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Determining clinically relevant biomarkers of mental disorders for reliably 

indicating pathophysiological processes or predicting therapeutic responses remains a 

major challenge, despite decades of research. Identifying such biomarkers can help 

patients significantly improve their quality of life and alleviate their suffering. 

Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are 

non-invasive tools to investigate neurobiological mechanisms underlying mental 

disorders. Extracting and leveraging informative features from the high temporal 

resolution EEG and high spatial resolution fMRI may offer a more comprehensive 

understanding of brain spatial and temporal activities in health and disease. More 

importantly, this information can lead to a better understanding of the neurobiology of 

mental illness. This dissertation investigates the analyses and applications of extracting 

and combining informative features from EEG and fMRI, along with applying machine 

learning (ML) and computational methods for building biomarkers of mental illnesses.  

Several methodological challenges in the extraction of informative and reproducible 

features are also addressed.   First, two types of EEG features obtained from resting state 

EEG-fMRI measurements were extracted: 1) broadband-multichannel EEG dynamical 

features, called EEG microstates (EEG-ms); and 2) heterogeneous, static EEG features. 

Using EEG features only, results elucidate that: 1) EEG-ms characteristics and 

information theoretical properties can successfully differentiate individuals with mood 

Abstract 



xx 

and anxiety disorders from healthy comparison subjects with potential applications for 

other clinical groups; and 2) heterogeneous static EEG features can successfully predict 

“brain aging,” noted here as BrainAGE from 468 EEG datasets, achieving a correlation 

of r=0.61 between predicted age and chronological age. 

Next, extracted EEG features were leveraged with fMRI to enhance the predictivity 

of BrainAGE and localizing the associated EEG-ms brain regions. More specifically, 

static EEG features were combined with resting state fMRI features to construct a 

multimodal BrainAGE predictor as a case study. Notably, it was found that EEG and 

fMRI contain a large portion of shared information about age, although each modality 

has its fingerprint of the aging process. The developed approach is a general purpose and 

be applied to predict other outcomes from brain imaging data. Similarly, EEG-ms features 

were integrated with fMRI to localize associated brain regions within fMRI space, 

revealing functional brain connectivity changes in individuals with mood and anxiety 

disorders as a case study. As a result, harnessing combined EEG-fMRI methods have 

enriched our knowledge some mental disorders and broadened our understanding of them 

with potential applications for other clinical groups and outcomes.  Finally, this work 

evaluated the reproducibility and replication of EEG-ms analysis to address technical 

issues that have thus far been overlooked in the literature. 

 In conclusion, the presented work describes technical methods developed to study 

and discover several clinically translatable biomarkers that can be reliably used to 

characterize various mental disorders.
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 Introduction 

The human brain may be considered among the most complex dynamical systems. 

In terms of functionality, the brain is organized into large neural clusters, which are 

synchronized among each other to form a set neurocognitive and functionally neural 

network [1, 2]. The high level of synchrony allows the networks to work collaboratively 

for sustaining necessary and complex human actions, like walking, speaking, writing, or 

even flying an airplane. While the spatial distribution of these networks is widely agreed 

upon, the underlying neural mechanism(s) have remained understudied, and many 

unanswered questions remain. Elucidating the underlying mechanism’s governing the 

brain’s temporal dynamics may help us to better understand how the brain works, and 

more importantly for this dissertation, how mental disorders alter these neural 

functionalities. Various techniques are available to measure brain activity and extract 

information that directly or indirectly characterizes the functionality of brain networks.  

Among those techniques, electroencephalography (EEG) and functional magnetic 

resonance image (fMRI) stand out due to their safe and non-invasive techniques. fMRI 

measures the change in the blood oxygenation level-dependent (BOLD) signal induced 

by neural activity. EEG measures the underlying electrical activity produced by large 
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coherent electric activities of pyramidal neurons. Thus, both modalities reflect and 

capture similar neural activity but do so using different signal mechanism formation.  

Recently, combing these modalities has become possible; hence, more valuable 

information can be drawn from analyzing both modalities. The next section offers an 

overview of fMRI, EEG, and the foundations of combing principles.   

 fMRI Signal and Measurement 

fMRI relies on the magnetic property of the hemoglobin molecule, which depends 

on whether or not the molecule is attached to oxygen. Oxygenated hemoglobin (Hb) is 

diamagnetic due to the absence of unpaired electrons. Thus, the presence of external 

magnetic field (e.g., MRI polarizing magnetic field B0) Hb effect on a magnetic field in 

its vicinity is minimal. In contrast, deoxygenated hemoglobin (dHb) influences a more 

polarizing magnetic field in its vicinity due to the existence of unpaired electrons. 

Deoxygenated blood has a magnetic susceptibility that is approximately 20% greater than 

fully oxygenated blood [3]. The contrast (i.e., measured effect in the local magnetic fields 

changes) is then identified as the difference between oxygenated and deoxygenated 

hemoglobin concentrations. When a brain region becomes active, it consumes energy and 

uses oxygen for that process, resulting in deoxygenation of hemoglobin and local increase 
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of fully oxygenated blood flow [4-7].  Figure 1-1 depicts an illustrative example of the 

relationship between BOLD signal and hemoglobin. 

 

Figure 1-1: The basics of measuring the BOLD signal. Part A offers an illustration 

about the relationship between the oxygenation of Hb and the measured BOLD signal. 

Part B presents a general overview of vascular system activity and the BOLD signal. 

Change in the magnetic resonance (MR) signal due to the neural activity can be modelled 

with the hemodynamic response function (HRF), which is usually divided into a series of 

phases as a response to an event. Firstly, the initial small decline of the HRF is a short-

term decrease in MR signal immediately following neural activity and can be explained 

as the immediate increase in deoxygenated hemoglobin due to oxygen extraction before 

the vascular system overcompensates for oxygen consumption. Secondly, as heightened 

neural activity demands more blood flow to supply energy to the current brain region, 

deoxygenated hemoglobin starts to decrease rapidly.  Therefore, the MR signal recorded 

from a particular voxel in this brain region begins to increase. Typically, the HRF peak is 

reached two to four seconds after a particular event (i.e., brain activity). Finally, when 

neural activity has ceased, the BOLD signal begins to decrease to a level that is below the 

baseline; this reduction is called the HRF under-shoot. Later, when blood volume returns 
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to its normal flow, the MR signal returns to its pre-event baseline state. Figure 1-2 

presents a plot for the canonical HRF function, highlighting the phases explained above. 

 

Figure 1-2: The canonical Hemodynamic Response Function. 

An illustrative example of the fMRI recording is demonstrated in Figure 1-3. 

 

Figure 1-3: The basics of fMRI recording from the brain. The brain is divided into 

cubes, referred to voxels. Each voxel is composed of thousands of dense neurons. 

Relative changes in the BOLD signal is an indirect indication of underlying neural 

activity. 
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Due to the nature of fMRI (i.e., entire brain recording parameters), its temporal 

resolution is on the order of ~0.6-2 seconds. This imposes limitations on deriving 

conclusions about the temporal dynamics of the brain. When recording the entire brain 

fMRI data at multiple time points, the brain is divided into cubes, typically with relative 

dimensions of 2×2×2 mm3, referred to as voxels, and time course of the fMRI signal in 

each brain voxel is recorded simultaneously. For fMRI analysis, the BOLD time course 

signal from each voxel is used for subsequent analysis. An illustrative example of the 

fMRI recording is demonstrated in Figure 1-3.  

 EEG Signal and Recording   

EEG signal primarily results from electrical activities of a large population of 

pyramidal neurons synchronized in space and time. As the brain is functionally divided 

into interleaving networks, the central processing units are neurons that form hubs of 

these networks. When evoking a network, neurons become active and produce electrical 

and magnetic fields. EEG sensors placed on the scalp obtain and record summed electrical 

field effects (e.g., electric potentials) from active neurons (See Figure 1-4). This 

summation of electrical signal provides a direct and high-temporal resolution 

measurement of brain activity. However, the fact that the measure is conducted at the 

scalp (e.g., order of 2 to 4 cm away from cortical electric dipole sources) brings into 

question the accuracy of spatial localization of the precise source location of neural 

activity. The problem is ill-posed without a unique solution—rather an infinite number of 

possible source configurations [8].  
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Figure 1-4: Understanding EEG recording. Each electrode measures a summed 

electrical field produced by neural activity. Using several electrodes spread out across 

the scalp, EEG analysis is conducted for the resulted time courses of electrodes.  

 Combining EEG-fMRI  

Both EEG and fMRI have strengths and weaknesses. Foremost, EEG is a direct 

measure of brain neuronal activity with a high temporal resolution (e.g., order of 

milliseconds [ms]), although it suffers from low spatial resolution. On the contrary, fMRI 

can detect hemodynamic changes associated with brain neuronal activity and has an 

excellent spatial resolution, albeit with low temporal resolution (e.g., order of 1s). 

Therefore, combining information from both techniques can significantly enhance our 

understanding of the brain’s spatio-temporal neuronal activity and, thus, how different 

mental disorders alter functionalities of the brain. This work utilized simultaneous EEG-

fMRI data and integrated EEG and fMRI analysis, where information from EEG data is 

used to provide a better understanding of the functional connectivity of specific spatial 

locations within and across the brain. Hence, detailed temporal information from EEG 

can be combined with high spatial fMRI resolution. Thus, one can assume that both EEG 
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and fMRI can capture and reflect the same neural activity in the brain [4-7, 9-13] (See 

Figure 1-5). Therefore, combining information from EEG and fMRI can enhance our 

knowledge of when, where, and what is happening during various brain functions. To do 

so, EEG data (e.g., time or frequency) are utilized in the fMRI side by correlating BOLD 

signal with EEG-derived metrics.  

 

Figure 1-5: Shared information between EEG and fMRI. Both modalities may reflect 

the same neural activity and yet differ in measuring techniques. 

 Methods of Integrating EEG-fMRI Data 

Based on the weight of each modality in the overall model, combining EEG–fMRI 

can be divided into either asymmetrical or multimodal fusion (Figure 1-6). 
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Figure 1-6: EEG-fMRI integration concept. Information from each modality is combined 

with information from the other modality using certain weights, depending on the 

integration approach. 

1.5.1 Asymmetrical EEG-fMRI Integration 

Asymmetrical integration relies on using one modality to inform the other by 

benefiting from either the high temporal resolution of EEG or the high spatial resolution 

of fMRI. Thus, one can divide the asymmetrical integration into EEG-informed fMRI and 

fMRI-informed EEG analyses.   

• EEG-informed fMRI 

In this type of analysis, high temporal resolution information from EEG are used to 

generate regressors, and then used for fMRI data analysis to localize the brain regions 

associated with effect (i.e., revealing brain regions with a significant association between 

EEG information and hemodynamic brain activity). This type of analysis does not impose 
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any assumptions about the neural generators of EEG in terms of spatial distribution. 

Therefore, selecting potential EEG information depends on the research question and the 

task. For instance, one can use specific frequency, event-related potential (ERP) 

information or even spectral information to inform fMRI. This freedom may sometimes 

come at the cost of the interpretability of results. Several studies have used this type of 

integration. For example,  associating  ERP features with changes in BOLD signal has 

been explored for attention [14-16], memory [17], and visual [18, 19] processing.  Other 

EEG features have also been used to inform fMRI [20, 21], including the use of EEG-ms 

[22-25].  

Methodologically, the General Linear Model (GLM) [26] is considered one of the 

primary approaches for combining EEG and fMRI information by relying on associating 

BOLD signal with EEG information. The time course of each voxel (i.e., response of 

neural activity at specific brain regions) is used to build a weighted sum of EEG 

information (or regressors), as follows: 

𝑦𝑖 = 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +  𝛽3𝑥𝑖3 + ⋯ + 𝜀𝑖                                      (1.1) 

where i indexes each brain voxel; 𝛽𝑗 indexes model parameters; 𝑥𝑖𝑗 is the regressor value 

associated with each model parameter 𝛽𝑗; and 𝜀𝑖 is the error term. The previous equation 

can be put into matrix format, as follows: 

𝑦 = 𝑋𝛽 + 𝜀                                                             (1.2) 

Regressors represent the effects of interest. However, fMRI response is delayed 

relative to onset time of neural activity. BOLD is induced by changes in blood flow 

rather than a direct neural measure; therefore, regressors should be convolved with the 

HRF (Figure 1-2) to account for signal delay. Various types of information can be used 
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as regressors. This project used EEG microstate (EEG-ms) features as regressors to 

inform and to interpret fMRI analysis (See Figure 1-7 for a depiction of EEG-fMRI 

GLM modeling). The next chapter introduces EEG-ms and delineates the set of features 

that can be used as regressors. 

 

Figure 1-7: GLM approach for integrating EEG-fMRI. The time course of EEG 

regressors are convolved with HRF function and down-sampled to BOLD signal 

resolution. After extracting the time course of BOLD signal from Brain’s voxels, the 

Beta coefficients of the linear relationship between EEG regressors and BOLD signal 

are estimated using GLM. 

fMRI-informed EEG  
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In this type of integration, the information from functional and structural MRI data is 

used to guide EEG analysis for improving EEG source localization and for alleviating the 

low spatial resolution of EEG data. Various algorithms used to localize sources of EEG 

data assume a particular biophysical structure of the brain (e.g., brain tissues and skull 

electric conductivities), and, thus, fMRI can be used to relax and gain a better estimate of 

the activity or limit the search space of the neural generators. Hence, this approach 

assumes that fMRI carries information about the neural activity (i.e., neural activity is 

always accompanied by changes in BOLD activity)—an assumption that is not always 

valid.  While this approach is now less common than EEG-informed fMRI analysis, it is 

still being used in the literature [27-29]. 

1.5.2 Multimodal Fusion  

Unlike asymmetric integration, multimodal fusion does not favor one modality 

over the other but instead utilizes supervised or unsupervised approaches to deduce latent 

variables from both modalities [30-33]. In other words, both EEG and fMRI data are 

concatenated at the same level, and then latent variables from both modalities are 

extracted.   This fusion approach relies on the nature of the deployed methods, as well as 

various research assumptions. One of the most common approaches to fuse data is 

independent component analysis (ICA), which relies on the assumption that the data can 

be decomposed into a set of linearly independent sources [34]. While multimodal fusion 

may overcome the issue of the biased representation in asymmetric data confusion, 

interpretation of multimodal fusion results is more challenging. 
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 EEG and fMRI for Discovery of Mental Disorders Biomarkers  

The brain concurrently processes a tremendous amount of information in both 

time and space [1, 2].  Thus, it is plausible to assume that there is an association between 

mental disorder symptoms and alterations in brain functionality. Studying brain 

functionality in different mental disorders can provide indicators about those mental 

disorders.  However, the relationship might be more complex than can be explained by 

mere changes in the functionality of the brain.  Nevertheless, mental disorders certainly 

may have a strong influence on the brain spatial and temporal neural activities that could 

be detected by brain multimodal EEG-fMRI imaging. 

Concurrent processing occurring in regions across the brain is measured by the 

brain’s functional connectivity (FC) during fMRI recording while individuals are in a 

resting state [35]. FC has been used for characterizing various disorders, including major 

depressive disorder [36], generalized anxiety and panic disorders [37], Alzheimer’s 

disease [38], schizophrenia [39] and autism [40]. EEG, on the other hand, has also 

achieved remarkable diagnostic accuracy for several disorders, such as epilepsy [41], 

depression [42] [43], anxiety disorders [44],  schizophrenia [45] and Alzheimer’s disease 

[46]. Moreover, the combination of EEG and fMRI has also been used to advance our 

understanding of post-traumatic stress disorder (PTSD) [22], depression [47], and 

epilepsy [48]. Thus, neuroimaging techniques provide great potential in identifying brain-

based biomarkers of mental disorders that may aid in clinical screening, early 

intervention, and treatment outcome evaluation.  

The work presented herein aims at enriching brain-based disorder classification 

by using several analyses, including EEG, fMRI, and simultaneous EEG-fMRI to attempt 
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to differentiate individuals with mood and/or anxiety disorders [MA] (e.g., major 

depressive disorder, social phobia, generalized anxiety disorder, posttraumatic stress 

disorder, and/or panic disorder) from healthy control (HC) comparison subjects without 

a current or lifetime history of such disorders.  

 Dataset of Simultaneous EEG-fMRI Recording  

Participants were selected from the first 500 subjects of the Tulsa 1000 (T-1000), 

a naturalistic study assessing and longitudinally following 1000 individuals, including 

healthy comparisons and treatment-seeking individuals with mood disorders and/or 

anxiety, substance use, and eating disorders [49]. The T-1000 study aims to determine 

how MA, substance use, and eating behaviors organize across different levels of analysis 

with a focus on predictors of long-term prognosis, symptom severity, and treatment 

outcome. The T-1000 study is conducted at the Laureate Institute for Brain Research in 

Tulsa, Oklahoma. The study human research protocol was approved by the Western 

Institutional Review Board. All participants provided written informed consent and 

received financial compensation for participation. As detailed  [49], the participants in 

this work were screened on the basis of treatment-seeking history and dimensional 

psychopathology scores: Patient Health Questionnaire-9 (PHQ-9) ≥ 10 and/or Overall 

Anxiety Severity and Impairment Scale (OASIS) ≥ 8. Each participant underwent 

approximately 24 hours of testing over the course of one year, including a standardized 

diagnostic assessment, self-report questionnaires, behavioral and physiological 

measurements indexing RDoC domains, and blood/microbiome collection. A structural 

MRI, resting-state fMRI, task-based fMRI during reward-related processing, fear 
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processing, cognitive control/inhibition, and interoceptive processing were also collected 

with simultaneous EEG recording. Please refer to Appendix A for detailed clinical 

assessment information. Specifications for subjects are reported in each chapter, 

including the clinical population, recording type, and other preprocessing steps.  

 Data Acquisition of Simultaneous EEG-fMRI 

MRI imaging and simultaneous EEG-fMRI was conducted on a General Electric 

Discovery MR750 whole-body 3T MRI scanner with a standard 8-channel, receive-only 

head coil array. A single-shot gradient-recalled EPI sequence with Sensitivity Encoding 

(SENSE) was employed for the fMRI acquisition. EEG signals were recorded 

simultaneously with fMRI using a 32-channel, MR-compatible EEG system (Brain 

Products GmbH) with measuring electrodes arranged according to the international 10–

20 system. ECG signal was recorded using an electrode on the subject’s back. In order to 

synchronize the EEG system clock with the 10 MHz MRI scanner clock, a Brain 

Products’ SyncBox device was utilized. The EEG acquisition of temporal resolution and 

measurement resolutions was 0.2 ms (i.e., 16-bit 5 kS/s sampling) and 0.1 μV, 

respectively. Hardware filtering throughout acquisition in a frequency band between 

0.016 and 250 Hz was applied to EEG signals.  

 Summary of Contributions 

The following points summarize the contribution of this work. 

• Revisiting mathematical derivation of EEG-ms extraction and revealing several 

issues that have been overlooked in the literature (Chapter 2 and Chapter 7). 
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• Building a toolbox for extracting EEG-ms with various configurations based on 

Chapter 2.   

• Extracting and identifying biomarkers for MA subjects using EEG-ms features 

and information theory. Published in [44].  

• Modeling and implementing an extensive feature extraction from EEG data. 

Published in  [50]. 

• Building a comprehensive ML framework to study BrainAGE and other responses 

from EEG data. Published in [50].  

• Analyzing the shared information analysis between EEG and fMRI for predicting 

BrainAGE (Chapter 5). 

• Building a Combined EEG-fMRI ML framework for predicting BrainAGE and 

other responses. 

• Utilizing and building a pipeline for using EEG-ms to inform fMRI with a case 

study on MA subjects (Chapter 6). 

• Analyzing various parameters that can affect EEG-ms feature extraction and 

proposal of a new approach for conducting robust EEG-ms analysis (Chapter 7).   

 Dissertation Outline  

This dissertation is organized as follows.  

Chapter 2. EEG Microstates: Theory, Principles, and Analyses 

This chapter offers a mathematical and theoretical explanation for EEG-ms extraction, 

detailing the necessary steps to move EEG-ms from subject-level to group-level analysis.  
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Chapter 3. Evidence of altered EEG Microstates’ Temporal Dynamics in Individuals with 

Mood and Anxiety Disorders 

Using EEG-ms features explained in Chapter 2, this chapter explores the alteration of 

EEG-ms properties in individuals diagnosed with MA when compared with HC subjects 

from the Tulsa-1000 study.  

Chapter 4. Predicting Age from EEG Using Unbiased Machine Learning Framework 

The interaction between heightened mental illness and accelerated brain aging has been 

relatively unexplored, yet, may provide insight into mechanisms characterizing symptom 

severity. This chapter explores the feasibility of predicting age from EEG data by 

extracting a set of widespread and heterogonous features from EEG data. Also, this 

chapter presents a non-biased machine learning (ML) framework for regression from 

biomedical data.  

Chapter 5. BrainAGE Prediction Using Simultaneous EEG-fMRI Features 

Extending the work in Chapter 4, Chapter 5 investigates how much information EEG and 

fMRI share with regard to age. FC metrics were extracted, as well as the amplitude of 

low-frequency fluctuation (ALFF) features from fMRI. Then, those features were used 

along with EEG features obtained in Chapter 4 to build a more comprehensive age 

predictor.  

Chapter 6. Studying Brain Based Biomarkers of Mood and Anxiety Disorders: An EEG-ms 

Informed fMRI Analysis 

Localizing the effect of EEG-ms features in the fMRI domain may help to overcome the 

low spatial resolution of EEG-ms analysis. Given that Chapter 4 details alterations of 

EEG-ms transition dynamics in MA subjects, this chapter explains how templates of 

EEG-ms representation in the brain were extracted from HC subjects using GLM 
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modeling. Then, the global FC among EEG-ms templates was explored and correlated 

with a specific MA symptom to better understand alterations in individuals with 

significant psychopathology.  

Chapter 7. Proposal of a New Approach to Analyze EEG Microstates Data  

One of the goals of human subject research is to produce reliable and robust results, which 

could be replicated independently. This chapter addresses several practical issues with 

reproducing EEG-ms results. First, the chapter explains several challenges of EEG-ms 

extraction and analyses, along with the exemplary data. Then, it provides some guidelines 

to avoid such challenges. 

Chapter 8. Conclusion and Future Work 

This chapter integrates all analyses presented in this dissertation and provides 

recommendations for further studies involving EEG and fMRI data. 
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 Introduction  

Electroencephalography (EEG) has been used for studying and phenotyping 

various types of neuropsychiatric and neurodegenerative disorders [51-53].  Recent 

efforts aim to discover and provide cost-effective, reliable markers for aberrant brain 

activity patterns relevant to major psychiatric disorders. Distinct topographic 

representation of the EEG electric scalp potentials—lasting a few dozen of a millisecond 

and coined an EEG-microstates (EEG-ms)—provides an opportunity and a novel tool for 

discovering unique markers of different brain disorders [54].  EEG-ms was first 

introduced by Lehmann, et al. [55], where it was revealed that EEG signals could be 

segmented into a few spatially independent quasi-stable (i.e., lasting a few dozen ms) 

states (i.e., microstates). The segmentation of EEG signals is carried out at extrema points 

of the EEG global field power (GFP), which can maintain a high signal-to-noise ratio 

(SNR) and provide a reliable source for identifying microstates (MSs) Figure 2-1.  Two 

seminal reviews of EEG-ms were presented in [54, 56].  

The functional interpretation of EEG-ms could be explained as coordinated and 

synchronized neuronal current activity of many neurons that happen to be activated 

together, as demonstrated in previous studies [54, 56]. Thus, a change in the topographies 

Chapter 2 : EEG Microstates: Theory, Principles, and 

Analyses 
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of MSs may be attributed to a change in the orientation or distribution of the current 

dipoles [55, 57]. Alteration in the properties of EEG-ms presumably reflects a disruption 

in the underlying brain networking processes and information flow.  Furthermore, 

spatially independent EEG-ms [55], and especially temporally independent EEG-ms [22, 

23], were revealed to be correlated with resting state networks (RSNs), measured fMRI 

[23, 24, 58].  Additionally, other studies reported that EEG-ms are associated with 

particular mental processes [24, 56, 59-65].  The source localization of EEG-ms was 

investigated in [66], in which authors identified seven MSs (A through G) and localized 

the source of these MSs. Their results suggest a common activation among those MSs in 

the brain’s main hubs (e.g., precuneus, anterior and posterior cingulate cortices, insula, 

superior frontal cortex, and other brain regions). Therefore, the EEG-ms can characterize 

network alteration or disruption in brain functionality due to disorders and offer potential 

biomarkers. Evidence of the relationship between mental processes and EEG-ms has led 

to several works aimed at studying EEG-ms properties in neuropsychiatric disorders. 

Early works of spatially independent EEG-ms focused on schizophrenia and showed 

moderate to substantial differences in EEG-ms properties between subjects with 

schizophrenia and healthy groups [67-71].  Other works have also revealed an alteration 

in EEG-ms for other diseases, like dementia produced by Alzheimer’s [72-74]. Some 

neuropsychiatric illnesses were also shown to affect certain MSs, including depression 

[71], panic disorder [75], narcolepsy [76],  multiple sclerosis [77] and Tourette syndrome 

[78].   

It is reasonable to assume that the brain can be in one MSs at each time point in the ideal 

case. To understand modeling EEG-ms, the EEG-ms derivation was revisited and several 
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aspects were emphasized to ensure the quality of extracted MSs. While in the ideal case, 

it is reasonable to use the entire resting state dataset to compute individual templates of 

EEG-ms. Also, the level of noise within the EEG data might lead to data mislabeling. 

Assigning labels to each point in the EEG time course should also take into consideration 

that some points of EEG could be contaminated by noise. Thus, one suggestion is to label 

only points corresponding to high SNR (i.e., reflective of peaks in GFP) and interpolate 

data points in between (i.e., points that do not correspond to GFP peaks are assigned based 

on labels of the nearest peak).  

GFP is commonly used to determine the extrema points, defined as the spatial standard 

deviation of EEG signals across all channels.  GFP is a reference-free measure, wherein 

regardless of the EEG reference methods during and after EEG recording, the GFP will 

be the same.  It has been shown that the peaks of GFP maintain a high SNR [54, 55]. 

Thus, focusing on GFP peaks may improve results. Furthermore, taking into 

consideration the peaks of GFP helps reduce the dimensionality of EEG data. 

 

𝐺𝑃𝐹 = √
∑ (   𝑣𝑖(𝑡) − 𝑣̅𝑖(𝑡))2𝑝

𝑖=1

𝑛
                                             ( 2.1) 

where 𝑝 is the number of electrode; 𝑣̅𝑖(𝑡) is the mean of electrode values at time point t; 

and 𝑣𝑖(𝑡) is the values of electrode i at time point t.  
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Figure 2-1: EEG-ms segmentation over time. During any recording of EEG, each point 

can be assigned to one of four canonical EEG-ms classes. 

 EEG-ms Modeling  

EEG-ms assumes that EEG topographies of the brain can be explained by a set of states 

or, in this analysis, MSs. Typically, the number of MSs is between two and six states.  

Mathematically, one can represent EEG as a function of EEG-ms by the following 

equation: 

𝑥𝑡 = ∑ 𝑎𝑖𝑡𝑇𝑖 + 𝜖𝑡

𝐾

𝑖=1

 (2.2) 

where𝑥𝑡 (𝑝 × 1) is the electrodes value at timepoint 𝑡. 𝑎𝑖𝑡 is a factor related to 

each MS at each time point and 𝜖𝑡 is an error term associated with assigning that time 

point to one of the MSs (i.e., noise due to the lack of explained topographical 

representation of that point by the assigned MSs template).  𝐾 is the number of assumed 

MSs.  Given the assumption that each time point in EEG can belong to one and only one 

MS holds (i.e., non-overlapping), then the following condition must be satisfied:   

{

𝑎𝑙𝑡𝑎𝑚𝑡 = 0 ∀𝑙 ≠ 𝑚

∑ 𝑎𝑖𝑡
2 > 0,  ∀𝑡

𝐾

𝑖=1

 (2.3) 
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If T (𝑝 × 𝐾) was normalized as following, then: 

‖𝑇𝑖‖ = 1  and  (T𝑖
′𝑇𝑗)2 < 1 𝑓𝑜𝑟 𝑖 ≠ 𝑗  and 𝑖, 𝑗 ∈ [1. . 𝑘] 

The goodness of fit for time point 𝑥𝑖 is given as follows: 

𝑓𝑖 = 𝑥𝑖
′ × 𝑇 (2.4) 

The result is a vector 1 × 𝐾 corresponding to the fit of  𝑥𝑖 against each template. 

Typically, each  𝑥𝑖 is assigned to the MS with the highest fit.  

𝐿𝑖 = argmax
𝑘

(𝑓𝑖) (2.5) 

To account for the polarity invariant property of EEG-ms, one should use the following 

equation instead: 

𝐿𝑖 = argmax
𝑘

(𝑎𝑏𝑠(𝑓𝑖)) (2.6) 

However, 𝑇 must first be randomly initialized, since there is no other information 

about 𝑇. Thus, there is a need for an iterative process to improve estimation for 𝑇. To do 

so, this research relied on finding the Eigenvector that corresponds with the largest 

Eigenvalue to update templates 𝑇.  Let us first find the sample covariance 𝑆𝑖 of all EEG 

points 𝑋𝑖 that belong to the template 𝑇𝑖 , where 𝑖 is the index of the MS. 

𝑆𝑖 = 𝑋𝑖𝑋𝑖
′             (2.7) 

𝑇𝑖 = argmax
𝑥

(𝑋𝑖
′𝑆𝑖𝑋𝑖) (2.8) 

The process of updating labels for each time should be repeated (2.6), as new 

templates are available.  It should be noted that the process of updating the templates is a 

heuristic procedure. Thus, a stopping criterion is needed for iteratively updating 

templates.   One way to evaluate the stopping criterion is to measure the explained 

variance by the template. 
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𝜎𝐷
2 =

∑ (𝑋′
𝑖
𝑋𝑖)

2𝑛
𝑖=1

𝑛(𝑝 − 1)
 

(2.9) 

where 𝜎𝐷
2 represents the fit around the mean for the dataset, 𝑛 is the number timepoints 

in the considered dataset and 𝑝 is the number of electrodes in the datasets. Thus, the 

explained variance can be written as: 

𝜎𝑢
2 = ∑((𝑋′

𝑖
𝑋𝑖 − (𝑇𝑖

′𝑋𝑖)
2)

𝑛

𝑖=1

/(𝑛(𝑝 − 1)) (2.10) 

The coefficient of determination 𝑅2  (referred to as the global explained variance 

(GEV)) can be found as follows: 

𝑅2 = 1 − 𝜎𝑢
2/𝜎𝐷

2          (2.11) 

While the previous derivation of EEG-ms is the mathematical basis of any EEG-

ms analysis, other variations  appear frequently in the literature. The most common 

variation is  referred to as Atomize and Agglomerate Hierarchical Clustering (AAHC) 

[79, 80]. The approach relies on top-down hierarchical clustering for EEG data. AAHC 

starts by assuming each EEG time point is cluster and then does iterative elimination 

(Atomizing) and merging, until reaching the desired number of clusters (𝐾).  

Mathematically, AAHC assumes each EEG timepoint 𝑥𝑖 a cluster and treats it as  

templates of clusters: 

𝑇 = [𝑥𝑖]        𝑖 ∈ [1. . 𝑛] (2.12) 

To find the potential clusters to eliminate (atomizing), the explained variance (EV) is 

calculated as follows: 

𝐸𝑉𝑖 = 𝑇𝑖 × 𝑇𝑖    𝑖 ∈ [1. . 𝑛] (2.13) 

AAHC finds clusters with smallest fit for later elimination:  
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𝑓𝑒 = 𝑚𝑖𝑛 (𝐸𝑉𝑖)      𝑖 ∈ [1. . 𝑛] (2.14) 

Typically, the AAHC eliminate one cluster, 𝑇𝑒, at each iteration and assign it to the best 

fit cluster: 

𝑓𝑒 = 𝑇′ × 𝑇𝑒    𝑖 ∈ [1. . 𝑛]  ∧ 𝑖 ≠ 𝑒 (2.15) 

𝐿𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖∈[1..𝑛] ∧𝑖≠𝑒

(𝑎𝑏𝑠(𝑓𝑒)) (2.16) 

Updating clusters is needed after each process of elimination and reassignment. This is 

done by deploying equations (2.7) and (2.8).  

The processes of elimination, reassignment, and clusters updating are repeated until the 

number of remaining clusters is equal to the number of desired clusters.  

The previous steps identify the templates from individual datasets.  To compare different 

datasets (i.e., subjects), one should find the mean template across all subjects.  

 Generalization from Subject Level to Group Level  

The template from subjects may not be similar to templates across all subjects 

from the same group. Keeping this in mind, it is important to find a common template 

across all subjects.   

Let’s first assume a random mean template 𝑇𝑖 
𝑀 , and that the template from subject j is 

represented by superscript, such as 𝑇𝑖 
 𝑗 . To find the fit between the 𝑇𝑖 

𝑀  and subject 

template: 

𝑓𝑖 
𝑗 =  𝑇 

𝑗
𝑖
′ × 𝑇𝑖 

𝑀         (2.17) 

As this procedure is for one subject, we must use the following to determine fit for 𝑁 

subjects: 
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𝐹 = [ 𝑓𝑖 
𝑗 ] with 𝑗 = 1. . 𝑁 (2.18) 

Since the mean template was chosen arbitrarily (i.e., individual templates from subjects 

are not ordered), the mean must be updated. First, the subject with the smallest fit was 

determined: 

𝑟 = min
𝑓

(𝐹)          (2.19) 

Then, templates of the subject 𝑟 corresponding to the smallest fit 𝑇  
𝑟  were permuted to 

find the best order for maximizing overall fit: 

𝑇  
𝑟 = 𝑎𝑔max

𝑇
( 𝑓  

𝑟 ) (2.20) 

Next, the mean template was updated based on the new order.  Eigenvector corresponding 

the largest Eigenvalue was used again to find the new mean template. First, sample 

variance across each template was found from all datasets: 

𝑆𝑖 = 𝑇𝑖 × 𝑇𝑖
′         (2.21) 

with 𝑇 
𝑗

𝑖
  representing template 𝑖 from all subjects.  

𝑇 
𝑀

𝑖
 = argmax

𝑇
(𝑇𝑖

′𝑆𝑖𝑇𝑖) (2.22) 

The previous process was repeated for all templates until no subject remained for 

ordering. Having found the mean template for all datasets, each time point from each 

subject was reassigned to the corresponding template based on the mean template:  

𝑓𝑖 = 𝑥𝑖
𝑇 × 𝑇 

𝑀
 
  (2.23) 

𝐿𝑖 = argmax
𝑘

(𝑎𝑏𝑠(𝑓𝑖)) (2.24) 

The previous equation represents updated labels for each time point from each dataset. 

The next step is finding the corresponding features from each dataset.  



26 

 EEG-ms Characteristics     

From there, one can extract several EEG-ms characteristics: 

• Average Duration of cluster k: 

𝐷𝑘 =
sum(𝐿𝑖=𝑘)

𝑛 × 𝐹𝑠
 (2.25) 

 With 𝐹𝑠 is the sampling rate of EEG. 

•  The occurrence of cluster k: 

𝐶𝑘 =
𝑛

sum(𝐿𝑖=𝑘)
 (2.26) 

• The transition probability (TP) between two clusters TP(p → q) across the 

entire dataset is given below: 

𝑇𝑃(u → v) =
sum(𝐿𝑡=𝑣|𝐿𝑡−1=𝑢)

𝑛
 

 

(2.27) 

 Extracting EEG-ms in Practice 

From the practical point of view, extracting EEG-ms can be summarized in Figure 

2-2. There are necessary steps needed before conducting EEG-ms, including EEG 

preprocessing for artifacts removal and filtering.  EEG-ms are sensitive for the presence 

of noise in EEG as has been shown the Chapter 7; hence, noise suppression is required. 

On the other hand, EEG filtering is commonly used in the literature with two options [2-

20] Hz and [1-40] Hz [56].  

Selecting EEG timepoints for extracting EEG-ms templates is achieved based on the 

peaks of GFP. Thus, extracting those peaks is necessary before extracting EEG-ms 
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templates. Chapter 7 provides analyses of the effect of using GFP peaks for extracting 

EEG-ms.  

 

 

Figure 2-2: A diagram of the main steps for extracting EEG-ms from N subjects. 
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(All the presented results in this chapter are reproduced and adapted from: Al Zoubi, 

Obada, et al. "EEG Microstates Temporal Dynamics Differentiate Individuals with Mood 

and Anxiety Disorders From Healthy Subjects." Frontiers in human neuroscience 13 

(2019): 56.) 

 Introduction 

Chapter 2 elaborated on EEG-ms analysis to extract potential biomarkers for 

mental disorders. This chapter uses the same analysis to study subjects with MA disorders 

and compare with HC subjects. MA demonstrated an altered brain network and brain 

region activities (e.g., default mode, executive, salience networks, and prefrontal cortex, 

cingulate cortex, hippocampus, and amygdala [81, 82]). Therefore, detecting and 

characterizing the dynamics of brain neuronal activity through transient spatio-temporal 

EEG-ms patterns may provide novel information and improve our understanding of the 

mechanisms of irregularities in cognitive and emotion processing among psychiatric 

disorders. 

The typical spatially independent EEG-ms analysis is conducted by locating GFP peaks, 

and then clustering EEG points around these peaks.  For running such an analysis, the 

desired number of MSs (i.e., clusters) must be specified before running the clustering 

algorithm. A majority of EEG-ms studies have used the four canonical MSs to study group 

Chapter 3 : Evidence of Altered EEG Microstates’ 

Temporal Dynamics in Individuals with Mood and 

Anxiety Disorders 
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differences [56]; however, other studies have identified MSs in addition to the four 

canonical metrics [23, 66]. Although using a predefined number of clusters is arguable, it 

is preferable for comparisons among different groups. The literature was followed by 

defining the number of desired MSs (k = 4) for both MA and HC Tulsa-1000 groups [56]. 

Several characteristics for EEG-ms can be extracted, such as average duration, frequency 

of occurrence, and transition probabilities. Each property can be interpreted based on the 

underlying neural activities. For instance, the average EEG-ms duration represents the 

temporal stability of each MS, while the frequency of EEG-ms occurrence may represent 

the tendency of MSs to be active. Transition probabilities extract the asymptotic behavior 

of transitions between MSs (i.e., the likelihood of switching between different MSs). To 

further examine dynamics in the EEG-ms sequence,  a new set of features introduced in 

[83] was adopted.  An information-theoretical analysis is provided to investigate the 

dynamics of EEG-ms and to assess temporal dependencies between MSs.  

The present analysis aimed to further explore possible associations among the 

EEG-ms dynamic patterns and categorical Diagnostic and Statistical Manual of Mental 

Disorders-5 (DSM-5) MA diagnoses, as well as dimensional MA symptoms consistent 

with the National Institute of Mental Health’s Research Domain Criteria (RDoc). The 

latter focused on both general EEG-ms properties and temporal associations within EEG-

ms occurrence sequence and temporal dynamics. As the EEG-ms relates to intrinsic brain 

functional networks that are active at rest, it was hypothesized that there should be 

significant differences in EEG-ms dynamics between MA and HC. 
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 Methods 

3.2.1 Participants 

For this Chapter, EEG and fMRI datasets are composed of 52 HC subjects (28 

females) and 61 unmedicated MA subjects (38 females). Please refer to Chapter 1, 

Section 1.7 and Table A1 in Appendix A for detailed information about the dataset. The 

self-report questionnaires are presented in Appendix A. 

3.2.2 EEG Data Acquisition 

Please refer to Section 1.8 in Chapter 1 for detailed information about data 

acquisition.  This chapter includes EEG only data collected from 113 subjects during 

resting EEG-fMRI testing for 8 min. Participants were instructed to relax, keep their eyes 

open, and fixate their eyes on a cross displayed on the fMRI stimulus projection screen.  

3.2.3 EEG Data Preprocessing 

The following preprocessing steps were performed in BrainVision Analyzer 2 

software, as described in [84]. In short, MRI imaging artifacts within the EEG signal were 

reduced using the average artifact subtraction (AAS) method [85], and EEG signals were 

down-sampled to 250 Hz. Next, band-rejection filters (1 Hz bandwidth) were used to 

remove fMRI slice selection fundamental frequency (19.5 Hz) and its harmonics, 

mechanical vibration noise (26 Hz), and AC power line noise (60 Hz). Then, a bandpass 

filter from 0.1 to 80 Hz (48 dB/octave) was used. BCG artifacts also were removed using 

AAS [86]. ICA Infomax algorithm [87] implemented in Analyzer 2 was applied for EEG 

signal decomposition. The topographic map, power spectrum density, time course signal, 
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energy value, and kurtosis value were used for detecting and removing artifactual ICs, 

including residual BCG and imaging, ocular, and muscle artifacts. Finally, the EEG signal 

was reconstructed using back-projection (i.e., inverse ICA) after selecting ICs related to 

neural activities. Please see Algorithm 1 below for detailed information about the 

preprocessing pipeline. 

Algorithm 1: EEG preprocessing pipeline  

Input 𝒙. 31-channel raw EEG time series + single-channel ECG time series sampled at 

5000 S/s. 

Output. 𝒚: corrected 31-channel EEG time series after artifact removal sampled at 250 S/s 

Procedures. Artifact removal 

1    𝑻𝒊𝒎𝒂𝒈𝒆: generate a template for imaging artifact for each EEG and ECG channel 

using the fMRI slice acquisition markers. 

2    𝒚𝟏: remove MRI imaging artifacts by subtracting the 𝑻𝒊𝒎𝒂𝒈𝒆 from x:  𝒚𝟏 = 𝒙 −

𝑻𝒊𝒎𝒂𝒈𝒆 

3    𝒚𝟐: down-sample 𝒚𝟏 to 250 Hz. 

4    𝒚𝟑: bandstop filter with 1 Hz bandwidth for removing fMRI slice selection 

fundamental frequency (19.5 Hz) and its harmonics (39 Hz, 58.5 Hz, 78 Hz), 

mechanical vibration noise (26 Hz), and AC power line noise (60 Hz). 

5    𝒚𝟒: bandpass filter from 0.1 to 80 Hz (48 dB/octave). 

6    R: cardiac cycle determination using ECG channel. 

7    𝑻𝑩𝑪𝑮: Generate a template for BCG artifact for each EEG channel using the 𝑹. 

8    𝒚𝟓: Remove BCG artifacts by subtracting the 𝑻𝑩𝑪𝑮 from 𝒚𝟒:  𝒚𝟓=𝒚𝟒-𝑻𝑩𝑪𝑮 



32 

 

 

3.2.4 Summary of EEG-ms Analysis Summary   

The typical spatially independent EEG-ms analysis described in Chapter 2 was 

conducted. In this section, we specify the parameters used to produce the results in this 

chapter. EEG was referenced using average-reference [56]. The number of desired MSs 

was set to k=4. The following steps were required before running the clustering algorithm: 

first, the GFP for each subject was calculated from band-passed filtered EEG data 

between 2 and 20Hz (using  finite impulse response (FIR) with heuristically estimated 

transition band implemented with pop_eegfiltnew from EEGLAB [88]) as suggested in 

several EEG-ms studies [56]. GFP peaks were then identified after smoothing the data 

with a Gaussian-weighted moving average of 5-time points. Finally, to offer a higher level 

9    𝒚𝟔: Remove ECG channel. 𝒚𝟔=𝒚𝟓[1:31] 

10     A, S: Run ICA Infomax algorithm to decompose independent components 

(ICs): 𝒚𝟔 = 𝑨𝑺, where 𝑨 is the mixing matrix and 𝑺 is the ICs time series. 

11     𝑻𝒎𝒂𝒑, 𝑷, 𝑲: Extract ICs features, including topographic map (𝑻𝒎𝒂𝒑), power 

spectrum density (𝑷) using equation 3.1, and kurtosis (𝑲) using equation 3.2. 

12    𝑨′: Determine ICs associated with artifacts using ICA with artifacts that 

were selected and the column associated with those components that were 

substituted with zero. 

13     𝒚: EEG signal was reconstructed using back-projection (i.e., inverse ICA) 

after selecting ICs related to neural activities. 𝒚 = 𝑨′𝑺 
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of accuracy, we randomly selected up to n=10000 peaks and extracted the corresponding 

EEG points for later analysis. The selected EEG points were then submitted to the AAHC 

algorithm to identify the MSs with k=4. Next, the group means of EEG-ms (MA and HC) 

were computed by first sorting individual EEG-ms and then finding the common 

topography across all subjects. Next, individual EEG datasets were fit-back using the MA 

and HC group mean topographies.  Finally, we extracted the following EEG-ms 

characteristics from each subject: average duration, the frequency of occurrence, and 

transition probabilities. Also, we conducted a theoretical information analysis described 

below to examine the temporal dynamics of EEG-ms. 

3.2.5 Information Theoretical Analysis  

Studying the dynamic behavior and the temporal dependencies of EEG-ms 

sequence may carry useful information that embodies differences in information flow 

between MA and HC groups.  To do so, a new set of features introduced by von Wegner, 

et al. [83] was adopted. The approach relies on handling the spatially independent EEG-

ms as discrete stochastic processes and examines the temporal dependencies in EEG-ms 

sequences. To elaborate on the set of utilized features, let us assume a random variable 

𝑋𝑡 that represents the state of MS at time point 𝑡. The 𝑋𝑡 can take one of the possible 

labels  𝑆𝑖 ∈ [𝐴, 𝐵, 𝐶, 𝐷], such that 𝑃(𝑋𝑡 = 𝑆𝑖) represents the distribution of the MSs labels 

across the sequence of EEG-ms. The probability of transition between two states is given 

as 𝑇𝑖𝑗= 𝑃(𝑋𝑡+1 = 𝑆𝑗|𝑋𝑡 = 𝑆𝑖), and the transition matrix is denoted as 𝑇.  

Herein, the low-order Markovianity of order 0, 1, and 2 was assessed. That is, EEG-ms 

were tested to see whether the transition of MSs relied on only the current state (order 
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0; 𝑃(𝑋𝑡+1)  =  𝑃(𝑋𝑡+1|𝑋𝑡)), the previous state (order 1;  𝑃(𝑋𝑡+1|𝑋𝑡,  𝑋𝑡−1 ) =

𝑃(𝑋𝑡+1|𝑋𝑡)), or the two previous states (order 2;𝑃(𝑋𝑡+1|𝑋𝑡,  𝑋𝑡−1,  𝑋𝑡−2  ) = 𝑃(𝑋𝑡+1|𝑋𝑡,

 𝑋𝑡−1)).  Transition matrix 𝑇 was tested to determine whether it is stationary by first 

dividing the data into B overlapping blocks of length L. Then, the transition matrix for 

each block was assessed against the overall transition matrix. Furthermore, this matrix 

was tested against the symmetry property (i.e., 𝑃(𝑋𝑡+1 = 𝑆𝑗|𝑋𝑡 = 𝑆𝑖) =, 𝑃(𝑋𝑡+1 =

𝑆𝑖|𝑋𝑡 = 𝑆𝑗)). Finally, the time-lagged mutual information (i.e., autoinformation, AIF) 

was computed for the global sequence of EEG-ms, as well as for individual MSs.  AIF 

examines the amount of information that 𝑋𝑡+𝜏  has about 𝑋𝑡, with 𝜏 indicated as the 

desired time lag.  The higher the value of AIF, the more shared information is carried by 

𝑋𝑡+𝜏 about 𝑋𝑡. 

 Results  

First, we examined the EEG-ms topographies for MA and HC groups. Figure 3-1 

shows the four canonical EEG-ms classes for both groups.  Similar EEG-ms topography 

templates were found for both groups (i.e.,  MS A through D) and were similar to those 

obtained by previous work [56]. The performance of the EEG-ms segmentation algorithm 

is reported in terms of the explained variance, which estimates the portion of EEG point 

topography that can be explained by the four MSs [89]. The explained variance in the 

case reported in this work was 82 % ± 0.02 % for HC and 82 %± 0.01 % for MA.  
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Figure 3-1: EEG-ms topographies for both groups—HC group top row, MA group 

lower row. The obtained EEG-ms topologies are similar to those reported previously in 

the literature. 

Second, the average duration and occurrence frequency were investigated for both groups 

using independent sample t-tests. Figure 3-2 shows the average duration for each MS. 

The p-values for the t-test between each MS were 0.12, 0.04, 0.02, and 0.24 for MS A, B, 

C, and D, respectively. After correcting for multiple comparisons using Bonferroni-Holm, 

the adjusted p-values were 0.23, 0.13, 0.09, and 0.24 for A, B, C, and D, respectively. 
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Similarly, the occurrence of each MS per second was computed for both groups (See 

Figure 3-3). Results did not reveal any significant difference between groups.  

 

Figure 3-2: Average duration for EEG-ms classes (A-D) for MA and HC groups (p-

value corrected for multiple comparisons using Bonferroni-Holm).  Results revealed a 

trend towards significance for MS-C with p=0.09. 

 

Figure 3-3: Occurrence frequency of EEG-ms classes (A-D) for both MA and HC 

groups. For each EEG-ms class, no statistically significant difference among the two 

groups was found. 
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Next, the model of transition among MSs for both groups was investigated and depicted 

in Figure 3-4A. Transition probabilities appear to have a normal distribution after 

checking and using Q-Q and density plots [90]. The statistical analysis of the transition 

probabilities of groups using independent samples t-tests unraveled a significant 

difference (i.e., Bonferroni-Holm corrected, p-value of significance was set to 0.05 [91]) 

between HC and MA in four transition probabilities (TP): from MS-B to MS-D: TP 

(B→D); D to B: TP (D → B);   A to D:  TP (A→D); and B to C: TP (B→C).  The statistical 

analysis for the significant connections was reported in terms of the t-test p-value (p) and 

Cohen’s d (d) effect size, as follows: TP (B→D):  t(111)=2.69,  p=0.045, d=0.51; TP 

(D→B):  t(111)=3.87,  p=0.002, d=0.73;  TP (B→C): t(111)=-3.05,  p=.003, d=-0.58; and 

TP (A→D);  t(111)=-2.88, p=0.045, d=-0.54. Figure 3-4B highlights the transition 
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probabilities that show a statistically significant difference across groups and the direction 

of change.  

 

Figure 3-4: Transition probabilities for MA and HC groups (A); and (B) represents 

connections with the statistically significant difference between two groups—red and 

blue arrows indicate the direction of the changes in the transition probabilities (red 

represent an increase, while blue represent a decrease for MA compared to HC). p-values 

corrected for multiple comparisons using Bonferroni-Holm. The level of significance was 

set to p<0.05. 

Associations between these transition probabilities and the symptoms (e.g., PHQ-9, RSS, 

STAI-Trait, STAI-State, PROMIS-Depress, and PROMIS-Anxiety scores; See Appendix 

A for more information about the clinical assessments) were investigated in Error! Not a 

valid bookmark self-reference. and Table 3-2. 
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Table 3-1: Correlation results among connections  B to C and A to D and subjects’ 

assessment measures. Correlation was estimated after combing both groups (n.s.: not a 

significant). 

        TP (B → C)        TP (A→ D) 

  r p  r p 

PHQ  0.251 0.008  0.253 0.008 

RRS  0.290 0.002  0.284 0.003 

STAI_State  0.313 0.001  0.171 n.s. 

STAI_Trait  0.260 0.006  0.238 0.012 

PROMIS_Anxiety  0.216 0.023  0.261 0.006 

PROMIS_Depress  0.233 0.014  0.232 0.015 

 

Table 3-2: Correlation results among connections B to D and D to B and subjects’ 

assessment measures. Correlation was estimated after combing both groups (n.s.: not a 

significant). 

         TP (B → D)         TP (D → B) 

 r p  r p 

PHQ -0.205 0.032  -0.267 0.005 

RRS -0.133 n.s.  -0.363 0.001 

STAI_State -0.245 0.010  -0.333 0.001 

STAI_Trait -0.182 n.s.  -0.317 0.001 

PROMIS_Anxiety -0.122 n.s.  -0.360 0.001 

PROMIS_Depress -0.149 n.s.  -0.277 0.003 

 

Furthermore, the EEG-ms temporal dynamic within EEG-ms sequences was 

investigated. For both groups, the symmetry property of transition matrices was assessed 
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and tested for Markovianity of order 0, 1, and 2 properties (Error! Not a valid bookmark 

self-reference.), as described in the information theoretical analysis section. The two-

sample t-test yielded a p-value representing the null-hypothesis that subject’s EEG-ms 

sequence exhibits a low-order Markovian property (e.g., for an order of 0, the transition 

probability relied on only the current MS) or symmetrical transition matrix (e.g., the 

likelihood of switching from microstate X to Y is not statistically different from the 

likelihood of switching from Y to X).  All tests were conducted at alpha = 0.01 and p < 

0.05. Error! Not a valid bookmark self-reference. reports the testing results as the ratio 

of how many subjects within each group showed statistically significant hypothesis (e.g., 

the EEG-ms sequence exhibits a Markovian property of order 0).  

Table 3-3: Markovian property and symmetry assessment for both groups. 

 Order 0 Order 1 Order 2 Symmetry 

HC 0% 0% 0% 58% 

MA 0% 0% 0% 65% 

 

  The reported transition probabilities in Figure 3-4 were estimated for the entire 

recording of EEG (e.g., 8 min).  The stationary of the transition matrices was further 

probed over a shorter period (i.e., whether the transition matrices remain constant over a 

short duration). Specifically, the stationarity of the transition matrices was computed at 

period lengths of 2 to 40 secs, and the ratio of subjects who had statistically significant 

non-stationary matrices at each period were reported (Figure 3-5).   
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Figure 3-5: The ratio of subjects with non-stationary transition matrices (p< 0.05) of 

EEG-ms evaluated at different block lengths. 

Finally, the AIF to examine the temporal dependencies in EEG-ms was computed. 

AIF estimates the amount of information that the appearance of MSs carries, given 

previous information (i.e., previous MSs). In other words, it evaluates the memory effect 

in MSs’ sequence over the shorter duration; the higher the value, the more similar the MS 

sequence given the past. By comparing AIF among groups, one can tell whether a certain 

group has a higher tendency to evoke the same patterns of MS sequences over and over. 

Figure 3-6  shows the AIF plot as a function of different time-lags (𝜏≤ 4000 ms) for both 

MA and HC groups. The individual contribution to the overall AIF graph is presented in 

Figure 3-7. 
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Figure 3-6: The semi-log time-lagged mutual information plot for the MA and HC groups 

at different time lags.  The shaded area represents the 95% confidence intervals for each 

group. 

 

Figure 3-7: Time-lagged mutual information plots for each class of EEG-ms averaged 

across subjects of each group. The shaded area represents the 95% confidence intervals 

for each group. 
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 Discussion 

This chapter details deriving and dissecting the EEG-ms from large cohorts of MA 

and HC individuals. Four canonical EEG-ms classes (A through D) in these individuals 

were found, which confirms a successful replication of previously reported topographies 

[56]. Notably, a specific dissimilarity in the topographies of EEG-ms between HC and 

MA groups was not found (Figure 3-1). That is, EEG-ms topographies were stable and 

robust regardless of the presence of MA symptoms. Given that EEG-ms represent 

spontaneous, synchronized in time, and significant spatial-scale cortical neuronal 

activities [54, 56], the lack of differences between participant cohorts suggests that there 

are no major structural cortical changes among groups [92-94].  If EEG-ms topography 

exhibited significant changes between HC and MA cohorts, then that might indicate 

substantial structural changes and alterations of the brain. The lack of topographical 

differences among study cohorts supports the notion that mental disorders are more 

manifested in disruption of brain network dynamics rather than structural changes. Taken 

together, the similarity in EEG-ms topographies between HC and MA cohorts may 

suggest that the effect of depression and anxiety is far more pronounced at the level of 

dynamic functional connectivity of the brain, rather than at the level of structural 

abnormalities of the brain. 

Next, EEG-ms average duration and occurrence frequency in the cohorts were 

appraised, as these properties have been used frequently in the literature to differentiate 

groups [22]. The spatially independent EEG-ms analysis revealed a trend towards 

significant difference for an average duration of MS-C (p<0.09 corrected for multiple 

comparisons using the Bonferroni-Holm method). Results did not reveal any other 
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significant difference for average duration or occurrence frequency properties among 

groups. Furthermore, transition probabilities among different MS classes were analyzed 

for both groups.  The analysis showed significant differences in transition probabilities in 

four out of 12 connections in the transition matrices across groups.  Specifically, the TP 

(D→B) and TP (B→D) showed a statistically significant difference between groups (p < 

0.05, Bonferroni-Holm corrected), where MA subjects have a lower transition probability 

between TP (B→D) and TP (D→B) when compared with HC subjects. That is, MA 

subjects tend to have a lower switching frequency between MS-B and MS-D when 

compared with HC subjects. Also, results revealed a significant difference in transition 

probabilities for TP(A→D) and TP(B→C) in one direction (p < 0.05, Bonferroni-Holm 

corrected), where MA subjects tend to have a higher transition from A→ D and B→C.  

Such disturbances in transition between MSs have been reported for subjects with other 

mental disorders like schizophrenia  [69] and frontotemporal dementia [70] when using 

traditional EEG-ms analysis.   

To understand the results, outstanding works that investigated the association 

between EEG-ms and RSNs by using simultaneous EEG-fMRI were consulted. Research 

suggested a strong association between EEG-ms and RSNs [22-24, 58].  RSNs are set of 

networks that are intrinsically active during task-negative state (i.e., when there is no task) 

and can be observed as changes in the BOLD signal. Chapter 6 offers in-depth analysis 

for the association between EEG-ms and brain regions.  For interpreting the results in this 

chapter, consulting Britz, et al. [24] is recommended, since the authors utilized the same 

conventional approach in extracting EEG-ms as used in this work. Please refer to Table 

A2 and Table A3 in Appendix A for detailed information about the association between 
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each MS and RSNs.  Based on Britz, et al. [24], MS-B was shown to be associated with 

the visual network (VN), while MS-D was related to the dorsal attention network (DAN). 

The associated networks with MSs were similar to the RSNs found in other works [1, 2].  

DAN is often considered as an activity-modulating network in the VN, especially the 

frontoparietal areas [95].  The low transition probabilities between MS-B and MS-D in 

the MA group indicates less frequent transitions between VN and DAN. The previous 

study showed a modulatory role of DAN with VN [95], and the impaired modulatory role 

of DAN might cause less frequent transitions among MA subjects. Several studies 

reported an alteration in FC between the two networks for subjects with PTSD [96-99], 

stress [100], anxiety [101], and social anxiety disorder [102]. Furthermore, DAN appears 

to exhibit an FC alteration associated with depression, as reported in multiple meta-

analyses [103-105] and in a recent study [106].  Thus, lower transition probability 

between B and D may indicate aberrant functionalities between DAN and VN. 

In addition, MA subjects exhibit a higher transition between MSs (B→C) in one 

direction. Notably, MA subjects spend on average more time in microstate C than HC 

ones (Figure 3-2).  MS-C has been shown to be correlated with the brain regions 

responsible for the self-referential mental activity (e.g., parts of DMN). An increase in 

the self-referential processes in DMN has been shown to be closely related to depression 

[107, 108]. Along with an increase in the average duration of MS-C and the higher 

transition from MS-B to MS-C, the result may be explained by an increase in the self-

referential activity for MA subjects with engaging VN in recalling visual memories, 

although more research is warranted to determine whether the valence of these memories 



46 

is predominantly negative, thereby contributing to aversive emotional processing in 

individuals with depression and/or anxiety. 

Similarly, MA subjects have a higher TP (A→D) in one direction. Brain regions 

associated with MS-A have been shown to be involved in the auditory-phonological 

system, especially the bilateral superior temporal cortex. Such alteration in this RSN has 

been reported in meta-analyses for subjects with depression [103-105]. Additionally, the 

association between the four significant transition probabilities and other clinical 

assessments was studied (Associations between these transition probabilities and the 

symptoms (e.g., PHQ-9, RSS, STAI-Trait, STAI-State, PROMIS-Depress, and PROMIS-

Anxiety scores; See Appendix A for more information about the clinical assessments) 

were investigated in Error! Not a valid bookmark self-reference. and Table 3-2. 

Table 3-1 and Table 3-2). The results showed a relative correlation between 

transition probabilities after combining both groups, but not when considering groups 

independently. However, the transition probabilities showed different patterns based on 

the group.  To further investigate the interaction between groups and symptoms, a GLM 

was designed to study the interaction between groups and symptoms after controlling for 

age and gender (Table A4 in Appendix A).  The results suggest a significant interaction 

between groups and symptoms in connections B→D and D→B for PHQ, STAI (State), 

STAI (Trait), and PROMIS (Anxiety Total Score). These results may imply that HC and 

MA groups behave differently based on the symptoms, but the relation between 

symptoms and transition probabilities within groups is more complicated than can be 

explained by one connection.  
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While transition matrices unravel the overall behavior of MSs, AIF characteristics of 

EEG-ms may encompass an insight into the dynamics of EEG-ms. To do so,  the approach 

introduced by von Wegner, et al. [83] was adopted.  Results were in line with their results 

that there is a short-term memory effect in the EEG-ms sequence, as shown in 

Associations between these transition probabilities and the symptoms (e.g., PHQ-9, RSS, 

STAI-Trait, STAI-State, PROMIS-Depress, and PROMIS-Anxiety scores; See Appendix 

A for more information about the clinical assessments) were investigated in Error! Not a 

valid bookmark self-reference. and Table 3-2. 

Table 3-1. For both groups, EEG-ms do not exhibit any Markovian property of 

order 0, 1, or 2 (i.e., the appearance of next MS [in time] does not rely merely on the 

current state, previous state, or two previous MSs). If MS sequence exhibits any low 

Markovian order, then one can conclude that MSs’ appearance relies only on the past—

depending on the order. This demonstrates that MSs embody the underlying neural 

activities and are closely associated with brain activity [25]. Furthermore, non-Markovian 

properties show that the sequence has memory. 

In addition, the analysis in this work suggests a difference in the information flow 

manifested in changes of the symmetry and stationary of transition matrices—taken at 

different periods, besides AIF contents between HC and MA groups.  Specifically, the 

MA group tends to have a higher ratio of subjects with symmetrical (Furthermore, the 

EEG-ms temporal dynamic within EEG-ms sequences was investigated. For both groups, 

the symmetry property of transition matrices was assessed and tested for Markovianity of 

order 0, 1, and 2 properties (Error! Not a valid bookmark self-reference.), as described 

in the information theoretical analysis section. The two-sample t-test yielded a p-value 
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representing the null-hypothesis that subject’s EEG-ms sequence exhibits a low-order 

Markovian property (e.g., for an order of 0, the transition probability relied on only the 

current MS) or symmetrical transition matrix (e.g., the likelihood of switching from 

microstate X to Y is not statistically different from the likelihood of switching from Y to 

X).  All tests were conducted at alpha = 0.01 and p < 0.05. Error! Not a valid bookmark 

self-reference. reports the testing results as the ratio of how many subjects within each 

group showed statistically significant hypothesis (e.g., the EEG-ms sequence exhibits a 

Markovian property of order 0).  

Table 3-3) and stationary transition matrices (Figure 3-5) when compared with 

HC subjects. This may be interpreted as less flexibility and dynamicity of brain 

connectivity for MA subjects, where similar patterns of brain activations may be evoked 

frequently (e.g., ruminative or self-referential thoughts). Likewise, the MA group has a 

relatively higher overall AIF content when compared with the HC group (Figure 3-6) 

driven by MS-B (Figure 3-7).  Hence, this might be explained as an increase in the overall 

temporal dependency in MA subjects and a more regular appearance for MS-B 

(associated with VN).  

Given these points, MA subjects exhibit a systematic difference in the way of activating 

their brain regions reflected by changes in transition probabilities, duration of MS-C, and 

temporal dependencies of MSs.  
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 Limitations 

The present analysis has provided several aspects of analyzing MA when 

compared with HC. We have shown a significant transition probability difference 

between groups.  However, the underlying neurophysiological mechanism of transition 

probabilities of MSs is still not clear. The provided interpretations of EEG-ms dynamics 

properties and their associations with brain networks relied on previous studies that found 

a correlation between EEG-ms time series and different brain regions to interpret the 

results. In addition, the study cohort is very heterogeneous, thus understanding specific 

network abnormalities as reflected by EEG-ms within the MA cohort should warrant 

future studies with an even larger number of subjects to better characterize individual 

differences and subtypes of the MA disorder cohort. Finally, the AIF approach for 

analyzing the EEG-ms temporal dynamics revealed a group difference among MA and 

HC cohorts; however, results need further exploration to provide a more comprehensive 

mechanistic interpretation. 

 Conclusions  

This chapter delved into the spatially independent EEG-ms in a large cohort of 

MA and HC individuals. Previously reported studies were replicated and four EEG-ms 

classes (A through D) showed no differences among MA and HC individuals. This 

suggests a lack of significant structural cortical abnormalities among the groups, which 

would otherwise affect the EEG-ms topographies. Several EEG-ms characteristics 

between groups were investigated in terms of average duration, frequency of occurrence, 

and transition matrices. In addition, various autoinformation properties between groups 
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were extracted to evaluate the temporal dependences of MSs between subjects. Results 

revealed an alteration in EEG-ms transitions probabilities among MSs; in B → D, D →B, 

A →D and B →C transitions. In addition, testing the temporal dependencies unveiled an 

alteration in information flow between groups in different properties. Such properties can 

be used as biomarkers for MA and a basis for future interventions.  



51 

(All the presented results in this chapter are reproduced and adapted from: Al Zoubi, 

Obada, et al. "Predicting Age From Brain EEG Signals—A Machine Learning 

Approach." Frontiers in aging neuroscience 10 (2018): 184.) 

 Introduction 

In Chapter 3, EEG-ms features were harnessed to study subjects with MA.  This 

chapter utilizes a different set of static features to study the aging of the brain.  Brain age 

gap estimates (BrainAGE) is defined as the difference between the estimated age and the 

chronological age of the individual. BrainAGE has been investigated primarily using 

structural and functional MRI and diffusion tensor imaging (DTI). However, EEG 

signals, particularly in combination with ML approaches, have not been commonly 

utilized and validated for human age prediction and the determination of BrainAGE. This 

work reported in this chapter investigated whether age-related changes are affecting brain 

EEG signals and whether chronological age can be predicted with an extensive feature 

extraction-approach of EEG signal properties. The goal of this investigation was to 

provide a rigorous framework for obtaining BrainAGE estimates from EEG using 

comprehensive feature extraction and ML. 

Brain changes due to age have been studied for decades (e.g., [109-111]) and more 

recently using genetics [112].  The term BrainAGE (i.e., the difference between predicted 

age and chronological age) was introduced to examine and capture any disease-related 

Chapter 4 : Predicting Age from EEG Using Unbiased 

Machine Learning Framework  
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deviations from natural aging by comparing BrainAGE estimates in a particular disease 

group to a HC group. Structural MRI has been widely used to build predictive models for 

age by utilizing white matter (WM) and gray matter (GM) properties. Authors in [113] 

employed T1-weighted (T1w) MRI structural images to establish a framework—using a 

kernel method for regression—for automatically and efficiently estimating the age of 

healthy individuals. This framework proved to be a reliable, scanner-independent, and 

efficient method for age estimation, yielding a correlation of r=0.92 between the 

estimated and the real age in the test samples, with a mean absolute error of only 5 years. 

Similarly, [114] used deep learning (DL) to study BrainAGE using both pre-processed 

and raw T1w MRI images. Their approach predicted age with minimal effort by achieving 

a correlation between age and predicted age: r= 0.96, with an error of 4.16 years.  Using 

similar structural images,  [115] obtained 𝑅2 = 0.77  from a large sample of healthy 

subjects (n=3144) by training features from various anatomical brain regions. 

Researchers in [116] studied age-related changes in water self-diffusion in cerebral WM 

using DTI, revealing that WM changes with age in multiple brain regions, including the 

corpus callosum, prefrontal cortex, internal capsule, hippocampal complex, and the 

putamen. fMRI has also been used to predict age alone or combined with other imaging 

approaches. For instance, [117] researchers were able to explain up to 55% of their sample 

variance from the fMRI FC data. Likewise, [118] related the developmental changes in 

the amplitude of low-frequency spontaneous fluctuations in resting-state fMRI to age. 

They reported an error of 4.6 years between chronological age and predicted age. 

 More recently,  [119] utilized cortical anatomy and whole-brain FC for predicting 

brain-based age, achieving an error of 4.29 years. Several BrainAGE studies revealed 
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changes and differences among clinical groups. For example, BrainAGE estimations in 

schizophrenia patients were attributed to accelerated aging when compared to healthy 

comparison subjects, as well as individuals with bipolar disorder [120]. In addition, 

individuals diagnosed with refractory epilepsy had a higher predicted age than healthy 

subjects [114]. 

Herein, we focus on studying BrainAGE using EEG signals. Several studies have 

demonstrated that EEG features like EEG rhythmic activity (e.g. delta, theta, alpha-1, 

alpha-2, beta, and gamma) changes as a function of age (Ashburner [121], Clarke, et al. 

[122], Cragg, et al. [123], Marshall, et al. [124], Matthis, et al. [125]).  For instance, [126] 

found theta band showed an increase in power spectra with age, while delta exhibited a 

decrease for healthy children between 4 to 17 years.  Analyzing the coherence of EEG 

during a resting-state recording revealed that elderly subjects had a lower coherence than 

younger healthy subjects for delta, theta, alpha-3, beta-1, and beta-2 [127].  Relative beta 

power was positively correlated with age for older subjects [128]. In contrast, alpha 

reactivity decreased and showed a negative correlation with age in the older group when 

they were performing mental tasks, as opposed to resting [128]. Furthermore, theta power 

was shown to increase from resting to arithmetic task processing for the younger group 

while decreasing for the older group [129]. Power in delta and beta-3 bands increased 

from resting to arithmetic task processing, while alpha power decreased [129].  

 A more recent study used four channels of EEG recording to investigate age-

related changes in EEG power from thousands of subjects throughout adulthood [130]. 

Researchers’ findings showed an overall age-related shift in band power from lower to a 

higher frequency and a gradual slowing of the peak alpha frequency with increasing age. 
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Furthermore, studying the source of these cortical rhythms suggested that occipital delta 

and posterior cortical alpha rhythms decrease in magnitude during physiological aging 

with both linear and nonlinear trends [131]. 

 Age prediction from EEG was studied in [132], where authors used FC features 

from EEG to predict age from 94 healthy subjects. Their results showed an accuracy of 

R2=0.60 for eyes-open and R2=0.48 for eyes-closed.  

The influence of diseases on EEG features has been investigated elsewhere. For 

instance, [133] used the mean EEG power spectrum to study group differences between 

multi-infract dementia (MID) and dementia of Alzheimer’s disease (AD), and then 

compared results with a healthy comparison group.  The MID group showed a significant 

increase of theta activity in occipital regions and decrease in alpha activity—a pattern not 

evident in the other two groups. An abnormality in cortical neural synchronization for 

subjects was observed in subjects with mild cognitive impairment due to AD (ADMCI) 

and to Parkinson Disease (PDMCI)  in delta and alpha [134]. Differentiating subjects with  

AD from healthy ones was studied in [134]. Authors reported 70% accuracy using the 

power and FC of cortical sources, which was later improved to 77% using artificial neural 

network computational methods  [135]. This chapter proposes a robust and rigorous 

framework to predict BrainAGE using different features of EEG signals recorded during 

fMRI in a sample of N=468 individuals.  First, an open-source EEG feature extraction 

software was extended in MATLAB [136] to provide a feature representation of 

individual subjects.  Then, a set of ML methods was applied to predict age from features.   

Table 4-1 provides a summary of studies that specifically reported age prediction 

performance from brain imaging data.  
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This chapter proposes a robust and rigorous framework to predict BrainAGE 

using different features of EEG signals recorded during fMRI in a sample of N=468 

individuals.  First, an open-source EEG feature extraction software was extended in 

MATLAB [136] to provide a feature representation of individual subjects.  Then, a set of 

ML methods was applied to predict age from features.   

Table 4-1: Summary of related work for predicting age from brain imaging data. 

Work Data # of Samples Performance 

[113] MRI 650 r=0.92, MAE =5 years 

[114] MRI 2001 r=0.96, MAE =4.16 years 

[117] fMRI 238 R^2=0.55 

[118] fMRI 183 MAE =4.6 years 

[115] MRI 3144 R^2=0.77 

[132] EEG 94 R2=0.6 for eyes open 

R2=0.48 for eyes closed 

[119] fMRI+sMRI 2354 MAE=4.29 years 

*MAE=Mean Absolute Error 

The data, results, and discussions included in this chapter were already published and are 

reproduced from [50]. 
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 Methods 

4.2.1 Participants  

Participants were selected from the first 500 subjects of the T-1000 [49] (Please 

refer to Section 1.7 in Chapter 1 for more information about the participants). The age 

histogram of participants is shown in Figure B1 in Appendix B. 

4.2.2 EEG Data Acquisition    

Please refer to Section 1.8 in Chapter 1 for a detailed description of the EEG 

recording. Included EEG data was collected from only 468 subjects (mean age: 35 years, 

297 females). One resting EEG-fMRI run was conducted for each subject, lasting 8 min. 

Participants were instructed to relax, keep their eyes open, and fixate on a cross.  

4.2.3 EEG Data Preprocessing 

Unlike the manual preprocessing of EEG data used in Chapter 3, an automatic 

EEG preprocessing was adopted for the work reported in this chapter due to the large 

number of subjects. In details for each scan, EEG data were preprocessed with an in-

house script developed using MATLAB [137]. The script was designed to remove the MR 

gradient artifact and BCG artifacts from EEG data. Details about the preprocessing script 

are given as follow. The MR gradient artifact was first removed from the EEG data using 

optimal basis sets [85, 88, 138]. Then, the EEG data was band-pass filtered between 1 Hz 

and 70 Hz, down-sampled to 4 ms temporal resolution, and band-stop filtered (1 Hz 

bandwidth) at the harmonics of 19.5 Hz. This was the fMRI slice selection frequency for 

39 slice acquisition in TR=2sec; for AC power line frequency (60 Hz); and for a 26 Hz 
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vibration artifact frequency. Then, the cardioballistic artifact was corrected using optimal 

basis sets subtraction [138], which requires the timing of the artifact cycle. In order to 

achieve a robust artifact cycle determination, the script determined the artifact cycle using 

the cardioballistic component directly from the EEG-fMRI data [139], which was 

extracted by ICA [87] and was automatically identified [137]. 

4.2.4 EEG Feature Extraction  

Feature extraction is a quintessential phase in any EEG analysis that depends on 

finding common feature representation among EEG samples. The existing literature 

provides quite an extensive span of features extraction using a variety of signal processing 

approaches [140]. Choosing a feature extraction method relies on the applications of the 

prediction and the balance between interpretation and performance. For instance, 

advanced feature extraction methods can be used at the cost of interpretation, where such 

approaches have been shown to outperform typical approaches [132, 141]. For the case 

reported herein, BrainAGE emphasizes the interpretation and understanding of 

predictors, since the goal is to find those features that influence BrainAGE modeling. 

Thus, a similar set of features used by [136] was adopted, which extracted a wide range 

of commonly used features from EEG. However, this work takes an extensive approach 

to survey all features from all channels and bands without reducing features by averaging, 

as performed in [136]. Such a feature-extraction approach ensures a comprehensive 

survey of all possible EEG information to identify feasible predictors for age from brain 

data. Also, the types of features used in this work are commonly used in the literature to 

analyze EEG data. That is, the interpretation and replication of such features are less 

challenging than using uncommon features.  However, the approach detailed herein 
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resulted in a relatively large number of features from EEG. Therefore, feature selection 

and suitable ML algorithms are needed to deduce which predictors account for the most 

variance in age. All features were extracted from each subject independently and arranged 

in one row/sample. 

4.2.5 General Configuration  

EEG bands of interest are [𝛿 = .5–4; 𝜃=4 –7; 𝛼 =7–13; 𝛽=13–30; 𝑊=0.5–30] Hz using 

the bipolar montage of the EEG, where W denotes the entire frequency range of EEG. 

EEG time series was denoted as 𝑥𝑖[𝑛] with frequency bands of 𝑖 = 𝛼, 𝛽, 𝜃, 𝛾, 𝑊, and  

𝑛  in each channel’s index (i.e., total number of channels is N=31).  Five types of features 

were selected: amplitude, range, spectral power, connectivity, and fractal dimension (FD). 

EEG recordings were divided from each subject into 60 sec, with a 50% overlap among 

epochs—14 epochs in all. Figure 4-1 elaborates on the feature extraction process. For 

each channel, the signal was divided into m epochs, and then each epoch was filtered into 

corresponding frequency bands. Specific feature extraction was applied to each sub-

segment yielding m values. Finally, channel-level feature was estimated for the 

corresponding frequency band as the average across all epochs.  The process is slightly 

different for FD features, since features were estimated without filtering into frequency 

bands. 

4.2.5.1       Amplitude Domain Features  

Amplitude features characterize the statistical properties of the signal power 

𝐴𝑝𝑜𝑤𝑒𝑟
𝑖  and the signal envelope 𝐸𝑚𝑒𝑎𝑛

𝑖 .  This was accomplished by calculating: i) mean, 

ii) standard deviation, ii) skewness, and iv) kurtosis for each channel across frequency 
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bands. The 𝐸𝑚𝑒𝑎𝑛
𝑖  is calculated using the mean of the envelope 𝑒[𝑛]𝑖, which is identified 

in complex notation as: 𝑒𝑖[𝑛] = |𝑥𝑖[𝑛] + 𝑗𝛨{𝑥𝑖[𝑛]}|2, wherein 𝛨 is the Hilbert 

transformation. 

4.2.5.2      Range Domain EEG Features (rEEG)  

Range features account for peak-to-peak voltage changes and characterize 

changes in the signal over time. To achieve this, each epoch was segmented into short-

time portions, each with a window size of 𝑤 = 2 𝑠𝑒𝑐 and overlap of 50%.  Then, for each 

segment, the corresponding peak-to-peak range was calculated. This produced samples 

from each epoch to estimate the mean, median, 5th and 95th percentiles, standard 

deviation, coefficient of variation, and the measure of symmetry. 

4.2.5.3       Spectral Domain Features  

Spectral features have been the most commonly used features for EEG.  To extract 

these features, Welch periodogram was applied to estimate power spectral density (PSD) 

and Hamming window with a length of 2 secs and an overlap of 50%.  The following 

spectral features were extracted: 1) power; 2) relative power; 3) entropy (using Wiener 

and Shannon methods); 4) edge frequency (the cut-off frequency at which encompasses 

95% of spectral power); and 5) differences between consecutive short-time spectral 

estimations.   

4.2.5.4       Connectivity Domain Features  

The brain symmetry index (BSI) was calculated as the mean of PSD difference 

between the left and right hemispheres for each frequency band (K=𝛿, , α, β, γ). 
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 Let 𝑎𝑖 and 𝑏𝑖 be the lower and upper-frequency limit of band𝑖, the BSI for band 𝑖 is: 

𝐶𝐵𝑆𝐼
𝑖 =

1

(𝑏𝑖 − 𝑎𝑖)
∑ |

𝑃𝑙𝑒𝑓𝑡[𝐾]  −  𝑃𝑟𝑖𝑔ℎ𝑡[𝐾]

𝑃𝑙𝑒𝑓𝑡[𝐾]  +  𝑃𝑟𝑖𝑔ℎ𝑡[𝐾]
|

𝑏𝑖

𝑘=𝑎𝑖

                                         (4.1) 

where 

𝑃𝑙𝑒𝑓𝑡[𝐾] =
∑ 𝑃𝑚[𝐾]

𝑛/2
𝑚=1

𝑛/2
  and  𝑃𝑟𝑖𝑔ℎ𝑡[𝐾] =

∑ 𝑃𝑚[𝐾]𝑀

𝑚=
𝑀
2

+1

𝑛/2
                                              (4.2) 

Also calculated was the median and lag of the maximum correlation coefficient of the 

Spearman correlation between envelopes of hemisphere-paired channels and coherence 

between channel pairs.    

4.2.5.5       Fractal Dimension Domain Features  

FD for the time series is a value that estimates to what extent the fractal pattern 

changes with respect to the scale at which it embeds.  The Higuchi method was applied 

with 𝑘 = 6 for each EEG channel to estimate FD. Table 4-2 summarizes the extracted set 

of features from EEG data. 

Table 4-2: The extracted features from EEG data. 

Feature 

Group 
Subset of features 

Across 

Bands 

Across 

channels 

Number of 

features 

Amplitude Total power, mean, standard deviation, 

skewness, kurtosis, envelope mean and 

standard deviation 

Yes Yes 6 × 4 × 31 

peak-to-peak Mean, median, 5th and 95th percentiles, 

standard deviation, coefficient of 

variation, and measure of symmetry 

Yes Yes 7 × 4 × 31 

Spectral 

power 

Spectral power and relative power, 

spectral entropy (using Wiener and 

Shannon methods), spectral edge 

Yes Yes 6 × 4 × 31 
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frequency (the cut-off frequency at which 

encompasses 95% of spectral power), and 

spectral differences between consecutive 

short-time spectral estimations 

Connectivity Brain symmetry index, correlation, mean 

and maximum of frequency at which the 

maximum coherence is achieved 

Yes No 5 × 4 

Fractal 

dimension 

Fractal dimension No Yes 31 
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Figure 4-1: Feature extraction procedure. Each channel is divided into m epoch. From 

there, each epoch was filtered into α, β, θ, γ, and 𝑊 frequency bands. Then, for each 

filtered epoch, the desired features were extracted. This resulted in m feature value from 

all epochs, which are then averaged to estimate the channel-level feature. In the figure, 

each feature is represented using three indices:  f (channel, epoch, band) with channel= 

[1...N]; epoch= [1...m]; and band = [α, β, θ, γ, 𝑊]. The final out is a channel-level feature 

represented with two indices f (e.g., channel, band). 
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4.2.6 Feature Reduction  

After feature extraction, features—either low in variation among subjects or 

highly correlated with other features using the “findCorrelation” function in the “caret” 

package   [142], version “6.0-78”— were eliminated.  “FindCorrelation” evaluates pair-

wise correlation of features, and then finds the highest absolute pairwise correlation. 

Given that two features have a high correlation (r>=0.9 Pearson’s correlation), 

“findCorrelation” eliminates the feature with the highest mean absolute correlation.   It 

should be noted that other feature selection methods could be used to select the best 

features using the Nested-Cross-Validation (NCV) approach. However, the interpretation 

of such an approach could be challenging, because selected features from the inner loop 

of the NCV may vary across folds. In addition, using other feature selections should be 

applied within each loop of NCV, which increases computational overhead. Thus, 

removing correlated features provides a better way to select features in this case. Figure 

B2 and Figure B3 in Appendix B show the correlation matrices before and after 

removing correlated features. 
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Figure 4-2: The effect of removing correlated features on prediction. 

4.2.7 Machine Learning Methods 

Selecting appropriate ML algorithms is a critical step for achieving robust 

BrainAGE estimation. Having represented each subject’s features in one row, the final 

dataset dimension is 𝑥 =  𝑛 × 𝑚, where 𝑛 = 468 and 𝑚 = 863. R package “caret” was 

used to perform a set of regression algorithms: elastic net (ENET), support vector 

regression (SVR), random forest (RF), extreme gradient boosting tree (XgbTree), and 

Gaussian process with polynomial kernel (gaussprPoly). The aim was to test different ML 

techniques and to provide a better estimation for age. First, ENET is a linear regression 

technique that uses L1 and L2 regularization to prevent overfitting.  Second, SVR uses 

optimization to build the regression model, although specifically within a high 

dimensional version of the training data. In this case, a kernel with a radial basis function 

was used to project the data into high dimensional space.  Third, RF is one of the most 

common ensemble techniques, as it performs subsampling for the feature space of 
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training data to build multiple weak learners.  Thus, different models from the training 

data are produced and then averaged to minimize variance across models. Fourth, 

XgbTree utilizes a combination of ensemble learning, optimization, and regularization to 

build a generalized model from training data.  Finally, gaussprPoly is a probabilistic 

approach to build a regression model by learning the distribution of the training data, 

given the response (age). Similar to the kernel function in SVR, gaussprPoly adopts a 

polynomial kernel to project data into high dimension space. 

To provide an unbiased prediction for age, NCV was adopted in building age 

prediction models [143]. Figure 4-3  depicts the NCV procedure consisting of two main 

loops: inner and outer. The inner loop is used to find the preferred parameters from the 

training set, while the outer loop is used to evaluate the preferred parameters on the testing 

set.  To elaborate on the NCV, let the subscript refer to data and models from the inner 

loop of NCV, while the superscript represents those from the outer loop. A10-fold cross-

validation (KI=10) was used for the inner loop, and 10-fold cross-validation for the outer 

loop (KO=10). The inner loop was used to estimate optimal parameters on training data 

(𝑇𝑟1) using a grid search and the one-standard error rule. Each inner loop consists of 5-

repeat (R=5) for each method.  The outer loop uses the best-obtained models to build a 

stack-ensemble model. Best models are represented by their optimal parameters 𝜃𝑖
𝑙, where 

𝑖 is the method index of the corresponding method 𝑀𝑖, and 𝑙 refers to the fold 𝑙 from the 

outer loop. This stacking ensemble helps to improve the stability of prediction by 

combining the prediction from other models (i.e., predictions from the three methods 

were combined by learning weights via a GLM). Specifically, the GLM was trained on 

the resampled predicted age from the inner loop (𝑦𝑇𝑟𝑖
𝑙), and then the GLM was used to 
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provide one weighted-average prediction in 10-fold cross-validation (𝐾𝐸𝑛𝑠 = 10). From 

there, the best stack-ensemble model (𝜃𝐸𝑛𝑠
𝑙 ) was used to predict age for the testing set 

(𝑌𝑇𝑠𝑙̂). That is, the prediction of age is calculated for the individual methods 𝑦𝑇𝑟𝑖
𝑙 =

𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑇𝑟𝑙, 𝜃𝑖), and then the weighted average is estimated for fold 𝑙. 

𝑌𝑇𝑠𝑙̂ = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡([𝑦𝑇𝑟1
𝑙, 𝑦𝑇𝑟2

𝑙, … , 𝑦𝑇𝑟𝑛
𝑙],  𝜃𝐸𝑛𝑠

𝑙 ) 

After iterating over all folds from the outer loop, a prediction for the age of the 

entire dataset can be built. In addition, the variable importance of predictors from the 

stacking ensemble models was estimated across the outer loop of NCV. Finally, the 

predicted age and age values were used to estimate the BrainAGE for the dataset. Figure 

4-4 shows the overall framework to estimate BrainAGE. 
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Figure 4-3: The nested-cross-validation procedure for predicting age. The example here 

demonstrates the first fold of the outer loop. The procedure consists of an inner loop 

(yellow color) and outer loop (grey color). The inner loop is used to find the best models 

to predict age. The outer loop uses those models to predict the age on the testing set. The 

process is repeated for all folds of the outer loop, which results in building a prediction 

of age from all samples. 
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Figure 4-4: The complete framework for estimating the BrainAGE from EEG. The 

framework uses the nested-cross-validation method to build estimations for age. Those 

estimations are then used to calculate BrainAGE from the entire dataset. 

 Results 

NCV R² performance (i.e., variance shared between predictors and outcome) for stack-

ensemble and underlay methods is shown in Figure 4-5. 
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Figure 4-5: Model performance in terms of the explained variance using NCV.  Error 

bars represent the standard deviation of performance across the outer loop of the NCV. 

 

Figure 4-6: Model performance in terms of MAE using NCV.  Error bars represent the 

standard deviation of performance across the outer loop of the NCV. 



70 

The individual performance for each ML method was calculated before the stack-

ensemble phase. Results showed that SVR with radial kernel was most accurate: 𝑅2 =

0.34(0.06); MAE=7.01(0.68) years; and Root Mean Square Error (RMSE)=8.7(0.63) 

years. The stack-ensemble improved overall performance with 𝑅2 = 0.37 (0.064); 

MAE=6.87(0.69) years; and 𝑅𝑀𝑆𝐸 = 8.46 (0.59) years. 

The correlation between predicted age and actual age is shown in Figure 4-7, sharing 

approximately 36% of the variance. 

The correlation between predicted age and actual age is shown in Figure 4-7, sharing 

approximately 36% of the variance. 

 

 

Figure 4-7: Predicted age vs. age constructed from the outer loop of the NCV. 
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Figure 4-8: The 20 most important features for predicting age, sorted from most 

important (bottom) to least important (top). Ventricle axis shows the scoring values from 

the stack-ensemble model predictor, while the color indicates the correlation values 

between that feature and age. 
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Figure 4-9: PDP for the top feature from NCV via the stack-ensemble model 

Importance of features was estimated such that total summation of feature 

importance is 100 from each fold of the outer loop of the NCV. Subsequently, importance 

scores were averaged across folds. In this case, results were reported as the mean across 

all folds. Figure 4-8 shows the 20 most important predictors of age. The color of the bars 

represents the Pearson’s correlation values between each predictor and age. From the 

graph, we can see that “spectral flatness of beta band from channel TP9” is the most 

important predictor of age, where 𝑟 = 0.34. Please refer to Figure B4 in Appendix B for 

detailed graphing of the relationship between the leading predictors and age. 

The relationships between chronological age and the most important features were 

described by the Partial Dependence Plot (PDP) [144] for each training model, and 

consistency across folds was examined by overlaying the PDP curves. It is desirable for 

the same feature to behave similarly among the folds of the outer loop of the NCV. Figure 

4-9 shows the PDP for the most important feature. PDP for each fold (i.e., thin lines) 
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shows consistent behavior among all folds. Figure B6 in Appendix B illustrates PDPs 

for the leading features. 

 

 

Figure 4-10: Mean feature importance scores sorted by bands and channels for 

predicting age. The darker the color, the more important the feature.  

To show spatial distribution of feature importance,  MNE software [145] was 

used. More specifically, feature importance scores obtained from the NCV were averaged 

based on feature type and categorized based on frequency bands. The resultant mapping 

for the feature importance scores is shown in Figure 4-10.   

Finally, work reported in this chapter considered the effect of several samples on 

performance in predicting age. The framework was tested on a different number of 
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samples. Figure 4-11 graphs the R2 of the NCV as a function of the number of samples 

in our dataset.  

  

 

Figure 4-11:  The effect of the number of samples on age prediction. 

 Discussion  

4.4.1 Age-related changes are affecting brain EEG signals 

Results suggest that indeed aging affects human brain EEG signals. This work 

also determined that comprehensive feature extraction is required from EEG signals to 

capture the relationship between chronological age and age predictors. This suggests that 

aging is reflected broadly on the EEG signals without one selected predominating feature 

and also suggests that utilized EEG predictors feature various mechanisms of influence 

by age. Additionally, for feature extraction, selecting the best features is vital for 

improving performance and reducing model complexity. Correlated features were 



75 

eliminated to select preferred features, which improves the overall  𝑅2.  The selection for 

correlated features preserves the consistency among NCV folds and, more importantly, 

eases interpretation of results. The age-related changes in EEG are strongly supported by 

the literature [126-131, 146] and by results detailed in this work, as well, where the 

correlation between the four most important features and age was relatively high: r=0.34, 

0.3, 0.26, and 0.24, respectively.  

4.4.2 Can age be predicted from EEG signals?  

Given an unbiased prediction of age using NCV, it was possible to achieve 

reasonable accuracy for predicting age.  Optimal results were obtained by SVR (𝑅2 =

0.37) and were slightly improved by the Stack-ensemble approach (𝑅2 = 0.38).  The 

correlation between predicted age and age was also relatively high (r=0.60), which shows 

the ability of the model presented herein to predict this objective metric.  Overall feature 

importance scores were extracted for each fold in the outer loop of the NCV, and then 

averaged across all folds.  Feature importance showed that leading predictors are spread 

out across different features, types, and bands. Also, a PDP was used to examine the 

consistency of features across the outer loops of the NCV, where leading features were 

shown to have a similar behavior across the folds.  

The effect of the number of samples on prediction accuracy is shown in Figure 

4-11. The graph indicates a potential improvement may be achievable by adding more 

samples. When testing on 50 samples, overall accuracy was R2~=0.26, which shows that 

the features are informative for predicting age, even from a small number of samples. It 

should be noted that the sample size used in this work was relatively smaller than the size 

used in other works, especially those that used MRI.  
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Mapping spatial distribution of feature importance scores revealed that age 

predictors do not uniquely correspond to specific channels, frequency bands, nor to a 

specific feature domain. That is, different feature types capture some characteristics of 

EEG, but not the entire relationship. For example, Figure 4-8 showed that among the 15 

most important features, spectral features are positively correlated with age, while rEEG 

features are negatively correlated (i.e., one type of feature captures a specific aspect of 

the relationship between that feature type and age). Thus, providing heterogeneous 

features can improve the predictability of age. This is also supported by Figure 4-10, 

wherein the spatial distribution of feature importance scores does not exhibit a uniform 

representation.   This analysis shows that the relative contribution of feature importance 

is 46%, 31%, 18%, 3%, and 2% for spectral, rEEG, amplitude, FD, and FC, respectively. 

It should be noted that the number of features among different domains are not the same; 

this is especially the case for FD and FC features. Similarly, feature contributions are also 

spread out across bands, as follows: 31%, 21%, 27%, and 18% for theta, delta, alpha, 

beta, and theta, respectively. 

4.2.3 Comparison with other works 

Predicting age from EEG features was also studied in [132]. When compared with 

this study, one will note that those authors reported relatively higher prediction 

accuracy—0.6 compared with 0.4 in this work. There are several differences which may 

contribute to this disparity. Perhaps the most significant difference is that the researchers 

seem to have selected features using the response variable and the entire dataset, which 

will generally lead to more positive evaluations when compared with selecting features 

within an NCV framework, as done in this work. Additionally, R2 was reported in this 
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study as 1-SSresid/SStotal (i.e., SSresid is the squared residuals from the regression; 

SStotal is the total sum of squares of differences from the mean) taken from the model 

prediction, while researchers from the other study seem to have reported the R2 of a line 

fit through age vs. predicted age. Other differences include the feature sets used and the 

fact that EEG data in this work were collected during fMRI, which may leave some 

residual artifact. Furthermore, interpretation-friendly features were used in this work.   

Predicting age from functional brain imaging is probably more challenging than 

structural imaging. This chapter proposes a robust and rigorous framework to predict 

BrainAGE using different features of EEG signals recorded during fMRI in a sample of 

N=468 individuals.  First, an open-source EEG feature extraction software was extended 

in MATLAB [136] to provide a feature representation of individual subjects.  Then, a set 

of ML methods was applied to predict age from features.   

Table 4-1 shows that fMRI generally yields a lower performance than structural 

MRI data. Best results were reported by [114] with r=0.96 from structural imaging of 

healthy subjects. EEG and fMRI are both functional imaging for the brain, and thus, are 

more subjective to compare EEG results with fMRI results. The method reported herein 

indicates performance is relatively lower than those from fMRI works reported in [117] 

with R2=0.55 and [118] with MAE = 4.6 years.  Without a subjective comparison between 

EEG and fMRI from the same dataset, it is hard to draw conclusions about the amount of 

information that each domain embeds.   Although fMRI/MRI imaging may yield a higher 

accuracy, this method comes at extra cost and less portability when compared with EEG 

methods.  
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The contribution of some features linked to BrainAGE is in line with previous 

works  [147, 148]. For instance, the findings in this work replicate a negative correlation 

between age and alpha power spectra in healthy groups initially reported in [147]. This 

correlation trend was also observed in other frequency bands, especially delta and theta 

bands. FD is positively correlated with age for healthy subjects (see Appendix B, Figure 

B7), which is consistent with a prior finding in [148].  However, [148] showed that FD 

increases for subjects aged from 20 to 50 years, and then decreases. Since the age limit 

in this work is 58, the pattern is increasing overall for ranges from 18 to 58 years. Figure 

B6 and Figure B7 in Appendix B provide a spatial mapping of the correlation values 

between the spectral and FD features and age.   

 Limitations  

This chapter used a set of static EEG features to predict age for 468 subject. EEG 

preprocessing was applied using an automatic preprocessing pipeline instead of manual 

preprocessing. Moreover, the used dataset consists of heterogeneous subjects, due to the 

limited number of HC subjects. Finally, for feature selection, correlated features were 

removed from the datasets. Other feature selection methods can be tested and evaluated.   

 Conclusions 

This chapter introduced the rigorous framework for BrainAGE estimation based 

on EEG brain signals. Proof-of-concept analysis showed that it is possible to build a 

robust BrainAGE estimation by harnessing both extensive EEG feature representation 

and suitable ML algorithms. ML and NCV play a significant role in identifying 



79 

informative features and studying the spatial distribution of significant predictors, as well 

as providing unbiased prediction. In addition, this work showed how to evaluate and 

interpret the results using the feature importance scores and partial dependence plots. The 

introduced framework can be extended to test association with and predict other 

physiological relevant measures based on EEG brain signals.    
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 Introduction  

Extracting BrainAGE predictors from EEG data was investigated in Chapter 4.  

Results showed that wide-range heterogeneous features can predict age, yielding an 

explained variance of R2= 0.37. The challenges of building age predictors from EEG are 

rooted in the nature of EEG data and the type of information that EEG measures. In other 

words, EEG is a functional measurement of brain activity, and thus, age prediction relies 

on how much functional information changes with age.  

This chapter investigates the extent to which information about fMRI features 

reveals about age. More specifically, how is aging associated with brain functionalities, 

and what potential features are linked to age?  Also, the shared information between EEG 

and fMRI for predicting age is investigated in this chapter.  More specifically, the 

correlation between predicted age from EEG is compared with predicted values from 

fMRI features. Finally, improving the predictability of age from simultaneous EEG and 

fMRI is explored by prediction fusion. To do so, this work used simultaneous EEG-fMRI 

recording from the same cohort of heterogeneous participants used in Chapter 4. The 

literature review for using neuroimaging modalities for BrainAGE was extensively 

discussed in Chapter 4 and, therefore, not duplicated below.  

Chapter 5 : BrainAGE Prediction Using Simultaneous 

EEG-fMRI Features  
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 Defining Regions of Interest from fMRI BOLD Signal 

Identifying brain regions of interest (ROIs) is an essential step for any fMRI 

analyses since it could significantly affect the predictability and identification of the 

assumed response (e.g., clinical assessment measure, neural activity in a brain region, or 

accuracy of performing a task). The network structure and connectivity of the brain must 

be considered for selecting ROIs. For example, one can select ROIs from within specific 

RSN or specific brain regions. Defining these ROIs is beyond the scope of this work. 

Therefore, a predefined set of ROIs was used from the seminal work presented in [149]. 

Specifically, authors in [149] defined n=279 ROIs that span most resting state networks. 

Specifically, these ROIs are defined in a way that minimizes the short distance correlation 

between ROIs while forming similar spatial/functional distributions of the known brain 

networks. Figure 5-1 shows the distribution of the ROIs colored based on indices of the 

ROIs. 
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Figure 5-1: The selected ROIs for feature extraction from fMRI colored based on the 

indices of the ROIs. The top part represents the 2D Axial view for the locations of the 

ROIs, and bottom part shows the 3D Sagittal view of the ROIs.   

 Methods  

5.3.1 Participants  

Participants were selected from the 500 subject T-1000 study. Please refer to 

Section 1.7 of Chapter 1 for more information about the population of participants. 
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5.3.2 EEG-fMRI Data Aqusition 

Please refer to Section 1.8 in Chapter 1 for detailed information about data 

acquisition.  This chapter highlights simultaneous EEG-fMRI recordings from 456 

subjects after passing quality assurance procedures. The following section describes the 

necessary preprocessing steps for suppressing artifacts.  

5.3.3 EEG Data Preprocessing  

Please refer the preprocessing procedure deployed in Chapter 4, Section 4.2.3. 

5.3.4 fMRI Data Preprocessing 

The following preprocessing pipeline is adapted by the neuroimaging community 

and used as-is to suppress artifacts. To best of this author’s knowledge, the deployed steps 

yield best results for preprocessing data (See Figure 5-2 for a general overview about 

procedure of preprocessing the fMRI data). Imaging analyses were carried out using 

Analysis of Functional NeuroImages (AFNI) software (http://afni.nimh.nih.gov/afni/). 

The afni_proc.py command was employed to preprocess the data using the default 

parameters, unless otherwise noted. The first three volumes were omitted from the 

analysis. The despike option was applied to replace outlier time points with interpolation. 

RETROICOR [150] and respiration volume per time (RVT) correction [151] were applied 

to remove cardiac- and respiration-induced noise in BOLD signal. Slice-timing 

differences were adjusted by aligning to the first slice, and motion correction was applied 

by aligning all functional volumes to the first volume. EPI volumes were acquired using 

the 3dvolreg AFNI program with two-pass registration. The volume with the minimum 

http://afni.nimh.nih.gov/afni/
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outlier fraction of the short EPI dataset acquired immediately after the high-resolution 

anatomical (MPRAGE) brain image was used as the registration base. Linear warping 

was applied to the MNI space and resampled to 2 mm3 voxels. Also, individual time 

points and previous ones were censored, where the root sum square motion was greater 

than 0.2 mm.  

Noise reduction was implemented by regressing out: (1) low-frequency 

fluctuation from the signal time course (i.e., third-order polynomial model), (2) 12 motion 

parameters (i.e., three shift and three rotation parameters with their temporal derivatives), 

(3) local WM average signal (ANATICOR) [152], and (4) three principal components of 

the ventricle signal from the signal time course. FreeSurfer 5.3 

(http://surfer.nmr.mgh.harvard.edu/) was used to extract WM and ventricle masks from 

the anatomical image of an individual subject, and then warped them to the normalized 

fMRI image space. Frame-wise displacement and DVARS were calculated according to 

[153] using the FSL motion outliers package 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLMotionOutliers).   

http://surfer.nmr.mgh.harvard.edu/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLMotionOutliers
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Figure 5-2: fMRI preprocessing pipeline. 

5.3.5  Features of Interest 

Several features can be extracted from the selected ROIs. The work presented 

herein focuses on two sets of features. The first set of features depends on the pairwise 

FC between ROIs and deplpoys Pearson’s correlation for this purpose. More specifically, 

the BOLD signal from each ROI is averaged and correlated with every other BOLD signal 

from other ROIs. Similar features have already been used in the literature [154, 155], 

albeit using a different ROI selection procedure. For selected ROIs reported herein, this 

resulted in a feature vector with  𝑛 = (279 × 278 )/2 = 38781 elements. Thus,  further 

feature reduction was needed and is explained in the next section.  

The second set of features relies on the amplitude of low-frequency functions 

(ALFF) in BOLD signal, which is identified as the total power within the frequency range 

of 0.01 and 0.1 Hz [156]. ALFF can measure the low-frequency BOLD fluctuation of the 

brain hemodynamic activity and may indicate the correlated activities within RSNs of the 
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brain.  ALFF is estimated as a single value from each ROI’s BOLD signal, and then 

concatenated with the estimated ALFF values from other ROIs, resulting in a feature 

vector of  n=279. Similar to FC features, ALFF has been used for clinical prediction [157-

159].   

5.3.6 Features Preprocessing  

The high dimensionality of fMRI has always been a challenge for ML methods. 

Focusing on the 279 ROIs alleviates the curse of the dimensionality in the data; however, 

FC features still suffer from this problem. Thus, a further feature selection and reduction 

are needed. In order to do that, the correlated features between subjects were removed, as 

was utilized in Chapter 4. The threshold for removing the correlated features was set to 

(thr=0.5). This procedure reduced the number of features for FC from 38781 features to 

3693. 

It should be noted that other thresholds can be used, but at the cost of accuracy and 

computational efforts. That is, using lower threshold values results in smaller numbers of 

features, yet removes potential information in the data. On the other hand, using larger 

threshold values may retain more information, yet increases the computational overhead.  

5.3.7 Machine Learning Methods  

A similar ML framework used in Chapter 4 was adopted for fMRI features. 

However, to reduce computational efforts, only SVM and RF were deployed. Training 

and testing were done using (K=5) nested-cross-validation procedure. 

To combine predictions from all feature sets (e.g., both fMRI and EEG), a GLM was used 

to fuse prediction after training on EEG, ALFF, and FC features. Particularly, for each 
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fold of the NCV, a GLM model was trained from each set of features on the predicted age 

of the remaining 4-fold predictions. Then, the trained GLM was tested on the current fold 

predictions. A final prediction vector was constructed and compared to the actual age 

values (See Figure 5-3). 

 

Figure 5-3: Age prediction fusion from EEG -fMRI features. The predicted age values 

from each set of features (AgeEEG, AgeALFF, and AgeFC) are used to train a GLM model 

using cross-validation. The final predicted age (AgeFusion) is constructed from GLM 

prediction.  

 Results 

Using the NCV framework presented in Chapter 4, the age prediction from each 

set of features was computed. For each modality, the correlation between age and the 

predicted age was investigated. Specifically, we plotted the predicted age vs. 

chronological age for SVM (Figure 5-4), RF (Figure 5-5) for RF, and the ensemble 

method (Figure 5-6). In addition, RMSE, MAE, and the explained variance for the NCV 

was estimated (Table 5-1).  
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Figure 5-4: The correlation between age and the predicted age using SVM for ALFF, 

EEG, and FC features. 

 

Figure 5-5: The correlation between age and the predicted age using RF for ALFF, 

EEG, and FC features. 
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Figure 5-6: The correlation between age and the predicted age using the ensemble 

model for ALFF, EEG, and FC features. 

Table 5-1: The performance of age prediction from EEG, ALFF, and FC set of features. 

Features RMSE R2 MAE (years) 

EEG 8.62 0.33 6.92 

Functional Connectivity 8.24 0.41 6.69 

ALFF 8.26 0.40 6.67 

Fusion 7.29 0.54 5.87 

 

Next, the fused predictions from all feature sets were estimated using the GLM model, 

and then the scatter plot of age vs. predicted age was depicted. 
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Figure 5-7: The predicted age vs. the chronological age using GLM prediction fusion. 

To investigate the shared information that each modality has about age, the correlation 

matrix among predicted age values from each modality was computed (Figure 5-8).  

 

Figure 5-8:  The correlation matrix of predicted age values from EEG, ALFF, and FC 

set of features. 
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 Discussion 

Predicting age from fMRI data may carry important information about how aging 

is linked to various brain functions. Unlike predicting age from structural imaging data, 

estimating age from functional imaging may be challenging due to high dimensionality 

and data variation. Nevertheless, Chapter 4 has revealed that it is possible to predict the 

age from heterogeneous EEG features. This chapter extended the effort of predicting age 

from EEG by using other types of functional imaging, fMRI, and further combining 

prediction from EEG and fMRI.  In order to do this, the ALFF and FC from 279 ROIs 

were extracted from 453 datasets. Using NCV—which was introduced in Chapter 4, age 

was predicted using EEG feature (explained in Chapter 3), FC, and ALFF of fMRI 

features.   The obtained results revealed that FC and ALFF of fMRI hold significant 

information about age. Specifically, the unbiased NCV framework yielded R2 of 0.41 for 

the ensemble model when evaluated on the FC features. Similarly, ALFF yielded a close 

prediction performance with an R2 of 0.40 for the ensemble model.  These results suggest 

that age is associated with a wide range of effects on the functionality of the brain. 

Notably, each set of fMRI features carries different information about aging, since the 

correlation between the predicted age from each set of features was different. This 

phenomenon has been shown in the correlation matrix of predicted age (Figure 5-8). With 

a maximum of 0.46 correlation among EEG and fMRI predicted age values, the results 

suggest that fMRI and EEG feature sets potentially carry shared information about age. 

However, the results also suggest that EEG and fMRI measure different aging indicators 

from the brain since there is no perfect correlation between predicted age from EEG 

features and fMRI features. Furthermore, combining prediction from all features sets has 
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improved the predictability of age, which explains up to 54% of the variance in the data 

and indicates that age prediction fusions leveraged more information about the age from 

the three sets of features. 

 Limitations 

The presented work deployed EEG-fMRI feature sets to build a BrainAGE 

predictor. Two types of fMRI feature sets, namely ALFF and FC, were used. Other 

features can be adopted and studied. Also, a predefined set of ROIs was used to extract 

fMRI features. There are several kinds of ROIs based on the anatomical or functional 

distribution that can be harnessed [160, 161]. Moreover, prediction fusion was applied at 

the level of the predicted age values from individual feature sets. Other types of fusion 

can be examined, like fusion at the level of the features. Finally, a simple feature selection 

was utilized for FC features. Investigating other feature selection methods could improve 

the predicted age, especially for FC features.    

 Conclusions 

In this chapter, combined EEG-fMRI features were used to predict age using the ML 

framework introduced in Chapter 4. Two sets of functional features were extracted from 

fMRI data, namely FC and ALFF. Then, the ML framework was trained independently 

on the two sets of features. From there, the unbiased prediction of age values was 

estimated. A final predicted age was constructed from fMRI features and EEG features 

extracted from work completed in Chapter 4.  The analysis revealed that EEG and fMRI 

features share significant information about age, although each modality has its own 
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fingerprint about age. Moreover, prediction fusion has shown the benefit of using 

simultaneous EEG-fMRI for enhancing the accuracy of the predicted age and, potentially, 

other outcomes. 
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 Introduction   

  In Chapter 1, we relied on the literature to explain the benefits of integrating 

simultaneous resting state EEG and fMRI data to maximize both temporal and spatial 

resolution.  Work detailed in Chapter 2 and Chapter 3 extracted two sets of EEG features 

that were used from characterizing MA subjects and building BrainAGE predictor, 

respectively.  Using EEG features extracted from work reported in Chapter 4, the benefit 

of using simultaneous EEG-fMRI features were shown for studying shared information 

about the age between EEG and fMRI. Moreover, this work has shown how combining 

those modalities could improve the accuracy of age prediction. This chapter focuses on 

using EEG-ms features to localize the brain regions associated with EEG-ms in the fMRI 

side and, more importantly, how the identified changes in EEG-ms features are 

manifested in the brain. The relationship between EEG-ms and the BOLD signal has been 

investigated in [25], which revealed that EEG-ms possess a scale-free property related to 

changes in BOLD oscillations. 

Furthermore, other works have correlated BOLD signal with EEG-ms time 

courses using the GLM analysis to localize brain regions associated with EEG. For 

Chapter 6 : Studying Brain Based Biomarkers of 

Mood and Anxiety Disorders: An EEG-ms Informed 

fMRI Analysis    
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instance, using the canonical EEG-ms analysis described in Chapter 2, authors in [24] 

demonstrated that: 1) MS-A is negatively correlated with BOLD signal in the bilateral 

superior and middle temporal lobe; 2) MS-B is negatively correlated with BOLD signal 

in the bilateral occipital cortex; 3) MS-C is positively correlated with BOLD signal in the 

right insular cortex, bilateral inferior frontal cortices, and the dorsal anterior cingulate 

cortex; and 4) MS-D was negatively associated with the BOLD signal within 

frontoparietal regions. Authors in [58] extracted 10 EEG-ms, revealing a significant 

association between the spatial maps of EEG-ms and BOLD signal. 

Additionally, investigations have related EEG-ms with the BOLD signal, using 

non-conventional EEG-ms analysis. For instance, authors in [23] extracted EEG-ms using 

ICA and associated EEG-ms with the ICA time course of fMRI RSNs.  Identifying the 

source of EEG-ms from high-density EEG recordings has been explored in [66], revealing 

that EEG-ms sources are located in cingulate cortices, precuneus, superior frontal cortex, 

supramarginal gyrus, dorsal superior prefrontal cortex, and insular cortex. It should be 

noted that the results have shown to be relatively similar to the GLM-yielded brain 

regions reported by [65]. From a clinical point of view, combining EEG-fMRI may 

provide more insight into understanding the ramifications of adverse health conditions. 

For example, EEG-fMRI analysis has been applied to the study of both PTSD [22] and 

more notably, epilepsy  [48, 162-164].  

In this chapter, the effort of combing EEG-ms with fMRI was extended by 

identifying brain templates associated with MSs. Templates were used to study the FC 

between those brain regions for the same MA subjects used to obtain results in Chapter 

3.  
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 EEG-ms inform fMRI 

There is a wide range of information that can be extracted from EEG; however, 

this work focused on EEG-ms features for the following reasons: 1) EEG-ms are 

broadband (i.e., multifrequency), and 2) EEG-ms represents topographic representation 

from all electrodes used to collect EEG measurements of brain activity. Thus, the burden 

of providing a systematic selection of the frequency of interest from EEG is avoided, and 

the challenges of selecting spatial information from EEG data are eliminated. In addition, 

EEG-ms are well characterized, and the classes of EEG-ms are well replicated across 

many works [56, 89]. Therefore, the foundation of supporting findings from EEG-ms 

regressors is well justified, since EEG-ms reflect large coherent in time and space 

neuronal brain activity. Finally, EEG-ms metrics have been used widely in the literature 

to study various mental disorders. If EEG-ms can reveal various mental disorders’ 

specific alterations of brain functionality while revealing proper spatial localization, a 

more nuanced understanding of psychopathology of different mental illnesses, including 

depression and anxiety, can be obtained. 

The traditional approach for data fusion of EEG-informed fMRI is GLM, which 

associates EEG-ms features with fMRI BOLD signal. Besides the time course of EEG-

ms classes, additional second-level features (e.g., average duration, occurrence, or 

transition probabilities) of EEG-ms can also be harnessed to inform fMRI data analysis. 

However, using second-level features EEG-ms as regressors may complicate the 

interpretation of such results.  Thus, this work relies on using the time course of EEG-ms 

to inform fMRI analysis, which may offer valuable information about potential 

biomarkers for mental disorders. 
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 Methods 

6.3.1 Participants 

We used the same participants included in the study detailed in Chapter 3 (See 

Chapter 3, Section 3.2.1). Excluding some subjects was necessary due to the noise in 

fMRI data. The final dataset used was comprised of 43 subjects for the HC group and 59 

subjects for the MA group. Each subject had useable EEG and fMRI data. Furthermore, 

the MA group was divided into subgroups based on the comorbidity of symptoms, as 

Anxious-only subjects (Anx), Depressed-only subjects (Dep), subjects with Depression 

and Anxiety (Dep+Anx), and subjects with depression and anxiety who are substance 

users (Substance+). Table 6-1 and Table 6-2 presents the demographics of the 

participants based on the subgroups of MA subjects and again after lumping MA 

subgroups together, respectively.  

Table 6-1: Demographics of EEG-ms Informed fMRI analysis dataset. The MA subjects 

were divided into four subgroups based on the comorbidity of symptoms. 

Group HC MA 

Subgroup  Dep Dep+Anx Anx Substance+ 

n 43(23Females) 16(9Females) 33(23Females) 4(4Females) 6(1Females) 

PHQ 0.6(1.03) 13.25(3.02) 14.42(5.37) 7.75(2.99) 13.5(6.32) 

OASIS 1.05(1.34) 8.19(3.35) 10.15(2.91) 9.25(0.96) 7.67(5.05) 

STAI_State 25.74(6) 44.81(11.84) 49.45(10.01) 42.5(10.25) 41(15.58) 

STAI_Trait 27.37(5.8) 53.75(11.62) 56.64(10.84) 44.25(12.04) 45.5(12.85) 

Education 6.49(1.58) 6.5(1.51) 5.94(1.85) 6.25(1.71) 6(1.41) 

Age 30 (11) 35 (12) 33(11) 30(12) 28(6) 
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Table 6-2: Demographics of EEG-ms Informed fMRI analysis dataset with combined 

MA subgroups. 

 
HC MA 

n 44(23 females) 59 (37 females) 

PHQ 0.6 (1.03) 13.56(5) 

OASIS 1.05(1.34) 9.31(3.29) 

STAI_State 25.47(6) 46.86(11.3) 

STAI_Trait 27.37(5.80) 53.88(11.81) 

Education 6.49(1.58) 6.12(1.69) 

 

6.3.2 EEG-fMRI Data Acquisition 

Please refer to EEG-fMRI data acquisition protocol used in Chapter 1, Section 1.8. 

6.3.3 EEG Data Preprocessing 

Please refer to EEG processing procedure used in Chapter 3, Section 3.2.3. 

6.3.4 fMRI Data Preprocessing  

The same preprocessing steps used in Chapter 5, Section 5.3.4 were used without 

noise reduction. All noise reduction was applied during GLM modeling (See Section 

6.3.5.3). 

6.3.5 Multimodal Analysis   

6.3.5.1  Summary of EEG-ms extraction  
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First, the four canonical EEG-ms classes—A through D—were extracted for each 

group—HC and MA. To do so, the EEG data from individual subjects were average-

referenced, and then filtered between 2 and 20Hz. Next, the EEG points corresponding 

to the peaks of the GFP [165] were selected for the subsequent segmentation step.  The 

AAHC algorithm was used to segment the selected EEG point into the four clusters 

corresponding to the four canonical EEG-ms classes. After that, the group means of EEG-

ms was extracted by first sorting individual EEG-ms based on the similarity between 

classes, and then finding the common topography across all subjects. Finally, individual 

subject EEG was fit-back using the group mean topographies.  

6.3.5.2   EEG-ms based Regressors for fMRI Analysis   

As aforementioned, the time course of each MS was used as a regressor in the 

GLM model. It should be noted that the term time course here implies a different meaning 

from other methods that involve time course extraction, like ICA. EEG-ms time course 

is the spatial similarity between each MS template and topographical representation of 

EEG points. Another difference that arises with the definition of EEG-ms time course is 

the polarity consideration of EEG-ms, where different interpretations can be drawn if 

polarity was considered. 

To provide a better understanding of the time course of EEG-ms, the following section 

describes the mathematical representation of EEG-ms regressors. First, let’s consider 𝒙𝒕 

electrodes value at time 𝑡. EEG-ms analysis assumes that each EEG point can be 

presented as: 
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𝑥𝑡 = ∑ 𝑎𝑖𝑡𝑇𝑖 + 𝜖𝑡

𝐾

𝑖=1

                          (6.1) 

where 𝒙𝒕 is electrodes value vector at time 𝑡; 𝑎𝑖𝑡 is a factor related to each MS at 

each time point; and 𝜖𝑡 is the error term associated with assigning that time point to one 

of the MSs (i.e., noise due to the lack of explained topographical representation of that 

point by the assigned MSs template 𝐾 is the number of the assumed MSs).  𝑇𝑖 is the 

template of MS 𝑖. The time course of EEG-ms is the goodness of fit for each EEG point, 

with respect to the MS template, and can be given as follows: 

𝑓 = x𝑇 × 𝑇                          (6.2) 

The result is a vector 𝑛 × 𝐾 corresponding to the fit of each MS across 𝑛 EEG data points. 

When assigning EEG-ms classes, the following equation is applied:  

 

𝐿𝑖 = argmax
𝑘

(𝑎𝑏𝑠(𝑓𝑖))                    (6.3) 

The absolute term in the equation accounts for the polarity invariant property of 

EEG-ms analysis. In this work, goodness of fit was used as regressors for GLM analysis 

with and without considering the polarity, denoting them as 𝑓𝑝 moreover, 𝑓, 

respectively.  

𝑓𝑝 = x𝑇 × 𝑇                                               (6.4) 

𝑓 = 𝑎𝑏𝑠(x𝑇 × 𝑇)                                        (6.5) 

Further smoothing was applied using a Gaussian kernel and 10-point window 

length for each regressor. Figure 6-1 shows an example of the resulting regressors. 

Finally, each regressor was convolved with double-gamma HRF [166], and then down-

sampled to TR, resulting in EEG-ms-informed regressors.  
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Figure 6-1: A sample of EEG-ms regressors to inform fMRI. Each regressor is used by 

the GLM to estimate Beta coefficients. 

6.3.5.3  GLM Analysis  

  fMRI BOLD signal analysis was performed using the standard GLM approach 

with the AFNI 3dDeconvolve function [167]. The design matrix included one EEG-ms 

regressor corresponding to one EEG-ms class and a set of nuisance covariates: 1) low-

frequency fluctuation from the signal time course (i.e., 3rd-order polynomial model); 2) 

12 motion parameters (i.e., three shift and three rotation parameters with their temporal 

derivatives); 3) local WM average signal (ANATICOR) [152], and 4) three PCs of the 

Ventricle signal from the signal time course. GLM β coefficients were computed for each 

voxel, and then a t-test was applied for the HC group to extract the templates of EEG-ms. 

To control for potential false positives in BOLD signal [168], 1) the non-Gaussian spatial 

autocorrelation function (ACF) was estimated for the dataset; 2) AFNI’s 3dClustSim was 

applied to the statistical map ([169]; 3) a permutation test (n=10000) was performed using 

the Smith procedure [170], showing that an ACF-corrected cluster requires a minimum 



102 

of 136 voxels to be deemed significant at 𝑝 < 0.05—using an uncorrected voxel-wise 

threshold of 𝑝 < 0.005. 

Moreover, the GLM model excluded TR with server motion (RMS>0.2) or with 

severe EEG artifact (i.e., if the TR contains 50% bad intervals of EEG).   

In addition to the previous steps, further exclusion was applied for the fMRI datasets 

given that the number of censored volumes was more than one-third of the whole number 

of volumes in the data. This was necessary to ensure that the GLM model had enough 

time to estimate beta coefficients.  

6.3.5.4  Extracting Network Based Measures and Functional 

Connectivity  

To study overall FC between different EEG-ms regions, the functional allocation 

index ratio (FAIR) was introduced. FAIR looks at the overall functional load for each MS 

when compared with others. If an MS is functionally active, then one would expect an 

elevation in FAIR value.   

𝐹𝐴𝐼𝑅𝐿 = 𝐹𝐶𝐿
𝑖𝑛/(𝐹𝐶𝐿

𝑖𝑛 + 𝐹𝐶𝐿
𝑜𝑢𝑡)                                             (6.5) 

 

• L: EEG-ms label (A, B, C, or D). 

• FC: Pearson’s correlation between two time series. It is also possible to use the 

coherence between two time courses instead of the Pearson’s correlation. 

• 𝐹𝐶𝐿
𝑖𝑛: the average of all FC values from all pairs of brain regions connected to MS 

L. 

•  𝐹𝐶𝐿
𝑜𝑢𝑡: the average of overall FC among all clusters without connections to MS 

L. 
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6.3.5.5  Graph Theory Analysis  

Graph theory offers another rigorous approach for assessing functional 

connectivity within EEG-ms brain templates. The method investigates several 

characteristics of complex network connections by forming a set of nodes and edges. 

Each node represents one of the significant clusters in the EEG-ms templates, while edges 

are functional connectivity measures between nodes. Typically, the edges are formed by 

Pearson’s correlation between the average time series from each pair of significant 

clusters [171-173]. Graph types are divided based on the directionality of connections 

into a directed or undirected graph (i.e., whether edge directions are taken into 

consideration or not). Also, graph types can be divided into weighted and unweighted —

binary—graphs (i.e., whether edges have values or not). While choosing the graph type 

is up to the researcher, binary undirected graphs are the most straightforward architecture 

to interpret [174].  To conduct graph analysis, the FC between each pair of significant 

clusters in the EEG-ms brain templates was calculated. Then, an undirected binary graph 

was constructed from each subject. 

• Small-Worldness (SM) Index: measures the balance between functional 

integration and separation (i.e., the balance between short distances and long 

distances in the graph [175]). SM has been used in several works to study clinical 

groups [176-178]. 

• Node Centrality: assesses the importance of each node based on the number of 

paths that go through that node. To find the global centrality for a graph, the 

average of nodes centrality is divided by the theoretical max [179].  
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• Vertex Betweenness: measures the presence of each node in the shortest path 

between all pair in the graph. For global graph betweenness, the average of all 

nodal betweenness in the graph is calculated [180].   

• Clustering Coefficients (transitivity): measures the number of triangles in the 

graph against the total number of connected triples in the graph [172, 181]. 

• Path Length: measures mean length of all shortest paths that pass through each 

node [181]. 

• Global Efficiency: acts as the inverse of the shortest paths between all pairs of 

nodes in the graph after normalizing by the number of links in the graph.  

It should be noted that there are variations in calculating graph metrics mentioned above, 

especially in normalizing some metrics over the number of nodes or adjusting for the 

disconnected graphs. All graph analyses were carried out using igraph [182] and qgraph 

[183] packages.  

Figure 6-2 shows the pipeline of using EEG-ms features to inform fMRI analysis, 

including the post-hoc analysis.  



105 

 

Figure 6-2: EEG-ms inform fMRI analysis framework for N subjects (Subj).  The Beta 

coefficients of GLM are estimated for individual subjects. The statistical analysis of Beta 

coefficients reveals the brain regions that are active with respect to EEG-ms features. 

Later, those brain regions can be used as brain templates representation for the 

corresponding EEG-ms features.   Several post-hoc analyses can be conducted based on 

the obtained brain templates; Beta analysis can be conducted to estimate the variation in 

the linear relationship between EEG-ms feature and BOLD signal. On the other hand, FC 

Analysis may reveals any changes in the connectivity between those brain regions.  
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 Results 

EEG-ms templates for both groups are shown in Figure 6-3.  

 

Figure 6-3: EEG-ms templates for HC and MA. 

 

Significant clusters from HC were used as a template representation for the EEG-

ms. The intention was to use HC as a functional localization dataset, and then compare 

the FC between those brain regions with the MA group. Similarly, β coefficients were 

extracted for both groups to analyze the linear relationship between BOLD and EEG-ms 

time courses. 

The following figures unravel the significant clusters for MS-A (Figure 6-4), MS-B 

(Figure 6-5), MS-C (Figure 6-6), and MS-D (Figure 6-7). Detailed information about 

each cluster and the corresponding brain region are presented in Table 6-3. 
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Figure 6-4: Significant clusters for MS-A. Clustering was performed at p<0 .005 and 

corrected at p<0.05. 

 

 

Figure 6-5: Significant clusters for MS-B. Clustering was performed at p<0.005 and 

corrected at p<0.05. 
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Figure 6-6: Significant clusters for MS-C. Clustering was performed at p<0.005 and 

corrected at p<0.05. 

 

 

Figure 6-7: Significant clusters for MS-D. Clustering was performed at p<0.005 and 

corrected at p<0.05. 
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Table 6-3: Significant clusters from the healthy control group after applying one-sample 

t-test on the GLM coefficients. 

MS  Name Region x y z 

A C1 Right Lentiform Nucleus  -26 -1 2 

A C2 Left Lentiform Nucleus  28 0 -2 

B C1 Right Cuneus -2 82 16 

C C1 Left Angular gyrus  47 62 37 

C C2 Left Middle Temporal Gyrus 61 32 -7 

C C3 Right Inferior Parietal Gyrus  -48 65 38 

C C4 Left Middle Frontal Gyrus  38 -17 46 

D C1 Left Angular Gyrus  48 61 31 

D C2 Right Cuneus -2 85 24 

D C3 Right Lingual Gyrus  -12 70 2 

D C4 Left Postcentral Gyrus 43 39 54 

D C5 Left Middle Temporal Gyrus  60 30 8 

D C6 Right Superior Frontal Gyrus  -27 -18 57 

D C7 Left Lingual Gyrus 14 73 -4 

 

The t-test of FAIR values between HC and the lumped MA subjects is shown in Figure 

6-8 and among subgroups in Figure 6-9.  
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Figure 6-8: Statistical analysis for FAIR metrics between HC and MA subjects.  Error 

bars represent the standard error. The p-value of the t-test is shown at the top of each bar 

pairs. 
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Figure 6-9: Statistical analysis for FAIR metrics between HC and subgroups of MA 

subjects. Error bars represent the standard error. The p-value of the t-test is shown at the 

top of each bar pairs. 

The t-test of coherence-based FAIR values between HC vs. MA  and HC vs. subgroups 

of MA is shown in Figure 6-10 and Figure 6-11, respectively.   
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Figure 6-10: Statistical analysis for Coherence-based FAIR metrics between HC and 

MA subjects.  Error bars represent the standard error. The p-value of the t-test is shown 

at the top of each bar pairs. 
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Figure 6-11: Statistical analysis for Coherence-based FAIR metrics between HC and 

subgroups of MA subjects. Error bars represent the standard error. The p-value of the t-

test is shown at the top of each bar pairs. 

Similarly, the complex network analysis using graph theory was investigated at different 

edge densities (i.e., proportional thresholding). Figure 6-12 reveals graph analysis for 

HC vs. MA. Besides, Figure 6-13, Figure 6-14 and Figure 6-15  depict graph analysis 

results for HC vs. Dep, HC vs. Dep+Anx, and Dep vs. Dep+Anx, respectively. 
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Figure 6-12: Graph analysis for HC vs. MA subjects estimated at different edge 

densities. The analysis shows the small-worldness index, clustering coefficient, path 

length, node betweenness, and efficiency (ns: not significant difference, *: p<0.05 and 

**: p<0.01). 
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Figure 6-13: Graph analysis for HC vs. Dep subgroups estimated at different edge 

densities. The analysis shows the small-worldness index, clustering coefficient, path 

length, node betweenness, and efficiency (ns: not a significant difference, *: p<0.05 and 

**: p<0.01). 
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Figure 6-14: Graph analysis for HC vs. Dep+Anx subgroups estimated at different edge 

densities. The analysis shows the small-worldness index, clustering coefficient, path 

length, node betweenness, and efficiency (ns: not significant difference, *: p<0.05 and 

**: p<0.01). 
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Figure 6-15: Graph analysis for Dep+Anx vs. Dep subgroups estimated at different 

edge densities. The analysis shows the small-worldness index, clustering coefficient, 

path length, node betweenness, and efficiency (ns: not significant difference, *: p<0.05 

and **: p<0.01). 
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6.4.1 Correlation Analysis between EEG-ms Brain Regions Functional 

Connectivity and Clinical Assessment Measures 

FC was propped between brain regions associated with significant connections 

obtained from results reported in Chapter 3 (e.g., MS-B to MS-D, MS-B to MS-C, and 

MS-A-to MS-D) and PHQ measure. Please refer for Table 6-1 for detailed information 

about the demographics of the dataset.  Figure 6-16 reveals the correlation between FC 

of brain regions associated with each significant connection and PHQ. Figure 6-17 shows 

the correlation between the coherence measure of brain regions associated with 

significant connections and PHQ.
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Figure 6-16: Correlation analysis between FC of the brain regions associated with 

significant connections obtained from Chapter 3 and PHQ. 
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Figure 6-17: Correlation analysis between Coherence of the brain regions associated with 

significant connections obtained from Chapter 3 and PHQ. 
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 Discussion  

This chapter investigated the use of EEG-ms to inform fMRI analysis and relies 

on the findings reported in Chapter 3, where subjects with MA exhibit alterations in the 

transition dynamics between EEG-ms when compared with HC. This chapter explores 

whether brain regions associated with EEG-ms from HC showed any FC alteration. Thus, 

EEG-ms brain templates from 43 HC subjects were extracted, as follows. First, the GLM 

model was adopted to associate the time course of each MS with the BOLD signal from 

each voxel in the brain. Second, significant clusters were identified—after controlling for 

false positive—from each EEG-ms for HC subjects only and were treated as brain 

templates. Each MS spanned different brain regions, as shown in Table 6-3. Later, the 

brain regions were used to study FC between MSs using several strategies.  

First, the FAIR measure—a global FC measure that quantifies the functional load 

for each MS—was introduced. One would expect group differences for such a measure; 

however, significant differences in coherence-based FAIR values of MS-A and MS-C 

were found when comparing the MA group to the HC group (Figure 6-10). Then, an 

investigation determined whether MA subjects behave differently due to the 

heterogeneity within the depression cohort, in addition to anxiety symptom comorbidity. 

MA subjects were further sub-grouped into those with depression (Dep) only and others 

with depression and anxiety (Dep+Anx). Due to the limited number of subjects with 

anxiety only (Anx) and Substance+, subgroups were excluded from further analysis. The 

FAIR values for subgroups were calculated and presented in Figure 6-9 for FC-FAIR and 

in Figure 6-11 for Coherence-based FAIR. The figures demonstrate subgroup differences 

at HC vs. Dep+Anx for FC-FAIR of MS-C and Coherence-FAIR for HC vs. Dep+Anx in 
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MS-A, MS-B, and MS-C. It was concluded that comorbidity of symptoms affects the 

FAIR. 

Second, a complex network analysis was conducted using graph theory between 

EEG-ms brain regions. The analysis investigated several graph theory properties, 

including SM index, clustering coefficients, path length, node betweenness, and 

efficiency at different edge densities configurations. The following datasets were 

assessed:  HC vs. MA (Figure 6-12), HC vs. Dep (Figure 6-13), HC vs. Dep+Anx 

(Figure 6-14), and Dep vs. Dep+Anx. The analysis revealed nothing significant, except 

for the presence of some edge densities.  

Finally, the work in this chapter investigated whether FCs among brain regions 

associated with connections of the significant difference between MA and HC (Chapter 

3) was correlated with the PHQ scale (Figure 6-16 and Figure 6-17).  The analysis 

revealed a significant correlation between FC of MS-B and MS-D brain regions and 

between FC of MS-B and MS-C brain regions. 

 Limitations  

This chapter detailed EEG-ms information to inform the fMRI analysis. Several 

strategies were utilized to analyze the data. One of the main challenges is that the brain 

region associated with EEG-ms are very limited in size and number due to the strict fMRI 

preprocessing pipeline, which otherwise would question the validity of the results. On the 

other hand, the association between EEG-ms time course and BOLD might not be linear, 

as is the assumption of deploying the GLM model. 
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Nevertheless, 14 brain regions associated with EEG-ms were identified and 

passed strict preprocessing pipeline. Three brain regions of MS-D were shared with MS-

B and MS-C. Moreover, the analysis relied on the fact that there is a group of difference 

between HC and MA from results detailed in Chapter 3; however, those differences were 

not very pronounced in the fMRI side. This could be due to the limited number of subjects 

in the MA group, besides the heterogeneity of the population of MA subjects. Thus, 

increasing the number of samples in both HC and MA might improve the results reported 

in this chapter. 

Furthermore, using additional information from EEG-ms might provide a better 

approximation for the relationship between EEG and fMRI.  

 Conclusions  

This chapter deployed EEG-ms features to inform fMRI analysis based on the 

findings reported in Chapter 3. More specifically, EEG-ms time courses were used to 

localize brain templates of EEG-ms from HC subjects. Then, those brain regions were 

utilized to study the brain FC of HC and MA subjects. By using the global FC and graph 

theory analyses, evidence of changes was found in the FC at the level of subgroups of 

MA subjects. Moreover, Beta coefficients of GLM from the same extracted brain 

templates were analyzed, and a correlation between PHQ scores and Beta coefficients 

was found for subgroups of MA subjects.   
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 Introduction 

Replicating findings from previous EEG and fMRI studies has been one of the 

main challenges in neuroscience and many other fields. This gap is becoming a significant 

concern for many aspects of research and a necessity for sustaining and building up 

knowledge from data, especially for human research. There is a consensus about 

prioritizing the reproducibility of research. Some researchers have gone further to declare 

a crisis in the reproducibility of results for some domains that include human subjects 

[184]. Some issues with replicating previous findings are attributed to the gap between 

the theoretical aspects and practical implementation, in addition to other challenges, such 

as the presence of noise in data. EEG-ms is not only prone to reproducibility issues; it 

also suffers from a couple of the practical issues that could significantly affect the 

reproducibility of results. This can be noticed from the variation in the reported EEG-ms 

features, even for healthy subjects [56].  

Chapter 3 harnessed EEG-ms to differentiate HC subjects from individuals with 

MA diagnoses. To impact replicability in future studies, this chapter addresses practical 

issues with conducting EEG-ms analysis and provides suggestions for conducting robust 

analysis.  

Chapter 7 : Proposal of a New Approach to Analyze 

EEG Microstates Data 
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Chapter 2 focused on the theoretical foundations of deriving EEG-ms, offering a 

solid foundation for EEG-ms and, more importantly, pointing out several practical points 

that were missing from the literature. 

This chapter addresses several critical aspects of extracting EEG-ms, including 

the effect of GFP peak selection and EEG-ms template noise susceptibility, which may 

impact the reproducibility of EEG-ms results. Based on the presented results in this 

chapter, several recommendations and guidelines are offered at the end of this chapter.  

 Methods  

7.2.1 Participants  

Please refer to Chapter 3, Section 3.2.1. Work reported in this chapter used 

only HC participants.  

7.2.2 EEG Data Acquisition 

Please refer to EEG-fMRI data acquisition protocol was explained in Chapter 1, 

Section 1.8. 

7.2.3 EEG Data Preprocessing 

Please refer to EEG processing procedure used in Chapter 3, Section 3.2.3. 
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 GFP Peaks and Labeling EEG  

Labeling EEG points relies on goodness of fit (i.e., similarity) between each EEG 

point and the corresponding EEG-ms template. As explained in Chapter 3, the following 

equation can be used to assign labels to EEG data: 

𝐿𝑖 = argmax
𝑘

(𝑎𝑏𝑠(𝑓𝑖)) (7.1) 

One fundamental assumption about EEG-ms is that assigning EEG-ms depends 

on the stability of GFP peaks. More specifically, GFP peaks are used as markers to label 

EEG data points by fixing EEG-ms labels between these peaks. This factor has been 

used—with or without paying attention to this point as a result of using some software as 

black boxes—to assign EEG-ms labels without evaluating assignment reliability. The 

main advantage of using GFP peaks for assigning labels is the high SNR at these data 

points. However, this approach is challenged with the inter-peak duration of GFP. That 

is, because EEG-ms average duration is about 50 ms, there might be uncertainty about 

EEG labels when the inter-peak duration is more than 50 ms. The following figure plots 

a GFP signal from a sample dataset. Peaks with 50 ms gap or more were marked with 

orange flipped triangles. 
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Figure 7-1: An illustrative example of GFP peaks and the gap between peaks. 

In order to have a general informed view about the inter-peak duration, Figure 

7-2 shows the distribution of the inter-peak duration for an exemplar EEG signals 

recording (duration: 8 minutes). 

 

Figure 7-2: Inter-peak distribution from an exemplar dataset. 
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Similar results were obtained when examining the inter-peak duration from 52 

HC subjects used for the study reported in Chapter 6. The overall distribution of inter-

peak duration from all subjects is depicted in Figure 7-3. 

 

Figure 7-3: Inter-peak distribution taken from 43 HC subjects. 

The average inter-peak duration from 43 HC subjects was 51.65 (±19.18) ms. 

Thus, there is a significant number of peaks that consist of more than a 50 ms gap, which 

may result in an overestimation of the average duration of EEG-ms. This can be 

evidenced by the discrepancies in the reported average duration of EEG-ms classes—also 

applied to other EEG-ms features—from the literature [54, 165].  

 Noise Effects on EEG-ms Templates Similarity and Sensitivity  

Another issue with labeling EEG datapoints as EEG-ms is the high similarity 

among EEG-ms templates, especially between EEG-ms C and D.  Figure 7-4 depicts the 

correlation among EEG-ms templates extracted from 43 HC subjects—the same EEG-ms 
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dataset used in Chapter 6. Given the high similarity between EEG-ms templates, some 

EEG points may be assigned to the wrong label when noise is partially contaminating 

EEG topography at a given point.  

 

 

Figure 7-4:  EEG-ms templates correlation matrix. 

Notably, minor changes in the template might later impact reliable and valid 

extraction of EEG-ms features. To emphasize this further, different random noise levels 

were introduced to the EEG-ms templates while relatively reserving their shapes. The 

noise was drawn randomly from the range [0,1], while controlling for intensity using a 

noise level factor, which was set between 0 and 0.4, with 0 indicating no added noise. 

Figure 7-5 and Figure 7-6 show the effect of adding noise on the calculated average 

duration and occurrence of MS-D. Also, the transition probability between MS-C and 

MS-D was depicted at different noise levels (Figure 7-7). 
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Figure 7-5: Boxplot of noise level effects on the average duration of MS-D (ns: not a 

significant difference, *: p<0.05, **: p<0.01 and ***:p<0.005). 

 

Figure 7-6: Boxplot of noise level effect on the occurrence of MS-D (ns: not a 

significant difference, *: p<0.05, **: p<0.01 and ***:p<0.005). 
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Figure 7-7: The effect of noise level on the transition probability between MS-C and 

MS-D (ns: not a significant difference, *: p<0.05, **: p<0.01 and ***:p<0.005). 

 

Figure 7-8: An example of the noise effect on MS-D occurrence taken from five 

randomly selected subjects. 
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The previous results suggest that the noise level may play a significant factor in 

altering EEG-ms characteristics. While the EEG-ms templates look similar to the 

canonical EEG-ms templates, the EEG-ms features were changed. Thus, reproducing 

EEG-ms templates does not necessarily mean that EEG-ms features are accurately 

reflecting the data. Moreover, the previous analysis was done within only the HC group. 

Results may change significantly when comparing two or multiple groups. Inter- and 

intra-subject noise level may lead to a significant influence on the findings. Nevertheless, 

EEG-ms showed consistency in EEG-ms characteristics with the level of noise < 0.25. 

Another experiment was conducted to show the significant difference between 

EEG-ms characteristics before and after adding noise. To do so, adding noise was tested 

with 100 repetitions. The p-value of t-test between the real EEG-ms characteristics (with 

no noise) and after adding noise was visualized using a Manhattan plot, which 

demonstrated occurrence of MS-A and MS-D only as examples.  For these plots, the level 

of significance was set to p<0.05. Figure 7-9 and Figure 7-10 show a significant 

difference between obtained EEG-ms features when noise is added to the templates. As 

noted before, MS-C and MS-D might exhibit the most considerable effect due to the 

similarity between their templates. 
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Figure 7-9: The Manhattan plot for the t-test of MS-A occurrence before and after 

adding noise with 100 repetitions. 

 

Figure 7-10: The Manhattan plot for the t-test of MS-D occurrence before and after 

adding noise with 100 repetitions. 
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 Towards Reproducible EEG-ms Results  

In this chapter, the effect of the GFP peak selection was evaluated. From Figure 

7-3, the average duration of inter-peaks was 53 ms, although larger values of inter-peak 

duration were observed from the dataset. This could be problematic since labeling EEG 

data relies on the fact that EEG-ms are stable between peaks. That is, if there is a switch 

between one MS to another within peaks of GFP, then labeling would never account for 

the incidence. Hence, EEG-ms characteristics might not correctly represent the entire 

dataset. 

  One solution is to use extra points between GFP peaks, given that the duration of 

inter-peaks is greater than the average duration of EEG-ms classes (i.e., greater than 40 

ms). Such a solution might alleviate the effect of the large inter-peak duration. Choosing 

these extra points can be done based on a distance factor from GFP peaks or can be chosen 

as points with high SNR. 

This chapter also explored the issue of noise presence within EEG-ms template. 

Results have shown that noise actually affects the estimated EEG-ms features. Although 

adding noise to the templates did not significantly alter the shape of EEG-ms templates, 

the EEG-ms features were greatly affected by the presence of noise.  Thus, noise 

inspection is needed even if the EEG-ms template looks similar to the canonical EEG-ms 

templates. 

  The previously mentioned problem may suggest using a weighted average of 

templates from different repetitions of templates extraction. This can be further extended 

to use ensemble weighted templates from different algorithms to calculate EEG-ms 
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templates, and then average over all templates. Using modified-k-mean and AAHC for 

this purpose is suggested.  

Both investigated problems—inter-peak duration and EEG-ms features sensitivity to 

noise—could be alleviated by using a less rigid labeling approach for EEG-ms. Such an 

approach may use the direct time course of EEG-ms instead of rigid labeling for the data. 

For example, one may use probabilistic EEG-ms labeling instead of assigning EEG points 

to only one label at a time (See Figure 7-11). Each EEG point is assigned to the four 

EEG-ms classes with certain probabilities so that overall statistics can be conducted, as 

in the Bayesian statistics.

 

Figure 7-11: An example of the suggested probabilistic EEG-ms assignment. 
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 Limitations  

The carried-out analyses were based on data collected using simultaneous EEG-

fMRI recording. Although EEG preprocessing steps were carefully followed to reduce 

noise and artifacts, there is a chance that some residual imaging and BCG artifacts would 

remain. Further analysis is required on data collected outside MR scanners. Various levels 

of added noise was tested, and noise was driven independently from the data. Thus, using 

data-driven noise factor in addition to studying other types of noise might be needed to 

offer a comprehensive view about the noise effect. 

 Conclusion  

This chapter analyzed two main problems for conducting EEG-ms analysis, 

including oversight in the literature. The effect of both problems on the derived EEG-ms 

characteristics was shown using several experiments. Based on the studied problems, 

several suggestions were provided to conduct robust and reproducible EEG-ms analysis. 
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This dissertation presented a practical overview and theoretical analysis for the 

extraction of multiple potential biomarkers of mental disorders from EEG and fMRI data. 

First, this work elaborated on the practical and theoretical aspects of extracting EEG 

microstates (EEG-ms) features. Second, the work extracted and tested a set of dynamic 

EEG-ms features and static EEG features for different purposes. Using these EEG-ms 

features, the results revealed that the features are potential biomarkers for subjects with 

mood and anxiety disorders (MA). Specifically, MA subjects have exhibited a systematic 

alteration in EEG-ms transition probabilities besides an elevation in the temporal 

dependencies among microstates (MSs). Thus, EEG-ms might be a potential diagnostic 

approach and basis of evaluating intervention methods. 

Third, static features were used to build a general-purpose prediction framework, 

which was successfully tested for estimating age from EEG (i.e., BrainAGE). This 

discovery offered a functional biomarker for aging and a potential approach for 

investigating how mental disorders can affect brain aging. Extracted EEG features were 

then used to inform fMRI analysis in two projects. The dynamic EEG features were used 

to inform fMRI analysis for MA subjects, and the results revealed that temporal EEG-ms 

properties can guide fMRI analysis to show potential fMRI biomarkers for MA subjects.  

Additionally, the static features were harnessed along with fMRI features to build 

heterogeneous EEG-fMRI BrainAGE predictors.  

Chapter 8 : Conclusions and Future Work  
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This study demonstrated that EEG and fMRI share significant information about 

aging, but that each modality has its own fingerprint about aging. Finally, this dissertation 

addressed some concerns about the reproducibility of EEG-ms found to be overlooked in 

the literature, and then provided guidelines to offer more robust EEG-ms feature 

extraction. 

While the dissertation focused on predicting age from EEG and fMRI, predicting 

other clinical assessment measures like PHQ, STAI measures, and PROMIS scales was 

tested. The results (not reported in this dissertation) have shown a low predictability 

power as compared to predicting age. This is may be attributed to the variability of how 

mental disorders affect the brain and due to other intra-subject variability factors. Thus, 

predicting other clinical assessment scales from neuroimaging data is still a challenge and 

requires more careful optimistic view of using ML to predict those scales.   

In summary, extracting and reconciling informative features from EEG and fMRI 

are an essential step in building clinically translatable biomarkers for characterizing 

different mental illnesses. With the advent of novel Machine Learning (ML) and 

computational methods, robust biomedical features pave the way to leverage knowledge 

about the underlying mechanisms behind mental illnesses. 

 Future work 

This dissertation provided a general overview of potential EEG features for 

differentiating HC individuals from those diagnosed with MA. Applying the same 

procedure to other clinical populations might help to identify and characterize different 

mental disorders, in turn enhancing specificity and sensitivity to predict symptom severity 
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and differentiate treatment outcomes. Moreover, this work used EEG features to build 

BrainAGE predictors with a focus on methodological issues while providing a 

neuroscience-friendly scheme. The framework can be extended to study how mental 

disorders affect BrainAGE. Also, the same framework can be used to predict other 

responses, such as some clinical assessment scales of mental disorders, if there is enough 

information in the feature space. Although we found low predictability power of clinical 

assessment scales (not reported in this dissertation), this should not prevent any attempts 

to predict clinical assessment scales with more extensive feature extraction methods.   

Furthermore, this work showed how EEG-ms could inform fMRI patterns within 

depressed individuals with and without comorbid anxiety. The narrative elaborated on the 

technical and practical issues of using EEG-ms to inform fMRI. The same procedure 

applied here can be extended and applied to other clinical groups. Information unraveled 

in the multimodal EEG-fMRI BrainAGE demonstrates the benefit of combining both 

modalities to understand shared content about BrainAGE. Extending the framework to 

other responses (e.g., clinical assessment scales) might offer valuable information about 

how responses are manifested in EEG and fMRI. The narrative in Chapter 7 provided 

several suggested guidelines for conducting robust EEG-ms analysis. Further analysis 

and testing are required to benefit from the offered suggestions. Finally, using combined 

EEG and fMRI analysis can be used to model the relationship between EEG and fMRI; 

hence, substitute expensive fMRI features with portable, cheap, and robust EEG features.  

.  
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Instruments for Clinical Symptoms Assessments 

• The PHQ-9 [185] is a nine-question instrument with a two-week time frame 

(based on diagnostic criteria of depression from DSM-IV ), given to patients in a 

primary care setting to screen, diagnose, and measure the severity of depression. 

Each item on the measure is rated on a four-point scale (e.g., “0” =Not at all to 

“3” =nearly every day).  Total score can range from 0 to 27, wherein a higher 

score indicates greater severity of depression.  

• The Rumination Response Scale (RRS) [186] is a 22-question assessment of 

depressive thoughts and responses, which focuses on the self, symptoms, and 

possible causes/consequence of associated mood. Each question consists of scale 

ranging from 1 (rarely) to 4 (almost always). The RRS has been shown to be a 

reliable and valid measure with an internal consistency of (α = 0.93).  

• The State-Trait Anxiety Inventory (STAI) has 20 items for assessing state anxiety 

and 20 items for assessing trait anxiety [187]. The State Anxiety Scale (S-Anxiety) 

screens and measures the current state of anxiety, asking how respondents feel 

“right now,” using questions that measure subjective feelings of apprehension, 

nervousness, tension, worry, and activation/arousal of the autonomic nervous 

system. The Trait Anxiety Scale (T-Anxiety) evaluates relatively stable aspects of 

Appendix A  
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“anxiety proneness,” consisting of general states of calmness, confidence, and 

security. A higher score indicates more considerable anxiety.  

• The Patient-Reported Outcomes Measurement Information System Anxiety 

(PROMIS_Anxiety) questionnaire includes 29 items with a seven-day time frame 

and a five-point scale (e.g., “1”=Never; “5” = Always) [188, 189]. Comprehensive 

mixed methods were used for developing the item bank [190] by focusing on fear, 

anxious misery, hyperarousal, and some somatic symptoms related to arousal.  

• The PROMIS_Depression scale consists of four items and asked participants how 

often in the last seven days they had experienced depression, including feeling 

hopeless, worthless, helpless, or depressed [188]. These items are scored the same 

way as PROMIS Anxiety on a five-point Likert scale ranging from 1 to 5. 

Generalized Linear Model Analysis 

Model Description 

Transition probability ~ Group * Symptom + Age + Gender 

GLM was run for each connection (transition probability or y in the model) and symptom 

independently using the “lme4” package from R [191]. Estimated coefficient and p-values 

were reported. Results are presented in supplementary Table A4. 

Supplemental Tables 

Demographics 
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Table A1. Demographic information of Chapter 3. 

 HC MA 

Gender    

    Female 28 38 

    Male 24 23 

Age (yr)   

   Range  32(11) 34 (12) 

Education (level)*   

   Levels of Studying  6.73 (1.67) 6.27 (1.62) 

PHQ_9   

   Score 0.73 (1.08) 13.26 (5.05) 

STAI_State   

   Score 26.34 (6.10) 46.11 (11.01) 

STAI_Trait   

    Score 28.65 (7.13) 52.7 (11.51) 

PROMIS_Anxiety   

    Total Score 46.55 (7.68) 61.96 (6.64) 

PROMIS_Depress   

   Total Score 44.54 (6.48) 61.06 (7.41) 

Note: PHQ-9 = Patient Health Questionnaire-9; STAI = State-Trait Anxiety Inventory; 

PROMIS = Patient-Reported Outcomes Measurement Information System. Values 

outside parentheses are means and values in parentheses are standard deviations. 

Levels of Studying are assigned as follows: 

• No schooling completed -> 1 

• Nursery school -> 1 

• Kindergarten -> 1 

• Grade 1 through 11 -> 2 

• 12th grade (no diploma) -> 3 

• Regular high school diploma -> 4  

• GED or alternative credential -> 5 

• Some college credit, but less than 1 year of college credit -> 6 

• 1 or more years of college credit, no degree -> 6 
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• Associate's degree (for example: AA, AS) -> 7 

• Bachelor's degree (for example: BA, BS) -> 8 

• Master's degree (for example: MA, MS, MEng, MEd, MSW, MBA) -> 9 

• Professional degree beyond a bachelor's degree (for example: MD, DDS, DVM, 

LLB, JD) -> 10 

• Doctorate degree (for example: PhD, EdD) -> 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



145 

Studies reporting EEG -ms association with BOLD resting state brain 

networks 

Table A2: MS- A and MS-B with the related RSNs reported by previous studies. 

MS A B 

[24] RSN 1 RSN 2 

[1] RSN 4 RSN 3 

[2] RSN ‘G’ RSN ‘E’ 

Brain Regions 

Involved 

Best matches regions in 

auditory-phonological 

system processing network 

Primarily involves Visual 

Network (VN) 

Table A3: MS- C and MS- D with the related RSNs reported by previous studies. 

MS C D 

[24] RSN 3 RSN 4 

[1] RSN 6 (Partially) RSN 2 

[2] - RSN ‘C’ 

Brain Regions Involved A network that involves 

medial-ventral prefrontal 

cortex, the pregenual anterior 

cingulate, the hypothalamus, 

and the cerebellum self-

referential mental activity. 

The dorsal attention 

network mediating 

(DAN) 

Note: RSN = BOLD resting state network. 
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Results of GLM analysis modeling group and symptom interactions 

accounting for age and gender 

 

Table A4. The GLM analysis for the interaction between group and symptoms. 

Connection 

Scale measuring 

symptom 

Group Symptom Age Gender 

Interaction  

(Group and Symptom) 

TP (B → D) PHQ-9 -0.099 -0.034 -0.002 0.014 0.036 

 p-value 0.037 0.046 .113 .534 0.040 

TP (B → D) STAI_State -0.295 -0.008 -0.001 0.015 0.009 

 p-value 0.003 .004 .204 .495 0.005 

TP (B → D) STAI_Trait -0.258 -0.004 -0.001 0.010 0.006 

 p-value 0.014 0.100 .149 .664 0.047 

TP (B → D) PROMIS_Anxiety  -0.017 0.002 -0.001 0.006 -0.001 

 p-value .924 0.297 .154 .797 0.698 

TP (D → B) PHQ-9 -0.114 -0.018 0.001 0.025 0.019 

 p-value 0.022 0.308 .159 .311 0.284 

TP (D → B) STAI_State -0.331 -0.010 0.002 0.030 0.010 

 p-value 0.001 0.001 .073 .191 0.003 

TP (D → B) STAI_Trait -0.314 -0.007 0.002 0.025 0.008 

 p-value 0.004 0.006 .143 .290 0.010 

TP (D → B) PROMIS_Anxiety  -0.388 -0.007 0.002 0.030 0.007 

 p-value 0.033 0.004 .073 .200 0.045 

Note: PHQ-9 = Patient Health Questionnaire-9; STAI = State-Trait Anxiety Inventory; 

PROMIS = Patient-Reported Outcomes Measurement Information System. TP stands for 

the transition probabilities between two MSs. Numbers in the upper row indicate the beta 

coefficient of the GLM model, and bold numbers in a lower row indicate significant p-

values. 
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This appendix contains information to support findings in Chapter 4. 

 

Figure B1: Histogram for the dataset divided based on groups and gender. 

 

Appendix B 
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Figure B2: Correlation matrix for all features (before removing correlated features) 

arranged by feature type. 
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Figure B3: Correlation matrix for features (after removing correlated features: Thr=0.9) 

arranged by feature type. 
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Figure B4: Top features correlation with age. 

 

 

 



151 

 

Figure B5: The PDPs from Stack-Ensemble model for the top features. The red line 

represents the average values over the folds of NCV, while the thin lines are the 

individual PDPs for each fold. 
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Figure B6: The correlation between spectral power feature and chronic age across 

different frequency bands and groups. 

 

Figure B7: The correlation between FD feature and chronic age across groups for the 

entire EEG frequency. 
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Term Description  

AAHC Agglomerative Hierarchical Clustering 

AFNI Analysis of Functional NeuroImages  

AIF Autoinformation 

ALFF The amplitude of low-frequency fluctuation  

Anx Anxiety  

Dep+Anx Depression+ Anxiety 

BCG Ballistocardiogram  

BOLD Blood-oxygen-level-dependent 

BrainAGE Brain Age 

Dep Depression  

DMN Default Mode Network 

DSM Diagnostic and Statistical Manual of Mental Disorders 

DTI Diffusion Tensor Imaging  

EEG Electroencephalography 

EEG-ms EEG Microstates  

ENET Elastic Net  

FC Functional Connectivity  

FD Fractal Dimension  

fMRI functional Magnetic Resonance Imaging 

gaussprPoly The Gaussian process with polynomial kernel 

GFP Global Field Power 

GLM General Linear Model 

HC Healthy Control subjects/group  

HRF Hemodynamic Response Function 

ICA Independent Component Analysis 

Glossary of Terms  
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MA Mood and Anxiety Disorder  

MAE Mean Absolute Error 

ML Machine Learning 

MRI Magnetic Resonance Imaging 

MS Microstate  

NCV Nested-cross-validation 

OASIS Overall Anxiety Severity and Impairment Scale 

PDP Partial Dependence Plot 

PHQ Patient Health Questionnaire 

RDoc Research Domain Criteria 

RF Random Forest  

RMSE Root Mean Square Error 

ROI Region of Interest 

RSN Resting State Network 

SM Small-Worldness  

SNR Signal to Noise Ratio 

SVM Support Vector Regression 

T-1000 Tulsa 1000 Study  

TP Transition Probability between microstates 

TR Repetition Time  

XgbTree Extreme Gradient Boosting Tree 

ACF Autocorrelation Function 

 



155 

[1] D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, and M. Corbetta, 

"Electrophysiological signatures of resting state networks in the human brain," 

Proceedings of the National Academy of Sciences, vol. 104, no. 32, pp. 13170-

13175, 2007. 

 

[2] J. Damoiseaux, S. Rombouts, F. Barkhof, P. Scheltens, C. Stam, S. M. Smith, and 

C. Beckmann, "Consistent resting-state networks across healthy subjects," 

Proceedings of the national academy of sciences, vol. 103, no. 37, pp. 13848-

13853, 2006. 

 

[3] L. Pauling and C. D. Coryell, "The magnetic properties and structure of 

hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin," Proceedings of the 

National Academy of Sciences, vol. 22, no. 4, pp. 210-216, 1936. 

 

[4] D. Malonek and A. Grinvald, "Interactions between electrical activity and cortical 

microcirculation revealed by imaging spectroscopy: implications for functional 

brain mapping," Science, vol. 272, no. 5261, pp. 551-554, 1996. 

 

[5] M. E. Raichle, R. L. Grubb, M. H. Gado, J. O. Eichling, and M. M. Ter-Pogossian, 

"Correlation between regional cerebral blood flow and oxidative metabolism: in 

vivo studies in man," Archives of neurology, vol. 33, no. 8, pp. 523-526, 1976. 

 

[6] L. Sokoloff, M. Reivich, C. Kennedy, M. D. Rosiers, C. Patlak, K. Pettigrew, et 

al., O. Sakurada, and M. Shinohara, "The [14C] deoxyglucose method for the 

measurement of local cerebral glucose utilization: theory, procedure, and normal 

values in the conscious and anesthetized albino rat 1," Journal of neurochemistry, 

vol. 28, no. 5, pp. 897-916, 1977. 

 

[7] P. T. Fox, M. E. Raichle, M. A. Mintun, and C. Dence, "Nonoxidative glucose 

consumption during focal physiologic neural activity," Science, vol. 241, no. 

4864, pp. 462-464, 1988. 

 

[8] R. Grech, T. Cassar, J. Muscat, K. P. Camilleri, S. G. Fabri, M. Zervakis, P. 

Xanthopoulos, V. Sakkalis, and B. Vanrumste, "Review on solving the inverse 

References  



156 

problem in EEG source analysis," Journal of neuroengineering and 

rehabilitation, vol. 5, no. 1, p. 25, 2008. 

 

[9] A. Ekstrom, "How and when the fMRI BOLD signal relates to underlying neural 

activity: the danger in dissociation," Brain research reviews, vol. 62, no. 2, pp. 

233-244, 2010. 

 

[10] T. Murta, U. J. Chaudhary, T. M. Tierney, A. Dias, M. Leite, D. W. Carmichael, P. 

Figueiredo, and L. Lemieux, "Phase–amplitude coupling and the BOLD signal: a 

simultaneous intracranial EEG (icEEG)-fMRI study in humans performing a 

finger-tapping task," NeuroImage, vol. 146, pp. 438-451, 2017. 

 

[11] S.-G. Kim and S. Ogawa, "Biophysical and physiological origins of blood 

oxygenation level-dependent fMRI signals," Journal of Cerebral Blood Flow & 

Metabolism, vol. 32, no. 7, pp. 1188-1206, 2012. 

 

[12] B. Cauli and E. Hamel, "Revisiting the role of neurons in neurovascular coupling," 

Frontiers in neuroenergetics, vol. 2, p. 9, 2010. 

 

[13] M. Rosa, J. Daunizeau, and K. J. Friston, "EEG-fMRI integration: a critical 

review of biophysical modeling and data analysis approaches," Journal of 

integrative neuroscience, vol. 9, no. 04, pp. 453-476, 2010. 

 

[14] C. Bledowski, D. Prvulovic, R. Goebel, F. E. Zanella, and D. E. Linden, 

"Attentional systems in target and distractor processing: a combined ERP and 

fMRI study," Neuroimage, vol. 22, no. 2, pp. 530-540, 2004. 

 

[15] S. Crottaz-Herbette and V. Menon, "Where and when the anterior cingulate cortex 

modulates attentional response: combined fMRI and ERP evidence," Journal of 

cognitive neuroscience, vol. 18, no. 5, pp. 766-780, 2006. 

 

[16] M. Sabri, E. Liebenthal, E. Waldron, D. A. Medler, and J. R. Binder, "Attentional 

modulation in the detection of irrelevant deviance: a simultaneous ERP/fMRI 

study," Journal of Cognitive Neuroscience, vol. 18, no. 5, pp. 689-700, 2006. 

 

[17] M. Hoppstädter, C. Baeuchl, C. Diener, H. Flor, and P. Meyer, "Simultaneous 

EEG–fMRI reveals brain networks underlying recognition memory ERP old/new 

effects," NeuroImage, vol. 116, pp. 112-122, 2015. 

 



157 

[18] B. Sadeh, I. Podlipsky, A. Zhdanov, and G. Yovel, "Event‐related potential and 

functional MRI measures of face‐selectivity are highly correlated: a 

simultaneous ERP‐fMRI investigation," Human brain mapping, vol. 31, no. 10, 

pp. 1490-1501, 2010. 

 

[19] C. G. Bénar, D. Schön, S. Grimault, B. Nazarian, B. Burle, M. Roth, J. M. Badier, 

P. Marquis, C. Liegeois‐Chauvel, and J. L. Anton, "Single‐trial analysis of 

oddball event‐related potentials in simultaneous EEG‐fMRI," Human brain 

mapping, vol. 28, no. 7, pp. 602-613, 2007. 

 

[20] S. I. Gonçalves, J. C. De Munck, P. Pouwels, R. Schoonhoven, J. Kuijer, N. 

Maurits, J. Hoogduin, E. Van Someren, R. Heethaar, and F. L. Da Silva, 

"Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-

subject variability," Neuroimage, vol. 30, no. 1, pp. 203-213, 2006. 

 

[21] H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. Salek-Haddadi, C. Preibisch, 

and K. Krakow, "EEG-correlated fMRI of human alpha activity," Neuroimage, 

vol. 19, no. 4, pp. 1463-1476, 2003. 

 

[22] H. Yuan, R. Phillips, C. K. Wong, V. Zotev, M. Misaki, B. Wurfel, F. Krueger, M. 

Feldner, and J. Bodurka, "Tracking resting state connectivity dynamics in veterans 

with PTSD," NeuroImage: Clinical, vol. 19, pp. 260-270, 2018. 

 

[23] H. Yuan, V. Zotev, R. Phillips, W. C. Drevets, and J. Bodurka, "Spatiotemporal 

dynamics of the brain at rest—exploring EEG microstates as electrophysiological 

signatures of BOLD resting state networks," Neuroimage, vol. 60, no. 4, pp. 2062-

2072, 2012. 

 

[24] J. Britz, D. Van De Ville, and C. M. Michel, "BOLD correlates of EEG topography 

reveal rapid resting-state network dynamics," Neuroimage, vol. 52, no. 4, pp. 

1162-1170, 2010. 

 

[25] D. Van de Ville, J. Britz, and C. M. Michel, "EEG microstate sequences in healthy 

humans at rest reveal scale-free dynamics," Proceedings of the National Academy 

of Sciences, vol. 107, no. 42, pp. 18179-18184, 2010. 

 

[26] M. M. Monti, "Statistical analysis of fMRI time-series: a critical review of the 

GLM approach," Frontiers in human neuroscience, vol. 5, p. 28, 2011. 

 

[27] T. Larsen and J. P. O'Doherty, "Uncovering the spatio-temporal dynamics of 

value-based decision-making in the human brain: a combined fMRI–EEG study," 



158 

Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 369, 

no. 1655, p. 20130473, 2014. 

 

[28] W. Ou, A. Nummenmaa, J. Ahveninen, J. W. Belliveau, M. S. Hämäläinen, and P. 

Golland, "Multimodal functional imaging using fMRI-informed regional 

EEG/MEG source estimation," Neuroimage, vol. 52, no. 1, pp. 97-108, 2010. 

 

[29] R. L. Silton, W. Heller, D. N. Towers, A. S. Engels, J. M. Spielberg, J. C. Edgar, 

S. M. Sass, J. L. Stewart, B. P. Sutton, and M. T. Banich, "The time course of 

activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-

down attentional control," Neuroimage, vol. 50, no. 3, pp. 1292-1302, 2010. 

 

[30] T. Deneux and O. Faugeras, "EEG-fMRI fusion of paradigm-free activity using 

Kalman filtering," Neural computation, vol. 22, no. 4, pp. 906-948, 2010. 

 

[31] X. Lei, D. Ostwald, J. Hu, C. Qiu, C. Porcaro, A. P. Bagshaw, and D. Yao, 

"Multimodal functional network connectivity: an EEG-fMRI fusion in network 

space," PloS one, vol. 6, no. 9, p. e24642, 2011. 

 

[32] M. Luessi, S. D. Babacan, R. Molina, J. R. Booth, and A. K. Katsaggelos, 

"Bayesian symmetrical EEG/fMRI fusion with spatially adaptive priors," 

Neuroimage, vol. 55, no. 1, pp. 113-132, 2011. 

 

[33] P. A. Valdes‐Sosa, J. M. Sanchez‐Bornot, R. C. Sotero, Y. Iturria‐Medina, Y. 

Aleman‐Gomez, J. Bosch‐Bayard, F. Carbonell, and T. Ozaki, "Model driven 

EEG/fMRI fusion of brain oscillations," Human brain mapping, vol. 30, no. 9, 

pp. 2701-2721, 2009. 

 

[34] V. D. Calhoun, J. Liu, and T. Adalı, "A review of group ICA for fMRI data and 

ICA for joint inference of imaging, genetic, and ERP data," Neuroimage, vol. 45, 

no. 1, pp. S163-S172, 2009. 

 

[35] K. J. Friston, "Functional and effective connectivity: a review," Brain 

connectivity, vol. 1, no. 1, pp. 13-36, 2011. 

 

[36] A. T. Drysdale, L. Grosenick, J. Downar, K. Dunlop, F. Mansouri, Y. Meng, R. N. 

Fetcho, B. Zebley, D. J. Oathes, and A. Etkin, "Resting-state connectivity 

biomarkers define neurophysiological subtypes of depression," Nature medicine, 

vol. 23, no. 1, p. 28, 2017. 

 



159 

[37] H. Cui, J. Zhang, Y. Liu, Q. Li, H. Li, L. Zhang, Q. Hu, W. Cheng, Q. Luo, and J. 

Li, "Differential alterations of resting‐state functional connectivity in 

generalized anxiety disorder and panic disorder," Human brain mapping, vol. 37, 

no. 4, pp. 1459-1473, 2016. 

 

[38] D.-E. Meskaldji, M. G. Preti, T. A. Bolton, M.-L. Montandon, C. Rodriguez, S. 

Morgenthaler, P. Giannakopoulos, S. Haller, and D. Van De Ville, "Prediction of 

long-term memory scores in MCI based on resting-state fMRI," NeuroImage: 

Clinical, vol. 12, pp. 785-795, 2016. 

 

[39] D. S. Bassett, B. G. Nelson, B. A. Mueller, J. Camchong, and K. O. Lim, "Altered 

resting state complexity in schizophrenia," Neuroimage, vol. 59, no. 3, pp. 2196-

2207, 2012. 

 

[40] J. S. Anderson, J. A. Nielsen, A. L. Froehlich, M. B. DuBray, T. J. Druzgal, A. N. 

Cariello, J. R. Cooperrider, B. A. Zielinski, C. Ravichandran, and P. T. Fletcher, 

"Functional connectivity magnetic resonance imaging classification of autism," 

Brain, vol. 134, no. 12, pp. 3742-3754, 2011. 

 

[41] C. A. Lima, A. L. Coelho, and S. Chagas, "Automatic EEG signal classification 

for epilepsy diagnosis with Relevance Vector Machines," Expert Systems with 

Applications, vol. 36, no. 6, pp. 10054-10059, 2009. 

 

[42] A. F. Leuchter, I. A. Cook, W. S. Gilmer, L. B. Marangell, K. S. Burgoyne, R. H. 

Howland, M. H. Trivedi, S. Zisook, R. Jain, and M. Fava, "Effectiveness of a 

quantitative electroencephalographic biomarker for predicting differential 

response or remission with escitalopram and bupropion in major depressive 

disorder," Psychiatry research, vol. 169, no. 2, pp. 132-138, 2009. 

 

[43] A. E. Whitton, S. Deccy, M. L. Ironside, P. Kumar, M. Beltzer, and D. A. 

Pizzagalli, "Electroencephalography source functional connectivity reveals 

abnormal high-frequency communication among large-scale functional networks 

in depression," Biological Psychiatry: Cognitive Neuroscience and 

Neuroimaging, vol. 3, no. 1, pp. 50-58, 2018. 

 

[44] O. Al Zoubi, A. Mayeli, A. Tsuchiyagaito, M. Misaki, V. Zotev, H. Refai, M. P. 

Paulus, and J. Bodurka, "EEG Microstates Temporal Dynamics Differentiate 

Individuals with Mood and Anxiety Disorders from Healthy Subjects," Frontiers 

in human neuroscience, vol. 13, p. 56, 2019. 

 



160 

[45] M. J. Gandal, J. C. Edgar, K. Klook, and S. J. Siegel, "Gamma synchrony: towards 

a translational biomarker for the treatment-resistant symptoms of schizophrenia," 

Neuropharmacology, vol. 62, no. 3, pp. 1504-1518, 2012. 

 

[46] H. Hampel, R. Frank, K. Broich, S. J. Teipel, R. G. Katz, J. Hardy, K. Herholz, A. 

L. Bokde, F. Jessen, and Y. C. Hoessler, "Biomarkers for Alzheimer's disease: 

academic, industry and regulatory perspectives," Nature reviews Drug discovery, 

vol. 9, no. 7, p. 560, 2010. 

 

[47] V. Zotev, H. Yuan, M. Misaki, R. Phillips, K. D. Young, M. T. Feldner, and J. 

Bodurka, "Correlation between amygdala BOLD activity and frontal EEG 

asymmetry during real-time fMRI neurofeedback training in patients with 

depression," NeuroImage: Clinical, vol. 11, pp. 224-238, 2016. 

 

[48] A. Omidvarnia, M. A. Kowalczyk, M. Pedersen, and G. D. Jackson, "Towards fast 

and reliable simultaneous EEG-fMRI analysis of epilepsy with automatic spike 

detection," Clinical Neurophysiology, vol. 130, no. 3, pp. 368-378, 2019. 

 

[49] T. A. Victor, S. S. Khalsa, W. K. Simmons, J. S. Feinstein, J. Savitz, R. L. 

Aupperle, H.-W. Yeh, J. Bodurka, and M. P. Paulus, "Tulsa 1000: a naturalistic 

study protocol for multilevel assessment and outcome prediction in a large 

psychiatric sample," BMJ open, vol. 8, no. 1, p. e016620, 2018. 

 

[50] O. Al Zoubi, C. Ki Wong, R. T. Kuplicki, H.-w. Yeh, A. Mayeli, H. Refai, M. 

Paulus, and J. Bodurka, "Predicting age from brain EEG signals–a machine 

learning approach," Frontiers in aging neuroscience, vol. 10, p. 184, 2018. 

 

[51] J. J. Allen and S. J. Reznik, "Frontal EEG asymmetry as a promising marker of 

depression vulnerability: Summary and methodological considerations," Current 

opinion in psychology, vol. 4, pp. 93-97, 2015. 

 

[52] E. Niedermeyer and F. L. da Silva, Electroencephalography: basic principles, 

clinical applications, and related fields. Lippincott Williams & Wilkins, 2005. 

 

[53] A. Horvath, A. Szucs, G. Csukly, A. Sakovics, G. Stefanics, and A. Kamondi, 

"EEG and ERP biomarkers of Alzheimer’s disease: a critical review," Front Biosci 

(Landmark Ed), vol. 23, pp. 183-220, 2018. 

 

[54] A. Khanna, A. Pascual-Leone, C. M. Michel, and F. Farzan, "Microstates in 

resting-state EEG: current status and future directions," Neuroscience & 

Biobehavioral Reviews, vol. 49, pp. 105-113, 2015. 



161 

 

[55] D. Lehmann, H. Ozaki, and I. Pal, "EEG alpha map series: brain micro-states by 

space-oriented adaptive segmentation," Electroencephalography and clinical 

neurophysiology, vol. 67, no. 3, pp. 271-288, 1987. 

 

[56] C. M. Michel and T. Koenig, "EEG microstates as a tool for studying the temporal 

dynamics of whole-brain neuronal networks: a review," Neuroimage, vol. 180, pp. 

577-593, 2018. 

 

[57] H. G. Vaughan Jr, "The neural origins of human event‐related potentials," 

Annals of the New York Academy of Sciences, vol. 338, no. 1, pp. 125-138, 1980. 

 

[58] F. Musso, J. Brinkmeyer, A. Mobascher, T. Warbrick, and G. Winterer, 

"Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis 

approach to explore resting-state networks," Neuroimage, vol. 52, no. 4, pp. 1149-

1161, 2010. 

 

[59] D. Brandeis and D. Lehmann, "Segments of event-related potential map series 

reveal landscape changes with visual attention and subjective contours," 

Electroencephalography and clinical neurophysiology, vol. 73, no. 6, pp. 507-

519, 1989. 

 

[60] D. Brandeis, D. Lehmann, C. M. Michel, and W. Mingrone, "Mapping event-

related brain potential microstates to sentence endings," Brain topography, vol. 8, 

no. 2, pp. 145-159, 1995. 

 

[61] T. Koenig and D. Lehmann, "Microstates in language-related brain potential maps 

show noun-verb differences," Brain and Language, vol. 53, no. 2, pp. 169-182, 

1996. 

 

[62] D. Pizzagalli, D. Lehmann, T. König, M. Regard, and R. D. Pascual-Marqui, 

"Face-elicited ERPs and affective attitude: brain electric microstate and 

tomography analyses," Clinical Neurophysiology, vol. 111, no. 3, pp. 521-531, 

2000. 

 

[63] C. M. Michel, G. Thut, S. Morand, A. Khateb, A. J. Pegna, R. G. de Peralta, S. 

Gonzalez, M. Seeck, and T. Landis, "Electric source imaging of human brain 

functions," Brain Research Reviews, vol. 36, no. 2-3, pp. 108-118, 2001. 

 



162 

[64] J. Britz, L. Díaz Hernàndez, T. Ro, and C. M. Michel, "EEG-microstate dependent 

emergence of perceptual awareness," Frontiers in behavioral neuroscience, vol. 

8, p. 163, 2014. 

 

[65] J. Britz and C. M. Michel, "Errors can be related to pre-stimulus differences in 

ERP topography and their concomitant sources," Neuroimage, vol. 49, no. 3, pp. 

2774-2782, 2010. 

 

[66] A. Custo, D. Van De Ville, W. M. Wells, M. I. Tomescu, D. Brunet, and C. M. 

Michel, "Electroencephalographic Resting-State Networks: Source Localization 

of Microstates," Brain connectivity, vol. 7, no. 10, pp. 671-682, 2017. 

 

[67] C. Andreou, P. L. Faber, G. Leicht, D. Schoettle, N. Polomac, I. L. Hanganu-

Opatz, D. Lehmann, and C. Mulert, "Resting-state connectivity in the prodromal 

phase of schizophrenia: insights from EEG microstates," Schizophrenia research, 

vol. 152, no. 2-3, pp. 513-520, 2014. 

 

[68] M. I. Tomescu, T. A. Rihs, R. Becker, J. Britz, A. Custo, F. Grouiller, M. 

Schneider, M. Debbané, S. Eliez, and C. M. Michel, "Deviant dynamics of EEG 

resting state pattern in 22q11. 2 deletion syndrome adolescents: A vulnerability 

marker of schizophrenia?," Schizophrenia research, vol. 157, no. 1-3, pp. 175-

181, 2014. 

 

[69] D. Lehmann, P. L. Faber, S. Galderisi, W. M. Herrmann, T. Kinoshita, M. 

Koukkou, A. Mucci, R. D. Pascual-Marqui, N. Saito, and J. Wackermann, "EEG 

microstate duration and syntax in acute, medication-naive, first-episode 

schizophrenia: a multi-center study," Psychiatry Research: Neuroimaging, vol. 

138, no. 2, pp. 141-156, 2005. 

 

[70] K. Nishida, Y. Morishima, M. Yoshimura, T. Isotani, S. Irisawa, K. Jann, T. 

Dierks, W. Strik, T. Kinoshita, and T. Koenig, "EEG microstates associated with 

salience and frontoparietal networks in frontotemporal dementia, schizophrenia 

and Alzheimer’s disease," Clinical Neurophysiology, vol. 124, no. 6, pp. 1106-

1114, 2013. 

 

[71] W. Strik, T. Dierks, T. Becker, and D. Lehmann, "Larger topographical variance 

and decreased duration of brain electric microstates in depression," Journal of 

Neural Transmission/General Section JNT, vol. 99, no. 1-3, pp. 213-222, 1995. 

 

[72] T. Dierks, V. Jelic, P. Julin, K. Maurer, L. Wahlund, O. Almkvist, W. Strik, and B. 

Winblad, "EEG-microstates in mild memory impairment and Alzheimer's disease: 



163 

possible association with disturbed information processing," Journal of neural 

transmission, vol. 104, no. 4-5, pp. 483-495, 1997. 

 

[73] W. K. Strik, R. Chiaramonti, G. C. Muscas, M. Paganini, T. J. Mueller, A. J. 

Fallgatter, A. Versari, and R. Zappoli, "Decreased EEG microstate duration and 

anteriorisation of the brain electrical fields in mild and moderate dementia of the 

Alzheimer type," Psychiatry Research: Neuroimaging, vol. 75, no. 3, pp. 183-

191, 1997. 

 

[74] A. Stevens and T. Kircher, "Cognitive decline unlike normal aging is associated 

with alterations of EEG temporo-spatial characteristics," European archives of 

psychiatry and clinical neuroscience, vol. 248, no. 5, pp. 259-266, 1998. 

 

[75] M. Kikuchi, T. Koenig, T. Munesue, A. Hanaoka, W. Strik, T. Dierks, Y. Koshino, 

and Y. Minabe, "EEG microstate analysis in drug-naive patients with panic 

disorder," PLoS One, vol. 6, no. 7, p. e22912, 2011. 

 

[76] N. M. Drissi, A. Szakács, S. T. Witt, A. Wretman, M. Ulander, H. Ståhlbrandt, N. 

Darin, T. Hallböök, A.-M. Landtblom, and M. Engström, "Altered brain 

microstate dynamics in adolescents with narcolepsy," Frontiers in human 

neuroscience, vol. 10, p. 369, 2016. 

 

[77] M. Gschwind, D. Van De Ville, M. Hardmeier, P. Fuhr, C. Michel, and M. Seeck, 

"ID 249–Corrupted fractal organization of EEG topographical fluctuations predict 

disease state in minimally disabled multiple sclerosis patients," Clinical 

Neurophysiology, vol. 127, no. 3, p. e72, 2016. 

 

[78] A. Stevens, W. Günther, W. Lutzenberger, M. Bartels, and N. Müller, "Abnormal 

topography of EEG microstates in Gilles de la Tourette syndrome," European 

archives of psychiatry and clinical neuroscience, vol. 246, no. 6, pp. 310-316, 

1996. 

 

[79] M. M. Murray, D. Brunet, and C. M. Michel, "Topographic ERP analyses: a step-

by-step tutorial review," Brain topography, vol. 20, no. 4, pp. 249-264, 2008. 

 

[80] O. Maimon and L. Rokach, "Data mining and knowledge discovery handbook," 

2005. 

 

[81] K. J. Ressler and H. S. Mayberg, "Targeting abnormal neural circuits in mood and 

anxiety disorders: from the laboratory to the clinic," Nature neuroscience, vol. 10, 

no. 9, p. 1116, 2007. 



164 

 

[82] L. Campbell-Sills, S. L. Cohan, and M. B. Stein, "Relationship of resilience to 

personality, coping, and psychiatric symptoms in young adults," Behaviour 

research and therapy, vol. 44, no. 4, pp. 585-599, 2006. 

 

[83] F. von Wegner, E. Tagliazucchi, and H. Laufs, "Information-theoretical analysis 

of resting state EEG microstate sequences-non-Markovianity, non-stationarity 

and periodicities," Neuroimage, vol. 158, pp. 99-111, 2017. 

 

[84] A. Mayeli, V. Zotev, H. Refai, and J. Bodurka, "Real-Time EEG artifact correction 

during fMRI using ICA," Journal of neuroscience methods, vol. 274, pp. 27-37, 

2016. 

 

[85] P. J. Allen, O. Josephs, and R. Turner, "A method for removing imaging artifact 

from continuous EEG recorded during functional MRI," Neuroimage, vol. 12, no. 

2, pp. 230-239, 2000. 

 

[86] P. J. Allen, G. Polizzi, K. Krakow, D. R. Fish, and L. Lemieux, "Identification of 

EEG events in the MR scanner: the problem of pulse artifact and a method for its 

subtraction," Neuroimage, vol. 8, no. 3, pp. 229-239, 1998. 

 

[87] A. J. Bell and T. J. Sejnowski, "An information-maximization approach to blind 

separation and blind deconvolution," Neural computation, vol. 7, no. 6, pp. 1129-

1159, 1995. 

 

[88] A. Delorme and S. Makeig, "EEGLAB: an open source toolbox for analysis of 

single-trial EEG dynamics including independent component analysis," Journal 

of neuroscience methods, vol. 134, no. 1, pp. 9-21, 2004. 

 

[89] A. Khanna, A. Pascual-Leone, and F. Farzan, "Reliability of resting-state 

microstate features in electroencephalography," PLoS One, vol. 9, no. 12, p. 

e114163, 2014. 

 

[90] A. Ghasemi and S. Zahediasl, "Normality tests for statistical analysis: a guide for 

non-statisticians," International journal of endocrinology and metabolism, vol. 

10, no. 2, p. 486, 2012. 

 

[91] S. Goodman, "A dirty dozen: twelve p-value misconceptions," in Seminars in 

hematology, 2008, vol. 45, no. 3, pp. 135-140: Elsevier. 

 



165 

[92] H. S. Mayberg, "Modulating dysfunctional limbic-cortical circuits in depression: 

towards development of brain-based algorithms for diagnosis and optimised 

treatment," British medical bulletin, vol. 65, no. 1, pp. 193-207, 2003. 

 

[93] A. C. Waters and H. S. Mayberg, "Brain-Based Biomarkers for the Treatment of 

Depression: Evolution of an Idea," Journal of the International 

Neuropsychological Society, vol. 23, no. 9-10, pp. 870-880, 2017. 

 

[94] W. C. Drevets and M. E. Raichle, "Neuroanatomical circuits in depression: 

implications for treatment mechanisms," Psychopharmacology bulletin, 1992. 

 

[95] S. Vossel, J. J. Geng, and G. R. Fink, "Dorsal and ventral attention systems: 

distinct neural circuits but collaborative roles," The Neuroscientist, vol. 20, no. 2, 

pp. 150-159, 2014. 

 

[96] Y. Yin, C. Jin, L. T. Eyler, H. Jin, X. Hu, L. Duan, H. Zheng, B. Feng, X. Huang, 

and B. Shan, "Altered regional homogeneity in post-traumatic stress disorder: a 

restingstate functional magnetic resonance imaging study," Neuroscience bulletin, 

vol. 28, no. 5, pp. 541-549, 2012. 

 

[97] Q. Gong, L. Li, M. Du, W. Pettersson-Yeo, N. Crossley, X. Yang, J. Li, X. Huang, 

and A. Mechelli, "Quantitative prediction of individual psychopathology in 

trauma survivors using resting-state FMRI," Neuropsychopharmacology, vol. 39, 

no. 3, p. 681, 2014. 

 

[98] M. Kennis, S. Van Rooij, M. Van Den Heuvel, R. Kahn, and E. Geuze, "Functional 

network topology associated with posttraumatic stress disorder in veterans," 

NeuroImage: Clinical, vol. 10, pp. 302-309, 2016. 

 

[99] Y. Zhang, B. Xie, H. Chen, M. Li, F. Liu, and H. Chen, "Abnormal functional 

connectivity density in post-traumatic stress disorder," Brain topography, vol. 29, 

no. 3, pp. 405-411, 2016. 

 

[100] J. M. Soares, A. Sampaio, L. M. Ferreira, N. C. Santos, P. Marques, F. Marques, 

J. A. Palha, J. J. Cerqueira, and N. Sousa, "Stress impact on resting state brain 

networks," PLoS One, vol. 8, no. 6, p. e66500, 2013. 

 

[101] Y. He, T. Xu, W. Zhang, and X. N. Zuo, "Lifespan anxiety is reflected in human 

amygdala cortical connectivity," Human brain mapping, vol. 37, no. 3, pp. 1178-

1193, 2016. 

 



166 

[102] W. Liao, H. Chen, Y. Feng, D. Mantini, C. Gentili, Z. Pan, J. Ding, X. Duan, C. 

Qiu, and S. Lui, "Selective aberrant functional connectivity of resting state 

networks in social anxiety disorder," Neuroimage, vol. 52, no. 4, pp. 1549-1558, 

2010. 

 

[103] L. Wang, D. Hermens, I. Hickie, and J. Lagopoulos, "A systematic review of 

resting-state functional-MRI studies in major depression," Journal of affective 

disorders, vol. 142, no. 1-3, pp. 6-12, 2012. 

 

[104] B. Sundermann, M. Olde lütke Beverborg, and B. Pfleiderer, "Toward literature-

based feature selection for diagnostic classification: a meta-analysis of resting-

state fMRI in depression," Frontiers in human neuroscience, vol. 8, p. 692, 2014. 

 

[105] R. H. Kaiser, J. R. Andrews-Hanna, T. D. Wager, and D. A. Pizzagalli, "Large-

scale network dysfunction in major depressive disorder: a meta-analysis of 

resting-state functional connectivity," JAMA psychiatry, vol. 72, no. 6, pp. 603-

611, 2015. 

 

[106] F. Sambataro, E. Visintin, N. Doerig, J. Brakowski, M. G. Holtforth, E. Seifritz, 

and S. Spinelli, "Altered dynamics of brain connectivity in major depressive 

disorder at-rest and during task performance," Psychiatry Research: 

Neuroimaging, vol. 259, pp. 1-9, 2017. 

 

[107] Y. I. Sheline, D. M. Barch, J. L. Price, M. M. Rundle, S. N. Vaishnavi, A. Z. 

Snyder, M. A. Mintun, S. Wang, R. S. Coalson, and M. E. Raichle, "The default 

mode network and self-referential processes in depression," Proceedings of the 

National Academy of Sciences, vol. 106, no. 6, pp. 1942-1947, 2009. 

 

[108] C. Lemogne, G. le Bastard, H. Mayberg, E. Volle, L. Bergouignan, S. Lehéricy, 

J.-F. Allilaire, and P. Fossati, "In search of the depressive self: extended medial 

prefrontal network during self-referential processing in major depression," Social 

cognitive and affective neuroscience, vol. 4, no. 3, pp. 305-312, 2009. 

 

[109] T. Harmony, E. Marosi, A. E. D. de León, J. Becker, and T. Fernández, "Effect of 

sex, psychosocial disadvantages and biological risk factors on EEG maturation," 

Electroencephalography and clinical Neurophysiology, vol. 75, no. 6, pp. 482-

491, 1990. 

 

[110] Z. Lao, D. Shen, Z. Xue, B. Karacali, S. M. Resnick, and C. Davatzikos, 

"Morphological classification of brains via high-dimensional shape 

transformations and machine learning methods," Neuroimage, vol. 21, no. 1, pp. 

46-57, 2004. 



167 

 

[111] D. B. Lindsley, "A longitudinal study of the occipital alpha rhythm in normal 

children: Frequency and amplitude standards," The Pedagogical Seminary and 

Journal of Genetic Psychology, vol. 55, no. 1, pp. 197-213, 1939. 

 

[112] A. T. Lu, E. Hannon, M. E. Levine, E. M. Crimmins, K. Lunnon, J. Mill, D. H. 

Geschwind, and S. Horvath, "Genetic architecture of epigenetic and neuronal 

ageing rates in human brain regions," Nature communications, vol. 8, p. 15353, 

2017. 

 

[113] K. Franke, G. Ziegler, S. Klöppel, C. Gaser, and A. s. D. N. Initiative, "Estimating 

the age of healthy subjects from T 1-weighted MRI scans using kernel methods: 

Exploring the influence of various parameters," Neuroimage, vol. 50, no. 3, pp. 

883-892, 2010. 

 

[114] H. R. Pardoe, J. H. Cole, K. Blackmon, T. Thesen, R. Kuzniecky, and H. E. P. 

Investigators, "Structural brain changes in medically refractory focal epilepsy 

resemble premature brain aging," Epilepsy research, vol. 133, pp. 28-32, 2017. 

 

[115] S. Valizadeh, J. Hänggi, S. Mérillat, and L. Jäncke, "Age prediction on the basis 

of brain anatomical measures," Human brain mapping, vol. 38, no. 2, pp. 997-

1008, 2017. 

 

[116] E. Càmara, N. Bodammer, A. Rodríguez-Fornells, and C. Tempelmann, "Age-

related water diffusion changes in human brain: a voxel-based approach," 

Neuroimage, vol. 34, no. 4, pp. 1588-1599, 2007. 

 

[117] N. U. Dosenbach, B. Nardos, A. L. Cohen, D. A. Fair, J. D. Power, J. A. Church, 

S. M. Nelson, G. S. Wig, A. C. Vogel, and C. N. Lessov-Schlaggar, "Prediction of 

individual brain maturity using fMRI," Science, vol. 329, no. 5997, pp. 1358-

1361, 2010. 

 

[118] J. Qin, S.-G. Chen, D. Hu, L.-L. Zeng, Y.-M. Fan, X.-P. Chen, and H. Shen, 

"Predicting individual brain maturity using dynamic functional connectivity," 

Frontiers in human neuroscience, vol. 9, 2015. 

 

[119] F. Liem, G. Varoquaux, J. Kynast, F. Beyer, S. K. Masouleh, J. M. Huntenburg, L. 

Lampe, M. Rahim, A. Abraham, and R. C. Craddock, "Predicting brain-age from 

multimodal imaging data captures cognitive impairment," NeuroImage, vol. 148, 

pp. 179-188, 2017. 

 



168 

[120] I. Nenadić, M. Dietzek, K. Langbein, H. Sauer, and C. Gaser, "BrainAGE score 

indicates accelerated brain aging in schizophrenia, but not bipolar disorder," 

Psychiatry Research: Neuroimaging, vol. 266, pp. 86-89, 2017. 

 

[121] J. Ashburner, "A fast diffeomorphic image registration algorithm," Neuroimage, 

vol. 38, no. 1, pp. 95-113, 2007. 

 

[122] A. R. Clarke, R. J. Barry, R. McCarthy, and M. Selikowitz, "Age and sex effects 

in the EEG: development of the normal child," Clinical neurophysiology, vol. 112, 

no. 5, pp. 806-814, 2001. 

 

[123] L. Cragg, N. Kovacevic, A. R. McIntosh, C. Poulsen, K. Martinu, G. Leonard, and 

T. Paus, "Maturation of EEG power spectra in early adolescence: a longitudinal 

study," Developmental science, vol. 14, no. 5, pp. 935-943, 2011. 

 

[124] P. J. Marshall, Y. Bar-Haim, and N. A. Fox, "Development of the EEG from 5 

months to 4 years of age," Clinical Neurophysiology, vol. 113, no. 8, pp. 1199-

1208, 2002. 

 

[125] P. Matthis, D. Scheffner, C. Benninger, C. Lipinski, and L. Stolzis, "Changes in 

the background activity of the electroencephalogram according to age," 

Electroencephalography and clinical neurophysiology, vol. 49, no. 5, pp. 626-

635, 1980. 

 

[126] C. Benninger, P. Matthis, and D. Scheffner, "EEG development of healthy boys 

and girls. Results of a longitudinal study," Electroencephalography and clinical 

neurophysiology, vol. 57, no. 1, pp. 1-12, 1984. 

 

[127] M. Kikuchi, Y. Wada, Y. Koshino, Y. Nanbu, and T. Hashimoto, "Effect of normal 

aging upon interhemispheric EEG coherence: analysis during rest and photic 

stimulation," Clinical Electroencephalography, vol. 31, no. 4, pp. 170-174, 2000. 

 

[128] M. G. Marciani, M. Maschio, F. Spanedda, C. Caltagirone, G. Gigli, and G. 

Bernardi, "Quantitative EEG evaluation in normal elderly subjects during mental 

processes: age-related changes," International Journal of Neuroscience, vol. 76, 

no. 1-2, pp. 131-140, 1994. 

 

[129] M. Widagdo, J. Pierson, and R. Helme, "Age-related changes in qEEG during 

cognitive tasks," International journal of neuroscience, vol. 95, no. 1-2, pp. 63-

75, 1998. 

 



169 

[130] A. Hashemi, L. J. Pino, G. Moffat, K. J. Mathewson, C. Aimone, P. J. Bennett, L. 

A. Schmidt, and A. B. Sekuler, "Characterizing population EEG dynamics 

throughout adulthood," eNeuro, vol. 3, no. 6, pp. ENEURO. 0275-16.2016, 2016. 

 

[131] C. Babiloni, G. Binetti, A. Cassarino, G. Dal Forno, C. Del Percio, F. Ferreri, R. 

Ferri, G. Frisoni, S. Galderisi, and K. Hirata, "Sources of cortical rhythms in 

adults during physiological aging: a multicentric EEG study," Human brain 

mapping, vol. 27, no. 2, pp. 162-172, 2006. 

 

[132] S. I. Dimitriadis and C. I. Salis, "Mining Time-Resolved Functional Brain Graphs 

to an EEG-Based Chronnectomic Brain Aged Index (CBAI)," Frontiers in human 

neuroscience, vol. 11, p. 423, 2017. 

 

[133] B. Saletu, E. Paulus, L. Linzmayer, P. Anderer, H. V. Semlitsch, J. Grünberger, L. 

Wicke, A. Neuhold, and I. Podreka, "Nicergoline in senile dementia of Alzheimer 

type and multi-infarct dementia: a double-blind, placebo-controlled, clinical and 

EEG/ERP mapping study," Psychopharmacology, vol. 117, no. 4, pp. 385-395, 

1995. 

 

[134] C. Babiloni, A. I. Triggiani, R. Lizio, S. Cordone, G. Tattoli, V. Bevilacqua, A. 

Soricelli, R. Ferri, F. Nobili, and L. Gesualdo, "Classification of single normal 

and Alzheimer's disease individuals from cortical sources of resting state EEG 

rhythms," Frontiers in neuroscience, vol. 10, p. 47, 2016. 

 

[135] A. I. Triggiani, V. Bevilacqua, A. Brunetti, R. Lizio, G. Tattoli, F. Cassano, A. 

Soricelli, R. Ferri, F. Nobili, and L. Gesualdo, "Classification of healthy subjects 

and Alzheimer's disease patients with dementia from cortical sources of resting 

state EEG rhythms: A study using artificial neural networks," Frontiers in 

neuroscience, vol. 10, p. 604, 2017. 

 

[136] J. M. Toole and G. B. Boylan, "NEURAL: quantitative features for newborn EEG 

using Matlab," arXiv preprint arXiv:1704.05694, 2017. 

 

[137] C.-K. Wong, V. Zotev, M. Misaki, R. Phillips, Q. Luo, and J. Bodurka, "Automatic 

EEG-assisted retrospective motion correction for fMRI (aE-REMCOR)," 

Neuroimage, vol. 129, pp. 133-147, 2016. 

 

[138] R. Niazy, C. Beckmann, G. Iannetti, J. Brady, and S. Smith, "Removal of FMRI 

environment artifacts from EEG data using optimal basis sets," Neuroimage, vol. 

28, no. 3, pp. 720-737, 2005. 

 



170 

[139] C.-K. Wong, Q. Luo, V. Zotev, R. Phillips, C. Kam Wai Clifford, and J. Bodurka, 

"Automatic cardiac cycle determination directly from EEG-fMRI data by multi-

scale peak detection method," Accepted by J. Neurosci. Methods., 2018. 

 

[140] R. Jenke, A. Peer, and M. Buss, "Feature extraction and selection for emotion 

recognition from EEG," IEEE Transactions on Affective Computing, vol. 5, no. 3, 

pp. 327-339, 2014. 

 

[141] O. Al Zoubi, M. Awad, and N. K. Kasabov, "Anytime multipurpose emotion 

recognition from EEG data using a Liquid State Machine based framework," 

Artificial intelligence in medicine, 2018. 

 

[142] M. Kuhn, "Caret: classification and regression training," Astrophysics Source 

Code Library, 2015. 

 

[143] S. Varma and R. Simon, "Bias in error estimation when using cross-validation for 

model selection," BMC bioinformatics, vol. 7, no. 1, p. 91, 2006. 

 

[144] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning. 

Springer series in statistics New York, 2001. 

 

[145] A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, 

R. Goj, M. Jas, T. Brooks, and L. Parkkonen, "MEG and EEG data analysis with 

MNE-Python," Frontiers in neuroscience, vol. 7, 2013. 

 

[146] T. Gasser, R. Verleger, P. Bächer, and L. Sroka, "Development of the EEG of 

school-age children and adolescents. I. Analysis of band power," 

Electroencephalography and clinical neurophysiology, vol. 69, no. 2, pp. 91-99, 

1988. 

 

[147] A. Chiang, C. Rennie, P. Robinson, S. Van Albada, and C. Kerr, "Age trends and 

sex differences of alpha rhythms including split alpha peaks," Clinical 

Neurophysiology, vol. 122, no. 8, pp. 1505-1517, 2011. 

 

[148] F. Zappasodi, L. Marzetti, E. Olejarczyk, F. Tecchio, and V. Pizzella, "Age-related 

changes in electroencephalographic signal complexity," PloS one, vol. 10, no. 11, 

p. e0141995, 2015. 

 

[149] J. D. Power, A. L. Cohen, S. M. Nelson, G. S. Wig, K. A. Barnes, J. A. Church, 

A. C. Vogel, T. O. Laumann, F. M. Miezin, and B. L. Schlaggar, "Functional 



171 

network organization of the human brain," Neuron, vol. 72, no. 4, pp. 665-678, 

2011. 

 

[150] G. H. Glover, T. Q. Li, and D. Ress, "Image‐based method for retrospective 

correction of physiological motion effects in fMRI: RETROICOR," Magnetic 

Resonance in Medicine: An Official Journal of the International Society for 

Magnetic Resonance in Medicine, vol. 44, no. 1, pp. 162-167, 2000. 

 

[151] R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, "Separating 

respiratory-variation-related fluctuations from neuronal-activity-related 

fluctuations in fMRI," Neuroimage, vol. 31, no. 4, pp. 1536-1548, 2006. 

 

[152] H. J. Jo, Z. S. Saad, W. K. Simmons, L. A. Milbury, and R. W. Cox, "Mapping 

sources of correlation in resting state FMRI, with artifact detection and removal," 

Neuroimage, vol. 52, no. 2, pp. 571-582, 2010. 

 

[153] J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, 

"Spurious but systematic correlations in functional connectivity MRI networks 

arise from subject motion," Neuroimage, vol. 59, no. 3, pp. 2142-2154, 2012. 

 

[154] L. Wang, L. Su, H. Shen, and D. Hu, "Decoding lifespan changes of the human 

brain using resting-state functional connectivity MRI," PloS one, vol. 7, no. 8, p. 

e44530, 2012. 

 

[155] T. B. Meier, A. S. Desphande, S. Vergun, V. A. Nair, J. Song, B. B. Biswal, M. E. 

Meyerand, R. M. Birn, and V. Prabhakaran, "Support vector machine 

classification and characterization of age-related reorganization of functional 

brain networks," Neuroimage, vol. 60, no. 1, pp. 601-613, 2012. 

 

[156] Z. Yu-Feng, H. Yong, Z. Chao-Zhe, C. Qing-Jiu, S. Man-Qiu, L. Meng, T. Li-Xia, 

J. Tian-Zi, and W. Yu-Feng, "Altered baseline brain activity in children with 

ADHD revealed by resting-state functional MRI," Brain and Development, vol. 

29, no. 2, pp. 83-91, 2007. 

 

[157] X. Bu, X. Hu, L. Zhang, B. Li, M. Zhou, L. Lu, X. Hu, H. Li, Y. Yang, and W. 

Tang, "Investigating the predictive value of different resting-state functional MRI 

parameters in obsessive-compulsive disorder," Translational psychiatry, vol. 9, 

no. 1, p. 17, 2019. 

 

[158] B. Liang, D. Zhang, X. Wen, P. Xu, X. Peng, X. Huang, M. Liu, and R. Huang, 

"Brain spontaneous fluctuations in sensorimotor regions were directly related to 



172 

eyes open and eyes closed: evidences from a machine learning approach," 

Frontiers in human neuroscience, vol. 8, p. 645, 2014. 

 

[159] D. Long, J. Wang, M. Xuan, Q. Gu, X. Xu, D. Kong, and M. Zhang, "Automatic 

classification of early Parkinson's disease with multi-modal MR imaging," PloS 

one, vol. 7, no. 11, p. e47714, 2012. 

 

[160] B. Thomas Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari, M. 

Hollinshead, J. L. Roffman, J. W. Smoller, L. Zöllei, and J. R. Polimeni, "The 

organization of the human cerebral cortex estimated by intrinsic functional 

connectivity," Journal of neurophysiology, vol. 106, no. 3, pp. 1125-1165, 2011. 

 

[161] X. Shen, F. Tokoglu, X. Papademetris, and R. T. Constable, "Groupwise whole-

brain parcellation from resting-state fMRI data for network node identification," 

Neuroimage, vol. 82, pp. 403-415, 2013. 

 

[162] J. Gotman, E. Kobayashi, A. P. Bagshaw, C. G. Bénar, and F. Dubeau, "Combining 

EEG and fMRI: a multimodal tool for epilepsy research," Journal of Magnetic 

Resonance Imaging: An Official Journal of the International Society for Magnetic 

Resonance in Medicine, vol. 23, no. 6, pp. 906-920, 2006. 

 

[163] F. Moeller, H. R. Siebner, S. Wolff, H. Muhle, O. Granert, O. Jansen, U. Stephani, 

and M. Siniatchkin, "Simultaneous EEG‐fMRI in drug‐naive children with 

newly diagnosed absence epilepsy," Epilepsia, vol. 49, no. 9, pp. 1510-1519, 

2008. 

 

[164] A. Salek-Haddadi, B. Diehl, K. Hamandi, M. Merschhemke, A. Liston, K. Friston, 

J. S. Duncan, D. R. Fish, and L. Lemieux, "Hemodynamic correlates of 

epileptiform discharges: an EEG-fMRI study of 63 patients with focal epilepsy," 

Brain research, vol. 1088, no. 1, pp. 148-166, 2006. 

 

[165] C. M. Michel and T. Koenig, "EEG microstates as a tool for studying the temporal 

dynamics of whole-brain neuronal networks: A review," NeuroImage, 2017. 

 

[166] K. J. Friston, P. Fletcher, O. Josephs, A. Holmes, M. Rugg, and R. Turner, "Event-

related fMRI: characterizing differential responses," Neuroimage, vol. 7, no. 1, 

pp. 30-40, 1998. 

 

[167] R. W. Cox, "AFNI: software for analysis and visualization of functional magnetic 

resonance neuroimages," Computers and Biomedical research, vol. 29, no. 3, pp. 

162-173, 1996. 



173 

 

[168] A. Eklund, T. E. Nichols, and H. Knutsson, "Cluster failure: Why fMRI inferences 

for spatial extent have inflated false-positive rates," Proceedings of the national 

academy of sciences, vol. 113, no. 28, pp. 7900-7905, 2016. 

 

[169] R. W. Cox, G. Chen, D. R. Glen, R. C. Reynolds, and P. A. Taylor, "FMRI 

clustering in AFNI: false-positive rates redux," Brain connectivity, vol. 7, no. 3, 

pp. 152-171, 2017. 

 

[170] A. M. Winkler, G. R. Ridgway, M. A. Webster, S. M. Smith, and T. E. Nichols, 

"Permutation inference for the general linear model," Neuroimage, vol. 92, pp. 

381-397, 2014. 

 

[171] M. Cao, J.-H. Wang, Z.-J. Dai, X.-Y. Cao, L.-L. Jiang, F.-M. Fan, X.-W. Song, 

M.-R. Xia, N. Shu, and Q. Dong, "Topological organization of the human brain 

functional connectome across the lifespan," Developmental cognitive 

neuroscience, vol. 7, pp. 76-93, 2014. 

 

[172] H. Onias, A. Viol, F. Palhano-Fontes, K. C. Andrade, M. Sturzbecher, G. 

Viswanathan, and D. B. de Araujo, "Brain complex network analysis by means of 

resting state fMRI and graph analysis: Will it be helpful in clinical epilepsy?," 

Epilepsy & Behavior, vol. 38, pp. 71-80, 2014. 

 

[173] M. Termenon, A. Jaillard, C. Delon-Martin, and S. Achard, "Reliability of graph 

analysis of resting state fMRI using test-retest dataset from the Human 

Connectome Project," NeuroImage, vol. 142, pp. 172-187, 2016. 

 

[174] M. P. van den Heuvel, S. C. de Lange, A. Zalesky, C. Seguin, B. T. Yeo, and R. 

Schmidt, "Proportional thresholding in resting-state fMRI functional connectivity 

networks and consequences for patient-control connectome studies: Issues and 

recommendations," Neuroimage, vol. 152, pp. 437-449, 2017. 

 

[175] D. J. Watts and S. H. Strogatz, "Collective dynamics of ‘small-world’networks," 

nature, vol. 393, no. 6684, p. 440, 1998. 

 

[176] M. Mijalkov, E. Kakaei, J. B. Pereira, E. Westman, G. Volpe, and A. s. D. N. 

Initiative, "BRAPH: a graph theory software for the analysis of brain 

connectivity," PloS one, vol. 12, no. 8, p. e0178798, 2017. 

 

[177] R. D. Bharath, R. Panda, V. R. Reddam, M. Bhaskar, S. Gohel, S. Bhardwaj, A. 

Prajapati, and P. K. Pal, "A Single Session of rTMS Enhances Small-Worldness 



174 

in Writer’s Cramp: Evidence from Simultaneous EEG-fMRI Multi-Modal Brain 

Graph," Frontiers in Human Neuroscience, vol. 11, p. 443, 2017. 

 

[178] X. Suo, D. Lei, K. Li, F. Chen, F. Li, L. Li, X. Huang, S. Lui, L. Li, and G. J. 

Kemp, "Disrupted brain network topology in pediatric posttraumatic stress 

disorder: a resting‐state fMRI study," Human brain mapping, vol. 36, no. 9, pp. 

3677-3686, 2015. 

 

[179] X.-N. Zuo, R. Ehmke, M. Mennes, D. Imperati, F. X. Castellanos, O. Sporns, and 

M. P. Milham, "Network centrality in the human functional connectome," 

Cerebral cortex, vol. 22, no. 8, pp. 1862-1875, 2011. 

 

[180] J. Wang, X. Zuo, and Y. He, "Graph-based network analysis of resting-state 

functional MRI," Frontiers in systems neuroscience, vol. 4, p. 16, 2010. 

 

[181] V. Latora and M. Marchiori, "Efficient behavior of small-world networks," 

Physical review letters, vol. 87, no. 19, p. 198701, 2001. 

 

[182] G. Csardi and T. Nepusz, "The igraph software package for complex network 

research," InterJournal, Complex Systems, vol. 1695, no. 5, pp. 1-9, 2006. 

 

[183] S. Epskamp, A. O. Cramer, L. J. Waldorp, V. D. Schmittmann, and D. Borsboom, 

"qgraph: Network visualizations of relationships in psychometric data," Journal 

of Statistical Software, vol. 48, no. 4, pp. 1-18, 2012. 

 

[184] H. Pashler and E. J. Wagenmakers, "Editors’ introduction to the special section on 

replicability in psychological science: A crisis of confidence?," Perspectives on 

Psychological Science, vol. 7, no. 6, pp. 528-530, 2012. 

 

[185] K. Kroenke, R. L. Spitzer, and J. B. Williams, "The PHQ‐9: validity of a brief 

depression severity measure," Journal of general internal medicine, vol. 16, no. 

9, pp. 606-613, 2001. 

 

[186] W. Treynor, R. Gonzalez, and S. Nolen-Hoeksema, "Rumination reconsidered: A 

psychometric analysis," Cognitive therapy and research, vol. 27, no. 3, pp. 247-

259, 2003. 

 

[187] C. D. Spielberger, "Manual for the State-Trait Anxiety Inventory STAI (form Y)(" 

self-evaluation questionnaire")," 1983. 

 



175 

[188] D. Cella, W. Riley, A. Stone, N. Rothrock, B. Reeve, S. Yount, D. Amtmann, R. 

Bode, D. Buysse, and S. Choi, "The Patient-Reported Outcomes Measurement 

Information System (PROMIS) developed and tested its first wave of adult self-

reported health outcome item banks: 2005–2008," Journal of clinical 

epidemiology, vol. 63, no. 11, pp. 1179-1194, 2010. 

 

[189] P. A. Pilkonis, S. W. Choi, S. P. Reise, A. M. Stover, W. T. Riley, D. Cella, and P. 

C. Group, "Item banks for measuring emotional distress from the Patient-

Reported Outcomes Measurement Information System (PROMIS®): depression, 

anxiety, and anger," Assessment, vol. 18, no. 3, pp. 263-283, 2011. 

 

[190] D. A. DeWalt, N. Rothrock, S. Yount, and A. A. Stone, "Evaluation of item 

candidates: the PROMIS qualitative item review," Medical care, vol. 45, no. 5 

Suppl 1, p. S12, 2007. 

 

[191] D. Bates, M. Maechler, B. Bolker, and S. Walker, "lme4: Linear mixed-effects 

models using Eigen and S4," R package version, vol. 1, no. 7, pp. 1-23, 2014. 

 

 


