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CHAPTER I 

INTRODUCTION 

Being able to receive downhole information while performing operations on an oil or a 

gas well has always been a highly desired capability for oil and oil service companies. 

Having real time bottom-hole information at the surface will assist with operations such as 

drilling, stimulation, and cementing. This type of information can increase accuracy, 

reduce equipment failure and total operation costs, and most importantly, reduce safety 

hazards. For example, one of the major safety concerns in drilling has to do with the 

influx of formation fluids. Real time data telemetry has the potential of giving early 

warning by measuring and detecting changes in the mud properties down-hole. Having 

available real time downhole data takes a lot of the guesswork out of crucial decisions on 

the surface. Also measurements made before any unwanted changes in the borehole will 

improve data interpretation. 

Among all oil well operations, the one which can benefit most significantly from real 

time bottom-hole data is probably exploratory drilling. One of the important advantages 

is that early recognition of interesting formations allows formation evaluation under 

minimum damage conditions. Measurement While Drilling (MWD) data concerning 

downhole lithology is collected in the earliest and most undamaged borehole conditions. 

MWD is specially useful for deep and horizontal wells. Down hole measurement will 
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allow safer, more efficient and more economic drilling of both exploration and production 

wells. Continuous monitoring of downhole conditions will allow immediate response to 

potential well-control problems. It will also help eliminate costly drilling interruptions 

while circulating fluids. Overall it could improve drilling rates anywhere from 5 to 15% 

[23]. MWD allows for controlling direction and orientation of a well in real time as well as 

helping in prevention and remedy of most downhole problems Some of the problems 

associated with drilling are listed in table 1.1. Current borehole telemetry techniques 

include use ofwirelines, mud-pulse systems and acoustic systems. At present, no 

commercial acoustic systems exist, mainly because of very high attenuation rates of the 

acoustic signals travelling along the drill string. Mud pulse systems are the most widely 

used systems and they are all limited to a few words per minute of data transmission 

They can provide information sufficient to save may hours of valuable rig time, however, 

the wireline technique offers a higher transmission rate than any other type of borehole 

telemetry system and eliminates the need for a downhole power source However, 

because of the expense and cumbersome nature of the equipment, the service companies 

have not been able to base a competitive service on the technique. 
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TABLE 1.1 

MAIN DRILLING PROBLEMS 

_sticking tendencies 

_madequate cutting~ lift or hole 

clearung 

_wear in bit teeth or cutter 

_problems ~th bit bearings 

_gumbo' ballings arotind bit or. 

stabilizers 

_formation water. influx 

_excessive fluid loss 

Acoustic systems 

In the 1940's a few companies started research towards a different ~elemetry system 

Most of the work was done independently by these companies but they more or less 

reached the same conclusion, that an acoustical system would be the most promising 

borehole telemetry system. In an acoustical system, sound waves are generated and travel 

' 
through metal drill pipe. Since the rate of attenuation of sound in steel was known to be 

low, it was assumed that systems tould be designed to use the metal wall of the pipes as 

the transmission channel. However, this turned out to be disappointing. 

In 1948 Sun Oil company built a system to study the feasibility of acoustic systems. 

This telemetry system consisted of a downhole impulsive sound generator and a surface 

sound receiver designed to receive transmitted sound in three different frequency bands. 
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The sound generator was battery operated with a motor that wound up a spring and, when 

released, the spring drove a hammer to deliver a sound impulse to the drill pipe. The 

results of this study were very disappointing. The attenuation rates were so high that it 

discouraged any further effort on this type of telemetry system. The conclusion was that 

an acoustic telemetry system was not feasible within the state-of-the-art existing at that 

time. Later, it was considered practical to use repeaters to overcome the high attenuation 

rates. 

Today, no commercial acoustical telemetry systems e'ici~t, because ofthe number of 

repeaters needed along the drill pipe and because of the requirement that a drill pipe must 

be in the well for the, system to operate. A good example of an acoustic system is one 

invented by W.H. Cox and P.E. Chaney, U.s; Patent No. 4,293,936. In their work, Cox 

and Chaney have disclosed a band of frequencies at which they obtained minimum 

attenuation rates for transmission of sound through the wall of a drill pipe but they still 

require a repeater every 2000 feet. 

Wireline systems 

Wireline telemetry is one of the most widely used techniques for borehole 

communications to date. The first comll).efcial system was used with a steering tool for 

directional drilling. Wireline· communication systems are bi-directional communications 

systems that provide the highest data rates compared with other current methods such as 

mud pulsing and non-real time systems where a memory recorder is used to collect data 

Different methods using wireline borehole telemetry are in current use. One method uses 
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an armored cable for data transmission, U.S. patent No. 3,707,700 to Lafont Another 

uses the same wireline for both delivery of power and communications, US patent No. 

4,646,083 to Woods. Other systems include U.S. patent Nos. 4,355,310 to A B 

Beynes, which provdes for transmission rates ofup to 80KHz and 3,991,611 to J. H. 

Marsall ill and T. M. Harringtbn, which is si~lar to digital remote telemetry systems used 

most commonly in the field of industrial. controls ano uses a single insulated wire within 
' . . 

the hoist cable as the transmission channel. 

. ' 

One problem with wireline systems i~ :the requirement of complete withdrawal of the 

cable or the making of connections in the cable at the surface each time a new pipe 

section is added to the drill string. This is a cumbersome and time consuming process. 

Some other drawbacks of wire line systems are the bulkiness of thousands of feet of cable, 

the cost of the cable and the fact that the harsh environment they operate in can be very 

abrasive to the cable itself 

One of the systems uses the drill string as the electric transmission line The difficulty 

in such a system lies in reliability of the electrical connection between adjacent 

interconnected pipes forming the drill stripg [23] and also in electrical insulation from the 

surrounding earth Attempts have been made to embed electrical conductors into the drill 

pipes. This mt?thod is feasible but has proven to be too costly [6]. 

· Mud pulse systems 

The most widely used MWD borehole telemetry system is the mud pulsing system All 

mud pulse systems use the mud stream inside the drill pipes as the communication channel 
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The first mechanical mud pulse system was marketed in 1964 for transmission of 

directional drilling data [8]. 

Three different mud pulse methods exist; positive pressure, negative pressure and the 

mud siren [6],[23]. These are all one directional communication systems In the positive 

pressure mud pulse system, a valve at the bottom of the well is opened or closed 

according to what data is to be transmitted [7]. Valve closure restricts the flow of mud 

which in tum creates pressure waves in the mud column that are then detected at the 

surface. This type of system has typical data rates of 0 4 bits per second. In negative 

pressure systems, a valve opens the flow to the annular space between the drill pipe wall 

and the borehole [7]. Each time the valve is opened a pressure drop is detected at the 

surface. Typical data rates for negative pressure systems are about one bit per second. 

The fastest communication system utilizing drilling mud as the transmission medium is 

called the mud siren A mud siren system is a continuous wave system in which the data is 

transmitted as a phase shift keyed (PSK)_ signal [8]. The system consists of two slotted 

wheels. One is stationary and the other, is controlled by a motor and can change direction 

The mud flows through both wheels and pressure waves are created by the second moving 

wheel as it turns. The commercial mud siren system's typical data rate is about one and a 

halfbits per second. 

All mud pulse systems are very sensitive to pump noise and to anything else that 

creates pressure waves, such as shale gumbo balling around the drill bit teeth. Filtering is 

very difficult because of the broad noise spectrum. The mud pulse systems require 

continuous fluid flow through the well, which limits the use of such systems to regular 
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drilling operations Examples of different mud pulsing systems are shown in U.S. patent 

nos 4,734,893 to Claycomb, 4,550,392 and 4,699,352 to Mumby, and 4,641,289 to 

Jurgens. Other systems include U.S. patent nos. 2,759,143 and 2,925,251 to Arps and 

3,958,217 to Spinnler which disclose positive pressure pulse systems, U.S. patent nos 

2,887,298 to Hampton and 4,078,620 to Westlake which disclose negative pressure pulse 

systems. 

Electromagnetic systems 

Currently, no commercially available electromagnetic borehole communications 

systems exist. Such a system would be a two way communication system using 

electromagnetic waves in the extremely low frequency (ELF) range of the spectrum 

There have been a few proposals for electromagnetic communications in the borehole and 

none has been very successful. 

One such system is disclosed in US patent No 4,800,385 to Yamazaki, which utilizes 

a drill string made of magnetic material as the transmission channel The downhole 

transmitter antenna is a coil wound on the bottom portion of the drill string The magnetic 

flux signal is picked up as an electric signal at a coil fixed around an exposed end ofthe 

drill string on the surface. The receiver utilizes a band pass filter to enhance 

signal-to-noise-ratio (SNR) with no additional noise cancelling system A few other 

references disclosing systems using electromagnetic waves are. US. patent nos 3,967,201 

to L H. Rorden where vertically polarized antennas are used to reduce in the earth 

atmospheric interference with best results with a parallel well containing the receiving 
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antenna drilled next to the operating well. Their tests were performed utilizing a 100 watt 

peak power supply system which is difficult to achieve using batteries; 4,087,781 toM. D. 

Grossi and R. K. Cross who have not disclosed any particular filtering or noise cancelling 

methods; and 4,090,135 to A. J. Farstad and C. Fisher Jr. who have used frequency shift 

keyed (FSK) modulation/demodulation in their system with threshold detection and with 

low pass filter for SNR enhancement. None of these systems use any type of adaptive 

filtering methods and none considers the. varying noise conditions existing in 

through-the-earth communications. One factor contributing to their limited commercial 

success if any may be the. interference existing within the frequency band of interest which 

presents problems when low power transmitters are used. A signal processing system 

incorporating adaptive noise cancellation that could attenuate the interferece within the 

signal frequency range would be able to increase the signal-to-noise-ratio for better 

reception. Also an adaptive filtering system can modify its own parameters to adjust to 

the different noise conditions. 

Major benefits of an electromagnetic Horehole communication systems are the higher 

data rates possible and the fact that these systems can be used in any type of well 

operation. Air drilling, very small diameter downhole, high angle boreholes, higher data 

rate demands and non-drilling needs such as cementing or stimulation, present a set of 

conditions that only the electromagnetic system could handle. 

An Electromagnetic Borehole Telemetry (EBT) system has been proposed and is under 

development at Halliburton Services Company. The system will allow transfer of 

downhole information to the surface under most conditions. It will make possible two 
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way communications that will enable the operators to actuate or modify the downhole tool 

mode. Whether drilling, stimulation or cementing is in process, whether fluid is flowing in 

the well or not, information can be transmitted to the surface. The primary industry 

benefits of the EBT system are the ability to transmit downhole data to the surface in real 

time during well operations,_ lower price than the state-of-the-art wireline conveyed 

equipment, a hardware configuration th~t is not operationally restrictive, and a data 

transmission rate that exceeds existing wireless methods such as mud pulsing. 

The EBT system is to operate in either a qased well or in an open hole. The tubing or 

cable conveyed tool can be lowered into the well to provide real time data at the surface 

while drilling, stimulation or cementing operations are in progress The receiver antennas 

are wire antennas laid out on the ground and connected to the well head at one end and to 

a ground rod at the other The length of the antennas are on the order of a few hundred 

feet. No optimum length has been determined. Figure 1.1 shows a schematic diagram of 

the antenna arrangement with respect to the well Because of high attenuation rates and 

the amount of noise, deep digital filtering and noise cancellation is essential for reliable 

communications. 

There are two classes of noise that affect performance of all electromagnetic borehole 

communication systems. These are random noises -~ atmospheric, telluric, pipe scraping, 

etc., and coherent noises-- power equipment, power supply, etc. The coherent noise 

present consists primarily of 60 cycle interference and its harmonics [26] These are well 
' ' 

understood and are relatively simple to filter out. Most of the problems are associated 
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with the random, impulsive noise created by the power grid switching and by 

thunderstorms. 

Figure 1.1- Through the earth transmitter 
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Contributions of this t:esearch 

Signals received through the earth contain large amounts of both random, time varying 

noise and non-random noise. Conventional signal processing techniques assume that the 

signal degradation is a known time-invariant quantity. Experimental data show that the 

attenuation rate of a 3Hz sine wave transmitted through the casing to the surface is 
. ' " ' 

between 8 and 10 db per 1000 feet and when propagating through the earth it is 16 db per 

1000 feet. Figure 1.2 shows a plot of data ob,tained by transmitting a 3Hz signal with the 

transmitter at different depths in the borehole. A jump in the signal level can be seen 

where the casing ends and signals start to travel through the earth. However, the 

attenuation rate through_ the earth is actually greater. "This is an indication of the 

dependence ofthe attenuation rates on the randomly changing (with depth) ofthe 

formation conductance . The noise in the earth is a time-varying phenomenon that 

changes for different sites .as the earth's lithology changes. A signal processing system is 

needed that can compensate for these changes and that can provide sufficient noise 

cancelling to ensure accurate reception·ofdata from the borehole 

An adaptive noise cancelling system was designed that takes advantage of the fact that 

the noise in the ELF band is highly correlated at distances up to a few miles. The adaptive 

noise canceller uses a reference input that contains a noise source which is highly 

correlated to the noise in the primary input The primary input contains the data that 

needs to be filtered. Also, an impulsive noise removal filter was devised to remove any 

spikes from the data. The impulsive noise removal system is distinctive in that it will not 

introduce any undesired effects into low sample rate data, as would be the case with other 
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techniques, such as median filtering. A minimum error (in terms of bit loss) modulation 

and demodulation system is used for data transmission using a differential coding scheme 

that does away with the requirement of a coherent reference. A new method for signal 

demodulation is presented that takes advantage of neural networks and their pattern 

recognition ability. 

This signal processing scheme results in sufficient SNR improvement that the telemetry 
, , 

tool operates to depths of slightly over 5000 feet at a signal frequency of3 Hz, without 

the need for repeaters The prototype downhole transmitter operates on batteries and 

delivers an output current of 4 amperes rms. With more powerful power systems, both 

the depth of operatio~ and the data rate can be increased. 

10 
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Figure 1.2- Attenuation rate for 3Hz sine wave 
transmitted from the borehole. 
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DOCUMENT OVERVIEW 

This document contains five chapters. The purpose of this first introductory chapter is 

to present a general description of the problem of borehole communication systems and to 

discuss existing systems and to present work done to date on such systems. Contributions 

of this research and an overview of the entire document are also included. A limited 

knowledge of communication,syst~ms and oil well terminology is .presumed for the first 

two sections. 

Chapter 2 describes the noise conditions involved in through-the-earth 

communications. The time and site-varying characterisitcs of the noise are explained and 

filtering methods for removal of the unwanted disturbances are described Adaptive noise 

cancellers are shown to provjde significant SNRgains Finally, a method of impulsive 

noise cancellation is described. , 

Chapter 3 reviews the concepts of modulation and demodulation and provides a 

comparison of different techniques. The· selection criteria for the particular method used is 

discussed, together with a calcuh;ttion ofthe probability of error for an optimum 

' demodulator. An alternative solution to the classical demodulation methods is presented. 

The alternative system takes advantage of pattern recognition capabilities of neural 

networks. 

Chapter 4 presents an overview of the proposed system together with results of 

simulations. 
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Chapter 5 presents the summary and conclusions of this thesis. The benefits and the 

limitations of the proposed signal processing system are discussed. This chapter also 

includes a section on potential future research work. 

The last part of the thesis contains the reference section. An appendix is added that 

contains a concise description ofbackpropagation neural networks. 
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CHAPTER IT 

NOISY EARTH 

The primary noise source in the earth is the power grid noise which is responsible for 

impulsive switching and line noise. The 60Hz and its harmonics have the greatest 

amplitudes compared to the earth noise floor and any other noise that may exist. Higher 

frequency interference such as 60Hz and its harmonics can be filtered out relatively easily. 

But the major concern is with the noise in the extremely low frequency band where the 

signals of interest are. The EBT system uses the ELF range to transmit data to the 

surface The noise present in the ELF band is difficult to characterize and model. Primary 

origins ofELF noise are believed to be distant thunderstorms [12], high power, low 

frequency noise travels far and so it is highly correlated at sites apart as much as a few 

miles. Experimental data collected at a test well during calm atmospheric conditions and 

during thunderstorm conditions shows this to be true. 

The high degree of noise correlation between distant locations makes adaptive noise 

cancelling a good choice for noise removal. The higher :frequency noises can also be 

removed by the adaptive noise canceller if proper reference is available. A proper 

reference is one that contains noise which is highly correlated with the noise in the main 

antenna, while being correlated as little as possible with the signal of interest. An antenna 

placed a few hundred feet away from a well head will contain almost no signal and will 
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contain highly correlated noise in both ELF and higher frequency ranges. Data collected 

from different sites show that the line noise increases as the site falls within the power 

grid, while the ELF noise power changes slowly as the site location is changed. An 

interesting observation on data collected at a site near the Halliburton Research Center 

shows that the noise power is significantly decreased after five o'clock in the evening when 

most of the electrical systems are shut down. 

On stormy days, when there are lightning strikes close to where the antennas are 

located, a lot of impulsive noise, as well as ELF noise, can be observed at the receiver 

output. Figure 2.1 shows time and spectrum plots of data collected on a stormy day with 

the transmitter in the test well at a depth of3000 feet. Even after all the filtering is done, a 

significant amount of noise remains in the data due to the high power of noise. The 

signal-to-noise ratio is very low in such conditions and the signal can not be demodulated 

successfully. Figure 2.1 a shows the spectrum of data before any processing, figures 2 1 b 

and 2.1c show the spectrum ofthe output of the adaptive filter stage and Figure 8d shows 

the filtered data in the time domain. Figure 2.2 shows the time and spectrum plots of data 

collected on a calm day with the transmitter at a depth of 2500 feet. The output of the 

filters is shown in Figure 2.2d, in which a 6 Hz phase reversed keyed signal was 

transmitted from the borehole. The wave form shown can be successfully demodulated. 
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Frequency (Hz) Frequency (Hz) 

a) Test-well data spectrum before any b) Test-well data spectrum after adaptive 
digital filtering. The peaks are at 60 and filtering. Notice the absence of large 
120Hz peaks 

Frequency (Hz) 

c) Low frequency part of the filtered.· 
data spectrum 

Time (sec) 

· d) Filtered data in time domain, still 
very nOisy 

Figure 2.1- Test well data with transmitter at 3000 feet. 3Hz, 3 baud modulated 
signal transmitted, on a stormy day with thunder storms and rain 
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Freq~ency (Hz) 

a) Test-well data spectrum 'before any 
digital filtering. The peaks are at 60 and 
120Hz 

Frequency (Hz)· 

c) Low frequency part of the filtered 
data spectrum 

-250 1-----.---.-----.-~-r-~-~~ 
0 

· Frequency (Hz) 

b) Test-well data spectrum after adaptive 
filtering. Notice t}J.e absence of large 
peaks 

0 013 

e 

~ ~ ~~ 
N J 

I~ 
~ 

lA I 
~ I~ ~ ~ 

Time (sec) 

d) Filtered data in time domain Data can 
now be demodulated 

Figure 2.2- Test well data with transmitter at 2500 feet. 6Hz, 3 baud modulated 
signal transmitted on a relatively calm day 
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Noise Cancellation Using Adaptive Filters 

The common method for estimating a signal corrupted by additive noise is to pass the 

corrupted signal through filters designed to attenuate the noise while changing the signal 

as little as possible. The filter can either be fixed or adaptive. The design of fixed filters 

requires some prior knowledge about both the noise and the signal. Design of adaptive 

filters requires little or no prior knowledge of either Jhe signal or noise characteristics. 

Noise cancelling uses an auxiliary or reference input derived from sensors in the noise field , 

where the signal is weak or 'nonexistent. In 'cases ~here, adaptive noise cancelling is 

applicable, a high degree of noise cancelling is possible, so much that it may be difficult or 

impossible to attain by classical methods. 

Some of the earliest work on adaptive interference cancelling was performed by 

Howell and Applebaum and their colleagues at the General Electric Company during late 

1950s. Their application consisted of antenna sidelobe cancelling by using a reference 

antenna and a two weight adaptive titer. In 1959, Widrow and Hoff at Stanford 

University were working on the Least Mean Square (LMS) adaptive algorithm, In the 

1960s, interest in adaptive systems grew rapidly and many papers were published on the 

subject. Since the 1960s many applications using adaptive algorithms have been 

developed. Applications sue}) as echo cancellation on phone lines, elimination of periodic 

interference in general and, more recently, noise cancelling in automobiles. 

An Adaptive Noise Canceller (ANC) is able to adjust its own parameters automatically 

as noise conditions change [10]. The canceller requires two inputs, primary and 

secondary. The primary input contains both signal and noise and the secondary input 
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contains only noise, which is correlated with the noise in the primary input. Widrow and 

Steams [1], have shown that small amounts of signal present in the reference input, 

although undesirable, will not deteriorate the performance of the noise canceller Noise 

reduction is accomplished by properly filtering the reference signal and then subtracting it 

from the primary signal. 

The filtering of the reference signal is done using an adaptive filter A Least Mean 

Square (LMS) gradient search algorithm is used to minimize an error signal [10]. The 

error signal is the result of subtraction of the primary signal and the output of the adaptive 

filter, as shown in Figure 2.3. 

Signal 
Source 

Noise 
Source n+s 

S+N - primary input. 

s+n - reference input. 

S+N 

Adaptive 
Filter 

S - downhole transmitter signal. 

s - transmitter signal that may exist in the reference. 

N - noise in the primary input. 

n- noise in the secondary input, correlated with N. 

Figure 2.3- Noise cancellation 
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The reference input to the noise canceller should contain noise which is correlated with the 

primary input noise and contains as low a signal component as possible. This type of 

reference is available in the EBT application as is shown later in Figure 4.1. The noise 

cancelling algorithm minimizes the total output power which will actually minimize the 

output noise power. 

The following shows the functionality of the adaptive noise canceller. The output of 

the noise canceller is' Z = S + N- Y as shown in Figure 2.3. S is uncorrelated with 

Nand Y. To minimize the error, N- Y needs to be minimized, which ideally leads to 

Z = Y. The minimization procedure is as follows 

Z2 =S2 +(N-1)1 +2S(N-Y) 

taking the expected value, 

E{z2} =E{S2} +E{(N- 1')2 } +2E{S(N- Y)} 
=E{S2 } +E{(N-1')2 }, 

since S is uncorrelated with N and Y. 

Then 

min(E{Z2 }) =E{S2 } + min(E{(N- Y) 2 }) 

since the signal power is unaffected by the minimization. Also since 

(2 1) 

(2.2) 

(2.3) 

Z = S + N- Y or Z- S = N- Y , minimizing E { (N- 1')2 } results in an output Z that is a 

best least squares estimate of the signal S. If the noise in the reference signal is not 

correlated with the noise in the primary, then the adaptive canceller will shut itself off and 

will not introduce any noise to the primary signal If Y and N are uncorrelated, 

min(E{Z2 }) = E{S2} +min(£{ (N- Y) 2 }) 

=E{S2 } +min(E{N2} -E{2NY} +£{y2}) 

=E{S2 } +min(E{N2} +£{y2}). 
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The minimum value is obtained whenE{f2} is zero. That is achieved when all the 

weights are set to zero. 

The basic element of the noise canceller is the LMS adaptive filter [10], Figure 2.4. Its 

operation is described below: 

Let X;= [xt1,x21, ... ,Xn1] 

... 
LMS 

Adaptive Algorithm &, 

ANC output 

Figure 2.~- ANC 

The output becomes: 

(2.5) 

The error &1 for the noise canceller is described as the difference between the primary 

input, which contains noise and signal and the filtered reference input, y1 , 

&; =p; -yj 

where p1 is the primary input to the noise canceller 
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Then 

e} = (p1 - y1) 2 or e} = p}- 2p1X'JW + W'X;XJW 

taking the expected value, 

E{e}} =E{p}} -2E{p1X'J}W+ W'E{X;X'J}W. 

The cross correlation ofp1 .andX; is 

CC=E{p,X;} =E{(p1x11 ,p1x2,, .. ,p1xn1)f} . 

The input correlation matrix is 

R =E{X;X'J}. 

R is symmetric; positive definite. The mean squared error will be 

E{e}} =E{p}} -2CCtW+ W'RW .. 

The LMS algorithm is used to minimize the error. 

Taking the gradient of the error function, · 

( '2 2\1 nE{ 2 } = oE{e,} oE{&,} 1 
v. e, : ~ Owj ' •• , Own ) 

or VE{e}} =-2CC+2RW 

Setting the gradient to zero and solving the equation, results in the optimum weight 
vector, W*, 

· W* = RH>cc 

which is the matrix form of the Wiener-Hopf equation [4],[5] 

{2.7) 

(2.8) ' 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2 14) 

The LMS algorithm can be used to find an approximate solution for the above in real 

time. There will be no matrix inversions or correlation calculations, which_ makes the 

algorithm ideal for real time applications. The LMS algorithm is an implementation of the 

steepest descent method where the next weight vector is calculated as: 

wj+l = ~ - J.!(V,) 
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where \11 is the true gradient at the jth iteration. 

J..l determines stability and the rate of convergence. Estimating and simplifying the 

gradient results in the Widrow-HoffLMS algorithm [46]: 

wj+l = w:, + 2J..~.&1~ 
Where J..l is the convergence factor. 

It is assumed that e} , the square of a single error sample, is an estimate of the mean 

square error and so 

" 

smce 

Starting with some initial weight vector, the algorithm will converge as long as J..l is 

between 0 and A.~ . Amax is the maximum eigenvalue ofR, the input correlation 

matrix. 

(2 15) 

(2.16) 

(2.17) 

Simulation results along with actual filtered well data are shown in Figures 2.5 and 2 6 

Figure 2.5a shows a plot of a 3Hz simulated sine wave and Figure 2 Sb shows the same 

signal with added noise of much larger amplitude. The,added noise is a simulated 60Hz 

sine wave. The inputs to the adaptive noise canceller is tlte data shown in Figure 2.5b and 

a 60Hz sine wave with a smaller amplitude and an arbitrary phase shift relative to the 

added noise. The result of the filter is shown in Figure 2.5c. The convergence rate was 

relatively slow due to a small J..l. A small value for J..l was chosen for presentation 

purposes. 
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Figure 2.6a shows the primary input data from a test well and 2.6b shows the 

reference, which is the data collected from the reference antenna. The desired signal is a 

binary phase shift keyed (PSK) 6Hz carrier. As can be seen in Figure 2.6c, the adaptive 

noise canceller is very effective in removal of the noise. Figure 2.6d shows the output 

signal when it has been passed through a second order digital Butterworth filter. 

In order to remove any de bias introduced to 'the data by the AID process, a bias 

weight can be. added to the noise canceller. Anr ofthe weights can be used as the bias 

weight by setting the corresponding to a constant value, usually 1 However, since this 

extra weight will also remove slowly varying drifts in the data, it will reduce the SNR by 

attenuating the signals of interest which are in fact slow varying wave. forms. Another 

more helpful remedy is to use a second ANC stage with only a few weights and with its 

reference input set to a constant value. The ANC will act as a high pass filter and will 

remove the de component without any significant reduction in the signal-to-noise ratio. A 

graphical comparison of the performance of the two methods is shown in Figure 2. 7. 
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a) Simulated 3Hz sine wave b) 60 Hz noise added to 
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c) Adaptive noise canceller output 

Figure 2.5- Adaptive noise canceller simulation results 
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Time 

a) Primary input to filter, contains 
modulated 6 Hz signal plus 
nOISe 

... 
Time 

c) Output of the adaptive noise 
canceller 
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Time 

b) Reference input, contains surface 
noise 
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... 

Time 

d) Noise canceller output passed 
through a 2nd order Butter­
worth filter 

Figure 2.6- Filtering PSK 6Hz signal using 
adaptive noise canceller. 
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c) Bias removal using ANC with three weights with 
a constant value as the reference 

Figure 2.7- Bias removal 
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Impulsive noise removal for low sample rate data 

The processing method for the EBT signals requires that as little impulsive noise be 

present in the sampled data as possible. The sampled data is passed through an LMS 

adaptive filter stage for removal of unwanted periodic disturbances. Adaptive filters are 

not well behaved in the presence of impulsive noise, hence the requirement for an impulse 

removal filter. 

The signals of interest in the EBT communications system are in the Extremely Low 

Frequency (ELF) range of the spectrum. For proper processing, long intervals of data are 

needed for analysis. To limit the number of data points digitized in any time interval in 

order to reduce computation time and allow for real time operations, the sampling rate of 

the ND system must be limited 

Conventional signal processing techniques assume that the signal degradation is a 

known, time invariant quantity. They operate in an open-loop fashion where no feedback 

is used. For most geophysical data processing such as EBT, the amount and type of noise 

vary with time and location This is due to varying surface conditions and the lithology of 

areas of operations. A suitable filtering technique for such operations is one which adjusts 

its own parameters as conditions change. This type of filter is called an adaptive filter 

Adaptive processors operate in a closed-loop fashion. The input signal is filtered and then 

compared against a desired, conditioning or a training signal The comparison yields an 

error measure E(n). This error is then used to adjust the filter parameters so that the error 

is progressively minimized For most real time operations the Least Mean Square (LMS) 
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gradient search is used to minimize the error because of its simplicity and fast settling 

time. 

The primary input to the EBT signal processor is the signal received from the well by 

the antennas Connected to the well head. The primary input contains the desired EBT 

signals plus all the noise that is to be filtered out. The secondary input is used as a 

reference for the adaptive ftlter to be subtracted from the pri_mary. The reference antenna 

is not connected to the well head and contains only the surface noise. 

The best performance with LMS adaptive filters is achieved when as much of the data 

as possible is present. In other words, one should keep as 'much of the signal undisturbed , 

as possible for both inputs. This will ensure proper cancellation of the unwanted noise. 

To achieve the best results from the filter and to be able to perform the EBT signal 

analysis in real time, the number ofpoints in a block of data was limited to 4096. The 

sampling rate was set at 512 Hz with the anti-aliasing filter frequency set at 200 Hz 

These settings provide the system with enough information to process the data with 

acceptable accuracy in real time. The highest frequency noise components of significant 

amplitude are 60Hz and its harmonic at 120Hz. The 512Hz sampling rate is not much 

greater than the Nyquist1 rate for the data. This relatively low sampling rate causes 

problems for impulse removal filters as described below. A new filtering method is 

proposed that performs without the problems associat~d with the other methods. 

When impulsive noise is present in digital data, median filters are often used as a 

remedy. Median filters run a sliding window over the data and at each step filter the data 

The Nyquist sampling rate is defined as twice the frequency of the maximum 
frequency content of the data. 
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by replacing the point in the middle of the window by the median of the points inside the 

window. For example, if one uses a three point window and the values inside are 12, 5 

and 30, the value 5 is replaced by 12, which is the median value of the three points. A 

window of length 2N+1 can remove impulsive noise ofwidth N. For high sample rate2 

data, the med!an filter works well without introducing much distortion to data. For low 

sample rate cases, the median filter can introduce significant unwanted distortion. Assume 

a 60 Hz signal with a sampling rate not much great~r thari the Nyquist rate, say 256 Hz. 

This results in 4 samples per cycle of the 60Hz signal, see Figure 2.8. Running a median 

filter with a window width of 3 on this data to remove one point impulsive noise will 

distort the signal as shown in Figure 2.9. The distortion is largely due to the small number 

of samples present per cycle of the sine wave For any given change in time, ~t, the 

change in magnitude, ~x , is large. The peak points look like spikes to the median filter 

and are flattened. This type of distortion is highly undesired when one considers the large 

error values relative to the very small signals of interest that can be over 60 db below the 

noise amplitude. 

Another possible filtering method with .srpaller total error is one in which the data is 

scanned and only changed if impulses are detected. The impulse data are replaced by a 

piecewise-linear estimated value calculated using two previous data points. Even though 

this method reduces the total error, it still does not result in acceptable estimates for the 

noisy data points. Figure 2. i 0 shows a series of plots which explains why the results of 

the linear estimate method are not acceptable. 

2 High sample rate relative to the Nyquist rate. 
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Figure 2.9- Median filter result 
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a) Secondary input for adaptive filt~r b) Primary input to adaptive filter 
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c) Secondary input filtered d) Adaptive filter output passed 
through a low pass filter 

Figure 2.10- Using linear estimation method on EBT signals, 
The effect of the spike can be seen in d 
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Figure 2.10a is a plot of the secondary input data for the adaptive filter and Figure 

2.10b shows a plot of the primary input. The data plotted is actual EBT data collected 

from a test well. The output of the filter is shown in Figure 2.10c, where the spike has 

been replaced by a new value of a much smaller magnitude. Figure 2.1 Od is the output of 

the LMS adaptive filter after being passed through a low pass filter. The effect of the 

impulse noise can be seen in the middle part of the. graph where ringing has occurred. The 

signal·in Figure 3d has an amplitude approximately 30 db .below the input signal. Errors 

that are small relative to the input signal· are large relative to the EBT signals. 

An ideal filter fdr impulsive noise removal is one that removes only the impulses and 

that will not distort any other data points. After the impulses have been removed, they 

must be replaced by suitable values. Different types of estimators can be used for this 

purpose. For example, the new value may be set to the previous value, the median or a 

piece-wise linear estimate. These methods may be useful for high sample rate data; 

however, for low sample rates, other methods that minimize the estimation error are 
• < 

needed. The method proposed hete requires relatively longer computation time but 

reduces the total error considerably 

The spectrum of an impulse is a constant value. If this value is determined and 

subtracted from the data spectrum, the result would be the data set without the impulses 

Sample data sets can be used to gain information about the nature of the impulsive noise 

present and to estimate a threshold value in the ftequency domain for impulse 

cancellation. The impulses are removed by zeroing out the frequency components that fall 

below the threshold. 
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If the input data is represented by x(n), and the output of the filter is represented by 

y(n), then the spectrum or Fourier transform of input data is calculated to be 
N-1 211k 

X(k) = L x(n) · e-111 

where N is the number of data points. 

The output spectrum is 

n=O 

Y(k) =X(k) · <I>(IX(k)l- a) 

where a is the frequency thresh6l~ and <I>O is the unit step function 

Then the filter output is' given by ~~e inverse Fourier, transform ofY(k) 

1 N-1 , 211k 

y(n) = - L Y(k) · e'li 
, N k=O 

Figures 2.11a through 2.11d show this IJrocedure. The data plotted is EBT data 

collected with added simulated impulsive noise 

(2.18) 

One may reach the conclusion that at this point the desired results have been achieved. 

This would be the case if none of the desir~d signal frequency components falls below the 

threshold. Otherwise, not only the impulses are removed, but some useful data has also 

been lost. In cases such as the EBT, where the desired signal amplitudes are very small 

compared to the noise, more needs to be, done to reduce the total error Setting the above 

filtered data as a reference to an adaptive clipping stage will reduce the total error 

considerably. In the clipping stage, the non-filtered data is scanned and as spikes are 

detected, they are replaced by' the corresponding value in the reference. This way only the 

spikes are changed and the total error is reduced. The spikes are detected by numerically 

differentiating the data and searching for maxima. The maxima are then compared to a 

maximum allowable slope. If any of them is greater than the maximum slope, they are 

considered to be spikes. The following are the operations performed by the filter· 
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1. Frequency domain filtering. 

a- Calculate FFT of the signal. 

b- Zero out the frequency components which fall below the threshold. 

c- Calculate IFFT. 

2. Detect the impulses in the data set, then replace them with corresponding 

output data of step 1. 

The crucial parts of this proc,edure lie in determination of the frequency domain filter 

threshold for step 1 and the maximum slope for step 2. The latter is determined as a 

multiple of the root mean square (rms) value of the data set divided by the sampling 

period, Llt . The latter is determined by inspection of the data spectrum Excellent re~ults 

were obtained using a threshold just above the noise floor in the data spectrum (Figure 

2.11 b) and twice the rms value of the data for maximum slope. 

Figure 2.12 shows a block diagram ofthe filtering procedure The third block, Fftfil, is 

where the frequency domain filtering takes place and the last block, Clipper, replaces the 

impulses with proper values. Figure 2 f3,,shows a graphical comparison of the three 

filtering methods described here. A commonly used quantitative comparison of the 

performance of digital filters is the empiri7~l mean square error given by· 

K 

e = ~ L(/; -x,)2 , 
1=1 

(2.19) 

where K is the number of samples, x, is the original data without impulsive noise, 

andf, is the filtered data. The smaller t~e error, the better the performance of the filter. 

The ideal case is whenf, matches x, exactly, which reduces the error, e, to 0. Calculating 

e for the 256 point data set ofFigure 2.13 results in: 
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Emedsan = 3 .18 X I0-2 

Eimear = 1. 78 X 10-3 

Emit = 4.64 X 10-6 

The smallest mean square error is that of emh , the proposed filter. 

In conclusion, it can be said that the proposed method of impulse removal produces 

better results than other impulse filtering methods in terms of error minimization on this 

type of data. The drawback is the longer computation time which/may prove too long for 

some applications, especially when real time processing is concerned. In applications such 

as the EBT system, where the data sample rate is slow, the· processor is provided with 

ample time to analyze the data. This method is also 'useful for non-real time applications , 

where the data is collected and recorded prior to any processing 
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Figure 2.11- Impulsive noise removal using the proposed method 

Figure 2.12- The block diagram of the proposed filter 
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Figure 2.13- A comparison of different filtering methods 
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CHAPTERrn· 

DIFFERENTIAL PHASE SHIFT KEYED (DPSK) 

MODULATION/DEMODULATION 

A hi-phase modulation scheme was chosen for transmission of data through the earth 

as it is the modulation/demodulation method with the lowest probability of error as 
' ' 

compared to other methods [2]. The optimal demodulator for such a modulation system 

is the correlation detector, if a coherent reference is ~vailable at the receiver. However, the 
•, 

assumption of coherence is non-trivial, implyi.ng some method of accurate time-basing 

between transmitter and receiver, e.g., a phase-locked loop. Due to the fading 

characteristic of the channel, the earth, it is difficult.to obtain a coherent reference. A 

noncoherent demodulation method would be the method of choice in situations where the 

channel is of a fading type and signaf attenuation rate changes randomly. 

The salient point is the acquisition and tracking of the phase of the received signal. 

One way of accomplishing this phase tracking is to use the carrier phase ofthe 

immediately preceding signal interval as the phase reference for the current interval. Two 

conditions are necessary for such a scheme to be effective. First, the phenomenon that 

causes the unknown phase drift in the transmitted signal must vary slowly enough that the 

phase change is negligible from one bit interval to the next. For the EBT application, this 

in tum implies some method of spike removal in the received signal, such as the use of 
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summation of multiple antennas or the use of a median filter or other nonlinear operations. 

These noise spikes are the only significant causes of rapid phase shifts in the current 

application. Other phase drift may occur, but would be so small that the condition of 

constant phase from bit interval to bit interval would still hold. 

Second, the phase of one signaling interval must have a known relationship to the 

phase of the next interval. · This condition can be ensured by employing differential 

encoding of the signal. The encoding process relates the signaling intervals by using an 

arbitrary binary reference digit. 'This method determines only the.phase shifts in the 

transmitted signal and not the exact phase. F.igi.Ire 3 .1 shows· an example of differential 

encoding of a message sequence. The reference bit in Figure 3 1 is assumed to be a binary 

zero, the reference is then compared to the first message bit that is a one, since there is a 

change, the encoded bit would be a one. The output would have been a 0 if the bit value 

had not changed from the previous interval. The rest ofthe message is encoded this way. 

The encoded message then modulates a carrier by shifting its phase by either 0 or 1t 

radians. A block diagram ofthe encodin& algorithm is shown in Figure 3.2. The message 

sequence is passed through an equivalence stage which compares the current bit value 

with the previous one and then the result is passed through a level shift circuit which 

outputs either a 11+ 1 11 or a 11-1 11 • The output of the level shifter is then used to modulate 

the carrier. The equivalence stage has a similar logic to that of an exclusive-nor gate The 

exclusive-nor gate is shown in Figure 3.3. 
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Figure 3.2- Dpsk demodulator 
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Figure 3.3- Equivalence gate 

In order to maintain a coherent bit rate at the surface receiver and the downhole 

transmitter, the surface demodulator needs to have a reference of the carrier frequency. 

The reference does not need to be in phase with the downhole transmitter, it only needs to 

have the same frequency. In the absence of such reference, a good estimate of the carrier 

frequency could be used The use ofthe carrier frequency estimate will prevent any data 

loss due to slow frequency drifts of the transmitter To estimate the carrier frequency a 

squaring method is used wherein a processed block of data is squared and its Fourier 

transform is calculated. The spectrum of the data is then searched for the frequency at 

which the maximum value occurs, that frequency is twice the actual carrier frequency. 
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The search is performed in the neighborhood of the previous peak value. Figure 3.4 

shows a block diagram of the frequency estimator. 

The estimation error has a maximum magnitude oft where df = ~ . The error is a 

function of the transmitter frequency and is a zero mean, uniformly distributed random 

variable because it is equally likely for the actual carrier frequency to fall anywhere inside a 

frequency interval. 
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Figure 3.4- Carri~r Frequency Estimation 
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Probability ofError for Optimal DPSK Demodulation System 

Figure 3.5 shows a schematic of the demodulator. 

Detector output is 

If I> 0, 

fto+T( )dt 

lt=kt 

------ x(kl) = Xk 
to 

to = kt, k integer 

fto+T( )dt 
to 

t=kt 

Detector and 
Decision 

Logic 

Figure 3 5- Optimum DPSK demodulator 

{ 
A cos(coct + 8) 

then S1(t) = 
A cos(coct+8) 

-T<t<O 

O~t< T 

If I~ 0, then S2(t) = { 
Acos(roct+8) -T<t<O 

-A cos(roct+8) 0 ~ t < T 
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Let 8 = 0 with with no loss of generality, then the probability of error in the receiver 
when S 1 is sent and S2 is detected (or vice versa) becomes, 

assuming that S 1 and S2 are equally likely and that meT is ~ integer multiple of 1t. 

Outputs of the ~ntegrator at t = 0 are 

where 

and 

At timet= T, 

where 

and 

AT 
Xo = 2+n1 

Yo =n3 

n1 = eTn(t)COS(COct)dt 

n3 =J~Tn(t)sin(roct)dt 

AT.+ 
X1 = T n2 

)'1 = n4 

n2 =J~ n(t)cos(coct)dt 

n4 = J~ n(t)sin(coct)dt 

(3.4) 

(3.5) 

(3.6) 

(3 7) 

(3 8) 

(3.9) 

(3.10) 

(3.11} 

(3.12) 

n(t) is white Gaussian noise with double-sided power spectral density No!T and 
n1,n2,n3 and n4 are uncorrelated, zero mean Gaussian random variables with variances 

. See Figure 26. 

or 

PE = P,[e2T + n21 + ~2)2- cl -n22)2 + (~ + ~4)2- c;- ~4)2 < 0] 

Defining new Gaussian random variables as 
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results in 

(3.15) 

The new random variables are uncorrelated, independent random variables with zero mean 

d · NoT an vanance4 

or 
- ' 

PE = f~lf~JR;~r2)dr2]fR 1 (rt)drl 

(3.16) 

(3 17) 

where R 1 is a Rician distributed random variable and R2 is a Rayleigh distributed random 
' ' 

variable with 

(3.18) 

I 1 J271 vcos ud o=- e u 271 0 is a modified Bessel function of the first kind and zero order, and 

To solve for P E , the inner integral simplifies as 

and 

From table of integrals, 

2 

P , -zJoo r 1/ (Ar1) -~d 
E = e 0 N. o N e N r1 

(3.19) 

(3.20) 

(3 21) 

(3.22) 

This value can be compared to other digital binary signaling schemes. For coherent,PRK 

signals, PE = ~ e-z for Z >> I . For large signal-to-noise ratios, DPSK and coherent 
2.;712 
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PRK differ by a very small amount. For coherent FSK signals, the probability of error is 

PE = !erfc(JIZ) where erfc(x) = ]n J~ e-t2 dt , which is the same as probability of error 

for coherent Amplitude Shift Keyed (ASK) signaling. PE for PRK is about 3 db better 

than that of coherent ASK or FSK. For noncoherent ASK and FSK, the probability of 

Figure 3. 7 shows probability of error plots for some ,different binary signaling methods for 

comparison. 
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Var(n1(t)) =E{ni(t)} 

'' 

= f~ f~ E{ n(t)cos(ro ct)n(cr)cos(ro ccr) }dtdcr 

= f~ f~ cos( ro ct)cos( ro ccr)E { n(t)n( cr) }dtdcr 

= f~ f~ cos(roct)cos(ro ccr)kNoB(t- cr)dtdcr 

= f~ kNocos(ro~cr)dcr, 

where (I) ccr = X and T = !~ 

_ 1 JroeT 1 - 2 o ro. cos2xdx 

Then Var(n1(t)) = kNo(~eG+ sm~2x))~~eT). 

Since T= 211 
rile ' 

2 2n 

Var(n1(t)) = kNo(t + sm ;ewe) and it follows that 

Var(n1(t)) =~NoT. 

Figure 3.6- Noise variance calculations 
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CHAPTER IV 

SYSTEM OVERVIEW 

The communication system under development consists of a surface 

receiver/transmitter pair and a downhole receiver/transmitter pair. Availability oflarge 

amounts of power for the surface transmitter and much less noise downhole relaxes the 

requirement for a sophisticated downhole receiver. However, the surface receiver needs a 

good noise cancelling system due to large amounts of surface noise. Signal processing 

techniques such as nonlinear processing, integration and adaptive noise cancellation can 

improve the Signal-to-Noise Ratio (SNR) to an acceptable level. Primary origins of 

Extremely Low Frequency (ELF) noise are thunder storms [12]and lightning. 

Experimental data show that noise in the earth is contained mostly in the upper two 

thousand feet of the earth's crust. Almost all of the 60Hz noise and its harmonics, 

switching noises, impulsive thunderstorm noise and other noise flow in this upper layer of 

earth. This is largely due to the skin effect and the high attenuation rates of 

electromagnetic signals in the earth. 

The downhole transmitter is battery operated and has a limited output power. As the 

transmitter is lowered into the well, the signals received on the surface get weaker and 

weaker. The signal attenuation rate depends on the earth's conductivity, signal frequency 

and depth. Experimental data from a test well and the results obtained by Starke [9] 
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show through the earth attenuation rates of 5 to 10 db per thousand feet in open hole and 

up to 16 db per thousand feet inside metal casing for signal frequencies ranging from 3 to 

20 Hz. A carrier frequency range of .2 to 20 Hz was selected based on the low 

background noise in that region and the signal attenuation rates. 

Conventional signal processing techniques assume that the signal degradation is a 

known time invariant quantity. They operate as an open-loop system where no attempt is 

made to correct for varying noise conditions. For most geophysical signal processing 

systems such as EBT, the amount and type of noise varies with time and location This is 

due to the varying surface conditions and the lithology of the earth. A suitable filtering 

technique for such operations is one which adjusts its own parameters as conditions 

change. This type of filter is called an adaptive filter Adaptive processors operate in a 

closed-loop fashion where the output of the system is used to correct the filter parameters 

as the disturbances change. The input signal is filtered and compared against a desired, 

conditioning or training reference signal. The comparison yields an error measure e(n) 

This error is then used to adjust the filter parameters so that e(n) is progressively 

minimized. For most real time operations the Least Mean Square (LMS) gradient search 

is used to minimize the error because of its fast settling time 

Because of the very long wavelengths involved, ELF noise is highly correlated within a 

radius of a few miles. This fact makes the use of an adaptive noise canceller possible 

Primary input to the noise canceller is derived from antennas connected to the well head. 

The secondary input is a reference antenna placed away from the well and not connected 

to the well head. This is a suitable arrangement, since the ELF noise is highly correlated 

52 



at sites separated by as much as a few miles. Also, by not having the reference antenna 

connected to the well head, it is ensured that minimal amounts of the EBT signal exist in 

the reference. 

The primary input is the sum of two antennas at an angle of 180° as shown in Figure 

4 .1. The antenna signals are first passed through a transimpedance amplifier stage and 

then summed. The result is then filtered' for anti~aliasing and digitized. Two antennas are 

used for the primary in order to cancel the effect of the impulsive noise that may be 

present. The well provides a path of low resistance for signals propagation. However, the 

impulses have equal amplitudes in the two antennas and c~m be canceled by summing the 

' 
signals. Other signals will not be cancelled because of their direction of flow, as shown in 

Figure 4.2. Signals from the wellbore flow from the well head to the ground rods whereas 

the impulsive noise flows from the ground rod to the well head in one antenna and from 

the well head to the ground rod in the other. 

The change in SNR depends on noise conditions. In the presence of a large amount of 

impulsive noise, the SNR is usually increased using the summer as compared to a single 

antenna configuration. This increas~ is t~e result of impulse cancellation A decrease in 

SNR is possible if one of the antennas has a higher SNR relative to the other and impulsive 

noise is minimal. The following calculations show how the SNR can be increased by the 

sum when the noise is the same in the two primary antennas. 
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Figure 4.1- Antenna arrangement 
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Each of the primary antenna wires is connected at one end to the well head and at the 

other end to a ground rod buried in the earth Voltage induced in the antennas are labeled 

as e nl and e n2 with antenna resistances as R 1 and R2. The downhole transmitter antenna 

voltage and resistance are labeled e w and R w. Writing the mesh equations results in 

-ew+Rw(ft -h)+hR1 +enl = 0 

and subsequently 

solving for I 1 provides 

sinceiw =It -I2 

and 

therefore 

-en2 +hR2 +Rw(I2 -I1)+ew = 0 , 

ft(Rl +Rw)-Rwh +en1-ew = 0 

I1(-Rw)+h(Rw +R2)+ew-en2 = 0 

I _ -Rwenl+Rlenz-Rlew+Rwen2 

2 - R1Rw+R1R2+RwRz 

I _ (Rl+Rz)ew-Rlenz-Rzenl, 

w - R1Rw+R1Rz+RzRw 
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In the case where ground rods have the same resistance 

Rt =R2 and 

for this case, 

J _ 2ew-(enl+en2) 
w- 2Rw+R1 

SNR= 2ew 
~ 

1"'n1Ten2 

and if noise sources in the two antennas are of the same magnitude, · 

SNR = ;;w =· :fi :: = fi SNRone ;od 
-12 en · 

(4.10) 

(4.11) 

(4 12) 

The result is an increase in SNR by a factor of fi for two antennas. Generally, for N 

antennas with equal ground rod resistan~es, the S~ is improved by factor JN . Plots of 

data available to the primary input and th~ secondary input, as well as the data transmitted 

through the borehole is shown in Figures 1.3 and 4.4. Figure 4.5 shows the time and 

frequency domain representations of a simulated borehole signal similar to the signal 

transmitted in Figures 4.3 and 4.5. 
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Figure 4.4- Reference input spectrum containing only noise 
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The Block diagram of the complete signal processing system is shown in Figure 4.6. 

The antenna signals are first routed through an analog receiver. The analog receiver 

consists of three major stages. The first stage is a radio frequency filter which rejects the 

high frequency signals picked up by the antennas. The second stage is a summer which 

sums the two primary antenna signals for impulsive noise reduction. The bandwidth of the 

analog receiver is from 0.03 Hz to 139KHz 'Yhich is due to the use of de servos to 

remove de components for better dynamic range. and the rf filters. The final stage is a low 

pass antialiasing filter stage which prepares the signals for digitization The rest of the 

processing is digital. 

The First step of digit~:tl signal processing is passing the reference input through an 

impulsive noise removal stage in preparation for adaptive filtering This stage is necessary 

when impulses are present since a reference input containing impulsive noise to the 

adaptive filter can distort the output significantly. The primary input does not require this 

stage since the analog summing process will remove the majority of the impulses fr~m the 

data. The block diagram of the impulse. removal stage was shown in Figure II 12 and its 

operation is explained in the impulsive noise. ~:emoval section. The adaptive filter 

parameters are J..l and Nw , J..l determines the speed of convergence and Nw is the number of 

weights or tabs used. The values of these parameters were chosen for .quickest 

convergence time and maximum noise cancelling effect. 
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CHAPTERV 

SUMMARY AND CONCLUSIONS 

This thesis has presented a problem of borehole communications for oil well operations 

together with part of the solution. The part of the solution presented consists of the 

surface digital data processing system for the communications system. 

What is different about this signal processing application is the frequency range of the 

signals involved. The signals are transmitted within an extremely low frequency range. 

Signal processing in the ELF range requires large blocks of data for processing and special 

filtering system to remove the noise in that range. The wide input band requires high 

sampling rates compared to the frequency of the transmitted signals. This comparatively 

high sampling rate and the low signal frequencies warrant the need oflarge blocks of data. 

The type of noise present in the ELF band is unique in that low frequency noise travels 

further and it can originate from distant and difficult to model sources. The level of noise 

present in the earth varies with location and the weather conditions. The noise level 

increases as one moves inside the power grid and also when the weather is stormy and 

specially when lightning strikes around the operations area. Lightning strikes can produce 

large spikes in the data. 

An impulsive noise canceller system was presented which benefitted the low sample 

rate data by removing spikes using frequency domain threshold filtering. The major noise 
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cancellation is accomplished by using an adaptive noise canceller. Primary input to the 

adaptive noise canceller comes in as the sum of outputs of two wire antennas connected to 

the well head. The summing operation provides some impulsive noise cancellation. For 

the impulses which pass through the summer, additional cancellation is required. 

Reference signal comes from a separate wire' antenna which is stretched between two 

ground rods. The reference antenna provides the adaptive noise c_anceller with data that 

contains highly correlated noise to that of the primary. Adaptive noise canceller functions 

by estimating the noise contained in the primary using the reference data and it then 

subtracts that estimate from the primary signal. The' power grid noise, any on location 

equipment electrical noise in the earth, and the ELF n~ise all exist in both the primary and 

the reference antennas and are highly correlated. 

A modulation/demodulation system was selected which provides the smallest bit error rate 

for this application. Due to the difficulty of obtaining a coherent carrier, a differential 

modulation system was chosen. The DPSK system compares the phase of one cycle with 

that of the previous cycle and decisions are based on the relative phases of the cycles, the 

first one being a reference with a known phase An alternative demodulation system based 

on a backpropagation neural network was also discussed and results of simulations were 

presented. The results indicate the potential of neural networks for such applications 

In conclusion, a surface receiver digital signal processing system has been designed 

which enables the communications system to operate successfully to a depth of3000 feet 

in casing and over 5000 feet in open hole The downhole transmitter operates at 4 

amperes rms at 3Hz, using a series of rechargeable batteries. As the transmitter is lowered 
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deeper in the borehole, the signals received on the surface begin to fall below the earth's 

noise floor and the signal-to-noise-ratio falls below useful levels. More than 4 amperes 

rms output is needed in order to be able to extract the signals of interest at deeper depths 

on the surface. A few decibels could probably be gained by using redundant coding which 

would slow down the transmission rate. Larger gains however, can only be gained by 

employing a more powerful downhole power system. For examP.le, a mud turbine power 

generator which produces 'power in orders of hundreds of watts could be employed in 

situations where drilling mud is flowing in the borehole. 

Suggestions for future work 

The recommended future work in this area would be work on a nonredundant coding 

scheme for error detection and correction which is highly desirable because of the already 

low data rates. Further research on the use of neural networks in signal filtering and 

demodulation. For a brief treatment of the backpropagation neural network, see appendix 

Theoretical analysis of neural network systems and a good performance measure in their 

use as demodulators would be a good subject for future research And finally a better 

power system for such applications Due to the size and other restrictions set upon the 

EBT system, batteries must be used as the power source and more compact and powerful 

batteries would be highly desirable for such applications Having available more power to 

the borehole transmitter, higher data rates can be acheived by using either higher carrier 

:frequencies or different modulation schemes such as m-ary phase shift keyed modulation 
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Obviously a compromise between modulation method and carrier frequency must be made 

in order to the best results for an optimum borehole data communication system. 
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APPENDIX 

NEURAL NETWORKS 

This appendix is very concise and is not meant to be a comprehensive treatment of 

neural networks. For those interested in a detailed tutorial, see [38],[39] and [40]. 

According to J.A. Freeman and D.M. Skapura [38], the neural network structure is 

defined as a collection of parallel processors called nodes or processing elements 

connected together in the form of a directed graph, organized such that the network 

structure lends itself to the problem being considered. It is a new approach to information 

processing that does not require algorithm or rule development and often reduces the 

quantity of the software required. The neural network can autonomously develop 

operational capabilities in ad@.ptive response to an information environment. The parallel 

architecture of neural networks makes them extremely useful in pattern recognition 

applications. Signal demodulation can, be considered to be a pattern recognition 

application. 

There are many different neural network architectures, such as Backpropagation 

networks, Kohonen networks, counter propagation networks and others. We are 

concerned here with the Backpropagation networks. Backpropagation is a gradient 

descent algorithm that tries to minimize the average squared error of the network by 

moving down the gradient of the error curve. This type of network consists of multiple 
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layers of processing elements with each layer connected to the ones immediately above 

and below it and there are no connections between the nodes on a layer. An example of a 

three layer Backpropagation network is shown in Figure AI. The input layer is a fan-out 

layer with each node having a single input and multiple outputs. On the other layers, each 

processing el~ment has a number of input signals and a single output signal as shown in 

Figure A.2. Each input signal, x,, is assigned a weight, w,. The total input for each 

processing element is the summation of all inputs multiplied by their corresponding 

weights. The output of each processing element is non_nally ~etermined using a nonlinear 

function such as the sigmoid function which is an S shaped curve which asymptotically 

approaches constants. This non linear function is called the activation function and it 

determines whether the particular processing element fires. The reason for using the 

sigmoid function is that it is differentiable, it approaches fixed values asymptotically and it 

is monotonically increasing. The first condition is important because the function is 

differentiated in the learning process and the other conditions are important for binary 

outputs. 

The first step in the design of a neural net system, after the basic architecture is 

selected, is the training process. A neural net system must first "learn" how to react to a 

given input vector. During this process many input vectors representing what might be 

encounter~d in run time are introduced· to the network. T~e network learns or adjusts its 

parameters by comparing its output with the known ,outputs The comparison yields error 

values that are propagated back through the network and that are used 'to adjust the 

weights according to the Least Mean Squared (LMS), or Delta, learning rule. The LMS 
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learning rule is similar to the one used in adaptive filtering and noise cancelling. This is an 

iterative process which will end when the output errors are reduced to an acceptable level, 

Figure A.3. 

The learning process starts where the training patterns are fed to the input layer of the 

network. From there they are fanned out to the middle layer. The middle layer processing 

elements process the inputs and pass the results to the next layer, 
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Figure A. I- Backpropagation neural network architecture. 

X : input vector 

W: weight vector 

. : dot product output 

Figure A.2- A Processing Element (PE) 
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Figure A.3- Learning process in a three layer backpropagation 
neural network. 
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l=X·W (AI) 
or l=Lx,w, 

X and Ware the input and weight vectors. The output of the PE becomes, 

f(I) = ~~-[. The Sigmoid function (A.2) 

After the outputs for the last layer are calculated, they are compared to the desired values. 

The difference is used to update the weights. The update follows the Delta rule: 

- - PEX 
Wnew- Wold= IX"I2 

for each PE, where ~ is the learning constant and E is an error value calculated by 

(A.3) 

subtracting the output from the desired value for the output layer. This same value is 

. . 
propagated back to previous layers. The backward propagation is performed as 

I 

e ~~ (I)[L wyE;]. (A.4) 

where i is the input index, j is the PE index and 
I , 

f (x) = !( 1~-x) (AS) 

(A.6) 

(A 7) 

Factoring f(x) = ~~-x results in. 
I 

f (x) = f(x)[l - f{x)] (A.8) 

I 

f serves as a stabilizing factor since it is a bell shaped curve with relatively large values 

for mid-range inputs and smaller values for either end. This helps in convergence of the 
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system since it forces the changes to be small when. the outputs approach 0 and 1, with 

larger changes otherwise. 

One important addition to the Delta rule is the momentum term The momentum term 

helps to keep the weight changes going in the same direction and to keep the solution out 

of the local minima. The rule incorporating this additional~term is called the generalized 

Delta rule, 

(A.9) 

were a is the constant momentum term multiplied by the change in weights for this node 

from the previous iteration. 

77 



VITA 

Farhad Esfahani 

Candidate for the Degree of 

Doctor ofPhilosophy 

Thesis: EXTREMELY LOW FREQUENCY (ELF) SIGNAL PROCESSING FOR 
ELECTRIC BOREHOLE TELEMETRY 

Major Field: Electrical Engineering 

Biographical· 

Presonal Data· Born in Tehran, Iran, June 21, 1961, the son of Ali Esfahani and 
Parivash Nameni Esfahani. 

Education: Graduated from Lincoln High School, Seattle, Washington in May 1980, 
received the Bachelor of Science degree in Electrical Engineering from 
Oklahoma State University in May 1984; received the Master of Science degree 
in Electrical Engineering from Oklahoma State University in May 1986; 
completed requirements for the Doctor of Philosophy degree at Oklahoma State 
University in December 1992. 

Professional Experience: Senior Engineer, Halliburton Services Company Research 
Center, June 1989 to present; graduate research assistant, School of Electrical 
and Computer Engineering, Oklahoma State University, August, 1987, to May, 
1989; lab instructor, School of Electrical and Computer Engineering, Oklahoma 
State University, August, 1986, to May 1987. 

Awards/Affiliations: Member Tau Beta Pi, Etta Kappa Nu, Institute ofElectrical and 
Electronics Engineers (Communications Society, Neural Networks Society and 
Computer Society). Member Kiwanis International 




