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ABSTRACT 

Strain and displacement are critical parameters for mechanical characterization of 

materials. Measuring these parameters accurately can be challenging for hyper-elastic 

materials such as polydimethylsiloxane (PDMS) due to their non-linear deformation at 

strains above 30%. This restriction has led researchers to stick to application based 

modelling when it comes to using hyper-elastic materials in developing strain based 

sensors. This means that linear stress-strain relationship from 0-30% provides a 

predictable frame to design sensors using this material. 

 This thesis explores three different methods that can be used in measuring the 

strain of PDMS. The use of crosshead displacement, video extensometer and Digital 

Image Correlation (DIC) for strain measurement were compared. These three methods 

vary in complexity and cost to run. The most common method is the use of crosshead 

displacement since it is incorporated in the machine and hence does not require any 

additional devices to run an experiment. The next method is DIC which requires a digital 

single-lens reflex camera to take the images of the sample as it undergoes either a tension 

or compression test. It also requires the most amount of computation since the images 

taken have to be correlated using another software and the resulting strain matched to 

their corresponding stress from the raw data stored in the test machine. Lastly, it’s by use 

of a video extensimeter. These methods are commonly used by researchers in the 

characterization of mechanical properties of hyper-elastic materials and therefore it 

would be prudent to compare their utility.  

The focus will be mainly on DIC because more information about the material 

can be extracted from the data obtained from using this method. DIC analysis was done 

using both an open source Matlab code and commercial DIC software called LabJoy™. 
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Tension and compression PDMS samples were tested and their strain measurements 

analyzed to fully understand the material characteristics. 

The PDMS used in this study was sourced from two different manufacturers. 

Sylgard 184 was purchased through a third party from Dow Corning. Tension and 

compression Sylgard samples were characterized as a function of five different 

temperatures, 25°C, 80°C, 100°C,120°C and 150°C. The other manufacturer is Gelest 

Inc. They provided PDMS in five different components thereby giving us the flexibility 

to vary the actual PDMS contents. Silica was varied to give tension and compression 

samples containing 9%, 18%, 22% and 30% silica by weight. 

In this research it was discovered that the gage section in tension samples 

experienced 20% more strain than what the crosshead records, the Poisson ratio was 0.46 

and 0.61 for the tension and compression sample respectively. There was a 25% increase 

in the Young’s modulus of the Sylgard when the cure temperature was changed from 

25°C to 150°C tension sample and a 32% increase in the modulus of the Gelest 

compression sample when the silica was changed from 9% to 30%. The modulus of the 

compression sample increased by 61% with a 21% increase in silica, which indicated a 

3:1 ratio.  

In addition to mechanical characterization, thermal stability and viscoelastic 

material properties of PDMS were tested. Tan delta plots from dynamic mechanical 

analysis showed that the glass transition temperature of all the Sylgard samples cured at 

different temperatures were around -125°C. Thermogravimetric test showed that Sylgard 

undergoes one stage decomposition while Gelest undergoes a two stage decomposition. 
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The first stage is between 400°C and 600°C in both Sylgard and Gelest while the second 

stage in Gelest is between 550°C and 750°C.  
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CHAPTER 1: INTRODUCTION 

The development of flexible sensors has become a wide area of research in recent 

years. The ability to embed a sensor in a flexible material has created numerous 

possibilities and applications. Traditional sensors, such as strain gages, would only be 

limited to a specific geometry while providing low strain measurements. Flexible sensors 

bring in adaptability, where the sensor can be attached to any geometry. They also have 

an extended range of strain that can be applied since the base material is stretchable [1]. 

Flexible sensors are typically comprised of two parts, a base material and an embedded 

electrical component. The base material is responsible for the mechanical property of the 

sensor while the electrical component is associated with resistance readings from the 

electrical input that the sensor is subjected to. The ideal base material for a flexible 

sensor should be capable of high strain measurements before failure [2]. 

Hyper-elastic materials are a special class of materials that respond elastically 

when they are subjected to very large strains. They show both a nonlinear material 

behavior as well as large shape changes.  They can undergo large elastic deformations in 

order of around 100 to 700% that is fully recoverable meaning that the initial shape is 

recovered when load is removed [3]. They are nearly incompressible which means that 

when they are subjected to huge loads they change shape but overall volume remains 

almost constant. This also means that their Poisson’s ratio is 0.5. Hyper-elastic materials 

are mostly used where high flexibility on a long run is required under large loads. The 

typical examples of their uses are as elastomeric pads in bridges, rail pads, car door seal 

and car tires [3].           
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Figure 1. Nonlinear hyper-elastic models of PDMS [4]. 

  From Figure 1, lower strain levels, ~ 30% and below, hyper-elastic materials can 

exhibit a linear behavior. It is this region of interest that researchers adhere to when 

developing flexible sensors. In this region, the modulus of the material can be calculated 

and the material constituent changed to obtain the desired material properties. As the 

development and application of strain based sensors increases, there has been an interest 

in the stress-strain behavior of hyper-elastic materials past the 30% strain threshold. It is 

this interest that led me to venture into the measurement of strain up to the point of 

failure. In addition, I also sought to extract more material characteristics below the 30% 

threshold. 

  Ogden 2
nd

 order, Mooney 3
rd

 order  and Neo-Hookean are hyper-elastic models 

used to describe the non-linear stress-strain behaviour of complex materials such as 

rubbers, polymers, and biological tissue. These models assume that the material 

behaviour can be described by means of a strain energy density function, from which the 
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stress–strain relationships can be derived. In contrast to linear elastic materials, the stress-

strain curve of a Neo-Hookean material is not linear. Instead, the relationship between 

applied stress and strain is initially linear, but at a certain point the stress-strain curve will 

plateau. The neo-Hookean model does not account for the dissipative release of energy as 

heat while straining the material and perfect elasticity is assumed at all stages of 

deformation [3]. 

 

1.1 Polydimethylsiloxane  

Polydimethylsiloxane (PDMS) has become the most popular building material 

used in a variety of low-cost aqueous microfluidic devices aimed in particular at single 

use for biological or medical diagnostics. It is also suitable for the development of 

flexible sensors, flexible MEMs device, micro fluidics, and bio-MEMS. In order to have 

low power consumption, many groups use this material for the manufacture of mobile 

parts (often membrane, bridge…) in active systems such as micro valves and micro 

pumps [5].  

PDMS is a mineral-organic silicon-based polymer of the siloxane family [5]. It is 

also known as Dimethicone and contains silicon, oxygen, and carbon [6]. In the last 

decade, the interest towards these kinds of materials has increased since they can be used 

in many different applications. The qualities that make it useful are its elastomeric 

properties, gas permeability, optical transparency, ease of bonding to itself and to glass, 

ease of molding, and relatively high chemical resistivity. In addition to those properties, 

the fact that it is inexpensive to be manufactured makes it noteworthy [7]. PDMS is 

considered inert, non-toxic and non-flammable [8]. Also, PDMS is biocompatible, so it is 
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appropriate to be used for prosthesis and internal body applications. PDMS has qualities 

that can be intermediate between an organic and an inorganic material. 

The PDMS molecules are highly flexible and they are arranged to form an 

amorphous material [9]. PDMS, such as the majority of polymers, forms amorphous 

solids because the process of crystallization is influenced by the topological constraints, 

such as the crosslinking, and by the difference length of the chains [10]. According to the 

molecular weight of the samples produced, PDMS presents a low volatility if the 

molecular weight is high and vice versa [11]. 

Polydimethylsiloxane is noteworthy and useful because it has a low surface 

tension, a moderate water interfacial tension and no surface viscosity. They can be found 

in a wide variety of configurations and they present a low activation energy for the 

viscous flow. In addition to that, PDMS have low glass transition temperature, low 

boiling points (oligomers), low freezing and pour point and high compressibility. In the 

environment, they present a low level of hazard, also because of the low flammability, 

and they are well resistant to the weather. PDMS show high permeability to gas and low 

molecular weight and a large free volume [12]. Some of the properties described before 

are only valid for polymer solution, while others are applicable only for chemical cross-

linked gels. 

Hereafter, the empirical, the chemical and the structural formula of the PDMS 

will be presented. The empirical formula shows the simplest number ratio of atoms of the 

elements presents in the compound. Instead, the chemical formula shows how many 

atoms of each element are present in the compound. With the structural formula, instead, 

the structure of the molecule is shown. The empirical formula PDMS: 
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                                                        (𝐶2𝐻6𝑂𝑆𝑖)𝑛                                               (1) 

The value of n can influence the state of the PDMS. If n, the number of times that 

the monomers repeated, is low; then the PDMS will be liquid. If n is high, it will be semi-

solid [13-14]. The chemical formula of the Polydimethylsiloxane instead is: 

     

                                    (𝐻3𝐶)3𝑆𝑖𝑜[𝑆𝑖(𝐶𝐻3)2𝑂]𝑛𝑆𝑖(𝐶𝐻3)𝑛                                              (2) 

The structural formula of the PDMS is shown in Figure 2. [11] 

 

 

Figure 2. Chemical Structure of PDMS [8]. 

Since it is a polymer, in the structure, there will be a monomer unit ([(𝐶𝐻3)2]) 

repeated n-times [11]. A 3D model of the fundamental chemical structure of a 

Polydimethylsiloxane molecule is shown in Figure 3. 

 

Figure 3. 3D structure of a PDMS molecule [14]. 
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Polymers such as the Polydimethylsiloxane have characteristics halfway between 

solid and liquid materials. The complexity in measuring their properties comes from their 

unique texture and consistency. In particular, the consistency of this semi-solid, sticky 

and viscous material makes it challenging to measure its properties. It is possible to 

measure them with a macroscopic or microscopic approach. In this thesis, only the 

microscopic one is used.  

 

1.2 Strain measurement  

  Strain measurement below the 30% threshold brings in the issue of accuracy 

because different methods can be used to measure the strain field. Even though the strain 

field below 30% is linear, the method of strain measurement will determine the accuracy 

of the values reported. In order to report accurate values for the failure strain, Young’s 

modulus and Poisson’s ratio, the measurements of strain should be done to a high degree 

of confidence. 

Typical methods of strain measurements include the use of crosshead where the 

displacement readings obtained directly form the measuring instrument as load is applied. 

This method is common because it does not require any additional equipment to measure 

a specific part of the sample. The second is the use of a video extensimeter that tracks a 

pair of dots marked on the sample to give a more accurate strain measurement. Lastly, 

use of DIC which gives a full field strain measurement and local strain patterns from the 

numerous dots that have been sprinkled on the sample. 

Most of the mechanical characterization of PDMS has been done though the 

manual measurement of its properties with a heavy reliant on Finite Element Methods. F 

Schneider, T Fellner, J Wilde and U Wallrabe [15] in their characterization of silicones 
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for MEMS, manually measured the displacement of a PDMS sample in tension and used 

a correction factor from FEM modeling to correct it. The manual measurement was done 

by recording the displacement in the gage section after each subsequent loading. The 

difference between the crosshead strain reading and the manual measured was by a factor 

of 0.5. This value was verified by FEA methods. The tests that followed were done using 

the crosshead and their strain values corrected by a factor of 0.5. This factor comes into 

play because the strain recorded by the testing machine is inclusive of the wider section 

of the dogbone sample. Unlike the narrow gage section, the wide section does not 

experience uniform strain therefore it does not represent the real material behavior.  

The last method is strain measurement using Digital Image Correlation (DIC) 

which is an optical method measuring the full-field surface displacement of an object by 

comparing the images before and after deformation. The displacement components are 

readily to be observed. DIC was firstly introduced in 1980s as a measure of displacement 

components in laser speckle metrology by W.F.Peters and W.H.Ranson of University of 

South Carolina [16]. Peters and Ranson utilized a cross-correlation algorithm to correlate 

a subset of pixels between the reference and deformed images. In the following years, 

digital image correlation technique has been highly developed in increasing the 

correlation speed, improving the correlation accuracy and so forth. Most of the efforts 

focused on the improvement of the correlation algorithms.  For example, the bilinear 

interpolation method, Newton-Raphson numerical solution method, coarse-fine search 

method and so on [17]. In recent years, DIC has been employed in various problems and 

it is found ideally suitable for fracture mechanics investigation, high temperature 

deformation analysis and so on. It has been widely used in experimental mechanics.  
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DIC has been used to precisely determine the Poisson ratio of soft materials. The 

Poisson ratio of PDMS has been reported to be around 0.5 [18]. The samples were tested 

at a crosshead speed of 7mm/s up to 10% strain. A Canon 550D DSLR camera fitted with 

a Canon 100mm macro lens was used to take the pictures that were later correlated using 

a commercial software known as MatchID.  

1.3 Digital Image Correlation 

Digital image correlation (DIC) is an optical method to measure deformation on 

an objects surface. This usually occurs in three steps. Images of a surface are analyzed 

over time, a cross correlation technique is used to determine displacement and then strain 

is calculated from the displacement. DIC provides a non-contact strain measurement 

method which does not interfere with the material while being tested. It also gives a full-

field data by tracking hundreds of tiny dots sprayed on the sample thereby giving a clear 

strain field.  

The measurement of displacements and displacement gradients has always been 

an important topic in the evaluation of material properties, such as material strengths or 

fracture parameters and in experimental stress analysis. Optical techniques such as moiré 

interferometry [19], holography [20], and speckle interferometry [21] have been proven 

to be matured techniques to analyze macroscopic parameters and are being applied 

successfully in many different applications. However, all the interferometric techniques 

have stringent requirements for system’s stability. Moreover, the processing of fringe 

patterns is laborious and time-consuming. This technical difficulty has raised many 

researchers’ attention and computerized procedures [22] have been developed to 

automate the processing of the data from the fringe patterns. 
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In the last decade, a non-contacting optical technique, digital image correlation, 

has been developed by S. R Sutton and Bruck H. A [23-25]. It was applied to 

measurement of displacements and strains. The applications include microscopic strain 

measurements in electronic packaging [26], strain fields in polyurethane foam plastic 

materials and evaluation of their mechanical properties [27] and evaluation of thermal 

strain in the solder joints [28]. This computer vision technique has the advantages of a 

simple system and direct sensing and thus avoids the laborious interpretation of 

interferometric fringes. 

1.4 Outline 

  This thesis will look into mechanical characterization of PDMS using non-contact 

strain measurement techniques. The emphasis is on the DIC technique and as such the 

theory behind the technique. The theory behind DIC will be explained followed by the 

material preparation and the different characterizations tests such as Dynamic 

Mechanical Analysis and Thermogravimetric Analysis. Mechanical testing equipment 

and procedure will follow giving way to the results and discussion of all the tests that 

were carried out. A brief summary is given at the end with future work recommendations.  
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CHAPTER 2: THEORY OF DIC 

2.1 Introduction  

DIC works by dividing the surface image into subsets-series of boxes with a 

recognizable pattern in each. A correlation technique is then used to analyze how each 

subset has moved and deformed during the test. Finally, the displacement for each subset 

is calculated and the local strain data is derived from the displacement vectors. These 

steps are repeated for each subset over the entire surface. The objective of this chapter is 

to discuss the mathematical approach behind DIC.  

2.2 Methodology 

In principle, DIC compares a series of grey-scale images of a sample at different 

stages of deformation, tracks pixels movement in the region of interest (ROI) [29] and 

calculates displacement and strain by the use of correlation algorithm. 

 

Figure 4. Schematic of digital image correlation methodology [29]. 
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Figure 5. Subset before and after deformation [29]. 

In Figure 4 above, a grid of control points (purple crosses) is defined over the 

region of interest. The normalized cross-correlation coefficient is computed by 

convolving a subset in the deformed image (red box) with the corresponding larger 

subset in the reference image (blue box). The actual displacement (u,v) is the 

displacement that maximized the correlation coefficient. In Figure 5 the grid moves 

during the deformation, and original grid boundary will also deform to cover all the 

original pixels within the grid, so coordinates for all pixels will change, for example, the 

center of the grid has an original coordinate of (x, y), after deformation it changes to 

(x*,y*). 

Let u be 𝑢𝑜and v be 𝑣𝑜 be  The displacement of P is represented as 𝑢𝑜 in x 

direction and 𝑣𝑜in y direction. So, the following equation can be found:  

                                                         (3) 
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We now assume Q (𝑥𝑜 , 𝑦𝑜) is a random selected point other than Q within the 

subset and the location of Q relative to P can be expressed as:  

                                                        (4)  

In the above expression, ∆x and ∆y are the distance from P to Q in the horizontal 

and vertical direction. After deformation, Q (xQ, yQ) moved to Q
`
 (xQ`, yQ`) 

                                                                           𝑥𝑄′ = 𝑥𝑄 + 𝑢𝑄 

   𝑦𝑄′ = 𝑦𝑄 + 𝑣𝑄                                                              (5) 

Where, 𝑢𝑞 and 𝑣𝑞  are distances of Q
`
(xQ`, yQ`) with respect to Q (xQ, yQ) in x and 

y direction. For rigid body translation, uQ and vQ are equal to 𝑢𝑜 and 𝑣𝑜 respectively. 

However, the corresponding subset in deformed image is not necessarily identical to the 

defined square subset in the reference image. Once the object is subjected to 

deformations other than rigid body translation, for example, shear, rotation, compression 

and tension, the subset possibly deforms and presents as a different shape. In this case, as 

uQ and vQ are no longer equal to 𝑢𝑜 and 𝑣𝑜, in order to describe the shape of the deformed 

subset, first-order Tylor series expansion in terms of ∆x and ∆y can be utilized. Here, 

assuming that ∆x and ∆y are small such that uQ and vQ can be approximated:  

                                             (6)  

By substituting Equation 6 in Equation 5, Q
’
 (xQ

’
, yQ

’
) can be expressed as:  
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                                      (7)  

The center of the subset after deformation, P
’
, can be expressed in terms of u, v, 

and  
𝜕𝑢

𝜕𝑥
,

𝜕𝑣

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
and

𝜕𝑣

𝜕𝑦
. 

                                             (8)  

The deformation of the subset can be described as Equation. 8 where u and v 

donate the displacements in integer pixels, 
𝜕𝑢

𝜕𝑥
,

𝜕𝑣

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
and

𝜕𝑣

𝜕𝑦
 are displacement gradients 

related to the subset deformation. The six parameters are adjusted through the algorithm 

to find the region in the deformed image best match the defined subset in the reference 

image [30]. In this project, based on the theory stated above, the correlation is 

implemented by MATLAB using the normalized 2D cross-correlation as the core 

algorithm [30]. 

A commercial DIC software, LabJoy®, was used to analyze the bulk images from 

the samples while a MatLab code was used to analyze the local strain patterns of the 

samples. There is no public information on how LabJoy® uses a core algorithm for cross-

correlation. However, in the Matlab code the heart of the correlation process is in the 

cpcorr mod.m function, a slightly modified version of the standard function in the Image 

Processing Toolbox cpcorr.m, written by Matlab. The code can be found in Appendix A.  

For each control point, the code takes a subset of pixels around the control point 

in the deformed image, and a larger subset (generally twice as big) around the 

corresponding control point in the reference image, as shown in Figure 4. The size of the 
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reference subset with respect to the deformed subset is controlled by the search zone. 

Increasing the search zone will increase the maximum allowable displacement, but at the 

cost of a larger border around the region of interest in which control points cannot be 

correlated and increased computation time. The code computes the normalized cross-

correlation coefficient, C, [31] for a range of theoretical displacements, (u`,v`), in 1 pixel 

increments by convolving the subset from the deformed image with the larger subset 

from the reference image according to 

           

(9) 

where r is the intensity of the pixels in the reference subset, d is the intensity of the pixels 

in the deformed subset, and (x`, y’) are local subset coordinate axes whose origin is at the 

control point at the subset center. If the value of the computed correlation coefficient at a 

given control point is less than the value set for the threshold, the correlation is 

determined to be poor and no data is returned for that control point. By decreasing the 

threshold value, the user can allow more grid points to be correlated, but at the expense 

of having less certainty in the validity of the correlations. 

 In order to calculate displacements to within 1/100 of a pixel, the nine discrete 

correlation coefficients surrounding the absolute maximum coefficient are interpolated 

using a second order polynomial in u` and v`. The actual displacement (u; v) for a control 

point is the theoretical displacement (u0; v0) corresponding to the maximum interpolated 

correlation coefficient. The output of the code is discrete displacement values for each 
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control point for each image. These displacements can then be translated to strain by 

calculating their rate of change.  

   

 

 

 

 

 

 

 

 

 

 

 

 



 

16 

CHAPTER 3: EXPERIMENTAL METHOD 

 This chapter discusses material preparation for Gelest and Sylgard and different 

mechanical characterization test. The tests include density measurement, dynamic 

mechanical analysis and thermogravimentric analysis. This chapter also discusses 

mechanical testing procedures for tension and compression that were followed to obtain 

strain measurements from the PDMS samples.  

3.1 Material Preparation 

Sylgard™ 184 samples were made by manually mixing Part A (dimethylvinyl-

terminated) and Part B (methylhydrogen siloxane), shown in Figure 6, at a ratio of 10:1 

respectively. The mixture was then poured onto the bottom part of the mold shown in 

Figure 6 and placed in a vacuum chamber for an hour to remove the bubbles after which 

it is covered and set to cure at different temperatures for five different sets 25°C, 80°C, 

100°C, 120°C and 150°C for three hours. Lastly the sample is removed from the mold 

and placed in the oven to post cure at 180°C.  

 

Figure 6. PDMS Sylgard® 184 Kit with Part A and Part B [32]. 
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Gelest™ samples were made by mixing a polymer (vinyl terminated 

polydimethylsiloxane), a crosslinker (methylhydrosiloxane), silica (silicon dioxide) and a 

catalyst (platinum-cyclovinylmethylsiloxane complex). The formulation is shown in  

Table 1 below. Four sets of samples were made. The polymer is mixed with the silica, 

then the cross linker is manually mixed with the mixture, finally a catalyst is introduced 

at 200 parts per million. The mixture was then poured onto the bottom part of the mold 

and placed in a vacuum chamber for an hour to remove the bubbles after which it is 

covered and set to cure at 80°C for three hours. Lastly the sample is removed from the 

mold and placed in the oven to post cure at 180°C. 

 Table 1: Different types of material formulation for Gelest. 

SAMPLE NAME BASE POLYMER CROSSLINKER CATALYST  

(parts per million) 

SILICA 

CONTENT  

Gelest 10:1 7% 4% 200 9% 

Gelest 10:2 80% 4% 200 16% 

Gelest 10:3 74% 4% 200 22% 

Gelest 10:4 66% 4% 200 30% 
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Figure 7. (a) Compression sample mold (b) Tension sheet mold. 

The compression sample is a 10mm cube made using an aluminum mold with 

a series of six slots as shown in Figure 7. (a). The tension mold shown in Figure 6. 

(b) consists of two square aluminum sheets 4 mm thick and 270 mm wide.  The 

window of the shim on the mold measures 125 mm by 139 mm. This measurement 

ensures the sample made will be enough to cut out five dog bone samples. The two 

square aluminum sheets are covered by a 50μm thick thermalimide high performance 

bagging film which can sustain cure temperatures up to 426°C. 

The film is used because PDMS easily peels away from it after curing and so 

there is no need for mold release.  The film was tapped using an EconoTape 1 from 

Airtech International Inc. which has a maximum temperature use of 177°C. The sheet 

from the tension mold was cut according to ASTM D-412-C die standard as shown 

in Figure 8. The die ensures that the all rubber materials tested by researchers have 

the same dimensions therefore the reported results from various tests can be easily 

accepted. 
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Figure 8. (a) ASTM D412-C Tension die (b) ASTM D412-C dimensions. 

Figure 9 below shows a tension sample used with a video extensometer, a tension 

sample used to take DIC measurements and a compression sample used to take DIC 

strain measurements respectively. 

            

Figure 9. (a) Video Extensometer Tension Sample (b) DIC Tension Sample (c) DIC               

Compression Sample. 
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3.2 Material Characterization  

3.2.1 Density  

Gas pycnometry is recognized as one of the most reliable techniques for obtaining 

true, absolute, skeletal, and apparent volume and density. This technique is non-

destructive as it uses the gas displacement method to measure volume. Inert gases, such 

as helium or nitrogen, are used as the displacement medium. Density calculations using 

the gas displacement method are much more accurate and reproducible than the 

traditional Archimedes water displacement method [33]. A gas pycnometer operates by 

detecting the pressure change resulting from displacement of gas by a solid object. 

Expanding a quantity of gas at known pressure into an empty chamber and measuring the 

pressure establishes a baseline. Then a sample is placed in the chamber and the chamber 

is resealed. The same quantity of gas at the same pressure is again expanded into the 

sample chamber, and the pressure is measured. The difference in the two pressure 

combined with the known volume of the empty sample chamber allows the volume of the 

sample to be determined using the gas law [33]. 

 

             Figure 10. AccuPyc II micrometrics™. 
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The AccuPyc II micrometrics™ pycnometer, shown in              Figure 10 above, 

takes the mass of the sample that is placed in the chamber and runs a few cycles 

measuring the density of the sample.  This technique uses the gas displacement method to 

measure volume accurately. An inert gas, nitrogen, is used as the displacement medium. 

The sample is sealed in the instrument compartment of known volume, the appropriate 

inert gas is admitted, and then expanded into another precision internal volume. The 

pressures observed upon filling the sample chamber and then discharging it into a second 

empty chamber allow computation of the sample solid phase volume. Helium molecules 

rapidly fill pores as small as one angstrom in diameter; only the solid phase of the sample 

displaces the gas. Dividing this volume into the sample weight gives the gas displacement 

density [34]. 

               Table 2: Effect of cure temperature on density of Sylgard™ samples. 

SAMPLE CURE TEMPERATURE (°C) DENSITY (g/cc) 

Sylgard 25 25 1.19±0.01 

Sylgard 80 80 1.20±0.01 

Sylgard 100 100 1.19±0.02 

Sylgard 120 120 1.15±0.02 

Sylgard 150 150 1.17±0.02 
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                   Figure 11. Effect of cure temperature on density of Sylgard™ sample. 

The Gelest™ and Sylgard® samples densities were tested using a gas pycnometer 

shown in Figure 10. Literature review revealed that most researchers use a density of 1.03 

g/cc provided by the manufacturer Dow Corning for Sylgard™ samples [32]. The density 

of two 6061 aluminum blocks was measured using the pycnometer. The density was 

found to be 2.71±0.12 g/cc which is exactly what is recorded by Alcoa© which is the 

world leader in aluminum manufacturing [18]. The average density for all the Sylgard® 

samples was 1.1788 g/cc. This is 14% more than what is reported by the manufacturer. It 

was also discovered that the density is unaffected by the cure temperature of the 

Sylgard® samples. 

                        Table 3: Effect of silica on density of Gelest™ samples. 

SAMPLE CURE TEMPERATURE(°C) DENSITY (g/cc) 

Gelest 10:1 80 1.22±0.02 

Gelest 10:2 80 1.25±0.06 

1

1.05

1.1

1.15

1.2

1.25

0 20 40 60 80 100 120 140 160

D
en

si
ty

 (g
/c

c)
 

Cure Temperature (°C) 



 

23 

Gelest 10:3 80 1.29±0.02 

Gelest 10:4 80 1.33±0.02 

 
 

                            Figure 12. Effect of silica on density of Gelest™ samples. 

The density measurement of Gelest™ samples show a steady increase in density 

with an increase in silica. There was a 5.5% increase in density corresponding to a 

233.3% increase in silica from the Gelest™ 10:1 which has ~9% silica to Gelest™ 10:4 

which has ~30% silica. Although the increase in density is marginal compared to the 

increase in silica, there is certainly a significant linear trend associated with an increase in 

silica in Gelest™ samples.   

3.2.2 Dynamic Mechanical Analysis  

A Dynamic mechanical analysis (DMA) was performed on the Sylgard® 184 

samples cured at different temperatures to better understand their viscoelastic behavior. 
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DMA the is a thermal analysis technique that measures the properties of materials as they 

are deformed under periodic stress. In DMA a variable sinusoidal stress is applied, and 

the resultant sinusoidal strain is measured. If the material being evaluated is purely 

elastic, the phase difference between the stress and strain sine waves is 0°. If the material 

is purely viscous, the phase difference is 90°.  

However, most real-world materials including polymers are viscoelastic and 

exhibit a phase difference between those extremes. This phase difference, together with 

the amplitudes of the stress and strain waves, is used to determine a variety of 

fundamental material parameters, including storage and loss modulus, tan δ, complex and 

dynamic viscosity, storage and loss compliance, transition temperatures, creep, and stress 

relaxation, as well as related performance attributes such as rate and degree of cure, 

sound absorption and impact resistance, and morphology [35] 
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Figure 13. The relationship of the applied sinusoidal stress to strain is shown, with 

the resultant phase lag and deformation [36]. 

For an applied stress varying sinusoidally with time, a viscoelastic material will 

respond with a sinusoidal strain for low amplitudes of stress. The sinusoidal variation in 

time is usually described as a rate specified by the frequency (f = Hz; ω = rad/sec). The 

strain of a viscoelastic body is out of phase with the stress applied, by the phase angle, δ. 

This phase lag is due to the excess time necessary for molecular motions and relaxations 

to occur. Dynamic stress, σ, and strain, ε, given as: 

              𝜎 = 𝜎° sin(𝜔𝑡 + 𝛿)                                                                       (10) 

               𝜀 =  𝜀° sin(𝜔𝑡)                                                                             (11) 

where 𝜔 is the angular frequency. Using this notation, stress can be divided into an “in 

phase” component (𝜎° cos(𝛿)) and an “out-of-phase” component (𝜎° sin(𝛿))  and 

rewritten as: 

                                         𝜎 =  𝜎° sin(𝜔𝑡)𝑐𝑜𝑠𝛿 + 𝜎° cos(𝜔𝑡)𝑠𝑖𝑛𝛿                               (12) 

Dividing stress by strain to yield a modulus and using the symbols E1 and E2 for 

the inphase (real) and out-of-phase (imaginary) moduli respectively yields: where E1 is 

(𝜎°/𝜀° ) 𝑐𝑜𝑠𝛿 and E2 is (𝜎°/𝜀° ) 𝑠𝑖𝑛𝛿. Therefore, in complex notation:  

                                                       E* = E1 + iE2                                                            

(13) 

E1 is referred to as the storage modulus and E2 as the out of phase modulus. The 

phase angle 𝛿 can be written as  
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                                                        tan 𝛿 = E2/E1                                                         (14) 

Equation (13) shows that the complex modulus obtained from a dynamic 

mechanical test consists of “real” and “imaginary” parts. The real (storage) part describes 

the ability of the material to store potential energy and release it upon deformation. The 

imaginary (loss) portion is associated with energy dissipation in the form of heat upon 

deformation. The storage modulus is often times associated with “stiffness” of a material 

and is related to the Young’s modulus, E. The dynamic loss modulus is often associated 

with “internal friction” and is sensitive to different kinds of molecular motions, 

relaxation processes, transitions, morphology and other structural heterogeneities. Thus, 

the dynamic properties provide information at the molecular level to understanding the 

polymer mechanical behavior [35]. 

Modulus values change with temperature and transitions in materials can be seen 

as changes in the storage modulus or tan delta curves. This includes not only the glass 

transition and the melt, but also other transitions that occur in the glassy or rubbery 

plateau as shown in Figure 14 below. 
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Figure 14. Modulus values change with temperature and transitions in materials [36].   

In general, transitions in materials are associated with different localized or 

medium-to long-range cooperative motions of molecular segments. The glass transition is 

associated with cooperative motion among a large number of chain segments, including 

those from neighboring polymer chains [37]. Although there are several thermal 

techniques available to make Tg (glass transition temperature) measurements, by far the 

most sensitive technique is dynamic mechanical analysis. 

After scanning the sample under test, the viscoelastic moduli, storage and loss 

modulus, damping properties, and tan delta, parameters can be used to define the Tg. Tg 

using tan delta peak which occurs at the highest temperature and is used historically in 

literature. It is a good measure of the ‘leather like’ midpoint between the glassy and 

rubbery states of a polymer. The height and shape of the tan delta peak change 

systematically with amorphous content. The parameter used to detect the glass transition 

is usually reported along with the frequency of oscillation, the temperature ramp rate, the 

clamp type used, and the sample dimensions [38]. 
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Figure 15. Sylgard® sample in tension ready for DMA test. 

3.2.3 Thermogravimetric Analysis 

This technique measures the thermally induced weight change of a material as a 

function of temperature in a controlled environment. The measurements are used to 

primarily determine the composition of material and to predict their thermal stability at 

temperatures up to 1000°C.  Characterization of material can be done depending on 

weight loss or gain due to decomposition, oxidation or dehydration. The following 

information can be extracted from a thermogravimetric analysis: thermal stability of 

materials, oxidation stability of materials, composition of multi-component systems, 

decomposition kinetics of materials, effect of corrosive or reactive atmospheres on 

materials and moisture and volatiles content of materials.  

The weight loss by the sample can be either due to thermal decomposition with 

the formation of gaseous reaction product as chemical bonds break, evaporation as loss of 

volatiles with elevated temperature, reduction from interaction of the sample with the 

reducing atmosphere and desorption. Weight gain can be due to oxidation due to 

interaction of the sample with an oxidizing atmosphere or absorption.  
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Figure 16. TA Q100 Thermogravimetric Analysis Instrument. 

3.3 Mechanical Testing 

All tension samples were tested at a strain rate of 10% per minute and all the 

compression samples were tested at a strain rate of 20% per minute. This gives a common 

basis of comparison among the three methods of strain measurements. The strain rates 

were chosen after running multiple tests to determine the best strain rate that the camera 

can fully capture the deformation from the sample on an image.  

For the DIC technique a Canon® EOS Rebel T5 camera is placed perpendicular 

to the sample that is mounted on the Instron Single Colum Machine. The camera has an 

image sensor having approximately 18 effective megapixels and 18.70 total megapixels. 

The pixel unit is 4.3 μm and the aspect ratio is 3:2 (Horizontal: Vertical) [39]. It is 

paramount that the camera is leveled with the machine and that it is perpendicular to the 

sample to ensure that the images taken are not askew. Even a 1º offset will translate into 

an inaccurate correlation from the DIC software. This inaccuracy is easily carried through 

to the subsequent images leading to an overall misrepresentation of strain patterns and 

passion ratios. Thus, we assume the sample is planar, parallel to and at a constant 

distance from the visual sensor during the entire experiment. The sample itself has black 

dots sprinkled on a white background, this contrast is what assists the DIC software, 

LabJoy™, in pattern recognition and correlation. The software is able to track the 

changes in position of the black dots on the white background on the face of the sample.  
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Figure 17. (a) PDMS sample setup in tension (b) Instron Single Colum Machine (c) 

Canon® EOS Rebel T5 Camera[38]. 

Strain patterns and Poisson ratio values once obtained can be matched with the 

corresponding load from the raw data, this gives a complete picture of what the material 

experienced. In running the experiment, a base image is taken, this will be the ‘zero’ 

image from which the correlation will be based upon. The tension/compression test is 

started and an image is taken after 6 seconds for tension and 5 seconds for compression. 

The tests were run up to 30% strain, beyond that the error associated with relating batches 

of images at a time was significant and was carried through every batch. For the purposes 

of material characterization, the Poisson ratio and Young’s Modulus can be accurately 

reported from DIC data that spans up to a strain of 30%.  

In addition to DIC experiments, a video extensimeter with a 400mm field of view 

was used to capture the strain of tension samples. DIC can only accurately track changes 

in displacement up to 30% strain before the errors accumulating from subsequent image 

correlation diminish the accuracy of the strain recorded. The video extensimeter is able to 

track the strain in a sample up to failure. This has the advantage of giving a complete and 

accurate picture of what the material experiences until it fails. Two white dots, one inch 
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apart, are impressed on the gage section of the sample using a stencil. The sample is then 

mounted perpendicular to the video extensimeter. The video extensimeter illuminates a 

red color which assists in spotting the two white dots on the data acquisition software on 

the computer. This setup is shown in Figure 18 below.  

 

Figure 18. Video extensometer setup.  

All tension samples were tested at a strain rate of 10% per minute and all the 

compression samples were tested at a strain rate of 20% per minute. The strain rates were 

chosen after running multiple tests to determine the best strain rate that the camera can 

fully capture the deformation. These strain rates corresponded to well detailed images 

that were able to be correlated using the DIC software. 
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CHAPTER 4: RESULTS AND DISCUSSION   

  This chapter will discuss the results from mechanical tests and material 

characterization. The discussion will focus on the glass transition temperature from the 

DMA analysis, residual mass from the TGA tests, strain patterns from the FEA, Poisson 

ratio from DIC tests and effects of silica and cure temperature on PDMS.   

4.1 Dynamic Mechanical Analysis 

Liquid nitrogen was used to test the samples from a temperature of 25°C to a 

temperature of -140°C. The samples tested were rectangular in shape, measuring 10mm 

in width, 25mm in length and 1.2mm in thickness. The test was run using tension clamps, 

at a frequency of 1 Hz, a load of 1N, an amplitude of 10 microns, and a ramp rate of 

5°C/min. The storage modulus, loss modulus and tan delta plots were analyzed.  

 

Figure 19. Storage modulus and tan delta as a function of temperature of Sylgard 

sample cured at 25°C. 
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Figure 20. Published storage modulus and tan delta as a function of temperature for 

Sylgard 184 [40]. 

  Figure 20 is from literature where a complete DMA analysis of PDMS was 

published. The results of the storage modulus and tan delta are very comparable to 

the results for Sylgard 25. This led us to believe that the sample was cured at room 

temperature. From Figure 20 the storage modulus decreases monotonically with 

temperature for polymer relaxation [40]. 
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Figure 21. Storage modulus as a function of temperature for Sylgard samples cured at 

different temperatures. 

  Figure 21 shows the storage modulus of the rest of the samples. There is a 

clear indication that the cure temperature affects the rate at which the polymer 

relaxes as temperature is increased. However, there is no clear trend with regard to 

the cure temperature. Sylgard 80 has the steepest gradient followed by Sylgard 150. 

There is no known literature about the effects of cure temperature on the relaxation 

gradient. 
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Figure 22. Storage modulus, loss modulus and tan delta as a function of temperature 

for Sylgard cured at 25°C. 

 

Figure 23. Storage modulus, loss modulus and tan delta as a function of temperature 

for Sylgard [41]. 

 

Figure 24. Loss modulus as a function of temperature of Sylgard samples cured at 

different temperatures. 
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  Storage modulus is a measure of the stored energy, representing the elastic 

portion of the material as in undergoes relaxation. Therefore, it should decrease with 

temperature for polymer relaxation. Storage modulus for Sylgard peaks at around 

100,000MPa at -143.14°C [41]. The machine that was used to run the DMA 

experiment was incapable of reaching that low of a temperature. Loss modulus is a 

measure of the energy dissipated as heat, representing the viscous portion. According 

to literature, typical values for Sylgard range from 1000MPa to 3000MPa.This 

matches closely to the plots in Figure 24. 

  Lastly, tan delta for all the Sylgard samples were plotted in Figure 25 below. 

The glass transition temperature (corresponding to tan delta peak) was found to be 

around -125°C. A table was compiled with the tan delta values of all the Sylgard 

samples.  

 

Figure 25. Tan delta for Sylgard samples cured at different temperatures. 
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  Literature shows that the glass temperature of PDMS is -120°C [40]. 

However, from Table 4 below, the glass transition temperature is around -125°C. 

This is the temperature region where PDMS transitions from a hard, glassy material 

to a soft, rubbery material.  

Table 4. Glass transition temperatures for Sylgard samples taken from tan delta 

peaks. 

Sample Temp. (°C) 

Sylgard 25 -123.74 

Sylgard 80 -123.36 

Sylgard 100 -125.98 

Sylgard 120 -126.59 

Sylgard 150 -125.31 

 

 The second peak at about -50°C, according to the manufacturer, is not a 

secondary transition for a termination molecule, but attributed to a structural 

relaxation [40]. 

4.2 Thermogravimetric Analysis 

The Gelest and Sylgard samples were tested on the TGA machine shown in 

Figure 15. The samples weighed approx. 100gm were tested and their scans are presented 

in Figure 26 and Figure 29 below. The analysis was run from room temperature to 800°C 

at a rate of 5°C per minute. 
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Figure 26. Weight loss as a function of temperature for Gelest samples. 

 

Figure 27. Differential weight change as a function of temperature for Gelest 

samples. 

  Gelest experienced a two stage degradation as depicted in Figure 27. The first 

decomposition temperature was around 450°C and the second decomposition 

temperature was around 650°C. There is no report on literature which suggests that 



 

39 

parts (bonds) decompose at two different stages yet. However, there exists a 

relationship between bonding intensity and the decomposition,i.e. a strong bond has a 

corresponding higher decomposition temperature, while a weak bond has a lower 

decomposition temperature. Typical bond energies of C–C, C–O, C–H, and Si–Si are 

349, 370, 337, and 327 kJ/mol respectively [43]. The single bonds of C–C, C–O, C–

H, and Si-Si are susceptible to chain scission during thermal degradation and act as 

weak links, which correspond to the decomposition of Gelest during the first stage. 

The second decomposition, characterized by the second peak can be [42,43] 

attributed to the degradation of Si–O bond, where the Si–O bond energy is 798 

kJ/mol. 

Figure 28 illustrates a clear increase in residual mass with decreasing silica 

content. This is better represented in Figure 28 below. There was an increase in residual 

mass with an increase in silica. Silica is not as easily decomposable as the other 

compounds in Gelest, therefore the more silica was added the more the mass remained 

after decomposition. 
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Figure 28. Residual mass as a function of silica content after TGA test for all 

Gelest samples. 

The Sylgard samples in Figure 29 do not show a clear trend in the residual 

mass left after the thermogravimetric analysis on the samples cured at different 

temperatures.  

       

Figure 29. Weight loss as a function of temperature for Sylgard samples. 

  In Figure 30, Sylgard underwent one stage degradation due to the 

decomposition from 400°C to 600°C of the weak bonds as earlier discussed.  
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Figure 30. Differential weight change as a function of temperature for Sylgard 

samples. 

The sample Gelest 10:1 containing 9% silica lost almost half of its mass after 

800°C while Gelest 10:4 that contained 30% silica retained 70% of its mass after 800°C.  

A 1% increase in residual mass after 800°C requires ~1.19% increase in silica content in 

the Gelest™ samples. 

4.3 Finite Element Analysis 

The tension test was simulated in ANSYS™ Workbench. Since the sample was 

only pulled in tension up to 10% strain, a linear model was used. The material properties 

used for simulation were 1.84 MPa for the young’s modulus and 0.45 for the Poisson’s 

ratio [44, 45]. A zero displacement was placed on the bottom surface and a 6.5 mm 

displacement placed on top of the sample to simulate the 10% strain as shown in Figure 

31 below. 
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Figure 31. Finite Element Analysis at 10% strain showing uniform strain on the gage 

section.   

 

Figure 32. Finite Element Analysis at 10% strain showing uniform stress on the gage 

section. 
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The FEM analysis proves that the strain distribution is only uniform in the gage 

section. To record accurate values for strain, we only need to capture the strain data from 

this section. Since the material being tested is highly flexible, a non-contact method is the 

best option. This analysis also shows that the strain captured by the crosshead is inclusive 

of the strain that is perturbed by the change in geometry. This will lead to erroneous 

calculations of the material properties such as young’s modulus. 

 

Figure 33. Cross-section of Finite Element Analysis at 10%.  

 
Figure 34. Strain as a function of position from cross-section FEA. 
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Figure 35. Stress as a function of position from cross-section FEA. 

 

Figure 34 supports that the PDMS sample in tension experiences negligible shear 

strain while the strain in the y-direction is ~2.28 times the strain in the x-direction 

corresponding to a Poisson ratio of 0.45 which was used in the analysis. Figure 35 shows 

that there is no shear stress and more importantly the only stress in the x-direction is 

found in the non-gage section area. A majority of the stress is taken up by the gage 

section hence the use if the gage section dimensions as inputs when running a tension test 

on the Instron™ machine. 

                                              (15) 

  Equation 15 is from 2D Hook’s law. It is used to explain why the strain in the x-

direction in Figure 34 does not translate to stress in the x-direction in Figure 35. 

Deformation is only in the y-direction, hence the strain and stress values present in both 

graphs in that direction. Strain the the x-direction is due to Poisson’s ratio effects which 
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dictate that the sample will get thinner in the gage section with displacement in the y-

direction. This can be proved using 2D Hooke’s law that can map the strain values along 

the gage section. The presence of stress in the x-direction at the 0mm position and the 

65mm position is because of boundary condition effects. The constrains at the ends 

subjects the material to stresses that can accurately mimic what the grips on the Instron 

machine would have on the sample being tested.  

4.4 Mechanical Characteristic Analysis of PDMS in Tension  

When it comes to strain measurement of hyper-elastic materials, it is essential to 

capture the true displacement. A sample was tested and data from the non-contact 

measurement (video extensimeter) and from cross head were plotted below. 

 
Figure 36. Stress-strain relationship of different strain measurement techniques. 

Figure 36 above shows a clear difference in strain obtained from the crosshead 
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values for the mechanical characteristics of PDMS. In order to correct the crosshead 

strain measurement, we will have to break down the strain contribution from the different 

geometries. Young’s modulus was 2.21MPa from crosshead reading and 2.03MPa from 

video extensometer. The difference comes Figure 37 below gives a breakdown of the 

regions in a tension sample.  

 

Figure 37. Exposed strain regions of PDMS sample. 

The crosshead incorporates strain from region I, II and III while the video 

extensometer only includes strain from region II. We assume that the entire sample 

experiences the same load, the strain measurement in region I and II are identical and that 

the total extension of the sample under tension includes the extension from region I, II 

and III. In order to find the correction factor, we need to calculate the difference in 
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magnitude of the strain experienced by the entire sample (region I,II and III) to the strain 

experienced by the gage section (region II). For this, equation 15 holds true. 

                                                         ∆𝑇= 2∆′ +  ∆′′                                                     (15) 

Where ∆𝑇 is the extension that the entire sample experiences under tension, , ∆′ is 

the extension by region I and , ∆′′ is the extension by region II. At a given  load the entire 

sample experiences a certain displacement ∆𝑇.With the area and lengths of the different 

regions known, solving for ∆′and ∆′′ is possible. The strain for region II was calculated 

by dividing the extension of the region (∆′′) by the length of the region II (33mm).The 

extension (∆′′) was obtained from the video extensiometer reading. This resulting strain 

was compared to the strain given by the crosshead(∆𝑇/65𝑚𝑚) for every loading 

condition from 0-10% strain. The average of the factor( 𝜀′′/𝜀𝑇 ) was found to be 1.198. 

This means that the gage section experiences 20% more strain than what the crosshead 

records. Multiplying the strain from the crosshead with the factor of 1.198 matches the 

strain from the video extensimeter thereby confirming our deduction.  
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Figure 38. Corrected crosshead strain of Sylgard sample cured at 25°C. 

 

Figure 39. Corrected crosshead strain of Sylgard sample cured at 80°C. 

 

Figure 40. Corrected crosshead strain of Sylgard sample cured at 120°C. 
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Figure 41. Corrected crosshead strain of Sylgard sample cured at 150°C. 

 Figure 38 through to Figure 41 show the correction factor aligning the crosshead 

strain of Sylgard™ samples cured at different temperatures perfectly to the video 

extensometer strain plot. This proves that the correction factor is not affected by the cure 

temperature of the samples.  

There is a distinct difference between the two slopes from the DIC and the 

crosshead plots in Figure 42 below. The DIC slope is more accurate because only the 

gage section region is correlated while the crosshead incorporates the strain of the entire 

sample, inclusive of the areas of non-uniform strain. This leads to misrepresentation of a 

basic stress-strain plot which in turn leads to inaccurate values for the young’s modulus. 

DIC techniques gives a modulus of 1.8MPa while the crosshead gives a modulus of 

2.07MPa, 15% more than the latter. This is significant difference to be overlooked when 

it comes to characterizing a material for a specific utility.   
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Figure 42. Comparison of stress-strain relationships between crosshead and DIC 

data. 

 

Figure 43. Strain field of PDMS in tension. 

  Figure 43 illustrates the strain field at different strain levels in the direction of 

displacement. Image (a) shows the region of interest from which 16 subsets were created 
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to correlate the corresponding strain patterns. Image (b) shows the strain field right 

before the tests starts. Image (c) is an expansion of the region of interest in Image (b). 

Image (d) shows the strain field at the middle of the experiment, an average of 15% 

strain. Image (e) is a focus of the strain field in Image (d). In Image (e), the strain values 

are decreasing moving upwards, this is simply because the sample is fixed at the bottom 

and the direction of the pull is upwards. Image (f) was the last image of the experiment 

with an average value of 32%. Image (g) is an expansion of Image (f). The more the 

sunsets, the more accurate the strain values since the correlation is calculated from 

multiple points in the subset.  

 

Figure 44. Slope of strain in x and y direction. 
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Figure 45.  Poisson ratio as a function of strain in the y direction. 

From Figure 44, a linear regression analysis lead to a Poisson ratio of 0.4147, this 

is different from the value of 0.45 that is widely used for Sylgard® 184 in literature and 

FEM Analysis[40]. Figure 45 reveals that the Poisson ratio decreases with increasing 

strain, this means that the sample is stretching in the Y-direction much faster than it is 

contracting in the X-direction. This is supported when it is visible that the gage section is 

undergoing necking, the gage section becomes thinner, during the tension test. This data 

also shows the discrepancy that is involved in modeling a tension test of a hyperplastic 

material such as PDMS with a constant Poisson ratio. 

Theoretically, in a uniaxial test, there is no shear strain since the material is only 

subjected to displacement in one direction. The presence of shear strain proves that either 

the sample was not perfectly aligned with the camera or it was not secured perfectly 

parallel to the Instron machine grips. The shear strain was minimal, 0.5 % shear strain to 
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30% strain in the y-direction. This error is acceptable given that the sample was secured 

manually and the camera was set using a spirit level. 

 

Figure 46. Shear strain as a function of strain in the y direction. 

Local strain patterns were studied half way along the region of interest. Figure 47 

shows the line scan denoted by a black line.  

 

Figure 47. Line scan half-way from top of region of interest (ROI). 
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Figure 48. Strain in y-direction along the horizontal line half-way from top of ROI. 

In Figure 48, line scans of the Sylgard™ tension sample were taken 0.5 from the 

region of interest which is located in the middle part of the gage section where the strain 

pattern is uniform. The x-axis is the length of the ROI and the y-axis is the strain 

corresponding to the different line scans. Each line scan corresponds to one image, a total 

of 10 line scans, 10 images covering strain from 0 – 12.24% in the y-direction. This 

figure shows how uniform the local strain is at the middle of the sample.  



 

55 

 

Figure 49. Strain in x-direction along the horizontal line half-way from top of ROI. 

Similarly, Figure 49 represents line scans of the Sylgard™ tension sample were 

taken 0.5 from the region of interest which is located in the middle part of the gage 

section where the strain pattern is uniform. The line scans show a uniform pattern in 

strain in the x-direction as the sample experienced a global strain from 0-12.24% 

represented by the 10 line scans in the figure.  

This information, made only available through DIC is able to give researchers an 

in depth view of how the local strain compares to the global strain. This can be useful in 

manufacturing PDMS polymers of different geometries for microelectromechanical 

systems because the strain patterns can be analyzed on a local level and leading to the 
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production of optimized geometries with well understood deformation patterns under 

specific loading conditions.  

 

Figure 50. Strain profile for DIC and Crosshead techniques. 

Figure 50 shows a progressing difference in the strain measurements from DIC 

and Instron. The crosshead data from the Instron machine is linear, absent of the non-

linearity associated with hyper-elastic materials. This goes to prove that DIC is more 

accurate in mirroring hyper-elastic materials in tension. 

4.5 Mechanical Characteristic of PDMS in Compression     

The compression test carried out on the 10mm cube PDMS sample was done with 

a strain rate of 20% per minute which translates to 2mm per minute. An image was taken 
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after every 5 seconds. The data was compiled and analyzed in MS Excel and the 

following plots were developed.   

 

Figure 51. Stress-strain relationship between DIC and Crosshead compression test 

data. 

From the compression tests, the modulus from the two plots were obtained from 

the 0-10% strain range. The compressive modulus was 26.7MPa and 25.2MPa for the 

Instron and DIC respectively with a difference of 6%. DIC is taken to be more accurate 

that the Instron reading because DIC only calculates the strain of the region in the middle 

of the sample unperturbed by the boundary between the sample and the machine platen as 

can be seen in Figure 52. 
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Figure 52. Strain field of PDMS in compression  

  Figure 52 illustrates three different strain fields for three different strain levels. 

Image (a) shows the strain field at the very start of the experiment before the test runs. 

The average strain value at this instance is 0%. Image (b) corresponds to an average of 

15% and was taken at the middle of the experiment. Lastly, Image (c) was taken at the 

end of the experiment and it corresponds to an average of 31% strain. The strain values 

are increasing from top to bottom because that is the direction in which force is being 

applied. The progression of the images shows a decrease in height and an increase in 

width as a result of the sample being compressed. 

 The Instron machine takes the strain of the entire sample which includes that 

regions near the platen which experience non-uniform strain. This difference is not as 

significant between 0-10% given that the compressive modulus from both techniques 

only had a difference of 5%, however this difference increases significantly with 

increasing strain as can be inferred in Figure 51. 
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Figure 53. Slope of strain in x and y direction of compression Sylgard sample.  

 

Figure 54. Poisson ratio change as a function of strain in y direction. 

The Poisson ratio of the samples in compression are fairly linear with an average 

of 0.6067. It is important to note that it is higher than the Poisson ratio recorded for the 

tension samples. Figure 54 shows an increasing trend in the Poisson ratio with increasing 

y = 0.6076x - 0.3781 
 

0%

5%

10%

15%

20%

25%

0% 5% 10% 15% 20% 25% 30% 35%

St
ra

in
 x

x 
(%

) 

Strain yy (%) 

Experimental data

Custom fit

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0% 5% 10% 15% 20% 25% 30% 35%

P
o

is
so

n
 R

at
io

 

Strain yy (%) 

Experimental data

Custom fit

y = 0.0019x + 0.5427 



 

60 

strain. This means that the sample was increasing in the transverse direction much faster 

than in the axial direction. We can also conclude that FEM Analysis in tension and 

compression require different Poisson ratios. 

Similarly, to the tension samples, the compression samples experienced an 

unprecedented shear strain. Again, this low level amount of shear strain, 0.7% for 30% 

strain in the transverse direction, can be attributed to the manual setup of the sample onto 

the Instron machine or the slight misalignment of the camera to the sample surface.  

 

 

Figure 55. Shear strain as a function of strain in the y direction. 

Local strain patterns were studied half way along the region of interest. Figure 56 

shows the line scan denoted by a black line.  
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Figure 56. Line scan at half-way from top of region of interest (ROI). 

 
              Figure 57. Strain in y-direction along the horizontal line half-way from top 

of ROI. 

              Figure 57 shows the uniformity in strain in a Sylgard™ compression 

sample. The eight lines correspond to 8 images representing the global strain in the y-

direction from 0-12.59% There is a slight deviation from symmetry as strain increases, 

this is one of the reasons why the modulus of the material is only calculated using the 

strain from 0-10%. 
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Figure 58. Strain in x-direction along the horizontal line half-way from top of ROI. 

The strain pattern depicted in Figure 58 shows the stain in the x-direction. It is 

observed that as the strain increases the line scan takes a curved shape. This means that 

the center of the sample is stretching outward at a higher rate compared to the parts near 

the end of the sample. This is to be expected of rubbery materials as the materials in the 

center has much more room to move compared to the material on the edges.  

4.6 Mechanical Property Characterization of PDMS in Tension  

  This section will discuss mechanical properties of the Sylgard and Gelest 

samples that were tested in tension and compression. The tension samples were 

tested until failure and their strain measured using the video extensimeter. The 

compression samples were also tested up to failure and the strain tracked using the 

crosshead displacement. The failure strains were obtained from this. The modulus 

from all the samples were obtained by calculating the slope of the stress-strain curve 

using the data from DIC from 0% to 20%.  
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Figure 59. Comparison of different strain measurement techniques. 

  Figure 59 illustrates a clear comparison between the three different strain 

techniques that were employed in the calculation of material characteristics and 

properties. Young’s modulus from crosshead reading was 2.21MPa, 2.03MPa from 

video extensometer and 1.89MPa from DIC. Young’s modulus was calculated from 

2% to 20% strain. The strain values from DIC closely matched the ones from the 

video extensometer. While the video extensometer takes readings from two points, 

DIC takes readings from the entire region of interest on the gage section thereby 

tracking multiple points. The DIC data was only recorded up to 30% strain because 

higher strain values are distorted by accumulated error from correlating numerous 

images. 

Figure 60 shows the strain plots for the Sylgard samples while Figure 61 

shows the strain plots for the Gelest tension samples.   
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Figure 60. Stress-strain relationship of Sylgard samples in tension up to failure. 

 

Figure 61. Stress-strain relationship of Gelest samples in tension up to failure 

 The results of tension and compression PDMS samples with various silica content 

and cured at different temperatures are presented in Table 5 and Table 6 below. The 
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crosshead since in compression the video extensometer cannot ‘see’ the marks made on 

the sample as it compressed up to a thickness of one millimeter. 

Table 5: Mechanical properties and characteristics of PDMS in tension. 

Sample Cure 

Temperature 

(°C) 

Silica 

Content 

%  

Failure 

Strain 

(mm/mm) 

Failure 

Strength 

(MPa) 

Modulus 

(MPa)  

Poisson 

Ratio 

Sylgard 25  25 ~40 0.65 2.29 1.868 0.462 

Sylgard 80  80 ~40 0.7 3.2 1.9555 0.468 

Sylgard 100  100 ~40 0.52 1.95 2.3015 0.458 

Sylgard 120  120 ~40 0.55 2.285 2.3545 0.415 

Sylgard 150  150 ~40 0.52 1.91 2.335 0.365 

Gelest 10:1  80 9 1.005 0.47 0.707 0.404 

Gelest 10:2  80 16 1.395 1.065 0.866 0.424 

Gelest 10:3  80 22 1.35 1.165 1.0415 0.441 

Gelest 10:4  80 30 1.525 1.69 1.138 0.421 

 

For the tension samples there was a noticeable difference in the failure strain 

between the Sylgard and Gelest samples. The Sylgard samples showed a decreasing 

failure strain with increasing cure temperature. This indicates that there is a significant 

material change at higher cure temperatures. While the modulus increased, the material 

became stiffer, it also failed earlier. 80°C seems to be the temperature at which the 

Sylgard samples transitioned in mechanical characteristics. Gelest samples in tension had 

a higher failure strain compared to the Sylgard samples. The modulus and failure strength 

was significantly lower compared to the Sylgard cured at the same temperature. 

Decreasing the silica content only improved the flexibility of the material evident by the 

increased failure strain. 
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Figure 62. Typical failure PDMS sample under tension. 

  Figure 62 shows a failed tension sample that was tested using a video 

extensimeter. The sample snapped in the middle proving that the gage section was 

experiencing the most amount of stress and strain. The two dots are the points which 

were being tracked by the video extensometer.  

4.7 Mechanical Property Characterization of PDMS in Compression  

  Figure 63 and Figure 64 below show the compression failure plots for 

Sylgard and Gelest respectively. The tension samples were tested at 10% strain per 

minute, around 6.5mm per minute and the samples were tested until failure.  

 

 

Figure 63. Stress-strain relationship of Sylgard samples in compression up to failure. 
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Figure 64. Stress-strain relationship of Gelest samples in tension up to failure. 

 

 The results from Figure 63 and Figure 64 are documented in Table 6 below. The 

failure strain was higher in the Gelest samples. Since they were more flexible, they failed 

at higher strength values. This is because they contained less silica compared to the 

Sylgard samples. Consequently, their modulus was lower for the same reason. It was 

interesting to note that the failure strength was significantly higher in the Gelest samples. 

The last two samples, Gelest 10:3 and Gelest 10:4 reached the limit of the Instron testing 

machine, 50,000lb. The samples only failed the instant the machine retracted because the 

load cell limit was reached.   

Table 6: Mechanical properties and characterization of PDMS in compression. 

Sample Cure 

Temperature 

(°C) 

Silica 

Content 

% 

Failure 

Strain 

(mm/mm) 

Failure 

Strength 

(MPa) 

Modulus 

(MPa)  

Poisson 

Ratio 

Sylgard 25  25 ~40 0.71 43.62 2.52 0.600 

Sylgard 80  80 ~40 0.83 86 2.25 0.585 

Sylgard 100  100 ~40 0.71 44 2.99 0.570 
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Sylgard 120  120 ~40 0.71 48.63 3.33 0.545 

Sylgard 150  150 ~40 0.73 56.38 3.65 0.700 

Gelest 10:1  80 9 0.72 6.25 1.49 0.405 

Gelest 10:2  80 16 0.90 51 1.62 0.490 

Gelest 10:3  80 22 0.95 310 1.92 0.546 

Gelest 10:4  80 30 0.97 522 2.29 0.602 

 

 

Figure 65. Typical failure PDMS sample under compression. 

  Figure 65 shows a shattered compression sample after the load was released 

instantaneously. The sample exhibited glass like behavior upon failure. The steepness 

of the stress-strain plot at strain values above 0.8 mm/mm support this behavior.  

4.8 Effect of cure temperature on Sylgard® 184 

From Figure 66 the modulus in both the tension and compression samples 

increased with the cure temperature. There is a 25% increase in the young’s modulus of 

the tension sample and a 32% increase in the modulus of the compression sample when 

the cure temperature was changed from 25°C to 150°C.  At higher cure temperatures, 

thermosetting PDMS resin hardens more and achieves a higher modulus.  



 

69 

 

Figure 66. Cure temperature effect on Young’s modulus. 

 

Figure 67. Poisson ratio change with cure temperature. 
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From Figure 67 above the Poisson ratio decreased by 21% from 0.426 for the 

sample cured at 25°C to 0.365 for the sample cured at 150°C in tension. The increase in 

modulus with increased cure temperature made the sample more rigid therefore the 

change in the y-direction is slower for the sample cured at higher temperatures. Similarly, 

in the compression sample, an increase in the modulus at higher temperatures led to 

sample that is more resistant to deformation in the y-direction resulting to an increase in 

the Poisson ratio. 

4.9 Effect of silica content on Gelest 

The modulus of the tension sample increased by 61% with a 21% increase in 

silica, a 3:1 ratio. This proves that the silica in the Gelest™ material is responsible for 

most of the mechanical properties. The modulus in the compression sample increased by 

54% with a 21% increase in silica, a 2.6:1 ratio. The increase is significant to conclude 

that the silica in the compression samples was also responsible for most of the 

mechanical characteristics.  
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Figure 68. Effect of silica on compression modulus of Gelest samples. 

Figure 69 below shows an increase in the Poisson ratio for the compression 

samples from 0.4045 to 0.6016 as the silica content in the sample was increased from 9% 

to 30%. As silica is increased, the material is more resistant to deformation and hence the 

deformation in the y-direction is lower with an increase in silica for the same amount of 

load. Similarly, the increase in silica from 9% to 30% led to an increase in the Poisson 

ratio from 0.407 to 0.421 for the tension samples. This means that the increase in silica 

made the samples more rigid hence relatively resistant to deformation in the y-direction. 

  

 

Figure 69. Effect of silica on Poisson ratio of Gelest samples. 
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CHAPTER 5: SUMMARY AND FUTURE WORK   

The gage section of a PDMS sample cut out according to ASTM D412-C standard 

experiences 20% more strain that the crosshead. A non-contact method is recommended 

for testing strain of hyper-elastic materials since the strain is non-linear after 20%. 

Dynamic Mechanical Analysis reveals that the glass transition temperature is unchanged 

by the temperature at which the sample was cured. Thermogravimetric analysis 

conformed that a 1% increase in residual mass after 800°C requires ~9.32% increase in 

silica content in the Gelest™ samples.   

The Finite Element Analysis proved that the strain in the gage section of a 

dogbone sample is uniform and undisturbed. This highlights the importance of measuring 

strain from the gage section as opposed to taking it from the crosshead. The digital image 

correlation from the Matlab code proved that the Poisson ratio for PDMS in tension is 

0.4147 and 0.6076 in compression. This mean that in tension the sample is extending in 

the y-direction at a higher rate than in the x-direction relatively compared to the sample 

in compression which stretches at a higher rate in the x-direction than in the y-direction.   

DIC is a better method for tension and compression testing of hyper-elastic 

materials. In addition to accurate stress-strain plots, we can also calculate the Poisson 

ratio of materials at different strains. Researchers should utilize this technique in the 

development of polymers in order to accurately characterize the mechanical properties. 

Accurate stress-strain plots and the Poisson can be used in finite element analysis to 

predict material behavior under different conditions.  

Equipment setup is critical in achieving accurate results from the DIC, the 

calculations assume that the sample is planar, parallel to and at a constant distance from 

the visual sensor during the entire experiment. Failure to ensure this will lead to 
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significant shear strain which alter the accuracy of the test. Also, sufficient illumination 

is a critical factor for obtaining high quality images, the analysis will benefit from the 

light to a large extent, and the light direction should also be vertical to the sample 

surface, otherwise shades result from irregularity of the surface will change and therefore 

affect the correctness of analysis. 
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APPENDIX  

Correlation algorithm : cporr_mod.m 

function [xyinput,corr_coeff] = cpcorr_mod(varargin) 
%CPCORR Tune control point locations using cross-correlation.  
%   INPUT_POINTS = CPCORR(INPUT_POINTS_IN,BASE_POINTS_IN,INPUT,BASE) 

uses 
%   normalized cross-correlation to adjust each pair of control points 
%   specified in INPUT_POINTS_IN and BASE_POINTS_IN. 
% 
%   INPUT_POINTS_IN must be an M-by-2 double matrix containing the 
%   coordinates of control points in the input image.  BASE_POINTS_IN 

is 
%   an M-by-2 double matrix containing the coordinates of control 

points 
%   in the base image. 
% 
%   CPCORR returns the adjusted control points in INPUT_POINTS, a 

double 
%   matrix the same size as INPUT_POINTS_IN.  If CPCORR cannot 

correlate a 
%   pairs of control points, INPUT_POINTS will contain the same 

coordinates 
%   as INPUT_POINTS_IN for that pair. 
% 
%   CPCORR will only move the position of a control point by up to 4 
%   pixels.  Adjusted coordinates are accurate up to one tenth of a 
%   pixel.  CPCORR is designed to get subpixel accuracy from the image 
%   content and coarse control point selection. 
%   NOTE:  EJ modification:  CPCORR_MOD will adjust the control point 

by 
%   more than 4 pixels, depending on the subset size!! 
% 
%   Note that the INPUT and BASE images must have the same scale for 
%   CPCORR to be effective. 
% 
%   CPCORR cannot adjust a point if any of the following occur: 
%     - points are too near the edge of either image 
%     - regions of images around points contain Inf or NaN 
%     - region around a point in input image has zero standard 

deviation 
%     - regions of images around points are poorly correlated 
% 
%   Class Support 
%   ------------- 
%   The images can be numeric and must contain finite values. The input 
%   control point pairs are double. 
% 
%   Example 
%   -------- 
%   This example uses CPCORR to fine-tune control points selected in an 
%   image.  Note the difference in the values of the INPUT_POINTS 

matrix 
%   and the INPUT_POINTS_ADJ matrix. 
% 
%       input = imread('onion.png'); 
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%       base = imread('peppers.png'); 
%       input_points = [127 93; 74 59]; 
%       base_points = [323 195; 269 161]; 
%       input_points_adj = cpcorr(input_points,base_points,... 
%                                 input(:,:,1),base(:,:,1)) 
% 
%   See also CP2TFORM, CPSELECT, NORMXCORR2, IMTRANSFORM. 

  
%   Copyright 1993-2011 The MathWorks, Inc. 
%   $Revision: 1.16.4.10 $  $Date: 2011/08/09 17:49:27 $ 

  

%   Input-output specs 
%   ------------------ 
%   INPUT_POINTS_IN: M-by-2 double matrix  
%              INPUT_POINTS_IN(:)>=0.5 
%              INPUT_POINTS_IN(:,1)<=size(INPUT,2)+0.5 
%              INPUT_POINTS_IN(:,2)<=size(INPUT,1)+0.5 
% 
%   BASE_POINTS_IN: M-by-2 double matrix  
%              BASE_POINTS_IN(:)>=0.5 
%              BASE_POINTS_IN(:,1)<=size(BASE,2)+0.5 
%              BASE_POINTS_IN(:,2)<=size(BASE,1)+0.5 
% 
%   INPUT:   2-D, real, full matrix 
%            logical, uint8, uint16, or double 
%            must be finite (no NaNs, no Infs inside regions being 

correlated) 
% 
%   BASE:    2-D, real, full matrix 
%            logical, uint8, uint16, or double 
%            must be finite (no NaNs, no Infs inside regions being 

correlated) 

  

  
[xyinput_in,xybase_in,input,base,subset,search_zone,thresh] = 

ParseInputs(varargin{:}); 

  
CORRSIZE = subset/2; 
ncp = size(xyinput_in,1); 

  

% get all rectangle coordinates 
rects_input = calc_rects(xyinput_in,ones(ncp,1)*CORRSIZE,input); 
rects_base = calc_rects(xybase_in,search_zone*CORRSIZE,base); 

  
xyinput = xyinput_in; % initialize adjusted control points matrix 
corr_coeff = zeros(size(xyinput,1),1); 

  

for icp = 1:ncp 

     
    %Check to see if the current point is a NaN pt 
    if isnan(xybase_in(icp,1)) || isnan(xyinput_in(icp,1)) 
        xyinput(icp,:) = NaN; 
        continue 
    end 
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    if isequal(rects_input(icp,3:4),[0 0]) || ... 
       isequal(rects_base(icp,3:4),[0 0])  
        % near edge, unable to adjust 
        xyinput(icp,:) = NaN; 
        continue 
    end 

     
    %EJ:  New check:  Moved this check from the ParseInputs function 
    if xyinput_in(icp,1)<0.5 || xyinput_in(icp,2)<0.5 || ... 
       xyinput_in(icp,1)>size(input,2)+0.5 || 

xyinput_in(icp,2)>size(input,1)+0.5 
        %Control point is outside of the image 
        xyinput(icp,:) = NaN; 
        continue     
    end 

     
    if xybase_in(icp,1)<0.5 || xybase_in(icp,2)<0.5 || ... 
       xybase_in(icp,1)>size(input,2)+0.5 || 

xybase_in(icp,2)>size(input,1)+0.5 
        %Control point is outside of the image 
        xyinput(icp,:) = NaN; 
        continue     
    end 

  
    sub_input = imcrop(input,rects_input(icp,:)); 
    sub_base = imcrop(base,rects_base(icp,:));     

  
    inputsize = size(sub_input); 

  
    % make sure finite 
    if any(~isfinite(sub_input(:))) || any(~isfinite(sub_base(:))) 
        % NaN or Inf, unable to adjust 
        xyinput(icp,:) = NaN; 
        continue 
    end 

  
    % check that template rectangle sub_input has nonzero std 
    if std(sub_input(:))==0 
        % zero standard deviation of template image, unable to adjust 
        xyinput(icp,:) = NaN; 
        continue 
    end 

  
    norm_cross_corr = normxcorr2(sub_input,sub_base);     

  
    % get subpixel resolution from cross correlation 
    subpixel = true; 
    [xpeak, ypeak, amplitude] = findpeak(norm_cross_corr,subpixel); 

  
    %save the correlation coefficient: 
    corr_coeff(icp) = amplitude; %EJ modification 140610 

     
    % eliminate any poor correlations 
%     THRESHOLD = 0.5; %original 
    THRESHOLD = thresh; %EJ modification 140610 
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    if (amplitude < THRESHOLD)  
        % low correlation, unable to adjust 
        xyinput(icp,:) = NaN; 
        continue 
    end 

     
    % offset found by cross correlation 
%     corr_offset = [ (xpeak-inputsize(2)-CORRSIZE) 
%     (ypeak-inputsize(1)-CORRSIZE) ]; %Original code 
    zero_disp = ceil(size(norm_cross_corr)/2); %location in the 

normcrosscorr that corresponds to zero displacement 
    corr_offset = [xpeak,ypeak] - zero_disp; 

     

  
    % eliminate any big changes in control points 
%     ind = find(abs(corr_offset) > (CORRSIZE-1), 1); %Original code 
    max_disp = search_zone(icp)*CORRSIZE - CORRSIZE - 1; %EJ: use when 

undeformed subset size is different from 2X deformed subset size 
    ind = find(abs(corr_offset) > max_disp, 1); 
    if ~isempty(ind) 
        % peak of norxcorr2 not well constrained, unable to adjust 
        xyinput(icp,:) = NaN; 
        corr_coeff(icp) = -1; 
        continue 
    end 

  
    input_fractional_offset = xyinput(icp,:) - 

round(xyinput(icp,:)*1000)/1000; 
    base_fractional_offset = xybase_in(icp,:) - 

round(xybase_in(icp,:)*1000)/1000;     

     

    % adjust control point 
    xyinput(icp,:) = xyinput(icp,:) - input_fractional_offset - 

corr_offset + base_fractional_offset; 

  

  
end 

  

  
%------------------------------- 
% 
function rect = calc_rects(xy,halfwidth,img) 

  
% Calculate rectangles so imcrop will return image with xy coordinate 

inside center pixel 

  
default_width = 2*halfwidth; 
default_height = default_width; 

  
% xy specifies center of rectangle, need upper left 
% upperleft = round(xy) - halfwidth; %Original line of code 
upperleft = round(xy) - [halfwidth,halfwidth]; %EJ modification 
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% need to modify for pixels near edge of images 
upper = upperleft(:,2); 
left = upperleft(:,1); 
lower = upper + default_height; 
right = left + default_width; 
% width = default_width * ones(size(upper)); %Original line of code 
% height = default_height * ones(size(upper)); %Original line of code 
width = default_width; %EJ modification 
height = default_height; %EJ modification 

  
% check edges for coordinates outside image 
[upper,height] = adjust_lo_edge(upper,1,height); 
[~,height] = adjust_hi_edge(lower,size(img,1),height); 
[left,width] = adjust_lo_edge(left,1,width); 
[~,width] = adjust_hi_edge(right,size(img,2),width); 

  
% set width and height to zero when less than default size 
iw = find(width<default_width); 
ih = find(height<default_height); 
idx = unique([iw; ih]); 
width(idx) = 0; 
height(idx) = 0; 

  
rect = [left upper width height]; 

  

%------------------------------- 
% 
function [coordinates, breadth] = 

adjust_lo_edge(coordinates,edge,breadth) 

  
indx = find( coordinates<edge ); 
if ~isempty(indx) 
    breadth(indx) = breadth(indx) - abs(coordinates(indx)-edge); 
    coordinates(indx) = edge; 
end 

  
%------------------------------- 
% 
function [coordinates, breadth] = 

adjust_hi_edge(coordinates,edge,breadth) 

  
indx = find( coordinates>edge ); 
if ~isempty(indx) 
    breadth(indx) = breadth(indx) - abs(coordinates(indx)-edge); 
    coordinates(indx) = edge; 
end 

  

%------------------------------- 
% 
function [xyinput_in,xybase_in,input,base,subset,search_zone,thresh] = 

ParseInputs(varargin) 

  
% narginchk(4,5); 

  
xyinput_in = varargin{1}; 
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xybase_in = varargin{2}; 
if size(xyinput_in,2) ~= 2 || size(xybase_in,2) ~= 2 
    error(message('images:cpcorr:cpMatrixMustBeMby2')) 
end 

  
if size(xyinput_in,1) ~= size(xybase_in,1) 
    error(message('images:cpcorr:needSameNumOfControlPoints')) 
end 

  
input = varargin{3}; 
base = varargin{4}; 
if ndims(input) ~= 2 || ndims(base) ~= 2 
    error(message('images:cpcorr:intensityImagesReq')) 
end 

  
input = double(input); 
base = double(base); 

  
%Original Check: 
% if any(xyinput_in(:)<0.5) || any(xyinput_in(:,1)>size(input,2)+0.5) 

|| ... 
%    any(xyinput_in(:,2)>size(input,1)+0.5) || ... 
%    any(xybase_in(:)<0.5) || any(xybase_in(:,1)>size(base,2)+0.5) || 

... 
%    any(xybase_in(:,2)>size(base,1)+0.5) 
%     error(message('images:cpcorr:cpPointsMustBeInPixCoord')) 
% end 

  
%EJ New Check: 
%Eliminate the check on the base and input points; instead, move this 

check to 
%within the loop over the control points.  If a base or input point is 

out of the 
%image, make that point not correlate.  (Note that originally, I only 

moved 
%the check on the input points into the loop; this works if you are 

using 
%image 1 as the reference image, and so the xybase_in are the grid 

points. 
%But if you use the preceding image as the reference image, then the 
%xybase_in points are the valid_points from the previous correlation, 

and 
%so they have the possibility to be out of the image 

  

  
subset = varargin{5}; 
search_zone = varargin{6}; 
thresh = varargin{7}; 

 

 


