INDEN 5350 - CREATIVE COMPONENT A METHODOLOGY TO DETERMINE COGENERATION LOADS AND OPERATING COSTS FOR AN OFFICE BUILDINGS COMPLEX

BY

VIJAY K. RAJAMANI FALL 1989

PRESENTED TO

DR. WAYNE C. TURNER, GRADUATE ADVISOR SCHOOL OF INDUSTRIAL ENGINEERING & MANAGEMENT OKLAHOMA STATE UNIVERSITY

PREFACE

Cogeneration is today, practiced mostly in large scale, industrial plants. The major reason for this is the ability to utilize the waste heat off the prime movers for industrial process needs. But, cogeneration can be used effectively in a large commercial complex also, where there are no thermal process needs, but where the heat generated can be used for heating and air conditioning via absorption chilling. The purpose of this report is to develop a methodology to calculate the total electrical and thermal loads that would have to be generated by a central cogeneration plant for a building complex. Methods have also been developed to calculate the operating costs for a central cogeneration plant, under two different technologies and three different loading options. The two technologies that have been considered are Gas Turbines and Gas Engines, each with heat recovery steam generators and electrical generators. The loading options that have been considered are Electrically Isolated, Electrically Baseloaded and Thermally Baseloaded options. A complete case study has been included in the appendix.

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to his advisor, Dr. Wayne C. Turner for having agreed to let him work on this report and for providing valuable ideas and suggestions to improve the quality of the work. Dr. Turner has been a constant source of inspiration throughout the author's stay at Oklahoma State University.

The author would also like to show his appreciation to Jorge B. Wong-Kcomt for his guidance through the whole length of this report. The author hopes that the work done in this report will be useful in Jorge's doctorate research.

The author wishes to express his thanks to Tom Willis and William King for their help in providing the Peak Day Analysis Plots and other useful information.

The author would like to thank Alpesh Dharia and Masood Rahman for having developed the transmission costs for the case study.

. .

TABLE OF CONTENTS

	PREFACE	i
	ACKNOWLEDGEMENTS	ii
	CHAPTER 1 - INTRODUCTION	1
	CHAPTER 2 - LOADING OPTIONS FOR COGENERATION	5
	CHAPTER 3 - METHODOLOGY USED TO DEVELOP	8
	INDIVIDUAL BUILDING LOADS	
	CHAPTER 4 - METHODOLOGY USED TO DEVELOP	14
	THE TOTAL LOADS FOR THE COMPLEX	
	CHAPTER 5 - METHODOLOGY BEHIND DEVELOPING	17
	OPERATING COSTS FOR EACH ALTERNATIVE	
	1. ELECTRICALLY BASELOADED ANALYSIS - GAS TURBINE	17
	2. ELECTRICALLY ISOLATED ANALYSIS - GAS TURBINE	23
e	3. ELECTRICALLY BASELOADED ANALYSIS - GAS ENGINE	28
	4. ELECTRICALLY ISOLATED ANALYSIS - GAS ENGINE	34
	CONCLUSION	39
	BIBLIOGRAPHY	40
	APPENDIX A - CASE STUDY	41
	APPENDIX B - PEAK DAY ANALYSIS PLOTS	88

LIST OF TABLES AND FIGURES

TABLE 1.1 - TOTAL LOADS	4
FIGURE 2.1 - COGENERATION OPTIONS	7
FIGURE 3.1 - DERIVING LIGHTING AND BASELOADS	11A
TABLE 3.1 - BUILDING LOADS SPREADSHEET - ELECTRICAL	12
TABLE 3.11 - BUILDING LOADS - THERMAL	13

ſ

TABLE	4.1		TOTAL	LOADS .	•••••		• • • • • • •	••••	16
TABLE	5.1	-	ELECT	RICALLY	BASELOADED	ANALYSIS		••••	20
			GAS TU	JRBINE					
TABLE	5.11	-	- ELECI	RICALLY	BASELOADE	O ANALYSIS			21

GAS TURBINE - SENSITIVITY ANALYSIS

- TABLE 5.12 ELECTRICALLY BASELOADED ANALYSIS 22GAS TURBINE SENSITIVITY ANALYSIS
- TABLE 5.2 ELECTRICALLY ISOLATED ANALYSIS 25 GAS TURBINE
- TABLE 5.21 ELECTRICALLY ISOLATED ANALYSIS 26 GAS TURBINE - SENSITIVITY ANALYSIS
- TABLE 5.3 ELECTRICALLY BASELOADED ANALYSIS 31 GAS ENGINE
- TABLE 5.31 ELECTRICALLY BASELOADED ANALYSIS 32 GAS ENGINE - SENSITIVITY ANALYSIS
- TABLE 5.32 ELECTRICALLY BASELOADED ANALYSIS 33 GAS ENGINE - SENSITIVITY ANALYSIS
- TABLE 5.41 ELECTRICALLY ISOLATED ANALYSIS 37 GAS ENGINE - SENSITIVITY ANALYSIS

TABLE A1.2 - THERMAL LOADS - SEQUOYAH	50
TABLE A2.1 - ELECTRICAL LOADS - W. ROGERS	51
TABLE A2.2 - THERMAL LOADS - W. ROGERS	52
TABLE A3.1 - ELECTRICAL LOADS - J. THORPE	53
TABLE A3.2 - THERMAL LOADS - J. THORPE	54
TABLE A4.1 - ELECTRICAL LOADS - D.O.T	5 5
TABLE A4.2 - THERMAL LOADS - D.O.T	56
TABLE A5.1 - ELECTRICAL LOADS - CONNERS	57
TABLE A5.2 - THERMAL LOADS - CONNERS	58
TABLE A6.1 - ELECTRICAL LOADS - CAPITOL	59
TABLE A6.2 - THERMAL LOADS - CAPITOL	60
TABLE A7.1 - ELECTRICAL LOADS - HODGES	61
TABLE A7.2 - THERMAL LOADS - HODGES	62
TABLE A8.1 - ELECTRICAL LOADS - COURTS	63
TABLE A8.2 - THERMAL LOADS - COURTS	64
TABLE A9 - CHP PIPING LAYOUT AND COST	72
FIGURE A2 - DISTANCES USED IN CALCULATING	73
TRANSMISSION COSTS	

V

CHAPTER 1

INTRODUCTION

Cogeneration is defined as the coincident generation of necessary heat and power - electrical and/or mechanical - or the recovery of low-level heat for power production. (4) Two-thirds of the energy consumed by conventional electric power plants is normally lost to the environment. (2) Cogeneration systems recapture much of the otherwise wasted thermal energy and use this energy for a variety of purposes.

Natural gas-fired cogeneration systems are an attractive option from both an environmental and an energy efficiency standpoint. (2) Gas-fired cogeneration systems such as gas turbines or gas engines offer a clean and efficient means of power production.

What do utilies think about cogenerators? Limaye (3) attempted to answer this question. According to him, many utilies, looking ahead, see their best prospects in (a) completing plants now almost completed, and (b) to some extent discouraging increases in load growth. As part of this basic approach, all utilities would find it advantageous to flatten their system load curve, and to reduce or eliminate use of expensive peaking generation requiring use of high cost & fuels in relatively inefficient power plants. Cogeneration could contribute significantly in this approach. It appears that the

changing economic and institutional environment will lead electric utilities in the 1980s and 1990s towards a gradual redefinition of their traditional role. Thus, utilities may actively encourage cogeneration and may even participate in such projects.

The methodology used to estimate total electrical and thermal loads and operating costs for an office-buildings complex was developed as part of a study for the Oklahoma State Office of Public Affairs (OPA). The study is concerned with studying cogeneration potential for an eight-buildings complex. A more detailed explanation of the problem and the complete study can be found in Appendix A.

To size the cogeneration plant for the complex, the total electrical and thermal loads that would have to be generated had to be determined. The total monthly electrical KWH, KW and monthly thermal loads are shown in Table 1.1. A detailed explanation of how they were determined is included in the section entitled `Methodology Used to Develop the Total Loads for the Complex'. The first step towards determining the total loads for the cogeneration complex was to determine each building's individual loads. This was done by using `Peak Day Analysis Plots' supplied by the local utility, knowledge of existing equipment, and the natural gas bills. A breakdown of the total monthly electrical load in each building was made. The breakdown included lighting and office equipment loads, a

baseload that always exists and chiller loads. A major assumption made at this stage was that all buildings will be cooled via absorption chilling. Therefore, for those buildings that do not have absorption chilling, the total monthly electrical consumption by chillers was converted into equivalent MMBTUS that would need to be generated. The thermal loads were broken down into monthly baseloads, monthly cooling loads and monthly heating loads, if any. A detailed explanation of the breakdown follows in the section entitled `Methodology Used to Develop Individual Building Loads and Use of Peakday Analysis Plots'.

Once the total loads for the cogeneration complex were determined, prime movers were sized under the different loading options. Next, a methodology was developed to calculate operating costs under different scenarios. The complete case study for OPA is included in Appendix A. This case study includes an economic analysis of the various alternatives and the present worth criterion has been used to determine the best alternative.

TABLE 1.1 TOTAL LOADS - ELECTRICAL AND THERMAL

MONTH	DAYS IN		CHP_ELEC				THERMAL	
	MONTH	KWH/MO	PEAK KW	AVG_KW	LOAD-FAC	MMBTU	MMBTU/HR	
1	31	2692461	4765	3619	0.76	17074	34.4	
2	29	2520 8 04	4870	3622	0.74	12022	25.9	
3	31	2788671	4860	3748	0.77	11768	23.7	
4	30	2712386	4965	3767	0.76	12674	26.4	
5	31	3013931	5215	4051	0.78	12657	25.5	
6	30	3130500	5610	4348	0.78	13238	27.6	
7	31	3555456	6050	4779	0.79	17282	34.8	
8	31	3378026	5875	4540	0.77	16204	32.7	
9	30	3038571	5460	4220	0.77	15837	33.0	
10	31	2846641	5090	3826	0.75	9714	19.6	
11	30	2755500	5210	3827	0.73	11354	23.7	
12	31	2715290	4920	3650	0.74	11727	23.6	

CHAPTER 2

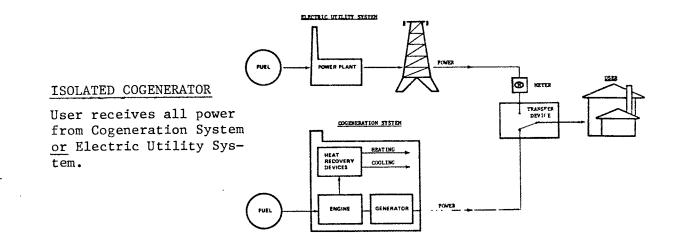
LOADING OPTIONS FOR COGENERATION

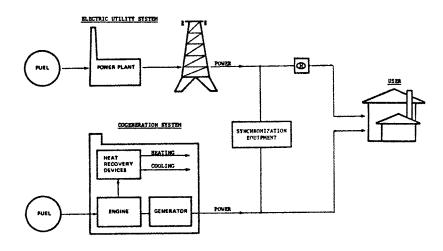
Hay (2) points out that design alternatives are limited only by the creativity of the design engineers. However, for purposes of exploring the feasibility of a potential cogeneration system, only a limited number of alternatives have been considered in this report. These concepts are described briefly below.

Isolated Operation, Electric Load Following

The facility is independent of the electric utility grid, and the cogenerator is required both to produce all power required on-site and to provide all reserves required for scheduled and unscheduled maintenance. According to Hay (2), this type of system generally provides the least attractive economic return and the construction of this type of facility is extremely rare.

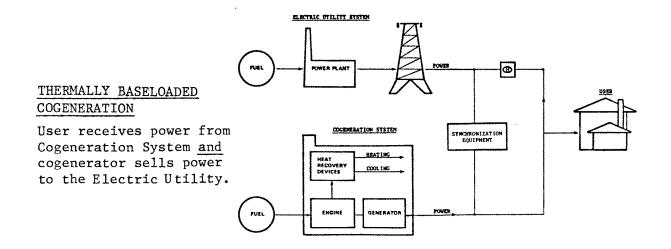
Baseloaded, Electrically Sized


An electrically baseloaded system is sized to satisfy that end user electric demand which is always available. The energy end user purchases supplemental power from the utility grid, and, in general, no power is sold to the grid. Supplemental heat is provided by on-site boilers or burners.


Baseloaded, Thermally Sized

A thermally baseloaded system is sized to provide most of the site's required thermal energy using recovered heat from the engine prime mover. The engines are operated to follow the thermal demand with supplemental boilers fired as required. This option frequently results in the production of more power than is required on-site and this power may be sold to the electric utility.

Each of these concepts is illustrated in Figure 2.1.


FIGURE 2.1 COGENERATION OPTIONS

ELECTRICALLY BASE-LOADED COGENERATION

User receives power from Cogeneration System and purchases power from the Electric Utility System

ANALYSIS

WRCE: A.G.A. MANUAL - COGENERATION" FEASIBILITY

CHAPTER 3

METHODOLOGY USED TO DEVELOP INDIVIDUAL BUILDING LOADS - BUILDING LOADS SPREADSHEET

The first step to developing the total loads for the cogeneration complex was to determine each building's individual loads. Knowledge of the buildings already existed and information on the total monthly electrical demand and consumption was also available. But, a detailed breakdown of each building's electrical and thermal loads was necessary.

Peak Day Analysis Plots were obtained from the local utility for this purpose. These plots can be found in Appendix B. A typical Peak Day Analysis Plot shows the load variation in 15 minute intervals for the peak day in a particular month. It also shows the load variation for the day before the peak day and the day after the peak day. Twelve Peak Day Analysis Plots were obtained for each building, one for each month in 1988.

To explain the methodology, a typical building's (Jim Thorpe) Peak Day Analysis Plots have been used. The Building Loads Spreadsheet is shown in Tables 3.1 and 3.11. Table 3.1 shows the electrical loads, while Table 3.11 shows the thermal loads. The main idea here was to breakdown the electrical and thermal loads, as talked about earlier. An explanation of each of the individual columns follows. All references to KW and hours per day of operation have been obtained from the Peak Day Analysis Plots and some knowledge of the way in which the

building operates.

<u>Column A</u> - Average hours per day that lights are on in the building.

<u>Column B</u> - Average KW towards lighting and Office Equipment for the month. This is obtained by noting the increase in KW from 07 hours to 08 hours on the Peak Day Analysis Plots (Figure 3.1).

<u>Column C</u> - The total KWH/day for Lighting and Office Equipment is obtained by multiplying Column A with Column B.

<u>Column D</u> - The total hours per day that the baseload exists. The average KW is so selected that this load always exists in the month.

<u>Column E</u> - The average KW towards baseload for the month. The baseload is made up of fans and pumps and lights that are always on. This is obtained from the Peak Day Analysis Plots as shown in Figure 3.1.

<u>Column F</u> - The total KWH per day attributed to the baseload is obtained by multiplying Column D with Column E.

<u>Columns</u>

G,H,I,J - The total KWH attributed to chillers has been broken down into two components - an average hrs/day (Column G) at an

average load (Column H) and an other average hrs/day (Column I) at another average load (Column J). This has to be done in order to convert chilling KWH into equivalent MMBTUs assuming that absorption chilling will be incorporated in all buildings.

<u>Column K</u> - The total KWH per day attributed to chillers is obtained by multiplying (Column G with Column H) and (Column I with Column J) and adding the two together.

<u>Column L</u> - The electrical KWH/month to be generated by the CHP plant is obtained by multiplying (Column F by 7days/week) and (Column C by 5 days/week) and adding the two. This figure is then multiplied by the number of weeks in the month.

<u>Column M</u> - The total estimated KWH/month is obtained by multiplying (Column F by 7) and (Column C by 5) and (Column K by 5) and adding the three together. This figure is then multiplied by the number of weeks in the month.

<u>Column N</u> - The total KWH/month metered is obtained from the information supplied by OG&E. This figure is used to compare with Column M.

<u>Column O</u> - The baseload for each building is just the domestic hot water demand.

<u>Column P</u> - The heating requirements have been generated from

the gas bills.

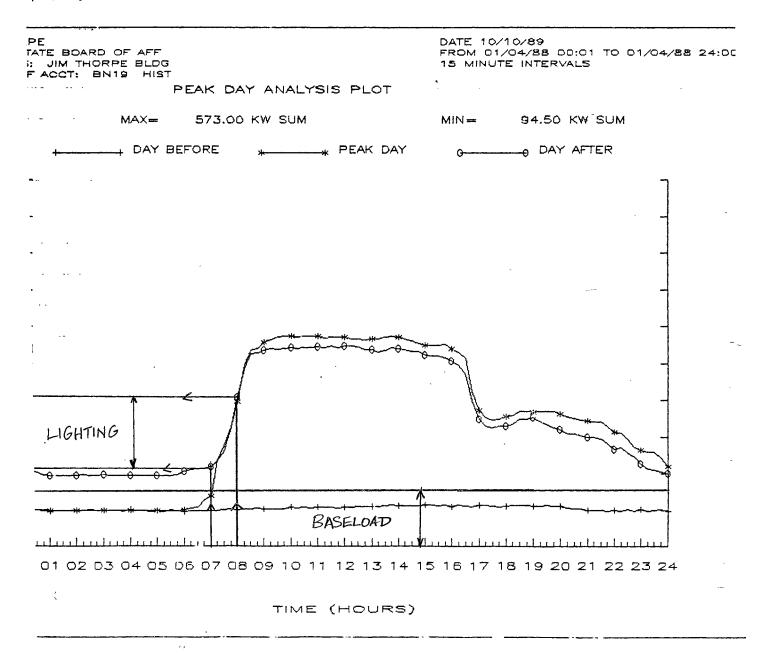
<u>Column Q</u> - The cooling requirements for the buildings which do not have any absorption chilling have been calculated as follows:

,

(Monthly chiller KWH)(3412 BTU/KWH)(2.5)

(1.375)(0.8)(1000000 BTU/MMBTU)

where


2.5 = Average COP of centrifugal chiller 1.375 = COP of 2 stage absorption chiller 0.8 = Efficiency of heat recovery generator Monthly Chiller KWH = Column K times the number of days in the month.

For buildings that are equipped with absorption chillers, the cooling load has been derived from the bill plots.

<u>Column R</u> - The total thermal load is obtained by adding together columns O, P & Q.

FIGURE 3.1 - DERIVING LIGHTING AND BASELOADS

5 8

AII.

	BLDG.:	TABLE 3.1 J. THORPE		1988 (C)		AL LOADS	F) (G) (H) (1) (J	K	
MONTH	I DAYS IN MONTH	HR/DAY	LIGHTS/OE	kWH'/DAY	HP/DAY	BASELOAD		HD/NAV-1	AVG W-1	CHILLER	AVG.kW-2 k	WH'/DAY	CHP-ELEC KWH/MO.
	nunin		AFU. NA -			AYU, KW		Π Α/ UK (⁻)	AYQ. N#-1	11R/DK1-2	AYU.N#-2 N		
1	31	11	200	2200	24	150	3600	3	175	9	175	2100	160314
2	29	11	200	2200	24	100	2400	3	200	10	250	3100	115171
3	31	11	200	2200	24	175	4200	3	150	8	175	1850	178914
4	30	11	200	2200	24	200	4800	3	150	8	200	2050	191143
5	31	12	200	2400	24	200	4800	3	250	9	325	3675	201943
6	30	12	200	2400	24	225	5400	3	275	9	325	3750	213429
7	31	11	200	2200	24	225	5400	5	300	9	350	4650	216114
8	31	11	200	2200	24	250	6000	5	250	8	325	3850	234714
9	30	11	200	2200	24	225	5400	7	225	9	325	4500	209143
10	31		200	2200	24	225	5400	5	200	8	175	2400	216114
11	30		200	2200	24	200	4800	3	150	9	175	2025	191143
12	31		200	2200	24	200	4800	3	125	8	125	1375	197514

(N)(M)

TOTAL KWH/MONTH ESTIMATED. METERED

206814	209200
179386	204800
219879	218000
235071	218800
283318	282000
293786	298000
319079	325600
319964	316400
305571	312800
269257	253200
234536	240000
227961	190400

0) (P	1 THORPE) Q OADS (MMB)	(R) ru)
BASELOAD	HEATING	COOLING	TOTAL
134	1555	432.7	2121.7
134	668	597.5	1399.5
134	466	381.2	981.2
134	911	408.8	1453.8
134	43	757.2	934.2
134	0	747.8	881.8
134	0	958.1	1092.1
134	0	793.3	927.3
134	0	897.3	1031.3
134	91	494.5	719.5
134	1123	403.8	1660.8
134	1619	283.3	2036.3

CHAPTER 4

METHODOLOGY USED TO DEVELOP THE TOTAL LOADS FOR THE COMPLEX -TOTAL LOADS SPREADSHEET

As stated earlier, developing the total loads was the key to the whole problem. The total electrical and thermal loads that need to be generated will then determine the size of the prime movers. The Total Loads Spreadsheet is shown in Table 4.1. From this spreadsheet, the prime movers can be sized for each of the three loading options that have been discussed. All Building Loads Spreadsheets that have been used to generate the Total Loads Spreadsheet can be found in Appendix A. An explanation for each of the columns of the Total Loads Spreadsheet follows.

<u>Column A</u> - The total KWH/month that needs to be generated is obtained by adding together Column L from the Building Loads Spreadsheet (for the buildings that presently do not have absorption chilling) and Column M from the Building Loads Spreadsheet (for those buildings that presently have absorption chilling).

<u>Column B</u> - The peak KW that needs to be satisfied in each month is obtained by adding together Columns B & E from the Building Loads Spreadsheet, for all the buildings.

<u>Column C</u> - The average KW for the month is obtained by dividing Column B by the total hours in the month.

<u>Column D</u> - The load factor for each month is obtained by dividing Column C by Column B.

<u>Column E</u> - The total thermal load for each month is the sum of the individual thermal loads for each building. (Column R from the building loads spreadsheet)

<u>Column F</u> - The thermal requirement in MMBTU/hr for each month is obtained by dividing the monthly thermal load (Column E) by the number of hours in the month.

		TOTAL LOA	IDS - ELEC	TRICAL AI	ND THERMAL		
		(A)	B	\mathcal{C}) D	E	F
MONTH	DAYS IN MONTH	KWH/MO	CHP_ELEC PEAK KW	AVG_KW	LOAD-FAC	MMBTU	THERMAL MMBTU/HR
1	31	2692461	4765	3619	0.76	17074	34.4
2	29	2520804	4870	3622	0.74	12022	25.9
3	31	2788671	4860	3748	0.77	11768	23.7
4	30	2712386	4965	3767	0.76	12674	26.4
5	31	3013931	5215	4051	0.78	12657	25.5
6	30	3130500	5610	4348	0.78	13238	27.5
7	31	3555456	6050	4779	0.79	17282	34.8
8	31	3378026	5875	4540	0.77	16204	32.7
9	30	3038571	5460	4220	0.77	15837	33.0
10	31	2846641	5090	3826	0.75	9714	19.6
11	30	2755500	5210	3827	0.73	11354	23.7
12	31	2715290	4920	3650	0.74	11727	23.6

TABLE 4.1

.

CHAPTER 5

METHODOLOGY BEHIND DEVELOPING OPERATING COSTS FOR EACH ALTERNATIVE

Having developed the Total Loads Spreadsheet, the next step was to size the prime mover. Two different prime movers were considered for this purpose - Gas Engine and Gas Turbine. Each of these was sized under the three loading options. Thus, there were six different alternatives to consider. Appendix A carries a detailed explanation on prime mover sizing. Once the prime movers were sized, operating costs had to be calculated for each alternative. The objective of the spreadsheets to follow is to develop fuel (natural gas) costs for the cogeneration system and to determine the quantity and cost of excess electricity and natural gas that would need to be purchased from the local utility. These costs have been developed on a month-by-month basis.

1. ELECTRICALLY BASELOADED ANALYSIS - GAS TURBINE

Table 5.1 shows the spreadsheet used to evaluate the operating costs for this alternative. The total yearly operating costs for this alternative are \$1,404,307, when gas is available at \$2.5/MCF. It should be noted that with the equipment selected, a certain amount of gas needs to be bought from the utility (Columns M & N). This gas needs to be bought at \$3.6/MCF. However, with supplementary firing at the

cogeneration plant, this problem can be overcome. If supplementary firing is not done, a small steam generator can be bought, or a boiler or boilers can be fired in some buildings. Sensitivity analysis has been carried out in Tables 5.11 and 5.12. The details for each column follow.

<u>Columns</u>

<u>A,B,C</u> - KWH/mo, Peak KW, Avg. KW that needs to be generated-Copied from Total Loads spreadsheet.

<u>Column D</u> - This is the peak KW that can be generated by the selected equipment.

<u>Column E</u> - This is the total KWH that can be generated by the selected equipment.

<u>Column F</u> - Fuel consumption by the system - This is obtained from multiplying Column E with 0.013 MMBTU/KWH - Manufacturer's Data.

Column G - System Fuel Costs - Column F multiplied by \$2.5/MCF.

<u>Column H</u> - System Maintenance Costs - Column E multiplied by 0.0035/KWH -Manufacturer's Data.

<u>Column 1</u> - KWH that would need to be bought from OG&E are obtained by subtracting Column E from Column A.

<u>Column J</u> - KW that would need to be bought from OG&E are obtained by subtracting Column D from Column B. <u>Column J1</u> - Column J is multiplied by the appropriate demand charge and Column I by the energy charge. These are electricity charges being paid currently by the State.

<u>Column K</u> - System Thermal Requirements - Copied from Total Loads Spreadsheet.

<u>Column L</u> - MMBTU/hr capable of being produced by the selected equipment multiplied by the number of hours per month. MMBTU/hr - Calculated from Manufacturer's Data. = (lb/hr of steam at 150 psig)(appropriate BTU/lb)(1/0.8) , where

0.8 = heat recovery generator efficiency.

<u>Column M</u> - The MMBTUs that need to be bought from ONG are obtained by subtracting Column L from Column K.

<u>Column N</u> - Column M is multiplied by 3.6/MCF, the average rate at which the State buys gas from ONG.

<u>Column O</u> - The total monthly fuel cost for the system is the sum of Columns N, J1, H and G.

		(A)	B	\mathcal{C}) (D)	CHP GAS P	RICE - \$	2.5/MCF 6	H		T	Ţ
IONTH	DAYS IN		CHP_ELEC			SYSTEM PE	RFORMANC	E		0	G&E SUPPL	Y.
	MONTH	KWH/MO	PEAK KW	AVG_K₩	PEAK KW	KWH	FUEL	FUEL COST	MAINT.	KWH	KW	COST
							MCF	\$	\$			
1	31	2692461	4765	3619	3743	2784792	36202	90506	9747	0	1022	3403
2	29	2520804	4870	3622	3743	2605128	33867	84667	9118	0	1127	3753
3	31	2788671	4850	3748	3743	2784792	36202	90506	9747	3879	1117	3856
4	30	2712386	4965	3767	3743	2694960	35034	87586	9432	17426	1222	4684
5	31	3013931	5215	4051	3743	2784792	36202	90506	9747	229139	1472	12986
6	30	3130500	5610	4348	3743	2694960	35034	87586	9432	435540	1867	21583
7	31	355545€	6050	4779	3743	2784792	36202	90506	9747	770664	2307	48298
8	31	3378026	5875	4540	3743	2784792	36202	90506	9747	593234	2132	40437
9	30	3038571	5460	4220	3743	2694960	35034	87586	9432	343611	1717	27833
10	31	2846641	5090	3826	3743	2784792	36202		9747	61849	1347	14507
11	30	2755500	5210	3827	3743	2694960	35034	87586	9432	60540	1467	7021
12	31	2715290	4920	3650	3743	2784792	36202	90506	9747	0	1177	3919

K	L	M	N	0
		ONG SUPPLY		TOTAL
MMBTU	SYSTEM		COST	
REQD.	MMBTU	MMBTU	\$	\$
17074	14746	2328	8382	112038
12022	13795	0	0	97538
11768	14746	0	0	104109
12674	14270	0	0	101703
12657	14746	0	0	113238
13238	14270	0	0	118602
17282	14746	2536	9130	15768
16204	14746	1458	5249	145938
15837	14270	1566	5638	130490
9714	14746	0	0	114760
11354	14270	0	0	104040
11727	14746	0	0	104172
	·····			1404301

IONTH	DAYS IN		CHP_ELEC			SYSTEM PERFORMANCE					OG&E SUPPLY			
	MONTH	KWH/MO	PEAK KW	AVG_KW	PEAK KW	KWH	FUEL MCF	FUEL COST \$	MAINT. \$	KWH	KW	COST		
	8							70/05						
	31	2692461	4765	3619	3743	2784792	36202	72405	9747	0	1022	3403		
2	29	2520804	4870	3622	3743	2605128	33867	67733	9118	0	1127	3753		
3	31	2788671	4860	3748	3743	2784792	36202	72405	9747	3879	1117	3856		
4	30	2712386	4965	3767	3743	2694960	35034	70069	9432	17426	1222	4684		
5	31	3013931	5215	4051	3743	2784792	36202	72405	9747	229139	1472	12986		
6	30	3130500	5610	4348	3743	2694960	35034	70069	9432	435540	1867	21583		
7	31	3555456	6050	4779	3743	2784792	36202	72405	9747	770664	2307	48298		
8	31	3378026	5875	4540	3743	2784792	36202	72405	9747	593234	2132	40437		
9	30	3038571	5460	4220	3743	2694960	35034	70069	9432	343611	1717	27833		
10	31	2846641	5090	3826	3743	2784792	36202	72405	9747	61849	1347	14507		
11	30	2755500	5210	3827	3743	2694960	35034	70069	9432	60540	1467	702		
12	31	2715290	4920	3650	3743	2784792	36202	72405	9747	0	1177	3919		

.

.

 TABLE 5.11 - ELECTRICALLY BASELOADED ANALYSIS- GAS TURBINE

 CHP GAS PRICE - \$2.0/MCF

	ONG SUPPLY		TOTAL
SYSTEM		COST	
MMBTU	MMBTU	\$	\$
14746	2328	4657	90211
13795	0	0	80604
14746	0	0	86008
14270	0	0	84185
14746	0	0	95137
14270	0	0	101084
14746	2536	5072	135522
14746	1458	2916	125504
14270	1566	3132	110467
14746	0	0	96658
14270	0	0	86522
14746	0	0	86071
			1177975

.

.

IONTH	DAYS IN		CHP_ELEC			SYSTEM PE	RFORMANCI	-		0	G&E SUPP	LY
	MONTH	KWH/MO	PEAK KW	AVG_KW	PEAK KW	KWH	FUEL MCF	FUEL COST \$	MAINT. \$	KWH	KW	COST
1	31	2692461	4765	3619	3743	2784792	36202	108607	9747	0	1022	3403
2	29	2520804	4870	3622	3743	2605128	33867	101600	9118	0	1127	3753
3	31	2788671	4860	3748	3743	2784792	36202	108607	9747	3879	1117	3856
4	30	2712386	4965	3767	3743	2694960	35034	105103	9432	17426	1222	4684
5	31	3013931	5215	4051	3743	2784792	36202	108607	9747	229139	1472	12986
6	30	3130500	5610	4348	3743	2694960	35034	105103	9432	435540	1867	21583
7	31	3555456	6050	4779	3743	2784792	36202	108607	9747	770664	2307	48298
8	31	3378026	5875	4540	3743	2784792	36202	108607	9747	593234	2132	40437
9	30	3038571	5460	4220	3743	2694960	35034	105103	9432	343611	1717	27833
10	31	2846641	5090	3826	3743	2784792	36202	108607	9747	61849	1347	14507
11	30	2755500	5210	3827	3743	2694960	35034	105103	9432	60540	1467	702
12	31	2715290	4920	3650	3743	2784792	36202	108607	9747	0	1177	3919

 TABLE 5.12 - ELECTRICALLY BASELOADED ANALYSIS- GAS TURBINE

 CHP GAS PRICE - \$3.0/MCF

•

,

		ONG SUPPLY	,	TOTAL
MMB TU	SYSTEM		COST	
REQD.	MMBTU	MMB TU	\$	\$
17074	14746	2328	6985	128742
12022	13795	0	0	114471
11768	14746	0	0	122210
12674	14270	0	0	119220
12657	14746	0	0	131339
13238	14270	0	0	136119
17282	14746	2536	7608	174260
16204	14746	1458	4374	16316
15837	14270	1566	4599	147068
9714	14746	0	0	13286
11354	14270	0	0	121557
11727	14746	0	0	122273

2. ELECTRICALLY ISOLATED ANALYSIS - GAS TURBINE

Table 5.2 shows the operating costs for this alternative. The total yearly operating costs for this alternative are \$1,265,337, when gas is available at \$2.5/MCF. It can be noted that the equipment selected can satisfy peak electrical as well as thermal demands (a check was performed to determine if monthly thermal requirements will be satisfied) and therefore, the cogenerator is totally isolated from the utility. The cogeneration equipment can be run either in an electrical load following mode or in a thermal load following mode. When in an electrical load following mode, there might be situations when supplementary firing may need to be done to satisfy the thermal requirements. Unless the hourly requirements of steam are known, it is difficult to estimate the extent of supplementary firing that needs to be done, if any. Sensitivity analysis is carried out in tables 5.21 and 5.22. The details for each column follow.

Columns

<u>A.B</u> - KWH/mo and Peak KW that need to be satisfied - These have been copied from the Total Loads Spreadsheet.

<u>Column C</u> - This is the peak KW that can be generated by the selected equipment.

<u>Column D</u> - This is the maximum KWH that can be generated in a given month by the selected equipment.

<u>Column E</u> - System Fuel Requirements - (Column A) multiplied by (0.013 MMBTU/KWH) -From Manufacturer's Data.

Column F - System Fuel Costs - Column E times \$2.5/MCF.

<u>Column</u> <u>G</u> - System Maintenance Costs - Column B times \$0.0035/KWH -From Manufacturer's Data.

<u>Column H</u> - Total System Operating Costs - Column G + Column F.

		(A)	B	TABLE 5.2	\sim		SOLATED ANI PRICE - \$2 F		GAS TURBINE
10NTH	DAYS IN		CHP_ELEC		SYSTEM PE				TOTAL
	MONTH	KWH/MO	PEAK KW	PEAK KW	MAX.	FUEL	FUEL COST	MAINT.	
					KWH	MCF	\$	\$	\$
1	31	2692461	4765	7238	5385072	35002	87505	9424	96929
2	29	2520804	4870	7238	5037648	32770	81926	8823	90749
3	31	2788671	4860	7238	5385072	36253	90632	9760	100392
4	30	2712386	4965	7238	5211360	35261	88153	9493	97646
5	31	3013931	5215	7238	5385072	39181	97953	10549	108502
6	30	3130500	5610	7238	5211360	40697	101741	10957	112698
7	31	3555456	6050	7238	5385072	46221	115552	12444	127996
8	31	3378026	5875	7238	5385072	43914	109786	11823	121609
9	30	3038571	5460	7238	5211360	39501	98754	10635	109389
10	31	2846641	5090	7238	5385072	37006	92516	9963	102479
11	30	2755500		7238	5211360	35822		9644	99198
12	31	2715290	4920	7238	5385072	35299	88247	9504	97750
		······							

NIH.	DAYS IN		CHP_ELEC		SYSTEM PE	RFORMANC	E		TOTAL
	MONTH	KWH/MO	PEAK KW	PEAK KW	MAX.	FUEL	FUEL COST	MAINT.	
		-			KWH	MCF	\$	\$	\$
1	31	2692461	4765	7238	5385072	35002	70004	9424	79428
2	29	2520804	4870	7238	5037648	32770	65541	8823	74364
3	31	2788671	4860	7238	5385072	36253	72505	9760	82266
4	30	2712386	4965	7238	5211360	35261	70522	9493	80015
5	31	3013931	5215	7238	5385072	39181	78362	10549	88911
6	30	3130500	5610	7238	5211360	40697	81393	10957	92350
7	31	3555456	6050	7238	5385072	46221	92442	12444	104886
8	31	3378026	5875	7238	5385072	43914	87829	11823	99652
9	30	3038571	5460	7238	5211360	39501	79003	10635	89638
10	31	2845641	5090	7238	5385072	37006	74013	9963	83975
11	30	2755500	5210	7238	5211360	35822	71643	9644	81287
12	31	2715290	4920	7238	5385072	35299	70598	9504	80101

 TABLE 5.21 - ELECTRICALLY ISOLATED ANALYSIS - GAS TURBINE

 CHP GAS PRICE - \$2.0/MCF

JNIH	DAYS IN		CHP_ELEC		SYSTEM PERFORMANCE				
	MONTH	KWH/MO	PEAK KW	PEAK K₩	MAX.	FUEL	FUEL COST	MAINT.	
					KWH	MCF	\$	\$	\$
1	31	2692461	4765	7238	5385072	35002	105006	9424	114430
2	29	2520804	4870	7238	5037648	32770	98311	8823	107134
3	31	2788671	4860	7238	5385072	36253	108758	9760	118519
4	30	2712386	4965	7238	5211360	35261	105783	9493	115276
5	31	3013931	5215	7238	5385072	39181	117543	10549	128092
6	30	3130500	5610	7238	5211360	40697	122090	10957	133046
7	31	3555456	6050	7238	5385072	46221	138663	12444	151107
8	31	3378026	5875	7238	5385072	43914	131743	11823	143566
9	30	3038571	5460	7238	5211360	39501	118504	10635	129139
10	31	2846641	5090	7238	5385072	37006	111019	9963	120982
11	30	2755500	5210	7238	5211360	35822	107465	9644	117109
12	31	2715290	4920	7238	5385072	35299	105896	9504	115400

-

 TABLE 5.22 - ELECTRICALLY ISOLATED ANALYSIS - GAS TURBINE

 CHP GAS PRICE - \$3.0/MCF

3. ELECTRICALLY BASELOADED ANALYSIS - GAS ENGINE

The spreadsheet to calculate the operating costs is shown in Table 5.3. The total yearly operating costs for this alternative are \$1,460,261 when gas is available at \$2.5/MCF. It can be noted that a fair amount of natural gas has to be purchased as compared to the electrically baseloaded case with a gas turbine. The reason for this is the comparitively low heat recovery rates off gas engines. Sensitivity analysis has been carried out in Tables 5.31 and 5.32. The details for each column follow.

<u>Columns</u>

<u>A,B,C</u> - KWH/mo, Peak KW and Avg. KW - Copied from Total Loads Spreadsheet

<u>Column D</u> - This is the peak KW that can be generated by the selected equipment.

<u>Column E</u> - This is the total KWH that can be generated by the selected equipment.

<u>Column F</u> - System Fuel requirements - Column E multiplied by 0.01 MMBTU/KWH -From Manufacturer's Data.

Column G - System Fuel Costs - Column F multiplied by \$2.5/MCF.

<u>Column H</u> - System Maintenance Costs - Column E multiplied by \$0.005/KWH -From Manufacturer's Data.

<u>Column 1</u> - KWH that would need to be bought from OG&E is obtained from (Column A - Column E).

<u>Column J</u> - KW that would need to be bought from OG&E is obtained from (Column B - Column D).

<u>Column J1</u> - (Column J multiplied by the appropriate demand charge) + (Column I times \$0.03528/KWH).

<u>Column K</u> - MMBTU requirements - Copied from Total Loads Spreadsheet.

<u>Column L</u> - MMBTUs capable of being generated by system -= (0.7 * Jacket Heat + 0.8 * Exhaust Heat)(Column D) (No. of hrs/mo)/0.8/1000000 BTU/MMBTU

Jacket Heat - 2480 BTU/KWH - Manufacturer's Data Exhaust Heat - 1622 BTU/KWH - Manufacturer's Data Heat Recovery Generator Efficiency - 0.8 - Manufacturer's Data

<u>Column</u> <u>M</u> - Gas that needs to be purchased from ONG is obtained by subtracting Column L from Column K.

Column N - Cost of purchased gas - Column M times \$3.6/MCF.

<u>Column</u> O - Total System Operating Costs - Column N + Column J1 + Column H + Column G.

		_	_	TABLE <u>5</u> .3	- ELECTR	ICALLY BA	SELOADED	ANALYSIS-	GAS ENGI	IE	_	_
		(A)	B	\mathbb{C}	\mathbb{D}	CHP GAS P E	RICE - \$	2.5/MCF 6	(H)	(1)	T	(J)
MONTH	DAYS IN		CHP_ELEC			SYSTEM PE	RFORMANC	E		0	G&E SUPPL	.Y
	MONTH	KWH/MO	PEAK KW	AVG_K₩	PEAK KW	KWH	FUEL	FUEL COST	MAINT.	KWH	K₩	COST
							MCF	\$	\$			
1	31	2692461	4765	3619	3750	2790000	27900	69750	13950	0	1015	3380
2	29	2520804		3622	3750	2610000	26100	65250	13050	Ō	1120	3730
3	31	2788671	4860	3748	3750	2790000	27900		13950	Ō	1110	3696
4	30	2712386	4965	3767	3750	2700000	27000	67500	13500	12386	1215	4483
5	31	3013931	5215	4051	3750	2790000	27900	69750	13950	223931	1465	12779
6	30	3130500	5610	4348	3750	2700000	27000	67500	13500	430500	1860	21382
7	31	3555456	6050	4779	3750	2790000	27900		13950	765456	2300	48050
8	31	3378026	5875	4540	3750	2790000	27900	69750	13950	588026	2125	40189
9	30	3038571	5460	4220	3750	2700000	27000	67500	13500	338571	1710	27591
10	31	2846641	5090	3826	3750	2790000	27900	69750	13950	56641	1340	14259
11	30	2755500	5210	3827	3750	2700000	27000		13500	55500	1460	6820
12	31	2715290	4920	3650	3750	2790000	27900	69750	13950	0	1170	3896

K		M		0
	(ONG SUPPLY		TOTAL
MMBTU	SYSTEM		COST	
REQD.	MMBTU	MMBTU	\$	\$
17074	7053	10021	36077	123157
12022	6598	5424	19525	101555
11768	7053	4715	16975	104371
12674	6826	5848	21054	106537
12657	7053	5604	20176	116654
13238	6826	6412	23084	125466
17282	7053	10229	36825	168575
16204	7053	9151	32943	156833
15837	6826	9011	32440	14103
9714	7053	2661	9580	107539
11354	6826	4528	16301	104121
11727	7053	4674	16826	104422
			<u>* </u>	1460261

/

IONTH	DAYS IN		CHP_ELEC			SYSTEM PE	RFORMANCI	Ē		(G&E SUPP	LY
	MONTH	KWH/MO	PEAK KW	AVG_K₩	PEAK KW	KWH	FUEL MCF	FUEL COST \$	MAINT. \$	KWH	KW	COST
1	31	2692461	4765	3619	3750	2790000	27900	55800	13950	0	1015	3380
2	29	2520804	4870	3622	3750	2610000	26100	52200	13050	0	1120	3730
3	31	2788671	4860	3748	3750	2790000	27900	55800	13950	0	1110	3698
4	30	2712386	4965	3767	3750	2700000	27000	54000	13500	12386	1215	4483
5	31	3013931	5215	4051	3750	2790000	27900	55800	13950	223931	1465	12779
6	30	3130500	5610	4348	3750	2700000	27000	54000	13500	430500	1860	21382
7	31	3555456	6050	4779	3750	2790000	27900	55800	13950	765456	2300	48050
8	31	3378026	5875	4540	3750	2790000	27900	55800	13950	588026	2125	40189
9	30	3038571	5460	4220	3750	2700000	27000	54000	13500	338571	1710	27591
10	31	2846641	5090	3826	3750	2790000	27900	55800	13950	56641	1340	14259
11	30	2755500	5210	3827	3750	2700000	27000	54000	13500	55500	1460	6820
12	31	2715290	4920	3650	3750	2790000	27900	55800	13950	0	1170	3896

TABLE 5.31 - ELECTRICALLY BASELOADED ANALYSIS- GAS ENGINE CHP GAS PRICE - \$2.0/MCF

(ONG SUPPL	r	TOTAL
SYSTEM		COST	
MMBTU	MMBTU	\$	\$
7053	10021	36077	109207
6598	5424	19525	88505
7053	4715	16975	90421
6826	5848	21054	93037
7053	5604	20176	102704
6826	6412	23084	111966
7053	10229	36825	154625
7053	9151	32943	142883
6826	9011	32440	127531
7053	2661	9580	93589
6826	4528	16301	90621
7053	4674	16826	90472
	SYSTEM MMBTU 7053 6598 7053 6826 7053 6826 7053 6826 7053 6826 7053 6826	SYSTEM MMBTU MMBTU 7053 10021 6598 5424 7053 4715 6826 5848 7053 5604 6826 6412 7053 10229 7053 9151 6826 9011 7053 2661 6826 4528	MMBTU MMBTU \$ 7053 10021 36077 6598 5424 19525 7053 4715 16975 6826 5848 21054 7053 5604 20176 6826 6412 23084 7053 10229 36825 7053 9151 32943 6826 9011 32440 7053 2661 9580 6826 4528 16301

10NTH	DAYS IN		CHP_ELEC			SYSTEM PE	RFORMANCI	E		0	G&E SUPP	LY
	MONTH	KWH/MO	PEAK KW	AVG_KW	PEAK KW	KWH	FUEL MCF	FUEL COST \$	MAINT. \$	KWH	KW	COST
1	31	2692461	4765	3619	3750	2790000	27900	83700	13950	0	1015	3380
2	29	2520804	4870	3622	3750	2610000	26100	78300	13050	0	1120	3730
3	31	2788671	4860	3748	3750	2790000	27900	83700	13950	0	1110	3696
4	30	2712386	4965	3767	3750	2700000	27000	81000	13500	12386	1215	4483
5	31	3013931	5215	4051	3750	2790000	27900	83700	13950	223931	1465	12779
6	30	3130500	5610	4348	3750	2700000	27000	81000	13500	430500	1860	21382
7	31	3555456	6050	4779	3750	2790000	27900	83700	13950	765456	2300	48050
8	31	3378026	5875	4540	3750	2790000	27900	83700	13950	588026	2125	40189
9	30	3038571	5460	4220	3750	2700000	27000	81000	13500	338571	1710	27591
10	31	2846641	5090	3826	3750	2790000	27900	83700	13950	56641	1340	14259
11	30	2755500	5210	3827	3750	2700000	27000	81000	13500	55500	1460	6820
12	31	2715290	4920	3650	3750	2790000	27900	83700	13950	0	1170	3896

TABLE 5.32 ELECTRICALLY BASELOADED ANALYSIS GAS ENGINE CHP GAS PRICE \$3.0/MGF

	(ONG SUPPLY	Ý	TOTAL
MMBTU	SYSTEM		COST	
REQD.	MMBTU	MMBTU	\$	\$
17074	7053	10021	36077	137107
12022	6598	5424	19525	114605
11768	7053	4715	16975	118321
12674	6826	5848	21054	120037
12657	7053	5604	20176	130604
13238	6826	6412	23084	138966
17282	7053	10229	36825	182525
16204	7053	9151	32943	170783
15837	6826	9011	32440	154531
9714	7053	2661	9580	121489
11354	6826	4528	16301	117621
11727	7053	4674	16826	118372

4. ELECTRICALLY ISOLATED ANALYSIS - GAS ENGINE

The spreadsheet to calculate the operating costs under this alternative is shown in Table 5.4. The total yearly operating costs for this alternative are \$1,216,973 when gas is available at \$2.5/MCF. Even under this alternative, not all the thermal requirements are met and gas has to be purchased to make up for the deficiency. Sensitivity analysis has been carried out in Tables 5.41 and 5.42. The details for each column follow.

<u>Columns</u>

<u>A,B,C</u> - KWH/mo, Peak KW and Avg. KW - Copied from Total Loads Spreadsheet.

<u>Column D</u> - This is the peak KW that can be generated by the selected equipment.

<u>Column E</u> - This is the total KWH that can be generated by the equipment.

<u>Column F</u> - System Fuel Requirements - Column A multiplied by 0.01 MMBTU/KWH -From Manufacturer's Data.

Column G - System Fuel Costs - Column F multiplied by \$2.5/MCF.

<u>Column H</u> - System Maintenance Costs - Column A multiplied by \$0.005/KWH.

<u>Column 1</u> - MMBTU requirements - Copied from Total Loads Spreadsheet.

<u>Column J</u> - MMBTUs capable of being produced = (0.7 * Jacket Heat + 0.8 * Exhaust Heat) (KW generated)(No. of hrs/mo)/0.8/1000000 BTU/MMBTU.

<u>Column K</u> - Gas that needs to be purchased -(Column I - Column J) needs to be bought from ONG.

.

<u>Column L</u> - Cost of purchased gas - Column K * \$3.6/MCF.

<u>Column</u> M - Total System Cost - Column L + Column H + Column G.

		\sim	\sim	TABLE 5.4		ICALLY IS			AS ENGINE					
		(A)	B) (C)) (D	chp gas p E	RICE - \$	2.5/MCF G	(H)	(I)	(\mathcal{J})	(K)	(L)	(
MONTH	DAYS IN		CHP_ELEC			SYSTEM PE	RFORMANC	E				ONG SUPPLY	1	TO
	MONTH	KWH/MO	PEAK KW	AVG_KW	PEAK KW	KWH	FUEL	FUEL COST	MAINT.	MMBTU	SYSTEM		COST	
		,					MCF	\$	\$	REQD.	MMBTU	MMBTU	\$	
1	31	2692461	4765	3619	7500	5580000	26925	67312	13462	17074	8962	8112	29204	10
2	29	2520804	4870	3622	7500	5220000	25208	63020	12604	12022	8569	3453	12431	
3	31	2788671	4860	3748	7500	5580000	27887	69717	13943	11768	9141	2627	9459	9
4	30	2712386	4965	3767	7500	5400000	27124	67810	13562	12674	9037	3637	13093	9.
5	31	3013931	5215	4051	7500	5580000	30139	75348	15070	12657	9809	2849	10256	10
6	30	3130500		4348	7500	5400000	31305	78263	15653	13238	10211	3027	10896	10
7	31	3555456	6050	4779	7500	5580000	35555		17777	17282	11379	5903	21251	12
8	31	3378026	5875	4540	7500	5580000	33780	84451	16890	16204	11050	5154	18555	11.
9	30	3038571	5460	4220	7500	5400000	30386	75964	15193	15837	9938	5899	21235	11
10	31	2846641	5090	3826	7500	5580000	28466	71166	14233	9714	9573	141	507	8
11	30	2755500	5210	3827	7500	5400000	27555	68888	13778	11354	9483	1871	6735	8
12	31	2715290	4920	3650	7500	5580000	27153	67882	13576	11727	9254	2473	8904	9
					·····					مىم بەربىيە يە تىدە تەت	الياف منها في مرد ماليا			

MONTH	DAYS IN		CHP_ELEC			SYSTEM PE	RFORMANC	E				ONG SUPPL	Ŷ	TC
	MONTH	KWH/MO	PEAK KW	AVG_KW	PEAK KW	KWH	FUEL MCF	FUEL COST \$	MAINT. \$	MMBTU REQD.	SYSTEM MMBTU	MMBTU	COST \$	
1	31	2692461	4765	3619	7500	5580000	26925	53849	13462	17074	8962	8112	29204	9
2	29	2520804	4870	3622	7500	5220000	25208	50416	12604	12022	8569	3453	12431	7
3	31	2788671	4860	3748	7500	5580000	27887	55773	13943	11768	9141	2627	9459	7
4	. 30	2712386	4965	3767	7500	5400000	27124	54248	13562	12674	9037	3637	13093	8
5	31	3013931	5215	4051	7500	5580000	30139	60279	15070	12657	9809	2849	10256	8
6	30	3130500	5610	4348	7500	5400000	31305	62610	15653	13238	10211	3027	10896	8
7	31	3555456	6050	4779	7500	5580000	35555	71109	17777	17282	11379	5903	21251	11
8	31	3378026	5875	4540	7500	5580000	33780	67561	16890	16204	11050	5154	18555	10
9	30	3038571	5460	4220	7500	5400000	30386	60771	15193	15837	9938	5899	21235	9
10	31	2846641	5090	3826	7500	5580000	28466	56933	14233	9714	9573	141	507	7
11	30	2755500	5210	3827	7500	5400000	27555	55110	13778	11354	9483	1871	6735	1
12	31	2715290	4920	3650	7500	5580000	27153	54306	13576	11727	9254	2473	8904	7
	·······													

TABLE 5.41 - ELECTRICALLY ISOLATED ANALYSIS- GAS ENGINE CHP GAS PRICE - \$2.0/MCF

T I		ONG SUPPLY	(FORMANCE	SYSTEM PER			CHP_ELEC		DAYS IN	NONTH
	COST \$	MMBTU	SYSTEM MMBTU	MMBTU REQD.	MAINT. \$	FUEL COST	FUEL MCF	KWH	PEAK KW	AVG_KW	PEAK KW	KWH/MO	MONTH	
					F	•								
1	29204	8112	8962	17074	13462	80774	26925	5580000	7500	3619	4765	2692461	31	1
1	12431	3453	8569	12022	12604	75624	25208	5220000	7500	3622	4870	2520804	29	2
1	9459	2627	9141	11768	13943	83660	27887	5580000	7500	3748	4860	2788671	31	3
1	13093	3637	9037	12674	13562	81372	27124	5400000	7500	3767	4965	2712386	30	4
1	10256	2849	9809	12657	15070	90418	30139	5580000	7500	4051	5215	3013931	31	5
1.	10896	3027	10211	13238	15653	93915	31305	5400000	7500	4348	5610	3130500	30	6
1	21251	5903	11379	17282	17777	106664	35555	5580000	7500	4779	6050	3555456	31	7
1.	18555	5154	11050	16204	16890	101341	33780	5580000	7500	4540	5875	3378026	31	8
1	21235	5899	9938	15837	15193	91157	30386	5400000	7500	4220	5460	3038571	30	9
1	507	141	9573	9714	14233	85399	28466	5580000	7500	3826	5090	2846641	31	10
1	6735	1871	9483	11354	13778	82665	27555	5400000	7500	3827	5210	2755500	30	11
1	8904	2473	9254	11727	13576	81459	27153	5580000	7500	3650	4920	2715290	31	12

TABLE 5.42 - ELECTRICALLY ISOLATED ANALYSIS- GAS ENGINE CHP GAS PRICE - \$3.0/MCF

CONCLUSION

A methodology was developed to calculate the total electrical and thermal loads for an office buildings complex. This was a major step in evaluating the various alternatives in terms of their feasibility and economic worth. Converting the chiller electrical load to equivalent MMBTUs to incorporate absorption chilling has ensured an almost complete use for recovered heat, especially in the Gas Turbine cases. In the cases where Gas Engines are the prime movers, a significant amount of natural gas has to be purchased from the utility. Developing the operating costs for the various alternatives was also a big step towards determining the savings that can be expected after implementation of the cogeneration system. Operating costs are also extremely sensitive to gas prices. То ensure maximum savings, it would be necessary to obtain natural gas for the cogeneration plant at low prices.

BIBLIOGRAPHY

GKCO Consultants, "A.G.A. Manual - Cogeneration Feasibility Analysis " - 1982.

Hay Nelson E., Editor "Guide to Natural Gas Cogeneration" - 1988.

Limaye Dilip R., "Planning Cogeneration Systems" - 1985.

Means Electrical Cost Data - 1989.

Means Mechanical Cost Data - 1989.

Turner Wayne C., Editor "Energy Management Handbook" - 1982.

APPENDIX A

CASE STUDY - A CENTRAL COGENERATION PLANT FOR THE OKLAHOMA STATE CAPITOL COMPLEX

STAGES OF THE CHP PROJECT FOR THE STATE CAPITOL COMPLEX

The following different stages of the project were observed.

0. Self Help Gas Opportunity.

1. Determining what buildings to come under the CHP Plant.

2. Policy Decisions and up-front assumptions.

3. Using Peak Day Analysis Plots to determine each building's monthly electrical loads.

4. Using the gas bills and plots to determine each building's monthly thermal requirements.

5. Developing each Building's Loads.

6. Developing the Total Loads for the complex.

7. Sizing the prime mover and selecting equipment for each of the following operating conditions:

a. Electrically Baseloaded

b. Electrically Isolated

c. Thermally Baseloaded

8. Developing spreadsheets to calculate operating costs for each operating condition under Gas Turbine and Gas Engine Technologies.

9. Developing Transmission Costs.

10. Performing the Economic Analysis.

11. Determining the best alternative.

POLICY DECISIONS AND UP-FRONT ASSUMPTIONS

Certain decisions and assumptions were made at the start of the project. These are enumerated below:

1. No power sales to the utility.

2. Absorption Chilling in all buildings.

3. Only two technologies will be considered, Gas Turbine and Gas Engine. Each of these technologies will be evaluated under the following operating conditions:

a. Electrically Isolated from the Utility.

b. Baseloaded, Electrically Sized.

c. Baseloaded, Thermally Sized.

4. Steam and chilled water will be generated in the Central Plant and sent to the various buildings. Existing absorption chillers and boilers will be used as back-up.

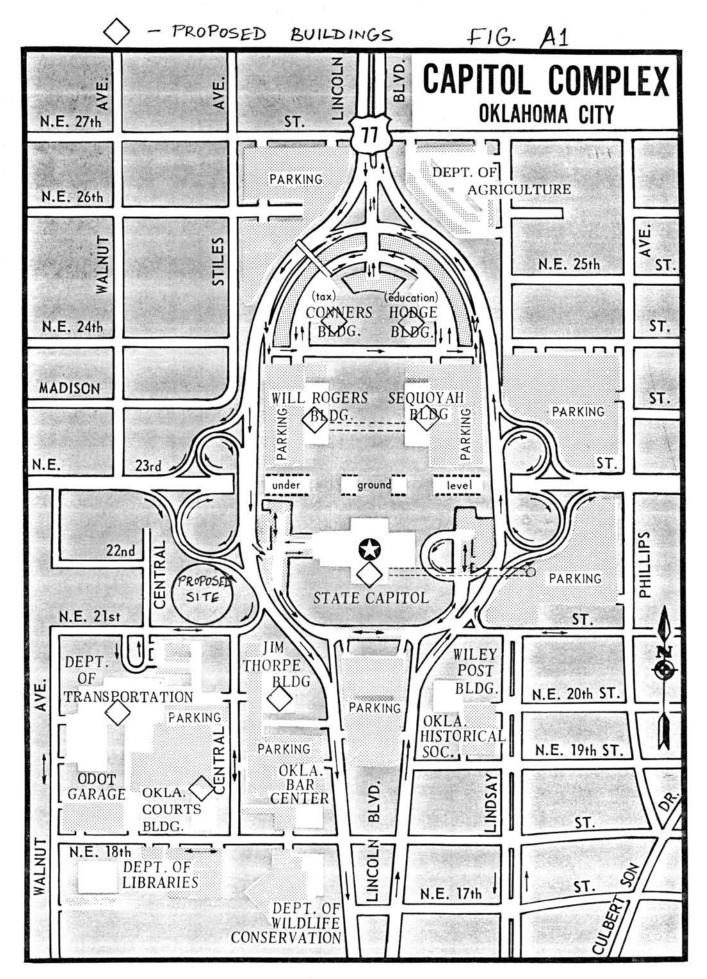
5. All energy conservation recommendations for the buildings in question have yet to be implemented. Also, for the Capitol building, it is assumed that the HVAC system is as-is.

6. Oklahoma Land Commission gas will be used for the Central Power Plant.

7. Assumptions for the economic analysis are stated later.

11-2

INTRODUCTION


The Oklahoma State Capitol Complex in Oklahoma City is a large consumer of electricity and natural gas. The Energy Division of the Office of Public Affairs requested a study to evaluate cogeneration. The fact that the State Office Buildings at the Capitol Complex require heat and power year around, makes cogeneration a possible technical option for the Office of Public Affairs. Five buildings in the North part of the Complex and three buildings in the Southwest part of the Complex were considered to come under the central cogeneration complex. The decision to include these buildings was based on ease of distribution of power and other utilities. The five buildings in the North part of the Complex are:

- 1. Conners Building (Tax)
- 2. Hodge Building (Education)
- 3. Will Rogers Building
- 4. Sequoyah Building
- 5. State Capitol Building

The three buildings in the Southwest part of the Complex are: 1. Department of Transportation

- 2. Jim Thorpe Building
- 3. Oklahoma Courts Building

The site proposed for the central complex is where the central boiler plant now exists, close to NE 21st Street and

Lincoln Blvd.

The natural gas supply options were then examined. It was concluded that several options were available to obtain "self help" natural gas from the Oklahoma Land Commission (OLC) or Oklahoma Natural Gas (ONG) at a price significantly lower than the present average price of \$3.6/MCF. Under the alternative of buying gas from ONG or OLC with the installation of only one supply point and one meter, the cost of gas will be \$1.75/MCF plus carriage if gas is purchased from OLC, or \$2.05/MCF if ONG provides for the fuel.

With natural gas being available so cheap, it is logical to think of cogeneration, where electricity and heat will result from supplying natural gas to prime movers. For the efficiency of a central plant to be maximum, however, the heat resulting from the production of electric power will have to be utilized year around. This will not be a problem in the winter months, but in the summer months, with the existing configuration of chilling equipment in the different buildings, the heat will be under utilized. In order to better utilize the heat in the summer months, it has been assumed that absorption chillers will be used in the central cogeneration plant and that chilled water will then be distributed to the various buildings. Those buildings which are already equipped with absorption chillers, (Conners, Hodge, Department of Transportation) will also receive

chilled water from the central plant. The absorption chillers in these buildings will be maintained for back-up purposes.

Obviously, the number of technologies that can be used for the central cogeneration complex are numerous. But, for simplicity of analysis, only 2 technologies will be considered. These are:

1. Gas Turbine with Heat Recovery Steam Generator and Absorption Chillers.

2. Gas Engine with Steam Generator and Absorption Chillers.

Furthermore, each of these technologies will be studied in the light of 3 loading options:

1. Isolated Operation, Electric Load Following.

2. Baseloaded, Electrically Sized.

3. Baseloaded, Thermally Sized.

It has also been assumed that no power sales will be made to the utility and that no detailed engineering for the cogeneration plant will be carried out.

1 ----

BUILDING LOADS SPREADSHEETS - A DETAILED BREAKDOWN OF EACH BUILDING'S ELECTRICAL AND THERMAL LOADS

ø

TABLE A1.1 LDG: SEQUOYAH YEAR:1988

CHP-ELEC	·—, ····	<u> </u>	CHILLER	. .		<u></u>	AL LOADS BASELOAD	ELECTRIC		LIGHTS/OU		DAYS IN	ONTH
KWH/MO.		AVG.k₩-2	HR/DAY-2	AVG. kW-1	HR/DAY-1	kWH'/DAY		HR/DAY	kWH'/DAY		HR/DAY	MONTH	חואיי
206371	3900	300	11	200	3	4800	200	24	2600	200	13	31	1
213937	3600	300	10	300	2	5520	230	24	2600	200	13	29	2
198931	4690	120	7	350	11	4560	190	24	2600	200	13	31	3
199714	5400	500	10	200	2	4800	200	24	2600	200	13	30	4
265891	5760	320	5	320	13	6720	280	24	2600	200	13	31	5
365786	2500	0	0	250	10	10800	450	24	1950	150	13	30	6
414691	3000	0	0	250	12	11520	480	24	2600	200	13	31	7
414691	2900	200	2	250	10	11520	480	24	2600	200	13	31	8
253714	6700	375	12	275	8	6600	275	24	2600	200	13	30	9
280771	2550	200	11	175	2	7200	300	24	2600	200	13	31	10
235714	5100	450	10	200	3	6000	250	24	2600	200	13	30	11
224971	3500	300	10	100	5	5400	225	24	2600	200	13	31	12

TOTAL KW	H/MONTH
ESTIMATED.	METERED

292729	296400
288509	286400
302781	300800
315429	313200
393434	392400
419357	407600
481120	483600
478906	456000
397286	409200
337236	316000
345000	331600
302471	293200

TABLE A1.2 BLDG: SEQUOYAH THERMAL LOADS (MMBTU)

IASELOAD	HEATING	COOLING	TOTAL
92	95 1	803.6	1846.6
92	712	693.9	1497.9
92	510	966.4	1568.4
92	353	1075.8	1521.8
92	0	1186.8	1278.8
92	0	498.5	590.5
92	0	618.1	710.1
92	0	597.5	689.5
92	0	1336.0	1428.0
92	431	525.4	1048.4
92	608	1017.0	1717.0
92	939	721.2	1752.2

	TABLE A2.1		
BLDG.:	W. ROGERS	YEAR:	1988

							AL LOADS	ELECTRIC					
CHP-ELEC			CHILLER				BASELOAD			LIGHTS/OE		DAYS IN	ONTH
KWH/MO.	kWH'/DAY	AVG.kW-2	HR/DAY-2	AVG.kW-1	HR/DAY-1	kWH'/DAY	AVG. k₩	HR/DAY	kWH'/DAY	AVG. KW	HR/DAY	MONTH	
389537	2025	175	9	150	3	11280	470	24	1800	180	10	31	1
392743	720	0	0	240	3	12000	500	24	2160	180	12	29	2
404949	1890	150	9	180	3	11520	480	24	2160	180	12	31	3
391886	3240	300	9	180	3	11520	480	24	2160	180	12	30	4
419829	5130	445	9	375	3	12000	500	24	2160	180	12	31	5
406286	6470	520	11	250	3	12000	500	24	2160	180	12	30	5
605829	2835	275	9	180	2	18000	750	24	2160	180	12	31	7
587229	3060	300	9	180	2	17400	725	24	2160	180	12	31	8
514286	3240	180	2	320	9	15600	650	24	2160	180	12	30	9
404949	4400	200	2	400	10	11520	480	24	2160	180	12	31	10
406286	3960	180	2	400	9	12000	500	24	2160	180	12	30	11
390069	2160	200	9	180	2	11040	460	24	2160	180	12	31	12

TOTAL	K₩I	H/MONTH
ESTIMATE	D.	METERED

434376	403600
407657	415600
446799	438800
451314	450400
533421	536400
544929	567200
668604	649600
654986	616400
583714	571600
502377	450000
491143	496000
437897	425800

TABLE A2.2 BLDG: W. ROGERS THERMAL LOADS (MMBTU)

ASELOAD	HEATING	COOLING	TOTAL
88	662	417.2	1167.2
88	716	138.8	942.8
88	514	389.4	991.4
88	357	646.1	1091.1
88	121	1057.0	1266.0
88	0	1290.1	1378.1
88	0	584.1	672.1
88	0	630.5	718.5
88	0	646.1	734.1
88	0	906.6	994.6
88	276	789.6	1153.6
88	636	445.1	1169.1

TABLE A3.1 BLDG.: J. THORPE YEAR: 1988

		<u></u>	0411158				AL LOADS				,	D1V0 10	MITH
CHP-ELE KWH/MO	kWH'/DAY	AVG.k₩-2	_ CHILLER HR/DAY-2	AVG. k₩-1	HR/DAY-1	kWH'/DAY	BASELOAD AVG. kW	HR/DAY	kWH'/DAY	LIGHTS/OE AVG. kW	HR/DAY	DAYS IN MONTH	'UN I H
16031	2100	175	9	175	3	3600	150	24	2200	200	11	31	1
11517	3100	250	10	200	3	2400	100	24	2200	200	11	29	2
17891	1850	175	8	150	3	4200	175	24	2200	200	11	31	3
19114	2050	200	8	150	3	4800	200	24	2200	200	11	30	4
20194	3675	325	9	250	3	4800	200	24	2400	200	12	31	5
21342	3750	325	9	275	3	5400	225	24	2400	200	12	30	6
216114	4650	350	9	300	5	5400	225	24	2200	200	11	31	7
23471	3850	325	8	250	5	6000	250	24	2200	200	11	31	8
20914	4500	325	9	225	7	5400	225	24	2200	200	11	30	9
21611-	2400	175	8	200	5	5400	225	24	2200	200	11	31	10
19114.	2025	175	9	150	3	4800	200	24	2200	200	11	30	11
19751	1375	125	8	125	3	4800	200	24	2200	200	11	31	12

TOTAL	KWH/M	IONTH
ESTIMATE	ED. ME	TERED
ESTIMATE	ED. ME	TERED

206814	209200
179386	204800
219879	218000
235071	218800
283318	282000
293786	298000
319079	325600
319964	316400
305571	312800
269257	253200
234536	240000
227961	190400

TABLE A3.2 BLDG: J. THORPE

THERMAL LOADS (MMBTU))
-----------------	--------	---

ASELOAD	HEATING	COOLING	TOTAL
134	1555	432.7	2121.7
134	668	597.5	1399.5
134	466	381.2	981.2
134	911	408.8	1453.8
134	43	757.2	934.2
134	0	747.8	881.8
134	0	958.1	1092.1
134	0	793.3	927.3
134	0	897.3	1031.3
134	91	494.5	719.5
134	1123	403.8	1660.8
134	1619	283.3	2036.3

Ł

TABLE A4.1 BLDG.: D.O.T. YEAR: 1988

This building is equipped with absorption chilling and therefore the chiller load talked about here refers to the additional fans and cumps that come on during the peak hours of the day. cometimes this load can also refer to additional equipment being on.

		CHILLER	<u></u>	<u> </u>	• • • •	AL LOADS BASELOAD		5	LIGHTS/OE		DAYS IN	YONTH
WH'/DAY	AVG.kW-2	HR/DAY-2	AVG.kW-1	HR/DAY-1				kWH'/DAY		HR/DAY	MONTH	
825	0	0	275	3	12720	530	24	4180	380	11	31	1
750	0	0	250	3	12240	510	24	5500	500	11	29	2
1550	100	8	250	3	12240	510	24	4950	450	11	31	3
450	0	0	150	3	14400	600	24	4675	425	11	30	4
1575	400	3	125	3	13200	550	24	4950	450	11	31	5
750	0	0	250	3	14400	600	24	5400	600	9	30	6
450	0	0	150	3	17040	710	24	4950	550	9	31	7
750	0	0	250	3	15000	625	24	6250	625	10	31	8
0	0	0	0	Û	15000	625	24	6050	550	11	30	9
0	0	0	0	0	12000	500	24	5500	500	11	31	10
825	0	0	275	3	12600	525	24	6750	675	10	30	11
1800	0	0	300	6	13200	550	24	5500	550	10	31	12

TOTAL KNH/M	ONTH
ESTIMATED. ME	TERED
• ••••••••••••••••••••••••••••••••••••	
505145	505800
484424	484800
523369	528900
541821	522000
553682	549600
563786	567900
647811	632700
620000	581100
579643	582000
493786	490200
540321	544500
570843	488700

TABLE A4.2 BLDG: D.O.T. THERMAL LOADS (MMBTU)

ASELOAD	HEATING	COOLING	TOTAL
173.0	1684.8	421.2	2279
173.0	1272.0	318.0	1763
173.0	723.0	723.0	1619
173.0	0.0	2379.0	2552
173.0	0.0	2928.0	3101
173.0	0.0	3517.0	3690
173.0	0.0	5229.0	5402
173.0	0.0	4787.0	4960
173.0	0.0	4345.0	4519
173.0	849.5	849.5	1872
173.0	1460.8	365.2	1999
173.0	1753.6	438.4	2365

TABLE A5.1 BLDG.: CONNERS YEAR: 1988

This building is equipped with absorption chilling and therefore the chiller load talked about here refers to the additional fans and numps that come on during the peak hours of the day. cometimes this load can also refer to additional equipment being on.

IONTH	DAYS IN		LIGHTS/0	E	LLLOIRI	CAL LOADS BASELOAD		CHILLER				
	MONTH	HR/DAY		k₩H'/DAY	HR/DAY	AVG. kW	k₩H'/DAY	HR/DAY-1	AVG.k₩-1	HR/DAY-2	AVG.kW-2	kWH'/DAY
1	31	10	130	1300	24	600	14400	9	170	0	0	1530
2	29	10	150	1500	24	600	14400	8	150	0	0	1200
3	31	10	130	1300	24	600	14400	8	200	3	100	1900
4	30	10	150	1500	24	625	15000	3	125	3	150	825
5	31	10	175	1750	24	650	15600	8	175	0	0	1400
6	30	10	150	1500	24	625	15000	8	200	2	150	1900
7	31	10	200	2000	24	625	15000	9	225	7	150	3075
8	31	10	180	1800	24	675	16200	8	100	0	0	800
9	30	10	175	1750	24	650	15600	8	250	2	150	2300
10	31	10	200	2000	24	575	13800	8	150	0	0	1200
11	30	10	200	2000	24	625	15000	10	200	0	0	2000
12	31	10	150	1500	24	575	13800	8	150			1200

TOTAL KWH/M	ONTH
ESTIMATED. ME	TERED
509064	479100
473529	468300
517257	511200
499821	497700
553350	532200
522857	516000
577375	579300
559771	551400
554786	553500
498657	485700
535714	545700
487586	480000

TABLE A5.2 BLDG: CONNERS THERMAL LOADS (MMBTU)

ASELOAD	HEATING	COOLING	TOTAL
79.0	906.8	226.7	1212.5
79.0	596.4	149.1	824.5
79.0	371.0	371.0	821
79.0	0.0	1464.0	1543
79.0	0.0	2059.5	2138.5
79.0	0.0	2039.5	2118.5
79.0	0.0	3127.0	3206
79.0	0.0	3021.0	3100
79.0	0.0	2721.0	2800
79.0	561.5	561.5	1202
79.0	753.2	188.3	1020.5
79.0	748.0	187.0	1014

	TABLE A6.1	1	
BLDG.:	CAPITOL	YEAR:	1988

					ELECTRIC								AUR 21 5 A
IONTH	DAYS IN		_LIGHTS/0			BASELOAD				CHILLER			_CHP-ELEC
	MONTH	HR/DAY	AVG. kW	k₩H'/DAY	HR/DAY	AVG. kW	k₩H'/DAY	HR/DAY-1	AVG.KW-1	HR/DAY-2	AVG.k₩-2	kWH'/DAY	KWH/MO.
1	31	10	280	2800	24	550	13200	6	400	3	450	3750	471200
2	29	10	280	2800	24	525	12600	8	450	3	500	5100	423400
3	31	10	250	2500	24	600	14400	8	425	0	0	3400	501757
4	30	10	280	2800	24	525	12600	8	600	3	550	6450	438000
5	31	10	280	2800	24	700	16800	8	500	3	600	5800	582800
6	30	10	280	2800	24	875	21000	8	600	3	825	7275	690000
7	31	10	280	2800	24	875	21000	8	700	3	750	7850	713000
8	31	10	280	2800	24	750	18000	8	700	3	750	7850	620000
9	30	10	280	2800	24	650	15600	8	600	3	750	7050	528000
10	31	10	280	2800	24	650	15600	8	500	3	650	5950	545600
11	30	10	280	2800	24	525	12600	8	470	3	500	5260	438000
12	31	10	280	2800	24	500	12000	8	400	3	400	4400	434000

TOTAL KW	h/Month
ESTIMATED.	METERED

554236	544000
529043	528800
577043	558400
576214	557600
711229	664000
845893	709600
886821	804800
793821	719200
679071	674400
677350	520800
550714	556800
531429	492000

TABLE A6.2 BLDG: CAPITOL THERMAL LOADS (MMBTU)

ASELOAD	HEATING	COOLING	TOTAL
122.7	1562.8	772.7	2458.2
122.7	679.2	983.1	1785.0
122.7	477.2	700.6	1300.5
122.7	921.8	1286.1	2330.6
122.7	51.3	1195.1	1369.1
122.7	10.4	1450.7	1583.8
119.1	0	1617.5	1736.6
110.3	0	1617.5	1727.8
122.7	5.4	1405.8	1533.9
122.7	99.8	1226.0	1448.5
122.7	468.9	1048.9	1640.5
122.7	780.6	906.6	1809.9

L

	TABLE A7.1		
BLDG.:	HODGES	YEAR:	1988

	CHILLER					CAL LOADS BASELOAD	ELECTRIC	5	ONTHDAYS IN			
k₩H'/DAY	AVG.kW-2		AVG.kW-1	HR/DAY-1	kWH'/DAY		HR/DAY	kWH'/DAY	LIGHTS/OE AVG. kW	HR/DAY	MONTH	
200	0	0	100	2	6000	250	24	3000	300	10	31	1
l	0	0	0	0	6000	250	24	3000	300	10	29	2
300	150	2	0	0	6480	270	24	3000	300	10	31	3
20(100	2	0	0	6000	250	24	3000	300	10	30	4
(0	0	0	0	6000	250	24	2750	275	10	31	5
(0	0	0	0	6000	250	24	2750	275	10	30	6
C	0	0	0	0	6000	250	24	2750	275	10	31	7
(0	0	0	0	5520	230	24	2500	250	10	31	8
(0	0	0	0	6000	250	24	2500	250	10	30	9
(0	0	0	0	5400	225	24	2250	250	9	31	10
525	175	3	0	0	4800	200	24	3250	325	10	30	11
(0	0	0	0	4800	200	24	3250	325	10	31	12

TOTAL	K₩H	/MONTH
ESTIMATE	D.	METERED

256857	266700
236143	236100
273951	276300
248571	255000
246893	247200
238929	239100
246893	274800
226477	228300
233571	234300
217221	215700
224893	252000
220764	226200

TABLE A7.2 BLDG: HODGES THERMAL LOADS (MMBTU)

ASELOAD	HEATING	COOLING	TOTAL
79.0	906.8	226.7	1212.5
79.0	598.4	149.1	824.5
79.0	371.0	371.0	821
79.0	0.0	1464.0	1543
79.0	0.0	2059.5	2138.5
79.0	0.0	2039.5	2118.5
79.0	0.0	3127.0	3206
79.0	0.0	3021.0	3100
79.0	0.0	2721.0	2800
79.0	561.5	561.5	1202
79.0	753.2	188.3	1020.5
79.0	748.0	187.0	1014

	TABLE A8.	1	
BLDG.:	COURTS	YEAR:	1988

CHP-ELE			CHILLER				AL LOADS BASELOAD	ELECTRIC		LIGHTS/OE		AYS IN	ONTHE
KWH/MO.		AVG.KW-2		AVG.kW-1	HR/DAY-1	kWH'/DAY		HR/DAY	kWH'/DAY		HR/DAY	MONTH	VATAD
19397	0	0	0	0	0	5400	225	24	1200	120	10	31	1
18145	0	0	0	0	0	5400	225	24	1200	120	10	29	2
189543	640	0	0	80	8	5400	225	24	1000	100	10	31	3
20142	400	Û	0	50	8	6000	250	24	1000	100	10	30	4
189543	1350	0	0	150	9	5400	225	24	1000	100	10	31	5
12942	3750	0	0	375	10	3600	150	24	1000	100	10	30	6
133743	4200	0	0	350	12	3600	150	24	1000	100	10	31	7
115143	4550	0	0	350	13	3000	125	24	1000	100	10	31	8
16542	3600	0	0	300	12	4800	200	24	1000	100	10	30	9
18954.	2500	0	0	250	10	5400	225	24	1000	100	10	31	10
18342	2450	100	2	225	10	5400	225	24	1000	100	10	30	11
18954	0	0	0	0	0	5400	225	24	1000	100	10	31	12

TOTAL KWH/MONTH ESTIMATED. METERED

193971	197400
181457	181800
203714	201300
210000	209400
219436	216600
209786	213600
226743	227700
215893	211200
242571	245400
244900	244200
235929	234000
189543	190500

TABLE A8.2 BLDG: COURTS THERMAL LOADS (MMBTU)

BASELOAD	HEATING	COOLING	TOTAL
197.9	4578.8	0.0	4776.7
197.9	2786.7	0.0	2984.6
197.9	3336.1	131.9	3665.9
197.9	361	79.8	638.7
153.1	0	278.2	431.3
128.9	0	747.8	876.7
197.9	193.9	865.4	1257.2
43.4	0	937.5	980.9
197.9	74.6	717.8	990.3
197.9	514.1	515.1	1227.1
197.9	455.5	488.5	1141.9
197.9	368.6	0.0	566.5

.

PRIME MOVER SIZING

GAS TURBINE

All references to Gas Turbine equipment are obtained from trade literature provided by Solar Turbines Inc., makers of Caterpillar Gas Turbines. All units selected are completely packaged units, with heat recovery generator.

Electrically Baseloaded Alternative:

Load to be satisfied -	3619 KW (Column C of Total Loads
	Spreadsheet - Table 4.1)
Equipment selected -	One Centaur Type H Turbine
Peak Electrical Output -	3743 KW

Electrically Isolated Alternative:

Load to be satisfied -	6050 KW * Safety Factor (1.2)
	= 7260 KW (6050 KW is the peak
	load that needs to be satisfied
	- Column B of Total Loads
	Spreadsheet - Table 4.1)
Equipment selected -	Two Centaur Type H Turbines
Peak Electrical Output -	7486 KW

Thermally Baseloaded Alternative:

This alternative turns out to be the same as the Electrically Baseloaded Alternative as most of the thermal requirements are satisfied by the same equipment selected in the Baseloaded case.

Therefore, this alternative will not be considered any more.

PRIME MOVER SIZING

GAS ENGINE

All references to gas engine equipment are obtained from Energy Services Group, Cooper Industries.

Electrically Baseloaded Alternat	tive
Load to be satisfied -	3619 KW (Column C of Total Loads
	Spreadsheet - Table 4.1)
Equipment selected -	Two Superior 16SGTB Engines
Peak Electrical Output -	3750 KW

Electrically Isolated Alternative:

Load to be satisfied -	6050 KW * Safety Factor (1.2)
	= 7260 KW (6050 KW is the peak
(load that needs to be satisfied
	- Column B of Total Loads
	Spreadsheet - Table 4.1)
Equipment selected -	Four Superior 16SGTB Engines
Peak Electrical Output -	7500 KW

Thermally Baseloaded Alternative:

This is not a very good option because of the low heat recovery rates from gas engines. It can be noticed that even in the Electrically Isolated case, some gas has to be purchased. Therefore, it will be very uneconimical to size the equipment such that all or most of the thermal requirements are met. This

argument was confirmed by the vendor. This alternative will not be considered any more.

.

.

TRANSMISSION COSTS

For any cogeneration plant, pipes are needed for the supply of steam, chilled water supply and return, and condensate return. Also, an electrical distribution network is needed to supply electricity to the various buildings. For the State Office Buildings, the cogeneration plant will supply steam, chilled water and power to the proposed buildings. For all these buildings trenches need to be dug for the pipes and electrical cables. The cost of pipes and electrical cables are shown in Table A9.

Figure A2 shows the layout for piping and electrical cables. The distances between the cogeneration plant and the respective buildings have been measured from a map of the State Buildings complex. Existing trenches between Sequoyah and Will Rogers, and between Hodge and Connors will be used.

For each building, the cost of electrical cables and the various pipes, steam supply, condensate return, chilled water supply and return have been calculated.

<u>Calculation of Trench cost :</u>

The digging and refilling cost of a trench has been taken as \$5/ft. This was derived from information provided by Mr. William King.

<u>Calculation of chilled water supply and return pipe sizes and</u> <u>cost</u> :

Total cooling tonnage requirement per building has been obtained from the PSA reports. This information has also helped in determining the size of the absorption chillers that will be needed at the central plant (approximately 3000 tons). It has been assumed that chilled water will be supplied at velocity of 8 to 10 ft/sec and on average, a 20 F temperature drop will be obtained. The flow rate is thus calculated and for a given flow rate and given velocity, the pipe size is determined. Steel pipes (sch. 40) are used for both supply and return. The costs of pipes are taken from MEANS MECHANICAL COST DATA BOOK (5).

<u>Calculation of Steam supply pipe sizes and cost :</u>

The peak steam requirements from the cogeneration plant are known to be 30,000 lb/hr (Table 4.1) and steam requirements for each individual building have been approximated using the present boiler size as a guideline. The steam is assumed to be supplied at a maximum pressure of 30 psig and allowing for a pressure drop of less than 5 psig, pipes size have been calculated using the ARMSTRONG Catalog. Steel pipes (sch. 40) are used for steam supply and prices for the pipes have been taken from MEANS MECHANICAL COST DATA BOOK (5).

Calculation of condensate return pipe sizes and cost : Knowing the steam supply rate to all buildings and assuming

that 90 % of the steam is returned as condensate, condensate pipe sizes and costs have been calculated.

<u>Calculation of pump sizes and cost :</u>

Head losses for the given pipe diameter and water velocity have been calculated using "Heating, Ventilating and Air Conditioning, Analysis and Design - Mcquiston and Parker. Once the total head losses are known, the MEANS MECHANICAL COST DATA BOOK (5) has been used to determine the pump sizes and calculate costs. Prices for variable frequency drives on the pumps have also been included.

Determination of Electrical Cable sizes and cost :

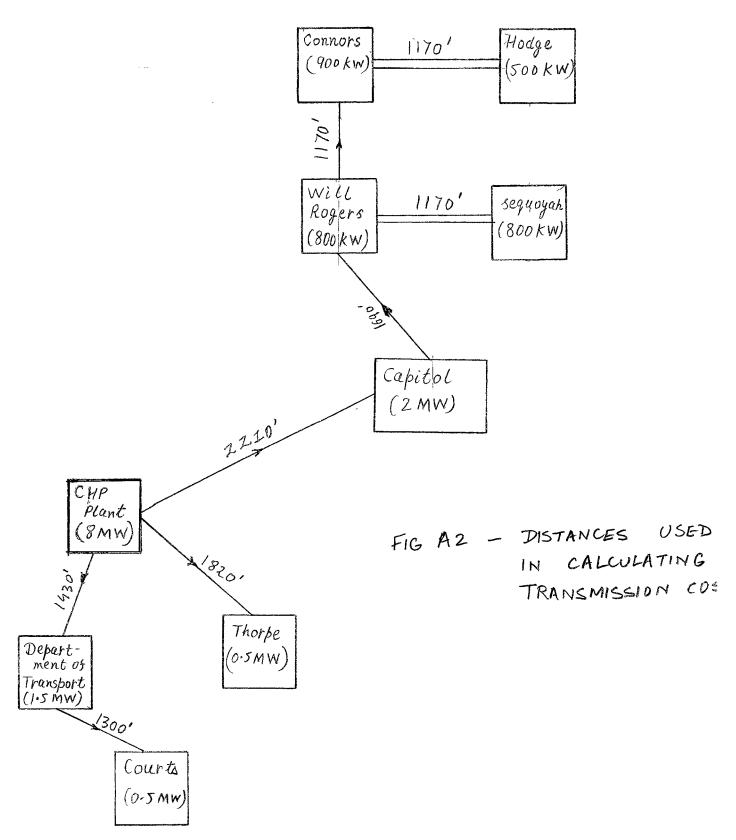
The electrical cables have been conservatively sized assuming a peak generation of 8 MW. It has been assumed that in the baseloaded cases, there will be a tie-in with the utility at the central plant. Each building's peak requirements have been determined from a knowledge of the building. Figure A2 shows the distances required for the electrical cables for all the buildings included in the central cogeneration plant. The cost of the cables has been taken from MEANS ELECTRICAL COST DATA BOOK (4). The total cost for electric cables has thus been determined to be **\$341,576**.

TABLE A9

•

CHP PIPING LAYOUT AND COST

source	dest.		Req Pipe Capacity Tons	Flow gpm	CHW LINE H supp/ret diam, in*			CHW LINE supp/ret (\$)	trench Cost (\$)
CHP PLANT	DOT	1430	741	890	8	20.59	1	97240	7150
DOT	COURT	1300	222	267	4	59.28	1	41600	6500
CHP PLANT	THORPE	1820	222	267	4	82.99	1	58240	9100
CHP PLANT	CAPITOL	2210	2039	2447	12	26.52	2	251940	11050
CAPITOL	W.R	1690	1594	1913	10	36,91	2,3	158860	8450
W.R	SEQ.	1170	472	566	6	14.04	2,3	79560	5850
W.R	CONNORS	1170	667	801	8	14.04	2,3	81900	
CONNORS	HODGE	1170	297	356	6	14.04	2,3	79560	
TOTAL			3000					848900	48100


*Based on 8-10 ft/sec velocity

CHILLED WATER VARIABLE VOLUME PUMP STATIONS

STATION #	Flow gpm	HEAD LOSS FT WATER	PUMP UNITS	PUMP HP	INSTALLED UNIT COST (\$)	VFD UNIT COST (\$)
1	1157	83	2	10	\$2,275	2900
2	2447	37	2	20	\$3,025	3135
3	1913	37	2	15	\$2,575	3500
-			6	45	\$15,750	\$19,070
					TOTAL:	\$34,820

STEAM AND COND. RETURN PIPING LAYOUT AND COST

source	dest.	ONE-WAY distance (ft)	STEAM FLOW 1b/hr	STEAM LINE diam, in*	Flow	COND.RET LINE diam, in*	STEAM LINE (\$)	COND.RET LINE (\$)
CHP PLANT	DOT	1430	10350	6	21	2	37180	11440
DOT	COURT	1300	2750	3	6	1	16900	7800
CHP PLANT	THORPE	1820	1500	3	3	1	23660	10920
CHP PLANT	CAPITOL	2210	19800	8	40	2	77350	17680
CAPITOL	W.R	1690	16700	8	33	2	59150	13520
W.R	SEQ.	1170	3100	3	6	1.5	15210	8190
W.R	CONNORS	1170	9000	6	18	2	30420	9360
CONNORS	HODGE	1170	4500	3	9	1.5	15210	8190
TOTAL			31650				275080	87100

ECONOMIC ANALYSIS OF ALL ALTERNATIVES

Some basic assumptions have been made with regard to the economic analysis. These are enumerated below:

1. Economic life of all projects is 15 years.

2. Inflationary effects have been ignored.

 The cost of additional personnel for the central power plant will be offset by the reduced cost to maintain cogeneration equipment. Hence, no maintenance savings will be claimed.
 Salvage values of existing equipment will not be taken into account. This is a conservative assumption.

ECONOMIC ANALYSIS FOR ELECTRICALLY BASELOADED CASE - GAS TURBINE

Installed Cost -	\$ 700/KW (Manufacturer)
Annual CHP Operating Cost -	\$1,404,307 (Table 5.1)
Present Annual Operating Costs -	\$2,398,801 (from Bills)

Annual Savings in Operating Costs

- = (Present Operating Costs CHP Plant Operating Costs)
- = (\$2,398,801 \$1,404,307)
- = \$994,494/yr

Summary of Total Installed Costs

- * Packaged unit with Turbine, Generator
 - & Heat Recovery Generator
 - = (\$700/KW)(3743 KW)
 - = \$2,620,100

* Absorption Chillers

4 x 700 Ton Hitachi Model 19G Chillers or 4 x 750 Ton Trane Model ABSC-07C Chillers with a pressure reducing valve.

Installed Cost - \$600/ton - From Gas Energy Inc.

166 Montague Street

Brooklyn, NY 11201

Total Cost of Absorption Chillers

= (2800 Tons)(\$600/Ton)

= \$1,680,000

- Transmission Costs
 Chilled Water Lines \$848,900
 Steam & Condensate Lines \$362,100
 Trenches \$48,100
 Pumps and VFDs \$34,820
 Electric Underground Cables \$341,576
 Total Transmission Costs \$1,635,576
- * Total System Installed Costs
 = \$2,620,100 + \$1,680,000 + \$1,635,576
 = \$5,935,676

Present Worth at 7% MARR & 15 years life
= -\$5,935,676 + (\$994,494)(P/A, 7, 15)
= -\$5,935,676 + (\$994,494)(9.1079)
= \$3,122,076

Present Worth at 10% MARR & 15 years life
= -\$5,935,676 + (\$994,494)(P/A, 10, 15)
= -\$5,935,676 + (\$994,494)(7.6061)
= \$1,628,545

Present Worth at 15% MARR & 15 years life
= -\$5,935,676 + (\$994,494)(P/A, 15, 15)
= -\$5,935,676 + (\$994,494)(5.8474)
= -\$120,472

ECONOMIC ANALYSIS FOR ELECTRICALLY ISOLATED CASE - GAS TURBINE

Installed Cost -	\$700/KW (Manufacturer)
Annual CHP Operating Cost -	\$1,265,337 (Table 5.2)
Present Annual Operating Costs -	\$2,398,801 (from Bills)

Annual Savings in Operating Costs

- = (Present Operating Costs CHP Plant Operating Costs)
- = (\$2,398,801 \$1,265,337)
- = \$1,133,464/yr

Summary of Total installed Costs

- * Packaged unit with Turbine, Generator
 - & Heat Recovery Generator
 - = (\$700/KW)(7238 KW)
 - = \$5,066,600

* Absorption Chillers

4 x 700 Ton Hitachi Model 19G Chillers or 4 x 750 Ton Trane Model ABSC-07C Chillers with Pressure Reducing Valve. Installed Cost - \$600/ton - From Gas Energy Inc.

·····

166 Montague Street

Brooklyn, NY 11201

Total Cost of Absorption Chillers

- = (2800 Tons)(\$600/Ton)
- = \$1,680,000

* Transmission Costs

Chilled Water Lines -	\$848,900
Steam & Condensate Lines -	\$362,100
Trenches -	\$48,100
Pumps and VFDs -	\$34,820
Electric Underground Cables -	\$341,576
Total Transmission Costs -	\$1,635,576

* Total System Installed Costs
= \$5,066,600 + \$1,680,000 + \$1,635,576
= \$8,382,176

Present Worth at 7% MARR & 15 years life
= -\$8,382,176 + (\$1,133,464)(P/A, 7, 15)
= -\$8,382,176 + (\$1,133,464)(9.1079)
= \$1,941,300

Present Worth at 10% MARR & 15 years life
= -\$8,382,176 + (\$1,133,464)(P/A, 10, 15)
= -\$8,382,176 + (\$1,133,464)(7.6061)
= \$239,065

Present Worth at 15% MARR & 15 years life
= -\$8,382,176 + (\$1,133,464)(P/A, 15, 15)
= -\$8,382,176 + (\$1,133,464)(5.8474)
= -\$1,754,359

.

ECONOMIC ANALYSIS FOR ELECTRICALLY BASELOADED CASE - GAS ENGINE

Installed Cost of each 16 SGTB - \$1,350,000/unit Superior Gas Engine (Packaged Unit) Annual CHP Operating Cost - \$1,460,261 (Table 5.3) Present Annual Operating Costs - \$2,398,801 (from Bills)

Annual Savings in Operating Costs

- = (Present Operating Costs CHP Plant Operating Costs)
- = (\$2,398,801 \$1,460,261)
- = \$938,540/yr

Summary of Total installed Costs

- * 2 Packaged units with Engine, Generator
 & Heat Recovery Generator
 = (2 units)(\$1,350,000/unit)
 - = \$2,700,000

* Absorption Chillers

4 x 750 Ton Trane Model ABSC-07C Chillers Installed Cost - \$600/ton - From Gas Energy Inc. 166 Montague Street Brooklyn, NY 11201 Total Cost of Absorption Chillers = (3000 Tons)(\$600/Ton)

= \$1,800,000

- Transmission Costs
 Chilled Water Lines \$848,900
 Steam & Condensate Lines \$362,100
 Trenches \$48,100
 Pumps and VFDs \$34,820
 Electric Underground Cables \$341,576
 Total Transmission Costs \$1,635,576
- * Total System Installed Costs
 = \$2,700,000 + \$1,800,000 + \$1,635,576
 = \$6,135,576

Present Worth at 7% MARR & 15 years life
= -\$6,135,576 + (\$938,540)(P/A, 7, 15)
= -\$6,135,576 + (\$938,540)(9.1079)
= \$2,412,553

Present Worth at 10% MARR & 15 years life
= -\$6,135,576 + (\$938,540)(P/A, 10, 15)
= -\$6,135,576 + (\$938,540)(7.6061)
= \$1,003,053

Present Worth at 15% MARR & 15 years life
= -\$6,135,576 + (\$938,540)(P/A, 15, 15)
= -\$6,135,576 + (\$938,540)(5.8474)
= -\$647,557

ECONOMIC ANALYSIS FOR ELECTRICALLY ISOLATED CASE - GAS ENGINE

Installed Cost of each 16 SGTB - \$1,350,000/unit Superior Gas Engine (Packaged Unit) Annual CHP Operating Cost - \$1,216,973 (Table 5.4) Present Annual Operating Costs - \$2,398,801 (from Bills)

Annual Savings in Operating Costs

= (Present Operating Costs - CHP Plant Operating Costs)

= (\$2,398,801 - \$1,216,973)

= \$1,181,828/yr

Summary of Total Installed Costs

* 4 Packaged units with Engine, Generator

- & Heat Recovery Generator
- = (4 units)(\$1,350,000/unit)
- = \$5,400,000

* Absorption Chillers

= \$1,800,000

- Transmission Costs
 Chilled Water Lines \$848,900
 Steam & Condensate Lines \$362,100
 Trenches \$48,100
 Pumps and VFDs \$34,820
 Electric Underground Cables \$341,576
 Total Transmission Costs \$1,635,576
- * Total System Installed Costs = \$5,400,000 + \$1,800,000 + \$1,635,576 = \$8,835,576

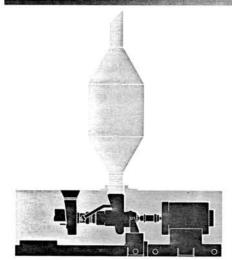
Present Worth at 7% MARR & 15 years life
= -\$8,835,576 + (\$1,181,828)(P/A, 7, 15)
= -\$8,835,576 + (\$1,181,828)(9.1079)
= \$1,928,395

Present Worth at 10% MARR & 15 years life
= -\$8,835,576 + (\$1,181,828)(P/A, 10, 15)
= -\$8,835,576 + (\$1,181,828)(7.6061)
= \$153,526

Present Worth at 15% MARR & 15 years life
= -\$8,835,576 + (\$1,181,828)(P/A, 15, 15)
= -\$8,835,576 + (\$1,181,828)(5.8474)
= -\$1,924,995

SUMMARY OF RESULTS

OPTION	7%	PRESENT WORTH	<u>IS</u> 15%
Elect. Base Load Gas Turbine	\$3,122,076	\$1,628,545	-\$120,472
Elect. Isolation Gas Turbine	\$1,941,300	\$239,065	-\$1,754,359
Elect. Base Load Gas Engine	\$2,412,553	\$1,003,053	-\$647,557
Elect. Isolation Gas Engine	\$1,928,395	\$153,526	-\$1,924,995


The following summary table below results:

CONCLUSION

The Electrically Baseloaded operating mode with a Gas Turbine as its prime mover has the highest present worth (\$3,122,076). Therefore, using the present worth criterion, this alternative is better than the present system and should be selected. SOLAR TURBINES INCORPORATED 2625 BUTTERFIELD ROAD SUITE 315W OAK BROOK, IL 60521 312-572-0303

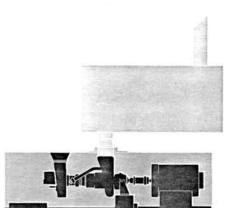
GAS TURBINE DI

CONTACT : ROBERT F. KOVARIK SITE EXAMPLES

Steam Producing*

	Saturn Turbine	Centaur T-4500 Turbine	Centaur Type H Turbine	Mars Turbine	Jupiter Turbine
Stack Temperature °F	319	317	294	311	345
Steam Output Ib/hr	6297	18,336	23,113	41,877	61,065
Exhaust Temperature °F	837	848	969	878	693
Fuel Input million Btu/hr	12.9	40.1	46.9	95.9	170.0
Electrical Output kW	800	3028	3743	8589	15,739
Air Mass Flow thousand Ib/hr	49.3	140.1	138.0	299.0	716.3
Net Fuel Rate Btu/kW-hr	6010	5462	4595	4900	5816

*Turbine exhaust producing 150 psig steam.



Supplemental Firing*

	Saturn Turbine	Centaur T-4500 Turbine	Centaur Type H Turbine	Mars Turbine	Jupiter Turbine
Stack Temperature °F	250	250	250	250	250
Steam Output Ib/hr	18,566	52,796	51,991	112,667	269,874
Additional Fuel to Burner million Btu/hr	12.2	34.3	29.2	70.8	205.9
Exhaust Temperature °F	837	848	969	878	693
Turbine Fuel Input million Btu/hr	12.9	40.1	46.9	95.9	170.0
Electrical Output kW	800	3028	3743	8589	15,739
Air Mass Flow thousand lb/hr	49.3	140.1	138.0	299.0	716.3
Net Fuel Rate Btu/kW-hr	1553	2165	2482	2552	1850

* This example assumes exhaust with supplemental firing to 1700°F in 150 psig boiler.

Hot Air Source*

	Saturn Turbine	Centaur T-4500 Turbine	Centaur Type H Turbine	Mars Turbine	Jupiter Turbine
Heat Credit		0.072050.0			
million Btu/hr	9.74	28.15	32.0	62.34	115.57
Exhaust					
Temperature °F	837	848	969	878	693
Fuel Input					
million Btu/hr	12.9	40.1	46.9	95.9	170.0
Electrical					
Output kW	800	3028	3743	8589	15,739
Air Mass Flow					
thousand	49.3	140.1	138.0	299.0	716.3
lb/hr	10000	TO DEPENDENT			
Net Fuel					
Rate	3950	3946	3981	3907	3458
Btu/kW-hr					

 Cogeneration system with turbine exhaust used directly as hot air source.

> CAPITOL COST - \$700 MAINTENANCE (OST - \$0.1

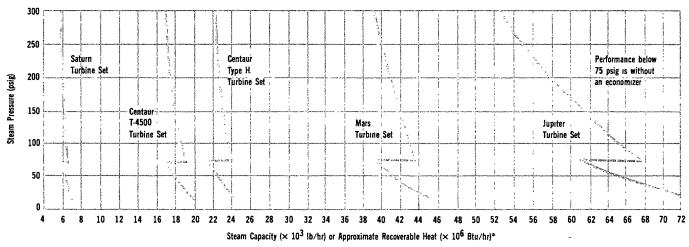
GAS TURBINE DATA

PERFORMANCE

ISO Performance

The ability to use gas turbine exhaust for heat recovery, supplemental firing, and in a wide range of heat-to-electric power ratio applications makes the gas turbine the leading prime mover for cogeneration systems. Available exhaust energy and net electrical output of Solar's gas turbine generator sets at ISO conditions are given below.

n de antenne antenne ant	Saturn Turbine	Centaur T-4500 Turbine	Centaur Type H Turbine	Mars Turbine	Jupiter
Exhaust Temperature °F	813	840	961	870	685
Fuel Input million Btu/hr	12.64	40.52	47.33	97.06	173.18
Electrical Output kW	800	3130	3880	8840	16,400
Exhaust Flow thousand ib/hr	49.7	141.4	140.8	302.2	726.8


LINTERN ARMINIZZI PERKERIKAN MULA MALIZA ALARIMA TANYA TANYA MULATANA MULATANA MU

Specific Site Examples

The values shown in the examples on the facing page are based on the following tables:

ASSUMPTIONS:		
Ambient conditions	Sea level and 60°F	
Fuel	Liquid or gas	
Load	100 percent	
Inlet pressure loss	3 inches water	
Exhaust pressure loss	7 inches water	
STEAM DATA:	nnan daar bara kara kara kara kara kara kara k	
Condensate return	200°F	
Steam conditions	Dry and saturated	
Pinch temperature	30°F	
Alternate boiler efficiency	80 percent	

Heat Recoverable from Solar Gas Turbines

QL

^{*}Assuming latent heat of vaporization equals 1000 Btullb.

GAS ENGINE SPECIFICATIONS

All information supplied by : Energy Services Group Cooper Industries 4405 S. 74 E. Ave. Box 470383 Tulsa, OK 74147 918-622-4670

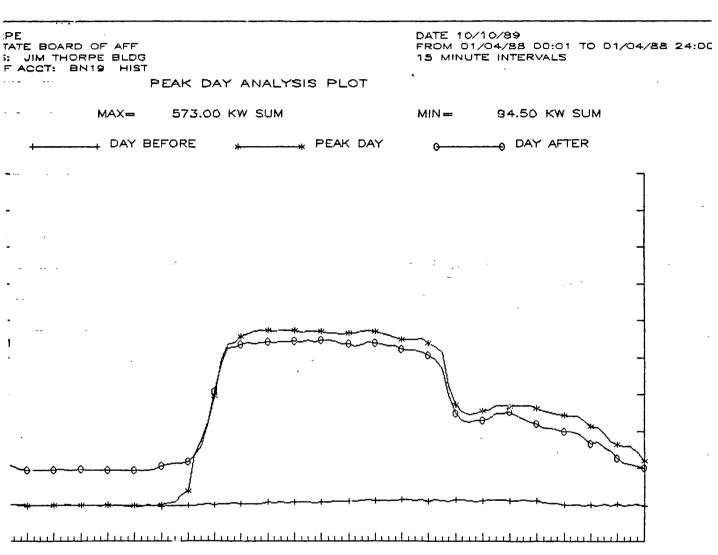
Contact: Randy Bissey

SUPERIOR GAS ENGINE

Model -	16SGTB
Gen. Set Rating -	1875 KW
Engine Speed -	900 RPM
Fuel Rate -	10,025 BTU/KWH
Characteristics -	Clean-burn, straight gas engine

.

Heat Rejection:

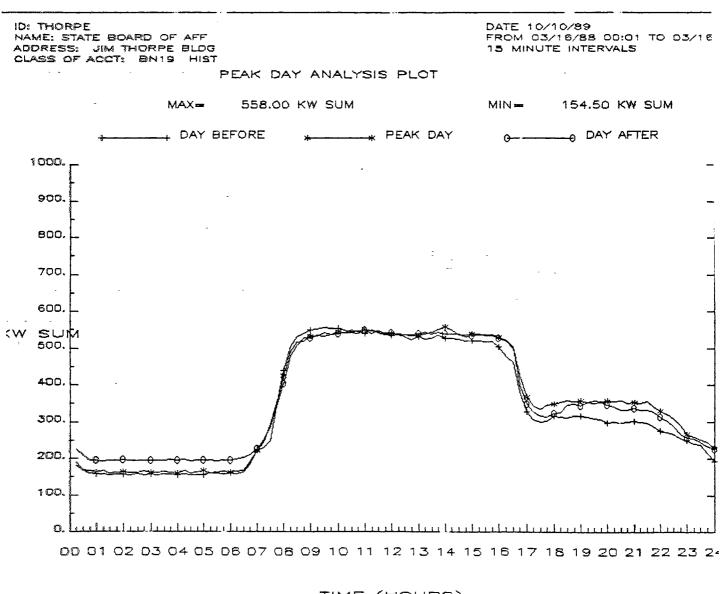

Jacket Water -	77,500 BTU/min (2,480 BTU/KWH)
Water Temp -	180 F
Water Flow -	775 gpm
For 15 psig steam:	
Recoverable Exhaust -	3,041,000 BTU/hr (1,622 BTU/KWH)
Exhaust Flow -	458 lb/min

Exhaust Temp - 785 F

Exhaust gases are taken down to 350 F.

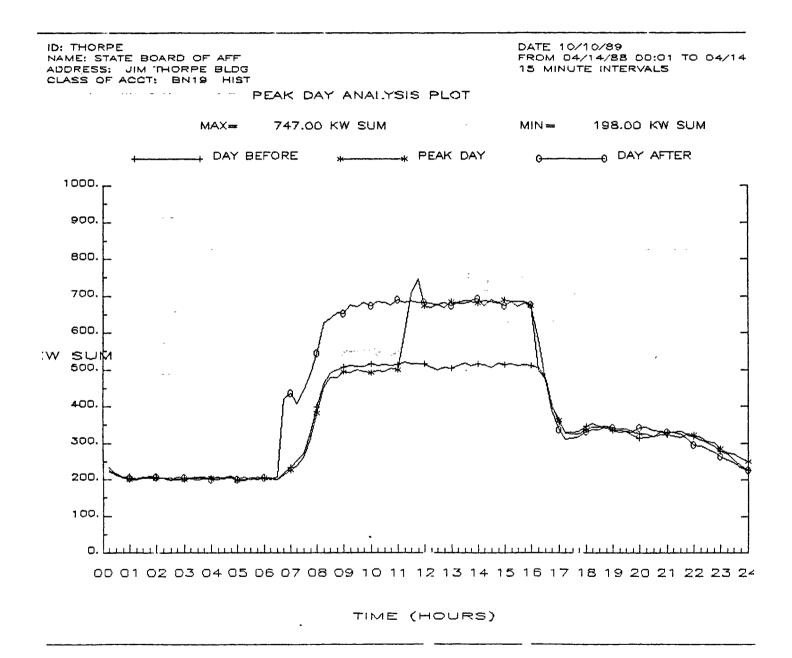
COSTS

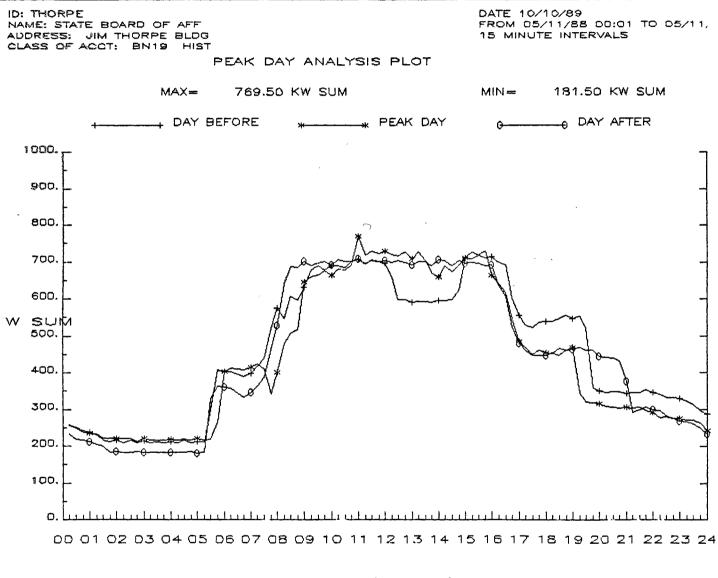

Completely packaged unit Engine & Generator (on skid) plus Heat Recovery Generator plus plate heat exchanger for jacket water: Cost: \$1,100,000/unit Installation: \$250,000 Maintenance: \$0.005/KWH APPENDIX B - PEAK DAY ANALYSIS PLOTS



01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

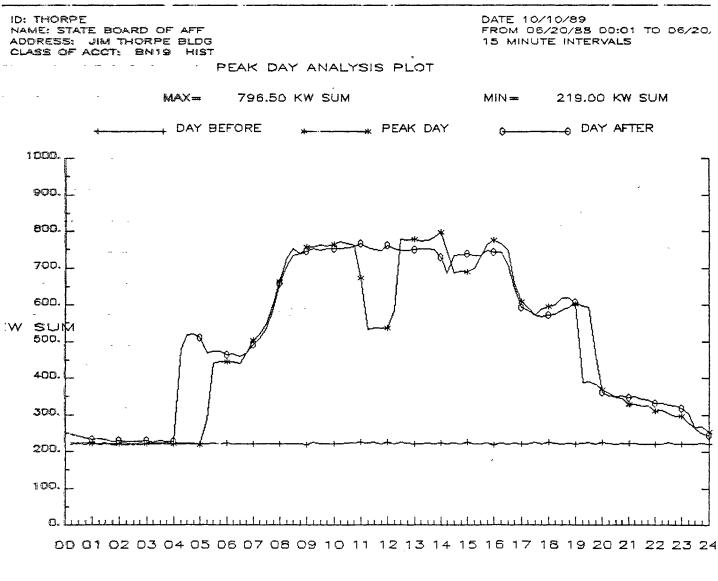
TIME (HOURS)


.



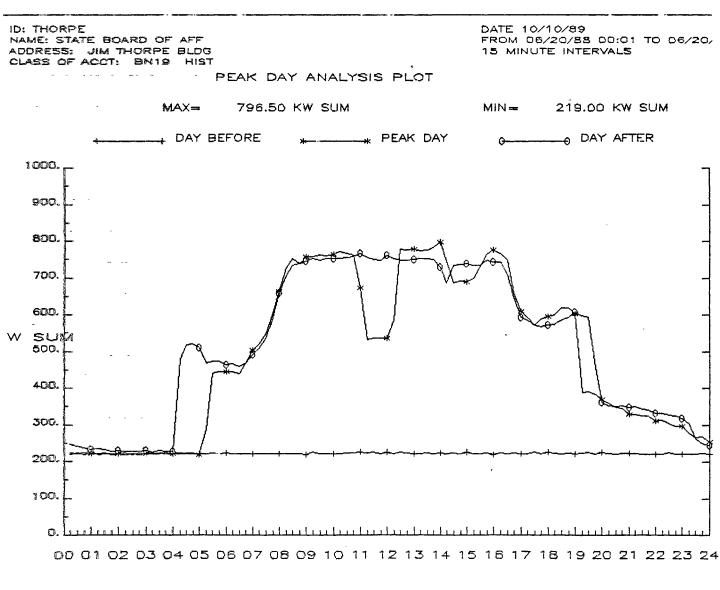
. .

TIME (HOURS)



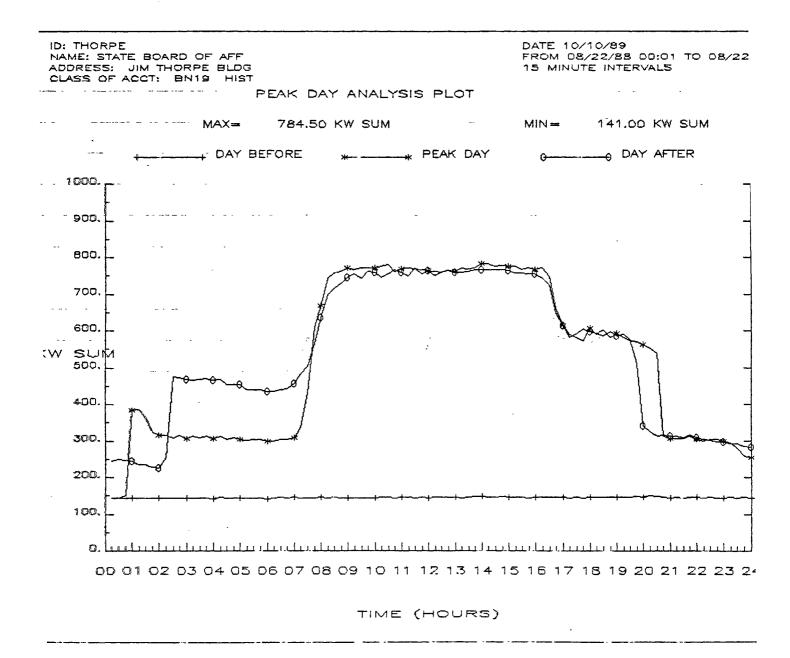
· "`

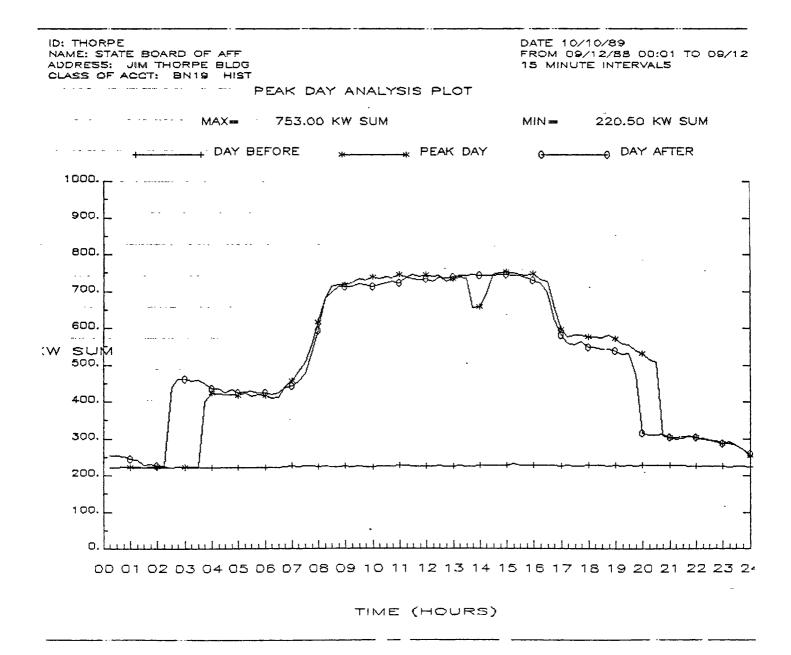
1 , 1


TIME (HOURS)

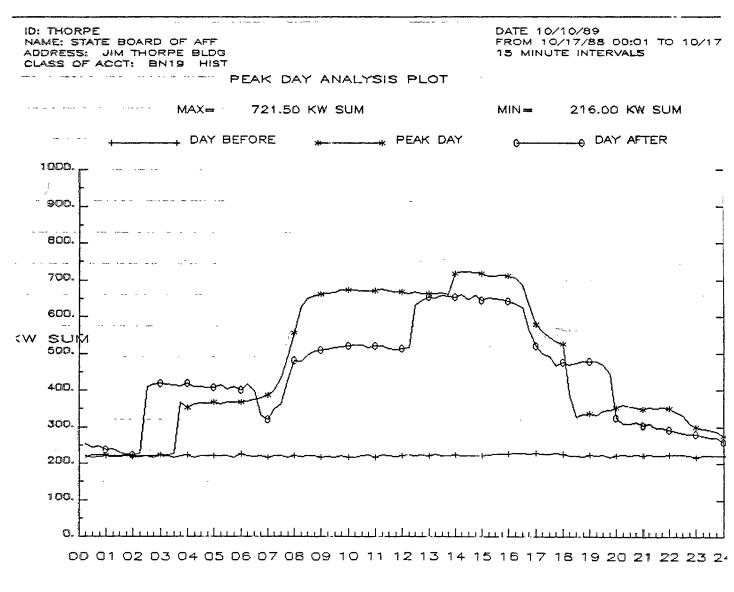
· · · ·

TIME (HOURS)

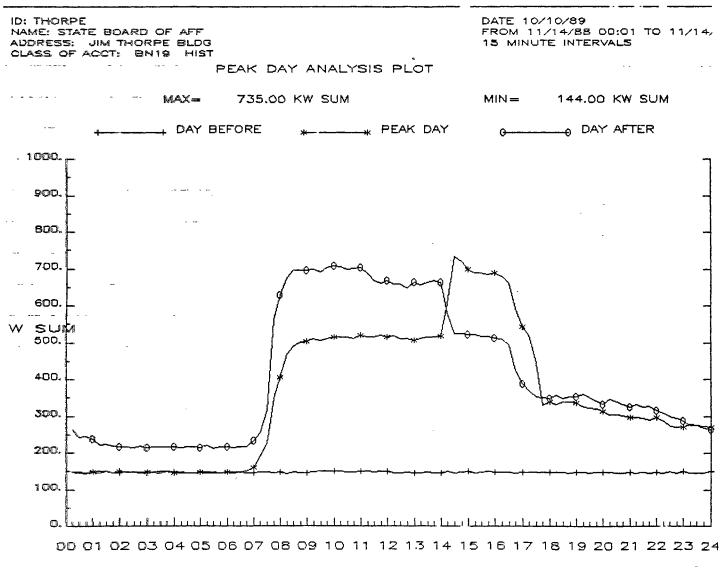

.



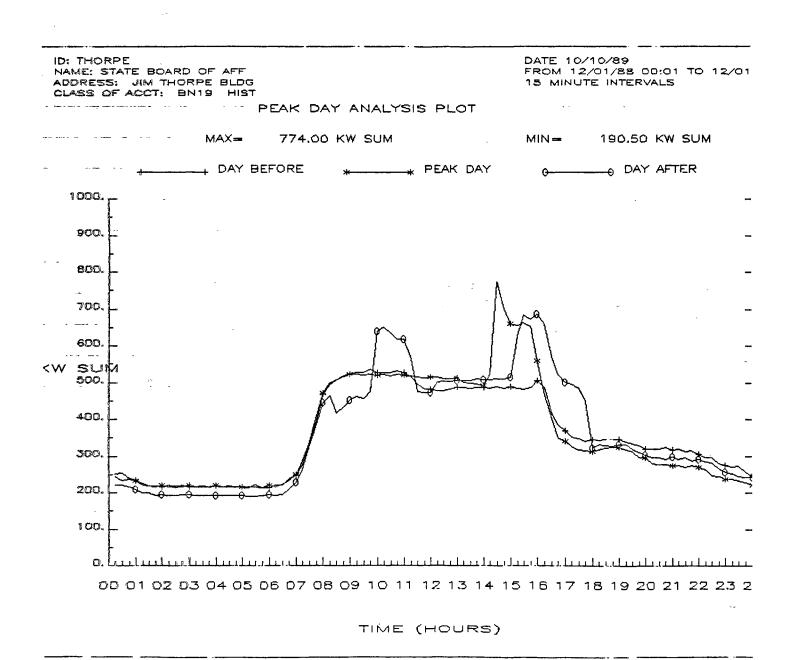
. ·`


TIME (HOURS)

.



ł


TIME (HOURS)

, **?**

TIME (HOURS)

. F