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Abstract

Optimal control theory focuses on finding the inputs that optimize the performance
measure of a system subject to differential constraints. Differential game theory
focuses on problems involving two separate parties, one of which tries to find the
inputs to minimize a performance measure, while the other party tries to find the
inputs which maximize the same performance measure. Both parties involved are
subject to differential constraints. Both optimal control and differential game prob-
lems have a high degree of complexity except for the simplest of problems. This
leads to the need for numerical methods to find the solutions to optimal control and
differential game problems. In this thesis, we present our original numerical toolbox
capable of finding feedback control policies, which solve optimal control and differ-
ential game problems by computing the solutions to the Hamilton-Jacobi-Bellman
and Hamilton-Jacobi-Isaacs equations.
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Chapter 1. Introduction

1.1 Motivation and Goals

Optimal control theory is a field that deals with finding the inputs that minimize

or maximize a performance measure subject to differential constraints. Differential

game theory is a field similar to optimal control theory, wherein two competing par-

ties are involved. Specifically, one party tries to minimize some performance mea-

sure, while the other party tries to maximize the same performance measure. Ana-

lytical solutions to optimal control and differential game problems cannot be found

in numerous problems of practical interest and therefore, numerical approaches must

be pursued.

Existing numerical methods to numerically solve optimal control and differential

game problems were presented in [1] and [2] and the majority of existing meth-

ods fall into three categories, namely direct methods, indirect methods, and hybrid

methods. Direct methods solve optimal control problems by using optimization

methods such as gradient descent method to directly compute the input that mini-

mizes or maximizes the performance measure, and solve differential game problems

by finding the inputs which satisfy the saddle point condition. Indirect methods

solve optimal control and differential game problems by solving the underlying two

point boundary problem given by the theory of calculus of variations approach. Hy-

brid methods combine both direct methods and indirect methods to solve optimal

control and differential game problems. A major drawback of these methods is that

the control inputs are parameterized as functions of time. However, it would be

ideal to create numerical methods that produce control policies that solve optimal

control and differential game problems as functions of the system’s state.

In this thesis, we present our original numerical toolbox that solves optimal
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control and differential game by providing state-feedback control laws in the form

of lookup tables. This original toolbox aims to use level set methods to calculate

control inputs by solving the Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Isaacs

equations. To our best knowledge, this approach is unprecedented.

This thesis is structured as follows. In Chapter 2, we will discuss both necessary

and sufficient conditions to solve optimal control problems, and we will present op-

timal control problems of practical interest and their solutions. In Chapter 3, we

will discuss both necessary and sufficient conditions to solve differential game prob-

lems, and we will present differential game problems of practical interest and their

solutions. In Chapter 4, we will discuss level set methods which have been applied

in our toolbox to solve optimal control and differential game problems, and we will

apply our toolbox to solve the problems presented in Chapters 2 and 3. Finally, in

Chapter 5, we will draw conclusions and outline future research directions.
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Chapter 2. Optimal Control

2.1 Introduction

In this chapter, we discuss necessary and sufficient conditions to solve optimal

control problems, and present the solutions to notable problems. The same problems

will later be solved in Chapter 4 using our original numerical toolbox.

2.2 Necessary and Sufficient Conditions for Optimality

2.2.1 Problem Statement

First, we must define the set of admissible controls. Given u : [t0, tf ]→ U ⊆ Rn

the set of admissible control inputs is defined as

U , {u(·) : u(·) is PWC[t0, tf ], u(t) ∈ U, t ∈ [t0, tf ]}; (2.1)

where PWC[t0, tf ] denotes the set of piecewise continuous functions on [t0, tf ] ⊆ R.

Our goal is to find u(·) ∈ U that minimizes the performance measure.

J [x0, u(·)] = ψ(tf , x(tf )) +

∫ tf

t0

L(t, x(t), u(t)) dt, (2.2)

where L : [t0, tf ] × Rn × Rm → R is continuously differentiable and denotes the

Lagrangian function, ψ : [t0, tf ]×Rn → R denotes the cost at time tf and endpoint

x(tf ), and the state vector x : [t0, tf ]→ Rn verifies the differential constraints

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0, x(tf ) = xf , t ∈ [t0, tf ]. (2.3)

2.2.2 Calculus of Variations Approach
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In this section, we provide necessary conditions to solve the optimal control prob-

lem outlined in Section 2.2.1. To this goal, firstly we include the constraints (2.3)

in the performance measure (2.2) by means of Lagrange multipliers. Successively,

we solve the corresponding unconstrained optimal control problem.

It follows from (2.2) and (2.3) that the optimal control problem in Section 2.2.1

is equivalent to finding u∗(·) ∈ U so that the performance measure

Ĵ [x0, u(·)] = ψ(tf , x(tf )) +

∫ tf

t0

[
L(t, x(t), u(t))

+ λT(t)
[
f(t, x(t), u(t))− ẋ(t)

]]
dt, (2.4)

verifies the optimality condition

Ĵ [x0, u
∗(·)] = min

u(·)∈U
Ĵ [x0, u(·)], (2.5)

where λ : [t0, tf ] → Rn denote the Lagrange multipliers. In the following, we will

further characterize the costate vector λ(·). Let us define the Hamiltonian function

H(t, x, u, λ) , L(t, x, u) + λTf(t, x, u),

(t, x, u, λ) ∈ [t0, tf ]× Rn × U× Rn. (2.6)

Then, integrating equation (2.4) by parts yields

Ĵ [x0, u(·)] = ψ(tf , x(tf ))− λT(tf )x(tf ) + λT(t0)x(t0)

+

∫ tf

t0

[
H(t, x(t), u(t), λ(t)) + λ̇T(t)x(t)

]
dt. (2.7)

In order to find u∗(·) ∈ U that verifies (2.5), we consider first-order variations of the

control input and assume that x0, t0, tf are given. Specifically, given v(·) ∈ Rm
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such that u(·) + αv(·) ∈ U , α ∈ [0, α0), the variation in the state is given by

ẋ(t, α) = f(t, x(t, α), u(t) + αv(t))

x(t0, α) = x0, x(tf , α) = x(tf , 0) + α
∂x(tf , α)

∂α

∣∣∣∣
α=0

, t ∈ [t0, tf ], (2.8)

and it follows from Taylor’s theorem that

x(t, α) = x(t, 0) + α
∂x(t, α)

∂α

∣∣∣∣
α=0

+O(α). (2.9)

Next, we define

δx(t) ,
∂x(t, α)

∂α

∣∣∣∣
α=0

, t ∈ [t0, tf ], (2.10)

and note that it follows from (2.3) that

δẋ(t) = A(t)δx(t) +B(t)v(t), δx(t0) = 0, t ∈ [t0, tf ] (2.11)

where

A(t) ,
∂f(t, x(t), u(t))

∂x
, (2.12)

B(t) ,
∂f(t, x(t), u(t))

∂u
, (2.13)

and δx(tf ) will be defined shortly. In this case, it follows from (2.7) that

δĴ [x0, u(·), v(·)] =
∂ψ(tf , x(tf ))

∂x
δx(tf )− λT(tf )δx(tf ) + λT(t0)δx(t0)

+

∫ tf

t0

[(∂H(t, x(t), u(t), λ(t))

∂x
+ λ̇T(t)

)
δx(t)

+
∂H(t, x(t), u(t), λ(t))

∂u
v(t)

]
dt (2.14)
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Since x(t0) is given, δx(t0) = 0 and hence λ(t) can be chosen such that

λ̇T(t) = −∂H(t, x(t), u(t), λ(t))

∂x
, t ∈ [t0, tf ]. (2.15)

The boundary conditions for (2.15) can be found by setting

(
∂ψ(tf , x(tf ))

∂x
− λT(tf )

)
δx(tf ) = 0. (2.16)

Since δx(tf ) is free, one can choose

λT(tf ) =
∂ψ(tf , x(tf ))

∂x
. (2.17)

Therefore, it follows from (2.14) that

δĴ [x0, u(·), v(·)] =

∫ tf

t0

∂H(t, x(t), u(t), λ(t))

∂u
v(t) dt. (2.18)

By the first-order necessary condition for optimality, if δĴ(t, x(t), u(t)) ≥ 0, then

u(·) is a local minimizer [7]. Assuming that u(·) ∈ Ů , that is that u(·) is in the

interior of the admissible set, it must hold that δĴ [x0, u(·), v(·)] = 0. This leads to

the optimality condition

∂H(t, x, u, λ)

∂u
= 0, (t, x, u, λ) ∈ [t0, tf ]× Rn × U× Rn. (2.19)

In calculus of variations, the set of equations (2.15) and (2.19) is known as the

Euler-Lagrange equations.

In the following, we present optimality conditions for alternative sets of boundary

conditions. Specifically, if tf is free and x(tf ) is given, then

λ̇T(t) = −∂H(t, x(t), u(t), λ(t))

∂x
,
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H(tf , x(tf ), u(tf ), λ(tf )) = 0, t ∈ [t0, tf ], (2.20)

with optimality condition

∂H(t, x, u, λ)

∂u
≥ 0, (t, x, u, λ) ∈ [t0, tf ]× Rn × U× Rn. (2.21)

In case both tf and x(tf ) are given, then

λ̇T(t) = −∂H(t, x(t), u(t), λ(t))

∂x
, λT(tf ) = 0, t ∈ [t0, tf ], (2.22)

with optimality condition

∂H(t, x, u, λ)

∂u
= 0, (t, x, u, λ) ∈ [t0, tf ]× Rn × U× Rn. (2.23)

In case both time tf and x(tf ) are free, then the costate dynamics are

λ̇T(t) = −∂H(t, x(t), u(t), λ(t))

∂x
, λT(tf ) = 0, t ∈ [t0, tf ], (2.24)

with optimality condition

∂H(t, x, u, λ)

∂u
= 0, (t, x, u, λ) ∈ [t0, tf ]× Rn × U× Rn. (2.25)

2.2.3 Hamiltonian Approach

In this section, a different approach to solve the optimal control problem is

presented. Let us consider the system with differential constraint

ẋ(t) = f(t, x(t), u(t)), t ∈ [t0, tf ], x(t0) = x0, (2.26)
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where x(tf ) is free. Let us then define the optimal cost-to-go function as

V (t, x0) , min
u(·)∈U

[
ψ(tf , x(tf )) +

∫ tf

t

L(τ, x(τ), u(τ))dτ

]
. (2.27)

The total derivative of V (t, x(t)) is defined as

dV (t, x(t))

dt

∣∣∣∣
u(·)

= lim
s→t

V (s, x(s))− V (t, x(t))

s− t
, (2.28)

along the trajectory of

ẋ(s) = f(s, x(s), u(s)), x(t) = x, x(tf ) = xf , s ∈ [t, tf ]. (2.29)

Applying the principle of optimality, which is proven in Theorem 11.2 of [9],

to (2.27) yields

V (t, x0) = min
u(·)∈U

[ ∫ tf

t

L(τ, x(τ), u(τ))dτ

]
= min

u(·)∈U

[ ∫ t1

t

L(τ, x(τ), u(τ))dτ

+

∫ tf

t1

L(τ, x(τ), u(τ))dτ

]
= min

u(·)∈U

[ ∫ t1

t

L(τ, x(τ), u(τ))dτ

]
+ V (t1, x(t1)). (2.30)

Now, suppose that u∗(·) ∈ U minimizes J(t, x(·), u(·)) and let x∗(·) be the corre-

sponding trajectory, then it follows from (2.30) that

V (t, x0) =

∫ t1

t

L(τ, x∗(τ), u∗(τ))dτ + V (t1, x(t1)). (2.31)

Therefore, it follows that

V (t1, x(t1))− V (t, x0)

t1 − t
+

1

t1 − t

∫ t1

t

L(τ, x∗(τ), u∗(τ))dτ = 0 (2.32)
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and, letting t1 → t yields

dV (t, x(t))

dt

∣∣∣∣
u(·)=u∗(·)

+ L(t, x(t), u∗(t)) = 0. (2.33)

However, for arbitrary u(·) ∈ U , it holds that

V (t, x0) ≤
∫ t1

t

L(τ, x(τ), u(τ))dτ + V (t1, x(t1)), (2.34)

and it follows from (2.33) that

−∂V (t, x(t))

∂t
= min

u∈U

[
L(t, x(t), u(t)) +

∂V (t, x(t))

∂x
f(t, x(t), u(t))

]
V (tf , x(tf )) = ψ(tf , x(tf )). (2.35)

Equation (2.35) is known as the Hamilton-Jacobi-Bellman (HJB) equation and is a

necessary condition for optimality. It can be proven that solving

−∂V (t, x)

∂t
= min

u∈U

[
L(t, x, u) +

∂V (t, x)

∂x
f(t, x, u)

]
V (tf , x(tf )) = ψ(tf , x(tf )). (2.36)

is also a sufficient condition for optimality [9].

2.3 Minimum Time to Reach Problems

A common problem of interest in the field of optimal control is the minimum

time to reach problem. This problem is useful to create trajectories to reach some

endpoint as quickly as possible. In this problem, (2.2) specializes to

J [x0, u(·)] =

∫ tf

t0

1 dt, (2.37)
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subject to

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0, x(tf ) = xf , t ∈ [t0, tf ]. (2.38)

Solving this problem using the calculus of variations approach, it follows from (2.6)

that

H(t, x(t), u(t), λ(t)) = 1 + λT(t)f(t, x(t), u(t)). (2.39)

In this case, it follows from (2.15) that

λ̇(t) = −
[
∂f(t, x(t), u(t))

∂x

]T
λ(t),

H(tf , x(tf ), u(tf ), λ(tf )) = 0, t ∈ [t0, tf ] (2.40)

and it follows from (2.19) that

λT (t)
∂f(t, x(t), u(t))

∂u
= 0. (2.41)

2.3.1 Brachistochrone Problem

A common example of the minimum time problem is known as the brachis-

tochrone problem. Specifically, we are to find u(·) ∈ U such that (2.37) is minimized

and (2.38) specializes to

ẋ1(t) =
√

2gx2(t) cosu(t), x1(t0) = 0, x1(tf ) = l, t ∈ [t0, tf ], (2.42)

ẋ2(t) =
√

2gx2(t) sinu(t) x2(t0) = 0, x2(tf ) = x2f , t ∈ [t0, tf ], (2.43)

where g > 0, l > 0, and x2f is free. An interpretation of the problem is the

following: find the control such that a point of mass m > 0 starting at x(t0) = 0

reaches s(tf ) = [l x2f ]
T in minimum time under the effect of the force of gravity.
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The control input u(·) denotes the angle between the velocity vector of the position

and the axis x1(·). The Hamiltonian function for the brachistochrone problem is

given by

H(t, x, u, λ) = 1 + λT

√2gx2 cosu

√
2gx2 sinu

 ,
(t, x, u, λ) ∈ [t0, tf ]× R2 × [0, 2π)× R2 (2.44)

In this case, it follows from (2.15) and (2.19) the optimality conditions are given by

λ̇1(t)
λ̇2(t)

 =

 0

− [λ1(t) cosu(t) + λ2(t) sinu(t)]√
2gx2(t)

 , t ∈ [t0, tf ]

λ2(t) cosu(t) = λ1(t) sinu(t), (2.45)

subject to

1 + λ1(tf )
√

2gx2(tf ) cosu(tf ) + λ2(tf )
√

2gx2(tf ) sinu(tf ) = 0. (2.46)

The solution to (2.45) is

λ1(t) = −ω
g
, t ∈ [t0, tf ], (2.47)

λ2(t) = −ω
g

cot(ωt), (2.48)

where

ω ,
(π

4

g

l

)1/2
. (2.49)
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Moreover, the optimal control law is given by

u(t) =
π

2
− ωt, t ∈ [t0, tf ], (2.50)

and the corresponding optimal trajectory is given by

x1(t) =
2l

π

(
ωt− sin(2ωt)

2

)
, (2.51)

x2(t) =
2l

π
sin2(ωt). (2.52)

2.4 H∞ Optimal Control

Consider the linear, time invariant dynamical system

ẋ(t) = Ax(t) +Bu(t) + Ew(t), x(0) = x0, t ∈ [t0, tf ], (2.53)

z(t) = Cx(t) +D1u(t) +D2w(t), (2.54)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, E ∈ Rn×p, D1 ∈ Rl×m, D2 ∈ Rl×p, and w(·)

denotes an external disturbance, and consider the performance measure

J [x0, u(·), w(·)] =
1

2

∫ tf

t0

(
zT(τ)z(τ)− γ2wT(τ)w(τ)

)
dτ, (2.55)

where γ > 0, x(t0) and t0 are given, and x(tf ) and tf are free. The goal is to find a

control u∗(·) and a disturbance w∗(·) such that

J [u∗(t), w(t)] ≤ J [u∗(t), w∗(t)] ≤ J [u(t), w∗(t)], t ∈ [t0, tf ]. (2.56)

It follows from (2.54) and (2.55) that

J [x0, u(·), w(·)] =
1

2

∫ tf

t0

[
[Cx(τ) +D1u(τ) +D2w(τ)]T[Cx(τ) +D1u(τ) +D2w(τ)]

12



− γ2wT(τ)w(τ)

]
dτ, (2.57)

which is equivalent to

J [u(·), w(·)] =
1

2

∫ T

t0

(
xT(τ)CTCx(τ)− 2xT(τ)[CTD1 C

TD2]

u(τ)

w(τ)


+

u(τ)

w(τ)


T DT

1D1 DT
1D2

DT
2D1 DT

2D2 − γ2I


u(τ)

w(τ)

) dτ. (2.58)

In order to recast this problem in the same formulation as Section 2.2,

S ,

[
CTD1 CTD2

]
,

R ,

DT
1D1 DT

1D2

DT
2D1 DT

2D2 − γ2I

 ,
B̃ ,

[
B E

]
,

ũ(t) ,

u(t)

w(t)

 , t ∈ [t0, tf ] (2.59)

Then, (2.53) is equivalent to

ẋ(t) = Ax(t) + B̃ũ(t), x(t0) = x0, t ∈ [t0, tf ], (2.60)

and (2.55) is equivalent to

J [x0, u(·), w(·)] =
1

2

∫ tf

t0

[
(xT(τ)CTCx(τ)− 2xT(τ)Sũ(τ) + ũ(τ)Rũ(τ)

]
dτ. (2.61)
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It follows from (2.6) that the Hamiltonian function is given by

H(t, x, ũ, λ) =
1

2
(xTCTCx− 2xTSũ+ ũRũ) + λT(Ax+ B̃ũ),

(t, x, u, λ) ∈ [t0, tf ]× Rn × U× Rn, (2.62)

and it follows from (2.19) that the necessary condition for the optimal control is

given by

∂H(t, x, ũ, λ)

∂ũ
= Rũ+ STx+ B̃Tλ = 0, (2.63)

which implies that

ũ∗(t) = −R−1[STx(t) + B̃λ(t)], t ∈ [t0, tf ]. (2.64)

Moreover, it follows from (2.15) that

λ̇(t) = −∂H(t, x(t), ũ(t), λ(t))

∂x
= −CTCx(t)− ATλ(t)− Sũ(t),

λ(tf ) = 0, t ∈ [t0, tf ], (2.65)

and the solution to (2.65) is given by

λ(t) = P (t)x(t), t ∈ [t0, tf ], (2.66)

where P : [t0, tf ]→ Rn×n is such that

Ṗ (t)x(t) + P (t)
[
Ax(t) + B̃ũ(t)

]
= −CTCx(t)− ATP (t)x(t)− Sũ(t),

P (tf ) = 0, t ∈ [t0, tf ]. (2.67)
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Hence, it follows from (2.64) that

−Ṗ (t) = P (t)A+ ATP (t) + CTC − [P (t)B̃ + S]R−1[B̃TP (t) + ST],

P (tf ) = 0, t ∈ [t0, tf ], (2.68)

which implies that

u∗(t)
w∗(t)

 =

DT
1D1 DT

1D2

DT
2D1 DT

2D2 − γ2I


−1 

DT
1 C

DT
2 C

+

BT

ET

P (t)

x(t) (2.69)

2.5 Linear-Quadratic Regulator Problem

Another relevant optimal control problem is the linear-quadratic regualator prob-

lem. Consider the linear, time invariant dynamical system

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0, x(tf ) = xf , t ∈ [t0, tf ], (2.70)

where A ∈ Rn×n and B ∈ Rn×m. Our goal is to minimize the performance measure

J [x0, u(·)] =
1

2
xT(tf )Q(tf )x(tf ) +

1

2

∫ tf

t0

xT(t)Q(t)x(t) + uT(t)R(t)u(t) dt, (2.71)

where Q(t) = QT(t) > I and R(t) = RT(t) > I. It follows from (2.36) that

−∂V (t, x)

∂t
= min

u(·)∈U

[
1

2

[
xTQ(t)x+ uTR(t)u

]
+
∂V (t, x)

∂x
(Ax+Bu)

]
,

V (tf , x(tf )) =
1

2
xT(tf )Q(tf )x(tf ), (2.72)

which implies that

u∗(t) = −R−1(t)BT∂V (t, x)

∂x
, t ∈ [t0, tf ] (2.73)
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Hence, it follows from (2.72) that

−∂V (t, x)

∂t
=
∂V (t, x)

∂x
Ax+

1

2
xTQ(t)x

− 1

2

∂V (t, x)

∂x
BR−1(t)BT∂V (t, x)

∂x
, (2.74)

which is verified by

V (t, x(t)) =
1

2
xTP (t)x, P (tf ) = Q(tf ), t ∈ [t0, tf ]. (2.75)

Therefore, it follows from (2.74), that

1

2
xT[Ṗ (t) + P (t)A+ ATP (t)− P (t)BR−1(t)BP (t) +Q(t)]x = 0,

(t, x) ∈ [t0, tf ]× Rn, (2.76)

which implies that

u∗(t) = −R−1(t)BTP (t)x(t) (2.77)

and

−Ṗ (t) = P (t)A+ ATP (t)− P (t)BR−1(t)BTP (t) +Q(t)

P (tf ) = Q(tf ), t ∈ [t0, tf ], (2.78)

which is known as the matrix Riccati equation. If tf →∞ and

J [x0, u(·)] =
1

2

∫ ∞
t0

xT(t)Qx(t) + uT(t)Ru(t)dt, (2.79)
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then the optimal feedback control policy is given by

u∗(t) = −R−1BTPx(t), (2.80)

where P denotes the solution to the algebraic Riccati equation

0 = PA+ ATP − PBR−1BTP +Q. (2.81)
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Chapter 3. Differential Games

3.1 Introduction

In this chapter, we discuss necessary and sufficient conditions to solve differential

game problems, and present the solutions to notable problems. The same problems

will later be solved in Chapter 4 using our original numerical methods. Differential

games are useful to model situations in which there are opponents that aim to

achieve opposite goals.

3.2 Problem Statement

First, we must define the sets of admissible controls. Given u : [t0, tf ]→ U ⊆ Rm1

and v : [t0, tf ]→ V ⊆ Rm2 , the sets of admissible control inputs are defined as

U , {u(·) : u(·) ∈ PWC [t0, tf ], u(t) ∈ U, t ∈ [t0, tf ]}, (3.1)

V , {v(·) : v(·) ∈ PWC [t0, tf ], v(t) ∈ V, t ∈ [t0, tf ]}, (3.2)

where PWC [t0, tf ] denotes the set of piecewise continuous function on [t0, tf ] ⊆ R.

Then, consider the performance measure

J [x0, u(·), v(·)] , ψ(tf , x(tf )) +

∫ tf

t0

L(t, x(t), u(t), v(t)) dt, (3.3)

where L : [t0, tf ]×Rn×U×V→ R is continuously differentiable, ψ : [t0, tf ]×Rn → R

denotes the cost at time tf and endpoint x(tf ), and the state vector x : [t0, tf ]→ Rn

verifies the differential constraint

ẋ(t) = f(t, x(t), u(t), v(t)),

x(t0) = x0, φ(tf , x(tf )) = 0, t ∈ [t0, tf ], (3.4)
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where φ : R × Rn → Rp denotes the terminal constraint. Our goal is to find

(u∗(·), v∗(·)) ∈ U × V such that

J [x0, u
∗(·), v∗(·)] = min

u(·)∈U
max
v(·)∈V

J [x0, u(·), v(·)] (3.5)

assuming that x0, t0, and tf are given [8].

In this thesis, we assume that

min
u(·)∈U

max
v(·)∈V

J [x0, u(·), v(·)] = max
v(·)∈V

min
u(·)∈U

J [x0, u(·), v(·)]. (3.6)

3.3 Calculus of Variations Approach

In this section, we provide necessary conditions to solve the differential game

problem outlined in Section 3.2. To this goal, firstly we include the constraints (3.4)

in the performance measure (3.3) by means of Lagrange multipliers. Successively,

we solve the corresponding unconstrained differential game problem.

It follows from (3.3) and (3.4) that the differential game problem in Section 3.2 is

equivalent to finding both u∗(·) ∈ U and v∗(·) ∈ V so that the performance measure

Ĵ [x0, u(·), v(·)] = ψ(tf , x(tf )) + νTφ(tf , x(tf ))

+

∫ tf

t0

[
L(t, x(t), u(t), v(t))

+ λT(t)
[
f(t, x(t), u(t), v(t))− ẋ(t)

]]
dt,

(3.7)

verifies the condition

Ĵ [x0, u
∗(·), v∗(·)] = min

u(·)∈U
max
v(·)∈V

Ĵ [x0, u(·), v(·)] = max
v(·)∈V

min
u(·)∈U

Ĵ [x0, u(·), v(·)], (3.8)

where ν ∈ Rp and λ : [t0, tf ]→ Rn denote the Lagrange multipliers. In the following,

we will further characterize the costate vectors λ(·) and ν.
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Let us define

Φ(tf , x(tf )) , ψ(tf , x(tf )) + νTφ(tf , x(tf )), (3.9)

and the Hamiltonian function

H(t, x, u, v, λ) , L(t, x, u, v)+λTf(t, x, u, v)

(t, x, u, v, λ) ∈ [t0, tf ]× Rn × U× V× Rn. (3.10)

Then, integrating equation (3.7) by parts yields

J [x0, u(·), v(·)] = Φ(tf , x(tf ))− λT (tf )x(tf ) + λT (t0)x(t0)

+

∫ tf

t0

[H(t, x(t), u(t), v(t)) + λ̇T (t)x(t)] dt. (3.11)

In order to find (u∗(·), v∗(·)) ∈ U × V that verify (3.8), we consider first-order

variations of the control inputs and assume that x0, t0, tf are given. First let us

define w(·) , [uT(·), vT(·)]T and W = U × V , then given r(·) ∈ Rm1+m2 such that

w(·) + αr(·) ∈ W , α ∈ [0, α0), the variation in the state vector is given by

ẋ(t, α) = f(t, x(t, α), w(t) + αr(t))

φ(tf , x(tf , α)) = 0, x(t0, α) = x0, t ∈ [t0, tf ]. (3.12)

It follows from Taylor’s theorem that

x(t, α) = x(t, 0) + α
∂x(t, α)

∂α

∣∣∣∣
α=0

+O(α). (3.13)
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Next, we define

δx(t) ,
∂x(t, α)

∂α

∣∣∣∣
α=0

, t ∈ [t0, tf ], (3.14)

and note that it follows from (3.4) that

δẋ(t) = A(t)δx(t) +B(t)r(t),

∂φ(t, x(t))

∂x

∣∣∣∣
t=tf

δx(tf ) = 0, δx(t0) = 0, t ∈ [t0, tf ], (3.15)

where

A(t) ,
∂f(t, x(t), u(t), v(t))

∂x
, (3.16)

B(t) ,

[
∂f(t, x(t), u(t), v(t))

∂u
,
∂f(t, x(t), u(t), v(t))

∂v

]
. (3.17)

In this case, it follows from (3.11) that

δĴ [x0, u(·), v(·), r(·)] =
∂Φ(tf , x(tf ))

∂x
δx(tf )− λT (tf )δx(tf ) + λT (t0)δx(t0)

+

∫ tf

t0

[(∂H(t, x(t), u(t), v(t), λ(t))

∂x
+ λ̇T (t)

)
δx(t)

+


∂H(t, x(t), u(t), v(t), λ(t))

∂u

∂H(t, x(t), u(t), v(t), λ(t))

∂v


T

r(t)

]
dt. (3.18)

Since x(t0) is given, δx(t0) = 0 and hence λ(t) can be chosen such that

λ̇T(t) = −∂H(x(t), u(t), λ(t), t)

∂x
, t ∈ [t0, tf ]. (3.19)
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The boundary conditions for (3.19) can be found by setting

(
∂Φ(tf , x(tf ))

∂x
− λT (tf )

)
δx(tf ) = 0. (3.20)

Since δx(tf ) may be non-zero, one can choose

λT (tf ) =
∂ψ(tf , x(tf ))

∂x
+ νT

∂φ(tf , x(tf ))

∂x
. (3.21)

Therefore, it follows from (3.18) that

δĴ [x0, u(·), v(·), r(·)] =

∫ tf

t0


∂H(t, x(t), u(t), v(t), λ(t))

∂u

∂H(t, x(t), u(t), v(t), λ(t))

∂v


T

r(t)dt. (3.22)

By the first order necessary condition for optimality, if δĴ [x0, u(·), v∗(·), r(·)] ≥

0, then u(·) is a local minimizer and if δĴ [x0, u
∗(·), v(·), r(·)] ≤ 0, then v(·) is a local

maximizer. Assuming that (u(·), v(·)) ∈ Ů × V̊ , that is, the pair (u(·), v(·)) is the in

the interior of the admissible set, it must hold that δĴ [x0, u(·), v(·), w1(·), w2(·)] = 0.

This leads to the differential games saddle point condition

∂H(t, x, u, v, λ)

∂u
= 0, [t, x, u, v, λ] ∈ [t0, tf ]× Rn × U× V× Rn, (3.23)

∂H(t, x, u, v, λ)

∂v
= 0. (3.24)

A similar procedure can be used to solve differential games, where in tf is free, x0

and t0 are given, and x(tf ) verifies ψ(tf , x(tf )). In this case, the first order necessary

conditions are

∂H(t, x, u, v, λ)

∂u
= 0, [t, x, u, v, λ] ∈ [t0, tf ]× Rn × U× V× Rn, (3.25)
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∂H(t, x, u, v, λ)

∂v
= 0, (3.26)

with costate dynamics

λ̇T(t) = −∂H(t, x(t), u(t), λ(t))

∂x
, t ∈ [t0, tf ],

λT (tf ) =
∂ψ(tf , x(tf ))

∂x
+ νT

φ(tf , x(tf ))

∂x
,

∂ψ(tf , x(tf ))

∂t
+ νT

∂φ(tf , x(tf ))

∂t
= −H(tf , x(tf ), u(tf ), v(tf ), λ(tf )). (3.27)

3.4 Hamiltonian Approach

In this section, an alternative approach to solve the differential game problem is

presented. Let us consider the differential constraint

ẋ(t) = f(t, x(t), u(t), v(t)), x(t0) = x0, t ∈ [t0, tf ], (3.28)

where x(tf ) is free. Let us then define the optimal cost-to-go function for differential

games as

V (t, x0) , min
u(·)∈U

max
v(·)∈V

[
ψ(tf , x(tf )) +

∫ tf

t0

L(τ, x(τ), u(τ), v(τ))dτ

]
,

t ∈ [t0, tf ]. (3.29)

The total derivative of V (t, x(t)) is defined as

dV (t, x(t))

dt

∣∣∣∣
u(·),v(·)

= lim
s→t

V (s, x(s))− V (t, x(t))

s− t
, (3.30)

along the trajectory of

ẋ(s) = f(s, x(s), u(s), v(s)), x(t) = x, x(tf ) = xf , s ∈ [t, tf ]. (3.31)
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Applying the principle of optimality, which is discussed in Section 2.2.3, to

(3.29) and assuming that v∗(·) ∈ V is a maximizer yields

V (t, x0) = min
u(·)∈U

[ ∫ tf

t

L(τ, x(τ), u(τ), v∗(τ))dτ

]
= min

u(·)∈U

[ ∫ t1

t

L(τ, x(τ), u(τ), v∗(τ))dτ

+

∫ tf

t1

L(τ, x(τ), u(τ), v∗(τ))dτ

]
= min

u(·)∈U

[ ∫ tf

t

L(τ, x(τ), u(τ), v∗(τ))dτ

]
+ V (t1, x(t1)). (3.32)

Now, suppose that u∗(·) ∈ U minimizes J(t, x(·), u(·), v∗(·)) and let x∗(·) denote the

corresponding trajectory, then it follows from (3.32) that

V (t, x0) =

∫ t1

t

L(τ, x∗(τ), u∗(τ), v∗(τ))dτ + V (t1, x(t1)), t ∈ [t0, t]. (3.33)

Therefore, it follows that

V (t1, x(t1))− V (t, x0)

t1 − t
+

1

t1 − t

∫ t1

t

L(τ, x∗(τ), u∗(τ), v∗(τ))dτ = 0 (3.34)

and, letting t1 → t yields

dV (t, x(t))

dt

∣∣∣∣
u∗(·),v∗(·)

+ L(t, x(t), u∗(t), v∗(t)) = 0. (3.35)

However, for arbitrary u(·) ∈ U , it holds that

V (t, x0) ≤
∫ t1

t

L(τ, x(τ), u(τ), v∗(τ))dτ + V (t1, x(t1)) (3.36)

Let us then repeat the process by applying the principal of optimality to to (3.29)
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and assuming that u∗(·) is a minimizer yields

V (t, x0) = max
v(·)∈V

[ ∫ tf

t

L(τ, x(τ), u∗(τ), v(τ))dτ

]
= max

v(·)∈V

[ ∫ t1

t

L(τ, x(τ), u∗(τ), v(τ))dτ

+

∫ tf

t1

L(τ, x(τ), u∗(τ), v(τ))dτ

]
= max

v(·)∈V

[ ∫ tf

t

L(τ, x(τ), u∗(τ), v(τ))dτ

]
+ V (t1, x(t1)). (3.37)

Now, suppose that v∗(·) ∈ V maximizes J(t, x(·), u∗(·), v(·)) and let x∗(·) denote the

corresponding trajectory, then it follows from (3.37) that

V (t, x0) =

∫ t1

t

L(τ, x∗(τ), u∗(τ), v∗(τ))dτ + V (t1, x(t1)), t ∈ [t0, t]. (3.38)

Therefore it follows that

V (t1, x(t1))− V (t, x0)

t1 − t
+

1

t1 − t

∫ t1

t

L(τ, x∗(τ), u∗(τ), v∗(τ))dτ = 0. (3.39)

Letting t1 → t yields

dV (t, x(t))

dt

∣∣∣∣
u∗(·),v∗(·)

+ L(t, x(t), u∗(t), v∗(t)) = 0. (3.40)

However for arbitrary v(·) ∈ V , it holds that

V (t, x0) ≥
∫ t1

t

L(τ, x(τ), u∗(τ), v(τ))dτ + V (t1, x(t1)), (3.41)

and it follows from (3.35) and (3.40) that

−∂V (t, x(t))

∂t
+
∂V (t, x(t))

∂x
f(t, x(t), u∗(t), v∗(t))

+ L(t, x(t), u∗(t), v∗(t)) = 0, (3.42)
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which can be rewritten as

−∂V (t, x(t))

∂t
= min

u∈U
max
v∈V

[
∂V (t, x(t))

∂x
f(t, x(t), u(t), v(t))

+ L(t, x(t), u(t), v(t))

]
V (tf , x(tf )) = ψ(tf , x(tf )). (3.43)

Equation (3.43) is known as the Hamilton-Jacobi-Isaacs (HJI) equation [8], [9].

3.5 Converse Differential Games

The Hamilton-Jacobi-Issacs equation (3.43) is a first-order partial differential

equation, whose analytical solution is impossible to find in many problems of prac-

tical interest. To overcome this difficulty, in this section we discuss converse differ-

ential games. Consider the performance measure

J [x0, u(·), v(·)] =

∫ ∞
0

[L1(x(t)) + Lu(x(t))u(t) + Lv(x(t))v(t)

+ uT(t)Ru(x(t))u(t) + vT(t)Rv(x(t))v(t)] dt. (3.44)

where L1 : Rn → R, Lu : Rn → R1×m1 , Lv : Rn → R1×m2 , Ru : Rn → Rm1×m1 ,

and Rv : Rn → Rm2×m2 are continuous on Rn and Ru(x) = RT
u (x) > 0, x ∈ Rn,

Rv(x) = RT
v (x) < 0, and

ẋ(t) = f(x(t)) +Gu(x(t))u(t) +Gv(x(t))v(t), x(0) = x0, t ≥ 0, (3.45)

where f : Rn → Rn, Gu : Rn → Rn×m1 , and Gv : Rn → Rn×m2 .

Assume that there exists a continuously differentiable function V : Rn → R,

such that

0 = min
u(·)∈U

max
v(·)∈V

(
∂V (x)

∂x
[f(x, u, v) +Gu(x)u(x) +Gv(x)v(x)] + L(x, u, v)

)
,
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x ∈ Rn (3.46)

First order conditions to maximize (3.46) are

∂V (x)

∂x
Gv(x) + Lv(x) + 2vTRv(x) = 0, (x, v) ∈ Rn × V , (3.47)

∂V (x)

∂x
Gu(x) + Lu(x) + 2uT(t)Ru(x) = 0, (x, u) ∈ Rn × U , (3.48)

which imply that

u∗(x) = −1

2
R−1u (x)

[
∂V (x)

∂x
Gu(x) + Lu(x)

]T
, (3.49)

v∗(x) = −1

2
R−1v (x)

[
∂V (x)

∂x
Gv(x) + Lv(x)

]T
. (3.50)

Therefore, it follows from (3.29) with ψ(t, x) = 0, (t, x) ∈ [0,∞)× Rn, that

V (x0) = J [x0, u
∗(·), v∗(·)], x0 ∈ Rn. (3.51)

3.6 Pursuer Evader Problem

Consider the performance measure

J [x0, u(·), v(·)] =

∫ tf

t0

1 dt, (3.52)

subject to the differential constraints

ẋ1(t) = w1 sin θ(t), x1(t0) = x10, t ∈ [t0, tf ], (3.53)

ẋ2(t) = w1 cos θ(t), x2(t0) = x20, (3.54)

ẋ3(t) = w2 sin v(t), x3(t0) = x30, (3.55)

ẋ4(t) = w2 cos v(t), x4(t0) = x40, (3.56)
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θ̇(t) =
w1

R
u(t) (3.57)

where w1 > 0, w2 > 0 denote the velocities of the pursuer and the evader, re-

spectively, θ : [t0, tf ] → [0, 2π) denotes the direction of the pursuer’s velocity,

v : [t0, tf ] → [0, 2π) denotes the direction of the evader’s velocity, R ∈ R+ de-

notes the minimum turn radius, and u : [t0, tf ]→ [−1, 1] denotes the ratio between

the minimum turn radius and the instantaneous turn radius.

Figure 3.1: Pursuer-Evader Problem

The termination of the game occurs when the pursuer is within a ball of radius

l > 0 from the evader, that is,

√
[x3(tf )− x1(tf )]2 + [x4(tf )− x2(tf )]2 ≤ l. (3.58)
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Figure 3.2: Pursuer-Evader Reduced Problem

To solve this problem, we introduce an alternative reference frame so that y1(·)

denotes the distance between the pursuer and the evader perpendicular to the pur-

suer’s velocity vector and y2(·) denotes the distance between the pursuer and the

evader parallel to the pursuer’s velocity vector. In this reference frame, the differ-

ential constraints (3.53)-(3.57) are equivalent to

ẏ1(t) = −w1

R
y2(t)u(t) + w2 sin v(t) y1(t0) = y10, t ∈ [t0, tf ] (3.59)

ẏ2(t) = −w1

R
y1(t)u(t)− w1 + w2 cos v(t) y2(t0) = y20, (3.60)

and the terminal condition (3.58) is equivalent to

√
y21(tf ) + y22(tf ) ≤ l. (3.61)

In this problem, (3.10) specializes to

H(t, x, u, v, λ) = −w1

R
[x2λ1 − x1λ2]u− w1λ2 + w2[λ1 sin v + λ2 cos v]

(t, x, u, v, λ) ∈ [t0, tf ]× Rn × Rm1 × Rm2 × Rn. (3.62)
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Setting

A(t) , y2(t)λ1(t)− y1(t)λ2(t), t ∈ [t0, tf ] (3.63)

σ(t) , sgn(A(t)), (3.64)

ρ(t) ,
√
λ21(t) + λ22(t), (3.65)

yields

cos v(t) =
λ2(t)

ρ(t)
, (3.66)

sin v(t) =
λ1(t)

ρ(t)
. (3.67)

Then, it follows from (3.23), (3.24), (3.59), (3.60), (3.62)–(3.67), and (2.15) that

0 = −σ(t)
w1

R
A(t)− w1λ2(t) + w2ρ(t), t ∈ [t0, tf ] (3.68)

ẏ1(t) = σ(t)
w1

R
y2(t)− w2

λ1(t)

ρ(t)
, y1(t0) = y10, (3.69)

ẏ2(t) = −σ(t)
w1

R
y2(t) + w1 − w2

λ2(t)

ρ(t)
, y2(t0) = y20, (3.70)

λ̇1(t) = σ(t)
w1

R
λ2(t), λ1(tf ) =

y1f
l
, (3.71)

λ̇2(t) = −σ(t)
w1

R
λ1(t), λ2(tf ) =

y2f
l
. (3.72)

Solving this system of equations yields

u∗(t) = −sgn(θ(t)− v∗(t)), t ∈ [t0, tf ], (3.73)

θ(t) = tan−1
x1(t)

x2(t)
, (3.74)

v̇∗(t) =
w1

R
sgn(θ(t)− v∗(t)). (3.75)

3.7 Target-Attacker-Defender
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A scenario that is similar in nature to the Pursuer-Evader problem is known as

the Target-Attacker-Defender problem. In this problem, there are three vehicles.

The target is attempting to evade the attacker, while the defender is attempting to

prevent the capture of the target even at the cost of itself. Consider the performance

measure

J [x0, u(·), v(·)] =

∫ tf

t0

Ṙ(t) dt, (3.76)

where R : [t0, tf ] → R+ denotes the distance between the attacker and the target,

subject to the differential constraints

ẋ1(t) = VT cos(ξ(t) + v1(t)), x1(t0) = x10, t ∈ [t0, tf ], (3.77)

ẋ2(t) = VT sin(ξ(t) + v1(t)), x2(t0) = x20, (3.78)

ẋ3(t) = VA cos X̂ (t), x3(t0) = x30, (3.79)

ẋ4(t) = VA sin X̂ (t), x4(t0) = x40, (3.80)

ẋ5(t) = VD cos ψ̂(t), x5(t0) = x50, (3.81)

ẋ6(t) = VD sin ψ̂(t), x6(t0) = x60, (3.82)

where

X̂ (t) = ξ(t) + θ(t)− u(t), (3.83)

ψ̂(t) = v1(t) + θ(t) + ξ(t)− π. (3.84)

ξ : [t0, tf ] → [0, 2π) denotes the angle between the horizontal axis and the line

connecting the attacker and the defender, θ : [t0, tf ] → [0, 2π) denotes the angle

between the line connecting the attacker and the target and the line connecting

the defender and the attacker, u : [t0, tf ] → [0, 2π) denotes the angle between
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the attacker’s velocity vector and the line connecting the attacker to the defender,

v2 : [t0, tf ] → [0, 2π) denotes the angle between the line connecting the attacker to

the defender and the defender’s velocity vector, v1 : [t0, tf ] → [0, 2π) denotes the

angle between the line connecting the target to the attacker and the target’s velocity

vector, and VT ∈ R+, VA ∈ R+, and VD ∈ R+ denote the velocities of the target,

the attacker, and the defender respectively.

Figure 3.3: Target-Attacker-Defender Scenario

If we assume that VA = VD, then (3.77)-(3.82) can be reduced to

Ṙ(t) = α cos v1(t)− cos(θ(t)− u(t)), R(t0) = R0, t ∈ [t0, tf ], (3.85)

ṙ(t) = − cosu(t)− cos v1(t), r(t0) = r0, (3.86)

θ̇(t) =− α

R(t)
sin v1(t) +

1

R
sin(θ(t)− u(t))− 1

r(t)
sin v2(t)

+
1

r(t)
sinu(t), θ(t0) = θ0,

(3.87)

where α = VT
VA

, r : [t0, tf ] → R+. The termination of the game happens when

r(tf ) = rc, for some rc > 0. The goal of the Target-Attacker-Defender is to find

J [x0, u
∗(·), v∗1(·), v∗2(·)] = min

u(·)∈U
max

[v1(·)T,v2(·)T]T∈V
J [x0, u(·), v1(·), v2(·)]. (3.88)
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In this case, (3.10) specializes to

H(t, x(·), u(·), v1(·), v2(·), λ(·)) =α cos v1(t)− cos(θ(t)− u(t))

+ λR(t)[α cos v1(t)− cos(θ(t)− u(t))]

− λr(t)[cosu(t) + cos v2(t)]

+ λθ(t)

[
− α

R(t)
sin v1(t) +

1

R
sin(θ(t)

− u(t))− 1

r(t)
sin v2(t) +

1

r(t)
sinu(t)

]
, (3.89)

and it follows from (3.23) and (3.24) that

u∗(t) = sin−1
A(t)

B(t)
, t ∈ [t0, tf ], (3.90)

v∗1(t) = sin−1
λθ(t)

r(t)
√
λ2r(t) + λ2θ(t)/r

2(t)
, (3.91)

v∗2(t) = sin−1
λθ(t)

R(t)
√

(1− λr(t))2 + λ2θ(t)/R
2(t)

, (3.92)

where

A(t) , [1− λR(t)] sin θ(t)− λθ(t)

R(t)
cos θ(t) +

λθ(t)

r(t)
, (3.93)

B(t) ,

([
(1− λR(t)) sin θ(t)− λθ(t)

R(t)
cos θ(t) +

λθ(t)

r(t)

]2

+

[
(1− λR(t)) cos θ(t)− λθ(t)

R(t)
sin θ(t) + λr(t)

]2)1/2

, (3.94)

and it follows from (2.15) that

λ̇R(t) =
λθ(t)

R2(t)
[sin(θ(t)− u(t))− α sin(v1(t))], λR(tf ) = 0, (3.95)

λ̇r(t) =
λθ(t)

r2(t)
[sin(u(t))− sin(v2(t))], λr(tf ) =

1

α2 + 2[α + cos θ(tf )]
, (3.96)
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λ̇θ(t) = (1− λr(t)) sin(θ(t)− u(t))

− λθ(t)

R(t)
cos(θ(t)− u(t)),

λθ(tf ) = 0. (3.97)

For more details, see [11].
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Chapter 4. A Toolbox to Solve Optimal Control

and Differential Game Problems

4.1 Introduction

In this chapter, we will describe some numerical methods known as level set

methods to solve Hamilton-Jacobi equations. As shown in Chapters 2 and 3, these

equations play a key role in the solution of optimal control and differential game

problems. Level set methods have been implemented by the MATLAB toolbox [19].

In this work, we modified this toolbox to solve the Hamilton-Jacobi-Bellman and

Hamilton-Jacobi-Isaacs equation, that is, to find numerically both the value function

and the state-feedback control laws needed to solve the underlying optimal control

and differential game problems. To our best knowledge, this result is unprecedented.

4.2 Level Set Methods

Level set methods are a collection of numerical differentiation and integration

schemes to solve partial differential equations that satisfy the level set equation

∂φ(t, x)

∂t
+H

(
t, x,

∂φ(t, x)

∂x

)
= 0. (4.1)

where φ : [0,∞)× Rn → R denotes the surface

φ(t, x) = 0, [t, x] ∈ [0,∞)× Rn, (4.2)

H

(
t, x,

∂φ(t, x)

∂x

)
= UT(t, x)

∂φ(t, x)

∂x
, [t, x] ∈ [0,∞)× Rn, (4.3)

and U : [0,∞)× Rn → Rn denotes the velocity of the surface φ(·, ·).

In order to find solutions to (4.1), it is necessary to capture spatial derivatives
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along the surface φ(·, ·). Due to the presence of discontinuities that may arise when

propagating the surface φ(·, ·), it is necessary to approximate these derivatives using

specialized schemes. The authors in [12] present several schemes to overcome the

presence of discontinuities, which are summarized in the following.

4.2.1 Differencing Schemes

Three common schemes used to approximate spatial derivatives are known as

central differencing, forward differencing, and backward differencing. For simplicity

of explanation, in the following we consider the case for n = 1, for arbitrary n,

see [12]. The central differencing approximation is given by

∂φ(tj, xi)

∂x
≈ φ(tj, xi+1)− φ(tj, xi−1)

2∆x
, j = 0, . . . , T, i = 1, . . . , N, (4.4)

the forward differencing approximation is given by

∂φ(tj, xi)

∂x

+

≈ φ(tj, xi+1)− φ(tj, xi)

∆x
, (4.5)

and the backward differencing approximation is given by

∂φ(tj, xi)

∂x

−

≈ φ(tj, xi)− φ(tj, xi−1)

∆x
, (4.6)

where tj denotes a sample of the uniformly discretized time interval [0, T ], xi denotes

a sample of the uniformly discretized domain D ⊆ Rn, and ∆x , xi+1 − xi; in this

thesis, we assume that ∆x is constant for i = 1, . . . , N and that the values of φ(tj, xi)

are available for i < 1 and i > N if need.

When using these schemes to approximate partial differential equations, a method

known as upwind differencing is commonly used to determine which approximation

to use. Upwind differencing gives us a systematic approach to determine what

approximation we should use by evaluating the current direction of the surface’s ve-
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locity. According to upwind differencing, if U(tj, xi) < 0, j = 0, . . . , T, i = 1, . . . , N,

then the forward differencing approximation should be used, while if U(tj, xi) > 0,

then the backward differencing approximation should be used.

Although these methods are efficient, forward and backward differencing yield

only first-order accuracy, while centeral differencing yields second-order accuracy for

smooth regions of the surface φ(·, ·). In most cases, it is desirable to use higher-order

accuracy schemes even though they are more computationally expensive.

4.2.2 Hamilton-Jacobi Essentially Non-Oscillatory Scheme

An alternative, more accurate, scheme to approximate the spatial derivatives

of (4.1) is the Hamilton-Jacobi essentially non-oscillatory scheme. Specifically, for

n = 1 the zero-th divided difference of φ(tj, xi) is defined as

D0φ(tj, xi) , φ(tj, xi), j = 0, . . . , T, i = 1, . . . , N, (4.7)

the first divided difference of φ(tj, xi) is defined as

D1φ(tj, xi+1/2) ,
D0φ(tj, xi+1)−D0φ(tj, xi)

∆x
, (4.8)

the second divided difference of φ(tj, xi) is defined as

D2φ(tj, xi) ,
D1φ(tj, xi+1/2)−D1φ(tj, xi−1/2)

2∆x
, (4.9)

and the third divided difference of φ(tj, xi) is defined as

D3φ(tj, xi+1/2) ,
D2φ(tj, xi+1)−D2φ(tj, xi)

3∆x
. (4.10)
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We then approximate φ(t, x) with the polynomial interpolation such that

φ(t, x) ≈ Q0(t, x, xi) +Q1(t, x, xi) +Q2(t, x, xi) +Q3(t, x, xi), (4.11)

where, Q0 : [0, T ]× R× R→ R is defined as

Q0(t, x, xi) = D0φ(tj, xi)(x− xi)0, j = 1, . . . , T, i = 1, . . . , N (4.12)

∂Q0(tj, x, xi)

∂x
= 0, (4.13)

and Qk : [0, T ] × R × R → R, k = 1, 2, 3, are defined in the following. It follows

from (4.11) that

∂φ(tj, xi)

∂x
≈ ∂Q1(tj, x, xi)

∂x
+
∂Q2(tj, x, xi)

∂x
+
∂Q3(tj, x, xi)

∂x
. (4.14)

Next, we apply upwind differencing to determine whether
∂φ(tj ,xi)

∂x
, j = 1, . . . , T, i =

1, . . . , N , must be approximated using forward or backward differencing. In case of

backward differencing, it holds that

Q1(tj, x, xi) = D1φ(tj, xi−1/2)(x− xi),

j = 1, . . . , T, i = 1, . . . , N. (4.15)

∂Q1(tj, x, xi)

∂x
= D1φ(tj, xi−1/2) (4.16)

The terms Q2(tj, x, xi) and
∂Q2(tj ,x,xi)

∂x
are computed as follows. If |D2φ(tj, xi−1)| ≤

|D2φ(tj, xi)|, j = 1, . . . , T, i = 1, . . . , N , then

Q2(tj, x, xi) = D2φ(tj, xi−1)(x− xi−1)(x− xi) (4.17)

∂Q2(tj, x, xi)

∂x
= D2φ(tj, xi−1)∆x, (4.18)
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otherwise

Q2(tj, x, xi) = D2φ(tj, xi)(x− xi)(x− xi+1) (4.19)

∂Q2(tj, x, xi)

∂x
= D2φ(tj, xi)∆x. (4.20)

Similarly, it holds for Q3(tj, x, xi) and
∂Q3(tj ,x,xi)

∂x
that if

|D2φ(tj, xi−1)| ≤ |D2φ(tj, xi)|, j = 1, . . . , T, i = 1, . . . , N , then Q3(·, ·, ·) and

∂Q3(·,·,·)
∂x

are given by (4.21) and (4.22), respectively. Otherwise, if |D2φ(tj, xi−1)| ≥

|D2φ(tj, xi)|, j = 1, . . . , T, i = 1, . . . , N , then Q3(·, ·, ·) and ∂Q3(·,·,·)
∂x

are given by

(4.23) and (4.24), respectively.
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In case of forward differencing, it holds that

Q1(tj, x, xi) = D1φ(tj, xi+1/2)(x− xi),

j = 1, . . . , T, i = 1, . . . , N. (4.25)

∂Q1(tj, x, xi)

∂x
= D1φ(tj, xi+1/2) (4.26)

The terms Q2(tj, x, xi) and
∂Q2(tj ,x,xi)

∂x
are computed as follows. If |D2φ(tj, xi)| ≤

|D2φ(tj, xi+1)|, j = 1, . . . , T, i = 1, . . . , N , then

Q2(tj, x, xi) = D2φ(tj, xi)(x− xi)(x− xi+1) (4.27)

∂Q2(tj, x, xi)

∂x
= D2φ(tj, xi)∆x, (4.28)

otherwise

Q2(tj, x, xi) = D2φ(tj, xi+1)(x− xi+1)(x− xi+2) (4.29)

∂Q2(tj, x, xi)

∂x
= D2φ(tj, xi+1)∆x. (4.30)

Similarly, it holds for Q3(tj, x, xi) and
∂Q3(tj ,x,xi)

∂x
that if

|D2φ(tj, xi)| ≤ |D2φ(tj, xi+1)|, j = 1, . . . , T, i = 1, . . . , N , then Q3(·, ·, ·) and

∂Q3(·,·,·)
∂x

are given by (4.31) and (4.32), respectively. Otherwise, if |D2φ(tj, xi)| ≥

|D2φ(tj, xi+1)|, j = 1, . . . , T, i = 1, . . . , N , then Q3(·, ·, ·) and ∂Q3(·,·,·)
∂x

are given by

(4.33) and (4.34), respectively.
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i+
1
/
2
)(
x
−
x
i)

(x
−
x
i+

1
)(
x
−
x
i+

2
),
|D

3
φ

(t
j
,x

i+
1
/
2
)|
≤
|D

3
φ

(t
j
,x

i+
3
/
2
)|,

D
3
φ

(t
j
,x

i+
3
/
2
)(
x
−
x
i+

1
)(
x
−
x
i+

2
)(
x
−
x
i+

3
),
|D

3
φ

(t
j
,x

i−
1
/
2
)|
≥
|D

3
φ

(t
j
,x

i+
3
/
2
)|,

(4
.3

3)

∂
Q

3
(t
j
,x

i)

∂
x

=

      2D
3
φ

(t
j
,x

i+
1
/
2
)∆
x
2
,
|D

3
φ

(t
j
,x

i+
1
/
2
)|
≤
|D

3
φ

(t
j
,x

i+
3
/
2
)|,

2D
3
φ

(t
j
,x

i+
3
/
2
)∆
x
2
,
|D

3
φ

(t
j
,x

i+
1
/
2
)|
≥
|D

3
φ

(t
j
,x

i+
3
/
2
)|.

(4
.3

4)
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Once we have determined
∂Q1(tj ,x,xi)

∂x
,
∂Q2(tj ,x,xi)

∂x
, and

∂Q3(tj ,x,xi)

∂x
(4.14) yields third

order accuracy.

4.2.3 Hamilton-Jacobi Weighted Essentially Non-Oscillatory Scheme

The Hamilton-Jacobi weighted essentially non-oscillatory scheme is a method

that provides the optimal weighting for the convex combination of the possible

approximations given by the Hamilton-Jacobi essentially non-oscillatory scheme for

a more accurate approximation. Specifically, assuming that n = 1, let us first

consider the backward differencing problem. In this case, define

v1(tj, xi) ,
∂φ(tj, xi−2)

∂x

−

, j = 1, . . . , T, i = 1, . . . , N, (4.35)

v2(tj, xi) ,
∂φ(tj, xi−1)

∂x

−

, (4.36)

v3(tj, xi) ,
∂φ(tj, xi)

∂xi

−

, (4.37)

v4(tj, xi) ,
∂φ(tj, xi+1)

∂x

−

, (4.38)

v5(tj, xi) ,
∂φ(tj, xi+2)

∂x

−

. (4.39)

According to the Hamilton-Jacobi essentially non-oscillatory scheme, there are three

approximations of ∂φ(tn,xi)
∂x

−
, namely

∂φ(tj, xi)

∂x

−

1
=
v1(tj, xi)

3
− 7v2(tj, xi)

6
+

11v3(tj, xi)

6
, (4.40)

∂φ(tj, xi)

∂x

−

2
= −v2(tj, xi)

6
− 5v3(tj, xi)

6
+
v4(tj, xi)

6
, (4.41)

and

∂φ(tj, xi)

∂x

−

3
=
v3(tj, xi)

3
+

5v4(tj, xi)

6
− v5(tj, xi)

6
. (4.42)
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In case of forward differencing, define

v1(tj, xi) ,
∂φ(tn, xi+2)

∂x

+

, j = 1, . . . , T, i = 1, . . . , N, (4.43)

v2(tj, xi) ,
∂φ(tn, xi+1)

∂x

+

, (4.44)

v3(tj, xi) ,
∂φ(tn, xi)

∂x

+

, (4.45)

v4(tj, xi) ,
∂φ(tn, xi−1)

∂x

+

, (4.46)

v5(tj, xi) ,
∂φ(tn, xi−2)

∂x

+

. (4.47)

According to the Hamilton-Jacobi essentially non-oscillatory scheme, there are three

approximations of ∂φ(tn,xi)
∂x

+
, namely

∂φ(tj, xi)

∂x

+

1
=
v1(tj, xi)

3
− 7v2(tj, xi)

6
+

11v3(tj, xi)

6
, (4.48)

∂φ(tj, xi)

∂x

+

2
= −v2(tj, xi)

6
− 5v3(tj, xi)

6
+
v4(tj, xi)

6
, (4.49)

and

∂φ(tj, xi)

∂x

+

3
=
v3(tj, xi)

3
+

5v4(tj, xi)

6
− v5(tj, xi)

6
. (4.50)

In backward differencing, ∂φ(tn,xi)
∂x

−
, can also be expressed as a convex combina-

tion of (4.40)-(4.42), that is,

∂φ(tj, xi)

∂x

−

= ω1
∂φ(tj, xi)

∂x

−

1
+ ω2

∂φ(tj, xi)

∂x

−

2
+ ω3

∂φ(tj, xi)

∂x

−

3
, (4.51)

where 0 ≤ ωk ≤ 1, k = 1, 2, 3, and ω1+ω2+ω3 = 1. Simlarly, in forward differencing,

∂φ(tj ,xi)

∂x

+
can be approximated through a convex combination of (4.48)-(4.50), that
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is,

∂φ(tn, xi)

∂x

+

= ω1
∂φ(tn, xi)

∂x

+

1
+ ω2

∂φ(tn, xi)

∂x

+

2
+ ω3

∂φ(tn, xi)

∂x

+

3
. (4.52)

The weights ωk, k = 1, 2, 3 can be chosen according to the scheme presented in [15],

which is shown in the following. First, we define

S1(tj, xi) ,
13

12
[v1(tj, xi)− 2v2(tj, xi) + v3(tj, xi)]

2

+
1

4
[v1(tj, xi)− 4v2(tj, xi) + 3v3(tj, xi)]

2,

j = 1, . . . , T, i = 1, . . . , N, (4.53)

S2(tj, xi) ,
13

12
[v1(tj, xi)− 2v2(tj, xi) + v4(tj, xi)]

2

+
1

4
[v2(tj, xi)− v4(tj, xi)]2, (4.54)

S3(tj, xi) ,
13

12
[v3(tj, xi)− 2v4(tj, xi) + v5(tj, xi)]

2

+
1

4
[3v3(tj, xi)− 4v4(tj, xi) + v5(tj, xi)]

2. (4.55)

Next, define

α1(tj, xi) ,
0.1

[S1(tj, xi) + ε(tj, xi)]2
, j = 1, . . . , T, i = 1, . . . , N, (4.56)

α2(tj, xi) ,
0.6

[S2(tj, xi) + ε(tj, xi)]2
, (4.57)

α3(tj, xi) ,
0.3

[S3(tj, xi) + ε(tj, xi)]2
, (4.58)

where

ε(tj, xi) , 10−6 max[v1(tj, xi)
2, v2(tj, xi)

2, v3(tj, xi)
2, v4(tj, xi)

2, v5(tj, xi)
2]. (4.59)
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Finally, the weighting coefficients of (4.51) and (4.52) can be chosen as

ω1(tj, xi) =
α1(tj, xi)

α1(tj, xi) + α2(tj, xi) + α3(tj, xi)
,

j = 1, . . . , T, i = 1, . . . , N, (4.60)

ω2(tj, xi) =
α2(tj, xi)

α1(tj, xi) + α2(tj, xi) + α3(tj, xi)
, (4.61)

ω3(tj, xi) =
α3(tj, xi)

α1(tj, xi) + α2(tj, xi) + α3(tj, xi)
. (4.62)

Whenever φ(·, ·) is smooth the optimal weights are given by ω1 = 0.1, ω2 = 0.6, and

ω3 = 0.3 and the Hamilton-Jacobi weighted essentially non-oscillatory scheme yields

fifth order accurate approximations. If φ(·, ·) is not smooth, then there is no guaran-

tee on higher accuracy of the Hamilton-Jacobi weighted essentially non-oscillatory

scheme and may yield the same accuracy as the Hamilton-Jacobi essentially non-

oscillatory scheme.

4.3 Numerical Estimation of the Hamiltonian Function

To solve (4.1) using level set methods, it is necessary to use specialized schemes

to evaluate the Hamiltonian function so that the temporal integration of φ(·, ·) is

stable. To present these schemes, let us consider the case where n = 2, for arbitrary

n see [12]. Let xi,k = [x1,i, x2,k]
T ∈ R2, then define the numerical Hamiltonian

function

Ĥ

(
tj , xi,k,

∂φ(tn, xi,k)

∂x1

−
,
∂φ(tn, xi,k)

∂x1

+

,
∂φ(tn, xi,k)

∂x2

−
,
∂φ(tn, xi,k)

∂x2

+
)

,H

(
tj , xi,k,

1

2

(
∂φ(tn, xi,k)

∂x1

−
+
∂φ(tn, xi,k)

∂x1

+
)
,
1

2

(
∂φ(tn, xi,k)

∂x2

−
+
∂φ(tn, xi,k)

∂x2

+
))

− αx1 1
2

(
∂φ(tn, xi,k)

∂x1

−
−
∂φ(tn, xi,k)

∂x1

+
)
− αx2 1

2

(
∂φ(tn, xi,k)

∂x2

−
−
∂φ(tn, xi,k)

∂x2

+
)
,

j = 0, . . . , T, i = 1, . . . , N, k = 1, . . . , N. (4.63)
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Let

H ∂φ(t,x)
∂x

=
∂

∂z
H(t, x, z)

∣∣∣∣
z=

∂φ(t,x)
∂x

, (4.64)

and

αx1 , max
∂φ(tj ,xi,k)

∂x1
∈Ix1 ,

∂φ(tj ,xi,k)

∂x2
∈Ix2

∣∣∣∣H ∂φ(t,x)
∂x1

(
tj, xi,k,

∂φ(tj, xi,k)

∂x1
,
∂φ(tn, xi,k)

∂x2

)∣∣∣∣ , (4.65)

αx2 , max
∂φ(tj ,xi,k)

∂x1
∈Ix1 ,

∂φ(tj ,xi,k)

∂x2
∈Ix2

∣∣∣∣H ∂φ(t,x)
∂x2

(
tj, xi,k,

∂φ(tj, xi,k)

∂x1
,
∂φ(tn, xi,k)

∂x2

)∣∣∣∣ . (4.66)

The first scheme given is the Lax-Friedrichs scheme as presented in [16]. According

to this scheme, define the intervals

Ix1 ,

[
min
xi,k∈R2

(
∂φ(tj, xi,k)

∂x1

)
, max
xi,k∈R2

(
∂φ(tj, xi,k)

∂x1

)]
,

j = 0, . . . , T, i = 1, . . . , N, k = 1, . . . , N (4.67)

Ix2 ,

[
min
xi,k∈R2

(
∂φ(tj, xi,k)

∂x2

)
, max
xi,k∈R2

(
∂φ(tj, xi,k)

∂x2

)]
, (4.68)

evaluated over i = 1, ..., N , and k = 1, ..., N , we then evaluate αx1 and αx1 on the

intervals Ix1 and Ix1 .

The next scheme given is the Stencil Lax-Friedrichs scheme. According to this

scheme to find αx1 and αx2 define the intervals

Ix1 ,

[
min
xi,k∈R2

(
∂φ(tj, xi,k)

∂x1

)
, max
xi,k∈R2

(
∂φ(tj, xi,k)

∂x1

)]
, (4.69)

Ix2 ,

[
min
xi,k∈R2

(
∂φ(tj, xi,k)

∂x2

)
, max
xi,k∈R2

(
∂φ(tj, xi,k)

∂x2

)]
, (4.70)

evaluated over i−3, ..., i+3 and k−3, ..., k+3, we then evaluate αx1 and αx2 on the

intervals Ix1 and Ix2 . This improves the local accuracy of the numerical Hamiltonian

function since the accuracy decays for larger values of αx1 and αx2 .
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The third scheme given is the Local Lax-Friedrichs scheme as presented in [17].

In this scheme, αx1 and αx2 are computed separately. Specifically, αx1 is defined as

in (4.65) and evaluated over the intervals,

Ix1 ,

[
∂φ(tj, xi,k)

∂x1

−

,
∂φ(tj, xi,k)

∂x1

+]
, (4.71)

Ix2 ,

[
min
xi,k∈R2

(
∂φ(tj, xi,k)

∂x2

)
, max
xi,k∈R2

(
∂φ(tj, xi,k)

∂x2

)]
. (4.72)

Similarly, αx2 is defined as in (4.66) and evaluated over the intervals,

Ix1 ,

[
min
xi,k∈R2

(
∂φ(tj, xi,k)

∂x1

)
, max
xi,k∈R2

(
∂φ(tj, xi,k)

∂x1

)]
, (4.73)

Ix2 ,

[
∂φ(tj, xi,k)

∂x2

−

,
∂φ(tj, xi,k)

∂x2

+]
. (4.74)

The fourth scheme given is the Local Local Lax-Friedrichs scheme as presented

in [18]. In this scheme,

Ix1 ,

[
∂φ(tn, xi,k)

∂x1

−

,
∂φ(tn, xi,k)

∂x1

+]
, (4.75)

Ix2 ,

[
∂φ(tn, xi,k)

∂x2

−

,
∂φ(tn, xi,k)

∂x2

+]
, (4.76)

and αx1 and αx2 are evaluated on the intervals Ix1 and Ix2 . The last scheme consid-

ered in this thesis is the Roe-Fix scheme. For this scheme, the numerical Hamiltonian

is defined as

Ĥ

(
tj, xi,k,

∂φ(tn, xi,k)

∂x1

−

,
∂φ(tn, xi,k)

∂x1

+

,
∂φ(tn, xi,k)

∂x2

−

,
∂φ(tn, xi,k)

∂x2

+
)

,H

(
tj, xi,k,

∂φ(tj, xi,k)

∂x1

∗

,
∂φ(tj, xi,k)

∂x2

∗)
− αx1 1

2

(
∂φ(tj, xi,k)

∂x1

−

− ∂φ(tj, xi,k)

∂x1

+)
− αx2 1

2

(
∂φ(tj, xi,k)

∂x2

−

− ∂φ(tjxi,k)

∂x2

+)
,

j = 0, . . . , T, i = 1, . . . , N, k = 1, . . . , N. (4.77)
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In the case that H ∂φ(t,x)
∂x1

(·, ·, ·) and H ∂φ(t,x)
∂x2

(·, ·, ·) have constants signs over the in-

tervals Ix1 and Ix2 , then

∂φ(tj, xi,k)

∂x1

∗

=


∂φ(tj ,xi,k)

∂x1

−
, H ∂φ(t,x)

∂x1

(
tj, xi,k,

∂φ(tj ,xi,k)

∂x1
,
∂φ(tj ,xi,k)

∂x2

)
> 0,

∂φ(tj ,xi,k)

∂x1

+
, H ∂φ(t,x)

∂x1

(
tj, xi,k,

∂φ(tj ,xi,k)

∂x1
,
∂φ(tj ,xi,k)

∂x2

)
< 0,

(4.78)

∂φ(tj, xi,k)

∂x2

∗

=


∂φ(tj ,xi,k)

∂x2

−
, H ∂φ(t,x)

∂x2

(
tj, xi,k,

∂φ(tj ,xi,k)

∂x1
,
∂φ(tj ,xi,k)

∂x2

)
> 0,

∂φ(tj ,xi,k)

∂x2

+
, H ∂φ(t,x)

∂x2

(
tj, xi,k,

∂φ(tj ,xi,k)

∂x1
,
∂φ(tj ,xi,k)

∂x2

)
< 0,

(4.79)

αx1 = 0, (4.80)

αx2 = 0. (4.81)

In the case that the sign of H ∂φ(t,x)
∂x1

(·, ·, ·) changes, but the sign of H ∂φ(t,x)
∂x2

(·, ·, ·)

remains constant over the intervals Ix1 and Ix2 , then

∂φ(tj, xi,k)

∂x1

∗

=
1

2

(
∂φ(tj, xi,k)

∂x1

+

+
∂φ(tj, xi,k)

∂x1

−)
, (4.82)

∂φ(tj, xi,k)

∂x2

∗

=


∂φ(tj ,xi,k)

∂x2

−
, H ∂φ(t,x)

∂x2

(
tj, xi,k,

∂φ(tj ,xi,k)

∂x1
,
∂φ(tj ,xi,k)

∂x2

)
> 0,

∂φ(tj ,xi,k)

∂x2

+
, H ∂φ(t,x)

∂x2

(
tj, xi,k,

∂φ(tj ,xi,k)

∂x1
,
∂φ(tj ,xi,k)

∂x2

)
< 0,

(4.83)

αx1 = max
∂φ(tj ,xi,k)

∂x1
∈Ix1 ,

∂φ(tj ,xi,k)

∂x2
∈Ix2

∣∣∣∣H ∂φ(t,x)
∂x1

(
tj, xi,

∂φ(tj, xi,k)

∂x1
,
∂φ(tn, xi,k)

∂x2

)∣∣∣∣ ,
(4.84)

αx2 = 0. (4.85)

In the case that the sign ofH ∂φ(t,x)
∂x1

(·, ·, ·) remains constant, but the sign ofH ∂φ(t,x)
∂x2

(·, ·, ·)

changes over the intervals Ix1 and Ix2 , then

∂φ(tj, xi,k)

∂x1

∗

=


∂φ(tj ,xi,k)

∂x1

−
, H ∂φ(t,x)

∂x1

(
tj, xi,k,

∂φ(tj ,xi,k)

∂x1
,
∂φ(tj ,xi,k)

∂x2

)
> 0,

∂φ(tj ,xi,k)

∂x1

+
, H ∂φ(t,x)

∂x1

(
tj, xi,k,

∂φ(tj ,xi,k)

∂x1
,
∂φ(tj ,xi,k)

∂x2

)
< 0,

(4.86)
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∂φ(tj, xi,k)

∂x2

∗

=
1

2

(
∂φ(tj, xi,k)

∂x2

+

+
∂φ(tj, xi,k)

∂x2

−)
, (4.87)

αx1 = 0, (4.88)

αx2 = max
∂φ(tj ,xi,k)

∂x1
∈Ix1 ,

∂φ(tj ,xi,k)

∂x2
∈Ix2

∣∣∣∣H ∂φ(t,x)
∂x2

(
tj, xi,k,

∂φ(tj, xi,k)

∂x1
,
∂φ(tn, xi,k)

∂x2

)∣∣∣∣ .
(4.89)

In the case that the signs of both H ∂φ(t,x;y)
∂x

(·,·,·) and H ∂φ(t,x;y)
∂y

(·, ·, ·) change over

the intervals Ix1 and Ix2 , then

∂φ(tj, xi,k)

∂x1

∗

=
1

2

(
∂φ(tj, xi,k)

∂x1

+

+
∂φ(tj, xi,k)

∂x1

−)
, (4.90)

∂φ(tj, xi,k)

∂x2

∗

=
1

2

(
∂φ(tj, xi,k)

∂x2

+

+
∂φ(tj, xi,k)

∂x2

−)
, (4.91)

αx1 = max
∂φ(tj ,xi,k)

∂x1
∈Ix1 ,

∂φ(tj ,xi,k)

∂x2
∈Ix2

∣∣∣∣H ∂φ(t,x)
∂x1

(
tj, xi,

∂φ(tj, xi,k)

∂x1
,
∂φ(tn, xi,k)

∂x2

)∣∣∣∣ ,
(4.92)

αx2 = max
∂φ(tj ,xi,k)

∂x1
∈Ix1 ,

∂φ(tj ,xi,k)

∂x2
∈Ix2

∣∣∣∣H ∂φ(t,x)
∂x2

(
tj, xi,k,

∂φ(tj, xi,k)

∂x1
,
∂φ(tn, xi,k)

∂x2

)∣∣∣∣ .
(4.93)

4.4 Transformation of Hamilton-Jacobi-Bellman and Hamilton-Jacobi-

Isaacs Equations

If the time derivative does not appear explicitly in the Hamilton-Jacobi-Bellman

or the Hamilton-Jacobi-Isaacs equations, then it is necessary to reduce these equa-

tions to the same form as (4.1). To this goal, we follow the method described in [20].

First, recall that the optimal cost to go is defined as

V (x0) , min
u(·)∈U

∫ ∞
0

L(x(τ), u(τ))dτ, (4.94)
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where

ẋ(t) = f(x(t), u(t)), x(0) = x0, t ∈ [0,∞), (4.95)

and f : Rn × U → Rn and L : Rn × U → R. In this section, we assume that

L(x, u) 6= 0, (x, u) ∈ Rn × U. The stationary Hamilton-Jacobi-Bellman equation is

given by

H̃

(
x,
∂V (x)

∂x

)
= −L(x, u), (x, u) ∈ (Rn\T )× U,

V (x) = 0, x ∈ ∂T. (4.96)

where T ⊂ Rn is closed, and

H̃

(
x,
∂V (x)

∂x

)
,
∂V (x)

∂x
f(x, u). (4.97)

Now, assume that L(x(t), u(t)) 6= 0, (x, u) ∈ Rn × U, and let φ : [0,∞) × Rn → R

so that

∂V (x)

∂x
=

(
∂φ(t, x)

∂t

)−1
∂φ(t, x)

∂x
, (4.98)

where V (x) = {t : φ(t, x) = 0, x ∈ Rn}. It follows from (4.96) that

(
∂φ(t, x)

∂t

)−1
∂φ(t, x)

∂x
f(x, u) = L(x, u), (4.99)

which, upon rearranging, yields

∂φ(x, t)

∂t
− ∂φ(x, t)

∂x
· f(x, u)

L(x, u)
= 0. (4.100)
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The same process applies to the Hamilton-Jacobi-Isaacs equation, where

V (x) , min
u(·)∈U

max
v(·)∈V

∫ ∞
0

L(x(τ), u(τ))dτ, (4.101)

and

ẋ(t) = f(x(t), u(t), v(t)), x(0) = x0, t ∈ [0,∞), (4.102)

where f : Rn × U × V → Rn and L : Rn × U × V → R. The stationary Hamilton-

Jacobi-Isaacs equation is given by

H̃

(
x,
∂V (x)

∂x

)
= −L(x, u, v), (x, u, v) ∈ (Rn\T )× U× V,

V (x) = 0, x ∈ ∂T (4.103)

where

H̃

(
x,
∂V (x)

∂x

)
,
∂V (x)

∂x
f(x, u, v). (4.104)

Now, assume that (x, u, v) ∈ Rn × U× V, and let φ : [0,∞)× Rn → R so that

∂V (x)

∂x
=

(
∂φ(t, x)

∂t

)−1
∂φ(t, x)

∂x
, (4.105)

where V (x) = {t : φ(t, x) = 0, x ∈ Rn}. It follows from (4.103) that

(
∂φ(t, x)

∂t

)−1
∂φ(t, x)

∂x
f(x, u, v) = L(x, u, v), (4.106)

which, upon rearranging, yields

∂φ(t, x)

∂t
− ∂φ(t, x)

∂x
· f(x, u, v)

L(x, u, v)
= 0. (4.107)
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Both (4.100) and (4.107) are Hamilton-Jacobi PDEs in the same form as (4.1)

with U(t, x) = − f(x,u)
L(x,u)

for the transformed Hamilton-Jacobi-Bellman equation or

U(t, x) = − f(x,u,v)
L(x,u,v)

for the transformed Hamilton-Jacobi-Isaacs equation, which al-

lows us to solve for V (·) using level set methods. In both cases, it is assumed that

the inputs are known beforehand. This requires us to modify the toolbox [19] to

solve for u(·), v(·), and V (·) simultaneously.

4.5 Illustrative Numerical Examples

In this section, we will present the capability of our toolbox to solve optimal

control and differential game problems. We will present our solutions to the problems

that were outlined in Chapters 2 and 3 and discuss the effectiveness of our toolbox.

Specifically, upon solving the Hamilton-Jacobi-Bellman equation, using the nu-

merical integration schemes discussed in this chapter, our toolbox iteratively searches

over a discretized set of inputs to find u(·) that minimizes V (xi). Similarly, upon

solving the Hamilton-Jacobi-Isaacs equation, our toolbox iteratively searches over a

discretized set of inputs to find u(·) and v(·) such that V (xi) verifies (4.101).

4.5.1 Brachistochrone Problem

The first numerical example is the Brachistochrone problem presented in Section

2.3.1. This initial problem shows us that the toolbox is able to approximate the

solution for the optimal control policy of a trajectory. The numerical control policy

is able to approximate the analytical control policy as can be seen in Figure 4.1.

For the control policy, the mean error is 8.06% and the standard deviation is 3.26

degrees.

53



Figure 4.1: Brachistochrone Problem

4.5.2 Linear Quadratic Regulator

The second problem of interest is the time-invariant Linear Quadratic Regulator

presented in Section 2.5. The toolbox is able to accurately approximate the optimal

policy as can be seen in Figure 4.2. In this example, the average error between the

analytical control policy and the control policy found using our numerical methods

is 8.0% and the standard deviation is 2.56.
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Figure 4.2: Linear Quadratic Regulator Control

In addition, the toolbox was also able to accurately approximate the optimal

cost-to-go as can be seen in Figure 4.2. In this example, the average error between

the analytical cost and the cost found using our numerical methods is 2.0% and the

standard deviation is 0.3.

Figure 4.3: Linear Quadratic Regulator Cost-to-Go
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4.5.3 H∞ Optimal Control

The next problem of interest is the H∞ optimal control problem discussed in

Section 2.4. This control problem is equivalent to a differential game problem for

which the analytical solution is known. As can be seen in Figure 4.4 the control

policy found by the toolbox is an accurate approximation of the optimal control

policy. In this example, the average error between the analytical control policy and

the control policy found using our numerical methods is 7.38% and the standard

deviation is 0.09.

Figure 4.4: H∞ Control

As can be seen in Figure 4.4, the noise found by the toolbox is a good approx-

imation for the worst-case noise. In this example, the average error between the

analytical disturbance and the disturbance found using our numerical methods was

15.51% and the standard deviation is 0.04.
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Figure 4.5: H∞ Noise

As can be seen in Figure 4.6, the value of the game captured by our toolbox is

an accurate approximation of the analytical value of the game. In this example, the

average error between the analytical cost and the cost found using our numerical

methods is 0.35% and the standard deviation is 0.004.

Figure 4.6: H∞ Cost-to-Go
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4.5.4 Pursuer Evader Problem

The next problem that we considered to validate our toolbox is the pursuer

evader differential game problem discussed in Section 3.6. This differential game is

guaranteed to have a solution only if the pursuer’s speed is greater than the evader’s

speed. Therefore for our simulation we assumed that the speed of pursuer is 2 m/s

and its minimum turn radius is 1 m, while speed of the evader is 1 m/s.

To test the validity of the solution found by our numerical solver we simulated

three different scenarios. In all three cases the pursuer was able to capture the

evader which shows that our toolbox was able to find a feedback solution for the

pursuer to capture the evader. In the first simulation, the pursuer started at (0,0)

and the evader started at (0.6, 0.6), and as can be seen in Figure 4.7 the pursuer is

able to capture the evader.

Figure 4.7: Pursuer Evader Problem with Initial Conditions x = 0.6, y = 0.6
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In the second simulation the pursuer started at (0,0) and the evader started at

(0.6, 0.8), as can be seen in Figure 4.8 the pursuer was still able to capture the

evader.

Figure 4.8: Pursuer Evader Problem with Initial Conditions x = 0.6, y = 0.8

In the final simulation the pursuer started at (0,0) and the evader started at

(0.8, 0.8), as can be seen in Figure 4.9 the pursuer was still able to capture the

evader. From these three simulations, we verify that, as expected, the further away

the evader starts the longer it takes to be captured. This result also verifies the

validity of our toolbox since we were able to show successful capture of the evader

in every situation which is what the theory tells us will happen.
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Figure 4.9: Pursuer Evader Problem with Initial Conditions x = 0.8, y = 0.8

4.5.5 Target-Attacker-Defender Problem

The final problem that we solved was the target attacker defender differential

game problem discussed in Section 3.7. In this problem, we assume that the ratio of

the target’s velocity to the attacker’s velocity is 0.4 while the ratio of the defender’s

velocity to the attacker’s velocity is 1.

To test the solution found by our toolbox we simulated two different scenarios

using the control policy found. In the first scenario considered in this thesis, the

attacker starts at (-2,0), the defender starts at (-1,3), and the target starts at (-0.5,

2). Even though the attacker had a larger capture radius, the defender is still able

to intercept the attacker as shown in Figure 4.10.
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Figure 4.10: Target Attacker Defender Scenario 1

In the second scenario, the attacker starts at (0,0), the defender starts at (0.3,0.4),

and the target starts at (0.4, 0.3). As can be seen in Figure 4.11, if the defender

and the attacker have equal capture radius, then the defender is able to intercept

the attacker again.
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Figure 4.11: Target Attacker Defender Scenario 2

4.6 Conclusion

In this chapter we presented numerical integration schemes needed to solve

first order partial differential equations. These schemes have been applied to it-

eratively solve the Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Isaacs equations,

while searching for optimal control policies over some discretized domain. The valid-

ity of our toolbox, which leverages on [19] to solve the Hamilton-Jacobi equation for

a given control policy, has been verified by solving optimal control and differential

game problems, whose analytical solutions have been presented in Chapters 2 and

3.
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Chapter 5. Conclusion

In this thesis, we presented the necessary and sufficient conditions to solve optimal

control and differential game problems. We then presented the level set methods

which are capable of solving Hamilton-Jacobi PDEs and showed how they were

applied in our original toolbox to solve the Hamilton-Jacobi-Bellman and Hamilton-

Jacobi-Isaacs equation. We then demonstrated the capability of our toolbox by

presenting the numerical solutions to the problems presented in Chapters 2 and 3.

Our toolbox contributes to the existing material by providing a method which can

find the inputs that solve the optimal control and differential game problems as well

as characterize the cost function through the application of level set methods. To

our knowledge, this is unprecented.
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