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CHAPTER 1

INTRODUCTION

The objective of this research is to use dissipativity theory to analyze stability for a general

class of discrete-time recurrent neural networks (RNNs). Then, a new training algorithm is

proposed to train RNNs for stability.

Other efforts on the stability analysis of RNNs have been made in recent years. Jin and

Gupta [1] found absolute stability conditions for RNNs based on Ostrowski’s theorem. The

networks they dealt with contained only a single layer without biases. Tanaka [2] analyzed

the stability of neural network systems by using stability conditions, based on Lyapunov

theory, of linear differential inclusions. The neural network systems investigated by Tanaka

include a system that combines a neural network plant model and a neural network con-

troller. However, there are no biases included in the neural networks. Suykens [3] found

stability criteria for a class of RNNs that can be represented in a form he designated as

NLq. These criteria provide sufficient conditions for asymptotic stability. However, he did

not deal with the case of nonzero biases.

Recently, Barabanov and Prokhorov proposed an approach for the stability analysis of

RNNs with sector-type nonlinearities and nonzero biases based on the theory of absolute

stability [4]. They later developed a new method based on reduction of dissipativity domain

[5]. This method works effectively if the system has a convex Lyapunov function. Later,

Liu proposed a generic network model, which is referred to as the discrete-time standard

neural network model (DSNNM) [6]. The DSNNM represents a neural network model as

the interconnection of a linear dynamic system and static nonlinear operators. Liu found

some criteria for the globally asymptotic stability of equilibrium points of the DSNNM.
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More recently, the method in [5] has been modified to speed up convergence by Jafari and

Hagan [7]. Most recently, Kim and Braatz [8] used a modified Lure’-Postnikov function

to obtain stability criteria for some classes of standard nonlinear operator forms. These

methods can be applied to RNNs with nonzero biases. However, they have not yet been

applied to the stability analysis of layered digital dynamic networks (LDDNs) [9].

A few authors in the past have applied dissipativity theory to continuous-time neural

networks [10].We now want to apply this theory to discrete-time networks. In this work, a

general class of discrete-time recurrent neural networks (LDDNs) will be considered, and

dissipativity theory will be used to analyze stability of equilibrium points for LDDNs.

Dissipativity theory was first developed by Jan C. Willems [11, 12] in the 1970s. The

other major authors of this theory are David Hill and Peter Moylan [13, 14]. The term

”dissipativity” was inspired by the concept of passivity. A system for which the rate of

increase in its stored energy is not greater than the absorbed input power is a passive system.

In dissipativity theory, the stored energy is generalized by a storage function and the input

power is generalized by a supply rate function.

One of the important results in passivity theory states that if two passive systems are

connected in a feedback loop, then the resulting closed loop system is stable. A correspond-

ing result from dissipativity theory states that if two dissipative systems are connected in a

feedback loop, then the closed loop system is stable under certain conditions. This result

will be used extensively throughout our work.

Dissipativity was first defined for continuous-time dynamic systems. Later, a discrete-

time version of dissipativity was developed by W. Haddad [15]. However, to our knowl-

edge, dissipativity theory has not yet been applied to discrete-time RNNs.

In the past, Liang Jin and Madan Gupta developed two stable dynamic backpropagation

learning algorithms for a class of RNNs [16]. They used both local and global stability

conditions to maintain the network stability during the training. Recently, Jason Horn,

Orlando de Jesus and Martin Hagan [17] demonstrated that there are spurious valleys in
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the error surface of RNNs. These spurious valleys occur in unstable regions of the error

surfaces and can cause difficulties in training. They suggested that one might be able to

use a constrained optimization process to avoid the unstable region during training, but the

constraints would be extremely complex for LDDNs.

In this work, several stability criteria based on dissipativity will be proposed. Then

these novel criteria will be compared with those of Liu [6] and Barabanov and Prokhorov

[18] on several test problems. Based on these criteria, we will propose a new training

algorithm to train recurrent neural networks for stability. The new training algorithm will be

tested on two examples of model reference control systems: a linear plant and a nonlinear

plant.

This proposal includes seven chapters. The next chapter describes dissipativity the-

ory for continuous-time systems. Chapter 3 is about the stability analysis of discrete-time

recurrent neural networks using dissipativity. It presents some fundamental concepts and

theorems, and gives a brief introduction to LDDNs. Next, a method is proposed to trans-

form LDDNs into a standard interconnected system form. Then, sector conditions are

introduced and some important lemmas and theorems are proposed. Finally, novel stability

criteria for the equilibrium points of LDDNs, based on these lemmas and theorems, are

found. In Chapter 4, existing stability criteria are reviewed and then compared with the

novel criteria on a large number of test problems. The following chapter develops a frame-

work for training recurrent neural networks for stability. A modified performance index

is defined and a brief review of the first derivative of eigenvalue with respect to a matrix

parameter is provided. Then, the first derivative of the maximum eigenvalue with respect

to network weights is represented. In Chapter 6, we introduce neural network-based model

reference control systems. The proposed training algorithm is applied to train neural net-

work controllers for both a linear plant and a magnetic levitation system. The final chapter

provides a summary and proposes future work.
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CHAPTER 2

DISSIPATIVITY AND STABILITY FOR CONTINUOUS-TIME SYSTEMS

The theory of dissipativity was first developed by Willems [11], [12] for continuous-time

dynamical systems. Recently, it has been extended to discrete-time dynamical systems

[15], switched systems [19], and hybrid systems [20]. It has been applied to not only

stability analysis [13], [14], [21], [22] but also controller synthesis [15], [20], [23], [24].

This chapter reviews dissipativity theory for continuous-time systems.

There are two settings in which dissipative dynamical systems have been defined: the

input-output setting and the input-state-output setting. This chapter will concentrate on

the second setting. The chapter will begin by introducing continuous-time dynamical sys-

tems. Next, continuous-time dissipative dynamical systems are defined, followed by an

example. Finally, stability analysis of interconnected continuous-time dynamical systems

is introduced.

2.1 Continuous-time dynamical systems

This section presents some definitions [11] concerning dynamical systems and dissipative

systems. It also discusses the main properties of dissipative dynamical systems.

We begin by introducing some notation.

• R is the set of real numbers.

• Rn is the n dimensional Euclidean space.

• R+ is the set of nonnegative real numbers.

• R2
+ =

{
(t2, t1) ∈ R2|t2 > t1

}
.
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• Shift operater σT (.): Given a function s(t), t ∈ R, then the shift operator is defined

as σT (s) = s(t+ T ).

Continuous-time dynamical systems were defined by Willems [11] as follows.

Definition 2.1 A dynamical system Σ is defined as follows:

• X , U and Y are called the state space, the set of input values, and the set of output

values, respectively.

• U∗ is called the input space and it contains a class of U-valued functions on R.

• Y ∗ is called the output space and it contains a class of Y-valued functions on R.

• Assume that U∗ and Y ∗ are closed under the shift operator.

• Φ : R2
+ ×X × U∗ → X is called the state transtion function.

The following axioms hold:

1. Consistency: Φ(t0, t0, x0, u) = x0 for all t0 ∈ R, x0 ∈ X , and u ∈ U∗.

2. Determinism: Φ(t1, t0, x0, u1) = Φ(t1, t0, x0, u2) for all (t1, t0) ∈ R2
+, x0 ∈ X ,

and u1, u2 ∈ U∗ satisfying u1(t) = u2(t) for t0 ≤ t ≤ t1.

3. Semi-group property: Φ(t2, t0, x0, u) = Φ(t2, t1,Φ(t1, t0, x0, u), u) for t0 ≤

t1 ≤ t2, x0 ∈ X and u ∈ U∗.

4. Stationary: Φ(t1 + T, t0 + T, x0, σT (u)) = Φ(t1, t0, x0, u) for all (t1, t0) ∈ R2
+,

T ∈ R, x0 ∈ X , and u, σT (u) ∈ U .

• w : X × U → Y is called the read-out function.

• The Y-valued function y(t) = w(Φ(t, t0, x0, u), u(t)) for t ≥ t0.

It is assumed that a dynamical system Σ is given together with a real valued function

r(u, y) = r(u(t), y(t)) called the supply rate function. The constraint of the supply rate
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function is that for any (t1, t0) ∈ R2
+, u ∈ U and y ∈ Y r(u, y) satisfies

∫ t1
t0

|r(u, y)|dt <

∞.

2.2 Continuous-time dissipative dynamical systems

Continuous-time dissipative dynamical systems were defined by Willems [11] as follows.

Definition 2.2 A dynamical system Σ with the supply rate function r(u, y) is said to be

dissipative if there exists a nonnegative function S : X → R+, called the storage function,

such that for all (t1, t0) ∈ R2
+, x0 ∈ X and u ∈ U ,

S(x1) ≤ S(x0) +

∫ t1

t0

r(u, y)dt (2.1)

where x1 = Φ(t1, t0, x0, u) and r(u, y) = r(u(t), y(t)) with y(t) = w(x(t), u).

The inequality (2.1) is called the dissipation inequality.

2.3 Properties of supply rate function

There are some key properties of supply rate functions that are explained in the following

two lemmas.

Lemma 2.1 If a dynamical system is dissipative with respect to the supply rate r(u, y),

then it is also dissipative with respect to the supply rate λr(u, y) where λ > 0.

Proof. Assume a dynamical system Σ is dissipative with respect to the supply rate r(u, y).

Then there exists a storage function S(x) such that the dissipation inequality (2.1) holds.

This means that

S(x1) ≤ S(x0) +

∫ t1

t0

r(u, y)dt (2.2)

Multiplying both sides of (2.2) by λ, we get

λS(x1) ≤ λS(x0) + λ

∫ t1

t0

r(u, y)dt

6



Let r1(u, y) = λr(u, y) and S1(x) = λS(x). Then S1(x) is a storage function and

r1(u, y) is a supply rate function. It follows that

S1(x1) ≤ S1(x0) +

∫ t1

t0

r1(u, y)dt

Therefore the system is dissipative with respect to the supply rate λr(u, y).

Lemma 2.2 If a dynamical system Σ is dissipative with respect to the supply rate ri(u, y)

for i = 1, 2, ..., n, then it is also dissipative with respect to the supply rate r(u, y) =∑n
i=1 ri(u, y).

Proof. Since the system Σ is dissipative with respect to the supply rate ri(u, y) for i =

1, 2, ..., n, there exists a storage function Si(x) such that the dissipation inequality (2.1)

holds. This means that

Si(x1) ≤ Si(x0) +

∫ t1

t0

ri(u, y)dt (2.3)

for i = 1, 2, ..., n. Taking the summation on both sides of (2.3) where i goes from 1 to n,

we get
n∑

i=1

Si(x1) ≤
n∑

i=1

Si(x0) +
n∑

i=1

∫ t1

t0

ri(u, y)dt (2.4)

The inequality (2.4) is equivalent to

n∑
i=1

Si(x1) ≤
n∑

i=1

Si(x0) +

∫ t1

t0

n∑
i=1

ri(u, y)dt (2.5)

Let’s define r(u, y) =
∑n

i=1 ri(u, y) and S(x) =
∑n

i=1 Si(x).Then (2.5) is equivalent to

S(x1) ≤ S(x0) +

∫ t1

t0

r(u, y)dt (2.6)

Therefore the system Σ is dissipative with respect to the supply rate r(u, y).

Based on these lemmas, we can find supply rate functions for continuous-time dynam-

ical systems.
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2.4 An example continuous-time dissipative dynamical system

Consider a mass, spring and damper system [15]. The equation of motion is

mẍ(t) +Dẋ(t) +Kx(t) = u(t) (2.7)

where M is the mass, D is the damper constant, K is the spring stiffness, x is the position

of the mass and u is the force acting on the mass. The initial conditions are x(0) = x0 and

ẋ(0) = ẋ0. It is assumed that M > 0, D ≥ 0 and K ≥ 0.

The energy of the system is

V (x, ẋ) = 0.5mẋ2 + 0.5Kx2

The time derivative of the energy is

V̇ (x, ẋ) = mẍẋ+Kxẋ = uẋ−Dẋ2

Let’s define x1 = x, x2 = ẋ and y = ẋ as state variables and the output of the system

(2.7), respectively. Then

V̇ (x) = uy −Dẋ2 (2.8)

where x = [x1 x2].

Integrating both sides of equation (2.8) from t = 0 to t = T gives

V (x(T )) = V (x(0)) +
∫ T

0

uydt−
∫ T

0

Dẋ2dt (2.9)

where V (x(T )) is the energy at t = T and V (x(0)) is the initial energy. The second term

and the last term on the right side of (2.9) are the energy supplied by the external source

and the energy dissipated by the damper, respectively.

From (2.9) we get

V (x(T )) ≤ V (x(0)) +
∫ T

0

uydt (2.10)

since ∫ T

0

Dẋ2dt ≥ 0 (2.11)
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Let’s define S(x) = V (x) and r(u, y) = uy. Then S(x) is a storage function and r(u, y)

is a supply rate. The inequality (2.10) means that the system (2.7) is dissipative.

In this example, the storage function is the stored energy and the supply rate is the

absorbed input power. The dissipativity of the system says that the change in its stored

energy is not greater than the absorbed input power.

2.5 Stability of interconnected continuous-time dissipative dynamical systems

Consider dynamical systems Σ1 and Σ2 that are interconnected via constraints u1 = −y2

and u2 = y1, as shown in Fig. 2.1. Suppose that equilibrium points of systems Σ1 and Σ2

are located at the origin.

∑1 

∑2 

u1 

y2 

y1 

u2 

 

Figure 2.1: Interconnected continuous-time systems

Theorem 2.1 [11] If the system Σ1 is dissipative with respect to the supply rate r1(u1, y1),

the system Σ2 is dissipative with respect to the supply rate r2(u1, y2) and r1(u1, y2) +

r2(u1, y2) = 0 then the origin of the feedback system is stable.

Proof. Since the system Σ1 is dissipative with respect to r1(u1, y1), there exists a storage

function S1(x1) ≥ 0 such that Ṡ1(x1) ≤ r1(u1, y1). Since the system Σ2 is dissipative

with respect to r2(u2, y2), there exists a storage function S2(x2) ≥ 0 such that Ṡ2(x2) ≤

r2(u2, y2). Thus S1(x1)+S2(x2) ≥ 0 and Ṡ1(x1)+ Ṡ2(x2) ≤ r1(u1, y1)+ r2(u2, y2). Since

9



r1(u1, y1) + r2(u2, y2) = 0, Ṡ1(x1) + Ṡ2(x2) ≤ 0. Let’s define V (x) = S1(x1) + S2(x2).

Then V̇ (x) ≤ 0. Therefore the origin of the feedback system is stable.

In the next chapter, this theorem will be extended to the case where Σ1 is static and Σ2

is a discrete-time dynamical system.
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CHAPTER 3

STABILITY ANALYSIS OF RECURRENT NEURAL NETWORKS USING

DISSIPATIVITY

The previous chapter introduced the concept of dissipativity for continuous time dynamic

systems and demonstrated how dissipativity can be used to prove stability for intercon-

nected dissipative systems. In this chapter, we extend these ideas to analyze the stability of

discrete-time recurrent neural networks. We begin by defining dissipativity for static and

discrete-time dynamic systems and update the stability theorem for interconnected dissi-

pative systems. Then we introduce a general framework for representing RNNs and show

how this general framework can be represented in a standard form. From the standard form

we can apply the stability theorem for interconnected dissipative systems. We will derive

three different criteria for testing the stability of RNNs through different choices of supply

rate functions.

3.1 Dissipative systems

3.1.1 Static systems

Consider the system

y = f(u) (3.1)

where u ∈ U ⊆ Rm, y ∈ Y ⊆ Rl, f : U → Y and 0 ∈ U . Without loss of generality, let

f(0) = 0.

Definition 3.1 The system (3.1) is called a static system if the outputs y depend only on

current values of inputs u.
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3.1.2 Discrete-time dynamical systems

There are several possible representations of discrete-time dynamical systems. The repre-

sentation used in [15] is  x(k + 1) = h(x(k),u(k))

y(k) = g(x(k),u(k))
(3.2)

where x(k) ∈ D ⊆ Rn, u ∈ U ⊆ Rm, y ∈ Y ⊆ Rl, h : D × U → Rn, g : D × U → Y ,

and D is open and contains 0. It is assumed that h and g are continuous mappings, and

h has at least one equilibrium point. Without loss of generality, suppose h(0, 0) = 0 and

g(0, 0) = 0.

3.1.3 Dissipative systems

Definition 3.2 A function r : U×Y → R is a supply rate for a given system if the following

conditions are satisfied:

1. r(u, y) = 0 if and only if u = 0.

2.
∑k=k2

k=k1
|r(u(k), y(k))| < ∞, for all k1, k2 ∈ Z+.

Definition 3.3 The discrete-time dynamical system (3.2) is said to be dissipative with re-

spect to the supply rate r(u, y) if there exists a continuous radially unbounded, positive

definite function V : D → R satisfying V (0) = 0 and the following inequality

V (x(k + 1))− V (x(k0)) ≤
k∑

i=k0

r(u(i), y(i)) (3.3)

holds for all k0, k ∈ Z+ such that k ≥ k0, where x(k) is the solution of system (3.2) with

u ∈ U . The function V is called a storage function. If the inequality in (3.3) is strict for

x(k) ̸= 0, then system (3.2) is said to be strictly dissipative.

Definition 3.4 The static system (3.1) is said to be dissipative with respect to the supply

rate r(u, y) if r(u, y) ≥ 0 for all u ∈ U . If the inequality is strict for u ̸= 0, then (3.1) is

strictly dissipative with respect to r(u, y).
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Definition 3.5 [15, p. 803] The system (3.2) is said to be zero-state observable if u(k) = 0

and y(k) = 0 implies x(k) = 0.

Theorem 3.1 If the storage function V satisfies

V (x(n+ 1))− V (x(n)) ≤ r(u(n), y(n))

for all n ∈ Z+, then (3.2) is dissipative with respect to supply rate r(u, y). Moreover, if the

inequality is strict for x(n) ̸= 0, then (3.2) is strictly dissipative with respect to r(u, y).

Proof. We will prove that the system is dissipative. The proof for the strictly dissipative

case follows in a similar manner. Since the inequality holds for all n ∈ Z+, it holds for

k0, k0 + 1, ..., k − 1, k where k0 ∈ Z+. Thus we get

V (x(k0 + 1))− V (x(k0)) ≤ r(u(k0), y(k0))

V (x(k0 + 2))− V (x(k0 + 1)) ≤ r(u(k0 + 1), y(k0 + 1))

...

V (x(k + 1))− V (x(k)) ≤ r(u(k), y(k))

Adding these inequalities together, we have

V (x(k + 1))− V (x(k0)) ≤
k∑

i=k0

r(u(i), y(i))

Therefore, (3.2) is dissipative with respect to r(u, y).

3.2 Stability

In this section we will define stability for discrete-time systems and then update Theorem

2.1 on the stability of interconnected dissipative systems to include the case of static and

discrete-time subsystems.

Consider system (3.2) with equilibrium point xe = 0.
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Definition 3.6 [15, p. 765] The equilibrium point xe is said to be Lyapunov stable if for

all ϵ > 0 there exists δ > 0 such that if ||x(0)|| < δ then ||x(k)|| < ϵ for all k ∈ Z+. In

addition, it is said to be globally asymptotically stable (GAS) if it is Lyapunov stable and

for all x(0) ∈ Rn, limk→∞ x(k) = 0.

3.2.1 STABILITY ANALYSIS OF RECURRENT NEURAL NETWORKS USING

DISSIPATIVITY

Consider the interconnected system shown in Fig. 3.1, where subsystem Σ1 is a static

system of the form (3.1), subsystem Σ2 is a discrete-time dynamical system of the form

(3.2), u1(k) = −y2(k) and u2(k) = y1(k). Assume that f(0) = 0 and the system Σ2 has an

equilibrium point xe = 0.

∑1 

∑2 

u1(k) 

y2(k) 

y1(k) 

u2(k) 

 

Figure 3.1: Interconnected systems

Theorem 3.2 If subsystem Σ1 is dissipative with respect to the supply rate r1(u1(k), y1(k)),

subsystem Σ2 is dissipative with respect to the supply rate r2(u2(k), y2(k)), and

r1(u1(k), y1(k)) + r2(u2(k), y2(k)) ≤ 0,

then the origin of the interconnected system is stable. Moreover, the origin of the system is

globally asymptotic stable (GAS), if the system Σ2 is zero state observable and one of the

following additional conditions holds:

1. Either Σ1 is strictly dissipative with respect to the supply rate r1(u1(k), y1(k)) or Σ2

is strictly dissipative with respect to the supply rate r2(u2(k), y2(k)).
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2. r1(u1(k), y1(k)) + r2(u2(k), y2(k)) < 0 when the variables are not all equal to zero.

Proof. Since Σ1 is static and dissipative with respect to the supply rate r1(u1(k), y1(k)),

r1(u1(k), y1(k)) ≥ 0. Since subsystem Σ2 is dissipative with respect to the supply rate

r2(u2(k), y2(k)), there exists a storage function V2(x2(k)) such that

V2(x2(k + 1))− V2(x2(k)) ≤ r2(u2(k), y2(k)).

Since r1(u1(k), y1(k)) ≥ 0, r2(u2(k), y2(k)) ≤ −r1(u1(k), y1(k)) ≤ 0. Thus V2(x2(k +

1))−V2(x2(k)) ≤ 0. V2(x2(k)) is a Lyapunov function for the closed loop system, therefore

the origin of the system is stable. If either the subsystem Σ1 or the subsystem Σ2 is strictly

dissipative, then

V2(x2(k + 1))− V2(x2(k)) < 0.

If both subsystem Σ1 and subsystem Σ2 are dissipative, and

r1(u1(k), y1(k)) + r2(u2(k), y2(k)) < 0,

then

V2(x2(k + 1))− V2(x2(k)) < 0.

In either case, if V2(x2(k+1))−V2(x2(k)) = 0 then r1(u1(k), y1(k)) = r2(u2(k), y2(k)) =

0. So u1(k) = 0 and u2(k) = 0 by definition of supply rate. Thus y2(k) = 0 by constraints

of interconnected systems. Since the system Σ2 is zero state observable, x2(k) = 0 . This

shows that the origin of the system is GAS.

3.2.2 Example use of dissipativity on a simple network

To introduce our proposed method, we start with an example of a recurrent neuron with a

zero bias

x(k + 1) = tanh(wx(k)). (3.4)
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This system (3.4) has an equilibrium point xe = 0, and the transfer function tanh

satisfies the condition 0 ≤ tanh(u)
u

≤ 1. Now let’s transform the system (3.4) into two

interconnected subsystems as in Fig. 3.1, where the subsystem Σ1 is y1(k) = tanh(u1(k)),

the subsystem Σ2 is y2(k) = −wu2(k − 1), and u1(k) = −y2(k) and u2(k) = y1(k).

Let’s choose a supply rate

r1(u1(k), y1(k)) = u2
1(k)− y21(k).

Then

r1(u1(k), y1(k)) = u2
1(k)− tanh2(u1(k)).

Thus r1(u1(k), y1(k)) ≥ 0. Therefore by definition 3.4, the system Σ1 is dissipative with

respect to the supply rate r1(u1(k), y1(k)).

Let

r2(u2(k), y2(k)) = −r1(u1(k), y1(k)).

Then

r2(u2(k), y2(k)) = −u2
1(k) + y21(k)

= u2
2(k)− y22(k)

= u2
2(k)− w2u2

2(k − 1).

Let x2(k) = u2(k − 1). Then x2(k + 1) = u2(k) and y2(k) = −wx2(k). If u2(k) = 0

and y2(k) = 0, then x2(k) = 0. So the system Σ2 is zero state observable. Choose

V2(x2(k)) = qx2
2(k), where q > 0. Then V2(x2(k)) = qu2

2(k − 1) and V2(x2(k + 1)) =

qu2
2(k).

We claim that if w2 < 1, then the origin of (3.4) is GAS. Since w2 < 1, there exists

q > 0 such that w2 < q < 1. So

(1− q)u2
2(k) + (q − w2)u2

2(k − 1) > 0.
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It follows that

u2
2(k)− w2u2

2(k − 1) > qu2
2(k)− qu2

2(k − 1).

Thus

V2(x2(k + 1))− V2(x2(k)) < r2(u2(k), y2(k)).

Therefore the system Σ2 is strictly dissipative with respect to the supply rate r2(u2(k), y2(k)).

By Theorem 3.2, the origin is GAS for the closed loop system. In the next section, this re-

sult is generalized for LDDNs.

3.3 Stability analysis of Layered Digital Dynamic Networks (LDDNs)

In this section, we introduce a general framework for representing recurrent neural networks-

the Layered Digital Dynamic Network. We then show how this class of network can be

represented in a standard form, and how the standard form can be represented in the in-

terconnected system form, so that Theorem 3.2 can be used to demonstrate stability. By

selecting different supply rate functions, we develop three different criteria for determining

stability of LDDNs.

3.3.1 LDDNs

In this section, we want to describe the LDDN framework, first introduced in [9]. An

example LDDN is shown in Fig. 3.2. The net input nm(k) for layer m of an LDDN can be

computed

nm(k) =
∑
l∈Lf

m

∑
d∈DLm,l

LWm,l(d)al(k − d)

+
∑
l∈Im

∑
d∈DIm,l

IWm,l(d)pl(k − d) + bm (3.5)

where pl(k) is the lth input to the network at time k, IWm,l is the input weight between

input l and layer m, LWm,l is the layer weight between layer l and layer m, bm is the bias

vector for layer m, DLm,l is the set of all delays in the tapped delay line between layer l
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and layer m, Im is the set of indices of input vectors that connect to layer m, and Lf
m is the

set of indices of layers that connect directly forward to layer m. The output of layer m is

am(k) = fm(nm(k)) (3.6)

for m = 1, 2, · · · , M . The set of M paired equations (3.5) and (3.6) describes the LDDN.

3.3.2 Transform LDDNs to a standard form

The LDDN is described by (3.5) and (3.6). Our goal in this section is to transform the

LDDN into the form of (3.7), which we will call the standard form. It is assumed that

the matrix W2 has the property that it can be transformed into a strictly triangular matrix

through a re-ordering of the elements of the state vector x. This guarantees that x(k) can

be solved iteratively from some initial x(k0). This is equivalent to the condition that the

LDDN contains no zero-delay loops.

x(k + 1) = f(W1x(k) + W2x(k + 1) + b) (3.7)

Assume that inputs pl(k) are constant. Let Sm be the number of neurons in layer m.

Let

hm =
∑
l∈Im

∑
d∈DIm,l

IWm,l(d)pl(k − d) + bm,

b = [(h1)T 0 · · · (h2)T 0 · · · (hM)T · · · 0]T(S×1),

dl = max {d ∈ DLm,l|m = 1, 2, ..., M} ,

where S =
∑M

i=1 S
idi.

Consider layer m for m = 1, 2, ..., M . Let xm
1 (k) = am(k − 1), xm

2 (k) = am(k − 2),

..., xm
dm(k) = am(k− dm). Then xm

1 (k+ 1) = am(k), xm
2 (k+ 1) = am(k− 1), ..., xm

dm(k+

1) = am(k − dm + 1). Let xm(k) = [xm
1 (k) xm

2 (k) ... xm
dm(k)]

T
(Smdm×1). Let x(k) = [x1(k)

x2(k) ... xM(k)]T(S×1). Then we get the standard form (3.7), where W1 and W2 are defined

in (3.8) and (3.9), respectively.
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Figure 3.2: Example LDDN network

W1 = [W1
i,j](S×S) (3.8)

where

W1
i,i =



LWi,i(1) LWi,i(2) · · · LWi,i(di − 1) LWi,i(di)

ISi 0 · · · 0 0

0 ISi · · · 0 0
...

... . . . ...
...

0 0 · · · ISi 0


(Sidi×Sidi)

and

W1
i,j =



LWi,j(1) LWi,j(2) · · · LWi,j(dj − 1) LWi,j(dj)

0 0 · · · 0 0

0 0 · · · 0 0
...

... . . . ...
...

0 0 · · · 0 0


(Sidi×Sjdj)

if i ̸= j.

W2 = [W2
i,j](S×S) (3.9)
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where W2
i,j = [0](Sidi×Sjdj) if i ≤ j, and

W2
i,j =



LWi,j(0) 0 · · · 0

0 0 · · · 0
...

... . . . ...

0 0 · · · 0


(di×dj)

if i > j. Also,

f =



f1

f2
...

fm


(S×1)

where fi =



fi

idi

...

idi


(diSi×1)

(3.10)

where ISi is an identity matrix with dimensions (Si×Si), 0 is a zero matrix with appropriate

dimensions, idi is a vector of identity functions, and fi is a vector of transfer functions of

layer i for i = 1, 2, ..., M . For an LDDN, the order in which the individual layer outputs

must be computed to obtain the correct network output is called the simulation order (see

[9]). Here we have assumed that the layers are numbered so that the simulation order

(which need not be unique) increases with layer number.

Suppose that the LDDN of equations (3.5) and (3.6) has an equilibrium point. Then

system (3.7) has an equilibrium point. Let xe be that equilibrium point. Then xe satisfies

xe = f(W1xe + W2xe + b). Let z(k) = x(k)− xe. Then

z(k + 1) = f(W1z(k) + W2z(k + 1) + te)− f(te) (3.11)

where

te = W1xe + W2xe + b. (3.12)

Therefore system (3.11) has an equilibrium point ze = 0. If this equilibrium point is GAS,

then the equilibrium point of system (3.7) and that of the LDDN are also GAS. The next

step is to transform system (3.11) into the interconnected system form shown in Fig. 3.1.
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Let

u1(k) = −y2(k) = W1z(k) + W2z(k + 1)

u2(k) = y1(k) = z(k + 1).

Then subsystem Σ1 is

y1(k) = f(u1(k) + te)− f(te) = g(u1(k)), (3.13)

and subsystem Σ2 is

y2(k) = −W1u2(k − 1)− W2u2(k), (3.14)

and the constraints are

u1(k) = −y2(k),

u2(k) = y1(k).

Define x2(k) = u2(k−1), then x2(k+1) = u2(k) and y2(k) = −W1x2(k)−W2u2(k).

In this case, subsystem Σ1 is a static system of the form (3.1), and Σ2 is a dynamic system

of the form (3.2). If u2(k) = 0 and y2(k) = 0 then x2(k) = 0, so the system Σ2 is zero state

observable. Since ze = 0 is the equilibrium point of (3.11), it is also the equilibrium point

of subsystems Σ1 and Σ2. Therefore, if the origin of the interconnected systems is GAS,

then the equilibrium point of the LDDN is also GAS. To analyze stability of the equilibrium

point, we follow Theorem 3.2. The following sections will perform this analysis and will

develop several stability criteria.

3.3.3 Sector conditions

Consider a scalar static system of the form (3.1), y = f(u). The function f is said to lie

inside a sector [α, β] (written as f ∈ [α, β]) if α ≤ f(u)
u

≤ β, ∀u ̸= 0 and f(0) = 0. This

is called a sector condition. An example function f(u) (solid curve) and its bounds αu and

βu (dashed lines) are shown in Fig. 3.3.
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 y = α∙u y = β∙u y = f(u) u y 0 
Figure 3.3: The function f(u) satisfying sector conditions

3.3.4 Supply rate using sector conditions - static/scalar

It is possible to use sector conditions to design supply rate functions for static systems. In

this section we consider the scalar version of the static system (3.1).

Lemma 3.1 If the function f ∈ [α, β], and the supply rate is chosen as either

r(u, y) = β2u2 − y2

(using the sector upper bound) or

r(u, y) = (βu− y)(y − αu),

(using the sector upper and lower bounds), then the scalar static system y = f(u) is

dissipative with respect to the supply rate r(u, y).

Proof. From the sector condition, it follows that β2u2 ≥ y2, (βu− y)(y − αu) ≥ 0. Thus

r(u, y) = β2u2 − y2 ≥ 0 and r(u, y) = (βu− y)(y− αu) ≥ 0. In either case, r(u, y) ≥ 0.

Thus the static system is dissipative with respect to the supply rate r(u, y) by definition

3.4.
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3.3.5 Supply rate using sector conditions - static/vector

In the case that system (3.1) is multi-input multi-output, let’s assume u = [u1 u2 · · ·un]
T ,

y = [y1 y2 · · · yn]T , and f = [f1 f2 · · · fn]T . We will consider functions f such that yi =

fi(ui). Suppose that fi ∈ [αi, βi], for i = 1, 2, ..., n. Let A = diag(αi) and B = diag(βi).

Lemma 3.2 If the supply rate is chosen as either r(u, y) = uTB2u − yT y or r(u, y) =

(Bu − y)TT(y − Au) + uTΛy where T is a positive definite diagonal matrix and Λ is a

diagonal matrix with non-negative elements, then the system y = f(u) is dissipative with

respect to the supply rate r(u, y).

Proof. Let T = diag(ti) and Λ = diag(λi) where ti > 0, λi ≥ 0 for i = 1, 2, ..., n. Since

fi ∈ [αi, βi], u2
iβ

2
i − y2i ≥ 0, so

uTB2u − yTy =
n∑

i=1

(u2
iβ

2
i − y2i ) ≥ 0.

Since ti > 0, λi ≥ 0 and fi ∈ [αi, βi], (βiui − yi)ti(yi − αiui) + uiλiyi ≥ 0, so

(Bu − y)TT(y − Au) + uTΛy =
n∑

i=1

[(βiui − yi)ti(yi − αiui) + uiλiyi] ≥ 0.

In either case, r(u, y) ≥ 0. Thus the system is dissipative with respect to the supply rate

r(u, y) by definition 3.4.

3.3.6 Selecting the supply rate for LDDNs

Consider an LDDN that has been put into the standard form (3.11) and then put into the

interconnected systems form of (3.13) and (3.14). Assume that the function gi ∈ [αi, βi] for

i = 1, 2, ..., S. Let A = diag(αi) and B = diag(βi). Choose V2(x2(k)) = xT
2 (k)Qx2(k),

where Q is a positive definite matrix.

Supply rate using sector upper bounds

Choose r1(u1(k), y1(k)) = uT
1 (k)B

2u1(k)−yT
1 (k)y1(k). Then the system Σ1 is dissipative

with respect to the supply rate r1(u1(k), y1(k)) by Lemma 3.2. Choose r2(u2(k), y2(k)) =
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−r1(u1(k), y1(k)). Then r1(u1(k), y1(k)) + r2(u2(k), y2(k)) = 0.

Using the constraints of interconnected systems, we get

r2(u2(k), y2(k)) = uT
2 (k)u2(k)− yT

2 (k)B
2y2(k).

Thus

r2(u2(k), y2(k)) = uT
2 (k)u2(k)

− [W1u2(k − 1) + W2u2(k)]
TB2[W1u2(k − 1) + W2u2(k)]

= uT
2 (k)u2(k)− [uT

2 (k − 1)(W1)TB2W1u2(k − 1)

+ uT
2 (k)(W

2)TB2W1u2(k − 1)

+ uT
2 (k − 1)(W1)TB2W2u2(k)

+ uT
2 (k)(W

2)TB2W2u2(k)].

Let

P1 =

I − Q − (W2)TB2W2 −(W2)TB2W1

−(W1)TB2W2 Q − (W1)TB2W1

 (3.15)

.

Theorem 3.3 If a positive definite matrix Q can be found such that the matrix P1 is positive

definite, then the equilibrium point of the LDDN is GAS.

Proof. Since P1 is positive definite, [uT
2 (k) uT

2 (k − 1)]P1[uT
2 (k) uT

2 (k − 1)]T > 0. Thus

uT
2 (k)[I − Q − (W2)TB2W2]u2(k)− uT

2 (k)(W
2)TB2W1u2(k − 1)

− uT
2 (k − 1)(W1)TB2W2u2(k) + uT

2 (k − 1)[Q − (W1)TB2W1]u2(k − 1) > 0.

It follows that V2(x2(k+1))−V2(x2(k)) < r2(u2(k), y2(k)). Thus the system Σ2 is strictly

dissipative with respect to the supply rate r2(u2(k), y2(k)). In addition, the system Σ1 is

dissipative with respect to the supply rate r1(u1(k), y1(k)), as proved above. Therefore the

origin of the interconnected system is GAS by Theorem 3.2. Consequently, the equilibrium

point of the LDDN is GAS.
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Supply rate using sector lower and upper bounds

Choose r1(u1(k), y1(k)) = (y1(k)−Au1(k))
TT(Bu1(k))− y1(k)) + uT

1 (k)Λy1(k), where

T is a positive definite diagonal matrix and Λ is an diagonal matrix with non-negative

elements. Then the system Σ1 is dissipative with respect to the supply rate r1(u1(k), y1(k))

by Lemma 3.2.

Choose r2(u2(k), y2(k)) = −r1(u1(k), y1(k)). Then r1(u1(k), y1(k))+r2(u2(k), y2(k)) =

0. Using the constraints of interconnected systems, we get

r2(u2(k), y2(k)) = (u2(k) + Ay2(k))
TT(By2(k)) + u2(k)) + yT

2 (k)Λu2(k).

Thus

r2(u2(k), y2(k)) = [(I − AW2)u2(k)− AW1u2(k − 1)]T

× T[(I − BW2)u2(k)− BW1u2(k − 1)]

+ [−W1u2(k − 1)− W2u2(k)]
TΛu2(k)

= uT
2 (k)(I − AW2)TT(I − BW2)u2(k)

+ uT
2 (k − 1)(W1)TBTAW1u2(k − 1)

− uT
2 (k)(I − AW2)TT(BW1)u2(k − 1)

− uT
2 (k − 1)(AW1)TT(I − BW2)u2(k)

− uT
2 (k − 1)(W1)TΛu2(k)

− uT
2 (k)(W

2)TΛu2(k).

Let

P2 =

P11 P12

P21 P22

 (3.16)
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where

P11 =T − 1

2
(W2)T (B + A)T − 1

2
T(B + A)W2 + (W2)TBTAW2

− Q − 1

2
((W2)TΛ + ΛW2),

P12 =− 1

2
T(A + B)W1 + (W2)TBTAW1 − 1

2
ΛW1,

P21 =P12T ,

P22 =Q + (W1)TBTAW1.

Theorem 3.4 The equilibrium point of the LDDN is GAS if a positive definite matrix Q, a

positive definite diagonal matrix T and a positive semi-definite diagonal matrix Λ can be

found such that the matrix P2 is positive definite.

Proof. The proof is similar to the proof of Theorem 3.3, but the matrix P2 is used in place

of the matrix P1.

Supply rate using general quadratic form

Choose r1(u1(k), y1(k)) = vTFv where v = [u1(k) y1(k)]
T and

F =

F11 F12

F21 F22

 .

Assume that F satisfies the condition

r1(u1(k), y1(k)) ≥ 0. (3.17)

Let’s define

P3 =

P11 P12

P21 P22


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where

P11 =− F22 − 0.5 ∗ (F21 + FT
12)W

2 − 0.5(W2)T (F12 + FT
21)− (W2)TF11W2 − Q

P12 =− (W2)TF11W1 − 0.5 ∗ (F21 + FT
12)W

1

P21 =− (W1)TF11W2 − 0.5 ∗ (W1)T (F12 + F21)

P22 =Q − (W1)TF11W1.

Theorem 3.5 The equilibrium point of the LDDN is GAS if there exists a matrix F satis-

fying condition (3.17) and a positive definite matrix Q such that the matrix P3 is positive

definite.

Proof. The proof is similar to the proof of Theorem 3.3, but the matrix P3 is used in place

of the matrix P1.

We can see that Theorems 3.3 and 3.4 are special cases of Theorem 3.5.

• If F11 = B2, F22 = −I and F12 = F21 = 0 then P3 = P1.

• If F11 = −BTA, F22 = −T, F12 = BT + Λ and F21 = TA then P3 = P2.

Since the output y1(k) is a static function of u1(k), the matrix F doesn’t need to be positive

definite. As we can see in Theorem 3.3, F11 = B2 is a positive definite matrix, F22 = −I

is negative definite and F12 = F21 = 0. So in this case the matrix F is not positive definite.

Based on this theorem we may find other stability criteria for the standard form.

Conclusions

In this section, we have found three new conditions for globally asymptotic stability of

equilibrium points of LDDNs. The different conditions were derived by selecting different

supply rate functions. In Theorem 3.3, we used the upper bound on the sector condition of

the static subsystem. In Theorem 3.4, we used both the sector upper and lower bounds to

define the supply rate. In Theorem 3.5, we used a general quadratic supply rate.
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3.3.7 Stability analysis of other types of Recurrent Neural Networks

Now we will apply Theorems 3.3, 3.4 and 3.5 to analyze the stability analysis of other types

of RNNs. First we consider the network given by Barabanov [4, p. 292]. This network can

be transformed into standard form (3.7) as follows. Let

x(k) = [x1(k) x2(k) ... xn(k)]
T ,

b = [b1 b2 ... bn]
T ,

W1 =



W1 0 0 · · · Vn

0 W2 0 · · · 0

0 0 W3 · · · 0
...

...
... . . . ...

0 0 0 · · · Wn


,

and

W2 =



0 0 0 · · · 0

V1 0 0 · · · 0

0 V2 0 · · · 0
...

...
... . . . ...

0 0 0 Vn−1 0


.

The next step is to apply Theorems 3.3, 3.4 and 3.5 to check stability of the equilibrium

point of this network. Some examples are shown in the next chapter.

Next, we consider a class of RNNs given in [1, p. 955], [25, p. 1105], [26, p. 1373] and

[27, p. 130]. The network has the form

z(k + 1) = Dz(k) + Eg(Wz(k) + s1) + s2 (3.18)

where D, E and W are matrices with appropriate sizes, s1 and s2 are bias vectors with

appropriate size and g is a vector of activation functions in the network. We can transform

28



this system into standard form (3.7) by defining new state variables as follows:

x1(k + 1) = g(Wz(k) + s1)

x2(k) = z(k)

Then

x1(k + 1) = g(Wx2(k) + s1)

x2(k + 1) = Dx2(k) + Ex1(k + 1) + s2).

So we have

W1 =

0 W

0 D

 ,W2 =

0 0

E 0

 , (3.19)

f = [g id]T and b = [s1 s2]T , where 0 is a zero matrix with appropriate size. Thus system

(3.18) is in standard form (3.7).

The strategy for stability analysis of RNNs is to transform the network into the inter-

connected systems form and then to apply Theorem 3.2. If the network can be represented

in standard form (3.7), then we can use Theorems 3.3, 3.4 and 3.5.

3.4 Conclusions

This chapter has developed new criteria for analyzing the stability of recurrent neural net-

works. A general framework for representing recurrent networks was presented, and we

demonstrated how these networks could be put into a standard form and then into an inter-

connected systems form. This enabled us to use Theorem 3.2 to derive stability conditions.

The key to the development of the stability criteria was to establish sector conditions on

the static subsystem. By using the sector bounds, we were able to define different supply

rate functions. It is the flexibility in selecting the supply rate function that makes the use of

dissipativity theory so attractive for stability analysis of recurrent neural networks.
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In the next chapter we will demonstrate the performance of our new stability criteria on

a variety of recurrent networks. We will also compare our new criteria with other state-of-

the-art methods.
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CHAPTER 4

COMPARISON OF STABILITY CRITERIA ON TEST PROBLEMS

In this chapter, we will compare our new dissipativity-based (DB) criteria with Liu’s crite-

rion [6, p.1382] and Barabanov’s LMI criterion [18, p. 4554] on 23 test problems. The test

neural networks are in the form of (5) in [4, p. 294], (3.7) or (4.3). We have chosen some

networks that have been introduced in previous papers by other authors. We have also used

new networks that we have developed. We have chosen networks based on the difficulty of

determining the stability of their equilibrium points.

4.1 Sector conditions

We will use networks with activation function a = tanh(n). Therefore, as part of the

stability analysis, we will need to find upper and lower bounds of the sector of the following

function

f(u) = tanh(u+ t)− tanh(t), (4.1)

where t is a constant. In order to determine sector upper bounds, we will determine the

argument that maximizes the value of function f(u)
u

. The following lemma can be used to

determine the lower bound of the function (4.1).

Lemma 4.1 [4, p. 298] Consider a function (4.1). If |u + t| ≤ r, then f(u)
u

≥ ν =

tanh(r)−tanh(|t|)
r−|t| . If |t| = r, then ν = d(tanh(u))

du
at u = r.

There are several ways to find r, depending on the type of system. We will discuss this

later.
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Since we will be comparing our DB criteria with those of Liu and Barabanov, we will

give a brief description of their criteria in the next two sections.

4.2 Existing stability criteria

4.2.1 Liu’s criterion

Liu’s model is called the Discrete-time Delayed Standard Neural Network Model (DDSNNMs)

[6, p. 1378]:  x(k + 1) = Alx(k) + BpΦ(ξ(k)) + BpdΦ(ξ(k − h))

ξ(k) = Cqx(k) + DpΦ(ξ(k)) + DpdΦ(ξ(k − h))
(4.2)

Assume Φi(ξi) ∈ [qi, ui], ui > qi ≥ 0 and h is constant. Define Q = diag(qi) and

U = diag(ui).

Theorem 4.1 [6, p. 1382] The origin of the DDSNNM (4.2) is globally asymptotically

stable, if there exist symmetric positive-definite matrices P and Γ, and diagonal positive

semi-definite matrices Λ and T, such that the following matrix is negative definite

Ḡ =


Ḡ11 Ḡ12 Ḡ13

Ḡ21 Ḡ22 Ḡ23

Ḡ31 Ḡ32 Ḡ33


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where

Ḡ11 =AT
l PAl − P − 2CT

q TQUCq

Ḡ12 =AT
l PBp + CT

q Λ− 2CT
q TQUDp + CT

q (Q + U)T

Ḡ13 =AT
l PBpd − 2CT

q TQUDpd

Ḡ21 =ḠT
12

Ḡ31 =ḠT
13

Ḡ32 =ḠT
23

Ḡ22 =BT
p PBp + ΛDp + DT

pΛ + Γ− 2DT
p TQUDp

− 2T + DT
p (Q + U)T + T(Q + U)Dp

Ḡ23 =BT
p PBpd + ΛDpd − 2DT

p TQUDpd + T(Q + U)Dpd

Ḡ33 =BT
pdPBpd − Γ− 2DT

pdTQUDpd

4.2.2 Barabanov and Prokhorov’s LMI criterion

Consider the RNN [18, p. 4553]

x(k + 1) = Dx(k) + Etanh(Wx(k) + s1). (4.3)

Let z be the equilibrium point of (4.3). Then

z = Dz + Etanh(Wz + s1)

Define y = x − z and c = Wz + s1. Then y(k + 1) = Dy(k) + Eη(k)

η(k) = tanh(σ(k) + c)− tanh(c)
(4.4)

where σ(k) = Wy(k). Assume ηi(σi) ∈ [νi, µi] for i = 1, 2, ...,m where m is the length of

s1. Let N = diag(µi) and M = diag(νi).
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Lemma 4.2 [18, p. 4554] If |ci| ≥ |cj| then

βij =
1− tanh(αsign(ci)cj)

1− tanh(α|ci|)

otherwise

βij =
1− tanh(αsign(cj)ci)

1− tanh(α|cj|)

where α > 0.

By Lemma 4.2, ηTG(αWy − η) ≥ 0, where G = {gij} is a symmetric positive definite

matrix that satisfies gij < 0 for i ̸= j,

gii +
m∑

j=1,j ̸=i

βijgij > 0 (4.5)

for all i = 1, ...,m.

Theorem 4.2 [18, p. 4554] Consider the system (4.3). Assume D + EMW is stable. If

there exists diagonal positive definite matrix Γ and symmetric positive definite matrices H

and G, such that G satisfies the condition (4.5) and

Φ =

Φ11 Φ12

Φ21 Φ22


is negative definite, then the equilibrium point is GAS, where

Φ11 =DTHD − H − WTNΓMW

Φ12 =WT ((M + N)Γ + Gα)/2 + DTHD

Φ21 =ΦT
12

Φ22 =ETHE − Γ− G

To compute the lower bound matrix M, we will use Lemma 4.1. Thus we have to find

rj such that |σj + cj| ≤ rj for j = 1, 2, ...,m. In the general case for D ̸= 0 we can choose

M = 0. If D = 0, then |yi| ≤
∑m

j=1 |Eij| for i = 1, 2, ..., n. Let’s define γi =
∑m

j=1 |Eij|

and rj =
∑n

i=1 |Wji||γi|. Therefore |σj + cj| ≤ rj .
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4.3 Description of test problems

We will compare our new DB stability criteria with those of Liu and Barabanov on 22

different test networks. All of the networks have a GAS equilibrium point. For the first 12

networks, the DB-based criteria are able to prove stability. For the next 10 networks, DB

criteria are not able to detect stability. The final test network (the 23rd test) is an LDDN

network that cannot be put into Liu’s or Barabanov’s form, so their methods cannot be

applied to this network.

Even in those cases where the methods are not able to prove stability, we would like

to measure how close they come. Each of the criteria involves finding matrices that are

definite. For the three DB criteria, we attempt to find matrices P1, P2 and P3 that are

positive definite. (For the test problems, we will use only P2, from Theorem 3.4, which has

produced the best results.) For Liu’s and Barabanov’s methods, we are looking for Ḡ and

Φ matrices that are negative definite. To measure how close we come to finding matrix P2

that is positive definite, we will find its minimum eigenvalue, which we will label p2. If p2

is positive, then GAS is proved. If it is negative, then we cannot prove stability. However,

even in this case, the closer the value is to zero, the closer the algorithm has come to

identifying stability. This concept applies also to the maximum eigenvalues of Ḡ and Φ,

which we will label ḡ and φ. If these values are negative, then GAS is proved. If they are

positive, we have not proven stability. However, the closer ḡ and φ are to zero, the closer

the algorithm has come to identifying stability.

All of the 23 test problems are described in the appendix. They are represented in

either the standard form (3.7), in which case W1, W2, b and f will be provided, or in the

Barabanov form (4.3), in which case W, E and s1 will be given (D = 0 for the Barabanov

test problems). On the first 12 test problems, all matrices for the DB criterion, Liu and

Barabanov’s criteria are also provided in the appendix.

In the next section we analyze stability of neural networks with stable equilibrium

points where our DB methods can prove stability. In the following section we focus on
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neural networks with stable equilibrium points where these methods cannot prove stability.

Finally, we will analyze the stability of an LDDN, where Liu’s and Barabanov’s methods

cannot be applied.

4.4 Stable equilibria that can be proved stable

In this section, we analyze the stability of equilibrium points for test problems 1 to 12. The

first four test problems were first presented in previously published papers. Test problem

1 is a special case of standard form (3.7) where W2 = 0, test problem 2 has the form of

(4.3) and test problems 3 and 4 are have the form of (5) in [4, p. 294]. The remaining 8 test

problems are in the form of (4.3) with D = 0.

We will use the new DB criteria, Liu’s criterion and Barabanov’s criterion to check

stability of equilibria. Eigenvalues p2, ḡ, and φ for each test problem are shown in Table

4.1. The equilibrium point is proven to be GAS if p2 > 0, ḡ < 0 or φ < 0. Thus the criteria

P2, Ḡ and Φ all proved that the equilibrium points of test problems 1 through 12 are GAS.

From this table we can see that our DB criterion is as tight as both Liu’s criterion [6,

p. 1382] and Barabanov’s LMI criterion [18, 4554] on the first 12 test problems. Fig. 4.1

and Fig. 4.2 are representative of the types of responses that we have in these problems.

We have oscillatory responses as well as over-damped responses. Table 4.2 gives an ap-

proximate measure of how quickly the systems converge to the equilibrium point from a

random initial condition. Because the systems are nonlinear, these convergence times will

change with the initial conditions, but these numbers are representative. In the next section

we will investigate systems with GAS equilibria for which the DB stability criteria cannot

determine stability.
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TP. p2 ḡ φ

1 0.34743 −0.57805 −0.49272

2 14.625 −147.31 −128.83

3 7.1617 −4.7596 −1.5471

4 34.342 −45.769 −75.599

5 5.9322 −61.345 −42.564

6 1.8062 −7.5758 −8.5027

7 1.1116 −34.491 −22.097

8 29.101 −136.46 −212.8607

9 59.747 −242.07 −393.64

10 19.376 −119.87 −156.07

11 6.8088 −30.292 −16.997

12 0.2592 −12.421 −8.8994

Table 4.1: Eigenvalues of matrices
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Figure 4.1: Trajectory for test problem 1
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Figure 4.2: Trajectory for test problem 2

TP. N

01 15

02 14

03 28

04 35

05 06

06 07

07 05

08 10

09 07

10 07

11 03

12 08

Table 4.2: Time steps N to convergence
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4.5 Stable equilibria that cannot be proved stable

In this section, we will use our DB criterion, Liu’s criterion and Barabanov’s LMI criterion

to check stability of equilibrium points of test problems 13 to 22. All of these test neural

networks are in the form of (4.3) with D = 0, except test problem 13, which is a special

case of (3.7) where W2 = 0. The equilibrium points here are all GAS. The best values of

p2, ḡ and φ are shown in Table 4.3. Barabanov’s LMI criterion was the only one that was

TP. p2 ḡ φ

13 −4.35 ∗ 10−8 1.16 ∗ 10−7 4.0163

14 −4.16 ∗ 10−4 6.57 ∗ 10−8 −2.8767

15 −2.52 ∗ 10−4 7.67 ∗ 10−5 −0.24913

16 −5.63 ∗ 10−4 5.63 ∗ 10−8 1.4 ∗ 10−4

17 −3.18 ∗ 10−5 3.72 ∗ 10−8 4.47 ∗ 10−5

18 −0.0033 4.67 ∗ 10−7 2.7698

19 −0.0123 3.03 ∗ 10−7 2.53

20 −1.80 ∗ 10−4 2.29 ∗ 10−6 7.98 ∗ 10−5

21 −2.45 ∗ 10−4 4.09 ∗ 10−7 3.64 ∗ 10−5

22 −1.84 ∗ 10−5 1.71 ∗ 10−8 8.57 ∗ 10−6

Table 4.3: Eigenvalues of matrices

able to prove stability of equilibria in any of the test problems, and it only worked for test

problems 14 and 15. In these two networks, the matrix W is an identity matrix and the bias

vector s1 = 0.

Fig. 4.3 and Fig. 4.4 are representative of the responses of test problems 13 through 22.

All of these responses are oscillatory. Table 4.4 shows approximate convergence times from

random initial conditions. We can see that, although all of the responses are oscillatory,

there is a wide range of response times - some of them in the same range as the first 12

systems (see Table 4.2). It seems clear that when the system is of higher dimension, has
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oscillatory behavior and has slow convergence, it becomes more difficult for all methods to

determine stability. However, these parameters do not completely determine the success of

the various methods.

In terms of the eigenvalues, |ḡ| is smallest for all test problems, except 13, 14 and 15.

For test problems 18 and 19, the oscillation is longer (approximately 600 time steps) and

the size of matrices E and W is bigger (2× 10). In these cases, |ḡ| < |p2| < |φ|.

The weight matrices and bias vectors of test problems 20, 21 and 22 are the same size,

but N is 40, 10 and 5, respectively. In this case, |ḡ|, |p2|, and |φ| became smaller, as shown

in Table 4.3.
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Figure 4.3: Trajectory for test problem 15
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Figure 4.4: Trajectory for test problem 22

TP. N

13 30

14 300

15 3500

16 250

17 90

18 20

19 600

20 40

21 10

22 5

Table 4.4: Time steps N to convergence

In summary, for test problems in the form of (4.3), the oscillation of system trajectories,

increases in the sizes of system matrices, and slower convergence times tend to increase the

difficulty of determining stability. Barabanov’s LMI criterion is less conservative than our

criterion and Liu’s criterion on test problems 14 and 15 where the neural network is a very
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special case of (4.3).

4.6 An example of stability analysis of LDDNs

In this section, we analyze stability of test problem 23, which is an LDDN. We found

p2 = 2.6051. Therefore, this proves that the equilibrium point is GAS.

Since the function f10 is linear, α10 = β10 = 1. This doesn’t satisfy Liu’s condition

ui > qi ≥ 0. So we cannot use Liu’s criterion. Since we cannot represent the LDDN in

the form of (4.3), Barabanov’s LMI criterion cannot be applied to analyze stability of this

network. Therefore, neither Liu’s criterion nor Barabanov’s LMI criterion can be applied

to check stability of the equilibrium point.

4.7 Conclusions

The second DB criterion, Theorem 3.4, is as tight as both Barabanov’s LMI criterion and

Liu’s criterion for the first 12 test problems, but fails to prove stability of equilibria for test

problems 13 to 22. Liu’s criterion also fails to prove stability of these GAS equilibrium

points. Barabanov’s LMI criterion can prove stability of the equilibrium points for test

problems 14 and 15 where W = I and s1 = 0. In general, when a system has more

oscillatory responses, larger system matrices and slower convergence, all of the methods

described in this paper have more difficulty in determining stability.

To analyze the stability of LDDNs using either Liu’s criterion or Barabanov’s LMI cri-

terion, we need to have state transformations which can convert the standard form (3.7) into

their corresponding models: (4.2) and (4.3). This is not always possible, as in test problem

23. There do exist LDDNs that cannot be analyzed with either Liu’s or Barabanov’s meth-

ods. The DB methods developed in this paper can be applied to any LDDN network. Our

DB criteria can be applied to analyze the stability of equilibrium points for neural networks

of forms (1) in [4, p. 292], (3.7), and (4.3).
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Another advantage of the DB criteria when compared with Barabanov’s method for

neural networks in the form of (1) in [4, p. 292] is that the dimensionality of the matri-

ces involved in the DB method are generally smaller. This is because of the use of the

state space extension method in [4], which requires that the number of states be increased

substantially in these cases.

The dissipativity approach has not been used before for the stability analysis of recur-

rent neural networks. The results shown in this chapter demonstrate the promise of this

approach. In addition, with the dissipativity method there is the potential for additional

stability criteria to be developed. This is because of the flexibility in choosing the supply

rate function.
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CHAPTER 5

TRAINING RECURRENT NETWORKS FOR STABILITY

In this chapter, we will apply the novel stability analysis methods presented in the previous

chapter to the problem of training recurrent neural networks while maintaining stability. It

has been shown [17] that the error surfaces of recurrent neural networks can have spurious

valleys that can cause training difficulties. These valleys are caused by network instabil-

ities. If we can maintain network stability during training, we could avoid the spurious

valleys.

In this chapter, we describe a new training method for maintaining network stability.

The first step is to define a new performance index, which combines mean square error

with the maximum eigenvalue of the matrix −P2 from (3.16). If this maximum eigenvalue

is less than zero, the network is guaranteed to be stable. By minimizing this maximum

eigenvalue, we have the best chance of maintaining stability and avoiding the spurious

valleys.

The next section describes the modified performance index, and the following section

describes how the gradient of this performance index can be computed. The gradient is

needed for the training algorithm, which finds the network weights and biases that minimize

the performance index.

5.1 Modified performance index

Let’s consider an LDDN network, as in (3.5) and (3.6). If we represent the network in

standard form, we have the system (3.7). Assume that a set of training data is provided

{p1, t1}, {p2, t2}, ..., {pq, tq}, (5.1)
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where pi is an input to the network and the corresponding target response is ti. Now we

define a modified performance index as follows

J =
1

q

q∑
i=1

(ti − aM(i))T (ti − aM(i)) + σλ (5.2)

where aM is the network output, σ is a constant and λ is the maximum eigenvalue of the

matrix −P2 (3.16). Next we will compute the gradient of the performance index J with

respect to weights and biases of the network.

5.2 Gradient computation

In this work, we use the scaled conjugate gradient algorithm [28] to update weights and

biases. Thus, the command ’trainscg’ in the Neural Network Toolbox of Matlab [29] will

be modified to train LDDNs with the modified performance index (5.2).

Let

mse =
1

q

i=q∑
i=1

(ti − aM(i))T (ti − aM(i)) (5.3)

Then
∂J

∂x
=

∂(mse)

∂x
+ σ

∂λ

∂x
(5.4)

where x is a vector of weights and biases of the network.

To calculate the first derivative of J with respect to weights and biases, we separately

compute the first derivative of the mean square error (mse) and the first derivative of λ.

We can use the standard backpropagation algorithm [9] to compute ∂(mse)
∂x . However, to

compute the derivative of λ with respect to x, we need a novel development. In the next

section, we will demonstrate how to find the derivative of an eigenvalue with respect to an

element of the matrix. Then, we show how to find the derivative of the eigenvalue of −P2

with respect to network weights.
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5.2.1 The derivative of eigenvalue

In this section, a method for computation of eigenvalue derivatives is reviewed [30]. Let

K(p) ∈ Cn×n be an non-defective matrix [30], where p is a scalar variable and C is the set

of complex numbers. Let Λ(p) ∈ Cn×n be the eigenvalue matrix of K(p) and X(p) ∈ Cn×n

be a corresponding eigenvector matrix of K(p). Then

K(p)X(p) = X(p)Λ(p) (5.5)

Assume K(p), Λ(p) and X(p) are differentiable in a neighborhood of p = p0. Taking

the first derivative both sides of the equation (5.5), we obtain

K′
(p)X(p) + K(p)X′

(p) = X′
(p)Λ(p) + X(p)Λ

′
(p) (5.6)

Left multiplying both sides of (5.6) by X−1(p) results in

X−1(p)K′
(p)X(p) + X−1(p)K(p)X′

(p) = X−1(p)X′
(p)Λ(p) + X−1(p)X(p)Λ

′
(p) (5.7)

Since K is non-defective, the eigenvectors are independent. Thus, there exists a matrix

C such that

X′
(p) = X(p)C (5.8)

Plugging (5.8) into (5.7), we get

X−1(p)K′
(p)X(p)− Λ

′
(p) = −Λ(p)C + CΛ(p) (5.9)

Let Λ′
(p) = diag(λk) for k = 1, 2, ...n, X−1(p) = [y1 y2 ... yn]

T and X(p) =

[x1 x2 ... xn]. Then, for k = 1, 2,..., n

λ
′

k = yT
k K′

(p)xk. (5.10)

Now we want to take the first derivative of the maximum eigenvalue of the matrix K(p)

with respect to p. Let λm be the maximum eigenvalue of K(p). Then λm = max(λi) for

i = 1, 2, ... n. Thus

λ
′

m = yT
mK′

(p)xm. (5.11)
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where vectors ym and xm are associated with the eigenvalue λm. Therefore,

λ
′

m|p=p0 = yT
mK′

(p)|p=p0xm. (5.12)

We will use this method to compute the first derivative of the maximum eigenvalue λ with

respect to weights in the next section.

5.2.2 The derivative of maximum eigenvalue

In this section, we compute the first derivative of the maximum eigenvalue of the matrix

−P2 with respect to weights. From (3.16), we define

Ξ = −P2 =

Ξ11 Ξ12

Ξ21 Ξ22

 (5.13)

where

Ξ11 =− T +
1

2
(W2)T (B + A)T +

1

2
T(B + A)W2 − (W2)TBTAW2

+ Q +
1

2
((W2)TΛ + ΛW2),

Ξ12 =
1

2
T(A + B)W1 − (W2)TBTAW1 +

1

2
ΛW1,

Ξ21 =ΞT
12,

Ξ22 =− Q − (W1)TBTAW1,

W1
i,j = [w1

i,j]S×S and W2
i,j = [w2

i,j]S×S . Let λm be the maximum eigenvalue of Ξ. In this

case, Ξ is a real, symmetric matrix. So λm is a real number, depending on the weights.

For convenience, let’s define Zk,l = [zi,j]S×S , where

zi,j =

 1, if i = k and j = l

0, if others
(5.14)

For example, if i = 2, j = 3 and S = 3 then

Z2,3 =


0 0 0

0 0 1

0 0 0


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First, we need to compute the first derivative of Ξ with respect to a weight w, where w

is either w1
i,j or w2

i,j . Keep in mind that w2
i,j = 0 when i ≤ j, so we only consider the case

w2
i,j with i < j. We have

∂Ξ

∂w
=

∂Ξ11

∂w
∂Ξ12

∂w

∂Ξ21

∂w
∂Ξ22

∂w

 (5.15)

For w = w1
i,j ,

∂Ξ11

∂w1
i,j

=0

∂Ξ12

∂w1
i,j

=
1

2
T(A + B)Zi,j − (W2)TBTAZi,j +

1

2
ΛZi,j

∂Ξ21

∂w1
i,j

=(
∂Ξ12

∂w1
i,j

)T

∂Ξ22

∂w1
i,j

=− (Zi,j)
TBTAW1 − (W1)TBTAZi,j

For w = w2
i,j ,

∂Ξ11

∂w2
i,j

=
1

2
(Zi,j)

T (B + A)T +
1

2
T(B + A)Zi,j − (Zi,j)

TBTAW2

− (W2)TBTAZi,j +
1

2
((Zi,j)

TΛ + ΛZi,j),

∂Ξ12

∂w2
i,j

=− (Zi,j)
TBTAW1

∂Ξ21

∂w2
i,j

=(
∂Ξ12

∂w1
i,j

)T

∂Ξ22

∂w2
i,j

=0

Then, let’s assume that we want to take the first derivative of λm at a certain point

W1 = W1
0 and W2 = W2

0. Let K = Ξ(W1
0,W2

0). Let Λ = diag(λk) for k = 1, 2, ...n be

the eigenvalues and X = [x1 x2 ... xn] be the corresponding eigenvectors of the matrix K,

where n = 2 ∗S. Assume X−1 = [y1 y2 ... yn]
T . Let λm be the maximum eigenvalue, with

associated xm and ym. From (5.12) and (5.15), we get

∂λm

∂w1
i,j

= yT
m

∂Ξ

∂w1
i,j

xm (5.16)
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∂λm

∂w2
i,j

= yT
m

∂Ξ

∂w2
i,j

xm (5.17)

Finally, we can calculate the first derivative of the maximum eigenvalue with respect

to any weight of the LDDN. Steps for the calculation of the derivative of the maximum

eigenvalue are as follows.

• Given W1 = W1
0 and W2 = W2

0. Compute K = Ξ(W1
0,W2

0).

• Find eigenvalues and eigenvectors of the matrix K: Λ = diag(λk) and X = [x1 x2 ... xn].

• Find X−1 = [y1 y2 ... yn]
T .

• Find λm = max(λk).

• Compute ∂λm

∂w1
i,j
|W1

0,W
2
0
= yT

m
∂Ξ

∂w1
i,j
|W1

0,W
2
0
xm.

• Compute ∂λm

∂w2
i,j
|W1

0,W
2
0
= yT

m
∂Ξ

∂w2
i,j
|W1

0,W
2
0
xm if i < j

We will modify the command ’trainscg’ in the Neural Network Toolbox to train the

LDDN with the modified performance index. The regular trainscg already computes the

derivative of mse with respect to the weights and biases. Now we will use the steps above

to compute the derivative of the maximum eigenvalue with respect to weights. We will add

this part to the regular trainscg with a penalty parameter σ. The modified trainscg will be

used to train controller networks in next chapter.
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CHAPTER 6

SIMULATIONS AND TEST RESULTS FOR STABLE TRAINING

In the previous chapter, we proposed a modified recurrent neural network training algo-

rithm for maintaining network stability. In this chapter, two examples will be used to

demonstrate the method. These examples are both model reference control (MRC) sys-

tems. The controllers of these systems are LDDNs. We will use the modified algorithm to

train the controller networks while maintaining system stability. In the next section, a brief

introduction to MRC systems is given. In the following section, a controller network for a

linear MRC system will be trained. In the final section, we will train a controller network

for a nonlinear MRC system.

6.1 Model reference control (MRC) using recurrent neural networks

In this section, we provide a brief description of neural network-based MRC (NN-based

MRC) systems. An MRC system has the general structure shown in Fig. 6.1. In this figure,

the plant model is chosen such that the plant model output is as close to the plant output as

possible. The reference model represents the desired response of the closed-loop system.

The controller is designed so that the plant output closely tracks the output of the reference

model.
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Figure 6.1: Model reference control system

Based on this idea, NN-based MRC systems were introduced in [31]. The NN-based

MRC structure is shown in Fig. 6.2, where the plant model and the controller are neural

networks. In order to design the NN-based MRC controller, first we have to train the NN

plant model using the data observed from the input and the output of the plant. Then we

have to choose a reference model whose response represents the desired behaviour of the

plant. We will collect a training data set from the reference model. Then, we train the NN

controller so that the control error is small enough while the MRC system remains stable.

In the next section, we will show how to do the plant training.
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Figure 6.2: NN-based model reference control system
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6.1.1 Plant training

The plant training process includes two stages. The first stage is to train the open-loop

network (one-step-ahead training) and the final stage is to train the closed loop network.

First, we create a training data set. An input signal P , a series of step functions with

a random magnitude and random width, will be generated. This input signal is applied to

the plant. At the same time, we sample the plant output T . The sequences P and T will be

used as data for plant training.

The NN plant model is shown in Fig. 6.3. This network consists of two layers with

tanh transfer function in the first layer and linear transfer function in the second layer. The

number of neurons in the output layer depends on the number of outputs of the plant. In our

examples, the plant is single input and single output. So there is one neuron in the second

layer and one input to the network.
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Figure 6.3: Neural network plant model

Next, we perform one-step-ahead training for the NN plant. To do this, we cut the

feedback loop and use the network output as the second input to the network. The open

loop network is shown in Fig. 6.4. The sequence P is applied to the first input and the

sequence T is applied to the second input. The corresponding network output a2 will be

compared with the target T . This model error will be used to update weights and biases.
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Figure 6.4: Network architecture for one-step-ahead plant training

After training the open loop network, we close the network by connecting the network

output to the second input. The closed loop network is the original network shown in

Fig. 6.3. We use the trained weights and biases from the one step-ahead training as initial

weights and biases for the two-step-ahead training.

Now we need to prepare the data for training. Assume that d is the maximum number

of delays in the network. The sequences P and T will be divided into subsequences with

a length of d + 2. Each subsequence of P will be applied to the input of the closed loop

network, and the corresponding network output will be compared to the corresponding T

subsequence. The model error will be used to update the weights and biases.

We will do the same thing for k-step-head training with k ≥ 3, but each preceeding

subsequence has d + k data points, and the initial weights and biases are taken from the

preceeding k − 1 step-ahead training. This training process will be ended when the subse-

quence has the same length as the original P sequence. The weights and biases from the

final training will be used to do the controller training in the next section.

6.1.2 Controller training

In this section, we will show how to train the controller network of NN-based MRC sys-

tems. First, an NN controller is created. The controller network and the plant network

will be combined as in Fig. 6.5. In this figure, the NN plant includes layers 3 and 4. Its
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weights and biases are taken from the plant training, and they are not adjusted during con-

troller training. Layers 1 and 2 make up the NN controller. In our examples, the controller

network has two inputs: the first input is the reference input and the other input is the NN

plant output.

Since we will use the modified performance index in (5.2) to train the controller net-

work, which involves the matrix P2 of (3.16), we have to find matrices Q, T and Λ. Initial

weights and biases of the controller network will be chosen as small random numbers or ze-

ros for the second layer. This will increase the chance of getting stable weights and biases.

From these initial weights and biases of the controller network, with the trained weights

and biases of the NN plant, we will compute the initial Q, T and Λ matrices. These matrices

will be recalculated after each k-step-ahead training segment.

 

 

 

 

 

 

 

f
3 

LW
3,2 

b
3 

T 
D 
L

 

f
4 

LW
4,3 

b
4 

LW
3,4 

T 
D 
L

 

a
4
(t) a

3
(t) 

1 

f
1 

IW
1,1 

b
1 

T 
D 
L

 

f
2 

LW
2,1 

b
2 

LW
1,4 

T 
D 
L

 

a
2
(t) a

1
(t) 

LW
1,2 

T 
D 
L

 

p(t) 

Figure 6.5: Neural network plant model and neural network controller

Next, we will do one step-ahead training. To do this, two output feedback loops will be

opened. Thus the output becomes the second input of the network, as in Fig. 6.6. Therefore,

LW 1,4 becomes IW 1,2, LW 3,4 becomes IW 3,2. The training data will be generated from

the reference model. When we train this open loop network, the weights and biases in

layers 3 and 4 are kept unchanged, and only the weights and biases in the first two layers

are updated.
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Figure 6.6: Open loop network for controller training

After one step-ahead training, we will do k step-ahead training as we did for the plant

training. We will use the network in Fig. 6.5 for k step-ahead training. Thus, IW 1,2

becomes LW 1,4 and IW 3,2 becomes LW 3,4. When we train the controller network, the

weights and biases of the plant network are kept constant.

6.2 Design the MRC for a linear system

In this section, we design an NN controller for a linear plant using the modified trainscg.

Our object here is to illustrate and to verify the proposed method.

6.2.1 Plant model

The linear plant that we have chosen to demonstate the modified algorithm with is

G(z) =
z−1

1− z−1 + 0.25z−2
(6.1)

The NN representation for this plant is

n1(k) = IW 1,1u(k − 1) + LW 1,1[a1(k − 1) a1(k − 2)]T

55



a1(k) = n1(k) (6.2)

where u(k) is the input to the NN plant, IW 1,1 = 1, LW 1,1 = [1 − 0.25] and a1 is the NN

plant output. The plant network is shown in Fig. 6.7. It has one neuron and the activation

function is linear.
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Figure 6.7: The plant network

In this example, we don’t need to train the NN plant because it is known. The next step

is to choose a reference model.

6.2.2 Model reference

We choose the following continuous-time reference model:

G(s) =
144

s2 + 24s+ 144
(6.3)

We sample this model every 0.01 sec to generate a training data set. The reference input

and the output are shown in Fig. 6.8. The next step is to create an NN controller and train

it.
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Figure 6.8: The reference input and the target

6.2.3 Controller training

In this section, we will train a controller network using the modified trainscg. The NN

controller has one neuron with a linear activation function, delays 1 and 2 from the neuron

output, delay 1 from the input, and delays 1 and 2 from the network output. The NN-based

MRC system is shown in Fig. 6.9.
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Figure 6.9: NN-based MRC system for the linear plant

The NN controller will be trained with different values for the penalty term coefficient

σ. By increasing σ, we can increase the weight on λ and force the system to be stable.

We use random weights in the stable area as initial weights of the controller network.

First, small random weights are chosen. Then we check the stability of the network. If

it is unstable, we multiply all these weights by a number less than 1 and check stability

again. We keep doing this until the system is stable. From these initial stable weights

and the weights of the NN plant, we find the matrices Q, T and Λ for one-step-ahead

training. After each k step-ahead training stage, we recalculate these matrices from the

current weights of the network. Table 6.1 shows the maximum closed loop pole magnitude

(MPM), the maximum eigenvalue (λm) of −P2, the mean square error (MSE) and the

maximum absolute error (MAE) after 1998 step-ahead training for different values of σ.

It can be seen that when σ increases, the maximum pole magnitude goes down, which

indicates greater stability margin, and the error as well as the mean square error goes up.

For all cases, MPM < 1 and λm < 0, which means that the system is stable.

In conclusion, the modified trainscg works well for the linear NN-based MRC system.

In the next section, we will demonstrate the algorithm for a nonlinear physical system.
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σ MPM MAE MSE λm

10−5 0.8489 0.1247 4.1 ∗ 10−5 −3.6 ∗ 10−5

10−4 0.8428 0.1247 5.5 ∗ 10−5 −2.4 ∗ 10−5

10−3 0.8279 0.1247 9.3 ∗ 10−5 −2.8 ∗ 10−5

10−2 0.3560 0.2640 7.1 ∗ 10−4 −6.9 ∗ 10−5

10−1 0.3751 0.3980 1.5 ∗ 10−3 −2.7 ∗ 10−5

Table 6.1: MPM, MAE, MSE and λm after 1998 step ahead training

6.3 Design the MRC for a magnetic levitation system

In this section, we design an NN controller for a magnetic levitation system using the

modified trainscg. First, we introduce a magnetic levitation system. Then we train the

plant using the Levenberg-Marquardt algorithm (trainlm in [29]). Finally, we train the NN

controller network using the modified trainscg.

6.3.1 Magnetic levitation system

The magnetic levitation system is shown in Fig. 6.10. This is a simplified version of the

MAGLEV train system [32]. 

y(t) 

i(t) 

S 

N 

Figure 6.10: The magnetic levitation system
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In this system, the magnet is placed above the electromagnet. It can only move in the

vertical direction. y(t) is the distance of the magnet from the electromagnet. i(t) is the

current flowing in the electromagnet. The equation of motion can be represented as follows

[29]
d2y(t)

dt
= −g +

α

M

i2(t)

dt
− β

M

dy(t)

dt
(6.4)

where M is the mass of the magnet, g is the gravitational constant, β is a viscous friction

coefficient and α is a field strength constant. This is a nonlinear system with one input and

one output. The input is the current and the output is the position of the magnet. Our goal

is to control the position of the magnet such that it tracks a target.

6.3.2 Plant training

We use Equation (6.4) to generate a training data set for plant training. The parameters are

M = 3, g = 9.8, β = 12 and α = 15. The data training includes 4000 data points. It is

shown in Fig. 6.11, where P is the control input, which is applied to the plant and the target

T is the corresponding output of the plant.
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Figure 6.11: Control input and target

The NN plant model is shown in Fig. 6.3. It includes 10 neurons in the first layer,

three delays in the input, and two delays in the feedback output. We use trainlm [29] to

consecutively do from one-step-ahead training up to 3997-step-ahead training. After the

final training, we have the performance index as in Fig. 6.12, the network output and the

error as in Fig. 6.13.
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Figure 6.12: Performance Index

 

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
Net Output and Target

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
-2

-1

0

1

2

3
x 10

-3 Error

Network output

Target

Figure 6.13: The network output, the target and the error

In summary, the model error is very small. The maximum error is less than 3 ∗ 10−3,

so the trained NN plant is accurate enough. It will be used during training of the NN

controller in the next section. During the controller training, the weights and biases of the

plant network are kept constant.
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6.3.3 Controller training

First, we have to choose a reference model. In this example, the reference model is chosen

as follows

G(s) =
9

s2 + 6s+ 9
(6.5)

An input sequence of step functions with random magnitude and random width is gener-

ated. This input P is applied to the input of the reference model (6.5). Then we sample the

system output with a sampling time Ts = 0.01. The sampled output T is used as the target.

The reference input and the target are shown in Fig. 6.14.

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
2

2.5

3

3.5

4
Reference input

 

 

P

0 200 400 600 800 1000 1200 1400 1600 1800 2000
2

2.5

3

3.5

4
Target

 

 

T

Figure 6.14: The reference model input and output (target)

This training data P and T will be used to train an NN controller. In this example, the

NN controller is chosen as in Fig. 6.5. We choose 10 neurons and tanh as the activation

function in the first layer, with two delays from the network output, two delays from the

second layer and two delays in the input. The second layer has one neuron with linear

activation function.

We use modified trainscg to train the controller network, with different values for the

penalty parameter σ. Small initial random weights and biases are used for the NN controller
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for one-step-ahead training. Using these initial weights and biases, and the trained weights

and biases of the plant network, we compute the matrices Q, T and Λ. After each k-step-

ahead training stage, these matrices will be updated.

The maximum eigenvalue is shown in Table 6.2, and the maximum absolute error is

shown in Table 6.3, after k-step-ahead training with different σ.

σ 10−2 10−4 10−6 10−8 10−10

100 step-ahead 0.0559 0.1006 0.3188 0.5182 0.3313

200 step-ahead 0.0494 0.1412 0.6069 0.7375 0.4175

300 step-ahead 0.0413 0.1245 0.7575 0.8497 0.4645

400 step-ahead 0.0413 0.1424 0.8380 0.9247 0.5063

Table 6.2: The maximum eigenvalue with different σ

σ 10−2 10−4 10−6 10−8 10−10

100 step-ahead 0.1116 0.0790 0.0421 0.0403 0.0399

200 step-ahead 0.0645 0.0465 0.0334 0.0353 0.0244

300 step-ahead 0.0769 0.0396 0.0286 0.0286 0.0281

400 step-ahead 0.0476 0.0202 0.0165 0.0174 0.0141

Table 6.3: The maximum absolute error with different σ

We would expect that the error would increase as σ increases, because more weight

is being placed on the maximum eigenvalue, and therefore relatively less weight is being

placed on the error. This is clearly shown in Table 6.3. We would also expect that the

maximum eigen value of −P2 would decrease as σ increases. This general trend is seen in

Table 6.2. This pattern is not as clear, because the maximum eigenvalues in each entry in

Table 6.2 are not exactly comparable. In each case, the weights and biases were different,

and so the Q, T and Λ matrices were also different.

The following figures demonstrate that the modified trainscg algorithm works effec-

tively. Figure 6.15 shows a typical plot of mean square error versus iteration. Figure 6.16
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shows the maximum eigenvalue versus iteration, and Figure 6.17 shows the combined per-

formance index versus iteration. Although MSE and maximum eigenvalue may sometimes

increase, the combined performance index always decreased in all of our test cases.
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Figure 6.15: The mean square error with σ = 10−6 after 10-step-ahead training
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Figure 6.16: The maximum eigenvalue with σ = 10−6 after 10-step-ahead training
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Figure 6.17: The combined performance index with σ = 10−6 after 10-step-ahead training

6.4 Conclusions

We proposed a novel training algorithm for maintaining system stability. It is demonstrated

through two examples: the linear plant and the magnetic levitation system. The results

show that it is possible to train recurrent neural networks for stability using the new training

algorithm. This has been only a demonstration of the potential use of our novel dissipativity

criteria for stable training of RNNs. Future work will be needed to refine the algorithm to

achieve consistent stable training.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this work, we have used dissipativity theory to analyze the stability of a general class of

discrete-time dynamic neural networks, called Layered Digital Dynamic Networks (LDDNs).

To our knowledge, this is the first time that dissipativity theory has been applied to the anal-

ysis of stability in discrete-time neural networks. The application of dissipativity theory

requires the selection of supply rate functions. The flexibility in choosing the supply rate

allows the development of a variety of stability criteria. In this report, we have developed

three different sets of stability criteria, based on three different choices for the supply rate

function. We do not claim that these sets are the best that can be obtained. However, the

use of dissipativity theory for the analysis of LDDNs opens up the possibility for additional

criteria to be developed.

We have tested our dissipativity based (DB) criteria on a wide variety of recurrent neural

networks and have compared the results with two other state-of-the-art methods. We have

analyzed the performance of the various criteria on cases where they perform well and

also on cases where they fail to perform. All of the methods tend to perform worse as the

network responses oscillate more, have larger system matrices and take longer to converge.

Our DB criterion performed at least as well as Liu’s criterion [6, p. 1382] on all of the

networks that we tested. In two of 22 cases, Barabanov’s method [18, p. 4554] was able

to determine stability when the DB criterion was not able to. These two cases represented

systems that were in a form upon which the Barabanov method was designed.

The DB methods described in this work were derived for a general recurrent network
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structure - the LDDN. There are LDDN architectures to which the Liu and Barabanov

methods cannot be applied (test problem 23, for example). In these cases, only our DB

methods are appropriate (of the three methods analyzed for this report). However, the same

can also be said of the DDSNNM architecture of Liu. There are certain DDSNNM struc-

tures that cannot be represented in the LDDN format or in the recurrent network structure

used by Barabonov [18, p. 4553]. Each method is best suited to the architecture for which

it was designed.

We have proposed a new training method using the DB criterion to train recurrent neural

networks for stability. The standard performance index is modified with an additional term

consisting of the maximum eigenvalue of the matrix −P2 multiplied by a constant σ. The

important thing is to compute the first derivative of the modified performance index with

respect to weights and biases. We use the standard backpropagation algorithm to compute

the gradient of the mean square error. Then, we show how to compute the gradient of

the maximum eigenvalue with respect to the network weights. By combining these two

results, we have the gradient of the modified performance index with respect to the network

weights. The weights can be updated by using any gradient-based learning algorithm. In

this work, we use the scaled conjugate gradient algorithm, which is already implemented

in the Neural Network Toolbox. The modified algorithm was tested on two examples of

NN-based MRC systems. The tests demonstrated the potential of the modified algorithm

to produce stable training.

7.2 Future Work

One area where the stability analysis of recurrent networks is very important is neural net-

work control. After a neural network controller has been designed, it is important to verify

that the closed loop control system is stable. Also, it would be desirable to maintain the sta-

bility of the closed loop system throughout the training process. This is because there exist

spurious valleys in the error surfaces of recurrent networks in regions where the network
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is unstable. We can avoid these valleys by maintaining stability during training. So, our

future work will focus on improving the proposed training method for nonlinear systems

and developing new DB-based stability criteria, which are less conservative. We will also

use other gradient-based learning algorithms to implement the stable training method.
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CHAPTER 8

APPENDIX (Test Problems)

8.1 Test Problem 01

Consider the one layer network given in [4, p. 300], which can be put in standard form with

W1 = 0.5

0.0333 −0.0355

1.1882 −2.2687

 ,W2 = 0.5

0 0

0 0

 ,

b = 0.5[−1.0092 3.5970]T and f = [tanh tanh]T .

The DB criterion: A = diag(0.76323, 0.12656), B = diag(0.93757, 0.87661), T =

diag(1000, 122.55), Λ = diag(100, 0) and

Q =

 933.72 −16.855

−16.855 51.898

 .

Liu’s criterion: Q = diag(0.76323, 0.12656), U = diag(0.93757, 0.87661), Λ =

diag(1000, 0), T = diag(1000, 154.6),

P =

 41.699 −67.822

−67.822 130.97

 and G =

 57.374 0.36672

0.36672 0.58042

 .

Barabanov’s criterion: M = diag(0.76323, 0.12656), N = diag(0.93757, 0.87661),

Γ = diag(1000, 207.55),

H =

 190.56 −43.735

−43.735 87.827

 ,G =

 1000 −10−10

−10−10 4.2315 ∗ 10−10

 ,

and

β =

 1 4.2315

4.2315 1

 .
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8.2 Test Problem 02

Consider the network in [6, p. 1388]. This network can be put into the standard form with

W1 =



0 0 −0.5 −1

0 0 −0.01 −0.5

0 0 0.2 0

0 0 0 0.8


,W2 =



0 0 0 0

0 0 0 0

1 0.1 0 0

0.1 1 0 0


b = [−7 7 0 0]T and f = [tanh tanh id id]T .

The DB criterion: A = diag(0, 0, 1, 1), B = diag(1, 1, 1, 1),

T = diag(109.78, 941.44, 979.18, 1000), Λ = diag(0, 0, 10−6, 10−6) and

Q =



18.554 −4.6636 −4.2217 −0.43615

−4.6636 441.78 −38.317 −15.767

−4.2217 −38.317 42.684 17.189

−0.43615 −15.767 17.189 224.46


.

Liu’s criterion: Q = diag(0, 0), U = diag(1, 1), Λ = diag(3.5715 ∗ 10−8, 228.76),

T = diag(504.19, 1000),

P =

302.39 185.76

185.76 1000

 and G =

 147.31 −0.023467

−0.023467 149.78

 .

Barabanov’s criterion: M = diag(0, 0), N = diag(1, 1), Γ = diag(333.07, 1000),

H =

201.44 73.981

73.981 724.64

 ,G =

 162.79 −10−10

−10−10 552.05

 ,

and

β =

 1 3.1009 ∗ 109

3.1009 ∗ 109 1

 .
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8.3 Test Problem 03

Consider the two layer network given in [4, p. 301]. The standard form weight matrices are

W1 = 0.5



−1.3482 −1.8825 1.5 0.5

−0.7464 −0.5695 1.2 −0.1

0 0 0.4904 −0.7599

0 0 −1.4697 −1.4608


,

W2 = 0.5



0 0 0 0

0 0 0 0

2 0.2 0 0

−0.5 1.40 0 0


, b = 0.5



0.3

−0.5

−1

1


and f = [tanh tanh tanh tanh]T .

The DB criterion: A = diag(0.32231, 0.41816, 0.25498, 0.2636),

B = diag(0.99439, 0.93639, 0.90631, 0.9752), T = diag(290.19, 1000, 418.16, 380.73),

Λ = diag(0, 0, 10−6, 0.00039036) and

Q =



134.2 3.3473 −100 24.895

3.3473 363.83 −100 −9.6501

−100 −100 171.86 34.766

24.895 −9.6501 34.766 120.92


.

Liu’s criterion: Q = diag(0.32231, 0.41816, 0.25498, 0.2636),

U = diag(0.99439, 0.93639, 0.90631, 0.9752), Λ = diag(0, 0, 0, 0),

T = diag(142, 564.36, 211.17, 189.88),

P =



108.4 59.729 −99.995 19.375

59.729 220.9 −100 2.8786

−99.995 −100 170.43 35.055

19.375 2.8786 35.055 119.51


,
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and

G =



20.459 −29.246 −8.954 4.4233

−29.246 106.92 −24.559 2.0016

−8.954 −24.559 45.595 −11.396

4.4233 2.0016 −11.396 8.211


.

Barabanov’s criterion: M = diag(0.32231, 0.41816, 0.25498, 0.2636),

N = diag(0.99439, 0.93639, 0.90631, 0.9752), Γ = diag(636.85, 1000, 1000, 165.85),

H =

363.39 −98.097 −16.095 43.689 −18.712 −16.793 105.52 −106.22

−98.097 951.22 42.764 −63.609 −1.0098 −72.852 −229.65 25.213

−16.095 42.764 374.06 65.911 −421.84 86.45 −38.807 −26.445

43.689 −63.609 65.911 758.61 −208.24 −57.617 34.07 −71.827

−18.712 −1.0098 −421.84 −208.24 861.48 −55.45 45.91 17.913

−16.793 −72.852 86.45 −57.617 −55.45 287.95 11.896 −4.9001

105.52 −229.65 −38.807 34.07 45.91 11.896 309.59 26.527

−106.22 25.213 −26.445 −71.827 17.913 −4.9001 26.527 269.63



,

G =



103.55 −33.567 −1.3562 −16.466

−33.567 628.26 −1.7904 −135.58

−1.3562 −1.7904 208.28 −1e− 010

−16.466 −135.58 −1e− 010 381.65


,

and

β =



1 2.2319 2.7202 1.2334

2.2319 1 1.2188 2.5446

2.7202 1.2188 1 3.1013

1.2334 2.5446 3.1013 1


.
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8.4 Test Problem 04

Consider the example given in [33, p. 1778]. Representing this system in standard form we

get

W1 =



0.2753 −0.0306 0.2967 −0.2277

0.1844 −0.3387 0.1676 −0.0663

0 0 0.6428 0.2309

0 0 −0.1106 0.5839


,W2 =



0 0 0 0

0 0 0 0

0.3064 −0.0631 0 0

0.2937 0.2769 0 0


,

and f = [tanh tanh tanh tanh]T .

The DB criterion: A = diag(0.81975, 0.84453, 0.6808, 0.67383),

B = diag(1, 1, 1, 1), T = diag(1000, 756.64, 1000, 1000),

Λ = diag(8.4132 ∗ 10−9, 1.3655 ∗ 10−7, 3.9446 ∗ 10−8) and

Q =



274.24 91.103 −68.509 −68.402

91.103 251.03 −99.277 15.481

−68.509 −99.277 280.07 43.601

−68.402 15.481 43.601 205.53


.

Liu’s criterion: Q = diag(0.81975, 0.84453, 0.6808, 0.67383),

U = diag(1, 1, 1, 1), T = diag(1000, 770.69, 1000, 1000), Λ = diag(0, 0, 0, 0),

P =



265.47 −28.351 21.634 −100

−28.351 403.35 −80.933 46.384

21.634 −80.933 434.49 75.265

−100 46.384 75.265 362.42


,

and

G =



167.45 −70.26 −55.17 14.998

−70.26 280.63 21.786 −95.94

−55.17 21.786 72.125 −5.1197

14.998 −95.94 −5.1197 96.704


.
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Barabanov’s criterion: M = diag(0.81975, 0.84453, 0.6808, 0.67383),

N = diag(1, 1, 1, 1), Γ = diag(1000, 954.94, 1000, 998.52),

H =

1000 −190.37 −1.7249 −125.4 51.001 −65.832 −53.517 173.12

−190.37 805.55 143.72 −44.463 −60.447 −33.642 −90.638 193.26

−1.7249 143.72 686.94 −208.69 −198.63 85.043 22.886 −102.38

−125.4 −44.463 −208.69 482.96 51.316 −88.32 93.608 −59.962

51.001 −60.447 −198.63 51.316 908.23 −108.71 −50.821 44.838

−65.832 −33.642 85.043 −88.32 −108.71 884.85 27.148 24.569

−53.517 −90.638 22.886 93.608 −50.821 27.148 623.88 −74.082

173.12 193.26 −102.38 −59.962 44.838 24.569 −74.082 763.18



,

G =



1000 −10−6 −4.2819 −10−6

−10−6 625.22 −35.158 −12.784

−4.2819 −35.158 1000 −10−6

−10−6 −12.784 −10−6 810.79


, and β =



1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


.

8.5 Test Problem 05

E =

0.4498 −1.3460

0.6169 0.3715

 ,W =

−1.1407 −0.4336

−1.0933 −0.1685

 ,

s1 = [−0.2185 0.5413]T and f = [tanh tanh id id]T .

The DB criterion: A = diag(0.21589, 0.073411, 1, 1), B = diag(0.91974, 0.68839, 1, 1),

T = diag(198.75, 614.03, 1000, 1000), Λ = diag(0, 0, 10−6, 10−6) and

Q =



104.97 −51.538 −52.084 −95.512

−51.538 632.6 394.96 −99.792

−52.084 394.96 400.31 −10.052

−95.512 −99.792 −10.052 175.29


.
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Liu’s criterion: Q = diag(0.21589, 0.073411), U = diag(0.91974, 0.68839),

Λ = diag(1.2472 ∗ 10−6, 0), T = diag(1000, 770.69, 1000, 1000),

P =

580.65 99.456

99.456 167.37

 and G =

66.297 −1.183

−1.183 61.627

 .

Barabanov’s criterion: M = diag(0.21589, 0.073411), N = diag(0.91974, 0.68839),

Γ = diag(388.59, 1000),

H =

310.09 42.138

42.138 68.108

 ,G =

4.803 ∗ 10−6 −10−6

−10−6 0.00093555

 ,

and

β =

 1 4.803

4.803 1

 .

8.6 Test Problem 06

E =



−2.1382 −1.0618

0.0389 −0.2408

−0.2108 −1.0018

0.7125 −0.3998


,WT =



−0.0544 −2.7524

−0.0989 −1.2134

−0.1434 1.0171

0.2366 −0.4306


,

s1 = [0.6501 − 0.4852]T and f = [tanh tanh id id id id]T .

The DB criterion: A = diag(0.33079, 2.3982 ∗ 10−6, 1, 1, 1, 1),

B = diag(0.81069, 0.25584, 1, 1, 1, 1),

T = diag(99.97, 125.78, 1000, 956.55, 998.82, 961.05),
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Λ = diag(0.00034784, 0, 10−6, 10−6, 10−6, 0.00077597) and

Q =



2461.1 1109.6 1011.2 29.791 14.364 144.84

1109.6 2117.3 743.8 231.45 926.58 609.29

1011.2 743.8 567.01 47.012 29.205 328.99

29.791 231.45 47.012 265.26 121.42 −35.132

14.364 926.58 29.205 121.42 812.93 −43.762

144.84 609.29 328.99 −35.132 −43.762 695.36


.

Liu’s criterion: Q = diag(0.33079, 2.3982 ∗ 10−6), U = diag(0.81069, 0.25584), Λ =

diag(0.36978, 0), T = diag(1000, 164.49),

P =



155.88 −20.026 −91.828 −95.885

−20.026 128.2 67.815 32.503

−91.828 67.815 113.02 71.445

−95.885 32.503 71.445 236.97


and G =

 20.837 −0.55989

−0.55989 7.5994

 .

Barabanov’s criterion: M = diag(0.33079, 2.3982∗10−6), N = diag(0.81069, 0.25584),

Γ = diag(1000, 339.64),

H =



317.03 133.95 −381.52 −54.939

133.95 957.13 −299.75 −241.94

−381.52 −299.75 674.12 −27.545

−54.939 −241.94 −27.545 714.63


,G =

 1000 −10−6

−10−6 0.017865

 ,

and

β =

 1 17865

17865 1

 .

8.7 Test Problem 07

E =


−0.5367 −0.8914

1.1566 1.0866

1.1402 −0.1332

 ,WT =


0.1399 −1.3558

−0.2022 −0.6691

1.3142 1.0448

 ,
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s1 = [−0.7165 − 0.8795]T and f = [tanh tanh id id id]T .

The DB criterion: A = diag(0.08737, 0.007409, 1, 1, 1),

B = diag(0.76153, 0.55182, 1, 1, 1), T = diag(210.36, 99.142, 987.86, 959.92, 1000),

Λ = diag(0, 0.06456, 10−6, 10−6, 10−6, 0.00077597) and

Q =



429.74 600.34 587.49 −33.662 −65.315

600.34 886.98 824.87 −79.6 −60.587

587.49 824.87 873.36 −22.622 −74.159

−33.662 −79.6 −22.622 41.952 −31.658

−65.315 −60.587 −74.159 −31.658 127.32


.

Liu’s criterion: Q = diag(0.08737, 0.007409), U = diag(0.76153, 0.55182), Λ =

diag(0, 3.7044 ∗ 10−7), T = diag(1000, 443.53),

P =


994.17 288.8 242.55

288.8 154.79 −99.992

242.55 −99.992 1000

 and G =

 35.827 −9.5597

−9.5597 102.88

 .

Barabanov’s criterion: M = diag(0.08737, 0.007409), N = diag(0.76153, 0.55182),

Γ = diag(1000, 461.85),

H =


797.85 408.86 −4.1171

408.86 320.72 −171.01

−4.1171 −171.01 592.92

 ,G = 10−6

 6.4083 −1.0002

−1.0002 6.4146

 ,

and

β =

 1 6.4073

6.4073 1

 .

8.8 Test Problem 08

E =

0.4498 −1.3460

0.6169 0.3715

 ,W =

 0.2692 0.7177

−0.0074 0.8009

 ,
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s1 = [−0.2586 0.0537]T and f = [tanh tanh id id]T .

The DB criterion: A = diag(0.45842, 0.74239, 1, 1), B = diag(0.94416, 0.98544, 1, 1),

T = diag(1000, 1000, 994.81, 1000), Λ = diag(0, 0, 10−6, 10−6) and

Q =



45.541 −83.784 −65.824 2.8525

−83.784 819.24 585.23 −100

−65.824 585.23 518.02 29.31

2.8525 −100 29.31 411.68


.

Liu’s criterion: Q = diag(0.45842, 0.74239), U = diag(0.94416, 0.98544), Λ =

diag(0, 0), T = diag(1000, 1000),

P =

210.56 160.82

160.82 1000

 and G =

 299.36 −78.169

−78.169 173.97

 .

Barabanov’s criterion: M = diag(0.45842, 0.74239), M = diag(0.94416, 0.98544),

Γ = diag(1000, 1000),

H =

262.69 125.53

125.53 1000

 ,G =

800.06 −10−6

−10−6 1000

 ,

and

β =

 1 1.4003

1.4003 1

 .

8.9 Test Problem 09

E =



−0.4376 0.6711

0.2333 −0.3892

−0.1496 0.3565

0.8825 0.0271


,WT =



0.8775 0.2470

0.3328 0.7495

0.2635 0.7885

0.2241 0.1221


,

s1 = 0 and f = [tanh tanh id id id id]T .
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The DB criterion: A = diag(0.5986, 0.67847, 1, 1, 1, 1), B = diag(1, 1, 1, 1, 1, 1),

T = diag(949.76, 1000, 1000, 1000, 1000, 1000), Λ = diag(0, 0, 10−6, 100, 10−6, 10−6)

and

Q =



111.28 13.247 25.708 21.974 −28.664 −59.065

13.247 188.85 −36.728 163.94 −70.283 −95.483

25.708 −36.728 325.53 70.29 48.782 50.854

21.974 163.94 70.29 620.19 161.65 −92.585

−28.664 −70.283 48.782 161.65 435.83 114.96

−59.065 −95.483 50.854 −92.585 114.96 195.98


.

Liu’s criterion: Q = diag(0.5986, 0.67847), U = diag(1, 1), Λ = diag(4.9935 ∗

10−5, 0), T = diag(1000, 1000),

P =



978.57 335.7 167.82 171.9

335.7 999.77 677.6 122.11

167.82 677.6 1000 105.3

171.9 122.11 105.3 289.55


and G =

 248.26 −6.0496

−6.0496 247.97

 .

Barabanov’s criterion: M = diag(0.5986, 0.67847), M = diag(1, 1),

Γ = diag(1000, 991.51),

H =



1000 241.22 194.23 155.82

241.22 970.92 577.69 97.549

194.23 577.69 991.47 91.865

155.82 97.549 91.865 437.93


,G =

 1000 −240.56

−240.56 912.39

 ,

and

β =

1 1

1 1

 .
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8.10 Test Problem 10

E =



0.1820 −1.5142

−0.0995 0.0070

−0.3681 1.2971

−0.1194 1.1440


,WT =



0.2361 0.5642

0.6413 0.5412

0.2559 0.7715

0.1664 0.2860


,

s1 = 0 and f = [tanh tanh id id id id]T .

The DB criterion: A = diag(0.726, 0.3722, 1, 1, 1, 1), B = diag(1, 1, 1, 1, 1, 1),

T = diag(1000, 1000, 994.43, 1000, 1000, 1000), Λ = diag(0, 0, 10−6, 100, 10−6, 10−6)

and

Q =



273.56 −73.734 −29.437 93.543 −58.562 48.331

−73.734 1766.5 1130.1 36.435 −69.631 −83.295

−29.437 1130.1 897.18 105.85 97.635 61.019

93.543 36.435 105.85 650.02 87.074 6.3594

−58.562 −69.631 97.635 87.074 313.06 2.5765

48.331 −83.295 61.019 6.3594 2.5765 208.29


.

Liu’s criterion: Q = diag(0.726, 0.3722), U = diag(1, 1), Λ = diag(0.036388, 0),

T = diag(1000, 1000),

P =



652.64 286.48 620.53 339.77

286.48 951.01 455.72 103.38

620.53 455.72 999.99 292.86

339.77 103.38 292.86 403.84


and G =

 462.6 −37.436

−37.436 123.96

 .

Barabanov’s criterion: M = diag(0.726, 0.3722), M = diag(1, 1), Γ = diag(942.82, 1000),

H =



816.33 578.16 598.65 522.47

578.16 825.05 476.38 489.74

598.65 476.38 1000 286.54

522.47 489.74 286.54 685.9


,G =

 415.61 −363.06

−363.06 1000

 ,
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and

β =

1 1

1 1

 .

8.11 Test Problem 11

E =

−1.5369 −1.4479

2.0182 0.6986

 ,W =

 0.5301 1.1132

−0.7163 0.3181

 ,

s1 = [−2.0962 − 0.3127]T and f = [tanh tanh id id]T .

The DB criterion: A = diag(0.00053451, 0.0053027, 1, 1),

B = diag(0.38817, 0.40828, 1, 1), T = diag(1000, 350.31, 821.55, 1000),

Λ = diag(0, 0, 10−6, 10−6) and

Q =



1673.5 793.22 676.56 −91.493

793.22 1189.6 891.01 227.33

676.56 891.01 737.18 221.63

−91.493 227.33 221.63 252.43


.

Liu’s criterion: Q = diag(0.00053451, 0.0053027), U = diag(0.38817, 0.40828), Λ =

diag(0, 0), T = diag(1000, 457.88),

P =

87.837 73.387

73.387 288.62

 and G =

 113.99 −59.337

−59.337 72.36

 .

Barabanov’s criterion: M = diag(0.00053451, 0.0053027), N = diag(0.38817, 0.40828),

Γ = diag(1000, 435.69),

H =

229.27 258.81

258.81 412.7

 ,G = 10−6

1.575501 −1

−1 1.575501

 ,

and

β =

 1 1.5755

1.5755 1

 .
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8.12 Test Problem 12

E =

−1.7083 −0.3869

1.2134 −1.0272

 ,W =

 0.0337 0.3472

−1.2111 −1.0742

 ,

s1 = [0.4811 − 0.0876]T and f = [tanh tanh id id]T .

The DB criterion: A = diag(0.58581, 0.026454, 1, 1), B = diag(0.98733, 0.68489, 1, 1),

T = diag(860.8, 173.26, 997.37, 1000), Λ = diag(0, 0, 10−6, 10−6) and

Q =



1855.5 362.01 939.2 −93.541

362.01 1028.2 635.64 661.26

939.2 635.64 776.97 322.28

−93.541 661.26 322.28 527.61


.

Liu’s criterion: Q = diag(0.58581, 0.026454), U = diag(0.98733, 0.68489), Λ =

diag(0, 0), T = diag(995.2, 611.75),

P =

513.77 295.37

295.37 262.31

 and G =

16.938 1.7133

1.7133 13.071

 .

Barabanov’s criterion: M = diag(0.58581, 0.026454), N = diag(0.98733, 0.68489),

Γ = diag(1000, 563.99),

H =

256.06 141.33

141.33 130.33

 ,G =

0.0049901 −10−6

−10−6 8.3245 ∗ 10−6

 ,

and

β =

 1 8.3245

8.3245 1

 .
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8.13 Test problem 13

Consider the network given in [8] x(k + 1) = tanh(Wx(k)) where

W1 =



0.5893 −0.4047 0.3142 0.3133 −0.5308

1.0074 −0.7935 0.7659 0.2278 0.0204

−1.0197 −0.0221 0.1484 0.1643 0.8982

1.1161 −0.7743 0.4514 −0.8473 −0.0883

0.6870 −1.0181 0.0379 −0.5418 −0.6798


W2 = 0, b = 0 and f = [tanh tanh tanh tanh tanh]T .

8.14 Test problem 14

Given a network (4.3) where W = diag(1, 1), s1 = [0 0]T and

E =

−1.0510 1.6516

−1.3141 1.1566


8.15 Test problem 15

Given a network (4.3) where W = diag(1, 1), s1 = [0 0]T and

E =

0.4498 −1.3460

0.6169 0.3715

 .

8.16 Test problem 16

Given a network (4.3) where

E =

−0.0176 1.4660

−1.9825 −0.3525

 ,W =

0.7133 0.5571

0.7637 0.5651

 ,

and s1 = [−0.1768 1.5514]T .
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8.17 Test problem 17

Consider a network (4.3) where

E =

0.4889 −0.1699

1.9743 1.4636

 ,W =

 0.3325 −1.1325

−0.6563 1.9766

 ,

and s1 = [−0.6537 1.722]T .

8.18 Test problem 18

Given a network (4.3) where

E (Column(1 : 5)) =−0.1442 −0.1923 −0.2243 0.5341 0.2312

1.2841 0.7068 0.6862 −0.8575 1.2335

 ,

E (Column(6 : 10)) = 0.8103 0.2148 −0.3047 0.7268 0.2490

−1.1181 −0.6498 −0.8863 0.5849 1.3329

 ,

WT (Column(1 : 5)) =−0.0822 −0.6546 0.1519 −0.6173 −1.1329

−0.5581 −0.3620 −1.4393 −0.4941 −0.5955

 ,

WT (Column(6 : 10)) =0.51552 0.5686 −2.8238 −0.066408 0.26577

0.37745 −0.40056 −1.1589 0.16272 0.52101

 ,

and s1 = [0.8594 − 0.1774 − 0.6582 0.2043 1.4457 − 0.4587 0.2136 1.5275 0.1615 −

0.2330]T .
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8.19 Test problem 19

Given a network (4.3) where

E = −1.2676 −0.0239 −1.1729 −0.5952 0.9547

−0.9055 −1.7919 −1.0372 −1.3526 0.3340

 ,

WT = −0.2504 −2.6603 1.3109 0.4479 1.1745

−0.0003 −1.6884 −0.3583 0.4195 −0.4836

 ,

and s1 = [−0.5025 − 1.6517 1.0859 − 0.4030 0.5661]T .

8.20 Test problem 20

Given a network (4.3) where

E =

 0.1526 0.9272

−2.0829 0.3752

 ,W =

 1.8267 0.4274

−0.2127 0.2953

 ,

and s1 = [−0.4759 1.1288]T .

8.21 Test problem 21

Given a network (4.3) where

E =

 1.1618 1.5530

−1.2990 −0.6542

 ,W =

−0.4199 0.0067

1.0924 −2.5687

 ,

and s1 = [0.3535 0.5172]T .
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8.22 Test problem 22

Given a network (4.3) where

E =

 0.0207 −2.3595

−0.8107 0.0597

 ,W =

−0.9855 0.9763

−0.0560 −1.2719

 ,

and s1 = [−0.2746 1.2021]T .

8.23 Test problem 23

W1 (Column(1 : 5)) =

0.1465 −0.1059 0.1594 0.2925 0.2751

−0.3257 0.1052 0.1820 −0.2141 −0.2609

−0.3717 0.1741 −0.0173 0.2439 −0.2634

0.0899 0.1541 0.0439 0.3267 0.3954

0.0868 −0.3327 −0.3032 −0.2145 −0.0482

−0.3874 −0.0365 −0.0394 −0.2085 −0.1280

−0.3869 −0.0465 0.1727 −0.3602 −0.1486

−0.2479 −0.1174 0.3143 −0.3373 −0.1079

0.0695 −0.2771 −0.1815 0.1127 −0.0854

−0.3539 0.1405 −0.1962 −0.2473 0.0732


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W1 (Column(6 : 10)) =

−0.3042 0.3735 −0.1231 −0.0394 −0.0799

−0.3695 0.1319 −0.2672 −0.0702 −0.2410

−0.0331 0.2963 −0.2755 0.3213 0.1002

0.2959 −0.3921 −0.2471 −0.3955 0.1867

0.3474 −0.2904 −0.0620 −0.1621 −0.0993

−0.1884 0.2550 0.2848 −0.3607 −0.3921

−0.2718 −0.0559 −0.0078 0.1545 −0.0641

0.2983 0.3123 0.2527 0.1201 0.2029

−0.2097 0.1879 −0.0314 0.3864 0.2351

0.1167 0.1499 −0.0341 0.0421 0.3360


W2 (Column(1 : 5)) =

0 0 0 0 0

0.2758 0 0 0 0

−0.1058 0.0966 0 0 0

0.1850 −0.2449 0.3238 0 0

0.0554 0.1054 −0.2125 0.0390 0

0.3453 −0.1318 0.1244 −0.0865 0.1019

0.1593 −0.0823 −0.0691 0.1242 0.2701

−0.0598 0.0757 0.0526 0.1732 0.0090

−0.2513 0.1605 0.3862 0.2453 0.1629

−0.1077 −0.2880 0.0534 0.2584 0.1392


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W2 (Column(6 : 10)) =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−0.1027 0 0 0 0

0.2211 −0.0085 0 0 0

−0.0120 −0.3083 0.1319 0 0

0.3996 0.3693 −0.3529 −0.1118 0


b = 0(10×1)

and f = [tanh tanh tanh tanh tanh tanh tanh tanh tanh id]T .

A = diag(0, 0, 0, 0, 0, 0, 0, 0, 0, 1), B = diag(1, 1, 1, 1, 1, 1, 1, 1, 1),

Q (Column(1 : 5)) =

409.2071 −60.7473 9.4582 22.6040 104.9155

−60.7473 318.8918 −69.5846 146.0832 −4.6166

9.4582 −69.5846 478.7037 −48.1748 131.9870

22.6040 146.0832 −48.1748 445.2587 −5.3633

104.9155 −4.6166 131.9870 −5.3633 375.6876

0.7304 −9.4876 −66.3357 79.2393 −16.4141

−34.6683 −62.3295 39.5300 33.3255 −38.3926

66.2225 16.2987 6.8482 −21.4796 −27.1391

−8.1199 −24.9707 −150.3311 −35.8364 −121.1125

−26.8860 94.6296 −51.7739 −57.8724 −16.2736


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Q (Column(6 : 10)) =

0.7304 −34.6683 66.2225 −8.1199 −26.8860

−9.4876 −62.3295 16.2987 −24.9707 94.6296

−66.3357 39.5300 6.8482 −150.3311 −51.7739

79.2393 33.3255 −21.4796 −35.8364 −57.8724

−16.4141 −38.3926 −27.1391 −121.1125 −16.2736

362.5196 −43.3246 −14.7978 63.5450 −86.0946

−43.3246 449.1086 47.0527 125.4525 −71.5817

−14.7978 47.0527 346.4056 −22.5932 −67.1660

63.5450 125.4525 −22.5932 505.1451 70.8772

−86.0946 −71.5817 −67.1660 70.8772 370.0100


Λ = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 10−5) and

T = 103diag(1, 0.4131, 0.7992, 0.6997, 0.7026, 0.6775, 0.6711, 0.9937, 0.7843, 0.4969).
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