PERFORMANCE LIMITATIONS IN WIDE

SUPERSCALAR PROCESSORS

By
ASWIN RAMACHANDRAN

Bachelor of Engineering in Electronics and
Communication
University of Madras
Madras, Tamil Nadu
2001

Master of Science in Electrical Engineering
Oklahoma State University
Stillwater, OK
2003

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
DOCTOR OF PHILOSOPHY
December, 2008

PERFORMANCE LIMITATIONS IN WIDE

SUPERSCALAR PROCESSORS

Dissertation Approved:

Dr. Louis G. Johnson

Dissertation Adviser

Dr. R. G. Ramakumar

Dr. Marvin Stone

Dr. Charles Bunting

Dr. Sohum Sohoni

Dr. A. Gordon Emslie

Dean of the Graduate College

Dedicated to my mother

ACKNOWLEDGEMENTS

As Abraham Lincoln quipped]t"s not the years in your life that count. It'sthfe in
your years. My life seemed to attain a meaning only aftendt a few wonderful people.
As my meager mind realizes, these people not ardgited and motivated me but also
shared a portion of their life.

Following a chronological order, the influenog parents and my grandmother have
on me is significant. My grandmother’s determioatto raise four children with modest
income and my parents’ hard work to provide a geddcation for their children is
something that makes me wonder everyday. My didather’s excellence in education
also induced a spirit of motivation in me — may thes is what is known in animal
kingdom asSibling Rivalry! My high school teacher of Chemistry is an ep#ooh hard
work and it is through him that | learned to chdrageand try to time myself properly.

Life at Oklahoma State University brought exgtopportunities that | would have
never experienced if it were not so. | still ren@mthe day when | walked into Dr.
Marvin Stone’s sensor lab and the research work Iti@dertook with interest for the
next two years. Just watching him at work is efotggmotivate a person. Dr. Rama
Ramkumar’s witty comments always made me look ® dther side of life and Dr.
Sohum Sohoni’s suggestions always kept me to ingaon to achieve more.

Besides research, | experienced a new phag@dfiate school when | began to teach!

Dr. Charles Bunting’s unmatched enthusiasm foresttgland in research has always

been a tremendous inspiration to me. | beganjty¢he art of teaching and continued it
for about 9 semesters.

My first chance to meet Dr. Louis Johnson cdhmeugh the digital VLSI class that |
had taken under him. Further, | continued with mgster'sthesis on digital CMOS
design. The class o8uperscalarprocessors that intrigued me a lot, especiallyaon
rename-register file design. | had suggested stesgn enhancements then that | never
thought that | would later incorporate them in mgsértation work. We would discuss
for several hours in his office about design aspectomputer architecture. Later, these
discussions formed the basis of my dissertatiorr.. LDuis Johnson has a profound
impact on my life and will continue to be so foriathI’'m indebted to him forever.

Apart from growing in my school life, my frieadcircle also began to grow.
Interestingly, as | look back, | have found frieratsall ages from 8 to 80 years. |try to
work with the international friends’ ministry in Bbcal church and also practice
taekwondo both of which expanded my circle of fdeimm the community of Stillwater.

The joy and qualities of some of my friends, &dr Simon, Rajaguru, Vijayaraja,
Majunu, Aravind, Grisha, Shyam and many othersramearkable. The help from Bob
and Bettie through the church ministry played anificant role. | also enjoy the child-
like playful times with Robert and inspiration tlghis from Marley and Mei Ling. All

these people and many more have made my life mgfashisnd beautiful.

TABLE OF CONTENTS

Chapters Page
INTRODUGCTION Lttt ettt e e mnnnne e e e e e e e e e 1
1.1. PerformanCe STUAIEScouiiiiiiiiieeceeeiiiiiie ettt nnnnee e 1
1.2, MOTIVALIONceiiieieieteet ettt e e e e e e e e e e e aaeaaaeeaeaaaeeeeeeennnees 2
1.3. Cycle-Accurate Simulation ENngine CONCEPL.uemeeriiiiiieeeeieiiieeeeeeie e 5
1.3.1 Processing Elements and SignalS:.............uiiiiiiiiiiieiiiiiiieeeieieeeeeeeeeeiiiiiens 5
I T 01 1= G I L= [| 5
1.4. Implementation of the Clocked Buffer MOd@lcee . cooooeiiiiiiiiiiiii e 7
1.4.1 Module Interfaces through Port Definitions:............ccooeeeiviieiiiiiiiiiiin 8.
1.4.2 Register and Memory Element Interface Model:...........ccccooviiiiie. 11
1.4. Organization of this DISSErtationcccceeiieieieiiiiieeeeeerr e 12
LITERATURE REVIEW l.....uuitiiiiiiiiiiiiiiiii e e e 13
P2 ST [4 18] = o o PR 13
2.2 SIMPIESCAlAr TOOIS......ciiiiiieeiiiiee e e e e e e e e e e e eeeeeeeeeeaneees 14
2.3 Liberty Simulation ENVIFONMENTumeeeriiiiiiiiieeeeeeeeeeeeeeeeeeeeeeennnennaanees 15
2.5, LUNISIM. .ottt e e e e et e e e e e e e e aaaeeeeaeesssannn 17
2.5.2 LAICNC ——— 17
SIMULATOR PERFORMANCE 1. ..ttt 20
G0 Y10 U] F= 1 g 0 1=] o | PSPPSR 20
3.2 Comparison with Superscalar DESIQNSccccceeeirrrrrmmmiiiiiiaaaaaeeeeeeeeeeeeeeeeieeees 25
3.3 Comparison of Simulation Speedcooveviiiiiiiiiir e, 28
G I ST od U 1S3 (o] o T 30
SUPERSCALAR ARCHITECTURE MODEL IV ...ccoooiiiiiieei e 33
4.1 SUPERSCALAR DESIGN.....cciiiiiiiiiiiii e teteteeeeer e e e e e e e e e e e e e e e e e e s sannns 33
4.2 Store Buffer and Load Dependence Predictionhdeism...............cccovvvvvvviiinnnnns 50
4.2.1 Load — Store Address Dependence PrediCtion.............cooovvvvviiiiviveennnnnnnn. 51
G IS U1 0] 0 =1 Y ORI 55

Vi

WRITE-BACK BUS MODEL V....uiiiiiiiiiiiiiiiiitimm e 56

5.1 Related WOTK ...t 57
5.2 Write-Back BUS MOUE!oouuiiiiiiiii it 58
5.2.3. Distribution of Write-Back BUS SizZe: ... 61
5.3 Write-Back Scheduling LOGIC............ci e e eee et e e e e e e eeeee e 63
5.3.1. First-In FirsSt-OUt (FIFO):uuiiiiiimmmmm ettt e e e e e e e eee e 63
5.3.2. ROUNA-RODIN (RR):. .ot s e e e e e e e e e e e e e eeeesrenenneeennsnens 64
5.3.3. Priority to Load/Store, Multiply/Divide adlLU instructions (LMA): 66
5.3.4. Priority to the instruction that has HigBlgpendent Instructions (PHD)......... 68
5.3.5. Priority to Program Order Instructions (PQ):.......coooeeiiiiiiiiiiiiiiiiiieee e 70
5. 4. Simulation Methodology and Implication oheduler mechanisms.................. 71
5.4.1. Round-Robin Schedule (RR):uoriieeeiiee e 72
5.4.2. FIFO Write-Back Bus Scheduler: ..., 73
5.4.3. Priority to High Dependence (PHD) Write-Bd&ks Scheduler.:...................... 74
5.4.4. Load-Multiply-ALU (LMA) Write-Back Bus Scheder:..............cccooevvvvvveinnnns 75
5.5 SUMMIAIY ..t e et e e e e e e nnmnea e e e e e eeenans 76
CONTROL DEPENDENT LIMITATIONS Vl..ooioiiiiiiieeeeeeeeeeeeeee 77
6.1 Program DepPendeNnCIeSccooiiiiimmmmemmmeeeeee e e e e e e e et 77
6.1.1 Higher IPC with SUPersCalars.........cccccccceeeeiiie e e 78
6.2 Multi-Path Execution SChemes.......... .o 80
CONLCUDING REMARKS VI ...uuiiiiiiiiiiiiiiiiiiiimmee e aaaaaens 112
REFERENGCES ... oottt e e ettt e e e e e e e e e e e e e e e e s s snnneeeeeeaaaeeas 115
Y o | PRSPPI 119

Vii

LIST OF TABLES

Table Page
3.1 Event-Driven Simulation PrOoCESS oo eeeriiiiiiiiiieieeeiiiiaieieeeeee e 21
3.2 Simulation Details of the three different slation models...................cccccinnnnne 9.2
4.1. Summary of description on the fields of thetdaction Window.............ccccceuvuneees 39
5.1 Instruction Wake-Up FreqUENCY USING ... o eeeeeeeeiriiimmiiinnnaaeeeeeeeeeeeeeeeeees 69
Round Robin Write-Back Scheduler ... e 69
5.2 Microarchitecture Details of the Simulatedd®EBOr...............oooeveiiiiiiiiiiiineee. 71
5.3 IMprovement in IPC ... ceeemm e 73
6.1 Probability of MiSPrediCtioncoeeereeiiie s 79
6.2 Calculated IPC using equ(6.2) for Branch R8Tcooeeviiiiiiiiiiiiiinnnnenn. 82
6.3 Probability of Branch Prediction Error for ibn Completed Instructions 84
6.4 Comparison of fetch policy schemes that aedueded in this study 99
6.5. Simulation Details of the Multi-Path SMT ARETtUre ... 101

viii

LIST OF FLOW CHARTS

Flow Chart Page
4.1 Fetch Functional MOAUIEoooiiiiiii e 35
A D 1 o = 1o T 10 T [o PUPSS 41
4.3 EXECULE STAQE ... ccetuniiiii e ittt e e et et e e et s e et et s e e et e e e e nna e e e eaa e e e eaaaaees 45
1 1]] =T = o o [47
VS @0 4] 0] (=2 (=S = Vo TN 1 Yo o 49
6.1 Thread Rename POINtEr LOGICuvuuuimeeemriiiiiiiieie e e e e e e e e e e e e e eeeeeeeveevnnnnneenenees 94

LIST OF FIGURES

Figure Page
1.1 Structure of a Simple Data Path Representation.............cccceeeiiiiinieeeiiiiiiieeeeeeen, 5
1.2. Relationship between IPCin and IPCOUL.ccccuuueeiiiieeiiiiiiieeeeeiiii e 6
1.3. Pipeline Register Interface Model. A and 8 suodules defining the functionality of
the ArChItECIUIE. ... 8
1.4. MOAUIE INTEITACEeiiieiiiiiiit e et e e s 9
1.5. Improved Mechanism with Global Pointers fdolial Data Structures.................. 10
1.6. Memory Access through POrS........cooveeeeeeieiiiiiiie e 11
1.7. Port Access for a Memory EIemMent.......cceeeuviiiiiiiiiiiii e 12
2.1 Port Communications in Liberty, Vaccharajaniabt[3], 2002............covvvvvveiieennnnn. 15
3.1 Objectives of a Microarchitecture SIMulator..............ovvvveiiiiiiiieeee e, 20
3.2 MOAUIE EXECULIONS ..ottt ettt e e e e e 21
3.3 Design FIow of SIMUIAtioNcoooiiiieeeeeccee e 23
3.4 Performance Comparison between the Simulators $imple 3-stage scalar MIPS
AICRITECIUIE ... e e e e e e 24
3.5 Comparison of Simulator Through-put......cocoooeiiiii e, 25
3.6 Simulated Superscalar ArChItECIUIE......oeeeeeeiiiiiieiiiiie e 26
3.7 Comparison of Simulator Performance for a Saqadar Architecture Model.......... 28
3.8. lllustration of Module Port CommuNiCatioN...........ccvvveiiiieriiiiiiiiiiiiieeeee 31
4.1 Design of Rename RegiSter LOGICceuuuuuuuiiummiiiiiieee e 37

4.2 Fields of Instruction WIiNdoOwW ENryccooeuiiiiiiiiiiiiiee e 38

4.3. Functional Block Diagram of the Issue LOQIC............cccevvvivviiiieiiiiiiiccceee e 42
4.4. Functional Block Diagram of the Execute Stage...........cccceeeeeiiiieiiieeeeeeeeneeenns 44
4.5 Load Finish and Store Buffer MOdEIS......coo i 50
4.6 No. of Load Forwarding and Memory Recoveriethwlestination memory address
prediction and instruction address (PC) predictian..............ooovvviiiiiiiiieninnnnn. 25
4.7 IPC with and without Load-Store Dependence iBtieth.................ccccceeeeeiieeeeennnnn. 53
5.1. Detailed Architecture Model describing the ¥#ABBack Buses at Finish Stage....... 60
5.2. IPC of a hypothetical processor using SPECTC2BI06/2000 Benchmarks 61
5.3. Comparison of IPC for Different Write-Back BAdths for fetch width of 4........ 62
5.4. Average IPC for Fetch Width Of 4.......oeeeeeie e 63
5.5 Round-Robin Write-Back Bus Scheduler...........cccooiiiiiiiiiiiieeeeee 65
5.6 Instruction Mix in SPEC 2006/2000 BENCNMALK v 66
5.8 LMA Write-Back Bus SCheduUler.......... .t 67
5.9 PHD Write-Back Bus ScheduUler........... oo 68
5.9 Chain of Data Dependency in an Instruction Wmd................cooevvviiiiiiiiiicinneenn. 70
5.10 Comparison of IPC over various Write-Back Baveduling Mechanisms 73

5.11 Average Write-Back Stalls by Execution Uhaisvarious Write-Back Bus

SCNEAUIBTS. ...ttt e e e e 74
5.12 Average Instruction Window Stalls for variaisite-Back Bus Scheduling

MECRNANISIMS ... et e e e a e e e e e e e e e e e aeaes 75
6.1 Multi-Path for 3 Unresolved Branches. ... 81
6.2 Logical Block Diagram of the Branch PredictiOn................cccooevvviiiiiiiiiiiiciieeeenn.
_SiNgle-Threaded PrOCESSOIcceeve s oo e e e e eeeeeeaasttansssasaaeaeaeaaeaanaaaaaeeeeeeeees 83
6.3 Fraction of Branch Misprediction in SPEC benahkB............ccccooevviiiiiiiiiiiiiiiiiiiis

Xi

_gshare: Size: 2048 entries; History Bits: 16; BbB2 sets with 4-way associative..... 84

6.4 Classification of Branch Instructions in SPEEDEhmMarks..........ccccceeveiiiiinne 85
6.5 Comparisons of Execution Strategies (Sourcé:adl Sindagi, 1995 [39])............. 88
6.6 Perceptron based branch confidence estimayigxkkary et el. [2004]................... 90
6.7 Logical Block Diagram of Fetch-Stage in MultwEaded Processor. 92
6.8 Example of Register Renaming in Multi-Path BBSI.............ooovviiiiiiiiiii 93
6.9. Logical Block Diagram of Register RenamindMualti-Path Design.cccccc..... 95
6.10 Logical Block Diagram of Fetch Policy usingrfidence Estimator...................... 96
6.11 Thread Creation PrOCESSui oottt 98
6.12 Performance Comparison between Perfect argleSimreaded Processor.......... 102

6.13 IPC for Fetch Width of 32. IPC for 32-widede is slightly less than 8-wide fetch
because of increased 1atenCy iN FECOVEIY.....ccovuerreriiuiiiiiiiieee e eeeeeeeeeeeeeiieeees 103

6.14 Conditional Branch Error Rate. The plot repnés the number of Recoveries due
Conditional Branch MisprediCtion...........ooceeeeeii e 103

6.15 Percentage of Recoveries due to conditioraaddbr misprediction. 104
6.16 Average Branch Execution Latency for 8-Wid&ecken the SPEC benchmarks.. 105

6.17 Comparison of IPC for different eager-basdites with single-threaded processor

FOr 8-WIdE TEICN. .. 106
6.18 Comparison of IPC for different eager-basdaes with single-threaded processor

fOr 32-Wide TRICH. ... 106
6.20 Relationship showing how different eager sa®emly on branch prediction and its

EFFECT ON IPC ...t 109
6.21 Histogram of ACtive Threads.uueueciiiiiiiiiie e 109
6.22 Code Phase Variations in SPEC benchmark............ccccooooiiiiiiiiiiiiiiiiienn, 110

Xii

CHAPTER |

INTRODUCTION

1.1. Performance Studies

The design space of microarchitecture is bdorgtow significantly as multi-threaded
and multi-core architectures are investigated bynmater researchers. Typically,
computer architecture studies can be classified ibt categories —Performance
EvaluationandPerformance Estimatiometric studies.

Studies involving Performance Evaluation sintegdathe entire microarchitecture
design and provides an accurate performance nfetribe simulated microarchitecture.
The simulation of the microarchitecture is cyclewate and involves detailed
description of the microarchitecture blocks. Thiethod of detailed cycle-accurate
performance analysis takes tens of thousands oinhashine’s clock cycles.

The SPEC CPU benchmark programs have becomaetli@cto standard to evaluate
computer architecture designs. However, with tbmlmer of instructions in the SPEC
benchmarks mounting to more than a trillion indfirts, it is not feasible to simulate the

complete set of benchmark programs in a reasormahdeint of time.

For example, to execute 1 trillion instrucBofassuming it takes 10,000 machine
cycles for a simulated cycle) using a typical CRi¢rating at 1.5 GHz clock speed and 3
instructions per cycle, it takes about 77 daysveduate the microarchitecture design. As
different design trade-off studies have to be edrrout by researchers, such long
computing wait time becomes a huge impediment fesearch. Hence, several
techniques have been proposed to circumvent the afosicreased simulation time.
Reduced input data-set and trace-driven evaluatoms few of the techniques to reduce
simulation time for cycle-accurate simulations. wéwoer, the similarities of these
simulations with the actual simulation are stilden investigation.

On the other handRerformance Estimatiomodels are proposed to probabilistically
estimate the performance of the architecture desighe performance estimate of the
microarchitecture is determined in a short time #msl ensures the possibility of several
microarchitecture design trade-off studies. Bl &ccuracy of the probabilistic model
that describes the microarchitecture is debatabBeveral assumptions are made to
describe the microarchitecture model and such adigin undermines the results of the

performance estimations.

1.2. Motivation

The flow of instructions is measured in instimes per clock)PCi, at some point in
the data path. Usually what we are interested ithes averagdPC which can be

determined as,

IPC, = Niz IPC, (c) (1)

c C

Chapter | 2

where,Nc is the total number of clock cycles when runninigemch mark program and
IPCi(c) is the number of instructions passing a pointim data path during clock cycle,
C.

High level processor simulations can calculB@ in this manner, but they are forced
to simulate the processor behavior for billionsclaick cycles which is very expensive.
Instead a stochastic model for IPC can be usedhmnoids simulating the processor
architecture cycle by cycle.

The data path structure and the hazard colieigad determine the IPC(c) when hazards
occur. Suppose the cycle by cycle simulation catesiIN(IPG = 0), N(IPG = 1), ...,
N(IPG = s;) which is the number of clock cycles thRC,(c) = 0, 1, ..., swheres is the
local superscalar width (instruction parallelisrhpainti in the data path. The IPC model
can be made stochastic by defining the probalihigglPC(c) =0, 1, ..., sas

P(IPC, =n) :NiN(uvci =n) n=0L..5s 2)

c

so that,

IPC :inDD(IPCi =n) 3)

n=0
The same system of equations from the structmoalel that determine®C(c) will
give a system of equations that can be solved{t®?C = n) without running a cycle by
cycle simulation.
The level of detail of this approach is sucattimdividual instructions are not tracked
as they flow through the data path structure. hsthe probability of an instruction flow
rate is determined at each point in the data patictsre. Many of the hazard control

equations require knowledge about certain typesnsfructions at certain locations

Chapter | 3

during certain clock cycles. The probability of mstruction of a certain type can be

determined from instruction frequency analysishaf benchmark programs.

P(type=t ati) = P(type =t |instructionati) L P(instruction ati)

f, OP(instructionati) (4)

The instruction frequency of type t instrags, f, can be reused for performance
calculations of many different structural modeleeTstochastic model determiregPCi
= n) only. The reuse of instruction frequency data dyeaduces the complexity of the
stochastic model.

Calculating the effects of hazards is compéidasince hazards are not mutually
exclusive and that stalls from different hazards e@erlap in time. The same stall can be
produced by more than one stall at one time, ananwst be careful to avoid counting
the same stalls more than once. To applylB@ formula, we must include not only
individual hazards, but also all possible combwmradi of hazards with all possible
overlaps in time.

In order to accurately estimate the performasfce complex microarchitecture design,
we must understand the dynamic relationship betwteenstruction flow and the hazards
due to structural, control and data dependenceugfirats statistical information. An
extremely fast microarchitecture simulator with adetd module descriptions that is
closely related to hardware behavior is necessanyather this statistical information.
Hence, OSU AbaKus— a cycle-accurate microarchitecture simulatodéveloped to

address this issue.

Chapter | 4

1.3. Cycle-Accurate Simulation Engine Concept

The basic idea behind the cycle-time simulasorthat all clocked modules are
evaluated for every simulation cycle. This ideaidirect relationship with the pipelined
design of the microarchitecture design, as allegag the pipeline are evaluated similarly
for each clock cycle.

1.3.1 Processing Elements and Signals:

As shown in Figurd.l, eachData Processing Elemertas an input buffer and an
output buffer. Théata Processing Elemetdkes the necessary input data for evaluation
and produces the output data that is then storéeioutput buffer. The flow of data in
the buffers is controlled by thsall signal The processing elements can also introduce
forward-propagating stall®r bubblesin the pipelines The propagation of bubbles in the
pipeline occurs when there is insufficient amouhtiata stored in the input buffers to
feed theprocessing elementslhe bubbles can be related to tleeoperationgNOPS) in

the microarchitecture design.

a
o

stall

\ 4
Data
Processing |

IPC,, Element IPCou

Input
Buffer

OQutput
Buffer

Figure 1.1 Structure of a Simple Data Path Reptaten

1.3.2 Buffer Design:
The design of the buffer offers the most discqest of the simulation engine. It
defines both the simulation engine’s flexibility a&ll as its simulation speed. The

buffer in the simulation act as information souregsl sinks for théata Processing

Chapter | 5

Elements They maintain the network of connections throwghich the processing
elements communicate with other processing elemenke design.

If the buffer gets filled, it can initiate stall signal that stalls the up-stream buffers.
ThelIPC of the processor is directly affected by thes# signals. The stall signals that
stall up-stream buffers are call&dckward-propagating staller up-stream stalls A
major task in designing microarchitecture involkegping a steady flow of information
in the pipeline and to prevent buffers from beiitigd up.

ThelPCyy:andIPCi, are related in the egn (5) and egn (6) and arstifited in Figure
1.2, whereN; is the total number of instructions that the buffen stores, ands,;: are
the number of instructions that are flowing intadawut of the buffer in a clock cycle,
bubbleg(c) is the number of bubbles that come into the bu#ercycle, ‘c’ and

bubblesg,{c) is the number of bubbles that leave the buffeyale; ‘c’.

PC (c) =5 ~Pubbles (c) if stall, () =0
in 0 if Sta”in (C) =1 (5)

s_. —bubbles .(c) if stall , =0
”:)Cout (C) = out %ut() - out ~
0 if stall,, =1 (6)

stalli, stallgyt

Sin Sout

IPCin IPCou

Figure 1.2. Relationship between IPCin and IPCout
As defined in sectioh.3.1, bubblesdefine theNOP instructions. The buffers can both

propagate as well as initiate stall signalsall, and stal}. The condition at which the

Chapter | 6

buffer is filled initiates thetalli,(c) signalat cycle ‘c’. This is shown in eqn. (7), where

In(C) is the number of instructions present in the budtecycle €.

1 if Tp(c) + 54, = Spy > N and if stall ;= Oand Ty(c) > 5,

stall;,(c) = {1 if I,(c) +5,, > Ngand if stall |, = 1

L 0 otherwise

(7)
The state of the buffer for the next cycle can thercalculated and is given in eqn. (7).
Thus eqn. (8) describes that the state of the biédfethe next cycle is only defined by
the current state of the buffer.
I,(c+1) = 1,(c)+IPC,(c) - IPC,,(c) (8)
This simplistic view of the buffer is estabkeshfrom the pipeline model and more
succinctly relates to th®oore State Machinef the architecture design. Furthermore,
for stochastic performance analysis, this steplmaextended to a discrete-tiriviarkov

model and thus future state of the buffer can tienased.

1.4. Implementation of the Clocked Buffer Model

In this section, the implementation of thaffer modeland theData Processing
Elementdhat are otherwise known asoduless discussed. As discussed in section 1.2,
it is important that this cycle-accurate simulasimple and fast. As shown in Figure
1.3 the functionality of the architecture is definkeg the two module#\ andB. Two
separate simulation data structures are maintaateds interface. The simulation
methodology is a 2-step process.

The first step is to evaluate all the moduleshieevaluate phase In the first cycle,

moduleA usesData Structure las the output while modul® usesData Structure 2as

Chapter | 7

the input. The second step, i.e. at the end oétaduate phase, is tlhupdate phase The
pointers ofData Structures Aand B are alternated. Hence, during the second cycle
moduleA usesData Structure Zas the output while module B udeata Structure las

the input. This buffer interface mechanism avardasfer of huge amounts of simulation

data during each cycle. This concept is furthgolared in detail in the following

sections.
Y N | OUTPUT
: Data [N
Structure 1
Module i Cydel CyClezi Module
A | ; B
i OUTPUT :
' Data
| Structure 2 ,
Cyclel; \ J
Eval uate |: Updat e Phase (2 | Evaluate
Phase (1) | P (2) | Phase (1)

Figure 1.3. Pipeline Register Interface Model. "l 8 are modules defining the functionality of
the architecture.

1.4.1 Module Interfaces through Port Definitions:

The modules descriptions are based on ISO @ardard constructs. The modules
describe the behavior of th2ata Processing ElementThe functional behavior of the
module is described using C++ language definitiagsin a sequential programming.
However, the difference between sequential and taoguogramming is brought kport
definitions that are used to interface with otherduoles. As a result, as shown in Figure
1.4, the modularity in the design is achieved througbrts that are used as

communication interfaces between modules and tKerbu

Chapter | 8

Input Module Port m Data-Out
ata-Ou
Data-In Structure) n Structure A[0]
A[0]
n A Data-Out
Data-In Structure Structure B[0]
B[0]
Data-Out

Module Structure A[1]
Data-In Structure A Data-Out
Alm] Structure B[1]
3m]
Data-In Structure n Data-Out
B[m] w T Structure A[n]
Data-Out
—_— —_——)> Structure B[n]

Current Port Pointer Next Port Pointer > OUtpl:;o“ftOdme

Figure 1.4. Module Interface

Similar to an HDLports are specified in a module to be an input or oufrt. In
Figure 1.4, eachport has?2 pointers, thecurrent port pointerand thenext port pointer
The input data to the module is read from Beta-In Structurethat is pointed by the
current port pointewhile the module’s output data is written into ata-Out Structure
that is pointed byext port pointer In the following cycle, the pointing location tfe
pointers is alternated, thus the outputs writteringuthe previous cycle can be read as
inputs in the following cycle and vice versa. Thimple alternating of pointers avoids
the overhead of copying the entire data structbe¢ keads to slow simulations as in

OSCI System@.1

Chapter | 9

% Input Module Port
— _——> Global Current

Port Pointer

Global Data Structure A

Module

> Global Data Structure B

X _,Global Next Port

.
> Output Module

Port
Pointer at (N)th cycle Pointer at (N+1)th cycle

Figure 1.5. Improved Mechanism with Global Poigtier Global Data Structures

The number of update operations in alternagiooters betweemata-In and Data-
Out Structuredss directly proportional to the number of portsanmodule. Hence, to
avoid this additional computational cost, tv@&obal Pointersfor the Global Data
Structure A and Bire created as illustrated in Figdr®. Furthermore, the outputs of all
the modules in the simulation are referenced tdaiodal Next Pointeand similarly, the
inputs of all the modules are referenced to @ebal Current Pointer. These pointers
alternate between th@lobal Data Structures A and Br each clock cycle. Thus, the
output data structure at clock cycl ‘becomes the input data structure at clock cycle
‘N+1" and vice versaThis mechanism not only avoids copying data betwbkeGlobal
Data Structuresbut also makes the number of update operationsperdtent of the
number of ports in the modules. As a result, iintaans the computational time for

updating the pointer locationsanstant

Chapter | 10

1.4.2 Register and Memory Element Interface Model:

The update phase that is shown is FiguBas also extended to update the registers in
the register fileand othermemory elementsAs shown in Figurel.6, the data in the
memory elements are accessed thropgtts similar to the actual memory access. The
location of thewrite and reads determined by therite and read addressesspectively.
Therefore, awnrite data or read dataccurs on the referenced register/memory location

depending on the logic.
——Wr Addr [0 Rd Addr[0}——
—Wr Data[Ol—]:l = Q:.?Rd Data[0}—»
—Wr Addr[1 A +' “—Rd Addr1}——
Architect
——Wr Dataft Registers/ %Rd Data[1>

- = Memory -=

A Elements +
——Wr Addr[n Rd Addrn}——-
——Wr Data[n . = Q%Rd Data[n}—p

s f ~), Read Port
Write Port < B St Eik

Figure 1.6. Memory Access through Ports

As shown in Figurel.7, both thewrite port and read port have two in-built data
structures defined &ort AandPort B. On thewrite portinterface, the data to be stored
are written intowrite port A while the data from therite port B are transferred to the
memory element heir corresponding pointers are alternated dutiveupdate phaséhat
is triggered by the clock cycle. Hence in thedwling cycle, the functionalities afrite
ports AandB are interchangedSimilarly, on theread portinterface, data is read from
theread port Aand the data from th@emory elemerns transferred to theead port B.

The functionalities oports AandB are similarly interchanged for each cycle.

Chapter | 11

Write Port Read Port
Data In Architect Register /
, A -
> 1 Memory Element

A
E} _ . _Eata Out

A 4

A |

A 4
\

Clock Signal

Figure 1.7. Port Access for a Memory Element

This functionality of thewrite ports and read ports described in this section
corresponds to thB-flip flop registerthat is used in the actual hardware design. Hence,
designing the memory structures withort interfaces provides this simulator the
capability to perform both functional as well asiitig verifications as in an HDL, and

yet with a much greater simulation speed.

1.4. Organization of this Dissertation

Chapter 2 reviews the simulation mechanism xigtiag simulators. It reveals the
benefits and drawbacks of each simulator. Ch&pmesents the simulation approach of
AbaKus simulator and also compares its performantteexisting simulators. Chapter 4
discusses the modeling details of the superscatartacture. It then presents about the
load-store dependence prediction schemes used aKush Chapter 5 presents a case
study on register write-back buses and identifies tharacteristics of different bus
scheduling mechanisms. Chapter 6 presents ancdiserstudy on control dependencies
problem in superscalar cores. Finally, Chaptearmmarizes the design of AbaKus and

limitations of superscalar processors.

Chapter | 12

CHAPTER Il

LITERATURE REVIEW

2.1 Simulation

Hardware simulation is a process of descrilihrgg behavior of hardware logic using
computer programming languages and verifying thelare behavior with test input
sets. Its use and adaptation depends on the agcofathe results obtained using
simulated hardware compared with actual behavp®ed of simulation and flexibility to
design.

Computer architecture simulators are needed fofall@ving reasons:
» Perform extensive design space exploration becausecheaper to experiment
with simulated designs.
» Verify hardware logic with respect to both funciadity and timing, and
* Aid in the simultaneous development of supportvgafé tools such as compilers

and operating systems.

There is a plethora of computer architectuneugators and the next section discusses

some of the widely used computer architecture satous.

13

2.2 Smplescalar Tools

Simplescalar tool set (Burger and Austin [1997) has been one of the most widely
used computer architecture simulator both in reteas well as in class projects. Itis an
open-source and free-of-charge tool for non-comrmakeecrademic users. It provides a
baseline out-of-order simulator known as #im-outorderand most of the processor
design aspects including the reorder window simealver of functional units and latency
of memory ports can be defined at compile time. adidition, it integrates simplistic
cache models to its processor and the cache dpargmeters can also be varied.

Simplescalar package has a set of simulatowging from simple functional simulator
to complex out-of-order processor simulator. pmorts MIPS IV based Instruction Set
Architecture (ISA) with minor changes to the instian opcodes and also provides
cross-compiler for its ISA to run on host computeachines. The advantage of
Simplescalar tool set is its speed of simulatio@n sim-outorder simulations the
simulation speeds can average about 200 K instr/stion a typical modern day desktop
machine. Hence, it has been widely popular to @eeSPEC benchmarks with
Simplescalar tool sets that would normally be eketon real processors.

One of the main drawbacks sim-outorderis that it is weakly related to the actual
hardware behavior. For exampsem-outorderdoes not model the effects of write-back
buses in the processor core. The contention arengrite-back buses is important as it
may increase the latency of dependent instructidther weakness sim-outorderis
that the actual execution of the instruction isorder and only the control flow of

execution is simulated. The concept of pipelirgister timing is not simulated and it is

Chapter II 14

important to maintain accuracy. Besides, code gbamn Simplescalar have also proven

to be difficult (Vachharajani et. al [2], 2002) ahénce it has reduced flexibility.

2.3 Liberty Simulation Environment

In order to the address the problems of acgunacsimulations and to reduce the
development time for logic design Vachharajaniatt.[3], 2002 developed the Liberty
Simulation Environment (LSE). It is free and i€@mponent-based model designed to
reuse code usage.

Modularity in module definitions is well enfad by allowing modules to
communicate through ports. Each port as shownigaré 2.1 handles 3 signaldata,
enable,and ack. The datais sent forward and thenableindicates that the receiving
module should process the data. If the receiviogute can process the data theraek
signal is transmitted. This simulates effectiviilg pipeline stalls and timing of data in

an architecture simulation.

Module A — input Module B
»r=——o -»
- data - Computation
P ™ 7% enatle 1=
T R P «-_J. 4
- ack _ \
Internal State

Figure 2.1 Port Communications in Liberty, Vacclemaet. al. [3], 2002

The advantages of LSE are that it is modular tanough the use of a graphical user
interface, designers can drag, drop and connectuleed However, the modularity
comes at the cost of simulation speed. The nurabé&and-shaking signals increases

with the increase in ports (Vachharajani et. aQZ0

Chapter II 15

The order in which the modules are invoked ddpeon the scheme called
Heterogeneous Synchronous Reactid8R) scheme. It is different for the discretermv
scheduling in that a partial order of module intea is generated statically using
several optimizing scheduling polices and later change similar to the discrete-event
scheduling. In general, the HSR reduces the pmobseiffered by discrete-event

scheduler which invokes repeated module evaluations

24 ASIM

The key feature of ASIM is its modularity (Enfdt, 2002). The performance models
in ASIM are mainly developed using C++ and is appietary of Intel [4]. Modularity is
achieved through ports that are FIFO queues. Todehof FIFO ports helps ASIM to
simulate the latency between pipeline stages asulvaire delays.

ASIM is considered to offer a high degree ofdmle reuse. However, ASIM is likely
to suffer in the speed of simulation as it is bagedliscrete-event scheduler. Although,
these schedulers enable designers to simulatestrediardware signal flow, they suffer
from additional computation time. Since, ASIM isnsidered to be closely related to
simulate hardware behavior; an extension of ASIMviin as A-Ports (Pellauer et. al. [5],

2008) has been developed to emulate the behavmsgh FPGAs.

2.5 SystemC Based Smulators

SystemC is a C++ based modeling language witbral model libraries for specifying

the digital logic of the hardware and has a digeetent scheduler to simulate the timing

Chapter II 16

details. The popular version of SystemC is man@di by Open SystemC Initiative

(OSCI) [6].

25.1UNISIM

Unified Simulation environment (UNISIM) is an epsource SystemC add-on that
focuses on modularity and code reusability. lbaspports cycle-level and transaction-
level models. Several groups suchlaserty, Microlib (Perez et. al. 2004, [7]) and
SystemC model developer are actively involved teettgp architecture models of the
computer system.

One key feature in UNISIM is its interoperalyilvhich means that it is considered to
be possible to integrate with different simulatienvironments. It also supports full
system simulation that includes operating systamh 8s Linux. VirtutechSimics" [8]
is another simulation environment that performd fylstem simulation and supports
various operating systems. But the disadvantadg&infcs is that it is commercial with
source code restrictions. UNISIM currently supp@thost of processor model including
PowerPC and ARM. The drawback on UNISIM is thasitin even-driven simulation

environment and is slower than cycle-time basedisitions.

2.5.2 ArchC

ArchC [9] is an open-source architecture desiom language based on SystemC. It
defines several wrapper class structures to enddsegners to specify the architecture

parameters instead on the actual module descrgptioklodule descriptions are also

Chapter II 17

possible to extend its model libraries. It supporérious models including PowerPC,

Intel 8051 and SPARC V8 architectures.

2.6 FPGA-based system emulation

Research Accelerator for Multiple Processor&NIR) [10] aims to emulate dozens of
processor cores in multiple FPGAs whose cells aiagodensely packed. Validating
multiple processors is difficult in simulations lbese of the increase in the level of
simulation as well as the number of test inputsaukation using FPGA technologies can
lead to significant improvements in validating suwarichitecture designs. However, the

cost involved in emulation is also significantlygher compared to computer simulations.

2.7 Other Simulators

There are number simulators available for tlemputer architecture research
community to simulate various components of a caempaystem. Depending on the
simulator’'s characteristic it is the choice of thesearcher to select a simulator.
Simulators such as M5 (Binkert et. al. 2006, [1dfd SESC [12] model both CPU as
well as support network 1/Os of a computer systeAT.Sim (Yourst, 2007, [13]) is an
event-based simulation for x86 architectures. Nwore variants of Simplescalar tools
such assim-masdLarson et. al. 2001, [14]) is developed to furtihmarease the level of

simulation details in Simplescalar tool set.

Chapter II 18

2.8 Discussion

Computer architecture simulators availableriggearchers are abundant. The choice
of the simulator comes down to the details of dedture that the researcher is interested
to model. The nature of the simulator dependst®miodularity/flexibility, speed and
accuracy.

Although most of the simulators focus of modityaand reusability, it comes at the
cost of simulation speed. Simulation speed is mamb to enable researcher to test and
validate the architecture with numerous test ingets and also to explore more design
alternatives.

FPGA based system emulation can provide spegcecuracy but at an increase cost.
AbaKus simulator is developed to address the isefispeed, accuracy and modularity
and in an affordable way. In the next few chapttrs internals of AbaKus simulation

engine and its models are discussed.

Chapter II 19

CHAPTER 1lI

SIMULATOR PERFORMANCE

3.1 Simulator Design

Simulators strive to achieve the three importamtpeeters - accuracy, flexibility and
speed in the best possible way as depicted in &igur The simulators described in

Liberty [2], MASE [14] and ASIM [4] emphasize onakeof these parameters.

Accuracy

Simulation Speed Modularity and
Easy to use

Figure 3.1 Objectives of a Microarchitecture Sinoila

Microarchitecture functionality can be visualized a group of modules triggering
dependent modules to be evaluated each cycle. eergl, it is modeled as a state
machine. Therefore, the signals that are genemtadnodule propagate and modify the
state as they traverse through various module tesmregz The two common types of
simulations are considered to explain interfacelrarsm,

= Event-Driven Simulation

= Cycle-Time Simulation

Chapter IlI 20

In an event-driven simulation, a process queamtains a list of modules that are to be
evaluated for each cycle. The process queue iategdor each finite simulation cycle
time. Consider A, B, C, D and E are hardware fionel modules connected as shown in
Figure3.2

Evaluation of each module triggers its dependendutes and is added in the process
queue. For the structural logic shown in Fig8r2 the process queue collects copies of

same modules to be evaluated repeatedly as shohabie3.1

A

4

Figure 3.2 Module Executions

TABLE 3.1 EVENT-DRIVEN SIMULATION PROCESS

Cycle | Evaluate | Trigger Process
Queue

1 A B, C B, C
B C,D

2 C E C,D,E
C E

3 D E E,E, C
E C

Modules C and E are evaluated multiple times.

Although, this ensures a more realistic hardwargclevaluation, repeated module
execution results in a lot of computing time. Siatidn kernels of HDLs such as Verilog,
VHDL and SystemC are based on this mechanism. rigaés to reduce the number of
redundant module executions in SystemC by acyclheduling have been proposed by

Perez et al. [15].

Chapter IlI 21

On the other hand, the cycle-time simulation hasreler approach. All the modules
in the simulation are evaluated only once on eauhlation cycle. This provides a more
straightforward solution to avoid redundant modwdealuations. The functional
verification is typically provided by enforcing seential order of module executions, as in
SimpleScalar. The challenge in a cycle-time satioh is to provide both functional as
well as timing verification that is provided by teeent-driven simulation. There are two
cycle-time simulators that are developed in thislgt

[1] OSU SystemC

[2] OSU Abaus

3.1.1 OSU SystemC

As SystemC has grown to be one of the framesvéok developing system-level
architectures, a new cycle-time simulation modeleolaon SystemC language construct —
OSU SystemC — is developed in this research.

The models developed in SystemC v2.1 from OpgstemC Initiative (OSCI) are
compared OSU SystemC. SimpleScalar version 3.0s&toprovides the base-line model
to compare the performance of the simulators aswidely used for academic research
and studies. The syntax of OSU SystemC is sam&RBE 1666 standard described for
SystemC v2.1, but with restriction on usage of ddremodules. The following
summarizes the kernel of OSU SystemC,

* The old and new values have pointer that are sedtcn each delta cycle instead of

values being copied [15].

Chapter IlI 22

» The scheduler is cycle-time based and hence, ii@tes all the modules that are
declared with SC_METHOD in a delta cycle. SC_THREdefinitions are not

handled as it needs synchronization of all threadutes after each delta cycle.

3.1.2 OSU AbaKus Simulator:

On the other hand, the syntax of OSU AbaKum istandard C++ and is developed
such that it is adaptable to any hardware desoriptanguage. The OSU AbaKus
Microarchitecture Design Simulator is developedatlolress the issues of flexibility and
speed. The design flow for each microarchitecsumaulator is illustrated in Figure 3.3.

OSU AbaKus provides a much simplified simulatath a new simulation kernel and
is completely different from that of SystemC 2.lrried. Thus, by having a new
simulation kernel, the redundant codes presertarekisting OSU SystemC version and

its class hierarchical design is avoided.

C-++/VHDL/Verilog/
Sy sée':ﬁlel;::’?ggl:“d C++/SystemC Library and C/C++ Standard
¥ Synthesis Tools Library

Microarchitecture J\/\- J\/I

Description in

VHDL / Verilog / E/licroarchitecture Description in SystemC
SystemC

Simplescalar
Microarchitecture
Tool Set
(Cycle-Time
Simulation)

OSCI SystemC 2.1
Event-Driven Kernel

OSU AbaKus 1.0
Cycle-Time Kernel

SPEC
CPU 95/CPU 2000/CPU 2006 Benchmarks

Figure 3.3 Design Flow of Simulation

Chapter IlI 23

3.1.3 Comparison between OSCI SystemC, OSU SystetnGSU AbaKus

A simple three-stage scalar pipeline model wasetestith SPEC95 benchmark
programs on an AMD Duroi50 MHz processor running Linux kern2l4.2 As shown
in Figure3.4, the instruction execution rate of the new simarausing the SimpleScalar’s
instruction-execution engine i times faster than the model developedystemC 2.1
This results iR5%increase in simulation speed betw€sU AbaKuandOSU SystemC
The throughput of the simulators is compared inuFég.5 SimpleScalar's sim-safe
executes all instructions in a clock cycle i.e. ith&ruction execution latency Isand it

represents the most ideal execution engine.

3500000

E
X 0134. perl
300000041
]é B 126. gcc
U 25000004 0009. go
T 2000000 41 _conpr ess
1
o) 15000004
N
10000004
R 500000
A
T 04
E SystenC 2.1 OSU SystenC OSU AbaKus Sinpl escal ar
(Insts/sec) 1.0 3.0 Sim Safe

Figure 3.4 Performance Comparison between the &tonglfor a simple 3-stage scalar MIPS
architecture

Chapter 11l 24

clock cycles (in million) / second

134.perl 126.cc 009.go 129.compress

O OSU SystemC 0O OSU Abakus @ Simplescalar's sim-safe

Figure 3.5 Comparison of Simulator Through-put

It is observed from Fig3.5 that OSU AbaKushas40% more throughput than OSU
SystemCThe simulation kernel differences such as implaateén of advanced object-
oriented concepts cause the asymmetric distribudfoexecution rate seen in FiguBeb.

To further investigate the performance of the satars on complex designs, a superscalar

architecture is built usin@SU AbaKus

3.2 Comparison with Superscalar Designs

A modular description of superscalar architectdesign is written to accurately
model the functionality of the microarchitectureidg each clock cycle. The modules are
described in C++ and reuse Simplescalar's executiovsa and memory models. Figure
3.6 shows the details of the simulated superscaldritacture. It accurately models the
stall signals and in addition, the pipeline registere parameterized to simulate different
superscalar architecture widths. The finish seggmpasses the issue logic, instruction
execution and write-back buses to update the e¥gide. The microarchitecture is

designed to explicitly model theename register mechanisosing Rename Register

Chapter 11l 25

Pointers and Architect Register Pointers that i modeled in SimpleScalar's sim-
outorder3.0. Moreover, unlike SimpleScal@rQ, all executions are true out-of-order.

As shown in Figure.6, the microarchitecture uses SimpleScalansmory modeto
fetch instructions and to perform memory relate@rapons. The dynamic instruction
scheduler with single instruction window includestruction wake-up logic and out-of-
order issue logic. As a test case perfect branelligtion is used to determine the
throughput of each simulator and limit the arctiileal differences between the two
simulations. But, it is found that in SimpleScaliie next program counter is determined

at dispatch and hence it encounters conditiondlsseven during perfect branch

Simplescalar Instruction Memory Model R o
Branch FETCH
v Predictor
—_ > — Fetch —_———
|r _‘ ‘_Update Predictor

conditions.

A
T DECODE »
| Fetch Stall + < Rename Register Pointer
\ 4
| —_——— Decode and]]]
|r Allocate Rename Destination Registers Architect Register Pointer 4_|
<
i A
A
| Issue Stall v DISPATCH FINISH |
i |
T
§ Simpl | |
k2] implescalar
:_s:guii Single Instruction é’ Bcaiiion G |
Controller Window T
—|
Update | . |
| Registerﬂ Wite-
'y Back - I
| l | J_ | Stage Simplescalar Data
— - — _l._ _.l_ - —!— —f Controller Cach'e access for L
Write Back Sta"T | Set Finish Bit load instructions |
| | Read Finish Bit COMPLETE
1= = - —_— —p— = ——— —
L—— < — — — — Complete Simplescalar Update
Update Instruction Window Stage Register

Execution for handling
store instructions and
exceptions

Controller Pointers

Pointer

Figure 3.6 Simulated Superscalar Architecture

As there is no floating-point unit incorporaiaddSU AbaKusit handles floating-point

instructions as a precise exception. Due to gmplification, it is expected to have a

Chapter 11l 26

lower IPC than SimpleScalar. Instructions that eawxceptions have three-cycle

functional unit latency. The recovery mechanismntlrecovers the processor to the
original machine state. However, the number obvecy cycles depends upon the state of
the processor at the time of exception and thietsmodeled in detail with SimpleScalar

3.0. Besides, no explicit register rename mechanssimplemented in SimpleScalau0.

A more detailed out-of-order architecture model developed in Simplescalar
4.0MASE [14]. The renaming register logic is inclddand a distributed reservation
station model is incorporated. An in-order exemutqueue is maintained and hence it
does not incur &-cycle penalty for perfect branch prediction studissin Simplescalar
3.0.

Another architecture difference betwe®mmplescalamndOSU AbaKuss the register
write back bus model during the finish stage. sTiian important module that defines the
number of instructions that can finish in a clogkle. This aspect is not considered in
Simplescalar versions (Vachharajani et. al. 208, PSU AbaKussolves this problem
by providing an explicit parameter for the writeckabus bandwidth and simulates
realistic stalls encountered during instructionisin The pre-compiled SPEC binaries
from SimpleScalar and our own compiled binariehwéf and train input data-sets were
run to completion. Due to the long running time ath benchmarks are incorporated in

the test.

Chapter IlI 27

3.3 Comparison of Simulation Speed

Figure3.7 compares the simulation speed of the three michitacture simulators,
sim-maseQOSU AbaKusand sim-outorder. In order to correctly compéue simulators,
every effort is made so that the simulated hardweskitectures are as similar as possible.
In addition, the processor model that is simulatethe three simulators is designed to
have similar average Instructions per clock cyt]. The simulators are compiled with
gcc 3.4.5with the OO0 optimization level and are execute@ 6%-node cluster each with
3.2GHZ Intel Xeon™ processor running a LinR»6.9kernel. The simulated architecture
details are listed in Tabk2

SPEC CPU 2006/2000 integer benchmarks withreet® input datasets are used to
compare the simulators. A total 6fbillion instructions are executed in each of the
selected benchmarks. Only the benchmarks that itanpsuccessfully with

Simplescalar’'sslittle-na-sstrix-gc@are used in this research.

Comparison of Simulation Speed

5.00E+05
4.50E+05
4.00E+05 A
3.50E+05 A
3.00E+05 A
2.50E+05 +

@ sim-mase
@ AbaKus
W sim-outorder

Elapsed Cycles per second

Figure 3.7 Comparison of Simulator Performanceaf&uperscalar Architecture Model

Chapter 11l 28

Due to the inherent dissimilarities between siraulated architectures, it is more
pertinent to compare the elapsed simulaignles/sbetween the simulators instead of

instructions/s. Bothsim-maseand OSU AbaKushave more detailed architecture

simulation than sim-outorder. As seen in Figuréhg, new simulator©@SU AbaKusis

on averag®0.27%faster than sim-mase while sim-outorder is on ayeB89.04%faster

than OSU AbaKus.

TABLE 3.2 SIMULATION DETAILS OF THE THREE DIFFERENT SIMULATION MODELS

Design Parameters sim-outor der AbaKus sim-mase
Instruction Fetch Width 4 inst/cycle 4 inst/cycle 4 inst/cycle
Instruction Window Size Single Window: 64| Single Window: 64 Split Window4 6
Physical Registers 32 100 100
Issue Width 8 8 8
Commit Width 8 8 8
Branch Predictor Perfect Perfect Perfect
Integer ALU units (Latency 3 3 3
&Ilu)I/Div Unit (Latency = 6) 1 1 1
Float ALU units 4 Exception call 4
Float Mul/Div units 1 Exception call 1
Write Back Bus Width Not Modeled 4 Not Modeled
Exceptions Not Modeled Precise Precise
Memory Latency 1 1 1
Number of Executed 6 Billion 6 Billion 6 Billion
Instructions
Average IPC 2.165 1.794 1.884
Average Simulation Time 6520.1 seconds 11268.7rekc0 15655.0 seconds

Chapter 11l

29

Although, other simulators such as publicly ikalde Liberty and Intel'sASIM also
focus on modularity, their over-head time on paimeunication is significant as the
number of signals increase. TBavay hand-shake port communicationLliberty and
multiple event-driven executions in ASIM slow thenalations as the complexity of the
design increases (Vachharajani et. al. 2002 [B])contrastOSU AbaKuss a cycle-time
simulator similar to Simplescalar. Thus, the sitiala speed ofOSU AbaKusis
compared only to those of Simplescatad and MASE. The AbaKus simulator can be
succinctly defined as an HDL that is familiar tadweare designers, but with a cycle-time
based simulation environment.

The OSU AbaKussimulation tool set enjoys the advantages of nmadyl and
simulation speed. Modularity is achieved by wgtimodule descriptions as done in
typical hardware description languages such addgeor VHDL. Changes to its modules
are simplified because the modules are not se@ligntiependent as is the case with
Simplescalar tools. In the following section, flexibility of the OSU AbaKusimulation
tool will be demonstrated by studying the effectwite-back bus widths. The write-back
bus is a natural part of our model because of thectdcorrespondence of simulation
modules with real hardware modules; whereas théewrack bus is not included in

Simplescalar or MASE module descriptions.

3.4 Discussion

Simulation design objectives of AbaKus computerhdecture design tool are
provided below followed by a brief discussion.
1. Modularity: Breaks down performance modeling intidedent pieces.

2. Reusability of modules: Increases productivity amlolistness of the software.

Chapter IlI 30

3. Familiarity with HDL programming.

4. Fast Simulation Speed.
1. Modularity:

All the modules in the simulation are accedsge@ither theGlobal Input Port Pointer
or theGlobal Output Port Pointer As indicated in Figure 3.8, the data elem&ims2
global pointers point are switched for each cycléhus the updated values are read by

the read ports while the write ports have a temyadata location to write its entries.

Global Input
> Port Pointer

Data
tructure A

Data
tructure B

Global Data
Structure A

Data
tructure A
Data
Structure B

Global Data
Global Output Structure B
== = «Next Cycle Port Pointer

Module n Module A

@ Current Cycle

Figure 3.8. lllustration of Module Port Communioat

2. Reusability:

Because our module port implementation is feiychronous, much less simulation
time is required to verify the architecture. Thexibility, i.e. reusability of modular code
of the AbaKussimulation tool will be demonstrated by studyihg effect of write-back
bus widths. The write- back bus is a natural pérour model because of the direct
correspondence of simulation modules with real Wwaréd modules; whereas the write

back bus is not included in Simplescalar or MASEloie descriptions.

Chapter 11l 31

3. Familiarity of HDL Programming:
The following code structure format is simitara behavioral HDL that is familiar to

hardware developers.

<nmodul e_nane>() {

QUTPUT* <out put _struct_poi nter>; /1 Qutput Port Definition

I NPUT* <i nput _struct _poi nter>; /1 Input Ports

I NPUT_STALL* <i nput _stal |l _poi nter>; /1 Propagating Input Stall Signals
/*nmodul e descriptions*/

QUTPUT = nodul e_function(| NPUT, | NPUT_STALL); /1 Modul e Descriptions
}// End of Module

4. Fast Simulation Speed:

Bothsim-maseLarson et. al., 2001 [14]) ardbaKushave similar and more detailed
architecture description tham-outorder The machine state éfbaKusandsim-mase
architectures recovers from exceptions at the cetapktage and write-back stage
respectively, whilesim-outorderrecovers from exceptions at the dispatch stage. Th
functional units are matched both in terms of numdfeunits and its latencies. In the
Chapter 4, the hardware and software logic of &chire modeling are discussed in

detail.

Chapter IlI 32

CHAPTER IV

SUPERSCALAR ARCHITECTURE MODEL

4.1 SUPERSCALAR DESIGN

This chapter describes about the basic strectlirAbaKus' superscalar processor
models in detail. The models are described inracstre similar to an HDL that is
discussed in Chapter 3. The functional descriptibthe modules is in standard C++.
The basic modules of the 7-stage pipeline are ¢hehf decode, dispatch, issue, finish,
write-back and complete. The implementation itketd each of these modules follows

below,

Fetch Stage

In the CPU architecture core, the fetch stdgbaKus architecture interfaces with the
memory. The memory unit can be a cache moduld@miain memory. In a simple
interface model, the fetch is interfaced to the maiemory. Although, the memory
interface architecture is a weak relationship il actual CPU-Memory behavior, it can

be extended to be interfaced with caches.

33

The following statement is a macro described in@@scalar (Burger and Austin, 1997,

[1]).
MD_FETCH I NST(i nst, nmem fetchPC);

It is a direct interface to the main memoryuieqg only 3 arguments, the instruction
object, main memory pointer and the Program Coui€&) to fetch. A cache functional
module can replace this statement in the fetch heodiHowever, 2 additional signal

arguments are required, if the cache functionaluteos interfaced, that is shown below,

cache_func(inst, cache nmem fetchPC, stall Up_signal, hit_signal);

The 2 additional signalstal | Up_signal andhit_signal are required to
ensure both timing as well as data coherency réspbc Following the instruction
fetch of the corresponding PC, the instructionadiplly decoded to identify its type and
operands. This is done for simulation speed-upadsaito balance the work-load.

Since the branch predictor look-up can haveigaificant adverse effect on the
simulation time, it is necessary that only brangstructions need to be searched in the
look-up table of the Branch Target Buffer (BTB).ette, after the type of instruction is
known through the partial decoder, only the braimstructions are allowed to access the
BTB and the branch predictors. This is descrilmeBlow Chart 1.

The work-load between these stages must baededabecause th#ecode stagdas
override logic, free-register priority encoder amgjister renaming where as tfetch
stageonly has the function of instruction fetch intexa to the main memory. However,
depending on the required timing, the fetch stagele further easily be super-pipelined

into instruction fetch and partial decoder stages.

Chapter IV 34

.

Set Fetch PC for
the first cycle

* Update the new Fetch PC
* Flush the previous Outputs

N

ves Is decodeStallUp or

dispatchStallUp High?

Assign Previous cycle’s Outputs
as Current cycle’s Outputs

Chapter IV

No

I

Fetch Instruction with
the FetchPC using
Simplescalar Memory
Model

Partially Decode the instruction to
know its Instruction Type and
Operands.

Is the Instruction a

v

Look up on the BTB and set the
Next Fetch PC depending on the
Branch Predictor.

Branch?

| No

v
* Assign the OpCode and partially
decoded values to the Output
Ports.

* Set Next Fetch PC.

ﬁ

Is no. of Instructions
Fetched ==S_WIDTH ?

_(Fetch Sequence
"\ Completed

Flow-Chart 4.1 Fetch Functional Module

35

Decode Stage

As mentioned earlier, the main functionalitytio stage as implemented in AbaKus
architecture is selectirfgee rename register, register override logiedregister
renaming logic
Selecting Free Rename Register:

This functional block selects the next freeistay available to be renamed. The
instruction set architecture registers are renaimedoid name dependency stalls in the
superscalar architectures. Basically, the numbezquired renamed registers is equal to
the sum of instruction window width and instructietch width.

Selecting the free register is simple. It o@guires determining the bit that is not set
from the list of busy bits. The corresponding xaé the busy bit is the register pointer

for the free register.

Override Logic:

This is a special case where the operands @bomore subsequent instructions in an
instruction decode group refer to the destinati@gister of any of its previous
instructions. In this case, the override logidkessure that the newly renamed register
that would only be updated in the next cycle gé&trenced to the operand that matches
its pointer in the same cycle. This logic is dssed by Shen and Lipasti, 2005 [16] and

is implemented in the AbaKus architecture model.

Chapter IV 36

Register Renaming:

Register renaming is done by having 2 regip@nter files — Architect Register
Pointer File and Rename Register Pointer File.s T§best explained with the help of the
following diagram in Figure 4.1.

Register File (RF): Holds the values of the coredudata.
Architect Register Pointer (RRP): Holds permanegtster pointers for the 32, LO and
HI registers of the Instruction Set Architectur8A). The updates are made at the

complete stage.

— | — — 1 = — — N | 1 |
! ‘!Q:Tll ! "'IT:.l 1 ! ! !
: | AT A { Dhata | : : :.
||||||| _.D__|+,|_|_|_|_|
| vahd |4 | vana | - | | l
I| |[Fomia|d L[[Toma | @ | | l
|| A — s -| o lel 8 1 | | L
|] p - B ——H vana || | |
| - L N Diata |]1 | L
YUl ot : L\T g = ! :
KX] —lH N t
] TATHET ™ t 5 l I T
gl ; l (1S [} | I
ol @ l | | | T
m| = E valid
] =] l | | I | Aasminan)
"E | & RF || ‘g | E & Ei
A [é _— T || @l E.j I E I age |l
] =—f vald ||| el I [~ | “--.-l::'.-.: H
I — Pl e O =222 I I | | I ARP
[RE|® | = | | e
| d REr || | o] |
1| [Prsry g il | l I l
| Eneosder —H Vali | | | | I
| s —ooo | | | | I
| | | | | |
. | | | | | |
g — I g ¥ | | |
I I v T | | |
| | — | L1 1 —_— 11— 1 |

Figure 4.1 Design of Rename Register Logic

Rename Register Pointer (RRP): Holds temporarsteigpointers for all the destination

registers of in-flight instructions in the pipelinad is updated at the dispatch stage.

Chapter IV 37

Hence, instructions with dependent source opereefdsto the RRP at the decode stage

to find out the correct dependent register pointers

Dispatch Logic
Instructions are dispatched to a special iesvn window buffer after the decode
logic. The number of entries in the instructiomdow is fixed during compilation time.

The fields of the instruction window entry are stmowv Figure 4.2.

busy |completed | misspeculated | finished | issued | inOrder | exception| alu | br multlls readLO | readHI wSlge
Insn Insn R|R|R| RD Ld_predict bpred_ STORE | LOAD

old |Pred PCINPC| PC

Address |Opcode|D|S | T Addr update Stack_index BUF ID | BUF ID

Figure 4.2 Fields of Instruction Window Entry

The implementation of the instruction windowffeu is a choice of the designer. For
hardware logic implementations such as FPGA oroendC, it is efficient to implement
the instruction window buffer as a fully-associatimemory. On the other hand, for a
software simulation it is efficient to implementighspecial buffer as a direct-mapped
cache.

In Figure 4.2, the hashed fields represenhglsibit field and the remaining fields are
represented by 32 bits in the software implememati However, the number of bits
should be discerned carefully for the hardware @nmmntation depending on the

requirement. The summary of description of eaelifis described in Table 4.1.

Chapter IV 38

TABLE 4.1. SUMMARY OF DESCRIPTION ON THE FIELDS OF THENSTRUCTIONWINDOW

Name of the Field

Description

Busy Indicates the entry is busy or free.
Indicates the instruction Is
Completed completed/committed
Indicates the instruction is misspeculated
Mis-speculated and have to thrown out.
Indicates the instruction has finished
Finished -
execution
Indicates the instruction has its operands
Issued ready and is issued in the issue queue.
Indicates the instruction enforces order| of
fetch, i.e. the STORE instruction forces @all
InOrder other instructions fetched before it must|be
completed, if no load prediction/memary
disambiguation is turned on.
syscall or any special instructions that |is
Exception not implemented in the hardware to |be
treated as aaxception.
ALU Indicates an ALU type of instruction.
Indicates a BRANCH/JUMPtype of
Br : .
instruction.
ID Indicates a LOAD type of instruction.
Indicates a Multiplication/Division type af
Mult , .
instruction.
Indicates a lower 32-bit of the 64-bit
readLO o
multiplication result.
Indicates a higher 32-bit of the 64-bit
readH|

multiplication result.

Insn Address

Instruction Address (32-bit) of th

instruction

Chapter IV

39

Instruction Opcode (insn A & insn B) ¢

f

Insh Opcode the instruction

RD Destination Register
RS Source Operand A
RT Source Operand B

Rd_Old Old Destination Register
PC Program Counter
NPC Next Program Counter

Pred PC Predicted Program Counter at the bra

instruction

nch

_ Predicted Load Dependent Address | at
Ld_Predict Address
Fetch
Bpred_update Branch Update Structure Pointer
. Index of the Branch Stack for a direct jump
Stack_index . .
instruction.
STORE BUF ID Index of the top of STORE Buffer
LOAD BUF ID Index of the top of LOAD Buffer
0 — Indicates both Rs and Rt are not Ready.
Wake-Up

1 — Indicates either Rs or Rt is Ready.

The dispatch logic is described in the Flow i€A&2. The head pointer of the

instruction window is incremented and it is detered if the next ‘'S_WIDTH’ of

instruction window entries are available. If nbign the output port of the

dispatchStallUgsignal is raised high.

Chapter IV

40

Start Dispatch Sequence

* Free Busy Bits that were
set in the last cycle.

<l

Yes

Is dispatchStallUp or
i completeStallUp High? EN
[o]

Assign Previous cycle’s Outputs
as Current cycle’s Outputs

Is a LOAD
Instruction?

Is an inOrder
Instruction?

A,

No

* Store the top of STORE BUF ID

. * Store the top of LOAD BUF ID. —
Update STORE BUF Contents * Update LOAD BUF Contents.

* If cannot ByPass; Add the LOAD
Insn to the STORE’s wake-up list.

<
<

Y
A 4
A

Is only Rt
ready?

¥ - . 4
* Both Rs and Rt are Réii;hlgtlr\:vs;kztihe * Add the insn to the Rs * Add the insn to
Ready; Add the insn list P wake-up list. the Rt wake-up
to the COMMON st list.
READY QUEUE.

»
>

5

Add the insn to the Reorder Buffer

_WIDTH insn
windown are

Dispatch StallUp Ouput Port = HIGH

Instructions
Fetched ==
WIDTH 2

Yes
Dispatch Sequence
Completed

Flow Chart 4.2 Dispatch Logic

Chapter IV 41

Issue Logic

The issue logic reads the instructions inGloenmon Ready Quea&d adds it to the
separatéssue queuéhat is specific for each instruction type. Baflic there are 5
categories ofssue queue ALU, BR, LD/STORE, MULT/DIV and Other instructis
such asyscall] DLW, DSWand other floating-point instructions. It is imant that the
instructions have individual queues becaustahin one of the functional unit would not
stall-up the entire queue. The functional blockhafdispatch logic and the issue logg

illustrated in Figure 4.3.

ISSUE LOGIC
*Read Insn Window Ptrs from the
Ready Queue
* Check for FU availability and issue.
* If not Re-Enter them at the back of
the Ready Queue and proceed with
other insn ptrs.

DISPATCH LOGIC

* Instruction Allocation

* Transfer the READY instructions
(pointers) to the Issue Queue

ISSUE LOGIC

* If not READY, all i]
Dep;rtldency In’s?ruoc(t:?otr?stii the * Check the ‘ ‘ %LU Queue ‘ ‘ g
WAKE-UP TABLE number of ALUs,
MULs, Ld/Sts that it ‘ ‘ ‘BR Queue ‘ ‘ .
can issue in a
cycle. ‘ HD/ST Queue‘ ‘ L I]{)ead
ata
1/Div Queue | | Access
COMMON WAP ﬂ —
v READY QUEUE ‘ H)ther Queue‘ ‘
1] /

T If no FU is available;
! Re-Entry at the RegFile »
back of the queue.
Wake-UP Table
To Finish
Dependent Instructions are Stage

listed and awaken at FINISH

Figure 4.3. Functional Block Diagram of the Issugic

Chapter IV 42

[1] The pointer of the ready instruction that is pubithe Common Issue Ready
read and its corresponding instruction window eiaing the instruction type are
determined.

[2] Depending upon the type of instruction, it is thadded to the respective
instruction issue queue. Step 1 and 2 are cordinuetil all the ready
instructions in theCommon Issue Readye added into its specific instruction
type queues.

[3] Finally, if there is ncstall-up signal for the corresponding issue queue then the
instruction is assigned to the output ports fouéss Although, the instruction is
assigned for issue, it is only finalized, i.e. Bsue bitis set only in the next
cycle because there can be a stall ingkecute stagéhat is propagates to the
issue stagenly in the next cycle.

A Round-Robin priorityssue is implemented in order equally distribuk itistruction
issue among the different instruction types. Theber of instruction issues is set as a
compilation parameter in thec_datatypes.hfile. The issue queue stalls due to
unavailability of functional units and finalizatiaf the instruction issue are determined
in the next stage Execute StageThe number of entries in the individual issuewgiis
a compilation parameter and is set equal to thebeunof entries in the instruction
window. Stall-Up signals due to unavailabilityisfue queue entry is not implemented,
however,the optimal number of entries in the individualuegjueuas a topic of future

research.

Chapter IV 43

Execute Stage

The execute stage consists of ALU, Mult/Div, , BED/STORE and Float/Other
instructions functional units. Each of functionatits has latency, ‘m’, which is a
compilation parameter. Besides, the number oftfanal units, ‘n’, of each instruction
type is also a variable that is defined duringghegram compilation.

WB Stall

l | &5 1
LAT =m

WB Stall ‘ MUL/DIV [n] H N

LAT =m

‘ BR [n] ‘ ‘
LAT =m

m-d—x3

Read Data ‘ LD/ST [n] ‘ ‘
LAT =m

Float
/Exceptions [n] | —

LAT =m

RegFile

A0O0>» o

BUS | [
” ‘ Hinish Queue‘ ‘ To Complete
Stage

Write Data
Finish Bit Access

|

A

Write-Back
Bus Scheduler

‘ ‘ WVB Queue ‘ ‘ [—

A

Instruction-Dependency Wake-Up after Instruction Finish

Figure 4.4. Functional Block Diagram of the Exec8tage.

It should be noted that at the execute stagietba latency of the instruction execution
is simulated but the actual instruction executigkes place only at the finish/write-back
stage. The pipeline stage of the functional witmplemented as a circular FIFO queue.

The head and tail pointers of the queue are upadtedch cycle.

Chapter IV 44

The instructions are read from the issue queueamadassigned to the corresponding
functional units in a round-robin fashion. If nonttional units are available therstall-
up signal is for the corresponding functional unitassed high. After a fixed number of
cycles, the inserted instructions in the circult¥@® queue at the head pointer propagate
to the tail pointer. Once the instruction i.e. thetruction window ID reaches the tail
pointer, it is determined to be finished the exmgut As shown in Figure 4.4, the
instruction is then inserted into thieish queue

(s)

v

* Update the head and tail pointers of
the FIFO functional units (FU). If the FU
has stalled-up then the pointers are not
updated.

v

No

Is iterCount <
ISSUE_WIDTH

A

Yes

v

Read the next instruction in a Round
Robin Fashion and determine the type
of the Issued Instruction.

|

v

s a FU available for
this instruction?

No

]

* Stall-Up to indicate the Issue
Stage that this instruction is not
issued.

* Increment the stall counter.

Allocate the instruction to the FU
at the head pointer.

\

A
Execute Sequence
Completed

Flow Chart 4.3 Execute Stage

Chapter IV 45

Finish/Write-Stage:

The finish-stageis an important module as instructions are schedtdefinish by
accessing the write-ports of theegister File if required, and also its dependent
instructions are waken-up. In addition, the fumctexecution of the instruction takes
place at this stage through a subroutine macro-c8YM_CAT(.) As shown in Figure
4.4, the finished instructions are inserted int® BINISH QUEUE. The order in which
the instructions are scheduled into this queuera@tes the write-back bus scheduling
order. By default, the instructions are arrangedhe FINISH QUEUE in a FIFO
fashion. A more detailed study of scheduling th&riuctions in the FINISH QUEUE is
discussed later in Chapter 5.

The instructions are read from the FINISH QUE&HE assigned a write-back bus, if
available. If the write-back bus is not availakieen that specific Functional Unit is
stalled-up. Once assigned a write-back bus tht&uictson is set to finish, i.e. the
instruction is functionally executed and the resualte updated in the register file in the
next cycle.

Once the instruction finishes execution, itpeataent instructions are found by
walking through the dependent list of the wake-tnpcsure. The wake-up structure has a
list of instruction window pointers. Either the keaup bit of the dependent instruction
window slot is set to 1 or the instruction is diegtto the READY QUEUE depending
upon its operands validity. The finish-stage fimmlity is further illustrated in Flow

Chart 4.4.

Chapter IV 46

<

Finish Sequence
Completed

<
A

N

* Check each Functional Unit (FU) array for a
valid instruction until all the last stage of the
Functional Units are checked.

v

No
Is Stall-Up Low?

v

* If Stall-Up is High, it
indicates that the
corresponding FU index is
already in the FINISH
QUEUE. Hence, continue to
check at the Functional
Units.

Yes

h 4

Add the index of the FU
to the FINISH QUEUE
in a FIFO fashion.

J

»<_Is a FU to check?

lNo

s there available

Write-Back Bus?

s the FINISH QUEUE head
pointer != tail pointer?

Read the Instruction
Window ID from the FU and A
assign a Write-Back Bus.

v

EXECUTE the Instruction.

|

Wake-Up the dependent Instructions.

}7

Chapter IV

A
If the FINISH QUEUE is
not Empty, then Stall-Up
the respective FU.

A 4
Execute Sequence
Completed

Flow Chart 4.4 Finish Stage Logic

47

Complete Stage

Thecomplete stagencludes retiring the STORE instructions, executing FLOAT
and exception causing instructions, waking up ddeehinstructions and resetting the
instruction window and register pointer entries. abldition, the complete stage also has
in-order instruction checking mechanigmensure that the completing instruction is the
instruction in the program order. Apart from thdsactionalities, the complete stage
also takes care of memory disambiguation that ssudised later in this chapter. The
instructions are ready for complete, when they Havshed execution and assigned for
completion based on the program order. The maximumber of instructions that can
be completed is defined as COMPLETE_WIDTH in $icedatatypes.header file.

The flow chart in Figure 4.5 illustrates thenguete stage logic. When STORE
complete, it checks for data memory address viahaitn the load buffer, i.e. it check if a
load instruction after the store instruction hackadly finished execution. If it were the
case, then the finished load instruction would haatale value. Hence, those loads that
have memory violated are identified and are marked'memory violated’in the
instruction window. Later, as the load instructmmpletes, if therhemory violatedbit
is set, then, all subsequent instructions followtiihg load instruction are not completed
and initiates processor recovery state.

Similarly, as branch instructions complete, thext program counteri’s checked for
equality with the predicted program counter’if not equal, then all instructions

following the branch are not completed and processmvery is initiated.

Chapter IV 48

Start Complete
Sequence

Is the instruction’s
Finish Bit set?

No
Or

Is no. of insn
complete <
OMPLETE_WIDT

Yes

Y

Is the insn
No

Is the insn a
Branch?

”

speculated
correclty?

Yes

EXECUTE the Instruction.

v

Wake-Up the dependent
Instructions.

Is the insn a
STORE?

No

Is the insn a Load?

Check for Loads that have

Update the Branch
Target Buffer and the
Next PC, if the branch is
Mis-speculated.

Update the Load Dependence violated memory consistency.

Target Buffer, if the Load insn
has memory violated.

Update Register
Pointer Ports

Update Register

Pointer Ports

PROGRAM ORDER

\ 4

ERROR in ~
COMPLETION ~ J®

A

CHECKER

|

Is in correct Yes

s
|
|

v

End of Complete
Sequence

Flow Chart 4.5 Complete Stage Logic.

Chapter IV

\4

4.2 Store Buffer and L oad Dependence Prediction Mechanism

Memory consistency in a computer system hasrbec vital part in the design of the
multiprocessor systems. Although, there is onlg @mocess executing in a single-
threaded superscalar machine, the fact that inginsgcexecuted out-of-order introduces
the challenge to maintain memory coherency. Thieroof reads and writes into the
cache or the main memory must be maintained inrprogorder by the hardware logic
and any violation of this order can cause erroneesiglt in execution.

In the case of simple scalar pipelines, the orgnoonsistency is satisfied because the
writes and reads are inherently executed accotditige program order. However, in the
case of the out-of-order execution this order afeasing the memory must be enforced

by a special logic and bufferdead Finish BuffeandStore Finish Buffer

v v v v |EXECUTION CORE |
A A

L L

U U

0] 1 Ot

Mul

Div
Unit
0 L

Store to
Memory

Floating Point and
Exception Handling

Inorder Store Finish Buffer

\ 4 \ 4 l Load from Memory
l]
4_(WRITE-BACK BUS) Inorder Load Finish Buffer
S
COMPLETE

Figure 4.5 Load Finish and Store Buffer Models

Chapter IV 50

L oad Forwarding

This is a scheme in the out-of-order machineseduce the latency of the load
instruction by forwarding the data from th®re finish buffeinstead of accessing it from
the data cache. Store instructions write theitidason value into the store finish buffer
in program order and are then updated into the ecawhthe main memory — store
retirement. If a load instruction follows a stamstruction before the store instruction is

retired then the data can be forward to the loattuiction from the store finish buffer.

4.2.1 Load — Store Address Dependence Prediction

Resolving a load instruction quickly can resultincreased speed-up because large
percentage of instructions in the program is dependn the load instructions. Hence,
by predicting the dependence between a store autihstruction, a load instruction can
be allowed to by-pass a store instruction, if therao dependence between the pair of
instructions. The store finish buffer is used &tedmine if the load instruction can by-
pass the preceding store or has to wait till tbeesinstruction is executed.

The dependence is based on previous machimeeres due to load-store memory
violation, i.e., a load instruction had execute@rebefore the store to that location can
update the data. The load-store prediction buéfgiaced at the fetch stage and in most
cases it is similar to the operation of the bratarget buffer (BTB) except that the target
address is the speculated memory load address.reldtenship between the load and

store instruction can be determined in 2 ways.

Chapter IV 51

1. By matching the instruction address between the el store instruction.
2. By matching the destination memory address betvlezioad and store
instruction.
In the case of no prediction, loads by-pass stwstuctions without any restriction. The

number of load forwarding and recoveries due memahation are illustrated in Figures

4.6 and 4.7.
Number of Load Forwardings Exggrrls(rjed
for 6 Billion Completed Instructions O PC Pred
1.0E+09
- 8.0E+08
S 0
2 S6.0E+08 =
S T
6 ©
o 34.0E+08
€ o
S5 LW
Z 2.0E+08 l:
0.0E+00 +
402.bzip2 429.mcf 456.hmmer 458.sjeng 176.gcc 255.vortex Average

. @ NoPred
Number of Load Recoveries AddrPred
- . e
for 6 Billion Completed Instructions W AddreT
2 PC Pred
3.500E+08
3.000E+08 - - —
© —
S 2.500E+08 |-
-1 90
s §2.000E+08 . .
3 S1.500E+08
(0]
§ 1 000E+08 || —
5.000E+07 - I:l
0.000E+00 : : : ———
402.bzip2 429.mcf 456.hmmer 458.sjeng 176.gcc 255.vortex Awerage

Figure 4.6 No. of Load Forwarding and Memory Recmgewith destination memory address
prediction and instruction address (PC) prediction.

Chapter IV 52

As seen in Figure 4.6, the number of load fodivey is about 4 times more than the
case with no prediction. As the number of loadvemding increases the instructions that
depend on the load can be issued quickly and hesszdts in increased IPC as seen in
Figure 4.7.

Similarly, the number of recoveries in the catao prediction is about 15 times more
than with the prediction. This shows that load atates are highly dependent and it is
important to have some schemes like load-storertkpee prediction in the machine to

improve the performance of the processor.

. . @ NoPred
Comparison of IPC for Load/Store Dependency Speculations ® AddrPred
O PC Pred
O MASE
25 1 1 T T T T
2		I =		
i		—		

[1 | |
L5 | | | | |
O | | | |
o | | |

1 i | | | | |
1 1 1
| | |
0.5 | | |
1 1 1
| | |
O 1 T T T } } }

402.bzip2 429.mcf 456.hmmer 458.sjeng 176.gcc 255.vortex Average

Figure 4.7 IPC with and without Load-Store Depem@chrediction

As seen in Figure 4.7, there is about 50% iwgment on average IPC which is
significant considering the simplicity of the schenin addition, the low percentage of
recoveries with load-store address prediction aleweals that loads and stores
dependencies can be predicted with high degreeafracy. However, in some cases
both the dependence approaches fail resultingnraehine-state recovery. These cases

are as follows,

Chapter IV 53

1. Instruction Memory Address Prediction (PC):

for(i=1to 1 x 10"6) {

if (i mod2=0)

R3 = Load(&Y);
el se
R3 = Load(&2);

Store(&X) = R3;

In the above lines of codes, the relationslemieen a single load and store instruction
for a loop unrolled code cannot be established usscadahe loading memory address
toggles for every count. Hence, more dependentéegrhave to be stored to predict
dependence over number of memory addresses or lairtatmon of data memory address

prediction can be used.

2. Problem with Data Memory Address Prediction (ARted)

for(i=1to 1 x 10"6) {
R3 = Load(&Y);

Store(&X + i) = R3;

}

In the above case, the load memory data isdtoto different store location in the

iteration. Hence, it is not possible to estabégielationship because of ever changing

Chapter IV o4

store address. In this case, a sophisticated legng stride predictor or instruction

addressed based prediction can be used.

4.3 Summary

Memory violation due to load instructions ca detected when the store instruction
completes by simply checking the load finish bufféfhe completing store instruction
checks for a memory address match and then fotaardatch. If the data of store does
not match the data of the following load in theddiish buffer, then the load instruction
had violated its order of execution, it set a Initl adhe processor machine-state has to be

recovered once the load instruction is ready fongletion.

A more interesting challenge arises when aestora byte is followed by a load to a
word of the same address. Since, at this onlyta &gdress is present in the store finish
buffer. These cases are detected and the memalgtion bit in the instruction window
in set, initiating the machine-state recovery whtes load completes. Such occurrences
are not common and compiler can take care of ith@nging the store to a byte to store

to a word

Chapter IV 55

CHAPTER V

WRITE-BACK BUS SCHEDULING MECHANISMS FOR
MULTI-PORT REGISTER FILE DESIGN

In a superscalar processor each execution with, the exception of the store unit,
requires a write-back bus to update the state eftelister file. Ideally, each execution
unit has a write-back bus both to update the regide as well as to forward the results
to the waiting instructions. In order to reduce tlost of the register file and the cost of
instruction wake-up logic, we explore the effectlB& by having fewer write-back buses
than the total number of execution units. Furtr@enthe performance of various write-
back bus scheduler algorithms is also studied. afonbottleneck in the instruction flow
is the size of the register file write-back buseTize of the write-back is critical for the
following reasons:

a. The number of write-back buses is proportionalit® humber of write-ports in
the register file. Multi-port register files arepensive to fabricate as they require
more transistors and chip area. The cost of thii-part SRAM increases as,

wheren is the number of write-ports in the register file.

56

b. In the instruction scheduler design, special waéssue logic circuitry has to be
designed for each write-back bus to determineef dperands are ready for the
waiting instruction. Hence, the complexity and tcokthe hardware increases
with the size of the write-back bus.

c. For an architecture design that is only limiteddaga dependencies, the number
of register write-back buses limits the flow oftimgtions. This exacerbates the
data dependency problem as the instructions wailipiate the results in the

register file.

In order to emphasize only the effects of thigeaback bus width, a sufficient number
of execution units is simulated. Many stalls theg incurred at the finish stage are only
due to lack of sufficient write-back buses, evelyustalling the upstream instruction
fetching. The problem of insufficient write-baclkudes is more pronounced in a
Simultaneous Multi-Threaded (SMT) processor. ASSMT type processor maximizes
the utilization of the execution core, there is mutore demand on the write-back buses
than with a superscalar processor. Hence, it pomant to understand the size and the
write-back scheduling logic for these buses caexpensive but when lacking will tend

to limit the instruction flow.

5.1 Related Work

A delay write-back queue strategy similar ttoad and store buffer is proposed by
Kim and Mudge, (2003 [17]) to reduce the numbexvote ports. In their paper, they

show a 20% savings in energy for a modest penaliyC. A multi-level register bank is

Chapter V 57

proposed by Cruze et. al., (2000 [18]), as anradiire to reduce the register file write-
ports. This scheme is further extended by Balasubnian et al., (2003 [19]), with a
register-file allocation policy to increase the hates in level 1 register file. A low-
power 12-port multi-bank register file is designag Sueyoshi et al., (2004 [20]), and
shows a 72% decrease in area compared to a 12qlbldased register file.

Kim and Mudge, (2003 [11]), use the more comnkdRO scheduler between the
functional units and the write-back buses. Ourepaghows the relationship between
various bus schedulers and its effect on CPU pedace in a detailed manner.
Contention between write-back buses is identifigémotherman et al., (1993 [22]), and

takes a heuristic approach to reduce this problem.

5.2 Write-Back Bus M odédl

In this section we describe architecture detdiht are associated with simulating the
write-back buses. In our paper, the write-back hliscation policy is used as an
example of this capability since such subtle butponmant aspects of computer
architecture design are not always modeled in Siswallar tool sets [1].

A detailed model of the finish stage is illagéd in Figuré.l. The write-back busses
in our simulations can be considered to be extessal the "common forwarding data
bus" in Tomasulo's classic algorithm. The writefohusses not only access the ports of
the register file but also update the control infation for store and branch instructions.

5.2.1. Round-Robin Issue Logic

Chapter V 58

The write back bus allocation strategy canmdtstudied independently of the issue
strategy, but we did not intend for our paper taletailed study of pipeline scheduling
algorithms. We are attempting to show the easke witich detailed studies of hardware
design trade-offs can be done with our modular @gghr. The instructions in the issue
ready queue are inserted by the dispatch stageindissue, the instructions are taken
out of the issue queue and are issued to apprefdyipé execution units in a round-robin
fashion. This results in the instructions beingtrabuted equally in their set of execution

units.

5.2.2. Execution Units:

The execution units are grouped into three aats are scalable. All the execution
units in each of the sets have individual stalhalg.

a) ALU: Executes integer add, sub and bit-wise typ@structions.

b) MUL/DIV: Executes integer multiply and divide typé instructions.

c) Other Execution Units (OEU): Executes other renmgjninstructions, such as
load, branchandfloat instructions. Besides, it also handéésreinstructions that
are processed by simplified store buffer logicnc8i the simulated architecture
does not model the floating-point register file @ik float instructions in the
SPEC CPU INT 2000/2006 benchmarks are treatek@sptionsand are handled

precisely.

Chapter V 59

Finish Stage: Detailed Write-Back Bus Controller Mechanism

CGEEEEES GE) GE) GEEEEEED GEP GED CEEEEEED GED GED GEEEEEED GED GED e
Issue Ready Queue

o(1]|2|3|4|s

ALU Stall [0-3]

Multiply/Divide Stall [0-1]
Load/Store, Float,

3
S
=3
S
© .
A NS N N S ‘
Branch and other
execution unit models
o

Write Back Bus Finish
Scheduler Queue

\‘
Write Back |
Bus Width I

]

Register Update

n Destination
Instruction Wake-up Logic Regioior Address

Round Robin
ion Issue
Scheduler

EXECUTION CORE

ocr»
=Cr>» <}

|
\“472 Ofcles—o‘

Result Register File (RF)

Set Valid Bit

Figure 5.1. Detailed Architecture Model describihg Write-Back Buses at Finish Stage

C. Finish Queue and Write-Back Bus:

As shown in Figuré.l, the finish queue is a part of the write-back sakeduler
implementation. It is not an extra storage spasednly models the last stage of the
execution units. The write-back bus schedulerrisstne finished instructions that are
waiting for the write-back bus in the finish queuelhe write-back bus width is
parameterized to study the effects of IPC on varyire write-back width. As the size of
the write-back bus increases, there is a propatimerease in the number of write-ports

in the register file and the forwarding bus linesihstruction wake-up.

Chapter V 60

5.2.3. Distribution of Write-Back Bus Size:

The maximum possible IPC for hypothetical psste architecture, limited only by
fetch width and data dependencies is an interesiaging point for the study of the
effects of write-back bus width. All other strualbhazards and control dependencies are
ignored in order to focus the study on the writelblaus width. As mentioned in section
2, only those benchmarks which could be succegstwimpiled for Simplescalar MIPS
IV instructions are used in this study. Moreovre subset of SPEC CPU INT
2006/2000 benchmarks actually represents a balamtgtduction mix Phansalkar

2007[5)).

IPC for Different Fetch Widths
Window Size = 96; Issue Width = 24; Write Back Bus = 44

T
| |
| |
l l
| |
| | —m— Fetch Width = 16
|
A ‘ A— Fetch Width=8
n ‘ | h Width = 4
A N + Fetch Width =
- $ + w
! 03
| |
| |

IPC

Figure 5.2. IPC of a hypothetical processor usiB§ES CINT 2006/2000 Benchmarks

Chapter V 61

4.5 ‘ T T
| | |
4 | ! ! @ 402.bzip2
| - | | | 1|
3.5 3 | : : B 456.hmmer
3 : : :
: : : 0 429.mcf
o 25 | | | _
o | | | 0O 458.sjeng
= 5
| |
1.5 ‘ ‘ m 176.gcc
| |
1 A : : W 197.parser
| |
0.51 | | [255.vortex
| |
O T T T
2 4 6 8
Write-Back Bus Width

Figure 5.3. Comparison of IPC for Different WrBack Bus Widths for fetch width of 4

Figure5.2 shows that for a hypothetical processor that Ig bmited by a fetch width
of 4 and data dependencies, an average IPC of &&&hievable. With this as the base-
line, the write-back bus width is varied to obttie sensitivity of IPC to write-back bus
widths. The sensitivity of the write-back bus viidb IPC is shown Figurés3 and5.4.
For small write-back widths, there is a linear tielaship between IPC and the write-back
bus widths.

As the write-back buses are a critical and egpe part of the design of the
microprocessor, it becomes important to verifynfyaf the bus scheduling algorithms
would result in a better IPC. As shown in Figird, a Round-Robin write-back bus
scheduling logic is used and its average IPC issoreal. An important well known
constraint is that the IPC of the microprocessamoca be greater than the width of the

number of the write-back bus.

Chapter V 62

Average IPC Fetch Width =4
=1/ (Average(CPI))
4.5
4 ,
3.5+
o 37
o
% 2.5+
g 2
< 15 =€
1 ,
0.5 +
0 : :
0 2 4 6 8
Write Back Width

Figure 5.4. Average IPC for Fetch Width of 4

But, it is curious to find the type write-back sdhéng algorithm that is chosen to
maximize the IPC for a given number of write-baclsés. As indicated in Figuie4,
since the write-back bus width of 3 falls in theelar range of IPC, we select this width to

analyze the scheduling algorithms in sections 67and

5.3 Write-Back Scheduling Logic

In this section, the various write-back schedylalgorithms that are tested in

simulations are discussed.

5.3.1. First-In First-Out (FIFO):

a) Strategy:
First-In First-Out (FIFO) logic is most commqguoeuing model in memory systems. It
is simple to implement as it naturally follows th&eline model of the architecture

design. At the last stage of the execution pigelime FIFO scheduler schedules the

Chapter V 63

instructions to the write-back bus depending ondtker in which the instructions finish.

At the finish stage, the scheduler keeps trackxetetion units that are ready to finish.
High priority is given to those instructions thati¢hed in the previous cycles and are
waiting for the write-back bus than is given totinstions that finish in the current cycle.

An execution unit stalls in a given cycle, if itdhan instruction that is ready to write-back
its results but is unable to access the write-larsk

b) Benefits:

The implementation of the FIFO scheduler ispdemand requires less hardware. It
removes long waiting times for accessing the woaek bus and hence keeps the
execution units from stalling the pipeline.

c) Pitfalls:

The FIFO scheduler is likely to give prioritg the execution units that have less
latency than other execution units, since they ramge likely to finish first in the
execution core. Hence, ALU type of instructionsgigen more priority than other

categories of instructions.

5.3.2. Round-Robin (RR):
a) Strategy:

Round-Robin (RR) scheduling logic is an unbiabeis scheduling logic as it gives
equal priorities to all the execution groups. Tingructions scheduled to the write-back
bus alternate between the ALU, MUL/DIV and LD/ST/BRecution pipelines.

b) Example:

Chapter V 64

Figure5.5ashows the write-back bus state at thepcle. The RR scheduler starts by
giving priority to the ALU, MUL and OEU instructiotype (shaded boxes). As shown in
Figure5.5h in the (n+1¥ cycle the scheduler starts by giving priority e tMUL, OEU

and ALU instruction type.

c) Benefits:
Ld/st, Br and Ldist, Br and
Other E: ti Other Execution
ALU[0-3] MULI[0-3] U?,E.S’E‘Z,"E“U'f" ALU[0O-3] MUL[0-3] ynits (OEU)
[0-3] [0-3]
:]: I I Finish I l I Finish
Queue ‘ Queue
OEUI0] > n 3 ‘
Round- MUL[1] > n Round- MUL[1] > n I
Robin MUL[O} > n 2 Robin
Write ALUR2 S n Write ALU[2] > n 3
Back Bus Back Bus
Schedufer ALU[1]>n-1 Scheduler ALU[] > n-1 2
ALU[O] > n -1 1
i Writ
o T > we T Wi
Bus | |2 | MUL[0] > n Bus 2 | ALU[] > n- 1
Wiath =3 3 OEU[0] > n Wiatn=3 |13 ALU2] 5 n
a. Bus State at nth cycle b. Bus Stafe+1)th cycle

Figure 5.5 Round-Robin Write-Back Bus Scheduler

Any dominance by a particular type of instrantithat would normally result in
instruction window stalls due to data dependenceedticed since the priorities are

normally distributed.

d) Pitfalls:
Figure 5.6 shows the dynamic instruction mix in SPEC 2006R2®&nchmarks.
Designing a bus scheduler that allocates the icistns to the bus with equal priorities

may not always yield the best

Chapter V 65

Instruction Mix in SPEC 2006/2000 Benchmarks
=
> 0f 1
S 80% | \ NN
9 \ \ p @ Float
g 70% | AR k _
2 60% - L = o | Integer Operations
2 50% - o | O Conditional Branch
© 40% 1] 0O Unconditional Branch
o 30% -
g 20% | | | |3 Store
S 10% — |@Load
o 0% w
o <
¥ & &
O W e P

Figure 5.6 Instruction Mix in SPEC 2006/2000 Bemelnk

results, considering the variations in instructieguencies and the dynamic behavior of

the program during run-time.

5.3.3. Priority to Load/Store, Multiply/Divide adlU instructions (LMA):

a) Strategy:

This strategy is designed to exploit the higigéiency of Ld/Br/float instructions in the
SPEC 2006/2000 benchmarks when compared to intggger instructions as seen in
Figure 5.7. Hence, in this strategy order of priority is givby OEU (Ld/Br/float)
instructions followed by MUL/DIV instructions andLAJ instructions — LMA priority.

b) Example:

As shown in Figur&.73 in the ' cycle the OEU type of instructions gets access to

the write-back bus and is followed by the MUL/DIwstruction. The ALU execution

pipelines get stalls, until they get access tonthige-back bus in the (n+1)cycle.

Chapter V 66

Ld/St, Br and
Other Execution

Ld/St, Br and
Other Execution

ALU[0-3] MUL[0O-3] ynits (OEU) ALU[0-3] MUL[0-3] ynits (OEU)
. -3, N -3,
I l l Finish I l l Finish
‘ Queue ‘ ‘ Queue
OEU[] > n 2
\ OEU[0] > n 1 \ |
OEU
\?vﬁtlé MUL[O] > n 3 Write
Back Bus ALU[2] > n Back Bus ALU[2] > n 3
Scheduler ALU[]>n-1 ‘ Scheduler ALUM] > -1 3
ALU[O] > n - 1 ‘ ALUO] > n - 1 1
Write 4 [OEU[0] > n Write 1 ALUIO] > n-1 |
Back Back 2
Bus 2 OEU[] > n Bus ‘ ALU[] > n -1 \
idth = ‘ Width =3
Width=3 | [3 | MULIO] > n 3 ALU[2] > n

a. Bus State at'hcycle b. Bus State at (" T)ycle

Figure 5.8 LMA Write-Back Bus Scheduler
c) Benefits:

It is likely that the Ld/Br/float instructiorthat use OEU execution pipelines stall often
due to their high instruction frequency as indidate Figure 5.7. Hence, providing a
high priority to this group of instructions reducds number of stalls in the OEU
execution pipelines.

d) Pitfalls:

Providing high priorities to only load instriarts causes the ALU execution pipelines
to be starved for access to the write-back busis Tésults in the instruction window
stalling the dispatch and fetch logic until the Aledecution pipelines get access to the

write-back bus.

Chapter V 67

5.3.4. Priority to the instruction that has HigHDependent Instructions (PHD):

Ld/St, Br and
Other Execution
ALU[0-3] MUL[0-3] uUnits (OEU)

[0-3]
—P % 4
l \ 4
Number of Finish
Dependent Queue
Instructions
2 OEU[1] > n 3
1 OEU[0] > n
6 MLILIOT S n ‘
o' d | 1
0 ALU[2] > n \
HDI
Wiite 4 ALUM]> n-1 [2
Back Bus 1 ALU[O] > n -1 ‘

Scheduler

\

Write
1
Do MUL[0] > n \
Bus 2 | ALU[M] > n -1 |
Wiath=3 113 | OEU[] > n |

a. Bus State at'hcycle

Ld/St, Br and

Other Execution
ALU[0-3] MUL[0-3] Units (OEU)

N -3,
\ 4 l l
Number of
Dependent
Instructions
1 OEUI[0] > n 2
HDI ‘
Write
Back Bus 0 ALU[2] > n |3
Scheduler ‘
1 ALU[0] > n- 1 ‘ 1
Write 1 ALU[2Z] > n \
Back
Bus 2 | OEU[0] > n ‘
Width=3 | |3 ALU[2] > n \

b. Bus State at (" T)ycle

Figure 5.9 PHD Write-Back Bus Scheduler

a) Strategy:

In the Priority to Highly Dependent instructigfHD) scheduler logic, the scheduler

checks the wake-up table to determine the numbenstfuctions that depend on the

instruction that is ready for write-back. High gty is provided to the instruction that

has high dependency on it.

Table5.1 shows the number of times exactly 2 instructidhsjstructions and more

than 3 instructions are woken-up in the processorguRR write-back scheduler. Since,

on average 4.6% instructions out of 6 billion iostrons are dependent on 2 or more

instructions, high priority is given to those ingitions that have 2 or more instructions

depending on them.

Chapter V

TABLE 5.1 INSTRUCTIONWAKE-UP FREQUENCYUSING
RouUND RoBIN WRITE-BACK SCHEDULER

Instruction Wake-Up Frequency Total
Benchmarke Instruction
S 5) _ Mor% than Wake-Up
Instructions| ° mstructions . Frequency
instructions
402.bzip2 6.58E+0] 1.27E+07| 1.98E+07| 9.83E+07
456.hmmer 3.39E+0 4.66E+05| 2.31E+05| 3.46E+07
429.mcf 9.61E+07 2.21E+07| 5.65E+07| 1.75E+08
458.sjeng 1.72E+0 3.85E+07| 4.21E+07| 2.52E+08
176.gcc 1.69E+0¢4 8.35E+07| 9.58E+07| 3.49E+08
197.parser 2.93E+08 2.09E+08| 8.48E+07, 5.86E+08
255.vortex 3.45E+0¢ 5.22E+07| 5.74E+07| 4.55E+08
b) Example:

Figureb.8 shows the example of a PHD scheduler. In Figu8e the instructions that
have high dependency win the write-back bus inrttrecycle and then in the (n+1)
cycle the other instructions get the bus allocation
c) Benefits:

As data dependency is the main problem causistguction window stalls, the HDI
scheduler reduces these stalls by providing acsessethe instructions that have
dependent instructions waiting on them. Hences Huheduler is designed to issue a

group of data independent instructions that arevjasting on one instruction to finish.

Chapter V 69

d) Pitfalls:

The PHD scheduler cannot determine the depeydength of a chain of instructions
that are waiting on one another. Figl® highlights the problem of chain data
dependency. The PHD scheduler fails to allocas tinghest priority to instruction in
slot 1, since a chain of instructions in the instian window all have a dependency

length of 1 in their wake-up table.

OEU | OEU | MUL | ALU | ALU | ALU

Figure 5.9 Chain of Data Dependency in an Instomc#/indow
5.3.5. Priority to Program Order Instructions (PO):
a) Strategy:

In this strategy, high priority is given to timstruction that is dispatched first i.e. in the
program order. It is likely that later instruct®om the program code are dependent on
the instructions that are issued earlier. It enuasses the characteristics of order
dependent FIFO and data dependent PHD schedulexffotiate priority to access the
write-back bus.

b) Benefits:

The problem of chain data dependency as showkigure5.9 is solved by simply

scheduling the instruction to the write-back bughie program order. This is an effective

algorithm that allays the problem of long waitimgés in the instruction window.

Chapter V 70

c) Pitfalls:

As there is no check on the number of instainstion which the scheduled instruction
is dependent, there can be instances where thadgtieh scheduled to write back had no
dependent instruction on it. Moreover, the haréwar implement the PO scheduler is
expensive, requiring many comparators and ALUsrdento select the instruction in the

program order at the finish stage.

5. 4. Simulation Methodology and I mplication of scheduler mechanisms

A write-back width of 3 is selected to compaliferences between the write-back
strategies that are discussed in section 5.3. bEmehmarks are selected from SPEC
CPU CINT 2006/2000 suite and are complied with S@sgalar’'ssslittle-na-sstrix-gcc
compiler. The other benchmarks in the SPEC CINfchmark suite have compilation
problems and hence are eliminated. However, basedhe SPEC suite similarity
analysisPhansalkar2007 [28], 402.bzip2, 456.hmmer and 429.mcf atemnined to be
dissimilar and hence unique in program charactesistAll the benchmarks are supplied
with reference data input sets and are run untill®n instructions are executed. Table
5.2 provides the details of the simulated microardaiitee design.

TABLE 5.2 MICROARCHITECTUREDETAILS OF THESIMULATED PROCESSOR

Design Parameters OSU AbaKus
Instruction Fetch Width 4 inst/cycle
Instruction Window Size 96
Physical Registers 100
Issue Width 14

Chapter V 71

Commit Width 8
Branch Predictor Perfect
Integer ALU units (Latency =1) 3
Mul/Div Unit (Latency = 6) 1
Ld/St/Float/Br Unit (Latency = 2) 4
Write Back Bus Width 3
Exceptions Precise
Memory Latency 1
Number of Executed Instructions 6 Billion

As shown in Figur®.4, a write-back bus width of 3 is chosen since ihishe linear
range of IPC. All control dependencies are elimadaby considering a perfect branch
prediction in the simulation. Memory latencee kept at 1cycle. These assumptions
are made to focus the study on the effects of thieuwack bus width on IPC. As a width
of 3 is the bottleneck of the architecture, the ED not be higher than 3. Figwe0
shows that performance of the simulated architectith various write-back scheduling

algorithms. The implications of each schedulerdiseussed below.

5.4.1. Round-Robin Schedule (RR):

Since the Round-Robin (RR) write-back bus scledgive all the execution units
equal priority, it provides a base-line schedutar dffective comparison with other bus

schedulers.

Chapter V 72

Comparison of IPC for various Write-Back Bus Scheduling Mechanisms for
Write-Back width =3
35 T T T T T
| | | | |
34 | | | | |
1 1
25 ‘ : I FIFO
2 | ! ! @RR
O | |
a ! ! O PHD
15 ! ! = LMA
1 i i BPO
| |
05 | |
0 | / /] | |
402.bzip2 456.hmmer 429.mcf 458.sjeng 176.gcc 197.parser 255.vortex

Figure 5.10 Comparison of IPC over various WriteiBBus Scheduling Mechanisms

TABLE 5.3IMPROVEMENT IN IPCFrROM ROUND-ROBINBUS SCHEDULER

Improvement = FIFO PHD LMA PO

(l PC -1 I:)CRoundRobin) / (l I:)CRoundRobin) (%) (%) (%) (%)
402.bzip2 6.145 6.681 -0.398 5.088
456.hmmer 7.529 7.549 5.62§ 7.582
429.mcf 5.481 5.984 -0.288 5.400
458.sjeng 5.973 6.300 -0.30% 7.735
176.9cc 6.209 6.556 -1.404 3.305
197.parser 2.093 2.437 -0.124 3.884
255.vortex 7.960 8.124 3.029 9.475
Average Improvement in IPC (%) 5.913 6.233 0.881 6.067

5.4.2. FIFO Write-Back Bus Scheduler:

As indicated in Tablb.3, the FIFO bus scheduler is superior to the RouodiR(RR)
bus scheduler with an improvement of approximaéty This increase can be attributed
to the priority that the FIFO scheduler gives timshed instructions in execution order.
Hence, there is less waiting time for an instructilbat is waiting for the write-back bus.
On the other hand, RR scheduler may result in aiton where an instruction that
finishes in the # cycle waits for the bus, while the instructionattfinishes in (n+1)
cycle gets access to the write-back bus. Thissleéada stall in the instruction window

and fetch stages.

Chapter V 73

5.4.3. Priority to High Dependence (PHD) Write-Bd®ilks Scheduler:

The Priority to High Dependence (PHD) schedudgyic also performs well as it
schedules an instruction to the write-back bus Hzt a high instruction dependency.
Hence, more instructions are issued as their dgpardiencies are resolved with priority.
This effect can be seen in Figlsdll, where there are more write-back stalls in the PHD
scheduler than the RR scheduler. This impliesdhatto the increase in issue rate more
instructions can finish than the RR scheduler aednaiting for the write-back bus.

Conversely, as observed in Fig@&Q the increase in write-back bus stalls does not
decrease the IPC of the PHD scheduler. This isuse as seen in FigukelQ the
average instruction window stalls that stall instien dispatch is lower for the PHD
scheduler than the RR scheduler. As the instmatimdow size is 96 instructions, the
issue logic is able to issue more instructions &hile data dependencies are quickly

resolved using the PHD bus scheduler.

Average Write-Back Stalls by Execution Units for various Write-Back
Scheduling Mechanisms

2.00E+09

Y

1.20E+10 : ; ; ; ;
3 LOOE+10 | | | i _

2 8.00E+09 : \\

@ 1 NN | \

% 6.00E+09 ‘\ i \ i \ DE(:/S’[&
% 4.00E+09 \ | \ \‘\\ \ B ALU
< i

0.00E+00
FIFO RR PHD LMA PO

Write Back Alogrithms

Figure 5.11 Average Write-Back Stalls by Executimts for various Write-Back Bus
Schedulers.

Chapter V 74

5.4.4. Load-Multiply-ALU (LMA) Write-Back Bus Schkst:

As shown in Figur&.11, priority to load instructions reduces the writgck stalls that
are caused by OEU pipelines. However, as showsgare5.12the average number of
instruction window stalls is 14.8% more than thstriaction window stalls of the PHD
scheduler. As a result the IPC of the simulatetiisecture with LMA scheduler s 6%
less than the FIFO, PHD and PO bus schedulers. rdlagvely low IPC by the LMA
write-bus scheduler can be attributed to the 2n2giincrease in ALU execution pipeline
stall as observed in Figukell This is because resolving ALU instructions isical to
the mitigation of the instruction data dependencés the LMA gives low priority to

ALU instructions, its IPC is less than the FIFO,PEnd PO bus schedulers.

Average Instruction Window Stalls various Write-Back Bus
Scheduling Mechanisms for Write-Back width = 3

9.0E+08
8.0E+08
7.0E+08
6.0E+08
5.0E+08
4.0E+08
3.0E+08
2.0E+08
1.0E+08 -
0.0E+00

Average Instruction Window Stalls

FIFO RR PHD LMA PO

Figure 5.12 Average Instruction Window Stalls farieus Write-Back Bus Scheduling
Mechanisms

V. Program Order (PO) Write-Back Bus Scheduler:
As shown in Tablé&.3 the characteristics of the PO bus scheduler aib Bus

scheduler mechanisms are similar. Since the POsbbeduler gives priority to the

Chapter V 75

instruction in the program order, it is likely tHater instructions are data dependent on
this instruction. Hence, as seen in FigbrEl, the PO bus scheduler has more write-back
stalls than any other scheduler logic. This indisghat more instructions have finished
execution and are waiting for the write-back b@n the other hand, Figufe12 shows
less average instruction window stalls than the BRR scheduler. This indicates that
compared to the RR bus scheduler the issue rdéegs and the completion time for an

instruction is small.

5.5 Summary

The flexibility, simulation speed and closendsshardware logic design that is
emphasized in the design of tAbaKusmicroarchitecture simulator is demonstrated by
analyzing various write-back bus strategies. A®ashin Figure5.1, IPC can be limited
by the write-back bus width of the architectureigiesand can be an important bottle-
neck in achieving higher CPU performance, espsgciallSMT architectures. There is a
need to develop an instruction issue policy thatesponds well with write-back bus
scheduling policy to maximize the utilization ofp@nsive read and write ports of a

register file.

Chapter V 76

CHAPTER VI

CONTROL DEPENDENT LIMITATIONS ON

INSTRUCTIONS PER CYCLE

“Prediction is very difficult, especially about theture”
- Niels Bohr

6.1 Program Dependencies

As human brain thinks and reasons out befameaites a decision, it is not clear if this
logic flow is conducted in a sequential or paraitednner. However this may be, some
degree of sequential and parallel process is irebhefore the brain arrives at a decision.
This argument is necessary because it defines homahs use computer languages to
model and describe their logic. Thereby, the mataf these program descriptions
introduces dependencies before the logic is condputdhese inherent program or
instruction dependencies are classified into 2 syp®ata Dependencieand Control

Dependencies

77

Instruction data dependencies exist in the nammgdue to logic flow and it requires
computation time to resolve these dependencie®y €an be regarded as the last major
bottle-neck of sequential programming model. Inngnavays, resolving them for a
single-threaded process depends on the logic géiscriand physical design limitations.
However, solutions have been proposed to hide #tenty of the data dependent
instructions (IBM 2005 [29][20]) through multipleapallel threads.

On the other handpntrol dependencies a program can be related indirectlydiata
dependencies Nevertheless, the control flows of the prograeams to be predicted to a
fair degree of accuracy (Nair, 1995 [31], McFarlid@93 [32]) for machines with small
instruction fetch. But, it introduces a limitatiéor wider instruction fetch machines and
is harder to predict the control flow. This is haese of lack of sophisticated hardware
with small latency to recognize the pattern of pinegram behavior or in general, due to

the innate behavior of the program.

6.1.1 Higher IPC with Superscalars

The goal of the superscalar architecture desgexploit available Instruction Level
Parallelism (ILP) in the program code and henceadbieve maximum IPC. But, to
maximize the utilization of ILP, the control flow the program has to be predicted with
accuracy. Branch predictors using 2-bit saturatiognters and a branch pattern history
table are used to predict a branch instruction withir amount of accuracy using gshare
branch predictor (McFarling, 1993 [32]).

Maximum possible IPC of a machine is equahtriumber of instructions fetched per
cycle, denoted by ‘s’- the fetch width, assuming trumber of instructions dispatched,

issued, finished and completed are all equal catgrehan ‘s’. Hence, with the increase

Chapter IV 78

in fetch width the IPC is bound to increase. Bhbis is not found to be true. This is
because as the fetch width increases the numbérasiches in the fetch group also
increases. Since, the branch predictor now hakdose among multiple branched paths
and predict the correct one. This problem worsenthe machine is super-pipelined and
there are more unresolved pending branches duendeease in branch execution
latencies.

Let a single branch misprediction errorReandk be the number of unresolved
branches in the machine. Then, the probability #ibthe k' branches are predicted
correctly is given by [(IPe) " K].

That implies, the probability that at least one outk’ branches is mispredicted is given

by,
1—[(1Pe) ~K equ(6.1)
TABLE 6.1 PROBABILITY OF MISPREDICTION
Number of | P[at least one
Unresolved | branch is
Branches mispredicted)]
0 0
1 0.1
2 0.19
3 0.27
4 0.34
5 0.41
6 0.47
7 0.52
8 0.57
9 0.61
10 0.65

As seen in Table 6.1, simply using branch predictio predict the control flow is not
reliable if there are 6 or more unresolved pendirenches in the machine because the

branch prediction error is close to 50% or more. fdct, 27% prediction error for 3

Chapter IV 79

pending branches is high enough to deterioratdRie Hence, a better solution other
than to simply trust the branch predictor is regdito have a high IPC.
Why not simply build multi-cores to solve this plein?

Building parallel core architectures resultsspeed-up provided there is enough code
parallelism to extract in the program. ILP is muhre at finer granularity than task or
data parallelism that useful for multiple paratiele architectures. In additioAgerwala
and Cocke (IBM, 1987 [33]) showed that it requires at led@&§% of parallelism in
programs for a parallel machine 00 processors to equal the speed-up of a parallel
machine with jus6 processors but with twice the speed-up in its eptial part of the
program.

High parallelism is found in programs developed numerical computations or
gaming applications. But, only a few programs hsweh high degree of parallelism (>
75%) and hence it is important to address the probdéroontrol dependencies that is
present in the non-parallelizable code to boostpbdormance of modern computing

machines.

6.2 Multi-Path Execution Schemes

Streams of instructions from both paths arl¥etd after a branch instruction until the
branch gets executed. This strategy seems tordighgforward as there is no influence
of branch prediction and most importantly the maehneed not recover from the
misprediction where many useful CPU cycles are |@$tis is because following both the

paths of the branch guarantees completion of ottevglaen the branch is executed.

Chapter IV 80

On the other hand, following both paths leadsplitting the machine resources among
the paths where one is discarded. Furthermorteifpath has a branch instruction it
forks 2 new paths and so on. This results in anease in the number of paths of the
order of (2”n), where ‘n’ is the number of unresal\branches. As each path after the
branch instruction maintains its own sub-set ofistegs and pointers that are then
updated at complete, they well fit into the defomntto be called athreads

Now, let's conduct a simple analysis to underdtthe performance of the branch
prediction and multi-path execution schemes. Tepkbe analysis simple, let's assume 3
consecutive branches that are executed in pagittlhence all have the same latency at
which it is resolved.

Let ‘s’ be the number of instructions fetched pegcle, ‘Perror’ be the probability that
the 3% unresolved branch is mispredicted, aRdl be the number of recovery cycles, then

the IPC of the machine with branch prediction is,

1
IPC(bpred) 1-p =) equ (62)
error + error
() (s/R

Let’s consider the multi-path case,

Master Thread

Master Thread 1*' Branch

1* Branch
NT T
2™ Branch

2" Branch

/NN \T \
FARR T i VA

a. Minimum Possible Threads (4 Threads) b. khaxn Possible Thread (8 Threads)

Figure 6.1 Multi-Path for 3 Unresolved Branches.

Chapter IV 81

The IPC of the multi-path execution assuming thieréhches are resolved in the same
cycle simply is,

IPC (multi-pathy = S/2" equ(6.3)
Now, considering 4 to 8 threads (Figure 6.1) th€ lier 8-wide machine (s = 8) is
between 2 and 1. If the probability of error iegicting the i branch varies from 0.05
to 0.5, then using equ(6.2) and equ(6.3), ferror for the 3 branch and its
corresponding IPC can be calculated as shown ifeT&t2].

TABLE 6.2 CALCULATED IPCUSING EQU6.2) FORBRANCH PREDICTION

Pe (stan PegrdBn IPChpred)
0. 05 0.14 4. 347
0.1 0. 27 3. 053
0. 15 0. 39 2.395
0.2 0. 49 2.030
0. 25 0. 58 1.785
0.3 0. 66 1.612
0.35 0.73 1. 486
0.4 0.78 1. 408
0. 45 0. 83 1. 337
0.5 0. 88 1.273

Note that when the P&{branch) is more than 0.25, the IPC with branchlist®n is
less than 2, where as in the case of multi-patlcigian the IPC with 4 threads is 2. On
the other hand, the worst-case of multi-path exeoutith 8 threads the IPC is 1 and the
IPC with branch prediction is little more than I fts worst-case.

From the above analysis it is not clear if thachine with branch prediction or multi-
path execution is better, as it depends on vaouslitions of path executions in both the
schemes. In addition, formulating all possiblehgatvith large number of unresolved
branches is a combinatorial problem. Hence, tainbhore deterministic estimate of the

processor performance, execution-based simulatiems to be conducted and later the

Chapter IV 82

results have to be analyzed to determine the machimat has a better average

performance.

6.3 Single-Threaded Processor with Branch Prediction

This is the base-line architecture in the presiay microprocessor cores. For branch
prediction logic, branch target butter (BTB), 2-béturating counter and a shift register
to maintain global history bits are used to prethet control flow of the single-threaded
machine. The 2-bit saturating counters and the BiidBupdated non-speculatively in the
complete stage. This may result in extra cyclelsrboovering for a speculative mis-
prediction is prevented. Studies have shown tierE6 improvement if branches are
updated speculatively, which is insignificant comguhto the logic and cost involved in
speculative recoveries. The basic architecturénefaranch prediction logic in the fetch
stage is shown in Figure 6.2.

PC (Branch Address)

Branch Target Buffer
(BTB)

Address
Incrementer

Not Taken Address

Taken Address
@ m_bitsp State Machine
Predictor MUX to select the
(2-bit Saturating next Insn. Address
Counters)
Global Next Address
Branch History Bits To Decode Unit
Instruction Cache fe==p
Fetch the Instruction

Figure 6.2 Logical Block Diagram of the Branch Recé&idn in

Single-Threaded Processor

Chapter IV 83

Evaluating Branch Prediction Mechanism

Gshare branch predictor is the most commonédusranch prediction because of it
reasonably low branch prediction error rate andgiitgplicity (McFarling, 1993 [32]). It
consists of a globally shared history bits (gsharep particular size in bits. These
history bits are hashed with the branch instructoldress to index a column of state
predictors. Depending on the State Machine Prede$oshown in Figure 6.2, the next
address after the branch instruction is predicted the corresponding instruction is
fetched from the instruction cache.

TABLE 6.3PROBABILITY OF BRANCH PREDICTION ERROR FOR3 BILLION COMPLETED

INSTRUCTIONS
0.3>Pe<

Benchmarks >0.3 0.7

176. gcc 0.624318 5. 21E-01
402. bzip 0.214487 2. 09E- 01
456. hnmer 0.573799 | 0. 5383107
429. ncf 0. 306306 | 0. 3005648
458. sj eng 0.560901 0. 48985
255. vortex 0.469276 | 0. 2176803
Aver age 0. 458181 | 0. 3793101

Fraction of Branch Mis-Predictions with Probabilty Error >= 0.3
and between 0.3to 0.7

Fraction of Branch Mis-
icti

176.gcc 402.bzip 456.hmmer 429.mcf 458.sjeng 255.vortex Average

SPEC Benchmarks OPe>03
m0.3>=Pe<=0.7

Figure 6.3 Fraction of Branch Misprediction in SPE€hchmarks

gshare: Size: 2048 entries; History Bits: 16; BBB2 sets with 4-way associative

Chapter IV 84

Figure 6.3 shows the fraction of branch mistezh that have a probability of error
more 0.3 as well as between 0.3 and 0.7. As seanthe plot about 45% of branches
are mispredicted. If the predictions of those bras that have a probability of error
greater than 0.7 are inverted, since there areglyaorrelated (Klauser, 2001, [34]).
Even then there are still about 38% of the braneltesse behavior patterns are not

correlated with the branch predictor.

Classification of Branches and their Prediction

O uncond indirect (JR)
Percentage of Branch Instruction Distribution O call direct (JAL)

in SPEC Benchmarks @ cond direct (BEQ, BNE)
uncond direct (J)

100% -~

80% -

60% -

40% -

20% -

Distribution of Branch in SPEC programs

Figure 6.4 Classification of Branch InstructionsSREC benchmarks

It is important to find the class of branchesd @o identify the area that needs
improvement. In the benchmark programs that astede there exist four predominant
classes of branch instructiondJaconditional Jumps, Call Direct Jumps, Uncondiibn

Indirect JumpsandConditional Direct Jumps

Chapter IV 85

Unconditional Jumps and Call Direct jumps aredcted using a BTB, they normally
attribute to compulsory misses or aliasing. Altfjoucompulsory misses cannot be
avoided, aliasing can be taken care simply by smirey the buffer size. Unconditional
Indirect jumps can be predicted using BTB but mamteanced techniques using register
address stack as in Intel’'s Nehalem architectiakso used.

From Figure6.4, about 67% of branches fall under the category of conditional
branches. Hence with abdd8% of total branches regarded laard-to-predictbranches
there are approximately aboR6.4% of conditional branches that can be regarded as
hard-to-predictconditional branches. To maximize the perforneaoicsingle-threaded
execution, it is vital to reduce the mispredictenalties that are incurred duehiard-to-
predictbranches.

To solve the problem of misprediction penaliresingle-thread instruction stream, a
scheme were multiple paths are followed and exdcutging Simultaneous Multi-
Threaded (SMTharchitecture designs is adaptedlthough, branch prediction can be
further improved with confidence estimators, daahse prediction and neural network
algorithms, they normally result in diminishing uéés. Hence, SMT-based architecture
design is chosen to solve thard-to-predictconditional branch problem as well as to

explore and improve some design techniques in thl&-threaded designs.

6.4 Related Work

Ahuja et al, 1998 [35] show average speedufds!ef for multipath architecture with
confidence predictor on SPECInt95 benchmarks coetptar a single path machine. The

paper demonstrates that the instruction fetch baitbws very important and extra

Chapter IV 86

resources to fetch correct execution path can ingparformance. However, the study
does not indicate how the fetch resources muslideased and how the confidence
values can be used to control the fetch allocation.

JRS confidence estimator by Jacobsen, RoterdretdgSmith, 1996 [36] introduce the
concept of confidence estimators. The confiderre€iptor is implemented similar to a
branch predictor. They test the performance ofidence estimator with ones counter
(shift registers), saturating and resetting countBne paper shows that resetting counter
tracks ideal curve of misprediction due to dynatmanches closely than other counter
methods. Selective Branch Inversion (SBI)rsppsed by Klausaur et al., 2001,[34].
An up-down counter is used in the confidence esomaith O marked as low confidence
and 1 to 3 as high confidence. A relative improgamof 9% reduction in branch
misprediction is noted when compared with the MbRa@r predictor. However,
performance improvement in terms of IPC is notaatkd in the paper. As an alternative
to the SBI scheme, Aragon et al, 2001 [37] use dalize prediction and reverse a branch
through the Branch Prediction Reversal Unit (BPR@ver 6% improvement is shown
over the SBI scheme in terms of IPC. Manne e©8l[B8] also introduces various useful
confidence evaluation metrics such as PVN and 8piygi

Uht et al., 1995 [39] propose a variation igeraexecution schemes called the Dis-
Joint Eager Execution (DEE). It uses the cumudagigth probabilities to determine the
highest likelihood path to follow. The differendestween single path, eager and disjoint

eager execution are illustrated in Figure 6.5.

Chapter IV 87

Eager Execution
(EE)

Disjoint Eager Execution
(DEE)

-branch prediction accuracy = p = 70% = 0.7 for all

~each line segment with arrow represents a branch path branches, for the sake of illustration
~left-pointing paths are PRedicted pathis -bold lines indicate loci of execution (code in the window)
-right-pointing paths are Not PRedicted paths -circled path numbers indicate order of resource assignment
-an uncircled number on a path is the overall or Cumulative -overall resources fixed at 6 branch paths

Probability of the path being executed (cp) -all of the branches are pending

Figure 6.5 Comparisons of Execution Strategies (&oWwht and Sindagi, 1995 [39])

A mean speedup of 4% over single path executiorore than 256 possible paths are
followed is recorded. However, the implementatiwin DEE is simplified by only
considering the static branch prediction probabsgitand does not consider the dynamic
probabilities for each individual branch. As braes in an instruction stream have
varying misprediction rates, it is interesting took into the dynamic prediction
probabilities. In addition, the paper also doespropose any realistic hardware design
to implement DEE.

Malik et al., 2008 [40] propose a new probapitiased path confidence predictor and
compare them with the standard threshold-and-corgttictor. Basically, the threshold-
and-counter confidence estimators suffer from & edsere low confidence branches are
assumed to be mispredicted at the same rate. rbbelulity based predictor calculates
the cumulative correct prediction probability in@mcoded form. It uses simplified
multipliers (log-based circuit) and keeps tracloth correct as well incorrect

predictions of a branch. It is used in the SMDptization of threads and shown to be

Chapter IV 88

5.4% better than the standard JRS confidence dstimmaSuch predictors can be used on
confidence-based eager executions and have tstaete

Dual Path Instruction Processing is proposediagon et al, 2001 [37] using Branch
Prediction Reversal Unit (BPRU). This architecttzegets to reduce the pipeline-fill
penalty after a misprediction. Through the BPRUth# alternative branch path has low
confidence then the instructions from the pathfatehed, decoded and renamed but not
executed while the other predicted path is executé@ misprediction occurs then the
decoded instructions are allowed to refill the bufthus reducing the pipeline-fill
penalty. An 8% improvement is noted over singlehpaith gshare predictors.
However, fetching from alternative streams redubesfetch bandwidth and more than 2
branch paths have to be followed as shown in DEE.

Wallace et al.,, 1998 [40] propose a method ¢e the 2-way SMT for multipath
execution. They use a fetch policy called the I®OU where the fetch logic gives
priority to those threads that have fewest insiomst between fetch and issue. The
architecture check points at the blocks of brancH2epending on the priority based on
confidence values and resource availability thecklpoints are followed until the branch
resolves. A 14 % increase in this modified SMTrabhe baseline architecture is seen.

Selective Dual Path with various fetch policsing confidence values is studied by
Heil and Smith, 1997 [42]. The fetch policies are,

Canceled Policy:lgnore subsequent low confidence branches if todiee branch is
followed.
First Delayed Policy:Save the processor state when tA&l@w confidence branch is

encountered and follow it when th& Aranch is resolved.

Chapter IV 89

Last Delayed PolicyThe processor state of the latest low confideneeadir is saved and
followed when the % branch is resolved. The paper shows that the redsped
branches occur in clusters. The fetch policiesnditiprovide much improvement and the
paper concludes to investigate on machines thatorkmmultiple branch paths.
Perceptron based branch confidence estimatidiscussed by Akkary et al, 2004 [43].
Figure 6.6 shows the block diagram of the perceptanfidence estimator. The delays
in calculating (summers and multipliers) and wesgtraining are significant. A 7 %
decrease on average in executing wrong instruci®sfown using pipeline gating and

branch reversal strategies.

Array Correct/ Incorrect
—P of Branch Prediction
Branch Perceptrons

Address

Perceptron
Weights
Branch
History — |—»
R&‘gjﬁk‘f
Branch Confidence o

Figure 6.6 Perceptron based branch confidence astimby Akkary et el. [2004]

Address-Branch correlation for long-latency dato-predict branches is investigated
by Gao et al, 2008 [44]. It relies on hard-to-pcethranches that depend on the address
of the memory location rather than its value. @artmemory-intensive benchmarks
exhibit this behavior. The concept involves iditig hard-to-predict branches and is

based on number of branch penalties. Once theliandentified then its producer load

Chapter IV 90

instruction is tracked. Using the load and braadbress relationship the target address
of the branch is then predicted. There is lesa tHa6 reduction in misprediction on

average and the actual impact on the IPC is notidsed.

6.5 Discussion

The multi-path design using some form configemstimators has been proposed.
Klauser et al., 1998 [45] discuss about Selectiagde Execution using confidence
estimator and achieve an average improvement of 14%PC for SPECIint95
benchmarks. However, schemes such as the DEE gituhtSindagi, 1995 [39]) have
never been tested even through architecture simn$atusing dynamic confidence
estimators. In addition, dynamic confidence estorsaare shown to have problems and
the performance of the multi-path design reliemnoextent on the performance of the
confidence estimators. The performance improvemanés from 4% to 14% in most of
the architecture designs that tried to improve shgle-threaded program execution.
Eager execution techniques like DEE and confiddrased fetch are explored in this
dissertation. In the next sections, the importisign aspects of the SMT architecture of

this dissertation is explained in detail.

6.6 Multi-Threaded Fetch Logic Design

In the case of the multiple threads, a multitpd BTB and instruction cache are
necessary to determine multiple target addressedaafetch from them. As shown in
Figure 6.7, the BTB can now be considered as aathiManagement Buffer due to its

increased number of fields. Although, the logitébck diagram looks simple, the

Chapter IV 91

increase in number of read/write ports increasesctist of the design. For simplicity,
the block diagram in Figure 6.7 only shows fetchmagn 2 threads after a branch.

Thread Management Buffer

Branch Next Thread

PC (Branch Address) Aakiie Thread PC Level

Address

Incrementer

Not Taken Address| Taken Address

Multi-Ported To Decode Unit

Instruction TP
Cache 1*

Multiple Streams

Fetch the Instruction

Figure 6.7 Logical Block Diagram of Fetch-Stagévialti-Threaded Processor.

The challenge in fetching from multiple patsstdo make sure the instructions from
these streams can be distinguished at any poirdeirte processor. This is could be
done in 2 ways. Structurally the entire processor be divided for each of these streams
or each instruction can be tagged with a path ath identification tag — Thread ID — to
distinguish between various paths. Structurallgdiing the entire processor may enforce
strict limitation of number of threads and alsotttigese resources can be shared. Hence,
to improve resource utilization the hardware fumél units and registers must be shared
among these paths. Therefore, a unique scheme\ilineibranch history bit is used for
Thread IDs is proposed by Chen, 1998 [46]. Thratghscheme the taken path is set as
1 and the not taken path is set as 0. Hencegiin$truction path is taken, taken and not
taken. The Thread ID would be 110. This schenteonly makes it easier to distinguish

between paths but also to find the heritage ofrteguction. Determining its heritage or

Chapter IV 92

the path’s ancestor paths enables to find the cooremame register pointers which is

discussed in the following section.

6.7 Register Renaming for Multiple Paths

Register renaming in a single-threaded procdssexplained in chapter 4. Although,
the mechanism is the same for multi-path architectone major difference in this
architecture is that the renaming can happen atea®y of the forking path. Hence, the
challenge is to find the correct ancestor path alsd to reference the correct rename
pointer. Let’s look at the procedure to find tr@rect ancestor thread ids through an

example.

00
_ =, Master Thread
Dest(R12) - R\If Level 0

Dest(R12) -=> R36 Level 1

Level 2
Dest(R12) -> R72

Figure 6.8 Example of Register Renaming in MultiFPResign

In the example shown in Figure 6.8, registeg&® renamed once at the master thread
as well as twice in Thread ID 00 but at differerdarich levels. In thread paths 10 and 01,
register 12 is being read and the correct regsterters are indicated by arrow symbols
in the Figure 6.8. The explanation of how regidt2references correctly to its renamed

pointers is given in the Flow Chart 6.1,

Chapter IV 93

Rename Register with
CurThrdID and Thread Level

Y

s the Register
Renamed in the
Current Thrd.?

YES

* Move the maskBit to the current
Thread Level.

* Find the Current Thread ID’s Sibling;
(siblingID = (curThrdID * maskBit)

Decrement Thread
Level by 1

NO |

YES
If Thread Level is 0,

NO

YES ’
s all possible level

are checked?

RESET to Max Thread
Level to Wrap around.

arentID[CurThrdID] == siblingID
And
ParentLevel == Thread Level

4{ CurThrdID = siblinglD ‘

J Read in the Architect
| Register Pointer File

Rename Register
Pointer Found

Flow Chart 6.1 Thread Rename Pointer Logic

Rename register logic is one major modusd thfferent from that of single-path
architecture design. The rest of the units in gipeline in the multi-path architecture
design are similar to single-path.

However, to reduce the number of thread pdtasdre followed, the thread paths are
invalidated at dispatch and complete stages as asdhe branch get executed and its
actual path is determined. The reason to keepuhgber of thread path low in a multi-
path scheme is because the more the number ofitpeths that are followed the less is

the fetch width per thread.

Chapter IV 94

Rename Register Pointer Cache Architect Register Pointer File

(Fully-Associative) {Current Register No.}

{Current Register No.} = g
‘ S : T

v) % g ' Valid ThreadID Pointer| ThreadLevel 0 Pointer ! Z o

' (Reg. No.) £ 8 ws

I 8= 22%

| 558 g

5 Bits for @3% %ég

PowerPC™ & i sfe
MIPS™ based ISA s S
g P4

e
{Current ThreadLevel} e LavE)
® " 7| Priority Encoder
{Current ThreadID} ~— ~ ~ ~ || [~~~ 7
s \
Valid 0
(logZ(MaxThreads? -1) Read
‘ 011..1 ‘ . ~"001...1 ‘ ‘ 0...00 ‘ .

=y - — — 4 Thread Register
5i> v | Priority Pointer

‘ No.of Thread Level Bits-1 | |
—

Possible Ancestor Threads

| 2] {No. of Bits =
° log2(No. of Cache Entries)}

ThreadID HitV @

{]ogZ(MéxThreads)} .
No. of Comparators = [No. of ThreadID Bits — 1]

log2(MaxThreads)

Figure 6.9. Logical Block Diagram of Register Reag in Multi-Path Design.
6.8 Confidence Estimator
Another approach to reduce the number threadslitiw the thread path that has the
most likelihood to be executed. This form of exemu is called Dis-Joint Eager
Execution(DEE) and is discussed in detail in the following secionn this section, the
design and performance of the confidence estimsigdiscussed.

The confidence estimator works similar to thenigch prediction except that instead of
storing the target addresses, it has a 4-bit datgreounter. The performance of the 4-
bit saturating confidence counter and other peréoroe metrics are discussed by Manne
et al., 1998 [38]. The following is tHeseudo-Codef the confidence update mechanism

when the branch executes:

Chapter IV 95

Prediction Correct:

if (Low Confidence): confidence < 8: set confidervalue = 8

if (High Confidence): confidence value >= 8: lagrent

Prediction Incorrect:

if (Low Confidence): confidence < 8:

if (High Confidence): confidence value >= 8: galue = 7 (low confidence)

decrement

6.8.1 Fetch Logic using Confidence Estimates

The major difference with fetching instructiobased on confidence estimates is that

instead of a branch predictor a table of saturatmgnters is used by the fetch scheduler

to determine the path of the next instruction fet@lme fetch scheduler may use different

policies and are list in Table 6.4.

Thread M

t Table

Next Forked Branch
Thread PC Address

Pa—

Thread Path Read Confidence
Level |Confidence Values

2MNo. of Thread ID Bits)

No. of Entries

Set Next Path

Thread
Next PC

A\ 4

Cumulative

Y

Hash y—m_bits3
Xor

Branch History Bits f Path Confidence Table|
(n-bit Saturating
Counters)

Probability
Approximation

No. of Thread

Instructions Next PC
to Fetch

Instruction Cache

> Instruction
Collapsing Buffer

To iiecode Unit

Figure 6.10 Logical Block Diagram of Fetch Poliging Confidence Estimator

Chapter IV

96

As shown in Figure 6.10, the BTB is now augrednby Thread Management Table
which has the following fields, the next Thread Ri: forked branch address, thread

level and path confidence. These fields are enpthbelow,

Next Thread PC:Stores the next program counter of each actitte pa

Forked Branch AddressThis is the branch address where the path igébrk
Thread Level: It indicates the level of the thread path anthdnges as the path traverses
down.
Path Confidence:lt stores the confidence value of the path arahghs as the path forks

new paths.

In addition, to provide continuous fetch streafter switching different paths in the
same clock cycle, amstruction collapsing buffehas to be modeled. This buffer stores
the starting instruction address of a block andl#émgth of the block. By using these
fields, different sequences of instruction streamescombined to form a wide fetch group
in the next cycle. Hence, with the help of thetrmstion collapsing buffer the fetch
group in the cycle is not broken because of muthpswitching and it maximizes the
fetch resource utilization.

Although, the structure of the instruction epking buffer is not modeled in the
simulation, its functional behavior is implementedensure the entire bandwidth of the
fetch is utilized. The cumulative probability appimation is a small multiplier unit that

multiplies the current path confidence and the idamice of the forked path during the

Chapter IV 97

thread creation process. The branch predictorsesl uo determine if the confidence
value should be associated with the taken or théaken path.
6.8.2 Thread Path Creation Logic

A new path is created only if there is a hithe BTB. If there is no hit in the BTB, the
path continues in the not taken path (BTB onlyestdhe taken addresses). At complete
stage, if the completion logic detects the bramsiruction did not spawn a thread, then it
recovers the machine state if the branch is taken.

If there is a hit in the BTB, then a new pattiarked in the new thread path level with
complemented bits in the respective thread pathl ley theSpawn New Threachodule.
At the same time, the confidence value fromPla¢h Confidence Tabls read and a new
entry is recorded in th&@hread Management Tablas illustrated in Figure 6.11.
Depending on th&hread Policy Schedulethe new thread may be followed or not.

SPAWNING NEW THREADS: Thread Creation

Eager Thread
Policy

Scheduler

New Thread Entry

N Mi
o Thread Branch L
”|_rC -
I—'> Target Stay in the same
j Buffer thread path

’- m_bits3.
Normalize
Path Confidence Ij Hit|

Table
(n-bit Saturating New Confidence Bits

Counters
) Spawn New Thread
{ New ThreadID }

Branch History Bits

A 4

Figure 6.11 Thread Creation Process

Chapter IV 98

TABLE 6.4 COMPARISON OF FETCH POLICY SCHEMES THAT ARE EVALUATEIN THIS STUDY

Dis-Joint
. . Eager
Eager Execution Dlsé\i((zjlgjtti?]ger Execution with
_ Per fect Single- selective
Policy Thread threads
5 -
allgga{?on Cogggeegce Static Dynamic Dynamic
Fetch Confidence| confidence Confidence
Allocated
Depends| Depends Split EZ)?]%?I; A path with | A set of paths
Fetch Grou Onaﬁt-jr ° OnaE(-:Ii- ° aﬁr?ctjr? IIé\ll among all Same as conhfliggnce cvc\;ﬁtl;]idhé%rg:e
P erfect Branch acti\?e paths Dynamic values is values are
pert : based on
predictor | Predictor paths) chosen chosen
Confidence
Values
To prove o
brgnch illustrate
redic- the To show To limit the | To minimize of
P machine To com- number of | dependence on
Reason to tion for how .)
. Perfect . perfor-) pare with threads confidence
study this high confidence)
case mance the dyna- with values as they
scheme fetch ith values can ; fid b
band- without be utilized mic case | confidence can be
L any kind ' values misleading
width is of branch
boor. prediction
2/\n' N N 74N
Max. Possible where ‘n’ 2 n, where| 2 n, where| 2 n, where
Nu.mber of 1 1 is no. of ‘n"is no. of | ‘n’is no. of | ‘n’is no. of | Depends on the
Threads bran.ch branch branch branch | Target IPC limit
levels levels levels levels
Unconditional| With With With With With With With
Branches BTB BTB BTB BTB BTB BTB BTB
Conditional 2-Bit Usec_i after Used after | Used after | Used after Used after
maximum . ; X :

Branch Perfect State thread maximum | maximum | maximum maximum
Prediction Predictor level thread level| thread level| thread level| thread level
Con_ﬂdence No No No Yes Yes Yes Yes
Estimator

Predictor Confidence Confidence
No undated No Values No Updates| Values Confidence
Updates Undates atp00m- Undates updated at asitis updated at| Values updated
P lete P Finish Static Finish at Finish Stage
P Stage Stage
Multi-Path
and : Multi-Path
Additional Counters Multi- Multipliers Same as hgugl(;l:\?ilfh Confidence
Hardware) and BTB Path for propor- dis-joint dence multipliers &
machine tional L priority
) multipliers
allocation encoder.
at Fetch
Chapter IV 99

6.9 Simulation Environment

AbaKus simulation framework is used to expltine architectural features of the
processors with both the branch prediction and irpalih execution schemes. This
framework with module and port-structures givesa&r flegree of accuracy in the
simulations with reasonable speed. The detail8b#Kus framework and superscalar

models are discussed in Chapters 3, 4 and 5.

To focus the study on conditional branch effeah the processor, the component
designs of simulated architecture are widened tmize any structural design hazards.
Perfect memory is assumed as conditional branchigshave indirect effect on memory.
The summary of architecture details are describedable 6.5. The simulation is
executed using Intel Xeon CPU 3.2 GHz (128-nodstel) with 4GB RAM. In the next
section, the architecture descriptions of the sitigteaded and multi-threaded designs

are discussed.

To test the architecture design, benchmarks f&tandard Performance Evaluation
Corporation (SPEC) are used. In addition, the beracks are cross-compiled for
Simplescalar MIPS IV instruction format. Due te fibrary compatibility problems only
few of SPEC benchmarks were successfully compiteti are used in this study. The
benchmarks are run up @0 million and then the architecture designs arestetr the
next 100 million instructions. This is done get past th&tsup code in the benchmarks.
This set of100 million instructions, however, does not represinat entire benchmark

that typically has more than 1 trillion instructgon

Chapter IV 100

TABLE 6.5. SMULATION DETAILS OF THEMULTI-PATH SMT ARCHITECTURE
Design Parameters Multi-Path SMT

Maximum No. of Threads 2% possible threads
Exclusively depends
on Fetch Policy
Instruction Fetch Width per 8 or 32 insts/cycle

Thread but depends on fetch
policy

Instruction Window Size 4096 entries

Physical Registers 32

Issue Width 64

Commit Width 128

BTB & Branch Predictor (if used BTB: 8192 16-way
Gshare:

16384 entries;
16 History Bits

Confidence Estimator (if used) 8132 entries
Confidence Counters (if used) 4-bit Saturating
Counters
Integer ALU units (Latency =1) 40
Branch Units (Latency = 1) 40
Load/Store (Latency = 2) 40
Mul/Div (Latency = 5) 20
Float/Special Units (Latency = 3 40
Write Back Bus Width 128
Complete Width 128

6.10 Implications

To understand the performance limitations & tonditional branches, a processor
with perfect conditional branches is evaluated. isTie done by gathering the target
address traces of the conditional branches in glesthreaded processor and then,
allowing the simulation to read from this trace whaeconditional branch is encountered.
In this way all the architecture parameters are dhme between the perfect and the

single-thread processor except the conditionaldirgmediction.

Chapter IV 101

Comparison of Instructions per Cycle (IPC) for @ Perfect Conditional Br|
Fetch Width = 8 insns/cycle on SPEC Benchmarks . »
5.00E+00 with :I.‘OO miIIi‘on completed instructions Single Conditional Br.
g 4.50E+00 ! L
= 4.00E+00 .
2 3.50E+00 } }
3 3.00E+00 ; ;
§ 2.50E+00 ‘ 0
@ 2.00E+00 F— ! 4 10E+00
2 1.50E+00 - -
S 1.00E+00 - | |
2 5.00E-01 - ! !
0.00E+00 -
s 6(“@& N
A° a® & a2
i © & s g

Figure 6.12 Performance Comparison between PafetSingle-Threaded Processor

The average IPC in Figure 6.12 is calculatedfibging the average CPI and then
taking its inverse. The margin of improvement iieegh on average is aboQt684 IPC
Although, this may look small, there are some beratks that suffer more conditional
branch mispredictions penalties than other bencksnaFrom Figure 6.12, the IPCs of
429.mcf, 458.sjengnd099.goare likely to have more conditional branch misgprtoin

penalties.

6.10.1 Increasing Fetch Width

Increasing fetch width to feed on more InstirctLevel Parallelism (ILP) is not
effective as seen in Figure 6.13. There are dfac¢hat affect this, data dependency and,
fetch width partition and penalties due to indingrhp mispredictions and exceptions. It
also results in increase recovery cycles because mstructions from the window have

to be cancelled during recovery.

Chapter IV 102

Comparison of Instructions per Cycle (IPC) for @ Perfect Conditional Br
p p Y
Fetch Width = 32 insns/cycle on SPEC Benchmarks Single Conditional B
4 50E+00 with 100 million completed instructions male mondifonal B
G 4.00E+00 - i i _ i
% 3.50E+00 ; ; ;
S 3.00E+00 : : :
‘é 2.50E+00 - i i] i ——1-990E+00
= 2.00E+00 ‘ ‘ ‘
S 1.50E+00 - : : : 1. 303E+00
= | | |
S 1.00E+00 - ‘ ‘ ‘
@ 500E-01 w w w
- | | |
0.00E+00 - i i i
N 5 s - 2
q(’(’ ?\>Q(L & &) Q,QQ‘ & S &Q,
A7 9§ o > G & K2
N KN g‘o‘o I\ © Qo_‘cs‘ v

Figure 6.13 IPC for Fetch Width of 32. IPC for ®iie fetch is slightly less than 8-wide fetch

because of increased latency in recovery.

6.10.2 Reducing Conditional Branch Mispredictions

As shown in Figure 6.14, a single-threaded @ssor suffers from conditional branch

error rate ofLO % on average. Figure 6.14 also shows the numbeorditional branch

error for the set 0100 million completed instructions.

3.50E+06

Conditional Branch Misprediction for

100 Million Completed Instructions on SPEC Benchmarks

3.00E+06 -
2.50E+06

A

2.00E+06
1.50E+06
1.00E+06

5.00E+05

Number of Conditional Branch
Mispredictions

0.00E+00

30¢

3 No. of Cond. Br.

Mispredictions
—=— Error Rate (%)

25%

20%

15%

10%

5%

0%

Conditional
Branch Prediction Error (%)

Figure 6.14 Conditional Branch Error Rate. The pépiresents the number of Recoveries due

Chapter IV

Conditional Branch Misprediction

103

Figure 6.14 show tha#t56.hmmerat an extremely low error of just 1 conditional
branch error. This set df00 million instructions happens to be the best caseHis
benchmark. Because no improvement can further lbeenon this phase of the
benchmark,456.nmmeérwill not be tested with the eager-based architexs for this set

of 100 million instructions.

6.10.3 Eager-Based Execution Schemes
The eager-based fetch policy schemes are éeteil Table 6.4 through a comparison
with single-threaded fetch policy. Figure 6.15whahe percentage of mispredictions

due to conditional branches for eager executioicyol

. ... —&— Branch Prediction
_ Percentage of Recoveries due to Conditional Branches Error Rate on
8 Eager Exe.(%)
@]
5 30.00% } } 27 6% —a— Error Rate on
c (1) .
! ! Single-Threaded
3 25.00% | | A ((,}:)g e-threade
e | |
S 20.00% | |
° g3 | \
8 5 15.000 ‘
— O
E §15. % : 1. 0% \
S ™ 10.00% - 9. é% 1 1%
@ 1 ‘
S 5.00% D\ 1 1
% : \A/S 0% ! \1 2.7% 2 0%
‘G«EJ 0.00% ‘ 1 T
(8]
5 < 4 5) s+ & @
& & N N & & & >
Yoo® SO v

Figure 6.15 Percentage of Recoveries due to conditibranch misprediction. The figure
shows that eager execution has reduced the nunibecoveries. Mispredictions in
eager based executions are due to compulsory BT&ewiand if the number of
unresolved branches reaches the maximum numberaoicly levels possible in the
processor.

Chapter IV 104

Branch prediction is used in the eager-basedgion only if the maximum possible
unresolved branch level is reached in the procesdBdsranch prediction is used then it
leads to a possibility of misprediction. Hencedsitmportant for eager-based executions
to use branch prediction rarely by increasing thellmer of maximum possible branch
levels in the machine. This results in increasenore possible threads to handle in the
processor. For example, if 3 unresolved branckis & the processor then it leads to a

maximum possibility of 2or 8 threads.

4.00E+06 - 8 cycles Average Branch Execution Latency for 8-Wide Fetch
14%
3.50E+06 -
8 3.00E+06 -
Q
S 2.50E+06 -
m
S 2.00E+06 -
oy
& 1.50E+06 -
=
0 1.00E+06
L
5.00E+05 -
0.00E+00 -
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Execution Latency (Cycles)

Figure 6.16 Average Branch Execution Latency faWigle Fetch in the SPEC benchmarks.

As seen in Figure 6.16, the average branchuteclatency involves more than 8
cycles. For an instruction window of si2696 the worst-case latency can be even little
more thard096 cycles implying a highly dependent instructioniohaBut, as seen in
Figure 6.16 one half of the pie-chart rotationbe@t 15 cycles. Hence, in order to make
sure that the branch prediction is not used vemgnofthe simulated eager-based
processors can handle up2®unresolved branch levels or up to a maximum péssib
2?° short threads. The results of the simulation WRC as the measure of performance

for both 8 and 32-wide fetch are shown in Figutferéand 6.18.

Chapter IV 105

Comparison of Instructions per Cycle (IPC) for O Perfect Condition
Fetch Width = 8 insns/cycle on SPEC Benchmarks

. - . X . . Single-Threaded
with 100 million completed instructions after 500 million insns
T

5.0 ‘
45
4.0 1
3.5
3.0 | |

O Eager

O Eager Confidence

W Dynamic Selective
Disjoint
O Dynamic Disjoint

W Static Disjoint

Instructions per Cycle (IPC)

25 i
2.0 1
1.574E+00
1.5 A
1.0 A
0.5 + n
0.0 - 4
5
/\"0' 9 ’19 %9\ 3 Q’O AQ}
> N > ¥ A v

Figure 6.17 Comparison of IPC for different eagasdd polices with single-threaded processor
for 8-wide fetch.

Comparison of Instructions per Cycle (IPC) for @ Perfect Condition
Fetch Width = 32 insns/cycle on SPEC Benchmarks

. - . ki L i Single-Threaded
with 100 million completed instructions after 500 million insns
T T

4.5
4.0
3.5 1

O Eager

O Eager Confidence
B Dynamic Selective
Disjoint
O Dynamic Disjoint

25 | Static Disjoint

1.703E+00

I
I
I
I
:
I
3.0 1 2.635E+00 :
I
I
I
I
I

1.5
1.0
0.5 +
0.0 +

Instructions per Cycle (IPC)

Figure 6.18 Comparison of IPC for different eagasdd polices with single-threaded processor
for 32-wide fetch.

From the Figure 6.17 and 6.18, one subtle fopbrtant observation is that the IPC for
32-wide has increased for eager-based executiote whdid not for a single-threaded

processor with branch prediction. For 8-wide aBengde fetch the eager execution with

Chapter IV 106

50 % allocation (Table 6.4) hds.21%and 27.60%improvement, respectively. The
maximum possible improvement between the procesgborperfect conditional branch
prediction and the single-threaded processor wsthage branch prediction is abatfi%
on average0.99.gohas the best improvement on IPC with abbu6%for the 32-wide
fetch with eager execution. The low IPC value titis confidence-based disjoint

execution signifies the importance of dynamic coefice estimator in the design.

6.11 Discussion on Confidence-Based Eager Execution Schemes

There are 3 important factors that need todmsidered to attain the IPC of the perfect
conditional branch predictioncenfidence estimateranch predictiorandfetch width

Using the confidence estimator described by idagt al, 1998 [38] only supplements
branch prediction. Eager polices that depend arfidence values such as disjoint,
disjoint selective and confidence-based eager éxecassumes that branch prediction
error can be corrected by confidence estimategctyr On the other hand, the dynamic
nature of code execution proves to be far more ¢exnihan the confidence estimator
can handle. This is illustrated in Figure 6.19ttBhows the values of PVN, PVP,
Specificity and Sensitivity of the confidence estor. It is important that PVN —
probability that low confidence is mispredicted reatly and Specificity — fraction of

mispredictions that are low confidence are closk. to

Chapter IV 107

Accuracy of Confidence Estimator

1.2
()]
8 14+----H-—fom-t oo - & -1
g ¢ —o— sensitivity =
2 08 F - TN T (Correct(high)/Correct(high) +
Q
Soed- 4 L L] Correct(low))
kS —e— Specificity =
S 044 Incorrect(low)/(Incorrect(high)
(@]
2 . / + Incorrect(low)
e I e e e B
C

O T
176.gcc 402.bzip 429.mcf 458.sjeng 099.go
12
— —e— Predictive value of Negative
Test =
S i e e i 7\3‘7 o Incorrect(Low)/(Correct(Low)

+ Incorrect(Low))

—a— Predictive value of Postive
Test =
Correct(high)/(Correct(High)
+ Incorrect(High))

S,

2 S) E A

Probability of Correctness
o
(o]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|

176.gcc 402.bzip 429.mcf 458.sjeng 099.go

Figure 6.19 Accuracy of the Confidence Estimatothwd-bit saturating countersThe low
values of PV_N and Specificity highly affects therfpemance of the confidence-based
eager executions.

In addition to confidence estimators, brapeediction and fetch width have a direct
effect on IPC. The use of branch prediction isesglent on the maximum number of
branch levels available in eager execution schem&s. seen in Figure 6.20, as the
number of available branch levels decrease theepsmr relies more on the branch
predictor and tend to make more branch mispredhistioThis directly results in decrease
in IPC. On the other hand, as seen in Figure Gf2the eager schemes have more

number of branch levels, then the number of adtiveads increase resulting in dividing

of fetch resources. The way in which the fetchoueses are divided depends on the

Chapter IV 108

imposed fetch policy of processor. However, assailt of dividing the fetch resources
the number of instructions supplied to each thrnsagkduced impacting the IPC. This
can be seen in Figure 6.20. The eager and disgaiger based executions of 25 and 16
levels have more or less a similar IPC (about é&béhfFigure 6.20) where as the disjoint-

eager with 8-levels have less number of threadg$ditatrs as it relies more on the branch

predictor.
—IPC
IPC and Branch Misprediction for Eager-Based Executions |—— Bpred
3.0 80000
2.9 - 70000
B
2.8 1 r 60000 5 g
27 [509995 5 3
g 1 40000 § 8§
T 267 @5
r 30000 5 © 3
2.5 - 20000 2 =
2.4 1 + 10000
2.3 0
Eager Disjoint 25- Disjoint 16- Disjoint 8-Levels
Levels Levels
Eager-Based Schemes

Figure 6.20 Relationship showing how different eagghemes rely on branch prediction and its
effect on IPC

Histogram of Active Threads in Eager and Disjoint Executions

4.5E+06
4.0E+06
3.5E+06
3.0E+06 -
2.5E+06

—e— Eager

2.0E+06 o~ —s—Disjoint 25-Levels
' /’\.?\ Disjoint 16-Levels

1.5E+06 +——— \— \ Disjoint 8-Lewels
1.0E+06 - R

5.0E+05 |- _‘\
0.0E+00 : : :
5.0E+05 @ 5 10 - 20 25 %0

Frequency

T 2

Number of Active Threads

Figure 6.21 Histogram of Active ThreadsThe Disjoint with 8-levels has less number of
active threads but relies more on branch prediction

Chapter IV 109

6.12 Summary

The effect on conditional branch mispredictanIPC of the processor is clearly seen
in Figure 6.17 and Figure 6.18. There is abdd% performance loss due to such
mispredictions. Two distinctly different approashaf eager-based execution schemes
are considered. The schemes directly affect ttod leandwidth. In the first approach of
simple eager-based execution wi@% allocation,the branches spawn multiple paths
and divided the fetch and pipeline resources. Qlgh, the dependence on branch
predictions is reduced, it also reduces the nuraberstructions being processed in each
thread path. The second approach is the disjaigereexecution where the thread path
that has the high confidence gets the priorityttiive the fetch resources. Although, this
scheme allocates the fetch resources to high camdel paths, the confidence values tend
to be error prone as shown in Figure 6.19. Thdidence estimator is poorly identifies
the paths that mispredict. This results in thedldrto be discarded and hence wasting the
fetch resources. A more judicious confidence estiomusing advanced schemes such as
data value prediction or neural network-based ptets would benefit the disjoint eager

execution scheme.

Variation in Instructions per Cycle (IPC) for
100 Million Completed Instructions on SPEC Benchmarks
2.50E+00 ‘ ‘ ‘ T

O After 5Million

@ After 5Billion

00

Instructions per Cycle (IPC)

Figure 6.22 Code Phase Variations in SPEC benchmark

Chapter IV 110

The 27% average increase in IPC for eager-based execigiogelatively significant
considering the benchmarks that are chosen foropednce evaluation. The SPEC
benchmarks have code variations depending on #trugtion group that is evaluated as
seen in Figure 6.22. The size of each benchmadkgtinan 1 trillion instructions) and
such code variation makes it hard to understandrtieeperformance of the architecture
design. However, by usirgm-points(Lau et al., 2004 [46]\vhere statistical and other
clustering techniques are used to determine sulidet®de that represents the entire
benchmark can help in finding the regions of cadeassts for evaluating the architecture

design.

Chapter IV 111

CHAPTER VII

CONLCUDING REMARKS

Several of computer architecture simulationg@re available for architecture design
space explorations. However, each of these simuolabols is developed to model
certain specific aspects of the architecture. lIdeitds the task of the designer to make
proper tool selection consideriragcuracy, speednd flexibility of the simulator. In
addition, the simulator should also have cross-dlanfeatures, if required, for extensive

hardware design verification.

7.1 AbaKus Simulation Framewor k

AbaKus simulation framework is developed to edotardware functionality with
simple behavior-level details but also with cyctearate timing. The timing information
is described through port interfaces and is imgyidncorporated in the simulation for
module communication. This is ideal for CPU carawation because instruction flow
is pipelined on a cycle-by-cycle basis. Moreovéltere is one aspect where the
simulation speed can be increased, which is by lgimulti-threading the simulator as

modules are task independent.

112

Although the simulation has sufficient taskdewarallelism, the modules must
communicate and hence, must synchronize every atgdilcycle making it as a set of
tightly-coupled threads. However, existing compaigo not facilitate in speeding up of
such multi-threaded codes as they synchronize nslotver at second-level cache
memory. AbaKus simulation framework can be extentesimulate multiple cores to
study memory hierarchy designs as well as memoryeramcy problems. This
dissertation has showed the usefulness of Abakumdwork by conducting performance
studies in CPU core designs.

Evaluating architecture designs extensivelyhwdrge benchmarks is essential for
validating the design and measuring the performaricehe study of register write-back
bus width discussed in Chapter 5, absiMtbillion instructions are evaluated in the wide
superscalar design. This shows both the capalfifxkbaKus as well as the extent to

which the designs can be evaluated.

7.2 Instruction-L evel Parallelism

Instruction-Level Parallelism may seem to hdare the brick-wall and has been
extremely hard to even go beyond IPC of 2.5 in ¢haluated SPEC benchmarks.
Although this may be a limiting case to increase $peed-up of sequential programs,
these programs are compiled with compilers thaktgako account of the different
hardware architectural features. This is a majoblem as compilers could also aid in
finding the ILP necessary for wide superscalar @ssors. Many new compilers such as

OpenMP (Chapman et al., 2008 [48]), NVIDIA CUDA™ngpiler [49] and Intel® C++

Chapter VII 113

Compiler for Itanium architectures [50] take thmgo account to extract the parallelism

available at all levels in the program.
7.3 Conclusion and Future Work

This dissertation has demonstrated the suadeds$ign and development of an open-
source computer architecture simulator — AbaKusd also in identifying the key
aspects of design limitations in wide superscatac@ssors. The following are some of
the contributions made in this research,

* AbaKus Computer Architecture Simulator

AbaKus incorporates a simple timing structure snfiamework that enables the tool
to be adapted to other existing hardware descriptinguages. This timing structure
based omMMoore State Machinalso provides cycle-time accuracy that is the lozese

for all pipelined architecture designs. In additithe AbaKus superscalar models can
be reused for future design evaluations and as shothe case studies, it can be

extended to simulate complex multi-threaded andiroate architectures.

» Designed and verified architecture designsfor Eager-Based Executions
Confidence-Based fetch polices are proposed aridated. It optimizes the use of
the fetch bandwidth by dynamically varying the Fetate of eager-threads based on
the path confidence values. Since the confidestimator is very important for the
design, future work on eager execution would b@¢cease PVN and Specificity of
this estimator. The design and performance oflth@int eager execution using

dynamic confidence estimators is also evaluatekitacturally.

Chapter VII 114

REFERENCES

[1] D Burger and T. M. Austin,The SimpleScalar Tool Séter. 2.0, University of
Wisconsin Computer Sciences Technical Report #1@4@&e 1997).

[2] M. Vacchharajani, N. Vachharajani, D. A. Penry,Al.Blome, D. I. August,
“Microarchitectural Exploration with Liberty Proceedings of 3% Internl.
Symp. on Microarchitecture, (2002).

[3] M. Vacchharajani, N. Vachharajani, D. A. Penry, @likl D. I. August, The
Liberty Simulation Environment: A deliberate apptbato high-level system
modeling, ACM Transaction on Computer Systems., .vol. R, 3, (August
2006), pp. 211-249.

[4] J. Emer et el, ASIM: A Performance Model FramewdykEEE Computer, (Feb.
2002), pp. 68-76.

[5] Pellauer, M., Vijayaraghavan, M., Adler, M., Arvindnd Emer, J. 2008. A-
Ports: an efficient abstraction for cycle-accumaeformance models on FPGAs.
In Proceedings of the 16th international ACM/SIGDA fBgsium on Field
Programmable Gate Array@008).

[6] Open SystemC Initiative, 200Bttp://www.systemc.org/

[7] D. Perez, G. Mouchard, and O. TemarVicroLib: A Case for Quantitative
Comparison of Microarchitecture MechanisiBroc. International Symposium
of Microarchitecture, 2004.

[8] Virtutech® Simics", 2008 ,http://www.simics.net/

[9] Sandro Rigo, Guido Araujo, Marcus Bartholomeu anddd¥fo Azevedo,
“ArchC: A SystemC-Based Architecture Description dumage”
In proceedings of the 16th Symposium on Computeshi®&cture and High
Performance Computing (SBAC'04). Foz do IguacuaziBy October 2004.

[10] Sewook WeglJared CaspeNjuguna NjorogeYuriy Teslyar Daxia Ge Christos
Kozyrakis Kunle Olukotun A Practical FPGA-based Framework for Novel
CMP ResearchProceedings of the 15th ACM SIGDA Intl. SymposiomField
Programmable Gate Arrayslontery, CA, February 2007

[11] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. Tirh, A. G. Saidi, S. K. Reinhardt, "The
M5 Simulator: Modeling Networked Systems,”" IEEE MICRO pp. 52-
60, July/August, 2006.

[12] SESC: SuperESCalar Simulator. http://iacoma.cs.edu¢~paulsack/sescdoc/, 2002.

[13] Yourst, M.T., 'PTLsim: A Cycle Accurate Full System x86-64 Micobatectural

Simulator” Performance Analysis of Systems & Software, 208PASS 2007. IEEE
International Symposium on , vol., no., pp.23-3&22 April 2007

115

[14] E. Larson, S Chatterjee and T. Austinfhe MASE Microarchitecture Simulation
Environmerit, IEEE Internl. Symp. on Perf. Analysis of Systemsd Software, June
2001.

[15] D. G. Perez, G. Mouchard and O. Temam, “A New Optah Implementation of the
SystemC Engine Using Acyclic Scheduling”, Procegdof the Design, Automation
and Test in Europe Conf., 2004, pp. 1530-1591.

[16] J. P. Shen and M. H. Lipastiyfodern Processor Desigirundamentals of Superscalar
Processor”, Tata McGraw-Hill Edition, ISBN 0-07-059033-8

[17] Nam Sung Kim, Trevor N. Mudge, “Reducing Registert® Using Delayed Write-Back
Queues and Operand Pre-fetch”, ICS 2003, pp: 122-18

[18] José-Lorenzo Cruz, Antonio Gonzalez, Mateo ValéMaggel P. Topham,”Multiple-
banked register file architectures”, ISCA 2000316-325

[19]Rajeev Balasubramonian, Sandhya Dwarkadas, Davidlbbnesi,”"Reducing

the complexity of the register file in dynamic stgmalar processors”, MICRO
2001, pp 237-248

[20] Tetsuya Sueyoshi, Hiroshi Uchida, Hans Jirgen Matia, Tetsushi Koide,
Yosuke Mitani, Tetsuo Hironaka,”"Compact 12-port tabank register file test-
chip in 0.35um CMOS for highly parallel processp®SP-DAC 2004, pp 551-
552.

[21]Nam Sung Kim, T. N. Mudge: The microarchitectureaddw power register file.
ISLPED 2003: 384-389

[22] Mark Smotherman, Shuchi Chawla I, Stan Cox, BrlanMalloy: Instruction
scheduling for the Motorola 88110, MICRO 1993: Z&%2

[23] D. A. Penry and D I. August, “Optimizations for anfslator Construction System
Supporting Reusable Components,”40th IEEE Desigtoation Conf., 2003, pp. 926-
931.

[24] Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A.iRPaWVilliam Reinhart, Darrel
Eric Johnson, Jebediah Keefe, and Hari Angepat. AR&elerated Simulation
Technologies (FAST): Fast, Full-System, Cycle-Aater Simulators. MICRO 07:
Proceedings of the 40th Annual IEEE/ACM Internation Symposium on
Microarchitecture, pages 249--261, 2007.

[25] Lee, J., Kim, J., Jang, C., Kim, S., Egger, B., Kkn and Han, S. 2008. FaCSim: a fast
and cycle-accurate architecture simulator for erdbddsystems. SIGPLAN Not. 43, 7,
89-100, 2008.

[26] M. M.K. Matrtin, D. J. Sorin, B. M. Beckmann, M. Rlarty, M. Xu, A. R. Alameldeen,
K. E. Moore, M. D. Hill, and D. A. Wood, Multifacst General Execution-driven
Multiprocessor Simulator (GEMS) Toolset,ComputecHitecture News (CAN), 2005.

[27] Patt, Y. N., Patel, S. J., Evers, M., Friendly, B., and Stark, J., “One Billion
Transistors”, One Uniprocessor, One Chip. CompBe9, 51-57, 1997.

[28] Aashish Phansalkar, Ajay Joshi, and Lizy K. Johmalgsis of Redundency and
Application Balance in the SPEC CPU2006 BenchmauiteS ACM SIGARCH
Computer Architecture News, Vol. 35, Issue 2, 2897, pp: 412 — 423.

[29] J.A. Kahle et al. fhtroduction to the Cell MultiprocessgriBM Journal of Research and
Development, Vol 49, No. 4/5 2005

[30] H. M. Mathis et al., “Characterization of Simulabos Mulithreading (SMT) efficieny
in POWERS5”, IBM Journal of Research and Development 49, No. 4/5, 2005.

116

[31] Ravi Navir, IEEE Transactions on Computers StafB5L9Optimal 2-Bit Branch
Predictors. IEEE Trans. Comput. 44, 5 (May. 19898-702.

[32] S McFarling, “Combining Branch Predictors”, TechahcReport TN-36, Digital
Equipment Corp, 1993.

[33] Agerwala, T., and J. Cocke, “High performance redumstruction set processors”,
Technical Report, IBM Computer Science, 1987.

[34] Artur Klauser , Srilatha Manne , Dirk Grunwald, &sive Branch Inversion:
Confidence Estimation for Branch Predictors, Inédional Journal of Parallel
Programming, v.29 n.1, p.81-110, February 2001

[35] Ahuja, P. S., Skadron, K., Martonosi, M., and Clddk W. 1998. Multipath execution:
opportunities and limits. In Proceedings of the hl2ternational Conference on
Supercomputing (Melbourne, Australia). ICS '98.

[36] Erik Jacobsen , Eric Rotenberg , J. E. Smith, ABsgconfidence to conditional branch
predictions, Proceedings of the 29th annual ACMHEBternational symposium on
Microarchitecture, p.142-152, December 02-04, 1996

[37] Aragon, J.L.; Gonzalez, J.; Garcia, J.M.; Gonzakez, "Selective branch prediction
reversal by correlating with data values and cdrflcw,” Computer Design, 2001.
ICCD 2001. Proceedings. 2001 International Confezean , vol., no., pp.228-233,
2001.

[38] Manne, S., Klauser, A., and Grunwald, D. 1999. Bhafrediction Using Selective
Branch Inversion. In Proceedings of the 1999 irattamal Conference on Parallel
Architectures and Compilation Techniques (Octolier 16, 1999).

[39] Uht, A. K., Sindagi, V., and Hall, K. 1995. Disjtiaager execution: an optimal form of
speculative execution. In Proceedings of the 28thual international Symposium on
Microarchitecture (Ann Arbor, Michigan, United Stat November 29 - December 01,
1995).

[40] Kshitiz Malik, Mayank Agarwal, Vikram Dhar, MattheWwrank. "PaCo: Probability-
based Path Confidence Prediction". Internationain@®@sium on High-Performance
Computer Architecture, (HPCA-14), February, 2008.

[41] Wallace, S., Calder, B., and Tullsen, D. M. 1998rehded multiple path execution.
SIGARCH Comput. Archit. News 26, 3 (Jun. 1998), -228.

[42] T.H. Heil and J.E. Smith. "Selective Dual Path Exem". Technical Report, University
of Wisconsin-Madison, ECE, 1997.

[43] Akkary, H., Srinivasan, S. T., Koltur, R., Patil,,Yand Refaai, W. 2004. Perceptron-
Based Branch Confidence Estimation. In Proceedin§sthe 10th international
Symposium on High Performance Computer Architec(Eebruary 14 - 18, 2004).

[44] H. Gao, Y. Ma, M. Dimitrov, and H. Zhou, “Addressa®ich Correlation: A Novel
Locality for Long-Latency Hard-to-Predict BranchgsThe 14th International
Symposium on High Performance Computer Architec{ttieCA-14), pp. 74-85, Feb.,
2008.

[45] Artur Klauser and Abhijit Paithankar and Dirk Gruaid, "Selective eager execution on
the polypath architecture”, In 25th Annual Intefoadl Symposium on Computer
Architecture, 1998, 250-259.

[46] Tien-Fu Chen. Supporting Highly Speculative Exemutvia Adaptive Branch Trees. In
Fourth Intl. Symp. on High-Performance Computerhitecture, February 1998.

[47] Jeremy Lau, Stefan Schoenmackers, and Brad CalderStructures for Phase
Classification, 2004 IEEE International Symposium @erformance Analysis of
Systems and Software, March 2004

117

[48] Barbara Chapman, Gabriele Jost and Ruud van der“Bamg OpenMP: Portable
Shared Memory Parallel Programming”, MIT Press, 08BN 978-0-262-53302-7.

[49] NVIDIA CUDA™ Education, 2008, http://www.nvidia.cdwbject/cuda_education.html
[50] Intel® C++ Compiler, 2008 ttp://software.intel.com/en-us/

118

APPENDIX

Softwar e Design of the Simulated Superscalar Architecture

DECODE
and
RENAME
LOGIC

PIPELINED LOGIC FLOW OF THE SUPERSCALAR ARCHITECTURE

" DISPATCH LOGIC .
/" Instruction Allocation in the
INSTRUCTION WINDOW
* Transfer the READY
instructions (pointers) to the
READY QUEUE

*If not READY, allocate its
*\\\Dependency Instructions in
. the WAKE-UP TABLE -

Wake-UP Table

A

READY QUEUE

" ISSUELOGIC . s
* Check the number =

*\\\ in acycle.

‘WB Stall

¥ <
STALLLOGIC
~*Ready Insn Window Ptrs from the Ready\\
Queue A
. * Check for FU availability and issue.)
“_*If not; attempt to re-issue in subsequent |

cycles >

— —— Register
Read

of ALUs, MULs, Ld/ \
Sts that it can issue ‘ ‘ BR Queue ‘ ‘

“ ‘ ‘LD/ST Queue‘ ‘
‘ P\/Iul/Div Queuﬁ ‘

\
A

Re-Entry at the back of
the queue; if no FU is available

RegFile

‘Write Data Finish Bit Access T

— =
Write-Back Bus
Scheduler

ST

Dependent Instructions are
listed and waken at FINISH

Instruction-Dependency Wake-Up after Instruction Finish

COMPLETION
LOGIC
*If FINISHED then
free the old register

| pointer, write the new |

register pointer into

ARP and invalidate
the old register

pointer in the RRP.

*Ifitis a branch
instruction, compare

| the next PC and the

predicted PC. If it
does not match, then
RECOVER from the
incorrect path.

119

VITA
Aswin Ramachandran
Candidate for the Degree of

Doctor of Philosophy

Dissertation: PERFORMANCE LIMITATIONS IN WIDE SUHRSCALAR
PROCESSORS

Major Field: Electrical Engineering
Biographical:
Personal Data: Born ?‘OAugust 1980

Education:
Graduated from University of Madras, Madras, Ineaning a
Bachelor's degree in Electronics and Communicdfiogineering
during May 2001;
Graduated from Oklahoma State University, Stillwakedia earning a
Master’s degree in Electrical Engineering during@&uaber 2003;
Completed the requirements for the Doctor of Poipdgy in Electrical
Engineering at Oklahoma State University, Stillwa@klahoma in
December, 2008.

Experience:

School of Electrical Engineering

Graduate Research Assistant (2004-2008)
Graduate Teaching Assistant (2004-2008)

Professional Memberships:
IEEE Student Member

Name: Aswin Ramachandran Date of Degree: December, 2008
Institution: Oklahoma State University Ldoa: Stillwater, Oklahoma

Title of Study: PERFORMANCE LIMITATIONS IN WIDE SUPRSCALAR
PROCESSORS

Pages in Study: 119 Candidate foilbgree of Doctor of Philosophy

Major Field: Electrical Engineering
Scope and Method of Study:

Superscalar processors with wide ims$iton fetch only results in diminishing
performance returns. The aim of this research imol fwhat causes these
limitations. In addition, a new cycle-accurate guier architecture simulator —

AbaKus - is developed to study and evaluate theopeance of the architecture
designs.

Findings and Conclusions:

Eager-Based executions and their designs aredtéstevercome the effects of
low-accuracy of branch prediction on 38% of thedittanal branch instructions.
An improvement IPC of 27% on average is shown. &y, confidence
estimators need improvement on its design logithay prove critical on the
performance of eager-based executions. In additn@nlimitation of compilers to
extract ILP from the benchmark programs leads tgesmere restriction on
performance of Superscalar architectures due s dkgiendencies.

ADVISER’S APPROVAL:_Dr. Louis G. Johnson

