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ABSTRACT

The mechanical behavior of porous media such as geomaterials is largely 

governed by the interactions o f the solid skeleton (or grains) with the fluids existing in 

the pores. These interactions occur through the interfaces between bulk components. 

Traditional analysis procedures of porous media, based on the principle of effective stress 

and Darcy's law, commonly fail to account for these interactions. In this dissertation, a 

continuum theory o f multiphase porous media is developed, capable o f rigorously 

characterizing the interactions among bulk components. Central to the theory is the 

implementation o f the dynamic compatibility conditions that microscopically represent 

the constraints on the pressure jumps through interfaces. It is shown that Terzaghi's 

effective stress and capillary pressure can be characterized within a common framework. 

Within this context, a theoretical framework for poroelastoplasticity is developed, 

allowing the hysteresis in capillary pressure and plastic deformation o f skeleton to be 

simulated in a hierarchical way. It is found that the mixture theory-based models of 

porous media can be linked with Biot's poroelasticity theory. A linear model based on the 

proposed theory/ is developed and used to analyze the propagation o f acoustic waves in 

unsaturated soils and favorable comparisons to experimental results are obtained. .A finite 

element procedure is developed and implemented into a computer code (called 

U_DYSAC2) for elastoplastic static and dynamic analyses o f saturated and unsaturated 

porous media. Numerical examples including wave propagation, two-phase flow, 

consolidation, and seismic behavior o f an embankment are presented. These examples 

show the capability o f the theory for modeling a wide variety o f behaviors o f porous 

media.

XIV



Chapter 1 INTRODUCTION

LI Preliminaries

Study of the behavior o f porous media is o f great interest in a number o f diverse 

fields, such as civil engineering, environmental science, petroleum engineering, chemical 

engineering, geophysics, and biomechanics. Failure o f a slope after a heavy precipitation, 

moisture movement in the region surrounding a waste containment area, propagation of 

earthquake impulses in geomaterials, collapse of an earth dam. and multiphase flow in 

biological tissues are among the engineering problems where understanding the behavior 

of porous media becomes crucial.

A porous medium is an assemblage o f the solid particles forming a matrix 

(skeleton) whose voids are filled with several fluids, e.g. water, oil. air and gas. For a 

porous medium consisting o f certain components’, its overall behavior is by and large 

controlled by the interactions among various coexisting phases. Hence, the analysis o f the 

porous media requires a rigorous procedure that can properly characterize these 

interactions. Such a procedure was first developed by Biot (1941. 1956a«fcb. 1962. 1972. 

1977). Thus far. most o f the procedures extensively used in the analysis o f the behavior

' The word “com ponenf’ and "phase" will be used interchangeably in this dissertation.



o f porous media are based on the generalized formulations o f Biot's theory. These 

models consist o f two key components, i.e. the principle o f effective stress owed to 

Terzaghi (1936) and flow equations represented by. for example. Darcy's law (Aifantis. 

1980).

It has been well recognized that Darcy's law is valid for the fluid dissipation with 

low Reynold's number, e.g. for laminar flow, which generally is the case in the porous 

media. On the other hand, the Terzaghi's effective stress principle strictly holds only for 

the porous media constituted by an elastic and/or plastic solid component that is 

incompressible. If the porous medium consists o f an elastically compressible solid 

component, this principle remains applicable, although it needs to be slightly modified 

(Lade and de Boer. 1997). For the porous materials such as the rock masses with 

occluded porosity and the swelling soils, however, the concept o f Terzaghi's effective 

stress cannot be applied. The reason is that in those porous media the solid phase may 

experience irreversible compression so that the effective stresses cannot be defined in the 

customary sense (Coussy. 1989b; Bennethum et al.. 1997; Murad and Cushman. 1997).

The restrictive character o f the effective stress principle becomes even more 

obvious when we try to generalize this principle to account for the behavior o f the porous 

materials with multiphase flow. In modeling unsaturated soils, for instance, the 

difficulties in developing a single effective stress equation have been well recognized 

(Aitchison and Donald. 1956; Bishop and Donald. 1961; Bishop and Blight. 1963; Blight. 

1965). These difficulties lead to the introduction of the theory o f mixtures in deriving the 

governing equations o f porous media. In the models o f porous media derived from the



coniiniium theory of mixtures, the microscopic structures o f the porous media have been 

smeared out. and hence volume fractions or porosity is usually introduced to recover 

these microscopic structures. Consequently, the closure equations due to introducing 

volume fractions must be developed so that a closure description o f the porous media can 

be achieved. Thus far. however, a procedure that can be satisfactorily used to derive the 

closure equations has not been developed. A rigorous theoretical framework that can be 

generally applied to modeling the behavior o f porous media remains to be done. This 

motivates the research o f this dissertation.

1.2 Microscopic Considerations

One o f  the salient features o f porous media is the existence o f the interfaces among 

various coexisting components (as schematically shown in Fig. 1.1). Basically, the 

interactions, such as phase change and hydraulic dragging between two bulk components, 

take place only through the interfaces (assuming the electro-magnetic effects are 

negligible). At the microscopic scale, the mechanical interactions on an interface can be 

categorized into two groups. One is the dragging force due to the relative motions o f 

various components in the direction tangential to the interface: the other is due to the 

material impenetrability and represents some sort o f force equilibrium, i.e. the capillary’ 

equilibrium, in the direction normal to the interface.

If the porous medium is isotropic, as usually assumed in a local averaging 

procedure, the first type o f interactions has a macroscopic counterpart, i.e. the 

hydrodynamic drag, which can be taken into account by using the flow equations o f



Darcy's type (Aifantis. 1980; Prévost. 1980). An example o f the second type of 

interactions at the macroscopic scale is the moisture retention curve usually introduced in 

the analysis o f multiphase flow. The moisture retention curve is a relationship between 

matric suction (i.e. the capillary pressure on the interface between two fluids) and the 

degree o f saturation. .A.lthough this kind o f relationships has been extensively 

investigated, its character remains poorly understood (Muccino et al.. 1998). 

Furthermore, little is known so far about the coupling effects between the deformation 

and the matric suction.

Solid grai{is (S)

i p L . )

Wetting fluid (iV)

( p L .)

Interfaces

Nonwetting fluid (iV)

(p L . )

Figure 1.1 Microstructure o f a three-phase porous medium

To get insights into the problem, we intuitively consider the capillary equilibrium 

from a microscopic point o f  view. Let be the microscopic pressure o f cr-component

(see Fig. 1.1). At equilibrium, the pressure difference ( ) on a fi  -interface is

not arhitrarv. and it is a fiinction o f surface tension, temnerature. the local eeometrv of



voids, die local distribution o f fluid content, etc.. This is the so-called dynamic 

compatibility conditions on the interfaces (Wilmanski. 1995). Assuming isotropy of the 

porous medium, these dynamic compatibility conditions can be averaged onto the 

macroscopic scale to yield the relationships between the capillary pressures and some 

macroscopic state variables E  (e.g. the porosity and degree of saturation). Hence, we 

can write p" -  p '’ = v ‘" '{E) .  where p ' is the (averaged) pressure o f or-phase and v is

a function o f state variables Z . In the limit case where the porous medium is constituted 

by incompressible solid grains and saturated by a single fluid, the material 

impenetrability yields the constraint ori the interface. As a consequence.

/? ' = p * , i.e. the capillary pressure is zero. Based on the theory o f porous media, it can 

be easily proved that the zero capillary pressure condition, i.e. p '  = p “ . yields the

Terzaghi's effective stress equation for the saturated porous media (Prévost. 1980; Murad 

and Cushman. 1997). In other cases, however. p “ -  p^  is generally not equal to zero.

The capillary equilibrium in porous media is achieved through local fluid flow, a 

capillary relaxation process due to the fluid exchange driven by the non-equilibrium 

capillary forces between the pores of different sizes. It must be noted that, although the 

local fluid flow may be substantially influenced by the macroscopic fluid flow driven by 

pressure gradient or vice versa, the former has notliing in common with the latter. In fact, 

the capillary relaxation time is generally o f the same order as or even larger than the 

characteristic time scale o f macroscopic fluid flow (Buyevich. 1995) and that o f the 

skeleton deformation. Consequently, the Terzaghi's effective stress principle can not be 

applied to the porous media such as sweiiing soiis ("Beimeihtim et ai.. 1997; Murad.



1999), in which the effects o f the capillary relaxation on the overall behavior o f the 

material can no longer be neglected. Furthermore, since the capillary relaxation may 

induce energy loss, the change o f capillary pressures with the material state is usually 

irreversible and accompanied by hysteresis phenomena.

From the above discussions, it is quite obvious that the effective stresses and the 

capillary pressures are closely correlated through the dynamic compatibility conditions 

on the interfaces. At macroscopic scale, the dynamic compatibility conditions on the 

interfaces can be represented by the relationships between the capillary pressures and 

state variables. Since these relationships are independent of any balance equations or 

constitutive relationships for an individual component, they can be used as the closure 

equations mentioned above. Therefore, in order to develop a continuum model o f porous 

media, it becomes crucial to properly simulate the change of the capillary pressures with 

the state o f the material.

1.3 Objectives

The objective o f this dissertation is to develop a continuum model o f porous 

media capable of rigorously incorporating the effects o f the interactions on the interfaces 

discussed above. The porous media o f concern are those saturated by two immiscible 

simple fluids. To this end. the general structure o f constitutive relationships is first 

investigated within the frameworks o f the continuum theory o f porous media and the 

irreversible thermodynamics. A nonlinear continuum model o f the porous media is then 

developed, which accounts for the finite deformation and elastoplasticity. A



thermoporoelastic model is derived from a formal linearization o f the general theory, and 

employed to simulate the propagation of the body waves in the porous media. General 

initial/boundary value problems concerning the behavior o f porous media are 

constructed, and the corresponding finite element solution procedures are presented. 

Various numerical examples are introduced to show the validity and capability o f the 

proposed model in simulating the behavior of porous media.

1.4 Contributions

To the author's knowledge, the following aspects o f this dissertation are original:

• The effective stresses and capillary pressures are found to have a common 

microscopic origin, that is, the dynamic compatibility conditions on the 

interfaces. By considering these compatibility conditions, the restrictions on 

the use o f the effective stresses can be removed.

•  A theoretical framework capable of rigorously incorporating the dynamic 

compatibility conditions on the interfaces is established. Within this 

framework, it is possible to describe the nonlinear behaviors, such as plasticity 

and capillary hysteresis o f multiphase porous media, in a unified way.

• Establishing a connection between the Biot's theory o f porous media and the 

models o f porous media based on the continuum theory o f mixtures. Through 

this connection, a continuum model o f the porous media saturated by multiple 

fluids can be develoned in a rather straiehtforward maimer.



I.s  Outline o f  the Dissertation

The outline o f the dissertation is as follows. After a review of the state of 

knowledge in Chapter 2. general constitutive relationships are developed within the 

framework o f the theory o f mixtures in Chapter 3. The emphasis here is on the 

restrictions exerted by the second law o f thermodynamics on various dissipative 

mechanisms, particularly, the irreversibility o f the capillary pressures and plastic 

deformation. Based on the general constitutive relationships developed in Chapter 3. a 

nonlinear model of the porous media is derived in Chapter 4. By investigating the 

variational structure o f the proposed model, a connection is established between the 

Biot's theory o f porous media and those based on the theory o f mixtures. Such a 

connection provides a way to incorporate the dynamic compatibility conditions on the 

interfaces into a continuum model o f porous media and allows the field equations for the 

porous media with multiple fluids to be easily generated.

By directly linearizing the general theory developed in Chapter 3&4. a 

thermoporoelastic model is presented in Chapter 5. Through these derivations, it is 

clearly shown that the restrictions in the application o f the effective stress can be released 

by introducing the dynamic compatibility conditions on the interfaces. Furthermore, it is 

shown that many classic models used in geomechanics are derivable from the proposed 

theory. As an application and validation o f the proposed theory. Chapter 6 investigates 

the propagation conditions o f the body waves in porous media, where theoretical results 

are comnared with exnerimental data.



Chapter 7 deals with the initial/boundary value problems on the static and dynamic 

behaviors o f porous media. Two sets o f the statements of problems are considered that 

are appropriate for various situations. The corresponding finite element solution 

procedures are developed and implemented. Finally, several numerical examples using 

the finite element code developed are presented in Chapter 8.



Chapter 2 CURRENT STATE OF KNOWLEDGE

2.1 Continuum Theories o f  Porous Media

The first continuum theory o f porous media was developed by Biot (1941. 

1956a&b. 1962). and was used to describe the isothermal, linear elastic behavior o f the 

porous media saturated by a single fluid. This theory was later generalized to account for 

the finite elastic deformation o f saturated porous media (Biot. 1972). The above 

generalization involves two important concepts, i.e. the pressure function Mip" ) and the 

increase o f the total fluid mass in a unit volume o f the porous medium (denoted by m). 

Function /u relates the fluid chemical potential to the fluid pressure p '  . Variable m 

equals ( Jnp" -  ). where J  is the determinant of the deformation gradient F. n is the

porosity, and p* is the fluid mass density; a quantity with a subscript “0” represents an 

initial value. Later. Biot (1977) presented a more general theory o f porous media by 

introducing the so called "principle o f virtual dissipation", a generalization of 

d'A lem bert's principle to non-linear irreversible thermodynamics. This principle is quite 

heuristic, although it can be used to generate the field equations o f the porous media in a 

very straightforward manner.
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In Blot's theory, due to the use o f variable m, the flow equation is put into a 

convective format that is particularly appropriate for the flow in the porous media with a 

deforming skeleton. In the convective description, the motion o f the fluid is described 

with respect to the (material points of) solid skeleton. Since the fluid outside the domain 

spanned by the deforming skeleton has no influence on the behavior o f the porous 

medium, it is more convenient to describe the fluid motion with respect to the deforming 

skeleton. In this setting, the convected flow equation keeps objectivity. This is desirable 

for the analysis o f the porous media at finite deformation. Furthermore, the boundary 

conditions can be very easily defined in a numerical procedure based on the convective 

formulation.

Recently, Blot's theory had been generalized into the global context o f the 

thermodynamics o f open continua by Coussy (1989a&b, 1995). In Coussy's model, the 

concept o f plastic porosity is introduced so that the irreversible compression o f solid 

grains can be taken into account. Generally, the irreversible part o f m may have two 

contributions, i.e. the plastic deformation o f the skeleton and plastic porosity. If the solid 

grains experience irreversible compression, the plastic porosity is not derivable from the 

plastic deformation of the skeleton, and an independent evolution equation must be 

developed for it. In this case, the effective stresses are no longer appropriate for the 

description o f the constitutive behavior of porous media. Clearly, Coussy's model is more 

general than the effective stress-based models that will be discussed later in this chapter. 

Recently, Coussy's model has been slightly modified and applied to the numerical 

analysis o f the behavior o f saturated porous media (Amero, 1999).

11



The generalized formulations o f Biot's theory most extensively used in practice are 

those developed by Zienkiewicz et al. (1977. 1982) and Prévost (1980). which are all 

heuristic in nature. Since these models themselves place no restrictions on the 

constitutive relationships o f the porous media, phenomenological stress-strain 

relationships that are based on some stress measures (e.g. the effective stresses) must be 

introduced. In addition, the Darcy"s-type flow equations are intuitively employed to 

describe the fluid diffusion. Note that the above models are appropriate for many 

saturated geomaterials, for which the stress measure can be properly defined. In general, 

however, an intuitive choice o f the stress measure in modeling the material behavior must 

be done with caution, since it may incur thermodynamic inconsistency. We will further 

discuss this point in the following section.

One o f major difficulties in applying Biot's theory (including its generalizations) 

stems from the fact that these models do not consider the microscopic structures that play 

critical roles in the overall behaviors o f the porous media, as discussed in the last chapter. 

The theories o f mixtures can play a role in alleviating this difficulty. Comprehensive 

reviews on this subject can be found in Bedford and Drumheller (1983) and de Boer 

(1996). Within the framework o f the mixture theories, some variables, e.g. the volume 

fractions o f individual components, are employed to represent the microstructure o f 

porous media. This induces the equation-deficiency problem. Therefore, complementary 

equations must be developed so that a complete set of governing equations can be 

obtained. These complementary equations are usually called the closure equations. One 

o f  the key steps in developing a model o f  porous media is to formulate the closure 

equations.

12



Traditionally, the closure equations are obtained in one o f the following ways. One 

may introduce additional constitutive equations (Morland, 1972; Bowen. 1980; de Boer. 

1996; de Boer and Bluhm, 1999). Alternatively, the introduced variables are treated as 

internal variables and their evolution equations are developed based on the principles of 

continuum mechanics (Bowen. 1982; Svendsen and Mutter, 1995). In addition, balance 

equations can be directly established for the introduced variables (Goodman and Co win. 

1972; Passman. 1977; Wilmanski. 1996).

Among the models mentioned above, those proposed by Bowen (1982) and de Boer 

et al. (de Boer. 1996; de Boer and Bluhm. 1999) are o f primary interest here. In Bowen's 

theory, the volume fractions are introduced as internal variables so that the microstructure 

o f the porous media can be taken into account to some extent. This theory accounts for 

the pore relaxation effects that are important for some applications, e.g. the subsurface oil 

production processes. This theory includes the Biot's poroelasticity model as a particular 

case and can be used in the analysis o f the elastically deforming porous media with 

multiphase flow. Although the thermodynamic restriction on the evolution o f volume 

fractions is given, the evolution equations have not been explicitly treated in Bowen's 

theory. Furthermore. Bowen's theory does not take into account the compressibility o f 

the solid phase. It has been recognized, however, that the compressibility o f  the solid 

phase plays important roles in the overall behavior o f porous media (Lade and de Boer. 

1997).

Recently, de Boer and his coworkers (e.g.. de Boer. 1996; de Boer and Bluhm. 

1999) proposed a procedure that can be used to formulate the closure equations in the
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continuum models o f porous media. In this procedure, the deformation gradient (defined 

in Chapter 3) is decomposed into two components accounting for the deformation o f real 

material and change o f the porosity. It is noted that both o f these two components contain 

the microscopic aspects o f the porous medium. If a constitutive relationship is developed 

for one o f these two deformation components, the other is fully determined. 

Consequently, an additional constitutive equation is obtained, and it can be used as the 

closure equation. Although this model can be used to describe the behavior o f saturated 

porous media, its usefulness in modeling the porous media saturated by multiple fluids is 

uncertain. The reason for this is that the microscopic interactions on the interfaces, which 

have been discussed in the previous chapter, cannot be taken into account. In fact, it is 

unclear so far how to apply the above procedure to multiphase porous media.

In recent years, following a line quite different from those cited above. Gray and his 

coworkers (Hassanizadeh and Gray. 1990; Gray and Hassanizadeh. 1991) proposed a 

model o f porous media, in which interfaces are explicitly considered as independent 

phases. This model gives some new insights into the constitutive structure o f multiphase 

porous media. Remarkably, it was found for the first time that the evolution o f  capillary 

pressure is restricted under the second law o f thermodynamics. This result can be used to 

deduce the relationship between the capillary pressure and state variables o f the material. 

Oddly, this important result seems to have been overlooked or. at least, underutilized. In 

the application o f the above model, although it was recognized that the effects o f the 

capillary relaxation could be significant, the time effect had been simply omitted in 

interpreting the capillary phenomena (Gray and Hassanizadeh. 1991; Hassanizadeh and 

Gray. 1993; Muccino et al.. 1998).
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Based on their theory. Hassanizadeh and Gray (1993) proposed that the suction 

( P ‘ ) must be a function of the degree of saturation (a" )  and the area density o f the 

meniscus (a*") and the hysteresis can be explained as simply the projection o f the 

hypersurface P‘ -  s ’ -  a "  on to the P’ -  s ’ plane. To verify this conjecture. Celia and 

his coworkers have developed a functional relationship among . s ’ . and a '” based on 

a pore-scale computational model (Reeves and Celia. 1996; Celia et al.. 1998). They 

found that, although the suction is a function of s ’ and a ’" . the explicit form o f the 

hypersurface P‘ -  s ’ -  a ’" still depends on the path o f state, e.g. imbibition or drainage, 

to some extent. Clearly, this result is inconsistent with the above conjecture.

Here, it is worthwhile to emphasize that the hysteresis in the capillary' pressure is 

phenomenological and it represents a kind o f energy dissipation. From the standpoint of 

continuum mechanics, it should be possible to link the hysteresis phenomenon with some 

dissipative mechanism occurring in the porous media. In other words, capillary 

phenomena can be simulated within the framework o f the continuum mechanics. This 

point will be an underlying theme of this dissertation. Very recently, parallel to the 

procedure developed by Gray and his coworkers, a thermomechanical model o f porous 

media have been developed by Muraleetharan and Wei (1999). in which the volume 

fractions are introduced as state variables. One o f the important results o f this work is that 

the thermodynamic restrictions on the evolutions o f all the capillary pressures have been 

established. In this dissertation, using the standard principles o f continuum mechanics, 

the theoretical results o f Muraleetharan and W ei's work will be further generalized, and a 

continuum modei o f porous media wiii be derived.
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2.2 Stress~Strain Constitutive Modeling

Modeling the stress-strain constitutive behavior o f porous media has been closely 

linked with the efforts to identify the relevant stress measures concerning the behavior o f 

porous media. In phenomenological approaches, the stress measures used to describe the 

constitutive relationships o f porous media include the total stresses, the effective stresses 

(Terzaghi, 1936), the two stress state variables (Fredulund and Morgenstem. 1977), and 

those based on the mixture theories. The effective stress-based constitutive models, such 

as the celebrated Cam Clay model (Schofield and Wroth, 1968), are thermodynamically 

consistent in general, when applied to the saturated porous media constituted by 

incompressible solid grains (see. e.g., Ehlers, 1989. 1993: Coussy, 1995: pp.84-208). In 

modeling the saturated porous media constituted by an elastically compressible solid 

phase, the effective stresses can still be employed with slight modifications (Lade and de 

Boer. 1997). These observations are very important, since most of the constitutive models 

of porous media available in literature are based on the Terzaghi"s effective stresses.

Due to the success in modeling the saturated porous media based on the effective 

stresses, it becomes natural to generalize the effective stress concept to the multiphase 

porous media (see. e.g.. Bolzon et al.. 1996). In modeling the porous media saturated by- 

two immiscible fluids, such as unsaturated soils, the most frequently used effective stress 

equation is the so-called Bishop's formulation (Bishop, 1959). Difficulty in applying this 

formulation was recognized by Aitchison and Donald (1956), Bishop and Donald (1961). 

Bishop and Blight (1963). and Maty as and Radhakrishna (1968). This led to a tentative 

proposition by Fredlund and Morgenstem (1977) that any pair among net stress, suction.
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and the excess of total stress over pore water pressure can be used as independent stress 

state variables. Here, the net stress equals to the total stress minus pore air pressure and 

the suction is the subtraction of pore water pressure from pore air pressure.

In the early practice o f unsaturated soil mechanics, the two stress state variables had 

been used to simulate some discrete, local aspects o f the mechanical behavior o f 

unsaturated soils. Important contributions to this topic include the works by Coleman 

(1962). Fredlund (1979). Lloret and Alanso (1980. 1985). Escario and Arez (1986). and 

Fredlund et al. (1987). Although these works cover many aspects of unsaturated soils, an 

integrated scheme for the constitutive behavior o f porous materials was not available 

until Alonso et al. (1990) presented an elatsoplastic model using the concept o f two stress 

state variables. Alonso et al. (1990) developed their model within the framework o f the 

Cam Clay model (Schofield and Wroth. 1968) by introducing the concept o f LC curve 

(i.e. the load-collapse curve). Tliis model was examined based on experimental data by 

Cui and Delage (1996). WTieeler and Sivakumar (1995). and Wheeler (1996). It was 

found that for the completeness of the model specific water volume (the volume of water 

plus solids in a volume of soil containing a unit volume o f solid) must be included.

Based on Wheeler's model (Wheeler, 1996) and the bounding surface plasticity 

(Dafalias and Herrmann. 1986). Muraleetharan and Nedunuri (1998) developed an 

elastoplastic model for the unsaturated soils. This model keeps all the main features o f  

Wheeler's model. In addition, Muraleetharan and Nedunuri's model can handle the cyclic 

plasticity o f  the unsaturated soils. Although it is quite primitive, this model seems to be 

the first one that incorporates cyclic plasticity o f unsaturated soils.
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In recent years, the two stress state variables become more and more popular in 

modeling the behavior o f unsaturated soils. Although the constitutive models based on 

these two variables may capture some features of the porous materials, the 

thermodynamic basis for the use of the two stress state variables has not yet been 

established. This may create concerns in applications, since it is difficult to imagine that 

one can employ a stress measure confidently without knowing its conjugated strain. In 

fact, difficulties in applying these models have been recognized (Li et al.. 1999: Vaunat 

et al.. 2000). In addition, it is quite obvious that the two stress state variables can be 

applied only for porous media saturated by two immiscible fluids and can not be 

generalized for porous media with multiple fluids.

The stress-strain constitutive relationships can also be established within the 

framework of theory o f mixtures (e.g.. Robin et al.. 1996: Loret and Khalili. 2000). 

Studies in this respect are primitive, though such models are practically and theoretically 

appealing. Due to its thermodynamic consistency, the approach to developing constitutive 

relationships based on the theory o f mixtures is more rigorous than the others mentioned 

above. In fact, the effective stress models can be viewed as particular cases o f the models 

based on the theory o f mixtures (see. e.g. Ehlers. 1993).

2.3 Wave Propagation in Porous Media

Interestingly, the early studies on the dynamic behavior o f porous media concern 

exclusively the wave propagation in porous media (e.g.. Biot. 1956a&b: Brutsaert. 1964).

iiluo loi* uiw aiiaijroio piv/wuuivo lui uic v>avw piupagaLiuii ui uic pviwioauv liiacciicud
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saturated by a single tluid have been fairly well developed (Bourbie et al., 1987). These 

analysis procedures are generally based on Biot’s theory or its generalized formulations. 

They predict the existence of two compressible waves and one rotational wave in a 

saturated porous material. The rotational wave and the faster compressional wave are 

similar to those in the single-phase continua, though the former is slightly dissipative. 

However, the second compressional wave, usually called Biot's wave, is highly diffusive, 

and hence generally elusive in the experimental observations. The Biot's wave was first 

observed by Fiona (1980) and later confirmed by Berryman (1980). Several analytical 

solutions have been presented in the literature that treat the problem o f wave propagation 

in saturated porous media under various conditions (see, for example, Garg et al., 1974: 

Simon et al.. 1984: de Boer et al., 1993. and Gajo and Mongiovi, 1995).

By contrast, the problem of wave propagation in the porous media saturated by 

multiple fluids received limited attention from researchers. It seems that Brutsaert ( 1964) 

is the first one who generalized Biot's theory to account for the acoustical behavior of 

porous media such as unsaturated soils. He found that in general there exist three 

compressional waves in the porous media saturated by two immiscible fluids. The 

existence o f the third compressional wave is due to the presence o f a second fluid 

component in the pores. The first analytical solution o f the problems concerning the body 

waves in unsaturated porous media is owed to Garg and Nayfeh (1986). This model is 

based on a generalization of Biot's theory, where additional constitutive equations (the 

closure equations) were assumed for the porosity and the degree o f saturation.
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In a different context. Tiincay and Corapcioglu (1996. 1997) developed a model to 

describe the body waves in the poroelastic materials saturated by two fluids. In this 

model, the field equations valid in microscopic scale are directly averaged to 

macroscopic level, and the capillary equilibrium on the meniscus between the water and 

air is explicitly taken into account. This model also predicts the existence o f  the third 

compressional wave. Intrinsically, this model is equivalent to a generalization o f Biot's 

model.

Thus far. several experimental studies have been presented in the literature 

regarding the acoustical properties o f elastic porous media. A comprehensive review on 

this subject was given by Bourbie et al (1987). Most o f these studies are concerned with 

high frequency (i.e. ultrasonic) waves only. In the higher frequency range, however, the 

basic assumptions in a usual linear model o f porous media, e.g. frequency-independent 

and continuum, may break down. For the purpose of comparison with the theoretical 

results based on the continuum models, the experimental observations on the low- 

frequency waves are desirable. Murphy (1982. 1984) provided such an experimental 

study, considering the acoustical waves in the Missillon sandstone saturated by water and 

air.

2.4 Finite Element Analysis Procedures

Several finite element analysis procedures available in the literature are all based on 

the simple generalizations o f the Biot's theory. In the procedures developed in the early 

stage, the constitutive behaviors o f the porous media are described exclusive by using the
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effective stresses. In these models, the effect o f the degree o f saturation on the behavior 

o f the porous media are implicitly and approximately taken into account by introducing 

some relationships that present the fluid compressibility as a function o f the degree of 

saturation. Here, the works by Ghaboussi and Kim (1984), Chang and Duncan (1983). 

and Vardoulakis and Bestos (1983, 1986) are good examples.

Fully coupled analysis procedures o f the behavior of multiphase porous media are 

only available in recent literature, and majority o f these studies is devoted to the static 

problem. Extensive references are given and discussed in a new book by Lewis and 

Schrefler (1998). The key components of these models include the formulations o f Biot's 

type, soil-water relationship, hydraulic properties as functions o f the water content, and a 

effective stress formulation (usually Bishop's formulation).

It seems that the first dynamic analysis procedure considering the effect o f negative 

water pressure on the deformation o f unsaturated soils was given by Zienkiewicz et al 

(1990b). In a strict sense, this procedure is not fully coupled, since for convenience the 

authors had assumed that the air pressure remains constant and equal to the ambient air 

pressure. On the other hand, recent research shows that the air pressure might experience 

significant change during tlie deformation process (Schrefler and Zhan. 1993). 

Furthermore, during a dynamic event, even stronger coupling between the air and the 

other phases may be expected. In recent years, a fully coupled dynamic analysis 

procedure, capable o f simulating the multiphase flow within deformable porous media, 

have been developed by Li et al (1990) and Li and Zienkiewicz (1992). This procedure 

can be viewed as an extension o f the one by Zienkiewicz et al (1990). In this procedure.
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however, the gas phase is formally considered as an independent phase. This procedure 

was later extended to the finite deformation problems by Meroi et al (1995), and very 

recently it has been used in analyzing the dynamic behavior o f unsaturated soils 

(Schrefler and Scotta, 2001).

Although there is increasing interest in using the two-stress-state variables to model 

the constitutive relationships o f unsaturated soils, application o f these constitutive models 

in the numerical analysis is still primitive. Several applications concerning the static 

behaviors o f unsaturated soils can be found in the literature, for instance. Alonso et al 

(1998) and Thomas and He (1998). Thus far. it seems that no dynamic analysis 

procedures are available that explicitly incorporate the constitutive relationships using the 

two-stress-state variables.
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Chapter 3 A CONTINUUM THEORY OF POROUS MEDIA 
SATURATED BY TWO IMMISCIBLE FLUIDS

The objective o f this chapter is to develop a continuum theory o f porous media 

saturated by two immiscible fluids within the framework o f the theory o f mixtures. We 

assume that the fluid is simple, i.e. no molecular diffusion is considered. For clarity and 

generality, the fluids will be denoted as the wetting fluid (iV) or non-wetting fluid (/V) 

corresponding to the relative value of their wetting potentials.

In what follows, it is assumed that any point in the domain spanned by the solid 

skeleton is simultaneously occupied by all the phases. This is the point o f view of the 

continuum theory o f mixtures. However, the procedure followed here differs from the 

other theories o f mixtures in that it explicitly deals with the dynamic compatihiliry 

conditions on the interfaces discussed in Chapter 1.

3.1 Basic Assumptions and Kinematics

In the theory to be developed below, macroscopic state parameters and balance 

equations are obtained by integrating their microscopic coimterparts based on a local 

averaging procedure (Hassanizadeh and Gray. 1979 I&II). For instance, the volume 

fraction o f a bulk component is a macroscopic (or average) quantity obtained by dividing
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the total volume of that component in the representative elementary volume" (REV) by 

the total volume of the REV (see Fig. 3.1).

n ( x . t )  =

Figure 3.1 A representative elementary volume (REV)

Let D be the characteristic size o f the REV used in the averaging procedure. If a 

state parameter is computed using the averaging volumes (REVs) that vary from a small 

size to a very large size, the computed quantity will fluctuate with D when D is less than 

a certain value f. (as shown in Fig. 3.2). When ’̂ < D < Z.. the computed parameter is not 

very sensitive to the size of the REV. If, however, the size o f the REV is further increased 

so that D> L . gross inhomogeneities are induced that may affect the stability o f the 

averaged parameter. To obtain meaningful average quantities, it is required that the size 

of the averaging volume (REV) must satisfy’ the inequality f « D « L  (Whitaker. 

1969). Typically. P. =50  micron for sands and f. = I micron for clays, whereas L = I 

cm. In this range o f  D. all the average quantities are independent o f the size o f the REV.

A representative elementary volum e ^tycv; is m e inrmitesimai averaging volum e usea in m e averaging 
procedure.
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In the following, we assume that an averaging volume of such a characteristic size exists 

for the porous media under considerations. Consequently, all the macroscopic state 

parameters can be defined in the domain o f concern and represented by the functions of 

spatial coordinates and time.

State param eters

Stable
(Averaging)

Fluctuation Gross inhom ogeneity

S ize  o f  a v era g in g  v o lu m e

Figure 3.2 State parameters as a function o f the size o f REV

In what follows, a  ov P  \s used to denote an individual bulk, component; a p

represents an interface between a  -phase and ^-phase. Standard solid mechanics sign

convention is used, i.e. tensile stresses are positive. Let c  be a fixed but otherwise

arbitrary reference configuration o f a  -phase. As usual in the theory o f mixtures, each 

individual phase is assigned an independent motion defined by

(3.1.1)

where cr = S. W. N  : S,"  c  R- is the current configuration, and t e  [0. T] c  R* the elapsed 

time; X "  represents the coordinate o f a particle (denoted by p“ ) o f a  -phase in its
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reference configuration; x is the spatial position o f p “' at time c (see Fig. 3.3). Function 

is assumed to be invertible and differentiable as many times as necessary. 

Inverting (3.1.1) leads to

(3.1.2)

The velocity and acceleration o f p“ are defined, respectively, by

. (3.1.3)V
dt

and

a ‘ix.1)  = ^ ^  + v ' .V  V '. (3.1.4)
d-1 dt

where V represents the spatial gradient, and the operator ( 5 /5 / + v ' • V ) is the so-called 

material derivative with respect to the motion o f a  - phase and written as D" j  D t .

/<“(.v + 4 c ./)
R eferen ce
Configuration I

Current 

C on figu ration

a (.r./)
X

x  + Ax

Figure 3.3 The motion and displacement o f  an individual phase
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The displacement o f the material point X “ is given by (see Fig. 3.3)

u ^ ( x j )  = x ‘( X “j ) - X \  (3.1.5)

where equation (3.1.2) is used. It is assumed for convenience that the reference and initial 

current configuration (at / = 0 ) are coincident. With equation (3.1.5) and by the 

definitions o f (3.1.3) and (3.1.4). one has

v‘'( .v .r)=  = - ^ u ' ( x j ) .  (3.1.6)
di  Dr

and

I (3.1.7)
Of  Dt

Conventionally, the reference configuration o f the solid skeleton is used as the 

reference configuration for the motions o f the fluids in the mixture. Such a convention is 

justified by the fact that, as far as the fluids are concerned, of interest only is the part 

within the domain spanned by the solid skeleton, i.e. ' • When the reference

configuration zf ' o f the solid skeleton is used, the description o f the motions is called 

Lagrangian (or material). Otherwise, if the current configuration j ; '  o f  the solid 

skeleton is used, the description o f the motions is Eulerian (or spatial).

In either case, it is useful to define the relative displacement and relative velocity of 

a fluid with respect to the deforming solid skeleton. Let x&  S f . the relative 

displacement o f the material point o f fluid a  is defined as
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The corresponding relative velocity of a fluid is therefore given, in the Eulerian 

description, by

du^ix . t )
w { x j )  =

dt
= v‘'( jc ./ ) -v '( jc .r ) .  x e S , ' .  (3.1.9)

.V 'i .Y ' f t x a l

Now. what is the Lagrangian counterpart o f the relative velocity o f a fluid particle? Due 

to its importance in developing the flow equations, we will derive in details the 

Lagrangian relative velocity of a fluid particle in the following. Let W ’{ X \ t )  

= iv' o / '  (X '.z ) .  where f ° g  represents a compound function. By definition (3.1.9). it 

is noted that does not represent the Lagrangian relative velocity o f a fluid

particle, since the mapping : x  h > ( a  = (F..V ) changes from time to time.

âX

Figure 3.4 Lagrangian relative velocity o f a fluid particle

Consider a fluid particle p“ located at x ' = jf 'fA ’'. / )  e  (as shown in Fig. 3.4). 

In a neighborhood o f p“ . there exists a solid particle p ' located at x  = / ' ( % '  + S X j )

c  . vviucii w ill  a i c c i  p  cuici t / t  acL uiiua. w c  m a v  w m c
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jc' + v “{ x ‘ ,t)Ôt = X' +v'‘{ x \ t )Ô l
, , , (3.1.10)
{ X \ i )  + F S X  + v \ x \ t ) S i .

It follows from (3.1.10) that

F S X  = {v‘̂ - v ' ) S ( .  (3.1.11)

From the derivations given above, it is clear that the Lagrangian relative velocity o f p “ is

F  ' (v“ -  k' ) .  (3.1.12)
ol

where F  is the inverse o f the deformation gradient F  of the solid skeleton defined bv

where /  is the second-order imit tensor with components J,, ( / or /  = 1.2.3 ). and S,, is 

the Kronecker delta. In the following, it is assumed that the transformations between 

configurations preserve the orientation, i.e. J  = del F  >0 .

In deriving equation (3.1.12), it is clear that Ŵ“(AT',0 represents the velocity o f a 

fluid particle at % approaching to (or escaping from) the solid particle p ' that will meet 

(or met) the fluid particle at the moment /. In fact, W “{ X \ t )  is the convective 

representation of the relative velocity o f a fluid, and obtained by pulling back the relative 

velocity (3.1.9) to the reference configuration.

For later use, we define the Lagrangian strain tensor (i.e. the Green-St. Venant 

strain tensor) as
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E = - { C - I )  = - { F ^ F - 1 ) ,  (3.1.14)

where C = F  F  is the right Cauchy-Green deformation tensor. Linearizing (3.1.14) 

yields

E  = sym iVu'') = ^
d x

+ ------
Ô X

= e . (3.1.15)

where symÇ) represents the symmetrical part o f a tensor object and e is the strain tensor 

o f the solid skeleton at infinitesimal deformation.

3.2 Balance Equations

The local forms o f macroscopic balance equations, developed by Hassanizadeh 

and Gray (1979 I & II) and Gray and Hassanizadeh (1989) based on a local averaging 

procedure, are introduced here. This set o f balance equations differs from the others in 

that it includes the balance equations for the interfaces between two bulk phases. 

Furthermore, the exchange terms in this set o f balance equations are physically very well 

motivated. From now onwards, it is assumed that the interfaces do not carry any averaged 

thermodynamical properties. This assumption is general enough for the development o f a 

continuum model, since the macroscopic properties o f the interfaces are in general much 

smaller than their bulk-phase counterparts.

For a  bulk phase, the mass balance is

D (n  p  j   ̂ -  V / I  T i \
u t
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and for an interface

0 = (3 2 2 )

where accounts for the rate o f mass transfer through or^interface to a-bulk phase;

and p "  are the volume fraction and true mass density, respectively. All the terms 

with a carat represents exchange terms. (3.2.2) states that ay5-interface does not store any 

excessive mass. For later discussions, it is useful to introduce the total mass density o f the 

mixture, which is defined by

(3.2.3)

The equations of linear momentum balance for a bulk phase is represented by

n'-p-— — ^■{nU‘')-n'‘p-h‘ = (3.2.4)
Dt (l,a

and for an interface

(3.2.5)

where r“ is the macroscopic true Cauchy stress tensor o f a bulk phase; f "  represents the

rate o f linear momentum transferring to a  -phase due to its mechanical interactions with 

phase. The total linear momentum transfer has two contributions; one is due to the 

mass change and the other is due to the mechanical interactions. Therefore. (3.2.5) states 

that the total linear momentum transfer from a  lo j3 is always equal to that from y? to 

a . In the following, it is assumed for simplicity that the external body supplies o f linear 

momentum for all the phases are equal, i.e. b“ =b { a  = S .W .  M ). The total (Cauchy) 

stress tensor a  o f the mixture is defined by
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a = Y^n'^t" . (3.2.6)

Assuming that the moment of momentum is conservative for all the individual 

phases (i.e. microscopically, they are non-polar materials), one may obtain

(3.2.7)

Hence, by definition (3.2.6), the total Cauchy stress o is also symmetrical, i.e.

«7 = <T̂ . (3.2.8)

The equations o f energy balance for a bulk phase is

n - p “ — — /7“r  : d ‘ - V  {n '-q '^)-n‘p “h'‘ = ^ 0 % ,,  (3.2.9)
Dt il ta

and for an interface

■a.{I

■ ( 1 V
E ' + - V '  • (3.2.10)

where t " : d" represents, in indicial notation. / V " ,  and v" • v" = v,'v,"; d" is the 

symmetrical part o f the velocity gradient, i.e. d “ = //2[(Vw")'^ + Vv"] ; h" the external 

supply of energy: q“ the heat flux; 0 “̂  the rate o f energy transferring to or-phase 

tlirough aP  -interface. (3.2.10) shows that the energy exchange through an interface has 

three contributions associated with heat exchange, mechanical interaction, and mass 

exchange.

The entropy balance for a bulk phase is
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(3.2.11)
Dt il.a

and for an interface

0 = 13.2.12)

where 7 “ is the entropy density; (p'' the surface flux term o f entropy and it is assumed 

that =q" / 6  ; a> ' the external supply o f entropy with co " = h" I d : A" the net 

production o f entropy in a  -phase. From now onwards, all the phases are assumed to 

have the same temperature # at a local point. (3.2.12) implies that the interfaces can not 

store or generate entropy. The total entropy density o f the mixture q is defined by

p q =  ^ n ' p ' 7 ^.  (3.2.13)
<t W  .V

Finally, the second law of thermodynamics requires that

/1=  ^ / l "  > 0 . (3.2.14)
y

where A  is the total net production o f the entropy o f the mixture. For later use. we 

introduce the Helmholtz free energy A " defined by the Legendre transformation.

A" = E " - e q \  (3.2.15)

and the total free energy density o f the mixture y/ given by

p y /=  Y ,n “p \ r .  (3.2.16)
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3.3 General Constitutive Relationships

In order to determine the state o f the porous medium by using the balance equations 

presented above, the following independent fields must be evaluated:

In mass balance: n“p " . or alternatively. n ‘ &

In linear momentum balance: v ' . or alternatively, u“

In energy balance: 9

where a  = S , W , N \  u“ is the displacement defined by (3.1.5). To this end. it is 

necessary to establish the constitutive relationships for the following state parameters:

E -(o r T ) .

It is noted that since at any point o f the domain all the phases share the same temperature 

an independent constitutive equation is not needed for 0 ^ .

For simplicity, we consider the porous media with an elastic solid skeleton saturated 

by two inviscid fluids (the elastoplasticity of the porous media will be discussed later). 

By introducing the principle o f local action" (Odgen. 1984: pp. 172-174). the set of 

constitutive variables proves to be

E  = { 9 . V e . n \ V n \ p \ V p \ F ,  (3.3.1)

' Let -K (,Y ') be a neighborhood o f  the point X ' . The principle o f  local action states that the material

.V* *5 n n  th p  th p  n in f in n  jncîH ç n n lv  U H Sff^C t^d th c

m otion outside . The constitutive law based on this principle is local.
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where a  = S. W, M; /? = IV, N . Note that the volume fractions o f tluids are included as

constitutive variables. The reason for this is that the volume fractions can be used to

represent the local structure o f the porous medium and therefore the interactions between 

two bulk components through the interfaces. In the proposed model, no internal 

constraints are introduced. That is. all the bulk phases are assumed compressible ( p  ' is a 

variable). As shown in Chapter 6. any model o f porous media with internal constraint 

excludes at least one mode o f acoustic waves. This o f course is not a desirable feature for 

a general model as developed here.

As a starting point, we postulate the following constitutive equations for the free 

energies:

A'  ̂ = . r ( e . p \ E ) .  (3.3.2)

/I" = V:"). (3J.3)
and

= a ''(û. p  ',n   ̂ ). (3.3.4)

In postulating these constitutive equations, it has been assumed that the free energy 

density o f an individual phase is solely determined by the state variables o f this 

individual phase. The inclusion o f the volume fractions in (3.3.2)-(3.3.4) is one of the 

distinguishing features o f the theory presented hereafter. Since the volume fraction of 

solid can be determined by integrating the mass balance equation o f the solid phase with 

M and p  ' given, n ' is not explicitly included in (3.3.2). Due to the requirement o f the 

material objectivity". E  is used in (3.3.2) instead o f F. In addition, because the influence

’ This is a basic assumption in continuum m echanics stating that two observers in relative m otion make no 
(mathematical and physical) difference in deducing the m acroscopic properties o f  a material under test. In 
other words, material properties are unaffected by a superposed ngid  body motion and a constitutive 
relationship has the sam e form for all the observers.
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o f deformation on a tluid can be implicitly accounted for by using the volume fraction. E  

is excluded in (3.3.3) and (3.3.4).

With the assumption that the interfaces do not carry averaged thermodynamic 

properties, it can be shown that the sufficient and necessary conditions for (3.3.2)-(3.3.4) 

to satisfy the entropy inequality (3.2.14) are (Muraleetharan and Wei. 1999)

4 P
-  4 '

(3.3.5)

f  = - p "  I . (3.3.6)

F  = - p ' / . (3.3.7)

F  = r - / / . (3.3.8)

where a  = S, W , N . and

9 A =  (3.3.9)
H . i v s  a t J = .S W } V \ \ \S  Q

where p  is the total mass density defined by (3.2.3): r\ the total entropy defined by

(3.2.13); y/ the total free energy density defined by (3.2.16);

p -  = { p ^ ) — . a  = S , W . N  (3.3.10)
4 ? “

and

t ‘ = p ^ F ^ F \  (3.3.11)
c E

is the ihermodynamic pressure o f  a-phase: 0 .3 .6) and (2.2.T) show ûiat p"' and 

p  '̂  equal to the real material pressure.
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In the entropy inequality (3.3.9).

— , (3.3.12)

- n ' 'p '’
âA 3A

~ n ‘‘p “ — V e .  (3.3.13)
0

and

q =  ^ n " q "  . (3.3.14)

G“ = . r + ^ .  (3.3.15)

G" is the chemical potential o f a  phase, which is usually called the Gibbs free energy. 

The physical significance of G" will be explained later.

To get insights into the structure o f the constitutive relationships presented above, 

we define a new energy density function for the porous medium as follows.

W{e. E . n . n " ,m ;) = p^ip{e. E .n * ' . n " .p ^ ) .  (3.3.16)

where a  = S. IF. .V ; p^ = J p  = (detF )/? ; i(/ is given by (3.2.16); m ’’ is the partial

mass density o f a  phase with respect to the reference configuration, i.e.

m : = J n ' - p \  (3.3.17)

Clearly. W  represents the total free energy stored in a volume o f the porous medium that

is unit before deformation.

Employing (3.2.6). (3.3.5)-(3.3.8). (3.3.10). (3.3.11), (3.3.15)43.3.17). and (3.3.2)-

("X “X n n p  m a v  p a c t l v  n r n v p  t h a t
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and

f)W
p n  = - J ' — . (3.3.18)

06

nlV
a  = J - ‘F — F \  (3.3.19)

cE

dW

ôm.

where a  = S. iV .N : /? = IV. N . It is now instructive to compare the continuum model 

described by (3.3.16)-(3.3.21) with Bowen's model (Bowen. 1982). It is noted that the 

present model differs from the latter in the following aspects: firstly, the partial mass 

density o f solid skeleton, i.e. m ;'. is included as a constitutive variable in the present

model; secondly. FI" in (3.3.21) clearly has physical meaning as explained in the next 

section. The direct consequence o f including m] in the model is that the compressibility 

o f the solid phase can be considered in the present model.

The physical significance o f G" is now interpreted as follows. If the exchange o f 

mass between two components is neglected, dm'^ represents the total mass change o f  p  

fluid in a volume of the porous medium that is unit before deformation. Consider two 

large reservoirs o f fluids with constant pressure p*. and p ; ' . respectively. Let these two

reservoirs connect, respectively, with the wetting and nonwetting fluids in a unit volume 

o f the porous medium (see Fig.3.5). The two reservoirs and the unit volume o f porous 

medium now constitute a single thermodynamic system. G^ equals to the work done 

reversibly and isothermally on the system in the following process: firstly, to extract a 

unit mass o f P  fluid from the reservoir with constant p f  ; then, to increase the pressure
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of this unit mass o f tluid up to p ‘‘ . which is the equilibrium pressure of the tluid in the 

sample; finally, to inject it into the sample o f the porous medium at p “ . Consequently, 

we have

I
(3.3.22)

A  unit v o lu m e  o f  porous m ed ia

N o n w e ttin g  flu id  reservoirW ettin g  flu id  reservoir

Figure 3.5 A thermodvmamic system

The physical explanation o f G^ described above was first presented by Biot (1972). who 

dealt with the porous media saturated by a single fluid. Biot called G^ the "pressure 

function". It should be noted that (3.3.22) is based on the assumption that is solely 

determined by p " . i.e. the fluid is assumed to be ideal. It must be pointed out that this 

assumption generally is inconsistent with the theory o f porous media (Bowen. 1982). For 

many applications, however, such an assumption is appropriate. We will discuss this 

point further in Chapter 5.
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3.4 EquUibriunt State

At equilibrium, the corresponding constitutive variables in (3.3.1 ) read

E ^ ^ ^ { û , , 0 , n ‘; , 0 , p : . 0 . F . . 0 ] .  (3.4.1)

where a  = S , W . N  ; /? = W. N  ; ( denotes the set o f state variables at equilibrium.

(3.4.1) implies that the gradient of state variables are zero. In addition, all the other rate- 

type quantities, e.g. n‘' and are also zero. Since the entropy attains its minimum 

(zero) at equilibrium, it follows that

c z .
= 0.  (3.4.2)

where z? = 0/1. and ’s ( c = /. 2. • • • , / / )  are given by

^  = (3.4.3)

J3 = W. N  : aP = SIF, WN. N S . Conditions given by (3.4.2) yields

/7 ^ = 0 . . (3.4.4)

r f„ = 0 , .  (3.4.5)

=0. (3.4.6)

and
q ,^=0 .  (3.4.7)

(3.4.6) states that at equilibrium the chemical potential function G" continues through 

the interface between two phases. This is the classical Maxwell condition for a phase 

equilibrium line. Combined with (3.4.4). (3.3.12) yields
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ip"  -  Æ  4  p "  % ]  (3-4.8)I A " ,V /eft/

Equation (3.4.8) shows that at equilibrium some kinds o f constraints are imposed on the 

pressure difference between a fluid and the solid (i.e. the capillary pressure). 

Equivalently, the matrix suction p  '' - p '^  can be represented by

c n ' cri'^
(3.4.9)

In general, the right-hand sides o f (3.4.8) and (3.4.9) do not vanish due to the dependence 

of free energies on the volume fractions. It is quite obvious that (3.4.8) and (3.4.9) 

represent the macroscopic counterparts o f the dynamic compatibility conditions on the 

interfaces, which have been discussed in Chapter 1. Since (3.4.8) and (3.4.9) comes out 

naturally due to the inclusion o f the volume fractions as constitutive variables, they can 

be used as the closure equations. It is also noted that for the porous media saturated by 

two fluids only two closure equations are independent.

In what follows. /7^  {P  = W . N )  will be termed as the capillary potentials with

respect to the solid phase. This terminology is relevant, since /7 "  is a relative quantity 

and may vanish at equilibrium, which is consistent with the fact that at equilibrium the 

chemical potentials o f all the phases are equal. For later use. it is useful to define the 

capillary potential o f the nonwetting fluid with respect to the wetting fluid as

/7"’ = / 7 ' ' - / 7 * ’ . (3.4.10)
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Unlike the capillary potentials /Z" and 77“ { a  = W, N) ,  at equilibrium the capillary 

pressure between a  and p  phases (i.e. p"" -  p^ )  is generally not equal to zero.

3.5 Nonequilibrium State with Linear Dissipation

For many applications such as those with flow or heat conduction in the porous 

media, the assumption o f thermodynamic equilibrium is too restrictive. In this section, 

our attentions will be turned to the nonequilibrium states that slightly deviate from 

equilibrium. As noted in Section 3.1. the kinematics o f the fluids is defined solely within 

the domain o f the current configuration o f the solid t). That is. the fluids outside 

this domain are o f no concerns. Naturally, the motions o f the fluids should be described 

with respect to the motion of the solid. This approach at least has two advantages over the 

others (e.g. Prévost. 1980; Bowen. 1982): 1) all the fields can be defined in the same 

domain; 2) objectivity can be achieved automatically.

Now. we first cast the residual dissipation inequality o f  (3.3.9) into the form with 

respect to the reference configuration as

zT. = - G ' ‘ ) + G M D e  Q > 0 .  (3.5.1)
p -w  s  s  afi-^SWWN.SS

where = J O A.

H ' ' = J n r  (3.5.2)

R ‘’ = J F ^ r “ . (3.5.3)
and

Q = J q F \  (3.5.4)
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while f l " , r". and q are the dissipative parts o f 17“. r". and qjO , respectively; GRAD 

is the gradient operator with respect to % . The terms in the right-hand side o f the 

equality in (3.5.1) represent the energies dissipated by the capillary relaxation, fluid 

diffusion, mass exchange, and heat conduction, respectively.

The functional forms o f the dissipative forces can be assumed as

H ' =H'[Z^^,h“. W “.GRAD9).  (3.5.5)

æ  = t [ Z , ^ . n “, W “.G{LADe),  (3.5.6)

and

Q = Q { z ^ . h “. W “,GR.AD9).  (3.5.7)

where P  = fV. .V ; Z^^ is the set o f the state variables at equilibrium given by

.2%, = n f . (3. 5. 8)

is the Lagrangian (or convective) relative velocities o f a fluid particle defined by

(3.1.12). It can be easily seen that the dissipation functions assumed above are objective. 

For simplicity and without loss o f much generality, we assume that the solid has at least a 

center o f symmetry, i.e. Q = - I  belongs to the symmetry group o f the solid. With this 

assumption and following Bowen (1982). it can be proved that for linear dissipation.

^  = ,3.5.9,
â W “ ô(GfLAD9)

and
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Therefore. (3.5 5H 3.5.7) can be linearized as follows.

; S - W .S

and

/ / ’ = (3.5.11)
s

- K - G H - I D Ô ,  (3.5.12)

Q = - ' £ ( o ' ;  W f  - m "  G H W e .  (3.5.13)

Finally, the rates o f mass exchanges is assumed as

(3.5.14)

In (3.5.11)-(3.5.14). the coefficients are the functions of Q , .n i . p ' i .  and E . The spatial 

forms o f (3.5.12) and (3.5.13) can be derived by using (3.5.3) and (3.5.4). and it follows 

that

f  = -  Z /* ;  M/ - a . (3.5.15)

and

g = V g . (3.5.16)
fi-w.n

where

= J - 'F -^ ( / / ; ) F - '.  K  = J - ' r - ' ( X ) f ' .  (3.5.17)

à ;  = J - 'F ( w ;) F - '.  âi'̂  = J - ' F { ( o " ) F \  (3.5.18)

It needs to be pointed out noted that unlike (3.5.12) and (3.5.13) R '  and Q can also be 

put as the functions o f fluid mass fluxes (see Appendix 1).
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Assuming the mixture at equilibrium is thermodynamically stable, the dissipative 

energy function given in the left hand side o f (3.5.1) attains its minimum at equilibrium 

(as schematically shown in Fig. 3.6). Hence, the coefficients in (3.5.11)-(3.5.14) are 

restricted by

det > 0 . (3.5.19)

where r,(i = L2.---.ll) are the components o f {h‘̂  .W,^ GRAD 6 ) .  ^ - W . .V .

%  A  Stab le  
B Unstabli.1

Z

Figure 3.6 States o f the system at equilibrium

Inserting (3.5.15) into (3.3.13) and noting that = r ^ .  one obtains an

expression for { a  = W . .V). which can be deleted from (3.2.4). By using (3.3.10).

(3.3.3). (3.3.4), and (3.3.15). it can be proved that

6  + VG" = r^ . B = W .N
Dt

(3.5.20)

where is the drag (dissipative) force given by (3.5.15). This is the spatial form o f  the 

flow equation o f a fluid. It is remarkable that, instead o f the pressure gradient, a more
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general chemical potential, i.e. G“ , becomes the driving force for the multiphase flow. 

This result is expected, since the motions o f various components are coupled in a 

multiphase porous medium.

For many applications, the chemical potential o f a fluid may be approximately 

evaluated by using (3.3.22). It follows immediately that

+ (3.5.21)

Usually, it is more convenient to use (3.5.21) than (3.5.20) in a numerical analysis, since 

p ' can be directly measured.

3.6 Rate-Independent Elastoplasticity

The theory developed above applies only to the porous media with an elastic solid 

skeleton. In many applications, however, plastic deformation may become dominant. In 

this section, the above theory is generalized to account for the elastoplastic deformation 

o f the skeleton. Deformation is assumed to be rate-independent, i.e. any relaxation effects 

are neglected. To avoid dealing with too much kinematics, which remains controversial 

for finite (plastic) deformation, we assume that the deformation is infinitesimal and the 

strain tensor can be additively decomposed into an elastic part and a plastic part. i.e.

£  = E + E ^ .  (3.6.1)

In addition, it is also assumed that the volume fractions can be additively decomposed 

into two components as
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(3.6.2)

where «f is the recoverable part and the irreversible part (see Figure 3.7).

Since the porosity n equals to the summation o f n and n ' . one obtains

(3.6.3)

- p " '

Drying Scanning curves

First drvinc

•. urvm u scanning i

Wetting’..... \A

n!  n"

Figure 3.7 Definition o f and for point A

Consequently, the free energy fimctions can be assumed as

and

(3.6.4)

(5.6.5)

(3.6.6)
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where %, and i/ ' are the internal variables which characterize the hardening states 

o f deformation and volume fraction. With (3.6.1) and (3.6.2), equations (3.6.4)-(3.6.6) 

can be expressed equivalently as

.4' = . 4 ' ( ^ , p ' . £ : . £ ^ , / ) .  (3.6.7)

. r  = (3.6.8)

and

(3.6.9)

Similar to the procedure followed by Muraleetharan and Wei (1999). one can prove 

that with (3.6.7)-(3.6.9) equations (3.3.5)-(3.3.8) and (3.3.I0)-(3.3.14) remain valid. In 

addition, since the capillary relaxation effects are neglected, we obtain

/7" ^  = 0 . (3.6.10)

or

(3.6.11)
cn

The residual dissipation inequality becomes

(3.6.12)

where is the dissipated energy due to the plastic deformation and is due to the 

diffusion and heat conduction. They are given, respectively, by

z? (3.6.13)

and
(3.6.14)
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Variables tt . i " . and r'' are the thermodynamic forces given by

71 = - n  p '  C = - « V '  -%—» = ~” V  ‘ = - n ’̂ p “ (3.6.15)

Noting that

. r ' id.  /3' . £ . / )  = p ' .  E  - £ , „ / )  = p ' , E . E^ , / ) .  (3.6.16)

and

. ? ( ^ . p ' . /zf. )  = . 4^( g , ) = .4^( g. / ? ' . ( 3 . 6 . 1 7 )  

one can easily prove that

7t = nU ' .  (3.6.18)

and
s-’ = p ^ - p \  /3 = IV ,N .  (3.6.19)

Since and stem from totally different internal dissipation mechanisms, 

they can be uncoupled. It follows that

( » Y ) : E ^ + f . / +  ^ ( / - / ) / % ; +  (3.6.20)
. /  IK .V  //= * ♦ '.,V

and
-  + V Û - q > 0  (3.6.21)

Fluid diffusion and heat conduction are restricted by (3.6.21). which have been discussed 

in the last section. Equation (3.6.20) is the plastic dissipation inequality and will be used 

to develop a potential theory o f plasticity for the porous media in the coming chapter.

It is now instructive to note that, for the saturated porous media constituted by 

incompressible solid grains, s" = p" -  p" = 0 .  and n' t"  is just the Terzaghi's effective
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stresses (Prévost. 1980). In this case, representing the energy

dissipation due to the plastic deformation o f the solid skeleton. Clearly, the effective 

stresses are the thermodynamic forces conjugated to the plastic strains. This Justifies use 

o f effective stresses in modeling the stress-strain constitutive relationships o f saturated 

porous media. If the solid skeleton does not experience irreversible deformations and 

= /tp + «P = 0 . the free energy functions have the following forms.

. r ^ A \ d , p \ E ) .  (3.6.22)

. r  (3.6.23)

and
A'‘ =A ' ‘( 0 , p \ n \ n l . v ) .  (3.6.24)

It is noted that n* and n'̂ , are not independent. Hence. A* and A'  include the same 

hardening variable. The plastic dissipation inequality now reads

- ( / ) '  -  / ' ) » ;  + t v > 0 .  (3.6.25)

where v is the internal variable representing the moisture content hardening and i is the 

conjugated thermodynamic force given by

I = - d ^ { n * ' p \ f  + « > ' . 4 ' )  (3.6.26)
c v

(3.6.25) implies that the hysteresis in the suction can be simulated as the irreversibile 

change o f the moisture content within the framework o f the classic elastoplastic theory.
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Chapter 4 A NONLINEAR MODEL OF POROUS MEDIA AND ITS 
VARIATIONAL STRUCTURE

In the theory developed in the previous chapter, some state variables, such as the 

true mass density o f a bulk component ( p" ) and the true Cauchy stress tensor o f the

solid component ( / '  ). cannot be directly accessed through experiment. Hence, it is 

awkward to apply the above theory in practice. By using the general results previously 

obtained, this chapter intends to develop a continuum model describing porous materials 

based on the state variables that are experimentally accessible.

In the following, continuum field equations are first presented. All the formulations 

are given exclusively in the Lagrangian setting that is more appropriate for porous media 

as discussed before. Then a hyperelastic model o f  porous media is developed, explicitly 

accounting for the dynamic compatibility conditions on interfaces. A theoretical 

framework o f poroelastoplasticity is developed, and it can be used to describe the 

nonlinear behaviors o f porous media, such as plasticity and hysteresis, in a hierarchical 

way. Finally, the proposed model is mapped into a general framework, which can be 

directly inferred from the principle o f  virtual dissipation attributed to Biot (1977). Within 

this fi:amework. a connection between Biot's theory and the mixture theory-based models 

o f porous media is established.

51



4.1 Field Equations

For simplicity, our attentions will be focused on the porous media without phase 

change, i.e. all the terms with mass exchange will be simply dropped. Multiplying (3.2.1) 

by J ( = d e t F ) ,  and noting that j  = J V - v ' = J i/ /v (v ') ‘. we obtain the following 

Lagrangian form of the mass balance equations for the bulk components.

in' = 0,  (4.1.1)
and

m f  + DlV{mftV f)  = 0 .  p ^ W . N .  (4.1.2)

where mf = J n " p ' . the mass o f a  -phase in a volume of the porous medium which is 

unit before the deformation; fV/  is the convective relative velocity o f a tluid defined by

(3.1.12). and D/V  the material divergence operator (i.e. with respect to the reference 

configuration). Equation (4.1.1) implies that m,' is constant, which is obvious for the 

porous media without phase change. Integrating (4.1.2) over the time period [r„. /] yields

m‘‘ ^ D I V M "  = 0.  p  = W . N . (4.1.3)

where m^ is the change in the mass o f P  -fluid in a volume of the porous medium, which 

is a unit volume before the deformation, i.e. m^ = mf -  m f . mf represents the initial 

total mass o f ^-flu id  in a unit volume of undeformed porous medium. The initial total 

mass o f the porous medium per unit undeformed volume is given by 

m„ = mf -t- m f + mf ; M “ is represented by

'  Tn fX llo tu in r r  tViA r tu o p  Xmf r a n r a c a n tc  m a f o r î a l  r l^ r iv a f iv A  w ttK  m rvfi/>n m F f k *  c l* 0 l^ tr \n

e.g . à = D 'a lD t .
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M'‘ = . (4.1.4)

{ M ^ ) i  can be viewed as the total mass o f p -fluid that flowed across a material surface 

which, before the deformation, is a unit area with the unit normal in direction /  (= 1.2. 3).

Without mass exchange, the equation of linear momentum balance for an interface, 

i.e. (3.2.5). becomes

C  + K  = 0 . a p ^  S W . m . N S . (4.1.5)afj ap
and therefore

a / /  .Vlf'HW .V.V

The equation o f total linear momentum balance for the porous medium is obtained 

by summing up (3.2.4) for all the bulk phases, i.e.

/Tv'+ ^ n ’’ = diva + pb. (4.1.7)
p .W s N

where is the relative velocity defined by (3.1.9). div the spatial divergence operator. 

p  the total mass density o f the mixture given by (3.2.3). and a  the total Cauchy stress 

tensor defined by (3.2.6). Multiplying (4.1.7) by J. we deduce the Lagrangen form of the 

total linear momentum balance as

p , V ' +  +W,‘! ■GRADV'\=DIVP + p , B  (4.1.8)

where

r ( % \ f ) = / o (4.1.9) 

= (4.1.10)
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p h =-^p = L ' " r  = / ” » +  L ' ” " ' -  ( 4 . 1. 11)

and

= J F - ' a  = —  . (4.1.12)
cF

where (3.3.19) has been used. is usually called the first Piola-Kichhoffstress tensor. 

With (4.1.2) and (4.1.4), the left-hand side o f  (4.1.8 ) can be cast into

(4.1.13)
H -U- ,v

The last two terms in the bracket o f (4.1.13). which represent the linear momentum 

contributions due to the convection, are high-order small quantities. For convenience, 

these two terms are omitted in the following derivations. Therefore. (4.1.8) becomes

= D /F P  + /7 ,P  (4.1.14)

The Eulerian form o f the flow equation o f a fluid is given by (3.5.20). Pre

multiplying (3.5.20) by JF^ .  and using (3.5.3). we obtain the following convective 

representation o f the flow equation o f a fluid.

m f P Y '  + CM '’ = mfB,.  -  mfGJl4DG^  + R ' . (4.1.15)

where the linear momentum contributions due to convection have been dropped; B,. = 

F  P  = % ,"(% './) ; C is the right Cauchy-Green deformation tensor, i.e. C  = F  F ;

P" are the fnction-like drag forces given by (3.5.12). For some applications, e.g. the 

deformation o f an earth dam subjected to earthquake loading, the relative acceleration o f 

a fluid is negligible’. Then. (4.1.15) becomes

W e w ill discuss this point further in Chapter 6.
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= m^B.. -mfGRAD 0 “ + (4.1.16)

Substituting the pressure function given by (3.3.22) into (4.1.16), it follows that

m f F ' V '  = m f B , - n ‘'GRADP^ + (4.1.17)

where P” is the pressure o f /? -fluid defined by P“ (A!''./) = J p ' o  ^ ' ( x ' ./)

As assumed before, at any point in the domain of concern all the coexisting 

components have the same temperature. Hence, there is only one equation for the energy 

balance, i.e. the total energy balance of the porous medium as a whole. Applying (4.1.5) 

to (3.2.10). we get

(4.1.18)

where = SW  .WN . N S . Summing (4.1.18) over all the interfaces, it follows after some

manipulations that

I ' I t
( j  .V  0t a

iiB
W ..V J

w . (4.1.19)

Define the total energy density o f the porous medium as

By summing up (3.2.15). we obtain

(4.1.20)

(4.1.21)

>\'Tien (3.2.9) is multiplied by J  and summed up for the three bulk phases, we obtain
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/

È , - S : È - D l V Q - h ,  = - J ^ D I V ( m >’£>’ ) -  ^
V

r*/#
'//T

V \  »*//
(4.1.22)

where 5  is the second Piola-Kirchhoff stress tensor given by

S  = r ' P  = — .
ÔE

The external supply o f  energy /», is

î r = pr I^=

(4.1.23)

(4.1.24)

and the heat dux Q is related to q by the Piola identity, i.e.

Q = JqF  . (4.1.25)

It is noted that the first term in the right-hand side of (4.1.22) accounts for the rate of 

energy loss due to the fluid flowing outside the domain and the second term represents 

the rate o f the energy loss due to the hydrodynamic drag. The existence o f these two 

terms in the energy balance equation is one o f the main features o f the diffusive-like 

materials such as the porous media o f concern here.

By using (3.2.15). (4.1.21). (3.3.13). (3.3.15). (3.3.16). (3.3.18)-(3.3.21). (4.1.1). 

and (4.1.2). and £ "  can be eliminated from (4.1.22). and it follows that

9 n , - D I V [ Q -  . (4.1.26)

where Q is given by (3.5.13); and i?'' denote the dissipative forces given by

/ %  >  1 ^  N t O \  n  —  w  —  f • r* f k a
% »» . * » f  . A Â <̂ ^WW%A* WAy • * t p  " E ' t  ~ ' */ AAAAW * f  W AAAW j  WVt Aa>*̂ T̂
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tunctions defined by (3.3.18) and (3.3.5). respectively. It is noted that the right-hand side 

o f (4.1.26) represents two important internal dissipative mechanisms in the porous media 

with multiple fluids, i.e. the capillary relaxation and fluid diffusion.

The dissipative force H “ is evaluated by (3.5.11). Introducing (3.3.21) and (3.5.2). 

we obtain the closure equations as

= j n ^  = . I3 = IV.N  (4.1.27)
ctr

Thus far. a closed set o f governing equations for the porous media saturated by two 

immiscible fluids has been established. This set of equations includes the mass balance 

equation (4.1.3). equation o f motion (4.1.14). flow equation (4.1.15). energy balance 

equation (4.1.26). and closure equation (4.1.27). as well as the energy function (Fdefined 

by (3.3.16) together with (3.2.16) and (3.3.2)-(3.3.4). The independent state variables of 

the porous medium include K ' (or m' ). M "  (or .). n ''.  and Ô . It needs to be pointed 

out that the explicit constitutive functions, i.e. (3.3.2)-(3.3.4). are material-dependent and 

must be specified in application.

4.2 Hyperelasticity o f  Porous Media

In the terminology of continuum mechanics, hyperelasticity states that there exists 

an energy function such that the stress equals the derivative o f the energy function with 

respect to its conjugated strain (e.g.. Desai and Siriwardane (1984)). In recent years, 

hyperelastic models have found many successful applications in modeling the behavior o f 

porous media, see. for example, Vermeer (1978). Loret (1985), Lade and Nelson (1987).
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Molenkamp (1988). and Botja et al. (1997), among others. In contrast to the 

hypoelasticity-based models, which may entail nonvanishing dissipation in a closed cycle 

o f deformation (Zytynski et al.. 1978), the hyperelastic models are founded on 

fundamental thermodynamic laws.

From the field equations presented above, it is noted that a set o f independent state 

variables can be chosen as {9, E.m* , m ; ' w h e r e  has been excluded.

Compared to the other variables. and n '' are hidden (i.e. internal), and they exist only 

in the capillary relaxing processes (some sort of internal dissipative mechanisms) as 

shown in the right-hand side o f (4.1.26). In other words, and « ' can be determined 

only by relating them to some internal dissipative mechanisms. The thermodynamic 

aspects o f these mechanisms have been discussed in the previous chapter, where we show 

that the evolution of n" and « ' is driven by the capillary pressures. The conjugated 

problem now can be presented as

where

and

k . {9. E. m'̂ .m;' ). (4.2.1 )

/7 = — { 9 , E . m \ m \ n \ n " )  (4.2.2)
" 3 9

S  = — {9. E , n r . m \ n ' . n ^  ) (4.2.3)
BE

where n'^ and are obtained by using (4.1.27) in a viscoelastic model or by using a 

elastoplastic model discussed in the coming section.
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In some applications, the capillary equilibrium can be achieved immediately and the 

hysteresis in the capillary pressure is trivial. In such cases, the viscosity due to the 

capillary relaxation is negligible, and (4.1.27) becomes

= ^  = 0 .  !3 = W ,N  (4.2.5)
dn^

It is remarkable that when the effects o f the capillary relaxation are not considered 

equation (4.2.5) represent the constraints on the hyperelastic model (4.2.2)-(4.2.4). As 

discussed before, these constraints stem from the dynamic compalibility conditions on the 

interfaces.

The energy function in (4.2.2)-(4.2.5) is defined as a mass-weighted average o f the 

Helmholtz free energies o f the solid and the fluids, i.e.

iy (û .E .m l .m f . n ' ’ ) = m l .4 '{d.E.p ' )+ . 4 ' ( 4 . 2 . 6 )
r  w  S

where f  is repeated over W and .V; in the right-hand side. p ‘' = m f i ( J n ^ ) ,  and 

J  = det F . It must be noted that an explicit inclusion o f ml in the LHS of (4.2.6) is 

unnecessary since ml  is a constant. However, inclusion o f ml  helps make clear that the 

true mass density o f  the solid component, i.e. p \  is changeable through p '  = 

ml l { J ( l - n "  - n ^ ) ] .  The compressibility o f the solid phase is therefore explicitly 

included in the presented model. It can be proven that if  p '  is excluded, the capillary 

pressures may vanish at equilibrium (Bowen. 1982). However, vanishing capillary 

pressures have never been observed in the multiphase porous media.
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Because the chemical potential G “ can not be measured directly in laboratories, it 

is inconvenient to use directly the model represented by (4.2.2)-(4.2.6). Hence, it is 

desirable to establish relationships between C  and some measurable variables such as 

p ’’ . As discussed in Chapter 3. in isothermal conditions G" can be represented by

where is assumed as a function of p “ only. This assumption is acceptable for many 

applications, since generally has little influence on p " . It is noted that to be 

consistent with (4.2.7) the fluid pressure in a porous media is thermodynamically defined 

as the pressure o f an outside fluid in local contact with the solid skeleton and in 

thermodynamic equilibrium with it (Biot. 1977). Such a pressure simply is what we 

measure in an experiment! In nonisothermal conditions. (4.2.7) must be modified, and a 

detailed account can be found in Biot (1977).

By introducing (4.2.7). it can be proven that 6 .  E . and m'' are the functions o f 

/ /,. 5 .  p * . and p ' ' . Define a new energy function by the Legendre's transformation as.

ir{0. S .  G " ' . G \ n ‘\ n ' ' ) = f V  - S : E-G'*'m'"' - G ' m '  (4.2.8)

where S  is the second Piola-Kirchhoff stress tensor defined by (4.1.23). With the 

introduction o f (4.2.8), it is easily seen that
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dG 

and

E  = - ^ { n , , S , G \ G \ n ' ^ ’.n^) ,  (4.2.10)
cS

= - ^ ( r j , , S , G \ G \ n \ n ' ) ,  = W ,N  (4.2.11)

= - ^ [ t] , . S , G " ' . G \ n \ n "  ), p  = W .N  (4.2.12)
dn^

Since can be evaluated by using the evolution equations as discussed before andG^ is 

a function o f {P  = W .N  ), all the variables in ( 0 .  E , ) are the functions o f .

S .  p'* , and p V  Therefore. 7 ^, S .  p * . and p'' can be used as independent state 

variables in modeling the behavior o f the porous media saturated by two immiscible 

fluids. This result is useful in developing stress-strain constitutive relationships as will be 

discussed in the following.

4.3 A Theoretical Framework o f  Poroelastopiasticity

The energy dissipation associated with plastic infinitesimal deformation in the 

porous media saturated by two fluids is restricted by inequality (3.6.20). In the following, 

it is assumed that the compressibility o f the solid component is very small so that 

= co n st. This assumption is reasonable for many porous media such as unsaturated 

soils. Noting that m] = ( d e t E ) n ' p '  = const. we take the time derivative o f this equation 

and obtain

h ' = -h  = -n''divv'‘ = - n  ' /  : Ê . (4.3.1 )

x v K A r ja  M i c  f h f »  n r x r n c t t v  r \ f  n n r r v i i c  m p H i i i m  î t  f n l l n u / c  f r n m  ^4 > 1 ^  t H a t
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(4.3.2)

Hence, the plastic porosity is derivable from the plastic deformation. By introducing

(4.3.2). can be eliminated from the left-hand side o f (3.6.20). This yields

^^  =«■ ' ( / ' +/? / ) :£■, , - ( p  - p  )n^ +C-X  + i v ^ O .  (4.3.3)

where v is the parameter accounting for the moisture content hardening-. /  accounts for 

the hardening o f  solid matrix. It is noted that since rij can be determined using and

through (4.3.2). the hardening parameter t/' in (3.6.9) must be replaced by v and % . 

Let

,7'^ = n ' ( f ' + / / ) .  (4.3.4)

and

(4.3.5)

a ‘̂  can be viewed as the Cauchy effective stress tensor and 5^, is usually called the 

matric suction. Equation (4.3.3) shows that the thermodynamic forces associated with 

and are. respectively. and S ^,. In a fully saturated condition. = 0.  i.e. 

p'" = p* : (4.3.4) yields

= n \ t '  +p'"'I) = {nU'^-np'^' I)+ p'^I = a +  p " 'I  (4.3.6)

Clearly, in this case. becomes the Terzaghi’s effective stress tensor. That is. the

OLi vaova VUii UV, UO U piAltlWUlUl. V/l t/ UIIVA UO
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measures. This feature is desirable when and are used as stress measures in 

constitutive modeling as discussed in the following.

Cast (4.3.3) into

= O"” : -  S ,,h l  + f . / + z v  = y .%  = D{X) > 0 . (4.3.7)

where Y = and X  = . %. v). We will describe the constitutive

model within the generalized stress Y-space. Suppose that there exists a convex surface 

f { Y )  containing the origin in Y-space such that plastic dissipation occurs only when the 

surface is reached. f { Y )  is called the yield surface, which can be determined through 

experiments. Hence, the plastic dissipation problem can be stated as.

0 (% )= s u p ( r  % ) > 0  (4.3.8)
f'-V

Rate-independence requires that D (X )  be a positively homogeneous function o f degree 

one only. i.e. D(cX)  = cD{X)  for any o O .

(4.3.8) can be viewed as a representation o f the principle o f maximal plastic 

dissipation (Lubliner. 1990: pp. 117-120). which is equivalent to the following normality 

law.

X e N ^ i Y ) .  (4.3.9)

where N ,{Y )  is the cone of outward normals to f ( Y )  in F-space. This gives the 

evolution equations o f . and the internal variables. Explicitly, we obtain
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while it requires that

i > 0 ,  / ( < r " , S„ X . i ) < 0 .  and X/"(«r". S,, . ( , / )  = 0 (4 .3 .11 )

(4.3.11) is the general loading/unloading criterion for the elastoplastic problem expressed 

in the standard Kuhn-Tucker form (Luenberger, 1984). Equation (4.3.10) represents the 

flow rule associated with the yield surface. For many naturally deposited geomaterials, 

however, the normality is not satisfied. Therefore, a nonassociated flow rule must be 

introduced. In such cases, the yield surface function f ( Y )  in (4.3.10) must be replaced 

by a potential function g ( K ) .

To evaluate multiplier Â. it is noted that f i a ' ”.S^, ,C . i )  = 0 when X > 0 .  

Assuming C = Cix)  i = i{v) . it follows that

Inserting (4.3.10) into (4.3.12). we obtain À after some manipulations as

where

and

. (4.3.13)

H  ,4.3.15)
’’ rht r\C n i r iv  rii
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Thus far, all the evolution formulations o f plastic deformation and internal variables 

have been presented. Explicit elastic stress-strain relationships will be derived in the 

coming chapter. If f { Y )  and (or) potential function g{ Y ) .  as well as hardening laws 

C = C ( /)  and I = r(v'), are specified, the stress-strain behavior o f the porous media can 

be fully determined. Note that the above theoretical framework has a hierarchical 

structure. If the porous medium is fully saturated by a single fluid, we set 

f { Y)  = f { a  + p" I. O ,  and the above model is just the general case of the effective 

stress-based elastoplastic models. If the solid skeleton does not experience irreversible 

deformation. f { Y )  = / (  and È,, =0:  the above model describes the irreversible

behavior (i.e. hysteresis) in the suction. .Another interesting case is that, when the 

hysteresis in the suction is negligible, we have f { Y )  = f  {a ‘̂ . ^ ) . In this case, the effects 

o f the suction on the material hardening can be taken into account by assuming the 

hardening law as C = C{S^,,x) ■ The last model is very useful in modeling the 

elastoplastic behavior o f unsaturated soils, since by properly constructing the hardening 

law C = C{S^, .x)  the elastoplastic models based on the effective stresses can be easily 

generalized to unsaturated soils within this framework.

4.4 Variational Structure o f  the Proposed Model

In tfiis section, the theory presented above will be employed to deduce an important 

principle, i.e. the principle o f  virtual dissipation, which is owed to Biot (1977). Through

fhpsA Hprivntinni n rnnnprtinn will hf* pstahlished between the RintN thenrv and those
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based on the theory o f mixtures, providing the way to take into account the dynamic 

compatibility conditions on the interfaces in a continuum model o f porous media.

In the model presented above, temperature Q is used as an independent state 

variable. In fact, since Q and the entropy density r]̂  are thermodynamically conjugated 

to each other, either Q or 7  ̂ can be used as an independent state variable. If. however, 

phase change occurs in the porous media. 7  ̂ may vary with the proportion o f each bulk 

phase, while the temperature B remains constant. Therefore, use o f 7  ̂ as a state variable 

can generally provide a better description o f the porous media. Both sides o f (4.1.26) is 

divided by 0 . and it follows, after some manipulations, that

where

and

Bs' = % 7 ^ M
ii=w s

(4.4.1)

(4.4.2)

GRADB (4.4.3)
V 0-»-s y

In (4.4.3), R'‘ = R ” I m ‘1 \ Q = Q I B  is the entropy production solely due to the heat 

conduction. Equation (4.4.1) implies that entropy density 7  ̂ has three contributions: 1) 

h^jB  due to the external supply o f heat, which is known: 2 ) s due to the heat and fluid 

fluxes: and 3) s' due to the internal dissipation. Integrating (4.4.2) over [f,./] yields

s = -D IV ^ . (4.4.4)
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where it is assumed that at initial state s = 0: can be viewed as the total entropy

flowing across a surface, which, before the deformation, is a unit area and

0 =  f [ -Ô +  (4.4.5)

If s and s ‘ are known, is obtained by integrating (4.4.1). On the other hand, if 

0  is given, s  can be calculated through (4.4.4), and s' is evaluated by using (4.4.3). 

Therefore, the independent state variables can be chosen as « ' . m‘‘ (or ), n ‘‘ . and  ̂

(or 0  ). The corresponding dependent variables now include S  (or P or a ) ,  C , and 0 . 

In constitutive assumptions for the dissipative forces, i.e. (3.5.5)43.5.7), 9  is used as a 

constitutive variable. If 0  is used instead o f 9 , we may assume that

(4.4.6)

Æ = R^jm:  = (4.4.7)

and

G RAD 9=Q (z^^.h‘’.M \4 > ] ,  (4.4.8)

It can be shown that the set o f equations (3.5.5)-(3.5.7) is equivalent to the set of (4.4.6)-

(4.4.8) in the sense that either one can be derived from the other.

Assuming the system deviates slightly from equilibrium, it follows from (4.4.3) that 

9 s  = OT 90s' = . (4.4.9)
f-/. J i-l. J

where q. and X, are scalar or tensor objects given in the following sets. i.e.
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{q„k = I J  i} = { M \ M \ n  .0}, (4.4.10)

and

{X\ , k = 1,2 5} = -GRADd}  (4.4.11 )

For linear dissipation, we apply Onsager’s principle (de Groot. 1952) and obtain

X (4. 4. 12)

where D is a intrinsic dissipation function represented by the following quadratic form.

0  = (  (4.4.13)
-  .5

while = B , and d e t(5 J  > 0 .  By applying the assumption o f material symmetry (see 

section 3.5). further restriction is obtained over fi,,. It turns out that = g ,

= fl,, = 0 . / = 1. 2. & 5. Finally, by introducing (4.4.9), (4.4.12) and (4.4.13). we derive

d s -=  Y . ^ q . = 2 D  (4.4.14)

Now. the governing equations can be categorized into six coupled field equations 

and summarized in Table 4.1. The corresponding independent fields are chosen as . 

M ’’ . . and 0 . Consider a subdomain o f the material body. The initial configuration of

this subdomain is denoted by Ü . which has a boundary F  with the unit normal N  (see 

Fig. 4.1). Without losing generality, it is assumed that, at initial state, w = 0  = 0 .

« ' = = 0  = 0. h ‘‘ = 0 .  n ’’ = n î . 6 = 9 . .  o„ = m. and = m f . For the time beins.
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it is not necessary to specify the boundary conditions. Suppose that, during a therm o

m echanical process. Ü  arrives at a new state represented by ( « ' .  M " .  n “ . 0 ) .  To 

obtain the variational description o f  the problem, let the virtual displacem ent o f  the state 

be represented by ( S u ^ . S M ^ . 5 n '‘ . ).

X.

Current
ConfigurationReference

Configuration

Figure 4.1 Definition o f  the problem: a porous medium  experiences a m o tio n /, '

Table 4.1 Summ ary o f  the coupled equations

Fields Coupled field equations

(State variables) Field Constitutive Supplementary

w' (4.1.14) (4.2.10) (3.1.13). (3.1.14). (4.1.3)

M ” (4.1.15) (4.2.11) (4.1.3). (4.4.7)

n ” (4.1.27) (4.4.6) (4.4.6)

0 (4.4.8) (4.2.9) (4.4.1). (4.4.3). (4.4.4)

Note: P = W .N
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To begin with, it is assumed that the body force field b per unit mass can be derived 

from a potential U ( x )  , \ .q.

b { x j )  = - ^ U { x . i )  (4.4.15)

and

B , { X . t )  = - F ^ V U { x . t )  = - G R A D [ U o x \ X . t ) ]  (4.4.16)

By introducing Gauss’s theorem and integration by part, the weak form of (4.1.14) 

can be expresses as

n = U + X - D I V P - p J ) S u ^ d V
(4.4.17)

= S E l  + [ [P  : S F  + p,{WU)à'u^]dV  -  [/c>VcZ4.

where /  is the mechanical force per unit initial (undeformed) area on the boundary F . 

i.e. /  = P,,N ,. and N, is the component o f /V; is the kinetic energy of the solid 

component and given by

Æ L  = [  ( + X  FW " )Su^dV  (4.4.18)
y

Divide both sides o f (4.1.15) by m f  and insert (4.4.16) into the resulting equation. 

It follows that

F  w' i - im fy 'C M '^  ^ -G R A D iG ’’ ^ U )  + R \  (4.4.19)

where is given by (4.4.7) or (4.4.12).

Similarly, with introduction o f Gauss’s theorem and (4.1.3), the weak form of 

(4.4. i 9) can be presented as
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0 = f [ f ' w '  +GH4D{G'‘ + U ) - R ^  jSM ^dV
^  . (4.4.20)

= %  + t  [(G^ + ülôm ^ -  R ^SM ” ]dV + {. (G^ + U)NSM^dA.  

where f i  = iV & N . and

+ ( m f y ' C M ^ ] m “dV  (4.4.2 n

The weak form of the closure equation (4.1.27) is

0 = l i - H ' '  + H ‘‘ )d'n^dV (4.4.22)

Finally. The weak form o f the heat conduction equation (4.4.8) is written as

0 =  I {GR4DÔ - Q ) d 0 d V
. (4.4.23)

= l ( d S s - Q » P ) d V  + lôNâ<Pd4 

where use o f (4.4.4) has been made.

Summing up (4.4.17). (4.4.20). (4.4.22). and (4.2.23) yields the variational equation 

of the problem, i.e.

[ î ( P«« '  + lF iV f")^M ' + X [ F ^ M ' + ( m f ) - ' G V ^ ] J M ' } ] c / r
 ̂ H=iry

+ f [ P ; ^ F +  ^ ( G W ) -
it-»'y

+ [ [ ( / « , +  X/ n^ ) ( VC/ ) J « ' + ^ (G Jm ^ )K K
(4.4.24)

+ f [ - X (R^SM̂ )+
y fi=ir y

+ I  i- fSu^ '  + X  [(G" + U )N 5 M “ ] + 9N 5^)dA
.V

—  n
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To simplify (4.4.24), we define a new energy function by using Legendre's 

transformation as follows.

= (4.4.25)

where p  = W  and N. It follows that

àriH

Furthermore, it follows from (4.2.3). (4.2.4). and (4.1.26) that

ÔV
9 = —  (4.4.26)

S  = — . (4.4.27)
d E

Î

dm^
(4.4.28)

and

(4.4.29)
on»

With introducing (4.4.26)-(4.4.29). (4.4.9) and (4.4.12). the variational equation

(4.4.25) can be cast into

+ S,E,„ I  eS s 'd V  = . (4.4.30)

where

S , E  ) -  Y^H»5n» + 00s]dV = f s / d V  : (4.4.31 )

the term S^V  represents the restricted variation o f V with Ss' = 0 and Sh^ = 0:  / "  is 

the work done by the generalized external force acting on the boundary F  and

[  {/Su» -  Y [(G " + U)NÔM»  1 -  e N S iP W  ; (4.4.32)
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is the potential o f the body force and given by

l^m>^)UdV: (4.4.33)
/ /= » ■ ..V

is the total kinetic energy o f the porous media and its virtual variation is given by 

SE,,„ = ^  F M '’)Su^ + + { m f y 'C M ' ’]0M'‘ ]dV (4.4.34)
(Jrwy

Thus far. we have recovered Biot's principle o f  virtual dissipation (Biot. 1977). 

which states that given a true solution ( a ' . M ' ' . n " . 0 )  must satisfy (4.4.30) with 

constraints (4.1.3), (4.4.3). and (4.4.4). This principle can be viewed as a generalization 

o f d 'A lem bert's principle to nonlinear irreversible thermodynamics. .As pointed out by 

Biot (1977). the principle o f virtual dissipation is very general. In fact, it can be applied 

to the porous media saturated by k ( k >  2)  immiscible fluids. In such cases. /? = IV..V is

simply replaced by /? = 1.2 k . and all the equations presented above are applicable.

However, it must be emphasized that in order to take into account the dynamic

compatibility conditions on the interfaces the energy function iV can be assumed as

W{d. E. m l . ) = mJ.T' [O. E.  / ) +  ^  m ," ./ [O. (4.4.35)

where a  = 1,2 k :  .4' (i  = s.l.2  k)  depends on m' only through p ‘ = m \ lJn '

( J  = d e t f ) .  and ml = ml  = const.

It is instructive to make some remarks on the constitutive assumption in (4.4.35). 

Here, the free enerev o f an individual comnonent is assumed to be a function o f  the state
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variables of this component only. Since a bulk component interacts with the others in the 

porous medium only through the interfaces surrounding it (neglecting the electro

magnetic effects), the volume fraction and true mass density need to be introduced as 

state variables. For example, the deformation o f  the skeleton can influence the free 

energy o f a  fluid, and yet such effects can be represented directly by the change in n" 

and p '". Therefore, it is unnecessary to include £  as an argument in A " . Similarly, the 

content of a  fluid may also influence the free energy o f the solid skeleton, but this effect 

occurs solely through the boundary o f the solid grains, which are assumed to be 

isotropically distributed. Hence, this effect can be directly reflected by the change in the 

pressure of the solid grains, and correspondingly, p  ' but n" is included as an argument 

of .-T.

Another important point regarding (4.4.35) is that the energy function W  depends 

on p '  through ml = J ( 1 -  Y^n‘' ) p ^ . This is one of the distinguishing features of the
H--!.:. .k

presented model. It is worthy to note that the celebrated model o f porous media by 

Bowen (1982), which was developed within the framework o f the theory o f mixtures, can 

be derived solely by using the principle of virtual dissipation and by assuming that

w ( e .E .m \ n ‘‘ )= X m : A '{ û .E ,n \ p J  (4.4.36)

where p^ is the partial mass density, i.e. p ,  = n "p  " : a  is repeated from / to t  

Comparing (4.4.35) to (4.4.36), it can be easily seen that if p '  is excluded in (4.4.35) the 

presented model is just a particular case o f Bowen's model. In the Bowen's model.
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however, the exclusion of p '  as a state variable leads to an unacceptable result stating 

that the pressure differences on the interfaces (i.e. suction) will vanish at thermodynamic 

equilibrium. This result is inconsistent with experimental observations. Furthermore, it is 

well-recognized (Lade and de Boer, 1997) that the compressibility o f the solid phase, 

which is represented by using p  ' . has significant influence on the behavior o f the porous 

medium. Therefore, it is important to include p '  as a state variable in a general model.

With introduction o f the principle o f virtual dissipation, it is quite straightforward to 

derive the field equations presented in Section 4.1. This is achieved by simply following 

a procedure inverse to that used in this section. To recover all the constitutive equations, 

however, it is useful to introduce the Euler-Lagrange's equations, which are also 

derivable from the principle o f virtual dissipation with the incorporation o f the 

generalized coordinates. A  detailed account o f this development was given by Biot (1972. 

1977), and will not be repeated here.

From the above derivations, it is shown that the constitutive assumptions made in 

the theories o f mixtures are generally more restrictive than those in Biot's theory. This 

point can be seen from an inspection o f (4.4.35) or (4.4.36). In Biot’s theory, the total 

free energy function IF is assumed directly as a function o f some macroscopic state 

variables, such as the left-hand side o f (4.4.35) or (4.4.36) (also see. e.g., Co ussy. 1995: 

Ch. 10). The choice of the constitutive variables is quite intuitive, since in general it is 

difficult to identify appropriate constiuitive variables (not to mention an explicit 

constitutive function form). This provides great challenges in applying Biot's theory. In 

the theory o f mixtures, however, any component existing in the porous media is viewed
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as an independent phase, and the energy function fV is assumed as a mass weighted 

average o f the free energies o f all individual components, such as the right-hand side o f 

(4.4.35) or (4.4.36). Since each individual component is considered as a continuum, its 

free energy function can be more easily obtained. Hence, one o f the greatest challenges in 

the theory o f mixture is to identify the parameters representing the interactions among 

various components. In spite o f these differences, Biot’s theory can be closely linked 

with the models o f porous media based on the theories o f mixtures, as discussed above.
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Chapter 5 A LINEARIZED MODEL AND THERMOPORO- 
ELASTICITY

The objectives o f this chapter are two-fold: first, to obtain a set o f governing 

equations for thermoporoelasticity by linearizing the general theory presented in the 

previous chapters: second, to show how the restrictions in applying the effective stresses 

can be released by considering the dynamic compatibility conditions on the interfaces. 

Although discussions are limited to the linear range, insights into the nonlinear model of 

porous media may be gained through linearizing the general theor}'.

The outline o f this chapter is as follows: Section I concerns the linearization o f the 

general constitutive relationships: the linear field equations are derived in Section 2: in 

Section 3. the effective stress, an important concept in the conventional soil mechanics, is 

formulated based on the results previously presented. In Section 4. a general account of 

the physical significance and the evaluation o f elastic coefficients are presented.

5.7 Linearized Constitutive Relationships

In the general model developed in Chapters 3&4. three free energy functions need 

to be specified, i.e.

_ ‘à^Iü ïï?\ tz  \ \\.1 — \y< h' 1.1 /
and
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= À‘‘[e,p‘‘,n“). p  = W,N (5.1.2)

Assume that the porous medium is initially at an equilibrium state represented by

(5.1.3)

where a  = S, W .N  and p  = W , N . Under a small external disturbance, the porous 

medium arrives at a new state with

(5.1.4)

From now onwards in this chapter, d. n*’ . p " . E . and are all viewed as incremental 

variables. By using Taylor's series. (5.1.1) and (5.1.2) are expanded about E  to yield.

respectively.

and

h: p : a  ̂ = L n : E : D : E - U l c , e ' -

^ E + o { £ ’\
P„ Pn

Pi) Pa

(5.1.5)

(5.1.6)

where 0 ( e ^ ) represents the higher-order (>2nd) terms; A‘̂ (a = SJV. iV)  is the 

corresponding incremental free energy function o f a-phase. For a linear model, the 

proposed quadratic forms o f free energy functions, i.e. (5.1.5) and (5.1.6). are sufficient 

for the discussions. It is noted that the first order terms are all dropped in the above
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linearized equations. As will be clear later, this is simply due to the tact that we are 

dealing with an incremental model. The coefficients in (5.1.5) and (5.1.6) generally are 

the functions o f , and their physical significance will be discussed later.

With (5.1.5) and (5.1.6), (3.3.10) and (3.3.11) can be linearized as follows.

(5.1.7)
P„

p" = A:, ^  . /? = W (5.1.8)

and

r  = D : E  + J l : I , ^ - J i : I , 6 .  (5.1.9)
P„

where p ‘ [a = S. W . .V) and / ' represent the incremental values; / ,  is an isotropic

fourth-order tensor with components (/,),,„ = In (5.1.7)-(5.1.9) and

from now onward, the higher order terms are dropped for clarity, and the porous media 

are assumed to be statistically isotropic. Hence, it follows that

(5.1.10)

/ ; = < / .  (5.1.11)

and

D . E  = À, ( /  : E )I  + . (5.1.12)

where and are the Lame's constants o f the solid skeleton. Obviously, by its very 

definition. { a  = S. W . N ) is the isothermal bulk modulus o f  a  phase. The total 

Cauchy stress, i.e. (3.2.6). now reads
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'  =  K  k  -  : E  ) !  +  2n-:/j ,E  +  S ^ l -
P. A  ( 5 , , 3 ,

.V
V*/

V  a = . V » F , . V  y

The specific entropy o f a bulk phase is obtained by linearizing (3.3.5), i.e.

+ + (5.1.14)
Pn

and

P Ü ^  • (5.1.15)

where ^  = IF. :V. By definition, the specific heat capacity o f an individual phase is 

c'l' = ( a  = 5. IF. .V ). The total specific entropy o f the mixture is now given by

P„/7= I("X)9+ I  + (5.1.16)
. 1  V H - . V  , r : . V I * - . V  P . ,  ; ( = I I ' , V

Neglecting the viscosity due to capillary relaxation, the closure equations (3.4.8), 

which are the macroscopic counterparts o f  the dynamic compatibility conditions on the 

interfaces, can be linearized to vield

Po

Finally, the incremental chemical potentials are

p j ' C  =  A:, ^  . ^  =  fF . :V (5 .1 .1 8 )
Pf)
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The constitutive relationships described above include the following coefficients: 

4 .  j , /IjLf^ A r;, c / a  = P F . .

4 . -  (P  = W , N )  and X ^ J a  = S , W , N ) .  It must be noted that, for a model to be

physically possible, certain restrictions must be imposed on the listed material 

coefficients. For the linear model presented above, the free energies represented by 

(5.1.5) and (5.1.6) must always have nonnegative values. For free energy A'  to be 

nonnegative, it is necessary that

and

i / ,  +2//,. > 0 .

Ms ^  ^ •

K, > 0 .

2 \ 
4  ■*’ 7  A

V J

(5.1.19)

(5.1.20)

(5.1.21)

(5.1.22)

For nonnegative A ^ ( p  = W. N ) / \ l  is required that

and
> 0 .

(5.1.23)

(5.1.24)

(5.1.25)

5.2 Linearized Field Equations

In the following, it is assumed that the effects o f the mass exchange terms can be 

neglected. The mass balance equation, i.e. (3.2.1). now can be cast into the following 

linear fumis
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p i  e t  e t

and

dp^ 
pf, ô t ôt

+ — + n,fv-v^  = 0 . P  = \ V , N

(5.2.1)

(5.2.2)

The equation o f motion for the porous medium is obtained by summing up the 

linear momentum balance equations, i.e. (3.2.4), over all the phases. By introducing 

(5.1.13). the linear counterpart o f this equation is expressed as.

I kp: % - + A -1 ) v v . ♦  n „ v ,v . w +
,f Ct

. , - v i f . v  \  ,  t<-w s \

( s \

(5.2.3)

Inserting (3.5.15) and (5.1.18) into the linearized form o f flow equation (3.5.20). 

one obtains

;
(5.2.4)

where p  = W. N  ; in using (3.5.15). the cross effects have been omitted, i.e. r ‘‘ depends

on only. Subtraction o f (5.2.4) from (5.2.3) repeatedly for both fluids yields the linear 

form o f the linear momentum balance equation of the solid skeleton, i.e.

< p i  = K  U , + A  -  4  <  a V  . V»'

"  a ' ( 4  -  4  A "1 + X  W  4  -  a '  4
\Pi> )

(5.2.5)
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The total energy balance o f the porous medium is given by (4.1.26). and its linear 

form can be expressed as follows.

d „ P o ^  + d i v q = 0  (5.2.6)
at

Inserting (3.5.16) and (5.1.16) into (5.2.6) yields

-siv.y Cl it-sws Cl [i-w.s Ct Ct (5.2.7)
-  T ^ ( b y - w ' ' - 6 j " ( w - v e ) = o

Thus far. all the field equations governing the linear thermoelasticity o f the porous 

media saturated by two immiscible fluids have been presented. The closed set of field 

equations includes: the mass balance equations (5.2.1) and (5.2.2). the linear momentum 

balance equations (5.2.4) and (5.2.5). and the energy balance equation (5.2.7). as well as 

the closure equation (5.1.17) with constitutive equations (5.1.7) and (5.1.8). The total 

number o f the independent field equations is 9. which equals to the number o f the 

unknowns, i.e. \6. i t .p " . } .  a  = S’. W . .V and p  = W . N .

The field equations presented above can be further cast into a more compact form 

by deleting n '' and p “ { a  = S , W . N  and P = W. N) .  Integrating (5.2.1) and (5.2.2) with 

respect to time yields, respectively.

nl  V • ii' — 0 . (5.2.8)
Pn

ana
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(5.2.9)

where P  = W . N  \ n" = - n  - w ''.  With incorporation o f (5.2.8). (5.2.9). (5.1.17). (5.1.7). 

and (5.1.8). p ‘' and n" are deleted from (5.2.4). (5.2.5). and (5.2.7). It follows that

^  )VV. V . V V .

.  y  ô u “ d u “ ^
i i - - W  S a t  ÔI

+ 7f,,V g ,

(5.2.10)

< p :  V V . « '  +  , V / , , V V . m "  +  M , , V V  • M '
c f

-  u
^ dw" CM' ^  

c l  d t

(5.2.11)

< P o '  ^  =  MyyVV • «■' +  M ,,,VV • u* + M , , V V . iP 
d r

5 m ’  5 «  ^

Cl a t

(5.2.12)

and

Cl Cl V V
5m’'

V  è " V - V d  = 0. (5.2.13)
ô l

where the coefficients .V/^ .̂ and are given in Appendix II. c . . and Ô . are

given, respectively, by

c = 0„ y ( „ .  \ V
Z^V^O^a) Z- ^  Û nûa^swy d=ivy

(5.2.14)
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O y M / e  = (5.2.15)

and

K» i‘̂ ŝs ~ 4  -  "o K  )
g v = ^ .

•V 1.V V  'f z ; z - (5.2.16)

The final set o f governing equations includes (5.2.10)-(5.2.13), which govern the 

linear, isou-opic. thermoelasticity o f the porous media saturated by two immiscible, 

compressible fluids. Note that the model represented by the above governing equations 

has a symmetrical structure.

Without the thermal effects. Equations (5.2.10)-(5.2.13) are similar to the 

generalized formulations of Biot’s theory used in the analyses o f the wave propagation in 

porous media, see. for instance. Brutsaert (1964). Bowen (1982). Garg and Nayfeh 

(1986), Santos et al. (1990). and Tuncay and Corapcioglu (1997). among others. 

However, the proposed model differs from those cited above in that it is capable o f 

rigorously considering the dynamic compatibility conditions on interfaces discussed in 

Section 1.2. It is noted that, in the generalized Biot's models, the relationship between the 

capillary pressure and moisture content, which is a macroscopic counterpart o f the 

dynamic compatibility conditions on interfaces, was introduced intuitively; moreover, 

this relationship was used in these models only to obtain some material constants. In the 

model presented here, however, the relationships between capillary pressures and state 

variables (including moisture content) are considered as the original components o f the 

model (see Eq. (5.1.17)). This treatment is thermodynamically consistent, as discussed in 

the previous chapter.
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The field equations represented by (5.2.10H5.2.13) are only applicable to the 

porous materials where each fluid phase is interconnected. In reality, however, the 

content o f a fluid may change from time to time. When decreases to a small value, 

i.e. when >6,{9^  is a positive value close to but less than the porosity n). the 

nonwetting fluid will be disconnected and trapped in the wetting one. In such a case, both 

fluids will macroscopically move together. For simplicity, the thermal effects will be 

omitted in the following discussions. Once n j one may set = 0 . (5.2.10)-.

(5.2.12) yields Biot's model for the saturated porous media (Biot. 1956a). i.e.

^  • “ ’1 +  • Vtt' + uw"'. (5.2.17)

and

where

n.,p: = V(OV• « ' + ■ u" . (5.2.18)

.4 - . . u , (5.2.19)

and

.V = n > , .  (5.2.20)

_ n X  ( À), -  K , )(»,/%,

n ; [ K ,K ,.- n ’M iy ^ n „ K „ .0 : ) \

It must be pointed out that, in the Biot's model, there exists a term called the coupling 

mass. i.e. /?,.. This term arises quite intuitively as a result o f  local nonuniformities in the 

flow when the constituents of the mixture move relative to one another (Biot. 1956 1; 

Coussy. 1995: pp.31-34). Although the coupling mass may be important in dynamics o f
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the fluids containing particles or bubbles (Soo, 1967), its effects on the porous media, 

such as those considered here, remain unclear. However, it has been recognized (Bowen, 

1976) that the coupling mass term does not follow the principle o f material indifference 

(objectivity) and it is difficult to motivate base on the continuum theory o f mixtures.

5.3 Effective Stress in Porous Media

The principle of effective stresses, usually attributed to Terzaghi (1936), plays a 

crucial role in modeling the behavior o f geomaterials. In fact, majority o f the stress-strain, 

constitutive relationships o f geomaterials used in practice is based on the effective 

stresses. .According to Terzaghi (1936), the effective stress principle may be stated as: all 

measurable effects o f a change o f stress, such as compression, distortion, and a change o f 

shear strength o f a soil are exclusively due to change in effective stress. For saturated. 

soils, Terzaghi proposed that the effective stress equals to the excess o f the total applied 

stress over the pore pressure. In the past decades, many efforts have been made to 

develop the effective stress formulations for the porous media with multiple fluids. 

However, it turns out that generalization o f the Terzaghi effective stress concept to a- 

mutiphase system is not straightforward.

In the following, the effective stress formulations will be developed based on the 

Terzaghi principle o f effective stress. For convenience, we only consider the isothermal 

conditions. Assume that # 0  and ^ 0 .  With introducing (5.1.7)-(5.1.9), (5.1.17), 

and (5.2.8). the mass densities and volume fractions is eliminated from (5.1.13). 

This yields
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' + [XwP"' + XsP"" ) /  =

where

and

nl
4  J

{I : E ) l  + 2 n l^ i,E . (5.3.1)

Xw +«,

Xs =^'n +«,'' i - ,
V f^s

(.1. = «„
V  ^  .V ;

K,,

=
'  n : [ 0 r A : , - Æ y ]

(5.3.2)

(5.3.3)

(5.3.4)

(5.3.5)

(5.3.6)

(5.3.7)

By Terzaghi's definition, the effective stress formulation for a linear model o f  the porous 

media saturated by two immiscible fluids can be represented by

<y'=<y+Gr.vP‘" +Xs P ' ' ) f (5.3.8)

Thus far. all the individual components are assumed to be arbitrarily compressible. 

This assumption is too general for practical use. In (5.1.7)-(5.1.9). coefficients À), and

= ^ .iV )  account for the coupling effects in the porous media. For some porous

materials, these coupling coefficients may be small. For instance, in the unsaturated soils, 

the coupling between the volume fraction and the mass density o f an individual 

comnonent is nesliaible. In such cases, it is reasonable to assume that
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« K , . (5.3.9)

[n addition, since the microscopic pressure difference on the interface mainly depends on 

the surface tension and the curvature o f the interface, its macroscopic counterpart, i.e. the 

capillary pressures, must be influenced dominantly by the fluid content and not by the 

mass density of the fluids. Therefore, from (5.1.17). it is reasonable to expect that

(5.3.10)

The second inequality of (5.3.10) is quite obvious, since generally is not more than 

10'' by its definition dnià. larger than 10" kPa (say, for geomaterials).

With (5.3.9) and (5.3.10), (5.3.2) and (5.3.3) lead to

Zw = = l - X s - (5.3.11)

With 0 ^  > 0 { P  = W. N ) ,  it can be deduced from (5.3.11) that < /  and

0 < X s  -  I ■ Now, (5.3.8) becomes

(5.3.12)

This is the so-called Bishop effective stress formulation for unsaturated soils (Bishop, ' 

1959). The stress-strain relationship, i.e. (5.3.1), can be written as

<T = K - ( / :  E)I + 2n^p ,E . (5.3.13)
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where a' is the effective stress defined by (5.3.12). It is noted that whether or not the 

assumptions made in (5.3.9) and (5.3.10) are generally applicable to the porous media 

needs experimental justifications. As discussed in Section 5.4. however, the 

consequences o f these assumptions are consistent with the experimental observations in 

unsaturated soil mechanics (Fredlund and Rahardjo, 1993).

The above stress-strain relationships are applicable only to the porous materials 

with interconnecting fluid phases. As discussed in the last section, when > 0, .  the 

porous media will become saturated, and the nonwetting fluid will be trapped in the 

wetting phase. In such a case, one may set n* = n .  n ' = - n . and nl = / -  n„ . where n is 

the change in the porosity of the material.

Following a procedure similar to that used in deriving (5.3.13). one may develop 

the effective stress formulation for the saturated porous media. In the following, it is 

instructive to consider the following three particular cases usually met in practice.

a) Both components are nearly incompressible. In this case. -> -ko and 

K„. -> -HX3. Due to the impenetrability on the interface between the fluid and the solid, 

the microscopic pressure of the fluid must be equal to that o f the solid, i.e. = PLn, ■ 

Therefore, for the statistically isotropic porous media, p ' = . Since p “ jp *  -> 0 and

0 = 0 . (5.1.17) implies that - * 0 . This is expected, since in this case the free energy 

of the fluid is independent of the porosity, i.e. the volume fraction o f the fluid. Inserting 

(5.1.9) into (3.2.6) with n'  ̂ = 0 ,  one can prove that
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a + p"'I = n m i  : E ) l ^ 2 n l ^ , E .  (5.3.14)

This is a representation o f Terzaghi's effective stress principle for the linear, isotropic 

elastic saturated porous media, and it is suitable for some saturated granular soils (e.g. 

sands). For a linear model. (5.3.14) implies that the effective stress tensor is

ff' = (T + p ‘‘7  = [/j,y  - n , y i \ +  / /  = » Y .  (5.3.15)

where t ‘ is defined by (3.3.11). The first equation o f (5.3.15) is the classic effective 

stress formulation (Terzaghi. 1936).

b) The fluid is nearly incompressible and the (individual) solid component 

compressible. This model is useful in dealing with porous media such as rock and 

concrete. In this case. K,,. -> +<m ;

AT.
p -  (5.3.16)

+ A,

and the stress-strain relationship is expressed by

<T + agp' ^I  = + v ] ( / .• E ) /  + 2m,Vs£’- (5.3.17)

where

and

,  , 5 3 , , ,

n X 0 : + K ,

^imtlarlv  ̂ I 7\ imn!i#»c thot ctrocc fXrm»»IaHr\tn Kor»/%rr»oe
 ̂ X.—
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(t'= g + a^p'' I . (5.3.20)

where is usually called the Biot coefficient. n„ <a^ < I , since + x  > > A',,. It is

noted that the effective stress formulation represented by (5.3.20) is usually employed in 

modeling the rock-like porous materials (Lade and de Boer. 1997).

c) Both components are compressible. Similarly, in such a case, the linear elastic 

stress-strain relationship reads

G + or,,/?“7  = n'l (A, + vX / ■' E ) I  + 2 n lp ^ E . (5.3.21 )

where is now given by

and V is
, n M y [ e : K „  - ( a ; ) - - ] ( 4 ,  - K , y

With inequality (5.1.25) and noting that < -h x  and /i‘J„ < A(„. < -h x .  one can

easily prove that n„<ag <1 .  Remarkably, if the coupling coefficient is negligible. 

(5.3.21) and (5.3.22) become equivalent to (5.3.18) and (5.3.19). respectively. Hence, ■ 

can be confidently neglected when the fluid has low compressibility.

From the above discussions, it is clear that an explicit expression for the effective 

stress is primarily determined by the compressibility o f individual phases coexisting in 

the porous media. For the porous media saturated by a single fluid, if both the solid and
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the fluid have low compressibility, the Terzaghi effective stress is applicable; otherwise, 

model b) or c) must be introduced. It is also noted that for the problems of infinitesimal 

deformation coefficients may be considered as constants, since p ' , p '^ . n and E 

change slightly, and all the coefficients existing in the model are practically constant. 

This feature has great practical and theoretical significance in modeling the behavior of 

porous media. As for multiphase systems, however, it seems very awkward (though 

possible) to employ an explicit effective stress formulation in modeling the stress-strain 

behavior, since Xw ^ d  x„ generally the functions o f  the state variables.

5.4 Evaluation o f Material Coefficients

Suppose that the initial porosity and the degree o f saturation o f  the wetting fluid, 

i.e. . are known. In the linear model presented above, there exist 24 coefficients yet to 

determine, which can be categorized into the following three groups:

Group I (mechanical effects): {a  = S J V ..\ ') .  A ^. and 0 ^

Group 2 (thermal effects): . Aj|,. A ^ . and A^ { a  = S . W . N  : /? = W. N).

Group 3 (conductivity): / i" . and ( f  = fF. iV).

It is noted that these coefficients are generally the functions o f û„. . n j . and/or ■

p ^ ( a  = SJF, .V) .  In Group 3. û)" is the thermal conductivity o f the mixture, and 

may be related to the permeability o f the fluid flow. Both coefficients can be measured in

1 070\ rot%̂ ACont tKd f
w  ft ft ^  ^  ft » » ^ f t  % »ft*^ftftk  f t f t f t ^  S v W f t f t ^ f t f t f t f t ^  ft» %f%,ftft ftftftW  f tW ftlf t |> W ftftA ft tftA  W  LkX A tK A .
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diffusion. For many applications, the coupling effects between heat conduction and fluid 

diffusion are negligible, and these parameters are usually dropped.

In what follows, our attentions will be focused on the evaluation of the material 

coefficients in Group 1 & 2. According to their characteristics, the coefficients in each 

group can be further distinguished among deformation properties, coupling properties, 

and intrinsic properties. The intrinsic constants, which represent the properties o f an 

individual component, include bulk moduli . specific heat capacity

. The last coefficient can be expressed as

(5.4.11

From (5.1.7) and (5.1.8). it is clear that is just the thermal dilatational coefficient o f 

a  -component. The compressibility o f an individual phase is defined by

(5.4.2)

It is noted that all the intrinsic properties o f materials are accessible in routine 

experiments or can even be obtained in the standard handbooks, see. for instance. Clark 

(1966). Unlike the intrinsic properties, all the other material coefficients generally are not 

transparent and must be determined by correlating them to the phenomenological 

parameters o f porous media. These coefficients include the coupling properties

Â'I . and À^ ,. the Lamé coefficients and . and the suction coefficient 0 ^ .

The phenomenological parameters used to evaluate the material constants o f the 

proposed model can be experimentally determined. To begin with, it is useful to
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introduce some important concepts associated with the experiments such as constant- 

suction, drained, and undrained. During a constant-suction experiment, the matric suction 

(i.e. the difference between p '  and ) remains constant. In a completely drained test, 

no change in the pressure o f  a fluid is allowed, i.e. pressure increments p  ' and p" must 

be zero. In a fully undrained test, however, it requires that no local diffusion be permitted 

and no fluids escape out o f the domain spanned by the skeleton. Concisely, the fully 

undrained condition is defined by

(5.4.3)

With (5.4.3). balance equations (5.2.8) and (5.2.9) may be added together to yield

s , = - I : E =  X  (5.4.4)
" •' »' P„

where is the volumetric strain of the matrix, which is positive in compression. (5.4.4) 

gives another representation o f the undrained condition.

If the compressibility o f the solid grain is excluded and the content o f the wetting 

fluid vanishes (i.e. the dry porous media), the stress-strain relationship (5.3.1) become

a  = nlX^[l  : E ) I +  2 n l p ^ E . (5.4.5)

This is the linear, isotropic, elastic model of the dry porous media. Clearly. À(=n^Â^.) 

and p (= M g//J are the Lamé coefficients that account for the isotropic linear elastic 

deformation o f the solid matrix solely due to the rearrangement o f solid grains. It seems

uiâi A cuiu / i  wall ÜC uciciiuuicu uuuu^i a uiicwi icSi Oil uic OIV Soiilpic. ill ico iiiy .
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however, such a point of view is incorrect. For instance, it is well recognized that 

inclusion o f small amount of moisture may drastically change the mechanical behavior o f 

the granular materials (Hombaker et al., 1997). Therefore, in the experiments to 

determine the phenomenological properties, the samples o f very low moisture content 

should be excluded. Comparing (5.3.1). (5.3.13). (5.3.14), (5.3.17), and (5.3.21). one may 

notice that, irrespective o f fluid content and drained conditions, the shear modulus o f the 

porous media can always be represented by

G = // = «„'//,, (5.4.6)

which can be directly measured in a laboratory test.

By their definitions. À',, and are independent o f the fluid contents. Hence, these

two coefficients can be obtained by testing the fully saturated samples. For the fully 

saturated porous media under isothermal conditions, given K .̂. K„., and as well as 

the initial volume fractions o f individual phases, one still has , and 0 "  to

determine. The last four coefficients may be obtained by correlating them to the 

phenomenological parameters such as the drained bulk modulus . the undrained bulk 

modulus K , . , and the Skempton coefficient B. References on the interpretation and

evaluation o f the phenomenological parameters of the saturated porous media are 

abundant in the literature, see. for instance, Biot & Willis (1957). and Kiimpel (1991), 

among others. In the following, it will be assumed that the coupling between the mass 

density p"  and the volume fraction n"' can be neglected. Hence, = 0 . We will skip
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experimental details and only concern with the correlation between the material constants 

o f the proposed model and the phenomenological parameters.

Taking the trace o f both sides o f (5.3.21). one obtain

U l  :<t ) + a , p '  =nl I E . (5.4.7)

where and y  are given by (5.3.18) and (5.3.19). respectively. In a fully drained 

compression test, the fluid pressure in a saturated sample is constant, i.e. =0.  

Therefore, by definition. K„ can be represented as

(5.4.8)

For a fully undrained compression o f a saturated sample, using (5.1.7). (5.1.8). 

(5.1.17). (5.2.8). (5.2.9). and (5.4.3). one can prove that

where
/  = - 4 / : E ) .

(k ,

(5.4.9)

(5.4.10)

By using (5.4.9). p “ is eliminated from (5.4.7). It follows that

(5.4.11)

where (5.4.8) has been used. By definition, the undrained bulk modulus o f the saturated 

porous material is now represented by

K„ = + 7ta„ (5.4.12)
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The Skempton coefficient B can be derived through establishing the relationship 

between the mean stress and the pore water pressure. Using (5.4.9) and (5.4.11). one 

obtain

■ j ( /  ®)= «/,+■ (5.4.13)

Therefore, the pore pressure coefficient is

B = a . Ell 
/T )

K

or
K -  BK,,

(5.4.14)

(5.4.15)

Inserting (5.4.15) into (5.4.12). we obtain an expression for Biot's coefficient as

B
(5.4.16)

)

Given AT,., and B. parameters k  and a„ are obtained by using (5.4.15) and

(5.4.16), respectively. Now. (5.3.18). (5.3.19). (5.4.8) and (5.4.10) can be solved 

simultaneously to obtain . Â,. and 0 ] .  It must be pointed out that, unlike and

Ày, coefficients 0 "  are generally dependent on the fluid contents for the multiphase 

porous media. Therefore. and 0 "  together with and 0 J  must be determined 

through the phenomenological properties obtained by the tests o f the samples with the 

specified degree o f saturation. In the following, it is assumed that = 0 and = 0 .

The first phenomenological parameter to consider is the specific saturation capacity 

fi. (as shown in Fig. 5.1), which is the inverse o f  the slope o f the relationship between
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the matric suction {p " -  p'" ) and the specific moisture content ( n"* ). In the experiments 

to determine such a relationship, the volume of the sample is usually kept constant. It 

follows from (5.1.17) that

p ' - p "  (5 .4 . l ? )

where use has been made o f = 0 and 6 = 0 . Since the volume o f the specimen is 

constant. + n ' = n  ^ 0 . Consequently. (5.4.17) becomes

p ^ ' - p " (5.4.18)

P

n,

Figure 5.1 Evaluation o f specific saturation capacity

By definition, the specific saturation capacity F,. is

(5.4.19)

Similar to those used for the saturated porous media, the other empirical parameters 

used to determine the material constants o f the unsaturated porous media include various 

bulk moduli obtained under various controlled drained conditions. These bulk moduli are
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the drained and undrained bulk moduli as well as the bulk moduli obtained by the tests 

under mixed drained conditions. In a test with mixed drained conditions, the pressure o f 

one fluid is kept constant (fully drained) and the drainage o f the other fluid Is completely 

prevented. It must be pointed out that the fluid diffusion in a multiphase system is 

generally much slower than the deformation o f the solid skeleton. It is therefore difficult, 

though possible, to perform the experiments as mentioned above in laboratories. In 

practice, some justifiable assumptions, which depend on the problems of concerns, may 

be introduced to simplify the theoretical and experimental procedures.

In the following, it is assumed that the assumptions made in (5.3.9) and (5.3.10) are 

valid. Taking the trace of both sides o f (5.3.13) and using (5.3.12). we get

= « ; ( / . £ : ) .  (5.4.20)

where and are the mean net stress and the matric suction, respectively, and 

defined bv

and

(5.4.20) can be cast into

+ (5.4.21)

= / - /  (5.4.22)

where is the constant-suction bulk modulus, and H  is the bulk modulus associated 

matnc suction. Both A.\, and H  can be experimentally determined, in fact, expenm ents.
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show that (5.4.23) can be used to evaluate the elastic volumetric strain tor unsaturated 

soils (Fredulund and Rahardjo, 1993; Ch. 12). Comparing (5.4.23) with (5.4.20). one 

obtains

(5.4.24)
A:, 

and
= H ' K , ,  (5.4.25)

(5.4.25) can be used to experimentally determine the effective stress parameter Xw • With 

A.\, and //g iven . (5.4.19) and (5.3.11) now can be solved for 0*1 and .

It is worthy to note that (5.4.24) also gives a relationship between the material 

constants and phenomenological parameters. However, the last term in the bracket o f

(5.4.24) is generally much smaller than the sum o f the first three terms so that the value 

o f K^, may not be explicitly dependent on 0*  and 0 l  in some cases. Hence, use o f

(5.4.24) in determining 0 “ and 0 ,'' should be avoided.

Thus far. the coefficients yet to be evaluated are the thermal parameters and 

/ly„ i P  = W. N  ). Coefficient represents the coupling between temperature and the 

deformation o f the solid skeleton, and accounts for the coupling effects between 

temperature and the volume fractions o f fluids. In the following, it is assumed that 

X‘l„ = 0 . Note that (5.4.20) is derived for the isothermal conditions. Under nonisothermal 

conditions. (5.4.20) will become
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( 1.1
6 .  (5.4.26)

V ^ .v
P ^ . -Z ^ S „ = K „ { l  :E )  + n',

The coefficient o f the last term in the RHS of (5.4.26) can be decomposed into

n '
V A- v

= 3 K „ a l  (5.4.27)

It is clear that is the thermal dilatation coefficient that can be measured by exposing 

the material sample to varying temperature while keeping constant suction and zero net 

mean stress. Solving (5.4.27). one obtain

/ i l
4   (5.4.28)

In this section, sufficient information is provided to determine the material 

coefficients o f the proposed model. Note that the procedure used to evaluate material 

constants is not unique. In practice, a few justifiable assumptions may drastically simplify 

the experimental procedure. For instance, as far as unsaturated soils are concerned, only 

shear modulus G. specific saturation capacity f . and bulk moduli H  and (see

(5.4.23)) need to be determined in the laboratory. Given these phenomenological 

parameters, all the elastic parameters in the proposed model can be obtained by using the 

relationships developed above. As a particular example, the material constants o f the 

Massilon sandstone will be evaluated in the next chapter.
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Chapter 6 ACOUSTICAL WAVES IN POROUS MEDIA

As an application and validation o f the linear model previously developed, this 

chapter is devoted to analyzing the propagation conditions and characteristics of 

acoustical waves in the porous media saturated by two immiscible fluids. Simulation o f 

acoustical waves in porous media is o f great interest in geophysics, petroleum 

engineering, chemical engineering, and geotechnical engineering. For example, acoustic 

waves can be used to improve oil recovery processes (Beresnev and Johnson. 1994); a 

detailed analysis o f acoustic waves in porous media also finds its application in 

interpreting dynamic soil tests (Gajo and Mongiovi. 1994).

In the following, our discussions will be confined mainly to the relatively low 

frequency range ( < 10^ Hz). In a model o f porous media, two sets o f relationships are 

frequency-dependent, i.e. the flow equations and closure equations. It must be noted that 

in the linear model developed in the previous chapter, the flow diffusion is assumed to be 

linear or, equivalently, the model only considers laminar flow. Biot (1956a&b) had 

shown that the laminar flow assumption breaks down if the frequency exceeds a certain 

limit. In the closure equation (5.1.17). the viscous terms associated with the capillary 

relaxation are omitted. Such an assumption applies only in the low frequency range.
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6.1 Weak Discontinuity Waves

Weak discontinuity is defined such that, through a material surface within the 

domain o f  concern, the acceleration field is subjected to a jump, but the displacement and 

velocity fields are continuous over the whole open domain. As will be shown later, such a 

discontinuity surface may propagate through the porous media in the form o f purely 

elastic waves without attenuation.

Suppose that a field (p is subjected to a jump at some points in the domain o f 

concerns Q . and these points form a continuous, differentiable surface ç„{t) (i.e. an 

orientable 2-dimensional differentiable manifold), represented by i//{x.t) = 0. x e Q  (Fig. 

6.1). Taking the material derivative of w{x.i) with respect to the motion o f the solid 

skeleton yields

£)•' a
— i//{x,[) = —if/{x,i)+v^ ■Wif/{x.i) = 0.  (6.1.1)
D ( c l

8n

Figure 6.1 Discontinuity surface of acceleration
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Let n  be the unit vector normal to y/{x,t) and r  be a unit tangent vector. Then.

n = (6 . 1.2 )

If the gliding on the discontinuity surface in r  direction is excluded, it follows from

(6.1.1) and (6.1.2) that

= = (6.1.3)
ôt /

where U is the only nontrial component o f the propagation velocity of ç„{t) ■

From the definition o f weak discontinuitv, it follows that

(6.1.4)

where a  = S .fV . .V ; ~ (p '. <p' and p '  denote the values o f ç  on the positive

and negative side o f  the wave front c«(t). Using (6.1.4). one obtains the following 

kinematical compatibility conditions (a detailed proof is presented in Appendix III).

a ,"
ct

and

(6.1.5)

(6 . 1.6) 

(6.1.7)

where a “ represents the normal jump o f the spatial gradient o f the velocity v“ through 

c„{t) ; ® denotes the tensor product, e.g.. (m ® n),. =  m,n^.
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In the following, our attention is limited to the isothermal condition and all the 

temperature terms will be dropped. Applying (6.1.4X6.1.7) to (5.2.10)-(5.2.12), it 

immediately follows that

nlplU'a^  = A/a-a' -nn + ln^p^a  ̂ + ■nn + M^^a'’ nn. (6.1.8) 

p f  U'a'^ = ■ nn + ■ nn + • n n . (6.1.9)

and

n' '̂p^U'a'' = ■ nn + ■ nn + nn, (6.1.10)

Since r - / i  = 0. it follows from (6.1.9) and (6.1.10) that a" ■t  = 0 and o ' r  = 0 . That is. 

a'’ ( p  = W . N  ) have only one component, which is parallel to the unit normal vector n. 

This result is expected, since the inviscid fluids cannot resist any shear displacement. Let 

a ' = a ln  + cP,T and = a‘‘n ( P  = W . N ) .  Inserting these two equation into (6.1.8)-

(6.1.10) yields

KplU-a^ • ( 6 . 1 . 1 1 )

n Jp Jf/ 'X  =(M^. + 2 » X ) <  (6.1.12)

(6.1.13)

and

n^,p"„U'-a^ = . (6.1.14)

Equation (6.1.11) immediately yields the speed o f the only rotational wave (i.e. shear 

wave) in the porous media as

I I -  -  A - / tC.  I I
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and (6.1.12)-(6.1.14) now constitute an eigenvalue problem, and the corresponding 

characteristic equation is given by

where

K =

det(z- U'-k ) = 0. (6.1.16)

•V/.V ■

sw (6.1.17)

M,, ws •W,v,v

Z = d iag in lp ' . n " 'p \ n ^ / ) . (6.1.18)

and

Since k  and z are positive-definite. (6.1.16) has three positive solutions for U \  

implying that there exist three compressional (also called longitudinal or dilatational) 

waves propagating in the porous media saturated by two immiscible fluids.

It is now instructive to discuss the effect o f the internal constraints on the wave 

propagation in porous media. Such kinds o f constraints are associated with the 

compressibility o f the individual components. Assume that a bulk phase (say. the solid 

phase) is incompressible, i.e. /?' =0 (/>' is an incremental quantity). Using (5.1.17). 

(5.1.7). (5.1.8). (5.2.8). (5.2.9). and (6.1.7). we can prove that there is a constraint among 

( a  = SJV . .V) independent o f (6.1.12)-(6.1.I4). i.e. only two of a'’ are independent. 

Therefore, as pointed out in Chapter 3. applying any internal constraint to the model at 

least excludes one mode o f the waves.

In a finite element analysis of deformation, it is sometimes assumed for 

convenience that the relative acceleration o f a fluid can be neglected (Zienkiewicz and
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Shiomi, 1984; Li and Zienkiewicz. 1990). Under this assumption, one has 

d v ^ f d t =  dv'^ I  d t  =  d v ' ’’I  a t , and correspondingly, a' =a'^ = a ' ' .  Hence, the set o f field 

equations, i.e. (5.2.10)-(5.2.12), delivers only two body waves: a rotational wave and a 

compressional wave. Generally, in many slow phenomena, e.g. an earth dam under 

earthquake loading, the compressible waves due to the existence o f the fluids, i.e. the 

second and third compressional waves, have little influence on the deformation o f the 

solid skeleton. Therefore, the assumption made above usually applies in such cases.

6.2 Acoustical Waves

Existence of three compressional waves in the porous media saturated by two 

immiscible fluids has been shown in the last section. In reality, all these waves are not the 

pure waves and not carried independently by any individual component. In addition, due 

to the relative motion o f  the components, all these waves are dispersive and attenuated.

The body waves in a continuum can be categorized into two kinds, which 

corresponds to shear and compression, respectively. To obtain the equations o f wave 

propagation, the shear waves are first uncoupled from the compressional waves. Let

V W = g , { a ^ S . W . N ) .  (6.2.1)

and

V x u ‘ = a ^  ( a  = S . W . N ) .  (6.2.2)

.Applying the divergence operator, i.e. V - ( ) .  to both sides o f (5.2.10)-(5.2.12) and 

dropping all the temperattire terms, one obtains the equations o f propagation for the 

compressional waves as follows.
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zë = Ky'e + dé.  (6.2.3)

where k  and z are given by (6.1.17) and ( 6.1.18). respectively; ) , and

- h "
d = 0 (6.2.4)

0

Similarly, applying the curl operator, i.e. V x ( ) . to both sides o f (5.2.10)-(5.2.12). 

one obtains the equations o f propagation for the shear waves, i.e.

z i i  = AV A + d ù . (6.2.5)

where ) . and

0

h = 0 0

0 0

(6 .2 .6)

Consider a harmonic pertubation wave traveling through the porous medium in the 

direction n. The solutions o f (6.2.3) and (6.2.5) now can be represented by

and

£ = Aexp[i{C n x - c a t ) ] ,  

S2 = B exp[i{C « • x  -  ty r)].

(6.2.7)

(6 .2 .8)

where A'^ =( A .̂. A,^. A^,)\ = ( B„, B^ )  \ Ç is the wave number; is the angular

i  —  \  — t  . m  5 ^ i i V i o i ,  w l a  a  u u i i i u c L ,  i . e .  u  —  w u c i c  y  ^ c u i u
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ç, are the real and imaginary parts o f Ç . respectively. is usually called the attenuation 

coefficient. The phase velocity is defined as \  = o)(C,.

Inserting (6.2.7) into (6.2.3), one obtains after some rearrangements that

[-û} 'z+ C 'K -iû jd )A  = 0 (6.2.9)

For (6.2.9) to have nonzero solutions, it is required that

det(- 61 z+ ^  "K"- ) = 0 (6.2.10)

This equation is sometimes called the dispersion relation o f the compressional waves. 

Given angular frequency o). (6.2.10) can be numerically solved for Ç . and therefore die 

phase velocity and the attenuation coefficient can be evaluated. In general, for a given 

angular frequency co. the polynomial expanded from (6.2.10) has three complex roots for

and the wave number Ç has six roots. However, only three o f these roots 

physically make sense, since the amplitude o f the waves must decrease with time and the 

imaginary part o f Ç (i.e. Ç,) is always nonnegative. Therefore, there exist three 

compressional waves in general, which are denoted by P L  P2. and P3. respectively, such 

that Vp, > Vp. > Vp^.

Before solving (6.2.10). however, it is instructive to examine first its character in 

the zero and infinite frequency limits. As o)-> 0  so that Ç and (ojC becomes 

finite, it can be shown from the expansion of (6.2.10) that
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where

• 1

/ - V =  0 . ( 6 .2 .1 1 )

< y + " ! /? " '+ Mo"y

(6 .2 . 11 ) implies that, in this particular case, the three phase velocities become . 0. and 

0. respectively. Physically, this situation corresponds to those wherein all the three 

components move together, i.e. /j'* and ^  +0 0 . Alternatively, as w -»  +00

such that +Q0 and coj^ remains finite. (6 .2 . 10 ) degenerate to (6.1.16) with 

U' =(<y/(^)‘ . Therefore, the infinite frequency limit is equivalent to the case with no 

viscous coupling, that is. /i* -> 0 and -> 0 . The corresponding waves are usually 

called the purely elastic waves (Biot. 1956a).

Similarly, inserting (6.2.8) into (6.2.5) yields

[-cü 'z+ Ç 'h-icûd]B  = 0 . (6.2.13)

and the corresponding dispersion relation of the shear waves is

d e l{ -cü'z+Ç'It-ict)d)=0 .  (6.2.14)

For a given frequency œ . (6.2.14) has only one nonvanishing solution for {co/C)'. i.e.

there is only one shear wave (called the 5-wave). As <y 0 and cojC becomes finite.
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given by (6.2.15) Is the velocity o f the shear wave when all the three components 

move together. As co-^+<o and cojC remains finite, equation (6.2.14) degenerate to 

n l p ’̂ ico/Ç)' =n l u^ .  Clearly, this case corresponds to those wherein viscous coupling 

vanishes. The velocity of the shear wave is now given by (6.1.15).

From the discussions given above, it is clear that in a low-frequency range there are 

only one compressional wave and the shear wave traveling through the porous medium, 

and the strong viscous coupling leads the three compressional waves to coalesce into a 

single front. As mentioned in the end of the last section, in many finite element analyses 

o f geotechnical structures subjected to dynamic loading in the lower frequency range, it is 

generally acceptable to drop the relative acceleration terms o f the fluids. The only 

consequence o f dropping the relative velocity o f the fluids is the exclusion o f the effect o f 

the second and the third compressional waves on the deformation.

6.3 Evaluation o f Material Constants

This section further concerns the material constants of the linear model presented in 

Chapter 5. To this end. Massilon sandstone will be introduced as an example. The 

material and acoustical properties o f Massilon sandstone are well documented in the 

literature (see. Murphy. 1982; Murphy, 1984: Bourbié et al. 1987: Ch. 5), and the 

material parameters are summarized in Table 6.1. In the following, it is assumed that the 

coupling between the mass density and the volume fraction o f a fluid is negligible. This 

assumption is reasonable for geomaterials as discussed in Chapter 5. Therefore, one has
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= /l^  = O.Ü. Under the isothermal condition, the following parameters remain to 

specify: , Ms • 4 .  ’  ̂ , ft* , and / / ' .

Table 6.1 Material Parameters o f Massillon Sandstone Saturated bv Water and Air

M aterial Param eters Sym b ol V a lu e U nit

P orosity n 0.23 -

D en sity  o f  so lid  grain 2650.0 kg/m‘

D en sity  o f  w ater P*' 997.0 kg/m'

D en sity  o f  gas P^ 1.10 kg/m'

Bulk m o d u lu s o f  so lid  grain 4 3 .5x10' kPa

Bulk m o d u lu s o f  w ater A .;. 2.25x10'' kPa

Bulk m o d u lu s o f  air K , O.IlxIO^ kPa

V isc o s ity  o f  w ater Hw / .O x  / o r ' Pa s

V isc o sity  o f  air Hs I.SxIO-^ Pa s

Intrinsic perm eab ility k 2 .5 x l 0 - ‘- m'

B ulk m o d u lu s o f  the m atrix K 1.02x10" kPa

Shear m o d u lu s o f  the m atrix G 1.44x10" kPa

The last four parameters are generally dependent on the degree o f saturation. 0*  

and 0'^ can be obtained using (5.4.19). (5.4.25), and (5.3.11). For Massilon sandstone, 

however, the explicit relationship between modulus H and  the degree o f  saturation is 

not available. An alternative equation must be introduced. Experiments show that
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although there is some discrepancy Xw is always located in the vicinity o f S, for many 

types of porous materials (Donald. 1961; Blight, 1961). Therefore, in the following it is 

assumed as a first approximation that Xw -  ■ With (5.4.19). and (5.3.11 ), one obtains

(6.3.1)

and
= (6.3.2)

The specific saturation capacity /^. is calculated through the moisture retention curve, i.e. 

the relationship between the matric suction ( ) and the degree o f saturation. Here.

Brooks and Corey (1964) expressions are employed, i.e.

(6.3.3)

where p j  is the air-entry value pressure. À a positive constant to be specified, and 

the effective degree o f saturation given by

S =

AO

where 5,^ and 5   ̂ are the residual and air-entry degree o f saturation, respectively. 

Coefficients = W. N )  can be related to the permeability by

kk^ in" )

114



where k  is the intrinsic permeability o f the porous medium; and represent the 

shear viscosity and relative permeability o f -fluid, respectively. According to Brooks 

and Corey (1964), the relative permeabilities for the liquid and the air are given by

and
(6.3.5)

(6.3.6)

respectively. Since no data for the moisture retention and the permeability o f Massilon 

sandstone are available, the following values o f parameters are chosen in the analysis: 

Pj = 50 kPa. À = 1.5, = 0.1, S,^ = 0.85 -  1.0. The moisture retention curve o f the

sandstone and the relative permeability curves o f the liquid and air are shown in Fig. 6.2a 

and b. respectively.
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Figure 6.2 a) Moisture retention curves for Massilon sandstone; b) Relation between 
relative permeability and degree o f saturation. ( Krp  = )
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To evaluate the elastic constants o f the solid matrix, (5.4.24) can be employed. 

Since the last term in (5.4.24) is O {m ax{0^, 0 ^ ) ) ,  which is several orders less than the 

bulk modulus o f the matrix for geomaterials. It is therefore reasonable to set

K - (6.3.7)

where K  is given in Table 6.1. and //, directly obtained through (5.4.6) as 1.87 x 10" 

kPa. If is known. can be computed through (6.3.7). To evaluate . however, it

is necessary to introduce other phenomenological parameters, such as the pore pressure 

coefficient B and the drained bulk modulus o f the matrix K , , . which are unfortunately 

lacking for Massilon sandstone. On the other hand, parametric study shows that fo r  wave 

propagation problems no significant change in the results can be observed with

varying from 0 -  I x 10 kPa provided that A, is calculated through (6.3.7). This can be 

easily understood from the fact that all the elements in the matrix k  o f  (6.2.10) are 

influenced very slightly by the choice of T'),,, for instance. = K + 4 j 3 . which is

only influenced by K  and Correspondingly, from (5.3.18). the Biot coefficient a„ 

may be varied from l.O down to 0.56 with varying . Such a range o f covers those 

values that most kinds of geomaterials may have. Hence, we simply choose 

À f  = 1.0 X 10 kPa or correspondingly a  g =0.78. and from (6.3.7) Ay = 2.955x10'' kPa.

Thus far. all the material parameters are evaluated, and polynomial equation (6.2.10) and 

(6.2.14) can therefore be solved numerically.
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6.4 Analysis o f  Numerical Results

In the following, based on the solutions to (6.2.10) and (6.2.14), the behavior o f the 

acoustical waves in the sandstone saturated by water and air are discussed in details. 

From these discussions, some general acoustical behavior of the porous media saturated 

by two immiscible fluids will be deduced. In the examples presented in this section, 5,,, 

is chosen as 95%.
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Figure 6.3 Influence o f the degree o f saturation on the velocities: a) PI: b) P2: c) P3: d) 5
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Figure 6.3 illustrates the influence o f the degree o f saturation on the velocities of 

the various types o f waves for four different frequencies, i.e. 500, 1000. 1500, and 2000 

Hz. In Fig. 6.3a. it is shown that as the degree o f saturation increases the velocity o f the 

first compressional wave PI decrease slightly. When S’, > 95% . v ,̂ rapidly increases

with S,. Two mechanisms may be used to explain this observation: on the one hand, v ,̂

decreases with increase in the density o f the mixture: on the other hand, v ,̂ increases

with decrease in the compressibility o f the mixture. Since the air is much lighter and 

more compressible than the water, in low saturation range, the decrease in due to the

water replacing the air in the pores cannot be compensated by the increase in due to

the decrease in the compressibility when 5, increases. In higher saturation range.

however, the increase in due to the decrease in compressibility much overweighs the

decrease in v ,̂ due to the increase o f the density o f the matrix. Fig. 6.3a also shows that

for all the four frequencies no significant differences in the corresponding velocity curves 

can be observed.

Fig. 6.3b shows that similar to the velocity o f  the second compressional wave

decreases with the degree of saturation increasing up to 85%  and then it increase

rapidly when the porous material approaches the fully saturated condition. It is also seen 

that within the frequency range 500-2000  Hz the P2 o f higher frequency has higher 

velocity. As shown in Fig. 6.3c. unlike v ,̂ and . the velocity o f PS increases with 5,

increasing up to about 75% and then decreases. When S. < or S , > S ^ .  v ., vanishes
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and P3 disappears. This implies that the third compressional wave coexists with the 

capillary pressures, and whenever the matric suction vanishes P3 disappears. Similar to 

Vp,. the P3 o f  higher frequency also has higher velocity. Fig. 6.3d shows that the velocity

o f the shear wave slightly decreases with increasing. The reason for this is that the 

decrease in v’v due to the increase of the density o f the matrix is always dominant with 

the water replacing the air in the pore space. It can also be seen from Fig. 6.3d that within 

the frequency range 500-2000 Hz. the effect o f frequency on the shear wave is trivial.
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Fig. 6.4 illustrates the effects of the degree of saturation and the frequency on the 

attenuation coefficient (i.e. Ç, ) for the four different waves. As expected, in all the cases, 

the waves o f  higher frequency always attenuate more rapidly. When 5, < 50% . slight 

attenuation is observed for the PI o f frequency more than 1000 Hz (Fig. 6.4a). For the S 

wave (Fig. 6.4d) and P I  wave o f frequency lower than 300 Hz, the attenuation is trivial. 

When 5, > 50% , S  and PI are attenuated rapidly with the increase in saturation and the 

attenuation reaches a peak value at around S, = , where the air phase is trapped in the

water. Existence o f peak values in the attenuation curves o f PI and S waves was also 

observed by Tuncay and Corapcioglu (1996), whose analysis was based on a linear model 

developed by using a averaging procedure (Tuncay and Corapcioglu, 1997). In Tuncay 

and Corapcioglu's work, moisture retention curve is represented by Van Genuchten's 

relationship (Van Genuchten, 1980), which is smooth for 5,^ < 5 , < .

It is noted from Fig. 6.2b that the relative permeability o f the water become 

significant only when S ^ > 5 0  %.  Therefore, it is quite clear that the attenuation o f PI  or 

S  is dominated by the (local) fluid diffusion. The same conclusion has been drawn by Yin 

et al (1992) in interpreting experimental data. Fig. 6.4b shows that at S^=S2%  the 

attenuation o f  P2 reaches its peak and whenever one o f the fluid phases disconnects it is 

minimal. In contrast, as shown in Fig. 6.4c. P3 attenuates strongly when one o f the fluid 

phases tends to disconnect and the attenuation o f PS has smaller values in between S,„.

and . This again implies that there exists an affinity between PS and the capillary
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The effects of frequency on the waves have been briefly discussed above for the 

frequency range from 500~2000 Hz. Figures 6.5 and 6.6 illustrate these effects in a much 

wider frequency spectrum. It is worthy to be noted that because o f the frequency- 

dependent behavior o f acoustical waves the cases o f  frequency more than 10' Hz are 

more mathematical than physical in nature. Furthermore, in the higher frequency range 

where wavelength may be less than the size o f pores, the continuum assumption breaks 

down. Hence, the following discussion is limited to the frequency range less than 10^ Hz.
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In the acoustical range (<IU'‘ Hz.), the current example shows that the effects o f 

frequency on the phase velocities o f PI  and S  are small. In ultrasonic range ( > 10'  Hz.), 

however, this may not be the case. As shown in Fig. 6.5a, the velocity o f PI  can be 

greatly influenced by the frequency in ultrasonic range. Unlike PI  and S. the effects o f 

frequency on the second and the third compressional waves are significant, as shown in 

Fig. 6.5b&c. For these two waves, the phase velocity increases with the frequency 

increasing in the range of 0 10  ̂ Hz. As expected, for all the waves, the attenuation 

increases with the increase in the frequency.
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From the above discussions, it is clear that unlike PI  wave and S  wave P2 and P2 

are very sensitive to the frequency and they attenuate rapidly. Therefore. P2 and P3 

waves are not true waves and they are associated with some kind o f dissipation. Among 

all the waves, the shear wave has lowest attenuation. The first compressional wave PI  is 

the fastest and attenuates more slowly; the second compressional wave P2 is slower than 

PI  but faster than P3. P2 is sometimes called Blot’s wave and it has a higher attenuation 

coefficient than PI.  The slowest wave is the third compressional wave P3. and 

furthermore P3 is most strongly attenuated. In reality, it could be extremely difficult, if 

not impossible, to observe P3. Even the second compressional wave P2 can not be 

routinely observed in the laboratory. In fact, the first formal observation o f P2 was not 

reported until 1980 (Fiona. 1980; Berryman, 1980), almost 25 years after Biot presented 

his theory (Biot. 1956a). It is noted that the elusive nature o f P2 and P3 does not mean 

that they are not important. Since P2 and P3 may consume significant energy during 

numerous reflections and transmissions on the interfaces (Geertsma and Smit, 1961). it is 

important to understand the characters o f these two waves so that the acoustical behavior 

o f porous media can be properly described.

6.5 Comparison to Experimental Results

In this section, the numerical results presented above will be compared to the 

experimental data on the acoustical waves in the Massilon sandstone saturated by water 

and air (Murphy, 1982 & 1984). The material properties are the same as those given in 

Table 6.1 and discussed in Section 3. excent that S... is chosen as 0.85. As will be seen
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later, tor = 0.85 ~ /.O , the eftects of on the phase velocities o f S and PI waves 

are trivial. However, the choice o f 5   ̂ will significantly influence the attenuation.

The calculated and measured velocities o f the first compressional wave PI and the 

shear wave S  are shown in Fig.6.7. from which it can be seen that the agreements 

between the theoretical and experimental results are favorable. As the model predicted, 

the velocities o f PI and S  slightly decrease with the degree of saturation increasing. For 

P I. the experiment shows that close to the fully saturated conditions the phase velocity 

increases rapidly. This feature is properly captured in the predicted results.
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wave (Experimental data after Murphy (1982))

The calculated and measured results for the attenuation o f waves are presented in 

Fig. 6.8. The attenuation is now represented by a dimensionless quantity O ' . i.e. specific 

attenuation, defined by
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/ r
--"If.!/1er (6.5.1)

where Ç, and Ç, are the real and imaginary parts, respectively, o f the wave number. 

Physically, the specific attenuation represents the energy loss per cycle. Although the 

dissipative mechanism o f waves remains unclear, many factors are believed to have 

contributions to the energy loss. Such factors include intergranular friction, breakage o f 

chemical bondage, capillary force, tluid/solid inertial coupling, various relaxation 

processes, local fluid diffusion, and so on. On the other hand, the theoretical model used 

in the analysis is a linear elastic model so that it can only account for the attenuation due 

to the local diffusion. Therefore, it seemingly does not make sense to compare the 

theoretical results directlv with the measured data.
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Figure 6.8 Comparisons of calculated and measured attenuation o f  PI wave and S wave 
(Experimental data after Murphy (1982))
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By extensively analyzing the experimental data, Yin et al. (1992) proposed that the 

measured attenuation o f waves may be viewed as the superposition o f three portions: the 

effects o f open pore boundary , the local fluid diffusion , and the viscoelastic

frame deformation The last one is independent o f the degree o f  saturation.

Therefore, under a certain experimental condition, the attenuation due to diffusion may 

be obtained as = Q '' Using this method, we redrew Murphy (1982)'s data

in Fig. 6.8. It can be seen that the theoretical predictions are reasonably good when 

. As exceeds and approaches 100%, however, the theoretical results 

significantly deviate from the experimental data for both PI and S.

Both experimental and theoretical results show that the calculated phase velocity o f 

PI has a peak value. From the theoretical results, it is noted that v,,, reaches its peak 

when is about . i.e. when air phase is disconnected and trapped in the water. To 

ascertain this observation. Fig.6.9 further presents the calculated velocity and attenuation 

of PI corresponding to different values. It is shown that although the velocity o f PI 

is not significantly influenced by . the attenuation of P I has a peak value when 

5, % for all different .

Experimental studies may be needed to confirm the correlation between the peak 

value o f the attenuation o f P I and S . On the other hand, sufficient experimental data

shows that the attenuation o f PI reaches a peak at the saturation ranging from 85%~95% 

(Murphy, 1982&1984; Yin et al., 1992). Yin et al. (1992) provided an explanation for
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this phenomenon. They noticed that when the degree o f saturation is about the air

phase exists in the water only as separate pockets. As a P wave travels through the porous 

material containing separate air pockets, the large compressibility contrast between the 

water and the air generates local liquid flow around the air pocket, which consumes 

energy from the P wave. .A quantitative analysis o f this mechanism is provided by Yin 

(1992), where he showed that the peak of the attenuation of PI is reached approximately 

at . Clearly, the theoretical result presented above supports Yin et al.'s

conclusions.
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Figure 6.9 Effects o f 5,̂ . on: a) the velocity o f PI; b) the attenuation o f PI

.As mentioned above, the attenuation is overestimated for P I and underestimated 

for S  when the degree o f saturation exceeds . The discrepancy may be explained as 

follows. In compression, the interstitial liquid offers resistance due to its low
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compressibility. For higher saturation, the gradient o f local liquid pressure is lower in the 

pores. Therefore, based on the local fluid flow mechanism by Yin et al. (1992), when 

5, > , the higher saturation leads to a more uniform pressure distribution and hence

the lower energy dissipation. In shear, however, the gradient of local liquid pressure may 

be higher due to the higher saturation. Hence, greater attenuation is expected when the 

saturation increases. In the present simple model, the effect o f local fluid flow around the 

air pockets has not been properly considered. Hence, great discrepancy in the high 

saturation range is expected.

Although the wave attenuation has great potential use in practice (e.g. in 

monitoring oil recovery processes), it remains poorly understood and underutilized. It 

must be pointed out that in higher saturation the effect o f local diffusion will become 

dominant in attenuation and a simple linear elastic model may be not sufficient to account 

for such complex phenomena.
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Chapter 7 INITIAL AND BOUNDARY VALUE PROBLEMS (IBVP) 
AND FINITE ELEMENT SOLUTION PROCEDURES

7.1 Preliminaries

In this chapter, the initial/boundary value problems (IBVP) o f porous media and 

their solution procedures are presented. The governing equations presented in Chapter 4 

are very general in the sense that they account for thermal effects and finite deformation. 

In what follows, however, our attention will be focused solely on the mechanical aspects 

o f the porous media, and it is assumed that

1. the material is in the isothermal condition, i.e. 6 =

2. deformation o f the solid skeleton is infinitesimal. In this case, the current 

configuration is approximately coincident with the reference configuration. 

F  ^  f  + e . € = sym{Vu'' ) . and J  = d e tF  % / + /  : e .

3. body force is due to the gravity, i.e. U = - b x .  b is the gravitational 

acceleration, which may also include those induced in centrifuge testing.

In addition, the effects o f  capillary relaxation will be neglected. This is equivalent to the 

assumption that the capillary equilibrium can be achieved immediately. It is also assumed 

for convenience that the hysteresis in the capillary pressures is negligible. The cross
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effects (i.e. Knudsen effect) o f the relative velocities o f fluids on drag force R"  in 

(4.4.19) will be dropped in the following derivations. Therefore, it follows from (4.4.12),

(4.4.13), and (4.4.7) that

t  p  = W ,N  (7.1.1)

where coefficient / "  is a second-order tensor and can be related to the permeability 

coefficient o f Darcy's flow equation as discussed later.

To derive the weak statements o f the IBVP. we first define the space of 

configuration and the space o f variation. Let L' denote the Hilbert space o f all the 

generalized displacements <p : [ 0 ,o o )  R ''""  that are square integrable, i.e.

Mi / - -= ( 7 . 1 . 2 )

where cp can be a scalar object or a vector object; dim is 3 for vector fields and / for 

scalar fields. Let H '  be the Hilbert space o f (p: <^’x [ 0 . o o )  -> R '*"" such that cp and the

gradient belong to L ' . For our purpose, it is sufficient to define the spaces o f 

configuration and variation as follows.

= {ç? : [O.co) I ( p e H ‘ . (p=(p Qu.r^} (Space o f configuration)

and

= (/y : R**"" I / / ' ,  /y = 0 on } (Space o f variation)

where represents the boundary with (p being specified as ^ . It is noted that /y is a 

function o f spatial coordinate only and independent o f time.
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In general, the choice o f the generalized displacements in describing the problem is 

not unique. In what follows, two sets o f generalized displacements will be introduced to 

represent the IBVP. The first one has been used in Chpater 4 to derive variational 

equations and includes For an IBVP. the boundary conditions

corresponding to this set o f displacements are specified as

• Essential boundary conditions

M = « on r .  (E B l-l)

o n r „ .  (EBl-2)

M " = M '  on r  (EBl-3)W'

where represents the total mass o f  -fluid that has flowed through unit area o f

(i.e. the relative mass displacement o f  the fluid) in /'* direction.

• Natural boundary conditions

a  n = f  on r ^ .  (NBl-1)

G"' = G "  on r , . (NBl-2)

G '  = G " on r , ,  (NBl-3)

where G " can be related to the specified pressure p ‘‘ tfirough (4.2.7). For convenience 

and without losing much generality, it is assumed that the boundary' o f  the domain can be 

additively decomposed into various sets o f two disjointed parts and

n"̂  and are not used as generalized displacem ents here, since they can be view ed as the internal 
variables associated with the capillary equilibrium and relaxation. In a finite elem ent procedure, internal 
variables are usually elim inated at the Gaussian (i.e . quadrature) point level.
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and
r ,  n  r  = r .  n  r , = r . n  r , = 0  (7.1.4)

where 0  denotes the zero set. The meaning o f (7.1.3) and (7.1.4) is schematically shown 

Fig.7.1.

r.

Figure 7.1 Boundary conditions

As discussed in Chapter 6. if the higher frequency modes of the problem is not of 

main concern, for instance, when a structure is subjected to earthquake loading, wave 

loading or static loading, the effects o f the relative accelerations o f  fluids on the behavior 

o f the porous medium are negligible*. In such cases. .G ''}  can be introduced as

the fundamental unknowns in describing the IBVP. Since G ’’ is related to p ’’ through

(4.2.7), { a ' . p'*. p  '}  can also be equivalently used as a set o f generalized displacements. 

The corresponding boundary conditions remains to specify are

• Essential boundary conditions

w' =M on (EB2-1)

‘ This assumption is not too stnngent in applications, since the high frequency m odes o f  a loading may be 
damped out when stress waves propagating through the porous media.
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p = p  o n r , .  (EB2-2)
P

p = p '  o n r , ,  (EB2-3)
P

•  Natural boundary conditions

a  n = f  on r , .  (NB2-1)

M*' -n = n p “’w ; on r ,  . (NB2-2)

M ' ■ n = n 'p ' i ÿ ;  on T , .  (NB2-3)

where wj* represents the component o f the relative velocity o f -fluid in the direction 

normal to the boundary. Similarly, it is assumed that the boundary o f the domain can be 

additively decomposed into various sets o f two disjointed parts ( r ^ . r j  and ( F ^ . r ,).

7.2 IBVP: Form I

Let {!/■', ' I be the set o f the generalized displacements and .q^]  be

the corresponding variations. With the assumptions and boundary conditions introduced 

above, the statement o f the initial and boundary value problem (IBVP) can be obtained 

by a simple specification o f variational equation (4.4.24) and the principle o f virtual 

dissipation presented in Chapter 4. That is.

Weak form 1: Given b. u .  . f  and = W.N ) as well as proper

initial conditions, find solution e ^  x ^ s u c h  that, for

any {^. q'^ .q ''} eP^x r  x T
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[[ÿ>-(pH'-pé+ -(ù^-b + Mnm^)]dV
^=w.s a-w.s

+ f[sym(V0);ff+ -q^)]dV + { (W -l)
f=w.s

-  \ ( j> -fdV^Y . L (G 'q " -n)cL-i = 0,
'’' n.u-.s </

In deriving (W -I). the higher order small quantities have been omitted; p  is the total 

mass density o f the porous medium, i.e. p  = m„+ m" + m ' .  The initial conditions of the 

problem is specified as

u'"(xj„) = u ,{x ) .  ù ' ( x j„ )  = v„{x). (ICl-1)

iV/'" ( .r .i„ ) = M :  ( X ) . l„ ) = (X ). ( 1C 1 -2)

and

M "(x .f„) = iV/,:(x). M '( x ./„) = m : ( x ). (IC l-3)

Eliminating R “ from (4.1.17) by using (7.1.1) and (4.4.7). we can see that in fact 7  ' can 

be related to the permeability tensor as

where k  is the intrinsic permeability tensor [/w‘] and generally a function of porosity and 

deformation; k'^ is the relative permeability of P  -fluid and it can be represented as a 

function of is the viscosity o f -fluid [Fa j].

In general, stress tensor a  and chemical potential G" ( p - W . N )  can be 

expressed as functions o f {e^rrT.m^} and internal variables .n ^ .q^} through

stress-strain constitutive relationships, i.e.

134



(T =  ff(£, , n \ q ^ ) .  (7.2.2)

and

C  = G ‘̂ (E .m " ',m \e^ ,n ' ' .n ' ' ' .q ^ ) .  (7.2.3)

where the generalized strains {£,/«“ ./« '}  are related to the generalized displacements 

{ u \  tV f ' ,M ' '}  through (3.1.15) and (4.1.3); is the plastic strain tensor: q  ̂ represents

other internal variables accounting for hardening, damage, and other internal dissipative 

mechanisms. It is noted that in a continuum model, all the internal variables can be 

viewed as the functions o f {£. .m ' ' ] . Therefore, we can write the incremental forms o f

(7.2.2) and (7.2.3) as

dff = C :ck + + c V m  ' . (7.2.4)

and

dG" = /  + Ç'dm'^ + c 'c /m '. (7.2.5)

respectively, where the coefficients are called the tangent moduli: C  is a fourth-order 

tensor: c" and e '̂ are symmetric second-order tensors. For hyperelasticity-based models, 

it can be easily proved that c ‘‘ = e" and C  has major symmetry, i.e. C „ = .

It is noted that (7.2.2) and (7.2.3) are not conventionally used in modeling the 

behavior o f porous media due to the involvement o f . Biot (1972. 1977) is the first to 

use m ’’ {m “ = m for saturated porous materials) as a constitutive variable. Variable m 

has been used subsequently by Rice (1975) and Coussy (1989. 1995). Recently, it is 

introduced by Amero (1999) into a numerical model o f the porous media at finite strain, 

where m is additively decomposed into an elastic part and an irreversible part. The
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irreversibility o f is well motivated by experimental observations. In fact, for the 

porous media saturated with multiple fluids there are at least two components 

contributing to the irreversible part o f m" , i.e. and . The latter has been defined in

Chapter 3 as the plastic part o f the volume fraction. With introduction o f (4.2.7). (7.2.5) 

can be equivalently written as

dp^ = 8 “ : de + Z"'dm‘" + Z ^dm^ (7.2.6)

where 8 “. . and Z '  are the tangent moduli represented as functions o f state

variables. Equation (7.2.6) has been derived and discussed in details by Coussy (1995: 

pp.385-441). All the moduli in (7.2.4)-(7.2.6) can be evaluated if the stress-strain 

constitutive relationship and the closure equations are explicitly given.

To obtain the finite element formulations of (W -l), let the domain of concerns be 

additively decomposed into nel disjointed elements, that is.

^  = (7.2.7)
e~!

where 43' (e  = I J  nel)  represent the elements connecting with each other through

nod  nodal points. Let .Vf%. and M'l be the /th components o f the solution 

{ w . M " . Af } at node .4 of element e. Following the standard finite element procedure

(e.g. Hughes. 1987). we write the discretized forms o f variables {m^(x./). M* ( x j ) .

A /' (jr./)} for X e  42' and / e  [O.T] as

u ^ i x j )  = A % (x)«,(/). or uf' = iV 'ü ,,. (7.2.8)

A f" \x ./ )  = iV;(x )M T (/) , or . (7.2.9)
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and

M '*(%,/) = , or M;'" = ^ ' X , (7.2.10)

where superscript h denotes the discrete counterpart o f a continuous variable; capital 

letters A (or B) used as a subscript represents the element node number, and letters /  (or j . 

k. [) SLS a subscript represents the spatial direction. Summation convention is used here, 

e.g. the repetition o f X implies that the summation is repeated from I to . where

is the total number o f nodes in an element. iV"(x) ( a  = 1.2.3 ) is the shape function of 

node .4 associated with & IV. and /V. respectively, and it satisfies = S^^. where

is the spatial coordinate of node B and is the Kxonecker delta.

Let and r "  be finite-dimensional approximations to and r . respectively.

Then. can be considered approximately as a subset o f ^ . while fÇ" is a subset of

. For instance, if e . then w'* . Let .q " ^ .q ^ }  be the discrete counterpart

o f the variations, which have the forms similar to (7.2.8)-(7.2.10). respectively. The 

Galerkin formulation o f the problem therefore follows directly from the weak form (W -l) 

by replacing and for {u'^. and

respectively. This yields the coupled finite element equations as follows.

I L  i v K X ,  ) = I  ' f ;  ■ ( f e i - d

I L  ) = I  - f , ; . (f e i -2)

and

y  f G'^dV + Y C c i L M D  + y  + Y (‘z iL M D  = Y  ‘F!.. fPEl-31!>/ - tJf ■ • tfrtà* Uf -
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where

and

(FEl-4)

(FEl-5)

=<s. L k ')-'<v ;,v > - . (FEl-6)

(FEl-7)

(FEl-8)

' C  = L (FEl-9)

' C  = (FEl-10)

(FEl-11)

(FEl-12)

(FEl-13)

where denotes the component o f 7 "  : 5 /2 ' n  represents the part o f the element

boundary coincident with the domain boundary where G" (or equivalently, p" ) has been 

specified (see Fig.7.2).

/? '

Figure 7.2 The specified element boundaries 5 /2 ' n
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(FE l-l)-(FE l-3) can be assembled into a more compact matrix form as

F'^ +cd + zd = F ’” (7.2.1 n

where the components of displacements d  are given as follows.

(7.2.12)

a is the global node number; the elements in the bracket are read in order as follows: 

index a is repeated from 1 to n o d . which is the total number o f the nodal points, and for 

every a. index i is continuously repeated from 1 to ( I is the spatial dimension of

the problem). It is noted that if a certain variable is specified on the boundarv' it must be 

excluded from (7.2.12).

f  "" is obtained by assembling the element internal force with the following 

components.

i K O ’ d y .  i K f i ’ d V ) .  (7.2.13)

Hence, we write
mi

F "‘ = A ( 'F '" ‘) .  (7.2.14)

where A  is an operator representing the assembling procedure o f the global matrices (a

detailed account o f implementation can be found in Hughes (1987: Ch.2 & Ch.3). 

Similarly, the global external force F™ . the global matrices c, and z can be obtained by 

assembling their element counterparts, i.e.

c = A r c ) .  (7.2.15)
r= /
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where

c =

m = A('z),

0, 0. 0  ̂

0, 'c  \  0 

0, 0. Y ''

z =

e , / /

' z \  'z " . 0 

'z " .  0. 'z ''

(7.2.16)

(7.2.17)

(7.2.18)

(7.2.19)

and 'F “  is the element external force vector with components as follows.

(7.2.20)

It is noted that 'c  and 'z  are symmetrical and hence c and z are symmetrical. This 

feature is desirable in a numerical procedure.

7.3 IB VP: Form 2

Here, displacement o f the skeleton ( « ' ), pore water pressure ( ). and pore air

pressure ( p '  ) are used as generalized displacements. Let their variations be . and 

, respectively. (4.1.8) and (4.1.3) can be chosen as the coupled field equations, which 

are associated with « ' and p'* {p  = W  and i'/). respectively. With the assumptions and 

natural boundary conditions introduced in Section 7.1. the weak form of (4.1.8) can be 

expressed as
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- o - , , , - p b , )d V =  £[(^,p(h;'-h)-(p,^(T,^](lV -  l j J , d A  = 0 (7.3.1)

As will be seen later, it is more convenient to use the rate forms o f mass 

conservation equations than the original form (4.1.3). Take the time derivative o f (4.1.3) 

and divide both sides by . The weak formulations o f the mass balance can be put as

0 =  dV

= j^ (;r W // -;r':.V/f/p^)£/F+ [  t i p “dA
(7.3.2)

where =n p'^w^ : P = W , N . Since the relative acceleration o f a fluid is omitted.

.V//' can be eliminated from (7.3.2) by introducing the flow equation (4.4.19). Inserting

(7.1.1) and (4.2.7) into (4.4.19). it follows after some manipulations that

or

M" = J ‘‘ ‘ + 6 -  /i' (7.3.3)

(7.3.4)

Now. eliminating from (7.3.2) by inserting (7.3.4) yields

uffr

k fk

(7.3.5)

where P  = W . N . It is noted that (7.2.1) has been used in (7.3.5). Finally, we obtain the 

weak statement o f the initial/boundarv value nrohlem ilBVP'» as follows.
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W eak form 2: Given b, « , p ‘‘ , f ,  and wf {P = W .N )  as well as the initial 

conditions (IC2): «^(.r,/„) = «„(.r), = v„(x), and p ^ (.r ,/J  = p ,f(x).

find solution { « '.p*',/?''} e ^ x ^ ,  x ^ ,  such that, for any e

f '  X x p ' , , (7.3.1) and (7.3.5) must be satisfied.

Similar to the procedure followed in last section, in order to derive the finite 

element formulations o f the IBVP. we first cast {« '. p " . p ' } and . z '}  into the 

finite-dimensional forms associated with the spatial discretization, that is.

m;'* = , Ip, = (7.3.6)

p '*  = .V -p T .;r '" = iV '; fT  (7.3.7)

and
p "  = ,V %  (7.3.8)

where {w^. p " \p '" }  e  r ' x r :  x ^ t  and e  Pj" x x a r e  the

finite-dimensional counterparts o f the generalized displacement and its variation, 

respectively. Since (T* is a subset o f ^  and a subset o f r .  (7.2.6)-(7.2.8) must

satisfy the discrete forms o f (7.3.1) and (7.3.5). Noting the <pî .̂ ir*” . and are the 

arbitrarily chosen small quantities, we deduce that

I L  +1  )=I  -f; ■ (fe2- I )

i ( ' r : K ) + z :  L  + ! ( % : . % , ) = I ' f , -  C E M )

and
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I C C P :  ) + 1  L  + 1 % ^ , )  = I  'F ; . (FE2-3)

where ‘z"^  and 'F '  are given by (FEl-4) and (FE l-11). respectively;

-  L  K i K K K  ■ ( r a w )

' <  = 1, .v ;,(*;'■*„/,’ ),V i y r ,  (FE2-5)

= I, *,'*„//)/v;rfr, (fe2-6)
= L  v K f "  ) , v ; j F , (FE2-7)

' f /  ' L ' W W / * * / » ' - L . r  (FE2-8)

and

' f ;  = I  < V 'JP ' k ; k J n ’‘)b^dV -  ^  s y ^ ' . J A .  (FE2-9)

where d ü ‘ n  f j ,  represents the part o f the element boimdary coincident with the domain 

boundary where the fluid relative velocity has been specified.

Taking the time derivative of

= m f -  m i  = J n ^ p “ -  n ^ p i . /3 = iV. N  (7.3.9)

one obtain

^  = n^ù:,+n'’ +n>’ ^ .  (7.3.10)
y  F

where can be evaluated by using the closure equations discussed in Chapter 4. and if 

the viscosity due to the capillary relaxation are neglected, we may simply assume that 

= n‘’{e^.p" .p ^  ) . In addition, to be consistent with the assumption made in (4.2.7). 

p ^  is assumed as a function o f p^  only, i.e. p “ = p ^ p ^ ) .  Therefore. (7.3.10) can be 

cast into
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^  = (7.3.11)
P

The finite dimensional counterpart o f (7.3.11) is

{m‘‘l p “ y  = â fû y  + (7.3.12)

where
g/z"

= +
g f . '

ân"

on''

(7.3.13)

+ (7.3.14)

and

Here. has the same meaning as the Kronecker delta, i.e. d',^ = / when a  = /? and 

c) = 0 for otherwise; A!',, is the bulk modulus o f /? component and defined by

, 7 . 1 1 6 ,

It is noted that in general i9f. . and >9f are changeable. Inserting (7.3.12) into (FE2-2)

and (FE2-3) yields, respectively.

= (f e 2-2,'

and

) + I ( ' C " , /  ) = I  ' f ; . (FE2-3)'

where

= L  ,6/; .̂ « = 2. j  (FE2-10)

and
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' C  = . a .  ^  = 2 or j  (FE2-11)

It is noted that, in (FE2-10) and (FE2-1I). 5; =5* and >9̂  = ,9j' ; Here, the summation 

convention does not apply to the repeated indexes. Semi-discrete formulations (FE2-1), 

(FE2-2)', and (FE2-3)' can be assembled into a more compact form as

F'^' +cd + zd = F ”  ̂ (7.3.17)

where the global unknown vector d  is represented by

f or i -D

(br2-D

{“./• "u.-. “.J, p'l • p j '} • for 3-D

a is the global node number, and repeated from 1 to the total number o f the nodal points,

i.e. . The components o f the element internal force 'F '" ' is represented by

, (7 .3 .18)

Matrices c, z. F '" ', and F “  are obtained by assembling the corresponding element 

matrices, i.e.

c = A ( 'c ) , (7.3.19)

m = A ( 'z ) . (7.3.20)

F "  = A ('F "), (7.3.21)

where
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c =

z =

0 , 0 .  0

‘z “ , 0, 0 

‘v ' ,  0, 0 

‘z \  0, 0

and

(7.3.22)

(7.3.23)

(7.3.24)

7.4 Nature o f the Problems and Initial Conditions

The semi-discrete finite element formulations presented above are represented by 

an ordinary differential equation (ODE), i.e. (7.2.11) or (7.3.17). In application, choice of 

a particular set o f formulations depends on the nature o f the problem and computational 

efficiency. For example, if we are dealing with the problems of the wave propagation in 

the porous media, the first form of the IBVP. i.e. (7.2.11). must be used. The reason is 

that the effects o f the relative accelerations o f fluids cannot be neglected on the 

propagation behaviors o f the waves in the porous medium. The ODE (7.2.11) has a 

symmetrical structure, which is a desirable feature from the numerical point of view.

If deformation and flow are o f main concern and the high frequency modes of 

loading can be neglected, the second form o f the IBVP. i.e. (7.3.17). can be used. 

Generally, the matrices in (7.3.17) are not symmetrical. In large-scale computations, 

however, this drawback is offset by a smaller set o f unknowns in (7.3.17). For example, if 

(7.2.11) is employed, there will be totally 9 degrees o f freedom (DOF) per nodal point in 

a 3-D problem, and if (7.3.17) is used there are only 5 DOFs in a node.
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Before solving (7.2.11) or (7.3.17), it is important to assure that its solution exists 

and is unique. However, a proof o f the existence and uniqueness o f the problem goes 

beyond the scope o f this dissertation. The interested readers may be referred to Fichera 

(1972) and Knops and Payne (1971) for a general account o f the existence and 

uniqueness of elastic problems. A proof o f the existence and uniqueness theorems for 

elastic waves propagating through fluid-saturated porous media was presented by Santos 

(1986 l&II). In the following, we shall go directly to the solution procedure, assuming 

that the problem has a unique solution.

To solve (7.2.11) or (7.3.17), the initial conditions must be specified. In general, the 

initial state of the porous medium can be determined by the following parameters.

Initial porosity: n„{x)

Initial degree o f saturation: S j x )

Initial displacement:

Initial stress:

Initial pressure o f wetting fluid:

Initial pressure o f nonwetting fluid: P '( x )

Initial body force: b‘!

In addition, the initial velocity o f the solid skeleton must be specified. If (7.2.11) is used, 

the initial values o f (%) and M ^ ( x )  also need to be specified.

The initial state o f the porous medium was formed either in a geological or in an 

artificial installation process, in a numerical analysis, these processes should be simulated
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in order that the initial conditions can be obtained. However, such kinds of numerical 

simulations are not always possible. For example, if (7.3.17) is used to evaluate the initial 

conditions o f a naturally deposited soil body, it is impossible to specify the history o f the 

relative velocity, i.e. ïÿ f . of a fluid on the boundary. In this case, the initial conditions 

can be evaluated by the following procedure:

1. set w “ = = 0,

2. input some small initial stresses cr,''(jc), and compute p ' l ( x )  and p j(.v ) by

using the relationship between the suction and degree o f saturation,

3. solve the steady state equation F'"'(rf) = with constraints p* = p ‘‘ and

P '' = P 'l ■

It is noted that /?'' (.xr) and p ^{x )  are the initial total fluid pressures in excess of the 

atmospheric pressure. The reason for applying the constraints to the steady state equation 

in Step 3 is that p'* (x)  and p  ' (.r) are the specified unknowns in the equation.

The process to solve the steady state equation will be called the static analysis in 

the following. After the static analysis, the initial state o f porous medium represented by 

(t ''(x ) , , p j  (%), and p j  (jc) will be known, and we can move to the next step of

the solution. To that end. the arrays o f d  and d  are cleared, and the time history o f the 

forces applied at f = . e.g. the base motion, are activated.
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7.5 Solution Procedures: Dynamic Analysis

For the hyperbolic problem given by (7.2.11) or (7.3.17), many solution procedures 

are available in the literature. A comprehensive survey and detailed analysis o f various 

algorithms can be found in Hughes (1987: Ch.9). In the following, the Hilber-Hughes- 

Taylor a  -method will be employed that has been commonly applied to the dynamic 

analysis o f structures (Hilber et al.. 1977). Use o f the ot-method in analyzing the 

dynamic behavior o f saturated porous media was first made by Muraleetharan et al. 

(1994) and later by Arduino (1996). This algorithm has many desirable features as 

addressed later.

Basically, the a-m ethod’ can be viewed as a generalization o f the Newmark 

method. Let the time period o f solution ] be separated into .\’ steps. Provided that 

the solution is advanced to nth time step, we try to find the solution at i =

{n = L2  N ).  In the a-m ethod, the time-discrete equation o f (7.2.11) or (7.3.17) is

written as

zd„, + (a  + / K ,  -acd„  + = F - ( L , . J .  (7.5.1)

where + rf, = d ( L ) ;  = ( /  + a ) ( / , . ,-a r f„ .

The Newmark recurrence formulations are retained in the a  -method and they are 

given by

d . ,  = d , + d „ ^  + [y a / ,. ,+ (^ - /? )d J (z l/) - ’. (7.5.2)

Here, a . P . and y  are the parameters o f  the algorithm and not sym bols for a component.
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and
à„.,=à„+[yd„.,+{l-y)d„\st. (7.5.3)

where At is the time step, i.e. At = .

Due to its nonlinearity, (7.5.1) must be solved through an iteration procedure, e.g. 

the Newton's methods. In the following, the Newton-Raphson method will be used. Let 

e be the error vector, and we can write

g ( < J  = K . , + k  + / K „  -Qcrf, (/„.,.„). (7.5.4)

where, with introduction o f (7.5.2) and (7.5.3), e can be expressed as a function o f . 

Suppose that the non-convergent solution at the end of /th iteration step is rf ' . , . Next, we 

search a new solution expressed as

(7.5.5)

such that e{dl\',) meets the specified convergence criteria with respect to certain norms. 

Linearizing (7.5.1) about yields

Lin[e{d::',)] = e ( d i , )  + — [e{di,  +6zW'")]
de

= e {d i , )  + I { d i , ) - A d ‘' ‘ . (7.5.6)

where 1  is the tangent modulus given by

and
I ( d i ,  ) = z + (/ + a)rAtc + (/ + a)l3{At)-K .

cd. ,

(7.5.7)

(7.5.8)
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An explicit form of k will be given later. Naturally, we expect that Lin[e(dl[])] = 0 .  

This leads to

A d - ' (7.5.9)

Table 7.1 Flow chart o f the solution procedure for dynamic analysis

1. S e t  iteration counter ; = 0

2 . T h e predictor phase

< t,= o

< ./ = < .,  =d„^U -y)d id„  

d'n.i = d „ . ,  =</„ ~ d „ A t ^ { — ~ P ) ( A t y

3. E valuate  w ith  (7 .5 .4 )

4 . S o lv e  (7 .5 .9 )  for J t / '"

5. T h e midti-correclor phase

d ' : : ,= i „ .A tY M "

^ ( A ty p M - '

6 . C a lcu la te  e ((/% |) w ith  (7 .5 .4 )

7. C h eck  c o n v erg en ce

I f  | |e ( r f : : : ) | / | |e ( < . ,  )|| <  g , : and ! | ^ ' i / | | ^ ' ' j |  ^  •

T hen  g o  to next tim e step.

O th erw ise , set / < — / +  /  and e o  to  4

The iteration procedure now is simplified as follows: solve (7.5.9) for Ad' ; update 

r f , r f . and d  by (7.5.5), (7.5.3), and (7.5.2). resoectivelv: check convergence: go to the
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next iteration step unless the convergence criteria are satisfied. The solution scheme with 

a predictor/multi-corrector algorithm now is summarized in the Table 7.1.

Note that, if  a  = 0 , the procedure presented above reduces to the Newmark 

method. When parameters { a , p , y ]  d i t  chosen such that a  e  [ - / / i . O ] ,  ^  = (1 - a ) '  1 4 .  

and y  = { l - 2 a ) l 2 .  the a-m ethod is second-order accurate and unconditionally stable 

(in the sense o f linearization) (Hughe. 1987: Ch. 9). Decrease in a  increases the amount 

o f numerical dissipation. For a linear problem, if a  is chosen as -0.3. the maximum 

numerical dissipation can be achieved in using the above algorithm. Such a feature o f the 

algorithm is desirable for a dynamic analysis, since the high-frequency modes stemming 

from numerical discretization may induce spurious behaviors and must be damped out.

The tangent modulus defined by (7.5.8) is evaluated in the following. Similar to the 

other global matrices, k  is obtained by assembling its element counterparts, i.e.

K = k ( 'K )  (7.5.10)

For the second form of the problem, i.e. (7.3.17). F'"' is given by (7.3.18). By definition 

(7.5.8), we obtain

K = 0. 0 

0. 0.

(7.5.11)

where the components o f ' k**' and have been given in (FE2-4) and (FE2-5). 

respectively; and the components o f and are given as
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and

' C  = L  K . c L K A  = I  -v;, , (7.5.12)
K*i

" C  -  L  ■ V 'K -V .v r  -  t ,  (7.5.13)

■<:. = L  K , c : K d y = [ ,  * :., .v .v » ' 17 .5 . 14)
op..,

where C,'^. c\ . and c ' are the tangent moduli consistent with the stress-point algorithm 

used to integrated the stress-strain relationship. Hence, they are usually called the 

consistent (or algorithmic) tangent moduli. It is noted that, although C, ,̂ possesses minor

symmetry, i.e. and C;l = C , ; . in general. C,^ # C , .

For the first form of the problem, i.e. (7.2.11). F'"' is given by (7.2.13). and we

write

(7.5.15)

Similarly, the components of "K”"(m.n = 1.2.3) can be obtained by (7.5.8) with 

incorporation o f (7.2.4) and (7.2.5). It is noted that, for the hyperelestoplastic model. 

(7.5.15) is symmetric to the extent if ‘k “ possesses major symmetry, i.e. .

In a computational procedure, the consistent tangent moduli can be replaced by the 

continuous moduli (e.g. the elastoplastic modulus) without deteriorating the accuracy of 

the results. As shown by Simo and Taylor (1985), however, use o f  the continuous moduli 

sometimes may drastically deteriorate the rate o f the convergence.
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7.6 Solution Procedures: Quasi-Static Analysis

For the quasi-static problems, e.g. the fluid diffusion or consolidation o f the porous 

media, the inertial terms can be dropped, and (7.2.11) or (7.3.17) becomes

crf + F " ‘(rf) = F “ (/) (7.6.1)

(7.6.1) can be solved by using the one-step generalized trapezoidal family o f  methods 

(Hughes. 1983), which consists o f the following equations:

= (7.6.2)

</„./= rf, + • (7.6.3)
and

(7.6.4)

where f "  «f™  (/„.,) and d e [ 0 , I ] .  Notably, if 6 >0.5 .  the generalized trapezoidal

methods are unconditionally stable (for linear problems). Some o f the well-known 

methods belonging to this family include the forward Euler method {d  = 0). backward 

Euler method {0 = 1). and Crank-Nicolson method {0  = 0.5). If 0> 0.5 .  this family o f 

methods is unconditionally stable; otherwise, it is conditionally stable.

The Newion-Raphson method will be used to solve the nonlinear equation (7.6.2). 

Linearizing (7.6.2) about and using (7.6.3) and (7.6.4). we derive

e {d : ‘) = e { d i , )  + I { d i , ) M - ‘ . (7.6.5)
where

% , )  = c + ÆAr (7.6.6)
and
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4 0  = m i F Z  + (/ -  Ô)àtcd„ + c r f j  -  O A tF - 'id i ,  ) -  e d i , , (7.6.7)

Forcing the right-hand side o f (7.6.5) to be zero leads to

Æ / " ' 4 0  (7.6.8)

The solution procedure is implemented as described in Table 7.2.

Table 7.2 Flow chart o f the solution procedure for quasi-static analysis

1. S e t iteration  cou n ter  i = 0

2. Calculate e{di, ) through (7.6.7).

3. Solve (7.6.8) for Ad ' .

4. U p d ate  so lu tio n , d'i', = t / ' . ,  + Ad'.

5. Calculate e{d'i‘,) through (7.6.7).

6. Check convergence:

If le(d'i‘, ) ||/ |k < '., )|| S £ . go to next time step:

Otherwise, set / = / + 1 . and go to Step 3.

7.7 S o m e R em arks on Im plem entation

The second form o f IBVP. i.e. (7.3.17). and its solution procedures have been 

implemented into a FORTRAN code, where p '^ . and are used as nodal 

variables. In this semi-discrete finite element equation, coefficients 3 f . i9f. and i9f 

i/3  = IT.'V) remain to be evaluated (see (7.3.13)-(7.3.15)). They can be determined by

in tp o rn tin o  th e  rn n ^ titiitiv p  rp ia tinnçh inc fo r thp  v n ln m p  frap tinnc  n f  f lu id s  In a s tm n lp r

155



way. these coefficients may be obtained as follows. For geomateriais the bulk modulus o f 

the solid component is very large so that the density of solid phase remains 

approximately constant. From the mass balance equation o f the solid component, i.e. 

/«' = (det F )n 'p ' '  = const . one may derive

n = ^ - « '■ / : « • ' = - ( / - « ) / :  ù (7.7.1 )

where n is the porosity, and use of p '  % 0 has been made. In addition, n'' = nS^ and 

rt ' = «( /  -  S J . where S is the degree o f saturation. Hence, if a relationship between the 

degree of saturation and matric suction (sometimes called the moisture retention curve) is 

given, one may evaluate 3 f . i9f.and through (7.3.13)-(7.3.15).

With 3 f . . and <9f being evaluated in this way. (7.3.17) has a desirable feature

that when the porous media becomes saturated (7.3.17) will change smoothly into its 

saturated coimterpart. If the degree o f saturation S’, tends to 100%. i.e. -  p" - > 0 . it 

follows that 9'^ - * 0 . 9 ;  - * 0 . and 9 '  - * 0 . and element matrix (7.3.22) becomes

c =

0. 0. 0

0, 0. 0
(7.7.2)

Therefore. (7.3.17) collapses into the finite element formulation o f saturated soils 

developed by Zienkiewicz and Shiomi (1984). In the computer code, switching an 

element from an unsaturated state into a saturated state (or vice versa) now is very 

simple. In fact, if one element becomes saturated (i.e. the matric suction is less than the
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air entry value), it only needs to set the relative permeability o f the nonwetting fluid in 

this element to a small value, and nothing else needs to be changed in the code. Based on 

numerical tests, this small quantity may be chosen as = 0.0001. The above procedure 

allows the computer code to have capability o f simultaneously handling both saturated 

and unsaturated conditions. It is shown from the numerical examples in the next chapter 

that the above procedure works very well.
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Chapter 8 NUMERICAL EXAMPLES

The finite element discretization and numerical time integration procedures 

developed in Chapter 7 have been implemented into a FORTRAN finite element code 

called U_DYSAC2. U_DYSAC2 was created by modifying a saturated soil code 

DYSAC2 (Muraleetharan et al. 1988; 1997). In the new code, displacement ( u ) and fluid 

pressures ( p* and p '" ) are used as nodal variables. Four-node quadrilateral elements are 

employed for both displacement and pressures. Discussions on the merits and drawbacks 

o f this kind o f elements are abundant the literature (e.g.. Belytschko et al.. 2000: pp.451- 

461). It is believed that this kind of elements is more efficient than the higher-order 

elements for hyperbolic problems whose solutions are generally not smooth. The elastic 

models presented in Chapter 5 and the elastoplastic model developed by Muraleetharan 

and Nedunuri (1998) have been implemented into a constitutive driver that can be readily 

modified to include other constitutive models. The new code allows for static and 

dynamic 2 -0  (or 1-D) analysis o f saturated and unsaturated porous media.

This chapter presents the numerical simulations o f different kinds o f problems. To 

validate the finite element code and the corresponding procedures, numerical results will 

be compared with analytical solutions or experimental data whenever it is possible.
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8.1 Elastic Response o f a Saturated Soil Column Subjected to Loading

The problem is defined in Figure 8.1a. A one-dimensional infinite soil column is 

separated from a half space consisting o f a soil deposit saturated by an incompressible 

fluid. On the surface, the soil column is subjected to a load (traction) J \ t ) . It is assumed 

that the surface is a drained boundary (free boundary). Analytical solution o f the problem 

has been presented by de Boer et al.(1993). This example is introduced to demonstrate 

the capability o f the code in capturing the incompressibility conditions and to check the 

efficiency o f the procedure introduced at the end of Chapter 7 to switch to the saturated 

conditions.

(7(0.1) = f i t ) ,  p" (0.i) = 0.0

T

A -à.
M\

10 m

a) Geometry of the problem b) Finite element mesh: 20 ^2  elements

Figure 8.1 A soil column subjected to a load

In order to model the infinite soil column by using the finite element method, a soil 

column with a length o f 10 m is considered. The solution will be reported for a very short 

time period so that no reflection wave from the rigid bottom boundary could influence
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the solution. The tmite element mesh used is schematically given in Fig. 8.1b. Two 

different kinds o f loading are considered as given below:

Sinusoidal loading: / ( / )  = i.O [/-co s(û i/)]  [kPa], co = 75 s ''

Step loading: f ( t )  = 3.0H{t)  [kPa].

where H(l)  is the Heaviside function. The material parameters are

p '  = 2000 k g l m \  p*' = 1000 k g / m \

= 0.67. K ^.= l.O x  /O" kPa, k =  0 .0/ ni / .y

À = 5583 kPa . p  = 8375 kPa

It is noted that K„. assumes a very large value due to the incompressibility o f the fluid.

The numerical displacements and pore water pressures at various depths are 

reported and compared with the analytical solutions in Fig. 8.2 and 8.3. respectively. Fig. 

8.4 presents the vertical displacements with depth at different times. In all the 

comparisons, the numerical results agree favorably with the analytical solutions. Fig. 8.2a 

shows some numerical oscillation at the early phase. This problem is induced by a sudden 

application o f the step loading. As can be seen from Fig. 8.2b. however, no difference can 

be observed between the analytical and numerical displacements under the sinusoidal 

loading. Similar trends are observed in comparing the numerical and analytical pore 

water pressures (Fig. 8.3). Under the step loading, although the numerical oscillation in 

the pore water pressures is more prominent than that in the displacement, agreement 

between the niunerical and analytical pore water pressures is reasonably good.

160



c0)

Im
a
I
s
r

E
C0)

I
iS
a
(A
y

I

0

a) S tep  loading

- 0.0001

-0.0002 z =  1.0 m

Z = 0.0 m-0.0003

-0.0004

Analytical

Numerical
■0.0005

-0.0006

0.20.0 0.1 0.3 0.4

Tim e (s)

0

b) S inusoidal loading
- 0.0001

z =  1.0 m
-0.0002

-0.0003 z  = 0.0 m

-0.0004

Numerical

Analytical
-0.0005

-0.0006

0.20.0 0.1 0.3 0.4

Tim e (s)

Figure 8.2 Comparisons o f numerical and analytical solutions for vertical 
displacements at depth 0.0 m and l.Om

161



mû.

3
(A

(2

3
(A

$

1
2 o
CL

4.0
a) S tep  loadingAnalytical

Numerical

3.0

2.0

z  = 1.0 m

1.0
z  = 0.2 m

0.0

0.00 0.06 0.12 0.18 0.24 0.30

Time (s)

10
b) S inusoidal LoadingAnalytical

Numerical8

6 z  = 6.0 m

4

2

0

z =  1.0 m■2

-4

-6

0.12 0.180.00 0.06 0.24 0.30

Time (s)

Figure 8.3 Comparisons o f numerical and analytical solutions for pore water 
pressures at various locations

162



E
£

Q

0 

1 -  

2 -

3 -

4 -

5 -

a) S tep  loading
.1^ I '

'  t = 0.1 s

% » 
t = 0 .15s'*'»

i  $

#  Numerical 

 Analytical

4 •  -
» ‘
•  •  ' 
% * 
# m

-0 .0004 -0.0003 -0.0002 -0.0001

Vertical d isp lacem ent (m)

0.0000

I

1 -  

2 -

3

4 -

5 -

b) S inusoidal b ad in g

*. t = 0.146 s

t = 0 .167 s

• #% %
\  % #e% \\\

Numerical

Analytical

   1 ' 1 ' 1 '  .

-0 .0004 -0.0003 -0.0002 -0.0001 0 .0000

Vertical D isplacem ent (m)

Figure 8.4 Comparisons o f the numerical and analytical solutions for the vertical 
displacements along the column

163



It is noted that in this analysis the porous medium is considered as a three-phase 

material. The numerical results show that the procedure introduced in the last chapter to 

switch the saturation condition works very well. In fact, under both loading conditions 

(i.e.. step and sinusoidal), the virtual air pressures (not shown) are found to be equal to 

the water pressures in all elements. That is. the matric suctions in all elements are always 

zero.

8.2 Propagation o f  a Step Displacement through an Unsaturated Soil Column

The geometry o f this problem is the same as Fig. 8.1a. At the top boundary, instead 

o f a specified load, a step displacement with amplitude o f l .O x lO  ’m is applied. The 

soil column used in numerical simulation has a height o f  4.0 cm. The finite element mesh 

consists o f four himdred elements with a dimension o f 0 .01 cm. The element size and time 

step values have been selected such that there is enough time for the fastest wave to travel 

from one node to another. This can be done by first estimating the wave velocity based 

on the given material constants, and the wave velocities are used to estimate the element 

and time step sizes. The soil column is partially saturated with a degree o f saturation 

equal to 70% . The material parameters are given as below.

p '  = 2700 k g l m \  p '  = 1000 k g / m \  p '  = 12.3 k g l m \

A = 6.923 x lO '  kPa. p  = 4.615 x /O ' k P a .

=2.177x10'' k P a . n '  =0.4. k  = l.OxlO-^ m / s

In addition, the relationship between suction and degree o f saturation is described by the 

Brooks and Corey formulation, in which S.u, =0.4. À = 0 .5 . and p. = 10 kPa.
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Numerical displacement and pore pressures are, respectively, given in Fig. 8.5 and

8.6 tor two locations along the depth, i.e. 0.5 cm and 2.0 cm. Fig. 8.5 shows that the 

fronts o f the three compressional waves merge into a single wave front. This is an 

expected result, since in the finite element code, the fluid pressures are used as nodal 

variables and the relative accelerations o f the fluids are omitted. As discussed in Chapter

6. omitting the relative accelerations results in additional constraints over the wave 

propagation. In this case, all the three components coexisting in the porous media move 

together. It can be seen from Fig. 8.5 that numerical oscillation occurs at the moment 

when the wave front arrives. It is also noted that the sharp wave front is smeared out to 

some extent. This is the typical behavior resulting from using the so-called u -  p  

formulation to simulate the wave propagation problems (Simon et al., 1986; Gajo et al., 

1994).
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Figure 8.5 Time history o f the verticai displacements at depth o f Ü.5 cm and 2.0 cm
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The responses of air and water pressures are presented in Fig. 8.6. Both water and 

air pressures increase rapidly when the wave front arrived. After the wave front left, they 

reduced to the original values. At the same time, the suction experienced a decrease 

followed by an increase. This result may be explained as follows. From the finite element 

formulations (FE2-2) and (FE2-3), it is noted that if the inertial effects is neglected the 

changes in fluid pressiu-es are determined by the changes in m* and m '". It can be seen 

from (7.3.10) that rh^ is determined by the volumetric strain rate (li,,). the rate of

volume fraction ( ). and the rate o f mass density ( p ‘‘ ). Before the wave front arrives or

after the wave front leaves, the change in is insignificant, since é^(= li,, ). n'' and p “ 

remains approximately zero. Hence, the fluid pressures will take their original values. M  

the arrival o f the wave front, however, é, will be changed drastically, leading to sudden 

changes in water and air pressures as shown in Fig. 8.6.

S.
I
3(/)
Ïa
Ç

0)oicmc
O

12

8 2=0.5 cm

z = 2.0 cm
4

0

-4

Air p re ssu re  
W ater p re ssu re

■8

-12

0.00000 0 .00002  0.00004 0 .00006 0 .00008  0 .00010

Time (s)

Figure 8.6 Pore water and air pressure responses at depth 0.5 cm and 2.0 cm.
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Fig. 8.6 clearly shows that the value o f wave velocity is about 

{5 .0 x 1 0 '^ )^  300 m l s . This value can also be obtained by using equation (6.2.12). Since 

the relative accelerations o f fluids have been omitted in the u - p '^  -  finite element 

formulation. (6.2.12) can be used to evaluate the wave velocity as discussed in Chapter 6. 

Here, due to its incompressibility, the solid phase have a very large bulk modulus, say, 

= LOx 10'" kP a , and Àl^=O.OkPa. From (5.4.6) and (6.3.7). one may obtain

=1.161x10' kPa and = 0.774x10 ' k P a . Finally, assuming =/t'„ =0.0.  one 

evaluates (6.2.12) and get v_, ^ 2 9 9  m i  s .  This result confirms the consistency between

the linear models derived in Chapter 5 and the general model that has been developed in 

Chapter 4 and implemented into the finite element procedure in Chapter 7.

8.3 A Two-Phase Flow Problem

The problem is based on an experiment performed by Liakopoulos (1965) on a 

column o f Del Monte sand (see Fig. 8.7). The sand column was instrumented to measure 

the matric suction at several points along the column during its desaturation. Before the 

start o f the experiment, water was continuously injected from the top until a uniform flow 

condition was achieved solely under gravitational force. The water was allowed to drain 

freely at the bottom through a porous stone. Once the experiment started, the water 

supply on the top ceased and the tensiometor reading was activated. During the 

experiment, the air could flow freely through top boundary. The Del Monte sand had a 

porosity o f 0.3, and its hydraulic properties were measured in an independent set o f
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experiments (Liakopoulos, 1965). The relationships between the degree o f  saturation and 

matric suction and relative permeability o f water are given below.

S = L 0 - 0 . I 0 1 5 2 x

and

= 1 .0 -2 .207  x { l .O - S , ) ‘

(8.3.1)

(8.3.2)

where 5^, is the matric suction with a unit kPa. Since in Liakopoulos's work no 

formulation was given for the relative permeability o f the air, the Brook and Corey's 

relative permeability function o f air (Brooks and Corey. 1964) will be used. i.e.

(8.3.3)

The mechanical parameters o f Del Monte sand are not available either. Hence, typical 

values o f the material parameters for sand are selected and they are listed in Table 8.1.

iU U IU U H
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fullv saturated

m u m u a ^ Porous stone

O.I m

Figure 8.7 Schematic o f Liakopoulos' experiment (Liakopoulos. 1965)
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Table 8.1 Material parameters o f Del Monte sand

M aterial param eters S y m b o ls V a lu es

Y o u n g 's  m odu lu s
E / . J x / 0 '  kPa

P o isso n  ratio V 0.2

S o lid  grain d en s ity P ' 2.0 V, 10' kg im '

W ater d en sity p'" I.O X 10' kg /m '

•Air density P " 1.2 kg im '

B ulk  m o d u lu s o f  w ater K,, 2.2 X  /O ' kPa

W ater v isc o s ity Ow 1.0 X 10 ' Pa s

.Air v iscosit}' 7v I.SxIO '‘ Pa s

Intrinsic perm eability k 4 .5x10  "  nv

For the numerical simulation, the above experiment was viewed as a 1-D problem, 

and 20 elements with a size of 0.05mx0.1m  was used. The boundary conditions are 

defined as follows;

%  the lateral sides: u, = 0.0 = 0.0 ; w;} = 0.0

^  the top: wj = 0.0 ; p  '' = 0.0 kPa 

%  the bottom: w, = w, = 0.0 : p'^ = p^  = 0.0 kPa

where p ‘’ (P = W .N )  represents the part of fluid pressure in excess o f the atmospheric 

pressure: is relative velocity of a fluid in the direction normal to the boundary. At

(= 0 .0 .  the sand column is fully saturated and at a mechanical equilibrium state. Hence.

= 0 0 .^ = I 0 _ and n '' = 0 0 kPo.. Since the water is initially in a uniform flow
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condition under gravitational force, the vertical gradient o f potential equals to 

gravitational acceleration, i.e.

— + = g (8.3.3)
CT p

It follows from (8.3.3) that p* - 0 .0  kPa at t - 0 . 0 .  The initial stress states can now be 

obtained by solving the steady state equation with constraints p* = p '  = 0.0 k P a . Once 

the initial conditions are obtained, we can proceed to the numerical simulation o f the 

experiment. Note that at t =0.0 the fluid (water) is not in static equilibrium. Hence, in 

the numerical simulation, the initial condition (8.3.3) must be considered. This is done 

through activating the gravitational forces o f the fluids at the moment the simulation 

process commences.

The numerical results are presented in Fig. 8.8 through Fig. 8.13. Experimental data 

are available only for the pore water pressures along the column at 5. 10. 20. 30. 60. and 

120 minutes. No air pressure, degree o f saturation, and displacement were recorded in 

Liakopoulos' experiment. It can be seen from Fig. 8.8 and 8.9 that the agreement between 

the numerical prediction and measured results is very good for the times after 30 minutes. 

Before 30 minutes, however, the pore water pressures decrease faster than the measured 

results in the numerical predictions. The values o f pore water pressures in the early stages 

are very sensitive to the air entry value o f the porous material. Unfortunately, the air 

entry value o f Del Monte sand is not available (it was chosen as 7 kPa in this example). 

Both analytical and experimental results in Fig. 8.9 shows that once the water supply at 

the top ceased, the pore pressures decrease rapidly and then tends to a stable value until 

the whole system attains a static equilibrium state.
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Figure 8.8 Comparisons o f numerical predictions and experimental results for the 
pore water pressures along the sand column
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The pore air pressures along the soil column are presented in Fig. 8.10. At a certain 

depth, air pressure first decreases to a minimal value and then increases again. This 

dissipation process can be seen in Fig. 8.11. From these results, it is noted that air 

pressure may become significant in a multiphase flow process so that the so-called 

passive air phase assumption usually made in the analysis of two-phase flow is not 

acceptable. Evolutions o f the degree o f saturation at various depths are depicted in Fig. 

8.12. The sand column became unsaturated in the upper part (from 0.4-1.0 m). Fig. 8.13 

describes evolution o f the vertical displacement along the sand column. It can be seen 

that the deformation o f the solid skeleton and the fluid flow are coupled.
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Figure 8.10 Evolution o f the pore air pressure profile based on the numerical predictions

172



(Q
(L

3(/)
$

m
£
o
CL

0

0.975 m

■2
0.625 m

-4

-6

-8

-10

0 20 40 60 80 100 120 140

Time (min)

Figure 8.11 Time history o f the pore air pressures at height 0.975 m and 0.625 m 
based on the numerical predictions
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8.4 Flooding o f  a Centrifuge Model Embankment

This example is based on the centrifuge model test o f a compacted Minco silt 

embankment that was originally performed to examine the settlement associated with 

flooding. A detailed analysis o f the centrifuge test has been presented by Miller et 

al.(2000). Since for the time being we are unable to calibrate an elastoplastic constitutive 

model based on the swelling/collapse behavior o f the Minco silt’, a comprehensive 

numerical analysis o f the experimental results is impossible. In the following, however, 

this example is introduced to demonstrate how the numerical procedure developed in this

■ A laboratory test program to obtain the stress-strain behavior o f  M inco silt is ongoing at the University o f  
Oklahoma.
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dissertation can be used to simulate some important behaviors o f an unsaturated soil 

embankment subjected to flooding.

The centrifuge testing procedure is briefly given below. Well-prepared moist soil 

was compacted into three equal layers in the centrifuge box to the target dry unit weight. 

It was then carefully shaped into the chosen geometry. The miniature pore water pressure 

transducers and LVDTs are placed into various locations to measure the matric suction 

and displacement. At the first stage, the centrifuge was gradually brought up to an 

acceleration o f 165g and then water was introduced through the bottom o f the 

embankment. The geometry o f the embankment and the instrumentation are 

schematically shown in Fig. 8.14. The time histories o f the acceleration and water level 

are given in Fie 8.15.
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Figure 8.14 Model dimension and instrumentation for centrifuge model #3 (after Miller et 
al. (2000))
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Table 8.2 Material parameters of Minco silt

Material parameters Symbols Values

Young’s modulus E / .2 x  10' kPa

Poisson ratio V 0.3

Solid grain density 2.69x10^ k g /m '

Water density P"' l.OxlO^ k g lm ‘

.-\ir density P^ 1.2 kg /m '

Bulk modulus of water K 2.2 X10  ̂ kPa

Water viscosity Hw I.Ox 10 ' Pa-s

Air viscosity 7.V 2 .0 X 10 ' Pa-s

Intrinsic permeability k 6 .0 3 x l0 '"  m '

The finite element mesh used in the analysis is shown in Fig. 8.16. The material 

properties o f Minco silt are summarized in Table 8.2. The relationship between matric 

suction and specific moisture content for Minco silt has been obtained by Muraleetharan 

and Granger (1999). This relationship can be represented by the Brooks and Corey 

formulation, in which = 0.25 . X = 0.95 and p* = 3.0 kPa.

All the results are reported in the prototype scale obtained by multiplying the model 

scale by the acceleration scaling factor (i.e. 165). The predicted horizontal displacement 

o f Node #22 is given in Fig. 8.17. and the predicted vertical displacements o f Node #6. 

#22. and #14 are presented in Fig. 8.18a). b), and c). respectively. It is noted that the 

displacements during the ponding period do not agree weii with the measured values.
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This result is expected, since the embankment is collapsible when it is wetting. On the 

other hand, a calibrated constitutive model capable o f describing the collapse o f  the 

unsaturated soils is not included in the current version o f the finite element code, and 

only an elastic model is used here. Except for the Hooding time period, the predicted 

displacements in the early spin-up period (< 35 hrs) are still acceptable when compared to 

the measured results. This may be explained as follows. During the early stage of 

spinning, the centrifuge acceleration was low and the embankment deformed elastically, 

and that was captured by the code. When the acceleration increased, the embankment 

behaved plastically. In this case, an elastoplastic constitutive model should be introduced 

to describe the material behavior. This example shows that a constitutive model capable 

of realisticallv describing the material behavior is crucial for a numerical analvsis.

0.4

N#22
Measured (after Miller et ai. (2000))

0.3 -
E
I
cc

0.0 Xa.
c
o
X

- 0.1

- 0.2

400 80 120 160 200
Tim e (hours)

Figure 8.17 Comparison o f the predicted horizontal displacement at Node # 22 with the 
measured results

178



0.2

0.0

Q .
- 0.2

-0.4 N#6
Measured (after Miller et ai. (2000))

- 0.6

0 40 80 120 160 200

E
>
cr
©
ai/i

r

0.2
N#22
Measured (after Miller et al. (2000)), '

0.0

- 0.2

-0.4

-0.6

0 40 80 120 160 200

O
©

t

r

0.4

0.0

-0.4

-0.8 N#14

Measured (after Miller et al. (2000))

-1.2

0 40 80 120 160 200

Tim e (hours)
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As compared to the predicted displacements, the predicted pore water pressure 

agrees well with measured results in general. This can be seen from Fig. 8.19. The 

numerical simulation properly depicts the evolving trends and the magnitudes o f the pore 

water pressures around the locations o f PPTl and PPT4. At PPT3. the numerical pore 

water pressure is lower than the measured result during the time that the second water 

level (WL2) was increased, although both have similar values at the final stage. It needs 

to be pointed out that the deformation o f soil matrix and the flow of fluid are coupled. If 

other constitutive models are alternately used in the analysis, numerical results may be 

somewhat different from those given in Fig. 8.19. However, inclusion of a more realistic 

constitutive model into the analysis procedure may improve the above numerical results.

-  E#102

E#200

Time (hours)

200

Figure 8.20 Changes in the degree of saturation o f Element "85. #102. and #200.

The predicted changes in the degree o f saturation o f Element #85. 102 and 200 are 

described in Fig. 20. During the first increase in the water level, the moisture contents o f
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these elements change very slightly. .A.11 the three elements become fully saturated after 

the third water level increase. It is noted that the elements become saturated in a very 

short time. This is the typical behavior o f silts and sands, since they generally have larger 

pores than clayey soils and hence their intrinsic permeability is relatively large.

8.5 An Embankment Subjected to Earthquake Loading

The tmite element discretization o f the embankment considered in the analysis is 

shown in Fig. 8.21. The embankment represents a speswhite kaolin centrifuge model 

tested by Kutter (1982). Kutter's (1982) models were constructed using saturated kaolin 

and subjected to base shaking. .Additional details o f the centrifuge model tests and the 

dynamic analysis o f the saturated embankment using the computer code DYSAC2 

(Muraleetharan et al. 1988. 1997) are presented by Muraleetharan et al. (1994).

Here, the numerical analysis is performed for the same embankment but it is 

assumed that the upper part o f the embankment is unsaturated (Fig. 8.21). The initial 

degree o f saturation o f the unsaturated zone is 88%. For the unsaturated kaolin, the stress- 

strain behavior was modeled using a bounding surface elastoplastic model 

(Muraleetharan and Nedunuri 1998). Necessary unsaturated model parameters were 

obtained from suction controlled triaxial tests on kaolin (Wheeler 1996). All the model 

parameters pertaining to unsaturated kaolin are summarized in Table 8.3. Other bounding 

surface model parameters common to both the saturated and unsaturated soil can be 

found in Muraleetharan et al. (1994). The relationship between the matric suction and the

H f»orp p  n f  c a t i i r a t i n n  i c  H p c r r ih p r l  h v  th»» R m o l f c - C n r p v  r p l a t m n c h i n  /1  0 A a \  P < a r m < » a h ilitv
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coefficients o f air and water were also varied according to the Brooks-Corey relationship 

(1964) starting with the values given in Table 8.3.

Table 8.3. Hydraulic and Mechanical Properties o f Kaolin Used in the Analysis

Properties Symbol Value

Density of solid grains 2620 kg/rtf’

Density of water p" 1000 kg/m^

Density of air 1.22 kg/m^

Bulk modulus of water 2.2 X /O” kPa

Initial Bulk modulus of air 100 kPa

Porosity n 0.596

Intrinsic permeability k I . ' x W ' "  m'

Viscosity of water Hw 1.0 \  10-  ̂kPa.s

Viscosity of air

Brooks-Corey (1964) Parameters:

Is l . ' x  IOr"‘ kPas

Residual volumetric water content Or O.I

Pore size distribution index À 0.5

Bubbling pressure Ps "5 kPa

Slope of the isotropic compression line on void ratio-mean 

net stress plot (Wheeler 1996)

0.128

Parameters describing the change of À with suction 

(Alonso et al. 1990)

r I.5W

p 0.01 i

Value of specific volume on the isotropic compression 

line when net mean stress is one atmospheric pressure 

(Wheeler 1996)

2.122

Slope of the rebound line on void ratio-mean net stress 

and void ratio-suction plots (Wheeler 1996)

K 0.02
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Slope of the critical state line on deviatoric stress-net M . (5„ ) 0.933

mean stress plot on the compression side (Wheeler 1996)

Intersection of the critical state line on the deviatoric 54.2 kPa

stress axis (Wheeler 1996)

Note: = degree of saturation, = matric suction and the parameters dependent on suction are
indicted with a in the parenthesis.

E92 N49

N81 L'nsaturated zoneN20
N89

E69
6.88 m

Saturated
E 1 4ElO

27.52 m

Figure 8.21 Finite element discretization of the kaolin embankment

The stress states before shaking (i.e. the initial stress states) are obtained by 

solving the steady state equation in Chapter 7 and depicted in the stress contours (Fig. 

8.22). The embankment was subjected to the base motion shown in Fig. 8.25c. Numerical 

results are summarized in figures from 8.23 to 8.26. For comparison purposes, the 

behavior o f the saturated embankment predicted by the previous analysis (Muraleetharan 

et al. 1994) are also shown. Although the analyses were conducted at the model 

(centrifuge) scale, all the results are presented in the prototype scale.
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Figure 8.22 Initial net stress contours o f  the embankment
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Figure 8.23 Time histories of the displacements at node #49 and #89

Fig. 8.23 presents the predicted time histories o f the displacements at Node #49 

and #89. The displacements o f the saturated embankment obtained by DYSAC2 are also 

given. It can be seen that the unsaturated embankment experiences much less 

disniacement than its saturated countemart. This is o f course e.xnected. since the
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desaturation always leads the embankment to become more rigid. Therefore, analyzing an 

embankment as an unsaturated soil embankment is economical for design purpose. O f 

course, one has to know the moisture history o f the embankment throughout its lifetime 

before such analysis can be performed.

Fig. 8.24 gives the pore water pressure evolutions o f Element #10. #14. and #69. 

The pore air pressure o f Element #69 where the soil is unsaturated is also given. Fig. 

8.24a) shows that both air and water pressures increase slightly during the shaking. It can 

also be seen that change in the matric suction ( p" -  p ‘* ) is very small. This can be 

explained as follows. The permeability o f the kaolin is very small so that no significant 

change in degree o f saturation may occur during the shaking. In this case, the change in 

matric suction is basically controlled by the volumetric strain (for Element #69.

= 1.3% ). Hence, the suction o f element #69 would not experience significant change.

Element #10 and #14 are saturated, where positive excessive pore water pressure is 

accumulated (see Fig.8.24b and c). It is noted that in Element #14 the water pressure 

experiences significant oscillation. In Element #10. however, the water pressure shows 

more monotonie increase. This represents the effects o f shear stress. It will be shown later 

that the shear stress field in Element# 14 experienced significant change. The acceleration 

time histories o f Element #82 are shown in Fig. 8.25. For both horizontal and vertical 

accelerations, the predicted values by U_DYSAC2 are larger than those predicted by 

DYSAC2. This again implies that the partially saturated embankment is more rigid than 

its fully saturated counterpart.
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Figure 8.26 Stress contours at 15.5 seconds
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The stress contours at 15.5 seconds are presented in Fig. 8.26. Compared with Fig. 

8.22. it can be seen that all the stress fields have experienced significant change during 

the shaking event. Keeping in mind that in the saturated zone p '  = p “ and the net 

stresses equals to the effective stresses, it can be noted from Fig. 8.26a that significant 

amounts o f pore air (water) pressure has built up in the unsaturated (saturated) zone. This 

can also be seen in Fig. 8.26b. In the area near the toes, where is small, the net stress

( cr^ + p '  ) or effective stress ( cr,, + p “ ) is very small due to the built-up o f the fluid

pressures, and the stresses are concentrated around the core o f the embankment. 

Comparing Fig. 8.26c and Fig. 8.22c shows that the shear stress concentration has moved 

toward the toes on both sides. This is the typical mode o f shear failure for an 

embankment. Also, it is noted that the shear stress in the central area did not have 

significant change. Since the soil in the central area was subjected to less initial shear 

stress than the other zones o f the embankment, its stress state is further from the critical 

state line. This may explain the cause that a relatively smooth response o f pressures is 

usually observed in this area as noted above (see. also. Muraleetharan et al.. 1994).

8.6 Consolidation o f  the Soils below a Foundation

When a building is placed on the ground, pore water pressure will immediately 

increase and then gradually decrease. As a consequence, the settlement will vary with 

time. This is the classic consolidation problem o f soils that is o f great interest in 

geotechnical engineering (e.g.. Zaman et al.. 1991). The problem is schematically shown 

in Fie. 27. Because o f symmetry, it is sufficient to model only one half o f the nroblem.
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The finite element mesh is shown in Fig. 8.27. The material parameters o f the foimdation 

soil are summarized in Table 8.4. It is assumed that the underground water table is at a 

depth o f 3.0 m.

Table 8.4 Material parameters o f the foundation soil

Material parameters Symbols Values

Young's modulus E /.O x /O ' kPa

Poisson ratio V 0.3

Solid grain density P'' 2 .67x10 ' k g /m '

Water density P*' I.O X  /O' kg!m'

.Air density P ' 1.2 kg /m '

Bulk modulus of water 2.2 X  10" kPa

Permeability k / .Ox/O ' m/day

Nil

E9

E6

lOOkN/m-

Drained bounc aiy

b  m

10 m

Impervious boundary

Figure 8.27 Definition of the consolidation problem
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Numerical results are summarized in Fig. 8.28 to Fig. 8.30. Fig. 8.28 depicts the 

dissipation o f  pore water pressures in Element #6 and #9. It can be seen tliat in Element 

#6 the pore water pressure decays rapidly early after the loading is applied (the loading is 

applied in one day) and then the rate of decay becomes slower. Element #9 is in the 

unsaturated zone, and the pore water pressure increase slightly in the beginning. This is 

due to the increase in the air pressure under the compression. Then, when the air pressure 

dissipate, the water pressure decreases. Fig. 8.29 gives the evolution o f the displacement 

at Node #11. Since the soil is unsaturated in the upper layer, the displacement developed 

rapidly due to the applied loading. Relatively small amount o f settlement can be 

attributed to the pore water pressure dissipation. This behavior is sharply different from 

the tiilly saturated soils.

Element #6 
Bernent #9mQ.

2

Ia
Î
2
S.

-20

40 600 20 80 100 120

Time (days)

Figure 8.28 Pore water pressure dissipation in Element #6 and #9
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Figure 8.29 Change of the displacement at Node #11

The pressure dissipation process is described in Fig. 8.30. where several snapshots 

o f the pressure contour at 1. 5. 10. 20. 40. and 100 days are presented. These contours 

clearly show the direction in which flow occurs. In the beginning, the pore water pressure 

is accumulated under the foundation. The water pressure in the area near the unsaturated 

zone dissipates faster than the deeper zone. As a consequence, the center o f  the highest 

pore water pressure keeps moving down with time until the consolidation process is 

completed.
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-U J7 5

0  t =  100 days

Figure 8.30 Pore water pressure contours (in kfa)
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Chapter 9 CONCLUDING REMARKS AND RECOMMENDATIONS

9.1 Summary

In this dissertation, an attempt is made to develop a continuum theory o f porous 

media saturated by two immiscible fluids. The main focus is on how to characterize the 

dynamic compatibility conditions on interfaces. The dynamic compatibility condition 

represents the interaction on the interface between two bulk components in porous media. 

This concept is discussed in Chapter 1 based on microscopic considerations. The current 

state o f relevant knowledge is discussed in Chapter 2. Thermodynamic arguments for the 

dynamic compatibility conditions on interfaces are given in Chapter 3. where general 

constitutive relationships o f porous media are developed. In Chapter 4. a nonlinear 

continuum model o f porous media is presented that is capable o f handling the dynamic 

compatibility conditions on interfaces. Linearization o f the general theory developed in 

Chapter 3 and Chapter 4 is given in Chapter 5, where a linear model o f porous media is 

developed. In Chapter 6. the developed linear model is applied to the analysis o f the 

propagation o f acoustical waves in porous media. Initial/boimdary value problems and 

finite element solution procedures are given in Chapter 7. Numerical examples are
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presented in Chapter 8, showing the capability o f the proposed model in modeling the

behavior of multiphase porous media.

9.2 C onclusions

The following conclusions can be made based on the results obtained so far:

1. ,A.t microscopic level, the dynamic compatibility conditions on interfaces are the 

constraints on the pressure difference between two coexisting bulk components. It is 

shown (in Chapter 3) that these compatibility conditions are restricted under the 

second law of thermodynamics. The thermodynamic restriction yields the closure 

equations that is indispensable in a continuum model o f porous media.

2. Behavior associated with capillary pressure and Terzaghi's effective stress can be 

characterized within a common framework. In this context, a theoretical framework 

o f poroelastoplasticity is developed. This framework has a hierarchical structure, and 

describes the hysteresis in capillary pressure and plastic deformation o f skeleton in a 

unified way.

3. It is found that the mixture theory-based models o f porous media can be linked with 

Biot’s poroelasticity theory. To that end, the principle o f virtual dissipation (Biot. 

1977) is introduced, with incorporation o f a properly defined total free energy 

function o f the porous media. Such a free energy function can be assumed as a mass- 

weighted average o f  all the free energies o f bulk components.
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4. A continuum model o f porous media capable of accounting for the dynamic 

compatibility conditions on interfaces has been developed. It is shown that for a 

hyperelastic material, the dynamic compatibility conditions on interfaces represent 

the constraints on the material model. This result provides a way to incorporate the 

dynamic compatibility conditions into a constitutive model o f porous media.

5. A linear model o f porous media is developed. By using this model, the restrictive 

character o f the principle o f Terzaghi's effective stress can be released. It is shown 

that many classic models o f porous media in geomechanics can be deduced from the 

proposed theory.

6. The linear model developed is used to analyze the propagation o f acoustic waves in 

porous media. Theoretical results are compared with experimental data, and favorable 

comparisons are observed. The proposed model predicts existence o f three 

compressional waves in the porous media saturated by two immscible fluids. The 

third (slowest) compressional wave is associated with the capillary phenomena.

7. The nonlinear model developed is used to represent the initial/boundary value 

problems associated with porous media. Finite element solution procedures have been 

developed and implemented into a computer code (U_DYSAC2). This code can be 

used in static and dynamic analysis o f saturated and unsaturated porous media.

8. Numerical examples including wave propagation, two-phase flow, consolidation, and 

seismic response o f an embankment are presented, showing the capability o f the 

developed procedure in modeling the behavior o f porous media.
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9.3 Recommendations for Future Research

The following avenues of research may be followed to enhance the research

performed in this dissertation;

1. To verify the procedure developed in this dissertation, further experiments and more 

numerical analyses should be performed.

2. .\n  elastoplastic constitutive model may be developed within the theoretical 

framework developed in Chapter 3 and Chapter 4. The proposed constitutive model 

must be calibrated, implemented, and validated in applications.

3. Following the procedure discussed in Chapter 5. experiments may be performed to 

evaluate the material parameters in the linear model developed. This will help to 

further verify the procedure presented here.

4. Other robust algorithms should be introduced into the finite element code. The 

initial/boundary value problems (IBVP) associated with unsaturated porous media are 

different from those related to the saturated materials in that the IB VPs concerning 

the behavior o f unsaturated porous media are highly nonlinear even when an elastic 

stress-strain model is used.

5. Other schemes for finite element discretization should be included. For instance, 

higher-order elements should be implemented into the computer code, and the 

efficiency o f these elements must be examined through numerical analyses.
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6. A numerical procedure based on the nonlinear model presented remains to be 

developed that can be used to analyze the behavior o f porous media at finite strain.

7. The theory presented above may be further generalized to take into account some 

other important phenomena associated with porous media such as swelling, viscosity 

and molecular diffusion.
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APPENDICES

I. DISSIPATIVE FORCES AS FUNCTIONS OF FLUID MASS FLUXES

In (3.5.17) and (3.5.18). except for m", all the other material coefficients do not transform 

in the usual sense. To make this point clear, we introduce two new variables: =m^W,^ and

m ^=n*p’‘w^. which represent the mass fluxes with respect to the reference and current

configurations, respectively. M  and can be related to each other through the Piola 

transformation, i.e.

V  ' (I.I)

In the following, and nf’ will be used to derive the dissipative forces instead of 

and . Uncoupling the fluid diffusion and heat conduction from the total residual dissipation, 

one obtains

^GRAD6-Q>0. (1.2)

or equivalently.

(1.3)

where i?" ={m^Y‘R ", r‘’ ={n^p^) ’f " . and q'' is the dissipative part of q^ 16 . Now. using

dissipation inequality (1.2) and following the same procedures in deriving (3.5.12) and (3.5.13). 

one obtains

- B :G I l4 D d ,  (1.4)
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and

Q = - B l  - G M O e . (1.5)

By using (3.5.4). (l.l). and GR.W 6 = 6 .  it can be proved that the

spatial counterparts of (1.4) and (1.5) are.

r  - b : - ^ d .  (1.6)

and

q = - ' ^ b ; - m ^ - b : - V d .  (1.7)

The coefficients in (1.6) and (1.7) are related to those in (1.4) and (1.5) through the following 

transformations.

b;=JF^(B; )F‘. b:=F^{B:,)F\  ( 1.8)

and

6; = f {b ; )f -‘ . a; =j ‘F{b : ) f ^. (i.9)

Comparing (1.8) and (1.9) with (3.5.17) and (3.5.18). one may notice that unlike the latter (1.8) 

and (1.9) are those usually applied to the contravariant and covariant tensors defined on various 

deforming configurations.
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II. COEFFICIENTS IN FIELD EQUATIONS (5.2.I0)-(5.2.13)

K ^ l - U ^ U J

n:Ul-KJ(n:Àl-K^)U-D,)D^
K ^ - D , D , )

(I..4)

K d - D D J

t f . . o f  ■ >"•*>

A,(/-L>,.Dv)

where

n - ____________ 1   (II i n

(11-12)

("13)
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m . DERIVATIONS OF DWANHC COMPATIBILITY CONDITIONS (6.L5)-(6.l.7)

Let Z' be a subdomain of S , / ’ c . S . Consider a field (p{X.t), % e Z '. Its global 

balance equation in Lagrangian description can be expressed as

^  l ç ( X . i ) d V  = <l^,l/(Xj)NclS + l i i / , iXj)clV ^ l(p*{X. t )c lV . (111.1:

where if/{X.t), y/,XX.i).  and (p*{X.i) denotes the flux density, supply, and production of 

cpiX.i) . respectively; N  is the unit normal vector to the boundary 4^ of the subbody Z" c  Z". If 

(p. (/, . and are continuous over P  <z.S. one obtains the following local form of the

balance equation.

r̂ (D
^  = DlVijz + if/̂  +(p*.  (1 1 1 .2 )
ct

where DIVdenotes the divergence operator with respect to X.

Now, our attention is turned to the subbody P  a P  containing points of discontinuity of 

the field (O. It is assumed that these discontinuity points form an orientable two-dimensional 

differentiable manifold c„(t). The unit normal of c,(t) is represented also by i\. If any effects 

connected with the gliding of c„(r) in the tangential direction are exluded. the only nontrivial 

component of the surface velocity is U in V direction and given by (6.1.3). Let [[(o]] and [[yj] be 

the jump values of (p and y/ through c,(f). respectively. Assuming the continuity of U, |[çj]] 

and on the surface c„(f). one may prove that

(III.3)

T h iç  U  t h e  K n frh in *»  Q r n n H it in n  f^ W n m a n clfi IQQR* n n
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Note that

— {GRADv^) = GR.4D
Ct

(  dv"  A  =  D I V \  — ® l
. S t  ) I St  ]

(III.4)

where GRAD is the gradient operator with respect to X\ I  is the second-order unit tensor with 

components (i.e. Kronecker’s delta); x" and v" are the motion and velocity of a  -phase, 

respectively. By using (3.1.1) and (3.1.2), and v" can be cast into functions of coordinate 

% (€ /f  = / f ')  and /. (III.4) implies that (dv^jdt® I)  plays the role of the flux of GR.4Dv". 

Integrating (I1I.4) over the subdomain A’ c z S , one obtains

Hence, it follows from (1II.3) that

j ^ l (G R A D v-  )dV = \ J ^ ® N d S .
dt (III.5)

IgR.4Dv‘'̂ U- cv
dt

) N  = 0. (in.6)

The spatial form of (1II.6) is

p v ' p -
cv

l L ("c t
)n = 0 . (in.7)

where n is the unit normal to c,(r) with respect to the current configuration. Let a" be the jump 

amplitude of Vv' through c,(f); then.

[[Vv ]̂] = a ''® /i. (1II.8)

Inserting (III.8) into (III.7). one obtains

dt
= -a '-U . (III.9)

Equations (UI.7KIIL9) are usually called the Hadamard's relationships (Coussy. 1995; pp.252).
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Similarly, using

— [GRAD{GRAD r  )] = DIV]^GRAD V- )®  / ] .  ( I II .  10)

one may prove that

^ H W {G R A D /  ) ] ] ( /  +  [ [ G Æ 4 D ]]®  (V =  0 .  ( I I I .1 1 )

or equivalently.

[[vV/^]]G + [[Vv^l]®/f = 0 . (III. 12)

Finally, inserting (III.8) into (III.12) and employing (3.1.5). one obtains

[[vV H ^I]=-ty 'V ® «® rt. (III.13)
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IV. NOMENCLATURE

Latin symbols

a“ acceleration of a-phase, [LT']

A" Helmholtz free energy of a-phase, [L’T ']

area density of ap-interface, [L"']

6“ macroscopic external supply of linear momentum of a-phase. [L’t ’G'']

compressibility of a-phase, [M'‘LT‘] 

c coefficient matrix of generalized velocity

D dissipation function

d° the symmetric part of velocity gradient of a-phase. [T']

E" macroscopic internal energy per unit mass of a-phase, [L‘T ‘]

E total internal energy of the mixture, [L’T ‘]

E L agrangian  stain tensor

mass exchange rate from aP-interface to a-phase, [ML’T ']

F  deformation gradient of the solid skeleton

G shear modulus of the mixture. [ML''!'*]

g gravitational acceleration. [LT']

h" external supply of energy to a-phase. [L'T']

h "" external supply of energy to aP-interface. [L 'T ']

I  isotropic second order tensor with component

J  jacobi of F. i.e. J  = d t t  F

k  global matrix of tangent modulus

k intrinsic permeability, [L']

relative permeability of p-fluid 

K bulk modulus of the mixture, [ML’'T ‘]

bulk modulus of a-phase. [ML 'T ']

K, undrained bulk modulus of the mixture. [ML 'T ']

drained bulk modulus of the mixture. [ML 'T"] 

m," current mass of a-phase in a volume of porous medium that is unit before

deformation. [ML'^j
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m‘‘ change in m f , [ML'"]

M"  total mass flowed across a surface that before the deformation is a unit area. [ML"*]

m ' total mass flowed across a surface that after the deformation is a unit area. [ML"*]

n porosity

n" volume fraction of a-phase

P nominal stress, [ML''T’]

P’ the first Piola-Kirchhoff stress. [ML''T‘]

P " Kirchhoff pressure of a-phase. [ML''T‘]

p" thermodynamic pressure of a-phase. [M L ''t’|

q ' heat flux vector of a-phase, [MT^]

0%, body supply of heat to a-phase from ag-interface, [ML'‘T"]

r'  non-equilibrium part of the linear momentum exchange of a-phase, [ML'’T ‘]

r;' equilibrium part of the linear momentum exchange of a-phase, [M L''T’]

S  the second Piola-Kirchhoff stress tensor. [ML''T‘]

5 degree of saturation

.9,, matric suction (capillary pressure associated with contractile skin), [ML''T‘]

body supply of momentum to a-phase from ag-interface, [ML'‘T ‘| 

ff’ effective stress tensor, [ML''t ’|

t" macroscopic stress tensor of a-phase, [ML''T‘]

uf relative displacement of p  -fluid with respect to skeleton. [LT']

u" diplacement of a-phase. [L]

V specific energy function of the mixture. [ML 'T ']

V  macroscopic velocity of a-phase, [LT']

If' total free energy function of mixture, [ML''T‘]

convected relative velocity of /? -fluid. [LT'] 

w'’ relative velocity of P -fluid. [LT']

.r position vector of the solid phase in deformed configuration. [L]

% position vector of a material point of a-phase in undeformed configuration. [L]

z global mass matrix
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Greek symbols

a  total Cauchy stress tensor, [ML‘‘T ’]

/7" capillary potential of P-fluid with respect to the skeleton, [ML 'T ‘]

ri"  capillary potential of nonwetting fluid with respect to wetting fluid. [ML 'T ’]

rj" macroscopic internal entropy per unit mass of a-phase. [L 'T '9 '']

r] total macroscopic internal entropy per unit mass of the mixture. [L 'T '6 '']

macroscopic internal entropy per unit mass of aP-interface. [L 'T ’0 '‘]

0 temperature. [0]

.\ entropy.

p  overall (volumetric) mass density of the mixture. [ML"]

p “ intrinsic (volumetric) mass density of a-phase. [ML"]

ç" macroscopic entropy flux vector of a-phase. [M T'0'‘]

0 ^  material coefficients. [ML 'T ']

effective stress parameters 

Â, elastic constant of the skeleton. [ML 'T"]

/r, elastic constant of the skeleton. [ML''T^]

À & p  Lamé coefficients of the mixture. [ML 'T ']

V Poisson ratio

Special notation

A operator to assemble the element matrices into a global matrix

" reference configuration of a-phase

current configuration of a-phase

^  domain spanned by the solid skeleton before deformation, i.e. ^  '

Q ' finite element e

{T space of configuration

r  space of variation

V gradient operator with respect to the deformed configuration [L ']

det determinant of a matrix
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div divergence operator with respect to the deformed configuration x, [L"' ]

D“
Dt

material derivative following the motion of a-phase, [T']

GRAD gradient operator with respect to the reference frame X, [L ']

DIV divergence operator with respect to the reference frame X. [L ']

symO symmetrical part of a second-order tensor
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