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CHAPTER I 
 

 

INTRODUCTION 

 

 

A significant amount of computer architecture research focuses on reducing the performance gap 

between processors and memories. A large main memory cannot provide instructions and data as 

fast as the clock speed of the processors. This has led to several innovative ideas to reduce the 

access time of instructions and data from the main memory to processors. 

Cache is a temporary storage space used to fetch instructions and data from a main memory 

which is accessed frequently by processors in order to minimize the access time. As chip 

manufacturing technology improves, more transistors can be placed on a single chip. This enables 

hardware designers to place more processors and a hierarchy of bigger caches on a single chip 

while sharing a common external main memory. Several strategies for cache hierarchies have 

been proposed for these multi-core chips. A multi-level cache memory hierarchy with one of the 

levels shared by all the processors is widely used in commercial processors because it is the 

simplest way for processors to access the shared external memory. 
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A multi-core chip is typically defined as a system that has more than one processor. Sharing level 1, 

L1, caches is difficult because the L1 response time must be fast enough to keep up with the 

processors‟ clock speed. Sharing level 2, L2, caches among processors is more desirable because it 

enables processors to communicate with each other in a fairly short amount of time but without 

slowing the processors‟ clock speed. A multi-core chip with a single-shared L2 cache is the bsic 

configuration that will be studied in this dissertation. Other configurations will also be studied to 

determine whether better performance might be possible. 

The goal of my dissertation is to use and improve a new simulation tool, Abakus, to study different 

cache hierarchies and configurations. Abakus can be used to evaluate the performance of any chosen 

processor and cache configurations. A significant part of this dissertation is devoted to validating the 

existing multi-core chips models that have already been developed within Abakus. 

This dissertation is divided into 6 chapters. Chapter 2 discusses the literature review. Chapter 3 

discusses the validation of our simulation tool, Abakus. Chapter 4 discusses the performance of 

shared bus multicore processors with several different cache memory configurations. Chapter 5 

discusses the future work. Chapter 6 concludes the dissertation. 
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

 

2.1 Uniprocessor’s Cache Model 

Figure 1 illustrates the connection between a processor with a L1 and L2 cache, and a main 

memory. Figure 2 shows the meaning of the cache symbols that will be used in cache memory 

system connection diagrams.  

       

Figure 1. Uniprocessor Model 
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Figure 2. An example of a cache 

 

In general, a cache has a read/write port to communicate with a lower level cache/processor and a 

fill port to communicate with a higher level cache or main memory. In a uniprocessor model, a 

processor will not share its data or instructions with any other processors; hence if the data or the 

instructions are not available in L1 cache, they can be fetched from the L2 cache or the main 

memory. Some exotic L1 cache models have been proposed to improve the performance of L1 

cache [1 - 3] and they are out of the scope of this dissertation. 

 

2.2 Multiprocessor’s Cache Models 

This subsection discusses various design alternatives for multiprocessor caches. These design 

alternatives have been used and are currently used in a multiprocessor system. As the number of 

processor that can be placed on a single chip increases, the cache architecture must be able to 

accommodate the processors by increasing the instruction and data bandwidth between the 

processors and the memory system. 

Cache

Memory 
Bus

read / write
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2.2.1 Multiport Approach 

In a multiport approach, a cache can have multiple ports to allow simultaneous read/write from 

upper level caches/processors. Figure 3 shows an example of a multiport cache. 

 

Figure 3. Multiport cache 

 

Figure 4 shows the connection between four processors with their private L1 cache and a shared 

L2 cache.  

 

Figure 4. Multiport Architecture 
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In a uniprocessor model, one processor only needs one port/data or instruction bus line to access 

the data or instruction; hence you can only access one address at a time. In a multiport model, we 

want the processors to have the ability to access multiple numbers of ports in order to be able to 

read and write to different addresses at the same time. The problem comes when two or more 

processors try to access the same address. If one processor tries to write to it while the other one 

tries to read from it, which one should go first? Often time, designers use a directory-based 

coherence protocol to handle this issue. Snooping cannot be used in a multiport environment 

because there is not a single shared bus that can be snooped. A full map directory-based protocol 

is a cache coherence protocol that uses a presence vector, which is a vector of bits denoting where 

the cached copies reside [4]. This method reduces the time it takes to find a valid copy of data 

needed by a processor from other processors. The downsides of using this method are the amount 

of overhead storages needed as the number of processor goes up and the possibility of being a 

bottleneck as processors need to access it regularly. The full-map directory scheme of Maa et al 

[4] is presented in Figure 5. Two main disadvantages of using multiport memory approach are 

increase in the size of the chip with the number of ports and the significant power it consumes 

[5]. 
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Figure 5. Full-map directory scheme [4] 

Mattausch et al [5] also present a graph of the chip size vs the number of memory ports 

implemented in Hitachi Hokkai Semiconductor CMOS 0.5 μm process technologies in 

logarithmic scale as shown in Figure 6 that shows the multiport memory cell approach suffers 

from a scalability issue. 

 

Figure 6. Ports vs chip size for multiport memory cell approach [5] 
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Researchers have spent an enormous effort in perfecting the multiport method [6-8]. One conflict 

that keeps arising is when multiple processors try to access the same address at the same time. 

Coming up with a way to fix the problem has been proven to be complicated and requires extra 

hardware. Cache designers then come up with an idea of using “banks” to remedy the problem. 

2.2.2 Multibank Approach 

From the outside, a multibank cache looks like a multiport cache. Each bank contains a unique 

address subset/partition of the whole L2 cache. Figure 7 shows an example of a multibank cache. 

 

 

Figure 7. Multibank cache 
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The multibank approach also allows each processor to write and read to different ports at the 

same time, hence it is a relatively cheap and practical way to implement a multiport cache. The 

problem arises when two or more ports try to access one bank simultaneously and it is called 

bank conflict. It is possible to increase the number of banks to reduce bank conflicts but doing so 

will increase the chip size [5]. Recent research in multibank focuses on bank conflict avoidance 

and bank conflict resolution using scheduling, bank predictors, and queuing technique [9-18] and 

they are out of the scope of this dissertation. 

Researchers and chip manufacturers often time use the idea of crossbar, and ring topology for 

connection among processors and caches [19 - 29]. A crossbar interconnection system is typically 

used in an environment where processors share L2 cache banks. It allows multiple core ports to 

launch operations to the L2 subsystem and receiving data or getting invalidates from L2 in the 

same cycle [19]. In general, a crossbar has three busses: Address Bus, Data in bus and Data out 

bus. Data out bus is used for writebacks from each core to the banks and data in bus is used for 

data reload and to invalidate addresses from all L2 banks to the cores.  

2.2.3 Shared L2 and L3 Cache 

In a shared L2 cache architecture, each processor has its own private L1 cache sharing an L2 

cache as shown in Figure 8a. In a shared L3 bus architecture, each processor has its own private 

L1 and L2 cache sharing an L3 cache as shown in Figure 8b.  
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Figure 8a. Shared L2 bus 

 

 

Figure 8b. Shared L3 bus 

These architectures are widely used in industries due to the ease of implementation. A bus arbiter 

is needed to satisfy all requests between L1 caches and the L2 cache for the shared L2 

configuration and between L2, and L3 caches for the shared L3 configuration. As the number of 

processor increases, the bus leading to the shared L2 and L3 caches will get more congested, 

hence reducing the performance of the overall system. These architectures are evaluated in 

Chapter 3 and 4. 
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2.2.4 Ring Topology 

Ring topology consists of placing caches in a ring shaped manner. The idea behind a ring 

topology is to reduce message passing on a shared bus while maintaining cache coherency by 

passing messages from one core to another in a systematic way. Recent processor researchers use 

these ideas to come up with better and faster multiprocessors [30-32]. Figure 9 shows the Ring 

topology in general. 

 

 

Figure 9. Ring Topology 

 

2.3 Cache Architecture Performance Evaluation Tools 

From the early 1990s until today, researchers have been trying to find the best cache architecture 

that delivers the best overall performance (higher hit rate and lower miss rate) for multiprocessor 

[33 - 44]. As the number of processor increases, the cache architecture can become very complex. 

Cache architectures such as single shared L2 bus, hierarchical bus, and ring-shaped architecture 

are widely known and studied independently [33 - 45]. The lack of any publicly available tools to 

evaluate the performance of these various cache architectures has prompted the development of a 
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new simulation tool, Abakus, which can be used to emulate and study different cache hierarchies 

and configurations. There a three simulation tools that are used in academia as of January 2012 

and they are: SimpleScalar, Simics and SystemC. We choose not to use SimpleScalar because it 

lacks the ability to handle cache arbitration, and multithreading for future development. Simics 

does not provide users the ability to edit some of the configuration files. SystemC is recognized 

by IEEE as a standard for system-level modeling, design and verification. SystemC has a close 

resemblance to Verilog/VHDL, a hardware language; hence it can be used to model any hardware 

unlike SimpleScalar that focuses on one specific class of hardware architecture and a major 

reason why we choose SystemC. 

Examples on how to emulate a cache hierarchy and configuration using Abakus may be found in 

Appendix B. Dr. Louis Johnson is the creator and in charge of updating and maintaining Abakus. 

Julius Marpaung is in charge of cross compiling benchmarks to MIPS that are used by Abakus, 

running the benchmarks and checking the results to make sure that they are consistent with the 

output reference provided by SPEC CPU2006. As of April 2012, Abakus does not have the 

ability to run multithreaded benchmarks hence no coherency or consistency model needs to be 

developed for processors to interact with each other. 
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CHAPTER III 
 

 

ABAKUS AND VALIDATION 

 

3.1 Using Abakus 

Abakus uses SystemC 2.2.0 from http://www.accellera.org that is widely used to model hardware. 

The current processor model used in Abakus is a MIPS scalar processor; hence it runs on the 

MIPS instruction set. To cross compile any C/C++ based benchmarks to MIPS using Crosstool 

from http://www.kegel.com/crosstool, please refer to Appendix A. Alternatively, you can also use 

uClibc from http://uclibc.org but the procedure will not be covered in this dissertation. As of 

January 2012, Crosstool and uClibc are widely used in academia, but they do not have the ability 

to fully support multithreading with OpenMP yet, so the older pthreads library must be used. The 

system calls for pthreads have not been added to abacus so that only single threaded benchmarks 

can be run with abacus. The standard linux system calls from SimIt-MIPS have been added to 

Abakus in order to work with SPEC CPU2006 benchmarks. We also add to SimIt-MIPS the 

capability to generate an instruction trace file.  

http://www.accellera.org/
http://www.kegel.com/crosstool
http://uclibc.org/
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In order to verify whether or not Abakus is correctly executing the program/benchmark, Abakus 

compares the instructions it executes and the register contents with the trace file. Instructions on 

how to use and download SimIt-MIPS may be found at http://simit-mips.sourceforge.net.  

 

3.2 Validation 

SPEC CPU2006 benchmark papers [46 – 53] are used as a guideline to validate the performance 

of our simulation, Abakus. These papers use the Intel and AMD instruction set while Abakus uses 

MIPS instruction set. The difference between Intel, AMD and MIPS instruction set is beyond the 

scope of this dissertation and will not be discussed. Figure 10 shows the discrepancies in the total 

number of instructions to run the full simulation using various processor configurations and 

simulation tools shown in Figure 11. Some discrepancies/differences are expected when 

comparing the performance of the non MIPS architecture to MIPS architecture; however, even 

discrepancies/differences are found when comparing the results among Intel processors as shown 

in Figure 12 and 13 where MPKI stands for Misses Per Kilo Instructions. All simulations done 

using Abakus in this dissertation are limited to 1 billion instructions due to the amount of time 

needed to run those simulations, hence that is another reason why there are some discrepancies 

between the results from Abakus and others [49-56]. There are five benchmarks that can be cross 

compiled into MIPS from SPEC CPU2006 and they are sjeng, bzip, mcf, libq, and specrand. 

 

Figure 10. Total Number of Instructions for some benchmarks 

 

http://simit-mips.sourceforge.net/
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Figure 11. Various setups for simulation 

 

 

Figure 12.Comparison of L1 Data Cache Performance between Abakus, Li, Arun, and Bird 
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Figure 13.Comparison of L2 Cache Performance between Abakus, Arun, and Bird 

 

Jaleel[49] configures his simulation to support the following data and instruction cache 

configurations: 1-way 32KB, 2-way 64KB, 4-way 128KB, 8-way 256KB up to 2048-way 

128MB; using 8-way 256KB L2 cache. Jaleel shows that any instruction cache from 32KB and 

beyond will result in virtually zero miss rates for the instruction. To compare the results shown by 

Jaleel with Abakus, we need to use the following formula:    

(# of misses / # of simulated instructions)  x  total # of instruction  =  # of misses / program      [1] 

Figure 14 – 18 show the reconstructed number of misses per program from Jaleel and Abakus for 

sjeng, bzip, mcf, libq, and specrand using 32 KB instruction cache, 32KB to 128 MB data cache 

and 8-way 256KB L2 cache. 
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Figure 14. Number of misses per program constructed from Jaleel and Abakus for Sjeng 

 

Figure 15. Number of misses per program constructed from Jaleel and Abakus for Bzip 
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Figure 16. Number of misses per program constructed from Jaleel and Abakus for Specrand 

 

 

Figure 17. Number of misses per program constructed from Jaleel and Abakus for MCF on a logarithmic 

scale 
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Figure 18. Number of misses per program constructed from Jaleel and Abakus for Libquantum on a 

logarithmic scale 

 

As expected and shown in Figure 14 – 18, we have some discrepancies between the results from 
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number of recorded clock cycles for 1 billion instructions. Figure 19 shows the comparison of the 

number of clock cycles to run benchmarks to full completion between Abakus‟ and Lu Peng‟s. 

 

 

Figure 19. Number of clock cycles for Shared L2 and L3 architectures 
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CHAPTER IV 
 

 

PERFORMANCE LIMITATION OF SHARED BUS MULTICORE 

 

In this chapter, we discuss the performance of the following multi-core architectures: Dual-Core 

Shared L2, Quad-Core Shared L2, Octal-Core Shared L2, 16-Core Shared L2, Dual-Core Shared 

L3, Quad-Core Shared L3, Octal-Core Shared L3, 16-Core Shared L3, Quad-Core Hierarchy, 

Octal-Core Hierarchy, and 16-Core Hierarchy. Four SPEC CPU 2006 benchmarks are used: Bzip, 

MCF, Libq, and Sjeng. 

 

4.1 Dual-Core Shared L2 

The Dual-Core Shared L2 architecture is shown in Figure 20. The recorded Average IPC, L2 

Miss Rate, Bus 1 Busy Rate, Bus 1 Wait Rate, Bus 2 Busy Rate for mixed program (Bzip – 

Others, Sjeng – Others, MCF – Others and Libq – Others) and single program (Bzip – Do 

Nothing, Sjeng – Do Nothing, MCF – Do Nothing and Libq – Do Nothing) shown in Figure 21 – 

25 are determined over the number of clock cycles for the named benchmark run to 1 billion 

instructions. 
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Figure 20. Dual-Core Shared L2 Architecture 

 

 

 

Figure 21. Average IPC for Dual-Core Shared L2 
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Figure 22. L2 Miss Rate for Dual-Core Shared L2 

 

 

Figure 23. Bus 1 Busy Rate for Dual-Core Shared L2 
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Figure 24. Bus 1 Wait Rate for Dual-Core Shared L2 

 

 

Figure 25. Bus 2 Busy Rate for Dual-Core Shared L2 
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The L2 miss rate is defined as the number of misses per access in L2. The bus 1 and bus 2 busy 

rate is defined as the probability that a request has been granted in a given clock cycle on bus 1 

and bus 2 respectively. Bus 1 wait rate is defined as the probability that a processor has ungranted 

requests in a given clock cycle on bus 1. 

As shown in Figure 21 - 25, doubling the size of L1 or L2 cache does not significantly increase 

the average IPC (Instructions Per Cycle), and reduce the L2 miss rate, bus 1 busy rate, bus 1 wait 

rate and bus 2 busy rate. As expected, the bus 2 contention is fairly low because bus 2 only needs 

to handle 2 processors. Chapter 4.2 will discuss the impact of using four processors using a 

shared L2 cache. 

 

4.2 Quad-Core Shared L2 

The Quad-Core Shared L2 architecture is shown in Figure 26. The recorded Average IPC, L2 

Miss Rate, Bus 1 Busy Rate, Bus 1 Wait Rate, Bus 2 Busy Rate for mixed program (Bzip – 

Others, Sjeng – Others, MCF – Others and Libq – Others) and single program (Bzip – Do 

Nothing, Sjeng – Do Nothing, MCF – Do Nothing and Libq – Do Nothing) shown in Figure 27 – 

31 are determined over the number of clock cycles for the named benchmark run to 1 billion 

instructions. 

 

Figure 26. Quad-Core Shared L2 Architecture 
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Figure 27. Average IPC for Quad-Core Shared L2 

 

 

Figure 28. L2 Miss Rate for Quad-Core Shared L2 
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Figure 29. Bus 1 Busy Rate for Quad-Core Shared L2 

 

 

Figure 30. Bus 1 Wait Rate for Quad-Core Shared L2 
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Figure 31. Bus 2 Busy Rate for Quad-Core Shared L2 
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37 are determined over the number of clock cycles for the named benchmark run to 1 billion 

instructions. 

 

 

Figure 32. Octal-Core Shared L2 Architecture 
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Figure 34. L2 Miss Rate for Octal-Core Shared L2 

 

 

Figure 35. Bus 1 Busy Rate for Octal-Core Shared L2 
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Figure 36. Bus 1 Wait Rate for Octal-Core Shared L2 

 

 

Figure 37. Bus 2 Busy Rate for Octal-Core Shared L2 
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As shown in Figure 33 - 37, doubling the size of L1 or L2 cache does not significantly increase 

the average IPC (Instructions Per Cycle), and reduce the L2 miss rate, bus 1 busy rate, bus 1 wait 

rate and bus 2 busy rate. The bus 1 and 2 contentions in general are almost doubled compared to 

the Quad-Core shared L2 result. Compared to the Quad-Core Shared L2 result, the L2 miss rate 

does not change. Chapter 4.4 will discuss the impact of using sixteen processors using a shared 

L2 cache. 

 

4.4 16-Core Shared L2 

The 16-Core Shared L2 architecture is shown in Figure 38. The recorded Average IPC, L2 Miss 

Rate, Bus 1 Busy Rate, Bus 1 Wait Rate, Bus 2 Busy Rate for mixed program (Bzip – Others, 

Sjeng – Others, MCF – Others and Libq – Others) and single program (Bzip – Do Nothing, Sjeng 

– Do Nothing, MCF – Do Nothing and Libq – Do Nothing) shown in Figure 39 – 43 are 

determined over the number of clock cycles for the named benchmark run to 1 billion 

instructions. 

 

Figure 38. 16-Core Shared L2 Architecture 
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Figure 39. Average IPC for 16-Core Shared L2 

 

 

Figure 40. L2 Miss Rate for 16-Core Shared L2 
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Figure 41. Bus 1 Busy Rate for 16-Core Shared L2 

 

 

Figure 42. Bus 1 Wait Rate for 16-Core Shared L2 
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Figure 43. Bus 2 Busy Rate for 16-Core Shared L2 
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Figure 44. Dual-Core Shared L3 Architecture 

 

 

Figure 45. Average IPC for Dual-Core Shared L3 
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Figure 46. L2 Miss Rate for Dual-Core Shared L3 

 

 

Figure 47. Bus 2 Busy Rate for Dual-Core Shared L3 
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Figure 48. Bus 2 Wait Rate for Dual-Core Shared L3 
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Figure 49. Quad-Core Shared L3 Architecture 

 

 

Figure 50. Average IPC for Quad-Core Shared L3 
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Figure 51. L2 Miss Rate for Quad-Core Shared L3 

 

 

Figure 52. Bus 2 Busy Rate for Quad-Core Shared L3 
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Figure 53. Bus 2 Wait Rate for Quad-Core Shared L3 
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Figure 54. Octal-Core Shared L3 Architecture 

 

 

Figure 55. Average IPC for Octal-Core Shared L3 
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Figure 56. L2 Miss Rate for Octal-Core Shared L3 

 

 

Figure 57. Bus 2 Busy Rate for Octal-Core Shared L3 
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Figure 58. Bus 2 Wait Rate for Octal-Core Shared L3 
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Figure 59. 16-Core Shared L3 Architecture 

 

Figure 60. Average IPC for 16-Core Shared L3 
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Figure 61. L2 Miss Rate for 16-Core Shared L3 

 

 

Figure 62. Bus 2 Busy Rate for 16-Core Shared L3 
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Figure 63. Bus 2 Wait Rate for 16-Core Shared L3 
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Figure 64. Quad-Core Hierarchy Architecture 

 

 

Figure 65. Average IPC for Quad-Core Hierarchy 
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Figure 66. L2 Miss Rate for Quad-Core Hierarchy 

 

 

Figure 67. Bus 1 Busy Rate for Quad-Core Hierarchy 
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Figure 68. Bus 2 Busy Rate for Quad-Core Shared L3 
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Figure 69. Octal-Core Hierarchy Architecture 

 

 

Figure 70. Average IPC for Octal-Core Hierarchy 
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Figure 71. L2 Miss Rate for Octal-Core Hierarchy 

 

 

Figure 72. Bus 1 Busy Rate for Octal-Core Hierarchy 
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Figure 73. Bus 2 Busy Rate for Octal-Core Hierarchy 
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Figure 74. 16-Core Hierarchy Architecture 

 

 

Figure 75. Average IPC for 16-Core Hierarchy 
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Figure 76. L2 Miss Rate for 16-Core Hierarchy 

 

 

Figure 77. Bus 1 Busy Rate for 16-Core Hierarchy 
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Figure 78. Bus 2 Busy Rate for 16-Core Hierarchy 
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processors for single program using a shared L2 cache. Figure 85 shows the performance loss vs 

number of processors. 

 

 

Figure 79. Average IPC performance per processor running all benchmarks 

 

 

Figure 80. Average IPC performance for all processors on a chip running all benchmarks 
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Figure 81. L2 miss rate for Shared L2, Shared L3, and Hierarchical cache architectures 

 

 

Figure 82. Shared L2 Performance 
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Figure 83. Shared L3 Performance 

 

 

Figure 84. Average L2 miss rate vs L2 cache size for single program for Shared L2 cache 
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Figure 85. Performance Loss per processor vs Number of Processors 
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CHAPTER V 
 

 

FUTURE WORK 

 

 

For future work, we are interested in doing a cache performance evaluation for ring topology and 

multibank cache to compare with the shared L2 and L3 cache, and hierarchical cache architecture 

we have obtained. We are also interested in finding how many levels of unshared cache are 

necessary as the number of processor increases to see whether or not we can justify the cost of 

adding more memory and levels of memory to maintain performance. We also like to study the 

cache performance using multithreaded benchmarks by varying the cache size and set 

associativity as multithreaded benchmarks in general require more memory bandwidth compared 

to single threaded benchmarks, hence they should be more sensitive to an increase in cache size 

and set associativity. We will also look into using a split transaction bus technique as we believe 

that we can improve the overall performance compared to the results from Chapter 4 using a 

single bus. In a split transaction bus, a transaction is split into two transactions: request and reply. 

 



62 
 

A processor can request something and releases the bus when it is stalled so that others can use it 

and receive the response later, hence more memory bandwidth for the system and hopefully better 

bus utilization. The design will be more complex than non-split bus architecture but we hope that 

we would get a significant performance boost to justify the complexity of the design. 
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CHAPTER VI 
 

 

CONCLUSION 

 

 

This dissertation has provided a study on the effect of increasing the number of processors to a 

shared bus. In sharing a bus, two factors determine the overall processor and cache performance 

and they are bus contention and memory thrashing. Based on our research, we have concluded 

that by keeping a constant ratio between the numbers of processors to the shared cache size, we 

have prevented memory thrashing from causing significant performance loss. The bus contention 

however cannot be prevented and interferes with the overall performance. Sharing a L2 cache is 

less desirable compared to sharing a L3 cache or using hierarchical architecture because the 

performance drops at a higher rate as the number of processors increases. Abakus uses a scalar 

processor while commercial processors use superscalar with higher memory bandwidth required 

per processor, hence we expect that the shared bus contention may hit 100% well before sharing a 

L2 cache with sixteen superscalar processors. A more exotic architecture needs to be researched 

and developed to handle the contention on a shared bus.  
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APPPENDICES 
 

 

 

APPENDIX A. INSTALLING MIPS CROSS COMPILER AND CROSS COMPILING 

SPEC CPU 2006 BENCHMARKS TO MIPS 

 

A.1 Installing MIPS Cross Compiler 

1. You need to be in bash ($) and 'bison' and 'flex' are pre-requisites 

2. Do  $ mkdir mycrosstoolbuild   

3. Do  $ cd mycrosstoolbuild 

4. Do  $ wget http://kegel.com/crosstool/crosstool-0.43.tar.gz 

5. Do  $ tar xzvf crosstool-0.43.tar.gz 

6. Do  $ cd crosstool-0.43 

7. Edit demo-mipsel.sh to reflect the following (Adjust PARALLELMFLAGS to reflect the 

number of CPUs on the build system): 

set -ex 

TARBALLS_DIR=$HOME/downloads 

RESULT_TOP=$HOME/crosstool 

export TARBALLS_DIR RESULT_TOP 

GCC_LANGUAGES="c,c++" 

export GCC_LANGUAGES 

PARALLELMFLAGS="-j4" 

export PARALLELMFLAGS 

 

8. Do  $ vi gcc-3.4.5-glibc-2.3.6-tls.dat 

9. Update  GLIBC_EXTRA_CONFIG  to  

GLIBC_EXTRA_CONFIG="$GLIBC_EXTRA_CONFIG --with-tls --with-__thread --

without-fp --enable-kernel=2.4.18" 

10. Do  $ vi mipsel.dat                              (Do  $ vi mips.dat    if you want to have big endian) 
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11. Update GCC_EXTRA_CONFIG  to  

GCC_EXTRA_CONFIG="$GCC_EXTRA_CONFIG --with-float=soft" 

12. Download glibc-2.3.6-csuMakefile-patch from 

https://eng.ucmerced.edu/root01/SoE_April_07/ComputingSupport/il/collaboratory/colla

b-software/compilers-and-interpreters/glibc-2.3.6-csuMakefile.patch 

13. Place the patch into: ~/yourusername/mycrosstoolbuild/crosstool/patches/glibc-2.3.6 

14. Go back to ~/yourusername/mycrosstoolbuild/crosstool 

15. Do  $ bash 

16. Do  $ unset LD_LIBRARY_PATH  (everytime you want to build something new, 

ALWAYS do unset) 

17. Do  $ sh demo-mips.sh                                       (to run the script as this will take a while) 

18. Now go to your /home/yourusername/crosstool     (Do  $ cd  followed by  $ cd crosstool) 

19. Do  $ mkdir ccmipsel 

20. Do  $ mv gcc-3.4.5-glibc-2.3.6/mips-unknown-linux-gnu  ccmipsel 

21. Do  $ rm –r gcc-3.4.5-glibc-2.3.6 

22. Do  $ export PATH=${PATH}:/home/yourusername/crosstool/ccmipsel/mipsel-

unknown-linux-gnu/bin 

(You MUST do this on every new console/session you use/have) 

23. Example:  $ mipsel-unknown-linux-gnu-gcc  -O2  -static  -msoft-float  -o  mybinary  

mybinary.c  -lm 

24. Example:  $ file mybinary 

25. Example:  $ mipsel-unknown-linux-gnu-objdump  -D  mybinary  >  mybinary.txt 

 

Sources: 

http://www.kegel.com/crosstool/ 

https://eng.ucmerced.edu/root01/SoE_April_07/ComputingSupport/il/collaboratory/collab-

software/compilers-and-interpreters/mips-cross-compiler-package 

 

 

 

 

 

 

 

 

https://eng.ucmerced.edu/root01/SoE_April_07/ComputingSupport/il/collaboratory/collab-software/compilers-and-interpreters/glibc-2.3.6-csuMakefile.patch
https://eng.ucmerced.edu/root01/SoE_April_07/ComputingSupport/il/collaboratory/collab-software/compilers-and-interpreters/glibc-2.3.6-csuMakefile.patch
http://www.kegel.com/crosstool/
https://eng.ucmerced.edu/root01/SoE_April_07/ComputingSupport/il/collaboratory/collab-software/compilers-and-interpreters/mips-cross-compiler-package
https://eng.ucmerced.edu/root01/SoE_April_07/ComputingSupport/il/collaboratory/collab-software/compilers-and-interpreters/mips-cross-compiler-package
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A.2 Cross Compile Spec 2006 Benchmarks to MIPS: 

1. Install Spec 2006 in /home/yourusername/SPEC2006/ 

2. If you are using Unix/Linux go to : /home/yourusername/SPEC2006/ and type in bash 

$   .  ./shrc       (yes, it is dot then space then dot then forward slash then shrc) 

3. Check the following website for the list of Spec 2006 benchmark: 

http://www.spec.org/cpu2006/Docs/ 

4. Do $  cd /home/yourusername/SPEC2006/config 

5. Do $  vi  linux32-i386-gcc42.cfg                                (if you have vim, use it) 

6. Edit it so it looks like the following (assuming you want to disable floating point): 

CC  = /home/yourusername/crosstool/ccmipsel/mipsel-unknown-linux-gnu/bin/mipsel-

unknown-linux-gnu-gcc 

CXX  = /home/yourusername/crosstool/ccmipsel/mipsel-unknown-linux-gnu/bin/mipsel-

unknown-linux-gnu-g++ 

FC  = /usr/local/gcc42-0715-32/bin/gfortran 

COPTIMIZE     =  -O2  -static  -msoft-float         

CXXOPTIMIZE  =  -O2  -static  -msoft-float 

FOPTIMIZE    =  -O2 

7. Do  $  cd /home/yourusername/SPEC2006/bin 

8. Do  $  runspec  --config= linux32-i386-gcc42.cfg  --action=build  --tune=base  bzip2 

Or you can also type in the benchmark number, in this case replace bzip2 with 401  

9. Get your binary in /home/yourusername/SPEC2006/benchspec/CPU2006/401.bzip2/run/ 

If this is your first time doing it, it should be in: 

/home/yourusername/SPEC2006/benchspec/CPU2006/401.bzip2/run/build_base_i386-

m32-gcc42-nn.0000 

 

Source: http://gem5.org/SPEC2006_benchmarks 

Check out the following links should you encounter an error: 

http://www.spec.org/cpu2006/Docs/runspec.html#section2.4 

http://www.spec.org/cpu2006/Docs/faq.html 

(take out -msoft-float if 

you want to have floating 

point number) 

http://www.spec.org/cpu2006/Docs/
http://gem5.org/SPEC2006_benchmarks
http://www.spec.org/cpu2006/Docs/runspec.html#section2.4
http://www.spec.org/cpu2006/Docs/faq.html
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APPENDIX B. EXAMPLES IN USING ABAKUS TO CREATE A QUAD-CORE 

ARCHITECTURE USING A PRIVATE 32KB L1 CACHE FOR EACH PROCESSOR 

AND A SHARED L2 2MB CACHE 

 

Download Abakus and untar it to a folder using tar –zxvf command. Get in to the folder and type 

„make‟; this will build Abakus. Once done, go to the ~/src/examples/dual_mips_shared_l2 folder 

and change the mips_l1.cpp, dual_mips_shared_l2.cpp, dual_mips_shared_l2.h, and 

testbench.cpp file as shown in Appendix B1 and B2. Go back to the main Abakus directory and 

type „make‟. You will find your executable in ~/src/examples/dual_mips_shared_l2. 

 

B.1 Instructions To Create a Quad-Core Using a Shared L2 Bus 

Open your mips_l1.cpp and find the following 2 – 3 lines: 

icache("icache", 1, mem_manager, 1L << 15, 8L, 8), 

dcache("dcache", 1, mem_manager, 1L << 15, 8L, 8, 

 2.0*1.0, 2.0*1.0, ab_time_unit), 

“1L << 15” means that you are creating an L1 cache with a size of 2^ 15 = 32KB.  

“8L” means that you are going to have 8 lines for your cache, and the last “8” means 8 way. 

Make your changes to mips_l1.cpp, save it and open dual_mips_shared_l2.cpp and find any 

lines that deals with p0 or p1 and expands them to p2 or p3, for example: 

The lines:  

p0_req12i("p0_req12i"), 

p0_grant12i("p0_grant12i"), 

p0_req12d("p0_req12d"), 

p0_grant12d("p0_grant12d"), 

p1_req12i("p1_req12i"), 

p1_grant12i("p1_grant12i"), 

p1_req12d("p1_req12d"), 

p1_grant12d("p1_grant12d"), 

 

need to be expanded to: 
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p0_req12i("p0_req12i"), 

p0_grant12i("p0_grant12i"), 

p0_req12d("p0_req12d"), 

p0_grant12d("p0_grant12d"), 

p1_req12i("p1_req12i"), 

p1_grant12i("p1_grant12i"), 

p1_req12d("p1_req12d"), 

p1_grant12d("p1_grant12d"),  

p2_req12i("p2_req12i"), 

p2_grant12i("p2_grant12i"), 

p2_req12d("p2_req12d"), 

p2_grant12d("p2_grant12d"), 

p3_req12i("p3_req12i"), 

p3_grant12i("p3_grant12i"), 

p3_req12d("p3_req12d"), 

p3_grant12d("p3_grant12d"), 

 

Make your changes to dual_mips_shared_l2.cpp, save it and open dual_mips_shared_l2.h and 

find any lines that deals with p0 or p1 and expands them to p2 or p3, for example: 

The lines: 

ab_signal<bool> p0_req12i; 

ab_signal<bool> p0_grant12i; 

ab_signal<bool> p0_req12d; 

ab_signal<bool> p0_grant12d; 

ab_signal<bool> p1_req12i; 

ab_signal<bool> p1_grant12i; 

ab_signal<bool> p1_req12d; 

ab_signal<bool> p1_grant12d; 
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need to be expanded to: 

ab_signal<bool> p0_req12i; 

ab_signal<bool> p0_grant12i; 

ab_signal<bool> p0_req12d; 

ab_signal<bool> p0_grant12d; 

ab_signal<bool> p1_req12i; 

ab_signal<bool> p1_grant12i; 

ab_signal<bool> p1_req12d; 

ab_signal<bool> p1_grant12d; 

ab_signal<bool> p2_req12i; 

ab_signal<bool> p2_grant12i; 

ab_signal<bool> p2_req12d; 

ab_signal<bool> p2_grant12d; 

ab_signal<bool> p3_req12i; 

ab_signal<bool> p3_grant12i; 

ab_signal<bool> p3_req12d; 

ab_signal<bool> p3_grant12d; 

 

Make your changes to dual_mips_shared_l2.h, save it and open testbench.cpp and find any 

lines that deals with p0 or p1 and expands them to p2 or p3, for example: 

The lines: 

top.p0.dump(dumpfile); 

top.p1.dump(dumpfile); 

need to be expanded to: 

top.p0.dump(dumpfile); 

top.p1.dump(dumpfile); 

top.p2.dump(dumpfile); 

top.p3.dump(dumpfile); 

Appendix B.2 contains all the changes needed to create a quad-core architecture.  
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B.2Quad-Core Using a Shared L2 Bus 

Replace your mips_l1.cpp with the following 

 

#include "mips_l1.h" 

#include <fcntl.h> 

#include <unistd.h> 

 

mips_l1::mips_l1(sc_module_name name,  

    ab_host_mem_manager *mem_manager_, 

    int pid, 

    addr_t ptag_inst, 

    addr_t ptag_data 

):   

    sc_module(name), 

    mem_manager(mem_manager_), 

    //local channel initialization 

    inst_stall("inst_stall"), 

    data_stall("data_stall"), 

    dreq("dreq"), 

    dgrant("dgrant"), 

    dbus("dbus", 4), 

    //sub-module instance initialization 

    p("p", pid, ptag_inst, ptag_data), 

    inst_stall_length("inst_stall_length"), 

    data_stall_length("data_stall_length"), 

    icache("icache", 1, mem_manager, 1L << 15, 8L, 8), 
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    icache_miss_count("icache_miss_count"), 

    dcache_cpu("dcache_cpu"), 

    dcache_access_count("dcache_access_count"), 

    dcache_miss_count("dcache_miss_count"), 

    dcache("dcache", 1, mem_manager, 1L << 15, 8L, 8, 

 2.0*1.0, 2.0*1.0, ab_time_unit), 

    interactive(0) 

{ 

    //sub-module connections 

    p.clk(clk); 

    p.inst_mem(icache); 

    p.inst_stall(inst_stall); 

    p.data_mem(dcache_cpu); 

    p.data_stall(data_stall); 

    inst_stall_length.start(inst_stall); 

    inst_stall_length.stop(inst_stall); 

    data_stall_length.start(data_stall); 

    data_stall_length.stop(data_stall); 

    icache.stall(inst_stall); 

    dcache_cpu.stall(data_stall); 

    dcache_cpu.client_port_con(dbus.con); 

    dcache_cpu.client_port(dbus); 

    dcache_cpu.req(dreq); 

    dcache_cpu.grant(dgrant); 

    icache_miss_count.clk(icache.miss); 

    icache_miss_count.cond(icache.miss); 
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    dcache_access_count.clk(dreq); 

    dcache_access_count.cond(dreq); 

    dcache_miss_count.clk(dcache.miss); 

    dcache_miss_count.cond(dcache.miss); 

    dcache.master_port_con(dbus.con); 

    dcache.master_port(dbus); 

    dcache.master_req(dreq); 

    dcache.master_grant(dgrant); 

    icache.client_port_con(mem_bus_con); 

    dcache.client_port_con(mem_bus_con); 

    icache.client_port(mem_bus); 

    dcache.client_port(mem_bus); 

    icache.client_req(req12i); 

    dcache.client_req(req12d); 

    icache.client_grant(grant12i); 

    dcache.client_grant(grant12d); 

} 

 

void mips_l1::initialize(ab_main_mem *main_mem,  

    int argc, char* *argv, char* *envp) 

{ 

    addr_t pc_init_value = 0; //just in case its not initialized by loader 

    addr_t brk_point = 0; 

    if (argc > 0) { 

        //argv should point to program name to load 

        main_mem->mem.load(argv[0], p.ptag_inst, pc_init_value, brk_point); 
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    } 

    p.initialize(pc_init_value, brk_point); 

 

    //redirect io 

    bool change = 1; 

    while (change) { 

        change = 0; 

        int i = argc - 2; 

 if (argv[i][0] == '<') { //redirect stdin 

     int fd = open(argv[i+1], O_RDONLY); 

     if (fd < 0) { 

         cout << "could not open file " << argv[i+1] << endl; 

     } 

     p.except_handler.ioredirect[0] = fd; 

     argc = i; 

            change = 1; 

     cout << name() << " redirecting input to " << argv[i+1] << endl; 

 } 

        if (argv[i][0] == '>') { //redirect stdout 

            int fd = open(argv[i+1], O_WRONLY | O_CREAT, 00644); 

            if (fd < 0) { 

                cout << "could not open file " << argv[i+1] << endl; 

            } 

            p.except_handler.ioredirect[1] = fd; 

            argc = i; 

            change = 1; 
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     cout << name() << " redirecting output to " << argv[i+1] << endl; 

        } 

    } 

 

    //initialize stack 

    addr_t stack_ptr = mips32int::STACK_BASE - mips32int::MAX_ENVIRON; 

    p.gpr.chan.write(29, stack_ptr); //sp (stack pointer) 

 

    /*write argc to stack*/ 

    paddr_t ptag = ((paddr_t) p.ptag_inst) << 56; 

    main_mem->mem.write_mem(0, ptag + ((paddr_t) stack_ptr), 

        sizeof(addr_t), (cblock_t) &argc, sizeof(addr_t) ); 

    p.gpr.chan.write(4, argc); 

    stack_ptr += sizeof(addr_t); 

 

 

    /*skip stack_ptr past argv pointer array*/ 

    addr_t argAddr = stack_ptr; 

    p.gpr.chan.write(5, argAddr); 

    stack_ptr += (argc+1)*sizeof(addr_t); 

 

    /*skip env pointer array*/ 

    addr_t envAddr = stack_ptr; 

    for (int i=0; envp[i]; i++) 

            stack_ptr += 4; 

    stack_ptr += 4; 
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    /*write argv to stack*/ 

    for (int i=0; i<argc; i++) { 

        main_mem->mem.write_mem(0, ptag + ((paddr_t) (argAddr+i*sizeof(addr_t))), 

            sizeof(addr_t), (cblock_t) &stack_ptr, sizeof(addr_t)); 

        for (int j = 0; argv[i][j] != '\0'; j++) 

            main_mem->mem.write_mem(0, ptag + ((paddr_t) (stack_ptr+j)), 

                1, (cblock_t) &argv[i][j], 1); 

        /*0 already at the end of the string as done by initialization*/ 

        stack_ptr += strlen(argv[i])+1; 

    } 

     

    /*0 already at the end argv pointer array*/ 

     

    /*write env to stack*/  

    for (int i=0; envp[i]; i++) { 

        main_mem->mem.write_mem(0, ptag + ((paddr_t) (envAddr+i*sizeof(addr_t))), 

            sizeof(addr_t), (cblock_t) &stack_ptr, sizeof(addr_t) ); 

        for (int j = 0; envp[i][j] != '\0'; j++) 

            main_mem->mem.write_mem(0, ptag + ((paddr_t) (stack_ptr+j)), 

                1, (cblock_t) &envp[i][j], 1); 

        /*0 already at the end of the string as done by initialization*/ 

        stack_ptr += strlen(envp[i])+1; 

    } 

         

    /*stack overflow*/ 
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    if (stack_ptr+sizeof(addr_t)>=p.STACK_BASE) { 

        cout << "Environment overflow for processor " << p.pid  

            << ". Need to increase MAX_ENVIRON.\n"; 

        SC_REPORT_ERROR("abakus", name()); 

    }    

}    

 

void mips_l1::evaluate() { 

    p.evaluate(); 

} 

 

void mips_l1::evaluate_end() { 

    p.evaluate_end(); 

    inst_stall_length.evaluate_start(); 

    inst_stall_length.evaluate_stop(); 

 

    //performance measures 

    if (p.controller.stall_if_chan.read() == 1) 

        if_stall_count += 1; 

    else { 

        if ( (p.controller.pc_inst_reg.chan.read() )->icode == 0 ) 

            if_nop_count += 1; 

        else 

            if_icount++; 

    } 

    if (p.controller.stall_wr_back_chan.read() == 1) 
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        wb_stall_count += 1; 

    else { 

        if ( (p.controller.mem_wb_inst_reg.chan.read() )->icode == 0 ) 

            wb_nop_count += 1; 

        else 

            icount++; 

    } 

    if (inst_stall.read()) inst_stall_count++; 

    if (data_stall.read()) data_stall_count++; 

    if (inst_stall.read() && data_stall.read()) inst_data_stall_count++; 

 

    if (interactive) { 

        instruction *inst = p.controller.mem_wb_inst_reg.chan.read(); 

        addr_t addr = inst->iaddr; 

        icode_t code = inst->icode; 

        debug_monitor(addr, code); 

    } 

} 

 

void mips_l1::perf_sum() { 

    cout << endl; 

    cout << "processor " << p.pid << " performance summary" << endl; 

    cout << "write back NOP count: " << wb_nop_count << endl; 

    cout << "write back stall count: " << wb_stall_count << endl; 

    cout << "instruction count: " << icount << endl; 

    cout << "IPC: " << ((float) icount)/((float) ab_clk_count) << endl; 
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    cout << "fetch NOP count: " << if_nop_count << endl; 

    cout << "fetch stall count: " << if_stall_count << endl; 

    cout << "fetch instruction count: " << if_icount << endl; 

    cout << endl; 

    cout << "i-cache accesses: " << if_nop_count + if_icount 

        << " misses: " << icache_miss_count.count 

        << " miss rate " << (float) icache_miss_count.count 

                / (float) (if_nop_count + if_icount) << endl; 

    cout << "d-cache accesses: " << dcache_access_count.count 

        << " misses: " << dcache_miss_count.count 

        << " miss rate " << (float) dcache_miss_count.count 

                / (float) dcache_access_count.count << endl; 

 

    float Pstall_icache = (float) inst_stall_count / (float) ab_clk_count; 

    cout << "i-cache stall cycles: " << inst_stall_count 

         << " probability of stalled i-cache: " << Pstall_icache << endl; 

 

    float Pstall_dcache = (float) data_stall_count / (float) ab_clk_count; 

    cout << "d-cache stall cycles: " << data_stall_count 

         << " probability of stalled d-cache: " << Pstall_dcache << endl; 

 

    float Pstall_idcache = (float) inst_data_stall_count/ (float) ab_clk_count; 

    float COV_stall_idcache = Pstall_idcache - Pstall_icache * Pstall_dcache; 

    float CORR_stall_idcache = COV_stall_idcache/sqrt( Pstall_icache 

        * (1. - Pstall_icache) * Pstall_dcache * (1. - Pstall_dcache) ); 

    cout << "i and d cache stall cycles: " << inst_data_stall_count 
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         << " probability of stalled i and dcache: " << Pstall_idcache 

         << " covariance: " << COV_stall_idcache 

         << " correlation: " << CORR_stall_idcache << endl; 

    cout << endl; 

 

    inst_stall_length.dump(cout); 

    data_stall_length.dump(cout); 

    cout << endl; 

 

} 

 

void mips_l1::dump(ostream &out) const { 

    out << endl << name() << endl; 

    out << "instruction count: " << icount << endl; 

 

    p.dump(out); 

    icache.dump(out); 

    req12i.dump(out); 

    grant12i.dump(out); 

    dcache.dump(out); 

    req12d.dump(out); 

    grant12d.dump(out); 

} 
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Replace your dual_mips_shared_l2.cpp with the following: 

 

#include "dual_mips_shared_l2.h" 

 

int npid = 0; //incremented be each processor instance 

 

void parse(char *command, int &pargc, char **pargv) { 

    const int MAXARGS = 10; 

    const int MAXCHARS = 80; 

    pargc = 0; 

    int i = 0; 

    bool word_started = 0; 

    cin.get(command[0]); 

    while (command[i] != '\n') { 

 if (command[i] == ' ') { 

     while (cin.peek() == ' ') cin.get(command[i]); 

     if (word_started) { 

         command[i] = '\0'; 

  word_started = 0; 

     } 

     //blanks ignored if not word_started 

 } else { //non-blank 

     if (!word_started) { 

         pargv[pargc++] = &command[i]; 

         if (pargc >= MAXARGS) { 

             cout << "too many arguments" << endl; 
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             SC_REPORT_ERROR("abakus", "parse error"); 

         } 

  word_started = 1; 

     } 

     //no new arg if word_started already 

 } 

 if (++i >= MAXCHARS) { 

     cout << "too many characters" << endl; 

     SC_REPORT_ERROR("abakus", "parse error"); 

 } 

 cin.get(command[i]); 

    } 

    command[i] = '\0'; 

    if (pargc == 0) { 

 cout << "usage: [mips-elf-executable-file]" 

<< " [arguments to executable file]" << endl; 

        SC_REPORT_ERROR("abakus", "parse error"); 

    } 

} 

 

dual_mips_shared_l2::dual_mips_shared_l2(sc_module_name name) 

    : sc_module(name), 

    //local channel initialization 

    p0_req12i("p0_req12i"), 

    p0_grant12i("p0_grant12i"), 

    p0_req12d("p0_req12d"), 
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    p0_grant12d("p0_grant12d"), 

    p1_req12i("p1_req12i"), 

    p1_grant12i("p1_grant12i"), 

    p1_req12d("p1_req12d"), 

    p1_grant12d("p1_grant12d"), 

 

    p2_req12i("p2_req12i"), 

    p2_grant12i("p2_grant12i"), 

    p2_req12d("p2_req12d"), 

    p2_grant12d("p2_grant12d"), 

    p3_req12i("p3_req12i"), 

    p3_grant12i("p3_grant12i"), 

    p3_req12d("p3_req12d"), 

    p3_grant12d("p3_grant12d"), 

 

    req12("req12"), 

    grant12("grant12"), 

    req23("req23"), 

    grant23("grant23"), 

    bus1("bus1", 64), 

    bus2("bus2", 64), 

    //sub-module instance initialization 

    mem_manager("mem_manager", 1 << 28), 

 

    p0("p0", &mem_manager, 0, 1, 1), 

    p1("p1", &mem_manager, 1, 2, 2), 
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    p2("p2", &mem_manager, 2, 3, 3), 

    p3("p3", &mem_manager, 3, 4, 4), 

 

    arbiter("arbiter", round_robin), 

    cache2("cache2", 1, &mem_manager, 1L << 21, 8L, 8,  

 2.0*3.0, 2.0*2.0, ab_time_unit), 

    cache2_access_count("cache2_access_count"), 

    cache2_miss_count("cache2_miss_count"), 

    main_mem("main_mem", 0, &mem_manager, 8, 2.0*10.0, 2.0*8.0, ab_time_unit), 

    main_mem_access_count("main_mem_access_count"), 

    bus1_busy_count(0) 

{ 

    //sub-module connections 

    p0.clk(clk); 

    p0.mem_bus_con(bus1.con); 

    p0.mem_bus(bus1); 

    p0.req12i(p0_req12i); 

    p0.req12d(p0_req12d); 

    p0.grant12i(p0_grant12i); 

    p0.grant12d(p0_grant12d); 

 

    p1.clk(clk); 

    p1.mem_bus_con(bus1.con); 

    p1.mem_bus(bus1); 

    p1.req12i(p1_req12i); 
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    p1.req12d(p1_req12d); 

    p1.grant12i(p1_grant12i); 

    p1.grant12d(p1_grant12d); 

 

    p2.clk(clk); 

    p2.mem_bus_con(bus1.con); 

    p2.mem_bus(bus1); 

    p2.req12i(p2_req12i); 

    p2.req12d(p2_req12d); 

    p2.grant12i(p2_grant12i); 

    p2.grant12d(p2_grant12d); 

 

    p3.clk(clk); 

    p3.mem_bus_con(bus1.con); 

    p3.mem_bus(bus1); 

    p3.req12i(p3_req12i); 

    p3.req12d(p3_req12d); 

    p3.grant12i(p3_grant12i); 

    p3.grant12d(p3_grant12d); 

 

    arbiter.req_client(p0_req12i); 

    arbiter.grant_client(p0_grant12i); 

    arbiter.req_client(p1_req12i); 

    arbiter.grant_client(p1_grant12i); 

    arbiter.req_client(p2_req12i); 

    arbiter.grant_client(p2_grant12i); 
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    arbiter.req_client(p3_req12i); 

    arbiter.grant_client(p3_grant12i); 

 

    arbiter.req_client(p0_req12d); 

    arbiter.grant_client(p0_grant12d); 

    arbiter.req_client(p1_req12d); 

    arbiter.grant_client(p1_grant12d); 

    arbiter.req_client(p2_req12d); 

    arbiter.grant_client(p2_grant12d); 

    arbiter.req_client(p3_req12d); 

    arbiter.grant_client(p3_grant12d); 

    arbiter.req_master(req12); 

    arbiter.grant_master(grant12); 

 

    cache2.master_port_con(bus1.con); 

    cache2.master_port(bus1); 

    cache2.master_req(req12); 

    cache2.master_grant(grant12); 

    cache2.client_port_con(bus2.con); 

    cache2.client_port(bus2); 

    cache2.client_req(req23); 

    cache2.client_grant(grant23); 

    cache2_access_count.clk(req12); 

    cache2_access_count.cond(req12); 

    cache2_miss_count.clk(cache2.miss); 

    cache2_miss_count.cond(cache2.miss); 
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    main_mem.master_port_con(bus2.con); 

    main_mem.master_port(bus2); 

    main_mem.master_req(req23); 

    main_mem.master_grant(grant23); 

    main_mem_access_count.clk(req23); 

    main_mem_access_count.cond(req23); 

} 

 

void dual_mips_shared_l2::initialize(char **envp) { 

    char command[80]; 

    int pargc; 

    char* pargv[10]; 

 

    //initialize processor pointer array 

    pl1ptr = new mips_l1*[npid]; 

    pl1ptr[p0.p.pid] = &p0; 

    pl1ptr[p1.p.pid] = &p1; 

    pl1ptr[p2.p.pid] = &p2; 

    pl1ptr[p3.p.pid] = &p3;     

 

    //sanity check 

    cout << "(pl1ptr[0]->p).pid = " << (pl1ptr[0]->p).pid << endl; 

    cout << "(pl1ptr[1]->p).pid = " << (pl1ptr[1]->p).pid << endl; 

    cout << "(pl1ptr[2]->p).pid = " << (pl1ptr[2]->p).pid << endl; 

    cout << "(pl1ptr[3]->p).pid = " << (pl1ptr[3]->p).pid << endl; 
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    cout << endl; 

 

    cout << "p" << p0.p.pid << " command line: "; 

    parse(command, pargc, pargv); 

    for (int i = 0; i < pargc; i++) { 

 cout << "argv[" << i << "] = "; 

 for (int j = 0; pargv[i][j] != '\0'; j++) { 

     cout << pargv[i][j]; 

 } 

        cout << endl; 

    } 

    p0.initialize(&main_mem, pargc, pargv, envp); 

 

    cout << "p" << p1.p.pid << " command line: "; 

    parse(command, pargc, pargv); 

    for (int i = 0; i < pargc; i++) { 

 cout << "argv[" << i << "] = "; 

 for (int j = 0; pargv[i][j] != '\0'; j++) { 

     cout << pargv[i][j]; 

 } 

        cout << endl; 

    } 

    p1.initialize(&main_mem, pargc, pargv, envp); 

 

    cout << "p" << p2.p.pid << " command line: "; 

    parse(command, pargc, pargv); 
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    for (int i = 0; i < pargc; i++) { 

        cout << "argv[" << i << "] = "; 

        for (int j = 0; pargv[i][j] != '\0'; j++) { 

            cout << pargv[i][j]; 

        } 

        cout << endl; 

    } 

    p2.initialize(&main_mem, pargc, pargv, envp); 

 

    cout << "p" << p3.p.pid << " command line: "; 

    parse(command, pargc, pargv); 

    for (int i = 0; i < pargc; i++) { 

        cout << "argv[" << i << "] = "; 

        for (int j = 0; pargv[i][j] != '\0'; j++) { 

            cout << pargv[i][j]; 

        } 

        cout << endl; 

    } 

    p3.initialize(&main_mem, pargc, pargv, envp); 

} 

 

void dual_mips_shared_l2::evaluate() { 

    p0.evaluate(); 

    p1.evaluate(); 

    p2.evaluate(); 

    p3.evaluate(); 
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} 

 

void dual_mips_shared_l2::evaluate_end() { 

    p0.evaluate_end(); 

    p1.evaluate_end(); 

    p2.evaluate_end(); 

    p3.evaluate_end(); 

 

    //performance measures 

    if (bus1.con_chan.read() != 0) 

        bus1_busy_count += 1; 

 

} 

 

void dual_mips_shared_l2::dump(ostream &out) const { 

    p0.dump(out); 

    p0_req12i.dump(out); 

    p0_grant12i.dump(out); 

    p0_req12d.dump(out); 

    p0_grant12d.dump(out); 

    p1.dump(out); 

    p1_req12i.dump(out); 

    p1_grant12i.dump(out); 

    p1_req12d.dump(out); 

    p1_grant12d.dump(out); 

    p2.dump(out); 
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    p2_req12i.dump(out); 

    p2_grant12i.dump(out); 

    p2_req12d.dump(out); 

    p2_grant12d.dump(out); 

    p3.dump(out); 

    p3_req12i.dump(out); 

    p3_grant12i.dump(out); 

    p3_req12d.dump(out); 

    p3_grant12d.dump(out); 

 

    arbiter.dump(out); 

    req12.dump(out); 

    grant12.dump(out); 

    bus1.dump(out); 

    cache2.dump(out); 

    req23.dump(out); 

    grant23.dump(out); 

    bus2.dump(out); 

    main_mem.dump(out); 

    mem_manager.dump(out); 

} 

 

 

 

Replace your dual_mips_shared_l2.h with the following: 
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#ifndef DUAL_MIPS_SHARED_L2_H 

#define DUAL_MIPS_SHARED_L2_H 

 

#include "cache.h" 

#include "main_mem.h" 

#include "arbiter.h" 

#include "mips_l1.h" 

 

 

struct dual_mips_shared_l2: public sc_module { 

    //ports 

    ab_clk_in clk; 

 

    //local channels 

    ab_signal<bool> p0_req12i; 

    ab_signal<bool> p0_grant12i; 

    ab_signal<bool> p0_req12d; 

    ab_signal<bool> p0_grant12d; 

    ab_signal<bool> p1_req12i; 

    ab_signal<bool> p1_grant12i; 

    ab_signal<bool> p1_req12d; 

    ab_signal<bool> p1_grant12d; 

 

    ab_signal<bool> p2_req12i; 

    ab_signal<bool> p2_grant12i; 

    ab_signal<bool> p2_req12d; 
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    ab_signal<bool> p2_grant12d; 

    ab_signal<bool> p3_req12i; 

    ab_signal<bool> p3_grant12i; 

    ab_signal<bool> p3_req12d; 

    ab_signal<bool> p3_grant12d; 

 

    ab_signal<bool> req12; 

    ab_signal<bool> grant12; 

    ab_signal<bool> req23; 

    ab_signal<bool> grant23; 

    ab_memory_bus bus1; 

    ab_memory_bus bus2; 

 

    //sub-module instances 

    ab_host_mem_manager mem_manager; 

    mips_l1 p0; 

    mips_l1 p1; 

    mips_l1 p2; 

    mips_l1 p3; 

    ab_arbiter<8> arbiter; 

    ab_cache cache2; 

    ab_cond_count cache2_access_count; 

    ab_cond_count cache2_miss_count; 

    ab_main_mem main_mem; 

    ab_cond_count main_mem_access_count; 
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    //constructor 

    dual_mips_shared_l2(); 

    explicit dual_mips_shared_l2(sc_module_name name_); 

 

    void initialize(char **envp); 

    void evaluate(); 

    void evaluate_end(); 

 

    void dump(ostream &out) const; 

 

    mips_l1 **pl1ptr; 

    long bus1_busy_count; 

}; 

 

#endif 

 

Replace your testbench.cpp with the following: 

 

#include <sys/time.h> 

#include <sys/resource.h> 

#include <unistd.h> 

#include <string> 

using std::string; 

#include "testbench.h" 

#include "trace.h" 
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sc_time_unit ab_time_unit = SC_NS; 

 

ab_testbench::ab_testbench(sc_module_name name_, int argc_, char **argv_,  

    char **envp_)  

    :  

    sc_module(name_),  

    //local channel initialization 

 

    //sub-module instance initialization 

    clkgen("clkgen", 2.0, ab_time_unit), 

    top("top"), 

 

    argc(argc_), 

    argv(argv_), 

    envp(envp_), 

    print_cycle(0), 

    display_cycle(0), 

    break_cycle(0), 

    interactive(0) 

{ 

    //sub-module port connection 

    top.clk(clkgen.clk); 

 

    //processes 

    SC_METHOD(process); 

        sensitive << clkgen.clk; 
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    SC_METHOD(process_end); 

        sensitive << clkgen.clk_end; 

        dont_initialize(); 

} 

 

void ab_testbench::start_of_simulation() { 

    //command line options 

    while ((argc > 1) && (argv[1][0] == '-')) { 

        switch( argv[1][1] ) { 

          case 'd': 

            interactive = 1; 

            argc -= 1; 

            argv += 1; 

            break; 

   case 'h': 

     cout << "usage: dual_mips_shared_l2 [option] ... [option] " << endl; 

     cout << "options: " << endl; 

     cout << "  -d (interactive debug)" << endl; 

     cout << "  -V (version)" << endl; 

     cout << "  -p n (print stats every n cycles)" << endl; 

            SC_REPORT_ERROR("abakus", name()); 

   case 'p': 

     print_cycle = 0; 

     for (int i = 0; argv[2][i] != '\0'; i++) { 

  print_cycle *= 10; 

  print_cycle += (long) argv[2][i] - (long) '0'; 
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     } 

     cout << "print_cycle = " << print_cycle << endl; 

            argc -= 2; 

            argv += 2; 

            break; 

   case 'V': 

     cout << argv[0] << " version 0.2.0" << endl; 

            argc -= 1; 

            argv += 1; 

            break; 

          default: 

            cout << "unrecognized option " << argv[1] << endl; 

            SC_REPORT_ERROR("abakus", name()); 

        } 

    } 

 

    //processor initialization 

    argc -=1; 

    argv +=1; 

    top.initialize(envp); 

 

    if (interactive) debug_interaction(); 

} 

 

void ab_testbench::process() { 

    //evaluate submodule proceses first 
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    top.evaluate(); 

} 

 

void ab_testbench::process_end() { 

    //evaluate submodule proceses first 

    top.evaluate_end(); 

 

    if (ab_debug) { 

 dumpfile << "\n\ncycle number " << ab_clk_count  

 << " at " << sc_time_stamp() << endl; 

 top.p0.dump(dumpfile); 

 top.p1.dump(dumpfile); 

 top.p2.dump(dumpfile); 

        top.p3.dump(dumpfile); 

        top.arbiter.dump(dumpfile); 

        top.cache2.dump(dumpfile); 

        top.bus2.dump(dumpfile); 

        top.main_mem.dump(dumpfile); 

        dumpfile << "+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

+\n\n"; 

    } 

 

    if (interactive) { 

        debug_monitor(); 

    } 

    if ((print_cycle != 0) && (ab_clk_count % print_cycle == 0)) print_stats(); 

} 
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void ab_testbench::dump(ostream &out) const { 

    out << endl << name() << endl; 

    clkgen.dump(out); 

    top.dump(out); 

} 

 

                        struct timeval begin_u, end_u, begin_s, end_s; 

                        struct rusage usg; 

                        float user_time, sys_time; 

 

int sc_main(int argc, char **argv) { 

 

    cout << "in sc_main" << endl; 

 

    sc_set_time_resolution(1.0, ab_time_unit); 

    //make sc_time objects after setting time resolution 

    ab_half_cycle = new sc_time(1.0, ab_time_unit); 

 

    cout.unsetf(ios::dec); 

    cout.setf(ios::hex); 

    cout.width(2*sizeof(data_t) ); 

    cout.fill('0'); 

 

    //fake environment 

    char *p = 0; 



104 
 

    char* *envp = &p; 

 

    //start elaboration 

    ab_testbench test("ab_testbench", argc, argv, envp); 

 

    //set up elapsed time measurement 

                        getrusage(RUSAGE_SELF, &usg); 

                        begin_u = usg.ru_utime; 

                        begin_s = usg.ru_stime; 

 

    cout << "calling sc_start" << endl; 

    //sc_start(200000.0, ab_time_unit); 

    sc_start(); 

    cout << "finished sc_start" << endl; 

    test.print_stats(); 

    return(0); 

} 

 

void ab_testbench::print_stats() { 

    //finish elapsed time measurement 

                        getrusage(RUSAGE_SELF, &usg); 

                        end_u = usg.ru_utime; 

                        end_s = usg.ru_stime; 

                        user_time = (end_u.tv_sec+end_u.tv_usec/1000000.0)- 

                                (begin_u.tv_sec+begin_u.tv_usec/1000000.0); 

                        sys_time = (end_s.tv_sec+end_s.tv_usec/1000000.0)- 
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                                (begin_s.tv_sec+begin_s.tv_usec/1000000.0); 

    cout.unsetf(ios::hex); 

    cout.setf(ios::dec); 

    cout.fill(' '); 

    cout << endl; 

    cout << "clock cycles: " << ab_clk_count << endl; 

    top.p0.perf_sum(); 

    top.p1.perf_sum(); 

    top.p2.perf_sum(); 

    top.p3.perf_sum();     

    cout << endl; 

    cout << "bus 1 busy cycles: " << top.bus1_busy_count 

 << " busy rate: " << (float) top.bus1_busy_count 

  / (float) ab_clk_count << endl; 

    cout << "l2-cache accesses: " << top.cache2_access_count.count 

<< " misses: " << top.cache2_miss_count.count 

<< " miss rate " << (float) top.cache2_miss_count.count 

                / (float) top.cache2_access_count.count << endl; 

    cout << "main mem accesses: " << top.main_mem_access_count.count  

 << endl; 

    cout << endl; 

 

    cout << "Total user time:   " << user_time << endl; 

    cout << "Total system time: " << sys_time << endl; 

    cout << "Simulation speed (cyc/sec): "  

 << ab_clk_count/(user_time + sys_time) << endl; 
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    cout << "Simulation host mem swaps: " << top.mem_manager.swap_count  

 << endl; 

    float swaps_per_access = (float) top.mem_manager.swap_count  

 / (float) (top.p0.if_nop_count  

     + top.p0.if_icount 

     + top.p0.dcache_access_count.count 

     + top.p1.if_nop_count  

     + top.p1.if_icount 

     + top.p1.dcache_access_count.count 

     + top.p2.if_nop_count 

     + top.p2.if_icount 

     + top.p2.dcache_access_count.count 

     + top.p3.if_nop_count 

     + top.p3.if_icount 

     + top.p3.dcache_access_count.count 

     + top.cache2_access_count.count 

     + top.main_mem_access_count.count); 

    cout << "Swaps per memory access: " << swaps_per_access << endl; 

 

    cout.unsetf(ios::dec); 

    cout.setf(ios::hex); 

    cout.width(2*sizeof(data_t) ); 

    cout.fill('0'); 

} 
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