instruction count: " << if_icount << endl;

 cout << endl;

 cout << "i-cache accesses: " << if_nop_count + if_icount

 << " misses: " << icache_miss_count.count

 << " miss rate " << (float) icache_miss_count.count

 / (float) (if_nop_count + if_icount) << endl;

 cout << "d-cache accesses: " << dcache_access_count.count

 << " misses: " << dcache_miss_count.count

 << " miss rate " << (float) dcache_miss_count.count

 / (float) dcache_access_count.count << endl;

 float Pstall_icache = (float) inst_stall_count / (float) ab_clk_count;

 cout << "i-cache stall cycles: " << inst_stall_count

 << " probability of stalled i-cache: " << Pstall_icache << endl;

 float Pstall_dcache = (float) data_stall_count / (float) ab_clk_count;

 cout << "d-cache stall cycles: " << data_stall_count

 << " probability of stalled d-cache: " << Pstall_dcache << endl;

 float Pstall_idcache = (float) inst_data_stall_count/ (float) ab_clk_count;

 float COV_stall_idcache = Pstall_idcache - Pstall_icache * Pstall_dcache;

 float CORR_stall_idcache = COV_stall_idcache/sqrt(Pstall_icache

 * (1. - Pstall_icache) * Pstall_dcache * (1. - Pstall_dcache));

 cout << "i and d cache stall cycles: " << inst_data_stall_count

84

 << " probability of stalled i and dcache: " << Pstall_idcache

 << " covariance: " << COV_stall_idcache

 << " correlation: " << CORR_stall_idcache << endl;

 cout << endl;

 inst_stall_length.dump(cout);

 data_stall_length.dump(cout);

 cout << endl;

}

void mips_l1::dump(ostream &out) const {

 out << endl << name() << endl;

 out << "instruction count: " << icount << endl;

 p.dump(out);

 icache.dump(out);

 req12i.dump(out);

 grant12i.dump(out);

 dcache.dump(out);

 req12d.dump(out);

 grant12d.dump(out);

}

85

Replace your dual_mips_shared_l2.cpp with the following:

#include "dual_mips_shared_l2.h"

int npid = 0; //incremented be each processor instance

void parse(char *command, int &pargc, char **pargv) {

 const int MAXARGS = 10;

 const int MAXCHARS = 80;

 pargc = 0;

 int i = 0;

 bool word_started = 0;

 cin.get(command[0]);

 while (command[i] != '\n') {

 if (command[i] == ' ') {

 while (cin.peek() == ' ') cin.get(command[i]);

 if (word_started) {

 command[i] = '\0';

 word_started = 0;

 }

 //blanks ignored if not word_started

 } else { //non-blank

 if (!word_started) {

 pargv[pargc++] = &command[i];

 if (pargc >= MAXARGS) {

 cout << "too many arguments" << endl;

86

 SC_REPORT_ERROR("abakus", "parse error");

 }

 word_started = 1;

 }

 //no new arg if word_started already

 }

 if (++i >= MAXCHARS) {

 cout << "too many characters" << endl;

 SC_REPORT_ERROR("abakus", "parse error");

 }

 cin.get(command[i]);

 }

 command[i] = '\0';

 if (pargc == 0) {

 cout << "usage: [mips-elf-executable-file]"

<< " [arguments to executable file]" << endl;

 SC_REPORT_ERROR("abakus", "parse error");

 }

}

dual_mips_shared_l2::dual_mips_shared_l2(sc_module_name name)

 : sc_module(name),

 //local channel initialization

 p0_req12i("p0_req12i"),

 p0_grant12i("p0_grant12i"),

 p0_req12d("p0_req12d"),

87

 p0_grant12d("p0_grant12d"),

 p1_req12i("p1_req12i"),

 p1_grant12i("p1_grant12i"),

 p1_req12d("p1_req12d"),

 p1_grant12d("p1_grant12d"),

 p2_req12i("p2_req12i"),

 p2_grant12i("p2_grant12i"),

 p2_req12d("p2_req12d"),

 p2_grant12d("p2_grant12d"),

 p3_req12i("p3_req12i"),

 p3_grant12i("p3_grant12i"),

 p3_req12d("p3_req12d"),

 p3_grant12d("p3_grant12d"),

 req12("req12"),

 grant12("grant12"),

 req23("req23"),

 grant23("grant23"),

 bus1("bus1", 64),

 bus2("bus2", 64),

 //sub-module instance initialization

 mem_manager("mem_manager", 1 << 28),

 p0("p0", &mem_manager, 0, 1, 1),

 p1("p1", &mem_manager, 1, 2, 2),

88

 p2("p2", &mem_manager, 2, 3, 3),

 p3("p3", &mem_manager, 3, 4, 4),

 arbiter("arbiter", round_robin),

 cache2("cache2", 1, &mem_manager, 1L << 21, 8L, 8,

 2.0*3.0, 2.0*2.0, ab_time_unit),

 cache2_access_count("cache2_access_count"),

 cache2_miss_count("cache2_miss_count"),

 main_mem("main_mem", 0, &mem_manager, 8, 2.0*10.0, 2.0*8.0, ab_time_unit),

 main_mem_access_count("main_mem_access_count"),

 bus1_busy_count(0)

{

 //sub-module connections

 p0.clk(clk);

 p0.mem_bus_con(bus1.con);

 p0.mem_bus(bus1);

 p0.req12i(p0_req12i);

 p0.req12d(p0_req12d);

 p0.grant12i(p0_grant12i);

 p0.grant12d(p0_grant12d);

 p1.clk(clk);

 p1.mem_bus_con(bus1.con);

 p1.mem_bus(bus1);

 p1.req12i(p1_req12i);

89

 p1.req12d(p1_req12d);

 p1.grant12i(p1_grant12i);

 p1.grant12d(p1_grant12d);

 p2.clk(clk);

 p2.mem_bus_con(bus1.con);

 p2.mem_bus(bus1);

 p2.req12i(p2_req12i);

 p2.req12d(p2_req12d);

 p2.grant12i(p2_grant12i);

 p2.grant12d(p2_grant12d);

 p3.clk(clk);

 p3.mem_bus_con(bus1.con);

 p3.mem_bus(bus1);

 p3.req12i(p3_req12i);

 p3.req12d(p3_req12d);

 p3.grant12i(p3_grant12i);

 p3.grant12d(p3_grant12d);

 arbiter.req_client(p0_req12i);

 arbiter.grant_client(p0_grant12i);

 arbiter.req_client(p1_req12i);

 arbiter.grant_client(p1_grant12i);

 arbiter.req_client(p2_req12i);

 arbiter.grant_client(p2_grant12i);

90

 arbiter.req_client(p3_req12i);

 arbiter.grant_client(p3_grant12i);

 arbiter.req_client(p0_req12d);

 arbiter.grant_client(p0_grant12d);

 arbiter.req_client(p1_req12d);

 arbiter.grant_client(p1_grant12d);

 arbiter.req_client(p2_req12d);

 arbiter.grant_client(p2_grant12d);

 arbiter.req_client(p3_req12d);

 arbiter.grant_client(p3_grant12d);

 arbiter.req_master(req12);

 arbiter.grant_master(grant12);

 cache2.master_port_con(bus1.con);

 cache2.master_port(bus1);

 cache2.master_req(req12);

 cache2.master_grant(grant12);

 cache2.client_port_con(bus2.con);

 cache2.client_port(bus2);

 cache2.client_req(req23);

 cache2.client_grant(grant23);

 cache2_access_count.clk(req12);

 cache2_access_count.cond(req12);

 cache2_miss_count.clk(cache2.miss);

 cache2_miss_count.cond(cache2.miss);

91

 main_mem.master_port_con(bus2.con);

 main_mem.master_port(bus2);

 main_mem.master_req(req23);

 main_mem.master_grant(grant23);

 main_mem_access_count.clk(req23);

 main_mem_access_count.cond(req23);

}

void dual_mips_shared_l2::initialize(char **envp) {

 char command[80];

 int pargc;

 char* pargv[10];

 //initialize processor pointer array

 pl1ptr = new mips_l1*[npid];

 pl1ptr[p0.p.pid] = &p0;

 pl1ptr[p1.p.pid] = &p1;

 pl1ptr[p2.p.pid] = &p2;

 pl1ptr[p3.p.pid] = &p3;

 //sanity check

 cout << "(pl1ptr[0]->p).pid = " << (pl1ptr[0]->p).pid << endl;

 cout << "(pl1ptr[1]->p).pid = " << (pl1ptr[1]->p).pid << endl;

 cout << "(pl1ptr[2]->p).pid = " << (pl1ptr[2]->p).pid << endl;

 cout << "(pl1ptr[3]->p).pid = " << (pl1ptr[3]->p).pid << endl;

92

 cout << endl;

 cout << "p" << p0.p.pid << " command line: ";

 parse(command, pargc, pargv);

 for (int i = 0; i < pargc; i++) {

 cout << "argv[" << i << "] = ";

 for (int j = 0; pargv[i][j] != '\0'; j++) {

 cout << pargv[i][j];

 }

 cout << endl;

 }

 p0.initialize(&main_mem, pargc, pargv, envp);

 cout << "p" << p1.p.pid << " command line: ";

 parse(command, pargc, pargv);

 for (int i = 0; i < pargc; i++) {

 cout << "argv[" << i << "] = ";

 for (int j = 0; pargv[i][j] != '\0'; j++) {

 cout << pargv[i][j];

 }

 cout << endl;

 }

 p1.initialize(&main_mem, pargc, pargv, envp);

 cout << "p" << p2.p.pid << " command line: ";

 parse(command, pargc, pargv);

93

 for (int i = 0; i < pargc; i++) {

 cout << "argv[" << i << "] = ";

 for (int j = 0; pargv[i][j] != '\0'; j++) {

 cout << pargv[i][j];

 }

 cout << endl;

 }

 p2.initialize(&main_mem, pargc, pargv, envp);

 cout << "p" << p3.p.pid << " command line: ";

 parse(command, pargc, pargv);

 for (int i = 0; i < pargc; i++) {

 cout << "argv[" << i << "] = ";

 for (int j = 0; pargv[i][j] != '\0'; j++) {

 cout << pargv[i][j];

 }

 cout << endl;

 }

 p3.initialize(&main_mem, pargc, pargv, envp);

}

void dual_mips_shared_l2::evaluate() {

 p0.evaluate();

 p1.evaluate();

 p2.evaluate();

 p3.evaluate();

94

}

void dual_mips_shared_l2::evaluate_end() {

 p0.evaluate_end();

 p1.evaluate_end();

 p2.evaluate_end();

 p3.evaluate_end();

 //performance measures

 if (bus1.con_chan.read() != 0)

 bus1_busy_count += 1;

}

void dual_mips_shared_l2::dump(ostream &out) const {

 p0.dump(out);

 p0_req12i.dump(out);

 p0_grant12i.dump(out);

 p0_req12d.dump(out);

 p0_grant12d.dump(out);

 p1.dump(out);

 p1_req12i.dump(out);

 p1_grant12i.dump(out);

 p1_req12d.dump(out);

 p1_grant12d.dump(out);

 p2.dump(out);

95

 p2_req12i.dump(out);

 p2_grant12i.dump(out);

 p2_req12d.dump(out);

 p2_grant12d.dump(out);

 p3.dump(out);

 p3_req12i.dump(out);

 p3_grant12i.dump(out);

 p3_req12d.dump(out);

 p3_grant12d.dump(out);

 arbiter.dump(out);

 req12.dump(out);

 grant12.dump(out);

 bus1.dump(out);

 cache2.dump(out);

 req23.dump(out);

 grant23.dump(out);

 bus2.dump(out);

 main_mem.dump(out);

 mem_manager.dump(out);

}

Replace your dual_mips_shared_l2.h with the following:

96

#ifndef DUAL_MIPS_SHARED_L2_H

#define DUAL_MIPS_SHARED_L2_H

#include "cache.h"

#include "main_mem.h"

#include "arbiter.h"

#include "mips_l1.h"

struct dual_mips_shared_l2: public sc_module {

 //ports

 ab_clk_in clk;

 //local channels

 ab_signal<bool> p0_req12i;

 ab_signal<bool> p0_grant12i;

 ab_signal<bool> p0_req12d;

 ab_signal<bool> p0_grant12d;

 ab_signal<bool> p1_req12i;

 ab_signal<bool> p1_grant12i;

 ab_signal<bool> p1_req12d;

 ab_signal<bool> p1_grant12d;

 ab_signal<bool> p2_req12i;

 ab_signal<bool> p2_grant12i;

 ab_signal<bool> p2_req12d;

97

 ab_signal<bool> p2_grant12d;

 ab_signal<bool> p3_req12i;

 ab_signal<bool> p3_grant12i;

 ab_signal<bool> p3_req12d;

 ab_signal<bool> p3_grant12d;

 ab_signal<bool> req12;

 ab_signal<bool> grant12;

 ab_signal<bool> req23;

 ab_signal<bool> grant23;

 ab_memory_bus bus1;

 ab_memory_bus bus2;

 //sub-module instances

 ab_host_mem_manager mem_manager;

 mips_l1 p0;

 mips_l1 p1;

 mips_l1 p2;

 mips_l1 p3;

 ab_arbiter<8> arbiter;

 ab_cache cache2;

 ab_cond_count cache2_access_count;

 ab_cond_count cache2_miss_count;

 ab_main_mem main_mem;

 ab_cond_count main_mem_access_count;

98

 //constructor

 dual_mips_shared_l2();

 explicit dual_mips_shared_l2(sc_module_name name_);

 void initialize(char **envp);

 void evaluate();

 void evaluate_end();

 void dump(ostream &out) const;

 mips_l1 **pl1ptr;

 long bus1_busy_count;

};

#endif

Replace your testbench.cpp with the following:

#include <sys/time.h>

#include <sys/resource.h>

#include <unistd.h>

#include <string>

using std::string;

#include "testbench.h"

#include "trace.h"

99

sc_time_unit ab_time_unit = SC_NS;

ab_testbench::ab_testbench(sc_module_name name_, int argc_, char **argv_,

 char **envp_)

 :

 sc_module(name_),

 //local channel initialization

 //sub-module instance initialization

 clkgen("clkgen", 2.0, ab_time_unit),

 top("top"),

 argc(argc_),

 argv(argv_),

 envp(envp_),

 print_cycle(0),

 display_cycle(0),

 break_cycle(0),

 interactive(0)

{

 //sub-module port connection

 top.clk(clkgen.clk);

 //processes

 SC_METHOD(process);

 sensitive << clkgen.clk;

100

 SC_METHOD(process_end);

 sensitive << clkgen.clk_end;

 dont_initialize();

}

void ab_testbench::start_of_simulation() {

 //command line options

 while ((argc > 1) && (argv[1][0] == '-')) {

 switch(argv[1][1]) {

 case 'd':

 interactive = 1;

 argc -= 1;

 argv += 1;

 break;

 case 'h':

 cout << "usage: dual_mips_shared_l2 [option] ... [option] " << endl;

 cout << "options: " << endl;

 cout << " -d (interactive debug)" << endl;

 cout << " -V (version)" << endl;

 cout << " -p n (print stats every n cycles)" << endl;

 SC_REPORT_ERROR("abakus", name());

 case 'p':

 print_cycle = 0;

 for (int i = 0; argv[2][i] != '\0'; i++) {

 print_cycle *= 10;

 print_cycle += (long) argv[2][i] - (long) '0';

101

 }

 cout << "print_cycle = " << print_cycle << endl;

 argc -= 2;

 argv += 2;

 break;

 case 'V':

 cout << argv[0] << " version 0.2.0" << endl;

 argc -= 1;

 argv += 1;

 break;

 default:

 cout << "unrecognized option " << argv[1] << endl;

 SC_REPORT_ERROR("abakus", name());

 }

 }

 //processor initialization

 argc -=1;

 argv +=1;

 top.initialize(envp);

 if (interactive) debug_interaction();

}

void ab_testbench::process() {

 //evaluate submodule proceses first

102

 top.evaluate();

}

void ab_testbench::process_end() {

 //evaluate submodule proceses first

 top.evaluate_end();

 if (ab_debug) {

 dumpfile << "\n\ncycle number " << ab_clk_count

 << " at " << sc_time_stamp() << endl;

 top.p0.dump(dumpfile);

 top.p1.dump(dumpfile);

 top.p2.dump(dumpfile);

 top.p3.dump(dumpfile);

 top.arbiter.dump(dumpfile);

 top.cache2.dump(dumpfile);

 top.bus2.dump(dumpfile);

 top.main_mem.dump(dumpfile);

 dumpfile << "+-

+\n\n";

 }

 if (interactive) {

 debug_monitor();

 }

 if ((print_cycle != 0) && (ab_clk_count % print_cycle == 0)) print_stats();

}

103

void ab_testbench::dump(ostream &out) const {

 out << endl << name() << endl;

 clkgen.dump(out);

 top.dump(out);

}

 struct timeval begin_u, end_u, begin_s, end_s;

 struct rusage usg;

 float user_time, sys_time;

int sc_main(int argc, char **argv) {

 cout << "in sc_main" << endl;

 sc_set_time_resolution(1.0, ab_time_unit);

 //make sc_time objects after setting time resolution

 ab_half_cycle = new sc_time(1.0, ab_time_unit);

 cout.unsetf(ios::dec);

 cout.setf(ios::hex);

 cout.width(2*sizeof(data_t));

 cout.fill('0');

 //fake environment

 char *p = 0;

104

 char* *envp = &p;

 //start elaboration

 ab_testbench test("ab_testbench", argc, argv, envp);

 //set up elapsed time measurement

 getrusage(RUSAGE_SELF, &usg);

 begin_u = usg.ru_utime;

 begin_s = usg.ru_stime;

 cout << "calling sc_start" << endl;

 //sc_start(200000.0, ab_time_unit);

 sc_start();

 cout << "finished sc_start" << endl;

 test.print_stats();

 return(0);

}

void ab_testbench::print_stats() {

 //finish elapsed time measurement

 getrusage(RUSAGE_SELF, &usg);

 end_u = usg.ru_utime;

 end_s = usg.ru_stime;

 user_time = (end_u.tv_sec+end_u.tv_usec/1000000.0)-

 (begin_u.tv_sec+begin_u.tv_usec/1000000.0);

 sys_time = (end_s.tv_sec+end_s.tv_usec/1000000.0)-

105

 (begin_s.tv_sec+begin_s.tv_usec/1000000.0);

 cout.unsetf(ios::hex);

 cout.setf(ios::dec);

 cout.fill(' ');

 cout << endl;

 cout << "clock cycles: " << ab_clk_count << endl;

 top.p0.perf_sum();

 top.p1.perf_sum();

 top.p2.perf_sum();

 top.p3.perf_sum();

 cout << endl;

 cout << "bus 1 busy cycles: " << top.bus1_busy_count

 << " busy rate: " << (float) top.bus1_busy_count

 / (float) ab_clk_count << endl;

 cout << "l2-cache accesses: " << top.cache2_access_count.count

<< " misses: " << top.cache2_miss_count.count

<< " miss rate " << (float) top.cache2_miss_count.count

 / (float) top.cache2_access_count.count << endl;

 cout << "main mem accesses: " << top.main_mem_access_count.count

 << endl;

 cout << endl;

 cout << "Total user time: " << user_time << endl;

 cout << "Total system time: " << sys_time << endl;

 cout << "Simulation speed (cyc/sec): "

 << ab_clk_count/(user_time + sys_time) << endl;

106

 cout << "Simulation host mem swaps: " << top.mem_manager.swap_count

 << endl;

 float swaps_per_access = (float) top.mem_manager.swap_count

 / (float) (top.p0.if_nop_count

 + top.p0.if_icount

 + top.p0.dcache_access_count.count

 + top.p1.if_nop_count

 + top.p1.if_icount

 + top.p1.dcache_access_count.count

 + top.p2.if_nop_count

 + top.p2.if_icount

 + top.p2.dcache_access_count.count

 + top.p3.if_nop_count

 + top.p3.if_icount

 + top.p3.dcache_access_count.count

 + top.cache2_access_count.count

 + top.main_mem_access_count.count);

 cout << "Swaps per memory access: " << swaps_per_access << endl;

 cout.unsetf(ios::dec);

 cout.setf(ios::hex);

 cout.width(2*sizeof(data_t));

 cout.fill('0');

}

VITA

Julius Jonggara Raya Hot Marisi Marpaung

Candidate for the Degree of

Doctor of Philosophy/Education

Thesis: PERFORMANCE LIMITATIONS FOR MULTICORE PROCESSORS

Major Field: Electrical and Computer Engineering

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Electrical and

Computer Engineering at Oklahoma State University, Stillwater, Oklahoma in

May, 2012.

Completed the requirements for the Master of Science in Electrical and

Computer Engineering at Oklahoma State University, Stillwater, Oklahoma in

May, 2006.

Completed the requirements for the Bachelor of Science in Electrical and

Computer Engineering at Oklahoma State University, Stillwater, Oklahoma in

December, 2003.

Experience:

Teaching Assistant for ENGR 1342, ECEN 4213, ECEN 3213, ECEN 4243,

and ECEN 3233

Research Assistant for Dr. Louis Johnson

Lecturer for ECEN 3233 Digital Logic Design

Professional Memberships:

Eta Kappa Nu

National Society of Collegiate Scholars

Golden Key

ADVISER‟S APPROVAL: Dr. Louis Johnson

Name: Julius Jonggara Raya Hot Marisi Marpaung Date of Degree: May, 2012

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: PERFORMANCE EVALUATIONS FOR MULTICORE PROCESSORS

Pages in Study: 106 Candidate for the Degree of Doctor of Philosophy

Major Field: Electrical and Computer Engineering

Scope and Method of Study: To use and improve a new simulation tool that emulates and

studies different cache hierarchies and configurations to evaluate the performance

of any chosen processor and cache configurations.

Findings and Conclusions: Sharing a L2 cache with more than eight processors may

reduce performance. Using a shared L3 cache or hierarchical architecture may

result in a better performance. The major factor that contributes to the loss of

performance is the bus contention. Increasing the size of shared cache does not

have a significant impact on performance.

