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Abstract

CONTROL AND OPTIMIZATION OF VARIABLE-SPEED
WIND TURBINES AND LARGE-SCALE WIND FARMS

Yi Guo, Ph.D.
The University of Oklahoma, 2012

Supervisor: Choon Yik Tang

Motivated by the vast potential of wind power as a renewable energy

source and the reliability issues arising from its integration into a power system,

this dissertation designs and analyzes a novel, diverse collection of controllers,

which significantly enhance the capability and performance of variable-speed

wind turbines and large-scale wind farms.

In the dissertation, we consider a number of key problems and pressing

issues in the area and develop, for each of them, a solution based on systems

and control theory as well as optimization methods. More specifically, we first

devise a nonlinear controller using feedback linearization and a gradient-based

approach, which enables wind turbines with doubly fed induction generators

to jointly control their active and reactive powers in both the maximum power

tracking and power regulation modes. We also extend the controller by incorpo-

rating bias estimation and exploiting timescale separation, so that it can cope

with turbines with uncertainties, and evaluate our controller via simulations

with realistic wind profiles, demonstrating its effectiveness.

Building upon single turbine controllers by other researchers and by

us, we next turn to the emerging problem of wind farm power control, in

xi



which there is a lack of models that appropriately simplify the complex overall

wind farm dynamics. To fill this void, we use system identification approaches

to construct a structurally simple, approximate wind turbine control system

(WTCS) model, which attempts to mimic the complex active and reactive

power dynamics of generic analytical and empirical WTCS models. Through

extensive validation, we show that the approximate model is accurate and

versatile, capable of closely imitating several WTCS models from the literature

and from real data.

Based on the approximate model, we subsequently develop a centralized

wind farm controller, which makes the wind farm power output accurately and

smoothly track a desired reference from the power grid operator. The wind

farm controller is made up of a model predictive controller on the outer loop,

which uses various forecasts and feedbacks to iteratively plan the desired power

trajectories for optimal tracking, and an adaptive controller on the inner loop,

which uses estimated wind speed characteristics to adaptively tune the con-

troller gains for optimal smoothness. We also carry out a series of simulations,

which illustrate the salient features of our wind farm controller.

Finally, we study how a wind turbine equipped with a maximum power

tracking controller and a proportional inertia response controller may affect

the power system frequency from a control standpoint, including the resulting

system equilibria, pole-zero locations, and stability properties.
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Chapter 1 Introduction

1.1 Background and Motivation

Wind power is gaining ever-increasing attention in recent years as a

clean, safe, and renewable energy source. With the fast growth of wind gen-

eration in power systems, wind power is becoming a significant portion of the

generation portfolio in the United States as well as many countries in Europe

and Asia [6]. Indeed, wind power penetration is planned to surpass 20% of the

United States’ total energy production by 2030—a figure that is way beyond

the current level of less than 5% [7]. Hence, to realize this vision, it is necessary

to develop large-scale wind farms that effectively produce electric power from

wind, and integrate them with the power systems.

The integration of large-scale wind farms into a power system, however,

changes the fundamental principle of its operation, which is to maintain reliabil-

ity by balancing load variation with “controllable” generation resources. When

a portion of these resources comes from “uncontrollable” wind generation, that

portion of the resources can hardly be guaranteed due to the intermittency of

wind. As a result, the power system may fail to achieve the required balance.

When the level of wind power penetration is small, this issue may be safely

neglected. However, with the anticipated increase in penetration, the issue

becomes critical for power system reliability. Therefore, sophisticated control

technologies for both wind turbines and wind farms, which enable seamless
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integration of large-scale wind energy into a power system without affecting its

reliability, are highly desirable.

Today, most large-scale wind farms operate in the maximum power

tracking (MPT) mode, making wind turbines in the farm harvest as much wind

energy as they possibly could, following the “let it be when the wind blows”

philosophy of operation. Operation in this mode, however, may produce ex-

cessive power that destabilizes the grid. As a case in point, when half of the

European grids experienced a severe difficulty in 2006, the wind farms operat-

ing in the MPT mode complicated the process of returning to normal system

conditions [8]. This event took place even though the wind penetration level, at

that time, was low at only 6%. Therefore, it is highly desirable that wind farms

can also operate in the so-called power regulation (PR) mode, whereby its total

power output from the wind turbines is continuously and closely regulated at

some desired setpoint, despite the fluctuating wind conditions.

The ability to operate in the PR mode in addition to the MPT mode, as

well as the ability to seamlessly switch between the two, offers many important

advantages: not only does the PR mode provide a cushion to absorb the impact

of wind fluctuations on the total power output through power regulation, it

also enables a power system to effectively respond to changes in reliability

conditions and economic signals. For instance, during system contingencies

in which a sudden drop in load occurs, the power system may ask the wind

farm to switch from the MPT to the PR mode and generate less power, rather

than rely on expensive down-regulation generation. As another example, the

PR mode, when properly designed, allows the power output of a wind farm

to smoothly and accurately follow system dispatch requests, thus reducing its

reliance on ancillary services such as reliability reserves.

2



To enable large-scale wind farms to operate well in these two modes

and switch seamlessly between them while maintaining a desired power fac-

tor, a high-performance individual wind turbine controller is essential. A key

challenge facing the development of such a controller is the fact that the me-

chanical and electrical parts of a wind turbine with a Doubly Fed Induction

Generator (DFIG)—which is the prevalent generator used today—are tightly

coupled. Nevertheless, most studies have adopted a standard approach in the

analysis and control of synchronous electric machines, where the active and

reactive powers are considered decoupled. With this approach, the active and

reactive powers are adjusted via control of the mechanical and electrical parts,

respectively, independent of each other. However, although a DFIG has some

features of a synchronous machine, it is by nature an induction machine with

strong electromechanical coupling among its rotor excitation current, rotor an-

gular velocity, and electromagnetic torque. Hence, for performance reasons,

both the mechanical and electrical parts should be considered synergistically

in controller design.

Another major challenge is the fact that the aerodynamic and mechan-

ical parameters of a wind turbine are inherently uncertain, due to modeling

and measurement errors and other ambient factors. For example, the so-called

Cp-surface of a wind turbine is typically assumed to be known—or, at least, its

optimal point is assumed to be known—in many existing controller designs. Un-

fortunately, such a surface is an empirical, statistical approximation, obtained

based on long-term experiments [9]. Thus, it may not be precisely known for

control purposes. Other factors, such as changes in air density and friction

due to weather, and measurement errors due to anemometer location, also con-

tribute to the uncertainties. Indeed, a report from the National Renewable

3
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Figure 1.1: Hierarchical architecture of a wind farm control system.

Energy Laboratory (NREL) [10] shows that the impact of these uncertainties

on wind turbine controller performance is significant and should be accounted

for in the design stage.

On wind farm level, being able to control a wind farm so that its power

output is cooperatively maximized, or smoothly regulated, is imperative to suc-

cessful and reliable integration of large-scale wind generation into the power

grid. The design of a sophisticated wind farm control system (WFCS) for such

control, however, is challenging for a variety of reasons. First, a wind turbine,

by itself, is already a fairly complex system with highly nonlinear dynamics,

strong electromechanical coupling, inherently uncertain parameters, and mul-

tiple control variables. Second, when hundreds of such turbines are immersed

in a wind field across a geographical region, they produce turbulence and wake

effects that affect downstream turbines, causing their overall behavior to be

complicated. Third, the large number of control variables to simultaneously

handle, and the rich set of approaches to possibly use, further compound the

complexity.

One way to cope with the complexities is to introduce a hierarchical

architecture, which as shown in Figure 1.1 divides a WFCS into two parts:
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a central wind farm controller (WFC) and N individual wind turbine control

systems (WTCSs), each comprising a wind turbine and its controller. With this

architecture, we may first design, for each i ∈ {1, 2, . . . , N}, a WTCS i that

tries to regulate its millisecond-to-second-timescale active and reactive power

outputs Pi and Qi at some desired Pd,i and Qd,i, regardless of its incoming wind

speed Vw,i. Upon completion, we may then design a WFC that tries to regulate

the second-to-minute-timescale wind farm power outputs Pwf ,
∑N

i=1 Pi and

Qwf ,
∑N

i=1Qi at some desired Pd,wf and Qd,wf , presumably from a grid

operator, by adjusting the Pd,i’s and Qd,i’s based on feedback of the Pi’s and

Qi’s and possibly estimates of the Vw,i’s. Hence, the architecture simplifies the

design of a WFCS, allowing us to sequentially tackle two (seemingly) easier

problems on different timescales, as opposed to tackling a harder one. The

architecture also offers us the option of designing a new single-turbine controller

for each WTCS i, or applying an existing one that accepts Pd,i and Qd,i as

inputs1. Furthermore, it allows us to view the WFC as a second-to-minute-

timescale supervisor that tells every WTCS i how much power to generate,

and focus on its design without delving too much into millisecond-to-second,

turbine-level details.

Although the hierarchical architecture makes the problem more manage-

able, it does not remove the fact that each WTCS—being a composition of an

already-complex wind turbine and a possibly-complicated controller—typically

has complex dynamics. As a result, the subsequent design and analysis of a

supervisory WFC may prove to be difficult, depending on our goal: if we are

content with a simple design (e.g., distribute Pd,wf and Qd,wf evenly among

1Single-turbine controllers that do not accept Pd,i and Qd,i, such as those that always
attempt maximum power tracking, may not fit well with this architecture.
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the Pd,i’s and Qd,i’s, or Pd,wf proportionally based on the Vw,i’s) and a basic

analysis (e.g., simulation studies only), then how complex a WTCS is probably

does not matter. However, if we aim for a nifty design (e.g., adjust the Pd,i’s

and Qd,i’s so that the WTCSs can exploit their correlation, interaction, and/or

diversity to cooperatively achieve faster transient responses and better steady-

state smoothness in Pwf and Qwf) and a deeper analysis and understanding

(e.g., theoretical characterization of the resulting transient and steady-state be-

haviors), then an overly complex WTCS may render the process very difficult

or even impossible. Therefore, to achieve the latter, it is necessary to build a

suitably simplified WTCS model, based on which a high-performing WFC may

be developed.

Another pressing issue that has attracted considerable research atten-

tion in recent years is the potential of variable-speed wind turbines in providing

short-term frequency support through inertia response—a task that currently

is being carried out by conventional synchronous generators. Although the

benefit and challenge of incorporating inertia response have already been ad-

dressed, a number of questions remain open from a control perspective, such

as what are the equilibrium points of the resulting system, whether they are

asymptotically stable or not, and how the power system frequency behaves

with new control design. Answers to these questions are of interest and would

serve as complement to other research efforts on wind power.

1.2 Literature Review

To date, a significant amount of research has been performed on control

of variable-speed wind turbines. To streamline the review of the current liter-
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ature, we note that variable-speed wind turbines typically have three different

regions of operation: Region 1 corresponds to a turbine that is starting up or

winding down; Region 2 corresponds to the normal operating region where the

wind speed is below the rated value and the typical objective is to maximize

turbine power output (i.e., the MPT mode); and Region 3 corresponds to the

region where the wind speed is above the rated value, so that the turbine must

limit the captured wind power to ensure safe electrical and mechanical oper-

ations. With these three regions defined, we provide below a review of the

current literature.

For operation in Region 2, several MPT algorithms have been proposed

in the literature, which can be broadly classified into the following types:

(a) Tip-Speed-Ratio Control. The power coefficient Cp of a wind turbine is

a function Cp(λ, β) of the tip speed ratio λ and the blade pitch angle β.

For most wind turbines, the function Cp(λ, β) attains its maximum C∗
p

at optimal values of λ and β, denoted as λ∗ and β∗. While the blade

pitch angle β can be maintained at the optimal β∗, the tip speed ratio λ

is not, because λ depends on both the rotor angular velocity ωr and the

incoming wind speed Vw, which typically changes much faster than ωr.

The tip-speed-ratio control algorithms attempt to maintain the optimal

tip speed ratio λ∗ by regulating the rotor angular velocity ωr (e.g., [11]).

These algorithms usually require knowledge of λ∗ and the measurements

of both ωr and Vw. Hence, there are two drawbacks of implementing

them. First, due to the spatial and temporal variability of wind and

the large swept area of a modern wind turbine [12], an accurate wind

speed measurement may be difficult to obtain. Second, the optimal tip
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speed ratio may be different from one turbine to another and may change

significantly over time due to icing, aging, and blade erosion.

(b) Optimal Torque Control. The optimal torque control algorithms attempt

to drive the generator torque to its optimal value, which is proportional to

the square of the turbine rotor angular velocity. References [4,13] propose

an adaptive torque controller, which adaptively determines the optimal

gain without a prior knowledge of C∗
p and λ∗; [14] presents a robust control

algorithm that simultaneously seeks the optimal blade pitch angle and

generator torque; [15] proposes an adaptive fuzzy controller that estimates

the maximum power output from the measurements of the rotor angular

velocity and the output power.

(c) Hill Climb Searching Control. The hill climb searching control algorithms

attempt to “climb” the output power-rotor angular velocity curve by per-

turbing the rotor angular velocity in small steps and using feedback on

the output power to adjust subsequent perturbations. Hence, Hill Climb

Searching Control is also referred to as Perturb and Observe Control.

The advantage of Hill Climb Searching Control is that it requires nei-

ther the measurement of wind speed nor any prior knowledge of the wind

turbine characteristics. The disadvantage, however, is that it is only

suitable for wind turbines with small inertia. Several applications of this

control technology to achieve MPT have been reported in [16–19]. In ad-

dition, Extremum Seeking Control, which is closely related to Hill Climb

Searching Control and is considered a dynamic realization of the gradient

search, has been implemented in [20,21] to maximize wind energy capture

by searching for both the optimal blade pitch angle and the optimal rotor

angular velocity.
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For operation in Region 3, the turbine power output is typically main-

tained at the rated power, which is often achieved by applying a constant

generator torque and maintaining the turbine rotor angular velocity at the de-

sired value, the latter being accomplished by collectively or separately pitching

the turbine blades [22], suggesting the following classification:

(a) Collective Blade Pitch Control. Classical Proportional-Integral-Derivative

(PID) control algorithms are often used to design the collective blade

pitch controller to regulate the turbine speed in Region 3 [23]. System-

atic methods for selecting the PID controller gains have been presented

in [24, 25]. Moreover, disturbance accommodating control [26, 27], adap-

tive control [28–30], robust control [31], and model predictive control [32]

have also been investigated. Such collective blade pitch control is a widely

accepted approach to regulating rotor angular velocity and responding to

fast wind speed changes. However, it cannot compensate for the asym-

metric loads caused by a nonuniform wind speed field, given the large

rotor swept area.

(b) Individual Blade Pitch Control. Since many modern utility-scale wind

turbines allow the blades to be pitched independently to reduce mechan-

ical loads, individual blade pitch control has also been reported recently

in [33–38]. Specifically, classical PID control has been studied in [33–35],

while multi-variable control theory has been applied in [36–38].

Recently, the use of DFIGs with two back-to-back PWM converters in

the rotor circuit is becoming more and more popular in wind energy genera-

tion systems. Reasons for the popularity of DFIGs stem from advantages over

other types of generators [39–42], including lower converter cost, higher system
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efficiency, and nearly-decoupled control of active and reactive power of the gen-

erator. Today, several power control algorithms for DFIGs have been proposed

in the literature:

(a) Vector Control. Vector control, also called field orientation control, is

a relatively mature, standard AC motor control method. Based on a

synchronously rotating dq frame, the vector control algorithms achieve

decoupled control of the stator-side active and reactive power. There

are two field orientation schemes for DFIG power control, stator-flux-

orientation and stator-voltage-orientation. The former aligns the d-axis

with the stator flux vector. Neglecting the stator resistance, this scheme

enables the electromagnetic torque and stator active power, and stator re-

active power to be controlled by the q-component and d-component of the

rotor current vector, respectively [39,43]. Several different approaches for

the implementation of the stator-flux-orientation scheme have been dis-

cussed in [43]. The latter, the stator-voltage-orientation scheme, aligns

the d-axis with the stator voltage vector [40, 44]. Since the stator volt-

age can easily be measured accurately, this scheme is independent of the

DFIG parameters. Note that if the stator resistance is negligible com-

pared to the stator reactance as in the case of high-power DFIGs, the

stator voltage vector is π/2 in advance of the stator flux vector. No mat-

ter which field orientation scheme is used, the resulting control strategy

is usually realized in a cascaded manner: the outer loop implements the

power control, while the inner one carries out the current control, which

receives the desired current commands from the outer loop. Moreover,

classical PID controllers are often adopted here.
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(b) Direct Power Control. In direct power control, converter switching states

are selected from an optimal switching table based on instantaneous errors

of active and reactive powers and the position of the converter terminal

voltage vector or virtual flux (the flux is the integration of the converter

output voltage). More recently, the direct power control algorithms of

DFIG-based wind turbine systems have been proposed in [45, 46].

(c) Passivity-Based Control. Passivity-based control algorithms attempt to

achieve stabilization of currents and rotor angular velocity via energy-

balancing, regulating the power in a system automatically. In [47], such

a controller is designed to achieve unity power factor at the stator of the

DFIG and to track the optimal rotor angular velocity by regulating the

generator torque.

In comparison with research on control of single wind turbines, rela-

tively less work has been done on wind farm power control. Reference [48]

describes a hierarchical wind farm control architecture consisting of a super-

visory centralized wind farm controller and a set of turbine-level controllers,

which is arguably the first of its kind. This architecture has been tested on the

Horns Rev wind farm in Denmark. In [5,49], a centralized wind farm controller

is introduced, which simply distributes the desired wind farm power demand

to each wind turbine, in a way that is proportional to the amount of active

and reactive power each turbine can produce. In [50], a wind farm-level op-

timization strategy for wind turbine commitment and for active and reactive

power control is described. To realize the wind farm power control, the turbine-

level controllers need to closely track the power reference commands provided

by the centralized wind farm controller. Finally, [2] provides a performance

comparison of three turbine-level control strategies for regulation of active and
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reactive power. More detailed descriptions of these three controllers can be

found in [1, 51, 52].

More recently, researchers are considering using large wind farms with

variable-speed wind turbines to achieve other goals. One such goal is to provide

short-term frequency support through inertia response. To achieve this goal,

research in a number of directions has been carried out, including the follow-

ing: [53,54] show that variable-speed wind turbines operating in the MPT mode

exhibit a negligible inertia response, since the electromagnetic torque is consid-

ered to be decoupled from the power system frequency. In contrast, [55] finds

that the inertia response of variable-speed wind turbines with doubly fed induc-

tion generators (DFIGs) is strongly influenced by the rotor current controller

bandwidth. In [53, 54], the inertia response is introduced by adding a supple-

mentary control loop to the electromagnetic torque controller. Reference [56]

examines the impact of increasing wind power penetration on frequency con-

trol through a comparison of the inertia responses of wind turbines with syn-

chronous generators, with squirrel-cage induction generators, and with DFIGs

containing the supplementary control loops. In [57], a control strategy is in-

vestigated, which manipulates the angle of the DFIG rotor flux vector in order

to change its electromagnetic torque and release its kinetic energy. Two differ-

ent control schemes for determining the additional electromagnetic torque are

described and compared in [58], where the torque is proportional either to the

derivative of the system frequency, or to the deviation of the system frequency

from its nominal value. Reference [59] quantifies the capability of variable-

speed wind turbines in providing short-term excess active power support and

shows that, in a hydro dominated power system, the support can reduce the

initial frequency drop due to a sudden power imbalance. Reference [60] inves-

12



tigates dynamic contributions of DFIGs to power system frequency responses

through simulation and discusses the impact of different parameters on the in-

ertia response of wind turbines with DFIGs. Finally, [61] conducts some static

analysis to estimate how much kinetic energy can be made available for inertia

response from a turbine over a year and how much energy capture must be

sacrificed to do so. In addition, the trade-off of wholesale energy revenue for

potential kinetic energy revenue is also explored.

1.3 Dissertation Outline and Original Contributions

This dissertation is devoted to the design and analysis of a novel collec-

tion of controllers for variable-speed wind turbines and large-scale wind farms,

which significantly advance the state of the art. An outline of the dissertation,

along with its original contributions, is provided below.

In Chapter 2, we design a feedback/feedforward nonlinear controller for

variable-speed wind turbines with DFIGs. By appropriately adjusting the ro-

tor voltages and the blade pitch angle, the controller simultaneously enables:

(a) control of the active power in both the MPT and PR modes, (b) seamless

switching between the two modes, and (c) control of the reactive power so that

a desirable power factor is maintained. Unlike many existing designs, the con-

troller is developed based on original, nonlinear, electromechanically-coupled

models of wind turbines, without attempting approximate linearization. Its de-

velopment consists of three steps: (i) employ feedback linearization to exactly

cancel some of the nonlinearities and perform arbitrary pole placement, (ii)

design a speed controller that makes the rotor angular velocity track a desired

reference whenever possible, and (iii) introduce a Lyapunov-like function and
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present a gradient-based approach for minimizing this function. The effective-

ness of the controller is demonstrated through simulation of a wind turbine

operating under several scenarios.

In Chapter 3, we address the same problem as in Chapter 2, but al-

low most of the aerodynamic and mechanical parameters to be uncertain or

unknown—a relaxation that has not been considered in the literature. Us-

ing a blend of linear and nonlinear control strategies (including feedback lin-

earization, pole placement, uncertainty estimation, and gradient-based poten-

tial function minimization) as well as time-scale separation in the dynamics, we

design and analyze a new controller that may be viewed as an extension of the

one in Chapter 2. We show that this controller is capable of maximizing the

active power in the MPT mode, regulating the active power in the PR mode,

seamlessly switching between the two modes, and simultaneously adjusting the

reactive power to achieve a desired power factor in the presence of uncertain-

ties and unknowns. More specifically, the controller consists of four cascaded

components, uses realistic feedback signals, and operates without knowledge

of the Cp-surface, air density, friction coefficient, and wind speed. Finally,

the effectiveness of the controller is shown via simulation with realistic wind

profiles.

In Chapter 4, using system identification approaches, we develop a sim-

ple approximate model that attempts to mimic the active and reactive power

dynamics of two generic WTCS models: an analytical model described by

nonlinear differential equations, and an empirical one by input-output mea-

surement data. The approximate model contains two parts—one for active

power and one for reactive—each of which is a third-order system that would

have been linear if not for a static nonlinearity. For each generic model, we also
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provide an identification scheme that sequentially determines the approximate

model parameters. Finally, we show via simulation that, despite its structural

simplicity, the approximate model is accurate and versatile, capable of closely

imitating several different analytical and empirical WTCS models from the lit-

erature and from real data. The results suggest that the approximate model

may be used to facilitate research on wind farm power control.

In Chapter 5, using advanced control techniques and different timescales

in the dynamics of a wind farm control system (WFCS), we develop a novel

wind farm controller that enables the wind farm power output to accurately

and smoothly track a desired reference from the grid operator. This controller

consists of two control loops: the outer loop contains a model predictive or

receding horizon controller, which uses forecast of the wind speeds from crude

measurements, forecast of the power demand from the grid operator, and feed-

back of the powers generated by the wind turbines to iteratively determine

the desired power trajectories for the WTCSs. The inner loop contains an

adaptive controller of self-tuning regulator-type, which uses estimated wind

speed characteristics from measurements to adaptively tune the gains of a fully

decentralized bank of proportional controllers. The proposed wind farm con-

troller cooperatively optimizes the deterministic, tracking performance of the

wind farm power output on a longer timescale, as well as jointly optimizes the

stochastic, steady-state smoothness of the wind farm power output on a shorter

timescale. We also carry out a series of simulations, which illustrate the salient

features of the proposed controller.

In Chapter 6, we study from a control perspective the behavior of a stan-

dard MPT controller augmented with a proportional inertia response controller.

We first show that, when there is a bias in the power system frequency, the
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resulting nonlinear wind turbine control system may have no equilibrium point,

causing the turbine to stop rotating, or multiple equilibrium points, causing it

to operate in unintended regimes. We then show that the transfer function of

the linearized system has a zero at the origin, which may undesirably amplify

noise, and yield pole-zero cancellation if a proportional-integral (PI) strategy

is used instead. Lastly, we present a preliminary stability analysis on the lin-

earized system, showing that it is guaranteed to be stable when reheat steam

turbines are the only type of conventional generation in the power system.

Finally, in Chapter 7, we conclude the dissertation with several remarks

and provide a number of possible future research directions.
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Chapter 2 Nonlinear Dual-Mode Control of
Variable-Speed Wind Turbines with Doubly

Fed Induction Generators

2.1 Introduction

As was mentioned in Chapter 1, to enable large-scale wind farms to

operate satisfactorily in both the MPT and PR modes and switch seamlessly

between them, numerous challenges must be overcome. This chapter is devoted

to addressing a subset of these challenges, by presenting an integrated frame-

work for controlling the rotor voltages and the blade pitch angle of variable-

speed wind turbines with doubly fed induction generators (DFIGs). The chap-

ter presents a feedback/feedforward nonlinear controller developed based on

original, nonlinear, and electromechanically-coupled models of wind turbines,

without attempting approximate linearization. The controller simultaneously

enables: (a) control of the active power in both the MPT and PR modes,

(b) seamless switching between the two modes, and (c) control of the reactive

power so that a desirable power factor is ensured. Its development consists

of three steps. First, we show that, although dynamics of a wind turbine are

highly nonlinear and electromechanically coupled, they offer a structure, which

makes the electrical part feedback linearizable, so that arbitrary pole place-

ment can be carried out. Second, we show that because the electrical dynamics

can be made very fast, it is possible to perform model order reduction, so that
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only the first-order mechanical dynamics remain to be considered. For this re-

duced first-order model, a speed controller is designed, which enables the rotor

angular velocity to track a desired reference whenever possible. Finally, we

introduce a Lyapunov-like function that measures the difference between the

actual and desired powers and present a gradient-based approach for minimiz-

ing this function. The effectiveness of the controller is demonstrated through

simulation of a wind turbine operating under a changing wind speed, changing

desired power outputs, modeling errors, and noisy measurements.

The outline of the chapter is as follows: Section 2.2 describes a model of

variable-speed wind turbines with DFIGs. Section 2.3 introduces the proposed

feedback/feedforward nonlinear controller. Simulation results are shown in

Section 2.4. Finally, Section 2.5 concludes the chapter.

2.2 Problem Formulation

Consider a variable-speed wind turbine consisting of a doubly fed in-

duction generator (DFIG) and a power electronics converter, as shown in Fig-

ure 2.1. The DFIG may be regarded as a slip-ring induction machine, whose

stator winding is directly connected to the grid, and whose rotor winding is

connected to the grid through a bidirectional frequency converter using back-

to-back PWM voltage-source converters.

The dynamics of the electrical part of the wind turbine are represented

by a fourth-order state space model, constructed using the synchronously ro-

tating reference frame (dq-frame), where the relation between the three phase

quantities and the dq components is defined by Park’s transformation [62]. The
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Figure 2.1: Schematic of a typical variable-speed wind turbine with a DFIG.

voltage equations are [63]

vds = Rsids − ωsϕqs +
d

dt
ϕds, (2.1)

vqs = Rsiqs + ωsϕds +
d

dt
ϕqs, (2.2)

vdr = Rridr − (ωs − ωr)ϕqr +
d

dt
ϕdr, (2.3)

vqr = Rriqr + (ωs − ωr)ϕdr +
d

dt
ϕqr, (2.4)

where vds, vqs, vdr, vqr ∈ R are the d- and q-axis of the stator and rotor voltages;

ids, iqs, idr, iqr ∈ R are the d- and q-axis of the stator and rotor currents; ϕds,

ϕqs, ϕdr, ϕqr ∈ R are the d- and q-axis of the stator and rotor fluxes; ωs > 0

is the constant angular velocity of the synchronously rotating reference frame;

ωr > 0 is the rotor angular velocity; and Rs, Rr are the stator and rotor

resistances. The flux equations are [63]

ϕds = Lsids + Lmidr, (2.5)

ϕqs = Lsiqs + Lmiqr, (2.6)

ϕdr = Lmids + Lridr, (2.7)

ϕqr = Lmiqs + Lriqr, (2.8)
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where Ls, Lr, and Lm are the stator, rotor, and mutual inductances, respec-

tively, satisfying Ls > Lm and Lr > Lm. From (2.5)–(2.8), the current equa-

tions can be written as

ids =
1

σLs
ϕds −

Lm

σLsLr
ϕdr, (2.9)

iqs =
1

σLs
ϕqs −

Lm

σLsLr
ϕqr, (2.10)

idr = − Lm

σLsLr

ϕds +
1

σLr

ϕdr, (2.11)

iqr = − Lm

σLsLr

ϕqs +
1

σLr

ϕqr, (2.12)

where σ = (1 − L2
m

LsLr
) is the leak coefficient. Selecting the fluxes as state

variables and substituting (2.9)–(2.12) into (2.1)–(2.4), the electrical dynamics

in state space form can be written as

d

dt
ϕds = − Rs

σLs
ϕds + ωsϕqs +

RsLm

σLsLr
ϕdr + vds, (2.13)

d

dt
ϕqs = −ωsϕds −

Rs

σLs

ϕqs +
RsLm

σLsLr

ϕqr + vqs, (2.14)

d

dt
ϕdr =

RrLm

σLsLr

ϕds −
Rr

σLr

ϕdr + (ωs − ωr)ϕqr + vdr, (2.15)

d

dt
ϕqr =

RrLm

σLsLr

ϕqs − (ωs − ωr)ϕdr −
Rr

σLr

ϕqr + vqr. (2.16)

Neglecting power losses associated with the stator and rotor resistances, the

active and reactive stator and rotor powers are given by [64]

Ps = −vdsids − vqsiqs, (2.17)

Qs = −vqsids + vdsiqs, (2.18)

Pr = −vdridr − vqriqr, (2.19)

Qr = −vqridr + vdriqr, (2.20)
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and the total active and reactive powers of the turbine are

P = Ps + Pr, (2.21)

Q = Qs +Qr, (2.22)

where positive (negative) values of P and Q mean that the turbine injects

power into (draws power from) the grid.

The dynamics of the mechanical part of the wind turbine are represented

by a first-order model

J
d

dt
ωr = Tm − Te − Cfωr, (2.23)

where the rotor angular velocity ωr is another state variable, J is the moment

of inertia, Cf is the friction coefficient, Tm is the mechanical torque generated,

and Te is the electromagnetic torque given by [64]

Te = ϕqsids − ϕdsiqs, (2.24)

where positive (negative) values mean the turbine acts as a generator (motor).

The mechanical power captured by the wind turbine is given by [65]

Pm = Tmωr =
1

2
ρACp(λ, β)V

3
w , (2.25)

where ρ is the air density; A = πR2 is the area swept by the rotor blades of

radius R; Vw is the wind speed; and Cp(λ, β), commonly referred to as the

Cp-surface is the performance coefficient of the wind turbine, whose value is a

function [65] of the tip speed ratio λ ∈ (0,∞), defined as

λ =
ωrR

Vw
, (2.26)

as well as the blade pitch angle β, assumed to lie within some mechanical limits

βmin and βmax. This function is typically provided by turbine manufacturers

21



and may vary greatly from one turbine to another [65]. Therefore, to make

the results of this chapter broadly applicable to a wide variety of turbines, no

specific expression of Cp(λ, β) will be assumed, until it is absolutely necessary

in Section 2.4, to carry out simulations. Instead, Cp(λ, β) will only be assumed

to satisfy the following mild conditions for the purpose of analysis:

(A1) Function Cp(λ, β) is continuously differentiable in both λ and β over

λ ∈ (0,∞) and β ∈ [βmin, βmax].

(A2) There exists c ∈ (0,∞) such that for all λ ∈ (0,∞) and β ∈ [βmin, βmax],

we have Cp(λ, β) ≤ cλ. This condition is mild because it is equivalent

to saying that the mechanical torque Tm is bounded from above, since

Tm ∝ Cp(λ,β)

λ
according to (2.25) and (2.26).

(A3) For each fixed β ∈ [βmin, βmax], there exists λ1 ∈ (0,∞) such that for all

λ ∈ (0, λ1), we have Cp(λ, β) > 0. This condition is also mild because

turbines are designed to capture wind power over a wide range of λ,

including times when λ is small.

(A4) There exist c ∈ (−∞, 0) and c ∈ (0,∞) such that for all λ ∈ (0,∞) and

β ∈ [βmin, βmax], we have c ≤ ∂
∂λ
(Cp(λ,β)

λ
) ≤ c.

As it follows from the above, the wind turbine studied here is modeled

as a fifth-order, electromechanically-coupled, nonlinear dynamical system with

states [ϕds ϕqs ϕdr ϕqr ωr]
T , controls [vdr vqr β]T , outputs [P Q]T , exogenous

“disturbance” Vw, nonlinear state equations (2.13)–(2.16) and (2.23), and non-

linear output equations (2.17)–(2.22). Notice that the system dynamics are

strongly coupled: the “mechanical” state variable ωr affects the electrical dy-

namics bilinearly via (2.15) and (2.16), while the “electrical” state variables

[ϕds ϕqs ϕdr ϕqr]
T affect the mechanical dynamics quadratically via (2.9)–
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Figure 2.2: Structure of the multivariable, feedback/feedforward nonlinear con-
troller, developed based on original, nonlinear dynamics of the wind turbine.

(2.12), (2.24) and (2.23). Since the stator winding of the DFIG is directly

connected to the grid, for reliability reasons [vds vqs]
T are assumed to be fixed,

i.e., not to be controlled, in the rest of this chapter. Moreover, since (2.9)–(2.12)

represent a bijective mapping between [ϕds ϕqs ϕdr ϕqr]
T and [ids iqs idr iqr]

T

and since the currents [ids iqs idr iqr]
T , the rotor angular velocity ωr, and the

wind speed Vw can all be measured, a controller for this system has access to

its entire states (i.e., full state feedback is available) and its disturbance (i.e.,

the wind speed Vw). A block diagram of this system is shown on the right-hand

side of Figure 2.2.

2.3 Controller Design

In this section, a feedback/feedforward nonlinear controller of the form

depicted on the left-hand side of Figure 2.2 is presented. By adjusting the

rotor voltages vdr and vqr and the blade pitch angle β, the controller attempts

to make the active and reactive powers P and Q track, as closely as possible—

limited only by wind strength—some desired, time-varying references Pd and

Qd, presumably provided by a wind farm operator. When Pd is set to suffi-

ciently large, i.e., larger than what the turbine can possibly convert from wind,

23



it means the operator wants the turbine to operate in the MPT mode; other-

wise, the PR mode is sought. The value of Qd, along with that of Pd, reflects

a desired power factor PFd = Pd√
P 2
d
+Q2

d

the operator wants the turbine to also

maintain.

The controller development consists of three steps, which are described

in Sections 2.3.1–2.3.3, respectively.

2.3.1 Feedback Linearization and Pole Placement

For convenience, let us introduce the variables ϕ = [ϕds ϕqs ϕdr ϕqr]
T

and i = [ids iqs idr iqr]
T , and rewrite (2.9)–(2.12) and (2.13)–(2.16) in matrix

forms as follows:

ϕ̇ =







− Rs

σLs
ωs

RsLm

σLsLr
0

−ωs − Rs

σLs
0 RsLm

σLsLr
RrLm

σLsLr
0 − Rr

σLr
ωs

0 RrLm

σLsLr
−ωs − Rr

σLr







︸ ︷︷ ︸

A

ϕ+







0 0
0 0
1 0
0 1







︸ ︷︷ ︸

B

[
vdr
vqr

]

+







vds
vqs

−ωrϕqr

ωrϕdr






, (2.27)

i =







1
σLs

0 − Lm

σLsLr
0

0 1
σLs

0 − Lm

σLsLr

− Lm

σLsLr
0 1

σLr
0

0 − Lm

σLsLr
0 1

σLr






ϕ, (2.28)

where A and B are constant matrices and, as was pointed out at the end of

Section 2.2, both vds and vqs are constants not to be controlled. Note that the

only nonlinearities in (2.27) are the two products of the state variables, i.e.,

−ωrϕqr and ωrϕdr. Also note that these nonlinearities appear on the same rows

as the control variables vdr and vqr. Thus, feedback linearization [66] may be

used to cancel them and subsequently perform arbitrary pole placement [67],
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i.e., let

vdr = ωrϕqr −KT
1 ϕ+ u1, (2.29)

vqr = −ωrϕdr −KT
2 ϕ+ u2, (2.30)

where K1, K2 ∈ R
4, the first terms on the right-hand side of (2.29) and (2.30)

are intended to cancel the nonlinearities, the second terms are for pole place-

ment, and the third are new control variables u1 and u2, to be designed later.

To implement (2.29) and (2.30), full state feedback on the fluxes ϕ and

the rotor angular velocity ωr are needed. While the latter is relatively easy to

measure, the former is not. Fortunately, this difficulty can be circumvented by

first measuring the currents—which is feasible—and then calculating the fluxes

from (2.5)–(2.8). This explains the fourth input of the nonlinear controller

block in Figure 2.2.

Substituting (2.29) and (2.30) into (2.27) yields

ϕ̇ = (A− BK)ϕ+
[
vds vqs u1 u2

]T
, (2.31)

where K = [K1 K2]
T is the state feedback gain matrix. Since the electrical

elements in the DFIG are physically allowed to have much faster responses than

their mechanical counterparts, K in (2.31) may be chosen so that A − BK is

asymptotically stable with very fast eigenvalues. With this choice of K and

with relatively slow-varying u1 and u2 (recall that vds and vqs are constants),

the fourth-order linear differential equation (2.31) may be approximated by the

following static, linear equation:

ϕ = −(A−BK)−1
[
vds vqs u1 u2

]T
. (2.32)
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As a result, the fifth-order model described in (2.13)–(2.16) and (2.23) may

be approximated by the first-order model described in (2.23) along with al-

gebraic relationships (2.29), (2.30), and (2.32). As will be shown next, this

approximation greatly simplifies the design of u1 and u2. Therefore, we will

assume, in the sequel, that K is chosen so that the electrical dynamics (2.31)

are asymptotically stable and so fast that they may be approximated by (2.32).

2.3.2 Tracking of Desired Angular Velocity

The second step of the controller development involves constructing a

speed controller that ensures the angular velocity of the rotor, ωr, tracks a

desired, time-varying reference, ωrd, whenever possible. The construction may

be divided into four substeps as described below.

Substep 1. First, we show that the electromagnetic torque Te defined

in (2.24) may be expressed as a quadratic function of the new control variables

u1 and u2. From (2.24) and (2.28),

Te = ϕqsids − ϕdsiqs =
[
ϕqs −ϕds

]
[
ids
iqs

]

= ϕT







0 − 1
σLs

0 Lm

σLsLr
1

σLs
0 − Lm

σLsLr
0

0 0 0 0
0 0 0 0






ϕ. (2.33)

Equation (2.33) suggests that Te is a quadratic function of ϕ, while (2.32)

suggests that ϕ, in turn, is an affine function of u1 and u2, since vds and vqs in

(2.32) are assumed to be constants. Hence, Te must be a quadratic function

of u1 and u2. Indeed, an explicit expression can be obtained as follows: since
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A− BK is asymptotically stable and thus nonsingular, it may be written as

(A−BK)−1 =







d11 d12 d13 d14
d21 d22 d23 d24
d31 d32 d33 d34
d41 d42 d43 d44






, (2.34)

where each dij depends on A, B, and K. From (2.32)–(2.34),

Te =
Lm

σLsLr
[(d11vds + d12vqs + d13u1 + d14u2)(d41vds + d42vqs + d43u1 + d44u2)

− (d21vds + d22vqs + d23u1 + d24u2)(d31vds + d32vqs + d33u1 + d34u2)]

=
[
u1 u2

]
[
q1 q2
q2 q3

] [
u1

u2

]

+
[
b1 b2

]
[
u1

u2

]

+ a, (2.35)

where q1, q2, q3, b1, b2, and a are constants defined as

q1 =
Lm

σLsLr

(d13d43 − d23d33), (2.36)

q2 =
1

2

Lm

σLsLr

(d13d44 + d14d43 − d23d34 − d24d33), (2.37)

q3 =
Lm

σLsLr

(d14d44 − d24d34), (2.38)

b1 =
Lm

σLsLr

(
(d11vds + d12vqs)d43 + d13(d41vds + d42vqs)

− (d21vds + d22vqs)d33 − d23(d31vds + d32vqs)
)
, (2.39)

b2 =
Lm

σLsLr

(
(d11vds + d12vqs)d44 + d14(d41vds + d42vqs)

− (d21vds + d22vqs)d34 − d24(d31vds + d32vqs)
)
, (2.40)

a =
Lm

σLsLr

(
(d11vds + d12vqs)(d41vds + d42vqs)

− (d21vds + d22vqs)(d31vds + d32vqs)
)
. (2.41)

Substep 2. Next, we show that the quadratic function (2.35) relating

u1 and u2 to Te has a desirable feature: its associated Hessian matrix [ q1 q2
q2 q3 ]

is always positive definite, regardless of the parameters of the electrical part

of the DFIG, as well as the choice of the state feedback gain matrix K. The

following lemma formally states and proves this assertion:
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Lemma 2.1. The Hessian matrix [ q1 q2
q2 q3 ] in (2.35) is positive definite.

Proof. From (2.27), (2.31), (2.34), and (2.36)–(2.38), the determinant of A −

BK and the leading principal minors q1 and q1q3 − q22 of [ q1 q2
q2 q3 ] can be written

as

|A− BK| = ∆

(LsLr − L2
m)

2
, (2.42)

q1 =
RsL

2
m(∆

2
1 +∆2

2)

∆2
, (2.43)

q1q3 − q22 =
R2

sL
4
m

∆2
, (2.44)

where

∆ =
(
− RsLmk12 + (LsLr − L2

m)k13 − RsLrk14 +RrLs +RsLr

)
∆1

+
(
RsLmk11 +RsLrk13 + (LsLr − L2

m)k14 +RsRr − LsLr + L2
m

)
∆2, (2.45)

∆1 = RsLmk21 +RsLrk23 + (LsLr − L2
m)k24 +RrLs +RsLr,

∆2 = RsLmk22 + (−LsLr + L2
m)k23 +RsLrk24 +RsRr − LsLr + L2

m,

and kij is the ij entry of K. Since A − BK is nonsingular, Ls > Lm, and

Lr > Lm, it follows from (2.42) that ∆ 6= 0. Since ∆ 6= 0, it follows from

(2.44) that q1q3 − q22 > 0 and from (2.45) that ∆1 and ∆2 cannot be zero

simultaneously. The latter, along with (2.43), implies that q1 > 0. Since q1 > 0

and q1q3 − q22 > 0, [ q1 q2
q2 q3 ] in (2.35) must be positive definite.

Substep 3. Next, we show that there is a redundancy in the control

variables u1 and u2, which may be exposed via a coordinate change. Observe

from (2.23) that the first-order dynamics of ωr are driven by Te. Also observe

from Substeps 1 and 2 that Te is a convex quadratic function of u1 and u2.

Thus, we have two coupled control inputs (i.e., u1 and u2) collectively affecting
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one state variable (i.e., ωr), implying that there is a redundancy in the control

inputs, which may be exploited elsewhere (to be discussed in Section 2.3.3). To

expose this redundancy, first notice that because the Hessian matrix [ q1 q2
q2 q3 ] is

positive definite, it can be diagonalized, i.e., there exist an orthogonal matrixM

containing its eigenvectors and a diagonal matrix D containing its eigenvalues,

such that

MT

[
q1 q2
q2 q3

]

M = D. (2.46)

Indeed,

M =





q2√
q22+(λ1−q1)2

λ2−q3√
(λ2−q3)2+q22

λ1−q1√
q22+(λ1−q1)2

q2√
(λ2−q3)2+q22



 , D =

[
λ1 0
0 λ2

]

,

where

λ1,2 =
q1 + q3 ±

√

(q1 + q3)2 − 4(q1q3 − q22)

2
.

Next, consider the following coordinate change, which transforms u1 ∈ R and

u2 ∈ R in a Cartesian coordinate system into r ≥ 0 and θ ∈ [0, 2π) in a polar

coordinate system:

r =
√

z21 + z22 , θ = atan2(z2, z1), (2.47)

where

[
z1
z2

]

= D1/2MT

[
u1

u2

]

+
1

2
D−1/2MT

[
b1
b2

]

, (2.48)

atan2() denotes the four-quadrant arctangent function. In terms of the new

coordinates r and θ, it follows from (2.35) and (2.46)–(2.48) that

Te = r2 + a′, (2.49)
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where

a′ = a− 1

4

[
b1 b2

]
[
q1 q2
q2 q3

]−1 [
b1
b2

]

.

Using (2.36)–(2.41), a′ may be simplified to

a′ = −v2ds + v2qs
4ωsRs

, (2.50)

implying that it is always negative. Comparing (2.49) with (2.35) shows that

the coordinate change (2.47) and (2.48) allows us to decouple the control vari-

ables, so that in the new coordinates, r is responsible for driving the first-order

dynamics of ωr through Te of (2.49), while θ does not at all affect ωr (and,

hence, is redundant as far as the dynamics of ωr are concerned). The design of

r and θ will be discussed in Substep 4 and Section 2.3.3, respectively.

Substep 4. Finally, a speed controller is presented, which ensures that

the rotor angular velocity ωr tracks a desired time-varying reference ωrd, to

be determined in Section 2.3.3, provided that ωrd is not exceedingly large.

Combining (2.23) and (2.49) yields

Jω̇r = Tm(ωr, β, Vw)− r2 − a′ − Cfωr, (2.51)

where, according to (2.25),

Tm(ωr, β, Vw) =
1
2
ρACp(λ, β)V

3
w

ωr
. (2.52)

Here, Tm is written as Tm(ωr, β, Vw) to emphasize its dependence on ωr, β, and

Vw. Observe from (2.51) that, if the control input r2 were real-valued instead

of being nonnegative, feedback linearization may be applied to cancel all the

terms on the right-hand side of (2.51) and insert linear dynamics α(ωr − ωrd),

i.e., we may let

r2 = Tm(ωr, β, Vw)− a′ − Cfωr + α(ωr − ωrd), (2.53)
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so that

Jω̇r = −α(ωr − ωrd). (2.54)

By letting the controller parameter α be positive, (2.54) implies that ωr always

attempts to go to ωrd. Unfortunately, because r
2 cannot be negative, the speed

controller (2.53)—and, hence, the linear dynamics (2.54)—cannot be realized

whenever the right-hand side of (2.53) is negative. To alleviate this issue, (2.53)

is slightly modified by setting r2 to zero whenever that occurs, i.e.,

r2 = max{Tm(ωr, β, Vw)− a′ − Cfωr + α(ωr − ωrd), 0}. (2.55)

Notice that (2.55) contains a feedforward action involving the “disturbance”,

i.e., the wind speed Vw. This explains the first input of the nonlinear controller

block in Figure 2.2.

To analyze the behavior of the speed controller (2.55), suppose ωrd, β,

and Vw are constants and consider the function g, defined as

g(ωr, β, Vw) = Tm(ωr, β, Vw)− a′ − Cfωr. (2.56)

The following lemma says that g(ωr, β, Vw), when viewed as a function of ωr,

has a positive root ω
(1)
r , below which g(ωr, β, Vw) is positive:

Lemma 2.2. For each fixed β ∈ [βmin, βmax] and Vw > 0, there exists ω
(1)
r ∈

(0,∞) such that g(ω
(1)
r , β, Vw) = 0 and g(ωr, β, Vw) > 0 for all ωr ∈ (0, ω

(1)
r ).

Proof. Due to the fact that a′ in (2.50) is negative, there exists ωr,1 such

that −a′ − Cfωr > 0 for all ωr ∈ (0, ωr,1). Due to Assumption (A3) of

Section 2.2, (2.26), and (2.52), there exists ωr,2 such that Tm(ωr, β, Vw) > 0

for all ωr ∈ (0, ωr,2). Hence, from (2.56), we have g(ωr, β, Vw) > 0 for all
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ωr ∈ (0,min{ωr,1, ωr,2}). In addition, due to Assumption (A2), (2.26), (2.52),

(2.56), and a′ < 0, there exists ωr,3, sufficiently large, such that g(ωr,3, β, Vw) <

0. These two properties of g, along with Assumption (A1) and the Intermediate

Value Theorem, imply that there exists at least one positive root ωr satisfying

g(ωr, β, Vw) = 0. Letting ω
(1)
r be the first of such roots completes the proof.

The following theorem, derived based on Lemma 2.2, says that as long

as the desired rotor angular velocity ωrd is not exceedingly large, i.e., does not

exceed the first root ω
(1)
r of g(ωr, β, Vw), the closed-loop dynamics (2.51) and

(2.55) have an asymptotically stable equilibrium point at ωrd:

Theorem 2.1. Consider the first-order dynamics (2.51) and the speed con-

troller (2.55). Suppose ωrd, β, and Vw are constants, with ωrd satisfying 0 <

ωrd < ω
(1)
r . Then, for all ωr(0) > 0, limt→∞ ωr(t) = ωrd.

Proof. Substituting (2.55) into (2.51) and using (2.56) yield

Jω̇r = min{α(ωrd − ωr), g(ωr, β, Vw)}. (2.57)

Suppose 0 < ωrd < ω
(1)
r . We first show that ωr = ωrd is the unique equilibrium

point of (2.57). Suppose ωr = ωrd. Then, α(ωrd−ωr) in (2.57) is zero, whereas

g(ωr, β, Vw) in (2.57) is positive, due to Lemma 2.2. Thus, ω̇r = 0, implying that

ωrd is an equilibrium point. Next, suppose 0 < ωr < ωrd. Then, α(ωrd − ωr)

is positive, and so is g(ωr, β, Vw), due again to Lemma 2.2. Hence, ω̇r > 0,

implying that there is no equilibrium point to the left of ωrd. Finally, suppose

ωr > ωrd. Then, α(ωrd − ωr) is negative. Therefore, ω̇r < 0, implying that

there is no equilibrium point to the right of ωrd. From the above analysis,

we see that ωr = ωrd is the unique equilibrium point of (2.57). Next, we

show that the equilibrium point ωr = ωrd is asymptotically stable in that for
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all ωr(0) > 0, limt→∞ ωr(t) = ωrd. Consider a quadratic Lyapunov function

candidate V : (0,∞) → R, defined as

V (ωr) =
1

2
(ωr − ωrd)

2, (2.58)

which is positive definite with respect to the shifted origin ωr = ωrd. From

(2.57) and (2.58),

V̇ (ωr) =
1

J
(ωr − ωrd)min{α(ωrd − ωr), g(ωr, β, Vw)}. (2.59)

Note that whenever 0 < ωr < ωrd, α(ωrd − ωr) > 0 and g(ωr, β, Vw) > 0, so

that V̇ (ωr) < 0 according to (2.59). On the other hand, whenever ωr > ωrd,

α(ωrd − ωr) < 0, so that V̇ (ωr) < 0. Finally, when ωr = ωrd, V̇ (ωr) = 0.

Therefore, V̇ (ωr) is negative definite with respect to the shifted origin ωr = ωrd.

It follows from [66] that ωr = ωrd is asymptotically stable, i.e., for all ωr(0) > 0,

limt→∞ ωr(t) = ωrd.

Theorem 2.1 says that the first root ω
(1)
r is a critical root, for which ωrd

should never exceed, if we want ωr(t) to go to ωrd regardless of ωr(0). Figure 2.3

shows, for the MATLAB/Simulink R2007a model of Cp(λ, β) given in (2.70)

and (2.71), how the critical root ω
(1)
r depends on β and Vw. Notice from the

figure that ω
(1)
r is insensitive to β but proportional to Vw, meaning that the

larger the wind speed, the higher the “ceiling” on the desired rotor angular

velocity. Also notice that ω
(1)
r of more than 3500 in the per-unit system is

extremely large, meaning that for this particular turbine there is no need to be

concerned about ωrd exceeding ω
(1)
r .

2.3.3 Lyapunov-like Function and Gradient-based Approach

The third and final step of the controller development involves introduc-

ing a Lyapunov-like function, which measures the difference between the actual
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Figure 2.3: Critical root ω
(1)
r as a function of blade pitch angle β and wind

speed Vw.

and desired powers, and utilizing a gradient-based approach, which minimizes

this function.

Recall from the beginning of Section 2.3 that the objective of the con-

troller is to make the active and reactive powers, P and Q, track some desired

references, Pd and Qd, as closely as possible. In the MPT mode, where the goal

is to generate as much active power as possible while maintaining an accept-

able power factor, Pd is set to a value that far exceeds what the wind turbine

can possibly produce (e.g., in the per-unit system, Pd > 1), while Qd is set to

a value representing the desired power factor PFd = Pd√
P 2
d
+Q2

d

. In this mode,

making P and Q approach Pd and Qd is equivalent to maximizing the active

power output while preserving the power factor. In the PR mode, where the
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goal is to regulate the powers, both Pd and Qd are set to values representing

power demands from the grid. In this mode, making P and Q approach Pd

and Qd amounts to achieving power regulation. Hence, the values of Pd and Qd

reflect the mode the wind farm operator wants the wind turbine to operate in.

However, as far as the controller is concerned, it does not distinguish between

the two modes; all it does is try its best to drive P and Q to Pd and Qd.

To mathematically describe the aforementioned controller objective,

consider the following positive definite, quadratic Lyapunov-like function V

of the differences P − Pd and Q−Qd:

V =
1

2

[
P − Pd Q−Qd

]
[
wp wpq

wpq wq

]

︸ ︷︷ ︸

>0

[
P − Pd

Q−Qd

]

, (2.60)

where wp, wq, and wpq are design parameters that allow one to specify how the

differences P − Pd and Q−Qd, as well as their correlation (P − Pd)(Q−Qd),

should be penalized. With this V , the above controller objective can be restated

simply as: make V go to zero, because when this happens, P and Q must both

go to Pd and Qd. Since it is not always possible to achieve this objective—due

to the fact that the wind may not always be strong enough—below we will

attempt instead to make V as small as possible by minimizing it.

To minimize V , we first show that V is a function of ωrd, θ, β, Vw, Pd,

and Qd, i.e.,

V = f(ωrd, θ, β, Vw, Pd, Qd) (2.61)

for some f . Note from (2.60) that V depends on P , Q, Pd, and Qd. Also note

from (2.17)–(2.20), (2.21), and (2.22) that P and Q, in turn, depend on i, vdr,

and vqr (recall that vds and vqs are constants). Thus,

V = f1(i, vdr, vqr, Pd, Qd) (2.62)
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for some f1. Next, note from (2.9)–(2.12) that i depends on ϕ; from (2.29) and

(2.30) that vdr and vqr depend on ϕ, ωr, u1, and u2; and from (2.32) that ϕ

further depends on u1 and u2. Hence,

(i, vdr, vqr) = f2(ωr, u1, u2) (2.63)

for some f2. Furthermore, note from (2.47) and (2.48) that u1 and u2 depend

on r and θ, where r, in turn, depends on ωr, ωrd, β, and Vw through (2.55).

Therefore,

(u1, u2) = f3(ωr, ωrd, θ, β, Vw) (2.64)

for some f3. Finally, assuming that ωrd does not exceed the first root ω
(1)
r and

assuming that ωrd, β, and Vw are all relatively slow-varying (see below for a

discussion), Theorem 2.1 says that ωr goes to ωrd. Thus, after a short transient,

ωr ≈ ωrd. (2.65)

Combining (2.62)–(2.65), (2.61) is obtained as claimed.

Now observe that the first three variables (ωrd, θ, β) in (2.61) are yet

to be determined, while the last three variables (Vw, Pd, Qd) are exogenous but

known. Therefore, for each given (Vw, Pd, Qd), (ωrd, θ, β) can be chosen corre-

spondingly in order to minimize V . This defines a mapping from (Vw, Pd, Qd)

to (ωrd, θ, β), i.e.,

(ωrd, θ, β) = F (Vw, Pd, Qd) , argmin(x1,x2,x3) f(x1,x2,x3,Vw,Pd,Qd). (2.66)

In principle, the mapping F in (2.66) may be constructed either an-

alytically, by setting the gradient of f(·) to zero and solving for the mini-

mizer (ωrd, θ, β) in terms of (Vw, Pd, Qd), or numerically, by means of a three-

dimensional lookup table. Unfortunately, the former is difficult to carry out,
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since f , being composed of several nonlinear transformations (2.62)–(2.65), has

a rather complex expression. On the other hand, the latter is costly to generate

and can easily become obsolete due to variations in system parameters. More

important, selecting (ωrd, θ, β) as a static function of (Vw, Pd, Qd) as in (2.66)

may lead to steep jumps in (ωrd, θ, β) because Vw is ever-changing and may

change dramatically, and both Pd and Qd from the wind farm operator may

experience step changes. Such steep jumps are undesirable because large fluc-

tuations in ωrd may prevent ωr from tracking it, while discontinuous changes in

β may be mechanically impossible to realize, cause intolerable vibrations, and

substantially cut short the lifetime of the turbine blades.

To alleviate the aforementioned deficiencies of selecting (ωrd, θ, β) ac-

cording to (2.66), a gradient-based approach is considered for updating (ωrd, θ, β):

ω̇rd = −ǫ1
∂f

∂ωrd
, (2.67)

θ̇ = −ǫ2
∂f

∂θ
, (2.68)

β̇ = −ǫ3
∂f

∂β
, (2.69)

where ǫ1, ǫ2, ǫ3 > 0 are design parameters, which are meant to be relatively

small, especially ǫ1 and ǫ3, in order to avoid steep changes in ωrd and β. The

partial derivatives ∂f
∂ωrd

, ∂f
∂θ
, and ∂f

∂β
in (2.67)–(2.69) can be calculated in a

straightforward manner using (2.62)–(2.65), but are omitted from this chap-

ter due to space limitations. These partial derivatives are practically imple-

mentable since, like f , they depend on ωrd, θ, β, Vw, Pd, and Qd, all of which

are known. With this gradient-based approach, (ωrd, θ, β) is guaranteed to

asymptotically converge to a local minimum when (Vw, Pd, Qd) is constant, and

track a local minimum when (Vw, Pd, Qd) varies.
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Figure 2.4: Internal structure of the proposed nonlinear controller.

To help the readers better understand the proposed nonlinear controller

depicted in Figure 2.2 and described in this section, the internal structure of

this controller is revealed in Figure 2.4. Observe that each arrow in this figure

represents a signal, whereas each tiny box represents equations relating the

signals.

2.4 Simulation Studies

To demonstrate the effectiveness of the controller presented above, MAT-

LAB simulations have been carried out. To describe settings and results of the

simulations, both the per-unit system and the physical unit system will be

used, given that they are popular in the literature.

The simulation settings are as follows: we consider a 1.5MW, 575V,

60Hz wind turbine that is essentially adopted from the Distributed Resources

Library in MATLAB/Simulink R2007a. The values of the wind turbine pa-

rameters are: ωs = 1pu, Rs = 0.00706 pu, Rr = 0.005 pu, Ls = 3.071 pu, Lr =
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3.056 pu, Lm = 2.9 pu, vds = 1pu, vqs = 0pu, J = 10.08 pu, A = 4656.6m2,

R = 38.5m, βmin = 0deg, βmax = 30 deg, and Cf = 0.01 pu. The Cp-surface

adopted by MATLAB, which is taken from [68], is

Cp(λ, β) = c1

(c2
λi

− c3β − c4

)

e
−c5
λi + c6λ, (2.70)

where

1

λi
=

1

λ+ 0.08β
− 0.035

β3 + 1
, (2.71)

c1 = 0.5176, c2 = 116, c3 = 0.4, c4 = 5, c5 = 21, and c6 = 0.0068. The

mechanical power captured by the wind turbine is

Pm(pu) =
PnomPwind base

Pelec base
Cp(pu) Vw(pu)

3, (2.72)

where Pm(pu) = Pm

Pnom
, Pnom = 1.5MW is the nominal mechanical power,

Pwind base = 0.73 pu is the maximum power at the base wind speed, Pelec base =

1.5× 106/0.9VA is the base power of the electrical generator, Cp(pu) =
Cp

Cp nom
,

Cp nom = 0.48 is the peak of the Cp-surface, Vw(pu) = Vw

Vw base
, and Vw base =

12m/s is the base wind speed. Note that the maximum mechanical power, cap-

tured at the base wind speed, is 0.657 pu. The tip speed ratio is λ(pu) =
ωr(pu)
ωr base

Vw(pu)
,

where λ(pu) = λ
λnom

, λnom = 8.1 is the λ that yields the peak of the Cp-

surface, ωr base = 1.2 pu is the base rotational speed, ωr(pu) = ωr

ωr nom
, and

ωr nom = 2.1039 rad/sec is the nominal rotor angular velocity. For more details

on these parameters and values, see the MATLAB documentation.

For the proposed controller, we let the desired poles of the electrical

dynamics (2.31) be located at−15, −5, and −10±5j, so that the corresponding

state feedback gain matrix K, calculated using MATLAB’s place() function,

is

K =

[
5135.9 259.2 20.3 1.9
−2676.7 4289.9 −1.3 19.7

]

.
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Figure 2.5: Scenario 1 illustrating the maximum power tracking (MPT) mode.

In addition, we let wp = 10, wq = 1, and wpq = 0, implying that we penalize

the difference between P and Pd much more than we do Q and Qd. Finally, we

choose the rest of the controller parameters as follows: α = 10, ǫ1 = 4× 10−3,

ǫ2 = 1× 10−4, and ǫ3 = 2.

Based on the above wind turbine and controller parameters, simulations

have been carried out for four different scenarios. Description of each scenario,

along with the simulation result, is given below:

Scenario 1: Maximum power tracking (MPT) mode. In this scenario,

we simulate the situation where the wind speed Vw experiences step changes

between 12m/s and 7.2m/s, while the desired powers Pd and Qd are kept
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constant at 1.5MW and 0.15MW, so that the desired power factor is PFd =

0.995. Since Pm cannot exceed 0.657×1.5MW at the base wind speed Vw base =

12m/s, the wind turbine is expected to operate in the MPT mode. Figure 2.5

shows the simulation result for this scenario, where the key signals are plotted

as functions of time in both the per-unit and physical unit systems wherever

applicable. Observe that, after a short transient, the wind turbine converts

as much wind energy to electric energy as it possibly could, as indicated by

Cp approaching its maximum value of 0.48 in subplot 2 (which translates into

P approaching its maximum possible value in subplot 3). Also observe that,

when Vw goes from 12m/s to 7.2m/s and from 7.2m/s back to 12m/s, Cp

drops sharply but quickly returns to its maximum value. Note from subplot

4 that, regardless of Vw, the power factor PF is maintained near the desired

level of 0.995. Moreover, note from subplots 5 and 6 that the angular velocity

ωr tracks the desired time-varying reference ωrd closely (subplot 6 is a zoom-in

version of subplot 5). Finally, the control inputs vdr, vqr, and β are shown in

subplots 7 and 8, respectively. Note that, to maximize Cp, β is kept at its

minimum value βmin = 0deg.

Scenario 2: Power regulation (PR) mode. In this scenario, we simulate

the situation where Vw is kept constant at the base value of 12m/s, while Pd

experiences step changes from 0.45MW to 0.3MW and then to 0.6MW, and

Qd is such that PFd = 0.995. Since Pd is always less than 0.657 × 1.5MW at

the base wind speed of 12m/s, the wind turbine is expected to operate in the

PR mode with different setpoints Pd. Figure 2.6 shows the simulation result for

this scenario. Observe from subplot 2 that Cp is less than its maximum value

of 0.48. This suggests that the wind turbine attempts to capture less power

than what it possibly could from wind, since Pd is relatively small. Indeed, as
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Figure 2.6: Scenario 2 illustrating the power regulation (PR) mode.

can be seen from subplots 3 and 4, the turbine produces just enough active and

reactive powers, making P track Pd closely while maintaining PF at PFd. Also

observe from subplots 5 and 6 that ωr closely follows ωrd, as desired. Finally,

note from subplot 8 that β increases slightly in order to capture less power

between 1200s and 2400s, when Pd is smallest.

Scenario 3: Seamless switching between the MPT and PR modes. In

this scenario, we simulate the situation where Pd experiences large step changes

between 1.5MW and 0.75MW, Qd again is such that PFd is 0.995, and an

actual wind profile from a wind farm located in northwest Oklahoma is used

to define Vw. The actual wind profile consists of 145 samples, taken at the
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Figure 2.7: Scenario 3 illustrating the seamless switching between the MPT and
PR modes under an actual wind profile from a wind farm located in northwest
Oklahoma.

rate of one sample per 10 minutes, over a 24-hour period. In order to use this

wind profile in a 1-hour simulation (as in Scenarios 1 and 2), we compress the

time scale, assuming that the samples were taken over a 1-hour period. Note

that compressing the time scale in this way makes the problem more challenging

because the wind speed varies faster than it actually does. Figure 2.7 shows the

simulation result for this scenario, with subplot 1 displaying the wind profile.

Observe from subplots 2 and 3 that, for the first 1200 seconds during which

Pd is 1.5MW, the turbine operates in the MPT mode, grabbing as much wind

energy as it possibly could, by driving Cp to 0.48 and maximizing P . At time

1200s when Pd abruptly drops from 1.5MW to 0.75MW, the turbine seamlessly
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Figure 2.8: Contour plots of the nominal and actual Cp(λ, β) for Scenario 4.

switches from the MPT mode to the PR mode, quickly reducing Cp, accurately

regulating P around Pd, and effectively rejecting the “disturbance” Vw. Note

that between 2100s and 2400s, the wind is not strong enough to sustain the

PR mode. As a result, the MPT mode resumes seamlessly, as indicated by Cp

returning immediately to its maximum value of 0.48. Finally, at time 2400s

when Pd goes from 0.75MW back to 1.5MW, the turbine keeps working in

the MPT mode, continuing to maximize both Cp and P . Notice from subplots

4–6 that, over the course of the simulation, both PF and ωr are maintained at

PFd and ωrd, respectively, despite the random wind fluctuations. Also notice

from subplot 8 that β increases somewhat during the PR mode in order to help

capture less power.

Scenario 4: Robustness of the proposed controller. In this scenario, we
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simulate the exact same situation as that of Scenario 3 (i.e., with the same

Vw, Pd, and Qd) but with modeling errors and measurement noise. That is,

we allow for modeling errors in the friction coefficient Cf and the performance

coefficient Cp (due, for example, to changing weather conditions, blade erosions,

and aging) as well as measurement noise in the wind speed Vw (since Vw is

usually measured by an anemometer located on the nacelle behind the blades

of a wind turbine). Specifically, we assume that the nominal Cf used by the

controller is 0.01(pu), whereas the actual Cf used in the simulation is 0.012(pu),

so that Cf has a 20% modeling error. Moreover, we assume that the nominal Cp

used by the controller is given by (2.70) and (2.71) with c1 = 0.5176, c2 = 116,

c3 = 0.4, c4 = 5, c5 = 21, and c6 = 0.0068, whereas the actual Cp used in

the simulation is also given by (2.70) and (2.71) but with c1 = 0.45, c2 = 115,

c3 = 0.5, c4 = 4.5, c5 = 22, and c6 = 0.003. Figure 2.8 displays the contour

plots of the nominal and actual Cp(λ, β) for λ ∈ [2, 15] and β ∈ [0, 15], showing

that Cp has noticeable modeling errors. In particular, the nominal Cp attains

its maximum of 0.48 at (λ, β) = (8.1, 0), whereas the actual Cp attains its

maximum of 0.39 at (λ, β) = (8.45, 0). Finally, we assume that the measured

Vw used by the controller, denoted as Vw meas, is related to the actual Vw used

in the simulation via

Vw meas(t) = Vw(t) + 0.5 + 0.5 sin(0.5t) + 0.25 cos(t),

where the second term on the right-hand side represents a constant measure-

ment bias, while the third and fourth represent measurement noises with differ-

ent amplitudes and frequencies. Figure 2.9 shows the simulation result for this

scenario. Comparing this figure with Figure 2.7, the following observations can

be made: first, Cp in Figure 2.9 attains its maximum value of 0.39 in the MPT

45



0 1000 2000 3000
0

0.5

1

1.5

Time (s)

P
er

u
n
it

Wind speed

0 1000 2000 3000
0

6

12

18

m
/
s

Vw

0 1000 2000 3000
0

0.2
0.4
0.6
0.8

1

Time (s)

P
er

u
n
it

Performance coefficient

0 1000 2000 3000
0
0.096
0.192
0.288
0.384
0.48

Cp

0 1000 2000 3000
0

0.5

1

Time (s)

P
er

u
n
it

Active power

MPT

PR

MPT

0 1000 2000 3000
0

0.75

1.5

M
W

Pd

P

0 1000 2000 3000
0.9

0.95

1

1.05

Time (s)

Power factor

PFd

PF

0 1000 2000 3000
−0.5

0

0.5

1

Time (s)

P
er

u
n
it

Rotor voltages

0 1000 2000 3000
−235

0

235

470

V

vdr
vqr

0 1000 2000 3000
0

1

2

3

Time (s)

D
eg

re
e

Blade pitch angle

β

0 1000 2000 3000
0

0.5

1

1.5

2

Time (s)

P
er

u
n
it

Angular velocity

0 1000 2000 3000
0

1

2

3

4

ra
d
/
s

ωrd
ωr

1000 1100 1200 1300 1400
0.85

0.95

1.05

Time (s)
P
er

u
n
it

Angular velocity (zoom in)

1000 1100 1200 1300 1400
1.7

1.9

2.1

ra
d
/
s

ωrd
ωr

Figure 2.9: Scenario 4 illustrating the robustness of the proposed controller to
modeling errors in Cf and Cp and noisy measurements in Vw.

mode, as opposed to the 0.48 attained by Cp in Figure 2.7. Second, PF in Fig-

ure 2.9 has a larger fluctuation compared to PF in Figure 2.7, but nonetheless

is maintained around PFd. Third, ωr in Figure 2.9 does not track ωrd as closely

as ωr in Figure 2.7 does. Nevertheless, despite the wind fluctuations, modeling

errors, and noisy measurements, the controller performs reasonably well, as

evident by how close Cp is to its maximum value of 0.39 in the MPT mode,

how close P is to Pd in the PR mode, and how close PF is to PFd throughout

the simulation. Therefore, the controller is fairly robust.

As it follows from Figures 2.5–2.9 and the above discussions, the pro-

posed controller exhibits excellent performance. Specifically, the controller

46



works well in both the MPT mode under step changes in the wind speed (Sce-

nario 1) and the PR mode under step changes in the power commands (Scenario

2). In addition, it is capable of seamlessly switching between the two modes

in the presence of changing power commands and a realistic, fluctuating wind

profile (Scenario 3). Finally, the controller is robust to small modeling errors

and noisy measurements commonly encountered in practice (Scenario 4).

2.5 Conclusion

In this chapter, we have developed a feedback/feedforward nonlinear

controller, which accounts for the nonlinearities of variable-speed wind turbines

with doubly fed induction generators, and bypasses the need for approximate

linearization. Its development is based on applying a mixture of linear and

nonlinear control design techniques on three time scales, including feedback

linearization, pole placement, and gradient-based minimization of a Lyapunov-

like potential function. Simulation results have shown that the proposed scheme

not only effectively controls the active and reactive powers in both the MPT

and PR modes, it also ensures seamless switching between the two modes.

Therefore, the proposed controller may be recommended as a candidate for

future wind turbine control.
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Chapter 3 Voltage/Pitch Control for Maximization
and Regulation of Active/Reactive Powers

in Wind Turbines with Uncertainties

3.1 Introduction

In the previous chapter, we developed a nonlinear controller that simul-

taneously enables control of the active power in both the MPT and PR modes,

seamless switching between the two, and control of the reactive power so that

a desirable power factor is maintained. These objectives were achieved by ad-

justing the rotor voltages of the electrical part and the blade pitch angle of

the mechanical part, where the coupling between the two parts were taken into

account in the controller design. Like most of the existing work in wind turbine

control, however, the controller assumed that the aerodynamic and mechanical

parameters were known.

In this chapter, we develop a controller that achieves such objectives

and, at the same time, addresses the two aforementioned challenges, on uncer-

tainties in the aerodynamic and mechanical parameters, and coupling between

the mechanical and electrical parts. For the former, we show that the paramet-

ric uncertainties can be lumped into a scalar term, estimated via an uncertainty

estimator in an inner loop, and circumvented in an outer, gradient-based mini-

mization loop. For the latter, we show that the electromechanical coupling can

be eliminated via feedback linearization on the electrical dynamics, following
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ideas from the previous chapter. Finally, we analyze the controller developed

and demonstrate its effectiveness through simulation with realistic wind profiles

from a wind farm in Oklahoma.

The outline of this chapter is as follows: Section 3.2 formulates the

problem. Section 3.3 describes the proposed controller. Section 3.4 presents

the simulation results. Finally, Section 3.5 concludes this chapter.

3.2 Problem Formulation

Given the wind turbine model described in Section 2.2, the problem

addressed in this chapter is: design a feedback controller, so that the active

and reactive powers P and Q closely track some desired, possibly time-varying

references Pd and Qd, assumed to be provided by a wind farm operator. When

Pd is larger than what the wind turbine is capable of generating, it means that

the operator wants the turbine to operate in the MPT mode; otherwise, the

PR mode is sought. By also providing Qd, the operator indirectly specifies a

desired power factor PFd = Pd√
P 2
d
+Q2

d

, around which the actual power factor

PF = P√
P 2+Q2

should be regulated. The controller may use i, ωr, P , and Q,

which are all measurable, as feedback. The fluxes ϕ may also be viewed as

feedback, since they are bijectively related to i through (2.5)–(2.8). Moreover,

the controller may use values of all the electrical parameters (i.e., ωs, Rs, Rr,

Ls, Lr, Lm, vds, and vqs) and turbine-geometry-dependent parameters (i.e.,

J , A, R, βmin, and βmax), since these values are typically quite accurately

known. However, it may not use values of the Cp-surface, the air density ρ,

and the friction coefficient Cf , since these values are inherently uncertain and

can change over time. Furthermore, the controller should not rely on the wind
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Figure 3.1: Model of the wind turbine and architecture of the nonlinear con-
troller.

speed Vw, since it may not be accurately measured.

3.3 Controller Design

In this section, we address the aforementioned problem by developing

a nonlinear controller consisting of four subcontrollers. Figure 3.1 shows the

architecture of the nonlinear controller, which accepts Pd and Qd as reference

inputs, uses i, ωr, P , and Q as feedback, and produces vdr, vqr, and β as control

inputs to the wind turbine. Moreover, the different gray levels of the blocks

in Figure 3.1 represent our intended time-scale separation in the closed-loop

dynamics: the darker a block, the slower its dynamics. The subcontrollers will

be described in Sections 3.3.1–3.3.4.
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3.3.1 Rotor Voltages Subcontroller

Observe that although the electrical dynamics (2.27) are nonlinear, they

possess a nice structure: the first and second rows of (2.27) are affine, consist-

ing of linear terms and the constants vds and vqs, while the third and fourth

are nonlinear, consisting of linear terms, the control variables vdr and vqr, and

the nonlinearities −ωrϕqr and ωrϕdr. Since the nonlinearities enter the dynam-

ics the same way the control variables vdr and vqr do, we may use feedback

linearization [66] to cancel them and perform pole placement [67], i.e., let

vdr = ωrϕqr −KT
1 ϕ+ u1, (3.1)

vqr = −ωrϕdr −KT
2 ϕ+ u2, (3.2)

where ωrϕqr and −ωrϕdr are intended to cancel the nonlinearities, −KT
1 ϕ and

−KT
2 ϕ with K1, K2 ∈ R

4 are for pole placement, and u1 and u2 are new control

variables to be designed in Section 3.3.2.

Substituting (3.1) and (3.2) into (2.27), we get

ϕ̇ = (A− BK)ϕ+
[
vds vqs u1 u2

]T
, (3.3)

where K = [K1 K2]
T is the state feedback gain matrix. Since the electrical

dynamics are physically allowed to be much faster than the mechanicals, we

may choose K in (3.3) to be such that A− BK is asymptotically stable with

very fast eigenvalues. With K chosen as such and with relatively slow-varying

u1 and u2, the linear differential equation (3.3) may be approximated by a

linear algebraic equation:

ϕ = −(A−BK)−1
[
vds vqs u1 u2

]T
. (3.4)

Consequently, the fifth-order state equations (2.27) and (2.23) may be approxi-

mated by the first-order state equation (2.23) along with algebraic relationships
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(3.1), (3.2), and (3.4). This approximation will be made in all subsequent de-

velopment (but not in simulation).

Note that (2.5)–(2.8), (3.1), and (3.2) describe the Rotor Voltages Sub-

controller block in Figure 3.1.

3.3.2 Electromagnetic Torque Subcontroller with Uncertainty Esti-
mation

Having addressed the electrical dynamics, we now consider the mechani-

cals, where the goal is to construct a subcontroller, which makes the rotor angu-

lar velocity ωr track a desired, slow-varying reference ωrd, despite not knowing

the aerodynamic and mechanical parameters listed at the end of Section 3.2.

To come up with such a subcontroller, we first introduce a coordinate

change. As was shown in the previous chapter, the electromagnetic torque Te

may be expressed as a quadratic function of the new control variables u1 and

u2, i.e.,

Te =
[
u1 u2

]
[
q1 q2
q2 q3

] [
u1

u2

]

+
[
b1 b2

]
[
u1

u2

]

+ a, (3.5)

where q1, q2, q3, b1, b2, and a depend on the electrical parameters and the

state feedback gain matrix K. Moreover, this quadratic function is always

convex because its associated Hessian matrix [ q1 q2
q2 q3 ] is always positive definite.

Since the mechanical dynamics (2.23), in ωr, are driven by Te, while Te in (3.5)

is a quadratic function of u1 and u2, the two new control variables u1 and u2

collectively affect one state variable ωr. This implies that there is a redundancy

in u1 and u2. Since the quadratic function is always convex, this redundancy

may be exposed via the following coordinate change:

r =
√

z21 + z22 , θ = atan2(z2, z1), (3.6)
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where
[
z1
z2

]

= D1/2MT

[
u1

u2

]

+
1

2
D−1/2MT

[
b1
b2

]

, (3.7)

atan2() denotes the four-quadrant arctangent function, and M and D con-

tain the eigenvectors and eigenvalues of [ q1 q2
q2 q3 ] on their columns and diagonal,

respectively. In the polar coordinates, it follows from (3.5)–(3.7) that

Te = r2 + a′, (3.8)

where a′ = −v2
ds
+v2qs

4ωsRs
is always negative. From (2.23) and (3.8), we see that in

the polar coordinates, r2 is responsible for driving the mechanical dynamics in

ωr and, hence, may be viewed as an equivalent electromagnetic torque, differed

from Te only by a constant a′. On the other hand, the polar angle θ has no

impact on the mechanical dynamics and, thus, represents the redundancy that

will be exploited later, in Section 3.3.3.

Note that (3.6) and (3.7) describe the Cartesian-to-Polar Coordinate

Change block in Figure 3.1.

Having introduced the coordinate change, we next show that the un-

known aerodynamic and mechanical parameters can be lumped into a scalar

term, simplifying the problem. Combining (2.23), (2.25), (2.26), and (2.49),

Jω̇r =
1
2
ρACp(

ωrR
Vw

, β)V 3
w

ωr

− r2 − a′ − Cfωr. (3.9)

Notice that the unknown parameters—namely, the Cp-surface, the air density

ρ, the friction coefficient Cf , and the wind speed Vw—all appear in (3.9). More-

over, these unknown parameters can be separated from the “control input” r2

and lumped into a scalar function g(ωr, β, Vw), defined in (2.56) and rewritten

as

g(ωr, β, Vw) =
1
2
ρACp(

ωrR
Vw

, β)V 3
w

ωr
− a′ − Cfωr. (3.10)
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With g(ωr, β, Vw) in (3.10) representing the aggregated uncertainties, the first-

order dynamics (3.9) are simplified to

ω̇r =
1

J
(g(ωr, β, Vw)− r2). (3.11)

To design a controller, which allows the rotor angular velocity ωr to

track a desired, slow-varying reference ωrd despite the unknown scalar function

g(ωr, β, Vw), consider a first-order nonlinear system

ẋ =
1

J
(f(x) + u), (3.12)

where x ∈ R is the state, u ∈ R is the input, and f(x) is a known function of

x. Obviously, to drive x to some desired value xd ∈ R, we may apply feedback

linearization [66] to cancel f(x) and insert linear dynamics, i.e., let

u = −f(x)− α(x− xd), (3.13)

where α ∈ R is the controller gain. Combining (3.12) with (3.13) yields the

closed-loop dynamics

ẋ = −α

J
(x− xd). (3.14)

Thus, if α is positive, x in (3.14) asymptotically goes to xd.

Now suppose f(x) in (3.12) is unknown but a constant, denoted simply

as f ∈ R (we will relax the assumption that it is a constant shortly). With

f being unknown, the controller (3.13) is no longer applicable. To overcome

this limitation, we may first introduce a reduced-order estimator [69], which

calculates an estimate f̂ ∈ R of f , and then replace f(x) in (3.13) by the
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estimate f̂ :

ż = −h

J
(u+ f̂), (3.15)

f̂ = z + hx, (3.16)

u = −f̂ − α(x− xd), (3.17)

where z ∈ R is the estimator state and h ∈ R is the estimator gain. Defining

the estimation error as f̃ = f− f̂ and combining (3.12) with (3.15)–(3.17) yield

closed-loop dynamics

˙̃f = − ˙̂
f = −ż − hẋ = −h

J
f̃ , (3.18)

ẋ =
1

J
(f − f̂ − α(x− xd)) =

1

J
(f̃ − α(x− xd)). (3.19)

Hence, by letting both α and h be positive, both f̃ and x in (3.18) and (3.19)

asymptotically go to 0 and xd, respectively.

Next, suppose both the state x and the desired value xd must be posi-

tive, instead of being anywhere in R. With this restriction, the controller with

uncertainy estimation (3.15)–(3.17) needs to be modified, because for some ini-

tial conditions, it is possible that x can become nonpositive. One way to modify

the controller is to replace the linear term x−xd in (3.17) by a logarithmic one

ln x
xd
, resulting in

u = −f̂ − α ln
x

xd
. (3.20)

With (3.15), (3.16), and (3.20), the closed-loop dynamics become

˙̃f = −h

J
f̃ , (3.21)

ẋ =
1

J
(f̃ − α ln

x

xd

). (3.22)
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Note from (3.22) that for any f̃ ∈ R, there exists positive x, sufficiently small,

such that ẋ is positive. Therefore, for any initial condition (f̃(0), x(0)) with

positive x(0), x(t) will remain positive, suggesting that the modification (3.20)

satisfies the restriction.

Now suppose the input u must be nonpositive. With this additional

restriction, (3.20) needs to be further modified. One way to do so is to force

the right-hand side of (3.20) to be nonpositive, leading to

u = −max{f̂ + α ln
x

xd

, 0}. (3.23)

Clearly, with (3.23), u is always nonpositive.

Finally, suppose f is an unknown function of x, denoted as f(x). With

this relaxation, we may associate the first-order nonlinear system (3.12) with

the first-order dynamics (3.11) by viewing x as ωr, xd as ωrd, u as −r2, f(x) as

g(ωr, β, Vw) (treating β and Vw as constants), and f̂ as ĝ (i.e., ĝ is an estimate

of g(ωr, β, Vw)). Based on this association, (3.15), (3.16), and (3.23) can be

written as

ż = −h

J
(−r2 + ĝ), (3.24)

ĝ = z + hωr, (3.25)

r2 = max{ĝ + α ln
ωr

ωrd
, 0}. (3.26)

Having derived the controller with uncertainty estimation (3.24)–(3.26),

we now analyze its behavior. To do so, some setup is needed: first, suppose

ωrd, β, and Vw are constants. Second, as was shown in Chapter 2, because

of Assumptions (A1)–(A3) in Section 2.2, there exists ω
(1)
r ∈ (0,∞) such that

g(ω
(1)
r , β, Vw) = 0 and g(ωr, β, Vw) > 0 for all ωr ∈ (0, ω

(1)
r ). Third, using
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(2.26), (3.10), and Assumptions (A1) and (A4), it is straightforward to show

that there exist γ ∈ (−∞, 0) and γ ∈ (0,∞) such that γ ≤ ∂
∂ωr

g(ωr, β, Vw) ≤ γ

for all ωr ∈ (0,∞). Finally, with (3.11) and (3.24)–(3.26) and with (ωr, ĝ) as

state variables (instead of (ωr, z)), the closed-loop dynamics can be expressed

as

ω̇r =
1

J
(g(ωr, β, Vw)−max{ĝ + α ln

ωr

ωrd
, 0}), (3.27)

˙̂g = ż + hω̇r =
h

J
(g(ωr, β, Vw)− ĝ). (3.28)

The following theorem characterizes the stability properties of the closed-

loop system (3.27) and (3.28):

Theorem 3.1. Consider the closed-loop system (3.27) and (3.28). Suppose

ωrd, β, and Vw are constants with 0 < ωrd ≤ ω
(1)
r , where ω

(1)
r , along with γ and

γ, is as defined above. Let D = {(ωr, ĝ)|0 < ωr ≤ ω
(1)
r , ĝ ∈ R} ⊂ R

2. If the

controller gain α is positive and the estimator gain h is sufficiently large, i.e.,

h > γ if γ ≥ −1
3
γ,

h > − (γ−γ)2

8(γ+γ)
otherwise,

(3.29)

then: (i) the system has a unique equilibrium point at (ωrd, g(ωrd, β, Vw)) in

D; (ii) the set D is a positively invariant set, i.e., if (ωr(0), ĝ(0)) ∈ D, then

(ωr(t), ĝ(t)) ∈ D ∀t ≥ 0; and (iii) the equilibrium point (ωrd, g(ωrd, β, Vw)) is

locally asymptotically stable with a domain of attraction D.

Proof. First, we show (i). Setting ω̇r and ˙̂g in (3.27) and (3.28) to zero yields

g(ωr, β, Vw) = max{ĝ + α ln ωr

ωrd
, 0} and ĝ = g(ωr, β, Vw). When ĝ + α ln ωr

ωrd
≥

0, we have ωr = ωrd and ĝ = g(ωrd, β, Vw). Thus, (ωrd, g(ωrd, β, Vw)) is an

equilibrium point, which is in D, since 0 < ωrd ≤ ω
(1)
r . On the other hand,

when ĝ + α ln ωr

ωrd
< 0, we have ωr ∈ Ω and ĝ = 0, where Ω = {ω ∈ (0,∞) :
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g(ω, β, Vw) = 0} and ω
(1)
r = minΩ. Since ĝ + α ln ωr

ωrd
< 0 and ĝ = 0, we have

ωr < ωrd. Since ωr ∈ Ω, ω
(1)
r = minΩ, and ωrd ≤ ω

(1)
r , we have ωr ≥ ωrd.

Hence, there is a contradiction, implying that when ĝ + α ln ωr

ωrd
< 0, there is

no equilibrium point in D. This proves (i).

Next, we show (ii). To do so, it is useful to think of D as a vertical

strip in the state space (ωr, ĝ). Notice that on the right boundary of the

strip where ωr = ω
(1)
r , because of (3.27) and because g(ω

(1)
r , β, Vw) = 0 and

max{ĝ + α ln ω
(1)
r

ωrd
, 0} ≥ 0, we have ω̇r ≤ 0. Thus, the state (ωr, ĝ) cannot

escape D through the right boundary. Next, note that for each fixed ĝ ∈ R,

there exists ω⋆
r > 0 such that for all ωr ∈ (0, ω⋆

r), ĝ + α ln ωr

ωrd
< 0. This, along

with (3.27) and the fact that g(ω, β, Vw) > 0 for all ω ∈ (0, ω
(1)
r ), implies that

near the left boundary of the strip where ωr is arbitrarily small but positive,

we have ω̇r > 0. Hence, the state (ωr, ĝ) cannot escape D through the left

boundary. This proves (ii).

Finally, we show (iii). Consider a Lyapunov function candidate V :

D → R, defined as V (ωr, ĝ) = αc(ωr ln
ωr

ωrd
− ωr + ωrd) +

1
2
(g(ωr, β, Vw) − ĝ)2,

where c > 0 is to be determined. Note that V is continuously differentiable

over D. Moreover, V is positive definite over D with respect to the equilibrium

point (ωrd, g(ωrd, β, Vw)), since V (ωrd, g(ωrd, β, Vw)) = 0 and V (ωr, ĝ) > 0 for

all (ωr, ĝ) 6= (ωrd, g(ωrd, β, Vw)) due to the property ωr ln
ωr

ωrd
− ωr + ωrd > 0

for all ωr 6= ωrd. Furthermore, V is unbounded toward the top, bottom, and

left boundary of the vertical strip D, but not so toward the right boundary of

D. This is because for each fixed ωr ∈ (0, ω
(1)
r ], lim|ĝ|→∞ V (ωr, ĝ) = ∞, and

for each fixed ĝ ∈ R, limωr→0 V (ωr, ĝ) = ∞ and V (ω
(1)
r , ĝ) < ∞. Note that

although V is not unbounded toward the right boundary of D, the state (ωr, ĝ)

cannot cross this boundary due to (ii).
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Differentiating V and using (3.27) and (3.28), we get

JV̇=

[
αc ln ωr

ωrd
+ (g − ĝ) ∂g

∂ωr

−(g − ĝ)

]T[
g −max{ĝ + α ln ωr

ωrd
, 0}

h(g − ĝ)

]

,

where the function arguments are omitted. Note that because of (ii) and the

above properties of V , to show (iii), it suffices to show that V̇ is negative definite

over D with respect to the equilibrium point (ωrd, g(ωrd, β, Vw)). To this end,

let D be partitioned into two disjoint sets D1 = {(ωr, ĝ) ∈ D : ĝ+α ln ωr

ωrd
≥ 0}

and D2 = {(ωr, ĝ) ∈ D : ĝ + α ln ωr

ωrd
< 0}. Note that the equilibrium point

(ωrd, g(ωrd, β, Vw)) is in D1.

Suppose (ωr, ĝ) ∈ D1. Then, V̇ takes a quadratic form:

JV̇ = =−
[
ln ωr

ωrd

g − ĝ

]T[
α2c α

2
( ∂g
∂ωr

− c)
α
2
( ∂g
∂ωr

− c) h− ∂g
∂ωr

][
ln ωr

ωrd

g − ĝ

]

.

Note that if (ωr, ĝ) = (ωrd, g(ωrd, β, Vw)), V̇ = 0. Also, the leading principal

minors of the above symmetric matrix are α2c and α2c(h− 1
4c
( ∂g
∂ωr

+ c)2). Thus,

if h and c satisfy

h− 1

4c
(
∂

∂ω
g(ω, β, Vw) + c)2 > 0, ∀ω ∈ (0,∞), (3.30)

then this symmetric matrix is positive definite, so that V̇ < 0 for any (ωr, ĝ) 6=

(ωrd, g(ωrd, β, Vw)). Therefore, if h and c satisfy (3.30), V̇ is negative definite

over D1 with respect to (ωrd, g(ωrd, β, Vw)).

Next, suppose (ωr, ĝ) ∈ D2. Then, V̇ is bounded from above by a

quadratic form:

JV̇ = −hĝ2 + (2h− ∂g

∂ωr

)gĝ + (
∂g

∂ωr

− h)g2 + αcg ln
ωr

ωrd

≤ −hĝ2 + (2h− ∂g

∂ωr

)gĝ + (
∂g

∂ωr

− h)g2 − cgĝ

= −
[
ĝ
g

]T [
h 1

2
( ∂g
∂ωr

+ c− 2h)
1
2
( ∂g
∂ωr

+ c− 2h) h− ∂g
∂ωr

] [
ĝ
g

]

.
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Note that the leading principal minors of the above symmetric matrix are h

and c(h − 1
4c
( ∂g
∂ωr

+ c)2). Thus, if h and c satisfy (3.30), then this symmetric

matrix is positive definite. Since (ωr, ĝ) ∈ D2 and ωrd ≤ ω
(1)
r , if ĝ = 0, then

g > 0. Thus, ĝ and g cannot be zero simultaneously. Hence, V̇ < 0. Therefore,

if h and c satisfy (3.30), V̇ is negative over D2.

As it follows from the above, if h and c satisfy (3.30), V̇ is negative

definite over D with respect to the equilibrium point (ωrd, g(ωrd, β, Vw)), so

that (iii) holds.

It remains to show that if h satisfies (3.29), then there exists c > 0

such that (3.30) holds. Suppose h satisfies (3.29). Let F (γ, γ) = γ if γ ≥

−1
3
γ and F (γ, γ) = − (γ−γ)2

8(γ+γ)
otherwise. Then, h > F (γ, γ). Let f(x, γ, γ) =

1
4x

max{(γ+x)2, (γ+x)2}, where x > 0. Then, it can be shown that F (γ, γ) =

minx>0 f(x, γ, γ) by considering the following three cases separately: γ ≥ −γ,

−γ > γ ≥ −1
3
γ, and −1

3
γ > γ. Because h > F (γ, γ), there exists c > 0,

given by c = argminx>0 f(x, γ, γ), such that h > f(c, γ, γ). Because γ ≤
∂
∂ω
g(ω, β, Vw) ≤ γ for all ω ∈ (0,∞) and by definition of f(x, γ, γ), we have

1
4c
( ∂
∂ω
g(ω, β, Vw)+c)2 ≤ f(c, γ, γ) for all ω ∈ (0,∞). Since h > f(c, γ, γ), (3.30)

holds, as desired.

Theorem 3.1 says that, by using the electromagnetic torque subcon-

troller with uncertainty estimation (3.24)–(3.26), if the gains α and h are posi-

tive and sufficiently large and if the desired reference ωrd does not exceed ω
(1)
r ,

then the rotor angular velocity ωr asymptotically converges to ωrd if ωrd, β,

and Vw are constants and closely tracks ωrd if they are slow-varying. Notice

that the gains α and h can be chosen independently of each other. Also, the

condition “ωrd ≤ ω
(1)
r ” is practically always satisfied, as ω

(1)
r is extremely large
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(see Figure 2.3).

Note that (3.24)–(3.26) describe the Electromagnetic Torque Subcon-

troller with Uncertainty Estimation block in Figure 3.1.

3.3.3 Polar Angle and Desired Rotor Angular Velocity Subcon-
troller

Up to this point in the chapter, we have yet to specify how θ, ωrd, and

β are determined. To do so, we first introduce a scalar performance measure

and express this measure as a function of θ, ωrd, and β. We then present a

method for choosing these variables, which optimizes the measure.

Recall that the ultimate goal is to make the active and reactive powers

P and Q closely track some desired references Pd and Qd. Hence, it is useful

to introduce a scalar performance measure, which characterizes how far P and

Q are from Pd and Qd. One such measure, denoted as U , is given by (2.60)

U =
1

2

[
P − Pd Q−Qd

]
[
wp wpq

wpq wq

] [
P − Pd

Q−Qd

]

,

where wp, wq, and wpq are design parameters satisfying wp > 0 and wpwq > w2
pq,

so that [
wp wpq
wpq wq ] is a positive definite matrix. With these design parameters,

one may specify how the differences P − Pd and Q − Qd and their product

(P −Pd)(Q−Qd) are penalized. Moreover, with U being a quadratic, positive

definite function of P−Pd and Q−Qd, the smaller U is, the better the ultimate

goal is achieved.

Having defined the performance measure U , we next establish the fol-

lowing statement: if the subcontrollers in Sections 3.3.1 and 3.3.2 are used with

K chosen so that A − BK has very fast eigenvalues, α chosen to be positive,

and h chosen to satisfy (3.29), and if θ, ωrd, β, Vw, Pd, and Qd are all constants,

61



�� �
 ��� Unknown �� �

 
Known 

Known 

��  � 
! "# Unknown 

function "$ Known 
function 

Known 

T
o 

be
 d

et
er

m
in

ed
 ��� 

Figure 3.2: Relationships among the performance measure U , the to-be-
determined variables θ, ωrd, and β, and the exogenous variables Vw, Pd, and
Qd.

then after a short transient, U may be expressed as a known function f1 of r2,

θ, ωrd, Pd, and Qd, while r
2, in turn, may be expressed as an unknown function

f2 of ωrd, β, and Vw, i.e.,

U = f1(r
2, θ, ωrd, Pd, Qd), (3.31)

r2 = f2(ωrd, β, Vw), (3.32)

as shown in Figure 3.2. To establish this statement, suppose the hypothesis is

true. Then, after a short transient, it follows from (2.60) that U is a known

function of P , Q, Pd, and Qd; from (2.5)–(2.8), (2.17)–(2.22), (2.29), and (2.30)

that P and Q are known functions of ϕ, ωr, u1, and u2; from (2.32) that ϕ

is a known function of u1 and u2; from (2.47) and (2.48) that u1 and u2 are

known functions of r2 and θ; and from Theorem 3.1 that ωr = ωrd. Thus,

(3.31) holds with f1 being known. On the other hand, it follows from (3.26)

and Theorem 3.1 that r2 = g(ωrd, β, Vw). Hence, (3.32) holds with f2 being

unknown.

Equations (3.31) and (3.32), which are represented in Figure 3.2, sug-

gest that U is a function of the to-be-determined variables θ, ωrd, and β as

well as the exogenous variables Vw, Pd, and Qd. Given that the smaller U

is the better, these to-be-determined variables may be chosen to minimize U .
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However, such minimization is difficult to carry out because although Pd and

Qd are known, Vw is not. To make matter worse, since f1 is known but f2 is

not, the objective function is not entirely known. Somewhat fortunately, as

was shown in Figure 3.2, θ affects U only through f1 and not f2. Therefore, θ

may be chosen to minimize U for any given r2, ωrd, Pd, and Qd, i.e.,

θ = argminx∈[−π,π) f1(r
2, x, ωrd, Pd, Qd), (3.33)

which is implementable since r2, ωrd, Pd, and Qd are all known. Alternatively,

θ may be chosen as in (3.33) but with a low-pass filter inserted to reduce

chattering, such as a moving-average filter, i.e.,

θ(t) =
1

Tma

∫ t

t−Tma

argminx∈[−π,π) f1
(
r2(τ), x, ωrd(τ), Pd(τ), Qd(τ)

)
dτ. (3.34)

With θ chosen as in (3.34), the minimization problem reduces from a three-

dimensional problem to a two-dimensional one, depending only on ωrd and β.

Since the objective function upon absorbing θ is unknown and since Vw may

change quickly, instead of minimizing U with respect to both ωrd and β—which

may take a long time—we decide to sacrifice freedom for speed, minimizing U

only with respect to ωrd and updating β in a relatively slower fashion, which

will be described in Section 3.3.4.

The minimization of U with respect to ωrd is carried out based on a

gradient-like approach as shown in Figure 3.3. To explain the rationale behind

this approach, suppose β, Vw, Pd, and Qd are constants. Then, according to

(3.31)–(3.34), U is an unknown function of ωrd. Because this function is not

known, its gradient ∂U
∂ωrd

at any ωrd cannot be evaluated. To alleviate this

issue, we evaluate U at two nearby ωrd’s, use the two evaluated U ’s to obtain

an estimate of the gradient ∂U
∂ωrd

, and move ωrd along the direction where U
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decreases, by an amount which depends on the gradient estimate. This idea is

illustrated in Figure 3.3 and described precisely as follows: the desired rotor

angular velocity ωrd(t) is set to an initial value ωrd(0) at time t = 0 and held

constant until t = T1, where T1 should be sufficiently large so that both the

electrical and mechanical dynamics have a chance to reach steady-state, but not

too large which causes the minimization to be too slow. From time t = T1−T0

to t = T1, the average of U(t), i.e., 1
T0

∫ T1

T1−T0
U(t)dt, is recorded as the first

value needed to obtain a gradient estimate. Similar to T1, T0 should be large

enough so that small fluctuations in U(t) (induced perhaps by a noisy Vw) are

averaged out, but not too large which causes transient in the dynamics to be

included. The variable ωrd(t) is then changed gradually in an S-shape manner

from ωrd(0) at time t = T1 to a nearby ωrd(0)+∆ωrd(T1) at t = T1+T2, where

∆ωrd(T1) is an initial stepsize, and T2 should be sufficiently large but not overly

so, so that the transition in ωrd(t) is smooth and yet not too slow. The variable

ωrd(t) is then held constant until t = 2T1 + T2, and the average of U(t) from

t = 2T1 + T2 − T0 to t = 2T1 + T2, i.e.,
1
T0

∫ 2T1+T2

2T1+T2−T0
U(t)dt, is recorded as the

second value needed to obtain the gradient estimate. At time t = 2T1+T2, the

two recorded values are used to form the gradient estimate, which is in turn

used to decide a new stepsize ∆ωrd(2T1 + T2) through

∆ωrd(2T1 + T2) = −ǫ1 sat

(
1
T0

∫ 2T1+T2

2T1+T2−T0
U(t)dt− 1

T0

∫ T1

T1−T0
U(t)dt

ǫ2∆ωrd(T1)

)

, (3.35)

where ǫ1 > 0 and ǫ2 > 0 are design parameters that define the new stepsize

∆ωrd(2T1+ T2), and sat() denotes the standard saturation function that limits

∆ωrd(2T1+T2) to ±ǫ1. Upon deciding ∆ωrd(2T1+T2), ωrd(t) is again changed

in an S-shape manner from ωrd(0) + ∆ωrd(T1) at t = 2T1 + T2 to ωrd(0) +

∆ωrd(T1) + ∆ωrd(2T1 + T2) at t = 2T1 + 2T2, in a way similar to the time
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Figure 3.3: A graphical illustration of the gradient-like approach.

interval [T1, T1 + T2]. The process then repeats with the second recorded value

from the previous cycle [0, 2T1 + T2] becoming the first recorded value for the

next cycle [T1 + T2, 3T1 + 2T2], and so on. Therefore, with this gradient-like

approach, ωrd is guaranteed to approach a local minimum when β, Vw, Pd, and

Qd are constants, and track a local minimum when they are slow-varying.

Note that (2.60), (3.34), and (3.35) describe the Polar Angle and Desired

Rotor Angular Velocity Subcontroller block in Figure 3.1.

3.3.4 Blade Pitch Angle Subcontroller

As was mentioned, to speed up the minimization, we have decided to

minimize U only with respect to ωrd, leaving the blade pitch angle β as the

remaining undetermined variable. Given that an active power P that is larger

than the rated value Prated of the turbine may cause damage, we decide to use β

to prevent P from exceeding Prated. Specifically, we let β be updated according

to

β̇ =







0 if β = βmin and P < Prated,

0 if β = βmax and P > Prated,

−ǫ3(Prated − P ) otherwise,

(3.36)
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where ǫ3 > 0 is a design parameter that dictates the rate at which β changes.

Note that with (3.36), β is guaranteed to lie between βmin and βmax. Moreover,

when P is above (below) Prated, β increases (decreases) if possible, in order to

try to capture less (more) wind power, which leads to a smaller (larger) P .

Note that (3.36) describes the Blade Pitch Angle Subcontroller block in

Figure 3.1.

3.4 Simulation Results

To demonstrate the capability and effectiveness of the proposed con-

troller, simulation has been carried out in MATLAB. To describe the simula-

tion settings and results, both the per-unit and physical unit systems will be

used interchangeably.

As for the proposed controller, we choose its parameters as follows: for

the Rotor Voltages Subcontroller, we let the desired closed-loop eigenvalues

of the electrical dynamics be at −5, −10 ± 5j, and −15. Using MATLAB’s

place() function, the state feedback gain matrix K that yields these eigenval-

ues is

K =

[
5135.9 259.2 20.3 1.9
−2676.7 4289.9 −1.3 19.7

]

.

Moreover, we let α = 5 and h = 17.5 for the Electromagnetic Torque Subcon-

troller with Uncertainty Estimation; let wp = 10, wq = 1, wpq = 0, ǫ1 = 0.025,

ǫ2 = 2, T0 = 1 s, T1 = 4 s, and T2 = 6 s and use (3.34) with Tma = 0.75 s for the

Polar Angle and Desired Rotor Angular Velocity Subcontroller; and let ǫ3 = 3

and Prated = 1pu for the Blade Pitch Angle Subcontroller.

The simulation results are as follows: we consider a scenario where the

wind speed Vw is derived from actual wind profiles from a wind farm located
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Figure 3.4: Effective operation in both the MPT and PR modes and seamless
switching between them under an actual wind profile from a wind farm located
in northwest Oklahoma.

in northwest Oklahoma, the desired active power Pd experiences large step

changes, and the desired reactive power Qd is such that the desired power

factor PFd is fixed at 0.995. As will be explained below, the values of Pd

force the turbine to operate in both the MPT and PR modes, along with

switching between them, under realistic wind profiles. Figures 3.4 and 3.5

show the simulation results for this scenario in both the per-unit and physical

unit systems. Note that in Figure 3.4, for the first 1200 seconds during which Pd

is unachievable at 1 pu, the turbine operates in the MPT mode and maximizes

P , as indicated by the value of Cp approaching its maximum of 0.48 after

a short transient (the turbine is initially at rest). At time 1200s when Pd
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drops sharply from 1 pu to an achievable value of 0.35 pu, the turbine quickly

reduces the value of Cp, accurately regulates P around Pd, and effectively rejects

the “disturbance” Vw, thereby smoothly switches from the MPT mode to the

PR mode. At time 2400s when Pd goes from 0.35 pu back to 1 pu, the MPT

mode resumes. Because Vw is strong enough at that time, P approaches Pd.

Moreover, the moment P exceeds Pd (which is equal to Prated), the blade pitch

angle β increases in order to clip the power and protect the turbine. At time

2700s when Vw becomes weaker, β returns to βmin = 0deg, thereby allowing the

value of Cp to return to its maximum of 0.48 and P to be maximized. As can

be seen from the figure, throughout the simulation, PF is maintained near PFd,

affected only slightly and relatively shortly by the random wind fluctuations.

Moreover, the angular velocity ωr tracks the desired time-varying reference ωrd

closely. As expected, the small S-shape variations in ωrd resemble those in

Figure 3.3. Notice that similar observations can be made in Figure 3.5, which

shows additional simulation results with a different wind profile and different

desired active and reactive powers.

The above simulation results suggest that the proposed controller not

only is capable of operating effectively in both the MPT and PR modes, it is

also capable of switching smoothly between them—all while not knowing the

Cp-surface, air density, friction coefficient, and wind speed.

3.5 Conclusion

In this chapter, we have designed a controller for a variable-speed wind

turbine with a DFIG. The controller has been developed based on a fifth-

order, electromechanically-coupled, nonlinear model of the wind turbine by
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Figure 3.5: Operation with a different wind profile and different desired active
and reactive powers.

integrating several control strategies and exploiting time-scale separation in

the dynamics. We have shown that the controller is able to make the wind

turbine operate in both the MPT and PR modes and switch smoothly between

them, while maintaining a desired power factor. Furthermore, the controller

does not require knowledge of the Cp-surface, air density, friction coefficient,

and wind speed. Simulation has been carried out using realistic wind profiles,

and the results demonstrate the capability and effectiveness of the controller.
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Chapter 4 An Approximate Wind Turbine Control

System Model for Wind Farm Power
Control

4.1 Introduction

In this chapter, we propose a mathematical wind turbine control sys-

tem (WTCS) model that is aimed at a nifty design and deep analysis and

understanding of a supervisory wind farm controller. To this end, suppose we

have developed, or are given, a WTCS—call it WTCS∗—and wish to design a

WFC. Also suppose, at our disposal, is a mathematical model parameterized by

a vector θ—call it WTCSθ—which, like WTCS∗ (or each WTCS in Figure 1.1),

maps inputs (Pd, Qd, Vw) to outputs (P,Q), i.e., (P,Q) = WTCSθ(Pd, Qd, Vw).

Consider the following conditions on the model WTCSθ:

(C1) There exists a θ such that whenever WTCSθ and WTCS∗ are driven

by the same inputs (Pd, Qd, Vw), they produce approximately the same

outputs (P,Q).

(C2) WTCSθ may be a nonlinear dynamical system but has a favorable struc-

ture conducive to control systems analysis and design.

(C3) There is a set of WTCSs in the literature such that for each WTCS in

the set, there exists a θ such that whenever WTCSθ and the WTCS are

driven by the same inputs (Pd, Qd, Vw), they produce approximately the

same outputs (P,Q).
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Note that if (C1) holds, WTCSθ—with the specific value of θ—would be an

accurate approximation of WTCS∗ and, thus, may be used in place of WTCS∗

in the WFC design and WFCS analysis. If, in addition, (C2) holds, the design

and analysis would be more likely to succeed due to the favorable structure of

WTCSθ. If (C3) holds as well, WTCSθ—with different values of θ—would be

able to also approximate a number of different WTCSs in the literature (or by

different manufacturers), making it a versatile model that brings WTCS∗ and

those WTCSs under the same umbrella, distinguished only by θ. It follows that

the design and analysis outcomes (e.g., new control techniques, stability crite-

ria, and performance formulas) are applicable not only to WTCS∗, but perhaps

also to those WTCSs, increasing their impact. Hence, having an approximate

model WTCSθ that satisfies conditions (C1)–(C3) is extremely valuable.

This chapter is devoted to the development of such a model. We first

assume, in Section 4.2, that two generic models of WTCS∗ are given, namely,

an analytical model described by a set of continuous-time nonlinear differential

equations, and an empirical model described by a set of input-output measure-

ment data. The latter is motivated by the fact that in practice, what is available

may just be a set of data, rather than a mathematical model, due to legacy and

proprietary reasons. Based on standard system identification approaches [70]

and typical WTCS characteristics, we then develop, in Section 4.3, an ap-

proximate model WTCSθ, which attempts to imitate both the analytical and

empirical models. For each of these two models, we also provide a parameter

identification scheme that sequentially determines the θ required in (C1), which

is a vector of 10 parameters (two functions and eight scalars). The approximate

model, depicted in Figure 4.2(c), may be regarded as satisfying (C2) because

it is made up of two structurally identical parts—one for active power and the
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other for reactive—each of which is a third-order system that would have been

linear if not for a static nonlinear component at its inputs (i.e., a modified Ham-

merstein model [70, 71]). Next, we validate, in Section 4.4, the approximate

model via simulation, showing that it has enough ingredients to closely imitate

several different analytical and empirical models from the literature [1–4] and

from real data taken from an Oklahoma wind farm. The encouraging results

suggest that the approximate model satisfies (C3) and, hence, may be used

to facilitate the design and analysis of a second-to-minute-timescale supervi-

sory WFC that yields a sophisticated WFCS. Finally, Section 4.5 concludes the

chapter.

4.2 Models of Wind Turbine Control Systems

In this section, we describe a generic analytical model and a generic em-

pirical model of a WTCS. These two models set the stage for the development

of an approximate model that mimics the dynamic performance of the WTCS,

when it provides primary generation services to the grid.

4.2.1 Analytical Model

To control a variable-speed wind turbine, a standard approach is to

first model its dynamics based on first principles, and then design a controller

based on known techniques. Regardless of the model and design, the resulting

WTCS typically can be represented in a block diagram form as in Figure 4.1,

and described generically by a set of continuous-time, nonlinear differential
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Vw(t) 

  Pd(t), Qd(t) P(t), Q(t) 
Controller 

u(t) 

y(t) 

(optional) 

Wind 
Turbine 

Figure 4.1: Block diagram of a wind turbine control system.

equations in state-space form as follows:

ẋ(t) = f(x(t), Pd(t), Qd(t), Vw(t)), x(0) = x0, (4.1)

(P (t), Q(t)) = g(x(t), Pd(t), Qd(t), Vw(t)). (4.2)

Here, t ≥ 0 denotes time; x(t) ∈ R
n is the system states combining the wind

turbine states (e.g., stator and rotor fluxes or currents, rotor angular veloc-

ity) and controller states (if any); x(0) is the initial states; f and g are func-

tions depending on the particular wind turbine model (e.g., fourth-order [63] or

second-order [64] doubly fed induction generator (DFIG) dynamics or second-

order permanent magnet synchronous generator (PMSG) dynamics [72], and

rigid-shaft or flexible-shaft [64] mechanical dynamics) and the particular con-

troller design (e.g., one of the designs in [1, 3, 5, 51, 52, 73–77]) including their

parameters (e.g., resistances, inductances, rotor moment of inertia, rotor swept

area, Cp-surface, air density, friction coefficient, controller gains); Pd(t), Qd(t),

P (t), and Q(t) are, respectively, the system inputs and outputs representing

the desired and actual active and reactive powers, where positive values mean

toward the grid; Vw(t) is another system input representing the wind speed;

u(t) is the internal control signals (e.g., rotor voltages, blade pitch angle, elec-

tromagnetic torque); and y(t) is the internal feedback signals (e.g., various

voltages and currents, rotor angular velocity, actual powers).
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In this chapter, we assume that a generic analytical model of a WTCS,

in the form of (4.1) and (4.2), is given as the first of two models consid-

ered. In order to represent as many WTCSs in the literature as possible,

we make only two assumptions about the analytical model (4.1) and (4.2):

first, the inputs (Pd(t), Qd(t), Vw(t)) are always in an operating region S ,

[0, Pd,MAX] × [−Qd,MAX, Qd,MAX] × [0, Vw,MAX]. Second, the WTCS is reason-

ably well-designed, i.e., the functions f and g are such that for each con-

stant (Pd(t), Qd(t), Vw(t)) = (P̄d, Q̄d, V̄w) ∈ S, there exist steady-state val-

ues (Pss, Qss), depending possibly on (P̄d, Q̄d, V̄w), such that for every x(0),

limt→∞(P (t), Q(t)) = (Pss, Qss). Finally, we allow Qd(t) and Q(t) to be absent,

since many existing WTCSs do not consider the reactive power (e.g., [74–76]),

and Pd(t) to be absent as well, since some existing WTCSs do not require it to

be specified (e.g., [4, 15, 21, 78, 79]). However, we require P (t) and Vw(t) to be

present, since they are essential to WTCSs.

4.2.2 Empirical Model

Although it is common to work with a mathematical model in research

on WTCSs, in practice we may not have access to the inner working of a WTCS,

due perhaps to legacy and proprietary reasons. Instead, what may be available

to us is a set of input-output measurement data, so that we have no choice but

to treat the WTCS as a “black box.” The set of data can take various forms,

but more often than not includes the following information:

Inputs Outputs
Pd(0) Qd(0) Vw(0) P (0) Q(0)
Pd(∆) Qd(∆) Vw(∆) P (∆) Q(∆)

...
...

...
...

...
Pd((D−1)∆) Qd((D−1)∆) Vw((D−1)∆) P ((D−1)∆) Q((D−1)∆)

(4.3)
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where ∆ > 0 is the sampling period which is usually on the order of seconds

or minutes, and D is the number of data points which is usually large.

In this chapter, we assume that a generic empirical model of a WTCS,

in the form of (4.3), is given as the second of the two models considered.

Similar to the analytical model (4.1) and (4.2), in the empirical model (4.3)

the columns Pd(i∆), Qd(i∆), and Q(i∆) are optional but the columns Vw(i∆)

and P (i∆) are mandatory. However, unlike the analytical one where the inputs

(Pd(t), Qd(t), Vw(t)) can be arbitrarily specified, with this empirical model we

have no control over the inputs (Pd(i∆), Qd(i∆), Vw(i∆)), as they are simply

given, in the first three columns. This difference will be accounted for shortly.

Remark 4.1. The two models of WTCSs in this section may be thought of as

the WTCS∗ in Section 4.1.

4.2.3 Discussion

The analytical model (4.1) and (4.2) and the empirical model (4.3) are

what our approximate model intends to imitate. As will be described in Sec-

tion 4.3, our approach is based on postulating a static nonlinear model that

matches the steady-state input-output characteristics, followed by enriching the

model with linear dynamics so that it also matches the transient input-output

behaviors. A benefit of this input-output approach is that it bypasses the need

to consider the internal dynamics and specific details of the underlying WTCS,

thereby allowing major types of generation technologies such as DFIG, PMSG,

and IG to be approximately described using a simple, consistent model. More

important, such a model enables one to approximately describe a large number

of same or different types of WTCSs within a wind farm in a unified fash-

ion, so that researchers may focus on other pressing issues when designing a
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comprehensive WFCS and understanding its attainable performance.

4.3 Proposed Approximate Model

In this section, we develop a simple mathematical model that approxi-

mates the analytical and empirical WTCS models in Section 4.2, and a param-

eter identification scheme that determines the model parameters in each case.

The development consists of three steps in both cases, as described below.

4.3.1 Approximating the Analytical Model

Step 1: Mimicking the steady-state responses to constant in-

puts

In general, to create a system that mimics another system, it is reason-

able to demand that the two systems exhibit the same steady-state responses to

constant inputs. With this in mind, we note that whenever the analytical model

(4.1) and (4.2) is subject to constant inputs (Pd(t), Qd(t), Vw(t)) = (P̄d, Q̄d, V̄w),

its outputs (P (t), Q(t)) asymptotically converge to some steady-state values

(Pss, Qss), which depend only on (P̄d, Q̄d, V̄w) and not on the initial states

x(0). This dependency suggests that there exist functions ϕ1 : S → R and

ϕ2 : S → R, such that Pss = ϕ1(P̄d, Q̄d, V̄w) and Qss = ϕ2(P̄d, Q̄d, V̄w). It also

suggests a static nonlinear model of the form

P (t) = ϕ1(Pd(t), Qd(t), Vw(t)), (4.4)

Q(t) = ϕ2(Pd(t), Qd(t), Vw(t)), (4.5)

which is capable of mimicking—at the very least—the steady-state outputs

of the analytical model (4.1) and (4.2) whenever the inputs are constant, or

slow-varying. To visually connect this Step 1 with subsequent steps of the
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Figure 4.2: Step-by-step development of the proposed approximate model.

development, a block diagram of the model (4.4) and (4.5) is shown in Fig-

ure 4.2(a).

Remark 4.2. Throughout the chapter, the subscripts 1 and 2 are used to dis-

tinguish between similar parameters or variables associated with the active and

reactive powers (e.g., ϕ1 is for active and ϕ2 is for reactive in Figure 4.2(a)).

The functions ϕ1 and ϕ2 are (infinite-dimensional) parameters of the

model (4.4) and (4.5), which can be identified by simulating the analytical
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model (4.1) and (4.2) with various constant inputs sufficiently covering the

operating region S, observing the steady-state outputs, and employing inter-

polation. The following procedure provides the details:

Procedure for Step 1

1)Pick a large N1 ∈ N = {1, 2, . . . }.

2)Pick (P
(i)
d , Q

(i)
d , V

(i)
w ) ∈ S for i = 1, 2, . . . , N1.

3)Pick a large T > 0.

4)Loop over i = 1, 2, . . . , N1.

5)Let (Pd(t), Qd(t), Vw(t)) = (P
(i)
d , Q

(i)
d , V

(i)
w ) ∀ t ∈ [0, T ].

6)Pick any x(0).

7)Simulate the analytical model (4.1) and (4.2) from t = 0 to t = T .

8)Record (P (T ), Q(T )).

9)Let ϕ1(P
(i)
d , Q

(i)
d , V

(i)
w ) = P (T ) and ϕ2(P

(i)
d , Q

(i)
d , V

(i)
w ) = Q(T ).

10)End loop.

11)Determine ϕ1 and ϕ2 via interpolation on the N1 data points obtained.

Applying the above procedure to identify the functions ϕ1 and ϕ2, we

obtain a basic model (4.4) and (4.5) that exhibits the same steady-state be-

havior as that of (4.1) and (4.2).

Step 2: Mimicking the transient responses to staircase inputs

The basic model (4.4) and (4.5) in Figure 4.2(a) is able to match the

steady-state response of the analytical model (4.1) and (4.2). However, it fails

to produce any kind of transient one would expect with WTCSs because (4.4)

and (4.5) are merely static functions mapping the inputs (Pd(t), Qd(t), Vw(t))

to the outputs (P (t), Q(t)). To alleviate this drawback, we insert into Fig-
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ure 4.2(a) first-order linear dynamics between ϕ1(·) and P (t) and between ϕ2(·)

and Q(t), to arrive at a Hammerstein model (see [71] and Chapter 5.2 of [70])

shown in Figure 4.2(b) and given by

Ṗ (t) = − 1
τ1
P (t) + 1

τ1
ϕ1(Pd(t), Qd(t), Vw(t)), (4.6)

Q̇(t) = − 1
τ2
Q(t) + 1

τ2
ϕ2(Pd(t), Qd(t), Vw(t)), (4.7)

where τ1 > 0 and τ2 > 0 are the time constants. Note that in steady-state,

(4.6) and (4.7) reduce to (4.4) and (4.5). Hence, (4.6) and (4.7) are able to

capture not only the steady-state behavior of the analytical model (4.1) and

(4.2), but also the dominant mode of its transient behavior with proper choices

of τ1 and τ2.

The time constants τ1 and τ2 can be identified using a general approach

in system identification sometimes known as the prediction-error methods (see

Chapter 7 of [70]). With this approach, we first choose specific inputs and use

them to simulate the analytical model (4.1) and (4.2) and the model (4.6) and

(4.7), the latter with different values of τ1 and τ2. We then compare the outputs

of the two models and determine the best τ1 and τ2, which minimize the output

differences. The following procedure details this approach, in which we choose

the inputs to be random staircase signals because they tend to bring out the

dominant mode in systems, and allow any Lp norm to be used for measuring

the output differences:

Procedure for Step 2

1)Pick a large N2 ∈ N.

2)Pick (P
(i)
d , Q

(i)
d , V

(i)
w ) ∈ S for i = 1, 2, . . . , N2 randomly, independently, and

equiprobably.

3)Use the T in Step 1.
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4)Let (Pd(t), Qd(t), Vw(t))=(P
(i)
d , Q

(i)
d , V

(i)
w ) ∀ t∈[(i−1)T, iT ) for i=1, 2, . . . , N2.

5)Pick any x(0).

6)Simulate the analytical model (4.1) and (4.2) from t = 0 to t = N2T .

7)Record (P (t), Q(t)) ∀ t ∈ [0, N2T ] as (Pan(t), Qan(t)).

8)Pick a large N3 ∈ N.

9)Pick τ
(i)
1 > 0 and τ

(i)
2 > 0 for i = 1, 2, . . . , N3.

10)Use the ϕ1 and ϕ2 identified in Step 1.

11)Pick any (P (0), Q(0)).

12)Loop over i = 1, 2, . . . , N3.

13)Let τ1 = τ
(i)
1 and τ2 = τ

(i)
2 .

14)Simulate the model (4.6) and (4.7) from t = 0 to t = N2T .

15)Record (P (t), Q(t)) ∀ t ∈ [0, N2T ] as (P
(i)
ap (t), Q

(i)
ap(t)).

16)Calculate

J1(τ
(i)
1 ) = (

∫ N2T

T1

|Pan(t)− P (i)
ap (t)|p1dt)

1
p1 ,

J2(τ
(i)
2 ) = (

∫ N2T

T2

|Qan(t)−Q(i)
ap(t)|p2dt)

1
p2 ,

where T1 ∈ (0, N2T ), T2 ∈ (0, N2T ), p1 ≥ 1, and p2 ≥ 1.

17)End loop.

18)Let τ1 = arg min
τ∈{τ

(1)
1 ,...,τ

(N3)
1 }

J1(τ) and τ2 = arg min
τ∈{τ

(1)
2 ,...,τ

(N3)
2 }

J2(τ).

Remark 4.3. In the above procedure, τ
(i)
1 and τ

(i)
2 for i = 1, 2, . . . , N3 represent

the search space for the best τ1 and τ2; p1 and p2 represent the desired Lp

norms; and T1 and T2 are introduced to reduce the impact of the initial states

(i.e., x(0) of the analytical model (4.1) and (4.2) and (P (0), Q(0)) of the model

(4.6) and (4.7)) on the parameter estimation process.
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Using the preceding procedure to identify the time constants τ1 and τ2,

we obtain a refined model (4.6) and (4.7) that has more flexibility to better

match the behavior of (4.1) and (4.2).

Step 3: Mimicking the responses to realistic inputs

Although the refined model (4.6) and (4.7) in Figure 4.2(b) is more

sophisticated than the basic model (4.4) and (4.5) in Figure 4.2(a), it can

only produce first-order-like responses. If such responses are indeed what the

analytical model (4.1) and (4.2) produces, or if what we desire is just a crude

approximation, then the refined model (4.6) and (4.7) may be satisfactory.

Otherwise, its accuracy may be unacceptable.

At first glance, this issue can be overcome by replacing the first-order

linear dynamics in (4.6) and (4.7) with higher-order ones. This approach, how-

ever, has a fundamental limitation: recall from Step 1 that Pss = ϕ1(P̄d, Q̄d, V̄w)

and Qss = ϕ2(P̄d, Q̄d, V̄w). Thus, if a WTCS does power regulation and does it

well over a wide range of V̄w, then Pss ≈ P̄d and Qss ≈ Q̄d for any V̄w in that

range. As a result, ϕ1(Pd(t), Qd(t), Vw(t)) in (4.6) and ϕ2(Pd(t), Qd(t), Vw(t)) in

(4.7) would both be insensitive to Vw(t), so that even large fluctuations in the

wind speed Vw(t) would be completely absorbed by ϕ1(·) and ϕ2(·), producing

no fluctuations in the active and reactive powers P (t) and Q(t), which may be

unrealistic.

To bypass this limitation, we introduce two second-order linear filters

and add two linear terms to (4.6) and (4.7), to get a modified Hammerstein

model depicted in Figure 4.2(c) and defined by

[
µ̇w1(t)
µ̈w1(t)

]

=

[
0 1

−ω2
n1 −2ζ1ωn1

] [
µw1(t)
µ̇w1(t)

]

+

[
0
ω2
n1

]

Vw(t), (4.8)
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[
µ̇w2(t)
µ̈w2(t)

]

=

[
0 1

−ω2
n2 −2ζ2ωn2

] [
µw2(t)
µ̇w2(t)

]

+

[
0
ω2
n2

]

Vw(t), (4.9)

Ṗ (t) = − 1
τ1
P (t) + 1

τ1
ϕ1(Pd(t), Qd(t), Vw(t)) + γ1(Vw(t)− µw1(t)), (4.10)

Q̇(t) = − 1
τ2
Q(t) + 1

τ2
ϕ2(Pd(t), Qd(t), Vw(t)) + γ2(Vw(t)− µw2(t)), (4.11)

where µw1(t) and µw2(t) are the filter outputs, ζ1 > 0 and ζ2 > 0 are the

damping ratios, ωn1 > 0 and ωn2 > 0 are the natural frequencies, and γ1 ≥ 0

and γ2 ≥ 0 are scalar gains. To see the rationale behind (4.8)–(4.11), no-

tice that the second-order linear filters in (4.8) and (4.9) are low-pass filters

with unity DC gains. Hence, µw1(t) and µw2(t) may be seen as short-term

averages of Vw(t), which catch up to Vw(t) if it ever approaches constant, and

Vw(t) − µw1(t) and Vw(t) − µw2(t) may be viewed as deviations of Vw(t) from

its short-term averages, which fluctuate around zero. It follows that the linear

terms γ1(Vw(t) − µw1(t)) and γ2(Vw(t) − µw2(t)) in (4.10) and (4.11) enable

fluctuations in Vw(t) to induce fluctuations in P (t) and Q(t), bypassing the

aforementioned limitation and yielding a feature not possessed by the refined

model (4.6) and (4.7). Moreover, because the steady-state values of these terms

are zero when Vw(t) is constant, (4.10) and (4.11) also preserve the role of ϕ1

and ϕ2 as constant-inputs-to-steady-state-outputs maps (see Step 1). Finally,

due to the “tuning knobs” ζ1, ωn1, γ1, ζ2, ωn2, and γ2, (4.8)–(4.11) possess con-

siderable (but not excessive) freedom to mimic the way fluctuations in Vw(t)

affect P (t) and Q(t) of the analytical model (4.1) and (4.2). All of these explain

the rationale behind (4.8)–(4.11), which we will refer to from now on as the

approximate model.

The parameters ζ1, ωn1, γ1, ζ2, ωn2, and γ2 can be identified using the

general approach adopted in Step 2, i.e., the so-called prediction-error methods

[70]. Indeed, a procedure analogous to the one in Step 2 may be constructed
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as follows:

Procedure for Step 3

1)Pick a large T > 0.

2)Pick some specific (Pd(t), Qd(t), Vw(t)) ∀ t ∈ [0, T ].

3)Pick any x(0).

4)Simulate the analytical model (4.1) and (4.2) from t = 0 to t = T .

5)Record (P (t), Q(t)) ∀ t ∈ [0, T ] as (Pan(t), Qan(t)).

6)Pick a large N4 ∈ N.

7)Pick (ζ
(i)
1 , ω

(i)
n1, γ

(i)
1 , ζ

(i)
2 , ω

(i)
n2, γ

(i)
2 ) for i = 1, 2, . . . , N4.

8)Use the ϕ1 and ϕ2 identified in Step 1.

9)Use the τ1 and τ2 identified in Step 2.

10)Pick any (µw1(0), µ̇w1(0), P (0), µw2(0), µ̇w2(0), Q(0)).

11)Loop over i = 1, 2, . . . , N4.

12)Let (ζ1, ωn1, γ1, ζ2, ωn2, γ2) = (ζ
(i)
1 , ω

(i)
n1, γ

(i)
1 , ζ

(i)
2 , ω

(i)
n2, γ

(i)
2 ).

13)Simulate the model (4.8)–(4.11) from t = 0 to t = T .

14)Record (P (t), Q(t)) ∀ t ∈ [0, T ] as (P
(i)
ap (t), Q

(i)
ap(t)).

15)Calculate

J1(ζ
(i)
1 , ω

(i)
n1, γ

(i)
1 ) = (

∫ T

T1

|Pan(t)− P (i)
ap (t)|p1dt)

1
p1 ,

J2(ζ
(i)
2 , ω

(i)
n2, γ

(i)
2 ) = (

∫ T

T2

|Qan(t)−Q(i)
ap(t)|p2dt)

1
p2 ,

where T1 ∈ (0, T ), T2 ∈ (0, T ), p1 ≥ 1, and p2 ≥ 1.

16)End loop.

17)Let (ζ1, ωn1, γ1) be the (ζ
(i)
1 , ω

(i)
n1, γ

(i)
1 ) that minimizes J1(ζ

(i)
1 , ω

(i)
n1, γ

(i)
1 ), and

(ζ2, ωn2, γ2) be the (ζ
(i)
2 , ω

(i)
n2, γ

(i)
2 ) that minimizes J2(ζ

(i)
2 , ω

(i)
n2, γ

(i)
2 ).
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Remark 4.4. In the above procedure, T may be different from the T in Steps 1

and 2; Pd(t) and Qd(t) may be, say, staircases, ramps, or from realistic profiles;

Vw(t) may be from real data; and (ζ
(i)
1 , ω

(i)
n1, γ

(i)
1 , ζ

(i)
2 , ω

(i)
n2, γ

(i)
2 ) for i = 1, 2, . . . , N4

represent the search space for the best (ζ1, ωn1, γ1, ζ2, ωn2, γ2).

Note that the three procedures in Steps 1–3 collectively form a param-

eter identification scheme, which enables sequential determination of all the

parameters of the approximate model (4.8)–(4.11) (i.e., ϕ1 and ϕ2, then τ1 and

τ2, then the rest).

4.3.2 Approximating the Empirical Model

As was mentioned in Section 4.2.2, in practice we may be given an em-

pirical model of a WTCS, defined by input-output measurement data of the

form (4.3), and asked to design a WFC. Thus, it is desirable that our approxi-

mate model (4.8)–(4.11)—with suitable choices of parameters—can also imitate

the empirical model (4.3), producing outputs that closely resemble the last two

columns of (4.3), when the inputs are from the first three columns. To come up

with such suitable choices, reconsider the parameter identification scheme from

Steps 1–3. Observe that this scheme is not immediately applicable here because

Steps 1 and 2 require constant and staircase inputs (Pd(t), Qd(t), Vw(t)), but

with the empirical model (4.3) the inputs (Pd(i∆), Qd(i∆), Vw(i∆)) are what-

ever that are given. To circumvent this issue, below we modify the scheme,

allowing it to handle any given inputs, and label the steps involved Steps 1’–3’,

to distinguish them from, and to stress their parallel with, Steps 1–3 above.

The modification yields the second parameter identification scheme, intended

just for the empirical case.

Step 1’: Identifying the functions ϕ1 and ϕ2
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Parallel to Step 1, the goal of this Step 1’ is to construct a procedure for

identifying the functions ϕ1 and ϕ2, so that the basic model (4.4) and (4.5) in

Figure 4.2(a) is able to roughly mimic the empirical model (4.3). To do so, ob-

serve that the identification of ϕ1 (and, similarly, ϕ2) can be treated as a curve-

fitting problem with domain containing the inputs (Pd(i∆), Qd(i∆), Vw(i∆))

and range containing the output P (i∆). Also observe that if we partition the

domain into U1, U2, . . . , Un and write ϕ1 as

ϕ1(Pd, Qd, Vw) =

n∑

j=1

αj1Uj
(Pd, Qd, Vw),

where αj are the parameters and 1Uj
(Pd, Qd, Vw) are the set indicator basis

functions (see Chapter 5.4 of [70]), then the optimal αj in the least-squares

sense can be easily computed: each αj is simply the average of those P (i∆) for

which (Pd(i∆), Qd(i∆), Vw(i∆)) ∈ Uj . These observations suggest the following

procedure, in which we partition the domain into three-dimensional grids, for

simplicity:

Procedure for Step 1’

1)Let

Pd,max = max
0≤i≤D−1

Pd(i∆), Pd,min = min
0≤i≤D−1

Pd(i∆), Qd,max = max
0≤i≤D−1

Qd(i∆),

Qd,min = min
0≤i≤D−1

Qd(i∆), Vw,max = max
0≤i≤D−1

Vw(i∆), Vw,min = min
0≤i≤D−1

Vw(i∆).

2)Pick a large N5 ∈ N.

3)Let δPd =
Pd,max−Pd,min

N5
, δQd =

Qd,max−Qd,min

N5
, and δVw =

Vw,max−Vw,min

N5
.

4)Loop over (j, k, l) ∈ {1, 2, . . . , N5}3.

5)Let I = {i ∈ {0, 1, . . . , D − 1} |Pd(i∆) ∈ [Pd,min + (j − 1)δPd, Pd,min +

jδPd), Qd(i∆) ∈ [Qd,min + (k − 1)δQd, Qd,min + kδQd), Vw(i∆) ∈ [Vw,min +

(l − 1)δVw, Vw,min + lδVw)}.
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6) If I 6= ∅, let

ϕ1

(

Pd,min+(j− 1
2
)δPd, Qd,min+(k− 1

2
)δQd, Vw,min+(l− 1

2
)δVw

)

=

∑

i∈I P (i∆)

|I| ,

ϕ2

(

Pd,min+(j− 1
2
)δPd, Qd,min+(k− 1

2
)δQd, Vw,min+(l− 1

2
)δVw

)

=

∑

i∈I Q(i∆)

|I| ,

where |I| denotes the cardinality of I.

7)End loop.

8)Determine ϕ1 and ϕ2 via interpolation on the (at most) N3
5 data points

obtained.

Step 2’: Identifying the parameters τ1 and τ2

Unlike going from Step 1 to Step 1’ where the procedure undergoes

significant changes, only minor modifications are needed to make the procedures

in Steps 2 and 3 applicable to the empirical model (4.3) in this Step 2’ and the

next Step 3’. In particular, the inputs now come from the first three columns

of (4.3), p1 and p2 now represent the desired ℓp norms, and n1 and n2 now play

the role of T1 and T2 in nullifying the impact of the initial states:

Procedure for Step 2’

1)Rename(P (i∆),Q(i∆)) from the empirical model (4.3) as(Pem(i∆),Qem(i∆)).

2)Pick a large N6 ∈ N.

3)Pick τ
(j)
1 > 0 and τ

(j)
2 > 0 for j = 1, 2, . . . , N6.

4)Use the ϕ1 and ϕ2 identified in Step 1’.

5)Pick any (P (0), Q(0)).

6)Loop over j = 1, 2, . . . , N6.

7)Let τ1 = τ
(j)
1 and τ2 = τ

(j)
2 .

8)Simulate the refined model (4.6) and (4.7) from t = 0 to t = (D − 1)∆.
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9)Record (P (t), Q(t)) ∀ t ∈ [ 0, (D − 1)∆] as (P
(j)
ap (t), Q

(j)
ap (t)).

10)Calculate

J1(τ
(j)
1 ) = (

D−1∑

n=n1

|Pem(n∆)− P (j)
ap (n∆)|p1)

1
p1 ,

J2(τ
(j)
2 ) = (

D−1∑

n=n2

|Qem(n∆)−Q(j)
ap (n∆)|p2)

1
p2 ,

where 0 < n1 < D − 1, 0 < n2 < D − 1, p1 ≥ 1, and p2 ≥ 1.

11)End loop.

12)Let τ1 = arg min
τ∈{τ

(1)
1 ,...,τ

(N6)
1 }

J1(τ), and τ2 = arg min
τ∈{τ

(1)
2 ,...,τ

(N6)
2 }

J2(τ).

Step 3’: Identifying the parameters ζ1, ωn1, γ1, ζ2, ωn2, and γ2

Procedure for Step 3’

1)Rename(P (i∆),Q(i∆)) from the empirical model (4.3) as(Pem(i∆),Qem(i∆)).

2)Pick a large N7 ∈ N.

3)Pick (ζ
(j)
1 , ω

(j)
n1 , γ

(j)
1 , ζ

(j)
2 , ω

(j)
n2 , γ

(j)
2 ) for j = 1, 2, . . . , N7.

4)Use the ϕ1 and ϕ2 identified in Step 1’.

5)Use the τ1 and τ2 identified in Step 2’.

6)Pick any (µw1(0), µ̇w1(0), P (0), µw2(0), µ̇w2(0), Q(0)).

7)Loop over j = 1, 2, . . . , N7.

8)Let (ζ1, ωn1, γ1, ζ2, ωn2, γ2) = (ζ
(j)
1 , ω

(j)
n1 , γ

(j)
1 , ζ

(j)
2 , ω

(j)
n2 , γ

(j)
2 ).

9)Simulate the approximate model (4.8)–(4.11) from t = 0 to t = (D − 1)∆.

10)Record (P (t), Q(t))∀ t ∈ [0, (D − 1)∆] as (P
(j)
ap (t), Q

(j)
ap (t)).
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11)Calculate

J1(ζ
(j)
1 , ω

(j)
n1 , γ

(j)
1 ) = (

D−1∑

n=n1

|Pem(n∆)− P (j)
ap (n∆)|p1)

1
p1 ,

J2(ζ
(j)
2 , ω

(j)
n2 , γ

(j)
2 ) = (

D−1∑

n=n2

|Qem(n∆)−Q(j)
ap (n∆)|p2)

1
p2 ,

where 0 < n1 < D − 1, 0 < n2 < D − 1, p1 ≥ 1, and p2 ≥ 1.

12)End loop.

13)Let (ζ1, ωn1, γ1) be the (ζ
(j)
1 , ω

(j)
n1 , γ

(j)
1 ) that minimizes J1(ζ

(j)
1 , ω

(j)
n1 , γ

(j)
1 ), and

(ζ2, ωn2, γ2) be the (ζ
(j)
2 , ω

(j)
n2 , γ

(j)
2 ) that minimizes J2(ζ

(j)
2 , ω

(j)
n2 , γ

(j)
2 ).

Remark 4.5. The approximate model (4.8)–(4.11) in this section may be viewed

as the WTCSθ in Section 4.1, with θ = (ϕ1, τ1, ζ1, ωn1, γ1, ϕ2, τ2, ζ2, ωn2, γ2).

Also, it may be regarded as satisfying (C2) in Section 4.1 because it has isolated

static nonlinearities and is relatively simple compared to full-blown WTCS

models, such as those in Section 4.4.

4.4 Validation of the Approximate Model

In this section, we validate via simulation the approximate model de-

veloped in Section 4.3, showing that it is capable of closely imitating several

analytical and empirical WTCS models from the literature and from real data.

To enable the validation, we first describe a wind turbine model, followed by

the analytical and empirical WTCS models considered. We then describe the

validation settings and results.
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4.4.1 Wind Turbine Model

Consider a variable-speed wind turbine with a DFIG1, modeled by the

following differential and algebraic equations [4, 63]:

ϕ̇ds = − Rs

σLs
ϕds + ωsϕqs +

RsLm

σLsLr
ϕdr + vds,

ϕ̇qs = −ωsϕds −
Rs

σLs
ϕqs +

RsLm

σLsLr
ϕqr + vqs,

ϕ̇dr =
RrLm

σLsLr
ϕds −

Rr

σLr
ϕdr + (ωs − ωr)ϕqr + vdr,

ϕ̇qr =
RrLm

σLsLr
ϕqs − (ωs − ωr)ϕdr −

Rr

σLr
ϕqr + vqr,

Jω̇r = Tm − Te − Cfωr,

ϕds = Lsids + Lmidr, ϕqs = Lsiqs + Lmiqr,

ϕdr = Lmids + Lridr, ϕqr = Lmiqs + Lriqr,

Ps = −vdsids − vqsiqs, Qs = −vqsids + vdsiqs,

Pr = −vdridr − vqriqr, Qr = −vqridr + vdriqr,

P = Ps + Pr, Q = Qs +Qr,

where s, r denote the stator and rotor; d, q the dq frame; ϕds, ϕqs, ϕdr, ϕqr the

fluxes; vds, vqs, vdr, vqr the voltages; ids, iqs, idr, iqr the currents; Rs, Rr the re-

sistances; Ls, Lr, Lm the inductances; σ = 1 − L2
m

LsLr
the leakage coefficient; ωs

the constant angular velocity of the synchronously rotating reference frame; ωr

the rotor angular velocity; J the rotor moment of inertia; Cf the friction co-

efficient; Tm = 1
2
ρACp(λ, β)V

3
w/ωr the mechanical torque; Te = ϕqsids − ϕdsiqs

the electromagnetic torque; ρ the air density; A = πR2 the rotor swept area of

radius R; Cp(λ, β) the Cp-surface; λ = ωrR
Vw

the tip speed ratio; and β the blade

pitch angle.

1Due to space limitation, only DFIG is considered in the model validation. We note,
however, that other types of generators, such as IG, may be implemented in a similar manner.
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In addition, to have some diversity in the validation, consider the fol-

lowing two distinct sets of values for the wind turbine parameters: the first set

of value is adopted from MATLAB/Simulink R2007a and corresponds to a GE

1.5MW turbine, which is listed in Section 2.4, while the second is adopted from

[80,81] and corresponds to a GE 3.6MW turbine, whose values are: R = 52m,

ωs(pu) = 1, Rs(pu) = 0.0079, Rr(pu) = 0.025, Ls(pu) = 4.47937, Lr(pu) = 4.8,

Lm(pu) = 4.4, J(pu) = 10.38, Cf(pu) = 0, Vw base = 12m/s, and the Cp-

surface is given by Cp(λ, β) =
∑4

i=0

∑4
j=0 αijβ

iλj, where α44 = 4.9686× 10−10,

α43 = −7.1535 × 10−8, α42 = 1.6167 × 10−6, α41 = −9.4839 × 10−6, α40 =

1.4787×10−5, α34 = −8.9194×10−8, α33 = 5.9924×10−6, α32 = −1.0479×10−4,

α31 = 5.7051 × 10−4, α30 = −8.6018 × 10−4, α24 = 2.7937 × 10−6, α23 =

−1.4855×10−4, α22 = 2.1495×10−3, α21 = −1.0996×10−2, α20 = 1.5727×10−2,

α14 = −2.3895 × 10−5, α13 = 1.0683 × 10−3, α12 = −1.3934 × 10−2, α11 =

6.0405×10−2, α10 = −6.7606×10−2, α04 = 1.1524×10−5, α03 = −1.3365×10−4,

α02 = −1.2406× 10−2, α01 = 2.1808× 10−1, and α00 = −4.1909× 10−1.

4.4.2 WTCS Models

Next, consider four analytical WTCS models from the literature and

an empirical WTCS model from real data, labeled as WTCS1–WTCS5 and

defined as follows:

WTCS1 is made up of the GE 3.6MW turbine model and the controller

in Rodriguez-Amenedo et al. [1], which regulates P (t) and Q(t) by adjusting

β(t), vqr(t), and vdr(t) using five PI blocks and a power-speed lookup table,

as depicted in Figure 4.3(a). Note that this controller assumes that the d-

axis of the synchronously rotating reference frame is aligned with the stator

flux vector, i.e., (ϕds(t), ϕqs(t)) = (1, 0), and that the reactive power is solely
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(a) Block diagram of the controller in Rodriguez-Amenedo et al. [1].
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(c) Block diagram of the controller in Tang et al. [3].
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(d) Block diagram of the controller in Johnson et al. [4].

Figure 4.3: Block diagrams of the controllers that yield WTCS1–WTCS4.
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coming from the stator, i.e., Q(t) = Qs(t). For more information about this

controller, see [1] and related work [39], [2] (in particular, Figures 3 of [1], 10

of [39], and 6 and 7 of [2]).

WTCS2 is made up of the same GE 3.6MW turbine model and the

controller studied in Fernandez et al. [2] and displayed in Figure 4.3(b). Observe

that this controller is similar to the one in [1] except that it uses ωr(t) to

determine β(t) in the outer loop and P (t) to determine vqr(t) in the inner loop,

whereas the one in [1] does the opposite. For more details about this controller,

see [2] and [5] (especially, Figures 6 and 8 of [2] and 4 of [5]).

WTCS3, unlike WTCS1 and WTCS2, is made up of the smaller GE

1.5MW turbine model and the nonlinear dual-mode controller in Tang et al. [3],

which uses the feedback linearization technique to cancel nonlinearities in the

DFIG dynamics, and the gradient descent method to maximize or regulate P (t)

and Q(t) including the power factor, as outlined in Figure 4.3(c). Notice that

this controller assumes instead that the d-axis is aligned with the stator voltage

vector, i.e., (vds(t), vqs(t)) = (1, 0), and that it does not assume Q(t) = Qs(t).

WTCS4 is formed by the mechanical dynamics of the GE 1.5MW

turbine model and the controller in Johnson et al. [4], which is implemented on

the Controls Advanced Research Turbine (CART) at the National Renewable

Energy Laboratory’s (NREL’s) National Wind Technology Center (NWTC)

and also discussed in [12]. Sketched in Figure 4.3(d), this controller maximizes

the power capture Tm(t)ωr(t) in Region 2 by varying Te(t) and keeping β(t) at

its optimum, and prevents the power capture from exceeding the rated value

in Region 3 by varying β(t) accordingly. In contrast to WTCS1–WTCS3, this

WTCS assumes no electrical dynamics and, thus, does not involve Qd(t) and
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Q(t), nor Pd(t).

Finally,WTCS5—the only empirical model considered in this chapter—

is a black box defined by a set of input-output measurement data taken from an

actual GE 1.5MW turbine within a wind farm located in northwest Oklahoma.

This set of data has D = 34, 208 data points and was collected over 238 days at

a sampling period of ∆ = 10 minutes. Moreover, the set of data fits the mold

of (4.3), containing the mandatory Vw(i∆) and P (i∆) for i = 0, 1, . . . , D − 1,

but not the optional Pd(i∆), Qd(i∆), and Q(i∆). In order to use this data set

for second-level simulation in the sequel, we redefine ∆ as ∆ = 10/24 minutes,

assuming that one-day worth of data were taken over an hour.

4.4.3 Validation Settings

Given WTCS1–WTCS5, suppose now we want to construct, for each

WTCSi, an approximate model (4.8)–(4.11) that resembles its behavior. To

this end, for each WTCSi, we execute the first parameter identification scheme

in Steps 1–3 (if WTCSi is analytical), or the second one in Steps 1’–3’ (if it is

empirical), to obtain a specific approximate model with specific values of ϕ1,

τ1, ζ1, ωn1, γ1 as well as ϕ2, τ2, ζ2, ωn2, γ2 (if the optional Q(t) is indeed an

output of WTCSi).

To evaluate how well the five approximate models imitate WTCS1–

WTCS5, we consider 30 different scenarios. For each scenario, we generate

inputs (Pd(t), Qd(t), Vw(t)) from t = 0 to t = 3600 seconds, choosing Pd(t)

to be a staircase signal with three random staircase values each lasting 1200

seconds, Qd(t) to be such that the desired power factor Pd(t)√
P 2
d
(t)+Q2

d
(t)

is kept

constant at 0.995, and Vw(t) to be an actual wind profile from the afore-

mentioned wind farm. For each WTCSi and each scenario, we simulate both
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Figure 4.4: Imitating WTCS1 defined by the GE 3.6MW turbine and the
controller in Rodriguez-Amenedo et al. [1].

WTCSi and its corresponding approximate model for 3600 seconds using the

same inputs (Pd(t), Qd(t), Vw(t)) associated with the scenario, record the out-

puts (P (t), Q(t)) of the two models, and calculate the root-mean-square error

(RMSE) in P (t) between the two models after some initial transient. (Obvi-

ously, the smaller the RMSE, the better the approximation.)

4.4.4 Validation Results

Figures 4.4–4.8 depict, respectively, the five approximate models and

how well they resemble WTCS1–WTCS5. Although the figures have different

sizes and styles, they share the same format: the first row of subplots is as-

sociated with the active power; the second row, if present, is associated with
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Figure 4.5: Imitating WTCS2 defined by the GE 3.6MW turbine and the
controller in Fernandez et al. [2].

the reactive power; the first column displays the identified values of the ap-

proximate model parameters ϕ1, τ1, ζ1, ωn1, γ1, ϕ2, τ2, ζ2, ωn2, γ2, showing

ϕ1 and ϕ2 as contour plots in Figures 4.4–4.6 and as graphs in Figures 4.7

and 4.8; and the second and third columns each shows, for a selected scenario,

the outputs (P (t), Q(t)) of WTCSi and those of its corresponding approximate

model over 3600 seconds and over 60 seconds, the latter in zoom-in windows.

Notice that although, in general, ϕ1 and ϕ2 are functions of (Pd, Qd, Vw), for

WTCS1–WTCS3 they are functions of only (Pd, Vw) or equivalently (Qd, Vw)

(since Qd = 0.1Pd in order to obtain a desired power factor of 0.995), and for

WTCS4 and WTCS5 they are functions of only Vw (since Pd is not required).
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Figure 4.6: Imitating WTCS3 defined by the GE 1.5MW turbine and the
controller in Tang et al. [3].

This explains why ϕ1 and ϕ2 can be shown as contour plots and graphs. Also

note that due to space limitation, for each WTCSi, we could only show the

outputs for two selected scenarios (as opposed to showing both the inputs and

outputs for all the 30 scenarios). Finally, each gray dot in subplot 1 of Fig-

ure 4.8 represents an empirical data point (Vw, P ) for WTCS5 and is included

just to provide additional insight.

Complementing Figures 4.4–4.8 is Table 4.1, which shows the minimum,

maximum, and average RMSE in P (t) between WTCS1–WTCS5 and their

corresponding approximate models, taken over all the 30 scenarios. To get a

sense of what the numbers in the table mean, one may refer to Figures 4.4–4.8,
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Figure 4.7: Imitating WTCS4 defined by the mechanical dynamics of the GE
1.5MW turbine and the controller in Johnson et al. [4].
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Figure 4.8: Imitating WTCS5 defined by real data from an Oklahoma wind
farm.

Table 4.1: Minimum, maximum, and average Root-Mean-Square Error
(RMSE) in P (t) taken over 30 scenarios for each WTCSi.

Min. Max. Avg.

WTCS1 0.0103 0.0178 0.0134

WTCS2 0.0111 0.0164 0.0137

WTCS3 0.0111 0.0237 0.0163

WTCS4 0.0056 0.0088 0.0072

WTCS5 0.0223 0.0578 0.0320

which also state the RMSEs of the P (t) curves for the few selected scenarios.

Observe from Figures 4.4–4.8 and Table 4.1 that while the proposed ap-
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proximate model is not without error, the magnitude of which is generally very

small, sometimes even negligible, across all WTCSs and all scenarios. In partic-

ular, it is able to produce the right “peaks” and “valleys” at the right moments

in all the 3600-seconds subplots and the 60-seconds zoom-in windows—except

for the first 500 seconds in Figure 4.6 and first 200 seconds in Figure 4.7, which

may be attributed to the approximate and analytical models having different

initial states and, hence, different initial transients. These encouraging ob-

servations validate the approximate model in Figure 4.2(c), demonstrating its

ability to closely replicate the behaviors of the five fairly different analytical

and empirical WTCS models considered.

Remark 4.6. The validation in this section may be thought of as verifying (C1)

and (C3) in Section 4.1.

4.5 Conclusion

In this chapter, we have presented a simple approximate model, which

tries to mimic generic analytical and empirical WTCS models, along with two

parameter identification schemes, which determine the approximate model pa-

rameters in both cases. We have also demonstrated through simulation the ac-

curacy and versatility of the approximate model in resembling several different

analytical and empirical WTCS models from the literature and from real data.

From the results, we conclude that the approximate model is a compelling

candidate, based on which one may design and analyze a second-to-minute-

timescale supervisory wind farm controller using advanced control techniques

(e.g., model predictive control [82], distributed cooperative control [83], and

quasilinear control [84]), in future research.
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Chapter 5 Model Predictive and Adaptive Wind Farm
Power Control

5.1 Introduction

Wind farms able to produce power outputs that accurately and smoothly

track desired references from a grid operator despite the intermittency of wind,

are important for a number of reasons. First, this ability allows them to be

treated more or less as “controllable” generation resources, similar to conven-

tional power plants. Second, this ability reduces their reliance on expensive

ancillary services, leading to more economic operation. Finally, with the in-

creasing penetration of wind power in the generation portfolios of many coun-

tries, this ability of the wind farms becomes especially critical to power system

reliability. Therefore, a wind farm controller (WFC), which provides a wind

farm with such accurate and smooth tracking ability, is valuable.

To date, a relatively small number of WFCs, developed based on dif-

ferent techniques and for different purposes, have been proposed in the litera-

ture [1, 2, 5, 50, 52, 85, 86]. For instance, [52] and [50] adopted an optimization-

based approach toward designing WFCs, which could respond to grid operator

commands. As another example, [85] utilized a proportional-integral regulator-

based method for managing the reactive powers of wind farms. As yet another

example, [2] carried out simulation studies that compared the behaviors of a

few existing WFCs.
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Although these publications provide some understanding on the capa-

bility and limitations of specific wind farm control systems (WFCSs), a num-

ber of key issues surrounding WFCs design and analysis remain unaddressed.

First, majority of the existing work did not attempt optimization, and those

that did attempt did not incorporate forecast of wind speeds and future values

of the desired wind farm power output, even though they are typically avail-

able. It is conceivable that taking into account such information may lead to

WFC designs that yield better tracking performance. Second, wind farm power

tracking is, mathematically, a problem with a large degree of freedom: as far

as the grid operator is concerned, all that matters is that the sum of all the

turbine power outputs is approximately equal to the desired reference. Thus,

if there are N turbines in the wind farm, there are N − 1 degrees of freedom

left upon satisfying the aforementioned equality constraint. It is conceivable

that these available degrees of freedom may be exploited to achieve other, sec-

ondary goals. For example, they may be used to minimize changes in the power

commands sent to individual turbines, leading to less changes in the electrical

and mechanical turbine states and, thus, possibly less frequent maintenance

and longer operational lifetime. Finally, smoothness of the wind farm power

output has largely been unaddressed, or addressed merely through simulations

studies. To the best of our knowledge, no theoretical analysis on smoothness

has been carried out, and no rigorous means of improving smoothness through

cooperative control has been developed.

This chapter is devoted to the design and analysis of a WFC that ad-

dresses the aforementioned issues. We consider a WFCS comprising a wind

farm and its WFC, as shown in Figure 5.1. The wind farm consists of N

WTCSs, where each WTCS i is made up of a wind turbine and its con-
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Figure 5.1: Block diagram of the wind farm control system (WFCS).

troller. Accompanying the WFCS is a wind speed block, which produces wind

speeds Vw,1, . . . , Vw,N , where each Vw,i affects WTCS i and is possibly measured

by the WFC. In addition to accepting Vw,i, each WTCS i accepts a desired

power command Pd,i from the WFC and produces power output Pi. Like-

wise, the WFC uses feedbacks of P1, . . . , PN , measurements of Vw,1, . . . , Vw,N ,

and a desired wind farm power output Pd,wf from the grid operator to de-

termine Pd,1, . . . , Pd,N that are sent to each WTCSs. Finally, the wind farm

power output Pwf is defined as the sum of all the turbine power outputs, i.e.,

Pwf =
∑N

i=1 Pi.

The WFC developed in this chapter is made up of two components: a

model predictive controller sitting on the outer loop, whose goal is to cooper-

atively optimize the receding horizon, deterministic tracking performance of

the wind farm power output on a longer timescale, and an adaptive controller

sitting on the inner loop, whose goal is to jointly optimize the steady-state,

stochastic smoothness of the wind farm power output on a shorter timescale

(see Figure 5.4 for a preview of the WFC). To achieve its goal, the model predic-
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tive controller, also known as a receding horizon controller [87], uses forecast of

the wind speeds from crude measurements, forecast of the power demand from

the grid operator, and feedback of the powers generated by the wind turbines to

iteratively determine the desired power trajectories, which drive the WTCSs.

Although model predictive control has been successfully utilized in many con-

trol applications, we believe its use in wind farm power control has not been

reported. More important, this approach in our opinion is highly appropriate

for the problem at hand as it addresses two of the three aforementioned issues,

namely, exploitation of the available forecasts and design freedoms.

Likewise, to achieve its goal, the adaptive controller, which is of the

self-tuning regulator [88] type, uses estimated wind speed characteristics (e.g.,

correlation and diversity) from measurements to adaptively tune the gains

of a fully decentralized bank of proportional controllers, which precede the

WTCSs. While adaptive control has found widespread use in several indus-

tries, we are not aware of its use in wind farm power control. Moreover, we

believe this approach is particularly suitable for the problem in consideration

as it enables smoothness-driven adaptation of the controller parameters to,

for instance, changing wind directions and weather conditions, in addition to

enabling smoothness analysis based on stochastic linear systems theory. Con-

sequently, the approach may be regarded as addressing the third aforemen-

tioned issue on smoothness of the wind farm power output. Finally, in order

to demonstrate the efficacy of the proposed WFC, we carry out several sets of

simulations, which test the model predictive controller by itself, the adaptive

controller by itself, and the WFC as a whole. We also illustrate the unique

attributes of the WFC as compared with an existing WFC from [5].

The outline of this chapter is as follows: Section 5.2 models the wind
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farm and formulates the control problem. Section 5.3 introduces the proposed

wind farm controller framework. Sections 5.4 and 5.5 detail, respectively, the

development of the model predictive controller and adaptive controller. Sec-

tion 5.6 studies via numerical simulation the behavior of the proposed WFC.

Finally, Section 5.7 concludes the chapter.

5.2 Modeling and Problem Formulation

Recall from Figure 5.1 that the WFCS is accompanied by a wind speed

block and is made up of N ∈ N WTCSs and a WFC, where N = {1, 2, . . . }.

In Section 5.2.1, we introduce a model describing the wind speed block. In

Section 5.2.2, we present a model describing each of the N WTCSs. Finally,

in Section 5.2.3, we formulate the problem of designing the WFC.

5.2.1 Wind Speed Model

Observe from Figure 5.1 that the wind speed block produces N wind

speeds Vw,1(t), . . . , Vw,N(t) entering turbines 1 throughN . For each i ∈ {1, 2, . . . , N},

we assume that

Vw,i(t) = V̄w,i(t) + Ṽw,i(t), (5.1)

where t ≥ 0 denotes time, V̄w,i(t) ∈ (0, ∞) represents the slow, average com-

ponent of Vw,i(t) on a minute-to-hour timescale, and Ṽw,i(t) ∈ R represents the

fast, deviation-from-average component of Vw,i(t) on a millisecond-to-second

timescale. The slow components V̄w,1(t), . . . , V̄w,N(t) are assumed to be deter-

ministic and specified exogenously by, for example, actual empirical data or

test signals. In contrast, the fast components Ṽw,1(t), . . . , Ṽw,N(t) are assumed
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to be stochastic and given by

[Ṽw,1(t), . . . , Ṽw,N(t)]
T = L−1{Gw(s)} ∗ w(t), (5.2)

where ∗ denotes the convolution operator, L−1 denotes the inverse Laplace

transform, w(t) ∈ R
Nw is a stationary, zero-mean white Gaussian random pro-

cess with autocovariance function E{w(t)w(τ)T} = Wδ(t − τ), Gw(s) is an

N -by-Nw, asymptotically stable transfer function matrix, Nw ∈ N, E denotes

the expectation operator, W ∈ R
Nw×Nw , W = W T > 0, and δ denotes the

Dirac delta function. As it follows from (5.2) and the above assumptions,

Ṽw,1(t), . . . , Ṽw,N(t) are stationary, zero-mean colored Gaussian random pro-

cesses. Note that because of Ṽw,i(t) being Gaussian, Vw,i(t) may be negative

with a small probability despite V̄w,i(t) being positive. For simplicity, however,

we will allow for that in this chapter. Also note that, in reality, Ṽw,i(t) can be

non-stationary due to changes in wind direction, weather conditions, and tur-

bine yaw angle. Again, for simplicity, we assume that such changes are slow, so

that Ṽw,i(t) may be considered stationary. Moreover, we let Gw(s) above be a

general transfer function matrix, although later on in Section 5.5, we assume a

specific Gw(s) for concreteness. Finally, the top portion of Figure 5.2 illustrates

the wind speed model as described by (5.1) and (5.2).

5.2.2 Wind Turbine Control System Model

As was mentioned in Sections 4.1 and 5.1, a WTCS comprising a wind

turbine and its controller may be a fairly complex nonlinear dynamical system,

which creates obstacles in the design and analysis of a sophisticated WFC.

This suggests a need to build a suitably simplified, approximate WTCS model,

which is accomplished in the previous chapter. More specifically, we proposed
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Figure 5.2: Block diagram of the wind speed model and wind turbine control
system model.

an approximate model that is structurally simple and yet is capable of closely

imitating the active and reactive power dynamics of several different WTCS

models from the literature [1–4] and from real data taken from an Oklahoma

wind farm. The approximate model is described by (4.8)–(4.11) and is illus-

trated in a block diagram form in Figure 4.2(c). Moreover, its accuracy has

been validated through Section 4.4, which can be seen from Figures 4.4–4.8 and

Table 4.1. In this chapter, we consider only the active power and assume that

the reactive power is adjusted accordingly by, for example, some turbine-level

control loops, so that a constant power factor is always maintained. With this

assumption, we will mostly omit the term “active” in the sequel. In addition,

with the assumption, the approximate model for each wind turbine i is given
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by

Ṗi(t) = − 1

τi
Pi(t) +

1

τi
ϕi(Pd,i(t), Vw,i(t)) + γi(Vw,i(t)− µw,i(t)), (5.3)

where Pi(t) ∈ R is the turbine power output, Pd,i(t) ≥ 0 is the desired power,

µw,i(t) may be seen as short-term averages of Vw,i(t) given by (4.8), ϕi is a

static nonlinear function, τi > 0 is the (dominant) time constant, and γi ≥ 0 is

a scalar gain.

Remark 5.1. Note that there is a notational difference between (4.8)–(4.11)

and (5.3): because (4.8)–(4.11) consider only one turbine but both active and

reactive powers, there is no need to index the turbine, and the subscripts 1

and 2 in (4.8)–(4.11) represent the active and reactive powers, respectively. In

contrast, because (5.3) applies to every turbine i but considers only the active

power, there is a need to index each turbine with a subscript i but no need to

distinguish between the active and reactive powers.

Although the WTCS model (5.3) is quite simple, it is possible to further

simplify it in two ways as follows: first, given that µw,i(t) in (5.3) and V̄w,i(t)

in (5.1) play similar roles as short-term averages of Vw,i(t), we view them as

being the same quantity, i.e., µw,i(t) ≡ V̄w,i(t), so that Vw,i(t)− µw,i(t) in (5.3)

may be replaced by Ṽw,i(t) in (5.1). This replacement means that the wind

speed model of Section 5.2.1, instead of the µw,i(t) dynamics (4.8), is used to

define the rightmost term of (5.3). Second, as it turns out, the static nonlinear

function ϕi(Pd,i, Vw,i) in (5.3) can be accurately approximated by a saturation

function of Pd,i with an upper limit of αiV
3
w,i and a lower limit of 0, i.e.,

ϕi(Pd,i, Vw,i) ≈ sat
αiV

3
w,i

0 (Pd,i), ∀ (Pd,i, Vw,i),

where satba(x) , max{min{x, b}, a}, and αi > 0 is meant to be a unit conversion

factor. The upper limit of αiV
3
w,i is motivated by the empirically observed, cubic
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shows that the latter is an excellent approximate of the former.

relationship between wind speed and wind power, whereas the lower limit of 0 is

due to power output being nonnegative in normal operating regimes. Figure 5.3

shows that this approximation is indeed highly accurate for three analytical

WTCS models from the literature (see Section 4.4 for more details), and we

believe that majority of well-designed WTCSs available today exhibit similar

attributes. As a result, the function ϕi(Pd,i, Vw,i) in (5.3) may be replaced by

the function sat
αiV

3
w,i

0 (Pd,i).

With the above two modifications to (5.3), we obtain a further simplified
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model, given by

Ṗi(t) = − 1

τi
Pi(t) +

1

τi
sat

αiV
3
w,i(t)

0 (Pd,i(t)) + γiṼw,i(t), (5.4)

which will be used in all subsequent WFC design and analysis. We note that the

WTCS model (5.4) is not without limitations. Because of its high simplicity,

it neglects details of the electrical dynamics of the wind turbine, as well as its

flexible modes, and captures only its first-order, dominant transient behavior.

Nevertheless, the model is simple and makes physical sense: for example, when

the wind is strong enough, i.e., αiV
3
w,i > Pd,i, saturation does not come into

play, so that Pi will track Pd,i, causing the wind turbine to operate in the PR

mode. Otherwise, Pi will track αiV
3
w,i, causing it to operate in the MPT mode.

Also notice that γiṼw,i enables fast fluctuations in Vw,i to induce fluctuations

in Pi, making the WTCS dynamics more realistic. Finally, note that (5.4)

describes the internal details of each WTCS i block in Figure 5.1 and is also

represented in the bottom portion of Figure 5.2.

5.2.3 Problem Formulation

Given the above wind speed model (5.1) and (5.2) and the wind turbine

control system model (5.4) or, equivalently, Figure 5.2, the problem addressed

in this chapter is to design a wind farm controller by adjusting the Pd,i(t)’s

based on feedbacks of the Pi(t)’s and estimates of the Vw,i(t)’s, so that the wind

farm power output Pwf(t) closely tracks some desired, possibly time-varying

reference Pd,wf(t) from the grid operator and, at the same time, is as smooth

as possible. The controller may use values of the turbine-dependent parameters

(i.e., αi’s, τi’s, and γi’s) along withN . Moreover, the controller may use Pd,wf(t)

including its future values, as well as Pi(t)’s (and, thus, Pwf(t) since Pwf(t) =
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∑N
i=1 Pi(t)) as feedback. Although it should not rely on the wind information

(i.e., Vw,i(t)’s, V̄w,i(t)’s, Ṽw,i(t)’s, w(t)’s, Nw, W , Gw(s)), the controller may use

some crude estimates of Vw,i(t)’s, which is not an unreasonable assumption.

5.3 Wind Farm Controller Framework

In this and the next two sections, we develop a WFC that addresses

the aforementioned problem. This section is intended to describe the high-

level rationale behind the WFC architecture and introduce its block diagram

representation, while the next two are intended to provide low-level details.

5.3.1 Rationale Behind the Controller Architecture

To begin describing the rationale, recall from Section 5.2.3 that the

WFC has two goals to achieve: (i) make the wind farm power output Pwf(t)

closely track a desired reference Pd,wf(t), and (ii) make Pwf(t) as smooth as

possible, despite the fast wind fluctuations.

Observe from Figure 5.1 that Pwf(t) =
∑N

i=1 Pi(t), so that goal (i) may

be restated as

N∑

i=1

Pi(t) = Pd,wf(t). (5.5)

Imagine, for a moment, that we may freely specify the values of the N wind

turbine power outputs P1(t), . . . , PN(t) in (5.5). Then, (5.5) represents an

equality constant, the satisfaction of which leaves us with N − 1 degrees of

freedom, which are abundant given that N is usually large in a wind farm.

Obviously, there are two opposing ways to handle such freedom: one may

simply ignore it and choose, say, Pi(t) = 1
N
Pd,wf(t) ∀i ∈ {1, 2, . . . , N} (i.e.,

uniformly distribute Pd,wf(t) to every turbine), or one may opportunistically
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select P1(t), . . . , PN(t) to meet some secondary goals, in addition to satisfying

(5.5). The former is clearly undesirable as it leads to a waste of such freedom,

whereas the latter suggests that meaningful secondary goals must be defined.

To this end, we make three observations. First, note from Figure 5.1 that

it is the inputs Pd,i(t)’s of the WTCSs, rather than the outputs Pi(t)’s, which

may be freely specified. Moreover, dramatic jumps in the Pd,i(t)’s may lead to

rapid changes in the electrical and mechanical turbine states, possibly exciting

the high frequency unmodeled turbine dynamics and/or causing undesirable

vibrations. Second, note that although wind speeds are, in general, difficult

to predict—especially their fast, deviation-from-average components—, their

slow, average components do exhibit predictable trends, at least for several

minutes and even up to a few hours. Third, note that several-hours-ahead,

future values of the desired reference Pd,wf(t) are typically available from the

grid operator as part of its power system planning.

The above three observations have a series of implications. First, they

suggest that the Pd,i(t)’s may be determined by solving an optimization prob-

lem, in which the cost function is a sum of a tracking performance term (moti-

vated by goal (i)) and a control effort term (motivated by the first observation),

taken over a finite horizon into the future (motivated by the second and third

observations). Given that the forecast of the wind speeds and the desired ref-

erence may be revised for better accuracy as time elapses, repeatedly solving

the said optimization problem over a receding or moving horizon and applying

only the initial portion of the optimal solution Pd,i(t)’s yield a strategy that

incorporates not only the three observations toward achieving goal (i), but also

the possibility of revised forecast. As it turns out, this is precisely the phi-

losophy of model predictive control [87]. Notice that while the forecast of the
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desired reference is readily available from the grid operator, the forecast of the

wind speeds may not be. Thus, an additional block within the model predictive

controller is needed to provide such a functionality.

Up to this point in the development, we have constructed a model predic-

tive controller, which computes the desired power trajectories Pd,1(t), . . . , Pd,N(t)

that drive the N WTCSs. Although the model predictive controller is well-

justified (see the above paragraphs), it suffers from an inherent drawback

stemming from the following two factors: first, as was mentioned earlier, it

is difficult to accurately predict the fast fluctuating components of the wind

speeds. Thus, it is not reasonable to expect the model predictive controller

to have access to accurate, high-resolution wind speed forecast over a long

period of time. Second, it is well-known that one of the general limitations

facing model predictive control is the need to solve optimization problems of

potentially very high dimension. In the context of wind farms, this limitation

is particularly pronounced due to the large number of turbines, i.e., large N .

These two factors collectively prevent the sampling period of a discrete-time

model typically used in model predictive control from being small. As a re-

sult, the model predictive controller is well-suited to deal with the tracking

performance only on a longer timescale, i.e., goal (i), and not on a shorter one,

i.e., goal (ii) or, equivalently, the smoothness of the wind farm power output.

This represents the inherent drawback of the model predictive controller. As

another drawback, model predictive strategies in general is open loop, relying

heavily on the assumption that the WTCS model is accurate.

One way to alleviate the drawbacks is to insert, at the point where the

Pd,i(t)’s enter the WTCS models (see Figure 5.1 or 5.2), a feedback controller

that uses the computed Pd,i(t)’s (which we will denote as P ∗
d,i(t)’s) and the
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feedbacks Pi(t)’s to calculate the corrected Pd,i(t)’s, which actually enter the

WTCS models. This feedback controller, whose primary aim is to attain goal

(ii), sits on the inner loop and operates on a shorter timescale compared to the

model predictive controller, which sits on the outer loop. Although there are

many possible choices for this feedback controller, in this chapter we let it be

a fully decentralized bank of proportional controllers due to their simplicity in

both design and analysis. (We note that although not pursued here, extension

to more sophisticated controllers is possible.) Since it is well-known from clas-

sical control that proportional controllers generally yield non-zero steady-state

errors, we precede each proportional controller with an appropriately chosen

feedforward gain to eliminate such errors. Moreover, we further precede each

feedforward gain with a reference model which transforms the P ∗
d,i(t)’s into the

corresponding references (which we will denote as P ∗
i (t)’s).

As was mentioned, the proportional controller is intended to deal with

the smoothness of the wind farm power output, i.e., goal (ii). Thanks to lin-

earization and to stochastic linear systems theory, one could analytically ex-

press the smoothness of the wind farm power output, defined as its steady-state

variance, in terms of the proportional controller gains and the wind speed pa-

rameters. It follows that for any given set of wind speed parameters, one

could, in principle, choose the proportional controller gains to optimize the

smoothness, leading to goal (ii). There is, however, a caveat: the wind speed

parameters are not readily available. Hence, an additional block is needed

to provide estimates of such parameters. Finally, since characteristics of the

wind speeds—including their directions and statistical properties— change over

time, so would the values of the wind speed parameters. Therefore, this ad-

ditional block should continuously update their estimates of the wind speed
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Figure 5.4: Block diagram of the wind farm controller (WFC), comprising a
model predictive controller on the outer loop and an adaptive controller on the
inner loop.

parameters in real-time, while the proportional gains should be continuously

and accordingly tuned in real-time as well. For those who are familiar with

adaptive control [88], this idea is precisely what underlies the so-called self-

tuning regulator. Consequently, we refer to this overall scheme on the inner

loop as an adaptive controller.

This completes the description of the rationale behind the WFC archi-

tecture.

5.3.2 Block Diagram of the Controller

As it follows from the above, the WFC consists of two control loops: an

outer loop and an inner one, the block diagram of which is shown in Figure 5.4.
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The outer loop implements the model predictive controller, which determines

the optimal power trajectories for use by the inner loop, so that the wind farm

power output tracks the desired reference as closely as possible. The inner

loop, on the other hand, implements the adaptive controller, which calculates

the optimal controller parameters so that the wind farm power output is made

as smooth as possible.

The model predictive controller consists of three blocks: Forecast of

Wind Speeds, Optimization of Desired Power Trajectories, and Reference Mod-

els, as shown in the left portion of Figure 5.4. Based on crude estimates of

Vw,i(t)’s, the Forecast of Wind Speeds block produces V̂w,i(t)’s, forecasts of the

future wind speed at each WTCS. The Optimization of Desired Power Tra-

jectories block accepts the forecast of power command Pd,wf(t) from the grid

operator, the forecasts of wind speeds V̂w,i(t)’s from the Forecast of Wind Speeds

block, and the feedbacks of power outputs Pi(t)’s from each wind turbine, and

generates the optimal desired power trajectories P ∗
d,i(t)’s. Finally, the Reference

Models block converts P ∗
d,i(t)’s into the optimal power outputs P ∗

i (t)’s, which

enter the adaptive controller described next.

The adaptive controller consists of four blocks: Estimation of Wind

Speed Parameters, Optimization of Proportional Controller Gains, Feedforward

Gains, and Proportional Controllers, as shown in the right portion of Figure 5.4.

Based on measurements of the wind speeds Vw,i(t)’s, the Estimation of Wind

Speed Parameters block produces an estimate of the covariance matrix Ŵ , and

estimates of the time constants τ̂w,i(t)’s, the role of which will be made clear

shortly. Based on such information, the Optimization of Proportional Con-

troller Gains block generates the optimal controller gains Kp,i’s. The optimal

controller gains are then used to construct the Feedforward Gains block and
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the Proportional Controllers block. The Feedforward Gains block is intended to

amplify the optimal turbine power outputs P ∗
i (t)’s from the outer loop, so that

the steady-state errors are zero. The Proportional Controllers block, on the

other hand, is intended to use feedbacks of the Pi(t)’s to compute the Pd,i(t)’s,

so that the Pi(t)’s would track the P ∗
i (t)’s. Finally, the Pd,i(t)’s represent the

output of the WFC or, equivalently, the inputs to the WTCSs.

Detailed description of both the model predictive controller and the

adaptive controller will be given in Sections 5.4 and 5.5, respectively.

5.4 Model Predictive Control Design

As was outlined in Section 5.3, the model predictive controller, which

represents the outer loop of the WFC, is made up of three blocks, namely,

the Forecast of Wind Speeds, Optimization of Desired Power Trajectories, and

Reference Models blocks. In this section, we describe in details each of these

blocks.

5.4.1 Forecast of Wind Speeds

The current literature offers a large body of work on wind speed fore-

casting, developed by researchers across a number of disciplines. See [89–91] for

state-of-the-art overviews and the references therein. A variety of techniques

have been adopted in these publications, leading to many different wind speed

forecasting models for different purposes, including, for example, the autore-

gressive models proposed in [89]. Because wind speed forecasting has been

well-studied and because the topic is not within the scope of this research, in

this chapter we assume that one of the available models is used by the Forecast
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of Wind Speeds block to provide wind speed forecasts V̂w,1(t), . . . , V̂w,N(t) based

on possibly crude measurements of the wind speeds Vw,1(t), . . . , Vw,N(t).

5.4.2 Optimization of Desired Power Trajectories

In this subsection, we describe the Optimization of Desired Power Tra-

jectories block of Figure 5.4 by introducing a discrete-time model, formulating a

tracking performance optimization problem, and solving the problem to obtain

the optimal desired power trajectories.

Discrete-Time Model

Consider the WTCS model given by (5.4). To utilize this model in

the model predictive control design, we make two slight modifications to it.

For each WTCS i, since the actual wind speed Vw,i(t) may not be known but

its forecast V̂w,i(t) from Section 5.4.1 is, we first replace Vw,i(t) in (5.4) by

V̂w,i(t). Moreover, since the mean of the fast component Ṽw,i(t) from (5.2) is

zero and since the model predictive controller is intended to operate on a longer

timescale, we further disregard Ṽw,i(t) in (5.4). With these two modifications

to (5.4), we obtain

Ṗi(t) = − 1

τi
Pi(t) +

1

τi
sat

αiV̂
3
w,i(t)

0 (Pd,i(t)). (5.6)

Although it is possible to formulate and solve a continuous-time op-

timal control problem based on the continuous-time model (5.6), doing so

in a discrete-time setting is considerably simpler. To this end, we assume

that both V̂w,i(t) and Pd,i(t) are staircase signals with staircase duration of

Ts > 0, so that they may be written as V̂w,i[k] and Pd,i[k] (with angle brackets),

where k = 0, 1, 2, . . . denotes discrete time instant and V̂w,i[k] = V̂w,i(t) and
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Pd,i[k] = Pd,i(t) for t ∈ [kTs, (k + 1)Ts). With this assumption and with Pi[k]

representing the value of Pi(t) at “sampling instant” t = kTs, the continuous-

time model (5.6) may be discretized as if there is a zero-order hold with a

sampling period Ts, resulting in a discrete-time linear model

Pi[k + 1] = aiPi[k] + (1− ai)Pd,i[k], (5.7)

where the parameter ai is given by ai = e
−Ts

τi ∈ (0, 1) and the input Pd,i[k]

satisfies

0 ≤ Pd,i[k] ≤ αiV̂
3
w,i[k]. (5.8)

Note that with (5.8), the saturation function appearing in (5.6) does not show

up in (5.7).

For convenience, let us introduce the following notations:

Pk0
i =

[
Pi[k0] Pi[k0 + 1] · · · Pi[k0 +K − 1]

]T
,

Pk0
d,i =

[
Pd,i[k0] Pd,i[k0 + 1] · · · Pd,i[k0 +K − 1]

]T
,

Pk0
d,wf =

[
Pd,wf [k0] Pd,wf [k0 + 1] · · · Pd,wf [k0 +K − 1]

]T
,

Pk0
d =

[
(Pk0

d,1)
T (Pk0

d,2)
T · · · (Pk0

d,N)
T
]T

,

where K is a positive integer. With these notations, (5.7) can be written in

matrix form as follows:







Pi[k0 + 1]
Pi[k0 + 2]

...
Pi[k0 +K]







=








(1− ai) 0 . . . 0

ai(1− ai) (1− ai)
. . .

...
...

. . .
. . . 0

aK−1
i (1− ai) . . . ai(1− ai) (1− ai)















Pd,i[k0]
Pd,i[k0 + 1]

...
Pd,i[k0 +K − 1]








+








ai
a2i
...
aKi







Pi[k0]
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Pk0+1
i = (1− ai)








1 0 . . . 0

ai 1
. . .

...
...

. . .
. . . 0

aK−1
i . . . ai 1








︸ ︷︷ ︸

Li

Pk0
d,i + ai








1
ai
...

aK−1
i








︸ ︷︷ ︸

vi

Pi[k0]

= (1− ai)LiP
k0
d,i + aiviPi[k0], (5.9)

where Li and vi are as labeled in (5.9). It follows from (5.9) that








Pk0+1
1

Pk0+1
2
...

Pk0+1
N







=








(1− a1)L1 0 . . . 0

0 (1− a2)L2
. . .

...
...

. . .
. . . 0

0 . . . 0 (1− aN )LN







Pk0

d +








a1v1P1[k0]
a2v2P2[k0]

...
aNvNPN [k0]







.

(5.10)

Equation (5.10) will be used shortly.

Tracking Performance Optimization

Having derived the discrete-time WTCS model (5.7), we consider next

the following optimization problem: Given an initial time instant k0 ≥ 1, a

finite horizon K ≥ 1, forecast of the desired wind farm power output Pd,wf [k]

for k = k0, k0 + 1, . . . , k0 + K, forecast of the wind speeds V̂w,i[k] for k =

k0, k0 + 1, . . . , k0 +K − 1, the initial power outputs Pi[k0] for i = 1, 2, . . . , N ,

and initial desired powers Pd,i[k0−1] for i = 1, 2, . . . , N , find Pk0
d that minimizes

the cost function

J1 =

k0+K∑

k=k0

η(k)(
N∑

i=1

Pi[k]− Pd,wf [k])
2 +

k0+K−1∑

k=k0

N∑

i=1

µi(k)(Pd,i[k]− Pd,i[k − 1])2

+

k0+K−1∑

k=k0

N∑

i=1

νi(k)P
2
d,i[k] (5.11)

subject to (5.7) and (5.8) for k = k0, k0+1, . . . , k0+K−1 and for i = 1, 2, . . . , N .

To see the interpretation of this dynamic, inequality-constrained optimization
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problem, notice that the optimization variable Pk0
d is a NK-dimensional vector

that stacks Pd,i[k] for k = k0, k0 + 1, . . . , k0 + K − 1 and for i = 1, 2, . . . , N .

Also note that the cost function J1 contains three terms, where the first term

is the receding horizon sum of the square of the tracking errors and, thus,

reflects the tracking performance, whereas the second and third terms are the

receding horizon sum of the square of the control variations and magnitudes

and, hence, reflect the control effort. In addition, the weights η(k)’s, µi(k)’s,

and νi(k)’s are positive constants, which describe the relative importance of

the summands at various time instants for various wind turbines. Therefore,

solving the optimization problem (5.11) for the optimal Pk0
d may be regarded

as finding the desired power trajectories, which optimize a possibly time-varying

weighted combination of the tracking performance and control effort.

The dynamic optimization problem (5.11) may be transformed into a

static one using (5.10). To see this, observe that the first term of J1 in (5.11)

may be written as

k0+K∑

k=k0

η(k)(

N∑

i=1

Pi[k]− Pd,wf [k])
2

=

k0+K∑

k=k0+1

η(k)(

N∑

i=1

Pi[k]− Pd,wf [k])
2 + η(k0)(

N∑

i=1

Pi[k0]− Pd,wf [k0])
2

=

k0+K∑

k=k0+1

η(k)(

N∑

i=1

Pi[k])
2 − 2

k0+K∑

k=k0+1

η(k)

N∑

i=1

Pi[k]Pd,wf [k] +

k0+K∑

k=k0+1

η(k)P 2
d,wf [k]

+ η(k0)(
N∑

i=1

Pi[k0]− Pd,wf [k0])
2

=








Pk0+1
1

Pk0+1
2
...

Pk0+1
N








T 






Hk0+1 Hk0+1 . . . Hk0+1

Hk0+1 Hk0+1 . . . Hk0+1

...
...

. . .
...

Hk0+1 Hk0+1 . . . Hk0+1















Pk0+1
1

Pk0+1
2
...

Pk0+1
N








119



− 2








Pk0+1
d,wf

Pk0+1
d,wf
...

Pk0+1
d,wf








T 






Hk0+1 0 . . . 0

0 Hk0+1 . . .
...

...
. . .

. . . 0
0 . . . 0 Hk0+1















Pk0+1
1

Pk0+1
2
...

Pk0+1
N








+

k0+K∑

k=k0+1

η(k)P 2
d,wf [k] + η(k0)(

N∑

i=1

Pi[k0]− Pd,wf [k0])
2, (5.12)

where Hk0+1 = diag(η(k0 + 1), η(k0 + 2), . . . , η(k0 + K)). Substituting (5.10)

into (5.12) yields

k0+K∑

k=k0

η(k)(
N∑

i=1

Pi[k]− Pd,wf [k])
2

= (Pk0
d )T






(1− a1)(1− a1)L
T
1H

k0+1L1 . . . (1− a1)(1− aN)L
T
1H

k0+1LN
...

. . .
...

(1− aN)(1− a1)L
T
NH

k0+1L1 . . . (1− aN)(1− aN)L
T
NH

k0+1LN




Pk0

d

+ 2






a1v1P1[k0]
...

aNvNPN [k0]






T 




(1− a1)H
k0+1L1 . . . (1− aN )H

k0+1LN
...

. . .
...

(1− a1)H
k0+1L1 . . . (1− aN )H

k0+1LN




Pk0

d

− 2






Pk0+1
d,wf
...

Pk0+1
d,wf






T 




(1− a1)H
k0+1L1 0

. . .

0 (1− aN)H
k0+1LN




Pk0

d

− 2
N∑

i=1

aiPi[k0](P
k0+1
d,wf )

THk0+1vi +
N∑

i=1

N∑

j=1

aiajPi[k0]Pj [k0]v
T
i H

k0+1vj

+

k0+K∑

k=k0+1

η(k)P 2
d,wf [k] + η(k0)(

N∑

i=1

Pi[k0]− Pd,wf [k0])
2. (5.13)

Likewise, notice that the second and third terms of J1 may be expressed as

k0+K−1∑

k=k0

N∑

i=1

µi(k)(Pd,i[k]− Pd,i[k − 1])2 +

k0+K−1∑

k=k0

N∑

i=1

νi(k)P
2
d,i[k]

=(Pk0
d )T








U1 + V1 0 . . . 0

0 U2 + V2
. . .

...
...

. . .
. . . 0

0 . . . 0 UN + VN







Pk0

d
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− 2
(








µ1(k0)Pd,1[k0 − 1]
µ2(k0)Pd,2[k0 − 1]

...
µN(k0)Pd,N [k0 − 1]







⊗








1
0
...
0








)T

Pk0
d +

N∑

i=1

µi(k0)P
2
d,i[k0 − 1], (5.14)

where ⊗ denotes the Kronecker product, Ui = UT
i > 0 is given by










µi(k0)+µi(k0+1) −µi(k0+1) 0 0 ... 0
−µi(k0+1) µi(k0+1)+µi(k0+2) −µi(k0+2) 0 0

0 −µi(k0+2) µi(k0+2)+µi(k0+3)
...

...
...

0 0
...

... −µi(k0+K−2) 0

...
... −µi(k0+K−2) µi(k0+K−2)+µi(k0+K−1) −µi(k0+K−1)

0 0 ... 0 −µi(k0+K−1) µi(k0+K−1)










,

and Vi = V T
i > 0 is given by

Vi = diag(νi(k0), νi(k0 + 1), . . . , νi(k0 +K − 1)).

(To understand the structure of Ui, note that by ignoring the constant µi(k0)

on its first row and first column, Ui may be regarded as a weighted Laplacian

matrix of an undirected path graph.) Expressions (5.13) and (5.14) together

suggest that the cost function J1 is a quadratic function of the optimization

variable Pk0
d , i.e.,

J1 = (Pk0
d )TSPk0

d + bTPk0
d + c

for some S ∈ R
NK×NK , b ∈ R

NK , and c ∈ R, which can be determined from

(5.13) and (5.14). A closer look at these expressions also reveals that S = ST >

0. Thus, by leveraging the dynamics (5.10), the dynamic optimization problem

(5.11) may be converted into a static, convex quadratic optimization problem

with “box” constraints, the latter due to (5.8).

Optimal Desired Power Trajectories

That the cost function J1 is strongly convex and the constraint is com-

pact and convex imply that there always exists a unique solution Pk0
d to the

121



optimization problem. Unfortunately however, such a solution cannot, in gen-

eral, be analytically obtained [92]. Nevertheless, effective and reliable numerical

algorithms, capable of solving the optimization problem in a few tens of sec-

onds when its dimension NK is up to several thousands, are currently available

(e.g., the interior point methods [92]). Hence, in what follows we will assume

that one such numerical algorithm is in place.

Thus far, we have presented an optimization-based approach for com-

puting, at any given time instant k = k0, the desired power trajectory Pd,i[k]

of every turbine i ∈ {1, 2, . . . , N} from that time instant to a later time instant

k = k0 +K − 1. The computation is carried out based on forecast of the wind

speeds V̂w,1[k], . . . , V̂w,N [k] and forecast of the desired wind farm power output

Pd,wf [k] over the same time interval, i.e., from k = k0 to k = k0 + K − 1.

Since forecast of the value of a signal at a certain time generally becomes more

accurate as we draw closer to the given time, and since more accurate forecast

generally translates into more meaningful desired power trajectories, it is con-

ceivable that solving the optimization problem at each time instant using the

latest available forecast and applying only the first step of the solution repre-

sent a sensible way to reap the benefit of revised forecast. This idea, which

belongs to the realm of model predictive control [87], is particularly suitable

here as forecast of both V̂w,1[k], . . . , V̂w,N [k] and Pd,wf [k] usually becomes more

accurate as time progresses.

Consequently, in the sequel we adopt a model predictive controller,

which operates as follows: At each time instant k0 ≥ 1, the controller solves

the optimization problem for Pd,i[k] for k = k0, . . . , k0 + K − 1 and for i =

1, 2, . . . , N , but only applies Pd,i[k0] for i = 1, 2, . . . , N between time k0 and

k0 + 1. Since the Pd,i[k] that gets computed is not the same as the Pd,i[k] that
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gets applied, to avoid confusion, we will denote the latter as P ∗
d,i[k].

Note that the above paragraph describes only the operation of the model

predictive controller at each time instant k0 ≥ 1 but not its initialization at

time instant 0. Examining the description, however, we can see that the only

initial conditions that we need to assume are Pd,i[0] and Pi[0] for i = 1, 2, . . . , N .

5.5 Adaptive Control Design

Having described the model predictive controller on the outer loop of

the WFC, we now consider the adaptive controller, which sits on the inner

loop and is made up of four blocks: the Estimation of Wind Speed Parame-

ters, Optimization of Proportional Controller Gains, Feedforward Gains, and

Proportional Controllers blocks. In this section, we describe in details each of

these blocks.

5.5.1 Proportional Controllers and Feedforward Gains

As was mentioned in Section 5.3.1, due to the limitations of the model

predictive controller, we insert a fully decentralized bank of proportional con-

trollers between P ∗
i (t)’s, the outputs of the model predictive controller, and

Pd,i(t)’s, the inputs of the WTCSs. Moreover, to eliminate steady-state errors,

we precede each proportional controller with a feedforward gain, as was shown

in Figure 5.4. Therefore, Pd,i(t) that enters each WTCS i can be written as

Pd,i(t) = Kp,i

(1 +Kp,i

Kp,i
P ∗
i (t)− Pi(t)

)

, (5.15)

where Kp,i > 0 is the proportional controller gain. Equation (5.15) says that

the difference between Pi(t) and an appropriately scaled version of P ∗
i (t) is used

to compute a “corrective” action Pd,i(t) which drives each WTCS i.
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5.5.2 Optimization of Proportional Controller Gains

In this subsection, we describe the Optimization of Proportional Con-

troller Gains block of Figure 5.4 by introducing an augmented model, formu-

lating a smoothness optimization problem, and solving the problem to obtain

the optimal proportional controller gains Kp,i’s.

Augmented Model: Linearized Model plus Specific Wind Speed Model

Consider the model (5.2) which describes the fast wind speed compo-

nents. To utilize this model in our design, we assume that Nw = N , so that the

stationary, zero-mean white Gaussian random process w(t) has N components,

where each wi(t) is associated with WTCS i. Moreover, we let the generic

transfer function matrix Gw(s) take a specific form, i.e.,

Gw(s) = diag
( 1

τw,1s+ 1
,

1

τw,2s+ 1
, . . . ,

1

τw,Ns+ 1

)
, (5.16)

where τw,i > 0 represents the time constant. From (5.2) and (5.16), we obtain

˙̃Vw,i(t) = − 1

τw,i
Ṽw,i(t) +

1

τw,i
wi(t). (5.17)

Thus, for each WTCS i, the fast wind speed component Ṽw,i(t) is a zero-mean

colored Gaussian random process driven by wi(t).

Next, consider the WTCS model given by (5.4). For simplicity, we as-

sume that the saturation block does not come into play, and note that this

assumption is not uncommon in control systems literature, as it simplifies the

design and analysis while maintaining reasonable validity. With this assump-

tion and by substituting (5.15) into (5.4), we obtain for each WTCS i

Ṗi(t) = −1 +Kp,i

τi
Pi(t) +

1 +Kp,i

τi
P ∗
i (t) + γiṼw,i(t), (5.18)
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where P ∗
i (t) is relatively slow-varying, since the outer loop model predictive

controller is running on a much longer timescale. Assuming that P ∗
i (t) is so slow

that it can be regarded as constant, the system (5.18) without the “disturbance”

Ṽw,i(t) has a unique equilibrium point Pi,eq given by

Pi,eq = P ∗
i (t). (5.19)

In addition, the steady-state value of Pd,i(t) corresponding to this equilibrium

point, denoted as Pd,i,eq, is given by

Pd,i,eq = P ∗
i (t). (5.20)

To obtain a linearized model about this equilibrium point, let us introduce

∆Pi(t) = Pi(t)− Pi,eq, (5.21)

∆Pd,i(t) = Pd,i(t)− Pd,i,eq. (5.22)

Note from (5.15) and (5.19)–(5.22) that

∆Pd,i(t) = −Kp,i∆Pi(t), (5.23)

and from (5.18), (5.19), and (5.21) that

∆Ṗi(t) = −1 +Kp,i

τi
∆Pi(t) + γiṼw,i(t). (5.24)

Combining (5.17) and (5.24), we obtain the following augmented model with

state variables (Ṽw,i(t),∆Pi(t)) for each wind turbine i:
[
˙̃Vw,i(t)

∆Ṗi(t)

]

=

[

− 1
τw,i

0

γi −1+Kp,i

τi

] [
Ṽw,i(t)
∆Pi(t)

]

+

[ 1
τw,i

0

]

wi(t). (5.25)

Since (5.25) applies to every wind turbine i, we can write the augmented model

in matrix form as
[

˙̃Vw(t)

∆Ṗ (t)

]

=

[
A11 0
A21 A22

]

︸ ︷︷ ︸

A

[
Ṽw(t)
∆P (t)

]

+

[
−A11

0

]

︸ ︷︷ ︸

B

w(t), (5.26)
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where A ∈ R
2N×2N and B ∈ R

2N×N are as labeled in (5.26), and

Ṽw(t) =
[

Ṽw,1(t) Ṽw,2(t) · · · Ṽw,N(t)
]T

,

∆P (t) =
[
∆P1(t) ∆P2(t) · · · ∆PN (t)

]T
,

A11 = diag
(

− 1

τw,1
,− 1

τw,2
, . . . ,− 1

τw,N

)

,

A21 = diag(γ1, γ2, . . . , γN),

A22 = diag
(

− 1 +Kp,1

τ1
,−1 +Kp,2

τ2
, . . . ,−1 +Kp,N

τN

)

.

Note that since τw,i > 0, τi > 0, and Kp,i > 0, the system (5.26) or matrix A is

asymptotically stable.

Smoothness Optimization

Having derived the augmented model (5.26), we consider next the fol-

lowing optimization problem: Given the positive definite covariance matrix W

and time constants τw,i > 0 for i = 1, 2, . . . , N , find the proportional controller

gains Kp = [Kp,1 Kp,2 · · · Kp,N ]
T that minimize the cost function

J2 = lim
t→∞

E{(
N∑

i=1

∆Pi(t))
2 +

N∑

i=1

ǫi∆P 2
d,i(t)}. (5.27)

Note that the cost function J2 contains two terms, where the first term (includ-

ing the limit and expectation) represents the steady-state variance of the regu-

lation error reflecting the smoothness of the wind farm power output, whereas

the second term represents the sum of the steady-state variance of the control

magnitudes reflecting the control effort. In addition, the weights ǫi’s are pos-

itive constants, which describe the relative importance of the summands for

various wind turbines. Therefore, solving the optimization problem (5.27) for

the optimal Kp may be viewed as finding the proportional gains that optimize

a weighted combination of the smoothness and control effort.
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Substituting (5.23) into (5.27) yields

J2 = lim
t→∞

E{(
N∑

i=1

∆Pi(t))
2 +

N∑

i=1

ǫiK
2
p,i∆P 2

i (t)}

= lim
t→∞

E{
[
Ṽw(t)

T ∆P (t)T
]
[
0 0
0 Q22

]

︸ ︷︷ ︸

Q

[
Ṽw(t)
∆P (t)

]

}, (5.28)

where Q ∈ R
2N×2N is as labeled in (5.28) and Q22 = QT

22 > 0 is given by

Q22 =








1 + ǫ1K
2
p,1 1 . . . 1

1 1 + ǫ2K
2
p,2

. . .
...

...
. . .

. . . 1
1 . . . 1 1 + ǫNK

2
p,N







.

From stochastic linear systems theory [93], we know that

J2 = trace(SQ), (5.29)

where S = ST > 0 is the unique solution of the Lyapunov equation

0 = AS + SAT +BWBT . (5.30)

For convenience, let S ∈ R
2N×2N be partitioned as

S =

[
S1 S2

ST
2 S3

]

,

where S1 = ST
1 ∈ R

N×N , S2 ∈ R
N×N , and S3 = ST

3 ∈ R
N×N . With this

partitioning and that of A and B from (5.26), we may rewrite (5.30) as

[
A11 0
A21 A22

] [
S1 S2

ST
2 S3

]

+

[
S1 S2

ST
2 S3

] [
A11 A21

0 A22

]

+

[
A11WA11 0

0 0

]

= 0

and, thus, as

[
A11S1 A11S2

A21S1 + A22S
T
2 A21S2 + A22S3

]

+

[
S1A11 S1A21 + S2A22

ST
2 A11 ST

2 A21 + S3A22

]

+

[
A11WA11 0

0 0

]

= 0.
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Since A11 is asymptotically stable, the Lyapunov equation

A11S1 + S1A11 = −A11WA11

admits a unique solution S1 = ST
1 > 0 given by

S1 = [S1,ij]1≤i≤N
1≤j≤N

=
[ Wij

τw,i + τw,j

]

1≤i≤N
1≤j≤N

, (5.31)

where the subscripts ij denote the ith row and jth column of the matrix. Next,

since A22 is asymptotically stable as well, the Sylvester equation

A11S2 + S2A22 = −S1A21

admits a unique solution S2 given by

S2 = [S2,ij ]1≤i≤N
1≤j≤N

=

[
γjS1,ij

1
τw,i

+
1+Kp,j

τj

]

1≤i≤N
1≤j≤N

. (5.32)

Finally, in a similar way, by solving the Lyapunov equation

A22S3 + S3A22 = −A21S2 − ST
2 A21,

S3 can be calculated as

S3 = [S3,ij ]1≤i≤N
1≤j≤N

=

[

γiS2,ij + γjS2,ji

1+Kp,i

τi
+

1+Kp,j

τj

]

1≤i≤N
1≤j≤N

. (5.33)

Therefore, with the partitioning of S and Q, the cost function J2 can be written

as

J2 = trace(SQ) = trace(S3Q22)

=
N∑

i=1

N∑

j=1

S3,ij +
N∑

i=1

ǫiK
2
p,iS3,ii, (5.34)

where, as pointed out before, the first term represents the smoothness of the

wind farm power output, while the second term represents the control effort.
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Optimal Proportional Controller Gains

Observe from (5.31)–(5.34) that J2 is a function of the turbine param-

eters τi’s and γi’s which are known, the wind speed parameters W and τw,i’s

which may be estimated, the weights ǫi’s which may be chosen, and the pro-

posed controller gains Kp,i’s. Thus, the optimal proportional controller gains

K∗
p that minimize the cost function J2, in principle, may be determined based

on quantities which are either known, may be estimated, or may be chosen. To

compute such a K∗
p , we consider a steepest descent optimization approach:








K̇p,1

K̇p,2
...

K̇p,N







= −ε









∂J2
∂Kp,1
∂J2

∂Kp,2

...
∂J2

∂Kp,N









, (5.35)

which is guaranteed to find a local minimizer. In (5.35), ε > 0 is a design

parameter, and the partial derivatives ∂J2
∂Kp,i

’s can be calculated in a straight-

forward manner using (5.31)–(5.34).

5.5.3 Estimation of Wind Speed Parameters

As was pointed out above, the cost function J2 depends on the wind

speed parameters W and τw,1, . . . , τw,N , which is not readily available and must

be explicitly estimated. Hence, to implement (5.35) for solving the smoothness

optimization problem, an Estimation of Wind Speed Parameters block is needed

as shown in Figure 5.4, which provides an estimate Ŵ of the covariance matrix

W and estimates τ̂w,1, . . . , τ̂w,N of the time constants based on measurements

of the wind speeds Vw,i(t)’s. As the design of such a block is not within the

scope of this research (we refer the reader to [70] for methods to do so), we

assume that such a block is given.
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Figure 5.5: One-shot quadratic optimization vs. Iterative MPC

5.6 Simulation Studies

To demonstrate the effectiveness of the WFC presented above, numer-

ical simulations have been carried out, where we test the model predictive

controller, the adaptive controller, and the proposed WFC, respectively.

5.6.1 Simulation Results for the Model Predictive Controller

In this subsection, we first demonstrate that by repeatedly solving the

optimization problem (5.11), the model predictive controller takes advantage

of the updated forecast. The simulation settings are as follows: We consider

a wind farm with two turbines. The values of the parameters are α1 = 0.657,
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τ1 = 60 sec, α2 = 0.657, τ2 = 90 sec, and constant wind speeds Vw,1(t) = 1 pu

and Vw,2(t) = 0.8 pu. For the controller, we choose its parameters Ts = 1min,

the length of the time horizon K = 200min, η(k) = 1, µ1(k) = 1, ν1(k) = 10−6,

µ2(k) = 2, ν2(k) = 10−6. Moreover, we assume that the wind speed forecasts

are accurate. The simulation results are as follows: we compare the model

predictive controller with the quadratic optimization method, which only solves

the optimization problem (5.11) based on forecast of the wind speeds and the

desired power reference at time t = 0. Simulations are carried out to show

the key differences between them. Figure 5.5 shows the simulation results.

Note that when there is no forecast error on the wind farm power demand

Pd,wf(t), the two controllers generate very similar results, as shown in the left

two subplots in Figure 5.5; when forecast error does happen, the quadratic

optimization method cannot incorporate the updated forecast, while the model

predictive controller can. As was shown in the right subplots in Figure 5.5, at

t = 0, the power demand forecast has a sharp drop from 1.0 pu to 0.5 pu at

time t = 30min. Both controllers reduce the power output accordingly. At

t = 30min, when the updated demand forecast cancels the drop and restores

constant power output, the model predictive controller quickly increases the

power output to react, whereas the quadratic optimization method does not

react at all.

Next, we illustrate the attributes of the model predictive controller com-

pared with a well-known WFC [5] comprising a proportional controller and an

even distribution according to available wind power of each turbines. To carry

out the illustration, consider the same set of parameters as above, and let the

proportional controller gain Kp = 10 and the wind farm power demand expe-

rience step changes between 1.0 and 0.5 pu. Also assume that the wind speed
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Figure 5.6: MPC vs a WFC comprising a proportional controller and an even
distribution of wind power load [5].

forecasts are accurate. The simulation results are shown in Figure 5.6, from

which several observations can be made: first, due to utilization of the fore-

casts, the model predictive controller is able to begin taking actions in advance,

which is important to the current wind turbines with large size and inertia. For

example, when the demand drops from 1.0 to 0.5 pu at time equals to 20 min,

based on the accurate forecast, the model predictive controller reduces the

wind farm power output even before the power demand drops, thereby avoid-

ing the sharp drop in the wind farm power output. Second, without integral

action, the model predictive controller is able to generate the right amount of

power according to the power demand, if the wind is large enough, whereas the
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proportional controller has steady-state errors. Although not considered, it is

conceivable that even with an integral term, the resulting proportional-integral

controller would still suffer from the well-known anti-windup issue. Third,

by properly adjusting the weights in the cost function, the model predictive

controller is able to achieve a balance between fast, abruptly changing power

demands Pd,i(t)’s, and slow, smoothly varying ones.

5.6.2 Simulation Results for the Adaptive Controller

In this subsection, we first introduce, for the fast wind speed compo-

nents, the following four different types of wind speed correlation and the cor-

responding covariance matrix W , as shown in Figure 5.7:

• Moderately correlated. This case may correspond to a row of wind tur-

bines, where the wind is blowing from left to right. The distance between

two adjacent turbines are neither too close nor too far away, so that

the correlation between the fast wind speeds at two nearby turbines is

moderate.

• Strongly correlated. This one may correspond to a row of wind turbines

and the wind is blowing toward them simultaneously. The distance be-

tween two turbines is relatively close, so that the correlation between the

fast wind speeds at two turbines is strong.

• Totally uncorrelated. This case is similar to the first one, except that

the turbines are very far apart, so that the fast wind speeds are totally

uncorrelated.

• Negatively correlated. This one relates to the situation where turbines

are so close to each other, that some may locate in the turbulence and
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Figure 5.7: Different correlations and the fast wind speed components.

wake area of the others. Hence, if some turbines grab too much wind

energy, others will experience weaker wind. Thus, the wind speeds at

two turbines are likely negatively correlated.

Next, if we let all the ǫi’s in (5.34) be equal and denote it simply as ǫ,

(5.34) can be written as

J2 =

N∑

i=1

N∑

j=1

S3,ij + ǫ

N∑

i=1

K2
p,iS3,ii, (5.36)
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where ǫ > 0. Equation (5.36) forms a Pareto optimal between the smoothness

of the wind farm power output and the control effort for each ǫ > 0. Hence, if

we let ǫ vary over a large range, it forms a Pareto optimal curve. For the four

different types of correlation considered above, we draw the Pareto optimal

curve for each type of correlation, respectively, as shown in Figure 5.8. More-

over, the region containing all the achievable points is marked in gray. Finally,

in Figure 5.9, we superimpose the four Pareto optimal curves together. Observe

that, for a given control effort, the case where W is negatively correlated yields

the best smoothness among the four types. The next best smoothness comes

from the totally uncorrelated case, which is not surprising as this shows the
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benefit of having diversity. Finally, the strongly correlated case has the worst

smoothness, followed by the moderately correlated case.

5.6.3 Simulation Results for the Proposed WFC

In this subsection, we demonstrate the capability and effectiveness of

the proposed WFC by carrying out simulation in MATLAB. The simulation

settings are as follows: We consider a wind farm with N = 10 wind turbines

of the same type, whose parameters take the following values: τi = 60 seconds,

αi = 0.657, γi = 0.02, Ts = 60 seconds, and K = 100. Moreover, we let

the values of the optimization parameters be: η(k) = 1, µ1(k) = µ6(k) = 1,

µ2(k) = µ7(k) = 2, µ3(k) = µ8(k) = 4, µ4(k) = µ9(k) = 8, µ5(k) = µ10(k) =

16, νi(k) = 1 × 10−6, ǫi = 1, and ǫ = 1. Note that we intentionally choose

the µi(k)’s so that changes in the Pd,i[k]’s are least penalized for turbines 1
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Figure 5.10: Wind speeds Vw,i(t)’s used in the simulation of the proposed WFC.

and 6, followed by turbines 2 and 7, and so on. In addition, we let the val-

ues of the specific wind speed model parameters be τw,i = 1 second and be

such that the entry in the ith row and jth column of the covariance matrix

W is Wij = 0.99|i−j|σ, where σ = 10. Note that for simplicity, we assume

that both the τw,i’s and W are constant over time, and that the Estima-

tion of Wind Speed Parameters block operates ideally, so that τ̂w,i = τw,i

for all i = 1, 2, . . . , N and Ŵ = W . It follows from gradient-based numeri-

cal optimization that the optimal proportional controller gains K∗
p are given

by [1.7380 1.9038 2.0252 2.1041 2.1430 2.1430 2.1041 2.0252 1.9038 1.7380]T .

As for the slow, average components of Vw,i(t)’s, i.e., V̄w,i(t)’s, we let V̄w,1(t)

be defined by an actual wind profile from a wind farm located in northwest
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Figure 5.11: Wind turbine desired power outputs Pd,i(t)’s and actual power
outputs Pi(t)’s in the simulation of the proposed WFC.

Oklahoma, and let V̄w,i(t) be defined by shifting V̄w,1(t) by (i− 1)minutes for

i = 2, 3, . . . , N . The resulting wind speeds Vw,i(t)’s are shown in Figure 5.10.

Finally, we choose the initial conditions to be Pd,i[0] = 0.2 and Pi[0] = 0.2

for i = 1, 2, . . . , N and consider a scenario where the desired wind farm power

output Pd,wf(t) experiences large step changes between 2 pu and 4 pu.

The simulation results are as follows: First, Figure 5.11 shows wind

turbine desired power outputs Pd,i(t)’s and actual power outputs Pi(t)’s in the

simulation of the proposed WFC of each turbine, from which we can observe

that for each i, Pd,i(t) undergoes larger variations if µi is relatively small (e.g., in

the case of turbines 1 and 6) and smaller variations otherwise (e.g., in the case
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Figure 5.12: Wind farm desired power output Pd,wf(t) and actual power output
Pwf(t) in the simulation of the proposed WFC.

of turbines 5 and 10). More important, every Pi(t) closely tracks Pd,i(t) despite

the significant wind fluctuations as shown in Figure 5.11. Second, Figure 5.12

shows wind farm desired power output Pd,wf(t) and actual power output Pwf(t)

in the simulation of the proposed WFC, from which we can observe that Pwf(t)

accurately and smoothly tracks Pd,wf(t), achieving the ultimate objective of the

proposed WFC. Moreover, due to the built-in feature of the model predictive

controller—namely, an ability to incorporate (revised) forecasts—the wind farm

is able to take actions in advance, enabling Pwf(t) to react to an impending

change in Pd,wf(t) as can be seen from time 1200 seconds and time 2400 seconds

of Figure 5.12.
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5.7 Conclusion

In this chapter, we have developed a wind farm controller, which en-

ables the wind farm power output to accurately and smoothly track the desired

power reference. The controller comprises a model predictive controller coop-

eratively optimizing the tracking performance of the wind farm power output

on a longer timescale, as well as a self-tuning regulator-type adaptive controller

jointly optimizing the smoothness of the power output on a shorter timescale.

Simulation has been carried out, and the results illustrate the positive features

of the proposed controller.
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Chapter 6 Wind Farms with Kinetic Energy Release:
A Control Perspective

6.1 Introduction

In this chapter, we consider an MPT controller augmented with a pro-

portional inertia response (PIR) controller, and obtain analytical answers to

some of the open questions. More specifically, we first analyze the resulting,

nonlinear wind turbine control system and show that, under some conditions,

the system contains an asymptotically stable equilibrium point, which is desir-

able. There are, however, other conditions under which the nonlinearity can

cause problems. We then linearize the system and show that its transfer func-

tion contains a zero at the origin, which may lead to some potential issues.

Finally, we study the stability of the power system frequency response model

and show that the MPT-inertia response controller will not cause instability

when only the reheat steam turbine generating units are considered.

The remainder of this chapter is organized as follows. Section 6.2 de-

scribes a variable-speed wind turbine model as well as a power system frequency

response model. Section 6.3 analyzes the behavior of the MPT controller with

inertia response. Finally, Section 6.4 concludes this chapter.
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6.2 Modeling

In this section, we first introduce, in Section 6.2.1, a variable-speed wind

turbine model. We then describe, in Section 6.2.2, a power system frequency

response model, which builds upon the one in Section 6.2.1.

6.2.1 Variable-Speed Wind Turbine Model

Consider a variable-speed wind turbine model given by

J
d

dt
ωr = Tm − Te, (6.1)

Pe = Teωr, (6.2)

where J > 0 is the moment of inertia, ωr > 0 is the rotor angular velocity,

Tm is the mechanical torque, Te is the electromagnetic torque, and Pe is the

generated electrical power. The mechanical torque Tm is given by

Tm =
Pm

ωr
=

1
2
ρπR2Cp(λ, β)V

3
w

ωr
, (6.3)

where Pm is the mechanical power captured by the wind turbine, ρ > 0 is the

air density, R > 0 is the rotor blade radius, Vw > 0 is the wind speed, and

Cp is the performance coefficient, which is a function of the tip speed ratio

λ = Rωr

Vw
> 0 and the blade pitch angle β. In this chapter, we assume that the

Cp(λ, β) surface satisfies the following conditions:

(A1) There exists a unique (λ∗, β∗) such that C∗
p , Cp(λ

∗, β∗) ≥ Cp(λ, β) for

all (λ, β);

(A2) ∂
∂λ
Cp(λ

∗, β∗) = 0;

(A3) For every λ < λ∗ and for β = β∗, Cp(λ, β) >
C∗

p

(λ∗)3
λ3.

Note that (A1) and (A2) are common assumptions on Cp(λ, β) surfaces,

whereas (A3) is a standard assumption adopted in [4] to establish MPT.
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Figure 6.1: Power system frequency response model.

6.2.2 Power System Frequency Response Model

Next, consider a power system frequency response model [94] as shown

in Figure 6.1, where synchronizing oscillations among generators are filtered

out and only the average and collective frequency behaviors are retained. In

the figure, H > 0 is the lumped inertia constant, Df > 0 is the damping factor

(representing the frequency-dependent portion of the load), s is the Laplace

operator, Pa is the accelerating power, and ∆f is the power system frequency

deviation. In addition, ∆Pre, ∆Pnon, ∆Phydr, and ∆Pwind are the incremental

powers from Units with Reheat Steam Turbines, Units with Non-Reheat Steam

Turbines, Hydraulic Units, and Variable-Speed Wind Turbines, respectively.

Moreover, ∆PG = ∆Pre+∆Pnon+∆Phydr+∆Pwind and ∆PL are the incremental

powers from all the generating units and all the loads. In this chapter, we

assume that for the first three conventional types of generating units, their
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transfer functions are given by [95]

∆Pre(s)

∆f(s)
=
∑

i

(− 1 + sFH,iTR,i

Ri(1 + sTG,i)(1 + sTCH,i)(1 + sTR,i)
), (6.4)

∆Pnon(s)

∆f(s)
=
∑

i

(− 1

Ri(1 + sTG,i)(1 + sTCH,i)
), (6.5)

∆Phydr(s)

∆f(s)
=
∑

i

(− (1 + sTR,i)(1− sTW,i)

Ri(1 + sTG,i)(1 + s
RT,i

RP,i
TR,i)(1 + 0.5sTW,i)

), (6.6)

where i represents the ith unit and the definition of all the constant param-

eters can be found in [95]. For the fourth type of generating unit, namely,

the variable-speed wind turbines, its transfer function may be obtained by

linearizing the nonlinear model in Section 6.2.1, which will be carried out in

Section 6.3.2.

6.3 Analysis

In this section, we study the frequency behaviors of a large power sys-

tem to sudden load disturbances. We first analyze, in Section 6.3.1, the equi-

librium points of the wind turbine with an MPT controller augmented with

a PIR controller. Based on the equilibrium point analysis, we next linearize,

in Section 6.3.2, the nonlinear wind turbine model and discuss its implication.

Finally, in Section 6.3.3, we study the stability of a simplified power system

frequency model that assumes an equivalent single machine lumping of multiple

and the linearized wind turbine models.
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6.3.1 Equilibrium Point Analysis

Consider the widely-studied, MPT controller proposed in [4] and given

by

Te = K∗ω2
r , (6.7)

where K∗ = 1
2
ρπR5 C∗

p

(λ∗)3
. It has been shown in [4] that with (6.7) and with

constant blade pitch angle β = β∗, constant wind speed Vw, and Assump-

tions (A1)–(A3), the MPT is always achieved, i.e., λ → λ∗ or equivalently

ωr → ω∗
r , λ∗Vw

R
as time goes to infinity. Moreover, the control law (6.7) de-

couples the wind turbine and the power system in the sense that it prevents

the wind turbine from responding to the system frequency changes. In order

to introduce some inertia response in such a wind turbine, an additional torque

Tiner is added to the electromagnetic torque control law (6.7). Several different

control strategies may be used to determine Tiner. In this paper, we consider

the proportional controller investigated in [58], of the form

Tiner = −Kp(f − fd), (6.8)

where Kp > 0 is the proportional gain, f is the system frequency, and fd is

the nominal frequency. Combining (6.1)–(6.3), (6.7), and (6.8), we obtain a

nonlinear state space form

ω̇r =
1

J

[ 1
2
ρπR2Cp(λ, β)V

3
w

ωr

− (K∗ω2
r −Kp(f − fd))

]

, F1(ωr, β, Vw, f − fd), (6.9)

Pe = (K∗ω2
r −Kp(f − fd))ωr , F2(ωr, f − fd), (6.10)

where ωr is the state, β, Vw, and f − fd are the inputs, and F1 and F2 are

nonlinear functions.
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For analysis purposes, let us assume that β = β∗, and that both Vw and

f−fd are constant. To find the equilibrium points, set F1(ωr, β
∗, Vw, f−fd) = 0,

i.e.,

−Kp(f − fd) =
1
2
ρπR2Cp(λ, β

∗)V 3
w

ωr
−K∗ω2

r ,

=
1

2
ρπR3V 2

w(
Cp(λ, β

∗)

λ
−

C∗
p

(λ∗)3
λ2).

Multiplying both sides by λ, we get

−Kp(f − fd)λ =
1

2
ρπR3V 2

w(Cp(λ, β
∗)− C∗

p

(λ∗)3
λ3). (6.11)

Note that the left-hand side of (6.11) is a linear function of λ, whose slope is

determined by the product of Kp(f − fd). In addition, the right-hand side of

(6.11) is a nonlinear function of λ, which depends on the specific expression of

Cp(λ, β). Figures 6.2 and 6.3 represent the left-hand side for different values of

Kp(f − fd). Also shown is the right-hand side as a function of λ, so that any

λ (or, equivalently, any ωr since λ = Rωr

Vw
) at which the two curves intersect

represents an equilibrium point. We note that the figures are generated with

the following values: Vw = 1 (pu), λ∗ = 1 (pu), β∗ = 0 (deg), and the expression

of Cp(λ, β) is adopted from MATLAB/Simulink R2007a and also given in [3].

Also illustrated in the figures is the stability or lack thereof of each equilibrium

point, which is marked by the moving directions of λ (or, equivalently, ωr).

From these two figures, several different cases can be observed:

Case I: No bias, i.e., f − fd = 0. In this case, Tiner = −Kp(f − fd) = 0

so that the system behaves as if the PIR controller is absent. It follows from

Figure 6.2 that there is only one equilibrium point, at λ = λ∗. In addition,

the equilibrium point is asymptotic stable, implying that the MPT mode takes
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Figure 6.2: Equilibrium points.

place. This also agrees with the stability analysis of the MPT controller (6.7)

given in [4].

Case II: Negative bias, i.e., f − fd < 0. This case is of interest because

it is possible that, in a large power system, even with inertia response, the

frequency f recovers so slowly that f − fd is approximately a negative bias

for an extended period of time. In this case, Tiner = −Kp(f − fd) > 0 so

that the PIR controller is activated. Unlike Case I, here different values of

−Kp(f − fd) may lead to different number of equilibrium points, each with

different characteristics. To see this, note that if −Kp(f − fd) = 0.4, there is

no equilibrium point and ωr will keep decreasing until the turbine stops. If

−Kp(f − fd) = 0.02, there is a unique asymptotically stable equilibrium point.

If −Kp(f − fd) = 0.2, there are two equilibrium points, one asymptotically

stable and one unstable, so that either ωr approaches the stable equilibrium

point or the turbine eventually stops, depending on the initial condition. If
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−Kp(f − fd) = 0.04, there are three equilibrium points, two asymptotically

stable and one unstable. In this subcase, ωr converges to either of the two

stable equilibrium points (unless it starts at the unstable one), and the turbine

does not stop. Finally, note that in each of these four subcases, the equilibrium

point λ is to the left of λ∗, suggesting that the system operates to the left of

the peak of the Cp-curve.

Case III: Positive bias, i.e., f − fd > 0. This case is not as common as

Case II but is possible. In this case, Tiner = −Kp(f − fd) < 0 so that the PIR

controller is also activated. Similar to Case I, there is an asymptotically stable

equilibrium point, at λ > λ∗. This means that the system operates to the right

of the peak of the Cp-curve.

As it follows from the above, the combination of the MPT controller

(6.7) and the PIR controller (6.8) works as one would expect under some con-

ditions. However, when these conditions are violated, it may lead to undesir-
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able behaviors such as making the turbine stop or causing it to operate in the

vicinity of other equilibrium points.

6.3.2 Model Linearization

From the above equilibrium point analysis, we see that if there is no bias

in the power system frequency (i.e., f−fd = 0)—which is the typical case—the

nonlinear function (6.9) has only one asymptotically stable equilibrium point

at λ = λ∗. In the sequel, we linearize the nonlinear wind turbine control system

(6.9) and (6.10) around the operating point ω∗
r = λ∗Vw

R
to obtain

d

dt
∆ωr = A∆ωr +B∆f, (6.12)

∆Pe = C∆ωr +D∆f, (6.13)

where ∆ωr = ωr − ω∗
r is the state, ∆f = f − fd is the input, and ∆Pe =

F2(ωr, f − fd)−F2(ω
∗
r , 0) is the output. The model parameter A in (6.12) can

be determined as follows:

A =
∂F1

∂ωr
(ω∗

r , β
∗, Vw, 0),

=
1

2J
ρπR2V 3

w

∂
∂λ
Cp(λ

∗, β∗) R
Vw

ω∗
r − Cp(λ

∗, β∗)

(ω∗
r)

2
− 2

J
K∗ω∗

r .

Using Assumption (A2) and K∗ = 1
2
ρπR5 C∗

p

(λ∗)3
, A may be simplified to

A = − 1

2J
ρπR2V 3

w

C∗
p

(ω∗
r)

2
− 2

J
K∗ω∗

r ,

= − 1

2J
ρπR2(

Rω∗
r

λ∗
)3

C∗
p

(ω∗
r)

2
− 2

J
K∗ω∗

r ,

= − 3

J
K∗ω∗

r = −3λ∗K∗

JR
Vw.

Similarly, B in (6.12), and C and D in (6.13) can be computed as follows:

B =
∂F1

∂f
(ω∗

r , β
∗, Vw, 0) =

1

J
Kp,
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C =
∂F2

∂ωr

(ω∗
r , 0) = 3K∗(ω∗

r)
2 =

3(λ∗)2K∗

R2
V 2
w ,

D =
∂F2

∂f
(ω∗

r , 0) = −Kpω
∗
r = −λ∗

R
KpVw.

Note that, interestingly,

BC =
3(λ∗)2K∗

JR2
KpV

2
w = AD.

As a result, the transfer function of the linearized model (6.12) and (6.13)

simplifies to

∆Pe(s)

∆f(s)
=

BC

s− A
+D =

Ds+BC − AD

s−A
=

Ds

s−A
=

−λ∗

R
KpVws

s+ 3λ∗K∗

JR
Vw

. (6.14)

Notice that the transfer function (6.14) reveals two potential issues with

the MPT-PIR controller (6.7) and (6.8). First, it has a zero at the origin, which

may cause undesirable oscillatory behavior in ∆Pe when the frequency error

∆f is noisy, because a zero at the origin differentiates noise. Second, if the PIR

controller (6.8) is replaced by a proportional-integral (PI) controller (perhaps

as an attempt to eliminate steady-state error), Kp in B and D needs to be

replaced by Kps+KI

s
, so that (6.14) becomes

∆Pe(s)

∆f(s)
=

−λ∗

R
Vws

s+ 3λ∗K∗

JR
Vw

Kps+KI

s
,

suggesting that there is an impending pole-zero cancellation. As is well known

in controls, pole-zero cancellations are undesirable and should be avoided when-

ever possible.

6.3.3 Stability Analysis

Finally, we study the stability of the power system frequency response

model. To simplify the analysis, we adopt the idea in [94], which is to use an
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equivalent single machine to represent the dynamic behaviors of the same type

of machines in a large system. For this idea to be valid, it is necessary that:

(i) the disturbance to the system is small compared to the total rating of the

system, (ii) the equivalent machine is able to absorb this change, and (iii) a

constant power factor for all the machines. This concept reduces the power

system model shown in Figure 6.1 to one described by a minimum number of

equations and also widely used in [96–98] to study load shedding when a serious

disturbance happens in the power system. As a result, each of the four gener-

ating unit blocks in Figure 6.1 may be viewed as an equivalent single machine.

For example, we may use the above transfer function of the linearized wind

turbine model (6.14) to represent the Variable-Speed Wind Turbines block by

appropriately choosing the equivalent model parameters Vw and Kp, assuming

that the wind speed across the wind farm is roughly the same and assuming

that the proportional gains are all identical.

In the stability analysis below, for simplicity we assume that there is

only one type of conventional generating units in the power system, namely,

the reheat steam turbines. In addition, we assume that these units can be

represented by an equivalent single machine, and that its transfer function

given earlier in (6.4) can be simplified to

∆Pre(s)

∆f(s)
= −Km(1 + FHTRs)

RR(1 + TRs)
, (6.15)

where Km > 0 is the mechanical power gain factor, 0 < FH < 1 is the fraction

of total power generated by the HP turbine, TR > 0 is the reheat time constant,

and RR > 0 is the governor regulation gain (see [94] for more details). With

these assumptions, Figure 6.1 simplifies to Figure 6.4.

Note from Figure 6.4 that the transfer function of the closed-loop system
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Figure 6.4: A simplified power system model derived from Figure 6.1.

is given by

∆f(s)

∆PL(s)
=

− 1
2Hs+Df

1− 1
2Hs+Df

(−Km(1+FHTRs)
RR(1+TRs)

+ Ds
s−A

)
,

= − b0s
2 + b1s+ b2

a0s3 + a1s2 + a2s+ a3
, (6.16)

where a0, a1, a2, a3, b0, b1, and b2 are defined as

a0 = 2HRRTR,

a1 = 2HRR − 2AHRRTR +DfRRTR +KmFHTR −DRRTR,

a2 = −2AHRR +DfRR − ADfRRTR +Km − AFHKmTR −DRR,

a3 = −ADfRR −AKm,

b0 = RRTR,

b1 = RR −ARRTR,

b2 = −ARR.

Since A and D in (6.14) are both negative and since all the constant parameters

are positive, all the ai’s defined above are positive. Thus, the denominator

of (6.16) satisfies the necessary stability condition. In addition, with some

straightforward manipulation, it can be shown that a1a2 − a0a3 > 0. Applying
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the Routh-Hurwitz stability criterion to the denominator of (6.16), we see that

the closed-loop system is always asymptotically stable. This finding shows that

when only reheat steam turbines are considered, the MPT-PIR controller is a

reasonable design choice that will not compromise the system stability.

Finally, we stress that the above analysis may be carried out in a similar

fashion for more than one types of conventional generating units and without

the equivalent single machine assumption. Unfortunately, the analysis would

become much more involved because of the very high order of the resulting

closed-loop transfer function. One way to overcome this difficulty is to resort

to Nyquist graphical stability methods. We believe this is possibly a fruitful

future research direction.

6.4 Conclusion

In this chapter, we have analyzed the behavior of a variable-speed wind

turbine equipped with a standard MPT controller and a PIR controller using

classic control and basic nonlinear systems theory. The analysis has revealed

several performance issues, which may hamper the ability of such turbines in

providing short-term frequency support through inertia response. The finding

suggests that more research may be needed to fully understand the severity of

such issues and how to alleviate them.
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Chapter 7 Conclusions

7.1 Overall Summary

In this dissertation, we have designed and analyzed a novel, diverse

collection of controllers for variable-speed wind turbines and large-scale wind

farms, which significantly advance the state of the art.

We have developed a feedback/feedforward nonlinear controller, which

accounts for the nonlinearities in variable-speed wind turbines with DFIGs,

and bypasses the need for approximate linearization. Its development is based

on applying a mixture of linear and nonlinear control design techniques on three

timescales, including feedback linearization, pole placement, and gradient-based

minimization of a Lyapunov-like potential function. Simulation results have

shown that the proposed scheme not only effectively controls the active and

reactive powers in both the MPT and PR modes, it also ensures seamless

switching between the two.

We have also constructed a controller based on a fifth-order, electrome-

chanically coupled, nonlinear model of the wind turbine by integrating several

control strategies and exploiting timescale separation in the dynamics. As an

extension of the previous one, the controller does not require knowledge of the

Cp-surface, air density, friction coefficient, and wind speed. Simulation has

been carried out using realistic wind profiles, and the results demonstrate the
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capability and effectiveness of the controller.

In addition, we have presented a structurally simple, approximate WTCS

model, which tries to mimic generic analytical and empirical WTCS models,

along with two parameter identification schemes, which determine the approx-

imate model parameters in both cases. We have also demonstrated through

simulation the accuracy and versatility of the approximate model in resembling

several different analytical and empirical WTCS models from the literature and

from real data. From the results, we conclude that the approximate model is

a compelling candidate in research of wind farm power control.

Furthermore, we have developed a wind farm controller, which enables

the wind farm power output to accurately and smoothly track the desired

power reference. The controller comprises a model predictive controller coop-

eratively optimizing the tracking performance of the wind farm power output

on a longer timescale, as well as a self-tuning regulator-type adaptive controller

jointly optimizing the smoothness of the power output on a shorter timescale.

Simulation has been carried out, and the results illustrate the positive features

of the proposed controller.

Finally, we have analyzed the behavior of a variable-speed wind turbine

equipped with a standard MPT controller and a proportional inertia response

controller using classic control and basic nonlinear systems theory. The analysis

has revealed several performance issues, which may hamper the ability of such

turbines in providing short-term frequency support through inertia response.

The finding suggests that more research may be needed to fully understand the

severity of such issues and how to alleviate them.
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7.2 Future Work

Although this dissertation has addressed a number of key problems and

pressing issues in the area of wind turbine and wind farm control, there are

several possible future research directions, which may be of interest:

• Analysis of the transient characteristics of the proposed wind farm con-

troller. While simulation results show that the wind farm controller de-

veloped in Chapter 5 is promising, deeper theoretical understanding of its

capability and limitations, especially its transient characteristics, is valu-

able. Such characteristics may include the response time at various wind

speed and direction, the corresponding overshoot or lack thereof, and the

steady-state error, when the wind farm power reference experiences step

changes.

• Wind farm sequential kinetic energy release. Currently, kinetic energy

release for power system frequency support is carried out at wind turbine

level in an autonomous way. The hierarchical architecture of a wind

farm control system adopted in Chapters 4 and 5 offers a richer set of

options on how kinetic energy may be released, which take advantage of

the potential cooperations among the turbines, and the diversity of wind

speeds they experience.
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