
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

MULTIPLE REAL-CONSTANT MULTIPLICATION FOR COMPUTATIONALLY

EFFICIENT IMPLEMENTATION OF DIGITAL TRANSFORMS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

MATTHEW BRANDON GATELY
Norman, Oklahoma

2012

MULTIPLE REAL-CONSTANT MULTIPLICATION FOR COMPUTATIONALLY
EFFICIENT IMPLEMENTATION OF DIGITAL TRANSFORMS

A DISSERTATION APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Dr. Mark B. Yeary, Chair

Dr. Choon Yik Tang

Dr. Monte P. Tull

Dr. John K. Antonio

Dr. Yan Zhang

© Copyright by MATTHEW BRANDON GATELY 2012
All Rights Reserved.

Acknowledgements

• First, I’d like to thank God for giving me the strength to persevere this research

and produce this dissertation.

• Second, I thank my wife, Trisha, for standing beside me throughout this entire

experience.

• Third, I appreciate the advise and encouragement that all of my doctoral com-

mittee members provided.

• Of course, I couldn’t participate in this research without the funding provided

by the National Science Foundation and the College of Engineering’s Robert

Hughes Centennial Fellowship.

• Last, I sincerely appreciate my family and friends for their unceasing prayers.

iv

Contents

Acknowledgements iv

List of Tables vii

List of Figures viii

List of Algorithms ix

Abstract x

1 Introduction 1
1.1 Multiple Constant Multiplication . 1
1.2 Typical Design Work-Flow . 3
1.3 Shortcomings of MCM Research . 3
1.4 Original Contributions . 4
1.5 Dissertation Outline . 6
1.6 Notation and Terminology . 6

2 Related Work 7
2.1 The Multiple Integer-Constant Multiplication Problem 7

2.1.1 General Problem Formulation 7
2.1.2 Variations and Solving Methods 8
2.1.3 Gate-Level Cost Model . 9

2.2 Joint Quantization and MCM in the Limited Context of Finite Impulse
Response Filters . 10

3 The Multiple Real-Constant Multiplication Problem 12
3.1 Rationale and Motivation . 12
3.2 Quantization Error Metrics . 13

3.2.1 Scalar Error Metric and p-norm 14
3.2.2 Vector Error Metric . 15

3.3 General MICM Problem Formulation 16
3.4 General MRCM Problem Formulation 18

4 MRCM with Adder-Count Cost Model 20
4.1 Introduction . 20
4.2 Problem Formulation . 21

4.2.1 Constant Quantization Problem and Error Metric 21
4.2.2 Traditional MICM Problem with Adder-Count Cost Model . . 22
4.2.3 MRCM Problem with Adder-Count Cost Model 27

v

4.3 Canonical Example . 28
4.4 Proposed Algorithm . 31

4.4.1 Basic Strategy . 33
4.4.2 Finitizing the (s, ĥ) Search Space 33
4.4.3 Applying Hcub to the R′ Search Space 40
4.4.4 Further Pruning the (s, ĥ, R′) Search Space 42
4.4.5 Limitations . 48

4.5 Experiments and Results . 50
4.5.1 Experimental Setup . 50
4.5.2 Results with Arbitrary Constants 53
4.5.3 Results with Low-pass Filter Coefficients 55
4.5.4 Additional Results . 57

4.6 Summary . 58

5 Multiple Real-Constant Multiplication with Bit-Count Cost Model 59
5.1 Introduction . 59
5.2 Problem Formulation . 60
5.3 Proposed Algorithms . 62

5.3.1 MCM-capable Search Tree Construction 62
5.3.2 Greedy Algorithm . 63
5.3.3 Optimal Algorithm . 65

5.4 Experiments and Results . 66
5.5 Summary . 69

6 Multiple Real-Constant Multiplication with Gate-Level Cost Model 70
6.1 Introduction . 70
6.2 Problem Formulation . 70
6.3 Proposed Algorithm . 72

6.3.1 Complete Functional Problem Definition 72
6.3.2 Applying a Heuristic . 77

6.4 Experiments and Results . 78
6.4.1 Experimental Setup . 79
6.4.2 Results . 81

6.5 Summary . 83

7 Conclusion 84
7.1 Summary of Findings . 84
7.2 Recommended Future Work . 85

Bibliography 87

vi

List of Tables

4.1 Arbitrary constants—The ratio cost(R′⋆joint) / cost(R′⋆disjointed) for each
pair (N,ε′) averaged over 100 trials. 54

4.2 Low-pass filter coefficients—The ratio cost(R′⋆joint) / cost(R
′⋆
disjointed) for

each pair (N,ε′) averaged over 100 trials. 56
4.3 Execution times for Joint Solve with and without pruning for a se-

lect set of trials using arbitrary constants. 58

5.1 Trial specifications using bit-count cost model. 67
5.2 Summary of results using bit-count cost model. 68

vii

List of Figures

1.1 Illustration of multiplierless multiplication. 2

2.1 An N -tap FIR digital filter with coefficients h0, . . . , hN−1, implemented
in a transposed direct form. 11

4.1 Graphical depiction of an A-operation (f1, f2, c, f3) with c = (l1, l2, r, t). 23
4.2 GraphGR′ induced by R′ according to Definition 4.5. Since R′ = {(1, 3,

(1, 0, 0, 0), 5), (5, 3, (0, 1, 0, 0), 11)}, GR′ = ({1, 3, 5, 11}, {(1, 5), (3, 5),
(5, 11), (3, 11)}). 24

4.3 An adder tree and its corresponding shift-add network. The two struc-
tures have a one-to-one correspondence. 25

4.4 A suboptimal adder tree for the target fundamentals, {3, 5}. Fig-
ure 4.3(a) shows that the intermediate node 7 is not required. 26

4.5 Frequency responses of the ideal filter H with the ε-boundary lines
and the two quantized filters Ĥdisjointed and Ĥ joint for the example in
Section 4.3. 29

4.6 Adder trees for the example in Section 4.3. 30
4.7 Screenshots of FPGA technology schematics generated using the filter

architecture of Figure 2.1 and the coefficients obtained from the two
solutions in Section 4.3. 32

4.8 Arbitrary constants: The ratio cost(R′⋆joint)/ cost(R′⋆disjointed) versus
vector length N for each fixed ε′ (the values of ε′ are specified in
the legend). The ratios are averaged over 100 trials. 55

4.9 Low-pass filter coefficients: The ratio cost(R′⋆joint)/cost(R
′⋆
disjointed) ver-

sus filter length N for each fixed ε′ (the values of ε′ are specified in
the legend). The ratios are averaged over 100 trials. 57

5.1 A portion of the ψ search tree illustrating node expansion. 63

6.1 Results of the first experiment set in terms of the ratio
costgreedy
costminas

. . . 81

6.2 Results of the second experiment set in terms of the ratio
costgreedy
costminas

. 82

6.3 Results of the third experiment set in terms of the ratio
costgreedy
costminas

. . 83

viii

List of Algorithms

4.1 Infinite Solve . 34
4.2 Finite Solve . 41
4.3 Joint Solve . 48
4.4 Procedures called by Joint Solve 49
6.1 solve greedy: F# implementation 79

ix

Abstract

T
HE NEED to multiply signals by vectors (or matrices) of constants is funda-

mental and frequently arises in many areas of electrical and computer engi-

neering. In their hardware implementations, performance issues such as circuit area,

delay, and power consumption heavily influence the design process. It is well known

that multiplication of a signal by a constant can be implemented multiplierless as a

network of shifts and additions, and that these computational networks, termed shift-

add networks, can lend to higher performing circuit implementations than when using

general multipliers. There is a rich body of work on the optimization of shift-add net-

works, known as the multiple constant multiplication (MCM) problem. However, the

optimization strategies that have been developed for the MCM traditionally assume

that the vector multiplications being optimized always stem from integer constants.

This assumption breaks down for many real-world applications, where the target

constants for MCM optimization are real numbers rather than integers. In these sit-

uations there is flexibility in how constants are quantized in digital circuits that can

be leveraged. Thus, it is desirable to have a method of jointly optimizing both the

constant quantization error and the shift-add network simultaneously.

This dissertation addresses this need by providing a problem framework and algo-

rithms for joint quantization/MCM optimization and, through a series of experiments,

shows that there is a potential for tremendous benefit when the optimization of quan-

tization and shift-add networks is executed in one unified problem framework. After

reviewing the relevant work, this dissertation rigorously develops the aforementioned

joint optimization framework, describing the metrics used for quantization error, and

culminates in a formal problem statement. We call this joint optimization problem

x

the multiple real-constant multiplication (MRCM) problem in order to distinguish it

from the traditional MCM problem that operates exclusively with integer constants,

which we hereafter refer to as the multiple integer-constant multiplication (MICM)

problem. Then, we consider three different cost models used for evaluating shift-add

networks and, with each model, we determine the potential advantages of using our

MRCM framework over the traditional MICM approach.

First, we consider the traditional adder-count cost model. We start by formally

defining the MRCM problem in the context of this cost model, and then describe a

series of theoretical developments centered around finitizing and pruning the search

space, leading to an efficient algorithm for solving the problem. Next, via extensive

randomized experiments, we show that our joint framework leads to a reduction on

the number of adders by 15%–60% on moderate size problems. In particular, for

vectors of arbitrary constants, we show a possibility for 20%–60% reduction with less

than 10% vector approximation error for both frameworks, whereas for vectors of

low-pass filter coefficients, a 15%–30% reduction is possible without exceeding 10%

error in frequency response.

Second, we consider an adder-bits cost model, whereby instead of simply counting

the number of adders, we compute the combined bitwidth of all the adders.To solve

the MRCM problem in this context, we introduce two search algorithms—one greedy

and one optimal, each guided by a novel MRCM-aware heuristic. Next, we discuss a

randomized experiment, in which we compare both algorithms to an MICM-targeted

heuristic. We observe that the greedy search finds solutions with an average cost

improvement of 13% over the MICM solution with the trials considered, and the

optimal search finds an additional improvement of 6%.

Third, we consider a prominent gate-level cost model from the literature that.This

gate-level model consider the bitwidths of an adder’s inputs and output along with

the relative alignment of the inputs/output due to bit shifting, when computing the

xi

adder cost. To solve the MRCM problem in this context, a novel greedy algorithm

is developed that uses a functional programming approach to solving the MRCM

problem. Next, we experimentally show this algorithm to offer an improvement of

up to 18%, over a competing MICM algorithm, on small instances having 20 8-bit

constants, increasing to up to 59% improvement on larger instances having 80 5-bit

constants.

Finally, we conclude the work by offering recommendations for possible future

work in the development of efficient MRCM algorithms and novel problem formula-

tions for optimizing MCM circuits.

xii

Chapter 1

Introduction

1.1 Multiple Constant Multiplication

T
HE NEED to multiply signals by vectors (or matrices) of constants is funda-

mental and frequently arises in many areas of engineering. For example, the

need arises in:

• linear time-invariant digital filters including finite and infinite impulse response

(FIR and IIR) filters implemented using transposed structures [1, 2];

• implementation of digital control systems including state-space-based controllers

and Kalman filters [3];

• implementation of digital communication systems including multiple-antenna

transmitters and receivers [4];

• transformation optics [5];

• video coding [6];

• radar signal processing [7–9];

• and any other application employing constant linear transformations.

It is well known that multiplication of a signal by a constant can be implemented

multiplierless as a network of shifts, additions, and subtractions, when the signal and

constant are represented as fixed-point numbers. Furthermore, when multiplying a

1

!"

#

#!

!

!"

$!

$

−→

<< 2

+

−

<< 1

x

4x

2x5x

5x 3x

1x

Figure 1.1: Illustration of multiplierless multiplication.

signal by a vector of constants, these additions and subtractions may be shared to

further reduce computational resources, as shown in Figure 1.1.

These computational networks, termed shift-add networks, lend to more efficient

computation in both hardware and software systems. In hardware, multiplierless mul-

tiplication leads to reduced area, latency, throughput, and power [10–12]. In software,

multiplierless multiplication may be used when there is no multiply instruction avail-

able and, in general, may lead to reduced cycle counts as compared to using multiply

instructions [11, 13].

Because multiplierless multiplication by constants is so prevalent, there is a rich

body of work on the optimization of the aforementioned shift-add networks. In fact,

the so-named multiple constant multiplication (MCM) problem, first introduced by

Potkonjak et al. [14], has been rigorously studied over the last two decades [10,

13–22]. Although the precise MCM problem statement differs slightly depending

on the authors within the relevant literature, the basic idea is to find a shift-add

network implementing the multiplication using an optimal arrangement of additions

and subtractions.

2

1.2 Typical Design Work-Flow

Though benefits of multiplierless multiplication exist in both hardware and soft-

ware, this dissertation limits its discussion to the context of hardware, especially

application-specific integrated circuits (ASICs). Consider an application where mul-

tiplication of a signal by a vector of target constants is required. When employing

MCM optimizations, the design process can be thought to have four stages [23, 24]:

1. Quantization—the conversion from real infinite-precision constants to accept-

able finite-precision approximations

2. MCM—the choice of intermediate constants to be computed in the shift-add

network performing the multiplication

3. Interconnect—the choice and arrangement of shifts and additions/subtractions

that connect intermediate and target constants into a realizable shift-add net-

work

4. Synthesis—realization of a shift-add network into a gate-level ASIC design

Note that in stages 2 and 3 the term intermediate constants refers to those internal

signals in a shift-add network that are computed as part of the network but do not

correspond to any of the application’s target constants.

Furthermore, note that the work of the four stages might be intermixed in a

particular design work-flow and need not be treated independently.

1.3 Shortcomings of MCM Research

While the research and development of the MCM problem has been quite exten-

sive, there are a number of shortcomings which stem from the following observation.

3

Most MCM literature up to this point has made the assumption that the applica-

tions involving shift-add networks exclusively include integer target constants. This

assumption breaks down for many real-world applications, where the target constants

for MCM optimization are real numbers rather than integers. In these cases, it is ben-

eficial to have a method of jointly optimizing both the constant quantization error

and the shift-add network simultaneously. Later sections will expand on this ma-

jor shortcoming and other drawbacks through canonical examples and experimental

results.

This dissertation is devoted to addressing this void in the literature. To do so, we

define a general class of joint optimization problems, develop a collection of algorithms

for solving them, analyze their theoretical properties, compare their efficacy with

competing alternatives, and report on the experimental results.

1.4 Original Contributions

More specifically, the original contributions of this dissertation include:

• A formal general definition of the joint optimization problem, which we call the

multiple real-constant multiplication (MRCM) problem;

• Three specific problem formulations, using varying cost models and error met-

rics, along with algorithms for solving them:

1. The MRCM problem with adder-count cost model along with a series of

theoretical developments leading to an efficient algorithm called Joint Solve,

2. The MRCM problem with bit-count cost model along with two algorithms:

greedy and optimal, with both algorithms’ searches guided by a novel

heuristic, and

4

3. The MRCM problem with gate-level cost model along with a functional

programming implementation called greedy solve.

• Empirical experiments designed to verify the efficacy of each algorithm and

compare with the state of the art, with results showing:

1. Adder-count cost model : 20%–60% adder reduction for vectors of arbi-

trary constants and 15%–30% adder reduction for vectors of low-pass filter

coefficients,

2. Bit-count cost model : the greedy search having an average cost improve-

ment of 13% over the multiple integer-constant multiplication (MICM)

solutions, and the optimal search having an additional 6% improvement,

3. Gate-level cost model : the algorithm having an improvement of up to 18%

over a competing MICM algorithm, on small instances having 20 8-bit

constants, increasing to up to 59% improvement on larger instances having

80 5-bit constants.

Also, the work of this dissertation has led to the following publications:

[1] M. B. Gately, M. B. Yeary, and C. Y. Tang, “Reduced-hardware digital filter

design via joint quantization and multiple constant multiplication optimization,”

in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., May 2011, pp. 4368–

4371.

[2] ——, “Multiple real-constant multiplication with improved cost model and

greedy and optimal searches,” in Proc. IEEE Int. Symp. Circuits Syst., May

2012.

[3] ——, “An algorithm for jointly optimizing quantization and multiple constant

multiplication,” ACM Trans. Design Automation Electron. Syst., accepted and

to appear, 2012.

5

Additionally, Chapter 6 discusses a preliminary algorithm and results of ongoing

research for which another journal publication undergoing preparation.

1.5 Dissertation Outline

The outline of this dissertation is as follows: First, we discuss the current MCM litera-

ture in Chapter 2, devising the term multiple integer-constant multiplication (MICM)

to refer to the traditional assumption that target constants are integers. Then, Chap-

ter 3 introduces the MRCM problem as an alternative joint optimization formulation

that considers non-integer target constants. Next, Chapter 4 evaluates the MRCM

problem with regards to the traditional adder-count cost model. Next, Chapter 5 eval-

uates the problem in conjunction with an alternative bit-count cost model. Chapter 6

evaluates the problem using a gate-level cost model. Last, Chapter 7 summarizes the

findings of this dissertation’s research.

1.6 Notation and Terminology

In this dissertation, unless otherwise specified, the following notational conventions

are employed:

a) Scalars are represented in lower case in an italic font, e.g., a.

b) Vectors and tuples are represented in lower case in a bold font with their com-

ponents italicized and identified by subscripts, e.g., a = (a0, . . . , aN−1), where N

is the length/dimensionality of the vector.

c) Sets are represented in upper case in a bold font, e.g., a ∈ A. Sets assume no

ordering unless it is explicitly stated.

d) Members of ordered sets are identified by subscripts, e.g., a set of scalars A =

{a0, . . . , aM−1}, where M is the cardinality of the set.

6

Chapter 2

Related Work

In this chapter we discuss the multiple constant multiplication (MCM)-related lit-

erature to date. In Section 2.1 the multiple integer-constant multiplication problem

is defined, which encapsulates most of the current MCM work. Then, Section 2.2

gives some background of the MCM problem as it has been applied to finite impulse

response (FIR) digital filters.

2.1 The Multiple Integer-Constant Multiplication Problem

In most of the MCM literature to-date, the authors define the MCM problem under

the assumption that all candidate applications for shift-add network optimization deal

exclusively with constants that are integers (fixed-point numbers), and that there is

no tolerance for error. However, since these assumptions only satisfy a subset of the

applications that can be optimized with MCM methods, we give this limited problem

definition the name of multiple integer-constant multiplication (MICM) in order to

distinguish it from multiple real-constant multiplication to be defined later.

2.1.1 General Problem Formulation

Each researcher in the field of MICM uses his or her unique formal problem definition

of the MICM problem. However, apart from semantical differences, their definitions

generally result in the same basic problem formulation. Furthermore, some basic

terminology has arisen in the field that is shared by most. Borrowing from the

common terminology of papers written by prominent authors in the field [13,15,21,24],

7

we now provide a general definition of the MICM problem:

Let the term fundamentals denote the positive odd integers. Now,

consider a candidate application for MCM optimization, that is, a sys-

tem where an input signal is to be multiplied by a set of fundamentals.

Let this set be called the target fundamentals T = {f0, . . . , fM−1}. Let

a primitive shift-add operation be made up of a two-input adder with

possible arithmetic shifts at the inputs and output. Starting with the

original input x, find a sequence of shift-add operations that can be suc-

cessively applied to the input signal in order to compute the circuit outputs

{f0 ·x, . . . , fM−1 ·x}. In order to produce all of the circuit outputs, it may

be necessary to compute other intermediate signals that are not needed

for the output, resulting in extra shift-add operations. With this in mind,

an optimal solution to the MICM problem is a sequence of shift-add oper-

ations that compute all of the outputs while minimizing the total number

of operations.

While the previous paragraph is understood as a general definition of the MICM

problem, there have been proposed modifications to the problem which are discussed

next, along with different approaches to solving the problem.

2.1.2 Variations and Solving Methods

Various methods for solving the MICM problem have been studied, but, in general,

the methods can be divided into two categories—common subexpression elimination

(CSE)-based algorithms and graph-based algorithms. For example, the authors of

[10, 19, 20, 22] define the problem as a form of CSE that the authors of [19, 20, 22]

then transform into an integer-linear programming problem, while others [13, 15, 17,

21] address the MICM problem using a graph-based approach. In [15], the authors

8

compare graph-based methods and CSE-based methods and show that graph-based

methods allow for more optimal solutions to the MICM problem because the solutions

are not affected by the choice of number representation (e.g., binary, canonical-signed-

digits).

Variations on the general MICM problem have been proposed also, with some

MCM-solving algorithms incorporate constraints on the logic depth of the MCM

circuit [13, 16, 19] or the size of the adders [13] as well.

2.1.3 Gate-Level Cost Model

Although, the MCM problem traditionally optimizes the total number of shift-add

operations, there has been research into lower-level cost models as well. For instance,

to more accurately represent the hardware characteristics of an MCM solution, Aksoy

et al. [25, 26] and Johansson et al. [24, 27] investigate the hardware cost of shift-add

networks at the gate(bit)-level. In doing so, they characterize all of the different

adder configurations that can occur in a shift-add network, and for each one compute

the number of 1-bit full adders and half-adders that each configuration will produce.

To verify the validity of their models, in the results of [24–27], they show that such

gate-level cost models do indeed correspond more directly to synthesized hardware

cost than the traditional cost model.

Hence, gate-level cost models provide a much more fine-grained cost evaluator

for MCM problems than the traditional course-grained approach of simply counting

the total number of adders, without respect to bit-level details. Referring back to

the four-stage MCM application work-flow of Section 1.2, it can be said that using

a gate-level cost model provides a means of more tightly coupling the stages of 2)

MCM and 3) Interconnect. The specifics of a gate-level cost model are discussed in

more detail in Chapter 6.

9

2.2 Joint Quantization and MCM in the Limited Context of

Finite Impulse Response Filters

Because of their usefulness, finite impulse response (FIR) digital filters have been

studied in depth, with papers typically addressing one of two distinct goals: to closely

match frequency response characteristics, or to realize the filters optimally in hard-

ware. In FIR filter design, these two goals often compete against each other, so

methods improving one will generally adversely affect the other. However, they are

often viewed as separate goals and are studied, one without respect to the other.

First, to design realizable FIR filters, one has to consider the finite wordlength

effects (i.e., quantization errors). Namely, ideal filters have to be approximated by

causal filters having a finite number of coefficients, each with a finite wordlength.

Figure 2.1 illustrates such a filter. Much progress has been made in minimizing the

effects of these filter approximation limitations (e.g., [28–33]). For instance, McClellan

et al. [29] developed an algorithm that generates an N -tap filter which approximates

a given frequency response with the least error in the minimax sense. However, the

generated filter still has infinite-wordlength coefficients and is therefore unrealizable

with finite-wordlength coefficients. As another example, Ito et al. [33] presented a

method for quantizing the coefficients of an N -tap infinite-wordlength filter. Given

a total number of quantization bits, this method quantizes the coefficients in such a

way as to minimize the maximum error of the resulting frequency response.

Second, the algorithms developed for the MICM problem that are discussed in

Section 2.1 are directly applicable to the FIR filter structure, once the coefficients have

been quantized into integers. For example, Figure 2.1 shows that the common FIR

filter, when implemented in a transposed direct form, includes an MCM operation,

since the circuit input is multiplied by all the coefficients simultaneously.

Even though the goals of reducing quantization error and optimizing the hardware

10

x[n]

z
-1

z
-1

z
-1

y[n]

hN-1 hN-2 h1 h0

Figure 2.1: An N -tap FIR digital filter with coefficients h0, . . . , hN−1, implemented
in a transposed direct form.

circuit can be handled separately, it is conceivable that solving both of the problems

in a joint framework would allow for more satisfactory solutions with respect to the

competing filter design goals. For this reason, algorithms employing various joint

optimization strategies have been developed in the limited context of FIR filters

[12, 23, 24, 34–40]. With these algorithms, the filter coefficient vectors considered

are those which satisfy a set of frequency response specifications on, for instance,

passband and stopband cutoff frequencies and ripple tolerances. Moreover, although

they are constructed based on different approaches, these algorithms are capable of

exploiting the specific structure of FIR filters, leading to computationally efficient

implementations. Such features are important, since FIR filter design remains a

central aspect of signal processing applications.

11

Chapter 3

The Multiple Real-Constant Multiplication Problem

In this chapter the multiple real-constant multiplication (MRCM) problem is intro-

duced to address the drawbacks of the traditional MICM problem. In Section 3.1,

these drawbacks are discussed to motivate the development of the MRCM problem

that is studied in this dissertation. Then, Section 3.2 discusses possible quantization

error metrics to be used in MRCM problem formulations. Next, Section 3.3 develops

some terminology to be used throughout this dissertation and provides a formal state-

ment of the MICM problem. Finally, Section 3.4 further develops the terminology

and provides a formal MRCM problem statement.

3.1 Rationale and Motivation

As discussed in Section 2.1, the traditional literature relating to the MCM problem

makes certain assumptions about target applications. Namely, that in a given system

designed using MCM optimization, the target constants are all integers (fixed-point

numbers). With this assumption in mind, the traditional MCM problem formulations

and algorithms are developed independent of quantization considerations. Accord-

ingly, we have devised the name multiple integer-constant multiplication (MICM) to

refer to the MCM problem under this assumption.

However, this assumption of integer constants breaks down for a system design

that deals with real, non-integer constants that need to be quantized before they

are suitable for multiplierless multiplication optimization. In this case, the quantiza-

tion and MCM stages of the system design must be optimized independently. The

12

drawback to this disjointed approach of system design is that a loss of freedom is in-

curred that might lead to a less ideal solution than could be obtained by using a joint

optimization approach. For instance, there is freedom in choosing how to quantize

non-integer constants, and the manner that they are quantized determines the result-

ing approximation error as well as the opportunity that exists for MCM optimization

[41]. Consider an example where the fixed-point bitwidth is given. In this case, quan-

tizing to minimize approximation error may generate fixed-point constants that are

not well-suited for MCM optimization. On the other hand, fixed-point constants that

lead to an optimal shift-add network may have an approximation error that exceeds

application constraints. Furthermore, in [41, 42], we show that substantial hardware

cost improvement can be achieved when using an MCM problem formulation that

takes real constants and simultaneously solves for the best balanced solution in terms

of quantization and adder reduction.

To address this need, we develop an optimization problem for jointly quantizing

constants and solving and performing MCM network reduction. Hereafter, to distin-

guish it from the traditional MICM problem, we refer to our joint quantization/adder

reduction problem as the multiple real-constant multiplication (MRCM) problem.

While various independent joint optimization methods have been developed in

the limited context of FIR filters (see Section 2.2), in this dissertation we discuss

the MRCM problem in a general setting, where one is given a vector of ideal, real

constants, which can originate from any number of applications, and which is not

necessarily associated with an FIR filter.

3.2 Quantization Error Metrics

When defining the MRCM problem with real constants, it becomes necessary to

define an error metric to determine the quantized constants that are feasible for

13

a given problem. In this section, we discuss several metrics that can be used for

measuring quantization error. We consider metrics that use a scalar error tolerance

ε as well as a metric that uses a vector of error tolerances ε that is the same size as

the target constant vector. Both options have particular characteristics that might

make them useful for a given MRCM problem. Next, each one is discussed in turn in

Sections 3.2.1 and 3.2.2.

3.2.1 Scalar Error Metric and p-norm

It is often useful to be able to define the error tolerance of a quantized constant

vector using a single scalar quantity ε. In these cases, p-norms provide natural error

functions by accumulating the errors of each individual constant into one measure.

Definition 3.1 (p-norm): Given a positive integer p, the p-norm is computed as

‖x‖p = (
∑N−1

i=0 |xi|
p)

1
p .

Such metrics may be appropriate for applications where terms are to be summed

up, so that the total error can be measured. In this work, we use the 1-norm for

defining the MRCM problem in Chapters 4 and 6 for reasons to be seen next.

Let h = (h0, h1, . . . , hN−1) ∈ R
N be a vector of ideal constants from a particular

application, and let ĥ = (ĥ0, ĥ1, . . . , ĥN−1) ∈ R
N be a fixed-point vector obtained

from some quantization of h. To measure the quantization error, we use the 1-norm

of h− ĥ defined as

‖h− ĥ‖1 =
N−1
∑

n=0

|hn − ĥn|. (3.1)

Although the quantization error can also be measured using other norms such as

the 2-norm or ∞-norm—in fact, they cause little change to our problem descrip-

tion and algorithm development—we will not pursue such alternatives here. We

note that the 1-norm has also been used in [11] and [12] as the error metric when

searching for computationally efficient fixed-point constants. In addition, it has a

14

nice frequency domain interpretation: The FIR frequency response H(ω) is calcu-

lated from the discrete-time Fourier transform (DTFT) [43] of the filter coefficients

h = (h0, . . . , hN−1) ∈ R
N as

H(ω) =
N−1
∑

n=0

hne
−jωn, (3.2)

where ω ∈ R is the frequency in radians/sample. The vector notation, hn, is used

instead of the signal processing sequence notation, h[n], in order to maintain consis-

tent notation throughout. Then from (3.1) and (3.2), the frequency response error is

bounded by the 1-norm of h− ĥ, i.e., for all normalized frequencies ω,

∣

∣

∣

∣

∣H(ω)
∣

∣−
∣

∣Ĥ(ω)
∣

∣

∣

∣

∣
≤

∣

∣H(ω)− Ĥ(ω)
∣

∣

=

∣

∣

∣

∣

∣

N−1
∑

n=0

(

hn−ĥn

)

e−jωn

∣

∣

∣

∣

∣

≤

N−1
∑

n=0

∣

∣hn−ĥn

∣

∣= ‖h−ĥ‖1. (3.3)

Although conservative, (3.3) allows us to compute an upper bound on the frequency

response error without having to compute any DTFT.

Additionally, note that when using a scalar error bound in applications such as

filters where terms are summed together at the output of the MCM block, it is

probably also appropriate for the quantized constants to have the same alignment of

their fractional points. For this reason, in the MRCM problems defined in Chapters 4

and 6, the constants are all required to have the same power-of-two scale factor.

3.2.2 Vector Error Metric

Next, an alternative to having a scalar error metric is to have a vector error metric, ap-

propriate for applications in which each constant has its own rigid error requirements.

Given a constant vector c = (c0, . . . , cN−1), a quantized vector ĉ = (ĉ0, . . . , ĉN−1), and

an error vector ε = (ε0, . . . ,εN−1), a simple case of this might be the requirement

15

that for all n ∈ {0, . . . , N − 1}, |cn − ĉn|≤ εn. Algorithm implementatiosn involving

vector error metrics are more simple, in general, because the error from each constant

can be treated individually.

In addition, note that when using a vector error metric for applications where the

constants can be treated disjointedly after the MCM block, it may be appropriate

to allow each constant to have its own power-of-two scale factor. This allows more

flexibility in the search space of quantized constant vectors, which is demonstrated in

the MRCM problem of Chapter 5.

3.3 General MICM Problem Formulation

In this section, we formally define the MICM problem. To accomplish this task, we

first provide several definitions to catalyze the problem definition. Furthermore, these

definitions are to be used throughout the rest of this dissertation. While some of the

definitions are similar to or the same as those definitions in the related literature (e.g.,

[10,13–22]), we devise the following definitions in a way that lends to our development

of the formal MICM/MRCM problems and associated algorithms that follow.

Definition 3.2 (Fundamentals, F): Let F be the set of all odd positive integers,

referred to as fundamentals [13, 16, 24]. Additionally, let 0 ∈ F as a special case.

Note that we adhere to the traditional approach [18] of limiting integer constants to

positive odd integers. This is without loss of generality, since all integer constants

can be obtained by shifting positive odd constants and adjusting their signs at some

other stage of computation.

Definition 3.3 (Z+): Let Z+ be the set of nonnegative integers, i.e., {0, 1, 2, . . . }.

To facilitate the MICM problem definition, a function is provided for converting any

nonnegative integer into a corresponding fundamental:

Definition 3.4 (Φ(x)): Given a nonnegative integer x ∈ Z
+, the fundamentalization

16

of x, Φ(x) is the unique fundamental that can be obtained by repeatedly dividing x

by 2 until odd. As a special case, let Φ(0) = 0.

For instance, Φ(26) = 13.

Definition 3.5 (A-configuration): Now, let an A-configuration [13] be defined as a

3-tuple (l1, l2, s) ∈ Z
+ × Z

+ × {0, 1}.

Definition 3.6 (A-operation): Then we say that an A-configuration g = (l1, l2, s) in-

duces a corresponding function, termed an A-operation [13] and defined as Ag(u, v) =

Φ(2l1u+ (−1)s2l2v), where u, v ∈ F.

With this definition in mind, anA-operation represents the basic shift and add/subtract

operation used to build up shift-add networks. The parameters l1 and l2 determine the

shifting of the inputs and s determines whether the operation is an addition or sub-

traction. Note that after adding or subtracting, the output is then fundamentalized

as well.

Definition 3.7 (A-relation): Next, in order to encapsulate an instantiation of an A-

operation in a shift-add network with specific input and output signals, an A-relation

is defined as a 4-tuple (u, v,g, w) where u, v, w ∈ F, g is an A-configuration, and

w = Ag(u, v).

Because it allows later definitions to be written much more concisely and clearly, we

devise a special notation here for accessing the A-relation tuple’s members by name.

As an example of this notation, r = (r.u, r.v, r.g, r.w).

In order to represent an entire shift-add network we now define a collection of

A-relations termed an adder tree. To facilitate the definition, we first define the root

A-relation, 1 = (1, 1, (0, 0, 0), 1). The root A-relation simply serves as a placeholder

for the initial input signal of a shift-add network, 1X. Then, an adder tree is a

collection of A-relations rooted at 1, with the property that each A-relation in the

collection has inputs supplied by the outputs of some preceding A-relation.

17

Definition 3.8 (adder tree): More precisely, we define an adder tree to be an ordered

set of A-relations T = {r0, . . . , rM−1}, such that r0 = 1 and for all k ∈ {1,M − 1}

there exists i, j ∈ {0, k − 1} with rk.u = ri.w and rk.v = rj.w.

Definition 3.9 (T): Let T denote the set of all adder trees.

Now, given a set of fundamentals, we want to determine the set of adder trees

that produce all the fundamentals as outputs.

Definition 3.10 (ψ): Given F ⊂ F, an adder tree T = {r0, . . . , rM−1} is a member

of ψ(F) if and only if for all f ∈ F with f 6= 0, there exists an m ∈ {0, . . . ,M − 1}

such that rm.w = f .

In Section 2.1, we presented the MICM problem in a traditional way in order

to facilitate discussion of the related work presented in that chapter. However, us-

ing Definitions 3.2–3.10, the MICM problem can now be more rigorously defined as

follows:

Problem 3.1 — General MICM problem: Given a set of fundamentals F ∈ F,

find an adder tree T ∈ ψ(F) that minimizes cost(T).

Note that Problem 3.1 is a general definition where the particular cost function is not

specified. However, when formulating the precise problem statements of Sections 4.2,

5.2, and 6.2, the cost functions are specified accordingly.

The remaining problems introduced in Chapters 4–6 of this dissertation are defined

in an analogous manner in order to maintain consistency throughout.

3.4 General MRCM Problem Formulation

As in the previous section, we now define the general MRCM problem, foregoing any

particular cost model.

The MRCM problem involves the quantization of the real target constants into

18

finite-bitwidth integers of some maximum bitwidth.

Definition 3.11 (Zb,Rb): With this in mind, for a given bitwidth b, let Zb be the

nonnegative b-bit integers, i.e., Zb = {0, . . . , 2
b− 1}. Also, let Rb be the real numbers

from the same range, specifically the open set Rb = (0, 2b − 1).

To facilitate the MRCM problem formulation, a vector form of the fundamentalization

function is defined:

Definition 3.12 (Φ(x)): Given a vector x ∈ Z
N
b , we define Φ(x) as the set union of

the xi fundamentalized component-wise, i.e., Φ(x) = ∪i∈{0,...,N−1}Φ(xi).

For instance, Φ
(

(4, 18, 0, 26, 8)
)

= {1, 9, 0, 13}.

Using Definitions 3.11 and 3.12, we can now define the general MRCM problem

as follows:

Problem 3.2 — General MRCM problem: Given a vector length N ∈ N, an

ideal constant vector c ∈ R
N
b , some error bound, and a number of bits b ∈ N, find a

finite-bitwidth constant vector ĉ ∈ Z
N
b , and an adder tree T ∈ ψ(Φ(ĉ)) that minimize

cost(T) subject to ĉ satisfying the error bound.

Like Problem 3.1, the cost and error functions are not specified in Problem 3.2 since

it is a general problem statement. The precise MRCM problem statements are to

follow as Problems 4.3, 5.1, and 6.1.

19

Chapter 4

Multiple Real-Constant Multiplication with Adder-Count

Cost Model

4.1 Introduction

In this chapter, we evaluate the MRCM problem’s efficacy when using the traditional

adder-count cost model, that is, simply optimizing the total number of adders. We

compare the MRCM problem using this cost model to the de facto disjointed approach

using the MICM problem.

In particular, for vectors of arbitrary constants, we show that one could achieve

a 20%–60% reduction with less than 10% vector approximation error for both frame-

works, whereas for vectors of low-pass filter coefficients, a 15%–30% reduction is

possible without exceeding 10% error in frequency response. We stress that the re-

sults of our joint framework are not directly comparable with those of the algorithms

of [12, 23, 24, 34–40] discussed in Section 2.2, as the joint framework assumes general

constants, whereas the latter assume FIR filter coefficients.

The outline of this chapter is as follows: First, in Section 4.2, we formulate the

specific MRCM problem using this cost model, leading to a formal problem state-

ment (Problem 4.3). Next, Section 4.3 provides a canonical example that motivates

the rest of the chapter. Then, in Section 4.4 we describe a series of theoretical de-

velopments centered around finitizing and pruning the search space, leading to an

efficient algorithm called Joint Solve for solving the problem, which represents the

main contribution of this chapter. Next, in Section 4.5, we show, through two ex-

20

tensive randomized experiments, that the number of addition/subtraction operations

can be reduced substantially using the joint framework and Joint Solve compared

to a disjointed framework, where the quantization and MICM problems are handled

separately. Finally, Section 4.6 concludes the chapter.

4.2 Problem Formulation

In this section, the MRCM problem using the adder-count cost model is defined.

First, Section 4.2.1 defines the coefficient quantization problem. Next, Section 4.2.2

defines the traditional MICM problem with this cost model. Then, based on this

setup, Section 4.2.3 defines the joint optimization problem.

4.2.1 Constant Quantization Problem and Error Metric

For the MCM problem definitions in this chapter, we use the 1-norm error metric as

defined in Section 3.2.1. With the error metric (3.1) established, we can formally state

the constant quantization problem, which is concerned with quantizing real constants

into fixed-point constants with an acceptable amount of error:

Problem 4.1 — Constant quantization problem: Given a vector length N ∈ N,

an ideal constant vector h ∈ R
N , an error bound ε > 0, and a number of bits

m ∈ {0} ∪N, find a scale factor s ∈ Z and a fixed-point constant vector ĥ ∈ R
N that

minimize ‖h− ĥ‖1 subject to |ĥn| · 2
s ∈ {0, 1, . . . , 2m − 1} for all n ∈ {0, . . . , N − 1}

and ‖h− ĥ‖1 ≤ ε.

Note that the 2s scale factor is simply an indicator of where the fractional point

belongs in the fixed-point constant vector and it does not correspond to any actual

computation. Also, a solution to Problem 4.1 is anm-bit constant vector that satisfies

the error constraint imposed by ε, which may not exist if ε is too restrictive for the

given m, leaving no feasible ĥ vectors.

21

4.2.2 Traditional MICM Problem with Adder-Count Cost Model

Here we formulate the MCM problem in a way that lends itself easily to our joint

problem definition in Section 4.2.3. We consider a variant of the problem that incor-

porates a constraint on the logic depth of the circuit [13, 16]. The traditional MCM

problem formulation considers the shift-add operation to be the most primitive oper-

ation; shifts and additions can be combined as a single operation because shifts are

implemented as simple wires in hardware, and may often be combined with additions

in software instructions. Also, subtractions have essentially the same cost as addi-

tions, so a shift-add operation refers to a single addition/subtraction with possible

shifts before and after. Moreover, we adhere to the traditional approach [18] of limit-

ing integer constants to positive odd integers. This is without loss of generality, since

all integer constants can be obtained by shifting positive odd constants and adjusting

their signs at some other stage of computation. It is from this understanding that

the MCM problem is formed. We borrow terminology (though not exact definitions)

from [13,15] to define the primitive shift-add operation:

Note that much of the problem and algorithm development in this chapter is based

on deprecated terminology that has been replaced in more recent work, because the

research of this chapter comes from an article that has been accepted for publication

[42]. However, to reduce the possibility of introducing errors by rewriting every

definition and developing the algorithm in a completely different manner, we maintain

the same terminology of the journal version in lieu of the more recent terminology

introduced in Chapter 3 and carried on in Chapter 6. As a result, we caution the

reader to be aware of certain terms taking on new definitions in this chapter.

Definition 4.1 (A-configuration): An A-configuration is a 4-tuple, c = (l1, l2, r, t),

where l1, l2, and r are nonnegative integers and t ∈ {0, 1}.

Definition 4.2 (F): Let F be the set of all odd positive integers, referred to as

22

f1 f2

f3

(l1, l2, r, t)

Figure 4.1: Graphical depiction of an A-operation (f1, f2, c, f3) with c = (l1, l2, r, t).

fundamentals.

Definition 4.3 (A-operation): An A-operation is a 4-tuple, (f1, f2, c, f3), where

c = (l1, l2, r, t) is an A-configuration and f1, f2, f3 ∈ F , such that f3 = (2l1f1 +

(−1)t2l2f2)2
−r.

Definition 4.4 (R): Let R be the set of all A-operations.

An A-operation (f1, f2, c, f3) represents an operation induced by an A-configuration

c = (l1, l2, r, t) with two input fundamentals in order to produce one output funda-

mental. The parameters l1 and l2 determine the left-shifting of the inputs f1 and

f2, r determines the right-shifting of the output f3, and t determines whether the

A-operation is an addition or a subtraction. Graphically, an A-operation is depicted

in Figure 4.1. A-operations are the building blocks of adder trees which are defined

next. Let P(S) denote the power set of a set S.

Definition 4.5 (GR′): Given a set of A-operations R′ ∈ P(R), let GR′ = (V,E) be

a directed graph induced by R′ in the following manner:

(i) V = {1}
⋃

(

⋃

(f1,f2,c,f3)∈R′

{f1, f2, f3}
)

and

(ii) E =
⋃

(f1,f2,c,f3)∈R′

{(f1, f3), (f2, f3)}.

For instance, Figure 4.2 depicts such an induced graph. This definition, along with

the one below, allows us to characterize the properties that make an R′ useful for the

MCM problem.

23

R′ =







































1 3

5

(1,0,0,0)

,

5 3

11

(0,1,0,0)







































GR′ =
1 3

5 11

Figure 4.2: Graph GR′ induced by R′ according to Definition 4.5. Since R′ =
{(1, 3, (1, 0, 0, 0), 5), (5, 3, (0, 1, 0, 0), 11)}, GR′ = ({1, 3, 5, 11}, {(1, 5), (3, 5), (5, 11),
(3, 11)}).

Definition 4.6 (Adder tree): A set R′ ∈ P(R) is an adder tree if:

(i) the induced graph GR′ = (V,E) has a basis of {1} [44] (i.e., for every v ∈ V

where v 6= 1, there exists a directed path from 1 to v),

(ii) for all (f1, f2, c, f3) ∈ R′, f3 6= 1, and

(iii) for any two distinct (f1, f2, c, f3), (f
′
1, f

′
2, c
′, f ′3) ∈ R′, f3 6= f ′3.

For example, in Figure 4.2, R′ is not an adder tree because in GR′ there is no directed

path from node 1 to node 3. In contrast, Figure 4.3(a) depicts a legitimate adder

tree. Note that (i)–(iii) in Definition 4.6 ensure that the graph is directed and acyclic,

and that it has a one-to-one correspondence with a shift-add network for an MCM

operation, as shown in Figure 4.3(b).

Having introduced the notion of adder trees, we next define the characteristics

that make an adder tree suitable for the MCM problem.

Definition 4.7 (ψ(F ′)): Given a set of fundamentals F ′ ∈ P(F), let ψ(F ′) be the

set of all adder trees R′ such that the induced graph GR′ = (V,E) satisfies F ′ ⊆ V .

24

1

5

3

(0,2,0,0)

(0,1,0,1)
←→

<< 2

+

−

<< 1

x

4x

2x5x

5x 3x

1x

(a) Depiction of the adder tree R′={(1,1,(0,2,0,0),5),
(5,1,(0,1,0,1),3)}, with repeated fundamentals
shown as the same node.

(b) Shift-add network representing the
MCM computation, x · (3, 5).

Figure 4.3: An adder tree and its corresponding shift-add network. The two structures
have a one-to-one correspondence.

For example, Figure 4.3(a) and Figure 4.4 are both members of ψ({3, 5}). However,

the R′ of Figure 4.3(a) corresponds to more efficient computation than the R′ of

Figure 4.4 because it requires one less shift-add operation. On the other hand, the

two adder trees require the same logic depth in their shift-add networks. Therefore, we

define the following two metrics that characterize the number of shift-add operations

and the logic depth of an adder tree:

Definition 4.8 (Adder tree cost): Given an adder treeR′, define its cost as cost(R′) =

|R′|.

Definition 4.9 (Adder tree depth): Given an adder treeR′, define its depth, depth(R′),

as the length of the longest directed path starting from node 1 in the induced graph

GR′ .

Note that it has been shown that if R′ ∈ ψ(F ′) then depth(R′) ≥ maxf∈F ′⌈log2 S(f)⌉,

where S(f) is the number of nonzero digits in the canonical-signed-digit representation

25

1

3

5

7

(0,1,0,0)

(3,0,0,1)

(0,1,0,1)

Figure 4.4: A suboptimal adder tree for the target fundamentals, {3, 5}. Figure 4.3(a)
shows that the intermediate node 7 is not required.

of f [18].

With the above, we can now precisely define the MCM problem under a delay

constraint:

Problem 4.2 — MICM problem with adder-count cost model: Given a

set of fundamentals F ′ ∈ P(F) and a maximum depth d ∈ {0, 1, . . . ,∞}, d ≥

maxf∈F ′⌈log2 S(f)⌉, find an adder tree R′ ∈ P(R) that minimizes cost(R′) subject to

R′ ∈ ψ(F ′) and depth(R′) ≤ d.

For instance, if F ′ = {3, 5} and d is at least 2, then Figure 4.3(a) shows an optimal

adder tree with a cost of 2, while Figure 4.4 shows a suboptimal adder tree with a cost

of 3. They both have a depth of 2. Note that a solution to Problem 4.2 always exists,

because the given bound on depth(R′) is always achievable for some R′ ∈ ψ(F ′) [18].

Next, to facilitate the conversion of general integer vectors into fundamentals for

use in Problem 4.2, we provide the following definitions from [15]:

Definition 4.10 (GOF(p)): Given a nonnegative integer p, let

GOF(p) =















the greatest odd factor of p, if p > 0,

0, if p = 0.

26

The function GOF(p) divides out all powers of 2 from the factorization of p. For

example, GOF(10) = 5, GOF(16) = 1, and GOF(21) = 21.

Definition 4.11 (fund(p)): Given a vector of integers p = (p0, . . . , pN−1) ∈ Z
N

where N ∈ N, let fund(p) =
(

⋃N−1
n=0 {GOF(|pn|)}

)

\ {0}.

The function fund(p) takes a vector of integers and fundamentalizes it to produce a set

of corresponding fundamentals. For instance, fund
(

(4,−18, 0, 26,−8)
)

= {1, 13, 9}.

4.2.3 MRCM Problem with Adder-Count Cost Model

With Problems 4.1 and 4.2 defined, we now state the joint optimization problem,

where the goal is to find a quantized constant vector and an optimal adder tree

simultaneously.

We formulate the joint problem with adder tree cost as the objective function,

because this choice enables us to easily compare our joint framework against the de

facto disjointed framework based on Problems 4.1 and 4.2.

Problem 4.3 — MRCM problem with adder-count cost model: Given a

vector length N ∈ N, an ideal constant vector h ∈ R
N , an error bound ε > 0, a

number of bits m ∈ {0} ∪ N, and a maximum depth d ∈ {0, 1, . . . ,∞}, find a scale

factor s ∈ Z, a fixed-point constant vector ĥ ∈ R
N , and an adder tree R′ ∈ P(R) that

minimize cost(R′) subject to |ĥn| · 2
s ∈ {0, 1, . . . , 2m − 1} for all n ∈ {0, . . . , N − 1},

‖h− ĥ‖1 ≤ ε, R′ ∈ ψ(fund(ĥ · 2s)), and depth(R′) ≤ d.

Problem 4.3 says that with error, bitwidth, and depth constraints, the constants h are

quantized to ĥ and an adder tree R′ is found for the fundamentals corresponding to ĥ

such that the adder tree cost is minimized. Like in Problem 4.1, the 2s term indicates

where the fractional point is located and does not correspond to actual computation.

Note that since Problem 4.3 incorporates Problem 4.1 as a subproblem, it inherits

the property that a solution may not exist if the error bound is too restrictive for the

27

given number of bits. Additionally, contrary to Problem 4.2, no lower bound can be

established for the constraint on depth, and thus d can be chosen from all nonnegative

integers. Because of this flexibility, it may be possible that no feasible adder tree can

be found that satisfies the depth constraint.

4.3 Canonical Example

To show the benefit of the joint optimization problem, we provide the following exam-

ple, where the joint optimization solution has a lower adder tree cost than the solution

obtained by considering the problems independently. For illustrative purposes, this

single trial, drawn from the randomized experiment to be described in Section 4.5,

was chosen because it demonstrates the benefit of the joint problem framework, while

still being simple enough to be solved ad-hoc.

Let the ideal filter coefficients be given as h = (0.1541, 0.3361, 0.3361, 0.1541),

which correspond to a low-pass filter with a normalized cut-off frequency of approxi-

mately 0.4π. In general, four-tap filters such as these are common in wavelet applica-

tions. Also let ε = 0.1, so the quantized filter coefficients ĥ = (ĥ0, ĥ1, ĥ2, ĥ3) must be

such that ‖h− ĥ‖1 ≤ 0.1. As shown in (3.3), this restriction on ĥ guarantees that

the quantized filter’s frequency response deviates from the ideal one by no more than

0.1 for all frequencies. Both the ideal frequency response H and the ε-boundary lines

are shown in Figure 4.5.

Without using a joint framework, the quantization and the MCM problems would

have to be solved separately. For example, one could first find an optimal quan-

tization according to Problem 4.1, and then find an optimal adder tree according

to Problem 4.2. Using this approach, we first solve Problem 4.1 with the given

h and ε. It can be shown that, for any number of bits, simple rounding of coef-

ficients leads to the quantization with the least 1-norm error. In particular, this

28

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω (x π rad/sample)

M
a
g
n
it
u
d
e

H
H ± ε
Ĥdi sjointed
Ĥjoint

(a) Linear magnitude scale

0 0.2 0.4 0.6 0.8 1

−60

−40

−20

0

ω (x π rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

H
H ± ε
Ĥdi sjointed
Ĥjoint

(b) Logarithmic magnitude scale

Figure 4.5: Frequency responses of the ideal filter H with the ε-boundary lines and
the two quantized filters Ĥdisjointed and Ĥ joint for the example in Section 4.3.

29

1

5

11

(0,2,0,0)

(4,0,0,1)

1

5

(0,2,0,0)

(a) Optimal adder tree when d = ∞ and F ′ =
fund((5, 11, 11, 5) ·25) = {5, 11}. This disjointed
solution requires 2 shift-add operations and has
a depth of 2.

(b) Optimal adder tree when d = ∞ and F ′ =
fund((5, 10, 10, 5) ·25) = {5}. This joint solution
requires 1 shift-add operation and has a depth
of 1.

Figure 4.6: Adder trees for the example in Section 4.3.

property means that the ĥ in this example requires at least four bits in its quan-

tization to satisfy the error constraint of Problem 4.1 because ‖h− ĥ‖1 > ε when

h is rounded to one, two, or three bits. Now, rounding h to four bits, we obtain

m⋆ = 4, s⋆ = 5, and ĥ⋆ = (5, 11, 11, 5)/25, which is a solution to Problem 4.1 be-

cause ‖h− ĥ⋆‖
1 = 0.02 < ε. The frequency response of this disjointed solution ĥ⋆

is denoted as Ĥdisjointed in Figure 4.5. Next, we take these results of the quantiza-

tion problem and solve Problem 4.2. To this end, we fundamentalize ĥ⋆ to obtain

F ′ = fund(ĥ⋆ · 2s
⋆

) = {5, 11} and, for simplicity, we leave the depth unconstrained

with d = ∞. With this setup, it can be shown that a solution is the adder tree

depicted in Figure 4.6(a), which has a cost of 2 shift-add operations.

In comparison, one could solve the two problems simultaneously as defined in

Problem 4.3. This joint problem requires that the number of bits m be specified, so

in this example, we let m = 4 to ensure that the joint solution uses no more bits in its

coefficients than the disjointed one, thus enabling a fair comparison of the two solu-

tions. We again leave the depth unconstrained with d =∞. Using the Joint Solve

algorithm (to be developed in Section 4.4), a solution to Problem 4.3 is found to be

s⋆ = 5, ĥ⋆ = (5, 10, 10, 5)/25 and the adder tree as depicted in Figure 4.6(b) with a

30

cost of 1 shift-add operation. These quantized coefficients satisfy the error constraint

since ‖h− ĥ⋆‖
1 = 0.05 < ε. The frequency response of this joint solution ĥ⋆ is

denoted as Ĥ joint in Figure 4.5.

In the above example, solving the quantization and the MCM problems simulta-

neously leads to an adder tree that has 50% lower adder tree cost than that of the dis-

jointed solution. This canonical example illustrates the characteristics that make the

joint optimization problem beneficial: it allows one to assume extra coefficient error

(within tolerances) in exchange for a reduction in adder tree cost. For additional com-

parison, the two filters obtained above are synthesized into Field-Programmable Gate

Array (FPGA) schematics using the Xilinx ISE Design Suite [45] and the screenshots

of these schematics are provided in Figure 4.7. Observe that the disjointed solution’s

filter requires more hardware real-estate than the joint solution’s filter, indicating

that adder tree cost does correlate with circuit area and is, therefore, a useful metric

in this respect.

It follows from the above canonical example that there could be tremendous benefit

to solving the quantization and MCM problems jointly. This provides the motiva-

tion to develop an algorithm that could realize those benefits by efficiently solving

Problem 4.3, which is described next.

4.4 Proposed Algorithm

In this section, we develop an algorithm, Joint Solve, which solves the joint opti-

mization problem, Problem 4.3. Section 4.4.1 outlines the basic strategy utilized in

the algorithm. Building upon this strategy, Sections 4.4.2 and 4.4.3 detail methods to

finitize the search space and find a feasible solution. Section 4.4.4 describes methods

for further pruning to make the algorithm more efficient. Last, Section 4.4.5 points

out the limitations of the algorithm in practice.

31

(a) Using the disjointed solution coefficients, (5, 11, 11, 5).

(b) Using the joint solution coefficients, (5, 10, 10, 5).

Figure 4.7: Screenshots of FPGA technology schematics generated using the filter
architecture of Figure 2.1 and the coefficients obtained from the two solutions in
Section 4.3.

32

4.4.1 Basic Strategy

Let N ∈ N, h ∈ R
N , ε > 0, m ∈ {0}∪N, and d ∈ {0, 1, . . . ,∞} be given according

to Problem 4.3. For convenience, let the optimization variables s ∈ Z, ĥ ∈ R
N , and

R′ ∈ P(R) be written as (s, ĥ, R′) and referred to as a triplet. A triplet (s, ĥ, R′) is

said to be feasible if it satisfies all of the constraints in Problem 4.3, which are:

|ĥn| · 2
s ∈ {0, 1, . . . , 2m − 1} ∀n ∈ {0, . . . , N − 1}, (4.1a)

‖h− ĥ‖1 ≤ ε, (4.1b)

R′ ∈ ψ(fund(ĥ · 2s)), and (4.1c)

depth(R′) ≤ d. (4.1d)

Furthermore, a feasible triplet (s, ĥ, R′) is said to be a solution of Problem 4.3 if it

minimizes the cost function, cost(R′). A basic algorithmic strategy to solve Prob-

lem 4.3 is to exhaustively search every triplet, checking each for feasibility, and then

return one that minimizes cost. Such an algorithm is included as Algorithm 4.1.

However, since the triplets live in the infinite set Z× R
N ×P(R), it is impossible to

search every triplet in finite time. To overcome this issue, we finitize the search space

next.

4.4.2 Finitizing the (s, ĥ) Search Space

Out of the four constraints (4.1a)–(4.1d), constraints (4.1a) and (4.1b) involve only

the pair (s, ĥ). In this subsection, we show that these two constraints alone force the

feasible pairs to lie within a finite, albeit large, set, so that the search space for (s, ĥ)

can be made finite without loss of optimality.

Before deriving this finite search space, we address two special cases that are best

handled separately. First, consider the case where ε ≥ ‖h‖1. In this situation,

33

Algorithm 4.1 Infinite Solve

procedure Infinite Solve (N,h,ε,m, d)
(s⋆, ĥ⋆, R′⋆)← null

cost⋆ ←∞
for all s ∈ Z do

for all ĥ ∈ R
N do

for all R′ ∈ P(R) do

if



































|ĥn| · 2
s ∈ {0, 1, . . . , 2m − 1}

∀n ∈ {0, . . . , N − 1},
∥

∥

h− ĥ
∥

∥

1 ≤ ε,

R′ ∈ ψ(fund(ĥ · 2s)), and

depth(R′) ≤ d



































then

if cost(R′) < cost⋆ then

(s⋆, ĥ⋆, R′⋆)← (s, ĥ, R′)
cost⋆ ← cost(R′)

end if

end if

end for

end for

end for

return (s⋆, ĥ⋆, R′⋆)
end procedure

(s,0,∅) for any s ∈ Z is a (trivial) solution, where 0 = (0, . . . , 0) ∈ R
N and ∅

denotes the empty set. This is because if the error bound is too large, then even the

trivial all-zero constant vector satisfies the error constraint (4.1b). Moreover, the rest

of the constraints are satisfied and the cost is optimal, because R′ = ∅ has zero cost

(it requires no shift-add network at all). Next, consider the case where m = 0. In

this situation, constraint (4.1a) necessitates that ĥ = 0. It follows that (s,0,∅) for

any s ∈ Z is a solution if ε ≥ ‖h‖1, and no solution exists otherwise. In the sequel,

we exclude these two special cases by assuming, from here onward, that

ε < ‖h‖1 and (4.2)

m > 0. (4.3)

Notice that for each fixed s ∈ Z, there is only a finite number of ĥ vectors satisfying

34

(4.1a), and that this number may decrease if ĥ is also required to satisfy (4.1b). Thus,

if we can show that for sufficiently small s and for sufficiently large s, the set of ĥ

satisfying (4.1a) and (4.1b) is empty, then we would have established that the set of

(s, ĥ) pairs satisfying (4.1a) and (4.1b) is finite. The proposition below does just that

and provides closed-form expressions for a sufficiently small and a sufficiently large s.

In the proposition and its proof, ‖x‖1 =
∑N−1

i=0 |xi| and ‖x‖∞ = maxi∈{0,...,N−1} |xi|

denote, respectively, the 1-norm and ∞-norm of x = (x0, . . . , xN−1) ∈ R
N .

Proposition 4.1. Let N ∈ N, h ∈ R
N , ε > 0, and m ∈ {0}∪N be given and suppose

(4.2) and (4.3) hold. Let

s =
⌈

− log2
(

‖h‖∞ + ε
)⌉

and (4.4)

s =

⌊

log2
N(2m − 1)

max
{

‖h‖1 − ε, N
(

‖h‖∞ − ε
)}

⌋

. (4.5)

Then, for any s ∈ Z, if s < s or s > s, the set of ĥ satisfying (4.1a) and (4.1b) is

empty.

Proof. First, suppose s < s. Because s must be an integer and because of (4.4),

s ≤ s− 1 < − log2
(

‖h‖∞ + ε
)

. Simplifying, we obtain

1

2s
> ‖h‖∞ + ε. (4.6)

Next, assume there exists an ĥ ∈ R
N such that (4.1a) and (4.1b) hold. Due to (4.1b)

and (4.2), ĥ 6= 0. This fact can be combined with (4.1a) to show that

‖ ĥ‖∞ = maxi∈{0,...,N−1} |ĥi| ≥
1

2s
. (4.7)

35

Combining (4.6) and (4.7), we obtain

‖ ĥ‖∞ − ‖h‖∞ > ε. (4.8)

The reverse triangle inequality says that

‖ ĥ− h‖∞ ≥ ‖ ĥ‖∞ − ‖h‖∞. (4.9)

Furthermore, it is known that the 1-norm and ∞-norm satisfy

‖ ĥ− h‖1 ≥ ‖ ĥ− h‖∞. (4.10)

Combining (4.8)–(4.10), we obtain ‖ ĥ− h‖1 > ε, contradicting (4.1b). Thus, if

s < s, the set of ĥ satisfying (4.1a) and (4.1b) is empty.

Second, suppose s > s where s is given in (4.5), which is well-defined due to (4.2)

and (4.3). Since s must be an integer,

s ≥ s+ 1 > log2
N(2m − 1)

max
{

‖h‖1 − ε, N
(

‖h‖∞ − ε
)} . (4.11)

Now, suppose there exists an ĥ ∈ R
N such that (4.1a) and (4.1b) hold. Then, (4.1a)

implies that

‖ ĥ‖∞ = maxi∈{0,...,N−1} |ĥi| ≤
2m − 1

2s
. (4.12)

Consider the following two cases:

Case 1: ‖h‖1−ε ≥ N(‖h‖∞−ε). In this case, (4.11) becomes s > log2
N(2m−1)

‖h‖1−ε
.

It follows that

N(2m − 1)

2s
< ‖h‖1 − ε. (4.13)

36

Furthermore, the 1-norm and ∞-norm are known to satisfy

‖ ĥ‖1 ≤ N‖ ĥ‖∞. (4.14)

Combining (4.12)–(4.14), we obtain ‖ ĥ‖1 ≤
N(2m−1)

2s
< ‖h‖1 − ε, and thus ε <

‖h‖1 − ‖ ĥ‖1. Using the reverse triangle inequality, we have ε < ‖h‖1 − ‖ ĥ‖1 ≤

‖h− ĥ‖1, contradicting (4.1b).

Case 2: ‖h‖1−ε < N(‖h‖∞−ε). In this case, (4.11) becomes s > log2
N(2m−1)

N

(

‖h‖∞−ε
) .

It follows that

ε+
2m − 1

2s
< ‖h‖∞. (4.15)

Combining (4.12) and (4.15), we obtain ε + 2m−1
2s

< ‖h‖∞ ≤
2m−1
2s

, implying that

ε < 0, contradicting the fact that ε > 0.

Hence, if s > s, the set of ĥ satisfying (4.1a) and (4.1b) is empty.

Proposition 4.1 has two implications:

(i) If s > s, then there are no (s, ĥ) pairs satisfying (4.1a) and (4.1b), so that

Problem 4.3 is infeasible; and

(ii) if s ≤ s, then any (s, ĥ) pair satisfying (4.1a) and (4.1b) must also satisfy

s ∈ {s, . . . , s}. (4.16)

Since case (i) is of limited interest, in the sequel we focus on case (ii). Note that for

this case, given a particular s from (4.16), the set of ĥ satisfying (4.1a) and (4.1b)

can be expressed as

ĥ ∈
{

−(2m−1)
2s

, . . . , 2
m−1
2s

}N
⋂

{

x ∈ R
N : ‖h− x‖1 ≤ ε

}

. (4.17)

37

Together, the s from (4.16) paired with the ĥ from (4.17) form the finite (s, ĥ) search

space.

Although (4.16) and (4.17) completely characterize the finite (s, ĥ) search space,

they do not prescribe an efficient means of enumerating the space. To see this, note

that a simple way to loop through the space is

for s = s to s do

for ĥ0 =
−(2m − 1)

2s
to

2m − 1

2s
do

...

for ĥN−1 =
−(2m − 1)

2s
to

2m − 1

2s
do

if ‖h− ĥ‖1 ≤ ε then

...

(4.18)

where the constraints (4.1a) and (4.1b) are handled independently. While possible,

this looping scheme may be very inefficient because it does not leverage the fact that

(4.1a) and (4.1b) can be handled simultaneously at each level of the nested loops, i.e.,

for s = s to s do

for ĥ0 =
α0

2s
to

β0

2s
do

...

for ĥN−1 =
αN−1

2s
to

βN−1

2s
do

...

(4.19)

where for all n ∈ {0, . . . , N − 1}, αn and βn are integers defining the limits of the

loops. If all of the αn’s and βn’s are defined properly (in a manner dependent on

ĥ0, . . . , ĥn−1), then (4.1a) and (4.1b) will be implicitly satisfied at each level of the

nested loops, thus removing the inefficiencies associated with the simple loop structure

of Line 6. The αn’s and βn’s that achieve this goal are now derived.

Suppose s has been assigned in the outermost loop of Line 5. Observe from (3.1)

38

that the total 1-norm error ‖h− ĥ‖1 is obtained by summing all of the individual

constant errors. Also observe that for each n ∈ {0, . . . , N −1}, the minimum possible

error of ĥn satisfying (4.1a), denoted by ξn, is

ξn = min
x∈{−(2m−1),...,2m−1}

∣

∣

∣
hn −

x

2s

∣

∣

∣
. (4.20)

Note that the ξn’s need only be calculated once for each s.

Using these ξn’s, we may recursively derive the individual error tolerances of

ĥ0, . . . , ĥN−1, denoted as ε0, . . . ,εN−1. The quantity ε0 is given by the total error

tolerance ε minus the minimum possible error incurred by ĥ1, . . . , ĥN−1, i.e.,

ε0 = ε−
N−1
∑

i=1

ξi. (4.21)

To compute ε1, . . . ,εN−1, suppose we are at the loop level where ĥn is to be as-

signed. For this ĥn, the quantity εn is given by the total error tolerance ε minus

the error incurred by the assigned constants ĥ0, . . . , ĥn−1 and the minimum possi-

ble error incurred by the unassigned constants ĥn+1, . . . , ĥN−1. For example, ε1 =

ε−|h0−ĥ0|−
∑N−1

i=2 ξi which, due to (4.21), can be rewritten as ε1 = ε0−|h0−ĥ0|+ξ1.

Likewise, ε2 = ε−
∑1

i=0 |hi−ĥi|−
∑N−1

i=3 ξi = ε1−|h1−ĥ1|+ξ2, and so on. Therefore,

for each n ∈ {1, . . . , N − 1}, the quantity εn may be computed recursively as

εn+1 = εn − |hn − ĥn|+ ξn+1. (4.22)

With (4.21) and (4.22), we can establish the exact αn and βn limits that guarantee

the satisfaction of (4.17). Since each ĥn must satisfy (4.1a) and lie in the interval

[hn − εn, hn + εn], we arrive at the limits

αn = ⌈max{−(2m − 1), (hn − εn)2s}⌉ and (4.23)

39

βn = ⌊min{(hn + εn)2s, 2m − 1}⌋. (4.24)

Note that if αn > βn for some n ∈ {0, . . . , N − 1}, then there is no ĥn and, thus, no

ĥ satisfying (4.1a) and (4.1b) with the given s, causing the particular loop level to

terminate.

In summary, executing Line 5 with the αn’s and βn’s given by (4.23) and (4.24)

allows us to enumerate the established (s, ĥ) search space efficiently without ever

visiting any pairs outside the space.

4.4.3 Applying Hcub to the R
′ Search Space

In Section 4.4.2, we focused on constraints (4.1a) and (4.1b) and derived the set of

(s, ĥ) pairs satisfying them. In this subsection, we assume that a pair (s, ĥ) satisfying

(4.1a) and (4.1b) is given, and focus on the remaining optimization variable R′ ∈

P(R), which must satisfy constraints (4.1c) and (4.1d). Unlike Section 4.4.2, however,

the R′ search space cannot be made finite by these two constraints in general, because

if there is one adder tree R′ satisfying (4.1c) and (4.1d) with nonzero depth, then there

are infinitely many other adder trees that can be built from R′ that also satisfy (4.1c)

and (4.1d). Fortunately, we may alleviate this issue in the following manner. Note

that with s and ĥ fixed, Problem 4.3 reduces to the MCM problem, i.e., Problem 4.2

with F ′ = fund(ĥ ·2s), which can be solved using currently available algorithms (e.g.,

[10,13–17,19–22]). Although multiple choices exist, here we adopt the Hcub algorithm

of [13] since it is well-established as a viable MCM solver—see [17,21]—and since the

full source code is publicly available [46].

In its simplest form, Hcub takes a set of input fundamentals and a maximum depth

and returns an approximate solution to Problem 4.2. The returned adder tree is an

approximate solution because Hcub is a heuristic. For the purpose of solving the MCM

part of Problem 4.3, we invoke Hcub as follows:

40

R′ ← Hcub(fund(ĥ · 2
s), d).

With Hcub, the returned adder tree R′ is guaranteed to satisfy (4.1c), but it does not

always satisfy the depth constraint (4.1d). Indeed, Hcub is implemented so as to find

an adder tree with depth not exceeding d, but when it cannot, Hcub still returns an

adder tree with nearly minimal depth (see [46] for more details). As a result, the

satisfaction of (4.1d) must be verified for the returned adder tree. This behavior also

means that calling Hcub with d = 0 leads to a near-minimal-depth solution.

Combining the (s, ĥ) search space of Section 4.4.2 with the use of Hcub in this

subsection, we have established a finite (s, ĥ, R′) search space along with an efficient

looping scheme, given in Line 5. Together, these can be used to transform the infinite-

length algorithm of Algorithm 4.1 with the finite one in Algorithm 4.2.

Algorithm 4.2 Finite Solve

procedure Finite Solve (N,h,ε,m, d)
if ε ≥ ‖h‖1 then ⊲ first special case

return (0,0,∅)
end if

if m = 0 then ⊲ second special case, no solution
return null

end if

(s⋆, ĥ⋆, R′⋆)← null

cost⋆ ←∞

for s =
⌈

− log2
(

‖h‖∞ + ε
)⌉

to

⌊

log2
N(2m−1)

max
{

‖h‖1−ε,N
(

‖h‖
∞

−ε
)}

⌋

do ⊲ from (4.4) and (4.5)

for n = 0 to N − 1 do

ξn ← minx∈{−(2m−1),...,2m−1}

∣

∣hn −
x
2s

∣

∣ ⊲ from (4.20)
end for

ε0 ← ε−
∑N−1

i=1 ξi ⊲ from (4.21)

for ĥ0 =

⌈

max{−(2m−1),(h0−ε0)2s}
⌉

2s
to

⌊

min{(h0+ε0)2s,2m−1}
⌋

2s
do ⊲ from (4.23) and (4.24)

n
es
te
d
lo
o
p
s:

n
∈
{
1
,
.
.
.
,
N
−

1
}

{
.
.
.
εn ← εn−1 − |hn−1 − ĥn−1|+ ξn ⊲ from (4.22)

for ĥn =

⌈

max{−(2m−1),(hn−εn)2s}
⌉

2s
to

⌊

min{(hn+εn)2s,2m−1}
⌋

2s
do ⊲ from (4.23) and (4.24).

.
.

R′ ← Hcub(fund(ĥ · 2
s), d)

if depth(R′) ≤ d then ⊲ must check Hcub output’s depth
if cost(R′) < cost⋆ then

(s⋆, ĥ⋆, R′⋆)← (s, ĥ, R′)
cost⋆ ← cost(R′)

end if

end if

end for

end for

end for

return (s⋆, ĥ⋆, R′⋆)
end procedure

41

4.4.4 Further Pruning the (s, ĥ,R′) Search Space

As it turns out, further pruning of the (s, ĥ, R′) search space is possible. In this

subsection, we discuss five pruning strategies that further reduce this search space

for efficient implementation of our Joint Solve algorithm. These strategies are de-

veloped to leverage cases where it is deduced that a triplet will be either infeasible,

non-optimal, or redundant. To facilitate their development, suppose that (s⋆, ĥ⋆, R′⋆)

is a solution to Problem 4.3. With this in mind, the pruning strategies can be de-

scribed as follows:

(a) Removing smaller approximations : Observe that if a solution exists where all the

constants are represented using strictly less than m bits, then another solution

exists that uses all m bits in its representation, so we can disregard the former.

The following proposition formalizes this claim:

Proposition 4.2. If ‖ ĥ⋆‖
∞ · 2

s⋆ < 2m−1, then there exists another solution

(s⋆⋆, ĥ⋆⋆, R′⋆⋆) to Problem 4.3, where ‖ ĥ⋆⋆‖
∞ · 2

s⋆⋆ ≥ 2m−1.

Proof. Let s⋆⋆ = m− 1−
⌊

log2 ‖ ĥ
⋆‖
∞

⌋

, ĥ⋆⋆ = ĥ⋆, and R′⋆⋆ = R′⋆. Then,

‖ ĥ⋆⋆‖
∞ · 2

s⋆⋆ = ‖ ĥ⋆⋆‖
∞ · 2

m−1−

⌊

log2 ‖ ĥ⋆⋆‖
∞

⌋

= 2m−1−
⌊

log2 ‖ ĥ⋆⋆‖
∞

⌋

+log2 ‖ ĥ⋆⋆‖
∞ (4.25)

≥ 2m−1. (4.26)

Next, we show that (s⋆⋆, ĥ⋆⋆, R′⋆⋆), derived from the solution (s⋆, ĥ⋆, R′⋆), is also

a solution. First, since ĥ⋆⋆ = ĥ⋆ and R′⋆⋆ = R′⋆, (4.1b) and (4.1d) hold. Second,

(4.26) shows that s⋆⋆ > s⋆, since ‖ ĥ⋆⋆‖
∞ · 2

s⋆⋆ ≥ 2m−1 > ‖ ĥ⋆‖
∞ · 2

s⋆ . Therefore,

the quantity to be fundamentalized in (4.1c), ĥ⋆⋆ ·2s
⋆⋆

, is simply ĥ⋆ ·2s
⋆

multiplied

by a power of 2, so the corresponding fundamentals remain unchanged and (4.1c)

42

is satisfied. Last, (4.25) implies that ‖ ĥ⋆⋆‖
∞ · 2

s⋆⋆ < 2m, suggesting that (4.1a)

holds. Since (4.1a)–(4.1d) hold and cost(R′⋆⋆) = cost(R′⋆), (s⋆⋆, ĥ⋆⋆, R′⋆⋆) is

another solution to Problem 4.3.

Since we are interested in any solution to Problem 4.3, Proposition 4.2 implies

that we need not consider any pair (s, ĥ) for which ‖ ĥ‖∞ · 2
s < 2m−1, leading to

a pruning of the (s, ĥ) search space. To implement the pruning, we introduce the

additional constraint ‖ ĥ‖∞·2
s ≥ 2m−1, which translates to s ≥ log2

2m−1

‖ ĥ‖∞
. Due to

the triangle inequality, (4.10), and (4.1b), we have ‖ ĥ‖∞ ≤ ‖h− ĥ‖∞+‖h‖∞ ≤

‖h‖∞ + ε. Consequently, s ≥ log2
2m−1

‖h‖∞+ε
, so we can prune the s search space

in (4.16) by replacing (4.4) with the tighter limit

s = m− 1 +
⌈

− log2
(

‖h‖∞ + ε
)⌉

.

(b) Matching constant signs : Each approximating constant ĥn can be restricted to

having the same sign as the corresponding ideal constant hn without loss of

optimality. The following proposition formalizes the claim, where sgn(x) = 1

if x > 0, −1 if x < 0, and 0 if x = 0:

Proposition 4.3. If there exists an n ∈ {0, . . . , N − 1} such that hn 6= 0, ĥ⋆
n 6=

0, and sgn(ĥ⋆
n) 6= sgn(hn), then there exists another solution (s⋆⋆, ĥ⋆⋆, R′⋆⋆) to

Problem 4.3, where sgn(ĥ⋆⋆
n) = sgn(hn).

Proof. Let ĥ⋆⋆ = ĥ⋆, but with ĥ⋆⋆
n = −ĥ⋆

n. Then, sgn(ĥ⋆⋆
n) = sgn(hn). Also,

let s⋆⋆ = s⋆ and R′⋆⋆ = R′⋆. We now show that (s⋆⋆, ĥ⋆⋆, R′⋆⋆), derived from

the solution (s⋆, ĥ⋆, R′⋆), is also a solution. First, (4.1d) holds and cost(R′⋆⋆) =

cost(R′⋆), because R′⋆⋆ = R′⋆. Next, (4.1a) and (4.1c) hold because they only

involve the magnitudes of the constants, all of which remain unchanged by the

definition of ĥ⋆⋆. Last, ‖h− ĥ⋆⋆‖
1 < ‖h− ĥ⋆‖

1 since the sign of ĥ⋆⋆
n was made

43

to match that of hn, so (4.1b) is also satisfied. It follows that (s⋆⋆, ĥ⋆⋆, R′⋆⋆) is

another solution to Problem 4.3.

Proposition 4.3 says that all the signs of ĥ can be forced to match those of

h without loss of optimality. Therefore, (4.1a) can be replaced by the more

restrictive constraint

ĥn ·2
s ∈ {0 · sgn(hn), 1 · sgn(hn), . . . , (2

m−1) · sgn(hn)} ∀n ∈ {0, . . . , N −1},

(4.27)

thereby pruning the (s, ĥ) search space. This new constraint (4.27) can be taken

into account by replacing the looping scheme Line 5 with

for s = s to s do

for ĥ0 =
α0·sgn(h0)

2s
to β0·sgn(h0)

2s
do

...

for ĥN−1 =
αN−1·sgn(hN−1)

2s
to βN−1·sgn(hN−1)

2s
do

...

(4.28)

and replacing the calculations of ξn, αn, and βn in (4.20), (4.23), and (4.24) with

ξn = min
x∈{0,...,2m−1}

∣

∣

∣
|hn| −

x

2s

∣

∣

∣
,

αn = ⌈max{0, (|hn| − εn)2s}⌉, and

βn = ⌊min{(|hn|+ εn)2s, 2m − 1}⌋,

respectively. Note that the recursive calculations of εn in (4.21) and (4.22) are

unaffected. With the above changes in place, the algorithm treats all hn’s and ĥn’s

as nonnegative for the individual error tolerance calculations and then imposes

the proper signs in Line 4.

44

(c) Mirroring duplicate constants : When an ideal constant vector h has duplicate

components (in magnitude), the approximation ĥ should have the same compo-

nents duplicated. The following proposition formalizes the claim:

Proposition 4.4. If there exist n0, n1 ∈ {0, . . . , N−1} such that |hn0 | = |hn1 | but

|ĥ⋆
n0
| 6= |ĥ⋆

n1
|, then there exists another solution (s⋆⋆, ĥ⋆⋆, R′⋆⋆) where |ĥ⋆⋆

n0
| = |ĥ⋆⋆

n1
|.

Proof. Without loss of generality, suppose n0 and n1 are such that |hn0 − ĥ⋆
n0
| ≤

|hn1 − ĥ⋆
n1
|. Let ĥ⋆⋆ = ĥ⋆, but with ĥ⋆⋆

n1
= ĥ⋆

n0
if hn0 = hn1 , and ĥ⋆⋆

n1
= −ĥ⋆

n0

otherwise. Then, |ĥ⋆⋆
n0
| = |ĥ⋆⋆

n1
|. Also, let s⋆⋆ = s⋆ and R′⋆⋆ = R′⋆. We now show

that (s⋆⋆, ĥ⋆⋆, R′⋆⋆) is a solution as well. Clearly, (4.1d) holds and cost(R′⋆⋆) =

cost(R′⋆). To establish (4.1b), note that if hn0 = hn1 , we have |ĥ⋆⋆
n1
− hn1 | =

|ĥ⋆
n0
−hn0 | ≤ |hn1− ĥ⋆

n1
|. If hn0 6= hn1 so that hn0 = −hn1 , we have the exact same

inequality. Since ĥ⋆⋆ = ĥ⋆ except for the n1-th component, (4.1b) is satisfied.

Last, (4.1a) and (4.1c) still hold because no additional constants (magnitudes)

are introduced by the definition of ĥ⋆⋆. Consequently, (s⋆⋆, ĥ⋆⋆, R′⋆⋆) is another

solution to Problem 4.3.

Proposition 4.4 says that we need not consider any ĥ where the duplicate

components from h are not matched properly. Accordingly, we prune the ĥ

search space by bypassing the search loop for a particular ĥn when it is forced to

match and replacing the loop with a simple assignment instead (see lines 2–13 of

Algorithm 4.3).

(d) Utilizing lower bounds from [18] : It is conceivable that, before reaching the in-

nermost loop of Line 5, the number of unique fundamentals corresponding to

the assigned ĥn’s might grow so large as to eliminate the possibility of having a

feasible or cost-optimal adder tree, thereby eliminating the need to execute the

inner nested loops. Indeed, in [18] Gustafsson establishes lower bounds on the

45

cost and depth of adder trees associated with a given set of fundamentals. The

results can be summarized as follows:

Given a fundamental f ∈ F , let S(f) denote the number of nonzero digits in

the canonical-signed-digit representation of f . Also, given two positive integers

x1, x2 with x1 ≤ x2, let

E(x1, x2) =















1, x1 = x2,
⌈

log2
x2

x1

⌉

, x1 < x2.

Using these two functions along with (6) and (18) of [18], such lower bounds can

be computed. Let F ′ = {f1, f2, . . . , fM} ⊂ F be a set of fundamentals that are

ordered by increasing S(fi). Then, the lower bounds from [18] on the cost and

depth of any adder tree that produces F ′ are given by, respectively,

costLB(F
′) = ⌈log2 S(f1)⌉+

M−1
∑

i=1

E(S(fi), S(fi+1))

and

depthLB(F
′) = max

i
⌈log2 S(fi)⌉

These lower bounds lead to the following pruning opportunity: Suppose cost⋆

denotes the minimum adder tree cost of all feasible (s, ĥ, R′) triplets encountered

thus far. Also, suppose we are at the loop level where ĥn has just been assigned

for some n ∈ {0, . . . , N − 1}. Then, if the assigned constants ĥ0, . . . , ĥn having

fundamentals F ′ = fund((ĥ0, . . . , ĥn) · 2
s) are such that costLB(F

′) ≥ cost⋆ or

depthLB(F
′) > d, we can prune the search space by terminating the current loop

level.

(e) Pruning Hcub: The algorithm Hcub, obtained from [46] and described in Sec-

46

tion 4.4.3, always returns an adder tree R′ satisfying (4.1c), but it does not guar-

antee that (4.1d) holds. Furthermore, it runs to completion, even when there is

no way to beat the minimum adder tree cost found so far. Therefore, we have

modified Hcub to take an additional parameter and to operate more efficiently. In

particular, given a set of input fundamentals, a maximum depth, and a maximum

cost, this modified algorithm returns an adder tree in the same manner as Hcub,

but is pruned so as to terminate immediately if either the maximum depth or

cost is surpassed. We call this modified algorithm Hcub Pruned. Supposing

cost⋆ is the minimum adder tree cost of all feasible (s, ĥ, R′) triplets encountered

thus far, we invoke the algorithm for a particular (s, ĥ) pair as:

(R′, valid)← Hcub Pruned(fund(ĥ · 2s), d, cost⋆),

where valid = true if the returned R′ satisfies (4.1d) and cost(R′) < cost⋆. Oth-

erwise, valid = false, implying that Hcub Pruned is terminated prematurely

due to exceeding the depth or cost limits.

Altogether, we incorporate the five pruning strategies (a)–(e) described above into

the search loop enumerating the finite (s, ĥ, R′) search space derived in Sections 4.4.2

and 4.4.3. In doing so, we obtain the proposed Joint Solve algorithm of Algo-

rithm 4.3 (along with the sub-procedures of Algorithm 4.4 that it calls) for solving

Problem 4.3. Note that Joint Solve accepts all of the parameters of Problem 4.3

and returns a near-optimal triplet (s, ĥ, R′), or null if no feasible triplet is found.

Also, although Algorithm 4.3 contains pseudocode to illustrate the structural flow of

Joint Solve, an actual implementation should include proper data structures for

optimal array access and should reuse computational results when possible.

47

Algorithm 4.3 Joint Solve

procedure (s⋆, ĥ⋆, R′⋆) = Joint Solve (N,h,ε,m, d)
if ε ≥ ‖h‖1 then ⊲ first special case

return (0,0,∅)
end if

if m = 0 then ⊲ second special case, no solution
return null

end if

(s⋆, ĥ⋆, R′⋆)← null

cost⋆ ←∞

for











s = m− 1 +
⌈

− log2
(

‖h‖∞ + ε
)⌉

to

⌊

log2
N(2m−1)

max
{

‖h‖1−ε,N
(

‖h‖∞−ε
)}

⌋











do ⊲
from (4.4) and (4.5),
pruned by 4.4.4(a)

for n = 1 to N − 1 do

ξn ← minx∈{0,...,2m−1}
∣

∣|hn| −
x
2s

∣

∣ ⊲ from (4.20), pruned by 4.4.4(b)
end for

ε0 ← ε−
∑N−1

i=1 ξi ⊲ from (4.21)

funds ← ∅

Recurse(0, 0, 0) ⊲ recursively execute nested loops
if cost⋆ = 0 then

break

end if

end for

return (s⋆, ĥ⋆, R′⋆)
end procedure

4.4.5 Limitations

With the Joint Solve algorithm completely defined, we now discuss its limitations

in practice. First, as mentioned in Section 4.2.3, Problem 4.3 does not always have a

solution due to the depth and error constraints. If the constraints (4.1a) and (4.1b)

taken alone preclude feasible (s, ĥ) pairs from existing, then the (s, ĥ) search space

derived in Section 4.4.2 is empty and the algorithm will terminate quickly. Otherwise,

Hcub Pruned would have to be executed for each pair in the (s, ĥ) search space to

determine if an (s, ĥ, R′) triplet satisfying the additional constraints (4.1c) and (4.1d)

exists.

This observation leads to the second limitation. That is, Hcub, in general, is

a heuristic that does not always find an adder tree satisfying depth(R′) ≤ d even

48

Algorithm 4.4 Procedures called by Joint Solve

1: procedure Recurse (n, prevCostLB, prevDepthLB)
2: if ∃i ∈ {0, . . . , n− 1} such that |hn| = |hi| then ⊲ pruning by 4.4.4(c) to bypass loop

3: ĥn ← |ĥi| · sgn(hn)

4: if ĥn < hn − εn or ĥn > hn + εn then ⊲ still should check within error bounds
5: return

6: end if

7: if n = N − 1 then

8: Check If Better()
9: else

10: εn+1 ← εn − |hn − ĥn|+ ξn+1 ⊲ from (4.22)
11: Recurse(n+ 1, prevCostLB, prevDepthLB)
12: end if

13: else

14: for

{

ĥn = ⌈max{0,(|hn|−εn)2
s}⌉·sgn(hn)

2s

to
⌊min{(|hn|+εn)2

s,2m−1}⌋·sgn(hn)
2s

}

do ⊲
from Line 5 and (4.23) and (4.24),
pruned by 4.4.4(b)†

15: g ← GOF(|ĥn| · 2
s)

16: if g ∈ funds ∪ {0} then ⊲ nonunique fundamental
17: if n = N − 1 then

18: Check If Better()
19: else

20: εn+1 ← εn − |hn − ĥn|+ ξn+1 ⊲ from (4.22)
21: Recurse(n+ 1, prevCostLB, prevDepthLB)
22: end if

23: else

24: funds ← funds ∪ {g}

25: if costLB(funds) < cost⋆ and depthLB(funds) ≤ d then ⊲
pruning by 4.4.4(d)
to skip current

26: if n = N − 1 then

27: Check If Better()
28: else

29: εn+1 ← εn − |hn − ĥn|+ ξn+1 ⊲ from (4.22)
30: Recurse(n+ 1, costLB(funds), depthLB(funds))
31: end if

32: funds ← funds \ {g}
33: end if

34: end if

35: end for

36: end if

37: end procedure

†The loop steps by increments of sgn(hn)/2
s in line 14.

1: procedure Check If Better ()
2: (R′, valid)← Hcub Pruned(funds, d, cost⋆) ⊲ Hcub pruned by 4.4.4(e)
3: if valid then

4: (s⋆, ĥ⋆, R′⋆)← (s, ĥ, R′)
5: cost⋆ ← cost(R′)
6: end if

7: end procedure

49

if one exists, nor does it guarantee any returned adder tree is optimal in terms of

cost. On the other hand, analysis of Hcub in [13] shows that these two situations

occur infrequently. Nevertheless, Joint Solve inherits these limitations and, thus,

it cannot always find a feasible triplet even if one exists, and a returned triplet may

not be optimal. However, the algorithm does guarantee that any returned triplet is

indeed a feasible triplet of Problem 4.3.

Next, we acknowledge that the asymptotic complexity of Joint Solve is large,

being exponential in both the number of bits m and the vector length N . In fact,

even the smaller problem of single constant multiplication, which is a special case

of Problem 4.2 with |F ′| = 1, has been shown to be NP-complete by Cappello and

Steiglitz in [47]. On the other hand, the computation time of Joint Solve may be

acceptable for most real-world applications because, in practice, the algorithm needs

to be executed only once for a given system design, as opposed to a continuous,

real-time operation. Furthermore, as will be shown in Section 4.5, even with a short

runtime limit imposed on Joint Solve, it can still return useful results highlighting

its benefits and, more generally, the benefit of the joint optimization framework.

4.5 Experiments and Results

In this section, we describe two extensive randomized experiments, which establish

the benefit of the joint optimization framework and, in particular, our Joint Solve

algorithm. Section 4.5.1 details the experimental setup, while Sections 4.5.2 and 4.5.3

describe the results obtained.

4.5.1 Experimental Setup

Consider two different experiments comparing the joint framework, which uses Joint Solve

to solve Problem 4.3, with a disjointed one, which solves Problems 4.1 and 4.2 sepa-

50

rately. The first experiment examines arbitrary constants, while the second examines

low-pass filter coefficients. The specifics of each experiment are detailed following the

general setup.

For each of the two experiments, we let N take on every fourth value between 4

and 80 to provide a good range of vector lengths. For each N , we let a parameter ε′

take on 10 values between 10−1 and 10−4, spaced logarithmically evenly, from which

the error bound ε is derived according to the specific experiment being run (to be

seen shortly). For each (N,ε′) pair, we perform 100 independent trials, each having

an associated ideal constant vector h (either arbitrary constants or low-pass filter

coefficients).

For simplicity and uniformity, Problem 4.1 was defined in Section 4.2.1 to take

both an error bound ε and a bitwidth m as constraints. However, the two constraints

are not completely independent. For instance, as ε gets smaller, m must become

correspondingly larger to accomodate the error and allow for feasible solutions. In

these experiments, we leverage this connection between ε and m to more compactly

represent the experiment parameters using only the (N,ε′) pair and also to guarantee

feasibility in both the disjointed and joint frameworks. For this purpose, we define

Problem 4.1′ having m as a variable to be minimized rather than as given. With

this definition, Problem 4.1′ returns a triplet (m⋆, s⋆, ĥ⋆) which is the bit-optimal

rounding of h satisfying the error bound.

For each trial, we compare the joint and disjointed frameworks in the following

manner: For the disjointed framework, we first solve Problem 4.1′ by rounding to

obtain m⋆
disjointed, s

⋆
disjointed, and ĥ⋆

disjointed. Then, we solve Problem 4.2 by invoking

Hcub with the fundamentals corresponding to s⋆disjointed and ĥ⋆
disjointed, and with zero

depth. Upon completion, Hcub returns an R′⋆disjointed with minimum depth. For the

joint framework, in order to ensure a fair comparison, we adopt the same error bound

ε, same bitwidth m = m⋆
disjointed, and same depth allowance d = depth(R′⋆disjointed).

51

Last, we invoke Joint Solve to solve Problem 4.3 and produce R′⋆joint. In both

frameworks, we record the adder tree costs for comparison.

The Joint Solve algorithm of Algorithm 4.3 is implemented in C++ and needs

to be executed 40,000 times (since there are 2 experiments, 20 N ’s, 10 ε′’s, and 100

trials), but the execution is fully parallelizable. Hence, we carry out these 40,000 tasks

at the University of Oklahoma Supercomputing Center for Education and Research,

where each task is executed on its own dedicated processor (64-bit 2.0 GHz quad-core

Intel E5405 [48]). It follows that the execution of Joint Solve on a given parameter

set is performed in the same manner as an end user invoking Joint Solve to optimize

a particular system design. Since the individual runtime of a task may vary depending

on its parameters, a 1-hour time cap is imposed on each task to ensure that the

experiments are completed in a reasonable time. Note that, in practice, a larger time

cap may be affordable, since only one invocation of Joint Solve is required for a

given system design. Moreover, we stress that the parallelization does not shorten

the runtime of each individual task.

Now, for the first experiment, each h ∈ R
N is a vector of arbitrary constants

drawn randomly and independently from a uniform distribution on (−1, 1). We choose

a uniform distribution because we are examining the general case where there is no

presumed relation amongst the target constants, though this same experiment may be

performed using any other application-specific distribution. Also, we let ε = ε′ ·‖h‖1,

so that the constraint ‖h− ĥ‖1 ≤ ε becomes
‖h−ĥ‖1
‖h‖1

≤ ε′, allowing ε′ to take on

the meaning of percentage error (i.e., ε′ = 10−1 may be interpreted as a maximum of

10% error).

Next, for the second experiment, each h ∈ R
N is a vector of low-pass filter coeffi-

cients generated by the Parks-McClellan algorithm [29] with normalized passband and

stopband frequencies drawn randomly1 from a uniform distribution on (0, π). Given

1Since we are generating low-pass filters, the passband frequency is chosen as the smaller of the

52

a piecewise-linear frequency response and a filter length N , the Parks-McClellan al-

gorithm generates the coefficiens of an N -tap linear-phase filter that minimizes the

frequency response error in the minimax sense. We invoke this algorithm by call-

ing the firpm() function in MATLAB [49] to generate an N -tap filter h to match

a frequency response having unity gain in the passband and zero gain in the stop-

band. Note that the algorithm generates linear-phase filters and, thus, the coefficients

are symmetric, leading to only half of the N coefficients being unique. Also, we let

ε = ε′, instead of ε = ε′ · ‖h‖1 as in the first experiment, because here h represents

the coefficients of a unity-gain low-pass filter, and because in filter design, frequency

response error in the sense of (3.3) is of interest more-so than the percentage error

between h and ĥ (i.e., ε = ε′ = 10−1 may be interpreted as a maximum of 10% error

in frequency response).

4.5.2 Results with Arbitrary Constants

For comparison purposes, we look at the adder tree costs resulting from each frame-

work. The cost comparisons are expressed as the ratio cost(R′⋆joint)/ cost(R
′⋆
disjointed)

in order to show the adder tree cost reduction associated with using Joint Solve

and the joint framework. For this first experiment, all of the ratios are collected

for each (N,ε′) pair, averaged over 100 trials, and tabulated in Table 4.1. Also, a

graphical depiction is presented in Figure 4.8. As a result of the manner in which

the experiments are defined, the joint problem solution can be no worse than the

disjointed one because the disjointed problem solution is guaranteed to be a feasible

triplet of Problem 4.3. Thus, the ratios in Table 4.1 are never greater than 1. Note

that, if cost(R′⋆disjointed) = cost(R′⋆joint) = 0 for a particular trial, the ratio is set to 1

to avoid dividing zero by zero.

Observe from Table 4.1 and Figure 4.8 that there is an improvement of 20% to

two randomly drawn values.

53

Table 4.1: Arbitrary constants—The ratio cost(R′⋆joint) / cost(R′⋆disjointed) for each pair
(N,ε′) averaged over 100 trials.

ε′ε′ε′

NNN 1.0E-1 4.6E-2 2.2E-2 1.0E-2 4.6E-3 2.2E-3 1.0E-3 4.6E-4 2.2E-4 1.0E-4
4 0.955 0.978 0.959 0.977 0.966 0.969 0.983 0.980 0.967 0.978
8 0.895 0.837 0.882 0.926 0.926 0.937 0.957 0.937 0.920 0.927
12 0.790 0.780 0.824 0.854 0.880 0.903 0.912 0.899 0.915 0.898
16 0.708 0.726 0.754 0.804 0.857 0.900 0.894 0.898 0.876 0.890
20 0.663 0.698 0.714 0.775 0.863 0.883 0.898 0.896 0.888 0.895
24 0.680 0.642 0.709 0.775 0.843 0.873 0.872 0.892 0.895 0.886
28 0.577 0.644 0.641 0.761 0.819 0.870 0.890 0.913 0.892 0.906
32 0.620 0.613 0.661 0.744 0.810 0.871 0.883 0.918 0.912 0.912
36 0.540 0.599 0.646 0.724 0.804 0.843 0.888 0.921 0.910 0.919
40 0.567 0.580 0.637 0.723 0.782 0.850 0.894 0.929 0.918 0.922
44 0.533 0.603 0.606 0.717 0.782 0.849 0.896 0.923 0.922 0.925
48 0.473 0.570 0.618 0.704 0.798 0.836 0.895 0.924 0.926 0.924
52 0.500 0.580 0.607 0.698 0.777 0.847 0.889 0.923 0.934 0.933
56 0.447 0.561 0.597 0.699 0.774 0.838 0.889 0.929 0.937 0.934
60 0.487 0.548 0.599 0.692 0.789 0.843 0.893 0.931 0.940 0.935
64 0.533 0.565 0.596 0.684 0.778 0.843 0.884 0.929 0.943 0.940
68 0.447 0.564 0.584 0.672 0.773 0.838 0.896 0.929 0.943 0.944
72 0.473 0.527 0.596 0.664 0.774 0.845 0.890 0.928 0.950 0.946
76 0.420 0.578 0.596 0.685 0.777 0.840 0.875 0.930 0.948 0.948
80 0.520 0.562 0.601 0.684 0.770 0.833 0.893 0.923 0.949 0.950

60% for moderate values of N and ε′, with the best results occurring when N and ε′

are large. In addition, these results are obtained with the 1-hour time cap in place,

suggesting that enforcing a reasonable time limit does not prevent the possibility of

large improvement by using Joint Solve. To see where the 1-hour limit may affect

the results, the execution time of each task was recorded as well. On average, the 1-

hour time limit was only approached when N > 40 and ε′ < 4.6×10−4. As expected,

the computation time increases as N grows. Moreover, it also increases as ε′ gets

smaller due to more bits being required in the approximations when the ε′ constraint

is more restrictive.

54

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

4 16 28 40 52 64 76

N

1.0E‐01 4.6E‐02 2.2E‐02

1.0E‐02 4.6E‐03 2.2E‐03

1.0E‐03 4.6E‐04 2.2E‐04

1.0E‐04

R
at
io

co
st
(R

�� jo
in
t)
/c
os
t(
R

�� d
is
jo
in
te
d
)

Figure 4.8: Arbitrary constants: The ratio cost(R′⋆joint)/ cost(R′⋆disjointed) versus vector
length N for each fixed ε′ (the values of ε′ are specified in the legend). The ratios
are averaged over 100 trials.

4.5.3 Results with Low-pass Filter Coefficients

As in Section 4.5.2, for this second experiment, all of the ratios are collected for each

(N,ε′), averaged over 100 trials, and shown in Table 4.2 as well as Figure 4.9.

Observe from Table 4.2 and Figure 4.9 that there is an improvement of 15%

to 30% for moderate values of N and ε′, with the best results occurring when N

and ε′ are large. Similar to the first experiment, on average, the 1-hour time limit

was only approached when N > 64 (32 unique coefficients) and ε′ < 4.6 × 10−4.

The cost improvement results, with respect to ε′, turn out to be not as good as

with arbitrary constants, since the coefficients have properties that are not exploited

by Joint Solve. We note that while Joint Solve may be used in the case of

55

Table 4.2: Low-pass filter coefficients—The ratio cost(R′⋆joint) / cost(R′⋆disjointed) for
each pair (N,ε′) averaged over 100 trials.

ε′ε′ε′

NNN 1.0E-1 4.6E-2 2.2E-2 1.0E-2 4.6E-3 2.2E-3 1.0E-3 4.6E-4 2.2E-4 1.0E-4
4 0.990 1.000 1.000 0.995 1.000 1.000 1.000 1.000 0.993 0.997
8 0.968 0.976 0.961 0.984 0.962 0.963 0.981 0.985 0.978 0.986
12 0.931 0.878 0.947 0.923 0.959 0.977 0.964 0.957 0.970 0.945
16 0.877 0.894 0.947 0.931 0.948 0.938 0.926 0.931 0.923 0.929
20 0.923 0.918 0.899 0.878 0.880 0.869 0.884 0.920 0.929 0.926
24 0.856 0.875 0.820 0.829 0.850 0.891 0.927 0.941 0.939 0.911
28 0.852 0.792 0.781 0.843 0.894 0.930 0.945 0.924 0.891 0.881
32 0.795 0.780 0.795 0.856 0.905 0.910 0.885 0.886 0.878 0.865
36 0.799 0.809 0.828 0.837 0.886 0.884 0.844 0.862 0.854 0.878
40 0.754 0.821 0.827 0.852 0.834 0.806 0.852 0.854 0.880 0.892
44 0.757 0.795 0.788 0.785 0.806 0.834 0.839 0.872 0.892 0.923
48 0.774 0.768 0.776 0.795 0.803 0.819 0.862 0.891 0.907 0.930
52 0.733 0.758 0.726 0.757 0.790 0.820 0.878 0.907 0.928 0.933
56 0.694 0.744 0.777 0.786 0.787 0.849 0.901 0.928 0.930 0.919
60 0.696 0.703 0.763 0.773 0.794 0.869 0.912 0.930 0.922 0.910
64 0.681 0.736 0.719 0.748 0.840 0.881 0.922 0.929 0.928 0.918
68 0.694 0.705 0.729 0.769 0.844 0.892 0.913 0.928 0.918 0.918
72 0.715 0.694 0.732 0.785 0.847 0.885 0.907 0.920 0.915 0.911
76 0.683 0.713 0.734 0.784 0.839 0.872 0.900 0.911 0.917 0.924
80 0.697 0.748 0.753 0.779 0.816 0.864 0.894 0.913 0.920 0.925

FIR filters, we are unable to compare against the joint optimization algorithms from

[12, 23, 24, 34–40] because they formulate the problem differently starting with some

given frequency response specifications, rather than with an ideal real coefficient

vector to approximate. For this reason, when designing FIR filters, jointly optimal

solutions in the sense of Problem 4.3 might have higher adder tree costs than solutions

obtained by algorithms in [12, 23, 24, 34–40], which are tailored specifically to FIR

filters.

With that said, Joint Solve still achieves 15%–30% improvement over a dis-

jointed approach in the case of low-pass filter coefficients, and an even higher im-

provement of 20%–60% in the general case. Overall, the results demonstrate the

substantial advantage of using the joint quantization and MCM optimization frame-

56

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

4 16 28 40 52 64 76

N

1.0E‐01 4.6E‐02 2.2E‐02

1.0E‐02 4.6E‐03 2.2E‐03

1.0E‐03 4.6E‐04 2.2E‐04

1.0E‐04

R
at
io

co
st
(R

�� jo
in
t)
/c
os
t(
R

�� d
is
jo
in
te
d
)

Figure 4.9: Low-pass filter coefficients: The ratio cost(R′⋆joint)/cost(R
′⋆
disjointed) versus

filter length N for each fixed ε′ (the values of ε′ are specified in the legend). The
ratios are averaged over 100 trials.

work in conjunction with Joint Solve over a disjointed framework.

4.5.4 Additional Results

A question that may be of interest to the reader is how much impact the pruning

strategies of Section 4.4.4 have on the execution time of the Joint Solve algorithm.

To answer this question, we have recorded the time to execute the algorithm, both

with and without pruning, on a subset of the trials from the first experiment outlined

in Section 4.5.1. The trial specifications as well as the resulting execution times are

listed in Table 4.3.

As expected, when Joint Solve is executed with the pruning strategies in effect,

57

Table 4.3: Execution times for Joint Solve with and without pruning for a select
set of trials using arbitrary constants.

Execution Time (s)
NNN ε′ε′ε′ Without pruning With pruning
4 4.6E-2 7.4377 12.661
8 1.0E-1 6.7002 12.751
24 4.6E-2 122.73 12.643
28 2.2E-2 15.689 12.569
36 1.0E-1 161.85 13.700
40 1.0E-1 123.45 12.692

the total execution time is significantly less, in general. There is, however, an excep-

tion that occurs with the first two trials listed in Table 4.3. It can be understood that

for small problem sizes such as these, the additional overhead from implementing

the pruning strategies might outweigh any reduction in computational complexity,

causing the pruned search to execute more slowly than the one without pruning.

4.6 Summary

In this chapter, we have examined the possibility of an MRCM approach to the

quantization and MCM problems in a general case, going beyond the case of FIR

filters which has been well-studied in the current literature. We have formalized the

joint optimization problem and provided a relatively efficient algorithm for solving it.

In doing so, we have shown the benefit that can arise with such a joint framework,

namely, a notable reduction in the adder tree cost, which translates into reduced

hardware or software. Indeed, this cost reduction has been shown via experiment to

be quite significant in the general case, reaching 20%–60% for moderate vector lengths

and error constraints. Furthermore, we have shown through a parallel experiment that

our algorithm is useful in the particular case of FIR filters, achieving a reduction of

15%–30% for moderate filter lengths and ripple constraints.

58

Chapter 5

Multiple Real-Constant Multiplication with Bit-Count Cost

Model

5.1 Introduction

This chapter formulates and solves the MRCM problem using an adder-bit cost model.

Recall that, in Chapter 4, we provided an MRCM problem formulation using the

traditional adder-count cost model and an algorithm that could be used to solve it.

However, the problem formulation used the traditional adder-count cost model for

optimization, that is, the number of adders in a shift-add network, whereas [24–27]

show that, along with the number of adders, the adders’ bitwidths play an important

role in predicting hardware area, latency, and power. Also, the algorithm for solving

the MRCM problem in Chapter 4 is limited in its efficiency and optimality, because

it uses an embedded heuristic for solving the MICM portion of the problem.

To alleviate these issues, in Section 5.2, we define an improved cost model that

incorporates adder bitwidth and, in Section 5.3, we provide two new algorithms

for solving it, termed greedy search and optimal search, each incorporating search-

ing strategies of high-performing MICM-targeted solvers [13, 21]. Additionally, we

provide a new MRCM-aware heuristic to efficiently guide the searches. Next, Sec-

tion 5.4 discusses a randomized experiment, in which we compare both algorithms to

an MICM-targeted heuristic algorithm called Hcub [13]. In doing so, we observe that

the greedy search finds solutions with an average cost improvement of 13% over the

MICM solution with the trials considered, and the optimal search finds solutions with

59

an average cost improvement of 19% over the MICM solution with the same trials.

Last, Section 5.5 summarizes the chapter’s development and results.

5.2 Problem Formulation

As with Chapter 4, we note that much of the problem and algorithm development in

this chapter is based on deprecated terminology that has been replaced in more recent

work, because the research of this chapter comes from a conference paper that has

been accepted for publication [50]. However, to reduce the possibility of introducing

errors by rewriting every definition and developing the algorithm in a completely

different manner, we maintain the same terminology of the conference version in lieu

of the more recent terminology introduced in Chapter 3 and carried on in Chapter 6.

As a result, we again caution the reader to be aware of certain terms taking on new

definitions in this chapter.

The MRCM problem can be described as: given a vector of real constants c and

a scalar fixed-point signal x, find a shift-add network having minimal hardware cost

that computes the product c · x subject to a given error bound. To precisely define

the MRCM problem used in this chapter, we start with the following definitions. As

with the MCM literature [13,16,24], we define a fundamental as a positive odd integer

and we let F be the set of all fundamentals. Also, let the set of all positive fixed-point

integers be defined as P = {f · 2s : f ∈ F, s ∈ Z}. Now, given a fixed-point integer

p ∈ P, the fundamentalization of p, fund(p), is the unique fundamental that can be

recovered from p. Furthermore, given a fixed-point vector p = (p0, . . . , pN−1) ∈ P
N ,

we define fund(p) as the set of unique fundamentals that may be recovered from the

components of p.

We now define what it means for a set of fundamentals to be MCM-capable.

Consider a shift-add network having N adders. At the output of these adders, the

60

circuit produces the products p0 · x . . . pN−1 · x which comprise the vector p · x. We

say the set of fundamentals fund(p) is MCM-capable, since it can correspond to the

outputs of a shift-add network. Let the set of all MCM-capable fundamental sets be

denoted as ψ.

The hardware cost of such shift-add networks is now defined. Bit-level cost mod-

els are shown in [24, 26] to be more accurate than simple adder count models for

estimating hardware cost of shift-add networks. Accordingly, for our problem for-

mulation, we define the hardware cost as the total number of bits required for all

of the adders/subtractors in the network. The models in [24, 26] consider the align-

ment of adder inputs in order to reduce the estimated cost, whereas our model in

comparison uses a worst-case estimate. Using this model, the hardware cost of the

aforementioned shift-add network producing p · x at the adder outputs can be cal-

culated as follows: The number of bits required to produce one binary output pn · x

is ⌊log2[fund(pn · x)]⌋ + 1. Therefore the total cost to produce all of the outputs is
∑N−1

n=0 ⌊log2[fund(pn · x)]⌋+N .

With this setup, we formally define the MRCM problem as:

Problem 5.1 — MRCM problem with bit-count cost model: Given a vector

of target constants c = (c0, . . . , cN−1) ∈ (0,∞)N , a corresponding vector of error

tolerances ε = (ε0, . . . , εN−1) ∈ (0,∞)N , and an input signal bitwidth bx, find a

target-approximation vector ĉ = (ĉ0, . . . , ĉN−1) ∈ P
N and a set of MCM-capable

fundamentals F = {f1, . . . , fM} ∈ ψ that minimize
∑M

m=1⌊log2[fm · (2
bx − 1)]⌋ +M

such that |cn − ĉn| ≤ εn ∀n and (F ∪ {1}) ⊇ fund(ĉ).

The target-approximation vector ĉ must satisfy the error constraint. Note that be-

cause the cost function operates only on the fundamentals corresponding to adder

outputs and because two fixed-point numbers with the same fundamentalization can

be produced from each other with no additional adders, the problem considers only

61

the shift-add networks that produce a unique set of fundamentals at their adder

outputs. When these fundamental outputs include the target-approximation funda-

mentals then a candidate solution to the MRCM problem is obtained. Also note

as a special case that the product 1 · x can be computed from a shift-add network

using no additional adders, and therefore F need never contain “1.” The problem is

guaranteed to have a solution, as discussed in Section 5.3.2.

5.3 Proposed Algorithms

In this section, two algorithms are proposed for solving the MRCM problem defined

in the previous section. First, a scheme for enumerating the search space for MCM-

capable F ’s is presented. Then, we describe a greedy algorithm that uses a heuristic

for guiding the search of the aforementioned search space. Last, we describe an

optimal algorithm that enumerates the search space in an efficient manner so as to

reduce the required number of F ’s considered.

5.3.1 MCM-capable Search Tree Construction

This section describes the search space for ψ, that is, the space of MCM-capable

fundamental sets. Not every F ⊂ F is in ψ, thus a strategy is needed to enumerate

the space. As with the MICM algorithms of [13, 21], we enumerate the space by

taking each F ∈ ψ with cardinality |F | = M and from it derive fundamental sets of

the form F ′ ∈ ψ with |F ′| = M +1, and so on, in an iterative manner. In doing so we

construct a tree, in a similar manner to [21], where the nodes represent the elements

of ψ.

Consider a node corresponding to F = {f1, . . . , fM} ∈ ψ. Since F ∈ ψ, there is a

shift-add network that produces the outputs f1 ·x, . . . , fM ·x. Let the successor nodes

of F be those that represent the set F ′ = F ∪ {fM+1} with fM+1 /∈ F such that the

62

{1}

· · · · · ·{1, 15}

. .
. . . .

{1, 9}

. .
. . . .

{1, 7}

. .
. . . .

{1, 5}

. .
. . . .

{1, 3}

· · · · · ·{1, 3, 15}

. .
. . . .

{1, 3, 9}

. .
. . . .

{1, 3, 7}

. .
. . . .

{1, 3, 5}

. .
. . . .

Figure 5.1: A portion of the ψ search tree illustrating node expansion.

product fM+1 · x can be computed by adding only one additional adder/subtractor

to the aforementioned shift-add network. It can be shown that all possible fM+1

satisfying this property are of the form fM+1 = (2l1fi±2l2fj)2
−r, where i, j ≤M and

l1, l2, r ∈ {0, 1, 2, . . . }. Operations of this form are called A-operations [13]. Iterating

through all possible A-operations, allows for the generation of all of the successor

nodes of F . The resulting tree structure is depicted in Figure 5.1.

Note that the ψ search tree is limitless in both breadth and depth and it grows

exponentially at each level. Thus, only a small portion of the tree can be enumerated

in a feasible amount of time. This fact necessitates that intelligent pruning and

expansion ordering be used to reduce the number of nodes that are expanded before

a solution F is found. Such intelligent search strategies are discussed in Sections 5.3.2

and 5.3.3.

5.3.2 Greedy Algorithm

This section describes an algorithm that uses a greedy strategy for traversing the

ψ search tree to find a candidate solution to the problem defined in Section 5.2.

A candidate solution is a pair (F, ĉ) ∈ ψ × P
N satisfying the problem constraints

|cn − ĉn| ≤ εn ∀n and (F ∪ {1}) ⊇ fund(ĉ). Let any F that exists as part of a

candidate solution be termed a candidate fundamental set.

Using a greedy searching strategy, one never expands more than one node at a

63

particular level of the search tree, i.e., there is no backtracking. Instead, given a set of

successor nodes, a heuristic estimator is used to determine which is the best node for

expansion. Therefore, greedy strategies can lead to a fast traversal of the search tree

since the number of expanded nodes is pruned substantially. However, since there

is no backtracking, a suboptimal candidate solution may be found. In fact, a poor

heuristic can lead to candidate solutions that are far from optimal.

For our algorithm, we define a heuristic as follows: Given an F , let c′ ∈ (0,∞)N
′

be composed of the target constants that cannot yet be approximated within their

error bounds using F . In other words, c′ contains those components cn such that there

does not exist a ĉn ∈ P where fund(ĉn) ∈ F and |cn − ĉn| ≤ εn. Let ε′ ∈ (0,∞)N
′
be

the corresponding error tolerances.

Next, consider the fundamental sets that can be used to approximate the re-

maining target constants, i.e., the elements of F ′
ĉ
= {fund(ĉ′) : ĉ′ ∈ P

N ′
and |c′n −

ĉ′n| ≤ ε′n ∀n}. Let us assume that for any set F ′ ∈ F ′
ĉ
, the union (F ∪ F ′) ∈ ψ

and is thus a candidate fundamental set. With this assumption, we can estimate

the minimum additional adder cost required to produce a candidate solution as:

H(F) = min
F ′=

(

f ′
1,...,f

′
|F ′|

)

∈F ′
ĉ

cost(F ′),

where cost(F) =

|F |
∑

m=1

⌊log2[fm(2
bx − 1)]⌋+ |F |.

Likewise, we can estimate the minimum total adder cost of a candidate solution as

T (F) = H(F) + cost(F).

Finally, the greedy search uses this heuristic estimator in its expansion scheme.

When choosing between successor nodes, the node with the smallest H is expanded.

If there are ties then the tiebreaker is to expand a node with smallest T . Then, after

a node is expanded, its successors are generated and one is chosen for expansion.

The search continues in this manner until a candidate solution is found. This greedy

64

strategy can be shown to always terminate with a candidate solution, because the

expansion scheme leads to a path F1 ⇒ F2 ⇒ · · · ⇒ FK with H(Fk) eventually

decreasing until H(FK) = 0.

As an artifact of the greedy strategy, at the termination of the algorithm it is

possible that extra nodes exist in the path that are not needed to produce the final

fundamental set. To cope with this, a redundant removal algorithm similar to the

one in [21] is applied at the end of the search to remove fundamentals that are not

used for approximating the target constants and are not needed to produce the final

fundamental set.

5.3.3 Optimal Algorithm

This section describes a search algorithm which also uses a heuristic estimator for

intelligent node expansion ordering. However, the search is performed in an optimal

manner, rather than in a greedy manner as the previous section’s algorithm does.

Because the heuristic estimator is not exact, an optimal search requires that every

search node that could possibly lead to an optimal solution be expanded. Thus,

the key to designing an efficient optimal search is to use an intelligent strategy for

determining node expansion order and to prune nodes when possible based on known

cost upper bounds.

The search strategy used for the algorithm of this section is the so-named A⋆

search [51]. This strategy uses a heuristic to estimate the best remaining cost to

reach a candidate solution from a node. Then it adds the result to the node’s current

path cost to estimate the overall minimum path cost obtainable from that node. If

the heuristic is admissible, meaning that it never overestimates the obtainable cost,

then A⋆ is optimal [51].

The heuristic H(F) from the previous section is such a heuristic. It is admissible

because the only assumption made in estimating the remaining adder cost is that for

65

any F ′ ∈ F ′
ĉ
, (F ∪ F ′) ∈ ψ. This assumption leads to a cost estimate that is never

greater that the optimal remaining cost.

With this property satisfied, H is suitable for use in the A⋆ search. To perform the

search, a priority queue is implemented, where the nodes with smallest T have highest

priority for expansion. When a node is expanded, all of its successors are added to

the queue based on their priority (T), then the highest priority node is dequeued and

expanded next.

Pruning based on cost is accomplished as follows: Let costmin be the current

best candidate solution cost, which is initially set equal to the result of the greedy

algorithm. Because the estimator T provides and underestimate of the optimal total

cost that could be obtained by expanding a node, no node with T ≥ costmin is ever

added to the queue. Furthermore, when costmin is updated from a new candidate

solution, any node with T ≥ costmin already in the queue can be removed. Note that

keeping a list of visited nodes is important, because the MCM-capable search tree

contains many redundant nodes (having the same fundamental set) that need only

be visited once. The search ends when the queue is empty and the final costmin is

guaranteed to be optimal since every node that could possibly lead to a solution with

less cost than costmin is expanded.

5.4 Experiments and Results

This section describes the experimental setup and results, whereby the efficacy

of the algorithms presented in Sections 5.3.2 and 5.3.3 is validated. A set of trial

specifications were randomly generated and then, for each trial, a solution to the

MRCM problem of Section 5.2 is obtained using three different algorithms.

To begin, the trial specifications are defined in Table 5.1. The four parameters N ,

bx, c, and ε specify the givens of the problem to be solved. The problem parameter

66

Table 5.1: Trial specifications using bit-count cost model.
Trial N bfbfbf bxbxbx pairs (c0, ε0), . . . , (cN−1, εN−1)(c0, ε0), . . . , (cN−1, εN−1)(c0, ε0), . . . , (cN−1, εN−1)

1 4 16 16 (1.516, 3.51E-3), (1.641, 3.63E-2), (1.837, 7.27E-3), (1.393, 2.12E-1)
2 4 16 32 (1.715, 8.69E-3), (1.130, 6.41E-3), (1.842, 5.13E-2), (1.366, 1.27E-1)

3 8 16 16
(1.905, 1.54E-1), (1.212, 4.71E-2), (1.581, 2.97E-3), (1.733, 2.36E-1),
(1.754, 4.73E-3), (1.397, 1.25E-2), (1.524, 5.48E-3), (1.861, 1.25E-2)

4 8 12 32
(1.232, 6.78E-3), (1.015, 8.91E-2), (1.400, 2.25E-2), (1.242, 7.30E-4),
(1.269, 1.19E-1), (1.160, 8.32E-3), (1.628, 1.03E-3), (1.406, 8.87E-4)

5 8 8 8
(1.025, 5.89E-3), (1.703, 1.51E-2), (1.141, 1.15E-2), (1.490, 2.23E-1),
(1.337, 3.91E-2), (1.106, 1.81E-1), (1.302, 4.11E-2), (1.073, 2.37E-2)

6 8 8 16
(1.505, 3.96E-3), (1.783, 3.00E-2), (1.907, 3.18E-2), (1.143, 6.51E-2),
(1.046, 9.24E-3), (1.337, 4.38E-3), (1.943, 1.16E-2), (1.014, 2.05E-2

7 16 8 8

(1.428, 1.31E-1), (1.323, 9.22E-2), (1.863, 7.62E-2), (1.220, 5.55E-3),
(1.384, 3.18E-2), (1.351, 4.91E-3), (1.226, 8.63E-2), (1.241, 2.13E-2),
(1.589, 1.46E-1), (1.942, 4.22E-3), (1.792, 3.21E-2), (1.329, 1.45E-1),
(1.126, 1.01E-1), (1.658, 1.04E-2), (1.822, 7.08E-2), (1.804, 8.03E-2

8 16 8 16

(1.216, 1.23E-2), (1.097, 2.63E-2), (1.332, 4.84E-3), (1.450, 2.14E-2),
(1.388, 6.38E-3), (1.149, 1.65E-1), (1.017, 8.01E-2), (1.803, 8.31E-2)
(1.757, 7.44E-2), (1.107, 2.22E-2), (1.568, 1.64E-1), (1.361, 1.45E-1),
(1.835, 5.46E-2), (1.170, 2.25E-1), (1.983, 1.98E-1), (1.821, 5.91E-3

N and the extra parameter bf determine the hardness of the problem as follows:

N random target constants c0, . . . , cN−1 are drawn uniformly from the range (1, 2).

Because the fractional point location of a constant cn has no effect on the problem

solution, there is no need to consider a larger range. Next, the error tolerance vector ε

is randomly chosen so that each error tolerance εn is such that 2εn is drawn uniformly

from the range (−bf ,−2). In this manner, the parameter bf roughly corresponds to an

upper limit on the bitwidths of fundamentals needed to obtain a candidate solution.

Table 5.1 provides trials with varying values of the parameters N , bf , and bx for

comparison purposes.

Next, for each random trial, three algorithms are used to solve the MRCM prob-

lem. The first algorithm used is the Hcub algorithm presented in [13]. Hcub is an

algorithm that solves the MICM problem using a greedy strategy, and it was chosen

because it is one of the highest performing heuristic MICM solvers, and its source

code is publicly available [46]. However, because Hcub solves the MICM problem and

not our MRCM problem, the real constant vector c must first be transformed into a

67

Table 5.2: Summary of results using bit-count cost model.
Trial Rounding + Hcub[13] solution Greedy solution Optimal solution

fundamentals cost fundamentals cost fundamentals cost

1 1 ⇒ 3 ⇒ 13 ⇒ 97 ⇒
253 ⇒ 59

107 1 ⇒ 3 ⇒ 13 ⇒ 97 ⇒
7 ⇒ 59

102 1 ⇒ 7 ⇒ 13 ⇒ 97 ⇒
59

84

2 1⇒ 5⇒ 9⇒ 15⇒ 55 145 1⇒ 5⇒ 9⇒ 15⇒ 55 145 1⇒ 5⇒ 9⇒ 15⇒ 55 145
3 1 ⇒ 3 ⇒ 5 ⇒ 7 ⇒ 45

⇒ 101 ⇒ 119 ⇒ 195
148 1 ⇒ 5 ⇒ 7 ⇒ 119 ⇒

357 ⇒ 101 ⇒ 389
134 1 ⇒ 7 ⇒ 119 ⇒ 5 ⇒

45 ⇒ 101 ⇒ 195
130

4 1 ⇒ 5 ⇒ 37 ⇒ 45 ⇒
79 ⇒ 159 ⇒ 675 ⇒
417

273 1 ⇒ 5 ⇒ 37 ⇒ 45 ⇒
159 ⇒ 315 ⇒ 13 ⇒
417

269 1⇒ 9⇒ 37⇒ 157⇒
159 ⇒ 417 ⇒ 45

233

5 1 ⇒ 3 ⇒ 11 ⇒ 17 ⇒
21⇒ 73⇒ 109⇒ 131

94 1 ⇒ 17 ⇒ 21 ⇒ 145
⇒ 435 ⇒ 527

77 1 ⇒ 17 ⇒ 21 ⇒ 147
⇒ 131 ⇒ 109

73

6 1 ⇒ 9 ⇒ 31 ⇒ 29 ⇒
67 ⇒ 101 ⇒ 171 ⇒
193

156 1 ⇒ 9 ⇒ 31 ⇒ 29 ⇒
67 ⇒ 3 ⇒ 193 ⇒ 343

152 1 ⇒ 9 ⇒ 135 ⇒ 171
⇒ 31 ⇒ 29 ⇒ 193

134

7 1 ⇒ 3 ⇒ 5 ⇒ 7 ⇒ 9
⇒ 11⇒ 15⇒ 29⇒ 39
⇒ 53 ⇒ 173 ⇒ 249

141 1 ⇒ 5 ⇒ 39 ⇒ 29 ⇒
53 ⇒ 693 ⇒ 995

88 1 ⇒ 5 ⇒ 39 ⇒ 29 ⇒
53 ⇒ 693 ⇒ 995

88

8 1 ⇒ 3 ⇒ 7 ⇒ 9 ⇒ 15
⇒ 23 ⇒ 35 ⇒ 39 ⇒
85 ⇒ 89 ⇒ 233

212 1 ⇒ 3 ⇒ 23 ⇒ 35 ⇒
39 ⇒ 85 ⇒ 89 ⇒ 935

155 1 ⇒ 3 ⇒ 23 ⇒ 35 ⇒
39 ⇒ 85 ⇒ 89 ⇒ 233

153

suitable vector of integers (fixed-point numbers). To accomplish this transformation,

each real constant is rounded to a fixed-point constant using the least number of bits,

such that the corresponding error tolerances are met. Last, Hcub solves the MICM

problem using these transformed constants. The second and third algorithms used

are the greedy algorithm and optimal algorithm presented in Sections 5.3.2 and 5.3.3

respectively.

The solutions obtained using all three algorithms are tabulated in Table 5.2. The

results show that the greedy solution is strictly better than the Hcub solution in 7

out of the 8 trials, which is expected because the greedy algorithm tries to minimize

the specified cost metric when expanding fundamentals, while Hcub tries to minimize

the number of fundamentals. Also as expected, the optimal solution is always better

than (or the same as) the other algorithms, because the algorithm is indeed optimal.

In 6 out of the 8 trials, the optimal solution is strictly better than that obtained

by the suboptimal greedy algorithm. Of course, the optimal algorithm takes much

more computation time than the other two algorithms which use a greedy strategy.

68

In addition, Trial 7 in particular illustrates the benefit of using the MRCM problem

as compared to the MICM problem, because the MRCM problem allows a real target

constant to be approximated using a lesser number of fundamentals in situations

where multiple targets can map to the same fundamental. Overall, for these trials,

the greedy solutions showed an average cost improvement of 13% over the Rounding

+ Hcub strategy. Likewise, the optimal solutions showed an average improvement

of 7% over the greedy strategy. Finally, the optimal solutions showed an average

improvement of 19% over the Rounding + Hcub strategy.

5.5 Summary

In this chapter, we further showed the efficacy of the MRCM problem that we intro-

duced in Chapter 3 with regard to an adder-bit cost model. Compared to the those

of Chapter 4, we provided an improved problem formulation and two new algorithms

for solving it, referred to as the greedy and optimal algorithms, respectively. The

improved problem formulation uses the bitwidth of adders in its cost model, since

they have been shown to be more accurate predictors of actual hardware cost. Last,

an experiment was performed in which the greedy and optimal algorithms obtained

solutions with significant improvement over those obtained by rounding constants and

using an MICM-targeted algorithm Hcub.

69

Chapter 6

Multiple Real-Constant Multiplication with Gate-Level Cost

Model

6.1 Introduction

In Section 2.1.3, gate-level cost models for MCM were discussed. Experiments from

[24–27] have shown that such lower-level cost models have a higher correspondence

to synthesized hardware area and power utilization, as compared to the traditional

adder-count cost model.

As with Chapters 4 and 5, it can be expected that in a general MCM setting with

real constants there is potential for lower-costing circuits when utilizing an MRCM

framework rather than the traditional MICM framework. For this reason, this chapter

discusses a joint MRCM approach to MCM optimization using this gate-level cost

model in order to show its advantages over a disjointed rounding+MICM approach

presented in [26].

The chapter is organized as follows: Section 6.2 provides a detailed problem formu-

lation for this MRCM approach; Section 6.3 discusses a greedy algorithm for solving

the defined problem; Section 6.4 details an experiment for validating the joint ap-

proach’s advantages; and, lastly, Section 6.5 summarizes the experiment’s findings.

6.2 Problem Formulation

In this chapter’s problem formulation, note that we return to the original terminology

defined in Chapter 3 and discard any of the local modifications of the terminology

70

that were introduced in Chapters 4 and 5.

The cost model used in the MRCM problem of this chapter is the gate-level cost

model defined in [25,26] It is chosen over the model defined in [24,27] because it has

incurred more recent development in the literature and it is defined in a way that

better fits with the MCM terminology used in this chapter.

In Section 2.1.3, a cursory description was given of gate-level cost models, however,

in [26] a very detailed model is presented. In that paper, it was shown that A-

configurations (and thus A-relations) can be divided into five basic types. For each

type, the authors of [26] derive a formula for computing a gate-level hardware cost

based on the relative bitwidths of the A-relation’s inputs and output along with the

bit-level alignment of the inputs arising from shifts.

Definition 6.1 (costGL): Since the formula definitions for computing the cost of an

A-relation require much more development than is available here, we simply provide

the terminology costGL(r) to refer to the cost that is computed for a particular A-

relation r. We do, however, define the cost of the root A-relation as costGL(1) = 0 to

align with the problem definition of this chapter. Additionally, given an adder tree

T = {r0, . . . , rM−1}, the total gate-level cost can be computed by summing up the

costs of its component A-relations to obtain costGL(T) =
∑M−1

m=0 costGL(rm).

With regards to the error metric, in the MRCM problem of this chapter uses the

1-norm as defined in Section 3.2.1.

With the cost model and error metric established, the general MRCM problem

statement of Section 3.4 (Problem 3.2) can be fully specified as follows:

Problem 6.1 — The MRCM problem using a gate-level cost model and

∞-norm error metric: Given a vector length N ∈ N, an ideal constant vector

c ∈ R
N
b , an error bound ε > 0, and a number of bits b ∈ N, find a finite-bitwidth

constant vector ĉ ∈ Z
N
b , and an adder tree T ∈ ψ(Φ(ĉ)) that minimize costGL(A)

71

subject to ‖c− ĉ‖1 ≤ ε.

6.3 Proposed Algorithm

In this section, an algorithm is developed for solving Problem 6.1. First, in Sec-

tion 6.3.1, a framework is developed for specifying the problem solution in a func-

tional sense. Then, in Section 6.3.2, a greedy algorithm is generated based on this

framework.

6.3.1 Complete Functional Problem Definition

In this section, Problem 6.1 is transformed into a completely specified functional

programming description. The functional programming paradigm is distinct from

the traditional imperative programming paradigm where programs are organized as

a sequence of instructions to be executed in order. With functional programming,

programs are organized instead as a set of functions having no program state. Thus,

a functional approach to algorithm implementation allows for a very simple algorithm

description, and can, in a sense, directly translate to code using a functional language

without having ambiguities in the implementation. With that concept in mind, we

now define a functional description that encompasses Problem 6.1.

To begin, solutions of Problem 6.1 take the form of pairs (ĉ,T). Feasible pairs

are those pairs from the set:

{(ĉ,T) ∈ Z
N
b ×N | T ∈ ψ(Φ(ĉ)), ‖c− ĉ‖1 ≤ ε}. (6.1)

In order to enumerate the search space of feasible pairs, we note that for any adder

tree T = {r0, . . . , rM−1} with M > 1, the ordered set T′ = {r0, . . . , rM−2} having one

less element than T is also an adder tree by Definition 4.6. Thus, it follows that the

set of all adder trees T can be built up incrementally by starting with T = {1} and

72

appendingA-relations one at a time while ensuring that all properties of Definition 4.6

hold for each new set. To this end, we borrow some results and terminology from [13]

to facilitate this incremental build-up of T, modifying the definitions as necessary to

fully support Problem 6.1.

Definition 6.2 (Successor relations, SA): Given an adder tree T = {r0, . . . , rM−1},

let SA be the set of A-relations that can be added to T and have it still be an adder

tree, that is, {r′ | {r0, . . . , rM−1, r
′} ∈ T}. We term these A-relations, the successor

relations of T.

In [23,26], it was shown that A-configurations can be separated into five basic types

corresponding to:

1) 2l1u+ v1,

2) Φ(u+ v),

3) 2l1u− v1,

4) u− 2l2v1, and

5) Φ(u− v)1,

where l1, l2 6= 0. Using this observation, given a T = {r0, . . . , rM−1}, we can generate

the set of successor relations corresponding to each type of A-configuration. Since we

are only interested in those A-relations with an output w ∈ Zb
2, the formulas defining

the successor relation can be computed as:

1) SA,1(T) =
{

(u, v, (l1, 0, 0), w) | ∃i ∈ {0,M−1} u = ri.w, ∃j ∈ {0,M−1} v = rj.w,

w = A(l1,0,0)(u, v), l1 ∈ Z
+, and 1 ≤ l1 ≤ log2

2b−1−v
u

}

;

1Of course, there also exist the operations that occur when the inputs u and v are switched.
2We are also only interested in A-relations with w ≥ 3 since an adder tree already contains the

root A-relation 1 having 1.w = 1.

73

2) SA,2(T) =
{

(u, v, (0, 0, 0), w) | ∃i ∈ {0,M−1} u = ri.w, ∃j ∈ {0,M−1} v = rj.w,

and w = A(0,0,0)(u, v)
}

;

3) SA,3(T) =
{

(u, v, (l1, 0, 1), w) | ∃i ∈ {0,M−1} u = ri.w, ∃j ∈ {0,M−1} v = rj.w,

w = A(l1,0,1)(u, v), l1 ∈ Z
+, and max{1, log2

3+v
u
} ≤ l1 ≤ log2

2b−1+v
u

}

;

4) SA,4(T) =
{

(u, v, (0, l2, 1), w) | ∃i ∈ {0,M−1} u = ri.w, ∃j ∈ {0,M−1} v = rj.w,

w = A(0,l2,1)(u, v), l2 ∈ Z
+, and 1 ≤ l2 ≤ log2

u−3
v

}

; and

5) SA,5(T) =
{

(u, v, (0, 0, 1), w) | ∃i ∈ {0,M−1} u = ri.w, ∃j ∈ {0,M−1} v = rj.w,

u ≥ v + 6, and w = A(0,0,1)(u, v)
}

;

respectively. Combining 1)–5) allows the successor relations of T to be rewritten as

SA(T) = SA,1(T) ∪ SA,2(T) ∪ SA,3(T) ∪ SA,4(T) ∪ SA,5(T).

Definition 6.3 (Successor trees, S(T)): Furthermore, we define the successor trees

of T as those adder trees that result from augmenting T with each successor relation.

More precisely, given an adder tree T = {r0, . . . , rM−1}, the set of successor trees is

defined as S(T) = {{r0, . . . , rM−1, r
′} | r′ ∈ SA(T)}.

With the successor function fully defined, the entire set of adder trees can be

computed recursively as follows:

T = {1} ∪
(⋃

T′∈S(1)

[

{T′} ∪
(

⋃

T′′∈S(T′)

[{T′′}∪...]
)]

)

.

Definition 6.4 (Srec): To simplify the recursion, let

Srec(T) = {T} ∪
(⋃

T′∈S(T)

Srec(T
′)
)

. (6.2)

Then it follows that

T = Srec({1}). (6.3)

74

Next, observe that for any feasible pair (T, ĉ) ∈ T× Zb,

T ∈ ψ(Φ(ĉ)). (6.4)

However, since an enumeration scheme for T ∈ T can be inferred from (6.3), it would

be useful to have a method to inversely derive ĉ, given a T, such that (6.4) holds. To

this end, we now provide a series of derivations to accomplish this task.

Definition 6.5 (Υ): We first define Υ(T) to be the set of output fundamentals that

an adder tree produces, that is, given an adder tree T, let Υ(T) = {r.w ∈ F | r ∈

T} ∪ {0}.

In a way, Υ acts as an inverse function of ψ, because for any T and F , T ∈ ψ(F) if

and only if Υ(T) ⊇ F .

Using this definition, the constraint in (6.4) can be rewritten as Φ(ĉ) ⊆ Υ(T),

which defines a search space of ĉ as a function of T. Decomposing Φ(ĉ) using Defi-

nition 3.4, the search space of each ĉi is then {ĉi = f · 2l | f ∈ Υ(T), l ∈ Z
+, ĉi ∈ Zb},

which is referred to as Ĉspace(T) in the following derivations. Next, since the cost

function of Problem 6.1 does not depend on ĉ, given a T, we need only to find a ĉ

that satisfies the error constraint (‖c− ĉ‖1 ≤ ε) if possible. For this reason, we need

only consider the ĉ that minimizes ‖c− ĉ‖1, which we term ς(T).

Definition 6.6 (ς(T), ς i(T)): Given an adder tree T, the vector ς(T) is defined

as ς(T) = argminĉ∈[Ĉspace(T)]N
‖c− ĉ‖1 and can be computed component-wise as

follows:

ς(T) =
(

argmin
ĉ0∈Ĉspace

|c0 − ĉ0|, . . . , argmin
ĉN−1∈Ĉspace

|cN−1 − ĉN−1|
)

= (ς 0(T), . . . , ςN−1(T))

(6.5)

Further reduction of (6.5) can be performed by observing that, given a fundamental,

the number of shifts l that minimizes each |ci − ĉi| can be computed as follows:

75

Definition 6.7 (lbest,i): Given a fundamental f ∈ F, let

lbest,i(f) =















max
{

0,min
{

1−
⌊

log2
3f
ci

⌋

, b− 1− ⌊log2 f⌋
}}

if f 6= 0,

0 if f = 0.

(6.6)

Note that this shift value also ensures that ĉi ∈ Zb. As a result we have,

ς i(T) = argmin
{ĉi=f ·2

lbest,i(f)|f∈Υ(T)}

|ci − ĉi|. (6.7)

To summarize, for each target constant ci, the function ς(T) scales each funda-

mental fm produced by T by a power-of-two 2l to get fm · 2
l as close to ci as possible.

Then the overall closest scaled fundamental is chosen to be ĉi. Because ς(A) com-

putes the ĉ with smallest error, there is no need to consider any other ĉ ∈ Zb.

Combining the results from (6.3), (6.5), and (6.7), we can now rewrite the feasi-

bility set of (6.1) as:

{(ĉ,T) | T ∈ Srec({1}), ĉ ∈ ς(T), ‖c− ĉ‖1 ≤ ε}. (6.8)

This new expression of the feasibility set is now fully defined in a functional sense,

wit T being the only enumerated variable. Consequently, if a solution exists to Prob-

lem 6.1, then the problem can be optimally solved by noting that the cost function

is additive and nonnegative. In other words, if at any point while recursing the Srec

function, there is no T found with cost(T) less than the current best solution, then

the problem is solved. Such an optimal solution to Problem 6.1 can be written as:

(ĉ,T)⋆ = argmin
{(ĉ,T)|T∈Srec({1}),ĉ∈ς (T),‖c−ĉ‖1≤ε}

cost(T). (6.9)

Next, Section 6.3.2 builds upon this section’s results to derive a more intelligent way

76

of enumerating the T space than simply exhaustively searching.

6.3.2 Applying a Heuristic

In Section 6.3.1, we formed a complete functional description of Problem 6.1, culmi-

nating in the optimal solution definition provided in (6.9). However, no algorithm

for computing the solution was prescribed other than an exhaustive search. Thus,

in this section, a heuristic implementation is provided for solving Problem 6.1 that,

while suboptimal, is relatively efficient.

Consider a greedy heuristic for computing a solution in (6.9). With a greedy

heuristic, enumeration of a search space is limited to having a branching factor of 1.

Also, enumeration of the search space ends once the first feasible element found. Be-

cause of these two properties, a greedy heuristic might lead to a suboptimal solution,

but it can often find a feasible solution much more efficiently than with an exhaus-

tive search. Optimality of the solutions can be improved by developing a sufficiently

intelligent formula for choosing the branch direction at each stage.

Consider, our problem as defined in (6.9). The search space uses the Srec function

defined in (6.2). This equation shows a branch factor that can be very large, because

at each level of recursing Srec(T), the recursion creates a new branch for each element

in S(T). Figure 5.1 illustrates this exponentially growing branch factor.

Definition 6.8 (Sgreedy): On the other hand, using a greedy heuristic, (6.2) can be

replaced by:

Sgreedy(T) =















T if ‖c− ς(T)‖1 ≤ ε,

Sgreedy

(

argmin
T′∈S(T)

h(T′)
)

otherwise,
(6.10)

where h(T′) is some evaluator function that is ideally minimized for the best choice

of successor tree T′.

77

As a simple, yet effective, heuristic evaluator, we consider the following definition

of h:

Definition 6.9 (h): Given an adder tree T, let h(T) = ‖c− ς(T)‖1.

Using this heuristic evaluator, the successor adder tree with the smallest error is al-

ways chosen. In this manner, the algorithm greedily moves towards a feasible pair

(ĉ,T) by reducing the quantization error as much as possible at each stage. This

heuristic evaluator does not consider the actual cost of T at any stage but can effec-

tively lead to reduced solution costs since the total number of A-relations is lessened.

Finally, the greedy solution to Problem 6.1 is computed as:

(ĉ,T)greedy = (ς(Sgreedy(1)), Sgreedy(1)). (6.11)

As a result of fully specifying the functional description of Problem 6.1 in Sec-

tions 6.3.1 and 6.3.2, the greedy algorithm can be implemented directly from the

function definitions into functional programming code. Accordingly, Algorithm 6.1

provides an F# [52, 53] implementation. The code is generated from translating the

function definitions into proper F# syntax, and no other algorithmic considerations

are needed to convert from the mathematical description into the program code. For

this reason, the functional programming implementation is clear and concise and is

less prone to errors than an imperative programming implementation.

6.4 Experiments and Results

In Section 6.2, an MRCM problem, Problem 6.1, is formulated to address the op-

timization of an MCM circuit using a gate-level cost model, and in Section 6.3, a

greedy algorithm greedy solve is developed for solving this problem. Therefore,

in this section, an experiment is conducted to evaluate the MRCM approach using

78

Algorithm 6.1 solve greedy: F# implementation
! /)287'/9):;,))(<8&8)=8>?#3-2@8A
0 8888/)28,''2,)/8A8>!5BC8!5BC8>BC8BC8B@C8!5B@
D 8888/)287-.=8E8A
F 88888888/)283-9.((),2,))7'68A8G6',8>:C:C:CH@83-8E8('8<3)/(8H8I8<3)/(8B5BJ
K 88888888/)287-.=:38&:38A
L 888888888888/)28/:?)723868A
M 888888888888888836868A8B5B82N)-
O 88888888888888888888B
P 8888888888888888)/7)

!B 88888888888888888888%.Q8B5B8>%3-8>!5B8R86/'',8>/';08>D5B8S868T8&:3@@@8>6/'.28?8R8!5B8R86/'',8>/';086@@@
!! 888888888888888888888888UV83-2
!0 888888888888G6',8683-83-9.((),2,))7'68RV868S82H'E'8>/:?)72386@J8UV
!D 8888888888888888W3725%3-"<8>6+-8&X.2:38RV8.?78>&:38R8&X.2:3@@
!F 88888888W3725%.=87-.=:38&
!K 8888/)28,)&8Y:;,))(<8E8A
!L 88888888/)28Y8A
!M 888888888888/)28Y:./8A
!O 8888888888888888/)28Z/8>/:!C/:0C7@8+898A
!P 88888888888888888888/)28,)&86+-(.%)-2./3[)868A
0B 88888888888888888888888836868\8!5B8A8!5B82N)-
0! 88888888888888888888888888886
00 888888888888888888888888)/7)
0D 88888888888888888888888888886+-(.%)-2./3[)8>68T805B@
0F 888888888888888888886+-(.%)-2./3[)8>2H'E'8/:!8S8+8]8>R!5B@SS>6/'.287@8S8>2H'E'8/:0@8S89@
0K 8888888888888888G
0L 888888888888888888886',8>:C:C:C+@83-8E8('8
0M 888888888888888888886',8>:C:C:C9@83-8E8('8
0O 8888888888888888888888886',8/:!83-8>,.-;)8!5B8>/';08>>2H'E'8?8R8!5B8R89@8T8+@8@@8RV
0P 8888888888888888888888888888>+C89C8>/:!C8BC8B@C8Z/8>/:!C8BC8B@8+89@
DB 888888888888888888888888<3)/(8>+C89C8>BC8BC8B@C8Z/8>BC8BC8B@8+89@
D! 8888888888888888888888886',8/:!83-8>,.-;)8>%.Q8!5B8>/';08>>D5B8]89@8T8+@@@
D0 88>/';08>>2H'E'8?8]898R8!5B@8T8+@@@8RV
DD 8888888888888888888888888888>+C89C8>/:!C8BC8!@C8Z/8>/:!C8BC8!@8+89@
DF 8888888888888888888888886',8/:083-8>,.-;)8!5B8>/';08>>+8R8D5B@8T89@@@8RV
DK 8888888888888888888888888888>+C89C8>BC8/:0C8!@C8Z/8>BC8/:0C8!@8+89@
DL 888888888888888888888888368+8VA898]8L5B82N)-8<3)/(8>+C89C8>BC8BC8!@C8Z/8>BC8BC8!@8+89@
DM 8888888888888888J
DO 888888888888G6',8,:=,3%)83-8Y:./8RV8,:=,3%)8##8EJ
DP 88888888/)28N8E8A8W3725%.=08>6+-8&:38&X.2:38RV8.?78>&:38R8&X.2:3@@8&8>7-.=8E@8UV8W37257+%
FB 88888888368N8E8^A8)=82N)-
F! 888888888888E
F0 88888888)/7)
FD 888888888888Y:;,))(<8>W3725%3-"<8N8Y@
FF 8888>7-.=8>Y:;,))(<8G,''2,)/J@C8Y:;,))(<8G,''2,)/J@

greedy solve in comparison to the de facto disjointed approach of rounding the real

constants and applying an MICM algorithm for optimization. Section 6.4.1 details

the experimental setup and Section 6.4.2 provide the results of the experiment.

6.4.1 Experimental Setup

The experiment is divided into three sets of randomized trials designed to show dif-

ferent trends of the algorithm results as the parameters N , ε, and b vary. For the

first experiment set, the number of bits is held constant at b = 8, while the number

of constants N and the error bound ε vary. The parameter N takes the values 20,

79

40, 60, and 80. Each constant ci of c is drawn from a uniform distribution on Rb.

For each N , ε takes on four values evenly spaced between N/4 and N/2. The rea-

soning is as follows: For a given bitwidth b and uniformly distributed constants in

Rb, the expected minimum value of ε such that a solution to Problem 6.1 exists is

E[‖c− round(c)‖1] = N/4. This property also implies that when ε exceeds N/2 it is

expected that a solution exists using only b − 1 bits. Thus, for a fixed b, exercising

the range N/4 to N/2 is appropriate for determining the effects that increased error

has on algorithm performance. Because the range of ε depends on N , it is useful to

define a quantity ε̃ = ε/N to be used when showing trends.

Similarly, for the second experiment set, the number of constants is fixed at N =

60. Then, the number of bits b takes the values 5–11 and ε̃ takes the same values as

the first experiment set—four values evenly spaced between N/4 and N/2.

Last, for the third experiment set, the quantity ε̃ is fixed towards the middle of

the range at ε̃ = 5/12. Again, N takes the values 20, 40, 60, and 80 and b takes the

values 5–11. Additionally, for averaging purposes, there are ten randomized trials run

for each parameter set.

For each trial, the MRCM approach using greedy solve is compared with the

de facto disjointed approach of rounding the real constants and applying an MICM

algorithm for optimization. For the disjointed approach, the MICM algorithm minas

developed by Aksoy et al. in [26] is considered, since it is a recent heuristic designed

specifically for the gate-level cost model and is relatively efficient. To enable the use

of an MICM algorithm, the random constants are first rounded to b bits. Then, both

algorithms are executed on their respective real/integer constants. These executions

generate an adder tree for each algorithm. Last, an integer linear programming (ILP)

problem is formed for each adder tree and is solved using an ILP solver called SCIP

[54,55]. This last step rearranges the fundamentals in the adder trees to optimize the

gate-level cost with respect to the limitations discussed in [26], that is, the order of

80

the output fundamentals in the adder tree cannot change3.

6.4.2 Results

The results of these three experiment sets are now discussed. To compare the relative

costs of the two algorithms greedy solve and minas in an empirical manner, we

look at the ratio
costgreedy
costminas

for each parameter set, averaged over the ten trials.

Figure 6.1 shows the results of the first experiment set. The figure gives two

0.25 0.3 0.35 0.4 0.45 0.5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ε̃

ra
t
io

c
o
st
g
r
e
e
d
y

c
o
st
m
i
n
a
s

b = 8

N = 20

N = 40

N = 60

N = 80

(a) ratio vs. ε̃

20 30 40 50 60 70 80
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N

ra
t
io

c
o
st
g
r
e
e
d
y

c
o
st
m
i
n
a
s

b = 8

ε̃ = 0.250000

ε̃ = 0.333333

ε̃ = 0.416667

ε̃ = 0.500000

(b) ratio vs. N

Figure 6.1: Results of the first experiment set in terms of the ratio
costgreedy
costminas

.

different views of the same data to show trends over both of the variable trial param-

eters ε̃ and N . Observe from Figure 6.1(a) that the ratio has a negative trend as the

error bound increases, starting around 1 for ε = 0.25 and decreasing monotonically

as ε approaches 0.5. This means that the MRCM algorithm achieves better results

when there is more flexibility in terms of error, which is to be expected. Furthermore,

the plots show that as the number of constants increases, the overall improvement

is better as well. This observation makes sense because, with a higher number of

constants, there is more flexibility in how the error can be distributed between the

constants.

3However, output fundamentals may be removed from the adder tree if they are not needed

81

0.25 0.3 0.35 0.4 0.45 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ε̃

ra
t
io

c
o
st
g
r
e
e
d
y

c
o
st
m
i
n
a
s

N = 60

b = 5

b = 6

b = 7

b = 8

b = 9

b = 10

b = 11

(a) ratio vs. ε̃

5 6 7 8 9 10 11
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

b

ra
t
io

c
o
st
g
r
e
e
d
y

c
o
st
m
i
n
a
s

N = 60

ε̃ = 0.250000

ε̃ = 0.333333

ε̃ = 0.416667

ε̃ = 0.500000

(b) ratio vs. b

Figure 6.2: Results of the second experiment set in terms of the ratio
costgreedy
costminas

.

Next, Figure 6.2 shows the results of the second experiment set. This figure

shows a very similar trend in terms of improvement versus the error bound. How-

ever, the figure also shows that, as the number of bits increases, the potential for

improvement goes down (the cost ratio goes up). Where the ratio reaches a low of

approximately 0.41 for b = 5, it only reaches a low of approximately 0.84 for b = 11.

We believe that this result comes from the fact that the greedy heuristic h(T) defined

in Section 6.3.2 does not take bitwidth into account, thus leading to possibly higher

gate-level costs since the gate-level cost of individual A-relations is heavily dependent

on the bitwidths of the A-relations inputs and output. Since the minas algorithm

partially takes bitwidths of fundamentals into account, it is possible that the advan-

tages that stem from flexibility in error of the greedy algorithm might be outweighed

by the disadvantages that arise from ignoring fundamental bitwidths.

Last, Figure 6.3 shows the results of the third experiment set. This figure’s plots

agree with the first two experiment sets with respect to the trends associated with N

and b.

82

5 6 7 8 9 10 11
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

b

ra
t
io

c
o
st
g
r
e
e
d
y

c
o
st
m
i
n
a
s

ε̃ = 0.41667

N = 20

N = 40

N = 60

N = 80

(a) ratio vs. b

20 30 40 50 60 70 80
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N

ra
ti
o

c
o
st
g
r
e
e
d
y

c
o
st
m
i
n
a
s

ε̃ = 0.41667

b = 5

b = 6

b = 7

b = 8

b = 9

b = 10

b = 11

(b) ratio vs. N

Figure 6.3: Results of the third experiment set in terms of the ratio
costgreedy
costminas

.

6.5 Summary

In summary, this chapter’s results highlight the advantages of using an MRCM ap-

proach as opposed to a rounding+MICM approach to solving MCM problems using

a gate-level cost model. In particular, a novel greedy algorithm was developed that

uses a functional programming approach to implementing an MRCM solver. As the

authors hypothesized, this algorithm that uses the MRCM framework exhibits cost

improvement over the MICM algorithm, because it leverages the inherent flexibility

allowed in the quantization of constants. As expected, greater error bounds lead to

greater potential improvement using the MRCM framework. Specifically, the amount

of potential improvement is dependent on the magnitude of the error bound relative

to the number and magnitude of the constants. The greedy algorithm developed

in this chapter was especially effective for bitwidths in the range 5–11, for which it

was experimentally shown to offer an improvement of up to 18% on small instances

(N = 20, b = 8). This improvement increased as the number of constants grew,

reaching up to 59% improvement on larger instances (N = 80, b = 5).

Furthermore, we would like to thank Aksoy et al. for providing us with their

implementation of the minas algorithm [26].

83

Chapter 7

Conclusion

7.1 Summary of Findings

In this dissertation, we provided an alternative framework for looking at the MCM

problem. First, in Chapter 2, we reviewed the current literature with respect to

the MCM problem, and noted a major shortcoming that leads to a potential loss of

optimality in applications involving real, non-integer constants. Then, in Chapter 3,

we provided the general MRCM problem formulation for addressing this shortcoming.

In the next three chapters, we looked at the MRCM problem using three different

cost models and compared our joint MRCM framework to the de facto disjoint MICM

framework.

Specifically, in Chapter 4, we developed an algorithm for solving the MRCM

problem with adder-count cost model and, through a randomized experiment, we

showed that that our joint framework leads to a reduction on the number of adders by

15%–60% on moderate size problems. In particular, for vectors of arbitrary constants,

we show a possibility for 20%–60% reduction with less than 10% vector approximation

error for both frameworks, whereas for vectors of low-pass filter coefficients, a 15%–

30% reduction is possible without exceeding 10% error in frequency response. Next,

in Chapter 5, we developed two algorithms for solving the MRCM problem with bit-

count cost model—a greedy algorithm and an optimal algorithm. Again, using a

randomized experiment, we observed that the greedy search finds solutions with an

average cost improvement of 13% over MICM algorithm solutions, and the optimal

84

search finds an additional improvement of 6%. Last, in Chapter 6, we developed a

functional programming implementation of an algorithm to solve the MRCM problem

with gate-level cost model. In a round of randomized experiments, we showed this

algorithm to offer an improvement of up to 18%, over a competing MICM algorithm,

on small instances having 20 8-bit constants, increasing to up to 59% improvement

on larger instances having 80 5-bit constants.

Regardless of the cost model used, the general MRCM problem framework was

found to enable more optimal solutions than the MICM framework, because it jointly

optimizes the quantization and shift-add network of a given MCM design.

7.2 Recommended Future Work

I recommend several extensions and derivations of this work to be investigated in

future MCM research. First, along with the improvements that the algorithms of this

dissertation produce, it can be seen that there is potential for further improvements

by investigating alternative algorithms and heuristics for solving the various MRCM

problems defined in this dissertation. For instance, when using the gate-level cost

model, a better heuristic could be developed that takes into account bitwidths of

intermediate fundamentals, thus allowing for more competitive results under higher

bitwidths. Also, with the gate-level cost model, the basic algorithm can be factored

somewhat to allow for more efficient computation.

In addition to algorithm improvements, I recommend considering different hard-

ware cost models that would translate to different optimization problems for solving.

One modification to the current MCM problem for linear time-invariant (LTI) filters

might be to consider allowing a common factoring of the target constants to add

another degree of freedom in the search space. Such a factor would merely cause

a gain adjustment without altering the frequency response characteristics. Another

85

drastically different hardware model could be investigated that considers a much finer

grain in terms of its primitive operations, in order to abstract away from the high-

level adders/multipliers and consider the underlying components that they are made

up of.

86

Bibliography

[1] S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, 4th ed.
McGraw-Hill Higher Education, 2010.

[2] D. Shi and Y. J. Yu, “Low-complexity linear phase FIR filters in cascade form,”
in Proc. IEEE Int. Symp. Circuits Syst., Jun. 2010, pp. 177–180.

[3] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic
Systems, 3rd ed. Addison-Wesley, 1997.

[4] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.

[5] H. Chen, “Transformation optics in orthogonal coordinates,” J. of Optics A:
Pure and Appl. Optics, vol. 11, no. 7, p. 075102, Jul. 2009.

[6] K. Wang, J. Chen, W. Cao, Y. Wang, L. Wang, and J. Tong, “A reconfigurable
multi-transform VLSI architecture supporting video codec design,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 58, no. 7, pp. 432–436, Jul. 2011.

[7] C. D. Bailey and D. D. Aalfs, “Design of digital beamforming subarrays for a
multifunction radar,” in Proc. IEEE Int. Radar Conf.–Surveilance for a Safer
World, Oct. 2009.

[8] A. T. Fam, “Digital beamforming with reduced number of phase shifting and
time delay elements,” in Proc. IEEE Radar Conf., May 2010, pp. 1286–1288.

[9] F. Xikun and W. Yongliang, “Real-time implementation of airborne radar space-
time adaptive processing on multi-DSP system,” in Proc. CIE Int. Conf. Radar,
Oct. 2006.

[10] M. Potkonjak, M. B. Srivastava, and A. P. Chandrakasan, “Multiple constant
multiplications: Efficient and versatile framework and algorithms for exploring
common subexpression elimination,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 15, no. 2, pp. 151–165, Feb. 1996.

[11] J. Q. Trelewicz and T. J. Trenary, “Multidimensional rational approximations
with an application to linear transforms,” IEEE Trans. Signal Process., vol. 52,
no. 5, pp. 1343–1351, May 2004.

[12] M. B. Yeary, W. Zhang, J. Q. Trelewicz, Y. Zhai, and B. McGuire, “Theory and
implementation of a computationally efficient decimation filter for power-aware
embedded systems,” IEEE Trans. Instrum. Meas., vol. 55, no. 5, pp. 1839–1849,
Oct. 2006.

87

[13] Y. Voronenko and M. Püschel, “Multiplierless multiple constant multiplication,”
ACM Trans. Algorithms, vol. 3, no. 2, article 11, May 2007.

[14] M. Potkonjak, M. B. Srivastava, and A. P. Chandrakasan, “Efficient substitu-
tion of multiple constant multiplications by shifts and additions using iterative
pairwise matching,” in Proc. IEEE/ACM Design Automation Conf., Jun. 1994,
pp. 189–194.

[15] A. G. Dempster and M. D. Macleod, “Use of minimum-adder multiplier blocks in
FIR digital filters,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.,
vol. 42, no. 9, pp. 569 –577, Sep. 1995.

[16] A. Dempster, S. Demirsoy, and I. Kale, “Designing multiplier blocks with low
logic depth,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 5, Oct. 2002, pp.
773–776.

[17] O. Gustafsson, “A difference based adder graph heuristic for multiple constant
multiplication problems,” in Proc. IEEE Int. Symp. Circuits Syst., May 2007,
pp. 1097–1100.

[18] ——, “Lower bounds for constant multiplication problems,” IEEE Trans. Cir-
cuits Syst. II, Exp. Briefs, vol. 54, no. 11, pp. 974–978, Nov. 2007.

[19] L. Aksoy, E. da Costa, P. Flores, and J. Monteiro, “Exact and approximate
algorithms for the optimization of area and delay in multiple constant multi-
plications,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27,
no. 6, pp. 1013–1026, Jun. 2008.

[20] Y.-H. A. Ho, C.-U. Lei, H.-K. Kwan, and N. Wong, “Global optimization of
common subexpressions for multiplierless synthesis of multiple constant multi-
plications,” in Proc. IEEE Design Automation Conf., Asia South Pacific, Mar.
2008, pp. 119–124.

[21] L. Aksoy, E. O. Gúneş, and P. Flores, “Search algorithms for the multiple con-
stant multiplications problem: Exact and approximate,” Elsevier Microproces-
sors and Microsystems, vol. 34, no. 5, pp. 151 – 162, Aug. 2010.

[22] L. Aksoy, E. da Costa, P. Flores, and J. Monteiro, “Optimization algorithms for
the multiplierless realization of linear transforms,” ACM Trans. Design Automa-
tion Electron. Syst., vol. 17, no. 1, pp. 3:1–3:27, Jan. 2012.

[23] K. Johansson, L. S. DeBrunner, O. Gustafsson, and V. DeBrunner, “Design
of multiplierless FIR filters with an adder depth versus filter order trade-off,”
in Conf. Rec. 43rd Asilomar Conf. Signals Syst. and Comput., Nov. 2009, pp.
744–748.

[24] K. Johansson, O. Gustafsson, and L. Wanhammar, “Bit-level optimization of
shift-and-add based FIR filters,” in Proc. IEEE Int. Conf. Electron. Circuits
Syst., Dec. 2007, pp. 713–716.

88

[25] L. Aksoy, E. da Costa, P. Flores, and J. Monteiro, “Optimization of area and
delay at gate-level in multiple constant multiplications,” in Euromicro Conf.
Digital Syst. Design, Sep. 2010, pp. 3–10.

[26] ——, “Finding the optimal tradeoff between area and delay in multiple constant
multiplications,” Elsevier Microprocessors and Microsystems, vol. 35, no. 8, pp.
729–741, 2011.

[27] K. Johansson, O. Gustafsson, and L. Wanhammar, “A detailed complexity model
for multiple constant multiplication and an algorithm to minimize the complex-
ity,” in Proc. IEEE European Conf. Circuit Theory Design, vol. 3, Aug. 2005,
pp. 465–468.

[28] T. Parks and J. McClellan, “Chebyshev approximation for nonrecursive digital
filters with linear phase,” IEEE Trans. Circuit Theory, vol. 19, no. 2, pp. 189–
194, Mar. 1972.

[29] J. McClellan, T. Parks, and L. Rabiner, “A computer program for designing
optimum FIR linear phase digital filters,” IEEE Trans. Audio Electroacoust.,
vol. 21, no. 6, pp. 506–526, Dec. 1973.

[30] Y. C. Lim and S. R. Parker, “Discrete coefficient FIR digital filter design based
upon an LMS criteria,” IEEE Trans. Circuits Syst., vol. 30, no. 10, pp. 723–739,
Oct. 1983.

[31] G. Evangelista, “Least mean squared error-design of complex FIR filters with
quantized coefficients,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Pro-
cess., vol. 48, no. 8, pp. 778–784, Aug. 2001.

[32] M. Magar and L. S. DeBrunner, “Balancing the tradeoffs between coefficient
quantization and internal quantization in FIR digital filters,” in Conf. Rec. 38th
Asilomar Conf. Signals Syst. and Comput., vol. 1, Nov. 2004, pp. 493–497.

[33] R. Ito, T. Fujie, K. Suyama, and R. Hirabayashi, “A new heuristic approach for
design of FIR filters with SP2 coefficients in a min-max sense,” in Proc. IEEE
Int. Conf. Signal Processing, vol. 1, Aug. 2004, pp. 81–84.

[34] J. Yli-Kaakinen and T. Saramäki, “A systematic algorithm for the design of
multiplierless FIR filters,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 2, May
2001, pp. 185–188.

[35] H.-J. Kang and I.-C. Park, “FIR filter synthesis algorithms for minimizing the
delay and the number of adders,” IEEE Trans. Circuits Syst. II, Analog Digit.
Signal Process., vol. 48, no. 8, pp. 770–777, Aug. 2001.

[36] D. L. Maskell, “Design of efficient multiplierless FIR filters,” IET Circuits De-
vices Syst., vol. 1, no. 2, pp. 175–180, Apr. 2007.

89

[37] F. Xu, C. H. Chang, and C. C. Jong, “Design of low-complexity FIR filters
based on signed-powers-of-two coefficients with reusable common subexpres-
sions,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 10,
pp. 1898–1907, Oct. 2007.

[38] Y. J. Yu and Y. C. Lim, “Design of linear phase FIR filters in subexpression
space using mixed integer linear programming,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 54, no. 10, pp. 2330–2338, Oct. 2007.

[39] M. Aktan, A. Yurdakul, and G. Dündar, “An algorithm for the design of low-
power hardware-efficient FIR filters,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 55, no. 6, pp. 1536–1545, Jul. 2008.

[40] D. Shi and Y. J. Yu, “Design of linear phase FIR filters with high probability
of achieving minimum number of adders,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 58, no. 1, pp. 126–136, Jan. 2011.

[41] M. B. Gately, M. B. Yeary, and C. Y. Tang, “Reduced-hardware digital filter
design via joint quantization and multiple constant multiplication optimization,”
in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., May 2011, pp. 4368–
4371.

[42] ——, “An algorithm for jointly optimizing quantization and multiple constant
multiplication,” ACM Trans. Design Automation Electron. Syst., accepted for
publication, 2012.

[43] S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, 3rd ed.
McGraw-Hill Higher Education, 2005.

[44] J. L. Gross and J. Yellen, Eds., Handbook of Graph Theory, ser. Discrete math-
ematics and its applications. CRC Press, 2004.

[45] Xilinx design tools. Xilinx. Accessed Mar. 9, 2011. [Online]. Available:
http://www.xilinx.com/tools/designtools.htm

[46] Y. Voronenko. (2009) SPIRAL multiplier block generator. SPIRAL project,
Carnegie Mellon University. Http://spiral.ece.cmu.edu/mcm/gen.html. Accessed
Oct. 5, 2010. [Online]. Available: http://spiral.ece.cmu.edu/mcm/gen.html

[47] P. Cappello and K. Steiglitz, “Some complexity issues in digital signal process-
ing,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32, no. 5, pp. 1037–1041,
Oct. 1984.

[48] Intel. (2011) Intelr Xeonr processor E5405 (12M cache, 2.00 GHz, 1333 MHz
FSB)with SPEC code(s) SLAP2, SLBBP. Specifications. Intel Corporation.
Http://ark.intel.com/Product.aspx?id=33079. Accessed Mar. 8, 2011. [Online].
Available: http://ark.intel.com/Product.aspx?id=33079

90

http://www.xilinx.com/tools/designtools.htm
http://spiral.ece.cmu.edu/mcm/gen.html
http://ark.intel.com/Product.aspx?id=33079

[49] MathWorks. (2011) Parks-McClellan optimal FIR filter design.
R2011b Documentation: Signal Processing Toolbox. The MathWorks,
Inc. Http://www.mathworks.com/help/toolbox/signal/ref/firpm.html. Accessed
Nov. 8, 2011. [Online]. Available: http://www.mathworks.com/help/toolbox/
signal/ref/firpm.html

[50] M. B. Gately, M. B. Yeary, and C. Y. Tang, “Multiple real-constant multiplica-
tion with improved cost model and greedy and optimal searches,” in Proc. IEEE
Int. Symp. Circuits Syst., accepted for publication, May 2012.

[51] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern., vol. 4,
no. 2, pp. 100–107, Jul. 1968.

[52] D. Syme, A. Granicz, and A. Cisternino, Expert F# 2.0. Berkeley, CA, USA:
Apress, 2010.

[53] Microsoft Research. (2012, Apr.) SPIRAL multiplier block generator. [On-
line]. Available: http://research.microsoft.com/en-us/um/cambridge/projects/
fsharp/

[54] T. Berthold, S. Heinz, and M. E. Pfetsch, “Solving pseudo-boolean problems
with SCIP,” Zuse Institute Berlin (ZIB), ZIB-Report 08-12, Jul. 2009. [Online].
Available: http://opus.kobv.de/zib/volltexte/2008/1095/pdf/ZR 08 12.pdf

[55] Zuse Institute Berlin (ZIB). (2012, Apr.) SCIP: An open source MIP
solver and constraint integer programming framework. [Online]. Available:
http://scip.zib.de

91

http://www.mathworks.com/help/toolbox/signal/ref/firpm.html
http://www.mathworks.com/help/toolbox/signal/ref/firpm.html
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://opus.kobv.de/zib/volltexte/2008/1095/pdf/ZR_08_12.pdf
http://scip.zib.de

	Acknowledgements
	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Introduction
	Multiple Constant Multiplication
	Typical Design Work-Flow
	Shortcomings of MCM Research
	Original Contributions
	Dissertation Outline
	Notation and Terminology

	Related Work
	The Multiple Integer-Constant Multiplication Problem
	General Problem Formulation
	Variations and Solving Methods
	Gate-Level Cost Model

	Joint Quantization and MCM in the Limited Context of Finite Impulse Response Filters

	The Multiple Real-Constant Multiplication Problem
	Rationale and Motivation
	Quantization Error Metrics
	Scalar Error Metric and p-normp-norm
	Vector Error Metric

	General MICM Problem Formulation
	General MRCM Problem Formulation

	MRCM with Adder-Count Cost Model
	Introduction
	Problem Formulation
	Constant Quantization Problem and Error Metric
	Traditional MICM Problem with Adder-Count Cost Model
	MRCM Problem with Adder-Count Cost Model

	Canonical Example
	Proposed Algorithm
	Basic Strategy
	Finitizing the (s,[h+4pt][h+3pt]) Search Space
	Applying HcubHcub to the R^ Search Space
	Further Pruning the (s,[h+4pt][h+3pt],R^) Search Space
	Limitations

	Experiments and Results
	Experimental Setup
	Results with Arbitrary Constants
	Results with Low-pass Filter Coefficients
	Additional Results

	Summary

	Multiple Real-Constant Multiplication with Bit-Count Cost Model
	Introduction
	Problem Formulation
	Proposed Algorithms
	MCM-capable Search Tree Construction
	Greedy Algorithm
	Optimal Algorithm

	Experiments and Results
	Summary

	Multiple Real-Constant Multiplication with Gate-Level Cost Model
	Introduction
	Problem Formulation
	Proposed Algorithm
	Complete Functional Problem Definition
	Applying a Heuristic

	Experiments and Results
	Experimental Setup
	Results

	Summary

	Conclusion
	Summary of Findings
	Recommended Future Work

	Bibliography

